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Abstract

Object-oriented language features such as inheritance, abstract types,
late-binding, or polymorphism lead to distributed and scattered code,
rendering a software system hard to understand and maintain. The
integrated development environment (IDE), the primary tool used by
developers to maintain software systems, usually purely operates on
static source code and does not reveal dynamic relationships between
distributed source artifacts, which makes it difficult for developers to
understand and navigate software systems.

Another shortcoming of today’s IDEs is the large amount of informa-
tion with which they typically overwhelm developers. Large software
systems encompass several thousand source artifacts such as classes and
methods. These static artifacts are presented by IDEs in views such as
trees or source editors. To gain an understanding of a system, developers
have to open many such views, which leads to a workspace cluttered with
different windows or tabs. Navigating through the code or maintaining a
working context is thus difficult for developers working on large software
systems.

In this dissertation we address the question how to augment IDEs
with dynamic information to better navigate scattered code while at the
same time not overwhelming developers with even more information in
the IDE views. We claim that by first reducing the amount of informa-
tion developers have to deal with, we are subsequently able to embed
dynamic information in the familiar source perspectives of IDEs to bet-
ter comprehend and navigate large software spaces. We propose means
to reduce or mitigate the information by highlighting relevant source
elements (HeatMaps), by explicitly representing working context (Smart-
Groups), and by automatically housekeeping the workspace in the IDE
(AutumnLeaves). We then improve navigation of scattered code by ex-
plicitly representing dynamic collaboration (Hermion, Senseo, CollView)
and software features (FeatureEnv) in the static source perspectives of



vi

IDEs. We validate our claim by conducting empirical experiments with
developers and by analyzing recorded development sessions.
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Chapter 1

Introduction

1.1 Problems of Traditional IDEs

Traditional integrated development environments (IDEs) such as Eclipse
[ECcL1 03] and NetBeans [NETB 10] for Java, Microsoft Visual Studio
[MICR 10] for C#/C++, or VisualWorks [VIsU 10], Pharo [BLAC 09] and
Squeak [INGA 97] for Smalltalk usually provide a static perspective on
an object-oriented software system. Such a perspective provides a means
to read, modify, create, or delete static source artifacts such as packages,
classes, or methods.

Object-oriented language features such as late-binding, inheritance,
or polymorphism, however, usually lead to distributed and scattered
code which is hard to understand by just focusing on static source arti-
facts and static relationships between these artifacts [DEME 03, DUNS 00,
WILD 92, NIEL 89a, HAMO 05]. Often it is not possible to identify and
locate conceptually related code in the static source space as many
relationships are purely dynamic and thus only present at runtime
[NIEL 89a, NIEL 89b, DUNS 00]. Due to the narrow focus of IDEs on static
source perspectives, most of these dynamic relationships between source
artifacts remain unclear, obscure or simply invisible to the developer
while using the static perspectives of IDEs. In short, traditional IDEs lack
dynamic information in their usually purely static source perspectives.

In today’s IDEs developers are often overloaded with information.
First, IDEs usually contain many complex perspectives and facilities such
as search widgets, menus with hundreds of options, or a plethora of open
windows or tabs [SING 05]. Second, the software systems maintained
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in an IDE are typically large. A developer is overwhelmed by the vast
amount of system artifacts (for instance, classes or methods, configura-
tion or documentation files, log files, etc.) and has thus difficulties to
gain an overview or an initial understanding of an unfamiliar system
[SING 05, KERS 05, KERS 06]. Developers miss a “big picture” view of the
system or a guide throughout the system, for instance by visually relating
artifacts that conceptually belong together but are widely distributed in
the static source space [DESM 06]. IDEs fail to give such a guidance how
to overview and navigate a system. Hence, adding even more informa-
tion to IDE perspectives to also show dynamic relationships between the
static source elements is dangerous as such additional information might
further obstruct system overview and navigation.

We realize that IDEs suffer from two main problems, namely overload-
ing developers with too much information and yet at the same time narrowly
focusing on a software’s static structure and thus missing information about
dynamic relationships between distributed source artifacts.

As software development is a complex process, we first identify sev-
eral distinct activities in this process. The identified problems of IDEs
do not affect all these development activities in the same way. Second,
we carefully analyze the two main issues of IDEs to separate several
sub-problems. Finally, we elaborate a taxonomy that reveals which IDE
shortcoming affects which development activity such as feature imple-
mentation or artifact collaboration investigation. This taxonomy serves
as a guideline to generate ideas how we can address the different short-
comings of IDEs tailored to the needs of different software development
activities.

1.1.1 Development Activities

In the following, we introduce nine development activities proposed
by the literature [PACI 04] as a comprehensive set of activities typically
performed by developers during software maintenance, but also during
initial development of applications. Most of the time, these activities are
performed in IDEs. Sometimes developers additionally use other tools
or environments, such as software analysis tools, but the IDE remains
the primary development tool for practically all activities and developers.
According to studies and surveys Eclipse is used by more than half of all
Java developers [GOTH 05], while only a negligible percentage is using
conventional text editors such as Emacs [CAME 96]. As most Smalltalk
dialects come with a complete environment in which the IDE is included,
it is clear that Smalltalk developers are using an IDE and not, for instance,
a plain text editor.
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We follow the development activities framework introduced by Pa-
cione et al. [PACI 04] which proposes the subsequent nine core activities.

1. Feature investigation. In this activity, developers analyze how soft-
ware features (or parts thereof) are implemented, for instance to
reveal which artifacts collaborate to each other to realize a specific
feature.

2. Feature implementation and adaptation. This activity is concerned with
the implementation of new software functionality or the adaptation,
extension, or improvement of existing software features.

3. Artifact investigation. When investigating artifacts, developers ana-
lyze the internal structure of packages, classes, or methods to, for
instance, reveal the class-internal execution flow.

4. Dependency investigation. Studying the dependencies or relation-
ships between different artifacts is called dependency investigation.
This activity is for example performed when developers need to
understand communication patterns between two classes to reveal
the degree of coupling between them.

5. Runtime interaction investigation. In this activity, dynamic commu-
nication and interaction between different artifacts is analyzed, for
example which messages are sent by instances of a class to instances
of another class or how two packages interact at runtime, e.g. which
classes of the two packages communicate with each other.

6. Artifact usage investigation. Developers investigate the usage of
single artifacts to, for instance, reveal the clients of a specific artifact
or how often this artifact is invoked in a specific software feature.

7. Execution patterns investigation. Developers investigate patterns in
system’s execution to better understand the running of the system,
to reveal communication paths between artifacts or within a single
artifact, to follow the control flow, or to assess performance issues,
e.g. when a frequently occurring execution pattern is slow.

8. Quality assessment. Assessing a system’s quality is necessary when
the system is hard to maintain, evolve, or also when it has per-
formance problems. When assessing software quality, developers
usually perform one or several of the other activities as well.

9. Domain concepts understanding. To successfully implement, maintain
and deploy a system, developers also need to understand its domain
and how the domain concepts are represented and implemented in
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the system. Thus this activity is concerned with studying, locating,
or identifying domain concepts in the software system.

In the next section, we identify and categorize the main shortcomings
of IDEs with respect to these software maintenance activities.

1.1.2 Problem Identification

While performing these development activities, developers are usually
affected or even hampered by one or more shortcomings of traditional
IDEs. Before being able to tackle the problem of the narrow focus of
IDEs on static software structure by augmenting these perspectives with
dynamic information, we have to reduce or better organize the (static)
information presented to developers to not overload the source views
even more. Hence, we first analyze the information overload problem
developers suffer from in most IDEs [DE A 08] and derive consequent
problems from this major issue of IDEs. Second, we deduce several
subsequent issues caused by the narrow focus of IDEs on static source
perspectives that neglect runtime information and collaboration between
the static source artifacts.

We deliberately do not discuss in our analysis other problems of IDE
that are not directly related to the two main IDE issues. For instance, IDEs
usually do not support quality assessment of the developed application.
Developers do not obtain automatic feedback from the IDE whether the
current implementation of the system is sound or rather error-prone. The
IDE could, for instance, analyze whether the code being currently written
has any flaws such as being a duplication of other code or whether it
violates commonly accepted principles such as design or best practice
patterns. However, such issues are largely beyond the scope of this work.

Overloaded, unorganized views. Comprehending a software system
is a prerequisite to improve, extend, or correct it. Being overloaded
with too much information in an IDE, however, makes it difficult for a
developer to understand the implementation and behavior of a system
[SING 05, KERS 05]. One negative impact of information overload is a
loss of overview of the system [KERS 05]: How is the system structured,
what are the relations between the different parts, where and how is a
particular feature implemented — these and other questions are difficult
to answer in a huge software space.

The IDE as the primary tool to navigate software does not well sup-
port the process of dealing with a huge software space. It offers only few
means such as a tree of hierarchically related source artifacts (for instance,
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Indicator Avg. of 20 sessions
Number of window switches 38.85
Number of entities revisited 35.10
Edit / navigation ratio 9.51%

Table 1.1: Three indicators highlighting navigation issues caused by infor-
mation overload in IDEs.

packages containing classes that contain methods) to help developers
to gain some degree of overview [SING 05]. However, there is no clear
path drawn by the IDE through the huge forest of software entities, in
particular there is usually limited or no support for task-oriented program-
ming [KERS 05, SING 05]. The IDE does not reflect about the nature of
the current task-at-hand, this means there is no guide whatsoever to
advise developers how to complete the current task, for instance sugges-
tions which particular entities they need to consider to correct a defect
[SING 05].

Related to missing task-orientation is the unavailability of context in
IDEs [DESM 06]. The current context is for instance the working set of
entities the developer is focusing on, that is, the entities relevant for the
current development task. This context also consists of distinct views
on these entities, such as open debugger or inspector views and type
hierarchies or source repository views. A working context is often just a
subset of all currently open views or windows in an IDE, as developers
usually do not regularly close windows unrelated to the current focus
of development [ROTH 09a]. Thus having an explicit and persistent rep-
resentation of a working context would help developers to keep and to
later on re-establish the focus on the task-at-hand [KERS 05].

We analyzed various development sessions [ROTH 09b] to receive an
impression of how seriously developers are hampered in practice by in-
formation overload in IDEs and their missing task-orientation or context
representation. In the first study, we recorded navigation and modifica-
tion activities from 20 distinct development sessions lasting for 30 minutes
and performed in Squeak Smalltalk [INGA 97] by twelve different devel-
opers working on small or medium-sized applications with not more than
100 classes. As indicators for navigation difficulties caused by information
overload, we 