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Abstract 

Background 

One of the main objectives of comparative effectiveness research is to identify the most 

preferable treatments for a specific condition. Network meta-analysis (NMA) has been 

increasingly used for this purpose as it enables synthesis of data about competing 

interventions compared directly and indirectly in many studies, that form a network of 

evidence. NMA is used to estimate the relative treatment effect of each intervention versus 

all the others, and can produce statistical ranking metrics that lead to a treatment hierarchy 

from the least preferable to the most preferable option. Treatment hierarchies have been 

increasingly reported in published NMAs, and their use and reporting are recommended by 

international guidance and reporting guidelines. However, several methodological issues 

have been debated. For instance, the agreement between hierarchies from different ranking 

metrics has not been explored empirically. Methods to rank treatments for multiple 

outcomes, accounting for both efficacy and safety as well as individual preferences 

simultaneously, are underdeveloped. Also, it is unclear how to critically appraise a treatment 

hierarchy, since a rigorous framework to assess reporting bias in NMA is lacking. 

Aim 

The aim of this thesis is to fill some of these methodological gaps on the topic of ranking 

metrics and reporting bias in NMA. The first objective is to study the agreement between 

different rankings from an empirical perspective and to aid the interpretation and use of 

existing ranking metrics. The second objective is to extend the existing ranking methodology 

to account for multiple efficacy and safety outcomes, as well as specific preferences and 

trade-offs between benefits and harms. The third objective is to develop a methodological 

framework to evaluate the risk of reporting bias in network meta-analysis. 

Methods 

An empirical evaluation of the level of agreement between hierarchies obtained from existing 

ranking metrics is carried out by re-analysing over 200 previously published networks of four 

or more interventions. We explore how agreement is affected by the amount of information 

present in a network in terms of average variance, differences in the variance estimates, and 

the total sample size over the number of interventions of a network.  
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To expand on the existing ranking methodology, we combine a recently developed ranking 

metric, accounting for both multiple outcomes and individual preferences, with a trade-off 

value defining the compromise between positive and negative outcomes. 

For evaluating the risk of reporting bias in NMA we combine the risk of bias due to missing 

evidence in pairwise comparisons with that of the network estimates. For the latter, we 

consider the contribution matrix, the unobserved comparisons, and the presence of small-

study effects as evaluated by network meta-regression. We also develop an online web-

application to facilitate this evaluation. 

Results 

The level of agreement between treatment hierarchies obtained by different ranking metrics 

can be affected by the amount of information present in a network. Differences in level of 

agreement become more evident when there are large imbalances in the precision of the 

estimates, though we find that such imbalances are rare in practice. We also developed 

rankings based on relative treatment effects against a fictional treatment of average 

performance, which are useful in networks of interventions where a natural reference 

treatment does not exist. We provide recommendations for reporting the treatment 

hierarchies obtained from different ranking metrics, avoiding misinterpretation, and properly 

addressing "treatment hierarchy questions" in the decision-making context.  

We extended the existing ranking methodology by combining the standardised area within 

spie charts with different trade-offs between benefits and harms. The obtained quantity is 

useful to show variation in the ranking for a whole range of trade-off values and a specific set 

of individual preferences. 

We developed the first risk of bias tool to evaluate the risk of bias due to missing evidence in 

NMA and we facilitate its use with a user-friendly web application that automates some of 

the required steps. 

Conclusions 

In this thesis we made significant contributions to the evidence synthesis field, providing 

knowledge and tools that assist clinicians, policy makers and patients in choosing the most 

preferable treatment for a specific condition. Our results are a step forward in the direction 

of actively translating knowledge into practical use, although more implementation research 

in clinical practice is still needed to guide decision-making processes. 
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Introduction 

Ranking treatments in network meta-analysis 

Clinicians must regularly make decisions about their patients’ care, particularly with regards 

to the choice of treatments for a specific condition [1,2]. To make such decisions they usually 

refer to current clinical guidelines which are informed by the best available evidence. 

Guideline recommendations are normally produced using the efficacy and safety results of 

quantitative evidence synthesis techniques, in particular pairwise and network meta-analysis 

(NMA) [3–5]. The latter is an extension of pairwise meta-analysis for more than two 

interventions that enables synthesis of direct evidence (i.e. treatments compared directly 

within a study) and indirect evidence from studies comparing the treatments of interest with 

one or more intermediate comparators [6,7]. NMA produces all relative treatment effects of 

each intervention versus another and, in turn, these can be used to create a hierarchy from 

the most to the least preferable treatment for a specific outcome of interest.  

The statistical quantity measuring the performance of an intervention on a specific outcome 

and producing a specific ranking is referred to as a ranking metric. Ranking metrics can be 

probabilistic or non-probabilistic according to whether the entire distribution of each 

estimated treatment effect is taken into account or not.  

Let us imagine we have a set 𝕋𝕋 of 𝑇𝑇 competing treatments and the relative effects of 

treatment 𝑖𝑖 over 𝑗𝑗,  𝜇𝜇𝑖𝑖𝑖𝑖, estimated in NMA, for a given outcome of interest, specifically a 

negative outcome, e.g. mortality. A hierarchy of treatments ranked based on their estimated 

mean relative effects against a common comparator (e.g. placebo), �̂�𝜇𝑖𝑖𝑖𝑖, is indeed a non-

probabilistic hierarchy as the uncertainty with which these effects are estimated is not 

considered in the ranking process. The distribution of 𝜇𝜇𝑖𝑖𝑖𝑖 is estimated either as the posterior 

distribution in a Bayesian setting or using resampling in a frequentist setting. Several 

probabilistic ranking metrics have been developed and employed to date and, among the 

most popular, we find the probability that treatment 𝑖𝑖 produces the best value (𝑝𝑝𝑖𝑖,𝐵𝐵𝐵𝐵) for a 

given outcome. The best value is the smallest value (for a negative outcome) compared to all 

other competing treatments, so 𝑝𝑝𝑖𝑖,𝐵𝐵𝐵𝐵 is defined as 

𝑝𝑝𝑖𝑖,𝐵𝐵𝐵𝐵 ≔ 𝑝𝑝𝑖𝑖,1 = 𝑃𝑃�𝜇𝜇𝑖𝑖𝑖𝑖 < 0  ∀ 𝑗𝑗 ∈  𝕋𝕋�. 

Similarly, one can calculate the probability that treatment 𝑖𝑖 produces the Rth-best value, 

defined as the probability that treatment 𝑖𝑖 will outperform exactly 𝑇𝑇 − 𝑅𝑅 treatments 
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𝑝𝑝𝑖𝑖,𝑅𝑅 = �𝑃𝑃��𝜇𝜇𝑖𝑖𝑖𝑖 < 0 ∀ 𝑗𝑗 ∈  ℝ � ∩ � 𝜇𝜇𝑖𝑖𝑖𝑖 ≥ 0 ∀ 𝑗𝑗 ∉  ℝ� �
ℝ

 

where the sum is over all possible ℝ subsets of 𝕋𝕋, ℝ ⊂ 𝕋𝕋, of size 𝑇𝑇 − 𝑅𝑅.  

Table 1 shows the ranking probabilities for a network meta-analysis investigating the effects 

of five antihypertensive drugs and placebo on the incidence of diabetes [8]. 

 

Table 1: Ranking probabilities, SUCRA values, mean and median ranks  for the network of antihypertensive drugs 
and placebo effects on the incidence of diabetes. ARB = angiotensin-receptor blockers; ACE = angiotensin-
converting-enzyme; CCB = calcium-channel blockers; Bblocker = Beta blocker; SUCRA = surface under the 
cumulative ranking curve. 

 
Ranks SUCRA Mean 

rank 
Median 

rank 1 2 3 4 5 6 
ARB 0.26 0.67 0.07 0.01 0.00 0.00 0.84 1.82 1 
ACE 0.73 0.25 0.02 0.00 0.00 0.00 0.94 1.30 1 
Placebo 0.00 0.00 0.00 0.01 0.81 0.19 0.16 4.07 4 
CCB 0.00 0.02 0.27 0.71 0.01 0.00 0.46 3.70 3 
Bblocker 0.00 0.00 0.00 0.00 0.18 0.82 0.04 0.92 5 
Diuretic 0.01 0.07 0.64 0.28 0.00 0.00 0.56 3.19 2 

 

The ranking probabilities can also be presented graphically as so-called rankograms, 

treatment-specific plots showing the distribution of ranking probabilities for each 

intervention [9]. The rankograms for the network of antihypertensive treatments is shown in 

Figure 1. 

One downside of these ranking probabilities – particularly the 𝑝𝑝𝑖𝑖,𝐵𝐵𝐵𝐵 – is that a treatment with 

a high probability of producing the best value may also have a high probability of producing 

worse values i.e. being ranked last. To overcome this issue, one option is to calculate the 

cumulative probabilities that the treatment 𝑖𝑖 will be ranked in the top R positions, 

𝑐𝑐𝑖𝑖,𝑅𝑅 = ∑ 𝑝𝑝𝑖𝑖,𝑟𝑟𝑅𝑅
𝑟𝑟=1  . 

The cumulative probabilities are often presented in the cumulative probability plots and are 

also used to produce the surface under the cumulative ranking curve, 

𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑖𝑖 = ∑ 𝑐𝑐𝑖𝑖,𝑟𝑟𝑇𝑇−1
𝑟𝑟=1
𝑇𝑇−1

 . 

𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑖𝑖 represents the area below the step function of the cumulative probability plots – the 

larger the area, the higher the probability that treatment 𝑖𝑖 is the best-performing [9]. 
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Figure 1: Rankograms for the network of antihypertensive drugs and placebo effects on the incidence of 
diabetes. ARB = angiotensin-receptor blockers; ACE = angiotensin-converting-enzyme; CCB = calcium-channel 
blockers; Bblocker = Beta blocker.  

In this way, 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑖𝑖 summarises the full information of the treatment effectiveness into a 

single value that can be interpreted as the average proportion of treatments worse than 

treatment 𝑖𝑖 [10]. Cumulative probability plots for the network of antihypertensive drugs’ 

effects on the incidence of diabetes are shown in Figure 2. 

The posterior distribution of each treatment’s rank can also be summarised by its mean or 

median, producing this way two additional ranking metrics: the mean rank 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑖𝑖 =

∑ 𝑝𝑝𝑖𝑖,𝑟𝑟 × 𝑟𝑟𝑇𝑇−1
𝑟𝑟=1 , and the median rank, 𝑚𝑚𝑀𝑀𝑚𝑚𝑖𝑖𝑀𝑀𝑀𝑀𝑅𝑅𝑖𝑖, defined as the largest value satisfying  

∑ 𝑝𝑝𝑖𝑖,𝑅𝑅
𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑅𝑅𝑖𝑖
𝑅𝑅=1 ≤ 1

2
. The SUCRA is essentially an inversely scaled transformation of the mean 

rank and can indeed also be defined as 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑖𝑖 = 𝑇𝑇− 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑖𝑖
𝑇𝑇−1

 [10]. SUCRA values, mean and 

median ranks for the network of antihypertensive drugs’ effects on the incidence of diabetes 

are reported in Table 1. 
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Figure 2: Cumulative probability plots for the network of antihypertensive drugs and placebo effects on the 
incidence of diabetes. ARB = angiotensin-receptor blockers; ACE = angiotensin-converting-enzyme; CCB = 
calcium-channel blockers; Bblocker = Beta blocker.  

A frequentist version of the SUCRA, the P-score, has been developed as a function of the one-

sided p-values based on the estimated mean relative treatment effects and standard error. It 

has been proven that the two ranking metrics are equivalent in terms of results produced and 

interpretation, at least when the assumption of normality for the distribution of the effects 

holds [10]. 

Treatment hierarchies have been increasingly reported in published NMAs [11] but they have 

not been exempt from criticism. This mainly states concerns about the instability and limited 

interpretability of the treatment ranks, particularly due to the fact they do not encompass 

uncertainty nor account for bias in the evidence [12–17]. Part of this criticism, specifically 

regarding uncertainty of the rank ordering, has already been addressed: while some claim 

that uncertainty in rankings should be reported either as confidence/credible intervals for the 

ranking metric or as a complete presentation of rank probabilities (e.g. using rankograms or 

cumulative ranking curve [14,18]), others question whether these suggestions are actually 

feasible and useful [15]. Reporting all rank probabilities or rankograms can prove difficult for 
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NMAs involving many treatments and outcomes, and uncertainty intervals may not be 

informative or interpretable. One reason for this argument is that ranking statistics such as 

SUCRA and P-score are not considered population parameters and therefore do not have a 

distribution. Besides, the calculation of SUCRA values already incorporates uncertainty of the 

treatment effects.  

Salanti et al. also claim that some of the criticism and confusion about treatment hierarchies 

was inappropriate as it implicitly assessed ranking metrics as if one is better that the others, 

while they address different problems or, as the authors present them, different treatment 

hierarchy questions [19]. A treatment hierarchy question is based on a clear definition of “best 

treatment” which must be specified by the researcher in a given setting, so that the relevant 

ranking does not give misleading results. A bibliographic study found that the majority of 

network meta-analyses that presented some form of treatment hierarchy calculated the 

probability of producing the best value, 𝑝𝑝𝑖𝑖,𝐵𝐵𝐵𝐵, followed by SUCRA, but the choice of the 

ranking metric was not justified [11]. The level of agreement between rankings obtained using 

different metrics in practice is also unknown, as no study investigating the empirical 

agreement between treatment hierarchies has been carried out. While it is clear that 

decisions cannot be made on rankings alone, as they are no substitute for relative treatment 

effects and their confidence or credible intervals, international guidance and guidelines 

support the use and reporting of treatment hierarchies [20,21].  

A major issue of treatment hierarchies in NMA is that they usually refer to a single outcome, 

making it difficult to summarise the performance of an intervention from both an 

effectiveness and a safety perspective. Furthermore, when multiple outcomes are 

considered, individual preferences reflecting the relative importance of different benefit and 

harm outcomes should also be accounted for. In healthcare decision-making, several methods 

for benefit-risk assessment are available that can incorporate multiple outcomes as well as 

patients preferences [22,23]. Probably the most popular decision analytic approach is 

multicriteria decision analysis (MCDA), whose objective function is a linear combination of 

absolute treatment effects of various outcomes that can be weighted in different ways to 

reflect preferences. Within the last decade, there have been some examples of combining 

network meta-analysis results within MCDA to rank treatment alternatives, but the use of this 

method in clinical practice still faces challenges and it is unclear which preference elicitation 

technique would be more suitable [24–26]. 



 

15 
 

An ideal ranking metric should consider all these important aspects and potentially other 

characteristics of interest. Some extensions to the existing ranking metrics and new methods 

have been developed in recent years to account for multiple outcomes, individual preferences 

and to distinguish between clinically important and unimportant treatment effects. Mavridis 

et al. extended the P-score method to multiple outcomes and modified it so that the obtained 

ranking can also reflect clinical important differences [27]. Intuitive visualisation tools have 

also been proposed to present results for multiple outcomes such as: clustered ranking plots 

[28]; the Kilim plot [29], that also allow to specify clinical important values for the outcomes; 

and, more recently, the Vitruvian plot [30]. However, these visualisation methods do not 

provide a quantitative measure to rank the treatments considering jointly all outcomes of 

interest. 

Daly et al. introduced the spie charts framework, which measures the effectiveness or safety 

of each treatment on multiple outcomes [31]. The outcome measures are plotted on a 

treatment-specific spie chart as sectors, whose angles represent the importance of each 

outcome. The area inside a spie chart represents the quantity by which to rank the treatments 

but the authors recommend not to plot benefit and harms outcomes on the same spie chart 

as that could mask important safety information. 

Another measure, the Probability Of Selecting a Treatment to Recommend (POST-R) was 

proposed to account for other important factors which are often of interest for treatment 

guidelines but can be incorporated only in a qualitative manner [32]. One of these 

characteristics is the confidence in the evidence, or credibility of the network meta-analysis 

results, which can be evaluated using the Confidence in Network Meta-Analysis (CINeMA) 

framework [33] or the Grading of Recommendations Assessment, Development and 

Evaluation (GRADE) approach [34]. These evaluations consider several domains, including the 

risk of bias, to assign to each treatment comparison four possible ratings of confidence, high, 

moderate, low or very low, which are usually summarised in a table, as recommended by 

reporting guidelines [20,35]. POST-R, which uses a Markov chain model, can incorporate this 

information by translating it into initial probabilities as prior probabilities, and subsequently 

obtain probabilities of recommending each treatment through its stationary probability 

distribution [32]. However, this method can combine one outcome (i.e. efficacy) with only one 

of the other characteristics. 
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Bias due to missing evidence 

The above-mentioned CINeMA framework has been increasingly used to evaluate confidence 

in network meta-analysis results and it consists of six domains: within-study bias, reporting 

bias, indirectness, imprecision, heterogeneity, and incoherence. However, in its first version, 

the CINeMA domain for reporting bias was underdeveloped compared to the other domains, 

mainly due to the lack of a rigorous methodology to evaluate it. Indeed, in agreement with 

the GRADE approach [34], two possible judgements – suspected and undetected – are 

assigned to each network meta-analysis estimate. However, the current documentation for 

CINeMA suggests basing the reporting bias assessment only on qualitative conditions which 

include: previous evidence indicating the presence of reporting bias; the inclusion of data 

from grey literature and unpublished sources; and the characteristics of the treatment 

comparison, e.g. whether it involves new versus old drugs or the studies investigating are 

primarily industry-funded. Therefore, no specific guidance is presented to evaluate reporting 

bias in the network meta-analysis context. 

Reporting bias arises if the non-reporting of results is related to the nature of the results. It 

can occur when a study is not reported at all, commonly referred to as publication bias, or 

when some results are not reported, usually known as outcome reporting bias or selective 

non-reporting of results [36]. In both cases, the data included in a meta-analysis differ 

systematically from the missing results, which threatens the validity of the meta-analysis 

conclusions [37,38]. In pairwise meta-analysis, reporting bias has been extensively studied, 

and several methods have been developed to investigate the corresponding risk of bias [39]. 

Approaches include comparisons of study protocols with published reports to identify 

outcomes measured but not reported and comparing results obtained from published versus 

unpublished sources [39]. Other approaches include graphical methods (e.g. funnel plots [40–

42]), tests for systematic differences between effects in smaller versus larger studies (“small-

study effects”, e.g. Egger's test and its counterparts [40,43–45]), regression-based adjustment 

methods, and selection models [46–49]. 

Selection models account for the mechanism (i.e. the selection process) with which studies 

are selected for publication. In particular, in the Copas selection models, this process is 

defined by a latent variable describing the “propensity of publication” which is correlated with 

the study effect size and is assumed as a function of the study variance through a regression 

model [46]. However, since the number of unpublished studies is unknown, the model for the 
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propensity for publication is difficult to identify. Therefore, a sensitivity analysis is usually 

required to compute the pooled intervention effect and the probability of a study to be 

published under various possible assumptions about the severity of selection bias. Regression 

models describing treatment effects as a function of the standard error [50,51] and limit meta-

analysis [52] do not require such assumptions and may therefore performed better than bias-

adjustment methods [53]. 

Several of the numerical approaches to evaluate reporting bias developed for pairwise meta-

analysis have been adapted to the network meta-analysis setting [54,55], such as the 

comparison-adjusted funnel plot [28] and the extension of the Copas selection model [56,57]. 

However, these methods have limitations and are only meaningful when specific assumptions 

can be made, such as the characteristics associated with small-study effects in the 

comparison-adjusted funnel plots and the direction of publication bias for the Copas model 

in a network of interventions. Also, the model has not been used frequently in practice, 

probably due its complexity compared to other models and techniques. Most importantly, 

the numerical evaluation plays only a small role when judging the presence of bias. 

Comprehensive searches and qualitative approaches are key to preventing and identifying 

potential biases due to missing results [39]. 

The Risk of Bias due to Missing Evidence (ROB-ME) tool, in its preliminary version, has been 

recently developed to integrate all these considerations into a structured framework for the 

overall assessment of risk of bias due to missing evidence in meta-analysis [58]. However, 

ROB-ME only applies to pairwise meta-analysis as it was not designed to encompass the 

added complexities of NMA such as the role of indirect evidence and the contribution of the 

direct comparisons to each network estimate. 
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Hypothesis and aim of the thesis 

This PhD thesis is a cumulative work of publications set to address the unanswered questions 

on the topic of ranking metrics and reporting bias in network meta-analysis. Specifically:  

• the existing literature lacks empirical studies on the level of agreement between 

treatment hierarchies using different ranking metrics;  

• there is a need to produce a hierarchy of treatments in NMA that account for multiple 

efficacy and safety outcomes, as well as other important aspects such as specific 

preferences and trade-offs between benefits and harms;  

• the methodology for assessing reporting bias in a network of interventions is 

incomplete.  

Therefore, the overall aim of the thesis is to provide answers to these questions with three 

projects set to achieve the specific objectives:  

• the first project aims to study the agreement between different rankings from an 

empirical perspective (Articles 1 and 2) to aid the interpretation and use of existing 

ranking metrics (Article 3);  

• the objective of the second project is to extend the existing ranking metrics (Article 4) 

to address complex treatment hierarchy problems;  

• the third project aims to provide a methodological framework to assess the risk of bias 

due to missing evidence in the context of a network of interventions (Article 5). 

 

Article 1: Agreement between ranking metrics in network meta-analysis: an empirical study 

This article presents the results from an empirical evaluation of the level of agreement 

between hierarchies obtained from existing ranking metrics by reanalysing over 200 

published networks of four or more interventions. We hypothesised that some network 

features could influence this agreement and show how it is affected by the amount of 

information present in a network in terms of average variance, differences in the variance 

estimates, and the total sample size over the number of interventions of a network.   
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Article 2: Network meta-analysis results against a fictional treatment of average 

performance: treatment effects and ranking metric 

In this article, we introduce a new ranking metric, defined as the probability that a treatment 

is better than a fictional treatment of average performance by using an alternative 

parameterisation of the NMA model. Using the methodology employed in Article 1, we also 

compare the hierarchies obtained with the new ranking metric with those obtained from the 

existing ranking metrics. 

 

Article 3: The complexity underlying treatment rankings: how to use them and what to 

look at 

This invited article aims to guide in interpreting and presenting the treatment hierarchies 

obtained from different ranking metrics by avoiding common mistakes and considering the 

whole output of a network meta-analysis, including the quality of evidence. The article also 

refers to the recently introduced concept of treatment hierarchy question, which is  based on 

a specific definition of “best treatment”, and how to address it in the decision-making context. 

 

Article 4:  

This article presents a numerical quantity to explore the changes in rankings with different 

trade-offs between benefits and harms of treatments and a specific set of preferences. We 

extend the concept of the standardised area within a spie chart by combining it with a trade-

off value defining the compromise between positive and negative outcomes. We illustrate 

the method as a sensitivity analysis by demonstrating how the rankings for benefits and 

harms of three real network examples varies for the whole range of the trade-off values. 

 

Article 5: ROB-MEN: a tool to assess risk of bias due to missing evidence in network meta-

analysis 

We aim to develop the first tool for the evaluation of risk of bias due to missing evidence in 

network meta-analysis (ROB-MEN). We illustrate the methodology of the framework 

underlying the tool, that combines the risk of bias due to missing evidence in pairwise 

comparisons with that of the network estimates by considering the contribution matrix, the 

unobserved comparisons, and the presence of small-study effects as evaluated by network 

meta-regression. We also introduce the online web-application that facilitates and semi-
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automates some of the tool assessments and produces the output table. We present the final 

tool with an application in two published network meta-analysis. 
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ABSTRACT 

Objective  

To empirically explore the level of agreement of the treatment hierarchies from different 

ranking metrics in network meta-analysis (NMA) and to investigate how network 

characteristics influence the agreement. 

Design 

Empirical evaluation from re-analysis of network meta-analyses.  

Data 

232 networks of four or more interventions from randomised controlled trials, published 

between 1999 and 2015. 

Methods 

We calculated treatment hierarchies from several ranking metrics: relative treatment effects, 

probability of producing the best value (𝑝𝑝𝐵𝐵𝐵𝐵) and the surface under the cumulative ranking 

curve (SUCRA). We estimated the level of agreement between the treatment hierarchies 

using different measures: Kendall’s 𝜏𝜏 and Spearman’s 𝜌𝜌 correlation; and the Yilmaz 𝜏𝜏𝐴𝐴𝑖𝑖 and 

Average Overlap, to give more weight to the top of the rankings. Finally, we assessed how the 

amount of the information present in a network affects the agreement between treatment 

hierarchies, using the average variance, the relative range of variance, and the total sample 

size over the number of interventions of a network. 

Results 

Overall, the pairwise agreement was high for all treatment hierarchies obtained by the 

different ranking metrics. The highest agreement was observed between SUCRA and the 

relative treatment effect for both correlation and top-weighted measures whose medians 

were all equal to one. The agreement between rankings decreased for networks with less 

precise estimates and the hierarchies obtained from 𝑝𝑝𝐵𝐵𝐵𝐵 appeared to be the most sensitive 

to large differences in the variance estimates. However, such large differences were rare. 

Conclusions 

Different ranking metrics address different treatment hierarchy problems, however they 

produced similar rankings in the published networks. Researchers reporting NMA results can 

use the ranking metric they prefer, unless there are imprecise estimates or large imbalances 
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in the variance estimates. In this case treatment hierarchies based on both probabilistic and 

non-probabilistic ranking metrics should be presented. 

 

 

Strength and limitations of this study 

• To our knowledge, this is the first empirical study exploring the level of agreement of 
the treatment hierarchies from different ranking metrics in network meta-analysis 
(NMA). 

• The study also explores how agreement is influenced by network characteristics. 

• More than 200 published NMAs were re-analysed and three different ranking metrics 
calculated using both frequentist and Bayesian approaches. 

• Other potential factors not investigated in this study could influence the agreement 
between hierarchies. 
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Introduction 

Network meta-analysis (NMA) is being increasingly used by policy makers and clinicians to 

answer one of the key questions in medical decision-making: “what treatment works best for 

the given condition?” [1,2]. The relative treatment effects, estimated in NMA, can be used to 

produce ranking metrics: statistical quantities measuring the performance of an intervention 

on the studied outcomes, thus producing a treatment hierarchy from the most preferable to 

the least preferable option [3,4]. 

Despite the importance of treatment hierarchies in evidence-based decision making, various 

methodological issues related to the ranking metrics have been contested [5–7]. This ongoing 

methodological debate focuses on the uncertainty and bias in a single ranking metric. 

Hierarchies produced by different ranking metrics are not expected to agree because ranking 

metrics differ. For example, a non-probabilistic ranking metric such as the treatment effect 

against a common comparator considers only the mean effect (e.g. the point estimate of the 

odds-ratio) and ignores the uncertainty with which this is estimated. In contrast, the 

probability that a treatment achieves a specific rank (a probabilistic ranking metric) considers 

the entire estimated distribution of each treatment effect. However, it is important to 

understand why and how rankings based on different metrics differ.  

There are network characteristics that are expected to influence the agreement of treatment 

hierarchies from different ranking metrics, such as the precision of the included studies and 

their distribution across treatment comparisons [4,8]. Larger imbalances in precision in the 

estimation of the treatment effects affects the agreement of the treatment hierarchies from 

probabilistic ranking metrics, but it is currently unknown whether in practice these 

imbalances occur and whether they should inform the choice between different ranking 

metrics. To our knowledge, no empirical studies have explored the level of agreement of 

treatment hierarchies obtained from different ranking metrics, or examined the network 

characteristics likely to influence the level of agreement. Here, we empirically evaluated the 

level of agreement between ranking metrics and examined how the agreement is affected by 

network features. The article first describes the methods for the calculation of ranking metrics 

and of specific measures to assess the agreement and to explore factors that affects it, 

respectively. Then, a network featuring one of the explored factors is shown as an illustrative 

example to display differences in treatment hierarchies from different ranking metrics. 
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Finally, we present the results from the empirical evaluation and discuss their implications for 

researchers undertaking network meta-analysis.   

Methods 

Data 

We re-analysed networks of randomised controlled trials from a database of articles 

published between 1999 and 2015, including at least 4 treatments; details about the search 

strategy and inclusion/exclusion criteria can be found in [9,10]. We selected networks 

reporting arm-level data for binary or continuous outcomes. The database is accessible in the 

nmadb R package [11]. 

Re-analysis and calculation of ranking metrics 

All networks were re-analysed using the relative treatment effect that the original publication 

used: odds ratio (OR), risk ratio (RR), standardised mean difference (SMD) or mean difference 

(MD). We estimated relative effects between treatments using a frequentist random-effects 

NMA model using the netmeta R package [12]. For the networks reporting ORs and SMDs we 

re-analysed them also using Bayesian models using self-programmed NMA routines in JAGS 

(https://github.com/esm-ispm-unibe-ch/NMAJags). To obtain probabilistic ranking metrics in 

a frequentist setting, we used parametric bootstrap by producing 1000 datasets from the 

estimated relative effects and their variance-covariance matrix. By averaging over the number 

of simulated relative effects we derived the probability of treatment 𝑖𝑖 to produce the best 

value  

𝑝𝑝𝑖𝑖,𝐵𝐵𝐵𝐵: = 𝑝𝑝𝑖𝑖,1 = 𝑃𝑃�𝜇𝜇𝑖𝑖𝑖𝑖 > 0  ∀ 𝑗𝑗 ∈  𝕋𝕋� 

where 𝜇𝜇𝑖𝑖𝑖𝑖 is the estimated mean relative effect of treatment 𝑖𝑖 against treatment 𝑗𝑗 out of a set 

𝕋𝕋 of 𝑇𝑇 competing treatments. We will refer to this as 𝑝𝑝𝐵𝐵𝐵𝐵.  This ranking metric indicates how 

likely a treatment is to produce the largest values for an outcome (or smallest value, if the 

outcome is harmful). We also calculated the surface under the cumulative ranking curve  

(𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹) [3] 

𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑖𝑖 =
∑ 𝑐𝑐𝑖𝑖,𝑟𝑟𝑇𝑇−1
𝑟𝑟=1

𝑇𝑇 − 1
 

where 𝑐𝑐𝑖𝑖,𝑟𝑟 = ∑ 𝑝𝑝𝑖𝑖,𝑣𝑣𝑟𝑟
𝑣𝑣=1  are the cumulative probabilities that treatment 𝑖𝑖 will produce an 

outcome that is among the 𝑟𝑟 best values (or that it outperforms 𝑇𝑇 − 𝑟𝑟 treatments). SUCRA, 

unlike 𝑝𝑝𝐵𝐵𝐵𝐵, also considers the probability of a treatment to produce unfavourable outcome 

values. Therefore, the treatment with the largest SUCRA value represents the one that 

https://github.com/esm-ispm-unibe-ch/NMAJags


 

30 
 

outperforms the competing treatments in the network, meaning that overall it produces 

preferable outcomes compared to the others. We also obtained SUCRAs within a Bayesian 

framework (𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐵𝐵).  

To obtain the non-probabilistic ranking metric we fitted an NMA model and estimated related 

treatment effects. To obtain estimates for all treatments we reparametrize the NMA model 

so that each treatment is compared to a fictional treatment of average performance [13,14]. 

The estimated relative effects against a fictional treatment F of average efficacy �̂�𝜇𝑖𝑖𝐹𝐹 represent 

the ranking metric and the corresponding hierarchy is obtained simply by ordering the effects 

from the largest to the smallest (or in ascending order, if the outcome is harmful). The 

resulting hierarchy is identical to that obtained using relative effects from the conventional 

NMA model, irrespective of the reference treatment. In the rest of the manuscript, we will 

refer to this ranking metric simply as relative treatment effect.  

Agreement between ranking metrics 

To estimate the level of agreement between the treatment hierarchies obtained using the 

three chosen ranking methods we employed several correlation and similarity measures. 

To assess the correlation between ranking metrics we used Kendall’s 𝜏𝜏 [15] and the 

Spearman’s 𝜌𝜌 [16]. Both Kendall’s 𝜏𝜏 and Spearman’s 𝜌𝜌 give the same weight to each item in 

the ranking. In the context of treatment ranking, the top of the ranking is more important 

than the bottom.  We therefore also used a top-weighted variant of Kendall’s 𝜏𝜏, Yilmaz 𝜏𝜏𝐴𝐴𝑖𝑖 

[17], which is based on a probabilistic interpretation of the average precision measure used 

in information retrieval [18] (see online supplementary Appendix).  

The measures described so far can only be considered for conjoint rankings, i.e. for lists where 

each item in one list is also present in the other list. Rankings are non-conjoint when a ranking 

is truncated to a certain depth k with such lists called top-k rankings. We calculated the 

Average Overlap [19,20], a top-weighted measure for top-k rankings that considers the 

cumulative intersection (or overlap) between the two lists and averages it over a specified 

depth (cut-off point) k (see online supplementary Appendix for details). We calculated the 

Average Overlap between pairs of rankings for networks with at least six treatments (139 

networks) for a depth k equal to half the number of treatments in the network, 𝑘𝑘 = 𝑇𝑇
2�  (or 

((𝑇𝑇 − 1)) ⁄ 2 if T is an odd number). 
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We calculated the four measures described above to assess the pairwise agreement between 

the three ranking metrics within the frequentist setting and summarised them for each pair 

of ranking metrics and each agreement measure using the median and the 1st and 3rd 

quartiles. The hierarchy according to 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐵𝐵 was compared to that of its frequentist 

equivalent to check how often the two disagree.  

Influence of network features on the rankings agreement 

The main network characteristic considered was the amount of information in the network 

(reflected in the precision of the estimates). Therefore, for each network we calculated the 

following measures of information:  

the average variance, calculated as the mean of the variances of the estimated treatment 

effects 𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑆𝑆2), to show how much information is present in a network altogether;  

the relative range of variance, calculated as 
max

 
𝑆𝑆𝑆𝑆2−min𝑆𝑆𝑆𝑆2

max𝑆𝑆𝑆𝑆2
, to describe differences in 

information about each intervention within the same networks; 

the total sample size of a network over the number of interventions. 

These measures are presented in scatter plots against the agreement measurements for pairs 

of ranking metrics. 

All the codes for the empirical evaluation are available at https://github.com/esm-ispm-

unibe-ch/rankingagreement. 

Patient and public involvement 

Patients and the public were not involved in this study. 

Illustrative example 

To illustrate the impact of the amount of information on the treatment hierarchies from 

different ranking metrics, we used a network of nine antihypertensive treatments for primary 

prevention of cardiovascular disease that presents large differences in the precision of the 

estimates of overall mortality [21]. The network graph and forest plot of relative treatment 

effects of each treatment versus placebo are presented in Figure 1. The relative treatment 

effects reported are risk ratios (RR) estimated using a random effects NMA model. 

Table 1 shows the treatment hierarchies obtained using the three ranking metrics described 

above. The highest overall agreement is between hierarchies from the 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹 and the 

relative treatment effect as shown by both correlation (Spearman’s 𝜌𝜌 = 0.93, Kendall’s 𝜏𝜏 = 

0.87) and top-weighted measures (Yilmaz’s 𝜏𝜏𝐴𝐴𝑖𝑖= 0.87; Average Overlap = 0.85). The level of 

https://github.com/esm-ispm-unibe-ch/rankingagreement
https://github.com/esm-ispm-unibe-ch/rankingagreement
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agreement decreases when 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹 and the relative treatment effect are compared with 

𝑝𝑝𝐵𝐵𝐵𝐵 rankings (Spearman’s 𝜌𝜌 = 0.63 and 𝜌𝜌 = 0.85 respectively). Agreement with  𝑝𝑝𝐵𝐵𝐵𝐵 especially 

decreases when considering top ranks only (Average Overlap is 0.48 for 𝑝𝑝𝐵𝐵𝐵𝐵 versus 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹 

and 0.54 for 𝑝𝑝𝐵𝐵𝐵𝐵 versus relative treatment effect). All agreement measures are presented in 

online supplementary Table S1.  

The reason for this disagreement is explained by the differences in precision in the estimated 

effects (Figure 1). These RRs versus placebo range from 0.82 (Diuretic/Beta-blocker versus 

placebo) to 0.98 (Beta-blocker versus placebo). All estimates are fairly precise except for the 

RR of conventional therapy versus placebo whose 95% confidence interval extends from 0.21 

to 3.44.  This uncertainty in the estimation is due to the fact that conventional therapy is 

compared only with Angiotensin Receptor Blockers (ARB) via a single study. This large 

difference in the precision of the estimation of the treatment effects mostly affects the 𝑝𝑝𝐵𝐵𝐵𝐵 

ranking, which disagrees the most with both of the other rankings. Consequently, the 

Conventional therapy is in the first rank in the 𝑝𝑝𝐵𝐵𝐵𝐵 hierarchy (because of the large uncertainty) 

but only features in the third/fourth and sixth rank using the relative treatment effects and 

𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹 hierarchies, respectively. 

To explore how the hierarchies for this network would change in case of increased precision, 

we reduced the standard error of the Conventional versus ARB treatment effect from the 

original 0.7 to a fictional value of 0.01 resulting in a confidence interval 0.77 to 0.96. The 

columns in the right-hand side of Table 1 display the three equivalent rankings after the 

standard error reduction. The conventional treatment has moved up in the hierarchy 

according to 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹 and moved down in the one based on 𝑝𝑝𝐵𝐵𝐵𝐵, as expected. The treatment 

hierarchies obtained from the 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹 and the relative treatment effect are now identical 

(Conventional and ARB share the 3.5 rank because they have the same effect estimate) and 

the agreement with the 𝑝𝑝𝐵𝐵𝐵𝐵 rankings also improved (𝑝𝑝𝐵𝐵𝐵𝐵 versus 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹 Spearman’s 𝜌𝜌 = 

0.89, Average Overlap = 0.85; 𝑝𝑝𝐵𝐵𝐵𝐵 versus relative treatment effect Spearman’s 𝜌𝜌 = 0.91, 

Average Overlap = 0.94; online supplementary Table S1).  

Results 

A total of 232 networks were included in our dataset. Their characteristics are shown in Table 

2. The majority of networks (133 NMAs, 57.3%) did not report any ranking metrics in the 

original publication. Among those which used a ranking metric to produce a treatment 
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hierarchy, the probability of being the best was the most popular metric followed by the 

SUCRA with 35.8% and 6.9% of networks reporting them, respectively.  

Table 3 presents the medians and quartiles for each similarity measures. All hierarchies 

showed a high level of pairwise agreement, although the hierarchies obtained from the 

𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹 and the relative treatment effect presented the highest values for both unweighted 

and with top-weighted measures (all measures’ median equals 1). Only 4 networks (less than 

2%) had a Spearman’s correlation between 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹 and the relative treatment effect less 

than 90% (not reported). The correlation becomes less between the 𝑝𝑝𝐵𝐵𝐵𝐵 rankings and those 

obtained from the other two ranking metrics with Spearman’s 𝜌𝜌 median decreasing to 0.9 

and Kendall’s 𝜏𝜏 decreasing to 0.8. The Spearman’s correlation between these rankings was 

less than 90% in about 50% of the networks (in 116 and 111 networks for 𝑝𝑝𝐵𝐵𝐵𝐵 versus 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹 

and 𝑝𝑝𝐵𝐵𝐵𝐵 versus relative effect, respectively; results not reported). The pairwise agreement 

between the 𝑝𝑝𝐵𝐵𝐵𝐵 rankings and the other rankings also decreased when considering only top 

ranks (𝑝𝑝𝐵𝐵𝐵𝐵 versus 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹 Yilmaz’s 𝜏𝜏𝐴𝐴𝑖𝑖 = 0.77, Average Overlap = 0.83; 𝑝𝑝𝐵𝐵𝐵𝐵 versus relative 

treatment effect Yilmaz’s 𝜏𝜏𝐴𝐴𝑖𝑖 = 0.79, Average Overlap = 0.88). 

The SUCRAs from frequentist and Bayesian settings (𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐵𝐵) were compared 

in 126 networks (82 networks using the Average Overlap measure) as these reported OR and 

SMD as original measures. The relevant rankings do not differ much as shown by the median 

values of the agreement measures all equal to 1 and their narrow interquartile ranges (Table 

3). Nevertheless, a few networks showed a much lower agreement between the two SUCRAs. 

These networks provide posterior effect estimates for which the Normal approximation is not 

optimal, some of which due to rare outcomes. Such cases were however uncommon as in 

only 6% of the networks the Spearman’s correlation between 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐵𝐵 was less 

than 90%. Plots for the Normal distributions from the frequentist setting and the posterior 

distributions of the log odds-ratios (LOR) for a network with a Spearman’s 𝜌𝜌 of 0.6 between 

the two SUCRAs is available in online supplementary Figure S1 [22]. 

Figure 2 presents how Spearman’s 𝜌𝜌 and the Average Overlap vary with the average variance 

of the relative treatment effect estimates in a network (scatter plots for the Kendall’s 𝜏𝜏 and 

the Yilmaz’s 𝜏𝜏𝐴𝐴𝑖𝑖 are available in online supplementary Figure S2). The treatment hierarchies 

agree more in networks with more precise estimates (left hand side of the plots).  

The association between Spearman’s 𝜌𝜌 or Average Overlap and the relative range of variance 

in a network (here transformed to a double logarithm of the inverse values) are displayed in 
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Figure 3. On the right-hand side of each plot we can find networks with smaller differences in 

the precision of the treatment effect estimates. Treatment hierarchies for these networks 

show a larger agreement than for those with larger differences in precision. The plots of the 

impact of the relative range of variance on all measures are available in online supplementary 

Figure S3. 

The total sample size in a network over the number of interventions has a similar impact on 

the level of agreement between hierarchies. This confirms that the agreement between 

hierarchies increases for networks with a large total sample size compared to the number of 

treatments and, more generally, it increases with the amount of information present in a 

network (online supplementary Figure S4). 

Discussion 

Our empirical evaluation showed that in practice the level of agreement between treatment 

hierarchies is overall high for all ranking metrics used. The agreement between treatment 

hierarchies from 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆 and relative treatment effect was very often perfect. The agreement 

between the rankings from 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆 or relative treatment effect and the ranking from 𝑝𝑝𝐵𝐵𝐵𝐵 was 

good but decreased when the top-ranked interventions are of interest. The agreement is 

higher for networks with precise estimates and small imbalances in precision.  

Simulation studies [6,23] using theoretical examples have shown the importance of 

accounting for the precision in the estimation of the treatment effects when a hierarchy is to 

be obtained. However, we show that cases of extreme imbalance in the precision of the 

treatment effects are rather uncommon. 

Several factors can be responsible for imprecision in the estimation of the relative treatment 

effects in a network:  

• large sampling error, determined by a small sample size, small number of events or a 

large standard deviation; 

• poor connectivity of the network, when only a few links and few closed loops of 

evidence connect the treatments; 

• residual inconsistency; 

• heterogeneity in the relative treatment effects. 

Random-effects models tend to provide relative treatment effects with similar precision as 

heterogeneity increases. In contrast, in the absence of heterogeneity when fixed-effects 
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models are used, the precision of the effects can vary a lot according to the amount of data 

available for each intervention. In the latter case, the ranking metrics are likely to disagree. 

Also, the role of precision in ranking disagreement is more pronounced in cases where the 

interventions have similar effects. 

Our results also confirm that a treatment hierarchy can differ when the uncertainty in the 

estimation is incorporated into the ranking metric (by using, for example, a probabilistic 

metric rather than ranking the point estimate of the mean treatment effect) [8,24] and that 

rankings from the 𝑝𝑝𝐵𝐵𝐵𝐵 seem to be the most sensitive to differences in precision in the 

estimation of treatment effects. We showed graphically that the agreement is less in 

networks with more uncertainty and with larger imbalances in the variance estimates. 

However, we also found that such large imbalances do not occur frequently in real data and 

in the majority of cases the different treatment hierarchies have a relatively high agreement.  

We acknowledge that there could be other factors influencing the agreement between 

hierarchies that we did not explore, such as the chosen effect measures [25]. However, we 

think it is unlikely that such features play a big role in ranking agreement unless assumptions 

are violated or data in the network is sparse [26]. Adjustment via network meta-regression 

(for example, for risk of bias or small-study effects) might impact on the ranking of treatments 

not only by changing the point estimate but also by altering the total precision and the 

imbalance in the precision of the estimated treatment effects. We did not investigate the 

agreement between treatment hierarchies obtained from such adjusted analyses. We also 

did not explore non-methodological characteristics for networks with larger disagreement 

but we believe these characteristics are a proxy for the amount of information in a network, 

which is the main factor affecting the agreement between ranking metrics. For example, in 

some specific fields there are few or small randomised trials (e.g. surgery) and, as a 

consequence, the resulting networks will have less information. Also, smaller (hence more 

imprecise) networks might be published more often in journals with lower impact factor and 

get less citations than large and precise networks. 

To our knowledge, this is the first empirical study assessing the level of agreement between 

treatment hierarchies from ranking metrics in NMA and it provides further insights into the 

properties of the different methods. In this context, it is important to stress that neither the 

objective nor the findings of this empirical evaluation imply that a hierarchy for a particular 

metric works better or is more accurate than one obtained from another ranking metric. The 
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reason why this sort of comparison cannot be made is that each ranking metric address a 

specific treatment hierarchy problem. For example, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆 ranking addresses the issue 

of which treatment outperforms most of the competing interventions, while the ranking 

based on the relative treatment effect gives an answer to the problem of which treatment is 

associated with the largest average effect for the outcome considered.  

Our study shows that, despite theoretical differences between ranking metrics and some 

extreme examples, they produce very similar treatment hierarchies in published networks. In 

networks with large amount of data for each treatment, hierarchies based on SUCRA or the 

relative treatment effect will almost always agree. Large imbalances in the precision of the 

treatment effect estimates do not occur often enough to motivate a choice between the 

different ranking metrics. Therefore, our advice to researchers presenting results from NMA 

is the following: if the NMA estimated effects are precise, to use the ranking metric they 

prefer; if at least one NMA estimated effect is imprecise, to refrain from making bold 

statements about treatment hierarchy and present hierarchies from both probabilistic (e.g. 

SUCRA or rank probabilities) and non-probabilistic metrics (e.g. relative treatments effects). 
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Tables and Figures 

Table 1: Example of treatment hierarchies from different ranking metrics for a network of nine 
antihypertensive treatment for primary prevention of cardiovascular disease. 

Treatment 

Original data 
Fictional data with increased 

precision for Conventional treatment 
versus ARB 

𝒑𝒑𝑩𝑩𝑩𝑩 
ranks 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑭𝑭 
ranks 

Relative 
treatment 

effect ranks 

𝒑𝒑𝑩𝑩𝑩𝑩 
ranks 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑭𝑭 
ranks 

Relative 
treatment 

effect ranks 
Conventional 1 6 3.5 3 4 3.5 
Diuretic/Beta-blocker 2 1 1 1 1 1 
ARB 3 3 3.5 4.5 3 3.5 
CCB 4 2 2 2 2 2 
Alpha-blocker 5 7 7 4.5 7 7 
ACE-inhibitor 6 4 5 6.5 5 5 
Diuretic 7 5 6 6.5 6 6 
Placebo 8.5 9 9 8.5 9 9 
Beta-Blocker 8.5 8 8 8.5 8 8 
ACE=Angiotensin Converting Enzyme; CCB=Calcium Channel Blockers; ARB=Angiotensin Receptor Blockers. 𝑝𝑝𝐵𝐵𝐵𝐵: 
probability of producing the best value; 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹: surface under the cumulative ranking curve (calculated in 
frequentist setting); relative treatment effect stands for the relative treatment effect against fictional treatment of 
average performance. The first three rankings from the left-hand side are obtained using the original data; the 
equivalent three rankings on the right-hand side are produced by reducing the standard error of the Conventional 
versus ARB treatment effect from 0.7 to a fictional value of 0.01. 
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Table 2: Characteristics of the 232 NMAs included in the re-analysis.  

Characteristics of networks Median IQR 

Median number of treatments compared 6 (5, 9) 
Median number of studies included 19 (12, 34) 
Median total sample size 6100 (2514, 17264) 

 Number of NMAs % 

Beneficial outcome 97 41.8% 

Dichotomous outcome 185 79.7% 
Continuous outcome 47 20.3% 
Published before 2010 42 18.1% 
Ranking metric used in original publication 
(non-exclusive):   

Probability of producing the best value 83 35.8% 
Rankograms 7 3% 
Median or mean rank 3 1.3% 
SUCRA 16 6.9% 
Other 2 0.9% 

None 133 57.3% 

Published in general medicine journals† 125 53.9% 

Published in health services research journals‡ 3 1.3% 

Published in specialty journals 104 44.8% 
IQR: interquartile range; NMA: network meta-analysis; SUCRA: surface under the cumulative ranking 
curve. 
† Includes the categories Medicine, General & Internal, Pharmacology & Pharmacy, Research & 
Experimental, Primary Health Care. 
‡ Includes the categories Health Care Sciences & Services, Health Policy & Services. 
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Table 3: Pairwise agreement between treatment hierarchies obtained from the different ranking 
metrics measured by Spearman 𝝆𝝆, Kendall 𝝉𝝉, Yilmaz 𝝉𝝉𝑺𝑺𝑨𝑨 and Average Overlap.  

 𝒑𝒑𝑩𝑩𝑩𝑩 vs 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑭𝑭 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑭𝑭 vs relative 
treatment effect 

𝒑𝒑𝑩𝑩𝑩𝑩 vs relative 
treatment effect 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑭𝑭 vs 
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑩𝑩 

Spearman 𝝆𝝆 0.9 (0.8, 0.96) 1 (0.99, 1) 0.9 (0.8, 0.97) 1 (0.98, 1) 

Kendall 𝝉𝝉 0.8 (0.67, 0.91) 1 (0.95, 1) 0.8 (0.69, 0.91) 1 (0.93, 1) 

Yilmaz 𝝉𝝉𝑺𝑺𝑨𝑨 0.78 (0.6, 0.9) 1 (0.93, 1) 0.79 (0.65, 0.9) 1 (0.93, 1) 

Average Overlap 0.85 (0.72, 0.96) 1 (0.91, 1) 0.88 (0.79, 1) 1 (0.94, 1) 
Medians, 1st and 3rd quartiles are reported. 𝑝𝑝𝐵𝐵𝐵𝐵 : probability of producing the best value; 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐹𝐹: surface under 
the cumulative ranking curve (calculated in frequentist setting); 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝐵𝐵: surface under the cumulative ranking 
curve (calculated in Bayesian setting); relative treatment effect stands for the relative treatment effect against 
fictional treatment of average performance. 
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Figure 1: (left panel) Network graph of network of nine antihypertensive treatments for primary 
prevention of cardiovascular disease. Line width is proportional to inverse standard error of random 
effects model comparing two treatments. (right panel) Forest plots of relative treatment effects of 
overall mortality for each treatment versus placebo. RR: risk ratio; ACE=Angiotensin Converting 
Enzyme; CCB=Calcium Channel Blockers; ARB=Angiotensin Receptor Blockers; SE=standard error. 
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Figure 2: Scatter plots of the average variance in a network and the pairwise agreement between 
hierarchies from different ranking metrics. The average variance is calculated as the mean of the 
variances of the estimated treatment effects and describes the average information present in a 
network. More imprecise network are on the right-hand side of the plots. Spearman 𝜌𝜌 (top row) and 
Average Overlap (bottom row) values for the pairwise agreement between 𝑝𝑝𝐵𝐵𝐵𝐵  and SUCRA (first 
column), SUCRA and relative treatment effect (second column), 𝑝𝑝𝐵𝐵𝐵𝐵  and relative treatment effect 
(third column). Purple line: cubic smoothing spline with five degrees of freedom. 
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Figure 3: Scatter plots of the relative range of variance in a network and the pairwise agreement 
between hierarchies from different ranking metrics. The relative range of variance, calculated as 
𝑚𝑚𝑚𝑚𝑚𝑚

 
𝑆𝑆𝑆𝑆2− 𝑚𝑚𝑖𝑖𝑚𝑚𝑆𝑆𝑆𝑆2

𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑆𝑆2 
, indicates how much the information differs between interventions in the same 

networks. Networks with larger differences in variance are on the left-hand side of the plots. 
Spearman 𝜌𝜌 (top row) and Average Overlap (bottom row) values for the pairwise agreement between 
𝑝𝑝𝐵𝐵𝐵𝐵  and SUCRA (first column), SUCRA and relative treatment effect (second column), 𝑝𝑝𝐵𝐵𝐵𝐵  and relative 
treatment effect (third column). Purple line: cubic smoothing spline with five degrees of freedom. 
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Supplementary material 

Available at https://bmjopen.bmj.com/content/bmjopen/10/8/e037744/DC1/embed/inline-

supplementary-material-1.pdf?download=true. 
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Abstract 

Background: Network meta-analysis (NMA) produces complex outputs as many comparisons 

between interventions are of interest and a treatment ranking is often included in the aims 

of the evidence synthesis. The estimated relative treatment effects are usually displayed in a 

forest plot or in a league table and several ranking metrics are calculated and presented, such 

as the median and mean treatment ranks.  

Methods: We estimate relative treatment effects of each competing treatment against a 

fictional treatment using the ‘deviation from the means’ coding that has been used to 

parameterise categorical covariates in regression models. Based on this alternative 

parameterisation of the NMA model, we present a new ranking metric (PreTA: Preferable 

Than Average) interpreted as the probability that a treatment is better than a fictional 

treatment of average performance. 

Results: We compare PreTA with existing probabilistic ranking metrics in 232 networks of 

interventions. We use two networks of interventions, a network of 18 antidepressants for 

acute depression and a network of four interventions for heavy menstrual bleeding, to 

illustrate the methodology. The agreement between PreTA and existing ranking metrics 

depends on the precision with which relative effects are estimated.  

Conclusions: PreTA is a viable alternative to existing ranking metrics which can be interpreted 

as the probability of being better than the ‘average’ treatment. It enriches the decision-

making arsenal with a ranking metric which is interpreted as a probability and considers the 

entire ranking distributions of the involved treatments.  

 

Keywords: Alternative parameterisation; Deviation from means; Indirect evidence; 

Probabilistic ranking; Treatment hierarchy  
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Introduction 

The output that necessarily needs to be presented in a network meta-analysis (NMA) is a set 

of relative treatment effects between all competing treatments [1,2]. Such an output answers 

the primary question of NMA: to compare the performance of “all versus all” alternative 

treatment options for a healthcare condition. This output may be given in a forest plot against 

a common reference treatment or in a league table, where the names of the treatments are 

presented in the diagonal and each cell contains the relative treatment effect [3]. Such a table 

allows for the simultaneous presentation of two outcomes, or of the results from pairwise 

and network meta-analysis, below and above the diagonal. Additionally, by-products of 

relative treatment effects are often presented as ranking metrics of the included treatments. 

Results from NMA are often used to inform health-care decision making [4,5] and ranking 

metrics constitute an attempt to present such results in a coherent and understandable way.  

Several ranking metrics have been proposed to present NMA results, each one answering a 

different question. Ranking probabilities of each treatment being at each possible rank are 

calculated using simulation or resampling techniques either in a Bayesian or in a frequentist 

framework. Other ranking metrics include the surface under the cumulative ranking curve 

(SUCRA), that averages across all ranking probabilities for each treatment, and its frequentist 

analogue, P-score, which is calculated analytically [6,7]. SUCRA and P-score can be interpreted 

as the mean extent of certainty that a treatment is better than all the other treatments. As 

authors of [6] point out, however, “it is impossible to tell what constitutes a modest or large 

difference in SUCRA between two treatments, either statistically or clinically”.  

In this paper, we present an alternative parameterisation of the NMA model and we use it to 

develop a probabilistic ranking metric that naturally incorporates uncertainty and is a viable 

alternative to existing ranking metrics. In section 2, we re-parameterise the NMA model to 

derive treatment effects against a fictional treatment of average performance using the 

deviation of means coding that has been used to parameterise categorical covariates in 

regression models [8]. In section 3, we use the derived treatment effects to compute the 

probability of each treatment being better than the ‘average’ treatment. This ranking metric 

aids the interpretation of NMA results in classifying treatments as superior, equivalent and 

inferior to an imaginary ‘average’ treatment.  
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Reparameterisation of the NMA model 

Deviation from means coding in regression models 

We start with a short description of the deviation from means coding in regression models as 

described by Hosmer and Lemeshow [8]. This is an alternative parameterisation to the most 

common ‘reference cell coding’ in order to avoid the use of a reference level. According to 

the reference cell coding, a categorical independent variable with 𝑆𝑆 categories is expressed 

through 𝑆𝑆 − 1 dummy/indicator variables. 

Consider, for example, that we aim to estimate the effect of a covariate with four groups on 

the probability of an event. We fit a logistic regression model  

𝑔𝑔(𝑝𝑝(𝒙𝒙)) = 𝛾𝛾0 + 𝛾𝛾1𝒙𝒙𝟏𝟏 + 𝛾𝛾2𝒙𝒙𝟐𝟐 + 𝛾𝛾3𝒙𝒙𝟑𝟑 

where 𝒙𝒙 = (𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑)′ are the dummy variables for the covariate and 𝑔𝑔(𝑝𝑝(𝒙𝒙)) is the logit 

link function with 𝑝𝑝(𝒙𝒙) indicating the probability of event. According to the reference cell 

coding, the indicator variables are parameterised as shown in Table 1 and result into 

estimating logarithms of the relative odds ratios (logOR) between the categories represented 

by the values 0 and 1 in these indicator variables.  

According to the alternative deviation from means coding, the indicator variables express 

effects as deviations between each category mean (here the logit of the outcome in that 

category) from the overall (grand) mean (here the average logit outcome over all categories) 

as shown in Table 1. The model results in estimating the coefficients, interpreted as the 

relative effects among groups versus the average effect across all groups. Note that the 

exponential of the coefficients are not odds ratios because in the denominator is the average 

odds that includes the odds of the numerator. For further information and examples on the 

deviation from means coding, see [8].  

Notation for the NMA model 

In this section, we introduce some general notation for the NMA model. Let the entire 

evidence base consist of 𝑖𝑖 = 1, … , 𝑀𝑀 studies forming a set of treatments, denoted as 𝑘𝑘 =

1, … ,𝐾𝐾. The number of treatments in study 𝑖𝑖 is denoted as 𝐾𝐾𝑖𝑖. Index 𝑗𝑗 denotes a treatment 

contrast. A core assumption in NMA is that of transitivity, which implies that in a network of 

𝐾𝐾 treatments, and subsequently �𝐾𝐾2� possible relative treatment effects, only 𝐾𝐾 − 1 need to 

be estimated and the rest are derived as linear combinations of those [9,10]. The target 

parameter is therefore a vector 𝝁𝝁 of 𝐾𝐾 − 1 relative treatment effects 𝜇𝜇2, 𝜇𝜇3, … 𝜇𝜇𝐾𝐾, called the 
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vector of basic parameters [11,12]. With arm-level data we can model arm level parameters, 

for example the event probability for a binary outcome, in study 𝑖𝑖 and treatment arm 𝑘𝑘 

denoted as 𝑦𝑦𝑖𝑖𝑖𝑖[13]. A link function 𝑔𝑔(𝑦𝑦𝑖𝑖𝑖𝑖) maps the parameters of interest onto a scale 

ranging from minus to plus infinity and 𝑢𝑢𝑖𝑖  are the trial-specific baselines. For an overview of 

commonly used link functions in meta-analysis see [14]. All arm-level parameters 𝑦𝑦𝑖𝑖𝑖𝑖 across 

studies are collected in a vector 𝒚𝒚𝒂𝒂 of length ∑ 𝐾𝐾𝑖𝑖𝑚𝑚
𝑖𝑖=1 , where superscript 𝑀𝑀 stands for ‘arm-

level’. 

 With contrast-level data we model trial specific summaries, for example logOR, log risk ratio, 

mean difference or standardized mean difference [13]. Let 𝑦𝑦𝑖𝑖𝑖𝑖 be the observed effect size for 

treatment contrast 𝑗𝑗 in study 𝑖𝑖. The vector of the estimated contrasts across all studies is 

denoted as 𝒚𝒚𝒄𝒄 and is of length ∑ (𝐾𝐾𝑖𝑖 − 1)𝑚𝑚
𝑖𝑖=1 . The superscript 𝒄𝒄 indicates the fact that 

‘contrast-level’ data are modeled.   

We will first describe the arm-level (section 2.3) and then the contrast-level (section 2.4) NMA 

models using reference cell coding and the equivalent alternative deviation from the means 

parameterisation, which allows estimation of all treatments versus a fictional treatment of 

average performance. Sections 2.3 and 2.4 can be read independently, i.e. the reader can skip 

one of the two sections. Alternatively, the reader already familiar with the NMA models that 

use reference cell coding can skip 2.3.1 and 2.4.1. Table 2 can be used as a reference to the 

four forms of the NMA model (arm-level and contrast level with reference cell and deviation 

from the means coding), in case parts of the remainder of section 2 are skipped.  

We will exemplify the models using a hypothetical network of three treatments, A, B and C 

examined in four studies, one comparing A and B, one comparing A and C, one comparing B 

and C and one three-arm study comparing treatments A, B and C. The target vector of basic 

parameters is usually taken to include the relative effects of all treatments versus an arbitrary 

reference, here treatment A, and hence is 𝝁𝝁 = �
𝜇𝜇𝐴𝐴𝐵𝐵
𝜇𝜇𝐴𝐴𝐴𝐴�. The transitivity assumption implies 

consistency between relative treatment effects; in particular, it holds that 

𝜇𝜇𝐵𝐵𝐴𝐴 = 𝜇𝜇𝐴𝐴𝐴𝐴 − 𝜇𝜇𝐴𝐴𝐵𝐵. 

NMA with arm-level data 

Reference cell coding 

The model for study 1, comparing treatments A and B is shown in Table 2; 𝛿𝛿1,𝐴𝐴𝐵𝐵 denotes the 

random effect of study 1 for the comparison AB and 𝜏𝜏2 denotes heterogeneity. It is customary 
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to assume that heterogeneity is common across comparisons. The model is straightforwardly 

generalized for the other three studies (Table 2). 

In its general form, the NMA model using arm-based analysis can be written as 

𝒈𝒈(𝒚𝒚𝒂𝒂)  = 𝒁𝒁𝒁𝒁 + 𝑿𝑿𝒂𝒂𝝁𝝁 + 𝑾𝑾𝑾𝑾 

Equation 1 

where 𝒁𝒁 is the vector of baselines 𝑢𝑢𝑖𝑖  of length 𝑀𝑀, which can be assumed to be either fixed and 

unrelated to each other, or exchangeable drawn from a normal distribution [15]. We assume 

fixed and unrelated baseline effects for the remainder of this paper. Vector 𝑾𝑾 includes the 

study random effects 𝛿𝛿𝑖𝑖,𝑖𝑖 and follows the multivariate normal distribution 

𝑾𝑾~𝑵𝑵(𝟎𝟎,𝜮𝜮) 

Matrix 𝜮𝜮 is a block-diagonal between-study variance-covariance matrix of dimensions 

{∑ (𝐾𝐾𝑖𝑖 − 1)𝑚𝑚
𝑖𝑖=1 } × {∑ (𝐾𝐾𝑖𝑖 − 1)𝑚𝑚

𝑖𝑖=1 }. The matrices 𝒁𝒁,𝑿𝑿𝒂𝒂,𝑾𝑾 are design matrices linking the 

vector of baselines, basic parameters and random effects respectively with 𝒈𝒈(𝒚𝒚𝒂𝒂). The 

construction of these design matrices depends on the modeled arm-level parameters 𝑦𝑦𝑖𝑖𝑖𝑖 and 

is exemplified in the following example. 

For the example of Table 2, Equation 1 takes the form 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑔𝑔(𝑦𝑦1𝐴𝐴)
𝑔𝑔(𝑦𝑦1𝐵𝐵)
𝑔𝑔(𝑦𝑦2𝐴𝐴)
𝑔𝑔(𝑦𝑦2𝐴𝐴)
𝑔𝑔(𝑦𝑦3𝐵𝐵)
𝑔𝑔(𝑦𝑦3𝐴𝐴)
𝑔𝑔(𝑦𝑦4𝐴𝐴)
𝑔𝑔(𝑦𝑦4𝐵𝐵)
𝑔𝑔(𝑦𝑦4𝐴𝐴)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1⎠

⎟
⎟
⎟
⎟
⎟
⎞

�

𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
𝑢𝑢4

� +

⎝

⎜
⎜
⎜
⎜
⎜
⎛

0 0
1 0
0 0
0 1
0 0
−1 1
0 0
1 0
0 1⎠

⎟
⎟
⎟
⎟
⎟
⎞

�
𝜇𝜇𝐴𝐴𝐵𝐵
𝜇𝜇𝐴𝐴𝐴𝐴� +

⎝

⎜
⎜
⎜
⎜
⎜
⎛

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1⎠

⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜⎜
⎛

𝛿𝛿1,𝐴𝐴𝐵𝐵
𝛿𝛿2,𝐴𝐴𝐴𝐴
𝛿𝛿3,𝐵𝐵𝐴𝐴
𝛿𝛿4,𝐴𝐴𝐵𝐵
𝛿𝛿4,𝐴𝐴𝐴𝐴⎠

⎟⎟
⎞

 

with  

⎝

⎜⎜
⎛

𝛿𝛿1,𝐴𝐴𝐵𝐵
𝛿𝛿2,𝐴𝐴𝐴𝐴
𝛿𝛿3,𝐵𝐵𝐴𝐴
𝛿𝛿4,𝐴𝐴𝐵𝐵
𝛿𝛿4,𝐴𝐴𝐴𝐴⎠

⎟⎟
⎞

~𝑁𝑁

⎝

⎜⎜
⎛

⎝

⎜
⎛

0
0
0
0
0⎠

⎟
⎞

,

⎝

⎜
⎛
𝜏𝜏2 0 0 0 0
0 𝜏𝜏2 0 0 0
0 0 𝜏𝜏2 0 0
0 0 0 𝜏𝜏2 𝜏𝜏2 2⁄
0 0 0 𝜏𝜏2 2⁄ 𝜏𝜏2 ⎠

⎟
⎞

⎠

⎟⎟
⎞

 

Matrix 𝑿𝑿𝒂𝒂 indicates which elements of 𝝁𝝁 are estimated by each 𝑔𝑔(𝑦𝑦𝑖𝑖𝑖𝑖). It contains one row 

per study arm and one column per basic parameter. The first row corresponds to treatment 

arm A of the first study taking the value 0 both for 𝜇𝜇𝐴𝐴𝐵𝐵 and 𝜇𝜇𝐴𝐴𝐴𝐴. The second row indicates 

that 𝜇𝜇𝐴𝐴𝐵𝐵 is estimated in treatment arm B of the first study. Similarly, the construction of the 
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next rows of 𝑿𝑿𝒂𝒂, as well as that of 𝒁𝒁 and 𝑾𝑾, is implied by the arm-level data included in each 

study and the subsequent elements of 𝝁𝝁 to be estimated (Table 2). 

Deviation from means coding 

The above model in Equation 1 can be modified using the deviation from means coding [8]. 

The model will be parameterised in such a way to estimate the effects of each treatment 

versus the ‘average’ treatment. The target parameter of this model is a vector 𝒃𝒃 that includes 

𝐾𝐾 − 1 parameters 𝑏𝑏𝑖𝑖 with 𝑘𝑘 = 2, … ,𝐾𝐾 which are the effects of treatment 𝑘𝑘 versus the 

average effect over all treatments. One of the treatments – here treatment 1 – is arbitrarily 

chosen to be excluded for identifiability. Results do not depend on the choice of this 

‘reference’ treatment.  

For the deviation from means coding, the model will be 

𝒈𝒈(𝒚𝒚𝒂𝒂)  = 𝒁𝒁𝒁𝒁 + 𝑿𝑿𝒂𝒂∗𝒃𝒃 + 𝑾𝑾𝑾𝑾 

Equation 2 

with 𝑿𝑿𝒂𝒂∗  denoting the modified design matrix. The matrices 𝒁𝒁 and 𝑾𝑾 remain unchanged. The 

new design matrix 𝑿𝑿𝒂𝒂∗  will take values -1 for the arbitrarily chosen treatment that is not 

included in vector 𝒃𝒃; all other entries in the matrix are as in 𝑿𝑿𝒂𝒂 .  

Consider the example of Table 1 and the first two rows of the 𝑿𝑿𝒂𝒂 matrix, �0 0
1 0�, 

corresponding to the first study. According to the deviation from means coding as illustrated 

in Table 1, we chose a treatment (here treatment A) for which 𝑿𝑿𝒂𝒂∗  will take -1 for both dummy 

variables (both columns of the design matrix) and the group corresponding to treatment B 

takes 1 and 0 for the two columns of the design matrix, as in 𝑿𝑿𝒂𝒂. Thus, the respective part of 

the new design matrix will be �−1 −1
1 0 �. The model for study 1 with the alternative 

parameterisation is  

𝑔𝑔(𝑦𝑦1𝐴𝐴) = 𝑢𝑢1 − 𝑏𝑏𝐵𝐵 − 𝑏𝑏𝐴𝐴  

𝑔𝑔(𝑦𝑦1𝐵𝐵) = 𝑢𝑢1 + 𝑏𝑏𝐵𝐵 + 𝛿𝛿1,𝐴𝐴𝐵𝐵 

𝛿𝛿1,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁(0, 𝜏𝜏2) 

where the parameters 𝑏𝑏𝐵𝐵 and 𝑏𝑏𝐴𝐴  denote the effects of B versus average treatment and C 

versus average treatment respectively. The effect of A versus the average treatment is −𝑏𝑏𝐵𝐵 −

𝑏𝑏𝐴𝐴  and the relative effect of B versus A for the study 1 is derived as 

𝑔𝑔(𝑦𝑦1𝐵𝐵) − 𝑔𝑔(𝑦𝑦1𝐴𝐴) = 2𝑏𝑏𝐵𝐵 + 𝑏𝑏𝐴𝐴 + 𝛿𝛿1,𝐴𝐴𝐵𝐵 

The models for all studies are given in Table 2 and the full model is written as   
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⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑔𝑔(𝑦𝑦1𝐴𝐴)
𝑔𝑔(𝑦𝑦1𝐵𝐵)
𝑔𝑔(𝑦𝑦2𝐴𝐴)
𝑔𝑔(𝑦𝑦2𝐴𝐴)
𝑔𝑔(𝑦𝑦3𝐵𝐵)
𝑔𝑔(𝑦𝑦3𝐴𝐴)
𝑔𝑔(𝑦𝑦4𝐴𝐴)
𝑔𝑔(𝑦𝑦4𝐵𝐵)
𝑔𝑔(𝑦𝑦4𝐴𝐴)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1⎠

⎟
⎟
⎟
⎟
⎟
⎞

�

𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
𝑢𝑢4

� +

⎝

⎜
⎜
⎜
⎜
⎜
⎛

−1 −1
1 0
−1 −1
0 1
1 0
0 1
−1 −1
1 0
0 1 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

�𝑏𝑏𝐵𝐵𝑏𝑏𝐴𝐴
� +

⎝

⎜
⎜
⎜
⎜
⎜
⎛

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1⎠

⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜⎜
⎛

𝛿𝛿1,𝐴𝐴𝐵𝐵
𝛿𝛿2,𝐴𝐴𝐴𝐴
𝛿𝛿3,𝐵𝐵𝐴𝐴
𝛿𝛿4,𝐴𝐴𝐵𝐵
𝛿𝛿4,𝐴𝐴𝐴𝐴⎠

⎟⎟
⎞

 

Note that the reparameterisation described using the deviation from the means coding 

should not be confused with different parameterisations of the NMA model to produce 

relative treatment effects of all treatments versus each other. We present in the Additional 

file 1 an example of different parameterisations for specifying the means using reference cell 

coding and deviation from means coding using arm-level data. 

NMA with contrast-level data 

Reference cell coding 

In the contrast-level NMA, data from 𝐾𝐾𝑖𝑖 − 1 contrasts for each study are modeled. The model 

for study 𝑖𝑖 and treatment contrast 𝑗𝑗 is written as 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑖𝑖 

𝜀𝜀𝑖𝑖𝑖𝑖  ~ 𝑁𝑁�0, 𝑠𝑠𝑖𝑖𝑖𝑖2 � 

𝛿𝛿𝑖𝑖𝑖𝑖  ~ 𝑁𝑁(0, 𝜏𝜏2) 

with 𝜀𝜀𝑖𝑖𝑖𝑖 being the random error for study 𝑖𝑖 and treatment contrast 𝑗𝑗 where 𝑠𝑠𝑖𝑖𝑖𝑖2  is the sample 

variance of 𝑦𝑦𝑖𝑖𝑖𝑖. The random effect 𝛿𝛿𝑖𝑖𝑖𝑖 is defined as in the NMA with arm-level data. For 

example, for the first study the model is 

𝑦𝑦1,𝐴𝐴𝐵𝐵 = 𝜇𝜇𝐴𝐴𝐵𝐵 + 𝜀𝜀1,𝐴𝐴𝐵𝐵 + 𝛿𝛿1,𝐴𝐴𝐵𝐵 

𝜀𝜀1,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁�0, 𝑠𝑠1,𝐴𝐴𝐵𝐵
2 � 

𝛿𝛿1,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁(0, 𝜏𝜏2) 

and, similarly, for the other studies the models are given in Table 2.  

The contrast-based NMA model in its general form is then written as 

𝒚𝒚𝒄𝒄  = 𝑿𝑿𝒄𝒄𝝁𝝁 + 𝑾𝑾 + 𝜺𝜺 

Equation 3 

with the vector of random effects 𝑾𝑾 having the distribution given in the arm-level NMA model 

and the vector of random errors being distributed as  

𝜺𝜺~𝑵𝑵(𝟎𝟎,𝑺𝑺) 
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where 𝑺𝑺 is the block-diagonal within-study variance-covariance matrix of the same 

dimensions as 𝜮𝜮. The design matrix 𝑿𝑿𝒄𝒄 has dimensions ∑ (𝐾𝐾𝑖𝑖 − 1) × (𝐾𝐾 − 1𝑚𝑚
𝑖𝑖=1 ). The entries 

in each row describe the relationship between the vector of basic parameters 𝝁𝝁 and the 

vector of observed contrast-level data 𝒚𝒚𝒄𝒄.  

For example, in the illustrative network of three treatments and four studies, the full model 

is written as 

⎝

⎜
⎛

𝑦𝑦1,𝐴𝐴𝐵𝐵
𝑦𝑦2,𝐴𝐴𝐴𝐴
𝑦𝑦3,𝐵𝐵𝐴𝐴
𝑦𝑦4,𝐴𝐴𝐵𝐵
𝑦𝑦4,𝐴𝐴𝐴𝐴⎠

⎟
⎞

=

⎝

⎜
⎛

1 0
0 1
−1 1
1 0
0 1⎠

⎟
⎞
�
𝜇𝜇𝐴𝐴𝐵𝐵
𝜇𝜇𝐴𝐴𝐴𝐴� +

⎝

⎜⎜
⎛

𝛿𝛿1,𝐴𝐴𝐵𝐵
𝛿𝛿2,𝐴𝐴𝐴𝐴
𝛿𝛿3,𝐵𝐵𝐴𝐴
𝛿𝛿4,𝐴𝐴𝐵𝐵
𝛿𝛿4,𝐴𝐴𝐴𝐴⎠

⎟⎟
⎞

+

⎝

⎜
⎛

𝜀𝜀1,𝐴𝐴𝐵𝐵
𝜀𝜀2,𝐴𝐴𝐴𝐴
𝜀𝜀3,𝐵𝐵𝐴𝐴
𝜀𝜀4,𝐴𝐴𝐵𝐵
𝜀𝜀4,𝐴𝐴𝐴𝐴⎠

⎟
⎞

 

The first row of the 𝑿𝑿𝒄𝒄 matrix indicates that the first two-arm study estimates 𝜇𝜇𝐴𝐴𝐵𝐵. Note that 

the arm-level model using reference cell coding for study 1 implies that  

𝑔𝑔(𝑦𝑦1𝐵𝐵) − 𝑔𝑔(𝑦𝑦1𝐴𝐴) = 𝜇𝜇𝐴𝐴𝐵𝐵 + 𝛿𝛿1,𝐴𝐴𝐵𝐵 

and, consequently, the first row of the 𝑿𝑿𝒄𝒄 matrix results as the subtraction of the second 

minus the first row of 𝑿𝑿𝒂𝒂. 

Deviation from means coding 

The reparameterised model will differ from that presented in Equation 3 in two ways; the 

target parameter to be estimated, which again are the relative effects 𝒃𝒃 against an ‘average’ 

treatment, and the design matrix 𝑿𝑿𝒄𝒄∗. The matrix 𝑿𝑿𝒄𝒄∗can be easily obtained from 𝑿𝑿𝒂𝒂∗ by 

subtracting its rows within each study contrast.  

In its general form, the model is 

𝒚𝒚𝒄𝒄  = 𝑿𝑿𝒄𝒄∗𝒃𝒃 + 𝑾𝑾 + 𝜺𝜺 
Equation 4 

Consider in our example the part of 𝑿𝑿𝒂𝒂∗ corresponding to study 1, �−1 −1
1 0 �, then the row 

of  𝑿𝑿𝒄𝒄∗ corresponding to that first study will be (2 1), which is the subtraction of the two 

rows. This is also evident considering that 

𝑔𝑔(𝑦𝑦1𝐵𝐵) − 𝑔𝑔(𝑦𝑦1𝐴𝐴) = 2𝑏𝑏𝐵𝐵 + 𝑏𝑏𝐴𝐴 + 𝛿𝛿1,𝐴𝐴𝐵𝐵 

according to the arm-based model using the deviation from means coding.  

The models for studies 1 to 4 are given in Table 2 and can be written as 
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⎝

⎜
⎛

𝑦𝑦1,𝐴𝐴𝐵𝐵
𝑦𝑦2,𝐴𝐴𝐴𝐴
𝑦𝑦3,𝐵𝐵𝐴𝐴
𝑦𝑦4,𝐴𝐴𝐵𝐵
𝑦𝑦4,𝐴𝐴𝐴𝐴⎠

⎟
⎞

=

⎝

⎜
⎛

2 1
1 2
−1 1
2 1
1 2⎠

⎟
⎞
�𝑏𝑏𝐵𝐵𝑏𝑏𝐴𝐴

� +

⎝

⎜⎜
⎛

𝛿𝛿1,𝐴𝐴𝐵𝐵
𝛿𝛿2,𝐴𝐴𝐴𝐴
𝛿𝛿3,𝐵𝐵𝐴𝐴
𝛿𝛿4,𝐴𝐴𝐵𝐵
𝛿𝛿4,𝐴𝐴𝐴𝐴⎠

⎟⎟
⎞

+

⎝

⎜
⎛

𝜀𝜀1,𝐴𝐴𝐵𝐵
𝜀𝜀2,𝐴𝐴𝐴𝐴
𝜀𝜀3,𝐵𝐵𝐴𝐴
𝜀𝜀4,𝐴𝐴𝐵𝐵
𝜀𝜀4,𝐴𝐴𝐴𝐴⎠

⎟
⎞

 

The estimation of 𝒃𝒃 in the contrast-based NMA model using deviation from means coding 

(Equation 4) is 

𝒃𝒃� = ��𝑿𝑿𝒄𝒄∗�
′
�𝑺𝑺 + 𝜮𝜮��

−𝟏𝟏
𝑿𝑿𝒄𝒄∗�

−𝟏𝟏
�𝑿𝑿𝒄𝒄∗�

′
�𝑺𝑺 + 𝜮𝜮��

−𝟏𝟏
𝒚𝒚𝒄𝒄 

with variance-covariance matrix  

𝒗𝒗𝒂𝒂𝒗𝒗�𝒃𝒃�� = ��𝑿𝑿𝒄𝒄∗�
′
�𝑺𝑺 + 𝜮𝜮��

−𝟏𝟏
𝑿𝑿𝒄𝒄∗�

−𝟏𝟏
 

Vector 𝒃𝒃� includes the estimation of the 𝐾𝐾 − 1 parameters 𝑏𝑏𝑖𝑖 for 𝑘𝑘 = 2, … ,𝐾𝐾. The estimation 

of the effect of treatment 𝑘𝑘 = 1, which was chosen to be excluded for identifiability, versus 

the average effect is given as 

𝑏𝑏�1 = � �−𝑏𝑏�𝑖𝑖�
𝐾𝐾

𝑖𝑖=2
 

with variance ∑ 𝑣𝑣𝑀𝑀𝑟𝑟�𝑏𝑏�𝑖𝑖�𝐾𝐾
𝑖𝑖=2 + ∑ 2𝑐𝑐𝑐𝑐𝑣𝑣�𝑏𝑏�𝑖𝑖, 𝑏𝑏�𝑙𝑙�𝐾𝐾

𝑖𝑖≠𝑙𝑙, 𝑖𝑖<𝑙𝑙,𝑖𝑖>1,𝑙𝑙>1 . Note that results do not depend 

on the choice of reference treatment. 

Network estimates 𝝁𝝁�𝑵𝑵 can be derived as linear combinations of 𝒃𝒃�  

𝝁𝝁�𝑵𝑵 = 𝒀𝒀∗𝒃𝒃� 

with variance-covariance matrix 

𝒗𝒗𝒂𝒂𝒗𝒗(𝝁𝝁�𝑵𝑵) = 𝒀𝒀∗ ��𝑿𝑿𝒄𝒄∗�
′
�𝑺𝑺 + 𝜮𝜮��

−𝟏𝟏
𝑿𝑿𝒄𝒄∗�

−𝟏𝟏
(𝒀𝒀∗)′ 

and are equivalent to the network estimates derived using reference cell coding. Matrix 𝒀𝒀∗ of 

dimensions �𝐾𝐾2� × (𝐾𝐾 − 1) is constructed similarly to 𝑿𝑿𝒄𝒄∗  and connects 𝒃𝒃� with network 

estimates 𝝁𝝁�𝑵𝑵. We can use several methods for estimating 𝜮𝜮 such as likelihood-based methods 

and an extension of the DerSimonian and Laird method [11,16]. For the worked example, it 

holds that 

�
�̂�𝜇𝐴𝐴𝐵𝐵𝑁𝑁

�̂�𝜇𝐴𝐴𝐴𝐴𝑁𝑁

�̂�𝜇𝐵𝐵𝐴𝐴𝑁𝑁
� = �

2 1
1 2
−1 1

��𝑏𝑏
�𝐵𝐵
𝑏𝑏�𝐴𝐴
� = �

2𝑏𝑏�𝐵𝐵 + 𝑏𝑏�𝐴𝐴
𝑏𝑏�𝐵𝐵 + 2𝑏𝑏�𝐴𝐴
−𝑏𝑏�𝐵𝐵 + 𝑏𝑏�𝐴𝐴

� 

The contrast-level NMA model can be written as a two-stage model, as first described in 

[11,17,18], where results of separate pairwise meta-analyses are used instead of 𝒚𝒚𝒄𝒄 in the 

model described in Equation 3. Constructing the respective design matrix follows the logic of 
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constructing 𝑿𝑿𝒄𝒄 and its modification to parameterise the model using the deviation from 

means coding is straightforward. 

PreTA: Probability of a treatment being preferable than the average treatment 

Applying the deviation from means coding in NMA models results in the derivation of the 

effects of each treatment against a fictional treatment of ‘average’ performance. In this 

section we use the 𝐾𝐾 estimated parameters 𝑏𝑏�𝑖𝑖 to compute the probability of each treatment 

being better than the average treatment. To do so, we follow similar steps as those followed 

by Rücker and Schwarzer who derived the frequentist analogue of SUCRA, P-score [7]. 

Intermediate to the calculation of P-scores is the derivation of the probability that treatment 

𝑘𝑘 is better than treatment 𝑙𝑙, calculated as 

𝑃𝑃𝑖𝑖𝑙𝑙 = 𝑃𝑃(�̂�𝜇𝑖𝑖𝑙𝑙𝑁𝑁 > 0) = Φ�
�̂�𝜇𝑖𝑖𝑙𝑙𝑁𝑁

�𝑣𝑣𝑀𝑀𝑟𝑟(�̂�𝜇𝑖𝑖𝑙𝑙𝑁𝑁 )
� 

assuming that higher values represent a better outcome. Accordingly, the probability that 

treatment 𝑘𝑘 is better than the fictional treatment of average performance (PreTA) can be 

derived as 

𝑃𝑃𝑟𝑟𝑀𝑀𝑇𝑇𝑆𝑆𝑖𝑖 = 𝑃𝑃�𝑏𝑏�𝑖𝑖 > 0� = Φ

⎝

⎛ 𝑏𝑏�𝑖𝑖

�𝑣𝑣𝑀𝑀𝑟𝑟�𝑏𝑏�𝑖𝑖�⎠

⎞ 

The range of values for 𝑃𝑃𝑟𝑟𝑀𝑀𝑇𝑇𝑆𝑆𝑖𝑖 is (0.5, 1) if 𝑏𝑏�𝑖𝑖 > 0, and (0, 0.5) if 𝑏𝑏�𝑖𝑖 < 0. As it is the case with 

P-scores, the mean of 𝑃𝑃𝑟𝑟𝑀𝑀𝑇𝑇𝑆𝑆𝑖𝑖 across all treatments is 0.5; this means that across all 

treatments, the mean extent of certainty that a treatment is better than the fictional 

treatment of average performance is 0.5. Alternatively, the z-score 𝑏𝑏�𝑘𝑘

�𝑣𝑣𝑚𝑚𝑟𝑟�𝑏𝑏�𝑘𝑘�
 can be used to 

classify treatments according to their ‘distance’ from the fictional treatment. 

Of note is that the above calculations assume normality of the estimated parameters 𝑏𝑏�𝑖𝑖 . 

However, as 𝑏𝑏�𝑖𝑖 are not effect sizes expressed for example as logOR or mean differences, using 

them for hypothesis testing is not meaningful. Despite that, drawing 𝑏𝑏�𝑖𝑖 along with the 

associated 95% confidence intervals can be useful in capturing uncertainty around the ranking 

produced by relative treatment effects.  
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Comparison of PreTAs with existing ranking metrics: theoretical considerations and 

empirical analysis 

The, usually called, probability of being the best (pBV) is a popular ranking metric, usually 

calculated as the frequency that a particular treatment ranks in the first place, compared to 

the other alternative treatment options. pBV is interpreted as the probability of producing 

the best outcome value in a network of interventions (e.g. large effects for a beneficial 

outcome, or small effects for a harmful outcome). While its derivation might be sensible in 

some cases, we should not overlook the fact that it only takes into account one tail of the 

treatment effects’ distributions; e.g. it does not account for the probability to produce a small 

effect on a beneficial outcome. SUCRAs and P-scores are useful summaries of the entire 

ranking distributions; suggested interpretations include “the average proportion of 

competing treatments, which produce outcome values worse than treatment k” and “the 

mean extent of certainty that treatment k produces better values than all other treatments” 

[7,19]. 

We performed an empirical comparison of the treatment hierarchies obtained with PreTA, 

pBV and SUCRA, calculated using parametric bootstrap in a frequentist framework. The 

agreement between ranking metrics was measured using Kendall’s tau. We used a previously 

described database of NMAs published until 2015 including networks of four or more 

interventions [4]. We included networks with available outcome data in arm-level format, for 

which the primary outcome was analysed either as binary or as continuous. We used the 

effect measure used in the original review. Details about the inclusion criteria of the NMAs 

included in the database can be found in [4]. The empirical analysis was performed with the 

use of the nmadb package in R [20].  

Results of the empirical analysis are presented in section 5. In the following section, we 

illustrate our method in two networks of interventions, for which at least some disagreements 

between pBV, SUCRAs and PreTAs occur. 

Worked examples 

Network of antidepressants 

We illustrate the derivation of the method using as an example a recently published NMA 

comparing the effectiveness of antidepressants for major depression [21]. The primary 

efficacy outcome was response measured as 50% or greater reduction in the symptoms scales 
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between baseline and 8 weeks of follow up and results were presented as ORs. The authors 

aimed at comparing active antidepressants and considered the inclusion of both head-to-

head and placebo-controlled trials. The network comprised 522 double-blind, parallel, RCTs 

comparing 21 antidepressants or placebo. In line with previous empirical evidence [22,23], 

the authors have found evidence that the probability of receiving placebo decreases the 

overall response rate in a trial and dilutes differences between active compounds [24]. Based 

on this ground, authors of this NMA [21] synthesized only head-to-head studies separately to 

estimate the relative efficacy of active interventions. Here, we will focus on the latter network 

that included 179 head-to-head studies comparing 18 antidepressants (Figure 1a). 

Authors presented relative treatment effects between all pairs of the 18 antidepressants in a 

league table (figure 4 in [21]). When effect sizes are used to rank treatments, selecting a 

reference treatment against which to draw a forest plot of NMA effects is of particular 

importance. Although the choice of reference does not affect the estimates obtained, the 

uncertainty around NMA effects depends on the precision with which the selected reference 

treatment is associated. Figure 2 shows the relative treatment effects against fluoxetine and 

vortioxetine, the treatments that have been studied most and least respectively. While results 

are equivalent, choosing to present one over the other forest plot might implicitly lead to 

different interpretations on the similarity between the drugs based on visually inspecting the 

overlap of the confidence intervals. 

Figure 2 also shows the derived odds of each treatment versus the odds of a fictional 

treatment of average response with their confidence intervals. The line of no effect is included 

in the graph for illustration reasons, although 𝑀𝑀𝑏𝑏�𝑘𝑘 are not suited for hypothesis testing. The 

amount of uncertainty around the relative effects versus the average treatment is between 

the amount of uncertainty around the relative effects of fluoxetine and that of vortioxetine. 

In fact, presenting 𝑀𝑀𝑏𝑏�𝑘𝑘 with their confidence intervals offers a solution to the ambiguity of 

selecting a reference treatment, in terms of the uncertainty around them and the consequent 

conclusions about similarity of treatments. This example shows that presenting the effects 

versus a fictional treatment of average performance in a forest plot, in addition to a league 

table presenting all relative effects, might be a viable option in networks with many 

treatments and in absence of a “natural” reference treatment.  
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Figure 3 shows the PreTAs for the 18 antidepressants; treatments around 0.5 are the 

treatments closest to the fictional treatment. Vortioxetine has the largest point estimate 

against the fictional treatment but its estimation comes with great uncertainty. Escitalopram 

versus fictional is more precisely estimated in favor of escitalopram and it is associated with 

the greatest PreTA (97%). Duloxetine and milnacipran are the treatments closest to the 

fictional treatment. The point estimate of nefazodone versus the average treatment is slightly 

larger than that of duloxetine. Due to the associated uncertainty, however, there is 34% 

probability that nefazodone is superior to the fictional treatment, compared to 52% of 

duloxetine. Fluoxetine, clomipramine, fluvoxamine, trazodone and reboxetine are among the 

worst treatments in the network, either because of their point estimates against the fictional 

treatment or because of the respective precision in the estimation. It should be noted that 

the hierarchy illustrated in Figure 3 refers only to one outcome and does not take into account 

more complex hierarchy questions. 

Table 3 summarizes the ranking metrics for the network of antidepressants; pBV, the SUCRA 

and PreTAs are presented [6,25]. Escitalopram, which is the first treatment according to 

PreTA, ranks second according to SUCRA and third according to pBV. The disagreement 

between PreTA and pBV is explained by the fact that pBV favours vortioxetine and bupropion 

over escitalopram because of the mass under the right tail of the treatment effects’ 

distribution. The small disagreement between PreTA and SUCRA reflects their different 

interpretations: vortioxetine, ranked first according to SUCRA, beats on average a larger 

proportion of treatments compared to escitalopram (0.90 versus 0.83) but escitalopram has 

a larger probability to be better than the fictional average treatment compared to 

vortioxetine (0.93 versus 0.87). Similarly, fluoxetine ranks last according to PreTA whereas it 

is followed by trazodone and reboxetine according to SUCRA. This disagreement arises from 

the fact that the smaller 𝑣𝑣𝑀𝑀𝑟𝑟�𝑏𝑏�𝑖𝑖� for fluoxetine leads in a greater certainty that it is worse 

than the fictional treatment.  

Network of interventions for heavy menstrual bleeding 

We use as a second example a network of interventions for the treatment of heavy menstrual 

bleeding. The following four interventions were compared: levenorgestel-releasing 

intrauterine system (Mirena), first generation endometrial destruction, second generation 

endometrial destruction and hysterectomy [26]. The primary outcome was patients’ 

dissatisfaction at 12 months and the network included 20 studies (Figure 1b). 
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Figure 4 shows the treatment effects of the four treatments compared to a fictional average 

treatment and Appendix Figure 1 illustrates the relative position of each treatment according 

to its probability of being superior (green) or inferior (red) than the average treatment. There 

is a clear advantage of hysterectomy compared to the other three treatments with no 

treatment lying close to the ‘average treatment area’ (0.5 of PreTA). 

In this example, hysterectomy outperforms the other three treatments and ranks first 

according to all ranking metrics (PreTA: 0.99, pBV: 0.97, SUCRA: 0.99, Figure 4). Similarly, all 

ranking metrics agree that first generation endometrial destruction is the least preferable 

option (PreTA: 0.01, pBV: 0.00, SUCRA: 0.17, Figure 4). The disagreement between ranking 

metrics occurs for the second and third position between Mirena and second generation 

endometrial destruction. The two interventions are similar according to the point estimates 

but second generation is more precise. This leads to a greater certainty that second 

generation is worse than the average treatment compared to Mirena, resulting in a smaller 

PreTA (0.12). However, second generation beats on average more treatments than Mirena 

does since the relative effect of second generation is larger than that of Mirena; this results 

in a larger SUCRA for second generation (0.47) than for Mirena (0.37).  

Results of the empirical analysis 

We ended up with 232 networks to be included in the empirical analysis. There was strong 

agreement between hierarchies obtained by PreTAs and SUCRAs, shown by a median 

Kendall’s tau (in the following called ‘correlation’) of 0.94 with interquartile range (IQR) 0.86 

to 1.00). Almost half of the networks (101, 44%) had correlation of 1 while only two networks 

(1%) had correlation less than 0.6. The network with the smallest correlation (0.4) is shown in 

Appendix Figure 2 [27]; it is network of five treatments, where four of them have similar 

treatment effects compared to the fifth one. Thus, uncertainty in the produced treatment 

hierarchy is high and results in disagreement between PreTA and SUCRA rankings. The 

agreement between PreTAs and pBV was lower with a median correlation of 0.74 (IQR 0.61 

to 0.89) and 49 networks (21%) having correlation less than 0.6 (Appendix Figure 3). 

As with all ranking metrics, any disagreements between PreTAs and pBV or SUCRAs are 

attributed to the different ways they incorporate uncertainty in the estimation. Among 

treatments with similar point estimates, pBV favors treatments associated with uncertainty, 

as the tail of the distribution of treatments with uncertain effects is larger compared to the 
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tail of the distribution for treatments with similar point estimate but high precision. The 

probability 𝑃𝑃𝑖𝑖𝑙𝑙  tends to 0.5 with increased 𝑣𝑣𝑀𝑀𝑟𝑟(�̂�𝜇𝑖𝑖𝑙𝑙𝑁𝑁 ); consequently, the greater the 

uncertainty associated with a treatment, the more its P-score tends to 0.5. A recent empirical 

analysis investigates the role of uncertainty in the agreement between ranking metrics and a 

research paper describing theoretically the interpretation and the role of uncertainty in the 

various ranking metrics is in preparation [19,28]. 

Discussion 

In this paper, we derived the relative treatment effects of all treatments versus a fictional 

treatment of average performance. To that aim, we applied the alternative deviation from 

means coding to the construction of design matrices in NMA models. The application of the 

resulted coefficients is two-fold. First, they can be used to conveniently present NMA results 

in large networks without an obvious reference treatment. Such a presentation would by no 

means substitute the presentation of a league table, or any other way of presenting all NMA 

relative treatment effects, in the main manuscript or in the appendix of an NMA application. 

On the contrary, it may only serve as a complementary presentational tool for a quick grasp 

of evidence. Second, we developed a new ranking metric, PreTA, interpreted as the 

probability of each treatment being preferable than a fictional treatment of average 

performance. PreTAs can be produced in all NMAs as long as the eligibility of treatments is 

well justified. The notion of the average treatment refers to the average absolute efficacy 

among the treatments included in the systematic review. Thus, as with all ranking metrics, 

the interpretation of PreTAs is subject to the set of treatments compared.  

The usefulness of the interpretation of the 𝑏𝑏�𝑖𝑖 coefficients depends on whether the notion of 

an ‘average’ treatment makes sense. This challenge in interpreting the coefficients, and 

subsequently PreTA, however, may be less pronounced in NMA compared to other 

applications of regression models. This is because for most categorical explanatory variables 

(e.g. sex, ethnicity) the average category is meaningless (and this is likely the reason that the 

‘deviation from means’ coding is very rarely used in practice). In NMA, however, the fictional 

treatment (a treatment with average efficacy) could in theory be developed in the future, 

examined in clinical trials and included in systematic reviews. A further limitation of our 

method is that researchers may be inclined to use hypothesis testing when interpreting the 

𝑏𝑏�𝑖𝑖 coefficients, which is not suitable. Moreover, the coloring of figure 3 and Appendix figure 
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1 may lead to overinterpretation of the treatment hierarchy based on the dichotomy of being 

better or worse than the fictional average treatment. It should be noted that being better or 

worse than the average treatment does not necessarily mean that a treatment is good or bad; 

treatments may be more or less similar between them and the entire treatment effects’ 

distributions is the only way to get all the information about all possible comparisons. 

In the presence of a reference treatment, e.g. placebo, a simple and intuitive non-probabilistic 

ranking metric can be obtained by ranking all relative effects against placebo. Authors of NMA 

often present estimated treatment effects against placebo or standard care in a forest plot, 

providing implicitly or explicitly a treatment hierarchy. While such a hierarchy might be 

appropriate in many settings, they assume that treatment effects against placebo are of 

primary interest for the analysis. This might not be the case in other healthcare areas where 

one or more established therapies exists [29] or where researchers are concerned about the 

quality of the evidence from placebo-controlled studies [30–32] and choose to, exclusively or 

complementary, analyse a network without placebo. Moreover, it should be taken into 

account that the amount of data associated with the reference treatment might have an 

impact on the judgement regarding the similarity of the treatments, when such a judgement 

is made by visually inspecting a forest plot of NMA effects. Point estimates against the 

fictional average treatment provide a solution to this ambiguity. Furthermore, data from 

registries can be assumed to approximate the response of an average treatment, as 

participants may take any of the available interventions. Thus, using such external data, 

absolute effects can be approximated using the point estimates against the average.  

Alternative methods to avoid the reference group coding have been suggested in the 

literature. The application of quasi-variances [33], independently proposed as ‘floating 

absolute risks’ in epidemiology [34], do avoid setting a reference group. However, the scope 

of their use pertains to approximating a set of variances of the model contrasts such that the 

variances between any linear combination of contrasts can be derived without the disposal 

of the covariance matrix [35]. Thus, quasi-variances approaches target a different problem 

from the model described in this paper and the relevance of the estimated quantities to NMA 

is not clear. 

Producing a treatment hierarchy in NMA is popular, with 43% of published NMAs presenting 

at least one ranking metric [4], but also debatable. Recent developments tackle common 

criticisms against ranking metrics, pertaining to arguments that they are unstable [36,37], 
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uncertain [38], do not differentiate between clinically important and unimportant differences 

[2,39], do not account for multiple outcomes [40] and are not accompanied by a measure of 

uncertainty [41]. In particular, recent developments include extensions of P-scores for two or 

more outcomes [42], incorporation of clinically important values in their calculation [42], 

application of multiple-criteria decision analysis [43] and partial ordering of interventions 

according to multiple outcomes [44]. PreTAs can be easily extended to incorporate clinically 

important values as shown in [42]; such probabilities will then be interpreted as the 

probability of a treatment being better than the average by at least a certain value. 

PreTA is a viable alternative to existing ranking metrics, that can be interpreted as a 

probability and takes into account the entire ranking distribution. As it is also the case with 

PreTA, all existing ranking metrics use the distribution of NMA treatment effects to produce 

a hierarchy of the treatments. This hierarchy can be based either on probabilities like “which 

is the probability that each treatment produces the best outcome value” or “which is the 

probability of treatment A beating treatment B” or summaries of these probabilities. 

Rankograms visualise the entire ranking distributions for each treatment and SUCRAs, P-

scores and mean ranks summarise these probabilities in a single number for each treatment. 

The interpretation of these summaries is, however, not always straightforward. The 

development of PreTAs enriches the decision-making arsenal with a presentational and 

ranking tool, which can be interpreted in a clinically meaningful way. 
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Tables and Figures 

Table 1. Illustration of construction of dummy variables for modelling a categorical variable with 
four groups in regression using reference cell coding and deviation from means coding. 

Reference cell coding Deviation from means coding 

 Dummy variables  Dummy variables 

Covariate 𝑥𝑥1  𝑥𝑥2  𝑥𝑥3  Covariate 𝑥𝑥1  𝑥𝑥2  𝑥𝑥3  

Group 1 0 0 0 Group 1 -1 -1 -1 

Group 2 1 0 0 Group 2 1 0 0 

Group 3 0 1 0 Group 3 0 1 0 

Group 4 0 0 1 Group 4 0 0 1 

    Average* 0 0 0 
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Table 2. Arm-level and contrast-level NMA models using reference cell coding and deviation from means coding for a fictional network of three treatments 
examined in four studies. 
 

Study number, 

treatments 

compared 

Arm-based NMA Contrast-based NMA 

Reference cell coding Deviation from means coding Reference cell coding Deviation from means coding 

Study 1, AB 𝑔𝑔(𝑦𝑦1𝐴𝐴) = 𝑢𝑢1 

𝑔𝑔(𝑦𝑦1𝐵𝐵) = 𝑢𝑢1 + 𝜇𝜇𝐴𝐴𝐵𝐵 + 𝛿𝛿1,𝐴𝐴𝐵𝐵 

𝛿𝛿1,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝑔𝑔(𝑦𝑦1𝐴𝐴) = 𝑢𝑢1 − 𝑏𝑏𝐵𝐵 − 𝑏𝑏𝐴𝐴 

𝑔𝑔(𝑦𝑦1𝐵𝐵) = 𝑢𝑢1 + 𝑏𝑏𝐵𝐵 + 𝛿𝛿1,𝐴𝐴𝐵𝐵 

𝛿𝛿1,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝑦𝑦1,𝐴𝐴𝐵𝐵 = 𝜇𝜇𝐴𝐴𝐵𝐵 + 𝜀𝜀1,𝐴𝐴𝐵𝐵 + 𝛿𝛿1,𝐴𝐴𝐵𝐵 

𝜀𝜀1,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁�0, 𝑠𝑠1,𝐴𝐴𝐵𝐵
2 � 

𝛿𝛿1,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝑦𝑦1,𝐴𝐴𝐵𝐵 = 2𝑏𝑏𝐵𝐵 + 𝑏𝑏𝐴𝐴 + 𝜀𝜀1,𝐴𝐴𝐵𝐵 + 𝛿𝛿1,𝐴𝐴𝐵𝐵 

𝜀𝜀1,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁�0, 𝑠𝑠1,𝐴𝐴𝐵𝐵
2 � 

𝛿𝛿1,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁(0, 𝜏𝜏2) 

Study 2, AC 𝑔𝑔(𝑦𝑦2𝐴𝐴) = 𝑢𝑢2 

𝑔𝑔(𝑦𝑦2𝐴𝐴) = 𝑢𝑢2 + 𝜇𝜇𝐴𝐴𝐴𝐴 + 𝛿𝛿2,𝐴𝐴𝐴𝐴  

𝛿𝛿2,𝐴𝐴𝐴𝐴  ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝑔𝑔(𝑦𝑦2𝐴𝐴) = 𝑢𝑢2 − 𝑏𝑏𝐵𝐵 − 𝑏𝑏𝐴𝐴 

𝑔𝑔(𝑦𝑦2𝐴𝐴) = 𝑢𝑢2 + 𝑏𝑏𝐴𝐴 + 𝛿𝛿2,𝐴𝐴𝐴𝐴  

𝛿𝛿2,𝐴𝐴𝐴𝐴  ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝑦𝑦2,𝐴𝐴𝐴𝐴 = 𝜇𝜇𝐴𝐴𝐴𝐴 + 𝜀𝜀2,𝐴𝐴𝐴𝐴 + 𝛿𝛿2,𝐴𝐴𝐴𝐴  

𝜀𝜀2,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁�0, 𝑠𝑠2,𝐴𝐴𝐴𝐴
2 � 

𝛿𝛿2,𝐴𝐴𝐴𝐴  ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝑦𝑦2,𝐴𝐴𝐴𝐴 = 𝑏𝑏𝐵𝐵 + 2𝑏𝑏𝐴𝐴 + 𝜀𝜀2,𝐴𝐴𝐴𝐴 + 𝛿𝛿2,𝐴𝐴𝐴𝐴  

𝜀𝜀2,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁�0, 𝑠𝑠2,𝐴𝐴𝐴𝐴
2 � 

𝛿𝛿2,𝐴𝐴𝐴𝐴  ~ 𝑁𝑁(0, 𝜏𝜏2) 

Study 3, BC 𝑔𝑔(𝑦𝑦3𝐵𝐵) = 𝑢𝑢3 

𝑔𝑔(𝑦𝑦3𝐴𝐴) = 𝑢𝑢3 − 𝜇𝜇𝐴𝐴𝐵𝐵 + 𝜇𝜇𝐴𝐴𝐴𝐴 + 𝛿𝛿3,𝐵𝐵𝐴𝐴  

𝛿𝛿3,𝐵𝐵𝐴𝐴  ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝑔𝑔(𝑦𝑦3𝐵𝐵) = 𝑢𝑢3 + 𝑏𝑏𝐵𝐵 

𝑔𝑔(𝑦𝑦3𝐴𝐴) = 𝑢𝑢3 + 𝑏𝑏𝐴𝐴 + 𝛿𝛿3,𝐵𝐵𝐴𝐴  

𝛿𝛿3,𝐵𝐵𝐴𝐴  ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝑦𝑦3,𝐵𝐵𝐴𝐴 = −𝜇𝜇𝐴𝐴𝐵𝐵 + 𝜇𝜇𝐴𝐴𝐴𝐴 + 𝜀𝜀3,𝐵𝐵𝐴𝐴 + 𝛿𝛿3,𝐵𝐵𝐴𝐴  

𝜀𝜀3,𝐵𝐵𝐴𝐴  ~ 𝑁𝑁�0, 𝑠𝑠3,𝐵𝐵𝐴𝐴
2 � 

𝛿𝛿3,𝐵𝐵𝐴𝐴  ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝑦𝑦3,𝐵𝐵𝐴𝐴 = −𝑏𝑏𝐵𝐵 + 𝑏𝑏𝐴𝐴 + 𝜀𝜀3,𝐵𝐵𝐴𝐴 + 𝛿𝛿3,𝐵𝐵𝐴𝐴  

𝜀𝜀3,𝐵𝐵𝐴𝐴  ~ 𝑁𝑁�0, 𝑠𝑠3,𝐵𝐵𝐴𝐴
2 � 

𝛿𝛿3,𝐵𝐵𝐴𝐴  ~ 𝑁𝑁(0, 𝜏𝜏2) 

Study 4, ABC 𝑔𝑔(𝑦𝑦4𝐴𝐴) = 𝑢𝑢4 

𝑔𝑔(𝑦𝑦4𝐵𝐵) = 𝑢𝑢4 + 𝜇𝜇𝐴𝐴𝐵𝐵 + 𝛿𝛿4,𝐴𝐴𝐵𝐵 

𝑔𝑔(𝑦𝑦4𝐴𝐴) = 𝑢𝑢4 + 𝜇𝜇𝐴𝐴𝐴𝐴 + 𝛿𝛿4,𝐴𝐴𝐴𝐴  

𝛿𝛿4,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝛿𝛿4,𝐴𝐴𝐴𝐴  ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝑔𝑔(𝑦𝑦4𝐴𝐴) = 𝑢𝑢4 − 𝑏𝑏𝐵𝐵 − 𝑏𝑏𝐴𝐴 

𝑔𝑔(𝑦𝑦4𝐵𝐵) = 𝑢𝑢4 + 𝑏𝑏𝐵𝐵 + 𝛿𝛿4,𝐴𝐴𝐵𝐵 

𝑔𝑔(𝑦𝑦4𝐴𝐴) = 𝑢𝑢4 + 𝑏𝑏𝐴𝐴 + +𝛿𝛿4,𝐴𝐴𝐴𝐴 

𝛿𝛿4,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝛿𝛿4,𝐴𝐴𝐴𝐴  ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝑦𝑦4,𝐴𝐴𝐵𝐵 = 𝜇𝜇𝐴𝐴𝐵𝐵 + 𝜀𝜀4,𝐴𝐴𝐵𝐵 + 𝛿𝛿4,𝐴𝐴𝐵𝐵 

𝑦𝑦4,𝐴𝐴𝐴𝐴 = 𝜇𝜇𝐴𝐴𝐴𝐴 + 𝜀𝜀4,𝐴𝐴𝐴𝐴 + 𝛿𝛿4,𝐴𝐴𝐴𝐴  

𝜀𝜀4,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁�0, 𝑠𝑠4,𝐴𝐴𝐵𝐵
2 � 

𝛿𝛿4,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝜀𝜀4,𝐴𝐴𝐴𝐴  ~ 𝑁𝑁�0, 𝑠𝑠4,𝐴𝐴𝐴𝐴
2 � 

𝛿𝛿4,𝐴𝐴𝐴𝐴  ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝑦𝑦4,𝐴𝐴𝐵𝐵 = 2𝑏𝑏𝐵𝐵 + 𝑏𝑏𝐴𝐴 + 𝜀𝜀4,𝐴𝐴𝐵𝐵 + 𝛿𝛿4,𝐴𝐴𝐵𝐵 

𝑦𝑦4,𝐴𝐴𝐴𝐴 = 𝑏𝑏𝐵𝐵 + 2𝑏𝑏𝐴𝐴 + 𝜀𝜀4,𝐴𝐴𝐴𝐴 + 𝛿𝛿4,𝐴𝐴𝐴𝐴  

𝜀𝜀4,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁�0, 𝑠𝑠4,𝐴𝐴𝐵𝐵
2 � 

𝛿𝛿4,𝐴𝐴𝐵𝐵 ~ 𝑁𝑁(0, 𝜏𝜏2) 

𝜀𝜀4,𝐴𝐴𝐴𝐴  ~ 𝑁𝑁�0, 𝑠𝑠4,𝐴𝐴𝐴𝐴
2 � 

𝛿𝛿4,𝐴𝐴𝐴𝐴  ~ 𝑁𝑁(0, 𝜏𝜏2) 
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Table 3. Ranking metrics for the network of antidepressants and ranks according to each ranking 
metric in parentheses. pBV: probability of producing the best value; SUCRA: surface under the 
cumulative ranking curve; PreTA: preferable than average.   

 

 

  

  pBV SUCRA PreTA 

Agomelatine 0.01 (6) 0.64 (6) 0.74 (8) 

Amitriptyline 0.01 (7) 0.71 (5) 0.88 (4) 

Bupropion 0.20 (2) 0.80 (3) 0.87 (5) 

Citalopram 0.00 (17.5) 0.37 (13) 0.24 (13) 

Clomipramine 0.00 (15) 0.26 (14) 0.10 (14.5) 

Duloxetine 0.01 (9) 0.52 (9) 0.52 (9) 

Escitalopram 0.07 (3) 0.83 (2) 0.97 (1) 

Fluoxetine 0.00 (17.5) 0.23 (16) 0.01 (18) 

Fluvoxamine 0.00 (12.5) 0.25 (15) 0.10 (14.5) 

Milnacipran 0.01 (8) 0.48 (10) 0.46 (10) 

Mirtazapine 0.03 (4) 0.75 (4) 0.91 (3) 

Nefazodone 0.02 (5) 0.38 (12) 0.33 (12) 

Paroxetine 0.00 (10) 0.62 (7) 0.82 (6) 

Reboxetine 0.00 (15) 0.09 (18) 0.02 (16.5) 

Sertraline 0.00 (11) 0.46 (11) 0.38 (11) 

Trazodone 0.00 (15) 0.12 (17) 0.02 (16.5) 

Venlafaxine 0.00 (12.5) 0.61 (8) 0.78 (7) 

Vortioxetine 0.64 (1) 0.90 (1) 0.93 (2) 
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Figure 1. Panel a: Network plot of head-to-head randomized control trials comparing 18 
antidepressants. Panel b: Network plot of head-to-head randomized control trials comparing 4 
interventions for heavy menstrual bleeding. First and second generation interventions refer to 
endometrial destruction. Nodes and edges are unweighted.  
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Figure 2. Odds ratios of each treatment versus fluoxetine, odds of each treatment versus odds of a 
fictional treatment of average response 𝒆𝒆𝒙𝒙𝒑𝒑�𝒃𝒃�𝒌𝒌� and odds ratios versus vortioxetine in the 
network of head-to-head studies comparing 18 antidepressants. OR: odds ratio; CI: confidence 
interval. 
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Figure 3. Classifier of interventions for the network of 18 antidepressants  according to the 

probability of being preferable than average (PreTA).  
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Figure 4. Odds of each treatment versus odds of a fictional treatment of average response 𝒆𝒆𝒙𝒙𝒑𝒑�𝒃𝒃�𝒌𝒌�, probability of each treatment being better than the 
average (PreTA), probability of producing the best value (pBV) and SUCRA in the network of head-to-head studies comparing 4 interventions for heavy 
menstrual bleeding. Numbers in parentheses under PreTA, pBV and SUCRA represent ranks. CI: confidence interval; PreTA: preferable than average; pBV: 
probability of producing the best value; SUCRA: surface under the cumulative ranking curve. 
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In clinical fields where several competing treatments are available, network meta-analysis 

(NMA) has become an established tool to inform evidence-based decisions [1,2]. To 

determine which treatment is the most preferable, decision makers must account for both 

the quantity and the quality of the available evidence by considering both efficacy and safety 

outcomes as well as assessing the confidence in the obtained results [3]. It is, however, 

increasingly common to include in the NMA output a ranking of the competing interventions 

for a specific outcome of interest [4]. This article focuses on this type of rankings. 

A hierarchy of treatments (or ranking) is obtained by ordering a specific ranking metric. A 

ranking metric is a statistic measuring the performance of an intervention and is calculated 

from the estimated relative treatment effects and their uncertainty in NMA [5]. A commonly 

used ranking metric is the point estimate of the relative treatment effects against a natural 

common comparator such as placebo. The rankings are unaffected by choice of comparator, 

so any comparator may be chosen [6]. Other commonly used metrics are the probability of 

producing the best outcome value, 𝑝𝑝𝐵𝐵𝐵𝐵 (sometimes called probability of being the best), and 

the surface under the cumulative ranking curve (SUCRA) or their frequentist equivalent, the 

P-score [7]. Treatment hierarchies are a simple and straightforward way to display the relative 

Highlights/key points 

• Treatment hierarchies obtained by SUCRA, 𝑝𝑝𝐵𝐵𝐵𝐵, mean ranks and mean relative 

effects might differ when there are large differences in the amount of data for 

each treatment 

• Different hierarchies do not imply that one is wrong or better than the others, 

because the methods used to rank treatments address different “treatment 

hierarchy questions” based on how the “preferable treatment” is defined 

• The treatment at the top of the ranking may not reflect the “best clinical choice”: 

rankings must be considered together with relative treatment effects and quality 

of the evidence 

• Researchers should specify in the protocol whether among the aims of the 

synthesis is to obtain a treatment hierarchy and, if yes, which is the "treatment 

hierarchy question" they aim to answer 
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performance of an intervention and aid the decision-making process, so nowadays most 

publications and reports present rankings [4]. Furthermore, new ranking metrics are being 

developed to obtain treatment hierarchies that account for important clinical and 

methodological aspects, such as multiple outcomes (benefits and risks), clinically important 

differences and the quality of the evidence. 

Ranking metrics have been criticised in the literature for their lack of reliability, quoting, 

among other issues, limited interpretability and "instability" [8–11]. This criticism was based 

on the disagreement between hierarchies obtained by the different ranking metrics.  Consider 

for example the different treatment hierarchies in Figure 1 obtained by different ranking 

metrics for a network of nine antihypertensives for primary prevention of cardiovascular 

disease [12,13] (network graph shown in Figure 2). The treatment hierarchy based on 𝑝𝑝𝐵𝐵𝐵𝐵 

disagrees markedly with the other hierarchies, based on relative treatment effects and 

SUCRA, particularly with respect to the top treatment. Conventional therapy, an ill-defined 

treatment which was evaluated in only one trial, is in the first rank in the hierarchy based on 

𝑝𝑝𝐵𝐵𝐵𝐵 but only in the third/fourth and sixth rank in the hierarchies according to the relative 

treatment effects and SUCRA, respectively. 

Although such examples can occur, a recent empirical study showed that they are rather rare 

and that in general there is a high level of agreement between the hierarchies produced by 

the most common ranking metrics [13]. Agreement becomes less when, as in the network of 

antihypertensives, there are large differences in the precision between the treatment effect 

estimates. These differences in precision could be produced by different data features, such 

as sparse or poorly connected networks, heterogeneity and inconsistency [14]. 

Disagreements mostly relate to hierarchies based on 𝑝𝑝𝐵𝐵𝐵𝐵. Salanti et al also showed with 

theoretical examples how the uncertainty in the estimation of the relative treatment effects 

may affect the order of treatments in a ranking. In particular, they observed how rankings 

based on 𝑝𝑝𝐵𝐵𝐵𝐵 are more sensitive to differences in precision across treatment effect estimates 

than those based on SUCRA. When competing treatments have similar point estimates, 𝑝𝑝𝐵𝐵𝐵𝐵 

tends to rank first the treatment with the most imprecise effect (largest confidence or 

credible interval); a high 𝑝𝑝𝐵𝐵𝐵𝐵 therefore tends to accompany a high probability of producing 

the worst value. This observation is confirmed by the empirical results in Chiocchia et al [13] 

and can easily be seen in the antihypertensive treatments example where the Conventional 

therapy drops several ranks in the hierarchy based on SUCRA (Figure 1). As displayed by the 
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relative treatment effects of overall mortality for each treatment versus placebo in the forest 

plot in Figure 3, the point estimates are all quite similar but the risk ratio of conventional 

therapy versus placebo is the only one with a large degree of uncertainty. This very imprecise 

effect and the large differences in the precision of the treatment effect estimates lead to the 

conventional therapy being the top treatment according to the 𝑝𝑝𝐵𝐵𝐵𝐵 ranking and to the 

disagreement between the latter and the other two rankings. 

It is important to point out that all ranking metrics are statistics calculated from the data and 

none of them provides a “gold standard” against which each other ranking metric should be 

evaluated. Consequently, the criticism that some of the resulting treatment hierarchies are 

unreliable and unstable because they do not agree with other hierarchies is misplaced. But 

then, which hierarchy should one report and use to make decisions? The appropriate 

treatment hierarchy to use is the one resulting from the metric that answers the “treatment 

hierarchy question” that the systematic review is posing [14]. For example, if we are 

interested in "which treatment is the most likely to produce the largest positive change in the 

outcome” (e.g. relative drop in blood pressure or increase in quality of life) then 𝑝𝑝𝐵𝐵𝐵𝐵 will lead 

to the relevant treatment hierarchy. However, we think this is not the relevant treatment 

hierarchy question for patients. If we want to know "which treatment is likely to outperform 

most competitors?" then we should employ SUCRA rankings. Salanti et al report some 

examples of treatment hierarchy questions for rankings based on the most popular ranking 

metrics [14]. These questions and the way they are phrased are, however, not set in stone as 

they are suggestions based on the most common approaches and decision-making problems. 

Further research is needed in the field to understand what most patients and clinicians expect 

when they ask about the “best treatment”.  

Even with a careful choice of ranking metric, the treatment at the top of the resulting 

treatment hierarchy may not necessarily reflect the “best clinical choice”. Rankings cannot be 

used to understand whether differences between the interventions are clinically important 

or not. Rankings on their own have little meaning if not presented side-by-side with measures 

that quantify the differences in clinical outcomes, such as mean differences or risk ratios, 

often presented in league tables [15]. Several choices need to be made in the full decision-

making context: what outcomes are important and how do we trade-off between them? Do 

the observed differences reflect clinically important differences? What aspect do patients 

and/or clinicians value the most? How confident are we in the network meta-analysis results? 
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These are only some of the aspects that must be considered in the complex decision-making 

process. New ranking approaches have been developed to address these questions. Multi-

criteria decision analysis (MCDA) is a comprehensive methodology that incorporates 

preference information with a benefit-risk assessment identified by explicit trade-offs across 

multiple outcomes [16,17]. The P-score [7] was extended to account for clinically important 

relative differences on more than one outcome [18] while Spie charts can be used to visualise 

comparative effectiveness and safety on multiple outcomes of equal or different importance 

to a decision-maker [19]. The Probability of Selecting a Treatment to Recommend (POST-R) 

incorporates important information such as the confidence in the evidence or clinical priors 

in the ranking algorithm [20]. A first approach to evaluate the confidence in rankings from 

NMA was described by Salanti et al but it has not yet been implemented into a proper 

framework like CINeMA [3,21]. The aim to create evidence-based guidelines also inspired the 

threshold analysis approach, which is not a new ranking method per se, but it informs on the 

robustness of treatment recommendations by quantifying how much the evidence could 

change before the ranking of the treatments changes [22]. In view of these new methods, 

NMA has the potential to provide answers to more comprehensive and complex treatment 

hierarchy questions and aid the decision-making process more efficiently. 

If obtaining a treatment hierarchy is one of the aims of the synthesis, we recommend 

reviewers to specify the treatment hierarchy question a priori in the protocol, together with 

the appropriate ranking metric to answer that treatment hierarchy question. This is the first 

step to avoid misinterpreting the findings of the chosen ranking. The presented treatment 

hierarchy must be interpreted together with the relative treatment effects, with particular 

attention to the uncertainty in the estimations, as well as the quality of the synthesised 

evidence. More work focusing on the development of a comprehensive framework for 

evaluating the confidence in the rankings of treatments is needed. 
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Figures 

Figure 1: Example of treatment hierarchies from different ranking metrics for a network of nine 
antihypertensive treatment for primary prevention of cardiovascular disease. ACE=Angiotensin 
Converting Enzyme; CCB=Calcium Channel Blockers; ARB=Angiotensin Receptor Blockers. 𝑝𝑝𝐵𝐵𝐵𝐵: 
probability of producing the best value; 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆: surface under the cumulative ranking curve 
(calculated in frequentist setting). 
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Figure 2: Graph of network of nine antihypertensive treatments for primary prevention of 
cardiovascular disease. Line width is proportional to inverse standard error of estimates from random 
effects model comparing two treatments. ACE=Angiotensin Converting Enzyme; CCB=Calcium Channel 
Blockers; ARB=Angiotensin Receptor Blockers.  

 

Figure 3: Forest plots of relative treatment effects of overall mortality for each treatment versus 
placebo. RR=risk ratio; CI=confidence interval; ACE=Angiotensin Converting Enzyme; CCB=Calcium 
Channel Blockers; ARB=Angiotensin Receptor Blockers. 
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Abstract 

Background. The relative treatment effects estimated from network meta-analysis can be 

employed to rank treatments from the most preferable to the least preferable option. These 

treatment hierarchies are typically based on ranking metrics calculated from a single 

outcome. Some approaches have been proposed in the literature to account for multiple 

outcomes and individual preferences, such as the coverage area inside a spie chart, that, 

however, does not account for a trade-off between efficacy and safety outcomes. 

We present the net-benefit standardised area within a spie chart, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 to explore the 

changes in the treatment hierarchy with different trade-offs between benefit and harms of 

treatments, according to a particular set of preferences. 

Methods. We combine the standardised areas within spie charts for efficacy and 

safety/acceptability outcomes with a value λ specifying the trade-off between benefits and 

harms. We also describe how to derive absolute probabilities and convert outcomes on a scale 

between 0 and 1 for inclusion in the spie chart.  

Results. We illustrate how the treatment hierarchy of three published network meta-analyses 

changes as the trade-off λ varies. The decrease of the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 quantity appears more 

pronounced for some drugs e.g. haloperidol. Changes in the ranking seem more frequent 

when SUCRA is employed as outcome measures in the spie charts. 

Conclusions. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 should not be interpreted as a ranking metric but it is a simple approach 

that could help identifying which treatment is preferable when multiple outcomes are of 

interest and trading-off between benefits and harms is important. 
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Background 

When multiple competing treatments are available for a specific condition, network meta-

analysis (NMA) is used to identify which one is preferable by estimating relative treatment 

effects between each pair of treatments for a given outcome of interest (1,2). From these 

relative treatment effects, one can obtain summary statistics to measure the performance of 

an intervention. Such quantitative measures are called ranking metrics and are used to 

produce treatment hierarchies from the most preferable to the least preferable option. 

Among the most commonly reported treatment hierarchies we find those based on the 

probability of producing the best value, the SUCRA or its frequentist equivalent, the P-score, 

as well as the relative treatment effects against a reference or control treatment (e.g. 

placebo) (3–5). These ranking metrics are typically calculated for a single outcome, so network 

meta-analyses often present several treatment hierarchies for all harmful and beneficial 

outcomes. Extension of the existing ranking metrics that involve multiple outcomes have been 

recently presented. Mavridis et al. extended the idea of the P-score for multiple outcomes (6) 

and Daly et al. introduced a new framework, the spie charts, to measure the effectiveness or 

safety of each treatment on multiple outcomes (7). In a spie chart, the importance of each 

outcome is represented by the angle of an outcome-specific sector composing the spie chart, 

whose coverage area represents the quantity by which to rank the treatments. Efficacy and 

safety outcomes should not, however, be plotted on the same spie chart since a single value 

for the resulting area inside could mask important information on safety, so the authors 

suggest producing two separate spie charts, one for benefit and one for harmful outcomes. 

The aim of this paper is to combine the areas of the two spie charts to produce a visual and 

numerical way to explore the sensitivity of a treatment hierarchy to the different perceptions 

of the trade-off between benefit and harms of treatments, subject to a particular set of 

preferences in terms of outcome importance. We illustrate if and how the treatment 

hierarchy of three published network meta-analyses changes for varying levels of the trade-

off.   

Motivating examples 

The first example is a network of head-to-head studies investigating 18 antidepressants for 

the acute treatment of adults with major depressive disorder (8). We consider two efficacy 

dichotomous outcomes: response to treatment (defined as a reduction of at least 50% in the 
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score between baseline and week 8 on a standardised rating scale for depression) and 

remission. We also consider two outcomes about harms: acceptability (dropout due to any 

cause) and tolerability (dropout due to adverse events). The presentation of both beneficial 

and harmful outcomes is important for the clinical decision-making process, because some 

antidepressants, like amitriptyline, have a good efficacy profile, particularly in terms of 

response to treatment, but perform poorly in terms of acceptability and tolerability. 

The second example is a network of placebo-controlled studies of 32 antipsychotics for the 

acute treatment of adults with multi-episode schizophrenia (9). We consider one efficacy 

outcome, overall symptoms of schizophrenia as measured by rating scales, and four safety 

outcomes: use of antiparkinson medication (as a proxy of extra-pyramidal symptoms), weight 

gain, prolactin elevation, and QTc prolongation (as a proxy of cardiac risk). Some 

antipsychotics show a clear distinction between their own efficacy and safety profiles. For 

instance, haloperidol and olanzapine are among the most effective antipsychotics but they 

are associated with high rates of antiparkinson medication use and weight gain, respectively. 

The third example is a network of pharmacological and dietary‑supplement treatments for 

autism spectrum disorder (10). We consider two efficacy outcomes: changes in core 

symptoms for social-communication difficulties and repetitive behaviours as measured by any 

validated scale, and a safety outcome i.e. number of patients reporting any adverse event. 

Methods 

We first introduce the standardised area within a spie chart as reported by Daly et al. (7) and 

then we illustrate how we combine it with a trade-off value. Let us consider j=1, …, J outcomes 

for i=1, …, N treatments. The outcome measures 𝑦𝑦𝑖𝑖𝑖𝑖 range between 0 and 1 and have weights 

𝑤𝑤𝑖𝑖 reflecting the importance of each outcome. 

The standardised area within a spie chart (SAWIS) 

For a specific treatment i, the formula for the standardised area within a spie chart (𝑆𝑆𝑖𝑖𝑠𝑠𝑠𝑠𝑚𝑚) for 

𝐽𝐽 outcomes measures 𝑦𝑦𝑖𝑖𝑖𝑖 with weights 𝑤𝑤𝑖𝑖 is the following.: 

𝑆𝑆𝑖𝑖𝑠𝑠𝑠𝑠𝑚𝑚 =
1

2𝜋𝜋
�𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖2
𝐽𝐽

𝑖𝑖=1

 

The weights 𝑤𝑤𝑖𝑖 represent the angles of the J sectors composing the spie chart and range 

between 0 and 2π, where 𝑤𝑤𝑖𝑖 = 0 implies outcome j does not contribute to the area i.e., it is 

irrelevant for the purpose of ranking the treatments, and 𝑤𝑤𝑖𝑖 = 2𝜋𝜋 implies outcome j is the 
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sole contributor to the area i.e., it is the only outcome considered important to rank the 

treatments. Daly et al illustrate various methods to derive the contribution of the outcomes 

in terms of weights. These include but are not limited to preference elicitation from decision 

makers or experts, coefficients from prognostic models and, more generally, evidence in the 

literature (7). 

The outcome measures 𝑦𝑦𝑖𝑖𝑖𝑖 must be on the same scale, such as SUCRA or an absolute 

probability. However, this is challenging, as dichotomous, continuous or time-to-event 

outcomes are often relevant to the same treatment hierarchy. Below, we describe some 

existing methods to convert treatment effects of dichotomous and continuous outcomes to 

𝑦𝑦𝑖𝑖 scaled between 0 and 1. When it is not possible to perform these conversion methods 

and/or obtain absolute probabilities, the alternative of using SUCRA as the outcome measures 

𝑦𝑦𝑖𝑖 can always be employed, as shown by Daly et al (7). Another important aspect to note is 

that the chosen outcomes to be included in the same spie chart must also be measured in the 

same direction. That means, that higher values for the efficacy outcomes indicate a higher 

benefit, while higher values for the safety outcomes indicate a higher harm. Therefore, to 

outperform its competitors, a treatment would achieve the largest area within the efficacy 

spie chart but the smallest area within the safety spie chart.  

Transforming outcome measures on a 0 to 1 scale: Dichotomous outcomes 

For each treatment i the absolute probabilities 𝑦𝑦𝑖𝑖 for dichotomous outcomes can be 

calculated by using the odds ratios 𝑂𝑂𝑅𝑅𝑖𝑖 versus control from the outcome-specific network 

meta-analyses and the odds in the control group 𝑐𝑐𝑚𝑚𝑚𝑚𝑠𝑠𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑟𝑟𝑐𝑐𝑙𝑙 which can be estimated by 

meta-analysing the reference arms. 

𝑦𝑦𝑖𝑖 =
𝑐𝑐𝑚𝑚𝑚𝑚𝑠𝑠𝑖𝑖

1 + 𝑐𝑐𝑚𝑚𝑚𝑚𝑠𝑠𝑖𝑖
 

𝑐𝑐𝑚𝑚𝑚𝑚𝑠𝑠𝑖𝑖 = 𝑂𝑂𝑅𝑅𝑖𝑖 × 𝑐𝑐𝑚𝑚𝑚𝑚𝑠𝑠𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑟𝑟𝑐𝑐𝑙𝑙 

Transforming outcome measures on a 0 to 1 scale: Continuous outcomes 

If the continuous outcome is measured using different scales (e.g. symptoms scores or rating 

scales), the mean differences 𝑀𝑀𝑀𝑀𝑖𝑖  of each treatment i versus the control group can be 

calculated using the relative standardised mean differences 𝑆𝑆𝑀𝑀𝑀𝑀𝑖𝑖  versus the control group 

from the outcome-specific network meta-analysis and the pooled standard deviation 
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𝑆𝑆𝑀𝑀𝑝𝑝𝑐𝑐𝑐𝑐𝑙𝑙𝑀𝑀𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟.𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠 from a representative study in the field reporting the outcome in the 

chosen scale.  

𝑀𝑀𝑀𝑀𝑖𝑖 = 𝑆𝑆𝑀𝑀𝑀𝑀𝑖𝑖 ∗ 𝑆𝑆𝑀𝑀𝑝𝑝𝑐𝑐𝑐𝑐𝑙𝑙𝑀𝑀𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟.𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠 

The absolute mean effects 𝑀𝑀𝑖𝑖  for each treatment i can then be calculated from the 𝑀𝑀𝑀𝑀𝑖𝑖  and 

the absolute mean for the control group 𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑚𝑚𝑟𝑟.𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠 from the chosen representative study 

𝑀𝑀𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑖𝑖 + 𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑚𝑚𝑟𝑟.𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠 

If the continuous outcome is measured on a scale where a defined minimum and maximum 

value exists, the obtained absolute mean effects 𝑀𝑀𝑖𝑖  for each treatment i are standardised 

using the minimum and maximum values, 𝑚𝑚𝑖𝑖𝑀𝑀 and 𝑚𝑚𝑀𝑀𝑥𝑥, for the relevant outcome scale 

𝑦𝑦𝑖𝑖 =  
𝑀𝑀𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑀𝑀
𝑚𝑚𝑀𝑀𝑥𝑥− 𝑚𝑚𝑖𝑖𝑀𝑀

 

If the continuous outcome is not defined within a specific range, it can be converted into a 

"response/risk" probabilities 𝑦𝑦𝑖𝑖 from the control group probability 𝑝𝑝𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑟𝑟𝑐𝑐𝑙𝑙 and the 𝑆𝑆𝑀𝑀𝑀𝑀𝑖𝑖  of 

group i versus the control group using Furukawa's method (11–13) 

𝑦𝑦𝑖𝑖 = Φ(𝑆𝑆𝑀𝑀𝑀𝑀𝑖𝑖 − Φ−1(1 − 𝑝𝑝𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑟𝑟𝑐𝑐𝑙𝑙)) 

where Φ is the cumulative standard normal distribution and Φ−1 its inverse. The control 

group probabilities 𝑝𝑝𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑟𝑟𝑐𝑐𝑙𝑙 represents the probability of scores of patients beyond the cut-

off value C used to distinguish between those with and without treatment response (11) 

𝑝𝑝𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑟𝑟𝑐𝑐𝑙𝑙 = Φ�
𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑟𝑟𝑐𝑐𝑙𝑙 − 𝑆𝑆

𝑆𝑆𝑀𝑀𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑟𝑟𝑐𝑐𝑙𝑙
� 

If dichotomous variables defining how many patients reach the specific cut-off C are available, 

𝑝𝑝𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑟𝑟𝑐𝑐𝑙𝑙 can also be estimated from a meta-analysis of proportions. 

 

Another way to transform outcomes measured on the same scale is with the use of a partial 

value function as described by Tervonen et al (14). The idea is to bound the region in which 

the outcome values are likely to fall by setting two points 𝑐𝑐𝑖𝑖′  and 𝑐𝑐𝑖𝑖′′as the least and most 

preferable values, respectively. A (linear) partial value function could then be defined as 

𝑢𝑢𝑖𝑖(𝑐𝑐𝑖𝑖) = (𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖′ )/(𝑐𝑐𝑖𝑖′′ − 𝑐𝑐𝑖𝑖′ ), for an outcome where larger values are preferable, and it is 

normalized by 𝑢𝑢𝑖𝑖(𝑐𝑐𝑖𝑖′ ) = 0 and 𝑢𝑢𝑖𝑖(𝑐𝑐𝑖𝑖′ ) = 1. 

Benefit and harms trade-off: the net-benefit standardised area within a spie chart (𝑺𝑺𝑺𝑺𝑾𝑾𝑺𝑺𝑺𝑺) 

To trade-off between benefits and harms, we introduce a value λ to combine the standardised 

areas within the spie charts for efficacy and safety/acceptability outcomes within the same 
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formula. The latter will produce a numerical quantity, the net-benefit standardised area 

within a spie chart (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) that could be interpreted as the “net benefit“ with the treatment, 

measured on a SAWIS difference scale 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖𝐵𝐵 − 𝜆𝜆 ∗ 𝑆𝑆𝑖𝑖𝐻𝐻. 

𝑆𝑆𝑖𝑖𝐵𝐵 is the (standardised) area within the spie chart for benefit from efficacy outcomes, while 

𝑆𝑆𝑖𝑖𝐻𝐻 is the (standardised) area within the spie chart for “harm”, that includes safety and 

acceptability outcomes. We set 𝜆𝜆 = 1 𝑢𝑢� , where u can vary between 1 and infinity to reflect 

the amount of harms we are willing to accept for an increase in benefit, measured on SAWIS 

scale.  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 cannot easily be interpreted as a ranking metric. In our case, the coverage area within 

a spie chart is a weighted sum of the efficacy or safety and acceptability outcomes measured 

on a 0-1 scale, and the obtained value is a difference adjusted for a specific willingness-to-pay 

in terms of negative outcomes (𝜆𝜆). In addition, it might be difficult to elicit plausible values 

for u, as the unit of measure is not a probability, change in scores or a specific outcome that 

the patients would be able to trade-off with harms, but the area inside a spie chart. Therefore, 

our approach should be employed as a sensitivity analysis to show whether and how the 

treatment hierarchy changes according to different trade-offs between benefits and harms, 

i.e. for the whole range of 𝜆𝜆 values. 

Implementation 

We developed an R function to implement the methods described above, incorporating the 

Spie chart R code provided by its authors. The user must specify the efficacy outcomes and 

safety/acceptability outcomes as separate vectors and, similarly, the relative vectors of 

weights as values between 0 and 1. The weights values must add up to 1 for the efficacy and 

safety/acceptability outcomes separately. The user is also required to specify outcome labels 

as string vectors for the two set of outcomes separately and a value, or a series of values, for 

the trade-off λ. As a default, the function calculates the quantity, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖, for λ ranging from 

0 to 1 by increment of 0.05. The function returns three objects: the benefit spie charts and 

the harms spie charts, both containing the plot and the value of the area within the spie chart 

for each treatment; and a table showing the values for the treatments at each value of λ. The 

R code for the function and to reproduce the plots in this paper are freely available on GitHub 

(https://github.com/esm-ispm-unibe-ch/nb-spie). 

https://github.com/esm-ispm-unibe-ch/nb-spie
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Results 

Ranking antidepressants  

We present the variability in treatment hierarchy obtained with our approach for the network 

of 18 antidepressants for the acute treatment of adults with major depressive disorder. We 

show how the hierarchy varies for different values of the trade-off 𝜆𝜆. 

We first estimated for each treatment the absolute probabilities of response or risk for the 

outcomes as described in the methods section. Fluoxetine was chosen as the reference drug, 

so we estimated the odds in this control group by meta-analysing the Fluoxetine arms. 

The probability 𝑝𝑝𝐹𝐹𝑙𝑙𝑠𝑠𝑐𝑐𝑚𝑚𝑚𝑚𝑠𝑠𝑖𝑖𝑚𝑚𝑚𝑚 for response, remission, dropouts for any cause and due to side 

effects were 0.569, 0.347, 0.236 and 0.078, respectively, as reported in Table 1. 

After consulting with clinicians, we gave a weight of 0.3 and 0.7 to the response and remission 

outcomes respectively; and weights of 0.7 and 0.3 to dropout due to side effects and dropout 

due to any cause outcomes, respectively. 

The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 values for different 𝜆𝜆 are shown in Additional File 1 and illustrated in Figure 1. 

The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 for all drugs decreases with increasing values of 𝜆𝜆. However, this decrease is less 

pronounced for some treatments, such as vortioxetine which, for the chosen weights, seems 

to retain its high performance for any trade-off between beneficial and harmful outcomes. 

Whatever the trade-off between benefits and risks, reboxetine remains the worst-performing 

drug, while vortioxetine, bupropion and escitalopram are consistently the best options. 

Ranking antipsychotics  

To transform the efficacy outcome, overall symptoms of schizophrenia, to the same scale, we 

selected a representative study that measures change in symptoms on the PANSS scale (15). 

The mean endpoint 𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑚𝑚𝑟𝑟.𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠 and 𝑆𝑆𝑀𝑀𝑝𝑝𝑐𝑐𝑐𝑐𝑙𝑙𝑀𝑀𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟.𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠 for Placebo were 98.4 and 21.4, 

respectively.  

Since the outcomes must be between 0 and 1, we have standardised the absolute mean score 

using the formula 𝑦𝑦𝑖𝑖 =  𝑀𝑀𝑖𝑖−30
210− 30

  (PANSS score can range between 30 and 210).  Then, the 

obtained value was reversed so that higher values equate to better outcomes (1 − 𝑦𝑦𝑖𝑖). 

The absolute probabilities of risk for antiparkinson medication use were obtained by 

estimating the odds for placebo by meta-analysing the reference arms; 𝑝𝑝𝑖𝑖𝑙𝑙𝑚𝑚𝑐𝑐𝑚𝑚𝑏𝑏𝑐𝑐 was 

estimated to be 0.093 as reported in Additional File 2. 
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The absolute risk probabilities for the remaining harmful outcomes, weight gain, prolactin 

elevation, and QTc prolongation, were converted from the corresponding continuous 

outcomes. To derive the control group probabilities 𝑝𝑝𝑖𝑖𝑙𝑙𝑚𝑚𝑐𝑐𝑚𝑚𝑏𝑏𝑐𝑐 we used the dichotomous 

variables to distinguish patients with and without the response based on a cut-off C of at least 

7% for weight gain and study-specific thresholds for prolactin elevation and QTc prolongation. 

The estimated 𝑝𝑝𝑖𝑖𝑙𝑙𝑚𝑚𝑐𝑐𝑚𝑚𝑏𝑏𝑐𝑐values were 0.034, 0.019 and 0.006, for weight gain, prolactin 

elevation, and QTc prolongation, respectively. The obtained probabilities and corresponding 

SMDs for each treatment are available in Additional File 2. Due to missing data for one or 

more outcomes, 18 antipsychotics were not included in the calculation of the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖.  

After consulting with clinicians, we gave a weight of 0.4 and 0.3 to antiparkinson medication 

use and weight gain, respectively, to reflect the importance of these safety outcomes 

compared to the other two which were both given a weight of 0.15. The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 values for 

different 𝜆𝜆 values are shown in Additional File 3 and illustrated in Figure 2. 

The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 for all drugs decreases with increasing values of 𝜆𝜆. However, this decrease is 

particularly evident for haloperidol which, for the chosen weights, goes from being among 

the best treatments to being the worst active drug when the willingness to tolerate harms 

decreases. Whatever the trade-off between benefits and harms, placebo remains at the 

bottom of the hierarchy, while amisulpride, olanzapine and risperidone remain in the first 

three ranks. 

Ranking pharmacological and dietary‑supplement treatments for autism spectrum disorder  

For this example, it was not possible to estimate absolute probabilities or use any of the 

conversion methods described previously due to the variety of scales used to calculate this 

score and the lack of a specific cut-off to define responders using these scales. Therefore, for 

all outcomes we first estimated the relative treatment effects (SMD for continuous outcomes 

and OR for the safety outcome) of each intervention versus placebo and then, produced the 

relative SUCRA that we employed as the outcome measures to plot in the spie charts. For the 

safety outcome, any adverse event, we calculated the SUCRA to reflect the fact that in the 

spie chart framework higher values for the safety outcomes must indicate a higher harm, as 

previously explained. Therefore, the corresponding SUCRA ranking is reversed compared to 

what the ordinary SUCRA ranking for a safety outcome would look like, i.e. the best-

performing treatment in terms of rate of adverse events will have the lowest SUCRA value in 
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our case, instead of the highest value, as it would usually be. The calculated SUCRA values are 

reported in Additional File 4.  

We calculated 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 by giving a weight of 0.5 to both efficacy outcomes, i.e. social-

communication difficulties and repetitive behaviours. Due to missing data for one or two 

outcome, 16 interventions were not included in the calculation of the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖. 

The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 values for different trade-off values are reported in Additional File 5 and 

illustrated in Figure 3. Again, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 decreases with increasing values of 𝜆𝜆, even though 

this decrease is nearly null for some treatments, such as folinic acid, sapropterin and 

sertraline. While, for some treatments the decrease in the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 values is so large that they 

drop several ranks in the hierarchy, moving from being the most efficacious treatments to 

being among the least beneficial ones, particularly risperidone (ranked 1st at 𝜆𝜆 = 0 and 15th at 

𝜆𝜆 = 1) and guanfacine (ranked 6th at 𝜆𝜆 = 0 and last at 𝜆𝜆 = 1). 

Unlike the previous examples, the range of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 for this example is quite broad, also 

including negative values. This is because the quantities here are calculated from SUCRA 

which estimates the probability that a treatment X outperforms its competitors Y, Z etc, and 

hence depends on the performance of the competitors Y, Z, etc. Consequently, SUCRA values 

can be large (e.g. above 0.7) for "high-performing" interventions, even when the outcome is 

rare (as in safety outcomes).  Therefore, the SUCRA values for harms outcomes, when 

included in the spie charts and, in turn, in the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 formula, could then produce negative 

values if the corresponding SUCRAs for positive outcome are not of the same magnitude.   

Discussion 

In this manuscript we presented an innovative and easy-to-implement method to show if a 

ranking varies for different trade-offs between efficacy and safety/acceptability outcomes by 

combining the area within a spie chart for both benefit and harms. We tested this approach 

with three different datasets (and different outcomes) from network meta-analyses 

published in different fields of mental health; however, this approach can be generalised to 

other fields of medicine. 

Being an extension of the spie chart approach, our method shares the same limitations. First, 

this is only applicable when all treatments have data available for all outcomes of interest. As 

the author of the original spie chart paper reports, one option is to include the outcome by 

assigning it a value of zero in the calculation of the areas within the spie charts for those 
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treatments where it is unavailable. In this way, however, such treatments are penalised for 

having missing outcomes. For this reason, in the antipsychotics and autism examples, we 

decided to exclude the treatments with missing outcome data, following implicitly the 

assumption that these are not irrelevant for the ranking purpose. Second, the choice of 

outcomes to be included and their relative importance should be based on clinical grounds. 

Furthermore, the choice of outcomes must be given careful consideration not only in relation 

to the availability of data, but also with regards to the correlation between the specific 

outcomes and the information they provide. For example, for antidepressants we decided to 

exclude the continuous outcome from rating scales as we thought they would essentially 

duplicate the information already given by the response rate.  Then, the values produced by 

this method depends greatly on the choice of the outcome measures to include in the spie 

charts which must also be on the same scale.  We described how we obtained the absolute 

probabilities for binary outcomes and how we converted the continuous outcomes into a 

dichotomous scale (11–13) but reviewers should consult available guidance in the literature 

to obtain absolute probabilities for other type of outcomes e.g., rate or time-to-event data 

(16). Also, the absolute probabilities of response (or risk) do not account for the uncertainty 

of the relative treatment effects, which is instead encompassed by a measure such as the 

SUCRA, or the P-score, which is still between 0 and 1. We have, however, shown in the third 

illustrative example how the use of SUCRA affect the results in our approach, creating more 

variation in the rankings for the range of the trade-odd values. As explained in the Results 

section, this is due to the nature of the SUCRA, whose value depends on the performance of 

a treatment compared to all of its competitors. We, therefore, recommend the use of 

absolute probabilities or absolute mean effects scaled between 0 and 1 over the use of SUCRA 

values for our approach, whenever possible. 

We want to draw attention to the fact that the quantities produced by our method should 

not be regarded as a new ranking metric. The interpretation of the area within a spie chart is 

not straightforward itself as it depends on the outcome measures plotted in the charts. 

Additionally, the final quantity we obtain from our approach is a difference between the two 

coverage areas adjusted for a specified trade-off value which adds further complexity to the 

interpretation. Specifically, we made our trade-off equal to the ratio 1 / u, where u could be 

set by the answer to questions such as "how many harms could you tolerate for an increase 

in benefit?" so that λ ranges between 0 and 1. However, u should theoretically be in the same 
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unit as 𝑆𝑆𝑖𝑖𝐻𝐻 , the value of the area within the harms spie chart, to make the final value of our 

method interpreted as a proper ranking metric. Future research could expand this method 

and focus on the interpretation of the trade-off λ and the produced value. We recommend 

instead to use our method as a sensitivity analysis to check if a specific ranking produced in 

NMA stays consistent when multiple outcomes and different preferences are considered. 

These preferences are expressed by the importance of the different outcomes, represented 

by the weights in the spie chart formula and by the trade-off λ that allows to indicate "how 

much" one is willing to tolerate to see an increase in benefit. As this trade-off is bound to 

remain very subjective, it is even more important to examine the variability of the ranking for 

all plausible values of λ.  

In the broader context of comparing treatments, health economic modelling and, specifically, 

cost-effectiveness analysis is sometimes used on top of NMA results to assess the 

performance of competing treatments accounting for costs. Our proposed approach draws 

from the cost-effectiveness methodology and uses the net-benefit concept to trade-off 

between harms and benefits. However, costs cannot be considered the same as harms as they 

can also vary substantially by country and reimbursement systems. When the interest lies in 

ranking treatments according to the cost-effectiveness profile, a proper economic evaluation 

approach would be required. 

Various visualization tools have been proposed lately to facilitate communication of results 

for multiple outcomes (17,18). However, unlike our new approach, they all assume the 

different benefits and harms outcomes have the same importance. We believe that the 

method described in this paper could help clinicians, patients and policy makers to make 

decisions on which treatment is preferable when multiple outcomes are of interest and 

trading-off between benefits and harms is important. 

 

List of abbreviations 

NMA:  Network meta-analysis 

SUCRA: Surface under the cumulative ranking curve 

OR:  Odds ratio 

MD:  Mean difference 

SMD:  Standardised mean difference 
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SD:  Standard deviation 

SAWIS:  Net-benefit standardised area within a spie chart 
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Tables and Figures 

Table 1: Probabilities of response to treament, remission, dropout due to any cause and dropout 
due to side effects, estimated from the network of 18 antidepressants for the acute treatment of 
adults with major depressive disorder 

 Response Remission 
Dropout for 
any cause 

Dropout for 
side effects 

agomelatine 0.613 0.362 0.208 0.054 

amitriptyline 0.621 0.381 0.268 0.120 

bupropion 0.645 0.459 0.249 0.095 

citalopram 0.583 0.333 0.228 0.074 

clomipramine 0.569 0.378 0.315 0.171 

duloxetine 0.601 0.383 0.295 0.150 

escitalopram 0.638 0.393 0.212 0.066 

fluoxetine 0.569 0.347 0.236 0.078 

fluvoxamine 0.569 0.365 0.276 0.098 

milnacipran 0.596 0.352 0.249 0.070 

mirtazapine 0.629 0.371 0.246 0.096 

nefazodone 0.579 0.342 0.273 0.117 

paroxetine 0.611 0.375 0.244 0.092 

reboxetine 0.524 0.295 0.329 0.162 

sertraline 0.596 0.357 0.234 0.067 

trazodone 0.540 0.340 0.278 0.109 

venlafaxine 0.610 0.377 0.262 0.124 

vortioxetine 0.682 0.413 0.176 0.062 
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Figure 1: 𝑺𝑺𝑺𝑺𝑾𝑾𝑺𝑺𝑺𝑺𝒊𝒊 for the network of 18 antidepressants for the acute treatment of major depressive 
disorder. The benefit spie chart included response and remission with weights 0.3 and 0.7, 
respectively, and the harm spie chart included dropout due to side effects and due to any cause with 
weights 0.7 and 0.3, respectively.  

 
 

Figure 2: 𝑺𝑺𝑺𝑺𝑾𝑾𝑺𝑺𝑺𝑺𝒊𝒊 quantity for the network of antipsychotics for the acute treatment of multi-
episode schizophrenia. The benefit spie chart included only one efficacy outcome, overall symptoms 
of schizophrenia, and the harm spie chart included antiparkinson medication use, weight gain, 
prolactin elevation, and QTc prolongation with weights 0.4, 0.3, 0.15 and 0.15, respectively.  
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Figure 3: 𝑺𝑺𝑺𝑺𝑾𝑾𝑺𝑺𝑺𝑺𝒊𝒊 quantity for the network of pharmacological and dietary‑supplement treatments 
for autism spectrum disorder. The benefit spie chart included two efficacy outcomes, changes in core 
symptoms for social-communication difficulties, and repetitive behaviours with weights 0.5 each, and 
the safety spie chart included one outcome, any adverse event.  
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Additional files 

Additional file 1: Values of the 𝑺𝑺𝑺𝑺𝑾𝑾𝑺𝑺𝑺𝑺 for the network of 18 antidepressants 
 

agom amit bupr cita clom dulo esci fluo fluv miln mirt nefa paro rebo sert traz venl vort 
0 0.204 0.217 0.272 0.18 0.197 0.211 0.23 0.181 0.19 0.194 0.215 0.182 0.21 0.143 0.196 0.169 0.211 0.259 
0.5 0.20325 0.2154 0.27075 0.17905 0.1945 0.2089 0.22915 0.17995 0.1885 0.1929 0.21375 0.1804 0.2088 0.14045 0.195 0.1674 0.20945 0.2584 
0.1 0.2025 0.2138 0.2695 0.1781 0.192 0.2068 0.2283 0.1789 0.187 0.1918 0.2125 0.1788 0.2076 0.1379 0.194 0.1658 0.2079 0.2578 
0.15 0.20175 0.2122 0.26825 0.17715 0.1895 0.2047 0.22745 0.17785 0.1855 0.1907 0.21125 0.1772 0.2064 0.13535 0.193 0.1642 0.20635 0.2572 
0.2 0.201 0.2106 0.267 0.1762 0.187 0.2026 0.2266 0.1768 0.184 0.1896 0.21 0.1756 0.2052 0.1328 0.192 0.1626 0.2048 0.2566 
0.25 0.20025 0.209 0.26575 0.17525 0.1845 0.2005 0.22575 0.17575 0.1825 0.1885 0.20875 0.174 0.204 0.13025 0.191 0.161 0.20325 0.256 
0.3 0.1995 0.2074 0.2645 0.1743 0.182 0.1984 0.2249 0.1747 0.181 0.1874 0.2075 0.1724 0.2028 0.1277 0.19 0.1594 0.2017 0.2554 
0.35 0.19875 0.2058 0.26325 0.17335 0.1795 0.1963 0.22405 0.17365 0.1795 0.1863 0.20625 0.1708 0.2016 0.12515 0.189 0.1578 0.20015 0.2548 
0.4 0.198 0.2042 0.262 0.1724 0.177 0.1942 0.2232 0.1726 0.178 0.1852 0.205 0.1692 0.2004 0.1226 0.188 0.1562 0.1986 0.2542 
0.45 0.19725 0.2026 0.26075 0.17145 0.1745 0.1921 0.22235 0.17155 0.1765 0.1841 0.20375 0.1676 0.1992 0.12005 0.187 0.1546 0.19705 0.2536 
0.5 0.1965 0.201 0.2595 0.1705 0.172 0.19 0.2215 0.1705 0.175 0.183 0.2025 0.166 0.198 0.1175 0.186 0.153 0.1955 0.253 
0.55 0.19575 0.1994 0.25825 0.16955 0.1695 0.1879 0.22065 0.16945 0.1735 0.1819 0.20125 0.1644 0.1968 0.11495 0.185 0.1514 0.19395 0.2524 
0.6 0.195 0.1978 0.257 0.1686 0.167 0.1858 0.2198 0.1684 0.172 0.1808 0.2 0.1628 0.1956 0.1124 0.184 0.1498 0.1924 0.2518 
0.65 0.19425 0.1962 0.25575 0.16765 0.1645 0.1837 0.21895 0.16735 0.1705 0.1797 0.19875 0.1612 0.1944 0.10985 0.183 0.1482 0.19085 0.2512 
0.7 0.1935 0.1946 0.2545 0.1667 0.162 0.1816 0.2181 0.1663 0.169 0.1786 0.1975 0.1596 0.1932 0.1073 0.182 0.1466 0.1893 0.2506 
0.75 0.19275 0.193 0.25325 0.16575 0.1595 0.1795 0.21725 0.16525 0.1675 0.1775 0.19625 0.158 0.192 0.10475 0.181 0.145 0.18775 0.25 
0.8 0.192 0.1914 0.252 0.1648 0.157 0.1774 0.2164 0.1642 0.166 0.1764 0.195 0.1564 0.1908 0.1022 0.18 0.1434 0.1862 0.2494 
0.85 0.19125 0.1898 0.25075 0.16385 0.1545 0.1753 0.21555 0.16315 0.1645 0.1753 0.19375 0.1548 0.1896 0.09965 0.179 0.1418 0.18465 0.2488 
0.9 0.1905 0.1882 0.2495 0.1629 0.152 0.1732 0.2147 0.1621 0.163 0.1742 0.1925 0.1532 0.1884 0.0971 0.178 0.1402 0.1831 0.2482 
0.95 0.18975 0.1866 0.24825 0.16195 0.1495 0.1711 0.21385 0.16105 0.1615 0.1731 0.19125 0.1516 0.1872 0.09455 0.177 0.1386 0.18155 0.2476 
1 0.189 0.185 0.247 0.161 0.147 0.169 0.213 0.16 0.16 0.172 0.19 0.15 0.186 0.092 0.176 0.137 0.18 0.247 
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Additional file 2: Outcomes for the network of 32 antipsychotics for the treatment of schizophrenia 

 id Prob 
efficacy 

Prob 
antiparkinson 

Prob weight 
gain SMD weight Prob 

prolactin SMD prolactin Prob QTc 
Prolongation SMD qtc 

Amisulpride 1 0.707 0.141 0.036 0.031 0.055 0.480 0.038 0.759 
Aripiprazole 2 0.669 0.127 0.050 0.180 0.011 -0.203 0.006 0.000 
Asenapine 3 0.666 0.113 0.076 0.392 0.028 0.168 0.012 0.269 

Brexpiprazole 4 0.650 0.152 0.051 0.194 0.026 0.134 0.004 -0.086 
Cariprazine 5 0.661 0.219 0.054 0.217 0.015 -0.102 0.005 -0.048 

Chlorpromazine 6 0.673 0.212 0.125 0.678 0.026 0.127 #N/A #N/A 
Clopenthixol 7 0.669 0.516 0.032 -0.021 #N/A #N/A #N/A #N/A 

Clozapine 8 0.726 0.041 0.131 0.704 #N/A #N/A #N/A #N/A 
Flupentixol 9 0.671 0.331 0.043 0.114 0.016 -0.057 #N/A #N/A 

Fluphenazine 10 0.650 0.404 #N/A #N/A #N/A #N/A #N/A #N/A 
Haloperidol 11 0.676 0.340 0.047 0.156 0.084 0.698 0.007 0.099 
Iloperidone 12 0.659 0.145 0.109 0.594 0.029 0.185 0.014 0.337 

Levomepromazine 13 0.623 0.131 0.118 0.642 #N/A #N/A #N/A #N/A 
Loxapine 14 0.673 0.324 0.067 0.331 #N/A #N/A #N/A #N/A 

Lurasidone 15 0.663 0.192 0.041 0.087 0.037 0.287 0.004 -0.104 
Molindone 16 0.669 0.297 0.008 -0.586 #N/A #N/A #N/A #N/A 
Olanzapine 17 0.686 0.097 0.138 0.738 0.027 0.147 0.011 0.228 

Paliperidone 18 0.678 0.156 0.082 0.434 0.186 1.182 0.007 0.049 
Penfluridol 19 0.667 0.344 #N/A #N/A #N/A #N/A #N/A #N/A 

Perazine 20 0.655 0.068 0.030 -0.054 0.004 -0.592 #N/A #N/A 
Perphenazine 21 0.687 0.263 #N/A #N/A #N/A #N/A #N/A #N/A 

Pimozide 22 0.656 0.804 #N/A #N/A 0.024 0.095 #N/A #N/A 
Placebo 23 0.620 0.093 0.034 0.000 0.019 0.000 0.006 0.000 

Quetiapine 24 0.669 0.101 0.098 0.534 0.015 -0.084 0.009 0.162 
Risperidone 25 0.685 0.170 0.083 0.439 0.177 1.148 0.011 0.225 
Sertindole 26 0.667 0.090 0.119 0.649 0.052 0.451 0.053 0.917 
Sulpiride 27 0.677 0.249 0.025 -0.126 #N/A #N/A #N/A #N/A 
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Thioridazine 28 0.685 0.103 #N/A #N/A #N/A #N/A #N/A #N/A 
Thiothixene 29 0.695 0.420 #N/A #N/A #N/A #N/A #N/A #N/A 

Trifluoperazine 30 0.649 0.288 0.026 -0.112 #N/A #N/A #N/A #N/A 
Ziprasidone 31 0.669 0.163 0.039 0.063 0.028 0.167 0.017 0.412 

Zotepine 32 0.692 0.198 0.170 0.873 0.000 -1.782 #N/A #N/A 
Zuclopenthixol 33 0.681 0.286 0.100 0.544 #N/A #N/A #N/A #N/A 
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Additional file 3: Values of the 𝑺𝑺𝑺𝑺𝑾𝑾𝑺𝑺𝑺𝑺 for the network of antipsychotics 

λ Amisulpr
ide 

Aripipraz
ole 

Asenapin
e 

Brexpipr
azole 

Cariprazi
ne 

Haloperi
dol 

Iloperido
ne 

Lurasido
ne 

Olanzapi
ne 

Paliperid
one Placebo Quetiapi

ne 
Risperid

one 
Sertindol

e 
Ziprasido

ne 
0 0.5 0.447 0.444 0.423 0.437 0.457 0.434 0.44 0.471 0.459 0.384 0.448 0.47 0.445 0.447 
0.05 0.49955 0.44665 0.44365 0.4225 0.436 0.4546 0.4334 0.43925 0.4705 0.45815 0.3838 0.44765 0.4691 0.4446 0.44645 
0.1 0.4991 0.4463 0.4433 0.422 0.435 0.4522 0.4328 0.4385 0.47 0.4573 0.3836 0.4473 0.4682 0.4442 0.4459 
0.15 0.49865 0.44595 0.44295 0.4215 0.434 0.4498 0.4322 0.43775 0.4695 0.45645 0.3834 0.44695 0.4673 0.4438 0.44535 
0.2 0.4982 0.4456 0.4426 0.421 0.433 0.4474 0.4316 0.437 0.469 0.4556 0.3832 0.4466 0.4664 0.4434 0.4448 
0.25 0.49775 0.44525 0.44225 0.4205 0.432 0.445 0.431 0.43625 0.4685 0.45475 0.383 0.44625 0.4655 0.443 0.44425 
0.3 0.4973 0.4449 0.4419 0.42 0.431 0.4426 0.4304 0.4355 0.468 0.4539 0.3828 0.4459 0.4646 0.4426 0.4437 
0.35 0.49685 0.44455 0.44155 0.4195 0.43 0.4402 0.4298 0.43475 0.4675 0.45305 0.3826 0.44555 0.4637 0.4422 0.44315 
0.4 0.4964 0.4442 0.4412 0.419 0.429 0.4378 0.4292 0.434 0.467 0.4522 0.3824 0.4452 0.4628 0.4418 0.4426 
0.45 0.49595 0.44385 0.44085 0.4185 0.428 0.4354 0.4286 0.43325 0.4665 0.45135 0.3822 0.44485 0.4619 0.4414 0.44205 
0.5 0.4955 0.4435 0.4405 0.418 0.427 0.433 0.428 0.4325 0.466 0.4505 0.382 0.4445 0.461 0.441 0.4415 
0.55 0.49505 0.44315 0.44015 0.4175 0.426 0.4306 0.4274 0.43175 0.4655 0.44965 0.3818 0.44415 0.4601 0.4406 0.44095 
0.6 0.4946 0.4428 0.4398 0.417 0.425 0.4282 0.4268 0.431 0.465 0.4488 0.3816 0.4438 0.4592 0.4402 0.4404 
0.65 0.49415 0.44245 0.43945 0.4165 0.424 0.4258 0.4262 0.43025 0.4645 0.44795 0.3814 0.44345 0.4583 0.4398 0.43985 
0.7 0.4937 0.4421 0.4391 0.416 0.423 0.4234 0.4256 0.4295 0.464 0.4471 0.3812 0.4431 0.4574 0.4394 0.4393 
0.75 0.49325 0.44175 0.43875 0.4155 0.422 0.421 0.425 0.42875 0.4635 0.44625 0.381 0.44275 0.4565 0.439 0.43875 
0.8 0.4928 0.4414 0.4384 0.415 0.421 0.4186 0.4244 0.428 0.463 0.4454 0.3808 0.4424 0.4556 0.4386 0.4382 
0.85 0.49235 0.44105 0.43805 0.4145 0.42 0.4162 0.4238 0.42725 0.4625 0.44455 0.3806 0.44205 0.4547 0.4382 0.43765 
0.9 0.4919 0.4407 0.4377 0.414 0.419 0.4138 0.4232 0.4265 0.462 0.4437 0.3804 0.4417 0.4538 0.4378 0.4371 
0.95 0.49145 0.44035 0.43735 0.4135 0.418 0.4114 0.4226 0.42575 0.4615 0.44285 0.3802 0.44135 0.4529 0.4374 0.43655 
1 0.491 0.44 0.437 0.413 0.417 0.409 0.422 0.425 0.461 0.442 0.38 0.441 0.452 0.437 0.436 
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Additional file 4: Outcomes for the network of 36 treatments for autism spectrum disorder  

 id social_SUCRA repbehav_SUCRA ae_SUCRA 
arbaclofen 1 0.5591 0.2111 0.5171 
aripiprazole 2 0.7387 0.7966 0.7625 
atomoxetine 3 0.4593 0.7951 0.5657 
balovaptan 4 0.3452 #N/A 0.4071 
bumetanide 5 0.5984 0.7014 0.6043 
buspirone 6 0.3401 0.3870 0.7586 
carnosine 7 0.4933 0.3512 #N/A 
cholesterol 8 0.6743 #N/A #N/A 
citalopram 9 0.4472 0.3731 0.8296 
dimethylglycine 10 0.8216 #N/A 0.2075 
donepezil 11 0.2807 #N/A #N/A 
fluoxetine 12 0.4549 0.6236 0.4239 
folinic acid 13 0.8491 0.7624 0.2148 
guanfacine 14 0.4408 0.7937 0.9825 
L1-79 15 0.6872 0.8622 #N/A 
lamotrigine 16 0.3145 0.3591 #N/A 
lurasidone 17 0.4942 0.2912 0.5999 
mecamylamine 18 0.1853 0.3729 #N/A 
melatonin 19 0.4632 0.3431 0.4617 
memantine 20 0.3828 0.7163 0.5642 
n-acetylcysteine 21 0.1884 0.4205 0.5692 
omega-3 22 0.6539 0.4747 0.5626 
oxytocin 23 0.3773 0.3126 0.4710 
placebo 24 0.3660 0.3269 0.3557 
probiotics 25 0.6682 0.3031 #N/A 
riluzole 26 0.5580 #N/A 0.0960 
risperidone 27 0.7519 0.8624 0.9041 
sapropterin 28 0.5988 0.6256 0.2125 
sertraline 29 0.4131 0.4012 0.0589 
simvastatin 30 0.1946 0.1861 #N/A 
sulforaphane 31 0.2934 0.3938 #N/A 
tianeptine 32 0.5555 #N/A #N/A 
tideglusib 33 0.7778 0.6461 #N/A 
vitamin-B12 34 0.5330 0.5486 0.3706 
vitamin-D 35 0.4229 0.2583 #N/A 
whey-protein 36 0.6174 #N/A #N/A 
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Additional file 5: Values of the 𝑺𝑺𝑺𝑺𝑾𝑾𝑺𝑺𝑺𝑺 for the network of treatments for autism spectrum disorder 

λ 
arbacl
ofen 

aripipr
azole 

atomo
xetine 

bumet
anide 

buspir
one 

citalop
ram 

fluoxe
tine 

folinic 
acid 

guanfa
cine 

lurasid
one 

melat
onin 

mema
ntine 

n-
acetyl
cystei
ne 

omega
3 

oxytoc
in 

placeb
o 

risperi
done 

saprop
terin 

sertral
ine 

vitami
n B12 

0 0.179 0.590 0.422 0.425 0.133 0.170 0.298 0.651 0.412 0.165 0.166 0.330 0.106 0.326 0.120 0.120 0.655 0.375 0.166 0.292 
0.05 0.166 0.561 0.406 0.407 0.104 0.136 0.289 0.649 0.364 0.147 0.155 0.314 0.090 0.310 0.109 0.114 0.614 0.373 0.166 0.285 
0.1 0.152 0.532 0.390 0.389 0.076 0.101 0.280 0.646 0.316 0.129 0.145 0.298 0.074 0.294 0.098 0.107 0.573 0.371 0.166 0.278 
0.15 0.139 0.503 0.374 0.370 0.047 0.067 0.271 0.644 0.267 0.111 0.134 0.282 0.057 0.278 0.087 0.101 0.532 0.368 0.166 0.271 
0.2 0.126 0.474 0.358 0.352 0.018 0.032 0.262 0.642 0.219 0.093 0.123 0.266 0.041 0.263 0.076 0.095 0.492 0.366 0.165 0.265 
0.25 0.112 0.445 0.342 0.334 -0.011 -0.002 0.253 0.640 0.171 0.075 0.113 0.251 0.025 0.247 0.065 0.088 0.451 0.364 0.165 0.258 
0.3 0.099 0.416 0.326 0.316 -0.040 -0.036 0.244 0.637 0.123 0.057 0.102 0.235 0.009 0.231 0.053 0.082 0.410 0.362 0.165 0.251 
0.35 0.086 0.387 0.310 0.297 -0.068 -0.071 0.235 0.635 0.074 0.039 0.091 0.219 -0.007 0.215 0.042 0.076 0.369 0.359 0.165 0.244 
0.4 0.072 0.358 0.294 0.279 -0.097 -0.105 0.226 0.633 0.026 0.021 0.081 0.203 -0.024 0.199 0.031 0.069 0.328 0.357 0.165 0.237 
0.45 0.059 0.329 0.278 0.261 -0.126 -0.140 0.217 0.630 -0.022 0.003 0.070 0.187 -0.040 0.183 0.020 0.063 0.287 0.355 0.165 0.230 
0.5 0.046 0.300 0.262 0.243 -0.155 -0.174 0.208 0.628 -0.071 -0.015 0.060 0.171 -0.056 0.168 0.009 0.057 0.247 0.353 0.165 0.224 
0.55 0.032 0.270 0.246 0.224 -0.183 -0.208 0.199 0.626 -0.119 -0.033 0.049 0.155 -0.072 0.152 -0.002 0.050 0.206 0.350 0.164 0.217 
0.6 0.019 0.241 0.230 0.206 -0.212 -0.243 0.190 0.623 -0.167 -0.051 0.038 0.139 -0.088 0.136 -0.013 0.044 0.165 0.348 0.164 0.210 
0.65 0.005 0.212 0.214 0.188 -0.241 -0.277 0.181 0.621 -0.215 -0.069 0.028 0.123 -0.105 0.120 -0.024 0.037 0.124 0.346 0.164 0.203 
0.7 -0.008 0.183 0.198 0.170 -0.270 -0.312 0.172 0.619 -0.264 -0.087 0.017 0.107 -0.121 0.104 -0.035 0.031 0.083 0.344 0.164 0.196 
0.75 -0.021 0.154 0.182 0.151 -0.298 -0.346 0.163 0.617 -0.312 -0.105 0.006 0.092 -0.137 0.088 -0.047 0.025 0.042 0.341 0.164 0.189 
0.8 -0.035 0.125 0.166 0.133 -0.327 -0.380 0.154 0.614 -0.360 -0.123 -0.004 0.076 -0.153 0.072 -0.058 0.018 0.001 0.339 0.164 0.182 
0.85 -0.048 0.096 0.150 0.115 -0.356 -0.415 0.145 0.612 -0.408 -0.141 -0.015 0.060 -0.169 0.057 -0.069 0.012 -0.039 0.337 0.163 0.176 
0.9 -0.061 0.067 0.134 0.097 -0.385 -0.449 0.136 0.610 -0.457 -0.159 -0.026 0.044 -0.186 0.041 -0.080 0.006 -0.080 0.335 0.163 0.169 
0.95 -0.075 0.038 0.118 0.078 -0.413 -0.484 0.127 0.607 -0.505 -0.177 -0.036 0.028 -0.202 0.025 -0.091 -0.001 -0.121 0.332 0.163 0.162 
1 -0.088 0.009 0.102 0.060 -0.442 -0.518 0.118 0.605 -0.553 -0.195 -0.047 0.012 -0.218 0.009 -0.102 -0.007 -0.162 0.330 0.163 0.155 
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Abstract 

Background 

Selective outcome reporting and publication bias threaten the validity of systematic reviews 

and meta-analyses and can affect clinical decision-making. A rigorous method to evaluate the 

impact of this bias on the results of network meta-analyses of interventions is lacking. We 

present a tool to assess the Risk Of Bias due to Missing Evidence in Network meta-analysis 

(ROB-MEN).   

Methods 

ROB-MEN first evaluates the risk of bias due to missing evidence for each of the possible 

pairwise comparison that can be made between the interventions in the network. This step 

considers possible bias due to the presence of studies with unavailable results (within-study 

assessment of bias) and the potential for unpublished studies (across-study assessment of 

bias). The second step combines the judgements about the risk of bias due to missing 

evidence in pairwise comparisons with (i) the contribution of direct comparisons to the 

network meta-analysis estimates, (ii) possible small-study effects evaluated by network meta-

regression, and (iii) any bias from unobserved comparisons. Then, a level of "low risk", "some 

concerns" or "high risk" for the bias due to missing evidence is assigned to each estimate, 

which is our tool's final output.  

Results 

We describe the methodology of ROB-MEN step-by-step using an illustrative example from a 

published NMA of non-diagnostic modalities for the detection of coronary artery disease in 

patients with low risk acute coronary syndrome. We also report a full application of the tool 

on a larger and more complex published network of 18 drugs from head-to-head studies for 

the acute treatment of adults with major depressive disorder.  

Conclusions 

ROB-MEN is the first tool for evaluating the risk of bias due to missing evidence in network 

meta-analysis and applies to networks of all sizes and geometry. The use of ROB-MEN is 

facilitated by an R Shiny web application that produces the Pairwise Comparisons and ROB-

MEN Table and is incorporated in the reporting bias domain of the CINeMA framework and 

software.  
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Background 

A challenging issue in evidence-based medicine is the bias introduced by the selective non-

reporting of primary studies or results. Failure to report all findings can lead to results being 

missing from a meta-analysis. Either a whole study may remain unpublished, commonly 

referred to as 'publication bias', or specific results may not be reported in a publication, 

usually referred to as 'selective outcome reporting bias' or 'selective non-reporting of results'.  

Several methods are available to investigate such bias in pairwise meta-analysis [1]. These 

include generic approaches, for example, comparisons of study protocols with published 

reports and comparison of results obtained from published versus unpublished sources, as 

well as statistical methods (e.g. funnel plots [2–4], tests for small-study effects [2,5–7] and 

selection models [8,9]). Recently, a tool to evaluate Risk Of Bias due to Missing Evidence (ROB-

ME) integrated these approaches into an overall assessment of the risk of bias due to missing 

evidence in pairwise meta-analysis [10]. 

Network meta-analysis extends pairwise meta-analysis to enable multiple treatments 

comparison by combining direct and indirect evidence within a network of randomised trials 

or other comparative studies. Several of the numerical approaches to evaluate bias developed 

for pairwise meta-analysis have been adapted to the network meta-analysis setting [11–15]. 

Still, a rigorous methodology for assessing the risk of bias due to missing results in network 

meta-analysis estimates is currently lacking.   

To address this gap, we developed the Risk Of Bias due to Missing Evidence in Network 

meta-analysis (ROB-MEN) tool, which incorporates qualitative and quantitative methods. We 

assume that investigators assembled studies into a coherent network according to a pre-

specified protocol, checked the assumptions and deemed them plausible, and used 

appropriate statistical methods to obtain relative treatment effects for pairs of interventions. 

Then, ROB-MEN can be used to assess the risk of bias due to missing evidence in each of the 

relative treatment effects estimated in network meta-analysis. We illustrate the ROB-MEN 

approach step by step using a network meta-analysis of non-invasive diagnostic tests for 

coronary artery disease [16]. We also report an application of the tool to a network of 18 

antidepressants from head-to-head studies [17]. 
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Methods 

The ROB-MEN tool was developed between April and November 2020 within the CINeMA 

framework to evaluate confidence in results from network meta-analysis [18,19]. The authors 

are epidemiologists, statisticians, systematic reviewers, trialists, and health services 

researchers, many of whom are involved with Cochrane systematic reviews, methods groups, 

and training events. The initial proposal drew on existing methods for assessing selective 

outcome reporting bias [20] and publication bias [2,5,8] in pairwise meta-analysis, as 

summarised in the Cochrane Handbook for Systematic Reviews of Interventions [1]. A draft 

tool was developed in line with the preliminary version of the ROB-ME tool [10] and presented 

to all co-authors. Improvements and modifications were informed by relevant 

methodological literature, previously published tools for assessing methodological quality of 

meta-analyses and by the authors' experience of developing tools to assess the risk of bias in 

randomised and non-randomised studies, and systematic reviews [21,22]. The group met 

several times to discuss the approach and agreed on the tool's structure, content and step-

wise application. An R Shiny web application to facilitate the implementation of ROB-MEN for 

the users was developed alongside the tool’s conceptual framework by two of the co-authors 

and checked by the whole group. Refinements were made following feedback received also 

from training and research events. 

We outline the methodology using the example of a network of randomised controlled 

trials comparing non-invasive diagnostic strategies for the detection of coronary artery 

disease in patients presenting with symptoms suggestive of an acute coronary syndrome [16]. 

The outcome of interest is referral to coronary angiography, for which the network included 

18 trials comparing exercise electrocardiogram (ECG), single-photon emission computed 

tomography-myocardial perfusion imaging (SPECT-MPI), coronary computed tomographic 

angiography (CCTA), cardiovascular magnetic resonance (CMR), stress echocardiography 

(Stress echo), and standard care. Standard care was based on the discretion of the clinicians 

or local diagnostic strategies. The network graph is shown in Fig. 1a, and a summary of the 

network meta-analysis methods and results is available in Additional file 1. 

Overview of ROB-MEN 

In ROB-MEN, 'bias due to missing evidence' refers to bias arising when some study results are 

unavailable because of their results. This situation may, for example, arise because of non-
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significant p-values, small magnitudes of effect, or harmful effects. It can be due to two types 

of missing evidence, as described in the recently developed ROB-ME tool [10]: i) the selective 

reporting of results within studies that are published or otherwise known to exist, called 

"within study assessment of bias" in the tool; ii) studies that remain entirely unpublished and 

are not known to exist, referred to as "across-study assessment of bias" (see also the glossary 

in Box 1).   

In network meta-analysis, estimates of treatment effects are derived by combining direct 

and indirect evidence. Direct evidence refers to evidence about pairs of treatments that have 

been directly compared within studies (e.g. the 8 pairwise comparisons with data shown in 

Fig. 1a). Indirect evidence refers to evidence on pairs of treatments that is "indirectly" derived 

from the sources of direct evidence via a common comparator or chain of comparisons (Box 

1). In ROB-MEN, we first evaluate the likely risk of bias due to missing evidence for each 

pairwise comparison between the interventions of interest, irrespective of the availability of 

direct evidence (Fig. 1b).  We then consider the risk of bias from pairwise comparisons and 

their contribution to each estimate [23] with the additional risk of bias from indirect 

comparisons and any evidence of small-study effects to evaluate the overall risk of bias due 

to missing evidence in each network meta-analysis estimate.  

Two tables that record the assessments for each pairwise comparison and each estimate 

are at the tool's core: the Pairwise Comparisons Table and the ROB-MEN Table (see Tables 1 

and 2 for examples).  Both tables are completed separately for each outcome in the review. 

The Pairwise Comparisons Table facilitates the assessments in the ROB-MEN Table. The 

output of the Pairwise Comparisons Table provides judgement on possible bias due to missing 

evidence for each of the possible comparisons made from the interventions in the network. 

The ROB-MEN Table is the main output of the tool. It combines the information from the 

Pairwise Comparisons Table with (i) information about the structure and the amount of data 

in the network and (ii) the potential impact of missing evidence on the network meta-analysis 

results to reach an overall judgement about the risk of bias for each estimate. Fig. 2 

summarises the process. An R Shiny web application (https://cinema.ispm.unibe.ch/rob-

men/) facilitates the ROB-MEN process, including creating the two core tables, as described 

in Additional file 2 and Additional file 3 [24].  

https://cinema.ispm.unibe.ch/rob-men/
https://cinema.ispm.unibe.ch/rob-men/
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Risk of bias due to missing evidence in pairwise comparisons 

The assessment of bias due to missing evidence in all possible pairwise comparisons follows 

the ROB-ME tool for pairwise meta-analysis [10]. Like ROB-ME, we consider the studies 

contributing to the network meta-analysis of the outcome of interest and the studies 

contributing to networks of other outcomes in a systematic review. Such studies are 

informative about possible selective non-reporting of the outcome being addressed in the 

current network meta-analysis. ROB-MEN differs from ROB-ME by considering all possible 

pairwise comparisons between the interventions in the network. There may be missing 

evidence for any directly observed comparisons and missing evidence for the indirect 

comparisons that were not observed among the included studies. The possible pairwise 

Box 1: Glossary of terms. 
Pairwise comparisons: all treatment comparisons in the network irrespective of the availability 
of data. A network with T treatments has T(T-1)/2 pairwise comparisons. Depending on whether 
there are studies reporting the studied outcome, the pairwise comparisons can be distinguished 
into observed for this outcome, observed for other outcomes, and unobserved. 
Direct evidence: The evidence available (statistical information derived from data) about a 
pairwise comparison that is available from direct, within-study information about that 
comparison. 
Indirect evidence: The evidence available (statistical information derived from data) about a 
pairwise comparison that is not available from within-study information, i.e. is obtained indirectly 
via a common comparator or chain of comparisons. 
‘Only direct’ estimate: Relative treatment effect estimated in an network meta-analysis that is 
derived only from direct evidence. 
‘Only indirect’ estimate: Relative treatment effect estimated in an network meta-analysis that 
is derived only from indirect evidence. 
Mixed estimate: Relative treatment effect estimated in an network meta-analysis that is 
derived from both direct and indirect evidence. 
Network meta-analysis estimate: estimates of relative treatment effects derived from network 
meta-analysis; these can be distinguished into ‘Only direct’, ‘Only indirect’ and Mixed estimates. 
Within-study assessment of bias due to missing evidence: bias arising from missing results 
due to selective outcome reporting i.e. results being reported, but not others, within studies 
published or otherwise known to exist. 
Across -study assessment of bias due to missing evidence: bias introduced from missing 
studies because they are entirely unpublished i.e. not known to exist. 
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comparisons between the interventions involved in the network, that is, all combinations of 

two treatments, are organised into three groups:  

A. "observed for this outcome": the comparisons for which there is direct evidence 

contributing to the network meta-analysis for the current outcome 

B. "observed for other outcomes": the pairwise comparisons for which there is direct 

evidence only for other outcomes in the systematic review 

C. "unobserved": the pairwise comparisons that have not been investigated in any of the 

identified studies in the systematic review. 

These groups constitute the rows of the Pairwise Comparisons Table for a specific outcome. 

Instructions for filling in the table are summarised in Additional file 2.  

For each comparison, the first two columns report the total number of studies with results 

for the current outcome or any outcome, respectively. In brackets, we enter the total sample 

size by adding up all participants randomised in the studies investigating the specific 

comparison for that outcome. By definition, the unobserved comparisons will have zero in 

both columns. In contrast, those observed for other outcomes will have zero in the first 

column. 

The groups of comparisons are presented in Table 1 for the example of non-invasive 

diagnostic modalities for the detection of coronary artery disease. Of the possible 15 

comparisons, 8 were observed for the outcome of interest. The remaining 7 were 

unobserved, i.e. not observed for the outcome of interest or any other outcomes. 

Within-study assessment of bias due to missing evidence. The evaluation of bias due to 

selective non-reporting of results within studies concerns studies identified for the review but 

missing from the synthesis. They are known to exist, but the results are unavailable: the 

studies report on other outcomes than the outcome of interest. The presence of selective 

non-reporting of results in each study is assessed using study-specific tools such as  Step 2 of 

the ROB-ME tool [10,20]. Then, the likely impact of the missing results across all studies may 

be assessed using two signalling questions to reach an overall judgement of no bias detected 

or suspected bias favouring X for each comparison (Table 3). The preliminary version of the 

ROB-ME tool describes various approaches to evaluate the within-study assessment of bias 

by considering the plausibility of scenarios where study results are or are not unavailable 

because of the p-value, magnitude or direction of the treatment effects [1,10]. 
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A thorough within-study assessment of bias due to missing evidence is labour intensive 

but particularly valuable as the impact of selective non-reporting or under-reporting of results 

can be quantified more easily than the impact of selective non-publication of an unknown 

number of studies [1]. However, suppose the number of studies (or the sample size) not 

reporting the outcome of interest (i.e. the difference between the first two columns in Table 

1) is small compared to the number of studies (or the total sample size) reporting the outcome 

(the first column in Table 1). In that case, the assessment of these few studies is unlikely to 

affect the judgment from the within-study assessment significantly. Reviewers may then 

decide to assign no bias detected to the relevant comparison without carrying out the 

assessment. No bias detected is also assigned when no study is suspected of selective non-

reporting or under-reporting of results for a specific comparison (i.e. the numbers in the first 

two columns are equal). For the unobserved comparisons, the assessment is not applicable 

("NA", Table 1). 

In the example of the non-invasive diagnosis of coronary artery disease, there were no 

additional studies that did not report results for the outcome of interest. Therefore, we 

assume that there is no selective outcome reporting bias, and we assign no bias detected for 

the within-study assessment of bias to all observed comparisons. In the 'Application of ROB-

MEN to a network of antidepressants' the within-study assessment of bias is completed using 

the signalling questions for additional studies not reporting the outcome of interest. 

Across-study assessment of bias due to missing evidence. This situation refers to studies 

undertaken but not published, so reviewers are unaware of them. Each comparison is 

assessed for risk of publication bias using qualitative and quantitative considerations. First, a 

qualitative judgement is made to assign a level of no bias detected or suspected bias. 

Conditions that may indicate bias include: 

• Failure to search for unpublished studies and grey literature.  

• The meta-analysis may be based on a few positive findings on a newly introduced 

drug as the early evidence likely overestimates efficacy [25].  

• Previous evidence may have shown the presence of publication bias for that 

comparison [26].  

Conditions suggesting no bias include data from unpublished studies and agreement of their 

findings with those of published studies or a tradition of prospective trial registration in the 

field. 
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For comparisons with at least 10 studies (in the first column in Table 1), judgements can 

additionally consider statistical techniques such as contour-enhanced funnel plots [4], meta-

regression models and statistical tests for small-study effects [2,6,7,27–29] or selection 

models for pairwise meta-analysis (e.g. Copas [8]). These can be useful when it is difficult to 

assess publication bias reliably, e.g. when protocols and records from trial registries were 

unavailable. The direction of any bias should be noted: it will generally reflect the larger 

benefits observed in smaller studies. 

We implemented the across-study assessment of bias in the network meta-analysis of 

non-invasive diagnostic tests of coronary artery disease using qualitative considerations (see 

Additional file 4). None of the comparisons included 10 or more studies and no assessment 

using graphical or statistical methods was therefore performed. The judgements for all 

comparisons are reported in Table 1. 

Overall risk of bias for pairwise comparisons. The last step in the Pairwise Comparisons 

Table is to combine the levels of risk assigned in the previous steps into a final judgement of 

no bias detected or suspected bias. In case of suspected bias, the predicted direction of the 

bias, i.e. which treatment the bias is likely to favour, should also be specified (see Figure 1). 

For the unobserved comparisons (group C), the overall risk of bias will be the same as the 

judgement made for the across-study assessment of bias, as this is the only assessment 

applicable to these comparisons.  

For the comparisons observed for the outcome of interest or other outcomes (group A 

and B), the overall judgement will consider qualitative assessments for both the within-study 

and the across-study assessment of bias. The assessment of selective outcome reporting bias 

("within-study assessment of bias") is likely to be the most valuable because its impact can be 

quantified more easily than that of publication bias ("across-study assessment of bias"). The 

process of forming a final judgement for each pairwise comparison is illustrated in the 

flowchart in Additional file 5. 

Since there was no within-study assessment of bias for the example of non-invasive 

diagnosis of coronary artery disease, the overall bias judgement will only consider the across-

study assessment of bias. The final overall risk of bias judgements is reported in the Pairwise 

Comparison Table (Table 1). 
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Risk of bias due to missing evidence in network meta-analysis estimates 

Once the assessments of overall bias for each pairwise comparison are complete, we 

integrate them in the assessment of risk of bias for each network estimate in the ROB-MEN 

Table. We organise the estimates into two groups, "mixed/only direct" and "only indirect", 

depending on the type of evidence contributing to each estimate (see Box 1). Here, we 

describe the detailed steps for filling in the relevant column in the ROB-MEN Table and 

illustrate them using the network of trials of non-invasive coronary artery disease diagnosis. 

Instructions are summarised in Additional file 3. 

Contribution of comparisons with suspected bias to network meta-analysis estimates. 

The first step is to consider the contribution matrix of the network. The cells of this matrix 

provide the percentage contribution that each comparison with direct evidence (columns of 

the matrix) makes to the calculation of the corresponding network meta-analysis relative 

treatment effect (rows of the matrix) [23]. Additional file 6 shows the contribution matrix for 

the network of non-invasive diagnosis of coronary artery disease. Each comparison with direct 

evidence is combined with the risk of bias as judged in the Pairwise Comparisons Table (Table 

1). This way, the percentage contribution from direct evidence with suspected bias (reported 

in the first and second column of the ROB-MEN Table, see Table 2 for example) can be 

estimated. The evaluation of the contribution from comparisons with suspected bias is 

reported in the third column. Specifically, the possible levels are: 

• No substantial contribution from bias: there is no substantial contribution from evidence with 

bias favouring one of the two treatments; 

• Substantial contribution from bias balanced: there is a substantial contribution from evidence 

with suspected bias, but the biases favouring one or the other treatment are balanced and 

cancel each other out; 

• Substantial contribution from bias favouring X: there is a substantial contribution from 

evidence with bias favouring one of the two treatments (say X). 

In the non-invasive diagnosis of coronary artery disease network meta-analysis, we 

considered the contribution from biased evidence as substantially in favour of one treatment 

if the relative difference between treatments was at least 15%. Among the mixed estimates, 

five of them have a clear separation of high contribution coming from biased evidence 

between the two treatments (e.g. CCTA vs SPECT-MPI). Among the indirect estimates, only 
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three estimates showed such clear separation (e.g. CMR vs SPECT-MPI). The relevant bias 

judgements for this step are in column 3 of the ROB-MEN Table (Table 2).   

Additional risk of bias for indirect estimates. Indirect relative effects are calculated from 

sources of direct evidence in the Pairwise Comparisons Table with contributions as shown in 

the contribution matrix. The absence of direct evidence for these indirect comparisons may 

lead to bias if any studies are missing for reasons associated with their results. Therefore, for 

the indirect estimates, we need to account for this potential source of bias, which is 

represented by the final judgement of the overall bias for pairwise comparisons observed for 

other outcomes or completely unobserved in the Pairwise Comparisons Table. We copy the 

final judgements from column 5 of the Pairwise Comparisons Table (see Table 1 for example) 

into column 4 of the ROB-MEN Table (see Table 2) of our illustrative example, and we consider 

only those of the indirect estimates. Three estimates were at suspected bias favouring CCTA, 

CMR and SPECT-MPI. 

Small-study effects in network meta-analysis.  To evaluate small-study effects, we run a 

network meta-regression model with a measure of precision (e.g. variance or standard error) 

as the covariate. This model generates an adjusted relative effect by extrapolating the 

regression line to the smallest observed variance (the 'largest' study) independently for each 

comparison. To assess the presence of small-study effects, we compare the obtained adjusted 

estimates with the original (unadjusted) estimates by looking at the overlap of their 

corresponding confidence (or credible) intervals. A lack of overlap between the two intervals 

(or between one estimate and the interval for the other estimate) is an indication that effect 

estimates differ between smaller and larger studies. Note that this approach assumes there 

is no other explanation for the difference between the original, and the adjusted estimates, 

i.e. other covariates do not explain it. The evaluation of small-study effects is reported in the 

penultimate column of the ROB-MEN Table (Table 2), with levels indicating whether there is 

evidence of small-study effects and, if so, which treatment is favoured by the small studies. 

For the example of non-invasive diagnostic modalities, we ran a network meta-regression 

model using the variance of the estimate (pooled variance for multi-arm studies) as a 

covariate to investigate small-study effects in the whole network. The adjusted estimates via 

extrapolation to the smallest observed variance are reported in column 6 of the ROB-MEN 

Table next to the original network meta-analysis summary effect (column 5 in Table 2). None 

of the network meta-regression estimates are markedly different from their unadjusted 
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counterparts, and the credible intervals for estimates overlap. Therefore, "No evidence of 

small-study effects" is reported in column 7 for all the estimates. 

Overall risk of bias for network meta-analysis estimates. We propose rules for assigning 

a final judgement on the overall risk of bias due to missing evidence for estimates which are 

described in Table 4. If there is a substantial contribution from evidence with suspected bias 

(column 3), we have concerns regarding the risk of bias for that estimate. Suppose this 

contribution is split between evidence with bias favouring one of the treatments and evidence 

with bias favouring the other treatment. In that case, the biases may cancel out, assuming the 

bias is about the same in the two directions. Concerns about the risk of bias are then defined 

by the overall bias of unobserved comparisons in column 4 (for indirect estimates) and the 

evidence about small-study effects (column 7). The final judgements for the overall risk of 

bias are reported in column 8 (see Table 2). The reviewer can decide to follow our proposed 

rules to assign the overall risk of bias level but, if “stricter” or “more relaxed” approaches are 

preferred, they can also reach their final judgement based on their own reasoning. Whatever 

their reasoning, every choice and assessment should be justified and clearly described. 

Given that most of the mixed estimates have substantial contributions from biased 

evidence favouring one of the two treatments. Still, there was no evidence of small-study 

effects for any of the estimates, we have some concerns about the risk of bias due to missing 

evidence. The exceptions are exercise ECG vs standard care, Exercise ECG vs stress echo and 

SPECT-MPI vs standard care. There, the level was decreased to "Low risk" due to lack of 

substantial contribution from biased evidence favouring either one of the two treatments. 

Similarly, we assign "Some concerns" to indirect estimates, where a substantial contribution 

from biased evidence was favouring one of the two treatments. For CMR vs stress echo, the 

level was increased to "High risk" because of the additional bias from the corresponding 

indirect comparison assessed in the Pairwise Comparisons Table (Table 1), despite the fact 

that there is no evidence of small-study effects. The other indirect estimates were assigned a 

level of "Low risk" of bias because i) there was no substantial contribution from biased 

evidence or it canceled each other out; ii) there was no additional bias from the indirect 

comparison assessed in the Pairwise Comparisons Table (Table 1); iii) there was no evidence 

of small-study effects. No estimate was judged to be at high risk of bias due to missing 

evidence. The final judgements on the overall risk of bias due to missing evidence are reported 

in column 8 of Table 2. 
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Results 

Application of ROB-MEN to a network of antidepressants 

We applied the ROB-MEN tool to a network of head-to-head studies (i.e. trials of active 

interventions) of 18 antidepressants [17]. The outcome of interest is the response to 

treatment defined as a reduction of at least 50% in the score between baseline and week 8 

on a standardised rating scale for depression [30].  

Pairwise Comparisons Table 

There are 153 possible comparisons between the 18 drugs. Seventy compared the response 

to the antidepressant (group A) and 2 (amitriptyline vs bupropion and amitriptyline vs 

nefazodone, group B) compared other outcomes (dropouts and remission). The remaining 82 

possible comparisons were not covered in any of the studies ("unobserved", group C) (see 

Additional file 7). 

We carried out the within-study assessment of bias due to missing evidence for the two 

comparisons in the "observed for other outcomes" group (no bias detected) and for the 

comparisons in the group "observed for this outcome" for which extra studies were identified 

that did not report the outcome of interest. We judged four of these to be potentially biased 

because the extra studies did not report the full results and were sponsored by the company 

manufacturing the drug favoured by the bias. We judged the other four comparisons as no 

bias detected: the unavailable results were unlikely to be missing due to non-significant p-

values or the directions of the results and unlikely to affect the overall results. For example, 

selective outcome reporting bias was suspected for an additional study of fluoxetine versus 

paroxetine but unlikely to affect the synthesised results given its small sample size (21 

participants) relative to the total sample size (1364 participants). We assigned all other 

comparisons observed for this outcome a level of no bias detected in this step. The withn-

study assessment of bias was not applicable to the 82 unobserved comparisons. 

The across-study assessment of bias was carried out for all comparisons. We considered 

that bias, when suspected, would favour the newest drug, following the novel agent bias 

principle. The exceptions were comparisons where agomelatine, paroxetine, bupropion and 

vortioxetine were the newest drug because the authors obtained all unpublished data from 

the manufacturers. This qualitative consideration took priority over findings from contour-

enhanced funnel plots and tests for small-study effects for comparisons with at least 10 
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studies. Based on the findings from these statistical techniques, neither amitriptyline versus 

fluoxetine nor citalopram versus escitalopram would be judged at suspected bias. We 

nevertheless agreed our judgement from the across-study assessment of bias for both 

comparisons as suspected bias favouring the newest drug because the review authors could 

not exclude the possibility of hidden studies with unfavourable results towards the newer 

drug in the comparison (fluoxetine and escitalopram). 

Considering the previous assessments, most of the pairwise comparisons were 

considered at suspected bias favouring the newest drug. The only ones judged with no bias 

detected were all comparisons involving agomelatine and vortioxetine, as well as other 12 

comparisons involving other drugs. The judgements for all pairwise comparisons are reported 

in the last column of the Pairwise Comparisons Table (Additional file 7). 

ROB-MEN Table 

Once the Pairwise Comparison Table is complete with all judgements, we integrate them in 

the ROB-MEN Table. First, the overall risk of bias judgements for comparisons with direct 

evidence are combined with the results from the contribution matrix to calculate for each 

network meta-analysis estimate the contribution coming from direct evidence at suspected 

bias favouring either of the two treatments, and in total. We considered an estimate to have 

substantial contribution from evidence at suspected bias favouring one of the two treatments 

in the contrast if the difference between the first and second column (contribution from 

evidence at suspected bias favouring first and favouring second treatment, respectively) was 

at least 15 percentage points.  

The bias assessment for indirect evidence is only considered for the "only indirect" 

estimates and is copied from the last column of the Pairwise Comparison Table. This potential 

risk for "missing studies" is particularly important for the indirect estimates because it drives 

the bias evaluation to a "high risk" level in case there is also substantial contribution from 

direct evidence with suspected bias in the same direction. 

The last part of the risk of bias assessment for the network estimate involves running a 

network meta-regression model to evaluate the presence (or absence) of small-study effects. 

We run the model using the smallest observed variance as a covariate and assuming unrelated 

coefficients. All estimates and their adjusted counterpart were similar, and their credible 

intervals had a good level of overlap, providing no evidence of small-study effects. 
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Following the rules set out in Table 3 we assign the final judgements on the overall risk of 

bias due to missing evidence to the estimates and report it in the last column of the ROB-MEN 

Table (Additional file 8). Overall, the risk of bias for most estimates was classified as some 

concerns or low risk. In particular, none of the comparisons involving agomelatine, 

paroxetine, venlafaxine or vortioxetine were at high risk of bias. All 153 network meta-

analysis estimates with their relative ROB-MEN levels are reported in Table 5. 

Discussion 

To our knowledge, ROB-MEN is the first tool for assessing the risk of bias due to missing 

evidence in network meta-analysis. ROB-MEN builds on an approach recently proposed for 

pairwise meta-analysis [1,10] and adapts it to the network setting . Specifically, the 

assessments for selective outcome reporting and publication bias in pairwise comparisons are 

combined with (i) the percentage contribution of direct evidence for each pairwise 

comparison to the network meta-analysis estimates, (ii) evidence about the presence of 

small-study effects and (iii) any bias arising from unobserved comparisons. 

Our examples demonstrate that the tool applies to different network meta-analyses, 

including very large and complex networks, for which assessing the risk of bias can be lengthy 

and labour-intensive. We developed an R Shiny web application [24] to facilitate the ROB-

MEN use. Once the user has evaluated the risk of bias for all pairwise comparisons and 

estimates, the app produces the Pairwise Comparisons and ROB-MEN Table. The ROB-MEN 

tool is also incorporated in the reporting bias domain of the CINeMA framework and software 

[18,19]. 

ROB-MEN is not applicable in situations where an intervention of interest is disconnected 

from the network. It was not designed to cover comparisons involving disconnected 

interventions. In case of disconnected networks, we recommend to evaluate each 

subnetwork separately. Like for any other evaluation of results' credibility in evidence 

synthesis, many of the judgements in the ROB-MEN process involve subjective decisions. 

Judging bias due to missing evidence is challenging, particularly for publication bias, as 

reviewers will often not know about unpublished studies. However, the subjectivity of our 

approach, specifically in the pairwise comparisons step, is shared by other approaches, as 

described in the Cochrane Handbook and ROB-ME tool [1,10]. Also, the novel quantitative 



 

128 
 

methods, the contribution matrix [23] and network meta-regression that we integrated into 

the assessment rely less on the reviewer's subjectivity.  

Conclusions 

We encourage the evidence-synthesis community to conduct studies of the reliability and 

reproducibility of the ROB-MEN tool. We recommend reviewers specify the criteria used and 

explain the reasoning behind the judgements to enhance transparency. We believe that ROB-

MEN will help those performing network meta-analyses reach better-informed conclusions 

and enhance the toolbox of available methods for evaluating the credibility of network meta-

analysis results. 
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Tables and Figures 

Table 1: Pairwise Comparisons Table for the network of non-invasive diagnostic modalities for 
detecting coronary artery disease.  

Column No.  1 2 3 4 5 

Pairwise 
comparisons 

No. of studies in each 
comparison 

Within-study 
assessment of bias 

Across-study 
assessment of bias Overall bias 

Reporting 
this 

outcome 
(sample size) 

Total 
identified in 
the SR (total 
sample size) 

Evaluation of 
selective reporting 

within studies using 
signalling questions 

Qualitative and 
quantitative 

assessment of  
publication bias 

Overall judgement 

Group A: observed for this outcome 

CCTA vs  
Exercise ECG 1 (562) 1 (562) No bias detected No bias detected No bias detected 

CCTA vs  
SPECT-MPI 2 (1149) 2 (1149) No bias detected Suspected bias 

favouring CCTA 
Suspected bias 
favouring CCTA 

CCTA vs  
Standard care 7 (4015) 7 (4015) No bias detected Suspected bias 

favouring CCTA 
Suspected bias 
favouring CCTA 

CMR vs  
Standard care 2 (214) 2 (214) No bias detected Suspected bias 

favouring CMR 
Suspected bias 
favouring CMR 

Exercise ECG vs 
Standard care 1 (130) 1 (130) No bias detected No bias detected No bias detected 

Exercise ECG vs 
Stress Echo 4 (1086) 4 (1086) No bias detected No bias detected No bias detected 

SPECT-MPI vs 
Standard care 2 (4165) 2 (4165) No bias detected No bias detected No bias detected 

Standard care 
vs Stress Echo 1 (132) 1 (132) No bias detected Suspected bias 

favouring Stress Echo 
Suspected bias 

favouring Stress Echo 

Group B: observed for other outcomes (no studies) 

Group C: Unobserved 

CCTA vs  
CMR 0 0 NA No bias detected No bias detected 

CCTA vs  
Stress Echo 0 0 NA Suspected bias 

favouring CCTA 
Suspected bias 
favouring CCTA 

CMR vs  
Exercise ECG 0 0 NA No bias detected No bias detected 

CMR vs  
SPECT-MPI 0 0 NA No bias detected No bias detected 

CMR vs  
Stress Echo 0 0 NA Suspected bias 

favouring CMR 
Suspected bias 
favouring CMR 

Exercise ECG vs 
SPECT-MPI 0 0 NA Suspected bias 

favouring SPECT-MPI 
Suspected bias 

favouring SPECT-MPI 
SPECT-MPI vs  
Stress Echo 0 0 NA No bias detected No bias detected 

CCTA: coronary computed tomographic angiography; CMR: cardiovascular magnetic resonance; ECG: 
electrocardiogram; Echo: echocardiography; SPECT-MPI: single-photon emission computed tomography-
myocardial perfusion imaging; SR: systematic review. 
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Table 2: ROB-MEN Table for the network of non-invasive diagnostic modalities for detection of coronary artery disease in patients with low risk acute 
coronary syndrome.  

 1 2 3 4 5 6 7 8 

NMA estimate 

% contribution of evidence from 
pairwise comparisons with suspected 

bias 

Evaluation of 
contribution from 

evidence with 
suspected bias 

Bias assessment 
for indirect 

evidence 

NMA treatment 
effect 

NMR treatment 
effect at the 

smallest observed 
variance 

Evaluation of 
small-study 

effects 

Overall risk of 
bias 

Favouring first 
treatment 

Favouring second 
treatment       

Mixed/ only direct 

CCTA vs Exercise ECG 20.2% 0% 
Substantial 

contribution from 
bias favouring CCTA 

 1.97 
(1.06, 3.79) 

1.74  
(0.82, 3.66) 

No evidence of 
small-study 

effects 
Some concerns 

CCTA vs SPECT-MPI 66.0% 0% 
Substantial 

contribution from 
bias favouring CCTA 

 1.29  
(0.93, 1.78) 

1.30  
(0.88, 2.04) 

No evidence of 
small-study 

effects 
Some concerns 

CCTA vs Standard care 89.2% 0% 
Substantial 

contribution from 
bias favouring CCTA 

 1.17  
(0.93, 1.50) 

1.18  
(0.89, 1.58) 

No evidence of 
small-study 

effects 
Some concerns 

CMR vs Standard care 100% 0% 
Substantial 

contribution from 
bias favouring CMR 

 0.37  
(0.17, 0.81) 

0.35  
(0.08, 1.37) 

No evidence of 
small-study 

effects 
Some concerns 

Exercise ECG vs 
Standard care 0% 0% 

No substantial 
contribution from 

bias 
 0.59  

(0.31, 1.12) 
0.68  

(0.33, 1.39) 

No evidence of 
small-study 

effects 
Low risk 

Exercise ECG vs Stress 
Echo 0% 2.2% 

No substantial 
contribution from 

bias 
 1.89  

(1.25, 2.81) 
2.03  

(1.23, 3.35) 

No evidence of 
small-study 

effects 
Low risk 

SPECT-MPI vs Standard 
care 0% 0% 

No substantial 
contribution from 

bias 
 0.91  

(0.68, 1.24) 
0.91  

(0.62, 1.25) 

No evidence of 
small-study 

effects 
Low risk 

Standard care vs Stress 
Echo 0% 55.2% 

Substantial 
contribution from 

bias favouring Stress 
Echo 

 3.15  
(1.49, 6.37) 

2.99  
(1.41, 6.50) 

No evidence of 
small-study 

effects 
Some concerns 
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Only indirect 

CCTA vs CMR 45.9% 46.8% 
Substantial 

contribution from 
bias balanced 

No bias detected 3.15  
(1.40, 7.20) 

3.40  
(0.81, 15.70) 

No evidence of 
small-study 

effects 
Low risk 

CCTA vs Stress Echo 20.9% 12.8% 
Substantial 

contribution from 
bias balanced 

Suspected bias 
favouring CCTA 

3.71  
(1.83, 7.92) 

3.53  
(1.61, 7.72) 

No evidence of 
small-study 

effects 
Low risk 

CMR vs Exercise ECG 37.7% 0% 
Substantial 

contribution from 
bias favouring CMR 

No bias detected 0.62  
(0.22, 1.77) 

0.51  
(0.10, 2.47) 

No evidence of 
small-study 

effects 
Some concerns 

CMR vs SPECT-MPI 47.0% 0% 

Substantial 
contribution from 
comparisons with 

suspected bias 
favouring CMR 

No bias detected 0.41  
(0.18, 0.93) 

0.39  
(0.08, 1.60) 

No evidence of 
small-study 

effects 
Some concerns 

CMR vs Stress Echo 33.6% 13.4% 
Substantial 

contribution from 
bias favouring CMR 

Suspected bias 
favouring CMR 

1.17  
(0.40, 3.51) 

1.04  
(0.19, 5.17) 

No evidence of 
small-study 

effects 
High risk 

Exercise ECG vs SPECT-
MPI 0% 0% 

No substantial 
contribution from 

bias 

Suspected bias 
favouring SPECT-

MPI 

0.65  
(0.32, 1.28) 

0.75  
(0.35, 1.67) 

No evidence of 
small-study 

effects 
Low risk 

SPECT-MPI vs Stress 
Echo 0% 13.3% 

No substantial 
contribution from 

bias 
No bias detected 2.87  

(1.37, 6.45) 
2.68  

(1.18, 6.16) 

No evidence of 
small-study 

effects 
Low risk 

CCTA: coronary computed tomographic angiography; CMR: cardiovascular magnetic resonance; ECG: electrocardiogram; Echo: echocardiography; NMA: network meta-
analysis; NMR: network meta-regression; SPECT-MPI: single photon emission computed tomography-myocardial perfusion imaging. Effects in column 5 and 6 are odds ratios 
and 95% credible intervals.
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Table 3: Signalling questions for the within-study bias assessment of comparisons observed for the 
outcome of interest or other outcomes. 

Signalling question Responses for each comparison (group A and B only) 

1. Was there any eligible study for 

which results for the outcome of 

interest were unavailable, likely 

because of the P-value, magnitude 

or direction of the result generated? 

Yes Yes No 

2. (If Yes to the previous question) 

Was the amount of information 

omitted from the synthesis 

sufficient to have a notable effect 

on the magnitude of the 

synthesised result? 

Yes No - 

Overall judgment 
Suspected bias 
(favouring X) 

No bias detected No bias detected 
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Table 4: Proposed rules for judging the overall risk of bias due to missing evidence for network meta-
analysis estimates 

Lo
w

 ri
sk

 

 

There is no substantial contribution from evidence with suspected bias favouring 
one of the two treatments,  

OR 

There is substantial contribution from evidence at suspected bias but it is split 
more or less equally between evidence with bias favouring one of the treatments 
and evidence with bias favouring the other treatment 

AND 

There is no evidence of small-study effects favouring one of the two treatments 

OR 

[For indirect estimates only] There is no suspected bias favouring one of the two 
treatments from the assessment of indirect evidence. 

 

So
m

e 
co

nc
er

ns
 

All other combinations 

Hi
gh

 ri
sk

 

 

There is substantial contribution from evidence with suspected bias favouring 
one of the two treatments, say X 

AND 

There is evidence of small-study effects favouring the same treatment X 

OR 

[For indirect estimates only] There is suspected bias favouring that treatment X 
from the assessment of indirect evidence. 
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Table 5: League table of the network estimates and corresponding risk of bias due to missing evidence for the network of 18 antidepressants.  

Ago                                   

0.96 
(0.75, 1.22) Ami   Cit   Dul Esc       Mir Nef   Reb         

0.87 
(0.58, 1.30) 

0.91 
(0.62, 1.33) Bup Cit   Dul Esc     Mil Mir Nef   Reb         

1.13 
(0.87, 1.47) 

1.18 
(0.93, 1.48) 

1.29 
(0.88, 1.93) Cit   Dul       Mil   Nef             

1.20 
(0.92, 1.57) 

1.25 
(0.99, 1.59) 

1.38 
(0.92, 2.07) 

1.06 
(0.83, 1.38) Clo Dul Esc       Mir Nef   Reb         

1.05 
(0.81, 1.37) 

1.10 
(0.85, 1.42) 

1.21 
(0.81, 1.82) 

0.93 
(0.71, 1.23) 

0.88 
(0.66, 1.16) Dul   Dul Dul           Dul Dul     

0.90 
(0.71, 1.14) 

0.94 
(0.74, 1.18) 

1.03 
(0.70, 1.53) 

0.80 
(0.65, 0.97) 

0.75 
(0.58, 0.96) 

0.85 
(0.67, 1.08) Esc   Esc             Esc     

1.20 
(0.98, 1.47) 

1.25 
(1.06, 1.47) 

1.37 
(0.96, 1.96) 

1.06 
(0.87, 1.29) 

1.00 
(0.82, 1.22) 

1.14 
(0.91, 1.44) 

1.33 
(1.11, 1.60) Fluo                     

1.20 
(0.91, 1.61) 

1.26 
(0.99, 1.60) 

1.38 
(0.92, 2.08) 

1.07 
(0.82, 1.39) 

1.01 
(0.76, 1.32) 

1.14 
(0.85, 1.55) 

1.34 
(1.02, 1.75) 

1.01 
(0.81, 1.26) Fluvo     Nef   Reb         

1.07 
(0.80, 1.45) 

1.12 
(0.87, 1.44) 

1.23 
(0.81, 1.88) 

0.95 
(0.72, 1.26) 

0.90 
(0.67, 1.19) 

1.02 
(0.75, 1.40) 

1.20 
(0.91, 1.58) 

0.90 
(0.70, 1.13) 

0.89 
(0.66, 1.18) Mil                 

0.93 
(0.72, 1.21) 

0.98 
(0.78, 1.21) 

1.07 
(0.72, 1.59) 

0.83 
(0.65, 1.06) 

0.78 
(0.60, 1.01) 

0.89 
(0.67, 1.17) 

1.04 
(0.81, 1.33) 

0.78 
(0.64, 0.94) 

0.77 
(0.60, 1.00) 

0.87 
(0.66, 1.15) Mir               

1.15 
(0.76, 1.74) 

1.20 
(0.81, 1.78) 

1.32 
(0.80, 2.23) 

1.02 
(0.67, 1.55) 

0.96 
(0.63, 1.47) 

1.09 
(0.71, 1.68) 

1.28 
(0.84, 1.92) 

0.96 
(0.66, 1.40) 

0.95 
(0.62, 1.46) 

1.07 
(0.70, 1.63) 

1.23 
(0.81, 1.85) Nef       Nef     

1.01 
(0.82, 1.24) 

1.05 
(0.90, 1.23) 

1.15 
(0.80, 1.67) 

0.89 
(0.73, 1.10) 

0.84 
(0.68, 1.02) 

0.96 
(0.76, 1.20) 

1.12 
(0.93, 1.34) 

0.84 
(0.74, 0.96) 

0.84 
(0.67, 1.04) 

0.94 
(0.75, 1.18) 

1.08 
(0.90, 1.30) 

0.88 
(0.60, 1.28) Par           

1.44 
(1.02, 2.05) 

1.50 
(1.07, 2.09) 

1.65 
(1.03, 2.64) 

1.28 
(0.92, 1.75) 

1.20 
(0.84, 1.72) 

1.37 
(0.94, 1.97) 

1.61 
(1.15, 2.22) 

1.20 
(0.88, 1.63) 

1.20 
(0.83, 1.70) 

1.34 
(0.93, 1.93) 

1.54 
(1.09, 2.17) 

1.25 
(0.79, 2.00) 

1.43 
(1.05, 1.95) Reb Reb Reb     

1.07 
(0.85, 1.37) 

1.12 
(0.93, 1.35) 

1.23 
(0.84, 1.80) 

0.95 
(0.77, 1.19) 

0.89 
(0.71, 1.12) 

1.02 
(0.79, 1.31) 

1.20 
(0.96, 1.47) 

0.90 
(0.76, 1.06) 

0.89 
(0.70, 1.14) 

1.00 
(0.77, 1.30) 

1.15 
(0.93, 1.43) 

0.93 
(0.63, 1.38) 

1.06 
(0.91, 1.26) 

0.75 
(0.54, 1.04) Ser       

1.35 
(0.98, 1.86) 

1.41 
(1.07, 1.85) 

1.54 
(1.03, 2.31) 

1.19 
(0.88, 1.63) 

1.13 
(0.81, 1.52) 

1.28 
(0.92, 1.78) 

1.51 
(1.10, 2.03) 

1.13 
(0.86, 1.46) 

1.12 
(0.81, 1.54) 

1.26 
(0.90, 1.74) 

1.45 
(1.08, 1.93) 

1.17 
(0.75, 1.85) 

1.34 
(1.03, 1.73) 

0.94 
(0.63, 1.39) 

1.26 
(0.95, 1.65) Tra     

1.01 
(0.81, 1.25) 

1.06 
(0.87, 1.27) 

1.16 
(0.81, 1.66) 

0.90 
(0.73, 1.11) 

0.84 
(0.67, 1.06) 

0.96 
(0.77, 1.21) 

1.13 
(0.92, 1.37) 

0.85 
(0.73, 0.97) 

0.84 
(0.66, 1.07) 

0.94 
(0.73, 1.21) 

1.08 
(0.88, 1.32) 

0.88 
(0.59, 1.31) 

1.00 
(0.86, 1.17) 

0.70 
(0.52, 0.96) 

0.94 
(0.79, 1.13) 

0.75 
(0.57, 0.98) Ven   

0.72 
(0.42, 1.25) 

0.76 
(0.44, 1.28) 

0.83 
(0.45, 1.53) 

0.64 
(0.37, 1.12) 

0.60 
(0.34, 1.04) 

0.69 
(0.39, 1.20) 

0.81 
(0.46, 1.39) 

0.60 
(0.35, 1.01) 

0.60 
(0.34, 1.05) 

0.67 
(0.38, 1.17) 

0.77 
(0.45, 1.33) 

0.63 
(0.33, 1.20) 

0.72 
(0.42, 1.21) 

0.50 
(0.27, 0.92) 

0.67 
(0.39, 1.15) 

0.53 
(0.30, 0.95) 

0.72 
(0.43, 1.19) Vor 

The values in the lower triangle represent the relative treatment effect (odds ratios and 95% credible intervals) of the treatment on the top (column) versus the treatment 
on the row. Colours indicate the ROB-MEN levels: green = Low risk; yellow: Some concerns; red = High risk. Names in the upper triangle indicate the treatment favoured by 
the bias in the high risk estimates (red cells). Risk of bias assessments were obtained using the Shiny app. Ago = agomelatine; Ami = amitriptyline; Bup = bupropion; Cit = 
citalopram; Clo = clomipramine; Dul = duloxetine; Esc = escitalopram; Fluo = fluoxetine; Fluvo = fluvoxamine; Mil = milnacipran; Mir = mrtazapine; Nef = nefazodone; Par = 
paroxetine; Reb = reboxetine; Ser = sertraline; Tra = trazodone; Ven = venlafaxine; Vor = vortioxetine 
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Figure 1: Network plots of network meta-analysis of non-invasive diagnostic modalities for 
detecting coronary artery disease. (a) Standard network plot. (b) Network graph showing risk of 
bias assessment for pairwise comparisons. Sizes of solid lines and nodes are proportional to number 
of studies in each comparison and total sample size for each treatment, respectively. Solid lines 
represent the observed direct comparisons, dotted lines represent unobserved comparisons 
between interventions. Green indicates no bias detected, orange indicates suspected bias favouring 
the treatment indicated by the arrow.  

 

ECG: electrocardiogram; CCTA: coronary computed tomographic angiography; CMR: cardiovascular magnetic 
resonance; SPECT-MPI: single-photon emission computed tomography-myocardial perfusion imaging; Stress 
Echo: stress echocardiography. 
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Figure 2: Overview of the ROB-MEN process. 

Classify all NMA estimates as “low risk” or “some concerns” or “high risk of bias”” 

Decide whether the contribution from pairwise 

comparisons can bias the NMA estimate 

(accounting for presence and direction of bias) 

Decide whether pairwise comparisons 

without data for the outcome of interest lead 

to suspected bias  

Decide whether there are 
small-study effects in NMA 

Classify all pairwise comparisons as 

no bias detected or suspected bias  

Within-study assessment of bias due 
to missing evidence 

Across-study assessment of bias due to 
missing evidence 

Evaluate selective outcome reporting within a study 

Use signalling questions 

Use qualitative and quantitative methods 

to assess publication bias 

Apply rules 

to synthesize 
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Ev
al

ua
tin

g 
pa

irw
is

e 

 

Ev
al

ua
tin

g 
N

M
A 

es
tim

at
es

  

 
 



 

138 
 

List of abbreviations 

ROB-ME  Risk Of Bias due to Missing Evidence 

ROB-MEN  Risk Of Bias due to Missing Evidence in Network meta-analysis 

CINeMA  Confidence In Network Meta-Analysis 

ECG    Electrocardiogram  

SPECT-MPI Single-Photon Emission Computed Tomography-Myocardial Perfusion 

Imaging  

CCTA    Coronary Computed Tomographic Angiography 

CMR    Cardiovascular Magnetic Resonance  

Stress echo  Stress Echocardiography 
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Overall discussion and outlook 

Main findings 

The work conducted in this thesis contributes to two main topics in the context of network 

meta-analysis: the evaluation and extension of existing techniques used to rank competing 

treatments, and the assessment of the risk of bias due to missing evidence.  

In Article 1 we show how the level of agreement between treatment hierarchies obtained by 

different ranking metrics is affected by the amount of information present in a network. These 

differences in level of agreement are particularly evident when there are large imbalances in 

the precision of the estimates, though we find that such imbalances are rare in practice. 

As part of this empirical evaluation, we employed rankings based on relative treatment effects 

against a fictional treatment of average performance, estimated through an alternative 

parameterisation of the network meta-analysis model, as described in Article 2. Such relative 

treatment effects and the corresponding probabilistic metric – interpreted as probability that 

a treatment is preferable than an average-performing treatment – are useful in networks of 

interventions where a natural reference (or control) treatment does not exist.  

In Article 3 we provide guidance on the use and choice of ranking metrics, and how to properly 

interpret the resulting treatment hierarchies together with the relative treatment effects and 

quality of the evidence. We reiterated their advantages and limits in the decision-making 

process. We also emphasised that differences between rankings must not be interpreted as 

one ranking metric being preferable over another, as they address different treatment 

hierarchy questions which must be defined in advance. 

We then expanded on the existing ranking methodology by combining a recently developed 

ranking metric, accounting for both multiple outcomes and individual preferences, with 

different trade-offs between benefits and harms. In Article 4 we show the usefulness of the 

obtained quantity as a sensitivity analysis to explore variation in the ranking for a whole range 

of trade-off values and a specific set of individual preferences. 

In Article 5 we described the development of the first framework and tool for evaluating the 

risk of bias due to missing evidence in network meta-analysis. We also provide a user-friendly 

web application, part of the more comprehensive CINeMA framework, to make the tool more 

accessible and semi-automate some of the assessments. 
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Limitations and implications for future research 

In Article 1, we acknowledge that we did not explore other potential factors that could 

influence the agreement between treatment hierarchies from different ranking metrics. 

These could be, for example, the effect measure chosen to synthesise the results, adjustment 

via network meta-regression, as well as non-methodological network characteristics e.g. 

clinical settings and/or fields. However, most of these factors are either unlikely to affect the 

agreement substantially, or are likely to be associated with the amount of information 

available in the network [1,2]. Furthermore, our empirical results are in line with results from 

simulation studies and theoretical examples [3,4]. 

In Article 2, the interpretation of the estimated coefficients (i.e. the relative effects of all 

treatments versus a fictional treatment of average performance) is straightforward only in 

situations where the notion of a fictional treatment of average performance is in some way 

meaningful. Such a fictional treatment does not (or may not) exist in practice, and it refers to 

the average absolute efficacy among the treatments included in the systematic review. 

Therefore, the interpretation of the obtained coefficients and of PreTAs depends on the set 

of compared treatments, though this is the case for all ranking metrics. 

The quantity SAWIS that we propose in Article 4 is useful to show the variability of rankings 

for different individual preferences and trade-offs between benefits and harms. However, we 

are unsure that it can be presented as a ranking metric due to the complexity of its 

interpretation. Specifically, this quantity depends highly on the choice of outcome measures 

used to calculate the standardised area within a spie chart [5]. Daly et al. state that the 

interpretation of the standardised area within a spie chart is comparable to the interpretation 

of SUCRA as it represents the probability that a treatment ranks best overall. However, the 

formula involves a sum of probabilities – either SUCRA values or absolute probabilities – and 

it is unclear whether the resulting value would be a probability itself.  Besides, the formula of 

our quantity adds further complexity as it is a difference between two areas within spie charts 

which also includes the trade-off value λ. Specifically, the challenge is to express the latter in 

the same unit as the standardised area within the spie chart, and it is difficult to give a value 

to u that can meaningfully be interpreted by patients as “how much in terms of side 

effects/harms they would be willing to experience for an increase in benefit”. Therefore, in 

its current formulation, our net-benefit standardised area within a spie chart cannot be used 
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to address a specific treatment hierarchy question, and further research is necessary to 

expand and improve upon interpretation of the trade-off value and the quantity as a whole. 

The ROB-MEN tool presented in Article 5 was developed in the context of the CINeMA 

framework [6] and is, therefore, aimed at connected networks of aggregated data from 

randomised controlled trials. While the assessment of reporting bias may not be entirely 

relevant or fully applicable for non-randomised and observational studies, as described in the 

Risk of Bias In Non-randomized Studies – of Interventions (ROBINS-I) tool [7], the CINeMA and 

ROB-MEN web applications [8,9] cannot currently be used on network meta-analyses which 

make use of individual participant data (IPD) or component network meta-analyses (CNMA). 

Also, the ROB-MEN web application currently requires the user to load data in arm-based 

format for dichotomous and continuous outcomes and, like CINeMA, it does not support 

other types of outcomes such as time-to-event or count data. Future research could, 

therefore, look at updating the frameworks and relevant web applications to allow more 

flexibility in terms of types of data and analyses supported, such as dose-response NMAs or 

NMAs of diagnostic test accuracy.  

Finally, as for all risk of bias assessments and tools, ROB-MEN also partly involves subjective 

judgements, but we tried to limit the reviewers’ subjectivity by implementing quantitative 

elements and specific instructions. A certain degree of subjectivity is, however, inevitable in 

such evaluations. Consequently, the interrater agreement may also be affected but whether 

and how this subjectivity plays a role is currently unknown. Future work could focus on the 

reproducibility of assessments made by reviewers for ROB-MEN and, more generally, the 

CINeMA framework. 

One of the main points of criticism regarding the use of ranking metrics is the fact that they 

do not incorporate an assessment for the quality of evidence [10]. Treatments at the top ranks 

of a hierarchy may be based on biased evidence, or heterogeneous or inconsistent data, and 

so they should not be recommended without examining the credibility of results first. A first 

attempt to evaluate the credibility of rankings was made by Salanti et al. [11] but, unlike the 

CINeMA framework for evaluating the confidence in the NMA effect estimates, this strategy 

for evaluating confidence in the ranking has not been developed further. Similarly, as a spin-

off of CINeMA, the ROB-MEN tool focuses on the evaluation of bias due to missing evidence 

in the NMA estimates without incorporating or making judgements on the rankings. Future 

improvements of CINeMA, and consequently ROB-MEN, could also put emphasis on this 
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aspect and include extensions for a more specific tool on the credibility of ranking. However, 

it is unclear if and how a specific framework to evaluate confidence in a ranking is truly useful 

and necessary per se, given that treatment hierarchies are already interpreted together with 

the relative treatment effects and their confidence evaluations (as described in Article 3). 

As previously described, new ranking methods and visualisation techniques for multiple 

outcomes like the POST-R and the Vitruvian plot [12,13] now integrate CINeMA confidence 

ratings. An implementation like the one in the Vitruvian plot (i.e. colouring the outcome 

sectors according to the confidence ratings) could potentially be applied also to spie charts 

[5] and, consequently, to our SAWIS approach. Another option that would involve integrating 

the confidence ratings within the ranking metric, is to down- or up-rank treatments in a 

fashion similar to how relative treatment effects are downgraded in the CINeMA or GRADE 

frameworks [6,14]. 

Recently, a new approach to evaluate the confidence in treatment recommendations based 

on NMA results has also been proposed and presented as an alternative to CINeMA and 

GRADE [15,16]. Threshold analysis is a sensitivity analysis that produces a threshold 

quantifying the amount by which the evidence could change before the recommendation 

changes (i.e. a different treatment or set of treatments is recommended). The robustness of 

the recommendation is judged by assessing whether it is plausible that the evidence could 

change (e.g. due to bias) by more than the determined threshold. Thus, this approach also 

involves some subjectivity like the other frameworks but, unlike them, does not properly 

tackle heterogeneity, inconsistency, or indirectedness. 

The suggestions above for incorporating the quality of evidence may provide a better and 

more comprehensive picture of the whole output of an NMA, without having to look at 

confidence in the effects estimates and confidence in the rankings separately. However, 

developing ranking metrics to answer complex treatment hierarchy questions remains 

challenging, as the metrics aim to incorporate qualitative information (such as the confidence 

in the evidence) into a set of numerical quantities [4]. It is therefore not surprising that new 

developments in ranking metrics may remain difficult to use and interpret in practice. 
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Outlook and concluding remarks 

Disagreement between treatment hierarchies obtained from different ranking metrics is not 

unusual, since each one addresses a distinct treatment hierarchy question and has, therefore, 

a specific interpretation. More complex hierarchy questions that are not linked to any of the 

available ranking metrics may be relevant in healthcare decision-making, hence triggering the 

need for extension of these methods [4]. However, instead of focusing on producing a specific 

ranking metric, a different and potentially more meaningful approach is to translate decision 

questions into hierarchy questions and calculate their uncertainty. 

In this context, Papakonstantinou et al. [17] recently proposed a method that uses 

simulations to calculate the relative frequencies of each possible ranking obtainable in an 

NMA. They express the hierarchy question as a criterion, or set of criteria, and quantify the 

certainty around it by summing the relative frequencies of all hierarchies satisfying such 

criteria. The method is described for a single outcome and cannot handle benefit-risk 

assessments, so future research could look at extensions of this approach which adapt it to 

decision questions involving both efficacy and harms. 

Despite the plethora of methods available to present results from evidence synthesis and aid 

treatment choice, their use in clinical practice often remains problematic. Barriers and 

challenges to knowledge translation include a lack of skills from end-users to appraise, 

comprehend, and implement the methods, among others [18–21]. A practical example of an 

initiative that tried to overcome such issues is a recent ongoing project in the mental health 

field that is combining evidence synthesis techniques and prediction modelling to build a web-

based decision support algorithm [22]. With this tool, patients and clinicians’ preferences are 

entered to produce personalised treatment recommendations tailored to the individual-

patient level. The tool will then be tested in a randomised controlled trial to assess its 

feasibility, effectiveness, and acceptability in a real-world clinical setting.   

We developed a user-friendly web application that facilitates the application of the 

framework we presented for assessing bias due to missing evidence in NMA. The tool has 

been adopted in the field and is already being used in practice. The code is freely available 

online and we accept feedback and contributions from the community. We also provide 

training material and documentation which is key when providing tools tailored for use by 

individual users without expert guidance. 
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In this thesis we made significant contributions to the evidence synthesis field. We conducted 

the first empirical study assessing the level of agreement between rankings and we showed 

that this is usually very high, unless there are large imbalances in the precision of the 

estimates, which are however rare in practice. We extended the existing ranking 

methodology by producing a quantity that can be used to explore if rankings vary for a specific 

set of individual preferences across a range of different trade-off between benefits and 

harms. We developed the first tool to evaluate the risk of bias due to missing evidence in a 

network of interventions and we provided a user-friendly web application to facilitate the 

assessment and automate some of the required steps. These contributions provide 

knowledge and tools that can support clinicians, policy makers and patients to choose the 

most preferable treatment for a specific condition. The development of new methods must 

be conceived with the aim of translating them into practice and delivering them to the end-

users, not to purely produce research output to be confined within the scientific and academic 

community. In this sense, our results represent a move forward in the direction of translating 

knowledge into practical use and actively implementing evidence synthesis methodology. In 

general, more implementation research in clinical practice to guide decision-making is 

needed, focusing on facilitating the adoption of new methods and ensuring the perspectives 

of all end-users, including patients, are considered in the process.  
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