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Abstract
Doctor of Philosophy in Biomedical Engineering

Lung Pattern Analysis using Artificial Intelligence for the Diagnosis Support of
Interstitial Lung Diseases

by CHRISTODOULIDIS Stergios

Interstitial lung diseases (ILDs) is a group of more than 200 chronic lung disorders char-
acterized by inflammation and scarring of the lung tissue that leads to respiratory failure.
Although ILD is a heterogeneous group of histologically distinct diseases, most of them ex-
hibit similar clinical presentations and their diagnosis often presents a diagnostic dilemma.
Early diagnosis is crucial for making treatment decisions, while misdiagnosis may lead to
life-threatening complications. If a final diagnosis cannot be reached with the high resolution
computed tomography scan, additional invasive procedures are required (e.g. bronchoalve-
olar lavage, surgical biopsy). The aim of this PhD thesis was to investigate the components of
a computational system that will assist radiologists with the diagnosis of ILDs, while avoid-
ing the dangerous, expensive and time-consuming invasive biopsies. The appropriate inter-
pretation of the available radiological data combined with clinical/biochemical information
can provide a reliable diagnosis, able to improve the diagnostic accuracy of the radiologists.

In this thesis, we introduce two convolutional neural networks particularly designed for
ILDs and a training scheme that employs knowledge transfer from the similar domain of
general texture classification for performance enhancement. Moreover, we investigate the
clinical relevance of breathing information for disease classification. The breathing informa-
tion is quantified as a deformation field between inhale-exhale lung images using a novel 3D
convolutional neural network for medical image registration. Finally, we design and eval-
uate the final end-to-end computational system for ILD classification using lung anatomy
segmentation algorithms from the literature and the proposed ILD quantification neural net-
works. Deep learning approaches have been mostly investigated for all the aforementioned
steps, while the results demonstrated their potential in analyzing lung images.

Keywords – Interstitial Lung Diseases, Diffuse Lung Diseases, High Resolution Tomogra-
phy, Magnetic Resonance Imaging, Computer Aided Diagnosis, Machine Learning, Deep
Convolutional Neural Networks, Semantic Segmentation, Transfer Learning, Medical Im-
age Registration, Breathing Quantification, Radiomics
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Chapter 1

Introduction

1.1 Interstitial Lung Diseases

The term interstitial lung disease (ILD) refers to a group of more than 200 chronic lung disor-
ders characterized by inflammation of the lung tissue, which often leads to scarring - usually
referred to as pulmonary fibrosis. Fibrosis may progressively cause lung stiffness, reducing
the ability of the air sacs to capture and carry oxygen into the bloodstream and eventually
leads to permanent loss of the ability to breathe. ILDs account for 15 percent of all cases seen
by pulmonologists [1] and can be caused by autoimmune diseases, genetic abnormalities,
infections and long-term exposures to hazardous materials. However, the cause of ILDs is
mostly unknown and the lung manifestations are described as idiopathic interstitial pneu-
monia (IIP). In 2002, an international multidisciplinary consensus conference, including the
American Thoracic Society (ATS) and the European Respiratory Society (ERS), proposed a
classification for ILDs [2], in order to establish a uniform set of definitions and criteria for
their diagnosis. These guidelines were updated and amended for diagnostics in 2013 [3] and
2017 [4].

The diagnosis of an ILD involves, questioning the patients about their clinical history, a
thorough physical examination, pulmonary function testing, a chest X-ray and a high reso-
lution computed tomography (HRCT) scan. HRCT is generally considered to be the most
appropriate protocol, due to the specific radiation attenuation properties of the lung tissue.
The imaging data are interpreted by assessing the extent and distribution of the various ILD
pathological tissue types in the chest CT scan. Typical ILD pathological tissue types in CT
images are: reticulation, honeycombing, ground glass opacity, consolidation and micronod-
ules. A few examples of the different tissue types are presented in Figure 1.1.

Although ILDs are a histologically heterogeneous group of diseases, they mostly have
rather similar clinical manifestations with each other, or even with different lung disorders,
so that differential diagnosis is fairly difficult even for experienced physicians. This inher-
ent property of ILDs, as well as the lack of strict clinical guidelines and the large quantity
of radiological data that radiologists have to scrutinize, explain the low diagnostic accuracy
and the high inter- and intra- observer variability, which has been reported to be as great
as 50% [5]. In ambiguous cases, additional invasive procedures are required, such as bron-
choalveolar lavage and histological confirmation. However, performing a surgical biopsy
exposes the patient to a number of risks and increases the healthcare costs, while even such
methods do not always provide a reliable diagnosis.

FIGURE 1.1: Examples of healthy tissue and typical ILD patterns from left
to right: healthy, ground glass opacity, micronodules, consolidation, reticula-

tion, honeycombing, combination of GGO and reticulation.
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1.2 Computer Aided Diagnosis Support Systems

In order to minimize the dangerous and sometimes unreliable histological biopsies, much
research has been conducted on computer aided diagnosis systems (CAD) which could as-
sist radiologists and increase their diagnostic accuracy. A CAD system for lung HRCT scan
assessment typically consists of three stages: (a) lung anatomy segmentation, (b) lung tis-
sue characterization and (c) differential diagnosis. The first stage, refers to the identification
of the lung border, the separation of the lobes and the detection and removal of the bron-
chovascular tree. The second stage, includes detection and recognition of the different tissue
abnormalities (HRCT texture patterns). Finally, the third stage combines the previous re-
sults so as to estimate the extend and distribution of pathological tissue within the lung
and outputs a probability based differential diagnosis. Such systems mostly utilize machine
learning approaches in order to perform each task and use annotated data for training. In
the following sections, the most important research studies for each of the aforementioned
stages are presented.

1.2.1 Anatomy Segmentation

Lung tissue normally presents substantially lower density than its surrounding tissues, re-
sulting in a large contrast in Hounsfield Units (HU) within thorax CT images. Therefore,
many of the conventional lung segmentation methods rely on simple intensity thresholding
techniques followed by morphological operations and connected component analysis for
the refinement of the results [6], [7]. In the cases however where high intensity pathological
tissue (e.g. nodules) is manifested near the borders of the lung cavity, simple morphological
operations and filling techniques are not sometimes sufficient to obtain an accurate segmen-
tation of lung field. For this reason, other geometric approaches were utilized, such us the
“rolling ball” operation [8]. More recently, after the enchanted capabilities of the multi-
detector CT scanners that can produce volumetric scans, 3D based approaches were also
studied [9], [10]. These simple intensity methods however, become unreliable in cases con-
taining pathologies with high density such as ILDs. The high density of the ILD patterns
that corresponds to high attenuation values, along with their often peripheral and basal
manifestations, can cause severe under-segmentation problems propagating the error to all
subsequent steps of the CAD system. A typical approach for the segmentation of the lung
fields therefore involves a couple of supplementary steps for the correction of the final re-
sult. Korfiatis et al. [11] applied k-means clustering followed by a filling operation to obtain
an initial lung field estimation and then used iterative support vector machine (SVM) clas-
sification of border pixels based on gray level and wavelet coefficient statistics features. In
order to exploit all available information, while avoiding the strong dependency from im-
age intensity and special texture characteristics, additional thorax anatomical features were
proposed in some works. Hua et al. [12] applied a graph search algorithm with a cost func-
tion that combines anatomical information, image intensity, and image gradient. Prasad et
al. [13] proposed an adaptive thresholding technique that exploits the fact that the curvature
of the ribs and the curvature of the lung boundary are closely matched.

1.2.2 Tissue Characterization

The term lung disease quantification includes the detection and recognition of the various
ILD pathologies, as well as the identification of their extent in the lung. Since ILDs are
generally manifested as texture alterations of the lung parenchyma, most of the proposed
systems employ texture classification schemes on local regions of interest (ROI). A typical
lung disease quantification scheme takes as input a local 2D or 3D ROI which is described
by a chosen feature set and uses an artificial intelligent (AI) system to classify it. The first
proposed systems used handcrafted texture features, in order to describe the ROIs, such
as first order statistics, gray level co-occurrence matrices, run-length matrices, and fractal
analysis [14]. Other systems, utilized filter banks [15], [16], morphological operations [6],
wavelet transformations [17], and local binary patterns [18]. More recently, researchers pro-
posed the use of feature sets learned from data, which are able to adapt to a given problem.
Most of these methods rely on unsupervised techniques, such as bag of features [19], [20]
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and sparse representation models [21], [22]. Restricted Boltzmann machines (RBM) have
also been used [23] to learn multiscale filters with their responses being used as features.
Once the feature vector of a ROI has been calculated, it is fed to a classifier that is trained to
discriminate between the patterns. Many different approaches have been proposed for clas-
sification, including linear discriminant analysis [15] and Bayesian classifiers [14], k-nearest
neighbors [11], [18], multi-layered perceptrons (MLP) [6], random forests [16], and support
vector machines (SVM) [19], [24]. Some attempts have also been recently made to use deep
learning (DL) techniques and especially convolutional neural networks (CNNs), after their
impressive performance in large scale color image classification [25]. Unlike other feature
learning methods that build data representation models in an unsupervised manner, CNNs
learn features and train an ANN classifier at the same time, by minimizing the classification
error. Although the term DL implies the use of many consecutive learning layers, the first at-
tempts on lung CT images adopted shallow architectures. In [26], a modified RBM was used
for both feature extraction and classification of lung tissue, incorporating some features of
CNNs. Weight sharing was used among the hidden neurons, which were densely connected
to label (output) neurons, while the whole network was trained in a supervised manner, us-
ing contrastive divergence and gradient descent. In [27], the authors designed a CNN with
one convolutional layer and three dense layers and trained it from scratch. However, the
shallow architecture of the network cannot leverage the descriptive ability of deep CNNs.
The pre-trained deep CNN of [25] (AlexNet) was used in [28] to classify whole lung slices
after fine-tuning with lung CT data. AlexNet was designed to classify natural color images
with input size 224× 224, so the authors had to resize the images and artificially generate
three channels by applying different HU windows. However, the substantial differences in
the domains of general color images and medical images raise doubts regarding the transfer
of knowledge between them, while classifying whole slices may only provide very rough
quantification of the disease.

1.2.3 Differential Diagnosis

Despite the extensive research that has been undertaken for the ILD quantification on CT
images, there has not yet been proposed a system able to suggest automatically a final di-
agnostic decision for a case. Van Ginneken et al. [29] proposed an automatic method for the
segmentation of lung fields into 42 regions followed by a classification step which assigns to
each region a confidence value for being abnormal. The product of the individual confidence
values provides a global diagnosis on the abnormality of the whole lung. Zheng et al. [30]
proposed a system that segments lung areas, identifies suspicious volumetric ILD lesions,
computes five global features for each of them (size, contrast, average local pixel value fluc-
tuation, mean of stochastic fractal dimension, and geometric fractal dimension) and classifies
the corresponding case into one of three categories of severity (mild, moderate, and severe)
by using a distance-weighted k-NN algorithm. Fukushima et al. [31] proposed the use of
an ANN that combines 10 clinical parameters with 23 HRCT features in order to provide
a final differential diagnosis. However, the used HRCT features were not computed auto-
matically, but rated manually by radiologists. Wang et al. [32] after classifying the VOIs of a
case into normal/abnormal using run length matrix (RLM) and Gray-Level Co-Occurrence
Matrix (GLCM) features, they used a simple rule to classify the case itself: If the number
of VOIs reported as abnormal in a case is greater than a specified threshold, the case was
considered as abnormal; otherwise it was considered as normal.

1.3 Hypothesis and Aims

Interstitial lung diseases is a group of rare, chronic, progressive diseases that affect the lungs
and are difficult to diagnose. Without the appropriate treatment, the life expectancy is only
two to five years after the diagnosis. Early diagnosis is of great importance, and therefore
enhancing the diagnostic accuracy of the involved physicians can have a very large impact
on the patients. The main scope of this PhD thesis is to investigate novel machine learning
approaches for the automatic quantification and assessment of medical images from patients
suffering with interstitial lung diseases, under the following hypothesis:
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FIGURE 1.2: Overview of Thesis. Diagrams flow from left (inputs) to right
(outputs). Top diagram presents the ILD diagnosis support and bottom dia-
gram shows the breathing radiomarkers extraction and classification. Grayed

out block implemented from literature.

Hypothesis: A robust, accurate and fast automatic detection of pathological lung tissue and quan-
tification of medical image findings, could enhance the diagnostic performance of radiologists and
could be used for defining image radio-markers and diagnostic endpoints.

This PhD thesis lies between the fields of machine learning and medical diagnosis. Through-
out the years, more and more studies attempt to bridge the gap between the two fields. The
aim is the design, development and evaluation of machine learning algorithms for the auto-
matic quantification of clinically relevant information retrieved from chest HRCT and mag-
netic resonance imaging (MRI) scans, so that they can be used for assisting the diagnostic
procedure.

1.4 Structure of the Thesis

In the following chapters, the main contributions of this PhD thesis are presented. In each
chapter, a short introduction on the particular field of study is given along with a detailed
description of the utilized data. A schematic presentation of the different contributions of
this PhD Thesis in given in Figure 1.2. In detail:

• Chapter 2: We propose and evaluate a CNN, designed for the classification of patho-
logical lung tissue image patches. A comparative analysis proved the effectiveness of
the proposed CNN against established texture classification methods from the litera-
ture, in a challenging dataset with 120 unique HRCT scans. The classification perfor-
mance (∼ 85.5%) demonstrated the potential of CNNs in analyzing lung patterns.

• Chapter 3: Due to the sparsity of annotated medical data, we investigate the feasibility
of utilizing knowledge from other texture classification tasks. Thus, in Chapter 3, we
present an improved method for training the previously proposed network (Chapter 2)
by transferring knowledge from the similar domain of general texture classification.
Six publicly available texture databases are used to pre-train networks with the pro-
posed architecture, which are then fine-tuned on the lung tissue data. The resulting
CNNs are combined in an ensemble and their fused knowledge is compressed back
to a network with the original architecture. The proposed training approach resulted
in an absolute increase of about 2% (i.e ∼ 87.5%) in the performance of the already
proposed CNN with no other modifications.
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• Chapter 4: Image patch classification combined with sliding window schemes, such
the ones presented in Chapters 2 and 3, could be highly inefficient as local image fea-
tures have to be recalculated multiple times for adjacent positions of the input window.
Luckily, the convolutional layers (with the appropriate padding) in a typical CNN pro-
duce feature maps that maintain spatial correspondence with the input image. We
therefore propose, in Chapter 4, the use of a deep purely CNN for the semantic seg-
mentation of ILD pathological tissue from whole HRCT slices, as the basic component
of a CAD system for ILDs. The training was performed in an end-to-end and semi-
supervised fashion, utilizing both labeled and non-labeled image regions. The exper-
imental results show significant performance and time improvements with respect to
the state of the art.

• Chapter 5: We introduce and evaluate an end-to-end CAD system for the automatic
classification of HRCT images into four radiological diagnostic categories. The pro-
posed CAD system consists of a sequential pipeline in which at first, the anatomical
structures of the lung are segmented, then the pathological lung tissue is identified
and finally by combining these information a final radiological diagnosis is reached
using a random forest classifier. The experimental results show the potential of uti-
lizing a CAD system for this task, while also sets a path for further development and
investigation.

• Chapter 6: We propose a novel CNN architecture that couples linear and deformable
registration within a unified architecture endowed with near real-time performance.
We evaluate the performance of our network on the challenging problem of MRI lung
registration and demonstrate superior performance with respect to state of the art elas-
tic registration methods. The proposed deformation (between inspiration and expira-
tion) was considered within a clinically relevant task of ILDs classification and showed
promising results.

• Chapter 7: We conclude the thesis with an general discussion of the topics covered and
with an outlook of future perspectives.
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Chapter 2

Lung Tissue Classification

This chapter is a modified version of:
M. Anthimopoulos*, S. Christodoulidis*, L. Ebner, A. Christe and S. Mougiakakou, "Lung Pattern

Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network," in IEEE
Transactions on Medical Imaging, vol. 35, no. 5, pp. 1207-1216, May 2016.

DOI: 10.1109/TMI.2016.2535865

*This study was a highly collaborative effort of M. Anthimopoulos and S. Christodoulidis, who share
the first authorship. All figures and the experiments were prepared and executed by S.

Christodoulidis while the text was writer by S. Christodoulidis and M.Anthimopoulos. The technical
research directions were chosen after long discussions between M. Anthimopoulos, S. Christodoulidis
and S. Mougiakakou while the medical research directions were decided by A. Christe and L. Ebner.

Automated tissue characterization is one of the most crucial components of a computer
aided diagnosis (CAD) system for interstitial lung diseases (ILDs). Although much research
has been conducted in this field, the problem remains challenging. Deep learning techniques
have recently achieved impressive results in a variety of computer vision problems, raising
expectations that they might be applied in other domains, such as medical image analysis.
In this chapter, we propose and evaluate a convolutional neural network (CNN), designed
for the classification of ILD patterns. The proposed network consists of 5 convolutional lay-
ers with 2× 2 kernels and LeakyReLU activations, followed by average pooling with size
equal to the size of the final feature maps and three dense layers. The last dense layer has 7
outputs, equivalent to the classes considered: healthy, ground glass opacity (GGO), micron-
odules, consolidation, reticulation, honeycombing and a combination of GGO/reticulation.
To train and evaluate the CNN, we used a dataset of 14696 image patches, derived by 120
CT scans from different scanners and hospitals. To the best of our knowledge, this is the
first deep CNN designed for the specific problem. A comparative analysis proved the ef-
fectiveness of the proposed CNN against previous methods in a challenging dataset. The
classification performance (∼ 85.5%) demonstrated the potential of CNNs in analyzing lung
patterns. Future work includes, extending the CNN to three-dimensional data provided
by CT volume scans and integrating the proposed method into a CAD system that aims to
provide differential diagnosis for ILDs as a supportive tool for radiologists.

2.1 Field of Study

2.1.1 Convolutional Neural Networks

CNNs are feed-forward ANN inspired by biological processes and designed to recognize
patterns directly from pixel images (or other signals), by incorporating both feature extrac-
tion and classification. A typical CNN involves four types of layers: convolutional, activa-
tion, pooling and fully-connected (or dense) layers. A convolutional layer is characterized
by sparse local connectivity and weight sharing. Each neuron of the layer is only connected
to a small local area of the input, which resemble the receptive field in the human visual sys-
tem. Different neurons respond to different local areas of the input, which overlap with each
other to obtain a better representation of the image. In addition, the neurons of a convolu-
tional layer are grouped in feature maps sharing the same weights, so the entire procedure
becomes equivalent to convolution, with the shared weights being the filters for each map.

https://doi.org/10.1109/TMI.2016.2535865
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Weight sharing drastically reduces the number of parameters of the network and hence in-
creases efficiency and prevents overfitting. Convolutional layers are often followed by a
non-linear activation layer, in order to capture more complex properties of the input signal.
Pooling layers are also used to subsample the previous layer, by aggregating small rectan-
gular subsets of values. Max or average pooling is usually applied by replacing the input
values with the maximum or the average value, respectively. The pooling layers reduce the
sensitivity of the output to small input shifts. Finally, one or more dense layers are put in
place, each followed by an activation layer, which produce the classification result. The train-
ing of CNNs is performed similarly to that of other ANNs, by minimizing a loss function
using gradient descent based methods and back propagation of the error.

Although the concept of CNNs has existed for decades, training such deep networks
with multiple stacked layers was achieved only recently. This is mainly due to their ex-
tensive parallelization properties, which have been coupled with massively parallel GPUs,
the huge amounts of available data, and several design tricks, such as the rectified linear
activation units (ReLU). In 2012, Krizhevsky et al. [25] won the ImageNet Large-Scale Vi-
sual Recognition Challenge, convincingly outperforming the competition on a challenging
dataset with 1000 classes and 1.2 million images. The proposed deep CNN, also known as
AlexNet, consists of five convolutional layers with ReLU activations, some of which are fol-
lowed by max-pooling layers, and three dense layers with a final 1000-way softmax. The
network was trained with stochastic gradient descent (SGD) with a momentum term, max-
imizing the multinomial logistic regression objective. Deep architectures permit learning
of data representations in multiple levels of semantic abstraction, so even high-level visual
structures like cars or faces can be recognized in the last layers by combining low-level fea-
tures of the first, such as edges. Nevertheless, designing a deep CNN for a specific problem
is not trivial, since a large number of mutually dependent parameter values and algorith-
mic choices have to be chosen. Although much research has been conducted in recent years
on deep CNNs for color image classification, very little has been done on the problems of
texture recognition and medical image analysis.

2.1.2 Contribution

In this study, we propose a deep CNN for the classification of ILD patterns that exploits the
outstanding descriptive capability of deep neural networks. The method has been evaluated
on a dataset of 120 cases from two hospitals and the results confirm its superiority compared
to the state of the art. To the best of our knowledge, this is the first time a deep CNN has
been designed and trained for lung tissue characterization. Finally, we provide empirical
rules and principles on the design of CNN architectures for similar texture classification
problems.

2.2 Materials and Methods

In this section, we first describe the dataset used in the study, followed by the proposed
CNN. The definition of the input data and desired outputs prior to the actual methods pro-
vides a better definition of the problem and thus a better understanding of the methods.

2.2.1 Data

The dataset used for training and evaluating the proposed method was made using two
databases of ILD CT scans from two different Swiss university hospitals:

The first is the publicly available multimedia database of ILDs from the University Hos-
pital of Geneva [33], which consists of 109 HRCT scans of different ILD cases with 512× 512
pixels per slice. Manual annotations for 17 different lung patterns are also provided, along
with clinical parameters from patients with histologically proven diagnoses of ILDs.

The second database was provided by the Bern University Hospital, “Inselspital”, and
consists of 26 HRCT scans of ILD cases with resolution 512× 512.

The scans were produced by different CT scanners with slightly different pixel spacing so
a preprocessing step was applied, which rescaled all scans to match a specific spacing value



2.2. Materials and Methods 9

FIGURE 2.1: Example of generating image patches through the annotations
of a CT slice. The lung field is displayed with transparent red. The polygons
are the ground truth areas with considered pathologies. The patches have
100% overlap with the lung, at least 80% overlap with the ground truth and

0% overlap with each other.

(i.e., 0.4 mm). However, the use of different reconstruction kernels by the scanners, still re-
mains an open issue that complicates the problem even further. The image intensity values
were cropped within the window [-1000, 200] in HU and mapped to [0, 1]. Experienced
radiologists from the “Inselspital” annotated (or re-annotated) both databases by manually
drawing polygons around the six most relevant ILD patterns, namely GGO, reticulation,
consolidation, micronodules, honeycombing and a combination of GGO and reticulation.
Healthy tissue was also added, leading to 7 classes. The annotation focused on typical in-
stances of the considered ILD patterns, excluding ambiguous tissue areas that even experi-
enced radiologists find difficult to classify. Hence, tissue outside the polygons may belong
to any pattern, including that considered. Moreover, the annotators tried to avoid the bron-
chovascular tree which (in a complete CAD system) should be segmented and removed,
before applying the fixed-scale classifier. Annotation of the lung fields was also performed
for all scans.

The considered classes appeared in the annotations of 94 out of the 109 scans of the
Geneva database, to which the 26 cases from “Inselspital” were added, giving a total of 120
cases. On the basis of the ground truth polygons of these cases, we extracted in total 14696
non-overlapping image patches of size 32× 32, unequally distributed across the 7 classes.
Figure 2.1 presents an example of how patches are generated through the annotations of a
CT slice. For each pattern, Table I provides the number of ground truth polygons, the av-
erage and standard deviation of their area, the number of cases in which it was annotated
and the number of extracted patches. The healthy pattern was only annotated in 8 cases,
which however proved to be enough, since its texture does not present large deviations. It
has to be noted that one case may contain multiple types of pathologies, so the sum of cases
in Table 2.1 is larger than 120. The patches are entirely included in the lung field and have
an overlap with the ground truth polygons of at least 80%. For each class, 150 patches were
randomly selected for the test and 150 for the validation set. The choice of 150 was made
based on the patch number of the rarest class (i.e., honeycombing) leaving about 50% of the
patches for training. On the remaining patches, data augmentation was employed in order
to maximize the number of training samples and equalize, at the same time, the samples’
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TABLE 2.1: Statistics of the database. (H: healthy, GGO: ground glass opacity,
MN: micronodules, cons: consolidation, ret: reticulation, HC: honeycomb-

ing)

H GGO MN Cons Ret HC Ret+GGO

#Polygons 105 823 317 1129 870 692 1593
Avg Area (103px) 39.8 11.7 58.4 9.5 11.7 13.7 24.1
Std Area (103px) 21.5 11.8 52.7 7.5 14.1 10.6 19.6
#Cases 8 44 19 25 38 22 55
#Patches 1142 1185 3192 2823 1056 613 4685

distribution across the classes. Data augmentation has often been employed in image clas-
sification, in order to increase the amount of training data and prevent over-fitting [25]. To
this end, 15 label-preserving transformations were used, such as flip and rotation, as well as
the combinations of the two. For each class, the necessary number of augmented samples
was randomly selected, so all classes would reach the training set size of the rarest class, i.e.,
5008, leading to 35056 equally distributed training patches.

2.2.2 Proposed CNN

In order to decide on the optimal architecture and configuration of a CNN, one should first
comprehend the nature of the problem considered – in this case – the classification of ILD
patterns. Unlike arbitrary objects in color images, which involve complex, high-level struc-
tures with specific orientation, ILD patterns in CT images are characterized by local textural
features. Although texture is an intuitively easy concept for humans to perceive, formulat-
ing a formal definition is not trivial, which is the reason for the many available definitions
in the literature [34]. Here, we define texture as a stochastic repetition of a few structures
(textons) with relatively small size, compared to the whole region. Image convolution high-
lights small structures that resemble the convolution kernel throughout an image region,
and in this way the analysis of filter bank responses has been successfully used in many
texture analysis applications. This encourages the use of CNNs to recognize texture by iden-
tifying the optimal eproblem-specific kernels; however some key aspects stemming from
our definition of texture have to considered: (i) The total receptive field of each convolu-
tional neuron with respect to the input (i.e., the total area of the original input “seen” by a
convolutional neuron) should not be larger than the characteristic local structures of texture,
otherwise non-local information will be captured, which is irrelevant to the specific texture,
(ii) since texture is characterized by fine grained low-level features, no pooling should be
carried out between the convolutional layers, in order to prevent loss of information, (iii)
each feature map outputted by the last convolutional layer should result in one single fea-
ture after pooling, in order to gain some invariance to spatial transformations like flip and
rotation. Unlike color pictures that usually have high-level geometrical structure (e.g., the
sky is up), a texture patch should still be a valid sample of the same class when flipped or
rotated.

Architecture

On the basis of these principles, we designed the network presented in Figure 2.2. The input
of the network is a 32× 32 image patch, which is convolved by a series of 5 convolutional
layers. The size of the kernels in each layer was chosen to be minimal, i.e., 2× 2. The use
of small kernels that lead to very deep networks was proposed in the VGG-net [35], which
was ranked at the top of ILSVRC 2014 challenge by employing 3× 3 kernels and up to 16
convolutional layers. Here, we go one step further by shrinking the kernel size even more
to involve more non-linear activations, while keeping the total receptive field small enough
(6× 6) to capture only the relevant local structure of texture. Each layer has a number of
kernels proportional to the receptive field of its neurons, so it can handle the increasing
complexity of the described structures. The size of the rectangular receptive field is 2× 2
for the first layer and is increased by 1 in each dimension, for each layer added, leading
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FIGURE 2.2: Architecture of the proposed CNN for lung pattern classifica-
tion. The value of parameter k was set to 4.

to an area of (L + 1)2 for the Lth layer. Hence, the number of kernels we use for the Lth
layer is k(L + 1)2, where the parameter k depends on the complexity of the input data and
was set to 4 after relevant experiments. An average pooling layer follows, with size equal
to the output of the last convolutional layer (i.e., 27× 27). The resulting features, which are
equal to the number of features maps of the last layer i.e., f = 36k, are fed to a series of 3
dense layers with sizes 6 f , 2 f and 7, since 7 is the number of classes considered. The use of
large dense layers accelerated convergence, while the problem of overfitting was solved by
adding a dropout layer before each dense layer. Dropout can be seen as a form of bagging;
it randomly sets a fraction of units to 0, at each training update, and thus prevents hidden
units from relying on specific inputs [36].

Activations

It is well-known that the choice of the activation function significantly affects the speed of
convergence. The use of the ReLU function f(x)=max(0,x) has been proven to speed up the
training process many times compared to the classic sigmoid alternative. In this study, we
also noticed that convolutional activations have a strong influence on the descriptive ability
of the network. Driven by this observation and after experimenting with different rectified
activations, we propose the use of LeakyReLU [37], a variant of ReLU, for activating every
convolutional layer. Unlike ReLU, which totally suppresses negative values, leaky ReLU
assigns a non-zero slope, thus allowing a small gradient when the unit is not active ((1)).

f (x) =
{

x, x > 0
αx, else

(2.1)

where α is a manually set coefficient.
LeakyReLU was proposed as a solution to the “dying ReLU” problem, i.e., the tendency

of ReLU to keep a neuron constantly inactive as may happen after a large gradient update.
Although a very low negative slope coefficient (i.e., α=0.01) was originally proposed, here
we increase its value to 0.3, which considerably improves performance. Similar observations
have also been reported in other studies [38]. A very leaky ReLU seems to be more resilient
to overfitting when applied to convolutional layers, although the exact mechanism causing
this behavior has to be further studied. For the dense part of the network, the standard
ReLU activation was used for the first two layers and softmax on the last layer, to squash the
7-dimensional output into a categorical probability distribution.

Training Method

The training of an ANN can be viewed as a combination of two components, a loss function
or training objective, and an optimization algorithm that minimizes this function. In this
study, we use the Adam optimizer [39] to minimize the categorical cross entropy. The cross
entropy represents the dissimilarity of the approximated output distribution (after softmax)
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from the true distribution of labels. Adam is a first-order gradient-based algorithm, designed
for the optimization of stochastic objective functions with adaptive weight updates based on
lower-order moments. Three parameters are associated with Adam: one is the learning rate
and the other two are exponential decay rates for the moving averages of the gradient and
the squared gradient. After relevant experiments, we left the parameters to their default
values namely, learning rate equal to 0.001 and the rest 0.9 and 0.999, respectively. The
initialization of the convolutional layers was performed using orthogonal matrices multi-
plied with a scaling parameter equal to 1.1, while a uniform distribution was utilized for
the dense layers, scaled by a factor proportional to the square root of the layer’s number of
inputs [40]. The weight updates are performed in mini-batches and the number of samples
per batch was set to 128. The training ends when the network does not significantly improve
its performance on the validation set for a predefined number of epochs. This number is set
to 200 and the performance is assessed in terms of average f-score (Favg) over the different
classes ((2)) (see Section IV). An improvement is considered significant if the relative increase
in performance is at least 0.5%.

2.3 Experimental Setup and Results

This section focuses on the presentation and discussion of the results. Before that, we de-
scribe the experimental setup namely, the chosen evaluation strategy and some details on
the implementation of the methods.

2.3.1 Experimental Setup

Evaluation

The evaluation of the different ILD patch classification approaches is based on a train-validation-
test scheme. The actual training of the methods was carried-out on the training set, while
the validation set was used for fine tuning the hyper-parameters; the overall performance
of each system was assessed on the test set. As principle evaluation measure, we used the
average F-score over the different classes (2), due to its increased sensitivity to imbalances
among the classes; the overall accuracy is also computed (3). It has to be noted that the pre-
sented performances are not comparable to performances reported in the literature due to
the use of different datasets and the consideration of different patterns. However, we trust
that the difficulty of a dataset may only affect the absolute performance of methods and not
their relative performance rank.

Favg =
2
7

7

∑
c=1

recallc ∗ precisionc

recallc + precisionc
(2.2)

where

recallc =
samples correctly classified as c

samples of class c
(2.3)

precisionc =
samples correctly classified as c

samples classified as c
(2.4)

Accuracy =
correctly classified samples

total number of samples
(2.5)

Implementation

The proposed method was implemented in Python1 using the Keras2 framework with Theano
[41] back-end, while for AlexNet and VGG-Net we used Caffe [42]. Methods which do not
involve convolutional networks were coded in python and MATLAB. All experiments were

1https://github.com/intact-project/ild-cnn
2https://github.com/keras-team/keras

https://github.com/intact-project/ild-cnn
https://github.com/keras-team/keras


2.3. Experimental Setup and Results 13

TABLE 2.2: Performance of the CNN for different configurations

Dropout
fraction

Pooling
type

Pooling
percentage

Kernel
number
multiplier
(k)

Number of
kernels for
Lth layer

Number
of conv
layers

Kernel
size

Input
scale
factor

Activation
function

Testing
Favg

# Epochs x
Epoch time

0 Avg 100% 4 k(L + 1)2 5 2× 2 1 LReLU(0.3) 0.7908 90× 11s
0.5 Max 100% 4 k(L + 1)2 5 2× 2 1 LReLU(0.3) 0.8105 69× 11s
0.5 Avg 50% 4 k(L + 1)2 5 2× 2 1 LReLU(0.3) 0.7895 249× 11s
0.5 Avg 25% 4 k(L + 1)2 5 2× 2 1 LReLU(0.3) 0.7452 286× 12s

0.5 Avg 100% 4 17 5 2× 2 1 LReLU(0.3) 0.8446 300× 12s
0.5 Avg 100% 4 36 5 2× 2 1 LReLU(0.3) 0.8508 386× 32s
0.5 Avg 100% 3 k(L + 1)2 5 2× 2 1 LReLU(0.3) 0.8266 427× 7s
0.5 Avg 100% 5 k(L + 1)2 5 2× 2 1 LReLU(0.3) 0.8425 362× 14s

0.5 Avg 100% 4 k(L + 1)2 7 2× 2 1 LReLU(0.3) 0.8432 295× 23s
0.5 Avg 100% 4 k(L + 1)2 6 2× 2 1 LReLU(0.3) 0.8559 215× 18s
0.5 Avg 100% 4 k(L + 1)2 4 2× 2 1 LReLU(0.3) 0.8443 372× 6s
0.5 Avg 100% 4 k(L + 1)2 5 2× 2 1.5 LReLU(0.3) 0.8223 196× 21s
0.5 Avg 100% 4 k(L + 1)2 5 3× 3 1.5 LReLU(0.3) 0.8390 328× 260s
0.5 Avg 100% 4 k(L + 1)2 5 3× 3 1 LReLU(0.3) 0.8147 193× 67s
0.5 Avg 100% 4 k(L + 1)2 5 2× 2 1 ReLU 0.7871 90× 11s
0.5 Avg 100% 4 k(L + 1)2 5 2× 2 1 LReLU(0.01)d 0.8094 110× 12s

0.5 Avg 100% 4 k(L + 1)2 5 2× 2 1 LReLU(0.3) 0.8547 386× 12s

performed under a Linux OS on a machine with CPU Intel Core i7-5960X @ 3.50 GHz, GPU
NVIDIA GeForce Titan X, and 128 GB of RAM.

2.3.2 Results

This section presents the experimental results and is split into three parts. Firstly, we present
a set of experiments that justify the choice of the different components and the tuning of
the hyper-parameters. A comparison of the proposed method with previous studies follows
and finally, an additional analysis of the system’s performance is given.

Tuning of Hyper-Parameters

Here we demonstrate the effect of the most crucial choices for the architecture and the train-
ing procedure. Table 2.2 demonstrates the classification performance for different config-
urations of the network’s architecture, as well as the training time needed. The proposed
configuration, presented in bold, yielded an Favg of 0.8547. Using the LeakyReLU with the
originally proposed parameter, reduces the performance by roughly 5% and the use of stan-
dard ReLU by a further 2%. Increasing the size of the kernels to 3× 3 also resulted in a drop
by 4% in performance, accompanied by a significant increase in the epoch time (∼ 5×). The
larger kernels increased the total receptive field of the network to 11× 11, which proved to
be too big for the characteristic local structures of the considered textures. By keeping the
3× 3 kernels and increasing the image resolution by 50%, each training epoch became slower
by more than 20×, but still without reaching the proposed performance. When we just up-
sampled the input image while using the 2× 2 kernels, the result was again significantly
inferior to that proposed, since the receptive field relatively to the input size was smaller
than optimal. By altering the number of convolutional layers, we can infer that the optimal
architecture will have 5-6 layers that correspond to a total receptive field of 6× 6− 7× 7.
In this study, we propose the use of 5 convolutional layers, preferring efficiency to a small
increase in performance.

To identify the optimal number of kernels, we experimented with the k multiplier. The
corresponding results show that 4 is the optimal choice, both in terms of performance and
efficiency. A couple of experiments were also conducted to study the effect of using a con-
stant number of kernels in each convolutional layer. Firstly, we chose 17 kernels in order to
match the epoch time of the proposed configuration, which resulted in a performance drop
of about 1%. With 36 kernels per layer, the results were comparable to that proposed, hav-
ing though an epoch time almost 3-fold longer. This experiment showed that the choice of
the distribution of kernels in the convolutional layers is basically a matter of efficiency and
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FIGURE 2.3: Comparison of the convergence speed between three optimizers.

does not so drastically affect the accuracy of the system, assuming that a sufficient number
of kernels is used.

Changing the size of the pooling layer from 100% of the last feature map to 50% or 25%,
resulted in a drop in Favg of more than 6% and 9%, respectively. By splitting the feature
map in multiple pooled regions, different features are generated for the different areas of
the image, so that the CNN is highly non-invariant to spatial transformations like flip and
rotation. In another experiment, max pooling was employed instead of average, yielding a
result that was inferior by nearly 4%. Although max pooling is the common choice for most
CNNs and proved to be much faster in terms of convergence, in our problem average seems
to be more effective. Finally, when we removed the dropout layers, we observed a decline
in Favg of more than 6%, an effect obviously due to overfitting.

Table 2.3 demonstrates the effects of using different optimizers and loss functions for
training the CNN. The parameters for each optimizer have been tuned accordingly on the
validation set. For the SGD we used a learning rate of 0.01 with a momentum of 0.95, while
for AdaGrad we used 0.001 learning rate. Minimizing the categorical cross-entropy by the
Adam optimizer yielded the best results in a small number of iterations. SGD follows, with
about 1% lower performance and AdaGrad with even higher drop in performance of 3%.
Finally, we also employed Adam to minimize the mean squared error (MSE), which yielded
comparable results.

In Figure 2.3, the convergence of the three different optimizers is illustrated in terms of
the validation loss over the epochs. AdaGrad starts with a rapid descent, but soon stops
improving probably due to the quickly reduced learning rate. Adam and SGD seem to per-
form almost equally, but here we chose Adam because of the slightly better performance as
shown in Table 2.3 and its stable behavior independently from its parameters.

TABLE 2.3: Performance of the proposed CNN with different training options

Optimizer Loss Function Favg Accuracy Epoch

SGD Cross-Entropy 0.8434 0.8428 333
AdaGrad Cross-Entropy 0.8219 0.8228 257

Adam MSE 0.8499 0.8523 155

Adam Cross-Entropy 0.8547 0.8561 386
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TABLE 2.4: Comparison of the proposed with state-of-the-art methods using
handcrafted features

Method Features Classifier Favg Accuracy

Gangeh [19] Intensity textons SVM-RBF 0.7127 0.7152
Sorensen [18] LBP + histogram kNN 0.7322 0.7333

Anthimopoulos [16] Local DCT + histogram RF 0.7786 0.7809

Proposed CNN 0.8547 0.8561

Comparison With the State of the Art

Table 2.4 provides a comparison of the proposed CNN with state-of-the-art methods using
handcrafted features and different classifiers. All the methods were implemented by the
authors and the parameters for each one were fine-tuned using a trial and error procedure
on the validation set. The results prove the superior performance of the proposed scheme
that outperformed the rest by 8% to 14%.

Table 2.5 provides a comparison with other CNNs. The first row corresponds to a shallow
network with just one convolutional and three dense layers, which constitutes the first CNN-
based approach to the problem, to the best of our knowledge. The fairly low results achieved
by this network on our dataset, could be due to several reasons: (i) the 16 kernels used for
the convolutional layer are not enough to capture the complexity of the problem, (ii) the use
of a 2× 2 max pooling results in 169 local features per feature map, that describe a high-level
spatial distribution not relevant to the problem, and (iii) the shallow architecture prevents
the network from learning highly non-linear features. The second CNN we test is the LeNet
[43], a network designed for character classification. It has two convolutional layers, each
followed by pooling and three dense layers. The first layer uses 6 kernels and the second
16, both with the same size 5× 5. The results produced on our dataset are similar to the
previous CNN for similar reasons.

Furthermore, we evaluated the performance of the well-known AlexNet [25] and VGG-
Net-D [38], two networks much larger and deeper than the previous, with the first having
5 convolutional layers and the second 13. The two networks were designed for the classi-
fication of 224× 224 color images, so in order to make our data fit, we rescaled the 32× 32
patches to 224× 224 and generated 3 channels by considering 3 different HU windows ac-
cording to [35]. First, we tried training the AlexNet from scratch on our data. However,
the size of this kind of networks requires very large amounts of data, in order to be trained
properly. The achieved accuracy was in the order of 70% and the noisy and low-detailed fil-
ters obtained from the first convolutional layer (Figure 2.4a) show that the size, as well as the
scale of the network, are too large for our problem. To overcome the problem of insufficient
data we fine-tuned the already trained (on ImageNet) AlexNet, which is currently the most
common technique for applying it to other problems. The results were improved by about
5% showing that for training large CNNs, the size of the used set can be more important than
the type of data. However, by looking at the filters of the first layer (Figure 2.4b) one may
notice that the scale of the edges does not match our problem, considering that the 11× 11
filters correspond to less than 2× 2 in our input image. Finally, we tested the pre-trained (on
ImageNet) VGG-Net after fine-tuning it, since training a network with that size from scratch
would need even more data than AlexNet. The network achieved an improvement of about

TABLE 2.5: Comparison of the proposed method with other CNNs

Method Favg Accuracy

Li [27] 0.6657 0.6705
LeNet [43] 0.6783 0.6790

AlexNet [25] 0.7031 0.7104
Pre-trained AlexNet [25] 0.7582 0.7609

VGG-Net [35] 0.7804 0.7800

Proposed 0.8547 0.8561
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(A) (B)

FIGURE 2.4: Filter of the first layer of alexnet by (A) training from scratch on
our data, (B) fine-tuning the pre-trained on imagenet version.

2% compared to AlexNet probably due to the smaller size of kernels that permit the use of
more convolutional layers, however the result is still inferior to that proposed.

For a more detailed comparison at different operating points we also performed a re-
ceiver operating characteristic (ROC) analysis for AlexNet, AlexNet pre-trained (AlexNetP),
VGG-Net, the method by Sorensen et al. [18] and the proposed CNN. Figure 2.5 presents
the ROC curves for each of the compared methods and each of the considered classes us-
ing a one-vs-all scheme. The average ROC curves over the different classes are presented
in the last chart of Figure 2.5 For each ROC, the area under the curve (AUC) was computed
and the 95% confidence interval was plotted according to [44]. The comparison showed
that the proposed method achieved the highest AUC on each of the 7 classes. To test the
statistical significance of the AUC differences, a statistical analysis was performed based on
[45] and using 10,000 bootstraps. The results of the analysis confirmed the statistically sig-
nificant (p < 0.05) superior performance of the proposed CNN against all methods, when
comparing on the most difficult patterns i.e., consolidation, reticulation, honeycombing and
reticulation/GGO. For the rest of the patterns (healthy, GGO and micronodules) the differ-
ence between the proposed method and the pre-trained AlexNet was not considered signif-
icant (p = 0.058, 0.445, 0.056), while for GGO the difference from VGG-Net was also non-
significant (p = 0.271). Finally, the superiority of the proposed method after averaging over
all considered classes was also found to be statistically significant (p � 0.05). These results
are in line with the corresponding ROC curves of Figure 6, where large distance between
curves correlates with statistically significant differences.

Furthermore, we conducted an experiment to estimate the efficiency of the different
CNNs when used to recognize the pathologies of an entire scan by sliding the fixed-scale
classifier on the images. By using the minimal step for sliding the window, i.e., 1, the pro-
posed CNN needed 20 seconds to classify the whole lung area in the 30 slices of an average-
sized HRCT scan. The corresponding time needed by AlexNet was 136 and by VGG-Net 160
seconds. By increasing the step to 2, which still produces a sufficiently precise pathology
map – the time needed for any method is reduced by a factor of 4.

Concluding, the two tested deep CNNs showed inferior performance mainly because
they do not comply with the principles described in Section III-B: (i) their overall receptive
field relatively to the input image is larger than needed, (ii) the use of pooling between the
convolutional layers results in loss of information, (iii) the use of small size for the last pool-
ing makes the extracted features position dependent. Moreover, other algorithmic choices,
like the standard ReLU and the max pooling, may have affected the result, as shown in Ta-
ble 2.2, as well as the different input size. Finally, apart from the relatively low accuracy, the
efficiency of these very large networks could also be an issue for using them in this kind of
applications. The slower prediction will multiply the operating time by at least a factor of 7,
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FIGURE 2.5: ROC analysis for the proposed CNN and four previous methods:
alexnet, alexnet pre-trained (alexnetp), VGG-net and the method by sorensen
et al. [18]. The analysis was performed per class (one-vs-all) while the aver-
age over all classes is also presented. For each roc, the AUC is given and the

95% confidence interval is plotted.
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FIGURE 2.6: Loss curves during the training of the proposed system.

making them prohibitive for the clinical practice.

Analysis of the System’s Performance

In this paragraph, we provide additional insight into the performance of the proposed method.
In Figure 2.6, we show the loss and performance curves during the training of the system.
The blue and orange descending curves correspond to the loss function values for the train-
ing and for the validation sets during training. The two curves start to diverge from one
another after around 100 epochs; however, validation loss continues to descend slightly un-
til roughly 200 epochs. The gray vertical line indicates the best model found. The yellow and
purple curves represent the accuracy and Favg on the validation set and after a few epochs
they overlap almost completely, showing that when the network gets sufficiently trained, it
treats the classes fairly balanced.

The 16 kernels for the first convolutional layer of the best model are illustrated in Fig-
ure 2.7. Although the small number and size of the kernels do not permit much discussion,
one may notice their differential nature that captures fundamental edge patterns. These pat-
terns grow in size and complexity while passing through consecutive convolutional layers,
so that the last layer describes the micro-structures that characterize texture.

Figure 2.8a shows the confusion matrix of the proposed method for the seven considered
classes. The confusion between honeycombing and reticular patterns is due to their com-
mon fibrotic nature and contributes a major share to the overall error. Figure 2.9 presents
some difficult cases of these patterns that were misclassified, together with the correspond-
ing output of the network. The relatively high misclassification rate between the combined
GGO/reticulation and the individual GGO and reticulation patterns could be justified by
the fact that the former constitutes an overlap of the latter. This combinational pattern is
particularly difficult for every classification scheme tested, and it has not been considered
in most of the previous studies. We decided to include it here, because its presence is very

FIGURE 2.7: The 2× 2 kernels from the first layer of the proposed CNN.
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FIGURE 2.8: Confusion matrices of: (A) the proposed method, (B) the method
by sorensen et al. [18]. The entry in the ith row and jth column corresponds
to the percentage of samples from class i that were classified as class j. H:
healthy tissue; MN: micronodules; GGO: ground glass opacity; cons: consol-

idation; ret: reticulation, HC: honeycombing.

relevant to the discrimination between idiopathic pulmonary fibrosis (IPF) and non-specific
interstitial pneumonia (NSIP), which are the most common ILDs. Figure 2.8b presents the
corresponding confusion matrix for the method by Sorensen et al. [18]. The results show
that the higher misclassification rate is mainly caused by the reticular patterns, which re-
quire an accurate description of texture apart from the first-order description of intensity
values.

2.4 Conclusions

In this chapter, we proposed a deep CNN to classify lung CT image patches into 7 classes,
including 6 different ILD patterns and healthy tissue. A novel network architecture was de-
signed that captures the low-level textural features of the lung tissue. The network consists
of 5 convolutional layers with 2× 2 kernels and LeakyReLU activations, followed by just
one average pooling, with size equal to the size of final feature maps and three dense layers.
The training was performed by minimizing the categorical cross entropy with the Adam op-
timizer. The proposed approach gave promising results, outperforming the state of the art
on a very challenging dataset of 120 CT scans from different hospitals and scanners. The

Healthy

GGO

MN

Cons

Ret

HC

Ret+GGO

HC

< 1%

< 1%

< 1%

< 1%

50.58%

43.02%

6.38%

HC

< 1%

< 1%

< 1%

20.23%

17.60%

19.94%

41.41%

Ret

< 1%

< 1%

< 1%

< 1%

19.55%

60.76%

19.38%

Ret

< 1%

< 1%

< 1%

< 1%

49.02%

1.86%

49.06%

Ret+GGO

< 1%

< 1%

8.83%

< 1%

57.36%

1.25%

31.92%

Ret+GGO

< 1%

< 1%

< 1%

< 1%

< 1%

94.21%

5.49%

FIGURE 2.9: Examples of misclassified patches by the proposed CNN. The
output of the network is displayed below each patch.
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method can be easily trained on additional textural lung patterns while performance could
be further improved by a more extensive investigation of the involved parameters. The large
number of parameters and the relatively slow training (typically a few hours) could be con-
sidered as a drawback of this kind of DL approaches, together with the slight fluctuation
of the results, for the same input, due to the random initialization of the weights. In fu-
ture studies, we plan to extend the method to consider three dimensional data from MDCT
volume scans and finally to integrate it into a CAD system for differential diagnosis of ILDs.
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Chapter 3

Multi-source Transfer Learning

This chapter is a modified version of:
S. Christodoulidis*, M. Anthimopoulos*, L. Ebner, A. Christe and S. Mougiakakou, "Multisource
Transfer Learning With Convolutional Neural Networks for Lung Pattern Analysis," in IEEE Journal of

Biomedical and Health Informatics, vol. 21, no. 1, pp. 76-84, Jan. 2017.
DOI: 10.1109/JBHI.2016.2636929

*This study was a highly collaborative effort of M. Anthimopoulos and S. Christodoulidis, who share
the first authorship. All figures and the experiments were prepared and executed by S.

Christodoulidis while the text was writer by S. Christodoulidis and M.Anthimopoulos. The technical
research directions were chosen after long discussions between M. Anthimopoulos, S. Christodoulidis
and S. Mougiakakou while the medical research directions were decided by A. Christe and L. Ebner.

Early diagnosis of interstitial lung diseases is crucial for their treatment, but even expe-
rienced physicians find it difficult, as their clinical manifestations are similar. In order to
assist with the diagnosis, computer-aided diagnosis systems have been developed. These
commonly rely on a fixed scale classifier that scans CT images, recognizes textural lung
patterns, and generates a map of pathologies. In a previous study, we proposed a method
for classifying lung tissue patterns using a deep convolutional neural network (CNN), with
an architecture designed for the specific problem. In this study, we present an improved
method for training the proposed network by transferring knowledge from the similar do-
main of general texture classification. Six publicly available texture databases are used to
pretrain networks with the proposed architecture, which are then fine-tuned on the lung
tissue data. The resulting CNNs are combined in an ensemble and their fused knowledge
is compressed back to a network with the original architecture. The proposed approach re-
sulted in an absolute increase of about 2% in the performance of the proposed CNN. The
results demonstrate the potential of transfer learning in the field of medical image analysis,
indicate the textural nature of the problem and show that the method used for training a
network can be as important as designing its architecture.

3.1 Field of Study

Medical imaging data are much more difficult to acquire compared to general imagery,
which is freely available on the Internet. On top of that, their annotation has to be performed
by multiple specialists to ensure its validity, whereas in natural image recognition anyone
could serve as annotator. This lack of data makes the training on medical images very dif-
ficult or even impossible for many of the huge networks proposed in computer vision. A
common way to overcome this problem is to pretrain the networks on large color image
databases like ImageNet, and then fine-tune them on medical imaging data, a method often
referred to as transfer learning. This approach has yielded adequately good results for many
applications and has demonstrated the effectiveness of transfer learning between rather dif-
ferent image classification tasks [46]. Secondly, the architecture of popular CNNs from the
field of computer vision, is generally suboptimal for problems encountered in medical imag-
ing such as texture analysis, while their input size is fixed and often not suitable.

https://doi.org/10.1109/JBHI.2016.2636929


22 Chapter 3. Multi-source Transfer Learning

3.1.1 Transfer Learning

Transfer learning is generally defined as the ability of a system to utilize knowledge learned
from one task, to another task that shares some common characteristics. Formal definitions
and a survey on transfer learning can be found in [47]. In this study, we focus on supervised
transfer learning with CNNs. Deep CNNs have shown remarkable abilities in transferring
knowledge between apparently different image classification tasks or even between imaging
modalities for the same task. In most cases, this is done by weight transferring. A network
is pretrained on a source task and then the weights of some of its layers are transferred to a
second network that is used for another task. In some cases, the activations of this second
network are just used as “off-the-shelf” features which can then be fed to any classifier [48]
. In other cases, the non-transferred weights of the network are randomly initialized and
a second training phase follows, this time on the target task [49]. During this training, the
transferred weights could be kept frozen at their initial values or trained together with the
random weights, a process usually called “fine-tuning”. When the target dataset is too small
with respect to the capacity of the network, fine-tuning may result in overfitting, so the fea-
tures are often left frozen. Finding which and how many layers to transfer depends on the
proximity of the two tasks but also on the proximity of the corresponding imaging modali-
ties. It has been shown that the last layers of the network are task specific while the earlier
layers of the network are modality specific [39]. On the other hand, if there are no overfitting
issues, the best strategy is to transfer and fine-tune every layer [49]. This way, the discov-
ered features are adapted on the target task, while keeping the useful common knowledge.
Another type of transfer learning is the multi-task learning (MTL) approach that trains on
multiple related tasks simultaneously, using a shared representation [50]. Such process may
increase the performance for all these tasks and It is typically applied when training data for
some tasks are limited.

Transfer learning has been extensively studied over the past few years, especially in the
field of computer vision, with several interesting findings. In [51], pretrained CNNs such
as VGG-Net and AlexNet are used to extract “off-the-shelf” CNN features for image search
and classification. The authors demonstrate that fusing features extracted from multiple
CNN layers improves the performance on different benchmark databases. In [52], the factors
that influence the transferability of knowledge in a fine-tuning framework are investigated.
These factors include the network’s architecture, the resemblance between source and target
tasks and the training framework. In a similar study [49], the effects of different fine-tuning
procedures on the transferability of knowledge are investigated, while a procedure is pro-
posed to quantify the generality or specificity of a particular layer. A number of studies have
also utilized transfer learning techniques, in order to adapt well-known networks to classify
medical images. In most of the cases, the network used is the VGG, AlexNet or GoogleNet
pretrained on ImageNet [53], [54]. However, these networks are designed with a fixed input
size usually of 224× 224× 3, so that images have to be resized and their channels artificially
extended to three, before being fed to the network. This procedure is inefficient and may
also impair the descriptive ability of the network.

3.1.2 Contribution

In Chapter 2 we proposed a novel CNN that achieved significant improvement with respect
to the state of the art. The network’s architecture was especially designed to extract the tex-
tural characteristics of ILD patterns, while its much smaller size allowed it to be successfully
trained on solely medical data without transfer learning. In this study, we propose a novel
training approach that improves the performance of the newly introduced CNN, by addi-
tionally exploiting relevant knowledge, transferred from multiple general texture databases.

3.2 Materials and Methods

In this section we present a method for transferring knowledge from multiple source databases
to a CNN, ultimately used for ILD pattern classification. Prior to this, we describe the
databases that were utilized for the purposes of this study as well as the architecture of
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TABLE 3.1: Description of the source domain databases

Database Type Number
of classes

Number of
instances
per class

Number of
images

per instance

Total number
of images

Area per image
(103px)

Number of
training
patches

Number of
validation

patches

ALOT [55] Color 250 1 100 25000 98.304 257880 85870

DTD [56] Color 47 120 1 5640 229.95 ± 89.14 180351 87485

FMD [57] Color 10 100 1 1000 158.3 ± 43.2 18247 6285

KTB [58] Grey 27 160 1 4480 331.776 207360 69120

KTH-TIPS-2b [59] Color 11 4 108 4752 40 31481 10410

UIUC [60] Grey 25 40 1 1000 307.2 47250 15750

the newly proposed CNN, in order to provide a better foundation for the description of the
methodology.

3.2.1 Databases

Six texture benchmark databases were employed to serve as source domains for the multi-
source transfer learning: the Amsterdam library of Textures (ALOT) [55], the Describable
Textures Dataset (DTD) [56], the Flickr Material Database (FMD) [57], Kylberg Texture Database
(KTB) [58], KTH-TIPS-2b [59] and the Ponce Research Group’s Texture database (UIUC) [60].
Moreover, the concatenation of all aforementioned databases was also used. As target do-
main, we used two databases of ILD CT scans from two Swiss university hospitals: the
Multimedia database of ILD by the University Hospital of Geneva (HUG) [33] and the Bern
University Hospital, “Inselspital” (Insel) database [61].

Source Domain Datasets

All the source domain databases are publicly available texture classification benchmarks.
Each class corresponds to a specific texture (e.g. fabric, wood, metal, foliage) and is repre-
sented by pictures of one or more instances of the texture. Two of the databases – ALOT and
KTH-TIPS-2b – also contain multiple pictures for each instance under different angles, illu-
mination and scales. The image size is fixed for all databases apart from DTD, while FMD
also provides texture masks.

For the creation of the training-validation dataset, all the color databases (i.e. ALOT,
DTD, FMD, KTH-TIPS-2b) were converted to gray-scale and non overlapping patches were
extracted with a size equal to the input of the proposed CNN namely, 32× 32. When not
provided, partitioning between training and validation sets was performed at the instance
level, except for ALOT, where the number of instance is equal to the number of classes. No
testing set was created for the source domain databases, since the ultimate goal is to test
the system only on the target domain. In the case of DTD, where training, validation and
test sets are provided, the test set was added to the training set. Table 3.1 summarizes the
characteristics of the original source databases and the corresponding patch datasets.

Target Domain Dataset

The HUG database [33] consists of 109 HRCT scans of different ILD cases with 512 × 512
pixels per slice and an average of 25 slices per case. The average pixel spacing is 0.68mm,
and the slice thickness is 1-2mm. Manual annotations for 17 different lung patterns are also
provided, along with clinical parameters from patients with histologically proven diagnoses
of ILDs. The Insel database consists of 26 HRCT scans of ILD cases with resolution 512 ×
512 and an average of 30 slices per case. Average pixel spacing is 0.62mm and slice thickness
is 1-2mm.

A number of preprocessing steps was applied to the CT scans before creating the final
ILD patch dataset. The axial slices were rescaled to match a certain x,y-spacing value that
was set to 0.4mm, while no rescaling was applied on the z-axis. The image intensity values
were cropped within the window [-1000, 200] in Hounsfield units (HU) and mapped to [0,
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FIGURE 3.1: Typical samples from each dataset. The color databases were
converted to gray scale. From top to bottom: ALOT, DTD, FMD, KTB, KTH-

TIPS-2b, UIUC, ILD

1]. Experienced radiologists from Bern University hospital annotated (or re-annotated) both
databases by manually drawing polygons around seven different patterns including healthy
tissue and the six most relevant ILD patterns, namely ground glass, reticulation, consolida-
tion, micronodules, honeycombing and a combination of ground glass and reticulation. In
total 5529 ground truth polygons were annotated, out of which 14696 non-overlapping im-
age patches of size 32 × 32 were extracted, unequally distributed across the 7 classes. The
patches are entirely included in the lung field and they have an overlap with the corre-
sponding ground truth polygons of at least 80%. From this patch dataset, 150 patches were
randomly chosen from each class for the validation and 150 for the test set. The remain-
ing patches were used as the training set, which was artificially augmented to increase the
amount of training data and prevent over-fitting. Label-preserving transformations were
applied, such as flip and rotation, as well as combinations of the two. In total, 7 transforma-
tions were used while duplicates were also added for the classes with few samples. The final
number of training samples was constrained by the rarest class and the condition of equal
class representation that led to 5008 training patches for each class. In total, the training
set consists of 35056 patches while the validation and test sets contain of 1050 patches each.
More details about this dataset can be found in [61].

3.2.2 CNN Architecture

In order to minimize the parameters involved and focus only on the aspects of transfer learn-
ing, we used the same CNN architecture as proposed in [61] throughout the different steps
of the method. The input of the network is an image patch of 32 × 32 pixels. This patch
is convolved by five subsequent convolutional layers with 2 × 2 kernels, while the number
of kernels is proportional to the receptive field of each layer with respect to the input. The
number of kernels we used for the Lth layer is k(L + 1)2, where the parameter k depends
on the complexity of the input data and was chosen to be 4. The output of the final con-
volutional layer is globally pooled, thus passing the average value of each feature map to a
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series of three dense layers. A rectified linear unit (ReLU) is used as the activation function
for the dense layers, while the convolutional layers employ very leaky ReLU activations
with α = 0.3. Finally, Dropout is used before each dense layer dropping 50% of its units.
For training the network, the Adam optimizer [39] was used with the default values for its
hyper-parameters. The training ends when none of 200 consecutive epochs improves the
network’s performance on the validation set by at least 0.5%.

3.2.3 Multi-source Transfer learning

The source datasets presented in Section 3.2.1 demonstrate a wide spectrum of different
characteristics, as shown in Figure 3.1 and Table 3.1; hence, we expect that they will also
contribute a range of diverse and complementary features. If this assumption holds, the par-
allel transfer learning from all datasets into one model will improve its performance more
than any individual dataset would. However, the standard transfer learning approach by
transferring weights can only utilize one source dataset. To tackle this problem, we trans-
fer knowledge from each source to a different CNN and then fuse them into an ensemble
that is expected to have performance superior to any of the individual models but also a
larger computational complexity. We then transfer the fused knowledge back to a network
with the original architecture, in order to reduce the complexity while keeping the desirable
performance. Simple weight transferring is again not possible here, since it requires models
with the same architecture. We therefore use model compression, a technique that transfers
knowledge between arbitrary models for the same task. Figure 3.2 depicts the full pipeline
of the proposed multi-source transfer learning method while in the next paragraphs, we
describe its three basic components in more detail.

Single-Source Transfer Learning

Figure 3.3 illustrates the used weight transfer scheme from a source task to the target task,
namely the ILD classification. Starting from the first layer, a number of consecutive layers
are transferred from the pretrained network to initialize its counterpart network. The rest of
the network is randomly initialized, while the last layer changes size to match the number
of classes in the target dataset (i.e. 7). The transferred layers are then fine-tuned along with
the training of the randomly initialized ones. We decided to fine-tune the layers instead of
freezing them since the proposed network is relatively small and has been previously trained
on the target dataset without overfitting [61]. According to [49] weight freezing should only
be used to avoid overfitting problems. In order to investigate the effects of transferring
different number of layers, we have performed a set of experiments for each of the source
datasets.

Knowledge Fusion in an Ensemble

Ensembles are systems that use multiple predictors, statistically independent to some extent,
in order to attain an aggregated prediction. Using ensembles to achieve a better performance
is a well established technique and has been successfully exploited in many applications [62].
Such systems usually perform better than each of the predictors alone, while they also gain
stability. This performance gain arises from the fact that the different prediction models that
form the ensemble, capture different characteristics of the function to be approximated.

In order to build a strong ensemble, instead of manually selecting the models, we imple-
mented an ensemble selection approach similar to the one presented in [63]. The employed
algorithm is a forward selection procedure which selects models from a pool and iteratively
adds them to the ensemble following a specific criterion. Moreover, some additions to pre-
vent over-fitting were also implemented. The pool from which the algorithm selects models
includes all the networks that were pretrained on the source datasets and fine-tuned on the
ILD dataset, snapshots of these networks during training, as well as a few randomly initial-
ized networks trained from scratch on the target data. After creating the CNN model pool,
a subset is randomly sampled from it with half of its size. Then, the models in the subset are
ranked by their performance and the best N models are chosen to initialize the ensemble.
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FIGURE 3.2: Multi-source Transfer Learning: Knowledge is transferred from
each source database to a different CNN. A selection process combines CNNs

into an ensemble that is used to teach a single randomly initialized model.

FIGURE 3.3: Transfer Learning through weight transfer
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FIGURE 3.4: Multi-task Learning

From the rest of the subset’s models, we add the one that increases the ensemble perfor-
mance the most, and continue adding models until no more gain can be achieved. Model
selection is performed with replacement, meaning that the same model can be included more
than once. The whole procedure is repeated for M subsets generating M ensembles which
are then aggregated into one, by averaging their outputs. The selection of the models is
based on the average F-score of the validation set while the involved parameters have been
tested on a grid with N = {1, 2, . . . , 25} and M = {1, 2, . . . , 15}. For each position of the pa-
rameter grid the selection was repeated 100 times and finally the best ensemble was found
for N = 2 and M = 5.

Model Compression

Model compression is used as a final step, to compress the knowledge of the huge ensem-
ble created by the previous procedure, into a single network with the original architecture.
Model compression, also known as knowledge distillation, is the procedure for training
a model using “soft targets” that have been produced by another, usually more complex
model [64] [65]. As soft targets one can use the class probabilities produced by the com-
plex model or the logits namely, the output of the model before the softmax activation. The
model that produces the soft targets is often called the teacher, while the model to which the
knowledge is distilled plays the role of the student. The soft targets carry additional knowl-
edge discovered by the teacher, regarding the resemblance of every sample to all classes.
This procedure can be considered as another type of knowledge transfer which is performed
for the same task, yet between different models. In our case, the ensemble is employed as
a teacher while the student is a single, randomly initialized CNN with the original architec-
ture described in Section 3.2.2. After being trained on the soft targets the student model will
approximate the behavior of the ensemble model and will even learn to make similar mis-
takes. However, these are mistakes that the student would have probably made by training
on the hard targets, considering its relatively inferior capacity.

3.2.4 Multi-task Learning

MTL is another way to fuse knowledge from multiple sources into multiple models. In this
study we used it as a baseline method. The method simultaneously trains models for each
of the tasks, with some of the weights shared among all models. In our implementation,
we train seven networks, one for each of the source datasets and one for the target dataset.
These CNNs share all the weights apart from the last layer, the size of which depends on
the number of classes for that particular task. The parallel training was achieved by alter-
nating every epoch the task between the target and one of the source tasks. In other words,
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odd epochs train on the target task while even epochs train on source tasks in a sequential
manner. Although MTL fuses knowledge from all involved tasks, it does not use tasks exclu-
sively as source or target like the standard transfer learning approach. Since our final goal
is to improve the performance of the target task, we further fine-tune the resulting model on
the ILD dataset. Figure 3.4 depicts an outline of our multi-task learning approach.

3.3 Experimental Setup and Results

In this section we describe the setup of the conducted experiments, followed by the corre-
sponding results with the related discussion.

3.3.1 Experimental Setup

For all the experiments presented in this section, a train-validation-test scheme was utilized.
The presented results were calculated on the test set while the selection of hyper-parameters
and the best resulting models was made over the validation set. In the rest of this section,
we describe the chosen evaluation protocol and some implementation details.

Evaluation

As a principle evaluation metric we used the average F1-score over the different classes, due
to its increased sensitivity to imbalances among the classes. The F1-score is calculated as
follows:

Favg =
2
7

7

∑
c=1

recallc · precisionc

recallc + precisionc

where recallc is the fraction of samples correctly classified as c over the total number of
samples of class c, and the precisionc is the fraction of samples correctly classified as c over
all the samples classified as c.

Implementation

The proposed method was implemented in Python using the Keras [66] framework with a
Theano [41] back-end. All experiments were performed under Linux OS on a machine with
CPU Intel Core i7-5960X @ 3.50GHz, GPU NVIDIA GeForce Titan X, and 128GB of RAM.

3.3.2 Results

In this section, we present the results of the performed experiments, grouped according to
the three basic components of the system as presented in Section 3.2.3. Finally, we analyze
the performance of the proposed network and compare with other methods.

Single-Source Transfer Learning

In this first series of experiments we investigate the performance gain by transferring knowl-
edge from individual source datasets to the target task, i.e. the classification of ILD patterns.
A CNN model was pretrained on each of the six source datasets and then fine-tuned on the
ILD data. A seventh source dataset was added that consists of all six datasets merged in one.
As described in Section 3.2.2, the proposed network has five convolutional and three dense
layers. Starting from the first, we transfer one to seven layers for each of the pretrained
networks. The rest of the layers are randomly initialized and the entire CNN is fine-tuned
on the ILD task. Different random initializations may result in deviations of the results so to
minimize this effect, we repeated each experiment three times and reported the mean values.

The results of this experiment are depicted in Figure 3.5, where the region of the light
gray background denotes the convolutional layers, while the rest denote the first two dense
layers. The horizontal dashed line at 0.855 represents the performance of the network trained
from scratch (with random initialization). The best results were achieved when six layers (i.e.
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FIGURE 3.5: The F1-score produced by transferring of knowledge from sin-
gle source domains for different number of transferred layers, averaged over
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knowledge transfer or the different ensembles of CNNs.

five convolutional layers and one dense) were transferred from the CNN that was pretrained
on the FMD dataset. However, no optimal weight transferring strategy can be inferred for
every pretrained network, due to their relative different behavior. An additional line with
the average performance over all source datasets is also shown. According to this line, the
contribution of weight transferring increases, on average, when transferring at least four
layers. Weight transferring seems to help even when transferring all layers. This is probably
due to the ability of fine-tuning to adapt even the most task-specific features to the target
task, an observation which is inline with the conclusions of [49].

As for the runtime of the experiments, one could expect a faster training for a pretrained
network since its initial state is closer to a good solution than a randomly initialized network.
Indeed, the average number of epochs for the pretrained is 426 instead of 479 for the random,
with each epoch taking about 12 seconds. However, this difference is small and statistically
non-significant (p ≈ 0.11) probably due to the fact that loss drops with a lower rate while
approaching the end of training, so the starting point does not significantly affect the number
of required epochs.

The conducted experiments have demonstrated that the random initializations before
pretraining or fine-tuning, as well as the different source datasets may introduce a significant
variance between the network’s results. This unstable behavior of single-source transfer
learning combined with the assumption of reduced correlation among the resulting models,
motivated us to build an ensemble model to fuse the extracted knowledge and reduce the
aforementioned variance.
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TABLE 3.2: Comparison of the proposed method with methods from the lit-
erature

Study Method Favg

Gangeh [19] Local pixel textons - SVM-RBF 0.6942
Sorensen [18] LBP, histogram - kNN 0.7420

Anthimopoulos[16]
Quantiles of local

DCT, histogram - RF 0.8170

Li [27] 5-layer CNN 0.6657
LeNet [43] 7-layer CNN 0.6783

AlexNet [25] 8-layer CNN 0.7031
Pre-trained AlexNet 8-layer CNN 0.7582

VGG-Net [35] 16-layer CNN 0.7804
Anthimopoulos [61] 8-layer CNN 0.8557

Proposed Methods
Multi-task Learning

Compressed 8-layer CNN
Ensemble of CNNs

0.8631
0.8751
0.8817

Knowledge Fusion in an Ensemble

Figure 3.5 also illustrates the performance of the ensemble that was built as described in Sec-
tion 3.2.3. The ensemble clearly outperforms the rest of the models by reducing their vari-
ance (through output averaging) and by transferring multi-source knowledge, at the same
time. In order to investigate the contribution of ensemble averaging alone, we also built an
ensemble from a pool of randomly initialized models. The output of this ensemble reached
a performance of 0.8697 which is better than the single randomly initialized CNN but still
inferior to the multi-source ensemble. In addition, we used bootstrap aggregating (bagging)
to boost the performance even more by reducing the correlation between the models. To this
end, we trained each CNN of the ensemble on samples randomly sampled from the training
set with replacement. The performance was slightly improved reaching 0.8733 which was
however still inferior to the proposed ensemble. These results showed that although the en-
semble by itself may increase the accuracy of stochastic models, the transferred knowledge
also contributes to the final result.

Model Compression

For this last part, the ensemble was employed as a teacher producing soft targets for the
ILD training dataset that were then used to train CNNs. We experimented with a number of
different choices for the student networks choosing between the pretrained and fine-tuned
networks from the previous steps as well as randomly initialized ones. All of the different
students reached similar levels of performance, so we finally chose as student the one with
the random initialization, for simplicity. The achieved performance after teaching the chosen
student was 0.87518 in the test set. This result lies below the ensemble’s performance yet
above all the previously presented results.

Performance and Comparison with Previous Work

As a baseline method for comparison in multi-source transfer learning we used an MTL ap-
proach as described in Section 3.2.4. The performance on the ILD task while training along
with the other tasks only reached the value of 0.8110. After a fine-tuning step, the perfor-
mance reached the value of 0.8631, which is not much better than the network trained from
scratch and similar to a number of single source pretrained networks. These results could
be due to the limited capacity of the network that attempts to solve multiple problems at
the same time. Modifications in the MTL scheme such as weighting the contributions of
the different tasks or sharing different parts of the network could yield better results, how-
ever this would increase the complexity of the scheme and would require a large number of
experiments on different strategies.
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FIGURE 3.6: Confusion matrix of the proposed compressed model.

Table 3.2 provides a comparison with other methods from the literature. The first three
rows correspond to methods that use hand crafted features and a range of different classi-
fiers. The rest correspond to methods that utilize CNNs. All the results were reproduced
by the authors by implementing the different methods and using the same data and frame-
work to test them. The proposed multi-source transfer learning technique improved the
performance of the proposed network by an absolute 2% compared to the previous perfor-
mance 0.8557 of the same CNN in [61]. Finally, Figure 3.6 shows the confusion matrix of the
proposed approach. As shown, the confusion is basically between the fibrotic classes (i.e.
reticulation, honeycombing and the combination of ground glass and reticulation) which
was expected. One may also notice that the matrix is more balanced than the one presented
in [61].

3.4 Conclusions

In this chapter we presented a training method that improves the accuracy and stability of
a CNN on the task of lung tissue pattern classification. The performance gain was achieved
by the multiple transfer of knowledge from six general texture databases. To this end, a
network was pretrained on each of the source databases and then fine-tuned on the target
database after transferring different numbers of layers. The networks obtained were com-
bined in an ensemble using a model selection process, which was then employed to teach a
network with the original size. The resulting CNN achieved a gain in performance of about
2% compared to the same network when trained on the hard targets. This result proves
the potential of transfer learning from natural to medical images that could be beneficial for
many applications with limited available medical data and/or annotations. We believe that
more challenging datasets, with additional classes and/or higher diversity, may benefit even
more from similar approaches. Considering that even experienced radiologists would not
achieve a perfect classification, especially on a patch level, the reported performances could
have reached a peak. Finally, the reported increase in accuracy comes at the expense of in-
creased training time since multiple models have to be trained. However, the inference time
is still exactly the same and the additional training time required can be considered as a fair
compromise for improving the performance, in cases of data shortage. Our future research
plans in the topic include the use of the ensemble teacher for labeling unlabeled samples that
will augment the training set of the student model. Such an approach could partially assist
with the common problem of limited annotated data in the field of medical image analysis.
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Early and accurate diagnosis of interstitial lung diseases (ILDs) is crucial for making
treatment decisions, but can be challenging even for experienced radiologists. The diagnos-
tic procedure is based on the detection and recognition of the different ILD pathologies in
thoracic CT scans, yet their manifestation often appears similar. In this study, we propose
the use of a deep purely convolutional neural network for the semantic segmentation of ILD
patterns, as the basic component of a computer aided diagnosis (CAD) system for ILDs. The
proposed CNN, which consists of convolutional layers with dilated filters, takes as input a
lung CT image of arbitrary size and outputs the corresponding label map. We trained and
tested the network on a dataset of 172 sparsely annotated CT scans, within a cross-validation
scheme. The training was performed in an end-to-end and semi-supervised fashion, utiliz-
ing both labeled and non-labeled image regions. The experimental results show significant
performance improvement with respect to the state of the art.

4.1 Field of Study

In this section, we provide a short review of the recent advances in deep learning for com-
puter vision.

4.1.1 Semantic Segmentation

Although CNNs have existed for decades [67], they only became widely popular after their
remarkable success in the ImageNet challenge of 2012 [68]. The winning approach of the
competition [25], also known as AlexNet, was a deep CNN with five convolutional and
three dense layers, each followed by a rectified linear unit (ReLU), while increased strides
were used for the max pooling and convolution operations to gradually down-sample the
feature maps. Dropout [36] and data augmentation were also utilized, in order to prevent
overfitting. Since then, the proposed deep CNNs have led to continuous improvements
in the results on ImageNet and other datasets, mainly by enhancing their architecture and
by increasing their depth and width. The VGG network [35] reduced the size of the ker-
nels to 3×3, while increasing the number of layers to 19. GoogleNet [69] used consecutive
inception modules, where different convolutional and pooling operations are performed in

https://doi.org/10.1109/JBHI.2018.2818620
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(A) D = 1 (B) D = 2 (C) D = 3

FIGURE 4.1: Dilated convolution kernels. D denotes the dilation rate

parallel with their outputs merged. This approach drastically reduced the number of param-
eters while improving the results. ResNet [70] introduced skip connections between layers
which permitted the training of networks with hundreds of layers and pushed the limits of
deep CNNs even further. The batch normalization (BN) technique [71] also supported these
developments, by regularizing and accelerating the training procedure.

Many of the already proposed CNNs have recently been adapted to perform semantic
segmentation, rather than just image classification. The term semantic segmentation refers
to the task of assigning a class label to every pixel of an image. A simple approach to this
task is to use any fixed-scale classification method under a sliding window scheme and then
to aggregate the results to build a label map. However, this could be highly inefficient as
local image features would have to be recalculated multiple times for adjacent positions
of the input window. Luckily, the convolutional layers (with the appropriate padding) in
a typical CNN produce feature maps that maintain spatial correspondence with the input
image. Therefore, input images of any size can be fed to the network and each pixel can
be classified, on the basis of the values of the respective feature map position. This can be
achieved by utilizing convolutional layers of size 1 × 1 that serve as local dense layers and,
these networks are therefore often referred to as fully convolutional (FCNs).

However, the spatial correspondence between the input and output of a CNN, can be
disrupted by the use of down-sampling operations such, as strided pooling and convolu-
tion. Down-sampling of the feature maps is often used to increase the receptive field of the
network with respect to the input, as well as to reduce the amount of computational load.
In order to restore the original size of the input, researchers have used encoder-decoder ar-
chitectures, where the encoder usually adopts a well-known architecture such as VGG [35]
and the decoder reverses the process by mapping the feature representation back to the in-
put data space. To this end, upsampling operations and transposed convolution [72] (also
known as fractionally strided convolution or “deconvolution”) have been used for semantic
segmentation [73]. Alternatively, in [74] and [75], max unpooling has been used as the in-
verse operation of each max pooling layer, where the pairs of pooling/unpooling layers are
coupled by transferring the max indices from the encoder to the decoder. In [76], a similar
architecture was proposed for biomedical image segmentation, with additional skip con-
nections that concatenate the feature maps of an encoding layer to the feature maps of the
same-scale decoding layer.

Recently, some CNNs for semantic segmentation have been proposed that use dilated
convolutions to increase the receptive field, instead of downsampling the feature maps. Di-
lated convolution, also called àtrous, is the convolution with kernels that have been dilated
by inserting zero holes (àtrous in French) between the non-zero values of a kernel. This
was originally proposed for efficient wavelet decomposition in a scheme also known as “al-
gorithme àtrous” [77]. Figure 4.1 shows examples of kernels with different dilation rates.
Dilated convolution can increase the receptive field without increasing the number of pa-
rameters, as opposed to normal convolution. Moreover, feature maps are densely computed
on the original image resolution without the need for downsampling. In [78], a CNN mod-
ule with dilated convolutions was designed to aggregate multiscale contextual information
and improve the performance of state-of-the-art semantic segmentation systems. The mod-
ule has eight convolutional layers with exponentially increasing dilation rates (i.e. 1, 1, 2, 4,
8, 16), resulting in an exponential increase in the receptive field, while the number of param-
eters is only grown linearly. Similarly, expansion of the receptive field was achieved in [79]
by integrating dilated convolutions in a bottleneck module that was designed for efficiency.
In [80], the àtrous spatial pyramid pooling (ASPP) scheme is proposed that uses multiple
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TABLE 4.1: Data statistics across the considered classes i.e. Healthy (H),
Ground Glass Opacity (GGO), Micronodules (MN), Consolidation (Cons),

Reticulation (Ret) and Honeycombing (HC).

H GGO MN Cons Ret HC Totals

#Pixels×105 92.5 27.7 35.8 7.08 28.2 20.1 211.4
#Cases 66 82 15 46 81 47 172

parallel dilated convolutional layers, in order to capture information from multiple scales.

4.1.2 Contribution

In this study, we propose the use of a deep fully-convolutional network for the problem
of ILD pattern recognition that uses dilated convolutions and is trained in an end-to-end
and semi-supervised manner. The proposed CNN takes as input a lung HRCT image of
arbitrary size and outputs the corresponding label map, thus avoiding the limitations of a
sliding window model. Additionally, the utilization of non-labeled image regions in the
learning procedure, permits robust training of larger models and proves to be particularly
useful when using databases with sparse annotations.

4.2 Materials and Methods

This section presents the proposed fully convolutional neural network for semantic lung
tissue segmentation. Prior to this, we describe the materials used for training and testing the
network.

4.2.1 Materials

For the purposes of this study, we compiled a dataset of 172 HRCT scans, each correspond-
ing to a unique ILD or healthy subject. The dataset contains 109 cases from the publicly
available multimedia database of interstitial lung diseases [33] by the Geneva University
Hospital (HUG), along with 63 cases from Bern University Hospital - “Inselspital” (INSEL),
as collected by the authors. The scans were acquired between 2003 and 2015 using different
scanners and acquisition protocols. The INSEL scans are volumetric, while the HUG scans
have a 10-15mm spacing. The slice thickness is 1-2mm for both datasets.

Two experienced radiologists from INSEL annotated or re-annotated ILD typical patho-
logical patterns, as well as healthy tissue in both databases1. A lung field segmentation mask
was also provided for each case. In total six types of tissue were considered: normal, ground
glass opacity, micronodules, consolidation, reticulation and honeycombing. It should be em-
phasized that these annotations do not cover the entire lung field, but only the most typical
manifestations of the listed ILD patterns. This protocol was followed in both databases since
it permits the annotation of more scans for the same effort and thus increases data diversity.
On the other hand, sparse annotations also introduce challenges. Non-annotated lung ar-
eas have to be excluded from both supervised training and evaluation. Another challenging
characteristic of the databases is the uneven distribution of the considered classes across the
cases. Table 4.1 provides statistics for the entire dataset, while Figure 4.2 presents a sample
CT lung slice along with the given annotations.

4.2.2 Methods

In this study, we propose the use of a deep purely convolutional network for the problem
of lung tissue semantic segmentation. The network is inspired by [78] and consists of solely
convolutional layers that use dilated kernels to increase the receptive field, instead of down-
sampling the feature maps. This kind of network has been shown to be suitable for similar
dense prediction problems that require high resolution precision. The proposed network

1ITK-snap was used for the annotation process, http://www.itksnap.org

http://www.itksnap.org
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FIGURE 4.2: A typical slice with annotations. The white border line denotes
the lung field segmentation, the blue denotes healthy tissue, the purple mi-

cronodules and the red the honeycombing pattern.

(Figure 4.3) has 13 convolutional layers and a total receptive field of 287×287. Specifically,
each of the first ten layers has 32 kernels of size 3×3 and dilation rates 1, 1, 2, 3, 5, 8, 13, 21,
34 and 55, respectively. We chose not to increase the dilation rates exponentially, as is com-
monly done, in order to avoid extreme gridding problems that have been reported in several
studies [81], [82]. Instead, we use the first terms of the Fibonacci sequence as dilation rates;
this mitigates the gridding problem by providing a less steep dilation rate increase and thus
denser sampling.

The output of the first 10 layers, as well as the input of the network, are concatenated,
thus leading to 1+10×32 = 321 feature maps, which are passed through a dropout layer with
a rate of 0.5 and fed to the rest of the network. This concatenation is allowed by the lack
of pooling layers and the appropriate zero padding for each convolution and brings several
benefits. It permits the aggregation of features from all different scales and levels of abstrac-
tion, while it also facilitates the flow of gradients thought the network and therefore allows
faster training. The last three layers have 1×1 kernels and play the role of locally dense
layers that reduce the feature dimensionality for each pixel from 321 to 128, 32 and finally
6, which is the number of classes considered. The output is converted into a probability
distribution by the softmax function.

A BN layer follows each convolution and is based on the batch statistics in both training
and test time. This is permitted, as the batch size is one, so there is always a full batch during
inference. This approach has been proposed before, under the term instance normalization
(InstanceNorm) [83], and has exhibited good performance in texture synthesis, image styl-
ization and image to image translation [84]. InstanceNorm provides invariance to intensity
and contrast shifts, which makes the features adaptive for each slice and could mitigate prob-
lems caused by different CT scanners and reconstruction kernels. We also found that adding
the normalized activations to the non-normalized ones, before passing them through the
ReLU function (Figure 4.4) substantially improves the results. This instance normalization
skip connection cancels the mean normalization of activations (when the trainable parame-
ters have not been trained), while it performs a kind of feature contrast enhancement which
reduces the importance of variance shift without providing complete invariance to the latter.
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FIGURE 4.4: The block function of the proposed architecture. (k, k) is the size
of the convolution kernel and x is the dilation rate.

The network was trained by minimizing the categorical cross entropy using the Adam
optimizer [39] with a learning rate of 0.0001. The dense nature of the considered classifica-
tion problem combined with the sparse available annotations, resulted in two issues. Firstly,
large parts of the dataset were not annotated, and so could not be used for either supervised
training or testing. Secondly, the distribution of the considered classes in the dataset was
highly imbalanced, a fact that can be challenging for any classification method. We tack-
led both problems by scaling the considered loss and accuracy with appropriate weighting
schemes computed for each set. All pixels corresponding to annotated areas were assigned
a weight inversely proportional to the number of samples of its class in the specific set. In
this way, all classes contributed equally to the considered metrics. Furthermore, we em-
ployed a semi-supervised learning technique to additionally exploit non-labeled areas of
the data. We added an extra term to the supervised loss function, which corresponds to the
entropy of the network’s output on the areas that do not participate in the supervised learn-
ing. This entropy minimization technique has been used in different applications such as in
[85] yielding significant improvements in performance. Similarly in [86] the technique of
pseudo-labelling was introduced, where the network classifies non-annotated regions and
then uses them as ground truth for fine-tuning. Semi-supervised learning techniques of this
kind are based on the cluster assumption i.e. samples from the same class tend to form com-
pact clusters. By minimizing the entropy of the network’s output, the decision boundaries
are driven away from areas densely populated by learning samples. If the cluster assump-
tion holds and there is no large overlap between the classes this method may increase the
network’s generalization ability. It acts equivalently to manifold learning and includes self-
learning as a special case, as it increases the confidence of the classifier. The influence of
the semi-supervised term is controlled by an appropriate weight, which is scaled relatively
with the proportion of the unlabeled regions versus the annotated ones. Hence, the loss for
a pixel x with output ŷ is:

L(x, ŷ) =

−∑C
i=1 wi

syi log(ŷi), whenyis given

−αwu ∑C
i=1 ŷi log(ŷi), otherwise

(4.1)

where y is the true label in one-hot encoding, C is the number of classes, wi
s is the su-

pervised weight for class i (which is inversely proportional to the number of samples of the
class), α is a scaler and wu the unsupervised weight.

The training procedure stops when the network does not significantly improve its perfor-
mance on the validation set for 50 epochs. The performance is assessed in terms of weighted
(balanced) accuracy, while an improvement is considered significant if the relative increase
in performance is at least 0.5%. In order to artificially increase the volume of training data
and avoid overfitting, we transformed the images using flips and rotations, which are con-
sidered label-preserving in this domain. The augmentation was performed online i.e. for
each training image in each epoch, one operation out of all eight combinations of flip and
rotate is randomly selected and applied.
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4.3 Experimental Setup and Results

In this section, we first present the setup of the experiments conducted, followed by the cor-
responding results that justify the algorithmic choices of the proposed method and compare
it to the state of the art.

4.3.1 Experimental Setup

Given the relatively small size of the dataset with respect to the diversity of the problem, we
adopted a 5-fold cross validation (CV) scheme to ensure the validity of the results. The data
splitting was performed per scan, so tissue from one case was never present in more than
one set. Specifically, the 172 scans of the dataset were divided into five non-overlapping
sets, with one of them having 36 and the rest 34 scans. Every time a model was tested on a
specific set, the rest of the data were used for training. On average over all folds, the number
of slices was 2060 for training and 515 for testing. As principal performance metric, we used
the balanced accuracy (Equation 4.2), averaged over the five folds.

BACC =
1
N

N

∑
i=1

ci
ni

(4.2)

where N is the number of classes, ci is the number of correctly classified samples of class i
and ni is the total number of samples of class i. Since the slices were only sparsely annotated,
the accuracy was calculated over the areas of the scans where a ground truth was available.

In order to avoid extreme class imbalances between the different sets, data splitting was
performed using a simple hill climbing technique that maximizes the entropy of the class
distribution for the five sets. The methods started from an arbitrary split and then randomly
swapped two cases between two sets in an attempt to find a more balanced solution. If the
new solution has a higher class distribution entropy (averaged over the 5 sets), we retained
it and repeated the procedure until no further improvement was possible.

To minimize the number of computations and memory requirements, we discarded part
of the data that lack annotations. Hence, we cropped the left and right lung on each slice and
used only the ones with relevant annotations as inputs of the networks. This is permitted
by the fully-convolutional nature of the tested networks that do not require a fixed input
size. For the cropping, we utilized the available lung mask, while a margin of 32 pixels was
added on each side to provide context that could be useful to the networks.

The proposed method was implemented in Python2 using the Keras framework3 with
the Theano [87] back-end. All experiments were performed under Linux OS on a machine
with CPU Intel Core i7-5960X @ 3.50GHz, GPU NVIDIA GeForce Titan X, and 128 GB of
RAM.

4.3.2 Results

Table 4.2 presents a comparison between different network configurations. The bold line
corresponds to the proposed CNN, while the rest correspond to models that differ from the
proposed in only one aspect, as specified in the first column. The rest of the columns provide
the number of model parameters, the average inference time per (single-lung) slice, and the
average balanced accuracy across the five validation sets.

The proposed model achieved top performance with accuracy nearly equal to 82% and
inference time 58ms. The use of 64 kernels per layer instead of 32 did indeed improve the
results, yet not significantly enough and with higher inference times, whereas the network
with 16 kernels performed notably worse. On reducing the dilated convolutional layers
from 10 to 9, we observed a relatively small reduction in the accuracy. However, we chose
to keep 10 layers, since the difference in memory and time requirements was also small
and because the resulting receptive field was comparable with that of the state of the art
networks used for comparison. The use of semi-supervised learning yielded an improve-
ment of nearly 1.5%, with no additional requirements in computational resources. We also

2https://github.com/intact-project/LungNet
3https://github.com/fchollet/keras

https://github.com/intact-project/LungNet
https://github.com/fchollet/keras
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TABLE 4.2: Comparison of the different network configurations

Network
configuration

Number of
parameters
×105

Average
inference time
ms

CV balanced
accuracy
%

w/o dilated convolutions 1.30 51 68.0
w/o concatenation 0.93 53 72.6
w/o InstanceNorm 1.29 38 77.9
w/o InstanceNorm skip 1.30 57 78.6
16 kernels/layer 0.47 51 79.2
Exponential dilation [78] 1.03 48 79.5
Purely supervised 1.30 58 80.6
9 dilated layers 1.18 53 81.3
Proposed 1.30 58 81.8
64 kernels/layer 4.23 82 82.1

performed an experiment with exponential increase in the dilation rates of the consecutive
layers, similarly to [78] i.e. 1, 1, 2, 4, 8, 16, 32 and 64. The resulting model was smaller
and faster, since 2 fewer layers were required to achieve similar receptive field, however the
accuracy decreased by almost 3%. In the case where the convolutions were not dilated, the
network performed poorly, because of the radical decrease of the receptive field. The accu-
racy of the proposed model without any normalization was substantially poorer, probably
because it could not properly handle the contrast differences among the scans caused by dif-
ferent CT scanners and reconstruction kernels. The use of instance normalization improved
the performance by adaptively normalizing the feature contrast for each input. However,
this kind of normalization also normalizes the mean intensity that could be a useful feature.
By adding the InstanceNorm skip connection (Figure 4.4), the accuracy improved even fur-
ther. We speculate this is because the mean normalization is diminished, while the resulting
variance normalization is only partially invariant to contrast shifts. Finally, omitting the con-
catenation of the first 10 layers also resulted in significant impairment of the results, which
was expected since only 32 features are considered.

In Figure 4.5 the accuracy curves for different values of wu are presented. These curves
are generated by averaging over the five folds the best accuracies achieved this far by each
model in each epoch. The curve for the model without the unsupervised learning was also
included for comparison. The best performing configuration proved to be the one with
wu = 0.1, which we utilized for the training of the proposed model.

Table 4.3 presents a comparison between the proposed network and three previous stud-
ies. It has to be noted that all models used the same unsupervised weight (wu = 0.1) and
whenever batch normalization was performed, this was based on batch statistics (instance
normalization) since this yielded the best results. Figure 4.6 illustrates a few segmentation
results for each of the models in Table 4.3.

The first line of the table refers to our previous work [61], which has been converted
into a fully convolutional network so it can accept arbitrarily sized images for input. Its
low accuracy is probably due to the small receptive field (33×33) and the extensive pooling.
This architecture was sufficient to describe the local texture of the 32×32 single-class patches

TABLE 4.3: Comparison with previous studies

Network
Number of
parameters
×105

Average
inference time
ms

CV balanced
accuracy
%

ILD-CNN [61] 0.9 237 72.2
Segnet [74] 335 111 73.6
U-net [76] 310 88 77.5

Proposed 1.3 58 81.8
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FIGURE 4.5: Accuracy curves for different values of wu.

in [61], but could not capture higher level structure that is present in the whole-lung dataset
of this study. The results of the model in Figure 4.6 show its noisy output near the lung
boundaries or between patterns, where context information could be useful. Segnet [74]
and U-net [76] yielded better results, with the latter being slightly faster and substantially
more accurate. Both models have a very high number of parameters and large enough re-
ceptive fields to capture any relevant information. The superior performance of U-net could
be attributed to its skip connections that allow features from the lower scales to directly
contribute to its output. Indeed, Figure 4.6 illustrates the more detailed results of U-net as
opposed to the overly smoothed areas produced by Segnet. Finally, the proposed network
yielded the best results, while being faster and having far fewer parameters. The output
examples in Figure 4.6 indicate that the proposed model manages to keep a better balance
between fine details and smooth border among the different classes. Even thought it is really
difficult to visually assess the performance of the system for the different classes, there are
a few examples in Figure 4.6 with wrong classifications on which we can comment. Firstly,
parts of the broncho-vascular tree in the third row were recognized as consolidation because
of their similar densities, while accentuated terminal bronchial parts, that might be physio-
logical as well, caused the erroneous classification of healthy areas into reticulation, in the
first row. Some mistakes however are also attributed in the limited number of annotated
classes. For example in row 6, there are emphysematic areas (dark area in the center of the
lung) that have been annotated as healthy due to their similar density. Figure 4.7 shows the
confusion matrix of the proposed model. As expected, many of the misclassifications occur
between reticulation and honeycombing due to their similar textural appearance. Moreover,
healthy tissue is often confused with reticulation probably because of the 2D sections of the
bronchovascular tree that could resemble reticular patterns.

4.4 Conclusions

In this study, we proposed and evaluated a deep CNN for the semantic segmentation of
pathological lung tissue on HRCT slices. The CNN is designed under a fully convolutional
scheme and thus can handle variable input sizes, while it was trained in an end-to-end and
semi-supervised fashion. The main characteristic of the proposed network is the use of di-
lated convolutions along with an instance variance normalization scheme, and multi-scale
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FIGURE 4.6: Output examples for the models of Table 4.3. From left to right:
Ground Truth, ILD-CNN, Segnet, U-net, Proposed. Each example has a dif-
ferent pattern annotated. From top to bottom: Healthy (Blue), Ground Glass
Opacity (Purple), Micronodules (Green), Consolidation (Yellow), Reticula-

tion (Orange) and Honeycombing (Red).
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feature fusion. The training and testing of the network was performed using a cross val-
idation scheme on a dataset of 172 cases, whereas the split of the dataset into folds was
performed per case. The proposed network surpassed the highest performance in previ-
ous studies, and is much more efficient in terms of memory and computation. Future work
includes the modification of the model to consider the 3D nature of lung patterns, and to ac-
count for the bronchovascular tree. The former could be achieved by a direct extension of the
architecture to 3D, similarly to 3D U-Net [88] and V-Net [89] or by employing a multi-planar
view aggregation scheme, also referred to as 2.5D, [90]. Alternatively, a 3D post process-
ing scheme could be used to refine the 2D segmentation output using conditional random
fields or deformation models [91]–[93]. Finally, the result of a bronchovascular segmentation
method could be utilized by the network to reduce false alarms.
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Chapter 5

Computer Aided Diagnosis System
for Idiopathic Pulmonary Fibrosis

This chapter borrows parts from:
Andreas Christe, Alan A Peters, Dionysios Drakopoulos, Thomai Stathopoulou, Stergios

Christodoulidis, Marios M Anthimopoulos, Stavroula G Mougiakakou, Lukas Ebner, "Computer-aided
diagnosis of pulmonary fibrosis using deep learning and CT images," accepted for publication at

Investigative Radiology.

It has been modified such that it highlights the contribution of the author. In detail, the main
contribution of the author lies on the segmentation components, integration and CAD output
generation. Ms Thomai Stathopoulou assisted in the anatomy segmentation component of the

pipeline while the experimental setup and results have been performed
by the rest of the authors.

Computer-aided diagnosis (CAD) systems could enhance the diagnostic performance of
radiologists for idiopathic pulmonary fibrosis. In this study, we introduce and evaluate an
end-to-end system for the automatic classification of high resolution computed tomography
images into four radiological diagnostic categories. The proposed CAD system consists of
a sequential pipeline in which at first the anatomical structures of the lung are segmented,
then the pathological lung tissue is identified and finally by combining these information
a final radiological diagnosis is reached using a random forest classifier. The experimental
results show the potential of utilizing a CAD system for this task, while also sets a path for
further development and investigation.

5.1 Field of Study

5.1.1 Diagnosis of Idiopathic Pulmonary Fibrosis

Idiopathic interstitial pneumonias (IIPs) is a sub group of ILDs with causes unknown to the
medical community. Idiopathic pulmonary fibrosis or usual interstitial pneumonia (IPF/UIP)
along with the non specific interstitial pneumonia (NSIP) are the most prevalent IIPs and to-
gether they account for the 80% of IIPs (Figure 5.1). Any patient with suspected ILD is ques-
tioned about his/her clinical history (first symptoms, environmental exposures, family his-
tory) and undergoes thorough physical examination (presence of crackles, finger clubbing,
joint swelling, or tight skin), chest radiography, pulmonary function testing and usually
high resolution computed tomography (HRCT). If the association with systemic diseases
or causative agents such as: (i) long-term exposure to hazardous materials (e.g. asbestos,
fumes, and gases), (ii) certain drugs or medications, (iii) infections, (iv) genetic abnormali-
ties and (v) autoimmune diseases is ruled out, then a differential diagnosis among the IIP
categories is carried out.

The differential diagnosis of IIPs is greatly based on a number of uniform criteria and
guidelines that have been proposed by the American Thoracic Society (ATS) and the Euro-
pean Respiratory Society (ERS) in [3] and have been recently updated by the Fleischener
Society recommendations [4]. Table 5.1 holds the radiological patterns and how these as-
sociate with the IPF diagnosis. Typicaly, radiologists screen the patient’s HRCT for these
UIP patterns (i.e. Typical UIP, Probable UIP, indeterminate for UIP and non-IPF) and along
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FIGURE 5.1: Classification of interstitial lung diseases [94].

with a clinical board of pneumonologists and histopathologists they decide on the diagnosis.
In most of the cases, if any other than typical UIP pattern is identified, additional invasive
procedures, such as transbronchial or surgical biopsy are required for the final diagnosis.

It is important to note here that the term CT patterns as presented in the IPF diagnosis
guidelines (Table 5.1) should not be confused with textural patterns of pathological tissue
that have been mentioned also in the previous chapters. These diagnostic CT patterns holds
not only information about the distribution of the pathological tissue types (Features), but
also their spatial distribution in the lung cavity (Characteristics). Identifying such CT pat-
terns in HRCTs is considered to be a difficult task among radiologists and high inter-reader
variability is reported [5].

The correct pattern identification on CT images plays a central role in the diagnosis and
further treatment of patients with ILD, even more in conjunction with the recently proposed
Fleischner recommendations. The aforementioned guidelines aim to expand the role of CT
for the diagnosis of IPFs. However, the pattern recognition on CT can be challenging, even
for subspecialized chest radiologists. Thus, supporting tools, such as CAD system for CT
pattern detection and disease classification, have the potential to improve the radiological
diagnosis of IPF. In particular, the combination of advanced segmentation algorithms, clin-
ical background data and machine learning provides the opportunity for the development
of a lung fibrosis CAD system.

5.1.2 Contribution

The purpose of this study was to assess the performance of a CAD system for the auto-
matic classification IPF cases into radiological diagnostic CT patterns, based on HRCT chest
images and clinical markers.

5.2 Materials and Methods

5.2.1 Databases

For the purposes of this study multiple databases were used for the training and evaluation
of the different components of the system. More details about each database follow in the
next paragraphs.
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TABLE 5.1: Diagnostic categories of UIP, based on CT patterns [4]

Features Characteristics

Typical UIP
CT pattern

Reticulation, Honeycombing,
Absence of features suggesting
a non-IPF diagnosis

Basal and subpleural

Probable UIP
CT pattern

Reticulation, Absence of
features suggesting a
non-IPF diagnosis

Basal and subpleural

CT pattern
indeterminate
for UIP

Reticulation with inconspicuous
features suggestive of a
non-UIP pattern

Viariable or diffuse

CT features most
consistent with a
non-IPF diagnosis

Any of the following:
predominant consolidation,
extensive pure ground glass
opacity (without acute exacerbation),
extensive mosaic attenuation with
extensive sharply defined lobular air
trapping on expiration, diffuse
nodules or cysts

Upper-, mid-lung or
peribronchovascular
predominant or
subpleural sparing

Lung Tissue Research Consortium database

The Lung Tissue Research Consortium database (LTRC-DB)1 is a resource program of the
National Heart, Lung, and Blood Institute (NHLBI) that provides CT scans, as well as bio-
specimens to qualified investigators for use in their research. The LTRC was originally cre-
ated in 2005 by the National Institutes of Health and is composed of four clinical centers
from around the United States: Mayo Clinic Rochester, University of Michigan – Ann Ar-
bor, University of Pittsburgh, and Temple University. Each center contributes to the recruit-
ment and enrollment of protocol-eligible participants, as well as the procurement of the data.
This library contains cases with different lung diseases along with annotations of the lung
parenchyma, the airways and pathological tissue. The cases with proven ILD diagnosis are
more than 100.

Multimedia database of ILDs

The multimedia database for ILDs (MD-ILD) [33] 2 was developed within the framework of
the Talisman project at the University Hospital of Geneva and is made publicly available.
The database consists of HRCT image series of 10mm slice spacing with annotated regions
of pathological lung tissue and the lung parenchyma along with clinical parameters from pa-
tients with pathologically proven diagnoses of ILDs. Specifically, the library contains cases
from 128 patients affected with one of the 13 histological diagnoses of ILDs, 108 image series
with more than 41 liters of annotated lung tissue patterns as well as a comprehensive set of
99 clinical parameters related to ILDs.

Inselspital ILDs database

The Insel spital ILD database (INSEL-DB) have been created within the framework of this
thesis and consists of 105 HRCT lung scans provided by the ILD board of the Bern uni-
versity hospital, where pneumologists, radiologists and pathologists have diagnosed the

1https://ltrcpublic.com/
2http://medgift.hevs.ch/wordpress/databases/ild-database/

https://ltrcpublic.com/
http://medgift.hevs.ch/wordpress/databases/ild-database/
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patients according to the international guidelines [4]. All diagnoses were ILD board consent
diagnoses (radiologically or histologically proven cases). The cases consisted of 54 NSIP and
51 IPF cases. CT scans were retrospectively collected with irreversible data anonymization
from October 2015 to June 2017. Images have been acquired with patients in the supine po-
sition, from the apex of the lung to the costodiaphragmatic recess with a slice thickness of
1mm. Moreover, any associated clinical and biochemical data (e.g. gender, age, smoking
history, duration of illness, lung function tests, results of blood tests) were gathered in or-
der to investigate whether they correlate with the actual diagnosis of each case, so they can
provide information additional to the radiological data. Institutional board approval for the
diagnosis was waived due to the retrospective collection of the patients.

The median age in the UIP group was 70 years (range, 49 to 84 years), and the group
consisted of 11 female and 40 male patients. This group included 38 IPF cases, 8 cases
of rheumatoid arthritis and 5 connective tissue disease patients, with accompanying pul-
monary fibrosis and UIP patterns. In the NSIP group, the median age was 64 years (range,
38 to 83 years), with 20 female and 34 male patients, consisting of 5 idiopathic NSIP pa-
tients and 49 cases with the known etiology of NSIP: 24 hypersensitivity pneumonitis, 7
anti-synthetase syndrome, 6 medication related, 4 rheumatoid arthritis, 3 systemic sclerosis,
3 sarcoidosis and 2 Sjögren patients

Two chest radiology specialists classified the cases into the 4 UIP CT patterns of Table 5.1
through consensus, according to the Fleischner Society recommendations [4], to establish
the ground truth. The radiologists first reviewed and classified all cases independently and
then met to discuss the cases without agreement to determine the classification through
consensus. The inter-reader agreement was substantial as shown in the results section. This
radiological consensus represented the ground truth for further calculations.

Moreover, a radiologist with 10 years (Reader 1) experience in chest imaging and a chest
fellow with 4 years (Reader 2) of experience read the images on a Picture Archiving and
Communication System (PACS). Lung windows settings were used to read the hard kernel
reconstructions (I70f). Both radiologists were blinded to the diagnoses and had to classify
the cases into the 4 categories.

5.2.2 Anatomy Segmentation

For the anatomy segmentation a well established algorithm from the literature were utilized
to segment the airways and the lung parenchyma. This algorithm have been implementled
in house and its hyper-parameters were defined using the LTRC-DB. This algorithm does not
include a training component and it is based on simple region growing, thresholding and
morphological operations. In more detail the pipeline is based on the publications [10], [95],
[96] and consists of the following steps: (1) Extraction of large airways, (2) Segmentation of
lung regions; (3) Separation of the left and right lungs; (4) Smoothing.

As far as the airway segmentation is concerned, a seed point from the top axial slices
of the scan initializes a region growing technique. The seed point is picked from a region
within the center of the top axial slices that have average hounsfield units (HU) below a
threshold. The seed point for the region growing process is the voxel with the lowest HU in
the aforementioned region. The region growing process will iteratively build the trachea and
the main stem bronchi while it will stop based on an explosion detection scheme [97]. After
the large airways have been detected, the lung are segmented using also a region growing
technique. As seed point for this process the voxel with the lowest HU within the airways is
used while the optimal threshold value is set using the Otsu thresholding technique. In order
to seperate the left and right lungs the airways are removed from the lung segmentation
and connected component analysis is used to find the two lungs. Left and right lungs are
identified using the center of gravity and the orientation of the scan. In some cases, the left
and right lungs are really close in some parts, in such cases it is particularly difficult for
the gray-scale thresholding to separate the two lungs. For this reason we utilize a dynamic
programming approach similar to the one described in [10]. For the last step, each lung is
smoothed separately using 3D morphological operations. A few examples of the output of
the anatomy segmentation algorithm are presented in Figure 5.2.
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FIGURE 5.2: Examples of the output of the anatomy segmentation algo-
rithms. Green denotes right lung, red denotes left lung and blue denotes
the airways. In the last row a few examples where the left-right split did not
succeed are presented, while also an under segmentation example is shown.
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5.2.3 Tissue Characterization

After having acquired the segmentation of the lung parenchyma a convolutional neural net-
work (CNN) for the quantification of the pathological lung tissue is utilized. For the pur-
poses of implementation, training and evaluation of this step a mixture of the MD-ILD and
INSEL-DB was used.

ILD consist of an admixture of the following basic tissue pathologies: reticulation, hon-
eycombing, GGO, consolidation and normal lung. Our proposed system employs texture
classification schemes to detect, classify and calculate the extent of pathological tissue on CT
images. The suggested lung disease quantification scheme takes as input a section of a 2D
CT slice of interest and uses a purely CNN scheme to calculate a corresponding label map
with a single tissue class for each pixel. The proposed architecture is designed in such a way
that the pixels are the training samples instead of the CT images [98]. Thus, the number of
training samples is of the order of 106 and therefore the training of such deep network is
possible. We adopted a 5-fold cross validation (CV) scheme to ensure the validity of the re-
sults stratified on apatient level. The balanced accuracy of the proposed CNN averaged over
all folds was 81.8%. More details on the implementation of this step are already presented
with more detail in Chapter 4.

5.2.4 Diagnosis Support

The diagnosis support module is the final step of the pipeline in which all previous outputs
are aggregated to achieve a final diagnosis. The INSEL-DB along with the associated clinical
parameters (age, gender, sex, etc.) was used for the evaluation of this step.

In order to calculate the distribution of the different pathological tissue types in the dif-
ferent areas of the lung an additional step was employed that divided each lung in 6 regions
(upper, middle, lower, basal, peripheral). For this step a volume based split was utilized for
the upper, middle and lower segmentation, while for the basal and peripheral segments a
k-means clustering was utilized that was applied on the distances from the center of mass.
The intersection of the aforementioned segments produces a total of 12 segments in both
lungs. The distribution of pathological tissue as estimated by the tissue characterization
CNN is calculated over each segment and these are used as features to train multiple one-
vs-all random forest classifiers to classify the lung fibrosis for each case into 1) a typical UIP
CT pattern, 2) a probable UIP CT pattern, 3) a CT pattern indeterminate for UIP, and 4) CT
features that are most consistent with a nonIPF diagnosis (Table 1, [4]).

The different steps of the CAD system required approximately 6 minutes per case for
the scan to be properly processed and for a diagnosis to be available. In Figure 5.3, a radial
histogram visualization is presented. For all calculations, we used a CPU implementation
running on an Intel Core i7-5960X CPU, except for the tissue characterization, for which we
used a NVIDIA GeForce GTX TITAN GPU. More specifically, the steps needed on average
the following times:

• lung and airways segmentation, 47.1 seconds,

• ILD pathology quantification, 192.4 seconds and

• diagnosis support, 124.4 seconds.

5.3 Experimental Setup and Results

5.3.1 Statistical Analysis Tools

Sensitivity, specificity, accuracy and positive predictive values were calculated for the read-
ers and the proposed CAD system, using the independent chest radiology experts’ consen-
sus classification (1-4) as the ground truth. Positive predictive value (precision) and sensi-
tivity (recall) were used to calculate the F-score (harmonic mean for precision and recall).

McNemar’s test was used to compare the sensitivity, specificity and accuracy between
the readers and the CAD system. Comparison of proportions was used to compare the
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FIGURE 5.3: Interstitial lung disease visualization using radial histograms
similar to the one used in [99]. Each sector denotes a region of the lung,
and it is split in two parts, one for the basal (inner) and one for peripheral
(outer). The color scheme denotes the pathological tissue. Solid lines denote
the division of left and right lungs. The radial histograms with the red border,
are cases where the anatomy segmentation failed to split the left and right

lungs.

Fscores. The significance level was set to 0.05. MedCalc® version 15.0 (MedCalc Software,
Ostend, Belgium) was utilized. The 4 categories were first analyzed in an un-pooled fashion
for all entries. Then, the 4 groups were pooled into 2 categories: a) cases needing a biopsy
for further diagnostics, according to the Fleischner Society white paper [4] (groups 3 and 4),
and b) cases without further need of diagnostics (groups 1 and 2). A separate analysis of the
correct classification into these two groups was performed for the findings of the readers and
the machine. Furthermore, interobserver agreement between the radiologists and between
the radiologists and the machine was performed individually by calculating the weighted
Kappa, as follows: slight (0-0.2), fair (0.21-0.4), moderate (0.41-0.6), substantial (0.61-0.8) and
almost perfect agreement (0.81-1).

5.3.2 Results

Fleischner Classification

Reader 1, Reader 2 and CAD demonstrated the same accuracy for classifying the pulmonary
fibrosis, according to the Fleischner society guidelines [4]: 0.6, 0.54 and 0.56, respectively,
with p-values >0.45. The CAD system achieved an F-score (harmonic mean for precision
and recall) of 0.56, while the two readers in average achieved 0.57 (pvalue=0.991).

Fleischner Pooled Classification

When the 4 classification groups were pooled into the group requiring further work-up
(groups 3 and 4) and into the group for which the diagnosis was clear without biopsy (UIP
group 1 and 2), the accuracy increased. Reader 1, Reader 2 and the CAD scored similar accu-
racies, 0.81, 0.70 and 0.81, respectively. Reader 2 was slightly inferior (without reaching the
level of statistical significance) to Reader 1 and CAD with p-values of 0.059 and 0.189, respec-
tively. The sensitivities for choosing the cases that needed further work-ups were similar for
Reader 1, Reader 2 and CAD at 0.86, 0.84 and 0.79, respectively, and p values >0.39. The
CAD system demonstrated the best specificity; the specificities for Reader 1, Reader 2 and
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CAD were 0.63, 0.44 and 0.67, respectively. The CAD system performed significantly better
than Reader 2 (p-value=0.012) and equally well as Reader 1 (pvalue=0.773). The specificity
of Reader 1 was significantly higher than that of Reader 2 (pvalue=0.037). The F-score was
again similar between the CAD system and the readers. The CAD and the average reader F
score was 0.80 and 0.79 (p-value=0.898), respectively.

Inter-observer Agreement

Reader 1 vs. Reader 2 demonstrated fair inter-reader agreements, with a weighted kappa
(±standard error) of 0.30± 0.08 for group 4 (unpooled) and 0.3± 0.1 for group 2 (pooled)
classifications. The CAD system vs. Reader 1 demonstrated moderate classification agree-
ment, with a weighted kappa of 0.47± 0.08 and 0.54± 0.1, respectively, for the unpooled and
pooled classifications. Compared with Reader 2, the agreement was only fair: 0.33± 0.08
and 0.3± 0.09, respectively. The inter-reader agreement of the two chest experts, who set
the ground truth, was substantial: weighted kappa was 0.63± 0.08 and 0.66± 0.1 for the
unpooled and pooled classifications, respectively

5.4 Discussion

The accuracy of the proposed CAD system for dichotomous classification into the group
needing further intervention and the group without the need for further work-ups was as
good as that of the radiologists. The automated system even outperformed the unexperi-
enced radiologist, in terms of the specificity for patient identification requiring subsequent
intervention. Demonstrating the best specificity means having the lowest false positive rate
in the group undergoing further work-ups. This rate is important, considering the high
mortality and morbidity of surgical wedge resection of the lung on the one hand, and the
low operability of this group on the other hand [100]. Our results support the beneficial
implementation of a computer-aided diagnostic algorithm. As dedicated chest radiologists
are scarce, and interstitial pulmonary fibrosis, in particular IPF, is almost considered to be an
orphan disease, it is difficult to build the required expertise in this field. Under these circum-
stances, the importance of CAD solutions becomes evident, highlighting the importance of
such a CAD system.

There has been much discussion of whether the Fleischner Society white paper on clas-
sifying pulmonary fibrosis into 4 groups and recommending interventions in only two of
these groups should be accepted. Some even feel that biopsy is needed for 3 groups (in-
cluding the group with a probable UIP CT pattern). The authors believe that the number
of biopsies can be even further reduced in a proper setting of multidisciplinary ILD boards,
with follow-up of these patients. The pattern recognition method is certainly the right ap-
proach for classifying the probability of IPF today, however, with increasing precision and
recall of CAD for ILD, it may be possible to skip this classification to directly call the disease
by its name.

The accuracy of all readers (CAD inclusive) between 0.5 and 0.6 for the unpooled classi-
fication is not particularly high, but is still substantially above the level chance, as 4 classes
were considered. In practice, the differentiation between groups 1 and 2 is less important
than the differentiation between group 2 and 3, as the diseases are labeled IPF for both
group 1 and 2. Apparently, the positive predictive value for IPF is 80% in group 2, there-
fore, a biopsy is not recommended for the first two groups [4]. For all other cases (groups 3
and 4), a biopsy would be needed. Therefore, it is important to differentiate between those
patients with and without the need for biopsy. To appreciate the performance of the readers
and the CAD system, one has to examine the results for the dichotomous differentiation into
the group with and without the need for biopsy; the accuracy rate of 0.81 more appropri-
ately represents the performance of both the radiologists and the machine. This accuracy is
comparable with the results published by Depeursinge [101].

In addition, the inter-reader agreement was only fair for the 4x4 table classification, but it
increased to moderate in the 2× 2 classification pooling, which is acceptable and comparable
to previous publications [101]. As radiologists and the CAD system did not have the same



5.5. Conclusions 53

false positive and false negative cases, there is also the potential of CAD to help radiologists
classify the UIP pattern.

Note that our study suffers from several limitations. The number of cases was low. For
more significant results, we are currently conducting a larger scale study with CAD im-
provements. However, given the low prevalence of interstitial lung fibrosis, these results
are of considerable impact. Furthermore, only cases of pulmonary fibrosis were covered in
this study due to the fine-tuning of our CAD towards fibrosis; a pattern extension for the
algorithm will be implemented in later versions. Furthermore, we included the idiopathic
forms of pulmonary fibrosis, and we also allowed for diseases with associated pulmonary
fibrosis to be included; which may have confounded these results.

5.5 Conclusions

In this study, we present a preliminary evaluation of the integrated pipeline for the automatic
classification of IPF. A multi-step approach is employed for the segmentation of anatomical
structures of the lung cavity, the segmentation of lung pathological tissue and finaly the
classification into a radiological diagnostic CT pattern. In conclusion, we found that a ma-
chine learning-supported computer aided detection algorithm was able to classify idiopathic
pulmonary fibrosis with similar accuracy as a human reader. Moreover, the computer algo-
rithm delivered results comparable to those of radiologists when grouping fibrosis patterns
according to the Fleischner Society’s newest recommendation.
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Chapter 6

Linear and Deformable Medical
Image Registration
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evaluation of the 3D registration convolutional neural network. Dr Maria Vakalopoulou assisted with
the baseline comparisons and Mr. Mihir Sahasrabudhe with the evaluation of the clinical relevance of

the deformation.

Image registration and in particular deformable registration methods are pillars of med-
ical imaging. Inspired by the recent advances in deep learning, we propose in this chap-
ter, a novel convolutional neural network architecture that couples linear and deformable
registration within a unified architecture endowed with near real-time performance. Our
framework is modular with respect to the global transformation component, as well as with
respect to the similarity function while it guarantees smooth displacement fields. We eval-
uate the performance of our network on the challenging problem of MRI lung registration,
and demonstrate superior performance with respect to state of the art elastic registration
methods. The proposed deformation (between inspiration & expiration) was considered
within a clinically relevant task of interstitial lung disease (ILD) classification and showed
promising results.

6.1 Field of Study

6.1.1 Medical Image Registration

Image registration is the process of aligning two or more sources of data to the same co-
ordinate system. Through all the different registration methods used in medical applica-
tions, deformable registration is the one most commonly used due to its richness of descrip-
tion [102]. The goal of deformable registration is to calculate the optimal non-linear dense
transformation G to align in the best possible way, a source (moving) image S to a reference
(target) image R [103], [104]. Existing literature considers the mapping once the local align-
ment has been performed and therefore is often biased towards the linear component. Fur-
thermore, state of the art methods are sensitive to the application setting, involve multiple
hyper-parameters (optimization strategy, smoothness term, deformation model, similarity
metric) and are computationally expensive.

Medical image registration is a really important process for a variety of tasks in the clin-
ical practice such as comparing multi-modal images, follow-up examinations, differences
between anatomical structures between different patients and more. There is an extended
literature on how deformation information can be used either for diagnostic or therapeutic

https://doi.org/10.1007/978-3-030-00946-5_2
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reasons (Reviewed in [105]–[107]). In [108] the authors utilize an elastic registration algo-
rithm in pulmonary MRIs for the assessment of pulmonary fibrosis in patients with sys-
temic sclerosis. Moreover, a number of studies (e.g. [109], [110]) utilize registration in order
to estimate lung ventilation as a biomarker.

Recently, deep learning methods have gained a lot of attention due to their state of the art
performance on a variety of problems and applications [111], [112]. In computer vision, opti-
cal flow estimation—a problem highly similar to deformable registration—has been success-
fully addressed with numerous deep neural network architectures [113]. In medical imag-
ing, some methods in literature propose the use of convolutional neural networks (CNNs)
as robust methods for image registration [114], [115]. More recently, adversarial losses have
been introduced with impressive performance [116]. The majority of these methods share
two limitations: (i) dependency on the linear component of the transformation and (ii) de-
pendency on ground truth displacement which is used for supervised training.

6.1.2 Contribution

In this chapter, we address the previous limitations of traditional deformable registration
methods and at the same time propose an unsupervised method for efficient and accurate
registration of 3D medical volumes that determines the linear and deformable parts in a sin-
gle forward pass. The proposed solution outperforms conventional multi-metric deformable
registration methods and demonstrates evidence of clinical relevance that can be used for the
classification of patients with ILD using the transformation between the extreme moments
of the respiration circle. Moreover, we utilize the estimated deformations as a radio-marker
and we evaluate its clinical relevance.

In summary, the main contributions of the study are fourfold: (i) coupling linear and de-
formable registration within a single optimization step / architecture, (ii) creating a modular,
parameter-free implementation which is independent of the different similarity metrics, (iii)
reducing considerably the computational time needed for registration allowing real-time
applications, (iv) associating deformations with clinical information.

6.2 Materials and Methods

In this study, we propose the use of an unsupervised CNN for the registration of pairs of
medical images. A source image S and a reference image R are presented as inputs to the
CNN while the output is the deformation G along with the registered source image D. This
section presents details of the proposed architecture as well as the dataset that we utilized
for our experiments. Please note that henceforth, we will use the terms deformation, grid, and
transformation interchangeably.

6.2.1 Linear and Deformable 3D Transformer

One of the main components of the proposed CNN is the 3D transformer layer. This layer is
part of the CNN and is used to warp its input under a deformation G. The forward pass for
this layer is given by

D =W(S, G), (6.1)

whereW(·, G) indicates a sampling operationW under the deformation G. G is a dense
deformation which can be thought of as an image of the same size as D, and which is con-
structed by assigning for every output voxel in D, a sampling coordinate in the input S.

In order to allow gradients to flow backwards though this warping operation and facili-
tate back-propagation training, the gradients with respect to the input image as well as the
deformation should be defined. Similar to [117], such gradients can be calculated for a back-
ward trilinear interpolation sampling. The deformation is hence fed to the transformer layer
as sampling coordinates for backward warping. The sampling process is illustrated by

D(~p) =W(S, G)(~p) = ∑
~q

S(~q)∏
d

max (0, 1− ‖[G (~p)]d −~qd‖) (6.2)
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where ~p and ~q denote pixel locations, d ∈ {x, y, z} denotes an axis, and [G(~p)]d denotes
the d-component of G(~p).

Our modeling of the deformation G offers a choice of the type of deformation we wish
to use—linear, deformable, or both. The linear (or affine) part of the deformation requires
the prediction of a 3× 4 affine transformation matrix A according to the relation [x̂, ŷ, ẑ]T =
A[x, y, z, 1]T , where [x, y, z, 1]T represents the augmented points to be deformed, whereas
[x̂, ŷ, ẑ]T represents their locations in the deformed image. The matrix A can then be used to
build a grid, GA, which is the affine component of the deformation G.

To model the deformable part GN , a simple and straightforward approach is to generate
sampling coordinates for each output voxel (GN(~p)). We can let the network calculate these
sampling points directly. Such a choice would however require the network to produce
feature maps with large value ranges which complicates training. Moreover without appro-
priate regularization, non-smooth and even unconnected deformations could be produced.
In order to circumvent this problem, we adopt the approach proposed by [118] and predict
spatial gradients Φ of the deformation along each dimension instead of the deformation it-
self. This quantity measures the displacements of consecutive pixels. By enforcing these
displacements to have positive values and subsequently applying an integration operation
along each dimension, the spatial sampling coordinates can be retrieved. This integration
operation could be approximated by simply applying a cumulative sum along each dimen-
sion of the input (i.e integral image). In such a case, for example, when Φ~pd

= 1 there is no
change in the distance between the pixels ~p and ~p + 1 in the deformed image along the axis
d. On the other hand, when Φ~pd

< 1, the distance between these consecutive pixels along
d will decrease, while it will increase when Φ~pd

> 1. Such an approach ensures the genera-
tion of smooth deformations that avoid self-crossings, while allows the control of maximum
displacements among consecutive pixels.

Finally, to compose the two parts we apply the deformable component to a moving im-
age, followed by the linear component. When operating on a fixed image S, this step can be
written as

W(S, G) =W (W(S, GN), GA) . (6.3)

During training, the optimization of the decoders of A and GN is done jointly, as the
network is trained end-to-end. We also impose regularization constraints on both these
components. We elaborate on the importance of this regularization for the joint training
in Section 6.2.3.

6.2.2 Architecture

The architecture of the CNN is based on an encoder-decoder framework presented in [98]
(Figure 6.1). The encoder adopts dilated convolutional kernels along with multi-resolution
feature merging, while the decoder employs non-dilated convolutional layers and up-sampling
operations. Specifically, a kernel size of 3× 3× 3 was set for the convolutional layers while
LeakyReLU activation was employed for all convolutional layers except the last two. In-
stance normalization was included before most of the activation functions. In total five lay-
ers are used in the encoder and their outputs are merged along with the input pair of image
to form a feature map of 290 features with a total receptive field of 25× 25× 25. In the de-
coder, two branches were implemented—one for the spatial deformation gradients and the
other for the affine matrix. As far as the former is concerned, a squeeze-excitation block [119]
was added in order to weigh the most important features for the spatial gradients calcula-
tion while for the latter a simple global average operation was used to reduce the spatial
dimensions to one. For the affine parameters and the spatial deformation gradients, a linear
layer and sigmoid activation were respectively used. Finally to retrieve Φ, the output of the
sigmoid function should be scaled by a factor of 2 in order to fall in the range [0, 2] and hence
allow for consecutive pixels to have larger distance than the initial.

6.2.3 Training

The network was trained by minimizing the mean squared error (MSE) between the R and D
image intensities as well as the regularization terms of the affine transformation parameters
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FIGURE 6.1: The overall CNN architecture. The network uses a pair of 3D
images and calculates the optimal deformations from the one image to the

other.

and the spatial deformation gradients using the Adam optimizer [39]. Our loss is defined as

Loss = ‖R−W(S, G)‖2 + α ‖A− AI‖1 + β ‖Φ−ΦI‖1 , (6.4)

where AI represents the identity affine transformation matrix, ΦI is the spatial gradient
of the identity deformation, and α and β are regularization weights. As mentioned before,
regularization is essential to the joint optimization. To elaborate, without the L1 regulariza-
tion on A, the network might get stuck in a local minimum where it aligns only high-level
features using the affine transformation. This will result in a high reconstruction error. On
the other hand, without the smoothness regularizer on Φ, the spatial gradients decoder net-
work can predict very non-smooth grids which again makes it prone to fall in a local min-
imum. Having both linear and deformable components is helpful to the network because
these two components now share the work. This hypothesis aligns with [118] and is also
evaluated in Section 6.3.

The initial learning rate is 10−3 and subdued by a factor of 10 if the performance on the
validation set does not improve for 50 epochs while the training procedure stops when there
is no improvement for 100 epochs. The regularization weights α and β were set to 10−6 so
that neither of the two components has an unreasonably large contribution to the final loss.
As training samples, random pairs among all cases were selected with a batch size of 2 due
to the limited memory resources on the GPU. The performance of the network was evalu-
ated every 100 batches, and both proposed models—with and without affine components—
converged after nearly 300 epochs. The overall training time was calculated to ∼ 16 hours.

6.2.4 Dataset

MRI exams were acquired as a part of a prospective study aiming to evaluate the feasi-
bility of pulmonary fibrosis detection in systemic sclerosis patients by using magnetic res-
onance imaging (MRI) and an elastic registration-driven biomarker. This study received
institutional review board approval and all patients gave their written consent. The study
population consisted of 41 patients (29 patients with systemic sclerosis and 12 healthy vol-
unteers). Experienced radiologists annotated the lung field for the total of the 82 images and
provided information about the pathology of each patient (healthy or not). Additionally,
eleven characteristic landmarks inside the lung area had been provided by two experienced
radiologists.
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All MRI examinations were acquired on a 3T-MRI unit (SKYRA magneton, Siemens
Healthineers) using an 18-phased array body coil. All subjects were positioned in the supine
position with their arms along the body. Inspiratory and expiratory MRI images were ac-
quired using an ultrashort time of echo (UTE) sequence, the spiral VIBE sequence, with the
same acquisition parameters (repetition time 2.73 ms, echo time 0.05 ms, flip angle 5◦, field-
of-view 620× 620 mm, slice thickness 2.5 mm, matrix 188× 188, with an in-plane resolution
of 2.14× 2.14 mm).

As a pre-processing step, the image intensity values were cropped within the window
[0, 1300] and mapped to [0, 1]. Moreover, all the images were scaled down along all dimen-
sions by a factor of 2/3 with cubic interpolation resulting to an image size of 64× 192× 192
to compensate GPU memory constraints. A random split was performed and 28 patients (56
pairs of images) were selected for the training set, resulting to 3136 training pairs, while the
rest 13 were used for validation.

6.3 Experimental Setup and Results

6.3.1 Evaluation

We evaluated the performance of our method against two different state-of-the-art meth-
ods, namely, Symmetric Normalization (SyN) [104], using its implementation on the ANTs
package [120] and the deformable method presented in [103], [121] for a variety of similarity
metrics (normalized cross correlation (NCC), mutual information (MI) and discrete wavelet
metric (DWM), and their combination). For the evaluation we calculated the Dice coefficient
metric, measured on the lung masks, after we applied the calculated deformation on the
lung mask of the moving image. Moreover, we evaluate our method using the provided
landmark locations. For comparison reasons we report the approximate computational time
each of these methods needed to register a pair of images. For all the implementations we
used a GeForce GTX 1080 GPU except for SyN implementation where we used a CPU im-
plementation running on 4 cores of an i7-4700HQ CPU.

6.3.2 Results and Discussion

Starting with the quantitative evaluation, in Table 6.1 the mean Dice coefficient values along
with their standard deviations are presented for different methods. We performed two dif-
ferent types of tests. In the first set of experiments (Table 6.1: Inhale-Exhale), we tested the
performance of the different methods for the registration of the MRI images, between the
inhale and exhale images, for the 13 validation patients. The SyN implementation reports
the lowest Dice scores while at the same time, it is computationally quite expensive due to
its CPU implementation. Moreover, we tested three different similarity metrics along with
their combinations using the method proposed in [103] as described earlier. In this specific
setup, the MI metric seam to report the best Dice scores. However, the scores reported by
the proposed architecture are superior by at least ∼ 2.5% to the ones reported by the other
methods. For the proposed method, the addition of a linear component to the transforma-
tion layer does not change the performance of the network significantly in this experiment.
Finally, we calculated the errors over all axes in predicted locations for eleven different man-
ually annotated landmark points on inhale volumes after they were deformed using the de-
coded deformation for each patient. We compare the performance of our method against the
inter-observer (two different medical experts) distance and the method presented in [103] in
Table 6.2. We observe that both methods perform very well considering the inter-observer
variability, with the proposed one reporting slitly better average euclidean distances.

For the second set of experiments (Table 6.1: All combinations), we report the Dice scores
for all combinations of the 13 different patients, resulting on 169 validation pairs. Due to
the large number of combinations, this problem is more challenging since the size of the
lungs in the extreme moments of the respiratory circles can vary significantly. Again, the
performance of the proposed architecture is superior to the tested baselines, highlighting
its very promising results. In this experimental setup, the linear component plays a more
important part by boosting the performance by ∼ 0.5%.
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TABLE 6.1: Dice coefficient scores (%) calculated over the deformed lung
masks and the ground truth.

Method Inhale-Exhale All Combinations Time/subject (s)

Unregistered 75.62±10.89 57.22±12.90 −

Deformable with NCC [103] 84.25±6.89 76.10±7.92 ∼1 (GPU)
Deformable with DWM [103] 88.63±4.67 75.92±8.81 ∼2 (GPU)
Deformable with MI [103] 88.86±5.13 76.33±8.74 ∼2 (GPU)
Deformable with all above [103] 88.81±5.85 78.71±8.56 ∼2 (GPU)
SyN [104] 83.86±6.04 − ∼2500 (CPU)

Proposed w/o Affine 91.28±2.47 81.75±7.88 ∼0.5 (GPU)
Proposed 91.48±2.33 82.34±7.68 ∼0.5 (GPU)

TABLE 6.2: Errors measured as average euclidean distances between esti-
mated landmark locations and ground truth marked by two medical experts.
We also report as inter-observer, the average euclidean distance between same
landmark locations marked by the two experts. dx, dy, and dz denote dis-
tances along x-, y-, and z- axes, respectively, while ds denotes the average

error along all axes.

Method dx dy dz ds

Inter-observer 1.664 2.545 1.555 3.905
Deformable with NCC, DWM, and MI [103] 1.855 3.169 2.229 4.699
Proposed w/o Affine 2.014 2.947 1.858 4.569
Proposed 1.793 2.904 1.822 4.358

Concerning the computation time, both [103] and the proposed method report very low
inference time, due to their GPU implementations, with the proposed method reaching∼ 0.5
seconds per subject. On the other hand, [104] is computationally quite expensive, making it
difficult to test it for all the possible combinations on the validation set.

Finally, in Figure 6.2, we present the deformed image produced by the proposed method
on coronal view for a single patient in the two different moments of the respiratory cyrcle.
The grids were superimposed on the images, indicating the displacements calculated by the
network. The last column shows the difference between the reference and deformed image.
One can observe that the majority of the errors occur on the boundaries, as the network fails
to capture large local displacements.

(A) Reference image (B) Moving image (C) Deformed image (D) Difference

FIGURE 6.2: A visualized registration of a pair of images, generated by the
proposed architecture. The initial and deformed grids are superimposed on

the images.
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6.3.3 Evaluation of the Clinical Relevance of the Deformation

To asses the relevance of the decoded transformations in a clinical setting, we trained a small
classifier on top of the obtained residual deformations to classify patients as healthy or un-
healthy. The residual deformation associated with a pair of images indicates voxel displace-
ments, written as Gδ = G − GI , where G is the deduced deformation between the two im-
ages, and GI is the identity deformation.

We trained a downsampling convolutional kernel followed by a multi-layer perceptron
(MLP) to be able to predict whether a case is healthy or not. The network architecture is
shown in Figure 6.3. The model includes batch normalization layers, to avoid overfitting, as
we have few training examples at our disposal. Further, a Tanh activation function is used in
the MLP. The downsampling kernel is of size 3× 3× 3, with a stride of 2 and a padding of 1.
The number of units in the hidden layer of the MLP was set to 100. We trained with binary
cross entropy loss, with an initial learning rate of 10−4, which is halved every fifty epochs.
Training five models in parallel took about 2 hours on two GeForce GTX 1080 GPUs.

St
rid

ed
 C

on
v3

D
 k

=3
, s

=2

R
eL

U

B
at

ch
N

or
m

Binary 
Crossentropy

D
en

se
 k

=1
00

Fl
at

te
n

ta
nh

B
at

ch
N

or
m

MLP

FIGURE 6.3: The neural network trained as a classifier on top of the transfor-
mations.

We cross-validate five models on the training set of 28 patients, and report the average
response of these models on the rest 13 patients. We conduct the same experiment for de-
formations obtained using [103] and all similarity measures (NCC, DWM, MI). The results
on the test set using a threshold of 0.5 on the predicted probability are reported in Table 6.3,
suggesting that indeed the deformations between inhale and exhale carry information about
lung diseases.

TABLE 6.3: Results on disease prediction using deformations on the test set.
The reported accuracy is in percentage points.

Method Accuracy

Deformable with NCC, DWM, and MI [103] 69.23
Proposed 84.62

6.4 Conclusion

In this chapter, we proposed a novel method which exploits the 3D CNNs to calculate the
optimal transformation (combining a linear and a deformable component within a coupled
framework) between pair of images that is modular with respect to the similarity function,
and the nature of transformation. The proposed method generates deformations with no
self-crossings due to the way the deformation layer is defined, efficient due to the GPU
implementation of the inference and reports high promising results compared to other un-
supervised registration methods. Currently, the proposed network was tested on the chal-
lenging problem of lung registration, however, its evaluation on the registration of other
modalities, and other organs is one of the potential directions of our method.
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Chapter 7

Concluding Remarks

7.1 Summary

The aim of this thesis was to develop a computational system that will assist radiologists
with the diagnosis of ILDs, while minimizing the dangerous, expensive and time-consuming
invasive biopsies. The system provides a computerized differential diagnosis, based on ra-
diological data and clinical/biochemical markers and is focused on the discrimination be-
tween idiopathic interstitial pneumonias, in particular, idiopathic pulmorary fibrosis, while
keeping a generic architecture that could be expanded to most types of ILDs. The appro-
priate interpretation of the available radiological data combined with clinical/biochemical
information can provide reliable diagnostic radiomarkers, able to improve the diagnostic
accuracy of the physicians. In all the implemented algorithms, experimental configurations
and evaluation schemes, the main focus was the bridging of the machine learning and med-
ical diagnosis. Between the rapidly evolving field of machine learning and the slow and
rigorous evaluated field of automated medical diagnosis, really careful steps should be fol-
lowed.

During this thesis, a number of novel algorithms have been proposed for the comput-
erized assessment of HRCTs with suspected ILD. In particular, three major contributions
can be identified. First, a number machine learning approaches have been designed and
evaluated for the automatic detection and delineation of diffuse pathological tissue. Specif-
ically, in Chapters 2-4, two convolutional neural network architectures have been proposed
along with a training scheme that utilized the properties of knowledge transferring from
multiple sources. Second, in Chapter 5, an end-to-end pipeline for the quantification and
classification of idiopathic pulmonary fibrosis has been developed and evaluated. Last, in
Chapter 6, an unsupervised method that employs a convolutional neural network was used
for 3D medical image registration and lung breathing radio-markers extraction.

7.2 General Discussion

Studies of machine learning (ML) based CAD systems that could perform similarly to physi-
cians at specific tasks are lately presented with increasing frequency. In some cases where a
large amount of data and the necessary computational power are available, properly trained
models can even outperform experienced physicians in particular tasks [122], [123]. In most
health care use cases however, it is not possible to fully define tasks to be automatically
processed, considering the heterogeneity of patients’ population and of the diseases. It is
therefore of great importance that CAD systems provide interpretable results and designed
as assistive tools for physicians.

Provided that the right choices are made in the design and training of such CAD systems,
their generalization performance is heavily depended on the size and quality of the train-
ing and validation datasets. Possible population biases could be propagated to the results
of a study and therefore, particular care should be taken when designing such evaluation
schemes. In order to tackle such issues, interdisciplinary teams of engineers, physicians and
their patients from multiple institutes should work together to minimize possible cohort
biases. When all the aforementioned criteria are met, CAD systems can provide fast and ac-
curate results, while they could also be used for diagnostic standardization and thus benefit
longitudinal studies.
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The importance of well-curated data cannot be over stressed for data driven machine
learning approaches in medicine. The last years, after the repeated successes of deep learn-
ing algorithms, a number of software frameworks has been made publicly available, making
long strides towards fast prototyping, while more and more attention is drawn towards data
gathering and pre-processing. On the other hand, the picture archiving and communication
systems (PACS) in hospitals hold years worth of data that are kept unused. This is not an
unknown issue in the community since a number of initiatives worldwide are for decades
trying to compile registries of particular patient cohorts1. By expanding such registries to
easier facilitate machine learning approaches, a huge impact could be achieved in health
care. It is well known that the quality of medical images is getting better year after year.
These improvements enable more and more diagnostic procedures to be based on the assess-
ment of such images. Health care providers worldwide take new images every year either
to monitor the progress of a patient or for diagnostic purposes. Appropriate frameworks
for the effortless utilization of these prospective gathered images could further improve ML
driven systems.

A recurrent topic on radiological societies revolves around the raise of radiology robots
that will replace radiologists. Geoffrey Hinton, one of the acclaimed ”fathers“ of Deep Learn-
ing, claimed in one of his talks that medical schools should stop training radiologists since
in five to ten years radiologists will have been replaced by DL. Considering the recent coor-
dinated efforts from multiple involved parties, it is clear that in a couple of years more and
more accurate, fast and robust CAD systems will be introduced. However, the medical de-
cision making is a vastly complicated task, which in some cases is still under research, while
it is often based on years of experience and other factors. Making sure that radiologists are
trained to utilize interpretable AI based CAD systems, could definitely enhance their diag-
nostic performance. Thus, one could instead claim that in the years to come CAD assisted
radiologists will replace radiologists who do not utilize such systems.

Last but not least, one really important challenge that is worth further investigation and
discussion, is the ethic frame around machine learning in medicine. In order to avoid un-
necessary risks, AI based CAD systems should conform with data privacy regulations, in-
terpretability issues and achieve transparency.

7.3 Perspectives

This thesis lies in the cross-section of machine learning and medical diagnosis. A number of
novel algorithms for the assessment of HRCT images of ILD patients have been suggested.
The clinical relevance of an end-to-end ILD quantification scheme has been investigated,
as well as the diagnostic information of breathing radiomarkers. For the best part of these
four years and with the collaboration of multiple physicians and engineers, a number of key
aspects have been identified for the further improvement of such systems, so that they can
be used in clinical practice:

• Algorithms that generalize well.

• Better error detection and false positive reduction.

• Better interfaces between implemented tools and physicians.

• Integration of more contextual information.

• Publicly available databases.

Generalization is one of the most well known problems of CAD systems. Most of the
times, due to the limited available data and the huge variability of pathology expression,
CAD systems tend to over-fit on the population they were trained on. It is often the case
that a CAD system achieves performance with really high specificity and sensitivity, yet
when tested on data from a different cohort these metrics drop. physicians often do not trust
the results of automatic methods, since there is a certain amount of errors. Trying to build
algorithms that generalize well and that are enhanced with better error detection schemes

1e.g. http://www.cancerimagingarchive.net/

http://www.cancerimagingarchive.net/


7.3. Perspectives 65

could further improve the performance of CAD systems, rendering them more useful in a
health care environment.

In medical images - depending on the acquisition configuration - structures are often
incomplete, missing or barely visible so that automated systems could not be reliably used.
Human experts however, have the ability to easily infer the position of particular structures
due to their experience. Interactive systems that request the feedback of physicians in all
the involved steps and allow their input, could ensure a much better error management.
Moreover, physicians, in order to make a diagnosis, are almost always using more than one
sources of information. In some cases, multi-disciplinary boards are formed, in order to
decide a diagnosis and treatment course. CAD systems could achieve much better results if
all the relative contextual information is provided.

Apart from methodological improvements and better error management, the availability
of public databases with medical data are of great importance towards better performing
CAD systems. Such databases should include all the necessary information physicians use
for the diagnosis and should come from a variety of equipment, patient groups and insti-
tutions. Large and well curated databases that follow the aforementioned criteria could be
used for directly comparing different methods as well as for longitudinal studies of particu-
lar diseases.
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