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Abstract

Doctor of Philosophy in Biomedical Engineering

Lung Pattern Analysis using Artificial Intelligence for the Diagnosis Support of
Interstitial Lung Diseases

by CHRISTODOULIDIS Stergios

Interstitial lung diseases (ILDs) is a group of more than 200 chronic lung disorders char-
acterized by inflammation and scarring of the lung tissue that leads to respiratory failure.
Although ILD is a heterogeneous group of histologically distinct diseases, most of them ex-
hibit similar clinical presentations and their diagnosis often presents a diagnostic dilemma.
Early diagnosis is crucial for making treatment decisions, while misdiagnosis may lead to
life-threatening complications. If a final diagnosis cannot be reached with the high resolution
computed tomography scan, additional invasive procedures are required (e.g. bronchoalve-
olar lavage, surgical biopsy). The aim of this PhD thesis was to investigate the components of
a computational system that will assist radiologists with the diagnosis of ILDs, while avoid-
ing the dangerous, expensive and time-consuming invasive biopsies. The appropriate inter-
pretation of the available radiological data combined with clinical /biochemical information
can provide a reliable diagnosis, able to improve the diagnostic accuracy of the radiologists.

In this thesis, we introduce two convolutional neural networks particularly designed for
ILDs and a training scheme that employs knowledge transfer from the similar domain of
general texture classification for performance enhancement. Moreover, we investigate the
clinical relevance of breathing information for disease classification. The breathing informa-
tion is quantified as a deformation field between inhale-exhale lung images using a novel 3D
convolutional neural network for medical image registration. Finally, we design and eval-
uate the final end-to-end computational system for ILD classification using lung anatomy
segmentation algorithms from the literature and the proposed ILD quantification neural net-
works. Deep learning approaches have been mostly investigated for all the aforementioned
steps, while the results demonstrated their potential in analyzing lung images.

Keywords — Interstitial Lung Diseases, Diffuse Lung Diseases, High Resolution Tomogra-
phy, Magnetic Resonance Imaging, Computer Aided Diagnosis, Machine Learning, Deep
Convolutional Neural Networks, Semantic Segmentation, Transfer Learning, Medical Im-
age Registration, Breathing Quantification, Radiomics
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Chapter 1

Introduction

1.1 Interstitial Lung Diseases

The term interstitial lung disease (ILD) refers to a group of more than 200 chronic lung disor-
ders characterized by inflammation of the lung tissue, which often leads to scarring - usually
referred to as pulmonary fibrosis. Fibrosis may progressively cause lung stiffness, reducing
the ability of the air sacs to capture and carry oxygen into the bloodstream and eventually
leads to permanent loss of the ability to breathe. ILDs account for 15 percent of all cases seen
by pulmonologists [1] and can be caused by autoimmune diseases, genetic abnormalities,
infections and long-term exposures to hazardous materials. However, the cause of ILDs is
mostly unknown and the lung manifestations are described as idiopathic interstitial pneu-
monia (IIP). In 2002, an international multidisciplinary consensus conference, including the
American Thoracic Society (ATS) and the European Respiratory Society (ERS), proposed a
classification for ILDs [2], in order to establish a uniform set of definitions and criteria for
their diagnosis. These guidelines were updated and amended for diagnostics in 2013 [3] and
2017 [4].

The diagnosis of an ILD involves, questioning the patients about their clinical history, a
thorough physical examination, pulmonary function testing, a chest X-ray and a high reso-
lution computed tomography (HRCT) scan. HRCT is generally considered to be the most
appropriate protocol, due to the specific radiation attenuation properties of the lung tissue.
The imaging data are interpreted by assessing the extent and distribution of the various ILD
pathological tissue types in the chest CT scan. Typical ILD pathological tissue types in CT
images are: reticulation, honeycombing, ground glass opacity, consolidation and micronod-
ules. A few examples of the different tissue types are presented in Figure 1.1.

Although ILDs are a histologically heterogeneous group of diseases, they mostly have
rather similar clinical manifestations with each other, or even with different lung disorders,
so that differential diagnosis is fairly difficult even for experienced physicians. This inher-
ent property of ILDs, as well as the lack of strict clinical guidelines and the large quantity
of radiological data that radiologists have to scrutinize, explain the low diagnostic accuracy
and the high inter- and intra- observer variability, which has been reported to be as great
as 50% [5]. In ambiguous cases, additional invasive procedures are required, such as bron-
choalveolar lavage and histological confirmation. However, performing a surgical biopsy
exposes the patient to a number of risks and increases the healthcare costs, while even such
methods do not always provide a reliable diagnosis.
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FIGURE 1.1: Examples of healthy tissue and typical ILD patterns from left
to right: healthy, ground glass opacity, micronodules, consolidation, reticula-
tion, honeycombing, combination of GGO and reticulation.
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1.2 Computer Aided Diagnosis Support Systems

In order to minimize the dangerous and sometimes unreliable histological biopsies, much
research has been conducted on computer aided diagnosis systems (CAD) which could as-
sist radiologists and increase their diagnostic accuracy. A CAD system for lung HRCT scan
assessment typically consists of three stages: (a) lung anatomy segmentation, (b) lung tis-
sue characterization and (c) differential diagnosis. The first stage, refers to the identification
of the lung border, the separation of the lobes and the detection and removal of the bron-
chovascular tree. The second stage, includes detection and recognition of the different tissue
abnormalities (HRCT texture patterns). Finally, the third stage combines the previous re-
sults so as to estimate the extend and distribution of pathological tissue within the lung
and outputs a probability based differential diagnosis. Such systems mostly utilize machine
learning approaches in order to perform each task and use annotated data for training. In
the following sections, the most important research studies for each of the aforementioned
stages are presented.

1.2.1 Anatomy Segmentation

Lung tissue normally presents substantially lower density than its surrounding tissues, re-
sulting in a large contrast in Hounsfield Units (HU) within thorax CT images. Therefore,
many of the conventional lung segmentation methods rely on simple intensity thresholding
techniques followed by morphological operations and connected component analysis for
the refinement of the results [6], [7]. In the cases however where high intensity pathological
tissue (e.g. nodules) is manifested near the borders of the lung cavity, simple morphological
operations and filling techniques are not sometimes sufficient to obtain an accurate segmen-
tation of lung field. For this reason, other geometric approaches were utilized, such us the
“rolling ball” operation [8]. More recently, after the enchanted capabilities of the multi-
detector CT scanners that can produce volumetric scans, 3D based approaches were also
studied [9], [10]. These simple intensity methods however, become unreliable in cases con-
taining pathologies with high density such as ILDs. The high density of the ILD patterns
that corresponds to high attenuation values, along with their often peripheral and basal
manifestations, can cause severe under-segmentation problems propagating the error to all
subsequent steps of the CAD system. A typical approach for the segmentation of the lung
fields therefore involves a couple of supplementary steps for the correction of the final re-
sult. Korfiatis et al. [11] applied k-means clustering followed by a filling operation to obtain
an initial lung field estimation and then used iterative support vector machine (SVM) clas-
sification of border pixels based on gray level and wavelet coefficient statistics features. In
order to exploit all available information, while avoiding the strong dependency from im-
age intensity and special texture characteristics, additional thorax anatomical features were
proposed in some works. Hua et al. [12] applied a graph search algorithm with a cost func-
tion that combines anatomical information, image intensity, and image gradient. Prasad et
al. [13] proposed an adaptive thresholding technique that exploits the fact that the curvature
of the ribs and the curvature of the lung boundary are closely matched.

1.2.2 Tissue Characterization

The term lung disease quantification includes the detection and recognition of the various
ILD pathologies, as well as the identification of their extent in the lung. Since ILDs are
generally manifested as texture alterations of the lung parenchyma, most of the proposed
systems employ texture classification schemes on local regions of interest (ROI). A typical
lung disease quantification scheme takes as input a local 2D or 3D ROI which is described
by a chosen feature set and uses an artificial intelligent (Al) system to classify it. The first
proposed systems used handcrafted texture features, in order to describe the ROIs, such
as first order statistics, gray level co-occurrence matrices, run-length matrices, and fractal
analysis [14]. Other systems, utilized filter banks [15], [16], morphological operations [6],
wavelet transformations [17], and local binary patterns [18]. More recently, researchers pro-
posed the use of feature sets learned from data, which are able to adapt to a given problem.
Most of these methods rely on unsupervised techniques, such as bag of features [19], [20]
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and sparse representation models [21], [22]. Restricted Boltzmann machines (RBM) have
also been used [23] to learn multiscale filters with their responses being used as features.
Once the feature vector of a ROI has been calculated, it is fed to a classifier that is trained to
discriminate between the patterns. Many different approaches have been proposed for clas-
sification, including linear discriminant analysis [15] and Bayesian classifiers [14], k-nearest
neighbors [11], [18], multi-layered perceptrons (MLP) [6], random forests [16], and support
vector machines (SVM) [19], [24]. Some attempts have also been recently made to use deep
learning (DL) techniques and especially convolutional neural networks (CNNSs), after their
impressive performance in large scale color image classification [25]. Unlike other feature
learning methods that build data representation models in an unsupervised manner, CNNs
learn features and train an ANN classifier at the same time, by minimizing the classification
error. Although the term DL implies the use of many consecutive learning layers, the first at-
tempts on lung CT images adopted shallow architectures. In [26], a modified RBM was used
for both feature extraction and classification of lung tissue, incorporating some features of
CNNs. Weight sharing was used among the hidden neurons, which were densely connected
to label (output) neurons, while the whole network was trained in a supervised manner, us-
ing contrastive divergence and gradient descent. In [27], the authors designed a CNN with
one convolutional layer and three dense layers and trained it from scratch. However, the
shallow architecture of the network cannot leverage the descriptive ability of deep CNNs.
The pre-trained deep CNN of [25] (AlexNet) was used in [28] to classify whole lung slices
after fine-tuning with lung CT data. AlexNet was designed to classify natural color images
with input size 224 x 224, so the authors had to resize the images and artificially generate
three channels by applying different HU windows. However, the substantial differences in
the domains of general color images and medical images raise doubts regarding the transfer
of knowledge between them, while classifying whole slices may only provide very rough
quantification of the disease.

1.2.3 Differential Diagnosis

Despite the extensive research that has been undertaken for the ILD quantification on CT
images, there has not yet been proposed a system able to suggest automatically a final di-
agnostic decision for a case. Van Ginneken et al. [29] proposed an automatic method for the
segmentation of lung fields into 42 regions followed by a classification step which assigns to
each region a confidence value for being abnormal. The product of the individual confidence
values provides a global diagnosis on the abnormality of the whole lung. Zheng et al. [30]
proposed a system that segments lung areas, identifies suspicious volumetric ILD lesions,
computes five global features for each of them (size, contrast, average local pixel value fluc-
tuation, mean of stochastic fractal dimension, and geometric fractal dimension) and classifies
the corresponding case into one of three categories of severity (mild, moderate, and severe)
by using a distance-weighted k-NN algorithm. Fukushima et al. [31] proposed the use of
an ANN that combines 10 clinical parameters with 23 HRCT features in order to provide
a final differential diagnosis. However, the used HRCT features were not computed auto-
matically, but rated manually by radiologists. Wang et al. [32] after classifying the VOIs of a
case into normal/abnormal using run length matrix (RLM) and Gray-Level Co-Occurrence
Matrix (GLCM) features, they used a simple rule to classify the case itself: If the number
of VOIs reported as abnormal in a case is greater than a specified threshold, the case was
considered as abnormal; otherwise it was considered as normal.

1.3 Hypothesis and Aims

Interstitial lung diseases is a group of rare, chronic, progressive diseases that affect the lungs
and are difficult to diagnose. Without the appropriate treatment, the life expectancy is only
two to five years after the diagnosis. Early diagnosis is of great importance, and therefore
enhancing the diagnostic accuracy of the involved physicians can have a very large impact
on the patients. The main scope of this PhD thesis is to investigate novel machine learning
approaches for the automatic quantification and assessment of medical images from patients
suffering with interstitial lung diseases, under the following hypothesis:
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out block implemented from literature.

Hypothesis: A robust, accurate and fast automatic detection of pathological lung tissue and quan-
tification of medical image findings, could enhance the diagnostic performance of radiologists and
could be used for defining image radio-markers and diagnostic endpoints.

This PhD thesis lies between the fields of machine learning and medical diagnosis. Through-
out the years, more and more studies attempt to bridge the gap between the two fields. The
aim is the design, development and evaluation of machine learning algorithms for the auto-
matic quantification of clinically relevant information retrieved from chest HRCT and mag-
netic resonance imaging (MRI) scans, so that they can be used for assisting the diagnostic
procedure.

1.4 Structure of the Thesis

In the following chapters, the main contributions of this PhD thesis are presented. In each
chapter, a short introduction on the particular field of study is given along with a detailed
description of the utilized data. A schematic presentation of the different contributions of
this PhD Thesis in given in Figure 1.2. In detail:

¢ Chapter 2: We propose and evaluate a CNN, designed for the classification of patho-
logical lung tissue image patches. A comparative analysis proved the effectiveness of
the proposed CNN against established texture classification methods from the litera-
ture, in a challenging dataset with 120 unique HRCT scans. The classification perfor-
mance (~ 85.5%) demonstrated the potential of CNNs in analyzing lung patterns.

* Chapter 3: Due to the sparsity of annotated medical data, we investigate the feasibility
of utilizing knowledge from other texture classification tasks. Thus, in Chapter 3, we
present an improved method for training the previously proposed network (Chapter 2)
by transferring knowledge from the similar domain of general texture classification.
Six publicly available texture databases are used to pre-train networks with the pro-
posed architecture, which are then fine-tuned on the lung tissue data. The resulting
CNNs are combined in an ensemble and their fused knowledge is compressed back
to a network with the original architecture. The proposed training approach resulted
in an absolute increase of about 2% (i.e ~ 87.5%) in the performance of the already
proposed CNN with no other modifications.
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¢ Chapter 4: Image patch classification combined with sliding window schemes, such
the ones presented in Chapters 2 and 3, could be highly inefficient as local image fea-
tures have to be recalculated multiple times for adjacent positions of the input window.
Luckily, the convolutional layers (with the appropriate padding) in a typical CNN pro-
duce feature maps that maintain spatial correspondence with the input image. We
therefore propose, in Chapter 4, the use of a deep purely CNN for the semantic seg-
mentation of ILD pathological tissue from whole HRCT slices, as the basic component
of a CAD system for ILDs. The training was performed in an end-to-end and semi-
supervised fashion, utilizing both labeled and non-labeled image regions. The exper-
imental results show significant performance and time improvements with respect to
the state of the art.

¢ Chapter 5: We introduce and evaluate an end-to-end CAD system for the automatic
classification of HRCT images into four radiological diagnostic categories. The pro-
posed CAD system consists of a sequential pipeline in which at first, the anatomical
structures of the lung are segmented, then the pathological lung tissue is identified
and finally by combining these information a final radiological diagnosis is reached
using a random forest classifier. The experimental results show the potential of uti-
lizing a CAD system for this task, while also sets a path for further development and
investigation.

¢ Chapter 6: We propose a novel CNN architecture that couples linear and deformable
registration within a unified architecture endowed with near real-time performance.
We evaluate the performance of our network on the challenging problem of MRI lung
registration and demonstrate superior performance with respect to state of the art elas-
tic registration methods. The proposed deformation (between inspiration and expira-
tion) was considered within a clinically relevant task of ILDs classification and showed
promising results.

¢ Chapter 7: We conclude the thesis with an general discussion of the topics covered and
with an outlook of future perspectives.






Chapter 2

Lung Tissue Classification

This chapter is a modified version of:

M. Anthimopoulos*, S. Christodoulidis*, L. Ebner, A. Christe and S. Mougiakakou, "Lung Pattern
Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network,” in IEEE
Transactions on Medical Imaging, vol. 35, no. 5, pp. 1207-1216, May 2016.

DOI: 10.1109/TMI.2016.2535865

*This study was a highly collaborative effort of M. Anthimopoulos and S. Christodoulidis, who share
the first authorship. All figures and the experiments were prepared and executed by S.
Christodoulidis while the text was writer by S. Christodoulidis and M.Anthimopoulos. The technical
research directions were chosen after long discussions between M. Anthimopoulos, S. Christodoulidis
and S. Mougiakakou while the medical research directions were decided by A. Christe and L. Ebner.

Automated tissue characterization is one of the most crucial components of a computer
aided diagnosis (CAD) system for interstitial lung diseases (ILDs). Although much research
has been conducted in this field, the problem remains challenging. Deep learning techniques
have recently achieved impressive results in a variety of computer vision problems, raising
expectations that they might be applied in other domains, such as medical image analysis.
In this chapter, we propose and evaluate a convolutional neural network (CNN), designed
for the classification of ILD patterns. The proposed network consists of 5 convolutional lay-
ers with 2 x 2 kernels and LeakyReLU activations, followed by average pooling with size
equal to the size of the final feature maps and three dense layers. The last dense layer has 7
outputs, equivalent to the classes considered: healthy, ground glass opacity (GGO), micron-
odules, consolidation, reticulation, honeycombing and a combination of GGO/reticulation.
To train and evaluate the CNN, we used a dataset of 14696 image patches, derived by 120
CT scans from different scanners and hospitals. To the best of our knowledge, this is the
first deep CNN designed for the specific problem. A comparative analysis proved the ef-
fectiveness of the proposed CNN against previous methods in a challenging dataset. The
classification performance (~ 85.5%) demonstrated the potential of CNNs in analyzing lung
patterns. Future work includes, extending the CNN to three-dimensional data provided
by CT volume scans and integrating the proposed method into a CAD system that aims to
provide differential diagnosis for ILDs as a supportive tool for radiologists.

2.1 Field of Study

2.1.1 Convolutional Neural Networks

CNN s are feed-forward ANN inspired by biological processes and designed to recognize
patterns directly from pixel images (or other signals), by incorporating both feature extrac-
tion and classification. A typical CNN involves four types of layers: convolutional, activa-
tion, pooling and fully-connected (or dense) layers. A convolutional layer is characterized
by sparse local connectivity and weight sharing. Each neuron of the layer is only connected
to a small local area of the input, which resemble the receptive field in the human visual sys-
tem. Different neurons respond to different local areas of the input, which overlap with each
other to obtain a better representation of the image. In addition, the neurons of a convolu-
tional layer are grouped in feature maps sharing the same weights, so the entire procedure
becomes equivalent to convolution, with the shared weights being the filters for each map.
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Weight sharing drastically reduces the number of parameters of the network and hence in-
creases efficiency and prevents overfitting. Convolutional layers are often followed by a
non-linear activation layer, in order to capture more complex properties of the input signal.
Pooling layers are also used to subsample the previous layer, by aggregating small rectan-
gular subsets of values. Max or average pooling is usually applied by replacing the input
values with the maximum or the average value, respectively. The pooling layers reduce the
sensitivity of the output to small input shifts. Finally, one or more dense layers are put in
place, each followed by an activation layer, which produce the classification result. The train-
ing of CNNs is performed similarly to that of other ANNs, by minimizing a loss function
using gradient descent based methods and back propagation of the error.

Although the concept of CNNs has existed for decades, training such deep networks
with multiple stacked layers was achieved only recently. This is mainly due to their ex-
tensive parallelization properties, which have been coupled with massively parallel GPUs,
the huge amounts of available data, and several design tricks, such as the rectified linear
activation units (ReLU). In 2012, Krizhevsky et al. [25] won the ImageNet Large-Scale Vi-
sual Recognition Challenge, convincingly outperforming the competition on a challenging
dataset with 1000 classes and 1.2 million images. The proposed deep CNN, also known as
AlexNet, consists of five convolutional layers with ReLU activations, some of which are fol-
lowed by max-pooling layers, and three dense layers with a final 1000-way softmax. The
network was trained with stochastic gradient descent (SGD) with a momentum term, max-
imizing the multinomial logistic regression objective. Deep architectures permit learning
of data representations in multiple levels of semantic abstraction, so even high-level visual
structures like cars or faces can be recognized in the last layers by combining low-level fea-
tures of the first, such as edges. Nevertheless, designing a deep CNN for a specific problem
is not trivial, since a large number of mutually dependent parameter values and algorith-
mic choices have to be chosen. Although much research has been conducted in recent years
on deep CNN s for color image classification, very little has been done on the problems of
texture recognition and medical image analysis.

2.1.2 Contribution

In this study, we propose a deep CNN for the classification of ILD patterns that exploits the
outstanding descriptive capability of deep neural networks. The method has been evaluated
on a dataset of 120 cases from two hospitals and the results confirm its superiority compared
to the state of the art. To the best of our knowledge, this is the first time a deep CNN has
been designed and trained for lung tissue characterization. Finally, we provide empirical
rules and principles on the design of CNN architectures for similar texture classification
problems.

2.2 Materials and Methods

In this section, we first describe the dataset used in the study, followed by the proposed
CNN. The definition of the input data and desired outputs prior to the actual methods pro-
vides a better definition of the problem and thus a better understanding of the methods.

2.2.1 Data

The dataset used for training and evaluating the proposed method was made using two
databases of ILD CT scans from two different Swiss university hospitals:

The first is the publicly available multimedia database of ILDs from the University Hos-
pital of Geneva [33], which consists of 109 HRCT scans of different ILD cases with 512 x 512
pixels per slice. Manual annotations for 17 different lung patterns are also provided, along
with clinical parameters from patients with histologically proven diagnoses of ILDs.

The second database was provided by the Bern University Hospital, “Inselspital”, and
consists of 26 HRCT scans of ILD cases with resolution 512 x 512.

The scans were produced by different CT scanners with slightly different pixel spacing so
a preprocessing step was applied, which rescaled all scans to match a specific spacing value
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FIGURE 2.1: Example of generating image patches through the annotations

of a CT slice. The lung field is displayed with transparent red. The polygons

are the ground truth areas with considered pathologies. The patches have

100% overlap with the lung, at least 80% overlap with the ground truth and
0% overlap with each other.

(i.e., 0.4 mm). However, the use of different reconstruction kernels by the scanners, still re-
mains an open issue that complicates the problem even further. The image intensity values
were cropped within the window [-1000, 200] in HU and mapped to [0, 1]. Experienced
radiologists from the “Inselspital” annotated (or re-annotated) both databases by manually
drawing polygons around the six most relevant ILD patterns, namely GGO, reticulation,
consolidation, micronodules, honeycombing and a combination of GGO and reticulation.
Healthy tissue was also added, leading to 7 classes. The annotation focused on typical in-
stances of the considered ILD patterns, excluding ambiguous tissue areas that even experi-
enced radiologists find difficult to classify. Hence, tissue outside the polygons may belong
to any pattern, including that considered. Moreover, the annotators tried to avoid the bron-
chovascular tree which (in a complete CAD system) should be segmented and removed,
before applying the fixed-scale classifier. Annotation of the lung fields was also performed
for all scans.

The considered classes appeared in the annotations of 94 out of the 109 scans of the
Geneva database, to which the 26 cases from “Inselspital” were added, giving a total of 120
cases. On the basis of the ground truth polygons of these cases, we extracted in total 14696
non-overlapping image patches of size 32 x 32, unequally distributed across the 7 classes.
Figure 2.1 presents an example of how patches are generated through the annotations of a
CT slice. For each pattern, Table I provides the number of ground truth polygons, the av-
erage and standard deviation of their area, the number of cases in which it was annotated
and the number of extracted patches. The healthy pattern was only annotated in 8 cases,
which however proved to be enough, since its texture does not present large deviations. It
has to be noted that one case may contain multiple types of pathologies, so the sum of cases
in Table 2.1 is larger than 120. The patches are entirely included in the lung field and have
an overlap with the ground truth polygons of at least 80%. For each class, 150 patches were
randomly selected for the test and 150 for the validation set. The choice of 150 was made
based on the patch number of the rarest class (i.e., honeycombing) leaving about 50% of the
patches for training. On the remaining patches, data augmentation was employed in order
to maximize the number of training samples and equalize, at the same time, the samples’
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TABLE 2.1: Statistics of the database. (H: healthy, GGO: ground glass opacity,
MN: micronodules, cons: consolidation, ret: reticulation, HC: honeycomb-

ing)

H GGO MN Cons Ret HC Ret+GGO

#Polygons 105 823 317 1129 870 692 1593
Avg Area (10%px) 398 11.7 584 95 11.7 137 241
Std Area (10%px)  21.5 11.8 527 75 141 106 19.6
#Cases 8 44 19 25 38 22 55

#Patches 1142 1185 3192 2823 1056 613 4685

distribution across the classes. Data augmentation has often been employed in image clas-
sification, in order to increase the amount of training data and prevent over-fitting [25]. To
this end, 15 label-preserving transformations were used, such as flip and rotation, as well as
the combinations of the two. For each class, the necessary number of augmented samples
was randomly selected, so all classes would reach the training set size of the rarest class, i.e.,
5008, leading to 35056 equally distributed training patches.

2.2.2 Proposed CNN

In order to decide on the optimal architecture and configuration of a CNN, one should first
comprehend the nature of the problem considered — in this case — the classification of ILD
patterns. Unlike arbitrary objects in color images, which involve complex, high-level struc-
tures with specific orientation, ILD patterns in CT images are characterized by local textural
features. Although texture is an intuitively easy concept for humans to perceive, formulat-
ing a formal definition is not trivial, which is the reason for the many available definitions
in the literature [34]. Here, we define texture as a stochastic repetition of a few structures
(textons) with relatively small size, compared to the whole region. Image convolution high-
lights small structures that resemble the convolution kernel throughout an image region,
and in this way the analysis of filter bank responses has been successfully used in many
texture analysis applications. This encourages the use of CNNs to recognize texture by iden-
tifying the optimal eproblem-specific kernels; however some key aspects stemming from
our definition of texture have to considered: (i) The total receptive field of each convolu-
tional neuron with respect to the input (i.e., the total area of the original input “seen” by a
convolutional neuron) should not be larger than the characteristic local structures of texture,
otherwise non-local information will be captured, which is irrelevant to the specific texture,
(ii) since texture is characterized by fine grained low-level features, no pooling should be
carried out between the convolutional layers, in order to prevent loss of information, (iii)
each feature map outputted by the last convolutional layer should result in one single fea-
ture after pooling, in order to gain some invariance to spatial transformations like flip and
rotation. Unlike color pictures that usually have high-level geometrical structure (e.g., the
sky is up), a texture patch should still be a valid sample of the same class when flipped or
rotated.

Architecture

On the basis of these principles, we designed the network presented in Figure 2.2. The input
of the network is a 32 x 32 image patch, which is convolved by a series of 5 convolutional
layers. The size of the kernels in each layer was chosen to be minimal, i.e., 2 x 2. The use
of small kernels that lead to very deep networks was proposed in the VGG-net [35], which
was ranked at the top of ILSVRC 2014 challenge by employing 3 x 3 kernels and up to 16
convolutional layers. Here, we go one step further by shrinking the kernel size even more
to involve more non-linear activations, while keeping the total receptive field small enough
(6 x 6) to capture only the relevant local structure of texture. Each layer has a number of
kernels proportional to the receptive field of its neurons, so it can handle the increasing
complexity of the described structures. The size of the rectangular receptive field is 2 x 2
for the first layer and is increased by 1 in each dimension, for each layer added, leading
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FIGURE 2.2: Architecture of the proposed CNN for lung pattern classifica-
tion. The value of parameter k was set to 4.

to an area of (L 4 1)? for the Lth layer. Hence, the number of kernels we use for the Lth
layer is k(L + 1)?, where the parameter k depends on the complexity of the input data and
was set to 4 after relevant experiments. An average pooling layer follows, with size equal
to the output of the last convolutional layer (i.e., 27 x 27). The resulting features, which are
equal to the number of features maps of the last layer i.e., f = 36k, are fed to a series of 3
dense layers with sizes 6f, 2f and 7, since 7 is the number of classes considered. The use of
large dense layers accelerated convergence, while the problem of overfitting was solved by
adding a dropout layer before each dense layer. Dropout can be seen as a form of bagging;
it randomly sets a fraction of units to 0, at each training update, and thus prevents hidden
units from relying on specific inputs [36].

Activations

It is well-known that the choice of the activation function significantly affects the speed of
convergence. The use of the ReLU function f(x)=max(0,x) has been proven to speed up the
training process many times compared to the classic sigmoid alternative. In this study, we
also noticed that convolutional activations have a strong influence on the descriptive ability
of the network. Driven by this observation and after experimenting with different rectified
activations, we propose the use of LeakyReLU [37], a variant of ReLU, for activating every
convolutional layer. Unlike ReLU, which totally suppresses negative values, leaky ReLU
assigns a non-zero slope, thus allowing a small gradient when the unit is not active ((1)).

x, x>0
flx)= { ax, else 21)
where « is a manually set coefficient.

LeakyReLU was proposed as a solution to the “dying ReLU” problem, i.e., the tendency
of ReLU to keep a neuron constantly inactive as may happen after a large gradient update.
Although a very low negative slope coefficient (i.e., #=0.01) was originally proposed, here
we increase its value to 0.3, which considerably improves performance. Similar observations
have also been reported in other studies [38]. A very leaky ReLU seems to be more resilient
to overfitting when applied to convolutional layers, although the exact mechanism causing
this behavior has to be further studied. For the dense part of the network, the standard
ReLU activation was used for the first two layers and softmax on the last layer, to squash the
7-dimensional output into a categorical probability distribution.

Training Method

The training of an ANN can be viewed as a combination of two components, a loss function
or training objective, and an optimization algorithm that minimizes this function. In this
study, we use the Adam optimizer [39] to minimize the categorical cross entropy. The cross
entropy represents the dissimilarity of the approximated output distribution (after softmax)
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from the true distribution of labels. Adam is a first-order gradient-based algorithm, designed
for the optimization of stochastic objective functions with adaptive weight updates based on
lower-order moments. Three parameters are associated with Adam: one is the learning rate
and the other two are exponential decay rates for the moving averages of the gradient and
the squared gradient. After relevant experiments, we left the parameters to their default
values namely, learning rate equal to 0.001 and the rest 0.9 and 0.999, respectively. The
initialization of the convolutional layers was performed using orthogonal matrices multi-
plied with a scaling parameter equal to 1.1, while a uniform distribution was utilized for
the dense layers, scaled by a factor proportional to the square root of the layer’s number of
inputs [40]. The weight updates are performed in mini-batches and the number of samples
per batch was set to 128. The training ends when the network does not significantly improve
its performance on the validation set for a predefined number of epochs. This number is set
to 200 and the performance is assessed in terms of average f-score (Favg) over the different
classes ((2)) (see Section IV). An improvement is considered significant if the relative increase
in performance is at least 0.5%.

2.3 Experimental Setup and Results

This section focuses on the presentation and discussion of the results. Before that, we de-
scribe the experimental setup namely, the chosen evaluation strategy and some details on
the implementation of the methods.

2.3.1 Experimental Setup
Evaluation

The evaluation of the different ILD patch classification approaches is based on a train-validation-
test scheme. The actual training of the methods was carried-out on the training set, while
the validation set was used for fine tuning the hyper-parameters; the overall performance

of each system was assessed on the test set. As principle evaluation measure, we used the
average F-score over the different classes (2), due to its increased sensitivity to imbalances
among the classes; the overall accuracy is also computed (3). It has to be noted that the pre-
sented performances are not comparable to performances reported in the literature due to
the use of different datasets and the consideration of different patterns. However, we trust
that the difficulty of a dataset may only affect the absolute performance of methods and not
their relative performance rank.

2 Z recall, x precision,
Favg = = 2.2
ws 7 C; recall. + precision, 2.2)
where
recall, — samples correctly classified as c 23)
samples of class ¢

precision, — samples correctly .cl.assified asc (2.4)

samples classified as ¢
Accuracy — correctly classified samples 2.5)

total number of samples
Implementation

The proposed method was implemented in Python! using the Keras? framework with Theano
[41] back-end, while for AlexNet and VGG-Net we used Caffe [42]. Methods which do not
involve convolutional networks were coded in python and MATLAB. All experiments were

Ihttps://github.com/intact-project/ild-cnn
2https: / / github.com/keras-team /keras
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TABLE 2.2: Performance of the CNN for different configurations

Kemel = \mber of - Numb Input
Dropout Pooling Pooling number K 1;;{1 lerf Or fumn " Kernel nslu Activation ~ Testing # Epochs x
fraction  type percentage multiplier erneisfor - oLeonv. 7o scae function Favg Epoch time
) Lth layer layers factor

0 Avg 100% 4 K(L+1)2 5 2x2 1 LReLU(0.3) 0.7908 90 x 11s
0.5 Max 100% 4 k(L+1)2 5 2x2 1 LReLU(0.3) 0.8105 69 x 11s
05 Avg 50% 4 k(L +1)? 5 2x2 1 LReLU(0.3) 07895 249 x 11s
0.5 Avg 25% 4 K(L+1)2 5 2x2 1 LReLU(0.3) 0.7452 286 x 12s
0.5 Avg 100% 4 17 5 2x2 1 LReLU(0.3) 0.8446 300 x 12s
0.5 Avg 100% 4 36 5 2x2 1 LReLU(0.3)  0.8508 386 x 32s
0.5 Avg 100% 3 K(L+1)2 5 2x2 1 LReLU(0.3) 0.8266 427 X 7s
0.5 Avg 100% 5 K(L+1)2 5 2x2 1 LReLU(0.3) 0.8425 362 x 14s
0.5 Avg 100% 4 K(L+1)2 7 2x2 1 LReLU(0.3) 0.8432 295 x 23s
0.5 Avg 100% 4 k(L+1)2 6 2x2 1 LReLU(0.3)  0.8559 215 x 18s
0.5 Avg 100% 4 K(L+1)2 4 2x2 1 LReLU(0.3) 0.8443 372 X 6s
0.5 Avg 100% 4 K(L+1)2 5 2x2 15 LReLU(0.3) 0.8223 196 x 21s
0.5 Avg 100% 4 k(L+1)2 5 3x3 15 LReLU(0.3)  0.8390 328 x 260s
05 Avg 100% 4 k(L +1)? 5 3x3 1 LReLU(0.3)  0.8147 193 x 67s
0.5 Avg 100% 4 K(L+1)2 5 2x2 1 ReLU 0.7871 90 x 11s
05 Avg 100% 4 k(L+1)2 5 2x2 1 LReLU(0.01)d 0.8094 110 x 12s
0.5 Avg 100% 4 k(L +1)? 5 2x2 1 LReLU(0.3) 0.8547 386 x 12s

performed under a Linux OS on a machine with CPU Intel Core i7-5960X @ 3.50 GHz, GPU
NVIDIA GeForce Titan X, and 128 GB of RAM.

2.3.2 Results

This section presents the experimental results and is split into three parts. Firstly, we present
a set of experiments that justify the choice of the different components and the tuning of
the hyper-parameters. A comparison of the proposed method with previous studies follows
and finally, an additional analysis of the system’s performance is given.

Tuning of Hyper-Parameters

Here we demonstrate the effect of the most crucial choices for the architecture and the train-
ing procedure. Table 2.2 demonstrates the classification performance for different config-
urations of the network’s architecture, as well as the training time needed. The proposed
configuration, presented in bold, yielded an F;,¢ of 0.8547. Using the LeakyReLU with the
originally proposed parameter, reduces the performance by roughly 5% and the use of stan-
dard ReLU by a further 2%. Increasing the size of the kernels to 3 x 3 also resulted in a drop
by 4% in performance, accompanied by a significant increase in the epoch time (~ 5x). The
larger kernels increased the total receptive field of the network to 11 x 11, which proved to
be too big for the characteristic local structures of the considered textures. By keeping the
3 x 3 kernels and increasing the image resolution by 50%, each training epoch became slower
by more than 20 x, but still without reaching the proposed performance. When we just up-
sampled the input image while using the 2 x 2 kernels, the result was again significantly
inferior to that proposed, since the receptive field relatively to the input size was smaller
than optimal. By altering the number of convolutional layers, we can infer that the optimal
architecture will have 5-6 layers that correspond to a total receptive field of 6 x 6 —7 x 7.
In this study, we propose the use of 5 convolutional layers, preferring efficiency to a small
increase in performance.

To identify the optimal number of kernels, we experimented with the k multiplier. The
corresponding results show that 4 is the optimal choice, both in terms of performance and
efficiency. A couple of experiments were also conducted to study the effect of using a con-
stant number of kernels in each convolutional layer. Firstly, we chose 17 kernels in order to
match the epoch time of the proposed configuration, which resulted in a performance drop
of about 1%. With 36 kernels per layer, the results were comparable to that proposed, hav-
ing though an epoch time almost 3-fold longer. This experiment showed that the choice of
the distribution of kernels in the convolutional layers is basically a matter of efficiency and
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FIGURE 2.3: Comparison of the convergence speed between three optimizers.

does not so drastically affect the accuracy of the system, assuming that a sufficient number
of kernels is used.

Changing the size of the pooling layer from 100% of the last feature map to 50% or 25%,
resulted in a drop in Favg of more than 6% and 9%, respectively. By splitting the feature
map in multiple pooled regions, different features are generated for the different areas of
the image, so that the CNN is highly non-invariant to spatial transformations like flip and
rotation. In another experiment, max pooling was employed instead of average, yielding a
result that was inferior by nearly 4%. Although max pooling is the common choice for most
CNNs and proved to be much faster in terms of convergence, in our problem average seems
to be more effective. Finally, when we removed the dropout layers, we observed a decline
in Favg of more than 6%, an effect obviously due to overfitting.

Table 2.3 demonstrates the effects of using different optimizers and loss functions for
training the CNN. The parameters for each optimizer have been tuned accordingly on the
validation set. For the SGD we used a learning rate of 0.01 with a momentum of 0.95, while
for AdaGrad we used 0.001 learning rate. Minimizing the categorical cross-entropy by the
Adam optimizer yielded the best results in a small number of iterations. SGD follows, with
about 1% lower performance and AdaGrad with even higher drop in performance of 3%.
Finally, we also employed Adam to minimize the mean squared error (MSE), which yielded
comparable results.

In Figure 2.3, the convergence of the three different optimizers is illustrated in terms of
the validation loss over the epochs. AdaGrad starts with a rapid descent, but soon stops
improving probably due to the quickly reduced learning rate. Adam and SGD seem to per-
form almost equally, but here we chose Adam because of the slightly better performance as
shown in Table 2.3 and its stable behavior independently from its parameters.

TABLE 2.3: Performance of the proposed CNN with different training options

Optimizer  Loss Function Favg Accuracy Epoch

SGD Cross-Entropy  0.8434 0.8428 333
AdaGrad  Cross-Entropy  0.8219 0.8228 257
Adam MSE 0.8499 0.8523 155

Adam Cross-Entropy  0.8547 0.8561 386
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TABLE 2.4: Comparison of the proposed with state-of-the-art methods using
handcrafted features

Method Features Classifier Favg Accuracy
Gangeh [19] Intensity textons SVM-RBF 0.7127 0.7152
Sorensen [18] LBP + histogram kNN 0.7322 0.7333
Anthimopoulos [16] Local DCT + histogram RF 0.7786 0.7809
Proposed CNN 0.8547 0.8561

Comparison With the State of the Art

Table 2.4 provides a comparison of the proposed CNN with state-of-the-art methods using
handcrafted features and different classifiers. All the methods were implemented by the
authors and the parameters for each one were fine-tuned using a trial and error procedure
on the validation set. The results prove the superior performance of the proposed scheme
that outperformed the rest by 8% to 14%.

Table 2.5 provides a comparison with other CNNs. The first row corresponds to a shallow
network with just one convolutional and three dense layers, which constitutes the first CNN-
based approach to the problem, to the best of our knowledge. The fairly low results achieved
by this network on our dataset, could be due to several reasons: (i) the 16 kernels used for
the convolutional layer are not enough to capture the complexity of the problem, (ii) the use
of a 2 x 2 max pooling results in 169 local features per feature map, that describe a high-level
spatial distribution not relevant to the problem, and (iii) the shallow architecture prevents
the network from learning highly non-linear features. The second CNN we test is the LeNet
[43], a network designed for character classification. It has two convolutional layers, each
followed by pooling and three dense layers. The first layer uses 6 kernels and the second
16, both with the same size 5 x 5. The results produced on our dataset are similar to the
previous CNN for similar reasons.

Furthermore, we evaluated the performance of the well-known AlexNet [25] and VGG-
Net-D [38], two networks much larger and deeper than the previous, with the first having
5 convolutional layers and the second 13. The two networks were designed for the classi-
fication of 224 x 224 color images, so in order to make our data fit, we rescaled the 32 x 32
patches to 224 x 224 and generated 3 channels by considering 3 different HU windows ac-
cording to [35]. First, we tried training the AlexNet from scratch on our data. However,
the size of this kind of networks requires very large amounts of data, in order to be trained
properly. The achieved accuracy was in the order of 70% and the noisy and low-detailed fil-
ters obtained from the first convolutional layer (Figure 2.4a) show that the size, as well as the
scale of the network, are too large for our problem. To overcome the problem of insufficient
data we fine-tuned the already trained (on ImageNet) AlexNet, which is currently the most
common technique for applying it to other problems. The results were improved by about
5% showing that for training large CNNSs, the size of the used set can be more important than
the type of data. However, by looking at the filters of the first layer (Figure 2.4b) one may
notice that the scale of the edges does not match our problem, considering that the 11 x 11
filters correspond to less than 2 x 2 in our input image. Finally, we tested the pre-trained (on
ImageNet) VGG-Net after fine-tuning it, since training a network with that size from scratch
would need even more data than AlexNet. The network achieved an improvement of about

TABLE 2.5: Comparison of the proposed method with other CNNs

Method Favg Accuracy
Li [27] 0.6657 0.6705
LeNet [43] 0.6783 0.6790
AlexNet [25] 0.7031 0.7104
Pre-trained AlexNet [25] 0.7582 0.7609
VGG-Net [35] 0.7804 0.7800

Proposed 0.8547 0.8561
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FIGURE 2.4: Filter of the first layer of alexnet by (A) training from scratch on
our data, (B) fine-tuning the pre-trained on imagenet version.

2% compared to AlexNet probably due to the smaller size of kernels that permit the use of
more convolutional layers, however the result is still inferior to that proposed.

For a more detailed comparison at different operating points we also performed a re-
ceiver operating characteristic (ROC) analysis for AlexNet, AlexNet pre-trained (AlexNetP),
VGG-Net, the method by Sorensen et al. [18] and the proposed CNN. Figure 2.5 presents
the ROC curves for each of the compared methods and each of the considered classes us-
ing a one-vs-all scheme. The average ROC curves over the different classes are presented
in the last chart of Figure 2.5 For each ROC, the area under the curve (AUC) was computed
and the 95% confidence interval was plotted according to [44]. The comparison showed
that the proposed method achieved the highest AUC on each of the 7 classes. To test the
statistical significance of the AUC differences, a statistical analysis was performed based on
[45] and using 10,000 bootstraps. The results of the analysis confirmed the statistically sig-
nificant (p < 0.05) superior performance of the proposed CNN against all methods, when
comparing on the most difficult patterns i.e., consolidation, reticulation, honeycombing and
reticulation/GGO. For the rest of the patterns (healthy, GGO and micronodules) the differ-
ence between the proposed method and the pre-trained AlexNet was not considered signif-
icant (p = 0.058,0.445, 0.056), while for GGO the difference from VGG-Net was also non-
significant (p = 0.271). Finally, the superiority of the proposed method after averaging over
all considered classes was also found to be statistically significant (p < 0.05). These results
are in line with the corresponding ROC curves of Figure 6, where large distance between
curves correlates with statistically significant differences.

Furthermore, we conducted an experiment to estimate the efficiency of the different
CNNs when used to recognize the pathologies of an entire scan by sliding the fixed-scale
classifier on the images. By using the minimal step for sliding the window, i.e., 1, the pro-
posed CNN needed 20 seconds to classify the whole lung area in the 30 slices of an average-
sized HRCT scan. The corresponding time needed by AlexNet was 136 and by VGG-Net 160
seconds. By increasing the step to 2, which still produces a sufficiently precise pathology
map — the time needed for any method is reduced by a factor of 4.

Concluding, the two tested deep CNNs showed inferior performance mainly because
they do not comply with the principles described in Section III-B: (i) their overall receptive
field relatively to the input image is larger than needed, (ii) the use of pooling between the
convolutional layers results in loss of information, (iii) the use of small size for the last pool-
ing makes the extracted features position dependent. Moreover, other algorithmic choices,
like the standard ReLU and the max pooling, may have affected the result, as shown in Ta-
ble 2.2, as well as the different input size. Finally, apart from the relatively low accuracy, the
efficiency of these very large networks could also be an issue for using them in this kind of
applications. The slower prediction will multiply the operating time by at least a factor of 7,
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FIGURE 2.5: ROC analysis for the proposed CNN and four previous methods:

alexnet, alexnet pre-trained (alexnetp), VGG-net and the method by sorensen

etal. [18]. The analysis was performed per class (one-vs-all) while the aver-

age over all classes is also presented. For each roc, the AUC is given and the
95% confidence interval is plotted.
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FIGURE 2.6: Loss curves during the training of the proposed system.

making them prohibitive for the clinical practice.

Analysis of the System’s Performance

In this paragraph, we provide additional insight into the performance of the proposed method.
In Figure 2.6, we show the loss and performance curves during the training of the system.
The blue and orange descending curves correspond to the loss function values for the train-
ing and for the validation sets during training. The two curves start to diverge from one
another after around 100 epochs; however, validation loss continues to descend slightly un-
til roughly 200 epochs. The gray vertical line indicates the best model found. The yellow and
purple curves represent the accuracy and Favg on the validation set and after a few epochs
they overlap almost completely, showing that when the network gets sufficiently trained, it
treats the classes fairly balanced.

The 16 kernels for the first convolutional layer of the best model are illustrated in Fig-
ure 2.7. Although the small number and size of the kernels do not permit much discussion,
one may notice their differential nature that captures fundamental edge patterns. These pat-
terns grow in size and complexity while passing through consecutive convolutional layers,
so that the last layer describes the micro-structures that characterize texture.

Figure 2.8a shows the confusion matrix of the proposed method for the seven considered
classes. The confusion between honeycombing and reticular patterns is due to their com-
mon fibrotic nature and contributes a major share to the overall error. Figure 2.9 presents
some difficult cases of these patterns that were misclassified, together with the correspond-
ing output of the network. The relatively high misclassification rate between the combined
GGO/reticulation and the individual GGO and reticulation patterns could be justified by
the fact that the former constitutes an overlap of the latter. This combinational pattern is
particularly difficult for every classification scheme tested, and it has not been considered
in most of the previous studies. We decided to include it here, because its presence is very

FIGURE 2.7: The 2 X 2 kernels from the first layer of the proposed CNN.
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FIGURE 2.8: Confusion matrices of: (A) the proposed method, (B) the method

by sorensen et al. [18]. The entry in the ith row and jth column corresponds

to the percentage of samples from class i that were classified as class j. H:

healthy tissue; MN: micronodules; GGO: ground glass opacity; cons: consol-
idation; ret: reticulation, HC: honeycombing.

relevant to the discrimination between idiopathic pulmonary fibrosis (IPF) and non-specific
interstitial pneumonia (NSIP), which are the most common ILDs. Figure 2.8b presents the
corresponding confusion matrix for the method by Sorensen et al. [18]. The results show
that the higher misclassification rate is mainly caused by the reticular patterns, which re-
quire an accurate description of texture apart from the first-order description of intensity
values.

2.4 Conclusions

In this chapter, we proposed a deep CNN to classify lung CT image patches into 7 classes,
including 6 different ILD patterns and healthy tissue. A novel network architecture was de-
signed that captures the low-level textural features of the lung tissue. The network consists
of 5 convolutional layers with 2 x 2 kernels and LeakyReLU activations, followed by just
one average pooling, with size equal to the size of final feature maps and three dense layers.
The training was performed by minimizing the categorical cross entropy with the Adam op-
timizer. The proposed approach gave promising results, outperforming the state of the art
on a very challenging dataset of 120 CT scans from different hospitals and scanners. The

HC Ret Ret  Ret+GGO RettGGO

b o’

Healthy <1% <1% <1% <1% <1%
GGO <1% <1% <1% <1% <1%
MN <1% <1% <1% <1% 8.83%
Cons <1% 20.23% <1% <1% <1%
Ret 50.58%  17.60%  19.55%  49.02%  57.36%
HC  43.02% 19.94%  60.76% 1.86% 1.25%
Ret+GGO  6.38%  41.41%  19.38%  49.06%  31.92%

FIGURE 2.9: Examples of misclassified patches by the proposed CNN. The
output of the network is displayed below each patch.
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method can be easily trained on additional textural lung patterns while performance could
be further improved by a more extensive investigation of the involved parameters. The large
number of parameters and the relatively slow training (typically a few hours) could be con-
sidered as a drawback of this kind of DL approaches, together with the slight fluctuation
of the results, for the same input, due to the random initialization of the weights. In fu-
ture studies, we plan to extend the method to consider three dimensional data from MDCT
volume scans and finally to integrate it into a CAD system for differential diagnosis of ILDs.
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Chapter 3

Multi-source Transfer Learning

This chapter is a modified version of:

S. Christodoulidis*, M. Anthimopoulos*, L. Ebner, A. Christe and S. Mougiakakou, "Multisource
Transfer Learning With Convolutional Neural Networks for Lung Pattern Analysis,” in IEEE Journal of
Biomedical and Health Informatics, vol. 21, no. 1, pp. 76-84, Jan. 2017.
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*This study was a highly collaborative effort of M. Anthimopoulos and S. Christodoulidis, who share
the first authorship. All figures and the experiments were prepared and executed by S.
Christodoulidis while the text was writer by S. Christodoulidis and M.Anthimopoulos. The technical
research directions were chosen after long discussions between M. Anthimopoulos, S. Christodoulidis
and S. Mougiakakou while the medical research directions were decided by A. Christe and L. Ebner.

Early diagnosis of interstitial lung diseases is crucial for their treatment, but even expe-
rienced physicians find it difficult, as their clinical manifestations are similar. In order to
assist with the diagnosis, computer-aided diagnosis systems have been developed. These
commonly rely on a fixed scale classifier that scans CT images, recognizes textural lung
patterns, and generates a map of pathologies. In a previous study, we proposed a method
for classifying lung tissue patterns using a deep convolutional neural network (CNN), with
an architecture designed for the specific problem. In this study, we present an improved
method for training the proposed network by transferring knowledge from the similar do-
main of general texture classification. Six publicly available texture databases are used to
pretrain networks with the proposed architecture, which are then fine-tuned on the lung
tissue data. The resulting CNNs are combined in an ensemble and their fused knowledge
is compressed back to a network with the original architecture. The proposed approach re-
sulted in an absolute increase of about 2% in the performance of the proposed CNN. The
results demonstrate the potential of transfer learning in the field of medical image analysis,
indicate the textural nature of the problem and show that the method used for training a
network can be as important as designing its architecture.

3.1 Field of Study

Medical imaging data are much more difficult to acquire compared to general imagery,
which is freely available on the Internet. On top of that, their annotation has to be performed
by multiple specialists to ensure its validity, whereas in natural image recognition anyone
could serve as annotator. This lack of data makes the training on medical images very dif-
ficult or even impossible for many of the huge networks proposed in computer vision. A
common way to overcome this problem is to pretrain the networks on large color image
databases like ImageNet, and then fine-tune them on medical imaging data, a method often
referred to as transfer learning. This approach has yielded adequately good results for many
applications and has demonstrated the effectiveness of transfer learning between rather dif-
ferent image classification tasks [46]. Secondly, the architecture of popular CNNs from the
field of computer vision, is generally suboptimal for problems encountered in medical imag-
ing such as texture analysis, while their input size is fixed and often not suitable.
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3.1.1 Transfer Learning

Transfer learning is generally defined as the ability of a system to utilize knowledge learned
from one task, to another task that shares some common characteristics. Formal definitions
and a survey on transfer learning can be found in [47]. In this study, we focus on supervised
transfer learning with CNNs. Deep CNNs have shown remarkable abilities in transferring
knowledge between apparently different image classification tasks or even between imaging
modalities for the same task. In most cases, this is done by weight transferring. A network
is pretrained on a source task and then the weights of some of its layers are transferred to a
second network that is used for another task. In some cases, the activations of this second
network are just used as “off-the-shelf” features which can then be fed to any classifier [48]
. In other cases, the non-transferred weights of the network are randomly initialized and
a second training phase follows, this time on the target task [49]. During this training, the
transferred weights could be kept frozen at their initial values or trained together with the
random weights, a process usually called “fine-tuning”. When the target dataset is too small
with respect to the capacity of the network, fine-tuning may result in overfitting, so the fea-
tures are often left frozen. Finding which and how many layers to transfer depends on the
proximity of the two tasks but also on the proximity of the corresponding imaging modali-
ties. It has been shown that the last layers of the network are task specific while the earlier
layers of the network are modality specific [39]. On the other hand, if there are no overfitting
issues, the best strategy is to transfer and fine-tune every layer [49]. This way, the discov-
ered features are adapted on the target task, while keeping the useful common knowledge.
Another type of transfer learning is the multi-task learning (MTL) approach that trains on
multiple related tasks simultaneously, using a shared representation [50]. Such process may
increase the performance for all these tasks and It is typically applied when training data for
some tasks are limited.

Transfer learning has been extensively studied over the past few years, especially in the
field of computer vision, with several interesting findings. In [51], pretrained CNNs such
as VGG-Net and AlexNet are used to extract “off-the-shelf” CNN features for image search
and classification. The authors demonstrate that fusing features extracted from multiple
CNN layers improves the performance on different benchmark databases. In [52], the factors
that influence the transferability of knowledge in a fine-tuning framework are investigated.
These factors include the network’s architecture, the resemblance between source and target
tasks and the training framework. In a similar study [49], the effects of different fine-tuning
procedures on the transferability of knowledge are investigated, while a procedure is pro-
posed to quantify the generality or specificity of a particular layer. A number of studies have
also utilized transfer learning techniques, in order to adapt well-known networks to classify
medical images. In most of the cases, the network used is the VGG, AlexNet or GoogleNet
pretrained on ImageNet [53], [54]. However, these networks are designed with a fixed input
size usually of 224 x 224 x 3, so that images have to be resized and their channels artificially
extended to three, before being fed to the network. This procedure is inefficient and may
also impair the descriptive ability of the network.

3.1.2 Contribution

In Chapter 2 we proposed a novel CNN that achieved significant improvement with respect
to the state of the art. The network’s architecture was especially designed to extract the tex-
tural characteristics of ILD patterns, while its much smaller size allowed it to be successfully
trained on solely medical data without transfer learning. In this study, we propose a novel
training approach that improves the performance of the newly introduced CNN, by addi-
tionally exploiting relevant knowledge, transferred from multiple general texture databases.

3.2 Materials and Methods

In this section we present a method for transferring knowledge from multiple source databases
to a CNN, ultimately used for ILD pattern classification. Prior to this, we describe the
databases that were utilized for the purposes of this study as well as the architecture of
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TABLE 3.1: Description of the source domain databases

Number of  Number of . Number of Number of
Number . . Total number Area per image .. .

Database Type instances images . 3 training validation

of classes . of images (10°px)
perclass  per instance patches patches

ALOT [55] | Color 250 1 100 25000 98.304 | 257880 85870
DTD [56] | Color 47 120 1 5640 229.95+89.14 | 180351 87485
FMD [57] ‘ Color 10 100 1 1000 158.3 £43.2 ‘ 18247 6285
KTB [58] ‘ Grey 27 160 1 4480 331.776 ‘ 207360 69120
KTH-TIPS-2b [59] ‘ Color 11 4 108 4752 40 ‘ 31481 10410
UIUC [60] | Grey 25 40 1 1000 307.2 | 47250 15750

the newly proposed CNN, in order to provide a better foundation for the description of the
methodology.

3.2.1 Databases

Six texture benchmark databases were employed to serve as source domains for the multi-
source transfer learning: the Amsterdam library of Textures (ALOT) [55], the Describable
Textures Dataset (DTD) [56], the Flickr Material Database (FMD) [57], Kylberg Texture Database
(KTB) [58], KTH-TIPS-2b [59] and the Ponce Research Group’s Texture database (UIUC) [60].
Moreover, the concatenation of all aforementioned databases was also used. As target do-
main, we used two databases of ILD CT scans from two Swiss university hospitals: the
Multimedia database of ILD by the University Hospital of Geneva (HUG) [33] and the Bern
University Hospital, “Inselspital” (Insel) database [61].

Source Domain Datasets

All the source domain databases are publicly available texture classification benchmarks.
Each class corresponds to a specific texture (e.g. fabric, wood, metal, foliage) and is repre-
sented by pictures of one or more instances of the texture. Two of the databases - ALOT and
KTH-TIPS-2b — also contain multiple pictures for each instance under different angles, illu-
mination and scales. The image size is fixed for all databases apart from DTD, while FMD
also provides texture masks.

For the creation of the training-validation dataset, all the color databases (i.e. ALOT,
DTD, FMD, KTH-TIPS-2b) were converted to gray-scale and non overlapping patches were
extracted with a size equal to the input of the proposed CNN namely, 32 x 32. When not
provided, partitioning between training and validation sets was performed at the instance
level, except for ALOT, where the number of instance is equal to the number of classes. No
testing set was created for the source domain databases, since the ultimate goal is to test
the system only on the target domain. In the case of DTD, where training, validation and
test sets are provided, the test set was added to the training set. Table 3.1 summarizes the
characteristics of the original source databases and the corresponding patch datasets.

Target Domain Dataset

The HUG database [33] consists of 109 HRCT scans of different ILD cases with 512 x 512
pixels per slice and an average of 25 slices per case. The average pixel spacing is 0.68mm,
and the slice thickness is 1-2mm. Manual annotations for 17 different lung patterns are also
provided, along with clinical parameters from patients with histologically proven diagnoses
of ILDs. The Insel database consists of 26 HRCT scans of ILD cases with resolution 512 x
512 and an average of 30 slices per case. Average pixel spacing is 0.62mm and slice thickness
is 1-2mm.

A number of preprocessing steps was applied to the CT scans before creating the final
ILD patch dataset. The axial slices were rescaled to match a certain x,y-spacing value that
was set to 0.4mm, while no rescaling was applied on the z-axis. The image intensity values
were cropped within the window [-1000, 200] in Hounsfield units (HU) and mapped to [0,
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FIGURE 3.1: Typical samples from each dataset. The color databases were
converted to gray scale. From top to bottom: ALOT, DTD, FMD, KTB, KTH-
TIPS-2b, UIUC, ILD

1]. Experienced radiologists from Bern University hospital annotated (or re-annotated) both
databases by manually drawing polygons around seven different patterns including healthy
tissue and the six most relevant ILD patterns, namely ground glass, reticulation, consolida-
tion, micronodules, honeycombing and a combination of ground glass and reticulation. In
total 5529 ground truth polygons were annotated, out of which 14696 non-overlapping im-
age patches of size 32 x 32 were extracted, unequally distributed across the 7 classes. The
patches are entirely included in the lung field and they have an overlap with the corre-
sponding ground truth polygons of at least 80%. From this patch dataset, 150 patches were
randomly chosen from each class for the validation and 150 for the test set. The remain-
ing patches were used as the training set, which was artificially augmented to increase the
amount of training data and prevent over-fitting. Label-preserving transformations were
applied, such as flip and rotation, as well as combinations of the two. In total, 7 transforma-
tions were used while duplicates were also added for the classes with few samples. The final
number of training samples was constrained by the rarest class and the condition of equal
class representation that led to 5008 training patches for each class. In total, the training
set consists of 35056 patches while the validation and test sets contain of 1050 patches each.
More details about this dataset can be found in [61].

3.2.2 CNN Architecture

In order to minimize the parameters involved and focus only on the aspects of transfer lea