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Abstract 
The skin is the largest organ of the body. It provides a barrier that protects the body from 

harmful environmental factors as well as from a loss of fluids. Impaired skin integrity can lead 

to a disruption of the skin barrier and to disease. Genodermatoses are a heterogenous group 

of mostly rare single gene disorders affecting the skin and its appendages. After decades of 

genetic and due to recent advances in technology, the genetic cause of numerous 

genodermatoses was uncovered. Based on the function of the involved genes and the affected 

skin compartments, monogenic skin disorders can be grouped into ichthyoses, epidermolysis 

and blistering disorders, pigmentation disorders, disorders of ectodermal appendages, 

vascular disorders, connective tissue defects, dermal mosaics, and genodermatoses with 

tumor predisposition. Many human genodermatoses have a very similar counterpart in 

animals. Spontaneous mutants in purebred animals such as dogs that have a unique 

population structure and physical similarity to humans, are therefore valuable models for 

human genodermatoses.   

In this thesis, I took part in the analysis of 12 canine, equine and feline phenotypes with 

manifestations in skin or its appendages applying different genetic mapping techniques and 

whole genome sequencing. In cats, a frameshift variant in the COL5A1 gene was identified in 

a single case with Ehlers-Danlos syndrome. In a female cat with inflammatory linear epidermal 

lesions, a missense variant in the X-chromosomal NSDHL gene was found, explaining the 

observed cutaneous mosaicism. Interestingly, I identified a large deletion in the same gene, 

NSDHL, underlying a related congenital cornification disorder in a Labrador Retriever and her 

equally affected crossbred daughter. In a single canine case of ichthyosis, whole genome 

sequencing revealed a de novo variant in the ASPRV1 gene, probably disturbing filaggrin 

processing during cornification. A deregulation in cornification of nasal keratinocytes was also 

suspected in a litter of Greyhounds with nasal parakeratosis, in which I identified a splice 

defect in the SUV39H2 gene. Pigmentation and hair texture are diverse in dogs. During a 

study in Chow Chows with coat colour dilution I identified a variant in the MLPH gene encoding 

melanophilin, and found that this variant segregated in other dog breeds as well. In dogs with 

oculocutaneous albinism, variants in OCA2 and SLC45A2 encoding transporters in 

membranes of melanosomes were identified. In dogs with a previously unknown cause for 

their curly coat, a candidate gene approach led to the identification of a second KRT71 allele 

for curls, which has a potential predisposing role for hair loss that warrants further 

investigation. Hairless skin patches on the head and back was also a prominent feature in 

male Dachshund puppies with X-linked hypohidrotic ectodermal dysplasia, where a single 

base deletion in the EDA gene was found using targeted Sanger sequencing. Lethal 
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acrodermatitis in Bull terriers is a disorder causing early death of affected animals. All cases 

in our cohort were homozygous for a splice defect in MKLN1, a gene not yet described in 

human genodermatoses. Finally, in horses from the Akhal-Teke breed, I identified a nonsense 

variant in the ST14 gene most likely causing the lethal naked foal syndrome in a monogenic 

autosomal recessive mode. 

The identification of these candidate causative variants enables genetic testing, controlled 

breeding and in the long term eradication of the corresponding disorders from the animal 

population. The majority of identified variants was located in genes already known from human 

disorders. However, ASPRV1 and MKLN1 variants have never been reported as cause for 

human genodermatoses. This thesis therefore demonstrates that genetic anlysis of 

spontaneous animal mutants offers the chance to gain new biological knowledge and 

candidate genes for rare human genodermatoses.  
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Introduction 
Monogenic skin disorders, also called genodermatoses, are a group of rare single gene 

disorders. The skin, the organ that is by definition affected in these disorders, is briefly 

explained in the first background section of this thesis. This section is based on human 

physiology. In the second introductory part, a more detailed discussion of the skin 

compartments affected in different groups of skin disorders is given. As the topic of this thesis 

is very broad, I will focus on background information that turned out to be relevant for the 

thesis. For each group of genodermatoses, only a few selected examples of human or animal 

disorders are given. A more extensive compilation of human and animal genodermatoses can 

be found in the appendix. In the last section of the introduction, I summarize the basics and 

most relevant aspects of different methods and strategies for the identification of candidate 

causative variants. 
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Skin structure and function 
The skin is the largest organ of the body. It fulfills four key functions: First, it protects the body 

from harmful external factors such as invading microorganisms. Second, it provides an inward 

barrier and prevents the loss of water and other molecules. Third, it regulates the body 

temperature and, fourth, allows sensory perception. The structure and integrity of the skin are 

critical to maintain these functions. As shown in Figure 1, the skin can be divided into three 

layers: the epidermis, the dermis and the subcutaneous tissue (1). 

Figure 1: Structure of human haired skin. Reproduced with modifications from (1).The three layers of the 
skin are the epidermis, dermis and subcutaneous tissue.  

Epidermis: In the epidermis, about 95% of the cells are keratinocytes. Other cell types present 

are melanocytes that are required for melanin synthesis, antigen presenting immune cells 

called Langerhans cells, and Merkel cells, involved in touch sensation. The epidermis is a 

stratified epithelium that undergoes self-renewal throughout life. In the different epidermal 

layers shown in Figure 2, the keratinocytes are present at distinct differentiation stages. On 

the bottom, the basal layer or stratum basale consists of proliferating keratinocytes and the 
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epidermal stem cells. Basal cells are anchored to 

the basal membrane. The layer above the basal 

layer is the spinous layer or stratum spinosum, 

followed by the granular layer, also called stratum 

granulosum. Typical for the granular layer are the 

keratohyalin granules that contain mainly 

profilaggrin (discussed later), as well as lamellar 

bodies that are lipid-rich. The uppermost layer of the 

epidermis, the cornified layer or stratum corneum, 

consists of flat keratinocytes undergoing terminal 

differentiation into dead corneocytes (1). In some 

parts of the body with thick skin, such as the palms 

and soles, an additional layer, the stratum lucidum 

or clear layer is present between granular and 

cornified layer. Proliferation, differentiation and 

shedding of corneocytes are tightly regulated and 

must be in balance for maintenance of epidermal 

function and homeostasis.  

Figure 2: Layers of the epidermis. Adapted from (2). 

Dermis: The dermis is the layer below the epidermis. The cellular components of the dermis 

are fibroblasts, macrophages, mast cells, plasma cells, endothelial cells and nerve cells. The 

major part of the dermis is however the dermal matrix, composed of collagen fibers, elastic 

fibers, reticular fibers and a gelatinous matrix. The dermal matrix is mainly produced by 

fibroblasts. The dermis can be divided into the papillary layer, the subpapillary layer and the 

reticular layer (Figure 3). The papillary layer is the uppermost part of the dermis that projects 

into the epidermis and allows an exchange with the epidermis. The papillary layer and the 

underlying subpapillary layer are rich in capillary blood vessels, sensory nerve endings and 

fibers. The main part of the dermis is part of the reticular layer. It is located between the 

subpapillary layer and the subcutaneous tissue. In this layer, the connective tissue is very 

dense, consisting of different fibers (1).  
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Subcutaneous fat tissue: The subcutaneous tissue is located under the dermis and is mainly 

composed of fat cells. It functions as a cushion against external physical pressure and is 

important for thermo-regulation. The presence or absence and the thickness of the 

subcutaneous tissue is age- and site specific (1). 

Skin appendages: Skin appendages are ectoderm-derived organs that differ from each other 

in function and shape but share similar developmental pathways. In humans, these ectodermal 

derivatives include hair, teeth, nails, and eccrine glands such as sweat, salivary or mammary 

glands. These ectodermal organs typically have the potential to regenerate (3). Like the skin, 

appendages differ between species. As an example, humans have mainly hair follicles with a 

single hair shaft, while for example in dogs compound hair follicles predominate (4). 

Figure 3: Layers and main components of the dermis. Reproduced with modifications from (1). The dermis 
is divided into papillary, subpapillary and reticular layers. Collagen, elastic fibers and the ground substance are 
part of the dermal matrix. Cellular components shown are fibroblast, mast cells, macrophages and plasma cells. 
Pacinian and Meissner corpuscles are sensory nerve terminals (1). 
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Monogenic skin disorders 
Monogenic skin disorders, also known as genodermatoses, are single gene disorders with 

cutaneous manifestation. The Online Mendelian Inheritance in Man (OMIM) database 

(https://www.omim.org) listed 560 genodermatoses with known genetic etiology in 2009 (5). 

This number has been increasing during the last decade, mainly due to improvement in 

technologies such as next generation sequencing (NGS) (6). More than 80% of monogenic 

skin disorders are caused by genetic defects in only one known gene, and defects in 

approximately 80% of identified genes in genodermatoses cause only one disorder. The 

majority of genodermatoses has systemic manifestations (5). In 2014, Lemke and colleagues 

published an overview of known monogenic human skin disorders and their underlying genetic 

cause (6). Based on the phenotypic spectra of the disorders, nine groups of genodermatoses 

were defined, which will be discussed in the following sections.  

Inherited ichthyoses / generalized Mendelian disorders of cornification 

In the epidermis, keratinocytes move from the basal layer up to the cornified layer, as they 

differentiate. The terminal differentiation, during which keratinocytes become flat, dead 

corneocytes without nucleus and organelles, is also known as cornification or 

keratinization (7). The main purpose of the cornified layer is to function as a physical and 

permeability barrier (8). This barrier is formed by corneocytes that are tightly attached to each 

other and the surrounding lipid rich extracellular matrix. Eventually, the dead cells are shed 

from the skin surface in a process called desquamation. Inherited ichthyoses or generalized 

Mendelian disorders of cornification (MeDOCs) are genodermatoses caused by defects in 

terminal differentiation of keratinocytes and skin barrier formation (9). This category of 

genodermatoses comprises a heterogeneous group of disorders mainly characterized by 

thickening of the skin, called hyperkeratosis, and/or visible scaling. In 2014, Lemke and 

colleges listed 69 human disorders caused by variants in 68 different genes in this 

category (6). 

Based on the consensus nomenclature from 2010 (10), inherited ichthyoses are often grouped 

into syndromic forms (11) and non-syndromic forms (12). I will however briefly discuss the 

major components of the epidermal barrier and give examples for skin disorders resulting from 

genetic variants in genes required for their formation. As shown in Figure 4, these components 

are the intracellular keratin network, the cornified cell envelope and the intercellular lipid layer 

(13, 14). Important, and to add as a fourth component, are the structures called 

corneodesmosomes responsible for the adhesion of the corneocytes, as well as their 

proteolytic degradation to allow shedding of the corneocytes (15, 16). 
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Figure 4: An illustration of the major events taking place during cornification. Reproduced with 
modifications from (13). 1. Formation of the keratin network, 2. cornified envelope formation, 3. formation of 
intercellular lipid layers (cornified lipid envelope not shown), 4. transformation of desmosomes into 
corneodesmosomes. Keratohyalin granules and Lamellar bodies are shown in in keratinocytes of the granular 
layers. CE= cornified envelope, CER = ceramide, CHOL = cholesterol, Evpl = envoplakin, FFA = free fatty acid, 
Lor = loricrin, Ppl = periplakin, SS = stratum spinosum, SG = stratum granulosum, SC = stratum corneum, TGase 
= transglutaminase.  

The intracellular keratin network: As keratinocytes differentiate, they express different keratin 

intermediate filament proteins. In the basal layer, mainly keratin 5 and 14 are expressed. In 

the suprabasal layers, they are replaced with keratin 1 and 10 early during cornification (7). 

Keratins are expressed in a stage- but also tissue-dependent manner. As an example, 

keratin 9 is specific to palms and soles where it provides additional protection against 

mechanical stress (17, 18). Pathogenic genetic variants in the KRT9 gene therefore typically 

cause an autosomal dominant skin disorder called epidermolytic palmoplantar keratoderma 

(OMIM #144200), characterized by diffuse thickening of the palmoplantar epidermis and 

erythema (19). The generalized form of the disorder, epidermolytic hyperkeratosis (OMIM 

#113800) has been reported in patients with KRT1 and KRT10 variants, present in either a 

heterozygous or a homozygous state (20-24). However, KRT1 variants can also cause 

palmoplantar keratoderma, similar to the phenotype observed in individuals with KRT9 

variants. 
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At a later stage in differentiation, keratinocytes acquire keratohyalin granules. These granules 

contain mainly profilaggrin, a phosphorylated large precursor polyprotein that will be 

processed into functional filaggrin (filament-aggregating protein) units. Profilaggrin-to-filaggrin 

processing requires dephosphorylation and proteolysis by multiple enzymes (25). Filaggrin is 

further processed into free amino acids, components of so called natural moisturizing 

factors (26). The typical flattened shape of corneocytes is due to the tight bundling of keratin 

intermediate filaments by filaggrin. Together, filaggrin and keratin contribute approximately 80-

90% of total protein mass of the mammalian epidermis (7, 27). 

The most common inherited ichthyosis is ichthyosis vulgaris (OMIM #146700) caused by 

variants in the FLG gene encoding profilaggrin. Ichthyosis vulgaris is one of the most common 

monogenic human disorders and is inherited in an autosomal semidominant mode with 

incomplete penetrance. The characteristics of the relatively mild disorder are palmar 

hyperlinearity, follicular hyperkeratosis and no to prominent scaling (28). As not only filaggrin 

itself but also the profilaggrin processing steps are critical during cornification, genetic defects 

in profilaggrin- or filaggrin- processing enzymes can also lead to impaired barrier function (29). 

Cornified envelope formation: The cornified envelope is an approximately 10 nm thick 

insoluble layer formed beneath the plasma membrane. It consists mainly of cross-linked 

proteins. The isopeptide bonds cross-linking the proteins are the main reason for the 

insolubility of the cornified envelope, and they are formed by transglutaminases (TGMs) (30, 

31). In suggested models for envelope formation, the proteins involucrin, envoplakin and 

periplakin are expressed and cross-linked earlier in differentiation, followed by loricrin, elafin, 

sPRs and S100 proteins as well as the late envelope proteins (30-33). Expression and cross-

linking of the different envelope proteins by TGMs is influenced by the raising Ca2+ 

concentration during differentiation of the keratinocytes. Among the nine known human TGMs, 

three of them have been shown to be involved in cornified envelope assembly, namely TGM1, 

TGM3 and TGM5. Variants in the TGM1 gene cause autosomal recessive lamellar ichthyosis 

(OMIM #242300) in humans (34, 35). Characteristic for this disorder is the so-called collodion 

membrane at birth, presenting with plate-like, large, brown scales (7). Tgm1 knockout mice 

die within 4-5 hours after birth due to dehydration (36). This demonstrates that, in specific 

tissues, some TGMs have functions which cannot be compensated by other TGMs. A defect 

related to structural proteins of the cornified envelope is e.g. a variant form of Vohwinkel 

syndrome (OMIM #604117) caused by dominant variants in the LOR gene encoding loricrin. 

This disorder is characterized by palmoplantar hyperkeratosis and constricting bands on digits 

of hands and feet that can lead to auto amputation (37). To date, no skin disease caused by 

the complete absence of a cornified envelope structural protein has been described, possibly 

because such traits might be embryonic lethal (7). 
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Corneocyte lipid envelope and intercellular lipid layer: In the cornified layer, lipids are present 

as a cornified lipid envelope and as intercellular lipids. The cornified lipid envelope is a single 

layer of ultra-long-chain ceramides and fatty acids. This layer, which is bound to the cornified 

protein envelope, seems to be particularly important for the barrier function of the stratum 

corneum. The intercellular lipids are arranged in bilayers, mainly built of ceramide, free fatty 

acids and cholesterols (38). Synthesis of stratum corneum lipids begins in the endoplasmatic 

reticulum of stratum spinosum keratinocytes. Newly synthesized lipids are modified in the 

Golgi apparatus and packed into lamellar bodies, Golgi-derived vesicles. In the upper granular 

layer, the vesicles release the lipids and other contents such as hydrolases involved in the 

extrusion process, into the extracellular space (7, 39). Defective lipid layers can be due to 

defects in synthesis, metabolism, transport, secretion or arrangement of epidermal lipids. In 

2012, Grall et al. identified an autosomal recessive defect in the PNPLA1 gene in Golden 

Retrievers with ichthyosis and subsequently in humans with autosomal recessive congenital 

ichthyoses (ARCI10; OMIM #615024) (40). PNPLA1 encodes patatin like phospholipase 

domain containing protein 1, a transacylase required for the final synthesis step of 

acylceramid, a unique lipid in the stratum corneum barrier (41).  

Corneodesmosomes and desquamation: During cornification, desomosomes are transformed 

into corneodesmosomes, which are the main adhesive structures in the cornified layer of the 

epidermis. Corneodesmosoms are structurally but also compositionally distinct from 

desmosomes. The main difference in composition between desmosomes and 

corneodesmosomes is that corneodesmosin is present in the latter (15). It has been shown 

that if this component is missing, the cornified layed detaches prematurely from the granular 

layer in mice, and that they die within a few hours after birth (42). Homozygosity for loss of 

function variants in the CDSN gene encoding corneodesmosin is not lethal in humans, but 

leads to peeling skin syndrome 1 (OMIM #270300) as first described by Oji et al (10). CDSN 

variants in a heterozygous state can lead to hypotrichosis of the scalp (OMIM 146520), 

consistent with the expression of corneodesmosin in the inner root sheath of hair follicles (43). 

To maintain a certain thickness of the epidermis, proliferation in the basal layer has to be 

balanced by desquamation in the uppermost layer. Desquamation occurs by complete 

degradation of the extracellular corneodesmosome components corneodesmosin, 

desmoglein 1 and desmocollin (15). Important molecules in this process are the serine 

proteases kallikreins (KLKs) and the lympho-epithelial Kazal-type related inhibitor 1, LEKTI, 

encoded by SPINK5 (44, 45). Netherton syndrome (OMIM #256500), a severe autosomal 

recessive disorder, is caused by variants in SPINK5 (46). Characteristics for this syndrome 

are congenital erythroderma, sparse and brittle scalp hair and atopic manifestations with high 

IgE levels (47).  
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Inherited epidermolyses and blistering disorders 
Intact cell-cell and cell-matrix attachments are important for the integrity and mechanical 

strength of the skin and other stratified or complex epithelia. Structures responsible for cell-

cell adhesion include desmosomes, adherens junctions, gap junctions and tight junctions (48). 

At the dermal-epidermal junction or basement membrane zone, epithelial cells are attached 

to the basement membrane, which is attached to the papillary dermal layer. Hemidesmosomes 

and focal adhesions are structures that are crucial for this attachment but also play a role in 

different signaling pathways. A genetic defect in a gene encoding a molecule required to build 

these multiprotein structures can lead to an impaired mechanical strength of the skin, which 

typically leads to skin fragility, blistering and/or inflammation after minor mechanical trauma. 

On the other hand, blistering diseases can also be acquired and caused by autoantibodies as 

in pemphigoid diseases (49).  

The largest group of blistering diseases is termed Epidermolysis Bullosa (EB). According to 

recommendations on EB classification, there are four major types of EB: EB simplex, 

junctional EB, dystrophic EB and Kindler syndrome. As shown in Figure 5, this classification 

is based on the location of blister formation in the skin: Intraepidermal in EB simplex, within or 

beneath the basement membrane zone in junctional EB and dystrophic EB, respectively, or 

with a mixed pattern in Kindler syndrome.  

Figure 5: illustration of adhesion structures at the dermal-epidermal junction and the proteins involved in 
different forms of epidermolysis bullosa. Reproduced from (50). In Epidermolysis bullosa symplex (EBS), the 
blister formation occurs intraepidermal,in junctional epidermolysis bullosa (JEB)genetic defects lead to a separation 
of the lamina lucida, and dystrophic epidermolysis bullosa (DEB) is due to defective anchoring fibrils resulting in 
separation of the sub-basal lamina. A mixed pattern is observed in Kindler syndrome (KS).  

EB can further be classified into subtypes by mode of inheritance, clinical picture and the gene 

involved in the disease (51). As an example, genetic variants in ITGA6 can cause a subtype 

of junctional EB (OMIM #226730) in an autosomal recessive mode of inheritance. ITGA6 

encodes the integrin α6 unit that forms heterodimers with the β4 or β1 subunits. In 

hemidesmosomes of the skin, this transmembrane polypeptide provides an anchorage to the 
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basement membrane by interacting with laminin 332. A defective integrin α6 unit therefore 

leads to a defect in the attachment of the hemidesmosomal plaque to the extracellular matrix 

and, as a consequence, to blister formation in the dermal-epidermal junction. Like other 

hemidesmosomal components, integrin α6β4 heterodimers are not restricted to the skin, 

explaining additional symptoms beyond the skin (49).  

Nucleotide excision repair disorders 

While the epidermal barrier offers a first protection against many exogenous agents, some 

factors such as UV radiation, but also endogenous processes, induce damage that requires 

additional repair mechanisms. Exposure to UV from sunlight causes direct DNA damage in 

the form of cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6-4) photoproducts. 

The repair mechanism that is most important in removing such products is the nucleotide 

excision repair (NER). As shown in Figure 6, NER has four main steps: first, the DNA damage 

is recognized either through the transcription-coupled (TC) or the global genome (GG) repair 

pathway, second, the double-stranded DNA is opened around the lesion, third, endonucleases 

excise the DNA lesion, and fourth, new nucleotides are inserted by taking the complementary 

strand as a template. 

Figure 6: Simplified illustration of the 
main steps in nucleotide excision 
repair. Reproduced from (52). In reality, 
approximately 30 different factors are 
involved. The two pathways of this repair 
mechanism are the transcription-coupled 
repair (TC-NER) and the global genome 
repair (GG-NER). TC-NER mainly 
recognizes damage on the template and 
transcribed strands, while GG-NER 
repairs lesions independently of 
transcription (53).  
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NER involves approximately 30 different factors, and genetic variants in about half of them are 

known to cause human genetic disorders. (53). Among others, these disorders include the 

different subgroups of xeroderma pigmentosum, characterized by sunlight-induced changes 

in skin pigmentation, parchment-like dry skin, and often strong sensitivity to sunlight and 

photophobia (54). As an example, xeroderma pigmentosum group E (OMIM #278740) is 

caused by variants in the DDB2 gene, which encodes the small subunit of the DDB complex 

involved in the first step of NER, the damage recognition (55, 56). 

The repair of pyrimidine-pyrimidone (6-4) photoproducts happens within approximately 3 h 

after exposure, however, a big proportion of cyclobutane pyrimidine dimers is still present 24 h 

after exposure (57). To cope with this remaining damage, other repair systems such as the 

post replication system, also known as translesion synthesis system (TLS), exist. This 

mechanism is either error-prone or error-free, depending on the polymerase. In individuals 

with pathogenic variants in POLH encoding polymerase eta, the error-free axis of the TLS is 

not functioning normally, which leads to error-prone TLS (53, 58). This disorder, with a strong 

predisposition to sunlight induced skin cancer due to the increase in mutation frequency, is 

termed xeroderma pigmentosum, variant type (OMIM #278750) (59). 

Inherited hyper- and hypopigmentation disorders 

Abnormal pigmentation in skin is easily visible to the human eye, which made genetic 

pigmentation disorders some of the first studied traits in humans. Pigmentation requires the 

functioning of a complex multi-step process including melanoblast development, melanoblast 

migration to the skin, melanin synthesis in melanocytes, melanosome formation, and the 

transfer of melanosomes to keratinocytes (60). In each of these steps, multiple genes are 

involved and variants in many of them have been shown to cause monogenic disorders or 

traits in humans but also animals. Simplified and in general, genetic defects affecting 

development, migration and survival of melanocyte precursors lead to a complete or partial 

absence of melanocytes in skin and other target sites, resulting in disorders with abnormal 

pigmentation and additional clinical signs such as deafness. Defects in later steps in the 

process of pigmentation such as melanin synthesis or melanosome trafficking typically have 

an influence on pigmentation only, mostly causing non-syndromic phenotypes. 

Melanoblast development and migration: The pigment melanin is the main factor influencing 

skin and hair colour in mammals. It is produced by melanocytes, which develop from their 

neural crest cell derived precursors, the melanoblasts. The melanoblasts migrate to their 

target sites, the epidermis and hair follicles as well as some parts of the inner ear and the eye, 
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where they proliferate and differentiate into melanin producing melanocytes (60, 61). Different 

signaling pathways and transcription factors are involved in the development, migration and 

differentiation of melanoblasts. Key players include the PAX3, SOX10, MITF, KIT, EDN3 and 

EDNRB genes (60). Among those, MITF, encoding melanogenesis associated transcription 

factor with a basic helix-loop-helix leucine zipper motif, is often referred to as the key regulator 

gene (62). In humans, variants in MITF cause Waardenburg syndrome 2A (WS2A, OMIM 

#193510), a disorder with pigmentary and auditory abnormalities inherited in an autosomal 

dominant mode (63). Other disorders caused by MITF defects are the similar but more severe 

Tietz albinism-deafness syndrome (OMIM #103500) as well as the autosomal recessively 

inherited COMMAD syndrome (OMIM #617306) reported in children from parents with WS2A 

(64, 65). Phenotypes comparable to WS2A were reported in animals, including white spotting 

in horses that may be accompanied by deafness (66). 

Melanin synthesis: Mature melanocytes have lysosome-related organelles called 

melanosomes, where melanin is produced. Two types of melanin can be distinguished in skin 

of mammals: eumelanin, a dark black-brown pigment and pheomelanin, which is yellow-red 

(60). Melanin is produced by melanogenic enzymes: the tyrosinase (TYR) and tyrosinase-

related proteins (TYRP1 and TYRP2). The autosomal recessive disorders caused by complete 

or partial loss of tyrosinase activity are oculocutaneous albinism (OCA) type 1A (OMIM 

#606933) and 1B (OMIM #606952), respectively. These forms of true albinism are 

characterized by loss or reduction of pigmentation in skin, hair and eyes. Other less severe 

types of OCA with some amount of pigmentation are caused by variants in OCA2, TYRP1 and 

MATP as reviewed by Gronskov et al. (67). 

Melanogenesis and the switch between eumelanin and pheomelanin are regulated by other 

proteins such as melanocortin 1 receptor (encoded by MC1R), its negative agonist agouti 

signaling protein (encoded by ASIP), and other ligands (68). As reviewed by Kaelin and Barsh, 

the effects and interactions of molecules involved in the synthesis and transport of eu- and 

pheomelanin can be studied perfectly in domestic animals such as dogs and cats, as they 

display a large variety of different coat colours and patterns (61). Loss of function variants in 

MC1R can cause a red/yellow coat colour consistent with a switch from eumelanin to 

pheomelanin, while constitutively activating variants can cause a black coat due to increased 

eumelanin production (69). In Figure 7, the main (canine and feline) players in melanogenesis 

and melanosome transport are shown. 
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Figure 7: Simplified overview of genes involved in melanin synthesis and melanosome transportation. 
Reproduced from (61). Defects in many of these genes give rise to pigmentary phenotypes. MC1R controls the 
switch between eumelanin and pheomelanin production via second messenger cAMP. High MC1R expression and 
high cAMP levels increase TYRP1, OCA2, TYR, PMEL expression and lead to increased eumelanin production. 
Increased pheomelanin production is promoted by low cAMP levels and high expression of SLC7A11, encoding a 
cysteine transporter. MLPH, RAB27A and MYO5A are involved in melanosome trafficking.  

Melanosome formation: Although melanosomes are lysosome related organelles, they are 

built from early endosomal intermediates. In the skin, melanosomes mature within the 

melanocytes. They go through four stages and move to the periphery of melanocytes before 

they are transported to surrounding keratinocytes. In stage I, the premelanosomes contain 

irregular proteinaceous fibrils that become fully organized in stage II. These intraluminal 

structures form a template for melanin deposition. Melanin synthesis begins in stage III and 

melanin accumulates, resulting in melanin-packed melanosomes in stage IV (70, 71).The 

machinery and components for melanosome biogenesis and melanin synthesis have to be 

imported into the organelle. One of these structural components is PMEL17 encoded by PMEL 

(formerly also known as SILV). PMEL17 is the main component of the fibrils in stage I and II 

melanosomes. In dogs, Clark and colleges identified that the merle coat pattern is caused by 

a SINE (short interspersed nuclear element) insertion in the PMEL gene. Merle is 

characterized by spots of diluted pigment and can be accompanied by ocular and auditory 

abnormalities, mostly but not exclusively in homozygous mutant dogs (72). In humans, a group 

of diseases with a defect in biogenesis or trafficking of lysosome related organelles, most 

importantly platelet dense granules and melanosomes, is termed Hermansky Pudlak 

syndrome. Clinical signs for this heterogeneous group of autosomal recessive disorders are 

oculocutaneous albinism, a bleeding tendency and lysosomal ceroid deposition (73). 
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Melanosome transfer to keratinocytes: After the development into mature, fully melanized 

organelles, melanosomes are transported from the center to the periphery of the melanocytes. 

From this location, they will be transported further to keratinocytes. The long-range transport 

within the melanocyte, and towards the periphery, occurs along microtubules with kinesin-2 

as motor protein. Near the cell periphery, the transport continues along actin fibers with the 

motor protein MYO5A. The melanosome is bound to MYO5A via two adaptor proteins: 

melanophilin, encoded by MLPH, and the small GTPase RAB27A. Defects in any of the three 

proteins in this complex lead to abnormal pigmentation (74). How melanosomes are 

transferred from melanocytes to keratinocytes is still incompletely understood, and several 

models have been suggested (75). A recent study demonstrated that in chicken embryonic 

skin, melanosomes are transported in vesicles produced by plasma membrane. These 

vesicles are formed by blebbing of the melanocyte membrane, a process in which ras homolog 

family member A, encoded by RHOA, is involved (76). It is further known that the G-protein 

coupled receptor F2RL1, also known as PAR2, is involved in the phagocytosis of 

melanosomes in a Rho-dependent manner (77). 

Disorders of ectodermal appendages 

Ectodermal appendages develop through a crosstalk of epithelial and mesenchymal tissues. 

The early developmental stages are similar between the different appendages and species, 

and are mainly regulated by members of the fibroblast growth factor, hedgehog, transforming 

growth factor β (TGFβ), tumor necrosis factor and Wnt pathways (78, 79). A good example for 

a disorder affecting several ectodermal appendages that demonstrates common steps in early 

ectodermal appendage development is hypohidrotic ectodermal dysplasia (OMIM #305100). 

This disorder is caused by variants in genes of the ectodysplasin signaling pathway, most 

frequently in the EDA gene encoding ectodysplasin. Ectodermal dysplasia is known in different 

species such as mice, cattle, dogs and humans, and manifests with similar clinical signs 

including malformed or missing teeth, sparse hair, and defects in different glands leading to 

an inability to sweat (80-83).  

For the disorders studied in the framework of this thesis, especially the hair and hair follicle 

are of importance. After formation of the hair follicle during embryonic development, the hair 

follicle goes through a lifelong cycle of growth (anagen), regression (catagen) and quiescence 

(telogen) as shown in Figure 8. (84). The morphology of the hair follicle changes during the 

phases of the hair cycle. The major compartments of a mature anagen hair follicle are the 

dermal papilla composed of dermal cells, epidermal matrix cells that move upwards while 
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differentiating into the cortex and medulla of the hair shaft as well as into the inner root sheath 

surrounding the hair shaft, and an outer root sheath that surrounds the inner root sheath. The 

basement membrane separates the epithelial cells from the dermis and the dermal papilla. 

The hair follicle bulge contains epithelial stem cells that have the potential to regenerate the 

hair follicle after the resting phase. The signals for this transition into a new anagen phase are 

mainly sent from dermal papilla cells, and received from the epithelial stem cells (85, 86).  

Genetic hair disorders can be caused by defects in hair follicle morphogenesis, cycling, or 

structural components of the hair shaft or follicle (87). A classic example for a disorder due to 

a structural defect is monilethrix (OMIM #158000) characterized by fragile, easily braking hair 

resulting in scarring alopecia. This autosomal dominant disorder is caused by variants in the 

KRT81, KRT83 and KRT86 genes encoding hair keratins expressed in the mid-cortex of the 

hair shaft (88-91). Among the 54 human keratin genes, 17 encode hair keratins and nine 

encode hair follicle-specific epithelial keratins; many of them involved in hair disorders (91). 

Figure 8: Hair cycle and expression of keratins in different layers of the hair follicle. Reproduced from (91, 
92). a) Hair follicles cycle through phases of growth (anagen), regression (catagen) and quiescence (telogen). 
Kenogen refers to hair follicles that remain hairless for a certain time after telogen. b) Type 1 (left side) and type 2 
(right side) keratin expression in the different layers of the hair follicle. cl = companion layer, gc = germinative 
center, He = Henle layer, Hu = Huxley layer, icu = inner cuticle, IRS = inner root sheath, ORS = outer root sheath. 
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Vascular disorders 
The vessels of the blood and lymphatic system are made of a single luminal layer of 

endothelial cells and surrounding layers consisting of vascular smooth muscle cells and/or 

pericytes (93). Vasculogenesis, angiogenesis and lymphangiogenesis are the processes by 

which blood and lymphatic vessels are built (Figure 9). Vasculogenesis refers to the process 

in the embryo, where a so-called primary capillary plexus is formed de novo through 

differentiation of mesodermal precursor cells. During angiogenesis, this pre-existing primary 

capillary plexus is remodeled to form a complex network of mature capillaries, veins and 

arteries (94). Lymphangiogenesis is the incompletely understood process during which the 

lymphatic system is built. After angiogenesis, veins give rise to lymphatic endothelial cell 

precursors that build the first lymphatic structures, the embryonic lymph sacs. From these 

structures, the lymphatic vasculature is built (95). However, there are also indications for 

nonvenous derived lymphatic vasculature (96). Vascular malformations result from a defect in 

the development of the blood or lymphatic system. Named after the affected vessel type, they 

Figure 9: Events during formation of blood and lymph vasculature. Reproduced from (97). Vasculogenesis 
is the process of de novo vessel formation resulting in a primary capillary plexus. Remodeling of preexisting vessels 
into mature blood vessels is called angiogenesis. The formation of lymphatic vessels is called lymphangiogenesis. 
This process might require venous precursor cells. Pericytes are associated with capillaries; vascular smooth 
muscle cells cover arteries and veins. Sparse smooth muscle cells (purple) are found on larger lymphatic vessels. 

can be divided into venous, capillary, lymphatic, arteriovenous and combined malformations 

(94). One of the most common monogenic disorders is hereditary hemorrhagic telangiectasia 

(HHT). This group of disorders is characterized by arteriovenous malformations in which the 

capillaries between veins and arteries are missing, leading to direct connections between 
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these two types of vessels. Compared to normal blood vessels, the abnormal vessels are 

typically more prone to hemorrhage because of their fragile walls that contain less vascular 

smooth muscle cells, and turbulent blood flow. Affected individuals often remain undiagnosed 

because the typical clinical signs can be subtle. First, spontaneous nosebleeds and later 

telangiectases, small arteriovenous malformations that are usually visible as pink to red small 

lesions of the skin of buccal mucosa, are the manifestations in most patients. Additional 

symptoms include gastrointestinal bleeding in about one third of the patients, and 

complications from arteriovenous malformations such as for example stroke or very rarely 

deep venous thromboses. HHT is an autosomal dominant disorder which is in most cases 

caused by variants in endoglin (ENG) or activin A receptor type II-like 1 (ACVRL1) and rarely 

by variants in SMAD4, GDF2 and other unidentified genes (98-100). The products encoded 

by these genes play a role in the TGFβ signaling pathway. It is suggested that most variants 

result in haploinsufficiency and a disturbance in TGFβ signaling that is critical for angiogenesis 

(98, 100).  

Connective tissue defects 

Connective tissues function as a supportive structure in the body. They can be divided into 

hard connective tissues referring to bone and cartilage, blood, and soft connective tissues that 

surround organs. The extracellular matrix of connective tissues that embeds cellular and 

fibrous components consists mainly of common and tissue-specific collagen, elastin, 

glycoproteins and glycosaminoglycans (101). In the skin, the dermal extracellular matrix can 

be divided into the previously described basal membrane and the interstitial matrix (102). 

Based on the main type of fibers involved, connective tissue disorders are grouped into 

collagenopathies or elastinopathies (101). In 2014, Lemke and colleagues listed 26 genes in 

which variants were reported to cause monogenic connective tissue disorders related to the 

skin (6).  

The largest group among these disorders includes different forms of Ehlers-Danlos syndrome 

(EDS), followed by cutis laxa, a term for a heterogenous group of elastinopathies 

characterized by relatively inelastic skin, loose and redundant skin folds and often multiorgan 

involvement (6, 103). Based on the international classification from 2017, there are 13 

subtypes of EDS in humans (104). The general characteristics of EDS are skin 

hyperextensibility, joint hyperflexibility and skin friability (105). The classical EDS as well as 

the cardiac-valvular, vascular, arthrochalasia and myopathic EDS are caused by mostly but 

not exclusively dominant variants in different collagen genes. Most other forms are caused by 

variants in collagen-modifying enzymes (104).  



Each collagen molecule is made of three alpha chains synthesized in the endoplasmatic 

reticulum as procollagen alpha chains. After different post-translational modifications, these 

chains associate and form a triple-helix to build a procollagen molecule. For this coiled-coil 

structure, at least one domain of Glycin-X-Y repeats is required in every alpha-chain. 

Procollagen molecules are secreted into the extracellular space where they are further 

processed by proteinases that cleave the N- and C-terminal propeptides resulting in 

tropocollagen molecules. These molecules assemble into fibrils that are stabilized by covalent 

cross-linking (106, 107)). Because of the assembly of collagen molecules into supramolecular 

structures, genetic variants resulting in structurally changed polypeptide chains that are still 

able to assemble with non-mutant chains usually lead to more severe phenotypes than 

variants, such as nonsense variants, that prevent an assembly of normal and abnormal 

polypeptides as illustrated in Figure 10 (106).  

Figure 10: Molecular pathology and extracellular consequences. Reproduced from (108). Loss of function 
variants in genes encoding structural extracellular matrix (ECM) components such as collagen typically lead to 
decay of the mRNA and therefore reduced protein synthesis which may result in impaird  functionality of the ECM. 
Variants that do not lead to a degradation of the mutant transcript but to a mutant protein that is integrated into the 
multimer can act in a dominant negative manner. A mutant-containing multimer can lead to protein deficiency and 
altered interactions, reduced stability and deleterious effects on ECM function (yellow box). If the incorrect folding 
leads to degradation (unfolded protein response, UPR), this can alter gene expression and lead to apoptosis and 
eventually disruption of tissue maintenance.  
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Dermal mosaics 

Genetic mosaicism describes an organism with two or more genetically distinct cell 

populations that originated from only one zygote. This is different from chimaerism, where 

genetically distinct cell populations from two different zygotes come together in one individual 

(109). The postzygotic de novo mutation event leading to genetic mosaicism can occur at 

different developmental stages and in different body parts, leading to different inheritance 

patterns and disease severity. In somatic mosaicism, the disease causing variant affects only 

a part of the somatic cells and is therefore limited to the affected individual. If gonadal tissue 

is affected as well, as in gonosomal (somatic and germline) or germline mosaicism, the variant 

can be transmitted to the offspring (110). Some disorders are never transmitted, even if the 

mutation event occurred in a germline precursor cell. This can have two reasons: First, the 

disorder could be embryonic lethal or second, the variant could lead to apoptosis of the mutant 

germ cells (109). An example for such a disease that manifests only as mosaicism is the rare 

Proteus syndrome (OMIM #176920). Proteus syndrome is defined as a progressive, 

sporadically occurring overgrowth syndrome with mosaic distribution of lesions, and additional 

features such as for example a cerebriform connective tissue nevus (111). By whole exome 

sequencing of DNA originating from lesional and non-affected tissues of patients with Proteus 

syndrome, an activating missense variant in the AKT1 gene was found to be present in the 

lesional but not the non-affected tissues. This demonstrated for the first time that Proteus 

syndrome is caused by de novo mutation events in the AKT1 gene (112) The oncogene AKT1 

encodes AKT serine/threonine kinase 1, a central player in the PI3K/AKT/mTOR signaling 

pathway controlling important processes such as proliferation, cell growth and survival (113).  

Besides genetic mosaicism, there is also functional or epigenetic mosaicism. One form of 

epigenetic mosaicism is X-chromosomal functional mosaicism, the result of early embryonic 

X-chromosome inactivation in females, also called lyonization. In females that are

heterozygous for a X-chromosomal disease-causing variant, this mechanism will give rise to

a cell population expressing the mutant allele, and cells in which the wildtype allele is

expressed (114). In disorders with cutaneous manifestation, this will lead to a pattern of

lesional and healthy skin patches.

In both genetic and functional mosaicism, the mosaic pattern is typically arranged along the

so-called Blaschko’s lines as shown in Figure 11. These lines of Blaschko might reflect the

migration of skin cells during embryonic development (115).
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Figure 11: Different mosaic pattern following the lines of Blaschko. Reproduced from (115). Type 1: a) linear 
and b) broad linear lines. Type 2: checkerboard pattern or lateralization in c). Type 3: pylloid pattern in d).  

Genodermatoses with tumor predisposition 
Processes such as cell cycle control, DNA repair or telomere maintenance are critical for 

health. An imbalance caused by a mutated gene involved in such a process may lead to tumor 

development. On the other hand, a genetic susceptibility to carcinogenic factors such as UV 

light, or genodermatoses associated with immunodeficiency, might also predispose to tumors 

(116). Furthermore, there are genodermatoses with increased risk for cancer, such as Kindler 

syndrome, in which the mechanisms for cancer susceptibility are not obvious at first sight 

(117). Lemke et al. listed 45 genes in which variants are known to cause genodermatoses with 

tumor predispositions (6). Many of them are involved in the development of previously 

discussed xeroderma pigmentosum subtypes. Another prominent group of disorders in this 

list is dyskeratosis congenita. Diskeratosis congenita is a term for disorders with defective 

telomere maintenance, clinically characterized by mucocutaneous abnormalities (abnormal 

skin pigmentation, nail dystrophy, mucosal leukoplakia), increased susceptibility to cancer, 

and bone marrow failure, which is often the cause of death in affected individuals (118). The 

different subtype of the disorder can be inherited in either monogenic autosomal recessive, 

dominant or x-linked recessive mode (119). In all cases with a genetic diagnosis, the causative 

variant was in a gene coding for a component of the telomerase or telomere binding complex 

shelterin. As pathogenic mechanism, it is suggested that telomere dysfunction results in 

genome instability and tumorigenesis (120, 121). 
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Selected methods and technologies in genetic analyses 
The first genetic causes for Mendelian disorders were identified by applying candidate gene 

approaches, which required biological knowledge about the disorder and its underlying 

etiology. In the mid-1980s, positional cloning became a popular approach to map the locus 

segregating with the disease. Using this approach, no biological knowledge or hypotheses 

were required for the initial mapping (122). Important hypothesis-free methods for the genetic 

analysis of Mendelian disorders include, but are not limited to, linkage analysis, homozygosity 

mapping, and genome wide association studies. Nowadays, these methods are based on 

hundreds of thousands of single nucleotide variants (SNVs) with known chromosomal 

positions that are used as markers. With the available genotyping arrays, genotypes for more 

than 1.8 million markers disributed over the whole human genome can be determined with the 

Affymetrix Genome-Wide Human  SNP Array 6.0.  In dogs, the latest genotyping array detects 

more than 700,000 markers. In the following paragraphs, the methods most relevant for 

genetic mapping of disorders investigated in this thesis will be briefly explained. In the last 

section, next generation sequencing will be addressed, a technology which has revolutionized 

the field of genetics. 

Linkage analysis 
Linkage analysis is a family-based method to detect chromosomal regions that are inherited 

together with the trait of interest. In linkage analysis, the concepts of linkage and 

recombination are important. Two loci in the genome are linked, if they are inherited together 

more often than expected by chance. This means, the probability of recombination between 

these loci is less than 50% during meiosis. In a genetic map, two loci separated by one 

centimorgan, which corresponds to approximately one billion base pairs, have a chance of 1% 

to be separated in one meiosis. The probability that two loci are separated during a 

recombination event at meiosis increases with distance between the two loci. Therefore, 

linkage disequilibrium between two loci decreases with every separation and only persists 

over several generations if the two loci are in close proximity to each other (123, 124). 

Linkage analyses can be done model-free (also known as non-parametric) or parametric. 

Model-free linkage is based on allele-sharing and used more often for complex disorders 

(125). In parametric linkage analysis, the co-segregation of genetic markers and the trait of 

interest is investigated under a given disease model that includes information on mode of 

inheritance and penetrance. The strength of linkage between the trait and marker locus is 

usually given as LOD (logarithm of the odds) score reported by Morton in 1955 (126). 

Simplified, it is calculated by the logarithm to the base 10 of the likelihood to observe the data 
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due to true linkage (alternative hypothesis) divided by the likelihood to observe the data by 

chance (null hypothesis). Traditionally, a LOD score of 3 or higher is regarded as evidence for 

linkage, while a LOD score of -2 or lower allows to exclude linkage (123). 

Homozygosity mapping / autozygosity mapping 

For monogenic autosomal recessive disorders where the disease allele is expected to be 

identical by descent, homozygosity mapping is a powerful tool to locate the disease allele. 

This method is based on the assumption that an affected individual has inherited two identical 

copies of chromosomal regions carrying the disease allele, leading to homozygosity in this 

region of the genome as shown in Figure 12. Such extended regions of homozygosity are 

known as runs of homozygosity (ROHs). ROHs are usually between a few hunded kilobases 

and several mega bases long, and their length decreases with genetic distance due to 

recombination events (127). 

Figure 12: Segregation of 
a recessive disease allele 
in a pedigree. Reproduced 
from (127). The affected 
individual has inherited two 
copies of the disease allele 
(star). Because the allele is 
identical by descent, it is 
included in an extended 
region of homozygosity in 
the affected individual. 

Genome wide association study 

A popular alternative to family-based designs are GWASs. Their classical design is a case-

control study, where the association of genetic markers with a trait is calculated in a large 

number of unrelated affected and nonaffected individuals (128). This means, an allele is 

associated with the trait of interest, if its frequency is significantly different between the case 

and the control group. Since most GWASs are based on genetic markers, an associated SNV 

is most likely not causative but simply in linkage disequilibrium with the true causative variant. 
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While the principle of a GWAS is relatively simple, there are a few statistical and design related 

issues that have to be taken into account (128).  

First, the study has to have enough power to detect an association. In a GWAS, power is the 

probability of detecting a true association, or in other words the probability of a correct rejection 

of the null hypothesis. Several factors influence power, and not all of them can be controlled. 

One of the controllable factors is the sample size (129). In humans with a large genetic 

diversity, and especially for complex traits, a large sample size is required (130). For some 

monogenic traits in dogs, it has been shown that 10-20 cases and the same number of controls 

are sufficient to detect associations with a recessive trait, while twice as many samples were 

required for dominant traits (131). 

In a genome-wide study, thousands of markers are analyzed simultaneously and each of these 

markers counts as independent test. With a significance threshold of 0.05 and a set of 500,000 

markers, we would therefore expect 25,000 significant associations just by chance. To avoid 

such false positives, results have to be adjusted for multiple testing. A conservative multiple 

testing correction is the Bonferroni correction. This correction is implemented by dividing the 

significance threshold by the number of independent tests (markers). Bonferroni correction is 

however very strict and ignores that the number of genetic markers does not represent the 

number of independent tests due to linkage disequilibrium (128, 132). Other multiple testing 

correction methods include procedures based on permutation or controlling the false discovery 

rate (133, 134). 

A confounding factor that is challenging to detect and correct for is population stratification. If 

the allele frequency at a given marker is different between case and control groups due to 

reasons other than the phenotype of interest, this results in spurious allelic associations (135). 

A commonly accepted way to correct for population structure, family structure and cryptic 

relatedness is the use of mixed models. Programs applying this method calculate a pair-wise 

genetic relationship matrix based on autosomal markers which is then integrated into the 

model as random effect (136, 137). 

Next generation sequencing 

After the field of DNA sequencing had advanced relatively slowly for decades, the first 

breakthrough was the development of the Sanger sequencing technique in 1977 (138, 139). 

This technique makes use of the dideoxy chain-termination method and is still used for 

targeted sequencing of candidate genes and validation of next generation sequencing results 

(140). With this first generation sequencing technique, segments of almost one kilobase can 

be sequenced with a high accuracy. With the development of second generation techniques 



(together with the third generation also referred to as next generation sequencing) high-

throughput sequencing became possible, reducing cost, time and effort (141). These 

techniques revolutionized genomics and enabled the use of whole genome or whole exome 

sequencing in research but also for diagnostic purposes (139, 142). Among the different NGS 

platforms that differ in factors such as speed, read length and throughput, currently the most 

commonly used next generation sequencing platform is Illumina (143). Illumina machines 

produce short read sequencing data.  To date, single or paired-end reads of 150 bp in length 

can be obtained on Illumina instruments.  

Although next generation sequencing can not detect 100 % of the genetic variation, it has 

generally the advantage that rare and even de novo variants can be detected that would be 

missed by GWAS with predefined marker sets. There is also a chance to at least detect some 

structural variants that cannot be seen in Sanger sequencing data. Furthermore, it is possible 

to identify causative variants in a small number of cases or even single cases. Therefore, 

especially in monogenic disorders caused by such rare variants, whole genome or whole 

exome sequencing has had a huge impact and has led to a fast increase in the number of 

known causative variants over the last decade (139, 144). 
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Aim and hypothesis of the thesis 
The aim of this thesis was to identify genetic variants causing monogenic skin disorders in 

domestic animal species. The hypothesis was that these disorders follow a simple Mendelian 

inheritance. 

Specifically, the genetic background of the following disorders or traits was investigated: 

Cats: 

1. Feline cutaneous asthenia / Ehlers-Danlos syndrome

2. Inflammatory linear verrucous epidermal nevus (ILVEN) - like lesions

Dogs: 

3. Congenital cornification disorder in a Labrador Retriever and her cross-bred daughter

4. Coat colour dilution in Chow Chows

5. Ectodermal dysplasia in a Dachshund family

6. Follicular dysplasia in Curly Coated Retrievers

7. Ichthyosis in a German Shepherd

8. Lethal acrodermatitis in Bull Terriers and Miniature Bull Terriers

9. Nasal parakeratosis in Greyhounds

10. Oculocutaneous albinism in German Spitz dogs

11. Oculocutaneous albinism in a Bullmastiff

Horses: 

12. Naked foal syndrome in Akhal Teke horses

To facilitate the analysis of disorders potentially related to keratins, a curated catalog of 

canine and equine keratin genes was created, which is presented in the last chapter of the 

results section. 
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Summary Ehlers-Danlos syndrome (EDS) is a group of heritable connective tissue disorders caused by

defective collagen synthesis or incorrect assembly of the collagen triple helical structure.

EDS is characterised by joint hypermobility, skin hyperextensibility, abnormal scarring,

poor wound healing and tissue friability. Human EDS may be caused by variants in

several different genes including COL5A1, which encodes the collagen type V alpha 1

chain. For the present study we investigated a 1.5-year-old, spayed female, domestic

shorthair cat with EDS. The affected cat showed multiple recurrent skin tears,

hyperextensibility of the skin and joint abnormalities. We obtained whole genome

sequencing data from the affected cat and searched for variants in candidate genes known

to cause EDS. We detected a heterozygous single base-pair deletion in exon 43 of the

COL5A1 gene, namely c.3420delG. The deletion was predicted to result in a frameshift

and premature stop codon: p.(Leu1141SerfsTer134). Sanger sequencing confirmed that

the variant was present in the affected cat and absent from 103 unaffected cats from

different breeds. The variant was also absent from a Burmese cat with EDS. Based on

knowledge about the functional impact of COL5A1 variants in other species, COL5A1:

c.3420delG represents a compelling candidate causative variant for the observed EDS in

the affected cat.

Keywords collagen, dermatology, Felis catus, genodermatosis, skin, whole genome

sequencing

Ehlers-Danlos syndrome (EDS) is a clinically and genetically

heterogeneous group of heritable connective tissue disorders.

EDS is caused by defective collagen synthesis or incorrect

assembly of the collagen triple helical structure. The pheno-

type is characterised by joint hypermobility, skin hyperex-

tensibility, abnormal scarring, poor wound healing and

tissue friability (Byers & Murray 2012; De Paepe & Malfait

2012). Collagen provides the connective tissue matrix with

shape, strength and the ability to resist deformation, thus

being a key structural protein of the connective tissue.

Fibrillary collagen proteins consist of three either homo- or

heterotrimeric polypeptide chains, designated as a chains,

which together form a triple helical structure (De Paepe &

Malfait 2012). As a result of defects in fibrillary collagen, the

skin may become more fragile and tear more easily.

According to the 2017 international classification there

are 13 recognized subtypes of EDS in humans. Depending

on the causative variant, EDS may follow an autosomal

dominant or autosomal recessive mode of inheritance

(Malfait et al. 2017).

The most common type of EDS, the so-called classical EDS

(cEDS), formerly categorized as EDS I or EDS II, is caused by

genetic variants in the COL5A1 and COL5A2 genes

(Nicholls et al. 1996; Symoens et al. 2008; Malfait et al.

2010; Bowen et al. 2017). Variants in many other genes are

known to have an impact on collagen structure that may

also result in the clinical picture of EDS (Byers & Murray

2012; De Paepe & Malfait 2012; Malfait et al. 2017).

Connective tissue diseases resembling human EDS have

been observed in many different mammalian species such as

cattle, dogs, minks, horses, rabbits and sheep (Hegreberg

et al. 1969; Harvey et al. 1990; Colige et al. 1999; Sequeira

et al. 1999; Paciello et al. 2003; Zhou et al. 2012;

Monthoux et al. 2015). A closely related phenotype is

equine regional dermal asthenia (HERDA) in horses, which

is caused by a variant in the PPIB gene (Tryon et al. 2007).
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Furthermore, a Holstein calf with a phenotype described as

a variant form of EDS and a heterozygous missense variant

in the EPYC gene was reported (Tajima et al. 1999). This

calf had a deficiency of dermatan sulfate proteoglycan, but

the causality of the EPYC genetic variant was not conclu-

sively proven. So far, neither PPIB nor EPYC variants have

been reported in human EDS patients.

In cats, isolated EDS cases have been described as

cutaneous asthenia or dermatosparaxis in several individ-

ual purebred and crossbred animals (OMIA 000327-9685;

Scott 1974; Patterson & Minor 1977; Counts et al. 1980;

Holbrook et al. 1980; Verweij & van Zuylen 1986; Plotnick

et al. 1992; Sequeira et al. 1999; Benitah et al. 2004;

Szczepanik et al. 2006; Smids 2008; Dokuzeyl€ul et al.

2013; Weingart et al. 2014). An experimental domestic

shorthair cat colony with an autosomal dominant form of

EDS was established to study the biomechanical properties

and wound-healing characteristics of skin (Freeman et al.

1989a,b). More recently, EDS has also been observed in

several Burmese cats and it was suggested that an autoso-

mal recessive form of EDS may be segregating in this breed

(Hansen et al. 2015).

Before genetic analyses became widely available, a

detailed biochemical analysis in a single affected Himalayan

cat revealed a defect in ADAMTS2, the procollagen N-

endopeptidase (Counts et al. 1980). Thus, this case corre-

sponded to the human dermatosparaxis EDS (dEDS or

formerly EDS VIIC). To the best of our knowledge, no

causative genetic variant in a cat with EDS has yet been

reported in the scientific literature.

In the present study, we investigated a 1.5-year-old,

spayed female, domestic shorthair cat with characteristics of

EDS. The affected cat showed multiple recurrent skin tears

with little or no bleeding, located mainly on the dorsal neck

and the shoulders, and hyperextensibility of the skin

(Fig. 1). The skin extensibility index, according to Hansen

et al. (2015), was 27%. Some of the previous lacerations

had slowly healed leaving shiny alopecic scars. Other

clinical findings included bilateral hip subluxation with a

positive Ortolani sign even in the awake patient, bilateral

carpal hyperextension with plantigrade appearance, pain

and laxity during palpation of all joints and bilateral

perineal hernias. The index cat was found on the street

when she was a kitten together with a female littermate,

which appeared to be normal at the clinical examination.

Information about the parents was not available.

To confirm our hypothesis of a genetic defect related to

collagen, we obtained an EDTA blood sample of the affected

cat, isolated genomic DNA and performed whole genome re-

sequencing at 209 coverage using 29 150-bp reads on an

Illumina HiSeq 3000 instrument. Private variants were

identified by comparing the sequence from the affected cat

to the feline reference genome assembly FelCat 9.0 and to

genome re-sequencing data from 11 genetically diverse

control cats obtained during other projects (database

accessions given in Table S1). The methodology was

previously described (Bauer et al. 2017). We identified 93

private homozygous and 2339 private heterozygous pro-

tein-changing variants (Table S2). These variants included

a heterozygous frameshifting single-base deletion in exon

43 of the COL5A1 gene [XM_023242950.1:c.3420delG,

Chr13:g.93 210 344delC or XP_023098718.1:p.(Leu1141

SerfsTer134)]. None of the other private protein-changing

variants were located in a known EDS candidate gene.

We confirmed the COL5A1:c.3420delG variant in the

affected cat using Sanger sequencing and genotyped a

sample of 104 genetically diverse cats including the

unaffected littermate of the affected cat and a Burmese cat

affected by EDS. Primers COL5A1_F1, AAGCTGGCTGAA

ACCCATC and COL5A1_R1, CGAGCACTCCAGAGATGTCA

were used to amplify a 418-bp amplicon containing the

COL5A1:c.3420delG variant. Both primers were individu-

ally used as sequencing primers to obtain sequences in both

orientations on an ABI 3730 capillary sequencer (Applied

Biosystems). This experiment confirmed that the variant

was present exclusively in the affected cat and did not occur

in the other 104 genotyped cats including the Burmese cat

with EDS (Fig. 2).

The identified COL5A1:c.3420delG variant in the affected

cat causes a shift in the open reading frame, resulting in a

premature stop codon, and is predicted to truncate approx-

imately one-third of the 1837 amino acids of the wildtype

COL5A1 protein. Human and feline proteins share 96%

amino acid identity. Heterozygous variants in the COL5A1

gene may cause EDS in humans and mice (Wenstrup et al.

2006; Malfait et al. 2017). In human EDS patients, many

COL5A1 nonsense, frameshift or splice-site variants have

been reported (Symoens et al. 2008; Malfait et al. 2010;

(a) (b)

Figure 1 Ehlers-Danlos syndrome in a cat. (a)

Skin tear on the right shoulder. (b) Hyperex-

tensibility of the skin.
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Byers & Murray 2012). The ClinVar database lists human

pathogenic COL5A1 frameshift variants that are compara-

ble to the identified feline variant and lead to relatively mild

clinical forms of cEDS (formerly EDS II), for example,

NM_001278074.1:c.3206dup (p.Ala1070Serfs) and

NM_000093.4:c.3752delC (p.Pro1251Argfs). Knowledge

about the functional impact of COL5A1 frameshift variants

in humans suggests a causal role for the detected feline

COL5A1:c.3420delG variant in the cat with EDS.

As we did not have access to RNA or protein samples from

the affected cat, we could not investigate the functional

consequences of the genomic variant. It seems likely that

transcripts from the mutant allele are degraded by nonsense-

mediated decay or other quality-control mechanisms, which

might lead to a reduced amount of synthesized collagen type

V alpha 1 chains and cause the clinical phenotype due to

haploinsufficiency, similar to what has been observed in

Col5a1+/– mice (Wenstrup et al. 2006). An alternative

pathomechanism, in which at least some of the mutant

protein is expressed and incorporated into defective collagen

triple helices, also cannot be ruled out. The triple-helical

structure of collagenmakes it particularly sensitive to genetic

variants, as each mutant protein molecule can potentially

oligomerize with up to two wildtype protein molecules,

thereby exerting a pronounced dominant negative effect.

No information on the parents of the affected cat was

available. It is therefore impossible to investigate whether

the COL5A1:c.3420delG variant was due to a de novo

mutation event or whether it was actually transmitted by

one of the cat’s parents. Given the autosomal dominant

mode of inheritance, we speculate that this variant is

probably limited to the observed case.

In summary, we identified a heterozygous single-nucleotide

deletion in COL5A1 in a cat with EDS. The variant was not

present in 103 unaffected control cats or a Burmese cat with

EDS. The known functional impact of COL5A1 frameshift

variants in humans suggests that the detected feline COL5A1:

c.3420delG variant is an excellent candidate causative

variant for the EDS phenotype in the investigated cat.
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Background – The feline counterpart of human inflammatory linear verrucous epidermal nevus (ILVEN) has been

described; however, the possible underlying developmental defect has not been investigated.

Objective – To report a case of multiple ILVEN-like lesions in a cat with a genetic variant in the NSDHL gene.

Animals – A 2-year-old, female, domestic short hair cat with a history of multiple alopecic, verrucous, hyperpig-

mented and erythematous skin lesions, following Blaschko’s lines on the head, the limbs, the trunk and paw

pads.

Methods and results – According to the clinical and histopathological findings, a diagnosis of multiple ILVEN-like

lesions was made. Genetic investigation revealed a heterozygous missense variant in the X-chromosomal

NSDHL gene predicted to lead to a loss-of-function of the NSDHL protein.

Conclusions and clinical importance – To the best of the authors’ knowledge, this is the first case of feline

ILVEN-like lesions in which a genetic cause has been proposed. Future studies to establish a causal relationship

between NSDHL variants and skin lesions might lead to pathogenesis-directed treatments.

Introduction

Inflammatory linear verrucous epidermal nevus (ILVEN) in

humans is a subgroup of epidermal nevi that in some

cases can be caused by genetic variants in the NSDHL

gene.1 NSDHL variants most often lead to a syndromic

condition, including congenital hemidysplasia, ichthyosi-

form erythroderma (nevus) and limb defects (CHILD syn-

drome) but in some cases only linear epidermal nevi are

evident (mild CHILD syndrome).2 Multiple skin lesions

similar to ILVEN in humans have been reported in a cat

although the possible genetic cause has not been investi-

gated.3 The aim of this case report is to describe a case

of multiple verrucous cutaneous plaques, proposed to be

similar to human ILVEN, in a cat with a genetic variant in

the NSDHL gene.

Case description

A 2-year-old, female, domestic short hair cat was pre-

sented with a history of multiple skin plaques first

noticed when she was approximately 1-month-old. Ini-

tially, lesions were smaller and mildly erythematous

but over time they had become larger, hyperpigmented

and scaly. Topical and systemic treatments, including

antifungal drugs, antibiotics, glucocorticoids and ciclos-

porin, did not resolve the lesions. At the time of exam-

ination, multiple plaques were present on the head,

one ear, chin, limbs, trunk and paw pads. They were

bilaterally distributed in a non-symmetrical pattern fol-

lowing Blaschko’s lines, and lesions almost always

showed a linear configuration except on the trunk

where they had a more oval shape (Figure 1). Plaques

were alopecic, hyperpigmented, with an irregular verru-

cous surface, occasionally crusted or eroded, and

encircled by a slightly erythematous margin (Figure 2).

Mild to moderate pruritus was reported by the owner.

Cytological examination of the skin lesions showed

numerous cocci and scattered neutrophils. Dermato-

phytosis was ruled out based on negative fungal

culture.

According to the clinical examination and the blood and

urine tests, including feline immunodeficient virus (FIV)

and feline leukaemia virus (FeLV) tests, the cat was other-

wise healthy. Two skin biopsy specimens were taken

from the axilla and the lateral thorax. These revealed a dif-

fuse, moderate to severe epidermal hyperplasia also
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involving the infundibular walls (Figure 3). The epidermal

hyperplasia was regular in the biopsy from the thorax and

slightly irregular in the biopsy from the axilla. The epider-

mis was covered by a thick layer of mostly orthokeratotic,

but also multifocal areas of parakeratotic compact keratin.

Multifocally, and more pronounced in the biopsy from the

axilla, there was exocytosis of inflammatory cells

throughout the epidermis, small intracorneal pustules

filled with neutrophils and serocellular crusts of varying

size. In the surface crusts from the axilla, few cocci were

visible. Sebaceous glands were moderately hyperplastic

in both biopsies. In the superficial dermis, there was a

moderate perivascular to interstitial infiltrate composed of

mainly mast cells and fewer lymphocytes, neutrophils

and melanophages. The periodic acid Schiff stain did not

reveal any fungal elements. Papillomavirus-associated

lesions were considered unlikely based on the absence of

viral cytopathic changes. To further investigate the possi-

ble involvement of papillomavirus, PCR was performed

as described previously and proved to be negative.4

Based on the clinical and histopathological findings,

multiple plaques similar to human ILVEN were diagnosed.

To probe the genetic basis of the condition, DNA from a

blood sample collected in an EDTA tube was obtained.

The genome of this cat was sequenced at 931 coverage;

single nucleotide variants and short indels were called

with respect to the reference genome assembly FelCat

9.0 as described previously.5 The sequencing data

were deposited under project accession PRJEB7401 and

sample accession SAMEA104694019 in the European

Nucleotide Archive (ENA). Based on the distribution of

the lesions and as the cat was female, we hypothesized

Figure 1. Illustration of the distribution of skin lesions in a cat with bilateral nonsymmetrical lesions resembling inflammatory linear verrucous

epidermal nevi. L left, R right.

a b c

Figure 2. Photograph of skin lesions in a cat resembling inflammatory linear verrucous epidermal nevi.

(a) Alopecic, verrucous, hyperpigmented linear plaques following Blaschko’s lines on the axilla and the medial aspect of the right forelimb. (b) A lin-

ear crusted plaque running along the midline demarcation of the chin. (c) A scaly and crusted lesion, spreading from the paw pad to the flexural

aspect of the carpus in a linear fashion.
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that the condition was due to X-chromosomal functional

mosaicism. We therefore filtered for variants on the X

chromosome with heterozygous genotypes in the

affected cat, while simultaneously having a homozygous

reference (or missing) genotype in 14 additional genome

sequences from unaffected control cats. This revealed a

heterozygous missense variant in the NSDHL gene: XM_

004000985.5:c.397A>G or XP_004001034.1:p.(Ser133

Gly). The variant was absent from 93 additional geneti-

cally diverse control cats as demonstrated by Sanger

sequencing. The variant was predicted to affect the

essential serine residue of the catalytic tetrad 109Asn-

133Ser-160Tyr-164Lys in the conserved short-chain dehy-

drogenase/reductase domain of the feline NSDHL protein

and thus most likely leading to a functional inactivation of

the protein.6

No treatment was prescribed and the lesions appeared

unchanged after one year.

Discussion

To the best of the authors’ knowledge, this is the

first time that an underlying genetic cause in cats

with cutaneous lesions similar to human ILVEN has

been reported. According to our results, the disorder

might be due to inactivating genetic variants within

the NSDHL gene resulting in a block in cholesterol

biosynthesis and the accumulation of toxic intermedi-

ates in the skin.1 Although NSDHL mutations in

humans frequently cause the severe syndromic condi-

tion involving limb defects (CHILD syndrome), our

case did not present any relevant clinical abnormalities

apart from the skin lesions and it appears to be more

similar to the so-called mild CHILD syndrome, in

which only skin lesions are evident. Interestingly, the

only feline ILVEN case previously described presented

with neurological signs including ataxia and tremors.3

Unfortunately, in that case, genetic investigation was

not performed.3

As distinct from the previous case,3 our case showed a

bilateral distribution of lesions. Albeit most cases of

ILVEN in human are unilateral, bilateral involvement also

has been reported.1 In dogs, widespread ILVEN-like

lesions have been described.7

Our case did not display the classical histopathological

pattern of ILVEN described as alternating areas of severe

parakeratotic hyperkeratosis associated with a missing

stratum granulosum underneath, and areas of hyperker-

atosis associated with hypergranulosis.8 In addition, the

hyperplasia of sebaceous glands has not been described

before. We assume that in domestic animals, similar to

what has been described in humans, variations of the his-

tological presentation occur.9 However, only additional

cases will provide the ultimate proof that the described

histological lesions are truly the consequence of a genetic

variation within the NSDHL gene. Furthermore, we also

cannot exclude the possibility that in other body locations

lesions might have been more severe.

So far, the only reported treatment for ILVEN in cat is

surgery.3 However, in humans, a pathogenesis-targeted

therapeutic approach to treat NSDHL-associated ILVEN

with a combination of topical cholesterol, lovastatin and

glycolic acid has shown promising results.10

This case report unravelled a potential inherited defect

in cholesterol biosynthesis as the possible underlying

pathogenesis for ILVEN-like lesions in cats. This hints at

Figure 3. Photomicrograph of a skin sample from the lateral thorax of a cat with skin lesions resembling inflammatory linear verrucous epidermal

nevi.

Histologically, the lesions are characterized by regular epidermal hyperplasia involving also the walls of the follicular infundibula. The epidermis is

covered by a thick layer of mostly orthokeratotic, but multifocally also parakeratotic, compact keratin, which also is present within the follicular infundi-

bula. Sebaceous glands are hyperplastic. In the superficial dermis, a moderate perivascular to interstitial infiltrate (mainly composed of mast cells and

fewer lymphocytes, neutrophils and melanophages although this is not readily visible at this magnification) was present. Haematoxylin and eosin940.
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the potential of personalized veterinary medicine and

opens the door for future pathogenesis-directed treat-

ment attempts in feline ILVEN-like cases with proven

inactivating NSDHL genetic variants.
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R�esum�e

Contexte – L’�equivalent f�elin de l’ILVEN (Inflammatory Linear Verrucous Epidermal Nevus) de l’homme a

�et�e d�ecrit; cependant, le d�eveloppement possible de d�efaut sous jacent n’ pas �et�e �etudi�e.

Objectif – D�ecrire un cas de l�esions multiples de ILVEN-like chez un chat avec un variant g�en�etique du

g�ene NSDHL.

Sujet – Un chat europ�een femelle de 2 ans, avec des ant�ec�edents de l�esions cutan�ees �eryth�emateuses,

hyperpigment�ees, verruqueuses et alop�eciques multiples, localis�ees sur les lignes de Blaschko sur la tête,

les membres, le tronc et les coussinets.

M�ethodes et r�esultats – Selon les donn�ees cliniques et histopathologiques, un diagnostic de l�esions

ILVEN-like multiple a �et�e pos�e. Les recherches g�en�etiques ont r�ev�el�e un variant contre-sens h�et�erozygote

du g�ene NSDHL du chromosome X pr�edisposant �a une perte de fonction de la prot�eine BSDHL.

Conclusions et importance clinique – �A la connaissance des auteurs, ceci est le premier cas de l�esions

ILVEN-like f�elin avec une cause g�en�etique propos�ee. D’autres �etudes sont n�ecessaires pour �etablir la rela-

tion entre les variants de NSDHL et les l�esions cutan�ees pouvant mener �a des traitements pathog�eniques.

Resumen

Introducci�on – se ha descrito el equivalente felino del nevus epid�ermico verrucoso lineal inflamatorio

humano (ILVEN); sin embargo, el posible defecto subyacente en su desarrollo no ha sido investigado.

Objetivo – reportar un caso de lesiones similares a ILVEN en un gato con una variante gen�etica en el gen

NSDHL.

Animales – un gato dom�estico de 2 a~nos de edad, con pelo corto y con antecedentes de m�ultiples lesiones

cut�aneas alop�ecicas, verrugosas, hiperpigmentadas y eritematosas, siguiendo las l�ıneas de Blaschko en la

cabeza, las extremidades, el tronco y las almohadillas de las patas.

M�etodos y resultados – de acuerdo con los hallazgos cl�ınicos e histopatol�ogicos, se realiz�o un diagn�ostico

de m�ultiples lesiones similares a ILVEN. La investigaci�on gen�etica revel�o una variante heterocig�otica hete-

rocig�otica en el gen NSDHL del cromosoma X que se asocia a una p�erdida de funci�on de la prote�ına

NSDHL.

Conclusiones e importancia cl�ınica – a entender de los autores, este es el primer caso de lesiones feli-

nas similares a ILVEN en las que se ha propuesto una causa gen�etica. Los estudios futuros para establecer

una relaci�on causal entre las variantes de NSDHL y las lesiones cut�aneas podr�ıan conducir a tratamientos

dirigidos por la patog�enesis.

Zusammenfassung

Hintergrund – Das feline Gegenst€uck zum entz€undlichen linearen verruk€osen epidermalen Nevus (ILVEN)

des Menschen ist beschrieben worden; es wurde jedoch der m€ogliche zugrundeliegende Entwicklungsde-

fekt noch nicht untersucht.

Ziel – Der Bericht eines Falles mit multiplen ILVEN-€ahnlichen L€asionen bei einer Katze mit einer genetis-

chen Variante des NSDHL Gens.

Tiere – Eine 2 Jahre alte weibliche europ€aische Kurzhaarkatze mit einer Anamnese von multiplen haar-

losen, verruk€osen, hyperpigmentierten und erythemat€osen Hautver€anderungen, die den Blaschko Linien

am Kopf, an den Extremit€aten, dem Rumpf und den Pfotenballen folgten.

Methoden und Ergebnisse – Den klinischen und histopathologischen Ergebnissen zufolge wurde die

Diagnose einer multiplen ILVEN-€ahnlichen L€asion gestellt. Die genetische Untersuchung ergab eine
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Missense (Fehlsinn) Variante im X-chromosomalen NDSHL Gen, wodurch vorhergesagt werden konnte,

dass das NSDHL-Protein seine Funktion verlieren w€urde.

Schlussfolgerungen und klinische Bedeutung – Nach bestem Wissen der Autoren handelt es sich hier-

bei um den ersten Fall einer ILVEN-€ahnlichen Ver€anderung bei der Katze, bei dem eine genetische Ursache

angenommen wird. Zuk€unftige Studien sollten einen kausalen Zusammenhang zwischen NSDHL Varianten

und Hautver€anderungen herstellen, was zu einer der Pathogenese entsprechenden Behandlung f€uhren

k€onnte.

要約

背景 – 人の炎症性線状疣贅状表皮母斑(ILVEN)に相当する疾患が猫において報告されている。しかし、根

底にある可能性のある発達上の欠陥は調査されていない。

目的 – 本研究の目的は、NSDHL遺伝子に遺伝子変異を認め、複数のILVEN様病変を有する猫の1例を報告

することである。

被験動物 – 頭部、四肢、体幹および肉球のBlaschko線に沿って、複数の脱毛症、疣贅、色素沈着および紅

斑性病変の病歴を有する2歳の雌の雑種猫。

方法および結果 – 臨床および組織病理学的所見にしたがって、複数のILVEN様病変と診断した。遺伝子

解析により、NSDHLタンパクに機能欠損をもたらすと予測されるX染色体NSDHL遺伝子のヘテロミスセ

ンス変異体が明らかになった。

結論と臨床的重要性 – 著者の知る限りにおいて、本症例は遺伝的な原因が提唱されたネコILVEN様病変

の最初の症例である。 NSDHL変異体と皮膚病変との間の因果関係を確立するための今後の研究は、病原

性に対する治療を導く可能性がある。

摘要

背景 – 已报道猫具有与人类炎性线性疣状表皮痣(ILVEN)相似的疾病; 然而,可能的潜在发育缺陷尚未被研

究。
目的 – 报告一例NSDHL基因遗传性变异的猫病例,皮肤具有多处ILVEN样病变。
动物 – 一只2岁、雌性、短毛家猫,有多发性脱发、疣状、色素沉着和红斑性皮肤病变的病史,沿Blaschko’s
线分布在头部、四肢、躯干和爪垫上。
方法和结果 – 根据临床和组织病理学结果,对多个ILVEN样病变进行诊断。遗传学研究揭示,在X染色体

NSDHL基因中,存在一个杂合错义变体,推测会导致NSDHL蛋白功能丧失。
结论和临床价值 – 据作者所知,这是第一例猫发生ILVEN样病变,其中遗传原因已被提出。需要更多研究去

建立NSDHL变体与皮肤病变之间的因果关系,以实现对因治疗。

Resumo

Contexto – A vers~ao felina do nevo epid�ermico verrucoso inflamat�orio linear humano (NEVIL) j�a foi des-

crita; entretanto, o poss�ıvel defeito de desenvolvimento de base ainda n~ao foi investigado.

Objetivo – Relatar um caso de les~oes NEVIL-s�ımile m�ultiplas em uma gata com uma variac�~ao gen�etica no

gene NSDHL.

Animais – Uma gata dom�estica de pelo curto de dois anos de idade, com um hist�orico de m�ultiplas les~oes

cutâneas alop�ecicas, hiperpigmentadas e eritematosas, seguindo as linhas de Blaschko na cabec�a, mem-

bros, tronco e coxins.

M�etodos e resultados – O diagn�ostico de les~oes cutâneas NEVIL-s�ımile foi realizado baseado nos acha-

dos cl�ınicos e histopatol�ogicos. A pesquisa gen�etica revelou mutac�~ao n~ao-sinônima heterozig�otica no gene

NSDHL do cromossomo X geradora de perda de func�~ao da prote�ına NSDHL.

Conclus~oes e importância cl�ınica – De acordo com os conhecimentos dos autores, este �e o primeiro

caso de les~oes NEVIL-s�ımile em felinos em que uma causa gen�etica tenha sido proposta. Estudos futuros

para estabelecer uma relac�~ao causal entre as variantes de NSDHL e les~oes cutâneas podem direcionar tra-

tamentos espec�ıficos para a patogenia da doenc�a.
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ABSTRACT In heterozygous females affected by an X-linked skin disorder, lesions often appear in a
characteristic pattern, the so-called Blaschko’s lines. We investigated a female Labrador Retriever and her
crossbred daughter, which both showed similar clinical lesions that followed Blaschko’s lines. The two male
littermates of the affected daughter had died at birth, suggesting a monogenic X-chromosomal semidominant
mode of inheritance. Whole genome sequencing of the affected daughter, and subsequent automated
variant filtering with respect to 188 nonaffected control dogs of different breeds, revealed 332 hetero-
zygous variants on the X-chromosome private to the affected dog. None of these variants was protein-
changing. By visual inspection of candidate genes located on the X-chromosome, we identified a large
deletion in the NSDHL gene, encoding NAD(P) dependent steroid dehydrogenase-like, a 3b-hydroxysteroid
dehydrogenase involved in cholesterol biosynthesis. The deletion spanned .14 kb, and included the last
three exons of the NSDHL gene. By PCR and fragment length analysis, we confirmed the presence of the
variant in both affected dogs, and its absence in 50 control Labrador Retrievers. Variants in the NSDHL gene
cause CHILD syndrome in humans, and the bare patches (Bpa) and striated (Str) phenotypes in mice. Taken
together, our genetic data and the known role of NSDHL in X-linked skin disorders strongly suggest that the
identified structural variant in the NSDHL gene is causative for the phenotype in the two affected dogs.
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whole genome
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A typical clinical sign of X-linked dominant or semidominant geno-
dermatoses is the characteristic skin patterning in heterozygous females.
The mechanism behind these patterns is the random X-chromosome
inactivation (also called lyonization) during early embryonic develop-
ment. Inheterozygous females, cellswith the inactivatedX-chromosome
carrying the pathogenic variant give rise to normal skin, whereas
inactivation of the wild-type X-chromosome results in skin lesions.

This leads to a visible functional mosaicism with patches of normal or
lesioned skin following the lines of Blaschko (Happle 2006; Happle
2016). In humans, examples for functional X-chromosome mosaicism
include disorders such as X-linked dominant chondrodysplasia punc-
tate caused by variants in the EBP gene (Braverman et al. 1999; Derry
et al. 1999), focal dermal hypoplasia with causal variants in the PORCN
gene (Grzeschik et al. 2007; Wang et al. 2007), incontinentia pigmenti
caused by impaired NF-kB activation due to variants in IKBKG (Smahi
et al. 2000), and the IFAP syndrome known to be caused by variants in
MBTPS2 encoding a zinc metalloprotease (Oeffner et al. 2009). Many
of these disorders are lethal in hemizygous males. However, disorders
that are sublethal or nonlethal in male patients, such as Menkes disease
or X-linked dyskeratosis congenita caused by variants in the ATP7A
and DKC1 genes, respectively, also exist (Kaler et al. 1994; Heiss et al.
1998; Happle 2016).

Skin lesions following Blaschko’s lines in heterozygous females are
also known in animals with X-linked heritable phenotypes, for exam-
ple, incontinentia pigmenti and brindle 1 in horses (Towers et al. 2013;
Murgiano et al. 2016), streaked hairlessness in cattle (Murgiano et al.
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2015), or X-linked hypohidrotic ectodermal dysplasia in dogs (Casal
et al. 1997).

Auniquepatterningof the skinoccurs ingirlswithCHILDsyndrome
(congenital hemidysplasia with ichthyosiform nevus and limb defects,
OMIM #308050; Happle et al. 1980). This rare X-linked semidominant
disorder is caused by heterozygous genetic variants in the NSDHL
gene, encoding NAD(P) dependent steroid dehydrogenase-like, also
termed sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating
(EC:1.1.1.170), a 3b-hydroxysteroid dehydrogenase involved in choles-
terol biosynthesis (König et al. 2000). These variants are lethal in hemi-
zygousmales (Happle et al. 1980). Themutational spectrum ofNSDHL
in CHILD syndrome is broad, and includes missense variants exchang-
ing conserved amino acids in the encoded protein, as well as deletions,
insertions or splice site variants and the complete deletion of the gene.
As different variants cause a clinically comparable phenotype, it is
suggested that they lead to a loss of function in a critical step within
the cholesterol biosynthesis pathway, block the synthesis of cholesterol
and lead to an aggregation of toxic intermediates (Bornholdt et al. 2005;
Kim et al. 2005). The exact mechanism causing the CHILD phenotype
is, however, not known (Kim et al. 2005). Clinically, CHILD syndrome
is heterogeneous with involvement of different organs, variation in
severity, and different degrees of limb hypoplasia. So far, no clear
correlation was found between the nature and location of the genetic
variants in the NSDHL gene and the severity or the differences in
clinical signs (Bornholdt et al. 2005).

In thepresent study,we investigated a female LabradorRetriever and
her crossbred daughter, who both showed characteristic skin lesions
following Blaschko’s lines. Earlier reports described similar, but not
identical histologic lesions in six Rottweiler dogs, one Siberian Husky,
and five female Labrador Retrievers of American and Canadian origin
(Lewis et al. 1998; Scott and Miller 2000; Hargis et al. 2013). All dogs
were female, but the molecular etiology was not investigated in any of
these cases. The aim of the present study was to identify the causative
genetic variant for the phenotype in the affected Labrador Retriever of
European origin and her crossbred daughter.

MATERIALS AND METHODS

Ethics statement
All animal experiments were performed according to the local regula-
tions. The dogs in this study were examined with the consent of their
owners. The study was approved by the “Cantonal Committee for
Animal Experiments” (Canton of Bern; permits 75/16 and 38/17).

Clinical examination
A 7-month-old female crossbred dog was presented for a pruritic
generalized scaling dermatitis, offensive odor, and severe lameness.
Skin lesions had been observed soon after birth. General physical
examination and a thorough dermatological workup, including skin
cytology, microscopic examination of the hairs, and multiple deep
skin scrapings were performed. Complete blood cell count, serum
biochemistry panel, urinalysis, hemostatic profile, thyroid hor-
mones, and thyroid stimulating hormone (TSH) measurement were
also conducted. Multiple skin biopsies were obtained for histopath-
ologic evaluation.

According to the owners and the referring veterinarian, the dog’s
mother, a purebred Labrador Retriever, had been affected by the same
dermatological lesions since she was a puppy, and had been biopsied
a few years previously. Moreover, the two male siblings of the
female index patient died soon after birth. As those data raised the
suspicion of a congenital hereditary disease, ethylenediaminetetraacetic

acid (EDTA) anti-coagulated blood samples from both the mother and
the daughter were collected for genetic investigations.

Skin biopsies and histopathological examination
A total of four 6-mm punch biopsies were taken from affected skin of
the daughter. Three biopsies were taken at the initial visit from dorsal
neck, right lateral elbow, and right tibial region. One biopsy was taken
1 yr later from the dorsal neck. All biopsies were taken under local
anesthesia and immediately fixed in 10% buffered formalin, embedded
in paraffin, cut as 4 mm sections, and stained with hematoxylin
and eosin prior to the histological evaluation. Skin formalin-fixed and
paraffin-embedded samples from the mother were retrieved from the
laboratory archive for histopathological revision.

DNA isolation
Genomic DNA was isolated from EDTA blood of the two affected dogs
using aMaxwell RSC instrument (Promega).We additionally usedDNA
fromEDTAbloodof29 femaleand21malenonaffectedcontrolLabrador
Retrievers of European origin that had been stored in the Vetsuisse
Biobank, and two female American Labrador Retrievers affected by
follicular parakeratosis, whichwere described earlier (Hargis et al. 2013).

Whole genome resequencing, SNP, and short
indel calling
For resequencing of one of the affected dogs, we prepared a PCR-free
genomic fragment library with 350 bp insert size, and collected
roughly 36· coverage data on an Illumina HiSeq3000 instrument
(2 · 150 bp). Read mapping, aligning and variant calling was done
as described before (Bauer et al. 2017). Briefly, sequence reads were
mapped to the dog reference genome CanFam 3.1, and aligned using
Burrows-Wheeler Aligner (BWA) version 0.7.5a (Li and Durbin 2009)
with default settings. The output SAM file was converted to BAM, and
the reads sorted by chromosome using Samtools (Li 2011). PCR dupli-
cates were marked using Picard tools (http://sourceforge.net/projects/
picard/). To perform local realignments, and to produce a cleaned
BAM file, the Genome Analysis Tool Kit (GATK version 2.4.9, 50)
was used. Putative SNVs were identified using GATK HaplotypeCaller
in gVCFmode, and subsequently genotyped per-chromosome and geno-
typed across all samples simultaneously (McKenna et al. 2010). Filter-
ing was performed using the variant filtration module of GATK. To
predict the functional effects of the called variants, SnpEFF (Cingolani
et al. 2012) software, together with NCBI annotation release 103 for
CanFam 3.1, was used. For variant filtering we used 188 control ge-
nomes, which were either publicly available (Bai et al. 2015) or produced
during other projects of our group. A list of these control genomes is
given in Supplemental Material, Table S1.

Structural variant detection
Functional candidate genes located on the X chromosome were visually
inspected for structural variantsusing theBAMfile fromtheaffecteddog
and the Integrative Genomics Viewer (Robinson et al. 2011). The se-
lection of candidate genes was based on known X-linked human geno-
dermatoses (Lemke et al. 2014), and included ATP7A, DKC1, EBP,
EDA, EFNB1, IKBKG, MBTPS2, NSDHL, PORCN, SAT1, and STS.

PCR, fragment length analysis, and Sanger sequencing
To confirm the presence of the large heterozygous deletion
in the two affected dogs, and its absence in the nonaffected
control dogs, we performed a long-range PCR using the three
primers NSDHL_F: TGCCATGAACATCTGGAGAG, NSDHL_R1:

3116 | A. Bauer et al.

48



ACCCCAAACAACGAATCCT, NSDHL_R2: ACAGCTTCCCCTGC
TAAGGT, and SequalPrep long range polymerase (Thermo Fisher).
In heterozygous dogs, this resulted in PCR products with sizes of 753 bp
for the wildtype and 1166 bp for the deletion allele. The product of
the primers NSDHL_F and NSDHL_R1 flanking the deletion on the
wild-type allele was too long to be amplified using these PCR primers
(15,565 bp). The amplified products were analyzed using a Fragment
Analyzer capillary electrophoresis instrument (AATI).

Wedirectly sequenced thePCRproducts to confirm their identityon
anABI3730capillarysequencer (LifeTechnologies) after treatmentwith
exonuclease I and shrimp alkaline phosphatase. The sequence data
were analyzed using Sequencher 5.1 (GeneCodes).

Gene analysis
We used the CanFam 3.1 reference genome assembly for all analyses.
The numbering within the canine NSDHL gene corresponds to the
transcript with the accession XM_014111859.1, and its predicted trans-
lated protein with the accession XP_013967334.1.

Data availability
An IGV screenshot illustrating the large genomic deletion is shown in
Figure S1.Whole genome sequencing data of the affected crossbred dog

and control dogs used for private variant filtering are listed in Table S1.
Control Labrador Retrievers are listed in Table S2. Whole genome
sequence data of the affected dog were deposited at the European
Nucleotide Archive (ENA, project accession PRJEB16012, sample ac-
cession SAMEA104125075).

RESULTS

Qualitative phenotype description
No abnormalities except a stunted growth were found on the affected
daughter during general physical examination. Linear hyperplastic
and partially alopecic lesions, covered with thick brown scales and
clusters of dilated follicular ostia, were the most prominent derma-
tological features (Figure 1). The lesions were distributed along
Blaschko’s lines in a bilateral rather symmetrical fashion, and were
more evident on the limbs, the head, the neck, and the dorsal trunk.
The abdominal and inguinal skin appeared normal. Frond-like hy-
perkeratotic lesions at the margin of all the pawpads with occa-
sional horn-like projections were considered the most probable
cause of the visible lameness. Cytological examination of the linear
hyperplastic lesions revealed the presence of variable numbers of
coccoid bacteria, and a large number of Malassezia yeasts, which

Figure 1 Clinical phenotype. (A) Affected daughter at 7 months of age. (B) Lesions following Blaschko’s lines. (C) Hyperkeratosis of paw pads. (D)
Cluster of dilated follicular ostia.
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were suspected to substantially contribute to the pruritus and the
offensive odor. Results of the blood tests and urinalysis were
unremarkable.

Histopathological examination
The histopathological findings were identical in all biopsies (Figure
2). Multifocally, the epidermis and the wall of the hair follicular
infundibuli were moderately to severely hyperplastic, with abrupt
transition to normal skin. Within the hyperplastic area, the infun-
dibular epithelium was covered by thick layers of densely packed
parakeratotic keratin, which was distending the infundibuli. The
parakeratotic keratin was often protruding above the epidermal
surface. The size of the keratohyalin granules within the granular

cell layers of the epidermis and the infundibular wall was within the
normal range. Within the parakeratotic keratin, multifocally vari-
able numbers of coccoid bacteria were present, and occasionally the
lumen of infundibuli contained degenerate neutrophils. Sebaceous
glands appeared normal. The interfollicular epidermis was covered
by moderate to large amounts of laminar to compact mostly ortho-
keratotic, but also some parakeratotic keratin. Within the keratin
layers of the epidermis, multifocally degenerate neutrophils, nuclear
debris, and small numbers of coccoid bacteria were present. Multi-
focally exocytosis of neutrophils was seen. Within the superficial
dermis there was a mild pigmentary incontinence and a moderate
perivascular infiltrate composed of neutrophils, mast cells, and fewer
lymphocytes.

Figure 2 Histopathologic findings in an affected vs. control dog. (A) Photomicrograph of a skin biopsy of the affected daughter at 7 months of
age depicting a moderately hyperplastic epidermis and severely hyperplastic infundibular epithelium. The infundibuli are filled with densely
packed parakeratotic keratin, which is protruding above the epidermal surface. The interfollicular epidermis is covered by moderate to large
amounts of laminar to compact, sometimes orthokeratotic, sometimes parakeratotic, keratin. Within the dermis pigmentary, incontinence and a
moderate perivascular infiltrate is present. Hematoxylin and Eosin 40·. (B) Skin of a nonaffected dog with normal thickness of the epidermis and
infundibular walls. The epidermis is covered by basket-weave orthokeratotic keratin, and the infundibuli are filled with a small amount of
orthokeratotic infundibular keratin. Hematoxylin and Eosin 40·. (C, D) Skin sections of the same dogs as in (A) and (B) at higher magnification.
Note the severe parakeratotic hyperkeratosis in the infundibulum of the affected dog whereas the neighboring epidermis is covered by ortho-
keratotic keratin. Hematoxylin and Eosin 200·.
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Whole genome resequencing
Given thecharacteristic andcomparable skin lesions in theaffecteddogs,
mother, and daughter, which followed Blaschko’s lines, and the peri-
natal death of the male littermates, we hypothesized that the mode of
inheritance was monogenic X-linked semidominant. We resequenced
the genome of the affected daughter at 36· coverage, and called SNVs
and short indels with respect to the canine reference genome assembly
CanFam 3.1. We then searched for heterozygous variants in the ge-
nome sequence of the affected dog that were not present in 188 control
dogs of different breeds. We found 332 heterozygous variants on the
X-chromosome that were absent from the control dogs. However, none
of these variants was predicted to be protein-changing variant (Table 1).

Identification of the causative variant
Given that the automated pipeline did not detect any private protein
changing variants on the X-chromosome, we hypothesized that a larger
structural variantmight be causative for the disorder. Structural variants
such as large insertions, deletions, duplications, or inversions would be
missed by the applied variant detection software. We therefore selected
all 11knownX-chromosomalgenes involved inhumangenodermatoses
as functional candidate genes, and visually inspected them for structural
variants (Lemke et al. 2014). These functional candidate genes were:
ATP7A,DKC1, EBP, EDA, EFNB1, IKBKG,MBTPS2,NSDHL, PORCN,
SAT1, and STS.

In the chromosomal region of the NSDHL gene, a large structural
variant was detected in heterozygous state in the genome of the affected
dog. It was a deletion spanning 14,399 bp, including the last three
exons of the NSDHL gene (Figure S1). The formal variant designation
is chrX:120,749,179_120,763,577del14,399. The deletion truncates 192
(53%) of the 361 codons of the wildtype canine reading frame. No
structural variants affecting the coding regions of the other candidate
genes were detected.

Fragment length analysis and Sanger sequencing
To confirm the presence of the deletion in both affected dogs, a PCR
approach was chosen. We designed two primers flanking the large
deletion aswell as one primer inside the deletion, and performed a long-
range PCR with these three primers. In the two affected dogs, two PCR
products resulted, which were consistent with the expected fragment
sizes in a heterozygous genotype (Figure 3). In 50 control Labrador
Retrievers, only the smaller wildtype band was detected, as expected for
dogs not carrying the deletion. In addition, a PCRwith only the primers
outside the deletion was performed, and the resulting PCR products in
both cases were Sanger sequenced. The electropherograms of the var-
iant allele confirmed the 14,399 bp deletion.

DISCUSSION
In the present study, we identified a large deletion in the NSDHL gene
in two female dogs whose pedigree and clinical signs suggested an
X-linked semidominant disorder. The �14 kb deletion included the

last three exons of the NSDHL gene, and was present in the heterozy-
gous state in the two affected dogs, but absent in 50 nonaffected Lab-
rador Retrievers. The deletion truncated more than half of the open
reading frame including the codons for the single transmembrane do-
main that anchors NSDHL in the ER membrane (Caldas and Herman
2003). Therefore, it seems unlikely that any protein that might be
putatively expressed from the mutant allele would be functional.

In humans, themutational spectrumofNSDHL is broad (Bornholdt
et al. 2005). One of the known human NSDHL variants involves a
deletion of the three last coding exons, similar to the canine deletion
reported in our study. The girl carrying this deletion had CHILD syn-
drome, with an inflammatory epidermal nevus affecting the left side of
the body. She had oligodactyly, with only three fingers on the left hand
and one toe on the left foot (Kim et al. 2005). As the name of the human
disorder suggests, such limb defects were seen in most patients with
CHILD syndrome, albeit with varying severity and location (Bornholdt
et al. 2005).

Thephenotypeof thedogswasrelated,butnot identical to the clinical
signs of CHILD syndrome in humans. The skin lesions in the two
affected dogs followed the lines of Blaschko, but, interestingly, they did
not show the typical strict lateralization of the inflammatory nevus seen
in almost all human cases (Bornholdt et al. 2005). However, in human
CHILD syndrome, bilateral involvement and very mild phenotypes
without limb deformities have also been reported (König et al. 2002;
Bittar et al. 2006).

n Table 1 Single nucleotide and small indel variants detected by
whole genome resequencing

Filtering Step Variantsa

Heterozygous variants in whole genome 979,328
Heterozygous variants on X chromosome 25,986
Private heterozygous variants on X chromosome 332
Protein-changing private variants on X chromosome 0
a
Only variants that passed the GATK quality thresholds are reported.

Figure 3 Confirmation of the deletion by PCR. (A) A PCR with the
three primers NSDHL_F1, NSDHL_R1 and NSDHL_R2 was performed
to genotype cases and controls by fragment length analysis. The exon
and intron sizes of the canine NSDHL gene are not drawn to scale. The
protein-coding region is indicated by solid filling of the exons. Note
that the number of 59-untranslated exons varies between species and
transcript isoforms, whereas the seven protein-coding 39-exons are
highly conserved between human, mouse, and dog. (B) A control
dog homozygous for the wildtype allele showed only a single band
of 753 bp generated by amplification with the primers NSDHL_F and
NSDHL_R2. The two cases heterozygous for the deletion showed
the wildtype band, and an additional 1166 bp band that resulted from
the amplification of NSDHL_F and NSDHL_R1 on the deletion allele.
The primers NSDHL_F and NSDHL_R1 did not amplify any specific
product on the wildtype allele as their binding sites were .15 kb apart.
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Variants in the murineNsdhl gene cause the bare patches (Bpa) and
striated (Str) phenotypes in mice. Characteristic for heterozygous Bpa
females is the hyperkeratotic skin eruption 5–7 d after birth. The lesions
leave bare patches arranged in a typical striped pattern after resolving.
Mice with this phenotype may also be affected with skeletal dysplasia,
cataracts, and microphthalmia, and they are typically smaller than
nonaffected littermates. Str heterozygous females show a milder phe-
notype, which is characterized by a striped coat, visible 12–14 d after
birth (Liu et al. 1999). In both mouse mutants, limb reduction defects
and diffuse skin lesions restricted to one side of the body were not seen,
which is similar to the dogs described in the present study, but differing
from the human phenotype (Caldas et al. 2005). In these mouse mod-
els, it was also found that the labyrinth layer of the fetal placenta in
affected male embryos was always thinner, and fewer fetal vessels were
present, possibly leading to death in midgestation (Caldas et al. 2005).

Interestingly, the histopathology of the affected dog skin from our
study was very similar to the histopathologic findings in six female
American Rottweilers and one female Siberian Husky published earlier
(Lewis et al. 1998; Scott and Miller 2000). Different from the histology
described in these dogs, the interfollicular epidermis in our cases was
covered with mostly orthokeratotic keratin, and the parakeratosis was
mainly restricted to the infundibulum. Clinically, the main differences
between the Labrador Retrievers in the present study and the cases
described earlier were the severe involvement of the pawpads and the
lack of other noncutaneous congenital abnormalities apart from stunted
growth.

In addition, follicular parakeratosis has been reported in five Lab-
rador Retrievers (Hargis et al. 2013). These five dogswere also all female
and showed multifocal crusted papules and plaques, follicular casts,
comedones, and hair loss. In contrast to the phenotype in the two cases
from our study, no involvement of nonhaired skin was reported. In-
terestingly, mural folliculitis and apoptotic cells in the hair follicle
infundibili, two prominent histological features in the five dogs de-
scribed by Hargis et al. (2013), were not observed in the two cases
described here.

Wewere able to obtain biobankedDNAsamples from twoof thefive
Labrador Retrievers with follicular parakeratosis described by Hargis
et al. (2013). These dogs did not carry the NSDHL deletion. Thus, the
genetic cause of the phenotype in these dogs remains unknown.

In conclusion, we identified a large deletion in theNSDHL gene in a
female Labrador Retriever and her daughter, which is most likely caus-
ative for the hyperkeratotic lesions in these dogs. The identified variant
is most likely the result of a recent de novo mutation event and not
widely distributed in the dog population.
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A novel MLPH variant in dogs with coat colour dilution

A. Bauer*†, A. Kehl‡, V. Jagannathan*† and T. Leeb*†

*Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland. †DermFocus, University of Bern, 3001 Bern,

Switzerland. ‡Laboklin, 97688 Bad Kissingen, Germany.

Summary Coat colour dilution may be the result of altered melanosome transport in melanocytes.

Loss-of-function variants in the melanophilin gene (MLPH) cause a recessively inherited form

of coat colour dilution in many mammalian and avian species including the dog. MLPH

corresponds to the D locus in many domestic animals, and recessive alleles at this locus are

frequently denoted with d. In this study, we investigated dilute coloured Chow Chows whose

coat colour could not be explained by their genotype at the previously known MLPH:

c.–22G>A variant. Whole genome sequencing of such a dilute Chow Chow revealed another

variant in the MLPH gene: MLPH:c.705G>C. We propose to designate the corresponding

mutant alleles at these two variants d1 and d2. We performed an association study in a cohort

of 15 dilute and 28 non-dilute Chow Chows. The dilute dogs were all either compound

heterozygous d1/d2 or homozygous d2/d2, whereas the non-dilute dogs carried at least one

wildtype allele D. The d2 allele did not occur in 417 dogs from diverse other breeds. However,

when we genotyped a Sloughi family, in which a dilute coloured puppy had been born out of

non-dilute parents, we again observed perfect co-segregation of the newly discovered d2 allele

with coat colour dilution. Finally, we identified a blue Thai Ridgebackwith the d1/d2 genotype.

Thus, our data identify theMLPH:c.705G>C as a variant explaining a second canine dilution

allele. Although relatively rare overall, this d2 allele is segregating in at least three dog breeds,

Chow Chows, Sloughis and Thai Ridgebacks.

Keywords Canis lupus familiaris, melanocyte, melanosome, pigmentation, whole genome

sequencing

Coat colour dilution refers to a specific pigmentation

phenotype that is found in many mammalian and avian

species. This phenotype may be caused by a defect in

melanosome transport (Barral & Seabra 2004). Variants in

the three genes RAB27A, MYO5A and MLPH, which are

indispensable for this process, have been found in humans

with Griscelli syndrome types I to III (Pastural et al. 1997;

M�enasch�e et al. 2000, 2003; Anikster et al. 2002). Variants

in RAB27A and MYO5A typically have severe pleiotropic

effects and lead to syndromic phenotypes, whereas MLPH

variants mostly have a more restricted effect on coat colour

only. MLPH variants are known in many spontaneous

mammalian and avian mutants with a dilute coloured

phenotype (Matesic et al. 2001; Ishida et al. 2006; Vaez

et al. 2008; Bed’hom et al. 2012; Cirera et al. 2013; Lehner

et al. 2013; Fontanesi et al. 2014; Li et al. 2016). In dogs, a

recessive non-coding variant at the last nucleotide of exon 1

in the MLPH gene (c.–22G>A) is associated with the

dilution phenotype in many breeds and used for genetic

testing (Philipp et al. 2005; Dr€ogem€uller et al. 2007).

Chow Chow breeders recently were confronted with

unexpected genetic testing results, as phenotypically dilute

dogs were noticed that were not homozygous for the

mutant A allele at MLPH:c.–22G>A (Fig. 1). The aim of the

present study therefore was to identify the genetic basis of

these dilute coloured dogs.

We analysed a cohort of 15 dilute Chow Chows with

discordant genetic testing results and 28 non-dilute Chow

Chows as controls. Pedigree records were consistent with a

monogenic autosomal recessive inheritance of the dilute

coat colour phenotype. We initially genotyped all dogs for

the known MLPH:c.–22G>A variant. For ease of reading,

we designate the mutant allele at this variant d1. None of

the 15 dilute Chows was homozygous d1/d1: six were

heterozygous and nine were homozygous wildtype at this

position. We then sequenced the whole genome of a female

Chow Chow with blue coat colour (diluted black) that was

homozygous wt/wt at the MLPH:c.–22G>A variant. We
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prepared a PCR-free library, collected 192 197 978 read-

pairs of 2 9 150 bp on an Illumina HiSeq 3000 instrument

and mapped the reads to the CanFam 3.1 Boxer reference

genome yielding a ~239 coverage. The sequence data

were submitted to the European Nucleotide Archive

(project accession no. PRJEB16012, sample accession no.

SAMEA104091566). Single nucleotide variants and short

indels were called with respect to the reference genome

using GATK (McKenna et al. 2010). We filtered for variants

that were present in a homozygous alternate state in the

(a)

(g)

(e) (f)

(b) (c) (d)

Figure 1 Coat colour dilution phenotype and the MLPH:c.705G>C variant. Coat colour dilution leads to phenotypically lighter coat colours. Dilute

dogs with a black base colour are termed blue, dilute red dogs are termed fawn or cinnamon. (a–d) Representative images of black, blue, red, and

fawn Chow Chows respectively are shown. (e) Sloughi puppies at 6 weeks of age. The right-most puppy is dilute, with the black pigment of the mask

much lighter and blue eyes (photo courtesy of Ingela N€aslund); the dilute coat colour phenotype in this dog became less apparent with aging. (f) Blue

Thai Ridgeback. (g) Sanger sequencing electropherograms of dogs with the three genotypes at the MLPH:c.705G>C variant. We propose to

designate the mutant C allele at this variant as d2.
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dilute Chow Chow and heterozygous or homozygous

reference in 190 non-dilute control dogs of different breeds

and three wolves (Table S1). Among these private variants

was a single nucleotide variant at the last nucleotide of

exon 7 in the MLPH gene. The formally correct variant

designation is NM_001103219.2:c.705G>C or Chr25:

g.48150787G>C (CanFam3.1 assembly). The variant

changes a codon, p.Gln235His. It seems possible that the

mutant allele affects splicing, as the wildtype G allele

corresponds to the consensus of the mammalian 50-splice
site found in ~80% of all mammalian exon/intron junc-

tions, whereas the mutant C allele is found in only ~4% of

comparable mammalian exon/intron junctions (Sheth et al.

2006). As we had no suitable RNA samples, we could not

experimentally analyse the effect of the variant on splicing.

We propose to designate the mutant allele at this variant

as d2. We genotyped all available Chow Chows by Sanger

sequencing and found a perfect association with the dilution

phenotype when considering also compound heterozygosity

with the d1 variant (Table 1, Fig. S1).

Although the vast majority of our control dogs with

genome sequence information were homozygous wildtype

for the newly discovered MLPH:c.705G>C variant, we

noticed two Sloughis that were heterozygous. These two

Sloughis were parents of a litter that included a puppy with

dilute coat colour and blue eyes (Fig. 1e). We genotyped the

entire Sloughi family and again found perfect co-segrega-

tion of the d2 allele with the phenotype: Only the blue puppy

was homozygous d2/d2, whereas the non-dilute littermates

were either wt/wt or wt/d2 (Table 1). Finally, we identified a

blue Thai Ridgeback, with the d1/d2 genotype (Fig. 1f). The

d2 allele was not present in 417 additional control dogs of

56 different breeds (Table S2).

Given the extensive knowledge about melanophilin

function, we think that these data strongly suggest that

the newly discovered MLPH:c.705G>C variant causes coat

colour dilution in dogs and represents another loss-of-

function allele similar to MLPH:c.–22G>A. This finding of

allelic heterogeneity in canine coat colour dilution needs to

be considered when performing genetic testing.

Dilute coloured dogs, which are homozygous d1/d1, are

predisposed for colour dilution alopecia (CDA), a disease

characterized by hair loss and chronic inflammation of the

skin (Miller 1990; Kim et al. 2005; von Bomhard et al.

2006; Welle et al. 2009). It is currently not fully clear

which additional genetic and/or environmental risk factors

are involved in CDA. However, CDA seems to be a dog-

specific phenomenon. Other known MLPH-mutant animals

with dilute coloured phenotypes, such as e.g. cats, rabbits,

or mice, apparently have no pathological alterations of their

hair or skin. Although the coat colour phenotype in d1/d1,

d1/d2 and d2/d2 dogs is identical or at least very similar, at

this time it is not possible to make a reliable prediction

whether these three genotypes show any differences with

respect to their risk for CDA. The blue Thai Ridgeback in our

study with the d1/d2 genotype showed mild signs of CDA.

Thus, the association of the d2 allele with CDA should be

carefully investigated before breeding recommendations are

given.
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MLPH genotype wt/wt wt/d1 wt/d2 d1/d1 d1/d2 d2/d2

Dilute Chow Chows (cases) — — — — 6 9

Non-dilute Chow Chows (controls) 8 4 16 — — —

Dilute Sloughi (case)1 — — — — — 1

Non-dilute Sloughis (controls)1 1 — 6 — — —

Dilute Thai Ridgeback (case) — — — — 1 —

1The eight Sloughis came from a family consisting of both non-affected parents, five non-affected

littermates and one dilute puppy.

Table 1 Association of MLPH genotypes with

coat colour dilution. The mutant alleles at

MLPH:c.–22G>A and MLPH:c.705G>C are

designated d1 and d2 respectively.
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A second KRT71 allele in curly coated dogs
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Summary Major characteristics of coat variation in dogs can be explained by variants in only a few

genes. Until now, only one missense variant in the KRT71 gene, p.Arg151Trp, has been

reported to cause curly hair in dogs. However, this variant does not explain the curly coat in

all breeds as the mutant 151Trp allele, for example, is absent in Curly Coated Retrievers. We

sequenced the genome of a Curly Coated Retriever at 229 coverage and searched for

variants in the KRT71 gene. Only one protein-changing variant was present in a

homozygous state in the Curly Coated Retriever and absent or present in a heterozygous

state in 221 control dogs from different dog breeds. This variant, NM_001197029.1:

c.1266_1273delinsACA, was an indel variant in exon 7 that caused a frameshift and an

altered and probably extended C-terminus of the KRT71 protein NP_001183958.1:

p.(Ser422ArgfsTer?). Using Sanger sequencing, we found that the variant was fixed in a

cohort of 125 Curly Coated Retrievers and segregating in five of 14 additionally tested breeds

with a curly or wavy coat. KRT71 variants cause curly hair in humans, mice, rats, cats and

dogs. Specific KRT71 variants were further shown to cause alopecia. Based on this

knowledge from other species and the predicted molecular consequence of the newly

identified canine KRT71 variant, it is a compelling candidate causing a second curly hair

allele in dogs. It might cause a slightly different coat phenotype than the previously published

p.Arg151Trp variant and could potentially be associated with follicular dysplasia in dogs.

Keywords animal model, canis lupus familiaris, dermatology, hair, hair follicle, keratin,

morphology, whole genome sequencing

In 2009, Cadieu and colleagues reported that major

characteristics of coat variation in dogs are influenced by

variants in three genes. A missense variant in FGF5

explained long hair, a 167-bp insertion into the 30-UTR of

RSPO2 was reported to cause wiry hair and furnishings

(increased hair growth on face and legs) and a KRT71

missense variant (c.451C>T, p.Arg151Trp) was found in

dogs with a curly or wavy coat (Cadieu et al. 2009). Specific

combinations of alleles with these variants lead to the

desired breed standards, and genetic testing enables breed-

ers to avoid unwanted coat phenotypes to a certain degree.

However, in some cases genetic testing for the known

variants fails to explain the coat texture. According to dog

owners, the commercially testable KRT71:c.451C>T variant

does not explain the curly hair in Curly Coated Retrievers.

The standard coat of a Curly Coated Retriever is a black or

liver colour with tight, crisp curls on the body and smooth,

straight and very short hair on face and legs. Curly Coated

Retrievers often have a sparsely haired tail (‘rat tail’).

Follicular dysplasia, characterized by symmetrical, non-

pruritic hair loss, often with a waxing and waning course, is

a relatively common coat disorder in this breed (Bond et al.

2016). During breed formation, Curly Coated Retrievers

most likely got their curly coat from Irish Water Spaniels,

another breed that is predisposed to follicular dysplasia

(Cerundolo et al. 1999, 2000; Bond et al. 2016). A genetic

background for this disorder is suspected. In the present

study, we aimed to identify the causative variant for the

curly coat in Curly Coated Retrievers.
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Given that the known KRT71:c.451C>T variant was not

present in several tested Curly Coated Retrievers, we

hypothesized that another genetic variant was likely to

have caused their curls and is probably fixed in the breed.

We therefore sequenced the genome from a Curly Coated

Retriever at 229 coverage (ENA project accession no.

PRJEB16012, sample accession, SAMEA104091556) and

compared the sequencing data to 221 dog genomes from

different breeds (Table S1). We called single nucleotide

variants and short indels with respect to the canine

reference genome assembly CanFam 3.1 as described earlier

(Bauer et al. 2017). Applying a candidate gene approach,

we extracted variants in the KRT71 gene that were present

in any of the 222 canine whole genome sequences

(Table S2). Focusing on protein-changing variants, we

found a single KRT71 indel variant present in a homozy-

gous state in the Curly Coated Retriever that was absent or

heterozygous in all other dogs. The variant can be formally

described as NM_001197029.1:c.1266_1273delinsACA or

NP_001183958.1:p.(Ser422ArgfsTer?). The identified novel

KRT71 variant is predicted to cause a frameshift with an

extended mutant reading frame compared to the wildtype

transcript, KRT71:p.(Ser422ArgfsTer212). Compared to the

wildtype 525-amino-acid KRT71, the predicted mutant

protein has a length of 632 amino acids (Fig. S1). RNA-seq

data from skin biopsies demonstrated expression of the

expected transcript without any splicing alterations from

the allele with the indel variant (Fig. 1; Table S3).

To investigate the KRT71 allele and genotype distribution

in different dog breeds with curly or wavy coat, we

genotyped 1286 dogs from 15 breeds for the previously

described c.451C>T missense variant and the c.1266_

1273delinsACA variant using Sanger sequencing (Table 1).

For ease of reading we will from now on refer to the mutant

alleles at these two variants as c1 and c2, respectively.

All 125 tested Curly Coated Retrievers were homozygous

wildtype at c.451C>T and homozygous mutant c2/c2 at

c.1266_1273delinsACA. Although the c1 allele overall was

more common than the c2 allele, there were many curly

coated breeds in which both alleles segregated. We also

observed two dogs carrying both variants on one haplotype,

suggesting a past recombination or gene conversion event.

Figure 1 Illustration of the KRT71:c.1266_1273delinsACA variant and its predicted consequence on the KRT71 protein. (a) Sanger electrophero-

grams of dogs with c2/c2 and wt/wt genotypes. Bases shown in red are inserted, bases in blue are deleted in the mutant c2 allele. The variant leads to

a shift in the reading frame and thus an altered amino acid sequence in the mutant protein (amino acids written in red letters). (b) RNA-seq data from

a Curly Coated Retriever with c2/c2 genotype and a Greyhound with wt/wt genotype showing the read coverage mapped to the last three exons of

the KRT71 gene. As a result of the indel variant in exon 7 (red arrow), the mutant open reading frame is extended and ends at a later termination

codon (stop mut, red arrow) compared to the wildtype open reading frame (ending at stop wt). A schematic of the predicted mutant and wildtype

protein is shown below the RNA-seq data. Grey boxes indicate helix initiation and helix termination motifs. The frameshift is predicted to affect part

of the helix termination motif and the whole C-Terminal tail of the protein (hatched area).

© 2018 Stichting International Foundation for Animal Genetics, doi: 10.1111/age.12743
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This rare haplotype should be considered during future

genetic testing applications.

KRT71 encodes a type II keratin specifically expressed in

the inner root sheath of the hair follicle (Aoki et al. 2001;

Langbein et al. 2002). Other than in dogs, KRT71 variants

have been identified and studied at a molecular level in

humans, mice, rats and cats. In humans, a KRT71 missense

variant affecting the helix initiationmotif was discovered in a

Japanese family with autosomal dominant woolly hair and

hypotrichosis (Fujimoto et al. 2012). In mice, different

dominant Krt71 variants were described in spontaneous or

induced mutants with curly or wavy hair such as the caracul

or the Rco12 and Rco13 mutants (Kikkawa et al. 2003;

Runkel et al. 2006). Furthermore, a recessive 10-bp deletion

variant in exon 1 of Krt71 was reported to cause progressive

alopecia in the Rco3 mouse mutant (Peters et al. 2003). In

rats, a Krt71 splice defect was identified as the semidominant

Rex allele that causes curly hair in heterozygous animals and

hair loss in homozygous mutant rats (Kuramoto et al. 2010).

In rexoid cats, KRT71 splice defects were found in the Devon

Rex breed and in curly coated Selkirk Rex cats (Gandolfi et al.

2010, 2013). Finally, in another cat breed, the hairless

Sphinx, a splice site variant in KRT71 leading to a frameshift

and a premature stop codon was found, mostly in a

homozygous state or compound heterozygous with the

Devon Rex allele (Gandolfi et al. 2010).

The canine c.1266_1273delinsACA variant identified in

the present study affects the sequence coding for the helix

termination motif, altering approximately three-quarters of

its sequence aswell as thewhole C-terminal tail. In viewof the

numerous examples of KRT71 variants causing curly

hair, the inner root sheath restricted expression of KRT71

in the hair follicle and the predicted effect of the variant

c.1266_1273delinsACA on the protein, we think that it is a

compelling candidate causative variant for the curly coat in

Curly Coated Retrievers and other dog breeds. As specific

KRT71 variants can lead to hair loss in addition to curls in

humans,mice, rats and cats,we further hypothesized that the

canine c2 allele might represent a genetic risk factor for some

forms of follicular dysplasia in dogs. Because Curly Coated

Retrievers are fixed for the c2 allele, we could not test for an

association with follicular dysplasia in this breed. However, it

is noteworthy that the Curly Coated Retriever breed standard

calls for a smooth and straight coat on the forehead, face,

front of forelegs and feet (http://images.akc.org/pdf/breed

s/standards/CurlyCoatedRetriever.pdf). This is quite dis-

tinct from breeds such as the Poodle, which has curls on the

entire coat. Poodles are very nearly fixed for the c1 allele.

We thus speculate that the functional effect of the c2 allele

may be slightly different from that of the c1 allele and that

this hypothetical functional difference may be involved in

the expression of the characteristic coat phenotype of Curly

Coated Retrievers.

Our cohort contained three curly coated dogs (one

Chesapeake Bay Retriever, one Lagotto Romagnolo, one

Perro de Agua Espa~nol) affected with follicular dysplasia

that had been diagnosed by veterinary pathologists. All

three follicular dysplasia cases were homozygous c2/c2. Our

cohort also contained five Lagotto Romagnolos from Swe-

den diagnosed with adult onset spontaneous, symmetrical,

non-inflammatory alopecia affecting the trunk that were

homozygous c1/c1. They were otherwise healthy.

In the Lagotto Romagnolo breed, c1 and c2 alleles were

observed in all possible genotypic combinations. Initially, we

Table 1 KRT71 diplotypes in 1286 dogs from 15 different breeds with curly or wavy hair. We refer to the mutant alleles at the previously described

c.451C>T missense variant as c1 and the c.1266_1273delinsACA variant as c2. In five of the tested breeds, both alleles were segregating.

Breed

KRT71 diplotype

nwt/wt c1/wt c1/c1 c2/wt c1/c2 c2/c2 c1/c1c2

Airedale Terrier 5 5

Barbet 44 2 46

Bergamasco Shepherd dog 8 4 12

Bolonka Zwetna 8 8 8 24

C~ao de Serra de Aires 15 15

Chesapeake Bay Retriever 3 9 11 13

Curly Coated Retriever 125 125

Lagotto Romagnolo 14 559 3 172 121 760

Mudi 11 18 3 2 34

Perro de Agua Espa~nol 73 20 21 95

Poodle 89 6 12 96

Portugese Water dog 3 3

Puli 1 1

Schapendoes 44 4 48

Soft Coated Wheaten Terrier 7 2 9

Total 1286

1The cohort comprised three dogs that had been diagnosed with follicular dysplasia. They all had the diplotype c2/c2.
2This poodle had pronounced alopecia on the body and an almost completely hairless tail. Unfortunately, no histopathological examination of a skin

biopsy was performed to confirm the suspected follicular dysplasia.
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didnothavephenotype informationonthecoatqualityofmost

sampledLagottoRomagnolodogs inourbiobank.Upon follow

upof the c2/c2dogs, oneof theowners reported severe alopecia

on the back (Fig. S2). Other c2/c2 Lagotto Romagnolo dogs

showed a normal coat, but several of their owners reported

that the hair of these dogs could be plucked very easily.

Given the low frequency of the c2 allele in Poodles, it is

very striking that the only identified homozygous c2/c2

Poodle was alopecic and the potential differentials included

follicular dysplasia. Similarly, the only observed homozy-

gous c2/c2 Chesapeake Bay Retriever was diagnosed with

follicular dysplasia. On the other hand, across breeds only a

relatively small proportion of homozygous c2/c2 dogs in our

study showed hair loss. It is therefore conceivable that the

c2 allele possibly represents a predisposing genetic risk factor

for follicular dysplasia. However, even if this hypothesis is

correct, other genetic and/or environmental factors will be

required for the manifestation of follicular dysplasia.

In conclusion, we identified the indel variant

KRT71:c.1266_1273delinsACA indel variant as the most

likely causal variant underlying a second curly hair allele in

dogs. This allele possibly causes a slightly different coat

phenotype as the previously described curly allele with the

KRT71:c.451C>T missense variant. Further studies are

required to confirm whether the new curly allele modulates

the risk for follicular dysplasia.
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Discussion and Perspectives 
During my PhD studies, I contributed to identifying the candidate causative genetic variant for 

12 skin disorders or traits related to skin and its appendages in domestic animals (Table 1). 

Based on their molecular diagnosis, the investigated disorders fall into different groups of 

monogenic skin disorders and affect diverse biological processes in the skin as shown in 

Figure 13. 
Table 1: Genes harboring candidate causative variants in investigated phenotypes and their corresponding human 
disorders (OMIM#). 

Gene Phenotype Species Human disorder 
(OMIM#) 

ASPRV1 ichthyosis dog ? 
COL5A1 Ehlers-Danlos syndrome cat 130000 
EDA X-linked hypohidrotic ectodermal

dysplasia
dog 305100 

KRT71 curly hair (and follicular dysplasia?) dog 615896 
MKLN1 lethal acrodermatitis dog ? 
MLPH colour dilution dog 609227 
NSDHL congenital cornification disorders dog, cat 308050, 300831 
OCA2 oculocutaneous albinism, type 2 dog 203200, 227220 
SLC45A2 oculocutaneous albinism, type 4 dog 227240, 66574 
ST14 naked foal syndrome horse 602400 
SUV39H2 hereditary nasal parakeratosis dog ? 

Five of the disorders can be classified as ichthyoses / generalized Mendelian disorders of 

cornification: The first disorder is the sporadic ichthyosis in a German Shepherd most likely 

caused by a de novo mutation event in the ASPRV1 gene encoding an aspartic protease 

involved in profilaggrin-to-filaggrin processing. Second and third, the congenital cornification 

disorders with characteristic epidermal lesions following the Blaschko’s lines in two female 

Labrador (-cross) dogs and a female cat fall into this category. They represent however also 

disorders of functional X-chromosomal mosaicism, as the identified candidate causative 

variants are located in the NSDHL gene on the X-chromosome, and early embryonic 

inactivation of one X chromosome with either wildtype or mutant allele leads to the 

characteristic mosaic pattern. Fourth, horses with naked foal syndrome, where hairlessness 

is the most striking feature at first glance, turned out to also show signs of ichthyosis like dry 

and scaly skin. All affected horses were found to be homozygous for a mutant ST14 allele. 

ST14 codes for an integral membrane serine protease critical for barrier formation in the 

epidermis. Finally, fifth, hereditary nasal parakeratosis is caused by variants in the SUV39H2 

gene. SUV39H2 encodes a histone lysine methyltransferase involved in the epigenetic 

regulation of keratinocyte differentiation (145).  
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Figure 13: Investigated skin-related phenotypes and suggested underlying genetic defects. Defects in different identified 
genetic variants affect different skin compartments. Disorders are grouped according to the classification by Lemke and 
collegues (6). The classification of lethal acrodermatitis and the identified splice defect in MKLN1 is unclear. For 
oculocutaneous albinism and cornification disorders due to NSDHL variants, only one case is shown. MeDOCs = Mendelian 
disorders of cornification. Pictures in this illustration are adapted with modifications from (1, 25, 91, 146-161). 
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One of the investigated disorders, namely Ehlers-Danlos syndrome, is a genodermatosis 

caused by a connective tissue defect. In the affected cat described in the results section, this 

defect is most likely due to an insufficient amount of collagen type V alpha I chains 

(haploinsufficiency).  

X-linked hypohidrotic ectodermal dysplasia caused by genetic variants in the EDA gene and

the curly hair, most likely due to a defective keratin 71 protein in dogs, are disorders/traits of

ectodermal appendages. While keratin 71 is specifically expressed in the inner root sheath of

the hair follicle and only seems to affect hair follicle morphology and hair texture, the broad

role of ectodysplasin A during morphogenesis of ectodermal appendages is reflected by

defects in multiple organs in the investigated affected dogs.

Three of the investigated traits in dogs were related to coat colour, and can therefore be

classified as pigmentation disorders or more specifically, disorders with hypopigmentation. (In

domestic animals, alterations in the pigmentation without effects on health are not considered

disorders. Such coat color mutants are often highly valued by human breeders.) The MLPH

variant identified in the study on Chow Chows only leads to a diluted coat colour due to an

impaired melanosome transport in the skin. In the two other disorders, where defects in

SLC45A2 and OCA2 were identified, the dogs also showed signs of photophobia besides a

coat colour dilution.

Finally, the role of MKLN1 in skin and the classification of lethal acrodermatitis are unclear.

The encoded protein muskelin 1 was originally reported to be involved in responses to

thrombospondin 1, an extracellular matrix component (162), which however evolved after

muskelin 1 (162, 163). Since this initial characterization, diverse functions and binding partners

for the ubiquitously expressed multidomain protein muskelin 1 have been discussed. The

reported binding partners include EP3α prostaglandin receptor, the cyclin-dependent kinase

5 activator p39, heme-oxidase 1 and the cardiogenic T-box transcription factor TBX20 (164-

167). Furthermore, by interacting with RanBP9/RanBPM as part of the CTLH complex, the

yeast E3 ubiquitin ligase homolog, muskelin 1 was reported to regulate cell morphology (168,

169). More recent reports highlighted a role for muskelin 1 as transportation factor (170, 171).

In mouse neurons it was demonstrated that muskelin 1 binds to the GABAA receptor during

transport on both actin and microtubules, and is required for GABAA receptor endocytosis.

Mkln1-/- mice showed a coat colour dilution, suggesting that muskelin 1 is expressed in

different tissues and involved in trafficking of other cargoes such as melanosomes (171). This

year, muskelin 1 was shown to be involved in bidirectional prion protein vesicle trafficking. In

the proposed model, muskelin 1 controls the balance between intracellular lysosomal

degradation and extracellular exosome trafficking and is thus involved in the regulation of prion

disease progression (170). With our study on LAD in dogs, a novel function for muskelin 1 in

skin was disclosed. Similarly to Mkln1-/- mice, the coat colour of affected dogs was diluted but
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among the additional clinical signs and most typical for LAD, skin lesions of the paws and the 

face were observed, which was not reported in mice.  

As indicated in Table 1, most of the identified candidate causative variants were located in 

genes already known to be mutated in the corresponding human disorders. However, given 

the different disease manifestations in domestic animals and humans, in most cases the 

molecular diagnosis rather than the clinical signs led to this conclusion. As an example, during 

the investigation of the congenital cornification disorder in a female Labrador retriever and her 

cross-bred daughter, the lesions following the lines of Blaschko and the lethality in male 

littermates indicated an X-linked disorder. The NSDHL gene, which turned out to harbor a 

large structural variant in the two affected dogs, was however not considered to be a 

particularly well fitting candidate gene, given that mutant NSDHL alleles in humans typically 

cause CHILD syndrome. Characteristic for this human disorder, but not present in all cases, 

are the limb defects and the unilateral distribution of the lesions (172, 173). Both 

characteristics were not present in the affected dogs. The difficulty in linking the clinical signs 

in affected domestic animals to known genodermatoses in humans is not surprising, given that 

diagnosis in humans is already challenging due to heterogeneous phenotypes in one disorder, 

overlapping phenotypes between different disorders and the rarity of genodermatoses (174).  

In three of the studied disorders, I identified a candidate causative variant in a gene that is not 

known to be involved in human genetic skin disorders. One of the genes, SUV39H2, was 

already reported to be mutated in Labrador Retrievers with hereditary nasal parakeratosis 

(145). The identification of a second, independently occurring variant in Greyhounds affected 

with a very similar condition therefore adds evidence to the causal relationship between 

SUV39H2 variants and the trait. The fact that in the framework of my PhD studies, as well as 

in other studies, new candidate genes for genodermatoses were first detected in domestic 

animal models, highlights the role for spontaneous domestic animal mutants as models for 

human skin disorders.  

During the last years, purebred animals have gained attention as models for human disorders. 

Especially the dog has several characteristics that make it an excellent model for human 

genetic disorders: Dogs are clinically and physiologically similar to humans, are companion 

animals that share the living environment with humans who are usually willing to provide health 

and ancestry information, and they have a unique population structure and genomic 

architecture (175). Today’s purebred dogs are kept in closed populations, comparable to 

geographically isolated human populations, but isolated more extremely. The dogs of the ~400 
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modern dog breeds differ greatly from each other in morphology but also personality, leading 

to a large variety in phenotypes (176, 177). This large diversity is however a diversity between 

breeds rather than within breeds. Due to founder effects, bottlenecks or popular sire effects, 

many of the breeds are enriched for desired alleles, but also for disease alleles. This explains 

why about half of the known canine genetic disorders are specific to one breed or show a 

breed predisposition (177, 178). Many of these genetic disorders are shared between dogs 

and humans (179). Compared to humans, the identification of a causative variant in dogs is 

however generally more straightforward for the following reasons: First, there is a large 

diversity of breeds with well defined characteristics, enabling studies within and across breeds. 

Second, if the disease is specific or more frequent in one breed, and therefore in a relatively 

small (effective) population, it is likely that there is only one disease alleles that is identical by 

descent in all affected cases. Third, the genetic diversity within a breed is low, and linkage 

disequilibrium in dog breeds is ~100x higher than in humans, which means that less genetic 

markers are required in association studies, making them a powerful tool (176, 180). Fourth, 

large families and the available pedigree information also facilitate family based methods.  

Beside the mentioned advantages, genetic analyses in non-model or non-human organisms 

can be challenging due to limited availability and lower quality of resources. As an example, 

the genetic analyses performed during my studies strongly depend on the quality of the 

reference genome assembly as well as the gene annotation. The first canine high-quality draft 

genome was released in 2005, and in the current reference assembly, CanFam 3.1 thousands 

of gaps were filled and the quality further improved (181). However, as demonstrated once 

more during the investigation on a German Spitz family with oculocutaneous albinism, the 

current canine reference assembly still contains errors. Assembly and annotation errors can 

be solved to a large extent, this requires however human expert data interpretation. In such 

regions, identification of causative variants can be challenging when missed by automated 

bioinformatics data analyses. Similarly, large structural variants such as deletions, insertions, 

and especially variants due to the insertion of transposable elements such as e.g. SINEs (176, 

182), are missed by calling short SNVs and indel variants with our standard automated 

pipeline. Therefore, in cases with sporadic disorders such as the German Shepherd with 

ichthyosis, where we identified a de novo missense variant in the ASPRV1 gene that was not 

a candidate gene for ichthyosis, it would have been impossible to find the genetic cause if it 

was a structural variant and missed by the bioinformatics pipeline.  

For all but one listed disorder, the identified candidate causative variant was likely to affect 

protein function and was perfectly associated with the phenotype in the study population. This 

is consistent with Mendelian disorders that are usually due to rare, deleterious, highly 
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penetrant alleles (183). The assumption that a disease allele is rare and only present in 

affected animals but not in unrelated controls makes whole genome sequencing alone or 

combined with genetic mapping an extremely powerful approach, even with a small number 

of cases. This assumption is however not met in complex disorders. In complex disorders, 

usually a large sample size is required to explain only a small proportion of a disorder’s 

heritability by association studies. Follicular dysplasia seems to be such a complex disorder. 

The KRT71 variant that we identified as fixed variant in the Curly Coated Retriever breed is 

likely a predisposing factor for the follicular dysplasia. To strengthen this hypothesis and to 

identify additional, potentially common alleles or even environmental factors’ contribution to 

the disease, a larger, better phenotyped sample cohort is required. Furthermore, it is likely 

that variants contributing to complex diseases are located in non-coding regions and these 

would be missed by prioritizing protein-changing variants as I did for monogenic disorders 

investigated in this thesis. 

Most of my genetic analyses ended with the identification and publication of compelling 

candidate variants and thus provide a valuable basis for further investigations. They do 

however not prove causality and give at most a superficial insight into disease pathogenesis. 

According to Marian and colleagues, and analogous to Koch’s postulates for infectious 

diseases, the following four conditions should be met to prove causality: 1) The variant must 

be present and enriched in cases or families with the phenotype. 2) The variant must be 

pathogenic and functional, meaning rare or novel, affecting a conserved position and being 

protein-changing. 3) A model system without the phenotype should show a comparable 

phenotype upon introducing the variant. 4) After removing the variant, the phenotype should 

be reversed (184). During my PhD studies, I could partially fulfill the first two requirements with 

genetic data and simple experiments on RNA or protein level. Addressing the third and fourth 

conditions however will require more sophisticated functional experiments with tools such as 

CRISPR/Cas9, enabling targeted genome editing.  

In conclusion, this thesis showed that a combination of whole genome sequencing and genetic 

mapping is a powerful approach to identify candidate causative variants for monogenic skin 

disorders in domestic animals. The identified variants provide the basis for genetic testing, 

which enables controlled breeding and eradication of monogenic disorder as a long term goal. 

In purebred animals, the analysis of monogenic disorders is straightforward due to unique 

genetic architecture, population structure and breeding practices. This allows the identification 

of new candidate genes for genetic disorders that have not been reported in humans before. 

Thus, investigating genodermatoses in animal models can lead to new insights into biological 

functions and new candidate genes for genodermatoses in humans and other species.  
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Appendix 

Tables A1 - A9. Compilation of human and non-laboratory animal genodermatoses. The list of human disorders is 
based on Lemke et al. (6) with modifications. Disorders in non-laboratory animals are based on the OMIA (online 
Mendelian inheritance in animals) database (http://omia.org). Entries of the category «colour» and results from 
searches with the terms «skin» and «hair» as well as the genes listed among the human disorders were considered. 
Please note that this list might not comprise all known genodermatoses and that some listed phenotypes are not 
considered a disorder. AD = autosomal dominant, AR = autosomal recessive, ASD = autosomal semi-dominant, 
CNV = copy number variant, MOI = mode of inheritace, XL = X-linked, ZL = Z-linked 

Table A1. Inherited ichthyoses / generalized Mendelian disorders of cornification 
Gene Disease Phenotype 

OMIM# 
MOI Animal 

phenotype 
Phenotype 
OMIA# 

Species MOI 

ABCA12 Ichthyosis, autosomal 
recessive 4B (harlequin) 242500 AR Ichthyosis 

congenita 000547 Cattle  AR 

Ichthyosis, congenital, 
autosomal recessive 4A 601277 AR 

ABHD5 Chanarin-Dorfman syndrome 275630 AR 
ALDH3A2 Sjögren-Larsson syndrome 270200 AR 

ALOX12B Ichthyosis, congenital, 
autosomal recessive 2 242100 AR 

ALOXE3 Ichthyosis, congenital, 
autosomal recessive 3 606545 AR 

AP1S1 MEDNIK syndrome 609313 AR 

AQP5 Palmoplantar keratoderma, 
Bothnian type 600231 AD 

ASPRV1 Ichthyosis 002099 Dog AD 
ATP2A2 Acrokeratosis verruciformis 101900 AD 

Darier disease 124200 AD 
ATP2C1 Hailey-Hailey disease 169600 AD 
CDSN Ichthyosis-hypotrichosis 146520 AD/AR 

CERS3 Autosomal recessive 
congenital ichthyosis 615023 AR 

CLDN1 ILVASC 607626 AR 

COL14A1 Keratoderma, palmoplantar, 
punctate type IB 614936 AD 

CSTA Exfoliative ichthyosis 607936 AR 
CTSC Papillon-Lefèvre syndrome 245000 AR 

CYP4F22 Ichthyosis, congenital, 
autosomal recessive 5 604777 AR 

DKC1 Dyskeratosis congenita 305000 XL 

DSG1 Striate palmoplantar 
keratoderma (PPKS1) 148700 AD 

DSP Striate palmoplantar 
keratoderma (PPKS2) 612908 AD 

EBP Chondrodysplasia punctata, 
X-linked dominant 302960 XL 

ELOVL4 
Ichthyosis, spastic 
quadriplegia and mental 
retardation 

614457 AR 

ENPP1 Cole disease AD 
ERCC2 Trichothiodystrophy 601675 AR 
ERCC3 Trichothiodystrophy 601675 AR 
FLG Ichthyosis vulgaris 146700 AD 
GJB2 KID syndrome 148210 AD 

GJB3 Erythrokeratodermia variabilis 
et progressiva 133200 AD 

GJB4 
Erythrokeratodermia variabilis 
with erythema gyratum 
repens 

133200 AD 
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Table A1. Inherited ichthyoses / generalized Mendelian disorders of cornification 
Gene Disease Phenotype 

OMIM# 
MOI Animal 

phenotype 
Phenotype 
OMIA# 

Species MOI 

GJB6 Ectodermal dysplasia, 
Clouston type 129500 AD 

GTF2H5 Trichothiodystrophy 601675 AR 
JUP Naxos disease 601214 AR 

KRT1 Ichthyosis, cyclic, with 
epidermolytic hyperkeratosis 607602 AD 

KRT10 Ichthyosis, cyclic, with 
epidermolytic hyperkeratosis 607602 AD Hyperkeratosis, 

epidermolytic 001415 Dog AR 

KRT16 
Pachyonychia congenita type 
I (Jadassohn-Lewandowsky 
syndrome) 

148067 AD 

Palmoplantar 
keratoderma, 
nonepidermolytic, 
focal 1 

002088 Dog AR 

KRT17 Pachyonychia congenita type 
II (Jackson-Lawler syndrome) 167210 AD 

KRT2 Ichthyosis bullosa of Siemens 146800 AD 

KRT6A 
Pachyonychia congenita type 
I (Jadassohn-Lewandowsky 
syndrome) 

167200 AD 

KRT6B Pachyonychia congenita type 
II (Jackson-Lawler syndrome) 167210 AD 

KRT9 Epidermolytic palmoplantar 
keratoderma 144200 AD 

LIPN Ichthyosis, congenital, 
autosomal recessive 8 613943 AR 

LOR Vohwinkel syndrome 
(ichthyotic variant) 604117 AD 

MBTPS2 
IFAP syndrome with or 
without BRESHECK 
syndrome 

308205 XL Brindle 1 002021 Horse XL 

Keratosis follicularis spinulosa 
decalvans, X-linked 308800 XL 

MKLN1 Lethal 
acrodermatitis 002146 Dog AR 

MPLKIP Trichothiodystrophy, non-
photosensitive 1 234050 AR 

NHP2 Dyskeratosis congenita, 
autosomal recessive 2 613987 AR 

NIPAL4 Ichthyosis, congenital, 
autosomal recessive 6 612281 AR 

Autosomal 
recessive 
congenital 
ichthyosis 

001980 Dog AR 

NOP10 Dyskeratosis congenita, 
autosomal recessive 1 224230 AR 

NSDHL CHILD syndrome 308050 XL 
Congenital 
cornification 
disorder 

002117 Dog XL 

ILVEN-like 
lesions Cat XL 

PKP1 Ectodermal dysplasia/skin 
fragility syndrome 604536 AR 

Ectodermal 
dysplasia/skin 
fragility syndrome 

001864 Dog AR 

PLD4 Zinc deficiency-
like syndrome 001935 Cattle AR 

PNPLA1 Ichthyosis, congenital, 
autosomal recessive 10 615024 AR Ichthyosis 001588 Dog AR 

POMP 
Keratosis linearis with 
ichthyosis congenita and 
sclerosing keratoderma 

601952 AR 

RHBDF2 Tylosis with oesophageal 
cancer 148500 AD 
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Table A1. Inherited ichthyoses / generalized Mendelian disorders of cornification 
Gene Disease Phenotype 

OMIM# 
MOI Animal 

phenotype 
Phenotype 
OMIA# 

Species MOI 

SAT1 Keratosis follicularis spinulosa 
decalvans 308800 XL 

SERPINB7 Palmoplantar keratosis, 
Nagashima type AR 

SLC27A4 Ichthyosis prematurity 
syndrome 608649 AR Ichthyosis 001973 Dog AR 

SLC39A4 Acrodermatitis enteropathica 201100 AR 
Acrodermatits 
enteropathica / 
Lethal trait A46 

00593 Cattle  AR 

SLURP1 Mal de Meleda 248300 AR 
SMARCAD1 Adermatoglyphia 136000 AD 
SNAP29 CEDNIK syndrome 609528 AR 
SPINK5 Netherton syndrome 256500 AR 

ST14 Ichthyosis with hypotrichosis 610765 AR Naked foal 
syndrome 2096 Horse AR 

STS Ichthyosis, X-linked 308100 XL 
SUMF1 Multiple sulphatase deficiency 272200 AR 

TAT Richner-Hanhart syndrome, 
tyrosinaemia, type II 276600 AR 

TERC Dyskeratosis congenita, 
autosomal dominant 1 127550 AD 

TERT Dyskeratosis congenita, 
autosomal recessive 4 613989 AR 

TGM1 Ichthyosis, congenital, 
autosomal recessive 1 242300 AR Ichthyosis 000546 Dog AR 

TGM5 Peeling skin syndrome, acral 
type 609796 AR 

TINF2 Dyskeratosis congenita, 
autosomal dominant 3 613990 AD 

WRAP53 Dyskeratosis congenita, 
autosomal recessive 3 613988 AR 

Abbreviations: MEDNIK = mental retardation, enteropathy, deafness, neuropathy, ichthyosis and keratoderma; 
ILVASC = ichthyosis, leucocyte vacuoles, alopecia and sclerosing cholangitis; KID = keratitis, ichthyosis and 
deafness; IFAP = ichthyosis follicularis, alopecia and photophobia; BRESHECK = brain anomalies, retardation, 
ectodermal dysplasia, skeletal malformations, Hirschsprung disease, ear/eye anomalies, cleft 
palate/cryptorchidism and kidney dysplasia/hypoplasia; CHILD = congenital hemidysplasia with ichthyosiform 
erythroderma and limb defects; CEDNIK = cerebral dysgenesis, neuropathy, ichthyosis and keratoderma.  
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Table A2. Inherited epidermolyses and blistering disorders 
Gene Disease Phenotype 

OMIM# 
MOI Animal 

phenotype 
Phenotype 
OMIA#. 

Species MOI 

COL17A1 Epidermolysis bullosa, junctional,
non-Herlitz type 226650 AR 

COL7A1 Epidermolysis bullosa dystrophica, 
autosomal recessive 226600 AR 

Epidermolysis 
bullosa, 
dystrophic 

000341 Cattle,dog AR 

Epidermolysis bullosa dystrophica, 
Bart type 132000 AD 

Epidermolysis bullosa dystrophica, 
localisata variant AD 

Epidermolysis bullosa dystrophica, 
autosomal dominant 131750 AD 

Epidermolysis bullosa dystrophica, 
autosomal recessive 226600 AR 

Epidermolysis bullosa pruriginosa 604129 AD/AR 
Epidermolysis bullosa, pretibial 131850 AD 
Toenail dystrophy, isolated 607523 AD 
Transient bullous epidermolysis of 
the newborn 131705 AD/AR 

DSP Epidermolysis bullosa, lethal 
acantholytic 609638 AR 

EXPH5 Epidermolysis bullosa, non-
specific, autosomal recessive 615028 AR 

FERMT1 Kindler syndrome 173650 AR 

ITGA3 
Interstitial lung disease, nephritic 
syndrome and epidermolysis 
bullosa, congenital 

614748 AR 

ITGA6 Epidermolysis bullosa, junctional, 
with pyloric stenosis 226730 AR 

ITGB4 Epidermolysis bullosa of hands 
and feet 131800 AR 

Epidermolysis 
bullosa, 
junctionalis 

001948 Cattle, 
sheep AR 

Epidermolysis bullosa, junctional, 
non-Herlitz type 226650 AR 

Epidermolysis bullosa, junctional, 
with pyloric atresia 226730 AR 

KRT1 Ichthyosis, cyclic, with 
epidermolytic hyperkeratosis 607602 AD 

KRT10 Ichthyosis, cyclic, with 
epidermolytic hyperkeratosis 607602 AD 

KRT5 Dowling-Degos disease 1 179850 AD 
Epidermolysis 
bullosa, 
simplex 

002081 Cattle AD 

Epidermolysis bullosa simplex 
with migratory circinate erythema 609352 AD 

Epidermolysis bullosa simplex 
with mottled pigmentation 131960 AD 

Epidermolysis bullosa simplex, 
Dowling-Meara type 131760 AD 

Epidermolysis bullosa simplex, 
Koebner type 131900 AD 

Epidermolysis bullosa simplex, 
Weber-Cockayne type 131800 AD 

KRT14 Dermatopathia pigmentosa 
reticularis 125595 AD 

Epidermolysis bullosa simplex, 
Dowling-Meara type 131760 AD 

Epidermolysis bullosa simplex, 
Koebner type 131900 AD 

Epidermolysis bullosa simplex, 
recessive 1 601001 AR 

Epidermolysis bullosa simplex, 
Weber-Cockayne type 131800 AD 
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Table A2. Inherited epidermolyses and blistering disorders 
Gene Disease Phenotype 

OMIM# 
MOI Animal 

phenotype 
Phenotype 
OMIA#. 

Species MOI 

Naegeli-Franceschetti-Jadassohn 
syndrome 161000 AD 

LAMA3 Epidermolysis bullosa, 
generalized atrophic benign 226650 AR 

Epidermolysis 
bullosa, 
junctionalis 

001677 
Cattle, 
dog, 
horse 

AR 

Epidermolysis bullosa, junctional, 
Herlitz type 226700 AR 

Laryngo-onychocutaneous 
syndrome 245660 AR 

LAMB3 

Epidermolysis bullosa, junctional, 
Herlitz type 226700 AR 

Epidermolysis bullosa, junctional, 
non-Herlitz type 226650 AR 

LAMC2 

Epidermolysis bullosa, junctional, 
Herlitz type 226700 AR 

Epidermolysis 
bullosa, 
junctionalis 

001678 
Cattle, 
horse, 
sheep 

AR 

Epidermolysis bullosa, junctional, 
non-Herlitz type 226650 AR 

PLEC1 Epidermolysis bullosa simplex 
with pyloric atresia 612138 AR 

Epidermolysis 
bullosa, 
simplex 

002080 Dog AR 

Epidermolysis bullosa simplex, 
Ogna type 131950 AD 

Muscular dystrophy with 
epidermolysis bullosa simplex 226670 AR 

POFUT1 Dowling-Degos disease 1 615327 AD 
POGLUT1 Dowling-Degos disease AD 
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Table A3. Nucleotide excision repair disorders 
Gene Disease Phenotype 

OMIM# 
MOI Animal 

phenotype 
Phenotype 
OMIA# 

Species MOI 

DDB2 Xeroderma pigmentosum, group E, 
DDB-negative subtype 278740 AR 

Ocular 
squamous 
cell 
carcinoma 

000735 Horse AR 

ERCC1 Xeroderma pigmentosum   AR         
ERCC2 Xeroderma pigmentosum, group D 278730 AR     
  Trichothiodystrophy 601675 AR         
ERCC3 Xeroderma pigmentosum, group B 610651 AR      
 Trichothiodystrophy 601675 AR         
ERCC4 Xeroderma pigmentosum, group F 278760 AR         
ERCC5 Xeroderma pigmentosum, group G 278780 AR         

ERCC6 Cockayne syndrome, type B 133540 AR     
UV-sensitive syndrome 1 600630 AR         

ERCC8 Cockayne syndrome, type A 216400 AR     
UV-sensitive syndrome 2 614621 AR         

GTF2H5 Trichothiodystrophy 601675 AR         
MPLKIP Trichothiodystrophy 234050 AR         

POLH Xeroderma pigmentosum, variant 
type 278750 AR         

RECQL4 Rothmund-Thompson syndrome 268400 AR         
WRN Werner syndrome 277700 AR         
XPA Xeroderma pigmentosum, group A 278700 AR         
XPC Xeroderma pigmentosum, group C 278720 AR         
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Table A4. Inherited disorders with hypo- hyperpigmentation (Coat/feather colour in animals) 
Gene Disease Phenotype 

OMIM# 
MOI Animal 

phenotype 
Phenotype 
OMIA# 

Species MOI 

ADAM10 
Reticulate 
acropigmentation of 
Kitamura 

AD 

ADAR Dyschromatosis 
symmetrica hereditaria 127400 AD 

AP3B1 Hermansky-Pudlak 
syndrome 2 608233 AR 

Neutropenia, 
cyclic (Grey 
Collie syndrome) 

000248 Dog AR 

BCO2 Skin/shank 
colour yellow 001449 Chicken AR 

BLM Bloom syndrome 210900 AR 

BLOC1S3 Hermansky-Pudlak 
syndrome 8 614077 AR 

BLOC1S6 Hermansky-Pudlak 
syndrome 9 614171 AR 

BRAF Cardiofaciocutaneous 
syndrome 115150 AD 

C10ORF11/
LRMDA 

Albinism, 
oculocutaneous, type VII 615579 AR 

CBD103 Dominant black 001416 Coyote, 
Dog, Wolf AD 

CDKN2A Barring, sex 
linked 000102 Chicken ZL 

COPA Dominant red 001529 Cattle AD 
CORIN Golden 002159 Tiger AR 

CYP2J19 Feather colour 
red 002019 Chicken ? 

DTNBP1 Hermansky-Pudlak 
syndrome 7 614076 AR 

EDN3 Waardenburg syndrome, 
type 4B 613265 AR 

Hyperpigmentatio
n, Silky/Silkie 
(Fibromelanosis) 

001671 Chicken AD 

EDNRA Coat colour, 
white spotting 000214 Goat ASD 

EDNRB Waardenburg syndrome, 
type 4A 277580 AR 

Waardenburg 
syndrome, type 
4A 

001765 Sheep AR 

Overo lethal 
white foal 
syndrome 

000629 Horse AR 

Overo coat 
colour 000629 Horse AD 

EDNRB2 Feather colour, 
mottling 001904 Chicken AR 

ENPP1 Cole disease AD 

HPS1 Hermansky-Pudlak 
syndrome 1 203300 AR 

HPS3 Hermansky-Pudlak 
syndrome 3 614072 AR 

HPS4 Hermansky-Pudlak 
syndrome 4 614073 AR 

HPS5 Hermansky-Pudlak 
syndrome 5 614074 AR oculocutaneous

albinism 002116 Stickleback AR 

HPS6 Hermansky-Pudlak 
syndrome 6 614075 AR 

KIT Piebaldism 172800 AD 
Diverse coat 
colour related 
phenotypes 

Diverse 

KITLG Roan 001216 Cattle ASD 
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Table A4. Inherited disorders with hypo- hyperpigmentation (Coat/Feather colour in animals) 
Gene Disease Phenotype 

OMIM# 
MOI Animal 

phenotype 
Phenotype 
OMIA# 

Species MOI 

LVRN       Tabby   Cat AD/
AR 

MAP2K1 Cardiofaciocutaneous 
syndrome 115150 AD         

MAP2K2 Cardiofaciocutaneous 
syndrome 115150 AD         

MC1R 
Oculocutaneous 
albinism, type II, 
modifier of 

203200 AD 
Diverse coat 
colour related 
phenotypes 

  Diverse   

MITF Tietz albinism-deafness 
syndrome 103500 AD Coat colour, 

white spotting 
 

Buffalo, 
cattle, dog, 
horse 

ASD
? 

 Waardenburg syndrome, 
type 2A 193510 AD 

Depigmentation 
associated with 
microphthalmia 

 Cattle AD 

    
Dominant white 
with bilateral 
deafness 

 Cattle AD 

    Hyperpigmentatio
n, MITF-related 002129 Chicken ? 

    
Waardenburg 
syndrome, type 
2A 

 Golden 
hamster, pig 

AD/
AR 

    Feather colour, 
silver 

 Japanese 
quail ASD 

        Osteopetrosis   Japanese 
quail AR 

MLH1 
MMR deficiency 
syndrome (Turcot 
syndrome) 

276300 AR         

MLPH Griscelli syndrome, type 
3 609227 AR Coat/feather 

colour, dilute 
000031,
001445 

Cat, cattle, 
chicken, 
dog, 
Japanese 
quail, 
American 
mink, rabbit,  

AR 

MSH2 
MMR deficiency 
syndrome (Turcot 
syndrome) 

276300 AR         

MSH6 
MMR deficiency 
syndrome (Turcot 
syndrome) 

276300 AR         

MYO5A Griscelli syndrome, type 
1 214450 AR Lavender foal 

syndrome 001501 Horse AR 

NF1 Neurofibromatosis, type 
1 162200 AD         

NF2 Neurofibromatosis, type 
2 101000 AD         

OCA2 

Albinism, 
oculocutaneous, type II 203200 

AR 

Oculocutaneous 
albinism 002130 

Corn snake, 
dog, 
Mexican 
tetra 

AR 

Albinism, brown 
oculocutaneous 203200         

PAX3 Waardenburg syndrome, 
type 1 193500 AD 

Coat colour, 
white spotting, 
splashed white 

001688 Horse ASD 

  Waardenburg syndrome, 
type 3  148820 AD         

PMEL    Feather colour 
white 000373 Chicken AD 
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Table A4. Inherited disorders with hypo- hyperpigmentation (Coat/Feather colour in animals) 
Gene Disease Phenotype 

OMIM# 
MOI Animal 

phenotype 
Phenotype 
OMIA# 

Species MOI 

        Merle 000211 Dog AD 

PMS3 
 MMR deficiency 
syndrome (Turcot 
syndrome) 

276300 AR         

PRKAR1A Carney complex type I 160980 AD         
PSMB7       Harlequin 001454 Dog AD 
PTPN11 Leopard syndrome 151100 AD         

RAB27A Griscelli syndrome, type 
2 607624 AR         

RAB38       
Oculocutaneous 
hypopigmentatio
n 

002101 Cattle AR 

RALY    black-and-
tan/saddle tan 001806 Dog AR 

RECQL4 Rothmund-Thompson 
syndrome 268400 AR         

SLC24A5 Oculocutaneous 
albinism, type VI 113750 AR Oculocutaneous 

albinism, type VI 002124 Horse AR 

SLC36A1       Champagne 001263 Horse AD 

SLC45A2 Oculocutaneous 
albinism, type IV 606574 AR Oculocutaneous 

albinism, type IV 001821 
Cattle, dog, 
gorilla, 
medaka 

AR 

    Coat colour, 
cream dilution 001344 Horse ASD 

    Coat colour, 
white 000213 Bengal tiger AR 

    
Feather colour, 
albinism, sex-
linked, imperfect 

000370 Japanese 
quail ZL 

       Feather colour, 
silver 000915 Chicken ZL 

SNAI2 Waardenburg syndrome, 
type 2D 608890 AR     

  Piebaldism 172800 AR         

SOX10 Waardenburg syndrome, 
type 4C 613266 AR Feather colour, 

dark brown 001569 Chicken AR 

SPRED1 Legius syndrome 611431 AD         

STK11 Peutz-Jeghers 
syndrome 175200 AD         

STX17       Grey 001356 Horse AD 
TBX3       Dun 001972 Horse AD 

TRPM1    Leopard complex 
spotting 

  AD 

        Night blindness   Horse AR 

TWIST2       Coat colour, 
white belt 001469 Cattle AD 

TYR Albinism, 
oculocutaneous, type IA 203100 AR 

Diverse coat 
colour related 
phenotypes 

 Diverse  

  Albinism, 
oculocutaneous, type IB 606952 AR         

TYRP1 Albinism, 
oculocutaneous, type III 203290 AR  Coat colour, 

blonde 001362 Pig AD 

    Coat colour, 
brown 001249 Diverse AD/

AR 
    Feather colour, 

light brown 002061 Sacer falcon ZL 

        Feather colour, 
roux 001322 Japanese 

quail ZL 

Abbreviations: MMR = mismatch repair 
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Table A5. Disorders of ectodermal appendages including ectodermal dysplasia 
Gene Disease Phenotype 

OMIM# 
MOI Animal phenotype Phenotype 

OMIA# 
Species MOI 

ABCC9 Cantú syndrome 239850 AD         
ALMS1 Alström syndrome 203800 AR         
APCDD1 Hypotrichosis simplex 605389 AD         

ARHGAP31 Adams-Oliver 
syndrome 100300 AD         

AXIN2 
Ectodermal dysplasia 
and neoplastic 
syndrome 

608615 AD         

BANF1 Nestor-Guillermo 
progeria syndrome 614008 AR         

BCS1L Bjørnstad syndrome 262000 AR         

CDH3 
Hypotrichosis with 
juvenile macular 
dystrophy 

601553 AR         

CYP26C1 Focal facial dermal 
dysplasia 4 614974 AR         

DDX59 Orofaciodigital 
syndrome V 174300 AR         

DLX3 Trichodento-osseous 
syndrome 190320 AD 

Tricho-dento-
osseous-like 
syndrome 

002109 Cattle AD 

DOCK6 Adams-Oliver 
syndrome 614219 AR         

DSC3 Hypotrichosis and 
recurrent skin vesicles 613102 AR         

DSG4 Hypotrichosis 607903 AR         

DSP Skin fragility-woolly hair 
syndrome 607655 AR         

EDA 
X-linked hypohidrotic 
ectodermal dysplasia 
(ED1) 

305100 XL 

Anhidrotic 
ectodermal 
dysplasia, X-linked 
hypohidrotic 
ectodermal 
dysplasia 

000543 Cattle, 
dog XL 

EDAR Ectodermal dysplasia, 
hypohidrotic 224900 AD 

Anhidrotic 
ectodermal 
dysplasia 

002128 Cattle AR 

        Reduced scale-3 001695 Japanese 
medaka AR 

EDARADD Ectodermal dysplasia, 
hypohidrotic 614941 AD         

EFNB1 Craniofrontonasal 
dysplasia 304110 XL         

ERCC2 Trichothiodystrophy 601675 AR         
ERCC3 Trichothiodystrophy 601675 AR         
FGF5       Long hair 000439 Diverse AD/AR 
FGF20       Scaleless 000889 Chicken AR 

FOXI3       Ectodermal 
dysplasia 000323 Dog ASD 

FOXN1 

T-cell 
immunodeficiency, 
congenital alopecia and 
nail dystrophy 

601705 AR 
Hypotrichosis, with 
short life 
expectancy 

001949 Cat AR 

GDF7       Naked neck 000701 Chicken AD 

GJB6 Ectodermal dysplasia 2, 
Clouston type 129500 AR         

HEPHL1       Hypotrichosis 000540 Cattle AR 

HOXC13 Ectodermal dysplasia 9, 
hair/nail type 614931 AR Ectodermal 

dysplasia 9 002157 Pg, rabbit 
(GMOs) AR 
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Table A5. Disorders of ectodermal appendages including ectodermal dysplasia 
Gene Disease Phenotype 

OMIM# 
MOI Animal phenotype Phenotype 

OMIA# 
Species MOI 

HR 

Atrichia with 2 ocular 
lesions, also called 
congenital alopecia 
universalis 

209500 AR Atrichia with 
papular lesions 001348 Rhesus 

monkey AR 

HVEC 
Cleft lip/palate-
ectodermal dysplasia 
syndrome 

225060 AR         

IFT122 Cranio-ectodermal 
dysplasia 1 218330 AR         

IFT43 Sensenbrenner 
syndrome 614099 AR         

IKBKG 
Anhidrotic ectodermal 
dysplasia with immune 
deficiency 

300291 XL Incontinentia 
pigmenti 001899 Horse XL 

IRF2BP2       woolly hair 001528 Sheep AR 
JUP Naxos disease 601214 AR         

KCTD1 Scalp-ear-nipple 
syndrome 181270 AD         

KRT17 

Steatocystoma 
multiplex 184500 

AD 

    

Pachyonychia 
congenita, Jackson-
Lawler type 

167210         

KRT25       Curly coat 000245 Horse AD 

KRT27       Curly hair, karakul-
type 000246 Cattle AD 

KRT71    Curly coat 000245 Dog ASD? 
    Curly coat, Devon 

rex 001581 Cat AR 

    Curly coat, Selkirk 
rex 001712 Cat AD 

    Hypotrichosis 002114 Cattle ? 

        
Hypotrichosis,with 
whiskers short and 
curled 

001583 Cat AR 

KRT74 Woolly hair 194300 AD         

KRT75 Pseudofolliculitis 
barbae 612318 AD Frizzle 000394 Chicken AD 

KRT81 Monilethrix 158000 AD         
KRT83 Monilethrix 158000 AD         

KRT85 Ectodermal dysplasia 4, 
hair/nail type 602032 AR         

KRT86 Monilethrix 158000 AD         
LIPH Woolly hair 604379 AR Rex coat 001566 Rabbit AR 

LMNA Hutchinson-Gilford 
progeria 176670 AD         

LMX1B Nail-patella syndrome 161200 AD         

LPAR6 
Woolly hair 278150 

AR 
Curly/woolly coat 001684 Cat AR 

Hypotrichosis 8 278150     

MSX1 Ectodermal dysplasia 3, 
Witkop type 189500 AD Limbless 000602 Chicken AR 

PDSS2       Silky/Silkie 
feathering 000913 Chicken AR 

PKP1 
Ectodermal 
dysplasia/skin fragility 
syndrome 

604536 AR 
Ectodermal 
dysplasia/skin 
fragility syndrome 

001864 Dog AR 

POC1A 

Short stature, 
onychodysplasia, facial 
dysmorphism and 
hypotrichosis syndrome 

614813 AR         
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Table A5. Disorders of ectodermal appendages including ectodermal dysplasia 
Gene Disease Phenotype 

OMIM# 
MOI Animal phenotype Phenotype 

OMIA# 
Species MOI 

PORCN Focal dermal 
hypoplasia 305600 XL         

PPP1R13L       Cardiomyopathy 
and wolly haircoat 000161 Cattle AR 

PRL       Hairy 000441 Cattle AD 
PRLR       Slick hair 001372 Cattle AD 

PVRL1 
Margarita Island type of 
ectodermal dysplasia 
(ED4) 

225060 AR         

RBM28 

Alopecia, neurological 
defects and 
endocrinopathy 
syndrome 

612079 AR         

RBPJ Adams-Oliver 
syndrome 614814 AD         

RMRP Cartilage hair 
hypoplasia 250250 AR         

RSPO2       Furnishings 001531 Dog AD 

SGK3       Recessive 
hypotrichosis 001279 Dog AR 

SNRPE Hypotrichosis 615059 AD         

SOX18 

Hypotrichosis-
lymphoedema-
telangiectasia 
syndrome 

607823 AD         

TP63 
Ankyloblepharon-
ectodermal defects-cleft 
lip/palate syndrome 

106260 AD         

TRPS1 Trichorhinophalangeal 
syndrome, type I 190350 AD         

TSR2       Streaked 
hairlessness 000542 Cattle XL 

TWIST2 
Focal facial dermal 
dysplasia 3, Setleis 
type 

227260 AR         

WDR35 Cranio-ectodermal 
dysplasia 2 613610 AR         
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Table A6. Vascular disorders 
Gene Disease Phenotype 

OMIM# 
MOI Animal 

phenotype 
Phenotype 
OMIA# 

Species MOI 

ACVRL1 Telangiectasia, hereditary 
haemorrhagic, type 2 600376 AD 

C1NH Angio-oedema, hereditary, types I 
and II 106100 AD 

C7ORF22 Cerebral cavernous malformations 603284 AD 

ENG Telangiectasia, hereditary 
haemorrhagic, type 1 187300 AD 

FLT4 Hereditary lymphoedema type I 153100 AD 

FOXC2 Lymphoedema-distichiasis 
syndrome 153400 AD 

GDF2 Telangiectasia, hereditary 
haemorrhagic, type 5 615506 AD 

GLMN Glomuvenous malformations 
(glomangiomas) 138000 AD 

GNAQ Sturge-Weber syndrome 185300 mosaic 
Capillary malformations, 
congenital, 1, somatic, mosaic 163000 mosaic 

KRIT1 Cerebral cavernous malformations 116860 AD 
PDCD10 Cerebral cavernous malformations 603285 AD 

RASA1 Capillary malformation-
arteriovenous malformation 608354 AD 

Parkes Weber syndrome 608355 AD 

TEK Venous malformations, multiple 
cutaneous and mucosal 600195 AD 
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Table A7. Connective tissue defects       

Gene Disease Phenotype 
OMIM# 

MOI Animal phenotype Phenotype 
OMIA# 

Species MOI 

ABCC6 Pseudoxanthoma 
elasticum 264800 AR         

ADAMTS2 Ehlers-Danlos syndrome, 
type VIIC 225410 AR 

Ehlers-Danlos 
syndrome, type VII 
(Dermatosparaxis) 

000328 Cattle, 
sheep AR 

ADAMTSL2 Geleophysic dysplasia 1 231050 AR Musladin-Lueke 
syndrome 001509 Dog AR 

ALDH18A1 Cutis laxa 219150 AR         
ATP6V0A2 Cutis laxa 219200 AR         
ATP7A Menkes disease 309400 XL Menkes disease 000640 Dog XL 

B3GALT6 Ehlers-Danlos syndrome, 
progeroid type 2 615349 AR         

B4GALT7 Ehlers-Danlos syndrome, 
progeroid type 1 130070 AD Dwarfism, Friesian 002068 Horse AR 

COL1A1 Ehlers-Danlos syndrome, 
type I 130000 AD Osteogenesis 

imperfecta, type II 002127 Cattle AD 

  Ehlers-Danlos syndrome, 
type VIIA 130060 AD Osteogenesis 

imperfecta, type III 002126 Dog AD 

COL1A2 Ehlers-Danlos syndrome, 
type VIIB 130060 AD Osteogenesis 

imperfecta 002112 Dog AD 

COL3A1 Ehlers-Danlos syndrome, 
type IV 130050 AD         

COL5A1 Ehlers-Danlos syndrome, 
type II 130010 AD     

  Ehlers-Danlos syndrome, 
type I 130000 AD     

COL5A2 Ehlers-Danlos syndrome, 
type I 130000 AD         

EFEMP2 Cutis laxa 614437 AR         
ELN Cutis laxa 123700 AD         
FBLN5 Cutis laxa 614434 AD/AR         
FBN1 Marfan syndrome 154700 AD Marfan syndrome 000628 Cattle AD 

FBN2 
Contractural 
arachnodactyly, 
congenital 

121050 AD         

HAS2       Periodic Fever 
Syndrome 001561 Dog CNV 

LTBP4 Cutis laxa 613177 AR         

PLOD1 Ehlers-Danlos syndrome, 
type VI 225400 AR Ehlers-Danlos 

syndrome, type VI 001982 Horse AR 

PYCR1 Cutis laxa 614438 AR         
SMAD3 Loeys-Dietz syndrome 613795 AD         
TGFB2 Loeys-Dietz syndrome 608967 AD         
TGFBR1 Loeys-Dietz syndrome 609192 AD         
TGFBR2 Loeys-Dietz syndrome 608967 AD         

TNXB 
Ehlers-Danlos syndrome, 
autosomal dominant, 
hypermobility type 

130020 AD     

  

Ehlers-Danlos syndrome, 
autosomal recessive, 
due to tenascin-X 
deficiency 

606408 AD         

ZMPSTE24 Restrictive dermopathy, 
lethal 275210 AR         
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Table A8. Dermal mosaics 

Gene Disease Phenotype 
OMIM# 

MOI Animal phenotype Phenotype 
OMIA# 

Species MOI 

AKT1 Proteus syndrome 176920 mosaic 

BRAF Cardiofaciocutaneous 
syndrome 115150 mosaic 

FGFR3 Naevus, epidermal, 
somatic 162900 mosaic Chondrodysplasia,

Spider lamb 001703 Sheep AR 

GNAQ Sturge-Weber syndrome 185300 mosaic 
Capillary malformations, 
congenital, 1, somatic, 
mosaic 

163000 mosaic 

GNAS McCune-Albright 
syndrome 174800 mosaic 

HRAS 

Naevus, epidermal, 
somatic 162900 

mosaic Schimmelpenning-
Feuerstein-Mims 
syndrome, somatic mosaic 

163200 

IDH1 Ollier disease/Maffucci 
syndrome mosaic 

IDH2 Ollier disease/Maffucci 
syndrome mosaic 

KRAS 
Schimmelpenning-
Feuerstein-Mims 
syndrome, somatic mosaic 

163200 mosaic 

MAP2K1 Cardiofaciocutaneous
syndrome 615279 mosaic 

MAP2K2 Cardiofaciocutaneous
syndrome 615280 mosaic 

NRAS Naevus, epidermal, 
somatic 162900 mosaic 

PIK3CA Naevus, epidermal, 
somatic 162900 mosaic 

PORCN Focal dermal hypoplasia 305600 mosaic 
PTEN Linear PTEN naevus 158350 mosaic 
PTPN11 Leopard syndrome 151100 mosaic 
SOX10 Giant melanocytic naevus mosaic 
SPRED1 Legius syndrome 611431 mosaic 

TSC1 Tuberous sclerosis 
complex 191100 mosaic 

TSC2 Tuberous sclerosis 
complex 613254 mosaic 
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Table A9. Genodermatoses with tumor predisposition 
Gene Disease Phenotype 

OMIM# 
MOI Animal 

phenotype 
Phenotype 
OMIA# 

Species MOI 

AKT1 Cowden syndrome 615109 AD         

APC Gardner syndrome 175100 AD 
Familial 
adenomatous 
polyposis 

001916 Pig 
(GMO)   

ATM Ataxia-telangiectasia 208900 AR Ataxia 
telangiectasia 002044 Pig 

(GMO)   

AXIN2 Ectodermal dysplasia and 
neoplastic syndrome 608615 AD         

BLM Bloom syndrome 210900 AR         

CYLD Tricho-epithelioma, multiple 
familial 601606 AD         

DDB2 
Xeroderma pigmentosum, 
group E, DDB-negative 
subtype 

278740 AR Ocular squamous 
cell carcinoma 000735 Horse AR 

DKC1 Dyskeratosis congenita 305000 XR         

ERCC2 Xeroderma pigmentosum, 
group D 278730 AR         

ERCC3 Xeroderma pigmentosum, 
group B 610651 AR         

ERCC4 Xeroderma pigmentosum, 
group F 278760 AR         

ERCC5 Xeroderma pigmentosum, 
group G 278780 AR         

FERMT1 Kindler syndrome 173650 AR         

FH Leiomyomatosis with or 
without renal cell cancer 150800 AD         

FLCN Birt-Hogg-Dubé syndrome 135150 AD 

Renal 
cystadenocarcino
ma and nodular 
dermatofibrosis 

001335 Dog AD 

GTF2H5 Trichothiodystrophy 601675 AR         

MLH1 MMR deficiency syndrome 
(Turcot syndrome) 276300 AR         

MPLKIP Trichothiodystrophy 234050 AR         

MSH2 MMR deficiency syndrome 
(Turcot syndrome) 276300 AR         

MSH6 MMR deficiency syndrome 
(Turcot syndrome) 276300 AR         

NF1 Neurofibromatosis, type 1 162200 AD         
NF2 Neurofibromatosis, type 2 101000 AD         

NHP2 Dyskeratosis congenita, 
autosomal recessive 2 613987 AR         

NOP10 Dyskeratosis congenita, 
autosomal recessive 1 224230 AR         

NOTCH3 Myofibromatosis, infantile, 2 615293 AD         
PDGFRB Myofibromatosis, infantile, 1 228550 AD         
PIK3CA Cowden syndrome 615108 AD         

PMS2 MMR deficiency syndrome 
(Turcot syndrome) 276300 AR         

POLH Xeroderma pigmentosum, 
variant type 278750 AR         

PRKAR1
A Carney complex type I 160980 AD         

PTCH1 
Naevoid basal cell 
carcinoma syndrome 
(Gorlin syndrome) 

109400 AD         

PTCH2 Familial basal cell 
carcinoma 605462 AD         
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Table A9. Genodermatoses with tumor predisposition 
Gene Disease Phenotype 

OMIM# 
MOI Animal 

phenotype 
Phenotype 
OMIA# 

Species MOI 

PTEN Cowden syndrome 158350 AD 

Colorectal 
hamartomatous 
polyposis and 
ganglioneuromat
osis 

001515 Dog  ? 

RECQL4 Rothmund-Thompson 
syndrome 268400 AR 

RHBDF2 Tylosis with oesophageal 
cancer 148500 AD 

STK11 Peutz-Jeghers syndrome 175200 AD 

TERC Dyskeratosis congenita, 
autosomal dominant 1 127550 AD 

TERT Dyskeratosis congenita, 
autosomal recessive 4 613989 AR 

TINF2 Dyskeratosis congenita, 
autosomal dominant 3 613990 AD 

TSC1 Tuberous sclerosis complex 191100 AD 
TSC2 Tuberous sclerosis complex 613254 AD 

WRAP53 Dyskeratosis congenita, 
autosomal recessive 3 613988 AR 

WRN Werner syndrome 277700 AR 

XPA Xeroderma pigmentosum, 
group A 278700 AR 

XPC Xeroderma pigmentosum, 
group C 278720 AR 

Abbreviations: GMO = Genetically modified organism, MMR = mismatch repair 
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