downl oaded: 9. 4.2024

.org/ 10. 24442/ bor i st heses. 1026 |

https://doi

source:

Augmenting IDEs with

Runtime Information for
Software Maintenance

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultit
der Universitdt Bern

vorgelegt von

David Rothlisberger
von Langnau (BE)

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz
Institut fiir Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultdt angenommen.

Der Dekan:
Bern, 04.06.2010 Prof. Dr. U. Feller

This dissertation is available as a free download from http:/scg.unibe.ch/

Copyright © 2010 David Rothlisberger

The contents of this book are protected under Creative Commons Attribution-ShareAlike
3.0 Unported license.

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same, similar or a compatible license.

¢ For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://www.creativecommons.org/licenses/by-sa/3.0/

* Any of the above conditions can be waived if you get permission from the copyright
holder.

* Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above.
This is a human-readable summary of the Legal Code (the full license):
BY SA

http://www.creativecommons.org/licenses/by-sa/3.0/legalcode

Published by David Rothlisberger, Switzerland
ISBN 978-1-4457-6026-1
First Edition, May 2010

http://scg.unibe.ch/
http://www.creativecommons.org/licenses/by-sa/3.0/
http://www.creativecommons.org/licenses/by-sa/3.0/legalcode

Acknowledgments

I'was only able to complete this dissertation thanks to the kind help of
people who gave me advice, hints, ideas, or encouragement.

Most notably, I want to thank Oscar Nierstrasz for giving me the
opportunity to work on this dissertation at the Software Composition
Group. Without his continuous support, his professional advice, and his
encouraging feedback on my work it would not have been possible to
finish this dissertation.

I am also grateful to Harald Gall for being the external reviewer of this
dissertation, for carefully reading and evaluating this document, and for
coming to Bern to join the jury of the PhD defense. I also thank Torsten
Braun for accepting to chair the examination and the PhD defense.

I want to thank particularly Stéphane Ducasse who introduced me to
the Software Composition Group, motivated me to pursue a PhD, and
gave me countless ideas and visions that highly influenced this work.
Without the inspiring discussions and email conversations we had, with-
out Stef’s enthusiasm, his priceless advice and his infinite, inexhaustible
passion for the things he is doing, this dissertation would not be the same.

Special thanks also goes to Orla Greevy who taught me how to write
papers and conduct research and who created a warm working environ-
ment when I started with this dissertation. I also thank Tudor Girba for
all the countless and intensive discussions which often sharpened my
awareness for important aspects of research. Moreover, I thank Marcus
Denker who supervised my Master’s thesis and back then encouraged
me to pursue a PhD by introducing me to the world of research.

I specifically also thank people that provided appreciated feedback on
drafts of this dissertation: Oscar Nierstrasz, Orla Greevy, Tudor Girba,
Niko Schwarz, Andreas Fischer, Andreas Thomet, Sabine Benz.

Many thanks go to the present and former Software Composition
Group members: Adrian Kuhn for his inspiring nature, his imaginative

appeal, and for the room sharing in Vancouver; Adrian Lienhard for
his even-tempered, unagitated yet impressing, assiduous work; Fabrizio
Perin for all the funny discussions, the splendid Italian lessons, and the
entertaining adventures in Lille; Lukas Renggli for his unrivaled Smalltalk
skills and his quality awareness; Jorge Ressia for his unique sense of hu-
mor; Niko Schwarz for the funny exercise sessions and his unadulterated
belief in research; Toon Verwaest for his inspiring enthusiasm; Erwaan
Wernli for his feature-length presentations; Marcus Denker for his social-
izing spirit and his unshakable belief in the good of Smalltalk; Markus
Giilli for his cheerful mindset; Tudor Girba for his helpful attitude and his
willingness to share his knowledge; Orla Greevy for her amiable nature,
the pleasant co-operation, and the good time we shared in the same office.

Thanks also to Therese Schmid and Iris Keller for their excellent sup-
port with the administrative chores. I particularly also thank Marcel
Harry for his studious, persevering work on Senseo and Orla Greevy for
her contributions to FeatureEnv!

I also thank the external people I collaborated with, most notably
Danilo Ansaloni, Alexandre Bergel, Walter Binder, Simon Denier, Philippe
Moret, Damien Pollet, Romain Robbes, and Alex Villazén. All of them
contributed to this dissertation. I particularly thank Alexandre Bergel for
inviting me to Santiago de Chile and for the nice time we had there.

Furthermore, I thank various persons I met during the work on this
dissertation at conferences, during meetings or research visits: Hani
Abdeen, Marco D’Ambros, Alberto Bacchelli, Jérémy Barbay, Gwenael
Casaccio, Johan Fabry, Thomas Fritz, Sonia Haiduc, Lile Hattori, Michele
Lanza, Jannik Laval, Mircea Lungu, Fernando Olivero, Daniel Ratiu, Eric
Tanter, and Richard Wettel.

Special thanks go to Anina Bachem, Michelle Bauer, Katharina Leder-
mann, Rachel Martins, and Petra Schilling who were somehow, for one or
the other reason part of the process.

I thank my family, Heidi, Andreas, Erwin, Mirjam, and Stefan. Above
all, I thank Therese for her heart of gold, her greatness of mind, and her
unconditional support.

My words fly up, my thoughts remain below. Words without

thoughts never to heaven go.
— William Shakespeare

Abstract

Object-oriented language features such as inheritance, abstract types,
late-binding, or polymorphism lead to distributed and scattered code,
rendering a software system hard to understand and maintain. The
integrated development environment (IDE), the primary tool used by
developers to maintain software systems, usually purely operates on
static source code and does not reveal dynamic relationships between
distributed source artifacts, which makes it difficult for developers to
understand and navigate software systems.

Another shortcoming of today’s IDEs is the large amount of informa-
tion with which they typically overwhelm developers. Large software
systems encompass several thousand source artifacts such as classes and
methods. These static artifacts are presented by IDEs in views such as
trees or source editors. To gain an understanding of a system, developers
have to open many such views, which leads to a workspace cluttered with
different windows or tabs. Navigating through the code or maintaining a
working context is thus difficult for developers working on large software
systems.

In this dissertation we address the question how to augment IDEs
with dynamic information to better navigate scattered code while at the
same time not overwhelming developers with even more information in
the IDE views. We claim that by first reducing the amount of informa-
tion developers have to deal with, we are subsequently able to embed
dynamic information in the familiar source perspectives of IDEs to bet-
ter comprehend and navigate large software spaces. We propose means
to reduce or mitigate the information by highlighting relevant source
elements (HeatMaps), by explicitly representing working context (Smart-
Groups), and by automatically housekeeping the workspace in the IDE
(AutumnLeaves). We then improve navigation of scattered code by ex-
plicitly representing dynamic collaboration (Hermion, Senseo, CollView)
and software features (FeatureEnv) in the static source perspectives of

vi

IDEs. We validate our claim by conducting empirical experiments with
developers and by analyzing recorded development sessions.

Contents

List of Figures

List of Tables

1 Introduction
1.1 Problems of Traditional IDEs

1.1.1
1.1.2
1.1.3

Development Activities
Problem Identification

Taxonomy of IDE Problems and Development Ac-
tivities

1.2 Proposal: Tackling Overloaded Views and Integrating Dy-
namic InformationinIDEs

1.2.1
1.2.2
1.2.3

Mitigating Information Overload inIDEs
Enhancing IDEs with Dynamic Information

Summary

1.3 Contributions e

1.4 Structure of the Dissertation

2 State of the Art

2.1 Development Environments

211

2.1.2
2.1.3
2.1.4

Program Analysis and Sophisticated Information
Presentation

Source History Analysis
Developer Activity Analysis
Debugging, Profiling

xiii

xix

viii

Contents

215 Querying. oo 45

21.6 Conclusions 49

2.2 Software Analysis and Visualization 50
2.2.1 Means to Present Static or Historical Information . 51

22.2 DynamicAnalysis 54

223 Summary 60

23 Conclusions 60
Mitigating Information Overload in IDEs 63
HeatMaps — A Navigational Aid 67
3.1 Introduction, 67
3.1.1 Positioning HeatMaps 67

3.1.2 Introduction to HeatMaps 68

3.2 Information Overflow and Overload inIDEs 70
321 MotivatingUseCase 70

3.2.2 Development Driven Information 71

33 HeatMaps 72
34 Validation 76
3.4.1 [Efficiencyof HeatMaps 77

342 Accuracyof HeatMaps 77

343 Userfeedback 83

3.5 Related Work and Discussion 84
351 RelatedWork 84

3.52 Discussion oo 86

3.6 SummaryoftheChapter 88
SmartGroups — Representing Context in IDEs 91
41 Introduction 91
41.1 Positioning SmartGroups 91

41.2 Introduction to SmartGroups 92

4.2 Software Space NavigationIssues 94

ix

43 Existing Approaches 96
44 SmartGroupsinaNutshell 98
441 Automatic Smart Groups 98
442 Manual SmartGroups 107
443 Query Results as Smart Groups 107
444 Integration of the SmartGroups View 108
45 Validation oL 109
45.1 Correctness of SmartGroups 109
452 UserFeedback 116
4.6 SummaryoftheChapter 117

AutumnLeaves — Reducing the Number of Open Windows 119

5.1 Introduction 119
5.1.1 Positioning AutumnLeaves 119
5.1.2 Introduction to AutumnLeaves 120
52 Problem Analysis: Window PlagueinIDEs 122
53 Autumnleaves 125
5.3.1 AutumnleavesinaNutshell 125
5.3.2 Variations, Modifications, Adaptations 128
54 Validation, 130
54.1 Correctness 130
54.2 Practicalityo 0L 136
5.4.3 Differences betweenIDEs 137
5.5 Summaryofthe Chapter 138
Discussion 139
6.1 Other IDE Enhancements Tackling Information Overload . 139
6.2 Conclusions 140
6.2.1 Problems Addressed 140

6.2.2 Remaining Problems 142

X Contents

II Exploiting Dynamic Information in IDEs 145
7 Hermion — Extending Source Code Perspectives with Dynamic
Information 149
71 Introduction 149
7.1.1 Positioning Hermion 149
7.1.2 Introduction to Hermion 150
7.2 Dynamic InformationintheIDE 152
7.2.1 Scenario: Understanding a Complex System 152
722 HermionOverview 157
7.3 Dynamic Information Gathering 158
7.3.1 Partial Behavioral Reflection 159
74 Validation L. 160
7.4.1 Case Studies: Pier and OmniBrowser 161
742 Efficiency 163
74.3 Preliminary Empirical Evaluation 163
75 Discussion o 165
76 RelatedWork 166
7.6.1 Techniques Encompassing Dynamic Information . 166
7.6.2 Techniques Purely Based on Static Analysis 167
7.7 Summary of theChapter 168
8 Senseo — High Level Augmentations of IDEs with Dynamic In-
formation 171
8.1 Introduction 171
8.1.1 Positioning Senseoo 171
8.1.2 Introductionto Senseo 172
8.2 Motivation 174
8.3 Integrating Dynamic InformationinIDEs 176
8.3.1 Architecture 176
8.3.2 Dynamic Information 177
8.3.3 EnhancementstotheIDE 178

8.4 Collecting Dynamic Information 181

10

85 Validation
8.5.1 Experimental Design
8.5.2 Resultsand Discussion
85.3 Threatsto Validity

8.6 Performance,

87 RelatedWork

8.8 SummaryoftheChapter

CollView — Representing Dynamic Collaboration in IDEs
91 Introduction
9.1.1 Positioning CollView
9.1.2 Introductionto CollView
9.2 Hidden Dynamic Collaboration
9.3 Representing Dynamic Collaboration in the IDE
9.3.1 Gathering Dynamic Information
9.3.2 Explicit Dynamic Collaboration.
9.3.3 Enhancing Existing IDETools
94 Validation L.
9.4.1 Performance Benchmarks
9.42 Developer Feedback
9.5 Discussion e
9.6 RelatedWork
9.7 SummaryoftheChapter

FeatureEnv - Visualizing Software Features in IDEs

10.1 Introduction
10.1.1 Positioning FeatureEnv
10.1.2 Introduction to FeatureEnv

10.2 Problem of Feature Identification
10.2.1 Explicitly Representing Features in the IDE

10.3 FeatureEnv, a Feature-centric Environment
10.3.1 Feature Affinity ina Nutshell
10.3.2 Elements of FeatureEnv

xi

184
184
188
192
194
197
199

xii Contents

10.3.3 Maintaining Software with FeatureEnv 233

104 Validationo L. 234
10.4.1 Introducing the Experiment 234

10.4.2 Hypotheses 235

104.3 Studydesign 235

1044 StudyResult. 237

10.4.5 Threatsto Validity 242

10.4.6 Study Conclusion 243

10.5 Discussion oo 243
10.6 Related Work 245
10.7 Summary of the Chapter 246

11 Discussion 249
11.1 Problems Addressed in the Second Part 249
11.2 Problems Previously Addressed 251
11.3 Remaining Problems 252
III Conclusions 255
12 Contributions 259
13 Perspectives 265
IV Appendices 269
A Additional IDE Enhancements 271
Al Visualizations 271
A1l System Complexity View 272

A12 ClassBlueprint 273

A13 UMLClass Diagrams 275

A2 IconicInformation 276

Bibliography 279

List of Figures

1.1

1.2

21

2.2

2.3

24

25

2.6

Table of development activities and their problems devel-
opers face when working on them in IDEs. A cell with an
"X’ means that the corresponding problem affects the corre-
sponding activity, while a grayed out cell means that there
is no special influence of this problem on this particular
activity.

The different problems of IDEs our seven techniques tackle
and to which development activities they thus contribute.
A cell with an "X” means that the corresponding problem
affects the corresponding activity, but we do not provide
a solution for this particular problem. A grayed out cell
means that there is no influence of a problem on a particular
activity.

Seesoft colors source code lines in a heat gradient to draw
a developer’s attention to important lines.

Seesoft tackles the information overload and the missing
overview in IDEs, but only on a source code level.

Microprints appearing next to the method source code in
the VisualWorks Smalltalk IDE.

Microprints mitigate the problem of information overload
and missing overview in IDEs, but only on a method and
singleclasslevel.

Fluid source code views inlining the method definition of

9

18

26

the invoked method getNextTask() in Eclipse’s source editor. 28

Fluid source code views aims at improving the information

overload, the overview, and the access to distributed artifacts. 29

Xiv

List of Figures

2.7 Hopscotch’s expandable and collapsable source editor view
showing several classes and their methods.

2.8 CodeSonar specifically addresses the problem of not hav-
ing support for quality assessment in IDEs and also im-
proves the overview of class relationships in software sys-
tems.

2.9 ROSE’s suggestion view (lower right) integrated into Eclipse.

2.10 Hipikat’s results view showing tasks similar to the cur-
rently performed task as specified in a task report.

2.11 ROSE, Hipikat, and other mining approaches tackle the
problem of related but distributed artifacts whose collabo-
ration is hidden in IDEs. Furthermore, they also mitigate
the information overload problem as related artifacts can
be easily navigated using the recommendation lists.

2.12 A concern representation in FEAT integrated in Eclipse. . .

2.13 FEAT tackles the problems of missing overview and in-
formation overload. If recorded navigation activities are
accurate, FEAT can reveal hidden dependencies between
distributed source artifacts relevant for specific features.

2.14 NavTracks’ related files view integrated in Eclipse.

2.15 NavTracks mitigates the information overload problem as
related entities can be quickly navigated with the recom-
mendation list, which also contains distributed artifacts
whose collaboration is otherwise not explicit in the IDE. . .

2.16 The different views provided by Mylyn in Eclipse.

2.17 Mylyn highlights interesting artifacts to mitigate the in-
formation overload, identifies task-relevant entities, and,
dependent on the quality of the development activities,
reveals hidden collaboration between artifacts or identifies
entities used in particular features.

2.18 Whyline improves the understanding of static source code,
execution flow, and features. Hidden collaborations can be
also spotted insomecases.

2.19 The method trace view of Compass visualizes the entire
runtime control flow as a tree of nodes in a fisheye view. A
node represents a method execution. The call stack below
the method trace view focuses on a single slice of the trace.

30

31
33

34
36

41

43

2.20

2.21

2.22

2.23
2.24

2.25

3.1

3.2

3.3

34
3.5

Compass reveals hidden dependencies between distant
source artifacts and improves understanding of static source
code and execution flow in specific system executions.

An example of JQuery showing in Eclipse an exploration
process tree starting with the results of a query.

JQuery reduces information overload in IDEs by explic-
itly representing concerns, thus relevant artifacts can be
studied in a single perspective, which also improves the
overview. Hidden collaboration between distributed arti-
facts is determined purely by static analysis.

Ferret’s query results view integrated in Eclipse.

By providing a dedicated but often overloaded query view,
Ferret improves to some degree information overload and
overview in the IDE. For the currently selected artifact,
related artifacts are revealed based on static and dynamic
analysis. However, only method invocations are dynami-
cally analyzed, thus support for the understanding of exe-
cution flow, static source code, and dynamic collaborations
islimited. L o

Summary of the different IDE problems tackled by the
presented related works. All problems are mitigated, but
not any of them thoroughly.

HeatMaps highlight relevant artifacts to reduce the infor-
mation overload and increase the overview in static source
views. HeatMaps also provide limited support for the
representation of context and helps developers to iden-
tify distributed artifacts that are conceptually related. As
HeatMaps can also take into account dynamic information,
they make execution paths more tangible by highlighting
executed artifacts. o oo oL

A color gradient from light blue to light red representing

Two HeatMaps highlighting number of versions of source
artifacts, top left, and recently browsed artifacts, bottom
right.

Time-based color gradient.

Metrics-based color gradient.

X0

44

46

47

49

X0l

4.1

4.2

4.3

5.1

52

53

6.1

7.1

7.2
73

7.4

7.5

7.6

List of Figures

SmartGroups primarily mitigate the problem of informa-
tion overload, represent context in IDEs, and, to a limited
degree, also make explicit hidden collaboration between
distributed source artifacts. 92

SmartGroups view integrated on the left side of Pharo Smalltalk’s
system browser, the core of the Smalltalk IDE. 102

Procedure to determine the correctness of an identified
task-relevant elements depending on its position. 111

AutumnLeaves primarily alleviates the problem of an over-
loaded workspace in IDEs, which, in turn, also gives devel-
opers a better overview of the system under investigation. 120

Eclipse supports tabbed browsing of the source space, but
there is only space for a limited number of tabs; additional
tabs are accessible in scroll list at the right. 123

Squeak Smalltalk provides a desktop on which full-fledged
windows are opened, similar asin MacOSX. 123

The various IDE shortcomings addressed by the proposals
presented in the first part of the dissertation (HeatMaps,
SmartGroups, and AutumnLeaves) and the development ac-
tivities to which these proposals contribute (HM = HeatMaps,

SG = SmartGroups). 140

Hermion primarily addresses the problem of imprecise
static source code and also of unclear execution flow in
methods. Additionally, hidden collaboration between dis-
tributed artifacts is made explicit on a method and class
level. 150

UML Class Diagram of the OmniBrowser kernel classes. . 153

Static search (1) vs. precise dynamic search (2) for imple-
mentors of children in Hermion. 155

List of methods invoked for message send nodesFrom:forNode:
inHermion. 155

List of types of instance variable selection extracted from
dynamic information in Hermion. 156

Enriched method source code view including a reference
viewin Hermion., . 157

7.7

7.8

8.1

8.2
8.3
8.4
8.5
8.6

8.7
8.8

9.1

9.2

9.3
94
9.5
9.6
9.7

X0l

The link invokes the metaobject upon occurrence of se-
lected base-level operations. 161

Comparison of execution times for different levels of in-
strumentation for OmniBrowser and Pier. 162

Senseo contributes to a better system overview, makes vis-
ible dynamic collaboration between distant artifacts, im-
proves the understanding of static source code and execu-
tion flow in and between source artifacts, and even offers

limited support for quality assessment. 172
Setup to gather dynamic information. 177
Sample code and its corresponding CCT. 179
All six interactive views of Senseo. L. 179
Simplified excerpt of the CCTAspect 183
Box plots comparing time spent and correctness between

control and experimental group. 190
Senseo overhead for the DaCapo benchmarks. 195

Size of transmitted data packets for “eclipse”. Serializa-
tion/transmission rate: 1.25 packets per second. 196

CollView aims at explicitly representing and visualizing
dynamic collaboration between related but statically dis-
tributed source artifacts. Moreover, CollView uncovers ex-
ecution flow primarily on a method level but to some de-
gree also on a class or package level. Eventually, CollView
contributes to a better system overview by displaying col-

laboration on a packagelevel. 202
UML diagram of Mondrian classes involved when display-

ingagraph. 0. 204
Sequence diagram in Mondrian to display a graph. 206
Class Collaboration Chart generated by the IDE. 209
Package Collaboration Chart generated by the IDE. 210
Method Collaboration Chart generated by the IDE. 211

Integration of a class collaboration chart in the Squeak
Smalltalk IDE. 211

xviii

10.1

10.2

10.3
10.4

10.5
10.6

10.7
10.8

11.1

Al

A2
A3
A4

List of Figures

FeatureEnv addresses the problem of the invisibility of fea-
tures in IDEs by explicitly representing them and also con-
tributes to make visible hidden collaboration between dis-

tributed source artifacts. o 0L 224
The relevant Pier class hierarchies for the copy page feature

anditscallgraph., 227
The Elements of our FeatureEnv. 229
The Common Subexpression and Sequence Compression

of the Feature Tree. 231
Comparing average time to correct the two defects. 238
Comparing average time between using FeatureEnv and

OMNIBROWSER to discover and correct a defect. 238
Boxplots showing the distribution of the different subjects. 239

Comparing the average results for the effect of compact
feature overview on program comprehension. 240

The various IDE shortcomings addressed by the proposals
presented in the second part of the dissertation (Hermion,
Senseo, CollView, and FeatureEnv) and the development
activities to which these proposals contribute (H = Hermion,
S = Senseo, CV = CollView, FE = FeatureEnv). 250

System complexity view of the AST package integrated in

the Squeak OmniBrowser IDE. 273
Class blueprint of the RBBlockNodeclass. 274
UML class diagram of a part of the AST package.. 275

Several icons appear when browsing class String, such as
the abstract, overridden, overrides, or overrides and over-
riddenicon. 278

List of Tables

1.1

1.2

3.1

3.2

3.3

4.1

4.2

43

44

4.5

4.6

Three indicators highlighting navigation issues caused by
information overload inIDEs. 5

Information overload caused by too many open windows
in the Eclipse and Smalltalk IDE. 6

Accuracy rates of different HeatMaps in the Monitoring

UseCase., 79
Accuracy rates of different HeatMaps in the Historical Use

Case. 80
Performance of different HeatMaps in specific tasks. . .. 83

Five indicators highlighting navigation issues occurring in
the Squeak Smalltalk IDE. 95

The different parameters used in the algorithm to identify
entities relevant for defect correction tasks and how they
influence the order of the relevant entities. 103

The different parameters used in the algorithm to identify
entities relevant for feature implementation and adaptation
tasks and how they influence the order of the relevant
entities. L o 104

The different parameters used in the algorithm to identify
entities relevant for program comprehension tasks and
how they influence the order of the relevant entities. . . . 105

The different parameters for considering dynamic informa-
tion to refine the ranked list of relevant entities. 106

Results of the benchmark evaluation for defect correction
tasks. 112

XX

47

4.8

5.1

52

53

54

8.1
8.2
8.3
8.4

8.5

8.6

9.1

9.2

9.3

10.1
10.2

12.1

List of Tnbles

Results of the benchmark evaluation for feature implemen-
tation and adaptationtasks. 112

Results of the benchmark evaluation for program compre-
hensiontasks. 113

Characteristic of the window plague in the Eclipse and
Smalltalk IDE 124

Weight addition to source entities upon certain actions on
the same or dependent entities. Propagation means adding
weight to related entities, for instance from a method to its
class or from a class to its superclass. 127

Weight addition to the a window upon certain actions on
thiswindow. 127

Correctness, false positives, false negatives and average
number of windows improvements provided by Autumn-
Leaves of three randomly selected sessions and averaged

overall 25sessions. Lo oL 133
Average expertise in control and experimental group. . . . 185
The five software maintenance tasks. 187
Statistical evaluation of the experimental results. 189

Task individual performance concerning time required and
correctness.. Lo 191

Percentage of subjects using specific dynamic information
inparticulartasks.. oo oL 191

Mean ratings of the subjects for each feature of Senseo. . . . 192

Time to gather data and render a class collaboration chart

forMondrian. 214
Time to gather data and render a class collaboration chart
forPier. 214

User rating for asked statements during the experiment. . 215

Formulation of the null hypotheses. 235

Questionnaire. 240

How we validated each proposal and the outcome of these
validations. o o o o 263

A.1l Icons available in Squeak Smalltalk for different source
artifacts. L

xxi

Chapter 1

Introduction

1.1 Problems of Traditional IDEs

Traditional integrated development environments (IDEs) such as Eclipse
[ECcL1 03] and NetBeans [NETB 10] for Java, Microsoft Visual Studio
[MICR 10] for C#/C++, or VisualWorks [VIsU 10], Pharo [BLAC 09] and
Squeak [INGA 97] for Smalltalk usually provide a static perspective on
an object-oriented software system. Such a perspective provides a means
to read, modify, create, or delete static source artifacts such as packages,
classes, or methods.

Object-oriented language features such as late-binding, inheritance,
or polymorphism, however, usually lead to distributed and scattered
code which is hard to understand by just focusing on static source arti-
facts and static relationships between these artifacts [DEME 03, DUNS 00,
WILD 92, NIEL 89a, HAMO 05]. Often it is not possible to identify and
locate conceptually related code in the static source space as many
relationships are purely dynamic and thus only present at runtime
[NIEL 89a, NIEL 89b, DUNS 00]. Due to the narrow focus of IDEs on static
source perspectives, most of these dynamic relationships between source
artifacts remain unclear, obscure or simply invisible to the developer
while using the static perspectives of IDEs. In short, traditional IDEs lack
dynamic information in their usually purely static source perspectives.

In today’s IDEs developers are often overloaded with information.
First, IDEs usually contain many complex perspectives and facilities such
as search widgets, menus with hundreds of options, or a plethora of open
windows or tabs [SING 05]. Second, the software systems maintained

2 Introduction

in an IDE are typically large. A developer is overwhelmed by the vast
amount of system artifacts (for instance, classes or methods, configura-
tion or documentation files, log files, etc.) and has thus difficulties to
gain an overview or an initial understanding of an unfamiliar system
[SING 05, KERS 05, KERS 06]. Developers miss a “big picture” view of the
system or a guide throughout the system, for instance by visually relating
artifacts that conceptually belong together but are widely distributed in
the static source space [DESM 06]. IDEs fail to give such a guidance how
to overview and navigate a system. Hence, adding even more informa-
tion to IDE perspectives to also show dynamic relationships between the
static source elements is dangerous as such additional information might
further obstruct system overview and navigation.

We realize that IDEs suffer from two main problems, namely overload-
ing developers with too much information and yet at the same time narrowly
focusing on a software’s static structure and thus missing information about
dynamic relationships between distributed source artifacts.

As software development is a complex process, we first identify sev-
eral distinct activities in this process. The identified problems of IDEs
do not affect all these development activities in the same way. Second,
we carefully analyze the two main issues of IDEs to separate several
sub-problems. Finally, we elaborate a taxonomy that reveals which IDE
shortcoming affects which development activity such as feature imple-
mentation or artifact collaboration investigation. This taxonomy serves
as a guideline to generate ideas how we can address the different short-
comings of IDEs tailored to the needs of different software development
activities.

1.1.1 Development Activities

In the following, we introduce nine development activities proposed
by the literature [PACI 04] as a comprehensive set of activities typically
performed by developers during software maintenance, but also during
initial development of applications. Most of the time, these activities are
performed in IDEs. Sometimes developers additionally use other tools
or environments, such as software analysis tools, but the IDE remains
the primary development tool for practically all activities and developers.
According to studies and surveys Eclipse is used by more than half of all
Java developers [GOTH 05], while only a negligible percentage is using
conventional text editors such as Emacs [CAME 96]. As most Smalltalk
dialects come with a complete environment in which the IDE is included,
it is clear that Smalltalk developers are using an IDE and not, for instance,
a plain text editor.

Problems of Traditional IDEs 3

We follow the development activities framework introduced by Pa-
cione et al. [PACI 04] which proposes the subsequent nine core activities.

1. Feature investigation. In this activity, developers analyze how soft-
ware features (or parts thereof) are implemented, for instance to
reveal which artifacts collaborate to each other to realize a specific
feature.

2. Feature implementation and adaptation. This activity is concerned with
the implementation of new software functionality or the adaptation,
extension, or improvement of existing software features.

3. Artifact investigation. When investigating artifacts, developers ana-
lyze the internal structure of packages, classes, or methods to, for
instance, reveal the class-internal execution flow.

4. Dependency investigation. Studying the dependencies or relation-
ships between different artifacts is called dependency investigation.
This activity is for example performed when developers need to
understand communication patterns between two classes to reveal
the degree of coupling between them.

5. Runtime interaction investigation. In this activity, dynamic commu-
nication and interaction between different artifacts is analyzed, for
example which messages are sent by instances of a class to instances
of another class or how two packages interact at runtime, e.g. which
classes of the two packages communicate with each other.

6. Artifact usage investigation. Developers investigate the usage of
single artifacts to, for instance, reveal the clients of a specific artifact
or how often this artifact is invoked in a specific software feature.

7. Execution patterns investigation. Developers investigate patterns in
system’s execution to better understand the running of the system,
to reveal communication paths between artifacts or within a single
artifact, to follow the control flow, or to assess performance issues,
e.g. when a frequently occurring execution pattern is slow.

8. Quality assessment. Assessing a system’s quality is necessary when
the system is hard to maintain, evolve, or also when it has per-
formance problems. When assessing software quality, developers
usually perform one or several of the other activities as well.

9. Domain concepts understanding. To successfully implement, maintain
and deploy a system, developers also need to understand its domain
and how the domain concepts are represented and implemented in

4 Introduction

the system. Thus this activity is concerned with studying, locating,
or identifying domain concepts in the software system.

In the next section, we identify and categorize the main shortcomings
of IDEs with respect to these software maintenance activities.

1.1.2 Problem Identification

While performing these development activities, developers are usually
affected or even hampered by one or more shortcomings of traditional
IDEs. Before being able to tackle the problem of the narrow focus of
IDEs on static software structure by augmenting these perspectives with
dynamic information, we have to reduce or better organize the (static)
information presented to developers to not overload the source views
even more. Hence, we first analyze the information overload problem
developers suffer from in most IDEs [DE A 08] and derive consequent
problems from this major issue of IDEs. Second, we deduce several
subsequent issues caused by the narrow focus of IDEs on static source
perspectives that neglect runtime information and collaboration between
the static source artifacts.

We deliberately do not discuss in our analysis other problems of IDE
that are not directly related to the two main IDE issues. For instance, IDEs
usually do not support quality assessment of the developed application.
Developers do not obtain automatic feedback from the IDE whether the
current implementation of the system is sound or rather error-prone. The
IDE could, for instance, analyze whether the code being currently written
has any flaws such as being a duplication of other code or whether it
violates commonly accepted principles such as design or best practice
patterns. However, such issues are largely beyond the scope of this work.

Overloaded, unorganized views. Comprehending a software system
is a prerequisite to improve, extend, or correct it. Being overloaded
with too much information in an IDE, however, makes it difficult for a
developer to understand the implementation and behavior of a system
[SING 05, KERS 05]. One negative impact of information overload is a
loss of overview of the system [KERS 05]: How is the system structured,
what are the relations between the different parts, where and how is a
particular feature implemented — these and other questions are difficult
to answer in a huge software space.

The IDE as the primary tool to navigate software does not well sup-
port the process of dealing with a huge software space. It offers only few
means such as a tree of hierarchically related source artifacts (for instance,

Problems of Traditional IDEs 5

Indicator Avg. of 20 sessions
Number of window switches 38.85
Number of entities revisited 35.10
Edit / navigation ratio 9.51%

Table 1.1: Three indicators highlighting navigation issues caused by infor-
mation overload in IDEs.

packages containing classes that contain methods) to help developers
to gain some degree of overview [SING 05]. However, there is no clear
path drawn by the IDE through the huge forest of software entities, in
particular there is usually limited or no support for task-oriented program-
ming [KERS 05, SING 05]. The IDE does not reflect about the nature of
the current task-at-hand, this means there is no guide whatsoever to
advise developers how to complete the current task, for instance sugges-
tions which particular entities they need to consider to correct a defect
[SING 05].

Related to missing task-orientation is the unavailability of context in
IDEs [DESM 06]. The current context is for instance the working set of
entities the developer is focusing on, that is, the entities relevant for the
current development task. This context also consists of distinct views
on these entities, such as open debugger or inspector views and type
hierarchies or source repository views. A working context is often just a
subset of all currently open views or windows in an IDE, as developers
usually do not regularly close windows unrelated to the current focus
of development [ROTH 09a]. Thus having an explicit and persistent rep-
resentation of a working context would help developers to keep and to
later on re-establish the focus on the task-at-hand [KERS 05].

We analyzed various development sessions [ROTH 09b] to receive an
impression of how seriously developers are hampered in practice by in-
formation overload in IDEs and their missing task-orientation or context
representation. In the first study, we recorded navigation and modifica-
tion activities from 20 distinct development sessions lasting for 30 minutes
and performed in Squeak Smalltalk [INGA 97] by twelve different devel-
opers working on small or medium-sized applications with not more than
100 classes. As indicators for navigation difficulties caused by information
overload, we