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Abstract

Fragility hip fractures in older adults are a major burden for individuals and society
due to increased morbidity, mortality and substantial health care expenditure. The
vast majority of hip fractures are caused by falls resulting in an impact on the hip,
inducing a force that exceeds the femoral bone strength. At the same time, only
1 - 3% of all falls result in a fracture, suggesting that the fall dynamics defines
its severity and, through that, the magnitude of the impact force. Additionally,
trochanteric soft tissue thickness is known to play a crucial role in the energy-
dissipating mechanism during impact. Thus, the fracture risk depends on the rate
of falling, the fall-induced impact force, and the femoral bone strength.

This PhD thesis presents a novel hip fracture risk calculator that is based
on a mechanistic stochastic framework that was presented in the literature. The
original model uses a Poisson process characterised by the rate parameter λ to
describe the occurrence of a fall. A stochastic distribution is then introduced
to model the conditional probability that the fall-induced impact force exceeds
the femoral bone strength. By combining these, the fall events resulting in a
fracture are identified, and a fracture risk can be calculated. The novel model
introduced a fall rate model to estimate a personalised λ, and refined the probability
distribution representing the chances of the femoral bone to break upon impact
with a mechanical impact force model.

The fall rate model to predict a personalised fall rate λ was developed by
analysing three independent cohorts that assessed various risk factors of falls.
Negative binomial regression models were fitted, and a variable selection algorithm
was applied. Thereby, the prior number of falls treated as a categorical variable
was the only predictor selected in all cohorts. A meta-analysis and validation of
the models confirmed that the number of prior falls is a robust predictor for the
prediction of a fall rate among different cohorts.

Furthermore, the personalised impact force model was developed using subject-
specific parameters that can be extracted from quantitative computed tomography
(QCT) images or substituted with anthropometric data. The model calculates the
full range of possible impact forces of an individual, indirectly representing the
variability in the dynamics of a fall. By introducing a stochastic distribution that
describes the probability of the fall dynamics, a fracture risk can be calculated.
With this approach, the stochastic aspects of the mechanism resulting in hip fracture



are concentrated in the Poisson process describing the occurrence of a fall and the
fall dynamics. Bone strength was estimated with QCT-based finite element analysis,
but it can also be estimated with other densitometric measures. Thus, the required
parameters for the model can be extracted from QCT images or substituted with
anthropometric and densitometric data.

A sensitivity analysis was conducted using clinical data from the AFFIRM-CT
cohort, confirming that the fall rate, the trochanteric soft tissue thickness and the
bone strength are the dominating parameters influencing the risk of fragility hip
fractures. Furthermore, output variables such as the predicted impact velocity and
impact force aligned well with experimental data from the literature.

The work of this thesis resulted in a novel fragility hip fracture risk calculator
that models the underlying process of hip fractures by combining the stochastic
aspects of a fall with the mechanistic elements of an impact on the hip. Thereby,
the model was shown to reflect key observations from empirical data, indicating that
it can capture the intrinsic aspects that affect the risk of fragility hip fractures.
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Prediction is very difficult, especially if it’s about the future.
Niels Bohr



1
Introduction

Humans have always been curious about what the future holds. Knowing what

is most likely to come next is extremely valuable, as it allows us to adopt our

behaviour according to the upcoming circumstances. In the medical field, insights

into the chances of developing a disease under specific conditions or exposures,

suffering from an adverse clinical outcome following a chronic disease, or the

probability of success for a particular treatment forms an essential foundation

of how individuals are treated in healthcare. It lays the foundation for making

informed decisions regarding appropriate treatments or interventions and allows

us to apply effective preventive measures.

As the title of this doctoral thesis suggests, the work presented here focuses

on developing a model to predict the risk of suffering from a fragility hip fracture.

Fragility fractures of the hip are a major health concern in the older population, as

such an injury leads to increased morbidity and mortality and causes a substantial

part of health care costs [1]. With age being a major risk factor for fragility

fractures and demographic changes implying an ageing population, the incidence

of fragility fractures is expected to rise. Thus, the identification of individuals

at risk of such a fracture is of great interest.

In medicine, many prediction models are regression-based and thus belong to the

family of statistical models. Examples can be found in cardiovascular disease risk

1



1. Introduction 2

assessment [2], in stroke risk prediction [3], or in the prediction of fragility fracture

risk [4]. Thereby, the model assumes a specific relationship between the variables

of the data set and tries to quantify this relationship with its coefficients. Hence,

statistical prediction models in medicine depend on the cohorts used to build it,

as the model tries to best describe the relationship in the data. The underlying

mechanism that produces the data does not necessarily need to be understood.

The model coefficients usually inform about the change in relative risk (e.g. as

odds or hazard ratios) when exposed or unexposed to a risk factor. To estimate

an absolute risk, knowledge about the baseline risk is required.

An alternative approach is provided by mechanistic models, which aim to reflect

the mechanism behind an event with the help of mathematical formulations that

describe the underlying physical processes. However, it is a prerequisite that the

mechanism of the system that produces the data is well understood. Mechanistic

models are frequently used in ecology [5], pharmacology [6] or biological processes

[7]. In the medical context, mechanistic models are less common. In the case of

fragility hip fractures, it is known that most fractures are caused by falls and that

the femoral bone breaks if the fall-induced impact force exceeds the femoral bone

strength. Thus, a mechanistic modelling approach would be to develop a model

that can estimate the fall-induced impact force and a model that can estimate

the bone strength and compare these values. However, even if both values can

be perfectly modelled, the ratio solely informs about the outcome (fracture or no

fracture) given a specific set of input variables. Since we are interested in predicting

the probability of the outcome, assigning a probability to the possible range of

each input variable in the system is necessary. This can be done using probability

distributions and stochastic processes, whereby insight into the stochastic nature

describing the occurrence of the input variable is required.

The prediction model presented in this work attempts to demonstrate an

alternative framework to regression-based prediction tools. It is based on a

mechanistic stochastic model that was presented and introduced in the article

"A Poisson process model for hip fracture risk" by Schechner et al. in 2010 [8].
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The following introduction aims to give an overview of the topic of fragility

(hip) fractures and the available tools for prediction. In the first part, the general

background and the burden of fragility fractures are discussed, followed by a section

about the clinical gold standard in fragility fracture risk prediction. Subsequently,

causes of fragility hip fractures are outlined, and mechanistic modelling approaches

are presented. In the last part, the framework of the model presented by Schechner et

al. and aspects that could be developed and refined to make it clinically applicable to

the individual are outlined. A short section describes the clinical study conducted

to collect data for the development of the calculator. This naturally leads to

the aims of the thesis.

1.1 Fragility fractures

Although there is sometimes still debate about how to best define fragility fractures,

they are usually referred to as fractures that result from low-energy trauma such as

a fall from standing height or lower [1], [9]. In other words, these fractures occur

from events that would not typically cause fractures in healthy adults. The most

common fracture sites, also referred to as major osteoporotic fractures, are the hip

(proximal femur), the forearm (radius), the upper arm (humerus) and the vertebral

bodies. However, also other sites of the skeleton are at risk of fragility fractures [9].

In 2019, around 82’000 fragility fractures were reported in Switzerland [1].

Compared to data from 2011, this is an increase of 11%. Due to the demographic

shift towards a more aged population, and since ageing is an important risk factor for

fragility fractures, the absolute number of fractures is expected to increase by another

37% to more than 113’000 fractures by 2034. In 2018, the crude incidence rate per

person year for major osteoporotic fractures was reported to be around 400/100’000

in men and 950/100’000 in women. Among these, the most frequent fracture site was

the hip, with an incidence of 180/100’000 in men and 390/100’000 in women [10].

The consequences of fragility fractures are considerable. On the one hand,

they represent a significant portion of health care expenditures, ranging from 1.3%

up to 6% of the health care costs in the EU27+2 countries [1]. However, when
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focusing on a personal level, the effects for the individual are more far-reaching

and drastic than just health care costs. Suffering from a fragility fracture results in

increased morbidity and mortality and an increased chance of becoming dependent

and institutionalised [11], [12]. Thereby, the consequences of hip fractures are

the most burdensome of all fracture sites, with a mortality risk of up to 20% in

the subsequent 3 - 6 months of fracture [13]. Against this background, identifying

individuals at risk of fragility fractures, particularly of the hip, is of great importance.

Only then can effective preventive measures be taken.

1.2 Bone strength and its role in fragility fracture
prediction

From a biomechanical point of view, a bone breaks if the force acting upon it

exceeds its strength. Therefore, bone strength is a critical factor for the prediction

of fragility fractures. Bone strength is determined by the total bone mass, its spatial

distribution and the intrinsic properties of the tissue [14]. Bone mineral density

(BMD) is a representation of structural density that relates the bone mass to its

volumetric bone mineral density (vBMD) or its 2D-projected areal bone mineral

density (aBMD). In the femoral bone, aBMD can explain up to 80% of its variation

in strength [15]. Looking at the development of bone mass with age, an individual’s

peak bone mass is reached at around 25 - 30 years [16]. After that, it is the natural

progression with age that the total bone mass decreases. However, certain genetic

and environmental factors can result in profound bone loss and, consequently, an

increased susceptibility to fragility fractures [17]. The pathological condition of an

abnormally low bone mass is defined as osteoporosis. Therefore, fragility fractures

are sometimes referred to as osteoporotic fractures.

The assessment of osteoporosis and bone strength

The clinical standard to diagnose osteoporosis is the measurement of aBMD with a

dual energy X-ray absorptiometry (DXA) scan at the lumbar spine and the proximal

femur [18]. Since BMD is approximately normally distributed among all age groups,
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the definition of osteoporosis introduced by the World Health Organization (WHO)

is based on T-scores that describe the standard deviation (SD) when compared to a

young healthy reference population[19]. A deviation of −1 SD and higher (T-score

> −1) is considered to be normal. A T-score between −1 and −2.5 is referred to as

osteopenia, which is a pre-stage of osteoporosis. Values of −2.5 SD and lower are

defined as osteoporosis. Severe osteoporosis is referred to as a T-score ≤ −2.5 in the

presence of at least one fragility fracture. Numerous experiments have shown that

aBMD and experimentally measured bone strength values in the femur correlate

well [15]. Hence, bone strength can be indirectly assessed with aBMD. However,

as the three-dimensional structure of bone plays an inherent role in its ability to

withstand forces, other modalities have been developed to assess its strength.

Finite element analysis (FEA) is a numerical method that allows the calculation

of a complex mechanical problem in a three-dimensional structure [20]. Thereby, the

structure of interest is divided into a finite number of elements. By assigning material

properties to each element and solving equations describing the force equilibrium in

the respective elements, mechanical measures such as strength can be calculated.

Computed tomography (CT) images provide a three-dimensional image of the

body and, consequently, the skeleton. CT values are measured in Hounsfield units

which is a relative number describing the X-ray attenuation [21]. To use CT images

for the calculation of bone strength, Hounsfield units need to be transformed into

BMD values. This can be done with the help of a calibration phantom. The

calibration procedure is referred to as synchronous calibration if the phantom is

scanned with the patient, and asynchronous if the phantom is scanned separately.

In contrast, phantomless calibration procedures have been proposed that use body

tissues for calibration and do not require a phantom to be scanned [22]. Upon

calibration, a CT scan is referred to as a quantitative computed tomography (QCT)

scan. Consequently, FEA methods to estimate bone strength from QCT images have

been developed [20]. This allows the secondary use of routinely performed CT images

for osteoporosis screening, which is sometimes also referred to as opportunistic

screening [22]. In a comprehensive review, it was shown that both aBMD-based
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and FEA-based bone strength estimates compare well with experimentally derived

femoral strength values [15].

Predictive ability of aBMD and FEA-based bone strength

Regarding the ability of aBMD to predict fragility fractures, several studies included

in meta-analyses have shown that decreased aBMD is associated with an increased

risk of fragility fractures at all fracture sites [23], [24]. However, when looking at the

predictive ability of the individual, its use is limited. Various studies reported that

only a share of all fractures are attributable to an osteoporotic aBMD value as defined

by the WHO [25], [26], [27]. This can be explained by its low positive predictive value

and low sensitivity [23], [28]. Thus, the distribution of aBMD between individuals

who suffer a fracture and those who do not is strongly overlapping.

Moving from aBMD to FEA-based bone strength estimates for fragility fracture

prediction, inconclusive results have been found. While few studies have reported

a significantly better predictive performance for hip fractures using FEA-based

bone strength estimates in comparison to aBMD [29], others found comparable

performances or only marginal improvements in fracture prediction when using

FEA-based estimates [30], [31], [32], [33]. Contrary, the predictive performance

of FEA-based bone strength estimates for vertebral fracture was reported to be

superior in comparison to aBMD [20]. Apart from these inconsistencies, FEA-based

methods face additional challenges to be integrated into clinical routines, such as

the lack of standardised software and calibration protocols [20], [22].

With the aim of improving fracture prediction beyond bone strength alone,

other risk factors associated with fragility (hip) fracture risk were sought and

integrated into fracture risk prediction models.

1.3 FRAX®: The clinical gold standard to predict
the risk of fragility fractures

The clinical gold standard to predict the risk of fragility fractures is the FRAX®

calculator. FRAX® was developed by the WHO Collaborating Centre for Metabolic
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Bone Diseases at the University of Sheffield (UK) and was presented for the first

time in 2007 [4]. It is a regression-based tool and predicts the 10-year probability for

major osteoporotic fractures and hip fractures by combining clinical risk factors with

aBMD measured at the femoral neck as an optional parameter [34]. These include

age, sex, body mass index (BMI), prior osteoporotic fractures, parental hip fractures,

alcohol consumption (≥ 3 units a day), current smoking, glucocorticoid exposure

(≥ 3 months), rheumatoid arthritis and secondary osteoporosis [35]. The FRAX®

calculator is based on nine international prospective population-based cohorts [4].

The association between the clinical risk factors and fracture outcome was analysed

separately with a Poisson regression for every cohort, and the resulting coefficients for

the risk factors were meta-analysed. Furthermore, FRAX® accounts for competing

mortality risk and has been calibrated for different countries. Since the publication

of the first version, an updated version called FRAXplus® including additional risk

factors such as the history of falls, the hip axis length or type 2 diabetes mellitus has

been introduced [36]. FRAX® has been validated with numerous cohorts, whereby

the area under the curve (AUC) was reported to lay between 0.61 - 0.78 for major

osteoporotic fractures, and between 0.66 - 0.83 for hip fractures [37].

Although other calculators such as the Garvan fracture calculator [38], [39]

or the QFracture Score [40], [41] exist, FRAX® is probably the best studied and

most frequently used tool for fragility fracture risk prediction in the clinical routine.

There exist various guidelines on the management of osteoporosis and fragility

fractures, of which FRAX® is an integral part [36].

1.4 Causes of fragility hip fractures

As mentioned at the beginning of this introduction, regression-based models try to

find associations between predictors and outcomes but do not necessarily reflect

the underlying process that leads to or generates the outcome of interest. An

alternative is provided by mechanistic models, which try to model this mechanism.

However, to develop such a model, knowledge about the underlying causes and

mechanism of the outcome of interest is indispensable.



1. Introduction 8

Focusing on fragility hip fractures, it is reported that with more than 95%, the

vast majority of those events result from a fall-indcued impact on the hip [42], [43].

At the same time, it is known that approximately one out of three adults aged 65

and older fall every year [44]. However, only 1 - 3% of all fall events result in a

hip fracture, indicating that how a fall happens is an important point to consider.

As previously mentioned, a bone breaks when the force acting on it exceeds its

strength. For hip fractures, this ratio is given by the fall-induced impact force

and the femoral bone strength, and is often referred to as the load-to-strength

ratio or the factor-of-risk [45], [46]. Looking at the number of falls resulting in a

hip fracture, it can be concluded that only a small share of all falls result in an

impact force high enough to initiate such an event.

Against this background, it follows that the risk of fragility hip fractures depends

on three main factors: the risk of falling, the fall-induced impact force, and the

femoral bone strength. The available methods to model and estimate bone strength

have already been discussed in Section 1.2. In the following, the two remaining

points will be outlined.

1.4.1 Falls

Approximately one out of three older adults aged 65 and older fall every year [44].

When comparing among different age groups, the incidence of falls is increasing

with increasing age, reaching up to 40% and more in the age group of 75+ [44],

[47], [48]. It is estimated that around one-third of falls result in an injury [49].

The severity of fall-related injuries can vary greatly, ranging from light bruises

to severe injuries such as fractures, traumatic brain injuries or even death [49],

[50], [51], [52]. Indeed, falls account for the majority of unintentional injuries in

adults aged 65 and older. In 2019, falling was the cause of more than 50% of

such injuries in the United States [53]. Furthermore, the incidence of injurious

falls increases with increasing age, too [51], [54].

Focusing on fragility fractures, it is reported that around 5 - 10% of all falls

result in a fracture [54], [55]. Thereby, approximately 1 - 3% of the falls cause a hip
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fracture. Flipping the perspective, falls account for up to 87 - 95% of all fractures

in older adults [56], [57]. However, this number is fracture site-dependent; while

fractures in the hip or radius are almost exclusively caused by falls, fractures in the

vertebra and humerus are caused by falls in 60% and 76% of the cases, respectively

[57]. Considering these numbers, it might not be surprising that falls have been

reported to be predictive of fragility fractures [58]. To summarise, the risk of

falling plays a central role in identifying individuals at risk of fragility fractures,

as well as fall-related injuries in general.

Many risk factors have been shown to be associated with the risk of falling,

which can be divided into intrinsic and extrinsic risk factors. Intrinsic risk factors

include age, sex and gender, chronic diseases, physical performance impairment and

visual or sensory deficits. Extrinsic risk factors refer to side effects of medications,

obstacles in the environment, and footwear. Various reviews and meta-analyses

summarised findings about the risk factors of falls for different population groups

and settings [59], [60], [61], [62], [63]. Concurrently, many fall risk assessment

tools have been developed to identify individuals at risk of falling [60], [64], [65],

[66]. These include tests assessing a single risk factor or a combination of these.

Most assessment tools have been developed with binary logistic regression models,

resulting in individuals being classified as at risk of falling or not at risk of falling [67].

Despite the enormous effort of the research community, the majority of those tools

show a moderate performance in discriminating fallers from non-fallers [64], [67].

The risk of fall-related injuries increases directly with the number of experienced

falls: The more often someone falls, the higher the risk of injury. Thus, an alternative

approach to modelling fall risk would be the estimation of a fall rate. Already in

1990, Cumming et al. questioned whether the common approach to model the

risk of falling in a binary setting, distinguishing between fallers and non-fallers,

is a suitable approach, arguing that a fall rate is more meaningful in identifying

individuals at risk of fall-related injuries [68]. In addition, the relationship between

risk factors and falls can be biased when recurrent fallers are simply categorised as

fallers. By doing so, the weight of risk factors the person was exposed to compared
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to single-time fallers or non-fallers is reduced. Count regression is a method that

allows the estimation of a fall rate, and that is suitable to analyse recurrent events

[69], [70], [71]. However, up to the day, only a minority of studies have used count

regression models to analyse fall data [67], [70].

1.4.2 Fall-induced impact force

The fall-induced impact force is a critical factor in determining whether the femoral

bone breaks upon impact and directly depends on the velocity with which the body

hits the ground. The first models that were developed for estimating the impact

velocity and impact force were dynamic models [72], [73], [74]. These models were

based on mass-spring-damper systems or rigid-link models. Looking at this in

more detail, factors that define the magnitude of the impact force to which the

femur is subjected in the event of a fall can be divided into two areas. Once a

fall is initiated, there exist countless possibilities of how the body moves during

the descent until hitting the ground. This dynamic defines the impact velocity of

the hip and, thus, the magnitude of the impact force during the moment the hip

touches the ground. Subsequently, the properties of the body and the ground act

together in transforming and dissipating the kinetic energy of the fall, and through

that, ultimately define the magnitude of the peak impact force in the hip. In the

next two paragraphs, these two aspects are elaborated in detail.

Fall dynamics

The initial height of an individual’s centre of mass defines the potential energy of a

fall. However, movements during the descent of the fall, such as rotations or the

outstretching of the hand, can reduce the impact force, as these pre-impact movement

strategies decrease the amount of energy available for the impact. Moreover, not

only the initial height but also circumstances such as the initiation of a fall event

influence the fall dynamics and the resulting impact force.

Experiments conducted with young, healthy volunteers who fell unintentionally

revealed that 98% of all falls resulted in an impact on the hip, with the hand used

to dampen the impact just as often [75]. In comparison, video-analysis of falls in
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older adults showed that impact on the hand occurred only in 81% of the falls [57],

indicating that not necessarily the impact site, but pre-impact movement strategies

differ among age groups. Taking into consideration that fall-induced hip fractures

only start to appear at age 50 and that their frequency increases with age [76], it

can be concluded that the fall dynamics changes with age and plays an essential

role in whether an individual can dampen the impact force below a critical level.

Age-related changes in the sensorimotor and proprioceptive systems, which are

crucial for motor control and joint stability, are likely to account for differences

in pre-impact movement strategies [77], [78], [79].

Numerous studies have been conducted to investigate the influence of the fall

dynamics on the impact force and/or on the hip fracture risk. While some analysed

real-life data [43], [80], [81], [82], [83], [84], [85], [86], others assessed different pre-

impact movement strategies with experimental data from young healthy volunteers

who fell in a controlled environment [75], [87], [88], [89]. The results from those

analyses helped identify fall-dynamic-related risk factors for a fracture or gave

insight into which circumstances and causes of a fall can result in an impact on the

hip. For example, a sideways landing configuration impacting the hip was reported

to be a risk factor for hip fracture [43], [81], while an impact on the knee or the hand

resulted in a lower impact force and consequently a lower fracture risk [81], [82], [88].

The accurate quantification of the change in magnitude of the impact force due

to varying fall dynamics states a challenge with real-life data, as measuring the

fall-induced impact force in an uncontrolled environment is not feasible. Instead,

the influence on the fracture risk is usually reported as a change in the relative

risk for hip fractures using odds or hazard ratios, which can be interpreted as an

indirect representation of the change in magnitude of the impact force.

A few studies have tried to fill this gap and conducted experiments with healthy

young volunteers that allowed the quantification of the effect of pre-impact movement

strategies on the impact force by using force-plates or motion tracking systems

[87], [88], [89]. For example, it was demonstrated that impacting with the knee

following a sideways fall resulted in a decrease in the hip impact force of more than
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30% [88]. A further approach to assess the influence of the fall dynamics on the

impact force is kinematic models simulating a sideways fall. As an example, Lo

and Ashton-Miller developed an impact force prediction model that integrates a

kinematic model to simulate different fall scenarios [90]. Another study did not

include the whole fall dynamics but assessed the influence of different impact angles

of the hip on the impact force using an FEA model [91], showing that a lateral

impact is the most likely configuration to initiate a fracture.

Stiffness and damping properties of the hip

Once the body hits the ground, the whole hip complex and the floor attenuate

energy and, through that, reduce the magnitude of the impact force. The hip

complex consists of soft tissue (composed of muscle and fat), ligaments, tendons,

cartilage, the femur and the pelvis bone. These tissues all display specific visco-

elastic material properties that allow energy storage and dissipation upon deflection.

To predict the impact force acting on the hip complex, various experiments have

been conducted to assess its stiffness and damping properties.

A large number of experiments with living subjects are based on the pelvis

release experiment that was developed by Robinovitch et al. [72]. In this experiment,

subjects were laying laterally on the greater trochanter on a force plate and were

lifted with a canvas sling around the hip. Upon release, the force over time was

measured. With the experimental data, the parameters of a damped vibrational

system modelling the hip complex were fitted. Other studies further developed

this experimental setup and evaluated the force-deflection properties of the hip

with a motion capture system [92] or assessed the influence of sex and BMI on

the impact force and stiffness parameter [93]. The disadvantage of this type of

experiment is that the impact forces do not reach the force magnitude following

a fall, as this would be ethically not justifiable. However, due to the non-linear

nature of the stiffness and damping properties of the pelvis [72], experimental data

in the higher force regime are required. Consequently, other studies conducted

experiments that allowed the investigation of realistic impact forces upon a fall.

For example, Robinovitch et al. used an impact pendulum to measure the impact
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force in a surrogate pelvis imitating a sideways fall [74]. Fleps et al. developed a

sideways fall simulator for the human cadaveric pelvis and femur bones [94], [95].

The data collected by Fleps et al. were then used to validate an explicit FEA model

that models the response of a lateral impact on the hip [96].

In all the research conducted on the stiffness and damping properties of the hip

complex, it has been demonstrated that the soft tissues covering the hip play a central

role. Several experiments and analyses showed that the peak impact force decreases

as the tissue thickness increases [72], [89], [97], [98], [99], [100]. Robinovitch et al.

found that with every additional millimetre of soft tissue thickness, the peak impact

force decreases by 71N [97]. In an analysis of a female cohort with 21 hip fracture

cases and 42 age-matched controls, a decreased trochanteric soft tissue thickness

was shown to be associated with an increased hip fracture risk [99]. An explanation

for this association is that an increase in thickness leads to a larger contact area,

which results in more tissue being recruited and deformed [89], and consequently

more energy being absorbed during impact [97]. Looking at the formula that relates

a material’s elastic modulus to its structural stiffness gives another explanation for

these findings. The relationship is given by k = E · A/L with A as the contact area,

E as the elastic modulus, and L the length. Hence, the stiffness k decreases with

increasing thickness L and thus results in a reduced impact force for a given impact

energy. These aspects have also been assessed in experimental settings, where the

soft tissue stiffness and its influence on the fracture risk have been elaborated [101],

[102], [103]. Furthermore, the effect of the tissue’s composition (muscle and fat)

on its energy-absorbing capacities has been investigated [102], [104], [105]. Other

than that, the soft tissue thickness was found to vary depending on factors such as

sex, BMI and posture [99], [106], [107]. A further factor that has been shown to

influence the stiffness of the hip complex, respectively soft tissue stiffness, is the

state of muscle activation, with an activated muscle being stiffer and through that

resulting in higher peak impact forces [72], [108]. And last, although not part of the

hip itself, the stiffness of the ground on which a subject falls has also been shown

to influence the magnitude of the impact force in the hip [109].
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In summary, the prediction of the fall-induced impact force is challenging, as it

acts in a highly noisy environment. Fall-dynamic-related factors vary from fall to

fall, and their effect on the impact force is difficult to quantify. At the same time, the

characterisation of the stiffness and damping properties of the hip made it possible

to calculate an impact force using mechanical models. Thereby, subject-specific

parameters that affect the magnitude of the impact force, such as the soft tissue

thickness, can be considered. However, even if the impact force of a specific fall

scenario can be calculated accurately, there is still a major obstacle that has not

been addressed yet: There exist countless possibilities of how a fall can happen,

and it is simply impossible to predict which fall scenario will occur.

1.5 Mechanistic models for the prediction of
fragility hip fractures

Most mechanistic models developed for the prediction of fragility hip fractures are

based on the evaluation of the factor-of-risk. For example, Dufour et al. suggested a

model that derived the factor-of-risk by calculating the impact force with a standard

formula for a sideways fall using height and weight [73] and accounted for the

attenuation of the soft tissue thickness using the relationship found by Robinovitch

et al. [97]. The femoral strength was estimated using aBMD, and the factor-of-risk

was used as a predictor in a Cox proportional hazard model [46]. Other models tried

to better reflect the subject-specific dynamics of a fall, as this influences the resulting

impact force. Sarvi et al. developed a model that integrates this aspect by using a

three-link whole-body dynamics model to simulate a standard sideways fall together

with a DXA-based 2D-FEA to estimate the bone strength [110]. Thereby, they

could show that the prediction of the impact force using subject-specific parameters

can improve the prediction of hip fractures. Other approaches tried to develop

FEA-models to predict the impact force of a sideways fall [96], [111]

Yet, the factor-of-risk does not describe an actual fracture risk but solely informs

about the ratio between the fall-induced impact force and the bone strength.

Furthermore, it requires the calculation of an impact force given a specific fall
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scenario. However, as mentioned in Section 1.4.2, predicting how a fall will occur

is challenging, which is why most mechanistic approaches model a standardised

sideways fall. In summary, the majority of research that pursued a mechanistic

approach did not predict a fracture risk but investigated factors that influence

the impact force and assessed the correct classification of fracture cases [95], [110],

[112]. Furthermore, the risk of falling, which is a significant component defining

the risk of hip fractures, is often neglected.

A model published by Bhattacharya et al. accounts for these aspects [113]. The

multi-scale model is based on the factor-of-risk, but integrates the fall dynamics and

the risk of falling, allowing the prediction of a fracture risk within a year. It consists

of three sub-models: (1) a model that derives the impact force given the varying

fall dynamics of a sideways fall; (2) a model that estimates the force attenuation

during the impact of the hip; and (3) an FEA model to estimate bone strength

given different impact orientations. Subsequently, the fracture outcome of a specific

fall using the factor-of-risk is evaluated. In a further step, probability distributions

are assigned to the parameters describing the fall dynamics. By integrating this

into a probability of different fall scenarios and with the use of a constant fall rate

describing the risk of falling, the probability of a fracture during a year can be

calculated.

1.6 A novel fragility hip fracture risk prediction
model

In 2010, the framework of a novel hip fracture risk calculator addressing the above-

mentioned challenges of mechanistic hip fracture risk models was published [8].

To our surprise, it gained only little attention in the fragility fracture research

community. The model is based on an alternative approach to what is known in

the literature, as it tries to model the complete physical process behind fracture

events, allowing a functional understanding of different epidemiological observations

of fragility hip fractures. In contrast to regression-based tools like FRAX® or purely

mechanistic approaches as the factor-of-risk, the model is based on a mechanistic
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stochastic framework, integrating the random aspects of a fall and the fall-induced

impact force together with bone strength. In the next section, the framework

of the model that was published by Schechner et al. in Medical and Biological

Engineering and Computing is explained, its uniqueness is outlined, and aspects

for further development are pointed out.

1.6.1 The Schechner model

The model presented by Schechner et al. is based on a Poisson process that describes

the occurrence of a fall. A Poisson process is a stochastic process that models

the arrival of an event in a finite time interval with a random variable following

the Poisson distribution. It is defined as

P (k falls in (0, T ]) = (λt)k

k! e−λt k = 0, 1, 2, ... (1.1)

with k as the number of falls, λ as the annual fall rate parameter, and t defining the

finite time interval (0, T ]. Hence, the probability of no fall reduces Equation (1.1) to

P (no falls in (0, T ]) = e−λT (1.2)

and the probability of at least one fall to

P (k ≥ 1 fall in (0, T ]) = 1 − e−λT (1.3)

In a second step, a random variable is introduced to model the conditional probability

of the fall-induced impact force exceeding the femoral strength, so that

pS = P (Fracture|Fall) = P (Force>Strength) (1.4)

By combining the rate parameter λ and pS, a thinned Poisson process characterised

by λthinned = λ · pS retains only the falls that result in a fracture. The thinned

Poisson process is a Poisson process itself, and thus the probability of at least

one fracture in the time period (0, T ] is given by

P (≥ 1 fracture in (0, T ]) = 1 − e−λpST (1.5)
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(a) (b)

(c)

Figure 1.1: Figures from the original publication by Schechner et al. [8], showing
different features of the model. (a) Fracture probability given age and BMD. (b) BMD
distribution of fracture and non-fracture individuals. (c) The probability of a fracture
given the state of a prior fracture. Reprinted with permission from the publisher.

The model is based on three additional assumptions. First, it assumes that

pS follows a Weibull distribution. Then, the fall rate λ is defined to be linearly

increasing with age. And last, BMD is used as a bone strength surrogate. Without

the use of any data, the model is able to describe several key observations about

hip fractures from empirical data. It shows clearly that the risk of fracture is

synergistically increasing with increasing age and decreasing BMD (FFigure 1.1a).

Furthermore, by using a Bayesian modelling approach, it can be shown that the

BMD distribution between individuals who fracture and individuals who do not

fracture is strongly overlapping (Figure 1.1b). And last, by using the information

about a fracture event in a previous time period as prior information, the model

shows that the presence of such an event results in a higher risk of fracturing again

when compared to no prior fracture (Figure 1.1c).
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1.6.2 Further development of the Schechner model

The mechanistic stochastic framework for the prediction of hip fracture risk presented

by Schechner et al. is a promising modelling approach. It reflects the whole

mechanism involved in causing hip fractures by combining mechanistic and stochastic

principles: It models the occurrence of falls and thus the risk of falling with a Poisson

process; it assesses the lack of knowledge about how a fall will occur by modelling

the probability of the impact force to exceed the femoral strength with a random

variable; and it uses BMD as bone strength surrogate. Thereby, the model is able

to reflect various key observations of hip fractures in empirical data and captures

the intrinsic aspects of the risk of such a fracture.

To make the model clinically applicable to the individual, some aspects need

to be further developed and refined. First, a model to estimate a personalised

fall rate could be developed. Although the risk of falling is clearly dependent on

age, numerous other risk factors exist that could improve the estimation of a fall

rate, taking into account the personal circumstances and physical abilities of an

individual. Then, instead of modelling the probability of the fall-induced impact

force exceeding the femoral bone strength with a random variable, this aspect

could be refined by integrating a mechanical impact force model that estimates a

personalised impact force using subject-specific parameters. Instead, a stochastic

distribution could be introduced to describe the fall dynamics that defines the

magnitude of the impact force. Furthermore, bone strength could be estimated

using QCT-based FEA instead of being derived from BMD. Lastly, insights into

the stochastic distribution modelling the fall dynamics are required, as the Weibull

distribution proposed by Schechner et al. was mainly chosen due to its simplicity

and ability to model various shapes with the use of only two parameters.

1.7 AFFIRM-CT

The AFFIRM-CT (A Fragility Fracture Integrative Risk Method with CT-Recycling)

project is a collaboration between the University of Bern and the University of

Geneva with the overall goal of developing a mechanistic fragility fracture risk
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calculator for the prediction of non-vertebral fragility fractures, specifically of the

hip, with CT recycling. Other aspects of interest were the comparison of aBMD,

QCT-FEA and high-resolution peripheral quantitative computed tomography (HR-

pQCT) derived bone strength estimates, as well as the comparison between the

synchronous and asynchronous calibration of CT images. With the aim of obtaining

a data set that contains all required variables for testing the developed methods

and the resulting fracture risk calculator, a prospective observational study was

conducted starting in 2021. Individuals aged 65 and older who underwent a CT

scan of the upper body or abdomen with the hip visible at the University Hospitals

of Bern or Geneva were eligible for study participation. Exclusion criteria were

a life expectancy of less than a year, a prior hip fracture, being bedridden or

in a wheelchair, cognitive impairment, living in a nursing home or institution,

and bone diseases. Eligible participants were contacted by phone call or letter

for enrolment. Subsequently, participants were invited for a single visit to the

respective medical centre. During the visit, the participants underwent a DXA

scan to assess the BMD of the lumbar spine and the hip. A subgroup of the

participants in Bern underwent an HR-pQCT scan of the radius and tibia. At

the same time, many variables and tests were assessed and recorded. The medical

history, including comorbidities, medication, the number of falls in the previous 12

months and the history of fractures, were assessed. The 10-year probability of major

osteoporotic fractures and hip fractures was calculated with FRAX®. Furthermore,

various physical performance tests were carried out, such as gait speed, Five Times

Sit-to-Stand test (FTSTS), Short Physical Performance Battery (SPPB), hand

grip strength (HGS) or visual acuity. Falls Efficacy Scale - International (FES-I)

was used to evaluate the fear of falling. Cognitive impairment was assessed with

the Mini Mental State Examination. The soft tissue stiffness in the area of the

greater trochanter was measured using a handheld soft tissue indentation device

(MyotonPro). Furthermore, the participants were encouraged to wear an activity

tracker for 7 days, measuring the movement of the wrist with an accelerometer

(Axivity AX3). After the examination, individuals were followed up with phone
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calls for at least 18 months to assess incident falls, incident fractures, and start

of osteoporosis treatment in case of an osteoporosis diagnosis.
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Thesis Aims

The overall aim of this thesis was to personalise and further develop the fragility

hip fracture risk model presented by Schechner et al. [8]. To this end, the

objectives are three-fold.

Various fall risk assessment tools exist to identify individuals at risk of falling.

However, most of these are based on binary logistic regressions, classifying individuals

as at risk of falling or not at risk of falling. However, as mentioned in Section 1.4.1,

estimating a rate might be more appropriate to identify fallers. Furthermore, the

Poisson process describing the occurrence of a fall requires a rate parameter. Since

the rate parameter solely included an age dependency, although many other risk

factors for falling exist, the first aim was to develop a model for the estimation of a

personalised fall rate considering additional risk factors beyond age.

The model assumes a Weibull distribution that describes the probability of

the fall-induced impact force exceeding the femoral bone strength derived with

BMD. With this approach, the mechanical aspects of the fall-induced impact on

the hip are modelled together with the stochastic aspects of the fall dynamics.

However, as described in Section 1.4.2, various methods exist to calculate the fall-

induced impact force using subject-specific parameters. Consequently, the second

aim was to refine this aspect by introducing a mechanistic model that calculates

a personalised impact force. Thereby, the model should be able to derive the full

21
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range of possible impact forces given the fall dynamics. Furthermore, bone strength

estimates from QCT-based FEA instead of BMD will be used. This refinement

allows for the assessment of whether the impact force exceeds the femoral bone

strength in a mechanical context. The stochastic aspects of a fall will then be

modelled by introducing a probability distribution that describes the probability

of different fall scenarios and the fall dynamics.

The third aim of this thesis is the integration of the personalised fall rate and

impact force model into a novel fragility hip fracture risk calculator. For proof of

concept and with the aim to demonstrate how the model functions, the calculator

will be applied to clinical data from the AFFIRM-CT study, and the sensitivity

of the parameters on various output values will be assessed.

The next four Chapters present work conducted to fulfil the above-presented aims.

Thereby, Chapter 3 - Chapter 5 are about the development of the personalised fall

rate model, and Chapter 6 introduces the personalised impact force model together

with the novel fragility hip fracture risk calculator.
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Abstract

Background Around a third of adults aged 65 and older fall every year, resulting

in unintentional injuries in 30% of the cases. Fractures are a frequent consequence of

falls, primarily caused in individuals with decreased bone strength who are unable

to cushion their falls. Accordingly, an individual’s number of experienced falls has

a direct influence on fracture risk. The aim of this study was the development of a

statistical model to predict future fall rates using personalized risk predictors.

Methods In the prospective cohort GERICO, several fall risk factor variables were

collected in community-dwelling older adults at two time-points four years apart

(T1 and T2). Participants were asked how many falls they experienced during 12

months prior to the examinations. Rate ratios for the number of reported falls at

T2 were computed for age, sex, reported fall number at T1, physical performance

tests, physical activity level, comorbidity and medication number with negative

binomial regression models.

Results The analysis included 604 participants (male: 122, female: 482) with a

median age of 67.90 years at T1. The mean number of falls per person was 1.04

and 0.70 at T1 and T2. The number of reported falls at T1 as a factor variable was

the strongest risk factor with an unadjusted rate ratio [RR] of 2.60 for 3 falls (95%

confidence interval [CI] 1.54 to 4.37), RR of 2.63 (95% CI 1.06 to 6.54) for 4 falls,

and RR of 10.19 (95% CI 6.25 to 16.60) for 5 and more falls, when compared to

0 falls. The cross-validated prediction error was comparable for the global model

including all candidate variables and the univariable model including prior fall

numbers at T1 as the only predictor.

Conclusion In the GERICO cohort, the prior fall number as single predictor

information for a personalized fall rate is as good as when including further available

fall risk factors. Specifically, individuals who have experienced three and more falls

are expected to fall multiple times again.

Trial registration ISRCTN11865958, 13/07/2016, retrospectively registered.

Keywords Falls, Fall rate, History of falls, Prediction, Count data
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3.1 Background

Falls contribute substantially to increased morbidity and mortality in older people.

Around 25—30% of persons aged 65 and older fall every year, and this number is

increasing with advancing age [44], [115]. Approximately a third of all falls result

in an injury [48], ranking falls as the leading cause of unintentional injuries and

injury-related deaths [44], [52], [53], [54], [116]. Thereby, fractures account for the

most frequent consequence leading to disability [51]. While 5—15% of falls result

in a fracture, the share of non-vertebral fractures caused by falls ranges between

59 – 96% and is site dependent [117]. Individuals who suffer from a fracture after

falling are likely affected by decreased bone strength and are unable to cushion

the fall [55]. Accordingly, the number of falls occurring to an individual influences

the fracture risk [118]. In a meta-analysis including three cohorts, it was shown

that the number of prior falls is improving fracture prediction over current used

fracture risk assessment tools such as FRAX [58]. Accordingly, predicting not

only the risk of falling but how many times an individual is expected to fall could

improve fracture prediction in older adults.

Risk factors that have been associated with falling include increasing age, female

gender, musculoskeletal deficits, gait and balance problems, a history of falls, fear of

falling, vision impairment, cognitive deficits, urinary incontinence, medication, and

comorbidities amongst many others [59], [60], [61], [62], [119]. To examine the risk of

falling, various fall risk assessment tools and screening methods have been developed.

A detailed overview of existing tools is provided in several reviews and meta-analyses

[60], [64], [65], [66], [120], [121], [122], [123]. In summary, the assessments usually

consist of performance tests and/or questionnaires that are designed to identify

individuals at risk for falling. Thereby, when exceeding a defined threshold score

value, individuals are considered as at risk of falling. So far, no single tool has been

sufficient to successfully discriminate between fallers and non-fallers.

The association between fall risk factors and falling is often reported in the

form of odds ratios derived with binary logistic regression. An alternative to

measure the association are rate ratios. For this statistical method, not only



3. Personalised fall rate model: GERICO 26

the information whether a fall occurred or not is needed but the number of falls

per individual is required. An expected fall rate can then be calculated. Count

regression models belong to the family of generalized linear models and are used

to estimate rates and rate ratios.

To our knowledge, only few studies have been conducted analysing the association

between fall number and risk factors in terms of rate ratios [124], [125], [126].

Accordingly, the aim of this study was to develop a statistical model using a count

regression approach for fall rate prediction and to investigate associations between

the fall number and different fall risk factors for community-dwelling older adults.

3.2 Methods
3.2.1 Reporting guidelines

This publication followed the Transparent Reporting of a multivariable prediction

model for individual Prognosis Or Diagnosis (TRIPOD) [127]. The completed

checklist is available in the supplementary materials.

Study participants

The Geneva Retirees Cohort (GERICO) is a prospective cohort study conducted

between 2008 and 2018 to identify risk factors for fall and fracture risk prediction

in retired workers in the Geneva area (www.isrctn.com/ISRCTN11865958).

From 2008 to 2011, healthy community-dwelling older adults were recruited using

different strategies such as local newspaper advertisement, targeted mass mailing

and advertisement at large local companies. After baseline examination (T0),

participants were followed up the first time after 4 years (T1), and a second

time after another 4 years (T2). Participants included in this study were of both

sexes, aged between 63 and 67, around the time of their retirement, and living

in the rural or urban Geneva area. Exclusion criteria were major comorbidities,

in particular cancer treated within the last 5 years, chronic renal failure, liver or

lung disease, corticosteroid therapy, primary hyperparathyroidism, Paget disease

of bone, malabsorption or any neurological or musculoskeletal condition affecting

www.isrctn.com/ISRCTN11865958
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bone health. The complete study design has been described previously [128], [129].

The present analysis included all participants that completed the two follow-up

examinations at T1 and T2. The flow of participants in the study is presented in

Figure 3.1. The study protocol was approved by the University Hospitals Research

Ethics Commission and written informed consent was provided by all participants.

3.2.2 Sample size

Sample size calculation for the GERICO cohort was based on the primary outcome

of the study, the number of incident fractures. No specific sample size calculation

for the present analysis was conducted. All participants that completed the two

follow-up visits at T1 and T2 were included in the current analysis (see Figure 3.1).

3.2.3 Variable selection

All covariates recorded in the GERICO cohort that have been associated with the

risk of falling in literature and that are easily measurable (e.g., not requiring special

equipment) and applicable in a clinical setting were included in the present analysis.

3.2.4 Outcome

The number of falls was the outcome of interest. Participants were asked whether

they had experienced any falls during the 12 months prior to the examination at T1

and T2 (also referred to as prior falls). The number of prior falls, the consequences

(fracture, injurious fall requiring medical attention, injurious fall not requiring

medical attention, uninjurious fall), and the activity during the fall (locomotion,

transfer, run, sport, height/ladder, other) were recorded. A fall was defined as an

event resulting in a person coming unintentionally to rest on the ground, floor,

or any lower level. Extreme observations such as an individual falling five times

and more, for example during sports or recreational activities, were not excluded

since every single fall has the potential to result in an injurious outcome such as a

fracture. The prior fall number reported at T2 was the dependent variable.
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3.2.5 Predictors
History of falls

The number of experienced falls prior to T1 was included as predictor for the

history of falls.

Demographic and anthropometric variables

Age, sex, standing height and body weight were recorded at follow-up examinations

T1 and T2, and body mass index (BMI) was calculated accordingly.

Physical performance tests

The Short Physical Performance Battery (SPPB) is a test to assess lower extremity

function in older adults [130]. Shortly, SPPB includes a balance test, the measure-

ment of normal gait speed over 4m distance, and the Five Times Sit-to-Stand test.

Every subtest scores 4 points, reaching maximum 12 points. Hand grip strength

(HGS) was measured with the JAMAR® Hand Dynamometer device. Participants

were sitting on a chair with the elbow at a 90° flexion position. Three measurements

were performed for each hand and the maximum value of the dominant or non-

dominant hand was chosen. The one-legged stance test (OLST), also known as

single-legged stance test, is a test assessing balance. Participants had to stand on

one leg with crossed arms and eyes open. The test was stopped when reaching 45s. If

the maximum time was not reached, a second measurement was obtained. Both legs

were tested, and the best performance of the dominant leg was used for analysis. No

distinction between participants requiring one or two attempts to reach the maximum

time was made. All physical performance tests were obtained both at T1 and T2.

Physical activity

Physical activity was evaluated both at T1 and T2 by a face-to-face questionnaire

that uses an inventory of 45 activities to estimate the time spent on usual walk-

ing, cycling, stair climbing, organized sports, and recreational activity over the

past 12 months. The collected data were converted to physical activity energy
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expenditure (kilocalories (kcal) per day) using validated formulas developed by

Ainsworth et al. [131].

Comorbidities and medication

Age unadjusted Charlson’s comorbidity index (CCI) [132], the number of comor-

bidities and the number of medications were recorded at T2 only.

3.2.6 Statistical analysis
Handling of predictors

Age and BMI were included from follow-up T1. Physical performance tests (SPPB,

HGS and OLST) were also included from follow-up T1 to avoid retrodiction. Physical

activity was included from follow-up visit T2 since it covers the same period of

observation as the outcome variable. CCI, comorbidity and medication number were

included from follow-up T2. The continuous variables (age, BMI, HGS, physical

activity, comorbidity and medication number) were standardized to a mean of zero

and a standard deviation of one, resulting in the rate ratio estimates corresponding

to a standard deviation increase. HGS was standardised separately for sex due to

a big difference in the corresponding mean. The number of prior falls at T1 was

treated as a factor variable with levels 1, 2, 3, 4 and ≥ 5. SPPB, OLST and CCI

were dichotomized because of their irregular and unbalanced distribution. SPPB

score was dichotomized into the intervals [0, 9] and [10, 12]. The time score reached

in the OLST was dichotomized into the three intervals [1, 20], [21, 40] and [41,

45]. CCI was dichotomized into the intervals [0, 1] and [2, 8].

Missing data

We conducted a complete case analysis but report the number of missing values

for all variables as well as the number of participants with missing values.

Descriptive statistics

All variables were summarized with the median and the interquartile range (IQR).

Additionally, the range and the mean number of prior falls at T1 and T2 were
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derived. For factor variables, the number of participants and the percentage per

category respectively intervals were calculated.

Model fit

The Poisson regression is the best-known count regression model and assumes

equidispersion of the count data (the mean equals the variance). However, most

count data is overdispersed (the variance exceeding the mean). An alternative

distribution that can model the overdispersion is the negative binomial distribution.

It is described with an additional dispersion parameter that allows the variance to

exceed the mean. Additionally, the negative binomial distribution is suitable to

model recurrent events such as multiple falls per person by modelling the Poisson

mean with a gamma distribution, accounting for population heterogeneity [69],

[71]. In a study analysing fall count data from four cohorts, the negative binomial

distribution performed best to model such data [71].

Accordingly, rate ratios (RRs) were computed with negative binomial regression

models using the log link and corresponding 95% Wald confidence interval (CI)

were calculated. Three different model types were fit: (1) 11 univariable models

including every predictor separately, (2) a global model, including all available

predictors described above, and (3) a subset model including age, sex, fall number

reported at T1, SPPB, physical activity level and CCI. The covariates of the subset

model were selected so that risk factors from different domains were represented

while requiring as little time as possible when applied in a clinical setting. The

number of falls reported at T2 was defined as the dependent variable. The

generalized variance inflation factor (GVIF) was calculated for the global and

subset model to detect the presence of multicollinearity among predictors [133].

GVIF is comparable to the variance inflation factor (VIF) when transformed by

()− 1
2 (n−p). A transformed GVIF of ≤ 2.5 is acceptable [134]. Dispersion statistics was

calculated with Pearson’s Chi2 dispersion statistic given as 1
(n−p)

∑n
i=1

ei

V ar(yi) with n

as the number of observations, p as the number of parameters included in the model

[135]. A dispersion statistic greater than one indicates overdispersion, resulting
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in underestimation of standard errors of coefficient estimates and subsequently

in too narrow confidence intervals [136].

To ensure that observations with high fall numbers do not bias the coefficient

estimates, all models were re-fitted excluding observations with 5 or more falls

either at T1 or T2.

Model comparison and prediction accuracy

Models were compared with the log-likelihood and the Bayesian information criteria

(BIC). The error in a regression model is defined as ei = yi − ŷi with yi as the

reported number of falls and ŷi as the models predicted number of falls for the

ith individual. Predictive performance was measured with the logarithmic score,

the Brier score and the mean absolute error [137]. Internal model validation was

conducted by calculating the mean absolute error for the test data with leave-

one-out cross-validation. In count regression models with a small expected mean,

residuals are usually not normally distributed [138]. Therefore, we also report the

median and the interquartile range of the cross-validated residuals. Additionally,

a marginal calibration diagram was derived to compare the actual number of

individuals per fall number category at T2 to the predicted number of persons per

fall number category based on the leave-one-out-prediction distribution in form

of a hanging rootogram [137], [139].

Software

All statistical analysis was computed with R version 4.2.2.

3.3 Results

Nine hundred fifty-four participants were included and participated in the baseline

examination at T0. Thereof, 644 participants completed the two follow-up exami-

nations at T1 and T2. 40 (6.2%) participants were excluded due to missing data,

resulting in 604 observations included in the analysis (Figure 3.1). Examination of

excluded observations revealed no difference to the data used for analysis.
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Baseline T0
n = 954

Follow-Up 1
n = 790

Follow-Up’s
T1 + T2
n = 644

Inclusion at 
Follow-Up T1

n = 94

Inclusion at 
Follow-Up T2

n = 1

Baseline T0
2008 - 2011

Follow-Up T1
2012 - 2014

Follow-Up T2
2015 - 2018

Baseline T0 and 
Follow-Up T2

n = 80

Baseline T0 and 
Follow-Up T1

n = 696

Follow-Up 2
n = 725

Complete Cases
included in Analysis

n = 604

Figure 3.1: Flow of study participants in the GERICO study.

With a percentage of 79.8, most of the participants were female. Median (IQR)

age was 67.90 (66.50, 69.03) years at T1, and median (IQR) BMI was 24.79 (22.26,

27.70) kg/m2. The median (IQR) SPPB score was 12.00 (12.00, 12.00) with 94.0%

of observations reaching 10—12 points. Median (IQR) HGS was 28.60 (25.10, 33.70)

kg. The difference in sex was 17.70 kg, resulting in a median (IQR) of 27.05 (24.33,

29.98) kg for female and 44.75 (40.20, 50.68) kg for male participants. Median (IQR)

OLST time was 35.45 (17.22, 45.00) seconds. Median (IQR) kcal/day as a measure

of physical activity was 291.29 (196.54, 434.27). The majority of CCI were observed

in the interval 0.00 – 1.00 (94.9%). Median comorbidity and medication number

were 2.00 with an IQR of (1.00, 3.00) and (1.00, 4.00), respectively. Table 3.1

presents the summary of all variables included in the analysis in detail.
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Table 3.1: Summary of predictor variables and the outcome variable, the fall
number at T2.

Variable Level and measure Value NA’s

Sex Female, n (%) 482 (79.8) 0
Male, n (%) 122 (20.2)

Assessed at T1
Fall number mean 1.04 4

median (IQR) 0.00 (0.00, 1.00)
min - max 0 - 20
0 falls, n (%) 310 (51.3)
1 falls, n (%) 174 (28.8)
2 falls, n (%) 57 (9.4)
3 falls, n (%) 31 (5.1)
4 falls, n (%) 9 (1.5)
≥ 5 falls, n (%) 23 (3.8)

Age [years] median (IQR) 67.90 (66.50, 69.03) 0
BMI [kg/m2] median (IQR) 24.79 (22.26, 27.70) 1
SPPB (score 0 - 12) median (IQR) 12.00(12.00, 12.00) 16

[0 - 9], n (%) 36 (6.0)
[10 - 12], n (%) 568 (94.0)

HGS [kg] median (IQR) 28.60 (25.10, 33.70) 16
OLST [s] median (IQR) 35.45 (17.22, 45.00) 17

[1 - 20], n (%) 177 (29.3)
[21 - 40], n (%) 149 (24.7)
[41 - 45], n (%) 278 (46.0)

Assessed at T2
Fall number mean 0.70 8

median (IQR) 0.00 (0.00, 1.00)
min - max 0 - 24
0 falls, n (%) 370 (61.3)
1 falls, n (%) 152 (25.2)
2 falls, n (%) 55 (9.1)
3 falls, n (%) 11 (1.8)
4 falls, n (%) 8 (1.3)
≥ 5 falls, n (%) 8 (1.3)

Physical activity [kcal/-
day]

median (IQR) 291.29 (196.54, 434.27) 2

CCI (score) median (IQR) 0.00 (0.00, 0.00) 1
[0 - 1], n (%) 573 (94.9)
[2 - 8], n (%) 31 (5.1)

Comorbidity (number) median (IQR) 2.00 (1.00, 3.00) 0
Medication (number) median (IQR) 2.00 (1.00, 4.00) 0

Abbreviations: NA’s Missing data; IQR Interquartile range; n Number; % Percentage; BMI
Body mass index; SPPB Short physical performance battery; HGS Hand grip strength;
OLST One-legged stance test; CCI Charlson’s comorbidity index

The mean fall number at T1 was 1.04 and decreased to 0.70 falls at T2. At T1,

48.7% of participants reported to have fallen at least once in the previous 12 months,
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Figure 3.2: Distribution of the reported fall numbers at T1 and T2.

and 19.9% fell multiple times. This number decreased to 38.7% experiencing at least

one fall and 13.6% falling multiple times at T2. Figure 3.2 presents the number of

individuals per fall number category at T1 and T2. The reported numbers ranged

from 0 to 20 for T1 and from 0 to 24 for T2. 220 participants reported no falls at

T1 and T2, and 144 reported falls at T1 and T2. 150 persons fell before T1 but not

before T2, and 90 participants experienced no falls prior to T1 but reported falls

at T2. The total reported fall number was 630 at T1 and 425 at T2. At T1 and

T2, in 9% of the cases, the falls resulted in injuries that required medical attention.

34% at T1 and 36% at T2 caused injuries requiring no medical attention and 54%

at T1 and 50% at T2 had no consequences. 2% of the falls caused a fracture at T1.

This number increased to 4% at T2. 53% of the falls reported at T1 and 50% at T2

occurred during locomotion or transfer, while 36% at T1 and 44% at T2 happened

during running or sports activities. Falls from heights or ladders accounted for 1%

at T1 and 4% at T2 of the falls. The rest of the cases was unclear or not reported.

RR estimates and 95% CI of the predictors for the univariable models, the global

and the subset model are presented in Table 3.2. Reference levels of factor variables

are reported with a RR = 1.00. For the univariable models, the fall number at T2
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was associated with female sex (RR 0.67, 95% CI: 0.48 to 0.94, male sex as reference

category); with the prior fall number reported at T1 (e.g., ≥ 5 falls: RR 10.19, 95%

CI: 6.25 to 16.60, 0 falls as reference category); with the HGS (RR 1.16, 95% CI:

1.01 to 1.33); with the OLST when reaching 21 – 40s (RR 0.59, 95% CI: 0.40 to

0.86, 41 – 45s as reference category); with the physical activity level (RR 1.29, 95%

CI: 1.13 to 1.47); with the CCI when scoring 2 – 8 (RR 2.08, 95% CI: 1.18 to 3.67, a

score of 0 – 1 as reference category); and with the number of medication (RR 0.82,

95% CI: 0.71 to 0.95). In the global model, associations were found for the prior

fall number at T1 (e.g., 3 falls: RR 2.67, 95% CI: 1.61 to 4.45, 0 falls as reference

category); and the number of medication (RR 0.82, 95% CI: 0.68 to 0.98). For the

subset model, the number of falls at T2 was associated with the prior fall number

at T1 (e.g., 4 falls: RR 2.69, 95% CI: 1.08 to 6.65, 0 falls as reference category).

All other predictors were not associated with the fall number reported at T2.

Figure 3.3 depicts the rate ratios and their 95% CI presented in Table 3.2,

visualizing the differences in the estimates between the models.

The baseline rates represent the expected fall number for an individual belonging

to the reference category of factor variables (e.g., sex: male), or belonging to the

mean value of a continuous variable. For the univariable models, the baseline

rate ranged from 0.67 to 0.95 (supplementary material, Table 3.4). The baseline

rate for the global model was 0.44 (95% CI 0.31 to 0.64), for the subset model

0.44 (95% CI 0.31 to 0.62), and for the univariable model including the number

of falls at T1 0.42 (95% CI 0.35 to 0.52).

The coefficient estimates of the models excluding all observations with ≥ 5

falls at T1 or T2 were comparable to the here presented results (supplementary

material, Table 3.5).

The following results are only presented for the univariable model including fall

number at T1 as factor variable (referred to as falls model), the global model, and

the subset model. The complete list of all univariable models can be found in the

supplementary material (supplementary material, Table 3.4).
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Table 3.2: Rate ratios and 95% confidence interval for the univariable, the global
and the subset models.

Variables Univariable Global Subset

Sex
Male 1.00 1.00 1.00
Female 0.67 (0.48, 0.94) 0.94 (0.67, 1.32) 0.94 (0.67, 1.31)

Assessed at T1
Age [years] 1.07 (0.92, 1.23) 1.08 (0.94, 1.23) 1.07 (0.94, 1.22)
Fall number

0 1.00 1.00 1.00
1 1.67 (1.23, 2.27) 1.65 (1.22, 2.23) 1.64 (1.21, 2.22)
2 1.16 (0.71, 1.90) 1.20 (0.74, 1.95) 1.20 (0.74, 1.96)
3 2.60 (1.54, 4.37) 2.67 (1.61, 4.45) 2.56 (1.53, 4.31)
4 2.63 (1.06, 6.54) 3.31 (1.38, 7.98) 2.69 (1.08, 6.65)
≥ 5 10.19 (6.25, 16.60) 7.70 (4.74, 12.51) 8.92 (5.47, 14.57)

BMI [kg/m2] 0.95 (0.82, 1.10) 0.96 (0.83, 1.10) -
SPPB (score 0 - 12)

[10 - 12] 1.00 1.00 1.00
[0 - 10] 0.82 (0.44, 1.53) 0.88 (0.49, 1.57) 0.94 (0.53, 1.65)

HGS [kg] 1.16 (1.01, 1.33) 1.08 (0.95, 1.22) -
OLST [s]

[41 - 45] 1.00 1.00 -
[1 - 20] 1.11 (0.81, 1.54) 1.17 (0.85, 1.62) -
[21 - 40] 0.59 (0.40, 0.86) 0.71 (0.49, 1.01) -

Assessed at T2
Physical activity [kcal/day] 1.29 (1.13, 1.47) 1.11 (0.97, 1.26) 1.12 (0.98, 1.28)
CCl (score)

[0 - 1] 1.00 1.00 1.00
[2 - 8] 2.08 (1.18, 3.67) 1.40 (0.81, 2.43) 1.38 (0.81, 2.36)

Comorbidity (number) 0.99 (0.86, 1.14) 1.18 (0.99, 1.41) -
Medication (number) 0.82 (0.71, 0.95) 0.82 (0.68, 0.98) -

Reference levels of factor variables are indicated with a rate ratio = 1.00. For continuous
variables, rate ratios correspond to a standard deviation increase.
Abbreviations: BMI Body mass index; SPPB Short physical performance battery; HGS Hand
grip strength; OLST One-legged stance test; CCI Charlson’s comorbidity index

Table 3.3: Model comparison and prediction measures for the global, the subset, and
the univariable falls model.

Model LL BIC LS BS MAE CV MAE CV median abso-
lute error (IQR)

Global -630.79 1376.85 1.04 -0.47 0.79 0.83 0.51 (0.38, 0.72)
Subset -637.59 1352.03 1.06 -0.46 0.81 0.84 0.53 (0.39, 0.69)
Falls -640.75 1326.33 1.07 -0.45 0.82 0.84 0.50 (0.42, 0.71)

Abbreviations: LL Log-likelihood; BIC Bayesian information criteria; LS Logarithmic score; BS
Brier score; MAE Mean absolute error; CV Cross-validated; IQR Interquartile range
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Figure 3.3: Rate ratios presented in a forest plot for the univariable, the global and the
subset models. Confidence bands correspond to 95% confidence intervals. For continuous
variables, rate ratios correspond to a standard deviation increase. Reference levels
for factor variables: male sex; Falls T1 0; SPPB [11, 12]; OLST [41-45]; CCI [0 - 1].
Abbreviations: BMI Body mass index, SPPB Short physical performance battery, HGS
Hand grip strength, OLST One-legged stance test, CCI Charlson’s comorbidity index

Measures for model fit and model performance of the global, subset and the fall

model are shown in Table 3.3. The log-likelihood was best for the global model

followed by the subset model and lowest for the falls model (global: -630.79, subset:

-637.59, falls: -640.75). Considering the BIC, the falls model performed best (global:

1376.85, subset: 1352.03, falls: 1326.33). The logarithmic score was best for the

global model, and similar for the subset and falls model (global: 1.04; subset: 1.06;

falls: 1.07), and the Brier score was also best for the global model (global: -0.47;

subset: -0.46; falls: -0.45). The mean absolute error was lowest for the global

model, followed by the subset and the falls model (global: 0.79; subset: 0.81; falls:

0.82). The cross-validated mean absolute error was for all models slightly higher

compared to the apparent error (global: 0.83; subset: 0.84; falls: 0.84). The median

absolute error was lower compared to the mean absolute error, showing that the
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residuals are not normally distributed and skewed towards zero. It was again

comparable for all three models (global: 0.51; subset: 0.53; falls: 0.50). All here

presented measures for the other univariable models can be found in Table S1 in

the supplementary material. In summary, none of the other models performed as

good as the global, the subset or the falls model.

Figure 3.4 presents the models’ marginal calibration plots, comparing the number

of participants per reported fall number category at T2 (represented by the grey

bars) to the predicted number of individuals per fall number category (red line) of (a)

the global, (b) the subset and (c) the falls model based on the cross-validated leave-

one-out prediction distribution as hanging rootograms. Deviations between actual

and predicted numbers become visible when focusing on the position of the bar’s

lower ends: bars reaching the negative frequency range indicate underestimation of

the predicted counts, while bars not reaching the x-axis represent overestimated

frequencies. The predicted size of individuals per fall number category were similar

for all three models. The models underestimated the number of individuals who

experienced two and three fall events, while the number of individuals with zero falls

and higher fall numbers were overestimated. Extreme events (e.g., an individual

falling 20 times) could not be accurately predicted.

Pearson’s Chi2 dispersion statistic was comparable for the three models (global:

1.05, subset: 1.05, falls: 1.08). GVIF − 1
2 (n−p) was smaller than 2.5 for all covariates

in the global and subset model, indicating no multicollinearity. To understand how

the models are used for predicting an individual’s fall rate, this is demonstrated

for the subset model. The rate ratios presented in Table 3.2 are reported on the

response scale. To make predictions, it is easiest to transform the rate ratios to the
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Figure 3.4: Hanging rootograms for (a) the global, (b) the subset and (c) the univariable
fall model. Hanging rootograms as marginal calibration plots show the deviations between
the actual (grey bars) and predicted (red line) number of individuals per fall number
category.

link scale by taking the log. Following form that, the subset model writes as

log(fall rate) = log(0.44) + log(0.94) · ISex=female

+ log(1.07) · Agestandardised + log(1.64) · IF alls=1

+ log(1.20) · IF alls=2 + (2.56) · IF alls=3

+ log(2.69) · IF alls=4 + log(8.92) · IF alls≥5

+ log(0.94) · ISP P B=[0−10] + log(1.12) · Activitystandardised

+ log(1.38) · ICCI=[2−8]

with

Icondition =
{

1 condition is true
0 otherwise

As an example, the fall rate of a female individual with a standardized age of 1.5,

having experienced 3 falls within the last 12 months, reaching an SPPB score of 11,

with a standardized physical activity level of -1.5 and a CCI of 3 calculates as

log(fall rate) = log(0.44) + log(0.94) · 1

+ log(1.07) · 1.5 + log(1.64) · 0

+ log(1.20) · 0 + (2.56) · 0

+ log(2.69) · 0 + log(8.92) · 0

+ log(0.94) · 0 + log(1.12) · (−1.5)

+ log(1.38) · 1
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simplifying to

fall rate = 0.44 ∗ 0.94 ∗ 1.11 ∗ 2.56 ∗ 0.84 ∗ 1.38 = 1.36

3.4 Discussion

This analysis examined the association of different fall risk factors and the number

of falls reported within 12 months, and aimed to develop a model for personalized

fall rate prediction. In contrast to most other cohort analyses, we derived rate

ratios using negative binomial regression models.

The mean number of falls per person in the GERICO cohort was higher compared

to other studies. For example, the federal office of Switzerland reported that 1

out of 4 adults aged 65 and older experienced a fall [115], while a questionnaire

in the US resulted in 15.9% of people experiencing a fall [48]. However, the

GERICO cohort is a comparably young and fit cohort, and many falls occurred

during sports and recreative activities.

The main finding of our analysis is the strong association between the history of

falls and future falls. Thereby, the more falls an individual experienced, the stronger

the association was. This result is consistent with literature, reporting recurrent

fallers to have a higher odds-ratio to fall again when compared to one-time fallers

[61]. Interestingly, the rate ratio for falling when having experienced two previous

falls is lower compared to one or three previous falls. While falling once might

happen by chance, individuals who fell twice possibly become attentive to the risk

of falling and initiate preventive measures. However, after having experienced three

or multiple falls, the ability to prevent future fall events might be insufficient.

The association of other predictors in the univariable models with the number

of falls was only partly congruent with other studies, reviews and meta-analyses

assessing the risk of falling in community-dwelling older adults. We want to point

out that the direct comparison with other cohort analyses must be handled with

care, since differences in study design, participant’s characteristics, assessment of

tests and analysis methods need to be considered.
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Compared to men, female participants were expected to fall less, while in

literature the opposite is reported [61]. No association was found between age

and the fall number in the GERICO cohort, although increasing age is a widely

recognized risk factor for falls [44], [61]. Actually, the total number of reported falls

in the previous 12 months as well as the percentage of fallers decreased from T1 to

T2 in spite of 4 years advancing age. With its rather young median age and narrow

age range, the GERICO cohort might not be suitable to detect such a relationship.

A longer follow-up time and a wider age range might be required. In addition, we

assume that the decrease in fall number and percentage from T1 to T2 reflects

a decrease in recreational and sports activity of the study participants, resulting

in fewer falls. Physical performance measures were also not associated to falls as

reported in literature. The SPPB was not predictive for falls. However, this is not

surprising when considering that more than 90% of the participants in the GERICO

cohort scored 10—12 points. In another study examining the predictive value of the

SPPB, it was reported that scores of less than 6 are associated with an increased

fall risk in older adults [140]. Contrary to literature, HGS was positively associated

with the number of falls [126], [141], [142]. Again, this might reflect the cohort’s

fitness level, resulting in recreational and sport-related falls. Additionally, a study

comparing the performance of HGS with hip muscle strength to discriminate between

fallers and nonfallers reported HGS to be less accurate compared to assessments

including lower limb strength [143]. The results from the OLST were not conclusive

and related the opposite way than reported in literature [144]. As reported in a

meta-analysis assessing balance tests for fall risk prediction, the test might not

be sensitive enough to discriminate between fallers and non-fallers [144]. The

positive association between physical activity and falls might be best explained

by the fact that many falls in this study were induced during recreational and

sports activities. Considering comorbidities and medication, further inconclusive

associations were found. In contrast to the results of other studies, no association

was found between the number of comorbidities and falls [126]. However, CCI as

a measure of comorbidity was associated with the fall number in the GERICO
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cohort. Contrary to our expectations and other reported results, the number of

medications was negatively associated with falls [126]. It is known that some

medications are associated with an increase in fall risk [145], while others such as

Vitamin D can have a preventive effect [146]. To better understand this finding,

a detailed analysis of medication type would be required.

Considering the prediction accuracy of the models, particularly interesting is

that the internally validated errors for the univariable model with the prior number

of falls as the only predictor and the two multivariable models including additional

predictors are comparable. Hence, the information included in the other predictors

does not improve the model’s predictive performance. The reported error for the

falls model is lower than in a recently published study presenting a prediction model

for falls in community-dwelling older adults using a comparable analysis method

(bootstrapped mean absolute error 0.88) [126]. In order to evaluate the model’s

performance in detail, sensitivity analysis and external validation are required.

Although an error of less than one fall seems small, this variation could be

critical to whether fall-prone individuals are correctly identified, especially in the

lower range of fall numbers. With the ulterior motive to integrate a fall rate

estimate in a fracture risk model, such a prediction error might have a considerable

impact on subsequent fracture risk assessment.

The consequences of predicting a higher fall rate than effectively occurring seem

less problematic compared to underestimating the number of expected falls. All

three models presented here underestimated the number of individuals experiencing

1 and 2 falls while overestimating the number of 0 falls, bearing the risk of missing

the identification of individuals who require fall prevention measures. Further

predictive risk factors need to be identified that are sensitive enough to minimize

such errors and improve prediction accuracy. Ideally, these predictors should also

be suitable to identify first-time fallers without a history of falls.

In most fall risk assessments, not the number of previously experienced falls

is recorded, but whether any falls have occurred at all [61], [121]. Based on our

results, we believe that additional information on the number of prior falls has
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great potential to improve the identification of individuals at risk for falling at a

manageable cost. Therefore, we encourage other researchers to additionally record

the number of previously experienced falls over a clearly defined time-period.

3.4.1 Limitations

This study and analysis has several limitations. First, the study design is not

optimal for the development of a fall prediction model. A time interval of 4 years

between the follow-up examinations at T1 and T2 is very long when physical

performance parameters such as balance or muscle strength are examined. This

makes it difficult to detect associations between fall risk predictors and the number

of falls. Ideally, risk factors would be assessed at a baseline examination followed

by an observation period in which the number of falls is recorded. Nevertheless,

we chose to use the obtained data of the physical performance tests from T1

instead of T2 because we wanted to exclude the possibility of retrodiction (e.g., a

participant performing medium in SPPB at T2 because of a recently experienced

fall shortly before the examination). However, since comorbidity and medication

were only assessed at T2, a certain risk of retrodiction for those variables could

not be circumvented. Similarly, physical activity was assessed over the same time-

period as the outcome variable, possibly resulting in a decreased activity level

for individuals with severe falls at the beginning of this observation period. This

again increases the likelihood of reverse causation.

Second, the participants were asked whether they had experienced any prior

falls at the follow-up visits at T1 and T2 without knowing that this question will be

asked. It was shown that self-reported retrospective recording of fall numbers might

be inaccurate [147], [148]. Thirdly, not all domains of fall risk factors are covered

with the available predictors. For example, no questions and tests considering

fear of falling, vision or cognition have been included in the study protocol. Last,

the GERICO cohort is a comparable young and fit cohort and is possibly not the

best representation of older adults at risk of falling. Therefore, the study findings

bear a potential lack of generalisability.
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3.4.2 Conclusion

In the GERICO cohort, the prior fall number as single predictor information

for a personalized fall rate is as good as a model including all available fall risk

factors. Specifically, individuals who have experienced three and more falls are

expected to experience multiple falls again. Because falling is a complex phenomenon

and a broad range of conditions influence whether or not a fall occurs, it seems

reasonable that the complex circumstances under which a fall occurs are best

reflected by the history of falls itself.
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Table 3.5: Rate ratios and the corresponding 95% confidence interval for the
data set excluding extreme fall events (≥ 5 falls).

Variables Univariable Global Subset
Sex

Male 1.00 1.00 1.00
Female 0.84 (0.62, 1.14) 0.94 (0.68, 1.31) 0.91 (0.66, 1.26)

Assessed at T1
Age [years] 1.02 (0.90, 1.16) 1.02 (0.89, 1.15) 1.02 (0.90, 1.15)
Fall number

0 1.00 1.00 1.00
1 1.53 (1.15, 2.02) 1.52 (1.15, 2.01) 1.50 (1.13, 1.99)
2 1.20 (0.77, 1.88) 1.20 (0.77, 1.87) 1.22 (0.78, 1.90)
3 2.86 (1.12, 3.09) 1.86 (1.12, 3.07) 1.86 (1.12, 3.09)
4 2.72 (1.28, 5.80) 3.03 (1.43, 6.38) 2.75 (1.29, 5.84)

BMI [kg/m2] 0.98 (0.86, 1.11) 0.96 (0.83, 1.10) -
SPPB (score 0 - 12)

[10 - 12] 1.00 1.00 1.00
[0 - 10] 0.83 (0.47, 1.47) 0.77 (0.43, 1.36) 0.83 (0.47, 1.46)

HGS [kg] 1.01 (0.98, 1.15) 1.01 (0.89, 1.14) -
OLST [s]

[41 - 45] 1.00 1.00 -
[1 - 20] 1.05 (0.78, 1.40) 1.05 (0.76, 1.45) -
[21 - 40] 0.79 (0.57, 1.09) 0.78 (0.56, 1.09) -

Assessed at T2
Physical activity [kcal/day] 1.08 (0.95, 1.11) 1.06 (0.92, 1.21) 1.05 (0.92, 1.21)
CCl (score)

[0 - 1] 1.00 1.00 1.00
[2 - 8] 1.31 (0.77, 2.21) 1.27 (0.74, 2.18) 1.24 (0.73, 2.10)

Comorbidity (number) 1.09 (0.96, 1.24) 1.23 (1.03, 1.46) -
Medication (number) 0.98 (0.86, 1.11) 0.84 (0.70, 1.00) -

Reference levels of factor variables are indicated with a rate ratio = 1.00. For continuous
variables, rate ratios correspond to a standard deviation increase
Abbreviations: BMI Body mass index, SPPB Short physical performance battery, HGS
Hand grip strength, OLST One-legged stance test, CCI Charlson’s comorbidity index
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Abstract

Background A third of adults aged 65 years and older fall every year, and falls

are a common cause of unintentional injuries. Accurate identification of people at

risk of falling is an important step in the implementation of preventive strategies.

Objective

Our aim was to investigate the association of fall risk factors with number of

reported falls in terms of incidence rate ratios and to develop a fall rate prediction

model. Methods

In the randomized controlled trial Swiss CHEF, multiple fall risk variables were

assessed in community-dwelling older adults at baseline examination, including

age, sex, body mass index, fear of falling, number of falls during the prior 12

months, scores on several physical performance tests, comorbidities, and quality of

life. Over the following 6 months, interventions were administered in the form of

three home-based exercise programs. Participants were subsequently followed up

for another 6 months. Falls were reported prospectively using monthly calendars.

Incidence rate ratios were derived via negative binomial regression models. Variable

selection for the prediction model was conducted using backward elimination and

the least absolute shrinkage and selection operator method; the model with the

smallest prediction error was then identified.

Results Associations with the number of reported falls were found for number of

prior falls, fear of falling, balance and gait deficits, and quality of life. The final

model was derived via backward elimination, and the predictors included were prior

number of falls and a measure of fear of falling.

Outcome Number of prior falls and fear of falling can be used as predictors in

a personalized fall rate estimate for community-dwelling older adults. Recurrent

fallers having experienced four or more falls are especially at risk of falling again.

Keywords older adults, falls, prediction, risk factors, count regression
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4.1 Introduction

Approximately one-third of adults aged 65 years and older fall every year [44]. At

the same time, falls are among the leading causes of unintentional injuries in this age

group, resulting in increased morbidity and mortality [51], [53], [116]. Accordingly,

it seems clear that the prevention of falls is an important topic and one of broad

interest [44]. However, the identification of those at risk of falling and therefore

in need of intervention is an ongoing challenge.

Various risk factors associated with falls have been identified, including older

age, female sex, a history of falls, fear of falling, balance and gait deficits, and

cognitive impairment [61]. To identify individuals at risk of falling, numerous

fall risk assessment tools have been developed. Such tools normally consist of

physical performance tests, questionnaires, or self-reported measures. While some

evaluate individual risk factors, others integrate multiple factors within the same

assessment [60], [121]. Up to this point, only a small number of tools have shown

sufficient predictive power to successfully discriminate between fallers and non-

fallers [64], [121].

Most tools produce a classification as to whether an individual is at risk of

falling or not (either yes/no, or a probability between 0 and 1), and associations

between fall risk factors and number of falls are usually reported in the form of

odds ratios. However, since the risk of injury increases proportionally with each

additional fall, a model able to predict an expected number of falls would potentially

improve the identification of at-risk individuals. A statistical method capable of

providing such an estimate is a count regression model [135], [150]. Ullah et al.

showed that count regression is a suitable method for analysis of fall data [71].

Under this approach, the incidence of falls is the dependent variable, and fall risk

factors are independent variables. The output takes the form of a baseline incidence

of falls, reported along with rate ratios that describe how this baseline incidence

changes depending on the value of each risk factor. So far, only a small number of

studies have investigated risk of falling in terms of rate ratios [124], [126].
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Against this background, the aim of this analysis was to investigate the associa-

tion of prospectively recorded fall numbers with various fall risk factors, as assessed

in the Swiss CHEF cohort, in terms of rate ratios, and to develop a prediction

model to estimate an expected fall rate.

4.2 Methods
4.2.1 Reporting guidelines

This manuscript follows the guidelines for Transparent Reporting of a multivariable

prediction model for Individual Prognosis Or Diagnosis (TRIPOD) [127]. The

completed checklist is provided in the Supplementary Material.

4.2.2 Study design

The Swiss CHEF Trial is a multi-center randomized controlled trial that was

conducted between 2016 and 2022 to compare the effects of three home-based

exercise programs on fall prevention. The study was registered with the clinical trials

registry ClinicalTrials.gov (https://clinicaltrials.gov/ct2/show/NCT02926105), and

the study protocol has been published previously [151]. Briefly, after enrollment in

the study, participants underwent a baseline examination in which their demographic

characteristics, history of falls, fear of falling, physical performance on several tests,

health state, and quality of life were assessed. Subsequently, the participants were

divided into three intervention groups with block randomization and stratification

for age, sex, and risk of falling (assessed as part of the inclusion criteria). The three

intervention groups were: 1) a group who followed the experimental intervention

program of interest, namely the Test&Exercise program; 2) a control group who

followed the Otago exercise program; and 3) a second control group who were

administered the “Helsana” intervention. Test&Exercise is a training program

developed at the Haut école spécialisée de Suisse occidentale (HES-SO) located

in Leukerbad, Switzerland. The program consists of 50 physical tasks that are

combined to create a personalized training module depending on their perceived

difficulty as rated by the participant during test exercises. Otago is a well-known

https://clinicaltrials.gov/ct2/show/NCT02926105
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fall prevention program; it consists of 22 exercises whose levels are defined by

physiotherapists [152]. Finally, the Helsana control intervention represented usual

care; this consists of a booklet containing twelve exercise cards and safety advice

produced by the Swiss healthcare insurance provider Helsana [153].

Participants in the Test&Exercise and Otago intervention groups received eight

sessions of physiotherapist instruction and four phone calls over the course of 6

months. Those in the Helsana control group received one session of instruction and

four phone calls over the same period. Follow-up lasted for 6 months. During the

intervention and follow-up periods, incidents of falls were recorded prospectively

using monthly fall calendars. After 6 and 12 months, participants were assessed by

blinded assessors on the same variables as measured at the baseline examination.

To avoid bias, the instructors who administered the intervention programs were

not involved in conducting the examinations at baseline, 6, or 12 months. The

study was approved by the relevant Swiss Ethics Committees on research involving

humans (registration number 2016-00931).

4.2.3 Study participants

Participants included were community-dwelling adults at least 65 years old and

classified as at risk of falling (having a history of falls in the previous 12months

or a perceived fear of falling, as measured by a score of at least 20 points on the

Falls Efficacy Scale - International, or FES-I). Exclusion criteria were severe visual

impairment, receipt of physiotherapeutic treatment with balance training, cognitive

impairment (<24 points on the Mini Mental State Examination), or contraindication

by the referring physician. Participants with a follow-up time of less than 30 days

were excluded from this analysis. All participants provided written informed consent.

4.2.4 Sample size

A sample size calculation was conducted to ensure that differences between the

intervention groups would be detectable; this calculation is described in the openly

accessible study protocol [151].
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4.2.5 Outcome

The dependent variable was defined as the number of fall incidents as prospectively

recorded over the course of 12 months during the intervention and follow-up periods

using monthly fall calendars. A fall was defined as “an unexpected event in

which the participant comes to rest on the ground, floor, or lower level, with

or without injury” [154].

4.2.6 Predictors

Number of prior falls: Participants were asked how many times they had fallen

within the 12 months prior to the baseline examination. The number of falls was

recorded.

General characteristics: Age, sex, weight, and height were assessed. Body mass

index (BMI) was calculated accordingly. Living environment (rural vs. urban) was

also included as predictor. Finally, base of support width was assessed by measuring

the distance in cm between the two legs when the participant was standing in a

normal position.

Fear of falling: Participants were asked the question “Are you afraid of falling?”

and provided with three response options: “never”, “sometimes”, or “always”. In

addition, the FES-I was administered, with possible scores ranging from 16 to 64

points [155].

Physical performance tests: The Timed Up and Go (TUG), the Four Stage Balance

Test (FSBT), the Functional Reach Test (FRT), the Five Times Sit-to-Stand test

(FTSTS), and a measure of gait speed were administered as tests of participants’

physical performance. TUG measures the time taken to stand up from a chair, walk

3 m, turn around, walk back, and sit down again [156]. The FSBT is a balance test

with four difficulty levels (1: feet sideby-side, 2: semi-tandem stance, 3: full tandem

stance, 4: standing on one foot) [157]. A level is completed if the participant can

hold the position for 10 s without moving the feet or requiring support. The FRT

measure the distance a participant can lean forward in a standing position without

bending the knees, raising the heels, or taking a step forward [158]. The FTSTS
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measures the time required to stand up five times in a row form a sitting position

with crossed arms. Finally, gait speed was measured via a 6-m-walk test. All test

instruments are described in detail in the published study protocol [151].

Health state: Participants were asked whether they suffered from urinary incon-

tinence, vision impairment, hearing impairment, central neurological disease, or

musculoskeletal discomfort. Those who suffered from musculoskeletal discomfort

and perceived pain were asked to classify the intensity of their pain with a number

between 1 and 100.

Quality of life: Quality of life was measured using the Older People’s Quality of Life

Questionnaire (OPQOL-35), which consists of 35 questions covering eight domains

[159]. Possible scores range from 35 to 175.

Offset and confounding factors: Study center and intervention group were treated as

confounding factors and adjusted for in all univariable models. An offset measured

in years to account for differences in follow-up time was included in all the models.

4.2.7 Statistical analysis
Processing of predictors

Age was centered around 70 years and BMI around a value of 25. FES-I and OPQOL-

35 scores were shifted to a range with a minimum possible score of 0 by subtraction

of 16 and 35 points, respectively. Number of prior falls was entered into the analyses

in three forms: as a dichotomized variable representing the presence or absence of

prior falls; as a continuous variable; and as a categorical variable with levels 0, 1, 2, 3,

4, and ≥ 5. For the FSBT, scores of 0 and one were aggregated into a single category

due to a low number of observations of a score of 0. Scores on the FTSTS test were

transformed into the form used in the Short Physical Performance Battery [160].

Missing data

We conducted a complete case analysis but report the number of missing observa-

tions.
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Model fit and variable selection

Incidence rate ratios (IRRs) were derived via negative binomial regression models.

Univariable models were fitfor all candidate predictors and adjusted for observation

time, study center, and intervention group. In development of the predictive model,

variables were selected using two different methods: backward elimination and

the least absolute shrinkage and selection operator (LASSO) method [161], [162].

The stopping rule for backward elimination was the Bayesian information criterion.

For variable selection under the LASSO method, each level of each categorical

variable was treated as dummy variable, and the tuning parameter lambda was

chosen by selecting the value associated with the smallest mean absolute error in a

leave-one-out cross-validation analysis. No variables were forced to remain in the

model. The two resulting models derived via these two variable selection methods

were compared, and the model with the smaller root mean squared prediction error

(RMSE) and mean absolute prediction error (MAE) was selected as the final model.

Model stability for the backward elimination model was analyzed following the

suggestions by Heinze et al. [162]. Briefly, variable selection was repeated 1,000

times using bootstrapped sample data sets. The frequency of inclusion of each

candidate predictor was then derived by counting how many times it was included

in the selected model across the bootstrapped sample data sets.

Software

Statistical analysis was conducted using R version 4.1.2 with the packages MASS,

stats, base, and mpath [163], [164], [165], [166].

4.3 Results

In total, 405 participants were enrolled in the Swiss CHEF Trial between 2016

and 2021. Of these, 35 participants dropped out within less than 30 days of the

start of the follow-up period. Of the remaining 370 participants, 17 (4.9%) had

missing data and were excluded from the analysis. The flow of participants through

the study is shown in Figure 4.1.
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Inclusion
N = 405

(2016 - 2021)

Follow-up of more than 30 
days

N = 370
(2017 – 2022)

Complete cases included in 
the analysis

N = 353

Follow-up of less than 30 
days

N = 35

Missing data
N = 17

Figure 4.1: Flow of participants.

The majority of participants (235, 66.6%) were followed up over the course of 12

months; however, 59 (16.7%) dropped out during the intervention (i.e., during the

first 6 months) and another 59 (16.7%) dropped out during follow-up (i.e., during

the second 6 months). The median age of participants at the start of the study

was 79 years, and the majority were female (72.8%). Most were living in a rural

environment (80.7%). The median BMI was 25.10 kg/m2. In terms of fear of falling,

75 (21.3%) reported not being afraid of falling, 244 (69.1%) reported sometimes

being afraid, and 34 (9.6%) reported always being afraid. The median FES-I score

was 26 points. The median time for the TUG was 11.6 s, and the median distance

measured on the FRT was 25.50 cm. The most common score on the FSBT was two

points (138, 39.1%) and the most common score on the FTSTS was one point (126,

35.7%). The median gait speed was 1.07 m/s and median base of support width

29.00 cm. The majority of participants had no hearing problems (204, 57.8%) and

did not suffer from urinary incontinence (241, 68.3%) or any neurological disorder

(296, 88.5%). However, the majority were affected by vision impairment (291,

82.4%) and reported perceiving musculoskeletal discomfort (305, 85.4%). Around

half required a walking aid (168, 47.6%). The median pain score was 45 and the
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median OPQOL-35 score was 139. A detailed summary of all baseline characteristics

and prospectively reported falls during follow-up is presented in Table 4.1.

Table 4.1: Baseline characteristics of the Swiss CHEF Trial cohort.

Variable Level and measure Value NA’s

General characteristics
Age (years) Median [IQR] 79 [73, 84] -
Sex Female, n (%) 257 (72.8) -

Male, n (%) 96 (27.2)
Body mass index (kg/m2) Median [IQR] 25.10 [22.28, 28.89] 4
Living area Urban, n (%) 68 (19.3) -

Rural, n (%) 285.80.7
Participation in months Control Helsana, n (%) 68 (19.3) -

Otago, n (%) 138 (39.1)
Test&Exercise, n(%) 147 (41.6)

Falls and fear of falling
Prior fall number Mean 1.05 -

Median [IQR] 0 [0, 1]
Range 0 - 20
0 falls, n (%) 113 (32.0)
1 falls, n (%) 124 (35.1)
2 falls, n (%) 62 (17.6)
3 falls, n (%) 25 (7.1)
4 falls, n (%) 11 (3.1)
≥ 5 falls, n (%) 18 (5.1)

Incident falls Mean 1.47 -
Median [IQR] 1 [0, 2]
Range 0 - 30
0 falls, n (%) 204 (57.8)
1 falls, n (%) 69 (19.6)
2 falls, n (%) 38 (10.8)
3 falls, n (%) 20 (5.7)
4 falls, n (%) 8 (2.3)
≥ 5 falls, n (%) 14 (4.0)

FES-I score Median [IQR] 26 [21, 32] -
Fear of falling Never, n (%) 75 (21.3) -

Sometimes, n (%) 244 (69.1)
Always, n (%) 34 (9.6)

Physical performance tests
Timed Up and Go Median [IQR] 11.61 [9.27, 14.38] 3
Functional Reach Test Median [IQR] 25.50 [18.93, 31.23] -
Four Stage Balance Test Median [IQR] 3 [2, 3] -

Score 0, n (%) 5 (1.4) -
Score 1, n (%) 23 (6.5)
Score 2, n (%) 138 (39.1)
Score 3, n (%) 107 (30.3)
Score 4, n (%) 80 (22.7)

Gait speed (m/s) Median [IQR] 1.07 [0.82, 1.32] -
Five Times Sit-To-Stand Median time [IQR] 15.29 [12.34, 19.31] 41*

Median score [IQR] 2 [1, 3] -

Continued on next page
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Table 4.1 – continued from previous page
Variable Level and measure Value NA’s

Score 0, n (%) 37 (10.5)
Score 1, n (%) 126 (35.7)
Score 2, n (%) 74 (21.0)
Score 3, n (%) 69 (19.6)
Score 4, n (%) 47 (13.3)

Base of support width (cm) Median [IQR] 29.00 [26.45, 32.10]
Health state and comorbidities

Hearing problems No, n (%) 204 (57.8) 3
Yes, n (%) 149 (42.2)

Vision Impairment No, n (%) 62 (16.7) 4
Yes, n (%) 291 (82.4)

Walking aid No, n (%) 185 (52.4) 1
Yes, n (%) 168 (47.6)

Urinary incontinence No, n (%) 241 (68.3) 4
Yes, n (%) 112 (31.7)

Musculoskeletal disorder No, n (%) 48 (13.6) 3
Yes, n (%) 305 (86.4)

Neurological disorder No, n (%) 296 (83.9) 3
Yes, n (%) 58 (16.2)

Pain (range 0 - 100) Median [IQR] 45 [12, 60] -
Quality of life

OPQOL-35 Median [IQR] 139 [129, 152] 1

* 41 participants were not able to perform the test, resulting in a score of 0 points.
Abbreviations: NAs Missing data; n Number; % Percentage; IQR Interquartile range;
OPQOL-35 Older People’s Quality of Life Questionnaire

In total, 369 falls were registered during intervention and follow-up; 149 (42.2%)

participants reported at least one fall, and 80 (22.7%) fell multiple times (Table 4.1).

For the 12 months prior to the baseline assessment, participants reported 517

falls in total: 240 (68.0%) reported having fallen at least once during this period,

whereas 116 (32.9%) had fallen multiple times.

IRRs for all candidate predictors are presented in Table 4.2. Associations

with number of prospectively reported falls were found for the following variables:

enrollment in the Otago intervention program compared to the control intervention

(IRR: 2.25, 95% CI 1.28-3.95); number of prior falls operationalized as a dichotomized

variable (IRR: 1.71, 95% CI 1.11-2.62) and as a continuous variable (IRR: 1.26,

95% CI 1.18-1.34); having experienced four falls (IRR: 3.15, 95% CI 1.28-7.70) or

≥5 falls (IRR: 7.20, 95% CI 3.62-14.31) on the measure of number of prior falls as a

categorical variable; FES-I score (IRR: 1.05, 95% CI 1.03-1.07); reporting “always”
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experiencing fear of falling as compared to “never” (IRR: 3.77, 95% CI 1.83-7.80);

TUG time (IRR: 1.05, 95% CI 1.01-1.08); a score of 0 or 1 on the FSBT compared to

a score of 4 (IRR: 3.05, 95% CI 1.53-6.08); base of support width (IRR: 1.05, 95% CI

1.01-1.09); and OPQOL-35 score (IRR: 0.98, 95% CI 0.97-0.99). All other predictors

were not found to be associated with prospectively recorded number of falls.

Table 4.2: Incidence rate ratios derived via negative binomial regression models.

Variable and level for categorical variables IRR (95% CI)

General characteristics
Age (years) 0.99 (0.96, 1.02)
Sex Male ref

Female 0.70 (0.46, 1.07)
Body mass index (kg/m2) 1.01 (0.97, 1.05)
Living area Rural ref

Urban 3.34 (0.27, 41.10)
Participation in months Control Helsana ref

Otago 2.25 (1.28, 3.95)
Test&Exercise 1.63 (0.92, 2.87)

Falls and fear of falling
Prior falls (binary) no ref

yes 1.71 (1.11, 2.62)
Prior fall number (continuous) 1.26 (1.18, 1.34)
Prior fall number (categorical) 0 falls ref

1 falls 1.04 (0.66, 1.62)
2 falls 1.10 (0.64, 1.89)
3 falls 1.89 (0.95, 3.73)
4 falls 3.15 (1.28, 7.70)
≥ 5 falls 7.20 (3.62, 14.31)

FES-I score 1.05 (1.03, 1.07)
Fear of falling Never ref

Sometimes 1.54 (0.92, 2.56)
Always 3.77 (1.83, 7.80)

Physical performance tests
Timed Up and Go 1.05 (1.01, 1.08)
Functional Reach Test 0.99 (0.97, 1.01)
Four Stage Balance Test Score 4 ref

Score 3 0.88 (0.53, 1.46)
Score 2 0.82 (0.51, 1.34)
Score 0 or 1 3.05 (1.53, 6.08)

Gait speed (m/s) 0.60 (0.32, 1.10)
Five Times Sit-To-Stand Score 4 ref

Score 3 1.39 (0.60, 2.82)
Score 2 1.88 (0.94, 3.73)
Score 1 1.25 (0.65, 2.39)
Score 0 1.28 (0.56, 1.09)

Base of support width (cm) 1.05 (1.01, 1.09)
Health state and comorbidities

Continued on next page
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Table 4.2 – continued from previous page
Variable and level for categorical variables IRR (95% CI)

Hearing problems No ref
Yes 0.76 (0.51, 1.12)

Vision Impairment No ref
Yes 1.05 (0.62, 1.77)

Walking aid No ref
Yes 1.43 (0.97, 2.11)

Urinary incontinence No ref
Yes 1.08 (0.71, 1.63)

Musculoskeletal disorder No ref
Yes 0.77 (0.44, 1.33)

Neurological disorder No ref
Yes 1.13 (0.67, 1.89

Pain (range 0 - 100) 0-25 points ref
26 - 50 points 0.98 (0.62, 1.55)
51 - 75 points 0.62 (0.37, 1.04)
76 - 100 points 1.84 (0.91, 3.72)

Quality of life
OPQOL-35 0.98 (0.97, 0.99)

All univariable models were adjusted for study center and intervention group. Abbreviations:
IRR Incidence rate ratio; ref Reference group; OPQOL-35 Older People’s Quality of Life
Questionnaire

Variable selection with backward elimination resulted in a model including prior

number of falls and FES-I score as the only predictor variables. The coefficient

estimates together with prediction errors are presented in Table 4.3, and the

corresponding rate ratios, in numerical form and as a forest plot, are presented in

Figure 4.2.The RMSE and MAE were 2.02 and 1.15, respectively; internal cross-

validation increased these values to 2.17 and 1.21, respectively. LASSO variable

selection resulted in a model including having experienced five or more prior falls

and a score of 0 or one points on the FSBT as predictors. Model coefficients and

detailed prediction errors for the LASSO model are presented in Supplementary

Table 4.4.Both apparent error and cross-validated error were higher for the LASSO

model compared to the backward elimination model. Model stability investigation for

the backward elimination model resulted in a bootstrap inclusion frequency of 80.8%

for prior number of falls and 74.2% for FES-I score (Table 4.3). All other candidate

predictors had an inclusion frequency of less than 50%; the complete list can be found

in Supplementary Table 4.5. An example of how to use the model to calculate an

individual’s expected fall rate can also be found in the Supplementary Material S1.
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Table 4.3: Coefficients, bootstrap inclusion frequency, and predictive
performance for the backward elimination model.

Variable Coefficient (95% CI)
on log scale

BIF (%)

Intercept -0.67 (-1.08, -0.27) 100
Prior number of falls 1 0.12 (-0.32, 0.57) 80.8
Prior number of falls 2 0.03 (-0.50, 0.56) 80.8
Prior number of falls 3 0.58 (-0.10, 1.27) 80.8
Prior number of falls 4 0.96 (0.07, 1.85) 80.8
Prior number of falls ≥ 5 1.83 (1.15, 2.52) 80.8
FES-I score 0.04 (0.02, 0.06) 74.2
Dispersion parameter θ 0.71 (0.46, 0.95)
Predictive performance
RMSE (IQR) 2.02 (0.43, 0.72, 1.24)
MAE 1.15
CV RMSE (IQR) 2.17 (0.51, 0.72, 1.17)
CV MAE 1.21

Abbreviations: CI Confidence interval; BIF Bootstrap inclusion frequency;
FES-I Falls efficacy scale international; RMSE Root mean squared error; MAE
Mean absolute error; CV Cross-validated

Variable
(Intercept)
FES-I
Falls 1
Falls 2
Falls 3
Falls 4
Falls ≥5 

IRR
0.51
1.04
1.13
1.03
1.79
2.62
6.26

2.5 %
0.34
1.02
0.73
0.6
0.9
1.07
3.17

97.5 %
0.77
1.06
1.76
1.76
3.56
6.36
12.38

0.50 1.0 2.0 4.0 8.0
IRR

Figure 4.2: Incidence rate ratios (IRR) and corresponding 95% confidence intervals in
the model generated with variable selection via backward elimination, in numerical form
(left) and as forest plot (right).
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4.4 Discussion

The aim of this study was to investigate the associations between various fall risk

factors and number of prospectively reported falls, and to develop a personalized

fall rate prediction model. This analysis made use of data from the randomized

controlled trial Swiss CHEF, which investigated the effects of two different interven-

tions for fall prevention compared to a control intervention in community-dwelling

older adults. Candidate predictors included in the analysis were assessed prior

to the start of the intervention. Rate ratios were derived via negative binomial

regression models, and variable selection for the prediction model were conducted

using backward elimination and LASSO. The final prediction model was selected on

the basis of smallest prediction error. We followed the TRIPOD reporting guidelines

for the development of a multivariable prediction model.

The associations observed between risk factors analyzed and prospectively

reported number of falls are comparable to other results reported in the literature

[59], [61], [121]. A history of falls, gait and balance deficits, fear of falling, and

a decrease in quality of life are well-known risk factors for falls in community-

dwelling older adults. The strongest associated factor in this analysis was found

to be having experienced four or ≥ 5 prior falls, indicating that individuals with a

history of multiple falls are at risk of falling multiple times again. While a single

fall might occur at random, recurrent fallers are likely to suffer from persistent

deficits that result in an inability to avoid falls.

A large decrease in the total number of falls could be observed in a comparison

of the falls reported during the 12 months prior to baseline assessment and during

the 12 months of intervention and follow-up. It is plausible that the intervention

programs, as well as sensitization to the risk of falling as a result of participation

in the study, were the cause of this decrease. Accordingly, this may potentially

have resulted in underestimation of the derived incidence rate ratios in comparison

to a randomly selected population. An observational study with no intervention

program would be required to overcome this issue.
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Number of prior falls and FES-I score (as a measure for fear of falling) were the

only two predictors included in the final model generated by the variable selection

algorithm. There are many reasons why it may not be possible to prevent a particular

fall, and a broad combination of factors can plausibly function as causes of a fall.

Hence, prior occurrences of falls might be the best reflection of whether factors

causing falls are present in a given individual or not. Although other predictors

investigated in this analysis were associated with prospectively reported number of

falls, each of these variables measured only a single aspect of the risk of falling. Given

this fact, the inclusion of prior number of falls in the model immediately produced

superior predictive power for the number of future falls compared to the inclusion of

other variables. The second predictor included in the model, fear of falling, is known

to increase with experience of falls [60]. Therefore, an explanation for its predictive

power might be the fact that it functions as an alternative measure of the presence

of prior falls. Surprisingly, inclusion of the variable representing intervention group

did not appear to improve predictive power, although the incidence of falls differed

among the intervention groups, as we saw in the univariable analysis.

PREFALL, a fall rate model that was developed using the LASSO method in

a recently published study, includes two variables similar to those included in our

model, namely the presence of a history of falls (yes/no) and self-perceived risk

of falling [126]. In a comparison of prediction error, PREFALL is superior to our

model. Although the apparent prediction error of the model presented here was

comparable to that of PREFALL, the cross-validated error was higher, indicating

some bias. An error of more than one fall can have substantial influence when

screening for people at risk of falling, introducing the potential to miss individuals

who are in need of preventive measures. Thus, the identification of further risk

predictors resulting in a more accurate prediction is required.

A strength of this study is that the outcome variable, namely the number of falls

reported during intervention and follow-up, was recorded prospectively. Prospective

recording is known to be more precise compared to retrospective assessment of

number of falls [148]. In addition, this analysis provided insight into the form in
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which history of falls is best included as a predictor variable. While use of the

information in dichotomized form (yes versus no) can only produce changes in

the prediction for fallers versus non-fallers, use of a continuous variable enables

the prediction to be adjusted according to the number of prior falls experienced.

However, by introducing the number of prior falls in the form of a categorical

variable, we were further able to show that prospective fall rate does not merely

increase in a log-linear relationship with increasing number of prior falls, as assumed

for a continuous variable; rather, the relationship is a stronger one.

Most fall risk assessment tools evaluate the risk of falling via binary logistic

regression to identify who is predicted to fall. We believe that analyzing fall count

data with rate ratios, as suggested by Ullah et al. [71], is a better approach. The

insight gained as to the probability that someone will fall at all is different from

a prediction of how many times someone is expected to fall.

The analysis presented here also has several limitations. First, the Swiss CHEF

cohort study was designed as an intervention study. An observational study would

have been a superior design for the development of a prediction model. Second,

the fall prevalence in this cohort was higher than the prevalence reported in the

literature: e.g., in Switzerland the prevalence is reported to be around 25% [115].

This is a consequence of the inclusion criteria, which required participants to be

at risk of falling, resulting in a sample population with a higher prevalence of falls

compared to a random sample population. Third, the imbalanced nature of the

cohort in terms of sex, with a large proportion of women compared to men, is not

optimal for such an analysis, since risk factors for falls can differ between sexes.

Finally, although count regression models can adjust for differences in observation

time via an offset variable, shorter observation times can result in both under-

and overestimation of an individual’s true number off all compared to follow-up

observation as planned. Further studies are required to overcome those issues,

validate the model, and improve its prediction accuracy.

In summary, this analysis showed that history of falls, in terms of prior number

of falls, and FES-I score are relevant variables in the prediction of future fall
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rates. Methodologically, the inclusion of the number of prior falls as a categorical

variable has the potential to improve the predictive accuracy of fall risk and

fall rate estimation models.
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Supplementary material
Supplementary tables

Table 4.4: Coefficients and predictive performance measures for
the LASSO selected model.

LASSO model
Variable Coefficient estimates

(log-scale)
Intercept -2.44
Prior fall number = [≥ 5) 0.60
Four stage balance test = [0, 1] 0.08

Predictive performance
Measure Value
RMSE 2.43
MAE 1.06
CV RMSE 2.76
CV MAE 2.19

Abbreviations: LASSO Least absolute shrinkage and selection operator;
RMSE Rooted mean squared error; MAE Mean absolute error; CV Cross-
validated
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Table 4.5: Completed list of bootstrap
inclusion frequency for model selection with
backward elimination.

Variable BIF (%)
Intercept 100
Prior fall number 80.8
FES-I 74.2
Four stage balance test 42.3
OPQOL-35 31.4
Pain 30.4
Five times sit to stand 23.4
Musculoskeletal problems 21.4
Age 18.5
Timed Up and Go 15.7
Functional reach test 12.0
Sex 11.8
Gait speed 6 meter 11.4
Randomisation 10.6
Fear of falling 9.0
Urinary incontinence 8.8
Hearing problems 8.8
Urban/rural 8.1
Neurological disease 7.9
Body mass index 7.1
Walking aid 7.0
Study center 6.6
Base of support width 6.4
Vision impairment 6.2

Abbreviations: BIF Boostrap inclusion frequency;
FES-I Falls Efficacy Scale International; OPQOL-
35 Older People’s Quality of Life Questionnaire

Example of how to use the prediction model

The model writes as

log(fall rate) = −0.67 + 0.12 · IF alls=1

+ 0.03 · IF alls=2

+ 0.58 · IF alls=3

+ 0.96 · IF alls=4

+ 1.83 · IF alls=≥5

+ 0.04 · (FESI − 16)



4. Personalised fall rate model: Swiss CHEF Trial 68

where I is th indicator function given as

Icondition =
{

1 condition is true
0 otherwise

The expected fall rate of a person having reached a FES-I score of 24 with 4 falls

experienced in the prior 12 months to examination results in

log(fall rate) = −0.67 + 0.96 · 1 + 0.04 · (24 − 16) = 0.61

fall rate = exp(0.61) = 1.84
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Abstract

Background Fragility fractures in older adults are often caused by fall events. The

estimation of an expected fall rate might improve the identification of individuals

at risk of fragility fractures and improve fracture prediction.

Methods A combined analysis of three previously developed fall rate models using

individual participant data (n = 1850) was conducted using the methodology of

a two-stage meta-analysis to derive an overall model. These previously developed

models included the fall history as a predictor recorded as the number of experienced

falls within 12 months, treated as a factor variable with the levels 0, 1, 2, 3, 4 and ≥

5 falls. In the first stage, negative binomial regression models for every cohort were

fit. In the second stage, the coefficients were compared and used to derive overall

coefficients with a random effect meta-analysis. Additionally, external validation

was performed by applying the three data sets to the models derived in the first

stage.

Results The coefficient estimates for the prior number of falls were consistent

among the three studies. Higgin’s I2 as heterogeneity measure ranged from 0 to

55.39%. The overall coefficient estimates indicated that the expected fall rate

increases with an increasing number of previous falls. External model validation

revealed that the prediction errors for the data sets were independent of the model

to which they were applied.

Conclusion This analysis suggests that the fall history treated as a factor variable

is a robust predictor of estimating future falls among different cohorts.

Key Words Falls, fragility fractures, older adults, model validation, count regression

5.1 Introduction

Falls and fragility fractures are closely associated in older adults. While around one

out of three individuals aged 65 years and older fall yearly, a substantial number of

those events result in injuries [51]. The incidence of fall-related fractures increases

with age, especially for women after 50 [168]. The fact that falls play an important
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role in fracture prediction is increasingly recognised lately. A meta- analysis using the

MrOS study showed that the number of prior falls predicted fractures independently

of FRAX [58]. Furthermore, in the latest update of FRAX, the so-called FRAXplus,

the history of falls is now included as a risk factor for fractures [36]. In a review paper,

Komisar and Robinovitch summarised the relationship between fall biomechanics

and fracture risk for distinct fracture sites [57]. Especially hip fractures are almost

exclusively caused by falls [169]. Along with reduced bone strength, the risk of a fall

and the inability to counteract such a fall event can lead to a fracture. Accordingly,

individuals with a higher fall frequency and severity are simultaneously exposed

to an increased fracture risk. Subsequently, predicting how often a person is likely

to fall could help identify individuals at risk for fragility fractures.

However, the focus of fall risk assessments presented in the literature is on

identifying people at risk of falling, not on predicting the number of expected falls.

This becomes evident when reviewing the literature on this topic [60], [120], [121].

As an alternative to binary logistic regression that assesses the risk of falling as

a probability between 0 and 1, count regression models allow the prediction of

rate ratios and thus, the calculation of the expected number of falls within a time

period [71]. However, only a few studies analysing the risk of falling in terms of

fall rates have been published [124], [126]. For example, a study conducted by

Gade et al. developed the fall rate prediction model for community-dwelling older

adults by fitting a Poisson regression and using the least absolute shrinkage and

selection operator penalization for variable selection [126].

Similarly, we analysed three independent cohorts investigating aspects of the

risk of falling in community-dwelling older adults and developed fall rate prediction

models in previous work. The three cohorts are the Geneva Retirees Cohort

(GERICO) [129], the Swiss CHEF Trial (SCT) [151], and the Kuopio Fall Prevention

Study (KFPS) [170], [171]. Fall rate prediction models were developed using a count

regression modelling approach, and two of the three analyses have been published

previously [114], [149]. In short, the results showed that the history of falls measured

as the number of prior falls within 12 months before the study examination was
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the best predictor for future falls in all three cohorts[114], [149]. Furthermore, we

showed the importance of how the information about the fall history is treated

as a predictor. In most prediction models, this information is included as binary

information (yes/no) for fallers in general or recurrent fallers [61]. However, valuable

predictive information gets lost by condensing the prior number of falls into a binary

variable. When comparing the rate ratio for an individual who experienced 5 falls,

we found the model coefficient estimate to be 4 times higher when the information

is treated as a factor variable compared to a binary variable [149].

Against this background, and with the further goal of improving fragility fracture

prediction by including information on falls, this study aimed to compare models for

predicting fall rates that included the history of falls as a categorical predictor. We

used the methodology of a two-stage meta-analysis to compare the model coefficients

and suggest an overall prediction model. Additionally, we performed an external

validation between the three previously developed models.

5.2 Methods

5.2.1 Cohorts and data

The two main criteria for inclusion in this combined analysis were that the data

was analysed using a count regression method and that the predictor history of falls

was treated as a factor variable. Apart from the three models that we developed

previously, we are unaware of any other studies meeting those criteria.

Individual participant data were available from the original data sets of all

cohorts. The analysis and development of the GERICO and SCT prediction

models have been published previously [114], [149], and the analysis of the KFPS

is available in the supplementary material. A list of all predictors investigated in

the prior analyses can be found in the supplementary material, Table 5.4. The

flow of participants and the inclusion and exclusion criteria for the cohorts and

this analysis are presented in Figure 5.1.
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Kuopio Fall Prevention StudyGeneva Retirees Cohort

Inclusion criteria
• ≥ 63  years
• Community-dwell-

ing
• Female and male

Exclusion criteria
• Major comorbodi-

ties (see detailed 
• cohort descritpion)

Swiss CHEF Trial
Inclusion criteria
• ≥ 65 years
• Community-dwell-

ing
• Female and male
• At risk of falling 

(positive history of 
falls or having fear 
of falling)

Exclusion criteria
• Cognitive impairment
• Vision impairment 

making reading impos-
sible

• Undergoing physio-
therapy

• Contraindications 
by referring physiscian

Inclusion criteria
• ≥ 75 years
• Community-dwell

ing
• Females only
• Self ambulatory

Exclusion criteria
• Unstable angina 

pectoralis
• Sever pulmonary 

disease
• Moderate to 

severe dementia

Exclusion from analysis
• Did not participate in both 

follow-up visits (n = 404)
• Missing data (n = 12)

Exclusion from analysis
• Participation time < 30 days (n = 35)

Enrolled participants (n = 1046)

Included in analysis (n = 630)

Enrolled participants (n = 405)

Included in analysis (n = 370)

Exclusion from analysis
• Participation time < 1 year (n = 

58)

Enrolled participants (n = 913)

Included in analysis (n = 855)

Figure 5.1: Flow of participants in the three cohorts.

Geneva Retirees Cohort

The Geneva Retirees Cohort (GERICO) is a prospective observational study

conducted between 2008 and 2018 around Geneva, Switzerland. It aimed to

investigate the risk factors for fracture and fall prediction in community-dwelling

older adults. Participants were enrolled in the study between 2008 and 2011 and

invited for a baseline examination. Two follow-up visits were conducted after 4

and 8 years each. The study was described previously [129], and the trial was

registered under https://isrctn.com/ISRCTN11865958.

Participants Participants were community-dwelling older adults of both sexes,

with a mean age of 67.9 years (1.6 standard deviation (SD), range 64.6 – 71.8) at

follow-up visit 1 and living in rural or urban areas around Geneva.

Exclusion criteria Participants were excluded if they suffered from major

comorbidities, particularly cancer treated within the last 5 years, chronic renal

failure, liver or lung disease, corticosteroid therapy, primary hyperparathyroidism,

Paget disease of bone, malabsorption or any neurological or a musculoskeletal

condition affecting bone health.

https://isrctn.com/ISRCTN11865958
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Variables of interest Fall risk-related variables of importance for the fall rate

model development were mainly recorded during the two follow-up visits. These

included age, body mass index, short physical performance battery, hand grip

strength, one-legged stance test, activity level, Charlson’s comorbidity index, the

number of comorbidities, and the number of medication.

Falls A fall was defined as an event resulting in unintentionally coming to rest on

the ground, floor or any lower levels. Falls were assessed retrospectively at the two

follow-up visits by asking whether any falls occurred during the last 12 months.

Swiss CHEF Trial

The Swiss CHEF Trial (SCT) is a randomised controlled trial investigating three

home-based exercise programs for fall prevention in community-dwelling older adults.

The study was conducted between 2016 and 2022 in Switzerland. The study was

described previously [151], and the trial was registered under

https://clinicaltrials.gov/study/NCT02926105.

Participants Participants enrolled in the study were community-dwelling older

adults of both sexes with a mean age of 78.7 years (6.8 SD, range 65 – 100),

who fell at least once in the previous 12 months or were afraid of falling (FES-I

score of at least 20 points).

Exclusion criteria Exclusion criteria were severe visual impairment, cognitive

impairment (< 24 points on the Mini Mental State Examination), physiotherapeutic

treatment with balance training, or contraindication by the referring physician.

Variables of interest Variables such as demographic characteristics, history of

falls in the previous 12 months, fear of falling, physical performance tests, health

state and quality of life were assessed at a baseline examination.

https://clinicaltrials.gov/study/NCT02926105
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Intervention Participants were divided into three intervention groups using block

randomisation. The intervention programs were (1) a newly developed intervention

program called Test&Exercise, (2) the Otago exercise program as a reference

group [152], and (3) an intervention representing usual care in Switzerland as

control group. This consisted of a small booklet with 12 exercises for balance

and strength training, as a control group. The intervention lasted 6 months, with

another 6 months of follow-up afterwards. After 6 and 12 months, the baseline

examinations were remeasured.

Falls A fall was defined as an unexpected event in which the participant comes

to rest on the ground, floor, or lower level, with or without injury. Incident falls

were prospectively self-reported with a monthly fall calendar during the 12 months

of intervention and follow-up. History of falls was assessed at baseline by asking

how many falls occurred during the previous 12 months.

Kuopio Fall Prevention Study

The Kuopio Fall Prevention Study (KFPS) is a 2-year randomised controlled trial

to estimate the effect of a fall prevention exercise program in community-dwelling

older women in Kuopio, Finland. The trial was launched in 2016. The study was

registered under https://clinicaltrials.gov/study/NCT02665169, and the detailed

trial protocol was published in BMJ Open [170].

Participants Participants enrolled were female only, had a mean age of 76.5

years (SD 3.2, range 71.2 – 84.8), were living around the City of Kuopio, were

able to attend exercise sessions twice a week and were in an adequate health

state (self-ambulatory, no unstable angina pectoris, no severe pulmonary disease,

no moderate to sever dementia).

Exclusion criteria Individuals living in institutional long-term care homes were

excluded from the study. Variables of interest These included functional tests, social

well-being, cognitive performance, sarcopenia and frailty measurements.

https://clinicaltrials.gov/study/NCT02665169
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Intervention After baseline examination, participants were divided into inter-

vention and control groups using block randomisation. The intervention included

initial 6 months of supervised exercise including the free acces to municipal exercise

facilities, another 6 months of unsupervised use and free access to exercise facilities,

and following 12 months of low-cost access to exercise facilities. The control group

also had low-cost access to exercise facilities without supervision for 24 months.

Variables of interest were assessed at the baseline, at 12 months and 24 months.

paragraph A fall was defined according to the WHO International ICD diagnosis

code. Falls from the same level, on stairs, and from height were included. Incident

falls were recorded biweekly via SMS, and in case of positive reports assessed with

telephone interviews. History of falls was assessed at baseline by asking how many

falls occurred during the previous 12 months.

Participants included in the meta-analysis

Inclusion criteria for the meta-analysis were defined for every cohort separately.

Participants of the GERICO cohort had to have participated in the two follow-up

visits from the study. For the SCT analysis, the participants were required to

remain enrolled for at least one month after the baseline examination. For the

KFPS study, participants had to have participated for at least one year. The flow of

participants with inclusion and exclusion criteria for every cohort and this analysis

are presented in Figure 5.1. A completed case analysis was conducted.

5.2.2 Statistical analysis
Outcome

The outcome variable was the number of incident falls. For SCT and KFPS, this

referred to the reported number of falls during intervention and follow-up. For

GERICO, the outcome was the number of falls reported at the second follow-up visit.

Predictors

The final models of all three cohorts included the history of falls measured as the

prior number of falls during 12 months as a predictor. In the GERICO and KFPS
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study, it was the only predictor included in the suggested models. In the SCT

model, fear of falling measured with FES-I was the only additional predictor. Since

fear of falling was not assessed in the other two cohorts, it was not included in this

analysis. In the analysis of the SCT study, we showed that the number of prior falls

is best treated as a factor variable with levels 0, 1, 2, 3, 4 and ≥ 5, in contrast to

using it as binary information (previous falls yes vs. no) or a continuous variable

[149]. Therefore, the number of prior falls was introduced as a factor variable with

those six levels. No falls was defined as the reference category in all three cohorts.

Combined analysis

The combined analysis was performed using the methodology of a two-stage meta-

analysis as described by Burke et al. [172]. In the first stage, the prediction models

were fit separately for every data set with negative binomial regression models,

resulting in a coefficient estimate for every level of the factor variable. The SCT

model included an offset because not all participants were followed up for 12 months.

In the second stage, the three resulting coefficient estimates and standard

deviations were meta-analysed for each factor level and the dispersion parameter

θ . A random effect model with inverse variance weighting was fitted. τ 2 was

estimated with the restricted maximum likelihood estimator. Higgin’s I2 was

computed to investigate the percentage of variance attributable to the study

heterogeneity among the true effects.

Model validation and calibration

The apparent absolute mean prediction error for the three first-stage models was

calculated. In addition, the three models were externally validated by calculating

the prediction error for unseen data, e.g. using the GERICO model, the prediction

error was derived for the SCT and the KFPS data set. The prediction error of

the overall model derived with the combined analysis was calculated with all three

cohorts. The method for calibration-in-the-large was adapted from Crowson et al.

[173], suggesting a regression model-based framework for calibrating survival data.

The following steps were performed on the link scale: (1) fit the new data to the
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existing model, resulting in a linear predictor p0 (2) fit a new negative binomial

regression model with the outcome variable from the new data set outcomenew and

using the linear predictor p0 as an offset, (3) use the intercept αnew derived from

the model fitted in step 2 to update p0 such that the updated prediction p1 is

derived as p1 = anew + p0. αnew is referred to as the calibration-in-the-large or

the recalibration constant. A detailed example of the R code can be found in the

supplementary material. Calibration was assessed by plotting the expected versus

the observed number of falls in form of a rootogram [137], [139].

Statistical program

All statistical analysis was conducted with R Studio Version 4.2.2. For the meta-

analysis, the package “metafor” was used [174].

5.3 Results
5.3.1 Study characteristics

All three studies were prospective trials including community-dwelling older adults.

While the SCT and the KFPS were randomised controlled trials to investigate new

fall prevention interventions, the GERICO study was an observational study. The

number of participants enrolled in the GERICO, SCT, and KFPS were 1046, 405,

and 913, respectively. Of these, 642, 370, and 855, respectively, fulfilled the inclusion

criteria for the analysis. Twelve participants had missing fall data in the GERICO

study, resulting in 630 participants included in the analysis. The GERICO and SCT

cohorts included both sexes, with mostly females (GERICO: 80%, SCT: 73%). Only

women participated in the KFPS. The mean age was 67.9 years for GERICO, 78.7

years for SCT, and 76.5 years for KFPS. In total, 1810 falls were reported before

the baseline examination, and 1565 falls after the baseline examination. For the

GERICO trial, the mean number of falls during the 12 months before the follow-up

visit 1 was 1.03 and decreased to 0.69 falls during the 12 months before the follow-up

visit 2. In the SCT, the mean number of reported falls during 12 months before the

baseline examination was 1.45, and 1.30 falls per person-year were reported for the
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Table 5.1: Comparison of the trial designs and cohort characteristics.

GERICO SCT KFPS

Country Geneva, Switzer-
land

Valais, Switzerland Kuopio, Finland

Study design Prospective obser-
vational trial

Prospective RCT Prospective RCT

Setting Community-
dwelling older
adults

Community-
dwelling older
adults

Community-
dwelling older
adults

No. of participants
enrolled in study

1046 405 913

No of participants
included in analysis

630 370 855

Sex (male/female) 126/504 100/207 0/855

Mean age (SD)
[years]

67.9 (1.6) 78.7 (6.8) 76.5 (3.2)

Previous falls dur-
ing 12 months

Number 646 537 627
Mean 1.03 1.45 0.73
Reporting Self-reported retro-

spective
Self-reported retro-
spective

Self-reported retro-
spective

Incidence falls
Numbera 439 371 755
Mean 0.69 1.30 0.83
Reporting Self reported, retro-

spective
Self-reported with
monthly falls
calendar, prospec-
tive

Biweekly SMS
and phone-calls,
prospective

Abbreviations: GERICO Geneva Retirees Cohort; KFPS Kuopio Fall Prevention Study; RCT
randomised controlled trial; SCT Swiss CHEF Trial; SD standard deviation; a per person year

year following the baseline examination. In the KFPS, 0.73 falls per person have

been reported before baseline examination, and 0.83 in the subsequent 12 months.

All results comparing the trial and cohort characteristics are presented in Table 5.1.
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5.3.2 Combined analysis

The results of the three models fitted in the first stage and of the random effect

models derived in the second stage are shown in a forest plot in Figure 5.2; Table 5.2.

The heterogeneity measures for the coefficients are also presented Table 5.2.

The baseline rate or intercept varied among the three cohorts (GERICO: 0.43

[95% CI from 0.35 to 0.52]; SCT: 0.83 [95% CI from 0.61 to 1.14]; KFPS: 0.61

[95% CI from 0.54 to 0.79]). The overall estimate for the baseline rate derived with

the random effect model was 0.59 (95% CI from 0.41 to 0.85) and showed a high

heterogeneity (τ 2:0.088, I2: 89.24%). The rate ratios for one prior fall (GERICO:

1.64 [95% CI from 1.22 to 2.21]; SCT: 1.00 [95% CI from 0.64 to 1.54]; KFPS:

1.46 [95% CI from 1.15 to 1.87]) were in a comparable magnitude as for two prior

falls (GERICO: 1.13 [95% CI from 0.70 to 1.82]; SCT: 1.07 [95% CI from 0.63 to

1.82]; KFPS: 1.65 [95% CI from 1.21 to 2.25]). Accordingly, the overall estimates

were 1.41 (95% CI from 1.13 to 1.76) for one prior fall and 1.33 (95% CI from 0.98

to 1.81) for two prior falls. Heterogeneity was also comparable and lower for the

baseline rate (one prior fall: τ 2: 0.013, I2: 33.50%; two prior falls τ 2: 0.026 I2:

34.55%). The rate ratios for three prior falls increased similarly in all three studies

(GERICO: 2.55 [95% CI from 1.52 to 4.29]; SCT: 2.18 [95% CI from 1.15 to 4.15];

KFPS: 2.98 [95% CI from 1.90 to 4.68]), resulting in an overall effect estimate of

2.64 (95% CI from 1.96 to 3.57). The two heterogeneity measures τ 2 and I2 were

equal to zero. The rate ratios for four prior falls were more heterogenous, with the

highest estimate for the KFPS (GERICO: 2.33 [95%CI from 0.96 to 5.65]; SCT: 3.09

[95% CI from 1.26 to 7.58]; KFPS: 6.24 [95% CI from 3.71 to 10.48]). The overall

estimate was 3.89 (95% CI from 2.06 to 7.34), with the heterogeneity reflected in

the corresponding measures (τ 2: 0.169, I2: 53.19%). The highest estimates were

reached for five or more prior falls (GERICO: 10.02 [95% CI from 6.17 to 16.27];

SCT: 7.39 [95% CI from 3.77 to 14.46]; KFPS: 7.40 [95% CI from 4.15 to 13.20])

resulting in an overall effect estimate of 8.48 (95% CI from 6.13 to 11.74) with

no heterogeneity present (τ 2: 0.000, I2: 0.00%).
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Variable

Baseline Rate

Prior Falls 1

Prior Falls 2

Prior Falls 3

Prior Falls 4

Prior Falls ≥5

 0.50  1.0  2.0  4.0  8.0 16.0
Rate Ratios

GERICO (n = 630)
SCT (n = 370)
KFPS (n = 855)
Overall

Figure 5.2: Baseline rate and rate ratios for the model coefficients with 95% confidence
intervals.

5.3.3 Model validation and calibration

The apparent mean absolute prediction error was highest for the SCT followed by

KFPS and GERICO (GERICO: 0.82; SCT; 1.16; KFPS: 0.92). For the external

model validation, the mean absolute prediction error for the GERICO data set

was comparable to the apparent error when applied to the other three models,

(SCT model: 0.82; KFPS: 0.81 model; Overall model: 0.81). Similar results were

found for the SCT data set (GERICO model: 1.19; KFPS model: 1.14; Overall

model: 1.15), and the KFPS data set (SCT model: 0.94; KFPS model: 0.92;

Overall model: 0.92). These results indicate that the models here are not prone to

overfitting and hardly any bias. In addition, the method used for recalibration can

catch the baseline rate of the cohorts. The result of the model validation and the

recalibration constant between the models are summarised in the supplementary

materials in Table 5.5. Marginal calibration plots for the three data sets applied

to the overall model in the form of a hanging rootogram are presented in Fig. 3.

The bars represent the observed frequency per fall number category, while the red
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Figure 5.3: Hanging rootograms as marginal calibration diagrams for (a) the GERICO
data, (b) the SCT data and (c) the KFPS data applied to the overall model showing the
deviation between the actual (grey bars) and predicted (red line) number of individuals
per fall number category.

curve shows the expected frequency. Deviations between expected and observed

can be seen when focusing on the x-axis: whereas overshooting into the negative

y values means underestimation, floating bars not reaching the x-axis indicate

overestimation of the expected frequency estimated by the prediction model. The

diagrams show that the overall model is well calibrated, especially in the range of

low fall numbers. The biggest difference can be found for high-frequency fallers,

such as 20 falls or more. The rootograms for the other combinations of models

and data sets (e.g., SCT data applied to the GERICO model) can be found in

the supplementary materials in eFigure 1.

5.4 Discussion

This analysis compared three fall rate prediction models that were previously

developed in independent cohorts and derived overall model coefficients using the

methodology of a two-stage meta-analysis. Additionally, external model validation

including model recalibration was performed. We found that the coefficient estimates

among the three models were reasonably consistent, which was also reflected in

heterogeneity measures such as Higgin’s I2. The heterogeneity seen in the baseline

rate can be explained by the different fall incidences in the cohorts. However, such

differences can be adjusted for with proper calibration methods, as for example
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suggested by Crowson et al. [173]. Our findings suggest that the number of prior

falls as a factor variable is a robust predictor for future falls in community-dwelling

older adults among different cohorts. Further studies and investigations are required

to find out whether the model can be transferred to even more different settings,

for example, to older adults living in institutions, or the oldest old.

Despite the differences in study design and cohort characteristics, the prediction

error for the cohorts was shown to be independent of the model that was used to

compute the prediction, indicating that no bias in the first-stage models was present.

However, no external validation was done for the overall model. In order to check

for bias in the overall model towards the data it was derived with, an unseen dataset

is required. When comparing the prediction errors presented in this analysis with

literature, only one study comes in quest. The prediction error of the PREFALL

model that was derived using a similar development strategy is in the same range as

our results [126]. They report a bootstrapped mean absolute error of 0.88 falls per

year. Further comparisons with other studies are only possible to a limited extent, as

most fall prediction models are based on predicting the fall risk and not the fall rate.

Although it is known that there exists a vast amount of risk factors that are

associated with falling, the previously conducted analysis of the three cohorts

showed that prior falls were superior in predicting future falls compared to other

predictors. Variables such as physical performance tests, age, sex, comorbidities,

medication, or quality of life were not improving the predictive accuracy of the

models in combination with the history of falls [114], [149]. Fear of falling was

the only additional predictor selected with variable selection in the SCT study.

However, this information was not recorded in all three studies and could not be

considered in this analysis. One reason for the lack of further predictors in the

models could be the complexity and multifactorial nature of the fall, which can

vary greatly from person to person. While one person may be falling due to the

combination of vision impairment and balance problems, another may fall because

of a lack of strength and a medication that has a side effect of dizziness. It may

not be possible to capture or assess all relevant combinations of risk factors for
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each person in a statistical model. Hence, the presence of prior falls themselves

might be the best reflection of whether an individual is exposed to the relevant

combination of risk factors for falling. Nevertheless, this bears the risk that the

model cannot properly catch first-time fallers. All individuals without a history of

falls have an identical predicted fall rate, which does not reflect reality. Therefore,

further risk factors sensitive enough to catch first-time fallers must be identified,

even if information about the fall history is available. Once identified, the model

proposed here could be updated accordingly.

5.4.1 Strength and limitations

A strength of this study is the large number of data points available for this analysis:

In total 1855 participants were included in this combined analysis. In addition,

individual participant data were accessible, enabling the identical treatment of

outcome and predictor variables among the three cohorts and thus the application

of a two-stage meta-analysis methodology. Furthermore, the history of falls was

recorded as the number of previously experienced falls, providing more detailed

information than a dichotomised variable (yes versus no).

This analysis also has some limitations, which mainly concern the study design.

First, the SCT and KFPS studies were designed as prospective randomised controlled

trials with preventive interventions that potentially impact the observed fall inci-

dence rates. Accordingly, the results could differ compared to purely observational

data. However, when comparing with the results from GERICO analysis as an

observational data set, such differences were not found. Yet, in the GERICO study,

incident falls and history of falls were recorded retrospectively at two time-points

four years apart. Four years between the two visits is a long time span in a fall

prediction setting. In addition, it has been reported that retrospective reporting

can result in deviations of the true fall number [148]. Furthermore, the inclusion

criteria for participants of the three studies differed: In the SCT study, participants

were the only ones who had to be classified as at risk of falling for enrolment, while

participants with major comorbidities were excluded in the GERICO study. This
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might have led to a different selection of study participants. Next to that, the sex

distribution among the participants was no balanced, with a vast majority of female

participants. And last, the individuals who participated in these three studies have

been enrolled out of self-motivation. It has been reported that such individuals are

health-wise better off compared to nonparticipants, resulting in a selection bias

and may limit the generalisability of such findings [175].

Clinical implications and applicability

As the majority of non-vertebral fragility fractures are the result of a fall, the

risk of injury increases directly together with the frequency of falls. Accordingly,

the estimate of how many times an individual is going to fall can help improve

fracture prediction. However, not only fractures but many other injury types in

older adults are a consequence of falls [1]. Therefore, estimating a fall rate might

also be beneficial in other fields of injury prevention. The simple question “How

many times did you fall in the last 12 months?” would be sufficient to derive the fall

rate estimate. This information can be further used or integrated into subsequent

models to estimate the risk of an event of interest. We want to stress that asking

for the number of falls, and not just whether falls have occurred, is helping to

improve prediction accuracy. Furthermore, we suggest that falls should be reported

as numbers and not as binary variables in research articles.

To make the model applicable in different geographical settings, calibration

considering the differences of fall incidences between regions or countries is required.

The method presented here to recalibrate between cohorts [173] showed good

performance and is easily implemented.

5.4.2 Conclusion

We found that the number of previous falls treated as a factor variable is a

robust predictor of estimating fall rates among different cohorts. In addition,

a proper recalibration can account for variations in fall incidences between different

cohorts. Further investigations are required to find predictors that can identify

first-time fallers.
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Supplementary material

Development of the prediction model for the Kuopio Fall
Prevention Study
Methods

Participants Participants were included in the analysis if they completed at

least 1 year of follow-up.

Outcome variable The outcome variable was the prospectively reported number

of falls during the first 12 months after the baseline examination.

Predictors General characteristics: Age; Body mass index; living alone (yes/no)

History of falls: Number of falls experienced during the 12 months before the

baseline examination

Fear of falling: The following question was asked: “Are you afraid of falling today?”

Answer options were: no / yes, rarely / yes, sometimes / yes, often / yes, constantly.

Physical performance tests: Able to squat to the floor (yes/no); One-legged stance

test (at least 3 seconds, maximum 30 seconds); hand grip strength (maximum

dominant hand, measured in kg), Timed Up and Go (seconds); body sway (open

and closed eyes, normal stance and semi-tandem, measured in mm); isometric leg

extension force (left and right leg, two attempts each, measured in Nm)

Activity and physical performance: Self-perceived physical condition (very bad /

pretty bad / satisfactory / pretty good / very good); Exercise frequency (almost

never / 1-3x a months / 1x a week / 2x a week / 3x a week /4x a week / 5x a week

/ (almost) daily); physical inactive hours per day

Health state: Self-perceived health state (very good / good / mediocre / bad);

number of medication

Intervention group: Intervention vs control group
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Processing of predictors Age was centred at 65 years. The number of prior

falls was treated as a categorical variable with the levels 0, 1, 2, 3, 4 and ≥5 falls.

Fear of falling was summarised to three levels (no / yes, rarely + yes, sometimes

/ yes, often + yes, constant). Body sway was included as the difference between

open and closed eyes with normal stance. The self-perceived physical condition was

summarised into three levels (very bad + pretty bad / satisfactory / pretty good

+ very good). Exercise frequency was summarised into four levels (almost never

+ 1-3x a month / 1-2x a week / 3-4x a week / 5x or more a week). The number

of medication was also dichotomized (0-2 / 3-4 / 5-6 / ≥7).

Missing data A completed case analysis was conducted.

Model fit and variable selection A model including all candidate predictors

was fit. Variable selection was then conducted with backward elimination using

the Bayesian information criteria as a stopping rule.

Results

Participants In total, 913 participants were enrolled in the study. Thereof, 855

completed at least one year of follow-up. 38 (4.4%) had missing data and were

excluded from the analysis, resulting in 817 participants used for the prediction

model development.

Selected model The final model included the prior number of falls as the

only predictor (Table 5.3).

Table 5.3: Model coefficients.

Incidence rate ratios (95% CI)
Intercept 0.62 (0.54 to 0.71)
0 prior falls ref
1 prior fall 1.47 (1.15 to 1.88)
2 prior falls 1.62 (1.19 to 2.23)
3 prior falls 2.97 (1.90 to 4.65)
4 prior falls 6.21 (3.71 to 10.40)
≥ 5 prior falls 7.37 (4.16 to 13.09)
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Prediction error The apparent mean absolute prediction error of the selected

model was 0.92.

R Code: Calibration in the large

# fit the original model for the SCT data

> model_sct <- glm.nb(falls ~ prior_falls +

offset(log(participation_time), data = data_sct)

# calculate the linear predictor for the KFPS data with the SCT model

> p0_kfps <- predict(model_sct, newdata = data_kfps, response = “link”)

# fit a new negative binomial model with the falls from KFPS as outcome

variable and p0_kfps as offset

> recal_model <- glm.nb(falls ~ offset(p0_kfps), data = kfps)

# use the intercept alpha derived from the recal_model to update the

predictions p0_kfps

> p1_kfps <- alpha + p0_kfps

# if wanted, the updated linear predictor can now be transformed to the

response scale with exp(), resulting in expected frequencies

> p1_kfps_resp <- exp(p1_kfps)

Supplementary tables

Table 5.4: Variables assessed in the different cohorts related to the risk of falling.

Variables GERICO SCT KFPS
General

Age x x x
Sex x x x
BMI x x x
Living area (urban/rural) x

Continued on next page
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Table 5.4 – continued from previous page
Variables GERICO SCT KFPS

Living alone (yes/no) x
Fear of falling

FES-I x
Fear of falling x x

Physical performance tests
Gait speed x x
Five Times Sit-to-Stand x x
Balance test x
Hand grip strength x x
One Legged Stance Test x x x
Functional reach test x
Timed Up and Go x x
Four Stage Balance Test x
Base of support width x
Body sway x
Able to squat to floor (yes/no) x
Isometric leg extension force x
Physical activity (kcal/day) x
Exercise frequency x
Physical condition (self-perceived) x

Health state and comorbidities
Charlson’s Comorbidity Index x
Comorbidity number x
Medication number x x x
Hearing problem (yes/no) x
Vision impairment (yes/no) x
Walking aid (yes/no) x
Urinary incontinence (yes/no) x
Musculoskeletal disorder (yes/no) x
Neurological disorder (yes/no) x
Perceived pain (range 0 - 100) x
Self-perceived health state x

Quality of life
OPQOL-35 x

Abbreviations: GERICO Geneva Retirees Cohort; SCT Swiss
CHEF Trial; KFPS Kuopio Fall Prevention Study; OPQOL-35
Older People’s Quality of Life Questionnaire
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Table 5.5: Mean absolute prediction error for every data set applied to
the different models

Data used for prediction
Model GERICO SCT KFPS

MAE RC MAE RC MAE RC
GERICO 0.82 - 1.19 0.47 0.94 0.41

SCT 0.82 -0.47 1.16 - 0.94 -0.12
KFPS 0.81 -0.35 1.14 0.06 0.92 -
Overall 0.81 -0.29 1.15 0.15 0.92 0.09

Abbreviations: GERICO Geneva Retirees Cohort; SCT Swiss CHEF
Trial; KFPS Kuopio Fall Prevention Study; MAE Mean absolute error;
RC Recalibration constant
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Abstract

Fragility hip fractures in older adults are a major burden for the individual and

society, as they result in increased morbidity, mortality and substantial health care

expenditure. The vast majority of hip fractures are caused by falls resulting in

an impact on the hip, inducing a force that exceeds the femoral bone strength.

The risk of fracturing depends on the rate of falling, the fall-induced impact force,

and the femoral bone strength. This article presents the framework of a novel

fragility hip fracture risk calculator based on a mechanistic and stochastic modelling

approach. The model integrates the stochastic aspects of a fall and its dynamics

together with a 1D mechanical model predicting the impact force in the hip to

calculate a one-year absolute fracture risk. The required input parameters can be

estimated with anthropometric and densitometric data, and can be refined using

QCT images. A sensitivity analysis was conducted with data from the AFFIRM-CT

cohort, confirming that the fall rate, the trochanteric soft tissue thickness and the

bone strength are the dominating parameters influencing the risk of fragility hip

fractures. Furthermore, output variables such as the predicted impact velocity

(mean (SD): 2.24 m/s (0.41)) and impact force (0 - 11802 N) aligned well with

experimental data. Thus, the model is able to reflect observations from empirical

data, indicating that it can capture the intrinsic aspects that affect the risk of

fragility hip fractures.

Keywords fragility hip fracture, prediction, falls, impact force

6.1 Introduction

In 2019, around 82’000 fragility fractures were registered in Switzerland in individuals

aged 50 and older, referring to an annual fracture rate of 23.5 fractures per 1000

individuals [1]. Due to the ageing of the population, this number is expected

to increase by 37.5% by 2034. The consequences of fragility fractures include

morbidity, mortality, and substantial health care expenditure [176], [177], [178].

Fractures of the hip are the most serious type, with a mortality risk of up to 20%
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[13]. Against this background, it is of great interest to identify individuals at risk

of fragility fractures, especially of the hip.

Fragility fractures are the clinical outcome of osteoporosis, a silent metabolic

bone disease affecting primarily older adults. Osteoporosis is characterised by

bone loss [179] and can be assessed by measuring areal bone mineral density

(aBMD) with dual energy X-ray absorptiometry (DXA) [18]. FRAX® is a frequently

used model for fracture risk assessment that combines clinical risk factors such

as sex, current smoking status, alcohol consumption or prior fragility fractures

with aBMD using a statistical regression model [4], [180], as aBMD alone has

limited predictive power [23], [28], [176].

When looking at the mechanism leading to hip fractures, it is found that around

95% of the cases are caused by falls resulting in an impact on the hip [42], [168]. From

a biomechanical point of view, the bone fractures when the impact force exceeds

femoral strength. Since only 1-3% of all falls result in a fracture [43], this suggests

that either the available energy is not sufficient to cause a fracture or that energy-

dissipating mechanisms reduce the impact force below a critical level [57]. Thus,

the risk of hip fracture is dependent on different factors that can be summarised by

three main points, namely (1) the actual risk of falling, respectively the frequency

of falls, (2) the impact force on the hip and (3) the femoral bone strength.

Bone strength can be estimated with finite element analysis (FEA) based

on quantitative computed tomography (QCT) images, a method that has been

thoroughly studied and validated [20]. The assessment of bone mineral density

(BMD) and fracture risk with the use of clinical QCT scans that were performed

for other diagnostic purposes is known as opportunistic screening [22]. However,

also aBMD values from DXA can be used to derive bone strength, as these two

measures are known to strongly correlate [15].

Factors that influence the impact force can be divided into two main areas:

the impact velocity and the visco-elastic behaviour of the hip complex. First, the

impact velocity determines the magnitude of the impact force when the hip is

hitting the ground. It depends on different factors such as the initial height of
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the fall, the effective mass, the initiation mechanism of the fall, the pre-impact

movement strategies or the landing configuration [43], [57], [83]. These aspects can

vary significantly from fall to fall and influence the impact velocity accordingly. The

second point to consider is the visco-elastic behaviour of the hip complex. The hip

consists of skin, muscle, fat, ligaments and cartilage, in which the femur and the

pelvis bone are embedded. The force attenuation during the transmission through

the hip determines the force magnitude reaching the proximal femur. Various in

vivo and ex vivo experiments were conducted to characterise this behaviour upon

impact [72], [92], [93], [95], and damped vibrational systems were used to model and

predict the impact response [74]. Thereby, the trochanteric soft tissue, respectively

its thickness, was shown to be a critical factor influencing the effective stiffness and

damping properties [72], [97], [99], [100]. A further parameter that was reported to

influence these properties is the condition of the muscles (relaxed/contracted) [72],

[108]. And last, the floor type influences the impact force, too [109]. To sum up,

various subject-specific parameters but also fall-dynamic related factors influence

the impact force, making the accurate prediction a difficult task. Nasiri and Sarvi

summarised these aspects in a thorough review [45].

Several mechanistic hip fracture prediction models have been developed. While

some derived the impact force through a standardised formula accounting for height,

weight and soft tissue thickness [46], others tried to integrate the subject-specific

fall dynamics and joint forces of a standard sideways fall [110], [181], or showed

the importance of subject-specific parameters when modelling the impact force for

fracture prediction [112]. However, most models do not predict an absolute fracture

risk but try to evaluate the ratio between impact force and bone strength and

subsequently assess the correct classification of fracture cases [95], [112]. Others

derive the relative risk, e.g. by using this ratio as a predictor in a Cox proportional

hazard model [46]. Bhattacharya et al. integrated a mechanistic model into a

probabilistic setting, allowing the prediction of an absolute fracture risk within

a year [113]. The multi-scale model consists of three submodels: a model that

derives the impact force given different fall dynamics, a model to estimate the
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force attenuation during the impact of the hip complex, and an FEA model to

estimate bone strength given different impact orientations. In a further step,

probability distributions are assigned to the different parameters modelling the

fall dynamics, and with the assumption of a constant fall rate, a probability of

a fracture within a year is derived.

In summary, most mechanistic risk calculators assess the impact force, bone

strength, and some aspects of the fall dynamics, but they do not integrate the

probability of different fall scenarios. When looking at the clinical standard of care

for fracture risk assessment, the recently updated version of FRAX®, FRAXplus®,

has now integrated the risk of falling with information about the number of falls in

the preceding year [182]. However, as it is a regression-based tool, the information

is treated as a risk factor for hip fractures and not its cause.

In 2010, a hip fracture risk prediction model using an alternative modelling

approach than previously known in literature was presented [8]. It is based on a

mechanistic stochastic framework and derives the probability of at least one hip

fracture in a given time interval (0,T] by combining the stochastic aspects of a

fall and the fall dynamics with femoral bone strength. Briefly, the occurrence of

a fall is modelled using a Poisson process characterised by the rate parameter λ.

The chances of the fall-induced impact force exceeding the femoral strength are

modelled with a random variable following a probability distribution. Hence, the

probability distribution is an indirect representation of the countless possibilities of

fall scenarios resulting in different load cases. By the introduction of a so-called

thinned Poisson process, only the fall events resulting in a fracture are retained.

Without the use of any empirical data but the simple assumptions that bone

strength is defined through BMD and that the fall rate λ is increasing with age,

the model is able to describe several key aspects of hip fractures observed in clinics.

First, it shows that the fracture probability increases with decreasing bone strength

in an age-dependent manner. Second, it demonstrates that the BMD has limited

predictive power, as the distribution of individuals experiencing a fracture strongly

overlaps with those who do not fracture. And last, by using a Bayesian approach,
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it shows that the fracture risk increases significantly when having experienced a

prior fracture, especially in the lower BMD range.

Nonetheless, several aspects could be further developed and refined. First, a

model to estimate an individual’s fall rate λ could be integrated, and second, further

insights into the probability distribution describing the chances of the impact force

exceeding the femoral bone strength is required.

The goal of our work was to personalise the model suggested by Schechner et al.

by integrating a personalised fall rate estimate, and by extending the probability

distribution representing the chances of the femoral bone to break upon impact with

a mechanical impact force model. In previous work, we have developed a model

to predict a personalised fall rate λ. [114], [149], [167]. Here, we present a model

to predict a personalised impact force using subject-specific parameters, mostly

derived from QCT images, that is then combined with a probability distribution

that describes the stochastic nature of the fall dynamics. In case QCT images are

not available, we provide substitution equations for the required parameters. In

a further step, we conducted a sensitivity analysis of the calculator using clinical

data from the AFFIRM-CT cohort with the aim of assessing the influence of the

different parameters on the risk of hip fractures.

6.2 Methods
6.2.1 Impact force model

The probability of at least one hip fracture in the time interval (0, T ] is given

by the thinned Poisson process such that

P (Fracture in (0, T ]) = 1 − e−λpsT (6.1)

with λ as the fall rate, and pS = P (Fracture|Fall in (0, T ]) as the conditional

probability of a hip fracture given a fall [8]. A detailed description of the derivation

of this formulation can be found in the supplementary material or in the original

publication by Schechner et al. [8]. The conditional probability of a fracture given

a fall pS is defined as the probability of the fall-induced load exceeding the femoral
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strength, with the load modelled as a random variable accounting for the varying

fall dynamics. In the following sections, we present a personalised impact force

model characterising pS. We introduce a mechanical 1D mass-spring-damper system

consisting of rheological elements representing the hip complex and the ground. It

models the non-linear visco-elastic response of the hip upon impact, allowing the

calculation of the impact force in the hip. Thereby, the impact velocity is the critical

factor that defines the magnitude of the impact force. Since the impact velocity

varies with the fall dynamics, a second model that derives the range of possible

impact velocities given different fall scenarios is introduced. And last, we present a

probability distribution that describes the probability of different impact velocities

given the fall dynamics, allowing for the calculation of an absolute fracture risk.

Mechanical model

The mechanical model is a 1D model that reflects a standardised lateral impact

on the hip. It is composed of rheological elements representing the pelvis bone,

the femur, the soft tissue and the ground. As the centre of mass at the impact is

assumed to be in the centre of the torso, the model only depicts half of the hip.

The hemi-pelvis (HP), the femur and the ground (G) are modelled with linear

springs, and the visco-elastic behaviour of the soft tissue (ST) is represented by

a standard non-linear solid (Figure 6.1).

The equations of motion of the mechanical model are given as a system of

differential algebraic equations (DAE) such that

m ∗ x′′
4 + FBR + FHP + m ∗ g = 0

FHP − FF emur = 0

FS0 + FS1 − FF emur = 0

FS1 − FD1 = 0

FS0 + FS1 − FG = 0 (6.2)
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Table 6.1: List of symbols and abbreviations for the hip fracture risk calculator in
alphabetic order.

Symbol/abbreviation Meaning
cmh Height of the centre of mass at the start of the fall

measured from x = 0
cmi Height of the centre of mass at the start of the impact

measured from x = 0
F() Forces in the rheological elements of the ground (G),

soft tissue (ST), femur and hemi-pelvis (HP)
FSR Ratio between the fall-induced peak force applied to

the femur FF emur and the femoral strength FStrength

fasS0, fasS1 Spring force amplitude of the soft tissue
h() Initial height of the ground (G), soft tissue (ST), femur

and hemi-pelvis (HP)
height Full body height
k() Stiffness of the rheological elements of the ground (G),

soft tissue (ST), femur and hemi-pelvis (HP)
kBRcrit

Critical stiffness of the body resistance, resulting in a
FSR = 1

m Effective mass
pS Conditional probability of a fracture given a fall
rkBR Relative value of the stiffness of the body resistance

so that rkBR ∈ [0, 1]
T Time interval of the Poisson process
timp Time at impact with t = 0 at the start of the descent

phase of a fall
vimp Velocity at impact, when the hip touches the ground
weight Full body weight
α Exponent of the probability distribution describing

the fall dynamics
λ Fall rate characterising the Poisson process
µD1 Soft tissue damping coefficient

with F() as the rheologic elements’ corresponding forces that depend on the variables

x1(t), x2(t), x21(t), x3(t), x4(t), and m = 0.5 ∗ 0.678 ∗ weight as the effective mass

of the upper body [73] and g = 9.81m/s2 as the gravitational acceleration. The
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Mass
Torsox

kBR

vimp

kHP
Hemi-Pelvis

kF emur Femur

fasS0 NL Soft Tissue
fasS1

µD1

kG Ground

Hip contact (t = timp)

x4

x3

x21

x2

Ground surface

x1

Figure 6.1: Drawing of the impact force model: The fall dynamic model consists of the
spring kBR, which is used to calculate the impact velocity. The mechanical 1D model
consists of rheological elements representing the hip complex and the ground. It requires
the impact velocity as defined by the fall dynamics model as an initial condition.

initial conditions of the DAE system are defined as follows:

x′
4(0) = −vimp

x4(0) = hG + hST + hF emur + hHP

x3(0) = hG + hST + hF emur

x21(0) = hG + hST

x2(0) = hG + hST

x1(0) = hG (6.3)

with vimp as the impact velocity and h() as the initial height of the respective

rheological elements. By solving the DAE for x1(t), x2(t), x21(t), x3(t) and x4(t),
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the impact force can be calculated. Thereby, the impact velocity vimp is the

only initial condition that changes depending on the fall dynamics. Thus, it

is the critical factor that determines the magnitude of the impact forces in the

mechanical systems. The explicit formulations of the forces can be found in the

supplementary materials (Section 6.5).

Fall dynamics model

We decided to model the fall dynamics resulting in different impact velocities with

a linear spring representing the resistance of the body (BR) to the fall (Figure 6.1).

Thereby, the spring, characterised by the constant kBR, acts as an energy storage

mechanism during the fall and the impact, with more energy stored, resulting in

a lower impact velocity. The spring constant represents all parameters that can

vary from fall to fall and that are difficult to quantify. This includes different fall

scenarios and pre-impact movement strategies, e.g. the initial height of a fall, a

rotational movement during the descent, the activation of muscles, or the use of

an outstretched hand to dampen the fall, which may, in particular, be represented

by the parallel spring. But kBR also accounts for other parameters of the 1D

mechanical model that vary from fall to fall and thus are not realistically reflected

by a standardised lateral fall, as, for example, the influence of impact site and

orientation on the soft tissue thickness [107].

To cover all possible fall scenarios of an individual, kBR can be any number within

its physically defined range. Thereby, the upper limit of the range was derived by

equating an individual’s potential energy to the elastic potential energy of a spring,

given by m∗g∗(cmi−cmh) = 0.5∗kBR∗(cmi−cmh)2, with cmh = 0.53∗height+hG

as the height of the centre of mass at the start of the fall when standing [73], and

cmi = hHP + hF emur + hST + hG as the height of the centre of mass at the start

of the impact. It follows that the upper limit of the spring constant is given by

kBRmax = −2∗m∗g
cmi−cmh

. This represents a fall scenario in which all potential energy is

stored in the spring, resulting in an impact velocity of vimp = 0. The lower limit

of the spring constant was set to kBRmin
= 0, representing a fall scenario in which
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all potential energy is converted into kinetic energy. Accordingly, the maximum

impact velocity is reached when the spring constant is set at its minimum.

Calculating the impact velocity vimp requires the time at impact timp, defined as

the time of the hip complex, respectively, the soft tissue, starting to touch the ground.

It can be obtained by solving the differential equation m∗x′′+kBR∗(x−cmh)+m∗g =

0 with the initial conditions x(0) = cmh and x′(0) = 0, simulating a fall from

standing height without initial velocity. By setting the solution of the differential

equation to x(t) = cmi and solving for t, the time at impact timp is given by

timp =
√

m

kBR

∗ arccos
(

kBR ∗ (cmi − cmh) + g ∗ m

g ∗ m

)
(6.4)

The impact velocity vimp can be derived by differentiating the solution of the

differential equation x(t) and solving it for t = timp, resulting in

vimp = −
√

m

kBR

∗ g ∗ sin

(√
kBR

m
∗ timp

)
(6.5)

In view of the preceding derivations, it is clear that the spring constant kBR defines

the impact velocity of the hip. The impact velocity, in turn, defines the magnitude

of the impact force in the hip complex and, consequently, also in the femur. Thus,

kBR is the critical factor determining whether the peak impact force in the femur

FF emur exceeds the femoral strength SF emur. Let’s define the force to strength ratio

(FSR) as FSR = FF emur/SF emur, and kBRcrit
as the critical value of kBR within

its range resulting in FSR = 1. It follows that for all kBR ≤ kBRcrit
, FSR ≥ 1 is

reached, and thus a fracture will occur, while all kBR > kBRcrit
result in FSR < 1,

and subsequently no fracture will occur.

Probability of the fall dynamics

The previous section showed how the critical body resistance spring constant kBRcrit

that results in a FSR = 1, and thus in a fracture, is defined. However, deriving the

absolute fracture risk requires the likelihood that a specific fall scenario reflected by

kBR occurs. To do so, kBR is modelled as a random variable following an exponential

probability distribution of the form f(y) = (α + 1) ∗ yα. We chose an exponential

distribution because of its inherent non-linearity, monotony and simplicity, as it
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requires only one parameter to be characterised. With a positive value of α, the

function is monotonically increasing in a non-linear way, and the distribution’s

shape eventually reflects what can be observed in reality: Only around 3% of all falls

result in a hip fracture [43], indicating that falls with an impact force high enough

to cause a fracture are relatively rare. Falls with an impact force below the critical

force level are more frequent and occur with a significantly higher probability.

To assign kBR to the probability distribution, the relative kBR given as rkBR =

kBR/kBRmax was calculated, so that rkBR ∈ [0, 1]. Accordingly, the probability

mass function describing the occurrence of a fall resulting in specific impact

velocity is given by

f(y = rkBR) = P (y) = (α + 1) ∗ yα (6.6)

and the cumulative distribution function is given by

F (y = rkBR) = P (Y ≤ y) = y(α+1) (6.7)

Since all kBR ≤ kBRcrit
result in a fracture, it follows that the probability of a

fracture conditioned on a fall pS can be derived by evaluating Equation (6.7) for

the relative rkBRcrit
, given by

pS = F (y = rkBRcrit
) (6.8)

6.2.2 Model parameters
Personalised parameters

The majority of the personalised parameters required for the model can be extracted

from QCT images. These include femoral height hF emur, hemi-pelvis width hHP , soft

tissue thickness hST , femoral strength SF emur and femoral stiffness kF emur. Ultimate

strength and stiffness of the femur can be estimated using FEA, which normally

requires a BMD calibration. The various modelling options when performing FEA

may require the use of correction factors or cross-calibrations between specific

modelling approaches. In particular, a correction may be applied for the strain-

rate-dependent behaviour of bone tissue, which is not accounted for in commonly



6. A novel fragility hip fracture risk calculator 106

used quasi-static models. The processing of the computed tomography (CT) images

and the FEA pipeline used in this work is presented in Section 6.2.3. Other

personalised parameters needed include height, weight, and the number of falls

during the past 12 months.

Substitution equations for QCT-based personalised parameters

In case no QCT images are available, substitution equations using sex, height, weight

and aBMD from DXA can be used to estimate the QCT-based input parameters.

Alternatively, if available, other sources could be imagined to substitute QCT-based

parameters, e.g. whole-body DXA scans for body composition purposes.

In this work, relationships to substitute femoral height hF emur, femoral strength

SF emur and femoral stiffness kF emur were derived using the FEA results of the

AFFIRM-CT cohort that was analysed in this work (see Section 6.2.3). Trochanteric

soft tissue thickness hST can be calculated with BMI, using the relationship described

by Cameron et al. [183]. Hemi-pelvis width hHP can be derived using the relationship

presented by Contini et al. [184], calculating hip width given the height and sex. As

this relationship calculates total hip width, femoral height and soft tissue thickness

need to be subtracted. The detailed derivation of these substitution regressions can

be found in the supplementary materials (Section 6.5). Table 6.2 gives an overview

of the personalised model parameters and their substitution equations.

Soft tissue material model

The parameters for the standard non-linear solid characterising the soft tissues

were fitted using data from indentation experiments, which investigated the non-

linear visco-elastic behaviour of excised human trochanteric soft tissue samples

(unpublished work by Cameron et al. [186]). In that work, stress-relaxation

experiments using three different step-strains during a constant loading time and

a quasi-static force-controlled experiment were conducted. The experimental

data showed that the stiffness and, to a lesser extent, the damping properties

are dependent on the soft tissue thickness hST . In a first approximation, we

hypothesised that the trochanteric soft tissues are a homogeneous material with
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constant properties and that the varying mechanical properties among individuals

can be modelled using a personalised soft tissue thickness alone. Consequently,

the parameters that constitute the standard non-linear solid, fasS0, fasS1 and µD1

are not personalised but fixed (see Table 6.3). The detailed derivation of these

parameters is described in the supplementary materials (Section 6.5).

Fixed parameters

Due to the lack of a method to compute a personalised hemi-pelvis stiffness, kHP was

defined as the median of the quasi-static stiffness values reported in an experiment

testing 10 isolated pelvis bones in a sideways configuration [187]. As these values

were obtained using quasi-static experiments, we applied a strain-rate correction.

We are not aware of any relationship to calculate the pelvis stiffness using other

body parameters, hence no substitution equation could be provided. Ground

stiffness kG was calculated as follows:

kG = EG

R2
impactπ

hG

(6.9)

EG and hG are Young’s modulus and height of the ground, and Rimpact is the radius

of the contact area upon impact, which is assumed to be circular. Rimpact was set

to 2.5cm, which is in line with different studies that investigated forces and contact

areas upon impact on the hip [89], [188], [189]. Ultimately, a strain-rate correction

factor was used to correct the quasi-static femoral strength and stiffness of the

femur and hemi-pelvis. The quasi-static strain rate was derived from Guillemot

et al. [187] and defined as 5.13 × 10−4s−1. The strain rate of a fall was calculated

from analytically derived values and was set to 0.275s−1. Using the relationship

E ∼ ϵ̇ 0.05 presented by Peruzzi et al. [190] resulted in a correction factor of

1.369. This is in line with the results of a study that compared the prediction

accuracy of quasi-static FEA for the ultimate strength and stiffness values assessed

experimentally in drop tower tests with thirteen proximal femora [191]. An overview

of the fixed parameters is given in Table 6.3.
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Table 6.3: Overview of the fixed parameters.

Parameter Unit Value Source

fasS0 [N·m2] 0.0133 from Cameron et al. [186]
fasS1 [N·m2] 0.2581 from Cameron et al. [186]
µD1 [N·m2·s] 0.0063 from Cameron et al. [186]
kHP [N/m] 587’000 median value from isolated pelvis ex-

periments [187]
hG [m] 0.05
EG [Pa] 3 × 1010 elastic modulus of concrete
Rimpact [m] 25 × 10−3 estimated based on data from litera-

ture [89], [188], [189]
kG [N/m] 7.854 × 1010

Strain rate cor-
rection factor

[-] 1.369 derived with the relationship described
by Peruzzi et al. [190]

kHP refers to the quasi-static value.

6.2.3 Calibration and sensitivity analysis of the calculator
Data

For the calibration and sensitivity analysis of the calculator, data from the AFFIRM-

CT dataset ("A Fragility Fracture Integrative Risk Model for CT Recycling") were

used. The AFFIRM-CT study is a prospective observational study that was

conducted between 2021 and 2024 with the aim of identifying factors for fall and

fragility fracture risk prediction. Briefly, community-dwelling older adults aged

65 and older who underwent a CT scan that included the hip at the University

Hospitals of Bern and Geneva were eligible for study participation. Exclusion criteria

were a prior hip fracture, life expectancy of less than one year, being bedridden

or in a wheelchair, living in a nursing home, suffering from a bone pathology, or

cognitive impairment. Eligible individuals were contacted by phone call or letter

for enrolment in the study. Enrolled participants were invited for a single visit to

the respective medical centre. During the visit, participants underwent DXA scans

of the lumbar spine and hip. At the same time, various variables in the field of

medical history, cognitive status and physical performance were assessed. After

the examination, individuals were followed up for 18 to 36 months, and phone

calls were made to assess incident falls and fractures. The study was approved by
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the local ethics commissions in Bern and Geneva (BASEC ID: 2019-01327). All

participants provided written informed consent.

CT processing and FEA

CT processing and FEA were performed using existing methods from our group

[185], [192]. Details can be found in the respective publications. CT images were

calibrated with an asynchronous calibration procedure using monthly calibration

scans containing a hydroxyapatite phantom (QRM-BDC6 from QRM GmbH,

Mohrendorf, Germany) with six inserts covering volumetric bone mineral density

(vBMD) values ranging from 0 to 800mg/cm3. Femur and pelvis bones were

segmented using a model based on the nnU-Net method [192]. Segmentation masks

and calibrated vBMD images were used as input for a bilateral version of the

vBMD pipeline described in Dudle, Gugler et al. [185]. The segmentation masks

of both femurs are used to estimate an implicit coordinate system of the proximal

femur consisting of two intersecting axes: a neck and a proximal shaft axis. The

knowledge of the coordinate system is used to define a rigid body transformation

of the segmentation mask in voxel space. Based on the transformed mask, a voxel

mesh file is written for a load case mimicking a standardised fall to the side with

the diaphysis axis inclined by 10° with respect to the ground. The voxel mesh is

used in a nonlinear quasi-static finite element (FE) solver with an elastic-perfectly

plastic constitutive model. A load is applied to the femoral head. Femoral strength

is defined as the reaction force acting on the femoral head when it reaches a vertical

displacement of 4% of the vertical distance between the femoral head centre and

the most lateral point of the greater trochanter in the fall configuration. The same

distance is used for the femoral height hF H in the mechanical model. The knowledge

of the two femoral head centres is used to estimate the personalised pelvic width,

from which the hemi-pelvis width hHP is derived. Trochanteric soft tissue thickness

hST was measured with an algorithm based on the same femoral coordinate system,

finding the shortest distance from the most lateral point of the greater trochanter

in fall configuration to the air-soft-tissue boundary [183].
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Since the femur is represented by a linear spring in the mechanical model,

femoral stiffness kF emur was calculated by dividing femoral strength SF emur by

the displacement when the respective point is reached in the force-displacement

curve. Femoral strength, as well as femoral and pelvis stiffness, were corrected for

strain-rate dependence using the correction factor given in Table 6.3

Calibration of the calculator

The first step to calibrate the model was calculating kBRcrit
for every participant. If

both sides of the femur could be computed, the side-dependent parameters (SF emur,

kF emur, hF emur, hST ) were taken of the side with the smaller femoral strength. If

only one side was computable, those values were used. If the soft tissue thickness

hST was not detectable on the weaker strength side but was available on the other

side of the body, that value was used. All missing variables were substituted with

the regression equations presented in Table 6.2. Observations with a follow-up time

of less than 6 months were excluded. The number of prior falls was derived by

adding up the number of reported falls during the 6 months prior to the examination

and the number of falls prospectively reported in the first 6 months of follow-up.

The critical value of the body resistance spring constant kBRcrit
was derived by

solving the DAE system (see Equation (6.3)) so that the FSR = FF emur/SF emur = 1,

with a tolerance level of 1%. To calibrate the model, the parameter characterising

the probability function that assigns the chances of different fall scenarios (see

Equation (6.7)) was fitted so that the predicted fracture incidence of the AFFIRM-

CT cohort corresponded to the annual age-adjusted hip fracture incidence in

Switzerland (men: 160 per 100’000 per person years, women: 400 per 100’000

per person years) [10]. The incidence was weighted according to the share of

male and female participants in the analysed data, resulting in an incidence of

234 per 100’000 person years.

Sensitivity analysis

The goal of the sensitivity analysis was to assess the influence of the model parame-

ters on the fracture risk. The data of the AFFIRM-CT cohort was used to define
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the mean and standard deviation (SD). Due to the lack of information about the

pelvis stiffness, these numbers were calculated from the data presented by Guillemot

et al. [187]. SD were calculated for all variables except the fall rate. A parameter’s

influence on the fracture risk was examined by computing the conditional fracture

probability pS and the one-year fracture probability P (Fracture in (0, T = 1]) for

SD between -2 and 2 while holding all other parameters at the mean value (SD = 0).

For the calculation of the fracture probability, the fall rate was also held at its mean.

Risk gradients within 1 SD around the reference values were calculated to

quantify the influence of a parameter. To assess the influence of decreased bone

strength on the sensitivity of the other parameters, the procedure was repeated with

all parameters being held at their mean values (SD = 0) except for bone strength,

which was set to a constant value of -1 SD below the populations mean.

As defined in Equation (6.1), the probability of a fracture is dependent on the

fall rate λ and the conditional fracture probability pS (see Equation (6.1)). To get

insight into the influence of those two parameters on the fracture risk, the risk was

calculated for the range of possible fall rates and different pS.

Furthermore, the influence of the soft tissue thickness hST on the peak impact

force was assessed by evaluating the DAE system (see Equation (6.3)) when all

parameters (inclusive rkBR) were held constant at the cohorts’ mean, and varying

hST in its range. A linear regression was then fit to compare the influence of the

soft tissue thickness on the peak impact force to the results derived by Robinovitch

et al. [97]. Similarly, the influence of the stiffness parameter kBR on the peak

impact forces was evaluated by varying it from its minimum to maximum while

holding all other parameters at the mean value.

6.2.4 Software

The software for the impact force model was implemented in python using the

packages pandas and numpy. The DAE system was solved with a solver for dynamic

simultaneous simulations (mode 4) provided by the gekko package [193], [194].
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6.3 Results

In total, 374 participants were enrolled in the AFFIRM-CT study. Two were

lost before the examination, and ten individuals were excluded due to a follow-up

time of less than six months. Of these, 42 did not converge when solving the

DAE system, resulting in a total of 320 evaluated data points. Since some QCT

images were not successfully processed or did not include the full region of interest,

several observations had missing variables. Of the 320 individuals included in

the analysis, 97 (30.3%) were female, and 168 (52.5%) were recruited in Bern.

The summary statistics of the minimal required parameters and the QCT derived

parameters are presented in Table 6.4.

Table 6.4: Summary statistics of the model parameters and the output values.
The numbers include substituted missing values.

Variable Mean (SD) Min Max NA’s a

Minimal required parameters
Weight [kg] 75.6 (14.7) 39.5 120.4 -
Height [cm] 169.5 (8.6) 139.7 189.8 -
Prior falls 0.62 b 0 15 -
aBMD [g/cm2] 0.751 (0.132) 0.452 1.314 3

QCT derived parameters
hST [mm] 40.38 (15.23) 8.01 77.55 13
hHP [mm] 86.89 (8.20) 47.91 105.12 38
hF emur [mm] 64.46 (5.93) 46.75 77.75 44
SF emur

c [N] 4207 (1366) 1704 10015 44
kF emur

c [N/m] 1.616 × 106 (4.985 × 105) 6.497 × 105 3.736 × 106 44

Model output
Fall rate λ 0.794 b 0.594 5.035 -
rkBRcrit [-] 0.624 (0.143) 0.000 0.908 -
vimp

d [m/s] 2.24 (0.41) 1.12 3.72 -
pS 3.495 × 10−3 b 0.000 1.481 × 10−1 -
P (Fracture) 2.330 × 10−3 b 0.000 8.424 × 10−2 -
a number of missing values before substitution; b no standard deviation provided due
to non-normal distribution; c quasi-static values; d for kBR = kBRcrit

Abbreviations: SD = standard deviation; NA’s = missing values

The mean value of the critical relative body resistance stiffness rkBRcrit
was

0.624. The corresponding average impact velocity of the hip with kBR at its critical

value was 2.24 m/s. All these values are also presented in Table 6.4. The parameter

α defining the shape of the exponential distribution describing the chances of
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different fall scenarios was fit to α = 18.87. The probability mass function for rkBR

describing the chances of varying fall dynamics is presented in Figure 6.2. The

blue dotted line indicates the cohort’s mean of rkBRcrit
. The area under the curve

from 0 to 0.62 refers to the conditional fracture probability pS.
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Figure 6.2: Probability mass function modelling the stochastic aspects of the fall
dynamics represented by rkBR. The blue line indicates the mean value of rkBRcrit in the
AFFIRM-CT cohort. The exponent α was fitted so that the hip fracture incidence of the
cohort corresponds to the age-adjusted annual incidence in Switzerland.

The mean of the conditional fracture probability was pS = 3.495 × 10−3, and

the mean of the probability of at least one hip fracture P (Fracture in (0, T = 1]) =

2.330 × 10−3 (Table 6.4). This corresponds to the annual fracture incidence in

Switzerland for which the model was calibrated [10].

In Figure 6.3a, an example of the relative displacement during the impact in

every component of the mechanical model is presented. It is clearly visible that

the soft tissues deflect the most upon impact. Figure 6.3b shows an example

of the resulting impact force. The example is calculated with the AFFIRM-CT

data’s mean values for all parameters.

Figure 6.4 shows the influence of the different parameters on the conditional

fracture probability pS, and the fracture risk P (Fracture in (0, T ]). Figure 6.4a and
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Figure 6.3: Example plots of (a) the relative displacement in every component of the
mechanical model upon impact and (b) the resulting impact force. The time t = 0 is
defined as the start of the impact on the ground.

b present the results of the influence of every parameter when all others are held at

the population mean (SD = 0). Thereby, the femoral strength SF emur and the soft

tissue thickness hST are the two dominant factors, increasing the fracture risk with

decreasing values. Increasing weight resulted in a slight increase in the fracture

risk, too. In Figure 6.4c and d, all parameters were held at their mean values (SD

= 0) except for bone strength, which was set to a constant value of 2801 N (-1SD

below the population mean). It can be observed that the overall fracture risk is

substantially higher when bone strength is decreased. Furthermore, the influence of

the parameters on the fracture risk changed slightly and became stronger. The soft

tissue not only resulted in an increased fracture risk with decreasing thickness but

also appeared to be protective with increasing thickness. Similarly, an increase in

weight led to a higher fracture risk, while a decrease in weight had the opposite

effect. These findings were also reflected in the results of the fracture risk gradients

(Table 6.5). For the analysis of the influence of the parameters when all others were

held at the mean values, the gradients of femoral strength, soft tissue thickness and

weight were around one order of magnitudes larger (Column 1). Furthermore, the
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gradients were increased by approximately one order of magnitude for the analysis

with a decreased bone strength (Column 2), indicating that the influence of the other

parameters on the fracture risk is substantially higher with decreasing bone strength.
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Figure 6.4: Results from the sensitivity analysis showing the influence of the model
parameters on the (left column) probability of a fracture conditioned on a fall pS , and
(right column) on the probability of at least one fracture in the time period of one year
P (Fracture in (0, T = 1]). Plots a and b show the influence of every parameter when all
others are held at the population mean (SD = 0). Plots c and d show the influence with
all parameters held at their mean values except for bone strength, which was set to a
constant value of -1 SD below the population mean (2801 N).

The influence of the soft tissue thickness hST on the peak impact force is

shown in Figure 6.5a. Thereby, the peak impact force increases with decreasing

soft tissue thickness. The linear regression fitted to these data points reveals a
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Table 6.5: Fracture risk gradients of the model parameters quantifying the influence of
every parameter when all others are held at the mean (Column 1), or with all parameters
held at their mean values (SD = 0) except for bone strength, which was set to a constant
value of -1 SD below the population mean (2801 N; Column 2).

1 2
Variable
Weight 1.610 × 10−4 4.555 × 10−3

Height 6.060 × 10−5 1.392 × 10−3

hST −2.722 × 10−4 −8.673 × 10−3

hHP −1.984 × 10−5 −4.625 × 10−3

hF emur −1.984 × 10−5 −4.623 × 10−4

SF emur −7.284 × 10−4 −1.973 × 10−2

decrease of -68.6 N per every additional mm of soft tissue thickness (p-value =

3.15e-07) in peak impact force.

In Figure 6.5b, it is shown how kBR influences the peak impact force through its

energy-storing mechanism. The minimum peak impact force of 0 N is reached when

all energy is absorbed during the fall, reflected by rkBRcrit
= 0. On the contrary,

when no energy is absorbed during the descent, represented by rkBRcrit
= 0, the

peak impact force is at its maximum (here 11802 N). This example was calculated

with all parameters set to the cohort’s mean values.
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Figure 6.5: Influence of (a) hST and (b) rkBR on the peak impact force in the hip. The
displayed forces are strain-rate corrected.

When comparing Figure 6.4a and Figure 6.4b, it can be seen that the probability
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of at least one fracture P (Fracture in (0, T ]) is a scaled version of the conditional

fracture probability pS. In Figure 6.6, the influence of the fall rate λ and the fracture

probability conditioned on a fall pS on the absolute fracture risk is illustrated. It is

clearly visible that the risk of a fracture increases with an increasing fall rate λ and

an increasing conditional fracture probability pS in a non-linear manner.
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Figure 6.6: Influence of the fall rate λ and the conditional fracture probabilities pS on
the fracture risk.

6.4 Discussion

In this article, we present a new mechanistic stochastic hip fracture risk calculator

that is based on mechanistic and stochastic modelling approaches. The calculator

integrates the stochastic aspects of falls and the fall-induced impact force and uses

bone strength estimate from QCT FEA to calculate a one-year absolute fracture risk.

In contrast to other mechanistic prediction tools, the mechanical model presented

here is composed of rheological elements representing the trochanteric soft tissue,

the femur, the pelvis and the ground, allowing the evaluation of the influence of the
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different elements on the fracture risk. Furthermore, no specific fall scenarios are

modelled, but the range of possible impact forces given the anthropometric measures

for an individual is calculated. An exponential probability distribution is then used

to derive the probability of an impact force high enough to initiate a fracture to

occur. By integrating this probability with the probability of at least one fall, an

absolute fracture risk is derived. Next to height, weight, and the number of falls

during the prior 12 months, all input variables can be extracted from QCT images.

In case such images are not available, substitution equations to calculate the required

input parameters based on anthropometric and densitometric data are provided.

Comparing the output variables of the mechanical model with the literature,

these are quite consistent with experimentally derived values. The average impact

velocity for kBRcrit
is 2.24 m/s. This is comparable with experimental values

measured during unintentional sideways falls of young, healthy volunteers, reporting

a mean velocity of 2.75 m/s (SD 0.42m/s) [80] and 3 m/s (SD 0.83 m/s) [75]. The

models’ predicted impact forces, given the fall dynamics, range from 0 to 11802 N

when all parameters are held at the cohort’s mean value. Robinovitch et al. reported

peak impact forces between 4050 - 6420 N measured with an impact pendulum [97],

and Fleps et al. derived impact forces between 2947 - 7601 N using a sideways fall

simulator [95]. Thus, the impact forces derived from the model presented here cover

a wider range when compared to experimentally derived values. However, this was

to be expected, as the full range of kBR, representing all fall scenarios from no energy

storage at all to complete energy absorption during the descent, was modelled. The

regression equation that quantifies the influence of the soft tissue thickness on the

peak impact force is close to what was reported by Robinovitch et al. [97] (model

here: - 67.3 N/mm; Robinovitch et al.: - 71 N/mm). This indicates that the 1D

soft tissue model developed by Cameron et al. [186] can model the non-linear

visco-elastic behaviour of the trochanteric soft tissue during an impact on the hip.

The sensitivity analysis showed that bone strength, soft tissue thickness, and fall

rate are the parameters that dominate the fracture risk. Decreased bone strength

and low soft tissue thickness result in a high fracture probability; the influence of
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these two parameters on the fracture risk is even more pronounced in individuals

with both decreased bone strength and low soft tissue thickness. At the same time,

increased soft tissue thickness or decreased weight in individuals with decreased

bone strength can be protective of fragility fractures. The thinned Poisson process

scales the conditional fracture probability pS by combining it with the fall rate λ

and, through that, calculates an absolute fracture risk. The fracture risk increases

with an increasing fall rate, but its influence is also dependent on the conditional

fracture probability pS itself; the absolute risk is low if the conditional probability

is low but rises in a non-linear way if this number is increasing. It shows clearly

that both a high conditional fracture probability pS (e.g., due to decreased bone

strength, low soft tissue thickness, or the inability to dampen a fall), together with

a high fall rate, are required for a fracture to occur. The exposure to either a high

conditional fracture probability or a high fall frequency might be insufficient to

initiate a fracture. Hence, the model eventually gives insight into why aBMD alone,

known for its low sensitivity and high specificity [23], [28], [176], is not a robust

predictor for hip fractures, and why many fractures happen in individuals with

non-osteoporotic aBMD [25], [26], [27]: the overall fracture risk appears to be fall

rate dependent. This seems logical when considering that falling is the underlying

mechanism causing hip fractures. In line with these findings, several studies have

demonstrated the predictive ability of falls for fragility fractures [58], [195]. Thus,

the model seems to capture the relevant aspects of the risk of fragility hip fractures

observed in empirical data and eventually is able to explain why individuals with

identical bone strength can have different fracture outcomes.

The here presented model might be criticised for various assumptions and

simplifications. First, we used a simple mass-spring model to calculate the impact

velocity that neglects the biomechanics of a fall. However, although it is possible

to model fall scenarios with dynamic models, the countless possibilities of how

a fall could occur raises the question: Which fall scenarios should be modelled?

Due to the limited information to answer these questions, we decided to model

the fall dynamics and influence of pre-impact movement strategies on the impact
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velocity indirectly by deriving the range of physically possible impact velocities

given an individual’s anthropometric parameters. Therefore, aspects that vary

from fall to fall and that can not be predicted, such as the initial height, the

presence of rotational movement, the activation of muscle, or the outstretching

of the hand, are represented by the range of kBR.

Next, we acknowledge that the use of a 1D mechanical model to simulate

an impact on the hip following a sideways fall is a simplification of reality. In

addition, the model presented here lacks elements representing the skin, cartilage,

and ligaments of the hip complex. And last, the computation of bone strength

in just one loading configuration could be criticised. Nonetheless, we believe that

modelling different impact orientations of the hip is a complex problem that again

relies on many assumptions and simplifications, e.g. the variation of the soft tissue

thickness given impact orientation or the lack of knowledge about the anisotropic

material behaviour of the tissues in the hip complex. Similarly, the computation

of bone strength for different impact orientations with an FEA pipeline that was

validated with experimental data of one loading case eventually introduces an

undefined error in the strength estimation due to the anisotropy of the bone tissue.

Based on these considerations, we have decided to model the impact on the hip

with a simplified 1D mechanical model. The influence of factors that affect the

visco-elastic behaviour of the hip and that can vary among different fall scenarios

(e.g. the impact orientation or muscle activation) was again indirectly modelled

with the fall dynamics, represented by the range of kBR.

The use of a stochastic distribution to assign a probability to different fall-induced

impact forces opens several opportunities but also has its limitations. On the one

hand, it allows the calculation of an absolute fracture risk within a mechanistic

setting. Although mechanistic models can precisely estimate the outcome of an

event (here, the impact force following a fall), they do not directly inform about

the chances of this happening. To derive a risk, the output needs either to be

analysed with a statistical regression model (e.g. by relating the force-to-strength

ratio to the fracture risk using a Cox proportional hazard model [46]) or a stochastic
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distribution is needed to describe the occurrence of an input variable of the model.

To our knowledge, there exists only one other mechanistic model following the

latter approach [113]. In this model, the impact force is derived by modelling

a sideways fall with an inverted pendulum. A stochastic distribution is used to

assign the probability of possible angles of the inverted pendulum, characterising

different scenarios of a sideways fall.

However, the assumption about the shape of such probability distribution is a

major limitation. We chose an exponential distribution because its shape eventually

reflects what is observed in clinical data: Only around 1 - 3% of all fall events

are severe enough to result in a fracture [43]; falls resulting in an impact force

below the critical level, here defined through kBR > kBRcrit
, are more likely to occur.

With α = 18.87, low values of kBR are highly unlikely, while the probability of

kBR > 0.8 that represents impact forces in the lower range increases exponentially.

In addition, the exponential distribution has the advantage of being characterised

by only one parameter and its inherent non-linearity.

The direct validation of whether the chosen distribution and its parameter α

are appropriate is challenging, as the collection of the required empirical data is

not feasible. Nevertheless, this can be done indirectly by evaluating the model’s

prediction accuracy with a receiver operating characteristic curve in a cohort with

sufficient statistical power. Here, we have fitted α indirectly so that the fracture

incidence in the AFFIRM-CT data set corresponds to the age-adjusted fracture

incidence in Switzerland. This could also be done for other countries or geographical

regions by using the respective incidence. Furthermore, since the fracture incidence

differs between men and women, α could be fitted separately for each sex. Following

an even more personalised approach, the distributions could be adjusted based

on an individual’s physical ability to dampen a fall. Thereby, α could be defined

by a function that depends on age, sex, physical performance tests and other

factors that reflect this ability.

The mechanistic nature of the model allows for the assessment of different

aspects of fracture prediction and prevention strategies. First, it could give insights
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into whether improved femoral bone strength estimates, e.g. from HR-pQCT, in

comparison to aBMD or QCT-FEA based bone strength can improve fracture

risk prediction. Thereby, it could be assessed whether the precision errors of

the respective methods have a relevant influence on the change in fracture risk.

Furthermore, the effect of changes in aBMD upon osteoporosis treatment on the

fracture risk could be quantified. In addition, the model allows the assessment of the

protective effect of an individual wearing hip protectors as suggested by Robinovitch

et al. [92], [196] by adding it as an additional rheological element into the mechanical

model. And last, the model could be used to quantify the effect of different flooring

materials on the fracture risk, as already investigated by Laing et al. [109].

A further strength of the here presented model is the selection of the required

input parameters. For individuals with an available QCT image, the only additional

parameters needed are weight, height and the number of falls within the prior

year. In the case of no QCT image, bone strength can be estimated with other

densitometric measures, as for example, aBMD from DXA. With the exception of

the substitution equation that uses sex to calculate the soft tissue thickness and the

hemi-pelvis width, the model is solely based on physical parameters. Accordingly, it

is not necessary to consider the epidemiological variation of risk factors by sex, age

or ethnicity. In fact, these factors affect the mechanical parameters in a complex

way. To ensure that the substitution equations also apply to data other than the

AFFIRM-CT data, they must be validated with other data sets. Looking at the

time required to derive the fracture risk, this lies in a range that is feasible in a

clinical setting. Calculating femoral bone strength using the FEA pipeline developed

by Dudle, Gugler et al. takes approximately 15 minutes [185], with an additional 2

minutes needed for solving the DAE system and calculating the fracture probability.

With the use of the substitution equations, the calculation takes around 2 minutes.

Several aspects of the calculator could be improved and further developed. Due

to the lack of a method to estimate a personalised pelvis stiffness, we assumed a

constant value based on data from literature [187]. The mechanical model could

be improved with a method to extract a personalised pelvis stiffness from QCT
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images. At the same time, the results from the sensitivity analysis indicate that

pelvis stiffness has a limited influence on the fracture risk. Furthermore, instead of

modelling the femur with a linear spring, the nonlinear force-displacement curve of

the FEA could be integrated to derive the peak impact force. Another aspect is the

time horizon of prediction. For the analysis of the data presented here, a time span

of T = 1 was chosen to predict a one-year fracture risk. However, by adjusting T

to the time interval of interest, the model allows the risk prediction for any time

horizon. To do so, variables that are known to change over time, such as the bone

strength or fall rate, would need to be adjusted accordingly. This would allow a

comparison with FRAX® that predicts a 10-year fracture probability.

6.5 Conclusion

This article presents the framework of a novel mechanistic and stochastic fragility

hip fracture risk calculator, integrating the mechanical aspects of an impact on the

hip together with the stochastic aspects of a fall. The model’s output variables such

as the impact velocity of the hip or peak impact force in the hip complex align well

with experimental data from the literature. Furthermore, the sensitivity analysis

showed that the fall rate, trochanteric soft tissue thickness and bone strength are

the dominating parameters that influence the risk of fragility hip fractures. Thus,

the model is able to reflect observations from empirical data, indicating that it

can capture the intrinsic aspects that affect the risk of fragility hip fractures. The

mechanistic nature of the model allows to concentrate the stochastic aspects of

hip fractures in the fall dynamics. Furthermore, several aspects can be explored,

such as the effect of improved bone strength estimates on the prediction accuracy,

drug treatment effects on the fracture risk, or the preventive effect of hip pads

or different flooring material. To make the model clinically applicable, extensive

analysis of its prediction accuracy using cohorts with enough statistical power is

required to demonstrate its validity.
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Supplementary material

Derivation of formulas in the Schechner publication

The probability of k falls occurring in a specific time period (0, T ] is modelled

with a Poisson process given by

P (k falls in (0, T ]) = e−λT (λT )k

k!

with k as the number of falls and λ as the rate parameter characterising the Poisson

process. Since a fracture event is only possible once a fall occurs, the measure of

interest is the probability of at least one fall, given by

P (k ≥ 1 fall in (0, T ]) = 1 − e−λT

The probability that the assigned load is bigger than the femoral strength can

be described as the conditional probability of a fracture given as a fall and is

given by pS = P (Fracture|Fall) = P (Load > Strength). By combining the fall

rate parameter λ with the conditional probability of a fracture pS, a thinned

Poisson process given by

P (Fracture in (0, T ]) = 1 − e−λpsT



6. A novel fragility hip fracture risk calculator 127

Definition of the forces in the mechanical model

The forces of the mechanical model are defined as follows:

FBR = kBR ∗ (x4 − cmh − hG)

FHP = kHP ∗ (x4 − x3 − hHP )

FF emur = kF emur ∗ (x3 − x2 − hF emur)

FS0 = fasS0

h2
ST

∗ log
((x2 − x1)

hST

)
+ 100 ∗ fasS0

h2
ST

∗ log
((x2 − x1)

hST

)3

FS1 = fasS1

h2
ST

∗
(

log
((x2 − x1)

hST

)
− log

((x21 − x1)
hST

))

+ 100 ∗ fasS1

h2
ST

∗
(

log
((x2 − x1)

hST

)
− log

((x21 − x1)
hST

))3

FD1 = fasD1

h2
ST

∗ (x′
21 − x′

1)
(x21 − x1)

+

100 ∗ fasD1

h2
ST

∗ (x′
21 − x′

1)
(x21 − x1)

∗ 3 ∗ log
((x21 − x1)

hST

)2

FG = kG ∗ (x1 − hG)

Soft tissue material model

We conducted two types of experiments with human excised soft tissue to characterise

its visco-elastic behaviour. First, stress-relaxation experiments with different step

strains and a constant loading time of 50ms were performed. And second, quasi-

static force-controlled indentation experiments were conducted. The detailed

experimental setup is described in [186].

The experimental data were fit with a non-linear standard solid. The forces

in the non-linear springs and the damper are given by

FS = slope ∗ log(1 + ε) + 100 ∗ slope ∗ log(1 + ε)3

FD = slope ∗ ε′

(1 + ε) + 100 ∗ slope ∗ ε′

(1 + ε) ∗ 3 ∗ log(1 + ε)2

(1 + ε)
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with ε describing the relative displacement as strain. The slopes were based on

a spring force amplitude given by fas = fml ∗ π ∗ r2 with fml = 135 N as the

linear force module and π ∗ r2 with r = 0.025m as the indenter area. Hence, the

two spring force amplitudes are given by

fasS0 = ginf ∗ fas

fasS1 = g1 ∗ fas

with ginf = 0.05 and g1 = 0.95. The damping force coefficient is given by

µD1 = fas ∗ g1 ∗ τ1

with τ1 = 0.025s being fixed. The three parameters ginf , g1, and fml were fitted

using the stress-relaxation data, with ginf = 1 − g1. Since the quasi-static data

showed a dependency of fml on the soft tissue thickness hST , a correction factor

(1/h2
ST ) was introduced.
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Detailed derivation of substitution equations

For the substitution equations of the QCT derived parameters, all available data

points from the FEA analysis were used. For the femoral height hF emur, both body

sides were included in the analysis. Thereby, the average between the two femoral

height values was calculated and regressed to the height. If only one side was

available, this value was used. For the femoral strength SF emur, the total hip aBMD

was regressed to the femoral strength value of the corresponding site. For the femoral

stiffness kF emur, the equation was derived using the FEA results of both body sides.
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Figure 6.7: Relationship between femoral height hF emur and body height.

Table 6.6: Results of linear regression model to substitute hF emur

from height.

Coefficients Estimate Std Error t value Pr(> |t|)
(Intercept) -0.011260 0.004828 -2.332 0.0203
height 0.044806 0.002848 15.735 <2e-16

Adjusted R-squared: 0.4352. Residual standard error:
0.004516 on 319 degrees of freedom.
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Figure 6.8: Relationship between total hip aBMD and femoral strength SF emur.

Table 6.7: Results of linear regression model to substitute SF emur

from total hip aBMD.

Coefficients Estimate Std Error t value Pr(> |t|)
(Intercept) 8.53757 0.01387 615.76 <2e-16
log(aBMD) 1.56856 0.06471 24.24 <2e-16

Adjusted R-squared: 0.6557. Residual standard error: 0.1962
on 307 degrees of freedom.
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Figure 6.9: Relationship between femoral strength SF emur and femoral stiffness kF emur.

Table 6.8: Results of linear regression model to substitute kF emur

from SF emur

Coefficients Estimate Std Error t value Pr(> |t|)
(Intercept) 1.466e+05 1.916e+04 7.651 7.68e-09
SF emur 3.534e+02 4.106 86.069 <2e-16

Adjusted R-squared: 0.923. Residual standard error: 155000
on 617 degrees of freedom.



7
Discussion

7.1 Summary

In the previous chapters, the analyses undertaken to develop a novel fragility hip

fracture risk calculator and the model itself have been presented.

Chapter 3 to Chapter 5 describe the work conducted to develop a personalised

fall rate prediction model. Three cohorts that assessed various risk factors of

falling have been analysed and used for model development. Subsequently, the

coefficients of the three models were meta-analysed and compared. In contrast

to most other fall risk assessment tools, the models were developed with count

regression that allows the derivation of a fall rate. The presented work showed

that the number of falls in the prior 12 months is a robust predictor for future

falls among different cohorts. These findings were confirmed in the meta-analysis

of the model coefficients. Although various variables were shown to be associated

with the number of falls, fear of falling assessed with FES-I in the SCT cohort was

the only additional predictor that improved the model’s predictive performance.

Nevertheless, the number of prior falls as the only predictor included results in the

major limitation that the model cannot identify first-time fallers.

In Chapter 6, the framework of a novel fragility hip fracture risk calculator based

on the model developed by Schechner et al. was presented. The model integrates a

132
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personalised impact force model calculating the fall-induced impact force given the

a simplified fall dynamics and introduces a stochastic distribution to describe the

probability of different fall scenarios. The required parameters are estimated from

anthropometric and densitometric measures, and can be refined with QCT images.

Clinical data from the AFFIRM-CT study were used to assess the sensitivity of the

parameters and to demonstrate how the calculator models the risk of hip fracture,

confirming that the fall rate, the soft tissue thickness and the bone strength are

the three dominant factors determining fracture risk. Furthermore, the calculator

is able to model various observations from empirical data, such as the decrease in

fracture risk with increasing soft tissue thickness, indicating that it can capture

the intrinsic aspect affecting the risk of fragility hip fractures.

7.2 Essential points and noteworthy aspects

Developing a fragility hip fracture calculator based on mechanistic and stochastic

modelling approaches to derive a fracture risk is relatively new. So far, only one

model has been published that followed a comparable approach [113]. A prerequisite

for that is the understanding of the underlying physical process and that the required

methods to model these exist. Thus, the research conducted in the area of fall

risk, impact biomechanics, QCT-based FEA methods and fragility fractures are

indispensable for the development of a mechanistically and stochastically motivated

model. In the next two sections, noteworthy aspects of stochastic and mechanistic

aspects are discussed and related to literature.

7.2.1 Complexity of the model

Although almost exclusively all hip fractures are caused by a sideways fall that

impacts the postero-lateral aspect of the hip, the exact mechanism of how such an

event happens can vary significantly from case to case. Thereby, the fall dynamics

influences the resulting impact force and impact orientation of the hip. Furthermore,

the femoral bone strength is dependent on the loading direction, too. Accordingly,

numerous variables that define the resulting fracture risk depend on the dynamics
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of a fall. Nevertheless, even if the accurate modelling of the fall event is possible,

the problem of which fall scenario to model is still not solved.

The presented model was built in a way that tries to separate the fall-related

stochastic aspects from the mechanical aspects of the mechanism causing hip

fractures. This allowed for the introduction of standardised mechanical models, while

the stochastic aspects were concentrated in the probability distribution describing

the fall dynamics. Accordingly, a simplified 1D mechanical model representing the

hip impact of a standard sideways fall was introduced. In line with this, the FEA-

derived bone strength was calculated for a single load case representing a standard

sideways fall, and the soft tissue thickness algorithm measured a standardised

distance between greater trochanter and tissue-air-boundary. In contrast to FEA

modelling approaches that accurately represent the impact of the whole hip [91],

[96], the simplified 1D mechanical model is computationally not expensive and

allows for an easy subject-specific adaptation. Furthermore, by introducing separate

rheological elements representing the soft tissues, the femur, the hemi-pelvis, and

the ground, their influence on the impact force and fracture risk can be assessed.

The multiscale model presented by Bhattacharya et al. modelled specific fall

scenarios by varying the joint angles of a sideways fall [113]. The varying probability

of different falls was then introduced by assigning probability distributions to the

angles. Here, due to the lack of knowledge about the fall dynamics, no specific fall

scenarios were explicitly modelled, but a simplified model that derives the possible

range of an individual’s impact velocity using anthropometric data was introduced.

As a result, the complex fall dynamics is only indirectly represented, and no

additional assumptions, for example about the joint angles during a fall, are required.

7.2.2 Stochastic modelling aspects

The fall-related aspects determining the risk of hip fractures occur in a highly noisy

environment. This considers both the occurrence of a fall and the fall dynamics

itself. The fall rate parameter λ characterises the Poisson process that describes the

occurrence of a fall. As shown in the analysis of the three cohorts for developing



7. Discussion 135

a model that can estimate a personalised λ, no other predictors apart from the

prior fall number improved the model’s prediction accuracy. At first, it may seem

surprising that factors such as poor sight, impaired balance or muscle weakness

are not predictive of falling, as it is easy to imagine that these circumstances

can result in a fall. However, considering that the list of risk factors for falling

is long and countless combinations of factors can lead to a fall, it seems logical

that the risk factors defining an individual’s fall risk are highly subject-specific.

Furthermore, certain skills may compensate for the presence of risk factors and

can be protective of falls. Consequently, prior falls might be the best indicator of

whether an individual is exposed to the relevant risk factors.

The second stochastic aspect that influences the hip fracture risk is the dynamics

of a fall, which defines the resulting impact force. As mentioned in Section 1.4.2, it

is difficult, if not impossible, to predict how a fall will happen and which pre-impact

movement strategies will be triggered. Thus, both the occurrence of falls and the

fall dynamics underly a highly stochastic nature.

The lack of consideration of the stochastic aspects of a fall may explain why bone

strength alone is strongly associated with fragility hip fracture risk but has limited

predictive power at identifying individuals at risk of hip fractures in the individual

[28], [30], [31], [32], [33]. Furthermore, it can explain why the beneficial effect for

fracture prediction using improved bone strength estimate derived with FEA in

comparison to aBMD is smaller in the femur when compared to vertebral fractures.

In contrast to vertebral fractures, femoral fractures are almost exclusively the result

of a fall [20]. Thus, the effect of decreased bone strength on the hip fracture risk is

fall-rate dependent, as shown in the sensitivity analysis of the presented model.

Although recognised as an important risk factor, falls have not been integrated

into the original version of FRAX®, with the argumentation that they can not be

prevented by drug treatment [4]. However, it could be hypothesized that some

aspects of the risk of falling are indirectly covered by clinical risk factors such as age,

sex, prior fractures and BMI, as they are all known to be related to the risk of falling.
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The calculator presented by Schechner et al. integrated the stochastic aspects by

using a Poisson process to model the occurrence of a fall, and the use of a random

variable following a Weibull distribution to describe the probability of the fall-

induced impact force exceeding the femoral strength. The presented model refined

this approach by integrating a personalised impact force model and an FEA based

bone strength estimate. Through that, the stochastic aspects of the fall-dependent

fracture risk are concentrated in the parameter α that describes the probability

of the fall dynamics. Furthermore, instead of using an age-dependent relationship

for the estimate of the fall rate λ, a personalised model was developed. These

adaptations allow the calculation of a personalised fracture risk for the individual.

7.2.3 Mechanistic modelling aspects

The model’s mechanistic nature comes with several advantages. First, it allows

the functional understanding of various observations in clinical data, such as the

big overlap in bone strength between individuals suffering from a fracture and

others who don’t, the increase in fracture risk with age, or why a prior fracture

is a risk factor for a future fracture [8].

Furthermore, it can capture the complex interaction between the parameters

and allows the direct quantification of how these influence the fracture risk without

the need for clinical data. To gain the same information from a regression-based

model is more tedious and data-dependent. As an example, a review by De Laet et

al. assessed the influence of BMI on fracture risk in a meta-analysis including 12

prospective cohorts [197]. They concluded that the influence of BMI is non-linear

with a larger risk in the lower range and dependent on other factors such as BMD.

In contrast, the model presented here allows for a direct understanding of these

observations without requiring clinical data, e.g. by assessing the influence of height,

weight, and soft tissue thickness on the fracture risk. This is a direct consequence

because the model captures the underlying mechanism of hip fracture risk.

Other than that, the model can assess whether different methods used to measure

the required model parameters improve the model’s prediction accuracy. As an
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example, bone strength estimates could be derived with aBMD from DXA, QCT-

based FEA, or HR-pQCT, giving insight into whether improved bone strength

estimates are beneficial for the predictive performance. Another example is the

assessment of soft tissue thickness, which can be measured with ultrasound [198],

with whole-body DXA [198], extracted from CT images [183], or calculated using

substitution equations with BMI and sex. And last, it can give insight into which

preventive measures, e.g. fall prevention, hip padding systems as suggested by

Robinovitch et al. [97], or drug treatment affecting BMD are the most effective.

Nevertheless, to assess the model’s performance, it needs to be calibrated and

validated. Other than that, several aspects could be refined and extended. In the

following section, these points are outlined and discussed.

7.3 Future directions
7.3.1 Model calibration and validation

To proof the model’s validity, the assessment of the hip fracture risk in cohorts

with sufficient statistical power is required. In a first step, the model needs to be

calibrated by fitting the parameter α so that the mean fracture risk corresponds to

the geographical corresponding fracture incidence. As the fracture incidence differs

between sex, two different α’s could be fitted. In a second step, the individual’s

fracture risk could be calculated, and a receiver operator characteristic (ROC) curve

analysis assessing the sensitivity and specificity of different fracture probability

thresholds could be assessed. The model’s performance could be compared to

other prediction models such as FRAX®. Time-sensitive parameters such as bone

strength or the fall rate should be adjusted according to the chosen prediction

time interval. Additionally, the influence of competing mortality on long-term

fracture risk could be assessed [199].

Suitable data sets would be the AGES-Reykjavik cohort or data from the MrOS

study. AGES-Reykjavik data set includes the required data for the here presented

model, such as CT images and variables related to falls and fractures [200]. In the

MrOS cohort, also aBMD from DXA and HR-pQCT images are available [201].
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7.3.2 Model refinement

Fall rate model The risk of falling directly determines the risk of hip fractures. If

an individual does not fall, chances are extremely low that the bone will fracture. The

presented model captures this by making the risk of fracturing fall rate dependent.

This results in a relatively small fracture probability for a low expected fall rate,

even if the conditional fracture probability pS varies significantly. Consequently,

the accurate prediction of a fall rate is a prerequisite for an accurate fracture risk

prediction. However, the fall rate model developed and presented in Chapter 3 -

Chapter 5 solely includes the prior number of falls as a predictor. Thus, the fall

rate of individuals without a history of falls is identical, and the model cannot

catch first-time fallers. Accordingly, the identification of other variables that are

predictive of falls is required.

It is conceivable that two individuals of the same age experience different types of

falls, and their risk profiles are extremely diverse. Some might fall during recreational

and sports activities, while others eventually trip during simple locomotion at home.

For the former, the time spent with sports activities during the week could be relevant

in predicting the number of falls, while for the latter, assessing balance deficits may

be a more meaningful risk factor. Thus, it seems reasonable that prior falls are

a good predictor for future falls among a heterogeneous population. Since most

fall-related fractures occur in frail individuals, one could argue that all sport-related

falls should be excluded when developing a fall-rate prediction model. On the other

hand, all falls have the potential to result in a fracture, independent of its cause.

To overcome these limitations, several approaches could be pursued. First,

separate models for different target groups could be developed. A possible distinction

could be made between frail and fit older adults, and initial physical tests could

be conducted to determine which model is appropriate. Another approach would

be to develop models separately for first-time and recurrent fallers.

Again, taking a mechanistic perspective, a model that includes parameters that

better reflect the underlying mechanism and causes of falls might be able to overcome

these limitations. It is well-known that the sensorimotor system, proprioception



7. Discussion 139

and neuro-muscular control play a central part in motor control and joint stability

[77], [78]. Research has investigated how these systems change with age and how

it affects locomotion [79], [202], [203], [204]. Accodringly, a possible approach

would be the detailed assessment and characterisation of gait disorders that are

a well-known risk factors for falling [59], [61]. Various research has already been

conducted, and gait patterns measured with accelerometric methods have shown

to be a promising method to assess fall risk [205], [206]. As an example, a study

conducted by Gillain et al. developed a supervised machine-learning algorithm using

accelerometer-based gait parameters to identify first-time fallers with a sensitivity of

0.84 and a specificity of 0.87 (internal validation) [207]. Thus, using such parameters

as predictors might help improve fall prediction, as they more accurately reflect

the underlying mechanism that causes falls.

Personalised fall dynamics As discussed in Section 1.4.2, an individual’s ability

to dampen a fall can be the critical factor in whether a fracture occurs or is

prevented. However, these abilities are strongly subject-dependent, relying on an

individual’s functional performance. Accordingly, incorporating an individual’s

ability to use protective pre-impact movement strategies could improve the model’s

predictive accuracy.

This could be achieved by personalising the parameter α that characterises the

exponential distribution describing the probability of the fall dynamics. Thereby,

the larger α is, the lower the probabilities of fall scenarios with low values of

kBR, which lead to high impact forces. To do so, variables that can assess an

individual’s ability to dampen a fall would be required, such as measures for the

proprioceptive and neuromuscular functions or an individual’s ability to resist

perturbation during walking or standing [57]. These parameters could then be

related to α through a mathematical relationship.

To investigate whether the adaptation of this aspect improves the models’

predictive accuracy, a clinical data set that assessed all required parameters with

sufficient statistical power would be required. The comparison of ROC curves
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would give insights on whether personalising this aspect would benefit hip fracture

risk prediction.

7.3.3 Model extension

Approximately 90% of fractures in the radius and 75% of all humerus fractures

are caused by falls [57]. Fragility fractures of the pelvis are also mainly caused by

low-trauma events [208]. Thus, the presented model could be adapted to assess the

fracture risk for other fall-related fracture sites. To do so, bone strength estimates

of the respective bones could be derived with QCT-based FEA. For the radius, the

strength value could also be derived with HR-pQCT or substituted with radius

aBMD from DXA, as these two measures are known to correlate well [209]. Since

the radius and the humerus are in the same loading axis, it could be assessed

whether aBMD- or HR-pQCT-based bone strength of the radius correlates with the

humeral strength, too. Furthermore, the fall dynamics model and the mechanical

model would have to be adapted to model a fall that impacts the hand or the upper

arm. Developing a mechanistic model to predict fragility fracture of the pelvis

might be more challenging, as there exist various fracture sites within the pelvic

ring [208]. Furthermore, only a few studies have assessed pelvis bone strength with

FEA models [210], [211], and to the author’s knowledge, no relationship between

strength and aBMD values have been developed.

7.4 Final words

The presented work in this PhD thesis aimed at developing a prediction model to

identify individuals at risk of fragility hip fractures using mechanistic and stochastic

modelling approaches. According to the famous quote "All models are wrong, but

some are useful." by Georg Box, the model does not precisely simulate specific

sideways falls and impacts on the hip, but uses a pragmatic approach integrating

simplified models that still can capture the underlying mechanism of hip fractures.

The required parameters are estimated from anthropometric and densitometric data

and can be refined using QCT images. Thus, because of their physical nature, no
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calibration considering their epidemiological variation by age, sex or ethnicity is

required. The model needs solely to be calibrated to the corresponding fracture

incidence in the specific geographic area.

The successful identification of individuals at risk of a fragility hip fracture

can contribute some good to society, as it prevents suffering, loss of independence

and death. However, as Schechner et al. showed in his analysis, even with perfect

knowledge of the relevant factors, the predictive accuracy of hip fractures is limited

to an upper bound due to the stochastic nature in the underlying process [8].

Thus, the successful identification of individuals who will suffer from a fracture

will always be limited. Accordingly, as is often the case in medicine, the most

effective prevention strategy for a clinical outcome such as fragility fractures would

be preventing the presence of risk factors in the first place. A healthy lifestyle

that includes sufficient physical activity and a balanced diet would already address

a large part of this [212], [213], [214], [215].
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