
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
4
2
/
b
o
r
i
s
t
h
e
s
e
s
.
1
0
2
4

|

d
o
w
n
l
o
a
d
e
d
:

2
4
.
4
.
2
0
2
4

Dynamic Language Embedding
With Homogeneous Tool Support

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von
Lukas Renggli
von Entlebuch

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz

Institut für Informatik und angewandte Mathematik

This dissertation is available as a free download from scg.unibe.ch.

Copyright © 2010 Lukas Renggli, www.lukas-renggli.ch.

The contents of this dissertation are protected under Creative Commons
Attribution-ShareAlike 3.0 Unported license. For any reuse or distribution,
you must make clear to others the license terms of this work. The best way
to do this is with a link to creativecommons.org/licenses/by-sa/3.0/.

First Edition, October, 2010.
Cover art by Martin Renggli.

http://scg.unibe.ch/
http://www.lukas-renggli.ch/
http://creativecommons.org/licenses/by-sa/3.0/

Acknowledgements

First of all, I would like to express my gratitude to Oscar Nierstrasz for giving me
the opportunity to work at the Software Composition Group. I thank him for his
advice and support throughout the years.

I would like to thank Ralf Lämmel for writing the Koreferat and for accepting to
be on the PhD committee. I enjoyed the good discussions we had when we met in
Bern, Koblenz and at various language engineering conferences.

I thank Matthias Zwicker for accepting to chair the examination.

I am grateful to Stéphane Ducasse for his enthusiasm and the numerous invitations
to join him at his research group in Annecy and later in Lille. I might not have taken
the path of pursuing a PhD without the encouragements of him.

I also thank Tudor Gîrba for the inspiring discussions and for providing many of
the ideas that have influenced this work.

I am much obliged to the people that provided constructive feedback on early drafts
of this dissertation: Jorge Ressia, Fabrizio Perin, and Tudor Gîrba. I also thank my
father Martin Renggli for the original cover art.

I would like to thank my master student Philipp Bunge, and my bachelor students
Andrea Quadri and Max Leske for the hours we shared discussing and implement-
ing new and exciting Smalltalk projects.

I am thankful to the Hilfsassistants of the lecture Introduction to Software Engineering
that helped running the exercise hours in the past four years: Camillo Bruni, Philipp
Bunge, Christian Bürgi, Stefan Ott, Patrik Rauber, Stefan Reichhart, Erwann Wernli,
and Rafael Wampfler.

I would like to thank all the former and current members of the Software Compo-
sition Group. It was a pleasure to work with you: Gabriela Arévalo, Alexandre
Bergel, Marcus Denker, Markus Gaelli, Orla Greevy, Adrian Kuhn, Adrian Lien-
hard, Mircea Lungu, Fabrizio Perin, Laura Ponisio, Jorge Ressia, David Röthlis-
berger, Niko Schwarz, Toon Verwaest, and Erwann Wernli. Special thanks go to
Therese Schmid and Iris Keller that made the administrative work a pleasure.

i

I am grateful to my parents who have supported me all those years. I would like
to express my thanks to my friends: Adriaan van Os for being ready to discuss
anything despite the distance; and Jorge Ressia and Fabrizio Perin for the tools we
implemented and the Argentine Empanadas, Italian Pizzoccheri, and Bernese Rösti
we enjoyed.

Lukas Renggli
October 20, 2010

Abstract

Domain-specific languages (DSLs) are increasingly used as embedded languages
within general-purpose host languages. DSLs provide a compact, dedicated syntax
for specifying parts of an application related to specialized domains. Unfortunately,
such language extensions typically do not integrate well with existing development
tools. Editors, compilers and debuggers are either unaware of the extensions, or
must be adapted at a non-trivial cost. Furthermore, these embedded languages typ-
ically conflict with the grammar of the host language and make it difficult to write
hybrid code; few mechanisms exist to control the scope and usage of multiple tightly
interconnected embedded languages.

In this dissertation we present Helvetia, a novel approach to embed languages into
an existing host language by leveraging the underlying representation of the host
language used by these tools. We introduce Language Boxes, an approach that of-
fers a simple, modular mechanism to encapsulate (i) compositional changes to the
host language, (ii) transformations to address various concerns such as compilation
and syntax highlighting, and (iii) scoping rules to control visibility of fine-grained
language changes. We describe the design and implementation of Helvetia and
Language Boxes, discuss the required infrastructure of a host language enabling
language embedding, and validate our approach by case studies that demonstrate
different ways to extend or adapt the host language syntax and semantics.

iii

Contents

1 Introduction 1
1.1 Types of Embedded Languages . 3
1.2 Shortcomings of Existing Approaches 5
1.3 Thesis Statement . 6
1.4 Our Solution in a Nutshell . 6
1.5 Contributions . 7
1.6 Outline . 8

2 Approaches for Combining Languages 11
2.1 Internal Languages . 12

2.1.1 Function Sequence . 13
2.1.2 Function Nesting . 14
2.1.3 Function Chaining . 14
2.1.4 Higher-Order Functions . 15
2.1.5 Language Literals . 17
2.1.6 Operator Overloading . 17
2.1.7 Meta-Annotations . 18
2.1.8 Program Generation . 19
2.1.9 Macro Programming . 20

2.2 External Languages . 21
2.3 Embedded Languages . 22

2.3.1 Extensible Compilers . 22
2.3.2 Meta-Programming Systems 24
2.3.3 Language Workbenches . 25
2.3.4 Language Transformations 26
2.3.5 Modeling Languages . 28

2.4 Roadmap . 28

3 Enabling Language Embedding 31
3.1 The Helvetia Model . 31

3.1.1 Homogeneous Language Integration 32
3.1.2 Homogeneous Tool Integration 34
3.1.3 Defining Helvetia Rules . 35

v

3.2 Evaluation of the Helvetia Model 36
3.2.1 Pidgin, Creole and Argot Languages 36
3.2.2 Multiple Context-Dependent Languages 37
3.2.3 Homogeneous Tool Support 37
3.2.4 Homogeneous Code and Data Abstraction 38
3.2.5 Conventional Language and Tools 38

3.3 Conclusion . 40

4 Helvetia Exemplified 41
4.1 Matching and Generating Code . 42

4.1.1 Tree Pattern Matching . 42
4.1.2 Code Generation with Quasiquoting 43

4.2 A Pidgin: Mondrian . 45
4.2.1 Specifying the Mondrian Pidgin 47

4.3 A Creole: Mondrian . 49
4.3.1 Specifying the Mondrian Creole 50

4.4 An Argot: Transactional Memory 53
4.4.1 Programming with transactions 53
4.4.2 Inside transactions . 55

4.5 Conclusion . 57

5 Combining Language Extensions 59
5.1 Language Boxes in Practice . 60
5.2 Language Box Model . 62

5.2.1 Language Change . 63
5.2.2 Language Concern . 64
5.2.3 Language Scope . 65

5.3 Implementation . 66
5.4 Case Study . 69

5.4.1 Adding an SQL Language Extension 70
5.4.2 Restricting the Scope of a Language Extension 72
5.4.3 Mixing Different Language Extensions 73
5.4.4 Tool Integration . 73

5.5 Conclusion . 74

6 Dynamic Grammars 79
6.1 PetitParser . 80
6.2 PetitParser in Practice . 82

6.2.1 Grammar Specialization . 82
6.2.2 Grammar Composition . 82
6.2.3 Grammar Conflicts . 83
6.2.4 Grammar Transformations 84

6.2.5 Declarative Grammar Rewriting 86
6.2.6 Tool Support . 87
6.2.7 Performance . 88

6.3 Related Work . 90
6.4 Conclusion . 90

7 Domain-Specific Program Checking 91
7.1 History of Program Checking . 91
7.2 Examples of Domain-Specific Rules 94

7.2.1 Syntactic rules for Seaside 94
7.2.2 Magritte — code checking with a metamodel 100

7.3 Case Studies . 103
7.3.1 Seaside . 103
7.3.2 Cmsbox . 105
7.3.3 User Survey . 107
7.3.4 Magritte . 108

7.4 Related Program Checkers . 109
7.5 Conclusion . 110

8 Host Language Requirements 113
8.1 Requirements for Language Embedding 114
8.2 Requirements for a Host Environment 115
8.3 Host Language Shootout . 116

8.3.1 Minimal Syntax . 117
8.3.2 Dynamic Semantics . 118
8.3.3 Reflective Language . 119
8.3.4 Homoiconic Language . 121
8.3.5 Homogeneous Environment 122
8.3.6 On-the-fly Changes . 124

8.4 Conclusion . 125

9 Conclusions 127
9.1 Contributions of the Dissertation 127
9.2 Impact of Helvetia . 128
9.3 Future Research Directions . 129

A Getting Started 131
A.1 Installation . 131

A.1.1 Downloading a One-Click Distribution 131
A.1.2 Building a Custom Image 131

A.2 A First Language Extension: Roman Numbers 132
A.3 A First Language Box: Regular Expressions 134

B Examples 137
B.1 Roman Numbers . 137
B.2 Grammar Definition . 137
B.3 SQL . 138
B.4 Regular Expression . 139
B.5 SPath Expression . 139
B.6 Quasiquoting and Unquoting . 139
B.7 Brainfuck Language . 140
B.8 Positional Arguments . 140
B.9 Automaton . 141
B.10 Tuple Space . 141
B.11 Mondrian . 142
B.12 Transactional Memory . 142
B.13 Object Relationships . 143
B.14 String Interpolation . 143
B.15 Assignments and Swapping . 143
B.16 Schematic Tables . 144
B.17 Functional Pattern Matching . 144
B.18 Message Pipes . 145
B.19 Asynchronous Messages . 146

C Bibliography 147

List of Figures

1.1 The layered architecture of the Helvetia language workbench. . . . 6

2.1 Structure of the dissertation and how it covers the problem space. . 30

3.1 The code compilation pipeline showing multiple interception paths. 32
3.2 The tool integration with multiple extension points. 34

4.1 A UML package shape in Mondrian. 45
4.2 The CSS Parser Hierarchy. 51
4.3 Traditional Smalltalk debugger with language specific syntax high-

lighting stepping through a mixture of Smalltalk and a creole. 52
4.4 Static compilation model for transactional memory. 57

5.1 From the source code to the AST of the host language. 61
5.2 The interplay of the language box model with the application layer

and the development tools. 62
5.3 Grammar composition for the regular expression language box. . . 67
5.4 Grammar composition with Smalltalk. 68
5.5 Development tools on a method that combines two Language Boxes

and the host language. 75

6.1 The PetitParser grammar workspace displaying the currently se-
lected production. 87

6.2 Progress of an example parse with backtracking in choice operator. . 88
6.3 Parsing time of Smalltalk code of increasing input size. 89

7.1 Dimensions of program checking. 93
7.2 Integration of domain-specific rules into the “Code Browser”. 97
7.3 The domain object Person with its Magritte meta-description. 100
7.4 Number of Lint and Slime issues in Seaside. 104
7.5 Number of Lint and Slime issues in the Cmsbox. 106

8.1 Stepping through a mixture of EBNF and the host language using the
standard debugger. 120

ix

8.2 The “Code Browser” opened on the EBNF language with adapted
syntax highlighting and auto completion. 123

List of Tables

1.1 Taxonomy for internal, external and embedded Languages. 2
1.2 Taxonomy for pidgin, creole and argot embedded languages. 3
1.3 The remaining possible combinations of Table 1.2. 4

2.1 Internal domain-specific languages. 13
2.2 Comparison of different systems for language authoring. 23

4.1 Meta-characters of the tree pattern matching. 42
4.2 Quoting operators for code generation. 44
4.3 Different semantic transformations for transactional memory. 56

5.1 Composition strategies for grammar rules. 63

6.1 The primitive PEG operators and their counterpart in PetitParser. . . 81
6.2 Additional convenience constructors in PetitParser. 81
6.3 Throughput parsing the Smalltalk collection hierarchy. 89

7.1 Number of issues in meta-described open-source code. 108

8.1 Comparison of different main-stream programming languages and
their suitability for language engineering. 116

8.2 Number of AST nodes as a measurement of syntactical complexity. . 117

B.1 Overview on different language extensions. 138

xi

Chapter 1

Introduction

“It might seem easy enough, but com-
puter language design is just like a
stroll in the park. Jurassic Park, that
is.”

— Larry Wall

General-purpose languages (GPLs), by being “good enough” to code software for
arbitrary domains, are necessarily suboptimal for many specialized domains. They
may be overly verbose, confusing or just plain awkward to use. Thus domain-
specific languages (DSLs) have been developed to address the needs of these spe-
cialized domains.

DSLs come in three flavors: internal, external, and embedded. Table 1.1 summarizes
their most important properties:

Internal Language. At one extreme we have the so-called internal languages which
simply make creative use of APIs and of the host syntax. Such DSLs are some-
times referred to as fluent interfaces [Fowler, 2005a]. They provide a seamless
integration in the host language, and as such they can benefit from the tools
provided by the development environment (e.g., code editor, debugger) of
the host language. However, the expressiveness of internal DSLs is confined
by the host syntax. In most programming languages it is possible to change
neither the syntax nor the semantics of the host language.

External Language. At the other extreme we find external languages [Fowler,
2005b]. These languages are typically developed independently of the host
language as a preprocessing step or through an extensible compiler. Exter-
nal languages provide freedom for expressing diverse syntax and semantics.

1

Chapter 1 Introduction

Sy
nt

ax
Se

m
an

tic
s

H
os

t I
nt

eg
ra

tio
n

To
ol

 In
te

gr
at

io
n

D
es

cr
ip

tio
n

Internal # # Internal languages make a creative use of the host lan-
guage. They integrate seamlessly into the host lan-
guage and tools, but their syntax and semantics is
strictly constrained.

External # # External languages are independent of the host lan-
guage. This makes them difficult to integrate into the
host language and development tools.

Embedded Embedded languages combine the advantages of inter-
nal and external languages. Ideally an embedded lan-
guage uses the same executable representation as the
host and integrates well with tools.

Table 1.1: Taxonomy for internal, external and embedded Languages.

While doing so they however break the tools of the host development envi-
ronment. Integration with the host language is difficult.

Embedded Language. In between these two extremes we find embedded languages
[Hudak, 1996], which extend a host language with new syntax and semantics.
Language workbenches support the development of embedded languages by
introducing a common representation and by integrating multiple languages
into a common toolset. For example, editors take advantage of the abstract
language definitions and automatically provide syntax highlighting, auto-
completion and error correction. Ideally, a single debugger can be used to
step through pieces of code implemented in different languages.

We have focused our research on embedded languages because they combine the
strength of both, internal and external languages. Mernik et al. [Mernik et al., 2005]
point out that embedded approaches lead to better reuse of existing host language
features and tools, and significantly reduce development and training costs. In prac-
tice however, language workbenches do not leverage the existing tools but provide
their own environment. Often they introduce a non-standard language representa-
tion and thus pose compatibility problems with existing code.

2

1.1 Types of Embedded Languages

1.1 Types of Embedded Languages

The syntax of a programming language is concerned with the form and structure
of a program; it is typically specified using a set of rules called the grammar. The
semantic of a programming language describes the meaning of a program; it can be
specified using various techniques, most often it is given through documentation, a
reference implementation, or denotational semantics. Together syntax and semantic
define a programming language [Watt, 1991].

The vocabulary of a programming language is not only given by its syntax, but also
through software libraries. Often a standard library forms the body of words used
in a programming language. Additional libraries provide services for specify tasks.
The set of active libraries defines the vocabulary a developer can use.

We have defined a taxonomy of different types of embedded languages and we as-
sess how well existing approaches support their development and integration with
existing tools. We have adopted a terminology from natural languages enlisted in
Table 1.2. In the domain of natural language, a “pidgin” is “a grammatically sim-
plified form of a language used for communication between people not sharing a
common language”; a “creole” is “a mother tongue formed from the contact of two
languages through an earlier pidgin stage”; an “argot” is a “jargon or slang of a
particular group or class” [Jewell and Abate, 2005].

Sy
nt

ax
Vo

ca
bu

la
ry

Se
m

an
tic

s

D
es

cr
ip

tio
n

Pidgin # A pidgin is a simplified form of the host language. It introduces
a new vocabulary and new semantics to the code.

Creole A creole changes the syntax of the host language (and therefore
also the vocabulary) and defines new semantics.

Argot # # An argot changes the semantics of the existing language with-
out affecting its syntax.

Table 1.2: Taxonomy for pidgin, creole and argot embedded languages.

Pidgin. A pidgin bends the syntax of the host language to extend its semantics
[Spinellis, 2001]. This kind of embedded language reuses a limited part of the
host syntax and combines it with a new vocabulary. In their simplest form
pidgins can be implemented by interpreting host language features, such as
literal arrays or strings. A well-known example is the format string of the
printf function in the standard C library.

3

Chapter 1 Introduction

Creole. A creole introduces a completely new syntax by defining its own grammar
and a custom transformation to the host language that defines the semantics.
For example, LINQ [Meijer et al., 2006] combines C# with a convenient syntax
to access relational databases and process XML. Also parser generators such
as ANTLR [Parr, 2007] can be considered creoles, although they are mostly
implemented external to the host language.

Argot. An argot uses the existing host language syntax, but changes its semantics.
An argot reinterprets the semantics of valid host language code, whereas pid-
gin code is only syntactically correct host code — it has meaning only for
the pidgin. Argots are commonly used to implement new crosscutting lan-
guage features, such as transactional memory or continuation-passing style,
without the language user needing to be aware of the change. Macro systems
and aspect-oriented frameworks are well-known mechanisms for changing
the behavior of the host language without touching its syntax.

An embedded language must either introduce new syntax to the host language for
the concepts it introduces (a creole), or it must adopt the host syntax as is. If the host
syntax is reused, it must either be overloaded, reinterpreting the syntax in a novel
way (pidgin), or it must alter the semantics of the host (argot).

Two other possible combinations of the attributes of our taxonomy are listed in Ta-
ble 1.3. While internal languages are a special case of embedded languages they
typically do not require special tool support and thus are not in the focus of this
dissertation. Furthermore, we take the host language as given.

Sy
nt

ax
Vo

ca
bu

la
ry

Se
m

an
tic

s

D
es

cr
ip

tio
n

Internal Language # # Internal languages are confined by the host syntax;
they make a creative use of the host language and
define a new vocabulary.

Host Language # # # The host language is a general-purpose program-
ming language typically following a language stan-
dard. Most languages have fixed syntax and se-
mantics.

Table 1.3: The remaining possible combinations of Table 1.2.

We argue that the categorization of embedded languages into pidgin, creole and
argot languages is complete. Aside from internal and host languages, the remain-
ing other combinations change the syntax but let the semantics unchanged. This

4

1.2 Shortcomings of Existing Approaches

does not make sense, as new syntax cannot be defined without also specifying its
semantics.

1.2 Shortcomings of Existing Approaches

Developing new languages is expensive and requires a lot of knowledge in language
design [Hoare, 1973]. In this dissertation, we propose a novel approach to deal with
the challenges of language embedding:

Pidgin, Creole and Argot Languages. A fully general approach to integrate new em-
bedded languages into an existing host language and environment must sup-
port the three classes of embedded languages: pidgins, creoles and argots.

Multiple Context-Dependent Languages. It should be practicable to mix and match
different language extensions with the host language. Switching between dif-
ferent languages should be possible at arbitrary points and not enforce the use
of special syntactic markers. Language changes should be scopable and pos-
sible conflicts should be gracefully handled [Bravenboer and Visser, 2004].

Homogeneous Tool Support. To ease the development and use of embedded lan-
guages existing tools such as code browsers, editors, debuggers or source
control systems should seamlessly continue to work. With little additional
development effort it should be possible to tweak or replace the existing tools
to provide an improved user experience for embedded languages [Hudak,
1998].

Homogeneous Code and Data Abstraction. The executable code of the host and the
embedded languages should be the same. This makes it possible to use a com-
mon reflective API and enables tools such as debuggers to work on multiple
languages. A common code representation also avoids unnecessary interpre-
tation layers that might come at a high performance penalty. Furthermore,
a common data representation enables to transparently pass values between
different languages without expensive conversions [Mernik et al., 2005].

Conventional Language and Tools. A conventional language and development en-
vironment should be leveraged as the host instead of introducing a new or
derived one. This avoids compatibility problems with existing code and lets
developers use their accustomed development tools.

5

Chapter 1 Introduction

1.3 Thesis Statement

We state our thesis as follows:

Thesis
To support seamless integration of context-dependent languages without break-
ing the tools, we need (1) a host-language grammar that can be changed by lan-
guage extensions, (2) a first-class language description used by the development
environment, and (3) a transformation mechanism of the embedded language
into a common executable representation.

1.4 Our Solution in a Nutshell

This dissertation tackles the five challenges step by step: We present Helvetia, a lan-
guage workbench that enables multiple, context-dependent languages that lever-
age the existing infrastructure. We then describe Language Boxes, an approach for
modular and compositional language embedding. As a last step we present a trans-
formable grammar representation used by Helvetia and Language Boxes.

Figure 1.1 depicts the layered architecture of the Helvetia language workbench and
displays the chapters in which the respective parts are discussed.

...

Chapter 4, Chapter 7, Appendix A and Appendix B:
Language and Tool Extensions

..

Chapter 6:
Dynamic Grammars

.

Chapter 5:
Language Boxes

.

Chapter 3:
Helvetia System

.
Chapter 8:
Host Environment..

He vetia

.

Figure 1.1: The layered architecture of the Helvetia language workbench.

Host Environment. At the lowest layer we have the host language and its tools. In
our case, this is Pharo Smalltalk [Black et al., 2009], a dynamically typed object-
oriented programming language with an integrated development environ-
ment. While Smalltalk [Goldberg and Robson, 1989] has proven to be a good
practical choice for Helvetia it is not a requirement.

6

1.5 Contributions

Helvetia System. The layer above the host environment is the core of the Helvetia
system. This layer provides the necessary hooks into the host language com-
piler and the tools supplied with the development environment. Helvetia
realizes an extensible rule engine to declaratively specify language and tool
extensions. These rules can be seen as a macro language [Kohlbecker et al.,
1986] using reflection and pattern matching for scoping, and quasiquoting
[Bawden, 1999] for code transformation and generation.

Language Boxes. Language Boxes are part of the Helvetia infrastructure and yield
a simple model of modular and composable language extensions. Language
Boxes work on a first-class grammar representation of the host language and
thus abstract from the Helvetia rule model. Language changes are used to spec-
ify the composition of the host grammar together with the grammar of an em-
bedded language. Language concerns denote a transformation from the embed-
ded host language to the host language. Other concerns specify new behavior
of the tools, such as syntax highlighting, contextual menus, error correction
or autocompletion. The language scopes describe the contexts in which the new
languages are enabled.

Dynamic Grammars. The mutable grammars provided by PetitParser is the enabling
parser technology for Helvetia. We combine ideas from scannerless parsing
[Visser, 1997], parser combinators [Hutton and Meijer, 1996], parsing expres-
sion grammars [Ford, 2004] and packrat parsers [Ford, 2002] to model gram-
mars and parsers as objects that can be reconfigured dynamically.

Language and Tool Extensions. On the top layer are the language extensions. Lan-
guage extension are either defined using modular Language Boxes or are di-
rectly described in terms of the Helvetia rule system. In both cases, the lan-
guage and tool changes are specified uniformly using the Helvetia infrastruc-
ture.

1.5 Contributions

The main contributions of this dissertation are:

1. We present the Helvetia model which leverages the underlying representa-
tion of the host language to embed new languages into an existing host en-
vironment. Helvetia is an extensible system that intercepts the compilation
pipeline of the host language and various tools such as editors and debug-
gers to seamlessly integrate language extensions. Helvetia provides a homo-

7

Chapter 1 Introduction

geneous language and tool integration into an existing host language [Renggli
et al., 2010c].

2. We propose the Language Boxes model, a modular mechanism to encapsulate
(1) compositional changes to the host language, (2) transformations to address
various concerns such as compilation and syntax highlighting, and (3) scop-
ing rules to control visibility of fine-grained language extensions. Language
boxes enable multiple context-dependent language extensions [Renggli et al.,
2009].

3. We demonstrate PetitParser, a dynamic grammar description framework.
PetitParser makes it possible to dynamically transform, reuse, compose and
extend language grammars as the enabling technology for Language Boxes
[Renggli et al., 2010b].

The following list details the contributions with some extended case studies, which
serve as the validation of our approach:

Transactional Memory. Software transactional memory is an attractive mechanism
for concurrency control, however it is difficult to integrate into existing lan-
guages and their tools. The use of Helvetia makes it possible to tightly inte-
grate transactional semantics into an language without breaking existing tools
[Renggli and Nierstrasz, 2009].

Code Quality. Domain-specific languages require domain-specific program check-
ers. We have applied the Helvetia infrastructure to detect common problems
in domain-specific code and display and fix these problems using the existing
infrastructure [Renggli et al., 2010a].

Model Centric Transformations. Models of software structures are often far removed
from the application domain. To enable dynamic adaptation of application
logic we need to make application models more explicit in the code. The use
of Helvetia made it possible to provide a fine-grained, context-dependent in-
tegration of models with application code [Nierstrasz et al., 2009].

Host Language Choice. The Helvetia system is implemented in Smalltalk, a dy-
namic programming language. We have evaluated various general-purpose
programming languages as the host environment and identified the key re-
quirements to an environment to support Helvetia [Renggli and Gîrba, 2009].

1.6 Outline

The dissertation is structured as follows:

8

1.6 Outline

Chapter 2 discusses the related work of this thesis. We present various solutions to
language embedding and analyze the five shortcomings in the context of each
approach.

Chapter 3 introduces the Helvetia model and explains how the rule engine hooks
into the compiler and the existing tools.

Chapter 4 validates the Helvetia model by demonstrating the implementation of
real-world pidgin, creole and argot embedded languages.

Chapter 5 presents Language Boxes and describe how they enable modularity and
a tight integration of multiple extensions with the host and other embedded
languages.

Chapter 6 presents the dynamic grammar transformation infrastructure which is
the enabling technology of Language Boxes.

Chapter 7 demonstrates the use of Helvetia for domain-specific program checking
and automatic repair of violations.

Chapter 8 evaluated various host language choices and lists the key requirements
for an implementation.

Chapter 9 concludes the dissertation and outlines future work.

Appendix A describes how to get started with Helvetia and gives an overview of
how to implement first language extensions.

Appendix B gives an exhaustive list with additional pointers to embedded lan-
guages that we have built using Helvetia.

9

Chapter 2

Approaches for Combining Languages

“A programming language is a tool
that has a profound influence on our
thinking habits.”

— Edsger Dijkstra

The history of domain-specific languages dates back to the early days of software
engineering. One of the first domain-specific languages was the Backus–Naur Form
(BNF) [Backus, 1959], a formal language to describe grammars. Over the years, var-
ious different terms have been used to describe domain-specific languages [Mernik
et al., 2005]: application-oriented languages [Sammet, 1969], special-purpose lan-
guages [Wexelblat, 1981], fourth-generation languages (4GL) [Martin, 1985], little
languages [Bentley, 1986], and specialized languages [Bergin and Gibson, 1996].

The first one to define the term domain-specific languages was Lisa Walton [Walton,
1996]: “A Domain-Specific Language (DSL) is a small, usually declarative, language
expressive over the distinguishing characteristics of a set of programs in a particular
problem domain.” Paul Hudak coined the term embedded domain-specific languages
[Hudak, 1996] to refer to domain-specific languages that inherit the infrastructure
of some other language.

In the 1990s there was considerable interest in the development of architectural de-
scription languages (ADLs) [Shaw and Garlan, 1996] to capture and express architec-
tural knowledge of a software system. ADLs can be viewed as DSLs for describing
the architecture of complex software systems. Many DSLs formalize architecture in
terms of components, connectors, and the rules governing their composition [Shaw
and Garlan, 1996]. This idea is also implicitly contained in the notion of scripting
languages, which can be seen as DSLs for composing applications from components
written in another, usually lower-level programming language [Ousterhout, 1998].

11

Chapter 2 Approaches for Combining Languages

This interplay between conventional object-oriented languages, scripting languages
and DSLs has been studied in the context of Piccola [Achermann et al., 2001], a small
language for composing applications from software components.

Unlike general-purpose programming languages, DSLs tend to be compact lan-
guages that provide appropriate notations and abstractions for a particular problem
domain. It was shown that DSLs increase productivity and maintainability for spe-
cialized tasks [Deursen and Klint, 1997]. DSLs are often categorized as being either
homogenous (internal), where the DSL uses the host language in an idiomatic way,
or heterogeneous (external), where the two languages are distinct [Sheard, 2001].
Techniques are proposed to define language and semantics for new DSLs [Krahn
et al., 2007]. The idea of designing languages that embrace adding new DSLs has
been a focus of research in the past [Odersky, 2007; Warth and Piumarta, 2007;
Tratt, 2008]. However integrating those languages into existing tools has been
largely neglected.

This chapter summarizes the state of the art in domain-specific language develop-
ment. Section 2.1 summarizes on existing patterns for internal languages. Section 2.2
and Section 2.3 discusses tools and programming environments for development
and use of external and embedded languages.

2.1 Internal Languages

Internal domain-specific languages have been widely popularized over the past
years, although the underlying ideas are much older. Internal languages are easy
to implement, because they make a creative use of APIs and often apply a subset of
the host syntax only. As such an internal language can be freely intertwined with
host language code. Existing tool facilities such as syntax highlighting, code fold-
ing, code completion, and debuggers mostly continue to work. The drawback of
internal languages is that their expressiveness is confined by the syntax of the host
language.

The literature mentions various patterns of building internal domain-specific lan-
guages, however there is no survey that consolidates all these patterns other than the
draft of Fowler’s DSL book [Fowler, 2010]. In the following paragraphs we present
some of these patterns and demonstrate several examples. Furthermore we point
out the weaknesses of these internal languages, to motivate the need for more pow-
erful mechanisms. Table 2.1 lists these patterns and summarizes their applicability
to various programming languages.

12

2.1 Internal Languages

C C+
+

C# Ja
va

Ja
va

sc
rip

t

Li
sp

H
as

ke
ll

Ru
by

Sm
al

lta
lk

2.1.1 Function Sequence
2.1.2 Function Nesting
2.1.3 Function Chaining
2.1.4 Higher-Order Functions G# G# G# G#
2.1.5 Language Literals
2.1.6 Operator Overloading # # #
2.1.7 Meta-Annotations # # # G# # #
2.1.8 Program Generation # G# G# # # G# # G#
2.1.9 Macro Programming G# G# # # # G# # G#

Table 2.1: The applicability of various internal language patterns in common pro-
gramming languages. # not supported, G# partly possible using workarounds, li-
braries or language extensions, full support.

2.1.1 Function Sequence

Function sequences are the most basic form of a DSL. A series of function calls is
used to perform a sequence of actions or configuration steps. The functions that
make up such an internal language are usually visible on a specific object or in a
specific scope only, to avoid the pollution of the global namespace.

While function sequences are straightforward to implement in most languages, they
show various limitations in practice. One such limitation is that the complete inter-
face has to be implemented at a single place. Furthermore, if the language is used to
describe something more than a flat list, then the implementation needs to keep track
of a context. The Java example in Fowler’s DSL book uses arbitrary whitespaces to
visualize the nesting, this has however no meaning for the language itself:

computer();

processor();

cores(2);

type(386);

disk();

size(150);

The Smalltalk programming language provides a unique syntactical construct called
cascade that allows one to send multiple messages to the same receiver. This makes
the function sequence a common pattern in Smalltalk. The Magritte metamodel

13

Chapter 2 Approaches for Combining Languages

[Renggli et al., 2007] uses cascades to configure its description objects with a se-
quence of configuration messages. The following example creates, configures and
returns a description object for the attribute firstName of the class Person:

Person>>descriptionFirstName

^ MAStringDescription new

accessor: #firstName;

label: 'First Name';

priority: 200;

beRequired;

yourself

2.1.2 Function Nesting

Nested function calls are similar to function sequences, but instead of sequencing
the function calls they are nested as arguments to other calls. This gives the lan-
guage developer more control as an implicit context is given through the call-stack.
Furthermore a type system can reduce the possible valid calls at a given point in
the source code. This variation of the previous pattern however does not solve the
problem that all the functions need to be accessible globally.

To illustrate the function nesting Fowler adapts the example above:

computer(

processor(

cores(2),

type(386)),

disk(

size(150)));

2.1.3 Function Chaining

A classical form of internal domain-specific languages is based on function chain-
ing. Each function call returns a polymorphic receiver so that multiple operations
can be performed on a single expression. Furthermore, functions can decide to re-
turn different objects depending on the context to change the active vocabulary. In
statically typed languages this pattern allows IDEs to employ the type system to of-
fer accurate completion actions. Possible candidate functions are not visible globally
anymore but scoped to one or more objects.

14

2.1 Internal Languages

A good example for function chaining is the jQuery Javascript library. The entry
point to this query language is the global jQuery function. The example below starts
a query in the context of the DOM elements that match the CSS query li. Note
that this CSS selector is yet another kind of internal language, a literal language
that we discuss in Section 2.1.5. The find function performs a new CSS query in the
scope of the receiver and toggles the invisible class of the matching element. The
end function closes this scope and slideToggle performs an animation on the original
query result.

jQuery("li").find("span.active").toggleClass("invisible").end().slideToggle();

To make the scoping visually tangible function chains are often not formatted on a
single line, but aligned depending on their scope. As Javascript (and Java) accepts
arbitrary spaces between method invocations the above code can be formatted in a
more readable way as below:

jQuery("li")

.find("span.active")

.toggleClass("invisible")

.end()

.slideToggle();

Method chaining can well be combined with other patterns for internal languages.
The example below shows how the Java JMock framework [Freeman and Pryce,
2006] applies function sequence, function nesting and function chaining pattern:

offer = mock(Offer.class);

offer.expects(once())

.method("buy")

.with(eq(QUANTITY))

.will(returnValue(receipt));

2.1.4 Higher-Order Functions

Higher-order functions can be composed to build new functions, passed as argu-
ment to other functions, and partially evaluated (curried) by providing arguments
one at a time. Functional programming languages provide higher-order functions as
their central concept, but in most other programming languages higher-order func-
tions can be simulated using function pointers or function objects (C, Java). The use
of higher-order functions is a popular technique to build internal domain-specific
languages.

15

Chapter 2 Approaches for Combining Languages

For example, parser combinator framework Parsec [Leijen and Meijer, 2001] (imple-
mented in Haskell) uses function composition to build parsers. The example below
composes the functions many1 and letter and results in a function word that parses
words. many1 is a function that parses one or more occurrences of the function passed
as argument. letter is a function that parsers a single letter.

word :: Parser String

word = many1 letter

Another example of an internal domain-specific language making use of higher-
order functions is the Seaside web application framework [Ducasse et al., 2007]
(implemented in Smalltalk). Seaside does not use a templating engine to generate
HTML code. Instead, a high-level interface reliefs developers from checking correct
tag nesting and attributes. Block closures (higher-order functions) are used to define
a domain-specific language for programmatic HTML generation.

The example below generates the HTML code <div class="title"><h1>Domain-

Specific Languages</h1><p>Nested Functions</p></div>. Whenever a block is eval-
uated, the specified tag is opened, the content is generated and the tag is closed.
Cascades are used to specify attributes on the tags. The current context is implicitly
given through the stream variable html.

html div class: 'title'; with: [

html heading

level: 1;

with: [html text: self model title].

html paragraph

with: [html text: 'Nested Functions']]

Higher-order functions are a good construct for internal languages, if the host
language provides a simple construct for their creation. The square brackets in
Smalltalk [...], the do ... end constructs in Ruby, the lambda (lambda (...) ...)

constructs in Scheme and the inner functions in Javascript function () { ... } are
concise.

In Java inner classes can be used to simulate higher-order functions, however they
introduce a significant amount of clutter as multiple lines of code are required to
define the class and open and close the block of code. A drawback of using higher-
order functions is that they encapsulate their behavior and thus make it impossible
to reflect and decompose their behavior after creation.

16

2.1 Internal Languages

2.1.5 Language Literals

String literals and literal collections are a mechanism for realizing quick and dirty
internal languages. A popular example is the printf function in C, which uses a
string as the specification of how to format output:

char[] str = "World";

printf("Hello %s\n", str); /* prints "Hello World" */

Languages that support literal collections can go a step further and use those to
define their own little languages. An example for such a language can be found in
Smalltalk for the configuration of printing dates. The numbers and characters in
the literal array define order of the different values, the characters that separate the
different values and how the actual values are printed.

Date now print: aStream format: #(1 2 3 $ 3 1) " returns '15 March 2010' "

There are numerous potential problems when using language literals: As the liter-
als are parsed and interpreted by a custom execution engine, developers have to
implement a small interpreter that might have a bad performance. Also literals are
limited in their expressiveness, users might have difficulties to integrate them in the
system. Debugging is difficult, as the host language debugger will step through the
interpreter instead of the application code. Additionally, errors are only detected at
runtime, as compilers do not see the meaning behind the literals (most of today’s C
compilers check printf-strings though). Last, it is dangerous for a literal language
to grow into a slow and buggy Lisp implementation1.

2.1.6 Operator Overloading

Languages like C++, C#, Ruby, Python, Prolog, Haskell, and Smalltalk allow de-
velopers to implement or redefine custom operators. This is especially useful in a
mathematical domain, because it makes custom data types (complex numbers, vec-
tors or matrixes) look like the built-in types.

However, overloading operators has several problems, especially when the lan-
guage restricts the operators to a predefined set. This is for example the case in C++,
C#, Ruby, and Python. The use of operators outside their natural mathematical do-
main can cause confusion and bugs. For example the Standard Template Library

1 Greenspun’s Tenth Rule of Programming: “Any sufficiently complicated C or Fortran program contains
an ad-hoc, informally-specified bug-ridden slow implementation of half of Common Lisp.” [http://
philip.greenspun.com/research/]

17

http://philip.greenspun.com/research/
http://philip.greenspun.com/research/

Chapter 2 Approaches for Combining Languages

(STL) in C++ has been criticized for using the shift operators << for streaming. In
the expression s << 1 the static type of s determines if the built-in shift operation or
the library function for streaming is called. Furthermore the hardcoded precedence
of the operators can lead to unexpected results.

Prolog, Haskell and Smalltalk do not show the above problems. In these languages
arbitrary new operators can be defined, so there is not necessarily a conflict of mean-
ing with existing operators. In Prolog and Haskell the precedence of operators can
be customized. In Smalltalk all operators have the same precedence and are always
evaluated from left to right.

2.1.7 Meta-Annotations

Another popular way of specifying domain-specific concerns are annotations. For
example, the Java testing framework JUnit 4 [Hunt and Thomas, 2003] uses a small
set of annotations to declare test methods and specify various arguments.

In the following example the method addMoney is identified as a test method using
the @Test annotation. Furthermore, the test is configured to fail if execution takes
longer than 100 milliseconds:

@Test(timeout=100)

public void addMoney() {

Money m12CHF = new Money(12, "CHF");

Money m14CHF = new Money(14, "CHF");

...

JExample extends JUnit with explicit dependency information between tests cases
[Kuhn et al., 2008]. This enables tools to directly localize most relevant defects. The
dependencies are declared using the @depends annotation as demonstrated in the
following test excerpt:

@Test

@Depends("testPush")

public Stack testPop(Stack stack) {

Object top = stack.pop();

...

While meta-annotations are supported in many today’s programming language, the
above examples also demonstrate their limitations. Typically annotations do not
contain arbitrary host language expressions, but are limited to literal types and con-
stants as arguments. In the example above we see that the dependent test method

18

2.1 Internal Languages

testPush is referenced using a string and not using a first-class reference. This can
pose problems when code is refactored. Furthermore meta-annotations, as their
name suggests, are generally not useful to describe sequence or flow. Annotations
in Java can only be attached to structural members of the host language like pack-
ages, classes, methods, variables, etc. Annotations are queried and processed at
runtime using a reflective API.

2.1.8 Program Generation

Multi-stage programming is a paradigm for runtime program generation [Taha, 2003;
Calcagno et al., 2003]. Multi-stage programs are generic and can be parametrized
without unnecessary runtime overhead. In MetaOCaml the type system ensures at
compile-time that dynamically generated programs are type-safe and require no ad-
ditional checks later on. MetaOCaml adds syntactic constructs to OCaml for build-
ing, combining, and executing staged expressions.

Partial evaluation is a paradigm to create highly specialized code for program op-
timization and to change the program interpretation at compile-time [Jones et al.,
1993; Futamura, 1999]. Partial evaluation allows compilers to precompute static
data and thus to avoid unnecessary calculations at runtime. For example, partial
evaluation can be used to instantiate an interpreter with a program yielding an op-
timized implementation of the program.

Quoting mechanisms are available in programming languages like Scheme, Lisp, Tem-
plate Haskell and MetaOCaml [Bawden, 1999]. Quoting provides the syntactic
sugar for the implementation of multi-stage and partially evaluating programming
languages:

For example, in Scheme the expression (+ 1 2) is evaluated to 3. In contrast, the
quasiquoted expression `(+ 1 2) evaluates to the AST of the expression (+ 1 2).
This quoted expression is not immediately executed, but instead can be used for
code generation, code transformation or can be evaluated using an alternative eval-
uation strategy. In addition languages like Scheme provide syntax to unquote ex-
pressions. An unquoted expression is used within a quasiquoted expression and
executed when the AST is built. It can be used to combine smaller quasiquoted
expressions to larger ones. Last but not least, splices are expressions evaluated at
compile-time and inserted into the AST before compilation.

19

Chapter 2 Approaches for Combining Languages

> `(+ 1 2) # quasiquote

(+ 1 2)

> `(+ 1 ,(+ 1 1)) # quasiquote + unquote

(+ 1 2)

> `(+ ,@(list 1 2)) # quasiquote + splice

(+ 1 2)

C# 3.0 introduces expression trees that represent code in a tree-like data structure.
Rather than compiling a lambda expression into its executable form, the C# com-
piler creates a composite of expression nodes instead. The following two declara-
tions define respectively a lambda function that can be normally evaluated and an
expression tree of the same function that is a composite structure of expression ob-
jects:

Func<int, int> dup = x => 2 * x;

Expression<Func<int, int>> exprDup = x => 2 * x;

Expression trees are useful because they can be interpreted in various ways. For ex-
ample, LINQ (Language Integrated Query) [Meijer et al., 2006] uses expression trees
to build SQL and XML queries from C# code. This has the advantage that syntax
errors can be avoided at compile-time and that queries are statically typed together
with the rest of the code. C# expression trees are not available reflectively on ar-
bitrary expressions, but only for statically declared expressions defined at compile-
time. Furthermore, C# does not make it possible to encode sequences of statements,
only simple expressions are supported.

2.1.9 Macro Programming

Programming languages like Lisp, Dylan, Scheme and Clojure have sophisticated
macro systems giving developers the possibility to transform the program structure
using the quoting techniques described in Section 2.1.8. While in Lisp and Clojure
macros are used to explicitly constructs parts of a program, in Dylan and Scheme a
pattern matching algorithm is used to replace matching parts of the program with a
transformed form. In both cases it is possible to change the default evaluation rules
of code and to build simple literal languages that are automatically transformed to
executable code.

Macros alone do not allow the syntax to be changed. In Lisp reader macros can
be used to introduce custom parsers that transform arbitrary input into code the
Lisp compiler can understand. An example of a reader macro can be found in the

20

2.2 External Languages

XMLisp library [Repenning and Ioannidou, 2009]. XMLisp allows developers to
paste verbatim XML directly into Lisp code without having to worry about escaping
issues that would arise from including it as a string.

; an XML string without reader-macros

(setq anchor-plainlisp "SCG")

(setq anchor-xmlisp SCG)

Reader macros are not that well known in the community and as widely applied as
one could expect. Partial evaluation, macro programming and reader macros are
powerful mechanisms to implement internal domain-specific languages that do not
break the tools. Unfortunately these techniques are not supported by most main-
stream programming languages and are considered hard to understand even by
experienced developers.

2.2 External Languages

External languages are less interesting in our context. Integration of the host en-
vironment and the external language is difficult at best. In most cases data needs
to be converted when being passed back and forth between the external language
and the host environment. Dedicated development tools for external languages are
often not available or separate from the host language tools.

Typical examples of external languages are Unix tools like grep, sed and awk to pro-
cess and filter data. Other unix tools solve very specific problems, such as make
that topologically sorts and executes a graph of dependent tasks. Another common
group includes external query languages:

• Regular expressions are used for matching strings using patterns of characters.
Regular expressions are widely applied. Most programming languages pro-
vide implementations of regular expressions as part of their standard library
(Java) or even have a special literal type for regular expressions in the lan-
guage definition (Javascript, Ruby).

• XPath is a query language for XML documents. Most XML libraries provide
facilities to pass an XPath query as a string and subsequently parse and pro-
cess it on a given ML document. This wraps the external XPath language
effectively into an internal literal language, as described in Section 2.1.5.

21

Chapter 2 Approaches for Combining Languages

• Structured Query Language (SQL) and other data manipulation and query lan-
guages are used in most business applications. While it is still common prac-
tice to put SQL strings into the host language, various solutions have been
introduced to remove the burden of specifying the external language from
the developer. Object-relational mapping tools provide the infrastructure to
convert data between object-oriented languages and relational database sys-
tems. For instance, Active Record enables Ruby developers to specify queries
and simple database operations using an internal domain-specific language.
Similarly LINQ provides a convenient syntax to query and transform both
XML and SQL data-sources using the same internal language.

The development of external languages is not different from the development of
a new general-purpose programming language. It involves specifying a gram-
mar, generating or implementing a parser, and developing interpreter or compiler.
These steps are complex and time-consuming because developers need to start from
scratch. Often it is too expensive to build dedicated editors and debuggers.

2.3 Embedded Languages

Table 2.2 provides an overview of the related work split into four categories. For
each system considered we indicate the host language, the capability of defining
pidgins, creoles and argots, and the support for the aforementioned characteristics.
The following sections offer details for each individual system.

2.3.1 Extensible Compilers

Extensible Compilers are best described as open toolboxes that provide entry points
into the compiler toolchain to extend and change the host language.

ableJ [Van Wyk et al., 2007], Dryad [Kats et al., 2008], JastAddJ [Ekman and Hedin,
2007], and Polyglot [Nystrom et al., 2003] are extensible Java compiler frameworks
and provide the necessary infrastructure to build argots, pidgins and creoles. Lan-
guage extensions are composable and modular, and are transformed into Java for
execution. Most extensible compilers define the syntax changes using an external
language definition. The Dryad compiler uses bytecode as its central representation,
and thus it is not homogeneous as well. None of the systems offers IDE integration,
and transformed code cannot be debugged at the source level.

The Java Annotation Processing Tool (APT) enables a compile-time, read-only view
of the Java program structure. ASTs can be transformed only using a private API,

22

2.3 Embedded Languages

Ty
pe

Sy
ste

m

Pi
dg

in
 L

an
gu

ag
es

Cr
eo

le
 L

an
gu

ag
es

Ar
go

t L
an

gu
ag

es
M

ul
tip

le
 C

on
te

xt
-D

ep
en

de
nt

 L
an

gu
ag

es
H

om
og

en
eo

us
 To

ol
 S

up
po

rt
H

om
og

en
eo

us
 C

od
e a

nd
 D

at
a A

bs
tra

cti
on

Co
nv

en
tio

na
l L

an
gu

ag
e a

nd
 To

ol
s

2.3.1 Extensible
Compilers

ableJ # #
Dryad # #
JastAddJ # #
Polyglot #
Java Annotation Processing # #
Xoc # #

2.3.2 Meta-
Programming
Systems

Cola # # # #
Converge # # # #
MetaOCaml # #
Scheme #

2.3.3 Language
Workbenches

JetBrains MPS # # #
Intentional Software #
openArchitectureWare # # # # #
WholePlatform # # # # #
Xtext # # # #
Java Development Tools # # # # #
IDE Metatooling Platform # # # # #
Katahdin # # # #
Ceteva XMF # # # #

2.3.4 Language
Transformations

Khepera # # #
TXL # # # # # #
ASF+SDF # # # # #
MontiCore # # # # #
MetaBorg # #
Linglet Transformation System # # # #
Java Language Extender # # # # #

2.3.5 Modeling
Languages

Xactium # # # # # #
Kermeta # # # # # #
MetaEdit+ # # # # # # #
Software Factories # # # # # # #

Table 2.2: Comparison of different systems for language authoring.

23

http://melt.cs.umn.edu/ablej14.html
http://www.lclnet.nl/software/dryad-compiler/
http://jastadd.org/
http://www.cs.cornell.edu/projects/polyglot/
http://download-llnw.oracle.com/javase/1.5.0/docs/guide/apt/
http://pdos.csail.mit.edu/xoc/
http://piumarta.com/software/cola/
http://convergepl.org/
http://metaocaml.org/
http://www.schemers.org/
http://www.jetbrains.com/mps/
http://intentsoft.com/
http://www.openarchitectureware.org/
http://whole.sourceforge.net/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/jdt/
http://www.eclipse.org/imp/
http://www.chrisseaton.com/katahdin/
http://www.ceteva.com/
http://www.cs.unc.edu/~faith/khepera.html
http://www.txl.ca/
http://www.meta-environment.org/
http://www.monticore.org/
http://www.metaborg.org/
http://www.xactium.com/
http://www.kermeta.org/
http://www.metacase.com/
http://www.softwarefactories.com/

Chapter 2 Approaches for Combining Languages

which is not supported and may be subject to change or deletion. As such, argots
and pidgins can be implemented, but a creole would require an additional prepro-
cessing step. In a similar way people are using the weaving mechanism of AOP to
achieve semantic changes for pidgins and argots.

Xoc [Cox et al., 2008] is an extensible C compiler. Xoc uses a source-to-source transla-
tor that reads the input, analyzes and transforms it, to eventually generate standard
C code. The system provides no reflective facilities and no tool integration, neither
at compile-time nor at runtime.

2.3.2 Meta-Programming Systems

Meta-Programming Systems are programming languages based on meta-
programming facilities targeted at code generation. Systems like the ones
described here support program generation and macro programming as presented
in Section 2.1.8 and Section 2.1.9.

Cola [Piumarta and Warth, 2006] implements an open object model for experimen-
tation with different programming paradigms. Cola is bootstrapped in itself using
a Smalltalk-like language called Pepsi. Jolt is a Lisp-like language that serves as a
common abstract syntax and executable representation for other languages. OMeta
[Warth and Piumarta, 2007] is an object-oriented pattern matcher based on Pars-
ing Expression Grammars that is used to transform new languages to Jolt. Even if
all languages are built on top of the same infrastructure, the authors do not provide
mechanisms to easily embed them into each other. Furthermore there is no common
tool support for editing and debugging the different languages.

Converge [Tratt, 2005] is a dynamic programming language resembling Python. A
special block construct $<<language>> is used to embed languages into the source
code. The modification or extension of existing languages is not possible, thus argots
and pidgins cannot be created. Meta-programming is possible at compile-time only.
There is no IDE integration.

MetaOCaml [Calcagno et al., 2003] uses multi-stage programming to generate and
transform code at runtime. Similar quoting mechanisms are available in program-
ming languages like Scheme, Lisp or Template Haskell, but these mechanisms alone
do not permit new syntax to be introduced. Both system have powerful macro pro-
gramming constructs, making it possible to tweak the default towards pidgins or
argots. Typically these kinds of systems are used together with traditional text edi-
tors and thus do not allow an easy adaptation to language changes. Debuggers are
available.

24

2.3 Embedded Languages

2.3.3 Language Workbenches

Language Workbenches [Fowler, 2005b] are characterized by a specialized IDE with
a well-defined workflow to specify and use different languages. Language design-
ers are required to follow clearly defined steps to describe syntax, semantics and
editor behavior of a new language.

The Meta Programming System (MPS) by JetBrains [Dimitriev, 2004] and Intentional
Software [Simonyi et al., 2006] both provide a programming environment to define
new languages and to change existing ones. Neither system uses text representa-
tion for source code, but instead they provide a graphical cell editor that maps valid
programs directly to an underlying abstract code representation. MPS defines new
languages using different concepts for structure (semantic model), editor (parser),
constraints, behavior, type systems, data flow and code generators for Java. MPS
1.1 does not come with a source level debugger; debugging and error reporting hap-
pens at the level of the generated Java code. Similarly Intentional Software requires
language developers to define, edit, display and transform concerns for language
extensions. As no product previews and no detailed documentation are available,
the exact properties of this system are not clear.

openArchitectureWare and Whole Platform [Solmi, 2005] are language workbenches
that are tightly integrated into the Eclipse platform. In both cases templating sys-
tems are used to generate executable Java code. openArchitectureWare provides
a strong integration with the Eclipse meta-modeling facilities, such as the Eclipse
Modeling Framework (EMF) and the Graphical Modeling Framework (GMF). They
both provide basic support for editor integration such as syntax highlighting and
code completion of textual languages. However, both systems lack debugging sup-
port and the ability to change the semantics of their host language.

Xtext is a framework for development of textual domain-specific languages. It is
integrated well with the Eclipse environment and especially the Eclipse modeling
tools. It does not provide the possibility to change the Java programming language
itself though.

The Java Development Tools (JDT) provide the basic tools to build Eclipse plugins. The
IDE Metatooling Platform (IMP) [Charles et al., 2009] is an extensible IDE architecture
for the Eclipse platform. Contrary to all other tools listed in this section JDT and
IMP do not provide functionality for language design and embedding themselves.
The only purpose of IMP is to closely integrate existing languages into the Eclipse
IDE using a service architecture. At the time being there is no support for interaction
with language runtimes and debuggers.

25

Chapter 2 Approaches for Combining Languages

Katahdin [Seaton, 2007] is a programming language implemented on top of C#.
Katahdin is a dynamically typed language that syntactically resembles C#. New
constructs such as expressions or statements are defined by subclassing existing
parse-tree nodes that can then be added to the host language at runtime. Languages
can be enabled on a per-file basis or can be integrated into the host language by
extending it with a specific keyword such as language { ... } and connecting the
two grammar-trees. The semantics of user-defined parse-tree nodes is specified by
overriding certain methods in the respective node-classes. Code is interpreted by
traversing the parse-tree nodes and calling methods defining the semantics. There
is a simple debugger available visualizing the internal parse-tree structure of the
interpreter. The debugger is not able to work at the level of Katahdin programs.

The Extensible Programming Language (XMF) by Ceteva is a specification of a “su-
perlanguage” [Clark et al., 2008]. A superlanguage is characterized through usabil-
ity (interactive, dynamic, reflection, interfaces), expressiveness (high-level, dynamic
typing, garbage-collection) and extensibility (aspects, reflexive, extensible-syntax).
XMF is written in itself and allows one to easily define new languages. A special
@language construct is used to switch between different languages. Although a Java
interface is available, XMF uses its own proprietary virtual machine written in Java.
XMF does not provide an IDE integration.

2.3.4 Language Transformations

Language transformation systems define languages through the transformation and
composition of language models.

Khepera [Faith et al., 1997] is a preprocessor that transforms source-to-source and
pretty-prints the generated code to C before compiling with a traditional compiler.
It parses input into an abstract syntax tree and performing complex tree-based anal-
ysis and manipulation. All transformations preserve the knowledge of the origin of
each node. Thus, in theory Khepera makes it possible to develop debuggers for
new languages. However, the system provides no ready-to-use IDE or debugger.
Furthermore, it does not support multiple languages to be used simultaneously.

TXL [Cordy, 2006] is a source transformation system for experimentation with lan-
guage design. A TXL program consists of a base grammar definition and a series of
overrides that extend and change the base grammar. While various traversal and
rewrite strategies can be contextually scoped to perform a source-to-source trans-
formation it is not possible to change the grammar definition on-the-fly. Our model
provides a high-level concept of language changes that are augmented with differ-
ent transformation concerns for compiler and tool integration. Our target is always
the host language AST, which is directly used to generate executable code.

26

2.3 Embedded Languages

ASF+SDF [Klint, 1993] is a language neutral collection of tools for the interactive
construction of language definitions and associated tools. SDF is implemented as
a scannerless generalized LR parser and supports the composition of grammars.
A single parse table is created for all possibly active productions, and depending
on the context the corresponding transitions are enabled and disabled. Our use of
parser combinators allows us to directly model the grammar as an executable graph
of productions that can be recombined and modified on the fly.

MontiCore [Krahn et al., 2008] provides a framework for language inheritance and
language embedding. MontiCore has its own syntax to define grammars and their
mapping to Java types. The parser is created using the ANTLR [Parr, 2007] parser
generator. The abstract syntax tree is automatically derived from the grammar. Lan-
guage inheritance allows one to subclass existing grammars to modify and extend.
Language embedding is achieved by manually introducing a superordinate parser
for every pair of languages that are used together. ANTLR has been extended to
support swapping between the grammars on the fly. Visitors are used to add new
behavior for productions to generate code and to build editors for Eclipse. There is
no IDE integration or support for debugging.

MetaBorg [Bravenboer and Visser, 2004] is a method for embedding DSLs and ex-
tending existing languages. MetaBorg is based on the Stratego/XT [Visser, 2004]
toolkit, a language independent program transformation engine. MetaBorg em-
ploys a scannerless generalized LR parser technique to compose different grammars
and an annotated term language to build abstract syntax trees. While this approach
is language independent, it is also much more complex than our implementation.
Our use of a parser combinator library makes it straightforward to define and trans-
form arbitrary context-free grammars; ambiguities are supported and automatically
resolved by the rule order. To define the transformation, MetaBorg uses a quoting
mechanism, however the resulting code is pretty printed to a string before passing
it on to the compiler of the host language. Hence there is no close integration in the
compiler, the development environment or code debuggers.

The Linglet Transformation System [Cleenewerck, 2003] provides a mechanism to
modularize the syntax and semantics of a single language construct. The code to
generate is specified using a templating system. Linglets can be composed with
each other and integrated into the host language at specific extension points. There
is no support to replace or change existing language features and no scoping mech-
anism. Contrary to our approach, the linglets are only used during compilation;
other tools do not take advantage of the language model.

Van Wyk et al. [Van Wyk et al., 2002] propose forwarding attribute grammars to
catalyze modularity of language extensions. The Java Language Extender framework
[Van Wyk et al., 2007] is the tool that uses this technique to import domain-adapted

27

Chapter 2 Approaches for Combining Languages

languages into Java. The use of LR-style parsers enforces certain restrictions to im-
ported extensions, as the resulting grammar needs to be unambiguous. Language
extensions can be scoped to files, but not at a more fine-grained scale. The Java
Language Extender framework does not provide an integration into the IDE.

2.3.5 Modeling Languages

Muller et al. [Muller et al., 2005b] present a specific metamodel and associated DSL
for the modeling of dynamic web specific concerns. Web applications are repre-
sented as three related models (business, hypertext and presentation). To specify
constraints and behavior on the model, an action language (based on OCL and
Java) is used. Xactium [Clark et al., 2004] and Kermeta [Muller et al., 2005a] are ex-
ecutable meta-languages that define new languages similar to work with EMOF
[Group, 2004]. Both provide a dedicated language for specifying meta-level opera-
tions, however they lack appropriate tool support.

MetaEdit+ [Tolvanen et al., 2007] and Software Factories [Greenfield and Short, 2003]
focus on domain-specific modeling. Both are interactive environments for defining
graphical models and metamodels. Executable code, constraint checkers, and doc-
umentation can be generated through user-defined model-to-code transformations.
MetaEdit+ is language-independent and thus provides only a debugger for the code
generator. Software Factories transforms to C# code and is closely integrated with
Microsoft VisualStudio.

2.4 Roadmap

In this chapter we reviewed the state of the art of language embedding.

Internal languages are a viable option in most general-purpose programming lan-
guages. Internal languages provide a tight integration into the host language; they
do not break existing tools and passing data back and forth is trivial. However,
internal languages do have limits. An internal language is strictly bound to the syn-
tax and semantics the host language provides. In most of today’s programming
languages it is not possible to implement pidgin, creole and argot languages.

External languages are open and give a lot of freedom to the developer, however come
at a high price. A complete language needs to be designed and implemented from
scratch. Furthermore, tool support and the integration with a general-purpose lan-
guage requires the attention of the developer. In many cases an external language

28

2.4 Roadmap

is a requirement, because problem domains cannot be expressed adequately using
internal languages.

Embedded languages try to combine the best properties of internal and external lan-
guages. As such, they enable developers to build their own languages while at the
same time provide a tight embedding into a host environment. In Section 2.3 we
reviewed existing approaches and we summarized their shortcomings in Table 2.2.
The shortcomings introduced in Section 1.2 form the open challenges of a novel ap-
proach:

• A general approach to language embedding should support pidgin, creole and
argot languages;

• It should be possible to arbitrarily mix and match multiple context-dependent
languages;

• Homogeneous tool support should make it possible to reuse and adapt existing
tools of the host language;

• Homogeneous code and data abstractions should avoid unnecessary interpretation
layers and allow users to transparently pass data around; and

• A conventional environment should be leveraged to avoid compatibility prob-
lems with existing code.

In Chapter 3 we present the Helvetia model, the infrastructure for homogeneous
tool and language integration in a conventional host language. Chapter 4 details
how the Helvetia model provides support for the implementation of pidgin, cre-
ole and argot languages. In Chapter 5 and Chapter 6 we present the Language Box
model that provides a modular mechanism for tightly intermixed language exten-
sions. Figure 2.1 displays schematically the chapters and the problem space they
cover.

29

Chapter 2 Approaches for Combining Languages

..

Approach

.

Chapter
3:

Enabling
LanguageEm

bedding

.

Chapter
5:

Com
bining

LanguageExtensions

.

Chapter
6:

Dynam
icGram

m
ars

.

Challenges

.

Pidgin,Creoleand
ArgotLanguages

.

M
ultipleContext-

DependentLanguages

.

H
om

ogeneous
ToolSupport

.

H
om

ogeneousCode
and

Data
Abstraction

.

ConventionalLan-
guageand

Tools

.

Validation

.

Chapter4:
H

elvetia
Exem

plified

.

Chapter7:
Dom

ain-SpecificProgram
Checking

.

Chapter8:
H

ostLanguageRequirem
ents

Figure
2.1:Structure of the dissertation and how

 it covers the problem
 space.

30

Chapter 3

Enabling Language Embedding

“Language designers are not intellec-
tuals. They’re not as interested in
thinking as you might hope. They
just want to get a language done
and start using it.”

— Dave Moon

In this chapter we present Helvetia1, an extensible development environment for
defining embedded languages and for integrating these languages into the tools of
an existing host language. Helvetia accommodates new languages through exten-
sion points of the existing compiler and tools. All languages are transformed to the
abstract syntax tree (AST) of the host language. These transformations are expressed
as rules and they can be scoped to various contexts. Furthermore, these rules can be
active at the same time, allowing us to embed different languages into a common
host language, and to integrate them into the host environment and its tools.

3.1 The Helvetia Model

Our approach builds on top of the existing infrastructure of the host language, while
existing tools — such as editors and debuggers — continue to work with minimal
adaptation. Helvetia provides the necessary low-level infrastructure for Language
Boxes, an adaptive language model for fine-grained language changes and language
composition discussed in Chapter 5.

1 Helvetia is the Latin name of Switzerland. Its four official languages are French, German, Italian, and
Romansh. We imagine the Helvetia system to be an environment where different languages can reuse
the same infrastructure and be tightly interconnected as is the case in Switzerland.

31

Chapter 3 Enabling Language Embedding

Helvetia provides a macro system for a high-level programming language that goes
beyond changing syntax and semantics only, but that also enables language design-
ers to adapt tools. Helvetia uses the reflective facilities of the host language and
parse-tree pattern matching to identify the elements of a transformation.

Transformations can be specified declaratively or imperatively. Either way, trans-
formations preserve the mapping from the original source code to the executable
code representation. This enables debuggers to know the current execution point
in the untransformed source code. Thus, the source code, the abstract code repre-
sentation and the executable code are causally connected. Furthermore, there is no
added interpretative overhead as all behavior is compiled down to the native code
representation of the host language.

3.1.1 Homogeneous Language Integration

Helvetia integrates multiple embedded languages with existing tools by leveraging
and intercepting the existing toolchain and the underlying representation of the host
language. Helvetia provides hooks to intercept parsing, AST transformation and
semantic analysis of the standard compilation toolchain.

...

Rules

.

<parse>

.

<transform>

.

<attribute>

.

Source
Code

.

Smalltalk
Parser

.

Semantic
Analysis

.

Bytecode
Generator

.

Executable
Code

.Traditional Smalltalk Compiler....

Pidgin

.

Creole

.

Argot

Figure 3.1: The code compilation pipeline showing multiple interception paths: Hel-
vetia provides hooks to intercept parsing <parse>, AST transformation <transform>

and semantic analysis <attribute>.

Whenever a source artifact is compiled the standard host language compiler con-
sults the Helvetia rule engine before and after each compilation step. As depicted
in Figure 3.1 this enables us to intercept and modify the data passed from one step to
the other. We are able to perform source-to-source transformations or to bypass the

32

3.1 The Helvetia Model

regular parser altogether. Furthermore, we are able to perform AST transformations
either before, instead of, or after semantic analysis.

The rules to intercept this transformation pipeline are defined using annotated
methods. These methods constitute conventional Smalltalk code that is called at
compile-time [Tratt, 2008]. The interception rules enable us not only to modify data
in the pipeline but also to bypass conventional components.

• A rule marked with <parser> allows one to intercept the parsing of the source
code. The result of a parser rule can be either a new source string (in case of
a source-to-source transformation) or a Smalltalk AST (in which the original
parser is skipped).

• A rule marked with <transform> is performed on the AST after parsing and
before semantic analysis. It allows developers to apply arbitrary transforma-
tions on the AST. Furthermore, it is possible to change the default semantic
analysis and instead perform a custom one.

• A rule marked with <attribute> is performed after symbol resolution and be-
fore bytecode generation. This permits to perform transformations on the
attributed AST as well.

The Helvetia rules form a rewriting system for strings and terms [Baader and Nip-
kow, 1998]. Rules typically consist of two parts: the first part defines a pattern to
match on the input; and the second part defines a transformation on the matched
input. The details of how patterns and transformations are specified are discussed
in Section 3.1.3.

Compilation errors are handled by the standard toolchain. Since all data passed
from one step to the next carries information on its original source location, the er-
ror location is determined automatically and it is revealed to the user through the
traditional means of the compiler. When a variable is undeclared, its occurrence is
highlighted and the user is asked to correct the problem.

Since all rules are implemented within the host language, it is possible to span new
compilation processes (local-to-global transformations) or cancel the current compi-
lation process at any point. This is useful when the compilation of a single method
results in the creation of multiple methods. Similarly it is possible for different
methods to compile down to a single executable method of the underlying language
(global-to-local transformations). This is useful when different methods are in-lined
or combined for optimization purposes.

Source-position information is automatically tracked throughout the compilation
chain to enable debugging for different languages. Furthermore, Helvetia uses the
same rule infrastructure to extend and change how code browsers and editors work.

33

Chapter 3 Enabling Language Embedding

This allows one to introduce custom highlighting, code completion and contextual
actions in a similar way as we will see in the next section.

3.1.2 Homogeneous Tool Integration

....

Rules

.

<highlight>

.

<interaction>

.

<complete>

.Editor.

Shout

.

eCompletion

.

Traditional Smalltalk Tools

Figure 3.2: The tool integration with multiple extension points.

Figure 3.2 depicts the integration of the Helvetia rule system into the editor frame-
work of our host environment. The traditional syntax highlighter Shout and the code
completer eCompletion are themselves extensions to the basic code editing facilities.
We changed their implementation and the editor itself to consult the rule database
for customizable operations.

For example, to control syntax highlighting a rule can change the default highlight-
ing. The traditional Smalltalk syntax highlighter is only applied to normal Smalltalk
methods. As soon as there is a custom parser involved, the affected part of the
source code remains black unless a custom highlighter is provided. The annotation
<highlight> is used to define a highlighting rule. Helvetia provides similar extension
points for code-completion and contextual menus.

Without introducing dedicated editors Helvetia nicely blends into the existing pro-
gramming environment. For example looking for class references, senders or im-
plementors of a method works transparently and exactly as the developer would
expect. This is because these queries are implemented on the abstract code repre-

34

3.1 The Helvetia Model

sentation of the system. Custom interaction blocks can be provided through the
<interaction> annotation.

The lack of dedicated tools to find and fix bugs in a new language is one of the
major drawbacks when designing and using embedded languages. Since our ap-
proach uses the code abstraction of the host language, the standard debugging tools
continue to work. One can set breakpoints as in conventional methods. Stepping
through code written in a mixture of languages poses no problem either. The AST
of a debugged method carries information about the source range in the original
code. Generated code either reuses the source ranges of the parent node, or has no
source range and is therefore invisible in the debugger. With this information from
the original AST the debugger is able to accurately highlight the current execution
point and step to the next statement, without having to know anything about the
structure of the source string.

Our current Helvetia implementation does not change the way the debugger
presents information, e.g., the stack frames and variables are displayed at the level
of host language. However, we envision the addition of new rules to enable the
customization of the debugger’s user-interface. Inspecting and changing interme-
diate values is equally possible. Changing and recompiling the source code on the
fly from within the debugger is possible too, this being an inherited feature of the
host language.

By default the debugger does not display code transformations, but shows the
original-source code and highlights the execution location. Language developers
however have the possibility to change the view in the debugger and instead dis-
play the transformed source code. This is possible because we remember the orig-
inal and transformed AST nodes and their respective mapping to bytecode with
every compiled method.

3.1.3 Defining Helvetia Rules

Helvetia uses annotated methods on the class-side (static) to define a rule database
that is queried by the compiler and other tools. The rules affect instance-code of the
corresponding class and its subclasses. To define a system-wide rule, it has to be
installed within an extension method for Object, the root of the class hierarchy.

The following primitive rule types are currently supported:

• The ConditionRule behaves like a case statement. An ordered list of conditions
is checked and the first matching action is executed. If no match is found a
default action is executed as an alternative. The condition is implemented
using the host language and can perform arbitrary checks using the reflective

35

Chapter 3 Enabling Language Embedding

API of the host language. This rule type is typically used to further scope the
effect of rules to specific parts of the system. This rule type can be used with
any input.

• MatchRule and RangeRule use regular expressions to match source code. This is
useful to check for specific strings in the code when no parse-tree is available
yet. For example, regular expressions are sometimes used to provide custom
syntax highlighting within string literals of the host language. In many cases
matching the parse-tree is simpler. This rule type is only supported for rules
that take text as input, for example <parse>.

• The TreeRule is a parse-tree matcher. Unlike string matching these patterns
work on the AST and make it possible to efficiently find all occurrences of
particular node combinations. Again, action code can be supplied that is ex-
ecuted when a match is found. This rule type is only supported for rules that
take an AST as input, for example <transform> and <attribute>.

Rules can be arbitrarily nested. Instead of attaching host language code to perform a
transformation, another rule can be used that is subsequently applied in the context
of the parent match. Furthermore it is possible to supply a custom rule object such
as a custom parser or syntax highlighter.

3.2 Evaluation of the Helvetia Model

In Section 2.3 we presented various approaches to language embedding. In this sec-
tion we compare the approach of Helvetia with the existing solutions summarized
in Table 2.2.

3.2.1 Pidgin, Creole and Argot Languages

In the related work, support for pidgin, creole and argot embedded languages is
variable. In the category of extensible compilers usually all types are supported.
Meta-programming systems either do not provide a model of the host language that
can be modified (Converge) or do not provide the possibility to change the syntax
(MetaOCaml, Scheme). Language workbenches are designed to implement creoles,
that is to build new language elements and combine them with other languages.

36

3.2 Evaluation of the Helvetia Model

3.2.2 Multiple Context-Dependent Languages

The integration of new embedded languages into each other and into the host lan-
guage is solved in different ways. Many existing approaches provide a very coarse-
grained control and allow one to change the language on a per-file basis only. Other
systems give a more fine-grained control but require special tokens to switch be-
tween languages (Converge and XMF). In Katahdin this token is freely definable by
changing the host language.

In Helvetia the scope of each language is defined in a way that differs from the
systems discussed. Language extensions are defined in rules that use reflection ca-
pabilities of the host language to check for specific conditions. Namespaces, pack-
ages, class-hierarchies, or annotated classes can define a scope. At a method level
we are able to look for specific annotations in the source string or simply try differ-
ent parsers. At a sub-method level we are able to look for certain code statements
to transform, either using regular-expressions (before parsing) or using parse-tree
matching (after parsing). These techniques enable a fine-grained control over the
languages, however for end users it is often less evident, what parts of the system
belong to the host language or are externally defined. This can be addressed by
means of tailored highlighting of such code.

Multiple rule-sets can be active at the same time. For example, both an argot and a
creole can be active at the same time, since they do not perform transformations at
the same place in the compiler toolchain. If conflicting rules are active, for instance
two language extensions that define their own parser, Helvetia throws an error. We
propose a solution for this limitation in Chapter 5.

Transformation rules typically do not conflict, since they work on the same AST
model. Rules are performed in a deterministic order based on their priority. Thanks
to the reflective capabilities of the system, each rule can detect other active rules and
choose to disable itself or other rules on the fly. In practice conflicts are rare, because
language extensions are typically scoped to a small portion of the system, such as a
class hierarchy or a package.

3.2.3 Homogeneous Tool Support

Most systems provide debugging tools for language developers, however they
mostly lack sophisticated debugging support for application developers. We believe
that it is crucial for the end users of a language to have good debugging support.
Implementing custom debuggers is expensive and thus seldom done in practice.
Furthermore switching between different debuggers in a multilingual environment

37

Chapter 3 Enabling Language Embedding

is cumbersome. End users do not want to be forced to learn new tools, but instead
prefer the familiar tools provided by the host language in use.

Helvetia supports the use of the existing debugging facilities for language develop-
ers and end users. While the host language debugger might not offer the optimal
abstraction for all languages, it offers a free live view on the untransformed source
code and the current execution point. This is something that most other systems do
not provide without additional development effort.

3.2.4 Homogeneous Code and Data Abstraction

Language transformation systems use a preprocessor. This considerably slows
down the compile cycles, as several transformation passes and compilation cycles of
different independent tools are involved. Furthermore, it can be difficult to debug
the generated code, as it is often impossible to provide a correct mapping from gen-
erated code back to the original source. Different host and meta-languages make
interoperability more difficult.

Helvetia maintains this mapping throughout a single compiler pipeline that allows
one to use this information in the standard Smalltalk debugger. Transformation
rules are defined in the host language and take advantage of the reflective capabili-
ties of the system.

3.2.5 Conventional Language and Tools

Meta-programming systems and language workbenches provide large toolsets to
define new languages, however in many cases (Converge, MPS, Intentional Soft-
ware, Katahdin, XMF) they use derivatives. In a few cases (Katahdin, XMF) they
implement a new runtime layer, which makes it difficult to reuse existing code and
libraries. In other cases they build on top of existing languages and infrastructure
(MetaOCaml, Scheme, openArchitectureWare, Xtext, Java Development Tools, IDE
Metatooling Platform).

We believe that it is beneficial for the adaptation of a language authoring system to
build into an existing host language and leverage as many features as possible. Hel-
vetia reuses the host language code representation, the complete compiler toolchain
and the existing IDE to provide a lightweight language integration. Helvetia code
shows no performance penalty as it uses the same runtime infrastructure as the host
language.

38

3.2 Evaluation of the Helvetia Model

In Chapter 8 we will evaluate several other host language choices for a system like
Helvetia. Smalltalk has proven to be a good practical choice for our prototype,
though not a requirement:

• In Smalltalk the compiler is part of the development environment and can be
changed on the fly. For Helvetia, we did so by carefully introducing intercep-
tion points before and after the different compilation steps. Rules are defined
using annotated methods that are evaluated at compilation time.

• Rules that work on AST nodes need to preserve the source mapping with ev-
ery transformation. In our case we use a transformation system based on the
refactoring engine of the host language. Meta-programming facilities such as
parse-tree matching and quasiquoting greatly simplifies code transformation.

• As with the compiler, editors are required to support extension points for
custom highlighting, code completion, error reporting, etc. In Smalltalk the
editors are implemented within the host language and can be customized by
extending or changing the existing code. In our case we did so by consult-
ing the rule database for every method being edited. It is essential that the
environment has full access to the rules.

• To support debugging of different languages, the debugger must be able to
use an arbitrary source mapping between the custom language and the exe-
cutable representation of the host environment. In our case we maintain this
mapping from the source string through all transformation stages down to
the bytecode. The debugger is fed with a custom function that maps source
ranges to bytecode ranges. Since the debugger reuses the normal code editor
of the programming environment, syntax highlighting works without addi-
tional support.

• Since all languages use the same underlying representation, there are no dif-
ficulties to share application state between different parts of the system. For
example, a new language construct can access temporary variables, instance
variables or globals. When a method is evaluated, it does not matter in which
language it has been implemented. Block closures can be passed around, no
matter what origin they have and from what language context they are eval-
uated.

We see the following main challenges to implement a system like Helvetia in an ex-
isting environment like Eclipse: (1) replace the default editor, compiler and debug-
ger with customized ones, (2) connect these to a central rule database (this requires
communication between different Java VMs), and (3) establish a fine-grained map-
ping between bytecode and source code (by default Java only supports a line based
mapping).

39

Chapter 3 Enabling Language Embedding

3.3 Conclusion

In this chapter we have presented the key ideas behind Helvetia, an environment
for defining embedded languages and for integrating them into a host language
and its existing tools. We have shown how Helvetia introduces textual, syntactical
and semantical macros [Gerrits and Gabriëls, 2005] through an extensible rewriting
system into an existing programming language that has no built-in macro processor.
We have demonstrated how a host environment can be changed by introducing a
few extension points into the standard compiler pipeline and the host tools.

Reusing the traditional code representation of the host system has numerous advan-
tages: We achieve a tight integration of different languages that work seamlessly
with each other. We specify transformation rules using annotated methods, and
specify the scope of these transformations using reflective facilities of the host lan-
guage. Our approach works nicely with existing code and integrates well into the
existing toolset. Fine-grained customizations such as syntax highlighting are readily
supported.

40

Chapter 4

Helvetia Exemplified

“The only way to learn a new pro-
gramming language is by writing
programs in it.”

— Dennis Ritchie

In this chapter we demonstrate various Helvetia language extensions. A proto-
type of Helvetia is implemented in Pharo Smalltalk [Black et al., 2009], an open-
source Smalltalk-80 [Goldberg and Robson, 1983] implementation. Details on how
to download and get started with Helvetia can be found in Appendix A.

Readers unfamiliar with the syntax of Smalltalk might want to read the code ex-
amples in the remainder of this dissertation aloud and interpret them as normal
sentences. An invocation to a method named method:with:, using two arguments
looks like: receiver method: arg1 with: arg2. The semicolon separates messages that
are sent to the same receiver. For example, receiver method1: arg1; method2: arg2

sends the messages method1: and method2: to receiver. Other syntactic elements of
Smalltalk are: the dot to separate statements: statement1. statement2; square brack-
ets to denote code blocks or anonymous functions: [statements]; single quotes to
delimit strings: 'a string'; and double quotes delimit comments: "comment". The
caret ^ returns the result of the following expression.

This chapter starts in Section 4.1 with an introduction to parse-tree matching and
code generation, two central concepts when developing language extensions with
Helvetia. Then we dive into two examples of embedded languages that use the same
underlying API of a graphical engine and transform it into a pidgin (Section 4.2) and
a creole (Section 4.3) language. Finally, we describe the implementation of an argot
for introducing transactional memory (Section 4.4). Other examples of Helvetia lan-
guage extensions are listed in Appendix B.

41

Chapter 4 Helvetia Exemplified

4.1 Matching and Generating Code

The syntax for tree pattern matching and quasiquoting looks similar at first sight, how-
ever the two mechanisms serve entirely different purposes: While the tree pat-
tern matching is used to identify and extract nodes from an existing parse-tree, the
quasiquoting is used to construct and compose new parse-tree nodes. Both mecha-
nisms are essential to the Helvetia rule system to conveniently specify transforma-
tion rules.

4.1.1 Tree Pattern Matching

Helvetia uses tree pattern matching [Kilpeläinen and Mannila, 1992] as the mech-
anism to identify specific parse-tree nodes in host language code. This infrastruc-
ture is based on the refactoring engine [Brant et al., 1998] provided by the host lan-
guage.

Tree patterns are specified using host language expressions that are annotated with
optional meta-characters. The back-tick marks meta-nodes that are not required to
match literally but that are variable. Table 4.1 gives an overview of the supported
meta-characters following the initial back-tick.

Char Type Description

literal Match a literal node like a number, boolean, character, string,
or symbol.

. statement Match a statement in a sequence node.
@ list When applied to a variable, match any expression. When ap-

plied to a statement, match a list of statements. When applied
to a message, match a list of arguments.

` recurse When a match is found recurse into the matched node.

Table 4.1: Meta-characters of the tree pattern matching.

Listing 4.1 provides the source code of a simple method to illustrate the basic con-
cepts of tree pattern matching. For example, the pattern current isRoot matches
the single occurrence of the parse-tree node of current isRoot. The pattern current

`selector matches all zero argument method invocation on the receiver current. In
the example, these are current isRoot and current parent.

To match any method invocation on any object we can use the pattern `@receiver

`@selector: `@argument. In our example the pattern matches self resolve and the
loop with the message name whileFalse:. The inner parts of the loop are not

42

4.1 Matching and Generating Code

level

| level current |

level := 0.

current := self resolve.

[current isRoot] whileFalse: [

level := level + 1.

current := current parent].

^ level

Listing 4.1: Example method to illustrate parse-tree matching.

matched, because by default the search does not recurse into already matched nodes.
If we add a second back-tick to a meta-variable the search continues after a match
recursively into the tree. For example, the modified query ``@receiver `@selector:

``@argument additionally matches current isRoot, level + 1 and current parent.

The pattern `#literal matches any literal node. In the example it matches the nodes
of the numbers 0 and 1. The pattern `.statement matches a single statement. In
the example, these are level := 0, current := self resolve, the complete loop, and
^ level. Again, the statements inside the loop are not matched, because by default
the search does not recurse into already matched nodes.

The name of the meta-variables can be used to extract sub-parts of the parse-tree
nodes after a successful match. If the same name is used multiple times, the parse-
tree matcher uses unification. For example, the pattern `variable := `variable

`@selector: `@argument matches level := level + 1 and current := current parent,
but not current := self resolve because current and self are not the same.

4.1.2 Code Generation with Quasiquoting

To generate code from within Helvetia we use quasiquoting. The quasiquoting facili-
ties in Helvetia are similar to ones known from languages like Lisp [Bawden, 1999].
Table 4.2 compares the quoting operators of various meta-programming systems.
In Helvetia quasiquoting is a language extension implemented in Helvetia itself. Its
syntax and semantics is summarized in the following list:

• A quasiquoted expression is prefixed with ``. It is delayed in execution and
represents the AST of the enclosed expression at runtime.

43

Chapter 4 Helvetia Exemplified

Sc
he

m
e

M
et

aO
Ca

m
l

Te
m

pl
at

e H
as

ke
ll

H
el

ve
tia

Quasiquote `expr .<expr>. [|expr|] ``expr

Unquote ,expr .~expr $expr `,expr

Splice ,@expr .!expr $expr `@expr

Table 4.2: Quoting operators for code generation.

• An unquote expression is prefixed with `, and can be used within a
quasiquoted expression. It is executed when the AST is built and can be used
to combine smaller quasiquoted values to larger ones.

• A splice expression is prefixed with `@. It is evaluated at compile-time and the
result is spliced-into the code. If the returned expression is not an AST, it is
automatically lifted to the AST level.

As an example we demonstrate how to generate code to calculate xn, where n is a
positive integer. The method below is a recursive definition of this method written
in regular Smalltalk:

raise: x to: n

^ n = 1

ifTrue: [x]

ifFalse: [(self raise: x to: n - 1) * x]

If we want to avoid the recursion at runtime and instead generate code that directly
calculates the result for a given integer n we annotate the code with quasiquote and
unquote operators:

raise: aNode to: n

^ n = 1

ifTrue: [aNode]

ifFalse: [``(`,(self raise: aNode to: n - 1) * `,aNode)]

When evaluating self raise: ``x to: 3 with a variable node ``x, a parse-tree is con-
structed that multiplies the variable x three times with itself yielding the AST x * x

* x. Using the splice operator we can insert the generated parse-tree anywhere into
the code. For example:

44

4.2 A Pidgin: Mondrian

qubic: x

^ `@(self raise: x to: 3)

At compile-time this creates code equivalent to:

qubic: x

^ x * x * x

4.2 A Pidgin: Mondrian

Mondrian [Meyer et al., 2006] is a graph based visualization framework that pro-
vides a declarative Smalltalk API for users to specify new visualizations and com-
pose existing ones.

..

Package Name

..

(1, 2)

.

(2, 2)

.

(2, 1)

.

y = 1

.

y = 2

.

x = 1

.

x = 2

Figure 4.1: A UML package shape in Mondrian.

One of the features of Mondrian is an API to compose custom shapes out of basic
ones, called FormsBuilder. The FormsBuilder is inspired by CSS 3 and uses a grid
to align primitive graphical elements such as text labels and boxes. The code below
in Listing 4.2 creates a UML package shape as depicted in Figure 4.1. The package
shape is built from a 2× 2 grid.

The first column and row are told to grow to enclose their children. The second col-
umn and row are told to fill the remaining space. In cell (1, 1) we place a bordered
LabelShape. In cell (1, 2) we place a bordered RectangleShape that spans two horizontal
cells.

Mondrian provides an internal DSL that offers a high-level interface for composing
visualizations. While it makes the composition easy, there is still a considerable
amount of syntactic noise that makes the script hard to read.

45

Chapter 4 Helvetia Exemplified

aBuilder row grow. " defines row sizing "

aBuilder row fill.

aBuilder column grow. " define column sizing "

aBuilder column fill.

aBuilder x: 1 y: 1 add: (LabelShape new " define the cells "

text: [:each | each name];

borderColor: #black;

borderWidth: 1;

yourself).

aBuilder x: 1 y: 2 w: 2 h: 1 add: (RectangleShape new

borderColor: #black;

borderWidth: 1;

width: 200;

height: 100;

yourself)

Listing 4.2: Traditional Mondrian Forms Builder API.

We incrementally bend the syntax of the host language towards a more suitable DSL,
first by creating a pidgin, and then by creating a creole. Our final goal is to be able
to define the visualizations using a simple syntax resembling cascading style-sheets
(CSS), which offers a compact notation to programmers and designers to declara-
tively specify layout and design of web sites.

If we have a look at the code in Listing 4.2 we see that the noise is caused by certain
semantic elements that are required to make this example run as Smalltalk code con-
forming to the original Mondrian API. We discover three things that are repetitive
and that could be simplified:

1. The variable aBuilder is referenced in every rule as an entry point to construct
and configure the different parts of the forms.

2. The specification of the cells and their content is repetitive and rather hard to
read.

3. The instantiation of different shapes is cumbersome as in this case the host
language syntax is rather verbose.

The code in Listing 4.3 addresses these issues.

46

4.2 A Pidgin: Mondrian

row = grow.

row = fill.

column = grow.

column = fill.

(1 , 1) = label

text: [:each | each name];

borderColor: #black;

borderWidth: 1.

(1 , 2) - (2 , 1) = rectangle

borderColor: #black;

borderWidth: 1;

width: 200;

height: 100.

Listing 4.3: Pidgin: Eliminating syntactic noise.

While the above code is syntactically valid and is parsed by the standard Smalltalk
parser, it is not semantically valid. For example numbers do not implement the
operator ‘,’, and column is an unknown variable.

4.2.1 Specifying the Mondrian Pidgin

In our implementation, the above pidgin example is transformed transparently into
the code from Listing 4.2. This kind of transformation simplifies the amount and
complexity of source code significantly. The transformation is specified at the AST
level using two transformation rules that are applied by the compiler after pars-
ing.

The syntax of the Mondrian pidgin can be parsed by the traditional parser of the
Smalltalk host language. However, we need to apply several transformations to
get the semantics right. We define a set of transformation rules that are applied by
Helvetia after parsing the code from Listing 4.3:

1 MondrianPidgin class>>rowColumnTransformation

2 <transform>

3 ^ TreeRule new

4 expression: 'row = `@expr';

5 expression: 'column = `@expr';

6 action: [:ast |

7 ast swapWith: ``(`,(ast method arguments first)

47

Chapter 4 Helvetia Exemplified

8 `,(ast receiver)

9 `,(ast at: '`@expr'))]

10 <MondrianPidgin class>>cellTransformation

11 <transform>

12 ^ TreeRule new

13 expression: '(`@x , `@y) = `@expr';

14 expression: '(`@x , `@y) - (`@w , `@h) = `@expr';

15 action: [:ast |

16 ast swapWith: ``(`,(ast method arguments first)

17 x: `,(ast at: '`@x')

18 y: `,(ast at: '`@y')

19 w: `,(ast at: '`@w' ifAbsent: [1])

20 h: `,(ast at: '`@h' ifAbsent: [1])

21 add: ``(`,(Shapes at: (context at: '`var') name)

22 new `,(ast at: '`@expr')))]

The transformation rules are split into two methods. Each of these methods is
tagged with the method annotation <transform> (lines 2 and 11), so that the compiler
knows it has to apply these transformations before performing semantic analysis.
Each rule consists of two match expressions (lines 4–5 and 13–14) to find particu-
lar parse-tree nodes. In our context these patterns match the specific constructs we
introduced in Listing 4.3.

The action blocks (lines 6–9 and 15–22) perform a transformation on the matched
AST node. For example, the first rules matches expressions of the form row =

grow and transforms them into aBuilder row grow. The second transformation rule
matches expressions of the form (1 , 2) = rectangle and transforms them into
aBuilder x: 1 y: 2 add: LabelShape new. The expression `,(ast method arguments

first) (lines 7 and 16) returns a reference to first argument aBuilder of the generated
method.

The two methods are all that is needed to implement the Mondrian pidgin. The
swapWith: method call replaces the matched AST node with the new code. Since all
AST nodes carry information about their original source origin, a debugger is able
to step through and properly highlight the recomposed code fragments. Newly
generated code is marked as hidden, so that the user of the pidgin does not see it in
the debugger. Language developers are given the possibility to inspect and debug
generated code.

48

4.3 A Creole: Mondrian

4.3 A Creole: Mondrian

The pidgin shows an improvement over the original Smalltalk code, but our goal is
to obtain an even more concise CSS-like language as in listing Listing 4.4.

shape {

cols: #grow, #fill;

rows: #grow, #fill;

}

label {

position: 1 , 1;

text: [:each | each name];

borderColor: #black;

borderWidth: 1;

}

rectangle {

position: 1 , 2;

colspan: 2;

borderColor: #black;

borderWidth: 1;

width: 200;

height: 100;

}

Listing 4.4: Creole: A CSS-like syntax.

The code above does not follow Smalltalk syntax. At this point, the assumption of
a pidgin relying on the host syntax starts to get in our way.

The solution is to allow the definition of a new parser that handles the creole syn-
tax. We usually also want to integrate the new language constructs with the host
language or with other language constructs. In our example, the code text: [:each

| each name] provides such a case in which we parameterize the shape specification
with a Smalltalk expression.

As shown in the following section, Helvetia offers a mechanism for writing a custom
parser that can also include productions external to the language at hand. Like this
we can accommodate any syntax.

49

Chapter 4 Helvetia Exemplified

4.3.1 Specifying the Mondrian Creole

In contrast to a pidgin, a creole requires a custom parser and Helvetia offers the
possibility to define one. For example, for the creole we presented in Listing 4.4 we
define the following grammar rules as individual methods of the class CSSParser:

CSSParser>>rules = { rule }

CSSParser>>rule = selector "{" declarations "}"

CSSParser>>selector = #identifier

CSSParser>>declarations = declaration { ";" declaration }

CSSParser>>declaration = #keywordMessage

This grammar definition looks very similar to the Extended Backus-Naur Form
(EBNF) [Wirth, 1977]. In fact, it is a DSL for parser generators implemented in Hel-
vetia. As an extension to EBNF we allow productions to reference grammar rules
of other languages. The name of external grammar rules are prefixed with a hash
character #. For example, the CSS selector is simply a Smalltalk identifier, and the
declaration of a property is a keyword message (a Smalltalk method name with ar-
guments, but without receiver) of the host language.

Next we create a new subclass of CSSParser called CSSTranslator, to reuse the abstract
grammar definition and to augment it with productions to transform the parse-tree
nodes to the host language AST [Bracha, 2007]. The operator ‘==>’ attaches semantic
actions to the grammar defined in the superclass. Again we use quasiquoting to
build the AST of the host language. Two of CSSTranslator’s parse-tree transforma-
tions look like in the following listing. The other grammar productions are similarly
defined.

1 CSSTranslator>>rules

2 ^ super rules ==> [:ast | ``(buildOn: aBuilder `,ast)]

3 CSSTranslator>>rule

4 ^ super rule ==> [:ast |

5 self

6 transform: (ast at: 'selector')

7 declarations: (ast at: 'declarations')]

This assigns semantic actions to the productions defined in the superclass. The ar-
gument ast contains the parse nodes built by the grammar productions of the super-
class. Line 2 uses quasiquoting to define the method header and to embed the AST
nodes of the rules into its body. Line 5–7 call a helper method build:declarations:

50

4.3 A Creole: Mondrian

..

CSSParser

..
rules()
rule()
selector()
declarations()
declaration()

.

CSSCompiler

..

rules()
rule()
selector()
declarations()
declaration()

.

CSSHighlighter

..

rules()
rule()
selector()
declarations()
declaration()

Figure 4.2: The CSS Parser Hierarchy.

with the selector token and a collection of declaration messages to build a Smalltalk
AST.

To tell the system to use our custom parser instead of the default one, we use a
method annotation <parse> on the classes where we want to use the custom syntax.
The code in Listing 4.4 is parsed, transformed and eventually compiled to an ex-
ecutable representation identical to the methods we manually wrote in Listing 4.2
and Listing 4.3.

MondrianCreole class>>cssParser

<parse>

^ CSSTranslator

One minor problem at this point is that the syntax highlighter in the code editor
does not adapt to the custom syntax yet. As before, we create a new subclass of
CSSParser named CSSHighlighter that underlines the selectors and dispatches to stan-
dard Smalltalk highlighting for the definitions. Again this is achieved by overriding
the appropriate methods of CSSParser. For example, the selector method is defined
in CSSHighlighter as follows. The arrow operator ‘->’ associates a text format to a
collection of tokens.

CSSHighlighter>>selector

^ super selector ==> [:token | token -> TextEmphasis underlined]

51

Chapter 4 Helvetia Exemplified

Using a <highlight> annotation we declare the handler to be responsible for syntax
highlighting of the CSS code:

MondrianCreole class>>cssHighlighter

<highlight>

^ CSSHighlighter

Figure 4.3: Traditional Smalltalk debugger with language specific syntax highlight-
ing stepping through a mixture of Smalltalk and a creole.

Adding a pidgin or creole over an existing framework can simplify its use and re-
duce a considerable amount of syntactic noise. Without touching the original frame-
work we are able to provide different language skins that might be an appealing
alternative to the internal DSL that was used before.

Figure 4.3 shows how we step through the code of our creole example. The top
part shows the execution stack, with the top method being LabelShape>>text:. This
example shows how the debugger accommodates both the creole code and the called
framework code.

52

4.4 An Argot: Transactional Memory

The changes shown in this section are all that is needed to adapt the debugger too.
Figure 4.3 shows a live result of stepping through the execution of the script building
the UML package shape.

4.4 An Argot: Transactional Memory

Most dynamic programming languages have inherently weak support for concur-
rent programming and synchronization. While such languages relieve the program-
mer of the burden to allocate and free memory by using advanced garbage collection
algorithms, they do not provide similar abstractions to ease concurrent program-
ming [Grossman, 2007].

Software transactional memory (STM) [Herlihy, 1991; Herlihy and Moss, 1993] is
an attractive mechanism for concurrency control. Introducing STM into an existing
language provides a concrete use case for changing the execution semantics without
changing the syntax of the language. A piece of library code that is used as part
of transactional code should continue to work without requiring any adaptation.
Unlike a pidgin, which bends the host syntax in ways that break the semantics, an
argot more subtly reinterprets the semantics of otherwise valid code.

In this section we present in detail the implementation of transactional memory at
the language level using Helvetia. We furthermore validate our approach in the
context of the host language and compare it with related work.

4.4.1 Programming with transactions

Transactions offer an intuitively simple mechanism for synchronization of concur-
rent actions. They do not require users to declare specific locks or guard conditions
that have to be fulfilled. Moreover transactions can be used without prior knowl-
edge of the specific objects that might be modified. Transactions are global, yet mul-
tiple transactions can run in parallel. The commit protocol checks for conflicts and
makes the changes visible to other processes atomically.

tree := BTree new.

lock := Semaphore forMutualExclusion.

lock critical: [tree at: #a put: 1]. " writing "

lock critical: [tree at: #a]. " reading "

Listing 4.5: Lock-based access of a shared data structure.

53

Chapter 4 Helvetia Exemplified

tree := BTree new.

[tree at: #a put: 1] atomic. " writing "

tree at: #a. " reading "

Listing 4.6: Transactional access of a shared data structure.

In Listing 4.5 we see the traditional way of using a semaphore to ensure mutual ex-
clusion on a tree data structure. The key problem is that all read and write accesses to
the tree must be guarded using the same lock to guarantee safety. A thread-safe tree
must be fully protected in all of its public methods. Furthermore, we cannot easily
have a second, unprotected interface to the same tree for use in a single-threaded
context.

In Listing 4.6 we present the code that is needed to safely access the collection using
a transaction: the write access is put into a block that tells the Smalltalk environ-
ment to execute its body within a transaction. The read access can happen without
further concurrency control. As long as all write accesses occur within the context
of a transaction, read accesses are guaranteed to be safe. The optimistic commit pro-
tocol of the transaction guarantees safety by (i) ensuring that no write conflicts have
occurred with respect to the previous saved state, and by (ii) atomically updating
the global object state.

To make the code using transactions as simple as possible we provide two meth-
ods for running code as part of a transaction. These methods are extensions to the
standard Smalltalk library and do not affect the language syntax or runtime.

• Sending atomic causes the receiving block closure to run as a new transac-
tion. Upon termination of the block any changes are committed atomically.
If a conflict is detected, all modifications are cancelled and a commit conflict
exception is raised.

• Sending atomicIfConflict: causes the receiving block to run as a new transac-
tion. Instead of raising an exception if a conflict occurs, the block argument is
evaluated. This enables developers to take a specific action, such as retrying
the transaction or exploring the conflicting changes.

Further convenience methods can easily be built out of these two methods, for ex-
ample a method to retry a transaction up to fixed number of times, or only to enter
a transaction if a certain condition holds.

54

4.4 An Argot: Transactional Memory

4.4.2 Inside transactions

In a nutshell, our software transactional memory implementation works as follows.
We compile every method in the system twice, once for the transactional and once
for the non-transactional context. On the transactional code we apply two trans-
formations: (1) all state access is reified to be dispatched through the transactional
context, and (2) method names and method sends are prefixed with __atomic__. Fur-
thermore, we use method annotations to disable or customize these transformations
in certain places, such as when primitive code is called or in the transactional in-
frastructure itself. A transaction is started by assigning a transaction manager to a
thread-local variable and by calling an __atomic__ method. At the end of a trans-
action the cached changes are atomically checked for conflicts and applied to the
involved objects. The transaction boundaries are handled at the language level us-
ing the reflective facilities of the host language.

The complete set of Helvetia transformation rules is presented below:

1 Object class>>transformAtomic

2 <attribute>

3 ^ ConditionRule new

4 if: [:context | context isTransactional]

5 then: (TreeRule new

6 expression: '`@receiver `@msg: `@args' do: [:ast |

7 ast swapWith: ``(`,(ast at: '`@receiver')

8 `,('__atomic__' , (ast at: '`@msg:'))

9 `,(ast at: '`@args'))];

10 expression: '`var := `@expr' do: [:ast |

11 ast swapWith: ``(self

12 atomicInstVarAt: `,(ast binding index)

13 put: `,(ast at: '`@expr'))];

14 expression: '`var' do: [:ast |

15 ast swapWith: ``(self

16 atomicInstVarAt: `,(ast binding index))])

The code uses the <attribute> method annotation (line 2) to tell the compiler that the
rules are expected to run after the symbols have been resolved (attributed). Line 4
makes sure that the transformation is performed only when compiling code for the
transactional context. Lines 5–16 implement the actual transformations, exempli-
fied in Table 4.3.

All message sends are prepended with __atomic__ to ensure that the execution stays
in the atomic context. All state accesses, such as instance variable reads and writes,

55

Chapter 4 Helvetia Exemplified

6–9 Transform Message Sends
self printString → self __atomic__printString

10–13 Transform Instance Variable Write
value := 'Atomic' → self atomicInstVarAt: 2 put: 'Atomic'

14–16 Transform Instance Variable Read
value → self atomicInstVarAt: 2

Table 4.3: Different semantic transformations for transactional memory.

are transformed to message sends and dispatched through the transaction manager.
This allows us to delay modifications to objects, so that the changes are only visible
within the current transaction. The number 2 in the examples above refers to the
index of the named instance variable value. This slot index is retrieved from the
attributed AST.

To trigger the compilation of a transactional and a non-transactional version of ev-
ery method we hook into the compiler again using the <attribute> annotation. We
copy the compilation context and spawn a new compilation path for the transaction
context.

Object class>>compileTransactional: aContext

<attribute>

aContext isTransactional ifFalse: [

aContext copy

beTransactional;

perform].

^ nil

The static compilation model with the duality between normal compiled methods
and methods compiled for the transactional context is depicted in Figure 4.4. Trans-
actional methods are methods marked as hidden and are not visible to the developer
and development tools but to the VM only.

Without additional work the use of the debugger becomes viable, because the Hel-
vetia transformations preserve location integrity. Single stepping through transac-
tional code looks exactly the same as the regular code, even if the semantics are
different and involve a non-primitive state lookup.

In our previous works on transactional memory [Renggli and Nierstrasz, 2007] it
was not possible to transparently step through transactional code, as the tools would
display the generated code. The new implementation takes advantage of Helvetia:

56

4.5 Conclusion

..

Class

.
name
superclass
subclasses
instanceVariables

..
CompiledMethod

. selector
parseTree

..

AtomicMethod

.

/selector
/parseTree
hidden = true

.. *.
methods

. 1.
method

.

1

.

atomicMethod

Figure 4.4: Static compilation model for transactional memory.

the implementation became significantly simpler and the tools continue to work as
expected.

4.5 Conclusion

In this chapter we have presented the Helvetia rule system in practice. We have
shown how the infrastructure for parse-tree matching and code generation provides
an extensible macro system that supports the creation of pidgin, creole and argot
languages.

Furthermore, we have exemplified the creation of language extension with Helve-
tia using three real-world language extensions. We have demonstrated how these
language extensions blend into the existing tools and how we can mix embedded
languages with the host language. Also, we have shown that a common code and
data abstraction avoids an unnecessary interpretation layer and enables to transpar-
ently pass values between different languages without an explicit conversion.

57

Chapter 5

Combining Language Extensions

“Nothing of me is original. I am the
combined effort of everybody I’ve
ever known.”

— Chuck Palahniuk

In this chapter we present Language Boxes and how to apply the concepts to embed-
ded languages. Language boxes extend on the rule system of Helvetia and provide
a modular and composable high-level model of tightly intermixed language exten-
sions.

Language boxes are built on top of Helvetia and are used to describe and implement
language features in a modular way. Our model works on an executable grammar
model [Bracha, 2007] of the host language. A language change is used to specify a
composition of this grammar together with the grammar of a different language.
Language concerns denote a transformation from parse tokens to the abstract syntax
tree (AST) nodes of the host language. Other concerns are supported to specify ad-
ditional behavior of the tools, such as syntax highlighting, contextual menus, error
correction or autocompletion. The language scope describes the contexts in which
the new language features are enabled. Language boxes yield a high-level model
to cleanly embed language extensions and language changes into an existing host
environment.

This chapter is structured as follows: In Section 5.1 we present a introductory exam-
ple. In Section 5.2 we introduce the model of Language Boxes. Section 5.3 gives an
overview of the implementation identifying the general principles and techniques
necessary to build the proposed system. Section 5.4 shows the implementation in
action. Section 5.5 evaluates and summarizes our approach to introduce new fea-
tures to an existing language.

59

Chapter 5 Combining Language Extensions

5.1 Language Boxes in Practice

The Smalltalk programming language does not include a literal type for regular ex-
pressions. Traditionally regular expressions are instantiated by passing a string to
a constructor method of the class Regexp. To match a sequence of digits one would,
for example, write: Regexp on: '\d+'. For developers such lengthy code is repetitive
to write. Furthermore, the code is inefficient as the regular expression is parsed and
built at runtime. In this section we propose a language extension that adds regular
expression literals to the language. This makes a good illustration for our frame-
work, because regular expressions represent an already existing non-trivial domain-
specific language that is currently not well integrated into the host system.

A new language box is created by subclassing LanguageBox. We use ordinary methods
to define the characteristics of the language extension. In our example we start by
creating a new language box called RegexpLanguageBox. We add the method change:

returning a change object that determines how to transform the host language gram-
mar.

RegexpLanguageBox>>change: aGrammar

^ LanguageChange new

after: aGrammar literal;

choice: '/' , '/' not star , '/'

The returned change specifies that the grammar fragment '/' , '/' not star , '/'

is appended as an additional choice after the existing grammar production for liter-
als. aGrammar literal returns the original production used to parse literal values in
the host language.

The grammar extension is defined using a DSL for parser combinators, where the
comma is used as a sequence operator and strings denote parsers for themselves.
'/' not star is a parser that accepts zero or more occurrences of characters other
than the slash. In this example the parser accepts any sequence of characters that
start and end with the slash delimiter.

The editors, compiler and debugger will automatically pick up the language box and
use its change definition to transform the grammar of the host language. Anywhere
in the source code where a literal is expected a regular expression with the specified
syntax is accepted as well. At this point, the language box does not yet specify any
additional behavior for the tools.

RegexpLanguageBox>>compile: aToken

^ (Regexp on: aToken string) lift: aToken

60

5.1 Language Boxes in Practice

The above method is a hook method that is automatically called by the compiler to
transform the parse-tree tokens of the language extension to the host language AST.
In our example we instantiate a regular expression object from the token value. The
method lift: converts a host language value into an AST node. In this case it takes
the regular expression object and wraps it into a literal node. The original token is
passed into the literal node to retain the source mapping for the debugger.

..AST: .:MessageSend.

:LiteralNode

.

:LiteralNode

.

:String

.

:Regex

.

Token:

.

:Token

.

:Token

.

:Token

.

Source:

.

'One After 909'

.

=~

.

/\d+/

.

receiver

.

argument

.

value

.

value

.

token

.

selector

.
token

Figure 5.1: From the source code to the AST of the host language.

Expressions with literal regular expressions can now be used anywhere in the source
code, for example 'One After 909' =~ /\d+/. As depicted in Figure 5.1 the trans-
formed grammar of the host language parses the source code and uses our function
compile: to transform the input to the host AST. Note that ‘=~’ is a matching opera-
tor for regular expressions. This operator is not a language extension, but a method
implemented in the String class. In this example, the matched sub-string '909' is
returned.

The syntax highlighter in the editor recognizes the regular expression syntax as
valid, but it still colors the source using the default font style. To change this, we
add a syntax highlighting concern to the language box:

RegexpLanguageBox>>highlight: aToken

^ aToken -> Color orange

61

Chapter 5 Combining Language Extensions

With only a few lines of code we have demonstrated how to extend the syntax of a
general-purpose language with a new literal type, how to define the transformation
to the host language AST and how to integrate it into editors by customizing the
syntax highlighting.

5.2 Language Box Model

Parser, compiler and associated development tools are usually black boxes. Extend-
ing, changing or replacing the default behavior is not easy and thus discouraged.
We propose a high-level language model that provides us with fine grained access
to the different syntactic elements of the host language without revealing too much
of the underlying implementation. Furthermore we provide a set of extension points
for the language grammar to allow developers to extend the compiler and available
development tools. Language extensions should be open, in the sense that they
tightly integrate anywhere in the host language grammar without requiring special
syntactical constructs to change between different language extensions.

..CodeEntity.

Class

.

Method

. LanguageScope.

LanguageBox

..

compile()
highlight()

.

LanguageChange

.

Grammar

.

Compiler

.

Editor

.

«use»

.
«u

se
»

.
*

.
*

.

«modify»

.

Application Layer

.

Language Box Layer

.

Development Tools Layer

Figure 5.2: The interplay of the language box model with the application layer and
the development tools.

As depicted in Figure 5.2 the language box model consists of three parts: In Sec-
tion 5.2.1 we introduce the language change, which defines how the grammar of the
host language is changed. Then in Section 5.2.2 we explain how language concerns
customize the behavior of language extensions by attaching handlers to the gram-
mar, such as for customized syntax highlighting, code completion, code expansion,

62

5.2 Language Box Model

error handling, refactoring, navigation, search or contextual menus. Finally in Sec-
tion 5.2.3 we discuss the language scope, which is used to restrict the effect of a lan-
guage box to certain parts of the application code.

5.2.1 Language Change

The language change is used to encapsulate a local grammar adaption [Lämmel,
2001] applied to the grammar of the host language. In our case the language exten-
sion is defined using a grammar fragment and a specification of how this fragment
is composed with the grammar of the host language.

In Section 5.1 we added a new regular expression literal as an additional choice to the
existing literals. This means the host language grammar rule was changed from

Literal ::= String / Number / Boolean

to

Literal ::= String / Number / Boolean / Regexp

where Regexp was defined as Regexp ::= '/' , '/' not star , '/'. In addition to ap-
pending to the end of a choice we also support various other composition strate-
gies to combine the grammar of the host language and the new grammar fragment.
These composition strategies are listed in Table 5.1.

Action Composition Production

replace – R ::= X

before sequence R ::= X A

after sequence R ::= AX

before choice R ::= X /A

after choice R ::= A /X

Table 5.1: Composition strategies for a grammar rule R ::= A. A is a symbol of the
original grammar. X is the extending grammar fragment as defined by the language
change. X A denotes the sequence of X and A, X / A denotes an ordered choice
between X and A.

An important property of the language change is that the grammar composed into
the host language might reference other productions from the existing grammar.
This allows language designers to reuse existing features of the host language and
closely integrate existing syntax with the language extension. Depending on the
host language production we can decide to change the language box to replace the

63

Chapter 5 Combining Language Extensions

complete host language with a new grammar (for example when the start produc-
tion of the grammar is replaced), or just to change individual features (for example
when adding a new literal type).

While the inserted grammar fragment in our initial example was intentionally cho-
sen to be trivial, it is possible to compose arbitrary complex grammars using the
given composition strategies. Furthermore multiple composition strategies can be
defined in the same language box, as we will demonstrate in Section 5.4 where
Smalltalk and SQL are combined.

5.2.2 Language Concern

When changing or adding new language features, there are different concerns to
integrate into the toolset of the application developers. First and foremost we need
to specify a transformation from our language extension to the code representation
of the host language. Optionally we might want to closely integrate the language
extensions into the existing programming tools, such as editors and debuggers. This
is done by adding concerns to the language box such as:

• Compilation. This concern describes the transformation from the AST nodes
and parse-tree tokens of the language extension to the AST of the host lan-
guage. We call this process compilation because it makes the language ex-
tension executable. Subsequently the host language AST is passed into the
standard compiler tool-chain that compiles it further down into an efficiently
executable representation.

• Highlighting. The syntax highlighter concern annotates the source ranges
with color and font information, so that the editor and debugger are able to
display properly colored and formatted text. The resulting source ranges and
styling information is then passed into the standard editors for display.

• Actions. This concern provides a list of labels and associated actions that
are integrated into the standard contextual menu of editors. This allows for
context sensitive functionality, such as language specific refactorings. Thus
unsuitable actions from the host language or other language extensions are
not displayed when the user works in the context of a language extension.

Other concerns can be specified similarly, for example enhanced navigation and
search facilities, error correction, code expansion templates, code completion, code
folding, or pretty printing.

Concerns are implemented by overriding a default implementation. This facilitates
the evolution of new language features, starting from a minimal language box that

64

5.2 Language Box Model

defines a change to the host grammar only. At a later point the language designer
can incrementally add new concerns to make the language integrate more appro-
priately with the tools. In the introductory example we saw that the compilation
and highlighting concerns were not specified in the beginning. In this case a default
implementation caused the compiler to insert a null node and the highlighter to use
the default text color.

5.2.3 Language Scope

To scope the effect of Language Boxes to well-defined fragments of the application
source code, we need a way to specify the extent of the language changes within
the application code. The scope identifies Language Boxes and the associated code
entities, as depicted in Figure 5.2. Language developers can define a default scope.
From coarse to fine grained the following scopes are supported:

• System. The system scope affects all the source code of the system without
restriction. This is the default, if no more restrictive scope is specified.

• Package. The package scope affects all source artifacts contained in a partic-
ular package.

• Class. The class scope affects all source artifacts of a particular class, or its
class hierarchy.

• Method. The method scope affects a particular method, or methods with a
particular name.

Furthermore, we give the language box users the possibility to explicitly add a lan-
guage box to a particular code entity (package, class, method) or to remove it. This
effectively overrides the default scope and facilitates a fine-grained control of lan-
guage features from within the application code. Language boxes are added or re-
moved using either a context menu in the user interface or a declarative specification
in the source code.

Whenever a tool requests a grammar at a specific location in the source code, the lan-
guage box system determines all active Language Boxes by comparing their scope
with the current source location. It then transforms the host language grammar ac-
cording to the change specification in the Language Boxes and inserts the concerns
for the active tool. This enables one to scope Language Boxes and their grammar
changes to well-defined parts of the system.

65

Chapter 5 Combining Language Extensions

5.3 Implementation

To validate the language box model, we have implemented it in Pharo [Black et al.,
2009], an open-source Smalltalk [Goldberg and Robson, 1983] platform. Language
boxes are implemented on top of the Helvetia framework presented in Chapter 3.
Helvetia provides the necessary hooks for Language Boxes that would otherwise
need to be established separately:

Modular compiler. The internals of the compiler must be accessible so that a custom
parser and an additional transformation phase can be introduced.

Extensible tools. The development environment and its tools must be extensible
and have full access to structural and behavioral reflection.

Furthermore Language Boxes depend on the following host language features:

Structural reflection. The system must provide the capability to query packages,
classes, and methods to determine when and where to apply Language Boxes.

Behavioral reflection. The AST must be a first class abstraction that can be queried,
extended with new node types, built and transformed during compilation.

Our implementation of Language Boxes is lightweight because we reused as much
functionality from the host environment as possible and we reuse all the hooks of
the Helvetia system. Our approach is entirely implemented in Smalltalk. We do
not change the underlying virtual machine. The implementation presented in this
chapter consists of 640 lines of Smalltalk code, of which 410 lines consist of a reim-
plementation of the traditional Smalltalk parser as an executable grammar.

To facilitate transformations on the host language grammar we replaced the stan-
dard LALR parser with a dynamic grammar, a first-class representation of the parser
that we can transform and recompose easily. We combine four different parser
methodologies: scannerless parsers [Visser, 1997], parser combinators [Hutton and
Meijer, 1996], parsing expression grammars [Ford, 2004] and packrat parsers [Ford,
2002]. We provide further details on the specification and implementation of gram-
mars in Chapter 6.

Before a method is compiled, a custom parser for that particular compilation context
is composed as depicted in Figure 5.3. This new parser is built by starting from the
standard grammar of the host language and by applying the change objects of the
active Language Boxes in the defined order.

Figure 5.4 depicts a fragment of the original Smalltalk grammar and the regular ex-
pression language extension that we introduced in Section 5.1. The composition al-
gorithm takes the original grammar of the host language aGrammar and the grammar

66

5.3 Implementation

..

1) Literal:

.

String

.

Number

.

Array

.

2) Regex:

.

'/'

.

[ˆ/]

.

'/'

.

3) Literal’:

.

Literal

.

Regex

Figure 5.3: The grammar composition visualized: (1) The slightly simplified produc-
tion for literal values in Smalltalk, (2) the grammar fragment for regular expressions
in the language box, and (3) the new production for literal values when the language
box is active.

of the language extension fragment and composes them using the following algo-
rithm. For conciseness we present the complete algorithm as a single method with
nested conditional statements instead of the original implementation, which makes
use of the strategy design pattern.

1 LanguageChange>>modify: aGrammar with: aLanguageBox

2 | wrapped replacement |

3 wrapped := fragment ==> [:nodes | " Figure 5.4(a) "

4 aLanguageBox

5 perform: aGrammar concern

6 with: (self transform: nodes)].

7 replacement := action = 'replace' " Figure 5.4(b) "

8 ifTrue: [wrapped]

9 ifFalse: [

10 action = 'before'

11 ifTrue: [composition with: wrapped with: production]

12 ifFalse: [

13 action = 'after'

67

Chapter 5 Combining Language Extensions

..

Traditional Smalltalk Grammar

.

...

.

...

.

production: Choice

.

string

.

number

.

array

.

...

.

...

.

...

.

x

.

x

.

Regular Expression Language Box

.

fragment: Sequence

.

/

.

:Star

.

/

.

:Not

.

/

.
replacement: Choice

.

(b)

.
wrapped: Action

.

(a)

.

(a)

.
(b)

.

(b)

.

(c)

.

(c)

Figure 5.4: Traditional Smalltalk (left) and the regular expression extension (right)
are combined in three steps to a single grammar: (a) the grammar fragment is
wrapped with the action, (b) the wrapped fragment is combined with the existing
grammar, and (c) all references to the original production are replaced with the com-
bined one.

14 ifTrue: [composition with: production with: wrapped]

15 ifFalse: [self error: 'Invalid composition.']]].

16 aGrammar replace: production with: replacement " Figure 5.4(c) "

The composition algorithm modify:with: is implemented in the language change ob-
ject. As input parameter the method takes the original language grammar aGrammar

and the language box aLanguageBox responsible for this change. The actual transfor-
mation is a three step process:

1. Lines 3–6 fetch the grammar fragment and wrap it with the concern of the
language box. This is achieved with the ==> operator which adds an action
to a production. In our example the fragment is the new parser '/' , '/' not

star , '/'. The concern depends on what the grammar is used for. If the
grammar is used for compilation, the compile concern compile: is called; if
the grammar is used for syntax highlighting, the highlight concern highlight:

is called, etc. This does not change the structure of the resulting language
grammar, but allows the production actions to produce different results for
the different concerns. While the compilation concern requires a complete and
valid AST the highlighting concern produces a stream of tokens with source
position and color information.

68

5.4 Case Study

2. Depending on the action and the selected composition a new grammar frag-
ment is built (Figure 5.4(b)):

a) The replace action (line 8) replaces the selected grammar production with
the wrapped fragment.

b) The before action (line 11) composes the wrapped fragment with the old
production using either choice or sequence as composition operator.

c) The after action (line 14) composes the old production with the wrapped
fragment using either choice or sequence as composition operator.

In our example the replacement production is defined as a choice that is added
after the original literal production, i.e., replacement ::= production / wrapped

where production is the grammar fragment for literals in the original Smalltalk
grammar.

3. Last on line 16 (Figure 5.4(c)) the grammar is told to replace all references to
the original production with the replacement. This is done by traversing the
complete grammar and replacing all the references to the old production with
the new one. In our example all references to original literal production are
replaced with the newly composed grammar fragment. This step ensures that
the new grammar can parse regular expressions everywhere the host syntax
would expect a literal.

In Smalltalk, the unit of editing and compilation is the method. This facilitates our
language box model and enables a straightforward integration with the editor and
other tools. The small and well-defined unit of editing eases the way for Language
Boxes, however it is not a strict requirement. Depending on the granularity of the
language scopes to be supported, grammar changes could be applied at the level of
packages, files, classes or methods. The scoping of Language Boxes depends on the
reflective capabilities of the host system [Foote and Johnson, 1989].

5.4 Case Study

To demonstrate the applicability of Language Boxes in practice, we present and dis-
cuss a more elaborate language extension. The goal is to embed a subset of the
Structured Query Language (SQL) in the host language. Furthermore SQL should be
extended so that values within the query can be safely replaced with expressions
from the host language.

The following method shows a typical example of an embedded SQL query:

69

Chapter 5 Combining Language Extensions

SQLQueries>>findUser: aString

| query rows |

query := 'SELECT * FROM users WHERE username = "' ,

aString asEscapedSql , '"'.

rows := SQLSession execute: query.

^ rows first

The query is concatenated from a series of strings and the input parameter aString.
The composition of SQL from strings is not only error prone and cumbersome, but
also introduces possible security exploits. The developer has to pay attention to
correctly escape all input, otherwise an attacker might be able to manipulate the
original SQL statement.

The following method shows the improved version using a language box for SQL
statements:
SQLQueries>>findUser: aString

| rows |

rows := SELECT * FROM users

WHERE username = @(aString).

^ rows first

SQL statements can be used anywhere in the host language where an expression is
expected. The syntax of the SQL expression is automatically verified when compil-
ing the code, assembled and executed, and the result is passed back into the host
language as a collection of row objects. SQL itself is extended with a special con-
struct @(...) to embed host language values into the query.

5.4.1 Adding an SQL Language Extension

Since SQL is a language on its own and considerably more complex than the regular
expression language we saw before, we use an external class to define its grammar.
To do this, we took advantage of the same infrastructure that we used to define a
mutable model of the host language grammar. We implemented the syntax specifi-
cation described for SQLite1 which is almost identical to SQL92, but leaves out some
of the more obscure features.

To combine the host language and SQL, we create a new language box called
SQLanguageBox. Again we specify a change method that describes how the new lan-
guage is integrated into the host language:

1 http://www.sqlite.org/syntaxdiagrams.html

70

http://www.sqlite.org/syntaxdiagrams.html

5.4 Case Study

1 SQLanguageBox>>change: aSmalltalkGrammar

2 | sqliteGrammar compositeChange |

3 sqliteGrammar := SQLiteGrammar new.

4 compositeChange :=

5 (LanguageChange new

6 before: aSmalltalkGrammar expression;

7 choice: sqliteGrammar)

8 + (LanguageChange new

9 before: sqliteGrammar literalValue;

10 choice: '@(' , aSmalltalkGrammar expression , ')').

11 ^ compositeChange

On line 3 we instantiate the SQL grammar defined in the class SQLiteGrammar. In this
example a single grammar transformation is not enough. On lines 5–7 we extend
the production for host language expressions with SQL as an additional choice that
is added before the original expression production. On lines 8–10 we extend the
production for SQL literal values with a new syntax that lets Smalltalk expressions
be part of SQL. The two changes are composed using the + operator and returned
on line 11.

Note that the first change object introduces ambiguity into the host language gram-
mar. Intentionally we decide that the SQL grammar should take precedence over the
Smalltalk expression production and insert the SQL grammar before the expression
production of the host language. SELECT * FROM users is both a syntactically valid
SQL statement and a syntactically valid Smalltalk expression2. Since we added the
SQL grammar to the beginning of the original host language production any ex-
pression is first tried with the SQL grammar. If this does not work, the original
production of the host language expression will take over.

The problem that an SQL expression can potentially hide valid Smalltalk code re-
mains open. The current implementation gives the responsibility to detect and avoid
such problems to the language developer. Language boxes provide the tools to
tightly control the scope of language changes, as discussed in Section 5.2.3. Further-
more, conflicting language changes can always be surrounded by special tokens to
make the intention absolutely clear. This can be seen in the example above on line 10
where Smalltalk expressions in SQL are surrounded by @(...). If possible we try to
avoid such extra tokens as they clutter the close integration of the new language.
When integrating SQL into Smalltalk this is less of a problem, as SQL is a very strict
language with a rigid and very verbose syntax. A test run based on a large collection

2 In Smalltalk, this would send the message users to the variable FROM, and then multiply the result with
the variable SELECT.

71

Chapter 5 Combining Language Extensions

of open-source Smalltalk code with a total of over 1 200 000 expression statements
revealed that none of them parsed as valid SQL.

Similar to the regular expression example we define a compilation concern that tells
the language box how to compile the new expression to the host language. In this
example we do not receive a single token, but the complete AST as it is produced
by the SQL grammar.

1 SQLanguageBox>>compile: anSQLNode

2 | nodes query |

3 nodes := anSQLNode allLeaves collect: [:token |

4 token isToken

5 ifTrue: [token string lift: token]

6 ifFalse: [``(`,token asEscapedSql)]].

7 query := nodes fold: [:a :b | ``(`,a , ' ' , `,b)].

8 ^ ``(SQLSession execute: `,query)

The compilation concern flattens all the leaf nodes of the SQL AST (line 3) and trans-
forms the input to host language AST nodes (lines 4–6). Tokens of the SQL AST
are transformed to literal nodes in the host language (line 5). If the node comes
from embedded Smalltalk code, we automatically wrap the expression with a call
to asEscapedSql to ensure it is properly escaped (line 6). Finally we concatenate all
the nodes to a single query expression (line 7), which is then sent to the current SQL
session manager (line 8). Again, we use the quasiquoting facilities provided by Hel-
vetia to generate and compose code fragments of the host language, see Section 4.1
for details.

5.4.2 Restricting the Scope of a Language Extension

As we noted in our introductory example, by default a language box is active in
the complete system. In many cases this is not desired, especially when a language
change is more intrusive. We provide two different ways of modeling the scope of
a language extension. While the first one is aimed at language designers, the sec-
ond one targets language users who want to select and activate available language
extensions while working in their code.

The language designer can specify a scope for a language by overriding the scope

method in the language box. The default implementation of the method returns
a system scope, but frameworks might want to reduce the scope to certain class
hierarchies, packages, classes or methods. This feature makes use of the reflective
facilities of the host language to determine if a given language box is active in a
specific compilation context.

72

5.4 Case Study

The language user can further change the scope of a language box through the code
editor. As an extension we added menu commands that allow developers to add
and remove language extensions from code entities like packages, classes and meth-
ods. This is useful for language extensions that make sense in different smaller
scopes which cannot be foreseen by the language designer. Furthermore we ex-
tended the code editor with functionality to display the active extensions, so that
the developer knows what he is expected to write. Also distinct syntax highlighting
(i.e., different background colors) in the language definition can help developers to
know in which context they are currently working.

5.4.3 Mixing Different Language Extensions

The SQL language extension blends nicely with the host language, as well as the reg-
ular expression language extension we presented previously. For example we can
use both language extensions at the same time, together with the host language:

rows := SELECT * FROM users

WHERE username = @(aString ~= /\s*(\w+)\s*/)

This example transparently expands to the following (more verbose) code:

rows := SQLSession execute: 'SELECT * FROM users WHERE username = ' ,

(aString ~= (Regexp on: '\s*(\w+)\s*')) asEscapedSql

The compiler automatically ensures that the SQL statement is syntactically valid,
that all values injected into the statement are properly escaped and that the query
is automatically executed within the current session.

5.4.4 Tool Integration

Adding syntax highlighting to the SQL expressions is straightforward. Contrary to
the regular expression that was highlighted using a single color, the SQL extension
is more complex and we have to deal with many different kinds of keywords, op-
erators and expression types. To avoid having to specify the highlighting for every
production within the language box itself, we allow language developers to specify
an external class that specifies the concern-specific production actions. In the case
of syntax highlighting these actions return the color and font information.

SQLanguageBox>>highlight

^ SQLiteHighlighter

73

Chapter 5 Combining Language Extensions

Adding a context menu item that links to the SQL documentation is a matter of
adding the method:
SQLanguageBox>>menu: aMenu using: anSQLNode

^ aMenu

addMenuItem: 'SQLite Documentation'

action: [WebBrowser open: anSQLNode documentationUrl]

Clicking on the menu item opens a web browser on the URL returned by the AST
node under the cursor. The method documentationUrl is implemented to dispatch to
the parent node, if no documentation is available at the most specific AST node.

Figure 5.5 depicts a standard Smalltalk code browser and a debugger on the pre-
sented example. The upper parts of both windows show the navigation context,
which in the code browser is the currently edited package, class and method; in the
debugger this is the execution stack. In both cases the lower part shows the source
code of the method properly highlighted.

The transformations as defined by the compilation concern are not visible to end-
users that work at the level of source-code. The transformations are only visible
at the level of the compiled bytecode. All tools, including the debugger, display
the original source code only. Stepping through custom languages in the debug-
ger works similarly to traditional Smalltalk. Since all our transformations are on
the level of the standard AST nodes and tokens, their original location in the source
code can be traced back. The use of the AST to highlight the current execution po-
sition is a standard feature of the debugger. Generated nodes that do not have a
physical position in the source code are skipped over when stepping through with
the debugger.

Another example of how tightly Language Boxes integrate into the host language
are breakpoints. In traditional Smalltalk breakpoints are implemented by invoking
the method halt at the desired position in the source code. This method is imple-
mented by the system. It stops the execution of the active process and opens a de-
bugger at the current execution point. Since breakpoints are implemented at the
level of AST nodes, they continue to work even within language extensions. Upon
execution of a halt instruction the debugger opens up and automatically highlights
the currently active code statement.

5.5 Conclusion

In this chapter we have presented Language Boxes, a novel model to change syntax
and semantics of the host language. We have presented the concepts, an imple-

74

5.5 Conclusion

(a) Code Browser

(b) Debugger

Figure 5.5: Development tools on a method that combines two Language Boxes and
the host language.

75

Chapter 5 Combining Language Extensions

mentation and two examples of Language Boxes. We have demonstrated how Lan-
guage Boxes encapsulate language extensions and enable mixing different language
changes. Finally, we have pointed out how existing tools are closely integrated with
new language features.

The solution proposed in this chapter has the following properties:

Model. The language box model encapsulates changes to the grammar of the host
language and defines different concerns that specify the behavior of the lan-
guage extension in the tools. The scope defines the context in the source code
where the language extension is active.

Modular. Language boxes are modular. Language extensions can be independently
developed and deployed. The use of parser combinators makes it possible
to combine grammars and even to support ambiguous ones in a meaningful
way.

Concerns. Tools can be extended with language specific concerns. Language ex-
tensions can be developed incrementally. While the compilation concern is
usually defined first, editor integration can be provided later.

Homogeneous Language Integration. Language boxes use the abstract code repre-
sentation of the host language, different languages can be arbitrarily com-
posed, access the same data and pass control to each other.

Homogeneous Tool Integration. The IDE, and especially the debugging tools, con-
tinue to work and actively support the language extensions. Stepping
through a mixture of code from different languages poses no problem either.
Changing and recompiling the source code on the fly from within the debug-
ger is viable, this being an inherited feature from the host language.

Language boxes provide a model to extend the host language and as such are well
suited to define embedded DSLs [Hudak, 1996]. Language boxes are implemented
in the host language and are thus an internal domain-specific language themselves.
This makes our approach adaptable to new requirements, as well as enabling a close
integration with the host language.

The language box compiler is twice as slow as the modified Helvetia compiler, be-
cause a custom parser has to be composed for every compilation context. The pars-
ing itself is not noticeably slower than with the LALR parser and there is no visible
lag even for syntax highlighting, as methods tend to be short and memoizing pack-
rat parsers guarantee linear time. To improve the speed of batch compilation — for
example when loading an external package — we plan to add grammar caches in a
further release.

76

5.5 Conclusion

Different Language Boxes can potentially influence or conflict with each other and
the host language. We could rarely observe this problem in practice though, since
most language changes are clearly scoped and often affect different parts of the orig-
inal grammar. Two Language Boxes that add new literal types could result in a po-
tentially ambiguous grammar where one language extension hides another one. In
this case, the language extension that was loaded last will take precedence over the
language extension loaded earlier. This could introduce unexpected side-effect into
the code of the user. In Section 6.2.3 we present a way of detecting and notifying
the user about such problems.

77

Chapter 6

Dynamic Grammars

“Within a computer natural language
is unnatural.”

— Alan Perlis

Grammars for programming languages are traditionally specified statically. They
are hard to compose and reuse due to ambiguities that inevitably arise. In this chap-
ter we present the PetitParser framework that combines ideas from scannerless pars-
ing, parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically. Being able
to cheaply transform and recompose grammars is a requirement for Language Boxes
as presented in Chapter 5.

It is common practice to define formal grammars using a dedicated specification lan-
guage which is then transformed into executable form by code generation. Typically
these transformation algorithms validate that the grammar is a subset of Context Free
Grammars (CFGs), such as LL(k), LR(k), or LALR(k). Then the algorithm optimizes
and transforms the grammar into a parser. While this process can give parse-time
guarantees and ensure that the parse is unambiguous, the resulting parsers are in-
herently static. The grammar is hard-coded and cannot be easily changed (at run-
time) nor can it be easily composed with other grammars. Numerous researchers
have tried to address these issues in the past [Schwerdfeger and Wyk, 2010; Braven-
boer and Visser, 2009]. Earley and SGLR(k) parsers are composable [Earley, 1970;
Bravenboer, 1997; Visser, 1997], however the parse results are usually ambiguous
and the grammar definition is static and cannot be changed after compilation.

Language Boxes require a grammar model that is capable of parsing arbitrary pro-
gramming languages. Furthermore, Language Boxes need to reflect on the language
grammars and have the possibility to cheaply transform and recompose different

79

Chapter 6 Dynamic Grammars

grammars without any limitations on composability and ambiguity resolution. Our
solution takes four existing parser methodologies and combines the best properties
of each:

• Scannerless Parsers [Visser, 1997] combine lexical and context-free syntax into
one grammar. This avoids the common problem of overlapping token sets
when grammars are composed.

• Parser Combinators [Hutton, 1992; Hutton and Meijer, 1996] are building blocks
for parsers modeled as a graph of composable objects; they are modular and
maintainable, and can be changed, recomposed and reflected upon.

• Parsing Expression Grammars (PEGs) [Ford, 2004] provide ordered choice. Un-
like CFGs, the ordered choice of PEGs always follows the first matching alter-
native and ignores other alternatives. PEGs are closed under union, intersec-
tion and complement, and they can recognize non-context free languages.

• Packrat Parsers [Ford, 2002] give linear parse time guarantees and avoid prob-
lems with left-recursion in PEGs through memoization [Warth et al., 2008].
For efficiency reasons we do not memoize each rule, but only selected ones
[Becket and Somogyi, 2008].

The remainder of this chapter is structured as follows: Section 6.1 introduces the
PetitParser framework, a grammar infrastructure that makes it easy to dynamically
reuse, compose, transform and extend grammars. Section 6.2 discusses important
aspects of a dynamic approach, such as composition, correctness, tool support, and
performance. Section 6.3 presents an overview of the related work, and Section 6.4
concludes this chapter.

6.1 PetitParser

Grammars in PetitParser are specified by composing primitive parser objects using
a series of overloaded operators forming an internal domain-specific language. Ta-
ble 6.1 displays a comparison of the traditional PEG operators and their adaptation
in primitive PetitParser objects.

Furthermore, we provide a series of other primitive parser objects that can be used
to attach semantic actions to grammars and some convenience methods that help
efficient whitespace consumption and token creation. These actions are listed in
Table 6.2.

For example, the grammar of identifiers is implemented as follows:

80

6.1 PetitParser

PEG Operator PetitParser Description

'a' $a asParser Literal character
"ab" 'ab' asParser Literal string
[a-z] $a - $z Character class

#letter asParser Named character class
(e) (e) Grouping
e? e optional Optional
e* e star Zero-or-more
e+ e plus One-or-more
&e e and And-predicate
!e e not Not-predicate
e1 e2 e1 , e2 Sequence
e1 / e2 e1 / e2 Ordered choice

Table 6.1: The primitive PEG operators and their counterpart in PetitParser.

PetitParser Description

e ==> aBlock Attach semantic action aBlock to e

e trim Consume whitespace around e

e token Create token of e
e end Expect end of input after e

Table 6.2: Additional convenience constructors in PetitParser.

identifier := #letter asParser , (#letter asParser / #digit asParser) star.

The expressions #letter asParser and #digit asParser return parsers that accept a
single character of the respective character class; the ‘,’ operator combines two
parsers to a sequence; the ‘/’ operator combines two parsers to an ordered choice;
and the ‘star’ operator accepts zero or more instances of another parser. As a re-
sult we end up with a graph of connected parser objects that can be used to parse
input:

identifier parse: 'id12'. "consumes input and returns a default AST"

identifier parse: '123'. "returns parse failure: letter expected at 1"

At all times the graph of parser objects remains accessible and mutable. An existing
composite parser object can be further used to build more complex languages. We
are able to recompose, transform and change an existing grammar, as we shall see
in upcoming examples.

81

Chapter 6 Dynamic Grammars

6.2 PetitParser in Practice

In this section we use the Smalltalk grammar as the running example. It is the same
grammar used in the Language Box implementation presented in Chapter 5. The
grammar consists of 242 primitive parser objects that are grouped into 78 produc-
tions. One of these productions is the identifier rule we have seen in the previous
section. The parser produces a standard Smalltalk AST and passes all 296 unit tests
of the original hand-written parser.

6.2.1 Grammar Specialization

Although complex grammars can be defined using a script, we provide a convenient
way to define grammars as part of a class. Each production is implemented using
an instance variable and a method returning the grammar of the rule. Productions
within the grammar are referred to by accessing the instance variable. This allows
us to resolve mutually recursive productions by initializing all slots with a forward
reference that is resolved by subsequently calling the production methods [Bracha,
2007].

Furthermore, defining grammars in classes enables developers to take advantage of
the existing development tools. Additionally, we gain the ability to extend gram-
mars by subclassing. For example, the Smalltalk grammar is split into various
classes inheriting from SmalltalkGrammar, which defines the language grammar only.
The subclass SmalltalkParser adds production actions to build the abstract syntax-
tree (AST):

SmalltalkGrammar>>variable

^ identifier

SmalltalkParser>>variable

^ super identifier ==> [:token | VariableNode token: token]

Subclassing gives us the possibility to reuse the same grammar with different tools,
such as compiler, editor (syntax highlighting, code completion) and debugger (code
evaluation).

6.2.2 Grammar Composition

PetitParser is built around composition: simple parsers are combined into more
complex ones. Grammars can arbitrarily be reused and composed. For example

82

6.2 PetitParser in Practice

to reuse the grammar for a Smalltalk method declaration, we can ask for its pro-
duction, which is a working parser by itself. Furthermore we can then combine this
production with the grammar of another language, such as SQL:

SmalltalkGrammar new methodDeclaration , SqlGrammar new.

As presented in Chapter 5, Language Boxes implement an adaptive language model
for fine-grained language changes and language composition. The Language Box
implementation is built on top of PetitParser and performs a dynamic grammar
composition of the host language and the language extensions active in the given
compilation context.

Composing grammars is difficult using traditional table based grammars, as the ta-
bles need to be merged while resolving possible conflicts. Dynamically recompiling
table based grammars is often not viable due to space and time concerns.

6.2.3 Grammar Conflicts

The downside to being able to arbitrarily compose grammars is that this might lead
to subtle problems. In the following example we reuse the language extension from
Section 5.1 that makes it possible to put SQL expressions anywhere in Smalltalk
code. The problem in this example is that the embedded SQL expression could also
be parsed as a valid Smalltalk expression1:

Person>>load

^ SELECT * FROM "Person"

While the parse is always unambiguous (because of the ordered choice), the result of
the above expression depends on the order in which the two languages have been
composed. In the previous chapter we argued that this specific language embed-
ding is relatively safe, since SQL is a restrictive language that cannot parse typical
Smalltalk expressions. While this works well in practice for this particular example,
it might not be feasible for other examples. Emerging problems might stay unno-
ticed and cause programmatically composed grammars to behave in unexpected
ways.

To avoid this problem we introduced an unordered choice at the merge points. This
enforces that exactly one of the two grammar fragments parses. Interestingly, the
unordered choice ‘|’ is trivial to implement using the semantic negation predicate
‘!’ of PEG parsers:

1 In Smalltalk the expression would represent the multiplication of the variables SELECT and FROM, and "

Person" would be a comment.

83

Chapter 6 Dynamic Grammars

Parser>>| aParser

"Answer a new parser that either parses the receiver or aParser, fail if both

pass (exclusive or)."

^ (self not , aParser) / (aParser not , self)

The resulting parser enforces that exactly one of the two choices parses. Contrary
to the unordered choice in CFGs our implementation does not work statically at
compile-time, but dynamically at parse-time. Note that the unordered choice should
not be used as the default choice operator as its use leads to exponential parse times:
both choices are followed on each parse.

On top of the unordered choice we can define other operators, such as a
dynamicChoice:. This operator lets the user disambiguate and potentially change the
grammar on-the-fly:

Parser>>dynamicChoice: aParser

^ self | aParser / [:stream |

| resolution |

resolution := UIManager default

chooseFrom: { self name. aParser name }

values: { self. aParser }

title: 'Resolve ambiguity at ' , stream position asString.

resolution parseOn: stream] asParser

With these extensions, the difference between CFGs and PetitParser is similar to the
difference between statically and dynamically typed languages. In both PetitParser
and dynamically typed languages, static errors (such as grammar ambiguities or
type errors) are detected at runtime only, at the gain of additional flexibility at run-
time [Meijer and Drayton, 2004]. This flexibility is needed to support Language
Boxes where different grammars need to be composed that might not have been
designed to work together.

6.2.4 Grammar Transformations

The ability to transform grammars is powerful and goes beyond static extensibil-
ity by single inheritance: transformations can be applied on-demand and multiple
transformations can be chained.

To highlight code, we can instantiate the basic grammar definition and wrap all
parsers that create a token with an action block that highlights the character range

84

6.2 PetitParser in Practice

in the editor. The backtracking occurring during the parse is not a problem, because
the method highlight:range: overrides the style if set previously. In any case the
highlighting purely happens as a side-effect of the parsing.
grammar := SmalltalkGrammar new.

highlighter := grammar transform: [:parser |

parser class = TokenParser

ifTrue: [parser ==> [:token |

anEditor highlight: token style range: token interval]]

ifFalse: [parser]].

The transform: method walks over the complete grammar, replacing each matching
parser with the result of evaluating the transformation block. Here, token parsers
are transformed to perform the highlighting action.

A problem with this solution is that highlighting only works for valid source code,
and stops after the first syntax error. With another transformation we can make the
grammar “fuzzy” and try to skip to the next statement separator in case an error
arises while parsing expressions:
fuzzyHighlighter := highlighter transform: [:parser |

parser name = #expression

ifTrue: [parser / [:stream | stream upTo: $.] asParser]

ifFalse: [parser]].

In a similar manner other kinds of common errors can be skipped, and the user can
be warned while writing the code.

PetitParser also provides a query interface to reflect on parsers:

• aParser allParsers returns a collection of all parsers in the grammar;

• aParser allTerminals returns a collection of all terminal parsers in the gram-
mar;

• aParser firstSet returns the terminal parsers that consume input first in
aParser;

• aParser followSet returns the parsers that follow aParser; and

• aParser cycleSet returns a set of all parsers that are within one or more cycles
of left-recursion.

We can combine the transformation techniques and the reflective facilities to dynam-
ically generate a grammar to answer other questions, such as what could possibly
follow at a specific point in a source file:

85

Chapter 6 Dynamic Grammars

PPParser>>whatFollows: aString at: anInteger

| stream |

stream := aString asPetitStream.

(self transform: [:parser |

parser ==> [:node |

stream position < anInteger

ifTrue: [node]

ifFalse: [^ parser followSet]]])

parseOn: stream.

^ #()

6.2.5 Declarative Grammar Rewriting

Grammars can furthermore be searched and transformed using a declarative graph
transformation engine. We have used this tool to optimize grammars. The following
example illustrates the implementation of such an optimization rule: it removes
duplicated parsers within an ordered choice:

1 duplicatedParser := PPPattern any.

2 beforeList := PPListPattern any.

3 betweenList := PPListPattern any.

4 afterList := PPListPattern any.

5

6 rewriter := Rewriter new.

7 rewriter

8 replace: beforeList / duplicatedParser / betweenList / duplicatedParser /

afterList

9 with: beforeList / duplicatedParser / betweenList / afterList.

10 rewriter execute: grammar

Lines 1–4 instantiate four parser patterns: duplicatedParser matches any primitive
parser object; and beforeList, betweenList, and afterList match any (possibly empty)
list of parsers. On line 6 the grammar rewriter is instantiated and on lines 7–9 the
replacement is defined. The transformation of the grammar is started on line 10.

The rewriter traverses over the complete grammar trying to match the pattern
(line 8). We are using an unification algorithm on the grammar graph that tries to
substitute the patterns in the search expression with actual parsers from the gram-
mar to be transformed. In this example the pattern duplicatedParser appears twice.

86

6.2 PetitParser in Practice

It enforces the same parser to appear twice in the choice. If a match is found, the re-
placement rule is instantiated with the matched parsers and inserted into the gram-
mar.

The declarative grammar rewriting is used internally in the Language Box imple-
mentation to compose and transform the different grammars. While our original
implementation used an imperative approach, the declarative rewriting is simpler
and easier to understand.

Furthermore, we have defined a series of grammar normalizations [Lämmel and
Zaytsev, 2010] and optimizations similar to the ones implemented in Rats! [Grimm,
2006]. We could not measure a notable speed improvement for hand written gram-
mars. However the optimizations do normalize and thus provide a notable per-
formance improvement on grammars that have degraded because of programmatic
composition and transformation operations, such as the ones happening with Lan-
guage Boxes.

6.2.6 Tool Support

Figure 6.1 displays the a grammar workspace which provides a rich set of static and
dynamic tools that directly work on the object model of PetitParser.

Figure 6.1: The PetitParser grammar workspace displaying the currently selected
production.

The static tools consist of all elements that work on the specification of the grammar.
The source tab enables editing of productions; the graph tab displays the graphical
structure of productions; the example tab displays random examples for the selected
production, which is useful to spot errors in the grammar definition; the cycles tab
lists direct cycles that could cause inefficient grammars; and the first and follow tabs

87

Chapter 6 Dynamic Grammars

display the respective set of parsers that consume input first and that follow the
selected production.

.

Figure 6.2: Progress of an example parse with backtracking in choice operator.

The dynamic tools work on the currently selected production and an input to parse:
The parse tab displays and optionally opens an inspector on the resulting AST; the
tally tab displays the absolute and relative activation count of each production; the
profile tab displays absolute and relative time spent in each production; the progress
tab visualizes the progress of the parser through the input — from left-to-right the
input string is depicted (whitespaces in white), from top-to bottom the time (see
Figure 6.2); and the debugger tab gives the possibility to step forwards and back-
wards through the input while highlighting the consumed text and the active pro-
ductions.

6.2.7 Performance

Parser Combinators, PEGs, and even Packrat parsers are often accused of being
slow, due to their dynamic nature. Our experience has shown the contrary: when
the grammar is carefully written PetitParser can compete with a highly optimized
LALR table based parser. Efficient grammars can be achieved with automatic gram-
mar optimization transformations (Section 6.2.5) and the help of the static and dy-
namic tools (Section 6.2.6).

88

6.2 PetitParser in Practice

Parser characters/sec

Hand-Written Parser 553 492
PetitParser 138 053
LALR Parser 122 888

Table 6.3: Average throughput in characters per second parsing the Smalltalk collec-
tion hierarchy on a MacBook Pro 2.8 GHz Intel Core 2 Duo.

In Table 6.3 we list the average throughput of different Smalltalk parsers producing
an identical AST. The hand-written recursive descent parser is a clear winner, being
almost 5 times as fast as the other two parsers.

.....
200

.
400

.
600

.
800

.
1,000

.
1,200

.
1,400

.
1,600

.
1,800

.

5

.

10

.

15

.

20

.

25

.

length n [characters]

.

tim
et

[m
ill

ise
co

nd
s]

.

. ..Hand-Written Parser

. ..PetitParser

. ..LALR Parser

Figure 6.3: Parsing time t in milliseconds of Smalltalk code of increasing input size
n in characters on a MacBook Pro 2.8 GHz Intel Core 2 Duo.

In Figure 6.3 we depict the parsing time of the same parsers with increasing input
size. To generate comparable results we started with an empty method and incre-
mentally added random code statements to the method body. This reveals the linear
parse-time of each benchmarked parser with increasing input size.

We expected the LALR parser to perform better, given the sophisticated optimiza-
tion algorithms implemented in this compiler-compiler. Profiling the parsers reveals
that the LALR parser spends most of its time looking up, decoding and dispatch-
ing values from its tables. PetitParser on the other hand shows a deep nesting of
message sends. This is something a dynamic language like Smalltalk can do very
efficiently.

89

Chapter 6 Dynamic Grammars

6.3 Related Work

OMeta [Warth and Piumarta, 2007] is an object-oriented pattern matcher based on a
variant of PEGs. OMeta uses itself to transform grammar specifications to host lan-
guage code. Rats! [Grimm, 2006] is a packrat parser framework that provides a so-
phisticated infrastructure to transform and to optimize grammars using the visitor
design pattern. Both frameworks support grammar composition, but due to their
code generation make it impossible to change the grammar after compilation.

Various other object-oriented frameworks for parser combinators have been pro-
posed: JParsec, Scala Parser Combinators [Moors et al., 2008], and Newspeak [Bracha,
2007]. All implementations use the host language to build an object model of parser
objects. Extensibility is achieved through subclassing or mixing mechanisms of the
respective host languages. Although we expect that grammar transformations are
possible on these models, we are unaware if this has actually been done in prac-
tice.

Composing and reusing table based parsers is an ongoing research topic [Heering
et al., 1989; Brabranda and Schwartzbach, 2007; Bravenboer and Visser, 2009]. All
approaches have limitations in composability and can be described as difficult at
best. Grammar changes require an expensive recompilation of the new grammar.
Schwerdfeger et al. [Schwerdfeger and Wyk, 2010] propose a solution to efficiently
compose table based grammars at specific extension points.

6.4 Conclusion

In this chapter we motivated the use of dynamic grammars. We have presented sev-
eral examples and some basic performance analysis that demonstrate the usefulness
of having ‘late-bound’ grammars where everything is accessible and changeable at
runtime.

The Language Box infrastructure depends on the ability to dynamically transform
and change grammars. Furthermore, the dynamic grammars do not impose lim-
itations on composability and allow us to resolve possible conflicts at parse-time,
something that is not supported in the related work.

90

Chapter 7

Domain-Specific Program Checking

“A successful [software] tool is one
that was used to do something un-
dreamed of by its author.”

— Stephen C. Johnson

Lint-like program checkers are popular tools that ensure code quality by verifying
compliance with best practices for a particular programming language. The pro-
liferation of internal domain-specific languages and models, however, poses new
challenges for such tools. Traditional program checkers produce many false posi-
tives and fail to accurately check constraints, best practices, common errors, possible
optimizations and portability issues particular to domain-specific languages.

In this chapter we advocate the use of dedicated rules to check domain-specific prac-
tices using the Helvetia toolchain. We demonstrate the implementation of domain-
specific rules, the automatic repair of violations, and their application to two case-
studies: (1) Seaside defines several internal DSLs through a creative use of the syn-
tax of the host language; and (2) Magritte adds meta-descriptions to existing code
by means of special methods. Our empirical validation demonstrates that domain-
specific program checking significantly improves code quality when compared with
general-purpose program checking.

7.1 History of Program Checking

The use of automatic program checkers to statically locate possible bugs and other
problems in source code has a long history. While the first program checkers were

91

Chapter 7 Domain-Specific Program Checking

part of the compiler, later on separate tools were written that performed more so-
phisticated analyses of code to detect possible problem patterns [Johnson, 1978]. The
refactoring book [Fowler, 1999] made code smell detection popular as an indicator
to decide when and what to refactor.

Most modern development environments (IDEs) directly provide lint-like tools as
part of their editors to warn developers about emerging problems in their source
code. These checkers usually highlight offending code snippets on-the-fly and
greatly enhance the quality of the written code. Contrary to a separate tool, IDEs
with integrated program checkers encourage developers to write good code right
from the beginning. Today’s program checkers [Hovemeyer and Pugh, 2004] reli-
ably detect issues like possible bugs, portability issues, violations of coding conven-
tions, duplicated, dead, or suboptimal code, etc.

Many software projects today use domain-specific languages (DSLs) to raise the expres-
siveness of the host language in a particular problem domain. A common approach
is to derive a new pseudo-language from an existing API. This technique is known
as a Fluent Interface, a form of an internal domain-specific language or embedded language
[Fowler, 2010]. Such languages are syntactically compatible with the host language
and use the same compiler and the same runtime infrastructure.

As such, DSLs often make creative use of host language features with atypical use of
its syntax. This confuses traditional program checkers and results in many false pos-
itives. For example, chains of method invocations are normally considered bad prac-
tice as they expose internal implementation details and violate the Law of Demeter
[Lieberherr, 1989]. However in internal DSLs, method chaining is a commonly ap-
plied technique to invoke a sequence of calls on the same object where each call
returns the receiver object for further calls. In other words, the DSL abstracts from
the traditional use of the host language and introduces new idioms that are mean-
ingful in the particular problem domain.

Figure 7.1 depicts the dimensions of program checking: Traditional program check-
ers work at the level of source code, see Figure 7.1(a). Tools like intensional views
[Mens et al., 2006] and reflexion models [Murphy et al., 1995; Koschke and Simon, 2003]
check for structural irregularities and for conformance at an architectural level, see
Figure 7.1(b). Furthermore, tools like PathFinder [Havelund and Pressburger, 2000]
have been used to transform source code into a model and apply model checking
algorithms.

We argue that a new dimension of program checking and a different set of rules are
necessary as developers abstract from their host language. Standard program check-
ing tools are not effective when it comes to detecting problems in domain-specific
code. In this chapter we advocate the use of dedicated program checking rules that

92

7.1 History of Program Checking

..

Ar
ch

ite
ctu

ra
l A

bs
tra

cti
on

.
Language Abstraction

.

..

(b)
Model

Checker

..

(d)
Domain-Specific
Model Checker

..

(a)
Generic (Lint)

Program Checker

..

(c)
Domain-Specific

Program Checker

Figure 7.1: Dimensions of program checking.

know about and check for the specific use-cases of (internal) domain-specific lan-
guages. As with traditional rules this can happen at the level of the source code, see
Figure 7.1(c); or at a higher architectural or modeling level, see Figure 7.1(d).

We will demonstrate two rule-sets which both abstract from the traditional host lan-
guage use and work at different level of architectural abstraction:

1. Seaside is an open-source web application framework written in Smalltalk
[Ducasse et al., 2007]. Seaside defines various internal DSLs to configure ap-
plication settings, nest components, define the flow of pages, and generate
XHTML. As part of our work as Seaside maintainers and as software consul-
tants on various industrial Seaside projects, we developed Slime, a Seaside-
specific program checker consisting of a set of 30 rules working at the level of
the abstract syntax tree (AST). We analyze the impact of these rules on a long
term evolution of Seaside itself and of applications built on top of it.

2. Magritte is a recursive metamodel integrated into the reflective metamodel
of Smalltalk [Renggli et al., 2007]. The metamodel of an application is spec-
ified by implementing annotated methods that are automatically called by
Magritte to build a representative metamodel of the system. This metamodel
is then used to automate various tasks such as editor construction, data vali-
dation, and persistency. The Magritte metamodel is specified in source code

93

Chapter 7 Domain-Specific Program Checking

using an internal DLS and thus is not automatically verified. We have imple-
mented a set of 5 rules that validate a Magritte metamodel against its meta-
metamodel.

Our approach builds on top of the Helvetia engine to cleanly extend the develop-
ment environment with domain-specific program checking facilities. It reuses the
existing toolchain of editor, parser, compiler and debugger by leveraging the AST
of the host environment. While Helvetia is applicable in a much broader context, in
this chapter we focus on the program analysis and transformation part of it.

Detection rules are declaratively specified using AST pattern matching, as intro-
duced in Section 4.1.2. This technical aspect for program checking is not new. How-
ever, our approach builds on that and offers a way to specify declaratively domain-
specific rules with possible automatic transformations.

The chapter is structured as follows: Section 7.2 introduces the different rule-sets we
have implemented. We present the internal domain-specific languages addressed
by our rules, and we discuss how we implemented and integrated the rules. In Sec-
tion 7.3 we report on our experience of applying these rules on various open-source
and commercial systems. Furthermore we present a user survey where we asked
developers to compare domain-specific rules with traditional ones. Section 7.4 dis-
cusses related work and Section 7.5 concludes.

7.2 Examples of Domain-Specific Rules

In this section we demonstrate two sets of rules at different levels of abstraction:
while the first set of rules (Section 7.2.1) works directly on the source code of web
applications, the second set of rules (Section 7.2.2) uses a metamodel and validates
it against the system. While in both cases the source code is normal Smalltalk, we
focus on the domain-specific use of the language in these two contexts.

7.2.1 Syntactic rules for Seaside

The most prominent use of an internal DSL in Seaside is the generation of HTML.
This DSL is built around a stream-like object that understands messages to create
different XHTML tags. Furthermore the tag objects understand messages to add
the HTML attributes to the generated markup. These attributes are specified using
a chain of message sends, known in the Smalltalk jargon as a cascade:

94

7.2 Examples of Domain-Specific Rules

1 html div

2 class: 'large';

3 with: count.

4 html anchor

5 callback: [count := count + 1];

6 with: 'increment'.

The above code creates the following HTML markup:

<div class="large">0</div>

increment

Lines 1–3 are responsible for the generation of the div tag with the CSS class large

and the value of the current count as the contents of the tag. Lines 4–6 generate the
link with the label increment. The src attribute is provided by Seaside. Clicking the
link automatically evaluates the code on line 5 and redisplays the component.

This little language [Deursen and Klint, 1997] for HTML generation is the most promi-
nent use of a DSL in Seaside. It lets developers abstract common HTML patterns into
convenient methods rather than pasting the same sequence of tags into templates
every time.

As developers and users of Seaside, we have observed that while the HTML genera-
tion is simple, there are a few common problems that repeatedly appear in the source
code of contributors. We have collected these problems and categorized them into
4 groups: possible bugs, non-portable code between different Smalltalk platforms,
bad style, and suboptimal code. Spotting such problems early in the development
cycle can significantly improve the code quality, maintainability, and might avoid
hard to detect bugs. We list all the rules and detail on the implementation of one
rule per group.

Possible Bugs. This group of rules detects severe problems that are most certainly
serious bugs in the source code:

• The message with: is not last in the cascade,

• Instantiates new component while generating HTML,

• Manually invokes renderContentOn:,

• Uses the wrong output stream,

• Misses call to super implementation,

95

Chapter 7 Domain-Specific Program Checking

• Calls functionality not available while generating output, and

• Calls functionality not available within a framework callback.

To illustrate such a rule, we take a closer look at “The message with: is not last in
the cascade”. While in most cases it does not matter in which order the attributes of
a HTML tag are specified, Seaside requires the children of a tag to be specified last
using with:. This allows Seaside to directly stream the tags to the socket, without
having to build an intermediate tree of DOM nodes. In the erroneous code below
the order is reversed:

html div

:::::
with:

:::::
count;

class: 'large'.

One might argue that the design of the DSL could avoid this ordering problem in the
first place. However, in the case of Seaside, we reuse the existing syntax of the host
language and we cannot change and add additional validation into the compiler,
otherwise this would not be an internal DSL anymore.

Slime uses the Helvetia rule system (Section 3.1.3) to declaratively specify its rules.
Helvetia collects the rules annotated with <programchecker> and automatically ap-
plies them whenever source code changes. The following code snippet demon-
strates the complete code necessary to implement the rule to check whether with: is
the last message in the cascade:

1 CheckerRuleDatabase>>withHasToBeLastInCascade

2 <programchecker>

3 ^ CheckerRule new

4 label: 'The message with: has to be last in the cascade';

5 search: (ConditionRule new

6 if: [:context | context isHtmlGeneratingMethod]

7 then: (TreeRule new

8 expression: '`html `message with: ``@arguments';

9 condition: [:node |

10 node parent isCascade and: [node isLastMessage not]]));

Line 3 instantiates the rule object, line 4 assigns a label that appears in the user in-
terface and lines 5–10 define the actual search pattern.

The precondition on line 5 asserts statically that the code artifact under test is used
by Seaside to generate HTML. The ConditionRule object lets developers scope rules
to relevant parts of the software using the reflective API of the host language. This

96

7.2 Examples of Domain-Specific Rules

precondition reduces the number of false positives and greatly improves the perfor-
mance of the rule.

Line 6 instantiates a TreeRule that performs a search on the AST for occurrences of
statements that follow the pattern `html `message with: ``@arguments. Patterns are
specified using the Helvetia infrastructure described in Section 4.1.1.

In our example the receiver `html, the message `message: and the arguments ``

@arguments are variable. Furthermore, ``@arguments is an arbitrary expression that
is recursively searched. If a match is found, the AST node is passed into the closure
on lines 8 and 9 to verify that the matched node is not the last one of the cascade.

Slime rules are automatically applied by Helvetia and the matching AST nodes are
collected and visually annotated in the code editors. Interested tools can query for
these matches and reflect on their type and location in the code. The “Code Browser”
depicted in Figure 7.2 highlights occurrences while editing code. Dedicated report-
ing tools can count, group and sort the issues according to severity.

Figure 7.2: Integration of domain-specific rules into the “Code Browser”.

Many of the detected problems can be automatically fixed. Providing an automatic
refactoring for the above rule is a matter of adding a transformation specification:

11 replace: [:node |

12 node cascade

13 remove: node;

14 addLast: node].

97

Chapter 7 Domain-Specific Program Checking

Lines 13 and 14 remove the matched node from the cascade and add it back to the
end of the sequence. After applying the transformation, Helvetia automatically re-
runs the search to ensure that the transformation actually resolves the problem.

Again the tools from the IDE automatically offer the possibility to trigger such an
automatic transformation. For example, when a developer right-clicks on a Slime
issue in the “Code Browser” a confirmation dialog with a preview is presented be-
fore the transformation is applied. Furthermore it is possible to ignore and mark
false positives, so that they do not show up again.

Bad style. These rules detect some less severe problems that might pose maintain-
ability problems in the future but that do not cause immediate bugs. An example of
such a rule is “Extract callback code to separate method”. As shown below, the rule
proposes to extract the code within the callback into a separate method. This ensures
that code related to controller functionality is kept separate from the view.

html anchor

callback: [

:
(
:::
self

:::::::
confirm:

::
'
:::::
Really

::::::::
increment

:::
?')

::::::
ifTrue:

::
[
:::::
count

:
:
:
=
:::::
count

::
+
::
1

:
]];

with: 'increment'.

Other rules in this category include:

• Use of deprecated API, and

• Non-standard object initialization.

The implementation of these rules is similar to the one demonstrated in the previous
section on “possible bugs”.

Suboptimal Code. This set of rules suggests optimizations that can be applied to
code without changing its behavior. The following code triggers the rule “Unnec-
essary block passed to brush”:

html div with:
:
[
::::
html

:::::
text:

:::::
count

::
]

The code could be rewritten as follows, but this triggers the rule “Unnecessary
#with: sent to brush”:

html div
:::::
with:

::::
count

98

7.2 Examples of Domain-Specific Rules

This in turn can be rewritten to the following code which is equivalent to the first
version, but much shorter and more efficient as no block closure is activated:

html div: count

Non-Portable Code. While this set of rules is less important for application code, it
is essential for the Seaside code base itself. The framework runs without modifica-
tion on 7 different platforms (Pharo Smalltalk, Squeak Smalltalk, Cincom Smalltalk,
GemStone Smalltalk, VA Smalltalk, GNU Smalltalk and Dolphin Smalltalk), which
slightly differ in both the syntax and the libraries they support. To avoid that con-
tributors using a specific platform accidentally submit code which only works on
their platform, we have added a number of rules that check for compatibility:

• Invalid object initialization,

• Uses curly brace arrays,

• Uses literal byte arrays,

• Uses method annotations,

• Uses non-portable class,

• Uses non-portable message,

• ANSI booleans,

• ANSI collections,

• ANSI conditionals,

• ANSI convertor,

• ANSI exceptions, and

• ANSI streams.

Code like count asString might not run on all platforms identically, as the conver-
tor method asString is not part of the common protocol. Thus, if the code is run
on a platform that does not implement asString the code might break or produce
unexpected results.

The implementation and the automatic refactoring for this issue is particularly sim-
ple:

99

Chapter 7 Domain-Specific Program Checking

1 CheckerRuleDatabase>>nonPortableMessage

2 <programchecker>

3 ^ CheckerRule new

4 label: 'Uses non-portable message';

5 search: '``@obj asString' replace: '``@obj seasideString';

6 search: '``@obj asInteger' replace: '``@obj seasideInteger'

Again the rule is defined in the class CheckerRuleDatabase. It consists of two matching
patterns (line 5 and 6 respectively) and their associated transformation, so code like
count asString will be transformed to count seasideString.

7.2.2 Magritte — code checking with a metamodel

Constraint checking is not a new domain. Classic approaches rely on constraints
that are specified by the analyst [Mens et al., 2006; Murphy et al., 1995; Koschke
and Simon, 2003] and that are checked against the actual application code. In this
case these rules are external to the execution of the program. Model-driven designs
often rely on a metamodel to add more semantics to the code by providing transfor-
mations that are either statically (via code generation) or dynamically interpreted.
These metamodels come with a set of constraints that can also be used for checking
the program.

Magritte is a metamodel that is used to automate various tasks such as editor build-
ing, data validation and persistency [Renggli et al., 2007]. In this section we detail
its use and the rules that can be derived from the constraints it imposes.

..
Person

.username
birthday

..

Description

.
accessor
label
required
priority

.. *.
description

.

*

.

description

Figure 7.3: The domain object Person with its Magritte meta-description.

On the left side of Figure 7.3 we see a simple domain class called Person with two
attributes. To meta-describe a class with Magritte we need corresponding descrip-
tion instances. These description instances are either defined in the source-code or
dynamically at runtime. The following code shows an example of how we could
describe the attribute username in the class Person:

100

7.2 Examples of Domain-Specific Rules

1 Person class>>usernameDescription

2 <description>

3 ^ StringDescription new

4 accessor: #username;

5 label: 'Username';

6 beRequired;

7 yourself

The method returns an attribute description of the type string (line 3), that can be ac-
cessed through the method #username (line 4), which has the label 'Username' (line 5),
and is a required property (line 6). The annotation (line 2) lets Magritte know that
calling the method returns a description of the receiver. Several such description
methods build the metamodel of the Person class as visualized with the association
from Person to Description in Figure 7.3.

Descriptions are interpreted by different services, such as form builders or persis-
tency mappers. For example, a simple renderer that prints the label and the current
values would look like this:

1 aPerson description do: [:desc |

2 aStream

3 nextPutAll: (desc label);

4 nextPutAll: ': ';

5 nextPutAll: (desc toString: (desc accessor readFrom: aPerson));

6 cr]

First, given an aPerson instance, we ask it for its description and we iterate over its
individual attribute descriptions (line 1). Within the loop, we print the label (line 3),
we ask the accessor of the description to return the associated attributes from aPerson

and we transform this value to a string (line 5), so that it can be appended to the
output.

In the remainder of this section we present how we check the proper use of Magritte
using Magritte itself. We have defined five rules which check for conformance of the
source code with the Magritte metamodel.

The first two rules are defined and implemented externally to the Magritte engine:

1. Description Naming. The definitions of the attribute descriptions should relate to
the accessor they describe. In our example the accessor is username and the method

101

Chapter 7 Domain-Specific Program Checking

that defines the description is called usernameDescription. While this is not a strict
requirement, it is considered good style and makes the code easier to read. The
implementation points out places where this practice is neglected.

2. Missing Description. Developers sometimes fail to completely describe their
classes. This rule checks all described classes of the system and compares them with
the metamodel. Instance variables and accessor methods that miss a corresponding
description method are reported.

The remaining three rules completely rely on the constraints already imposed by
the runtime of Magritte:

3. Description Priorities. In Magritte attribute descriptions can have priorities. This
is useful to have a deterministic order when elements are displayed in a user inter-
face. This rule verifies that if a description is used to build user-interfaces then it
should have valid priorities assigned to all its attribute descriptions. This rule makes
use of the metamodel as well as the reflective system to detect the places where the
descriptions are used.

4. Accessor Definition. The Magritte metamodel uses accessor objects to specify
how the data in the model can be read and written. This rule iterates over the com-
plete metamodel and checks the accessor object of every description against the code
it is supposed to work on. The implementation of the rule is straight forward as it
merely delegates to the description instance of the class under scrutiny:

MagritteRuleDatabase>>accessorDefinition

<programchecker>

^ CheckerRule new

label: 'Accessor Definition';

onDescription: [:context |

(context accessor canReadFromInstancesOf: context theClass)

and: [context accessor canWriteToInstancesOf: context theClass]]

5. Description Definition. This rule checks if the specified metamodel can be prop-
erly instantiated and, if so, it validates the metamodel against its meta-metamodel.
Magritte allows one to check any model against its metamodel, so we can validate
aPerson against its metamodel:

102

7.3 Case Studies

aPerson description validate: aPerson

Magritte is described in itself as depicted in Figure 7.3. Therefore we can use the
meta-metamodel to validate the metamodel in the same way:

MagritteRuleDatabase>>definitionDefinition

<programchecker>

^ CheckerRule new

label: 'Description Definition';

onDescription: [:context |

context description description

validate: context description]

The above code validates description against the description of itself. In case of
problems they are recorded by the program checker. In fact this rule is the most
powerful of all rules presented here, because it can detect various kinds of different
problems in the metamodel, yet it is extremely simple in the implementation as all
the functionality is already present in Magritte.

We have developed a similar set of rules for FAME [Kuhn and Verwaest, 2008], a
meta-modeling library which is independent of the host language and keeps the
metamodels accessible and adaptable at runtime.

7.3 Case Studies

In this section we present three case studies: In the first two we apply Slime rules
to control the code quality. The first one is Seaside itself (Section 7.3.1). The sec-
ond one is a commercial application based on Seaside (Section 7.3.2). We analyze
several versions of these systems and we compare the results with the number of
issues detected by traditional lint rules. Then we present a survey we ran with Sea-
side developers concerning their experience with using the Seaside program checker
(Section 7.3.3). In the third case study we apply the Magritte rules on a large collec-
tion of open-source code (Section 7.3.4) and demonstrate some common issues that
remained unnoticed in the code.

7.3.1 Seaside

Figure 7.4 depicts the average number of issues over various versions of Seaside.
The blue line shows the number of standard smells per class (Lint), while the orange

103

Chapter 7 Domain-Specific Program Checking

..

1

.

2

.

3

.

4

.

Lint

.

Slime

.
14 000

.

16 000

.

18 000

.
LOC

.

Se
as

id
e 2

.6

.

Se
as

id
e 2

.7

.

Se
as

id
e 2

.8

.

Se
as

id
e 2

.8.
1

.
Se

as
id

e 2
.8.

2
.

Se
as

id
e 2

.8.
3

.

Se
as

id
e 2

.9a
1

.

Se
as

id
e 2

.9a
2

.

Se
as

id
e 2

.9a
3

Figure 7.4: Average number of Lint and Slime issues per class (above) and lines of
code (below) in released Seaside versions.

line shows the number of domain-specific smells per class (Slime). To give a feeling
of how the size of the code base changes in time, we also display the number of lines
of code (LOC) below.

In both cases we observe a improvement in code quality between versions 2.7 and
2.8. At the time major parts of Seaside were refactored or rewritten to increase porta-
bility and extensibility of the code base. No changes are visible for the various 2.8
releases. Code quality as measured by the program checkers and lines of code re-
mained constant over time.

Starting with Seaside 2.9a1 Slime was introduced in the development process. While
the quality as measured by the traditional lint rules remained constant, guiding
development by the Slime rules significantly improved the quality of the domain-
specific code. This particular period shows the value in domain-specific program
checking. While the Seaside code base grew significantly, the number of Slime rules
could be reduced to almost zero.

Feedback we got from early adopters of Seaside 2.9 confirms that the quality of the
code is notably better. Especially the portability between different Smalltalk dialects

104

7.3 Case Studies

has improved. The code typically compiles and passes the tests on all platforms even
though it comes from the shared code repository.

An interesting observation is that even if the Slime smells are reduced and the qual-
ity of the code improves, the standard Lint rules continue to report a rather constant
proportion of problems. This is due to the fact that the generic Lint rules address
the wrong level and produce too many false positives.

We further evaluated the number of false positives of the remaining open issues in
the last analyzed version of Seaside by manually verifying the reported issues: this
is 67% (940 false positives out of 1403 issues reported) in the case of Lint, and 24%
(12 false positives out of 51 issues reported) in the case of Slime. This demonstrates
that applying dedicated rules provides a better report on the quality of the software
than using the generic rules.

Due to the dynamic nature of Smalltalk and its lack of static type information it
seems to be hard to further improve the quality of Slime rules. We do however
see potential in future work to reduce the number of false positives by using static
[Pluquet et al., 2009] and dynamic [Denker et al., 2007b] type analysis.

7.3.2 Cmsbox

The Cmsbox is a commercial web content management system written in Seaside.
Figure 7.5 depicts the development of the system over three years. We are external
to the development. The company gave us access to their code, but we could not
correlate with their internal quality model and bug reports. Still we could deduce
some interesting points: We ran the same set of Lint and Slime tests on every fifth
version committed, for a total of 220 distinct versions analyzed. The number of lines
of code are displayed below, though the absolute numbers have been removed to
anonymize the data.

In the beginning we observe a rapid increase of detected issues. This is during the
initial development phase of the project where a lot of code was added in a rela-
tively short time. Presumably the violation of standard rules was not a concern for
the developers. By contrast the number of Slime issues remained low and showed
only gradual increase by comparison. This is a interesting difference. Since the
Slime rules tackle the development of the web interface which was the key part of
the development effort, the result shows the benefit of using domain-specific code
checking: developers focus more on domain-specific issues than on the general is-
sues that can typically be resolved much more easily.

The abrupt drop of Lint (and to some smaller extent also Slime) issues at point (a)
can be explained by the removal of a big chunk of experimental or prototypical code

105

http://www.cmsbox.com/

Chapter 7 Domain-Specific Program Checking

..
(a)

.
(b)

.

1

.

2

.

3

.

4

.

5

.

Lint

.

Slime

.
LOC

Figure 7.5: Average number of Lint and Slime issues per class (above) and lines of
code (below) in 220 subsequent development versions of the Cmsbox.

no longer in use. Between versions (a) and (b) the code size grew more slowly, and
the code quality remained relatively stable. It is worth noting that the size of the
code base grew gradually, but at the same time the proportion of Slime issues stayed
constant.

During the complete development of the Cmsbox the standard Lint rules were run
as part of the daily builds. This explains why the average number of issues per
class is lower than in the case of Seaside. At point (b) Slime rules were added and
run with every build process. This accounts for the drop of Slime issues. A new
development effort after (b) caused an increasing number of Lint issues. Again it is
interesting to see that the better targeted Slime rules remained stable compared to
the traditional ones.

Contrary to the case study with Seaside, the Slime issues do not disappear com-
pletely. On the one hand this has to do with the fact that the software is not sup-
posed to run on different platforms, thus the rules that check for conformity on that
level were not considered by the development team. On the other hand, as this is
typical in an industrial setup, the developers were not able to spend a significant
amount of time on the issues that were harder to fix and that did not cause immedi-
ate problems.

106

7.3 Case Studies

7.3.3 User Survey

We asked Seaside developers to complete a survey on Lint and Slime usage. 23
experienced Seaside developers independent from us answered our questionnaire.
We asked them first to state their use of program checkers:

1. How often do you use Slime on your Seaside code?
4 daily, 4 weekly, 8 monthly, 7 never

2. How often do you use standard code critics on your Seaside code?
3 daily, 5 weekly, 7 monthly, 8 never

16 developers (70%) are using Slime on a regular basis. We asked these developers
to give their level of agreement or disagreement on the five-point Likert scale to the
following statements:

3. Slime helps me to write better Seaside code:
11 agree, 5 strongly agree

4. Slime is more useful than standard code critics to find problems in Seaside
code:
5 neither agree nor disagree, 8 agree, 3 strongly agree

5. Slime does not produce useful results, it mostly points out code that I do not
consider bad:
3 strongly disagree, 10 disagree, 3 neither agree nor disagree

All developers that use Slime on a regular basis found it useful. 69% of the de-
velopers stated that Slime produces more useful results than the standard program
checkers, the remaining 31% could not see any difference. 81% of the developers
stated that Slime produces relevant results that help them to detect critical prob-
lems in their application.

Our thesis has been confirmed by the two case studies and the user survey: While
the general-purpose Lint rules are definitely useful to be applied to any code base,
they are not effective enough when used on domain-specific code. Using dedicated
rules decreases the number of false positives and gives more relevant information
on how to avoid bugs and improve the source code.

107

Chapter 7 Domain-Specific Program Checking

7.3.4 Magritte

In our third case study we ran the Magritte rules on a large collection of open-source
code. This includes Pier, an application and content management system; Squeak-
Source, a source code management system; Conrad, a conference management sys-
tem; CiteZen, a bibliography toolkit; CouchDB, a database implementation, and a
large number of smaller projects that are publicly available.

In total we analyzed 70 768 lines of code in 12 305 methods belonging to 1 198 classes.
307 of these classes had Magritte meta-descriptions attached, where we found a total
number of 516 Magritte related issues as listed in Table 7.1.

Magritte Rule Issues

Description Naming 37
Description Definition 78
Description Priorities 113
Accessor Definition 120
Missing Description 168

Table 7.1: Number of issues in meta-described open-source code.

The most commonly observed problem are missing descriptions. While this is not nec-
essarily a bug, it shows that some authors did not completely describe their domain
objects. That can either happen intentionally, because they wanted to avoid the use
of Magritte in certain parts of their application, or it can happen unintentionally
when they forgot to update the metamodel as they added new functionality. This
rule is thus helpful when reviewing code, as it identifies code that is not properly
integrated with the meta-framework.

We observed also a significant number of errors in the description definitions.
This happens when the defined metamodel does not validate against the meta-
metamodel, which can be considered a serious bug. For example, we found the
following description with two problems in the Pier Blog plugin:

1 Blog>>descriptionItemCount

2 ^ IntegerDescription new

3 label: 'Item Count';

4 accessor: #itemCount;

5
:::::::
default:

:
0;

6 bePositive;

7 yourself

108

http://www.piercms.com/

7.4 Related Program Checkers

First the description has no label, a required value in the meta-metamodel. The rule
automatically suggests a refactoring (line 3) to add the missing label based on the
name of the accessor. The second problem is the default value 0 (line 5), which does
not satisfy the condition bePositive of the description itself (line 6).

From our positive experience with the Slime rules on the Seaside code-base, we ex-
pect a significant improvement of code quality in the realm of Magritte as these rules
get adopted by the community. It is important to always keep the model and meta-
model in a consistent state, which considerably improves the quality and stability
of the code. With a few simple rules we can detect and fix numerous problems in
the metamodel definition.

7.4 Related Program Checkers

There is a wide variety of tools available to find bugs and check for style issues.
Rutar et al. give a good comparison of five bug finding tools for Java [Rutar et al.,
2004].

PMD is a program checker which includes a large collection of different rule-sets.
Recent releases also included special rules to check for portability with the Android
platform and common Java technologies such as J2EE, JSP, JUnit, etc. As such, PMD
provides some domain-specific rule-sets and encourages developers to create new
ones. In PMD rules are expressed either as XPath queries or using Java code. In
either case, PMD provides a proprietary AST that is problematic to keep in sync
with the latest Java releases. Furthermore reflective information that goes beyond a
single file is not available. This is important when rules require more information
on the context, such as the code defined in sub- and superclasses.

FxCop [Seela et al., 2008] is a code analysis tool for .NET code assemblies that aims at
ensuring best programming practices and design guidelines. While the core engine
of FxCop uses symbolic analysis of class and function definitions only, the Phoenix
engine adds data flow analysis on function bodies. Rules are use the reflective code
model of .NET and tightly integrate with the Visual Studio IDE.

JavaCOP [Andreae et al., 2006] is a pluggable type system for Java. JavaCop im-
plements a declarative, rule-based language that works on the typed AST of the
standard Sun Java compiler. As the rules are performed as part of the compilation
process, JavaCOP can only reflect within the active compilation unit, this being a
limitation of the Java compiler. While the framework is targeted towards customiz-
able type systems, the authors present various examples where JavaCOP is used for

109

Chapter 7 Domain-Specific Program Checking

domain-specific program checking. There is currently no integration with Java IDEs
and no possibility to automatically refactor code.

Other tools such as FindBugs [Hovemeyer and Pugh, 2004] perform their analysis on
bytecode. This has the advantage of being fast, but it requires that the code compile,
and it completely fails to take into account the abstractions of the host language.
Writing new rules is consequently very difficult (the developer needs to know how
language constructs are represented as bytecode), and targeting internal DLSs is
hardly possible.

The Smalltalk Refactoring Browser [Roberts et al., 1997] includes over a hundred lint
rules targeting common bugs and code smells in Smalltalk. While these rules per-
form well on traditional Smalltalk code, there is an increasing number of false posi-
tives when applied to domain-specific code. Helvetia and the domain-specific rules
we presented in this chapter are built on top of the same infrastructure. This pro-
vides us with excellent tools for introspection and intercession of the AST in the
host system, and keeps us from needing to build our own proprietary tools to parse,
query and transform source code. Helvetia adds a high-level rule system to declar-
atively compose the rules, and to scope and integrate them into the existing devel-
opment tools.

High-level abstractions can be recovered from the structural model of the code. In-
tensional Views document structural regularities in source code and check for confor-
mance against various versions of the system [Mens et al., 2006]. Software reflexion
models [Murphy et al., 1995; Koschke and Simon, 2003] extract high-level models
from the source code and compare them with models the developer has specified.
ArchJava [Aldrich et al., 2002] is a language extension to Java that allows develop-
ers to encode architectural constraints directly into the source code. The constraints
are checked at compile-time. Our approach does not use a special code model or
architecture language to define the constraints. Instead our program checkers work
with the standard code representation of the host language and make use of existing
meta-frameworks such as Magritte or FAME. Furthermore, our program checker is
directly integrated with the development tools.

7.5 Conclusion

In this chapter we presented how the Helvetia infrastructure was applied in the
context of program checking:

110

7.5 Conclusion

1. We identified a new dimension of program checking and argued that any li-
brary providing domain-specific abstractions through embedded languages
should implement a set of dedicated domain-specific rules.

2. Our empirical case studies revealed that rules that are targeted at a particular
problem domain perform better and cause fewer false positives than general-
purpose lint rules. While more evidence is needed, these initial case studies
do point out the benefits of using rules dedicated to domain-specific code over
using generic ones.

3. We presented how Helvetia makes adding domain-specific rules straightfor-
ward. It is possible to declaratively specify new Helvetia rules together with
the language extensions and closely integrate them with the host environ-
ment. Furthermore the rules can be scoped to the relevant parts of the sys-
tem, namely to the parts where the embedded language is active. The infras-
tructure of Helvetia helped us to efficiently perform searches and perform
optional transformations of violations on the AST nodes of host system.

We applied the presented techniques to internal languages only. This gave us the
possibility to evaluate our approach with a wide variety of real world users. As a
generalization, we envision to extend this approach to any embedded language that
does not necessarily share the same syntax as the host language. Since Helvetia uses
the AST of the host environment as the common representation of all executable
code, it is always possible to run the rules at that level. Since Helvetia automati-
cally keeps track of the source location it is possible to highlight issues even in other
languages. The challenge will be to express the rules in terms of the embedded lan-
guage. This is not only necessary to be able to offer automatic transformations, but
also more convenient for rule developers as they do not need to work on different
abstraction levels.

111

Chapter 8

Host Language Requirements

“A good programming language is
a conceptual universe for thinking
about programming.”

— Alan Perlis

Integration of multiple languages into each other and into an existing development
environment is a difficult task. As a consequence, developers often end up using
only internal DSLs that strictly rely on the constraints imposed by the host language.
Infrastructures do exist to mix languages, but in many cases they do it at the price
of losing the development tools of the host language. Instead of inventing a com-
pletely new infrastructure, our solution is to integrate new languages deeply into
the existing host environment and reuse the infrastructure offered by it.

In this chapter we present the requirements and the impact of the host language
choice for a system like Helvetia. We evaluate seven general-purpose languages
(C++, C#, Java, Javascript, Lisp, Ruby, and Smalltalk) from the point of view of the
mechanisms they offer for language integration.

The chapter is structured as follows: Section 8.1 summarizes the requirements for
language embedding as we identified them in Section 1.2. Section 8.2 lists the re-
quirements for a host environment to support a language workbench like Helvetia;
and in Section 8.3 we discuss the requirements in the context of each of the proposed
general-purpose languages. Section 8.4 concludes the chapter.

113

Chapter 8 Host Language Requirements

8.1 Requirements for Language Embedding

As a running example in this chapter we use the Extended Backus-Naur Form
[Wirth, 1977], as a simple language extension to an existing host language. The
possibility to use the EBNF directly within the code of the host language improves
the conciseness of a parser definition considerably. An example grammar to parse
numbers might look like this:
digit = "0" | "1" | ... | "9" ;

number = ["-"] digit { digit } ["." digit { digit }] ;

With the increasing demand to combine multiple languages within a single project,
different solutions have been proposed to simplify the process of building and using
polyglot programming environments. While existing solutions have their strengths
at various levels, they do not cover the complete spectrum of integrating these lan-
guages (pidgin, creole and argot languages); and existing solutions usually do not reuse
conventional tools (conventional language and tools).

The EBNF language should coexist with the host and possibly with other languages
(multiple context-dependent languages). This co-habitation should be transparent in
the sense that objects can be passed through code written in multiple languages (ho-
mogeneous code and data abstraction). Furthermore, the environment should provide
development tools — like syntax highlighting and debugging — that can be used
uniformly across different languages (homogeneous tool support).

In Section 1.2 we have identified and described these five requirements for embed-
ding and combining multiple languages into a single host environment:

Pidgin, Creole and Argot Languages. A general approach for language embedding
needs to support different kinds of languages. The example of the EBNF is a
creole language.

Multiple Context-Dependent Languages. Different languages and the host language
should be mixable in arbitrary ways. Language changes should not be lim-
ited to file boundaries, but depend on the location in the source code only.
In the example of the EBNF language extension we would like to define the
grammar close together with the associated production actions that are spec-
ified using the host language syntax.

Homogeneous Tool Support. Language users demand sophisticated tool support for
the languages they are using. For example, they would like to step with a
single debugger through a method that mixes various languages. To debug a
grammar definition, we would like to be able to step both through EBNF and
through the production actions using the debugger of the host environment.

114

8.2 Requirements for a Host Environment

Homogeneous Code and Data Abstraction. It should be possible to pass values from
one language to another without requiring a conversion in-between. In our
running example we would like to directly access and use the grammar and
the resulting AST from within the host language.

Conventional Language and Tools. Most important, a conventional language and
development environment should be leveraged as the host instead of intro-
ducing a new or derived one. This avoids compatibility problems with exist-
ing code and lets developers use their accustomed development tools.

8.2 Requirements for a Host Environment

The most basic approach is to derive a new pseudo-language from an existing API,
an internal DSL. While this approach fulfills all the above requirements, it is often not
powerful enough since the language is constrained by the syntax and the semantics
of the host environment. Instead of using the concise EBNF language constructs we
would need to express grammars using a verbose series of message sends written
in the host language.

Systems with meta-programming facilities like Scheme, Converge and MetaOCaml
avoid this problem by providing compile-time code generation, however they often
lack sophisticated tool support. Similarly, extensible compilers like JastAdd or Xoc
allow language designers to tweak the host language compiler, but usually do not
provide a way to integrate the modified language into the existing tools. None of the
systems offers tight IDE integration, and the transformed code cannot be debugged
at the source level.

Language workbenches like JetBrain MPS or Intentional Software come with a special-
ized IDE for language engineering. They provide a special workflow to define new
languages and they provide tools for language development and application. The
problem with these approaches is that they do not build on top of existing tools and
host languages, but provide their own custom host environment instead.

Helvetia follows a different approach: Our idea is to chose an existing host envi-
ronment and to extend its compiler and programming environment with hook that
allow developers to parameterize the tools for language extensions. While such
an approach is possible in any general-purpose programming language, there are
certain language features that make an implementation more practicable. We have
identified the following six features as the most important ones:

1. A minimal syntax makes a language a good source and target for program
transformation.

115

Chapter 8 Host Language Requirements

2. A language with dynamic semantics gives developers more flexibility at the
level of libraries, without forcing them to immediately resort to the language
implementation.

3. A reflective language makes the structure and behavior of a system observable
and changeable. This is crucial for tools as well as the language extensions
themselves.

4. A homoiconic language is a language where the representation of behavior and
data is the same [Mooers and Deutsch, 1965]. Consequently it is easy to gen-
erate new and change existing behavior.

5. A homogeneous environment is an environment where the tools are written in
the host language itself. Again this makes them viable for change.

6. Being able to change a language and its tools on-the-fly makes the development
process faster and quick language experiments feasible.

8.3 Host Language Shootout

C+
+

C# Ja
va

Ja
va

sc
rip

t

Li
sp

Ru
by

Sm
al

lta
lk

8.3.1 Minimal Syntax # # # # #
8.3.2 Dynamic Semantics # G# #
8.3.3 Reflective Language G# G# G# G# G# G#
8.3.4 Homoiconic Language # # # # #
8.3.5 Homogeneous Environment # # G# G# G# #
8.3.6 On-the-fly Changes # # # G# G# G#

Table 8.1: Comparison of different main-stream programming languages and their
suitability for language engineering. Legend: # no support, G# partial support,
 full support.

In this section we present the case for why Smalltalk has practical benefits over other
programming languages. Table 8.1 provides a summary of the features supported
by the considered programming languages: a filled circle denotes that the language
fully supports the given feature, while a half-filled circle means that the feature is
only partially supported or that it requires additional workarounds to access it. Each
of the features is presented in detail in the following subsections.

116

8.3 Host Language Shootout

8.3.1 Minimal Syntax

The obvious winner in this area are Lisp-like languages. This family of program-
ming languages provides s-expressions (parenthesized lists) as their central lan-
guage construct. This means that source code is written in an extremely uniform
way that is directly related to the abstract syntax tree. As such Lisp is well suited
for macro programming.

As a metric for minimal syntax we count the number of AST nodes used in a typical
compiler of the contending languages. Table 8.2 lists these results retrieved from
various open-source implementations of the respective languages.

Language Implementation AST Nodes

C++ gcc 4.5.0 262
C# DotGNU 0.1 225
Java Open JDK 7 111
Ruby Ruby 1.9.1 109
Javascript V8 2.3.3 41
Smalltalk Pharo Smalltalk 1.0 10
Lisp CLISP 2.49 2

Table 8.2: Number of AST nodes as a measurement of syntactical complexity.

Smalltalk has a minimal syntax1, and Smalltalk compilers rarely have more than ten
different node types to support the full language. Depending on the implementation
details, the following node types are supported:

1. A method node describes the method signature and method body.

2. A pragma node describes method annotations and their arguments.

3. A sequence node describes a sequence of statements and a preceding declara-
tion of temporary variables.

4. A message send node describes a method invocation on a receiver with a given
set of arguments.

5. A cascade node describes a series of message sends to the same receiver.

6. A block node describes a block closure and its arguments.

7. A return node describes a return from a method or block.

8. A variable node describes a temporary, instance or global variable reference.
1 Jokingly it is often remarked that a description of the syntax would fit on a postcard.

117

Chapter 8 Host Language Requirements

9. An assignment node describes a variable assignment.

10. A literal node describes literal values, such as numbers, characters, strings,
symbols or boolean values.

The rest of the language features stem from the Smalltalk library. Contrary to most
other programming languages, control structures are modeled using message sends
and block closures, thus the compiler does not require specific node types to handle
these.

The simplicity of Smalltalk makes it an attractive target for language transformation
both from arbitrary languages to Smalltalk or within the Smalltalk language itself.
In the first case a parser can directly build a Smalltalk AST, in simple cases just
consisting of a series of message sends. Transformations within the language only
need to match a few basic cases to cover the complete language specification.

In the example of the EBNF language we transform the input into a series of mes-
sage sends that construct an object model of the grammar. The example grammar
presented in Section 8.1 is transformed to the AST of the following two Smalltalk
methods:

digit

^ $0 asParser to: $9 asParser

number

^ $- asParser optional , self digit plus , ($. asParser , self digit plus)

optional

8.3.2 Dynamic Semantics

Most popular programming languages provide static built-in types that have fixed
semantics and that cannot be changed. Furthermore, it is often not possible to ex-
tend the existing system or library classes with new code (e.g., Java). C# provides
an extension mechanism through partial classes, however this mechanism does not
allow us to extend existing tools as the partial class and its extensions must reside
in the same compilation unit. In dynamic languages like Ruby and Javascript it is
typically possible to extend existing classes.

Smalltalk is built around objects, polymorphism and dynamic dispatch. This to-
gether with the fact that everything happens by message passing is an advantage
when it comes to changing the semantics. For example, to change the default lower

118

8.3 Host Language Shootout

index of arrays of 1 to something else is a matter of creating a custom subclass of
Array and overriding the methods at: to read and at:put: to write an array cell.

In the example of the EBNF language we extended the classes of common Smalltalk
literals with the method asParser, so that these objects can be converted to a parsers
that accept themselves. This is used in the transformed code to construct a parser
for a character. $0 asParser returns a parser that parses the character ‘0’.

However, even though it is advertised that everything in Smalltalk happens by mes-
sage passing, this is not entirely true. For example, reading from and writing to
temporary, instance and global variables is not performed using a message send,
but through primitive bytecodes. This is a problem when state-access needs to be
reified and should be made accessible in a more dynamic way. Other programming
languages like Self, Ruby, Javascript and Python are more dynamic in that regard.

Bracha et al. [Bracha, 2007] have demonstrated with NewSpeak that we can build a
Smalltalk-like system that accesses state through message sends only. This presents
the advantage that state access can be overridden and intercepted as it is currently
done with method polymorphism. Intercepting state changes is useful to automat-
ically notify observers that are interested in how a particular object changes.

8.3.3 Reflective Language

Helvetia heavily depends on the reflective features of the host language. We use the
reflective infrastructure to scope language extensions to classes, class hierarchies,
packages, etc. The EBNF language extension is for example scoped to the subclasses
of a generic parser class.

While most mainstream programming languages have good support for introspec-
tion, they often lack sophisticated support to perform structural changes at runtime
[Tanter, 2009]. Being able to create new classes and to change behavior of existing
objects is useful for many embedded languages.

Unfortunately only few mainstream programming languages (e.g., Javascript) pro-
vide rich structural and computational reflection. Even fewer provide support that
goes beyond basic structural reflection at the level of classes or methods. C# 3.0
provides only partial access to the AST of statically declared expressions using ex-
pression trees. Only in few languages like Lisp and Smalltalk we do have direct
access to the AST. Although Helvetia does not strictly require reflective facilities to
change the running application, having read-write access to the AST greatly simpli-
fied its implementation.

119

Chapter 8 Host Language Requirements

Helvetia performs code transformations on the same AST nodes that are also used
by the host language compiler. While this is not a requirement, this avoids code du-
plication in parser, compiler and other tools. Instead of relying on source-to-source
transformations, a single uniform code representation is used. This approach allows
us to keep accurate source location information, which is crucial to facilitate contex-
tual error reporting and highlighting in the debugger as depicted in Figure 8.1.

Figure 8.1: Stepping through a mixture of EBNF and the host language using the
standard debugger.

Smalltalk and most other main-stream programming lack features that are central to
meta-programming. Traditionally code fragments are specified using strings. This
leads to fragile code and makes it difficult to debug, as the origin of the code cannot
be tracked. A slightly better solution is to manually instantiate and compose the
AST nodes. In this case the origin can be tracked, but the code is still hard to read
and debug.

The quasiquoting facilities presented in Section 4.1.2 simplify the code transforma-
tion from our EBNF example to host language code. The three examples below
show different approaches to generate a small part of the code we saw in action in
Figure 8.1. Specifically we show how the repeat statement is generated:

1. String Concatenation. The most trivial way to do this is to (1) print out the in-
ner node, (2) concatenate it with the repeat message which is part of the API of the
language grammar model and returns a repeat clause, and (3) re-parse the complete
string. Code like this is hard to debug and with pretty printing and parsing origin
information is lost. Furthermore, repeatedly parsing and pretty printing code is also
inefficient.

120

8.3 Host Language Shootout

Parser parseExpression: '(' , aNode prettyPrinted , ') repeat'

2. Manual AST Composition. Another option consists in manually constructing the
AST. In this case the node is composed with the repeat message. This approach
works reasonably well, but it gets cumbersome in more complicated cases. The
compiler cannot check up front if the resulting code is valid and it is not immediately
obvious for developers to see what code gets generated.

RBMessageNode receiver: aNode selector: #repeat

3. Quasiquoting. Using the introduced quasiquoting facilities code is easily gener-
ated. Furthermore, it is immediately visible what kind of code is generated and the
compiler can validate the code generation in advance.

``(`,aNode repeat)

The presented quasiquoting language extension to Smalltalk is simple and does not
conflict with the existing syntax. The fact that Smalltalk entirely lacks sophisticated
facilities for code generation could be fixed by implementing quasiquoting as a lan-
guage extension.

For a detailed comparison of the reflective features in different programming lan-
guages we refer the reader to the work of Bracha et al. [Bracha and Ungar, 2004].

8.3.4 Homoiconic Language

None of today’s popular programming languages provide out of the box support
for the use of different parsers and compilers. Thus people have to use a source-
to-source transformation in a pre-compilation phase or rely on a custom compiler.
This leads to various problems: (1) the interaction between different languages is
difficult, (2) incompatibilities exist between the custom AST representations and the
domain models involved, and (3) it is often not possible to trace the transformed
code back to the original source.

Homoiconic language were first mentioned in the context of Lisp [Mooers and
Deutsch, 1965]. In this language the similarity between code and data is even
more visible. Reader macros are used to read and transform the source code to s-
expressions. Common Lisp comes with a set of reader macros that define the stan-
dard language, and custom ones can be added by developers to extend and change

121

Chapter 8 Host Language Requirements

the syntax of the host language. The system knows about all the active reader
macros and uses s-expressions as the common representation of data and code.

In Smalltalk classes can define a custom parser and compiler by overriding the
method compilerClass. Helvetia does so by overriding this method in Object, the
root of the class hierarchy. This enables Helvetia to return a more sophisticated
facade object that scopes language changes even further, not only at the level of
classes, but also at the level of methods and at the sub-method level. As the parser,
the compiler and the executable bytecode are fully accessible using the reflective en-
vironment, any part of the system can be customized, extended or even replaced.

Since all executable code eventually ends up in a compiled method object that the
VM knows how to interpret, any code can be invoked without knowing its origin.
As the object model is the one of the host system, objects can be transparently passed
around and used by different language extensions. Thus, different languages can
live homogeneously next to each other and interact in a natural and transparent
way.

For example, our EBNF language would just return a series of parse tokens by de-
fault. To attach production actions to the grammar we need to be able to intermix
the EBNF with normal Smalltalk code. In the excerpt below we show that we can
use normal Smalltalk code to define a production action right after the grammar
specification. In this case aToken implicitly refers to the character consumed. We use
normal host language code to convert this character into a number:

digit = "0" | "1" | ... | "9" ;

aToken asciiValue - $0 asciiValue

Language extensions are scoped to certain parts of the system (e.g., specific classes
or packages). When using the reflective facilities of the host system, different lan-
guages are aware of each other and can be closely integrated.

8.3.5 Homogeneous Environment

Eclipse, NetBeans and IntelliJ IDEA are full featured Java IDEs implemented in Java.
As such, these IDEs provide homogeneous tools that can be extended through an ex-
pressive plugin architecture. However, developers are restricted to the provided in-
terface and are often required to restart the complete IDE when a plugin changes.

The Emacs editor provides with Slime an IDE for Lisp development. However, this
setup does not provide a homogeneous environment: the tools in Emacs are writ-
ten in Emacs Lisp and they communicate through RPC with a Swank-Backend that

122

8.3 Host Language Shootout

eventually connects to the Lisp compiler. LispWorks is an IDE for Lisp develop-
ment resembling Smalltalk IDEs. While it provides a rich API to extend its tools,
the source code is not available and thus the developer is restricted to the provided
extension points.

Figure 8.2: The “Code Browser” opened on the EBNF language with adapted syntax
highlighting and auto completion.

Arguments similar to those given in the previous section can also be given in relation
to tools integration. In Smalltalk all development tools are implemented themselves
and can be modified on the fly. This makes it easy for building and integrating
languages into these tools. Since the tools rely on the reflection facilities, many parts
of the editors can be changed just by providing different answers to their queries.
For example:

• Syntax highlighting (see Figure 8.2) is typically implemented by traversing the
parse-tree of the edited method. As long as this tree can be properly visited
by the syntax highlighter, the code editors do not care about the language
that is being edited. The only information a language extension needs to pro-
vide is some color and style information so that the parse-tree tokens can be
highlighted accordingly.

• Code completion (see Figure 8.2) typically works on the parse-tree. Language
extensions are able to provide possible completion tokens that are presented
to the developer.

• Code debugging (see Figure 8.1) works at the bytecode level. To highlight the
current execution position in the source code, the debugger uses a source map

123

Chapter 8 Host Language Requirements

provided by the compiler that encodes text ranges to bytecodes. By provid-
ing a custom source map, it is possible to accurately step through a mixture
of different languages with a single debugger. The debugger interprets the
bytecodes and uses the source map regardless of how the language looks like
to the developers.

Having the live source code of all tools at hand is a big advantage for efficient lan-
guage development and integration. In Smalltalk the compiler, editor, debugger,
etc. can be changed, adapted or extended without limiting the developer to a plu-
gin architecture imposed by the vendor.

8.3.6 On-the-fly Changes

The image encapsulates the running Smalltalk system. It includes all objects, all
classes and their source code, and the currently executed threads. An image can
be saved to the file-system at any time and in any state, and re-run on a different
machine. When working in a Smalltalk system, code is compiled and installed into
the running system. The typical edit-compile-run cycle is avoided and as soon as
the source code is edited, it is automatically compiled and used by the running sys-
tem.

Having an ever running system makes it viable to quickly develop and test new
language features in the context of a domain. The language change is immedi-
ately available and can be tested in the running system using the objects already
present.

When a language definition changes, it is often required that the users of this lan-
guage are recompiled. In a reflective system like Smalltalk the clients of a language
can be enumerated and asked to recompile themselves. This is a similar query to
the functionality of displaying senders and implementors of a particular method
selector.

While many dynamic languages (e.g., Lisp, Ruby, Javascript) provide similar func-
tionality through their interactive consoles, they do not take it as far as Smalltalk
does. For example, it is often not possible to fix a bug from within the debugger, or
to change the way the console works while it is running. The fact that source code
primarily lives in files, makes it hard to interact with the code using a first-class
representation.

However, Smalltalk being an ever living object space presents also practical disad-
vantages: It makes it difficult to change certain parts of the system, e.g., changing
the compiler while it is being used to compile its own source code. To circumvent

124

8.4 Conclusion

these types of problems we always keep the original compiler around so that it can
replace the default compiler in case something goes wrong.

Another related problem is that language extensions need to be available before any
of the client code is loaded. This enforces that language extensions are packaged and
loaded separately beforehand.

8.4 Conclusion

Context specific languages are languages that are embedded in a host language, but
active only within certain well-defined contexts. Embedding such new languages
into an existing host environment is currently not well supported. To accommodate
them we need to extend an existing language with a proper environment.

Helvetia expresses foreign languages in terms of the AST of the host language. This
is the shortest path to reusing the host language tools, if they all work on the stan-
dard reflective facilities of the host language’s code model.

The contribution of this chapter is to distill our experience of using Smalltalk as the
host language. We considered multiple language environments from the point of
view of their suitability as possible hosts. In essence, we argue that Smalltalk is a
prime candidate for a system like Helvetia. Other languages considered (as seen in
Table 8.1) fall short from various points of view. Lisp is a strong contender, however
it lacks support of having full access to compiler and tools in the running system.

While Smalltalk is a good practical solution, it still is not ideal. To easily specify
code transformation we had to extend the language with a quasiquoting mecha-
nism. Another problem is that Smalltalk does not give us access to the execution
semantics of the VM. Accommodating a language that is not message-based (e.g.,
Prolog or Haskell) is difficult and requires mapping the semantics of the new lan-
guage [Wuyts, 2001] to the message-based one of the Smalltalk VM.

125

Chapter 9

Conclusions

“Knowing is not enough, we must
apply. Willing is not enough, we
must do.”
— Johann Wolfgang von Goethe

In this last chapter we summarize the contributions made by this dissertation and
point to directions for future work.

9.1 Contributions of the Dissertation

We set out to address the shortcomings of existing approaches to language em-
bedding. We argued that an explicit first-class model for language extensions is
needed to support context-dependent embedded languages that do not break exist-
ing tools.

Our key contributions are the following:

• We have identified (Chapter 1) three fundamental types of embedded lan-
guages: pidgins adapt the syntax of the host language while extending its se-
mantics; creoles further refine pidgins with their own dedicated syntax; and
argots switch the semantics of the host language without changing the syntax.

• We have presented (Chapter 3) a novel approach to language embedding by
leveraging the host language toolchain with a common rule system. This
achieves a tight integration of different languages with the host language and
the existing tools.

127

Chapter 9 Conclusions

• We have shown (Chapter 5) how a first-class language model enables fine-
grained language changes, language composition and language re-use in
terms of dynamic grammar transformations (Chapter 6).

• We have identified the key requirements for a host language implementing
a system like Helvetia (Chapter 8); and we have validated our implemen-
tation against various language and tool extensions (Chapter 4, Chapter 7,
Appendix A, and Appendix B).

9.2 Impact of Helvetia

Helvetia has already seen some use in research, both at the University of Bern and
other research groups. We briefly survey current and possibly upcoming uses of
Helvetia:

• The Moose analysis platform [Nierstrasz et al., 2005] employs various inter-
nal domain-specific languages to describe their code models, visualizations
and browsers. Already today the parsing infrastructure of Helvetia is part
of Moose and the authors plan to further improve their domain-specific lan-
guages with Helvetia.

• The authors of Reflectivity [Denker et al., 2007b] have expressed their inter-
est employing the quasiquoting mechanism of Helvetia to improve the us-
ability of their on-the-fly code generation through AST annotations. To inject
behavior into running applications they currently manually manipulate AST
nodes or use extra indirections through block closures. The use of Helvetia’s
quasiquoting mechanisms would avoid the breakage of tools and debuggers.

• The authors of the logic query engine SOUL [Wuyts and Ducasse, 2001] have
built an initial prototype tightly integrating their logical queries into Smalltalk
using Helvetia. The existing approach directly patched various tools and thus
made it difficult to mix and match queries with host language code. With the
adaption to Helvetia these limitations disappeared.

• Krasemann et al. [Krasemann et al., 2010] applied Helvetia for building a DSL
for Harel-Statecharts in the context of their research on integrated learn and
development environments.

• Pharo Smalltalk [Black et al., 2009] is a clean, innovative, open-source Smalltalk
environment. The Pharo board has expressed its interest to integrate the core
Helvetia infrastructure as part of the Pharo distribution to make the language
and programming environment easier to extend and open-up new spaces for
research and experimentation.

128

9.3 Future Research Directions

Furthermore, our work on Helvetia has influenced and has been influenced by var-
ious open-source and industrial projects:

• The Refactoring Engine [Roberts, 1999] provides the cornerstones for code
matching in Helvetia. With our work on Helvetia we have revived the refac-
toring tools and improved their integration into the host environment. Omni-
Browser [Bergel et al., 2008] is an extensible browser framework aiming to re-
place the traditional Smalltalk tools. We have significantly improved Omni-
Browser with new features that are useful in a context beyond Helvetia. As of
today, both the Refactoring Engine and OmniBrowser are part of the standard
development tools shipped with Pharo Smalltalk.

• The New Compiler [Hannan, 2004] is an alternative compiler for Pharo Smalltalk
avoiding the monolithic design of the original Smalltalk-80 compiler. Helve-
tia was initially developed using the New Compiler infrastructure, but has
recently reverted to the bytecode generator of the original Smalltalk-80 com-
piler. The change was necessary to support newer versions of Pharo Smalltalk
that employ alternative byte codes for closure creation and activation. Our
work with both compilers led to various improvements in these frameworks.

• Glamour [Bunge, 2009] is a model to build browsers from components and
connectors. We were involved in the development of an internal domain-
specific language to specify the layout and flow of data in Glamour browsers.
Glamour is widely applied in the context of the Moose platform for software
and data analysis to build custom user interfaces to explore large models.

• Seaside [Ducasse et al., 2007] is a popular web application framework em-
ploying various internal domain-specific languages for HTML generation,
Javascript generation, page composition, control flow specification and server
configuration. Magritte [Renggli et al., 2007] is a self-described meta-modeling
framework. It uses an internal domain-specific language to create meta-
models and interpret these meta-models to automate the creation of user-
interfaces, reports, persistency, and data querying. Both frameworks inspired
our work on domain-specific languages and language embedding.

9.3 Future Research Directions

Contextually Customized User Interfaces. Helvetia currently supports only source-
code related user-interface changes (code highlighting, code completion, etc.).
The programming environment itself — browsers for packages, classes and

129

Chapter 9 Conclusions

methods; object inspectors; debuggers — does not contextually adapt to dif-
ferent languages. We plan to extend the language box model with specifi-
cations on how to adapt the standard tools depending of the context they are
used in. A debugger could for example decide to hide the host language stack
frames in the context of SQL and instead display some performance statistics
from the database backend. We imagine to apply Glamour [Bunge, 2009] as a
quick mean to script these new user-interfaces.

Support for Language Evolution. Changing the implementation of an embedded lan-
guage does not automatically recompile code that currently uses this lan-
guage. While Helvetia can point the developer to such inconsistent code, it
does not provide any help in updating this code. We envision to apply the
approach of Change Boxes [Denker et al., 2007a] to encapsulate language defi-
nitions as versioned first-class entities, that support multiple, concurrent and
possibly inconsistent language extensions. Furthermore, it would be interest-
ing to provide transformations to automatically update language users as the
language evolves.

Language Boxes for Statically Typed Languages. Statically typed languages make a
model like Language Boxes more difficult to implement due to the additional
constraints not present in our implementation. We currently have a prototyp-
ical pre-compiler for Java that can be used to parse a file with a transformed
grammar and to pretty print the result to standard Java code. This approach
evades the problem of type checking, but it also does not provide the key ad-
vantages like tool integration and fine-grained scoping. However, it demon-
strates that the Language Box model is viable for statically typed languages
with a considerably more complex syntax than Smalltalk. Further research
could provide a model that does not show these weaknesses.

Host Language Migration. IDEs need to provide mechanisms to build common types
of DLSs automatically. The development environment could suggest where
and how the developer should migrate code to use a DSL, and automatically
perform this refactoring based on the language definitions.

130

Appendix A

Getting Started

This appendix gives instructions on how to install, implement and deploy language
extensions with the Helvetia system.

A.1 Installation

There are two ways to get the Helvetia system. The recommended quick and easy
way is to use the pre-built one-click distribution.

A.1.1 Downloading a One-Click Distribution

1. Download the one-click Helvetia distribution from http://scg.unibe.ch/

research/helvetia.

2. Launch the executable of your platform:

• Mac: Helvetia.app

• Linux: Helvetia.app/Helvetia.sh

• Windows: Helvetia.app/Helvetia.exe

A.1.2 Building a Custom Image

1. Get a Pharo-Core image from http://www.pharo-project.org/.

2. Add the Monticello repository of Helvetia:

131

http://scg.unibe.ch/research/helvetia
http://scg.unibe.ch/research/helvetia
http://www.pharo-project.org/

Appendix A Getting Started

MCHttpRepository

location: 'http://source.lukas-renggli.ch/helvetia'

user: ''

password: ''

3. Load the latest version of the package Helvetia-Loader. This will automati-
cally load all the dependencies and patch your system to give Helvetia the
necessary entry points.

A.2 A First Language Extension: Roman Numbers

The goal of this simple language extension is to add roman numbers into the host
language. This pidgin language keeps the syntax of the host-language and re-
interprets variables that are roman numbers as their respective numbers.

We start out by defining a class that tests the language extension and that holds the
Helvetia transformation rules:

TestCase subclass: #RomanNumberExample

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Helvetia-Examples'

As a first step we define the transformation rule on the class-side of
RomanNumberExample. This rule is automatically picked up by the compiler for
all instance-side code of the class and potential subclasses.

1 RomanNumberExample class>>transformRoman

2 <transform>

3

4 ^ CHTreePattern new

5 expression: '`var' do: [:context |

6 | arabic |

7 arabic := context node name romanNumber.

8 arabic notNil

9 ifTrue: [context node replaceWith: arabic lift]];

10 yourself

The code works as follows:

132

A.2 A First Language Extension: Roman Numbers

• Line 2 tells the compiler that the rule should be applied after parsing and
before performing the semantic analysis.

• Lines 4–5 instantiate an AST pattern and defines the scope of this rule to all
variable nodes in the AST.

• Lines 6–9 define the transformation on the matched variables. Line 7 exacts
the variable name from the AST and tries to convert it to a roman number.
If the conversion is successful (line 8) the matched variable node is replaced
with its arabic value (line 9). The lift converts the integer to a literal node of
the host language AST.

To test the code we add a test method to the instance-side:

RomanNumberExample>>testAdd

self assert: III + IV = VII

The test should pass when being run. Furthermore, we can verify our transforma-
tion by looking at the decompiled code:

RomanNumberExample>>testAdd

"(decompiled code)"

self assert: 3 + 4 = 7

To add syntax highlighting to our language extension we define another Helvetia
rule.

1 RomanNumberExample class>>highlightRoman

2 <highlight>

3

4 ^ CHTreePattern new

5 expression: '`var' do: Color gray;

6 verification: [:context | context node romanNumber notNil];

7 yourself

Similarly to the transformation rule we use a tree pattern on all variables. Line 5
defines the color to be used and line 6 gives as an additional precondition that the
node is a real roman number.

Editors and debuggers should now present the roman numbers in gray. Stepping
through the code with the debugger should work.

133

Appendix A Getting Started

A.3 A First Language Box: Regular Expressions

Many programming languages do not have support for literal regular expressions,
but instead require the developer to use an external library. The regular expressions
have to be created from strings at runtime which is cumbersome and can bring a
significant runtime overhead.

Regexp fromString: '\w+@\w+\.\w+'

In this example we want to extend the host language grammar with support for first-
class regular expressions, so that we can use regular expressions like /\w+@\w+\.\w+/

anywhere in host language statements.

To define the language box we create a new subclass of LBLanguageBox called
RegularExpressionBox.

LBLanguageBox subclass: #RegularExpressionBox

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Helvetia-Examples'

As a first step we define how the grammar of the host language is changed by over-
riding the change: method:

1 RegularExpressionBox>>change: aGrammar

2 ^ LBChange new

3 before: (aGrammar productionAt: #primary);

4 fragment: ($/ asParser , $/ asParser negate star , $/ asParser) token

Line 3 defines where in the original grammar we want to extend the language. Line 4
injects a new grammar fragment into the host language. The (simplified) grammar
for this language extension is defined as the slash character ‘/’, followed by several
non-slash characters, and ended with the slash character. For the actual parsing of
the regular expression itself we reuse existing code as we will see shortly.

At this point we can already test our language box. Create a new test class. Then
activate the language box in the context of the class by left clicking onto the class
name and selecting Language Boxes | Add... | RegularExpressionBox. Then we define
the following method that uses our language extension:

RegularExpressionBoxTest>>testEmail

self assert: (/\w+@\w+\.\w+/ matches: 'renggli@gmail.com')

134

A.3 A First Language Box: Regular Expressions

When we run the test it fails. This is because we did not specify how the parse-tree
should be transformed to the host language AST. By default the language box just
inserts a null node that causes the error we observe in the test.

To define the behavior of the language box we specify the compilation concern:

RegularExpressionBox>>compile: aToken

^ (aToken value copyFrom: 2 to: aToken size - 1) asRegex

lift: aToken

In this example we take the parsed token aToken, remove the slashes from beginning
and end, transform it at compile-time to a regular expression object, and lift this
object into a literal node. Note that by using lift: aToken we tell the language box
the origin of this AST node, so that it can be properly highlighted in the debugger.

From the context menu on RegularExpressionBox select Language Boxes | Recompile
Users to recompile all the users of the language box. The test should now success-
fully pass.

To make our language extension appear with a distinct color we can add a high-
lighting concern:

RegularExpressionBox>>highlight: aToken

^ aToken -> Color orange

The change is immediately visible in all code editors.

While this example is simple and only delegates to an existing regular expression
implementation Language Boxes can be used for much more complex language em-
beddings. Check out the example LAPathBox that implements a XPath like query lan-
guage, or LASqlBox that embeds SQL into the host language.

135

Appendix B

Examples

This appendix provides an exhaustive list of language extensions that have been
implemented in Helvetia. Each extension is shortly described and a small example
is given demonstrating its use in practice. Table B.1 categorizes all the language ex-
tensions into pidgin, creole and argot languages; and summarizes the infrastructure
used and their implementation size.

B.1 Roman Numbers

A simple language extension that adds roman number literals to the host language.
A detailed description of its implementation can be found in Section A.2. This im-
plementation consists of 2 Helvetia rules using 14 lines of code. The same language
extension implemented using Language Boxes requires only 8 lines of code.

self assert: VII = III + IV.

B.2 Grammar Definition

This language is used to specify grammars for PEG parsers using an EBNF like syn-
tax. The possibility to use EBNF productions within the code of the host language
raises the conciseness of grammar definitions considerably. This language exten-
sion is used in Chapter 8. The implementation consists of 3 Helvetia rules using 28
lines of code.

digit = "0" | "1" | ... | "9" ;

number = ["-"] digit { digit } ["." digit { digit }] ;

137

Appendix B Examples

Se
cti

on

La
ng

ua
ge

Pi
dg

in
Cr

eo
le

Ar
go

t

H
el

ve
tia

 R
ul

es
La

ng
ua

ge
 B

ox
es

Li
ne

s o
f C

od
e

B.1 Roman Numbers # # 8
B.2 Grammar Definition # # # 28
B.3 SQL # # # 33
B.4 Regular Expression # # # 10
B.5 SPath Expression # # # 17
B.6 Quasiquoting and Unquoting # # # 53
B.7 Brainfuck Language # # # 99
B.8 Positional Arguments # # # 27
B.9 Automaton # # # 86

B.10 Tuple Space # # # 100
B.11 Mondrian # # 104
B.12 Transactional Memory # # # 131
B.13 Object Relationships # # # 16
B.14 String Interpolation # # # 36
B.15 Assignments and Swapping # # # 27
B.16 Schematic Tables # # # 106
B.17 Functional Pattern Matching # # # 6930
B.18 Message Pipes # # # 12
B.19 Asynchronous Messages # # # 24

Table B.1: Overview on different language extensions; their categorization into pid-
gin, creole and argot languages; the Helvetia infrastructure used and their imple-
mentation size.

B.3 SQL

This language extension allows one to use SQL expressions where an expression in
the host language is expected. Furthermore, within the SQL expression host lan-
guage expressions can be embedded using the @(...) construct. A description of
this language can be found Section 5.4. The Language Box implementation consists
of 33 lines of code, not counting the definition of the SQL grammar.

138

B.4 Regular Expression

findEmail: aString

"Retrieve the e-mail for the given username aString."

| rows |

rows := SELECT email FROM users

WHERE username = @(aString).

^ rows first first

B.4 Regular Expression

Smalltalk does not provide literal regular expressions; with Helvetia this can be
changed. A discussion of the implementation can be found in Section 5.1 and Sec-
tion A.3. The Language Box implementation consists of 10 lines of code.
'Nena - 99 Luftballons' =~ /.*\d+.*/

B.5 SPath Expression

SPath is a query language which provides a convenient way to access, filter and
collect data from a graph of objects. It has similar aims and scope as XPath1, a query
language that is designed to query XML data. The following example assigns all the
members of the host language collection family which are older than 12 to the host
language variable people.
people := family:members[age > 12]

This Language Box implementation of SPath consists of 17 lines of code.

B.6 Quasiquoting and Unquoting

Smalltalk does not provide quasiquoting facilities something that is commonly used
in languages like Scheme and Lisp for meta-programming. This language extension
is also described in Section 4.1.2 and further discussed in Section 8.3.3. The following
code can be used to inline the calculation of the power function. For example, the
expression `@(self raise: `x to: -4) generates the code 1 / (x * x * x * x).

1 http://www.w3.org/TR/xpath

139

http://www.w3.org/TR/xpath

Appendix B Examples

raise: aNode to: anInteger

anInteger = 0

ifTrue: [^ ``1].

anInteger < 0

ifTrue: [^ ``(1 / `,(self raise: aNode to: anInteger abs))].

^ ``(`,(self raise: aNode to: anInteger abs - 1) * `,aNode)

There are two implementations of quasiquoting: The first one is independent of
Helvetia and used to bootstrap the system. It duplicates and modifies the original
Smalltalk parser and patches the code generator. The source code for this imple-
mentation is more than 1400 lines long. The second equivalent implementation is
using the Language Boxes infrastructure and consists of 53 lines of code only.

B.7 Brainfuck Language

Brainfuck is a minimalistic programming language simulating a Turing machine.
Being able to have a debugger at hand makes it considerably easier to understand
the code examples:

This program multiplies two single-digit numbers and displays the result

correctly if it too has only one digit

,>,>++++++++[<------<------>>-]

<<[>[>+>+<<-]>>[<<+>>-]<<<-]

>>>++++++[<++++++++>-]<.>

The Brainfuck implementation consists of a Brainfuck machine (47 LOC), a Brain-
fuck parser (30 LOC), and two Helvetia rules (22 LOC).

B.8 Positional Arguments

While most programming languages use positional arguments, Smalltalk uses key-
word arguments that interleave the argument values of a method invocation. This
can be a problem when interfacing with external libraries written in C. This language
extension adds positional arguments to Smalltalk. The Language Box implementa-
tion consists of 27 lines of code.

140

http://en.wikipedia.org/wiki/Brainfuck

B.9 Automaton

aCanvas glTexCoord2f(1.0, 0.0).

aCanvas glVertex3f(-0.2, 0.2, -100.0).

B.9 Automaton

A simple language to define automaton or finite-state machines. The following ex-
ample defines an automata that accepts input of the form c(a|d)+r:

init : c -> more

more : a -> more

d -> more

r -> end

end :

The implementation uses two Helvetia rules (19 LOC), a grammar for the automaton
language (40 LOC) and the automaton machine (27 LOC).

B.10 Tuple Space

A tuple space is a form of a shared memory or blackboard architecture. While
Smalltalk always passes arguments by value, this language extension adds the pos-
sibility to pass values by reference by sending asReference to the variable. This en-
ables functions like read: to bind values to variables outside their scope. The fol-
lowing example implements the fibonacci numbers using a tuple space:

fibonacci: anInteger

| result |

(space read: {'fib'. anInteger. result asReference} ifNone: [nil]) isNil

ifFalse: [^ result].

anInteger < 2 ifTrue: [

space write: { 'fib'. anInteger. 1 }.

^ 1].

space write: {'fib'. anInteger. (self fibonacci: anInteger - 1)

+ (self fibonacci: anInteger - 2)}.

space read: {'fib'. anInteger. ?result}.

^ result

141

http://en.wikipedia.org/wiki/Automata_theory
http://en.wikipedia.org/wiki/Tuple_space

Appendix B Examples

The implementation uses one Helvetia rule (12 LOC) and a simple implementation
of a tuple space (88 LOC).

B.11 Mondrian

Mondrian is a graph based visualization framework that provides a declarative
Smalltalk API for users to specify new visualizations and compose existing ones.
This language extension makes it possible to define new shapes using a CSS like
syntax.
shape {

cols: #grow, #fill;

rows: #grow, #fill;

}

label {

position: 1 , 1;

text: [:each | each name];

borderColor: #black;

borderWidth: 1;

}

rectangle {

position: 1 , 2;

colspan: 2;

borderColor: #black;

borderWidth: 1;

width: 200;

height: 100;

}

The implementation of this language extension is described in Section 4.2 and Sec-
tion 4.3. It uses two Helvetia rules (15 LOC) and a customized CSS grammar (89
LOC).

B.12 Transactional Memory

Transactional Memory is an example for changing the execution semantics without
changing the syntax of the host language. All state changes in the atomic block
below are deferred to the end of the transaction so that conflicts can be detected.
The details of this language extension are described in Section 4.4.

142

http://moose.unibe.ch/tools/mondrian
http://en.wikipedia.org/wiki/Transactional_memory

B.13 Object Relationships

tree := BTree new.

[tree at: #a put: 1] atomic.

The implementation consists of one Helvetia rule (19 LOC) and the infrastructure to
track object changes within transactions (112 LOC).

B.13 Object Relationships

A common challenge with complex object models is to implement relationships be-
tween objects. With this language extension the implementation of the write acces-
sor next: of a double linked list is simple, the code to update the opposite relation-
ship is generated automatically:

Link>>next: aLink

<opposite: #prev>

next := aLink

The implementation uses a single Helvetia rule and consists of 16 lines of code.

B.14 String Interpolation

String interpolation can be error prone and expensive when interpreted at runtime.
The following examples demonstrate two flavors of compile-time optimized printf-
like language extension:

'<1s> owns <2p> pair<3?s:>' << ('Hans' , 1 , false)

'You Smalltalk has {Smalltalk allClasses size} classes'

The implementation uses one Helvetia rule to transform the code (29 LOC) and one
to highlight the strings (7 LOC).

B.15 Assignments and Swapping

The following example adds the <==> construct to the language to swap the contents
of two variables. Furthermore the <== allows one to assign multiple values in one
expression:

143

http://en.wikipedia.org/wiki/Printf

Appendix B Examples

| a b |

{ a. b } <== { 'hello'. 'world' } "assigns 'hello' to a, and 'world' to b"

a <==> b. "swaps the values of a and b"

The implementation uses two Helvetia rules consisting of 27 lines of code.

B.16 Schematic Tables

Schematic Tables provide a convenient way to handle arbitrarily complex condition-
als. The following example defines a function from the booleans a, b, and c to the
number x. The table below is read column by column: if a is true, then the result
is 1; if a is false and b is true or a is false and c is true, then the result is 2, etc. The
implementation uses Language Boxes and consists of 106 lines of code.

x := {| a | = true | = false | = false | = false |}

{| b | -- | = true | -- | = false |}

{| c | -- | -- | = true | = false |}

{| | 1 | 2 | 2 | 3 |}.

B.17 Functional Pattern Matching

Most object-oriented programming languages dispatch to functions depending on
the receiver type only. In functional languages like Haskell or ML it is common to
specify case-based functions on argument patterns. This Helvetia language exten-
sion adds pattern matching to Smalltalk. The supported patterns for receiver and
function arguments are the following:

• The do not care pattern matches anything and is specified using lowercase iden-
tifier names.

• The literal pattern matches host language literals such as nil, true, false, inte-
gers, strings, characters and floats.

• The type pattern matches a specific type or subtype. It follows the naming con-
vention of argument names: anInteger matches instances and sub-instances of
the class Integer.

144

http://subtextual.org/OOPSLA07.pdf

B.18 Message Pipes

• The list pattern matches collections. { } matches the empty collection, { x }

matches the collection with exactly one element, { x | xs } matches the non-
empty collection with the head element x and the tail elements xs. Other pat-
terns can nest into the list pattern.

• The predicate pattern uses a block closure as a function to decide whether to
accept an argument or not.

For example, the zip function that transforms two collections {1. 2. 3} zip: {4. 5}

to a list of tuples {1 @ 4. 2 @ 5} is implemented as follows:

aCollection>>zip: {}

^ {}

{}>>zip: aCollection

^ {}

{x|xs}>>zip: {y|ys}

^ {x @ y} , (xs zip: ys)

The implementation consists of a custom dispatching infrastructure, a custom
parser for the method declarations, and a customized code browser. The complete
implementation consists of 6930 lines of code.

B.18 Message Pipes

The classic Smalltalk syntax does allow to chain unary and binary messages without
using parentheses like so:

1 negated isZero.

1 + 2 + 3 + 4.

However, with keyword messages parentheses are required:

(((1 to: 10)

select: [:each | each odd])

collect: [:each | each * each])

inject: 0 into: [:sum :each | sum + each]

145

Appendix B Examples

A pipe or chain operator ‘:>’ as proposed by Vassili Bykov2 makes the result of the
preceding expression the receiver of the following message send. So that the above
expression can be rewritten without parentheses:

(1 to: 10)

:> select: [:each | each odd]

:> collect: [:each | each * each]

:> inject: 0 into: [:sum :each | sum + each]

The implementation uses Language Boxes and consists of 12 lines of code. A previ-
ously proposed implementation (40 LOC) directly patched the compiler and broke
debugger and syntax highlighting.

B.19 Asynchronous Messages

Croquet Smalltalk3 provides an implementation of asynchronous messages as a
patch into the standard compiler and a small amount of support code. The follow-
ing code shows a traffic light that changes from red, to orange, and to green before
it disappears again:

morph := CircleMorph new.

morph color: Color red.

(morph future) openInWorld.

(morph future: 1 second) color: Color orange.

(morph future: 2 seconds) color: Color green.

(morph future: 3 seconds) delete.

The code fragment immediately returns as the messages openInWorld, color: and
delete are sent asynchronously as defined by the future keyword. An optional ar-
gument allows one to schedule the message after a given duration in the future.

The implementation of this pidgin language consists of 24 lines of code and uses
two Helvetia rules to implement the functionality. The original implementation in
Croquet consists of more than 150 lines of code that are directly intertwined with
the standard compiler.

2 http://blog.3plus4.org/2007/08/30/message-chains/

3 http://www.opencroquet.org/

146

http://blog.3plus4.org/2007/08/30/message-chains/
http://www.opencroquet.org/

Appendix C

Bibliography

[Achermann et al., 2001] Franz Achermann, Markus Lumpe, Jean-Guy Schneider,
and Oscar Nierstrasz. Piccola — a small composition language. In Howard
Bowman and John Derrick, editors, Formal Methods for Distributed Processing — A
Survey of Object-Oriented Approaches, pages 403–426. Cambridge University Press,
2001.

[Aldrich et al., 2002] Jonathan Aldrich, Craig Chambers, and David Notkin. Archi-
tectural reasoning in ArchJava. In ECOOP’02: Proceedings of the 16th European
Conference on Object-Oriented Programming, volume 2374 of LNCS, pages 334–367,
Malaga, Spain, 2002. Springer-Verlag.

[Andreae et al., 2006] Chris Andreae, James Noble, Shane Markstrum, and Todd
Millstein. A framework for implementing pluggable type systems. In OOPSLA
’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented pro-
gramming systems, languages, and applications, pages 57–74, New York, NY, USA,
2006. ACM Press.

[Baader and Nipkow, 1998] Franz Baader and Tobias Nipkow. Term Rewriting and
All That. Cambridge University Press, 1998.

[Backus, 1959] John Warner Backus. The syntax and semantics of the proposed in-
ternational algebraic language of the Zurich ACM-GAMM conference. In Proceed-
ings of the International Conference on Information Processing, pages 125–132, 1959.

[Bawden, 1999] Alan Bawden. Quasiquotation in Lisp. In Partial Evaluation and
Semantic-Based Program Manipulation, pages 4–12, 1999.

[Becket and Somogyi, 2008] Ralph Becket and Zoltan Somogyi. DCGs + Memoing
= Packrat parsing, but is it worth it? In Practical Aspects of Declarative Languages,
volume LNCS 4902, pages 182–196. Springer, January 2008.

[Bentley, 1986] Jon Louis Bentley. Programming pearls: Little languages. Commu-
nications of the ACM, 29(8):711–721, August 1986.

147

Appendix C Bibliography

[Bergel et al., 2008] Alexandre Bergel, Stéphane Ducasse, Colin Putney, and Roel
Wuyts. Creating sophisticated development tools with OmniBrowser. Journal
of Computer Languages, Systems and Structures, 34(2-3):109–129, 2008.

[Bergin and Gibson, 1996] Thomas J. Bergin and Richard G. Gibson. History of Pro-
gramming Languages. ACM Press / Addison Wesley, 1996.

[Black et al., 2009] Andrew Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pol-
let, Damien Cassou, and Marcus Denker. Pharo by Example. Square Bracket Asso-
ciates, 2009.

[Brabranda and Schwartzbach, 2007] Claus Brabranda and Michael I.
Schwartzbach. The metafront system: Safe and extensible parsing and
transformation. Science of Computer Programming, 68(1):2–20, 2007.

[Bracha and Ungar, 2004] Gilad Bracha and David Ungar. Mirrors: design prin-
ciples for meta-level facilities of object-oriented programming languages. In
Proceedings of the International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’04), ACM SIGPLAN Notices, pages 331–344,
New York, NY, USA, 2004. ACM Press.

[Bracha, 2007] Gilad Bracha. Executable grammars in Newspeak. Electron. Notes
Theor. Comput. Sci., 193:3–18, 2007.

[Brant et al., 1998] John Brant, Brian Foote, Ralph Johnson, and Don Roberts. Wrap-
pers to the rescue. In Proceedings European Conference on Object Oriented Program-
ming (ECOOP’98), volume 1445 of LNCS, pages 396–417. Springer-Verlag, 1998.

[Bravenboer and Visser, 2004] Martin Bravenboer and Eelco Visser. Concrete syn-
tax for objects. Domain-specific language embedding and assimilation without
restrictions. In Douglas C. Schmidt, editor, Proceedings of the 19th ACM SIG-
PLAN Conference on Object-Oriented Programing, Systems, Languages, and Applica-
tions (OOPSLA 2004), pages 365–383, Vancouver, Canada, oct 2004. ACM Press.

[Bravenboer and Visser, 2009] Martin Bravenboer and Eelco Visser. Parse table
composition. In Software Language Engineering, volume LNCS 5452, pages 74–94.
Springer, 2009.

[Bravenboer, 1997] Martin Bravenboer. Exercises in Free Syntax: Syntax Definition,
Parsing, and Assimilation of Language Conglomerates. PhD thesis, Delft University
of Technology, December 1997.

[Bunge, 2009] Philipp Bunge. Scripting browsers with Glamour. Master’s thesis,
University of Bern, April 2009.

148

Appendix C Bibliography

[Calcagno et al., 2003] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier
Leroy. Implementing multi-stage languages using ASTs, GenSym, and Reflec-
tion. In In Krzysztof Czarnecki, Frank Pfenning, and Yannis Smaragdakis, editors, Gener-
ative Programming and Component Engineering (GPCE), volume 2830 of LNCS, pages
57–76. Springer-Verlag, 2003.

[Charles et al., 2009] Philippe Charles, Robert M. Fuhrer, Stanley M. Sutton Jr., Eve-
lyn Duesterwald, and Jurgen J. Vinju. Accelerating the creation of customized,
language-specific IDEs in Eclipse. In Shail Arora and Gary T. Leavens, editors,
OOPSLA, pages 191–206. ACM, 2009.

[Clark et al., 2004] Tony Clark, Andy Evans, Paul Sammut, and James Willans. Ap-
plied metamodelling: A foundation for language driven development, 2004.

[Clark et al., 2008] Tony Clark, Paul Sammut, and James Willans. Superlanguages,
Developing Languages and Applications with XMF, volume First Edition. Ceteva,
2008.

[Cleenewerck, 2003] Thomas Cleenewerck. Component-based DSL development.
In Proceedings of the 2nd international conference on Generative programming and com-
ponent engineering, pages 245–264. Springer-Verlag New York, Inc. New York, NY,
USA, 2003.

[Cordy, 2006] James R. Cordy. The TXL source transformation language. Sci. Com-
put. Program., 61(3):190–210, 2006.

[Cox et al., 2008] Russ Cox, Tom Bergan, Austin T. Clements, Frans Kaashoek, and
Eddie Kohler. Xoc, an extension-oriented compiler for systems programming.
SIGARCH Comput. Archit. News, 36(1):244–254, 2008.

[Denker et al., 2007a] Marcus Denker, Tudor Gîrba, Adrian Lienhard, Oscar Nier-
strasz, Lukas Renggli, and Pascal Zumkehr. Encapsulating and exploiting change
with Changeboxes. In ICDL’07: Proceedings of the 15th International Conference on
Dynamic Languages, pages 25–49, Lugano, Switzerland, August 2007. ACM Digi-
tal Library.

[Denker et al., 2007b] Marcus Denker, Orla Greevy, and Oscar Nierstrasz. Support-
ing feature analysis with runtime annotations. In Proceedings of the 3rd Interna-
tional Workshop on Program Comprehension through Dynamic Analysis (PCODA 2007),
pages 29–33. Technische Universiteit Delft, 2007.

[Deursen and Klint, 1997] Arie van Deursen and Paul Klint. Little languages: Little
maintenance? In S. Kamin, editor, First ACM-SIGPLAN Workshop on Domain-
Specific Languages; DSL’97, pages 109–127, January 1997.

149

Appendix C Bibliography

[Dimitriev, 2004] Sergey Dimitriev. Language oriented programming: The next
programming paradigm. onBoard Online Magazine, 1(1), November 2004.

[Ducasse et al., 2007] Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. Sea-
side: A flexible environment for building dynamic web applications. IEEE Soft-
ware, 24(5):56–63, 2007.

[Earley, 1970] Jay Earley. An efficient context-free parsing algorithm. Commun.
ACM, 13(2):94–102, 1970.

[Ekman and Hedin, 2007] Torbjörn Ekman and Görel Hedin. The JastAdd exten-
sible Java compiler. In Richard P. Gabriel, David F. Bacon, Cristina Videira
Lopes, and Guy L. Steele Jr., editors, OOPSLA’07: Proceedings of the 22nd Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications, pages
1–18, Montreal, Quebec, Canada, 2007. ACM Press.

[Faith et al., 1997] Rickard E. Faith, Lars S. Nyland, and Jan F. Prins. KHEPERA:
a system for rapid implementation of domain specific languages. In DSL’97:
Proceedings of the Conference on Domain-Specific Languages on Conference on Domain-
Specific Languages (DSL), 1997, pages 19–19, Berkeley, CA, USA, 1997. USENIX
Association.

[Foote and Johnson, 1989] Brian Foote and Ralph E. Johnson. Reflective facilities
in Smalltalk-80. In Proceedings OOPSLA ’89, ACM SIGPLAN Notices, volume 24,
pages 327–336, October 1989.

[Ford, 2002] Bryan Ford. Packrat parsing: simple, powerful, lazy, linear time, func-
tional pearl. In ICFP 02: Proceedings of the seventh ACM SIGPLAN international
conference on Functional programming, volume 37/9, pages 36–47, New York, NY,
USA, 2002. ACM.

[Ford, 2004] Bryan Ford. Parsing expression grammars: a recognition-based syn-
tactic foundation. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 111–122, New York, NY,
USA, 2004. ACM.

[Fowler, 1999] Martin Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.

[Fowler, 2005a] Martin Fowler. Fluent interface, 2005.

[Fowler, 2005b] Martin Fowler. Language workbenches: The killer-app for domain-
specific languages, June 2005.

[Fowler, 2010] Martin Fowler. Domain-Specific Languages. Addison-Wesley Profes-
sional, September 2010.

150

Appendix C Bibliography

[Freeman and Pryce, 2006] Steve Freeman and Nat Pryce. Evolving an embedded
domain-specific language in Java. In OOPSLA’06: Companion to the 21st Sympo-
sium on Object-Oriented Programming Systems, Languages, and Applications, pages
855–865, Portland, OR, USA, 2006. ACM.

[Futamura, 1999] Yoshihiko Futamura. Partial evaluation of computation process:
An approach to a compiler-compiler. Higher Order Symbol. Comput., 12(4):381–391,
1999.

[Gerrits and Gabriëls, 2005] Dirk Gerrits and René Gabriëls. A comparison of
macro systems for extending programming languages. Technical report, March
2005.

[Goldberg and Robson, 1983] Adele Goldberg and David Robson. Smalltalk 80: the
Language and its Implementation. Addison Wesley, Reading, Mass., May 1983.

[Goldberg and Robson, 1989] Adele Goldberg and Dave Robson. Smalltalk-80: The
Language. Addison Wesley, 1989.

[Greenfield and Short, 2003] Jack Greenfield and Keith Short. Software factories:
assembling applications with patterns, models, frameworks and tools. In OOP-
SLA ’03: Companion of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 16–27, New York, NY,
USA, 2003. ACM.

[Grimm, 2006] Robert Grimm. Better extensibility through modular syntax. In PLDI
2006, pages 38–51. ACM, 2006.

[Grossman, 2007] Dan Grossman. The transactional memory / garbage collection
analogy. SIGPLAN Notices, 42(10):695–706, 2007.

[Group, 2004] Object Management Group. Meta object facility (MOF) 2.0 core final
adopted specification. Technical report, Object Management Group, 2004.

[Hannan, 2004] Anthony Hannan. Squeak Closure Compiler, July 2004.
http://wiki.squeak.org/squeak/ClosureCompiler.

[Havelund and Pressburger, 2000] Klaus Havelund and Thomas Pressburger.
Model checking Java programs using Java PathFinder. International Journal on
Software Tools for Technology Transfer (STTT), 2(4):366–381, 2000.

[Heering et al., 1989] Jan Heering, Paul Klint, and Jan Rekers. Incremental genera-
tion of parsers. In PLDI 1989, pages 179–191. ACM, 1989.

[Herlihy and Moss, 1993] Maurice P. Herlihy and J. Eliot B. Moss. Transactional
memory: Architectural support for lock-free data structures. In Proceedings of the
20. Annual International Symposium on Computer Architecture, pages 289–300, 1993.

151

Appendix C Bibliography

[Herlihy, 1991] Maurice P. Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 13(1):124–149, January 1991.

[Hoare, 1973] C. A. R. Hoare. Hints on programming language design. Technical
Report CS-TR-73-403, Stanford University, 1973.

[Hovemeyer and Pugh, 2004] David Hovemeyer and William Pugh. Finding bugs
is easy. ACM SIGPLAN Notices, 39(12):92–106, 2004.

[Hudak, 1996] Paul Hudak. Building domain specific embedded languages. ACM
Computing Surveys, 28(4es), December 1996.

[Hudak, 1998] Paul Hudak. Modular domain specific languages and tools. In P. De-
vanbu and J. Poulin, editors, Proceedings: Fifth International Conference on Software
Reuse, pages 134–142. IEEE Computer Society Press, 1998.

[Hunt and Thomas, 2003] Andy Hunt and Dave Thomas. Pragmatic Unit Testing in
Java with JUnit. ThePragmaticProgrammers, 2003.

[Hutton and Meijer, 1996] Graham Hutton and Erik Meijer. Monadic parser com-
binators. Technical Report NOTTCS-TR-96-4, Department of Computer Science,
University of Nottingham, 1996.

[Hutton, 1992] Graham Hutton. Higher-order functions for parsing. Journal of Func-
tional Programming, 2(3):323–343, 1992.

[Jewell and Abate, 2005] Elizabeth J. Jewell and Frank R. Abate, editors. The New
Oxford American Dictionary. Oxford University Press, May 2005.

[Johnson, 1978] S.C. Johnson. Lint, a C program checker. In UNIX programmer’s
manual, pages 78–1273. AT&T Bell Laboratories, 1978.

[Jones et al., 1993] Neil J. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Eval-
uation and Automatic Program Generation. Prentice-Hall, 1993.

[Kats et al., 2008] Lennart C. L. Kats, Martin Bravenboer, and Eelco Visser. Mixing
source and bytecode. A case for compilation by normalization. In Gregor Kicza-
les, editor, Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented
Programing, Systems, Languages, and Applications (OOPSLA 2008), pages 91–108,
Nashville, Tenessee, USA, October 2008. ACM.

[Kilpeläinen and Mannila, 1992] Pekka Kilpeläinen and Heikki Mannila. Gram-
matical tree matching. In Combinatorial Pattern Matching, pages 162–174. Springer,
1992.

[Klint, 1993] Paul Klint. A meta-environment for generating programming envi-
ronments. ACM Transactions on Software Engineering and Methodology (TOSEM),
2(2):176–201, 1993.

152

Appendix C Bibliography

[Kohlbecker et al., 1986] Eugene E. Kohlbecker, Daniel P. Friedman, Matthias
Felleisen, and Bruce Duba. Hygienic macro expansion. Symposium on LISP and
Functional Programming, pages 151–161, August 1986.

[Koschke and Simon, 2003] Rainer Koschke and Daniel Simon. Hierarchical reflex-
ion models. In Proceedings of the 10th Working Conference on Reverse Engineering
(WCRE 2003), page 36. IEEE Computer Society, 2003.

[Krahn et al., 2007] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated
definition of abstract and concrete syntax for textual languages. In Proceedings of
MoDELS 2007, volume 4735 of LNCS, pages 286–300. Springer Verlag, 2007.

[Krahn et al., 2008] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monti-
Core: Modular development of textual domain specific languages. In Richard
Paige and Bertrand Meyer, editors, Proceedings of the 46th International Conference
Objects, Models, Components, Patterns (TOOLS-Europe), pages 297–315. Springer-
Verlag, 2008.

[Krasemann et al., 2010] Hartmut Krasemann, Johannes Brauer, and Christoph
Crasemann. Eine DSL für Harel-Statecharts mit PetitParser. Arbeitspapier, NOR-
DAKADEMIE Hochschule der Wirtschaft, August 2010.

[Kuhn and Verwaest, 2008] Adrian Kuhn and Toon Verwaest. FAME, a polyglot
library for metamodeling at runtime. In Workshop on Models at Runtime, pages
57–66, 2008.

[Kuhn et al., 2008] Adrian Kuhn, Bart Van Rompaey, Lea Hänsenberger, Oscar
Nierstrasz, Serge Demeyer, Markus Gaelli, and Koenraad Van Leemput. JEx-
ample: Exploiting dependencies between tests to improve defect localization. In
P. Abrahamsson, editor, Extreme Programming and Agile Processes in Software Engi-
neering, 9th International Conference, XP 2008, Lecture Notes in Computer Science,
pages 73–82. Springer, 2008.

[Lämmel and Zaytsev, 2010] Ralf Lämmel and Vadim Zaytsev. Recovering gram-
mar relationships for the Java language specification. Software Quality Journal,
SCAM Special Issue, 2010. To appear.

[Lämmel, 2001] Ralf Lämmel. Grammar adaptation. FME 2001: Formal Methods for
Increasing Software Productivity, pages 550–570, 2001.

[Leijen and Meijer, 2001] D. Leijen and E. Meijer. Parsec: Direct style monadic
parser combinators for the real world, 2001.

[Lieberherr, 1989] Karl J. Lieberherr. Formulations and benefits of the Law of Deme-
ter. ACM SIGPLAN Notices, 24(3):67–78, 1989.

153

Appendix C Bibliography

[Martin, 1985] James Martin. Fourth generation languages, volume i, principles.
New Jersey, 1985.

[Meijer and Drayton, 2004] Erik Meijer and Peter Drayton. Static typing where pos-
sible, dynamic typing when needed: The end of the cold war between program-
ming languages. In Proceedings OOPSLA Workshop On The Revival Of Dynamic
Languages, 2004.

[Meijer et al., 2006] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: recon-
ciling object, relations and XML in the .NET framework. In SIGMOD ’06: Proceed-
ings of the 2006 ACM SIGMOD international conference on Management of data, pages
706–706, New York, NY, USA, 2006. ACM.

[Mens et al., 2006] Kim Mens, Andy Kellens, Frédéric Pluquet, and Roel Wuyts. Co-
evolving code and design with intensional views — a case study. Journal of Com-
puter Languages, Systems and Structures, 32(2):140–156, 2006.

[Mernik et al., 2005] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When
and how to develop domain-specific languages. ACM Comput. Surv.,
37(4):316–344, 2005.

[Meyer et al., 2006] Michael Meyer, Tudor Gîrba, and Mircea Lungu. Mondrian: An
agile visualization framework. In ACM Symposium on Software Visualization (Soft-
Vis’06), pages 135–144, New York, NY, USA, 2006. ACM Press.

[Mooers and Deutsch, 1965] Calvin Mooers and Peter Deutsch. TRAC, a text han-
dling language. In Proceedings of the 1965 20th national conference, pages 229–246,
New York, NY, USA, 1965. ACM.

[Moors et al., 2008] Adriaan Moors, Frank Piessens, and Martin Odersky. Parser
combinators in Scala. Technical report, Department of Computer Science, K.U.
Leuven, February 2008.

[Muller et al., 2005a] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel.
Weaving executability into object-oriented meta-languages. In S. Kent L. Briand,
editor, Proceedings of MODELS/UML’2005, volume 3713 of LNCS, pages 264–278,
Montego Bay, Jamaica, October 2005. Springer.

[Muller et al., 2005b] Pierre-Alain Muller, Philippe Studer, Frédérick Fondement,
and Jean Bézivin. Independent web application modeling and development with
netsilon. Software and System Modeling, 4(4):424–442, November 2005.

[Murphy et al., 1995] Gail Murphy, David Notkin, and Kevin Sullivan. Software
reflexion models: Bridging the gap between source and high-level models. In
Proceedings of SIGSOFT ’95, Third ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 18–28. ACM Press, 1995.

154

Appendix C Bibliography

[Nierstrasz et al., 2005] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gîrba. The
story of Moose: an agile reengineering environment. In Proceedings of the European
Software Engineering Conference (ESEC/FSE’05), pages 1–10, New York, NY, USA,
September 2005. ACM Press. Invited paper.

[Nierstrasz et al., 2009] Oscar Nierstrasz, Marcus Denker, and Lukas Renggli.
Model-centric, context-aware software adaptation. In Betty H.C. Cheng, Rogerio
de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, editors, Software Engi-
neering for Self-Adaptive Systems, volume 5525 of LNCS, pages 128–145. Springer-
Verlag, 2009.

[Nystrom et al., 2003] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C.
Myers. Polyglot: An extensible compiler framework for Java. In Compiler
Construction, volume 2622 of Lecture Notes in Computer Science, pages 138–152.
Springer-Verlag, 2003.

[Odersky, 2007] Martin Odersky. Scala language secification v. 2.4. Technical report,
École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland, March
2007.

[Ousterhout, 1998] John K. Ousterhout. Scripting: Higher level programming for
the 21st century. IEEE Computer, 31(3):23–30, March 1998.

[Parr, 2007] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Programmers, May 2007.

[Piumarta and Warth, 2006] Ian Piumarta and Alessandro Warth. Open reusable
object models. Technical report, Viewpoints Research Institute, 2006. VPRI Re-
search Note RN-2006-003-a.

[Pluquet et al., 2009] Frédéric Pluquet, Antoine Marot, and Roel Wuyts. Fast type
reconstruction for dynamically typed programming languages. In DLS ’09: Pro-
ceedings of the 5th symposium on Dynamic languages, pages 69–78, New York, NY,
USA, 2009. ACM.

[Renggli and Gîrba, 2009] Lukas Renggli and Tudor Gîrba. Why Smalltalk wins
the host languages shootout. In Proceedings of International Workshop on Smalltalk
Technologies (IWST 2009), pages 107–113, New York, NY, USA, 2009. ACM.

[Renggli and Nierstrasz, 2007] Lukas Renggli and Oscar Nierstrasz. Transactional
memory for Smalltalk. In Proceedings of the 2007 International Conference on Dynamic
Languages (ICDL 2007), pages 207–221. ACM Digital Library, 2007.

[Renggli and Nierstrasz, 2009] Lukas Renggli and Oscar Nierstrasz. Transactional
memory in a dynamic language. Journal of Computer Languages, Systems and Struc-
tures, 35(1):21–30, April 2009.

155

Appendix C Bibliography

[Renggli et al., 2007] Lukas Renggli, Stéphane Ducasse, and Adrian Kuhn. Magritte
— a meta-driven approach to empower developers and end users. In Gregor
Engels, Bill Opdyke, Douglas C. Schmidt, and Frank Weil, editors, Model Driven
Engineering Languages and Systems, volume 4735 of LNCS, pages 106–120. Springer,
September 2007.

[Renggli et al., 2009] Lukas Renggli, Marcus Denker, and Oscar Nierstrasz. Lan-
guage Boxes: Bending the host language with modular language changes. In
Software Language Engineering: Second International Conference, SLE 2009, Denver,
Colorado, October 5-6, 2009, volume 5969 of LNCS, pages 274–293. Springer, 2009.

[Renggli et al., 2010a] Lukas Renggli, Stéphane Ducasse, Tudor Gîrba, and Oscar
Nierstrasz. Domain-specific program checking. In Jan Vitek, editor, Proceed-
ings of the 48th International Conference on Objects, Models, Components and Patterns
(TOOLS’10), volume 6141 of LNCS, pages 213–232. Springer-Verlag, 2010.

[Renggli et al., 2010b] Lukas Renggli, Stéphane Ducasse, Tudor Gîrba, and Oscar
Nierstrasz. Practical dynamic grammars for dynamic languages. In 4th Workshop
on Dynamic Languages and Applications (DYLA 2010), Malaga, Spain, June 2010.

[Renggli et al., 2010c] Lukas Renggli, Tudor Gîrba, and Oscar Nierstrasz. Embed-
ding languages without breaking tools. In Theo D’Hondt, editor, ECOOP’10:
Proceedings of the 24th European Conference on Object-Oriented Programming, volume
6183 of LNCS, pages 380–404, Maribor, Slovenia, 2010. Springer-Verlag.

[Repenning and Ioannidou, 2009] Alexander Repenning and Andri Ioannidou. X-
expressions in XMLisp: S-expressions and extensible markup language unite. In
ILC ’07: Proceedings of the 2007 International Lisp Conference, pages 1–11, New York,
NY, USA, 2009. ACM.

[Roberts et al., 1997] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring
tool for Smalltalk. Theory and Practice of Object Systems (TAPOS), 3(4):253–263,
1997.

[Roberts, 1999] Donald Bradley Roberts. Practical Analysis for Refactoring. PhD the-
sis, University of Illinois, 1999.

[Rutar et al., 2004] Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. A com-
parison of bug finding tools for Java. In Software Reliability Engineering, 2004. IS-
SRE 2004. 15th International Symposium on, pages 245–256, 2004.

[Sammet, 1969] Jean Sammet. Programming Languages: History and Fundamentals.
Prentice Hall, 1969.

156

Appendix C Bibliography

[Schwerdfeger and Wyk, 2010] August Schwerdfeger and Eric Van Wyk. Verifiable
parse table composition for deterministic parsing. In Software Language Engineer-
ing, volume LNCS 5969, pages 184–203. Springer, 2010.

[Seaton, 2007] Chris Seaton. A programming language where the syntax and se-
mantics are mutable at runtime. Technical Report CSTR-07-005, University of
Bristol, June 2007.

[Seela et al., 2008] Ramesh Seela, Ryan Miller, Derek Chang, Ali Shojaeddini, and
Ankit Sengar. FxCop tool evaluation. Technical report, Carnegie Mellon Univer-
sity, March 2008.

[Shaw and Garlan, 1996] Mary Shaw and David Garlan. Software Architecture: Per-
spectives on an Emerging Discipline. Prentice-Hall, 1996.

[Sheard, 2001] Tim Sheard. Accomplishments and research challenges in meta-
programming. In SAIG 2001: Proceedings of the Second International Workshop on
Semantics, Applications, and Implementation of Program Generation, pages 2–44, Lon-
don, UK, 2001. Springer-Verlag.

[Simonyi et al., 2006] Charles Simonyi, Magnus Christerson, and Shane Clifford. In-
tentional software. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications, pages
451–464. ACM, 2006.

[Solmi, 2005] Riccardo Solmi. Whole Platform. PhD thesis, University of Bologna,
March 2005.

[Spinellis, 2001] Diomidis Spinellis. Notable design patterns for domain specific
languages. Journal of Systems and Software, 56(1):91–99, February 2001.

[Taha, 2003] Walid Taha. A gentle introduction to multi-stage programming. In
Domain-Specific Program Generation, pages 30–50, 2003.

[Tanter, 2009] Éric Tanter. Reflection and open implementations. Technical Report
TR/DCC-2009-13, University of Chile, November 2009.

[Tolvanen et al., 2007] Juha-Pekka Tolvanen, Risto Pohjonen, and Steven Kelly. Ad-
vanced tooling for domain-specific modeling: MetaEdit+. In Proceedings of the 7th
OOPSLA Workshop on Domain-Specific Modeling, 2007.

[Tratt, 2005] Laurence Tratt. The Converge programming language. Technical Re-
port TR-05-01, Department of Computer Science, King’s College London, Febru-
ary 2005.

[Tratt, 2008] Laurence Tratt. Domain specific language implementation via
compile-time meta-programming. ACM TOPLAS, 30(6):1–40, 2008.

157

[Van Wyk et al., 2002] Eric Van Wyk, Oege de Moor, Kevin Backhouse, and Paul
Kwiatkowski. Forwarding in Attribute Grammars for Modular Language De-
sign. Lecture Notes in Computer Science, pages 128–142, 2002.

[Van Wyk et al., 2007] Eric Van Wyk, Lijesh Krishnan, Derek Bodin, and August
Schwerdfeger. Attribute grammar-based language extensions for java. In
ECOOP’07: Proceedings of the 21st European Conference on Object-Oriented Program-
ming, pages 575–599, Berlin, Germany, July 2007. Springer.

[Visser, 1997] Eelco Visser. Scannerless generalized-LR parsing. Technical Report
P9707, Programming Research Group, University of Amsterdam, July 1997.

[Visser, 2004] Eelco Visser. Program transformation with Stratego/XT: Rules,
strategies, tools, and systems in StrategoXT-0.9. In C. Lengauer et al., editors,
Domain-Specific Program Generation, volume 3016 of Lecture Notes in Computer Sci-
ence, pages 216–238. Spinger-Verlag, June 2004.

[Walton, 1996] Lisa Walton. Domain-specific languages, 1996.
[Warth and Piumarta, 2007] Alessandro Warth and Ian Piumarta. OMeta: an object-

oriented language for pattern matching. In DLS ’07: Proceedings of the 2007 sym-
posium on Dynamic languages, pages 11–19, New York, NY, USA, 2007. ACM.

[Warth et al., 2008] Alessandro Warth, James R. Douglass, and Todd Millstein. Pack-
rat parsers can support left recursion. In PEPM ’08: Proceedings of the 2008 ACM
SIGPLAN symposium on Partial evaluation and semantics-based program manipulation,
pages 103–110, New York, NY, USA, 2008. ACM.

[Watt, 1991] David A. Watt. Programming Language Syntax and Semantics. Prentice-
Hall, 1991.

[Wexelblat, 1981] Richard Wexelblat. History of programming languages. Academic
Press, 1981.

[Wirth, 1977] Niklaus Wirth. What can we do about the unnecessary diversity of
notation for syntactic definitions? Commun. ACM, 20(11):822–823, 1977.

[Wuyts and Ducasse, 2001] Roel Wuyts and Stéphane Ducasse. Symbiotic reflec-
tion between an object-oriented and a logic programming language. In ECOOP
2001 International Workshop on MultiParadigm Programming with Object-Oriented
Languages, 2001.

[Wuyts, 2001] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis, Vrije Univer-
siteit Brussel, 2001.

	1
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Types of Embedded Languages
	Shortcomings of Existing Approaches
	Thesis Statement
	Our Solution in a Nutshell
	Contributions
	Outline

	Approaches for Combining Languages
	Internal Languages
	Function Sequence
	Function Nesting
	Function Chaining
	Higher-Order Functions
	Language Literals
	Operator Overloading
	Meta-Annotations
	Program Generation
	Macro Programming

	External Languages
	Embedded Languages
	Extensible Compilers
	Meta-Programming Systems
	Language Workbenches
	Language Transformations
	Modeling Languages

	Roadmap

	Enabling Language Embedding
	The Helvetia Model
	Homogeneous Language Integration
	Homogeneous Tool Integration
	Defining Helvetia Rules

	Evaluation of the Helvetia Model
	Pidgin, Creole and Argot Languages
	Multiple Context-Dependent Languages
	Homogeneous Tool Support
	Homogeneous Code and Data Abstraction
	Conventional Language and Tools

	Conclusion

	Helvetia Exemplified
	Matching and Generating Code
	Tree Pattern Matching
	Code Generation with Quasiquoting

	A Pidgin: Mondrian
	Specifying the Mondrian Pidgin

	A Creole: Mondrian
	Specifying the Mondrian Creole

	An Argot: Transactional Memory
	Programming with transactions
	Inside transactions

	Conclusion

	Combining Language Extensions
	Language Boxes in Practice
	Language Box Model
	Language Change
	Language Concern
	Language Scope

	Implementation
	Case Study
	Adding an SQL Language Extension
	Restricting the Scope of a Language Extension
	Mixing Different Language Extensions
	Tool Integration

	Conclusion

	Dynamic Grammars
	PetitParser
	PetitParser in Practice
	Grammar Specialization
	Grammar Composition
	Grammar Conflicts
	Grammar Transformations
	Declarative Grammar Rewriting
	Tool Support
	Performance

	Related Work
	Conclusion

	Domain-Specific Program Checking
	History of Program Checking
	Examples of Domain-Specific Rules
	Syntactic rules for Seaside
	Magritte — code checking with a metamodel

	Case Studies
	Seaside
	Cmsbox
	User Survey
	Magritte

	Related Program Checkers
	Conclusion

	Host Language Requirements
	Requirements for Language Embedding
	Requirements for a Host Environment
	Host Language Shootout
	Minimal Syntax
	Dynamic Semantics
	Reflective Language
	Homoiconic Language
	Homogeneous Environment
	On-the-fly Changes

	Conclusion

	Conclusions
	Contributions of the Dissertation
	Impact of Helvetia
	Future Research Directions

	Getting Started
	Installation
	Downloading a One-Click Distribution
	Building a Custom Image

	A First Language Extension: Roman Numbers
	A First Language Box: Regular Expressions

	Examples
	Roman Numbers
	Grammar Definition
	SQL
	Regular Expression
	SPath Expression
	Quasiquoting and Unquoting
	Brainfuck Language
	Positional Arguments
	Automaton
	Tuple Space
	Mondrian
	Transactional Memory
	Object Relationships
	String Interpolation
	Assignments and Swapping
	Schematic Tables
	Functional Pattern Matching
	Message Pipes
	Asynchronous Messages

	Bibliography

