
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
4
2
/
b
o
r
i
s
t
h
e
s
e
s
.
1
0
3
2

|

d
o
w
n
l
o
a
d
e
d
:

2
3
.
4
.
2
0
2
4

Dynamic Object Flow Analysis

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Adrian Lienhard
von Biel/Bözingen (BE)

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Der Dekan:

Bern, 16.12.2008 Prof. Dr. U. Feller

This dissertation is available as a free download from http://scg.unibe.ch/

Copyright © 2008 Adrian Lienhard
http://www.adrian-lienhard.ch

The contents of this book are protected under Creative Commons Attribution-ShareAlike 3.0
Unported license.

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under the same, similar or a compatible license.

• For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://www.creativecommons.org/licenses/by-sa/3.0/

• Any of the above conditions can be waived if you get permission from the copyright
holder.

• Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This
is a human-readable summary of the Legal Code (the full license):
http://www.creativecommons.org/licenses/by-sa/3.0/legalcode

ISBN 978-1-4092-4742-5
First Edition, December 2008

http://scg.unibe.ch/
http://www.adrian-lienhard.ch
http://www.creativecommons.org/licenses/by-sa/3.0/
http://www.creativecommons.org/licenses/by-sa/3.0/legalcode

Acknowledgments

I am grateful to Oscar Nierstrasz for giving me the opportunity to work at
the Software Composition Group. Oscar, thanks for your excellent support
and rigorous feedback on my work.

I may not have taken the path of pursuing a PhD without Stéphane
Ducasse, who introduced me to Smalltalk and the Software Composition
Group. Thanks, Stef, for all your encouragement and enthusiasm.

I am grateful to Wim De Pauw for being the external reviewer of this
thesis and for coming to Switzerland to join the jury of the PhD defense.
Also, I thank Matthias Zwicker for accepting to chair the examination.

I thank Tudor Gîrba for all our inspiring discussions and for providing
many creative ideas that have influenced this work.

I am much obliged to the following people that provided appreciated
feedback on drafts of this dissertation: Orla Greevy, Tudor Gîrba, Daniel
Ratiu, and Adrian Kuhn.

Many thanks go to the present and former Software Composition Group
members. Marcus Denker, Tudor Gîrba, Adrian Kuhn, Fabrizio Perin, Lukas
Renggli, Jorge Ressia, David Röthlisberger, Toon Verwaest, Gabriela Arévalo,
Alexandre Bergel, Markus Gälli, Orla Greevy, Michele Lanza, Laura Ponisio,
and Nathanael Schärli. We shared many interesting discussions, relaxing
coffee times, and nice barbecues. It is a great group!

Thanks also to Therese Schmid and Iris Keller for their excellent support
with the administrative chores.

I had nice moments and discussions with people I met at conferences.
Thanks to Daniel Ratiu, Mircea Trifu, Adrian Dozsa for introducing me
to the Rumanian connection of Athens, and thanks to Marco D’Ambros,
Michele Lanza, Daniel Ratiu, Romain Robbes, Richard Wettel, for the bear
hunting trip in Canada.

Special thanks go to Christoph Wysseier and all netstyle.ch and Cmsbox
co-workers. They relieved me of a lot of work so I could focus on my PhD.

I am deeply grateful to my parents and my sister who have uncondition-
ally supported me over all those years.

Above all, I thank my love, Felicia Flicker, for being in my life and for
sharing many unforgettable moments.

Adrian Lienhard
November 17, 2008

Abstract

The behavior of an object-oriented software system is notoriously hard
to understand from the source code alone. The main reason is the large
gap between the program’s static structure and its actual runtime behavior.
Features inherent to object-orientation, like object aliasing and late binding,
— while providing a high degree of expressiveness to model an application
domain — make programs hard to understand, maintain, and analyze.

Complementary to static analysis, dynamic analysis can help to close
this gap by investigating the properties of a running program. The state of
the art in dynamic analysis focuses on investigating runtime control flow
and structures of object graphs, but a thorough analysis of how objects are
passed through a system is missing. Tracking how object references are
transferred, however, is essential to analyze the dependencies introduced
by object aliasing.

In this dissertation we propose Object Flow Analysis, our approach to
track object flow by explicitly representing object references and reference
transfer. Object Flow Analysis provides an effective and original way of
analyzing and runtime monitoring dependencies introduced by object alias-
ing. To validate Object Flow Analysis, we propose three different reverse
engineering applications that, based on Object Flow Analysis, reason about
aliasing dependencies in object-oriented programs. Yet Object Flow Anal-
ysis extends beyond traditional reverse engineering applications. A key
contribution of our work is that we advance the state of the art in back-
in-time debugging by proposing and providing an implementation of the
concept of Object Flow Analysis in a high-level language virtual machine.

Contents

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 The Problem of Object Aliasing 2

1.2 Our Proposal: Object Flow Analysis 6

1.3 Contributions . 8

1.4 Structure of the Dissertation 9

2 Approaches to Dynamic Data Analysis 11

2.1 Dynamic Data Structure Analysis 13

2.1.1 Heap Snapshot Browsers 13

2.1.2 Shape Analysis . 14

2.1.3 Summary . 16

2.2 Dynamic Data Flow Analysis 16

2.2.1 Define-Use Analysis 16

2.2.2 Dynamic Program Slicing 17

2.2.3 Side Effect Analysis 17

2.2.4 Summary . 18

2.3 Extended Execution Trace Analysis 18

2.3.1 Trace-based Reverse Engineering Approaches 19

2.3.2 Complete Execution History Recording 20

2.3.3 Summary . 20

2.4 Conclusion . 21

viii Contents

3 Object Flow Analysis 23

3.1 The Object Flow Analysis Metamodel 24

3.1.1 Origin Relationship . 27

3.1.2 Predecessor Relationship 29

3.1.3 Context Relationship 30

3.2 Specification of Object Flow Tracking 30

3.2.1 A Minimal Object Language 32

3.2.2 The Extended Language 34

3.2.3 Behavioral Similarity of Semantics 40

3.3 A Framework to Reason about Dependencies 44

3.4 Conclusion and Outlook . 47

4 Visualizing Object Flow 49

4.1 Introduction . 49

4.2 The Challenge of Structural Dependencies 51

4.3 Applying Object Flow Analysis 51

4.4 Inter-unit Flow View . 53

4.5 Transit Flow View . 58

4.6 Case Studies . 59

4.6.1 Bytecode Compiler . 60

4.6.2 Insurance Web Application 62

4.6.3 IRC Chat Client . 65

4.7 Implementation . 65

4.8 Related Work in Program Visualization 67

4.9 Summary of the Chapter . 68

5 Feature Dependencies 71

5.1 Introduction . 71

5.2 The Challenge of Feature Dependencies 73

5.2.1 Runtime Dependencies Between Features 73

5.2.2 Why Object Aliases Cause Dependencies 73

5.3 Applying Object Flow Analysis 75

5.4 Exposing Dependencies in Object Graphs 77

5.5 Case Studies . 79

ix

5.5.1 IRC Chat Client . 79

5.5.2 Pier CMS . 83

5.6 Related Work in Feature Analysis 86

5.7 Summary of the Chapter . 87

6 Test Blueprints 89

6.1 Introduction . 89

6.2 The Challenge of Testing Legacy Code 91

6.3 Applying Object Flow Analysis 92

6.4 Introduction of the Test Blueprint 95

6.5 From the Test Blueprint to Unit Tests 98

6.5.1 Selecting a Program Unit to Test 99

6.5.2 Creating a Fixture . 100

6.5.3 Executing the Unit Under Test 101

6.5.4 Verifying Expected Behavior 102

6.6 Case Studies . 102

6.6.1 Insurance Broker Application 102

6.6.2 Web Content Management System 106

6.7 Related Work in Testing . 107

6.8 Summary of the Chapter . 107

7 Practical Back-in-Time Debugging 109

7.1 Introduction . 110

7.2 Approach: An Object-Flow-Aware VM 112

7.2.1 Representing References in Memory 112

7.2.2 Capturing Object References 114

7.2.3 Remembering Historical Object State 115

7.2.4 Remembering the Flow of Objects 116

7.2.5 The Effect of Garbage Collection 117

7.3 Implementation . 120

7.4 Performance Evaluation . 122

7.4.1 Execution Overhead 122

7.4.2 Memory Usage . 125

7.5 Discussion . 130

x Contents

7.5.1 Capturing and Remembering Less Data 130

7.5.2 Remembering Control Flow Dependencies 132

7.5.3 Limitations and Potential Optimizations 132

7.6 Related Work in Back-In-Time Debugging 133

7.7 Summary of the Chapter . 135

8 Conclusions 137

8.1 Contributions . 138

8.2 Future work . 139

A The Object Flow Debugger 141

A.1 Introduction . 141

A.2 Installation . 141

A.2.1 Downloading the Compiled VM and Demo Image . . 141

A.2.2 Preparing your Image 142

A.2.3 Installing the Compass Debugging Frontend 142

A.3 Debugging with Compass . 143

A.3.1 Starting the Debugger 143

A.3.2 Using the Debugger 144

A.4 Miscellaneous . 146

A.4.1 Using Alternative Tracing Policies 146

A.4.2 Obtaining Memory Usage Statistics 146

A.4.3 Tuning Garbage Collector Parameters 147

Bibliography 149

List of Figures

1.1 The analysis of control and data flow in static and dynamic
analysis. 2

1.2 Reference structure and reference transfer dimensions of ob-
ject aliasing mapped to data analysis and data flow analysis. 5

1.3 Core of the Object Flow Analysis metamodel. 7

2.1 Categories related to Dynamic Data Analyses. 13

2.2 Excerpt of an execution trace represented as a call tree. . . . 22

2.3 UML object diagram representing an excerpt of an object graph. 22

3.1 Object Flow metamodel (gray entities and associations indi-
cate objects present in typical dynamic analysis metamodels). 24

3.2 Alias class hierarchy. 26

3.3 Object flow of an IRMethod instance in a bytecode compiler. . 28

3.4 Capturing historical state through the predecessor relationship. 29

3.5 Heap and alias store of example evaluation. 40

3.6 Relation F maps state s in language Lext to state t in L. . . . 41

3.7 Simulation diagram . 42

3.8 Region r directly depends on r′. Furthermore, r indirectly
depends on both r′ and r′′. 47

3.9 Stack diagram of the Object Flow Analysis approach. 47

4.1 Object Flow Analysis metamodel (entities and associations
used by the analysis for the proposed visualizations are high-
lighted in black). 53

4.2 Inter-unit Flow View of the bytecode compiler. 54

xii List of Figures

4.3 Chronological propagation of flows in the compiler. 57

4.4 Orange and blue arcs indicate flows leading to and coming
from the selected unit Parser (A), resp. unit IRBuilder (B).
Dashed arcs show flows that do not contain objects coming
from or leading to a selected unit. 58

4.5 IRBuilder Transit Flow View. 59

4.6 Transit Flow View of the Intermediate Representation package. 61

4.7 Inter-unit Flow View of the insurance application case study
before refining the mapping. 63

4.8 Inter-unit Flow View of the insurance application case study. 64

4.9 Inter-unit Flow View of the IRC chat client case study with
gray toning of edges indicating the number of participating
features. 66

5.1 State changes between features. 74

5.2 Object flow metamodel extended with Feature (entities and
associations exercised by the feature dependency analysis are
highlighted in black). 75

5.3 Object flow of an IRCConnection instance. 77

5.4 Object dependency graph of the Receive Message feature. . . 78

5.5 IRC features and number of dependencies. 80

5.6 Object dependency graph of Receive Message feature anno-
tated with invoked methods. 82

5.7 Pier features and numbers of dependencies. 84

5.8 Object dependency graph of the Remove Page feature from Pier. 85

6.1 Object Flow Analysis metamodel (entities and associations
exercised by the Test Blueprint analysis are highlighted in
black). 93

6.2 An execution unit and the Test Blueprint produced from it. . 95

6.3 Four Test Blueprint examples with different characteristics . 98

6.4 Overview of the approach. 99

6.5 Backtracking object setup . 101

6.6 Detail of Test Blueprint from test #9 105

7.1 (a) Typical object format with references as direct pointers
and (b) proposed extension with references being optionally
represented by alias objects. 113

xiii

7.2 Object Flow Analysis metamodel. 114

7.3 Capturing historical object state through predecessor aliases. 115

7.4 Pseudo code for the VM implementation of field access x.f

with back-in-time capability. 116

7.5 Flow of an Account instance through an execution tree. 118

7.6 Flow of an object through an execution tree and the effect of
garbage collection. 119

7.7 Garbage collection discards 70% of the aliases in a run of the
compiler. 120

7.8 Compiling 1000 classes (X-axis) produces more than 2 billion
aliases, however, the number of aliases in memory stays
below 6 million. 127

7.9 Analysis of a gas tank simulator shows that 22% of the aliases
allocated are retained in memory (19 samples with an interval
of 3s each). 128

7.10 Analysis of a user session in a Content Management System.
After 26 requests, 24% of the allocated aliases are still in
memory. 129

7.11 Comparison of the number of aliases retained in memory
with the default configuration compared to the configuration
where only the last write alias of each field and array slot is
remembered. 131

A.1 Compass debugger frontend. 144

A.2 Memory monitor showing aliases created and currently in
memory. 147

List of Tables

3.1 Syntax and dynamic aspects. 33

3.2 Reduction rules of operational semantics. 34

3.3 Extended syntax and dynamic aspects (differences to Table 3.1
highlighted in gray). 35

3.4 Extended reduction rules (differences compared to Table 3.2
highlighted in gray). 36

3.5 Example evaluation in Lext with extended operational se-
mantics. 39

3.6 Sets and relations on which dependency definitions are based. 45

3.7 Concrete applications (Chapter 4, 5, 6) mapped to abstrac-
tions between which dependencies may occur due to object
reference transfer. 48

4.1 Sets and relations on which dependency definitions are based. 52

5.1 Sets and relations of the new feature dependency definition. 76

6.1 Sets and relations used for the Test Blueprint analysis. 92

6.2 Measurements of 12 tests (time in minutes, size of execution
unit in number of executed methods, fixture size, number of
side effects). 104

7.1 In comparison with the original VM, the execution overhead
of the modified VM averaged 15% when recording is disabled 123

7.2 In comparison with the original VM, the average slowdown
when recording is enabled is 3.84 124

Chapter 1

Introduction

I do not believe in things. I believe only in their relationships.
— George Braque

Dynamic software analysis is commonly referred to as the analysis of
the properties of a running program [BALL 99]. In contrast, static analysis is
the process of analyzing source code to predict safe approximations to its
behavior during execution.

The Price et al. taxonomy [PRIC 93] for program visualization distin-
guishes four dimensions to categorize program behavior: (1) control instruc-
tions, (2) flow of control, (3) data structures, and (4) flow of data. Figure 1.1
illustrates how static and dynamic analyses cover these dimensions. While
static analysis completely covers both control and data dimensions (intra-
and inter-procedural control flow analysis; points-to analysis), dynamic
analysis approaches exist for the first three categories — but there is a gap
in the data flow category.

Dynamic control analysis records the statements executed at runtime.
Examples are the detection of the code coverage of tests [REIC 07] and
dynamic slicing [KORE 97]. Control flow analysis — also referred to as
method execution tracing — is widely used for program comprehension and
reverse engineering [HAMO 04]. Dynamic data analyses mainly investigate
the structure of memory snapshots to detect memory leaks or to analyze
encapsulation properties [DE P 00, HILL 02]. There also exist approaches
that cover both control flow and data dimensions, for example to implement
back-in-time debuggers [LEWI 03], which allow the user to go back in the

2 Introduction

dynamic analyis

static analyis

control control
flow

✔

data data
flow

✔ ?✔

✔ ✔ ✔ ✔

Figure 1.1: The analysis of control and data flow in static and dynamic
analysis. Dynamic analysis approaches lack information about object flow.

history of a program execution. Although in recent years there has been
an increasing research effort dedicated to the dynamic analysis of object-
oriented software, dynamic data flow analysis has attracted little attention
so far.

1.1 The Problem of Object Aliasing

We have focused our research on the dynamic analysis of object-oriented soft-
ware systems because understanding object-oriented systems comes with
additional challenges [WILD 92] compared to non object-oriented systems.

The power of the object-oriented programming language paradigm lies
in the flexibility of the interconnecting structure of objects. A typical object-
oriented program creates a large number of objects and an even larger
number of references between them. The memory structure formed by the
objects on the heap, commonly referred to as object graph, can be a compli-
cated structure and its topology evolves over time. New objects are created
and join the object graph and old objects leave the graph. As the techniques
of object-oriented programming have matured, the design of structures
of interacting objects has come to be seen as at least as important as the
design of the objects themselves and their classifications using inheritance
[HILL 02].

The situation that occurs when two or more objects reference the same
object is called object aliasing [HOGG 92]. Object aliasing provides a high
degree of flexibility to model an application domain because it enables
sharing of mutable state. But this flexibility comes at a cost. Because an
object can be accessed and modified from any object that holds a reference
to it, and references are transferred at runtime, object-oriented programs
can be hard to understand, maintain, and analyze.

The Problem of Object Aliasing 3

Object aliasing introduces dependencies between software entities (e.g.,
between classes). A dependency between entities X and Y means that a
developer modifying the implementation of X must be concerned about
possible side effects in Y [WILD 92].

Dependencies caused by object aliasing are difficult to detect from read-
ing the source code because of the large gap between a program’s static
representation and its actual runtime behavior. This is a particular problem
in the context of legacy systems in which the maintainer can only form a
local understanding of the program, focusing his attention on the portion of
the code in which the repair or enhancement is to be made. By overlook-
ing dependencies, he may introduce subtle bugs in seemingly unrelated
parts of the program [LETO 86]. Therefore, pervasive object aliasing remains
a major source of software defects [GROT 01] and complicates program
comprehension [DOLA 03].

The following two kinds of dependencies between objects, which occur
when object encapsulation is broken, are well known:

• Representation exposure — an object’s representation is exposed out-
side the scope of its implementation [LISK 86].

• External dependency — external objects are part of an object’s invari-
ant [NOBL 98].

In both cases, modifying the object depended on through a reference that
resides outside the encapsulation boundary may violate an assumption of
the implementation and hence break the program.

Object encapsulation is generally considered to prevent these problems
but in today’s object-oriented mainstream languages, like Java and C#, there
exists no mechanism to guarantee that objects do not inadvertently escape
their encapsulation scope. Motivated by this problem, type systems that
allow one to statically control ownership have been an active area of research
during the last 20 years [HOGG 91, NOBL 98, CLAR 01, BOYA 03].

Faced with new ownership type systems and large legacy applications,
techniques have been sought to automatically infer ownership annotations
for existing code bases [ALDR 02]. Statically analyzing ownership properties
of existing code has turned out to be a hard problem in practice because
of the limited capabilities of static analysis to precisely predict the actual
behavior of a program [CLAR 07]. Dynamic analysis examines exactly this
behavior. More recently, therefore, research has been invested into the
dynamic analysis of the runtime structure of objects — not only into the
dynamic inference of ownership annotations [AGAR 04, DIET 07], but also
into more general analyses of object reference structures [DE P 00, HILL 02,
MITC 06, PHEN 06]. With these approaches, the encapsulation structure and
aliasing dependencies in object graph snapshots can be analyzed.

4 Introduction

However, aliasing dependencies exist that can be difficult to detect by
analyzing only the reference structure of object graphs. If aliasing depen-
dencies between software entities exist that are not only spatially but also
temporally disconnected, object graph snapshots provide only part of the
necessary data because they lack the notion of time. We can identify such
aliasing dependencies in various program abstractions:

• Static program elements (methods, classes, packages, etc.) — these
elements can depend on each other by transferring objects.

• Software features — a feature may depend on the object references
produced by a previously exercised feature.

• Control flow — the execution of a method may influence control flow
at a later point in time by producing side effects.

• Concurrent threads — threads that alias a mutable object may concur-
rently modify its state and hence produce inconsistencies.

These abstractions provide common perspectives of studying the behav-
ior and implementation of a program. For example, a software engineer
frequently needs to understand which parts of a system implement a feature
to carry out maintenance activities, as change requests and bug reports are
usually expressed in terms of features [MEHT 02].

Compared to the two object dependencies caused by breaking encap-
sulation, the above listed kinds of dependencies are more complicated to
analyze because they may not be detected in a single memory snapshot. For
example, a feature may depend on another feature that was exercised at the
very beginning of the program execution if object references are persisted
between exercising the two features. Or object references may be transferred
between threads if one thread assigns the object to a field and another thread
later reads this field. Although object graph analyses can capture the class,
feature, or thread in which a reference is created, they cannot relate this
information back to arbitrary previous object graphs because they lack the
notion of time.

Problem statement. Because of the lack of analyses to detect hidden aliasing
dependencies, object aliasing remains a major source of software defects and it is a
hurdle for program comprehension.

To analyze aliasing dependencies, we identify the following two dimen-
sions in dynamic object-oriented program behavior.

• Object reference structure reveals how objects refer to each other at a
given point in time (also referred to as object graph).

• Object reference transfer reveals where object references originate (also
referred to as object flow).

The Problem of Object Aliasing 5

dynamic analyis

static analyis

control control
flow

✔

data data
flow

✔ ?✔

reference
structure

reference
transfer

object aliasing

✔ ✔ ✔ ✔

Figure 1.2: Reference structure and reference transfer dimensions of object
aliasing mapped to data analysis and data flow analysis.

While the object reference structure is viewed as a snapshot, the object
reference transfer dimension captures object flow during the execution of
the program. An object reference transfer analysis is required, for example,
to track how an object is passed from one field (instance variable) to another
field via assignment — possibly being passed through methods and even
arrays in between. This information can reveal dependencies between pro-
gram elements that are located far in time and space, for example between
the implementations of seemingly unrelated features or classes.

Figure 1.2 relates the two object aliasing dimensions to the program
behavior categories of the Price et al. taxonomy [PRIC 93]. The reference
structure dimension is captured by data analysis, and the reference transfer
dimension is captured by data flow analysis.

Existing approaches capture data flow only to some extent. Dynamic
data analysis cannot express reference transfer as it is based on models
of object graph snapshots [DE P 00, DE P 02, HILL 02, MITC 06, FLAN 06,
RAYS 06, PHEN 06]. In dynamic control flow analysis, method execution
traces have been extended to carry information about objects involved in
message sends or about the creation of objects [DE P 94, WALK 98, DEMS 02,
GSCH 03, GOLD 05]. Also these extended models do not track the transfer
of all references without gap.

A likely reason for the missing object-oriented dynamic data flow anal-
yses is that execution tracing techniques originate in pre-object-oriented
programming paradigms, like procedural programming and unstructured
programming [RITC 93, CHEV 78]. The analysis of control flow was most
important for such programs since they typically exhibited complex and
tangled control structures (spaghetti code). In the object-oriented paradigm,
however, complex object interrelationships are the new spaghetti code. With
the shift to object-oriented programming, the analysis of object reference

6 Introduction

transfer was forgotten by researchers who just adopted existing dynamic
analysis techniques.

Research question. How can we model object reference transfer?

To answer this question, we need to develop a conceptual model to
represent and reason about object reference transfer in a running system. A
key criterion of our model is that it should also integrate existing dynamic
analyses, such as control flow, since these dimensions of object-oriented
program behavior are inherently intertwined.

1.2 Our Proposal: Object Flow Analysis

Thesis

Tracking object flow by explicitly representing object references and ref-
erence transfer is an effective way of analyzing and runtime monitoring
dependencies introduced by object aliasing.

We propose to explicitly represent object references in the dynamic
analysis metamodel by a first-class entity called Alias. The transfer of object
references is modeled by an association that captures the origin of an alias.

Figure 1.3 illustrates the core of the Object Flow Analysis metamodel.
The entity Object represents any value in the system — both of reference
type (objects and arrays) and primitive type (null, booleans, integers, etc.).
All object references created at runtime, for instance when passing an object
as parameter or when reading a value from a field, are represented by an
Alias instance. The field of an object does not directly point to a value but
to one of the aliases of this value. In other words, aliases introduce a level
of indirection between objects, which allows one to exactly determine how
objects are referenced at runtime.

The key strength of this model resides in the following relationships
between aliases. The origin relationship models the transfer of object ref-
erences. In Figure 1.3, the origin association of an alias is the alias that was
used to create the alias in question. For instance, the origin of a field read
alias always is a field write alias because going back one step in the flow
of an object from the event of reading a field always leads to the event of
writing the field. With this relationship we can precisely track how objects
are passed through a system at runtime.

Our Proposal: Object Flow Analysis 7

MethodInvocation

context reference values and
primitive type values

Alias Object
value

*
0..1

origin
*

predecessor
0..10..1

*

1

1

fields or
array slots

Figure 1.3: Core of the Object Flow Analysis metamodel.

The predecessor relationship is defined for field and array write aliases.
It captures side effects to model the state history of objects and arrays.
The predecessor of a field write alias is the field write alias of the value
previously stored in the field. This relationship represents the reference
structure dimension and it makes it possible to reconstitute the object graph
as it existed at an arbitrary point of the program execution.

Another important aspect of our approach is the integration of the model
of object references with the conventional method execution trace model
(dynamic control flow). Each alias stores its creation context (the method
invocation in which it is created), a timestamp, and the program counter to
locate the position of its creation in the source code. Like this, it is possible
to get detailed information about where and when an object reference is
created, including the current call stack.

The goal of Object Flow Analysis is to provide a solid foundation for
different kinds of dynamic object aliasing analyses. We claim that with our
approach we can express software reverse engineering analyses that detect
implicit dependencies introduced by object aliasing.

To validate our approach, we provide anecdotal evidence by proposing
three analyses that detect different kinds of dependencies and make them
explicit to support developers maintaining legacy systems. These three
approaches analyze dependencies in classes, features, and in control flow.
We do not propose analyses for dependencies in other program abstractions
discussed above, such as object encapsulation, concurrent threads, or other
static program entities than classes. These remain for future work.

Finally, to provide evidence that the concept of Object Flow Analysis
extends beyond traditional applications in reverse engineering, we present
an object-flow-aware virtual machine for back in time debugging. This
virtual machine demonstrates that an implementation of the tracking and
representation of object flow as proposed by our approach is an effective
way of monitoring object aliasing at runtime.

8 Introduction

1.3 Contributions

The main contributions of this dissertation are:

1. The concept and formal specification of Object Flow Analysis, a dy-
namic analysis model of data flow in object-oriented programs, which
provides the foundation for a new category of analyses concerned
with object aliasing.

2. A conceptual framework to reason about dependencies introduced by
object aliasing and three reverse engineering approaches based on it
that validate the usefulness of Object Flow Analysis.

3. The design and implementation of an object-flow-aware virtual ma-
chine for back-in-time debugging, which demonstrates that Object
Flow Analysis provides an effective way of monitoring aliasing at
runtime.

The following list details on the contributions of (2) and (3), which serve
as a validation of our approach.

Visualizing Object Flow Between Structural Software Entities. Most ex-
isting dynamic analysis approaches focus on the execution of a pro-
gram from the perspective of message passing [HAMO 04]. The con-
tribution of our work on visualizing object flow is a novel, comple-
mentary perspective that reveals how classes and packages depend
on each other by exchanging objects at runtime [LIEN 09].

Tracking Objects to Detect Feature Dependencies. There is a growing
awareness amongst researchers of the potential of features in the con-
text of reverse engineering. Much of the research in this area focuses
on feature identification [ANTO 05], while only few researchers have
investigated the dependencies between features [SALA 04]. Our work
contributes to the state of the art by proposing a more accurate feature
runtime dependency definition that takes aliasing into account. The
additional dependencies that we uncover are precisely the indirect
feature dependencies that can be problematic during maintenance
[LIEN 07].

Exposing Side Effects to Support Writing Unit Tests. Writing unit tests
for legacy systems is a key maintenance task — but if developers lack
internal knowledge of the system, this task is non-trivial [DEME 02].
To implement a fixture and assertions, the developer has to understand
what objects the unit under test depends on and what the expected
side effects of the unit’s execution are. To address this problem, we
propose an object reference analysis that exposes side effects in control

Structure of the Dissertation 9

flow, and that uses these side effects to guide the developer when
writing tests [LIEN 08a].

Practical Back-in-time Debugging. Two major downsides of back-in-time
debugging have been its high memory consumption and significant
performance impact [POTH 07]. We propose an approach that features
significant improvements on both accounts. Its underlying idea is
to capture execution history not as a trace of events but to leverage
object references to first-class objects in the virtual machine. This work
makes an important contribution to the state of the art in back-in-time
debugging [LIEN 08b].

1.4 Structure of the Dissertation

Chapter 2 discusses the state of the art in dynamic data analysis to identify
the extent to which existing approaches capture relevant data for
analyzing object aliasing. This survey shows that there is a gap in
tracking object reference transfer.

Chapter 3 introduces Object Flow Analysis, our approach to a dynamic
analysis of object reference transfer. We show how the proposed meta-
model also captures object reference structure and how it relates object
references to dynamic control flow. We provide a formal specification
of how objects are tracked at runtime and we introduce a conceptual
framework based on our metamodel to reason about dependencies
introduced by object aliasing.

Chapter 4 presents a visualization of object flow that supports the reverse
engineering process to discover dependencies between structural soft-
ware. The interactive views allow the developer to iteratively discover
the flow of objects between classes and packages.

Chapter 5 proposes an accurate feature dependency definition and a de-
tection strategy based on the Object Flow Analysis metamodel. We
also propose a visual approach to support developers interpret feature
dependencies.

Chapter 6 presents Test Blueprints, an analysis of object transfer in method
invocations that helps the developer to write unit tests for an un-
known system. The Test Blueprint of a selected part of the program
execution serves as a plan to write a new unit test. It displays detailed
information about the fixture and the expected side effect of running
the test method.

10 Introduction

Chapter 7 discusses a back-in-time debugging approach that tracks execu-
tion history by capturing object references in the memory model of the
virtual machine. We demonstrate that the Object Flow Analysis meta-
model captures key relationships between object references — and as
a consequence, irrelevant history is automatically garbage collected.

Chapter 8 concludes the dissertation and ends with an outlook on the
future work opened by our approach.

Chapter 2

Approaches to Dynamic
Data Analysis

In recent years, there has been an increasing research effort dedicated to
the dynamic analysis of object-oriented software. A coarse classification of
approaches can be made based on whether an approach analyzes dynamic
control flow (also referred to as method execution tracing) or dynamic data
(object graph structure analysis). Hybrid approaches also exist, for instance
for the implementation of back-in-time debuggers where both the control
flow and data history are required to move a debugger backwards to any
previous point of the program execution.

The two perspectives taken by control flow and data analysis seem like a
natural choice for analyzing the behavior of an object-oriented system. The
reason is that message passing and reference semantics are two cornerstones
of object-orientation. Objects collaborate to accomplish a complex task and
this collaboration is expressed through the exchange of messages that are
sent along the path of object references. Dynamic control flow and data
analyses capture this runtime behavior.

However, this view is not complete because it fails to show how object
references are established in the first place. Indeed, computation in an
object-oriented program essentially is the process of transforming the graph
of objects, and this transformation is only possible by passing around object
references. This means, to make one object point to another object in the
object graph, an existing reference has to be transferred to it (or a new one
has to be created by instantiating a class).

Object aliasing introduces complex dependencies that determine the
behavior of the program. To study these dependencies, we need a solid

12 Approaches to Dynamic Data Analysis

foundation to express object flow — for instance to provide more powerful
debugging tools or to detect runtime dependencies between the features of
a software system.

In the introduction chapter we argued that to capture object aliasing we
need to analyze both the reference transfer and the reference structure of
objects. To make this statement more concrete, let us consider a debugging
session in which we need to figure out the following information about a
field of some object:

• How was the current value passed into the field? This question can be
answered by tracking the origin of the value stored in the field.

• Which values were previously stored in the field? This question can be
answered by tracking the state history of the field.

• Where in the control flow was the current value read? This question can be
answered by tracking each context in which the field was accessed.

The first aspect, origin, captures the reference transfer (object flow),
whereas history captures the reference structure of objects. The last aspect,
context, captures in which method invocation the references are created; it
links the previous two aspects to the runtime control flow.

In this chapter we review the state of the art in dynamic data analysis.
Approaches exist that, to some extent, capture dynamic information about
origin, history, and context. We divide the approaches into the following
three major categories.

• Dynamic Data Structure Analysis, discussed in Section 2.1, is con-
cerned with the shape of object graph snapshots. While these ap-
proaches show the aliasing relationships between objects, they do not
provide information about where and in which context a reference
in this graph originates. To reconstruct arbitrary intermediate object
graphs, some approaches track the history of fields.

• Dynamic Data Flow Analysis, discussed in Section 2.2, captures run-
time data flow in relation to static program elements. These ap-
proaches provide partial origin information by keeping track of the
connection between writing and reading a variable. Context informa-
tion is limited to the location in the static control flow graph.

• Extended Execution Trace Analysis, discussed in Section 2.3, tracks
the origin of objects passed as parameters and return values, and the
allocation of objects, and keeps context information, such as the target
and caller of a method invocation.

Dynamic Data Structure Analysis 13

Data Structure Analyses

control
flow

data data
flow

Data Flow Analyses

Extended Execution Trace A.

Section 2.1

Section 2.3

Section 2.2

control

Figure 2.1: Categories related to Dynamic Data Analyses.

Figure 2.1 puts these three categories into a broader context. Focusing
on these three categories we limit the scope of our literature review to the
approaches related to dynamic data flow analysis.

Structure of the chapter. The first three sections discuss the state of the
art in Dynamic Data Structure Analysis (Section 2.1), Dynamic Data Flow
Analysis (Section 2.2), and Extended Execution Trace Analysis (Section 2.3).
Section 2.4 concludes the chapter.

2.1 Dynamic Data Structure Analysis

Tool support to help understand object reference graphs is particularly im-
portant for programs that make extensive use of heap based data structures,
such as in Java and in other object-oriented languages. Several tools exist for
the manual inspection of heap memory snapshots (Section 2.1.1). More ad-
vanced approaches, which we refer to as shape analyses, are concerned with
the connectedness and entry points of object graph structures (Section 2.1.2).
Shape analysis techniques reason about object graph structures with the goal
to identify ownership [HILL 02], to optimize garbage collection [SHAH 00],
to support debugging [RAYS 07], or as part of a general understanding of
program behavior [PHEN 06].

2.1.1 Heap Snapshot Browsers

The Heap Analysis Tool (HAT)1 from Sun allows the programmer to create
heap snapshots using the JVMPI (Java Virtual Machine Profiler Interface),
which produces a complete dump of all the objects in the Java heap at a

1http://hat.dev.java.net/

http://hat.dev.java.net/

14 Approaches to Dynamic Data Analysis

given time. HAT supports queries such as “show all instances of class X”,
“show all referrers to a specific object”, “show all objects reachable from a
specific object”. This tool can help to debug and analyze the objects in a
running Java program.

Similar products are Quest Software’s JProbe Memory Debugger2 and
Codework’s Jprofiler3, which provide browsable views of the web of ob-
jects in a heap snapshot. Other tools use visual representations to browse
memory, for instance the GNU Data Display Debugger [ZELL 96].

Although these tools provide a means to directly browse the object
graph, they do not provide higher-level views or an analysis of structural
properties.

2.1.2 Shape Analysis

The following more sophisticated approaches help to investigate object
graphs to analyze the shape of object structures in memory snapshots. Such
fully or semi-automated analyses are used to identify patterns, such as object
encapsulation and ownership, or to help finding the causes of memory leaks.

General reference pattern analysis. Jinsight, a freely available tool that is
part of IBM’s Rational Application Developer for WebSphere Software, pro-
vides various dynamic analyses [DE P 99, DE P 00, DE P 02]. The analysis
of reference patterns supports developers to find the causes of a memory
leak by comparing two snapshots of all objects and references, one taken
before performing a critical action and one taken afterwards. The focus is
on finding bad references from previously existing objects to new objects.
The extraction of patterns reduces complexity by aggregating repetitions in
object structures.

Pheng and Verbrugge identify trees, directed acyclic graphs, and cycles
in dynamic data structures of Java programs [PHEN 06]. Rather than taking
memory snapshots they use field write event traces gathered through the
JVMPI. This trace of events is then fed into an analyzer that reconstructs
heap snapshots for every n-th event. This approach provides more flexibility
concerning the point of time and number of snapshots taken. However,
the number of snapshots is limited because of the space and performance
characteristics of the applied shape analysis.

A similar technique was adopted by Flanagan and Freund to extract
object models by reconstructing each intermediate heap from a log of object
allocations and field writes [FLAN 06]. The analysis applies a sequence of

2http://www.quest.com/jprobe/
3http://www.codework.com/jprofiler/product.htm

http://www.quest.com/jprobe/
http://www.codework.com/jprofiler/product.htm

Dynamic Data Structure Analysis 15

abstraction-based operations to each heap, and combines the results into a
single object model that conservatively approximates all observed heaps
from the program’s execution.

Dynamic ownership inference. The notion of object ownership is most
commonly understood as the graph-theoretic dominance tree of heap object
reference relations. In the heap referencing relation there is an edge from
object x to object y iff some field f of object x refers to object y at some time.

Visualizations of ownership trees proposed by Hill, Noble and Potter
show the encapsulation structure of objects [HILL 00, HILL 02]. The goal of
their research is to extract a program’s implicit encapsulation structure from
its object graph. With respect to object flow, this approach is interesting. It
has to deal with the difficulty that the transfer of objects when they change
ownership is hard to grasp by looking at two subsequent snapshot views.
Noble et al. propose to use animations to help the user follow the transition
changes between two ownership visualizations.

Mitchel implements a dynamic ownership inference for detecting ineffi-
ciencies in a program’s memory footprint for very large heaps [MITC 06].
This analysis uses a single heap snapshot taken at a critical moment in time.
The main contribution of this work is the identification of four common
graph structure patterns to identify potential memory leaks.

Rayside et al. propose an analysis that reveals object ownership and
sharing in a hierarchical matrix [RAYS 06]. In later work, Rayside et al.
propose a technique for finding complex memory leaks through a dynamic
ownership analysis [RAYS 07]. Their tool computes an abstracted ownership
tree from an object reference graph. Allocation time and size data are
aggregated up the ownership hierarchy and plots of this data are generated
to identify potential memory leaks.

Dietl and Müller dynamically infer universe ownership type annotations
from traces of Java programs [DIET 07]. They build a cumulative representa-
tion of the object graph by tracing all objects that ever existed in memory, all
references between these objects, and which objects modified which other
objects. In their model, they distinguish two types of references: (i) write
references for field assignments and calls to methods producing side effects,
and (2) so-called naming references for reading fields and calling side effect
free methods.

16 Approaches to Dynamic Data Analysis

2.1.3 Summary

The analyses discussed in this section focus on properties and the shape
of object graph snapshots. Some approaches do not just analyze mem-
ory dumps but they trace each program state modification, and some ap-
proaches additionally record reference read access.

While these approaches reveal the aliasing relationships between objects
and some of them capture the state history of the program, they do not
provide information about where an object reference originates, nor do they
provide context, like the current call stack, to map state changes to control
flow.

2.2 Dynamic Data Flow Analysis

In contrast to the previously discussed analyses of object graph structures,
this section discusses approaches that analyze the flow of values. This sec-
tion is divided into three groups of approaches. The first group is concerned
with analyzing access sequences on variables, and the second group is con-
cerned with analyzing the control flow related to a selected object. The third
group tracks data flow in and between methods to identify methods that
are free of side effects (that is, the only visible effect of their invocation is to
return a value).

2.2.1 Define-Use Analysis

Define-use Analysis is a method to analyze the sequence of actions on
variables. An assigned value flows into the computation (definition site) and
later it flows out when being used (usage site). A variable gets undefined
either when assigning null or when it goes out of scope. The goal of this
analysis is to detect improper sequences on data access for testing and
debugging [CHEN 95, BOUJ 00].

The technique originates in compiler optimization and has primarily
been applied to testing procedural programs. More recently, Andrew Cain
proposed an extension of the technique tailored to object-oriented program-
ming languages [CAIN 05].

These approaches are often also referred to as dynamic data flow analy-
ses. Originating in static analysis, the term data flow in this context refers to
actions on individual variables. Hence, the focus is on the flow of values
into and out of variables rather than on the complete flow of values through
a system.

Dynamic Data Flow Analysis 17

2.2.2 Dynamic Program Slicing

The define-use analysis approaches give only limited information on how
the recorded actions relate to control flow. While the define and use sites
are known, no information is gathered about how control flow progressed
from one site to another or how a variable influenced the flow of control.
In contrast, program slicing [WEIS 81] uses both static control and data
dependencies to identify all expressions that influence a given variable at a
certain source location or are influenced by this variable. Dynamic slicing
further reduces the graph by only taking statements into account that have
been executed in a concrete execution scenario [KORE 98].

Recently, Object Process Graphs (OPG) have been proposed that provide
even smaller slices. OPGs are sparse control flow graphs that contain only
nodes relevant to a selected value [EISE 05a]. This means, an OPG shows
control dependencies, loops, procedure calls, and read/write operations in
which the value is used but it excludes statements that have dependencies
to these nodes. This analysis was first carried out statically [EISE 05a], and
later it has been implemented as a dynamic analysis [QUAN 08], which for
example was used for protocol recovery [QUAN 07]. Dynamic OPGs do
not differentiate object references since all operations are mapped to the
static control flow graph. Therefore, dynamic OPGs do not reveal the flow
of objects but rather the flow of control between points in the execution at
which the object was used.

2.2.3 Side Effect Analysis

A method is considered to be free of side effects if the invocation of the
method and all indirectly invoked methods do not modify any externally
visible object. This means, even if objects are modified in a method but this
modified state is not accessible anymore after the method has returned, the
method is not considered to produce side effects. This analysis has mainly
been performed statically; it originated in the area of compiler construction
30 years ago [BANN 79]. Recently, a few dynamic side effect analyses for
object-oriented languages have been proposed, which complement static
analyses. They take advantage of dynamic data for better scalability and to
alleviate the very conservative approach typically taken by static analyses.

JDynpur4 is a dynamic side effect analysis tool for Java developed by
Dallmeier. The tool records method start and end timestamps, instantiations
and field writes through a bytecode instrumentation. JDynpur also dynami-
cally analyzes parameter reference mutability, which classifies parameters
of a method as either immutable or mutable.

4http://www.st.cs.uni-saarland.de/models/jpure/

http://www.st.cs.uni-saarland.de/models/jpure/

18 Approaches to Dynamic Data Analysis

A scalable and accurate parameter reference mutability analysis has been
proposed by Artzi et al. [ARTZ 07]. Their approach composes static and
dynamic analyses to stepwise refine the results. A similar work, which also
combines static and dynamic analysis, was proposed by Xu et al. [XU 07a].
As an application, they use their approach to automatically cache method
invocation results of pure methods.

2.2.4 Summary

The approaches discussed in this section capture the flow of objects and
values in relation to the static program elements. For example, by keeping
track of where in the static control flow graph a variable was written and
where it was read, these approaches partly track an object’s flow; detailed
information about object references, however, is missing. This means for
example, that the program state is not modelled and hence no links between
the available origin information and object states can be drawn. The strong
relationship to the static program analysis shows the historical origin of
those approaches. All of them have first been proposed in static analysis
and have now been implemented as dynamic analyses to complement their
static counterparts.

2.3 Extended Execution Trace Analysis

Apart from the dynamic data analyses discussed above, a major group
of dynamic analyses investigates the runtime control flow of a program
based on method execution traces [HAMO 06, KLEY 88, DE P 98, RICH 02,
GREE 05, ZAID 05]. This group of approaches is based on the assumption
that a program’s execution can be characterized as a succession of interesting
events [DE P 94]. Most tracing techniques introduce sensors into methods,
which generate an event when being encountered. Typically, the call trees
are later reconstructed using the start and end timestamps or the stack depth
recorded with each method invocation event. Instrumentation is usually
achieved by manipulating the bytecode of the target program [DAHM 99,
CHIB 03, BRUN 02, DENK 07]. Recent approaches have also made use of the
JVMTI (Java Virtual Machine Tool Interface, part of the Java 5 platform)
and of aspect weaving [GSCH 03, ZAID 06]. In Smalltalk, wrapping method
objects to intercept method execution is a widely used technique [BRAN 98].

Extended Execution Trace Analysis 19

2.3.1 Trace-based Reverse Engineering Approaches

While this group of approaches concentrates on the dynamic control flow
by reconstructing the sequence and nesting of method executions, some
approaches additionally incorporate information about the objects involved.

Gschwind and Oberleitner propose to trace also the parameters for each
method invocation event to increase the detail in UML sequence diagrams
[GSCH 03]. They note that “although we initially thought that accessing
the parameters [...] is just a nice little gimmick, we were surprised that this
functionality was of crucial importance for reverse-engineering”. The reason
is that concepts in the software are not only encoded in the target object
and in the signature of methods, but also in the objects passed between
methods. In the case study presented by Gschwind et al., they investigated
a particular feature of a program but in the first version of their approach
the execution trace did not contain the class in question because the objects
passed as parameters were not identified.

Another datapoint captured by extended execution traces is the creation
(and destruction) of objects [DE P 94, WALK 98, GSCH 03, GOLD 05]. For
example, De Pauw et al. developed a number of visualizations, such as in-
stance histograms and allocation matrices, to show fine-grained information
about objects. For example, visualizations show the number of instances
grouped by class at a given time. Sub-views reveal detailed information like
the number of instances of a class created by methods of another class.

Walker et al. visualize the operation of a system at the architectural level
[WALK 98]. By means of a declarative mapping language the user of their
tool can create so-called cells that are represented as boxes to visualize the
interaction of messages between different structural parts of the application.
A cell also presents statistics about creation and destruction of objects,
however, the propagation of objects between cells is missing. Indeed, they
note that “it may be useful to capture the migration of objects if an object is
created in one subsystem, but is then immediately passed as an argument
to another subsystem”.

Demsky and Rinard analyze execution traces that include object aliasing
events to synthesize a set of conceptual object states (which they call “roles”)
[DEMS 02]. The goal of their analysis is to help developers understand
heap properties of object-oriented programs and how the actions of the
program affect these properties. An interesting aspect of their approach is
that the analysis also maintains a set of inverse references in addition to
reconstructing the heap. For each reference in the original heap, in their
model there exists one inverse reference. This model allows their analysis to
quickly find the source of a reference and the field containing the reference.

20 Approaches to Dynamic Data Analysis

2.3.2 Complete Execution History Recording

Back-in-time debugging. The most common approach to implementing
back-in-time debuggers has been to create a trace log of the program exe-
cution. In this execution trace, also data about side effects has to be logged
so that any past object state can be reconstructed. Moreover, parameters
and return values of method invocations are recorded. A representative
set of event types are: field write, local variable write, array write, method
call, method enter, and method exit. In this model — taken from TOD, a
back-in-time debugger recently proposed by Pothier et al. [POTH 07] — each
event has a set of attributes. For example a field write event has a timestamp,
thread id, source code location, field id, value.

Other back-in-time debuggers use very similar tracing techniques and
event models. A popular tool is ODB, a back-in-time debugger for Java
proposed by Lewis et al. [LEWI 03]. Unstuck is a similar proof of concept
implementation for Squeak Smalltalk [HOFE 06], and Omnicore’s Code-
Guide5 is a commercial back-in-time debugger. While TOD stores the events
in a distributed database for improved scalability, the other three approaches
keep the complete event history in memory.

Query-based debugging. Related to back-in-time debugging is query-
based debugging. In these tools the user formulates a query in a higher-level
language, which is then applied to the execution history [MART 05, LENC 97,
POTA 04, DUCA 06]. Queries can test complex object interrelationships and
sequences of related events. Approaches exist that execute the query at
runtime, which can improve performance because no history has to be
stored [LENC 99, GOLD 05].

2.3.3 Summary

The execution tracing approaches focus on the analysis of the runtime
control flow. We have selected the approaches that also keep track of the
objects involved in method invocations by recording the objects used as
targets, parameters, and return values. Like this, approaches capture origin
information related to the transfer of object references between methods.
Hence also the context in which these w take place is known. However,
the flow of objects below the granularity of methods is not captured. For
example, the links between the events of passing an object as parameter,
storing it in a field, and later accessing it from within a different method are
not drawn. Hence, the models proposed by these approaches allow only for
limited origin tracking because they leave gaps in the flow of an object.

5http://www.omnicore.com/

http://www.omnicore.com/

Conclusion 21

2.4 Conclusion

In the remainder of this chapter we illustrate the missing origin aspect in
the discussed approaches on an example taken from a Smalltalk bytecode
compiler. Tracking the origin of an object reference is motivated by the
question: “why is the field pointing to value x?”. In other words, we want
to be able to precisely know how an object reference is passed from one
point in the program execution to another one.

Control flow view. Method execution traces, which are used to analyze
the runtime control flow, are usually represented as a method call tree.
Figure 2.2 illustrates a small excerpt of a trace of the compiler, displaying
the method executions as a tree (the notation follows the pattern TargetClass
»methodsignature). By reading the trace in Figure 2.2 we see that an IRMethod
instance is created in IRBuilder by a call of the new primitive. Further down
in the trace, an IRMethod instance is sent the message compiledMethod in the
method RBMethodNode»generate.

With the data gathered by extended execution tracing approaches we
can reveal that the IRMethod object is the identical instance in both places
of the trace. However, we cannot reliably answer how this instance was
passed from where it is instantiated to where it is used later on. The instance
could be passed from IRBuilder to RBMethodNode via a sequence of method
return values through other classes, but it could just as well be stored in a
field and then be accessed later on (or a combination of both scenarios).

Speculating about the answer is further hampered by the sheer size of
execution traces. Figure 2.2 only shows the 6 levels and 8 method executions.
In our case, though, the area of the tree hidden by the dots is 46 levels deep
and comprises 4793 method executions.

Data structure view. With the approaches categorized as dynamic data
structure and data flow analyses we can precisely reconstruct any interme-
diate object graph snapshot to investigate how objects are aliased.

Object graphs can be visualized as UML object diagrams [FOWL 03] as
illustrated in Figure 2.3. This figure highlights a small part of the object
reference graph taken from the same execution as the one illustrated in
Figure 2.2. The snapshot is taken just before IRMethod»compiledMethod is
executed. In Figure 2.2 we can see that IRBuilder references the IRMethod
instance (from the trace we know that the IRMethod instance is created

in IRBuilder). Yet, like with the control flow perspective, the data centric
perspective does not reveal how the IRMethod instance is passed from the
IRBuilder to the RBMethodNode. The missing link is how the object references
are transferred.

22 Approaches to Dynamic Data Analysis

RBMethodNode>>generate
ASTTranslator class>>new

...
...

IRBuilder>>initialize
IRMethod class>>new

...
ASTTranslator>>visitNode:
ASTTranslator>>ir
IRMethod>>compiledMethod

IRTranslator class>>new

?
How is the IRMethod
instance passed to
RBMethodNode?

...

Figure 2.2: Excerpt of an execution trace represented as a call tree.

:IRBuilder

:IRMethod

:IRSequence

:RBMethodNode

:ASTTranslator

?How is the IRMethod
instance passed to
RBMethodNode?

Figure 2.3: UML object diagram representing an excerpt of an object graph.

From our literature review we can conclude that the different bits and
pieces required to track the origin of objects, the history of program state,
and their context in the program execution are actually all captured in one
way or another. But no solution has been proposed so far that combines
those datapoints and draws the missing links to get a model that can pre-
cisely and completely express dynamic data flow in object-oriented systems.

Chapter 3

Object Flow Analysis

Pervasive aliasing in object-oriented systems complicates program compre-
hension and remains a major source of software defects. Yet, as our literature
survey has shown, the state of the art in dynamic analysis lacks the concept
of object reference transfer. In this chapter we present our approach, which
we refer to as Object Flow Analysis. The goal of our approach is to provide
a coherent model of object reference transfer that provides a basis on which
different kinds of object aliasing analyses can be defined.

Structure of the chapter. In this chapter we introduce Object Flow Analy-
sis, our approach to dynamic data flow analysis, which is the foundation
on which the work presented in the following chapters build. In Section 3.1
we introduce the Object Flow Analysis metamodel, which defines how
object flow is represented. In Section 3.2 we provide a formal specification
of Object Flow Analysis, which defines how to observe the flow of objects
at runtime to generate a model that conforms to the defined metamodel.
Having defined how object flow is observed and represented, in Section 3.3
we introduce a small framework that provides a basic conceptual structure
to reason about dependencies introduced by object aliasing. Section 3.4
concludes this chapter and provides an outlook to the subsequent chapters
of this dissertation.

24 Object Flow Analysis

3.1 The Object Flow Analysis Metamodel

The underlying principle of Object Flow Analysis is to explicitly represent
object references and to capture the relationships between references.

Figure 3.1 illustrates the core of the Object Flow Analysis metamodel.
It integrates entities typically used in dynamic analysis metamodels, such
as Object, MethodInvocation, Method, and Class. These existing entities are
shown in gray, whereas the new entities and associations introduced by the
Object Flow Analysis metamodel are shown in black.

MethodInvocation

context

reference values and
primitive type values

Alias Object
value

*
0..1

origin

caller

0..1

fields or array slots

*

WriteAlias
predecessor

*
0..1

*

1

Class

Method

target parameters

*

*

1

1

0..1

1

*

Figure 3.1: Object Flow metamodel (gray entities and associations indicate
objects present in typical dynamic analysis metamodels).

Object references are represented by the entity Alias. (We chose the term
alias to distinguish it from the term object reference, which is the concept it
represents.) Each situation in which an object reference is transferred is
captured by an alias. Each alias points to exactly one object, the object to
which the reference points. The entity Object represents any value in the
system, both of reference type (objects and arrays) and of primitive type
(depending on the execution environment the undefined value, booleans,
integers, etc.).

Aliases introduce a level of indirection between objects referencing each
other. In our model, the field of an object does not directly point to another
object, but rather to a write alias of that object. Analogous, each array slot
points to a write alias. The same holds for objects passed as parameters,
objects being returned from method invocations, and objects being read
from fields and arrays. The target of a method invocation also points to an

The Object Flow Analysis Metamodel 25

alias, the alias through which the message is sent to the object. By recording
all aliases of an object, we can exactly determine how objects are referenced
at any point in the program execution.

In Figure 3.2 we zoom in on the entity Alias and illustrate the class
hierarchy of the eight kinds of aliases in our metamodel. We classify these
aliases in groups of two as follows.

CreationAlias represents an object reference created when:

1. an object is instantiated or cloned (referred to as allocation alias)
2. a literal object is referenced (literal alias)

MethodAlias represents an object reference created when:

3. an object is passed as a method parameter (parameter alias)
4. an object is returned from a method invocation (return alias)

ReadAlias represents an object reference created when:

5. an object is read from a field (field read alias)
6. an object is read from an array (array read alias)

WriteAlias represents an object reference created when:

7. an object is written into a field (field write alias)
8. an object is written into an array (array write alias)

The rationale is to capture all situations in which an object is made visible
in a method invocation (1–6) and in which a side effect is produced (7, 8).

AllocationAlias represents references of newly created objects when they
are passed to the application from the new primitive. LiteralAlias instances
are created in our model when a literal object is referenced at runtime (e.g.,
when referring to the literal true in the source code).

Whenever an object is assigned to a field or to a slot of an array, a
new write alias is created. A special case of field and array assignment
is the initialization of the fields and of the array slots with null when an
object is instantiated or an array is allocated. Although these assignments
are not directly visible in the source code, instances of FieldWriteAlias and
ArrayWriteAlias are created for it. This is important for a complete tracking of
the flow of null.

We do not capture writing into and reading from local variables and
make the flows through them transparent. From our experience with appli-
cations built on top of Object Flow Analysis, local aliases have not added
value as they denote only reference transfers within a method (extending
the model with local read and write aliases, however, would be straightfor-
ward).

26 Object Flow Analysis

Alias
*

0..1origin

CreationAlias

predecessor

0..1

0..1

AllocationAlias LiteralAlias ParameterAlias ReturnAlias

MethodAlias

FieldWriteAlias ArrayWriteAliasFieldReadAlias ArrayReadAlias

ReadAlias WriteAlias

Figure 3.2: Alias class hierarchy.

The key strength of the Object Flow Analysis metamodel resides in the
following three associations between aliases and method invocations (see
Figure 3.1):

• The origin relationship between aliases models the object reference
transfer. The origin of an alias is the alias that was used to create the
alias. For instance, the origin of a field read alias always is a field write
alias because going back one step in the flow of an object from a field
read alias always leads to the field write alias. Except for the creation
aliases, each alias in the model has exactly one origin alias, and any
alias can be the origin of potentially many other aliases. Creation
aliases mark the beginning of an object flow.

• The predecessor relationship, which is defined for WriteAlias, models
the history of program state. The predecessor of a field write alias is the
field write alias of the object previously stored in the field (analogous
for array slots).

• The context relationship between aliases and method invocations cap-
tures where in the control flow an alias is created. It relates object flow
to control flow.

In the following three sections we detail on the origin, predecessor, and
context relationships.

The Object Flow Analysis Metamodel 27

3.1.1 Origin Relationship

Apart from the creation aliases, all aliases originate from a previously ex-
isting alias. This gives rise to the origin relationship between the aliases of
an object. The origin of an alias is the alias that was used to create the alias
in question. Organizing the aliases of an object by their origin relationship
forms a tree. Such a tree represents the flow of an object, and we therefore
refer to it as object flow tree. With the explicit representation of references
and their origins, the Object Flow Analysis metamodel completely captures
the flow of objects through a system.

Except for literal objects, each object has exactly one object flow tree,
with the root alias being the allocation alias created by the instantiation
or clone primitive. Object flow trees of null, true, false, and other literal
objects have a write alias or literal alias as their root node. These objects
usually have multiple object flow trees since they can occur independently
in different places of the program execution.

Example. To illustrate details of the object flow construction, we use a
Smalltalk bytecode compiler as a concrete example. The compiler has four
phases: (1) scanning and parsing of source code, (2) verifying and annotat-
ing the abstract syntax tree (AST), (3) translating AST to the intermediate
representation (IR), and (4) translating IR to bytecode.

The example used in this section shows the interplay of important classes
of the last two compiling phases (translating the AST to the IR, and translat-
ing the IR to bytecode). We focus on an instance of the class IRMethod which
represents a method in the IR. It acts as a container of IRSequence instances,
which group instructions and form a control graph.

Figure 3.3 lists the relevant Smalltalk source code and below illustrates
the object flow tree, which represents the object flow of the IRMethod instance.
The dashed boxes represent instances of the entity Alias. An arrow indicates
the origin relationship between two aliases. Note, since the arrows point
from an alias to its origin, they point in the opposite direction of the actual
flow of the object.

The flow of the IRMethod instance starts with the root alias allocation (1)
in the method IRBuilder>>initialize where the instance is created. The object
is then directly assigned to a field named ir, which is represented as a field
write alias (2).

During the life cycle of IRBuilder the object is read from the field in (3)
and then passed as parameter of method: (4) to IRSequence objects where
it is stored in a field called method. In the actual execution we analyzed,
the branch (3-5) was created multiple times because for each new sequence

28 Object Flow Analysis

field writeallocation field read parameter field write

field read return field write field read parameter

field read parameter field write

12

IRBuilder>>initialize
 ir := IRMethod new
 ...

IRBuilder>>startNewSequence
 currentSeq := IRSequence new.
 currentSeq method: ir

IRSequence>>method: aMethod
 method := aMethod

ASTTranslator>>ir
 ^ builder ir

RBMethodNode>>generate
 ast := ASTTranslator new
 visitNode: self.
 ir := ast ir.

 ^ ir compiledMethod

IRMethod>>compiledMethod
 ^ IRTranslator new
 interpret: self;
 compiledMethod

IRTranslator>>interpret: ir
 ...

2

1

1

3

4
5

3 4

4' 5'3'

5

6

78

9

10

1076 8 9

Figure 3.3: Object flow of an IRMethod instance in a bytecode compiler.

instantiated by the method startNewSequence, the IRMethod object is passed
to it.

When RBMethodNode>>generate requests the IRMethod instance, the ob-
ject is first read from the field in IRBuilder (6) (this happens through a getter,
which is omitted for conciseness). And only afterwards it is returned from
ASTTranslator to RBMethodNode (7). Being returned, the object is directly
stored in the field ir of RBMethodNode (8). In the same method the field is
read to send the message compiledMethod (9).

An interesting aspect of our model can be observed in the last step of the
object flow tree illustrated in Figure 3.3. In compiledMethod an IRTranslator is
instantiated and then the target object passes itself as parameter of the mes-
sage interpret: to this new object. The origin of the parameter alias (10) is the
field read alias that was used to send the original message compiledMethod.

There is no alias created for self, the target of the method invocation.
Rather, when passing self, the origin of the new alias is the alias that was
used to refer to the target object when invoking the current method. The
rationale is that there is no reference transferred when sending a message to
an object. Only when passing the current target of a method execution, is a
reference transferred. Consequently, the origin alias of the newly created
alias is the reference through which the message is sent to the target object.
Therefore, all aliases — except for the creation aliases — have an origin.
This property assures that the object flows do not have gaps.

The Object Flow Analysis Metamodel 29

2,3

:IRBuilder field-write@t2

field-write@t3

field-write@t1

:IRSequence

:IRSequence

nil

IRBuilder>>startNewSequence
 currentSeq := IRSequence new.
 ...

predecessor

predecessor

value

value

value

builder := IRBuilder new. @t1
...
builder startNewSequence. @t2
...
builder startNewSequence. @t3

currentSeq

2

3

currentSeq

currentSeq

1

Figure 3.4: Capturing historical state through the predecessor relationship.

3.1.2 Predecessor Relationship

The predecessor relationship is only defined for write aliases, which capture
side effects. While the origin relationship models the dimension of the flow
of objects, the predecessor dimension models the history of the program
state. The purpose is to capture the modifications of fields to be able to
determine the value of an object’s field (or the value at a specific index of an
array) at an arbitrary point of the program execution.

The predecessor association of a field write alias is the field write alias of
the value previously stored in the field (respectively the array write alias
previously stored in the slot of the array). Figure 3.4 shows an example
of an IRBuilder instance with attribute currentSeq that undergoes two state
changes. In this instance diagram, solid boxes represent application objects
and dashed boxed indicate write alias instances. When the object is instanti-
ated at the point in time t1, the field is initially undefined (it points to the
undefined object nil). This situation is represented by a field write alias (1),
which is created when the object containing the field is instantiated. Later at
t2, a first IRSequence instance is assigned to the field (2), and at t3 a second
one is assigned to the field (3) in the method startNewSequence.

In the example, the field first points to the alias of null, then to the alias of
the first sequence object, and last to the alias of the second sequence object.
Except for the first alias, each subsequent write alias of the field keeps a
reference to its predecessor, the alias that was stored in the field beforehand.
In this way, the alias pointed to from a field is the head of a linked list of
aliases that constitute the history of that field.

30 Object Flow Analysis

With this information we can answer the question “When did the field
point to another object?”. Reconstructing the object graph and all object
states at a selected point in time is straightforward with this model. For
each field the predecessor list is traversed backwards starting at the last
alias to find the most recent write alias before the selected timestamp. In the
example in Figure 3.4, accessing builder.currentSeq at timestamp t3 directly
returns the alias of the last sequence, whereas at t1 the alias instance pointing
to nil is returned.

3.1.3 Context Relationship

The context association of an alias is used to navigate to the method invoca-
tion in which the alias was created, or vice versa, to find all aliases created in
a method invocation. Each alias is created in exactly one method invocation,
the invocation in which the object is made visible or in which a side effect
is produced. Consequently, the context of a parameter alias is the method
invocation to which the parameter is passed. Analogously, the context of
the return alias is the method invocation to which the object is returned.

The entity MethodInvocation represents a frame on the call stack. To model
the call stack, each method invocation holds onto its caller. Moreover, each
alias instance stores a creation timestamp and the source code location
(program counter) to keep track of where exactly it was created inside of a
method. The context relationship links the object flow with the control flow.
This provides precise information about where and when an object reference
was transferred. Where means that we can retrieve the complete call stack at
this point in time. When means that we can reconstruct the object graph at
that point in time. On the other hand, as the target of a method invocation
also points to an alias, it is possible to determine which messages are sent to
an object through a specific object reference.

3.2 Specification of Object Flow Tracking

While the first part of this chapter informally presented the conceptual
model of Object Flow Analysis, in this second part we provide a formal
specification. The motivation for this specification is that the informal
description alone makes it hard to accurately understand our approach and
to reproduce its results by an independent researcher.

Our informal description lacks precise information about how the dy-
namic data is captured at runtime and how the model is built in the first
place. As an example, consider the field write alias that is created when
initializing a field with null. Which method invocation is the context of this
alias?

Specification of Object Flow Tracking 31

We can find similar limitations in other publications. For instance,
Quante et al. describe only superficially how in their Object Process Graph
approach data are gathered from C programs, leaving room for different
interpretations [QUAN 08]. The following two sentences offer an example
for such possible interpretations. “By object, we mean a local or global
variable or a variable allocated on the heap at runtime. Hence, we consider
a trace a sequence of operations applied to an object.” [QUAN 06]. On the
one hand talking about variables allocated on the heap is rather ambiguous
(e.g., does this include primitive type values?). On the other hand it is not
clear which operations on those objects are meant, as operations could mean
to change the state of an array or record, passing pointers of a value, or
changing the value of a variable.

To concisely specify how aliases are recorded from analyzing the exe-
cution of an object-oriented program, we define a minimal object-oriented
imperative language with standard semantics. By extending the reduc-
tion rules, we then define the creation of aliases that constitute a model
conforming to the Object Flow Analysis metamodel.

This language is influenced by established approaches [CAME 07,
CLAR 02, DROS 08], and is similar to recent work of Drossopoulou et al., who
propose a formal framework to specify object invariants [DROS 08]. The
language supports imperative features, including a heap, field assignement,
and it explicitly represents call stack frames.

The main difference in the syntax and reduction rules compared to
the approach by Drossopoulou et al. [DROS 08] is that we unify primitive
type values and reference values. In our language, we refer to primitive
values, such as null, in runtime expressions through addresses. That is,
the value null is represented as an instance on the heap. This unification
simplifies our extended reduction rules in Section 3.2.2 because an explicit
distinction between primitive type values and addresses can be avoided.
Furthermore, message send is specified as a big step operational semantics
like in a publication of Clarke and Drossopoulou [CLAR 02], which makes
passing of parameters and return values more explicit.

In a first step we define the syntax and operational semantics of this lan-
guage (Section 3.2.1), and in a second step we define an extended language
by extending the reduction rules to specify how object reference transfer
is captured by aliases (Section 3.2.2). In Section 3.2.3 we proof, that the
extended language preserves the semantics of the original one. This is an
important property, as Object Flow Analysis like all other dynamic analyzes,
should only investigate the behavior of a program but should not alter it.

32 Object Flow Analysis

3.2.1 A Minimal Object Language

We specify the dynamic behavior of a minimal object-oriented language L
using a big step operational semantics. We do not define the static semantics
that describes well-formed programs (i.e., using a type system). From a
program P we only assume sets of identifiers for class names Class, field
names Field, and method names Method, and use variables c ∈ Class, f ∈
Field, and m ∈Method. Moreover, we assume that MethodBody(m, c) yields
the expression constituting the body of the method that is returned from a
lookup of m starting in class c. The function FieldsOf(c) returns the set of
field identifiers of class c.

Syntax. In Table 3.1 we define an abstract syntax of L with source expres-
sions Expr. To simplify our presentation, but without loss of generality, we
define methods to have exactly one argument, referred to by the variable x.
A runtime expression RExpr is a source expression, an address, or a call
with its stack frame σ.

In contrast to usual formalizations, our runtime expressions do not have
primitive type values, such as null. Consequently, all values in runtime
expressions are addresses, which reference objects stored on the heap. The
literal null is represented as the single object of the class UndefinedObject (and
other literal values would be in the same way).

Dynamic aspects. The heap maps addresses ι to objects o. Objects are
defined as tuples carrying their class name and a finite mapping from field
names to addresses. We use the notation H(ι) to denote the lookup of the
object stored at address ι on the heap H . The double lookup H(ι)(f) returns
the address stored in the field f of objectH(ι). The notation o[f 7→ ι] denotes
the update of o with binding f 7→ ι. Initially, the heap contains the object
representing null at the fixed address 0: H = {0 7→ (UndefinedObject)}.

The stack frame σ is a tuple of a target address and an argument address.
We do not explicitly model the stack because it is not required to track object
flow. The stack could be modeled simply by extending stack frame tuples
to additionally store the caller frame.

With C we define evaluation contexts taking the Wright-Felleisen ap-
proach [WRIG 94].

Operational semantics We use a big step operational semantics, which is
given by the relation

→ ⊆ (RExpr×Heap)× (RExpr×Heap)

defined in Table 3.2.

Specification of Object Flow Tracking 33

Source and runtime expressions

e ∈ Expr ::= new c (new object)
| this (this reference)
| e.m(e) (message send)
| x (argument)
| e.f (field read)
| e.f=e (field write)
| null (null reference)

er ∈ RExpr ::= e (source expressions)
| ι (address)
| σ · er (nested call)

Dynamic aspects

o ∈ Object = Class× (Field→ Address)
ι ∈ Address = N

H ∈ Heap = Address→ Object
σ ∈ StackFrame = Address×Address

Reduction Contexts (call-by-value)

C ::= [] | C.m(e) | ι.m(C) | C.f | C.f = e | ι.f = C | σ · C

Table 3.1: Syntax and dynamic aspects.

The NEW rule creates an object with class c, and initializes all fields of
the new object with null (i.e., mapping fields to the address 0). The heap H is
extended to the heap H ′ that additionally contains a binding for the new
address ι.

NULL just replaces the syntactic element null with the reserved addressed
0. The heap is not modified. THIS and ARG fetch the target address, respec-
tively the argument address, from the current stack frame. FIELD-READ
looks up the object with address ι and then from this object the field f .
FIELD-WRITE updates the heap with the mapping of the address ι to the
object with updated mapping of the field f .

MESSAGE-SEND is slightly more complicated. First, the class c is ex-
tracted from the target object (the class is stored as the first element of an
object tuple). Once c is determined, MethodBody performs a method lookup
and returns the expression e representing the body of method. In the second
step, a new call frame σ′ is created as the tuple containing the target and
argument. The rule says that if the expression e in the context of the call
frame σ′ and the heap H evaluates to the object at address ι′′ with heap H ′,
then the message send is replaced with ι′′ (return value) and the new heap.

34 Object Flow Analysis

(NEW)

FieldsOf(c) = {f1, ..., fn}
ι is fresh in H

H ′ = H[ι 7→ (c, f1 7→ 0, ..., fn 7→ 0)]

σ · new c,H → σ · ι,H ′

(NULL)

σ · null, H → σ · 0, H

(THIS)

σ = (ι, _)

σ · this, H → σ · ι,H

(ARG)

σ = (_, ι)
σ · x, H → σ · ι,H

(FIELD-READ)

ι′ = H(ι)(f)

σ · ι.f,H → σ · ι′, H

(FIELD-WRITE)

H ′ = H[ι 7→ H(ι)[f 7→ ι′]]

σ · ι.f = ι′, H → σ · ι′, H ′

(MESSAGE-SEND)

(c, _) = H(ι)
MethodBody(m, c) = e

σ′ = (ι, ι′)
σ′ · e,H → σ′ · ι′′, H ′

σ · ι.m(ι′), H → σ · ι′′, H ′

(CONTEXT)

σ · er, H → σ · e′r, H ′
σ · C[er], H → σ · C[e′r], H ′

Table 3.2: Reduction rules of operational semantics.

Please note that in this language there is no explicit return statement; the
returned value is the value that the body of the method evaluates to.

3.2.2 The Extended Language

We now extend the language L in order to formally specify Object Flow
Analysis. We introduce an additional level of indirection between runtime
expressions and objects. Object addresses in the extended language Lext are
represented by an alias record. Conceptually, an alias in the Object Flow
Analysis model represents an object reference. Similar to objects, aliases are
referred to by an address and are stored, separate from the main heap, in an
alias store. The syntax and basic structure of the reduction rules are kept
unchanged.

Table 3.3 shows the extended syntax and dynamic aspects of Lext for
tracking object flow. Expressions are unchanged except for the symbol κ
that we use to refer to an address of an alias. Runtime expressions do not
contain addresses to objects anymore.

Specification of Object Flow Tracking 35

Source and runtime expressions

e ∈ Expr ::= ...

er ∈ RExpr ::= e (source expressions)
| κ (alias address)
| σ · er (nested call)

Dynamic aspects

o ∈ Object = Class× (Field→ Address)
a ∈ Alias = Address×Address×Address× StackFrame

ι, κ ∈ Address = N

H ∈ Heap = Address→ Object
A ∈ AliasStore = Address→ Alias

σ ∈ StackFrame = Address×Address

Reduction Contexts (call-by-value)

C ::= [] | C.m(e) | κ.m(C) | C.f | C.f = e | κ.f = C | σ · C

Table 3.3: Extended syntax and dynamic aspects (differences to Table 3.1
highlighted in gray).

Dynamic aspects. Addresses κ in runtime expressions refer to a binding
in the alias store A, which maps addresses to aliases. An alias is a tuple
(ι, κorig, κpred, σ), where ι is the address of the actual object, κorig is the
address of the origin alias, κpred is the address of the predecessor alias, and
σ is the stack frame (in Figure 3.1 referred to as MethodInvocation). Depending
on the class of an alias, κorig and κpred can be undefined (⊥). For conciseness,
the class of an alias is not stored.

We define the following convenience function that yields the object
address that an alias wraps.

Definition 1 (Object of alias)

o(κ,A) := ι where A(κ) = (ι, _, _, _)

Intuitively, the function o takes an alias address and an alias store, looks
up the alias tuple in the alias store and then yields the object address located
at the first position.

36 Object Flow Analysis

(NEW)

FieldsOf(c) = {f1, ..., fn}
(κ1, A1) = writeA(σ,A0, 0,⊥,⊥), ...,
(κn, An) = writeA(σ,An−1, 0,⊥,⊥)

ι is fresh in H
H ′ = H[ι 7→ (c, f1 7→ κ1, ..., fn 7→ κn)]

(κ,A′) = allocA(σ,An, ι)

σ · new c,H,A0 → σ · κ,H ′, A′

(NULL)

(κ,A′) = literalA(σ,A, 0)

σ · null, H,A→ σ · κ,H,A′

(THIS)

σ = (κ, _)

σ · this, H,A→ σ · κ,H,A

(ARG)

σ = (_, κ)

σ · x, H,A→ σ · κ,H,A

(FIELD-READ)

κorig = H(o(κ,A))(f)
(κ′′, A′) = readA(σ,A, κorig)

σ · κ.f,H,A→ σ · κ′′, H,A′

(FIELD-WRITE)

ι = o(κ,A)
κpred = H(ι)(f)

(κ′′, A′) = writeA(σ,A, o(κ′, A), κ′, κpred)
H ′ = H[ι 7→ H(ι)[f 7→ κ′′]]

σ · κ.f = κ′, H,A→ σ · κ′, H ′, A′

(MESSAGE-SEND)

(c, _) = H(o(κ,A))
MethodBody(m, c) = e

κ′′ is fresh in A
σ′ = (κ, κ′′)

(κ′′, A′) = paramA(σ′, A, κ′)
σ′ · e,H,A′ → σ′ · κ′′′, H ′, A′′

(κ4, A
′′′) =


returnA(σ,A′′, κ′′′) if κ′′′ 6= κ
(κ,A′′) else

σ · κ.m(κ′), H,A→ σ · κ4, H
′, A′′′

(CONTEXT)

σ · er, H → σ · e′r, H ′
σ · C[er], H → σ · C[e′r], H ′

(Alias creation functions)

allocA(σ,A, ι) := (κ,A[κ 7→ (ι,⊥,⊥, σ)])
literalA(σ,A, ι) := (κ,A[κ 7→ (ι,⊥,⊥, σ)])

paramA(σ,A, κorig) := (κ,A[κ 7→ (o(κorig, A), κorig,⊥, σ)])
returnA(σ,A, κorig) := (κ,A[κ 7→ (o(κorig, A), κorig,⊥, σ)])
readA(σ,A, κorig) := (κ,A[κ 7→ (o(κorig, A), κorig,⊥, σ)])

writeA(σ,A, ι, κorig, κpred) := (κ,A[κ 7→ (ι, κorig, κpred, σ)])
...where κ fresh in A

Table 3.4: Extended reduction rules (differences compared to Table 3.2
highlighted in gray).

Specification of Object Flow Tracking 37

Operational semantics. The runtime semantics is given by the extended
relation:

→ ⊆ (RExpr×Heap×AliasStore)× (RExpr×Heap×AliasStore)

This relation is defined by the reduction rules in Table 3.4.

NEW creates two types of aliases. First, for each field in the new object,
a write alias is created using the function writeA() defined at the bottom
of Table 3.4. The context of the write alias is the stack frame σ in which
the object is created using the keyword new. Second, an allocation alias is
created, which points to the new object ι and to the same stack frame σ.

NULL creates a literal alias for the object null. The rules THIS and ARG
do not have to be modified, except for the address symbol ι that is replaced
with κ to point out that the addresses in the stack frame point into the alias
store instead of the heap.

FIELD-READ first extracts ι, the address of the actual object, which is
stored at the first position of the alias tuple. Then the value of the field of
the object is looked up and a read alias is created for this reference transfer.
The origin alias of the field read alias is the alias κorig currently stored in
the field.

FIELD-WRITE also first extracts the address of the actual object. It then
looks up the current value of the field that is going to be changed. This
value, aliased by κpred, is then remembered as the predecessor in the new
field write alias. The origin of the field write alias is κ′, the right hand
side of the assignment. What this rule also shows is that the result of the
assignment is the alias κ′, that is, the original right hand side value rather
than the newly created field write alias.

In the MESSAGE-SEND rule again two types of aliases are created. First,
before the new method body is evaluated, an alias is created for the parame-
ter. Note that the context σ′ is the new stack frame, not the one in which the
message m is sent. Furthermore, the target of the message send, the object
address represented by the alias κ, is directly used as this in the new stack
frame; no new alias is created in this case.

Under the condition that the address returned from the evaluation of e
is not identical to this, a return alias is created. The rationale to not create a
return alias on each return from a method call is that we want to capture
only cases in which a different value than this is explicitly returned. This
is especially important in languages like Smalltalk that implicitly return
this if no other value is returned. In other languages the return type of
such methods is usually declared void. Also important to notice with return
aliases is that their context σ is the stack frame to which they are returned,
rather than the one from which they originate.

38 Object Flow Analysis

Example. We illustrate the extended operational semantics by evaluating
a simple example program. The example code includes a class instantiation,
a method call, parameter and return value passing, and a field assignment.

The following listing shows the layout of the two classes (we use pseudo
code as we have not defined a complete syntax for our language). The
first class having one field, the second class having no field. Below, the
main code of the example is shown. This code instantiates IRBuilder and
sends the message startNewSeq. Since in our minimal language exactly one
parameter is required, we use null, although in the real code the method
takes no parameter.

class IRBuilder
fields: currentSeq
methods: startNewSeq(x)

class IRSequence
fields: --
methods: --

main { (new IRBuilder).startNewSeq(null) }

The following code shows the implementation of the method
startNewSeq of the class IRBuilder. It creates a new IRSequence instance and
assigns it to the field currentSeq of the target object.

method startNewSeq(x) {
this.currentSeq := new IRSequence

}

In Table 3.5 the reduction steps are listed. The initial state is an empty
stack frame and the source expression of the main method body. The heap
is initialized with the unique instance of null, and the alias store is empty.
The evaluation of the initial expression requires three reduction steps (1–3).
For the MESSAGE-SEND rule of step 3, three more reductions (3.1–3.3) are
required as part of the rule’s premise.

(1) In the first reduction step, (NEW), the target of the messsage send is
reduced, which produces the new object with address ι1 on the heap. This
address is represented by the allocation alias κ2. The field of the new object
is initialized with a write alias κ1 pointing to null.

(2) In the second reduction step, the literal null used as method parameter,
is evaluated. This step produces a literal alias κ3 but does not modify the
heap.

(3) In the third reduction step, the method startNewSeq is called. For
passing the parameter κ3, a new parameter alias κ4 is created, which is
stored together with the target κ2 in the new stack frame. The following
three reduction steps are evaluated in this new context.

Specification of Object Flow Tracking 39

() · (new IRBuilder).startNewSeq(null),
{0 7→ (UndefinedObject)},
{}

→1 () · κ2.startNewSeq(null),
{0 7→ .., ι1 7→ (IRBuilder, currentSeq 7→ κ1)},
{κ1 7→ (0, ..), κ2 7→ (ι1, ..)}

→2 () · κ2.startNewSeq(κ3),
{0 7→ .., ι1 7→ (IRBuilder, currentSeq 7→ κ1)},
{κ1 7→ (0, ..), κ2 7→ (ι1, ..), κ3 7→ (0, ..)}

(κ2, κ4) · this.currentSeq := new IRSequence,
{0 7→ .., ι1 7→ (IRBuilder, currentSeq 7→ κ1)},
{κ1 7→ (0, ..), κ2 7→ (ι1, ..), κ3 7→ (0, ..), κ4 7→ (0, κ3, ..)}

→3.1 (κ2, κ4) · κ2.currentSeq := new IRSequence,
{0 7→ .., ι1 7→ (IRBuilder, currentSeq 7→ κ1)},
{κ1 7→ (0, ..), κ2 7→ (ι1, ..), κ3 7→ (0, ..), κ4 7→ (0, κ3, ..)}

→3.2 (κ2, κ4) · κ2.currentSeq := κ5,
{0 7→ .., ι1 7→ (IRBuilder, currentSeq 7→ κ1), ι2 7→ (IRSequence)},
{κ1 7→ (0, ..), κ2 7→ (ι1, ..), κ3 7→ (0, ..), κ4 7→ (0, κ3, ..), κ5 7→ (ι2, ..)}

→3.3 (κ2, κ4) · κ5,
{0 7→ .., ι1 7→ (IRBuilder, currentSeq 7→ κ6), ι2 7→ (IRSequence)},
{κ1 7→ (0, ..), κ2 7→ (ι1, ..), κ3 7→ (0, ..), κ4 7→ (0, κ3, ..), κ5 7→ (ι2, ..),
κ6 7→ (ι2, κ5, κ1, ..)}

→3 () · κ7,
{0 7→ .., ι1 7→ (IRBuilder, currentSeq 7→ κ6), ι2 7→ (IRSequence)},
{κ1 7→ (0, ..), κ2 7→ (ι1, ..), κ3 7→ (0, ..), κ4 7→ (0, κ3, ..), κ5 7→ (ι2, ..),
κ6 7→ (ι2, κ5, κ1, ..), κ7 7→ (ι2, κ5, ..)}

Table 3.5: Example evaluation in Lext with extended operational semantics.

(3.1) This step simply applies the rule (THIS), which does not modify
the heap or alias stack.

(3.2) The next step reduces the right hand side of the assignment, that
is, it instantiates the IRSequence class, producing a new heap binding with
address ι2. In the runtime expression this object is represented by the
allocation alias κ5.

40 Object Flow Analysis

write κ1

alloc κ2

literal κ3

alloc κ5

write κ6

return κ7

:IRBuilder ι1

null 0

:IRSequence ι2

currentSeq

param κ4

Alias StoreHeap

Legend
value of alias
origin of alias
predecessor of alias
value of object field

Figure 3.5: Heap and alias store of example evaluation.

(3.3) The rule (FIELD-WRITE) is evaluated, producing a write alias κ6

as follows. First the predecessor alias κpred is obtained by looking up the
current alias stored in the field. The origin alias of the field write alias is the
right hand side of the assignment since the object flows from there into the
field. Eventually, the field is updated with the new write alias κ6.

Eventually, the resulting value of reduction step 3 is the return alias κ7.
In Figure 3.5 the heap and the alias store of this example evaluation are
illustrated. It shows the three objects created on the heap and the 7 aliases
on the alias store. The different arrows indicate references between objects
and aliases. Each alias points to its object (value), and the parameter, write,
and return aliases point to their origin. The write alias in addition points
to the alias previously stored in the field (predecessor). The field currentSeq
first points to the write alias κ1, and later it is updated to point to the write
alias κ6.

3.2.3 Behavioral Similarity of Semantics

In the previous two sections we have defined the main language L and
an extended version Lext. While L defines a heap to store objects, Lext
additionally defines an alias store to map addresses to aliases. Aliases in
Lext add a level of indirection between the objects stored on the heap (field
addresses are addresses of aliases instead of addresses of objects).

Specification of Object Flow Tracking 41

We wish to show that a program in Lext preserves the behavior of the
same program in L — that is, it merely generates additional data (aliases)
but except for that the language semantics are the same. To compare the
similarity of a state s of a program in Lext with a state t of a program in L
we define the relation F that relates s to t by flattening down the heap (and
runtime expression). Figure 3.6 illustrates the flattening of the final state of
the example evaluation shown in Table 3.5.

write κ6

:IRBuilder ι1

:IRSequence ι2

currentSeq

Alias StoreHeap

:IRBuilder ι1

:IRSequence ι2

currentSeq

Heap

Lext L

F

s t

Figure 3.6: Relation F maps state s in language Lext to state t in L.

Intuitively, our proof shows that at any step of the execution of a pro-
gram in the extended language, its flattened heap and flattened runtime
expression is identical to the heap and runtime expression of the same
program being executed up to this step in the original language.

We have defined the two languages as state transition systems. Lext
is defined as (S, →) where S = (RExpr × Heap × AliasStore) and L is
defined as (T , →) where T = (RExpr × Heap). The definitions of → are
given by the reduction rules in Table 3.4 respectively Table 3.2. We now
define the simulation preorder F , a relation between Lext and L, to show that
each reduction step in Lext can be matched by a step in L. The simulation
we define is a strong simulation (or lock-step simulation) as each step in Lext
is matched by exactly one step in L.

Proposition 1 The relation F ⊆ (S × T) is a simulation, that is, (s, t) ∈ F
implies that for s′ with s→ s′ there is t′ such that t→ t′ and (s′, t′) ∈ F .

Figure 3.7 illustrates Proposition 1. Solid lines indicate hypotheses and
dashed lines indicate conclusions. To verify our proposition, we first define
the relation F .

The relation F flattens down a runtime expression and a heap with
respect to a given alias store.

42 Object Flow Analysis

 s

 s'

 t

 t'

 F

 F

Figure 3.7: Simulation diagram

Definition 2 (Simulation preorder F)

F := {(RExpr, H,A), (fr(RExpr, A), fh(H,A))} where

fr(er, A) :=

8<:
e if er = e
o(κ,A) if er = κ
fσ(σ,A) · fr(e′r, A) if er = σ · e′r

where fσ((κ, κ′), A) := (o(κ,A), o(κ′, A))

and

fh(H,A) := {ι1 7→ (C, f1 7→ o(κ,A), ...), ...ιn 7→ ...}
where H = {ι1 7→ (C, f1 7→ κ, ...), ...ιn 7→ ...}

Intuitively, fr takes a runtime expression and replaces each occurrence
of an alias address κ with the according object address o(κ,A). And fh
replaces all alias addresses referred to by fields of objects on the heap with
according object addresses.

Proof of Proposition 1 We case split on the reduction rules→ of Lext. For
each rule, we first take the path to the right and then to the bottom in
Figure 3.7 (that is, s mapped to t reduced to t′) and then we take the other
path (s reduced to s′ mapped to t′) to show that we obtain the identical t′

along both paths.

Case (NULL): We start with this case because it is not trivial but also not
the most complex one. The two listings below show each step at the left
and how a step was derived at its right. What has to be proven is that both
resulting states are equal.

Specification of Object Flow Tracking 43

(σ · null, H,A)
(fr(σ · null, A), fh(H,A)) Definition 2
(fσ(σ,A) · null, fh(H,A)) Definition 2
(fσ(σ,A) · 0, fh(H,A)) (NULL) in L

(σ · null, H,A)
(σ · κ,H,A′) where κ = (0,⊥,⊥, σ) (NULL) in Lext
(fσ(σ,A) · o(κ,A), fh(H,A)) Definition 2
(fσ(σ,A) · 0, fh(H,A)) Definition 1

Case (NEW): To proof this case, we first introduce the following lemma.

Lemma 1 fh(H[ι 7→ (c, f 7→ κ)], A) = fh(H,A)[ι 7→ (c, f 7→ o(κ,A))]
This lemma says that updating the binding of a heap in Lext and then flatten-
ing this heap is equivalent to first flattening the heap and then updating the
binding with the same object but with its alias addresses being unwrapped.
This lemma follows directly from fh in Definition 2.

Like in the previous case, we follow the two paths to show that they lead
to the identical state:

σ · new c,H,A
fσ(σ,A) · new c, fh(H,A) Definition 2
fσ(σ,A) · ι,H ′ (NEW) in L

where H ′ = fh(H,A)[ι 7→ (c, f1 7→ 0, ..., fn 7→ 0)]

σ · new c,H,A
σ · κ,H ′, A′ (NEW) in Lext

where H ′ = H[ι 7→ (c, f1 7→ κ1, ..., fn 7→ κn)]
and A′ = A[κ1 7→ (0, ...)]...[κn 7→ (0, ...)][κ 7→ (ι, ...)]

fσ(σ,A) · o(κ,A′), fh(H ′, A′) Definition 2
fσ(σ,A) · ι, fh(H ′, A′) Definition 1
fσ(σ,A) · ι,H ′′ Lemma 1

where H ′′ = fh(H,A′)[ι 7→ (c, f1 7→ o(κ1, A
′), ..., fn 7→ o(κn, A

′)]
fσ(σ,A) · ι,H ′′ Definition 1

where H ′′ = fh(H,A′)[ι 7→ (c, f1 7→ 0, ..., fn 7→ 0)]

The differences between A and A′ are the new bindings for κ1, ..., κn and
κ, which all are fresh in A, and hence fh(H,A) = fh(H,A′). Therefore, both
states are equivalent.

Case (THIS): Follows directly from reduction rules and Definition 2.

Case (ARG): Follows directly from reduction rules and Definition 2.

Case (FIELD-READ): We first proof the following lemma, which is the
counterpart to Lemma 1.

Lemma 2 fh(H,A)(ι)(f) = o(H(ι)(f), A)
This lemma says that flattening a heap and then looking up a field yields
the same object address as first looking up the field and then unwrapping
the returned alias.

44 Object Flow Analysis

let H = {..., ι 7→ (_, f 7→ κ, ...), ...} be a heap in Lext, then:

fh(H,A)(ι)(f)
H ′(ι)(f) Definition 2 and H

where H ′ = {..., ι 7→ (_, f 7→ o(κ,A), ...), ...}
o(κ,A) field lookup in H ′

o(H(ι)(f), A) binding of κ in H

Having introduced Lemma 2, we can now again proof that both paths in
the case of the rule (FIELD-READ) are equivalent.

σ · κ.f,H,A
fσ(σ) · o(κ,A).f, fh(H,A) Definition 2
fσ(σ) · fh(H,A)(o(κ,A))(f), fh(H,A) (FIELD-READ) in L
fσ(σ) · o(H(o(κ,A))(f), A), fh(H,A) Lemma 2

σ · κ.f,H,A
σ · κ′′, H,A′ (FIELD-READ) in Lext

where A′ = A[k′′ 7→ (o(H(o(κ,A))(f), A), ...)]
fσ(σ) · o(κ′′, A′), fh(H,A′) Definition 2
fσ(σ) · o(H(o(κ,A))(f), A), fh(H,A′)

The difference between A and A′ is the update of κ′′, which is fresh in A,
and hence fh(H,A) = fh(H,A′). Therefore, both end states are equivalent.

Case (FIELD-WRITE): The proof of this case is analogous to (FIELD-READ),
but with the difference that Lemma 1 is used instead of Lemma 2.

Case (MESSAGE-SEND): Also the proof of this rule follows the same ap-
proach like the one of the previous cases. For the intermediate reduction
that is part of the rule’s premise, we have to show that its left hand side
is equivalent with respect to F to the left hand side of the same rule in
language L. In particular, this means to show that for σ′ in Lext fσ(σ′) is
equivalent to σ′ in L. This is straightforward because it requires only to
show that the parameter alias created is an alias of the object passed as
argument.

Case (CONTEXT): Follows directly since the rules are identical in both
languages and the reduction contexts defined by C preserve the reduction
order.

�

3.3 A Framework to Reason about Dependencies

In the introduction of this dissertation we identified reference structure and
reference transfer as two main dimensions for analyzing aliasing dependen-
cies. In this section we focus on the dimension of reference transfer because an

A Framework to Reason about Dependencies 45

a ∈ Aliases (set of aliases created at runtime)
r ∈ Regions (set of regions)

reg : Aliases→ Regions (region in which an alias resides)
aliases : Regions→ P(Aliases) (set of relevant aliases of a region)

Table 3.6: Sets and relations on which dependency definitions are based.

analysis of it can reveal dependencies not detectable with reference structure
analyses. We define a small formal framework1 to reason about dependen-
cies introduced by the transfer of object references. This framework is then
instantiated by the analyses presented in the subsequent chapters.

We have mentioned perspectives frequently taken by developers, such as
objects, classes, methods, features, control flow, and threads. Between each
of these program abstractions, aliasing can introduce subtle dependencies.
To provide a general approach to reason about such dependencies, we
abstract these perspectives with the notion of regions.

Regions define a partition of the set of aliases created at runtime — that
is, each reference resides in a single region. Dependencies are then detected
by how references are transferred between regions. The term regions is
borrowed from work in static effect inference, where a region is a set of
possibly aliased objects and an object is never aliased from more than one
region [TALP 92]. In contrast, our concept of regions allows aliasing of an
object between two regions. Indeed, this situation, which occurs when
object references are transferred between regions, is exactly the focus of our
analysis.

The main definitions provided by our framework are based on the set
of aliases that are observed during the analysis of a program execution,
referred to as Aliases , and the set of regions, referred to as Regions (see
Table 3.6). To instantiate the framework, a concrete analysis needs to define
the set Regions and the relation reg that defines in which region an alias
resides.

Furthermore, we define the relation aliases , which is supposed to yield
all aliases of a region that are relevant for a concrete analysis. By default,
the relation aliases is defined as the inverse relation of reg , but concrete
analyses may override this definition to filter the aliases being considered
for dependencies.

Definition 3 (Relevant aliases of a region)

aliases(r) := {a ∈ Aliases : reg(a) = r}
1We use the term framework in this context to denote a basic conceptual structure used to

reason about a complex issue.

46 Object Flow Analysis

Based on these sets (Aliases and Regions) and relations (reg and aliases)
listed in Table 3.6, we define two notions of dependencies between regions.
The first one defines a direct dependency relationship, DD : R → R, the
second one an indirect dependency relationship, ID : R→ R.

To simplify readability of the formulas, we use the OCL [OCL 06] no-
tation to navigate between entities along associations defined in our meta-
model in Figure 3.1. Starting from a specific object, we can navigate an asso-
ciation by using the opposite association-end. For example, let a be an alias,
then a.origin is the origin alias of a. Analogous, a.context .method returns
the instance of the entity Method in which the alias a is created. This notation
is syntactic sugar for the functional notation, e.g., method(context(a)).

Definition 4 (Direct dependency)

DD := {(r, r′) : ∃a ∈ aliases(r), reg(a.origin) = r′ ∧ r 6= r′}

Intuitively, a region r directly depends on a region r′ if an object reference
created in r′ exists that is transferred to r without being passed through
other regions in between (and the reference in r is considered relevant).

Taking not only the direct origin of an alias into account, but the whole
chain of aliases from which an alias originates, we define indirect dependen-
cies. Let allOrigins(a) : Aliases → P(Aliases) be defined as the transitive
closure of the origin relationship of an alias a, extended to sets of aliases.

Definition 5 (Indirect dependency)

ID := {(r, r′) : ∃a ∈ aliases(r), ∃a′ ∈ allOrigins(a), reg(a′) = r′ ∧ r 6= r′}

Intuitively, a region r indirectly depends on a region r′ if an object refer-
ence created in r′ exists that is transferred to r, either directly or indirectly
through other regions (and the reference in r is considered relevant).

Figure 3.8 illustrates three regions and assumes a definition of reg that
maps aliases to regions as illustrated. Based on the origin relationship
between aliases, for the region r we observe that it directly depends on r′,
and that it indirectly depends on both r′ and r′′.

Potentially, a variety of different meaningful instantiations of this frame-
work exist. Its variables are (1) the set of Regions , that is, which entities of
the model are used as regions, and (2) the definition of reg that maps aliases
to these regions.

In the following three chapters we present three applications that are
based on this framework. In the first one, the regions are groups of classes

Conclusion and Outlook 47

rr'r''

origin
aliasLegend

a1
a2

a3

a4

reg(a1) = r''
reg(a2) = r'

reg(a3) = r'
reg(a4) = r

Figure 3.8: Region r directly depends on r′. Furthermore, r indirectly
depends on both r′ and r′′.

(e.g., packages), in the second one the regions are the features of a software
system, and in the third one the regions are different parts of an execution
trace.

3.4 Conclusion and Outlook

Object aliasing makes object-oriented programs hard to understand, main-
tain, and analyze. Therefore, we need a conceptual model that serves as a
basis to represent and reason about object flow, which is an essential — but
a so far neglected — aspect of aliasing.

In this chapter we have presented our approach, which is composed
from the following three main parts as illustrated in Figure 3.9. The track-
ing of object flow, which we formally specify in Section 3.2, defines how
object reference transfer is observed in a running system. The metamodel
described in Section 3.1 defines how we represent this data, and the frame-
work presented in Section 3.3 provides a basic conceptual structure to reason
about dependencies introduced by object reference transfer.

Object Tracking
(Chapter 3)

Metamodel
(Chapter 3)

Dependency Framework
(Chapter 3)

Application
(Chapter 4)

Application
(Chapter 5) ...Application

(Chapter 6)

reasoning

concrete analysis
and presentation

representation

observation

uses

Figure 3.9: Stack diagram of the Object Flow Analysis approach.

48 Object Flow Analysis

In the following chapters we present concrete applications of our ap-
proach, which build on the abstract notion of dependencies provided by the
framework. So far, we have not explicitly stated applications that can or
should be carried out with Object Flow Analysis because it is not tailored to
a specific set of analyses. The goal of Object Flow Analysis is to provide the
foundation for a new category of dynamic analyses.

Table 3.7 maps our three applications to different views on program ab-
stractions. In these applications we analyze dependencies between classes
and packages, between features, and in execution traces. These analyses
propose solutions to specific problems in the context of legacy system main-
tenance. Therefore, our applications cover only a fraction of the potential
applications of Object Flow Analysis. The goal of these applications is to
provide anecdotal evidence to validate Object Flow Analysis. They demon-
strate that Object Flow Analysis provides a range of different perspectives
to analyze dependencies introduced by aliasing in object-oriented systems.

Application Abstraction
Objects

Chapter 4 Static entities (classes, packages)
Chapter 5 Software features
Chapter 6 Control flow (execution traces)

Concurrent threads

Table 3.7: Concrete applications (Chapter 4, 5, 6) mapped to abstractions
between which dependencies may occur due to object reference transfer.

The first application of our approach proposes a visualization that shows
how objects are passed through the classes of a system to expose how classes
depend on each other by exchanging objects (Chapter 4). Our second analy-
sis maps object flows to features to detect runtime dependencies between
them based on how aliases created in one feature are subsequently used
by other features (Chapter 5). Our third analysis detects how objects in
execution traces are used and modified during the execution of a method to
help developers write unit tests for legacy software (Chapter 6).

After presenting these three analyses, in Chapter 7 we finally propose a
very different application of Object Flow Analysis that is not only based on
the dimension of reference transfer but also on the dimension of reference
structure. We propose the design and provide an implementation of an
object-flow-aware virtual machine. The seamless integration of aliases in
the memory model of virtual machines not only captures the complete exe-
cution history, but it also exhibits an unforeseen, powerful behavior: aliases
no longer referenced are automatically garbage collected. Our approach
proposes a solution for the long standing problem of data explosion in the
field of back-in-time debugging.

Chapter 4

Visualizing Object Flow
Exposing Dependencies Between Structural Entities

While in procedural programs typically the control flow is hard to follow,
in object-oriented programs the main complexity resides in the sharing and
passing of objects. Domain concepts are implemented as a complex graph
of objects and this graph is transformed by the program at runtime. Objects
created and used in one class may later be transferred to other classes,
which introduces implicit dependencies between these classes. Traditional
views, like UML sequence diagrams, do not reveal the transfer of object
references between classes. To solve this problem, the application of Object
Flow Analysis presented in this chapter analyzes and visualizes how objects
are passed through a system at runtime.

4.1 Introduction

Since the behavior of a class depends on the behavior of the classes it
collaborates with, classes cannot be studied in isolation. Dependencies
between classes can be difficult to detect if dependencies are implicit in the
source code. While the call relationship between classes can be identified
relatively well in the source code (late binding still complicates matters,
though), dependencies introduced by object aliasing are less explicit. Thus,
the research question that motivates the work presented in this section is:

How can we support developers to detect implicit dependencies between classes
and packages that occur due to the exchange of objects?

50 Visualizing Object Flow

In particular, with our approach we want to address the following con-
crete questions that are relevant in the context of maintaining legacy sys-
tems:

1. How do classes interact and depend on each other by exchanging
objects?

2. How can we help developers to identify special classes in the design
of a system (e.g., classes acting as object hubs)?

3. How can we help developers to identify different phases in an execu-
tion scenario and the way classes participate in these phases?

4. Which objects passed to a class are stored in fields and hence are
aliased during some period of time, and which objects are directly
passed through to other classes?

5. Are internal classes of a package encapsulated or do references leak
from the package?

To address these questions, we present an experimental tool that is based
on Object Flow Analysis. It provides visualizations to explore the results
of our analysis. We propose two explorative and complementary views to
address the above stated questions:

• The Inter-unit Flow View depicts units connected by directed arcs
subsuming all objects transferred between two units (Section 4.4).
By unit we understand a class or a group of classes that a software
engineer knows they conceptually belong together (e.g., all classes in a
package, in a component, or in an application layer, like the business
logic or the user interface). This view answers the questions (1-3)
stated above.

• The Transit Flow View allows a user to drill down into a unit to iden-
tify details of the actual objects and of the sequence of their passage
(Section 4.5). This view answers the questions (4-5).

Structure of the chapter. In the next section we discuss the problem of
dependencies between classes and in Section 4.3 we present the concrete
dependency analysis we use to build the visualizations. In Section 4.4 and
Section 4.5 we present the Inter-unit Flow View and the Transit Flow View.
Section 4.6 evaluates our approach based on three case studies. Section 4.7
describes the implementation of our infrastructure that tracks objects at
runtime. Section 4.8 presents the related work in program visualization. We
conclude this chapter with a summary in Section 4.9.

The Challenge of Structural Dependencies 51

4.2 The Challenge of Structural Dependencies

Aliasing dependencies occur when objects are passed between classes. These
dependencies are particularly hard to detect when objects are passed in-
directly, for example from a class A via class B to C. In this case, A and C
depend on each other although they may never have exchanged messages.

These dependencies are not directly visible in the source code. Static
call relationships do not expose how objects are passed around, and also
UML sequence diagrams [FOWL 03], which show dynamic control flow
by visualizing message sends between objects at runtime, do not expose
aliasing dependencies.

The effect of such dependencies is that both classes alias the same object
and hence a modification of the object by one class may affect the behavior of
the other class. Even if class A discarded the reference after having passed it
to B (and hence the object state cannot be mutually modified), a dependency
relationship exists. The modifications of the object state as a side effect in A
may affect the behavior of C at a later point in time.

Situations exist in which sharing of objects should be restricted. For
example, references to instances of classes from an internal library should
never be passed outside the package. This is to avoid that unknown uses
of instances outside the package will break if developers modify the class
assuming it has only package-internal clients. On the other hand, depen-
dencies are not necessarily bad — often they are desired because sharing
mutable state provides a high degree of expressiveness to model an applica-
tion domain.

Our approach maps runtime object flow to the classes of a system. This
provides a high-level view that allows developers to relate classes to each
other depending on how classes exchange objects. Moreover, we allow
developers to aggregate classes, for example into packages or inheritance
hierarchies, to further raise the level of abstraction. This view, which exposes
object flow at a high level of abstraction, can reveal insights into the design
of a system.

Before introducing the visualizations, the next section discusses how to
detect the dependencies, on which the view are based, using Object Flow
Analysis.

4.3 Applying Object Flow Analysis

To instantiate our dependency framework introduced in Section 3.3, we
define Regions as the set Units , a partition of the set of classes in the system

52 Visualizing Object Flow

a ∈ Aliases (set of aliases created at runtime)
o ∈ Object (set of objects created at runtime)
c ∈ Classes (set of classes)
u ∈ Units (partition of the set Classes)

r ∈ Regions = Units (set of regions)
reg : Aliases → Regions (region in which an alias resides)

aliases : Regions → P(Aliases) (set of relevant aliases of a region)

Table 4.1: Sets and relations on which dependency definitions are based.

(see Table 4.1). That is, Units is a set of nonempty subsets of Classes such
that every class c in Classes is in exactly one of these subsets.

Furthermore, we define the relation reg as follows.

Definition 6 (Region of alias)

reg(a) := u ∈ Units such that a.context .method .class ∈ u

Intuitively, the region of an alias is the unit that contains the class in
which the alias is created (there always exists exactly one unit that contains
the class because Units is a partition of the set of classes). To find the class in
which an alias is created we navigate along the associations context, method,
and class between the entity Alias and Class in the metamodel shown in
Figure 4.1.

Having provided the definitions above, we can now use the direct and
indirect dependency definitions, DD and ID as defined in Section 3.3, to
detect how classes depend on each other by exchanging objects. Further-
more, for our analysis, we also want to measure how many unique ob-
jects are passed along a direct dependency between two units. We define
WDD : (R×R)→ N as follows.

Definition 7 (Weighted direct dependency)

WDD(r, r′) := |{o ∈ Object : ∃a ∈ aliases(r),

a.value = o ∧ reg(a.origin) = r′ ∧ r 6= r′}|

Intuitively, this definition counts the number of unique objects passed
from class r′ to class r. It does so by adapting the definition of DD . It builds
a set containing objects from which an alias exists that transferred the object
between the two regions, and it then yields the cardinality of this set.

Inter-unit Flow View 53

MethodInvocation

context

Alias Object
value

*
0..1

origin

caller

0..1

fields or array slots

*

WriteAlias
predecessor

*
0..1

*

1

Class

Method

target parameters

*

*

1

1

0..1

1

method

class

Figure 4.1: Object Flow Analysis metamodel (entities and associations used
by the analysis for the proposed visualizations are highlighted in black).

4.4 Inter-unit Flow View

Figure 4.2 shows an Inter-unit Flow View produced from our Smalltalk
bytecode compiler case study. As previously mentioned, the compiler
has four phases: (1) scanning and parsing source code, (2) verifying and
annotating the abstract syntax tree (AST), (3) translating the AST to the
intermediate representation (IR), and (4) translating IR to bytecode.

The nodes in Figure 4.2 represent units (either individual classes or
groups of classes), and the directed arcs represent the flows between units.
An arc from a unit u′ to another unit u is drawn if and only if (u, u′) ∈ DD .
The thickness of an arc is proportional to the number of unique objects
passed along it, which is given by WDD(u, u′).

A force-based layout algorithm is applied (nevertheless, the user can
drag nodes as he wishes). This layout results in a spatial proximity of classes
and units that exchange objects.

Constructing the visualization. As the goal of our visualization is to show
how objects are passed through classes, we aggregate the flow at the level
of classes and groups of classes (units). In our experimental tool, units are
specified by the developer using a declarative mapping language (similar to
the approach of Walker et al. [WALK 98]). Rules are provided to map classes
to units based on different properties such as the package they are contained

54 Visualizing Object Flow

SmaCCToken

BytecodeGenerator

StackCount

IRBuilder

IRTranslator

AST (9)

AST-Translator (5)

Intermediate-Representation (16)

Scopes/Vars (8)

Parser (4)

Scanner (3)

Figure 4.2: Inter-unit Flow View of the bytecode compiler.

in, their inheritance relationship, or a pattern matching their names. For
instance, the first rule below maps all classes in the AST--Nodes package to
the unit AST. The second rule maps IRInstruction and all classes inheriting
from it to the unit IR.

classes containedInPackage: 'AST--Nodes' mapTo: 'AST'
classes hierarchyRootedIn: 'IRInstruction' mapTo: 'IR'

The following two rules gather all classes with names ending in scope or
in var.

classes matchingName: '*scope' mapTo: 'Scopes/Vars'
classes matchingName: '*var' mapTo: 'Scopes/Vars'

The mapping is ordered. Each class is mapped to at most one unit, the
first one for which a rule matches. If no rule matches, the class is displayed

Inter-unit Flow View 55

as a single node in the visualization (i.e., a unit is created that contains only
this class). For convenience, there exist two additional rules:

classes mapAllToPackages
classes mapAllTo: 'Rest'

The first one maps each remaining class to the package it is contained
in, that is, for each package a unit is created. The second rule maps all
remaining classes to a single unit (it is syntactic sugar for matching the
names with '*').

For the proposed visualization we do not take into account (i) through
which instances of a class objects are passed, and (ii) the flow of objects that
are only used within one class. Another important property is that we treat
the flows through collections (including arrays) transparently. This means
that when an object is passed from one class to a collection, and later from
the collection to another class, the intermediate step through the collection
is omitted in the visualization. The flow directly goes from one class to the
other and there is no node created for the collection class. This abstraction
makes the visualization much more concise and emphasises the conceptual
flows between application classes.

Example. Let us consider again Figure 4.2, which shows the Inter-unit
Flow View of the bytecode compiler case study. Various classes are aggre-
gated to units, displayed with the number of contained classes in brackets.
For instance, the group AST (9) contains the nine classes representing the
abstract syntax tree.

The visualization shows which classes exchange objects. For exam-
ple, there are many objects passed from the Scanner to the Parser or from
Intermediate--Representation to IRTranslator. On the other hand, we also see
which classes are distant in that objects only flow between them via several
other classes.

Considering the thick arcs, we can detect a propagation of objects from
Scanner (top) to BytecodeGenerator (bottom-right) traversing the Parser (top).
This corresponds to the conceptual steps of a compiler. An interesting
exceptional flow is the one from AST to IRTranslator. It contains exactly one
object, the IRMethod instance that we encountered in the previous examples.

The chronological propagation of objects. The Inter-unit Flow View
shows an overview of the entire execution. However, as not all objects
are passed around at the same time, we are also interested in the chronolog-
ical order to identify different phases of a system’s execution. For example,
in a program with a user interface the phases may be related directly to the
exercised features.

56 Visualizing Object Flow

With our tool, the user can scope the visualized object flow information
to a specific time period by using a slider representing the timeline. The
position of the slider defines up until which point in time object flows are
taken into account. A recently active arc is displayed in dark gray which
then fades and eventually becomes invisible. The goal of this feature is to
help investigate how objects are propagated during a program execution.

Figure 4.3 illustrates snapshots taken after about one third, two third,
and at the end of a compiling cycle (compare with Figure 4.2). In the
first phase we see that objects are passed from Scanner to Parser and from
Parser to AST. In the second phase, objects are mainly passed between AST
and AST--Translator, IRBuilder and Intermediate--Representation. In the third
and last phase, objects are transferred from Intermediate--Representation to
BytecodeGenerator.

Highlighting spanning flows. With the aforementioned features we can
see which units directly exchange objects and when. However, we cannot
see if there exist objects that are passed from one unit to another indirectly,
i.e., spanning intermediate units.

This information is useful to understand which units act as steps in
object flows leading to a unit. The same holds for the objects passed outside
a unit where it is interesting to know to which other units the objects are
forwarded and which paths are taken.

In our tool the user can select a unit. Thereafter, all arcs that contain
objects being passed to the selected unit are highlighted in orange and all
arcs with objects passed from the selected entity are highlighted in blue1.
Remaining arcs are dashed. To determine whether objects exist that are
(indirectly) passed from a unit u′ to a unit u we use the indirect dependency
definition (that is, (u, u′) ∈ ID).

Figure 4.4 shows twice the same visualization (compare with Figure 4.2)
but with different classes selected. In Figure 4.4.A Parser is selected. We see
that objects are passed to it directly from Scanner (orange arc). On the other
hand, the objects it passes outside reach many different units, the longest
path reaches the Intermediate--Representation unit (blue arcs). In Figure 4.4.B
IRBuilder is selected. We see that it depends on most above units from which
it obtains objects and that it forwards objects to almost all units below.

This view highlights from where objects are passed to a unit and which
routes are taken. This tells us, for example, how dependent a unit is on
other units, e.g., IRBuilder depends on objects created by or passed through
all upper classes except for Scanner and SmaCCToken. The highlighted
outgoing flows, on the other hand, tell us how influential a class is.

1On a B/W print, orange corresponds to light gray and blue to dark gray.

Inter-unit Flow View 57

phase 1

phase 2

phase 3

Figure 4.3: Chronological propagation of flows in the compiler.

58 Visualizing Object Flow

A B

Parser (4)

IRBuilder

Figure 4.4: Orange and blue arcs indicate flows leading to and coming from
the selected unit Parser (A), resp. unit IRBuilder (B). Dashed arcs show
flows that do not contain objects coming from or leading to a selected unit.

4.5 Transit Flow View

The aforementioned visualization lacks information about the actual objects
being passed through a unit. To help investigate this information, our tool
allows the user to drill down to access detailed information about the objects
passing through a unit.

Figure 4.5 illustrates the Transit Flow View for the class IRBuilder. It lists
from top to bottom all instances that pass through IRBuilder grouped by
their class. The objects inside a class are grouped by their arrival time. For
each instance the point in time when it was passed into or out of the class
is indicated with a rectangle. An orange rectangle shows that the object is
passed in; a blue rectangle that it is passed out. A line is displayed during
the time when the object is stored in a field (or contained in a collection that
is stored in a field).

The Transit Flow View shows when flows take place and how many
instances of which class are involved. Further exploration reveals: (1) objects
passed through directly (orange/blue pairs without line), (2) objects stored
in fields or collections (line), (3) objects created (the first rectangle is not
orange, therefore, the object is created in the class), and (4) objects passed in
or out multiple times (several rectangles for the same object).

Case Studies 59

classes timeline

Legend

object passed in
object passed out
object passed in and
immediately out again

object permanently
stored in a field

Each line of the view
shows one unique object
and how it is moved:

Figure 4.5: IRBuilder Transit Flow View.

For example, in Figure 4.5, the IRMethod instance is created in IRBuilder,
it is stored in a field, and it is passed out multiple times. Intermediate
representation instances (classes with names starting with IR) are passed
through IRBuilder, whereas the instances at the bottom (AST nodes) are also
stored.

4.6 Case Studies

In this section we provide an overview of the results we obtained from
applying the visualizations to three case studies: a Smalltalk bytecode
compiler, a health insurance web application and an IRC chat client. All
three applications are implemented in Squeak [INGA 97], an open-source
Smalltalk dialect [GOLD 83]. Our choice of those case studies was motivated

60 Visualizing Object Flow

by the following reasons: (1) they are non-trivial and model very different
domains, (2) we have access to the source code, and (3) for the compiler and
health insurance application we have direct access to developer knowledge
to verify our findings.

The objective of these preliminary investigations is to evaluate the useful-
ness of the two visualizations of our approach and to learn about a practical
exploration process using our tool.

4.6.1 Bytecode Compiler

To generate experimental data we run the compiler on a typical method
source code, which includes class instantiations, local variable usage, a
conditional and a return statement.

The Inter-unit Flow View illustrated in Figure 4.2 shows the final state
of the view after several iterations of exploring and refining the mappings
of units. Using the Inter-unit Flow View we could extract the key phases
of the compiler. This was straightforward from studying the chronological
propagation of the object flows. The activity starts on top (Scanner and Parser
) and then shifts downwards to center around AST--Translator and IRBuilder
and eventually shifts to IRTranslator and BytecodeGenerator (see Figure 4.3).
This observation is in line with the documentation, which describes the
following main phases: (i) scanning and parsing, (ii) translating AST to the
IR, and (iii) translating the IR to bytecode.

With the help of the highlighting feature we obtained more detailed
knowledge about the system. For example, IRBuilder plays a key role as it is
a hub through which objects from the upper units in the view are passed
to the lower ones. Using the Transit Flow View (see Figure 4.5) we studied
detailed interrelationships between the units. For example, in the transition
from AST to IR (phase 2) we see that the unit AST--Translator passes AST
nodes (classes with the RB prefix) to IRBuilder. In Figure 4.5 we see that AST
nodes are passed into IRBuilder and from the Figure 4.2 we see that they
come from AST--Translator. In the Figure 4.5 we also see that IRBuilder creates
three sequence objects which are passed outside multiple times.

Surprisingly, also the AST nodes are forwarded to the Intermediate
Representation package (we expected that after IRBuilder created the IR from
the AST, the AST nodes are discarded). Following the flow of the AST nodes
we reach the Intermediate Representation package. Figure 4.6 shows the
Transit Flow View of the IR package. We see here that the AST nodes are
passed in and are then stored in the class but are never passed out again.
This points to the fact that IR objects hold a reference to the AST node
from which they originate. Also interesting in Figure 4.6 is that one can
distinguish two phases of activity. The first phase is when the IR is built,
where we see IR and AST nodes being passed into the IR package (marked

Case Studies 61

classes timeline

IR
 in

st
an

ce
s

AS
T

no
de

 in
st

an
ce

s

IR building bytecode
generation

Figure 4.6: Transit Flow View of the Intermediate Representation package.

in Figure 4.6). The second phase is when the bytecode is generated, where
IR objects are passed outside (but not AST nodes). In this phase we can also
see that the single instance of IRTranslator is transferred many times.

62 Visualizing Object Flow

In the the remaining part of this section we want to shed light on an
interesting aspect of our approach we noticed in this case study.

Inversion of control flow. There are two ways how objects are passed to
an instance: (i) objects are pushed to an object by being passed as method
arguments, or (ii) objects are pulled by the instance by being passed as
return value in response to a message send. In the latter case (ii) the objects
flow in the opposite direction compared to message sends. Therefore, the
object flows do not necessarily evolve in the same direction as the control
flow.

For instance, the Parser creates the Scanner and then regularly accesses
it to get the next token. An analysis of the execution trace shows the call
relation Parser→ Scanner. The object flow view, on the other hand, shows
the conceptually more meaningful direction Scanner→ Parser. The reason
is that with Object Flow Analysis we can provide object-centric views,
which abstract implementation details, such as the distinction of sender and
receiver of a message. This trait also clearly distinguishes our approach
from the ones that are based on dynamic control flow analysis in which
method call edges point from the sender to the receiver class of a method
invocation [ZAID 05, DE P 94].

4.6.2 Insurance Web Application

This industrial application was put into production six years ago and since
that time has undergone various adaptations and extensions. The analyzed
scenario comprises the oldest and most valuable part for the customer, the
process of creating a new offer. It is composed of 10 features, including
adding persons, specifying entry dates, selecting and configuring products,
computing prices, and generating PDFs.

With this case study we focus our discussion on the exploration process,
rather than on the details of the actual findings.

Step 1: Creating coarse-grained units. We started by investigating the
Inter-unit Flow View with units corresponding to packages. However, the
view was hard to work with because it was cluttered with many small
packages that were part of the GUI layer (see Figure 4.7).

Step 2: Re-grouping to appropriate units. As a first refinement of the
mapping of classes to units we put all classes of web GUI related packages
into one unit, representing the presentation layer.

self containedInPackage: 'PLWeb*' mapTo: 'Web app UI layer'

Case Studies 63

PLWeb-Form-Validation

PLModel-NewsPLModel-Offers (2)

PLModel-Products-Risikoschutz (9)
PLModel-Products-Additional (9)

PLModel-Products-Taggeld (8)

PLModel-Versioning (3)

PLWeb-Decoration (2) PLModel-Products (10)

PLWeb-Navigation (5)

PLModel-Products-Hospital (27)

PLModel-Products-TSC (8)

PLWeb-Metamodel-Core (2)

PLModel-People (4)

PLModel-Products-Basis (6)

PLWeb-Editors (5)

PLWeb-Form-Fields (4)

PLWeb-Offer (11)

PLWeb-Components (5)

PLWeb-Metamodel-Attributes (7)

PLWeb-Desktop (3)

Figure 4.7: Inter-unit Flow View of the insurance application case study be-
fore refining the mapping. In this state it is too cluttered for comprehension.

The resulting view was already more concise. Now focusing on the
business logic, we saw many packages corresponding to individual prod-
ucts, each package containing the product classes and associated calcula-
tion model classes. We re-grouped the classes into a Products unit and a
Calculation Models unit because we wanted to learn about the higher-level
concepts rather than how single products differ.

self hierarchyRootedIn: 'PLProduct' mapTo: 'Products'
self hierarchyRootedIn: 'PLCalculationModel' mapTo: 'Models'

This change dramatically improved the view. We obtained only nine
units and we could identify interesting flows between them (see Figure 4.8).
For instance, with the help of the Transit Flow View, we could understand
how versioning works and how products and calculation models relate to
each other. Products pass dates to the package responsible for versioning
and in turn calculation models are passed to the products (we used the
Transit Flow View to access this information).

Step 3: Extracting interesting candidate classes. Once we gained an
overview, we started to dig deeper. By refining the mapping rules we

64 Visualizing Object Flow

Figure 4.8: Inter-unit Flow View of the insurance application case study.

split off packages to show individual classes, e.g., ProductValidator which
is packaged in PLModel--Products, but from its name does not seem to be a
product but rather provides specific behavior. Another similar candidate
class is OveviewCalculator.

To obtain more details of those classes we used the highlighting feature
to show which other units are involved in passing objects with respect to the
selected class. In the case of OverviewCalculator we see that this class passes
persons and dates to products, which eventually return price objects.

Discussion. The exploration process we took, which proved useful, was to
first gain a coarse-grained view (step 1), find appropriate units (step 2), and
only then get into more detail (step 3). Our internal declarative mapping
language was helpful to create conceptual groups of classes with varying
level of detail. It was essential to be able to structure units differently
compared to packages. For instance, classes representing products and
classes representing calculation models were organized together in the
same packages. However, we wanted to distinguish products and their
calculation models and hence created two units, one for all classes inheriting
from Product, and the other for all classes inheriting from CalculationModel.

Implementation 65

From the Inter-unit Flow View, conceptual relationships between units
were intuitively understandable. The presented information is high-level
and thus appropriate for studying the high-level design of an unfamiliar sys-
tem. Yet, means are provided to drill down to gain more detailed knowledge
where appropriate.

In contrast to the compiler case study, the feature for investigating the
chronological propagation of objects was not particularly useful. A plausible
explanation is that the compiler has a much stronger notion of sequentially
transforming one representation to another. The exercised features of the
health insurance application, on the other hand, do not exhibit this charac-
teristic.

4.6.3 IRC Chat Client

As the last case study we chose an IRC Chat Client. A total of six developers
contributed to this open source project, which underwent various refactor-
ings and enhancements over nine years. We analyzed nine features: open,
setup, connect to server, request MOTD, join channel, send and receive
message, opening new console, and disconnect.

In contrast to the other two case studies, we enhanced the Inter-unit
Flow View with information about features. We wanted to study if two
classes exchange objects in only one feature or in several features.

Figure 4.9 illustrates the Inter-unit Flow View after grouping all GUI
classes into one unit. The largest flows are going into and out of
IRCConnection. These flows take place in several features (the darkest
gray corresponds to 5 features, and the flow between IRCConnection and
IRCChannelObserver takes place in 2 features). On the other hand, many
flows around the GUI unit are specific to one feature only. For example
IRCConnectionProfile only passes objects to the GUI classes during the setup
feature. Another example is the class IRCChannelInfo, where flows either
take place in the feature join channel or in the feature disconnect — even
though the edges are relatively thick (20 objects being transferred along the
thickest edge).

4.7 Implementation

For this analysis of object flow, we implemented the dynamic analysis tech-
nique in Squeak [INGA 97], an open-source Smalltalk dialect [GOLD 83], and
the metamodel in Visual Works Smalltalk using the reengineering platform
Moose [NIER 05] and the visualization engine Mondrian [MEYE 06].

66 Visualizing Object Flow

IRCConnection

IRCProtocolMessage

IRCConnectionProfile

IRCChannelMember

IRCMessage

IRCTextLines

IRCMessagePlayback

SystemWindow

IRCChannelObserver

IRCDirectMessagesObserver

IRCChannelFilter

IRCChannelInfo

GUI (19)

Figure 4.9: Inter-unit Flow View of the IRC chat client case study with gray
toning of edges indicating the number of participating features.

To cover all object flows in a program execution as specified by Object
Flow Analysis, the dynamic analysis technique has to be implemented care-
fully. Our Object Flow tracer not only tracks objects of application classes
but also instances of system classes and primitive type values. For example,
collections and arrays have to be taken into account as they preserve perma-
nent object references between the holder of the collection and its contained
elements.

In this implementation, each regular object reference is substituted by an
alias object that behaves like a proxy in that it forwards messages to the real
object. Every time a reference is transferred, we create a new alias instance.
The hooks in a method to invoke the code that creates aliases are introduced
through the bytecode instrumentation framework Reflectivity [DENK 08],
and to capture argument passing and return values, we use the technique
of method wrappers [BRAN 98].

The recursion problem, which typically occurs if code is instrumented
and this code is also used by the tracer, is solved by applying the Twin Class
Hierarchy approach [FACT 04]. The underlying idea is to create a temporal,
isolated copy of all instrumented classes that is used by the application to
be analyzed. The application under investigation is then executed using
this modified version of the system, whereas the invoked behavior of the
tracer uses the original standard system classes.

Related Work in Program Visualization 67

Limitations. This approach to object flow tracking is implemented com-
pletely at the application level as it uses bytecode instrumentation and some
reflective capabilities of the system, but it does not require any changes to
the virtual machine. While this is an advantage as the implementation is
more straightforward, it has a few limitations. The main problem is that
proxy objects (aliases) cannot be made completely transparent. Because the
virtual machine does not know anything about aliases, some operations
like equality comparison or retrieving the class of an object are applied to
the alias instance instead of the actual object. In our implementation, we
managed to work around most of those cases by changing the compiler to
generate different bytecode in those cases.

4.8 Related Work in Program Visualization

Visualizations of dynamic control flow. Many different approaches exist
to visualize dynamic control flow in object-oriented systems. For instance,
Lange and Yuichi built the Program Explorer to identify design patterns by
visualizing message passing between objects and classes [LANG 95]. Pauw
et al. propose a tool to visually present execution traces to the user [DE P 98].
This approach automatically identifies reoccurring execution patterns to
detect domain concepts that appear at different locations in the method
execution trace. Jerding et al. propose ISVis, a tool to visualize interactions
in program execution to help understanding the architecture of a program
[JERD 97]. Walker et al. propose high-level views by analyzing calls between
instances [WALK 98]. Similar to our approach, ISVis and the approach by
Walker et al. allow the user to group related entities to rise the abstraction
from the low-level behavior to the architectural level.

While the above mentioned approaches target understanding a system
from the perspective of the flow of control, our approach provides a comple-
mentary view based on the the flow of objects. None of the above mentioned
approaches captures how objects are propagated through a system at run-
time.

Visualizations based on static analyses. A large body of research has
been conducted into facilitating program comprehension through static
analysis. Typically, such static analyses are based on a data dependence
graph in which edges represent the flow of data between actual param-
eters and formal parameters of procedures. The data dependence graph
resembles our object flow trees projected on the static control flow graph.
Therefore, similar visualizations like we present in this chapter may also be
produced from a static data flow analysis. In comparison to our dynamic

68 Visualizing Object Flow

analysis, the static analysis would yield significantly more different object
flow paths. Balmas and Krinke have independently worked on visualiza-
tions of data and control flow information, facing the problem that those
graphs become huge already for small programs [BALM 01, KRIN 04]. The
reason is that a static analysis provides a conservative view, which in some
cases may even include infeasible execution paths of the program.

In contrast, our dynamic analysis produces a precise under-
approximation. The application presented in this chapter attacks the diffi-
culty that dynamic analysis produces large amounts of data by aggregating
the flows between classes and only showing details when the user drills
down using the Transit Flow View. Furthermore, our dynamic analysis
approach allows the user to constrict the analysis to the software features of
interest and thus he can directly relate the selected feature to the obtained
results. Our approach trades off precision for completeness, and therefore
we have to anticipate that the results do not apply to all possible program
executions.

Combined analyses. To provide more precise views, static analysis has
been combined with dynamic analysis. Quante et al. use execution traces to
slice the control flow graph with respect to the runtime usage of a selected
object [QUAN 06].

The resulting Object Process Graphs are much more concise and hence
can be visualized. Object Process Graphs are similar to our visual approach
in that the usage of objects is projected on the static program structure. In
contrast to Object Process Graphs, our approach reveals the continuous flow
of objects whereas the approach of Quante et al. reveals the continuous flow
of control. Their approach reveals how control flow progresses between
different locations in which a selected object is used. Control flow, however,
does not reveal the dependencies introduced by object aliasing.

4.9 Summary of the Chapter

A key characteristics of object orientation is the deep collaboration of objects
to accomplish a complex task. Understanding such applications is then
difficult since reading the implementation of the classes only reveals the
static aspects of the computation. At runtime, however, dependencies
between structural software entities may occur that are not explicit in the
source code.

In this chapter we propose an approach to visualize the flow of objects
between classes and groups of classes (e.g., packages) to expose these depen-
dencies to developers. We apply Object Flow Analysis and the conceptual

Summary of the Chapter 69

framework, which is based on our metamodel. Simply by providing a
definition for the relation that maps aliases to regions (in this application
a region is a set of classes), we obtain the desired notion of dependency
through the provided direct and indirect dependencies definitions. One
additional definition is required to compute the weight of dependency arcs.

Chapter 5

Feature Dependencies
Exposing Indirect Dependencies Between Features

The domain-specific ontology of a software system includes a set of
features and their relationships. While the problem of locating features in
object-oriented programs has been widely studied, runtime dependencies
between features are less well understood. Features cannot be understood in
isolation, since their behavior often depends on objects created and aliased
in previously exercised features. It is difficult to spot runtime dependencies
between features just by browsing source code. Hence, code modifications
intended for one feature, often inadvertently affect other features. In this
chapter, we propose an approach to precisely identify dependencies between
features based on Object Flow Analysis. The results of two case studies
indicate that our approach helps software maintainers in understanding
critical feature dependencies.

5.1 Introduction

A feature is a unit of domain functionality as understood from the user’s
perspective. During requirements analysis, relationships between features
are specified to express conceptual dependencies and constraints of a system
[RIEB 03]. Correct specification of dependencies is vital to ensure correct
behavior of a system and to avoid behavioral problems.

Much of the feature-related research for system comprehension fo-
cuses on feature identification, a technique for locating parts of code that

72 Feature Dependencies

implement features [WILD 95, WONG 00, EISE 05b, ANTO 05]. Only few
researchers have investigated relationships between features [SALA 04,
GREE 05, KOTH 06].

The runtime behavior of object-oriented systems is characterized by
objects and message sends. Objects may be long-lived and used by many
different features of a system. Before a feature can be exercised, it may
require other features to establish a particular program state. Relationships
between features can be defined based on shared usage of static entities like
classes and methods [GREE 05]. A static perspective, however, overlooks
runtime characteristics of object-oriented systems. We consider a runtime
dependency to exist between features if state changes in one feature impact
the behavior of another feature.

Thus, the underlying research question of the work we present in this
chapter is: How can we support developers to discover hidden dependencies
between features to reduce the risk that modifications intended for one feature
inadvertently break seemingly unrelated features?

Salah et al. described a technique to identify runtime dependencies be-
tween features by detecting situations where objects are created in one fea-
ture and are later used in another feature [SALA 04]. However, considering
only object instantiation is not sufficient to detect all runtime dependencies
— we also need to consider object aliasing. The approach of Salah et al. only
considers object creation, thus it misses dependencies between features that
result from one feature accessing an object through a reference established
in a feature other than the one where the object was originally instantiated.

We propose to apply Object Flow Analysis for a more precise detection
of runtime dependencies between features, and we propose a visualization
to expose the detected dependencies in a way they are useful for developers.
First, we discuss the challenge of dependencies introduced by object aliasing
and how Object Flow Analysis can detect these dependencies. Second, we
present our solution to make the dependencies in object graphs explicit for
the developer.

The latter is important because merely detecting which features depend
on each other is not sufficient to support software maintenance. Object
aliasing introduces dependencies because the object graph is persisted be-
tween exercising features and each feature modifies this graph. Features
may then use existing object references and hence their behavior depends on
previously exercised features that have modified these references. Therefore,
to support the developer, we have to make these dependencies in an object
graph explicit. By making the dependencies explicit, the developer can
draw connections between the code he is modifying and other parts of the
system that depend on it (or vice versa).

The Challenge of Feature Dependencies 73

Chapter structure. We start this chapter by identifying that current
approaches miss indirect feature dependencies caused by object aliasing
(Section 5.2). In Section 5.3 we present a dependency detection strategy
based on Object Flow Analysis that addresses the identified shortcoming,
and in Section 5.4 we present a visual approach that allows the developer to
explore these dependencies. In Section 5.5 we apply our approach to two
case studies and detail the results we obtained. Section 5.6 presents related
work in the field of feature analysis, and Section 5.7 concludes the chapter.

5.2 The Challenge of Feature Dependencies

Functional requirements are often centered around features since they reflect
the end-user’s perspective of a system. We adopt the definition of a feature
proposed by Eisenbarth et al.: “A feature is a realized functional requirement of
a system. A feature is an observable unit of behavior of a system triggered by the
user" [EISE 03].

5.2.1 Runtime Dependencies Between Features

The behavior of one feature may depend on certain program state being
established during the exercising of another feature. For example, in a Mail
Client application, a “send mail” feature may require a “compose mail”
feature to set mail recipients before it can be exercised.

During program execution, the object reference graph steadily changes,
as new objects are created, references between objects are changed, or ob-
jects are garbage collected. As a feature is exercised, it typically produces
side effects. Therefore, since program behavior depends on the reference
relationships of objects, the behavior of a feature may be influenced by
a previously exercised feature. To analyze these dependency situations
we have to consider the interrelationships between objects. The analysis
and understanding of these interrelationships is complicated by the fact
that there may exist multiple access paths to the same object due to object
aliasing.

5.2.2 Why Object Aliases Cause Dependencies

Intuitively, we consider a feature to depend on another one if object state is
changed in the first feature and then the second feature’s behavior uses this
state.

Salah et al. [SALA 04] define a relationship depends from a feature Fi
to a feature Fj if Fi uses objects that are created by Fj (i.e., Fi depends on
Fj). Let I(F) be the set of objects used by F (i.e., the objects imported by a

74 Feature Dependencies

feature), and E(F) be the set of objects created by F (i.e., the objects that can
be exported by a feature), then:

depends ≡ {(Fi, Fj) | I(Fi) ∩ E(Fj) 6= ∅, i 6= j}

To use an object in this context means that the object is sent a message (not
including changing references to it). This definition, however, does not
capture all runtime dependencies. Let us consider the following simplified
case illustrated by Figure 5.1. It shows the features Startup, Join Channel , and
Receive Message of an IRC chat client from one of our case studies.

Between each feature, we show the snapshot of live objects; the first
taken before running the Join Channel feature and the second before the
Receive Message feature. We treat a snapshot as a directed graph, commonly
termed object reference graph. Nodes represent objects and edges represent a
field of one object referring to another object.

While exercising the feature Startup, two objects, a window object (w)
and connection object (c), are created. Then, while exercising the feature
Join Channel , the first snapshot is transformed into the second. It creates an
observer object (o) and assigns the connection object to one of its fields, i.e.,
a reference o→ c is created. Now the object c is aliased since there are two
objects referring to it.

w

c

Snapshot 1

Join Channel

w

o
c

Snapshot 2

Receive MessageStartup

Figure 5.1: State changes between features.

Let us assume that in the Receive Message feature, the observer sends
messages to the connection through the object reference o→ c. Therefore,
the Receive Message feature depends on the Join Channel feature. The ratio-
nale is that without the appropriate state changes in Join Channel, Receive
Message would exhibit a different behavior, or in the worst case abort with
a null pointer exception.

The depends relationship proposed by Salah et al. [SALA 04] is not ca-
pable of detecting that Receive Message depends on Join Channel . It only
detects the dependency on the Startup feature, in which the connection is
instantiated.

We conclude that a dependency detection strategy as described by de-
pends at the object level (i.e., capturing object creation events) is not precise
enough to detect this type of indirect dependencies.

Applying Object Flow Analysis 75

*
MethodInvocation

context

Alias Object
value

*
0..1

origin

caller

0..1

fields or array slots

*

WriteAlias
predecessor

*
0..1

*

1

Class

Method

target parameters

*

*

1

1

0..1

1

*

Feature

feature

invocations

1

Figure 5.2: Object flow metamodel extended with Feature (entities and
associations exercised by the feature dependency analysis are highlighted
in black).

5.3 Applying Object Flow Analysis

We now define a new detection strategy for fine-grained dependencies based
on Object Flow Analysis. For this analysis we integrate the notion of features
into our metamodel as proposed by Greevy [GREE 07]. Our metamodel with
the entity Feature is illustrated in Figure 5.2. Features partition the set of
method invocations; each method invocation belongs to exactly one feature.
During an analysis run of a system, the developer manually marks the start
and the end of each exercised feature.

Similar to the previous application, which detects dependencies between
classes, this application uses the dependency framework to reason about
feature dependencies. As shown in Table 5.1, we define the set Regions
as the set of features exercised during an execution of the system, and we
define the relation reg as follows.

Definition 8 (Region of alias)

reg(a) := a.context.feature

76 Feature Dependencies

a ∈ Aliases (set of aliases created at runtime)
f ∈ Features (set of features exercised at runtime)

r ∈ Regions = Features (set of regions)
reg : Aliases→ Regions (region in which an alias resides)

aliases : Regions→ P(Aliases) (set of relevant aliases of a region)

Table 5.1: Sets and relations of the new feature dependency definition.

Intuitively, the region of an alias is the feature being exercised at the time
when the alias is created.

Furthermore, like in the definition of depends given in Section 5.2.2, we
want to take only aliases into account to which messages have been sent in
a feature — that is, objects merely passed around while exercising a feature
do not trigger a dependency. This can be expressed in our framework
by redefining aliases(r) to return only a subset of the aliases created in a
region r.

Definition 9 (Relevant aliases of a region; redefinition of Definition 3):

aliases(r) := {a ∈ Aliases : ∃i ∈ r.invocations, i.target = a}

Having provided the definitions above, we can now use the indirect
dependency definitions, ID (Definition 5 from Section 3.3), to define the new
runtime dependency relationship dependsnew(f, f ′) to show that f depends
on f ′.

dependsnew ≡ ID

For convenience, we again show the definition of ID .

ID := {(f, f ′) : ∃a ∈ aliases(f),∃a′ ∈ allOrigins(a), reg(a′) = f ′ ∧ f 6= f ′}

Intuitively, a feature f depends on another feature f ′ if any object the
feature f sends messages to can be traced back as originating from f ′.

This definition represents our detection strategy and yields a superset
of dependencies compared to depends as defined in Section 5.2.2. For each
object created in a feature, there exists an alias that is the root of all subse-
quently created aliases. Therefore, for each object dependsnew includes the
feature in which the object was created.

Our new definition detects additional dependencies caused by object
references created in features other than the one in which the object was
instantiated.

Exposing Dependencies in Object Graphs 77

Join Channel Receive Message

creation alias of
IRCConnection
instance

field read alias field read aliases
that are targets of
method invocations

field write alias
(connection field of an
IRCChannelObserver)

field write alias
(model field of an
IRCMainWindow)

Startup

a1 a2 a3 a4

a6
a5

Figure 5.3: Object flow of an IRCConnection instance.

Example. Figure 5.3 illustrates an example from our IRC chat client case
study. It shows the aliases of an IRCConnection instance created in the fea-
tures Startup, Join Channel , and Receive Message. In the feature Receive Mes-
sage, the connection instance is used as the target of method invocations in
two different objects. The first alias (a5) is created when the field named
connection is read (in a channel observer instance), and the second alias (a6)
is created when the field named model is read (in a window instance).

To determine whether the Receive Message feature has a dependency on
other features with respect to the connection instance, we backtrack the flow
of this object.

On the one hand, the field read alias a5 first leads back to Join Channel ,
and further back it leads to Startup. On the other hand, the origin of the
field read alias a6 is the field write alias a2 that is created in the feature
Startup. Based on the definition of dependsnew, we conclude that the Receive
Message feature depends both on the Join Channel and on Startup features.

Using the definition depends, however, we would not be able to detect
the dependency on Join Channel , because the object we track is not created
in this feature. Yet, Join Channel influences the behavior of Receiver Message
by aliasing the connection instance.

In the remainder of this section, we discuss how we support a software
engineer to understand feature dependencies by providing information
about how the dependencies are related to each other.

5.4 Exposing Dependencies in Object Graphs

With our detection strategy, we obtain for a feature under investigation, a
set of other features it depends on. Considering single object references that
contribute to a dependency by being transferred between two features, a

78 Feature Dependencies

Open
Connect

Join Channel
Send Message

Features on which
Receive Message depends

Figure 5.4: Object dependency graph of the Receive Message feature.

developer may have to browse a huge amount of data. Yet, investigating
these datapoints is required when carrying out maintenance work to be able
to draw conclusions about their impact. Therefore, to help understand the
details of a dependency, the aliased objects depended on in the feature need
to be made explicit and put into the context in which they are used.

The challenge we face is that there are potentially hundreds of objects on
which a feature depends. Thus, it is difficult to understand the dependencies
in isolation. What is missing are the relationships between objects. If we
view object dependencies in a larger context we can interpret them more
easily and attribute semantic meaning to them.

We observed that most objects a feature depends on reference each
other. This is plausible because, to use an object, a feature often needs to
access another object that holds a reference to it. Consequently, the feature
also depends on the object from which the reference was accessed. The
exceptions are objects referred to from outside the application, for example
from the GUI framework or the program’s main method.

Based on these reference relationships of the object dependencies, we
build the object dependency graph. Figure 5.4 illustrates such a graph taken
from the Receive Message feature of the IRC chat client case study. Each
node represents an object depended on in the feature. Each edge represents
an object reference that is subject to a dependency — that is, the reference is
accessed in the selected feature but created in another one. In other words,
the object dependencies of a feature directly map to the references (edges)
shown in the graph.

Case Studies 79

We use grayscale to convey information about which feature an object
or a reference was created in. Light gray means an object or reference was
created in a feature that was exercised early in the program run — dark gray
in a more recent one. We apply a force-based layout algorithm to visualize
the graph.

In the prototype implementation of this visualization, the class name of
an object is shown in a tooltip when moving the mouse over it. Accordingly,
the tooltip of a reference shows in which feature it was created. Furthermore,
the user can navigate to the source code in which an object is used to obtain
additional information about the context in which dependencies occur.

In the following section, we present the object dependency graph in
more detail on two case studies.

5.5 Case Studies

To evaluate our approach, we structure the discussion of the case studies
based on the following two questions:

1. How many indirect dependencies exist compared to direct dependencies (cf.
Salah’s approach) and how relevant are the indirect dependencies for soft-
ware maintenance? This first question is supposed to answer whether
indirect dependencies introduced by object aliasing — which our ap-
proach additionally detects — actually exist and if so how relevant
they are. To answer this question we implemented the approach of
Salah et al. [SALA 04] to compare the resulting dependencies with
ours.

2. How was the part of the object graph on which a feature depends stepwise
modified by the previously exercised features? In this second question we
investigate how the proposed visualization supports a software engi-
neer to explore dependencies to detect possibly hidden connections
between the code of the feature he is modifying and other parts of the
system.

5.5.1 IRC Chat Client

As a first case study we chose an IRC Chat Client. Our motivation was (1)
because it is a small (39 classes and 1063 methods) but non-trivial legacy
application and (2) we have access to the source code. A total of six devel-
opers contributed to the project which underwent various refactorings and
enhancements over nine years.

80 Feature Dependencies

How many indirect dependencies exist compared to direct dependen-
cies and how relevant are the indirect dependencies for software mainte-
nance? We exercised nine distinct features. Figure 5.5 shows the features
in the order they were run from top to bottom with the number of depen-
dencies they have. The feature Startup naturally does not have dependencies
because it is run first. In all subsequent features our analysis found depen-
dencies upon previous features.

Figure 5.5 also provides the number of dependencies of Salah’s approach.
It shows that compared to their approach, we detect more dependencies
in the Connect feature and all subsequent features. In the second feature,
Setup, we found exactly the same number of dependencies. This is what we
expected as this feature was the second feature we exercised, so it cannot
depend on more than one feature.

Disconnect

New Console

Receive Message

Send Message

Join Channel

MOTD

Connect

Setup

Open

0 5 10 15 20 25 30 35

Our approach Salah et al.

Figure 5.5: IRC features and number of dependencies.

We now present some anecdotal evidence indicating that the additionally
found dependencies play a central role among the other dependencies of a
feature for maintenance.

For instance, the Connect feature depends on both the Open and the Setup
feature with respect to the connection instance. The connection was created
in Open, hence, Salah’s approach only finds this dependency. This rises the
question why the feature Connect depends on the feature Setup with respect
to the connection instance?

A closer investigation showed that the objects created for the setup
dialog of the Setup feature were still alive and used in the feature Connect
(the activity we can observe with these objects is that they regularly send
messages to the connection instance to check its connection state). The

Case Studies 81

conclusion we can draw from this is that closing the setup window did not
clean up correctly and hence left instances behind which continued to be
used although they were not needed anymore. The same dependency also
occurs in all subsequent features and hence contributes to the number of
additional dependencies.

Another additional dependency is the one discussed as an example in
Section 5.3 (see Figure 5.3). It illustrates that Receive Message depends not
only on Startup but also on Join Channel because the latter feature creates an
alias to the connection object. Therefore, when modifying behavior related
to the connection in the feature Receive Message, the developer not only
needs to carefully look at the implementation of the feature Startup where the
connection object is created, but also at the implementation of Join Channel ,
where the connection is aliased.

A similar dependency like the one described above exists between Send
Message and Join Channel . Both cases reflect a domain constraint: send-
ing and receiving messages takes place in an IRC channel. Therefore, the
implementation of sending and reading a message depends on the imple-
mentation of joining a channel. This dependency is not directly obvious
from the source code because the channel object is not created when joining
a channel but at startup.

How was the part of the object graph on which a feature depends step-
wise modified by the previously exercised features? To support the inter-
pretation of runtime dependencies of a feature, we evaluated the usefulness
of the object dependency graph visualization. As a concrete example, we
discuss the dependencies of the Receive Message feature. We already illus-
trated its object dependency graph in Section 5.4. Figure 5.6 presents a part
of this graph with annotations of instances and messages sent to them in the
feature (in our tool we can access this information interactively on demand).

Let us consider the long loop starting at the IRCConnection object. The
connection holds a dictionary that maps channel names to channels (in-
stances of IRCChannelInfo). The grayscale of the channel object indicates that
the channel was not created in the same feature like the dictionary in which
it is contained (in Connect), but is created later in the Join Channel feature.

The object dependency graph reveals the composition hierarchy of ob-
jects depended on in the context of the feature. Inspecting the message sends
further helps us to map the object dependencies to the runtime behavior of
the feature.

Based on our analysis, we extract and reconstruct the following activity
in the Receive Message feature. First, the connection gets the appropriate
channel for the message received (see messages subscribedChannels and
at:). Then the channel iterates over the set of subscribers to notify them

82 Feature Dependencies

:IRCConnection
1. subscribedChannels

:IRCChannelInfo
3. subscribers

:Dictionary
2. at:

:IRCChannelObserver
5. ircMessageReceived:

:ListMorph
7. display:atRow:

:TextLines
6. add:

:Set
4. do:

Open
Connect

Join Channel
Send Message

Features on which
Receive Message depends

Figure 5.6: Object dependency graph of Receive Message feature annotated
with invoked methods.

of a received message (ircMessageReceived:). The observer adds the new
message to its text lines object which is the model of the UI list widget being
updated with display:atRow:.

Summarizing, the object dependency graph reveals the following key
information about the runtime dependencies of a feature:

• How many and which object dependencies originate in a feature, and
whether this feature was exercised recently or earlier in the program
execution. Figure 5.6 shows that most objects are created in three
stages: in the Open, Connect , and Join Channel features (only one object
dependency exists on the Send Message feature).

• For each object dependency, the incoming references show through
which other object(s) the object was accessed while the feature was
exercised. The brightness of a reference indicates in which feature
the reference was created. In Figure 5.6, for example the list morph
and text lines objects are only accessed through the channel observer,
whereas the connection received messages from multiple objects.

• It shows object dependencies that served as starting points to further
extensions of the object graph in a later run feature. An example is
the connection which stores a dictionary of channels. This dictionary
is not created in the same feature as the connection but later in the
Connect feature.

Case Studies 83

• It shows object aliasing, i.e., an object referred to by more than one
other object. The software engineer can spot aliases of an object that
are created in a later feature than the one that created the object. For
example the connection instance is aliased. We can see that some
aliases were created in the same feature (Open) as the connection itself.
Two aliases to the connection, on the other hand, were created in later
features.

The aliasing situation described in the last point is particularly interest-
ing because it allows one to visually spot dependencies on objects referenced
in one feature but created in another. These are exactly the cases which our
approach is capable of detecting because it does not only consider object
creation and usage but also tracks aliases.

Summary of results. The case study showed that Salah et al. indeed
captures most of the feature dependencies. However, the additional depen-
dencies that we uncover are precisely the indirect feature dependencies that
can be problematic during maintenance. In one case, a dependency even
pointed out an anomaly of the program.

The object dependency graph visualization proved to be of great help for
our analysis — it was much simpler than if we had looked at the dependen-
cies one by one. The visualization allowed us to get a quick overview of the
dependencies of a feature but also helped us to spot interesting dependency
situations.

5.5.2 Pier CMS

Pier is a web content management system [RENG 06]. It is a reengineered
version of SmallWiki [DUCA 05]. Its core comprises 177 classes and the
metamodel 200 classes. Our choice of Pier was motivated by the following
reasons: (1) it is open source, (2) we are familiar with the predecessor
application SmallWiki, (3) we are familiar with the features of Pier from the
user’s perspective, and (4) we have direct access to developer knowledge to
verify our findings.

How many indirect dependencies exist compared to direct dependen-
cies and how relevant are the indirect dependencies for software mainte-
nance? For our experiment, we traced 11 features as listed in Figure 5.7.
The average number of dependencies per feature is much higher compared
to the IRC Client case study. Again the first feature does not have any
dependencies. The comparison with the approach of Salah et al. shows that
we found additional dependencies in all features, except for the first two
(for the same reason as explained above).

84 Feature Dependencies

Logout

Remove Page

Change Owner

Change Other

Change Group

Edit Page

Copy Page

Add Page

Login

Start

Initialization

0 100 200 300 400

Our approach Salah et al.

Figure 5.7: Pier features and numbers of dependencies.

All features are related to Initialization, the feature that is exercised to
load the Pier application, and to the Start feature which displays the first
web page. This is because these features are responsible for initializing the
system, the user session, and its UI components.

As with the IRC Client case study we analyzed the additionally detected
dependencies. Again, it turned out that they play important roles in the
system.

For example, in each feature exists a dependency on an instance of User.
This instance is created during the feature Initialization. In the Login feature
(we logged in as administrator) it is accessed from the kernel and stored
in a context object. In each subsequent feature this user object is then used
for controlling access. Additionally, in the feature Change Owner the user
is accessed also from the page on which we are changing the owner. The
object dependency graph accurately shows that the reference from the page
to the owner was created in the feature Add Page. This means, that when
the page was instantiated, the user creating it is assigned to be its owner.

How was the part of the object graph on which a feature depends step-
wise modified by the previously exercised features? By exploring the
object dependency graphs we notice that some of the dependencies are
recurring (i.e., the same dependencies exist in most of the features). The de-
pendencies are due to the nature of the Pier application as a web application.
Thus every feature makes use of page rendering activity. For example, the
Login feature reveals similar dependencies to the Start Page. This is due to
the page being redisplayed after the login action has completed. This char-

Case Studies 85

Initialization
Add Page
Copy Page
Edit Page

Features on which
Remove Page depends

default pages
from Initialization

page created
in Add Page

parts of a page
modified by Edit Pagecopy of the previously

created page (see below)

Figure 5.8: Object dependency graph of the Remove Page feature from Pier.

acteristic of Pier explains the much higher average number of dependencies
compared to the IRC Client case study.

A revealing observation was that the object dependency graph of most
features reflects the hierarchical structure of pages. Pier has a very fine-
grained object model to represent content (e.g., lists are composed from list
items, each containing text or link objects). Behavior like page rendering or
copying is performed by Visitors which traverse the full object trees. Hence,
there exist a large number of dependencies on the features that create or
copy pages.

The order of exercising the features also impacts the dependencies. For
example, each feature accesses a PRContext instance created by the previ-
ously exercised feature.

The Remove Page feature stands out in Figure 5.7 with a much larger
number of dependencies compared to the other features. This surprised
us because we expected that removing a page would be a rather small
feature. Figure 5.8 illustrates the object dependency graph of the Remove
Page feature. It contains large trees representing all existing pages in the
system. There are default pages at the left side and smaller pages at the right.
The latter are created by Add Page and Copy Page. A closer investigation
showed that when the Pier application removes a page, it iterates over the
entire structure to check for the existence of links to the page that is to be
removed. This activity generates a lot of dependencies.

86 Feature Dependencies

Summary of results. The Pier application showed very different charac-
teristics compared to the IRC Client. It comprises a much larger number
of dependencies. There are two reasons. (1) being a web application the
contents of a web page is re-generated on each request, and (2) the domain
model of Pier is larger in terms of the number of objects created. In both
case studies our approach detected additional dependencies in all features
except for the first two, and the relative number of additional dependencies
is similar.

5.6 Related Work in Feature Analysis

Our work is directly related to the fields of feature related research [BALL 99,
EISE 03, MEHT 02, GREE 05].

Our work builds on the analysis of runtime feature relationships, pio-
neered by Salah and Mancoridis [SALA 04]. Their approach built on well-
established dynamic analysis Feature Identification techniques (e.g., Software
Reconnaissance) [WILD 95] to extract features. They defined a hierarchy of
dynamic views which track inter-feature dependencies. As discussed in Sec-
tion 5.2.2, their main definition depends detects situations where an object is
used in a different feature than the one it is created in. We have shown why
this definition misses dependencies and we propose a more precise notion
of feature runtime dependencies.

Kothari et al. [KOTH 06] proposed an approach to system comprehen-
sion that considers features as the primary unit of analysis. They define a
relationship between features based on comparing the implementations of
two features in terms of the executed methods. They model a feature as a
call graph and use graph algorithms to determine the similarities between
pairs of features. Also other approaches are based on an analysis of the
executed methods, e.g., for locating features in the source code [EISE 05b].

These approaches analyze the dynamic behavior of a system at the
granularity of methods. For our problem of detecting runtime feature
dependencies, however, tracing method executions alone is not enough. A
feature potentially has a dependency relationship on another feature even
without executing the same methods. Our approach detects the dependency
that occurs when a feature stores an object in a field and a feature exercised
later reads this field in a different method.

Various approaches have extended method tracing to improve object-
oriented program understanding. For example, apart from Salah et al.
[SALA 04] mentioned above, Antoniol et al. [ANTO 05] consider instance
creation events to locate features. In contrast, our Object Flow Analysis
is much more radical as it proposes a new model that is centered around
objects and tracks the transfer of their references.

Summary of the Chapter 87

Related to the analysis of object references are query-based debugging
approaches, which let the programmer test relationships between objects
[GOLD 05, LENC 99, DUCA 06]. In contrast to our approach, the query-
based approaches are more suited to finding inconsistencies in object graphs
than detecting feature dependencies. Also, a priori knowledge about the
implementation is required to be able to write queries whereas our approach
can be used to study an unfamiliar system.

Related work on Shape Analysis helps developers to investigate object
graphs to analyze the shape of object structures in memory snapshots (for
details see Chapter 2). These approaches face the difficulty that object
graphs can be very large. In contrast, this is less of an issue for our approach
because the set of objects a feature depends on is typically a relatively small
subset of the complete object reference graph. Our approach provides a
focused view by only showing those objects and references relevant for the
selected feature under investigation. A novel concept of our approach is
the notion of time encoded in a grayscale scheme, which reveals in which
feature an object or a reference was created.

5.7 Summary of the Chapter

In this chapter we analyze the problem of runtime dependencies between
features in an object-oriented system. Our approach builds on previous
work by Salah et al. [SALA 04]. The essential difference between Salah’s
approach and our approach is that the former detects dependencies by iden-
tifying objects and the features they are created in, whereas our approach
identifies object references and how references are transferred between fea-
tures. Taking object aliasing into account, we propose a novel detection
strategy for feature runtime dependencies that additionally exposes indirect
dependencies.

Based on the Object Flow Analysis metamodel and our framework to
reason about dependencies, the analysis of runtime feature dependencies
can be concisely expressed. That is, the only definitions we have to add are
the relation that maps aliases to features and the filtering of the relevant
aliases of a feature. With these two definitions, the predefined notion of
indirect dependencies exactly matches the desired notion of dependencies
for features.

Chapter 6

Test Blueprints
Exposing Dependencies in Execution Traces

Writing unit tests for legacy systems is a key maintenance task. When
writing tests for object-oriented programs, objects need to be set up and
the expected effects of executing the unit under test need to be verified. If
developers lack internal knowledge of a system, the task of writing tests is
non-trivial. To address this problem, we propose an approach that exposes
side effects detected in example runs of the system, and that uses these
side effects to guide the developer when writing tests. We introduce a
visualization called Test Blueprint through which we identify what the
required fixture is and which assertions are needed to verify the correct
behavior of a unit under test. To demonstrate the usefulness of our approach
we present results from two case studies.

6.1 Introduction

Creating automated tests for legacy systems is a key maintenance task
[DEME 02]. Tests are used to assess if legacy behavior has been preserved
after performing modifications or extensions to the code. Unit testing (i.e.,
tests based on the XUnit frameworks [BECK 98]) is an established and widely
used testing technique. It is now generally recognized as an essential phase
in the software development life cycle to ensure software quality, as it can
lead to early detection of defects, even if they are subtle and well hidden
[BERT 07].

The task of writing a unit test involves (i) choosing an appropriate
program unit, (ii) creating a fixture, (iii) executing the unit under test within
the context of the fixture, and (iv) verifying the expected behavior of the unit

90 Test Blueprints

using assertions [BECK 98]. All these actions require detailed knowledge of
the system. Therefore, the task of writing unit tests may prove difficult as
developers are often faced with unfamiliar legacy systems.

Implementing a fixture and all the relevant assertions required can be
challenging if the code is the only source of information. Object aliasing
and complex chains of message sends hide how and where side effects
are produced [BERT 07]. Developers usually resort to using debuggers to
obtain detailed information about the side effects, but this implies low-level
manual analysis that is tedious and time consuming [ZELL 05].

Thus, the underlying research question of the work we present in this
chapter is: how can we support developers faced with the task of writing unit tests
for unfamiliar legacy code? The approach we propose is based on analyzing
runtime executions of a program. Parts of a program execution, selected
by the developer, serve as examples for new unit tests. Instead of manu-
ally stepping through the execution with a debugger, we use Object Flow
Analysis to derive information to support the task of writing tests without
requiring a detailed understanding of the source code.

In our experimental tool, we present a visual representation of the
dynamic information in a diagram similar to the UML object diagram
[FOWL 03]. We call this diagram a Test Blueprint as it serves as a plan
for implementing a test. It reveals the minimal required fixture and the
side effects that are produced during the execution of a particular program
unit. Thus, the Test Blueprint reveals the exact information that should be
verified with a corresponding test.

To generate a Test Blueprint, we need to accurately analyze object usage,
object reference transfer, and the side effects that are produced as a result of a
program execution. To do so, we apply Object Flow Analysis in conjunction
with conventional method execution tracing. We have implemented a
prototype tool to support our approach and applied it to two case studies to
assess its usefulness.

The main contributions of this chapter are to show (i) a way to visually
expose side effects in execution traces, (ii) how to use this visualization, the
Test Blueprint, as a plan to create new unit tests, and (iii) a detection strategy
based on our Object Flow metamodel.

Structure of the chapter. This chapter is organized as follows. Section 6.2
discusses difficulties of writing unit tests in the reengineering context. Sec-
tion 6.3 explains the analysis of object flow in execution traces and Section 6.4
introduces the Test Blueprint, which is based on this analysis. Section 6.5
presents our approach in detail and Section 6.6 discusses two case studies. In
Section 6.7 we discuss related work in testing and we conclude the chapter
with Section 6.8.

The Challenge of Testing Legacy Code 91

6.2 The Challenge of Testing Legacy Code

To illustrate the task of writing unit tests for unfamiliar code, we take as an
example system the Smalltalk bytecode compiler introduced in the previous
chapters.

The following code (written in Smalltalk) illustrates a test we would like
to generate for the addTemp: method of the FunctionScope class of our Com-
piler example. During the AST to IR transformation phase of compilation,
variables are captured in a scope (method, block closure, instance, or global
scope). The temporary variables are captured by the class FunctionScope,
which represents method scopes.

function := FunctionScope new.
name := 'x'.

var := function addTemp: name.

self assert: var class = TempVar.
self assert: var name = name.
self assert: var scope = function.
self assert: (function tempVars includes: var).

Without prior knowledge of a system, a test writer needs to accomplish
the following steps to write a new test:

1. Selecting program unit to test. When writing tests for a legacy sys-
tem, the developer needs to locate appropriate units of functionality —
that is, a unit which is currently not already covered by a test and is
not too large a unit for which to write a test.

2. Creating a fixture. To create a fixture, the developer has to find out
which objects need to be set up as a prerequisite to execute the be-
havior under test. In this example, we need to create a FunctionScope
instance, which is used as the receiver, and a string, which is used as
the argument of the message send addTemp:. Creating this fixture is
straightforward. If more objects need to be set up, however, it may be
difficult to understand how they are expected to reference each other
and how to bring them into the desired state. Incorrectly set up objects
may break or inadvertently alter the behavior of the unit under test.

3. Executing the unit under test. Once we have the fixture, this step just
involves executing the method, in our example addTemp:, using the
appropriate receiver and arguments from the fixture. The execution of
the program unit stimulates the fixture, that is, the execution returns a
value and produces side effects.

92 Test Blueprints

4. Verifying expected behavior. We need to know what the expected
return value and the side effects are. In our example, the returned
object is expected to be a new TempVar instance with the same name 'x'.
Furthermore, the returned TempVar should reference the FunctionScope
object that we used as receiver. And finally, the FunctionScope should
include the returned object in its tempVars collection. It is difficult to
detect which side effects have been produced as a result of a program
execution, as this information may be obscured in complex chains
of method executions. By browsing the source code, it is difficult to
ascertain this information. And although a debugging session reveals
the required information, this may be a tedious approach in a large
and complex system.

6.3 Applying Object Flow Analysis

The Test Blueprint visualization presented in this chapter provides infor-
mation about a small part of the execution trace, which we refer to as an
execution unit. An execution unit is a set of method invocations selected by
the developer and represents a unit of behavior for which the developer
wants to write a unit test.

The analysis applied in this chapter exploits the dependencies intro-
duced by the object reference transfer between the selected execution unit
and the rest of the execution trace. To reason about these dependencies, the
set of Regions therefore contains only two elements. The first element is
Unit , a set of method invocations selected by the developer, and the second
element is UnitC , the set of all method invocations not contained in the unit
(see Table 6.1).

a ∈ Aliases (set of aliases created at runtime)
i ∈ Invocations (set of method invocations)

i ∈ Unit ⊂ Invocations (set of selected method invocations)
i ∈ UnitC = Invocations\Unit (complement — all other method invocations)
r ∈ Regions = {Unit ,UnitC} (set of regions)

reg : Aliases → Regions (region in which an alias resides)
aliases : Regions → P(Aliases) (set of relevant aliases of a region)

Table 6.1: Sets and relations used for the Test Blueprint analysis.

We impose the following condition on the structure of units, which states
that units are sub-traces of execution traces. Let allCallees be defined as
the transitive closure of the callees relationship of a method invocation i,

Applying Object Flow Analysis 93

MethodInvocation

context

Alias Object
value

*
0..1

origin

caller

0..1

fields or array slots

*

WriteAlias
predecessor

*
0..1

*

1

Class

Method

target parameters

*

*

1

1

0..1

1

callees
*

aliases

Figure 6.1: Object Flow Analysis metamodel (entities and associations exer-
cised by the Test Blueprint analysis are highlighted in black).

extended to sets of invocations. Then Unit satisfies:

∃i ∈ Unit such that {i} ∪ allCallees(i) = Unit

Intuitively, the condition verifies that the set Unit consists of a method
invocation and all invocations that this method transitively calls. In other
words, in a Unit there exists exactly one method invocation, which we refer
to as root method invocation, that has a caller that is not in the Unit .

To complete the definitions required by our framework we define the
relation reg as follows.

Definition 10 (Region of alias)

reg(a) := r ∈ Regions such that a.context ∈ r

This definition reveals whether an alias is created inside or outside of
the execution unit. The region of an alias is Unit if the alias is created in a
method invocation contained in Unit , else the region is the set UnitC . (Its
worth to note that the containment relationship is unambiguous because
Regions is a partition of the set of method invocations).

Analyzing the fixture. To show how the fixture for a unit under test needs
to be set up, the Test Blueprint indicates the object state that the execution

94 Test Blueprints

unit depends on — that is, the objects and their interrelationships that are
expected to exist such that the execution of the method under test exhibits
the same behavior as in the analyzed example run of the program. We
can express this expected state by the dependency of the region Unit on its
complementary region (notice, that there is no difference between direct
and indirect dependencies since there exist only two regions).

Definition 11 (Fixture)

fixture := {a ∈ aliases(Unit) : reg(a.origin) 6= Unit}

This definition is a reformulation of DD , which relates two regions. For
the Test Blueprint, however, we need more detailed information than the
one provided by DD . Therefore we define fixture to yield a set of aliases on
which the behavior of the execution unit depends.

The set fixture contains three kinds of aliases that represent the transfer
of an object into the unit: (i) by reading a field or array slot, (ii) by passing a
reference as argument of the root method, or (iii) by the target reference of
the root method (referred to by this in the method).

Notice that it is not possible to pass a reference into a unit by a method
return value because of the sub-trace condition of units stated above. Also,
write aliases do not occur because they are always created in the same
method as the alias from which they originate.

Analyzing effects. Analogous to the analysis of the fixture, the Test Blue-
print exposes the expected (side) effects of executing the unit under test. The
logical definition of the effects produced is to detect how UnitC depends on
Unit :

effects := {a ∈ aliases(UnitC) : reg(a.origin) 6= UnitC}

This definition yields the aliases that are created in the execution unit and
that are later used outside of it. However, this definition is too conservative
as it only detects side effects that actually influence the later program execu-
tion. This means, a side effect is not detected if a field or array write alias is
not read again later on.

The following definition is less restrictive as it yields all side effects (write
aliases) created in the execution unit, regardless of whether the reference is
used afterwards in the analyzed program execution.

Definition 12 (Effects)

effects := {a ∈ aliases(Unit) : a kindOf WriteAlias} ∪
{a ∈ aliases(UnitC) : reg(a.origin) 6= UnitC ∧ a kindOf ReturnAlias}

Introduction of the Test Blueprint 95

ASTChecker>>declareVariableNode:

FunctionScope>>addTemp:
TempVar class>>new

...initialization...
TempVar>>name:
TempVar>>scope:
KeyedSet>>add:

...library code...

...

...

Execution
Unit

Legend

existing reference new reference

Test BlueprintExecution Trace

:Class existing instance :Class new instance
Fixture Effects

Figure 6.2: An execution unit and the Test Blueprint produced from it.

This definition yields a set of write and return aliases. Write aliases
represent the side effects produced in the unit under test, and the return
alias (there exists only one) represents the returned value of the root method.

6.4 Introduction of the Test Blueprint

In this section we introduce the Test Blueprint based on the analysis of
object reference transfer discussed in the previous section. In Section 6.5 we
then present how the Test Blueprint supports writing unit tests by revealing
the information required to establish the fixtures and identify the required
assertions to verify the correct behavior.

The left side of Figure 6.2 illustrates an excerpt of an execution trace,
displaying the method executions as a tree. The sub-tree with the root
method invocation FunctionScope»addTemp: represents an execution unit.
The Test Blueprint of this execution unit is displayed at the right side of
Figure 6.2.

Information provided by the Test Blueprint. The Test Blueprint is similar
to a UML object diagram [FOWL 03] in that it shows objects and how they
refer to each other. The key difference is that the Test Blueprint is scoped
to the behavior of an execution unit and that it also shows (i) which objects
were used by the execution unit, (ii) which references between the objects

96 Test Blueprints

have been accessed, (iii) what objects have been instantiated, and (iv) what
side effects were produced.

This information is encoded as follows in the Test Blueprint. We use
regular typeface to indicate objects that existed before the start of the ex-
ecution unit and bold typeface to indicate objects that are instantiated in
the execution unit. The receiver object, the arguments, and the return value
are indicated. The visualization shows only objects that have actually been
accessed (but not necessarily received messages).

An arrow between two objects indicates that one object holds a field
reference to another object (or that an array refers to an object). Like with
objects, only references are displayed that have actually been accessed. Gray
arrows indicate references that already existed before the execution unit
was run.

A gray arrow displayed as a dashed line means that the corresponding
reference is deleted during the execution unit. Black arrows indicate refer-
ences that are established during the execution unit. Thus, the black and
dashed arrows represent the side effects produced by the execution unit.

Building the Test Blueprint. The set of aliases that the definition fixture
yields are used as follow. The binary relation kindOf determines whether
an alias is either the direct type or one of the supertypes of a given class (the
alias class hierarchy is shown in Chapter 3). We distinguish between three
kinds of aliases in this set. Let a ∈ fixture:

• a kindOf ReadAlias, then a denotes a gray edge to an object.
• a kindOf ParameterAlias, then a denotes an object passed as parameter

(indicated as arg).
• a is the target alias of the root method invocation, then a denotes the

object used as target (indicated as receiver).

Objects in the graph introduced by the above rules are displayed in
regular typeface, and edges are displayed in gray.

Analogous, the effects definition yields the following two kinds of aliases.
Let a ∈ fixture:

• a kindOf WriteAlias, then a denotes a black edge to an object.
• a kindOf ReturnAlias, then a denotes the object passed as return value

(indicated as return).

Objects in the graph introduced by the above rules are displayed in bold
typeface if they are not referred to by a gray edge (a gray edge indicates that
the object already existed in the fixture), and edges are displayed in black.

Introduction of the Test Blueprint 97

A gray edge is shown as a dashed line if a black edge exists for the same
field of an object or slot of an array (which means that the value of this field
was modified and the reference shown in gray does not exist anymore after
the execution unit has completed).

Understanding the Test Blueprint. Let us consider again the highlighted
execution unit in Figure 6.2, which contains all methods in the sub-tree
rooted in FunctionScope»addTemp:. In the execution trace this method is
called in the following code.

ASTChecker>>declareVariableNode: aVarNode
| name var |
name := aVarNode name.
var := scope rawVar: name.
var ifNotNil: [...] ifNil: [var := scope addTemp: name].
aVarNode binding: var.
^ var

As the Test Blueprint in Figure 6.2 shows, the receiver of the addTemp:
message is an instance of the class FunctionScope and the single argument
is a string. Furthermore, the returned object is a newly created instance
of the class TempVar. The Test Blueprint in Figure 6.2 also shows the state
of the returned object and what side effect the method execution addTemp:
produced. Let us compare it to the implementation of the addTemp: method
printed next.

FunctionScope>>addTemp: name
1 | temp |
2 temp := TempVar new.
3 temp name: name.
4 temp scope: self.
5 tempVars add: temp.
6 ^ temp

In the Test Blueprint we see that a new TempVar instance is created
(compare to the code at line 2). The string passed as the argument is stored
in a field of the TempVar instance (3). Another side effect is that the new
object is assigned a back reference to the receiver (4) and that it is stored in
a keyed set of the receiver (5). Eventually, the new instance is returned (6).

In the case of the above example, most information contained in the Test
Blueprint could also be obtained manually from the source code without too
much effort (although, the successively called methods like name:, scope:
and add: need to be studied as well). However, this task would not be so
trivial in the case of more complex execution units, which may contain many
executed methods and complex state modifications.

Figure 6.3 illustrates four other Test Blueprints from the same domain.
The Test Blueprint in Figure 6.3.A does not create new objects but it modifies

98 Test Blueprints

InstanceScope>>newMethodScope

IRBuilder>>add: FunctionScope>>lookupVar:

NonClosureScopeFixer>>acceptVarNode:

Program instrumentation

Execution of existing tests

Analysis (Section 6)

object flow +
execution trace data

coverage data

Example program execution

Execution Trace Test Blueprint

A
B

C D

Figure 6.3: Four Test Blueprint examples with different characteristics .

the state of the object passed as the argument and of an existing array, which
is accessed indirectly through the object used as receiver. Figure 6.3.B is an
example in which no side effects are produced. The execution unit performs
a lookup in an existing object structure. In contrast, in Figure 6.3.C only
one object is used, and many new objects are created. The Test Blueprint
shown in Figure 6.3.D illustrates a case in which an existing object reference
is deleted (dashed arrow).

6.5 From the Test Blueprint to Unit Tests

In this section we present our approach and experimental tool to support a
developer to overcome the problems stated in Section 6.2 when writing tests.
The underlying idea of our approach is to analyze the runtime behavior of a
program to find examples for new unit tests. These examples are analyzed
and the resulting visualization, we refer to as the Test Blueprint, then serves
as a plan for the developer to write a new unit test.

Figure 6.4 provides an overview of our approach. From instrumented
program runs we obtain dynamic analysis data about object flow and

From the Test Blueprint to Unit Tests 99

Program Instrumentation
Execution of existing tests

Analysis

object flow +
execution trace data coverage data

Example program execution

Execution Trace Test Blueprint

Tool

Figure 6.4: Overview of the approach.

method invocations. From an instrumented run of the existing unit tests we
record which methods are already covered by tests.

From the developer’s perspective, the approach works as follows. In
a first step, the developer interacts with our prototype tool to select an
appropriate execution unit serving as an example for writing a new test in
the execution trace. This is described in detail in Section 6.5.1. The selection
causes the Test Blueprint view to be updated. The developer subsequently
uses the view as a reference or a plan, providing him with the information
necessary to implement the fixture (Section 6.5.2), to execute the unit under
test (Section 6.5.3) and to write the assertions (Section 6.5.4).

6.5.1 Selecting a Program Unit to Test

The left view of our tool illustrated in Figure 6.4 shows a filtered execution
trace of the program, which was exercised by the developer. The trace is
shown as a tree where the nodes (vertical rectangles) represent method

100 Test Blueprints

executions. The layout emphasizes the progression of time; messages that
were executed later in time appear further to the right on the same line
or further down than earlier ones. This view is an adaptation of a view
proposed by De Pauw et al. [DE P 98], which was later used in the Jinsight
tool [DE P 99].

The goal of this view is to provide the developer a visual guide to search
for appropriate example execution units in the trace that need to be tested.
The tool provides options for filtering the amount of information in the
trace based on different criteria, for example to show only the execution
of methods of a particular package or a class of the system for which tests
should be created.

Additionally, the execution trace is annotated with test coverage infor-
mation. We compute this information by determining if, for each method
in the trace, there exists a test that covers that method. Methods that are
not covered are shown in black, whereas methods that are already exercised
by a test are shown in gray. With the help of these visual annotations, a
developer can more easily locate execution units of untested code on which
he needs to focus.

6.5.2 Creating a Fixture

When the developer selects an execution unit, the corresponding Test Blue-
print is generated and displayed in the right view of our tool (see Figure 6.4).
The selected execution unit (highlighted with an ellipsis) now serves as an
example to create a new unit test. To create the fixture of the new test, the
Test Blueprint can be interpreted as follows.

First, the Test Blueprint reveals which objects need to be created, namely
the ones that are not displayed in bold. Second, the gray references show
the object graph — that is, how the objects are expected to refer to each other
via field references. (In our tool, the name of the field can be accessed with
a tooltip). The created object graph represents a minimal fixture as the Test
Blueprint shows only the objects and references that have been accessed in
the execution unit.

Unfortunately, it can be difficult to implement the fixture as proposed
by the Test Blueprint. The problem is that it is not always obvious how to
create and initialize the objects. Often, not only the constructor has to be
called with appropriate parameters but also further messages have to be
sent to bring the object into the desired state. In some cases, the order in
which those methods are executed may also be relevant.

To address this problem, the Test Blueprint provides a means to query
for more detailed information about the creation of any of the objects it
displays. For each object, we backtrack its flow starting from the location

From the Test Blueprint to Unit Tests 101

Figure 6.5: Backtracking object setup

where it is first used by the execution unit. Figure 6.5 shows the popup
window for the FunctionScope instance.

This view reveals (i) the path of methods through which an object was
passed into the execution unit (the top method indicates where the object
under investigation was instantiated), and (ii) all messages sent to the object
along this path. The number in parentheses indicates how many state
modifications were produced, including transitive state.

In Figure 6.5 we see that the FunctionScope object of our running example
is instantiated in the method newFunctionScope and that its constructor,
initialize, produced seven side effects. In the same method, the execution of
outerScope: produces one side effect. No other method execution except for
addTemp: modified the object.

Using the backtracking view, we can also find out that the KeyedSet is
instantiated in the constructor of FunctionScope. Since no other object state
is needed in the fixture apart from the string used as the argument, the
following fixture is sufficient.

function := FunctionScope new.
name := 'x'.

6.5.3 Executing the Unit Under Test

With the fixture created in the previous step, executing the unit under test is
straightforward. The Test Blueprint shows which object from the fixture is
the receiver and which objects are used as arguments:

var := function addTemp: name.

102 Test Blueprints

6.5.4 Verifying Expected Behavior

In this last step, the test writer needs to verify the expected behavior of the
unit under test using assertions. The Test Blueprint reveals which assertions
should be implemented:

• The objects shown in bold typeface are the instances that are expected
to be created. Thus, assertions should be written to ensure their
existence.

• The expected side effects have to be verified: black and dashed arrows
between objects denote newly created or deleted field references.

• The Test Blueprint reveals the expected return value.

Once again, we illustrate this with our running example. Here the
assertions derived step by step from the Test Blueprint are the following.

self assert: var class = TempVar.
self assert: var name = name.
self assert: var scope = function.
self assert: (function tempVars includes: var).

The assertions verify that the FunctionScope includes in its tempVars set
the returned TempVar instance, and that the back pointer from the TempVar
to the FunctionScope exists. Furthermore, the new TempVar is expected to
store the string passed as argument.

6.6 Case Studies

In this section we present the results of two preliminary case studies. The
first case study provides anecdotal evidence of the applicability of our
approach for an industrial system, which supports the daily business of an
insurance company. Our main focus with this study is to investigate how
well our approach performs in the context of a real world legacy application
and to gain experience for future controlled experiments.

In our second case study we applied our approach to a web content man-
agement system to evaluate how tests written supported by our approach
differ from the tests already present, written by an expert.

6.6.1 Insurance Broker Application

In this case study we wanted to investigate questions regarding the appli-
cability of our approach in a real world scenario, such as: How hard is it to

Case Studies 103

find appropriate execution units in the trace? Can new unit tests be completely
implemented following the plan provided by the Test Blueprint? Do tests written
with our approach exhibit special characteristics (for example, considering size and
complexity)?

Context. The Insurance Broker system is a web based application used
both in-house by the insurance company employees as well as remotely by
the external insurance brokers. The system has been in production for six
years. While the system has been constantly extended over time, its core,
which implements the insurance products and their associated calculation
models, has not changed much. For the near future, however, a major
change affecting core functionality is planned.

One problem associated with this project is that two of the three original
developers of this application have left the team and the new members
lack detailed knowledge about older parts of the system. At the time we
carried out this experiment, the system consisted of 520 classes and 6679
methods. The overall test coverage amounted to 18% (note that we consider
only method coverage).

Study setup. To investigate the usefulness of our approach in this con-
text, we had access to a developer to write tests for the application core,
which comprises 89 classes and 1146 methods. This developer has only
ever worked on newer parts of the system. This meant that he had basic
knowledge of the system but was lacking internal knowledge about the core
of the system.

As we wanted to ensure that the developer did not have to test any of
the code he himself had implemented, we selected a version of the system
dating from the time before he joined the team. In the first part of our study
we trained him in our experimental tool and demonstrated how to use it to
implement a new test. During the following two hours he used our tool to
write new tests for the selected part of the system.

Results. The developer quickly understood the principle of the Test Blue-
print and how to use it. Within these two hours, the developer created 12
unit tests. With the new tests, the coverage of the core increased from 37%
to 50%.

Table 6.2 shows figures from the analysis of the developer’s work. The
first column labels the tests from 1 to 12. The second column indicates
the number of minutes the developer spent to find a new execution unit,
to study the Test Blueprint and to implement the test. In the remaining
columns we show the following measurements:

104 Test Blueprints

• The number of method executions in the selected execution unit.
• The size of the fixture in the Test Blueprint (number of pre-existing

objects plus number of gray references). This number is about the
same as the number of statements required to set up the fixture.

• The number of side effects in the Test Blueprint (number of new
objects plus number of black and dashed references). This number
corresponds to the number of assertions.

test # time[m] exec. unit fixture side eff.
1 13 7 2 5
2 6 13 1 3
3 12 7 4 3
4 6 66 2 2
5 5 1 3 2
6 4 1 2 1
7 4 3 3 5
8 5 35 7 2
9 32 194 21 13
10 5 3 1 2
11 10 201 3 4
12 15 349 10 1
average 10 73 5 4

Table 6.2: Measurements of 12 tests (time in minutes, size of execution unit
in number of executed methods, fixture size, number of side effects).

The most complex test the developer created was #9, which tests critical
functionality of the system (the calculation of discounts and subsidies).
Surprisingly, this functionality was not covered by existing tests. A part of
the Test Blueprint of this test is shown in Figure 6.6.

As Table 6.2 shows, this is an exceptional test with respect to the size
of the Test Blueprint (the size of the Test Blueprint is the sum of the last
two columns). Most tests were created from rather small Test Blueprints.
Roughly, the size of the Test Blueprint corresponds to the number of minutes
spent implementing the test.

On the other hand, the size of the execution unit (number of executed
methods) does not seem to have a direct relationship to the complexity of
writing a test. For instance, test #4 has an execution unit of size 66 but only
a size of the Test Blueprint of 4. This test exercises the functionality of query-
ing for available products. This involves iterating over all product models
and verifying their availability, which caused the 66 method executions.

The largest execution unit is test #12 with 349 method executions. This
behavior verifies the validity of a set of products, which involves complex
business logic. This test, however, only required one assertion, which is

Case Studies 105

Figure 6.6: Detail of Test Blueprint from test #9

to verify the returned boolean value. Commonly, this test would not be
considered a conventional unit test as it exercises much more functionality
than what belongs into a unit. Also, this test contributes above average to
the increase in the test coverage (which jumped from 37% to 50%).

Observations. One problem we observed was that selecting appropriate
execution units in the execution trace is not supported well enough. Al-
though the filtering of relevant methods and the highlighting of uncovered
method proved very useful, the developer spent unnecessary time to find
execution units that were not too trivial (for example, accessor methods)
and not too complex to test.

On the other hand, the Test Blueprint worked very well and as intended.
The developer used it as the primary source of information to implement the
tests. Yet, sporadically he resorted to consulting the source code, for instance
to study how to set up an object. Although the backtracking of object setup
helped to indicate what methods to look at, it did not completely replace
the activity of consulting the code.

In summary, the developer successfully applied our tool to write tests
for a system he only had basic knowledge of. Most of the chosen execution
units had rather small Test Blueprints, so that it was generally not a problem
to keep track of the objects and references to write the fixture and assertions.
Large execution units in the trace did not necessarily indicate large Test
Blueprints.

In a future case study, it would be interesting to measure how productive
developers using our tool are compared to developers without tool support.

106 Test Blueprints

It would also be interesting to see how and which program units are chosen
and how the quality of the tests differ. The study we present in the following
section, provides initial insights into the differences of the tests.

6.6.2 Web Content Management System

In this case study we wanted to investigate the following question: How do
tests written using our approach differ compared to conventional tests written by
an expert of the system?

For this study, we selected the Pier web content management system
[RENG 06]. Its core comprises 377 classes.

Setup. To be able to directly compare tests written using the Test Blueprint
with tests written by an expert of the system, we performed the following
study. We randomly selected 14 non-trivial unit tests that are shipped with
Pier. First we removed all assertions from the source code of the tests (84 in
total), leaving only the code for the setup of the fixture and the execution
of the unit under test. In the next step we used our approach to analyze
the execution of each stripped down test case. Using the guidance of our
Test Blueprint, we then systematically rewrote assertions for the tests as
demonstrated in Section 6.5.

Results. In summary, the difference of the recreated assertions compared
to the original 84 assertions is: (a) 72 of the recreated assertions are identical
to the original ones, (b) 12 original assertions had no corresponding assertion
in our test, and (c) our tests had 5 additional assertions not existing in the
original code.

In 85% of the cases, the assertions we derived from the Test Blueprint
were exactly the same as the ones implemented by the main author of the
system. But with our approach some assertions were also missed (result
b). A closer investigation revealed that most of the missing 12 assertions
verify that special objects are left unmodified by the unit under test. The
focus of our approach is the side effects, that is, the modified state. Writing
assertions to verify that special program state is left unchanged requires
in-depth knowledge of the implementation. Our approach does not provide
hints which unmodified objects would be worthwhile to verify.

The last result (c), shows that we found additional assertions not existing
in the original tests. For instance, one of those assertions tests whether the
state of the object passed as argument is correctly modified. The developer
of Pier confirmed that, indeed, these relevant assertions were missed (and
that he plans to integrate them).

Related Work in Testing 107

6.7 Related Work in Testing

Specification based testing. There is a large body of research on automati-
cally generating tests or test input from specifications and models [UTTI 06].
In the work of Boyapati et al., they present the Korat framework which
generates Java test cases using method preconditions [BOYA 02]. Compared
to our approach, these test generation tools require a priori specifications,
which often do not exist for legacy systems. For our approach, the code and
the running system are the only required sources.

Automatic testing. Fully automated testing tools exist such as DART
[GODE 05]. DART performs random testing and employs dynamic analysis
to optimize coverage. In contrast, our approach analyses real program
execution that has been initiated by the developer to create example sce-
narios for which to write tests. The result of applying our approach are
conventional unit tests. In contrast to the automated testing approaches, the
intent of our approach is not to achieve a full branch coverage as required
by McCabe’s structured testing criterion [WATS 96].

Trace based testing. Testlog is a system to write tests using logic queries
on execution traces [DUCA 06]. Testlog tackles the same problem as our
approach, however, it does so in a different way. The problem of creating
a fixture is eliminated by expressing tests directly on a trace. With our
approach, the developer creates conventional unit tests without the need to
permanently integrate a tracing infrastructure into the system to be able to
run the tests.

Other query based approaches, primarily targeted for debugging, can
also be used for testing [LENC 99, GOLD 05]. In contrast to our approach,
the query based approaches are tailored towards finding inconsistencies
rather than to support writing new tests because these techniques require a
priori knowledge about the source code to write queries.

6.8 Summary of the Chapter

In this chapter we present an approach to support developers in writing
unit tests for an unknown system. We propose the Test Blueprint, which
provides a plan to write a fixture and assertions for an observed example
execution of a unit.

The Test Blueprint requires an analysis of the program state on which
the execution of a unit depends (for the fixture), and of how this execution
then affects the program state (for assertions). This analysis can be concisely

108 Test Blueprints

expressed with Object Flow Analysis. Since the analysis requires details
about the references transferred, we reformulate the direct dependency
definition provided by our framework to yield the set of aliases for two
dependent regions (rather than just relating two regions).

Chapter 7

Practical Back-in-Time
Debugging
Effective Object Flow Analysis in the Virtual Machine

Back-in-time debuggers are extremely useful tools for identifying the
causes of bugs. Unfortunately the “omniscient” approaches that try to
remember all previous states are impractical because they consume too much
space or they are far too slow. Several approaches rely on heuristics to limit
these penalties, but they ultimately end up throwing out too much relevant
information. In this chapter we propose a practical approach that attempts
to keep track of only the relevant data. In contrast to other approaches,
we keep object history information together with the regular objects in the
application memory. Although seemingly counter-intuitive, this approach
has the effect that data not reachable from current application objects (and
hence, no longer relevant) is garbage collected. Following the concept of
Object Flow Analysis, we extend the memory model of virtual machines
to seamlessly integrate historical execution data. We describe the technical
details of our approach, and we present benchmarks that demonstrate that
memory consumption stays within practical bounds. Furthermore, the
performance penalty is significantly less than with other approaches.

110 Practical Back-in-Time Debugging

7.1 Introduction

When debugging object-oriented systems, the hardest task is to find the
actual root cause of a failure as it can be far from where the bug actually
manifests itself [ZELL 05]. In a recent study, Liblit et al. examined bug
symptoms and found that in 50% of the cases the execution stack contains
essentially no information about the bug’s cause [LIBL 05].

Classical debuggers are not always up to the task, since they only provide
access to information that is still in the runtime stack. In particular, the
information needed to track down these difficult bugs includes (1) how an
object reference got here, and (2) the previous values of an object’s fields. For
this reason it is helpful to have previous object states and object reference
flow information at hand during debugging. Techniques and tools like back-
in-time debuggers, which allow one to inspect previous program states
and step backwards in the control flow, have gained increasing attention
recently [LEWI 03, POTH 07, HOFE 06, MARU 03, POTH 08].

The ideal support for a back-in-time debugger is provided by an om-
niscient implementation that remembers the complete object history, but
such solutions are impractical because they generate enormous amounts of
information. Storing the data to disk instead of keeping it in memory can
alleviate the problem, but it has the drawback of even further increasing
the runtime overhead. Current implementations such as ODB [LEWI 03],
TOD [POTH 07] or Unstuck [HOFE 06] can incur a slowdown of factor 100
or more for non-trivial programs.

The common strategy for discarding data is to delete the oldest data first,
which inevitably leads to the problem that bugs that have their cause located
far enough from their effect cannot be tracked down anymore [LEWI 03].
Another strategy to address the memory problem is to generate less data
by only instrumenting parts of the application [POTH 07]. In this case,
however, the programmer must know upfront where the potential source
of the problem is. This approach produces less data, but it still presents
the problem that the data grows over time making it necessary to discard
old data at some point. Unfortunately, the common technique of logging
a sequential trace of events does not offer much better possibilities than to
delete the oldest data first.

Object Flow Analysis offers a solution by capturing more details about
the execution history than execution traces typically do. By representing
the connections between references as alias relationships, a more expressive
notion of relevance can be defined. In our model, the relevance of an alias
is given by whether the alias is reachable from the root objects at a given
point in time. For example, when a method invocation has returned and
the parameter passed to it was not assigned to a field, both the method
invocation and the parameter alias can be discarded.

Introduction 111

Initially, we started investigating this idea by using the origin and context
relationships as defined in the Object Flow Analysis metamodel. The first
results were not very promising because too much data was thrown away.
Although all previous steps in the flow of an object, including the call stacks,
were retained, in some cases it was not possible to go back in the history
of a field because the object previously stored in the field had already been
discarded.

Indeed, the notion of object reference structure was missing. The solu-
tion to capture also reference structure in our metamodel turned out to
be surprisingly simple to realize: by linking the current write alias of a
field to the previous write alias of the same field, the state history of the
field is retained. In the Object Flow Analysis metamodel, this link is the
predecessor association between write aliases. Now, even though an object
may no longer be referenced, it is not discarded as long as another object
exists that once had a field reference to the object in question.

Having solved this problem, the remaining challenge is to make the
detection of irrelevant history very fast, because it has to be performed
while the program is running. The back-in-time debugging approach we
present in this chapter proposes to implement the Object Flow Analysis
metamodel at the level of the virtual machine — that is, to keep the recorded
aliases in the same memory space as the regular application objects. In this
way we seamlessly integrate historical execution data into the object model
of the virtual machine, rather than tracing isolated events and store them
in a log. A direct consequence of this approach is that aliases no longer
reachable from the objects of the running application will be automatically
garbage collected.

This design provides the following benefits:

• The relevance of an alias and method invocation is determined by the
reachability in the memory graph. Which history and how much of it
is retained depends on the interconnectivity of the aliases and method
invocations.

• Garbage collection of the recorded history comes “for free” since we
can employ the usual garbage collector without any modifications to
incrementally and efficiently delete no longer reachable data.

As our evaluation shows, how much memory is consumed with our
approach largely depends on the characteristics of the application. In some
cases the data recorded does not grow indefinitely and hence in these cases
recording can be turned on all the time. However, our approach does not
guarantee that the virtual machine will never run out of memory — it only
makes it less likely. In case the recorded data continues to accumulate over
time, we run out of memory much later than with conventional approaches.

112 Practical Back-in-Time Debugging

In the latter case, we provide means to configure the recording to capture
and remember less data, which can lead to a dramatic decrease in memory
consumption.

To make back-in-time debugging truly practical, it is important not only
to manage memory consumption, but also to keep the runtime overhead
within reasonable limits. A slowdown of 100 can make a program unusable
even for debugging. Unlike many other back-in-time debuggers, which
rely on bytecode manipulation techniques and application-level logging,
our implementation is at the virtual machine level and because of that the
performance is significantly improved. From our experiments the worst case
scenario led to a slowdown of only a factor of 7 compared to the original
virtual machine.

Chapter structure. In the following section we describe our approach to
incorporate the Object Flow Analysis metamodel into a high-level language
virtual machine. In Section 7.3 we discuss our implementation, in Section 7.4
we present our evaluation and in Section 7.5 we discuss the results. We
present the related work in Section 7.6 and we conclude by summarizing
the chapter in Section 7.7.

7.2 Approach: An Object-Flow-Aware VM

Most back-in-time debuggers are based on tracing events emitted at the ap-
plication level. This technique is commonly based on transforming bytecode
to introduce sensors that emit events. We take a radically different approach
by modifying the virtual machine to add the program’s execution history to
the object model — following the metamodel of Object Flow Analysis.

7.2.1 Representing References in Memory

The memory layout of objects in object-oriented virtual machines typically
consists of a header for the class pointer, hash bits, GC flags, size, etc. and a
fixed number of fields containing object references and primitive values. In
many virtual machines, object references are implemented as direct pointers
— that is, an object reference is just the address of that object in memory.
Examples are the Sun HotSpot VM, Jikes RVM (formerly known as the
Jalapeño VM [ALPE 99]), and the Squeak Smalltalk VM [INGA 97].

In the proposed object model we add a level of indirection by represent-
ing object references by alias objects.

Approach: An Object-Flow-Aware VM 113

header
field_1
field_2
....
field_n

header

value
context
origin
predecessor
...

header

...

header
field_1
field_2
....
field_n

header

...

regular objects

pointer

alias

(a) (b)

Figure 7.1: (a) Typical object format with references as direct pointers and
(b) proposed extension with references being optionally represented by alias
objects.

Figure 7.1.a illustrates the typical approach where an object reference is
represented by a pointer, and Figure 7.1.b shows how in our object memory
model the object reference is substituted by an alias object. Thus, the pointer
stored in field_1 points to the alias and the alias has a pointer to the actual
object. Aliases cannot be nested; the object reference of an alias is always a
direct pointer to a non-alias object. Aliases cannot only substitute reference
values but also the undefined value and primitive values. In this case field_1
contains the primitive value (e.g., tagged pointer for small integers).

Aliases have the following key properties that distinguish them from com-
mon objects:

• Transparency. Aliases are completely invisible at the application level.
This means that the semantics of the language are not altered. For
instance, method lookup, field access, or primitive operations are
performed as if the actual object were referenced directly. To make the
information of an alias accessible at the application level we use the
concept of Mirrors [BRAC 04].

• Optionality. The conventional direct pointer reference model (Fig-
ure 7.1.a) is still supported. This allows the recording of aliases to be
switched on only when required (Section 7.2.2).

• History. Apart from the object pointer, an alias carries information
about the object reference it represents. Through the relationship
with other aliases, two main dimensions of object-oriented runtime
behavior are captured: historical object state (Section 7.2.3) and object
flow (Section 7.2.4).

114 Practical Back-in-Time Debugging

MethodInvocation

context

Alias Object
value

*
0..1

origin

caller

0..1

fields or array slots

*

WriteAlias
predecessor

*
0..1

*

1

Class

Method

target parameters

*

*

1

1

0..1

1

*

Figure 7.2: Object Flow Analysis metamodel.

Representing aliases directly as conventional objects allocated on the
heap simplifies the internal object model of the virtual machine and allows
us to use the standard garbage collector without needing to adapt it. For
the same reason, many virtual machines represent classes and methods as
internal objects.

7.2.2 Capturing Object References

In contrast to other back-in-time debugging approaches, which typically
collect and store data centrally as a trace of events, aliases are part of the
object model. Like events, aliases capture historical execution data, but
instead of ordering them in a temporal trace they are attached to object
references. For example, in the case of writing to a field the alias objects
are directly pointed to from the corresponding field of the object. For each
value there can exist many aliases, whereas an alias always points to exactly
one value.

Illustrated in Figure 7.2, parameter aliases are referred to from the
method invocation in which they replace the pointer to the actual parameter
objects. The context of an alias is used to navigate to the method invoca-
tion in which the alias was created. To model the call stack, each method
invocation holds onto its caller. Aliases are pushed on the operand stack
of the method invocation the same way as the objects they point to would
be. Exceptions are field and array write aliases, since they are referred to

Approach: An Object-Flow-Aware VM 115

:Person field-write@t2

field-write@t3

field-write@t1

"Doe"

"Smith"

null
predecessor

predecessor

value

value

value

person = new Person() t1
...
person.name = "Doe" t2
...
person.name = "Smith" t3

name

name

name

Figure 7.3: Capturing historical object state through predecessor aliases.

only from fields and array slots. When they are accessed a new read alias is
created (for a complete overview of the different kinds of aliases, please see
Chapter 3).

In the following two sections we detail on the use of the predecessor
and origin associations between aliases in the virtual machine. These two
orthogonal relationships between aliases are key to our approach as they
capture object state changes and track the flow of objects.

7.2.3 Remembering Historical Object State

An important historical dimension for back-in-time debugging is how the
state of an object evolves. This allows a back-in-time debugger to answer
the question: What were the previous values of a field and where in the control
flow were they assigned? More precisely, we want to capture data that allows
us to later determine which value was stored in a field of an object (or at a
specific index of an array) at a given point in the execution of the program.

The predecessor relationship in the Object Flow Analysis metamodel
captures this dimension.

Figure 7.3 illustrates an example of a person object with the attribute
name. When the object is allocated at the point in time t1, the field is initially
undefined. Later, at t2, the string “Doe” is written into the field and at t3 it
is renamed to “Smith”.

In the example the field first points to the write alias of null, then to the
field write alias of “Doe” and lastly to the field write alias of “Smith”. Each
alias keeps a reference to its predecessor, the alias that was stored in the
field beforehand. In this way, the alias pointed to from a field is the head of
a linked list of aliases that constitute the history of that field.

Looking into the past. To go back in time, a selected process can be put
into a state in which it “sees” the system as it happened to exist at a certain
point in the past. Like this, accessing a historical value of a field is automatic

116 Practical Back-in-Time Debugging

if process.timestamp is not defined then
return x.f

else
alias := x.f
while (alias.timestamp > process.timestamp and

alias.predecessor is defined)
alias := alias.predecessor

return alias
end if

Figure 7.4: Pseudo code for the VM implementation of field access x.f with
back-in-time capability.

because when accessing a field (or array), the historical value is returned
directly — just like the current value is normally returned.

Figure 7.4 shows pseudocode for the implementation of field access in
the virtual machine. In case the current process has an activated back-in-
time view, the predecessor list of the currently referenced alias is traversed
backwards to the alias that was present in the field at the selected point in
time.

In the example of Figure 7.3, accessing person.name at timestamp t3
directly returns the alias of the string “Smith” whereas at t1 an alias of the
undefined value is returned.

With this model, previous object state can be accessed very quickly
(depending on the number of state changes of the field, which is typically a
small number). Compared to other approaches, which need to reconstitute
previous object state from a log or from a database, this is significantly faster.

7.2.4 Remembering the Flow of Objects

In addition to the historical object state dimension discussed above, we
want to capture how objects propagate at runtime. The goal is to answer
the second key question: How was this object passed here? This means, for any
object accessible in the debugger, we want to be able to inspect all origins
up until the allocation of the object. This also allows us to find out where
a particular value of a variable comes from. Furthermore, we also want to
track the flow of the undefined value and any primitive values. Tracking
the undefined value is important as null pointer exceptions can be hard to
debug.

The way we track the flow of objects is similar to that of tracking past
object states discussed above. The origin relationship in the Object Flow
Analysis metamodel captures all transfers of object references in a system
(when recording is turned on). In other words, to capture how an object

Approach: An Object-Flow-Aware VM 117

is passed around, each alias of the object, except for the creation alias,
maintains a link to the alias from which it originates.

Figure 7.5 illustrates the flow of an account object in an execution trace
(represented as a tree of method invocations where the callee points to the
caller). A point in Figure 7.5 represents an alias. An arrow from one alias
to another shows the origin of the alias. Note that the actual flow of the
object is opposite to the direction of the origin arrows. A box indicates a
method invocation (stack frame). Each method invocation links to its calling
invocation.

Each alias is created in the context of the method invocation in which the
object reference becomes visible. This means that for return values this is
the calling method rather than the returning method. The parameter aliases
are created at the callee site.

By means of the origin link of an alias we can track back how an object
was passed to a method invocation in which a failure occurred. This helps
one to understand how and why a possibly incorrect object reference has
been propagated — even and especially if its flow spans the whole program
execution and goes through fields and arrays.

Introspecting object flows. Aliases are completely invisible at the applica-
tion level because they forward all messages to the actual objects. Therefore,
we have to provide other means to access object flow information than
to send messages to an alias instance. We employ the concept of Mirrors
[BRAC 04] to introspect aliases. For each object reference that is represented
by an alias instance, a mirror can be obtained through a primitive. A mirror
is an object that provides an interface to access for example the origin and
the predecessor of an alias, which in both cases returns a new mirror of the
corresponding alias. In the same way we can access the method invocation
context of an alias to get information about where in the control flow the
alias was created. Our prototype implementation of the enhanced debugger
uses this mechanism to navigate backwards in time.

7.2.5 The Effect of Garbage Collection

The upper part of Figure 7.6 illustrates the same execution trace and object
flow illustrated by Figure 7.5. The currently active call stack is highlighted
on the right side. The method invocations and the aliases are nodes in the
memory graph, whereas the caller and origin arrows are the directed edges
in this graph. The effect of a garbage collection is illustrated in the lower
part of Figure 7.6.

118 Practical Back-in-Time Debugging

allocation

field-write field-read

parameter
field-read

return

return

class Bank {
 Account openAccount() {
 return new Account();
 }
}

class Person {
 void createAccount(Bank bank) {
 this.account =

bank.openAccount();
 }
}

class Person {
 void printOn(Stream stream) {
 stream.print(this.account);
 }
}

class Company {
 void pay(Money money, Person person) {
 person.payAccount().deposit(money);
 }
}

running/completed method invocationLegend

alias origin

alias

caller of a method invocation

Figure 7.5: Flow of an Account instance through an execution tree.

In this example, the following objects survive the garbage collection:

• The current call stack is preserved since the active invocation (1) is
considered a root object.

• The return alias (2) of the invocation payAccount() is not deleted since
it is referred to from the operand stack of the active invocation pay().

• The invocation of payAccount() (3) is also preserved as it is the context
of a field read alias and the field read alias is the origin of the return
alias (2).

• The corresponding field read alias originates in a much earlier branch
of the call tree where the account instance was written to a field after
it was returned from the method invocation openAccount() (4).

The branch of the object flow (the field read and parameter aliases in the
middle of the execution tree) does not survive the garbage collection. The

Approach: An Object-Flow-Aware VM 119

active
invocation

allocation

field-write field-read

parameter
field-read

return

allocation

field-write

field-read

return

return

return

running/completed method invocationLegend

alias origin

alias

(1)

(2)

(3)(4)

garbage collection

sn
ap

sh
ot

 2
sn

ap
sh

ot
 1

caller of a method invocation

Figure 7.6: Flow of an object through an execution tree and the effect of
garbage collection.

reason is that no other object flow exists that would make a connection to
the alias and invocation sub-graph. Also, many method invocations do not
survive as they are not subject to relevant object flows and as they are not in
the caller chain of a relevant invocation.

Figure 7.7 shows memory statistics from the execution of the Squeak
bytecode compiler. In regular intervals we measured how many aliases
have been allocated in total (solid line) and how many of those aliases still
exist in memory (dashed line) over time. The effect of the garbage collection
over the whole execution is a reduction of data by 70%. Both statistics in
Figure 7.7 show the same run of the compiler, but with different garbage
collector settings. On the left side, there are fewer GC cycles. For instance
between 50ms and 120ms there is no GC activity and therefore both lines
increase at the same rate. On the right side, between almost all sample steps
there is a GC cycle.

120 Practical Back-in-Time Debugging

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200 250 300 350 400 450
[ms]

Number of aliases allocated
Number of aliases in memory

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200 250 300 350 400
[ms]

Number of aliases allocated
Number of aliases in memory

Figure 7.7: Garbage collection discards 70% of the aliases in a run of the
compiler. The right side shows the same execution but with a flatter curve
due to more GC activity.

7.3 Implementation

We have extended the Smalltalk Squeak VM [INGA 97] with the recording
capability and representation of the execution history in the object model as
described in Section 7.2. The majority of the Squeak VM is implemented in
a subset of Squeak Smalltalk, named Slang. The Slang source code is then
translated to C to compile and link with the low-level, platform-specific
C code. The Squeak VM implementation closely follows the specification
given in the Smalltalk-80 Blue Book [GOLD 83], except for the object memory
format. Like most modern virtual machines, Squeak implements references
as direct pointers rather than using an object table.

We implemented aliases as real objects of a new class Alias that has the
fields value, context, origin and predecessor as illustrated in Figure 7.1 and
Figure 7.2. In addition, Alias has two integer fields to encode the timestamp,
the current program counter (for the precise location of the alias creation in
the method), and the kind of the alias (one of the eight kinds described in
the Object Flow Analysis metamodel in Section 3.1).

Representing aliases as ordinary objects in memory has the advantage of
simplifying the implementation. Most importantly, no changes to the object
memory layout and to the garbage collector are necessary. The two main
changes to the virtual machine are to allocate and initialize aliases, and to
forward message sends to the actual target object in case the object is aliased.
Aliases are created in the bytecode routines (e.g., read and write aliases), on
method invocation (parameter and return aliases), and when instantiating a
class. There exist a few exceptional classes for which no aliases are created to

Implementation 121

simplify the implementation where aliasing is not important. Those classes
are Process, Semaphore, MethodContext, BlockContext, and CompiledMethod.

Since method invocations are already represented as objects in Squeak
(instances of the class MethodContext), to implement the model as illustrated
in Figure 7.2, no further changes are required.

To optimize performance and space we implement Alias as a compact
class. That is, the object header of its instances consists of only a single
32-bit word and contains the index of its class in the compact classes table.
This spares one word per alias instance, but more importantly, it allows the
virtual machine to check whether an object is an alias or a real object by
looking at the object header alone. The efficiency of this check is especially
important because not every object reference is represented as an alias and
hence this check has to be performed very frequently.

To generate the different kinds of aliases when tracing is enabled, we
extend the instantiation primitive, the fetch and store bytecode routines, and
the message send routines. These extensions conform to the specification
of Object Flow Analysis given in Section 3.2. The main differences of the
virtual machine implementation to the formal specification are:

• Aliases store additional information like a timestamp and their kind
encoded in integer values. Since the virtual machine is translated
to C, which does not support inheritance, we only use one class to
represent aliases, unlike the conceptual alias class hierarchy discussed
in Chapter 3.

• There is no distinction between the heap and the alias store. In our
implementation alias instances are allocated in the same memory
space like normal objects, which is critical to employ the garbage
collector.

• While in the specification each object reference is represented by an
alias, in our implementation aliases are optional. This enables the
scoping to only record the execution of a desired process or of selected
parts of the code.

Small modifications have to be applied to many other primitives and
bytecode routines than the ones mentioned above in case they operate on the
actual object rather than on the alias. For instance in arithmetic operations
and the jump bytecode routines, the target and the values popped from the
operand stack need to be unwrapped if they are aliases.

Overall, about 200 methods of the Slang implementation are modified or
created. In comparison, the core of the virtual machine is implemented with
about 750 methods (not counting platform specific code directly written in
C and plugin code). Half of our changes are necessary due to the need of

122 Practical Back-in-Time Debugging

unwrapping aliases. Other parts of the virtual machine, for instance the
memory format, method lookup, and the garbage collector, do not require
any modifications.

At the application level, only very few extensions in system classes are
required to support recording, to allow the user to control recording, and
to introspect the execution history. First, the class Alias has to be loaded. It
implements no methods and cannot be instantiated by the user. Second, the
class Process is extended to allow the user to control recording at runtime.
We add a field to Process that specifies the recording mode as well as the
timestamp of its back-in-time point of view. At runtime, the behavior of the
virtual machine then depends on these settings of the active process.

In addition, we implement the class AliasMirror, which can be loaded to
introspect the execution history. Mirrors are used by the graphical debug-
ger, which we modified to be capable of moving backwards in time and to
navigate backwards in the flow of objects. The debugger accesses informa-
tion about the flow and history of an object by requesting a mirror for the
reference through which the object is made visible in the selected method
invocation. There is no need to traverse the heap or perform a lookup in a
trace to get the flow or history of an object, since this information is available
through direct object references. A mirror on an object reference is created
by the virtual machine through a primitive call. Using a mirror on an alias,
the fields of the alias can be accessed. This behavior is implemented with a
set of primitives in the virtual machine because any direct access to the alias
would be performed on the actual object rather than on the alias instance.

7.4 Performance Evaluation

In this section we evaluate our implementation from the point of view of the
execution overhead (Section 7.4.1) and of the memory usage (Section 7.4.2).
All experiments were performed on a MacBook Pro, 2.4GHz Intel Core 2
Duo, 4GB RAM, with Mac OS X 10.5.2.

7.4.1 Execution Overhead

Setup. To evaluate the execution overhead, we compare the performance
of the modified Squeak virtual machine to the original virtual machine by
means of several standard benchmarks. As a reference, we first executed the
benchmarks in an original Squeak virtual machine (version 3.9-10), which
we compiled using gcc 4.0.1. Then, we executed the same benchmarks using
our modified virtual machine, which had been compiled under identical
conditions. First, we took the benchmarks with the recording of historical

Performance Evaluation 123

data being turned off, and second with recording turned on. For each of the
three cases the five benchmarks were executed 30 times, and before each
execution we forced a full heap garbage collect.

Overview. The results of this comparison are shown in Table 7.1 and
Table 7.2. The first three columns show the results of the benchmarks
executed on our modified virtual machine without historical data recording,
that is, no aliases are created. The remaining columns to the right show the
results obtained from running the benchmarks with recording turned on.
These overheads include the time that is needed to allocate and initialize
alias instances, the additional time to forward message sends from aliases
to normal objects and the additional time spent in the garbage collector.

The most important numbers are shown in the two ∆ columns, which
indicate the execution overhead of the benchmarks compared to the refer-
ence run of the unmodified standard virtual machine. The column time is
the runtime of the benchmark and %GC indicates how much of this time
is consumed by the garbage collector. The last two columns of the table
show how many alias objects respectively method invocation objects are
created (k indicates that both figures are given in 1000 objects). The figures
in Table 7.1 and Table 7.2 are computed using the arithmetic mean of the 30
runs of each benchmark.

Recording OFF
Benchmark ∆ time[s] %GC
Tiny benchmark (bytecodes) 1.02 1.03 0.0
Tiny benchmark (sends) 1.20 1.39 0.0
STones80 (low-level) 1.12 0.51 5.6
STones80 (medium-level) 1.27 0.38 0.4
Squeak macro benchmark 1.16 0.38 2.0
Average 1.15 0.74 1.6

Table 7.1: In comparison with the original VM, the execution overhead of the modified
VM averaged 15% when recording is disabled (see column ∆).

Benchmarks. We used five different benchmarks1. The first two rows
show the results of two Tiny benchmarks, which measure how many byte-
codes and message sends can be executed per second. The bytecode bench-
mark is based on a bytecode-heavy implementation of the “Sieve of Eratos-
thenes” whereas the message send benchmark is based on a send-heavy
recursive calculation of Fibonacci numbers. The second and third rows

1The Tiny benchmarks can be found in the standard Squeak distribution. The
STones80 and the Squeak macro benchmarks can be found in the Benchmarks package on
http://map.squeak.org/

124 Practical Back-in-Time Debugging

Recording ON
Benchmark ∆ time[s] %GC aliases methods
Tiny benchmark (bytecodes) 2.26 2.29 16.1 13773 k 8 k
Tiny benchmark (sends) 2.06 2.39 7.1 7881 k 11406 k
STones80 (low-level) 1.53 0.70 8.4 21600 k 4960 k
STones80 (medium-level) 6.43 1.91 46.0 59478 k 17077 k
Squeak macro benchmark 2.0 6.91 2.23 60.7 5532 k 669 k
Average 3.84 1.91 27.6 21653 k 6824 k

Table 7.2: In comparison with the original VM, the average slowdown when recording
is enabled is 3.84 (see column ∆).

show the results of the STones80 benchmarks, which are available for many
different Smalltalk dialects. Whereas the low-level version mainly involves
arithmetic operations, array operations, and object allocation, the medium-
level version also performs recursive calls, collection and stream operations.
The last row in Table 7.1 and Table 7.2 shows the results of the Squeak macro
benchmark, which measures decompiling and then re-compiling methods.

Discussion. The results of the benchmarks taken with disabled recording
averaged 15%. These numbers are a good indication of the performance
penalty caused by our virtual machine modifications. When recording
is turned off, no aliases are allocated and hence no message sends have
to be forwarded and no additional time is spent in the garbage collector.
Interestingly, the overhead of the Tiny bytecodes benchmark is very low
with an overhead of only 2%, while the overheads of the other benchmarks
average between 12% and 27%. To find out whether this difference is
significant or whether our modifications have any measurable influence on
the performance of the bytecode benchmark, we performed the following
statistical analysis.

We formulate the null hypothesis H0 that the average runtime of the
Tiny bytecode benchmark is not slower when executed on our modified VM
(M) compared to the original VM (O), formally: µO ≥ µM . The alternative
hypothesis H1 postulates that the average runtime of the benchmark is
slower when being executed on our modified VM compared to the original
VM, formally: µO < µM .

To test the hypotheses we apply the independent one-sided two-sample
t-test [KANJ 99] with an α value of 1% and 58 degrees of freedom. The
variance requirement is fulfilled and both data sets are normally distributed
(verified with the Kolmogorov-Smirnov test). We calculated a t value of -16,
which means that we can clearly reject the null hypothesis H0 and accept
the alternative hypothesis H1 (the t distribution tells us that the probability
that t ≤ −2.4 is 1%). Therefore, we can conclude that the 2% slowdown

Performance Evaluation 125

of this benchmark is due to our modifications of the VM. Using the same
method, we can draw the analogous conclusion for all other benchmarks.
This result is not surprising as those runtimes are clearly distinct from the
reference runtimes.

In the case of recording switched on, particularly noticeable are the
big differences between the overheads of the first three low-level bench-
marks compared to the other higher-level benchmarks. The overheads of
the medium-level STones80 benchmark (factor 6.43) and the Squeak macro
benchmark (factor 6.91) are more than three times as big as the overheads
of the low-level benchmarks. One reason for this is that those benchmarks
spend a significant percentage of their runtime in the garbage collector
(46.0% and 60.7%). The high pressure on the garbage collector cannot be
explained entirely by the higher rate by which alias and method invocation
objects are created (31 million aliases/s for medium-level STones80 and 2.5
million for the macro benchmark). For instance, the low-level STones80
benchmark produces 30.7 million aliases/s but incurs a relatively low over-
head. Rather, it is likely that the high pressure is due to the different memory
usage characteristics, e.g., how fast aliases can be garbage collected.

Summary. These benchmarks suggest that a significant overhead incurs
because of the additional pressure on the garbage collector, which depends
on the characteristics of memory usage. (Memory usage characteristics are
further discussed in Section 7.4.2.) In turn, instantiating and initializing
aliases seems to contribute not as much as the garbage collector to the
overhead.

Without much optimization effort the overhead of our implementation
when recording is switched off is just 15%. This suggests that with more
aggressive performance optimizations (such as using different sets of byte-
code routines when tracing is disabled) a virtual machine enhancement for
capturing execution history could potentially be incorporated into a stan-
dard distribution. This would allow users to switch recording on and off
as required without needing to recompile code and restart the application
with a different virtual machine.

7.4.2 Memory Usage

To further evaluate the practicality of our approach, we also investigated the
characteristics of larger applications with respect to the amount of memory
consumed. Of particular interest is whether the retained historical data
increases steadily over time, or whether the amount of data is bounded by
an upper value.

We expected this characteristic to depend on the type of application.
For example, in applications with persistent objects that undergo many

126 Practical Back-in-Time Debugging

state changes, this is obviously not possible as all previous object states are
retained until the objects themselves are garbage collected. In contrast, in
applications where objects are used only temporarily it is possible that long
running programs can be recorded without running out of memory.

To study different types of memory usages we chose the following three
programs:

• A program that allocates a large number of temporary objects that get garbage
collected after some time. We selected the Squeak bytecode compiler
which we ran on 1000 classes. We expected that the history of objects
generated to represent tokens, AST nodes and intermediate represen-
tation objects can be garbage collected after the bytecode of a class has
been successfully emitted.

• A program with a stable number of objects that undergo a large number of
state changes. We selected a gas tank simulator shipped as a Squeak
demo. Each molecule in the tank is represented by an object and on
each GUI update the position of the molecules, their velocities and
directions are recalculated and changed. Since all previous positions
of the molecules are remembered, we expected a lower effect of the
garbage collector in comparison to the bytecode compiler.

• A program with an existing object graph that is heavily accessed and modified.
We chose a commercial web content management system (CMS). The
history of modifications of the object model and the behavior leading
to it cannot be discarded after some time because the object model of
the CMS is completely kept in memory.

Bytecode Compiler

Figure 7.8 shows virtual machine statistics taken from sampling the exe-
cution of the Squeak bytecode compiler. We compiled 1000 classes from
the Squeak Smalltalk system which took 652 seconds when recording was
turned on (compared to 168s when recording was disabled). In total the
execution produced more than 2 billion aliases (solid line in Figure 7.8)
and 443 million method invocations (not shown). On average, 3 million
aliases are created per second. The actual number of aliases in memory was
relatively low at an average of 2.9 million (notice the different scales of the
left and right Y-axes). The maximum amount of memory allocated by the
virtual machine was 317MB.

The temporal development of the number of regular objects (excluding
alias objects) is similar to one of the number of aliases. The recurring pattern
of growth and decline is caused by incremental and full garbage collect
cycles.

Performance Evaluation 127

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 0 200 400 600 800 1000
 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

#classes

Number of aliases allocated (left Y-axis)
Number of aliases in memory (right Y-axis)
Number of objects in memory (right Y-axis)

Figure 7.8: Compiling 1000 classes (X-axis) produces more than 2 billion
aliases, however, the number of aliases in memory stays below 6 million.
Please note that because of the large differences between the number of
allocated aliases (solid line) and the aliases and objects in memory (dashed
and dotted lines), we use two scales: one for the solid line to the left and
one for the dashed and dotted lines to the right.

The analysis of this application showed the expected behavior. The
historical data kept in memory does not grow without limit because the
compiling history of a class is discarded after the bytecode has been gener-
ated and emitted.

Gas tank simulation

Figure 7.9 shows the analysis of the following usage scenario of the gas tank
simulation. First we started one instance of the simulator and paused it
after the sample step #5. Then we started a second simulator with twice
the number of molecules. The higher rate of aliases allocated from this time
on is reflected in Figure 7.9. At step #10 we quit the second simulator and
resumed the first one.

Quitting the second simulator has a big effect on the number of aliases
retained in memory (see decline between steps #10 and #11). Since the
objects of the second simulator are not accessible anymore, the remaining

128 Practical Back-in-Time Debugging

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 2 4 6 8 10 12 14 16 18
 0

 10

 20

 30

 40

 50

%

#samples

Number of aliases allocated
Number of aliases in memory
Number of objects in memory

Ratio between aliases in
 memory and allocated

#samples

Figure 7.9: Analysis of a gas tank simulator shows that 22% of the aliases
allocated are retained in memory (19 samples with an interval of 3s each).

execution history is garbage collected. The same happens after quitting the
simulator at the end of the analysis, where the number of aliases in memory
drops to zero.

A striking difference to the case of the bytecode compiler is that the
number of aliases in memory grows with respect to the number of aliases
allocated over time. As Figure 7.9 shows, the ratio is constantly 22% in
the first half of the analysis up until the event where the second simulator
instance was quit. This means, that for this application 78% of the aliases
are garbage collected but the rest adds up in memory and eventually the
virtual machine will run out of memory for long runs.

The execution history retained by our approach allows one to revert the
state of objects that are currently accessible (or that are accessible through
a past field reference of an accessible object). In case of the simulator this
means that we can move back in time as long as the simulator user interface
has not been closed. For instance we can set the point of view of its GUI
process to a past point in time. This has the effect that the molecules are
displayed where they were positioned at that time, and that also all settings
of the simulator are reverted to their previous states. To find out how a
position was calculated, we can follow back the flow of the corresponding
point object to where it was allocated.

Performance Evaluation 129

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 5 10 15 20 25
#requests

Number of aliases allocated
Number of aliases in memory
Number of objects in memory

Figure 7.10: Analysis of a user session in a Content Management System.
After 26 requests, 24% of the allocated aliases are still in memory.

Content Management System

Figure 7.10 illustrates an analysis of a user session in Cmsbox2, a commercial
web content management system. The session consists of 26 user actions
such as login, editing content, drag and drop, copy and paste elements,
publish page, etc.

We chose Cmsbox as a case study, because it stores all objects in memory
rather than in a database, which makes it a worst case scenario for our
approach. Indeed, as the figure shows, the aliases do increase steadily over
time, the main reason being that more objects are added and retained in the
model and in memory.

This experiment shows the limits of our approach. However, as de-
scribed in Section 7.5.1 we can limit the effect of this phenomenon through
selective recording of aliases.

2http://www.cmsbox.com/

http://www.cmsbox.com/

130 Practical Back-in-Time Debugging

7.5 Discussion

Memory consumption and performance can be further tuned by adjusting
the level of detail of information gathered. We now look at several ways
this can be done, and we discuss difficulties, limitations and potential
optimizations of our implementation.

7.5.1 Capturing and Remembering Less Data

Depending on the usage of the back-in-time debugger, for instance in a
testing or production environment, it can be necessary to further decrease
memory consumption and lower the execution overhead. A common solu-
tion to reduce the amount of data recorded is to not instrument all code, for
instance by excluding libraries and framework code. The effect is that in the
code that is out of scope, no side effects are captured and the links of objects
being passed through this code are lost.

We experimented with an alternative approach that is not based on
structural scoping but on tuning how fast recorded data is discarded. In
particular, in our implementation the user can change the behavior of the
virtual machine by (a) disabling tracking of predecessor aliases, (b) disabling
tacking of origin aliases, and (c) selecting which types of aliases are created.
By default, all predecessor and origin aliases and all types of aliases are
recorded.

For example by not tracking predecessors, we can reduce the consumed
memory but still benefit from being able to inspect object flows. By means
of such configurations we can provide the same functionality as the follow-
ing two debugger extensions that have been proposed recently. They are
specialized to a particular debugging task and hence only need to track a
fraction of the whole execution history.

Reverse watchpoint, an approach proposed by Maruyama et al., analyses
the execution and moves the debugger to the last write access of a selected
variable by re-executing the program from the beginning [MARU 03]. This
technique automates the task of finding where a variable was erroneously
written and then moves the debugger to that point. With our approach,
finding where a variable was written means to move one step back in the
object flow from a field read alias to its origin, which is the field write alias.
If we want to gather exactly this information, we can disable predecessors,
and restrict the recording to create only field write and array write aliases.
The effect is that for each field the most recent write alias is available with
the execution stack in which it was created. When writing to a field, the
previous write alias of the field or array can be discarded immediately
because it is not referenced as a predecessor or origin alias.

Discussion 131

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 5 10 15 20 25
#requests

Number of aliases in memory (complete recording)
Number of field/array write aliases in memory

 (without predecessors and origins)

Figure 7.11: Comparison of the number of aliases retained in memory with
the default configuration compared to the configuration where only the last
write alias of each field and array slot is remembered (same run of the CMS
as in Figure 7.10).

Our benchmarks show that with this minimal configuration, we achieve
a very low execution overhead that is only insignificantly higher than the
base slowdown of 15%, which the virtual machine incurs when recording
is turned off completely. In comparison, Maruyama report a slowdown
of their technique of about 400% [MARU 03]. Figure 7.11 shows that with
this reduced configuration only a fraction of the aliases are remembered,
compared to the aliases remembered using the standard configuration as
illustrated in Figure 7.10.

Origin tracking of null values, proposed by Bond et al., is a very efficient
technique to track the method in which an undefined values originates
to support debugging the well-known problem of null pointer exceptions
[BOND 07]. We can do the same by only tracking aliases of type undefined,
which again incurs a similar overhead to the configuration discussed above.
In comparison, the approach of Bond et al. adds an overhead of only 4%. The
low overhead is made possible by only tracking undefined values, which
allows for “value piggybacking”, a technique to store origin information
directly in pointers (in this case in null pointers).

132 Practical Back-in-Time Debugging

7.5.2 Remembering Control Flow Dependencies

With the default configuration our approach retains information about the
flow of objects and previous states of objects. In contrast, conventional back-
in-time debuggers typically record and store the complete execution history
(until they run out of memory). While our approach records the same data,
it discards most of it within a very short time and only remembers what is
relevant for the object flow and historical states of objects that are accessible
at the current point of execution. To provide enough context, with each alias,
the method invocation where it is used is retained, including the execution
stack with all target objects and objects passed as parameters.

Still, depending on the kind of bug, it is possible that relevant informa-
tion is missing. In particular, no links between aliases exist to represent the
fact that the value of a variable influences the value of another variable. For
example, in the statement “if x.f then y.f = 1” there is no dependency link be-
tween the field read alias x.f and the field write alias y.f. In case the value of
y.f turns out to be incorrect because of the unexpected execution of a branch,
it is possible that x.f has already been discarded. However, this does not
happen if x is the target object of the method or one of its parameters. In this
case it is referenced from the method invocation which in turn is referenced
as the context of the field write alias stored in y.f. (How exactly aliases and
method invocations refer to each other is illustrated in Figure 7.2.)

We decided not to explicitly capture such control flow dependencies
because we believe that the most difficult bugs in object-oriented programs
are caused by subtle inconsistencies in object graphs and by the propagation
of unexpected object references. However, it would be possible to extend our
approach to also include dependency relationships between aliases. Each
alias would need to maintain a list of other aliases it depends on, similar to
the predecessor and origin relationships. The dependence information could
be computed by an intra-procedural static analysis. An inter-procedural
analysis would not be necessary since this dependency is indirectly captured
by the link of an alias to the target of the invocation in which it is created
(alias→ context→ target).

7.5.3 Limitations and Potential Optimizations

Not freed memory. Using our back-in-time debugger we noticed a couple
of times that parts of the history were unexpectedly not garbage collected.
The reason turned out to be that the program execution in those cases
produced subtle side effects on global state. The effect is that the part of the
execution history that produced the side effect is not garbage collected as
long as the global state that was modified exists. We observed three cases of
this problem: singletons, caches and writing to a log console (strings passed

Related Work in Back-In-Time Debugging 133

from the application are stored in the console stream and hence retain links
to the execution history where they originate). While in some cases this
can be the desired behavior (in case of the cache or singleton), it may be
undesired in other cases (the console). To remedy the undesired cases we
can simply disable recording of the appropriate methods or classes. The
real difficulty, however, is to first find the cause of such a problem. What is
missing are high-level views to inspect and navigate the recorded data.

Capturing non-word size data. A limitation of our implementation is that
the history of values stored as non-word data are not captured. For instance,
in a byte array where four bytes are stored per word, we cannot use the
approach of exchanging a value with an alias indirection because the alias
pointer requires 4 bytes. Typically this is not problematic since Squeak uses
non-word fields in most cases to represent internal data of objects only, such
as float objects, large integer objects, or strings.

Potential optimizations of our implementation. As our benchmarks
show, the slowdown is mainly caused by the additional garbage collec-
tor activity. An optimization of the garbage collector to better cope with
the special characteristics of our virtual machine would improve the perfor-
mance but is not straightforward to realize.

A different optimization that would also improve the performance of the
virtual machine when tracing is turned off is to use different sets of bytecode
routines. The current implementation uses conditionals in bytecode routines
and primitives to execute code depending on the tracing state of the current
thread. Implementing two sets of bytecode routines would allow the virtual
machine to switch jump tables when recording is toggled.

The memory consumption of our implementation could be slightly op-
timized by distinguishing between field/array write aliases and the other
types of aliases. Field write and array write aliases require the predecessor
field to hold onto historical state, whereas the other aliases do not need this
field. Using two different classes of aliases would be simple to implement
and would save one word per non-historical alias instance.

7.6 Related Work in Back-In-Time Debugging

Logging-based approaches. The most common approach to implement-
ing back-in-time debuggers has been to create a trace log of the program
execution. ZStep95 is a reversible debugger for Lisp that provides animated
views but does not address performance and scalability issues [LIEB 98].
Lewis proposed ODB [LEWI 03], a back-in-time debugger for Java, and

134 Practical Back-in-Time Debugging

Hofer proposed Unstuck [HOFE 06], a similar proof of concept implemen-
tation for Squeak Smalltalk. Both approaches have in common that they
keep the log history in memory and hence can only record and store the
complete history for a short period of time. ODB allows one to set a fixed
limit on the number of events and it then discards older events when the
limit is reached.

A more scalable approach has recently been proposed by Pothier et al.
[POTH 07]. Their back-in-time debugger, TOD, addresses the space problem
by storing execution events in a distributed database. While this approach
has the benefit that no data is lost, its drawback is that it requires extensive
hardware power, which is not available for many developers today. To cope
with the data generated by a CPU-intensive program, 10 database nodes in a
server cluster are required. Also, the approach has a performance overhead
of a factor 113 in the worst case, which is approximately the same as the one
of ODB for the same benchmark [POTH 07].

In comparison, the performance of our approach is about one order
of magnitude better. On the one hand, this is because our approach is
implemented at the virtual machine level, whereas all previously mentioned
approaches are based on bytecode instrumentation. On the other hand, as
our approach stores historical data directly in the application memory, it
does not require any additional logging facility to gather and store data. As
a side effect, our representation of historical information is also very space
efficient. For example, there is no need to assign identifiers to objects or to
serialize objects since they exist in memory and can be referred to directly
by pointers.

Outside of research, back-in-time debuggers have unfortunately not been
widely adopted yet. An example of a commercial back-in-time debugger
is Omnicore’s CodeGuide3. It is also based on bytecode instrumentation
and its execution history, which is kept in memory, is limited to the few last
thousand events. An interesting aspect of CodeGuide is that only methods
containing breakpoints and methods close to them in the control flow are
instrumented to keep the runtime overhead low.

Related to logging-based back-in-time debugging is query-based debug-
ging. In those approaches the user formulates a query in a higher-level lan-
guage that is then applied to the logged data [MART 05, LENC 97, POTA 04,
DUCA 06]. Queries can test complex object interrelationships and sequences
of related events. Approaches exist that execute the query at runtime, which
can improve performance because no history has to be stored [LENC 99].
Our approach, like other back-in-time debugging approaches, does not
support querying for complex relationships in the history, but in return it
incurs a much smaller execution overhead.

3http://www.omnicore.com/

http://www.omnicore.com/

Summary of the Chapter 135

Replay-based approaches. A different approach for implementing back-
in-time debuggers is to replay the debugged program until a desired point
in the past. To optimize the time required to reach a given point in the past,
many approaches take periodic state snapshots, for instance Bdb [FELD 88]
and Igor [BOOT 00]. The main advantage of replay-based approaches over
logging-based approaches is their low performance overhead (roughly 2
times for Bdb and 4 times for Igor). The disadvantage of those kinds of
approaches is that moving backwards in time can be very slow because the
program has to be partly re-executed. This issue has been addressed in a
recent publication by Xu et al. [XU 07b]. Our approach can access past object
state almost instantly because it only needs to look up the appropriate alias
in the predecessors chain (as described in Section 7.2.3). An open issue of
replay-based approaches is that of deterministic replay, which cannot be
guaranteed by all approaches if the program depends on external resources
or if it is multithreaded.

The approach of taking (incremental) memory snapshots and replaying
has also been used in the Leonardo virtual machine [DEME 04], a virtual
machine based approach for assembly-like languages that features reversing
program state. Similar to our approach, programs slow down by a factor
of 6 in the worst case. However, the Leonardo virtual machine does not
support inspecting object flows and it does not provide a strategy to discard
data.

7.7 Summary of the Chapter

In this chapter we tackle the problem of how to make back-in-time de-
bugging practical by (1) keeping memory consumption within reasonable
bounds by only keeping track of still-relevant past data, and (2) reducing the
runtime overhead by implementing recording at the virtual machine level.
Our approach does not store all data, but instead it focuses on remembering
the history of the objects that are still referenced in the current program
state. Our solution makes use of the garbage collector to release the objects
that are not referenced anymore in the program and that are not relevant
anymore in the program’s history.

Benchmarks have shown significant improvements over existing ap-
proaches. First, the memory consumption is confined to an upper bound
limit in the best case, or grows slowly in the worst case. However, for
the worst case scenario, we can configure the recording to capture and
remember less data, which can lead to a dramatic decrease in memory con-
sumption (e.g., 55 times fewer aliases when just remembering the last field
write alias). Second, performance is in the worst case 7 times slower than a
regular execution. Furthermore, the modified virtual machine with tracing

136 Practical Back-in-Time Debugging

switched off introduces only modest overhead (e.g., in our benchmarks, it
introduces an average of 15%) as compared with a regular one.

This chapter demonstrates that the conceptual model of program ex-
ecution history offered by Object Flow Analysis is also valuable outside
reverse engineering. Object Flow Analysis provides a consistent model
that unifies the dimensions of reference transfer and reference structure,
which are critical to debug an object-oriented program. This model is simple
in its structure as its core can be represented by only one class and three
associations (origin, predecessor, and context). Therefore, at the level of the
virtual machine design, our approach requires no fundamental changes;
especially no changes to complex components like the garbage collector are
required.

Chapter 8

Conclusions

You cannot understand a cell, a rat, a brain structure, a family,
a culture if you isolate it from its context. Relationship is everything.

— Jonas Salk

We set out to analyze dependencies introduced by aliasing in object-
oriented systems, and we identified the gap in dynamic analysis of tracking
the transfer of object references. Our approach, Object Flow Analysis, pro-
poses a simple concept for modeling object flow: each object reference
established at runtime is represented by a first-class entity, and the transfer
of object references is captured by the relationship between the instances
of this entity. Building on our metamodel, we have presented a conceptual
framework that provides a basic structure to reason about dependencies.
We have demonstrated how to instantiate this framework for three reverse
engineering analyses that take different perspectives on the problem of
object aliasing.

The Object Flow Analysis metamodel integrates with existing dynamic
analysis models. In addition to the dimension of object reference transfer,
also object reference structure is directly represented in our model, which
provides a means for reconstructing arbitrary intermediate object graphs of
a program execution. Furthermore, the exact location of object references in
the dynamic control flow is captured, which is useful, for example to relate
object flow to features and classes.

138 Conclusions

8.1 Contributions

By proposing a foundation for the analysis of object aliasing, Object Flow
Analysis contributes to knowledge in the field. Object Flow Analysis ex-
tends the previous work by filling the gap of reference transfer analysis
and by unifying this new analysis with the existing dynamic data and
dynamic control flow analyses. Object Flow Analysis covers the missing
aspects of aliasing to bring dynamic analysis in line with the object-oriented
programming paradigm.

These findings have implications for the research in this field. As our
proposed analyses have demonstrated, by explicitly representing object
references, Object Flow Analysis provides a level of detail that opens new
possibilities to analyze object-oriented program behavior.

As a validation of our approach, we have focused on reasoning about the
dependencies introduced by object aliasing. We have provided anecdotal
evidence of the usefulness of this analysis by proposing three applications
based on it, and we have demonstrated that the applications can be concisely
expressed with Object Flow Analysis. In summary, the contributions of these
analyses are the following.

• The visualization of object flow provides a new perspective on the design
of a system by investigating how objects flow between classes at
runtime. This novel view is complementary to existing approaches
that focus on the perspective of message passing (e.g., using UML
sequence diagrams). Our approach exposes indirect dependencies
and provides insights into the conceptual flow of information in a
system, which is not visible from a message passing point of view.

• The analysis of runtime feature dependencies provides a definition and
detection strategy that takes object aliasing into account and hence is
more precise than earlier approaches. The additional dependencies
that we uncover are precisely the indirect feature dependencies that
can be problematic during maintenance.

• The Test Blueprint, which is based on an analysis of object flow in
execution traces, guides the developer when writing unit tests for
legacy software. Our approach addresses the problem of writing
unit tests for an unknown system, which is difficult because of the
gap between the static structure and actual runtime behavior of an
object-oriented program.

Compared to existing dynamic analysis techniques, Object Flow Analy-
sis requires a more challenging runtime analysis because it depends on not
directly observable data, like the origin of object references. To this end, we
provide a formal specification for tracking object flow in a running program.

Future work 139

Moreover, we have demonstrated that Object Flow Analysis extends
beyond the traditional application in reverse engineering. By leveraging
object references to first-class objects in virtual machines, we propose an
approach that features significant improvements on the memory explosion
and performance problems of back-in-time debugging. The evaluation of
this virtual machine implementation shows that the tracking and representa-
tion of object references as proposed by Object Flow Analysis is an effective
way to capture program execution history.

8.2 Future work

Detecting dependencies between other program abstractions. The three
presented analyses are based on detecting dependencies between
classes and packages, features, and parts of the control flow. Object
Flow Analysis could be applied to detect dependencies between other
abstractions, for example between objects to detect data sharing and
reference transfer. Similar, Object Flow Analysis could help to ana-
lyze concurrent programs by detecting how objects are shared and
transferred between different threads at runtime. A critical situation
to detect is the aliasing of an object by two threads that concurrently
modify its state.

Combining reference transfer and reference structure analysis. Our
visualization of object flow between classes and packages provides
a high-level view of the application. The presented analysis treats
all objects equal. Therefore, a better result could be obtained if
we manage to distinguish different kinds of objects based on how
objects are passed around. For example, one could distinguish objects
that stay in a stable relationship to each other from objects that are
passed around between these objects. Essentially, this would mean to
combine the knowledge about reference transfer with the knowledge
about reference structure. So far, our reverse engineering analyses
have only exploited object reference transfer.

Simulation of garbage collection. In our current metamodel, one cannot
directly find out when an object was garbage collected. Some ap-
proaches capture this data at runtime, but with our analysis technique,
this is not possible because the introduction of aliases delays the
garbage collection of objects. However, a possible solution is to sim-
ulate garbage collection on the model post mortem. This would not
be very difficult, even for arbitrary points in the program execution,
because all relevant data, like the history of fields and the execution

140 Conclusions

stack with target and parameters, are available. The only additional
data to capture is the set of objects that the garbage collector considers
to be the roots of the object graph.

Control flow dependencies. The Object Flow Analysis metamodel does
not capture control flow dependencies between object references. Let
us consider the statement: if x.f then y.f = 1. In this statement the write
alias of y.f depends on the read alias of x.f. These two aliases are
not directly related in our metamodel and hence, in our back-in-time
debugger, it is possible that the boolean obtained from reading the
field x.f is discarded even though the read alias y.f is still relevant.
Such a relationship between aliases could be captured and represented
similar to the origin and predecessor relationships. Concerning our
back-in-time debugging approach, it would be interesting to evaluate
how this additional association influences its memory characteristics.

Varying the level of detail of the recorded execution history. To further
reduce the memory usage and execution overhead of the back-in-
time debugger, we can provide more control for adjusting the level of
detail depending on the static structure. For instance, we can gather
more data in code that is young and hence is more likely to have de-
fects. Also an interesting extension would be to let the virtual machine
autonomously decide what data to record. For example, it could in-
crease the recording detail when an error is detected for the followup
runs of the same or of related code, or it could decrease the recording
detail when memory gets low.

Towards self-analyzing systems. A software system should constantly an-
alyze itself to monitor emergent properties, such as performance
degradation, memory leaks, and shifts in how the system is used.
By enabling dynamic analysis on live systems, innovative debugging
and analysis techniques come within reach. Our back-in-time debug-
ging approach is a step in this direction. For live systems, however, the
performance overhead would still need to be significantly decreased.
Our vision is that future virtual machines, which are becoming the
new platforms for programming languages, will not only provide an
automatic memory management but also capabilities to record and
reason about its runtime behavior.

Appendix A

The Object Flow Debugger

A.1 Introduction

This appendix gives instructions to install and use the object-flow-aware
back-in-time debugging system. This system consists of the Object Flow
VM, which is an extended Squeak virtual machine and of support code that
provides the functionality to introspect execution history from the debugger
frontend. A rich user interface to navigate the execution history is provided
by the Compass debugger [FIER 09].

A.2 Installation

A.2.1 Downloading the Compiled VM and Demo Image

The easiest way to obtain a ready-to-run version is to download the virtual
machine and demo image from the following website:

http://scg.iam.unibe.ch/Research/ObjectFlow/

The download is a zip archive that contains the compiled VM for the
appropriate platform (currently available are VMs for Mac OS X Intel and
Ubuntu Linux) and a prepared image. At the time of this writing the
provided pre-compiled VMs have been tested on Mac OS X 10.5.5 for the
Intel processor, and Ubuntu 8.04 (Hardy Heron).

http://scg.iam.unibe.ch/Research/ObjectFlow/

142 The Object Flow Debugger

A.2.2 Preparing your Image

For demonstration purpose, the provided image is sufficient, but if you like
to use the debugger for one of your applications, the following installation
is required. The Object Flow Debugger requires support code in the image
(for example, the definition of the class Alias and the extension of the class
Process). To make your own image ready to be run on the Object Flow VM
do the following:

1. After backing up your image, start it up using a standard Squeak VM.

2. In the Monticello browser add the following SqueakSource repository
(click the button +Repository and select HTTP as the repository type).

MCHttpRepository
location: 'http://www.squeaksource.com/FlyingObjects'
user: ''
password: ''

Open the newly created repository and load the latest version of the
package FlyingObjects. While loading, the system twice warns the
used because the class Process is modified (“Process should not be
redefined.”). Confirm the changes by clicking the button Proceed. After
the package is loaded, save and quit the image.

3. Now start the saved image using the Object Flow VM. For example
using the VM for Mac OS X, you can do so by navigating to the
downloaded directory and then execute ./vm/squeak --quartz /pathTo/
yourImage.image.

4. Load the package FlyingObjectsUI from the same repository as in step 2.
Save your image to be able to go back to this version whenever needed.

5. To test your installation, run the unit tests in the package FlyingObjects
--Tests (in the world menu click Test Runner and in the Test Runner’s
package list select FlyingObjects-Tests). All tests are expected to pass.

A.2.3 Installing the Compass Debugging Frontend

If you have correctly installed the Object Flow VM along with its support
packages as explained in the previous section, you should now be able to
install Compass using the following procedure.

1. Install GraphViz on your system if it is not already installed (Compass
uses GraphViz as a graph layouting engine). You can get it from
http://www.graphviz.org/.

http://www.graphviz.org/

Debugging with Compass 143

2. Add the following SqueakSource repository to the Monticello browser.

MCHttpRepository
location: 'http://www.squeaksource.com/OmniCompass'
user: ''
password: ''

3. From this repository load the package named CompassInstaller.

4. Execute the following script, which loads all required packages.

CompassInstaller bootstrap

A.3 Debugging with Compass

This section provides a quick guide to get started with Compass.

A.3.1 Starting the Debugger

There exist two ways of recording a program execution and starting the
debugger.

The first way of recording data is to use the flyDuring: method imple-
mented in the class Object. For instance, to trace the bank account example,
execute the following code:

self flyDuring: [BAAccount example]

The execution of the block is recorded. Now the Compass debugging
interface can be started by executing

CompassDebugger start

The debugger will then show the recorded data. When closing the debugger,
the traced data gets deleted. If an error occurs while tracing the code, as
usual a small debugger window appears. In addition to the default buttons
the new button labelled ‘Compass’ opens the Compass debugger at the
location where the error occurred.

The second way to debug is to use unit tests. We extended SUnit to
re-run a failed test and record its execution before the failure is shown in
the debugger. By re-running a test, as usual the small debugger window
pops up, and as discussed above the Compass debugger can be started by
clicking the ‘Compass’ button.

144 The Object Flow Debugger

A.3.2 Using the Debugger

Figure A.1 illustrates the Compass debugger user interface. This section
gives an overview of the different views and actions provided by Compass.

1 8

2

4

6

5

3

7

9

Figure A.1: Compass debugger frontend.

1. Execution trace. This view shows the execution trace as a tree in which
nodes represent executed methods and block closures. Lines represent the
caller relationship from top to bottom right. Nodes are ordered from left
to right by the start timestamp of their execution and from top to bottom
by their depth on the call stack. The trace can be navigated by clicking on
the circles. The thick green arrows represent the flow of the object that was
selected in one of the other views (see below).

2. Execution stack. This view shows the execution stack as it existed at
the time when the selected method execution was started.

3. Object flow. This panel shows the flow of a selected object. The list
contains the transfers of a reference of this object (e.g., argument, return,
field write, field read, etc.). This allows one to backtrack the flow of the
object to find out how the object was passed into this method. The flow
given by this list is the same as the one shown graphically in the execution
trace (1). By selecting a reference transfer from the list, the focus of the
debugger changes to the method execution in which this transfer took place.

Debugging with Compass 145

4. Source code. This is the source code of the method of the selected
method execution.

5. Executed program statements. This list shows the reference transfers
(aliases) and method sends that occurred during the execution of the selected
method or block execution. When an item is selected the corresponding
source code statement in the source code pane (4) is highlighted. Addition-
ally, important actions can be executed from the context menu (right-click
on an item). The available actions depend on whether an alias or a message
send is selected. The most important action is to show the flow of an object.
When choosing this action, the flow is shown in the previously described
object flow pane (3) and it is drawn in the execution trace (1). You can also
choose to explore the forward flow, which brings up a window that shows a
tree of how the object was transferred starting at the current selection.

6. Variables. These four panes are the same as in the original debugger.
They allow one to inspect the fields of the receiver and of local variables
of the selected execution context with respect to the point in time of the
current focus. By right-clicking on a variable, similar actions can triggered
as in pane (5), e.g., selecting an object to highlight its object flow.

7. Dependencies. This list shows the control flow dependencies of the cur-
rently selected method execution (that is, the list of control flow statements
present in the current call stack on which the selected method execution
depends). By clicking on a dependency, the debugger jumps directly to the
method execution and selects the control flow statement in the source code
pane (4).

8. Side effects graph. The side effects graph summarizes the side effects
that the execution of the currently selected method and all transitively called
methods produced. A red arrow between two objects indicates a field or
array slot update. The red arrow points from the updated object to the newly
assigned object. To support the understanding of this graph, the following
additional information is provided to show the connection between the
different objects in the graph. A black arrow indicates the previous value
of a modified field and a green arrow indicates a field or array read event
(dereference). By right-clicking on an object, a menu with a list of the new
field values comes up. By selecting a value, the debugger jumps to the
location where the object was written into the field.

9. Navigation history. Like in a web browser, the navigation history can
be used to go step by step back- and forward. In our case, the steps are the

146 The Object Flow Debugger

context switches (changes of focus in the Compass user interface). If the
context is changed, by clicking on the back button you get to the previously
selected context. Also bookmarking is supported to be able to quickly jump
to bookmarked locations in the execution history.

A.4 Miscellaneous

A.4.1 Using Alternative Tracing Policies

The Object Flow VM supports tracing policies, which define what data to
recorded. This allows one to control the amount of data gathered to reduce
memory consumption and execution overhead. As an example we have
predefined the policy reverse watchpoint, which simulates an approach with
the same name [MARU 03] (see also discussion in Chapter 7). To use this
policy, execute the code to be analyzed as follows.

self
flyDuring: [...code to execute...]
with: TracingPolicy reverseWatchpoint.

This policy is very restrictive (and hence exhibits a low execution over-
head) as it only tracks field write aliases but it does not maintain the origin
and predecessor relationship. The field write aliases that are recorded and
that are still available at the point in time a program crashes reveal in which
execution context the current value of a field has been assigned.

Defining custom policies is straightforward. For an example, see the
method TracingPolicy>>reverseWatchpoint.

A.4.2 Obtaining Memory Usage Statistics

To obtain the default statistics provided by the VM about memory consump-
tion and GC activity, print:

SmalltalkImage current vmStatisticsReportString

In addition, with the support code of the OFVM a dedicated graphical
memory monitor is shipped, which shows the total number of aliases created
and the current number of aliases in memory. To open this monitor, execute:

GcGraphMorph new openInWorld

An example screenshot of the monitor is shown in Figure A.2. The
monitor shows the total number of aliases created and the current number

Miscellaneous 147

of aliases in memory and it illustrates the development of these numbers
over time using vertical lines. The orange vertical lines indicate the total
number of aliases created and the black vertical lines indicate the number of
aliases in memory. The blue vertical line shows the event of a full GC cycle.

Figure A.2: Memory monitor showing aliases created and currently in
memory.

A.4.3 Tuning Garbage Collector Parameters

The default parameters of the Squeak garbage collector are optimized for
small object memories. The following settings change these defaults to
decrease the performance overhead of the GC when lots of objects are
created and the required memory is large. Depending on the memory
characteristics of the application, other settings may yield better results. The
meaning of these parameters are documented in the method SmalltalkImage
>>vmParameterAt:.

Smalltalk setGCBiasToGrowGCLimit: 64*1024*1024.
Smalltalk setGCBiasToGrow: 1.
SmalltalkImage current vmParameterAt: 5 put: 10000.
SmalltalkImage current vmParameterAt: 6 put: 12000.
SmalltalkImage current vmParameterAt: 25 put: 4*1024*1024.
SmalltalkImage current vmParameterAt: 24 put: 4*1024*1024.

Bibliography

[AGAR 04] R. Agarwal and S. D. Stoller. Type Inference for Parameterized Race-
Free Java. In Proceedings of the 5th International Conference
on Verification, Model Checking, and Abstract Interpretation
(VMCAI’04), pp 149–160, 2004. (p 3)

[ALDR 02] J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotations
for Program Understanding. In Proceedings of the 17th ACM SIG-
PLAN conference on object-oriented programming, systems,
languages, and applications (OOPSLA’02), volume 37(11), pp
311–330, New York, NY, USA, November 2002. ACM. (p 3)

[ALPE 99] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo,
J. J. Barton, S. F. Hummel, J. C. Sheperd, and M. Mergen. Im-
plementing Jalapeño in Java. In Proceedings of the 14th ACM
SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications (OOPSLA’99), pp 314–324,
New York, NY, USA, 1999. ACM. (p 112)

[ANTO 05] G. Antoniol and Y.-G. Guéhéneuc. Feature Identification: a Novel
Approach and a Case Study. In Proceedings of the IEEE Inter-
national Conference on Software Maintenance (ICSM’05), pp
357–366, Los Alamitos CA, September 2005. IEEE Computer
Society Press. (pp 8, 86)

[ARTZ 07] S. Artzi, A. Kiezun, D. Glasser, and M. D. Ernst. Combined
static and dynamic mutability analysis. In Proceedings of the 22nd
IEEE/ACM international conference on automated software
engineering (ASE’07), pp 104–113, New York, NY, USA, 2007.
ACM. (p 18)

[BALL 99] T. Ball. The Concept of Dynamic Analysis. In Proceedings of
the European Software Engineering Conference and ACM SIG-
SOFT International Symposium on the Foundations of Software
Engineering (ESEC/FSC’99), number 1687 in LNCS, pp 216–
234, Heidelberg, sep 1999. Springer Verlag. (pp 1, 86)

150 Bibliography

[BALM 01] F. Balmas. Displaying dependence graphs: a hierarchical approach.
In Proceedings of the 8th Working Conference on Reverse Engi-
neering (WCRE’01), p 261, Los Alamitos, CA, USA, 2001. IEEE
Computer Society. (p 68)

[BANN 79] J. P. Banning. An efficient way to find the side effects of procedure
calls and the aliases of variables. In Proceedings of the 6th ACM
SIGACT-SIGPLAN symposium on principles of programming
languages (POPL’79), pp 29–41, New York, NY, USA, 1979.
ACM. (p 17)

[BECK 98] K. Beck and E. Gamma. Test Infected: Programmers Love Writing
Tests. Java Report, vol. 3, no. 7, pp 51–56, 1998. (pp 89, 90)

[BERT 07] A. Bertolino. Software Testing Research: Achievements, Challenges,
Dreams. In Proceedings of Future of Software Engineering
(FOSE’07) at 29th International Conference on Software Engi-
neering, pp 85–103, Washington, DC, USA, 2007. IEEE Com-
puter Society. (pp 89, 90)

[BOND 07] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and K. S.
McKinley. Tracking bad apples: reporting the origin of null and
undefined value errors. In Proceedings of the 22nd annual ACM
SIGPLAN conference on Object oriented programming systems
and applications (OOPSLA’07), pp 405–422, New York, NY,
USA, 2007. ACM. (p 131)

[BOOT 00] B. Boothe. Efficient algorithms for bidirectional debugging. In
Proceedings of the ACM SIGPLAN 2000 conference on Pro-
gramming language design and implementation (PLDI’00), pp
299–310, New York, NY, USA, 2000. ACM. (p 135)

[BOUJ 00] A. S. Boujarwah, K. Saleh, and J. Al-Dallal. Dynamic data flow
analysis for Java programs. Information & Software Technology,
vol. 42, no. 11, pp 765–775, 2000. (p 16)

[BOYA 02] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated test-
ing based on Java predicates. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA’02), pp
123–133, Roma, Italy, 2002. ACM. (p 107)

[BOYA 03] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for ob-
ject encapsulation. In Principles of Programming Languages
(POPL’03), pp 213–223. ACM Press, 2003. (p 3)

[BRAC 04] G. Bracha and D. Ungar. Mirrors: design principles for meta-level
facilities of object-oriented programming languages. In Proceedings

151

of the International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’04),
ACM SIGPLAN Notices, pp 331–344, New York, NY, USA, 2004.
ACM Press. (pp 113, 117)

[BRAN 98] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers to
the Rescue. In Proceedings European Conference on Object
Oriented Programming (ECOOP’98), volume 1445 of LNCS, pp
396–417. Springer-Verlag, 1998. (pp 18, 66)

[BRUN 02] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A Code Ma-
nipulation Tool to Implement Adaptable Systems. In Proceedings
of Adaptable and Extensible Component Systems, Grenoble,
France, November 2002. (p 18)

[CAIN 05] A. Cain. Dynamic data flow analysis for object oriented programs.
PhD thesis, Swinburne University of Technology, 2005. (p 16)

[CAME 07] N. R. Cameron, S. Drossopoulou, J. Noble, and M. J. Smith.
Multiple ownership. In Proceedings of the 22nd annual ACM
SIGPLAN conference on Object oriented programming systems
and applications (OOPSLA’07), pp 441–460, New York, NY,
USA, 2007. ACM. (p 31)

[CHEN 95] T. Y. Chen and C. K. Low. Dynamic Data Flow Analysis for C++.
In Proceedings of the Second Asia Pacific Software Engineering
Conference (APSEC’95), p 22, Washington, DC, USA, 1995. IEEE
Computer Society. (p 16)

[CHEV 78] R. J. Chevance and T. Heidet. Static profile and dynamic behavior
of COBOL programs. SIGPLAN Not., vol. 13, no. 4, pp 44–57,
1978. (p 5)

[CHIB 03] S. Chiba and M. Nishizawa. An Easy-to-Use Toolkit for Efficient
Java Bytecode Translators. In In Proceedings of the second Inter-
national Conference on Generative Programming and Compo-
nent Engineering (GPCE’03), volume 2830 of LNCS, pp 364–376,
2003. (p 18)

[CLAR 01] D. G. Clarke, J. Noble, and J. M. Potter. Simple Ownership Types
for Object Containment. In Proceedings of the 15th European Con-
ference on Object-Oriented Programming (ECOOP’91), LNCS,
pp 53–76, London, UK, June 2001. Springer Verlag. (p 3)

[CLAR 02] D. Clarke and S. Drossopoulou. Ownership, encapsulation and
the disjointness of type and effect. In Proceedings of the 17th
ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA’02), pp 292–310,
New York, NY, USA, 2002. ACM. (p 31)

152 Bibliography

[CLAR 07] D. Clarke, S. Drossopoulou, J. Noble, and T. Wrigstad, edi-
tors. 3rd International Workshop on Aliasing, Confinement
and Ownership in Object-Oriented Programming (IWACO’07).
Springer, July 2007.

[DAHM 99] M. Dahm. Byte Code Engineering. In Proceedings of Java-
Informations-Tage (JIT’99), pp 267–277, Düsseldorf, Deutsch-
land, sep 1999. (p 18)

[DE P 94] W. De Pauw, D. Kimelman, and J. Vlissides. Modeling Object-
Oriented Program Execution. In M. Tokoro and R. Pareschi,
editors, Proceedings of the European Conference on Object-
Oriented Programming (ECOOP’94), volume 821 of LNCS, pp
163–182, Bologna, Italy, July 1994. Springer-Verlag. (pp 5, 18,
19, 62)

[DE P 98] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Exe-
cution Patterns in Object-Oriented Visualization. In Proceedings
of Conference on Object-Oriented Technologies and Systems
(COOTS’98), pp 219–234. USENIX, 1998. (pp 18, 67, 100)

[DE P 99] W. De Pauw and G. Sevitsky. Visualizing Reference Patterns for
Solving Memory Leaks in Java. In R. Guerraoui, editor, Proceed-
ings of the European Conference on Object-Oriented Program-
ming (ECOOP’99), volume 1628 of LNCS, pp 116–134, Lisbon,
Portugal, June 1999. Springer-Verlag. (pp 14, 100)

[DE P 00] W. De Pauw and G. Sevitsky. Visualizing reference patterns for
solving memory leaks in Java. Concurrency: Practice and Experi-
ence, vol. 12, no. 14, pp 1431–1454, 2000. (pp 1, 3, 5, 14)

[DE P 02] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M. Vlissides,
and J. Yang. Visualizing the Execution of Java Programs. In Revised
Lectures on Software Visualization, International Seminar, pp
151–162, London, UK, 2002. Springer-Verlag. (pp 5, 14)

[DEME 02] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002. (pp 8, 89)

[DEME 04] C. Demetrescu and I. Finocchi. A portable virtual machine for
program debugging and directing. In Proceedings of the 2004
ACM symposium on Applied computing (SAC’04), pp 1524–
1530, New York, NY, USA, 2004. ACM. (p 135)

[DEMS 02] B. Demsky and M. Rinard. Role-based exploration of object-oriented
programs. In Proceedings of the 24th International Conference
on Software Engineering (ICSE’02), pp 313–324, New York, NY,
USA, 2002. ACM. (pp 5, 19)

153

[DENK 07] M. Denker, S. Ducasse, A. Lienhard, and P. Marschall. Sub-
Method Reflection. In Journal of Object Technology, Special Issue.
Proceedings of TOOLS Europe 2007, volume 6/9, pp 231–251.
ETH, October 2007. (p 18)

[DENK 08] M. Denker. Sub-method Structural and Behavioral Reflection. PhD
thesis, University of Bern, May 2008. (p 66)

[DIET 07] W. Dietl and P. Müller. Runtime Universe Type Inference. In
T. Wrigstad, editor, Proceedings of the International Workshop
on Aliasing, Confinement and Ownership in object-oriented
programming (IWACO’07), Berlin, Germany, July 2007. (pp 3,
15)

[DOLA 03] J. J. Dolado, M. Harman, M. C. Otero, and L. Hu. An Empirical
Investigation of the Influence of a Type of Side Effects on Program
Comprehension. IEEE Transactions on Software Engineering,
vol. 29, no. 7, pp 665–670, 2003. (p 3)

[DROS 08] S. Drossopoulou, A. Francalanza, P. Müller, and A. Summers.
A Unified Framework for Verification Techniques for Object Invari-
ants. In Proceedings of 22nd European Conference on Object-
Oriented Programming (ECOOP’08), Lecture Notes in Com-
puter Science, pp 412–437, July 2008. (p 31)

[DUCA 05] S. Ducasse, L. Renggli, and R. Wuyts. SmallWiki — A Meta-
Described Collaborative Content Management System. In Proceed-
ings ACM International Symposium on Wikis (WikiSym’05),
pp 75–82, New York, NY, USA, 2005. ACM Computer Society.
(p 83)

[DUCA 06] S. Ducasse, T. Gîrba, and R. Wuyts. Object-Oriented Legacy
System Trace-based Logic Testing. In Proceedings of 10th Euro-
pean Conference on Software Maintenance and Reengineer-
ing (CSMR’06), pp 35–44. IEEE Computer Society Press, 2006.
(pp 20, 87, 107, 134)

[EISE 03] T. Eisenbarth, R. Koschke, and D. Simon. Locating Features in
Source Code. IEEE Computer, vol. 29, no. 3, pp 210–224, March
2003. (pp 73, 86)

[EISE 05a] T. Eisenbarth, R. Koschke, and G. Vogel. Static object trace extrac-
tion for programs with pointers. Journal of Systems and Software,
vol. 77, no. 3, pp 263–284, 2005. (p 17)

[EISE 05b] A. Eisenberg and K. De Volder. Dynamic Feature Traces: Finding
Features in Unfamiliar code. In Proceedings IEEE International
Conference on Software Maintenance (ICSM 2004), pp 337–346,

154 Bibliography

Los Alamitos CA, September 2005. IEEE Computer Society
Press. (pp 72, 86)

[FACT 04] M. Factor, A. Schuster, and K. Shagin. Instrumentation of stan-
dard libraries in object-oriented languages: the twin class hierarchy
approach. In Proceedings of the 19th annual ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages,
and applications (OOPSLA ’04), pp 288–300, New York, NY,
USA, 2004. ACM. (p 66)

[FELD 88] S. I. Feldman and C. B. Brown. IGOR: a system for program de-
bugging via reversible execution. In Proceedings of the 1988 ACM
SIGPLAN and SIGOPS workshop on Parallel and distributed
debugging (PADD’88), pp 112–123, New York, NY, USA, 1988.
ACM. (p 135)

[FIER 09] J. Fierz. Compass – Navigation Support for Back-in-Time De-
bugging. Master’s thesis, University of Bern, 2009. To appear.
(p 141)

[FLAN 06] C. Flanagan and S. N. Freund. Dynamic Architecture Extraction.
In FATES/RV, volume 4262 of Lecture Notes in Computer Science,
pp 209–224. Springer, 2006. (pp 5, 14)

[FOWL 03] M. Fowler. UML Distilled. Addison Wesley, 2003. (pp 21, 51,
90, 95)

[GODE 05] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. In Proceedings of the 2005 ACM SIGPLAN
conference on programming language design and implementa-
tion (PLDI’05), pp 213–223, New York, NY, USA, 2005. ACM.
(p 107)

[GOLD 83] A. Goldberg and D. Robson. Smalltalk 80: the Language and its
Implementation. Addison Wesley, Reading, Mass., May 1983.
(pp 59, 65, 120)

[GOLD 05] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational Queries
over Program Traces. In Proceedings of Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’05), pp
385–402, New York, NY, USA, 2005. ACM Press. (pp 5, 19, 20,
87, 107)

[GREE 05] O. Greevy and S. Ducasse. Correlating Features and Code Using A
Compact Two-Sided Trace Analysis Approach. In Proceedings of
9th European Conference on Software Maintenance and Reengi-
neering (CSMR’05), pp 314–323, Los Alamitos CA, 2005. IEEE
Computer Society. (pp 18, 72, 86)

155

[GREE 07] O. Greevy. Enriching Reverse Engineering with Feature Analysis.
PhD thesis, University of Bern, May 2007. (p 75)

[GROT 01] C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating objects with
confined types. In Proceedings of the 16th ACM SIGPLAN con-
ference on Object oriented programming, systems, languages,
and applications (OOPSLA’01), pp 241–255, New York, NY,
USA, 2001. ACM Press. (p 3)

[GSCH 03] T. Gschwind and J. Oberleitner. Improving Dynamic Data Anal-
ysis with Aspect-Oriented Programming. In Proceedings of the
Seventh European Conference on Software Maintenance and
Reengineering (CSMR’03), p 259, Washington, DC, USA, 2003.
IEEE Computer Society. (pp 5, 18, 19)

[HAMO 04] A. Hamou-Lhadj and T. Lethbridge. A Survey of Trace Exploration
Tools and Techniques. In Proceedings IBM Centers for Advanced
Studies Conferences (CASON 2004), pp 42–55, Indianapolis IN,
2004. IBM Press. (pp 1, 8)

[HAMO 06] A. Hamou-Lhadj and T. Lethbridge. Summarizing the Content
of Large Traces to Facilitate the Understanding of the Behaviour of a
Software System. In Proceedings of International Conference on
Program Comprehension (ICPC’06), pp 181–190, Washington,
DC, USA, 2006. IEEE Computer Society. (p 18)

[HILL 00] T. Hill, J. Noble, and J. Potter. Scalable Visualisations with Owner-
ship Trees. In Proceedings 37th International Conference on Tech-
nology of Object-Oriented Languages and Systems (TOOLS’00),
pp 202–213, June 2000. (p 15)

[HILL 02] T. Hill, J. Noble, and J. Potter. Scalable Visualizations of Object-
Oriented Systems with Ownership Trees. Journal of Visual Lan-
guages and Computing, vol. 13, no. 3, pp 319–339, 2002. (pp 1,
2, 3, 5, 13, 15)

[HOFE 06] C. Hofer, M. Denker, and S. Ducasse. Design and Implementation
of a Backward-In-Time Debugger. In Proceedings of NODE’06, vol-
ume P-88 of Lecture Notes in Informatics, pp 17–32. Gesellschaft
für Informatik (GI), September 2006. (pp 20, 110, 134)

[HOGG 91] J. Hogg. Islands: Aliasing Protection in Object-Oriented Lan-
guages. In Proceedings of the International Conference on
Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA’91), ACM SIGPLAN Notices, volume 26,
pp 271–285, November 1991. (p 3)

156 Bibliography

[HOGG 92] J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt. The
Geneva convention on the treatment of object aliasing. SIGPLAN
OOPS Mess., vol. 3, no. 2, pp 11–16, 1992. (p 2)

[INGA 97] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back
to the Future: The Story of Squeak, a Practical Smalltalk Written in
Itself. In Proceedings of the 12th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and appli-
cations (OOPSLA’97), pp 318–326. ACM Press, November 1997.
(pp 59, 65, 112, 120)

[JERD 97] D. Jerding and S. Rugaber. Using Visualization for Architectural
Localization and Extraction. In I. Baxter, A. Quilici, and C. Verhoef,
editors, Proceedings of 4th Working Conference on Reverse En-
gineering (WCRE’97), pp 56–65. IEEE Computer Society Press,
1997. (p 67)

[KANJ 99] G. K. Kanji. 100 Statistical Tests. SAGE Publications, 1999.
(p 124)

[KLEY 88] M. F. Kleyn and P. C. Gingrich. GraphTrace — Understanding
Object-Oriented Systems using Concurrently Animated Views. In
Proceedings of International Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOP-
SLA’88), volume 23, pp 191–205. ACM Press, November 1988.
(p 18)

[KORE 97] B. Korel and J. Rilling. Dynamic Program Slicing in Understanding
of Program Execution. In 5th International Workshop on Program
Comprehension (WPC ’97), pp 80–85, 1997. (p 1)

[KORE 98] B. Korel and J. Rilling. Dynamic program slicing methods. Infor-
mation & Software Technology, vol. 40, no. 11-12, pp 647–659,
1998. (p 17)

[KOTH 06] J. Kothari, T. Denton, S. Mancoridis, and A. Shokoufandeh.
On Computing the Canonical Features of Software Systems. In
13th IEEE Working Conference on Reverse Engineering (WCRE
2006), October 2006. (pp 72, 86)

[KRIN 04] J. Krinke. Visualization of Program Dependence and Slices. In Pro-
ceedings of the 20th IEEE International Conference on Software
Maintenance (ICSM’04), pp 168–177, Los Alamitos, CA, USA,
2004. IEEE Computer Society. (p 68)

[LANG 95] D. Lange and Y. Nakamura. Interactive Visualization of Design
Patterns can help in Framework Understanding. In Proceedings

157

ACM International Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA’95), pp
342–357, New York NY, 1995. ACM Press. (p 67)

[LENC 97] R. Lencevicius, U. Hölzle, and A. K. Singh. Query-Based De-
bugging of Object-Oriented Programs. In Proceedings of the 12th
ACM SIGPLAN conference on Object-oriented programming
(OOPSLA’97), pp 304–317, New York, NY, USA, 1997. ACM.
(pp 20, 134)

[LENC 99] R. Lencevicius, U. Hölzle, and A. K. Singh. Dynamic Query-Based
Debugging. In R. Guerraoui, editor, Proceedings of European
Conference on Object-Oriented Programming (ECOOP’99), vol-
ume 1628 of LNCS, pp 135–160, Lisbon, Portugal, June 1999.
Springer-Verlag. (pp 20, 87, 107, 134)

[LETO 86] S. Letovsky and E. Soloway. Delocalized Plans and Program
Comprehension. IEEE Software, vol. 3, no. 3, pp 41–49, 1986.
(p 3)

[LEWI 03] B. Lewis. Debugging Backwards in Time. In Proceedings of
the Fifth International Workshop on Automated Debugging
(AADEBUG’03), October 2003. (pp 1, 20, 110, 133)

[LIBL 05] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation (PLDI’05), pp 15–26, New York, NY, USA, 2005.
ACM. (p 110)

[LIEB 98] H. Lieberman and C. Fry. ZStep 95: A reversible, animated source
code stepper. In J. Stasko, J. Domingue, M. H. Brown, and B. A.
Price, editors, Software Visualization — Programming as a
Multimedia Experience, pp 277–292, Cambridge, MA-London,
1998. The MIT Press. (p 133)

[LIEN 07] A. Lienhard, O. Greevy, and O. Nierstrasz. Tracking Objects to
detect Feature Dependencies. In Proceedings of International Con-
ference on Program Comprehension (ICPC’07), pp 59–68, Wash-
ington, DC, USA, June 2007. IEEE Computer Society. (p 8)

[LIEN 08a] A. Lienhard, T. Gîrba, O. Greevy, and O. Nierstrasz. Test
Blueprints – Exposing Side Effects in Execution Traces to Support
Writing Unit Tests. In Proceedings of the 12th European Confer-
ence on Software Maintenance and Reengineering (CSMR’08),
pp 83–92. IEEE Computer Society Press, 2008. (p 9)

158 Bibliography

[LIEN 08b] A. Lienhard, T. Gîrba, and O. Nierstrasz. Practical Object-
Oriented Back-in-Time Debugging. In Proceedings of the
22nd European Conference on Object-Oriented Programming
(ECOOP’08), volume 5142 of LNCS, pp 592–615. Springer, 2008.
ECOOP distinguished paper award. (p 9)

[LIEN 09] A. Lienhard, S. Ducasse, and T. Gîrba. Taking an Object-Centric
View on Dynamic Information with Object Flow Analysis. Journal
of Computer Languages, Systems and Structures, vol. 35, no. 1,
pp 63–79, 2009. (p 8)

[LISK 86] B. Liskov and J. Guttag. Abstraction and Specification in Pro-
gram Development. MIT Press/McGraw-Hill, Cambridge,
Mass., USA, 1986. (p 3)

[MART 05] M. Martin, B. Livshits, and M. S. Lam. Finding application er-
rors and security flaws using PQL: a program query language. In
Proceedings of Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’05), pp 363–385, New York,
NY, USA, 2005. ACM Press. (pp 20, 134)

[MARU 03] K. Maruyama and M. Terada. Debugging with Reverse Watchpoint.
In Proceedings of the Third International Conference on Quality
Software (QSIC’03), p 116, Washington, DC, USA, 2003. IEEE
Computer Society. (pp 110, 130, 131, 146)

[MEHT 02] A. Mehta and G. Heineman. Evolving legacy systems features
using regression test cases and components. In Proceedings ACM
International Workshop on Principles of Software Evolution,
pp 190–193, New York NY, 2002. ACM Press. (pp 4, 86)

[MEYE 06] M. Meyer, T. Gîrba, and M. Lungu. Mondrian: An Agile Visualiza-
tion Framework. In ACM Symposium on Software Visualization
(SoftVis’06), pp 135–144, New York, NY, USA, 2006. ACM Press.
(p 65)

[MITC 06] N. Mitchell. The Runtime Structure of Object Ownership. In Pro-
ceedings of the 20th European Conference on Object-Oriented
Programming (ECOOP’06), volume 4067 of Lecture Notes in
Computer Science, pp 74–98. Springer, 2006. (pp 3, 5, 15)

[NIER 05] O. Nierstrasz, S. Ducasse, and T. Gîrba. The Story of Moose:
an Agile Reengineering Environment. In Proceedings of the Eu-
ropean Software Engineering Conference (ESEC/FSE’05), pp
1–10, New York NY, 2005. ACM Press. Invited paper. (p 65)

159

[NOBL 98] J. Noble, J. Potter, and J. Vitek. Flexible alias protection. In E. Jul,
editor, Proceedings of the 12th European Conference on Object-
Oriented Programming (ECOOP’98), volume 1445 of LNCS, pp
158–185, Brussels, Belgium, July 1998. Springer-Verlag. (p 3)

[OCL 06] OCL. Object Constraint Language Specification, Version 2.0,
2006. http://www.omg.org/cgi-bin/apps/doc?formal/06-05-
01.pdf. (p 46)

[PHEN 06] S. Pheng and C. Verbrugge. Dynamic Data Structure Analysis for
Java Programs. In Proceedings of the 14th IEEE International
Conference on Program Comprehension (ICPC’06), pp 191–201,
Washington, DC, USA, 2006. IEEE Computer Society. (pp 3, 5,
13, 14)

[POTA 04] A. Potanin, J. Noble, and R. Biddle. Snapshot Query-Based De-
bugging. In Proceedings of the 2004 Australian Software Engi-
neering Conference (ASWEC’04), p 251, Washington, DC, USA,
2004. IEEE Computer Society. (pp 20, 134)

[POTH 07] G. Pothier, E. Tanter, and J. Piquer. Scalable Omniscient Debug-
ging. Proceedings of the 22nd Annual SCM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA’07), vol. 42, no. 10, pp 535–552,
2007. (pp 9, 20, 110, 134)

[POTH 08] G. Pothier and É. Tanter. Extending Omniscient Debugging to
Support Aspect-Oriented Programming. In Proceedings of the 23rd
ACM Symposium on Applied Computing (SAC’08), volume 1,
pp 266–270, Fortaleza, Ceará, Brazil, March 2008. (p 110)

[PRIC 93] B. A. Price, R. M. Baecker, and I. S. Small. A Principled Taxon-
omy of Software Visualization. Journal of Visual Languages and
Computing, vol. 4, no. 3, pp 211–266, 1993. (pp 1, 5)

[QUAN 06] J. Quante and R. Koschke. Dynamic Obejct Process Graphs. In
Proceedings 10th European Conference on Software Mainte-
nance and Reengineering (CSMR 2006). IEEE Computer Society
Press, 2006. (pp 31, 68)

[QUAN 07] J. Quante and R. Koschke. Dynamic Protocol Recovery. In Pro-
ceedings of the 14th Working Conference on Reverse Engineer-
ing (WCRE’07), pp 219–228, Washington, DC, USA, 2007. IEEE
Computer Society. (p 17)

[QUAN 08] J. Quante and R. Koschke. Dynamic object process graphs. Jour-
nal of Systems and Software, vol. 81, no. 4, pp 481–501, 2008.
(pp 17, 31)

160 Bibliography

[RAYS 06] D. Rayside, L. Mendel, and D. Jackson. A dynamic analysis
for revealing object ownership and sharing. In Proceedings of
the 2006 international workshop on Dynamic systems analysis
(WODA’06), pp 57–64, New York, NY, USA, 2006. ACM. (pp 5,
15)

[RAYS 07] D. Rayside and L. Mendel. Object ownership profiling: a technique
for finding and fixing memory leaks. In Proceedings of the twenty-
second IEEE/ACM international conference on Automated
software engineering (ASE’07), pp 194–203, New York, NY,
USA, 2007. ACM. (pp 13, 15)

[REIC 07] S. Reichhart. Assessing Test Quality — TestLint. Master’s thesis,
University Bern, April 2007. (p 1)

[RENG 06] L. Renggli. Magritte — Meta-Described Web Application Devel-
opment. Master’s thesis, University of Bern, June 2006. (pp 83,
106)

[RICH 02] T. Richner. Recovering Behavioral Design Views: a Query-Based
Approach. PhD thesis, University of Bern, May 2002. (p 18)

[RIEB 03] M. Riebisch. Towards a More Precise Definition of Feature
Models, pp 64–76. BooksOnDemand Publ. Co. Norderstedt,
2003. (p 71)

[RITC 93] H. Ritch and H. M. Sneed. Reverse Engineering Programs via
Dynamic Analysis. In Proceedings of WCRE ’93, pp 192–201.
IEEE, May 1993. (p 5)

[SALA 04] M. Salah and S. Mancoridis. A Hierarchy of Dynamic Software
Views: from Object-Interactions to Feature-Interacions. In Proceed-
ings IEEE International Conference on Software Maintenance
(ICSM 2004), pp 72–81, Los Alamitos CA, 2004. IEEE Computer
Society Press. (pp 8, 72, 73, 74, 79, 86, 87)

[SHAH 00] R. Shaham, E. K. Kolodner, and M. Sagiv. On effectiveness of
GC in Java. In Proceedings of the 2nd international symposium
on Memory management (ISMM’00), pp 12–17, New York, NY,
USA, 2000. ACM. (p 13)

[TALP 92] J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect
inference. Journal of Functional Programming, vol. 2, pp 245–
271, 1992. (p 45)

[UTTI 06] M. Utting and B. Legeard. Practical Model-Based Testing: A
Tools Approach. Morgan-Kaufmann, 2006. (p 107)

161

[WALK 98] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright,
D. Swanson, and J. Isaak. Visualizing Dynamic Software System
Information through High-Level Models. In Proceedings of Inter-
national Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’98), pp 271–283. ACM,
October 1998. (pp 5, 19, 53, 67)

[WATS 96] A. Watson and T. McCabe. Structured Testing: A Testing Method-
ology Using the Cyclomatic Complexity Metric. Research report,
National Institute of Standards and Technology, Washington,
D.C., 1996. (p 107)

[WEIS 81] M. Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th
international conference on Software engineering, pp 439–449,
Piscataway, NJ, USA, 1981. IEEE Press. (p 17)

[WILD 92] N. Wilde and R. Huitt. Maintenance Support for Object-Oriented
Programs. IEEE Transactions on Software Engineering, vol. SE-
18, no. 12, pp 1038–1044, December 1992. (pp 2, 3)

[WILD 95] N. Wilde and M. Scully. Software Reconnaisance: Mapping Pro-
gram Features to Code. Journal on Software Maintenance: Re-
search and Practice, vol. 7, no. 1, pp 49–62, 1995. (pp 72, 86)

[WONG 00] E. Wong, S. Gokhale, and J. Horgan. Quantifying the closeness
between program components and features. Journal of Systems and
Software, vol. 54, no. 2, pp 87–98, 2000. (p 72)

[WRIG 94] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness. Inf. Comput., vol. 115, no. 1, pp 38–94, 1994. (p 32)

[XU 07a] H. Xu, C. J. F. Pickett, and C. Verbrugge. Dynamic purity analysis
for java programs. In Proceedings of the 7th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and
engineering (PASTE ’07), pp 75–82, New York, NY, USA, 2007.
ACM. (p 18)

[XU 07b] G. Xu, A. Rountev, Y. Tang, and F. Qin. Efficient checkpointing
of java software using context-sensitive capture and replay. In Pro-
ceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering (ESEC-FSE’07), pp
85–94, New York, NY, USA, 2007. ACM. (p 135)

[ZAID 05] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Applying
Webmining Techniques to Execution Traces to Support the Program
Comprehension Process. In Proceedings IEEE European Confer-
ence on Software Maintenance and Reengineering (CSMR’05),

162 Bibliography

pp 134–142, Los Alamitos CA, 2005. IEEE Computer Society
Press. (pp 18, 62)

[ZAID 06] A. Zaidman, S. Demeyer, B. Adams, K. D. Schutter, G. Hoffman,
and B. D. Ruyck. Regaining Lost Knowledge through Dynamic
Analysis and Aspect Orientation. In Proceedings of the Confer-
ence on Software Maintenance and Reengineering (CSMR’06),
pp 91–102, Washington, DC, USA, 2006. IEEE Computer Society.
(p 18)

[ZELL 96] A. Zeller and D. Lütkehaus. DDD — a free graphical front-end for
Unix debuggers. SIGPLAN Not., vol. 31, no. 1, pp 22–27, 1996.
(p 14)

[ZELL 05] A. Zeller. Why Programs Fail: A Guide to Systematic Debug-
ging. Morgan Kaufmann, October 2005. (pp 90, 110)

Curriculum Vitae

Personal Information

Name Adrian Lienhard
Date of Birth November 25, 1977
Place of Birth Bern, Switzerland
Nationality Swiss

Education

2005 – 2008 Ph.D. in Computer Science at the Software Com-
position Group, University of Bern, Switzerland
Thesis title: Dynamic Object Flow Analysis

2002 – 2004 Master in Computer Science at the Software Com-
position Group, University of Bern, Switzerland
Thesis title: Bootstrapping Traits

2000 – 2002 Undergraduate Degree in Computer Science at
the University of Bern, Switzerland. Minors in
Mathematics and Media Studies.

Complete Curriculum Vitae:
http://www.adrian-lienhard.ch/files/cv-adrianlienhard.pdf

http://www.adrian-lienhard.ch/files/cv-adrianlienhard.pdf

	1
	List of Figures
	List of Tables
	Introduction
	The Problem of Object Aliasing
	Our Proposal: Object Flow Analysis
	Contributions
	Structure of the Dissertation

	Approaches to Dynamic Data Analysis
	Dynamic Data Structure Analysis
	Heap Snapshot Browsers
	Shape Analysis
	Summary

	Dynamic Data Flow Analysis
	Define-Use Analysis
	Dynamic Program Slicing
	Side Effect Analysis
	Summary

	Extended Execution Trace Analysis
	Trace-based Reverse Engineering Approaches
	Complete Execution History Recording
	Summary

	Conclusion

	Object Flow Analysis
	The Object Flow Analysis Metamodel
	Origin Relationship
	Predecessor Relationship
	Context Relationship

	Specification of Object Flow Tracking
	A Minimal Object Language
	The Extended Language
	Behavioral Similarity of Semantics

	A Framework to Reason about Dependencies
	Conclusion and Outlook

	Visualizing Object Flow
	Introduction
	The Challenge of Structural Dependencies
	Applying Object Flow Analysis
	Inter-unit Flow View
	Transit Flow View
	Case Studies
	Bytecode Compiler
	Insurance Web Application
	IRC Chat Client

	Implementation
	Related Work in Program Visualization
	Summary of the Chapter

	Feature Dependencies
	Introduction
	The Challenge of Feature Dependencies
	Runtime Dependencies Between Features
	Why Object Aliases Cause Dependencies

	Applying Object Flow Analysis
	Exposing Dependencies in Object Graphs
	Case Studies
	IRC Chat Client
	Pier CMS

	Related Work in Feature Analysis
	Summary of the Chapter

	Test Blueprints
	Introduction
	The Challenge of Testing Legacy Code
	Applying Object Flow Analysis
	Introduction of the Test Blueprint
	From the Test Blueprint to Unit Tests
	Selecting a Program Unit to Test
	Creating a Fixture
	Executing the Unit Under Test
	Verifying Expected Behavior

	Case Studies
	Insurance Broker Application
	Web Content Management System

	Related Work in Testing
	Summary of the Chapter

	Practical Back-in-Time Debugging
	Introduction
	Approach: An Object-Flow-Aware VM
	Representing References in Memory
	Capturing Object References
	Remembering Historical Object State
	Remembering the Flow of Objects
	The Effect of Garbage Collection

	Implementation
	Performance Evaluation
	Execution Overhead
	Memory Usage

	Discussion
	Capturing and Remembering Less Data
	Remembering Control Flow Dependencies
	Limitations and Potential Optimizations

	Related Work in Back-In-Time Debugging
	Summary of the Chapter

	Conclusions
	Contributions
	Future work

	The Object Flow Debugger
	Introduction
	Installation
	Downloading the Compiled VM and Demo Image
	Preparing your Image
	Installing the Compass Debugging Frontend

	Debugging with Compass
	Starting the Debugger
	Using the Debugger

	Miscellaneous
	Using Alternative Tracing Policies
	Obtaining Memory Usage Statistics
	Tuning Garbage Collector Parameters

	Bibliography

