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“Besides chairs, tables, bookshelves, etc… there were several roofs of cottages, which had 

been transported almost whole… During my walk around the island, I observed that 

numerous fragments of rock, which, from the marine productions adhering to them, must 

recently have been lying in deep water, had been cast up high on the beach; 

 one of these was six feet long, three broad, and two thick.” 

 

Charles Darwin, 1835  

in The Voyage of the Beagle 

 

 

 

 

 

Abstract 

Lake tsunamis are considered to be natural hazards with high magnitudes and low recurrence 

rates. Because of their infrequent occurrence in space and time, little is known about the 

associated hazard and the risk to the vulnerable coastal areas that are now often heavily 

populated. However, historical reports and recent scientific achievements show that certain 

Swiss lakes may have been repeatedly affected by tsunamis during the last 15’000 years. This 

makes Switzerland an ideal case-study area to conduct fundamental research in the field of 

tsunamis and to gain new knowledge applicable to other lacustrine areas, as well as to the 

marine environment. 

 

Lacustrine tsunamis can be generated by subaqueous and subaerial mass movements, volcanic 

eruptions, fault displacements within large lakes, and air-pressure disturbances. Mass 

movements, triggered by strong earthquakes, are considered one of the main causes. However, 

spontaneous delta collapses and subaerial impact, often related to artificial rock-mining 

activities, also have induced tsunami events on Swiss lake basins. 

 

The geological record of mass-movement deposits in the seismically imaged stratigraphy of 

deep lake basins provides evidence for the occurrence of prehistoric lake tsunamis. However, 

because the dimensions (e.g., spatial distribution, volume, etc.) and dynamics (e.g., single-stage 

or multi-stage failures, initial acceleration, velocity, cohesion etc.) of mass movements strongly 
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influence tsunami generation, which is difficult to estimate, conclusive evidence for prehistoric 

lake tsunamis is lacking. Therefore, the geological record in the on- and offshore coastal 

environment may provide further evidence on past lacustrine tsunami events. These 

sedimentological signatures are examined in this thesis. 

 

Recent marine (2018 Sulawesi earthquake and tsunami, Indonesia) and lacustrine 

(2007 landslide-generated tsunami in Chehalis Lake, Canada) tsunami events indicate that 

large amounts of sediment are mobilized during tsunami inundation and transported both 

landward and seaward with backwash currents. To date, a wide variety of sedimentological bed 

forms and characteristic depositional signatures have been described from various coastal 

environments. Nevertheless, hardly any tsunami deposits have been described from the on- and 

near-offshore of lakes, and none were investigated in and around Swiss lakes until today. 

 

Yet, historical tsunami hazard descriptions from Swiss lakes provide documentation of 

inundation distances and run-up, and in specific cases, a limited description of the associated 

deposits left behind. These descriptions were used to characterize and locate tsunami deposits 

from lacustrine environments that were compared with descriptions of their marine 

counterparts. 

 

In summary, a combination of geological field- and laboratory analysis, numerical tsunami 

propagation simulation, and historical documents is used to identify and characterize lacustrine 

tsunami deposits in several Swiss lakes. At field sites where positive evidence for tsunami 

deposits was observed, sedimentological characteristics are used to finally validate the 

robustness of numerical tsunami propagation simulations applied to mass movements observed 

from bathymetric and seismic reflection data in the lake. 

 

Based on numerical tsunami simulation and a suite of sediment cores from the coastal on- and 

offshore environment of Lake Sils, we were able to reconstruct a prehistoric delta collapse-

generated tsunami. An offshore tsunami deposit of the historic 1601 Lake Lucerne event was 

observed from sediment core transect in a coastal depression in the Lucerne Bay. Another 

sediment core recovered from the coastal offshore environment contains sedimentary 

signatures that are likely associated with bottom currents from prehistoric tsunami events at 

~2200 and ~5400 Before Present at Lake Lucerne. 
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The observed sedimentological signatures of lake tsunamis were investigated using multi-

proxy analysis including whole-core scans (density, magnetic susceptibility, and CT), as well 

as micro-CT scanning of sediment U-channels, radiocarbon dating, elemental analysis, and 

grain-size analysis. The identified sedimentological signatures consist of sharp lower and upper 

sedimentary contacts, successions of single and multiple normal graded sand, massive sand 

beds, and a characteristic fine-grained top. Based on radiocarbon dating, these signatures can 

be associated with large mass-movement deposits observed in sediment cores and seismic-

reflection data of the deep lake basin. 
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1   Preface 

 

 

 

The presented thesis deals with the rare natural phenomenon of lacustrine tsunamis, which have 

a destructive dimension and pose a potential threat to inhabited coastal areas and its 

infrastructure. The reader should be aware that natural hazards cannot be prevented. However, 

the vulnerability of a civilization depends on its risk assessment. Resilience is therefore 

necessary to cope with the local and global challenges of the 21st century. For resilient 

adaptation, however, natural hazards must be adequately studied to be better prepared for the 

future and mitigate possible consequences. This study is a contribution to this goal.  

 

1.1  PhD project 

This PhD project is embedded in the multidisciplinary Swiss National Science Foundation 

(SNSF) Sinergia Project: Lake Tsunamis: Causes, Controls, and Hazard (research grant 

no.: 171017). Within the holistic framework of the project, which consists of five synergetic 

work packages (WPs), the natural phenomenon of lacustrine tsunami is investigated in the field 

of fundamental research and in case studies at Swiss lakes. Within this PhD project the research 

questions of WP paleo were addressed. 

 

The scientific studies of the different WP’s were conducted at four different research institutes 

during 2017 to 2021: 

• Institute of Geological Sciences (IfG), University of Bern, CH 

• Swiss Seismological Service (SED), ETH Zurich, CH 

• Institute of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, CH 

• Centre for Marine Environmental Sciences (MARUM), University of Bremen, DE 
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The work packages, their research institute affiliation, and their primary fields of research are: 

• WP paleo (IfG): Geological record of lacustrine tsunami events 

• WP response (SED, MARUM): Seismological geotechnical characterization of slope 

instabilities under seismic shaking 

• WP wave (VAW): Sliding mechanisms and the associated tsunami generation and 

propagation based on numerical and hydrological models 

• WP hazard (SED): Lake tsunami hazard assessment, which contributes to a sustainable 

and practice-oriented risk management in Switzerland 

• WP delta (SED; IfG): Characterization of subaqueous slope failures in deltas 

 

1.2 Organization of the thesis 

This thesis is organized into an introduction, a series of four individual research papers, 

conclusions, and research paper appendices. The general introduction (Chapter 2), the four 

research papers (Chapters 3-6) and Chapter 7 (Conclusions and outlook) are briefly presented 

in the following. The research papers in Chapters 3, 4, and 5 were first-authored by myself, 

whereas I acted as co-author for the research paper in Chapter 6. 

 

- Chapter 2 - 

General introduction 

The first chapter provides a broad background on the current understanding of the genesis of 

tsunami deposits and its implication for tsunami risk assessments. In addition, the objectives 

and research questions to be addressed are outlined. Finally, the applied methodological 

framework of this thesis is summarized. 

 

- Chapter 3 - 

Sedimentological signatures of historic tsunamis in Swiss lakes 

This chapter defines the scientific basis for the research conducted as part of this dissertation. 

Emphasis is placed on the applied methodological workflow that was carried out for the study-

site selection to locate and identify lacustrine tsunami deposits in the on- and offshore 

environment. Therefore, this chapter provides a guidance for future studies to investigate lake 

tsunami deposits in Switzerland and other countries. 
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- Chapter 4 - 

A tsunamigenic delta collapse and its associated tsunami deposits in and around Lake 

Sils, Switzerland 

The case study presented in this chapter was conducted at Lake Sils and combines a suite of 

geological field campaigns with numerical tsunami generation and propagation simulation. The 

observed sedimentological succession observed in the on- and offshore settings provide 

evidence for a basin-wide prehistoric tsunami that was generated by the partial collapse of the 

Isola Delta (Blass et al., 2005). 

 

- Chapter 5 - 

Tsunami offshore deposits: evidence from sediment cores and numerical wave 

propagation of the 1601 CE Lake Lucerne event 

Deposits of the historically well-documented1601 CE Lake Lucerne tsunami were identified 

in the offshore setting of the Lucerne Bay. A strong regional earthquake caused multiple 

subaqueous slope failures, which are considered as the main cause of the lake tsunami (Hilbe 

& Anselmetti, 2015; Schnellmann et al., 2012; Siegenthaler et al., 1987). The second largest 

mass movement was simulated by an instantaneous collapse of 5 m of the sediment drape along 

the failed area, using the hydrodynamic modelling software BASEMENT (Vetsch et al., 2020). 

The simulated propagation of the tsunami waves and the dimensional bed shear-stress, used for 

a threshold criterion of incipient motion, were investigated in the Lucerne Bay area. 

 

- Chapter 6 - 

Freshwater (paleo)tsunamis – a review 

This chapter is a review article on freshwater (paleo)tsunamis first-authored by Katrina Kremer 

and co-authored by the author of this thesis. The article summarizes the scientific progress that 

has been made since the 2011 Tohoku-oki tsunami in the field of freshwater tsunami research. 

It characterizes the generation mechanisms of freshwater tsunamis and reports on the 

characteristics of freshwater tsunami deposits by various authors. 

  



1 Preface 

 

5 
 

- Chapter 7 - 

Conclusions and outlook 

The final chapter presents the main conclusions of this PhD thesis, the major achievements 

made within the SNSF Sinergia project: “Lake Tsunamis: Causes, Controls and Hazard” and 

recommendations for future work. In summary, this thesis uses historical reports on tsunami 

inundation and coastal damage combined with multiproxy sediment core analysis and 

numerical tsunami simulation to investigate and characterize the sedimentological signatures 

of lacustrine tsunami deposits in the on- and coastal offshore environment. 
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2   General introduction 

 

 

 

This thesis focusses on tsunami deposits, which are the sedimentological traces of past tsunami 

events observed in different coastal environments (Fig. 2-1; Einsele et al., 1996). These 

signatures may be found in the on- and offshore setting in the marine and lacustrine 

environments. Because depositional signatures are strongly related to the coastal 

geomorphology (e.g., sediment availability, microtopography, flora), a variety of depositional 

signatures have been described, particularly in the marine (e.g., Dawson & Shi, 2000; Engel & 

Brückner, 2011), but also in the lacustrine environment (e.g., Kremer et al., 2020). These 

signatures include sharp to erosional bases as well as single and multiple graded fining and 

coarsening upward clastic sand-sized deposits with internal laminae of fine-grained sediment 

(silt and clay- sized). In addition to deposits of fines, homogenously distributed boulder 

deposits transported by tsunami inundation along the shallow coastal plains (e.g., Nandasena 

et al., 2013; Scheffers, 2008), as well as increased Cl, Ba, and Sr concentrations were found in 

coastal marine sediments where clastic traces were not present (e.g., Chagué-Goff, 2010). 

 

 

Fig. 2-1: Tsunami depositional model for different coastal settings (modified from Einsele et al., 1996). 

 

The physical characteristics of tsunami waves differ from storm-induced waves by their long 

wavelengths, which are generated from water column displacement that occurs during tsunami 

initiation by megathrust earthquake ruptures along the seafloor (Bryant, 2014) and by 
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subaqueous mass movements (Tappin et al., 2001). Less commonly, tsunami waves can be 

generated by bolide impact (Papadopoulos & Kortekaas, 2003) or air-pressure disturbances 

that generate meteotsunamis (Monserrat et al., 2006). In addition, the propagation velocity of 

tsunamis differs from storm-induced wave currents. The phase velocity (c) of tsunami waves 

is determined by the depth of the water body (h) and the gravitational acceleration (g) according 

to 𝑐 = √𝑔 ℎ (Röbke & Vögt, 2017; Synolakis & Bernard, 2006). In the open oceans, 

propagation velocity of tsunamis reaches speeds of up to 800 km h-1 and entire oceans can be 

traversed within hours. 

 

As tsunami waves approach shallow waters of the continental shelf (water depths < 200 m), 

the water velocity decreases according to the rule abovementioned. However, due to the law of 

conservation of energy, the wave amplitude may increase from a few dm in the open ocean to 

several m on the coast. There, tsunami witnesses often report a drawback, the receding of the 

shoreline before the first pulse of tsunami inundation, but this does not necessarily always occur 

(Röbke & Vögt, 2017). Depending on the tsunami generation, a wave crest may also arrive at 

the coast first, which is followed by a wave trough. This is succeeded by several wave pulses 

that may inundate low-lying coastal areas several hundred to thousand meters. The maximum 

inland flooding is generally referred to the term inundation distance. Whereas the elevation 

above current water level (e.g., corrected for tides) at the location of the maximum inland 

flooding is usually referred to run-up or run-up height. 

 

The high damage potential of tsunamis is attributed to the long wavelength of tsunami waves. 

Therefore, tsunami inundation may be illustrated by a wall of water that continuously floods 

the coastal environment. This is in contrast to storm-induced waves, which certainly also have 

high damage potential (e.g., Hurricane Katrina (Robertson et al., 2007); Typhoon Haiyan (Brill 

et al., 2016), but inundation of the coastal environment occurs in discrete surges with lower 

energies but often accompanied by strong wind gusts. Nonetheless, human population is 

heavily concentrated in low-lying coastal regions at a global scale (Nicholls & Small, 2002) 

and is therefore heavily affected during coastal floodings. For example, more than 

200’000 people have lost their lives during the 2004 Indian Ocean tsunami event (Satake, 

2014), around 20’000 people during the 2011 Tohoku-oki tsunami (Nakahara & Ichikawa, 

2013). As a comparison, Hurricane Katrina caused more than 1’200 casualties in 2005 (Fritz 

et al., 2007). 
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A special case of tsunami waves are impulse waves generated by the impact of solid bodies 

(e.g., subaerial landslides and rockfalls, volcanic eruptions and meteoric bolides) on the water 

surfaces (Evers et al., 2019). These impulse waves have shorter wavelengths but higher wave 

amplitudes near the source, which generally decrease rapidly with propagation compared to 

subaqueous generated tsunamis. A well-known example for this type of tsunami is the 

earthquake-induced landslide impact generated mega-tsunami in Lituya Bay (Alaska, USA) on 

July 10, 1958, which caused total forest destruction up to 524 m above the current sea level 

(run-up) and erosion down to bedrock (Fritz et al., 2009). Another often referenced event is the 

K/T (Cretaceous/Tertiary boundary) impulse wave generated by a meteoric bolide impact that 

caused characteristic 1 to 3 m thick clastic tsunami event deposits in several coastal 

environments (Keller et al., 1997). 

 

Waves that are generated by pressure perturbances in the atmosphere are referred to 

meteotsunamis (Nomitsu, 1935; Linares et al., 2016). Because these waves can travel far 

distances, they can hit coastal communities also with a calm sea and blue skies (e.g., 

Pattiaratchi and Wijeratne, 2015; Sallenger et al., 1995). Therefore, forewarning and effective 

mitigation is needed for both economic and social benefit (Thompson et al., 2020). Moreover, 

even seemingly modest meteotsunamis can produce strong currents with hazardous conditions 

at the coast (e.g., Monserrat et al., 2006; Shi et al., 2020). For example, on July 17, 2018 the 

Mediterranean coast of Spain was hit by a meteotsunami. In the Laurentian Great Lakes, Bechle 

et al. (2016) quantified meteotsunamis in terms of seasonality, causes, and recurrence rates and 

has found that they occur on average 106 times per year. 

 

2.1 Current state of knowledge 

Tsunami events occur not only in the marine setting, but also in the freshwater environment 

(Kremer et al., 2020). The main tsunami generation mechanisms are identical to the marine 

setting, whereas subaerial and subaqueous mass movements are the most common triggering 

mechanism. Tsunamis generated by fault displacements within a lake, however, are rare 

(Kremer et al., 2020). Impulse waves generated by the impact of meteoric bolides are not 

further considered in this work.  

 

Historical accounts document several Swiss lakes that were affected once (Lake Lauerz 1806 

(Bussmann & Anselmetti, 2010) or repeatedly (Lake Lucerne: 1601 & 1687 (Hilbe and 
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Anselmetti, 2015); Lake Geneva: 563 & 1584 (Kremer et al., 2015)) by lacustrine tsunamis 

during the historical period. Based on scientific advances in imaging the lake-floor morphology 

with multibeam swath bathymetry and its subsurface sediment architecture with high-

resolution seismic reflection data, it has been shown that historically reported tsunami events 

were generated by large subaqueous and subaerial mass movements in the range of 10-

100 106 m3 and 0.005-10 106 m3, respectively (Kremer et al., 2020, Nigg et al., in prep.). 

Simultaneously failed mass movements within a lake are likely triggered by peak ground 

acceleration during strong local to regional earthquakes (Schnellmann et al., 2006), while 

single mass movements and delta collapses may fail due to temporally confined high 

sedimentation rates or rapid pore pressure changes. 

 

Although the mass-movement event stratigraphy of several Swiss lakes provides evidence for 

repeated tsunamis events during the prehistoric period, tsunami initiation by these mass 

movements is difficult to reconstruct from the geological record. While mass-movement 

morphology as well as failed volumes may be well reconstructed, mass movement behavior 

with respect to failure mechanism and kinematics (e.g., initial acceleration and velocity of slide, 

rheology, and timing of individual failures) are generally unknown but critical parameters for 

tsunami generation (Bornhold & Thomson, 2012). For example, it has been shown that some 

giant submarine landslides may generate tsunamis of only modest size due to their failure 

mechanisms (Løvholt et al., 2017). In particular, it is assumed that retrogressive subaqueous 

landslides are relative inefficient in generating tsunamis (Løvholt et al., 2017). However, when 

these voluminous landslides are rapidly converted into a fast-moving debris flow, they can 

generate large tsunamis (Løvholt et al., 2017). 

 

The geological record from on- and offshore coastal environments may provide clues to past 

tsunami events in the lacustrine and marine realms. Examination of their signatures can help to 

reconstruct tsunami magnitude and recurrence rates at locations with limited historical records, 

but also extend the knowledge gap into the prehistoric period (e.g., Monecke et al., 2008; 

Kempf et al., 2017). However, the identification of lacustrine tsunami deposits is less well 

investigated compared to their marine counterparts. Nevertheless, tsunami deposits could 

provide the finale evidence for the concept of prehistoric tsunami events in Swiss lakes, which 

have been suspected from the mass-movement event stratigraphy (e.g., Schnellmann et al., 

2006; Kremer et al., 2015; Reusch, 2016). 
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2.2 A brief history on the sedimentology of tsunami deposits  

Tsunami is the Japanese term for harbor wave and describes the observation of fishermen 

returning from the open sea to a destroyed harbor without noting a wave at sea. This term was 

already established in the first publications on post-tsunami surveys (e.g., Shepard et al., 1950; 

Wright & Mella, 1963). These early studies indicated that tsunami inundation can erode and 

redistribute large amounts of coastal sediment and is capable of transporting coral debris, 

boulders, and sand for large distances inland (e.g., Shepard et al., 1950). However, the 

geological record of past tsunami events has only been recognized since the late 1980’s 

(Bourgeois, 2009). For example, Atwater (1987) identified event deposits of anomalous sheets 

of sand and intertidal mud buried in well-vegetated lowlands in westernmost Washington State 

and associated the sand sheets to prehistoric tsunamigenic earthquakes from the Cascadia 

subduction zone, while the intertidal mud deposits were associated with rapid tectonic 

subsidence on the coast by earthquakes. At the same time, Dawson et al. (1988) identified and 

described a lateral continuous sandy event deposit with intraclasts of the embedding organic-

rich peat-like coastal deposits in eastern Scotland. This deposit, together with a suite of later 

studies (e.g., coastal lake tsunami deposits in Norway (Bondevik et al., 1997; 2012, Bondevik, 

2003), North Sea continental shelf “Doggerland” (Weninger et al., 2008)), related the event 

deposits to the prehistoric Storegga subaqueous mass movement-generated tsunami around 

8150 years BP (Dawson et al., 2020).  

 

The devastating 2004 Indian Ocean tsunami greatly amplified the study of event deposits from 

past tsunamis. Since then, a large number of publications have appeared examining the 

sedimentological signatures of tsunami deposits. This has led to a growing research field in 

sedimentology that uses both established and newly developed methods to shed light on the 

hidden history of past tsunami events worldwide. In summary, these multi-proxy approaches 

comprise sedimentological (particle-size distribution (e.g., Jaffe et al., 2003), textural analysis 

with X-ray tomography (e.g., Falvard and Paris, 2017; Kempf et al., 2017), geochemical 

elemental concentration (e.g., Judd et al., 2017), dating method (e.g., radiocarbon, U-Th, Cs 

activity profile, optically stimulated luminesce dating) (Ishizawa et al., 2020), biological 

species assemblages (e.g., diatoms (e.g., Dawson, 2007; Dura et al., 2016), foraminifera (e.g., 

Quintela et al., 2016; Uchida et al., 2010), and ancient sedimentary DNA (Szczuciński et al., 

2016) analysis. 
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Due to the large number of case studies that investigated the sedimentary signatures of tsunami 

deposits, models for the texture of tsunami deposits have been proposed. The most commonly 

observed signatures are listed here: 

 

• Sharp to erosive basal contact (e.g., Srinivasalu et al., 2009) 

• Fining upward (e.g., Gelfenbaum & Jaffe, 2003)  

• Landward fining and thinning (e.g., Srinivasalu et al., 2009) 

• Intraclasts, also referred to rip-up clasts of reworked pre-tsunami deposits (e.g., 

Srisutam & Wagner, 2010) 

• Distinc laminae of fines (e.g., Richmond et al. 2006) 

• Geochemical signatures of seawater inundation: increased elemental concentrations of 

Na, S, Cl, Ca, Sr, Ba, and Mg (e.g., Szczuciński et al. 2006) 

 

However, clear differentiation from storm-induced event deposits remains challenging (Engel 

and Brückner, 2011) as they have similar sedimentary characteristics. 

 

Although a large number of publications have focused on the sedimentological signatures of 

tsunami deposits and post-tsunami surveys, primarily in marine settings, the processes involved 

in the lacustrine settings remain undeveloped. Few studies document the sedimentological 

signatures of past lacustrine tsunamis. For example, subaqueous boulder deposits and eroded 

shore terraces are attributed to a prehistoric lake tsunami by subaqueous landslides in Lake 

Tahoe (USA; Moore et al., 2014). Shore erosion and damage to trees were observed following 

the subaerial landslide-generated impulse wave at Lake Chehalis (Canada) in 2007 (Roberts et 

al., 2007). Nevertheless, the majority of tsunami deposits and post-tsunami surveys concern 

oceanic settings, and the associated processes are immaturely developed in the lacustrine 

setting. Therefore, documentation and investigation of lacustrine tsunami deposits is necessary. 

 

2.3 Research motivation 

Due to the immense growth of the tourism sector, coastal population and infrastructure, Swiss 

lakeshore communities must consider the lacustrine tsunami hazard from the adjacent lake. For 

example, Lake Lucerne and its shore areas are heavily used for recreational activities, 

especially during summer. Private motor- and sailboats gather on the lake and people sunbathe 

on the shores, play volleyball, or cool off with a swim in the lake. In addition, many people use 
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public transportation provided by shipping companies to experience the spectacular landscape 

on a trip on a historic steamboat, or they simple use it for their daily commute. In the case of a 

tsunami event, these people would be directly at risk and the warning time is particularly short. 

Moreover, coastal infrastructures may be severely damaged and the economic and reputational 

losses may be great, yet to be better estimated. 

 

2.4 Objective of the thesis 

This dissertation was carried out within the framework of the SNSF Sinergia project “Lake 

Tsunamis: Causes, Controls and Hazard”. The driving research questions that accompanied the 

WP paleo that was carried out within this PhD studies can be formulated as follows: 

 

• What are the sedimentological characteristics of lacustrine tsunami deposits? 

• How do lake tsunami deposits differ from the better investigated ocean tsunami 

deposits? 

• Are there geological records in the on– and offshore coastal environment of Swiss lakes 

that provide tsunami deposit-based event chronology over the past 15’000 years? 

• How do reconstructed field-derived run-up and inundation models compare with 

numerical tsunami simulations? 

 

2.5 Methodology 

This work combines several different methodological approaches to address the research 

questions abovementioned. In particular, it uses historical documents, numerical tsunami 

simulations, and sediment core analysis. Historical documents (historical chronicles, artwork 

and photographs, and newspaper articles) were used to characterize described coastal damage 

from tsunami inundation to get an idea on potential sedimentological traces that may be 

preserved in the geological record. Numerical simulations were used to identify areas 

susceptible to tsunami inundation. High-resolution bathymetry and topography were used to 

identify the sedimentary archive of past tsunami events. In addition, the potential for erosion 

in the coastal offshore areas due to tsunami waves was investigated with numerical simulations 

of bed shear-stress. Various coring techniques (Gauge auger sediment corer, Geoprobe 

hydraulic coring, hammer bob-corer and piston coring) were used to recover sediment cores 

from the on- and offshore coastal environment. These sediment cores were analyzed with a 
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multitude of sediment core analyses using full core scanning techniques (multi-sensor core 

logger (MSCL), computed tomography (CT), and X-ray fluorescence (XRF) core scanner) and 

analysis on discrete samples (particle size, elemental composition, and smear slides). Dating 

of event deposits was performed on terrestrial organic macro-remains (e.g., leave fragments 

and conifer needles) with the radiocarbon dating method using accelerator mass spectrometry 

(AMS). The spatial extend of observed tsunami deposits was, where possible, reconstructed 

using seismic reflection data. 
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Historic painting by Franz-Xaver Triner shows the impact of the September 2, 1806 CE Rossberg landslide-

generated impulse wave on Lake Lauerz, Switzerland with Mount Rigi (left) and Rossberg (right) in the distance 

(Swiss National Library).
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Abstract 

Strong regional earthquakes can generate subaqueous mass movements in lakes. The 

displacement of the water column caused by the failure may be tsunamigenic, depending on 

mass-movement volumes and kinematics. Several lacustrine tsunami events have been 

historically reported in Switzerland. For example, the 1601 Lake Lucerne tsunami, which was 

caused by a magnitude Mw 5.9 earthquake. The historically documented tsunami wave height 

and run-up of the event have been well reconstructed in previous studies using numerical mass-

movement and simulations of tsunami propagation. However, the geological record of past 

tsunami events in the onshore and coastal offshore environments have not been systematically 

investigated to date, even though these deposits could provide detailed insights into prehistoric 

mass movement-generated tsunami hazard and its recurrence rate. Here, we present a site-

selection workflow based on historical documents and maps, geomorphological criteria, and 

numerical tsunami simulations to conduct site-specific field investigations to recover sediment 

cores from different coastal environments. Observed sedimentary signatures caused by past 

tsunamis in three Swiss lakes are discussed, together with observed negative evidence for 

tsunami deposits. The workflow presented can be applied to future studies of prehistoric and 

historic tsunami deposits in other lakes as well as in the marine environment. 
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3.1 Introduction 

Lake tsunamis represent a low-recurrence rate hazard that can be generated by various 

triggering mechanisms, including plate displacements, subaerial and subaqueous landslides, 

rockfall impacts, volcanic eruptions, and air-pressure disturbances generating meteotsunamis 

(Kremer et al., 2020a and references therein). These events can have catastrophic effects on 

coastal communities and infrastructure due to shore erosion and high-energy flooding (e.g., 

Bryant, 2014). The characterization of lacustrine tsunami hazard, however, may be only 

sparsely accessible through historically reported (e.g., 1858 Common Era (CE) Lake 

Patzcuaro, Mexico (Garduno-Munroy et al., 2011); 1861/1862 CE Lake Baikal, Russia 

(Klyuchevskii et al., 2012); 1846 and 1910 CE Lake Taupo, New Zealand (Clark et al. 2015); 

1905 and 1936 CE Lake Leon, Norway (Grimstad and Nesdal, 1991)) and a few recent, post-

2000, lacustrine tsunami events (e.g., 2001 Lake Coatepeque, El Salvador (Gusiakov, 2009); 

2007 CE Lake Chehalis, Canada (Roberts et al., 2013); 2014 Lake Askja, Alaska, USA 

(Gylfadóttir et al., 2017)). Because the historical record of lake tsunamis is too short to 

understand the full range of associated hazards, the geological record of tsunami deposits can 

provide useful information on the magnitude (e.g., tsunami run-up height, flow depth and 

inundation distance) and their recurrence rates for events that occurred also in the prehistorical 

period or in remote areas (e.g., Kempf et al. 2017; Monecke et al., 2008). 

 

Tsunami deposits are the sedimentary traces of past tsunami events that are preserved in the 

geological record through time (e.g., Einsele et al., 1996; Dawson and Shi, 2000). They have 

been investigated at various coastal marine locations. As a result of the devastating 2004 Indian 

Ocean and 2011 Tohuku-Oki tsunami, numerous publications document the characteristics and 

spatial distribution of marine tsunamis deposits (e.g., Goto et al., 2011; Jaffe et al., 2012; 

Szczuciński et al., 2012) and their post-depositional alteration (e.g., Spiske et al., 2020). These 

signatures, studied from the sedimentary archive, may provide insights into inundation distance 

(e.g., Abe et al., 2012; Ishimura et al., 2019; Switzer et al., 2012), run-up height (e.g., Bondevik 

et al., 1997), number of inundation pulses (e.g., Richmond et al., 2006; Szczuciński et al. 2006), 

as well as the recurrence rate (e.g., Kempf et al. 2017; Monecke et al., 2008), all of which 

defining the magnitude of past tsunami events (e.g., Papadopoulos & Imamura, 2001). 

However, their lacustrine counterpart has not yet been adequately investigated (Kremer et al., 

2020a). 
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Lacustrine tsunami events have been historically reported from several lakes in Switzerland. 

For example, in Lake Geneva (563 and 1584 CE: Kremer et al., 2012, 2015), Lake Lucerne 

(1601 and 1687 CE: Hilbe & Anselmetti, 2015), Lake Lauerz (1806 CE Goldau landslide: 

Bussmann & Anselmetti, 2010) and numerous locally confined impulse waves from subaerial 

mass-movement impacts (Huber, 1982). These tsunami events were caused by seismically 

triggered subaqueous mass movements (Hilbe & Anselmetti, 2015; Kremer et al., 2015;), delta 

failures (Girardclos et al., 2007; Hilbe & Anselmetti, 2015; Nigg et al., 2021) and subaerial 

mass-movements (Bussmann & Anselmetti, 2010), as well as rock mining at the lakeshores 

(Fuchs and Boes, 2010; Huber, 1982). Tsunami events that occurred in Swiss lakes prior to the 

historical record have been postulated from the mass-movement event stratigraphy observed in 

deep lake basins (e.g., Schnellmann et al. 2006; Kremer et al. 2015) as well as on- and offshore 

tsunami deposits (Nigg et al., 2021) However, subaqueous triggering mechanism of 

tsunamigenic mass movement is strongly controlled by mass-movement dynamics and 

kinematics (Løvholt et al., 2017). However, this information is difficult to access for prehistoric 

and events in remote areas where tsunami reports do not exist. Therefore, definitive evidence 

for these postulated prehistoric tsunami events is absent but may be achieved through the 

careful investigation of the on- and offshore sediment records that have preserved the 

sedimentological signatures of past tsunami inundation and backwash. 

 

Careful site selection for geological investigations is fundamental to the scientific questions 

addressed in various research studies. However, there are no universally applicable criteria. 

Moreover, it is plausible that the criteria used depends on the scientific questions and the 

environment in which the study is conducted. Therefore, we developed a comprehensive site-

selection workflow to obtain sedimentological signatures of past tsunami events preserved in 

the geological record. The workflow performed, and the criteria and data used are documented 

in this study. To achieve the goal of reconstruction of coastal impact and deposits from historic 

tsunamis, detailed analysis of historical documents of lake tsunamis in Switzerland are 

combined with sedimentary multiproxy analysis on recovered sediment cores from the coastal 

on- and offshore environment during several field campaigns. These results provide insights 

into the associated hazard of lake tsunamis generated by subaerial and subaqueous mass 

movements, but also highlight observed limitations and difficulties. Finally, we document the 

established workflow to provide guidelines for future investigations to localize promising 

sediment archives to study lacustrine tsunami deposits. 
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3.2 Study sites 

Switzerland is characterized by moderate seismicity (e.g., Deichmann et al., 2000; Wiemer et 

al., 2009), with certain areas being more seismically active with more frequent strong 

earthquakes with moment magnitudes up to Mw 6 and larger in the historic period (e.g., Fäh et 

al., 2011; Gisler et al., 2004). From the historical record of earthquake damage, a total of 

28 events with a magnitude Mw ≥ 5.5 are known over the last 800 years (Wiemer et al., 2009). 

The highest seismic activity is observed in the southwest and northwest of Switzerland in the 

region of Valais and Basel, respectively (Wiemer et al., 2009; Kremer et al., 2020b). In general, 

Mw 6 earthquakes are expected to occur in Switzerland every 50 to 150 years, while Mw 7 

earthquakes occur approximately every 1000 years (Wiemer et al., 2016). Strong prehistoric 

earthquakes have been recorded in the sedimentary archive in the deep basin of large Swiss 

lakes from subaqueous mass-movement deposits (e.g., Kremer et al., 2015; Monecke et al., 

2006; Schnellmann et al., 2006; Siegenthaler et al., 1987; Strasser et al., 2013) and earthquake-

related deformation structures (Monecke et al., 2006). Kremer et al. (2017) found increased 

subaqueous mass-movement deposits at ~2200 Before Present (BP), ~3300 BP, ~6500 BP, and 

~9700 BP in several Swiss lakes, providing evidence for repeated strong earthquakes (Mw ≥ 6) 

in Switzerland. These large prehistoric subaqueous mass-movement deposits with volumes in 

the range of 106 to 108 m3 are likely tsunamigenic (Hilbe and Anselmetti, 2015; Kremer et al., 

2014; Mountjoy et al., 2019; Nigg et al., 2021; Schnellmann et al., 2006; Strupler et al., 2018).  

 

Lake tsunamis generated from subaqueous mass movements were reported from Swiss lakes 

in the historical period in Lake Lucerne (1601 and 1687 CE (Hilbe and Anselmetti, 2015)) and 

Lake Geneva (563 CE (Kremer et al., 2012) and 1584 CE (Fritsche et al., 2012; Kremer et al., 

2015; Schwarz-Zanetti et al., 2018)). Additionally, subaerial mass movements have generated 

impulse waves with shore erosion at Lake Lucerne (e.g., 1963, 1964, and 2007 CE (Fuchs and 

Boes, 2010; Huber, 1982), Lake Walen (1924 and 1946 CE (Huber, 1982), and Lake Lauerz 

(1806 CE Rossberg landslide (Bussmann and Anselmetti, 2010)). For the localization and 

characterization of lake tsunami sedimentary signatures, Lake Lucerne, Lake Geneva, and Lake 

Sils were selected for further investigations among the several lakes with historical tsunami 

reports and extensive mass-movement deposits (Fig. 3-1 and Table 3-1). 
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Table 3-1: Historical reported tsunamis and large seismically imaged mass-movement deposits in Swiss lakes. 

Index Name 
Mass-movement event 

stratigraphy 

Numerical tsunami 

simulation 

Largest historical reported 

tsunami (yr. CE) 
Reported run-up (m) 

Tsunami triggering 

mechanism 

1 Lake Geneva Kremer et al., 2015 Kremer et al., 2012 563 8–9 
Subaqueous delta 

collapse 

2 Lake Brienz 
Girardclos et al. 2007; 

Haas et al., in prep. 
 1996 

Greatly fluctuating lake 

level 

Subaqueous delta 

collapse 

3 Lake Lucerne Schnellmann et al., 2006 Hilbe and Anselmetti, 2015 1601 3–4 
Subaqueous mass 

movement 

4 Lake Lauerz Bussman and Anselmetti, 2010  1806 ~15  
Subaerial landslide 

shockwave 

5 Lake Zug   1435 < 1  Shore collapse 

6 Lake Walen Zimmermann, 2008  1924 8–9 Rockslide impact 

7 Lake Constance Schwestermann, 2016  1720 Unusual wave action   

8 Lake Davos   1923 3 
Subaqueous slope 

collapse 

9  Lake Oeschinen Knapp et al., 2018  1846 Lake outburst flood Rockfall impact 

10 Lake Thun Wirth, 2008     

11 Lake Neuchatel Reusch, 2016     

12 Lake Zurich Strasser et al., 2013 Strupler et al., 2018    

13 Lake Sils Blass et al., 2005 Nigg et al., 2021    

14 Lake Silvaplana Bellwald, 2012     
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Fig. 3-1: Map of Switzerland (SwissAlti3D modified from swisstopo) shows Swiss lakes with historically reported 

tsunami events (red-colored lakes) and large, potentially tsunamigenic, mass-movement deposits in the deep basin 

(yellow-colored lakes). Note that Lake Geneva, Lake Lucerne, Lake Constance, and Lake Walen also have 

extended, potentially tsunamigenic mass-movement deposits within its seismic-stratigraphic event record (see 

Table 3-1 for further information). 

 

3.3 Methods 

For the localization of tsunami deposits in the coastal on- and offshore environment, a 

geomorphological database was compiled for selected lakes (Fig. 3-2). Based on the 

classification of the coastal areas, study sites were carefully chosen with a high potential for 

tsunami inundation, sediment deposition, and the preservation of its sedimentary signatures. 

Sediment cores were then recovered with different coring techniques and further 

sedimentologically investigated in the laboratory (Table 3-2). 

 

3.3.1 Site-selection pathway 

Site selection for the identification of lacustrine tsunami deposit in the geological record is 

crucial but complex. We use historical documents describing the coastal impact of lacustrine 

tsunami events in Swiss lakes, tsunami-inundation maps computed with numerical tsunami 

simulations from previous publications, and land-use classification applied on 

geomorphological maps (Fig. 3-2). Finally, a classification of the coastal areas was created to 

identify zones with high potential for deposition, preservation, and identification of tsunami-

related sedimentary signatures. 
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Lake selection 

Historical tsunami accounts, mass-movement event stratigraphy, and available numerical 

tsunami simulations are the main criteria applied for lake selection (Fig. 3-2): Historical 

documents (historical manuscripts, paintings, newspaper articles and photographs) analyzed in 

this study provide useful information on tsunami triggering mechanisms (seismic or aseismic 

subaerial and/or subaqueous mass movement(s)) and magnitude (flow depth, run-up, and 

inundation distance) of lacustrine tsunami events in Swiss lakes (Table 3-3). These documents 

provide a better understanding of the coastal impacts (e.g., shore erosion, tsunami related 

sediment deposition) from tsunami inundation and backwash. Special emphasis was put on 

historical documents describing tsunami deposits in various coastal domains. Prehistoric 

tsunami events were postulated from large mass-movement deposits previously imaged by 

reflection seismic data in deep lake basins. Mass-movement event chronologies based on 

radiocarbon dating were used for cross-correlation of prehistoric mass-movement deposits with 

the coastal event deposits (Table 3-1). Numerical tsunami simulations have been computed for 

several Swiss lakes in previous studies (e.g., Hilbe and Anselmetti, 2015, Kremer et al., 2012; 

Nigg et al., 2021; Strupler et al., 2018). These data provide information on tsunami inundation 

distance, flow depth, and run-up height and were used to identifying coastal areas prone to 

tsunami inundation. 

 

Geomorphologic database 

A geomorphological database was compiled for selected lakes using available data of 

topography, tsunami inundation, historical, and geological maps, as well as borehole logging 

data (Fig. 3-2). The individual datasets were compiled in the geographic information system 

software ArcMap (ESRI Inc., version 10.5). The public datasets SwissAlti3D hillshade map, 

SwissBathy3D bathymetric map, geological map GA25 and historical maps (Dufour, Siegfried 

and the national map of Switzerland) are provided by swisstopo. For areas on the French 

territory of Lake Geneva, freely available maps form the French geological survey (Bureau de 

Recherches Géologiques et Minières: BRGM) were used. Borehole logging data were 

requested from cantonal authorities and private geotechnical engineering companies. For most 

requests, these data could be used free of charge. Remote geomorphological characterization 

of the lakeshores was combined with field surveys and geomorphological mapping in the areas 

of interests. Based on these data, a land-use classification was created to provide a reasonable 

pathway for selecting coring sites. These levels include accessibility (e.g., natural protection 
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areas, ownership, and accessibility costs), land use (e.g., agricultural land, artificial landfill, 

and forest), and historical development (Fig. 3-2). 

 

 

Fig. 3-2: Developed site selection workflow: lake selection criteria, compiled geomorphologic database, and land 

classification applied used for coring site selection. The data used consists of topographic map (hillshade map 

SwissAlti3D from swisstopo and Lake Lucerne bathymetric map from Hilbe et al. (2011)), tsunami inundation 

map of Lake Lucerne (Hilbe and Anselmetti, 2015), historical map (Dufour & Siegfried map from swisstopo), 

geological map (swisstopo GA25 map), and borehole logging data requested from cantonal authorities and private 

geotechnical engineering companies. 
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3.3.4 Sedimentological analysis 

Terrestrial sediment cores were recovered up to a depth of 2 m using a Pürckhauer sediment 

corer. The recovered sediment sections were photographed and transferred to plastic tubes cut 

in half in the field for further analysis in the laboratory. At terrestrial sites with promising 

preliminary results, cores were recovered with a hydraulic-coring system (Geoprobe 6620DT; 

cored in collaboration with EAWAG, ETH Zurich). Short cores were recovered with a 

hammer-driven sediment corer, long cores (≥ 3 m) with an UWITEC piston-coring system 

from a floating platform, and a manual percussion-coring system from the frozen lake surface 

in coastal shallow-water environments. These sediment cores were scanned with a Geotek 

MSCL-S (Standard Multi Sensor Core Logger) at 5 mm for bulk density and magnetic 

susceptibility. Full-core computed tomography (CT) scans with a resolution of 100 µm per 

voxel size were performed with a Siemens Somatom Definition AS X-ray CT scanner at the 

Institute of Anatomy, University of Bern. CT scan data were analyzed using RadiAnt DICOM 

Viewer software (version 4.6.9.18463). Micro-CT scans with a resolution of 15 μm per voxel 

size were obtained from two sediment U-channels (take preferably plastic or carbon material, 

we used steel, which is problematic due to the low-density contrast to the sediment sample and 

the high absorption of X-rays) with a multi-scale X-ray nano-CT system (Bruker Skyscan 

2211) at the Department of Geosciences University of Fribourg. Data visualization was 

performed after 3D reconstruction with NRecon software (version 1.6.10.5; Bruker 

Corporation) with Avizo software (version 9.4.0; Thermo Fisher Scientific). Sediment cores 

were split in two halves and line-scan images were acquired with the Geotek MSCL-S camera. 

Macroscopic sedimentological core analysis was performed, and sedimentological units were 

characterized by sediment color, grain size, diatom-species assemblages, and mineralogical 

composition. Radiocarbon dating was performed on terrestrial organic macro-remains with the 

Mini-RadioCarbon-dating System (MICADAS) at ETH Zurich and Department of Chemistry 

and Biochemistry, University of Bern. 
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Table 3-2: Investigation methods used to localize and identify the geologic archive for 

tsunami-related sedimentary signatures in the lacustrine on- and offshore environments. 

Investigation method Aim Tools 

Geomorphological mapping 

and reconnaissance 

Identification of areas with 

sediment source and archive 

 

Investigate land-use change and 

development 

Geographic information system ArcMap 

Geological maps 

Topography and bathymetry maps  

Aerial photographs 

Historical maps  

Tsunami inundation      

maps 

Identify areas with simulated 

tsunami inundation 

Numerical tsunami propagation and 

inundation simulations 

Historical document 

analysis 

Characterization of lacustrine 

tsunami inundation, destruction, 

and deposition 

Historical chronicles 

Historical newspaper articles 

Historical paintings 

Historical photographs 

Sediment coring 
Recover of sediment cores in the 

on- and offshore setting 

Pürckhauer gouge auger  

Geoprobe 

Hammer-driven corer 

UWITEC piston corer  

Sediment core analysis 

Petrophysical core description 

Correlation of drill cores 

Sediment analysis 

Identification of tsunami deposits 

MSCL core scanner 

X-ray tomography core scan 

X-ray fluorescence core scan 

Smear slides 

Particle size analysis 

Dating method 
Dating of tsunami event related 

sedimentary structures 

Radiocarbon dating of terrestrial macro 

remains 
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Table 3-3: Compilation of historical documents consulted and investigated within this study. 

Lake Date (dd-mm-yyyy) Event Type of historical document Reference 

Lake Geneva 563 CE Tauredunum rockfall and Lake 

Geneva tsunami 

Chronicle Montandon, 1925 
  

Chronicle 

Chronicle 

Favrod, 1991 

Schoeneich, 2015      

Lake Geneva 11-03-1584 Aigle earthquake and small 

Lake Geneva tsunami 

Collection of historical sources Egli, 1901-1904 
  

Collection of historical sources Reymond, 1917 
  

collection of historical sources Schardt, 1892 
  

Chronicle du Chesne, 1587 

     

Lake Lucerne 18-09-1601 Unterwalden earthquake-

generated subaqueous mass 

movements 

Chronicle Cysat, 1969 

    
  

Chronicle Frank, 1950 
     

Lake Lucerne 23-09-1687 Muota Delta collapse Report Bünti, 1973 
  

Chronicle Billeter, 1923 
  

Chronicle Dietrich, 1689 
     

Lake Lucerne 27-02-1963 Obermatt quarry rockfall-

generated impulse waves 

Newspaper article NZZ, 01-03-1963 
 

08-08-1964 Newspaper article NZZ, 10-08-1964 
  

Newspaper article NZZ, 13-08-1964 
  

Photographs Historical archive Vitznau 

     

Lake Lucerne 20-06-2007 Obermatt quarry rockfall-

generated impulse wave 

Newspaper article NZZ, 13-12-2007 
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3.4 Results 

Lake Lucerne, Lake Geneva, and Lake Sils were selected for this study based on historically 

reported tsunami events, large mass-movement deposits in the deep lake basins, and available 

numerical tsunami propagation and inundation simulations. The developed coring site selection 

workflow (Fig. 3-2) was applied to these three lakes with results presented in the following 

section. 

 

3.4.1 Lake Lucerne 

Lake Lucerne (113.6 km2) is a perialpine fjord-type lake of glacial origin located in central 

Switzerland at an altitude of 434 m above sea level (a.s.l.; Fig. 3-3). The lake is characterized 

by seven steep-sided subbasins with flat basins plains that host multiple subaqueous mass-

movement deposits. A total of six subaqueous mass-movement seismic horizons haven been 

attributed to strong regional earthquakes in 1601 CE, ~2200 BP, ~9870 BP, ~11’600 BP, 

~13’770 BP, and ~14’590 BP (Schnellmann et al., 2006). But also, less extensive, smaller 

subaqueous and subaerial mass movements have been described from the seismic-reflection 

stratigraphy at ~3200 BP, ~3900 BP, ~5400 BP, ~6300 BP, ~8000 BP, and ~9310 BP 

(Schnellmann et al., 2006). Several historical chronicles report severe tsunami events on Lake 

Lucerne in 1601 and 1687, respectively (Hilbe and Anselmetti, 2015), as well as locally 

confined effects from subaerial mass movement-generated impulse waves (Fuchs and Boes, 

2010; Huber, 1982). These historical documents were analyzed to characterize the tsunami-

related coastal impact on Lake Lucerne. Additionally, numerical tsunami simulations of the 

historical events 1601 and 1687 CE by Hilbe and Anselmetti (2015) were used to identify areas 

prone to tsunami inundation. 

 

Historically reported tsunami events on Lake Lucerne 

i) 1601 CE Unterwalden earthquake and Lake Lucerne tsunami 

The tsunami event of September 18, 1601 CE is documented in the chronicles of Renward 

Cysat, the Lucerne city clerk and the pastor Businger of Ennetbürgen. The chronicles describe 

a strong, regionally felt earthquake and a tsunami on Lake Lucerne. It is mentioned that shores 

have partially collapsed into the lake and coastal plains were inundated by several hundred 

meters (Cysat, 1969). Further it is documented that trees, boulders, boats, and fish were washed 

ashore (Cysat, 1969). The alluvial plain at Ennetbürgen was inundated by 800 m with a flow 
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depth of 2–4 m, so that fruit trees were washed away or partially covered (Businger in Frank, 

1950). After the event, an oscillatory movement of the entire lake, a seiche, periodically drained 

the riverine outflow that continued for several days with decreasing seiche amplitude (Cysat, 

1969). Two large (Weggis slide and Gersau basin slide) and several smaller subaqueous mass 

movements, as well as a rockfall impact, were recognized as the causes of the 1601 CE Lake 

Lucerne tsunami (Hilbe and Anselmetti, 2015; Schnellmann et al., 2002). Numerical tsunami 

simulation of the subaqueous Weggis slide (volume: ~11.4 x 106 m3) and Gersau Basin slide 

(volume: ~20.8 x 106 m3) by Hilbe and Anselmetti (2015) provide results (flow depth, 

inundation distance) that are in good agreement with the historically documented tsunami 

inundation distance and run-up height. 

 

ii) 1687 CE Muota Delta collapse-generated Lake Lucerne tsunami 

The tsunami event of September 23, 1687 CE was generated by an aseismic collapse of the 

Muota Delta (Hilbe and Anselmetti, 2015). The inundation and devastation in the village of 

Brunnen and the northern part of Uri Basin are reported in three independent contemporary 

chronicles by Bünti (1973), Billeter (1923) and Dietrich (1689). Ships were hurled on top of 

each other, pieces of wood and debris were washed far into the village of Brunnen, where flow 

depth (~4 m) reached up to the second floor of buildings near the shore (Bünti, 1973). On the 

opposite shore, at the guesthouse Treib, the wave knocked over the innkeeper at the entrance 

and tore away the windows shutters (Bünti, 1973). The jetty and the cheese in the cellar were 

washed away (Bünti, 1973). Hilbe and Anselmetti (2015) numerically simulated the delta 

collapse with a volume of 5.5 x 106 m3 that generated a tsunami (flow depth, run-up, and 

inundation area) which is in good agreement with the historical documentation of the event. 

 

iii) 1963, 1964, and 2007 CE Obermatt quarry rockfall-generated impulse waves 

The northern flanks of Mount Bürgenstock is susceptible to generate rockfall-induced impulse 

waves. A large rockfall occurred during the 1601 CE Lake Lucerne tsunami event (Cysat, 

1969). Three smaller, artificially induced rockfalls generated impulse waves in 1963, 1964 and 

2007 CE from a nearby quarry ("Obermatt", Fig. 3-3: Fuchs and Boes 2010; Huber, 1982). On 

February 27, 1963 CE, a rockfall with a volume of ~20’000 m3 caused 2 fatalities and 

considerable property damage (Huber, 1982). In addition, the rockfall impact on the lake 

surface generated an impulse wave with up to 4 m run-up, which locally caused shore erosion 

(NZZ from 01-03-1963). Another impulse wave was triggered by a rockfall (volume: 

~70’000 m3) on August 8, 1964 CE, probably related to improper blasting days before the event  
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Fig. 3-3: Geomorphological map of Lake Lucerne and its adjacent areas shows locations of recovered sediment 

cores (red dots), historic mass movements (1601 CE (blue arrows), 1687 CE (red arrows), 1963, 1964, and 

2007 CE subaerial rockfalls at the Obermatt quarry (yellow arrows)), mentioned in the historical tsunami reports 

(green dots), and coastal wetland (modified after Leupi and Marti, 1990; brown dots). Digital terrain model Swiss 

Alti3D (modified from swisstopo), and bathymetry of Lake Lucerne (modified from Hilbe et al., 2011). 

 

(Huber, 1982). The impulse wave caused considerable damage at the quarry and along the 

shore at Vitznau and Weggis (ca. 3–4 km across the lake). Several newspaper articles document 

this event and provide good information on the run-up height and inundation distance of the 

wave (e.g., NZZ, 10-08-1964). In the quarry, the impulse wave had a run-up height of 20 m, 

destroyed a transport ship, and drowned several smaller boats. It is further reported that the 

harbor area in Weggis was first drained (ca. -1.5 m) and then inundated by a wave that 

approached the shore like a wall (NZZ from 10-08-1964). The few shallow coastal areas were 

flooded by several tens of meters, and coastal facilities, quay walls as well as about 100 boats 

were heavily damaged, and some were washed ashore (Fig. 3-4; NZZ from 13-08-1964). The 

most recent rockfall-generated impulse wave at the Obermatt quarry occurred on June 20, 2007 

(Fuchs and Boes, 2010). Although the impulse wave was generated by substantial less rockfall 

volume (ca. 5’000–8’000 m3) than in 1963/1964 CE, the wave caused considerable financial 
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losses and damage to properties, boats, and harbors at the opposite shore (Fuchs and Boes, 

2010; NZZ from 13-12-2007). 

 

 

Fig. 3-4: Photographs documenting the damage and shore erosion (lower left image) caused by a rockfall-

generated impulse wave at Weggis in 2.5 km distance on August 8, 1964 CE (photographs: historical archive 

Vitznau). 

 

Coring sites and its sedimentary records 

At Lake Lucerne, sediment cores were recovered at six different locations within the coastal 

on- and offshore environment. At the four coastal localities Ennetbürgen, Chappelmatt, 

Tanzenberg, and Tribschen, Pürckhauer sediment cores were recovered (Fig. 3-3). Based on 

their results further sediment coring was conducted with a hydraulic Geoprobe coring system 

at Chappelmatt, Tanzenberg, and Tribschen, however, recovery rate was low at with ~40, ~35 

and ~55% at Chappelmatt, Tanzenberg, and Tribschen, respectively (Fig. 3-5). In the offshore 

area of the Lucerne Bay, UWITEC piston cores were recovered along a transect from a coastal 

depression. Additionally, a solitary 7-m long core was recovered from an amphitheater-like 

setting in the southeast of the bay. In the following the investigations performed at Chappelmatt 
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and within the Lucerne Bay are presented below as examples for Lake Lucerne. All core 

coordinates can be found in the supplementary material (Appendix A). 

 

i) Onshore localities 

Ennetbürgen 

Historical accounts (Businger in Frank, 1950; Cyat, 1969) and tsunami simulation (Hilbe and 

Anselmetti, 2015) document that the alluvial plain at Ennetbürgen (Fig. 3-3) was inundated by 

several hundred meters during the 1601 CE Lake Lucerne tsunami and was also affected by 

the tsunami generated by the collapse of the Muota Delta (Hilbe and Anselmetti, 2015). We 

identified a coring site at about 150 to 200 m distant from todays’ lakeshore at a pastureland 

that had not been plowed recently, as reported by the local farmer reported. However, he was 

not aware of how the field had been farmed in the longer past. Additionally, based on 

geomorphological classification, the site was characterized as a fluvial floodplain that was 

repeatedly flooded by the Engelberger Aa (Fig. 3-3). Nevertheless, four Pürckhauer sediment 

cores were recovered at the site. The recovered sediment successions consist of a dark brown, 

organic-rich topsoil with poorly sorted gravelly sand in the upper 50 cm. Below this, the 

organic content gradually decreases and poorly sorted clastic components ranging from silt to 

medium gravel become more dominant between 50 to 100 cm depth. Color changes from dark 

brown to grayish brown and gray in the lowermost section. There, water-saturated clayey silt 

is dominant, and the fraction of gravel and sand is low. Due to this strongly clastic sediment 

succession observed along the fluvial floodplain at Ennetbürgen, no further cores were 

recovered with the hydraulic-coring system. Additionally, fluvial floodplains were further 

considered as poorly suited for the recognition of tsunami-derived clastic material in lacustrine 

environments. 
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Fig.  3-5: Illustration of recovered sediment core (black) compared to run cored (black outlined rectangle) and 

total core recovery (TCR) obtained at Chappelmatt (40.6%), Tanzenberg (35.4%), and Tribschen 55.4%) with the 

hydraulic-coring system, indicates the difficulty of core-to-core correlation with the recovered sediment cores, 

even though duplicate cores (A and B) were generally taken. Location and calibration of radiocarbon ages 

performed from recovered sediment cores at Chappelmatt are indicated. 

 

Chappelmatt 

The pristine wetland at Chappelmatt (Fig. 3-6), located on the shore of the Küssnacht Basin 

(Fig. 3-3), was characterized as highly suitable for the recognition of tsunami-derived clastic 

material due to its organic-rich background sediment and low fluvial impact. Furthermore, 

since the area was likely inundated during the 1601 CE Lake Lucerne tsunami, as indicated 

from tsunami simulation (Hilbe and Anselmetti, 2015) and a historical account (Cysat, 1989), 

it was considered as one of the most promising onshore environments for our study. However, 

because of the pristine nature of the area and the rarity of these at Lake Lucerne, the area is a 

nature reserve. Nevertheless, permission for the investigation was granted by the cantonal 

authorities. 

 

Sediment cores were recovered using a Pürckhauer sediment core and a hydraulic-coring 

system along a transect 10 to 200 m from the present shoreline (Fig. 3-6). The sedimentological 

succession consists of well to partly decomposed peat deposits that contains abundant fibrous 

peat fragments and occasionally detrital-rich sediment deposits the uppermost 1 to 2 m. 

Towards the lake, organic-rich clayey sediment was found in the lowermost part. In the area 

farther from the shore, the peat deposits overlies a dense, cohesive faintly laminated to massive 



Chapter 3 

 

34 
 

clay with angular gravel-sized clasts and layers of normally graded sand and gravel, which 

most likely representing Late Glacial (~15 kyr BP) deposits, sharp. Because total core recovery 

was low (~40.6%), probably due to high compaction of organic-rich units, meaningful core-to-

core correlation of the clastic layers observed in the peat deposit was not possible. In addition, 

difficulties with proper radiocarbon dating of the units (Fig. 3-5; Table 3-4), have led us not to 

investigate the sedimentary succession further. However, prober coring with a monolith may 

provide better results in the future. 

 

 

Fig.  3-6: Geomorphological map and Geoprobe sediment core location at the coastal wetland Chappelmatt, Lake 

Lucerne. 

 

Tanzenberg 

Tanzenberg is located at the northern shore of the Vitznau Basin and is characterized by an 

embayment protected from two 15 to 40 m high ridges of Molasse bedrock (Fig. 3-3). The 

landward area is characterized by an artificially created pond, which can be recognized on the 

historic Siegfried map (1889 CE), but not on the Dufour map (1861 CE). With the construction 

of a private residence of Ludwig II in the late 19th century, the pond was created by a lakeshore 

wall, which was built about 20 m into the lake and partly filled up behind. Over time, the pond 
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became silted by reed growth. Although the area was early anthropogenically influenced, it is 

supposed that the setting has not been excavated and “only” filled with debris. Underneath, 

however, the natural sedimentary archive has been preserved. Because of the well-suited 

geomorphological setting for the recognition of tsunami-derived sediment (not influenced by 

riverine discharge, small catchment area (105 m2), organic-rich background deposits from reed 

vegetation), as well as considerable inundation simulated from the 1601 CE event (Hilbe and 

Anselmetti, 2015), we decided to recover sediment cores with the hydraulic-coring system 

along a transect at Tanzenberg. 

Similar to the previous location, the total core recovery at Tanzenberg was low (35.4%;     

Fig. 3-5), therefore, meaningful core-to-core correlation was not possible. Nevertheless, the 

observed sedimentological succession can be reconstructed. From top to bottom, the succession 

consists of dark brown, very organic-rich deposits in the upper 30 cm, followed by artificially 

filled debris. The heterogeneous unit of landfill material has a variable thickness (10 to 40 cm) 

and is followed by another deposit of a very organic-rich lithology that is thickest proximal to 

the lake and thins landward. In one core, this is followed by a 10 cm thick yellowish lithology 

of silt with a density of 1.2 g cm3, likely representing lacustrine deposits. In all cores, the 

lowermost section consists of dense, cohesive, faintly laminated clay deposits with angular 

gravel-sized intraclasts and section of gravel- and sand-dominated deposits, most likely 

representing Late Glacial (~15 kyr BP) deposits. 

 

Tribschen 

Tribschen is located on the southern shore of the Lucerne Bay in the eastern part of the City of 

Lucerne and place to a well-visited lido with outdoor sport facilities in the vicinity (Fig. 3-3). 

However, the area formerly hosted an extensive coastal wetland with reed vegetation that was 

drained and partially filled to level the surface in the early 20th century. A 20 m high ridge of 

Molasse bedrock protects the area from the larger Chrienbach River drainage system, which 

build up a large fluviatile to deltaic system at Lucerne during the Holocene (Fig. 3-3). 

Additionally, the location has a small catchment area (7 x 105 m2) and is not influenced by river 

runoff, however small streams do exist. The adjacent offshore bathymetry is relatively flat, thus 

tsunami-induced sediment remobilization and landward transport may be possible. Due to the 

geomorphological setting (coastal wetland, small catchment without riverine influences) and 

that the area was well-inundated in the numerical tsunami simulation (Hilbe and Anselmetti, 

2015), the area was selected for sediment coring using the hydraulic-coring system. However, 
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the underground infrastructure of draining and electricity lines had a strong influence on the 

free choice of coring site. 

 

Similar to the previous locations (Chappelmatt and Tanzenberg), the total core recovery at 

Tribschen was low (55.4%; Fig. 3-5), so that a meaningful core-to-core correlation was not 

possible. Nevertheless, the observed sedimentological succession can be reconstructed and is 

similar to the one observed at Tanzenberg. From top to bottom, the succession consists of dark 

brown, very organic-rich deposit in the upper 20 to 40 cm, followed by an artificially filled unit 

of debris. The heterogeneous fill material contains bricks, bituminous-smelling gravel-sized 

clasts, and a large proportion organic-rich, poorly sorted natural sand to gravel. This followed, 

in most of the cores by another well-decomposed, organic-rich unit of variable thickness (5 to 

40 cm). This is followed proximal to the lake by a light grey homogeneous carbonate mud and 

dense, cohesive brownish yellow unit with angular intraclasts in a silty matrix with sections of 

faintly laminated with variable thickness landward, most likely representing Late Glacial 

(~15 kyr BP) deposits. 

 

ii) Offshore setting 

In the immediate vicinity of the City of Lucerne, three sediment cores were recovered with a 

piston-coring system from a floating platform from in an offshore depression at 200 m from 

the present shoreline along a 400-m transect (Figs. 3-3 and 3-7). The depression is 

characterized by a water depth of 8 m and is about 3 to 4 m deeper than the surrounding shallow 

water zone of the Lucerne Bay. From top to bottom, the sediment cores, up to 3 m long, consists 

of light gray carbonate mud in the uppermost 20 to 40 cm that is followed by a 60 to 70 cm 

thick, light brown, normal graded siliciclastic sand that overlies a brownish organic-rich Unit 

(2 to 10 cm thick) with beige laminae and carbonate shells with a sharp basal contact               

(Fig. 3-7). This is followed by a gradual transition towards the lowermost lithological Unit, 

which consists of faintly laminated, dense, cohesive silty clay with sandy lamina (Fig. 3-7). 

Because of the homogeneous density distribution observed from the MSCL scan and the 

presumably late-glacial character of the lowermost sedimentological Unit, not all sediment 

cores were opened for this study (Fig. 3-7). 

 

The normal graded deposit was examined with laser-diffraction particle analysis of the 

siliciclastic sediment fraction, XRF scan, radiocarbon dated and associated with the 1601 CE 

Lake Lucerne tsunami by Nigg et al. (subm.). The observed offshore tsunami deposit is 
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characterized by a sharp lower contact with carbonate shell fragments and horizontally bedded 

wooden particles that become more abundant in the upper part. Mean grain-size of the 

siliciclastic sediment fraction varies from 200 μm at the base to 15 μm at the top, which is 

characterized by a sharp contact to the overlying carbonate mud. Si/Al ratio obtained from XRF 

can be well used as grain-size indicator and supports the normal graded grain-size distribution 

(Nigg et al., subm.). Radiocarbon dating of terrestrial derived organic macro remains (conifer 

needles and leave fragments), yield radiocarbon ages of 1306 to 1442 calibrated (cal) CE (Nigg 

et al., subm.). The radiocarbon ages obtained fit well with the proposed mechanism of tsunami-

induced sediment remobilization from the Lucerne Bay and the adjacent onshore, which were 

then deposited from suspension in the offshore depression due to the decrease in tsunami flow 

speed at the location. Therefore, Nigg et al., (subm.) were able to link the offshore event deposit 

with the historically reported 1601 CE Lake Lucerne tsunami based on sediment core analysis 

(radiocarbon dating and grain size) and numerical bed shear stress simulation. 

 

Another sediment core was recovered in an amphitheater-like setting in the southeastern part 

of the Lucerne Bay at 10 m water depth (Fig. 3-3). The 7 m long composite sediment core 

provides the longest record examined with a basal radiocarbon age of ~7000 years (Fig. 3-8). 

However, this core does not contain obvious sedimentary layers that correlate with the 

historical events described. Nevertheless, two clastic layers were radiocarbon dated with 

terrestrial organic macro remains (conifer needles, European beech seed and leave fragments; 

Table 3-4) in the lower part of the core that coincide with postulated prehistoric events at 

~2200 BP and ~5400 BP (Schnellmann et al., 2006). The upper clastic layer, 5 cm thick, 

consists of a well-pronounced density peak and fragmented carbonate shells at 262 to 267 cm 

composite core depth and was radiocarbon dated to 2152-2339 cal. BP directly above the layer 

with a European beech seed (Fig. 3-8; Table 3-4). The CT-scan image shows well-pronounced 

laminated, high-density layers in the mm-scale with strong contrast and sharp contact with the 

overlying sediment (Fig. 3-8). However, the lower contact is not well visible from the line-scan 

image, CT-scan image also highlights a sharp lower contact here (Fig. 3-8). In the lower part, 

at 396 to 398 cm composite core depth, a very well-pronounced density peak can be recognized 

in the MSCL density data, which was radiocarbon dated to 5312-5571 cal. BP directly above 

with conifer needle fragments (Fig. 3-8; Table 3-4). There, the sediment is characterized by a 

1 cm thick layer of well-pronounced mm-thick laminae of brownish gray and greenish gray 

color and a light gray top with a gradual transition to the overlying sediment (Fig. 3-8). Whole-

core CT scan does not allow further textural descriptions here. Therefore, 3D micro-CT 
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analysis of a 2 x 1 x 1 cm thick U channel was made. The microtextural architecture of the 

layer that is characterized by strong density contrast to the background sediment, fold-thrust 

structures in the yz-orientation and cross-bedding in the xz-orientation. These sedimentary 

structures are probably related to strong bottom currents caused by prehistoric tsunamis 

triggered by subaqueous mass movements on Lake Lucerne at ~2200 and ~5400 BP. 

 

3.4.2 Lake Geneva 

Lake Geneva (580.03 km2) is a perialpine lake of glacial origin situated at an altitude of 372 m 

a.s.l. in western Switzerland, that partly belongs to France. The lake is characterized by its 

curved morphology, which was carved into the bedrock by repeated advances of the Rhone 

Glacier during the Pleistocene (Fiore et al., 2011). The lake is divided into three subbasins: 

Haut Lac (Upper Lake) in the east, Grand Lac (Large Lake) in the central part, and Petit Lac 

(Small Lake) in the southwest. The max. lake depth of 310 m is reached in central part. Detailed 

investigation of Lake Geneva sedimentary infill was conducted with seismic reflection data 

and sediment cores in previous studies (Fiore et al., 2011). The sediment stratigraphy consists 

of a succession of basal lodgment till deposited on the bedrock, overlain by proglacial 

heterogeneous deposits and glacio-lacustrine fines, finally draped with Holocene lacustrine 

sediment (Fiore et al., 2011; Moscariello, 1997; Kremer et al., 2015). A total of six extensive 

subaqueous mass-movement deposits with volumes ranging from 22 to 250 x 106 m3 have been 

deposited over the last 4000 years in Lake Geneva (Kremer et al., 2015). Accelerated ground 

motion during historic and prehistoric earthquakes likely caused mass-movements in 1584 CE, 

1322 CE, ~2185 BP, and ~3683 BP (Kremer et al., 2015). However, the largest historically 

reported tsunami event on Lake Geneva was triggered by a large deltaic collapse of the Rhone 

Delta, most likely caused by the Tauredunum rockfall in 563 CE (Kremer et al., 2012). 

 

The adjacent geomorphology of Lake Geneva can be roughly divided into an eastern and a 

western part. The eastern part is characterized by relatively steep shorelines dominated by 

exposed bedrock with a thin sedimentary cover of Holocene and Pleistocene deposits in some 

places, and by an extended fluvial environment between Bouveret and Villeneuve formed by 

the inflow of the Rhone River (Fig. 3-9). Several Gilbert-type deltas form cone-shaped 

sedimentary bodies that prograde into the lake (e.g., Montreux, Vevey). Locally, few early 

Holocene beach deposits of a 10 m high lacustrine terrasse are found. The western part of the 
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Fig.  3-7: Sediment core log and the 1601 CE offshore event deposit (left) recovered from a depression along a transect in the Lucerne Bay, Lake Lucerne (lower right). Line-

scan images (upper right) show the sharp upper and lower contact of the light brown, normal graded sand to silt event deposits and the lowermost sedimentary lithology of 

dense, cohesive glacio-lacustrine clay with sandy laminae (modified from Nigg et al., subm.). 
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Fig.  3-8: Single sediment core recovered in an amphitheater-like setting in the southeastern part of the Lucerne Bay (see Fig. 3-7 for core location). Core log (lithology and 

units), line-scan image, CT-grayscale image, and MSCL data (density and magnetic susceptibility (Magn. susc.)). Radiocarbon ages obtained from terrestrial organic macro 

remains are shown on the left. Line-scan image, CT-scan images, and micro-CT scan of two clastic event deposits radiocarbon dated to previously postulated prehistoric mass 

movement generated tsunamis on Lake Lucerne at~2200 and ~5400 BP, and their textural interpretation (color scale adjusted for better visualization) are shown. 

~5400 BP event 

~2200 BP event 
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Table 3-4: AMS radiocarbon age, calibrated ages, and δ13C results from terrestrial organic macro remains. 

Location Core ID Sample 
Core depth 

(cm) 
Sample material δ13C (‰) 

14C age ± 1σ 

(14C years BP)a 

Calibrated 2σ 

range (cal CE)b 

Calibrated 2σ 

range (cal BP)b 

Chappelmatt CP18-1A BE-11499.1.1 13 Seeds -30.9 -163 ± 65 Modern – 

Chappelmatt CP18-1A BE-12422.1.1 128 Nut shell -28.8 5407 ± 26 – 6183–6285 

Chappelmatt CP18-1B BE-12423.1.1 17 Leave fragments and seed -32.6 2837 ± 78 – 2779–3146 

Chappelmatt CP18-4B BE-12424.1.1 206 Seeds -26.6 631 ± 21 1295–1396 556–661 

Lucerne Bay LU18-2 c BE-10751.1.1 35–36 Leave fragments -28.7 -572 ± 31 Modern – 

Lucerne Bay LU18-2 c BE-10752.1.1 41–42 Conifer needle -28.7 570 ± 31 1306–1425 – 

Lucerne Bay LU18-2 c BE-10753.1.1 54–55 Conifer needle -28.8 567 ± 30 1307–1425 – 

Lucerne Bay LU18-2 c BE-10754.1.1 79–80 Conifer needle -27.4 527 ± 31 1326–1442 – 

Lucerne Bay LU18-2 c BE-10755.1.1 98–99 Leave fragments -31.8 544 ± 30 1321–1437 – 

Lucerne Bay LU18-2 c BE-10756.1.1 102–103 Leave fragments -29.7 812 ± 36 1174–1277 – 

Lucerne Bay LU18-4 BE-12170.1.1 145 Leave fragments -30.0 965 ± 69 900-1224 – 

Lucerne Bay LU18-4 BE-12171.1.1 223 Conifer needle -41.6 1373 ± 49 590-775 1176-1361 

Lucerne Bay LU18-4 BE-12172.1.1 269 European beech nut -31.8 2243 ± 30 – 2152-2339 

Lucerne Bay LU18-4 BE-12770.1.1 389 Conifer needle fragments -31.3 4674 ± 44 – 5312-5571 

Lucerne Bay LU18-4 BE-12173.1.1 447 Conifer needle fragment -38.3 5481 ± 38 – 6197-6393 

Lucerne Bay LU18-4 BE-12771.1.1 590 Conifer needle -36.6 5688 ± 59 – 6317-6633 

Lucerne Bay LU18-4 BE-12174.1.1 697 Seed -27.4 6081 ± 81 – 6745-7163 

Lake Sils SIL10-1 d ETH-40776 50–51 Peat: plant remains -30.5 1745 ± 35 241–403 – 

Lake Sils SIL06-8 d ETH-32595 79 Peat: 30 plant remains -25.8 1735 ± 50 225–419 – 

Lake Sils Sis03-23 e Poz-5423 69-72 Three small twigs  NA 1300 ± 35 654–797 – 

Lake Sils Sis03-2 e Poz-5424 85 Leave fragments, small twig NA 1465 ± 40 548–652 – 

Uncertainties of 14C ages refer to 1-sigma uncertainties. Ranges of calibrated ages represent 95.4% probabilities (2σ): a Stuiver and Polach, 1977; b Ramsey, 2009; Reimer et 

al., 2020; c Nigg et al., subm.; d Nigg et al., 2021;e Blass et al., 2005. 
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lake is characterized by more abundant shallow shorelines dominated by glacial deposits, 

fluvial environments with beaches, a few natural relicts of wetlands, and exposed bedrock that 

is partially covered with unconsolidated sediment. Shoreline infrastructures, sidewalks, and 

public gardens are abundant, especially in the urban areas around Lausanne and Geneva, but 

also elsewhere and strongly shaped both the eastern and western lakeshores. 

 

Historically reported tsunami events on Lake Geneva 

i) 563 CE Tauredunum rockfall and large Lake Geneva tsunami 

The historical chronicles by Bishop Marius of Avenches and Grégoire of Tours report on the 

catastrophic Tauredunum rockfall and associated tsunami on Lake Geneva in 563 CE 

(Montandon, 1925; Schoeneich et al., 2015; Favrod, 1991) and were translated from Latin into 

French by Montandon (1925). Bishop Marius of Avenches accurately documents the disastrous 

Tauredunum rockfall at the Rhone river mouth: “In that year the imposing mountain of 

Tauredunum in the territory of the Valais rushed so suddenly that it buried a nearby fortress 

with all their inhabitants”. In the following lines Bishop Marius refers to the devastating 

tsunami that is directly related to the Tauredunum rockfall: “… and so agitated the lake, sixty 

miles long and twenty miles wide, that, coming from both shores, it devastated ancient villages 

with people and herds; destroyed many of the holy gods with their servants, and destroyed the 

bridge of Geneva, mills, and men, and inundated the city of Geneva, causing many casualties 

there”. 

 

The chronicle by Bishop Grégoire of Tours describes a cascade of the event that differs from 

the chronicle by bishop Marius of Avenches: “The damming of the Tauredunum rockfall cone 

created a lake upstream … Then a dam outburst flood caused the flooding of Lake Geneva 

shores. The flooding carried away everything and overtopped the Burgundian city walls at 

Geneva”. However, this is not consistent with the observed mass-movement deposit with a 

volume of 250 x 106 m3 observed in the Lake Geneva sediment record by Kremer et al. (2015). 

Thus, the Tauredunum rockfall impact destabilized the Rhone Delta and caused its collapse. 

The water displacement caused by the delta failure generated a basin-wide tsunami with severe 

inundation along the lakeshores and at the lake outlet (Kremer et al., 2012). 

 

ii) 1584 CE Aigle earthquake and small Lake Geneva tsunami  

The Aigle earthquake on March 11, 1584 CE, with a reconstructed epicentral moment 

magnitude (Mw) of 6.1 (Fäh et al., 2011), caused a tsunami and a seiche on Lake Geneva that 



Chapter 3 

 

43 
 

was historically reported (Fritsche al., 2012; Schwarz-Zanetti et al., 2018). The tsunami was 

likely caused by subaqueous mass movements that were triggered by the earthquake (Loizeau, 

1991; Kremer et al., 2015). A mass-movement deposit with an estimated minimum volume of 

1 x 106 m3 was dated with the radiocarbon method to 1500 ± 100 cal CE (Kremer et al., 2015). 

Additional subaqueous mass movements may have originated in the area of the Rhone Delta. 

However, the associated failure scars were not identified in the multibeam bathymetry data, 

and the acquired seismic-reflection data by Kremer et al. (2015) did not include the delta area. 

Nevertheless, numerical tsunami simulations indicate that a minimum displaced sediment 

volume of 106 to 107 m3 is required in the Rhone Delta area to generate a tsunami with 1 m 

run-up height at Montreux and Vevey, as reported in historical documents (Kremer et al., 

2015). 

 

Schwarz-Zanetti et al. (2018) compiled, analyzed, and verified the accuracy of various 

historical documents describing the secondary effects of the 1584 CE Aigle Earthquake. The 

effects of the tsunami and seiche on Lake Geneva were mentioned in several collections of 

historical sources (e.g., Egli, 1901-1904; Reymond, 1917; Schardt, 1892) and chronicles (e.g., 

du Chesne, 1587). For example, the tsunami was described by Jousua Wyttenbach: “In the 

harbors of many places the lake was agitated and stormy, but a stone’s throw away from the 

harbors the lake was calm. In some places the lake retreated, in others it expanded, at the end 

it rolled back in the old bed” (Egli 1901–1904). Coastal erosion, inundation, and damage to 

vineyards near the shore were reported mainly from the northern shore of the lake near the 

Rhone Delta (Egli, 1901-1904). At Montreux, deep holes were created by the erosion of 

tsunami waves along the shore (Reymond, 1971). Several meters of run-up were reported at 

Grandvaux (Reymond, 1971). Additionally, entire shoreline sections have collapsed into the 

lake at Vevey, and a seiche with an amplitude of 1.5 m was observed at the lake outlet, exposing 

the Rhone riverbed three to four times at intervals of 15 min (Egli, 1901-1904). 

 

Coring sites and its sedimentary records  

Pürckhauer gauge auger sediment cores were recovered from 7 different onshore localities 

around Lake Geneva that exhibit geomorphological characteristics of beaches, coastal 

wetlands, and glacially dominated landscapes (Fig. 3-9; Table 3-5). Although these field 

surveys did not yield positive evidence of tsunami deposits and investigations were not 

intensified thereafter because the observed coastal sediments were considered poorly suited for 

tsunami deposit recognition, due to the predominantly clastic sedimentary environments even 
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in locations where organic-rich background sediments would have been expected. The results 

obtained at Collonge-Bellerive are presented below as an example for Lake Geneva. 

 

Fig.  3-9: Map of Lake Geneva shows the locations of recovered sediment cores (red dots) and historically reported 

tsunami waves (green dots). The reconstructed epicenter of the 1584 CE Aigle earthquake (red star) and the 

associated areas of triggered subaqueous mass movements are indicated (red arrows; modified from Kremer et 

al., 2015). The location of the 563 CE Tauredunum rockfall and the isopaches of the associated mass-movement 

deposit from the Rhone Delta collapse are shown in blue (modified from Kremer et al., 2015). High-resolution 

bathymetry is modified from Kremer et al. (2015), hillshade map is based on the SwissAlti3D from swisstopo. 

 

Collonge-Bellerive: Point à la Bise 

Point à la Bise hosts one of the few pristine wetlands on Lake Geneva (Fig. 3-10). It is located 

directly on the lakeshore and is adjacent to a campsite with artificially stabilized shoreline. The 

area is characterized by a wetland in the south, Holocene beach deposits to the north, and glacial 

deposits further inland. The wetland is a well-protected bird conservation area so that access 

for our geological surveys was denied. Nevertheless, 7 Pürckhauer cores were recovered at the 

campsite near the pristine wetland (Fig. 3-10). Because of several underground course of power 

lines, only a few cores could be recovered directly at the border of the nature reserve and at the 

northern end of the campground (Fig. 3-10). 
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The uppermost 2 m of the sediment stratigraphy at Collonge-Bellerive consists of poorly sorted 

gravel toward the lake (Fig. 3-11). There, however, core recovery was low, probably due to the 

very clastic, non-cohesive sediment properties. Landward, the succession from top to bottom 

consists of 20 to 40 cm thick unit of a brown, organic-rich soil with poorly sorted sand, and a 

few matrix-supported gravel clasts (Fig. 3-11). This is followed by a cohesive, light brown 

clayey soil with reddish oxidized horizons, and a variable thickness of 20 to 40 cm in Cores 

TCS-5, 6, and 7 (Fig. 3-11). In core TCS-4, however, the topsoil overlies the lakeward observed 

gravel with a sharp contact (Fig. 3-11). A well-sorted, dark grey sand is found below the light 

brown, clayey soil in Cores TCS-5, 6, and 7, and underlies the poorly sorted gravel in Cores 

TCS-3 and 4 (Fig. 3-11). The laterally continuous sand is massively bedded, varies in thickness 

from 20 to 60 cm, and is well sorted in parts, while larger proportions of silt occur in others 

(Fig. 3-11). In the lowermost section (100 to 200 cm), a massively bedded, light gray, 

homogeneous lacustrine carbonate mud with carbonate shells is observed based on the 

recovered Pürckhauer sediment cores (Fig. 3-11). 

 

Fig. 3-10: Geomorphological map of Point à la Bise, Collonge-Bellerive show the location of recovered 

Pürckhauer sediment cores (red dots), elevation profile as well as mapped and unmapped electric lines and water 

pipes are indicated. 
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Fig. 3-11: Pürckhauer sediment core transect at Collonge-Bellerive. The sedimentological stratigraphy consists of 

poorly sorted gravel toward the lake and a succession of lacustrine mud, well sorted sand, clayey soil, and organic-

rich soil further inland. 

 

3.4.3 Lake Sils 

Lake Sils (4.1 km2) is the uppermost lake of a chain of four lakes (Lake Sils, Lake Silvaplana, 

Lake Champfèr, and Lake St. Moritz) in the Upper Engadine in southeastern Switzerland at an 

altitude of 1797 m a.s.l (Fig. 3-12). The longitudinally oriented alpine lake consists of four 

subbasins, Maloja, Lagrev, Silser, and Central Basin, with the Central Basin being the deepest, 

with a max. water depth of 72 m. The Central Basin hosts a large mass-movement deposit with 

an estimated minimum volume of 6.5°x 106 m3 and a thickness of more than 6 m, which 

originates from a partial collapse of the Isola Delta around 700 CE (Fig. 3-12; Blass et al., 

2005). Although no historical documents describe a tsunami on Lake Sils, this subaqueous 

mass movement was likely tsunamigenic and the area provides a unique opportunity to study 

coastal on- and offshore sediments in a pristine environment. 

 

Based on numerical tsunami simulation the partial Isola Delta collapse likely generated a basin-

wide tsunami, with an inundation distance of up to 250 m and a flow depth of up to 3 m at the 

coastal plains close to Sils Baselgia (Nigg et al., 2021). Although the area was an important 
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traffic axes during the Pax Romana (~1975–1750 BP) of the Roman period, there are no known 

historical accounts documenting the natural disaster. This is likely because with the collapse of 

the Roman Empire around 400 CE, the area became rural again (Ducrey, 2006). 

 

 

 

Fig. 3-12: A) Spatial extent of the Isola Delta collapse deposit in Lake Sils with its individual lake basins (M: 

Maloja Basin; C: Central Basin; L: Lagrev Basin, and S: Sils Basin (modified from Blass et al., 2005 and Nigg et 

al., 2021). B) Location of sediment core transects shown in Fig. 3-13 and area of tsunami inundation based on 

numerical simulations is shown in light red (modified from Nigg et al., 2021). 
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Coring sites and its sedimentary records 

The lakeshore geomorphology of Lake Sils is characterized by the Gilbert-type Isola Delta in 

the southeast as well as steep shoreline with exposed bedrock and unconsolidated sediments 

on the south to southeast and north to northwest facing lakeshores. Along the main valley axes, 

coastal lowland plains with high alpine wetland, grass, and shrub vegetation are developed 

along the lakeshore. Based on the inundation map from the numerical tsunami simulation, Nigg 

et al. (2021) recovered 21 sediment cores along a transect encompassing the on- and offshore 

environment of Lake Sils (Fig. 3-12). 

 

In the offshore, a coarse-grained, normal graded sand deposit with horizontally bedded gravel-

sized clasts 10 to 20 cm thick with a clay cap a few cm thick on the top overlies a well-

decomposed, organic-rich unit with a sharp lower contact (Fig. 3-13). This internally fining-

upward sequence, the lower sharp contact, and horizontally bedded gravel-sized clasts are very 

well recognizable on whole-core CT-grayscale images (Fig. 3-13). Based on sediment cores 

recovered with a hydraulic-coring system on land, the lateral continuity of the deposit can be 

traced approximately 50 m inland until the deposit can no longer be distinguished from the 

overlying sediment, while the underlying organic-rich unit can be traced further inland. In the 

continuity of sediment cores recovered onshore, a landward thinning and fining (decrease in 

mean grain size) trend of the associated deposit is readily apparent (Fig. 3-13). In sediment 

cores recovered offshore in water depths of 4 to 40 m and at 150 to 500 m from the alluvial 

plain, the event deposit transitions to a more heterogeneous sediment package with variable 

thickness and composition (Fig. 3-13). The internal sediment architecture of the event deposit 

consists of poorly sorted gravel, single and multiple fining-upward sand sequences with lower 

sharp contacts, mud clasts of finely laminated pre-event lacustrine deposits, and a well-

traceable clay cap at the top of the deposits. Sharp erosional contact to the underlying unit is 

observed in cores SIL10-2 and SIL10-1 (Fig. 3-13). Based on radiocarbon dating of the 

underlying unit of the event deposit to an age of 141-410 cal CE, the internal and spatial 

architecture of the observed sedimentary body as well as numerical tsunami simulation, Nigg 

et al. (2021) associated the event deposit with the Isola Delta collapse around 700 cal CE (Blass 

et al., 2005). 
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Fig. 3-13: Isola Delta collapse tsunami deposit and its lateral continuity observed in sediment cores from Lake Sils (see Fig. 3-12 for core location; modified from Nigg et al., 

2021). CT-scan image shows sharp lower sedimentary contact on the underlying pre-event deposit radiocarbon dated to 225-419 cal CE, horizontally bedded gravel clast and 

the fining upward trend (modified from Nigg et al., 2021) 
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Table 3-5: Evidence for tsunami deposits observed in sediment cores recovered at various location in the on- and offshore environment of Lake 

Lucerne, Lake Geneva, and Lake Sils. 

Lake Location Setting Geomorphology 
Core-type (number of recovered 

sediment cores) 

Evidence for tsunami related 

sedimentary signatures 

Lake Lucerne Ennetbürgen Onshore Fluvial dominated alluvial plain Pürckhauer (4) Negative 

 Weggis: Tanzenberg Onshore Coastal wetland Pürckhauer (4); Geoprobe (4) Negative 

 Merlischachen: Chappelmatt Onshore Coastal wetland Pürckhauer (4); Geoprobe (4) Negative 

 Lucerne: Tribschen Onshore Coastal wetland Pürckhauer (4); Geoprobe (4) Negative 

 Lucerne Bay Offshore Depression Piston-sediment cores (4) Positive 

      

Lake Geneva Lausanne: Près-de-Vidy  Onshore Beach Pürckhauer (4) Negative 

 St. Sulpice Onshore Beach, basal lodgement till Pürckhauer (4) Negative 

 Sciez (France) Onshore Coastal wetland Pürckhauer (4) Negative 

 Nernier (France) Onshore Beach, basal lodgement till Pürckhauer (4) Negative 

 Collonges-Bellerive: Point à la Bise Onshore Coastal wetland, beach Pürckhauer (4) Negative 

      

Lake Sils Sils Baselgia Onshore Alluvial plain Pürckhauer (4); Geoprobe (12) Positive 

 Lagrev Basin Offshore Nearshore Piston cores (6); Gravity cores (6) Positive 

 Sils Basin Offshore Nearshore Gravity cores (4) Positive 
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3.5 Discussion 

3.5.1 Historical documents of past lake tsunamis 

Because recent analogues of the sedimentary signature of lacustrine tsunamis are scarce, 

historical documents provide useful information about the characteristics of past tsunami 

events. However, intrinsic problems associated with this type of information need to be 

considered (Gusiakov, 2009). These problems may arise from the inaccuracy and fragmentary 

nature of available information on ancient or geographically remote events (Gusiakov, 2009). 

Therefore, the historical documents collected as part of this study, which consist of chronicles 

that include the authors’ observations and compiled eyewitness accounts, as well as artwork, 

newspaper articles, and photographs, were subjected to a careful verification of authenticity. 

For the characterization of lake-tsunami hazard in Switzerland, in particular the historical 

chronicles from Cysat (1969), Bünti (1973), Billeter (1923), Dietrich (1689), Bishop Marius 

of Avenches (Montadon, 1925) and Bishop Gregoire de Tours (Montandon, 1925) provide 

detailed information on historical events at Lake Lucerne and Lake Geneva. Previous studies 

have generally focused on the physical wave parameters described in these documents for 

comparison with the numerical tsunami simulations performed (e.g., Hilbe and Anselmetti, 

2015; Kremer et al. 2012) and on the secondary effects of strong historical earthquake 

(Schwarz-Zanetti et al., 2003, 2018). In this study, however, we put special emphasis on the 

historical documentation of tsunami-related coastal effects and, specifically, sediment 

remobilization and deposition. In the following, we elaborate (1) the nearshore effects of 

lacustrine tsunami waves and associated sedimentary signatures, and (2) triggering 

mechanisms of lake tsunamis based on the review of historical documents. 

 

Sedimentary signatures reported in historical documents on lake tsunamis 

Our study of historical documents highlights that lacustrine tsunamis have a very high erosion 

potential on lakeshores. For example, various chronicles mentioned entire shoreline sections 

that submerged. However, this could also be related to slopes that collapsed due to the 

earthquake itself. Therefore, it is not simple to disentangle this process and assign it to one 

cause or another. Nevertheless, historical documentation of aseismic subaqueous and subaerial 

mass movement-generated tsunami further supports these strong erosional signatures. 

Although, depositional signatures are poorly discernible from the historical descriptions 

analyzed, a few have been identified. 
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For example, the Lucerne city clerk Renward Cysat mentions boulders and debris as well as 

boats, fish, and fishing nets that were washed ashore by the 1601 CE Lake Lucerne tsunami 

(Cysat, 1969). For the same event, Pastor Businger reports destroyed and washed away houses 

and barns as well as fruit trees in Buochs. Bünti (1973) documents debris and large amounts of 

wood that were washed ashore and transported inland by the 1687 CE Muota Delta collapse-

generated tsunami in Brunnen and Buochs. These documentations provide evidence that 

tsunami-related deposits likely exist in the onshore setting of lakes, but their sedimentary 

signatures may be more spatially heterogenous than extensive sand sheets as observed from 

some marine tsunami deposits (e.g., Dawson and Shi, 2000). Nonetheless, identification of the 

geomorphological conditions required to deposit these types of signatures likely leads to 

similar sedimentary signatures of past lake tsunamis. To fulfill these conditions, large amounts 

of unconsolidated sediment are needed to provide a sediment source that can be eroded, 

transported, and deposited along the tsunami inundation pathway. In addition, depositional 

environments are needed in which sedimentary signatures are preserved and distinct from 

background sediments. This is especially important because freshwater tsunami may have not 

chemical and biotic proxies that can be used for identification. Furthermore, it should be noted 

that the historically documented effects of tsunamis on coastal areas are highly erosive. 

Sediment may be transported into the lake with backwash currents because the coastal slopes 

in large areas of alpine lakes are too steep for effective sediment transport onshore. 

 

3.5.2 Site selection pathway 

A comprehensive site selection is required to choose ideal locations allowing identification of 

tsunami deposits from the geological record. In this study, a site selection workflow was 

developed to track the coring-site selection and to apply it to other lakes. First, lakes were 

selected based on available historical sources and numerical wave modelling of past tsunamis, 

as well as dated mass-movement event catalogues in the stratigraphic record of the lake        

(Fig. 3-2). Second, a geomorphological database was compiled that includes high-resolution 

topographic (swissAlti3D, swisstopo) and bathymetric models (SwissBathy3D, swisstopo), 

tsunami inundation maps, historical maps (Dufour and Siegfried map, swisstopo), geological 

maps (GA25, swisstopo), and borehole logging data. These information’s were used to apply 

a land-use classification scheme that finally led to the selection of specific locations for further 

investigations. 
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Lakeshore geomorphology and the potential for tsunami deposit recognition there 

Of the three lakes (Lake Lucerne, Lake Geneva, and Lake Sils) considered in this study, we 

selected 15 location that appeared to be promising for the identification of tsunami depositional 

signatures according to our workflow. Various challenges in performing successful coring 

campaigns are discussed in the following sections: 

 

i) General difficulties of logistics (private properties, nature reserves) 

Several difficulties were observed during the planning of the fieldwork, especially in populated 

areas that are common on Swiss lake shores. First, property owner needed to be identified, 

contacted, and asked for permission to conduct the survey. Obviously, not everybody would 

agree to having their backyard altered by a sediment coring device, even if the disturbance 

would be temporary. In nature reserves, permits had to be requested from the cantonal 

authorities and in some cases were denied. At locations where we obtained permission for 

sediment coring, locations of numerous pipelines, such as telecommunications, water, 

electricity, had to be determined through non-centralized archives. As any potentially costly 

damage would still be in our responsibility, a careful and time-consuming planning was needed. 

Once Pürckhauer sediment cores were recovered, they required a careful sedimentological 

description before a decision could be made about the further investigation with a hydraulic 

Geoprobe coring device at the sites.  

 

ii) Shoreline modifications 

Swiss lakeshores have been heavily modified for coastal erosion protection, and coastal 

wetlands have been drained to gain areas for agricultural and infrastructure development, as 

well as for representative lakeside promenades and gardens. As a result, the former shoreline 

and shore morphology is difficult to reconstruct. However, the historical national maps by 

Dufour and Siegfried, published between 1845 and 1865 CE and 1870 and 1926 CE, 

respectively, provide useful information for the reconstruction the course and its vegetation 

type of the former shoreline. It should be noted here that historical maps are time windows into 

the period when they were mapped. But deltaic environments in particular are known to be 

dynamic and naturally rearrange the shoreline on short time scales (e.g., Woodroffe, 2000). 

 

iii) Agricultural areas 

In agricultural lands topsoil is regularly reworked the uppermost part of the soil. Due to 

increased runoff and erosion of these fields also deeper lying sediments become reworked 
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through time. Therefore, these areas are considered as being poorly suited for preserving 

tsunami signatures in the upper 50 cm. At greater depths, however, these localities may have 

preserved prehistoric events. 

 

iv) Lakeshore geomorphology 

The simplest classification of the lakeshore environment is probably the distinction between 

steep and shallow shores with the latter having a higher potential for the deposition and 

preservation of tsunami deposits. Steep shores may be characterized by vertical cliffs (e.g., Uri 

Basin of Lake Lucerne) and steep slopes dominated by gravitational process (e.g., northern 

shore of Lake Sils). Flat shores, on the other hand, consist of fluvially dominated environments 

with cone-shaped Gilbert-type deltas (e.g., the villages of Gersau and Sisikon at Lake Lucerne), 

extensive floodplains (e.g., Reuss River and Engelberger Aa at Lake Lucerne) and coastal 

wetland, which are usually rich in biodiversity and play a crucial role in lake ecology (e.g., 

Ostendorp, 1989). 

 

3.5.3 Lake-level variations 

Past lake-level fluctuations, similar to tidal correction in the marine environment for tsunami 

run-up and inundation distance estimations (e.g., Gelfenbaum et al., 2007; Hori et al., 2007), 

must be considered to identify potential tsunami depositional settings in the lacustrine 

environments. However, long-term (thousands of years) lake-level fluctuations are not well 

quantified for Swiss lakes. Nevertheless, a few studies indicate m-scale seasonal lake-level 

fluctuations as well as considerably lower and higher lake levels (e.g., Deàk et al., 2018: Keller 

et al., 2020; Wohlfarth & Schneider, 1991), before lake levels were stabilized at current levels 

through discharge controls at the lake outlet (e.g., Lake Lucerne (Keller et al., 2020); Lake 

Geneva (Girardclos et al., 2007; Moscariello 1997); Lake Sils (Grischott et al., 2017)). 

Therefore, information about former lake level needs to be considered for the site selection 

process, especially when establishing tsunami event chronology on millennial time scales. 

 

3.5.4 The identification of lacustrine tsunami deposits  

Marine fauna (e.g., brackish and/or saline diatom, calcareous shell producing mollusk, and 

planktonic foraminifera) has been used in numerous studies as one of several criteria for 

identification of marine tsunami deposits (e.g., Dawson et al., 1996; Hemphill-Haley, 1996; 
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Garrett et al., 2015; Minoura et al., 2000). However, this may have limited applicability to the 

case of lacustrine tsunamis, and further site-specific studies would be required to characterize 

the habitat of various potential biotic proxies first. Similarly, geochemical signatures of saline 

water flooding (e.g., elevated Na, Cl, and Ba concentration) in the terrestrial record of marine 

tsunami cannot be transferred directly to the lacustrine setting. Therefore, a high 

sedimentological contrast between background and tsunami-derived sediments is needed for 

the identification of lacustrine tsunami deposits. In clastic environments, fluvial or storm-

induced reworking of sediments may produce sedimentological signatures similar to those 

expected from tsunami inundation. Therefore, also several marine examples (e.g., Dawson et 

al. (1988) on the Storegga landslide tsunami deposits) takes advantage of tsunami deposits 

being enveloped by organic-rich background sediments. This may also be applicable in 

lacustrine setting. Therefore, coastal wetlands are considered particularly promising for the 

identification of lacustrine tsunami deposits by sedimentological criteria when erodible 

sediment sources are available, and the area is significantly inundated. 

 

Depositional environments 

i)  Fluvial environments  

In fluvially dominated environments sediment is regularly reworked along the river channel 

(e.g., Delile et al., 2020) and the surrounding plains are frequently flooded (e.g., Woodroffe et 

al., 2000). Thus, the depositional signatures of these processes are considered to be similar to 

those expected from lake tsunamis. Additionally, tsunami-derived sediments may not be 

distinguishable from riverine sediment deposits based on biological criteria because sharp 

ecological boundaries do not exist in lacustrine environments. This is in contrast to marine 

environments where freshwater meets saline water at sharp ecological boundaries or in 

transition zones with brackish water, as observed in estuaries. Therefore, fluvially dominated 

environments were categorically excluded for further investigations, especially after several 

recovered Pürckhauer sediment cores in this environment were dominated by clastic deposits. 

 

ii) Coastal wetlands 

Low-lying coastal plains that are not influenced by fluvial processes delivering detrital 

components to the environment naturally consist predominantly of extensive wetlands with 

organic matter-rich deposits in temperate climate of Swiss lakes (Leupi & Marti, 1990). The 

historical Dufour and Siegfried maps indicate that these environments have been drastically 

reduced due to shoreline stabilization, agricultural land and infrastructure development. 
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Hürlimann (1951) reported a drastic retreat of reed belts around many Swiss lakes in the 1950s. 

Leupi and Marti (1990) quantified coastal peatland decrease at Lake Lucerne between 1900 to 

1990 with ~75% from 470’000 to 120’000 m2. 

 

Because peatlands are considered a potential archive for past tsunami inundation, some 

limitations on the preservation of carbonate particles need to be considered. High 

concentrations of humic acids present in wetlands reduce the stability of carbonate and may 

dissolve the particles over time, but carbonate precipitation may also occur when the 

groundwater table is above a critical level (Almendigner & Leete, 1998). Consequently, only 

a small fraction of lake-derived clastic constituents, namely siliciclastic and oxide minerals, 

will be preserved in the long-term, because lacustrine sediments generally high in carbonate 

content. 

 

Although, large amounts of reed belts have been destroyed due to coastal infrastructure and 

agriculture since the 1930s (e.g., Lucerne railway station area and adjacent area to the east). 

And although, few wetlands remain pristine but protected areas today. These environments are 

considered to have high potential for identifying sedimentary signatures of past lake tsunamis 

if the area was inundated and nearby sediment was available as stated earlier. 

 

iii) Offshore environment 

The offshore environment provides a relatively pristine lake environment. Although strong 

environmental pressures from public and private shipping are obvious. The effects on the 

uppermost sediment stratigraphy have not been systematically studied, but are considered as 

significant, especially in shallow waters. Additionally, sediment reworking above the wave-

base need to be considered. Nevertheless, the offshore environment is regarded as a potential 

environment for identifying tsunami deposits in the marine setting as well, especially in areas 

where the terrestrial record is fragmentary for a variety reason (e.g., coastal infrastructures). 

An offshore depression at Lake Lucerne has been shown to be a suitable archive for the 

historical lacustrine tsunami event in 1601 CE (Nigg et al., subm.). 

 

Multiproxy analysis 

For the recognition of lake tsunami deposits, we used multiproxy analysis including core 

scanning (MSCL, CT, and XRF scanning), particle-size analysis, mineralogical composition, 

elemental concentration (C, N, and S), and radiocarbon dating. The full core scanning 
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techniques applied provide a rapid overview of the sedimentological properties of the 

recovered sediment cores. This can be helpful in the recognition of tsunami deposit candidates 

for more detailed investigation and is especially important when dealing with large numbers of 

sediment cores and study sites. Further, CT-scan data are very useful for characterizing three-

dimensional sedimentary structures from the cm to the um-scale that are not obvious to the 

naked eye (Falvard & Paris, 2017) and elemental ratios obtained from XRF-scan data may 

further provide grain-size indicators (e.g., Wu et al., 2020). Particle-size distribution, 

mineralogical composition and elemental concentration may offer indications of sediment 

source. Adequate dating of the potential tsunami deposit using appropriate samples of short-

lived (e.g., needles and seeds) terrestrial plant species, as well as correlatable well-dated and 

identified tsunami source is fundamental to their identification. The latter are provided from 

previous study of-lake bathymetry (Hilbe et al., 2011; Kremer et al., 2015), seismic-

stratigraphic event catalogue (Kremer et al., 2015; Schnellmann et al., 2006), and historical 

sources (e.g., Cysat, 1969). 

 

Sedimentary signatures 

The sedimentary signatures of lacustrine tsunami events have been studied in only a few case 

studies (see review by Kremer et al., 2020a). The marine counterpart, however, is a growing 

field of research in sedimentology, greatly amplified by the devastating 2004 CE Indian Ocean 

tsunami and the 2011 CE Tohoku-oki tsunami. Hence, the criteria developed to identify 

tsunami deposits have been mainly established in the marine setting and are only partially 

applicable to lacustrine environments. Nevertheless, sedimentary textures of tsunami deposits 

in the marine and freshwater settings, are expected to be similar. But need to be better 

described, especially in the lacustrine environment, in order to make more robust statements. 

 

Onshore tsunami deposits have been solely observed at Lake Sils and are characterized as 

clastic event deposits with internal fining-upward sequences and sharp lower contacts. In the 

offshore setting, the geological record of past lacustrine tsunami events may be divided into 

two types of sedimentary deposits. On the one hand, depositional signatures of voluminous 

subaerial and subaqueous mass movements that generated past tsunamis may be observable in 

the lake bathymetry, sediment cores, and seismic reflection data from the deep lake basins (e.g., 

Hilbe and Anselmetti, 2015; Kremer et al., 2015; Schnellmann et al., 2002). On the other hand, 

depositional signatures that recorded the effects of tsunami waves itself. This may be the 

deposition of finely laminated deposits on the top of mass-movement bodies in the deep lake 
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basin that were caused by bottom currents. However, it is likely that these signatures are related 

to the lake’s response to the tsunami in the form of bottom currents of a seiche that causes 

oscillation of the entire lake and lasts for several days, as observed for the 1601 CE Lake 

Lucerne tsunami event. Therefore, this criterion could be used to demonstrate that also large 

prehistoric subaqueous mass movements-generated tsunami waves, especially for postulated 

events for which no other evidence has been found. However, this has not been investigated 

further. 

 

The coastal offshore domain, however, has been found to provide a promising geological 

archive of past events. Large amounts of sediment is eroded, transported and remobilized from 

tsunami inundation and backwash currents and ultimately deposited in the geological archive. 

At Lake Lucerne and Lake Sils sedimentary signatures of past tsunamis have been identified 

in sediment cores and seismic reflection data of the shallow-water environment (Nigg et al., 

2021, subm.). At Lake Lucerne a nearshore depression hosts an event deposit with an internal 

normal graded succession of siliciclastic medium sand to coarse silt (Nigg et al., subm.). 

Additionally, a single sediment core from an amphitheater-like setting in the southeastern area 

of the Lucerne Bay provides evidence for prehistoric tsunami-induced bottom currents and 

deposition of dense, clastic cm-thick layers with mm-scale lamina and cross-bedding structures 

that are associated with previously seismically mapped subaqueous mass movements around 

2200 and 5400 BP (Schnellmann et al., 2006). 

 

At Lake Sils Nigg et al. (2021) were able to reconstruct a prehistoric tsunami generated from a 

partial delta collapse on Lake Sils based on sediment cores recovered from the coastal on- and 

offshore environment combined with numerical mass-movement and tsunami propagation 

simulations. The described tsunami deposit consists of a heterogeneous sedimentary package 

with gravel, single and multiple normal graded sand sequences with a well-pronounced clay 

cap offshore and a landward continuous single-graded thinning and fining (Nigg et al., 2021). 

 

3.5 Conclusions 

Alpine lakes are susceptible to tsunami hazard from subaqueous and subaerial mass movements 

that can be triggered from strong regional earthquakes, lakeshore mining activities, and 

apparently spontaneous failures. The associated phenomena have been documented in 

contemporary chronicles, artwork, and newspaper articles. These documents provide a unique 
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opportunity to examine the effects of tsunami inundation in coastal areas of the lacustrine 

environment, as well as to localize their occurrence in space and time and characterize their 

ultimate triggering mechanisms. 

 

To reconstruct the recurrence rate of lake tsunamis to the prehistoric period, lake bathymetry, 

and the mass-movement event stratigraphy previously used to study strong earthquakes may 

be useful. However, tsunami triggering by subaerial and subaqueous mass movements is 

strongly dependent on failure kinematics and slide mechanism. Therefore, tsunami deposits 

from the coastal on- and offshore areas need to be studied sedimentologically to ultimately 

reconstruct the chronology of lake tsunami events. Because, their sedimentological signatures 

have been sparsely investigated, we developed a sophisticated workflow for site selection based 

on geomorphological criteria. We then presented the evidence of tsunami-induced sediment 

remobilization and deposition from recovered sediment cores, but also discussed sediment 

cores where no traces could be associated with past events. 

 

To identify lake tsunami deposits, we used sedimentological multi-proxy analysis, including 

whole-core scanning (density, magnetic susceptibility, CT, and XRF), as well as micro-CT 

scanning of sediment U-channels, radiocarbon dating, and grain-size analysis. Sedimentary 

signatures preserved from past events were observed predominantly in the coastal offshore 

area, whereas onshore deposits were only recognized at Lake Sils. This may be due to poor 

sediment preservation in the onshore, highly modified shoreline areas, but also to the difficulty 

of good core recovery within a heterogeneous sediment stratigraphy. However, the observed 

sedimentological signatures can be summarized as clastic event deposits in the cm- to dm 

range, with generally sharp lower and upper sedimentological contacts, single and multiple 

normal graded sand, massive sand, layering of fines and carbonate shell fragments, and fine-

grained (clayey) deposits at the top from suspension settling at the terminal stage of a tsunami 

event when calm returned to the water body. 
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Historical map of the course of the Inn River and its tributaries in the Upper Engadine showing the chain of the 

four Engadine lakes Sils, Silvaplana, Champfèr and St. Moritz in 1707 (Scheuchzer, 1723). 
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Abstract 

Large lacustrine mass movements and delta collapses are increasingly being considered as 

potential tsunamigenic sources and therefore hazardous for the population and infrastructure 

along lakeshores. Although historical reports document tsunami events in several lakes in 

Switzerland, and although the propagation of lake tsunamis has been studied by numerical 

wave modeling, only little is known about on- and offshore lacustrine tsunami deposits. In Lake 

Sils, Switzerland, a large prehistoric mass-movement deposit originating from the Isola Delta 

with a minimum estimated volume of 6.5 x 106 m3 and a basinal thickness of > 6 m in the 

seismic record has been identified by previous studies and radiocarbon dated to around 700 

Common Era. Here, we combine i) comprehensive sedimentological investigation of sediment 

cores recovered from the on- and offshore settings, ii) mineralogical fingerprinting of the 
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inflows from key catchments to characterize sediment provenance, and iii) numerical tsunami 

modeling, to test the hypothesis of a tsunamigenic delta collapse in Lake Sils. We observe a 

clastic event deposit consisting of coarse-grained, fining-upward sand overlying an organic-

rich peat deposit in the shallow water. This layer thins and fines landward on the coastal plain. 

Toward the deeper water (20–40 m), the deposit transforms into a thicker and more 

heterogeneous sediment package with multiple sequences of fining-upward sand and a well-

pronounced clay cap at the top. Radiocarbon dating of the peat underlying the event deposit 

yields a maximum age of 225–419 calibrated Common Era. The tsunami models, which 

indicate wave heights reaching up to 5 m, simulate areas of inundation that coincide with the 

location of event deposits. Based on our results, we propose that the historically undocumented 

Isola Delta collapse generated a basin-wide tsunami that inundated the lakeshore, transporting 

large amounts of unconsolidated sediment along the lakeshore toward the coastal plain and into 

the deeper lake basin. 

 

4.1 Introduction 

Historical documents and recent scientific investigations provide evidence that large 

subaqueous mass movements and delta collapses are capable of generating tsunamis in lakes 

(Hilbe and Anselmetti, 2015; Kremer et al., 2012). Besides impacts from rockfalls and 

subaerial landslides, subaqueous mass movements are considered as the most common 

triggering mechanism for lacustrine tsunami generation. Even though their wavelength is much 

shorter than that of their marine counterparts, lacustrine tsunamis have wavelengths of several 

hundred meters, which clearly distinguish them from wind-induced waves in these basins. At 

Lake Lucerne in central Switzerland, historical documents report anomalously large waves in 

1601 and 1687 Common Era (CE) (Hilbe and Anselmetti, 2014). These effects were attributed 

to large subaqueous mass movements, which were adequately simulated with numerical 

tsunami generation and propagation models (Hilbe and Anselmetti, 2015). Other historical 

documents report a severe tsunami in Lake Geneva generated by the Rhone Delta collapse 

(Kremer et al., 2012). In Lake Brienz, a small-scale tsunami was observed following a partial 

collapse of the main delta in 1996 CE (Girardclos et al., 2007). 

 

Although tsunamis are reported in lakes, the related on- and nearshore lacustrine tsunami 

deposits are rarely documented. For example, subaqueously generated boulder ridges, 

sediment-wave channels, and gently sloping tsunami erosion surfaces provide morphological 
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evidence for a prehistoric tsunami in Lake Tahoe (Nevada-California, USA; Moore et al. 

(2014)). In the shallow Lake Owens (California, USA), unusual poorly sorted and upward-

graded pebbly sand with mud is likely related to the 1872 CE earthquake-induced seiche (wave 

height ~50 cm) that eroded much of the lakebed (Smoot et al., 2000). In Lake Patzcuaro 

(Mexico), heterogeneous sand and silt with angular lithoclasts, ceramic artifacts and abundant 

remains of fish bones, bivalves, gastropods and pelagic species are deposited above an 

erosional unconformity to the underlying unit (Garduño-Monroy et al., 2011). In Lake Chehalis 

(Canada), a subaerial landslide-generated tsunami caused severe shore destruction in 2007 CE 

(Roberts et al., 2013). 

 

In marine settings, on the other hand, tsunami deposits are widely studied to infer past tsunami 

events in a broad range of coastal areas (e.g., Bourgeois et al., 2009; Costa and Andrade, 2020; 

Dawson and Stewart, 2007; Engel and Brückner, 2011). During tsunami inundation and 

backwash, a vast amount of shoreface and beach sediment is eroded, transported, and 

redeposited in the coastal environment, and subsequently moved offshore (e.g., Einsele et al., 

1996; Fujiwara and Kamataki, 2007; Goto et al., 2011; Paris et al., 2010; Sakuna et al., 2012; 

Sugawara et al., 2008). The associated tsunami deposits are commonly site-specific and 

characterized by a wide range of sedimentological features depending on coastal 

geomorphology and microtopography (e.g., Hori et al., 2007; Matsumoto et al., 2016 

Nishimura et al., 2015), sediment availability (e.g., Dawson and Shi, 2000; Goff et al., 2009; 

Meilianda et al., 2010), as well as tsunami magnitude (e.g., Yamaguchi and Sekiguchi, 2015; 

Ishimura and Yamada, 2019; Putra et al., 2019), and preservation potential (e.g., Brill et al., 

2020; Goto et al., 2012; Spiske et al., 2020; Szczuciński, 2012). Hence, research on tsunami 

deposits requires multiproxy sedimentary analyses, including sedimentological, geochemical, 

and biological approaches (e.g., Goff et al., 2010; Judd et al., 2017; Ramirez-Herrera et al., 

2012).  

 

Sedimentary structures such as erosional basal contacts, fining-upward sequences and rip-up 

clasts are the most common physical textural characteristics found in onshore tsunami deposits 

in various coastal settings worldwide (e.g., Bondevik et al., 2005; Gelfenbaum and Jaffe, 2003; 

Srinivasalu et al., 2009). On the other hand, tsunami events may leave no traces in the 

geological record, especially along rocky coasts, where sediment supply is limited (e.g., 

Dawson and Shi, 2000), or tsunami inundation may be indicated through erosional 

unconformities in coastal sand barriers (e.g., Costa et al., 2016). Additionally, geochemical 
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proxies such as Na, S, and Cl concentrations (e.g., Goff et al., 2012; Szczuciński et al., 2006) 

and/or biogenic contents are used to identify marine tsunami deposits. For example pelagic and 

benthic fauna are used to infer tsunami deposits and their sediment source (e.g., Garrett et al., 

2015; Kitamura et al., 2018; Smedile et al., 2020; Szczuciński et al., 2012; Tanigawa et al., 

2018). Terrestrial sedimentary records are used to infer minimum tsunami inundation (e.g., 

Chagué-Goff et al., 2012; Moreira et al., 2017) and run-up height (e.g., Bondevik et al., 2005; 

Costa et al., 2016; La Selle et al., 2020; Paris et al., 2020). Based on the internal structure, 

composition, and spatial distribution of tsunami deposits, it may be possible to estimate 

magnitude and flow conditions by tsunami inverse modeling (e.g., Jaffe and Gelfenbaum, 

2007; Jaffe et al., 2012; Spiske et al,. 2010; Woodruff et al., 2008). Such studies are directly 

applicable for coastal tsunami hazard assessments (e.g. Engel et al., 2016; Leonard et al., 2014 

and references therein). 

 

Compared to the onshore realm, the number of scientific publications describing offshore 

tsunami deposits is limited (e.g., Dawson and Stewart, 2008). Although the combined 

investigation of on- and offshore tsunami deposits may provide a more robust and accurate 

reconstruction of past events (Costa and Andrade, 2020), only few case studies describe 

offshore tsunami deposits (e.g., Goodman-Tchernov et al., 2009; Paris et al., 2010; Smedile et 

al., 2020; Tamura et al., 2015). For example, Sakuna et al. (2012) describe poorly-sorted mud 

including terrigenous and anthropogenic components, which were transported from backwash 

currents of the 2004 Indian Ocean tsunami into the shallow marine environment of the 

Andaman Sea off the coast of Thailand. Paris et al. (2010) characterize tsunami-derived boulder 

deposits from the 2004 CE Indian Ocean tsunami in the offshore setting Lhok Nga, Indonesia. 

Recently, tsunami backwash deposits from the 2009 CE South Pacific tsunami and 1960 CE 

Great Chilean earthquake tsunami were encountered in sediment cores from the sheltered Pago 

Pago Bay (USA) based on grain-size analysis, geochemical proxy analysis, sediment thin 

sections, and 137Cs and 210Pb dating (Riou et al., 2020). These deposits are characterized by 

terrigenous sediment transported as a dense and cohesive hyperpycnal flow that induced 

shearing of the underlying sediment (Riou et al., 2020). 

 

Based on sediment cores collected on the coastal plain and in the shallow water, this study 

provides evidence for a lacustrine tsunami event in the proglacial Lake Sils, located in the 

Upper Engadine, Switzerland (Fig. 4-1). The proposed mechanism for the tsunami initiation is 

a large delta-slope collapse around 548–797 calibrated Common Era (cal CE) with an 
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estimated minimum volume of the mass-movement deposit in Lake Sils of 6.5 x 106 m3 (Blass 

et al., 2005). 

 

4.2 Study site 

Lake Sils (surface area: 4.1 km2) is located in the Upper Engadine in southeastern Switzerland 

at 1797 m above sea level (m a.s.l). The lake is connected downstream with Lake Silvaplana, 

Lake Champfèr, and Lake St. Moritz, draining the valley toward the northeast (Fig. 4-1). The 

Maloja Pass (1815 m a.s.l) in the southwest of Lake Sils separates the Engadine valley from 

the Val Bregaglia, which drains southward toward Chiavenna in northern Italy. The catchment 

of Lake Sils is situated in a complex geological area consisting of the Austroalpine and 

Penninic nappes (Fig. 4-1). The Austroalpine nappes consist of the Margna nappe to the south 

of the lake and the Err nappe north of the lake, respectively (Spillmann and Büchi, 1993). The 

Penninic Platta nappe in the northeast consists of an ophiolitic sequence originating from the 

South Penninic realm (Dietrich, 1970). A major regional tectonic element is the Engadine Line, 

an oblique sinistral strike-slip fault (Trümpy ,1977), which runs along the southeastern part of 

Lake Sils. This fault can be traced from Lake Sils 30 km toward the northeast and 25 km in 

southwest direction (Tibaldi and Pasquarè, 2008). 

 

The major incoming tributary, the Aua da Fedoz, originates in the Val Fedoz and feeds the 

Isola Delta, the main delta of the lake (Fig. 4-1). The Ova dal Mulin, Ova de la Roda, Ova dal 

Crot, and Lavatera are minor tributaries draining from the northwest, and the Inn and the 

Valacia from the west and south, respectively. The Fedacla River currently feeds into Lake 

Silvaplana, but also fed into Lake Sils at least temporarily during high-discharge events 

(Ohlendorf, 1998). Lake Sils’ four sub-basins form a longitudinal lake morphology along the 

main valley axis. The Central Basin is the deepest and reaches a depth of 72 m. The Lagrev 

Basin in the northeast is separated from the Sils Basin by the Chastè, a peninsula with 

outcropping bedrock composed of mylonitic granodiorites belonging to the Maloja Formation 

(Fig. 4-1). The Maloja Basin reaches a depth of 30 m and forms the southwestern part of the 

lake. Unlike delta areas, such as the Isola Delta on the southern shore, where sediments are 

dominated by coarse clastic sediments intercalated by few peaty horizons (Grischott et al., 

2017), the coastal plain at Sils Baselgia is characterized by organic-rich swampy deposits 

onshore, fine clastic sediments, and lake-derived organics, which are occasionally interrupted 

by coarser clastic layers. 
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Fig. 4-1: Hillshade map showing Lake Sils and its catchment geology (swissALTI3D, swisstopo). The major 

tectonic and geological units are modified after Spillmann and Büchi (1993) and 1:25’000 Swiss geological map 

(GA24, swisstopo). Note the Engadine Line that runs along the southern shore of the lake. Lake Sils’ four sub-

basins are indicated (M: Maloja Basin, C: Central Basin; L: Lagrev Basin and S: Sils Basin). The Isola Delta 

collapse mass-movement deposit is highlighted in light green. Hashed green areas indicate area where thickness 

is not resolved by reflection seismic data due to limited penetration, but where the deposits is likely thicker than 

2.5 m. Location of riverine bedload samples is indicated with numbered blue dots (1: Aua da Fedoz; 2: Lavatera 

3: Lavatera + Ova dal Mulin; 4: Ova de la Roda; 5: Ova dal Crot; 6: Fedacla). 

 

Pollen assemblages from sediment cores taken in Lake Champfèr and Lake St. Moritz provide 

evidence for first human impact in the Upper Engadine during the Neolithic Period around 

5500 cal Before Present (BP) (Gobet et al., 2003). However, archeological findings are rather 

sparse for that time period in the area (Nauli, 1981; Rageth, 2000). Marked vegetation changes 

and regular cereal cultivation started around 3900 cal BP (Gobet et al., 2003). A late Bronze 

Age spring tapping, which is the only well-preserved wood building of the Swiss Alpine 

prehistory, was built at St. Moritz in 3361 cal BP (Oberhänsli et al., 2015). Although no 

permanent settlements are documented during that time, mule tracks were frequently used 

along the main passes in the Alpine environment as well as in the Upper Engadine (Roth-
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Bianchi, 2007). During Roman times, the area of Lake Sils hosted an important traffic axis 

(Oberhänsli et al., 2015; Rageth, 2004). The directory of the most important Roman roads, the 

Itinerarium Antonini (230 CE), and the Tabula Peutingeriana (364 CE), an illustration of the 

Roman road network, report two main road connections in the area from Como in northern 

Italy to Chur in southeastern Switzerland. One of the two routes crossed the Upper Engadine 

from Chiavenna to Chur via the Maloja and Julier Passes, being the only route that was passable 

with two-wheeled carts in the province Raetia prima (Rageth, 2004; Roth-Bianchi, 2007). With 

the withdrawal of Roman troops from the province Raetia prima in 401 CE, the Roman 

presence in the area ended (Ducrey, 2006). Consequently, the use of the pass roads and mule 

tracks in the area decreased in the following centuries (Roth-Bianchi, 2007). 

 

Initially, this study was stimulated by archeological findings in Sils Baselgia (Fig. 4-2), located 

at the northeastern shore of Lake Sils. During construction work in 1964 CE, four Roman 

votive altars were found (Erb et al., 1966). The excavated sacrificial altars are 40 to 47 cm 

high, made of serpentinite and dedicated to the Roman gods Silvanus, Diana, Pales and 

Mercury (Fig. 4-2B). These altars were found 2 m below today’s surface, embedded in a clayey 

fine sandy silt with fine gravel (Erb et al., 1966). At the time of the discovery, the deposit was 

interpreted as a lacustrine deposit (Erb et al., 1966). Therefore, the archeologists proposed that 

the Roman altars fell from a ship during a phase of lake-level high stand connecting Lake Sils 

with Lake Silvaplana to the northeast (Erb et al., 1966). However, we are not aware of another 

study supporting the hypothesis of a significantly higher lake level during the Roman era. The 

fact would further imply massive hydrological changes along the Engadine valley. Based on 

our findings presented in this study, we propose an alternative hypothesis than regular lake 

sediments embedding the altars. We present evidence that the Isola Delta collapse generated a 

basin-wide tsunami that inundated the coastal plains around Lake Sils and partly buried the 

Roman altars with remobilized sediment around 548–797 cal CE. 

 

4.2.1 The Isola Delta collapse in previous studies 

High-resolution, single-channel seismic data from Lake Sils revealed two seismic units in the 

shallow subsurface that can be distinguished in the Maloja and Central Basins (Blass et al. 

2005). The upper seismic unit is characterized by continuous high-amplitude reflections 

(Unit 1; Fig. 4-3), interpreted as representing distal deltaic and draping pelagic sediments. The  
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Fig. 4-2: A) Sketch of sedimentary section through an excavation site at Sils Baselgia (no vertical exaggeration; 

modified after Rageth (2002)). A peat horizon (black) with a fine band of clayey silt is overlain by a gray to 

greenish clayey fine sandy silt with fine gravel deposit (orange). It is supposed that the Roman altars (Fig. 4-2B) 

were buried in the equivalent unit 30 m away (Rageth, 2002). B) Photographs of the Roman altars that are 

dedicated to the Roman tutelary deity Silvanus, Diana, Pales and Mercury and excavated at Sils Baselgia in 

1964 CE (Photographs: Archeological Service of Canton Grisons). 

 

unit has a variable thickness distribution, being thickest at the base of the Isola Delta, and 

amounts up to 4 m in the Central Basin and 1–2 m in Maloja Basin, respectively (Fig. 4-1). 

Unit 1 encompasses smaller mass-movement deposits that are not individually mapped. The 

unit drapes a seismically transparent facies corresponding to the “homogenite” deposit 

(Subunit 2a; Fig. 4-3) of an extensive megaturbidite in the Central Basin (Blass et al., 2005). 

The homogeneous mud deposit represents the final phase of sedimentation of very fine particles 

from suspension in a calm water body (Kastens and Cita, 1981; Mulder et al., 2009; 

Schnellmann et al., 2006) after the Isola Delta collapse. Subunit 2c is characterized by a chaotic 

seismic facies with scattered diffraction hyperbolae that represents the large bedload 

transported mass-movement deposit of the Isola Delta collapse. The base of the mass 

movement is not imaged by the seismic data in the Central Basin. Subunit 2b and Unit 3 are 
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solely found along the seismic stratigraphy of the Lagrev Basin and will be discussed in 

Sections 3 and 4. 

 

A sediment core recovered in the Central Basin by Ohlendorf et al. in 1994 CE (PSS94-2) was 

analyzed in detail by Blass et al. (2005). The lower part of the core contains an over 6 m thick 

mass-movement deposit with a base not reached by coring. Below a few cm thick clayey top, 

the deposit is characterized by a homogenous silty clay in the upper 3.5 m and a very 

heterogeneous, multiply graded sequence of coarse to very fine sand with varying organic 

content and increased variability of magnetic susceptibility (30–320 10-5 SI) in the lower 2.5 m 

(Blass et al., 2005). This large mass-movement deposit was radiocarbon dated to 548–

797 cal CE, and interpreted as having originated from a partial collapse of the northern part of 

the Isola Delta (Blass et al., 2005). Based on high-resolution seismic data and recovered 

sediment cores, the minimum mass-movement volume was estimated to 6.5 x 106 m3 in the 

Central Basin of Lake Sils (Blass et al., 2005). 

 

4.3 Methods 

4.3.1 Sediment coring 

A total of 29 sediment cores (13 terrestrial and 16 lake cores) were recovered during multiple 

field campaigns between 2006 and 2018 (Fig. 4-4). In 2006 CE, a single, 85 cm long sediment 

core, SIL06-8 (Fig. 4.4B), was recovered using a gouge auger at the coastal plain in Sils 

Baselgia, 50 m from today’s lakeshore. This core bore a 4 cm thick coarse silt deposit at 77 cm 

depth, overlying an organic-rich peat layer with a sharp basal contact. Radiocarbon dating of 

the peat layer revealed ages in the period of the delta collapse, motivating us to take 

10 additional sediment cores, between 1.8 and 6 m length, which were recovered with a 

Geoprobe hydraulic-coring system along two onshore transects in 2009 CE. During the same 

campaign, two further sediment cores were recovered close to the site where the Roman altars 

were excavated in the year 1964 CE (Erb et al., 1966). One year later, in 2010 CE, lacustrine 

sediment cores were collected with a manual percussion-coring system from the frozen lake 

surface along an orthogonal transect (Transect T-I: Fig. 4-4B) with 100 to 500 m distance from 

the coastal plain at Sils Baselgia. These sediment cores reach core lengths between 0.8 and 2 m 

and were recovered in water depths from 1.7 to 40 m. Lastly, 10 short sediment cores (0.5–1 m 

long) were recovered in 2018 along a shoreline-parallel transect in the Lagrev (Transect T-II: 

6 sediment cores) and Sils Basin (Transect T-III: 4 sediment cores), respectively. The sediment 
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cores were recovered in a water depth of ~2 m at 30 to 200 m distance from today’s lakeshore 

with a manual percussion-coring system (Fig. 4-4). Core recovery of water-saturated sediments 

was high, and compaction is low when using a percussion-coring system. However, notable 

compaction was observed with the Geoprobe coring device in very organic-rich sediments that 

contains fibrous plant fragments. Moreover, low core recovery rates (60-70%) were observed 

in sandy lithologies with the same coring device. 

 

 

Fig. 4-3: Non-interpreted (top) and interpreted (bottom) seismic reflection profiles along the Central and Lagrev 

Basins, imaged by a 3.5 kHz single-channel pinger system (vertical scales: two-way travel time (TWT) in seconds 

(right) and depth in meters with a constant p-wave velocity of 1500 m s-1 applied for time-to-depth conversion 

(left)). Unit 1 (U1) is characterized by continuous high-amplitude reflections with draping character. The 

underlying Subunit 2a (U2a) represents a homogeneous mud of the Isola Delta collapse mass-movement deposit 

(Blass et al. 2015). The underlying chaotic Subunit 2c (U2c) represents the lower part of the Isola Delta collapse 

mass-movement deposit. Subunit 2b (U2b) and Unit 3 (U3) are solely found along the Lagrev Basin (see Fig. 4-

9 for close-up view). Location of the recovered sediment Cores SIL10-5 and SIL10-6 are projected onto the 

seismic reflection profile (modified from Blass et al., 2005). 
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4.3.2 Core scanning 

All cores were analyzed using a Geotek MSCL-S (Standard Multi Sensor Core Logger), except 

the gouge auger Core SIL06-8 and Core SIL18-2 which was opened prior to core scanning. 

Bulk density gamma-ray attenuation (using a 5 mm gamma beam) and magnetic susceptibility 

were measured with a resolution of 0.5 cm. Sediment cores recovered in 2018 were additionally 

scanned with a Siemens Somatom Definition AS X-ray computed tomography (CT) scanner at 

the Institute of Anatomy, University of Bern, prior to opening in order to obtain three-

dimensional data of density variations at a voxel size of 100 µm. Computed tomography data 

were analyzed using the RadiAnt DICOM Viewer software (version 4.6.9.18463). Cores were 

subsequently split in two halves and line-scan images were captured with the Geotek MSCL-

S camera. 

 

4.3.3 Core analysis: sedimentology, mineralogy, and geochemistry 

Macroscopic sediment description of lithologies including color, texture, grain-size 

distribution, and sediment composition were conducted on split sediment cores and in smear 

slides. Semiquantitative grain-size distribution was estimated visually on the sediment core for 

the coarse sediment fraction (sand and gravel) and with a microscope on smear slides for the 

fine sediment fraction (clay to silt). Further, semiquantitative descriptions of the diatom species 

assemblages, and mineralogical composition were estimated from smear-slide analysis. 

Discrete samples were collected from sediment cores to characterize the mineralogical 

composition by X-ray diffraction (XRD). For this purpose, subsampled sediment samples were 

dried with a freeze drier and milled. XRD measurements were performed with a powder X-ray 

Diffractometer (Bruker, AXS D8 Advance) at ETH Zurich. Elemental concentrations of total 

carbon (TC), total nitrogen (TN) and total sulfur (TS) were measured by gas chromatography 

(HEKAtech, Euro EA - CHNSO Elemental Analyzer) from discrete sediment subsamples at 

Eawag in Dübendorf. Total inorganic carbon (TIC) was measured on a coulometer (UIC, CM-

5011 CO2 coulometer) at ETH Zurich. Total organic carbon (TOC) was calculated from the 

difference between measured TC and TIC. Sedimentary carbon-to-nitrogen (C/N) ratio was 

calculated from the ratio of molar TOC and TN concentrations. 
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◄ Fig. 4-4: A) Hillshade map of the northeastern area of Lake Sils (swissALTI3D; swisstopo) shows the 

excavation site of the four Roman altars in 1964 CE (red star), sediment core locations (blue: Core PSS94-5 

(Ohlendorf, 1998); red: Cores Sis03-22; -23; -28 (Blass et al., 2005); orange: terrestrial cores recovered in 

2009 CE with a Geoprobe; yellow: lacustrine sediment cores recovered in 2010; green: shallow-water cores 

recovered in 2018) and maximum tsunami inundation limit based on numerical tsunami modeling simulation S01a 

(red shaded area). Transect T-III is shown in Fig. 4-7. B) Close-up view of coring location along the Lagrev Basin 

and on the coastal plain at Lake Sils. Detail view of the different coring Transects T-I, T-II and T-IV (dashed 

lines) is illustrated in Figs. 4-5, 4-6, and 4-8. Terrestrial sediment cores were recovered along two transects 

oriented perpendicular to the lakeshore. Two sediment cores are located more distally close to the excavation site 

of the Roman altars and the archeological trench made in 2002 CE (red rectangle; Rageth, 2002). Single Core 

SIL06-8 (violet) was recovered in 2006 CE and used for radiocarbon dating. 

 

4.3.4 Accelerator Mass Spectrometry (AMS) 14C dating 

Terrestrial organic macro-remains from a peat layer were used to date an organic-rich unit 

below the event deposit in Core SIL10-1 and SIL06-8 with the radiocarbon dating method. 

Another organic macro-remain was taken from siliciclastic lacustrine sediments above the 

event deposit in Core SIL10-1. For this purpose, sediment subsamples were wet sieved with 

deionized water prior to handpicking of terrestrial organic remnants under a binocular loupe. 

The samples were stored in the freezer until sample preparation for the AMS radiocarbon 

dating was done. Finally, prepared samples were measured with the Mini RadioCarbon Dating 

System (MICADAS) at ETH Zurich. Obtained results were calibrated using the OxCal 

software (version 4.4; Ramsey, 2009) and the IntCal20 Northern Hemisphere calibration curve 

(Reimer et al., 2020). 

 

4.3.5 Provenance study: mineralogical signature of the major 

tributaries 

Bedload samples were collected from Lake Sils’ major incoming tributaries to characterize the 

mineralogical signature of the geologically highly complex catchment for provenance analysis 

of the detrital sediment components observed and analyzed in retrieved sediment cores    

(Fig. 4-1). Collected samples were sieved at 2 mm and 63 μm, respectively, to separate the 

sand-sized sediment fraction. Subsequently, sediment samples were freeze-dried, milled, and 

homogenized before analysis by powder XRD (X-ray Diffractometer Bruker, AXS D8 

Advance) at ETH Zurich. 
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4.3.6 Numerical tsunami modeling 

Numerical tsunami modeling was performed to assess the potential of the Isola Delta collapse 

to generate tsunami waves. The modeling approach, which is described in detail in Hilbe and 

Anselmetti (2015), uses the MassMov2D numerical model (version 0.91; Beguería et al., 2009) 

for subaquatic mass-movement simulation and the software package GeoClaw (version 4.6.3; 

Berger et al., 2011) for wave modeling. The input data include a comprehensive topography 

dataset that was created from the high-resolution swissALTI3D digital elevation model 

(swisstopo) and a raster dataset interpolated from the isobaths of the 1:25’000 national map 

(swisstopo). Both were resampled and combined into a single raster dataset with a grid cell size 

of 5 m. Two different subaqueous mass-movement scenarios with different failed volumes 

were simulated. The failed volumes, which were estimated from the mass-movement deposit 

in the lake basin and the present post-failure lake morphology, was added to the present-day 

Isola Delta. The subaqueous mass movement is simulated as a Bingham plastic in MassMov2D, 

with rheological parameters taken from Hilbe and Anselmetti (2015). The result of the 

landslide simulation is fed into GeoClaw as time-dependent changes of the lakebed topography. 

Tsunami generation, propagation and inundation are simulated in GeoClaw. Changes of the 

lakebed are directly transformed to the overlying water column and the water surface using a 

finite volume method to solve the nonlinear shallow-water equations (George and LeVeque, 

2006). 

 

4.3.7 Seismic reflection data 

High-resolution, single-channel seismic reflection data were acquired using a 3.5 kHz pinger 

system with a vertical resolution of ~10 cm in the different sub-basins (Maloja Basin (this 

study); Central, Lagrev, and Sils Basin (Blass et al., 2005)). The acquired seismic reflection 

data were re-evaluated and interpreted using the seismic interpretation software SMT Kingdom 

suite 2015. A constant velocity of 1500 m s-1 was applied for time-to-depth conversion of both 

water column and sediment stratigraphy. A special focus was on the characterization of the 

seismic facies of the mass-movement deposit and its spatial extent in the individual lake basins, 

as well as on the seismic facies description along the Lagrev Basin. 
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4.4 Results 

4.4.1 Sedimentology of sediment cores 

The observed sedimentological composition along four different transects (T-I to T-IV) in the 

off- and onshore realms is presented in Figs. 4-5, 4-6, 4-7, and 4-8. The three Transects T-I, T-

II, and T-IV contain Core SIL10-1 as the central “anchor” core, linking the different 

depositional environments of the three transects. Lithological units were correlated along the 

sediment cores where possible. Definition and numbering of lithological units in all transects 

follow the same scheme as defined in the Core SIL10-1. However, for terrestrial cores 

recovered along the low-lying plain at Sils Baselgia (part of Transect T-IV), newly introduced 

terrestrial-dominated lithological units are labeled with Roman Numerals. Sediment-core 

location (geographic coordinates) as well as results of the mineralogical and elemental analysis 

are reported in the Supplementary Material (Appendix B; Tables B1 to B6). 

 

Transect T-I: Shore-perpendicular transect along the Lagrev Basin 

Sediment cores of Transect T-I (Fig. 4-5) along the Lagrev Basin consist of six units in the 

shallow-water (1.7–4.3 m) and four units in water depths between 20.0 and 39.4 m. To enable 

comparison with the sedimentological description of Blass et al. (2005) the identical Units A 

to D were used. Sedimentologically, the uppermost lithological Units A to C are homogeneous 

and consist of light-gray siliciclastic massive to diffusely laminated silt to very fine sand with 

abundant diatoms. 

 

The youngest unit is 2 to 10 cm thick, has the highest abundance of diatoms, smaller grain size, 

and the highest TOC content (2 to 3 wt%) compared to Units B and C (Blass et al., 2005). 

Unit B varies in thickness between 30 and 55 cm, is diffusely laminated and hosts two light-

brownish graded detrital layers. Diatom abundance is lower than in Units A and C. Total 

organic carbon content is less than 1 wt% in Unit B and ~1 wt% in Unit C (Blass et al. 2005). 

The C/N ratio is around 7 to 8 mol mol-1 in Units A, B, and C (Blass et al., 2005). The silt-

sized sediment consists mainly of siliciclastic minerals, carbonate minerals are accessory 

phases. The mineralogical composition in Unit C consists of chlorite (~34 vol%), white mica 

(~26 vol%), quartz (~11 vol%), amphibole (~9 vol%), K-feldspar (~6 vol%), plagioclase 

(~5 vol%), serpentine (~5 vol%), and minor amounts of clinopyroxene, calcite, and dolomite. 

 



Chapter 4 

 

81 
 

Unit D is a very heterogeneous and generally coarse-grained deposit that strongly varies in 

thickness and composition along the transect. The base of the unit is not reached in Cores 

SIL10-3 to SIL10-6, where it is up to 1 m thick. Toward the shoreline, Unit D thins to 10 to 

15 cm in Cores SIL10-2 and SIL10-1. In Core SIL10-4, and SIL10-5, the unit is characterized 

by multiple fining-upward sequences composed of a coarse sandy matrix with gravels. A single 

fining-upward sequence overlies fine sandy silt in SIL10-6. These fining-upward sequences, 

observed in Cores SIL10-6, SIL10-5, and SIL10-4 consist of clast-supported, coarse sand with 

angular to sub-rounded gravel. In Core SIL10-4, Unit D hosts deformed and undeformed mud 

clasts of laminated silt. In Core SIL10-3, Unit D is composed of massive coarse sand with 

gravel clasts. The top of Unit D is marked, in all cores along the entire transect, by a 

pronounced and well-traceable light-gray clay cap, with an average thickness of 2 cm. Proximal 

to the shoreline, Unit D overlies the underlying Unit E with a sharp contact. The C/N ratio in 

Unit D varies between 10 and 40 mol mol-1 in Core SIL10-5. In Core SIL10-2, Unit D directly 

overlies Unit F with a sharp contact. 

 

Along Transect T-I, Unit E is only present in Core SIL10-1. The unit consists of a 10 cm thick 

dark-colored organic-rich fibrous peat with finely dispersed white mica and is characterized by 

high TOC content (30–40 wt%), high TN concentration (2.2 wt%), and a C/N ratio of 

~20 mol mol-1. 

 

Siliciclastic dominated Unit F is characterized by a C/N ratio between 10 and 15 mol mol-1, 

low TOC content (~2 wt%), and an absence of diatoms. Grain size varies between coarse silt 

to medium sand. Units E and F will be discussed in more detail in the description of 

Transects T-II and T-III. 
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Fig. 4-5: Transect T-I located perpendicular to the shoreline at Sils Baselgia in the Lagrev Basin. Water depth and 

core ID are indicated above the corresponding sediment cores (see Fig. 4-4B for core location). The 

lithostratigraphic succession consists of six sedimentary units (A to F) with lateral thickness variations. Unit D 

(orange) can be traced along the transect and consists of a heterogeneous sandy deposit with gravels (SIL10-3), a 

single (SIL10-1 and -2) and multiple (SIL10-4, -5 and -6) fining-upward sequences, and a well-pronounced clay 

cap. Erosional contact to the underlying lithostratigraphic Units E and F is indicated in Cores SIL10-1 and SIL10-

2 (red line). In Cores SIL10-3 to SIL10-6 the underlying sedimentary unit is not reached with coring. 

 

Transect T-II: Shallow-water transect along the Lagrev Basin 

Sediment cores of the shore-parallel Transect T-II (Fig. 4-6) were recovered from ~2 m water 

depth in 30 to 200 m distance from the shoreline along the Lagrev Basin (Fig. 4-4B). The 

lithostratigraphic succession consists of six different units, which can be correlated to the 

deeper-water Transect T-I (Fig. 4-5). The uppermost Unit A consists of silt-sized brownish-

gray sediment with a high TOC content. Units B and C are light gray and consist of 

homogeneous silt to very fine sand. Units B and C have a lower TOC content compared to 

Unit A, with a TOC content of 3.3 to 4.5 wt% and a C/N ratio of 13 mol mol-1 in Unit C. The 

silt-sized sediment consists mainly of siliciclastic minerals with carbonate minerals only as 

accessories. 
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Unit D has an erosional contact to the underlying Unit E (red line in Fig. 4-6). The unit consists 

of a gravelly to sandy base that is overlain by a fining-upward sequence with a silty clay cap at 

the top. The sequence varies in thickness from 5 to 25 cm along the shore-parallel transect. In 

Core SIL18-3, the base of Unit D consists of fine gravelly sand, fining-upward to a medium-

coarse sand (Fig. 4-6). Computed tomography scan images highlight horizontally bedded 

gravel clasts in a coarser section of the generally fining-upward sand at around 44 to 55 cm 

depth (Fig. 4-6). The uppermost part of Unit D is considerably finer and finishes with a 

pronounced light-gray clay cap. The most dominant mineral phases in Unit D are white mica 

(~30–40 vol%), chlorite (~18–36 vol%), quartz (~13–30 vol%), plagioclase (~6–17 vol%), and 

K-feldspar (<1–3 vol%). 

 

 

Fig. 4.6: Transect T-II located shore parallel in the Lagrev Basin (see Fig. 4B for core location). Left: Line scan 

image and CT-scan image of Core SIL18-3 with a gravelly fining-upward sand deposit (Unit D) overlying with 

an erosional contact (red line) Unit E. Computed tomography image of Core SIL18-3 shows horizontally bedded 

gravel clasts in a fining-upward sandy matrix in Unit D. Right: Lateral continuation of the event deposit along the 

shore of the Lagrev Basin. Bulk density and magnetic susceptibility are indicated for Core SIL18-3. 

 

The underlying Unit E is a dark brown and very organic-rich (TOC content: ~30 wt%) peat 

deposit containing abundant organic fibrous fragments. The unit has a C/N ratio ranging from 

15 to 20 mol mol-1. Siliciclastic minerals, mostly white mica, are finely dispersed within the 

peat horizon. In Cores SIL18-3 and SIL18-5, a 2 to 4 cm thick, greenish-gray silty clay layer 

occurs within the organic-rich deposit. 
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Unit F, below the peat, consists of fine to medium siliciclastic sand with a C/N ratio that 

increases from 10 to 15 mol mol-1 upcore. Unlike Units A to C, diatoms are absent in Unit F. 

The sand-sized detrital components in Unit F consist of mica (~33 vol%), chlorite (~33 vol%), 

quartz (~17 vol%), and plagioclase (~5 vol%). Minor mineral phases comprise amphibole 

(~3 vol%), serpentine (~3 vol%), K-feldspar (~2 vol%), clinopyroxene (2 vol%), and dolomite 

(1 vol%). 

 

Transect T-III: Shallow-water transect along the Sils Basin 

A similar lithostratigraphic succession as discussed above occurs along a shore-parallel 

sediment core transect (Transect T-III: Fig. 4-7) in the Sils Basin (Fig. 4-4A). The uppermost 

strata in the cores are composed of fine-grained siliciclastic silt-sized deposits with abundant 

diatoms very similar to Units A to C in the Lagrev Basin (Transects T-I and T-II). The 

thickness of the uppermost Unit A varies between 3 and 8 cm along the transect. Unit A is dark 

brownish-gray, rich in diatoms, and consists of finer sediment particles compared to Units B 

and C below, apart from a few distinct coarse high-density laminae. Unit A is characterized by 

a higher TOC content compared to Units B and C. Units B and C vary markedly in thickness 

between 10 and 40 cm, are greenish-gray and massive to very diffusely laminated. 

 

A sharp density contrast is observable at the contact to Unit D (Fig. 4-7). Units A to C have a 

density of 1.3–1.4 g cm-3. In Unit D a very uniform density distribution occurs in Core SIL18-

9 (~2 g cm-3), whereas a more variable density distribution is observed in Cores SIL18-7, -10, 

and -8 (1.5–2.5 g cm-3). The coarse-grained detrital and fining-upward high-density deposit of 

Unit D occurs along the entire Transect T-III and seems to correspond to Unit D of Transect T-

II in the Lagrev Basin (Fig. 4-7). Accordingly, density generally decreases upcore in Cores 

SIL18-7, -10, and -8. In contrast to Transect T-II, in Transect T-III Unit D is characterized by 

discrete layers with increased density, darker colors and coarse sand. The internal multiple 

stacked fining-upward sequence varies laterally in thickness and has a light-gray clay cap in 

Cores SIL18-8 and SIL18-10. Vertically oriented, sand-sized, wavy laminae are observable in 

Unit D in Core SIL18-9. The base of Unit D is only recovered in SIL18-7, where a tree trunk, 

which was partly recovered in the sediment core, likely represents the equivalent to Unit E in 

the Lagrev Basin, marked as Unit “E” (Fig. 4-7). 
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Fig. 4-7: Variation of bulk density and magnetic susceptibility in sediment cores of Transects T-II and T-III. 

Sediment cores recovered in the Sils Basin (Transect T-III) do not penetrate Unit E except Core SIL18-7 where a 

tree trunk was partially cored below (Unit “E”). Core photograph and CT-scan image of Core SIL18-8 show a 

high-density massive sand in the lower part of Unit D. In the upper part, Unit D is brownish gray with higher 

concentrations of terrestrial and aquatic macro-remains and two laminae of detrital fine sand and rip-up clasts 

(brown) are observable. 

 

Transect T-IV: Cores across the shoreline at Sils Baselgia 

Terrestrial sediment cores recovered in the low-lying plain at Sils Baselgia and an archeological 

trench close to the excavation site of the Roman altars (Fig. 4-2) show a similar lithological 

succession. Core SIL09-4 provides one of the best-preserved and longest records. Therefore, 

Core SIL09-4 is chosen as terrestrial core reference (Fig. 4-8). Six main lithological units (I–

VI) can be distinguished in the terrestrial cores. 

 

The uppermost Unit I varies between 20 and 40 cm in thickness, is yellowish to reddish 

oxidized, and characterized by heterogeneous organic-rich soil to more clastic-dominated, 

poorly sorted gravel and sand. At the top, Unit I consists of 10 to 20 cm organic-rich soil, which 

is underlain by a 5 cm thick gravelly layer and another organic-rich soil with a thickness of 10 

to 15 cm. At the base, Unit I is characterized by a fine to coarse sandy gravel with very low 

TOC content (~0.5 wt%) and a C/N ratio of ~10 mol mol-1. The sand fraction consists of white 

mica (~25–30 vol%), K-feldspar (~25–30 vol%), plagioclase (~10–20 vol%), chlorite (~10–

15 vol%), and quartz (~10 vol%). Minor abundances are measured for amphibole (~3–4 vol%) 

and serpentine (>1 vol%). Talc and clinopyroxene are absent or occur only in minor amounts. 

 

Unit II varies in thickness along the transect with largest values (~22 cm) at the most proximal 

location and thinning landward (1–2 cm). Unit II is light gray, diffusely laminated and consists 
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of silt to fine sand with some diatoms. Unit II has a low TOC content (0.4–0.6 wt%), and a 

variable C/N ratio between 5 and 17 mol mol-1. The mineralogical composition consists of 

abundant K-feldspar (30–45 vol%), white mica (20–28 vol%), quartz (12–15 vol%), 

plagioclase (10–13 vol%), and chlorite (~8 vol%), and minor abundances of amphibole 

(~2 vol%), clinopyroxene (~1.5 vol%), and serpentine (<1 vol%). The boundary to Unit I 

above is gradual with a reddish to orange oxidized appearance. 

 

Units III and IV can be correlated to Units D and E in Transects T-I and T-II, respectively, and 

are therefore called D(III) and E(IV) hereafter. However, the thickness of Unit D(III) is 

variable along the onshore sediment cores. It is generally up to 4 cm thick at a distance of 

~40 m from today’s shoreline and thins to 1 cm further away from the shore (~80-90 m), until 

it disappears or is not distinguishable from overlying Unit II (see Supplementary Material for 

core photos: Appendix B; Fig. B1 & B2). The unit is characterized by poorly sorted siliciclastic 

silt to fine sand with fragmented diatoms. The diffusely laminated and fining-upward deposit 

has a high concentration of TOC (~1.2 wt%), low TN concentration (~0.1 wt%), and a C/N 

ratio of ~13. The deposit shows a sharp to erosional contact to the underlying organic-rich 

Unit E(IV) (Fig. 4-8). The distinct clay cap observed in the offshore sediment cores is absent 

or only very slightly expressed in the onshore setting. Additionally, the upper boundary is 

gradual and difficult to trace when no clay cap is present. The internal structure of Unit D(III) 

is variable showing layering at the mm-scale, and normal grading. At the base flame structures 

are visible. However, such structures might also be artifacts related to the coring process. 

 

Unit E(IV) is a dark brown to black porous 10 cm thick peat deposit with fragmented to well-

decomposed organic macro-remains. The peat deposit can be correlated along the transect with 

substantial thickness variations. Total organic carbon content amounts up to 40 wt% with a 

C/N ratio of 15 to 25 mol mol-1. The transitional contact to the underlying Unit V is 

characterized by a sharp color change from brownish black to brownish gray, a strong decrease 

of TOC content, and a C/N ratio with a minimum ratio of 10 mol mol-1 at 82 cm depth. The 

fine- to medium-sand siliciclastic fraction becomes more dominant in Unit V. The 

mineralogical composition of Unit V is characterized by white mica (~23 vol%), K-feldspar 

(~20 vol%), quartz (~19 vol%), chlorite (~18 vol%), and plagioclase (~15 vol%) with minor 

abundances of amphibole (~2.5 vol%), serpentine (~1 vol%), and clinopyroxene (<1 vol%). 

The lowermost Unit VI is composed of a light-gray, massive to faintly laminated silt with low 

TOC content (<1 wt%), and a C/N ratio of ~15 mol mol-1. 
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Fig. 4.8: Transect T-IV shows the two Cores SIL10-1 (shallow-water), SIL09-4 (terrestrial) and the archeological 

trench described in Rageth (2002) (see Fig. 4-2 for details). The organic-rich Units V and D(V) are radiocarbon 

dated to 241–401 cal CE and 225–419 cal CE, respectively. The base of Unit C was dated to 1274–1319 cal CE. 

Note that the age from the terrestrial record in Core SIL09-4 is projected from Core SIL06-8 (see Fig. 4.4B for 

core locations). 

 

Rageth (2002) documents a similar lithostratigraphic succession as described above in an 

archaeological trench at Sils Baselgia at ~125 m distance from Core SIL09-4, close to the 

excavation site of the Roman altars found in 1964 (Figs. 4-2, 4-4B, and 4-9. The upper 40 to 

50 cm of the trench a consists of an artificial fill containing wood fragments and variable-sized 

debris with discrete organic-rich horizons, representing recent and medieval cultural horizons 

and fills (Rageth, 2002), and is equivalent to Unit I in Transect T-IV. Below, Rageth (2002) 

describes a 50 to 60 cm thick greenish-gray silt-sized sediment package with sandy to gravelly 

lenses, in which the Roman altars most likely were found. This deposit is probably the 

equivalent of Unit II in Transect T-IV. Below this, Rageth (2002) describes at 60 cm depth a 5 

to 15 cm thick organic-rich deposit with finely dispersed white mica that contains charcoal, 

bone fragments, processed serpentinite fragments and Roman brick fragments. This organic-

rich unit is very likely the equivalent of Unit E(IV) in Core SIL09-4. The lowermost sediment 
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unit is described as brownish-gray to greenish sandy silt with minor gravel (Rageth, 2002). 

This unit is most likely the equivalent to the lithological Units V and VI (Fig. 4-8). 

 

4.4.2 Seismic reflection data and seismic-to-core correlation 

The seismic reflection data of the Central Basin (Fig. 4-3) shows a 3 to 4 m thick seismic 

Unit 1, characterized by continuous high-amplitude parallel reflections representing 

undisturbed background deposits (Blass et al. 2005). Below seismic Unit 1, an acoustically 

transparent facies (Subunit 2a, Fig. 4-3) correlates to the uppermost part of the 548–797 cal CE 

mass-movement deposit (Blass et al., 2005). No energy is absorbed in the acoustically 

transparent facies Subunit 2a, most likely indicating fine-grained deposits. Typically, the finest 

particles of a megaturbidite settle during the final phase of an event, causing a homogenous 

deposit and a transparent seismic facies (Schnellmann et al., 2002). Below the acoustically 

transparent seismic facies, a chaotic to patchy facies with some scattered diffraction hyperbolae 

can be recognized (Subunit 2c, Fig. 4-3), representing a partly blocky mass-movement unit 

(e.g., Sammartini et al., 2020). The base of the more than 6 m thick mass-movement deposit is 

not imaged, probably due to high sand and gas content in the Central Basin. For seismic-to-

core correlation, sediment core PSS94-2, recovered in the Central Basin (Fig. 4.1) by 

Ohlendorf et al., in 1998, was used. The upper 3.5 m consists of hemipelagic silty clay with 

intercalations of distal turbidite deposits. The uppermost part of the mass-movement deposit 

consists of a 4 cm thick light-gray clay cap at the top and a homogeneous silty clay with low 

variations in density and magnetic susceptibility in the lower 3.5 m that corresponds to the 

seismic Subunit 2a. The lower seismic Subunit 2c corresponds to a heterogeneous sediment 

deposit with deformed silty clay sediment packages and several graded sequences with coarse 

sand to silt (Blass et al., 2005). The base of Unit 2 is not imaged by the seismic data, nor was 

the base of the mass-movement deposit reached with coring. 

 

Along the Lagrev Basin, a sedimentary body consisting of chaotic to internally stratified low-

amplitude seismic reflections (Subunit 2b) is observed above an undulating topography 

(Unit 3; Fig. 4-9). The limited continuity reflections of seismic Subunit 2b are parallel to 

subparallel oriented and show onlapping reflections onto the underlying highs of Unit 3. The 

sedimentary body can be traced along the entire Lagrev Basin and is characterized by a smooth 

surface and ponding geometry. Subunit 2b fills geomorphological depressions and reaches 

thicknesses of 0.5 to 1 m. The lowermost seismic facies (Unit 3) is characterized by chaotic, 
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low-amplitude seismic reflections with many scattered diffraction hyperbolae and an 

undulating topography. The base of Unit 3 is not imaged by the seismic data (Fig. 4-3). 

Seismic-to-core correlation is based on Core SIL10-6 along the Lagrev Basin (Fig. 4-9). 

Seismic Unit 1 corresponds to faintly laminated hemipelagic silt-sized sediment in the upper 

80 cm (Units A to C). Below seismic Unit 2b correlates with a sediment package of deformed 

clayey silt and a fining-upward coarse sand with a light-gray clay cap at the top of the 

lithological Unit D. 

 

 

Fig. 4-9: Close-up view of the seismic reflection profile along the Lagrev Basin shown in Fig. 4-3. Non-interpreted 

(top) and interpreted (bottom) seismic reflection data and seismic-to-core correlation of Core SIL10-6. The profile 

location is shown in the inset (top). Overview of the seismic stratigraphy shows continuous high-amplitude 

reflections of Unit 1 (U1) and chaotic to internally stratified low-amplitude reflections in Unit 2b (U2b). Black 

arrows mark onlapping of U2b onto surface highs of Unit 3 (U3). 
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4.4.3 Age of the event deposit 

Radiocarbon dating of terrestrial macr-organic remains from the organic-rich peat layer 

(Unit E) reveals a calibrated radiocarbon age range of 241–403 cal CE in Core SIL10-1 and 

225–419 cal CE in Core SIL06-8. The radiocarbon age range is given within a 2σ confidence 

level, representing a probability of 95.4% (Table 4-1; Fig. 4-8). A sample collected in the 

lowermost part of Unit C is dated to 1274–1319 cal CE. However, due to high δ13C (-11.7 ± 

1.1 ‰) and very young 14C age the sample is rejected. Blass et al. (2005) dated two samples 

from the uppermost part of the mass-movement deposit in the Central Basin (Core Sis03-23; 

Poz-5423) and the Maloja Basin (Core Sis03-2; Poz-5424) using the radiocarbon dating 

method. Calibration of the two 14C ages yield a minimum age for the Isola Delta collapse of 

548–797 cal CE (Table 4-1). 

 

Table 4-1: Radiocarbon data and calibrated ages of terrestrial organic macro-remains from 

Cores SIL10-1 and SIL06-8. 

Sample code Core ID 

Depth 

(cm) 

Unit 

14C age ± 1σ 

(14C years BP) a 

Calibrated 

2σ ranges 

(cal CE) b 

Relative 

probability 

(%) 

δ13C 

(‰) 

sample 

material 

ETH-40236 SIL10-1 37–38 C 685 ± 30 1274–1319 

1359–1389 

62.1 

33.4 

-11.7 

±     

1.1 

Organic 

plant 

remains 

ETH-40776 SIL10-1 50–51 E 1745 ± 35 241–403 

 

95.4 

 

-30.5 

±     

1.1 

Peat: plant 

remains 

ETH-32595 SIL06-8 79 E(IV) 1735 ± 50 225–419 

 

95.4 

 

-25.8 

±     

1.2 

Peat: 30 

plant 

remains 

c Poz-5423 Sis03-23 69-72 D 

(top) 

1300 ± 35 654–797 95.4 - Three 

small twigs  

c Poz-5424 Sis03-2 85 D 

(top) 

1465 ± 40 548–652 

 

95.4 

 

- Leave 

fragments, 

small twig 

Uncertainties of 14C ages refer to 1-sigma uncertainties. Ranges of calibrated ages represent 95.4% probabilities 

(2σ): a Stuiver and Polach, 1977; b Ramsey, 2009; Reimer et al. 2020; c Blass et al., 2005. 
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4.4.4 Mineralogical composition of the riverine bedload 

Mineralogical composition of the sand-sized sediment fraction of Lake Sils tributaries was 

quantified by X-ray diffraction from the bulk sediment samples taken from the riverbeds of 

Aua da Fedoz, Lavatera, Ova dal Mulin, Ova de la Roda, Ova dal Crot, and Fedacla (Fig. 1). 

In general, the mineralogical composition is characterized by a high quartz concentration (60–

88 vol%) and minor percentages of plagioclase (5–20 vol%), K-feldspar (<1–8 vol%), 

clinopyroxene (1–3 vol%), and mica (<1–5 vol%). Accessory minerals are chlorite, dolomite, 

serpentine, and amphibole (Appendix B; Table B3). The Aua de Fedoz, feeding the Isola Delta, 

is characterized by the lowest concentration of quartz (61 vol%) and highest concentration of 

mica (5 vol%) and amphibole (3.5 vol%) compared to the northern tributaries and the Fedacla, 

draining into Lake Silvaplana (Fig. 4-10). Dolomite is delivered by the southern tributaries Aua 

de Fedoz (3 vol%) and Fedacla (4.5 vol%), whilst of the northern tributaries it is solely 

delivered by the Lavatera (<1 vol%). Serpentine is only delivered by the northern tributaries. 

Considerable amounts of K-feldspar are delivered by the Ova dal Crot (8 vol%) and Ova de la 

Roda (7 vol%), draining from the northern slopes. 

 

 

Fig. 4-10: Mineralogical composition of the sand-sized riverbed samples collected at Lake Sils major tributaries 

given in volume percentage (see Fig. 1 for sample locations). Used mineral abbreviations are Qtz: quartz; Pl: 

plagioclase; Kfs: K-feldspar; CPx: clinopyroxene; Mca: white mica; Chl: chlorite; Srp: serpentine; Am: 

amphibole; Tlc: talc; Dol: dolomite and Cc: calcite. 
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4.4.5 Tsunami generation and propagation model 

The failed volume of the Isola Delta collapse was estimated on the basis of the deposit volume 

given by Blass et al. (2005), using geometrical information from bathymetric data, and a 

tentative reconstruction of the Isola Delta prior to its collapse (see Supplementary Material: 

Appendix B, Fig. B3). The mass-movement volumes of the two scenarios are considerably 

smaller than the volume estimated by Blass et al. (2005). This conservative estimate accounts 

for the fact that volumes estimated based on mapped chaotic seismic facies may be greater than 

actual failed volumes, because the former may include considerable amounts of deformed pre-

existing basin sediments (Hilbe and Anselmetti, 2014). Therefore, we modelled the delta failure 

applying two different mass-movement volumes (Table 4-2). Due to the lack of detailed 

information on the pre-failure topography, the estimated volumes were simply added to the 

present topography, bearing in mind the considerable uncertainties that exist regarding the 

volume and geometry of the failed mass. Additionally, and for simplicity, only the mass 

movement toward the Central Basin was simulated, whilst the much smaller mass movement 

toward the Maloja Basin is neglected. A Bingham plastic rheology was used for the landslide 

simulation with initial bulk density, yield strength, dynamic viscosity, and constant Manning’s 

roughness coefficient as given in Table 4-2. 

 

Table 4-2: Model parameters of the mass-movement, tsunami generation, and propagation 

simulations. 

Scenario 
Volume 

(106 m3) 

Rheology 

(constitutive 

model) 

Bulk 

density 

(kg m-3) 

Yield 

strength 

(Pa) 

Dynamic 

viscosity 

(Pa s) 

Manning’s roughness 

coefficient 

(s m-1/3) 

S01a 1.71 Bingham plastic 750 5 50 0.03 

S01r 1.33 Bingham plastic 750 5 50 0.03 

 

The numerical tsunami model provides an estimation for the order of magnitude of the 

lacustrine tsunami that might have been generated by the Isola Delta collapse (e.g., inundation, 

run-up height, depth-averaged velocity, and flow depth). Two different scenarios, S01a and 

S01r (Table 4-2), with different initial landslide volumes were run and show comparable results 

(see Appendix B for simulated mass-movement deposit thickness and mass-movement 

velocity: Figs. B4 & B5). Final mass-movement deposit thickness locally reaches up to 6 m for 

the two scenarios. Maximum mass-movement thickness locally reaches up to 8.5 m in scenario 

S01a and 6.5 m in scenario S01r (see Appendix B: Fig. B4). Maximum mass-movement 
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velocity of 23 m s-1 and 18 m s-1 is reached after 14 s in simulation scenario S01a and after 12 s 

in S01r, respectively, at the Isola Delta slope (see Appendix B: Fig. B5). 

 

Tsunami initiation occurs within seconds after the Isola Delta collapse begins (Fig. 4-11a). A 

complex interference pattern of waves develops within less than two minutes after slide 

initiation, spreading along the different sub-basins (Fig. 4-11b). The wave train reaches the 

coastal plain at Sils Baselgia after 1 minute, and inundation reaches up to 200 m from today’s 

shoreline, with run-up heights of 2 to 3 m (Fig. 4-11c). 

 

 

Fig. 4-11: Time steps of the wave amplitude (free surface elevation) of the numerical tsunami propagation model 

scenario S01a. 

 

Maximum depth-averaged flow velocity and flow depth reached onshore are shown for 

scenario S01a in Fig. 4-12. Highest values are observed on the steep opposite slope at Plaun da 

Lej along the northwestern shore. Maximum inundation distance (280–300 m) is highest 

proximal to the tsunami source on the Isola Delta. Here, maximum depth-averaged flow 

velocity is ~5 m s-1 and flow depth is ~2.5 m. Flow velocity is very high within the first 150 m 

and drops quickly to near zero at 200 m. Highest maximum flow depths (5 m) are directly 

observed at the shore, drop quickly to ~2.5 m within the first 50 m, and become lower 150 m 

inland (0–1 m). On the low-lying plain at Sils Baselgia maximum depth-averaged flow velocity 

drops within the first 100 m from 5 m s-1 to 2.5 m s-1 (120–170 m) and to near zero in 250 m 

distance from today’s shoreline. Maximum flow depth is 2.5 m within the first 80 m of 

inundation and drops continuously to 0 m at the maximum inundation distance at 250 to 280 m. 

Maximum depth-averaged velocity (2.5 m s-1) and maximum flow depth (<2.5 m) is generally 
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lower at the low-lying plain adjacent to the Sils Basin. Maximum inundation distance remains 

around 220 m. 
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◄ Fig. 4-12: Maximum depth-averaged velocity (left) and maximum flow depth (right) of the numerical tsunami 

propagation model scenario S01a. Lake Sils’ four sub-basins are indicated with capital letters (M: Maloja Basin, 

C: Central Basin; L: Lagrev Basin and S: Sils Basin). 

 

4.5 Discussion 

4.5.1 Sedimentology 

A complex, and apparently laterally continuous, event deposit (Units D and D(III)) was 

identified across different depositional environments within an amphibious transect from 

onshore areas to the deeper water of Lake Sils. This event layer consists of massive sand and 

fining-upward gravelly sand sequences with a pronounced clay cap in the shallow-water areas 

of the Lagrev and Sils Basins. The event deposit transforms into a thicker unit with multiple 

packages of fining-upward sand to silt and a thicker clay cap toward the deeper water. Large 

amounts of unconsolidated sediment likely were transported from the northern shore towards 

the offshore area of the Lagrev Basin by a complex interference of opposing tsunami waves 

and backwash currents on the shore-based Transect T-IV, the contact to the underlying peat 

horizon is marked by an unconformity with a sharp erosional contact (Fig. 4-8). Horizontally 

bedded gravel clasts that are embedded in an overall fining-upward sequence indicate high bed 

shear-stress. Therefore, we assume that vast amounts of unconsolidated sediment were 

transported as bedload and in suspension from the lake landward. Along the coastal plain, the 

event layer generally thins and fines landward, with varying thicknesses from several cm in the 

proximal shore area to 1 cm in the more distal part. Although the coastal plain is relatively flat, 

with ~1 m elevation change along the 100 m long sediment core transect, paleo-

microtopography have an important effect on deposit thickness and sedimentary structures of 

tsunami deposits (Nishimura et al., 2015). Therefore, the variable observed thickness and 

sedimentological structures likely are a direct consequence of the paleo-microtopography. A 

pronounced clay cap can only be deposited from standing water over some hours, and therefore, 

its partial absence can be explained by variations of the paleo-microtopography. The gradual 

transition toward the upper unit reflects erosion and bioturbation, mechanisms that usually alter 

tsunami deposits directly after sedimentation (e.g., Goto et al., 2012; Szczuciński, 2012; Spiske 

et al., 2020). The observed trend of decreasing mean grain size landward is consistent with 

decreasing tsunami velocity with increasing inundation distance, as confirmed by the numerical 

wave models and was described in various marine tsunami deposits (e.g., Bondevik et al., 2005; 

Dawson, 1995; Gelfenbaum and Jaffe, 2003). The landward thinning of the event deposit is 
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explained by the decreasing transport capacity of the flow, entraining less sediment the further 

it travels inland. Moreover, the erosional contacts, the massive and fining-upward sand layers, 

and horizontally bedded coarse components (Fig. 4-6) are typical sedimentological signatures 

found in past and recent coastal plain tsunami deposits. Similar structures have been described 

for tsunami deposits by Szczuciński et al. (2006), who observed landward thinning of normally 

graded coarse silt to medium sand along the Andaman Sea coast of Thailand after the 2004 

Indian Ocean tsunami. Furthermore, tsunami deposits from the Storegga Slide tsunami are 

characterized by a remarkably continuous sand layer with evidence of erosion of underlying 

sediments in Montrose, eastern Scotland (Dawson et al., 1988). For the same event, Bondevik 

et al. (2003) investigated a generally continuous and normally graded sand layer that thins and 

fines landward and contains pebbles and organic-rich rip-up clasts. The 1755 CE Lisbon 

tsunami deposit at Boca do Rio is characterized as a continuous fining-upward sequence that 

ranges from coarse sand to clayey sandy silt (Dawson et al., 1995). Although the 

abovementioned similarities are convincing, tsunami deposits are characterized by a wide 

range of sedimentological characteristics depending on sediment availability and 

microtopography (Nishimura et al., 2015). For example, discontinuous sheets of sands are 

described at Koh Phra Thong, in southern Thailand (Engel and Brückner, 2011). Other 

examples of complex sediment architecture are often caused by shore erosion attributed to 

tsunami inundation and backwash, as described at many different locations including the 

Sendai coastal plain after the 2011 CE Tohoku-oki tsunami (Richmond et al., 2012), at 

Kalpakkam, India, due to the 2004 CE Indian Ocean tsunami (Srinivasalu et al., 2007) and at 

the north coast of Papua New Guinea caused by the 1998 CE Papua New Guinea Tsunami 

(Gelfenbaum and Jaffe, 2003). 

 

Offshore tsunami deposits in the Sendai Bay following the devastating 2011 CE Tohoku-Oki 

tsunami were characterized by distinct layer of beach-derived coarse sand, transported by 

backwash currents into water depths between 14 and 30 m (e.g., Tamura et al., 2015, 

Yoshikawa et al., 2015). Channel-like erosion surfaces were identified in offshore seismic 

profiles in the same area (Yoshikawa et al., 2015) and large subaqueous dunes and bathymetric 

changes were observed in the Kesennuma Bay, Japan (Haraguchi et al., 2013). Following the 

2004 CE Indian Ocean tsunami multiple studies were conducted on sedimentary deposits on 

the inner shelf offshore of Khao Lak in the Andaman Sea off the coast of Thailand (e.g., Paris 

et al., 2010, Sakuna et al., 2012). Sakuna et al., 2012 compared the offshore sedimentary 

signatures with offshore tsunami deposits in the Portuguese shelf offshore Lisbon (Van den 
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Bergh et al., 2003) and in the Mediterranean (coastal zone of Israel; Goodman-Tchernov et al., 

2009 and Augusta Bay, Italy; Smedile et al., 2011). The described sedimentary signatures 

include a sharp erosional basal contact, thickness between a few cm and m, and grain size in 

the range of mud to gravel (Sakuna et al., 2012 and references therein). These signatures are 

well comparable with the offshore deposits in Lake Sils, which are characterized by erosional 

lower contact, multiple stacks of normal graded coarse sand and massive gravel. 

 

Based on our sedimentological observations and numerical wave modeling, we hypothesize 

that the Isola Delta collapse generated a tsunami that impacted the northern lakeshore strongly 

and transported large amounts of unconsolidated sediment along the lakeshore and toward the 

deeper basin. The complex interference pattern of waves led to several inundation pulses, so 

that the back-flowing waters eventually caused downslope currents into the Lagrev Basin. The 

multiple-pulse flow transported terrestrial sediments into the lake, which were deposited as 

backwash deposits along the Lagrev Basin. After flow velocities decreased, a distinct clay cap 

overlying the coarse layer, identified along Transect T-I (Fig. 4-5), was deposited out of 

suspension. 

 

Geochemical and mineralogical analysis were conducted to fingerprint the detrital source of 

the event deposit. Because the geological catchment of Lake Sils is composed of a complex 

tectonic architecture with many different units, it may be possible to characterize and 

differentiate detrital components originating from the Aua da Fedoz, the Fedacla, and the 

northern lakeshore (Fig. 4-1). The Lavatera and the Ova dal Mulin, draining from the north, 

are the only riverine bedload samples containing serpentine (1.8–2.0 vol%). The Aua da Fedoz 

and the Fedacla, draining from the south, deliver dolomite (2.9–4.6 vol%). Comparison 

between the mineralogical composition of the riverine bedload samples and discrete sediment-

core samples indicate that quartz is strongly depleted in the sediment cores (15–30 vol%) 

relative to the riverine bedload (>60%). In contrast, mica (20–40 vol%) and chlorite (13–

35 vol%) are enriched in the sediment cores, although measured mineral concentrations are 

very variable compared to the sand-sized riverine bedload sediment fraction. The 

characterization of the mineralogical composition of the event layer thus supports a local 

sediment source from the northern slopes. Serpentine is a minor constituent of the detrital event 

deposit and solely delivered from the northern tributaries of Lake Sils (Fig. 4-10). Based on 

the mineralogical composition, we assume that during tsunami propagation, large amounts of 

sediment were remobilized along the northern slopes between Plaun da Lej and Sils Baselgia. 



Chapter 4 

 

98 
 

4.5.2 Age estimation of the deposit 

A good age estimation of the depositional timing of the laterally continuous fining-upward and 

landward-thinning sand event layer is provided by radiocarbon dating on terrestrial organic 

macro-remains from the peat layer underlying the event deposit. Two radiocarbon samples 

were retrieved from the organic-rich Unit E in sediment Cores SIL10-1 and SIL09-4 (Fig. 8). 

Calibration of radiocarbon dating yields ages of 241–403 cal CE and 225–419 cal CE for these 

core samples, respectively. Assuming that tsunami inundation could substantially erode the 

alluvial plain close to the shore at Sils Baselgia, and knowing that peat accumulation is a slow 

process and that the large Isola Delta collapse occurred around 548–797 cal CE (Blass et al., 

2005), the obtained radiocarbon ages for the peat layer underlying the event deposit fit well to 

the proposed mechanism of a tsunamigenic delta collapse, with resulting sediment deposition 

along the alluvial plain at Sils Baselgia eroding and burying pre-existing soils. 

 

4.5.3 Tsunami generation and propagation model 

Numerical modeling of the delta-slope collapse and associated tsunami waves indicates that a 

partial Isola Delta collapse would be able to generate a basin-wide tsunami inundating the 

surrounding nearshore and coastal plain environment. Large amounts of unconsolidated 

sediment likely were transported from the northern shore towards the offshore area of the 

Lagrev Basin by a complex interference of opposing tsunami waves and backwash currents. 

However, model limitations and uncertainties regarding the simulation of tsunami-wave height, 

run-up and inundation distance need to be considered. For instance, initial delta geometry and 

landslide volume are not well constrained and were simply added to today’s delta 

geomorphology in our models. It should also be considered that seismic reflection data and 

recovered sediment cores in the deep basin do not reach the base of the mass-movement 

deposit. Therefore, total volume estimation by Blass et al. (2005) is a rough estimate and 

represents rather a lower bound. 

 

We simulated two conservative delta-collapse scenarios with slightly different initial volumes. 

Scenarios S01r (1.33 x 106 m3) and S01a (1.71 x 106 m3) have much lower volumes than the 

estimated Isola Delta collapse mass-movement deposit in the Central Basin (6.5 x 106 m3; 

Blass et al., 2005). Hilbe and Anselmetti (2015) use failed volumes calculated from the scar 

height and area for modeling the subaqueous mass movement-generated tsunami in Lake 

Lucerne. These volumes typically amount to half of the volumes observed in the mass-
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movement deposits. The observed difference is attributed to a suspected incorporation of basin 

sediments into the mass-movement deposits (Hilbe and Anselmetti, 2014). The obtained 

results, especially in the far field, are satisfactory and comparable with well-documented 

historical tsunami inundation and run-up (Hilbe and Anselmetti, 2015), although the nonlinear 

shallow-water equations used for the modeling tend to overestimate the height of mass 

movement-generated tsunamis with shorter wavelengths compared to earthquake-generated 

tsunamis in the ocean (Lynett, 2010). At Lake Sils, neither the total mass-movement deposit in 

the Central Basin nor the failure scar along the Isola Delta is traceable due to highly dynamic 

sedimentation mechanism in the deltaic environment. 

 

Subaqueous mass-movement rheology may be another important source of uncertainty. 

Although the rheological parameters used are equivalent to the parameters used by Hilbe and 

Anselmetti (2015) for the Muota Delta collapse, which is thought to be comparable to the Isola 

Delta collapse, evidence revealing the kinematics of submarine landslides remain scarce 

(Løvholt et al., 2015). Yet, tsunami generation, amplitude, and wavelength are influenced by 

mass-movement kinematics (Løvholt et al., 2015) and mainly determined by the volume, the 

initial acceleration, and the maximum velocity (Harbitz et al., 2006). Maximum mass-

movement velocities simulated (16 to 24 m s-1) are comparable to other simulated subaqueous 

mass movement-generated tsunamis in the same order of volume (e.g., 2014 CE Statland 

Tsunami, Norway; Glimsdal et al., 2016). Sensitivity analysis of the mass-movement rheology 

parameters for the Muota Delta collapse-generated tsunami at Lake Lucerne indicates that the 

initial volume and mass-movement geometry as well as the dynamic viscosity are the most 

important parameters controlling tsunami run-up and wave height (Hilbe and Anselmetti, 

2015). Although shore texture and land cover, expressed as bottom roughness, can significantly 

affect tsunami inundation and velocity (Kaiser et al., 2011), and we do not know the land cover 

at the time of the collapse, a constant Manning’s value was used for bottom roughness of 

0.03 s m-1/3 on the alluvial plain. 

 

Tsunami sediment erosion and transport capacity depend mainly on bed shear-stress and shear 

velocity (e.g., Ontowirjo et al., 2013; Paris et al., 2010). Simulated tsunami flow velocity 

ranges from 0 to 5 m s-1 along the alluvial plain at Sils Baselgia. Such flow velocities exceed 

critical threshold conditions for incipient motion of silt-, sand- and fine gravel-sized siliciclastic 

particles. Therefore, erosion of sediment particles along the slope and in the foreshore area, as 

well as erosion of the paleosol along the alluvial plain may be caused due to tsunami 
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inundation. Silt- and sand-sized particles are transported in suspension, larger blocks, and 

gravel as bedload fraction. With decreasing velocity, a normally graded layer (Units D and 

D(III)) is deposited from sediment falling out of suspension in the onshore and in the shallow-

water setting, respectively, whereas multiple deposits of fining-upward sequences along 

Transect T-I probably were deposited during pulse-like localized backwash currents. 

 

4.5.4 Other potential event deposit mechanisms 

Besides the tsunamigenic Isola Delta collapse, some other sedimentary processes could 

potentially have caused the investigated event deposit. In the following, we discuss why we 

consider these mechanisms less plausible: 

 

Debris flows 

Although debris flows show a wide range of characteristics, they are commonly characterized 

by the sediment transport of particles ranging from clay to large boulders in a dense viscous 

flow. Water velocities range between 0.5 and 20 m s-1 (Takahashi, 1981) on alluvial or debris 

cones with a slope usually between 4 and 8° containing channels with well-developed boulder-

rich lateral levees (Takahashi, 1981). The sedimentary deposits consist of poorly sorted mixture 

of particles and are generally fine distal from the source. In the lowermost areas off-fan 

deposition of winnowed fines may be observable (Blair and McPherson, 1998). 

 

Rockslides 

Rockslides are characterized by transport of debris from disaggregated bedrock with a 

relatively shallow-seated glide plane (Voight et al., 1981). The rate of movement can be very 

slow to extremely rapid, with an abrupt disintegration of the slope (Allen, 2009). The associated 

sedimentary deposits are usually very poorly sorted and often contain wooden debris and tree 

trunks. However, sorting is more effective when large amounts of water is involved, and the 

rockslide gradually transforms into a debris flow. 

 

Lake-level changes 

Submerged paleo-shorelines are formed by gradual water-level rise in a transgressive phase 

and may leave site-specific depositional signatures in the geological record. Often these 

deposits consist of a fining-upward sequence above an unconformity with an erosional to sharp 

contact due to a relatively abrupt water-level rise (e.g., Merzeraud et al., 2019). Such a 
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transgressional facies pattern is characterized by a change from coastal sediments to coarse 

clastic nearshore deposits, which are overlain by fine-grained deposits. 

 

These geological processes may generate similar depositional signatures as the observed 

fining-upward and landward thinning and fining Unit D at the coast of Lake Sils. But certain 

aspects clearly speak against their genesis. (i) A debris-flow cone is characterized by a 

decreasing particle size distal to its origin. At Lake Sils the Fedacla river, draining the Val Fex, 

certainly flooded the alluvial cone at Sils repeatedly. Associated flood layers were described 

by Blass et al. (2005) in recovered sediment cores from Lake Sils. But the investigated Unit D 

is thinning and fining landward, therefore a deposition from a debris flow can be excluded. 

Additionally, the southern tributaries have different sediment provenance than the 

mineralogical composition observed in the event deposit. (ii) Rockslides originate from the 

northern shore at Lake Sils, as indicated by several talus and block deposits on the slopes of 

Piz Lagrev. Associated sedimentary deposits are expected to be less sorted due to the proximity 

of the steep slope. Moreover, these deposits would only occur in the proximal Lagrev Basin as 

they would not reach the distant Sils Basin (Fig. 4-1). (iii) A lake-level rise is indicated by the 

buried peat layer (Unit E), but an abrupt rise is considered not to be able to transport the amount 

of sediment needed to deposit Unit D in the lacustrine setting. Moreover, none of these alternate 

processes would generate the observed clay cap at the top of Unit D in Transects T-I, T-II, and 

T-III, which clearly indicates an event deposition with very large suspension involved, favoring 

a large delta collapse. 

 

4.5.5 Unifying hypothesis: delta collapse-generated tsunami 

Tsunamigenic delta collapses are historically reported in Lake Geneva (563 CE Rhone Delta 

collapse (Kremer et al., 2012), Lake Lucerne (1687 CE Muota Delta collapse (Hilbe and 

Anselmetti, 2014)), and Lake Brienz (1996 CE Aare Delta collapse (Girardclos et al., 2007). 

Compared to these tsunamigenic delta collapses, the observed depositional volume of the Isola 

Delta mass movement is best comparable with the 1687 CE Muota Delta collapse (14 x 106 m3) 

in Lake Lucerne (Hilbe and Anselmetti, 2015). Historical documents of this event report a 

tsunami run-up of 5 m at the opposing lakeshore, about 1.2 km distant, and severe demolition 

of coastal infrastructures (Dietrich, 1689). The shore behind the delta was considerable 

damaged in the proximal area of the village Brunnen by two main pulses of inundation and 

subsequent backwash currents (Dietrich, 1689). 
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Although the (conservatively calculated) mass-movement volume involved in the Isola Delta 

collapse is almost half of the volume of the Muota Delta collapse at Lake Lucerne, delta 

morphology and major constituents are thought to be very similar. This is especially important 

with respect to mass-movement rheology and tsunami generation mechanism. Because tsunami 

modeling results obtained for the Muota Delta collapse correlate well with historical 

documented wave parameters (Hilbe and Anselmetti, 2015), the simulated Isola Delta collapse-

generated tsunami, calculated using the same numerical codes, is thought to provide a realistic 

frame. Further, previous studies have shown that tsunamis generated by submarine landslides 

often have very large run-up heights close to the source area and are most dangerous when 

generated in shallow waters (Harbitz et al., 2006). 

 

Despite the lack of direct historical reports documenting a tsunami event in Lake Sils, the 

observed sedimentological succession in sediment cores from the onshore and shallow-water 

setting provides insights into a severe depositional event. Radiocarbon dating of the event 

underlying peat layer indicates that the event occurred after 225–419 cal CE. The large Isola 

Delta collapse with a depositional volume of at least 6.5 x 106 m3 and dated to 548–797 cal CE 

(Blass et al., 2005) is the best and obvious candidate to cause the event deposits. Firstly, it 

postdates the organic-rich sediment underlying the event layer by a short period. Secondly, the 

observed sedimentological characteristics points toward tsunami sediment transport and 

deposition. Thirdly, sediment provenance indicates that a local sediment source from the 

northern shore is very likely the major sediment contributor for the observed event deposit 

along the Lagrev Basin and the coastal plain. Fourthly, our numerical tsunami simulations 

indicate that the mass-movement volume of the Isola Delta collapse is sufficiently large to 

displace large amounts of water so that the required inundation and run-up can be reached. 

 

4.5.6 Triggering mechanism of the Isola Delta collapse  

Subaquatic mass movements may have variable trigger mechanisms, ranging from seismic to 

climatic causes (Kremer et al., 2017). Multiple synchronous mass movements on statically 

stable lateral lake slopes are usually triggered by seismic shaking (Kremer et al., 2017), while 

potentially unstable delta slopes may also collapse spontaneously (Girardclos et al., 2007; 

Hilbe and Anselmetti, 2014). The timing of the Isola Delta collapse (548–797 cal CE) 

coincides, within the resolution of the radiocarbon dating method, with multiple subaquatic 

mass movements identified on reflection seismic data and sediment cores in nearby Lake 



Chapter 4 

 

103 
 

Silvaplana at 571–650 cal CE (Bellwald, 2012 in Kremer et al., 2017). Moreover, a large mass-

movement deposit was identified in Lake Como 60 km to the south and dated to ~530 CE 

(Fanetti et al., 2008). Such multiple coevally triggered mass movements deposited along the 

same horizon within a restricted basin and in different lakes are strong evidence for an 

earthquake-triggered collapse (Kremer et al., 2017; Schnellmann et al., 2002), so that the Lake 

Sils event may have been also triggered by a strong regional seismic event. 

 

4.6 Conclusions 

A large subaqueous delta collapse emplaced a mass-movement deposit with a maximum 

thickness of more than 6 m and a total estimated minimum volume of 6.5 x 106 m3 in the 

Central Basin of Lake Sils around 548–797 cal CE (Blass et al., 2005). Our sedimentological 

analysis of sediment cores retrieved on the coastal plain and in the shallow water of Lake Sils 

supports the hypothesis that this mass movement generated a basin-wide tsunami that was able 

to substantially erode unconsolidated sediment along the lakeshores, especially along the 

northern shore. Recovered sediment cores show a prominent fining-upward sequence above an 

erosional sharp contact to the underlying paleosol that can be correlated across all sediment 

core transects. Based on radiocarbon dating, this paleosol was formed 225–419 cal CE, 

indicating a 2–3 m lower lake level at the time. The overlying coarse-grained event deposit 

consists of horizontally bedded gravel in a fining-upward sandy matrix thinning and fining 

landward. Cores recovered in the deeper part of the Lagrev Basin host a tsunami backwash 

deposit that contains multiple successions of fining-upward sequences with underlying 

erosional contacts. A clay cap marks the top of the event deposit, indicating sedimentation of 

the finest particles from suspension in the latest phase of the event. 

 

Based on numerical tsunami-wave modeling, the Isola Delta collapse could have mobilized 

enough sediment to generate a basin-wide tsunami. Our simulations indicate that the delta 

collapse generated an initial wave with a free surface elevation exceeding 3 m in the direction 

of the emerging delta-slope failure. The wave train traveled along the main direction in which 

the slope failed and inundated the opposite shore. Due to restricted basin morphology, complex 

interference of waves caused them to spread along the different basins, resulting in a main wave 

direction traveling into the Lagrev and Sils Basins. These waves inundated the alluvial plain at 

Sils Baselgia with a maximum run-up of 2–3 m up to 200 m inland with initial flow velocities 

of up to ~5 m s-1. Although the performed numerical tsunami simulations suggest that the area 
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where the Roman altars have been excavated was flooded, it remains questionable whether the 

entire fine-grained deposits embedding the altars represent tsunami deposits. Yet, it is likely 

that the Roman altars were tilted and displaced by the tsunami. They eventually became buried 

by deposits from the inundation as well as by overlying lake sediments, indicating also a post-

event lake-level rise of over 2 m. 

 

Because the described megaturbidite and its associated shallow-water and coastal deposits are 

the only identified major mass-movement deposit in the Central Basin and around Lake Sils 

(reflection seismic data and sediment cores do not penetrate further into the postglacial fill of 

the deep basin), recurrence rates of similar delta failures cannot be constrained. Nevertheless, 

high sedimentation rates and oversteepening in delta areas such as the Isola Delta are the ideal 

preconditioning factors for causing multiple failures in relatively short time, as was observed 

in other lacustrine case studies (e.g., Girardclos et al., 2007). These processes and phenomena 

need to be taken into consideration when evaluating the hazard potential of future subaqueous 

delta collapse-generated tsunamis in inhabited areas. 
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Abstract 

The 1601 Common Era earthquake (Mw ca. 5.9) in "Unterwalden", Central Switzerland 

triggered multiple subaqueous mass movements and a subaerial rockfall that generated tsunami 

waves with devastating run-up heights of up to 4 m and several hundred meters of inundation 

along the coastal lowland plain of Lake Lucerne. In the shallow Lucerne Bay at the outlet of 

the perialpine lake, historical chronicles reported a seiche with an initial amplitude of ~1–2 m 

and a period of 10 min that decreased with time but persisted for several days after the event. 

The impact and erosion potential of the tsunami wave on the Lucerne Bay is assessed with 

sediment core analysis and numerical simulation of wave propagation. A 60 cm thick offshore 

event deposit was recovered and radiocarbon dated along a sediment-core transect. The event 

deposit has a sharp basal contact with carbonate shell fragments and a normal graded 

succession of siliciclastic sand to silt with high amount of terrestrial-derived horizontally 

bedded wooden particles. The simulated tsunami waves have a water-surface displacement of 

up to 1.5 m and bed shear-stresses that are likely capable of remobilizing large amounts of 

sediment in the Lucerne Bay area. Our study thus successfully links the sedimentology of event 

deposits with physical principles of sediment mobilization derived from numerical wave 
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modeling, providing a tool to improve the identification and interpretation of potential tsunami 

deposits. 

 

5.1 Introduction 

Tsunami hazard is frequently associated with megathrust earthquakes at convergent plate 

boundaries in the marine environment (e.g., 2011 Common Era (CE) Tohoku-Oki tsunami 

(e.g., Goto et al., 2011a; Suzuki et al., 2011)). But also, earthquake-triggered subaqueous mass 

movements have generated devastating tsunami inundation in the recent past (e.g., 2018 CE 

Sulawesi earthquake (e.g., Heiderzadeh et al., 2019)). Moreover, tsunamis in lakes have been 

recognized as a considerable natural hazard with high magnitudes and low recurrence rates 

(e.g., Hilbe and Anselmetti, 2015; Kremer et al., 2015; Kremer et al., 2020; Nigg et al., 2021; 

Strupler et al., 2018a, 2018b). Large subaqueous and subaerial mass movements are considered 

to be the most common triggering mechanism for the tsunami generation in lakes (e.g., Hilbe 

and Anselmetti, 2015; Kremer et al., 2020; Mountjoy et al., 2019; Nigg et al., 2021; Roberts et 

al., 2013; Strupler et al., 2020). Historic chronicles document that lacustrine tsunamis have 

caused severe shore erosion, inundation, and fatalities (e.g., Cysat, 1969; Hilbe and Anselmetti, 

2015; Kremer et al., 2014; Nigg et al., in prep.). For example, lacustrine tsunamis have been 

reported in historical chronicles at Lake Geneva (564 CE Tauredunum rockfall (Montandon, 

1925; Favrod, 1991)), Lake Baikal (1861 CE Tsagan earthquake (Klyuchevskii et al., 2011)), 

Lake Lucerne (1601 CE Unterwalden earthquake (Cysat, 1969) and 1687 CE Muota Delta 

collapse (Bünti, 1973; Billeter, 1923; Dietrich, 1689)). Additionally, they have been proposed 

to occur in the prehistoric period as a consequence of large subaqueous and subaerial mass 

movements (e.g., Hilbe and Anselmetti, 2014; Kremer et al., 2015; Nigg et al., 2021; 

Schnellmann et al., 2006; Siegenthaler et al., 1987). And have also been suggested from 

numerical tsunami simulations (e.g., Hilbe and Anselmetti, 2015; Kremer et al., 2012; 

Mountjoy et al., 2019) and subaqueous lake morphology (e.g., Gardner et al., 2000; Moore et 

al., 2006). However, depositional signatures of tsunami impact in the on- and offshore have 

received little attention in the lacustrine environment. Nevertheless, Roberts et al. (2013) 

document onshore sedimentary signatures of the 2007 CE subaerial landslide-generated 

tsunami in Lake Chehalis and Nigg et al. (2021) found sedimentary evidence of a prehistoric 

tsunami generated by a delta collapse in the shallow water and coastal area of Lake Sils, 

Switzerland, that are comparable to marine tsunami deposits. 
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Tsunami deposits are the accumulation of remobilized sediment from tsunami inundation and 

backwash in the on- and offshore setting (e.g., Einsele et al., 1996), which have been 

predominantly investigated in marine environments. These deposits have been increasingly 

studied following the devastating 2004 CE Indian Ocean tsunami (e.g., Feldens et al., 2009; 

Paris et al., 2010; Sakuna et al., 2012; Sugawara et al., 2009) and 2011 CE Tohoku-Oki tsunami 

(e.g., Goto et al., 2014; Haraguchi et al., 2013; Ikehara et al., 2014; Yoshikawa et al., 2015; 

Tamura et al., 2015). Although offshore deposits may contribute to improved tsunami-hazard 

assessment in the future (Costa et al., 2020), especially in areas with fragmented terrestrial 

records (Goodman-Tchernov and Austin, 2015), anthropogenically influenced coastal areas 

(e.g., Fritz et al., 2008; Spiske et al., 2013), limited tsunami preservation (Spiske et al., 2013), 

and sediment-limited coastal settings (Apotsos et al., 2011), the number of publications 

examining their signatures is rather small compared to their onshore counterparts (e.g., Dawson 

and Stewart, 2008; Costa et al., 2020). This may be related to poor preservation of the primary 

deposits, especially due to reworking by wind-induced bottom currents above the storm-wave 

base within months (Weiss and Bahlburg, 2006) and by bioturbation from aquatic organisms 

(van den Bergh et al., 2003). Nevertheless, previous studies have successfully identified 

historic and prehistoric offshore tsunami deposits in the shallow marine setting (e.g., Abrantes 

et al., 2008; Goodman-Tchernov et al., 2009; Riou et al., 2020; Smedile et al., 2011; van den 

Bergh et al., 2003). Their depositional signatures are characterized by a wide range of 

sedimentological characteristics (e.g., Fujiwara, 2008) including lower erosional surfaces (e.g., 

Ikehara et al., 2014; Riou et al., 2020; Smedile et al., 2020; Yoshikawa et al., 2015), coarse-

grained clastic materials (Abrantes et al., 2008; Goodman-Tchernov et al., 2009; Paris et al., 

2010; Sakuna et al., 2012; van den Bergh et al., 2003), terrestrial-derived organics (Goodman-

Tchernov et al., 2009; Paris et al., 2010; Sakuna et al., 2012), as well as single- and multiple-

graded sandy deposits (e.g., Tamura et al., 2015). Yet, no universal criteria for the recognition 

offshore tsunami deposits are defined. Nevertheless, multiproxy-based sedimentological and 

geophysical methods combined with numerical simulation of sediment transport will help to 

improve the understanding of tsunami-induced sediment remobilization and deposition (e.g., 

Goto et al., 2011b; Noda et al., 2007). 

 

Tsunami sediment-transport and deposition have increasingly been studied using inverse (e.g., 

Huntington et al. 2007; Jaffe and Gelfenbaum, 2007; Jaffe et al., 2011; Jaffe et al., 2012; 

Johnson et al., 2017; Spiske et al., 2010; Tang and Weiss, 2015; Woodruff et al., 2008) and 

forward modelling (e.g., Apotsos et al., 2011; Apotsos et al., 2012; Ontowirjo et al., 2013; 
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Pritchard and Dickinson, 2008) in the onshore setting to reconstruct tsunami flow speed based 

on the grain-size distribution of tsunami deposits (Jaffe and Gelfenbaum, 2007). Moreover, 

forward models combine hydrodynamics and sediment transport models (including erosion and 

deposition) to simulate observed sedimentary deposits (e.g., grain-size distribution and spatial 

thickness distribution) (Apotsos et al., 2011). Although, little attention has been drawn to the 

quantification of tsunami erosion in the nearshore area to date (Yoshikawa et al., 2015), Goto 

et al. (2011b) determined severely impaired stability of coastal infrastructures due to strong 

localized scouring and sediment rearrangement. Additionally, remarkable bathymetric changes 

caused by tsunamis have been numerically simulated (e.g., Orai Port, Japan (Kuriyama et al., 

2020)) and observed in several nearshore areas (e.g., Kirinda Harbor, Sri Lanka (Goto et al., 

2011b)), suggesting substantial sediment remobilization by tsunami waves in the shallow 

offshore area. 

 

The particle entrainment by flows has been quantified from flume experiments (e.g., MAntz, 

1977; Shields, 1936) and identified as being strongly dependent on the bed shear-stress, flow 

regime, as well as grain-size distribution, grain shape, grain packing, and density of the bed 

surface sediment (e.g., Boggs, 2014; Buffington and Montgomery, 1977). The resulting 

hydrodynamic description may be partially transferable to tsunami-induced sediment transport 

in shallow water (Kihara et al., 2012). Therefore, for the incipient motion of sediment particles 

by tsunami propagation, the fluid force, which consists of the bed-parallel drag force and the 

horizontal lift force, need to be larger than the resistance force of the particles to be moved 

(e.g., Lee and Balachandar, 2012; Van Rijn, 2007). Here, the Shields diagram that relates the 

dimensionless bed shear-stress and the grain Reynolds number, can be used for determining 

the threshold of sediment motion in uniform and non-uniform flows (Shields, 1936). 

 

The main objective of this study is to find evidence for sediment remobilization in the Lucerne 

Bay caused by the 1601 CE tsunami in Lake Lucerne (Hilbe and Anselmetti, 2015; Schwarz-

Zanetti et al., 2003) using sediment cores, lake-surface samples, and numerical simulations of 

tsunami wave propagation. First, we investigate the sedimentary properties in the Lucerne Bay 

through a series of collected sediment cores and modern lake-surface samples. Then we 

simulate tsunami generation by one of the largest subaqueous mass movements triggered by 

the 1601 CE earthquake and examine the simulated wave characteristics (water-surface 

displacement, and flow-velocity magnitude) and spatial extend of threshold conditions for 
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incipient motion using the dimensionless bed shear-stress (Shields parameter) in the Lucerne 

Bay of Lake Lucerne. 

 

5.2 Study site 

Lake Lucerne is a perialpine lake located in Central Switzerland at an altitude of 433.6 m above 

sea-level (m a.s.l). It geologically lies between the Helvetic nappes, the Subalpine Molasse, 

and the Swiss Molasse basin (Fig. 5-1; Funk et al., 2013; Hantke et al., 2005; Kopp et al., 

1955). The fjord-like lake consists of several sub-basins with a maximum (max.) water depth 

of 214 m and predominantly steep-sided lakeshores. 

 

Lucerne Bay is a relatively shallow sub-basin in the western part of the lake with a water depth 

between 2.5 to 5 m (max. water depth 8 m) and a sharp transition leading to deeper parts of the 

lake in the east (Fig. 5-2A). The basin is glacially eroded into Burdigalian sandstones of the 

Upper Marine Molasse (UMM) and Aquitanian sandstones and conglomerates of the Lower 

Freshwater Molasse (USM; Kopp et al., 1955; Schlunegger et al., 1997). The top of the bedrock 

occurs at a lowermost elevation of 408.8 m a.s.l at the lake outlet (Keller, 2020) and at 

~335 m a.s.l at the Lucerne railway station in the southwest of the Lucerne Bay (Keller, 2013). 

The up to 100-m-thick overlying Quaternary deposits consist of a sedimentary succession 

formed by a thick package of Late Pleistocene sediments characterized by glacially 

overconsolidated basal lodgment diamicts, and local esker gravels above the bedrock surface, 

which are overlain by heterolithic glaciolacustrine silts with sand lenses (Keller, 2020). Around 

14’700 years Before Present (yr. BP), the area of the Lucerne Bay was filled with Late 

Pleistocene sediments up to 422 m a.s.l at the Lucerne railway station and up to 426 m a.s.l at 

the northern lakeshore (Keller, 2020). These sediments are overlain by a relatively thin (1–4 m) 

sequence of transgressive-regressive Holocene deposits that comprise shallow lake to alluvial 

plain deposits, peat-rich swamp deposits, carbonate mud, as well as deltaic deposits and 

gravelly lobes at the toe of incoming rivers (Keller, 2020). Major inflowing tributaries of the 

Lucerne Bay are the Würzenbach River in the northeast and the Krienbach River in the west, 

delivering dominantly siliciclastic material (Fig. 5-2A). The Würzenbach, entering the lake at 

the northern shore, is today artificially canalized, but formed a large delta over time. In the 

southwestern area of the City of Lucerne, the Krienbach formed an extensive Holocene flood 

plain with gravelly alluvial fan deposits and overbank sands that repeatedly clogged 

temporarily the lake outlet caused high lake levels (Keller, 2013; Keller, 2020). Nowadays, the 
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river is artificially diverted underground with tunnels feeding into the River Reuss, the main 

outflow of Lake Lucerne (Fig. 5-1). 

 

Lake level is relatively stable at 433.6 m a.s.l., with high lake levels in spring and late summer 

and low lake levels in winter and peak summer (BAFU, 2009). At the time of the city 

foundation (~1200 CE) lake level was around 432.2 to 433.2 m a.s.l. (Keller, 2013). Through 

the construction of mills and a weir at the lake outlet in the 13th to 14th century, lake level was 

stabilized at 433.0 m a.s.l. (Keller, 2013). Prior to the historical record, lake level was 

presumably lower, with greater seasonal fluctuations (±1.5 m; Keller, 2020). In the Late Glacial 

Interstadial (~15’000–13’000 yr. BP), lake level was at ~432 m a.s.l (Keller, 2020) and during 

the Neolithic Period (5000–6000 yr. BP) lake was presumably lowest at around 428.6–

429.5 m a.s.l. (Keller, 2013; Michel et al., 2012). After 1800 CE until today, strong artificial 

shoreline changes were carried out, especially around the City of Lucerne, but also around the 

lake in smaller villages. 

 

5.2.1 The 1601 CE earthquake and Lake Lucerne tsunami 

The 1601 CE earthquake with an epicenter in "Unterwalden", Central Switzerland (Mw ca. 5.9; 

Fäh et al., 2011; Schwarz -Zanetti et al., 2003) triggered multiple subaqueous mass movements 

(e.g., Hilbe et al., 2011; Siegenthaler et al., 1987; Schnellmann et al., 2002, 2006) and a 

subaerial rockfall (e.g., Keller, 2017; Schnellmann et al., 2006; Schwarz-Zanetti et al., 2003). 

All of these mass movements generated a basin-wide tsunami with wave heights exceeding 

4 m and devastating inundation and run-up along the lakeshore (e.g., Cysat, 1969; Hilbe and 

Anselmetti, 2015). Several casualties caused by the tsunami waves were reported (Cysat, 

1969). In the shallow Lucerne Bay, at the outflow of the lake, historical chronicles report a 

seiche with an amplitude of about 1 to 2 m and an initial period of 10 min. Its amplitude 

decreased with time but the seiche persisted for several days after the event (Cysat, 1969). 
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Fig. 5-1: Western part of Lake Lucerne with individual lake basins (note that the Uri Basin in the east is not shown), extent of numerical simulation (light-blue area), dashed 

line indicating open weir boundary condition towards adjacent lake basins), and areal extent of the simulated Weggis-slide mass movement (yellow). The map is based on the 

swisstopo swissALTI3D digital terrain model, geological map of swisstopo (GK500-Geol) and the bathymetry map of Hilbe et al. (2011). 
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Fig. 5-2: A) Detailed map of the Lucerne Bay with the interpolated bathymetry (modified from Hilbe et al., 2011) 

used for the numerical simulation with its outline (solid black line) and artificial obstacles such as landfills and 

coastal infrastructure that were cut off (exact shoreline course: dashed line). The map is based on the swisstopo 

digital terrain model swissALTI3D and the national map LK50 from swisstopo. The sediment core location (red 

dots), sediment core ID (red), surface sediment samples (blue dots) and virtual gauges (black crosses) plotted in 

Fig. 5-9 are shown. B) Detailed high-resolution bathymetric map (Hilbe et al., 2011) of the east-west oriented 

depression shows the location of the sediment cores (red dots) and the area (black shaded) used for the volume 

estimation of the siliciclastic-rich normally graded Unit 2. The shallowest and rugged topography represents 

artifacts caused by aquatic plants. 
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5.3 Methods 

5.3.1 Sedimentological investigations 

High-resolution (1 m grid cell) bathymetrical data of Lake Lucerne (Hilbe et al., 2011) were 

used for the coring-site selection (Fig. 5-2B). Three sediment cores (Core LU18-1, -2, and -3) 

were recovered from a floating platform in water depth between 7 to 8 m (Fig. 5-2B) with a 3-

m-long percussion piston-coring system (UWITEC Co. Austria) up to a subsurface depth of 

3.5 m. A gravity corer was used to recover the undisturbed water-sediment interface. The 

observed lithological units are visually correlated. Lake-surface samples were collected at four 

locations along the Lucerne Bay. 

 

Sediment cores 

Petrophysical properties (bulk density gamma-ray attenuation, magnetic susceptibility, and p-

wave velocity) were measured on all recovered whole round cores with a Geotek multi-sensor 

core logger (MSCL-S). Whole round cores also underwent X-ray computed tomography (CT) 

imaging using a medical Siemens Somatom Definition AS scanner. Full core CT-scan data 

were obtained at a voxel size of 100 μm and visualized with the RadiAnt DICOM Viewer 

software (version 4.6.9.18463). Sediment cores were split longitudinally, imaged with the 

MSCL-S core logger line-scan camera, and sedimentologically described. A complete 

composite sediment record was obtained by visual correlation of overlapping piston and gravity 

cores. High-resolution assessment of sediment geochemistry by means of X-ray fluorescence 

(XRF) scanning was performed on split core surfaces of Core LU18-2 with an ITRAX-XRF 

core scanner (Cox Ltd., Sweden). Measurements were performed with a Cr-tube set to 30 kV 

and 50 mA using longitudinal 2 mm integrals and 20 s integration times. Here we report 

relative intensities of calcium (Ca) and silicon (Si) to aluminum (Al) and titanium (Ti), 

respectively. 

 

Sediment samples were continuously taken at 10 cm intervals in Unit 1 and 2 (Core LU18-2) 

and at 1 cm intervals in Unit 3 (Core LU18-1). Only two subsamples were taken from the top 

of Unit 4 (Core LU18-1) due to its presumably glacio-lacustrine sediment appearance. All 

sediment sub-samples were freeze-dried and homogenized using mortar and pestle. Total 

carbon (TC), total nitrogen (TN) and total sulfur (TS) concentrations were measured on these 

samples with a Flash 2000 NCS (Thermo Fisher Scientific Co.) flash combustion elemental 

analyzer configured with a MAS plus autosampler (Thermo Fisher Scientific Co.) and thermal 
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conductivity detector. For analysis samples were weighed into tin (5–8 mg) capsules for TC, 

TN, and TS measurements and silver (4–5 mg) capsules for total organic carbon (TOC) 

measurements. For TOC concentration measurements samples were treated with 1M HCl until 

no visual reaction occurred. The remaining HCl was evaporated prior to flash combustion 

analysis. Total inorganic carbon (TIC) was calculated from the differences between TC and 

TOC. The molar carbon-to-nitrogen (C/N) ratio was determined from TOC and TN 

concentrations. CaCO3 was calculated from TIC using the stoichiometric conversion factor of 

8.33. 

 

A sandy deposit (Unit 2) was continuously subsampled at 1 cm intervals between 37 and 

120 cm depth in Core LU18-2 for grain-size analysis. Subsamples with a wet weight of 1 g 

were treated with 10%vol HCl and 10%vol H2O2 to remove solid carbonate species and organic 

matter. A dispersion solution containing Na6P6O18 and Na2CO3 was added to the remaining 

clastic fraction and shaken in aqueous suspension for an 1 h prior to analysis. Laser diffraction 

analysis (LDA) was then carried out with a Malvern Mastersizer 3000 particle size analyzer. 

Volume percentages (%vol) was calculated for each sample from the average of 3 aliquot 

measurements. Grain-size classes are presented after the classification proposed by Wentworth 

(1922). 

 

Radiocarbon dating of terrestrial plant macro-remains from Core LU18-2 was used to date a 

sandy deposit (Unit 2). In total 6 samples were measured by accelerator mass spectrometry 

(AMS) with the Mini RadioCarbon Dating System (MICADAS) at the Department of 

Chemistry and Biochemistry, University of Bern. Radiocarbon ages were calibrated into 

calendar years Common Era (cal CE) using the OxCal software (version 4.3; Ramsey 2009) 

and the IntCal20 Northern Hemisphere calibration curve (Reimer et al. 2020). 

 

Lake-surface sediment 

Lake surface samples (uppermost ~10 cm) were collected by diving with a shovel and a bucket 

during summer from a sailboat. The collected lake-surface sediment samples (Fig. 5-2A) were 

described macroscopically using a binocular. Total carbon, TN, TS, and TOC concentrations 

were measured, and TIC and CaCO3 concentrations as well as the molar C/N ratio was 

calculated according to the procedure described above. For the grain-size analysis the same 

procedure as described in the previous section was performed. 
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Estimation of sediment volume for Unit 2 

The depositional volume of Unit 2 was estimated based on the high-resolution bathymetric data 

from Hilbe et al. (2011) and the thickness of Unit 2 observed in sediment cores. Polygons of 

the estimated areal extent of the sediment packages were drawn, and the area was calculated 

using ArcMap (version 10.8.1). Due to high gas content of sediment in the Lucerne Bay area, 

previously acquired seismic reflection data could not be used to characterize the spatial 

distribution of sedimentary units. 

 

5.3.2 Numerical simulation, visualization, and sensitivity analysis of 

the bed shear-stress 

The wave generation, propagation, and inundation were numerically simulated with the 

software BASEMENT (BAsic-Simulation-EnvironMENT). The software, originally designed 

for quasi-1D and 2D simulations of river hydro- and morphodynamics in alpine and subalpine 

regions (Vanzo et al., subm.), has been recently validated for the hydrodynamic modelling of 

tsunami waves on lakes (Bacigaluppi et al., in prep.). 

 

BASEMENT is a freeware (www.basement.ethz.ch). The numerical modelling tool is used in 

academic research as well as engineering practice and provides a user-friendly environment for 

study of manifold problems. It enables the simulation of steady and unsteady hydraulic flow 

conditions with complex geometries as well as sediment transport. The underlying 

mathematical description is based on a decoupled system of equations given by the 2D-depth 

averaged non-linear shallow-water model for the hydrodynamics and the Exner equation for 

morphodynamical modelling. Finite volume spatial discretization in combination with 

Riemann solver guarantees the stability and robustness of the numerical solution (Vetsch et al., 

2020). Due to its highly optimized design, the software allows for accelerated simulations using 

multi-core CPUs, GPUs (graphic processing unit), and hybrid CPU-GPU. For hydrodynamic 

simulations, BASEMENT computes water-surface elevation h and specific discharges qx and 

qy in a selected computational domain. From these quantities, the water-surface displacement  

 

𝐴 = ℎ − ℎ𝑟𝑒𝑓, 

 

with href initial still water reference-level and the flow-velocity magnitude 

http://www.basement.ethz.ch/
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𝑢 =
√𝑞𝑥

2 + 𝑞𝑦
2

ℎ
 

can be derived (Fig. 5-3). 

 

The bed shear-stress is defined as 

𝜏 =
𝑢2𝜌𝑓

𝑐𝑓
2 , 

with ρf fluid density, cf friction coefficient for fully turbulent flow computed according to 

Chézy as 

𝑐𝑓 = 5.75 log(12
ℎ

𝑘𝑏
) 

(e.g., Bobrowsky and Marker, 2018) and bed roughness (kb), which may range from grain 

roughness to total physical bed-roughness as mentioned in Houwman and van Rijn (1999). The 

dimensionless form of the bed shear-stress derived by Shields (1936) based on dimensional 

analysis (also known as the Shields parameter) is defined as 

𝜃 =
𝜏

(𝜌𝑠−𝜌𝑓)𝑔𝑑𝑠
, 

where 𝜌𝑠 represents the sediment density, 𝑔 the gravitational acceleration and 𝑑𝑠  the grain 

diameter of bed surface sediment. 

 

 

Fig. 5-3: Sketch of computed numerical quantities: initial still-water reference-level (href), water-surface elevation 

(h), water-surface displacement (A) and flow-velocity magnitude (u). 
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The considered computational domain is limited to the Vitznau Basin and the Lucerne Bay 

with open boundaries (non-reflective boundary condition) to allow a natural outflow towards 

the Gersau, Küssnacht, and Horw Basins and at the lake outlet in the Lucerne Bay (Fig. 5-1). 

The digital elevation model is based on the high-resolution bathymetric data obtained by Hilbe 

et al. (2011), which was resampled to a cell size of 25 m2. Shallow-water areas (water depth 0–

4 m), which are not entirely covered by the bathymetrical data were linearly interpolated to the 

current shoreline, whereas large artificial obstacles (islands and port facilities) were cut out 

(Fig. 5-2). From the resampled bathymetry, the computational grid with 787.4k triangular 

elements with an average cell size of 115 m2 in the central Vitznau Basin and 25 m2 in the 

Lucerne Bay area was created. Details on the computational performance are summarized in 

Table 5-1 to allow an estimation on the computing time requirements for the numerical 

simulation performed. 

 

The initial volume of the mass movement was taken from the bathymetric reconstruction prior 

to the 1601 CE earthquake (Hilbe and Anselmetti, 2015). The initial displacement of the water 

column caused by the “Weggis-slide”, was modelled with an instantaneous downward vertical 

displacement of the identified area by 5 m (2.3 km2 area with a total failed volume of 

11.4 x 106 m3; Fig. 5-1). 

 

Table 5-1: Details of the numerical set-up and performance of the simulation via BASEMENT. 

number of mesh 

elements 

element area range 

[m2] 

simulation time 

[s] 

computing time 

[s] 
GPU card 

 

787.4k 25-115 1800 312 TeslaP100-PCIE-12GB  

 

Data visualization was performed with the numerical data visualization software Paraview 

(V5.8.1, www.paraview.org). Three virtual gauges were placed in the Lucerne Bay: gauge 1 is 

located at the entrance of the Lucerne Bay, gauge 2 in the shallow-water area and gauge 3 in 

the east-west oriented depression (Fig. 5-2A). Time series of water-surface displacement, flow-

velocity magnitude, specific discharge, bed shear-stress and dimensionless bed shear-stress 

(Shields parameter) were investigated using gauge data (see Appendix C: Figs. C1, C2, 

and C3). In addition, the spatial variability of the variables at different time steps was analyzed 

on map scale. Flow-field vectors were used to reconstruct the flow path and direction of 

potential sediment transport. 
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5.4 Results 

5.4.1 Lake-surface sediments 

The lake-surface sediment samples (Table 5-2) are characterized as carbonate mud with coarse 

organic remains (Sample LS-1 and LS-2), poorly sorted siliciclastic sand with fine gravel and 

carbonate shells (Sample LS-3), and a mixture of siliciclastic fines and carbonate mud with 

coarse organic remains (Sample LS-4). Sample LS-1 and LS-2 are collected in the central part 

of the Lucerne Bay (Fig. 5-2A). Sample S-3 is taken in the western part of the Würzenbach 

river delta, and Sample LS-4 on the northeastern lakeshore of the Lucerne Bay (Fig. 5-2A). 

 

Table 5-2: Lake-surface sediment samples collected in the shallow area of the Lucerne Bay: 

sample ID, macroscopic description, TOC and CaCO3 concentrations, molar C/N ratio, D50 of 

the grain-size distribution as well as the volume percentage of the clay-, silt- and sand fraction. 

Sample ID Macroscopic description 
TOC CaCO3 C/N ratio 

(mol mol-1) 

D50 

(μm) 

Clay Silt Sand 

(wt.%) (wt.%) (vol.%) (vol.%) (vol.%) 

LS-1 
Carbonate mud with 

coarse organic 
2.208 80.8 6.7 45 3 60 37 

LS-2 
Carbonate mud with 

coarse organic  
2.424 78.4 6.8 58 3 50 47 

LS-3 
Poorly sorted siliciclastic 

sand with fine gravel 
0.427 5.1 7.5 340 0 3 97 

LS-4 
Carbonate mud with 

coarse organic 
2.481 26.9 9 45 3 62 35 

 

5.4.2 Sediment-core data 

Based on high-resolution bathymetric data (Hilbe et al., 2011) a topographic depression was 

identified in the Lucerne Bay near the lake outlet (Fig. 5-2B). The depressional feature is 

characterized by an east-west oriented longitudinal shape with a length of ~400 m and width 

of ~200 m, and an average water depth of 7.5 m, while the surrounding plateau of the Lucerne 

Bay has a water depth of ~3.5 m. This depression surrounded by shallow water provide an ideal 

depositional environment suitable for trapping remobilized sediment from tsunami inundation 

and backwash. Three sediment cores (LU18-1, LU18-2, and LU18-3) were retrieved along an 

east-west oriented transect within the depression to study sedimentary composition and 

structures. 
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Recovered sediment cores have a complete composite sediment record of 284 cm (Core LU18-

1); 288 cm (Core LU18-2) and 218 cm (Core LU18-3). The lithostratigraphy consist of four 

well-traceable sedimentary units (Fig. 5-4) observed along the offshore sediment core transect 

(Fig. 5-5), which were identified by visual appearance and core-log data. 

 

Sedimentary unit description 

i) Unit 1: carbonate mud 

Unit 1 is light gray in color, varies in thickness between 17 and 43 cm, consists of shell 

fragments embedded in an endogenous carbonate mud matrix, with siliciclastic minerals only 

as accessories. It has a CaCO3 concentration of 70–80 wt.%, a gradual downcore decrease in 

TOC (3.3–1.5 wt.%), and an increase in the C/N ratio (7–13 mol mol-1) and density (1.2–

1.5 g cm-3, Fig. 5-5). Magnetic susceptibility is slightly negative in the upper 20 cm (-4 SI 10-

5) and has a peak at 27.5 cm depth (197.5 SI 10-5), which is due to metallically shiny, black, 

gravel-sized coal particles. 

 

ii) Unit 2: normal graded sand to silt 

Unit 2 is dark brown in color and consists of a thick (40 - 67 cm), dense, siliciclastic normal 

graded fine to medium sand with sharp lower and upper contacts and four internal subunits 

(Subunit 2A to 2D, Fig. 6). Coarse sand-sized shell fragments are finely dispersed in a fine 

siliciclastic sand at the bottom of the 40 to 67 cm thick normal graded sand to silt deposit with 

sharp lower and upper sedimentary contacts observed by sediment core line scan and CT 

grayscale images (Fig. 5-5). The enrichment of macroscopically observed carbonate shell 

fragments at the bottom is also expressed in the distinct XRF Ca/Ti ratio peak at the base 

(Fig. 5-5). In the upper part, carbonate is homogeneously present (13.5–16.5 wt.%) and is 

occasionally found as fine sand-sized shell fragments. The C/N ratio (14 to 20 mol mol-1) could 

only be calculated in the top three sub-samples at 40, 50, and 60 cm core depth, but not in the 

lower sub-samples due to nitrogen concentrations below detection limit (Fig. 5-5). The high 

C/N ratio fits well to the large amount of macroscopic, horizontally embedded wood fragments, 

whose abundance decreases toward the base. Magnetic susceptibility ranges from 3 to 18 SI 10-

5, and density increases downcore from 1.5 to 2.1 g cm-3. Similarly, the mean grain size (D50) 

and sorting increases downcore from poorly to moderately sorted silt to well sorted fine sand 

(Fig. 5-6). Four subunits were identified from the LDA grain-size data, (2A (37-55 cm), 2B (55-

60 cm), 2C (60-95 cm) and 2D (37-55 cm)), which are grouped based on their mean grain size 
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(D50) and grain-size distribution. The XRF Si/Al ratio correlates well with the LDA grain-size 

data and can be used as grain-size indicator (Fig. 5-5). 

 

iii) Unit 3: light brown gyttja 

Unit 3 is a light brown gyttja with occasional beige laminae, variable thickness between 2 to 

10 cm with coarse sand and carbonate shell fragments embedded in an organic-rich matrix with 

low density (1.7 g cm-3), and a gradual transition over > 2 cm at the base (Subunit 3T). The low 

density of the unit is well pronounced in the CT grayscale image, which has sand-sized particles 

(siliciclastic grains as well as complete and fragmented carbonate shells) embedded in an 

organic matter-rich matrix (Fig. 5-7). Total organic carbon is high (1.5–2 wt.%) in the upper 

part (83–91 cm) and decreases to ~0.2 wt.% at the base of the unit. The C/N ratio varies 

between 9.5 to 13 mol mol-1 and sulfur is present (0–0.2 wt.%). CaCO3 varies between 13–

54 wt.% and is highest within the beige laminae. Magnetic susceptibility is ~3 SI 10-5. A 

gradual transition with variable thickness along the sediment-core transect is evident at the base 

of the unit on the CT grayscale image (Fig. 5-7). The transitional base of Unit 3 is brownish 

gray in color and consists of fine to medium sand with carbonate shell fragments (Fig. 5-5) and 

a distinct peak in the XRF Ca/Ti ratio (Fig. 5-5). 

 

iv) Unit 4: dense – cohesive silty clay 

Unit 4 is light gray in color and consists of a cohesive, very dense (~2.1 g cm-3) silty, clay-rich 

sedimentary deposit. Magnetic susceptibility varies only slightly within the unit (7–12 SI 10-

5). Fine laminae of variable thickness and graded fine sand to silt are well recognizable on CT 

grayscale images (Fig. 5-5). These graded intervals are also well expressed in the XRF Si/Al 

ratio that may be used as grain-size indicator (Fig. 5-5). 

 



Chapter 5 

 

127 
 

 

Fig. 5-4: Complete composite sediment Core LU18-2, selected line-scan images of the four lithologic units, and its sedimentologic properties (TOC, CaCO3, and TS concentrations, 

and molar C/N ratio, D50 of the LDA grain-size distribution, density, and magnetic susceptibility (MS)) of the four sedimentary units. Note that in the line-scan image of Unit 3, 

the lower gradual contact and upper sharp contact are indicated with a dashed black line. 
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Fig. 5-5: Sediment core transect of core LU18-1, -2 and -3 recovered along the east-west oriented depression in the Lucerne Bay (Fig. 5-2B). The sedimentological transect 

overview shows calibrated radiocarbon ages, sedimentary units, line-scan images, CT-grayscale images, density, magnetic susceptibility (Magn. susc.), Si/Al- and Ca/Ti ratio 

from the XRF scans, CaCO3, TOC and TS concentrations, and molar C/N ratio (see Fig. 5-7 for results of Unit 3). 
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Fig. 5-6: Line-scan image, CT-grayscale image, and particle-size distribution from the LDA of Unit 2 in Core 

LU18-2. The grain-size distribution of the siliciclastic fraction shows a pronounced fining upward trend in Unit 2, 

which is divided into 4 subunits (2A to 2D). 

 

 

Fig. 5-7: Line-scan image, CT-grayscale image, CaCO3, TOC and TS concentrations, and the molar C/N ratio of 

sub-samples from Unit 3, its lower transitional base and the uppermost of Unit 4 in Core LU18-1. The sharp basal 

contact of Unit 2 is well recognizable in the CT-grayscale image. 
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5.4.3 Radiocarbon dating 

Four radiocarbon dates obtained from terrestrial organic macro remains found in Unit 2 have 

calibrated radiocarbon ages in the range of 1306–1442 cal CE (Table 5-3 & Fig. 5-5). The four 

samples were collected at regular intervals throughout the unit. One sample of fragmented 

leaves from Unit 3 yields a radiocarbon age of 1174–1277 cal CE. Another sample of leaf 

fragments in Unit 1 has a modern radiocarbon age (Table 5-3). The calibrated radiocarbon age 

ranges presented are given within a 2σ confidence level, which corresponds to a 

95.4% probability. 

 

Table 5-3: AMS radiocarbon age and δ13C results from terrestrial organic macro remains from 

Core LU18-2. Radiocarbon age uncertainties refer to 1-sigma uncertainties. Range of calibrated 

represent 95.4% probability (2σ).  

Sample 
Core depth 

(cm) 
Sample material δ13C (‰) 

14C age ± 1σ 

(14C years BP)a 

Calibrated 2σ 

range (cal CE)b 

BE-10751.1.1 35–36 Leave fragments -28.7 -572 ± 31 Modern 

BE-10752.1.1 41–42 Conifer needle -28.7 570 ± 31 1306–1425 

BE-10753.1.1 54–55 Conifer needle -28.8 567 ± 30 1307–1425 

BE-10754.1.1 79–80 Conifer needle -27.4 527 ± 31 1326–1442 

BE-10755.1.1 98–99 Leave fragments -31.8 544 ± 30 1321–1437 

BE-10756.1.1 102–103 Leave fragments -29.7 812 ± 36 1174–1277 

a Stuiver and Polach (1977); b Ramsey (2009); b Reimer et al. (2020). 

 

5.4.4 Volume estimation of Unit 2 

The estimation of the total volume of Unit 2 along the east-west oriented depression is based 

on high-resolution bathymetrical data and retrieved sediment cores. Three polygons with areas 

of 10’395 m2, 14’507 m2 and 8’148 m2, with a corresponding thickness of 0.4 m, 0.64 m, and 

0.67 m, respectively, yield an estimated total depositional volume of 18’902 m3 (Fig. 5-2B). 

 

5.4.5 Numerical tsunami model 

Tsunami generation and propagation 

The 1601 CE Weggis-slide collapse with a volume of 11.4 x 106 m3 (Hilbe and Anselmetti, 

2015) was simulated by an instantaneous collapse of a 5 m thick sediment drape located on the 

northern lateral slope of the Vitznau Basin (Fig. 5-1). This moving slab and the affected area 
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(> 2 km2) correspond to the well-defined 1601 CE Weggis-slide described by Schnellmann et 

al. (2005) and Hilbe et al. (2011). The numerically simulated wave generation and propagation 

can be divided in three phases: wave generation (phase 1), wave propagation in the Vitznau 

Basin (phase 2), and arrival of a first wave trough in the Lucerne Bay that is followed by 3 main 

wave pulses (phase 3). 

 

A wave trough with a water-surface displacement with respect to the lake at rest of more than 

-3 m forms immediately after the instantaneous collapse along the failed area (Fig. 5-8). After 

20 s the first waves reach the nearest shore with wave crests of 2 m forming after 40 s. The 

tsunami wave reaches the steep southern shore within 60 s and is reflected into the Vitznau 

Basin. A complex wave pattern is formed along the northern shoreline. In the initial phase, a 

wave trough approaches the shore (after 10 s), which is followed by a long lasting spatially 

heterogeneous wave crest with water-surface displacements up to 2 m (from 40 to 100 s), until 

the reflected wave trough from the southern shore superposes the established wave crest (after 

80 s). 

 

Figure 5-9 shows four time-snapshots of the computed tsunami propagation and water-surface 

displacement in the Lucerne Bay. A train of waves arrives in the narrow and shallow Lucerne 

Bay with an initial wave trough and a water-surface displacement of up to -1 m after 410 s. At 

the transition from the deeper to the more shallow-water area of the Lucerne Bay, a strong 

surge occurs in the direction of the wave trough with a flow-velocity magnitude greater than 

2 m s-1. At ~550 s the first wave crest with a water-surface displacement between +0.2 and 

+0.5 m inundates the bay with a bore-like appearance and max. flow-velocity magnitudes of 

2.2 m s-1 at the wave front. The second wave trough is characterized by a complex and 

heterogeneous flow field, which inundates the bay at ~755 s. The second wave crest has an 

impressive bore-like wave with a max. flow-velocity magnitude of ~2.4 m s-1 at gauge 1 and 

~0.9 m s-1 at gauge 3 (Fig. 5-10). The third wave has a smaller water-surface displacement than 

the first two, but flow-velocity magnitudes reached at gauges 2 and 3 are similar (Fig. 5-10). 

The third wave is followed by waves with smaller water-surface displacements and flow-

velocity magnitudes (Fig 5-10). 
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Fig. 5-8: Time snapshots of the computed tsunami propagation and water-surface displacement (-3 to +3 m with 

respect to the lake at rest) of the 1601 CE Weggis-slide (simulation LU18-S4) within the first 100 s after the 

simulated slope collapse.  
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Fig. 5-9: Time snapshots of the computed tsunami propagation and water-surface displacement of the 1601 CE 

Weggis slide (simulation LU18-S4) in the Lucerne Bay. The water-surface displacement (-1 to +1 m) and flow-

velocity direction (black arrows redrawn for better visualization of actual model data indicated with fine, light-

blue arrows) are shown at four distinct time steps (410, 550, 755, and 875 s). Time series of water-surface 

displacement and flow-velocity magnitude at the virtual gauges 1, 2, and 3 (black crosses) are plotted in Figure 5-

10. Core locations (red dots) are shown in the map. 

 

 

Fig. 5-10: Timeseries of water-surface displacement (left) and flow-velocity magnitude (right) at gauges 1–3 (see 

Fig. 5-9 for location) of the simulation LU18-S4. 
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Sensitivity analysis of bed shear-stress 

To determine the dependency and robustness of the computed flow parameters, a sensitivity 

analysis of the bed roughness kb was performed. Six scenarios were simulated with different 

bed roughness values (kb) ranging from 0.0002 to 0.1 m (Table 5-4). The sensitivity of the bed 

roughness (kb) on the dimensionless bed shear-stress (θ) was evaluated by simulations 

computed with different bed roughness values (kb) between 0.0002 and 0.1 m, keeping fluid 

density (1 g cm-3), sediment density (2.65 g cm-3), and sediment porosity (0.4 vol%) constant 

(Table 5-4). The area with a dimensionless bed shear-stress θ ≥ 0.03 (Table 5-4) was calculated 

with ArcMap (version 10.8.1). 

 

Table 5-4: Sensitivity analysis of the dimensionless bed shear-stress to the bed roughness (kb): 

applied bed roughness in the different scenarios computed with BASEMENT and the 

calculated area with a dimensionless bed shear-stress θ ≥ 0.03. 

 LU-S1 LU-S2 LU-S3 LU-S4 LU-S5 LU-S6 

Bed roughness kb (m) 0.0002 0.001 0.01 0.02 0.06 0.1 

Area with θ ≥ 0.03 (106 m2) 0.20 0.28 0.38 0.43 0.52 0.57 

 

The analysis of the computed data on map-scale and gauge data indicates that the applied bed 

roughness kb has a strong effect on the dimensionless bed shear-stress. However, water-surface 

displacement, flow-velocity magnitude, and specific discharge are hardly affected. For 

example, flow-velocity magnitude has a variance of less than 10% within the range of the 

different simulations at gauge locations. Whereas the computed dimensionless bed shear-stress 

is strongly influenced by the applied bed-roughness coefficient as shown in Figure 5-11. 

 

The max. dimensionless bed shear-stress (θ) computed at gauge locations range from 0.0001 

to 0.0003 at gauge 1, 0.01 to 0.03 at gauge 2, and 0.001 to 0.003 at gauge 3 (see Appendix C: 

Figs. C1, C2, and C3). From the map-based analysis, it is evident that the highest observed 

max. dimensionless bed shear-stresses in the Lucerne Bay are most pronounced along the 

shoreline and in the shallow water area at the sharp transition from the deep to shallow water 

(Fig. 5-11). The area with a max. dimensionless bed shear-stress θ ≥ 0.3 ranges from 0.2 to 

0.6 x 106 m2 for the various simulated bed-roughness coefficients (Table 5-4). 
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Fig. 5-11: Results of the sensitivity analysis of bed roughness to the dimensionless bed shear-stress. The max. 

dimensionless bed shear-stress reached in each computational cell throughout the simulated time is shown for the 

simulation with different bed roughness (kb: 0.0002–0.1 m). Sediment core (red dots) and gauge (black crosses) 

locations are shown on the map. 

 

5.5 Discussion 

5.5.1 Depositional history 

Unit 4: The lowermost Unit 4, characterized as a dense, cohesive, light-gray clay to silt deposit 

has been previously described in other sediment cores in the area (Keller et al., 2020). These 

deposits are interpreted as glacio-lacustrine sediments deposited during an early lake phase 

around 15’000 yr. BP (Keller et al., 2020). The fine-grained cohesive sediment originates from 

the retreating Reuss Glacier and probably corresponds to rock flour delivered by glacial runoff. 

A gradual transition overlies Unit 4 discordant with a hiatus of several 1000 years. This hiatus 
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is probably caused by the incision of the eroding outflowing Reuss River during lake-level low 

stands. 

 

Unit 3: With the construction of mills in the 13th century at the outflow of the lake, lake level 

was stabilized at today’s level (Keller et al., 2020 and references therein). This early stabilized 

lake-level phase corresponds to the Unit 3, dated to 1174–1411 cal CE, which is characterized 

by organic-rich deposits with limited carbonate production and variable thickness along the 

coring transect (Fig. 5-7). 

 

Unit 2: The normally graded Unit 2 overlies Unit 3 with a sharp basal contact, indicating an 

abrupt deposition reflecting a severe event on Lake Lucerne. The narrow radiocarbon age range 

(1306–1437 cal CE) with minor age reversals as well as the normally graded sedimentary 

sequence of Unit 2 (Fig. 5-5) indicate event deposition. Unit 2 is characterized by a fine sandy 

base and fines gradually upwards to a poorly sorted fine silt (Figs. 5-5 and 5-6). A clear shift 

in the grain-size distribution is observable in Core LU18-2 at a depth of 95 and 60 cm (Fig. 5-

6). The two lowermost subunits have a well sorted grain-size distribution whereas the two 

uppermost subunits are moderately to poorly sorted. Such types of normal grading haven been 

described for high-energy flows such as tsunamis and turbidity currents (Kuene and Menard, 

1952; Middleton, 1967; Jaffe et al., 2011). The gradual upwards decrease in grain size is a 

signature of deposition from suspension (Jaffe et al., 2012). This specific type of normal 

grading is termed suspension grading (Jaffe et al., 2012) and is primary caused by the settling 

velocity of the particles, but also by the flow velocity (Woodruff et al., 2008; Johnson et al., 

2017). Thick normal graded deposits have been reported from the off- (e.g., Sakuna et al., 2012; 

Tamura et al., 2015) and onshore (e.g., Jaffe et al., 2012 and references therein) environment 

deposited by the inundation and backwash of marine tsunamis. For example, Kempf et al. 

(2015) have observed normal and multiple graded sand deposits with mud caps and variable 

thicknesses (5–60 cm) in two Chilean coastal lakes, that record the local inundation of the 1960 

Great Chilean Earthquake tsunami. Of the few offshore tsunami deposits studied worldwide, 

several authors describe sharp lower and/or upper sedimentary contacts (e.g., van den Bergh et 

al., 2003; Sakuna et al., 2012; Abrantes et al., 2008; Goodman-Tchernov et al., 2009; Smedile 

et al., 2020) as observed at the basal contact of Unit 2. In Lake Sils, Nigg et al. (2021) observed 

thick normal graded sand deposits that were formed by the backwash currents of a prehistoric 

lake tsunami. Although the radiocarbon ages in Unit 2 are ~200 years younger than the 

historically described 1601 CE Lake Lucerne tsunami, the observed siliciclastic-rich, normally 
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graded deposit (Unit 2) is interpreted to have been formed by this event. The single normally 

graded siliciclastic sand succession was deposited during a unique event. The sediment 

originates from the uppermost part of the lakebed in the Lucerne Bay, which was reworked by 

the erosive power of the wave, as is simulated in the numeric model and discussed in detail in 

Section 5.5.3 below. The event deposit was then formed at the depression by sediment 

deposition from suspension as the flow-velocity decreased. However, another historically 

reported tsunami event on Lake Lucerne in 1687 CE is unlikely to have the same order of 

magnitude in the Lucerne Bay because the tsunami was generated by a single subaqueous mass 

movement in a more distant basin and therefore no preserved sedimentary structures were 

observed in the sediment cores associated with this later event. 

 

Unit 1: Uppermost Unit 1 represents a modern lake system with high endogenous carbonate 

production in an oligotrophic lake (Bossard et al., 2001) that became more nutrient-rich during 

a period of eutrophication in the 1970s to 1980s (Theveneon et al., 2012). The high magnetic 

susceptibility is attributed to combustion particles associated with the development of steam 

navigation on Lake Lucerne from the beginning of the late 1830s. 

 

5.5.2 Numerical simulation 

The selected tsunami generation mechanism, relying on the collapse of a selected area of the 

bathymetry is, despite its strongly simplified dynamics, in good agreement with similar, relying 

on more complex, approaches (Hilbe et al., 2015), reflecting a reasonable generated wave 

pattern. From both historical reports (e.g., the tsunami occurred in 1998 along the shores of the 

Sissano Lagoon in Papua New Guinea (Davies et al., 2003), it is well known that usually 

shorelines are hit by a wave train, with the first incoming wave characterized by a smaller 

amplitude with respect to the succeeding ones. Nevertheless, as also well described in 

(Lampela, 2019), near the shore the water most often undergoes a first drawback, forming a 

bore in a shallow area near the coast. This behavior is well reproduced by the numerical 

simulation obtained via BASEMENT. Indeed, considering for instance Figure 5-9, at 410 s, 

the water flows towards the center of the lake, i.e., creating a drawback, while at 550 s one 

observes the formation of a bore in the shallow area, represented by the two distinct flow 

directions which meet to form a steep wave front, i.e., the bore. Further, confirming the overall 

observations of tsunami behavior (e.g., Davies et al., 2003), the first simulated wave in the 

considered 1601 CE event results to be lower in height with respect to the subsequent ones, as 
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can be seen for instance for the water-surface displacement over time in Figures C1, C2, and C3 

(see Appendix C). The reported hydrodynamic quantities for the sensitivity analysis of the bed 

roughness height in the selected area of interest appear to not undergo significant changes 

where the water column is large (gauge 1). Indeed, as one may observe from Figures C1, C2, 

and C3 (see Appendix C), the wave amplitude and flow velocities appear less deformed in 

gauge 1, whereas in gauges 2 and 3 which are in shallow water, the wave amplitude displays 

several minor displacements when considering different kb, as expected. 

 

5.5.3 Sediment erosion, transport, and deposition 

Erosion, maximum dimensionless bed shear-stress, and bed roughness 

The max. dimensionless bed shear-stress is the key value that defines whether sediment is 

eroded by flow events (Van Rijn, 2007). The bed shear-stress reached during the propagation 

of the tsunami generated by the 1601 CE Weggis-slide (Fig. 5-1) in the Lucerne Bay was 

numerically simulated with BASEMENT to better understand the erosion and mobilization 

potential of the tsunami waves. For this purpose, the influence of bed roughness on the incipient 

motion of particles was considered. Sediment may be eroded when the effective dimensionless 

bed shear-stress is larger than the dimensionless critical bed shear-stress, i.e., θ > θcr (Choi and 

Kwak, 2001). However, critical dimensionless bed shear-stress depends on the grain-size 

distribution and cohesion of the sediment bed (Houwing and Van Rijn, 1998). For the given 

situation, the threshold for incipient motion was chosen at θ = 0.03, which has been previously 

suggested to be a reasonable number based on flume experiments (e.g., Shields, 1936; Houwing 

and Van Rijn, 1998). As soon as the threshold for incipient motion is reached, sediment 

particles may be entrained by the flow (van Rijn, 2007). Once sediment particles are set in 

motion, less energy is generally required to keep particles in motion after entrainment (Boggs, 

2014). 

 

The applied physical bed roughness (kb) varies from 0.0002 to 0.1 m (Fig. 5-11), which is a 

reasonable range from grain roughness to total physical bed roughness (Houwman and van 

Rijn, 1999). Total physical bed-roughness may be influenced by sedimentary bed forms (e.g., 

ripples and dunes), superimposed bed forms (e.g., megaripples), grain-size distribution and 

packing, mineralogical sediment composition, and the presence of an organic biofilm on the 

lakebed (van Rijn, 2007). Therefore, accurate estimates of total physical bed roughness are 

difficult to obtain. Houwman and van Rijn (1999), for example, have found that physical bed 
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roughness of 0.1 m gives best agreement between measured and predicted current velocities in 

the North Sea at water depths of 5–10 m and a d50 of 200 μm. Thus, considering the above-

mentioned factors and that surf beats are less expressed in the Lucerne Bay than at the North 

Sea coast, physical bed roughness of 0.02 to 0.06 m is a reasonable and realistic value for the 

given situation. 

 

Considering the above limitations in the estimation of incipient motion, our simulation shows 

large areas with a dimensionless bed shear-stress θ ≥ 0.03 (Fig. 5-11), indicating large amounts 

of sediment may have been eroded, transported, and resuspended by the main wave pulses of 

the 1601 CE tsunami in the Lucerne Bay. The areal extent of max. dimensionless bed shear-

stress θ ≥ 0.03 computed for different physical bed-roughness is in the order of 0.2–

0.6 x 106 m2 and follows the regression curve y = 0.8225 kb
0.163 (Fig. 5-12A). A simple 

estimate of the erosion volume (4 to 11.5 x 104 m3; Fig. 5-12B) can be calculated based on a 

homogeneous thickness of erosion (0.02–0.2 m) on the area with θ ≥ 0.03. Thus, our 

simulations show clearly that substantial amount of sediment gets eroded and mobilized by the 

wave. The erosion mostly affects the uppermost water-rich layer near the lakebed. The age data 

of Unit 2 (1306 to 1442 cal CE; Table 5-3) with radiocarbon ages of up to 200 years older than 

the tsunami event confirms that sediment may get mobilized to a chronostratigraphic depth of 

200 years, corresponding to a thickness of up to 20 cm at a sedimentation rate of 0.1 cm yr-1. 

Therefore, eroded volume in the Lucerne Bay is likely in the order of 104 to 105 m3 (Fig. 5-

12B; kb: 0.02–0.06 m) with an erosional thickness of 0.2 m. 
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◄ Fig. 5-12: A) Mapped area with a max. dimensionless bed shear-stress θ ≥ 0.03 reached computed with 

different bed roughness kb. B) Estimation of remobilized sediment volumes with different homogeneous erosional 

thicknesses and bed roughness kb. 

 

Sediment source 

The numerical simulations clearly show where and when the tsunami wave causes bed shear-

stress in the Lucerne Bay capable of substantial sediment erosion and mobilization (Fig. 5-12). 

Erosional forces are pronounced in the shallow-water area of geomorphological obstacles 

marking the transition from the deeper to the shallower area of the Lucerne Bay and along the 

lakeshore, as indicated by the computed max. dimensionless bed shear-stress (Fig. 5-11). These 

areas are likely the sediment source of remobilized sediment particles during the 1601 CE 

tsunami inundation of the Lucerne Bay. Another important sediment source is the lakeshore, 

where predominantly siliciclastic sand is found (e.g., lake-surface sediment Sample LS-3). At 

these locations, constant wave motion leads to sandy-dominated surface sediments from 

winnowing of fines. 

 

Sediment transport and deposition 

The sediment transport towards the coring site can be observed by visualizing vectors of flow-

velocity magnitude indicating the sediment transport direction (Fig. 5-9). Three main wave 

pulses propagate in the Lucerne Bay in the first 1800 s after the instantaneous simulated 

Weggis-slide collapse (Fig. 5-10). During the first wave, a strong surge towards the wave 

trough is observable (Fig. 5-9). At this stage, sediment particles may be mobilized and brought 

into suspension. With the arrival of the 2nd wave expressed as an impressive bore-like wave, 

particles are then transported westwards towards the coring location. These main wave pulses 

have high flow velocities (> 2 m s-1; Fig. 5-10) and specific discharges (> 4 m3 s-1; see 

Appendix C: Figs. C1, C2, and S3) that are capable to transport large amounts of sediment 

from the areas with high bed shear-stress towards the coring location. At the coring location, 

due to the geomorphological depression, flow velocity drops instantaneously, and sediments 

are deposited from suspension forming the graded event deposit. 

 

A depositional volume of 2 x 104 m3 is estimated from the thickness of Unit 2 in recovered 

sediment cores and multibeam bathymetry map (Fig. 5-2B). This estimate fits well with the 

proposed eroded sediment volume in the order of 104 to105 m3, that is estimated with the 

numerical model more accurate estimation of eroded volume would be possible by using a fully 
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featured model for suspended-sediment transport, which is currently still under development. 

Such a model would allow for simulation of variable erosion related to the dimensionless bed 

shear-stress and provide more realistic transport of the sediment with the flow. However, many 

uncertainties may persist, e.g., sediment-erosion thickness is likely not homogenous over the 

area and sediment erosion may be strongly influenced by local variations of sediment 

composition (e.g., mineralogy, grain-size distribution, and bed roughness). However, the 

presented methodology proves to be a reasonable simplification of the complex mechanism of 

erosion by tsunami waves and allows for basic reconstruction of related events and processes 

involved. 

 

5.6 Conclusions 

An offshore event deposit was observed in sediment cores recovered along a transect across a 

depression in the shallow-subaqueous environment of Lucerne Bay. The normally graded 

deposit with a thickness of up to 60 cm consists predominantly of siliciclastic sand- to silt-

sized particles with increased amounts of coarse sand-sized carbonate shell fragments at the 

base. The deposit has a sharp basal contact with horizontally bedded organic, mostly woody 

particles that become more abundant in the upper part of the deposit. Radiocarbon dates of 

terrestrial plant macro remains isolated from the clastic deposit yield ages in the range of 1306-

1442 cal CE. 

 

The sedimentary features clearly reflect deposition from a high-flow event, which we interpret 

to be the historically reported 1601 CE Lake Lucerne tsunami. This interpretation is supported 

by i) the grain-size pattern of Unit 2 indicating suspension settling, ii) the narrow 200 years 

age offset of the event deposit indicating erosion, mobilization of the uppermost sediment 

column, as well as iii) the performed numerical tsunami-wave propagation and bed shear-stress 

simulation in the Lucerne Bay, providing a criterion for incipient motion of sediment by the 

incoming waves. 

 

The numerical simulation of the 1601 CE Lake Lucerne tsunami was simulated using the 

software BASEMENT by an instantaneous collapse of the second largest subaqueous mass 

movement failed during the 1601 CE earthquake. In addition to simulating the wave 

propagation, water surface-displacement and flow-velocity magnitude, the dimensionless bed 

shear-stress was used to characterize and locate areas of tsunami-induced sediment erosion in 
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the shallow-subaqueous environment of Lucerne Bay. The simulated results clearly show that 

the critical dimensionless bed shear-stress is exceeded in large areas where significant erosion 

must have occurred. Flow direction pointing from the erosional areas toward the sediment sink 

in the depression indicate sediment transport towards the coring locations. 

 

Our study thus documents the high potential of combining sedimentological observations of 

event deposits with numerical simulations of water motion. This approach is not restricted to 

lacustrine systems and mass movement-induced tsunami waves but can be applied to any basin 

where high-flow events occur. 
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Historical drawing of the 1801 CE Sisikon rockfall-generated impulse wave, which claimed 14 lives (unknown 

local artist; photograph of the pencil drawing is provided by the Zentralbibliothek Zürich). 
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Abstract 

In freshwater systems (rivers and lakes), historical and recent tsunamis have been documented 

and their traces have been found in the geological record, but studies of paleotsunamis 

(prehistorical tsunamis) in such environments are still underrepresented. This contribution 

reviews paleotsunami studies with a focus on the post-2011 Common Era period and uses 

historical events to highlight some areas of research that have received little attention. In the 

past decade, the number of paleotsunami studies has increased and this includes those carried 

out over freshwater settings. However, studies of lacustrine paleotsunamis compared to studies 

on marine paleotsunamis are still rare and those for rivers are to our knowledge non-existent. 

Similarly, studies of historical tsunamis generated by meteorological disturbances have been 

carried out but there have been none for their paleotsunami counterpart. Thus, within this 

review, to cover all different aspects of tsunami generation processes in freshwater systems, 

we have used several historical examples, although there is a notable focus on lacustrine 

https://doi.org/10.1016/j.earscirev.2020.103447
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paleotsunamis. This review shows that future studies of freshwater paleotsunamis are necessary 

in order to better understand their causes, frequencies and hazard potential. 

 

6.1 Introduction 

Tsunami is a Japanese term for “harbor wave” (Darbyshire and Ishiguro, 1957; Goff et al., 

2016). The current definition of the term ‘tsunami’ describes a series of propagating waves of 

extremely long wavelength and period, usually generated by sudden disturbances of the water 

column associated with earthquakes occurring below or near the ocean floor. Additional 

generating mechanisms include volcanic eruptions, subaerial and submarine mass-movements, 

and bolide or other impacts upon the ocean surface (Tsunami Glossary, 2019). Tsunamis are 

invariably considered to be associated with marine settings and the earthquakes that cause 

them, a perception that has been reinforced by recent events such as the 2004 Common Era 

Indian Ocean and the 2011 CE Tohoku-oki events. While most marine tsunamis are most likely 

generated by plate displacements along sea-floor ruptures during megathrust earthquakes, 

recent events such as the 2018 CE Anak Krakatau tsunami (lateral collapse of Anak Krakatau 

volcano, Grilli et al., 2019; Takagi et al., 2019) indicate that this is by no means always the 

case. 

 

Rapid displacement of large water masses can occur in any aqueous system. Worldwide 

historical documents and eyewitness reports have shown that tsunamis do not only occur in 

open oceans but also in confined fjords (e.g., 1958 CE Lituya Bay impulse wave in Alaska, 

US: Miller, 1960; Fritz et al., 2009) and in freshwater systems such as rivers and lakes (e.g., 

Schnellmann et al., 2002; Fritsche et al., 2012; Kremer et al., 2012; Clark et al., 2015; 

Donaldson et al., 2019; Hu et al., 2020). These historical events allow us to document the 

existence, causes and consequences of such tsunamis. Unlike historical tsunamis, we only 

know about the occurrence of paleotsunamis (prehistorical tsunamis) through the traces that 

they have left behind in the geological record. We distinguish between direct traces that are the 

deposits of the tsunami itself on lake shores or backwash deposits on the lake floor (Dirksen et 

al., 2011; Freundt et al., 2006; Moore et al., 2006; Moore et al., 2014) and indirect traces of 

paleotsunamis that are reflected in the geological record of the causal mechanism (e.g., 

Schnellmann et al., 2002; Kremer et al., 2012; Bozzano et al., 2009). In the latter case, 

numerical modelling is used to support the hypothesis that a freshwater paleotsunami occurred 

and to assess the magnitude of the inferred event (e.g., modelling the tsunamigenic effects of 
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large mass-movements in lakes; Kremer et al., 2014). In the former case, research on the 

geological traces of freshwater paleotsunamis is rare. 

 

When searching for “paleotsunamis in lakes” (and its synonyms), around 13 to 1000 results are 

found on the “web of knowledge” and on “google scholar”, respectively. However, the majority 

of these results refer to marine tsunamis that are recorded in coastal lakes (e.g., Kempf et al., 

2017). A review of the literature indicates that there are few publications with a specific focus 

on paleotsunamis generated in lakes (De Lange and Moon, 2016; Dirksen et al., 2011; Freundt 

et al., 2006; Kremer et al., 2014; Kremer et al., 2015; Leithold et al., 2019; Moore et al., 2006; 

Mountjoy et al., 2019; Nigg et al., 2021; Schnellmann et al., 2002; Strupler et al., 2018). There 

appear to be no publications referring specifically to river paleotsunamis or to paleo-

meteotsunamis. 

 

In this study, we use the following definition of a tsunami: “A series of waves that are formed 

by a sudden displacement of the water, caused in or adjacent to a freshwater system (lake and 

river) by subaerial and subaqueous mass-movements, volcanic activity, co-seismic fault 

displacement and meteorological effects” (Fig. 6-1). The preposition “paleo” refers to the 

prehistoric period where historical (written) documentation is absent. As the historical period 

varies between countries and cultures, we consider the definition used in the original 

publications (e.g., In Switzerland, historical documents describe natural hazards already in the 

6th century (Gisler et al., 2007) while in New Zealand the first written records are dated around 

1840 CE (Clark et al., 2015)). Historical events related to human activity, e.g., mass-

movements triggered by construction and quarry works close to the shore, were not considered. 

In addition, historical wave events generated by e.g., ice avalanches in moraine-dammed 

proglacial lakes (e.g., Clague and Evans, 2000) were also not included. Many of these lakes 

have formed due to glacier retreat after the Little Ice Age and are therefore considered only 

short-term structures in geological terms. 

 

The main objective of this study is to review the literature on paleotsunamis in freshwater 

systems (rivers, lakes). We focus mainly on the period since the devastating 2011 CE Tohoku-

oki tsunami. In particular, we emphasize how increased tsunami awareness has led to a series 

of follow-up studies that also investigated the lacustrine realm. However, since the number of 

studies of freshwater paleotsunamis is limited, we also use historical case studies and pre-

2011 CE literature to complete a review of the full range of processes that can generate these 
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events. In the following, we briefly review the historical and prehistorical freshwater tsunami 

dataset with a focus on the paleotsunamis. We, then, discuss the advances made in 

paleotsunami research since 2011 CE, the state of current research and propose future research 

ideas. 

 

 

Fig. 6-1: Causes of freshwater tsunamis as mentioned in the definition used for this review. 

 

6.2 Historical studies 

As noted, the number of paleotsunami studies is limited and not all processes are covered in 

the literature. We therefore use historical freshwater tsunamis to fill this gap. The historical 

case studies covered in this literature review are compiled within Fig. 6-2 and Table 6-1. From 

this dataset, the main processes causing freshwater tsunamis can be identified. These include 

fault displacement during earthquakes, mass-movements (subaquatic and subaerial) and 

volcanic processes, as well as meteorological effects. 

 

The main traces of these historical case studies are the written records. In some cases, the cause 

of the tsunami has been found in the geological record (e.g., mass-movement deposits in Lake 

Lucerne in 1601 CE; Schnellmann et al., 2002). In some cases, the deposits laid down by the 

tsunamis themselves (e.g., Lake Owens in 1872; Smoot et al., 2000) is described (Table 6-1). 
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Fig. 6-2: Map showing locations with reported/studied historical freshwater tsunamis. The numbers refer to the 

case studies listed in Table 6-1. 

 

6.2.1 Fault-displacement tsunamis 

Co-seismic tectonic movements along a fault that crosses a lake can generate a tsunami. An 

historical example may have well occurred in Lake Owens in 1872 CE (Smoot et al., 2000). 

The reported wave height has been estimated at 37 cm and a graded sand layer has been found 

in the lake deposits as the evidence of this earthquake triggered tsunami. Another example 

happened in Lake Baikal during the 1861/1862 CE Tsagan earthquake (Didenkulova and 

Pelinovsky, 2006; Klyuchevskii et al., 2012; Lunina et al., 2012) that is thought to have caused 

a tsunami that led to several casualties (Klyuchevskii et al., 2012). However, other studies 

suggest that this tsunami might have been generated by an earthquake-generated mass-

movement (Didenkulova and Pelinovsky, 2006). In Lake Patzcuaro (Mexico), a sedimentary 

unit identified in a trench is attributed to a resedimentation of lake deposits and is interpreted 

as being related to a tsunami generated in 1858 CE. However, as with the study in Lake Baikal, 

the tsunami-generating mechanism is not straightforward and could be related to either fault 

movement on one of the E-W faults that cross the lake or by the failure of the southwestern 

flank of the island of Janitzio (Garduno-Monroy et al., 2011; Fig. 6-4; Table 6-2). If Lake 

Baikal's and Lake Patzcuaro's tsunamis were generated by earthquake-triggered mass 

movements, then these events fall under Section 6.2.2. 



Chapter 6 

 

153 
 

Table 6-1: Historical freshwater tsunamis studied/reported in literature. The numbers refer to their location on the map in Fig. 6-2. 

Type of tsunami Lake Date (CE) Evidence of tsunami Cause References 

      Historical and recent reports Sedimentological Modelled     

Fault- displacement tsunamis       

 

Lake Patzcuaro 

(Mexico) (1) 
1858 

120 adobe houses destroyed by the 

wave: rising lake level by several 

meters 

Reworked volcanic 

sands with lithoclasts 

and remains of 

ostracods 

— 
Fault displacement or 

island flank collapse 

Garduno-Monroy et al., 

2011 

 Lake Baikal 

(Russia) (2) 
1861 / 1862 Several fatalities — —  

Klyuchevskii et al., 

2012; Didenkulova and 

Pelinovsky, 2006 

 
Owens Lake 

(southern 

California, US) (3) 

1872 Wave height of 37 cm Graded sands 55 cm Earthquake Smoot et al., 2000 

        

Mass-movement tsunamis             

Subaqueous 
Lake Geneva 

(Switzerland) (4) 
563 Destruction on the lake shore — 

3–12 m (modelled 

first wave arrival) 
Rockfall 

Kremer et al., 2012; 

Schoeneich et al., 2015 

Subaqueous 
Lake Geneva 

(Switzerland) (4) 
1584 

“Stormy” waves; more than five 

feet water level change; damage and 

flooding of watersides 

— — 
Earthquake - triggered 

subaqueous mass 

movement 

Fritsche et al., 2012 

Subaqueous, subaerial 
Lake Lucerne 

(Switzerland) (5) 
1601 

Up to 5 m wave height; outflowing 

river changed periodically flow 

direction; widespread damage; 9 

fatalities 

— 
6 to >10 m wave 

height 

Earthquake - triggered 

subaqueous mass 

movement 

Hilbe and Anselmetti, 

2015; Schnellmann et 

al., 2002; Cysat, 1969; 

Siegenthaler et al., 1987 

Subaqueous 
Lake Lucerne 

(Switzerland) (5) 
1687 

Up to 5 m wave height; two pulses 

with damaging backflow; 

inundation; damage mentioned 

— 
6 to >10 m wave 

height 

Spontaneous delta 

collapse 

Hilbe and Anselmetti, 

2015; Bünti, 1973 
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Type of tsunami Lake Date (CE) Evidence of tsunami Cause References 

      Historical and recent reports Sedimentological Modelled     

Mass-movement tsunamis       

Subaerial 
Lake Lauerz 

(Switzerland) (6) 
1806 

15 m wave height, around 10 

fatalities 
— — Rockfall 

Bussmann and 

Anselmetti, 2010; Zay, 

1807 

Subaerial 
Lake Taupo (New 

Zealand) (7) 
1846 

A tsunami is mentioned in Māori 

oral accounts 
— — Mass movement Clark et al., 2015 

Subaerial 
Lake Loen 

(Norway) (8) 

1905 & 

1936 

For both events, tens of meter wave 

height, many causalities and heavy 

destruction of houses and farms 

— — Mass movement 
Grimstad and Nesdal, 

1991 

Subaerial 
Lake Taupo (New 

Zealand) (7) 
1910 

3 m surge that reached the opposite 

shore; people swept off their feet 

and canoes washed away 

— — Mass movement Clark et al., 2015 

Subaqueous 
Lake Nahuel Huapi 

(Argentina) (9) 
1960 

2.5 m wave height; wave hit city of 

Bariloche; 2 fatalities 
— — 

Earthquake-triggered 

mass movement 

Barros, 1961; Parsons, 

2002; Chapron et al., 

2006; Beigt et al., 2016 

Subaerial 

Lago Cabrera (Yate 

Volcano, Chile) 

(10) 

1965 

25 m wave height and 60 m run-up, 

three farmer houses destroyed, 27 

fatalities 

30–40 cm mud — 

15 days of unusual heavy 

rainfall before the mass 

movement 

Watt et al., 2009 

Subaerial 
Yanahuin Lake 

(Peru) (11) 
1971 Several tens of meter wave height — — Mass movement 

Plafker and Eyzaguirre, 

1979 

Subaerial 
Lake Botnen 

(Norway) (12) 
1978 

5–6 m wave height; 15–25 m 

inland, damage in village 
— — Mass movement 

L'Heureux et al., 2012; 

Towson and Kaya, 1988 

Subaerial 
Lake Spirit (USA) 

(13) 
1980 Run-up of 260 m — — 

Debris avalanches due to 

volcanic eruption of 

Mount St Helens volcano 

Voight et al., 1983 

Subaqueous 
Lake Brienz 

(Switzerland) (14) 
1996 50 cm wave noticed by workers — — 

Spontaneous delta 

collapse 

 

 

Girardclos et al., 2007 
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Type of tsunami Lake Date (CE) Evidence of tsunami Cause References 

      Historical and recent reports Sedimentological Modelled   

Mass-movement tsunamis       

Subaerial 
Lake Albano (Italy) 

(15) 
1997 Less than 1 m wave height — — Mass movement 

Bozzano et al., 2009; 

Mazzanti and Bozzano, 

2009 

Subaerial 

Crater lake of Kasu 

Tephra Cone 

(Papua New 

Guinea) (16) 

1999 

15 m wave height, destruction of 2 

houses, flattened vegetation; 11 

injuries, 1 fatality 

— — Mass movement Wagner et al., 2003 

Subaerial 
Lake Coatepeque 

(El Salvador) (17) 
2001 2 m wave; 5 fatalities — — 

Earthquake-triggered 

mass movement 
Bernard, 2009 

Subaerial 
Chehalis Lake 

(Canada) (18) 
2007 

Extensive damage on the shoreline, 

camping grounds destroyed, 38 m 

run-up on the opposite shore 

— 
Max. wave 

amplitude 37 m 
Mass movement 

Roberts et al., 2013; 

Evers, 2017 

Subaerial 
Oeskjuvaten (Lake 

Askja, Iceland) (19) 
2014 Several tens of meter wave height — — Mass movement Gylfadóttir et al., 2017 

Subaerial 
Waikari River (New 

Zealand) (20) 
1863  Thin gravel layer — 

Earthquake-triggered 

slope failure 
Donaldson et al., 2019 

Subaerial 
Waikairi River 

(New Zealand) (20) 
1931 15 m wave height on a small area 

River gravel fining 

inland, mixed with 

anthropogenic material 

(roof nails and 

crockery) 

— 
Earthquake-triggered 

slope failure 
Donaldson et al., 2019 

Subaerial,  

subaqueous 

Tongario River 

(New Zealand) (21) 
1956 

0.9 m tsunami wave observed at the 

Tongariro River 
— — 

Earthquake-triggered 

most probable delta 

collapse 

Clark et al., 2015 

Subaerial 
Totsukawa/Kumano 

River (Japan) (22) 
2011 

50 m run-up and destruction of 

Nagatono power plant 
— — 

Rainfall-triggered mass 

movement (Typhoon 

Talas) 

Chigira et al., 2013; 

Nagata et al., 2014; 

Fuchs et al., 2016 

Subaerial 
Jinsha River 

(China) (23) 
2018 

Run-up traces, temporary landslide 

dam 
— 

50 m run-up on the 

opposite shore 
Mass movement Hu et al., 2020 
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Type of tsunami Lake Date (CE) Evidence of tsunami Cause References 

      Historical and recent reports Sedimentological Modelled   

Volcanic tsunamis       

 

Taal Lake, Luzon 

Island (Philippines) 

(24) 

1716 
Wave inundated southwestern shore 

up to 17 m inland 
— — Sublacustrine eruption 

Saderra Maso, 1904, 

Saderra Maso, 1911; 

Paris et al., 2014 

 
Taal Lake, Luzon 

Island (Philippines) 

(24) 

1749  — — 
Phreatomagmatic 

eruption 

Saderra Maso, 1904, 

Saderra Maso, 1911; 

Paris et al., 2014 

 
Taal Lake, Luzon 

Island (Philippines) 

(24) 

1754 Waves on the western shore — — Pyroclastic flow 

Saderra Maso, 1904, 

Saderra Maso, 1911; 

Paris et al., 2014 

 
Taal Lake, Luzon 

Island (Philippines) 

(24) 

1911 

Western shore hit by 3 m high 

waves and 20–50 people were 

drowned 

— — 
Pyroclastic flow or 

atmospheric shock waves 

due to strong explosions 

Saderra Maso, 1904; 

Paris et al., 2014 

 
Taal Lake, Luzon 

Island (Philippines) 

(24) 

1965 

190–355 fatalities as wave capsized 

boats of fleeing residents - waves 

inundated areas up 4.7 above lake 

level 

— — 
Phreatomagmatic 

eruption 

Moore et al., 1966; 

Paris et al., 2014 

 Lake Karymskoye 

(Russia) (25) 
1996 2 to 30 m wave height 

Finely laminated layers 

of up to 35 cm 

thickness composed of 

sand and gravel mixed 

with pebbles, plant and 

soil fragments 

— 
Phreatomagmatic 

eruption 

Belousov and 

Belousova, 2001; 

Belousov et al., 2000; 

Falvard et al., 2018; 

Torsvik et al., 2010 

        

Meteotsunamis           

Data of historic and 

recent meteotsunamis 

are compiled in Bechle 

et al., 2016 

Great lakes (Lake 

Michigan, Lake 

Superior, Lake 

Huron, Lake Erie, 

Lake Ontario) (26) 

1822–2015 

m-scale (data are available for most 

events), damages have been noted in 

most cases; fatalities in some cases 

— — Air pressure disturbance 
Bechle et al., 2016 and 

references therein 
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6.2.2 Mass movement-induced tsunamis 

The term “mass movement” is used here for any type of natural gravity-driven mass-

movements mobilizing soil, rock, lava, pyroclastic material, ice, and snow (Hungr et al., 2001). 

Historical reports and recent observations indicate that subaerial and subaqueous mass 

movements have generated tsunamis in several lakes around the world (Fig. 6-2, Table 6-1). 

These mass-movements have been generated by a suite of mechanisms such as earthquakes, 

heavy rainfall, “spontaneous causes” such as over steepening or overloading, and volcanic 

processes such as avalanches or flank collapses. The majority of the reported historical 

tsunamis have been caused by subaerial as opposed to subaqueous mass movements               

(Fig. 6-2). 

 

Mass movements can also generate tsunami-like waves in rivers. Their occurrence is 

demonstrated in some historical examples (Table 6-1). The largest historical tsunami wave 

height in New Zealand was the result of a tsunamigenic slope failure into Waikari River in 

Hawke's Bay, New Zealand in 1931 CE. The reported wave height in 1931 CE was 15 m 

although its areal extent was small, extending only 150 m length along the river bank and 66 

m inland (Donaldson et al., 2019; Tait, 1977). 

 

The 1931 CE slope failure occurred in unconsolidated uplifted loess and marine Plio-

Pleistocene sediments that form a 120 m high hill on the western bank of the Waikari River. It 

was generated by severe ground shaking associated with the 1931 CE Hawke's Bay earthquake 

(Mw 7.8) that, amongst other things, caused widespread landsliding in the region's river 

catchments that most probably produced numerous local tsunamis (Davison, 1934; Smith, 

1978). Rare historical documents give only general details about the resultant tsunami in the 

Waikari valley, although it is noted that buildings on the eastern side of the river (Waikari 

Station) were destroyed by the event (Auckland Star, 1931; Tait, 1977). The ~1.7 106 m3 

landslide fell into the river, displacing the water and causing a large impulse wave that 

inundated Waikari Station. According to the landowner “it also lifted the waters of the river 

onto the top terrace, surrounding the homestead and washing some of the outbuildings a chain 

[22 yards/~20 m] or so away” (Tait, 1977, p. 78). The deposit consists primarily of river gravels 

that fine inland and become mixed with anthropogenic material such as roof nails and crockery 

(Donaldson et al., 2019). A thinner gravel layer beneath the 1931 CE deposit indicates repeated 

events have occurred in the area (Fig. 6-3). 
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This earlier, possibly smaller event, was most likely related to a slope failure generated by the 

Mw 7.4 1863 CE Hawke's Bay earthquake centered about 100 km south of the Waikari River 

(Stirling et al., 1998). This evidence for repeated tsunamis suggests that these events occur 

relatively frequently in the region. Therefore, there is a high probability that numerous past 

events have occurred not only in this catchment but in regional catchments with similar 

geology. Adams (1981) reported a similar 1931 CE earthquake-generated slope failure scenario 

in the larger Mohaka catchment some seven km NE of the Waikari River. It occurred in an 

unpopulated area and while there were no eyewitnesses to any possible tsunami, the slope 

failure was noted soon after the earthquake because it dammed the river and continued to do 

so for the next seven years. 

Fig. 6-3: Waikari River: a) Location on east coast, North Island, New Zealand; b) Tsunami site showing failure 

scarp on the western bank and Waikari Station on the eastern side; c) Gravel and coarse sand layer of 1931 CE 

tsunami; d) Coarse gravel layers related to the 1931 CE and 1863 CE tsunamis (photos: J. Goff). 
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6.2.3 Volcanic tsunamis 

Volcanic tsunamis are also termed “volcanogenic” (e.g., Freundt et al., 2007) or “volcanism-

induced” tsunami. Nishimura (2008) and Paris et al. (2014) discuss several definitions. One of 

these definitions states “a high wave or surge of water produced by a variety of eruptive and 

non-eruptive processes at volcanoes” (Begét, 2000). In this review, we use a modified version 

of this definition: “A high wave or surge of water produced by eruptive processes, mainly 

underwater explosions and pyroclastic flows”. Other eruption-related processes, such as flank 

failure entering the water (Paris et al., 2014) are considered to behave similar to subaerial and 

subaqueous mass-movements and are thus considered in the concept of mass-movement 

tsunamis. Historical examples of volcanic tsunamis due to phreatomagmatic eruptions have 

been noted in Taal Lake (Luzon Island, Philippines) and Lake Karymskoye (Belousov and 

Belousova, 2001; Belousov et al., 2000; Falvard et al., 2018; Saderra Maso, 1904; Moore et 

al., 1966; Torsvik et al., 2010). 

 

6.2.4 Meteotsunamis 

Meteorological tsunamis (or meteotsunamis) are meteorologically generated water waves that 

have similar characteristics and behavior to classic tsunamis. They are induced by atmospheric 

perturbations of air pressure and wind (Nomitsu, 1935; Linares et al., 2016). On historical 

timescales, meteotsunamis have been increasingly recognized in the literature. As one example, 

Bechle et al. (2016) quantify meteotsunamis based upon seasonality, causes and consequences 

using the historical record available for the Great Lakes (Canada and USA) from 1822 to 

2015 CE. This dataset of Bechle et al. (2016), published in their supplementary material, shows 

that most of these meteotsunamis have been m-scale waves. The most severe event occurred in 

Lake Michigan in 1929 CE, where a 6 m high wave caused 10 fatalities. The historical dataset 

of Bechle et al. (2016) demonstrates that most of the events in the Great Lakes occur from late-

spring to mid-summer and are associated with convective storms. As Bechle et al. (2016) 

summarizes the historical meteotsunami dataset in lakes, these historical events are not listed 

in detail in Table 6-1. We rather refer to this publication for the individual case studies. 
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6.3 Paleotsunami studies 

As noted, there are only a few studies that have been carried out on paleotsunamis that occurred 

either in or adjacent to lakes. These studies are summarized in Table 6-2 and Fig. 6-4 (De 

Lange and Moon, 2016; Dirksen et al., 2011; Freundt et al., 2006; Kremer et al., 2014; Kremer 

et al., 2015; Leithold et al., 2019; Moore et al., 2006; Schnellmann et al., 2002; Mountjoy et 

al., 2019; Nigg et al., 2021; Strupler et al., 2018). The interpretation of the occurrence of a 

paleotsunami is based on either direct observation of their onshore and offshore deposits (Two-

Yurts Lake, Lake Managua, Lake Tahoe, Owens Lake; Lake Tarawera; Lake Sils) and/or by 

modelling the effects of large subaqueous and subaerial mass-movements (Lake Geneva, Lake 

Lucerne, Lake Tahoe, Lake Tekapo, Lake Crescent, Lake Sils). 

 

 

Fig. 6-4: World map showing location of lacustrine paleotsunami studies presented in this review (Table 6-2). 

Symbols in red represent studies where paleotsunamis have been found based on geological evidence, while blue 

symbols represent studies where potential paleotsunamis have been modelled based upon a probable generating 

mechanism. Studies published before 2011 CE are in gray, while post-2011 CE publication are in black font. 

 

6.3.1 Fault-displacement paleotsunamis 

In Owens Lake (Southern California, USA), two deposits described as poorly sorted, graded 

pebbly sand layers were found in sediment cores from the lake floor and are dated to around 

300 and 1500 Before Present (BP), respectively (Smoot et al., 2000). The authors proposed that 

these deposits were caused by the erosion and redeposition of lake sediments because of a 
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tsunami. As these deposits are associated with liquefaction structures and deformed bedding, 

the tsunamis may well have been caused by a fault displacement similar to an historical 

example in 1872 CE (with an earthquake of Mw 7.5–7.7 and a tsunami wave of about 55 cm). 

This hypothesis is supported by the identification of Holocene fault offsets along the Owens 

Valley Fault. 

 

6.3.2 Mass-movement paleotsunamis 

Lake Lucerne (Switzerland) 

In Lake Lucerne, several coeval subaqueous mass movements were identified in reflection 

seismic data and interpreted as the effects of a paleo-earthquake dated to around 2420 calibrated 

(cal) BP (Schnellmann et al., 2002). These large coeval mass movements are interpreted as 

tsunamigenic. The consequences of a sudden water displacement due to one of the largest 

subaqueous mass-movement (total volume of 11 × 106 m3, a run-out distance of 1.5 km and a 

9 m high failure scar) of this event were modelled by Ward (2001) using the linear water-wave 

theory. This modelling resulted in waves >3 m high after 1 min after landslide initiation 

(velocity of 0.15 ms−1) at the shore directly across from the subaquatic mass-movement 

(Schnellmann et al., 2002). Wave heights of 1–1.5 m reach the city of Lucerne (northwest of 

the subaqueous landslide location) ~4 mins after subaqueous landslide initiation. So far, no 

onshore and/or shallow-water deposits have been found for this modelled paleotsunami 

scenario. Therefore, the consequences are solely based on the interpretation of reflection 

seismic data and results of the numerical modelling. 
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Table 6-2: Examples of lacustrine paleotsunamis found in literature and mentioned within this review. Locations are shown in Fig. 6-4. 

Lake Date Evidence Wave height Cause References 

Owens Lake (USA) Two events younger 

than 3000 cal BP 

Poorly sorted, graded pebbly sand deposits — Fault displacement Smoot et al., 2000 

Lake Lucerne 

(Switzerland) 

2420 cal BP Consequences of large mass movements Up to 3 m 

(modelled) 

Earthquake-triggered 

mass movements 

Schnellmann et al., 

2002 

Lake Geneva 

(Switzerland) 

3683 cal BP Consequences of large mass-movements 

(failure scar & deposit) 

Up to 12 m 

(modelled) 

Earthquake-triggered 

mass movement 

Kremer et al., 2014 

Lake Geneva 

(Switzerland 

1920 cal BP; 

2185 cal BP; 

2650 cal BP 

Consequences of large mass-movement 

deposits originating from the Rhône delta 

1–2 m 

(modelled) 

Subaqueous mass 

movements (delta 

failures 

Kremer et al., 2015 

Lake Zurich 

(Switzerland) 

2210 cal BP Consequences of large mass movement 

deposits 

1–2 m 

(modelled) 

Subaqueous mass 

movements 

Strupler et al., 2018 

Lake Tahoe (USA) 12’000–21’000 BP Sandy, pebble sized gravels, erosion features 

due to strong current 

Up to 50 m 

(modelled) 

Subaqueous mass 

movement 

Moore et al., 2006; 

Moore et al., 2014 
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Two-Yurts Lake 

(Russia) 

2100–2000 BP; 

2900 BP;  

4000 BP 

Discontinuous layer of structure-less poorly 

sorted sands with rounded pebbles and 

organic material 

Up to 10 m 

(field observation) 

Subaerial mass 

movement 

Dirksen et al., 2011 

Lake Date Evidence Wave height Cause References 

Lake Sils 

(Switzerland) 

141–770 cal CE Fining-upward coarse sand overlying an 

organic-rich peat deposit in the off- and 

onshore realm 

2–5 m 

(modelled) 

Subaqueous mass 

movement (delta 

failure) 

Nigg et al., 2021 

Lake Tekapo (New 

Zealand) 

~1720 BP? (~1700 cal 

BP) 

Consequences of subaerial/sublacustrine 

mass movements 

Several meters (modelled) Mass movements  Mountjoy et al., 2019; 

Upton and Osterberg, 

2007 

Lake Crescent (USA) 3100 cal BP Consequences of a large subaerial mass 

movement 

90–104 m (modelled) 

following relationship of 

Clark et al. (2015) 

Subaerial mass 

movement 

Leithold et al., 2019 

Lake Managua 

(Nicaragua) 

3000–6000 BP Massive, well sorted sand layer — Volcanic eruption Freundt et al., 2006 

Lake Tarawera (New 

Zealand) 

1314 CE Sharp erosional contact on lacustrine silts and 

two fining upwards units 

6–7 m (modelled with 

multiple closely spaced 

pyroclastic flows) 

Pyroclastic flows Magill, 2001; De 

Lange and Moon, 

2016 
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Lake Geneva (Switzerland) 

In Lake Geneva, traces of a large subaqueous failure scar have been identified on the 

bathymetric map at a water depth greater than 80 m over a horizontal distance of ~5 km 

(Kremer et al., 2014). The failure escarpment reaches a height of up to 20 m (Fig. 6-5a). The 

mass-movement deposit has been imaged on reflection seismic profiles as a semi-transparent 

and chaotic seismic facies that is interpreted as a slide-evolved mass-flow deposit (Fig. 6-5b). 

The affected surface of this deposit is ~25 km2 with a volume estimated at 130 106 m3. In 

recovered sediment cores, the mass-movement deposit consists of deformed and folded 

sediments with mud clasts (Fig. 6-5c). The event is dated to 3683 ± 128 cal BP. As 

simultaneous mass-movements occurred along the same seismostratigraphic horizon 

throughout the lake, the most likely trigger for the mass-movements appears to be an 

earthquake. The consequences of such a large mass-movement on the water column have been 

simulated by numerically solving the shallow-water equation in two dimensions following the 

technique of Simpson and Castelltort (2006). The deposited volume of 130 106 m3, the position 

of the failure scar, and the extent of the deposit constrained from the reflection seismic data 

were used as input parameter for the model. The velocity of the mass movement was calculated 

using the equation from Ward and Day (2002) with a slope gradient of 4° and a runout distance 

of 2.5 km (Kremer et al., 2014). The resulting first tsunami wave has been estimated to be 

between 4 and 6 m at Evian (southern slope) and Lausanne (northern slope) after 3 and 6 min, 

respectively (Fig. 6-5d). In Geneva (at the western end of the lake), wave heights of 1 to 2 m 

arrive 30 min after the initiation of the mass-movement. At two archeological sites 

(Preverenges and Morges/Les Roseaux, west of Lausanne), the first wave of 0.75 m is followed 

by several further waves of 1.7–1.8 m within 15 mins. These sites are characterized by pile 

dweller settlements that both show an occupation gap coinciding with the timing of the 

subaqueous mass-movement during the Early Bronze Age (Kremer et al., 2014). Thus, an 

earthquake-triggered mass-movement tsunami may well explain this time-gap in the pile-

dweller occupation (Corboud, 2012; Kremer et al., 2014). 

 

Furthermore, four additional prehistorical mass-movement deposits have been recorded in the 

reflection seismic data of Lake Geneva. These deposits are dated to around 2650, 2185 and 

1920 cal BP (Kremer et al., 2015). The geographical distribution of these deposits suggest that 

they originated from slope failures of the Rhone Delta at the eastern tip of the lake. Simple 

modelling approaches have shown that the movement of these sediment volumes might have 

generated paleotsunamis with minimum wave heights >1 m (Kremer et al., 2015). Two 
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historically-documented delta failures, one in 1584 CE triggered by an earthquake (Fritsche et 

al., 2012) and the other in 563 CE triggered by rockfall and laterally consecutive delta failure 

(Kremer et al., 2012) have also generated tsunamis of different wave heights (Table 6-1). Thus, 

partial Rhone Delta collapses have produced at least six times tsunamigenic mass-movements 

over the past ~4000 years. The interpretation of the occurrence of paleotsunami events is based 

on the modelling of the effects of large mass-movement deposits recorded in the sedimentary 

archive. 
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◄ Fig. 6-5: 3683 ± 128 cal BP paleotsunami in Lake Geneva. (A) A former mass movement is recognized in the 

bathymetric map with traces of the associated headwall (white line). The thickness map is based on reflection 

seismic data (black lines) and indicates that the up to 15 m thick mass-movement deposit consists of deformed 

sediment packages. The bold black line marks the location of reflection seismic profiles shown in (B). (B) N-S 

oriented reflection seismic profile imaging a chaotic to transparent seismic facies that represents the mass-

movement deposit. The rectangle shows the position of the sediment core shown in (C). (C) The sediment core 

shows deformed, mixed and homogeneous sediments interpreted as a slide-evolved mass flow topped by a 

homogeneous white layer (Kremer et al., 2014). (D) Simulated tsunami propagation assuming a 130 × 106 km3 

slide. Wave height and corresponding arrival times are indicated for selected cities around Lake Geneva. Source 

of maps is Federal Office of Topography. Parts of the figure have been modified from Kremer et al., 2014. 

 

Lake Zurich (Switzerland) 

Traces of basin-wide subaqueous mass movements have been detected in reflection seismic 

data of Lake Zurich. These are interpreted as earthquake-triggered events and have been dated 

to ~2210; ~11,600 and ~ 13,670 cal BP (Strasser et al., 2013). Strupler et al. (2018) modelled 

a tsunami scenario for all documented slides (cumulative volume of around 4 km3) of the 

~2210 cal BP event using GeoClaw (Berger et al., 2011). The strongest effects (run-up and 

inundation) were noted along the central basin of Lake Zurich with the largest wave heights of 

around 1.5 m generated 1 min after slide initiation (Strupler et al., 2018). Afterwards, the wave 

oscillated for the following 10 mins with peak amplitudes of around 0.5 m. 

 

Lake Tahoe (USA) 

Evidence of a paleotsunami has been found as a consequence of a large subaqueous mass-

movement in Lake Tahoe (Nevada & California, USA; Moore et al., 2014). Moore et al. (2006) 

describes glacial boulders transported and sorted by strong currents to form a series of 

underwater ridges. Moreover, high-resolution bathymetry indicates underwater channels, 

which probably formed through lake-floor scouring at the same time (Moore et al., 2014). 

Furthermore, erosional surfaces that extend 1 km inland and 30 m above the lake level are 

overlain by sandy-pebble-sized gravels. It is suggested that the boulders, wave channels and 

erosional surface overlain by detrital sediment were caused by currents induced by a large 

tsunami triggered by the giant McKinney Bay landslide (12 km3). The subaqueous landslide 

detached from the western wall into the deep Lake Tahoe basin during the late Quaternary, 

between 12,000 to 21,000 BP (Moore et al., 2014; Moore et al., 2006). The landslide debris is 

still visible as angular shaped blocks on the bathymetric map. Modelling suggests that rapid 

movement of the landslide may well have generated a giant tsunami with >50 m wave height 
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(Ward, 2013). Furthermore, the overtopping of the lake shore by this tsunami may have 

lowered the lake level by around 10 m (Moore et al., 2014). 

 

Dvuh-yurtochnoe (Two-Yurts) Lake (Russia) 

The Two-Yurts lake, formed by a landslide in the Late Pleistocene, was studied by Dirksen et 

al. (2011) with a focus on the tephrachronology of several Holocene landslide events. Along 

the eastern shore of the lake, Dirksen et al. (2011) observed a discontinuous layer of structure-

less, poorly sorted sands with dispersed rounded pebbles (up to 1 cm in diameter) and reworked 

organic materials directly overlying landslide deposits, which has been dated to around 2900 

14C BP (3100 cal BP). At another site, 2 km downstream from the lake, a depositional 

succession occurs that comprises a 10 cm thick structure less, poorly sorted sand layer with 

dispersed pebbles (up to 5 mm in diameter). This is overlain by a 20 cm thick layer of poorly 

stratified, moderately sorted sand that is capped by a 5–10 cm thick layer of poorly sorted sand 

and pebbles mixed with sand and charcoal. The authors concluded that this succession 

originated from a tsunami caused by a subaerial landslide. Moreover, the authors observed in 

another nearby smaller lake, a 3 cm-thick layer containing a diatom assemblage similar to that 

found in Two-Yurts Lake. The diatom assemblage is markedly different from those in the 

sediments directly below and above, indicating that this layer most likely consists of tsunami-

reworked lacustrine sediments from Two-Yurts Lake. Two younger event layers of fine to 

coarse grained, poorly sorted sand with rounded pebbles are identified and also interpreted as 

tsunami deposits. These date to between 2000 and 2100 14C BP (1970–2120 cal BP). A further 

probable landslide-generated tsunami deposit is dated to ca. 4000 14C BP (4500 cal BP) 

indicating that at least four events have occurred between 4500 and 1970 cal BP (Dirksen et 

al., 2011). 

 

Lake Sils (Switzerland) 

A partial collapse of the Isola Delta with a total estimated depositional volume of 6.5 106 m3 

has been dated to around 474–770 cal CE (Blass et al., 2005). This is considered to have 

generated a significant tsunami in Lake Sils. Based on sedimentological core analysis, 

reflection seismic data and numerical modelling using MassMov2D (version 0.91; Beguería et 

al., 2009) and GeoClaw (version 4.6.3; Berger et al., 2011), Nigg et al. (2021) proposed a basin-

wide tsunami with run-up heights of 3–4 m and an inundation distance of 200 m on the lake 

shore. The modelled maximum tsunami height at the shoreline generally reached around 2.5–
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3.5 m, although they notably exceeded 5 m along the steep shoreline directly opposite the mass 

movement and in the source area around the shore of the collapsed delta. 

 

Sediment cores taken along an onshore-offshore transect provide evidence for this proposed 

scenario. An unusual coarse, fining-upward, sand was identified in the shallow-water setting 

of two apparently separated sub-basins and along the lake shore. The up to 20 cm thick sandy 

deposit overlies an organic-rich peat with a sharp erosional contact. Towards deeper water, the 

deposit transforms into a thicker sediment package with multiple fining-upward sequences as 

well as massive gravel deposits that are considered to have been laid down by pulse-like 

backwash currents (Nigg et al., 2021). This deposit is topped by a clay capping deposited out 

of suspension in both the shallow and deeper water settings. This event deposit is in turn 

overlain by organic-rich deposits that have been radiocarbon dated to 225–419 cal CE (Nigg et 

al., 2021) which immediately postdates the delta collapse (Blass et al., 2005). 

 

Lake Tekapo (New Zealand) 

Several stratigraphic units with coeval mass-movement deposits have been reported from 

reflection seismic data (Upton and Osterberg, 2007). Mountjoy et al. (2019) modelled the 

consequences of different mass-movement scenarios and showed that even relative small 

events with estimated volumes <0.05 106 m3 can generate m-scale tsunamis (Mountjoy et al., 

2019). Based on sedimentation rates, an approximate age for one of these horizons has been 

estimated to around 1720 BP. This suggests that several paleotsunamis may well have occurred 

at Lake Tekapo, although further dating is needed to better constrain the ages of these events 

(Mountjoy et al., 2019). 

 

Lake Crescent (USA) 

At least four large megaturbidites are recorded in the sedimentary record of Lake Crescent 

(Leithold et al., 2019). The youngest is dated to around 3100 cal BP and has been linked to the 

large Sledgehammer Point rockslide which has an estimated volume of 12 106 m3. The 

proposed tsunami generated by this rockslide had an estimated wave height of between 82 and 

104 m (Leithold et al., 2019). This estimation is based on the relationship between subaqueous 

and maximum observed vertical shoreline run-up height using data from historical landslide 

tsunamis in lakes and fjords proposed by Clark et al. (2015). It was suggested that this rockslide 

had been triggered by an earthquake. The older turbidites may well indicate that further 

earthquake triggered rockslide-tsunamis have occurred (Leithold et al., 2019). 
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6.3.3 Volcanic paleotsunamis 

Lake Managua (Nicaragua) 

A sub-plinian to plinian eruption from a vent on the northwestern shore of Chiltepe Peninsula 

in Lake Managua, 3000–6000 BP, is recorded by a dacite to andesitic tephra (“Mateare 

Tephra”). A massive dark gray, well-sorted sand layer, the “Mateare sand”, has been found at 

elevations well above beach levels. The geographically widespread distribution of this layer 

excludes a fluviatile origin and, thus, has been interpreted as a tsunami deposit (Freundt et al., 

2006). This tsunami layer has been explained as being generated by pulses of eruption during 

the initial phase of volcanic activity (Freundt et al., 2006). This pre-2011 study provides a 

context for the paleotsunami studies carried out since 2011 (Fig. 6-3; Table 6-2). 

 

Lake Tarawera (New Zealand) 

New Zealand has a short written-history (since ~1840 CE; Clark et al., 2015), thus in this 

context an event in 1314 CE is a paleo event. In 1314 CE, multiple pyroclastic flows emitted 

from Mt. Tarawera during the Kaharoa eruption entered Lake Tarawera. This eruption 

coincides with the earliest evidence for human settlement in New Zealand (Hogg et al., 2003) 

and thus, represents a key dating event (De Lange and Moon, 2016). A paleotsunami deposit 

is described composed of two fining upward sequences overlying with a sharp, erosional basal 

contact with lacustrine silts. These fining upward units consist of cobbles and gravels 

originating from beach deposit. Based on the threshold velocities for the entrainment of the 

different clasts in these units, these layers were interpreted as being the result of two waves of 

7 and 1 m high, respectively (Magill, 2001; De Lange and Moon, 2016). De Lange and Moon 

(2016) showed that multiple, but closely-timed, flows entering the lake were needed to generate 

the 6–7 m wave height. 

 

6.4 Discussion 

6.4.1 Cause of freshwater tsunamis 

The above-mentioned examples of paleotsunamis in lakes show that different causal 

mechanisms can be distinguished: fault displacements, mass movements and volcanic 

processes (Figs. 6-1A to C). However, these studies do not cover meteotsunamis (Fig. 6-1D) 

as a further possible mechanism capable of triggering freshwater tsunamis. Indeed, prehistoric 

examples of meteotsunamis are yet to be reported. Similarly, mass movement-induced tsunami-
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like waves in rivers have only been reported in the historical record (Table 6-1). River tsunamis 

appear to only affect a small geographical area and are deposited in highly dynamic riverine 

systems. If these historical examples are indicative of the nature and extent of such events, then 

it is highly likely that evidence for their prehistoric counterparts may well have been eroded. 

However, evidence for the large slides that caused them may well be preserved in the landscape 

since they can block entire valleys and create landslide dams. The preservation of these 

landslides in the environment may well provide a way forward for numerical modelling 

assessment. 

 

6.4.2 Advances in freshwater paleotsunami research since 2011 

This literature review of paleotsunamis in freshwater systems shows that the number of studies 

has increased since 2011 CE. Pre-2011 CE studies notably described single events (e.g., 

Schnellmann et al., 2002), while post-2011 CE work contains at least two examples that have 

shown repeated tsunamis in freshwater systems. Although the recurrence rate is low with 

around one event per 1000 years (Dirksen et al., 2011; Kremer et al., 2015), these studies show 

that the hazard related to tsunamis should not be underestimated. Over the past decade, 

paleotsunami studies modelling the effects of large mass-movements have increased, most 

probably related to computational advances. Additionally, since 2011 CE the first tsunami-

hazard assessment studies have also now been carried out based on the knowledge of 

freshwater paleotsunamis (e.g., Lake Zurich, Strupler et al., 2018; Lake Tekapo, Mountjoy et 

al., 2019). 

 

6.4.3 State of current research on freshwater paleotsunamis 

There are still only a few lake paleotsunami studies in the literature and none for rivers. The 

paleotsunami studies found in the literature are from Lakes Owen, Crescent, Managua, 

Lucerne, Geneva, Zurich, Sils, Two Yurts, Tekapo, Tarawera and Tahoe (Fig. 3 and Table 2) 

(Smoot et al., 2000; Schnellmann et al., 2002; Freundt et al., 2006; Moore et al., 2006; Dirksen 

et al., 2011; Kremer et al., 2014; Kremer et al., 2015; Leithold et al., 2019; De Lange and 

Moon, 2016; Strupler et al., 2018; Mountjoy et al., 2019; Nigg et al., 2021). Six studies report 

tsunami deposits in the sediments on lake shores (Lakes Managua, Tarawera and Sils) or within 

the basin (Lakes Owens, Two-Yurts and Tahoe) with the sedimentary evidence differing 

between study sites. Poorly sorted sands containing pebbles were identified in the Owens Lake 
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and Two Yurts Lake studies while in Lake Managua a well sorted sand layer was observed. In 

the investigations at Two-Yurts Lake, organic remains and charcoal were also found in the 

deposit layers. 

 

In Swiss lakes, besides the documentary evidence for historical tsunamis, paleotsunamis are 

inferred based on the modelling of the consequences of large prehistoric subaqueous mass-

movements on the water column. Deposits corresponding to these inferred paleotsunamis have 

only been proposed at Lake Sils (Nigg et al., 2021), whereas layers around the other lake shores 

or in the lake basins are so far missing. It seems reasonable to suggest that the best way forward 

here is to use modelled inundation data to identify the most likely lake-shore sites for 

preferential preservation of such deposits. For potential backwash deposits, a study of 

historically-documented events may serve as a useful guide for the identification of discrete 

units in sediment cores. Equally, reference to submarine data from equivalent historically-

documented marine events such as the 2011 CE Tohoku-oki tsunami may provide guidance on 

the characteristics of backwash deposits (e.g., Goto et al., 2014). 

 

The fact, that tsunami deposits in freshwater settings are rarely described may be explained by 

two major differences when compared to their marine counterparts. The first difference arises 

from geomorphological disparities. In the marine setting, coastal plains are generally much 

more extensive compared to lacustrine or riverine environments. Deep lakes often have a 

higher slope gradient along their shores and therefore, the tsunami deposition potential is 

reduced as no accommodation area is available. Furthermore, sandy beaches around lakes are 

often restricted in size and associated with fluvial embayments. Thus, the identification of 

lacustrine tsunami deposits is challenging. The toolkit for the identification of tsunami deposits 

has mainly been developed on marine tsunamis (Chagué-Goff et al., 2011). There marine 

microfossil species and saltwater chemistry are often used in the identification of tsunami 

deposits, all criteria that are absent in the freshwater environment. 

 

Some advances are being made, and like the archive of marine tsunamis in coastal lakes 

(Bondevik et al., 1997; Hutchinson et al., 1997; Kempf et al., 2017), freshwater tsunamis (e.g., 

lake tsunamis) have been recorded in bays or smaller nearby lakes or wetlands, as shown in the 

case of Two-Yurts Lake. As there is a need in fostering the research on freshwater tsunami 

deposits, we have adapted a conceptual model from Einsele et al. (1996) to indicate the 
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potential areas where tsunami deposits might be trapped and recorded in and adjacent to 

lacustrine environments (Fig. 6-6). 

 

Preliminary estimates of the frequency of lacustrine paleotsunamis have also been proposed 

for both Lake Geneva and Two Yurts Lake (Dirksen et al., 2011; Kremer et al., 2015). For 

Lake Geneva, six tsunamis (historical and prehistorical) have been identified within the past 

~4000 years indicating that the tsunami hazard should not be ignored (Kremer et al., 2015). 

Although all of the tsunamis in Lake Geneva are related to subaqueous mass-movements, their 

causes are diverse. The initial triggers of the mass movements are earthquakes, rockfalls, and 

aseismic delta failures (Kremer et al., 2012; Kremer et al., 2014; Kremer et al., 2015). In Two-

Yurts Lake, four tsunami deposits have been recorded within 2000 years, with wave heights 

between 5 and 10 m (Table 6-2; Dirksen et al., 2011). All were caused by subaerial mass-

movements (Dirksen et al., 2011). 

 

 

Fig. 6-6: Settings for potential tsunami deposits in lacustrine environments (modified from Einsele et al., 1996). 

 

6.4.4 Future research strategies 

Overall, studies of freshwater paleotsunamis are rare, although it is known through historical 

examples that tsunamis represent a recognized natural hazard that should not be 

underestimated. For tsunami hazard assessment, it is necessary to know the causes, frequencies, 

sizes, magnitude, and impacts of tsunamis (Clague et al., 2003 and references therein) and 

therefore, there is a growing need to carry out further paleotsunami studies. Such studies are of 

particular importance because some paleotsunamis have been reported from lakes with no 

historically-documented occurrences (e.g., Lake Managua; Two-Yurts Lake; Lake Tahoe). 
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Our review indicates that the study on freshwater paleotsunamis is challenging and that more 

sedimentological studies are needed. Current limitations stem from the fact that at least one of 

the following conditions need to be fulfilled: (1) tsunami deposits need to be preserved in the 

sedimentary record and to be distinguished from other type of deposits (such as storms, floods 

etc.) and/or (2) the traces of the paleotsunami cause needs to be preserved in the geological 

record so that it can be used for tsunami modelling. Unfortunately, palaeotsunami deposits and 

even evidence for their generating mechanisms are becoming harder to find on increasingly 

populated lake shores making it difficult to reconstruct the nature of past events. 

 

To date, hazard assessments around lakes and rivers have only been conducted for the 

earthquake mass movement-generated tsunami hazard around Lake Zurich, Switzerland 

(Strupler et al., 2018) and mass movement-triggered tsunami hazard in Lake Tekopa (Mountjoy 

et al., 2019). Since there are many other lake and river shorelines where residential populations 

continue to grow, there is an urgent need for tsunami hazard assessements in order to foster 

awareness and understand the potential risks. In the case of the Lake Zurich study, the 

subaqueous landslide progression, wave propagation and inundation were calculated with a 

combination of open source codes including a probabilistic approach. This type of study allows 

first-order estimations of wave heights to be calculated and tsunami-prone areas to be identified 

(Strupler et al., 2018). Current work includes a workflow for a rapid screening for tsunami 

hazard potential on the basis of previous case studies that will be extrapolated using key 

characteristics (Strupler et al., 2020). These codes and concepts can be readily applied towards 

other exposed coasts and should be included in future state-of-the-art tsunami hazard 

assessments. 

 

6.5 Conclusions 

Paleotsunamis have been recorded in several lakes around the world. These paleotsunamis have 

been generated by fault displacements, mass movements (subaerial and subaqueous) and 

volcanic eruptions. Data from historical tsunamis in freshwater systems have shown that events 

caused by meteorological disturbances are missing from paleotsunami research. However, 

most freshwater paleotsunamis appear to be related to subaerial and subaqueous mass-

movements, an observation that is supported by historical data. 
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This review provides first compiled datasets of historical and prehistorical freshwater tsunamis 

and that, although freshwater tsunamis are rare, they represent a natural hazard that should not 

be underestimated and that needs to be assessed. Data on the causes, frequencies and extent of 

freshwater tsunamis are needed in order to assess the tsunami hazard. Given the relative rarity 

of such events it is therefore crucial that further research is carried out on paleotsunamis in 

freshwater systems in order to provide a reasonable temporal coverage. 
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7   Conclusions and outlook 

 

 

 

7.1 Conclusions 

Lake tsunamis have been historically reported as the result of strong regional earthquake-

triggered subaqueous mass movements (e.g., 1601 CE Lake Lucerne tsunami), impulse waves 

generated by subaerial rockfalls and landslides (e.g., 1964 CE Obermatt impulse wave), and 

apparently spontaneous (e.g., 1687 CE Muota collapse-generated tsunami) as well as externally 

triggered delta collapses (e.g., 563 CE Lake Geneva tsunami) in Switzerland. The described 

effects of coastal inundation are severe and would cause injuries, casualties, considerable 

shoreline damage as well as financial and reputational losses. 

 

Historical documents that describe the coastal effects of these events provide a unique 

opportunity to characterize the associated hazard of lacustrine tsunamis. Though, the record is 

limited to the last ~1000 to 1500 years and probably lacks coverage of the entirety of events 

that took place, especially in remote areas. Moreover, from a geological perspective the 

historical record is limited to a very short period. However, the natural archive of extreme 

events preserved within the sedimentary record provides further information on the spatial and 

temporal occurrence of lake tsunamis. 

 

Previous studies have provided insights into the cascading effects of subaqueous mass 

movement-generated tsunamis in the lacustrine environment, particularly from the sediment 

record of deep lake basins and modelling. However, little attention has been paid to the coastal 

on- and offshore archive of lakes in characterizing the lake-tsunami phenomenon although 

onshore deposits could potentially confirm the modelling results of past tsunamis and giving 

hints to their extent and dynamics. The objective of this dissertation is to find and characterize 

sedimentologically the deposits of the historically mentioned tsunamis. In this thesis, we 

propose a workflow to study lacustrine tsunami deposits, and we highlight two case studies 

where this approach has been successfully applied.  
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The localization of a suitable geological archive is a crucial but enormously challenging task. 

This is especially true for heavily populated lakeshore areas with developed infrastructure, 

representative man-made lake promenades, and steep shorelines common to Swiss lakes. 

Pristine shallow coastal plains and beaches have become rare due to industrialization and the 

associated growth of civilization. Therefore, the locations where field surveys can be conducted 

are limited. Moreover, coastal records have become even more fragmentary than they naturally 

are due to transient depositional conditions. Therefore, the observed limitations and challenges 

were summarized in Chapter 3 to provide methodological guidelines and considerations for 

future studies. In a nutshell, historical documents were used to characterize the coastal effects 

of lake tsunamis generated from subaqueous and subaerial mass movements. Information on 

the coastal geomorphology (high-resolution topography and bathymetry maps, geological 

maps and geomorphological field mapping), its temporal evolution (historical maps and 

borehole logging data), and numerical tsunami propagation and inundation simulations were 

used to identify locations with a high probability of tsunami inundation, deposition, and 

preservation for field research. Positive and negative evidence for tsunami depositional 

signatures observed from multiple field studies were finally presented briefly. 

 

Chapter 4 focuses on the hypothesis of a tsunamigenic prehistoric delta collapse in Lake Sils 

around 700 CE. Detailed sedimentological analysis on sediment cores recovered from an 

transect spanning the coastal on- and offshore environment were combined with mineralogical 

characterization of the lake tributaries and numerical mass-movement and tsunami simulations 

to reconstruct the lacustrine tsunami event. The results obtained support that the Isola Delta 

collapse generated a basin-wide tsunami with a numerically simulated inundation distance of 

200 m on the adjacent coastal plains, which is supported by a clastic event deposit observed in 

sediment cores. The up to 20 cm thick deposit observed in sediment cores from the shallow 

water consists of a fining upward sequence with a sharp basal contact and thins landward. 

Toward the deeper water (in 20 to 40 m water depth) the well-traceable sedimentary unit 

transforms into a heterogeneous sediment package that consists of massive gravel as well as 

single and multiple normal graded sand with mud clasts of laminated pre-event lake deposits 

that likely originated from pulse-like tsunami backwash currents transporting large amounts of 

sediment from the on- to the offshore environment. The top of the event deposit is characterized 

by a ~2 cm thick clay cap that was deposited at the final stage from suspension, indicating large 

amounts of sediment that were brought into suspension during the event. Radiocarbon dating 

of an organic-rich unit underlying the event deposit to 225-419 cal CE supports the hypothesis 
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that the Isola Delta collapse with a minimum estimated depositional volume of 6.5 x 106 m3 

(Blass et al., 2005) was tsunamigenic. 

 

Another tsunami-related event deposit was observed in sediment cores recovered along a 

transect from an offshore depression in the Lucerne Bay, Lake Lucerne, and is discussed in 

detail in Chapter 5. The up to 60 cm thick, predominantly siliciclastic, normal graded event 

deposit has a characteristic sharp lower basal contact with coarse carbonate shell fragments at 

the base, fines upwards from sand to silt and contains terrestrial-derived horizontally bedded 

wooden particles that become more abundant in the upper part of the deposit. Based on 

radiocarbon dating of four terrestrial organic macro-remains (leave fragments and conifer 

needles) from the deposit that yield ages of 1306–1442 cal CE and the sedimentological 

signatures, the normal graded event deposit was related to the historically reported basin-wide 

1601 CE Lake Lucerne tsunami ultimately caused by several subaqueous and a subaerial mass 

movement (Hilbe and Anselmetti, 2015; Schnellmann et al., 2002; Siegenthaler et a., 1987) 

triggered by a regional Mw 5.9 earthquake (Fäh et al., 2011). The observed radiocarbon ages 

provide evidence for sediment remobilization from the on- and offshore Lucerne Bay area, 

which was further tested using the hydrodynamic simulation software BASEMENT. The Lake 

Lucerne tsunami was numerically simulated by an instantaneous collapse of 5 m along the area 

of the second largest mass movement triggered by the 1601 CE earthquake (Hilbe and 

Anselmetti, 2015). However, the simplification of the numerically simulated tsunami was 

considered to be a realistic representation the 1601 CE Lake Lucerne tsunami because the 

simulated wave parameters (e.g., free surface elevation) are comparable to the historically 

documented values by the Lucerne city clerk Renward Cysat (Cysat, 1969), and with the 

numerical simulations previously performed by Hilbe and Anselmetti (2015). Based on the 

wave inundation and bed shear-stresses observed within the Lucerne Bay it was possible to 

demonstrate that large areas exceed critical values to initiate particle movement and that flow 

direction and velocity provides evidence that effective sediment transport in the Bay of Lucerne 

likely was possible during the 1601 CE Lake Lucerne tsunami event. 

 

The literature review on freshwater tsunami discussed in Chapter 6 focuses on case studies of 

prehistoric events published after the devastating 2011 CE Tohoku-oki tsunami. Briefly, the 

triggering mechanism of tsunamis in freshwater environments are summarized as those by 

fault-displacement, subaerial and subaqueous mass movements, volcanic eruptions, and air-

pressure disturbances. Because the number of tsunami studies reporting prehistoric events in 
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the freshwater setting is small, historical events are also presented in this review. This 

emphasizes the importance of further research to achieve adequate temporal and spatial 

coverage of freshwater tsunamis in general and to better assess the natural hazards caused by 

tsunamis, to develop resilient and mitigating solutions. 

 

Returning to the research questions formulated at the beginning of this dissertation, we were 

able to address some, discard others, and generate new questions for future studies. In 

particular, the sedimentological signatures of lacustrine deposits were discussed in detail in 

Chapter 4 and 5, and the observed similarities and differences were mentioned therein. 

However, it was not possible to establish a tsunami deposit-based event chronology over the 

past 15’000 years in the on- and offshore. It was also not possible to reconstruct field-derived 

run-up and inundation estimates. More research is needed to resolve these tasks. 

 

7.2 Outlook 

The reconnaissance of lake tsunami deposits is found to be challenging for several reason, 

including more technical or administrative aspects (e.g., core recovery, highly modified 

shorelines, and private shore properties), but also because of the geomorphological conditions 

that must be satisfied for sedimentation and preservation of tsunami deposits over time. 

 

For future studies, I propose to further intensify research on tsunami waves generated from 

subaerial mass movements in Swiss lakes, as these events are likely to occur more frequently 

and can be mitigated if their sources can be identified and monitored. On the other hand, the 

generation mechanisms of tsunami waves from subaqueous mass movements needs to be 

further investigated through the spatial analysis of mass-movement deposits (using seismic-

reflection data and high-resolution bathymetry) to better characterize their failure kinematics. 

A good opportunity to achieve this is provided by a large dataset of high -resolution 

bathymetry, and seismic data obtained after the 2018 CE Palu earthquake and tsunami in 

Indonesia. Incorporation of more adequate subaqueous mass-movements into the numerical 

simulation will then increase the robustness of the associated numerical solutions.  

 

For the reconnaissance of lakeshore tsunami deposits, it is strongly recommended to 

collaborate with archeological surveys. In particular, the excavation of pile dwelling with 

trenches on the lakeshore could provide essential information about past events. In addition, 
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the 3D view of trenches allows investigation of the lateral continuity of the associated deposits, 

which may also be discontinuous and patchy, which is difficult to assess with sediment coring. 

Further, the shallow-water environment could be studied more comprehensively with a bunch 

of gravity cores to study erosional signatures from past tsunami events via high-resolution 

dating. 

 

Finally, including sediment transport in numerical simulations will further increase knowledge 

of lake tsunami-induced sediment remobilization. This may help for the identification of 

suitable depositional environments for future sedimentological studies. The hydro- and 

morphodynamical freeware BASEMENT, will include this capability in its next versions 

(BASEMNET v3.2 onwards). 
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Table A1: Sediment core ID, applied coring system, and locations given in the Swiss 

coordinate system LV95 

Lake  Location Core ID Coring system 
Total 

depth (m) 

Swiss Coordinates (LV95) 

East (m) North (m) 

Lucerne Ennetbürgen EB17-1 Pürckhauer 2.00 2674351 1204230 

  EB17-2 Pürckhauer 2.00 2674333 1204229 

  EB17-3 Pürckhauer 2.00 2674310 1204221 

  EB17-3 Pürckhauer 2.00 2674355 1204272 

 Chappelmatt CP18-1A Geoprobe 6620DT 7.20 2673831 1213105 

  CP18-1B Geoprobe 6620DT 7.80 2673832 1213110 

  CP18-2A Geoprobe 6620DT 6.00 2673837 1213125 

  CP18-2B Geoprobe 6620DT 7.20 2673838 1213130 

  CP18-3A Geoprobe 6620DT 4.80 2673848 1213149 

  CP18-3B Geoprobe 6620DT 5.40 2673849 1213155 

  CP18-4A Geoprobe 6620DT 3.60 2673892 1213173 

  CP18-4B Geoprobe 6620DT 4.20 2673889 1213174 

 Tanzenberg HT18-1A Geoprobe 6620DT 8.40 2673184 1209044 

  HT18-1B Geoprobe 6620DT 1.20 2673186 1209042 

  HT18-1C Geoprobe 6620DT 6.60 2673187 1209042 

  HT18-2A Geoprobe 6620DT 7.20 2673209 1209055 
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Lake  Location Core ID Coring system 
Total 

depth (m) 

Swiss Coordinates (LV95) 

East (m) North (m) 

Lake  HT18-3A Geoprobe 6620DT 8.40 2673258 1209114 

Lucerne  HT18-4A Geoprobe 6620DT 3.60 2673266 1209129 

 Tribschen STO18_1A Geoprobe 6620DT 4.80 2667610 1210282 

  STO18_1B Geoprobe 6620DT 5.60 2667610 1210285 

  STO18_2A Geoprobe 6620DT 4.80 2667628 1210283 

  STO18_2B Geoprobe 6620DT 4.20 2667629 1210279 

  STO18_3A Geoprobe 6620DT 4.80 2667674 1210296 

  STO18_3B Geoprobe 6620DT 5.40 2667677 1210297 

  STO18_4A Geoprobe 6620DT 4.80 2667704 1210293 

  STO18_4B Geoprobe 6620DT 4.20 2667705 1210291 

 Lucerne Bay  LU18-1 UWITECT piston 3.40 2666807 1211720 

  LU18-2 UWITECT piston 3.20 2666662 1211710 

  LU18-3 UWITECT piston 3.20 2666482 1211708 

  LU18-4 UWITECT piston 7.20 2667619 1210858 

       

Lake  Lausanne LS18-1 Pürckhauer 2.00 2535107 1152582 

Geneva St. Sulpice  STS18-1 Pürckhauer 2.00 2532268 1151122 

  STS18-2 Pürckhauer 2.00 2532272 1151105 

  STS18-3 Pürckhauer 2.00 2532300 1151114 

  STS18-8 Pürckhauer 2.00 2533217 1151847 

  STS18-9 Pürckhauer 2.00 2533218 1151873 

 Collonges-

Bellerive 
TCS18-1 Pürckhauer 2.00 2503854 1122263 

  TCS18-2 Pürckhauer 2.00 2503861 1122256 

  TCS18-3 Pürckhauer 2.00 2503864 1122258 

  TCS18-4 Pürckhauer 2.00 2503867 1122247 

  TCS18-5 Pürckhauer 2.00 2503874 1122246 

  TCS18-6 Pürckhauer 2.00 2503884 1122257 

  TCS18-7 Pürckhauer 2.00 2503886 1122396 

 Sciez  SC18-1 Pürckhauer 2.00 2517798 1132569 

  SC18-2 Pürckhauer 2.00 2517800 1132614 

  SC18-3 Pürckhauer 2.00 2517803 1132647 

  SC18-4 Pürckhauer 2.00 2517788 1132682 

 Nernier NE18-1 Pürckhauer 2.00 2513243 1135700 

       

Lake Sils Sils Baselgia SIL06-8 Pürckhauer 0.85 2’777’946 1’145’042 

  SIL09-1 Geoprobe 6620DT 5.15 2’777’997 1’145’056 

  SIL09-2 Geoprobe 6620DT 3.40 2’777’979 1’145’050 

  SIL09-3 Geoprobe 6620DT 3.62 2’777’960 1’145’045 

  SIL09-4 Geoprobe 6620DT 3.94 2’777’944 1’145’035 

  SIL09-5 Geoprobe 6620DT 3.70 2’777’926 1’145’026 

  SIL09-6 Geoprobe 6620DT 4.30 2’777’943 1’145’076 

  SIL09-7 Geoprobe 6620DT 2.27 2’777’929 1’145’069 

  SIL09-8 Geoprobe 6620DT 4.22 2’777’920 1’145’064 
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Lake  Location Core ID Coring system 
Total 

depth (m) 

Swiss Coordinates (LV95) 

East (m) North (m) 

Lake Sils  SIL09-9 Geoprobe 6620DT 3.71 2’777’903 1’145’057 

  SIL09-10 Geoprobe 6620DT 4.55 2’777’940 1’145’062 

  SIL09-11 Geoprobe 6620DT 2.54 2’778’025 1’145’179 

  SIL09-12 Geoprobe 6620DT 1.93 2’778’065 1’145’204 

 Lagrev Basin SIL10-1 Percussion core 0.90 2’777’820 1’144’985 

  SIL10-2 Percussion core 1.82 2’777’768 1’144’941 

  SIL10-3 Percussion core 1.56 2’777’717 1’144’902 

  SIL10-4 Percussion core 1.93 2’777’656 1’144’860 

  SIL10-5 Percussion core 1.81 2’777’599 1’144’837 

  SIL10-6 Percussion core 1.71 2’777’505 1’144’790 

  SIL10-7 Percussion core 0.56 2’777’739 1’144’918 

  SIL18-1 Percussion core 0.50 2’777’819 1’144’993 

  SIL18-2 Percussion core 0.88 2’777’808 1’145’006 

  SIL18-3 Percussion core 0.80 2’777’784 1’145’021 

  SIL18-4 Percussion core 1.05 2’777’821 1’144’908 

  SIL18-5 Percussion core 1.00 2’777’840 1’144’908 

 Sils Baselgia SIL18-6 Percussion core 0.82 2’777’772 1’145’067 

  SIL18-7 Percussion core 0.67 2’777’735 1’144’273 

  SIL18-8 Percussion core 0.59 2’777’878 1’144’126 

  SIL18-9 Percussion core 0.62 2’777’819 1’144’135 

  SIL18-10 Percussion core 0.51 2’777’793 1’144’168 
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Onshore sediment cores 

 

Fig. B1: Detail map of the coastal plain at show onshore sediment core location and core label. 
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Fig. B2: Core line scan images and lithological interpretation of onshore sediments (see Fig. A1 for core location). 

Lithological units are labelled according to the descriptions in the manuscript. 
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Numerical tsunami modeling – total failed volume estimation 

 

For the volume estimation of the Isola Delta collapse two different scenarios were calculated (Fig. A1). The total 

failed volume is 1.33 106 m3 (scenario S01r) and 1.71 106 m3 (scenario S01a), respectively. The total volume 

consists of three individual packages with different initial heights above todays lake floor. 

 

Fig. B3: Total failed delta volume of the two different numerical modelled scenario S01r (A) and S01a (B). 
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Fig. B4: Simulated mass-movement deposit of the two different numerical simulations S01r and S01a, with the 

initial volumes shown in Fig. B1. 
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Fig. B5: Time series of simulated mass-movement velocity and thickness at the gauge location (see Fig. B2 for 

exact position) of the two different numerical simulations S01r and S01a. 
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Table B1: Sediment core locations in Swiss coordinate system LV95 

Core ID East (m) North (m) 
Water depth (m)  

or m a.s.l 
Length (cm) Study 

SIL06-8 2’777’946 1’145’042 na 85 this study 

SIL09-1 2’777’997 1’145’056 1798.54 515 this study 

SIL09-2 2’777’979 1’145’050 1798.25 340 this study 

SIL09-3 2’777’960 1’145’045 1797.88 362 this study 

SIL09-4 2’777’944 1’145’035 1797.67 394 this study 

SIL09-5 2’777’926 1’145’026 1797.52 370 this study 

SIL09-6 2’777’943 1’145’076 1797.67 430 this study 

SIL09-7 2’777’929 1’145’069 1797.49 227 this study 

SIL09-8 2’777’920 1’145’064 1797.96 422 this study 

SIL09-9 2’777’903 1’145’057 1797.37 371 this study 

SIL09-10 2’777’940 1’145’062 1797.13 455 this study 

SIL09-11 2’778’025 1’145’179 1798.15 254 this study 

SIL09-12 2’778’065 1’145’204 1798.12 193 this study 

SIL10-1 2’777’820 1’144’985 1.7 90 this study 

SIL10-2 2’777’768 1’144’941 4.3 182 this study 

SIL10-3 2’777’717 1’144’902 20.0 156 this study 

SIL10-4 2’777’656 1’144’860 28.4 193 this study 

SIL10-5 2’777’599 1’144’837 35.0 181 this study 

SIL10-6 2’777’505 1’144’790 39.4 171 this study 

SIL10-7 2’777’739 1’144’918 12.0 56 this study 

SIL18-1 2’777’819 1’144’993 <3 50 this study 

SIL18-2 2’777’808 1’145’006 <3 88 this study 

SIL18-3 2’777’784 1’145’021 <3 80 this study 

SIL18-4 2’777’821 1’144’908 <3 105 this study 

SIL18-5 2’777’840 1’144’908 <3 100 this study 

SIL18-6 2’777’772 1’145’067 <3 82 this study 

SIL18-7 2’777’735 1’144’273 <3 67 this study 

SIL18-8 2’777’878 1’144’126 <3 59 this study 

SIL18-9 2’777’819 1’144’135 <3 62 this study 

SIL18-10 2’777’793 1’144’168 <3 51 this study 

Sis03-2 2’774’670 1’142’384 27 97.5 Blass et al. (2005) 

Sis03-22 2’777’252 1’144’698 46 84 Blass et al. (2005) 

Sis03-23 2’777’593 1’144’855 34 78 Blass et al. (2005) 

Sis03-28 2’777’045 1’144’572 48 92 Blass et al. (2005) 

PSS94-2 2’777’452 1’144’701 ~70 811 Ohlendorf (1998) 

PSS94-5 2’777’452 1’144’702 ~42 283 Ohlendorf (1998) 
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Table B2: Mineralogical composition of sediment samples from core SIL10-1, SIL10-5, and SIL09 in volume percentage. 

Core subsample 
Composite  Lithological Qtz Pl Kfs CPx Mca Chl Dol Cc Srp Am Tlc 

depth (cm) unit (vol%) (vol%) (vol%) (vol%) (vol%) (vol%) (vol%) (vol%) (vol%) (vol%) (vol%) 

SIL10-1-46 40 D (clay cap) 15 9 2 1 38 28 1 1 2 4 0 

SIL10-1-51 45 D 30 12 3 1 24 22 1 1 1 3 1 

SIL10-1-54 48 E 12 5 1 1 39 34 3 0 2 4 0 

SIL10-1-76 70 F 17 5 2 2 33 33 1 0 3 3 0 

 
  

          
 

SIL10-5A-78 67 C 11 5 6 2 26 34 1 2 5 9 0 

SIL10-5A-87 76 D (clay cap) 13 7 2 3 29 33 0 1 6 5 0 

SIL10-5A-91 80 D 28 17 2 1 27 18 2 1 2 4 0 

SIL10-5-98 87 D 17 6 1 1 36 36 1 0 0 4 0 

SIL10-5B-20 116 D 31 8 0 1 31 22 3 1 1 2 0 

SIL10-5B-70 166 D 23 6 1 1 36 27 2 1 2 2 0 

              

              

SIL09-4A-44 44 II 13 27 4 0 36 15 0 0 1 4 0 

SIL09-4A-49 49 II 15 16 2 1 41 20 0 0 1 5 0 

SIL09-4A-52 52 II 23 18 1 1 37 14 1 0 1 4 0 

SIL09-4A-60 60 II 21 19 1 1 41 13 0 0 1 3 0 

SIL09-4A-85 85 V 23 19 1 1 28 22 1 1 1 3 0 

Notes: Mineral abbreviations are Qtz = quartz; Pl = plagioclase; Kfs = K-feldspar; CPx = clinopyroxene; Mca = white mica; Chl = chlorite; Dol = dolomite; Cc = calcite; Srp 

= serpentine; Am = amphibole; and Tlc = talc.
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Table B3: Mineralogical composition of the sand-sized riverine bedload samples collected at Lake Sils major tributaries in volume percentage. 

Riverine bedload sample 

Qtz 

(vol%) 

Pl 

(vol%) 

Kfs 

(vol%) 

CPx 

(vol%) 

Mca 

(vol%) 

Chl 

(vol%) 

Dol 

(vol%) 

Cc 

(vol%) 

Srp 

(vol%) 

Am 

(vol%) 

Tlc 

(vol%) 

1: Aua da Fedoz 61.02 19.46 2.52 2.61 5.06 2.06 2.78 0.00 0.00 3.66 0.83 

2: Lavatera  84.02 5.36 1.18 1.25 1.48 2.81 0.73 0.43 1.94 0.79 0.00 

3: Lavatera + Ova dal Mulin 87.51 5.5 0.87 1.17 1.02 1.76 0.00 0.00 1.76 0.42 0.00 

4: Ova de la Roda  73.62 13.38 6.85 2.82 0.42 0.73 0.00 0.98 0.00 0.75 0.00 

5: Ova dal Crot 71.63 16.1 7.99 2.22 0.65 1.07 0.00 0.00 0.00 0.34 0.00 

6: Fadacla 74.22 11.30 4.56 1.38 2.68 1.00 4.28 0.00 0.00 0.58 0.00 

Notes: Mineral abbreviations are Qtz = quartz; Pl = plagioclase; Kfs = K-feldspar; CPx = clinopyroxene; Mca = white mica; Chl = chlorite; Dol = dolomite; Cc = calcite; Srp 

= serpentine; Am = amphibole; and Tlc = talc.
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Table B4: Elemental concentrations of inorganic and total carbon, total nitrogen, and total sulfur in C sediment samples from core SIL10-1. 

Core subsample 
Composite Lithological IC CaCO3 TC TOC TN TS C/N 

depth (cm) units (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (mol mol-1) 

SIL10-1-34 28 C 0 0 4.08 4.08 0.347 1.449 13.7 

SIL10-1-39 33 C 0 0 3.35 3.35 0.300 1.178 13.0 

SIL10-1-42 36 C 0 0 4.56 4.56 0.411 1.509 12.9 

SIL10-1-46 40 D (clay cap) 0 0 1.58 1.58 0.091 0.194 20.2 

SIL10-1-48 42 D 0 0 0.20 0.20 0.014 0.016 16.8 

SIL10-1-52 46 D 0.19 1.62 1.67 1.48 0.109 0.020 15.8 

SIL10-1-53 47 E 0 0 8.74 8.74 0.492 0.282 20.7 

SIL10-1-55 49 E 0 0 38.75 38.75 2.221 0.894 20.4 

SIL10-1-59 53 E 0 0 23.52 23.52 1.546 0.295 17.7 

SIL10-1-62 56 F 0 0 2.08 2.08 0.141 0.016 17.2 

SIL10-1-67 61 F 0 0 1.11 1.11 0.076 0.007 17.0 

SIL10-1-72 66 F 0 0 1.40 1.40 0.103 0.011 15.9 

SIL10-1-77 71 F 0 0 0.02 0.02 0.007 0 3.8 

SIL10-1-84 78 F 0 0 1.78 1.78 0.113 0 18.4 

SIL10-1-89 83 F 0 0 0.41 0.41 0.045 0.048 10.7 

Notes: IC = inorganic carbon; CaCO3 = calcium carbonate; TC = total carbon; TOC = total organic carbon; TN = total nitrogen; TS = total sulfur; and C/N = carbon/nitrogen 

ratio. TOC concentrations a calculated from the difference between IC and TC concentrations. C/N ratios are calculated from TOC and TN concentrations and are given as 

weight/weight ratios.  
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Table B5: Elemental concentrations of inorganic and total carbon, total nitrogen, and total sulfur in C sediment samples from core SIL10-5. 

Core subsample 
Composite Lithological IC CaCO3 TC TOC TN TS C/N 

depth (cm) units (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (mol mol-1) 

SIL10-5A-82 71 C 0 0 1.03 1.03 0.121 0.068 9.9 

SIL10-5A-84 73 C 0 0 0.86 0.86 0.074 0.084 13.6 

SIL10-5A-86 75 C 0 0 0.87 0.87 0.095 0.034 10.6 

SIL10-5A-88 77 D (clay cap) 0 0 7.18 7.18 0.509 0.116 16.5 

SIL10-5A-90 79 D 0.11 0.92 0.62 0.51 0.015 0.029 39.7 

SIL10-5A-98 87 D 0.03 0.28 0.73 0.70 0.067 0.019 12.2 

SIL10-5A-103 92 D 0.26 2.22 1.11 0.85 0.059 0.017 16.7 

          

SIL10-5B-10 106 D 0.29 2.42 0.76 0.47 0.016 0.041 34.3 

SIL10-5B-20 116 D 0.35 2.94 0.78 0.43 0.018 0.016 27.8 

SIL10-5B-30 126 D 0.28 2.38 0.74 0.46 0.017 0.019 31.4 

SIL10-5B-60 156 D 0.19 1.60 0.67 0.48 0.018 0.030 31.0 

SIL10-5B-70 166 D 0.26 2.21 0.78 0.52 0.015 0.020 40.2 

SIL10-5B-80 176 D 0.26 2.22 0.63 0.37 0.012 0.019 36.4 

Notes: IC = inorganic carbon; CaCO3 = calcium carbonate; TC = total carbon; TOC = total organic carbon; TN = total nitrogen; TS = total sulfur; and C/N = carbon/nitrogen 

ratio. TOC concentrations a calculated from the difference between IC and TC concentrations. C/N ratios are calculated from TOC and TN concentrations and are given as 

weight/weight ratios. 
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Table B6: Elemental concentrations of inorganic and total carbon, total nitrogen, and total sulfur in C sediment samples from core SIL09-4. 

Core subsample 
Composite Lithological IC CaCO3 TC TOC TN TS C/N 

depth (cm) units (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (mol mol-1) 

SIL09-4A-0-12-44 40 II 0 0 0.30 0.30 0.036 0 9.8 

SIL09-4A-0-12-49 45 II 0 0 0.68 0.68 0.144 0 5.5 

SIL09-4A-0-12-53 49 II 0 0 0.37 0.37 0.038 0 11.4 

SIL09-4A-0-12-57 53 II 0 0 0.46 0.46 0.033 0 16.4 

SIL09-4A-0-12-61 57 II 0 0 0.58 0.58 0.038 0 17.7 

SIL09-4A-0-12-65 61 D(III) 0 0 1.23 1.23 0.110 0.019 13.1 

SIL09-4A-0-12-68 64 E(IV) 0 0 38.63 38.63 1.707 0.972 26.4 

SIL09-4A-0-12-73 69 E(IV) 0 0 42.94 42.94 1.968 1.613 25.5 

SIL09-4A-0-12-78 74 V 0 0 4.34 4.34 0.275 0.276 18.4 

          

SIL09-4B-6-18-33 79 V 0 0 1.46 1.46 0.102 0.047 16.7 

SIL09-4B-6-18-38 84 V 0 0 1.42 1.42 0.296 0.025 5.6 

SIL09-4B-6-18-43 89 VI 0 0 0.61 0.61 0.048 0.022 14.9 

          

SIL09-4A-12-24-12 94 VI 0 0 0.38 0.38 0.028 0.023 15.7 

SIL09-4A-12-24-17 99 VI 0 0 0.21 0.21 0.019 0.012 13.0 

Notes: IC = inorganic carbon; CaCO3 = calcium carbonate; TC = total carbon; TOC = total organic carbon; TN = total nitrogen; TS = total sulfur; and C/N = carbon/nitrogen 

ratio. TOC concentrations a calculated from the difference between IC and TC concentrations. C/N ratios are calculated from TOC and TN concentrations and are given as 

weight/weight ratios. 
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3 Swiss Seismological Service, ETH Zurich, Sonneggstrasse 5, CH-8093 Zürich, Switzerland 

 

 

 

Table C1: Lake surface sediment samples: sample ID, macroscopic description of the sedimentological 

composition, D50 of the grain-size distribution measured with laser diffraction analysis, and CH1903+ LV95 

coordinates of sample location. 

Sample ID Macroscopic description D50 (μm) Coordinates (CH1903+ / LV95) 

S_1 Carbonate mud with coarse organic 45 2’667’325/1’211’284 

S_2 Carbonate mud with coarse organic 58 2’667’282/1’211’571 

S_3 Poorly sorted siliciclastic sand with gravel 340 2’667’957/1’211’689 

S_4 Carbonate mud with coarse organic 45 2’668’777/1’210’976 

 

Table C2: Lake surface sediment samples: TC, TOC, TIC, CaCO3, TN, and TS concentrations as well as the 

molar C/N ratio. 

Sample ID TC 

(wt.%) 

TOC 

(wt.%) 

TIC 

(wt.%) 

CaCO3 

(wt.%) 

TN 

(wt.%) 

C/N ratio 

(mol mol-1) 

TS 

(wt.%) 

LS-1 11.91 2.21 9.70 80.78 0.28 6.7 0.00 

LS-2 11.84 2.42 9.41 78.42 0.30 6.8 0.00 

LS-3 1.04 0.43 0.61 5.12 0.05 7.5 0.00 

LS-4 5.71 2.48 3.23 26.93 0.24 9.0 0.00 
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Table C3: Sediment core total composite length and CH1903+ LV95 coordinates of sediment core location. 

Core ID Total composite depth (cm) Coordinates (CH1903+ / LV95) 

LU18-1 283.5 2’666’807/1’211’720 

LU18-2 287.5 2’666’662/1’211’710 

LU18-3 217.5 2’666’482/1’211’707 

 

 

Table C4: Volume estimation of Unit 2 based on thickness of Unit 2 observed in sediment cores LU18-1, -2,     

and -3 and estimated depositional area (see Fig. 5-2B). 

Area Area (m3) Thickness of Unit 2 (m) Volume (m3) 

A1 10’395 0.40 4’158 

A2 14’507 0.64 9’285 

A3 8’148 0.67 5’469 

Total estimated Volume  18’902 
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Table C5: Lake surface sediment samples: Core ID, total composite depth, sedimentary unit, and TC, TOC, TIC, 

CaCO3, TN, TS concentrations, as well as the molar C/N ratio. 

Core 

ID 

Total 

composite 

depth (cm) 

Sedimentary 

unit 

TC 

(wt.%) 

TOC 

(wt.%) 

TIC 

(wt.%) 

CaCO3 

(wt.%) 

TN 

(wt.%) 

C/N ratio 

(mol mol-1) 

TS 

(wt.%) 

LU18-2 0.5 Unit 1 12.36 3.37 8.99 74.90 0.43 6.79 0.00 

 10.5 Unit 1 11.03 2.19 8.85 73.69 0.27 6.90 0.06 

 20.5 Unit 1 11.42 1.54 9.88 82.32 0.15 8.53 0.08 

 30.5 Unit 1 10.26 1.73 8.52 71.00 0.11 13.10 0.00 

 40.5 Unit 2 4.95 2.97 1.98 16.49 0.13 20.13 0.03 

 50.5 Unit 2 3.88 2.16 1.72 14.30 0.11 16.44 0.00 

 60.5 Unit 2 2.70 0.94 1.77 14.72 0.06 14.29 0.00 

 70.5 Unit 2 2.08 0.34 1.74 14.53 0.00 - 0.00 

 80.5 Unit 2 2.14 0.52 1.62 13.47 0.00 - 0.00 

 90.5 Unit 2 1.94 0.31 1.63 13.62 0.00 - 0.00 

 100.5 Unit 2 1.81 0.17 1.64 13.66 0.00 - 0.00 

LU18-1 84.0 Unit 3 6.29 1.94 4.35 36.21 0.17 9.82 0.03 

 84.5 Unit 3 3.54 1.93 1.62 13.46 0.13 12.77 0.00 

 85.5 Unit 3 7.84 1.39 6.45 53.74 0.13 9.41 0.04 

 86.5 Unit 3 5.86 1.56 4.30 35.82 0.11 11.91 0.06 

 87.5 Unit 3 6.06 1.99 4.07 33.93 0.13 13.12 0.06 

 88.5 Unit 3 6.01 1.93 4.07 33.93 0.13 12.66 0.08 

 89.5 Unit 3 5.08 1.82 3.26 27.11 0.12 13.09 0.10 

 90.5 Unit 3 5.21 1.34 3.87 32.24 0.11 10.60 0.06 

 91.5 Unit 3 5.59 1.33 4.26 35.49 0.12 9.80 0.23 

 92.0 Unit 3 3.88 0.89 2.98 24.85 0.07 11.64 0.11 

 93.0 Unit 3 2.55 0.45 2.10 17.50 0.00 - 0.04 

 94.0 Unit 3 2.44 0.43 2.01 16.73 0.03 12.63 0.04 

 95.0 Unit 4 3.38 0.52 2.85 23.76 0.04 11.39 0.03 

 96.0 Unit 4 4.71 0.22 4.48 37.34 0.00 - 0.00 
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Gauge data 

 

Fig. C1: Main parameters obtained from Gauge 1 for the sensitivity analysis of the bed roughness (kb): water-

surface displacement, specific discharge, flow-velocity magnitude, bed shear-stress, and dimensionless bed shear-

stress. See Fig. 5-2 for the detailed gauge location. 
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Fig. C2: Main parameters obtained from Gauge 2 for the sensitivity analysis of the bed roughness(kb): water-

surface displacement, specific discharge, flow-velocity magnitude, bed shear-stress, and dimensionless bed shear-

stress. See Fig. 5-2 for the detailed gauge location. 
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Fig. C3: Main parameters obtained from Gauge 3 for the sensitivity analysis of the bed roughness (kb): water-

surface displacement, specific discharge, flow-velocity magnitude, bed shear-stress, and dimensionless bed shear-

stress. See Fig. 5-2 for the detailed gauge location. 
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Table C6: Area exceeding the dimensionless bed shear-stress (θ) of 0.03 and calculated volumes of eroded 

sediment with different homogeneous erosion thicknesses. 

Simulation 
Area (m2) 

 

θ ≥ 0.03  

Volume of eroded sediment (m3) calculated with different homogeneous 

thicknesses of erosion on the area 

0.02 m 0.05 m 0.1 m 0.15 m 0.2 m 

LU-S1 195503.2 3910.1 9775.2 19550.3 29325.5 39100.6 

LU-S2 275519.4 5510.4 13776.0 27551.9 41327.9 55103.9 

LU-S3 378890 7517.8 18794.5 37589.0 56383.5 75178.0 

LU-S4 434414.2 8688.3 21720.7 43441.4 65162.1 86882.8 

LU-S5 525417.2 10508.3 26270.9 52541.7 78812.6 105083.4 

LU-S6 566827.3 11336.5 28341.4 56682.7 85024.1 113365.4 
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