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Institut für mathematische Statistik und Versicherungslehre

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 10. 11. 2016
Der Dekan:

Prof. Dr. G. Colangelo





Acknowledgements
First of all, I would like to thank Lutz Dümbgen for his top-notch support through-
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Overview
In nonparametric statistics one is often interested in estimators or confidence

regions for curves such as densities or regression functions. Estimation of such
curves is typically an ill-posed problem and requires additional assumptions. An
interesting alternative to smoothness assumptions and data smoothing methods (cf.
Silverman (1986)) are qualitative constraints, e.g. monotonicity, concavity or log-
concavity. On the other hand, estimation of a distribution function based on inde-
pendent, identically distributed random variables X1, X2, . . . , Xn with cumulative
distribution function F is a common practice and does not require restrictive as-
sumptions. But non-trivial confidence regions for certain functionals of F such as
the mean do not exist without substantial additional constraints (cf. Bahadur and
Savage (1956)).

In density estimation, a particular constraint which attracted considerable atten-
tion recently is log-concavity. That means, one estimates a probability density f on
Rd under the constraint that log f : Rd ! [�1,1) is a concave function. The
research topic of the present dissertation was motivated and inspired by results on
log-concavity and related constraints that were obtained in particular by Bagnoli and
Bergstrom (2005), Cule et al. (2010), Dümbgen and Rufibach (2009, 2011), Walther
(2009), Seregin and Wellner (2010), Dümbgen, Samworth et al. (2011). While
all these papers are focusing on point estimation, Schuhmacher et al. (2011) show
that combining the log-concavity constraint on density and a standard Kolmogorov-
Smirnov confidence region yields non-trivial confidence sets for the moments of an
unknown distribution. But its explicit computation is difficult, and this is one moti-
vation to search for alternative shape constraints in terms of the distribution function
F directly. Besides that, while many popular densities are log-concave, this con-
straint can be too restrictive in applications with multimodal densities. Therefore
in the present dissertation a new and weaker constraint on distribution function is
introduced:

A distribution function F on the real line is called bi-log-concave if both logF
and log(1� F ) are concave functions from R to [�1, 0].

Many commonly used parametric distributions satisfy this constraint. In particu-
lar, if F has a log-concave density f = F 0, then F is bi-log-concave, according to
Bagnoli and Bergstrom (2005). However bi-log-concavity of F is a much weaker
constraint. In particular, F may have a density with an arbitrarily large number
of modes. Thus we consider estimation of distribution functions under shape con-
straints for a wider family of distributions. And the bi-log-concavity constraint on
F can be considered as a tool for extrapolation of the class of unimodal distributions

1



Overview

to the class of multimodal ones.
In Chapter 1 we present characterizations of bi-log-concavity and explicit bounds

for F and its density’s derivative f 0 = F 00. Examples of distributions with bi-
log-concave distribution function are provided, and properties of such class of dis-
tributions are established together with relations to log-concave as well as to the
increasing hazard rate distributions. Besides that, we describe exact (conserva-
tive) confidence bounds for F . These bounds are constructed by combining the
bi-log-concavity constraint with the standard confidence bands for F such as the
Kolmogorov-Smirnov band, Owen’s (1995) band and a refinement of the latter one
introduced by Dümbgen and Wellner (2014). Examples of such bands for simulated
and real data demonstrate the benefits of adding the shape constraint. It is shown
that combining a reasonable confidence band with the new shape constraint leads
to non-trivial honest confidence bounds for various quantities related to F . These
include its density, hazard function and reverse hazard function, its moment generat-
ing function and arbitrary moments. We also prove consistency properties for those
quantities as well as for some functionals of F in the case of combined bands. Un-
der some additional property the corresponding rates of convergence were derived.
In particular, in the case of the refined version of Owen’s band combined with the
bi-log-concavity constraint, the root-n-consistency is achieved for the moments of
F and its moment generating function.

In the context of binary regression, bi-log-concavity provides a natural extension
of standard logistic regression. In Chapter 2 a nonparametric maximum-likelihood
estimator is developed in this context. It is proven that such an estimator is consis-
tent in a certain sense and its rates of convergence are derived. An algorithm for
computing this estimator was developed and implemented in the statistical software
environment R. It’s full description together with numerical examples is provided.
Notice that for the estimation procedure no tuning parameters, such as a bandwidth,
are necessary. Besides that, the advantages of the bi-log-concave estimator can be
seen in the case of rather small samples. For large samples any smoothing estimator
would provide desirable and indistinguishable results as the number of observations
is large enough. All proofs are deferred to Chapter 3.
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1. Bi-log-concave Distribution
Functions

In this chapter we introduce a new constraint on a distribution function F – bi-
log-concavity. Characterizations of the new constraint and explicit bounds for F
and its density f = F 0 are obtained. Most of the commonly used parametric distri-
butions satisfy this bi-log-concavity constraint, in particular, Gaussian, exponential,
Gamma and Beta for certain parameters. Various properties of distributions with bi-
log-concave distribution function are derived and illustrated with examples. In par-
ticular, connections to log-concave and increasing hazard rate distribution classes
are studied. We also describe exact (conservative) confidence bands for F . They
are constructed by combining the bi-log-concavity constraint with standard confi-
dence bands for F such as the Kolmogorov-Smirnov band, Owen’s (1995) band
and a refinement of the latter one introduced by Dümbgen and Wellner (2014). A
numerical example with the distribution of CEO salaries (Woolridge (2000)) illus-
trates the usefulness of the proposed method. The benefits of adding the new shape
constraint are pinpointed in Section 1.7, where the main results on consistency prop-
erties are presented. In particular, it is shown that the new confidence bands based
on the Kolmogorov-Smirnov and the refined Owen’s statistics imply nontrivial hon-
est confidence bounds for arbitrary moments of F and its moment generating func-
tion. Namely, root-n-consistency is achieved for these quantities when combining
the latter band with the bi-log-concavity constraint. Notice that honest confidence
bounds are understood in the sense that they need to achieve asymptotically correct
coverage for all possible model parameters, that is, be valid uniformly in F (see Li
(1989)). Some parts of this chapter are also presented in Kolesnyk, Dümbgen et al.
(2016).

1.1. Bi-log-concave Functions

We consider functions F : R! [0, 1].

Definition 1.1. A [0, 1]-valued function F is called non-degenerate if the set

J(F ) := {x 2 R : 0 < F (x) < 1}

is non-void and contains at least two different points.
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1. Bi-log-concave Distribution Functions

If F is a cumulative distribution function, then J(F ) = ; would be equivalent to
F (x) = 1{x�m} for some m 2 R. That means, F would correspond to the Dirac
measure �m at some point m.

If J(F ) is non-void and contains just one point then F would have a jump dis-
continuity at this isolated point.

Now we define a new shape-constraint:

Definition 1.2 (Bi-log-concavity). A non-degenerate, [0, 1]-valued function F on
the real line is called bi-log-concave if both logF and log(1 � F ) are concave
functions from R to [�1, 0].

Notation 1.3. In what follows let Fblc be the class of all bi-log-concave functions
on R.

The constraint of bi-log-concavity is natural in many situations. For example,
recall that a log-concave distribution is a distribution with log-concave density (see,
for example, Walther (2009) for the review and Ibragimov (1956) and Prekopa
(1973) for the seminal results on log-concave distributions). Notice that log-concavity
of a density function implies log-concavity of the corresponding cumulative distri-
bution function (see Prekopa (1973) or Bagnoli and Bergstrom (2005) for a sim-
pler proof). Thus the following straightforward result provides an important link
between distributions with bi-log-concave c.d.f. and the class of log-concave distri-
butions:

Lemma 1.4. Any cumulative distribution function F with log-concave density f =
F 0 is bi-log-concave.

Proof is an immediate corollary from Theorems 1 and 3 in Bagnoli and Bergstrom
(2005), and from Theorem 5 in Prekopa (1973).

Notation 1.5. In what follows let Fblcd denote a class of distributions with bi-log-
concave cumulative distribution functions on R.

Corollary 1.6. The class of log-concave distributions is embedded into Fblcd.

One should notice, however, that bi-log-concavity of F alone is a much weaker
constraint. As one can see from subsequent examples, F may have a density with
an arbitrarily large number of modes.

Table 1.1 contains examples of well-known distributions with bi-log-concave cu-
mulative distribution functions. They all have a log-concave density function and
therefore bi-log-concavity of the c.d.f. follows straightforwardly from the results of
Bagnoli and Bergstrom (2005) and An (1996) on log-concave distributions.

Examples of distributions without bi-log-concave c.d.f. are log-normal distribu-
tions, power laws on (0, 1) with c.d.f. F (x) = xc for 0 < c < 1, Pareto distri-
butions, Weibull distributions with parameters 0 < a < 1 and b > 0, Arc-sine,
Student’s t, Cauchy and F distributions, Beta distributions with at least one of its
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1.1. Bi-log-concave Functions

Distribution Support c.d.f. F (x)

Uniform [a, b] (x� a)/(b� a)
Normal (�1,+1) ⇤
Logistic (�1,+1) (1 + e�(x�µ)/s)�1

Exponential (� > 0) [0,+1) 1� e��x

Gamma (a � 1, b > 0) (0,+1) ⇤
Beta (a � 1, b � 1) [0, 1] ⇤

Weibull (k � 1, � > 0) [0,+1) 1� e�(
x
� )

k

Gumbel (log-Weibull) (�1,+1) e�e
�(x�µ)/�

µ 2 R, � > 0)
Laplace (Double (�1,+1) 1

2
e(x�µ)/� if x < µ

Exponential, µ 2 R, � > 0) 1� 1

2
e�(x�µ)/� if x � µ

Power Laws (c � 1) (0, 1] xc

Chi-Squared (c � 2) [0,1) ⇤
Chi (c � 1) [0,1) ⇤

Table 1.1.: Examples of the distributions with bi-log-concave c.d.f. (distribution
functions marked ⇤ lack a closed-form representation)

parameters smaller than 1 and Gamma distributions with shape parameters a < 1.
These facts follow immediately from Bagnoli and Bergstrom (2005) and Patel et al.
(1976).

The first theorem provides three alternative and seemingly stronger characteriza-
tions of bi-log-concavity.

Theorem 1.7. For a non-degenerate function F the following four statements are
equivalent:

(i) F is bi-log-concave;
(ii) F is continuous on R and differentiable on J(F ) with derivative f = F 0

such that

F (x+ t)

8
>><

>>:

 F (x) exp
⇣ f(x)
F (x)

t
⌘

� 1� (1� F (x)) exp
⇣
� f(x)

1� F (x)
t
⌘ (1.1)

for arbitrary x 2 J(F ) and t 2 R;
(iii) F is continuous on R and differentiable on J(F ) with derivative f = F 0

such that the ”hazard function” f/(1 � F ) is non-decreasing and the ”reverse
hazard function” f/F is non-increasing on J(F );

(iv) F is continuous on R and differentiable on J(F ) with bounded derivative
f = F 0. Furthermore, f is locally Lipschitz-continuous on J(F ) with L1-derivative

5



1. Bi-log-concave Distribution Functions

f 0 = F 00 satisfying
�f2

1� F
 f 0  f2

F
. (1.2)

Remark 1.8. Inequalities (1.2) in Theorem 1.7, (iv) can be reformulated as follows:
log f is locally Lipschitz-continuous on J(F ) with L1-derivative (log f)0 satisfying

(log(1� F ))0  (log f)0  (logF )0.

We recall that the L1-derivative of a function g on an open interval J ⇢ R is
a locally integrable function g0 on J such that g(y) � g(x) =

R
y

x
g0(t) dt for all

x, y 2 J . Local Lipschitz-continuity of g on J means that for every x 2 J there
exists a neighbourhood E ⇢ J such that g is Lipschitz-continuous on E.

Remark 1.9. In this chapter mainly cumulative distribution functions will be con-
sidered. If F is such a function then condition (iv) of Theorem 1.7 can be replaced
by the following condition

(iv)0 F is continuous on R and differentiable on J(F ) with bounded and strictly
positive derivative f = F 0. Furthermore, f is locally Lipschitz-continuous on J(F )
with L1-derivative f 0 = F 00 satisfying

�f2

1� F
 f 0  f2

F
. (1.3)

Indeed, condition (iii) of Theorem 1.7 implies that f > 0 on J(F ). For if
f(xo) = 0 for some xo 2 J(F ), then isotonicity of eh := f/(1 � F ) would imply
that f(x) = 0 for x  xo, and antitonicity of h := f/F would yield f(x) = 0 for
x � xo. Hence F would be constant on J(F ), a violation of F being a continuous
distribution function on R. Recall that a function g : ⌦ ! R (where ⌦ ⇢ R) is
called isotonic if it preserves the order, i.e. for any x and y in ⌦ such that x > y it
implies g(x) � g(y), and x < y implies g(x)  g(y). If the order is reversed, i.e.
for any x and y in ⌦ such that x > y it follows that g(x)  g(y) and x < y yields
g(x) � g(y), then function g is called antitonic.

Remark 1.10. The proof (i)) (ii) of the Theorem 1.7 shows that the set J(F ) is
convex as J(F ) ⌘ (a, b) for some numbers a and b such that �1  a < b  1.

Remark 1.11. Notice that f 0 = F 00 may be discontinuous on J(F ), as the following
example shows:

Example 1.12. Consider Laplace distribution with F (x) defined on R as

F (x) =

(
1

2
ex if x < 0,

1� 1

2
e�x if x � 0.

Notice that J(F ) = R. The density is given as f(x) = 1

2
e�|x| and its L1-derivative

f 0(x) = � sign(x)
1

2
e�|x|

6



1.1. Bi-log-concave Functions

is discontinuous at 0.

Remark 1.13. A bi-log-concave function on the real line is either a cumulative
distribution function or a survival function or a constant function (see Proposition
1.33).

Corollary 1.14. For F 2 Fblc and [a, b] ⇢ J(F ) one has F 2 C1(J(F )) and,
moreover, F |[a,b]2 H

2,2([a, b]), where H
k,↵([a, b]) is the Hölder class of func-

tions on [a, b] having continuous derivatives up to order k�1 with k�1-th derivative
being Lipschitz-continuous of order ↵� 1.

Indeed, condition (iv) of Theorem 1.7 implies that the derivative f of a bi-log-
concave function F is continuous on J(F ). Besides that, the proof of inclusion
(iii))(iv) yields (global) Lipschitz-continuity of f on the interval [a, b] ⇢ J(F ).

Example 1.15 (Bi-modal density). Consider the mixture 2�1N(��, 1)+2�1N(�, 1)
with � > 0. It can be easily numerically verified that the corresponding c.d.f. F is
bi-log-concave for �  1.34 but not for � � 1.35. This distribution has a bi-modal
density for � = 1.34. The corresponding c.d.f. F is shown in Figure 1.1(a), together
with the functions 1 + logF  F  � log(1� F ), the inequalities following from
log(1 + y)  y for arbitrary y � �1. Bi-log-concavity means that the lower bound
1+logF is concave while the upper bound� log(1�F ) is convex. Figures 1.1-1.2
illustrate the various characterisations of the bi-log-concavity constraint as given in
Theorem 1.7. In particular, Figure 1.1(b) shows the bounds from part (ii) for one
particular point x 2 J(F ). Figure 1.2(a) shows the density f together with the
hazard function f/(1� F ) and the reverse hazard function f/F . It is apparent that
the latter two satisfy the monotonicity properties of part (iii). Figure 1.2(b) contains
the derivative f 0 together with the bounds �f2/(1 � F ) and f2/F as given in
part (iv).

Remark 1.16. This example shows that the density of the distribution with bi-log-
concave c.d.f. (and, in particular, with log-concave c.d.f.) may be non-log-concave
since the log-concave density is necessarily unimodal (see, e.g. An (1996), Propo-
sition 2).

Example 1.17 (k-modal density). As it was seen in the previous example, bi-log-
concavity allows for distributions with more than one mode. In fact, for any integer
k > 0 and a 2 (0, 1),

f(x) := 1{0<x<1}(1 + a sin(2⇡kx))

defines a probability density with k local maxima. The corresponding c.d.f. is given
by F (x) = x+ a(1� cos(2⇡kx))/(2⇡k) for x 2 [0, 1], and one can easily deduce
from Theorem 1.7 (iii) that it is bi-log-concave if a is sufficiently small.
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1. Bi-log-concave Distribution Functions

(a) F with its concave lower and convex upper bounds.

-4 -2 0 2 4

-0
.5

0.
0

0.
5

1.
0

1.
5

F

1 + log(F)

− log(1 − F)

(b) F with the bounds given by Theorem 1.7 (ii).

-4 -2 0 2 4

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

F

Figure 1.1.: Example of bi-modal density: bi-log-concave F with its bounds.
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1.1. Bi-log-concave Functions

(a) f = F 0 with monotonic hazard and reverse hazard as given by
Theorem 1.7 (iii).

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

f = F '

f Ff (1 − F)

(b) f 0 with its bounds as given by Theorem 1.7 (iv).

-4 -2 0 2 4

-0
.2

-0
.1

0.
0

0.
1

0.
2

f '

f2 F

− f2 (1 − F)

Figure 1.2.: Example of bi-modal density: different characterisations of bi-log-
concave F .
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1. Bi-log-concave Distribution Functions

Example 1.18 (Moment-generating function). The moment-generating function of
F 2 Fblcd is finite in a neighbourhood of 0. Precisely, it will be shown in Chapter 3
that

Proposition 1.19. If F 2 Fblcd then

n
t 2 R :

Z

R
etx F (dx) <1

o
=
�
�T1(F ), T2(F )

�
(1.4)

with

T1(F ) := sup
x2J(F )

f(x)

F (x)

(
> 0,

=1 if inf(J(F )) > �1,

T2(F ) := sup
x2J(F )

f(x)

1� F (x)

(
> 0,

=1 if sup(J(F )) <1.

Corollary 1.20. All the moments of a distribution with bi-log-concave c.d.f. exist
and it is a light-tailed distribution.

1.2. Relation to Log-concave Distributions

Recall that any cumulative distribution function F with log-concave density f =
F 0 is bi-log-concave (see Lemma 1.4 and its corollary). Therefore a distribution
with bi-log-concave c.d.f. F (x) and log-concave density function possesses all
well-known properties of the class of log-concave distributions (cf. Prekopa (1973),
An (1996), An (1998), Bagnoli and Bergstrom (2005), Walther (2009) and Kotz
et al. (2006)). Namely, the class of the distributions with bi-log-concave c.d.f. F (x)
and log-concave density function f(x) is closed under

• affine transformations (of a random variable)

• convolutions

• ”truncations” (conditioning on intervals (a, b) with F (b)� F (a) > 0)

• taking weak limits of distributions (i.e. considering convergence in distribu-
tion of the corresponding measures, - see Cule and Samworth (2010), Propo-
sition 2): Fn

w! F implies F 2 Fblcd and log-concavity of f if Fn 2 Fblcd

and fn is log-concave for every n; moreover, fn ! f almost everywhere.

The property of ”truncated” distributions is a consequence from Theorem 9 in
Bagnoli and Bergstrom (2005).

10



1.3. Further Properties of Bi-log-concave Distribution Functions

Remark 1.21. Notice that the product of two bi-log-concave functions is not in
general bi-log-concave. An example is the product of distribution function

F1(x) :=

8
>><

>>:

1 + cos(x)

2
for x 2 (�⇡, 0),

0 for x  �⇡,
1 for x � 0,

and distribution function F2(x) of the uniform distribution U([�2⇡,�⇡/2]). The
product F1(x)F2(x) is log-concave as the product of two log-concave functions;
but 1� F1(x)F2(x) fails to satisfy log-concavity constraint for all x � �⇡/2.

1.3. Further Properties of Bi-log-concave
Distribution Functions

1.3.1. Affine transformations and truncations
The class Fblcd is invariant under the following set of operations, namely:

• affine transformations

• ”truncations” (conditioning on intervals (a, b) with F (b)� F (a) > 0)

The first property follows from the following fact (see e.g. Rockafellar (1970)):
if the mapping h : R ! [�1,+1) is concave then so is the mapping eh : x 7!
h(a + bx). Indeed, if X ⇠ F 2 Fblcd and Y := a + bX , then Y ⇠ G(y) :=
F (b�1(y � a)) and therefore logG(y) = logF (b�1(y � a)) and log(1�G(y)) =
log(1� F (b�1(y � a))) are both concave.

The property of ”truncations” holds indeed, since for the ”truncated” cumulative
distribution function

eF (x) :=
F (x)� F (a)

F (b)� F (a)

with (a, b) \ J(F ) 6= ; (w.l.o.g. (a, b) ⇢ J(F )) and for x 2 (a, b) one can write

(log eF (x))0 =
f(x)

F (x)� F (a)
=

f(x)

F (x)
⇣
1� F (a)

F (x)

⌘

and

(log(1� eF (x)))0 = � f(x)

F (b)� F (x)
= � f(x)

(1� F (x))
⇣
1� 1�F (b)

1�F (x)

⌘ .

11



1. Bi-log-concave Distribution Functions

Both functions are decreasing. Indeed, since f(x) is strictly positive on J(F ) (The-
orem 1.7, (iv)0) F (x) is increasing and 1� F (x) is decreasing. Hence the function
g1(x) := (1� F (a)/F (x))�1 is decreasing and the function

g2(x) :=
1

1� 1�F (b)

1�F (x)

is increasing. Besides that, functions f(x)/F (x) =: h(x) and f(x)/(1�F (x)) =:
eh(x) are strictly positive non-increasing and non-decreasing, respectively (Theorem
1.7, (iii) and (iv)0). Therefore

g1(x)h(x) = (log eF (x))0

and

g2(x)eh(x) = (log(1� eF (x)))0

are both decreasing. Indeed, (g1(x)h(x))0 = g0
1
(x)h(x)+ g1(x)h0(x), where h(x),

g1(x) > 0, g0
1
(x) < 0 and h0(x)  0. Hence (g1(x)h(x))0 < 0. Consider

(g2(x)eh(x))0 = g0
2
(x)eh(x) + g2(x)eh0(x), where eh(x), g2(x) > 0, g0

2
(x) > 0

and eh0(x) � 0. Hence (g2(x)eh(x))0 > 0. Therefore (log eF (x))00 < 0 and
(log(1� eF (x)))00 < 0, that is eF 2 Fblcd.

Remark 1.22. Notice that neither Fblc nor Fblcd is a convex set, and a mixture dis-
tribution of two random variables with bi-log-concave distribution functions may
have distribution function which is not bi-log-concave. As an example, consider
convex combination of c.d.f. F1 of the uniform distribution U([�2,�1]) and c.d.f.
F2 of distribution U([0, 1]). Then the mixture distribution function F := (F1 +
F2)/2 is such that F ⌘ 0.5 on [�1, 0]. That is, derivative f of F isn’t strictly pos-
itive on J(F ) as it should be according to Remark 1.9 of Theorem 1.7. Besides, F
is not differentiable at points �1 and 0 from J(F ). It again contradicts to Theorem
1.7. Thus F can not be bi-log-concave.

1.3.2. Weak convergence

Let us now consider the weak convergence of bi-log-concave distribution func-
tions. Here weak convergence of a sequence of distribution functions to some limit
means pointwise convergence on the set of all continuity points of this limit (see, e.g.
Durrett (2010), p. 97). Recall also that the supremum (or uniform) norm of a func-
tion h : R! R is defined and denoted by khk1 = supx2R |h(x)| (see, e.g., van der
Vaart (1998)). For a compact K ⇢ R we will write khkK,1 := supx2K |h(x)|.

12



1.3. Further Properties of Bi-log-concave Distribution Functions

Lemma 1.23. The weak limit F of a sequence of bi-log-concave distribution func-
tions Fn is either a degenerate function or bi-log-concave function and

||Fn � F ||1,[a,b] !p 0,

||fn � f ||1,[a,b] !p 0,

||f ||1,[a,b] = Op(1),

||fn||1,[a,b] = Op(1),

||f 0||1,[a,b] = Op(1),

||f 0
n
||1,[a,b] = Op(1)

as n ! 1, where F , Fn : R ! [0, 1] and f , fn are corresponding densities and
J(F ) \ J(Fn) \ [a, b] 6= ; for each n and [a, b] ⇢ R.

We refer to the properties ||f 0
n
||1 = Op(1) and ||f 0||1 = Op(1) as the uniform

boundedness on [a, b]. Lemma 1.23 yields the following

Corollary 1.24. Under the setting and conditions of Lemma 1.23 the following
holds true:

||Fn � F ||q,[a,b] !p 0,

||fn � f ||q,[a,b] !p 0,

f, fn 2 Lq([a, b]),

f 0, f 0
n
2 Lq([a, b])

for any q 2 [1,1].

1.3.3. Hazard function and tail behaviour
The following result provides a set of useful inequalities with hazard and reverse

hazard functions:

Lemma 1.25. Suppose that F 2 Fblcd with density f = F 0 on J(F ). For arbitrary
x1, x2 2 J(F ) with x1 < x2,

f(x2)

F (x2)


log
⇥
F (x2)/F (x1)

⇤

x2 � x1

 f(x1)

F (x1)

and
f(x1)

1� F (x1)


log
⇥
(1� F (x1))/(1� F (x2))

⇤

x2 � x1

 f(x2)

1� F (x2)
.

Now we consider tail behaviour of bi-log-concave distribution functions. The
first result gives the bounds for the tails.

13



1. Bi-log-concave Distribution Functions

Since bi-log-concave distribution function F is also log-concave, the following
upper bounds on the survival function of log-concave distribution function (cf. Kotz
et al. (2006)) are valid also for the class of distributions with bi-log-concave distri-
bution function:

Proposition 1.26.

1� F (t)

8
<

:
 1, if t  µ,

 1� e�1

⇣
t

t�µ

⌘ t
µ�1

, if t > µ,

where µ is the mean of the distribution function F ; the upper bound is sharp. The
sharp lower bound on 1� F (t) is 0.

We conclude this section by showing how bi-log-concavity constraint impacts the
behaviour of the mean excess function and, respectively, the behaviour of the tail of
distribution. Namely, the following fact holds true:

Lemma 1.27. If distribution function FX(x) is bi-log-concave, then the mean ex-
cess function E(X � u|X > u) is non-increasing in u 2 {x 2 R : F (x) < 1}, and
the function E(X � u|X < u) is non-decreasing in u 2 {x 2 R : F (x) > 0}.

Indeed, concavity of log(1 � F ) implies that the mean excess function E(X �
u|X > u) is non-increasing in u 2 {x 2 R : F (x) < 1}. This follows essentially
from the following well-known representation:

E(X � u|X > u) =

Z 1

0

P (X � u > t|X > u)dt =

Z 1

0

exp(log(1� F (u+ t))� log(1� F (u)))dt.

Since for a concave function h : R! [�1,1) it follows (cf. Rockafellar (1970),
Groeneboom et al. (2001)) that the function {h > �1} 3 y 7! h(y + s) � h(y)
is non-increasing for any fixed s > 0, the last expression will be non-increasing
function in u due to the bi-log-concavity of F . By symmetry, concavity of log(F )
implies that E(X � u|X < u) is non-decreasing function in u 2 {x 2 R : F (x) >
0}.

Such behaviour of the mean excess function, as it is well-known from the extreme
value theory, implies the following

Corollary 1.28. A distribution with bi-log-concave c.d.f. is a light-tailed distribu-
tion.

14



1.4. Bi-log-concave Distribution Function Implies Increasing Hazard Rate Distribution

1.4. Bi-log-concave Distribution Function
Implies Increasing Hazard Rate Distribution

Theorem 1.7, (iii) implies that distributions with bi-log-concave c.d.f. F be-
long to the class of increasing hazard rate (IHR) distributions, i.e. hazard func-
tion f/(1 � F ) is non-decreasing. Therefore Fblcd possesses all the properties of
IHR distributions (see, e.g. Kotz et al. (2006) or Barlow and Proschan (1965) (pp.
9� 39), Barlow and Proschan (1975) (pp. 52� 126) and Johnson and Kotz (1970)
(pp. 284� 287)), in particular:

1. If two independent random variables X1 and X2 have bi-log-concave distri-
bution functions, then X1 +X2 has non-decreasing hazard rate function with
hazard rate

�(x)  min

✓
f1(x)

1� F1(x)
,

f2(x)

1� F2(x)

◆
,

where f1(x), f2(x) and F1(x), F2(x) are the densities and the distribution
functions of X1 and X2, respectively.

2. Assume that a random variable X has bi-log-concave distribution function. If
X1, X2, ..., Xn are n independent observations of X , then each of the order
statistics

X(1) < X(2) < ... < X(n)

has IHR distribution.

3. Let mr be r-th moment of F 2 Fblcd and F (0) = 0; then

mr

(
 �(r + 1)mr

1
, if r � 1,

� �(r + 1)mr
1
, if 0  r  1.

The following result shows how bi-log-concavity constraint impacts the behaviour
of the tails of distribution function F , reiterating the fact that a distribution with bi-
log-concave c.d.f. is a light-tailed distribution.

Proposition 1.29. If F (⇠p) = p (i.e., ⇠p is 100p-th percentile), then

1� F (x)  exp(�↵x), if x � ⇠p,

where ↵ = �(log(1� p))/⇠p.

That is, bi-log-concave distribution function decays in the tails at least as fast as
the exponential function.

Corollary 1.30. Fblcd |(�1,b]⇢ Lp((�1, b]) for p � 1 and any b <1.

15



1. Bi-log-concave Distribution Functions

1.5. Confidence Bands
A confidence band for F 2 Fblcd may be constructed by intersecting a standard

confidence band for a (continuous) distribution function with this class Fblcd.

Unconstrained nonparametric confidence bands. Let X1, X2, . . . , Xn

be independent random variables with continuous distribution function F . Let
(Ln, Un) be an exact (1 � ↵)-confidence band for F , where 0 < ↵  0.5. That
means, Ln = Ln,↵(· |X1, . . . , Xn) and Un = Un,↵(· |X1, . . . , Xn) are data-driven
non-decreasing functions on the real line such that Ln  Un pointwise and

P
�
Ln(x)  F (x)  Un(x) for all x 2 R

�
= 1� ↵.

A standard example is given by
Kolmogorov-Smirnov band. Consider

Ln(x) := max
� bFn(x)� KS

n,↵
, 0
�

and Un(x) := min
� bFn(x) + KS

n,↵
, 1
�
,

where
bFn(x) :=

1

n

nX

i=1

1{Xi  x}

is the empirical distribution function and KS
n,↵

denotes the (1 � ↵)-quantile of
supx2R

�� bFn(x)� F (x)
�� (cf. Shorack and Wellner (1986)). With the order statistics

X(1) < X(2) < · · · < X(n) of observations X1, X2, . . . , Xn and U(i) := F (X(i))
one may write

sup
x2R

�� bFn(x)� F (x)
�� = max

i=1,...,n

max
�
i/n� U(i), U(i) � (i� 1)/n

�
,

and for i 2 {0, 1, . . . , n} and x 2 [X(i), X(i+1)),
⇥
Ln(x), Un(x)

⇤
=
h
max

�
i/n� KS

n,↵
, 0
�
, min

�
i/n+ KS

n,↵
, 1
�i
,

where X(0) := �1 and X(n+1) := 1. Notice that U(1) < U(2) < · · · < U(n)

are distributed like the order statistics of n independent random variables with uni-
form distribution on [0, 1]. Notice also that KS

n,↵

p
log(2/↵)/2n by Massart’s

inequality (Massart (1990)).
Weighted Kolmogorov-Smirnov band. Let X(1) < X(2) < · · · < X(n) denote

the order statistics of X1, X2, . . . , Xn and U(i) := F (X(i)). It is well known that
U(1) < U(2) < · · · < U(n) are distributed like the order statistics of n independent
random variables with uniform distribution on [0, 1]. By noting that IE(U(i)) =
ti := i/(n + 1) for 1  i  n, and using empirical process theory (see, e.g.,
Dümbgen (2010)), one can show that for any � 2 [0, 1/2), the random variable

p
n max

i=1,2,...,n

|U(i) � ti|
(ti(1� ti))�

(1.5)
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1.5. Confidence Bands

converges in distribution to supt2(0,1)(t(1 � t))�� |B(t)| < 1 as n ! 1, where
B is standard Brownian bridge. Let WKS

n,↵
denote the (1 � ↵)-quantile of the test

statistic (1.5). It follows that WKS
n,↵

= O(1). Inverting this test leads to the (1�↵)-
confidence band (Ln, Un) for F with

⇥
Ln(x), Un(x)

⇤
=
h
ti�

WKS
n,↵p
n

(ti(1�ti))� , ti+1+
WKS
n,↵p
n

(ti+1(1�ti+1))
�

i
\[0, 1]

for i 2 {0, 1, . . . , n} and x 2 [X(i), X(i+1)). Here X(0) := �1 and X(n+1) :=1.
Owen’s band. Another possible confidence band was introduced by Owen (1995).

He proposed to invert the goodness-of-fit test of Berk and Jones (1979) which is
based on the following test statistic

sup
x2R

K( bFn(x), F (x))

with
K(bp, p) := bp log bp

p
+ (1� bp) log 1� bp

1� p

for p, bp 2 [0, 1] and the usual conventions that 0 log(·) := 0 and a log(a/0) := 1
for a > 0. Notice that K(bp, ·) : [0, 1] ! [0,1] is continuous and strictly convex
function with minimal value K(bp, bp) = 0, and K(bp, 0) =1 if bp > 0, K(bp, 1) =1
if bp < 1. Now we define Ln(x), Un(x) implicitly via

[Ln(x), Un(x)] =
�
p 2 [0, 1] : K( bF (x), p)  BJO

n,↵

 
,

where BJO
n,↵

is the (1�↵)-quantile of supx2R K( bFn(x), F (x)), which has the same
distribution as

max
i=1,2,...,n

max
�
K(i/n, U(i)),K((i� 1)/n, U(i))

�
.

For i 2 {0, 1, . . . , n} and x 2 [X(i), X(i+1)),

Ln(x) = min
�
p 2 [0, 1] : K(i/n, p)  BJO

n,↵

 
,

Un(x) = max
�
p 2 [0, 1] : K(i/n, p)  BJO

n,↵

 
.

For i = 0, the latter interval equals
⇥
0, 1 � exp(�BJO

n,↵
)
i
, while for i = n, it is

given by
⇥
exp(�BJO

n,↵
), 1
⇤
. In case of 1  i < n, it is a compact subinterval of

(0, 1) with interior point i/n.
As pointed out by Jager and Wellner (2007), one can generalize the Berk-Jones

test statistic considerably, replacing the special function K(·, ·) with a more general
type of function. In all examples considered by Jager and Wellner (2007), the (1�
↵)-quantile BJO

n,↵
of supx2R K( bFn(x), F (x)) satisfies

BJO

n,↵
=

(1 + o(1)) log log n

n
as n!1.
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1. Bi-log-concave Distribution Functions

Owen’s band refined. Dümbgen and Wellner (2014) refined the method of Owen
(1995) and considered the following test statistic

TODW

n
(F ) = max

j=1,2,...,n

�
(n+ 1)K(tj , F (X(j)))� C(tj)� ⌫D(tj)

�

with tj := j/(n+ 1) and

C(t) := log log
�
e/(4t(1� t))

�
,

D(t) := log(1 + C2(t)),

while ⌫ > 1 is an arbitrary fixed number. Then for any fixed ⌫ > 2,

max
j=1,2,...,n

�
(n+ 1)K(tj , U(j))� C(tj)� ⌫D(tj)

�
(1.6)

converges in distribution to

sup
t2(0,1)

⇣ B(t)2

t(1� t)
� C(t)� ⌫D(t)

⌘
< 1.

In particular, the (1 � ↵)-quantile ODW
n,↵

of the test statistic (1.6) is bounded as
n!1. Inverting this test leads to the following confidence band (Ln, Un):

Ln(x) := 0 for x < X(1),

Ln(x) := min
�
p 2 (0, tj ] : K(tj , p)  �n(tj)(1 + o(1))

 

for 1  j  n,X(j)  x < X(j+1),

Un(x) := max
�
p 2 [tj , 1) : K(tj , p)  �n(tj)(1 + o(1))

 

for 1  j  n,X(j�1)  x < X(j),

Un(x) := 1 for x � X(n),

where

�n(t) :=
C(t) + ⌫D(t) + ODW

n,↵

n+ 1
and ⌫ > 1 as before.

The following lemma shows how close (under some additional conditions) two
c.d.f.’s from the refined Owen’s band are, quantifying the proximity in terms of
bounds on the absolute value and the supremum norm of their difference.

Lemma 1.31. Let F and G be two distribution functions such that TODW
n

(H) 
ODW
n,↵

for H = F,G. Let �n = cnn�1 log log n for some cn > 0 such that cn !1
but �n ! 0. Then uniformly on {�n  F  1� �n}

|F �G| 
p
(8 + o(1))F (1� F )�n(F ).

Moreover,
||F �G||1 = O

⇣
n�1/2

⌘
.
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1.5. Confidence Bands

Algorithms for computing the confidence band for a bi-log-concave F .
Now suppose that F belongs to Fblcd. Under this assumption, a (1�↵)-confidence
band (Ln, Un) for F may be refined as follows:

Lo

n
(x) := inf

�
G(x) : G 2 Fblcd, Ln  G  Un

 
,

Uo

n
(x) := sup

�
G(x) : G 2 Fblcd, Ln  G  Un

 
.

Notice that it may happen that no bi-log-concave distribution function fits into
the band (Ln, Un). In this case we set Lo

n
⌘ 1 and Uo

n
⌘ 0 and conclude with

confidence 1 � ↵ that F 62 Fblcd. But in the case of F 2 Fblcd this happens with
probability at most ↵. Indeed, the construction of (Lo

n
, Uo

n
) implies that

IP(Lo

n
 F  Uo

n
) = IP(Ln  F  Un) if F 2 Fblcd.

Thus the coverage probability of the original confidence band and the shape-constrained
one coincide, if F itself satisfies the shape constraint. On the other hand, if F does
not satisfy the shape-constraint, the coverage probability converges to zero, see The-
orem 1.57 (i).

We present two algorithms for computing the confidence band for a bi-log-concave
F . The first one is based on bi-log-concavity property only. The second algorithm
is a version of the first one which utilizes the so called concave interior procedure
ConcInt(·, ·) (see also Dümbgen, Kolesnyk et al. (2016)) which facilitates the com-
putation and makes the practical implementation more straightforward. Besides
that, derivations of the algorithms give some useful results about bi-log-concave
functions in general.

Algorithm 1. To compute and analyze the refined confidence band, we utilize
various inequalities. Consider arbitrary real numbers x1 < x2 and 0  y1 < y2 
1. In the case of y1 > 0 there exists a unique exponential function F1 such that
F1(xi) = yi for i = 1, 2. Namely,

F1(x) = F1(x |x1, y1, x2, y2) := y1 exp
⇣ x� x1

x2 � x1

log
⇣y2
y1

⌘⌘
. (1.7)

In the case of y2 < 1 there exists a unique “co-exponential” function F2, i.e. 1�F2

is an exponential function, such that F2(xi) = yi for i = 1, 2. Namely,

F2(x) = F2(x |x1, y1, x2, y2) := 1�(1�y1) exp
⇣ x� x1

x2 � x1

log
⇣1� y2
1� y1

⌘⌘
. (1.8)

Figure 1.3 shows these interpolating functions F1, F2 in the case of x1 = 0, x2 = 2
and y1 = 0.2, y2 = 0.5. Now we are ready to state the key inequalities:

Lemma 1.32. Let F be non-degenerate function on R and x1 < x2, y1, y2 2 [0, 1].
In the case of logF being concave and min(y1, y2) > 0,

8
><

>:

F � F1 on [x1, x2] if F (x1) � y1, F (x2) � y2,

F  F1 on (�1, x1] if F (x1)  y1, F (x2) � y2,

F  F1 on [x2,1) if F (x1) � y1, F (x2)  y2,
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Figure 1.3.: The interpolating functions F1 and F2 in (1.7) and (1.8).

with F1 = F1(· |x1, y1, x2, y2) as in (1.7). Similarly in the case of log(1�F ) being
concave and max(y1, y2) < 1,

8
><

>:

F  F2 on [x1, x2] if F (x1)  y1, F (x2)  y2,

F � F2 on (�1, x1] if F (x1) � y1, F (x2)  y2,

F � F2 on [x2,1) if F (x1)  y1, F (x2) � y2.

with F2 = F2(· |x1, y1, x2, y2) as in (1.8).

This lemma is also essential for establishing the following

Proposition 1.33. A bi-log-concave function µ on the real line is either a cumula-
tive distribution function or a survival function or a constant function.

Notice that any continuous cumulative distribution function G satisfying Ln 
G  Un also satisfies

`ni := Ln(X(i) +)  G on [X(i),1),

uni := Un(X(i)�) � G on (�1, X(i)].

Under the additional constraint that G 2 Fblcd, we may untilize Lemma 1.32.
Namely, for all integers 1  i < j  n and arbitrary real numbers x  X(i)  y 
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1.5. Confidence Bands

X(j)  z:

G(x)

(
� F2(x |X(i), `ni, X(j), unj) if unj < 1,

 F1(x |X(i), uni, X(j), `nj) if uni < `nj ,

G(y)

(
� F1(y |X(i), `ni, X(j), `nj) if `ni > 0,

 F2(y |X(i), uni, X(j), unj) if unj < 1,

G(z)

(
� F2(z |X(i), uni, X(j), `nj) if uni < `nj ,

 F1(z |X(i), `ni, X(j), unj) if `ni > 0.

Combining all these inequalities amounts to a pointwise maximum L(1)

n of O(n2)

simple functions and a pointwise minimum U (1)

n of another O(n2) simple functions.
Thereafter we choose a fine grid of points t1, t2, . . . , tm in [X(1), X(n)]. Then for
k = 1, 2, 3, . . . we replace L(k)

n (x) with the maximum L(k+1)

n (x) of 0 and the
following O(m2) numbers:

F1(x | ti, L(k)

n
(ti), tj , L

(k)

n
(tj)) for i, j with ti < x < tj , 0 < L(k)

n
(ti) < L(k)

n
(tj),

F2(x | ti, L(k)

n
(ti), tj , U

(k)

n
(tj)) for i, j with x < ti < tj , L

(k)

n
(ti) > 0,

F2(x | ti, L(k)

n
(ti), tj , U

(k)

n
(tj)) for i, j with ti < tj < x,U (k)

n
(ti) < L(k)

n
(tj).

Likewise, U (k)

n (x) is replaced with the minimum U (k+1)

n (x) of 1 and the following
O(m2) numbers:

F2(x | ti, U (k)

n
(ti), tj , U

(k)

n
(tj)) for i, j with ti < x < tj , U

(k)

n
(ti) < U (k)

n
(tj) < 1,

F1(x | ti, U (k)

n
(ti), tj , L

(k)

n
(tj)) for i, j with x < ti < tj , U

(k)

n
(ti) < L(k)

n
(tj),

F1(x | ti, U (k)

n
(ti), tj , L

(k)

n
(tj)) for i, j with ti < tj < x,U (k)

n
(tj) < 1.

After a finite number ko of iterations there won’t be any change of our bounds L(k)

n

and U (k)

n on the set X = (�1, X(1)) [ {t1, t2, . . . , tm} [ (X(n),1), and we stop
with (L(ko)

n , U (ko)
n ) as a continuous approximation for (Lo

n
, Uo

n
), i.e. L(ko)

n  Lo
n

and U (ko)
n � Uo

n
.

Algorithm 2. An essential ingredient for this algorithm is, as it was already
mentioned above, a procedure ConcInt(·, ·) (concave interior). Given any finite set
T = {t0, t1, . . . , tm} of real numbers t0 < t1 < · · · < tm and any pair (`, u) of
functions `, u : T ! [�1,1) with ` < u pointwise and `(t) > �1 for at least
two different points t 2 T, this procedure computes a pair (`o, uo), where

`o(x) := inf
�
g(x) : g concave on R, `  g  u on T

 
,

uo(x) := sup
�
g(x) : g concave on R, `  g  u on T

 
.
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1. Bi-log-concave Distribution Functions

This is a standard and solvable problem. On the one hand, `o is the smallest concave
majorant of ` on T which may be computed via a suitable version of the pool-
adjacent-violators algorithm (Robertson et al. 1988). Indeed, there exist indices
0  j(0) < j(1) < · · · < j(b)  m such that

`o

8
><

>:

⌘ �1 on R \ [tj(0), tj(b)],
is linear on [tj(a�1), tj(a)] for 1  a  b,

changes slope at tj(a) if 1  a < b.

Having computed `o, we can check whether `o  u on T. If this is not the case,
there is no concave function fitting in between ` and u, and the procedure returns a
corresponding error message. Otherwise the value of uo(x) equals

min
n
u(s) +

u(s)� `o(r)

s� r
(x� s) : r 2 To, s 2 T, r < s  x or x  s < r

o
,

where To = {tj(0), tj(1), . . . , tj(b)}. To maximise g(x) over all concave functions
g such that `  g  u, we may assume without loss of generality that for fixed x
and a given value y of g(x), the function g is the smallest concave function such
that g � `o and g(x) = y. But the latter function is piecewise linear with changes
in slope at x and some points in To. Moreover, if y is chosen as large as possible,
g(s) has to be equal to u(s) for at least one point s 2 T.

Figure 1.4 illustrates this procedure for a T that consists of 21 points. It shows
two (parallel) functions ` and u evaluated at all points in T, indicated by bullets and
interpolating dashed lines. In addition, Figure 1.4 shows the resulting functions `o
and uo on T[ (�1, t0)[ (tm,1), which are displayed as interpolating solid lines.

In our context, T is chosen as a fine grid of points such that t0 < X(1) and
tm > X(n) and {X1, X2, . . . , Xn} ⇢ T. Table 1.2 contains pseudo-code for our
algorithm to compute (Lo

n
, Uo

n
). We tacitly assume that whenever ConcInt(·, ·)

returns an error message, the whole algorithm stops and reports the fact that there is
no G 2 Fblcd satisfying Ln  G  Un.

The next lemmas imply that our proposed new band (Lo
n
, Uo

n
) has some desirable

properties under rather weak conditions on (Ln, Un). In particular, both Lo
n

and
Uo
n

are Lipschitz-continuous on R, unless inf{x 2 R : Ln(x) > 0} � sup{x 2
R : Un(x) < 1}. Moreover, if limx!1 Ln(x) > limx!�1 Un(x), then Uo

n
(x)

converges exponentially fast to 0 as x! �1 while Lo
n
(x) converges exponentially

fast to 1 as x!1.

Lemma 1.34. Suppose that inf{x 2 R : Ln(x) > 0} < sup{x 2 R : Un(x) < 1}.
Then both Lo

n
and Uo

n
are Lipschitz-continuous on R.

Lemma 1.35. For real numbers a < b and 0 < r < s < 1 define

�1 :=
log(s/r)

b� a
and �2 :=

log
�
(1� r)/(1� s)

�

b� a
.
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1.5. Confidence Bands

Figure 1.4.: Graphical illustration of the procedure ConcInt(·, ·).

(Lo
n
, Uo

n
) (Ln, Un)

(`o, uo) ConcInt
�
log(Lo

n
), log(Uo

n
)
�

(eLo
n
, eUo

n
) 

�
exp(`o), exp(uo)

�

(`o, uo) ConcInt
�
log(1� eUo

n
), log(1� eLo

n
)
�

(eLo
n
, eUo

n
) 

�
1� exp(uo), 1� exp(`o)

�

while (eLo
n
, eUo

n
) 6= (Lo

n
, Uo

n
) do

(Lo
n
, Uo

n
) (eLo

n
, eUo

n
)

(`o, uo) ConcInt
�
log(Lo

n
), log(Uo

n
)
�

(eLo
n
, eUo

n
) 

�
exp(`o), exp(uo)

�

(`o, uo) ConcInt
�
log(1� eUo

n
), log(1� eLo

n
)
�

(eLo
n
, eUo

n
) 

�
1� exp(uo), 1� exp(`o)

�

end while

Table 1.2.: Pseudocode for the computation of (Lo
n
, Uo

n
).
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Figure 1.5.: Kolmogorov-Smirnov band (logistic distribution).

(i) If Ln(a) � r and Un(b)  s, then Lo
n

and Uo
n

are Lipschitz-continuous on R
with Lipschitz constant max{�1, �2}.
(ii) If Un(a)  r and Ln(b) � s, then

Uo

n
(x)  r exp(�1(x� a)) for x  a

and

1� Lo

n
(x)  (1� s) exp(��2(x� b)) for x � b.

1.6. Numerical Examples

Effectiveness of bi-log-concave shape constraint can be demonstrated when com-
bining it with the standard nonparametric confidence bands such as Kolmogorov-
Smirnov and Owen’s band. These new shape-constrained confidence regions are
substantially more stringent and, due to the bi-log-concavity, gain substantial im-
provements in either of the central and the tail regions. We illustrate our results by
providing corresponding numerical examples for the simulated data.

For the following examples a sample of n = 100 data points {X1, X2, . . . , Xn}
was simulated from the logistic distribution with the location parameter 5 and the
scale parameter 2. Simulations were performed in the statistical computing envi-
ronment R (see R Development Core Team (2016)).

Example 1.36. In this example the standard Kolmogorov-Smirnov band for F at
0.95-confidence level was constructed (see Figure 1.5).
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Figure 1.6.: Kolmogorov-Smirnov band for F having concave logF (logistic distri-
bution ).

Example 1.37. Kolmogorov-Smirnov band at 0.95-confidence level for log-concave
F was constructed (Figure 1.6; the new band is shown in blue colour, and previous,
the standard Kolmogorov-Smirnov band was plotted in black). Due to the concavity
of the function logF , the resulting confidence band has more stringent lower bound.

Example 1.38. We constructed Kolmogorov-Smirnov band at 0.95-confidence level
for the case when 1 � F is log-concave. Due to the concavity of the function
log(1 � F ), the resulting confidence band has more stringent upper bound (Figure
1.7).

Example 1.39. Kolmogorov-Smirnov band at 0.95-confidence level for bi-log-concave
F (Figure 1.8) was constructed. As a result of the bi-log-concavity, there are more
stringent lower and upper bounds comparing to the standard Kolmogorov-Smirnov
band.

Example 1.40. In this example we constructed Kolmogorov-Smirnov band with
↵ = 0.95 for bi-log-concave F (Figure 1.9) in order to demonstrate the possibility
of getting a proxy for the point estimator.

Example 1.41. In this example the standard Owen’s band for F at 0.95-confidence
level was constructed (see Figure 1.10). As we can see, there are substantial im-
provements comparing to the Kolmogorov-Smirnov band, especially in the tail re-
gions.

Example 1.42. Owen’s band at 0.95-confidence level for log-concave F was con-
structed (Figure 1.11; the new band is shown in blue colour, and previous, the stan-
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Figure 1.7.: Kolmogorov-Smirnov band for F having concave log(1� F ) (logistic
distribution).
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Figure 1.8.: Kolmogorov-Smirnov band for bi-log-concave F (logistic distribution).
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Figure 1.9.: Kolmogorov-Smirnov band for bi-log-concave F with ↵ = 0.95 (logis-
tic distribution).
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Figure 1.10.: Owen’s band (logistic distribution).
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Figure 1.11.: Owen’s band for F having concave logF (logistic distribution).

dard Owen’s band was plotted in black). Due to the concavity of the function logF ,
the resulting confidence band has more stringent lower bound.

Example 1.43. We constructed Owen’s band at 0.95-confidence level for the case
when 1 � F is log-concave. Due to the concavity of the function log(1 � F ), the
resulting confidence band has more stringent upper bound (Figure 1.12).

Example 1.44. Here we constructed Owen’s band at 0.95-confidence level for bi-
log-concave F (Figure 1.13). As we can see, there are substantial improvements
comparing to the standard Owen’s band, especially in the tail regions.

Example 1.45. In this example we constructed Owen’s band with ↵ = 0.95 for
bi-log-concave F (Figure 1.14) in order to demonstrate the possibility of getting a
proxy for the point estimator.

In order to study the impact of bi-log-concavity constraint on the skewed dis-
tribution, we simulated a sample of n = 100 data points {X1, X2, . . . , Xn} from
the Gamma distribution with the shape parameter 2 and the scale parameter 0.5.
Simulations were performed in the statistical computing environment R (see R De-
velopment Core Team (2016)).

Example 1.46. In this example the standard Kolmogorov-Smirnov band for F at
0.95-confidence level was constructed (see Figure 1.15).

Example 1.47. Kolmogorov-Smirnov band at 0.95-confidence level for log-concave
F was constructed (Figure 1.16; the new band is shown in blue colour, and previous,
the standard Kolmogorov-Smirnov band was plotted in black). Due to the concavity
of the function logF , the resulting confidence band has more stringent lower bound.
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Figure 1.12.: Owen’s band for F having concave log(1� F ) (logistic distribution).
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Figure 1.13.: Owen’s band for bi-log-concave F (logistic distribution).
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Figure 1.14.: Owen’s band for bi-log-concave F with ↵ = 0.95 (logistic
distribution).
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Figure 1.15.: Kolmogorov-Smirnov band (Gamma distribution).
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Figure 1.16.: Kolmogorov-Smirnov band for F having concave logF (Gamma
distribution).

Example 1.48. We constructed Kolmogorov-Smirnov band at 0.95-confidence level
for the case when 1 � F is log-concave. Due to the concavity of the function
log(1 � F ), the resulting confidence band has more stringent upper bound (Figure
1.17).

Example 1.49. Kolmogorov-Smirnov band at 0.95-confidence level for bi-log-concave
F (Figure 1.18) was constructed. As a result of the bi-log-concavity, there are more
stringent lower and upper bounds comparing to the standard Kolmogorov-Smirnov
band.

Example 1.50. In this example we constructed Kolmogorov-Smirnov band with
↵ = 0.80 for bi-log-concave F (Figure 1.19) in order to demonstrate the possibility
of getting a proxy for the point estimator.

Example 1.51. In this example the standard Owen’s band for F at 0.95-confidence
level was constructed (see Figure 1.20). As we can see, there are substantial im-
provements comparing to the Kolmogorov-Smirnov band, especially in the tail re-
gions.

Example 1.52. Owen’s band at 0.95-confidence level for log-concave F was con-
structed (Figure 1.21; the new band is shown in blue colour, and previous, the stan-
dard Owen’s band was plotted in black). Due to the concavity of the function logF ,
the resulting confidence band has more stringent lower bound.

Example 1.53. We constructed Owen’s band at 0.95-confidence level for the case
when 1 � F is log-concave. Due to the concavity of the function log(1 � F ), the
resulting confidence band has more stringent upper bound (Figure 1.22).
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Figure 1.17.: Kolmogorov-Smirnov band for F having concave log(1�F ) (Gamma
distribution).
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Figure 1.18.: Kolmogorov-Smirnov band for bi-log-concave F (Gamma
distribution).

32



1.6. Numerical Examples

−5 0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1.19.: Kolmogorov-Smirnov band for bi-log-concave F with ↵ = 0.80
(Gamma distribution).
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Figure 1.20.: Owen’s band (Gamma distribution).
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Figure 1.21.: Owen’s band for F having concave logF (Gamma distribution).
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Figure 1.22.: Owen’s band for F having concave log(1�F ) (Gamma distribution).
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Figure 1.23.: Owen’s band for bi-log-concave F (Gamma distribution).

Example 1.54. Here we constructed Owen’s band at 0.95-confidence level for bi-
log-concave F (Figure 1.23). As we can see, there are substantial improvements
comparing to the standard Owen’s band, especially in the tail regions.

Example 1.55. Here we constructed Owen’s band with ↵ = 0.80 for bi-log-concave
F (Figure 1.24) in order to demonstrate the possibility of getting a proxy for the
point estimator.

Example 1.56. In this example we illustrate our methods with a data set from Wool-
ridge (2000). It contains for n = 177 randomly chosen companies in the U.S. the
annual salaries of their CEOs in 1990, rounded to multiples of 1000 USD. Since
it is not clear to us how the rounding has been done, we assume that an obser-
vation Yi,raw 2 N corresponds to an unobserved true salary Yi within (Yi,raw �
1, Yi,raw + 1), and we consider Y1, Y2, . . . , Yn to be a random sample from a dis-
tribution function G on (0,1). Salary distributions are well-known to be heav-
ily right-skewed with heavy right tails. A standard model is that Y ⇠ G has
the same distribution as 10X for some Gaussian random variable X , see Kleiber
and Kotz (2003). We assume that the distribution function F (x) := G(10x) of
Xi := log10(Yi) is bi-log-concave. More specifically, we compute an unrestricted
confidence band (Ln, Un), where Ln is computed with

�
log10(Yi,raw + 1)

�n
i=1

and
Un with

�
log10(Yi,raw � 1)

�n
i=1

.
Figure 1.25(a) shows the Kolmogorov-Smirnov 95%-confidence bands for F ,

without (black lines) and with (blue lines) the restriction of bi-log-concavity. Fig-
ure 1.25(b) shows the confidence bands based on the weighted Kolmogorov-Smirnov
95%-confidence band, where � = 0.4. The corresponding quantiles have been esti-
mated in 2 · 106 Monte Carlo simulations. In both cases the shape constraint yields
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Figure 1.24.: Owen’s band for bi-log-concave F with ↵ = 0.80 (Gamma
distribution).

a substantial gain of precision. Notice also that the bounds in Figure 1.25(b) are
tighter in the tails but slightly wider in the central part than those in Figure 1.25(a),
for the unconstrained band as well as for the band with shape constraint.

1.7. Consistency Properties

In this section we study the asymptotic behaviour of the proposed confidence
band (Lo

n
, Uo

n
) when F 2 Fblcd. We illustrate and quantify the benefits of this

shape constraint which leads to the confidence band (Lo
n
, Uo

n
) in place of (Ln, Un).

All asymptotic statements refer to n!1 while F is fixed.
We start with rather general consistency results for (Lo

n
, Uo

n
). Recall that we set

Lo
n
⌘ 1 and Uo

n
⌘ 0 in the case of no G 2 Fblcd fitting in between Ln and Un,

concluding with confidence 1� ↵ that F 62 Fblcd.
First of all we are stating the following

Theorem 1.57. Suppose that the original confidence band (Ln, Un) is consistent
in the sense that for any fixed x 2 R, both Ln(x) and Un(x) tend to F (x) in
probability.
(i) Suppose that F 62 Fblcd. Then IP(Lo

n
 Uo

n
)! 0.

(ii) Suppose that F 2 Fblcd. Then IP(Lo
n
 Uo

n
) � 1� ↵, and

sup
G2Fblcd :LnGUn

kG� Fk1 !p 0,
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(a) Kolmogorov-Smirnov bands.
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(b) Weighted Kolmogorov-Smirnov bands.
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Figure 1.25.: Estimated distribution function with unconstrained and constrained
confidence bands for CEO salaries.
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where sup(;) := 0. Moreover, for any compact interval K ⇢ J(F ),

sup
G2Fblcd :LnGUn

khG � hF kK,1 !p 0,

where hG stands for any of the three functions G0, log(G)0 and log(1�G)0. Finally,
for any fixed x1 2 J(F ) and b1 < f(x1)/F (x1),

IP
�
Uo

n
(x)  Un(x

0) exp(b1(x� x0)) for x  x0  x1

�
! 1,

while for any fixed x2 2 J(F ) and b2 < f(x2)/(1� F (x2)),

IP
�
1� Lo

n
(x)  (1� Ln(x

0)) exp(�b2(x� x0)) for x � x0 � x2

�
! 1.

A direct consequence of Theorem 1.57 are consistent confidence bounds for func-
tionals

R
� dF of F with well-behaved integrands � : R! R:

Corollary 1.58. Suppose that the original confidence band (Ln, Un) is consistent,
and let F 2 Fblcd. Let � : R ! R be absolutely continuous function with a
derivative �0 satisfying the following constraint: for constants a 2 R and 0  b1 <
T1(F ), 0  b2 < T2(F ),

|�0(x)|  exp(a+ b1x
� + b2x

+)

with x± := max{±x, 0}. Then

sup
G :Lo

nGUo
n

���
Z

� dG�
Z

� dF
��� !p 0.

The previous supremum is meant over all distribution functions G within the
confidence band (Lo

n
, Uo

n
), which is larger than the supremum over all distribution

functions G 2 Fblcd between Ln and Un. Corollary 1.58 applies to �(x) := etx

with �T1(F ) < t < T2(F ). Indeed, the proof of Proposition 1.19 implies the
following explicit formulae in the case Lo

n
 Uo

n
:

inf
G :Lo

nGUo
n

Z
etxG(dx) =

8
>><

>>:

Z

R
tetx(1� Uo

n
(x)) dx if t > 0,

Z

R
|t|etxLo

n
(x) dx if t < 0,

sup
G :Lo

nGUo
n

Z
etx G(dx) =

8
>><

>>:

Z

R
tetx(1� Lo

n
(x)) dx if t > 0,

Z

R
|t|etxUo

n
(x) dx if t < 0.

Now we refine Corollary 1.58 by providing rates of convergence, assuming that
the original confidence band (Ln, Un) satisfies the following property:
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Condition (*). For certain constants � 2 [0, 1/2) and ,� > 0,

max{ bFn � Ln, Un � bFn}  n�1/2( bFn(1� bFn))
�

on the interval {�n�1/(2�2�)  bFn  1� �n�1/(2�2�)}.
Obviously this condition is satisfied with � = 0 in the case of the Kolmogorov-

Smirnov band. For the weighted Kolmogorov-Smirnov band it is satisfied with the
given value of � 2 [0, 1/2). In the refined version of Owen’s band, it is satisfied for
any fixed number � 2 (0, 1/2).

Theorem 1.59. Suppose that F 2 Fblcd, and let (Ln, Un) satisfy Condition (*).
Let � : R! R be absolutely continuous.
(i) Suppose that |�0(x)| = O(|x|k�1) as |x|!1 for some number k � 1. Then

sup
G :Lo

nGUo
n

���
Z

� dG�
Z

� dF
��� =

(
Op

�
n�1/2(log n)k

�
if � = 0,

Op(n�1/2) if � > 0.

(ii) Suppose that � satisfies the conditions in Corollary 1.58. Then

sup
G :Lo

nGUo
n

���
Z

� dG�
Z

� dF
��� = Op(n

��) (1.9)

for any exponent � 2 (0, 1/2] such that

� <
1�max

�
b1/T1(F ), b2/T2(F )

 

2(1� �)
.

The additional factor (log n)k in part (i) cannot be avoided. To verify this we
consider �(x) = xk and the distribution function F of a standard exponential ran-
dom variable X , i.e. F (x) = 1 � e�x for x � 0. Further let Fn be the conditional
distribution function of X , given that X  xn := (log n)/2 � log c with a fixed
c > 0. Then both F and Fn are bi-log-concave, kFn � Fk1 = e�xn = cn�1/2,
but

Z
� d(Fn � F ) = IE(Xk)� IE(Xk |X  xn)

= IP(X > xn)
�
IE(Xk |X > xn)� IE(Xk |X  xn)

�

� IP(X > xn)
�
xk

n
� IE(Xk)/ IP(X  xn)

�

= 2�kcn�1/2(log n)k(1 + o(1)).

Consequently, if we use the Kolmogorov-Smirnov confidence band, the asymptotic
probability of n1/2k bFn�Fk1  KS

n,↵
�c is strictly positive, provided that 0 < c <

limn!1 KS
n,↵

. But then Fn satisfies n1/2kFn � bFnk1  KS
n,↵

, so Lo
n
 Fn  Uo

n
,

and the k-th moments of F and Fn differ by 2�kcn�1/2(log n)k(1 + o(1)).
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If (Lo
n
, Uo

n
) is constructed with the refined version of Owen’s confidence band,

we may choose � arbitrarily close to 1/2, so the term 2(1� �) is arbitrarily close to
1. Hence (1.9) holds for any exponent � 2 (0, 1/2] such that

� < 1�max
�
b1/T1(F ), b2/T2(F )

 
.

In particular,

sup
G :Lo

nGUo
n

���
Z

etx G(dx)�
Z

etx F (dx)
��� = Op(n

�1/2)

whenever �T1(F )/2 < t < T2(F )/2.
Thus we have shown that bi-log-concavity shape constraint leads to rather accu-

rate confidence bounds for arbitrary moments

µk(F ) :=

Z

R
xk F (dx)

where N 3 k � 1 provided that the original confidence band (Ln, Un) satisfies
Condition (*).

Theorem 1.59 (i) has the following two corollaries for the case of the Kolmogorov-
Smirnov and the refined Owen’s band (Ln, Un).

Corollary 1.60. Suppose that F 2 Fblcd, and let (Lo
n
, Uo

n
) be defined with the

Kolmogorov-Smirnov band (Ln, Un) at 1� ↵ confidence level for fixed ↵. Then

sup
eF :Lo

n eFUo
n

��µk( eF )� µk(F )
�� = Op

�
(log n)k/

p
n
�

for any integer k � 1.

Corollary 1.61. Suppose that F 2 Fblcd, and let (Lo
n
, Uo

n
) be defined with the

refined Owen’s band (Ln, Un) at 1� ↵ confidence level for fixed ↵. Then

sup
eF :Lo

n eFUo
n

��µk( eF )� µk(F )
�� = Op

�
1/
p
n
�

for any integer k � 1.
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2. Bi-log-concave Regression
Functions

We consider observation pairs (X,Y ) 2 R ⇥ {0, 1} such that X is fixed or
random, and Y is a random variable with unknown mean function µ given by

µ(x) = IE(Y |X = x) = IP(Y |X = x)

In standard logistic regression one assumes that

µ(x) = `(a+ bx)

with unknown parameters a, b 2 R, where ` : R ! (0, 1) is the logistic function
(or, the inverse logit function) given by

`(z) :=
ez

1 + ez
=

1

e�z + 1
,

which is log-concave. We will replace this parametric assumption by a shape con-
straint, namely bi-log-concavity of µ. That means, we assume that

log(µ), log(1� µ) : R! [�1, 0] are concave functions. (2.1)

This shape-constraint has been introduced in the previous chapter.
Nonparametric maximum likelihood estimators and their consistency with appli-

cations to the shape-constrained setting have been widely studied (see, e.g., Dümb-
gen et al. (2006) and van de Geer (1993)). In particular, special attention was de-
voted to the consistency of concave regression (see Dümbgen et al. (2004)). Moti-
vated by those results, in this chapter we devise a maximum likelihood estimator of
µ under constraint (2.1), based on independent observations (X1, Y1), (X2, Y2), . . .,
(Xn, Yn) in R⇥ {0, 1} such that IE(Yi |Xi = x) = µ(x) for 1  i  n and x 2 R.
We show that such an estimator of a binary bi-log-concave regression is consistent
in a certain sense, in particular, it is Hellinger consistent. We also derive the rates of
convergence under certain conditions and develop explicit algorithm to perform the
estimation. In order to illustrate the estimation procedure and to compare the results
to the logistic and isotonic regression estimators, we provide numerical examples
for simulated data.
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2. Bi-log-concave Regression Functions

2.1. Introduction

In the case of µ(x) = `(a + bx) one can easily deduce from `0 = `(1 � `) that
Condition (iii) of Theorem 1.7 is satisfied. Hence bi-log-concavity of µ provides a
nonparametric extension of standard logistic regression.

For algorithmic and conceptual reasons it is convenient to reparametrize the re-
gression function µ via the logit-transform. To this end we extend the logistic func-
tion to a continuous and bijective function ` : [�1,+1]! [0, 1] via `(�1) := 0
and `(+1) = 1. The corresponding inverse function is denoted as logit : [0, 1] !
[�1,+1] and given by

logit(u) := log
⇣ u

1� u

⌘
for 0 < u < 1,

and logit(0) := �1, logit(1) := +1. Now we consider the function

✓ := logit(µ)

from R into [�1,+1], and J(✓) = {x 2 R : ✓(x) 2 R}. One can easily rephrase
conditions (i), (iii) and (iv) of Theorem 1.7 in terms of ✓ = logit(µ):

Lemma 2.1. If J(✓) is non-empty, the following three statements are equivalent:
(i) µ = `(✓) satisfies (2.1).
(ii) ✓ is continuous on R, differentiable on J(✓), and its derivative ✓0 satisfies the
following two conditions on J(✓):

✓0

1 + exp(✓)
is non-increasing,

✓0

1 + exp(�✓) is non-decreasing.

(iii) ✓ is continuous on R, differentiable on J(✓), and its derivative ✓0 is locally
Lipschitz-continuous on J(✓) with L1-derivative `00 satisfying

�(✓0)2`(�✓)  ✓00  (✓0)2`(✓).

This follows essentially from continuity of the logistic and logit function and the
fact that `0 = `(1� `) on R. Hence on J(✓),

µ0 = `0(✓)✓0 = µ(1� µ)✓0

and thus

µ0

µ
= (1� µ)✓0 =

✓0

1 + exp(✓)
and

µ0

1� µ
= µ✓0 =

✓0

1 + exp(�✓) .

Moreover,

µ00 = (1� 2µ)µ0 ✓0 + `0(✓) ✓00

= `0(✓)
�
(1� 2µ) (✓0)2 + ✓00

�
,
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2.2. The Target Functionals

and

(µ0)2

1� µ
=

(`0(✓))2 (✓0)2

1� µ
= `0(✓)µ (✓0)2,

(µ0)2

µ
=

(`0(✓))2 (✓0)2

µ
= `0(✓)(1� µ) (✓0)2,

Hence the inequalities in Condition (iv) of Theorem 1.7 are equivalent to

✓00 2
⇥
(µ� 1) (✓0)2, µ (✓0)2

⇤
=
⇥
�`(�✓) (✓0)2, `(✓) (✓0)2

⇤
.

2.2. The Target Functionals

We will determine a function bµ : R ! [0, 1] which minimizes the conditional
negative log-likelihood given the covariables X1, ..., Xn:

L(µ) := �
nX

i=1

�
(1� Yi) log(1� µ(Xi)) + Yi logµ(Xi)

�
.

To obtain an approximate solution, we choose a fine grid of N � n points t1 <
t2 < · · · < tN such that {X1, X2, . . . , Xn} ⇢ {t1, t2, . . . , tN} and t1 ⌧ mini Xi,
tN � maxi Xi. Hereinafter without loss of generality we assume that observa-
tions are already ordered, i.e. X1 = X(1), ..., Xn = X(n). Then bi-log-concavity
constraints (2.1) can be approximated on the grid {t1, t2, . . . , tN} as follows:

log(µ(t2))� log(µ(t1))

t2 � t1
� log(µ(t3))� log(µ(t2))

t3 � t2
�

· · · � log(µ(tN ))� log(µ(tN�1))

tN � tN�1

simultaneously with

log(1� µ(t2))� log(1� µ(t1))

t2 � t1
� 1� log(µ(t3))� log(1� µ(t2))

t3 � t2
�

· · · � log(1� µ(tN ))� log(1� µ(tN�1))

tN � tN�1

According to the reparametrization, µ(tj) = `(✓j), therefore these inequalities can
be re-written in the following form:

log(1� `(✓j))� �j` log(1� `(✓j�1))� �jr log(1� `(✓j+1)) � 0, (2.2)

log `(✓j)� �j` log `(✓j�1)� �jr log `(✓j+1) � 0, (2.3)
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2. Bi-log-concave Regression Functions

where

�j` :=
tj+1 � tj

tj+1 � tj�1

,

�jr :=
tj � tj�1

tj+1 � tj�1

.

Inequalities (2.2) and (2.3) are the reparameterized bi-log-concavity constraints.
For j 2 {1, 2, . . . , N} and y 2 {0, 1} we define

wjy :=
nX

i=1

1{Xi=tj ,Yi=y},

and for a vector ✓ 2 RN we define our target functional

L�(✓) := L(✓) + �R(✓)

with a small number � > 0. Here

L(✓) := �
NX

j=1

�
wj0 log(1� `(✓j)) + wj1 log `(✓j)

�
,

R(✓) := �
N�1X

j=2

�
log(sj0(✓)) + log(sj1(✓))

�

with

sj0(✓) := log(1� `(✓j))� �j` log(1� `(✓j�1))� �jr log(1� `(✓j+1)),

sj1(✓) := log `(✓j)� �j` log `(✓j�1)� �jr log `(✓j+1).

Function R(✓) is called a logarithmic barrier penalty. Throughout this chapter, the
convention log a := �1 for a  0 is used. Thus ✓ represents (✓(tj))Nj=1

, L(✓) is
a proxy for L(µ) with µ = `(✓), and R(✓) forces sjy(✓) to be strictly positive for
2  j < N and y 2 {0, 1}.

We will minimize L�(✓) over all ✓ 2 RN such that L�(✓) > �1 utilizing the
Newton-Raphson method with the step size correction based on the Armijo condi-
tion (all the details are deferred to Section 2.4). As a starting point we propose to
use ✓

(0) = (ba+bbtj)Nj=1
, where (ba,bb) is the maximum likelihood estimator (MLE)

for (a, b) in the standard logistic regression model.

2.3. Consistency of the Bi-log-concave
Estimator

In this section we provide consistency properties of the MLE bµ in the following
triangular observation scheme. For n = 2, 3, 4, ... we observe independent random
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2.3. Consistency of the Bi-log-concave Estimator

pairs (Xn1, Yn1), (Xn2, Yn2), ..., (Xnn, Ynn) in R ⇥ {0, 1} with fixed or random
values Xni and random variables Yni such that

IP(Yni = 1 |Xni = x) = µ(x)

for any x 2 R.

2.3.1. A General Consistency Result
Let us consider the Xni as fixed numbers such that Xn1  Xn2  ...  Xnn.

(In random design settings we may condition on the Xni and sort the observations
so that Xni is non-decreasing in i.)

Concerning µ, we only assume that it belongs to a family F ⇢ Fmon, where

Fmon := {F : R! [0, 1] : F non-decreasing or non-increasing }.

Further we assume that for any n � 2,

{(F (Xni))
n

i=1
: F 2 F}

is a closed subset of [0, 1]n. This property implies that there exists a maximizer
bµn 2 F of

Ln(F ) :=
1

n

nX

i=1

(Yni log(F (Xni)) + (1� Yni) log(1� F (Xni)))

over all F 2 F , because

[0, 1]n 3 (pi)
n

i=1
7! 1

n

nX

i=1

(Yni log pni + (1� Yni) log(1� pni)) 2 [�1, 0]

is continuous.
Depending on the model F , the MLE bµn may be non-unique. But it is consistent

in the following sense:

Theorem 2.2. If µ 2 F ⇢ Fmon, and if {(F (Xni))ni=1
: F 2 F} is a closed

subset of [0, 1]n, then bµn exists almost surely, and

IE

 
1

n

nX

i=1

(bµn(Xni)� µ(Xni))
2

!
 8n�1/2.

Remark 2.3. In the case of F = Fblc [ {0} [ {1}, the set

Fn := {(F (Xni))
n

i=1
: F 2 F}

is a closed subset of [0, 1]n.
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2. Bi-log-concave Regression Functions

2.3.2. Hellinger Consistency in a Special Setting

We consider the special case when Xn1, Xn2, ..., Xnn are the order statistics of
i.i.d. X1, ..., Xn. Assume that Xi ⇠ Q, where Q is a probability measure supported
by the compact [a, b] ⇢ J(µ) such that a, b 2 supp(Q) ⇢ [a, b] (recall that J(µ) =
{x 2 R : 0 < µ(x) < 1}). We also define ⌫ := Q ⌦ �, where � is the counting
measure on {0, 1}.

Let P := {Pµ, µ 2 Fblc} be a family of probability measures on some measur-
able space. We assume that P is dominated by a �-finite measure ⌫. Consider i.i.d.
observations (Xi, Yi) =: Zi, i = 1, ..., n from a probability measure Po := Pµo ,
where µo(x) is a true bi-log-concave regression function. Thus Yi takes value either
0 or 1. Notice that we consider probability measures Pµ and Po that correspond to
µ and µo when they are distribution functions, and to 1 � µ and 1 � µo when µ
and µo are survival functions, respectively. We exclude from this treatment the last
remaining and trivial (with respect to the consistency and the rates of convergence
of bi-log-concave regression estimator) case of µ and µo being constant functions
(see Proposition 1.33).

The density in our model is given by

fµ(x, y) :=
dPµ

d⌫
= µ(x)1{y=1}(y)+(1�µ(x))1{y=0}(y) = µ(x)y(1�µ(x))1�y,

where x 2 [a, b] and y 2 {0, 1}. Then

dPµ

d⌫
(·, y) =

(
µ if y = 1,

1� µ if y = 0.

Recall that the Hellinger distance (see, e.g. Le Cam and Lo Yang (2000) and
Groeneboom and Jongbloed (2014)) is the distance between probability measures
Pµ and Po or, equivalently, between the corresponding densities fµ and fo := fµo :

H(Pµ, Po) ⌘ H(fµ, fo) :=

s
1

2

Z
(
p
fµ �

p
fo)2d⌫

=

s

1� 1

2

Z p
fµfod⌫.

Notice, however, that we will follow the notation of van de Geer (1993), namely:

h(fµ, fo) ⌘ h(Pµ, Po) := H(fµ, fo).
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2.3. Consistency of the Bi-log-concave Estimator

By definition of the Hellinger distance, for our setting it follows that:

h(fµ, fo) =

s
1

2

Z
(
p
fµ �

p
fo)2d⌫

=

vuut1

2

Z
b

a

 Z

{0,1}
(
p
fµ �

p
fo)2d(�o + �1)

!
dQ

=

s
1

2

Z
b

a

((
p
1� µ�

p
1� µo)2 + (

p
µ�pµo)2)dQ

=

s

1�
Z

b

a

(
p
(1� µ)(1� µo) +

p
µµo)dQ,

where �o and �1 are the Dirac measures at points {0} and {1}, respectively. Now
we are ready to introduce the following

Definition 2.4. The Hellinger distance h(·, ·) between µ and bµn ⌘ bµ is defined as

h(bµn, µ) :=

s
1

2

Z
b

a

✓⇣p
1� µ�

p
1� bµn

⌘2
+
⇣p

µ�
p
bµn

⌘2◆
dQ

=

s

1�
Z

b

a

⇣p
(1� µ)(1� bµn) +

p
µbµn

⌘
dQ.

In this setting the rate of convergence of the estimators bµn on the compact [a, b]
is obtained via the following

Theorem 2.5. Let µ 2 Fblc; then

h(bµn, µ) = Op

✓
1

n2/5

◆
.

Notice that this rate of convergence is the optimal rate and bµn are asymptotically
optimal (on [a, b]) with respect to L1-norm, i.e. the total variation distance (see
Stone (1982), p. 1042, Eggermont and LaRiccia (2009), p. 19, and Appendix A).
Namely, the following result holds true:

Corollary 2.6.

||bµn � µ||1,Q = Op

✓
1

n2/5

◆
.

This is the optimal convergence rate and bµn are asymptotically optimal estimators
on the compact [a, b].

47



2. Bi-log-concave Regression Functions

2.4. Algorithms

Taylor expansions of second order. For ✓, h 2 R, as h! 0,

log `(✓ + h) = log
⇣
`(✓) + `0(✓)h+ `00(✓)

h2

2
+O(h3)

⌘

= log `(✓) + log
⇣
1 +

`0(✓)

`(✓)
h+

`00(✓)

`(✓)

h2

2
+O(h3)

⌘

= log `(✓) +
`0(✓)

`(✓)
h+

`00(✓)

`(✓)

h2

2
� `0(✓)2

`(✓)2
h2

2
+O(h3)

= log `(✓) + `(�✓)h� `0(✓)
h2

2
+O(h3)

Here we utilized the formulae `0 = `(1 � `), `00 = (1 � 2`)`0 and 1 � ` = `(� ·).
The latter equation yields

log(1� `(✓ + h)) = log `(�✓ � h)

= log `(�✓)� (1� `(�✓))h� `(�✓)(1� `(�✓))h
2

2
+O(h3)

= log(1� `(✓))� `(✓)h� `0(✓)
h2

2
+O(h3).

To determine the Newton step, we need various second order Taylor expansions.
First of all, our expansions of log ` and log(1�`) imply that for arbitrary ✓,v 2 RN ,

L(✓ + v) = L(✓) +rL(✓)>v +
1

2
v
>D2L(✓)v +O(kvk3)

as v ! 0, where

rL(✓) =
�
wj0`(✓j)� wj1`(�✓j)

�N
j=1

=
⇣wj0e✓j � wj1

1 + e✓j

⌘N
j=1

=
⇣wj0 � wj1e�✓j

1 + e�✓j

⌘N
j=1

,

D2L(✓) = diag
⇣�

(wj0 + wj1)`
0(✓j)

�N
j=1

⌘
= diag

⇣⇣ wj0 + wj1

e✓j + e�✓j + 2

⌘N
j=1

⌘
.

Moreover, for 2  j < N and y 2 {0, 1},

sjy(✓ + v) = sjy(✓) + �
>
jy
v +

1

2
v
> diag(⌘j)v +O(kvk3)
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2.4. Algorithms

as v ! 0, where

�j0 :=
⇣
0, . . . , 0| {z }

j�2

, �j``(✓j�1), �`(✓j), �jr`(✓j+1), 0, . . . , 0| {z }
N�j�1

⌘>
,

�j1 :=
⇣
0, . . . , 0| {z }

j�2

, ��j``(�✓j�1), `(�✓j), ��jr`(�✓j+1), 0, . . . , 0| {z }
N�j�1

⌘>
,

⌘j :=
⇣
0, . . . , 0| {z }

j�2

, �j``0(✓j�1), �`0(✓j), �jr`0(✓j+1), 0, . . . , 0| {z }
N�j�1

⌘>
.

Consequently, if R(✓) <1, then

log sjy(✓ + v) = log
�
sjy(✓) + �

>
jy
v +

1

2
v
> diag(⌘j)v +O(kvk3)

�

= log sjk(✓) +
1

sjy(✓)
�
>
jy
v

+
1

2
v
>
⇣ 1

sjy(✓)
diag(⌘j)�

1

sjy(✓)2
�
jy
�
>
jy

⌘
v +O(kvk3).

All in all, for ✓,v 2 RN with R(✓) <1,

R(✓ + v) = R(✓) +rR(✓)>v + 2�1
v
>D2R(✓)v +O(kvk3)

as v ! 0, where

rR(✓) = �
N�1X

j=2

⇣ 1

sj0(✓)
�j0 +

1

sj1(✓)
�j1

⌘
,

D2R(✓) =
N�1X

j=2

⇣
�
⇣ 1

sj0(✓)
+

1

sj1(✓)

⌘
diag(⌘j) +

�
j0
�
>
j0

sj0(✓)2
+

�
j1
�
>
j1

sj1(✓)2

⌘
.

Logarithmic barrier algorithm with the Newton iteration. We implemented
(see Algorithm 1) the logarithmic barrier (penalty) algorithm (see, e.g. Boyd and
Vandenberghe (2009), p.563 for a general description) with the penalty equal R(✓).
It takes the triple (X,T,Y) as an input data, where X is the sample of the raw data
grid points {X1, X2, . . . , Xen} and Y is the corresponding sample of the binary val-
ues (Yi)eni=1

. At the very beginning, the preprocessing of the input data is performed
in order to determine the unique row data points in the case of ties. The data ob-
tained from the preprocessing are the vectors X and Y with unique ordered compo-
nents. That is, X = {x1 < x2 < . . . < xn}. Components of Y := (y1, y2, ..., yn)
are the weighted values of Y with respect to the frequencies of their occurrence in
the original sample Y. That is, yi := mean

1ken
(Yk : Xk = xi) with 1  i  n. The
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2. Bi-log-concave Regression Functions

weights w := (wi)ni=1
are computed as wi := #{k  en : Xk = xi}. Notice that

the negative log-likelihood which is actually computed, is

L(✓) := �
nX

i=1

wi

�
yi log(`(✓i)) + (1� yi) log(`(�✓i))

�
, (2.4)

where ✓(·) := logitµ(·).
At the next stage, the starting value �o for the (logarithmic barrier) penalty pa-

rameter � is chosen; it is typically between 0.1 and 10. Then the starting value ✓o
of the parameterized solution ✓ := logit(µ(T)) to minimization problem

min
✓2RN

L�(✓)

is obtained by fitting the logistic regression model to raw data X and Y; recall that
L�(✓) = L(✓) + �R(✓).

The algorithm consists of the outer and the inner loops. The purpose of the outer
loop is to decrease �. At each iteration of the outer loop at most ko > 0 iterations
of the inner loop are executed. We call it a Newton loop because this is where the
Newton-Raphson method is actually implemented. At every instance of the Newton
loop the gradient

g =: rL�(✓) = rL(✓) + �rR(✓)

and Hessian
H =: D2L�(✓) = D2L(✓) + �D2R(✓)

of the target functional L�(✓) (denoted by LogLike in Algorithm 1) are computed.
It is done by utilizing the function PenLogLike which also computes negative (pe-
nalized) log-likelihood (logarithmic barrier function) with penalty parameter �, and
checks bi-log-concavity constraints (2.2) and (2.3). This function takes 3 parame-
ters as an input: ✓, � and boolean d. The latter one is set to TRUE when Hessian
and gradient are required; otherwise d is set to FALSE.

Having computed the gradient and Hessian, the algorithm solves linear system

H ·�✓ = �g

for the Newton step �✓ of the current solution ✓. After that, the incremental change
is calculated as a scalar product of the solution’s step and its gradient  := g ·�✓

which is the directional derivative of L� .
The next guess for the solution is ✓ + a�✓, where a is the step size (initially set

to 1) and PenLogLike function is applied again to calculate the updated value of
the negative (conditional) log-likelihood LogLike at a new solution guess. After
that everything is ready to correct the step size a. To do this, we use the Armijo
condition. This condition can be described as follows (see, e.g., Nocedal and Wright
(2006)):

L�(✓ + a�✓)  L�(✓) + c1a,
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2.4. Algorithms

where c1 is some constant in (0, 1). That is a should first of all give sufficient
decrease in the objective function L�(·), as measured by this inequality. In other
words, the reduction in L� should be proportional to both the step length a and
directional derivative .

In the Armijo (condition) procedure implemented here, c1 is set to 0.3 and the
step size a is divided by 2 at each iteration of procedure’s loop. At every iteration of
the Armijo procedure the PenLogLike function is utilized to calculate the updated
value LogLike at a new solution guess with corrected step size acor := a/2. No-
tice that in this procedure bi-log-concavity constraints (2.2) and (2.3) are verified to
insure that the next solution guess ✓ + acor�✓ satisfies them. The step size correc-
tion loop stops after the sufficient decrease in the negative log-likelihood LogLike

was achieved and all bi-log-concavity constraints were satisfied.
After getting corrected step size acor, the solution is updated as

✓new := ✓ + acor�✓.

The algorithm stops after � was decreased sufficiently enough, namely, has dropped
below 10�8 in the implementation. It returns estimate

bµn ⌘ bµ = (1 + exp(�✓))�1

of bi-log-concave regression function µ and the log-likelihood value.
There are several strategies to decrease parameter �. The one which proved to be

the most (computationally) efficient in our framework, proceeds as follows. During
the first 10 iterations the barrier parameter � is reduced by half each time, and then is
multiplied by the factor of 0.1 every subsequent iteration. Newton loop is usually re-
stricted to ko = 500 iterations and the safeguard stopping rule is designed in such a
way that the loop stops when the incremental change  becomes less than some pre-
defined value r 2 (0, 1). This parameter is typically (and in the algorithm as well)
set to ro = 10�9. The algorithm was implemented in the statistical computing en-
vironment R. Notice that the actual implementation of the algorithm computes and
returns also the isotonic (antitonic in the case when µ is survival function) estima-
tor (see e.g. Groeneboom and Jongbloed (2014) for details), its smoothed version,
logistic regression estimator and their corresponding log-likelihoods. In terms of
the computation speed, the simulations have shown that the best case performance
has the order O(log2 n

p
n), where n is the sample size of X . The worst case per-

formance has the order O(n2). The reason is that the number of iterations of the
Newton loop is bounded by a constant having the same order as n. The best case
performance for this loop is log n. The usual safeguarding rule for Armijo criterion
procedure bounds the number of iterations by 20 giving the order of log n to

p
n,

while the number of outer loop iterations is kept quite small (between 12 and 17)
having the order of

p
n.
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Algorithm 1 Binary bi-log-concave regression: part I
1: procedure BILOGCONCAVEREGRESSION(X,T,Y)
2: n numberOfUniqueValues(X)
3: en length(X)
4: X := (xi)ni=1

 uniqueOrderedValues(X)
5: w  (wi)ni=1

: wi := #{1  k  en : Xk = xi}
6: Y  (yi)ni=1

: yi := mean
1ken

(Yk : Xk = xi)

7: N  length(T)
8: �  �o

9: T sort(T)
10: M (T, ...,T)� (T0, ...,T0)0

11: for i 2, ..., N � 1 do

12: �r,i�1  Mi,i�1M
�1

i+1,i�1

13: �`,i�1  Mi+1,iM
�1

i+1,i�1

14: end for

15: W MatrixN,2

i=1,j=1
(0.0)

16: for j  1, ..., N do

17: for i 1, ..., en do

18: Wj2  Wj2 + 1{Xi=Tj\Yi=0}
19: Wj1  Wj1 + 1{Xi=Tj\Yi=1}
20: end for

21: end for

22: function PenLogLike(✓,�, d)
23: k  length(✓)
24: `o  vectork

i=1
(10�8)

25: `1  vectork
i=1

(10�8)
26: J+  (✓ > 0)
27: `o[J+] �✓[J+]� log(1 + exp(�✓[J+]))
28: `1[J+] � log(1 + exp(�✓[J+]))
29: J�  (✓  0)
30: `o[J�] � log(1 + exp(✓[J�]))
31: `1[J�] ✓[J�]� log(1 + exp(✓[J�]))
32: so  `o,2:(N�1) � �``o,1:(N�2) � �r`o,3:N

33: s1  `1,2:(N�1) � �``1,1:(N�2) � �r`1,3:N

34: if so  0 or s1  0 then

35: SumFunc 1
36: SumLog 1
37: else

38: SumFunc �W·,1`1 �W·,2`o

39: SumLog ��(
P

N�2

i=1
log(soi) +

P
N�2

i=1
log(s1i))

40: end if

41: LogLike SumFunc+ SumLog

42: if d = TRUE then

43: gL  vectorN
j=1

(0.0)

52



2.4. Algorithms

Algorithm 1 Binary bi-log-concave regression: part II
44: B vectorN

j=1
(0.0)

45: for i 1, ..., N do

46: if exp(�✓i) 6=1 then

47: gL,i  �(Wi1e�✓i �Wi2)(1 + e�✓i)�1

48: Bi  (Wi1 +Wi2)(2 + e�✓i + e✓i)�1

49: end if

50: end for

51: HL  diag(B)
52: if so  (0, ..., 0) or s1  (0, ..., 0) then

53: g NULL
54: H NULL
55: return LogLike, so, s1,g,H,SumFunc,SumLog

56: else

57: �  MatrixN�2,3

i=1,j=1
(10�8)

58: e�  MatrixN�2,3

i=1,j=1
(10�8)

59: ⌘  MatrixN�2,3

i=1,j=1
(10�8)

60: v (exp(�✓) + 1)�1

61: u (exp(✓) + 1)�1

62: �1:(N�2),1  �`v1:(N�2)

63: �1:(N�2),2  �v2:(N�1)

64: �1:(N�2),3  �rv3:N

65: e�1:(N�2),1  ��`u1:(N�2)

66: e�1:(N�2),2  u2:(N�1)

67: e�1:(N�2),3  ��ru3:N

68: ⌘1:(N�2),1  �`v1:(N�2) · (1N�2 � v1:(N�2))
69: ⌘1:(N�2),2  �v2:(N�1) · (1N�2 � v2:(N�1))
70: ⌘1:(N�2),3  �rv3:N · (1N�2 � v3:N )

71: gR  ��s�1
o
� e�s�1

1

72: HR  �diag(⌘)(s�1
o

+ s
�1

1
+ �

0
�s

�2
o

+ e�0e�s�2

1
)

73: H  HL + �HR

74: g  gL + �gR

75: return LogLike, so, s1,g,H,SumFunc,SumLog

76: end if

77: else

78: return LogLike, so, s1,SumFunc,SumLog

79: end if

80: end function

81: (ba,bb) LogisticRegression(Y,X)

82: ✓o  ba+bbT
83: ✓  ✓o

84: bµo  (exp(�✓o) + 1)�1

85:  1
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Algorithm 1 Binary bi-log-concave regression: part III
86: r  r0
87: s 0
88: while � > �o do

89: s s+ 1
90: for k  1, ..., ko do

91: a 1
92: (g,H) PenLogLike(✓,�, d = TRUE)
93: if g = NULL then

94: stop

95: end if

96: �✓  �H�1
g

97:  g�✓

98: LogLikeInit PenLogLike(✓,�, d = FALSE)
99: LogLike PenLogLike(✓ + a�✓,�,FALSE)
100: i 0
101: while (LogLike� LogLikeInit) > 0.3 · a ·  do

102: i i+ 1
103: if i > 20 then

104: stop

105: end if

106: a a/2
107: LogLike PenLogLike(✓ + a�✓,�,FALSE)
108: end while

109: ✓  ✓ + a�✓

110: if |/2| < r then

111: stop

112: end if

113: end for

114: if s < 11 then

115: �  �/2
116: else

117: �  �/10
118: end if

119: end while

120: LogLikeBLC PenLogLike(✓,�,FALSE)
121: bµn  (exp(�✓) + 1)�1

122: return bµn,LogLikeBLC

123: end procedure
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2.5. Numerical Examples

Hereafter and until the end of the chapter we will write mu(x) instead of µ(x) to
provide uniformity of notations.

Example 2.7. There were n = 81 data pairs (Xi, Yi) with (Xi) =: X ⇢ T being a
fixed equidistant grid on the interval [�4, 4] with step length �(X) = 0.1. True bi-
log-concave regression function mu(T) (red curve) was generated as the c.d.f. of the
uniform distribution on the interval [�4, 4] with values computed at the knots of the
fine grid T = (t1, ..., tN ) = (�4,�3.95,�3.9, ..., 3.95, 4) consisting of N = 161
points (the step length is �(T) = 0.05). Blue circles in Figure 2.1 represent the
values of X corresponding to (Yi) which are either 0 or 1. Solid blue curve shows
bi-log-concave regression function estimator cmu; green curve corresponds to the lo-
gistic fit and grey curve shows isotonic least-squares regression estimator (see e.g.
Groeneboom and Jongbloed (2014) for details). The starting value for the (logarith-
mic barrier) penalty parameter was chosen as � = 0.1 and the algorithm stopped
when � had decreased below 10�8, which corresponds to 14 outer loop iterations.
During the first 10 iterations the barrier parameter was decreased by a factor of 0.5
each time and then by a factor of 0.1. Inner Newton loop was restricted to 500 iter-
ations and the safeguard stopping rule parameter was set to d = 10�9. The increase
in the negative conditional log-likelihood from �43.044 to �41.84 was obtained,
comparing to the initial value produced by the standard logistic regression estima-
tion procedure. The log-likelihood corresponding to isotonic regression estimator
was �36.81.

Example 2.8. There were n = 101 pairs (Xi, Yi) with (Xi) =: X ⇢ T a fixed
equidistant grid on the interval [�10, 10] with the step length �(X) = 0.2. True
bi-log-concave regression function mu(T) was simulated as the c.d.f. of the normal
distribution with mean zero and variance 4 with values computed at the knots of
the fine grid T = (t1, ..., tN ) = (�10,�9.8, ..., 9.8, 10) consisting of N = 201
points (i.e. �(T) = 0.1). Blue curve in Figure 2.2 shows bi-log-concave fit cmu
together with isotonic regression estimator and the logistic regression fit. The start-
ing value for the barrier parameter was set to � = 0.1 and the algorithm stopped
when it had decreased below 10�8, which corresponds to 14 outer loop iterations.
In this case, the increase in the negative (conditional) log-likelihood from �28.731
to �27.169 was obtained, comparing to the initial value produced by the standard
logistic regression estimation procedure. The log-likelihood corresponding to iso-
tonic regression estimator is �22.886.

Example 2.9. Here there are n = 101 pairs (Xi, Yi) with (Xi) =: X ⇢ T a
fixed equidistant grid on the interval [�10, 10] with the step �(X) = 0.2. True
regression function mu(T) (red curve) was simulated as the c.d.f. of the logistic
distribution with shape parameter k = 5 and scale parameter s = 2 with values
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Figure 2.1.: Example of the estimated mu(x) for the data X simulated from the uni-
form distribution: blue circles are the values of X corresponding to (Yi)
- either 0 or 1; solid blue curve is bi-log-concave regression function
estimator cmu; green curve is the logistic fit; grey curve shows isotonic
least-squares regression estimator; red curve is the true bi-log-concave
regression function mu(x).
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Figure 2.2.: Example of the estimated mu(x) for the data X simulated from the nor-
mal distribution: blue circles are the values of X corresponding to (Yi)
- either 0 or 1; solid blue curve is bi-log-concave regression function
estimator cmu; green curve is the logistic fit; grey curve shows isotonic
least-squares regression estimator; red curve is the true bi-log-concave
regression function mu(x).
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Figure 2.3.: Example of the estimated mu(x) for the data X simulated from the lo-
gistic distribution.

computed at the knots of the fine grid T = (�10,�9.9, ..., 9.9, 10) consisting of
N = 201 points (thus �(T) = 0.1). Blue curve in Figure 2.3 shows bi-log-concave
regression estimator cmu. The starting value for the barrier parameter was set to
� = 0.1 and the algorithm stopped when it had decreased below 10�8, which had
corresponded to 14 outer loop iterations. In this case, the increase in the (negative)
log-likelihood from �21.639 to �18.897 was obtained, comparing to the initial
value produced by the standard logistic regression estimation procedure. The log-
likelihood corresponding to isotonic regression estimator is �15.264.

Example 2.10. In this case there are n = 76 pairs (Xi, Yi) with (Xi) =: X ⇢ T a
fixed equidistant grid on the interval [0, 15] with the step �(X) = 0.2. True bi-log-
concave regression function mu(T) (red curve) was simulated as the c.d.f. of the
Gamma distribution with shape parameter k = 2 and scale parameter s = 0.5 with
values computed at the knots of the fine grid T = (0, 0.1, ..., 14.9, 15) consisting of
N = 151 points (i.e. �(T) = 0.1). Blue curve in Figure 2.4 shows bi-log-concave
regression function estimator cmu together with isotonic (grey curve) and logistic
regression (green curve) fits. The increase in the log-likelihood from �27.043 to
�23.699 was achieved. The log-likelihood corresponding to isotonic regression
estimator is �19.245.

Example 2.11. There are n = 101 pairs (Xi, Yi) with (Xi) =: X ⇢ T a fixed
equidistant grid on the interval [�3, 17] with the step �(X) = 0.2. True regression
function mu(T) (red curve) was simulated as the c.d.f. of the Gumbel distribution
with shape parameter k = 0.5 and scale parameter s = 2 with values computed at
the knots of the fine grid T = (�3,�2.9, ..., 16.9, 17) consisting of N = 201 points
(thus �(T) = 0.1). Blue curve in Figure 2.5 shows bi-log-concave regression
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Figure 2.4.: Example of the estimated mu(x) for the data X simulated from the
Gamma distribution.

function estimator cmu. The increase in the log-likelihood from�19.874 to�17.249
was achieved. The log-likelihood corresponding to isotonic regression estimator is
�13.521.

Example 2.12. Here there are n = 101 pairs (Xi, Yi) with (Xi) =: X ⇢ T a
fixed equidistant grid on the interval [�4, 4] with the step length �(X) = 0.08.
True regression function mu(T) (red curve) was simulated as the c.d.f. of the bi-
modal distribution in Example 1.15; its values were computed at the knots of the fine
grid T = (�4,�3.96, ..., 3.96, 4) consisting of N = 201 points (�(T) = 0.04).
Blue curve in Figure 2.6 shows bi-log-concave estimator. In this case, the increase
in the log-likelihood from �40.375 to �36.526 was obtained. The log-likelihood
corresponding to isotonic regression estimator is �29.603.

Example 2.13. Here n = 71 pairs (Xi, Yi) were simulated with (Xi) =: X ⇢ T a
fixed equidistant grid on the interval [�6, 8] with the step �(X) = 0.2. True regres-
sion function mu(T) (red curve) was simulated as the survival function correspond-
ing to the normal distribution with mean 2 and variance 3 with values computed
at the knots of the fine grid T = (t1, ..., tN ) = (�6,�5.9, ..., 7.9, 8) consisting
of N = 141 points (with �(T) = 0.1). Blue curve in Figure 2.7 shows bi-log-
concave fit together with isotonic and logistic regression fits. The increase in the
log-likelihood from �23.508 to �20.817 was achieved. The log-likelihood corre-
sponding to isotonic regression estimator is �16.668.

Example 2.14. In this example we simulated n = 51 observations (Xi, Yi) with
(Xi) =: X ⇢ T a fixed equidistant grid on the interval [�5, 15] with the step
�(X) = 0.4. True bi-log-concave regression function mu(T) (red curve) was
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Figure 2.5.: Example of the estimated mu(x) for the data X simulated from the
Gumbel distribution.
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Figure 2.6.: Example of the estimated mu(x) for the data X simulated from bi-modal
distribution in Example 1.15.
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Figure 2.7.: Example of the estimated mu(x) in the case when it is the survival func-
tion corresponding to the normal distribution.

simulated as the survival function of the logistic distribution with shape parame-
ter k = 6 and scale parameter s = 2 with values computed at the knots of the fine
grid T = (�5,�4.8, ..., 14.8, 15) consisting of N = 101 points (i.e. �(T) = 0.2).
Blue curve in Figure 2.8 shows bi-log-concave regression function estimator cmu.
The increase (comparing to the starting value produced by the logistic regression
estimation) in the log-likelihood from �16.349 to �15.511 was achieved. The log-
likelihood corresponding to isotonic regression estimator is �11.402.

Example 2.15. There were n = 101 pairs (Xi, Yi) simulated with (Xi) =: X ⇢ T

being a fixed equidistant grid on the interval [0, 10] with the step �(X) = 0.1.
True regression function mu(T) (red curve) was simulated as the survival function
of the Gamma distribution with shape parameter k = 3 and scale parameter s =
1 with values computed at the knots of the fine grid T = (0, 0.05, ..., 9.95, 10)
consisting of N = 201 points (�(T) = 0.05). Blue curve in Figure 2.9 shows
bi-log-concave regression function estimator cmu. The increase in the log-likelihood
is from �25.876 to �23.329.
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Figure 2.8.: Example of the estimated mu when it is the survival function of the
logistic distribution.
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Figure 2.9.: Example of the estimated mu(x) when it is the survival function of the
Gamma distribution.
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3. Proofs
Proof of Theorem 1.7. When proving Theorem 1.7 we assume that the following
facts about concave functions are widely known (cf. Rockafellar (1970), Groene-
boom et al. (2001)):

Lemma 3.1. Suppose that h : R ! [�1,+1) is a concave function. Then it
satisfies the following properties:

(i) h is continuous on the interior of {h > �1} := {x 2 R : h(x) > �1}.
(ii) For each interior point x of {h > �1}, the left- and right-sided derivatives
h0(x�) and h0(x+) exist in R and satisfy h0(x�) � h0(x+). Moreover, h(x±) is
non-decreasing in x.
(iii) For each interior point x of {h > �1} and a 2 [h0(x+), h0(x�)],

h(x+ t)  h(x) + at for all t 2 R.

The second useful result is the following:

Lemma 3.2. Let h be a real-valued function on an open interval J ⇢ R, and let
[a, b] 2 [�1,1]. Then the following two statements are equivalent:
(i) For arbitrary different x, y 2 J ,

h(y)� h(x)

y � x
2 [a, b].

(ii) For arbitrary x 2 J ,

lim inf
y!x

h(y)� h(x)

y � x
� a and lim sup

y!x

h(y)� h(x)

y � x
 b.

In the case of [a, b] = [0,1] or [a, b] = [�1, 0], part (i) is equivalent to h being
non-decreasing or non-increasing, respectively.

In the case of [a, b] ⇢ R, part (i) is equivalent to h having an L1-derivative h0 on
J with values in [a, b]; this latter means Lipschitz-continuity of h on J .

Proof of Lemma 3.2 follows essentially from a bisection argument and the follow-
ing observation: for points r < s < t in J ,

h(t)� h(r)

t� r
= ↵

h(s)� h(r)

s� r
+ (1� ↵)

h(t)� h(s)

t� s
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with ↵ := (s� r)/(t� r) 2 (0, 1). In particular,

h(t)� h(r)

t� r

8
>><

>>:

� min
nh(s)� h(r)

s� r
,
h(t)� h(s)

t� s

o
,

 max
nh(s)� h(r)

s� r
,
h(t)� h(s)

t� s

o
.

Equivalence of statements (i-iv) of Theorem 1.7 will be verified in four steps.
Proof of (i)) (ii). Suppose that F is bi-log-concave. First of all, notice that be-
cause of non-degeneracy of F , there exist two points x1 < x2 such that F (x1), F (x2) 2
(0, 1). Since logF is concave, it follows from Lemma 3.1 that F is continuous on
{x : logF (x) > �1} = {x : F (x) > 0}. Furthermore, F is continuous on
R\{xo

1
, xo

2
} and F > 0 on (xo

1
, xo

2
), where

xo

1
:= inf{x : F (x) > 0}  x1,

xo

2
:= sup{x : F (x) > 0} � x2.

Besides that, F ⌘ 0 on (�1, xo
1
)[(xo

2
,+1). Analogously, concavity of log(1�F )

implies that F is continuous on {y : log(1 � F (y)) > �1} = {y : F (y) < 1}.
Furthermore, F is continuous on R\{yo

1
, yo

2
} and F < 1 on (yo

1
, yo

2
), where

yo
1
:= inf{y : F (y) < 1}  x1,

yo
2
:= sup{y : F (y) < 1} � x2.

Besides that, F ⌘ 1 on (�1, yo
1
)[ (yo

2
,+1). But this implies that either F (xo

1
) ⌘

1 or F (xo
2
) ⌘ 1 and either F (yo

1
) ⌘ 0 or F (yo

2
) ⌘ 0, - a situation which is only

possible when points yo
1
, yo

2
coincide with xo

1
, xo

2
and when F is continuous at these

points. Therefore F is continuous on {x : 0  F (x)  1} and eventually on R. In
particular, J(F ) = (a, b) for some real a and b.

Concavity of h := logF implies that for a < x < b its left- and right-sided
derivatives h0(x�), h0(x+) exist in R and satisfy h0(x�) � h0(x+). But then

F 0(x±) = lim
t!0,±t>0

exp(h(x+ t))� exp(h(x))

t
= F (x)h0(x±)

exist in R, too, and satisfy the inequality

F 0(x�) � F 0(x+).

Using similar reasoning one can deduce from concavity of h := log(1� F ) that

�F 0(x�) = (1� F )0(x�) � (1� F )0(x+) = �F 0(x+),

so that F 0(x�) = F 0(x+). This proves differentiability of F on J(F ).
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Finally, the inequalities (1.1) follow directly from the last part of Lemma 3.1,
applied to h = logF and h = log(1� F ).
Proof of (ii) ) (iii). Suppose that F is continuous on R, differentiable on J(F )
with derivative f = F 0 and satisfies the inequalities (1.1). This implies that h :=
f/F is non-increasing and eh := f/(1 � F ) is non-decreasing on J(F ). For if
x, y 2 J(F ) with x < y, then by (1.1),

logF (x)  logF (y) + h(y)(x� y)

 logF (x) + h(x)(y � x) + h(y)(x� y)

= logF (x) +
�
h(x)� h(y)

�
(y � x)

and

log(1� F (x))  log(1� F (y))� eh(y)(x� y)

 log(1� F (x))� eh(x)(y � x)� eh(y)(x� y)

= log(1� F (x)) +
�eh(y)� eh(x)

�
(y � x),

whence h(x) � h(y) and eh(x)  eh(y).
Proof of (iii) ) (iv). Suppose that F satisfies the conditions in part (iii). The
consequence of these monotonicity properties is the boundedness of f on J(F ): if
we fix any xo 2 J(F ), then for any other point x 2 J(F ),

f(x) =

(
F (x)h(x)  h(xo) if x � xo,

(1� F (x))eh(x)  eh(xo) if x  xo.

Finally, local Lipschitz-continuity of f may be verified via Lemma 3.2. Let c, d 2
J(F ) with c < d. For arbitrary different x, y 2 (c, d), x < y,

f(y)� f(x)

y � x
=

F (y)h(y)� F (x)h(x)

y � x

= h(y)
F (y)� F (x)

y � x
+ F (x)

h(y)� h(x)

y � x

 h(c)
F (y)� F (x)

y � x

 h(c)
exp(h(x)(y � x))� 1

y � x
F (x)

! h(c)h(x)F (x)  h(c)2F (d)

as y ! x in the case of F non-decreasing on (c, d). Here the first inequality follows
from the facts that F (x) > 0 and (h(y) � h(x))(y � x)�1  0. The second
inequality is the consequence of inequality (1.1), (1). Hence we obtain

lim sup
y!x

f(y)� f(x)

y � x
 h(c)2F (d) for all x 2 (c, d). (3.1)
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3. Proofs

In the case of F being non-increasing on (c, d), similar derivations will lead to the
following inequality:

lim sup
y!x

f(y)� f(x)

y � x
 h(c)2F (c) for all x 2 (c, d). (3.2)

Analogously one can show that

lim inf
y!x

f(y)� f(x)

y � x
� �eh(d)2(1� F (c)) for all x 2 (c, d) (3.3)

in the case of F non-decreasing on (c, d) and

lim inf
y!x

f(y)� f(x)

y � x
� �eh(d)2(1� F (d)) for all x 2 (c, d) (3.4)

in the case of non-increasing F . Therefore, according to Lemma 3.2, f is Lipschitz-
continuous on (c, d) with Lipschitz-constant

max
�
h(c)2F (d),eh(d)2(1� F (c))

 

in the case of F non-decreasing on (c, d) and

max
�
h(c)2F (c),eh(d)2(1� F (d))

 
.

in the case of F non-increasing on (c, d). This proves local Lipschitz-continuity of
f on J(F ). In particular, f is absolutely continuous with L1-derivative f 0. Then f 0

is a locally integrable function on J(F ) such that

f(y)� f(x) =

Z
y

x

f 0(t) dt for all x, y 2 J(F ),

and it may be chosen such that

f 0(x) 2
h
lim inf
y!x

f(y)� f(x)

y � x
, lim sup

y!x

f(y)� f(x)

y � x

i
(3.5)

for any x 2 J(F ). But for c, d 2 J(F ) with c < x < d, the latter interval is
contained in

⇥
�eh(d)2(1� F (c)), h(c)2F (d)

⇤
=
h�f(d)2(1� F (c))

(1� F (d))2
,
f(c)2F (d)

F (c)2

i
(3.6)

according to (3.1) and (3.3) for non-decreasing F , and in

⇥
�eh(d)2(1� F (d)), h(c)2F (c)

⇤
=
h �f(d)2

1� F (d)
,
f(c)2

F (c)

i
(3.7)
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for non-increasing F , according to (3.2) and (3.4). Since F and f are continuous,
letting c, d! x implies (1.2).
Proof of (iv) ) (i). One can easily verify that continuous function F is bi-log-
concave if, and only if, logF and log(1 � F ) are concave on J(F ). Hence (i) is a
consequence of (iii), and it suffices to show that (iv) implies (iii).

According to Lemma 3.2, h is non-increasing on J(F ) if, and only if,

lim sup
y!x

h(y)� h(x)

y � x
 0

for any x 2 J(F ). To verify this, let y 2 J(F ) \ {x} and set r := min(x, y),
s := max(x, y). Then it follows from (1.2) and continuity of f that

h(y)� h(x)

y � x
=

f(y)/F (y)� f(x)/F (x)

y � x

=
1

F (y)

f(y)� f(x)

y � x
� f(x)

F (x)F (y)

F (y)� F (x)

y � s

=
1

F (y)(s� r)

Z
s

r

f 0(t) dt� f(x)

F (x)F (y)(s� r)

Z
s

r

f(t) dt

 1

F (y)(s� r)

Z
s

r

f(t)2

F (t)
dt� f(x)

F (x)F (y)(s� r)

Z
s

r

f(t) dt

! f(x)2

F (x)2
� f(x)2

F (x)2
= 0

as y ! x.
Analogously one can show that eh is non-decreasing on J(F ).

Proof of Proposition 1.19. For any fixed xo 2 J(F ), monotonicity of f/F =
log(F )0 implies that for x 2 J(F ), x < xo,

f

F
(x) � logF (xo)� logF (x)

x� xo

.

Since logF (x)! �1 as x! inf(J(F )), this inequality implies that

T1(F ) = sup
x2J(F )

f

F
(x) = lim

x!inf(J(F ))

f

F
(x)

(
> 0,

=1 if inf(J(F )) > �1.

Analogously one can show that

T2(F ) = sup
x2J(F )

f

1� F
(x) = lim

x!sup(J(F ))

f

1� F
(x)

(
> 0,

=1 if sup(J(F )) <1.
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3. Proofs

For symmetry reasons it suffices to show that
R
R etxF (dx) is finite for t 2 (0, T2(F ))

and infinite for t � T2(F ). Notice that for t > 0, Fubini’s theorem yields
Z

R
etx F (dx) =

Z

R

Z

R
1
[zx]

tetz dz F (dx)

= t

Z

R
etz(1� F (z)) dz

= t

Z

R
exp
�
tz + log(1� F (z))

�
dz.

In the case of m := sup(J(F )) <1, the previous integral is smaller than etm <1
for t < 1 = T2(F ). In the case of m = 1, notice that tz + log(1 � F (z)) is
concave in z 2 R with limit �1 as z ! �1. Thus the integral

R
R etx F (dx) is

finite if, and only if,

lim
z!1

d

dz

�
tz + log(1� F (z))

�
= lim

z!1

⇣
t� f(z)

1� F (z)

⌘
= t� T2(F )

is strictly negative, which is equivalent to t < T2(F ).

Proof of Lemma 1.23. Assume that F is non-degenerate in the sense of Definition
1.1. Weak convergence of Fn to F means pointwise convergence on the set of all
continuity points of F . According to the result from Sengupta and Nanda (1999)
(Theorem 2, (d)), distribution function F is log-concave as the pointwise limit of
log-concave distribution functions Fn. Then 1� Fn ! 1� F pointwise on the set
of continuity points of 1 � F as well. Since each function 1 � Fn is log-concave
their limit 1� F is log-concave, again by Sengupta and Nanda (1999) (Theorem 2,
(d)). Therefore F 2 Fblcd.

Bi-log-concave functions Fn, F are continuous on R and admit strictly positive
densities fn, f on J(Fn), J(F ), respectively, by Theorem 1.7, (ii) and (iv)0. There-
fore, by the standard argument, the sequence of continuous increasing functions Fn

converges in probability to increasing and continuous function F . Then, accord-
ing to the following generalization of Proposition 2.1 from Resnick (2007), we can
show the uniform convergence (in other words, convergence in the supremum norm)
of Fn to F in probability on [a, b] ⇢ R such that J(F )\J(Fn)\ [a, b] 6= ; for each
n:

Proposition 3.3. Let Uo : K = [a, b] ! R be a fixed continuous and isotonic
function, and let (Un) be a sequence of random isotonic functions Un : K ! R. If

Un(x)!p Uo(x)

for any fixed x 2 K, then

||Un � Uo||1,K !p 0.
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Proof. For fixed m 2 N let

xj := a+
j

m
(b� a),

0  j  m. For x 2 [xj�1, xj ],

Un(x)� Uo(x)  (Un(xj)� Uo(xj)) + (Uo(xj)� Uo(xj�1))

Mn + Uo(xj)� Uo(xj�1),

where
Mn := max

j=0,1,...,m

|Un(xj)� Uo(xj)|!p 0.

On the other hand,

Un(x)� Uo(x) � �Mn � (Uo(xj)� Uo(xj�1)).

Then for x 2 [xm�1, b],

Un(x)� Uo(x) Mn + Uo(b)� Uo(xm�1)

and
Un(x)� Uo(x) � �Mn � (Uo(b)� Uo(xm�1)).

For x 2 [xm�2, xm�1],

Un(x)� Uo(x) Mn + Uo(xm�1)� Uo(xm�2)

and
Un(x)� Uo(x) � �Mn � (Uo(xm�1)� Uo(xm�2)).

Analogously, for x 2 [x1, x2],

Un(x)� Uo(x) Mn + Uo(x2)� Uo(x1),

Un(x)� Uo(x) � �Mn � (Uo(x2)� Uo(x1)).

And, finally, for x 2 [a, x1],

Un(x)� Uo(x) Mn + Uo(x1)� Uo(a),

Un(x)� Uo(x) � �Mn � (Uo(x1)� Uo(a)).

Noticing that

Uo(b)� Uo(a) = max
j=1,...,m

(Uo(xj)� Uo(xj�1))
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3. Proofs

and taking into account the definition of Mn we sum up all inequalities with the
same sign to obtain

n · (Un(x)� Uo(x))  nMn + Uo(b)� Uo(a)

and
n · (Un(x)� Uo(x)) � �nMn � (Uo(b)� Uo(a))

for x 2 [a, b]. Therefore

Un(x)� Uo(x) Mn +
1

n
(Uo(b)� Uo(a)),

Un(x)� Uo(x) � �Mn �
1

n
(Uo(b)� Uo(a)).

Keeping in mind that Mn !p 0, it is equivalent to

Un(x)� Uo(x)  op(1)

and
Un(x)� Uo(x) � �op(1),

respectively. Hence
||Un � Uo||1,K !p 0.

The functions Fn and F are isotonic and therefore ||Fn � F ||1,[a,b] !p 0 as
n!1.

Consider now Ln := min(Fn, F ) and Un := max(Fn, F ). It implies that F ,
Fn 2 [Ln, Un] and Ln, Un ! F . Then for x, x0 2 [a, b] \ J(Fn) \ J(F ) with
x < x0 the RHS of the second inequality for hazard rates from Lemma 1.25 implies

fn(x) = (1� Fn)
fn

1� Fn

(x) � (1� Fn(x))
log(1� Fn(x0))� log(1� Fn(x))

x0 � x

� (1� Un(x))
log(1� Un(x0))� log(1� Ln(x))

x0 � x

!p (1� F (x))
log(1� F (x0))� log(1� F (x))

x0 � x
x
0#x�! f(1� F )

1� F
(x).

Therefore
fn(x) � f(x) + oP (1).

Analogously, fn(x)  f(x) + oP (1) and therefore fn ! f on [a, b] pointwise.
Since fn is Lipschitz-continuous on [a, b] (Theorem 1.7, (iv)0) the sequence (fn)
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is uniformly equicontinuous. Indeed, 8✏ > 0 9� > 0 such that 8x, y 2 [a, b] and
|x� y| < �:

|fn(x)� fn(y)|  L|x� y| < L� = ✏

if we take � := ✏/L, where L > 0 is the corresponding Lipschitz constant. The
latter one, as the proof of (iii) ) (iv) of Theorem 1.7 shows, does not depend on
the choice of x, y 2 [a, b] ⇢ J(Fn). Coupled together, the uniform equicontinuity
and pointwise convergence of the sequence (fn) of (Lipschitz)-continuous func-
tions to (Lipschitz)-continuous function f on the compact [a, b], yields the uniform
convergence in probability:

||fn � f ||1,[a,b] !p 0

as n!1.
Uniform boundedness of f , fn, f 0 and f 0

n
on [a, b] is a consequence of the prop-

erty (iv)0 of bi-log-concave function F (respectively Fn) from Theorem 1.7 and its
proof (iii))(iv), (3.5)-(3.7).

Proof of Corollary 1.24. Recall that (see, e.g. Castillo and Rafeiro (2016), Theo-
rem 3.10, for more general embedding result)

L1([a, b]) ⇢ ... ⇢ L2([a, b]) ⇢ L1([a, b]),

where L1([a, b]) is the space of all essentially bounded functions on [a, b]. Besides,
supremum of a continuous function equals to its essential supremum on Lebesgue-
measurable set E ✓ Rm whose intersection with any open ball with centre in E has
non-zero Lebesgue measure. This is a standard result from the theory of functions
and measure theory which obviously holds true for [a, b] ⇢ R. Thus, taking into
account Lemma 1.23, we obtain that for some constants kq depending on a, b and the
exponents q 2 [1,1] of corresponding Lebesgue spaces, the following inequalities
hold true on [a, b]:

kfkL1  k2kfkL2  ...  k1kfkL1 ⌘ k1kfk1 = Op(k1),

and analogously for fn for all n. By Theorem 1.7, (iv)0, f has L1-derivative f 0

on J(F ) which is integrable on [a, b]. Then, using the results of Lemma 1.23, it
implies that for some constants k0

q
depending on a, b and the exponents q 2 [1,1]

of corresponding Lebesgue spaces, the following inequalities hold true on [a, b]:

kf 0kL1  k0
2
kf 0kL2  ...  k01kf 0kL1 ⌘ k01kf 0k1 = Op(k

0
1),

and analogously for f 0
n

for all n. Hence f , fn, f 0, f 0
n
2 Lq([a, b]) for any q 2

[1,1].

Proof of Lemma 1.25. It is well-known (and a consequence of Lemma 3.1) that
concavity of h = logF and h = log(1� F ) implies that

h0(x1) �
h(x2)� h(x1)

x2 � x1

� h0(x2).
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3. Proofs

These are the asserted bounds in Lemma 1.25.

Proof of Lemma 1.31.

We prove this result in several steps. Since ODW
n,↵

= O(1), it can be replaced
with an arbitrary fixed number  > 0; so we redefine �n(t) as

�n(t) =
C(t) + ⌫D(t) + 

n+ 1
,

where  = ODW
n,↵

. Let F̌n = (n+1)�1n bFn, where bFn is the empirical distribution
function of X1, X2, ..., Xn.

Step 0. The inequality TODW
n

(H)  ODW
n,↵

has been replaced with TODW
n

(H) 
. The latter one implies that J(H) ⇢ [X(1), X(n)] and

K
�
F̌n, H

�
 �n(F̌n) (3.8)

on {X(1), X(2), . . . , X(n)}, where

F̌n(X(i)) =
i

n+ 1
:= tni.

We will show that this inequality holds true for X 2 [X(1), X(n)], i.e. on the set
{F̌n 2 [�n, 1� �n]}, where

�n =
cn log log n

n
! 0,

but 0 < cn !1.
Indeed, inequality (3.8) means that for 1  i  n

K
�
tni, H(X(i))

�
 �n (tni)

and
K
�
tn,i+1, H(X(i+1))

�
 �n (tn,i+1) (3.9)

on the sets {X(i) : �n  tni  1 � �n}. We distinguish two cases: H(X) � tni
and H(X)  tni for X 2 [X(i), X(i+1)].

Case 1. For X 2 [X(i), X(i+1)] such that H(X) � tni it follows from the
monotonicity of H and inequalities (3.9) that

K (tni, H(X))  K
�
tni, H(X(i+1))

�
=

K
�
tn,i+1, H(X(i+1))

�
+K

�
tni, H(X(i+1))

�
�K

�
tn,i+1, H(X(i+1))

�


�n (tn,i+1)�
1

n+ 1
D1K

�
tn,i+↵, H(X(i+1)))

�
, (3.10)
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where ↵ 2 (0, 1) and

tn,i+↵ =:
i+ ↵

n+ 1
.

In general, for s 2 [0, n+ 1], one writes

tns =:
s

n+ 1
.

Since
�n(t) =

C(t) + ⌫D(t) + 

n+ 1
,

where C(t) � 0 and D(t) � 0 are Lipschitz in logit(t) (Dümbgen and Wellner
(2014)), we can write

|�n(t)� �n(s)| =
����
C(t) + ⌫D(t) + � C(s)� ⌫D(s)� 

n+ 1

���� 

|C(t)� C(s)|+ ⌫|D(t)�D(s)|
n+ 1

 Gn(⌫)| logit(t)� logit(s)|,

where
Gn(⌫) =

LC + ⌫LD

n+ 1
= O

✓
1

n+ 1

◆

with LC , LD being the corresponding Lipschitz constants. Thus �n(t) is Lipschitz
in logit(t) which allows to continue inequality (3.10) in the following way:

�n (tn,i+1)�
1

n+ 1
D1K

�
tn,i+↵, H(X(i+1)))

�


�n (tni) +Gn(⌫) (logit (tn,i+1)� logit (tni))�

� 1

n+ 1

�
logit (tn,i+↵)� logit(H(X(i+1)))

�
,

where we also utilized the fact (Dümbgen and Wellner (2014), Lemma (K.1), page
16) that

@K(s, t)

@s
= logit s� logit t

for s, t 2 (0, 1). We will estimate each of three terms in the last inequality.
For the second term we write:

Gn(⌫) (logit (tn,i+1)� logit (tni)) 
Gn(⌫)

n+ 1

1

⇠ni(1� ⇠ni)
,

where ⇠ni 2 [tni, tn,i+1], since

(logitx)0 =
1

x(1� x)
.
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3. Proofs

Notice that the following inequalities hold true

�n(tni) � c
log log n

n+ 1
,

tni(1� tni) � c0�n (3.11)

for some positive constants c and c0 uniformly in tni 2 [�n, 1 � �n]. Therefore we
can continue previous inequality for the second term in the following way:

Gn(⌫)

n+ 1

1

⇠ni(1� ⇠ni)
 Gn(⌫)

c0�n(n+ 1)
 O

✓
n

c0(n+ 1)2

◆
= O

✓
1

n+ 1

◆

since �n >> 1/n.
For the third term one derives analogously:

1

n+ 1

�
logit(H(X(i+1)))� logit tn,i+↵

�


1

n+ 1
(H(X(i+1))� tn,i+↵)

1

⇣ni(1� ⇣ni)


1

n+ 1

1

n+ 1

1

⇣ni(1� ⇣ni)
 O

✓
1

n+ 1

◆
,

where ⇣ni 2 [tn,i+↵, H(X(i+1))], since H(X(i+1)) � tn,i+1 > tn,i+↵ by assump-
tion that for every i and X 2 [X(i), X(i+1)] it holds H(X) � tni. Thus we have
derived

K (tni, H(X))  �n (tni) +Gn(⌫) (logit (tn,i+1)� logit (tni))�

� 1

n+ 1

�
logit (tn,i+↵)� logit(H(X(i+1)))

�


O

✓
log log n

n+ 1

◆
+O

✓
1

n+ 1

◆
+O

✓
1

n+ 1

◆
,

where tni, tn,i+1 2 [�n, 1� �n] (and therefore tn,i+↵ 2 [�n, 1� �n]).
Notice that

1

n+ 1

�
logit(H(X(i+1)))� logit tn,i+↵

�


1

(n+ 1)2
1

⇣ni(1� ⇣ni)
=

1

(n+ 1)2⇣ni(1� ⇣ni)�n(tni)
�n(tni)

and
1

(n+ 1)2⇣ni(1� ⇣ni)�n(tni)


n+ 1

(n+ 1)2tni(1� tni)c log log n
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1

c0n�n log log n
=

1

c0cn(log log n)2
! 0

uniformly in tni 2 [�n, 1��n] since �n = n�1cn log log n and cn !1 as n!1.
Analogously,

Gn(⌫)

n+ 1

1

⇠ni(1� ⇠ni)
=

Gn(⌫)

(n+ 1)⇠ni(1� ⇠ni)�n(tni)
�n(tni)

and
Gn(⌫)

(n+ 1)⇠ni(1� ⇠ni)�n(tni)


n+ 1

(n+ 1)2tni(1� tni)c log log n


1

c0(n+ 1)�n log log n
=

1

c0cn(log log n)2
! 0

uniformly in tni 2 [�n, 1� �n] as n!1.
Therefore, more precise upper bound estimate is

K (tni, H(X)) �n (tni) +Gn(⌫) (logit (tn,i+1)� logit (tni))�

� 1

n+ 1

�
logit (tn,i+↵)� logit(H(X(i+1)))

�


�n (tni) + �n (tni) o(1) + �n (tni) o(1) =

�n (tni) (1 + o(1)).

For X 2 [X(i), X(i+1)] such that H(X) � tn,i+1 it follows from the monotonicity
of H and inequalities (3.9) that

K (tn,i+1, H(X))  K
�
tn,i+1, H(X(i+1))

�
 �n (tn,i+1) .

Thus on the set {F̌n 2 [�n, 1� �n]} we obtained the following upper bound:

K(F̌n, H(X))  �n(F̌n)(1 + o(1))

(i.e. on [X(i), X(i+1)] and therefore on [X(1), X(n)]).
Case 2. For X 2 [X(i), X(i+1)] such that H(X)  tn,i+1 it follows from the

monotonicity of H and inequalities (3.9) that

K (tn,i+1, H(X))  K
�
tn,i+1, H(X(i))

�
=

K
�
tni, H(X(i))

�
+K

�
tn,i+1, H(X(i))

�
�K

�
tni, H(X(i))

�


�n (tni)�
1

n+ 1
D1K

�
tn,i+↵, H(X(i)))

�
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3. Proofs

�n (tn,i+1)�Gn(⌫) (logit (tn,i+1)� logit (tni))+

1

n+ 1

�
logit (tn,i+↵)� logit(H(X(i)))

�
,

where ↵ 2 (0, 1) as in the previous case. We will estimate each of three terms in
the last inequality, analogously to Case 1.

For the second term one writes:

Gn(⌫) (logit (tn,i+1)� logit (tni)) 
Gn(⌫)

n+ 1

1

⇠ni(1� ⇠ni)
,

where ⇠ni 2 [tni, tn,i+1]. Utilizing inequalities (3.11), we continue the last inequal-
ity in the following way:

Gn(⌫)

n+ 1

1

⇠ni(1� ⇠ni)
 Gn(⌫)

c0�n(n+ 1)
 O

✓
n

c0(n+ 1)2

◆
= O

✓
1

n+ 1

◆

since �n >> 1/n.
For the third term one derives analogously:

1

n+ 1

�
logit tn,i+↵ � logit(H(X(i)))

�


1

n+ 1
(tn,i+↵ �H(X(i+1)))

1

⇣ni(1� ⇣ni)


1

n+ 1

1

n+ 1

1

⇣ni(1� ⇣ni)
 O

✓
1

n+ 1

◆
,

where ⇣ni 2 [H(X(i)), tn,i+↵], since H(X(i))  tni < tn,i+↵ by assumption that
for every i and X 2 [X(i), X(i+1)] it holds H(X)  tni.

Thus we have derived

K (tn,i+1, H(X))  �n (tn,i+1)�Gn(⌫) (logit (tn,i+1)� logit (tni))+

1

n+ 1

�
logit (tn,i+↵)� logit(H(X(i)))

�
 O

✓
log log n

n+ 1

◆
+O

✓
1

n+ 1

◆
,

where tni, tn,i+1 2 [�n, 1� �n]. Notice that

1

n+ 1

�
logit tn,i+↵ � logit(H(X(i)))

�


1

(n+ 1)2
1

⇣ni(1� ⇣ni)
=

1

(n+ 1)2⇣ni(1� ⇣ni)�n(tni)
�n(tni)

and
1

(n+ 1)2⇣ni(1� ⇣ni)�n(tni)
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n+ 1

(n+ 1)2tni(1� tni)c log log n


1

c0n�n log log n
=

1

c0cn(log log n)2
! 0

uniformly in tni 2 [�n, 1� �n].
Analogously,

Gn(⌫)

n+ 1

1

⇠ni(1� ⇠ni)
=

Gn(⌫)

(n+ 1)⇠ni(1� ⇠ni)�n(tni)
�n(tni)

and
Gn(⌫)

(n+ 1)⇠ni(1� ⇠ni)�n(tni)
 1

c0cn(log log n)2
! 0

uniformly in tni 2 [�n, 1� �n] as n!1.
Therefore, more precise upper bound estimate in this case is

K (tn,i+1, H(X))  �n (tn,i+1)�Gn(⌫) (logit (tn,i+1)� logit (tni))+

1

n+ 1

�
logit (tn,i+↵)� logit(H(X(i)))

�


�n (tni) + �n (tni) o(1) = �n (tni) (1 + o(1)).

For X 2 [X(i), X(i+1)] such that H(X)  tni it follows from the monotonicity of
H and inequalities (3.9) that

K (tni, H(X))  K
�
tni, H(X(i))

�
 �n (tni) .

Thus on the set {�n  F̌n  1 � �n} we have the same upper bound as in the
previous case:

K(F̌n, H(X))  �n(F̌n)(1 + o(1))

(i.e. on [X(i), X(i+1)] and therefore on [X(1), X(n)]).
Step 1. Assume that F and G are two distribution functions such that H =

F,G satisfies [X(1), X(n)] ⇢ J(H) and K(F̌n, H)  �n(F̌n)(1 + o(1)) on the
set {�n  F̌n  1 � �n} (in particular, on [X(1), X(n)]). Then uniformly on
{�n  F̌n  1� �n} \ {�n  H  1� �n}

| logit(H)� logit(F̌n)|! 0

as n!1.
It follows from inequalities established by Dümbgen and Wellner (2014) (Lemma

(K.5), page 18) that K(F̌n, H)  �n(F̌n)(1 + o(1)) implies

|H � F̌n| 
q
2F̌n(1� F̌n)�n(F̌n)(1 + o(1)) + �n(F̌n)(1 + o(1))
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and

|H � F̌n| 
q
2H(1�H)�n(F̌n)(1 + o(1)) + �n(F̌n)(1 + o(1)).

Notice also that

| logit(H)� logit(F̌n)| =
����log

H

1�H
� log

F̌n

1� F̌n

���� =
����log

✓
H

F̌n

1� F̌n

1�H

◆���� .

The inequality |H � F̌n| 
q
2F̌n(1� F̌n)�n(F̌n)(1 + o(1)) + �n(F̌n)(1 + o(1))

implies ����
H

F̌n

� 1

���� ,
����
1�H

1� F̌n

� 1

����! 0

as n!1. Indeed, consider the ratio

|H � F̌n|
F̌n(1� F̌n)

.

On the set {�n  F̌n  1� �n}

|H � F̌n|
F̌n(1� F̌n)



s
2�n(F̌n)(1 + o(1))

F̌n(1� F̌n)
+

�n(F̌n)(1 + o(1))

F̌n(1� F̌n)


s
2�n(�n(1� �n))(1 + o(1))

�n(1� �n)
+

�n(�n(1� �n))(1 + o(1))

�n(1� �n)
=

O

 s
log log n/n

cn log log n/n
+

log log n/n

cn log log n/n

!
= O

✓r
1

cn
+

1

cn

◆
! 0

as n!1 since 0 < �n ! 0 and

�n(�n) = O

✓
log log(1/�n) + ⌫ log log log(1/�n) + 

n

◆
= O

✓
log log(1/�n)

n

◆
.

In particular, ����
H

F̌n

� 1

����  o(1),

����
1�H

1� F̌n

� 1

����  o(1).

This implies that uniformly on {�n  F̌n  1� �n}

��logit(H)� logit(F̌n)
�� =

����log
✓
H

F̌n

1� F̌n

1�H

◆���� 

����log
H

F̌n

+ o(1)

����+
����log

1� F̌n

1�H
+ o(1)

����  log 1 + o(1) + log 1 + o(1) = o(1).
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Consider now the set {�n  H  1� �n}. Inequality

|H � F̌n| 
q

2H(1�H)�n(F̌n)(1 + o(1)) + �n(F̌n)(1 + o(1))

implies ����1�
F̌n

H

���� ,
����1�

1� F̌n

1�H

����! 0

as n!1. Indeed, consider the ratio

|H � F̌n|
H(1�H)

.

Uniformly on {�n  H  1� �n} \ {0 < F̌n < 1}

�n(F̌n)  O

✓
log log n

n

◆

whence
|H � F̌n|
H(1�H)

 O

 s
log log n

n�n(1� �n)
+

log log n

n�n(1� �n)

!
=

O

✓r
1

cn
+

1

cn

◆
! 0

as n!1. On the set {�n  H  1� �n} \ {F̌n = 0}

|H � F̌n|
H(1�H)

=
1

1�H
 1

1�H(X(1))
=

H(X(1))

H(X(1))(1�H(X(1)))


|H(X(1))� F̌n(X(1))|+O(n�1)

H(X(1))(1�H(X(1)))
 O

✓r
1

cn
+

1

cn
+

1

cn log log n

◆
! 0

as n!1.
Analogously, on the set {�n  H  1� �n} \ {F̌n = 1}

|H � F̌n|
H(1�H)

=
1

H
 1

H(X(n))
=

1�H(X(n))

H(X(n))(1�H(X(n)))


|H(X(n))� F̌n(X(n))|+O(n�1)

H(X(n))(1�H(X(n)))
 O

✓r
1

cn
+

1

cn
+

1

cn log log n

◆
! 0,

as n!1. In particular, we have
����1�

F̌n

H

����  o(1),

����1�
1� F̌n

1�H

����  o(1).
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This implies that uniformly on {�n  F̌n  1� �n} \ {�n  H  1� �n}

��logit(H)� logit(F̌n)
�� =

����log
✓
H

F̌n

1� F̌n

1�H

◆���� 

����log
H

F̌n

+ o(1)

����+
����log

1� F̌n

1�H
+ o(1)

����  o(1)

as n!1.
Step 2. There exists a constant G() such that for arbitrary s, t 2 (0, 1) and

n � 1, ����
�n(t)

�n(s)
� 1

����  G()| logit(t)� logit(s)|.

Recall that

�n(t) =
C(t) + ⌫D(t) + 

n+ 1

is Lipschitz in logit(t) (see Step 0). Then
����
�n(t)

�n(s)
� 1

���� =
����
(n+ 1)(�n(t)� �n(s))

C(s) + ⌫D(s) + 

���� 

(n+ 1)Gn(⌫)| logit(t)� logit(s)|


= G()| logit(t)� logit(s)|,

where Gn(⌫) = (LC + ⌫LD)/(n + 1) with LC , LD being Lipschitz constants
corresponding to functions C(t), D(t) and

G() =
LC + ⌫LD


.

Therefore ����
�n(t)

�n(s)
� 1

����  G()| logit(t)� logit(s)|.

Step 3. Having
K(F̌n, H)  �n(F̌n)(1 + o(1))

on {�n  F̌n  1 � �n} \ {�n  H  1 � �n} (i.e. on [X(1), X(n)]), where H is
a distribution function such that J(H) ⇢ [X(1), X(n)], one can consecutively apply
results of Steps 1 and 2. As it was shown in Step 1 (taking H := F ),

|F � F̌n| 
q
2F (1� F )�n(F̌n)(1 + o(1)) + �n(F̌n)(1 + o(1)). (3.12)

Step 1 implies
| logit(F )� logit(F̌n)|! 0 (3.13)
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uniformly on {�n/2  F̌n  1� �n/2} as n!1. Notice also that

{�n  F  1� �n} ⇢ {�n/2  F̌n  1� �n/2}

eventually as n ! 1. Otherwise there exists xn such that �n < F (xn) < 1 � �n
but F̌n(xn) < �n/2 or F̌n(xn) > 1� �n/2. Then

{�n  F  1� �n} = {| logitF |  1� �n
�n

= log
1

�n
+ o(1)}

and

{�n/2  F̌n  1� �n/2} = {| logit F̌n| 
1� �n/2

�n/2
= log 2 + log

1

�n
+ o(1).}

Taking into account convergence (3.13) and Step 2, we obtain

�n(F )

�n(F̌n)
! 1

as n!1. Therefore one can write

|F � F̌n| 
p
(2 + o(1))F (1� F )�n(F ) + (1 + o(1))�n(F ) =

p
(2 + o(1))F (1� F )�n(F ) + (1 + o(1))

p
F (1� F )�n(F )

s
�n(F )

F (1� F )
.

Taking into account the properties of the function �n established in Step 1, we have
that

�n(F )

F (1� F )
! 0

as n!1. Thus inequality (3.12) is equivalent to

|F � F̌n| 
p
(2 + o(1))F (1� F )�n(F ). (3.14)

Analogously to (3.12) (taking H := G),

|G� F̌n| 
q
2G(1�G)�n(F̌n)(1 + o(1)) + �n(F̌n)(1 + o(1)).

By means of Step 1,
| logit(G)� logit(F̌n)|! 0

uniformly on {�n  G  1 � �n} ⇢ {�n/2  F̌n  1 � �n/2} as n ! 1,
analogously to (3.13). But {�n  F  1� �n} ⇢ {�n/2  F̌n  1� �n/2}. Thus

| logit(G)� logit(F )|! 0
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uniformly on {�n  F  1� �n} as n!1. Then (3.14) is valid with G in place
of F , too. Combining both inequalities yields

|F �G|  |F � F̌n|+ |G� F̌n| 


p
(2 + o(1))F (1� F )�n(F ) +

p
(2 + o(1))F (1� F )�n(F ).

Therefore
|F �G| 

p
(8 + o(1))F (1� F )�n(F ).

Step 4. As shown at the beginning of Step 1,

|H � F̌n| 
q
2H(1�H)�n(F̌n)(1 + o(1)) + �n(F̌n)(1 + o(1)), (3.15)

and, as n!1, ����
H

F̌n

� 1

����! 0.

It follows from inequalities established by Dümbgen and Wellner (2014) (Lemma
(K.5), page 18) that

|H � F̌n| 
q
2F̌n(1� F̌n)�n(F̌n)(1 + o(1)) + �n(F̌n)(1 + o(1)).

Consider the set {0 < F̌n < 1} and recall that

�n(F̌n) = O

✓
log log n

n

◆

(Dümbgen and Wellner (2014)); then

F̌n(1� F̌n)�n(F̌n) 

F̌n(1� F̌n)C(F̌n) + ⌫F̌n(1� F̌n)D(F̌n) + F̌n(1� F̌n)

n+ 1
= O

✓
1

n+ 1

◆
.

Then q
F̌n(1� F̌n)�n(F̌n)(1 + o(1)) = O

✓
1p
n

◆
.

Summing up everything together, one can write

|H � F̌n|  O

✓
1p
n

◆
+O

✓
log log n

n

◆
= O

✓
1p
n

◆
,

that is

|F � F̌n|  O

✓
1p
n

◆
and |G� F̌n|  O

✓
1p
n

◆
.
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Therefore

|F �G|  O

✓
1p
n

◆
.

Now consider cases {F̌n = 0} and {F̌n = 1}. For x < X(1), one can write

|H � F̌n|  H(x)  H(X(1))  O

✓
1p
n

◆
+

1

n+ 1
= O

✓
1p
n

◆
.

For x > X(n),

|H � F̌n|  1�H(x)  1�H(X(n))  O

✓
1p
n

◆
+

1

n+ 1
= O

✓
1p
n

◆
.

Hence |H � F̌n|  O
�
n�1/2

�
in these cases as well. So finally one obtains

||F �G||1 = O

✓
1

n1/2

◆
.

This accomplishes the proof of the Lemma. ⇤

Proof of Lemma 1.32. Notice that the graph of logF1 is a straight line connecting
the points (x1, log y1) and (x2, log y2), while logF is a concave function. Thus
if F (x1)  y1 and F (x2) � y2, then logF  logF1 on (�1, x1]. Similarly,
if F (x1) � y1 and F (x2) � y2, then logF � logF1 on [x1, x2]. Finally, if
F (x1) � y1 and F (x2)  y2, then logF  logF1 on [x2,1).

Analogous considerations apply to the concave function log(1�F ) and the func-
tion log(1� F2) which describes a straight line connecting the points (x1, log(1�
y1)) and (x2, log(1� y2)).

Proof of Proposition 1.33. By definition of bi-log-concave function µ : R! [0, 1]
there exist x1 < x2 such that µ(x1), µ(x2) 2 (0, 1). Let yi = µ(xi), where i = 1,
2. Assume that y1 < y2 2 (0, 1). Bi-log-concavity of µ yields concavity of logµ
and log(1 � µ) simultaneously. This allows us to utilize Lemma 1.32. Namely,
interpolating between the points (x1, y1) and (x2, y2) by functions F1 and F2 from
that lemma, and comparing them to µ, we conclude that µ is non-decreasing on R.
Besides that, Theorem 1.7 implies that it is continuous on R. Taken together, these
facts make µ a cumulative distribution function.

Assume that y1 > y2 2 (0, 1). As in the previous case, interpolating between the
points (x1, y1) and (x2, y2) by functions F1 and F2 and comparing them to µ, we
obtain that µ is non-increasing on R. Its continuity on R implies that µ is a survival
function. The case y1 = y2 2 (0, 1), treated in analogous way, yields µ ⌘ y1, i.e. µ
is a constant function.

83



3. Proofs

Proof of Lemma 1.34. By assumption there exist real numbers xL < xU with
Ln(xL) > 0 and Un(xU ) < 1. Then

� :=
logUn(xU )� logLn(xL)

xU � xL

< 1.

The assertion is trivial if Lo
n
⌘ 1 and Uo

n
⌘ 0, meaning that no G 2 Fblcd fits in

between Ln and Un. Otherwise let G 2 Fblcd such that Ln  G  Un. With
g := G0, it follows from concavity of logG that for x � xU ,

g(x)  g

G
(x)  g

G
(xU ) 

logG(xU )� logG(xL)

xU � xL

 �.

On the other hand, convexity of � log(1�G) implies that for x  xU ,

g(x)  g

1�G
(x)  g

1�G
(xU ) =

g

G
(xU )

G

1�G
(xU ) 

�Un(xU )

1� Un(xU )
.

Consequently, any G 2 Fblcd with Ln  G  Un is Lipschitz-continuous with
Lipschitz-constant max

�
�,�Un(xU )/(1 � Un(xU ))

 
. Hence the pointwise infi-

mum Lo
n

and supremum Uo
n

have the same property.

Proof of Lemma 1.35. The assertions are trivial if Lo
n
⌘ 1 and Uo

n
⌘ 0, meaning

that no G 2 Fblc fits in between Ln and Un. Otherwise let G 2 Fblcd such that
Ln  G  Un.

For part (i) it suffices to show that for any x 2 J(G) the density g = G0 satisfies
the inequality g(x)  max{�1, �2}. This is equivalent to Lipschitz-continuity of G
with the latter constant, and this property carries over to the pointwise infimum Lo

n

and supremum Uo
n

. For x � b it follows from concavity of logG and G(a) � r,
G(b)  s that

g(x)  g

G
(x)  g

G
(b)  logG(b)� logG(a)

b� a
 log s� log r

b� a
= �1.

Similarly convexity of� log(1�G) and the inequalities G(a) � r, G(b)  s imply
that for x  a,

g(x)  g

1�G
(x)  g

1�G
(a)  � log(1�G(b)) + log(1�G(a))

b� a
 �2.

For a < x < b we get the two inequalities

g(x) = G(x)
g

G
(x)  G(x)

logG(x)� log r

x� a

and

g(x) = (1�G(x))
g

1�G
(x)  (1�G(x))

log(1�G(x))� log(1� s)

b� x
.
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The former inequality times x� a plus the latter inequality times b� x yields that

g(x) 
G(x) log(G(x)/r) + (1�G(x)) log

�
(1�G(x))/(1� s)

�

b� a
.

But h(y) := y log(y/r)+(1�y) log((1�y)/(1� s)) is easily shown to be convex
function in y 2 (0, 1), so

g(x)  max
y=r,s

h(y) = max{�1, �2}.

As to part (ii), it suffices to show that G(x)  G(a) exp(�1(x�a)) for x  a and
G(x) � 1�(1�G(b)) exp(��2(x�b)) for x � b. We know from Theorem 1.7 (ii)
that this is true with (g/G)(a) and (g/(1�G))(b) in place of �1 and �2, respectively.
But it follows from G(a)  r, G(b) � s and concavity of logG that

g

G
(a) � logG(b)� logG(a)

b� a
� log s� log r

b� a
= �1,

while convexity of � log(1�G) yields that (g/(1�G))(b) � �2.

Proof of Theorem 1.57. Suppose that F 62 Fblcd. This means, either logF or
log(1�F ) or both are not concave. When logF is not concave then there exist real
numbers x0 < x1 < x2 such that logF (x1) < (1 � �) logF (x0) + � logF (x2),
where � := (x1 � x0)/(x2 � x0) 2 (0, 1). Then with probability tending to one,
logUn(x1) < (1 � �) logLn(x0) + � logLn(x2), whence no log-concave distri-
bution function fits between Ln and Un. Analogous arguments apply in the case of
log(1� F ) violating concavity.

Now suppose that F 2 Fblcd. Obviously, IP(Lo
n
 Uo

n
) � IP(Ln  F 

Un) � 1 � ↵. Since Ln and Un are assumed to be non-decreasing, and since F is
continuous, a standard argument shows that pointwise convergence implies uniform
convergence in probability, i.e. kLn � Fk1 !p 0 and kUn � Fk1 !p 0. This
implies that

sup
G2Fblcd :LnGUn

kG� Fk1  kLn � Fk1 + kUn � Fk1 !p 0, (3.16)

because Ln  Lo
n
 Uo

n
 Un in the case of Lo

n
 Uo

n
.

Now let K be a compact subset of J(F ), and let hG := log(G)0 for G 2 Fblcd.
Since hF = f/F is continuous and non-increasing on J(F ), for any fixed " > 0
there exist points a0 < a1 < · · · < am < am+1 in J(F ) such that K ⇢ [a1, am]
and

0  hF (ai�1)� hF (ai)  " for 1  i  m+ 1.
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For G 2 Fblcd with Ln  G  Un, for any x 2 K it follows from monotonicity of
hF and hG that

sup
x2K

�
hG(x)� hF (x)

�
 max

i=1,...,m�1

�
hG(ai)� hF (ai+1)

�

 max
i=1,...,m�1

⇣ logG(ai)� logG(ai�1)

ai � ai�1

� hF (ai+1)
⌘

 max
i=1,...,m�1

⇣ logUn(ai)� logLn(ai�1)

ai � ai�1

� hF (ai+1)
⌘

= max
i=1,...,m�1

⇣ logF (ai)� logF (ai�1)

ai � ai�1

� hF (ai+1)
⌘
+ op(1)

 max
i=1,...,m�1

�
hF (ai�1)� hF (ai+1)

�
+ op(1)

 2"+ op(1).

Analogously,

sup
x2K

�
hF (x)� hG(x)

�
 max

i=1,...,m�1

�
hF (ai)� hF (ai+2)

�
+ op(1)

 2"+ op(1).

Since " > 0 is arbitrarily small, this shows that

sup
G2Fblcd :LnGUN

��log(G)0 � log(F )0
��
K,1 = op(1). (3.17)

Analogously one can show that

sup
G2Fblcd :LnGUN

��log(1�G)0 � log(1� F )0
��
K,1 = op(1).

Moreover, since G0 = log(G)0 G, it follows from (3.16) and (3.17) that

sup
G2Fblcd :LnGUN

kG0 � F 0kK,1 = op(1).

Finally, let x1 < sup(J(F )) and b1 < f(x1)/F (x1). As in the proof of Lemma 1.35 (ii)
one may argue that for any fixed x0

1
> x1, x0

1
2 J(F ),

Uo

n
(x)  Un(x

0) exp
⇣ logLn(x0

1
)� logUn(x1)

x0
1
� x1

(x� x0)
⌘

for all x  x0  x1. But

logLn(x0
1
)� logUn(x1)

x0
1
� x1

!p

logF (x0
1
)� logF (x1)

x0
1
� x1

> b1
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if x1  inf(J(F )) or x0
1

is sufficiently close to x1 2 J(F ). This shows that with
asymptotic probability one,

Uo

n
(x)  Un(x

0) exp(b1(x� x0))

for all x  x0  x1. Analogously one can prove the claim about 1�Lo
n

on halflines
[x2,1), x2 > inf(J(F )).

Proof of Corollary 1.58. Without loss of generality let 0 2 J(F ); otherwise we
could shift the coordinate system suitably and adjust the constant a in our bound for
|�0|. Notice that for any z 2 R,

�(z)� �(0) =

Z 1

�1

�
1[0x<z] � 1[zx<0]

�
�0(x) dx,

so by Fubini’s theorem,
Z

� dG = �(0) +

Z

R
�0(x)

�
1[x�0] �G(x)

�
dx,

provided that Z
|�0(x)|

��1[x�0] �G(x)
�� dx < 1. (3.18)

By assumption, for arbitrary numbers b0
1
2 (0, T1(F )) and b0

2
2 (0, T2(F )) there

exist points x1, x2 2 J(F ) with x1  0  x2 and

f(x1)/F (x1) > b0
1
, f(x2)/(1� F (x2)) > b0

2
.

Then it follows from Theorem 1.57 (ii) that asymptotically with probability one,

Uo

n
(x)  Un(x

0) exp(b0
1
(x� x0)) for x  x0  x1 (3.19)

and

1� Lo

n
(x)  (1� Ln(x

0)) exp(�b0
2
(x� x0)) for x � x0 � x2. (3.20)

If we choose b0
1
> b1 and b0

2
> b2, the inequalities (3.19) and (3.20) imply (3.18)

for arbitrary distribution functions G with Lo
n
 G  Uo

n
. More precisely, for any

fixed c � 0 and � := min{b0
1
� b1, b02 � b2} > 0,

Z
x1�c

�1
|�0(x)|Uo

n
(x) dx  Un(x1)

Z
x1�c

�1
exp(a� b1x+ b0

1
(x� x1)) dx

 Un(x1) exp(a� b1x1 � �c)

Z
0

�1
exp(�y) dy

=
Un(x1) exp(a� b1x1 � �c)

�
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and
Z 1

x2+c

|�0(x)|(1� Lo

n
(x)) dx  (1� Ln(x1)) exp(a+ b2x2 � �c)

�
.

The same inequalities hold if Ln, Un, Lo
n

and Uo
n

are all replaced by F . Thus

sup
G :Lo

nGUo
n

���
Z

� dG�
Z

� dF
��� = sup

G :Lo
nGUo

n

���
Z 1

�1
�0(x)(F �G)(x) dx

���

(3.21)
is not larger than

sup
G :Lo

nGUo
n

kG� Fk1
Z

x2+c

x1�c

|�0(x)| dx

+

Z
x1�c

�1
|�0(x)|(Uo

n
+ F )(x) dx+

Z 1

x2+c

|�0(x)|(2� Lo

n
� F )(x) dx

 2F (x1)ea�b1x1��c

�
+

2(1� F (x2))ea+b2x2��c

�
+ op(1).

But the limit on the right hand side becomes arbitrarily small for sufficiently large
c > 0.

Proof of Theorem 1.59. It follows from standard results about the empirical pro-
cess on the real line that for any fixed " 2 (0, 1) there exists a constant " > 0 such
that with probability at least 1� ",

| bFn � F |  "n
�1/2(F (1� F ))�

on R. Let us assume that the previous inequalities hold and that Lo
n
 Uo

n
.

For a constant �" > 0 to be specified later it follows from �"n�1/(2�2�)  F 
1� �"n�1/(2�2�) that

bFn �
⇣
1� | bFn � F |

F

⌘
F � (1�"�

��1

"
)�"n

�1/(2�2�) = (�"�"�
�

"
)n�1/(2�2�)

and
1� bFn � (�" � µ"�

�

"
)n�1/(2�2�).

Thus we choose �" sufficiently large such that the number �" � "��
"

exceeds �.
Then the interval

Jn := {�"n
�1/(2�2�)  F  1� �"n

�1/(2�2�)}

is a subset of {�n�1/(2�2�)  bFn  1� �n�1/(2�2�)}. On this interval Jn,

bFn(1� bFn)

F (1� F )
 max

n bFn

F
,
1� bFn

1� F

o
 1 +

| bFn � F |
min(F, 1� F )

 1 + "�
��1

"
,
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and for any function h with Ln  h  Un,

|h� F |
(F (1� F ))�

 |h� bFn|
( bFn(1� bFn))�

⇣ bFn(1� bFn)

F (1� F )

⌘�
+

| bFn � F |
(F (1� F ))�

 ⌫"n
�1/2

(3.22)
with ⌫" := (1+"���1

"
)�+". In particular, the boundaries Ln and Un themselves

satisfy (3.22) on Jn.
Again we assume without loss of generality that 0 2 J(F ). For arbitrary fixed

numbers b0
1
2 (0, T1(F )) and b0

2
2 (0, T2(F )) we choose points x1, x2 2 J(F )

with x1 < 0 < x2 such that f(x1)/F (x1) > b0
1

and f(x2)/(1� F (x2)) > b0
2
. For

sufficiently large n, [x1, x2] ⇢ Jn, and we may even assume that (3.19) and (3.20)
are satisfied, too. Writing Jn = [xn1, xn2], we can deduce from (3.21) and (3.22)
that

sup
G :Lo

nGUo
n

���
Z

� d(G� F )
���  ⌫"n

�1/2

Z
xn2

xn1

|�0(x)|F (x)�(1� F (x))� dx

+

Z
xn1

�1
|�0(x)|(F + Uo

n
)(x) dx

+

Z 1

xn2

|�0(x)|(2� F � Lo

n
)(x) dx.

Notice that

F (x)  F (x1) exp(b
0
1
(x� x1)) for x  x1,

1� F (x)  (1� F (x2)) exp(�b02(x� x2)) for x � x2.

In particular, for x = xn1, xn2 it follows from these inequalities and F (xn1) =
1� F (xn2) = �"n�1/(2�2�) that

xn1 � O(1)� log n

b0
1
(2� 2�)

and xn2  O(1) +
log n

b0
2
(2� 2�)

. (3.23)

Notice also that by (3.19), (3.20) and (3.22),,

(F + Uo

n
)(x)  (F + Uo

n
)(xn1) exp(b

0
1
(x� xn1))

 !"n
�1/(2�2�) exp(b0

1
(x� xn1)) for x  xn1,

(2� F � Lo

n
)(x)  !"n

�1/(2�2�) exp(�b0
2
(x� xn2)) for x � xn2,

where !" := �" + ⌫"��
"

. These considerations show that

sup
G :Lo

nGUo
n

���
Z

� d(G� F )
���  In0 + In1 + I 0

n1
+ In2 + I 0

n2
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with

In0 := ⌫"n
�1/2

Z
x2

x1

|�0(x)| dx = O(n�1/2),

In1 := ⌫"n
�1/2

Z
x1

xn1

|�0(x)|F (x)� dx = O

✓
n�1/2

Z
x1

xn1

|�0(x)|e�b
0
1x dx

◆
,

I 0
n1

:=

Z
xn1

�1
|�0(x)|(F + Uo

n
)(x) dx = O

✓
n�1/(2�2�)

Z
xn1

�1
|�0(x)|eb

0
1(x�xn1) dx

◆
,

In2 := ⌫"n
�1/2

Z
xn2

x2

|�0(x)|(1� F (x))� dx = O

✓
n�1/2

Z
xn2

x2

|�0(x)|e��b
0
2x dx

◆
,

I 0
n2

:=

Z 1

xn2

|�0(x)|(2� F � Lo

n
)(x) dx = O

✓
1

n1/(2�2�)

Z 1

xn2

|�0(x)|e�b
0
2(x�xn2)dx

◆
.

As to part (i), suppose that |�0(x)|  a(1+ |x|k�1) for arbitrary x 2 R and some
constant a > 0. Then both In1 and In2 are of order

O

✓
n�1/2

Z
O(logn)

0

(1 + sk�1) exp(��b0s) ds
◆

=

(
O(n�1/2) if � > 0,

O(n�1/2(log n)k) if � = 0,

where b0 := min{b0
1
, b0

2
} > 0. Moreover, both I 0

n1
and I 0

n2
are of order

O

✓
n�1/(2�2�)

Z 1

0

O
�
(log n)k�1 + sk�1

�
e�b

0
s ds

◆
= O

�
n�1/(2�2�)(log n)k�1

�

and

O
�
n�1/(2�2�)(log n)k�1

�
=

(
o(n�1/2) if � > 0,

O(n�1/2(log n)k�1) if � = 0.

This proves the assertion in part (i).
For functions � as in part (ii), let b0

1
> b1 and b0

2
> b2 such that b1 6= �b0

1
and

b2 6= �b0
2
. Then

In1 = O

✓
n�1/2

Z
O(1)+(logn)/(b

0
1(2�2�))

0

exp((b1 � �b0
1
)s) ds

◆
= O(n��1)

with

�1 :=
1

2
� (b1 � �b0

1
)+

b0
1
(2� 2�)

=
1� � � (b1/b01 � �)+

2(1� �)
=

1�max(b1/b01, �)

2(1� �)
,

and

In2 = O(n��2) with �2 :=
1�max(b2/b02, �)

2(1� �)
.
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Furthermore,

I 0
n1

= O

✓
n�1/(2�2�)

Z
xn1

�1
exp(�b1x+ b0

1
(x� xn1)) dx

◆

= O

✓
n�1/(2�2�) exp(�b1xn1)

Z 1

0

exp(�(b0
1
� b1)s) ds

◆

= O
�
n�1/(2�2�) exp(�b1xn1)

�
= O

�
n�(1�b1/b

0
1)/(2�2�)

�
= O(n��1)

and
I 0
n2

= O(n��2).

This proves the assertion in part (ii). If e� := max
�
b1/T1(F ), b2/T2(F )

 
< �, we

may choose b0
1

and b0
2

such that b1/b01, b2/b02 < �, resulting in �1 = �2 = 1/2.
If e� � �, the exponents �1,�2 are strictly smaller than but arbitrarily close to
(1� e�)/(2(1� �)).

Proof of Corollary 1.60. Notice that for any ↵0 2 (0, 1) one has k bFn � Fk1 
KS

n,↵0 with probability 1� ↵0. Thus by the triangle inequality for the sup-norm, the
Kolmogorov-Smirnov confidence region of all c.d.f.’s eF such that

k eF � bFnk1  KS

n,↵
,

is contained in the deterministic set
�

c.d.f.’s eF : k eF � Fk1  cn
 

with cn := KS

n,↵0 + KS
n,↵

= O(n�1/2) with probability 1� ↵0.

Proof of Remark 2.3. Recall that by Proposition 1.33, any F 2 Fblc is either a
constant or a distribution function or a survival function. Hence any vector ' 2 F̄n

has to have non-increasing or non-decreasing components.
If '1 = 'n, then ' = (F (Xni))ni=1

with F : R ! [0, 1] constant, i.e. F 2
Fblc [ {0} [ {1}.

If '1 < 'n, then there exists a sequence (Fn)n in Fblcd such that (Fn(Xni))ni=1

converges to '. Because of '1 < 'n, the sequence (Fn)n is tight, and we may
assume w.l.o.g. that it converges weakly to a some F on R. If F is non-degenerate,
then, according to Lemma 1.23, F 2 Fblcd and weak convergence of (Fn)n to
F implies uniform convergence on R, whence ' = (F (Xni))ni=1

2 Fn. If F is
degenerate, then there exists a real number Xo 2 [Xn1, Xnn] such that

'i =

(
0 if Xni < Xo,

1 if Xni > Xo.

But now there exists an interval [a, b] ⇢ R such that

{Xn1, ..., Xnn} \ [a, b] ⇢ {Xo} ⇢ [a, b]
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and
'i =

Xo � a

b� a

whenever Xni = Xo. Thus ' = (F (Xni))ni=1
with

F (x) :=

8
><

>:

0, x  a,

(x� a)/(b� a), a  x  b,

1, x � b,

the c.d.f. of U([a, b]), and the latter belongs to Fblcd.
If '1 > 'n we may argue analogously for survival functions instead of distribu-

tion functions.

Proof of Theorem 2.2. We will use a modified version of Kolmogorov’s maximal
inequality:

Lemma 3.4. Let A1, A2, ..., An be independent random variables with mean zero
and finite variances. Then

1

2
IE

 
max

k=1,..,n

�����

kX

i=1

Ai

�����

!


vuut
nX

i=1

IE(A2

i
).

Proof. Kolmogorov’s maximal inequality states that for any ⌘ > 0,

IP

 
max

k=1,..,n

�����

kX

i=1

Ai

����� � ⌘

!
 �2/⌘2

with �2 := IE((
P

n

i=1
Ai)2) =

P
n

i=1
IE(A2

i
). Thus

IE

 
max

k=1,..,n

�����

kX

i=1

Ai

�����

!
=

Z 1

0

IP

 
max

k=1,..,n

�����

kX

i=1

Ai

����� � ⌘

!
d⌘


Z 1

0

min(�2/⌘2, 1)d⌘

= � + �2

Z 1

�

⌘�2d⌘ = 2�.

Our arguments are inspired by van de Geer (1993). For convenience we write
Fni := F (Xni) for any function F : R ! R. Then the normalized negative log-
likelihood may be written as

Ln(F ) = � 1

n

nX

i=1

(Yni logFni + (1� Yni) log(1� Fni))
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for F 2 F . By definition of bµn,

0  Ln(bµn)� Ln(µ)

=
1

n

nX

i=1

✓
Yni log

✓
bµni

µni

◆
+ (1� Yni) log

✓
1� bµni

1� µni

◆◆

=
2

n

nX

i=1

 
Yni log

s
bµni

µni

+ (1� Yni) log

s
1� bµni

1� µni

!

 2

n

nX

i=1

 
Yni

 s
bµni

µni

� 1

!
+ (1� Yni)

 s
1� bµni

1� µni

� 1

!!

=
2

n

nX

i=1

 
µni

 s
bµni

µni

� 1

!
+ (1� µni)

 s
1� bµni

1� µni

� 1

!!

+
2

n

nX

i=1

Yni � µnip
µni

p
bµni �

2

n

nX

i=1

Yni � µnip
1� µni

p
1� bµni

= � 1

n

nX

i=1

(2� 2
p
µnibµni � 2

p
(1� µni)(1� bµni))

+ Zn1(
p
bµn)� Zn2(

p
1� bµn),

where

Zn1(g) :=
2

n

nX

i=1

Yni � µnip
µni

g(Xni),

Zn1(g) :=
2

n

nX

i=1

Yni � µnip
1� µni

g(Xni)

for g : R! R.
Notice that

p
bµn and

p
1� bµn belong to Fmon. Moreover, for arbitrary num-

bers a, ba 2 [0, 1]:

2� 2
p
aba� 2

p
(1� a)(1� ba) = (

p
ba�
p
a)2 + (

p
1� ba�

p
1� a)2

=
(ba� a)2

(
p
ba+
p
a)2

+
(ba� a)2

(
p
1� ba+

p
1� a)2

� (ba� a)2

2(ba+ a)
+

(ba� a)2

2(2� ba� a)

� (ba� a)2,

because
2(bb+ b)� (

p
bb+
p
b)2 = (

p
bb�
p
b)2 � 0
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for b, bb 2 {a,ba, 1� a, 1� ba} and

1

2x
+

1

2(2� x)
� 1

for x = a+ ba 2 [0, 2].
Consequently,

1

n

nX

i=1

(bµni � µni)
2  sup

g2Fmon

|Zn1(g)|+ sup
g2Fmon

|Zn2(g)|.

Hence it suffices to show that

IE

 
sup

g2Fmon

|Znj(g)|
!
 4n�1/2 (3.24)

for j = 1, 2.
If g : R! [0, 1] is non-increasing, then

|Znj(g)| =

�����

nX

i=1

Anig(Xni)

�����

=

�����

nX

i=1

Ani

nX

k=i

(g(Xnk)� g(Xn,k+1))

�����

=

�����

nX

k=1

(g(Xnk)� g(Xn,k+1))
kX

i=1

Ani

�����


nX

k=1

(g(Xnk)� g(Xn,k+1))

�����

kX

i=1

Ani

�����

 max
k=1,...,n

�����

kX

i=1

Ani

�����

where

Ani :=

(
2Yni�µni

n
p
µni

if j = 1;

2 Yni�µni

n
p
1�µni

if j = 2;

with Xn,n+1 := +1 and g(+1) := 0.
Analogously, if g : R! [0, 1] is non-decreasing,

|Znj(g)|  max
k=1,...,n

�����

nX

i=k

Ani

����� .
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Lemma 3.4 implies that

1

2
max

 
IE

 
max

k=1,..,n

�����

kX

i=1

Ani

�����

!
, IE

 
max

k=1,..,n

�����

nX

i=k

Ani

�����

!!


vuut
nX

i=1

IE(A2

ni
).

But vuut
nX

i=1

IE(A2

ni
) 

vuut
nX

i=1

4 IE((Yni � µni)2)

n2µni(1� µni)
= 2/

p
n,

which implies inequality (3.24).

Proof of Theorem 2.5. Let P := {Pµ, µ 2 Fblc} be a family of probability mea-
sures on some measurable space. We assume that P is dominated by a �-finite
measure ⌫. Consider i.i.d. observations (Xi, Yi) =: Zi, i = 1, ..., n from a proba-
bility measure Po := Pµo , where µo(x) is true bi-log-concave regression function.
In some cases we will write (X,Y ) instead of (Xi, Yi) so that Y will take the value
either 0 or 1. We also define

Pn :=
1

n

nX

i=1

�Zi

to be the empirical distribution based on observations Zi and

Qn :=
1

n

nX

i=1

�Xi

to be the empirical distribution based on Xi. Recall that

µ(x) = IP(Y = 1|X = x) = 1� IP(Y = 0|X = x)

and Xi ⇠ Q.
Let Pµ be some probability measure from P . Recall that if we take as a dom-

inating measure ⌫ = Q ⌦ �, where � is the counting measure on {0, 1}, then the
class of densities

fµ(x, y) :=
dPµ

d⌫

in this model is given by
�
µ(x)1{y=1}(y) + (1� µ(x))1{y=0}(y) = µ(x)y(1� µ(x))1�y

 
,

where x 2 [a, b] and y 2 {0, 1}. Then

dPµ

d⌫
(·, y) =

(
µ if y = 1,

1� µ if y = 0.
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Consider now the set

G =

( s
µY (1� µ)1�Y

µY
o
(1� µo)1�Y

� 1

!
1{µY

o (1�µo)
1�Y >0} : µ 2 Fblc, Y 2 {0, 1}

)
.

This set is bounded. Indeed, according to Theorem 1.7, (ii), bi-log-concave func-
tions µ and µo are continuous. Besides that, µo and 1 � µo are strictly positive
since 0 < µo < 1 on J(µo) by definition. Therefore µ/µo and (1 � µ)/(1 � µo)
are continuous and, according to the Weierstrass theorem, are bounded on a fixed
compact interval [a, b] ✓ J(µ) \ J(µo). Then the set G is uniformly bounded on
[a, b] in the sense of van de Geer (1993) (see Appendix B), namely:

�����supg2G
|g|

�����
1

<1.

Consider further two subsets that comprise the set G of continuous functions re-
stricted to [a, b]:

Gj,n =

⇢r
µ

µo

� 1 : h(µ, µo)  2j�n, µ 2 Fblc

�
(3.25)

and

Ḡj,n =

⇢r
1� µ

1� µo

� 1 : h(µ, µo)  2j�n, µ 2 Fblc

�
, (3.26)

where �n is some sequence converging to zero, j = 1, 2, ... and h(µ, µo) is the
Hellinger distance

h(bµn, µ) =

s
1

2

Z

R
((
p
1� µ�

p
1� bµn)2 + (

p
µ�

p
bµn)2)dQ.

We proceed by considering the set Gj,n; all derivations for the set Ḡj,n follow in a
similar way.

Consider the �n-entropy (see Kolmogorov and Tikhomirov (1959) and Appendix
B for definitions and details) and metric entropy with bracketing (see, e.g., van de
Geer (1993) and Appendix B) of the set Gj,n, namely

H (�n,Gj,n, || · ||Pn)

and
H

B(�n,Gj,n, || · ||Po),

respectively. Here || · ||Po and || · ||Pn are the restrictions of the norms || · ||2,Po and
|| · ||2,Pn to the space L2([a, b]) � Gj,n |[a,b] (i.e. with respect to the first component
Q of Pµ = Q⌦ �), that is

||g||M =

 Z
b

a

g2dM

!1/2

,
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for g 2 L2([a, b]) and a given probability measure M. Notice that the embedding
Gj,n |[a,b]⇢ L2([a, b]) holds true indeed because

Z
b

a

✓r
µ

µo

(t)� 1

◆2

dt  1

µo(a)

Z
b

a

⇣p
µ(t)�

p
µo(t)

⌘2
dt

 2h2(µ, µo)

µo(a)
 2 · (2j�n)2

µo(a)

=
22j+1

µo(a)n2↵
! 0

as n!1, where the last inequality follows from (3.25) and the last equality holds
true with �n := 1/n↵ and ↵ 2 (0, 1/2].

Consider now a sequence Qn

w! Q (almost surely) and recall that a, b 2 supp(Q) ⇢
[a, b] and, furthermore, Q([a, a+✏)) > 0 and Q((b�✏, b]) > 0 for some small ✏ > 0.
Notice that the previous result, i.e.

Z
b

a

✓r
µ

µo

(t)� 1

◆2

dt! 0

implies Z
b

a

|bµn � µ|dQn ! 0,

as n ! 1. Let now I ⇢ [a, b] and Qn(I) � � > 0. Then there are two sequences
ban and bbn such that ban !p a and bbn !p b. Furthermore, it holds true that

Z
b

a

|bµn � µ|dQn � Qn(I)min
x2bIn

|bµn(x)� µ(x)|,

where bIn ⇢ [ban,bbn]. Then

(bµn � µ)(ban)!p 0

and
(bµn � µ)(bbn)!p 0.

Notice that

Qn([a, a+ ✏)) = Qn((�1, a+ ✏)) � Q([a, a+ ✏)) + op(1).

Consider µ(a), µ(b) 2 [�, 1� �], where � 2 (0, 1/2). Then

bµn(a) = exp(log(bµn(a)))

= exp(log(bµn(a))� log(bµn(ban)))bµn(ban)

= exp

✓
(a� ban)

log(bµn(a))� log(bµn(ban))
a� ban

◆
bµn(ban).
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Furthermore, according to the first inequality from Lemma 1.25,

log(bµn(a))� log(bµn(ban))
a� ban

 bµ0
n
(ban)

bµn(ban)

 log(bµn(ban))� log(bµn(bbn))
ban �bbn

!p

log(µ(a))� log(µ(b))

a� b
.

Since ban � a!p 0 and bµn(ban)!p µ(a) we finally obtain

bµn(a)!p µ(a).

Analogously one can proceed in the case of bµn(b) deriving

bµn(b)!p µ(b).

These results imply

sup
t2[a,b]

�����

s
bµn

µo

(t)� 1

����� = OP (1). (3.27)

It follows from the result of van de Geer (1993) (Theorem 3.2 and Appendix B),
that, having a uniform boundedness of G (which we have already shown above) and
�n
p
n � 1,

h(bµn, µo) = Op(�n),

provided that the following conditions hold true:

lim
j!1

lim sup
n!1

p
H B(�n,Gj,n, || · ||Po)

2j�n
p
n

= 0, (3.28)

and

lim sup
n!1

IP

 1X

i=1

p
H (2�i�n,Gj,n, || · ||Pn)

2i2j�n
p
n

> �j for some j

!
= 0 (3.29)

for some sequence �j ! 0.
We will construct such sequence �n which fulfils these conditions and thus rep-

resents the rate of convergence in the Hellinger distance for the estimator of µo. In
order to do so, we will first need some result from the theory of empirical processes.
This result makes it possible to estimate �n-entropy and, subsequently, metric en-
tropy with bracketing. Let us recall some preliminaries.

For 0 < ↵ < 1, we consider a class of all functions on a bounded set ⌦ in Rd

that possess uniformly bounded partial derivatives up to order ↵ (the greatest integer
smaller than ↵) and whose highest partial derivatives are Lipschitz of order ↵ � ↵.
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Define for any vector k = (k1, k2, ..., kd) of d integers the following differential
operator

Dk =
�k.

�xk1
1

· · · �xkd
d

,

where k. =
P

d

i=1
ki. Then for a function g : ⌦! R let

||g||↵ = max
k.↵

sup
x

|Dkg(x)|+max
k.=↵

sup
x,y

|Dkg(x)�Dkg(y)|
||x� y||↵�↵

, (3.30)

where the suprema are taken over all x, y in the interior of ⌦ with x 6= y. Let
C↵

M
(⌦) be the set of all continuous functions g : ⌦ ! R with kgk↵  M . Then

the following result (van der Vaart and Wellner (1996), Theorem 2.7.1) holds true:

Theorem 3.5. Let ⌦ be a bounded, convex subset of Rd with non-empty interior.
There exists a constant K depending only on ↵ and d such that

H (�n, C
↵

1
(⌦), k · k1)  K�(⌦1)��d/↵

n
,

where �(⌦1) is the Lebesgue measure of the set {x : kx� ⌦k < 1}.

First we notice that, by the scaling arguments, this theorem is also valid in the case
of C↵

M
(⌦) with M > 1. Namely, for the functions f and g such that kfk↵  M

and kgk↵ M we have
kf/Mk↵  1

and
kg/Mk↵  1

and ����
f

M
� g

M

����
1

=
kf � gk1

M
.

In our case C↵

M
(⌦) ⌘ Gj,n (and, subsequently C↵

M
(⌦) ⌘ Ḡj,n) with ↵ = 2 and

↵ = 1. We have to show that there exists such M < 1 that kgk↵  M for any
g 2 Gj,n (and g 2 Ḡj,n). That is, that the following norm is finite:

����
bµn

µo

����
2

= max

8
<

: sup
t2[a,b]

�����

s
bµn(t)

µo(t)
� 1

����� , sup
t2[a,b]

������

 s
bµn(t)

µo(t)
� 1

!0������

9
=

;

+ sup
x,y2[a,b]

����
⇣q

bµn(x)

µo(x)
� 1
⌘0
�
⇣q

bµn(y)

µo(y)
� 1
⌘0����

|x� y| .

First of all we will verify that

sup
t2[a,b]

������

 s
bµn(t)

µo(t)
� 1

!0������
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is finite. Assume y > x and let bµn and µo be bi-log-concave cumulative distribution
functions (the case of constant bi-log-concave regression functions is trivial with
respect to the statement of the theorem we are proving). In what follows we write µ
instead of bµn. Consider

q
µ(y)

µo(y)
�
q

µ(x)

µo(x)

y � x
=

p
µo(x)µ(y)�

p
µ(x)µo(y)

(y � x)
p
µo(x)µo(y)


p
µo(y)µ(y)�

p
µ(x)µo(y)

(y � x)
p
µo(a)

p
µo(y)

=

p
µ(y)�

p
µ(x)

(y � x)
p
µo(a)

�!
y!x

(
p
µ(x))0

µo(a)

=
µ0(x)

2
p
µo(a)

p
µ(x)

=
µ0(x)

µ(x)
·
p
µ(x)

2
p

µo(a)

= h(x) ·
p
µ(x)

2
p

µo(a)
 h(a) ·

p
µ(b)

2
p
µo(a)

,

where h(x) = µ0(x)/µ(x). On the other hand,
q

µ(x)

µo(x)
�
q

µ(y)

µo(y)

x� y
=

p
µ(x)µo(y)�

p
µo(x)µ(y)

(x� y)
p

µo(x)µo(y)


p
µo(x)µ(x)�

p
µo(x)µ(y)

(x� y)
p
µo(b)

p
µo(x)

=

p
µ(x)�

p
µ(y)

(x� y)
p
µo(b)

�!
y!x

(
p
µ(x))0

µo(b)

=
µ0(x)

2
p
µo(b)

p
µ(x)

=
µ0(x)

µ(x)
·
p
µ(x)

2
p

µo(b)

= h(x) ·
p
µ(x)

2
p
µo(b)

� h(b) ·
p

µ(a)

2
p
µo(b)

.

Therefore

lim sup
y!x

q
µ

µo
(y)�

q
µ

µo
(x)

y � x
 1

2
h(a)

s
µ(b)

µo(a)
.

On the other hand,

lim inf
y!x

q
µ

µo
(y)�

q
µ

µo
(x)

y � x
� 1

2
h(b)

s
µ(a)

µo(b)
.
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Thus, by Lemma 3.2,
q

µ

µo
(t) is Lipschitz-continuous on [a, b] with Lipschitz-

constant

L := L(a, b) 2
"
1

2
h(b)

s
µ(a)

µo(b)
,
1

2
h(a)

s
µ(b)

µo(a)

#
.

Therefore, as it is well-known from the theory of functions,

sup
t2[a,b]

|(
p
bµn(t)/µo(t)� 1)0| <1

and
q

µ

µo
(t) � 1 is continuous on [a, b]. Hence, by the Weierstrass theorem, the

latter function is bounded on [a, b]. Analogously one proceeds in the case when µ
and µo are bi-log-concave survival functions.

Now we turn our attention to the second summand of kbµn/µok2, namely:

S (x, y) :=

����
⇣q

bµn(x)

µo(x)
� 1
⌘0
�
⇣q

bµn(y)

µo(y)
� 1
⌘0����

|x� y| .

Let x < y and write:

S (x, y) =

µ
0
(y)

µo(y)
·
p

µo(y)p
µ(y)

� µ
0
o(y)

µo(y)
·
p

µ(y)p
µo(y)

� µ
0
(x)

µo(x)
·
p

µo(x)p
µ(x)

+ µ
0
o(x)

µo(x)
·
p

µ(x)p
µo(x)

2(y � x)

=

µ
0
(y)

µo(y)
·OP (1)� µ

0
o(y)

µo(y)
·OP (1)� µ

0
(x)

µo(x)
·OP (1) +

µ
0
o(x)

µo(x)
·OP (1)

2(y � x)
,

where the last equality is due to equation (3.27). Therefore, we can consider the
following expression equivalent to the last one:

µ
0
(y)

µo(y)
� µ

0
(x)

µo(x)
+
⇣

µ
0
o(x)

µo(x)
� µ

0
o(y)

µo(y)

⌘

2(y � x)
=

1�µ(y)

µo(y)
eh(y)� 1�µ(x)

µo(x)
eh(x)

2(y � x)
+
ho(x)� ho(y)

2(y � x)
,

(3.31)
where ho = µ0

o
/µo and eh = µ0/(1� µ). Notice that

1�µ(y)

µo(y)
eh(y)� 1�µ(x)

µo(x)
eh(x)

2(y � x)
+

ho(x)� ho(y)

2(y � x)
�

1�µ(y)

µo(b)
eh(y)� 1�µ(x)

µo(a)
eh(x)

2(y � x)
.

(3.32)
Here the inequality holds true since ho is non-increasing (due to Theorem 1.7, (iii))
and therefore the summand (ho(x)� ho(y))/(2(y � x)) is non-negative. Consider
now the case when µ and µo are cumulative distribution functions. Notice that in
this case µ0, µ0

0
and eh are strictly positive (see Theorem 1.7, (iv)0). We can continue
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the last inequality in the following way:

1�µ(y)

µo(b)
eh(y)� 1�µ(x)

µo(a)
eh(x)

2(y � x)
� (1� µ(y))eh(y)

2µo(b)(y � x)
� (1� µ(x))eh(x)

2µo(a)µo(b)(y � x)

=
µo(a)(1� µ(y))� (1� µ(x))

2(y � x)
·

eh(y)
µo(a)µo(b)

+
eh(y)� eh(x)
2(y � x)

· 1� µ(x)

µo(a)µo(b)

�
eh(a)

2µo(a)µo(b)
· µo(a)(1� µ(x)) exp(µ0(x)(y � x)/(1� µ(x)))� (1� µ(x))

y � x

+
eh(y)� eh(x)
2(y � x)

· 1� µ(b)

µo(a)µo(b)

�
eh(a)

2µo(a)µo(b)
· (1� µ(x))(exp(µ0(x)(y � x)/(1� µ(x)))� 1)

y � x

+
eh(y)� eh(x)
(y � x)

· 1� µ(b)

2µo(a)µo(b)

�!
y!x

�
eh(a)eh(x)(1� µ(x))

2µo(a)µo(b)
+

(1� µ(b))eh0(x)

2µo(a)µo(b)

� �
eh(a)eh(b)(1� µ(a))

2µo(a)µo(b)
+ min

x2[a,b]

eh0(x)
1� µ(b)

2µo(a)µo(b)
.

Consider now

eh0(x) =

✓
µ0(x)

1� µ(x)

◆0
=

µ00(x)

1� µ(x)
+

✓
µ0(x)

1� µ(x)

◆2

.

Since eh(x) is non-decreasing (see Theorem 1.7, (iii)) we have eh0(x) � 0, and
therefore

µ00(x)

1� µ(x)
� �

✓
µ0(x)

1� µ(x)

◆2

.

But µ0(x)/(1 � µ(x)) is bounded. Indeed, since µ0(x) is continuous (as locally
Lipschitz-continuous), and 1� µ(x) is continuous and non-zero (see Theorem 1.7)
the ratio µ0(x)/(1�µ(x)) is continuous and, according to the Weierstrass theorem,
is bounded on the compact [a, b]. Thus

0 <
µ0(x)

1� µ(x)
M

for some1 > M > 0 and therefore

�
✓

µ0(x)

1� µ(x)

◆2

� �M2.
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Hence min
x2[a,b]

eh0(x) is finite and thus the lower bound for S (x, y) is finite as well.

Let us now find the upper bound. Consider
µ
0
(y)

µo(y)
� µ

0
(x)

µo(x)
+
⇣

µ
0
o(x)

µo(x)
� µ

0
o(y)

µo(y)

⌘

2(y � x)
=

µ0(y)

2µo(y)(y � x)
+

µ0(x)

2µo(x)(x� y)

� ho(y)� ho(x)

2(y � x)

 µ0(y)

2µo(x)(y � x)
+

µ0(x)

2µo(x)(x� y)

� ho(y)� ho(x)

2(y � x)

=
1

2µo(x)
· µ

0(x)� µ0(y)

x� y
� ho(y)� ho(x)

2(y � x)
.

Recall that h = µ0/µ is non-increasing function; then

µ0(x)� µ0(y)

x� y
=

µ(x)h(x)� µ(y)h(y)

x� y

= h(x)
µ(x)� µ(y)

x� y
+ µ(y)

h(x)� h(y)

x� y

 h(x)
µ(x)� µ(y)

x� y
,

because x < y and h(x)� h(y) � 0. Continue the last inequality:

h(x)
µ(y)� µ(x)

y � x
 h(a)

µ(y)� µ(x)

y � x

 h(a)µ(x)
exp(h(x)(y � x))� 1

y � x

�!
y!x

h(a)h(x)µ(x)

 h2(a)µ(b).

Taking everything together we finally obtain the upper bound:

1

2µo(x)
· µ

0(x)� µ0(y)

x� y
� ho(y)� ho(x)

2(y � x)
�!
y!x

h2(a)µ(b)

2µo(x)
� h0

o
(x)

2

 h2(a)µ(b)

2µo(a)
� 1

2
min

x2[a,b]

h0
o
(x),

where min
x2[a,b]

h0
o
(x) is finite. Indeed, consider

h0
o
(x) =

✓
µ0
o
(x)

µo(x)

◆0
=

µ00
o
(x)

µo(x)
�
✓
µ0
o
(x)

µo(x)

◆2

.

103



3. Proofs

Since ho(x) is non-increasing (see Theorem 1.7, (iii)) we have h0
o
(x)  0, and

therefore

µ00
o
(x)

µo(x)

✓
µ0
o
(x)

µo(x)

◆2

.

But µ0
o
(x)/µo(x) is bounded. Indeed, since µ0

o
(x) is continuous (as locally Lipschitz-

continuous), and µo(x) is continuous and non-zero (see Theorem 1.7), the ratio
µ0
o
(x)/µo(x) is continuous and, according to the Weierstrass theorem, is bounded

on the compact [a, b]. Thus

0 <
µ0
o
(x)

µo(x)
Mo

for some 0 < Mo <1, and therefore

✓
µ0
o
(x)

µo(x)

◆2

M2

o
.

Hence min
x2[a,b]

h0
o
(x) is finite and thus the upper bound for S (x, y) is finite as well.

Thus we have shown that
��� bµn

µo

���
2

is finite in the case when µ and µo are bi-log-
concave distribution functions.

Consider now the case when µ and µo are bi-log-concave survival functions. No-
tice that in this case µ0, µ0

o
and eh, eho, h and ho are strictly negative. Indeed, let us

consider µ0 for simplicity. Condition (iii) of Theorem 1.7 implies that µ0 < 0 on
J(µ). For if µ0(xo) = 0 for some xo 2 J(µ), then isotonicity of eh = µ0/(1 � µ)
would imply that µ0(x) = 0 for x  xo, and antitonicity of h = µ0/µ would yield
µ0(x) = 0 for x � xo. Hence µ would be constant on J(µ), a violation of µ being
a survival function on R. Having that in mind, we start from (3.31) and (3.32) in
order to derive the lower bound. We continue the latter inequality in the following
way:

1�µ(y)

µo(b)
eh(y)� 1�µ(x)

µo(a)
eh(x)

2(y � x)
�

1�µ(y)

µo(a)µo(b)
eh(y)� 1�µ(x)

µo(a)
eh(x)

2(y � x)

=
µo(b)(1� µ(x))� (1� µ(y))

2(x� y)
·

eh(x)
µo(a)µo(b)

+
eh(y)� eh(x)
2(y � x)

· 1� µ(y)

µo(a)µo(b)

=
(1� µ(x))� (1� µ(y))

2(x� y)
·

eh(a)
µo(a)µo(b)

+
eh(y)� eh(x)
2(y � x)

· 1� µ(a)

µo(a)µo(b)
,

where the last inequality is due to the fact that the first summand in the numerator
is negative as eh < 0 (and so by multiplying it with µo(a) < 1 will only make the
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whole fraction smaller). We continue the last inequality:

(1� µ(x))� (1� µ(y))

2(x� y)
·

eh(a)
µo(a)µo(b)

+
eh(y)� eh(x)
2(y � x)

· 1� µ(a)

µo(a)µo(b)

=
eh(a)

2µo(a)µo(b)
· (1� µ(y)) exp(µ0(y)(x� y)/(1� µ(y)))� (1� µ(y))

x� y

+
eh(y)� eh(x)
2(y � x)

· 1� µ(a)

µo(a)µo(b)

�!
x!y

�
eh(a)eh(y)(1� µ(y))

2µo(a)µo(b)
+

(1� µ(a))eh0(y)

2µo(a)µo(b)

� �
eh(a)eh(b)(1� µ(b))

2µo(a)µo(b)
+ min

y2[a,b]

eh0(y)
1� µ(a)

2µo(a)µo(b)
.

Consider now

eh0(y) =

✓
µ0(y)

1� µ(y)

◆0
=

µ00(y)

1� µ(y)
+

✓
µ0(y)

1� µ(y)

◆2

.

Since eh(y) is non-decreasing eh0(y) � 0, and therefore

µ00(y)

1� µ(y)
� �

✓
µ0(x)

1� µ(x)

◆2

.

But µ0(x)/(1 � µ(x)) is bounded. Indeed, since µ0(x) is continuous (as locally
Lipschitz-continuous), and 1� µ(x) is continuous and non-zero (see Theorem 1.7)
the ratio µ0(x)/(1�µ(x)) is continuous and, according to the Weierstrass theorem,
is bounded on the compact [a, b]. Therefore, min

x2[a,b]

eh0(x) is finite and thus the lower

bound for S (x, y) is finite, too.
Let us now find the upper bound. Consider

µ
0
(y)

µo(y)
� µ

0
(x)

µo(x)
+
⇣

µ
0
o(x)

µo(x)
� µ

0
o(y)

µo(y)

⌘

2(y � x)
=

µ0(y)

2µo(y)(y � x)
+

µ0(x)

2µo(x)(x� y)

� ho(y)� ho(x)

2(y � x)

 µ0(y)

2µo(x)(y � x)
+

µ0(x)

2µo(y)(x� y)

� ho(y)� ho(x)

2(y � x)

=
1

2µo(y)
· µ

0(x)� µ0(y)

x� y
� ho(y)� ho(x)

2(y � x)
.
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3. Proofs

Recall that h = µ0/µ is non-increasing function; then

µ0(x)� µ0(y)

x� y
=

µ(x)h(x)� µ(y)h(y)

x� y

= h(x)
µ(x)� µ(y)

x� y
+ µ(y)

h(x)� h(y)

x� y

 h(x)
µ(x)� µ(y)

x� y
,

because x < y and h(x)� h(y) � 0. Continue the last inequality:

h(x)
µ(y)� µ(x)

y � x
 h(a)

µ(y)� µ(x)

y � x

 h(a)µ(x)
exp(h(x)(y � x))� 1

y � x

�!
y!x

h(a)h(x)µ(x)

 h2(a)µ(a).

Taking everything together we finally obtain the upper bound:

1

2µo(y)
· µ

0(x)� µ0(y)

x� y
� ho(y)� ho(x)

2(y � x)
�!
y!x

h2(a)µ(a)

2µo(y)
� h0

0
(x)

2

 h2(a)µ(a)

2µo(b)
� 1

2
min

x2[a,b]

h0
0
(x),

where min
x2[a,b]

h0
0
(x) is finite due to the similar arguments as in the case of the lower

bound.
Thus we have proved that S is bounded and therefore the norm

��� bµn

µo

���
2

is finite
also in the case when µ and µo are bi-log-concave survival functions.

Now all conditions of Theorem 3.5 are verified, and together with Corollary 1.14
and equation (3.27) this theorem yields the upper bound for �n-entropy with respect
to the supremum norm:

H (�n,Gj,n, || · ||1)  cp
�n

, (3.33)

where c > 0 and g 2 Gj,n. It is well known (see, e.g. van der Vaart and Wellner
(1996), p.84), that

H (�n,Gj,n, || · ||Pn) H
B(2�n,Gj,n, || · ||Pn).

Further, it follows from van de Geer (1993) (see also Appendix B) and the continuity
of the functions from Gj,n (on [a, b]) that

H
B(2�n,Gj,n, || · ||Po) H (�n,Gj,n, || · ||Po,1) = H (�n,Gj,n, || · ||1),
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where

||g||Po,1 = esssup
x2[a,b]

|g(x)|

is the essential supremum of g 2 Gj,n on [a, b]. This result, applied with regard to
the measure Pn, together with the previous inequality, yields:

H (�n,Gj,n, || · ||Pn) H (�n,Gj,n, || · ||Pn,1) = H (�n,Gj,n, || · ||1).

The equalities in the preceding two expressions follow from equality of supremum
and essential supremum of a continuous function on Lebesgue-measurable set E ✓
Rm whose intersection with any open ball with centre in E has non-zero Lebesgue
measure. This is a standard result from the theory of functions and measure theory
which obviously holds true for [a, b] ⇢ R.

First we consider condition (3.28):

p
H B(�n,Gj,n, || · ||Po)

2j�n
p
n


p

H (�n/2,Gj,n, || · ||1)

2j�n
p
n

=

p
c

2j

qp
2/
p
�n

�n
p
n

.

Hence, in order to satisfy condition (3.28), it is sufficient if

lim sup
n!1

1

�5/4n n1/2

<1

since

lim
j!1

1

2j
= 0.

Let �n = 1/n↵, where 0 < ↵  1/2. Then condition �n
p
n � 1 is satisfied. Notice

that we don’t consider sequences like �n = 1/ log n with  > 0 to ensure faster
rate of convergence. Further, it should be the case that

lim sup
n!1

1

n1/2�5↵/4
<1.

Therefore ↵  2/5 and we choose ↵ = 2/5 so that �n will have the fastest possible
rate of convergence.

Otherwise, if ↵ > 2/5, one obtains

lim sup
n!1

n5↵/4�1/2 =1.

107



3. Proofs

Now we consider condition (3.29):

1X

i=1

p
H (2�i�n,Gj,n, || · ||Pn)

2i2j�n
p
n


1X

i=1

p
H (2�i�n,Gj,n, || · ||1)

2i2j�n
p
n

=
1X

i=1

p
c

2j

p
2i/2/

p
�n

2i�n
p
n

=
1X

i=1

p
c

2j

p
2i/2n↵/2

2in1/2�↵
.

Hence, in order to satisfy that condition, it would be sufficient if

lim sup
n!1

1X

i=1

1

23i/4
n↵/4

n1/2�↵
= 0.

Since the series
1X

i=1

1

23i/4

converges it must hold true that

lim sup
n!1

1

n1/2�5↵/4
= 0.

Applying the arguments similar to the ones above we obtain ↵  2/5 and again the
choice is ↵ = 2/5.

Otherwise, if ↵ > 2/5, it follows that

lim sup
n!1

n5↵/4�1/2 =1.

Having established that �n = n�2/5, we can finally write

h(bµn, µ) = Op(�n) = Op

✓
1

n2/5

◆
.

Remark 3.6. Notice that the boundedness of S and Lemma 3.2, (i) implies straight-
forwardly that the first derivatives of the functions from Gj,n (and subsequently
from Ḡj,n) are Lipschitz-continuous of order 1 and therefore bounded on [a, b] ⇢ R.
Thus, by verifying conditions of Theorem 3.5 we also verified conditions of Theorem
XV from Kolmogorov and Tikhomirov (1959) which yields the same upper bound for
the entropy as in equation (3.33):
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Theorem 3.7 (Theorem XV, Kolmogorov and Tikhomirov (1959)). Let A be a set
of functions g on [a, b] such that for every x 2 [a, b]:

(i) |g(k)(x)|  Ck, k = 0, ..., p;
(ii) |g(p)(x+ h)� g(p)(x)|  C|h|↵, 0 < ↵  1.
If the constants C0, C1, ..., Cp, C are positive then

H (✏,A , || · ||1) ⇠
✓
1

✏

◆ 1
p+↵

.

In our setting (Gj,n [ Ḡj,n) ⇢ A and p = ↵ = 1 whereas ✏ = �n which
immediately yields the result as in (3.33).

Proof of Corollary 2.6. Notice that bi-log-concave function µ belongs to the class
of functions for which the optimality of convergence rate of estimators bµ on the
compact [a, b] with respect to L1-norm (see Stone (1982), Eggermont and LaRiccia
(2009), p. 10 and pp. 17 � 19, and also Appendix A) holds true. Indeed, consider
the class GC([a, b]) consisting of the functions g on [a, b] satisfying the following
conditions:

(i) g 2 Cm�1([a, b]);
(ii) g(m�1) is absolutely continuous;
(iii) ||g(m)||1  C,

where m � 1 and 0 < C <1. Then the rate O(n�m/(2m+1)) is the optimal rate of
convergence of nonparametric estimators bgn of g 2 GC([a, b]) with respect to Lq-
norm, q 2 [1,1). Moreover, the corresponding estimators bgn are asymptotically
optimal.

When applied to our setting, condition (iii) is satisfied indeed because Lemma
1.23 guarantees that µ00 is uniformly bounded on [a, b]. Besides, conditions (i) and
(ii) are satisfied as well due to Theorem 1.7, (iv). Thus for bi-log-concave µ we
have m = 2.

Notice that the classes Gj,n and Ḡj,n also satisfy conditions for the optimality of
convergence rates on the compact [a, b] with m = 2. Indeed, Lipschitz-continuity
(and therefore the boundedness) on [a, b] of the first derivatives of the functions from
Gj,n and Ḡj,n was pointed out in Remark 3.6 and implies also the boundedness of
the second derivatives of these functions.

Finally, since ||Pn�P ||1  2H(Pn, P ) for probability measures Pn, P (see e.g.
Pollard (2002)), we obtain

||bµn � µ||1  2H(Pn, P ) ⌘ 2h(bµn, µ),

that is, q = 1, and the result of the corollary follows.
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A. Nonparametric Rates of
Convergence

The following definitions can be found in Stone (1982).
Let (X,Y ) be a pair of random variables and let ✓ denote the regression function

of the response Y on X , that is IE(Y |X) = ✓(X). Let b✓n with n � 1 denote
estimators of ✓, so that b✓n is based on a random sample (X1, Y1), ..., (Xn, Yn) of
size n from the distribution of (X,Y ).

The unknown regression function ✓ is assumed to belong to a collection ⇥ of
suitably smooth functions on Rd, and, besides, ✓(x) 2 J , where J is an open
interval in R for ✓ 2 ⇥ and x 2 Rd. Let IP✓ denote the dependence of various
probabilities on ✓.

Let further T (✓) = T (·; ✓) denote an arbitrary finite linear combination (with
constant coefficients) of the derivatives of ✓. One of the examples is T (x; ✓) = ✓(x).
Let bTn be an arbitrary (measurable) estimator of T (✓) based on the training sample
X1, Y1, ..., Xn, Yn.

Let C be a compact subset of Rd having non-empty interior and q 2 (0,+1].
Let {bn} be a sequence of (eventually) positive constants.

Definition A.1. The sequence {bn} is called a lower rate of convergence if there is
a c > 0 such that

lim
n

inf
bTn

sup
⇥

IP✓(|| bTn � T (✓)||q,C � cbn) = 1.

Definition A.2. The sequence {bn} is called an achievable rate of convergence if
there is a sequence of estimators { bTn} and a c > 0 such that

lim
n

sup
⇥

IP✓(|| bTn � T (✓)||q,C � cbn) = 0. (A.1)

Definition A.3. The sequence {bn} is called an optimal rate of convergence if it is
both a lower and an achievable rate of convergence.

Notice that if {bn} is a lower rate of convergence and {b0
n
} is an achievable rate

of convergence, then there are positive constants c and no such that b0
n
� cbn for

n � no. If {bn} and {b0
n
} are both optimal rates of convergence, then there are

positive constants c and no such that

cbn  b0
n
 c�1bn
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A. Nonparametric Rates of Convergence

for n � no. Thus it is reasonable to refer to any optimal rate of convergence as the
optimal rate of convergence.

Definition A.4. If {bn} is the optimal rate of convergence and { bTn} satisfies (A.1),
estimators bTn, n � 1 are said to be asymptotically optimal.
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B. Some Notions from the Theory
of Empirical Processes

The following definitions and results can be found in van de Geer (1993).
Let (W,d) be a space with a semi-metric d, and let ⇤ be a subset of W .

Definition B.1. A collection T of subsets U ⇢ W is called a �-covering of ⇤, if
diam(U)  2� for every U 2 T and ⇤ = [

U2T

U .

Definition B.2. T is called a �-covering set.

Notice that one can always take T to be a collection of balls

U = {w 2W | d(u,w)  �},

where u 2 W . The collection of centres of these balls will also be referred to as a
�-covering set.

Definition B.3. The �-covering number of ⇤ for the metric d is the number of ele-
ments of the smallest �-covering set of ⇤.

Notation B.4. N(�,⇤, d) is the �-covering number of ⇤.

Definition B.5. The �-entropy of ⇤ is H (�,⇤, d) := logN(�,⇤, d).

Definition B.6. If H (�,⇤, d) < 1 for all � > 0, then ⇤ is called totally bounded
for d.

Let (X ,A ) be some measurable space and g 2 G ✓ Lq(P ), where P is some
probability measure on (X ,A ) and 1  q  1. Define

kgkP,q :=

✓Z
|g|qdP

◆1/q

for 1  q <1,

kgkP,1 := esssup
x

|g(x)|

and kgk1 = sup
x

|g(x)| as usually.

Further define NB(�,G , k · kP,q) as the minimal k for which there exist gL
1

, gU
1

,
..., gL

k
, gU

k
such that for each g 2 G

gL
i
 g  gU

i

for some i and
kgU

i
� gL

i
kP,q  �.
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B. Some Notions from the Theory of Empirical Processes

Definition B.7. The metric entropy with bracketing is defined as

H (�,G , k · kP,q) := logNB(�,G , k · kP,q).

Remark B.8.

H
B(2�,G , || · ||P,q) H (�,G , || · ||P,1).

Definition B.9. Set G is called uniformly bounded if

�����supg2G
|g|

�����
1

<1.

Consider a class of probability measures {P✓, ✓ 2 ⌦} on (X ,A ) dominated by
a �-finite measure ⌫. Denote by f✓ := dP✓/d⌫ the density of P✓, ✓ 2 ⌦. Let b✓n
be a maximum likelihood estimator of ✓o based on a sequence of i.i.d. observations
X1, X2, ... from Po := P✓o

, ✓o 2 ⌦. Define

Pn :=
1

n

nX

k=1

�Xk

to be the empirical distribution based on the first n observations. Write fo := f✓o

and bfn := fb✓n
. Consider further a class of functions

g(f) := {(
p

f/fo � 1)1{fo>0}}.

Denote by H(P✓, Po) the Hellinger distance between probability measures P✓ and
Po or, equivalently, h(f✓, fo) between the corresponding densities f✓ and fo:

h(f✓, fo) = H(P✓, Po) ⌘

s
1

2

Z
(
p
f✓ �

p
fo)2d⌫.

Consider now a subclass of g(f):

Gn,j := {g(f✓), ✓ 2 ⌦ : h(fo, f✓)  2j�n},

where j = 1, 2, ..., and �n is some sequence of positive numbers.

Theorem B.10 (van de Geer (1993), Theorem 3.2). Suppose G is uniformly bounded.
Let {�n} be a sequence for which �n

p
n � 1 and

lim
j!1

lim sup
n!1

p
H B(�n,Gj,n, || · ||Po)

2j�n
p
n

= 0

and

lim sup
n!1

IP

 1X

i=1

p
H (2�i�n,Gj,n, || · ||Pn)

2i2j�n
p
n

> �j for some j

!
= 0

for some sequence �j ! 0. Then

h( bfn, fo) = Op(�n).
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affine transformation, 10, 11
algorithm

logarithmic barrier penalty, 49
pool-adjacent-violators, 22

antitonic
estimator, 51

antitonicity, 6, 104
Armijo

condition, 44, 50

bi-log-concavity, 4, 24
constraint, 4, 7, 15

reparameterized, 44
property, 19

boundedness
uniform, 13, 71, 98

Brownian bridge, 17

concave
bound, 7
interior

procedure, 19, 21
majorant, 22

confidence band, 16, 19
consistent, 36
nonparametric, 16, 24
shape-constrained, 19

confidence region
shape-constrained, 24

convergence
in probability, 68

uniform, 68
pointwise, 68, 71
uniform, 71, 91

weak, 12, 68
convex

bound, 7
set, 6, 12

convolution, 10
coverage

probability, 19
cumulative distribution function, 4

bi-log-concave, 4, 10
truncated, 11

�-entropy, 115
�n-entropy, 96, 98
density, 4

bi-modal, 7
k-modal, 7
log-concave, 4, 10

distribution
Beta, 4
empirical, 95, 116
function

bi-log-concave, 12
Gamma, 5
light-tailed, 10, 14, 15
log-concave, 4
log-normal, 4
logistic, 24
Pareto, 4
uniform, 12
Weibull, 4

estimator
bi-log-concave regression, 41, 55,
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isotonic regression, 41, 55
maximum likelihood, 44

nonparametric, 41

function, 3
antitonic, 6
bi-log-concave, 4, 13
bounded

essentially, 71
co-exponential, 19
concave, 4, 22, 63
continuous

absolutely, 38
convex, 85

strictly, 17
degenerate, 13
empirical distribution, 16
exponential, 15, 19
interpolating, 19
isotonic, 6, 68
Lipschitz-continuous, 5, 7, 66,

84, 101
globally, 7
locally, 5, 6, 42, 66

log-concave, 11, 41
logistic, 41
logit, 42

inverse, 41
moment-generating, 10

finite, 10
non-degenerate, 3
survival, 7, 20

Hölder class, 7
hazard function, 5, 7, 13
Hellinger

consistency, 41, 46
distance, 46, 96, 116

isotonic
estimator, 51

isotonicity, 6, 104

Kolmogorov’s maximal inequality, 92

Kolmogorov-Smirnov band, 16, 24,
39

L1

-derivative, 6
limit

of a sequence of functions, 13
of distributions, 10
weak, 10, 13

Lipschitz
constant, 24, 66, 84, 101
of order 1, 108

Lipschitz-continuity, 63
log-likelihood

conditional negative, 43, 55
normalized negative, 92

logarithmic barrier penalty, 44

mapping
concave, 11

mean excess function, 14
measure

counting, 46, 95
Dirac, 4, 47
dominating, 95
Lebesgue, 99
probability, 46, 95
�-finite, 46, 95

metric entropy with bracketing, 96,
98, 116

Newton-Raphson method, 44
norm

Lq , 109
supremum, 12, 18, 68
uniform, 12

order statistics, 16
Owen’s band, 17, 24

refined, 18, 39

penalty
logarithmic barrier

parameter, 55
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Index

random design, 45
rate of convergence, 38, 41, 47
regression

bi-log-concave
binary, 41

concave, 41
isotonic, 41
logistic, 41, 44, 55

reverse hazard function, 5, 7, 13

sequence
tight, 91

shape constraint, 19, 41
bi-log-concave, 24

step size
correction, 44

supremum, 38
essential, 107

survival function, 14

test, 18
goodness-of-fit, 17

test statistic, 17, 18
Berk-Jones, 17

triangular observation scheme, 44
truncation

of distribution, 10

uniform equicontinuity, 71
uniformly bounded set, 96, 116
uniformly equicontinuous, 71

Weighted Kolmogorov-Smirnov band,
16, 39
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List of Symbols
Symbols used in Chapters 1� 3. This list is not exhaustive.

Symbol Description

F cumulative distribution function

bFn empirical distribution function

f probability density function

fµ density of probability measure Pµ w.r.t. the dominating measure ⌫,
p. 90

Fblc class of all bi-log-concave functions on R, p. 4

Fblcd class of distributions with bi-log-concave F , p. 9

�(·) Gamma function, p. 13

h(·, ·) Hellinger distance, p. 44

H(P, Po) Hellinger distance between probability measures P and Po, p. 91

H(f, fo) Hellinger distance between probability densities, p. 91

H (�, ·, ·) �-entropy, � > 0, p. 92

H
B(�, ·, ·) �-entropy with bracketing, � > 0, p. 92

J(F ) {x 2 R : 0 < F (x) < 1}, where F : R! [0, 1], p. 3

Lp(⌦) space of functions on ⌦ ⇢ Rd for which the p-th power of the abso-
lute value is Lebesgue integrable, d � 1 and p � 1, p. 13

N(m, v) Gaussian distribution with mean m and variance v, p. 6
U([a, b]) uniform distribution on [a, b] 2 R, p. 10
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KS
n,↵

(1� ↵)-quantile of the Kolmogorov-Smirnov test statistic, p. 14

WKS
n,↵

(1� ↵)-quantile of weighted Kolmogorov-Smirnov statistic, p. 14

logit(u) inverse logistic function log( u

1�u
) for 0 < u < 1, p. 40

(Ln, Un) unconstrained confidence band, p. 13

(Lo
n
, Uo

n
) shape-constrained confidence band, p. 17

µ bi-log-concave function, p. 39

bµ ⌘ bµn maximum likelihood estimator of bi-log-concave regression func-
tion, p. 41

P family {Pµ, µ 2 Fblc} of probability measures indexed by µ, p. 90

Pn, Qn empirical distributions, p. 90

⌫ �-finite measure dominating Pµ, p. 90

T1(F ) sup
x2J(F )

f(x)

F (x)
, p. 9

T2(F ) sup
x2J(F )

f(x)

1�F (x)
, p. 9

✓ logit(µ), p. 40

Fmon family of functions that are either non-decreasing or non-increasing,
p. 43

126



Erklärung
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