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”Alles Denkbare wird einmal gedacht”
– Friedrich Dürrenmatt





Abstract

This thesis is focused on the flavor anomalies in semi-leptonic b quark decays and on calcula-
tions of higher order QCD effects in radiative rare B meson decays. The introduction covers
topics and concepts relevant for this thesis and is followed by several papers in which Lepto-
quarks are introduced as possible extensions of the Standard Model. We analyze several models
regarding their potential of resolving one or several of the flavor anomalies. Explanations to
the individual anomalies are correlated through loop effects, which we calculate and show their
phenomenological importance. Effects arising through Leptoquark interactions with the Stan-
dard Model Higgs boson are independent of fermionic couplings needed to explain the flavor
anomalies. Due to this independence, such effects can serve as a complementary window to
distinguish among different Leptoquark representations in future precision experiments. Addi-
tionally, Leptoquarks affect purely leptonic transitions through loop-effects, which we calculate
in detail. Future experiments are expected to reach very high precisions in these transitions
and will therefore be able to strengthen the case for certain models or put stringent constraints
on others. The final part of this thesis consists of two ongoing projects in single and double
radiative rare B meson decays. We calculate three-loop contributions of the current-current
operator to b→ sγ while retaining full analytic dependence on the charm quark mass. Further-
more, gluon bremsstrahlung corrections to the double differential decay spectrum of b → sγγ
are considered.
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Chapter 1

Introduction

What is matter made of? This question is as old as humanity’s scientific endeavor and even
dates back to the ancient Greeks. On the fundamental level, it was only a bit more than a
century ago that the first answers to this question were found.
In 1897, Joseph John Thomson discovered the first elementary particle, the electron [1]. He also
determined its mass to be small – much smaller than the ones of the lightest atoms. Since atoms
were known to be electrically neutral, the question how mass and charge are distributed within
the atom arose. This question was eventually answered by Ernest Rutherford, Hans Geiger and
Ernest Marsden through their famous scattering experiment in 1911 [2]. In their experiment
they concentrated a beam of α-particles through a thin gold foil. If the charge of the gold
particles had been evenly distributed throughout the whole atom, α-particles would have been
expected to get deflected only a little. However, the team observed that most of the α-particles
were not deflected at all, but some of them rebounded from the foil at unexpectedly large angles.
Since the electrons are too light to play a role in the scattering, Rutherford concluded that the
atom’s mass and therewith its positive charge has to be concentrated within only a very small
fraction of the atom’s volume. Following Niels Bohr’s model of the hydrogen atom in 1913 [3],
it was natural to assume that heavier atoms would simply consist of a bunch of protons, bound
in the nucleus, surrounded by the electrons. However, the mass fractions of the lightest atoms
did not support this assumption. This problem was resolved in 1932 with the discovery of the
neutron by James Chadwick [4]. By that time, the work of Max Planck, Albert Einstein [5] and
finally the experiments performed by Arthur Hally Compton in 1923 [6] had also established the
particle character of the photon. In the twenties, the theory of quantum mechanics emerged,
introduced by the work of Werner Heisenberg [7], Erwin Schrödinger [8], Niels Bohr [9] and
others. The first step towards a relativistic theory of quantum mechanics and therefore towards
quantum field theory (QFT) was achieved by Paul Dirac, who in 1928 came up with his famous
equation [10] which led to the prediction of the positron which in turn was discovered by Carl
Anderson in 1931 [11]. In the forties, Richard Feynman and Ernst Stückelberg then realized
that the Dirac equation actually implied the existence of an anti-particle for every fermion and
sure enough, the anti-proton and anti-neutron were discovered at the Berkeley Bevatron in 1955
and 1956, respectively [12].

In 1930, a problem arose in nuclear β decays. The naive picture there was that a nucleus
is converted into a lighter nucleus with an increased electric charge under the emission of an
electron (today we know that this process is a conversion of a neutron into a proton, however
the neutron had not yet been discovered in 1930). In this naive picture the beta decay would
simply be a two-body decay in which all energies are kinematically fixed. The experiments on
the other hand showed that the emitted electron actually had a continuous energy spectrum. To
account for the missing energy and momentum, Wolfgang Pauli suggested a new particle [13],

1
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which today is known as the neutrino. From the electron’s energy spectrum in β decays it was
clear that this particle, if real, would need to be extremely light or even massless. Experimental
data from Pion and Muon decays supported the idea of the neutrino in the forties, and the
direct detection was accomplished in 1962 at the Brookhaven National Laboratory (BNL) [14].
Many more particles, known today as mesons and baryons, were found till the 1960s. In fact the
number of discovered particles had grown so rapidly that this situation became known as the
particle zoo. Things seemed to get out of hand, when in 1961 Murray Gell-Mann came up with
the eightfold-way [15], allowing for a classification of the mesons and baryons. Gell-Mann [16],
André Petermann [17] and George Zweig [18] then independently proposed the quark model in
1964 which finally allowed to explain the composition of the hadrons. In the same year, Oscar
Wallace Greenberg introduced the idea of color as a new quantum number [19], which laid the
foundation for the SU(3) gauge group of the strong interaction. Experiments performed at
the Stanford linear accelerator (SLAC) showed, much like Rutherford’s scattering experiment,
that protons and neutrons actually have an inner structure, each consisting of three point-like
particles [20]. This strongly supported the idea of the quark model and its proof came in 1974
with the discovery of the J/Ψ meson, a bound state consisting of a charm anti-charm pair,
at SLAC [21] and BNL [22]. The charm quark had previously been predicted by Sheldon Lee
Glashow, John Iliopoulos and Luciano Maiani in 1970 to make sense of the observations in
Kaon mixing [23]. The generalization to three quark families was later suggested by Makoto
Kobayashi and Toshihide Maskawa [24] on the basis of Nicola Cabibbo’s work [25] by introducing
the Cabbibo-Kobayashi-Maskawa (CKM) matrix, which was needed to explain the observed
charge parity (CP) violation in kaon decays [26]. The other important development towards
the completion of the Standard Model (SM) of particle physics was the construction of the
theory of weak interactions. While the theory for quantum electrodynamics (QED) based on
the work of Feynman [27], Julian Schwinger [28, 29] and Shin’ichirō Tomonaga [30] had been
very successful in the forties, the theory for the weak interactions proved to be more challenging
since the effective four-fermion theory by Fermi was known to be non-renormalizable. In 1954,
Chen-Ning Yang and Robert Laurence Mills [31] constructed the non-abelian gauge group of
SU(2). In 1960, Jeffrey Goldstone announced his theorem [32], which was proved the year after
by himself, Abdus Salam and Steven Weinberg [33]. The Goldstone theorem motivated Peter
Higgs [34] and François Englert together with Robert Brout [35] to come up with the idea of the
Higgs-boson, using the mechanism of spontaneously broken gauge symmetries. Finally, in 1967,
Weinberg [36] and independently Salam in 1968 [37] established the electroweak theory based
on the SU(2)×U(1) gauge symmetry (it is worth mentioning that this gauge group had already
been proposed by Glashow in 1961 [38] and by Salam and John Clive Ward in 1964 [39]).
The business of renormalization was then taken care of by Gerardus t’Hooft and Martinus
Veltman in 1971 [40]. At this point, the gauge group of the SM – SU(3)× SU(2)×U(1) – was
established and the SM completed. Today, all particles present in the SM have been observed
experimentally, some of them decades after their respective prediction, like the top quark in
1991 [41] by the CDF collaboration or the Higgs-boson in 2012 by ATLAS [42] and CMS [43].
From today’s perspective, the chain of events that lead to the establishment of the SM might
seem straightforward. This, however, is far away from the truth. To the interested reader, I
highly suggest reading ”The Making of the Standard Model” by Steven Weinberg [44], which
gives a great insight from the point of view of someone who was highly involved in the theoretical
advancements of particle physics.

To this day, the SM has been a very successful theory and no particles beyond the ones
present in it have been detected so far. Nevertheless, we can confidently say that the SM is
not the end of the story since there are still open problems which the SM cannot explain as
we will see in Sec. 1.1.3. A natural way of trying to resolve them is to add more particles
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to the ones present in the SM. Directly detecting such new particles is however limited by a
collider’s energy. Another promising way to experimentally look for new particles are precision
measurements of observables where new physics (NP), even if much heavier than the scale of
the process, can contribute through quantum effects. In order to compare the effects of NP
to precision observables, the SM theory predictions need to compete with the experiment’s
precision. In this thesis, both the aspect of beyond the standard model (BSM) physics as well
as precision physics in the SM will be examined within the context of flavor physics. In this
introductory chapter we will recall the most important aspects of the SM, give an introduction to
effective field theories and explain some computational methods used within this thesis. We will
then discuss the flavor anomalies and introduce Leptoquarks (LQs) as BSM candidates. This
will set the basis for the following chapters. The chapters 2–8 represent the papers [45–51] in
which LQs were studied as possible solutions to the flavor anomalies while extensively studying
correlated effects and implications for future experiments. Chapters 9 and 10 on the other
hand summarize ongoing work concerning precision calculations in radiative B decays, namely
b→ sγ and b→ sγγ.

1.1 The Standard Model Lagrangian

The Standard Model of particle physics is a QFT, described by the Lagrangian LSM. It is built
up in accordance with the principles of Poincaré-invariance and local gauge symmetry, meaning
it is invariant under local gauge group transformations. As pointed out earlier, the SM gauge
group is given by

SU(3)c × SU(2)L × U(1)Y , (1.1)

where c stands for color, Y for the hypercharge and L indicates that SU(2)L only acts on
left-handed fermion fields. The SM Lagrangian can be decomposed as

LSM = Lgauge + Lfermions + LHiggs + LYukawa , (1.2)

where Lgauge describes the self-interactions of the SM vector gauge bosons, Lfermions the in-
teraction between the fundamental SM fermions and the gauge bosons, LHiggs the interaction
between the scalar Higgs boson and the gauge bosons while also including the Higgs potential
and LYukawa finally contains the Yukawa-interaction, describing the interaction between the
Higgs boson and the fermions. We will go through the individual parts in the following.

Let us start with Lfermions, which is given by

Lfermions =
∑

f=q,`
h=L,R

i ψh,f /Dψh,f , (1.3)

where the sum runs over all quarks q and leptons ` as well as over the helicities L (left) and R
(right). Note that right-handed neutrinos are not present in the SM. The gauge fields, as the
name suggests, are introduced to ensure the gauge invariance of the SM Lagrangian through
the covariant derivative

Dµ = ∂µ + ig1
Y

2 Bµ + ig2T
iW i

µ + igsΛaGa
µ . (1.4)

Here, Bµ is the gauge field of U(1)Y with its coupling constant g1, the W i
µ are the three gauge

fields of SU(2)L with coupling constant g2 and the Ga
µ are the eight gauge fields of the strong
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1st gen. 2nd gen. 3rd gen. SU(3)c × SU(2)L T3 Y Q(
uL

dL

) (
cL

sL

) (
tL

bL

)
(3, 2)

+1/2
+1/3

+2/3
−1/2 −1/3

uR cR tR (3, 1)
0 +4/3 +2/3

dR sR bR 0 −2/3 −1/3(
νeL

eL

) (
νµL

µL

) (
ντL

τL

)
(1, 2)

+1/2
−1

0
−1/2 −1

eR µR τR (1, 1) 0 −2 −1

Table 1.1: The SM fermion fields and their quantum numbers.

interaction SU(3)c, the gluons, with the strong coupling constant gs. The T i and Λa are the
generators of SU(2)L and SU(3)c, respectively, given by

T i = τ i

2 , Λa = λa

2 , (1.5)

where τ i are the Pauli matrices and λa the Gell-Mann matrices. Note that the left-handed
fermion fields in Eq. (1.3) are quark- and lepton-doublets under SU(2)L

ψq,L =
(
U
D

)
, ψ`,L =

(
ν`

`

)
, (1.6)

which both come in three different generations with U = {u, c, t}, D = {d, s, b} and ` = {e, µ, τ}.
The right-handed fermion fields on the other hand are singlets under SU(2)L, meaning they
do not transform under this gauge group which effectively amounts to setting T i = 0 in the
covariant derivative (1.4). In total there are six right-handed quark singlets, three right-handed
charged lepton singlets but no right-handed neutrinos, since they are not contained in the SM.
Additionally the quark-fields are triplets under SU(3)c, each entry of the triplets representing
one of the three colors red, green and blue. The lepton fields are not charged under SU(3)c,
which can again be achieved by setting Λa = 0 in the covariant derivative. Note that the
electromagnetic charge Q of the fermion fields is related to the hypercharge Y and the third
component of the isospin T3 via

Q = T3 + Y

2 . (1.7)

The left-handed fermions are eigenstates of T3 and their corresponding weak isospin is given
by the corresponding eigenvalue, i.e. ±1/2. The fermion fields and their quantum numbers are
summarized in Tab. 1.1.

After having introduced the fermion and gauge fields, we turn to Lgauge. It is given by

Lgauge = −1
4BµνB

µν − 1
4W

i
µνW

i,µν − 1
4G

a
µνG

a,µν , (1.8)

where

Bµν = ∂µBν − ∂νBµ , (1.9)
W i

µν = ∂µW
i
ν − ∂νW

i
µ − g2 ε

ijk W j
µW

k
ν , i, j, k = {1, 2, 3} , (1.10)

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gs f

abcGb
µG

c
ν , a, b, c = {1, . . . , 8} . (1.11)
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Here, εijk and fabc are the structure constants of SU(2) and SU(3), respectively, given by the
commutation relation of their corresponding generators

[T i, T j ] = iεijkT k , [Λa,Λb] = ifabcΛc . (1.12)

In a next step we consider LHiggs, which takes the form

LHiggs = (Dµφ)† (Dµφ)− V (φ) = (Dµφ)† (Dµφ) + µ2φ†φ− λ
(
φ†φ

)2
. (1.13)

Here, φ is the complex scalar Higgs SU(2)-doublet, which is not charged under SU(3)c. The
Higgs self-interaction and its mass term are contained in the Higgs potential V (φ) and the
interaction of the Higgs with the gauge bosons is again obtained through the covariant derivative.
We will have a detailed look at these interactions and the parameters of LHiggs in Sec. 1.1.1.

Finally, we have

LYukawa = −¯̀′
R Y` φ

† `′L − D̄′
R YD φ†Q′

L − Ū ′
R YU φ̃

†Q′
L + h.c. , (1.14)

where the Y`, YD and YU matrices are arbitrary complex 3× 3 matrices and

φ̃ = iτ2φ
∗ . (1.15)

The subscripts L and R again indicate the helicities of the fields, which explicitly read

`R =

eR

µR

τR

 , `L =



(
νeL

eL

)
(
νµL

µL

)
(
ντL

τL

)


, DR =

dR

sR

bR

 , UR =

uR

cR

tR

 , QL =



(
uL

dL

)
(
cL

sL

)
(
tL
bL

)


.

(1.16)

In Sec. 1.1.2 we will see why the fields in Eq. (1.14) are primed. Note that the gauge invariance
of LYukawa fixes the hypercharge of the Higgs-doublet to be yH = 1.

1.1.1 Higgs Mechanism and Gauge Boson Masses

So far we have avoided discussing the mass terms in the SM Lagrangian, the reason being that
it is simply impossible to write down a fermion or boson mass term by hand which does not
violate gauge invariance. In order to arrive at such mass terms, the mechanism of spontaneous
symmetry breaking (SSB) is needed. SSB describes the fact that even though the Lagrangian
itself is gauge invariant, its ground state is not. In the SM this can be achieved through the
Higgs doublet, which we have introduced in the previous section. The Higgs potential V (φ) in
Eq. (1.13) is minimized by a field configuration that fulfills

φ†φ = v2

2 , v =

√
µ2

λ
, (1.17)

where v is the vacuum expectation value (vev). By choosing a vacuum state

φ0 = 1√
2

(
0
v

)
(1.18)
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it is evident that any ground state explicitly breaks the gauge symmetry: An SU(2) gauge
transformation leaves the Lagrangian invariant, but rotates any vacuum configuration into an-
other one. Using gauge transformations, we can always choose the Higgs doublet to have a
specific form

φ = 1√
2

(
0
H

)
= 1√

2

(
0

v + h

)
. (1.19)

This choice of gauge is called unitary gauge. We have introduced h as the physical real Higgs-
field, which itself has a zero vev. Returning to SSB, there is a subgroup which leaves the vacuum
state invariant (

T3 + yH

2

)
φ0 = 1

2

(
1 0
0 0

)
φ0 = 0 . (1.20)

The subgroup generated by T3 + Y/2 stays unbroken and a massless gauge boson, the photon,
remains. As anticipated by Eq. (1.7) this is the gauge group of electromagnetism U(1)em, which
means that the gauge group SU(2)L × U(1)Y spontaneously breaks to U(1)em. The masses of
the gauge bosons can now be expressed in terms of the vev. Therefore, we first need to rotate
the gauge fields into their mass eigenstates. For the Z boson (Zµ) and the photon (Aµ) this
can be done via the Weinberg angle θW(

Zµ

Aµ

)
=
(

cos θW − sin θW

sin θW cos θW

)(
W 3

µ

Bµ

)
, (1.21)

cos θW = g2√
g2

1 + g2
2

, sin θW = g1√
g2

1 + g2
2

, (1.22)

where g1 and g2 are the gauge couplings introduced in Eq. (1.4). In order for the photon to
have the right coupling strength to the fermions, the relation

g2 sin θW = g1 cos θW = e (1.23)

must hold, where e is the elementary charge. The charged W bosons (W±
µ ) are given by

W±
µ = 1√

2

(
W 1

µ ∓ iW 2
µ

)
. (1.24)

From the first part of LHiggs with only taking φ0 yields the mass terms of the gauge bosons

(Dµ φ0)† (Dµ φ0) = g2
2v

2

4 W−
µ W

µ+ +
(
g2

1 + g2
2
)
v2

8 ZµZ
µ , (1.25)

i.e.

m2
W = g2

2v
2

4 = e2v2

4 sin2 θW
, m2

Z =
(
g2

1 + g2
2
)
v2

4 = e2v2

4 sin2 θW cos2 θW
, (1.26)

which in particular implies mW /mZ = cos θW . The absence of a term AµA
µ in Eq. (1.25)

explicitly shows that the photon stays massless. Three of the four scalar fields contained in the
complex doublet φ have therefore been absorbed by the gauge bosons to create the mass terms.
The mass term of the Higgs itself is contained in the Higgs potential V (φ) and reads

m2
h = 2µ2 = 2λv2 . (1.27)

The experimental values for mW , mZ , mh and v read [52]

mH = 125.10± 0.14 GeV , mW = 80.379± 0.012 GeV ,

mZ = 91.1876± 0.0021 GeV , v = 246 GeV . (1.28)
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Up quarks [GeV] Down quarks [MeV] Leptons [MeV]
mt 173.1(9) mb 4197(22) mτ 1776.86(12)
mc 1.275(35) ms 93.6(8) mµ 105.6583745(24)
mu 0.002270(85) md 4.670(85) me 0.5109989461(31)

Table 1.2: Values for the quark and lepton masses [52–56]. These values are dependent on the
renormalization scheme.

1.1.2 Fermion Masses and CKM Matrix

Having worked out the gauge boson mass terms we now want to establish the fermion mass
terms. These are encoded in LYukawa given in Eq. (1.14) and arise again through SSB. Taking
the part of the Yukawa Lagrangian where the Higgs takes its vev, we find

Lmψ
= − v√

2
¯̀′
R Y` `

′
L −

v√
2
D

′
R YD D′

L −
v√
2
U

′
R YU U

′
L + h.c. , (1.29)

where U = (u, c, t), D = (d, s, b) and ` = (e, µ, τ). These terms already resemble mass terms.
However, in order for them to describe the physical mass terms, the matrices Y need to be
diagonalized. This is achieved by a bi-unitary transformation, where the fields are rotated from
their weak eigenstates into their mass eigenstates

`′R = V`R `R , `′L = V`L `L ,

D′
R = VDR DR , D′

L = VDLDL , Vi ∈ U(3)
U ′

R = VUR UR , U ′
L = VUL UL , (1.30)

such that the mass matrices are in diagonal form

M` = diag(me,mµ,mτ ) = v√
2
V †

`R Y` V`L ,

Md = diag(md,ms,mb) = v√
2
V †

DR YD VDL ,

Mu = diag(mu,mc,mt) = v√
2
V †

UR YU VUL .

(1.31)

The values for the lepton and quark masses are collected in Tab. 1.2.
Since the field redefinitions in Eq. (1.30) are unitary they drop out everywhere in the La-

grangian where a field and its anti-version appear simultaneously. The only place where this is
not the case is in the charged current (CC) interaction where the W± bosons interact with the
quarks. This term explicitly reads

LCC = − g2√
2
W+

µ U
′
Lγ

µD′
L −

g2√
2
W−

µ D
′
L γ

µ U ′
L

= − g2√
2
W+

µ UL γ
µ V †

ULVDLDL −
g2√

2
W−

µ DL γ
µ V †

DLVUL UL

≡ − g2√
2
W+

µ UL γ
µ VCKMDL −

g2√
2
W−

µ DL γ
µ V †

CKM UL ,

(1.32)

where VCKM is the Cabibbo-Kobayashi-Maskawa matrix which is usually written as

VCKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.33)
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W−
µ

Vcb V ∗
ud

c

b

u

d

Figure 1.1: FCCC process b → cūd, mediated by the W− boson. The amplitude is proportional to
the CKM matrix elements Vcb and V ∗

ud.

This matrix is unitary but in general not diagonal, i.e. different generations of quarks can
interact through the W± bosons in the mass eigenbasis. As a unitary 3× 3 matrix, VCKM can
be parametrized with three real parameters and six phases. Of these six phases however, five
can be rotated away, leaving one physical phase, which is the source of CP violation in the SM.
The Wolfenstein [57] parametrization is commonly used to describe the CKM matrix

VCKM =

 1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) , (1.34)

where the parameters ρ and η are related to the parameters ρ̄ and η̄ of the generalized Wolfen-
stein parametrization

ρ+ iη = (ρ̄+ iη̄)
√

1−A2λ4
√

1− λ2[1−A2λ4(ρ̄+ iη̄)]
. (1.35)

The four values, fitted to the SM at 68% C.L., read [58]

λ = 0.2265+0.0025
−0.0023 , A = 0.801+0.029

−0.020 (1.36)
ρ̄ = 0.189+0.088

−0.0070 , η̄ = 0.358+0.046
−0.042 .

Numerically, the CKM matrix is close to the unit matrix. Its small off-diagonal entries however
allow for quarks of different generations to interact via the W bosons at tree level. These
interactions are the flavor changing charged currents (FCCCs). The amplitude of FCCCs is
proportional to the respective entry of the CKM matrix, see e.g. Fig. 1.1.

1.1.3 Problems of the Standard Model

As mentioned in the introduction, the SM is a very successful theory but fails at explaining
certain observations.

• The SM only contains three of the four fundamental forces. Gravity is not included.

• Only left-handed neutrinos are contained in the SM. Neutrinos have however been mea-
sured to be massive [59] which requires the introduction of right-handed neutrinos or
higher order operators to generate a mass term. The source and form of the mass terms is
so far unknown. Furthermore, neutrino oscillations have been experimentally confirmed
(see Ref. [60] for an overview). Similarly to the CKM matrix in the SM, they are governed
by the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [61,62].
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• The SM is not able to account for the imbalance between matter and anti-matter in the
observed universe.

• Dark matter and dark energy constitute to about 95% of the energy content in our uni-
verse. The SM does not explain this.

Furthermore there are some issues that are of theoretical nature:

• No mechanism protects the Higgs mass from large loop corrections. This is known as the
hierarchy problem.

• A CP violating gluon self-interaction term of the form

θ

32π2 ε
µνρσGa

µνG
a
ρσ (1.37)

is invariant under the SM gauge group. However, the current upper bound for θ is ex-
tremely small [63]. What is the reason for this?

• The SM contains 18 free parameters: nine fermion masses (i.e. the Yukawa couplings),
four parameters in the CKM matrix, three gauge couplings and two parameters in the
Higgs potential. Why do these parameters take their respective value and what is their
origin?

Obviously a lot of effort has been put into solving these problems and in fact there are mod-
els which can address some of them. However, none of the hypothesized particles have been
observed so far.

1.2 Effective Field Theory

Due to the large mass hierarchy in the SM, see Eq. (1.28) and Tab. 1.2, it is possible that a
decay process contains very different mass and energy scales at the same time. When the light
and heavy scales are clearly separable, it is desirable to construct an equivalent theory in which
only the light fields are present. Such theories are called effective field theories (EFTs) and the
interaction terms are usually written as effective Hamiltonians or effective Lagrangians. As an
example, let us consider the process b→ cūd, which is mediated by a W− boson in the SM, see
the Feynman diagram in Fig. 1.1. The full amplitude of this decay reads

A = ig2
2

2 VcbV
∗

ud ū(pc)γµPLu(pb)
(
gµν −

kµkν

m2
W

)
1

k2 −m2
W

ū(pd)γµPLv(pu) , (1.38)

where the components of k = pb−pc are of O(mb). Having the clear hierarchy mW � mb,mc �
md,mu ≈ 0 we can expand the amplitude for large mW which yields at leading order

A = − ig2
2

2m2
W

VcbV
∗

ud ū(pc)γµPLu(pb) ū(pd)γµPLv(pu) . (1.39)

Constructing an EFT which only contains the light fields is obvious in this case and the effective
Hamiltonian reads

Heff = C
(
c̄γµPLb

)(
d̄γµPLu

)
. (1.40)
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All that is left to do is to fix the constant C in such a way that both theories are in fact
equivalent. This process is called the matching of the EFT onto the full theory and C is called
the Wilson coefficient. By requiring

A = 〈cūd| − iHeff|b〉

one finds

C = g2
2

2m2
W

VcbV
∗

ud = 4GF√
2
VcbV

∗
ud . (1.41)

Note that the effective Hamiltonian in Eq. (1.40) exactly describes Fermi’s effective four-fermion
theory, which is also indicated by the Fermi constant GF contained in C. This effective Hamil-
tonian is of mass-dimension six. Had we considered additional terms beyond leading order in
mW , those terms would have been of O(k2/m2

W ). In position space, the momentum k corre-
sponds to derivatives of the fields, making the operator of higher dimension. Generally, effective
Hamiltonians are of the form

Heff = 1
Λ2

∑
k

C
(6)
k O

(6)
k + 1

Λ4

∑
k

C
(8)
k O

(8)
k + . . . ,

where the superscripts indicate the dimensionality of the effective operators and Λ is a cutoff
scale below which the effective theory is valid, in our exemplary case mW . The Wilson coeffi-
cients only depend on the heavy scales that have been integrated out and the renormalization
scale µ. The dependence on the light scales arises from the matrix elements of the effective
operators.

1.2.1 Running of the Couplings

Including higher orders in QCD, the Wilson coefficients will be of the form

Ci(µ) ≈ O(α0
s) +

∞∑
n=1

(
αs(µ)

4π

)n
(
an0(Λ) logn

(
Λ2

µ2

)
+ an1(Λ) logn−1

(
Λ2

µ2

)
+ . . .+ ann(Λ)

)
,

(1.42)

where the ani(Λ) are functions that depend on the masses of the heavy particles that have been
integrated out. The terms αn

s logn are called leading logarithms (LL), αn
s logn−1 are next-to-

leading logarithms (NLL) and so on. These logarithms bare one problem: Evaluated at a low
scale µl, they become too large for a treatment within perturbation theory. Of course, one could
simply evaluate the Wilson coefficients at a high scale Λ and the logarithms would disappear.
Unfortunately this does not solve the problem either because by doing so, the matrix elements
of the effective operators then contain logarithms of the form log(µ2/µ2

l ) which become large
at the high scale. Ideally, one evaluates the Wilson coefficients at the high scale and then
evolves them down to the low scale via a differential equation. This can be achieved through
renormalization group equations (RGEs) which take the form

µ
d ~C(µ)
dµ

= γ̂T ~C(µ) . (1.43)

Here, ~C contains the Wilson coefficients Ci in a certain basis and γ̂ is the corresponding anoma-
lous dimension matrix (ADM) which can be calculated in perturbation theory

γ̂ = αs

4π γ̂
0 +

(
αs

4π

)2
γ̂1 + . . . . (1.44)
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The ADM is derived through the renormalization of the Wilson coefficients

γ̂T = −
(
Z̄C
)−1

µ
dZ̄C

dµ
, (1.45)

where Z̄C is the counter-term matrix, which also governs how the Wilson coefficients mix
under renormalization. The renormalization of the Wilson coefficients is equivalent to the
renormalization of the effective operators: One only renormalizes either one but not both. The
solution of the RGE of Eq. (1.43) can be written as

~C(µ) = Û(µ, µ0)~C(µ0) , (1.46)

where the evolution matrix Û reads

Û(µ, µ0) = exp
[∫ gs(µ)

gs(µ0)

γ̂T (g′)
β(g′) dg

′
]
. (1.47)

We introduced the β-function β(g), which enters the RGE of gs

µ
dgs

dµ
= β(gs) . (1.48)

Like the ADM it can be calculated in perturbation theory

β(gs) = −β0
g3

s

16π2 − β1
g5

s

(16π2)2 − . . . (1.49)

and is known today up to five loops, the first two orders reading

β0 = 11Nc − 2f
3 , β1 = 34

3 N
2
c −

10
3 Ncf − 2CF f . (1.50)

Here, Nc is the number of colors, CF is a color factor and f is the number of active flavors. The
RGE of gs is obviously related to the RGE of αs, whose solution can be written in terms of the
β-function and to leading order is given by

αs(µ) = αs(µ0)
1− β0

αs(µ0)
2π log

(
µ0
µ

) . (1.51)

The value of αs(mZ), which was measured precisely at LEP [52]

αs(mZ) = 0.1179± 0.001 , (1.52)

can be used as an initial value. Expanding Eq. (1.51) we obtain

αs(µ) = αs(µ0)
[
1 + β0

αs(µ0)
2π log

(
µ0
µ

)
+
(
β0
αs(µ0)

2π

)2
log2

(
µ0
µ

)
+ . . .

]
(1.53)

and see explicitly that the LL terms get resummed to all orders. If one aims at a resummation
of the NLL terms as well, one needs to take into account higher orders of the β-function in
Eq. (1.51), i.e. β1 for NLL precision.
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b s

γ

W

U U

b s

g

W

U U

Figure 1.2: SM contribution to b → sγ (left) and b → sg (right). The internal quark can be any
up-type quark U = {u, c, t} and the crosses indicate other possible places of photon or gluon emissions,
respectively. These FCNC are only induced at loop-level.

b s

O7

γ

b s

O8

g

Figure 1.3: Contribution of the operator O7 to b→ sγ (left) and O8 to b→ sg (right).

As an example of running operators and mixing among them, let us have a look at a subset
of the B physics effective Hamiltonian

Heff ⊃ −
4GF√

2
VtbV

∗
ts(C2O2 + C7O7 + C8O8) ,

O2 = (s̄αγµPLcα) (c̄βγ
µPLbβ) ,

O7 = e

16π2mb (s̄ασ
µνPRbα)Fµν ,

O8 = gs

16π2mb

(
s̄ασ

µνT a
αβPRbβ

)
Ga

µν ,

(1.54)

where α and β are color indices and σµν = i[γµ, γν ]/2. To match the operators at O(α0
s), one

can use the processes b→ sγ and b→ sg for C7 and C8, respectively. In the SM these processes
are loop-suppressed since flavor changing neutral currents (FCNCs) do not occur at tree level
as seen in Fig. 1.2. On the EFT side, O7 is the only operator contributing to b → sγ while
O8 is the only one contributing to b → sg, see Fig. 1.3. Note that O2 is the same operator
as in Eq. (1.40) when exchanging the u and c field as well as the d and s field, so we have
already discussed the matching of C2 at lowest order. Even though there are one-loop diagrams
involving O2 that seemingly contribute to b → sγ and b → sg at O(α0

s), see Fig. 1.4, their
contribution vanishes.

Next, we want to see how the operators mix and evolve under the RGE. For this purpose, the
entries of the ADM γ̂ have to be calculated. This requires the computation of O(αs) diagrams.
In Fig. 1.5 we show the EFT diagrams that give rise to the diagonal entries of the ADM. The
diagrams giving rise to the off-diagonal entries and therefore inducing the mixing among the
operators are shown in Fig. 1.6. Note that the mixing of O2 into O7 and O8 already involves a
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O2b s
c c

γ

O2
b s

c c

g

Figure 1.4: Apparent O2 contribution to b→ sγ (left) and b→ sg (right). These contributions vanish.

two-loop diagram. We omit explicitly calculating the entries of the ADM here and instead just
give its result

γ̂0 =

−2 516
81

70
27

0 32
3 0

0 −32
9

28
3

 . (1.55)

To solve the RGE, we need to find the evolution matrix Û

Û(µ, µ0) = exp
[
−
∫ gs(µ)

gs(µ0)

γ̂0T

β0g′dg
′
]

= exp
[
− γ̂

0T

2β0
log

(
αs(µ)
αs(µ0)

)]
. (1.56)

Abbreviating η = αs(µ0)/αs(µ) and taking the analytic expression for β0 from Eq. (1.50), the
result reads

Û(µ, µ0) =


η

3
2f−33 0 0

280
459η

14
33−2f − 22

513η
16

33−2f − 4946
8721η

3
2f−33 η

16
33−2f 8

3

(
η

14
33−2f − η

16
33−2f

)
35
153

(
η

14
33−2f − η

3
2f−33

)
0 η

14
33−2f

 . (1.57)

1.3 Computational Methods
The computation of loop integrals is unavoidable in any precision calculation. When many
different energy scales, propagators, loops or a combination of the three are present, these
calculations become very challenging. In this section, we introduce some techniques and tools
that are useful in this undertaking.

1.3.1 The Heavy Mass Expansion

The heavy mass expansion (HME) is a technique that can be applied if all masses of a given
Feynman diagram Γ can be divided into a set M = {M1,M2, . . .} of large masses and a set
m = {m1,m2, . . .} of small masses and if all external momenta q = {q1, q2, . . .} are small
compared to the scale of the large masses. In the previous section we have seen that those are
exactly the requirements for the applicability of an EFT, making the HME an invaluable tool
for matching calculations. The dimensionally regularized (unrenormalized) Feynman integral
FΓ associated with the Feynman diagram Γ can then be written as [64]

FΓ
M→∞∼

∑
γ

FΓ\γ ◦ Tqγ ,mγ Fγ(qγ ,mγ ,M) , (1.58)

13



Introduction

O2 O7 O8

Figure 1.5: Exemplary EFT diagrams giving rise to the diagonal entries of the ADM, i.e. O(αs)
contributions of the operators O2 (left), O7 (middle) and O8 (right).

O2 O2
O8

Figure 1.6: Exemplary diagrams showing the mixing among the operators. Left (middle): O2 mixing
into O7 (O8). Right: O8 mixing into O7. Note that O7 does not mix into other operators.

where the sum is taken over all subgraphs γ of Γ and FΓ\γ denotes the Feynman integral
corresponding to the reduced graph Γ \ γ, i.e. Γ without γ. A subgraph γ contains all lines
with heavy masses M and is at the same time one-particle-irreducible with respect to lines
with small masses m. The operator T acts directly on the integrand of the subgraph γ and
performs a Taylor expansion in the variables mγ , the set of light masses in γ, and in qγ , the set
of the external momenta with respect to the subgraph γ. Note that an internal momentum with
respect to the whole graph Γ like a loop momentum can be an external momentum with respect
to the subgraph γ. To illustrate this procedure, let us have another look at the left-hand side of
Fig. 1.2, i.e. the process b→ sγ, which we encountered in the previous section. Here, the heavy
masses correspond to M = {mt,mW }, the light masses to m = {mb,mc,mu} and the external
momenta to q = {pb, q}, where pb is the momentum of the b quark and q the momentum of the
photon. In case where the top quark runs in the loop, the whole diagram is the only existing
subdiagram and one can directly apply the expansion to the whole diagram. For the c and and
u quark however, also the subdiagram consisting only of the W boson line exists in addition to
the full diagram.

1.3.2 Integration by Parts Relations

With increasing amounts of loops and propagators, the number of loop integrals to be calculated
in a given process can increase drastically. The different integrals are in general not independent
but related through integration by parts (IBP) identities [65]. They arise through vanishing
surface terms ∫ m∏

i=1
ddli

∂

∂lµj

(
kµ

a

(P 2
1 −m2

1)n1 . . . (P 2
n −m2

n)nn

)
= 0 , (1.59)

where Pi are linear combinations of the loop momenta li and the external momenta pk and ka

is one of either the external momenta or the loop momenta. Performing the derivative on the
left-hand side of the above equation explicitly yields combinations of different loop integrals.
Repeating the procedure for all possibilities of ka and specific choices of the indices nk, it is
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possible to construct linear equations among the different loop integrals. In the end this allows
to express the original loop integrals in terms of a common basis of integrals, called master
integrals (MIs). Not only are these MIs in general less complex to compute, the procedure
using IBP relations often allows for a drastic reduction in number of integrals that need to be
calculated.

1.3.3 Master Integrals From Differential Equations

A possible way to calculate MIs is through differential equations [66]. Consider a set of MIs
~f(ε,m) = {M1, . . .Mn}, where m is a particle’s mass contained in the MIs. Differentiating the
MIs with respect to m and using IBP relations to express the derivatives in terms of the MIs,
one finds a system of first order differential equations

∂

∂m
~f (ε,m) = A (ε,m) ~f (ε,m) , (1.60)

where A is an n × n matrix depending on the dimensional regulator ε and the mass term m.
These differential equations are usually very difficult to solve. In Ref. [67] it was therefore
suggested to move to a canonical form (also called ε-form) which is related to the original MIs
by the basis change ~f = T~g. Obtaining a canonical form in a first step usually requires to
perform a variable change m→ x(m) in the differential equation. Two explicit cases are shown
in Chapter 9, Eqs. (9.9) and (9.10). The integrals in canonical form ~g by definition obey

∂

∂x
~g (ε, x) = εÃ (x)~g (ε, x) . (1.61)

The differential equation of this form has the huge advantage compared to the one in Eq. (1.60)
that the matrix Ã only depends on x but not on ε. Its solution can therefore be written in
terms of Chen iterated integrals [68]. Assuming an expansion in ε for the MIs in the canonical
basis

~g (ε, x) =
∑
i=a

εi~g(i) (x) , (1.62)

the solution can further be simplified to (see Ref. [69] and references therein)

~g(a)(x) = ~g(a)(x0) ,

~g(n)(x) =
∫ x

x0
dx′Ã(x′)~g(n−1)(x′) + ~g(n)(x0) , n > a

(1.63)

where ~g(i)(x0) denote the MIs in the canonical basis evaluated at a fixed value of x = x0 which
can be used to fix the integration constants. Note that the above procedure can be generalized
to the case where the MIs depend on several masses mj . In many applications, including the
one in Chapter 9, the matrix Ã can be brought into the form

Ã =
∑

j

Ãj

x− aj
, (1.64)

where Ãj are constant matrices. The solution of the differential equation can then be written
in terms of Goncharov polylogarithms (GPLs) [70], defined recursively as

G ({a1, . . . , an}, x) =
∫ x

0

dt

t− a1
G ({a2, . . . , an}, t) , (1.65)
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where G({}, x) = 1 and the aj are called weights. When constructing solutions using GPLs,
the amount of different combinations of weights usually grows very large. To obtain a result in
a compact form, it can therefore be desirable to expand the GPLs around certain values of x.
In Chapter 9 the cases x ≈ 0 and x ≈ 1, corresponding to m → ∞ and m = 0, respectively,
will be of interest. In the case of x ≈ 0, the expansion is straightforward since one can directly
expand the integrand. Let Sx

a (f(x)) be an operator that expands a function f(x) in x around
x = a. The expansion around x = 0 then reads

G ({a1, . . . , an}, x) ≈
∫ x

0
dt1St1

0

( 1
t1 − a1

∫ t1

0
dt2St2

0

(
1

t2 − a2

∫ t2

0
. . .

))
x� 1 . (1.66)

This expression is valid for an 6= 0. For x ≈ 1 it is useful to split the integration path. As an
example, we consider a GPL of weight two

G({a1, a2}, x) =
(∫ 1

0

dt1
t1 − a1

+
∫ x

1

dt1
t1 − a1

)(∫ t1

0

dt2
t2 − a2

)
≈ G({a1, a2}, 1) +G({a2}, 1)

∫ x

1
dt1St1

1

( 1
t1 − a1

)
+
∫ x

1
dt1St1

1

[( 1
t1 − a1

)∫ t1

1
dt2St2

1

( 1
t2 − a2

)]
1− x� 1 .

(1.67)

This equation is only true for ai 6= 1. In case where one or several weights are equal to 1, one
can apply shuffle relations [71] to remove them. To higher weights one simply extends the above
procedure iteratively.

1.3.4 Soft Gluon Approximation

When calculating higher order corrections to decay processes, the inclusion of bremsstrahlung
corrections becomes necessary in order to cancel divergences stemming from virtual corrections.
The bremsstrahlung corrections induce infrared (IR) divergences, arising from diagrams where
a gluon with vanishing momentum k is radiated from an external leg. To calculate these
divergences, it is useful to introduce a cutoff energy ∆E. For gluon momenta |k| < ∆E it is
possible to make an approximation for the matrix element, called soft gluon approximation. As
a starting point let us consider a diagram with an external fermion, given by

M0 = A(p)u(p) = (1.68)

where u(p) is the fermion’s spinor with momentum p and A(p) contains the remaining part
of the amplitude, depicted by the gray blob. Radiating a gluon with momentum k from the
fermion line yields

M1 =

= A(p− k)
i(/p− /k +m)

(p− k)2 −m2)(−igsT
a/ε)u(p) ,

(1.69)
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where ε is the gluon’s polarization vector. Assuming the gluon momenta k to be soft, i.e.
disregarding linear terms in k, one can easily show that the soft matrix element can be written
as

M1,s = −igsT
a p · ε
p · k
M0 . (1.70)

We see that the soft matrix element is proportional to the Born amplitude and the IR divergence
is encoded in 1/(p · k). An analogous expression is obtained for radiation from an outgoing leg
that differs only by the global sign. One can proceed to calculate the cross section for the soft
matrix element, only integrating over the phase space region where the gluon momentum k is
soft, i.e. |k| < ∆E. This allows to obtain analytic expressions for the IR singularities which
manifest themselves either as 1/εIR poles in dimensional regularization or as terms proportional
to log(∆E/mg) when a regulator mg is used for the gluon mass. Such integrals have been
calculated in Ref. [72], see also Ref. [73]. For the contributions of hard gluons with k > ∆E one
proceeds with the full matrix element, where the cutoff ∆E is kept in the phase space integral
as lower bound for the gluon momentum to avoid the IR singularities.

1.4 The Flavor Anomalies

In the past few years there have been several hints for physics BSM which appeared in tests
of lepton flavor universality (LFU). The SM itself is lepton flavor universal to a very good
approximation since the gauge boson couplings to leptons do not depend on flavor. LFU in
the SM is only broken by the Yukawa couplings, which however are very small due to the
suppression of m`/mh. Therefore, experimental evidence for lepton flavor universality violation
(LFUV) would be clear evidence of NP. Additionally, it is also interesting to look for lepton
flavor violating (LFV) processes such as µ→ eγ since these are absent in the SM. The collected
hints for LFUV have become known as the flavor anomalies. They appear in the FCNC b→ s``
processes as well as in the FCCC b → c`ν processes. Furthermore there is the long standing
tension between experiment and theory prediction of the anomalous magnetic moment (AMM)
of the muon which can also be seen as a flavor anomaly since it vanishes in the massless limit.
We will summarize these anomalies in this section and report on their status and discuss general
aspects of NP models that could potentially resolve these anomalies. The latter will also be
illustrated from an EFT point of view.

1.4.1 b → s``

Semi-leptonic FCNC b quark decays are suppressed in the SM since they occur only at the loop
level and additionally by the small CKM matrix element Vts. This means that even if potential
NP interacts weakly with the SM and/or is very heavy, its contribution relative to the SM can
still be sizable. It is therefore very intriguing to test LFU in these processes. From a theoretical
point of view, the observables

R(K(∗)) = Br[B → K(∗)µµ]
Br[B → K(∗)ee]

(1.71)

are promising for this purpose since many theoretical uncertainties cancel in the ratio and the
mass effects of the muon and electron can further be neglected. The predictions for R(K(∗))
are hence very close to unity except for the low q2 region (q2 being the invariant mass of the
lepton pair) where QED and mass effects start to play a role [74]. These observables have been
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Figure 1.7: Experimental situation for R(K) (left) and R(K∗) (right).

measured at Belle [75], BaBar [76] and LHCb [77], whose most recent results read [78,79]

R(K)LHCB = 0.846+0.060
−0.054(stat)+0.016

−0.014(sys) ,
R(K∗)LHCB = 0.69+0.11

−0.07(stat)± 0.05(sys) .
(1.72)

These measurements show a tension to the SM prediction of ∼ 2.5σ. The more recent measure-
ment of R(K∗) by Belle [80], presented at Rencontres de Moriond EW 2019, on the other hand
agrees with the SM prediction

R(K∗)Belle = 0.96+0.45
−0.29(stat)± 0.11(sys) , (1.73)

but is due to its large errors also compatible with the measurement of LHCb. The experimental
situation is summarized in Fig. 1.7.

Additionally, another discrepancy between theory prediction and experiment was found in
the angular observable P5′ (see Ref. [81] for its precise definition and theory prediction) in the
process B → K∗µµ. It was first measured by LHCb [82, 83] and later also by Belle [84, 85]
ATLAS [86] and CMS [87]. Combining the experimental data and the theory predictions yields
a discrepancy at the 3σ level [88,89]. This situation is depicted in Fig. 1.8. Finally there is also
a small tension of around 2σ in the decay Bs → φµµ [88, 89].

Even if none of the mentioned observables is itself proof for NP, the accumulation of tensions
between the SM and experiments is intriguing. Of course, if one has a specific NP model at hand
which potentially resolves these tensions, other B physics observables that agree with the SM
should not be spoiled. In fact, there are many such observables, including b → sγ transitions
and other angular and polarization observables. In order to account for all of them, several
groups [88, 90–101] have performed so called global fits. In those fits, a certain set of Wilson
Coefficients is analyzed regarding how well it fits to the data. Some of these scenarios are able
to resolve the anomalies and give overall a much better fit to the data than the SM with a
significance of up to 5σ.
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Figure 1.8: Experimental situation for P5′ compared to its SM prediction [102].

Let us now consider a few of these scenarios. We define the effective Hamiltonian as

Heff = −4GF√
2
VtbV

∗
ts

∑
i

CiOi ,

O(′)
7 = e

16π2 (s̄σµνPR(L)b)Fµν ,

O(′)
9` = e2

16π2 (s̄γµPL(R)b)(¯̀γµ`) ,

O(′)
10` = e2

16π2 (s̄γµPL(R)b)(¯̀γµγ5`) .

(1.74)

In principle there are also scalar operators which however are tightly constrained by Bs → µµ
and therefore not considered here. The studied scenarios range from one-dimensional hypothe-
ses, i.e. with one degree of freedom, up to a a six-dimensional one, in which every Wilson
Coefficient is treated as free parameter. In each case there are scenarios that give a very good
fit to the data. The best ones in the 1-D case are C9µ only, C9µ = −C10µ and C9µ = −C ′

9µ.
Their respective best-fit region and pull, all of them exceeding 5σ with respect to the SM, are
given in Tab. 1.3. Among the 2-D fits there are many scenarios that yield a good fit, see e.g.
Ref. [98]. In Fig. 1.9 we show two specific scenarios. In the first one, C9µ and C10µ are the two
independent variables. In the latter, we have a LFUV C9µ = −C10µ contribution supported by
a LFU contribution in C9`, i.e.

C9e = C9τ = CLFU
9` ,

Ctot
9µ = C9µ + CLFU

9` ,

C10µ = −C9µ .

(1.75)

This scenario will be of great importance for the remainder of this thesis. Both previously
mentioned 2-D scenarios yield a very good fit to data, see Tab. 1.4. Note that for the second
scenario the global fit prefers a sizable LFU effect, even exceeding the LFUV one. Interestingly,
this scenario has become favorable with the announcement of the newest measurement by Belle
as can be seen in Fig. 1.9. For the pre-Moriond data (dashed lines), the best fit region (red)
showed a very good overlap with the R(K(∗)) (blue) and the remaining b→ sµµ data (yellow)
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Wilson Coefficient Best fit (1σ) Pull
C9µ −0.98± 0.17 5.6σ

C9µ = −C10µ −0.46± 0.10 5.2σ
C9µ = −C ′

9µ −0.99± 0.16 5.5σ

Table 1.3: One-dimensional global fit scenarios for b→ s`` transitions. Values taken from Ref. [98].

Wilson Coefficient Best fit Pull

(C9µ, C10µ) (−0.91, 0.18) 5.4σ(
C9µ = −C10µ, C

LFU
9`

)
(−0.3,−0.74) 5.7σ

Table 1.4: Example for 2-D global fit scenarios (see text). Values taken from Ref. [98].

for both scenarios. Now, there is no direct overlap anymore in the first scenario while the fit
for the second scenario has even improved.

Of course, the global fits are a priori model-independent. However, the choice of a specific
scenario is usually motivated by one or several NP models. For example, the combination
C9µ = −C10µ is induced by models that only couple to left-handed fermions. Even though a
roughly O(20%) effect relative to the SM is needed at the level of the amplitude to account for
the anomaly, this still amounts to a relatively small effect since, as previously mentioned, this
process is already suppressed in the SM. This means that NP should either contribute through
loops or be relatively heavy and/or have couplings that are relatively small.

1.4.2 b → c`ν

Contrary to b → s`` transitions the b → c`ν transitions occur already at tree level in the SM.
Nevertheless they are still very good candidates to test LFU through the observables

R(D(∗)) = Br[B → D(∗)τν]
Br[B → D(∗)`ν]

, (1.76)

where ` = {e, µ}. Again, the ratio allows for a good cancellation of theoretical and parametric
uncertainties and the SM predictions read [103]

R(D)SM = 0.299± 0.003 ,
R(D∗)SM = 0.258± 0.005 .

(1.77)

These values are not close to one anymore since the mass effect of the tau cannot be neglected.
The ratios have been measured at BaBar [104, 105] Belle [106–109] and LHCb [110–112], and
their combined value reads [103]

R(D) = 0.340± 0.027(stat)± 0.013(sys) , (1.78)
R(D∗) = 0.295± 0.011(stat)± 0.008(sys) , (1.79)

which corresponds to a tension of around 3σ compared to the theory predictions. The different
experimental results as well as their combination are shown and compared to the SM prediction
in Fig. 1.10. Note that all central values consistently lie above their respective theory prediction.
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Figure 1.9: The two 2-D global fit scenarios (C9µ, C10µ) (left) and (C9µ = −C10µ, C
LFU
9` ) (right). The

dashed lines (opaque areas) indicate the pre-(post-)Moriond data. The best fit region for the global fit
is shown in red, the data from R(K(∗)) is shown in blue and the remaining b→ sµµ data is depicted in
yellow. Plots taken from Ref. [97].

Similarly, LHCb also measured the ratio

R(J/ψ) = Br[Bc → J/ψ τν]
Br[Bc → J/ψ µν] (1.80)

to be [113]

R(J/ψ) = 0.71± 0.17(stat)± 0.18(sys) . (1.81)

Compared to the SM prediction [114–117]

R(J/ψ)SM = 0.26± 0.02 (1.82)

this shows a tension of around 2σ which on its own is not significant but points in the same
direction as R(D(∗)) since the experiment again lies above the SM prediction.

Global fits have also been performed for b → cτν [118–122]. The relevant operators are
collected within the effective Hamiltonian, given by

Heff = 2
√

2GFVcb

[
(1 + CL

V )OL
V + CR

SOR
S + CL

SOL
S + CTOT

]
,

OL
V = (c̄γµPLb)(τ̄ γµPLν) ,
OR

S = (c̄PRb)(τ̄PLν) ,
OL

S = (c̄PLb)(τ̄PLν) ,
OT = (c̄σµνPLb)(τ̄σµνPLν) .

(1.83)

Even though the fits are mainly driven by R(D(∗)), they also contain polarization observables
in B → D∗

(L)τν. Note that the running of the Wilson coefficients is also taken into account.
Among the most prominent scenarios are the 1-D hypothesis of CL

V only and the 2-D hypothesis
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Figure 1.10: Different experimental measurements of R(D) and R(D∗) as well as the SM prediction
thereof. The world average is shown in red, the 3σ contour is depicted as dashed line [103].

with CV and CL
S = −4CT , where the combination CL

S = −4CT is usually induced by Fierz
identities. The latter scenario is shown in Fig. 1.11. Both scenarios give a good fit to data and
allow to resolve the anomaly in b → cτν, however the 1-D hypothesis predicts R(D) = R(D∗)
which is not what is currently observed.

Note that an effect of O(10%) at the level of the amplitude is needed to resolve the anomaly.
Since this process occurs already at tree-level in the SM, the NP contribution needs to be sizable.
Therefore, NP should not be heavier than a few TeV and not couple too weakly.

1.4.3 Anomalous Magnetic Moment of the Muon

One of the longest standing anomalies can be found in the anomalous magnetic moment (AMM)
of the muon

aµ ≡
(g − 2)µ

2 . (1.84)

Its current experimental value is dominated by the BNL experiment E821 [123]

aexp
µ = 116592089(63)× 10−11 . (1.85)

Compared to its SM prediction, which recently has been reevaluated in a community-wide
effort [124]

aSM
µ = 116591810(43)× 10−11 , (1.86)

the difference between theory and experiment yields

δaµ = aexp
µ − aSM

µ = (279± 76)× 10−11 , (1.87)
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BR ( Bc → τ ⋁ ) > 10 %

BR ( Bc → τ ⋁ ) > 60 %
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Figure 1.11: Global fit for the 2-D NP hypothesis in b→ cτν with CL
V and CL

S = −4CT . The Wilson
Coefficients are given at the matching scale of 1 TeV, the plot is taken from Ref. [121].

which corresponds to a deviation of 3.7σ. On the theory side, the QED [125] and EW [126–128]
contributions are under good control. The main uncertainties stem from hadronic effects, namely
the hadronic vacuum polarization [129–135], the hadroninc light-by-light scattering [136–142]
and higher-order hadronic corrections [143,144]. A lot of effort is currently invested in improving
these calculations, prompted by upcoming measurements at Fermilab [145] and J-PARC [146]
which aim at reducing the experimental uncertainty by a factor four.

Since the AMM of the muon is proportional to the muon’s mass, it is already LFUV in
the SM itself. However, in order to resolve the tension between experiment and theory, an
additional source of LFUV in NP is needed since otherwise the AMM of the electron would be
spoiled. Hence, δaµ is another hint for LFUV. Also in this case a rather substantial NP effect
is needed to resolve the difference between theory and experiment since it is of the same order
as the SM EW contribution.

1.5 Leptoquarks

We have seen that several hints for LFUV exist in semi-leptonic B decays. Since leptoquarks
(LQs) directly couple quarks to leptons, they are natural candidates to resolve these anomalies
since they can generate FCNCs already at tree-level and also contribute to FCCC at tree-
level. We have seen that the latter is a necessary condition to resolve the tension in b → cτν.
Furthermore, LQs have the advantage that they contribute to other observables like neutral
meson mixing only through loops, making these constraints less severe. Such constraints usually
exclude models that induce FCNCs at tree level.

In this section, we will briefly introduce the LQ Lagrangian (further details will follow in
chapters 2 to 8). We will also preempt some key aspects to solve the anomalies with LQs,
which will be relevant for the remainder of this thesis. Finally we conclude this section with an
extended outlook to the work performed in Refs. [45–51] which correspond to the chapters 2 to 8
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of this thesis.

1.5.1 The Leptoquark Lagrangian

There are in total ten LQ representations: five scalar and five vector ones. They were first clas-
sified systematically in Ref. [147]. The representations, their quantum numbers and interaction
Lagrangian with the SM fermions read

SLQ QSM Lint

Φ1

(
3, 1,−

2
3

) (
λ1R

fj ū
c
f `j + λ1L

fj Q̄
c
f iτ2Lj

)
Φ†

1 + h.c. ,

Φ̃1

(
3, 1,−

8
3

)
λ̃1

fj d̄
c
f `jΦ̃†

1 + h.c. ,

Φ2

(
3̄, 2,−

7
3

) (
λ2RL

fj ūfLj + λ2LR
fj Q̄f iτ2`j

)
Φ†

2 + h.c. ,

Φ̃2

(
3̄, 2,−

1
3

)
λ̃2

fid̄fLiΦ̃†
2 + h.c. ,

Φ3

(
3, 3−

2
3

)
λ3

fiQ̄
c
f iτ2(τ · Φ3)†Li + h.c. .

(1.88)

VLQ QSM Lint

V1

(
3̄, 1,−

4
3

) (
κ1R

fi d̄fγµ`i + κ1L
fi Q̄fγµLi

)
V µ†

1 + h.c. ,

Ṽ1

(
3̄, 1,−

10
3

)
κ̃1

fiūfγµ`iṼ
µ†

1 + h.c. ,

V2

(
3, 2,−

5
3

) (
κ2RL

fi d̄c
fγµLi + κ2LR

fi Q̄c
fγµ`i

)
V µ†

2 h.c. ,

Ṽ2

(
3, 2,

1
3

)
κ̃2

fiū
c
fγµLiṼ

µ†
2 + h.c. ,

V3

(
3, 3,

4
3

)
κ3

fiQ̄fγµ(τ · V µ†
3 )†Li + h.c. .

(1.89)

The λ and κ are arbitrary 3× 3 coupling matrices with flavor indices f and j. The scalar LQs
are denoted by Φ and the vector LQs by V , the (charge-conjugated) quark and lepton doublets
are denoted by Q(c) and L, respectively, and the up (down) quark and lepton singlets by u(c)

(d(c)) and `, respectively. The interaction of LQs and the SM gauge bosons can be introduced
through the covariant derivative [148]:

LΦ
gauge =

∑
scalars

(DµΦ)† (DµΦ) ,

LV
gauge =

∑
Vectors

−1
4F

†
µνF

µν ,
(1.90)

with

Fµν = DµVν −DνVµ . (1.91)
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Furthermore, a mass term for the SLQs can be added in a straightforward way. Additionally
the SLQs can also interact with the SM Higgs which actually allows for mixing among the SLQ
representations. The Lagrangian for these interactions reads

LHΦ =−A2̃1
(
Φ̃†

2H
)
Φ1 +A32̃

(
Φ̃†

2
(
τ · Φ3

)
H
)

+ Y2̃2
(
Φ†

2H
)(
Hiτ2Φ̃2

)
+ Y31̃

(
Hiτ2 (τ · Φ3)†H

)
Φ̃1 + Y31

(
H† (τ · Φ3)H

)
Φ†

1 + h.c.

− Y22
(
Hiτ2Φ2

)(
Hiτ2Φ2

)† − Y2̃2̃
(
Hiτ2Φ̃2

)(
Hiτ2Φ̃2

)†
− iY33εIJKH

†τIHΦ†
3,KΦ3,J

−
3∑

k=1

(
m2

k + YkH
†H
)
Φ†

kΦk −
2∑

k=1

(
m̃2

k + Yk̃H
†H
)
Φ̃†

kΦ̃k .

(1.92)

The m2
Φ represent the bare mass terms of the LQs. When the Higgs acquires the vev, the mass

terms are shifted and the mass matrices become off-diagonal. These matrices then need to be
diagonalized via a redefinition of the LQ fields, which then also changes the coupling matrices
λ of Eq. (1.89). This procedure is performed in detail in Sec. 6.2.

Simply adding a mass term for the VLQs by hand would violate gauge invariance. This
means that without any further information about a UV-completion of the model, calculations
at loop-level can contain infinities. In cases where the VLQs only contribute to a certain process
at tree-level, this is not an issue. Even for certain one-loop processes, calculations turn out to be
finite and gauge-invariant, in other cases it is possible to at least calculate the LL contribution,
which allows for a good estimate of the true contribution. Several UV complete models for the
VLQ singlet V1 have been proposed, see Refs. [149–157].

1.5.2 Leptoquarks as Solution to the Anomalies

Let us now briefly discuss the requirements for the different LQ representations in order to
address the flavor anomalies summarized in Sec. 1.4. We refer to chapters 2 to 8 for detailed
analyses. As mentioned earlier, NP needs to contribute to b → cτν already at tree level to be
able to account for this anomaly. Additionally, bounds from e.g. B → K(∗)νν decays have to
be respected. This is an issue for the scalar triplet Φ3 and vector triplet V3: Due to SU(2)
invariance, they generate an effect in b → sνν of the same size as in b → cτν, violating the
bounds by orders of magnitude. The LQs Φ̃1, Φ̃2, Ṽ1 and Ṽ2 do not generate the desired effect
at tree-level. Concerning b → s`` we saw in Sec. 1.4 that certain configurations of Wilson
coefficients are preferable in order to address that anomaly. Among the LQs, Φ3, V1 and V3
give a C9µ = −C10µ effect. Finally, there is the AMM of the muon, where also a substantial NP
contribution of the order of the SM EW contribution is needed. Due to the nature of the LQs,
they contribute to aµ through diagrams where quarks run in the loop. Through a chirality flip
on the internal quark line, these contributions can become proportional to the quark-mass. In
case of the top quark, this results in an mt/mµ enhanced effect, which numerically is ≈ 1700.
To create this effect however, the LQ needs to couple to left- and right-handed top quarks
simultaneously. Only Φ1 and Φ2 are able to achieve this. We see that no single LQ can explain
all the three anomalies simultaneously, however the VLQ singlet V1 is able to resolve b → s``
and b→ cτν at the same time.

Lepton Flavor Universal Effects

In Sec. 1.4 we mentioned the NP scenario with a C9µ = −C10µ effect supported by a LFU
effect in C9`, see Eq. (1.75). This scenario becomes especially interesting for models that aim at
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τ ν(τ)

γ(∗)
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Figure 1.12: V1 contribution to b → cτν (top part). Due to SU(2) invariance an effect of the same
size in b → sττ occurs, which can lead to LFU contributions to b → sγ (middle part) and b → s``
(bottom part) when closing the loop.

explaining b→ cτν and b→ s`` simultaneously. Obviously a LFUV effect is necessary both in
the CC and NC transitions. However, since the effect in b→ cτν needs to be much larger than
the one in b→ sµµ, loop effects induced by the tree-level b→ cτν contribution can arise which
are not only sizable but can in fact even exceed the LFUV tree-level effect in b→ sµµ. In the
case of the VLQ singlet V1 the effect in b → cτν creates an effect of the same size in b → sττ
due to SU(2) invariance. Closing the τ -loop then gives an effect in b → sγ and b → s``. This
is illustrated in Fig. 1.12. The model-specific global fit, which also includes the effect in C7, is
shown in Fig. 1.13.

1.5.3 Outlook

We conclude this section by giving an outlook to the chapters 2 to 8, containing extensive
analyses. In chapter 2 we analyze the VLQ singlet V1 as a favorable candidate to address the CC
and NC flavor anomalies simultaneously. We find a very good fit to data without violating any
experimental constraints. Chapter 3 contains a proceeding article, which updates the analysis
of chapter 2, i.e. it includes also the most recent measurements of Belle. In chapter 4 we
investigate how tauonic B decays are correlated to the neutron electric dipole moment (EDM)
for the SLQ Φ1. Assuming the persistence of the b → cτν anomaly, we show that even small
effects relative to the SM in B → τν, to be tested at Belle II, generate a sizable neutron EDM,
which in turn could be tested at PSI with the n2EDM experiment. In chapter 5 we consider
a combination of the scalar singlet and triplet LQs Φ1 and Φ3, respectively. This combination
has the distinct advantage that constraining effects in B → K(∗)νν can be canceled. In that
way, Φ1 and Φ3 enter b→ cτν while Φ1 can account for δaµ and Φ3 can resolve the tension in
b→ s``, making a combined explanation of all three anomalies possible. Turning to chapter 6,
we investigate SLQ effects in Higgs decays and oblique corrections, taking into account all five
scalar representations and mixing among them. The investigated observables can be calculated
independently from the couplings to the SM fermions, yielding a complementary window to
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Figure 1.13: Model-specific global fit for the VLQ V1 in b → sµµ transitions. The LFUV effect in
C9µ = −C10µ is supported by a LFU effect in C9`, the effect in C7 is also included. This fit was used for
the plot in Fig. 3.2. Plot courtesy of Bernat Capdevila.

distinguish among the different LQ representations. In chapter 7 we correlate the AMM of the
muon to the Higgs decay h→ µµ, prompted by the recent measurement thereof by ATLAS and
CMS. This is especially interesting with regard to future experiments. Finally, we extensively
investigate loop-effects, which unavoidably are generated when explaining the flavor anomalies,
in chapter 8. These loop-effects affect purely leptonic processes like Z → ``, W → `ν and even
LFV decays like Z → ``′ or `→ `′γ. In chapters 6 to 8 we also actively analyze the parameter
space with regards to future experiments.
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In recent years experiments revealed intriguing hints for new physics (NP) in B decays involving
b → cτν and b → s`+`− transitions at the 4σ and 5σ level, respectively. In addition, there
are slight disagreements in b → uτν and b → dµ+µ− observables. While not significant on
their own, they point in the same direction. Furthermore, Vus extracted from τ decays shows
a slight tension (≈ 2.5σ) with its value determined from CKM unitarity and an analysis of
Belle data found an excess in Bd → τ+τ−. Concerning NP explanations, the vector leptoquark
SU(2) singlet is of special interest since it is the only single particle extension of the Standard
Model which can (in principle) address all the anomalies described above. For this purpose,
large couplings to τ leptons are necessary and loop effects, which we calculate herein, become
important. Including them in our phenomenological analysis, we find that neither the tension
in Vus nor the excess in Bd → τ+τ− can be fully explained without violating bounds from
K → πνν̄. However, one can account for b → cτν and b → uτν data finding intriguing
correlations with Bq → τ+τ− and K → πνν̄. Furthermore, the explanation of b→ cτν predicts
a positive shift in C7 and a negative one in C9, being nicely in agreement with the global fit to
b → s`+`− data. Finally, we point out that one can fully account for b → cτν and b → s`+`−

without violating bounds from τ → φµ, Υ→ τµ or b→ sτµ processes.

2.1 Introduction
So far, the LHC has not directly observed any particles beyond the Standard Model (SM).
However, intriguing hints for lepton flavor universality (LFU) violating NP have been acquired:

b → s(d)`+`−:
The ratios

R(K(∗)) = Br[B → K(∗)µ+µ−]
Br[B → K(∗)e+e−]

, (2.1)

[77]( [79]) indicate LFU violation with a combined significance of ≈ 4σ [92,93,158–161]. Taking
also into account all other b → sµ+µ− observables, like the angular observable P ′

5 [83] in the

30



Introduction

b s

γ/g

V1

τ τ

b s

γ

V1

τ τ

ℓ−ℓ+

τ ν

W

V1

u d

µν̄

ντ
b

τ

V1 W
−

s
τ

ν̄τ

Figure 2.1: Feynman diagrams depicting the one-loop contributions of the vector LQ singlet to Csb
7/8,

b→ s`+`−, τ → µνν̄ and b→ sνν̄ (from left to right).

decay B → K∗µ+µ−, the global fit of the Wilson coefficients to all available data even shows
compelling evidence [88] for NP (> 5σ).

Concerning b → d`+`− transitions, the theoretical analysis of Ref. [162] shows that the
LHCb measurement of B → πµ+µ− [163] slightly differs from the theory expectation. Even
though this is not significant on its own, the central value is very well in agreement with the
expectation from b→ s`+`− under the assumption of a Vtd/Vts-like scaling of the NP effect1. In
other words, an effect of the same order and sign as in b→ s`+`−, relative to the SM, is preferred.
Furthermore, an (unpublished) analysis of BELLE data found an excess in Bd → τ+τ− [164].

b → c(u)τν:
The ratios

R(D(∗)) = Br[B → D(∗)τν]
Br[B → D(∗)`ν]

with ` = {e, µ} , (2.2)

which measure LFU violation in the charged current by comparing τ modes with light leptons
(` = e, µ), differ in combination from their SM predictions by ≈ 4σ [103]. Also, the ratio

R(J/ψ) = Br[Bc → J/ψτν]
Br[Bc → J/ψµν] (2.3)

[113] exceeds the SM prediction in agreement with the expectations from R(D(∗)) [165,166].
Concerning b→ uτν transitions, the theory prediction for B → τν crucially depends on Vub.

While previous lattice calculations resulted in rather small values of Vub, recent calculations give
a larger value (see Ref. [167] for an overview). However, the measurement is still above the SM
prediction by more than 1σ, as can be seen from the global fit [58]. In

R(π) = Br[B → πτν]
Br[B → π`ν] (2.4)

there is also a small disagreement between theory [168] and experiment [169] which does not
depend on Vub. These results are not significant on their own but lie again above the SM
predictions like in the case of b→ cτν.

V τ
us:

Vus extracted from τ lepton decays (V τ
us) shows a tension of 2.5σ compared to the value of Vus

determined from CKM unitarity (V uni
us ) [103,170].

The only possible single particle explanation, which can (at least in principle) address all
these anomalies is the vector leptoquark (LQ) SU(2)L singlet V1 with hypercharge2 −4/3

1Here, V refers to to the Cabibbo-Kobayashi-Maskawa (CKM) matrix.
2In our conventions, the left-handed lepton doublet has hypercharge −1.
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[171–177] arising in the famous Pati-Salam model [178]: This LQ can explain b → cτν data
without violating bounds from b → sνν̄ and/or direct searches, provides (at tree level) a left-
handed solution to b → s`+`− data, and does not lead to proton decay. Therefore, a sizable
effect in b → uτν and b → d`+`− is straightforward, and also an explanation of V τ

us could
be possible. A huge enhancement of b → sτ+τ− rates is predicted as well [179], making an
amplification of Bd → τ+τ− possible.

Several attempts to construct a UV completion for this LQ to address the anomalies have
been made [149–154,180–184]. In order to fully account for the b→ cτν data (while respecting
perturbativity), one needs sizable couplings to third generation leptons and V1 generates, via
SU(2)L invariance, also large contributions to the operators didjττ and uiujντντ at tree level.
These operators give rise to couplings of down quarks to neutrinos or light charged leptons at
loop level (see Fig. 2.1).

In this article we will calculate these loop effects 3, which turn out to be not only numerically
important but also give rise to additional correlations among observables. Even though a theory
with a massive vector boson without an explicit Higgs sector is not renormalizable, we still
identify several phenomenologically important loop effects which are gauge independent and
finite and can therefore be calculated reliably (in analogy to flavor observables within the SM).

2.2 Model and One-Loop Effects
We work in a simplified model extending the SM by a vector LQ SU(2)L singlet with hypercharge
−4/3, mass M and interactions with fermions determined by

LV µ =
(
κL

fiQfγµLi + κR
fidfγµei

)
V µ†

1 + h.c. . (2.5)

Here, Q (L) are quark (lepton) SU(2)L doublets, d (e) are down quark (charged lepton) singlets
and f, i are flavor indices. In the following, we will neglect the right-handed couplings, which
are not necessary to explain the anomalies. This then generates the effective four-fermion
interactions encoded in

Leff = −
κL

ilκ
L∗
jk

M2 Q̄α
i γ

µQβ
j L̄

β
kγµL

α
l , (2.6)

where α and β label the SU(2) components. After EW symmetry breaking, we work in the
down basis; i.e., no CKM elements appear in flavor changing neutral currents of down quarks.
We recall our definitions and the tree-level results in the appendix.

In our setup, one-loop effects involving the LQ and third generation leptons (τ ’s and τ
neutrinos) can be very important, since we aim for large effects in b→ c(u)τν and b→ s(d)τ+τ−

processes. In principle, a massive vector boson, like our LQ, without a Higgs sector is not
renormalizable. However, in flavor physics most effects can still be calculated reliably since
they are gauge independent and finite (also in unitary gauge)4. This is in analogy to the SM,
where the contribution of the W to flavor observables can be correctly calculated in unitary
gauge without taking into account the Higgs sector.

We are only interested in effects which are always absent at tree level (like b→ sνν̄ processes)
or are not present at tree level due to a specific coupling structure (like b → sµ+µ− processes
in the absence of muon couplings). Furthermore, we neglect tiny dimension-8 effects of the SM
Higgs particle. In these cases the loop effects are the leading contributions. We calculate all
diagrams at leading order in the external momenta using asymptotic expansion [64].

3Similar loop effects for scalar LQs have been calculated in Refs. [185–187].
4In this article we followed two approaches to check the results. First, we calculated the results in unitary

gauge. Then, we derived the couplings of the LQ Goldstones to SM fermions by requiring the tree-level amplitude
to be gauge independent. Finally, we calculated its contribution in Rξ gauge.

32



Model and One-Loop Effects

1.0 1.1 1.2 1.3 1.4
-2.

-1.5

-1.

-0.5

0.

0.004

0.024

0.044

0.064

0.084

R(X)/R(X)SM

C9,sb
ℓℓ

C7
sb

Figure 2.2: C``
9,sb and Csb

7 (µb) as functions of R(X)/R(X)SM with X = {D,D∗, J/ψ}. The solid lines
correspond to M = 1 TeV and the dashed ones to M = 5 TeV while the (dark) blue region is preferred by
b→ cτν data at the 1σ (2σ) level. From the global fit, taking into account only lepton flavor conserving
observables we have −1.29 < C``

9,sb < −0.87 [91] and −0.01 < Csb
7 (µb) < 0.05 [88] at the 1σ level.

Therefore, our model predicts just the right sign and size of the effect in C``
9,sb and Csb

7 (µb) necessary to
explain b→ s`+`− data, assuming an explanation of b→ cτν.

2.2.1 W Boxes Contributing to di → dfνν̄

We use the effective Hamiltonian

Hνν
eff = −4GF√

2
VtdkV

∗
tdj

(
Cfi

L,jkO
fi
L,jk + Cfi

R,jkO
fi
R,jk

)
,

Ofi
L,jk = α

4π
[
d̄jγ

µPLdk

]
[ν̄fγµ (1− γ5) νi] , (2.7)

Ofi
R,jk = α

4π
[
d̄jγ

µPRdk

]
[ν̄fγµ (1− γ5) νi] ,

with PR(L) = (1 + (−)γ5)/2 and GF (α) being the Fermi (electromagnetic fine structure) con-
stant. The result of the box contributions involving a W to di → dfνν̄ (an example diagram
is shown on the right-hand side of Fig. 2.1) is gauge invariant in Rξ gauge and the same finite
result is obtained in unitary gauge (with e =

√
4πα and mt (mW ) the top quark (W boson)

mass)

Cij
L,fa = −m2

W

2e2V3aV ∗
3fM

2

(
6κL

fjκ
L∗
ai log

(
m2

W

M2

)

+ 3
(
V3aV

∗
3kκ

L∗
ki κ

L
fj + V ∗

3fV3kκ
L
kjκ

L∗
ai

) log
(

m2
t

m2
W

)
1− m2

W

m2
t

+ V ∗
3fV3kκ

L
kjV3aV

∗
3lκ

L∗
li

m2
t

m2
W

)
(2.8)

2.2.2 W Off-Shell Penguins Contributing to τ → µνν̄

Here (see third diagram in Fig. 2.1) we obtain again a finite and gauge independent result for
the Wilson coefficient; following the analysis of [188], we use

Hτµνfνi
eff = 4GF√

2
Dτµ

L,fi [ν̄fγ
σPLνi] [µ̄γσPLτ ] , (2.9)
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with

Dτµ
L,fi = Ncδi2

V ∗
3kκ

L∗
kfκ

L
33

32π2
m2

t

M2

(
1 + 2 log

(
m2

t

M2

))
. (2.10)

We find, in agreement with Ref. [176], that the effect is small.
2.2.3 Photon and Gluon Penguins

We use the standard Hamiltonian (see, for example, Ref. [91]) also defined in the appendix. For
on-shell photons and gluons the result of the left-hand diagram in Fig. 2.1 is finite in unitary
gauge and the same result is obtained in Rξ gauge:

Csb
7(8) = −

√
2

GFVtbV
∗

tsM
2

11
72

( 5
48

)
κL

2iκ
L∗
3i . (2.11)

Taking into account the running from the LQ scale µLQ = M = 1 TeV down to µb = 5 GeV (see,
e.g., Refs. [189,190]), we obtain

Csb
7 (µb) ≈ 0.29 κL

2iκ
L∗
3i . (2.12)

For off-shell photons the full result (second diagram in Fig. 2.1) for the amplitude is gauge
dependent and, in general, divergent. However, one can calculate the mixing of Cττ

9,sb = −Cττ
10,sb

into the four-fermion operators O``
9,sb (containing light leptons as well) within the effective theory

(i.e. after integrating out the LQ at tree level). In this way, a gauge independent result is
obtained and the leading logarithm of the (unknown) full result is recovered. For off-shell
photons we thus calculate the effect in the EFT (below the LQ scale), generating the following
mixing into the four-fermion operators with light leptons:

C``
9,sb =

√
2

GFVtbV
∗

tsM
2

1
6 log

(
M2

µ2
b

)
κL

2iκ
L∗
3i . (2.13)
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Figure 2.4: Allowed (colored) regions in the Cµµ
9,sb =−Cµµ

10,sb

(
=̂ 640κL

22κ
L∗
32
)

– R(X)/R(X)SM plane for
M = 1 TeV and X = D,D∗, J/ψ at the 1σ and 2σ level for κL

33Vcb � κL
23. The region above the black

dashed (solid) line is excluded by τ → φµ (B → Kτµ) for κL
33 = 0.5 = 25κL

32 (κL
33 = 0.5 = 2.5κL

32). The
bound from τ → φµ (B → Kτµ) depends on κL

33 and κL
32 and gets stronger if κL

32 gets smaller (larger).
That is, for κL

33 = 0.5 and 2.7 / κL
33/κ

L
32 / 27, the whole 2σ region preferred by b→ cτν and b→ s`+`−

data is consistent with B → Kτµ and τ → φµ.

Note that this result is model independent (at leading-log accuracy) in the sense that it does
not depend on the model which generates Cττ

9,sb = −Cττ
10,sb. In principle, there are also Z

penguins generating C``
9,sb and C``

10,sb. However, this effect is suppressed by light lepton masses
(or small momenta) and is therefore of dimension 8. Further, note that there are no box
diagram contributions which generate s̄bµ̄µ (s̄bēe) operators if the couplings of the LQ to muons
(electrons) are zero at tree level.

2.2.4 Box Diagrams with LQs

What cannot be calculated consistently are box diagrams involving only LQs [149]. Here, the
results are divergent in unitary gauge which corresponds to a gauge dependence in Rξ gauge.
However, these effects are suppressed if |κL| < g2 and can be further suppressed in the presence
of vectorlike fermions by a GIM-like mechanism [151] which, in analogy to the SM, would render
the result finite.

2.3 Phenomenology

Assuming κL
33Vcb � κL

23, one is safe from LHC bounds, and the effects in Bs → τ+τ−, Csb
7 (µb)

(Eq. (2.12)) and C``
9,sb (Eq. (2.13)) directly depend on R(X)/R(X)SM (with X = D(∗), J/ψ).

In Fig. 2.2 we show these dependences. Intriguingly, the effect generated in Csb
7 (µb) and C``

9,sb,
within the preferred region from b→ cτν data, exactly overlaps with the 1σ ranges of the model
independent fit to b→ sµ+µ− data excluding LFU violating observables [90,91] (therefore, only
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P ′
5 etc. but not R(K(∗)) can be explained).

Let us now include the effect of κL
13. Here, many correlations arise. First of all, b→ c(u)τν

is already at tree level correlated to b → s(d)τ+τ−. In addition, the W boxes in Eq. (2.8)
generate effects in B → K(∗)(π)νν̄ and K → πνν̄. While the bounds from B → K(∗)(π)νν̄ turn
out to be weaker than the ones from Bq → τ+τ−, there are striking correlations with K → πνν̄,
as can be seen from Fig. 2.3. Furthermore, we get an effect

δV τ
us = V τ

us − V
τ(0)

us

V uni
us

≈ −Cττ
us , (2.14)

where V τ(0)
us is the CKM matrix element extracted from τ decays without NP. However, Eq. (2.8)

generates K → πνν̄, and respecting these bounds, the relative effect in V τ
us can only be at

the per-mill level, |δV τ
us| ≈ 0.05%, excluding the possibility to account for the discrepancy

of |V uni
us | = 0.22547 ± 0.00095 versus |V τ

us| = 0.2212 ± 0.0014 [103, 170]. The same is true
about Bd → τ+τ−, where the currently preferred region of analysis using BELLE data [164] of
Br
[
Bd → τ+τ−]

exp =
(
4.39+0.80

−0.83 ± 0.45
)

lies outside the plot range.
Now, in addition to the couplings κL

33 and κL
23, we allow nonvanishing κL

32 and κL
22. These

couplings give rise to tree-level effects in b→ sµ+µ−. In Fig. 2.4 we show the allowed (colored)
regions from b → sµ+µ− and b → cτν as well as the exclusions from b → sτµ and τ → φµ.
Note that a simultaneous explanation of the anomalies is perfectly possible since the colored
regions overlap and do not extend to the parameter space excluded by b → sτµ and τ → φµ.
Interestingly, due to the loop effects originating from the b → cτν explanation, we predict a
flavor universal effect in C``

9,sb and Csb
7 which is supplemented by a tree-level effect of the form

Cµµ
9,sb = −Cµµ

10,sb with muons only. This means that the relative NP effect compared to the SM
in lepton flavor conserving observables (like P ′

5) should be larger than in R(K(∗)), which is in
perfect agreement with the global fit5.

2.4 Conclusions

The vector leptoquark SU(2) singlet is a prime NP candidate to explain the current hints for
LFU violation. In this article we calculated and studied the important loop effects arising within
such a model and performed a phenomenological analysis. We find:

An explanation of b → cτν data generates lepton flavor universal effects in b → s`+`−

transitions which nicely agree with the model independent fit (see Fig. 2.2). Therefore, the
C9 = −C10-like tree-level effect, which is in general LFU violating, is supplemented by these ef-
fects generating a new pattern for the Wilson coefficients. This can be tested with future data.
That is, with more precise measurements of lepton flavour universality violating and lepton
flavor universality conserving effects, one can test if in fact there is a lepton flavor universality
conserving contribution in addition to the lepton flavor universality violating ones [95]. Similar
conclusions hold for the correlations between b → uτν data generating lepton flavor universal
effects in b→ d`+`− processes.

NP in b → c(u)τν generates important effects in Bs(d) → τ+τ− which are even correlated
to b → s(d)νν̄ processes and K → πνν̄ via W box contributions (see right-hand diagram in
Fig. 2.1). The V τ

us puzzle (like the CP asymmetry in τ → KSπν [191]) cannot be solved due
to the stringent constraints from K → πνν̄, and because of b → uτν bounds one cannot fully
account for the BELLE excess in Bd → τ+τ− (see Fig. 2.3).

5See Ref. [95] for a recent analysis of such scenarios.
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b → cτν and b → s`+`− data can be simultaneously explained without violating other
bounds like τ → φµ (see Fig. 2.4). Furthermore, one could at the same time also account for
NP effects in b→ dµ+µ− without violating KL → µ+µ− bounds.
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us with the fit necessary for the b→ s`+`− region in Fig. 2.4 whose work is supported by an explora grant
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The work of C.G. and F.S. is supported by the Swiss National Foundation under Grant 200020_175449/1.

2.5 Appendix

In this appendix we recall the tree-level results for the observables and give details on the
experimental situation.

2.5.1 dk → dj`−
f `+

i

We define the effective Hamiltonian as

H``
eff = −4GF√

2
VtdkV

∗
tdj

10∑
a=7

Cfi
a,djdk

Ofi
a,djdk

,

Ojk
7(8) = e(gs)

16π2mk[d̄jσ
µν(T a)PRdk]Fµν(Ga

µν) ,

Ofi
9(10),jk = α

4π [d̄jγ
µPLdk] [¯̀fγµ(γ5)`i] ,

(2.15)

and obtain at tree level

Cfi
9,jk = −Cfi

10,jk = −
√

2
2GFVtdkV

∗
tdj

π

α

1
M2κ

L
jiκ

L∗
kf . (2.16)

For b→ sµ+µ− transitions, the allowed range is [88]

−0.37(−0.49) ≥ Cµµ
9,sb = −Cµµ

10,sb ≥ (−0.75)− 0.88 , (2.17)

at the (1σ) 2σ level, assuming a vanishing effect in electrons. In b → dµ+µ− transitions one
finds for the Wilson coefficients

Cµµ
9,db = −Cµµ

10,db = −1.9± 1.1 , (2.18)

assuming them to be real [162]. For τ leptons we have experimentally [192]

Br
[
Bs → τ+τ−

]
exp
≤ 6.8× 10−3 (95% C.L.) , (2.19)

and for Bd → τ+τ− there is a (unpublished) measurement of BELLE [164] and an upper limit
of LHCb [192]

Br
[
Bd → τ+τ−

]BELLE

exp
=
(
4.39+0.80

−0.83 ± 0.45
)
× 10−3 ,

Br
[
Bd → τ+τ−

]LHCb

exp
≤ 2.1× 10−3 (95% C.L.) .

(2.20)

37



Loop Effects in Explaining the Accumulated Evidence for New Physics in B Decays with a VLQ

Both are compatible at the 2σ level. The SM predictions are given by [193,194]

Br
[
Bs → τ+τ−

]
SM

= (7.73± 0.49)× 10−7 ,

Br
[
Bd → τ+τ−

]
SM

= (2.22± 0.19)× 10−8 .
(2.21)

In our model, we have

Br
[
Bq → τ+τ−]

Br[Bq → τ+τ−]SM
=
∣∣∣∣∣1 +

Cττ
10,qb

CSM
10,qb

∣∣∣∣∣
2

, (2.22)

with q = s, d and CSM
10,qb ≈ −4.3 [195, 196]. For the analysis of B → K(∗)τµ we will use the

results of Ref. [197].
The short distance contribution to the branching ratio of KL → µ+µ− is given by [198]

(with the Hamiltonian defined e.g. in Ref. [199])

Br
[
KL → µ+µ−

]
SD

= aL

Re
[
λtỸ

]
λ5 + Re [λc]

λ
P Y

c

2

with the numerical input

aL = 2.01× 10−9 , Ỹ = YSM − s2
WCµµ

10,sd ,

YSM = 1.018
(

mt

170 GeV

)1.56
, P Y

c = 0.115± 0.017 ,

λi = V ∗
isVid , λ = |Vus| . (2.23)

The upper experimental limit for the short distance contribution is [200]

Br
[
KL → µ+µ−

]
SD

< 2.5× 10−9 . (2.24)

Using Ref. [175] we have

Br [τ→φµ] =
f2

φm
3
τττ

128π

∣∣∣κL
22κ

L∗
23

∣∣∣2
M4

(
1−

m2
φ

m2
τ

)2(
1 + 2

m2
φ

m2
τ

)

with the current experimental limit [201]

Br [τ → φµ] < 8.4× 10−8 (90% C.L.) . (2.25)

If we consider Υ(nS)→ τµ, we have [177]

Br [Υ(3S)→ τµ] = 2.6× 10−7
∣∣κL

32κ
L∗
33
∣∣2

M4( TeV) . (2.26)

Comparing this to the experimental limit Br [Υ(3S)→ τµ] < 3.1×10−6 (90% C.L.) of Ref. [202],
this does not pose relevant constraints on our model.
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2.5.2 dk → djνiν̄f

We use the conventions

Hνν
eff = −4GF√

2
VtdkV

∗
tdj

(
Cfi

L,jkO
fi
L,jk + Cfi

R,jkO
fi
R,jk

)
,

Ofi
L(R),jk = α

4π
[
d̄jγ

µPL(R)dk

]
[ν̄fγµ (1− γ5) νi] .

(2.27)

Note that the LQ does not contribute at tree level.
For K → πνν̄ we use Ref. [203] with the updated numerical values given in Ref. [204]

resulting in

Br
[
K± → π±νν̄

]
= 1

3 (1 + ∆EM ) η± ×

3∑
f,i=1


 Im

[
λtX̃

fi
L

]
λ5

2

+

Re [λc]
λ

Pcδfi +
Re
[
λtX̃

fi
L

]
λ5

2
 ,

Br [KL → πνν̄] = 1
3ηL

3∑
f,i=1

 Im
[
λtX̃

fi
L

]
λ5

2

, (2.28)

with

X̃fi
L = XSM,fi

L − s2
WCfi

L,sd , Pc = 0.404± 0.024

η± = (5.173± 0.025) 10−11
[

λ

0.225

]8
,

ηL = (2.231± 0.013) 10−10
[

λ

0.225

]8
,

∆EM = −0.003 , XSM,fi
L = (1.481± 0.005± 0.008) δfi .

(2.29)

For B → K(∗)νν̄ we follow Ref. [205], giving CSM,fi
L,sb ≈ −1.47/s2

W δfi, and the branching
ratios normalized by the SM predictions read

Rνν̄
K(∗) = 1

3

3∑
f,i=1

∣∣Cfi
L,sb

∣∣2∣∣CSM,fi
L,sb

∣∣2 . (2.30)

This has to be compared to the current experimental limits Rνν̄
K < 3.9 and Rνν̄

K∗ < 2.7 [206] (both
at 90% C.L.). The future BELLE II sensitivity for B → K(∗)νν̄ is 30% of the SM branching
ratio [207].

2.5.3 dk → ujν̄`−

We define the effective Hamiltonian as

H`fνi
eff = 4GF√

2
VjkC

fi
jk [ūjγ

µPLdk]
[
¯̀
fγµPLνi

]
, (2.31)

where in the SM Cfi
jk,SM = δfi. The contribution of our model is given by

Cfi
jk =

√
2

4GFM2
Vjl

Vjk
κL

liκ
L∗
kf . (2.32)
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With these conventions we have for b→ cτν transitions

R (X)
/
R(X)SM =

3∑
i=1

∣∣∣δ3i + Cτi
cb

∣∣∣2 , (2.33)

with X = {D,D∗, J/ψ}, assuming vanishing contributions to the muon and electron channels.
We obtain the analogous expression for b→ uτν.

Concerning τ → K(π)ν we find that the CKM element V τ
us extracted from these decays is

given in terms of the one determined in the absence of NP contributions (V τ(0)
us ) by

V τ
us = V τ(0)

us /(1 + Cττ
us ) , (2.34)

where we neglected LFV effects. This has to be compared to [103,170] |V uni
us | = 0.22547±0.00095

and |V τ
us| = 0.2212± 0.0014.

In Ref. [168] the analysis gives

R (π)exp = 1.05± 0.51 ,
R (π)SM = 0.641± 0.016 .

(2.35)

For B → τν we use the PDG value [208] and the SM prediction of Ref. [58] at the 2σ level

Br[B→ τν]exp = (1.09± 0.24)× 10−4 ,

Br[B→ τν]SM =
(
0.851+0.079

−0.077

)
× 10−4 .

(2.36)
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Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
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Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University
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Several experiments revealed intriguing hints for lepton flavor universality (LFU) violating new
physics (NP) in semi-leptonic B meson decays, mainly in b → cτν and b → s`+`− transitions
at the 3− 5σ level. Leptoquarks (LQ) are prime candidates to address these anomalies as they
contribute to semi-leptonic decays already at tree level while effects in other flavor observables,
agreeing with the standard model (SM), are loop suppressed.
In these proceedings we review the vector leptoquark SU(2)L singlet, contained in the famous
Pati-Salam model, which is able to address both b→ cτν and b→ sµ+µ− data simultaneously.
Due to the large couplings to tau leptons needed to account for the b→ cτν data, sizable loop
effects arise which we include in our phenomenological analysis. Updating our result of Ref. [45]
with the recent measurements of LHCb [78] and Belle [80,109] we find an even better fit to data
than before.

3.1 Introduction
While so far the LHC has not detected any particles beyond the ones present in the Stan-
dard Model (SM), intriguing hints for LFU violation in semi-leptonic B-meson decays were
accumulated in several (classes of) observables:

b→ s`+`−

In these flavor changing neutral current transitions, measurements of the ratios

R(K(∗)) = Br
[
B → Kµ+µ−]

Br [B → Ke+e−]

show sizable deviations form their respective SM prediction. While the newest measurement of
R(K) by the LHCb collaboration [78] shows a deviation of 2.5σ from the SM, the Belle result
for R(K(∗)) is consistent with the SM [80]. However, due to the larger errors, this result also
agrees with previous LHCb measurement of R(K(∗)) which deviate from the SM [79] in the same
direction as R(K). Taking into account all other b→ sµ+µ− observables (like the lepton flavor
universal observable P ′

5 [83]), the global fit prefers various NP scenarios above the 5σ level [88]
compared to the SM, also when the newest measurements are taken into account [97,98,100,209].

6I thank the organizers, especially Nazila Mahmoudi, for the invitation to Moriond QCD and the opportunity
to present these results. This work is supported by a Professorship Grant (PP00P2_176884) of the Swiss National
Science Foundation.

7I thank the organizers of the DIS2019 in Turin for giving me the opportunity to present my work, which is
supported by the Swiss National Foundation under grant 200020_175449/1. We are very grateful to Joaquim
Matias and Bernat Capdevilla for providing us with the fit necessary for the b → s`+`− region in Fig. 3.2.

42



The Pati Salam Vector Leptoquark as Combined Solution to the Anomalies

In order to resolve the discrepancy in the neutral current transitions, an effect of O(10%) is
required at the amplitude level. Since this flavor changing neutral current (FCNC) is suppressed
in the SM as it is only induced at one loop level, a small NP contribution is already sufficient.
In a global fit one finds a preference for scenarios like Cµµ

9 = −Cµµ
10 (i.e. a left-handed current

coupling to muons only) [98]. Such an effect is naturally obtained at tree-level with the vector
LQ SU(2) singlet [45, 149–154, 171–177, 180–184, 210–212]. However, a Cµµ

9 = −Cµµ
10 effect

complemented by a flavor universal effect in C9 gives an even better fit to data [95, 98]. As we
will see, this is exactly the pattern that arises in our model.

b→ cτν

There are also indications for LFU violation in charged current transitions, namely in the ratios

R(D(∗)) =
Br
[
B → D(∗)τν

]
Br
[
B → D(∗)`ν

]
where ` = {e, µ}. While the newest measurements from Belle [109] agree with the SM prediction,
including previous measurements by BaBar, Belle and LHCb still yield a deviation of 3.1σ [103]
from the SM prediction. Furthermore there is also a measurement of the ratio R(J/Ψ) =
Br [Bc→J/Ψτν]

Br[Bc→J/Ψµν] exceeding its SM prediction [113].
Also here a NP effect of O(10%) is needed at the amplitude level. However, since b → cτν

transitions are mediated at tree level by the exchange of a W boson in the SM, the NP effect
needs to be large. This means that NP should contribute at tree level with sizable couplings
and at a not too high NP scale. Here, the best single particle solution is the vector LQ SU(2)
singlet [45, 149–154, 171–177, 180–184, 210–212] since it does not give a tree-level effect in b →
sνν processes and provides a common rescaling of R(D) and R(D∗) with respect to the SM
prediction.

3.2 The Pati Salam Vector Leptoquark as Combined Solution
to the Anomalies

The vector Leptoquark SU(2)L singlet with hypercharge −4/3, arising in the famous Pati-Salam
model [178], is a prime candidate to explain both the anomalies in charged current and neutral
current B decays simultaneously [171–177]. It gives a C9 = −C10 effect in b→ s`+`− at tree level
and at the same time a sizable effect in b→ cτν without violating bounds from b→ sνν and/or
direct searches and does not lead to proton decay. Note that this LQ by itself is not UV complete,
however several UV complete models for this LQ have been proposed [149–154,180–184,213].

For the purpose of our phenomenological analysis, let us consider a model where we simply
extend the SM by this LQ. Its interaction with the SM particles is given by the Lagrangian

LV1 = κL
fiQfγµLiV

1†
µ + h.c. ,

where Q(L) is the quark (lepton) SU(2)L doublet, κL
fi represents the couplings of the LQ to the

left handed quarks (leptons) and f and i are flavor indices. Note that in principle couplings to
right-handed SM particles are also allowed, they are however not relevant for this discussion.
After electro-weak symmetry breaking, we work in the down basis, meaning that no CKM
matrix elements appear in FCNC processes.

We start by taking κL
23 and κL

33 as the only non-zero couplings, as they are necessary to
explain b→ cτν data. Here, strong effects in b→ sτ+τ− transitions [179] are generated which
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Figure 3.1: Left: Feynman diagram depicting the loop effects induced by the bcτν operator from SU(2)
invariance. Right: C``

9,sb and Csb
7 (µb), generated by these loop effects, as functions of R(D(∗))/R(D(∗))SM.

The solid (dashed) lines correspond to M = 1 TeV (5 TeV) while the (dark) blue region is preferred by
b→ cτν data at the 1σ (2σ) level, taking into account the most recent measurements. From the global
fit, taking into account only lepton flavor conserving observables, we have −1.29 < C``

9,sb < −0.87 [91]
and −0.01 < Csb

7 (µb) < 0.05 [88] at the 1σ level. Assuming an explanation of b → cτν, our model
predicts the right size and sign of the effect in C``

9,sb and Csb
7 (µb) needed to explain b→ s`+`− data.

at the 1-loop level affect b → s`+`− via the Wilson coefficients C``
9,sb and Csb

7 , as is depicted
to the left in Fig. 3.1. Due to the correlation with b → cτν, these Wilson coefficients can be
expressed as functions of R(D(∗))/R(D(∗))SM. The Wilson coefficients’ dependency on these
ratios is shown in the right plot of Fig. 3.1, where the RGE evolution of Csb

7 from the NP scale
down to the b quark scale is also taken into account (see Ref. [47]). Interestingly, assuming an
explanation of b→ cτν data, the effects generated in C``

9,sb and Csb
7 agree with the 1σ ranges of

the model independent fit to b→ sµ+µ− data excluding LFU violating observables [90,91].
Now we also allow κL

32 and κL
22 to be non-zero, generating a tree level effect in b → sµ+µ−

which is necessary to account for the LFU violating observables as well. In Fig. 3.2 we show
the allowed (colored) regions from b → sµ+µ− and b → cτν as well as the exclusions from
b → sτµ and τ → φµ. A simultaneous explanation of the anomalies is perfectly possible since
the colored regions overlap and do not extend to the parameter space excluded by b→ sτµ and
τ → φµ. Interestingly, we predict a lepton flavor universal effect in C``

9,sb and Csb
7 in addition

to a LFU violating tree-level effect of the form Cµµ
9,sb = −Cµµ

10,sb in muonic channels only. This
means that the effect of NP compared to the SM is expected to be larger in lepton flavor
universal observables like P5′ relative to LFU violation observables as R(K(∗)), which is in
perfect agreement with global fit scenarios [98]. In fact, the agreement is even better after the
inclusion of the new measurements of BELLE and LHCb.
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Figure 3.2: Allowed (colored) regions in the Cµµ
9,sb = −Cµµ

10,sb (≡ 640κL
22κ

L∗
32 ) – R(X)/R(X)SM plane

for M = 1 TeV and X = {D,D∗} at the 1σ and 2σ level. The region above the black dashed (solid)
line is excluded by τ → φµ (B → Kτµ)) for κL

33 = 0.5 = 25κL
32 (κL

33 = 0.5 = 2.5κL
32). The bound from

τ → φµ (B → Kτµ) depends on κL
33 and κL

32 and gets stronger if κL
32 gets smaller (larger). That is,

for κL
33 = 0.5 and 2.7 / κL

33/κ
L
32 / 27, the whole 2σ region preferred by b → cτν and b → s`+`− data

is consistent with these bounds. Note that we used the most recent experimental results for both the
b→ cτν and b→ s`+`− transitions, therefore updating our analysis in Ref. [47].
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In this article we investigate the correlations between tauonic B meson decays (e.g. B → τν,
B → D(∗)τν, B → πτν) and electric dipole moments (EDMs), in particular the one of the
neutron, in the context of the S1 scalar leptoquark. We perform the matching of this model
on the effective field theory taking into account the leading renormalization group effect for
the relevant observables. We find that one can explain the hints for new physics in b → cτν
transitions without violating bounds from other observables. Even more interesting, it can
also give sizable effects in B → τν, to be tested at Belle II, which are correlated to (chromo)
electric dipole operators receiving mτ/mu enhanced contributions. Therefore, given a deviation
from the Standard Model (SM) expectations in B → τν, this model predicts a sizable neutron
EDM. In fact, even if new physics has CP conserving real couplings, the CKM matrix induces
a complex phase and already a 10% change of the B → τν branching ratio (with respect to the
SM) will lead to an effect observable with the n2EDM experiment at PSI.

4.1 Introduction

In the past four decades, the Standard Model (SM) of particle physics has been extensively
tested and its predictions were very successfully confirmed, both in high energy searches as
well as in low energy precision experiments. However, it is well known that the SM cannot be
the ultimate theory describing the fundamental constituents of matter and their interactions.
For example, it cannot accommodate for the observed matter–antimatter asymmetry in the
universe: For satisfying the Sakharov conditions [214] the amount of CP violation within the
SM is far too small [215–220]. Therefore, additional sources of CP violation are required and
such models in general lead to nonvanishing electric dipole moments of neutral fermions. Thus,
EDMs are very promising places to search for physics beyond the SM (see e.g. Ref. [221, 222]
for a recent review). However, the effect of new physics (NP) in EDMs decouples with the NP
scale which is a priori unknown, unless new particles, or at least deviations from the SM in
other precision observables, are found.

In this respect, tauonic B decays are very promising channels for the (indirect) search for
NP, especially in the light of the observed tensions between the SM predictions and experiments
above the 3σ level [103]. These decays involve both down-type quarks and charged leptons of
the third generation (i.e. bottom quarks and tau leptons) which are, due to their mass, very
special and distinct from the fermions of the first two generations.8 In fact, to explain these
anomalies, TeV scale NP with order one couplings to the third generation is required. Note
that the tensions in b → cτν transitions are supported by b → uτν data (i.e. B → πτν and

8In group theory language, the SM possesses a global U(3)5 flavor symmetry which is broken by the thrid
generation Yukawa couplings to U(2)5 [223].
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B → τν) and the forthcoming measurements of both b→ cτν and b→ uτν processes by LHCb
and BELLE II will be able to confirm (or disprove) the presence of NP in these decays.

Therefore, it is very interesting to investigate the possible impact of models which can give
sizable effects in tauonic B decays and EDMs. In this paper we choose the scalar leptoquark
S1 SU(2)L singlet which couples to SM fermions via the Lagrangian

L =
(
λL

fiQ
c
f iτ2Li + λR

fiu
c
f `i
)

Φ†
1 + h.c. . (4.1)

Here, L (Qc) is the lepton (charge conjugated quark) SU(2)L doublet, ` (uc) the charged lepton
(charge conjugated up quark) singlet and f, i are flavor indices. This model is theoretically well
motivated since S1 is present within the R-parity violating MSSM in the form of right-handed
down squarks [224–228].9

This leptoquark (LQ) is a prime candidate for providing the desired correlations between
tauonic B decays and EDMs. It possesses couplings to left- and right-handed quarks which is a
necessary requirement for generating EDMs at the one-loop level [230,231]. It also contributes
to b→ cτν at tree level [212,232–250] and gives a very good fit to data (including polarization
observables) [118,119,251,252] since it generates vector, scalar and tensor operators. Similarly,
it contributes to b → uτν transitions, in particular to B → τν, where the situation becomes
especially interesting. As we will see, in this case the model leads to mτ/mu enhanced CP
violating effects in (chromo) electric dipole operators (see Fig. 4.1) which are even present for
real NP parameters due to the large phase contained in the CKM element Vub.

This paper is structured as follows: In the next section we will calculate the contributions
to the relevant observables and discuss their experimental status. Section 4.3 presents our
phenomenological analysis before we conclude in Sec. 4.4.

4.2 Observables and Contributions

In this section we discuss our setup, calculate the predictions for the relevant observables and
discuss their current experimental situation and future prospects.

After electroweak symmetry breaking, the Lagrangian in Eq. (4.1) decomposes into compo-
nents

LEW
eff =

(
λR

fiū
c
fPR`i+V ∗

fjλ
L
jiū

c
fPL`i−λL

fid̄
c
fPLνi

)
Φ†

1 + h.c.

Here, we work in the down basis, meaning that the CKM matrix V appears in the couplings
to left-handed up-type quarks. We denote the mass of the LQ by M and neglect its couplings
to the SM Higgs boson which have a negligible phenomenological impact. The most relevant
classes of observables in our model are b → sνν and b → c(u)τν transitions as well as EDMs,
D0 − D̄0 mixing and Z-ττ as well as W -τν couplings which we consider now in more detail.

4.2.1 b → sνν

For b→ sνν transitions we follow the conventions of Ref. [205]

Hνν
eff = −4GF√

2
VtdkV

∗
tdj

(
Cfi

L,jkO
fi
L,jk + Cfi

R,jkO
fi
R,jk

)
,

Ofi
L(R),jk = α

4π
[
d̄jγ

µPL(R)dk

]
[ν̄fγµ (1− γ5) νi] , (4.2)

9Note that in the minimal R-parity violating MSSM the coupling to charged conjugated fields in Eq. (4.1) is
absent. For an analysis of EDM constraints within this setup see Ref. [229].
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and obtain, already at tree level, the contribution

Cfi NP
L,jk =

√
2

4GFVtdkV
∗

tdj

π

α

λL∗
jf λ

L
ki

M2 . (4.3)

Here the most relevant decays are B → K(∗)νν for which CSM,fi
L,sb ≈ −1.47/s2

W δfi and branching
ratios, normalized by the corresponding SM predictions, read

Rνν̄
K(∗) = 1

3

3∑
f,i=1

∣∣Cfi
L,sb

∣∣2∣∣CSM,ii
L,sb

∣∣2 . (4.4)

This has to be compared to the current experimental limits Rνν̄
K < 3.9 and Rνν̄

K∗ < 2.7 [206] (both
at 90% C.L.). The future BELLE II sensitivity for B → K(∗)νν̄ is 30% of the SM branching
ratio [207].

4.2.2 b → c(u)τν

For tauonic B decays we define the effective Hamiltonian as

Hτν
eff = 4GF√

2
Vuf b

(
Cf

V LO
f
V L + Cf

SLO
f
SL + Cf

T LO
f
T L

)
,

with the operators given by

O
uf
V L = ūfγ

µPLbτ̄γµPLντ ,

O
uf
SL = ūfPLbτ̄PLντ ,

O
uf
T L = ūfσ

µνPLbτ̄σµνPLντ .

(4.5)

In the SM C
uf
V L = 1 and our NP matching contributions at tree level are given by

C
uf
V L =

√
2

8GF Vuf b

Vuf iλ
L∗
i3 λ

L
33

M2 ,

C
uf
SL = −4Cuf

T L = −
√

2
8GFVuf b

λR∗
f3 λ

L
33

M2 .

(4.6)

Taking into account the QCD effects of Ref. [253] to the matching, the one-loop EW and two-
loop QCD renormalization group equation (RGE) for the scalar and tensor operators [254,255]
can be taken consistently into account. Numerically, this RGE evolution is given by(

C
uf
SL(mb)

C
uf
T (mb)

)
≈
(

1.75 −0.29
0 0.84

)(
C

uf
SL(1 TeV)

C
uf
T (1 TeV)

)
,

for a matching scale of 1 TeV. Finally, the, ratios R(D(∗)) = Br[B→D(∗)τν]
Br[B→D(∗)`ν] with ` = {µ, e} in

terms of the Wilson coefficients at the b scale are given by [118]

R(D)
RSM(D) ' |1 + Cc

V L|2 + 1.54<[(1 + Cc
V L)Cc∗

SL]

+ 1.09|Cc
SL|2 + 1.04<[(1 + Cc

V L)Cc∗
T ] + 0.75|Cc

T |2 ,
R(D∗)
RSM(D∗) ' |1 + Cc

V L|2 − 0.13<[(1 + Cc
V L)Cc∗

SL]

+ 0.05|Cc
SL|2 − 5.0<[(1 + Cc

V L)Cc∗
T ] + 16.27|Cc

T |2 .

(4.7)
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Similarly, for b→ uτν transitions we have

Br [B → τν]
Br[B → τν]SM

=
∣∣∣∣∣1 + Cu

V L −
m2

BC
u
SL

mbmτ

∣∣∣∣∣
2

. (4.8)

The corresponding formula for B → πτν can be found in Ref. [256]. However, here the effect of
scalar and tensor operators is much smaller, making the theoretically very clean B → τν decays
the primary place to search for them.

Combining the experimental measurements of b → cτν transitions from LHCb [110–112],
Belle [106–109,257] and Babar [104,105], one finds a combined tension of 3.1σ in R(D(∗)) [103]10.
However, note that here the Bc → J/Ψτν measurement of LHCb [113], which also lies signif-
icantly above the SM prediction, is not included.11 In b→ uτν transitions, the theory prediction
for B → τν crucially depends on Vub. While previous lattice calculations resulted in rather small
values of Vub, recent calculations give a larger value (see Ref. [167] for an overview). However,
the measurement is still above the SM prediction by more than 1σ, as can be seen from the
global fit [58]. In R(π) = Br[B→πτν]

Br[B→π`ν] there is also a small disagreement between theory [168] and
experiment [169] which does not depend on Vub, once more pointing towards an enhancement.
Therefore, even though the b→ uτν results are not significant on their own, they point in the
same direction as b → cτν (i.e. towards an enhancement with respect to the SM) and thus
strengthen the case for NP in tauonic B decays.

4.2.3 EDMs

For EDMs the relevant Hamiltonian in our case is

HnEDM
eff = Cu

γO
u
γ + Cu

gO
u
g + Cuτ

T Ouτ
T , (4.9)

with

Ou
γ = eūσµνPRuFµν ,

Ou
g = gsūσ

µνPRuT
aGa

µν ,

Ouτ
T = ūσµνPRuτ̄σ

µνPRτ .

(4.10)

At the high scale we find the matching contributions (depicted in Fig. 4.1)

Cuτ
T = −

V1jλ
L∗
j3 λ

R
13

8M2 ,

Cu
γ = − mτVub

96π2M2λ
L∗
33 λ

R
13

(
4 + 3 log

(
µ2/M2

))
,

Cu
g = − mτVub

64π2M2λ
L∗
33 λ

R
13 .

(4.11)

Note that we only get up-quark contributions since we do not have (at the one-loop level)
CP violating couplings to down-type quarks. Importantly, note that our effect in Cu

γ and
Cu

g is parametrically enhanced by mτ/mu, making a sizable effect in EDMs possible. This
enhancement of the dipole operators also allows us to safely neglect the effects of charm quarks,
four-fermion operators and of the Weinberg operator otherwise relevant for LQs [231].

10In Ref. [258] it was shown that uncertainties from meson exchanges between initial and final states might
be bigger than the estimated SM uncertainty, which could alleviate the tension in R(D(∗)). On the other hand,
recent improvements in form factor calculations [259] lower the SM prediction and increase the tension. These
two effects are not included in Ref. [103] but will not change the result significantly.

11See Ref. [165,166] for an analysis including Bc → J/Ψτν before the latest BELLE update [109].
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u u

γ(g)

S1

τ+ τ+

Figure 4.1: Feynman diagram showing the contribution of our model to the dipole operators of
Eq. (4.10). The cross denotes the chirality flip by the tau mass which leads to the crucial mτ/mu

enhancement.

Next, we use the one-loop RGE to evolve these Wilson coefficients of Eq. (4.11) down to
the neutron scale. Here, combining and adjusting the results of Ref. [260] and Ref. [189] to our
case we obtain12

µ
d

dµ

 Cuτ
T

Cu
γ

Cu
g

=


CFαs

2π 0 0
−mτ

2π2
αsCF

2π
4CFαs

3π

0 0 αs(10CF−12)
4π


 Cuτ

T

Cu
γ

Cu
g

 .
The solution to this differential equation can be written in terms of an evolution matrix in the
form

~C (µl) = U (µl, µh) ~C (µh) (4.12)

with

U (µl, µh)=


η

4
3β0 0 0

−mτX η
4

3β0 16
3 η

14
3β0

(
η

2
3β0 − 1

)
0 0 η

2
3β0

 , (4.13)

β0 = 33− 2f
3 , η = αs (µh)

αs (µl)
, (4.14)

and

X =
η

4
3β0

(
η

4
β0 − 1

)
β0

8π2 log(η) log
(
µl

µh

)
, (4.15)

where f is the number of active quark flavors. The final evolution matrix is obtained by running
with the appropriate numbers of flavours from the LQ scale down to 1 GeV.

Finally, the effects in the neutron and proton EDMs are given by [262]

dn/e = − (0.44± 0.06) Im
[
Cu

γ

]
− (1.10± 0.56) Im

[
Cu

g

]
,

dp/e = (1.48± 0.14) Im
[
Cu

γ

]
+ (2.6± 1.3) Im

[
Cu

g

]
,

in terms of the Wilson coefficients evaluated at 1 GeV. The neutron and proton EDMs then
enter atomic ones, most importantly in mercury and deuteron (see Ref. [262] for details).

12For the same RGE in a different operator basis see Ref. [261].
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Figure 4.2: Left: preferred regions in the λL
33–λR

23 plane from b → cτν data for M = 1 TeV. Here,
both the case of λL

23 = 0 and the one taking the maximally allowed value of λL
23 from B → K∗νν are

shown. A good fit to data requires |λL
33| ≈ 1 in both cases. Note that our model is compatible with LHC

searches for monotaus and with Bc lifetime constraints which exclude the dark pink and gray regions.
Right: The green (blue) regions indicate where B → τν is enhanced (suppressed) by 10%-40% w.r.t. the
SM for M = 1 TeV, λL

33 = 1 and λL
13 = 0. The dark red region is excluded by the neutron EDM and the

dark red contour denotes the n2EDM sensitivity. The orange contour shows the HL-LHC sensitivity to
CP violation in D0 − D̄0 mixing which is nicely complementary to EDM searches.

On the experimental side, dHg [263] gives currently slightly better bounds than the neutron
EDM, while the one of the proton and the deuteron is not measured yet. However, dp and dD

will be very precisely known from future experiments [264,265] and concerning dn there will be
soon an improvement of one order of magnitude in sensitivity compared to the current limit of
3.6× 10−26e cm [63,266] from the n2EDM experiment at PSI [267]. Therefore, we will focus on
dn in our phenomenological analysis.

4.2.4 D0 − D̄0 Mixing

To describe D0 − D̄0 mixing we use the effective Hamiltonian

HDD̄
eff = C ′

1Q
′
1 , Q′

1 = [ūαγµPRcα] [ūβγ
µPRcβ] ,

and find at the high scale

C ′
1 =

(
λR

13λ
R∗
23

)2

128π2M2 , (4.16)

from the one-loop matching. The evolution of C ′
1 was calculated in Refs. [268, 269] and yields

approximately [270]

C ′
1(3 GeV) ≈ 0.8C ′

1(1 TeV) . (4.17)

The matrix element for the D-meson mixing is given by

〈D̄0|Q′
1(µ)|D0〉 = 1

3B1(µ)mDf
2
D , (4.18)

where B1(µ) = 0.75 at the scale µ = 3 GeV [271]. The mass difference in the D-meson system
is given by

∆mD = 2Re
[
〈D̄0|HDD̄

eff |D0〉
]
≡ 2Re [M12] . (4.19)
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Further, we write

sinφ12 = −2Im [M12]
∆mD

. (4.20)

The averages of the experimental values read [272,273]

0.001 < |M12|[ps−1] < 0.008 ,
−3.5 < φ12[◦] < 3.3 ,
fD = 212 MeV ,

(4.21)

at 95% C.L. At a high luminosity LHC (HL-LHC) the sensitivity to φ12 could be improved
down to the SM expectation of ≈ 0.17◦ [274].

4.2.5 W → τν and Z → ττ

Virtual corrections with top quarks and LQs modify couplings of gauge bosons to charged
leptons, in particular to the tau. Parametrizing the interactions as

−L = g2√
2

ΛW
3i

(
τ̄ γµPLνiW

−
µ

)
+ g2

2cw
τ̄ γµ

(
ΛV − ΛAγ5

)
τZµ

with

ΛW
3i = δ3i + ΛLQ

3i , ΛV,A = ΛV,A
SM + ∆V,A

LQ ,

ΛV
SM = −1

2 + 2s2
w , ΛA

SM = −1
2 ,

the LQ effects at q2 = 0 (the contributions proportional to gauge boson mass are suppressed)
are given by

ΛLQ
3i = Ncm

2
t

192π2M2

[
3V3hλ

L∗
h3V

∗
3kλ

L
ki

(
1 + 2 log

(
m2

t

M2

))]
,

∆L
LQ = V3lλ

L∗
l3 V

∗
3aλ

L
a3

Ncm
2
t

32π2M2

[
1 + log

(
m2

t

M2

)]
,

∆R
LQ = −λR∗

33 λ
R
33

Ncm
2
t

32π2M2

[
1 + log

(
m2

t

M2

)]
, (4.22)

with ∆V
LQ = −∆L

LQ−∆R
LQ and ∆A

LQ = ∆R
LQ−∆L

LQ. This leads to |ΛW
33 | =

∣∣∣1 + ΛLQ
33

∣∣∣. Experimen-
tally, the averaged modification of the W -τν coupling extracted from τ → µνν and τ → eνν
decays reads (averaging the central value but with unchanged error) [275,276]

|ΛW exp
33 | ≈ 1.002± 0.0015 , (4.23)

which provides a better constraint than data of W decays.
Concerning Z → ττ the axial vector coupling is much better constrained that the vectorial

one [275,276]

ΛA
exp/ΛA

SM = 1.0019± 0.0015 , (4.24)

with ΛA/ΛA
SM = 1 + 2∆L

LQ − 2∆R
LQ.
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4.3 Phenomenology

Looking at the phenomenological consequences of our model, note that couplings to muons or
electrons are obviously not necessary to obtain the desired effects in tauonic B decays. Even
though our S1 model can in principle account for the anomalous magnetic moment of the
muon [238, 277–286] (or electron [286]) via a mt/mµ enhanced effect, this is not possible in
the presence of large couplings to tau leptons since also here mt enhanced effects generate too
large rates of τ → µ(e)γ. Similarly, our model cannot address the b → sµ+µ− anomalies if
one aims at a sizable effect in tauonic B decays [287]. Therefore, we will disregard (i.e. set
to zero) the couplings to muons and electrons. Couplings to top-quarks affect τ → µνν [288]
and Z → τ+τ− [289]. Here we see that ∆L ≈ −0.0006|λL

33|2 and ΛLQ
33 ≈ −0.0008|λL

33|2 (for
M = 1 TeV) is compatible with experiments for |λL

33| < 1. Note that we improve the agreement
in Z → ττ data while slightly worsening τ → `νν data, which is already a bit away from the
SM prediction.

Thus, we are left with λR
13,λR

23 and λL
i3 as free parameters for studying the effect in tauonic

B decays and the correlations with EDMs. In the following we will set M = 1 TeV which is also
well compatible with the latest direct search results of CMS for third generation LQs [290,291].13

Let us now turn to b → cτν processes, where effects of the order of 10% compared to the
corresponding tree-level SM amplitude are required. Since our model can give (according to
Eq. (4.3)) tree-level effects in B → K(∗)νν decays (which are loop suppressed in the SM), these
contributions must be suppressed. Since the bottom coupling to taus should be sizable, the
coupling to strange quarks is tightly bound. We show the preferred regions, according to the
updated global fit of Ref. [118], from b → cτν processes in the left plot of Fig. 4.2. These
regions are shown for λL

23 = 0 but also the possible impact of λL
23 6= 0, taking its maximally

allowed values from B → K∗νν, is depicted. Note that our model is not in conflict with the
Bc lifetime [296, 297] (in fact, it is even compatible with the 10% limit of Ref. [298]) nor with
direct LHC searches for monotaus [295]. So far we worked with real parameters in order to
maximize the effect in R(D(∗)). However, even for complex couplings the effect in nuclear and
atomic EDMs would be strongly suppressed since only up and down quarks contribute directly
to these observables.

Therefore, let us now turn to b→ uτν where couplings to up quarks are obviously needed.
Here, even for real couplings an effect in the neutron EDM is generated due to the large phase
of Vub. This effect could only be avoided for Arg[λR∗

13 λ
L
33] = Arg[Vub]. However, since there is

no (obvious) symmetry which could impose this relation, such a configuration would be fine-
tuning. This can be seen from the right plot in Fig. 4.2, where we show the predictions for
Br[B → τν]/Br[B → τν]SM as a function of the absolute value and the phase of λR

13 for λL
33 = 1

(as preferred by b → cτν data). The dark red contour lines denote the n2EDM sensitivity,
showing that a 10% effect in B → τν with respect to the SM will lead to an observable effect
in the neutron EDM within our model. Finally, taking λR

23 = −0.1, as preferred by b → cτν
(see left plot of Fig. 4.2), CP violation in D0 − D̄0 mixing is generated. Here the red contour
denotes the future HL-LHC sensitivity which is complementary to the region covered by EDM
searches.

13More sophisticated analysis of LHC data can be found in Refs. [292–294]. However, since for t-channel
exchange the EFT limits are in general stronger than the ones in the UV complete model, we will use for
simplicity the results of Ref. [295] in the following which show that 1 TeV is compatible with data.

55



Correlating Tauonic B Decays to the Neutron EDM via a Scalar Leptoquark

4.4 Conclusions
In this article we studied the interplay between tauonic B meson decays and EDMs (in particular
the one of the neutron) in a model with a scalar LQ SU(2)L singlet which can be identified
with the right-handed down squark in the R-parity violating MSSM. We found that in order
to explain the intriguing tensions in b → cτν data, λL

33 must be sizable and also a coupling to
right-handed charm quarks and tau-leptons (λR

23) is required. In this setup, the model gives
a very good fit to data and is compatible with b → sνν observables, LHC searches and Bc

lifetime constraints. Extending this analysis to b → uτν transitions, in particular B → τν,
again right-handed couplings to up quarks (λR

13) are required to have a sizable effect. This leads
to very important mτ/mu enhanced effects in (chromo) electric dipole operators generating in
turn EDMs of nucleons and atoms. In particular, even for real couplings of the LQ to fermions,
the large phase of Vub generates a sizable contribution to the neutron EDM. In fact, this ef-
fect should already be observable in the n2EDM experiment at PSI, assuming that, within our
model, B → τν is enhanced (or suppressed) by around 10% with respect to the SM.
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In recent years, experiments revealed intriguing hints for new physics (NP) in semi-leptonic B
decays. Both in charged current processes, involving b → cτν transitions, and in the neutral
currents b → s`+`−, a preference for NP compared to the standard model (SM) of more than
3σ and 5σ was found, respectively. In addition, there is the long-standing tension between the
theory prediction and the measurement of the anomalous magnetic moment (AMM) of the muon
(aµ) of more than 3σ. Since all these observables are related to the violation of lepton flavor
universality (LFU), a common NP explanation seems not only plausible but is even desirable.
In this context, leptoquarks (LQs) are especially promising since they give tree-level effects
in semi-leptonic B decays, but only loop-suppressed effects in other flavor observables that
agree well with their SM predictions. Furthermore, LQs can lead to a mt/mµ enhanced effect
in aµ, allowing for an explanation even with (multi) TeV particles. However, a single scalar
LQ representation cannot provide a common solution to all three anomalies. In this article
we therefore consider a model in which we combine two scalar LQs: the SU(2)L singlet and
the SU(2)L triplet. Within this model we compute all relevant 1-loop effects and perform a
comprehensive phenomenological analysis, pointing out various interesting correlations among
the observables. Furthermore, we identify benchmark points which are in fact able to explain all
three anomalies (b→ cτν, b→ s`+`− and aµ), without violating bounds from other observables,
and study their predictions for future measurements.

5.1 Introduction
While the Large Hadron Collider (LHC) at CERN has not directly observed any particles beyond
the ones of the SM (see e.g. Refs. [299, 300] for an overview) intriguing indirect hints for NP
have been acquired in flavor observables. In particular, measurements of semi-leptonic B meson
decays, involving the charged current b→ cτν or the flavor changing neutral current b→ s`+`−,
point towards the violation of LFU. Furthermore, also the AMM of the muon, which measures
LFU violation as it vanishes in the massless limit, points convincingly towards physics beyond
the SM. In order to explain these deviations from the SM predictions – also called anomalies –
one thus needs NP that couples differently to tau leptons, muons and electrons. As we will see,
LQs are prime candidates for such an explanation in terms of physics beyond the SM.

Let us now review these anomalies in more detail. The first anomaly arose in the AMM
of the muon aµ = (g − 2)µ/2 in 2006. Here, the E821 experiment at Brookhaven discovered a
tantalizing tension between their measurement [55,123]

aexp
µ = 116,592,089(63)× 10−11 (5.1)
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and the SM prediction14

δaµ = aexp
µ − aSM

µ = (278± 88)× 10−11 (5.2)

of around 3–4σ15. This discrepancy is of the same order as the electroweak contribution of the
SM. Therefore, TeV scale NP needs an enhancement mechanism, called chiral enhancement, to
be able to account for the deviation [286]. For LQs this factor can be mt/mµ ≈ 103 which
provides the required enhancement, making LQs prime candidates for an explanation in terms
of NP [238, 241, 243, 277–286, 309–314]. In fact, there are only two LQ representations (under
the SM gauge group), out of the 10 possible ones [147], that can have this enhancement: the
scalar LQ SU(2)L singlet and the scalar LQ SU(2)L doublet with hypercharge −2/3 and −7/3,
respectively.

In tauonic B decays, BaBar measured in 2012 the ratios

R(D(∗)) = Br[B → D(∗)τν]
Br[B → D(∗)`ν]

with ` = {e, µ} (5.3)

significantly above the SM predictions [104]. This is in agreement with the later LHCb measure-
ments [110–112] of R(D∗), while BELLE found values closer to the SM in its latest analysis [109].
In combination, these deviations from the SM amount to 3.1σ [315]16. Interestingly, also the
ratio

R(J/ψ) = Br[Bc → J/ψτν]
Br[Bc → J/ψµν] (5.4)

lies above its SM prediction [113], supporting the assumption of NP in b→ cτν [165,166]. This
picture is confirmed by different independent global fits [119–122] which include in addition
polarization observables. Interestingly, these hints for NP are accompanied by data on b→ uτν
transitions.

Once more, LQs are prime candidates for an explanation. Despite the U1 vector LQ SU(2)L

singlet [45, 149, 151–153, 171–177, 180, 184, 211, 213, 317, 318] and scalar LQ S2 option [234, 235,
309,319–325], the scalar LQ Φ1 [47,176,212,232,233,235,236,238–242,244–247,249,250,287,311]
or the combination of Φ1 and Φ3

17 can explain these data [176,243,326,327].
Finally, the statistically most significant deviations from the SM predictions were observed

in observables involving b→ s`+`− transitions. Here, the LHCb measurements [78,79] of

R(K(∗)) = Br[B → K(∗)µ+µ−]
Br[B → K(∗)e+e−]

(5.5)

14The SM prediction of aµ is currently re-evaluated in a community-wide effort prompted by upcoming improved
measurements at Fermilab [145] and J-PARC [146], see also Ref. [301]. With electroweak [126–128] and QED [125]
contributions under good control, recent advances in the evaluation of the hadronic part include: hadronic vacuum
polarization [129–135], hadronic light-by-light scattering [136–142], and higher-order hadronic corrections [143,
144].

15During the publication process of this article, the Budapest-Marseilles-Wuppertal collaboration (BMWc)
released a lattice QCD calculation from hadronic vacuum polarization (HVP) [302]. These results would render
the SM prediction for aµ compatible with the experiment. However, the BMWc results are in tension with
the HVP determined from e+e− → hadrons data [130, 133, 303, 304], combined with analyticity and unitarity
constraints for the leading 2π [135,303,305] and 3π [306] channels, covering almost 80% of the HVP contribution.
Furthermore, the HVP also enters the global EW fit [307], whose (indirect) determination disagrees with the
BMWc result. Therefore, the BMWc determination of the HVP would lead to a significant tension in EW
fit [308] and we therefore use the (conservative) estimate of Eq. (5.2).

16This tension would even slightly increase by around 0.3σ if the new theory prediction of R(D∗) of Ref. [316]
was taken into account.

17Φ1 and Φ3 are also called S1 and S3, respectively, in the literature.
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Φ1 Φ3 Q L ` u d

Y −2/3 −2/3 1/3 −1 −2 4/3 −2/3

Table 5.1: Values of the hypercharges for the LQ and fermion fields.

indicate LFU violation with a combined significance of ≈ 4σ [88,92,93,97,98,100,158–161,209].
Taking in addition into account all other b → sµ+µ− observables, e.g. the angular observable
P ′

5 [83] in the decay B → K∗µ+µ−, the global fit of the Wilson coefficients even prefers several
NP scenarios above the 5σ level [97, 98, 100]. Furthermore, b → d`+`− transitions measured
in B → πµ+µ− [162] deviate slightly from the LHCb measurement [163]. While this is not
significant on its own, the central value is very well in agreement with the expectation from
b→ s`+`− assuming a Vtd/Vts-like scaling [328] of the NP effect as obtained in models possessing
an U(2) flavor symmetry in the quark sector (see e.g. Refs. [149, 329–331] for accounts in the
context of the flavor anomalies). This means that an effect of the same order and sign as in
b → s`+`−, relative to the SM, is preferred. Once more, LQs are prime candidates for an
explanation. In particular the U1 vector LQ SU(2)L singlet [45, 46, 149, 151, 171, 172, 174–177,
180,184,213,317,318,332], the U3 vector LQ SU(2)L triplet [153,156,172–175,177,180,317,332]
and the Φ3 scalar LQ SU(2)L triplet [173,175–177,180,317,332,333] can explain data very well
via a purely left-handed current.

From the discussion above it is clear that there are several options for a combined explanation
of the flavor anomalies with LQs. Here we will consider the singlet-triplet model introduced
in Refs. [243, 326] which was also studied in the context of Dark Matter [334]. Within this
model, a combined explanation can be possible since Φ1 can account for the anomaly in aµ and
affects b→ cτν transitions while Φ3 can explain b→ s`+`− data and enters b→ cτν processes.
Furthermore, their combined effects in b → sνν̄ processes can be destructive, relieving the
bounds. However, in order to perform a complete phenomenological analysis, an inclusion of
all relevant loop effects is necessary. We will compute these effects and extend the analysis of
Ref. [243], allowing for couplings of Φ1 to right-handed fermions.

The outline of the article is as follows: In the next section we will define our setup. The
conventions for the various observables as well as the results of the matching, taking into account
the relevant loop effects, are given in Sec. 5.3 before we perform our phenomenological analysis
in Sec. 5.4 and conclude in Sec. 5.5.

5.2 Setup

The scalar LQ singlet-triplet model is obtained by adding a scalar LQ SU(2)L singlet (Φ1) and
an SU(2)L triplet (Φ3), each carrying hypercharge −2/3, to the SM particle content. While
the couplings to gauge bosons are completely determined by the representations of the LQs
under the SM gauge symmetry, their couplings to the SM fermions and the SM Higgs18 are free
parameters of the Lagrangian

LLQ =
(
λI

fiQ
c
f iτ2Li + λ̂I

fiu
c
f `i
)

ΦI†
1 + κJ

fiQ
c
f iτ2

(
τ · ΦJ

3

)†
Li + ρIJΦI†

1

(
H†

(
τ · ΦJ

3

)
H
)

−
N∑

{I,I′}=1

((
M2

Φ1

)
II′
− ξΦ1

II′H
†H
)

ΦI†
1 ΦI′

1 −
M∑

{J,J ′}=1

((
M2

Φ3

)
JJ ′
− ξΦ3

JJ ′H
†H
)

ΦJ†
3 ΦJ ′

3 + h.c. .
(5.6)

18Couplings to the Higgs lead to mixing among different LQ representations. Via this mixing LQs are able to
generate Majorana masses for neutrinos [155,241,327,335–339].
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Here, Q (L) is the quark (lepton) SU(2)L doublet and u (`) the quark (charged lepton) singlet.
The superscript c denotes charge conjugation, f, i are flavor indices and I(′), J (′) denote the
number of LQs in a given representation (i.e. {I, I ′} = 1, ..., N for Φ1 and {J, J ′} = 1, ...,M for
Φ3)19. For the hypercharge Y we use the convention Qem = T3 + Y/2, where Qem is the electric
charge and T3 the third component of weak isospin (see Tab. 5.1).

After electroweak symmetry breaking the Higgs acquires its vacuum expectation value v ≈
174 GeV. The last term in Eq. (5.6) then leads to a shift in the bi-linear mass terms of the LQs.
However, this shift can be absorbed by defining

(
M2

Φ1,3

)
KK′
− v2ξ

Φ1,3
KK′ ≡

(
M̃2

Φ1,3

)
KK′

. (5.7)

Thus, the terms ξΦ1,3
KK′ have (at leading order in perturbation theory) no impact on the low

energy flavor phenomenology of the singlet-triplet model but would only enter processes with
an external Higgs (or at higher loop level). Furthermore, by unitary rotations of the LQ fields,
we can now diagonalize their bi-linear mass terms via unitary rotations U1,2:

U †
1M̃

2
Φ1U1 = diag

(
m̂2

1, ... , m̂
2
N

)
≡ m2

Φ1 ,

U †
3M̃

2
Φ3U3 = diag

(
m̄2

1, ... , m̄
2
M

)
≡ m2

Φ3 .
(5.8)

In turn, these rotations lead to an effect in the couplings to the Higgs which can however be
absorbed by the definition

U †
1ρU3 ≡ ρ̂ . (5.9)

The LQ field rotations in Eq. (5.8) have to be applied to their fermionic interactions as well.
Here, they can again be absorbed by a redefinition of the couplings

λI
fiU

∗
1,KI ≡ λK

fi , λ̂I
fiU

∗
1,KI ≡ λ̂K

fi , κJ
fiU

∗
3,KJ ≡ κK

fi . (5.10)

Hence, we are left with diagonal bi-linear mass terms with entries
(
m2

Φ1

)
II

and
(
m2

Φ3

)
JJ

and
off-diagonal Φ1 − Φ3 mixing governed by ρ̂IJ . While the LQs with Qem = {2/3,−4/3} are
already in their mass eigenstates, we have to diagonalize the resulting full matrix of the Φ1−Φ3
system with Qem = −1/3

W †
(
m2

Φ1
v2ρ̂

v2ρ̂† m2
Φ3

)
W = diag

(
m2

1, ... ,m
2
M+N

)
, (5.11)

with a unitary matrix W . Working in the down basis, i.e. in the basis where no CKM elements
appear in flavor changing neutral currents of down-type quarks, this leads to the following
interaction terms with fermions

LLQ =ΓL,K
uf `i

ūc
fPL`iΦ−1/3∗

K + ΓR,K
uf `i

ūc
fPR`iΦ−1/3∗

K + ΓL,K
dfνi

d̄c
fPLνiΦ−1/3∗

K

+ ΓJ
ufνi ū

c
fPLνiΦ2/3∗

J + ΓJ
df `i d̄

c
fPL`iΦ−4/3∗

J ,
(5.12)

19In the R-parity violating MSSM this would correspond to the number of generations for the singlet. However,
in general N and M do not need to be equal.
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where the superscripts of the LQ fields refer to their electric charge and

ΓL,K
uf `i

= V ∗
fj

(
λI

jiW
∗
IK − κJ

jiW
∗
J+N,K

)
,

ΓR,K
uf `i

= λ̂I
fiW

∗
IK ,

ΓL,K
dfνi

= −λI
fiW

∗
IK − κJ

fiW
∗
J+N,K ,

ΓJ
ufνi =

√
2V ∗

fjκ
J
ji ,

ΓJ
df `i = −

√
2κJ

fi .

(5.13)

Recall that the indices take the numbers I = {1, ..., N}, J = {1, ...,M} and K = {1, ...,M +N}.
In the limit with only one generation of each LQ and without mixing we have

ΓL,K
uf `i

= V ∗
fj (λjiδ1K − κjiδ2K) , ΓR,K

uf `i
= λ̂fiδ1K ,

ΓL,K
dfνi

= −λfiδ1K − κfiδ2K , Γufνi =
√

2V ∗
fjκji , Γdf `i = −

√
2κfi ,

(5.14)

where the indices 1 and 2 correspond to Φ1 and Φ3, respectively.

5.3 Processes and Observables

In order to illustrate the phenomenology of our model, we will limit ourselves to the case of one
LQ singlet Φ1 and one LQ triplet Φ3 without mixing among them. Therefore, we will derive the
corresponding expressions for the relevant processes in this simplified limit in this section and
denote by M1 and M3 the singlet and triplet mass, respectively. In the appendix we will provide
the most general expressions for the Wilson coefficients allowing for an arbitrary number of LQs
and include mixing among them.

Let us now study the various classes of processes. For each class, we will first define the
effective Hamiltonians governing these processes and perform the matching of the model on
them. Then we discuss the relation of the Wilson coefficients to observables and review the
related available experimental information.

5.3.1 dd`` and ddγ Processes

To describe dk → dj`
−
f `

+
i transitions, we use the effective Hamiltonian

Hdd``
eff = −4GF√

2
VtdkV

∗
tdj

 ∑
A=7,8

Cjk
A O

jk
A +

∑
A=9,10

Cfi
A,jkO

fi
A,jk

 ,
Ojk

7(8) = e(gs)
16π2mk[d̄jσ

µν(T a)PRdk]Fµν(Ga
µν) ,

Ofi
9,jk = α

4π [d̄jγ
µPLdk] [¯̀fγµ`i] ,

Ofi
10,jk = α

4π [d̄jγ
µPLdk] [¯̀fγµγ5`i] ,

(5.15)

and define the covariant derivate as

Dµ = ∂µ + ieQAµ + igsG
a
µT

a . (5.16)
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b s

γ

Φ

` `

b s

γ, g

`, ν

Φ Φ

b s

γ∗

ττ

``

Figure 5.1: Feynman diagrams in our LQ singlet-triplet model generating contributions to b→ sγ and
b → s`+`− at the 1-loop level. The left two diagrams show the matching contribution to the (chromo)
magnetic operator. The diagram on the right, with an off-shell photon, is generating the mixing of Oττ

9
into O``

9 .

At tree level, the only matching contribution to Cfi
9,jk and Cfi

10,jk stems from Φ3

Cfi
9,jk = −Cfi

10,jk =
√

2
2GFVtdkV

∗
tdj

π

α

κkiκ
∗
jf

M2
3

. (5.17)

As in any model, the Wilson coefficients of the (chromo) magnetic operator can only be gen-
erated at the loop level. The left two diagrams in Fig. 5.1 (given for concreteness for b → s
transitions) with on-shell photon and gluons result in

Cjk
7 (µLQ) = −

√
2

4GFVtdkV
∗

tdj

1
24

(
1
3
λkiλ

∗
ji

M2
1

+ 7
κkiκ

∗
ji

M2
3

)
,

Cjk
8 (µLQ) =

√
2

4GFVtdkV
∗

tdj

1
24

(
λkiλ

∗
ji

M2
1

+ 3
κkiκ

∗
ji

M2
3

)
,

(5.18)

at the matching scale µLQ.
Concerning the QCD evolution of these coefficients, O8 mixes into O7 at O(αs), yielding the

relation [189,190] (
C7(µl)
C8(µl)

)
= Ûf (µl, µh)

(
C7(µh)
C8(µh)

)
, (5.19)

with

Ûf (µl, µh) =

η 16
33−2f 8

3

(
η

14
33−2f − η

16
33−2f

)
0 η

14
33−2f

 . (5.20)

Here, f denotes the number of active quark flavors, µh(l) refers to the high (low) energy scale
and

η = αs(µh)
αs(µl)

, (5.21)

where αs needs to be evaluated with the number of active flavors at a given scale as well.
Even though b → s`+`− can be induced at tree level in our model, there are still scenarios

in which loop effects are phenomenologically important. As pointed out in Ref. [45], the large
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couplings to tau leptons, needed to explain b→ cτν data, also lead to huge Wilson coefficients
Cττ

9,sb = −Cττ
10,sb. In turn, Oττ

9,sb mixes into O``
9,sb via the off-shell photon penguin [340], shown in

the right diagram of Fig. 5.1. In our UV complete model, we cannot only calculate this mixing,
but also the finite part of the effect, contained in the matching contribution

C``
9,jk(µLQ) =

√
2

216GFVtdkV
∗

tdj

[
λklλ

∗
jl

M2
1

+ 3
κklκ

∗
jl

M2
3

(
19 + 12 log

(
µ2

LQ
M2

3

))]
. (5.22)

This means that even if couplings to light leptons are absent at tree level, they are generated via
loop effects in the presence of tau couplings. Since we will mainly focus on b → s transitions,
we shorten our notation in the following and write Csb

7(8) ≡ C7(8), C
fi
9(10),sb ≡ Cfi

9(10). The
logarithm involving µLQ in Eq. (5.22) originates from the fact that the right-diagram in Fig. 5.1
is divergent. To get rid of this dependence one has to solve the RGE governing the mixing
between Oii

9 with different lepton flavors:

µ
∂ Cii

9 (µ)
∂µ

= γ Cff
9 (µ) (f 6= i) (5.23)

with γ = 2α
3π . Here, we do not take into account the running of α and do not consider the

running of Cii
9 (i.e. just the mixing of Oii

9 into Cjj
9 with i 6= j). This then has the solution

Cii
9 (µ) = Cii

9 (µLQ) + γ log
(

µ

µLQ

)
Cff

9 (f 6= i) . (5.24)

For B meson decays, this amounts to replacing the high scale µLQ in Eq. (5.22) by the low scale
of the processes µb. In addition, at the B meson scale, Oττ

9 gives a q2 dependent contribution
to C``

9,eff , which however is numerically small [340] and currently not accessible with the SM
independent fit. However, there are intriguing prospects that with improved future data this
effect could be distinguished from the q2-independent C9 effect [341].

QCD corrections to the matching of scalar LQs for semi-leptonic processes (both charged
and neutral current) can be taken into account by applying the following shifts to the Wilson
coefficients of vector (V ), scalar (S) and tensor (T ) operators [253]

CV → CV

(
1 + αs

4πCF

(
3lµ + 17

2

))
,

CS → CS

(
1 + 3αs

2π CF

)
,

CT → CT

(
1 + αs

π
CF (lµ + 2)

)
,

(5.25)

with lµ = log
(
µ2/M2) (where M can be either M1 or M3) and CF = 4/3 as the color factor.

Since QCD is insensitive to flavor, electric charge and chirality, these corrections can be applied
in a straightforward way to all other semi-leptonic processes, particularly to b → sνν̄ and
b→ cτν.

Observables

As mentioned in the introduction, a main motivation for this anlysis is the explanation of
the hints for NP in b → s`+`− data. In order to resolve this discrepancy between SM and
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X q2[GeV2] A0 A1 A2 A3 A4 A5

K [15, 22] 1.20± 0.12 0.15± 0.02 −0.42± 0.04 0.15± 0.01 0.15± 0.04 0.02
K∗ [15, 19] 0.98± 0.09 0.38± 0.03 −0.14± 0.01 −0.30± 0.03 0.12 0.05
φ [15, 18.8] 0.86± 0.06 0.34± 0.02 −0.11 −0.28± 0.02 0.10 0.05

A6 A7 A8 A9 A10

0.05± 0.01 0.02 0.05± 0.01 0.04 0.10± 0.01
0.02 0.05± 0.01 0.02± 0.01 −0.08± 0.01 −0.03
0.01 0.05 0.01± 0.02 −0.08 −0.02

Table 5.2: Numerical values for the coefficients given in Eq. (5.31) for the different decay modes
involving b→ sτ+τ− transitions together with the corresponding q2 ranges.

experiment, an O(20%) effect to C9,10 is required compared to the SM contribution which is
given by [195,196]

CSM
9 (4.8 GeV) = 4.07 , CSM

10 (4.8 GeV) = −4.31 . (5.26)

In a global fit one finds preference for scenarios like Cµµ
9 = −Cµµ

10 , as generated in our model
at tree level. However, a Cµµ

9 = −Cµµ
10 effect complemented by a LFU one in C``

9 gives an even
better fit to data [95, 98]. As we will see, this is exactly the pattern that arises in our model,
taking into account the loop effects discussed above.

For b→ sτ+τ− transitions we have on the experimental side [192]

Br
[
Bs → τ+τ−

]
exp
≤ 6.8× 10−3 (95% C.L.) . (5.27)

For Bd → τ+τ− there is a (unpublished) measurement of BELLE [164] and an upper limit of
LHCb [192]

Br
[
Bd → τ+τ−

]BELLE

exp
=
(
4.39+0.80

−0.83 ± 0.45
)
× 10−3 ,

Br
[
Bd → τ+τ−

]LHCb

exp
≤ 2.1× 10−3 (95% C.L.) .

(5.28)

These measurements are compatible at the 2σ level. The SM predictions read [193,194]

Br
[
Bs → τ+τ−

]
SM

= (7.73± 0.49)× 10−7 ,

Br
[
Bd → τ+τ−

]
SM

= (2.22± 0.19)× 10−8 .
(5.29)

In our model we find
Br
[
Bs → τ+τ−]

Br[Bs → τ+τ−]SM
=
∣∣∣∣∣1 + Cττ

10
CSM

10

∣∣∣∣∣
2

, (5.30)

and the analogous expression for b → d transitions. Also the branching ratios of semi-leptonic
b→ sτ+τ− processes can be expressed in terms of NP Wilson coefficients [179]

Br
[
B(s) → Xτ+τ−]× 107 = AX

0 +AX
1 C

ττ
9 +AX

2 C
ττ
10 +AX

3 C
′ττ
9 +AX

4 C
′ττ
10 +AX

5 (Cττ
9 )2

+AX
6 (Cττ

10 )2 +AX
7 (C ′ττ

9 )2 +AX
8 (C ′ττ

10 )2 +AX
9 C

ττ
9 C ′ττ

9 +AX
10C

ττ
10C

′ττ
10 .

(5.31)

These branching ratios together with the corresponding coefficients are shown in Tab. 5.2.
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Turning to b→ sτµ transitions, we have [197]

Br[B → Kτ±µ∓] = 10−9
[
9.6
(
|Cµτ

9 |
2 + |Cτµ

9 |
2
)

+ 10
(
|Cµτ

10 |
2 + |Cτµ

10 |
2
)]

, (5.32)

and

Br
[
B̄s → `−f `

+
i

]
= G2

Fα
2

64π3
∣∣VtbV

∗
ts

∣∣2f2
BsτBsmBs(m`i +m`f )2η(xi, xf )

×
[∣∣∣Cfi

10 − C
′fi
10

∣∣∣2(1− (xi − xf )2)+
∣∣∣∣m`i −m`f

m`i +m`f

(
Cfi

9 − C
′fi
9

) ∣∣∣∣2(1− (xi + xf )2)] , (5.33)

with xk = m`k/mBs and

η(x, y) =
√

1− 2(x+ y) + (x− y)2 . (5.34)

We neglected the contributions of (pseudo-)scalar operators, since they do not appear in our
model. The relevant experimental limits are [342,343]

Br[B → Kτ±µ∓]exp ≤ 4.8× 10−5 ,

Br[Bs → τ±µ∓]exp ≤ 4.2× 10−5 .
(5.35)

d̄d ¯̀̀ operators contribute to τ → φµ as well. This gives relevant constraints on the parameter
space of our model. We use the result of Ref. [175] and obtain

Br [τ → φµ] =
f2

φm
3
τττ

128π
|κ22κ

∗
23|

2

M4
3

(
1−

m2
φ

m2
τ

)2(
1 + 2

m2
φ

m2
τ

)
, (5.36)

which has to be compared to the current experimental limit of [201]

Br [τ → φµ] < 8.4× 10−8 (90% C.L.) . (5.37)

5.3.2 ddνν Processes

To describe dk → djνf ν̄i processes we use the Hamiltonian

Hddνν
eff = −4GF√

2
VtdkV

∗
tdj

(
Cfi

L,jkO
fi
L,jk + Cfi

R,jkO
fi
R,jk

)
,

Ofi
L(R),jk = α

4π
[
d̄jγ

µPL(R)dk

]
[ν̄fγµ (1− γ5) νi] .

(5.38)

At tree level we find contributions from Φ1 and Φ3 resulting in

Cfi
L,jk =

√
2

4GFVtdkV
∗

tdj

π

α

[
λkiλ

∗
jf

M2
1

+
κkiκ

∗
jf

M2
3

]
. (5.39)

Since these processes are generated at tree level, we do not need to calculate loop effects, which
would only amount to numerically small corrections. Again, we simplify the notation for b→ s
transitions, writing Cfi

L,sb ≡ Cfi
L . The QCD matching corrections are given in Eq. (5.25) and

there is no QCD evolution of these operators.
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Observables

For B → K(∗)νν̄ we follow Ref. [205] and use CSM
L ≈ −1.47/s2

w. The branching ratios normalized
to the SM read

Rνν̄
K(∗) = 1

3

3∑
f,i=1

∣∣CSM
L δfi + Cfi

L

∣∣2∣∣CSM
L

∣∣2 . (5.40)

This has to be compared to the current experimental limits Rνν̄
K < 3.9 and Rνν̄

K∗ < 2.7 [206]
(both at 90% C.L.). The expected BELLE II sensitivity for B → K(∗)νν̄ is 30% of the SM
branching ratio [207].

5.3.3 du`ν Processes

For the charged current semi-leptonic processes we define the effective Hamiltonian as

Hdu`ν
eff = 4GF√

2
Vjk

(
Cfi

V L,jk [ūjγ
µPLdk]

[
¯̀
fγµPLνi

]
+ Cfi

SL,jk [ūjPLdk]
[
¯̀
fPLνi

]
+ Cfi

T L,jk [ūjσ
µνPLdk]

[
¯̀
fσµννi

] )
,

(5.41)

where in the SM CSM
V L = 1. The contribution of our model to the SM Wilson coefficient from

Φ1 and Φ3 is given by

Cfi
V L,jk = −

√
2

8GFVjk

[
−
Vjlλ

∗
lfλki

M2
1

+
Vjlκ

∗
lfκki

M2
3

]
, (5.42)

while scalar and tensor operators are generated by Φ1 only

Cfi
SL,jk = −4Cfi

T L,jk = −
√

2
8GFVjk

λkiλ̂
∗
jf

M2
1

. (5.43)

Since we are mainly interested in b→ c transitions, we abbreviate

Cfi
V L,cb ≡ C

fi
V L , Cfi

SL,cb ≡ C
fi
SL , Cfi

T L,cb ≡ C
fi
T L . (5.44)

Again, the QCD matching corrections are given in Eq. (5.25). We also include the 2-loop QCD
and the 1-loop EW RGE. Using the results of Ref. [255], we have

Cfi
V L(µb) = Cfi

V L(1 TeV) ,

Cfi
SR(µb) = 1.737 Cfi

SR(1 TeV) ,(
Cfi

SL(µb)
Cfi

T L(µb)

)
=
(

1.752 −0.287
−0.004 0.842

)(
Cfi

SL(1 TeV)
Cfi

T L(1 TeV)

)
.

(5.45)

67



Flavor Phenomenology of the Leptoquark Singlet-Triplet Model

Observables

With these conventions, the ratios R(D(∗)) are given by [118]

R(D)
R(D)SM

'
∣∣1 + Cττ

V L

∣∣2 + 1.54Re
[(

1 + Cττ
V L

)
Cττ∗

SL

]
+ 1.09

∣∣Cττ
SL

∣∣2
+ 1.04Re

[(
1 + Cττ

V L

)
Cττ∗

T L

]
+ 0.75|Cττ

T L|2 ,

R(D∗)
R(D∗)SM

'
∣∣1 + Cττ

V L

∣∣− 0.13Re
[(

1 + Cττ
V L

)
Cττ∗

SL

]
+ 0.05

∣∣Cττ
SL

∣∣2
− 5.0Re

[(
1 + Cττ

V L

)
Cττ∗

T L

]
+ 16.27

∣∣Cττ
T L

∣∣2 ,
(5.46)

in terms of the Wilson coefficients given at the B meson scale. Furthermore, the branching
ratio of Bc → τν reads [118,252]

Br[Bc → τν] = 0.02
(

fBc

0.43 GeV

)2∣∣∣1 + Cττ
V L + 4.3

(
Cττ

SR − Cττ
SL

)∣∣∣2 . (5.47)

In this work we use the most stringent limit of Ref. [298]

Br[Bc → τν] ≤ 0.1 , (5.48)

even though this bound might be too restrictive (see Refs. [121,298] for theoretical discussions).
However, we will see that even this limit does not constrain our model significantly.

A further constraint comes from the determination of the CKM element Vcb when comparing
electron and muon final states. Here Ref. [344] finds that

Ṽ e
cb

Ṽ µ
cb

= 1.011± 0.012 , (5.49)

where

Ṽ `
cb = Vcb

[∣∣1 + C``
V L

∣∣2 +
∑
`6=`′

∣∣C``′
V L

∣∣2]1/2
. (5.50)

For observables including first and second generation quarks such as τ → πν, K → µν/K → eν
or D decays, the Wilson coefficients can be applied using appropriate indices. The corresponding
formulas and analyses can be found e.g. in Refs. [313,345].

5.3.4 ∆F = 2 Processes

Dealing with ∆F = 2 processes, concretely Bs − B̄s mixing, we use the effective Hamiltonian

HBB̄
eff = C1 [s̄αγµPLbα] [s̄βγ

µPLbβ] . (5.51)

In our model we obtain

C1 = −1
128π2

(
λ∗

2iλ3jλ
∗
2jλ3iC0

(
0,M2

1 ,M
2
1

)
+ 5κ∗

2iκ3jκ
∗
2jκ3iC0

(
0,M2

3 ,M
2
3

)
+ 2λ∗

2jλ3iκ
∗
2iκ3jC0

(
0,M2

1 ,M
2
3

)) (5.52)
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Φ

Φ b
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`i `f

γ

Φ1

tc tc

`i `f

γ

tc

Φ1 Φ1

Figure 5.2: Left: LQ boxes contributing to Bs−B̄s mixing. Middle and right: Loop diagrams induced
by Φ1, generating effects in `i → `fγ. In case of a top quark, as depicted, a chirally enhanced term can
arise.

at the high scale µLQ. Here the first term originates only from Φ1 and the second one only from
Φ3. The last term originates from a box diagram where both LQ representations contribute.
One of the corresponding Feynman diagram is shown in Fig. 5.2. The formula for Bd and Kaon
mixing follow trivially. We can write the mass difference ∆mBs (including NP) normalized to
the SM one as

∆mBs

∆mSM
Bs

=
∣∣∣∣∣1 + C1

CSM
1

∣∣∣∣∣ , (5.53)

with [346]

CSM
1 = 2.35

(
VtbV

∗
tsGFmW

)2
4π2 (5.54)

given at the high scale. Since both the SM and LQ contribute to C1, the QCD running down
to µb is the same for both and therefore cancels in Eq. (5.53), neglecting the evolution from
µLQ to the EW scale.

Observables

Bs − B̄s mixing has been measured to very good precision [347] and the current world average
reads [276]

∆mexp
Bs

= (17.757± 0.021)× 1012 s−1 . (5.55)

The theoretical prediction suffers strongly from the uncertainties in QCD effects. While
Ref. [348] and Ref. [349] fit well to the measurement (with rather large errors)

∆mSM
Bs = (18.3± 2.7)× 1012 s−1 , (5.56)

Ref. [350] obtains a larger SM value

∆mSM
Bs = (20.01± 1.25)× 1012 s−1 . (5.57)

The bounds on the imaginary part of the Wilson coefficient is even more stringent. In our
phenomenological anlysis we will assume real couplings and allow for NP effects of up to 20%
with respect to the SM prediction.
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5.3.5 ``γ Processes

In case of charged lepton interactions with on-shell photons we define

H``γ
eff = CL

`f `iO
L
`f `i + CR

`f `iO
R
`f `i , (5.58)

with

O
L(R)
`f `i

= e

16π2
[¯̀

fσ
µνPL(R)`i

]
Fµν . (5.59)

We obtain the following matching contribution in case of a top quark in the loop

CL
`f `i = −

m`fλ
∗
3fλ3i +m`i λ̂

∗
3f λ̂3i

8M2
1

+
mtλ̂

∗
3fV

∗
3kλki

4M2
1

(
7 + 4 log

(
m2

t

M2
1

))
+

3m`fκ
∗
3fκ3i

8M2
3

(5.60)

from the Feynman diagram given in Fig. 5.2 with Nc = 3 already included. Note that we have
CR

`f `i
= CL∗

`i`f
due to the hermiticity of the Hamiltonian. Here we quoted explicitly the formula

for the top quark, which we integrated out together with the LQ at the scale M ≈M1 ≈M3. In
case of light quarks, some comments concerning the use of Eq. (5.60) are in order: in principle,
one has to integrate out only the LQ at the scale M but keep the quark as a dynamical degree of
freedom. In this way, the matching contribution to CL

`f `i
acquires an infrared divergence, which

is cancelled by the corresponding UV divergence of the contribution of the tensor operator20,
obtained by integrating out the LQ at tree level. This amounts to a replacement of mt by µLQ
in the logarithm in Eq. (5.60). Now, at the low scale, the solution to the RGE (disregarding
QED effects) leads to a replacement of µLQ by the scale of the processes, or by the quark mass
in case this mass is bigger than the scale. Therefore, in the case of light quarks, Eq. (5.60)
can be considered as an effective Wilson coefficient at the low scale, which includes the effect
of 4-fermion operators (up to QED corrections) and can therefore be used for the numerical
evaluation.

Considering `i → `f transition with an off-shell photon, we define the amplitude

A(`i → `fγ
∗) = −eq2 ¯̀

f (pf ) /ε∗(q2)
(
Ξ̂L

fiPL + Ξ̂R
fiPR + δfi

)
`i(pi) (5.61)

with

Ξ̂L
fi = −Nc

576π2

(
Vjkλ

∗
kfV

∗
jlλli

M2
1

F

(m2
uj

M2
1

)
+
Vjkκ

∗
kfV

∗
jlκli

M2
3

F

(m2
uj

M2
3

)
+

2κ∗
jfκji

M2
3

G

(m2
dj

M2
3

))
,

Ξ̂R
fi = −Nc

576π2
λ̂∗

jf λ̂ji

M2
1
F

(m2
uj

M2
1

)
,

(5.62)

where

F (y) = y3 − 18y2 + 27y − 10 + 2
(
y3 + 6y − 4

)
log(y)

(y − 1)4 ,

G(y) = −17y3 + 36y2 − 27y + 8 +
(
8y3 − 6y + 4

)
log(y)

(y − 1)4 .

(5.63)

20See Sec. 5.6.3 for the matching to the uuγ and uu`` operators.
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Observables

We can now express the branching ratios of flavor changing radiative lepton decays in terms of
the Wilson coefficients as

Br [`i → `fγ] =
αm3

`i

256π4 τ`i

(∣∣CL
`f `i

∣∣2 +
∣∣CR

`f `i

∣∣2) , (5.64)

where τ`i is the life time of the initial state lepton. The AMM of a charged lepton `i is given by

a`i = −m`i

4π2 Re
[
CR

`i`i

]
. (5.65)

The expression for the electric dipole moment of the lepton is quite similar to the one for the
AMM, namely

d`i = − e

8π2 Im
[
CR

`i`i

]
. (5.66)

In case of the AMM of the muon we already discussed the experimental situation in the intro-
duction. In summary, the difference between the experiment and the SM prediction is

δaµ = (278± 88)× 10−11 ,

corresponding to a 3.5σ deviation. Note that in our case the Wilson coefficient is in general
complex and could therefore lead to sizable EDMs [286]. The current limits for radiative LFV
decays are [351,352]

Br[µ→ eγ] <4.2× 10−13 ,

Br[τ → eγ] <3.3× 10−8 ,

Br[τ → µγ] <4.4× 10−8 ,

(5.67)

representing relevant constraints for our analysis. The off-shell photon penguins contribute to
processes like τ → 3µ which we will consider later.

5.3.6 Z`` and Zνν Processes

In this subsection we compute the amplitudes for Z → `−i `
+
f and Z → νf ν̄i processes for massless

leptons. At zero momentum transfer (or equivalently vanishing Z mass), these amplitudes are
directly related to effective Z`` and Zνν couplings, which will enter flavor observables like for
example in τ → 3µ. We write the amplitude in an analogous way to the case with the off-shell
photon

A(Z → `−f `
+
i ) = g

cw
ū(pf ,m`f )γµ

(
ΛL

`f `i

(
q2)PL + ΛR

`f `i

(
q2)) v(pi,m`i)εµ(q) ,

A(Z → νf ν̄i) = g2
cw

Σνfνi

(
q2)ū(pf )γµPLv(pi)εµ(q) ,

(5.68)

where εµ is the polarization vector of the Z and

ΛL(R)
`f `i

(
q2) = ΛL(R)

SM (q2)δfi + ∆L(R)
fi

(
q2) , Σνfνi

(
q2) = ΣSM(q2)δfi + ΣLQ

fi

(
q2) . (5.69)

At tree-level the SM couplings read
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Φ1,3

tc, dc

Figure 5.3: Feynman diagrams in our singlet-triplet model contributing to Z → `−
f `

+
i and Z → νf ν̄i

processes.

ΛL
SM =

(1
2 − s

2
w

)
, ΛR

SM = −s2
w , ΣSM = −1

2 , (5.70)

with sw being the Weinberg angle. Beyond tree-level, the SM coefficients receive momentum
dependent corrections which are included in the predictions for EW observables. The corre-
sponding Feynman diagrams, generating these amplitudes in our model, are depicted in Fig. 5.3.
For the calculation we include the up-type quark masses (which become relevant in case of the
top) and the Z mass up to the order m2

u/M
2
LQ and m2

Z/M
2
LQ, respectively. In this setup we

obtain

∆L
fi

(
q2) = Vjkλ

∗
kfV

∗
jlλliFL

(
m2

uj , q
2,M2

1
)

+ Vjkκ
∗
kfV

∗
jlκliFL

(
m2

uj , q
2,M2

3
)

+ 2κ∗
jfκjiGL

(
q2,M2

3
)
,

∆R
fi

(
q2) = λ̂∗

jf λ̂jiFR

(
m2

uj , q
2,M2

1
)
,

ΣLQ
fi

(
q2) = λ∗

jfλjiH1
(
q2,M2

1
)

+ κ∗
jfκjiH1

(
q2,M2

3
)

+ 2Vjkκ
∗
kfV

∗
jlκliH2

(
m2

uj , q
2,M2

3
)
.

(5.71)

The corresponding loop functions FL,R, GL and H1,2 are given in Eq. (5.117) and Eq. (5.122).
In case of Z decays we have q2 = m2

Z .

For the effective Z`` and Zνν couplings (at zero momentum transfer), we define

LZ``
int = g2

cw

[¯̀
f

(
ΛL

`f `i(0)γµPL + ΛR
`f `i(0)γµPR

)
`i
]
Zµ ,

LZνν
int = g2

cw
Σνfνi(0) [ν̄fγµPLνi]Zµ .

(5.72)

In this case, only the top contribution is relevant and the effective couplings become

ΛL
`f `i(0) = ΛL

SM(0)δfi

+ Ncm
2
t

32π2

(
V3kλ

∗
kfV

∗
3lλli

M2
1

(
1 + log

(
m2

t

M2
1

))
+
V3kκ

∗
kfV

∗
3lκli

M2
3

(
1 + log

(
m2

t

M2
3

)))
,

ΛR
`f `i(0) = ΛR

SM(0)δfi −
Ncm

2
t

32π2
λ̂∗

3f λ̂3i

M2
1

(
1 + log

(
m2

t

M2
1

))
,

Σνfνi(0) = ΣSM(0)δfi + Ncm
2
t

16π2
V3kκ

∗
kfV

∗
3lκli

M2
3

(
1 + log

(
m2

t

M2
3

))
.

(5.73)

Note that Z → `−i `
+
f has also been considered in Ref. [289].
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Observables

The branching ratio of a Z decaying into a charged lepton pair reads

Br
[
Z → `−f `

+
i

]
= GF√

2
m3

Z

3π
1

Γtot

(∣∣ΛL
`f `i(m

2
Z)
∣∣2 +

∣∣ΛR
`f `i(m

2
Z)
∣∣2) . (5.74)

with Γtot ≈ 2.5 GeV. The case for a pair of neutrinos in the final state follows trivially. The
effective number of active neutrinos, including the corrections in our model, are given by

Nν =
∑
f,i

∣∣∣∣δfi +
ΣLQ

fi (m2
Z)

ΣSM(m2
Z)

∣∣∣∣2 . (5.75)

At LEP [353] the lepton flavor conserving Z boson couplings were measured precisely. We
give the experimental results for each flavor separately

ΛLe
exp(m2

Z) = 0.26963± 0.00030 , ΛRe
exp(m2

Z) = −0.23148± 0.00029 ,
ΛLµ

exp(m2
Z) = 0.2689± 0.0011 , ΛRµ

exp(m2
Z) = −0.2323± 0.0013 ,

ΛLτ
exp(m2

Z) = 0.26930± 0.00058 , ΛRτ
exp(m2

Z) = −0.23274± 0.00062 ,
ΣLν

exp(m2
Z) = −0.5003± 0.0012 .

(5.76)

The SM predictions at the Z pole are

ΛLe
SM(m2

Z) = ΛLµ
SM(m2

Z) = ΛLτ
SM(m2

Z) = 0.26919± 0.00020 ,

ΛRe
SM(m2

Z) = ΛRµ
SM(m2

Z) = ΛRτ
SM(m2

Z) = −0.23208+0.00016
−0.00018 ,

ΣLν
SM(m2

Z) = −0.50199+0.00017
−0.00020 .

(5.77)

Concerning lepton flavor violating Z decays the limits from LEP are [354–356]

Br
[
Z → e±µ∓] ≤ 7.5× 10−7 ,

Br
[
Z → e±τ∓] ≤ 9.8× 10−6 ,

Br
[
Z → µ±τ∓] ≤ 1.2× 10−5 .

(5.78)

From Z → νν̄ one can determine the number of active neutrinos to be [353]

Nν = 2.9840± 0.0082 . (5.79)

As mentioned before, Z`` couplings (at zero momentum transfer) contribute to processes like
τ → 3µ. Furthermore, Z`` couplings in Z decays can be measured much more precisely at an
FCC-ee which could produce more than 1011 Z bosons [357].

5.3.7 W `ν Processes

Computing the amplitude of this process (also considered in Ref. [289]), we obtain

A(W− → `−f ν̄i) = − g2√
2

ΛW
`fνi

(
q2)ū(p`f ,m`f )γµPL u(pνi)εµ(q) , (5.80)

where

ΛW
`fνi

(
q2) = ΛW

SM(q2)δfi + ΛLQ
fi

(
q2) . (5.81)
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Figure 5.4: Feynman diagrams contributing to W− → `−
f ν̄i. The right diagram is only present for

the triplet since the singlet does not couple to the W boson (at tree-level).

At tree level in the SM we have ΛW
SM(q2) = 1. The Feynman diagrams shown in Fig. 5.4 result

in

ΛLQ
fi

(
q2) = Nc

288π2

[
Vjkλ

∗
kfVjlλliF1

(
m2

uj , q
2,M2

1

)
+ Vjkκ

∗
kfVjlκliF2

(
m2

uj , q
2,M2

3

)

+
8κ∗

jfκji q
2

9M2
3

]
,

(5.82)

with the loop functions F1,2 given in Eq. (5.129). Again, we set all down-type quark masses
to zero but included the up-type quark masses, which are relevant for the top. At the level of
effective couplings, we define the Lagraigian

LW `ν
int = − g√

2
ΛW

`fνi(0)
[¯̀

fγ
µPLνi

]
W−

µ . (5.83)

The LQ contribution then reads

ΛLQ
ji (0) = Ncm

2
t

64π2

[
V3lλ

∗
ljV

∗
3kλki

M2
1

(
1 + 2 log

(
m2

t

M2
1

))
−
V3lκ

∗
ljV

∗
3kκki

M2
3

(
1 + 2 log

(
m2

t

M2
3

))]
. (5.84)

Out of this formula one deduces a destructive interference between the contribution of the
singlet and the triplet in case of lepton flavor conservation.

Observables

Experimentally, the modification of the Wτν coupling extracted from τ → µνν̄ and τ → eνν̄
decays reads [275,276]

|ΛW
τν(0)|exp ≈ 1.002± 0.0015 (5.85)

and provides a better constraint than data of W decays. Here we averaged the central values of
the muon and tau mode, but did not add the errors in quadrature in order to be conservative.
We see that a positive NP effect is preferred which means that the triplet contribution should
exceed the one of the singlet.

5.3.8 4` Processes

We define the effective Hamiltonian as

H4`
eff = H``γ

eff +
∑

a,b,f,i

(
CV LL

abfi O
V LL
abfi + CV LR

abfi O
V LR
abfi + CSLL

abfi O
SLL
abfi

)
+ L↔ R , (5.86)
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Figure 5.5: Feynman diagrams contributing to `i → `f `a`b. Left and centre: Penguin diagrams with
Z boson and photon exchange. Right: Box diagram involving two LQs.

with

OV LL
abfi =

[
¯̀
aγ

µPL`b
] [

¯̀
fγµPL`i

]
,

OV LR
abfi =

[
¯̀
aγ

µPL`b
] [

¯̀
fγµPR`i

]
,

OS LL
abfi =

[
¯̀
aPL`b

] [
¯̀
fPL`i

]
.

(5.87)

Here we sum over flavor indices. In this way, no distinction for the cases of equal flavors are
necessary in the matching and tensor and scalar LR operators do not need to be included since
they follow from Fierz identities.

The photon contribution reads

CV LL
abfi = −πα

(
ΞL

abΞL
fi + ΞL

aiΞL
fb

)
,

CV LR
abfi = −2παΞL

abΞR
fi ,

(5.88)

where

ΞL(R)
fi = δfi + Ξ̂L(R)

fi . (5.89)

The effective photon off-shell couplings Ξ̂L(R)
fi are defined in Eq. (5.62). Using the effective

couplings defined in Eq. (5.69), the Z penguins give

CV LL
abfi = 2GF√

2

(
ΛL

ab(0)ΛL
fi(0) + ΛL

fb(0)ΛL
ai(0)

)
,

CV LR
abfi = 4GF√

2
ΛL

ab(0)ΛR
fi(0) .

(5.90)

Note that CV RL(RR)
abfi are obtained from C

V LR(LL)
abfi by interchanging L and R for both the

photon and the Z contribution. Finally, we have contributions from box diagrams involving
two LQs. Since they turn out to be numerically irrelevant in our model, we omit to list them
here analytically. However, in Eq. (5.130) we give the results in full generality, i.e. including
LQ mixing with multiple generations. The LQ contributions are depicted in Fig. 5.5.

The expression for the branching ratios, which are in agreement with Ref. [358], read

Br
[
τ∓ → µ∓e+e−

]
= m3

τ

768π3Γtot
τ

[
α2

π2
∣∣CL

µτ

∣∣2(log
(m2

τ

m2
e

)
− 3

)
+ m2

τ

2

(∣∣CSLL
µτee

∣∣2 +
∣∣CSLL

µeeτ

∣∣2
− Re

[
CSLL

µτeeC
SLL∗
µeeτ

]
+ 16

∣∣CV LL
µτee

∣∣2 + 4
∣∣CV LR

µτee

∣∣2 + 4
∣∣CV LR

µeeτ

∣∣2)
− 2α

π
mτ Re

[
CL∗

µτ

(
CV RL

µτee + 2CV RR
µτee

)]
+ L↔ R

] (5.91)
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Figure 5.6: Penguin diagrams that contribute to `b → `aνiν̄f transitions. In case of the Z boson,
lepton flavor is conserved at tree-level vertex (f = i). For the W penguins we applied Fierz identities in
order to match on the effective operators. The box diagrams look similar to the one in Fig. 5.3 but turn
out to be numerically insignificant.

and
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[
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]
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] (5.92)

with Γtot
τ as the tau lepton’s total decay width. The experimental bounds are [359,360]

Br
[
τ∓ → µ∓e+e−

]
< 1.5× 10−8 ,

Br
[
τ∓ → µ∓µ+µ−

]
< 2.1× 10−8 ,

Br
[
µ∓ → e∓e+e−

]
< 1.0× 10−12 .

(5.93)

5.3.9 ``νν Processes

We define the effective Hamiltonian as

H2`2ν
eff =

(
DL,fi

`a`b
OL,fi

`a`b
+DR,fi

`a`b
OR,fi

`a`b

)
, (5.94)

with

O
L(R),fi
`a`b

=
[
¯̀
aγµPL(R)`b

]
[ν̄fγ

µPLνi] . (5.95)

At the 1-loop level, LQs can contribute to these processes through three types of Feynman
diagrams: W -penguins, Z-penguins and pure LQ box diagrams, see Fig. 5.6. Again, the boxes
are numerically not relevant due to the small couplings to muons. Therefore, we only present
these results with full generality in the appendix.

The W penguin given in terms of the modified W`ν couplings of Eq. (5.84) gives

DL,fi
`a`b

= 4GF√
2

ΛW ∗
`bνf

(0)ΛW
`aνi(0) . (5.96)

Finally we also have the Z-penguins, yielding

DL,fi
`a`b

= 8GF√
2

ΛL
`a`b

(0)Σνfνi(0) , DR,fi
`a`b

= 8GF√
2

ΛR
`a`b

(0)Σνfνi(0) , (5.97)
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Figure 5.7: Tree-level Feynman diagrams contributing to gg → ΦΦ̄.

Φ̄

Φ

gq

q̄

Φ̄

Φ
L

b

b̄

L

Φ

bb

g

L

Φ

Φ
b

g

Figure 5.8: Tree-level diagrams contributing to qq̄ → ΦΦ̄ and gq → LΦ. Except for the left diagram,
the cross-sections depend on the couplings of the LQ to SM fermions. L can be either a neutrino or a
charged lepton, depending on the specific LQ representation.

where we used the effective Z`` and Zνν couplings given in Eq. (5.73).

5.4 Phenomenology

Now we turn to the phenomenological analysis of our singlet-triplet model. We consider the
processes discussed above and include the loop effects calculated in the previous section. Our
strategy is as follows: First we will discuss the LHC bounds on third-generation LQs. Then we
will consider how one can explain b→ cτν data taking into account these limits and then study
the impacts on other observables like Bs → τ+τ− and W → τν. For this purpose, only couplings
to tau leptons (but not to muons or electrons) are necessary. In a next step we will include
b → s`+`− data in our analysis and thus allow for non-zero couplings to left-handed muons,
while disregarding couplings to electrons due to the strong constraints from µ → eγ [361].
In a final step, we search for benchmark points which can explain b → cτν, b → s`+`− and
aµ simultaneously. For this purpose we also include couplings to right-handed muons in our
analysis.

5.4.1 LHC Bounds

Both Φ1 and Φ3 could obviously be produced at the LHC. Since LQs are charged under SU(3)c

they can be pair produced via gluons (depicted in Fig. 5.7), which in general gives the best
bound. However, for a third generation LQ, which is the case for our model to a good approx-
imation, also t-channel production from bottom fusion is possible as well as single production
via bottom-gluon fusion (see Fig. 5.8). ATLAS and CMS performed searches in these channels.
In particular, in Ref. [291] CMS analyzed data taken at a center-of-mass energy of 13 TeV with
an integrated luminosity of 35.9 fb−1 for the scalar singlet Φ1. Assuming Br

[
Φ1 → tτ

]
= 100%,

LQ masses up to 900 GeV are excluded. ATLAS searched for typical signals of the scalar triplet
Φ3, using 36.1 fb−1 of data at

√
s = 13 TeV [362]. Focusing on NP effects in third generation

quarks and leptons, i.e. Φ3 → tν/bτ and Φ3 → tτ/bν, they find a lower limit on the LQ mass
of 800 GeV. This limit can be raised up to 1 TeV if one of the aforementioned decay channels is
dominating. Therefore, a third generation scalar LQ with mass above 1 TeV is consistent with
LHC searches. We will assume this as a lower limit in the following phenomenological analysis
of flavor observables. For more extensive analyses of LQ searches in combination with the flavor
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Figure 5.9: Correlation between Br
[
Bs → τ+τ−] and R(D(∗)), both normalized to their SM values,

in the scenario with only left-handed couplings for M1 = M3 ≡ M = 1 TeV (left plot) and M1 = M3 ≡
M = 1.5 TeV (right plot). Here we scanned over λ23, κ23 ∈

[
−1, 1

]
for all points and λ33, κ33 ∈

[
−1, 1

]
(blue) or λ33, κ33 ∈

[
−2, 2

]
(red), respectively. The blue points are displayed on top of the red ones,

showing only points that are allowed by Rνν̄
K∗ . The dark gray points are in agreement with Rνν̄

K∗ , but
excluded by Bs− B̄s mixing. The horizontal contour lines depict the LFU contribution to C``

9 while the
green band represents the region for R(D(∗)) preferred by data at the 1σ level.

anomalies we refer e.g. to Refs. [212,274,363–367].

5.4.2 b → cτν

Concerning b→ cτν processes one can address the anomalies with couplings to third generation
leptons, i.e. the tau lepton and the tau neutrino, while disregarding couplings to muons and
electrons. In a first step we consider the simplified case of left-handed couplings only, i.e.
λ̂ = 0. Furthermore, we can safely neglect CKM suppressed effects from first-generation quark
couplings and are therefore left with the couplings λ23,33 and κ23,33, involving second and third
generation quarks (i.e. bottom and strange quark in the down-basis). In this case the box
contributions to Bs−B̄s in Eq. (5.52), together with the tree-level effect in b→ sνν̄ in Eq. (5.39)
put an upper limit on the possible contribution to b→ cτν processes (see Fig. 5.9). While the
relative effect in b → sνν̄ compared to b → cτν is independent of the LQ mass, the relative
effect in Bs− B̄s mixing compared to b→ cτν amplitudes turns out to have a quadratic scaling
with the mass. In fact, assuming real couplings and an exact cancellation in Rνν̄

K(∗) , ∆mBs can
be expressed in terms of the NP effect in R(D(∗)) as

∆mBs

∆mSM
Bs

= 1 + 1
4π2

G2
FV

2
cbM

2

CSM
1

(√
R(D(∗))
R(D(∗))SM

− 1
)2
, (5.98)

with M1 = M3 = M . This relation holds once small CKM rotations are neglected which
is possible in the case of an anarchic flavor structure, i.e. Vcbλ33 � λ23 and Vcbκ33 � κ23.
The tau loops also generate an effect in C7 as well as a LFU contribution to C``

9 . Both these
effects are directly correlated to b → sτ+τ− processes, induced by the tree-level coefficients
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Figure 5.10: Correlations between the NP effect in ∆mBs
and the corrections to the effective Wτντ

coupling ΛW
τντ

(0), constrained from τ → µνν̄ and τ → eνν̄. Like in Fig. 5.9 we only considered the
couplings λ23,33 and κ23,33, i.e. only couplings to left-handed taus, scanning over λ23 and κ23 (λ33 and
κ33) between ±1 (±2) and setting M1 = M3 = M = 1 TeV. The blue region is preferred by τ → µνν̄
and τ → eνν̄ data at the 1σ level.

Cττ
9 = −Cττ

10 . We find

C``
9 (µb) = α

27π

(
14 + 9 log

(
µ2

b

M2

))
Cττ

9 ,

C7(µb) = − 5α
36π

(27
11η

16
23 − 48

33η
14
23

)
Cττ

9 ,

(5.99)

neglecting the different running of C7 from µLQ down to mt. One can also relate these two
coefficients, yielding

C``
9 (µb) = − 4

15
14 + 9 log

(
µ2
b

M2

)
27
11η

16
23 − 48

33η
14
23
C7(µb) . (5.100)

This situation is illustrated in Fig. 5.9, where we show the correlations between Bs →
τ+τ− and R(D(∗)). Note that for left-handed couplings R(D)/R(D)SM = R(D∗)/R(D∗)SM is
predicted. The bound from Bs − B̄s mixing limits the possible effect, both in Bs → τ+τ− and
R(D(∗)), depending on the LQ mass. Heavier LQs lead to larger effects in Bs− B̄s with respect
to Bs → τ+τ− and R(D(∗)) than lighter LQs. For the same scenario, i.e. only left-handed
couplings to tau leptons, we also show corrections to the Wτν coupling in Fig. 5.10. Note
that effect of Φ1 has opposite sign than the one of Φ3. Furthermore, if one aims at increasing
R(D(∗)), the effect of Φ1 (Φ3) in W → τν is destructive (constructive) such that it increases
(decreases) the slight tension in τ → µνν̄ data.

Next, let us allow for non-zero right-handed couplings λ̂23,33 of Φ1 to quarks and leptons.
In this case the left-handed vector current encoded in Cττ

V L (originating from Φ1 and Φ3 via
λ23,33 and κ23,33 only) is now complemented by a Cττ

SL = −4Cττ
T L effect from Φ1. This breaks

the common rescaling of R(D)/R(D)SM and R(D∗)/R(D∗)SM, depicted by the green line in
Fig. 5.11. The constraint from Bs − B̄s only limits CV L but not CSL = −4CT L. The resulting
correlations between R(D) and R(D∗) are shown in Fig. 5.11. One can see that for deviations
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Figure 5.11: Correlation between R(D) and R(D∗), both normalized to their SM values. The (light)
red ellipse shows the preferred region at the 1σ (2σ) level. The yellow points yield an effect in Bs − B̄s

mixing of < 10% with respect to the SM, while for the blue points the NP effect is in the range of 10-20%.
Only points allowed by b→ sνν are shown. The black (green) solid line depicts the scenario where one
generates the vector (scalar and tensor) operator only. We scanned over the couplings λ23,33, κ23,33 and
λ̂23 ∈ [−1.5, 1.5] and the LQ masses M1 = M3 ≡M ∈ [1, 2]TeV.

of R(D(∗))/R(D(∗))SM from unity of more than ≈ 10%, our model predicts R(D)/R(D)SM >
R(D∗)/R(D∗)SM.
The size and correlation between C7 and a LFU effect in C``

9 , induced by the tau loop, is shown
in Fig. 5.12. Interestingly, to account for b → cτν data within 1σ, we predict −0.5 < C``

9 <
−0.2 (including right-handed couplings) which is in very good agreement with the global fit on
b→ s`+`− data, especially if it is complemented by a Cµµ

9 = −Cµµ
10 LFUV effect [95,98].

In the same way, b→ dτν data can be addressed. Here, it was shown in Ref. [47] that already
a 10% effect with respect to the SM could lead to a neutron EDM observables in the near future.

5.4.3 b→ cτν and b→ s`+`−

Let us now turn to the case where we allow for couplings to left-handed muons as well. Here,
it is clear that, disregarding for the moment R(D(∗)) and thus tau couplings, one can explain
b→ s`+`− data with a tree-level Cµµ

9 = −Cµµ
10 effect from Φ3 without running into the danger

of violating bounds from other flavor observables. However, the situation gets more interesting
if one aims at explaining b→ s`+`− and b→ cτν data simultaneously. In this case LFV τ − µ
effects necessarily arise e.g. in B → Kτµ, τ → φµ, Z → τµ and τ → 3µ. Note that our model
does not possess scalar currents in the down sector, therefore Bs → τµ does not receive a chiral
enhancement. The correlations between B → Kτµ and τ → φµ are shown in Fig. 5.13, finding
that they are in general anti-correlated despite fine-tuned points.
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Figure 5.12: Correlations between C7 and C``
9 , both given at the B meson scale. Here we imposed

that the points satisfy Bs− B̄s mixing (i.e. yield a maximal effect of 20%) and lie within the 1σ (yellow)
or 2σ (blue) region preferred by the global fit to b→ cτν data. Note that non-zero effects in C7(µb) and
C``

9 (µb) are mandatory in order to explain b → cτν data at 1σ and that C``
9 (µb) has the sign preferred

by the fit if this is required. Both coefficients include O(αs) corrections. Again we scanned over the
couplings λ23,33, κ23,33 and λ̂23 ∈ [−1.5, 1.5] and the LQ masses M1 = M3 ≡M ∈ [1, 2]TeV.
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Figure 5.13: Correlations between Br[B → K∗τµ] and Br[τ → φµ] (left) and between Br[B → K∗τµ]
and Rνν̄

K (right). The blue points lie within the 1σ ranges of both the b → cτν and b → s`+`−

fits, give an effect of less than 20% to Bs − B̄s mixing and do not violate any other constraints. We
scanned over the couplings {λ23,33, κ23,33, λ̂23} ∈ [−1.5, 1.5], {λ22,32, κ22,32} ∈ [−0.3, 0.3] and the LQ
masses M1 = M3 ≡M ∈ [1, 2] TeV.

5.4.4 b→ cτν, b→ s`+`− and aµ

Finally, we aim at explaining the anomaly in the AMM of the muon in addition to b→ cτν and
b → s`+`− data. Accounting for δaµ alone is possible and the only unavoidable effect occurs
in Z → µ+µ−, which can however only be tested at the FCC-ee [368]. Furthermore, explaining
δaµ together with b → s`+`− data does not pose a problem either since Φ1 can account for
δaµ while Φ3 can explain b → s`+`−. However, once one wants to account for b → cτν data
the situation becomes non-trivial. Scanning over 10 million points21 we found approximately

21First we individually scanned over two million points for couplings to muons only and over one million points
for couplings to taus only. From each of both datasets roughly 3500 points passed all constraints while lying in
the 1σ range of the global fits for b → s`+`− or b → cτν, respectively. The combination of the two datasets was
then used as seed for the final scan over all parameters.
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Figure 5.14: Possible ranges for the couplings of the points in parameter space which can explain
all three anomalies at the 1σ level. We found these points by performing a parameter scan over the
couplings {λ23,33, κ23,33, λ̂23} ∈ [−1.5, 1.5], {λ22,32, κ22,32, λ̂32} ∈ [−0.3, 0.3] and by setting the LQ masses
M1 = M3 = 1.2 TeV. In color we depict the values of the four benchmark points given in Tab. 5.3. We
found roughly 350 points that passed all constraints at the 95% C.L. while allowing for an effect in
Bs − B̄s mixing of up to 30%.

350 points which can explain all three anomalies at the same time. The corresponding range
for the couplings of these 350 points is shown in Fig. 5.14. Only allowing for an effect of 20%
in Bs − B̄s mixing, the number of points is reduced to 40, where an effect as low as 10% is
possible. In addition, we choose (out of these 350 points) four benchmark points, shown in
color in Fig. 5.14. The predictions for the various observables for these benchmark points are
given in Tab. 5.3. Interestingly, even though in general τ → µγ represents the most restrictive
constraint on our model in case one aims at an explanation of all three anomalies, we still find
points that give a relatively small contribution of roughly one order of magnitude below the
current experimental bound. The branching ratio of Bs → τ−τ+ is enhanced by a factor of
roughly 100 with respect to the SM, which also is below the current experimental bound. While
the effects in ΛW

τν are small, they are always positive, reducing the slight tension in the effective
Wτν coupling. The effects in B → Kτµ and τ → φµ range from being negligible to close to
the current experimental bounds while effects in τ → µee and τ → 3µ lie roughly two orders of
magnitude below the current experimental limit. Furthermore, the effects in Z → τ−τ+ would
clearly be measurable at an FCC-ee [357].

Update

In Ref. [369] it was pointed out that our benchmark points in Tab. 5.3 are in conflict with
D0 − D̄0 mixing. While this is true under the assumption of a vanishing SM contribution,
we point out that with fine-tuning between the SM and the NP contribution our model is not
excluded, as the SM effect can currently not be calculated. Furthermore, it was claimed that
our points are in tension with Ds → τν. While it is true that for points p1 and p2 in Tab. 5.3 a
very slight tension with the experiment (below the 2σ level) is observed, the points p3 and p4 do
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κ22 κ32 κ23 κ33 λ22 λ32 λ23 λ33 λ̂32 λ̂23
p1 −0.019 −0.059 0.58 −0.11 −0.0082 −0.016 −1.46 −0.064 −0.19 1.34
p2 −0.017 −0.070 −1.23 0.066 0.0078 −0.055 1.36 0.052 −0.053 −1.47
p3 0.0080 0.081 1.18 −0.073 −0.0017 0.16 −0.76 −0.068 0.023 1.23
p4 −0.0032 −0.21 0.44 −0.20 0.014 −0.10 −1.38 −0.068 −0.032 0.57

Cµµ
9 = −Cµµ

10 C``
9

R(D)
R(D)SM

R(D∗)
R(D∗)SM

Bs → ττ

Bs → ττ
∣∣
SM

τ → µγ
×108

δaµ

×1011
Ṽ e

cb/Ṽ
µ

cb − 1
×106

Z → τµ
×1010

p1 −0.52 −0.21 1.15 1.10 59.88 4.35 207 291 0.117
p2 −0.56 −0.28 1.14 1.10 99.76 0.766 199 448 2.38
p3 −0.31 −0.31 1.14 1.09 112.5 3.62 255 17 0.129
p4 −0.31 −0.31 1.13 1.11 112.5 0.734 230 934 45.6

Cττ
SL = −4Cττ

T L Cττ
V L RK(∗)

νν̄

∆mNP
Bs

∆mSM
Bs

B → Kτµ
×105

τ → φµ
×108

τ → µee
×1011

|ΛLQ
33 (0)|
×105

∆L
33(m2

Z)
ΛL`

SM × 10−5

p1 0.023 0.040 2.33 0.1 0.512 1.27 44.94 1.11 −3.64
p2 0.020 0.040 0.87 0.16 3.32 4.73 7.783 0.90 −3.02
p3 0.023 0.037 1.08 0.19 4.07 1.00 37.89 0.89 −3.51
p4 0.010 0.047 2.43 0.18 3.69 0.0021 18.60 3.12 −10.04

Table 5.3: p1-p4 are four benchmark points that can simultaneously explain all three flavor anomalies
(b → s`+`−, b → cτν and δaµ) at the 1σ level and pass all other constraints at the 95%C.L.. Here we
show the values for the fermion couplings, the results for b → s`+`−, b → cτν and δaµ as well as the
predictions for several flavor observables which can be measured in the future. Note that the effect in
τ → 3µ (not depicted here) is of comparable size as the one in τ → µee. The LQ masses were set to
M = M1 = M3 = 1.2 TeV.

not suffer from any tension at all. Nevertheless we decided to extend our analysis and present 4
new benchmark points in Tab. 5.4. In this scenario we neglected the coupling λ22 but used the
coupling λ̂33 to tune τ → µγ as suggested in Ref. [369]. In Fig. 5.15 we show the allowed range
for the new benchmark points. Note that these benchmark points are favored compared to the
ones in Ref. [369] by τ pair searches (see e.g. Ref. [176]) as our couplings to charm quarks are
smaller and the LQ mass bigger.

5.5 Conclusions

Motivated by the intriguing hints for LFU violating NP in R(D(∗)), b → s`+`− processes and
aµ, we studied the flavor phenomenology of the LQ singlet-triplet model. We first defined the
most general setup for the model, including an arbitrary number of LQ ”generations” as well
as mixing among them. With this at hand, we performed the matching of the model on the
effective low energy theory and related the Wilson coefficients to flavor observables. Here, we
included the potentially relevant loop effects, e.g. in Bs−B̄s mixing, b→ sγ, LFU contributions
to C``

9 and aµ, as well as in modified Z and W couplings.
Our phenomenological analysis proceeded in three steps: First, we disregarded the anomalies

related to muons and considered the possibility of explaining R(D(∗)) and the resulting implica-
tion for other observables. We found that, including only couplings to left-handed fermions, the
size of the possible effect depends crucially on the mass of the LQ: the larger (smaller) the mass
(couplings) the bigger the relative effect in Bs− B̄s. Together with b→ sνν̄, this is the limiting
factor here. For M = 1 TeV and values of κ33 up to ±2, a 20% effect in R(D(∗)) is possible,
while for M = 1.5 TeV and |κ33| < 1 only a 10% effect with respect to the SM can be generated
(see Fig. 5.9). At the same time, an enhancement of Bs → τ+τ− of the order of 102 is predicted,
which, via loop effects, leads to a LFU C``

9 ≈ −0.3. Once couplings to right-handed leptons are
included, larger effects in b→ cτν processes are possible and R(D)/R(D)SM > R(D∗)/R(D)∗

SM
is predicted, see Figs. 5.11 and 5.12.
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κ22 κ32 κ23 κ33 λ32 λ23 λ33 λ


32 λ


23 λ


33
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Figure 5.15: Possible ranges for the couplings of the points in parameter space which can explain all
three anomalies at the 1σ level and are compatible with D0 − D̄0 mixing. We found these points by
performing a parameter scan over the couplings {λ23,33, κ23,33, λ̂23,33} ∈ [−1.5, 1.5], {λ32, κ22,32, λ̂32} ∈
[−0.3, 0.3] and by setting the LQ masses M1 = M3 = 1.2 TeV. In color we depict the values of the four
benchmark points given in Tab. 5.4.

In a second step, we aimed at a simultaneous explanation of b→ s`+`− data together with
R(D(∗)). In this case, effects in lepton flavor violating processes like B → Kτµ and τ → φµ are
predicted as shown in Fig. 5.13. These effects are still compatible with current data but can be
tested soon by LHCb and BELLE II.

Finally, including in addition the AMM of the muon in the analysis is challenging since
then right-handed couplings to muons are required which, together with the couplings needed
to explain R(D(∗)), lead to chirally enhanced effects in τ → µγ. It is still possible to find a
common solution to all three anomalies but only a small region of the parameter space can do
this. Nonetheless, we identified four benchmark points which can achieve such a simultaneous
explanation to all three anomalies (see Fig. 5.14).

In summary, the LQ singlet-triplet model is a prime candidate for explaining the flavor
anomalies and we would like to emphasize that there is no renormalizable model on the market
which is more minimal (only two new particles are needed here) and capable to address all three
prominent flavor anomalies together.
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κ22 κ32 κ23 κ33 λ32 λ23 λ33 λ̂32 λ̂23 λ̂33
p5 −0.0024 −0.36 0.18 −0.47 0.42 0.23 0.14 0.0074 −1.42 0.0032
p6 0.0020 0.57 0.16 −0.52 −0.61 0.24 0.16 −0.0058 −0.97 0.003
p7 0.0022 0.44 −0.18 0.46 0.55 0.23 0.16 0.0055 −1.23 0.003
p8 −0.0017 −0.58 −0.15 0.51 −0.50 0.26 0.15 −0.0064 −1.21 0.003

Cµµ
9 = −Cµµ

10 C``
9

R(D)
R(D)SM

R(D∗)
R(D∗)SM

Bs → ττ

Bs → ττ
∣∣
SM

τ → µγ
×108

δaµ

×1011
Ṽ e

cb/Ṽ
µ

cb − 1
×106

Z → τµ
×108

p5 −0.41 −0.30 1.21 1.11 107 4.23 210 −304 8.20
p6 −0.54 −0.30 1.17 1.10 108 3.63 238 −224 25.19
p7 −0.45 −0.29 1.21 1.11 105 3.07 202 −959 12.07
p8 −0.48 −0.27 1.20 1.10 93 3.67 217 1194 24.86

Cττ
SL = −4Cττ

T L Cττ
V L RK(∗)

νν̄

∆mNP
Bs

∆mSM
Bs

B → Kτµ
×105

τ → φµ
×1010

τ → µee
×109

|ΛLQ
33 (0)|
×105

∆L
33(m2

Z)
ΛL`

SM × 10−5

p5 0.054 0.028 1.34 0.19 1.88 0.21 2.74 13.76 −50.76
p6 0.041 0.029 1.96 0.19 3.90 0.12 7.36 16.78 −62.07
p7 0.052 0.029 1.69 0.19 2.86 0.18 3.85 12.80 −49.77
p8 0.050 0.028 1.46 0.16 3.44 0.08 7.19 16.59 −60.97

Table 5.4: Four benchmark points (p5-p8) that simultaneously explain b → s`+`−, b → cτν and δaµ

at the 1σ level and pass all other constraints at the 95%C.L.. Contrary to p1-p4, they do not yield a big
effect in D0 − D̄0 mixing and therefore do not require fine-tuning with the SM contribution. Again the
LQ masses were chosen to be M = M1 = M3 = 1.2 TeV.

5.6 Appendix

In this appendix we define the loop functions appearing in the calculation of the observables and
give the most general expressions for the Wilson coefficients, including multiple LQ generations
(N singlets Φ1, M triplets Φ3) and mixing among them. Let us recapitulate the definition of
the masses:

• The singlet and triplet representations with electromagnetic charge Qem = −1/3 have the
masses mK with K = {1, ...,M +N}.

• The LQ with electromagnetic charge Qem = 2/3 and Qem = −4/3, stemming from the
triplet representations, have the same masses m̄J with J = {1, ...,M}.

5.6.1 Loop Functions

Throughout this article we used the loop functions C0 and D0,2, defined as

i

16π2C0(m2
0,m

2
1,m

2
2) = µ2ε

∫
dD`

(2π)D

1(
`2 −m2

0
)(
`2 −m2

1
)(
`2 −m2

2
) ,

i

16π2D0(m2
0,m

2
1,m

2
2,m

2
3) = µ2ε

∫
dD`

(2π)D

1(
`2 −m2

0
)(
`2 −m2

1
)(
`2 −m2

2
)(
`2 −m2

3
) ,

i

16π2D2(m2
0,m

2
1,m

2
2,m

2
3) = µ2ε

∫
dD`

(2π)D

`2(
`2 −m2

0
)(
`2 −m2

1
)(
`2 −m2

2
)(
`2 −m2

3
) ,

(5.101)

with D = 4− 2ε.
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5.6.2 dd``

For dk → dj`
−
f `

+
i processes we match on the effective operators defined in Eq. (5.15). The

tree-level contribution gives

Cfi
9,jk = −Cfi

10,jk =
√

2
4GFVtdkV

∗
tdj

π

α

M∑
J=1

ΓJ
dk`i

ΓJ∗
dj`f

m̄2
J

, (5.102)

while the loop calculations yield

Cjk
7 (µLQ) = −

√
2

4GFVtdkV
∗

tdj

[
1
72

N+M∑
K=1

ΓL,K
dkνi

ΓL,K∗
djνi

m2
K

+ 5
36

M∑
J=1

ΓJ
dk`i

ΓJ∗
dj`i

m̄2
J

]
,

Cjk
8 (µLQ) =

√
2

4GFVtdkV
∗

tdj

1
24

[
N+M∑
K=1

ΓL,K
dkνi

ΓL,K∗
djνi

m2
K

+
M∑

J=1

ΓJ
dk`i

ΓJ∗
dj`i

m̄2
J

]
,

Cii
9,jk(µLQ) =

√
2

216GFVtdkV
∗

tdj

[
N+M∑
K=1

ΓL,K
dkνl

ΓL,K∗
djνl

m2
K

+ 2
M∑

J=1

ΓJ
dk`l

ΓJ∗
dj`l

m̄2
J

(
14 + 9 log

(
µ2

LQ
m̄2

J

))]
.

(5.103)

At the low scale of the processes, one has to include the effect of the diagram in the effective
theory. This results in a so-called effective Wilson coefficient which also depends on the lepton
mass in the loop and q2

Cii eff
9,jk (µ) =

√
2

216GFVtdkV
∗

tdj

[
N+M∑
K=1

ΓL,K
djνl

ΓL,K∗
dkνl

m2
K

+ 2
M∑

J=1

ΓJ
dj`l

ΓJ∗
dk`l

m̄2
J

F
(
q2,m2

`l
, m̄2

J , µ
2
) ]

, (5.104)

with

F
(
q2,m2

` ,M
2, µ2

)
= 1
q2

(
9q2 log

(
µ2

M2

)
− q2 − 36m2

`

)

− 18
(q2)2X (m2

` , q
2)

( (
q2
)2
− 2m2

`q
2 − 8m4

`

)
arctan

(
1

X (m2
` , q

2)

)
,

(5.105)

where we defined for convenience

X (a, b) =

√
4a2

b2 − 1 . (5.106)

5.6.3 uuγ and EDM

We define the effective Hamiltonian as

Huγ
eff = Cjk

γ Ojk
γ + Cjk

g Ojk
g + Cjkτ

T Ojkτ
T , (5.107)

with

Ojk
γ = e

[
ūjσ

µνPRuk

]
Fµν ,

Ojk
g = gs

[
ūjσ

µνPRT
auk

]
Ga

µν ,

Ojkτ
T =

[
ūjσµνPRuk

][
τ̄σµνPRτ

]
,

(5.108)
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and obtain in the case of one generation of LQs and no mixing among them

Cjk
γ (µLQ) = 1

1152π2

[
7
mukV

∗
klλliVjmλ

∗
mi +muj λ̂kiλ̂

∗
ji

M2
1

− 12m`i λ̂kiVjlλ
∗
li

M2
1

(
4 + 3 log

(µ2
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M2

1

))

+ 3mukV
∗

klκliVjmκ
∗
mi

M2
3

]
,

Cjk
g (µLQ) = − 1
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[
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mi +muj λ̂kiλ̂

∗
ji

M2
1

+ 6m`i λ̂kiVjlλ
∗
li

M2
1

+ 3mukV
∗

klκliVjmκ
∗
mi
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]
,

Cjkτ
T (µLQ) = Vklλ

∗
l3λ̂j3

8M2
1

.

(5.109)

The contributing diagram is depicted in Fig. 5.1. For the neutron EDM we set j = k = 1 and
reproduce (setting mu = 0) our result from [47], where also the relevant RGE can be found. In
case of LQ mixing, we have

Cjk
7 (µLQ) =

√
2

4GF

1
72

[
2
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ΓJ
ukνiΓ
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,
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Cjkτ
T =

ΓL,K∗
uk`3

ΓR,K
uj`3

8m2
K

.

(5.110)

5.6.4 du`ν

For the effective Hamiltonian defined in Eq. (5.41) we find

Cfi
V L,jk = −

√
2

8GFVujdk

N+M∑
K=1

ΓK
dkνi

ΓL,K∗
uj`f

m2
K

,

Cfi
SL,jk = −4Cfi

T L,jk =
√

2
8GFVujdk

M+N∑
K=1

ΓK
dkνi

ΓR,K∗
uj`f

m2
K

.

(5.111)
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5.6.5 ddνν and Bs − B̄s Mixing

The effective Hamiltonians for ddνν and Bs− B̄s mixing are given by Eq. (5.38) and Eq. (5.51),
respectively. We find for b→ sνν̄

Cfi
L,jk =

√
2

4GFVtdkV
∗

tdj

π

α

N+M∑
K=1

ΓK
dkνi

ΓK∗
djνf

m2
K

, (5.112)

and for Bs − B̄s mixing

C1 = −1
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2
J

))
.

(5.113)

5.6.6 ``γ, Z`` and Zνν

In case of `i → `fγ transitions and the effective Hamiltonian given by Eq. (5.58) we have

CL
`f `i = −
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(5.114)

with Nc = 3 already included. For the off-shell photon, as given by the amplitude in Eq. (5.61),
we obtain

Ξ̃L
`f `i = −Nc
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(5.115)

where the loop functions F (y) and G(y) are defined in Eq. (5.63).

For Z decays, where the amplitude is given by Eq. (5.68) and the ∆L(R)
fi are introduced in

Eq. (5.69), we find

∆L
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with
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(5.117)

again using

X (a2, b2) =

√
4a2

b2 − 1 . (5.118)

At the level of the effective couplings (q2 = 0) we have
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(5.119)

The functions FL/R then become

FL(m2
t , 0,M2) = m2

tNc

32π2M2
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1 + log

(
m2

t

M2

))
= −FR(m2

t , 0,M2) . (5.120)

The amplitude for Z → νν̄ is again given by Eq. (5.68). For the ΣLQ
fi

(
q2), introduced in

Eq. (5.69), we obtain
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with
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(5.122)

where we again neglected to down-type quark masses, but kept the dependencies on the up-type
ones due to the heavy top quark. If we work with effective couplings instead of full amplitudes,
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the results are

ΣLQ
fi (0) =
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5.6.7 W `ν

For the ΛLQ
fi

(
q2), defined in Eq. (5.80) and Eq. (5.81), we obtain
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with
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Additionally, there are terms that do not trivially decouple, however, they vanish in the decou-
pling limit. They read

ΛLQ
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Note that the scale dependence µ drops out exactly. If we work at the level of effective couplings,
we have

ΛLQ
fi (0) =Ncm

2
t

64π2

[
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In the limit of no LQ mixing, the loop functions used in Eq. (5.82) become
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− m2

u

M2 .

(5.129)

5.6.8 τ → 3µ, τ → µe+e− and µ → 3e

The relevant effective Hamiltonian is given in Eq. (5.86). The contributions of the photon and Z
penguin diagrams are given by Eq. (5.88) and Eq. (5.90), respectively. Now we use the effective
couplings as defined in Eq. (5.115) (photon) and Eq. (5.116) (Z boson).

Finally, we have the box diagrams. Contrary to the vector current operators, the scalar
operators OS

```` are always proportional to m2
q/M

2
LQ. Therefore, we only consider contributions

from the top quark. The box contributions read
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Again, CV/S RL(RR)
abfi are obtained from C

V/S LR(LL)
abfi by interchanging L and R.

5.6.9 τ → `νν̄ and µ → eνν̄

As it was the case for the previous results, we consider the top as the only non-zero quark mass
and in cases where the result is proportional to the quark mass (squared), we directly write the
result in terms of the top. The effective Hamiltonian for the process is given in Eq. (5.94). The
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box diagrams read
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The contributions of the W and Z penguins are given by Eq. (5.96) and Eq. (5.97), respectively.
Now the effective couplings from Eq. (5.125), Eq. (5.116) and Eq. (5.121) have to be used.
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Leptoquarks (LQs) are predicted within Grand Unified Theories and are well motivated by
the current flavor anomalies. In this article we investigate the impact of scalar LQs on Higgs
decays and oblique corrections as complementary observables in the search for them. Taking
into account all five LQ representations under the Standard Model gauge group and including
the most general mixing among them, we calculate the effects in h → γγ, h → gg, h → Zγ
and the Peskin-Takeuchi parameters S, T and U . We find that these observables depend on
the same Lagrangian parameters, leading to interesting correlations among them. While the
current experimental bounds only yield weak constraints on the model, these correlations can
be used to distinguish different LQ representations at future colliders (ILC, CLIC, FCC-ee and
FCC-hh), whose discovery potential we are going to discuss.

6.1 Introduction

Leptoquarks (LQs) are particles which have a specific interaction vertex, connecting a lepton
with a quark. They are predicted in Grand Unified Theories [178,370–372] and were systemat-
ically classified in Ref. [147] into ten possible representations under the Standard Model (SM)
gauge group (five scalar and five vector particles). In recent years, LQs experienced a renais-
sance due to the emergence of the flavor anomalies. In short, hints for new physics (NP) in
R(D(∗)) [104, 105, 109–112], b → s`+`− [78, 79, 83, 84, 373, 374] and aµ [123] emerged, with a
significance of > 3σ [103, 119–122], > 5σ [88, 92, 97–101, 209] and > 3σ [124], respectively. It
has been shown that LQs can explain b → s`+`− data [45, 46, 48, 149, 151, 153, 156, 171–177,
180, 184, 213, 253, 317, 318, 332, 333, 361, 375, 376], R(D(∗)) [45, 47, 48, 149, 151–153, 155, 171–173,
175–177,180,184,211–213,232,233,236,238–247,249,250,287,309,311,317,318,320–327,375–378]
and/or aµ [48, 238,241,243,277–286,309–314,368,375,379,380].

This strong motivation for LQs makes it also interesting to search for their signatures in other
observables. Complementary to direct LHC searches [274,363–367,381–388], oblique electroweak
(EW) parameters (S and T parameters [389, 390]) and the corrections to (effective on-shell)
couplings of the SM Higgs to photons (hγγ), Z and photon (hZγ) and gluons (hgg) allow to
test LQ interactions with the Higgs, independently of the LQ couplings to fermions. In this
context, LQs were briefly discussed in Ref. [391] based on analogous MSSM calculations [392–
394], simplified model analysis [395–398], vacuum stability [399], LQ production at hadron
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Φ1 Φ̃1 Φ2 Φ̃2 Φ3

GSM

(
3, 1,−2

3

) (
3, 1,−8

3

) (
3, 2, 7

3

) (
3, 2, 1

3

) (
3, 3,−2

3

)
Table 6.1: LQ representations under the SM gauge group.

colliders [400] and Higgs pair production [401]. In addition, Ref. [402] recently studied LQs in
Higgs production and Ref. [403] considered h→ γγ, while Ref. [404] performed the matching in
the singlet-triplet model [243]. However, none of these analyses considered more than a single LQ
representation at a time. The situation is similar concerning the S and T parameter. This was
also briefly discussed in Ref. [391], based on simplified model calculations [405] and an analysis
discussing only the SU(2)L doublet LQs [406]. Most importantly, the unavoidable correlations
between Higgs couplings to gauge bosons and the oblique parameters were not considered so far.
Importantly, these observables can be measured much more precisely at future colliders such as
the ILC [407], CLIC [408], and the FCC [357,409]. Therefore, it is interesting to examine their
estimated constraining power and discovery potential.

In this article we will calculate the one-loop effects of LQs in oblique corrections, hγγ, hZγ
and hgg, taking into account all five scalar LQ representations and the complete set of their
interactions with the Higgs. In the next section we will define our setup and conventions before
we turn to the calculation of the S and T parameters in Sec. 6.3 and to hγγ, hZγ and hgg in
Sec. 6.4. We then perform our phenomenological analysis, examining the current status and
future prospects for these observables in Sec. 6.5, before we conclude in Sec. 6.6. An appendix
provides useful analytic (perturbative) expressions for LQ couplings and results for the loop
functions.

6.2 Setup and Conventions
There are ten possible representations of LQs under the SM gauge group [147]. While for vector
LQs a Higgs mechanism is necessary to render the model renormalizable, scalar LQs can simply
be added to the SM. Since we are interested in loop effects in this work, we will focus on the
latter ones in the following.

The five different scalar LQs transform under the SM gauge group

GSM = SU(3)c × SU(2)L × U(1)Y (6.1)

as given in Table 6.1.
We defined the hypercharge Y such that the electromagnetic charge is given by

Q = 1
2Y + T3 , (6.2)

with T3 representing the third component of weak isospin, e.g. ±1/2 for SU(2)L doublets and
1, 0,−1 for the SU(2)L triplet. Therefore, we have the following eigenstates with respect to the
electric charge

Φ1 ≡ Φ−1/3
1 , Φ̃1 ≡ Φ̃−4/3

1 ,

Φ2 ≡
(

Φ5/3
2

Φ2/3
2

)
, Φ̃2 ≡

(
Φ̃2/3

2
Φ̃−1/3

2

)
, τ · Φ3 ≡

(
Φ−1/3

3
√

2Φ2/3
3√

2Φ−4/3
3 −Φ−1/3

3

)
,

(6.3)

95



Leptoquarks in Oblique Corrections and Higgs Signal Strength: Status and Prospects

Φ−1/3
1 Φ̃−1/3

2A2̃1

h

Φ−1/3
3 Φ̃−1/3

2A32̃

h

Φ2/3
3 Φ̃2/3

2A32̃

h

Φ−1/3
3 Φ−1/3

1
Y31

hh

Φ̃2/3
2 Φ2/3

2
Y2̃2

hh

Figure 6.1: Feynman diagrams depicting LQ-Higgs interactions. Here the physical Higgs h can be
replaced by its vev, leading to mixing among the LQs.

obtained from the five representations. Note that the upper index refers to the electric charge
and the lower one to the SU(2)L representation from which the field originates.

In addition to the gauge interactions of the LQs, determined by the respective representation
under the SM gauge group, LQs can couple to the SM Higgs doublet H (with hypercharge +1)
via the Lagrangian [335]22

LHΦ = −A2̃1
(
Φ̃†

2H
)
Φ1 +A32̃

(
Φ̃†

2
(
τ · Φ3

)
H
)

+ Y2̃2
(
Φ†

2H
)(
Hiτ2Φ̃2

)
+ Y31̃

(
Hiτ2 (τ · Φ3)†H

)
Φ̃1 + Y31

(
H† (τ · Φ3)H

)
Φ†

1 + h.c.

− Y22
(
Hiτ2Φ2

)(
Hiτ2Φ2

)† − Y2̃2̃
(
Hiτ2Φ̃2

)(
Hiτ2Φ̃2

)†
− iY33εIJKH

†τIHΦ†
3,KΦ3,J

−
3∑

k=1

(
m2

k + YkH
†H
)
Φ†

kΦk −
2∑

k=1

(
m̃2

k + Yk̃H
†H
)
Φ̃†

kΦ̃k .

(6.4)

Here m2
Φ represent the usual (bare) mass terms of the LQs, present without EW symmetry

breaking and εIJK is the three-dimensional Levi-Civita tensor with ε123 = 1. Note that A2̃1
and A32̃ have mass dimension one, while the Y couplings are dimensionless. The LQ-Higgs
interactions lead to additional contributions to the mass matrices. The mixing among them is
depicted in Figure 6.1.

Once the Higgs acquires a vacuum expectation value (vev) with v ≈ 174 GeV, this generates
the following mass matrices in the interaction basis

M−1/3 =

m
2
1 + v2Y1 vA∗

2̃1 v2Y31
vA2̃1 m̃2

2 + v2Y2̃ vA32̃
v2Y ∗

31 vA∗
32̃ m2

3 + v2Y3

 ,

M2/3 =

m
2
2 + v2Y2 v2Y2̃2 0
v2Y ∗

2̃2 m̃2
2 + v2(Y2̃2̃ + Y2̃

)
−
√

2vA32̃
0 −

√
2vA∗

32̃ m2
3 + v2(Y3 + Y33

)
 ,

M−4/3 =
(
m̃2

1 + v2Y1̃
√

2v2Y ∗
31̃√

2v2Y31̃ m2
3 + v2(Y3 − Y33)

)
,

M5/3 = m2
2 + v2(Y22 + Y2

)
,

(6.5)

22Y2̃2̃ and Y22 were studied in Ref. [406] while the Y33 term was considered in Ref. [369].
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such that

−Φ†
QM

QΦQ ⊂ LHΦ . (6.6)

This now parametrizes the mass terms in the Lagrangian, where Q is the electric charge and
we defined

Φ−1/3 ≡

Φ−1/3
1

Φ̃−1/3
2

Φ−1/3
3

 Φ2/3 ≡

Φ2/3
2

Φ̃2/3
2

Φ2/3
3

 Φ−4/3 ≡
(

Φ̃−4/3
1

Φ−4/3
3

)
Φ5/3 ≡ Φ5/3

2 . (6.7)

In order to arrive at the physical basis we need to diagonalize the mass matrices in Eq. (6.5).
This can be achieved via

M̂Q = WQMQWQ† (6.8)

with unitary matrices WQ. Thus, the interaction eigenstates in Eq. (6.7) are rotated as

WQΦQ ≡ Φ̂Q (6.9)

to arrive at the mass eigenstates. The matrices WQ for Q = −1/3 and Q = 2/3 too lengthy to
be given analytically in full generality, but can of course be computed numerically. However, in
order to obtain the explicit dependence on the Lagrangian parameters A and Y , we diagonalize
the mass matrices perturbatively up to O(v2), which then yields the following expressions
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(m2
3−m̃2

2)2
−
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 , (6.10)
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The physical LQ masses then read(
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|A32̃|2
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(6.11)
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valid up to order v2, where a runs from 1 to 3 for Q = −1/3 and Q = 2/3 and from 1 to 2 for
Q = −4/3, respectively.23

We now write the interaction terms of the Higgs with the LQs in the form

LHΦ =− Γ̃−1/3
ab hΦ̂−1/3 †

a Φ̂−1/3
b − Γ̃2/3

ab hΦ̂2/3 †
a Φ̂2/3

b − Γ̃−4/3
ab hΦ̂−4/3†

a Φ̂−4/3
b

− Γ5/3hΦ̂5/3 †Φ̂5/3 − Λ̃−1/3
ab h2Φ̂−1/3 †

a Φ̂−1/3
b − Λ̃2/3

ab h
2Φ̂2/3 †

a Φ̂2/3
b

− Λ̃−4/3
ab h2Φ̂−4/3 †

a Φ̂−4/3
b − Λ5/3h2Φ̂5/3 †Φ̂5/3 ,

(6.12)

with h as the physical Higgs field, Φ̂Q being the mass eigenstates of charge Q with a, b again
running from 1 to 3 for Q = −1/3 and Q = 2/3 and from 1 to 2 for Q = −4/3. In particular
we have

Γ̃−1/3 = W−1/3Γ−1/3W−1/3 † , Λ̃1/3 = W−1/3Λ−1/3W−1/3 † ,

Γ̃2/3 = W 2/3Γ2/3W 2/3 † , Λ̃2/3 = W 2/3Λ2/3W 2/3 † ,

Γ̃−4/3 = W−4/3Γ−4/3W−4/3 † , Λ̃−4/3 = W−4/3Λ−4/3W−4/3 † ,

(6.13)

with
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0 0 Y3+Y33

 ,

Γ−4/3 = 1√
2

(
2vY1̃ 2vY ∗

31̃
2vY31̃ 2v(Y3−Y33)

)
, Λ−4/3 = 1

2

(
Y1̃ Y ∗

31̃
Y31̃ Y3−Y33

)
.

Γ5/3 =
√

2v
(
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)
, Λ5/3 = 1

2
(
Y22 + Y2

)
.

(6.14)

The expanded expressions for Γ̃Q and Λ̃Q up to O(v2) are given in the appendix.

6.3 Oblique Corrections
Oblique Corrections, i.e. radiative corrections to the EW breaking sector of the SM, can be
parametrized via the Peskin-Takeuchi parameters S, T and U [410]. These parameters are
expressed and calculated in terms of the vacuum polarization functions ΠV V (q2), with V =
W,Z, γ. We use the convention

V µ V ν

= iΠV V (q2)gµν − i∆(q2)qµqν . (6.15)

Taking into account that our NP scale is higher than the EW breaking scale, we can expand
the gauge bosons self-energies in q2/M2. As ∆(q2) has no physical effect, the three oblique

23For the calculation of the T parameter, we even needed the expansion of the mixing matrices and masses up
to order v4. However, these equations are too lengthy to be included in this work explicitly.
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Figure 6.2: The three different topologies of Feynman diagrams that contribute to ΠV V (q2) with
V = W,Z, γ. The last diagram only exists for V = W,Z and has no impact on the S, T and U
parameters as it is momentum independent.

parameters can be written as

S = −4s2
wc

2
w

αm2
Z

(
ΠZZ(0)−ΠZZ(m2

Z) + Πγγ(m2
Z) + c2

w − s2
w

cwsw
ΠZγ(m2

Z)
)
,

T = ΠW W (0)
αm2

W

− ΠZZ(0)
αm2

Z

,

U = −4s2
wc

2
w

α

(ΠW W (0)−ΠW W (m2
W )

c2
wm

2
W

− ΠZZ(0)−ΠZZ(m2
Z)

m2
Z

+ s2
w

c2
w

Πγγ(m2
Z)

m2
Z

+ 2sw

cw

ΠZγ(m2
Z)

m2
Z

)
,

(6.16)

where we used renormalization conditions for the vector fields such that

Πγγ(0) = ΠZγ(0) = Re
[
ΠZZ(m2

Z)
]

= Re
[
ΠW W (m2

W )
]

= 0 . (6.17)

These conditions are fulfilled automatically for Πγγ and ΠZγ because of the Ward identities.
S, T and U can be calculated with the bare (unrenormalized) two-point correlation functions,

the corresponding diagrams in our model are shown in Fig. 6.2. Therefore, we used the check
that all divergences disappear in the physical observables S, T and U after having summed over
all SU(2)L components in the loop. The complete expressions for these parameters are quite
lengthy and therefore given in the appendix. Expanding in addition in q2/M2 and in v/M , i.e.
perturbatively diagonalizing the LQ mass matrices, we can however obtain relatively compact
expressions. Up to leading order in v we find

S ≈ −Nc v
2
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,
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w
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, (6.18)

U ≈ 0 ,

where the loop functions, given in the appendix, are normalized to be unity in case of equal
masses. These expressions agree with Refs. [405, 406] for the special cases studied there. Note
that U is approximately zero since it only arises at dimension 8.
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Figure 6.3: The two types of diagrams that induce NP effects in h → γγ. For h → gg the photons
can simply be replaced by gluons, for h→ Zγ one photon can be replaced by a Z boson. The additional
diagrams with reversed charge flow are not depicted.

6.4 Higgs Couplings to g, γ and Z

The Feynman diagrams involving scalar LQs contributing to h→ γγ, h→ gg and h→ Zγ are
shown in Fig. 6.3. The amplitude, induced by them, reads

A
[
h→ γ(p1)γ(p2)

]
= αNc

24π
∑
Q,a

Q2Γ̃Q
aa

(MQ
a )

2
(
m2

hε(p1)·ε(p2)− 2(ε(p1)·p2)(ε(p2)·p1)
)
, (6.19)

with p1 and p2 representing the photon momenta, εµ(pi) the corresponding polarization
vectors and a running over the number of mass eigenstates with the same electric charge
Q = {−1/3, 2/3, −4/3, 5/3}. Here we used on-shell kinematics and expanded in m2

h/M
2.

Similarly, for the decay into a pair of gluons, we obtain

A
[
h→ gA(p1)gA(p2)

]
= αs

48π
∑
Q

Γ̃Q
aa

(MQ
a )

2
(
m2

hε
A(p1)·εA(p2)− 2(εA(p1)·p2)(εA(p2)·p1)

)
,

where A labels the 8 gluons (no sum implied). For the Higgs decaying into a Z and a photon
we obtain

A[h→ Z(pZ)γ(pγ)] = αNc

24π
1

swcw

∑
Q

(
Q
T̃Q

ab Γ̃Q
ba

(MQ
b )

2 K7
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xQ
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×
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(m2

h −m2
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)
,

(6.20)

with a simultaneous expansion in m2
h/M

2 and m2
Z/M

2 and

xQ
ab = (MQ

a )2

(MQ
b )

2 . (6.21)

The relevant observables in this context are the effective on-shell hγγ, hgg and hZγ cou-
plings, normalized to their SM values

κγ =

√√√√Γh→γγ

ΓSM
h→γγ

, κg =

√√√√Γh→gg

ΓSM
h→gg

, κZγ =

√√√√Γh→Zγ

ΓSM
h→Zγ

. (6.22)
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We then have

κγ = 1 + 1
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∑
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(6.23)

with the LO SM amplitudes (see e.g. Ref. [411] for an overview) given by [391,412–417]
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)
.

(6.24)

We defined

xi = m2
h

4m2
i

, yi = 4m2
i

m2
Z

, (6.25)

while the loop functions are given in the appendix.24

In addition to the expansion of the loop functions, we can also expand the expressions
Γ̃Q/M2 and T̃Q Γ̃QK6(xQ

ab)/M2 in v2/M2 up to O(v3), using Eq. (6.11). We obtain
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. (6.27)

24Note that we did not include the effects of bottom quarks in the SM prediction which would lead to a 10%
destructive interference.
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Figure 6.4: Correlations between S and T for four different Lagrangian parameters in Eq. (6.4),
assuming that only one of them is non-zero at a time. For simplicity, we assumed all LQ masses to be
equal. While Y22 and Y2̃2̃ can yield both positive and negative effects in S, the effect in the T parameter
is positive definite. Since our prediction for S and T depends on a single combination of parameters
(Y/m2 or A2/m4), we used one degree of freedom to obtain the preferred region in the S-T plane, such
that the region within the ellipse labelled by 1σ (2σ) corresponds to 68% C.L. (95% C.L.).

Therefore, we have directly expressed κγ , κg and κZγ in terms of the Lagrangian parameters.
The loop functions F1 and F2, given in the appendix, are again normalized to be unity in case
of equal masses.

6.5 Phenomenological Analysis
Before we illustrate the effects of LQs in the observables of our interest, let us recall the current
experimental situation and the prospects at future colliders. Concerning the oblique corrections,
the global fit to electroweak precision measurements (including LEP [353], Tevatron [418] and
LHC [419]) of Ref. [420] constrains the S and T parameter to lie within

S = [−0.06, 0.07] , T = [−0.02, 0.05], (6.28)

at 95% C.L. within the 2-dimensional S-T plane, with a correlation factor of 0.72. Here, we can
optimistically expect a sensitivity of 0.008 in the future at the FCC-ee [357].

For on-shell Higgs couplings, we used the results of Refs. [421, 422] for the current status,
which are

κg = 1.066+0.051
−0.050 , κγ = 0.999+0.055

−0.053 . (6.29)

Concerning future prospects we expect for κγ (κg) an accuracy of 7% (2.3%) at the ILC [407],
3.7% (1.5%) at CEPC [423], 2.3% (0.9%) at CLIC [408], 3% (1.4%) at the FCC-ee [357] and
1.45% at the FCC-hh [424]. Finally, concerning h → Zγ, an accuracy of up to 1.8% in h →
Zµ+µ−/h→ µ+µ− can be achieved at the FCC-ee [357].
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Figure 6.5: Correlations between κγ and T for different Lagrangian parameters, assuming that only
one of them is non-zero at a time and assuming all LQ masses to be equal.

Let us start by considering the oblique parameters. Here and in the following, we will for def-
initeness assume a LQ mass of 1 TeV, which is compatible with current LHC limits [291,362,425]
for a broad range of couplings to fermions. In Fig. 6.4 we show the correlations between S and T
for the four cases which contribute to both parameters simultaneously. As one can see, the effect
in T is positive definite, as slightly preferred by current data. Note that the A parameters are
dimensionful couplings which are naturally expected to be of the same order as the LQ masses
and that similarly the dimensionless couplings Y are expected to be of order 1. Therefore, T
already now sets relevant limits on these couplings and its future experimental sensitivity allows
for stringent constraints or even to discover deviations from the SM within LQ models.

Turning to the effects in Higgs couplings to gauge bosons, we show the correlations between
κγ and T in Fig. 6.5 and between κγ and κg in Fig. 6.6. The currently allowed regions (1σ
and 2σ, corresponding to 68% and 95% C.L. for one degree of freedom) are shown in color
while the future prospects are indicated by dashed and dotted boundaries of the corresponding
ellipses. Assuming a value close to the current best fit point in the κγ-κg plane is confirmed
in the future, this would point towards the LQ representation Φ̃2. Similarly, one can correlate
κγ to κZγ , see Fig. 6.7, which clearly provides complementary distinguishing power, especially
at the FCC-hh. E.g. an anti-correlations between κγ to κZγ is not favored by either (single)
Lagrangian parameter of coupling LQs to the Higgs.

6.6 Conclusions

LQs are prime candidates to explain the flavor anomalies, i.e. the discrepancies between the
SM predictions and experiment in b → cτν and b → s`+`− processes and in the anomalous
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Figure 6.6: Correlations between κγ and κg for the different Lagrangian parameters. Here we assumed
all bi-linear LQ mass terms to be equal. Here we used one degree of freedom in the χ2 fit for the allowed
regions and the future prospects such that the intersection with the LQ line indicates the 68% and 95%
CL for the corresponding parameter Y/m2 or A2/m4.

magnetic moment of the muon. Therefore, it is interesting to study alternative observables
which are sensitive to LQs and could therefore as well show deviations from the SM predictions.
In this context, parameters sensitive to additional electroweak symmetry breaking effects provide
a complementary window. In particular, LQ couplings to the SM Higgs generate loop effects,
which contribute to the oblique parameters (S and T ) and to effective Higgs couplings, entering
on-shell Higgs boson production (gg → h) and decays (h→ γγ, h→ Zγ). All these observables
have in common that (at the one-loop level) they do not depend on the LQ couplings to fermions
but rather only on LQ couplings to Higgses (tri-linear and quadratic ones). Therefore, one
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Figure 6.7: Correlations between κγ and κZγ for the different Lagrangian parameters coupling LQs to
the Higgs. The currently preferred regions are shown as red ellipses and the future sensitivity is indicated
by the dashed and dotted lines.

can test this sector of the Lagrangian independently of the fermion couplings entering flavor
observables.

Taking into account the most general set of Higgs-LQ interactions, including mixing among
different LQ representations, we calculated the one-loop contributions to the oblique parameters
S, T and U . Using a perturbative expansion of the mixing matrices we were able to provide
simple, analytic expressions for them. Similarly, we calculated the contributions to effective
on-shell hgg, hγγ and hZγ couplings, expressing the corrections as simple analytic functions of
the Lagrangian parameters.

In our phenomenological analysis we correlated the effects in the oblique corrections with
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each other, see Fig. 6.4, finding that the contribution to T is positive definite and that T is
clearly more sensitive to LQs than S. Similarly, we correlated hgg with hγγ in Fig. 6.6 and
hγγ to hZγ in Fig.6.7. In the future it would be very interesting to include the NLO QCD
corrections, in the spirit of Refs. [393,394], as these interesting correlations open the possibility
of distinguishing different LQ representations, independently of their couplings to fermions,
providing strong motivation for future colliders.
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6.7 Appendix

6.7.1 Loop Functions

In this appendix we first present the loop functions, which are used in (6.19) to write the results
for the S and T parameters in a compact form

K1(y) = −10
(
y3 + 2y2 − 19y + 4

(y − 1)4 − (4y3 − 12y2 − 6y + 2) log(y)
(y − 1)5

)
,

K2(y) = 10
17

(−y4 + 10y3 − 45y2 − 8y + 8
y(y − 1)4 + 18(3y − 1) log(y)

(y − 1)5

)
,

K3(y) = 10
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y2 + 10y + 1

(y − 1)4 − 6y(y + 1) log(y)
(y − 1)5

)
,

K4(y) = 2
((y + 4)(y2 + 10y + 1)

y(y − 1)4 − 6(y + 1)(y + 4) log(y)
(y − 1)5

)
,

K5(y) = 2
(2y2 + 5y − 1

(y − 1)3 − 6y2 log(y)
(y − 1)4

)
,

K6(y) = 2
(
y2 − 5y − 2
(y − 1)3y

+ 6
(y − 1)4

)
K7(x) =

3
(
x2 − 1− 2x log(x)

)
(x− 1)3 ,

K8(x, y) = −3
( 4

(x− 1)2(y − 1) + 8x
(x− 1)(y − x)2 −

4
(x− 1)2(y − x)

+ 4x log(x)K10(x, y) + 4y log(y)K10(y, x)
)
,

K9(x, y) = 10
( 12x

(1− x)2(x− y)2 −
2x2 − 7x− 13

2(x− 1)3(y − 1) −
6(x+ 1)
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− 9(x− 3)
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3
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+ 3x log(x)K11(x, y) + 3y log(y)K11(y, x)
)
,
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and

K10(x, y) = 2x
(x− 1)(y − x)3 + x− 2

(x− 1)2(y − x)2 ,

K11(x, y) = 4x
(x− 1)2(y − x)3 −

4
(x− 1)3(y − x)2 + x

(x− 1)4(y − x) .

In h→ Zγ we used the following loop functions for the amplitude

F1(x) = 2
(
x3 − 6x2 + 3x+ 6x log(x) + 2

(x− 1)4

)
,

F2(x) = 2
3

(
x4 − 2x3 + 9x2 − 6x2 log(x)− 10x+ 2

x(x− 1)4

)
.

6.7.2 Expanded Matrices

Next, we will give the expressions for the coupling matrices, expanded in terms of the vacuum
expectation value v. We have the weak isospin matrices TQ, which read in case of no LQ mixing

T−1/3 =

0 0 0
0 −1

2 0
0 0 0

 , T 2/3 =

−1
2 0 0

0 1
2 0

0 0 1

 , T−4/3 =
(

0 0
0 −1

)
, T 5/3 = 1

2 , (6.30)

using the basis defined in Eq. (6.7). A unitary redefinition of the LQ fields in order to diagonalize
the mass matrices in Eq. (6.5) also affects the TQ matrices

T̃Q = WQTQWQ† . (6.31)

Note that the LQ field redefinition has no impact the electromagnetic interaction, since the
coupling matrix is proportional to the unit matrix and the WQ then cancel due to unitarity. If
we use the perturbative diagonalization ansatz, we obtain

T̃−1/3≈


−v2|A2̃1|2

2(m2
1−m̃2

2)2
vA∗

2̃1
2(m̃2

2−m2
1)

v2A32̃A∗
2̃1

2(m2
1−m̃2

2)(m̃2
2−m2

3)
vA2̃1

2(m̃2
2−m2

1) −1
2 + v2

2

(
|A2̃1|2

(m2
1−m̃2

2)2 + |A32̃|2
(m̃2

2−m2
3)2

)
vA32̃

2(m̃2
2−m2

3)
v2A2̃1A∗

32̃
2(m2

1−m̃2
2)(m̃2

2−m2
3)

vA∗
32̃

2(m̃2
2−m2

3)
−v2|A32̃|2

2(m̃2
2−m2

3)2

 ,

T̃ 2/3≈


−1

2
v2Y2̃2

m2
2−m̃2

2
0

v2Y ∗
2̃2

m2
2−m̃2

2

1
2 + v2|A32̃|2

(m̃2
2−m2

3)2
vA32̃√

2(m2
3−m̃2

2)

0 vA∗
32̃√

2(m2
3−m̃2

2) 1− v2|A32̃|2
(m̃2

2−m2
3)2

 ,

T̃−4/3≈

 0
√

2v2Y ∗
31̃

m2
3−m̃2

1√
2v2Y31̃

m2
3−m̃2

1
−1

 ,

(6.32)
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valid up to O(v2). T 5/3 is not affected, since the LQ with charge Q = 5/3 does not mix.
There are also interaction matrices for the ZZΦQΦQ vertex, which read in case of no LQ mixing

D−1/3 =


(

s2
w
3

)2
0 0

0
(

s2
w
3 −

1
2

)2
0

0 0
(

s2
w
3

)2

 D2/3 =


(

2s2
w

3 + 1
2

)2
0 0

0
(

2s2
w

3 −
1
2

)2
0

0 0
(

2s2
w

3 − 1
)2


D−4/3 =


(

4s2
w

3

)2
0

0
(

4s2
w

3 − 1
)2
 D5/3 =

(5s2
w

3 − 1
2
)2
.

(6.33)
If we include the LQ mixing, we have

D̃−1/3 ≈ 1
12


4s4
w

3 −
(4s2

w−3)v2|A2̃1|2
(m2

1−m̃2
2)2

(4s2
w−3)vA∗

2̃1
m̃2

2−m2
1

(4s2
w−3)v2A∗

2̃1A32̃
(m2

3−m̃2
2)(m̃2

2−m2
1)

(4s2
w−3)vA2̃1
m̃2

2−m2
1

d̃22
(4s2

w−3)vA32̃
m̃2

2−m2
3

(4s2
w−3)v2A∗

32̃A2̃1
(m2

1−m̃2
2)(m̃2

2−m2
3)
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3

4s4
w

3 −
(4s2
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(m2
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2)2

 ,

with d̃22 = (3− 2s2
w)2

3 + (4s2
w − 3)v2|A2̃1|2

(m2
1 − m̃2

2)2 + (4s2
w − 3)v2|A32̃|2

(m2
3 − m̃2

2)2 ,

D̃2/3 ≈ 1
12


(4s2

w+3)2

3
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0
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2

(4s2
w−3)2
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w−9)v2|A32̃|2

(m2
3−m̃2
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2(8s2
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3

0
√
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 ,

D̃−4/3 ≈ 1
3

 16s4
w

3

√
2(8s2

w−3)v2Y ∗
31

m2
3−m̃2

1√
2(8s2

w−3)v2Y31
m2
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1

(3−4s2
w)2

3

 .

(6.34)

Analogously to the Z boson, different LQ generations mix under W interactions. Without LQ
mixing, the interactions with the W boson can be written in terms of the following matrices

B1 =
(

0 0 0
0 0

√
2

)
, B2 =

0 0 0
0 1 0
0 0 −

√
2

 , B3 =
(
1 0 0

)
, (6.35)

arranging the LQ in their charge eigenstates according to Eq. (6.7). B1 describes the interaction
of LQs with electric charges Q = −4/3 and Q = −1/3, B2 the ones with Q = −1/3 and Q = 2/3,
B3 with Q = 5/3 and Q = 2/3. If we include LQ mixing, the matrices expanded up to O(v2),
then read

B̃1≈

 0 0 2v2Y ∗
31̃

m̃1−m2
3√

2v2

m2
1−m2

3

(
A2̃1A∗

32̃
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2
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31
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32̃
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3)2

 ,

B̃2≈


0 vA∗
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2

√
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3
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2
−Y31

)
v2Y ∗

2̃2
m2

2−m̃2
2

1− v2

2

(
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(m2
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2)2−
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0 vA∗
32̃
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3
−
√
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2)2

 ,

B̃3≈
(

1 −v2Y ∗
2̃2

m2
2−m̃2

2
0
)
. (6.36)
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We also have interaction matrices for the W+W−ΦQΦQ vertex. Without mixing, they read

F−1/3 =

0 0 0
0 1

2 0
0 0 2

 F 2/3 =

1
2 0 0
0 1

2 0
0 0 1

 F−4/3 =
(

0 0
0 1

)
, F 5/3 = 1

2 . (6.37)

If we include mixing and expand up to order O(v2), we obtain

F̃−1/3≈


v2|A2̃1|2

2(m2
1−m̃2
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(m̃2
2−m2
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−
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(6.38)

Finally we show the Higgs coupling matrices in (6.13) up to O(v)

Γ̃−1/3 ≈ 1√
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(6.39)
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and

Λ̃−1/3 ≈ 1
2
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(6.40)

6.7.3 Exact Results for the Vacuum Polarization Functions

In this section we give the q2-expanded results for the vacuum polarization functions, with the
LQ masses and couplings kept unexpanded
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∑
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(6.41)

where Q = {−1/3, 2/3,−4/3, 5/3} with a and b running from 1 to 3, 3, 2, and 1, respectively.
Here we defined
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2
)
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 , (6.42)
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with
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(1
ε

+ log
( µ2

M2
a

)
+ 3

2

)
+ 2(xQ

ba)2 log(xQ
ba)

xQ
ba − 1

,

f1 = 2
3

(1
ε

+ log
( µ2

M2
a

))
−

5− 27xQ
ba + 27(xQ

ba)2 − 5(xQ
ba)3 − 6(3− xQ

ba)(xQ
ba)2 log(xQ

ba)
9(xQ

ba − 1)3
,

f2 = −1 + 8xQ
ba − 8(xQ

ba)3 + (xQ
ba)4 + 12(xQ

ba)2 log(xQ
ba)

6(xQ
ba − 1)5

,

(6.43)

where again

xQ
ba = (MQ

b )
2

(MQ
a )

2 .

6.7.4 Leading Order SM Amplitudes in Higgs Decays

The SM amplitudes for the hγγ, hgg and hZγ couplings in Eq. (6.24) read

A1(x) = −(2x2 + 3x+ 3(2x− 1)f(x))
x2 ,

A1/2(x) = 2(x+ (x− 1)f(x))
x2

C1(x, y) = 4
(
3− s2

w

c2
w

)
I2(x, y) +

((
1 + 2

x

)s2
w

c2
w

−
(
5 + 2

x

))
I1(x, y) ,

C1/2(x, y) = I1(x, y)− I2(x, y) ,

(6.44)

with

f(x) = arcsin2(
√
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(6.45)
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Recently, both ATLAS and CMS measured the decay h→ µ+µ−, finding a signal strength with
respect to the Standard Model expectation of 1.2 ± 0.6 and 1.19+0.41+0.17

−0.39−0.16, respectively. This
provides, for the first time, evidence that the Standard Model Higgs couples to second gener-
ation fermions. This measurement is particularly interesting in the context of the intriguing
hints for lepton flavor universality violation, accumulated within recent years, as new physics
explanations could also be tested in the h→ µ+µ− decay mode. Leptoquarks are prime candi-
dates to account for the flavor anomalies. In particular, they can provide the necessary chiral
enhancement (by a factor mt/mµ) to address aµ with TeV scale new physics. In this letter
we point out that such explanations of aµ also lead to enhanced effects in h → µ+µ− and we
examine the correlations between h → µ+µ− and aµ within leptoquark models. We find that
the effect in the branching ratio of h→ µ+µ− ranges from several percent up to a factor three, if
one aims at accounting for aµ at the 2σ level. Hence, the new ATLAS and CMS measurements
already provide important constraints on the parameter space, rule out specific aµ explanations
and will be very important to test the flavor anomalies in the future.

7.1 Introduction

The Large Hadron Collider (LHC) at CERN confirmed the predictions of the Standard Model
(SM) of particle physics by discovering the Brout-Englert-Higgs boson [42, 426] in 2012. How-
ever, until now, high energy searches did not discover any particles beyond the ones present
in the SM. Therefore, great hopes of finding new physics (NP) rest on low energy pre-
cision physics where flavor experiments have accumulated intriguing hints for physics be-
yond the SM within the recent years, most prominently in b → s`+`− data [78, 79, 374],
b → cτν transitions [104, 109, 111] and the anomalous magnetic moment (AMM) of the muon
(aµ = (g − 2)µ/2) [55, 123]. Interestingly, these hints for NP fall into a common pattern: they
can be considered as signs of lepton flavor universality violation (LFUV) 25, which is respected
by the SM gauge interactions and is only broken by the Higgs Yukawa couplings.

Among these anomalies, aµ = (g − 2)µ/2, which displays a 3.7σ deviation from the SM
prediction [124], is most closely related to Higgs interactions as it is a chirality changing observ-

25Recently, it has been pointed out that also the Cabibbo Angle Anomaly can be interpreted as a sign of
LFUV [427,428].
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Figure 7.1: Sample Feynman diagrams which contribute to h → µ+µ− (top) and the AMM of the
muon (bottom). In addition, we have to include the diagrams where the Higgs and photon couple to the
LQ, as well as self-energy diagrams.

able. I.e. it involves a chirality flip and therefore a violation of SU(2)L is required to obtain a
non-zero contribution. Furthermore, the required NP effect to explain aµ is of the order of the
electroweak (EW) SM contribution and TeV scale solutions need an enhancement mechanism,
called chiral enhancement, to be able to account for the deviation (see e.g. Ref. [286] for a
recent discussion). Obviously, also h→ µ+µ− is a chirality changing process and any enhanced
effect in aµ should also result in an enhanced effect here 26. Recently, both ATLAS and CMS
measured h→ µ+µ−, finding a signal strength w.r.t. the SM expectation of 1.2± 0.6 [433] and
1.19+0.41+0.17

−0.39−0.16 [434], respectively.
The mechanism of chiral enhancement, necessary to explain aµ, has been well studied (see

Ref. [286] for a recent account). Here leptoquarks (LQs) are particularly interesting since they
can give rise to an enhancement factor of mt/mµ ≈ 1700 [48, 238, 241, 243, 277–286, 309–314,
368,375,379,380,435], allowing for a TeV scale explanation with perturbative couplings that are
not in conflict with direct LHC searches. In fact, there are only two LQs, out of the 10 possible
representations [147], that can yield this enhancement: the scalar LQ SU(2)L singlet (S1) and
the scalar LQ SU(2)L doublet (S2) with hypercharge −2/3 and −7/3, respectively. In addition,
there is the possibility that S1 mixes with the SU(2)L triplet LQ S3, where S1 only couples to
right-handed fermions [314].

Furthermore, LQs are also well motivated by the hints for LFUV in semi-leptonic B decays,
both in b → sµ+µ− [78, 79, 374] and b → cτν data [104, 109, 111], which deviate from the SM
with up to ≈ 6σ [97,98,100,209] and ≈ 3σ [119–122,315], respectively. Here possible solutions
include again S1 [47,176,212,232,233,235,236,238–242,244–247,249,250,287,311], S2 [234,235,
309, 319–325] and S3 [173, 175–177, 180, 317, 332, 333], where S1 and S3 together can provide a
common explanation of the B anomalies and the AMM of the muon [48,176,243,326,327]. We
take this as a motivation to study these correlations for the LQs which can generate mt/mµ

enhanced effects by considering three scenarios: 1) S1 only, 2) S2 only, 3) S1 +S3 where S1 only
couples to right-handed fermions. Note that these are the only scenarios which can give rise to
the desired mt/mµ enhanced effect.

7.2 Setup and Observables
The most precise measurement of the anomalous magnetic moment (AMM) of the muon (aµ =
(g − 2)µ/2) has been achieved by the E821 experiment at Brookhaven [55, 123], which differs
from the SM prediction by

δaµ = aexp
µ − aSM

µ = (279± 76)× 10−11 , (7.1)
26Correlations between aµ and h → µ+µ− were considered in the EFT in Ref. [251] and in the context of

vector-like leptons (see Ref. [429] for a recent global analysis) in Ref. [286,430–432].
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GSM Lq`

S1

(
3, 1,−2

3

) (
λR

fj ū
c
f `j + λL

fj Q̄
c
f iτ2Lj

)
S†

1 + h.c.

S2

(
3, 2, 7

3

)
γRL

fj ūfS
T
2 iτ2Lj + γLR

fj Q̄f `jS2 + h.c.

S3

(
3, 3,−2

3

)
κfj Q̄

c
f iτ2 (τ · S3)† Lj + h.c.

Table 7.1: Scalar LQ representations together with their couplings to quarks and leptons, generating
the desired mt/mµ enhanced effect in the AMM of the muon. Here GSM refers to the SM gauge group
SU(3)c×SU(2)L×U(1)Y , L (Q) is the lepton (quark) SU(2)L doublet, u (`) the up-type quark (lepton)
singlet and c refers to charge conjugation. Furthermore, j and f are flavor indices and τk the Pauli
matrices.

corresponding to a 3.7σ deviation [124]27. Therefore, it is very interesting to investigate if and
how this discrepancy can be explained by physics beyond the SM28.

As we motivated in the introduction, we will focus on the three scalar LQs S1, S2 and S3 for
explaing aµ. These representations couple to fermions as given in Table 7.129. Since we are in
the following only interested in muon couplings to third generation quarks, we define λR ≡ λR

32,
λL ≡ λL

32, γLR ≡ γLR
32 , γRL ≡ γRL

32 , κ = κ32.
In addition to the gauge interactions, which are determined by the representation under the

SM gauge group, LQ can couple to the SM Higgs [335]

LH = Y13S
†
1

(
H† (τ · S3)H

)
+ h.c. (7.2)

− Y22(Hiτ2S2)† (Hiτ2S2)−
3∑

k=1
(m2

k + YkH
†H)S†

kSk

Here m2
k are the SU(2)L invariant bi-linear masses of the LQs. After SU(2)L breaking, the term

Y13 generates off-diagonal elements in the LQ mass matrices and one has to diagonalize them
through unitary transformations in order to arrive at the physical basis. Therefore, non-zero
values of Y13 are necessary to generate mt/mµ enhanced effects in scenario 3). Y1 and Y2,22 are
phenomenologically relevant for h→ µ+µ− in scenario 1) and 2), respectively, but not necessary
for an mt/mµ enhancement.

27This result is based on Refs. [128,130,133,135,139,142–144,303,304,306,436–444]. The recent lattice result
of the Budapest-Marseilles-Wuppertal collaboration (BMWc) for the hadronic vacuum polarization (HVP) [302]
on the other hand is not included. This result would render the SM prediction of aµ compatible with experiment.
However, the BMWc results are in tension with the HVP determined from e+e− → hadrons data [130, 133,
135, 303, 304, 306]. Furthermore, the HVP also enters the global EW fit [307], whose (indirect) determination is
below the BMWc result [308]. Therefore, the BMWc determination of the HVP would increase tension in EW
fit [445,446] and we opted for using the community consensus of Ref. [124].

28Recently, also a discrepancy of ≈ 2.5 σ in the AMM of the electron has been observed [125, 447–450], which
has interestingly opposite sign than in the muon case. While this discrepancy cannot be explained by a single LQ
representation or generation [286, 435], multiple LQs could account for both anomalies since the contributions
have a free phase. Note that our conclusions for the correlation between aµ and h → µ+µ− are independent of
ae.

29Note that “pure” LQs with couplings only to one quark and one lepton do not give rise to proton decays at
any perturbative order. In order to generate such an effect, di-quark couplings would be necessary, which can
however be avoided (again at any order in perturbation theory) by assigning baryon and/or lepton number to
the LQs.
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Figure 7.2: Correlations between the Br[h → µ+µ−], normalized to its SM value, and the NP
contribution in the AMM of the muon δaµ for scenario 1) (left) and scenario 2) (right) with m1,2 =
1.5 TeV. The predictions for different values of the LQ couplings to the Higgs are shown, where for
scenario 1) Y = Y1 while in scenario 2) Y = Y2 +Y22. Even though the current ATLAS and CMS results
are not yet constraining for these models, sizeable effects are predicted, which can be tested at future
colliders. Furthermore, scenario 1) yields a constructive effect in h→ µ+µ− while the one in scenario 2)
is destructive such that they can be clearly distinguished with increasing experimental precision.

Now we can calculate the effects in aµ and h→ µ+µ− 30 for which sample diagrams are shown
in Fig. 7.1. In both cases we have on-shell kinematics. For aµ the self-energies can simply be
taken into account via the Lehmann-Symanzik-Zimmermann formalism and no renormalization
is necessary. This is however required for h → µ+µ− in order to express the result in terms of
the physical muon mass. Here, the effective Yukawa coupling, which enters h→ µ+µ−, is given
by Y eff

µ = mµ−ΣLRµµ
v +ΛLR

µµ , where ΛLR
µµ is the genuine vertex correction shown in Fig. 7.1 and ΣLR

µµ

is the chirality changing part of the muon self-energy. In these conventions −iΣLR
µµ PR equals

the expression of the Feynman diagram for the self-energy. Note that Y eff
µ is finite without

introducing a counter-term. For aµ we expand in the muon mass and external momenta up to
the first non-vanishing order, while in h → µ+µ− external momenta can be set to zero from
the outset but we expand in m2

h/m
2
1,2,3. The resulting amplitudes can be further simplified by

expanding the LQ mixing matrices and mass eigenvalues in v2/m2
1,2,3 and the loop functions in

m2
h/m

2
t , which gives a very precise numerical approximation, resulting in

Br
[
h→ µ+µ−]

Br[h→ µ+µ−]SM
≈
∣∣∣∣∣1 + mt

mµ

Nc

8π2

[
λ∗

RλL

m2
1

(
m2

t

8 J
(
m2

h

m2
t

,
m2

t

m2
1

)
+ v2Y1

)
+ v2λ∗

RκY13
log

(
m2

3/m
2
1
)

m2
3 −m2

1

+γ∗
LRγRL

m2
2

(
m2

t

8 J
(
m2

h

m2
t

,
m2

t

m2
2

)
+ v2(Y2 + Y22)

)]∣∣∣∣∣
2

,

(7.3)

δaµ ≈
mµ

4π2
Ncmt

12 Re
[
γLRγ

∗
RL

m2
2
E1

(
m2

t

m2
2

)
− λR

m2
1

(
λ∗

LE2

(
m2

t

m2
1

)
+ κY13

v2

m2
3
E3

(
m2

1
m2

3
,
m2

t

m2
3

))]
,

(7.4)

30Correlations between the related modes τ → µγ and h → τµ were studied in Refs. [451–453] in the context
of LQs
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Figure 7.3: Correlations between the NP contribution to the AMM of the muon (δaµ) and Br[h →
µ+µ−], normalized to its SM value in scenario 3). This correlation depends to a good approximation
only on the ratio m1/m3. As the effect is symmetric in m1 and m3, we fix one mass to 1.5 TeV and
obtain the dark-blue band by varying the other mass between 1.5 TeV and 3 TeV. The effect in h→ µ+µ−

within the preferred region for aµ is necessarily constructive and so large that an explanation is already
constrained by the ATLAS and CMS measurements of h→ µ+µ−.

with the loop functions given by

J (x, y) = 2 (x− 4) log(y)− 8 + 13
3 x , (7.5)

E1(x) = 1 + 4 log(x) , E2(x) = 7 + 4 log(x) ,

E3(x, y) = E2(y) + 4 log(x)
x− 1 .

(7.6)

We only considered the mt enhanced effects and neglected small CKM rotations, which in
principle appear after EW symmetry breaking. As anticipated, in Eq. (7.4) one can see that
scenario 3) only contributes if Y13 is non-zero. Furthermore, since in this scenario aµ has a
relative suppression of v2/m2

1,3 with respect to h → µ+µ−, one expects here the largest effects
in Higgs decays. In principle also Y1, Y2 and Y22 enter in Eq. (7.4). However, their effect is
sub-leading as it is suppressed by v2/m2

1,2.

7.3 Phenomenology
Let us now study the correlations between aµ and h → µ+µ− in our three scenarios with mt-
enhanced contributions. First, we consider scenario 1) and 2) where S1 and S2 give separately
rise to mt-enhanced effects in aµ and h→ µ+µ−. Since both processes involve the same product
of couplings to SM fermions, the correlation depends only weakly via a logarithm on m2

t /m
2
1,2.

However, there is a dependence on Y1 and Y22+Y2 which breaks the direct correlation but cannot
change the sign of the effect for order one couplings. This can be seen in Fig. 7.2, where the
correlations are depicted for m1,2 = 1.5 TeV, respecting LHC bounds [454–456]. The predicted
effect is not large enough such that the current ATLAS and CMS measurements are sensitive
to it. However, note that it is still sizeable due to the mt enhancement and therefore detectable
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at future colliders where the ILC [407], the HL-LHC [457], the FCC-ee [357], CEPC [423] or
the FCC-hh [424] aim at a precision of approximately 10%, 8%, 6% and below 1%, respectively.
Furthermore, the effect in Br[h → µ+µ−] in scenario 1) is necessarily constructive while in
scenario 2) it is destructive, such that in the future a LQ explanation of aµ by S1 could be
clearly distinguished from the one involving S2.

In scenario 3), where S1 only couples to right-handed fermions, the effect in Br[h→ µ+µ−]
is even more pronounced due to the relative suppression of the contribution to aµ by v2/m2

1,3,
see Eq. (7.4). Furthermore, in this case the correlation between aµ and h → µ+µ− depends
to a good approximation only on the ratio m1/m3. As the effect is symmetric in m1 and m3
we fix one mass to 1.5 TeV and obtain the band shown in Fig. 7.3 by varying the other mass
between 1.5 and 3 TeV. The effect in h→ µ+µ− within the preferred region for aµ is necessarily
constructive and large enough that an explanation of the central value of aµ is already disfavored
by the ATLAS and CMS measurements of h → µ+µ−. Clearly, with more data the LHC will
be able to support (disprove) this scenario if it finds a (no) significant enhancement of the
h → µ+µ− decay, assuming δaµ is confirmed. This scenario also leads to sizeable effects in
Zµµ [314] which are compatible with LEP data [353], but could be observed at the ILC [407],
CLIC [408] or the FCC-ee [357].

7.4 Conclusions
LQs are prime candidates for an explanation of the intriguing hints of LFUV. As LFUV within
the SM only originates from the Higgs, chirality changing observables as the AMM of the
muon and, of course, h → µ+µ− are especially interesting. In particular, there are three
possible LQ scenarios which can address the discrepancy in the AMM of the muon by an
mt/mµ enhancement. This also leads to enhanced corrections in h→ µ+µ−, which involve the
same coupling structure as the aµ contribution. This leads to interesting correlations between
aµ and h→ µ+µ−, which we study in light of the recent ALTAS and CMS measurements.

We find that scenario 3), in which S1 only couples to right-handed fermions and mixes after
EW symmetry breaking with S3, predicts large constructive effects in h→ µ+µ− such that the
current ATLAS and CMS measurements are already excluding part of the parameter space. In
case δaµ is solely explained by S1 or S2 the effect in Br[h → µ+µ−] is of the order of several
percent and therefore detectable at future colliders, in particular at the FCC-hh. Furthermore,
while the S1 scenario predicts constructive interference in h→ µ+µ− for the currently preferred
range of aµ, the S2 scenario predicts destructive interference such that they can be clearly
distinguished in the future.

Therefore, if the forthcoming measurements of aµ by the Fermilab experiment [145] and
the independent (approved) experiment at J-PARC [146] confirm the aµ anomaly, this will
strengthen the case for LQs and further enhance the importance of precision measurements
of h → µ+µ−. Furthermore, note that any model with a chirally enhanced effect in aµ also
generates an enhanced effects in h → µ+µ− (similar to the LQ models studied here) making
the correlation among these observables particularly interesting.

Acknowledgements — Acknowledgements – A.C. thanks Martin Hoferichter for useful discus-
sions. The work of A.C. and D.M. supported by a Professorship Grant (PP00P2_176884) of the
Swiss National Science Foundation and the one of F.S. by the Swiss National Science Foundation grant
200020_175449/1.

119





Chapter 8

Scalar Leptoquarks in Leptonic
Processes

published in

JHEP 02 (2021) 182

arXiv: 2010.06593 [hep-ph]

121



Scalar Leptoquarks in Leptonic Processes

Scalar Leptoquarks in Leptonic Processes

Andreas Crivellin
Paul Scherrer Institut, CH–5232 Villigen PSI, Switzerland
CERN Theory Division, CH–1211 Geneva 23, Switzerland

Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Christoph Greub
Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University

of Bern, CH-3012 Bern, Switzerland

Dario Müller
Paul Scherrer Institut, CH–5232 Villigen PSI, Switzerland

Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Francesco Saturnino
Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University

of Bern, CH-3012 Bern, Switzerland

Leptoquarks are hypothetical new particles, which couple quarks directly to leptons. They
experienced a renaissance in recent years as they are prime candidates to explain the so-called
flavor anomalies, i.e. the deviations between the Standard Model predictions and measurements
in b→ s`+`− and b→ cτν processes and in the anomalous magnetic moment of the muon. At
the one-loop level these particles unavoidably generate effects in the purely leptonic processes
like Z → `+`−, Z → νν̄, W → `ν and h→ `+`− and can even generate non-zero rates for lepton
flavor violating processes such as ` → `′γ, Z → `+`′−, h → `+`′− and ` → 3`′. In this article
we calculate these processes for all five representations of scalar Leptoquarks. We include their
most general interaction terms with the Standard Model Higgs boson, which leads to Leptoquark
mixing after the former acquires a vacuum expectation value. In our phenomenological analysis
we investigate the effects in modified lepton couplings to electroweak gauge bosons, we study the
correlations of the anomalous magnetic moment of the muon with h → µ+µ− and Z → µ+µ−

as well as the interplay between different lepton flavor violating decays.

8.1 Introduction

Leptoquarks (LQs) are particles with an interaction vertex connecting leptons with quarks.
These particles are predicted by Grand Unified Theories [178,370–372] and were systematically
classified for the first time in Ref. [147] into ten possible representations under the Standard
Model (SM) gauge group (five representations of scalar particles and five representations of
vector particles). Their tree-level effects in low energy precision and flavor observables were
studied comprehensively in Ref. [278]. After the disappearance of the HERA excess [458, 459],
which could have been interpreted as a LQ, the interest in LQs decreased until in recent years
they experienced a renaissance due to the emergence of the flavor anomalies.

These flavor anomalies are hints for lepton flavor universality (LFU) violating NP in
R(D(∗)) [104, 105, 109–112], b → s`+`− [78, 79, 83, 84, 373, 374] and in the anomalous mag-
netic moment (AMM) of the muon (aµ) [123], with a significance of > 3σ [103, 119–122],

122



Introduction

GSM LqlΦ

Φ1

(
3, 1,−2

3

) (
λ1R

fj ū
c
f `j + λ1L

fj Q̄
c
f iτ2Lj

)
Φ†

1 + h.c.

Φ̃1

(
3, 1,−8

3

)
λ̃1

fj d̄
c
f `jΦ̃†

1 + h.c.

Φ2

(
3, 2, 7

3

)
λ2RL

fj ūf ΦT
2 iτ2Lj + λ2LR

fj Q̄f `jΦ2 + h.c.

Φ̃2

(
3, 2, 1

3

)
λ̃2

fj d̄f Φ̃T
2 iτ2Lj + h.c.

Φ3

(
3, 3,−2

3

)
λ3

fj Q̄
c
f iτ2 (τ · Φ3)† Lj + h.c.

Table 8.1: The five different possible scalar representations of LQs under the SM gauge group and
their couplings to quarks and leptons. Note that in our conventions all LQs are SU(3)c triplets. The
superscript T refers to transposition in SU(2)L space, c to charge conjugation and τ to the Pauli matrices.
We did not include LQ couplings to two quarks, which are possible for some representations and which
would lead to proton decays. Note that such couplings can always be avoided by assigning quark or
lepton number to the SM fermions and to the LQs.

> 5σ [88, 92, 97–101, 209] and > 3σ [124], respectively31. In this context, it has been shown
that LQs can explain b→ s`+`− data [45,46,48,149,151,153,156,171–177,180,184,213,253,317,
318,332,333,361,369,375,376,461], R(D(∗)) [45, 47, 48, 149,151–153,155,171–173,175–177,180,
184,211–213,232,233,236,238–247,249,250,287,309,311,317,318,320–327,369,375–378] and/or
aµ [48, 238, 241, 243, 277–286, 309–314, 368, 369, 375, 379, 380, 435, 461, 462], which makes them
prime candidates for extending the SM with new particles.

Therefore, the search for LQ effects in observables other than the flavor anomalies is very well
motivated. Complementary to direct LHC searches [274,363–367,381–388], oblique electroweak
(EW) parameters and Higgs couplings to gauge bosons can be used to test LQs indirectly [391,
402–404, 406], as studied recently in detail in Ref. [49]. In this article we focus on the purely
leptonic processes ` → `′γ, a`, Z → `+`(′)−, Z → νν̄, W → `ν, h → `+`(′)−, ` → 3`′ and
` → `′νν̄. The correlations between h → τµ and τ → µγ were studied in Refs. [452, 453],
between Z → µ+µ− and aµ in Ref. [368] and between Z and W decays in Ref. [289]. While in
the references above no LQ mixing, induced via couplings to the SM Higgs, was considered, this
has been done for aµ in Ref. [314] and for the case of the singlet-triplet model in Refs. [369,404].
However, a complete calculation of leptonic processes with scalar LQs, including all possible
interaction terms with the SM Higgs, is still missing. This is the purpose of this article.

In the next section we define our conventions before we discuss the self-energies, masses and
the renormalization in Sec. 8.3. We then present the analytic results of LQ-induced effects in
leptonic amplitudes in Sec. 8.4. In Sec. 8.5 we perform our phenomenological analysis, followed
by the conclusions. The Appendix contains further helpful results, in particular the generic
expressions with exact diagonalization of the LQ mixing matrices.

31Also the (apparent) deficit in first row CKM unitarity can be interpreted as a sign of LFU violation [427–
429,460].
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8.2 Setup and Conventions

As outlined in the introduction, LQs are prime candidates to explain the accumulated anomalies
in semi-leptonic B meson decays. Since vector LQs, as any massive vector particle, are not
renormalizable without a Higgs mechanism, and since we are interested in loop processes, we
will study only scalar LQs in the following.

The five different representations of scalar LQs transform under the SM gauge group

GSM = SU(3)c × SU(2)L × U(1)Y (8.1)

as given in Tab. 8.1. Note that we have two singlets under SU(2)L (Φ1 and Φ̃1), two doublets
(Φ2 and Φ̃2) and one triplet Φ3. The fermion fields Q(c) and L are (charge-conjugated) quark
and lepton SU(2)L doublets, while u(c), d(c) and ` are the corresponding SU(2)L singlets of
up-quarks, down-quarks and charged leptons, respectively. The indices f and j refer to flavor
and τ are the Pauli matrices, for which we use the convention

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (8.2)

We defined the hypercharge Y such that the electromagnetic charge is given by

Q = 1
2Y + T3 , (8.3)

with T3 representing the third component of the weak isospin (±1/2 for SU(2)L doublets and
1, 0,−1 for the SU(2)L triplet). According to this relation, LQs can be decomposed into the
electromagnetic charge eigenstates as

Φ1 ≡ Φ−1/3
1 , (8.4a)

Φ̃1 ≡ Φ̃−4/3
1 , (8.4b)

Φ2 ≡
(

Φ5/3
2

Φ2/3
2

)
, (8.4c)

Φ̃2 ≡
(

Φ̃2/3
2

Φ̃−1/3
2

)
, (8.4d)

τ · Φ3 ≡
(

Φ−1/3
3

√
2Φ2/3

3√
2Φ−4/3

3 −Φ−1/3
3

)
, (8.4e)

where the superscripts refer to the electric charge.
The LQs couple according to their representation under the SM gauge group to gauge bosons,

introduced for the first time in Ref. [463], where we use the following definition for the covariant
derivative

DµΦ =
(
∂µ − ig1

Y

2 Bµ − ig2TkW
k
µ − igs

λa

2 G
a
µ

)
Φ . (8.5)

Here, Bµ is the U(1)Y gauge boson, Wµ the one of SU(2)L and Gµ of SU(3)c with the couplings
g1, g2 and gs, respectively. The index k runs from 1 to 3, a from 1 to 8. Tk are the generators
of SU(2) and λa are the well-known Gell-Mann matrices. For SU(2)L singlets we have Tk = 0,
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Figure 8.1: Feynman diagrams depicting the LQ-Higgs interactions induced by the terms in the first
two lines of Eq. (8.7). If the physical Higgs h is replaced by its vev, mixing among the LQ representations
is generated.

for doublets we have Tk = τk/2 with the Pauli matrices from Eq. (8.2) while the SU(2)L triplet
Φ3 is in the adjoint representation of SU(2). We use

T1 =

0 0 0
0 0 −i
0 i 0

 , T2 =

 0 0 i
0 0 0
−i 0 0

 , T3 =

0 −i 0
i 0 0
0 0 0

 , (8.6)

where Φ3 is defined according to Eq. (8.4e).

8.2.1 Leptoquark-Higgs Interactions and Electroweak Symmetry Breaking

In addition to their couplings to fermions and the gauge interactions, LQs can couple to the
SM-like Higgs doublet H (with hypercharge +1) via the Lagrangian [335]

LHΦ =
(
−A2̃1

(
Φ̃†

2H
)
Φ1 +A2̃3

(
Φ̃†

2
(
τ · Φ3

)
H
)

+ Y22̃
(
Φ†

2H
)(
Hiτ2Φ̃2

)
+Y31̃

(
Hiτ2 (τ · Φ3)†H

)
Φ̃1 + Y13

(
H† (τ · Φ3)H

)
Φ†

1 + h.c.
)

− Y22
(
Hiτ2Φ2

)(
Hiτ2Φ2

)† − Y2̃2̃
(
Hiτ2Φ̃2

)(
Hiτ2Φ̃2

)†
− iY33εIJKH

†τIHΦ†
3,KΦ3,J

−
3∑

k=1

(
m2

k + YkH
†H
)
Φ†

kΦk −
2∑

k=1

(
m̃2

k + Yk̃H
†H
)
Φ̃†

kΦ̃k .

(8.7)

Here m2
k and m̃2

k represent the SU(2)L invariant mass terms of the LQs before EW symmetry
breaking and εIJK is the three-dimensional Levi-Civita tensor with ε123 = 1. For simplicity, we
omitted the color indices, which are always contracted among the LQs. Note that A2̃1 and A2̃3
have mass dimension one, while the Y couplings are dimensionless32. The LQ-Higgs interactions
depicted in Fig. 8.1 lead to mixing among the LQ representations after EW symmetry breaking.

32We did not include terms with three or four LQ fields since they do not contribute at the one-loop level to
the observables computed in this article.
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Once the Higgs acquires its vacuum expectation value (vev) v ≈ 174 GeV, this generates
the mass matrices

LLQ
M = −

∑
Q

Φ†
QM

QΦQ (8.8)

in the weak basis, with Q = {−1/3, 2/3,−4/3, 5/3} and

M−1/3 =

m
2
1 + v2Y1 vA∗

2̃1 v2Y13
vA2̃1 m̃2

2 + v2Y2̃ vA2̃3
v2Y ∗

13 vA∗
2̃3 m2

3 + v2Y3

 , (8.9a)

M2/3 =

m
2
2 + v2Y2 v2Y22̃ 0
v2Y ∗

22̃ m̃2
2 + v2(Y2̃2̃ + Y2̃

)
−
√

2vA2̃3
0 −

√
2vA∗

2̃3 m2
3 + v2(Y3 + Y33

)
 , (8.9b)

M−4/3 =
(
m̃2

1 + v2Y1̃
√

2v2Y ∗
31̃√

2v2Y31̃ m2
3 + v2(Y3 − Y33

)) , (8.9c)

M5/3 = m2
2 + v2(Y22 + Y2

)
, (8.9d)

where the eigenstates of the electric charge

Φ−1/3 ≡

Φ−1/3
1

Φ̃−1/3
2

Φ−1/3
3

 , (8.10a)

Φ2/3 ≡

Φ2/3
2

Φ̃2/3
2

Φ2/3
3

 , (8.10b)

Φ−4/3 ≡
(

Φ̃−4/3
1

Φ−4/3
3

)
, (8.10c)

Φ5/3 ≡ Φ5/3
2 , (8.10d)

are assembled from the LQ field components of Eq. (8.4).

To work in the physical basis with mass eigenstates, in which the amplitudes are calculated,
we need to diagonalize the mass matrices in Eq. (8.9). This can be achieved by a unitary
transformation

M̂Q = WQMQWQ† , (8.11)

such that M̂Q is diagonal. This means that the interaction eigenstates in (8.10) are written as

WQΦQ ≡ Φ̂Q , (8.12)

where Φ̂Q are the mass eigenstates. The analytic expressions for the diagonalization matrices
W−1/3 and W 2/3 are very lengthy or must be computed numerically. Therefore, we diagonalize
the mass matrices perturbatively up to O(v2/m2

LQ), where m are the SU(2)L invariant mass
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terms of the LQs. The analytic expressions for the perturbative WQ read

W−1/3 ≈


1− v2|A2̃1|2

2(m2
1−m̃2

2)2
vA∗

2̃1
m2

1−m̃2
2

v2(Y13(m2
1−m̃2

2)+A∗
2̃1A2̃3)

(m2
1−m2

3)(m2
1−m̃2

2)
−vA2̃1

m2
1−m̃2

2
1− v2

2

(
|A2̃1|2

(m2
1−m̃2

2)2 + |A2̃3|2
(m2

3−m̃2
2)2

)
−vA2̃3

m2
3−m̃2

2
−v2(Y ∗

13(m2
3−m̃2

2)+A2̃1A∗
2̃3)

(m2
1−m2

3)(m2
3−m̃2

2)
vA∗

2̃3
m2

3−m̃2
2

1− v2|A2̃3|2
2(m2

3−m̃2
2)2

 ,

(8.13a)

W 2/3 ≈


1 v2Y2̃2

m2
2−m̃2

2
0

−v2Y ∗
2̃2

m2
2−m̃2

2
1− v2|A2̃3|2

(m2
3−m̃2

2)2
−

√
2vA2̃3

m̃2
2−m2

3

0
√

2vA∗
2̃3

m̃2
2−m2

3
1− v2|A2̃3|2

(m2
3−m̃2

2)2

 , (8.13b)

W−4/3 ≈

 1
√

2v2Y ∗
31̃

m̃2
1−m2

3
−

√
2v2Y31̃

m̃2
1−m2

3
1

 . (8.13c)

Then the physical LQ masses are

(
M−1/3

a

)2
≈
(
m2

1+v2
(
Y1−

|A2̃1|2

m̃2
2 −m2

1

)
, m̃2

2+v2
(
Y2̃+ |A2̃1|2

m̃2
2 −m2

1
+ |A2̃3|2

m̃2
2 −m2

3

)
,

m2
3 + v2

(
Y3−

|A2̃3|2

m̃2
2 −m2

3

))
a

, (8.14a)

(
M2/3

a

)2
≈
(
m2

2+v2Y2, m̃
2
2+v2

(
Y2̃2̃+Y2̃+ 2|A2̃3|2

m̃2
2 −m2

3

)
,

m2
3+v2

(
Y3+ Y33−

2|A2̃3|2

m̃2
2 −m2

3

))
a

, (8.14b)

(
M−4/3

a

)2
≈
(
m̃2

1 + v2Y1̃, m
2
3 + v2(Y3 − Y33

))
a
, (8.14c)(

M5/3
)2
≈ m2

2 + v2(Y22 + Y2
)
, (8.14d)

keeping terms up to order v2. The index a runs from 1 to 3 for Q = −1/3 and Q = 2/3 and
from 1 to 2 for Q = −4/3, respectively.

8.2.2 Leptoquark-Fermion Couplings

EW symmetry breaking also leads to non-diagonal quark mass matrices in the weak basis,
originating from the SM Yukawa couplings. Note that we can work in the basis with a diagonal
lepton Yukawa coupling in the approximation of massless neutrinos. We therefore apply the
following unitary rotation matrices on the left-handed quark fields

uL → UuL uL , dL → UdL dL , (8.15)

while the right-handed rotations can be absorbed by a redefinition of the LQ-quark-lepton
couplings and are therefore unphysical. We now choose to work in the so-called down basis such
that

UuL∗
ji = Vij , UdL

ij = δij , (8.16)
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with Vij being the CKM matrix. This means that CKM elements only appear in couplings
involving up-type quarks.

We now decompose the LQ-fermion interactions in Tab. 8.1 into their SU(2)L components
and write them in terms of mass eigenstates

LqlΦ =
[
ūc

i

(
ΓR,a

uci `j
PR + ΓL,a

uci `j
PL

)
`j + ΓL,a

dciνj
d̄c

iPLνj + ΓL,a∗
diνj

ν̄jPRdi
]
Φ̂−1/3 †

a

+
[
d̄i
(
ΓR,a

di`j
PR + ΓL,a

di`j
PL

)
`j + ΓL,a∗

uciνj
ν̄jPRu

c
i + ΓL,a

uiνj ūiPLνj
]
Φ̂2/3

a

+
[
d̄c

i

(
ΓR,a

dci `j
PR + ΓL,a

dci `j
PL

)
`j
]
Φ̂−4/3 †

a +
[
ūi
(
ΓR

ui`jPR + ΓL
ui`jPL

)
`j
]
Φ̂5/3

+ h.c. ,

(8.17)

with

ΓR,a
uci `j

= λ1R
ij W

−1/3
a1 , ΓL,a

uci `j
= V ∗

ik

(
λ1L

kj W
−1/3
a1 − λ3

kjW
−1/3
a3

)
,

ΓL,a∗
diνj

= −λ̃2∗
ij W

−1/3
a2 , ΓL,a

dciνj
= −

(
λ1L

ij W
−1/3
a1 + λ3

ijW
−1/3
a3

)
,

ΓR,a
di`j

= λ2LR
ij W

2/3∗
a1 , ΓL,a

di`j
= λ̃2

ijW
2/3∗
a2 ,

ΓL,a∗
uciνj

=
√

2Vikλ
3∗
kjW

2/3∗
a3 , ΓL,a

uiνj = −λ2RL
ij W

2/3∗
a1 ,

ΓR,a
dci `j

= λ̃1
ijW

−4/3
a1 , ΓL,a

dci `j
= −
√

2λ3
ijW

−4/3
a2 ,

ΓR
ui`j = Vikλ

2LR
kj , ΓL

ui`j = λ2RL
ij .

(8.18)

Note that the index a runs from 1 to 3 for Q = −1/3 and Q = 2/3, while for Q = −4/3 only
from 1 to 2. Due to our choice of basis, the CKM matrix appears in all couplings involving left-
handed up-type quarks. Similarly, also the PMNS matrix would enter in all couplings involving
neutrinos in case they were taken to be massive. However, all processes that we are interested
in can be calculated for massless neutrinos such that the PMNS matrix drops out. Nonetheless,
we will return to the PMNS matrix in the next section when we discuss possible contributions
to Majorana mass terms and the renormalization of the W`ν vertex.

8.2.3 Leptoquark-Higgs Couplings

Let us finally consider the couplings of the SM Higgs to LQs. The interaction terms are also
affected by the LQ rotations induced by EW symmetry breaking. Again, we express Eq. (8.7)
in terms of mass eigenstates as

LHΦ = −Γ̃1/3
ab hΦ̂−1/3 †

a Φ̂−1/3
b − Γ̃2/3

ab hΦ̂2/3 †
a Φ̂2/3

b − Γ̃4/3
cd hΦ̂−4/3†

c Φ̂−4/3
d

− Γ5/3hΦ̂5/3 †Φ̂5/3 − Λ̃1/3
ab h

2Φ̂−1/3 †
a Φ̂−1/3

b − Λ̃2/3
ab h

2Φ̂2/3 †
a Φ̂2/3

b

− Λ̃4/3
cd h2Φ̂−4/3 †

c Φ̂−4/3
d − Λ5/3h2Φ̂5/3 †Φ̂5/3 ,

(8.19)

with h as the physical Higgs field, a, b = {1, 2, 3} and c, d = {1, 2}. The couplings are defined
as

Γ̃1/3 = W−1/3Γ1/3W−1/3 † , Λ̃1/3 = W−1/3Λ1/3W−1/3 † ,

Γ̃2/3 = W 2/3Γ2/3W 2/3 † , Λ̃2/3 = W 2/3Λ2/3W 2/3 † ,

Γ̃4/3 = W−4/3Γ4/3W−4/3 † , Λ̃4/3 = W−4/3Λ4/3W−4/3 † ,

Γ5/3 =
√

2v
(
Y22 + Y2

)
, Λ5/3 = 1

2
(
Y22 + Y2

)
,

(8.20)
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where the ΓQ and ΛQ matrices read

Γ1/3 = 1√
2

 2vY1 A∗
2̃1 2vY13

A2̃1 2vY2̃ A2̃3
2vY ∗

13 A∗
2̃3 2vY3

 Λ1/3 = 1
2

 Y1 0 Y13
0 Y2̃ 0
Y ∗

13 0 Y3

 (8.21a)

Γ2/3 = 1√
2

 2vY2 2vY22̃ 0
2vY ∗

22̃ 2v
(
Y2̃ + Y2̃2̃

)
−
√

2A2̃3
0 −

√
2A∗

2̃3 2v(Y3 + Y33)

 Λ2/3 = 1
2

 Y2 Y22̃ 0
Y ∗

22̃ Y2̃ + Y2̃2̃ 0
0 0 Y3 + Y33


(8.21b)

Γ4/3 = 1√
2

(
2vY1̃ 2vY ∗

31̃
2vY31̃ 2v(Y3 − Y33)

)
Λ4/3 = 1

2

(
Y1̃ Y ∗

31̃
Y31̃ Y3 − Y33

)
. (8.21c)

The expanded expressions for Γ̃Q and Λ̃Q are given in the Appendix 8.7.5.

8.3 Self-Energies, Masses and Renormalization
Self-energies of SM fermions after SU(2)L breaking are directly related to their masses and enter
the calculations of effective fermion-fermion-gauge-boson and fermion-fermion-Higgs couplings.
In this section, we will first calculate the self-energies, then discuss the issue of renormalization
and how the self-energies are included in the calculation of modified gauge-boson and Higgs
couplings.

First, let us define the mass and kinetic terms of the charged lepton and neutrino Lagrangian
in momentum space

L`ν = δfi

(
¯̀
f

(
/p−m`

f

)
`i + ν̄f/pνi −

mν
f

2 ν̄c
fνi

)
. (8.22)

We allowed for the possibility of Majorana mass terms for the neutrinos, which can be generated
via LQs. We then moved to the physical basis in which all mass matrices are diagonal, such
that the CKM matrix V (the PMNS matrix V̂ ) appears in the Wud (W`ν) vertex. Considering
only the leptonic part, we have explicitly

L`ν
W = g2√

2
V̂fi

¯̀
fγ

µνiW
−
µ . (8.23)

We define the self-energies of charged leptons as follows

`i `f

p p
= −iΣ`

fi(p2) , (8.24)

and decompose Σ`
fi(p2) as

Σ`
fi(p2) = /p

(
Σ`LL

fi (p2)PL + Σ`RR
fi (p2)PR

)
+ Σ`RL

fi (p2)PL + Σ`LR
fi (p2)PR , (8.25)

and similarly for neutrinos, where only the LL self-energy exists, but a possible contribution to
the neutrino mass term arises.

We now expand Σ`AB
fi (p2) with A,B = {L,R} in terms of p2/m2

LQ, where m represents the
LQ mass. Only the leading terms in this expansion (i.e. the ones independent of p2) are UV
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ν νc

v

dk

Φ̃2 Φ3,1

ν νcul
Φ2

Φ̃2

Φ3

v

v
v

Figure 8.2: One-loop self-energy diagrams generating Majorana-like neutrino masses. On the left-
hand side, we have a down-type quark in the loop. In the case of up-type quarks, the leading contribution
only occurs at O(v3).

divergent and non-decoupling. Furthermore, they are the only relevant ones in the calculation
of Z``, Zνν, W`ν and h`` vertices to be discussed later. The terms linear in p2/m2 are only
necessary to calculate `→ `′γ. However, as they are finite and do not affect the renormalization
of any parameter, they can be included in the calculation of ` → `′γ in a straightforward way
and we do not give the explicit results here. The ones for Σ`,νAB

fi ≡ Σ`,νAB
fi (0) are given in the

Appendix 8.7.1.

8.3.1 Neutrino Masses

The contribution to the Majorana mass term of the neutrinos can be calculated by considering
the ν̄c

fνi two-point function. We have generically

mνLQ
ij =

−mqkNc
(
ΓL

qkνiΓ
L
qkνj + ΓL∗

qkνjΓ
L∗
qkνi

)
16π2 I0

( µ2

M2 ,
m2

qk

M2

)
, (8.26)

where we neglected the external momenta. An implicit sum over all internal quarks u, d, uc and
dc as well as over their flavors and the corresponding LQs is understood. The loop function I0
is given in the Appendix 8.7.1.

After summation one can expand this expression in terms of v/mLQ. In this way, one
recovers the two diagrams shown in Fig. 8.2 and finds

mνLQ
ij ≈ mdkNcv

16π2m̃2
2

((
λ1L

ki λ̃
2
kjA2̃1 + λ1L∗

kj λ̃2∗
kiA

∗
2̃1
)
H1
(m2

1
m̃2

2

)
+
(
λ3

kiλ̃
2
kjA2̃3 + λ3∗

kj λ̃
2∗
kiA

∗
2̃3
)
H1
(m2

3
m̃2

2

))
+O(md v

3/m4)

+ mulNcv
3

8π2
λ2RL

lj V ∗
lkλ

3
kiA2̃3Y22̃ + λ2RL∗

li Vlkλ
3∗
kjA

∗
2̃3Y

∗
22̃

m2
2(m̃2

2 −m2
3)

(
H1
(m̃2

2
m2

2

)
−H1

(m2
3

m2
2

))
+O(mulv

4/m5) ,

(8.27)

where the first two lines agree with Ref. [337], originating from down-type quark contributions.
The third line, generated by couplings to up-type quarks, was not given previously in the
literature. Note that for the latter, the leading contribution only appears at O(v3), see Fig. 8.2,
while for down-type quarks already a v1 term exists and higher orders in v do not generate new,
independent coupling structures. The loop function H1 is given in the Appendix 8.7.2.
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8.3.2 Renormalization

With these expressions at hand, we can include the loop effects into the Lagrangian of Eq. (8.22)
to obtain

L`ν = ¯̀
f

(
/p
(
δfi − Σ`LL

fi PL − Σ`RR
fi PR

)
−m`(0)

f δfi − Σ`LR
fi PR − Σ`RL

fi PL

)
`i

+ ν̄f/p
(
δfi − ΣνLL

fi

)
νi −

m
ν(0)
f +mνLQ

fi

2 ν̄c
fνi . (8.28)

The superscript (0) indicates the bare (unrenormalized) quantities. Now we have to make
the kinetic terms canonical again and render the mass matrices diagonal in order to arrive at
the physical basis. We start with the kinetic terms, which are made diagonal and correctly
normalized once the shifts

`fL →
(
δfi + 1

2Σ`LL
fi

)
`iL , (8.29a)

`fR →
(
δfi + 1

2Σ`RR
fi

)
`iR , (8.29b)

νf →
(
δfi + 1

2ΣνLL
fi

)
νi , (8.29c)

have been applied. These shifts enter in all observables with external lepton fields, i.e. they
also lead to effects in gauge-boson couplings to leptons. Therefore, we include them in this way
in our calculations later on.

In addition, these field redefinitions affect the mass terms for charged leptons, which then
read [464]

L`
m = −¯̀

f

(
m

`(0)
i δfi + 1

2Σ`LL
fi m

`(0)
i + 1

2m
`(0)
f Σ`RR

fi + Σ`LR
fi PR + Σ`RL

fi PL

)
`i , (8.30)

and for neutrinos we have

Lν
m = −1

2 ν̄
c
f

(
m

ν(0)
f δfi + 1

2m
ν(0)
f ΣνLL

fi + 1
2ΣνLL∗

fi m
ν(0)
i +mνLQ

fi

)
νi . (8.31)

These matrices can now be diagonalized as

U `L∗
f ′f

((
δf ′j + 1

2Σ`LL
f ′j

)
m

(0)
j

(
δji′ + 1

2Σ`RR
ji′

)
+ Σ`LR

ji′

)
U `R

i′i = m`
iδfi ,

Uν
f ′f

(
m

ν(0)
f ′ δf ′i′ + 1

2m
ν(0)
f ′ ΣνLL

f ′i′ + 1
2ΣνLL∗

f ′i′ m
ν(0)
i′ +mνLQ

f ′i′

)
Uν

i′i = mν
i δfi ,

(8.32)

with m`
i and mν

i being the physical masses. The unitary matrix U `L is given by

U `L =


1 Σ`LR12

m`
2

+ 1
2Σ`LL

12
Σ`LR13
m`

3
+ 1

2Σ`LL
13

−Σ`LR∗
12
m`

2
− 1

2Σ`LL∗
12 1 Σ`LR23

m`
3

+ 1
2Σ`LL

23

−Σ`LR∗
13
m`

3
− 1

2Σ`LL∗
13 −Σ`LR∗

23
m`

3
− 1

2Σ`LL∗
23 1

 . (8.33)

We used the lepton mass hierarchy to simplify U `L and the fact that the self-energies are
just corrections to a diagonal matrix to get an explicit expression. U `R is simply obtained by
exchanging L and R.
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`i `f
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j

ΦQ
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a

Figure 8.3: The vertex diagrams which contribute to `i → `fγ. Depending on the electric charge of
the LQ, we have (charge-conjugated) up- or down-type quarks in the loop.

These unitary rotations (or at leading order the unit matrix plus anti-hermitian corrections)
do not have a physical effect in the sense that they cannot be measured in observables. In
fact, they correspond to unphysical rotations, in case of U `R, or they can be absorbed by a
renormalization of the PMNS matrix, in case of U `L and Uν . This can also be seen by applying
these rotations to gauge bosons vertices, where they drop out for the Z interaction terms and
only enter the W`ν vertex in the combination

V̂fi = U `L∗
f ′f V̂

(0)
f ′i′U

ν
i′i , (8.34)

where V̂ on the left-hand side of the equation is identified with the PMNS matrix, see Eq. 8.23.

Finally, let us consider the h`` vertex. Here we have

−h¯̀
fU

`L∗
f ′f

((
δf ′j + 1

2Σ`LL
f ′j

)
Y

`(0)
j

(
δji′ + 1

2Σ`RR
ji′

)
+ Λ`LR

ji′

)
U `R

i′i PR`i , (8.35)

where Y `(0)
j = m

`(0)
j /v and Λ`LR

ji′ represents the genuine vertex correction. Therefore, the ef-
fective Yukawa coupling measured in h→ `+`′− decays can be expressed in terms of the physical
lepton mass and Σ`LR

fi as follows

Y ` eff
fi =

m`
iδfi − Σ`LR

fi

v
+ Λ`LR

fi . (8.36)

8.4 Calculation of the One-Loop Effects
In this section, we compute the amplitudes governing the various purely leptonic observables.
For this we take into account the Higgs-induced mixing among the different LQ representations.
We will consider amplitudes involving the following fields:

1. ``γ
2. Z`` and Zνν

3. W`ν

4. h``
5. 4`
6. 2`2ν

For our purpose, the gauge bosons and the Higgs can be both on- and off-shell while the
leptons are all on-shell. We set all lepton masses to zero, except for `i → `fγ, where we

132



Calculation of the One-Loop Effects

expand up to the first non-vanishing order. In addition, we expanded the loop integrals in
mEW/mLQ, where mEW ≈ v can denote mW , mZ , mH or mt. Furthermore, we expanded the
mass eigenvalues of the LQs and the mixing matrices in v/mLQ, while the results obtained with
exact diagonalization of the LQ mass matrices are given in the Appendix. Note that we do not
include Higgs or gauge-boson self-energies in our calculations. Such effects are flavor universal,
drop out at leading order if branching ratios are considered and are already included in the
oblique parameters [389,390] as studied in Ref. [49].

8.4.1 ``γ

In case of an on-shell photon, we define the effective Hamiltonian as

H``γ
eff = CL

`f `iO
L
`f `i + CR

`f `iO
R
`f `i , (8.37)

with

O
L(R)
`f `i

= e

16π2
[¯̀

fσ
µνPL(R)`i

]
Fµν . (8.38)

Note that we have CR
`f `i

= CL∗
`i`f

due to the hermiticity of the Hamiltonian.
The coefficients are induced by the diagrams in Fig. 8.3 and for a single LQ representation

only are given by

CL,Φ1
`f `i

≈
Nc(m`fλ
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, (8.39a)
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`f `i

≈
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, (8.39b)

CL,Φ2
`f `i

≈
−Nc(m`fλ
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, (8.39c)

CL,Φ̃2
`f `i

≈ 0 , (8.39d)

CL,Φ3
`f `i

≈
−Ncm`fλ

3∗
jfλ

3
ji

8m2
3

, (8.39e)

where the quark index j runs from 1 to 3. We expanded the results up to the first non-vanishing
order in external momenta and masses. Note that the Wilson coefficients are composed by two
parts: a contribution which is proportional to m`f,i and a contribution proportional to the quark
mass, originating from a chirality flip on the internal quark line. The latter term appears only
if a LQ couples simultaneously to left- and right-handed up- or down-type quarks. E.g. for the
AMM of the muon this effect dominates in cases where we couple to third generation quarks,
i.e. generates a relative enhancement by a factor mt/mµ ∼ 1600 or mb/mµ ∼ 40, respectively.
Therefore, these terms are the most important ones from the phenomenological point of view.
And for our results with mt and mb we also include the O(v2/m2

LQ) terms, originating from the
Higgs-LQ interaction, while we only present the leading order effects for the m`f,i terms.
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Turning to the contributions with multiple LQ representations, i.e. the terms involving LQ
mixing, we also focus on the terms proportional to mb,t and we find

CL
`f `i ≈
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(8.40)

The involved loop functions are given explicitly in the Appendix 8.7.2 and the general analytical
results in Appendix 8.7.3. Note that we assumed the quarks of the first two generations to be
massless and that we integrated out the bottom and top quark together with the LQs. This
means that Eq. (8.39) and Eq. (8.40) should be understood to be at the low scale, such that
the mixing of the four-fermion operators into the magnetic one is already included, reproducing
the logarithms.

Considering `i → `fγ
∗ transitions with a momentum configuration q2 = (pi−pf )2, we define

the amplitude

A(`i → `fγ
∗) = −eq2 ū(pf ,mf ) /ε∗(q)

(
δfi + Ξ̂L

fiPL + Ξ̂R
fiPR

)
u(pi,mi) . (8.41)

We first give the separate contributions of each LQ representation

ΞL,Φ1
fi ≈

−Ncλ
1L∗
kf VjkV

∗
jlλ

1L
li

288π2m2
1

(
F1
(m2

uj

m2
1

)
− v2Y1

m2
1
F2
(m2

uj

m2
1

)
+ v2|A2̃1|2

m̃4
2
F3
(m2

uj

m2
1
,
m2

1
m̃2

2

))
, (8.42a)
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, (8.42c)
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If we include LQ Higgs interactions, we find a new structure originating from Φ1-Φ3 mixing
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(8.43)
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Figure 8.4: Vertex diagrams which contribute to Z → `−
f `

+
i and Z → νf ν̄i. Note that in case of

mixing among LQs, the Z coupling, unlike the photon, can connect different representations with each
other.

at O(v2/m2
LQ). The quark index j runs from 1 to 3 and the loop functions are given in the

Appendix 8.7.2. Note that we again assumed that the quarks can be integrated out at the
same scale as the LQs. This means that the expressions should be understood to be at the
low scale and include the mixing of two-quark-two-lepton operators into four-fermion ones.
Therefore, in case the quark is lighter than the corresponding leptonic process, one has to insert
the scale of that process (rather than the quark mass) into the logarithms of the loop functions
in Appendix 8.7.2.

8.4.2 Z`` and Zνν

We now compute the LQ effects on the Z → `−f `
+
i and Z → νf ν̄i amplitudes, depicted in

Fig. 8.4

A(Z → `−f `
+
i ) = g2

cw
ū(pf ,m`f )/ε(q)

(
ΛL

`f `i

(
q2)PL + ΛR

`f `i

(
q2)PR

)
v(pi,m`i) , (8.44a)

A(Z → νf ν̄i) = g2
cw

Θνfνi

(
q2)ū(pf )/ε(q)PLv(pi) , (8.44b)

with εµ(q) as the polarization vector of the Z boson and q2 = (pf + pi)2. In addition, there
is an magnetic form factor for Z → `+`− [465]. However, we do not give the form factor of
this amplitude explicitly, since it does not interfere with the SM for m` = 0. We perform this
calculation for vanishing lepton masses and decompose the form factors as

ΛL(R)
`f `i

(
q2) = ΛL(R)

SM (q2)δfi +
∑
Φ

∆Φ
L(R),fi

(
q2)+ ∆̃L(R),fi , (8.45a)

Θνfνi

(
q2) = ΘSM(q2)δfi +

∑
Φ

ΘΦ
fi

(
q2)+ Θ̃fi . (8.45b)

The ∆Φ
L(R),fi

(
q2) and ΘΦ

fi

(
q2) contain the part with no LQ mixing, grouped into Φ =

{Φ1, Φ̃1,Φ2, Φ̃2,Φ3}, while the ∆̃L(R),fi and Θ̃fi contain the part induced by LQ mixing. In
our conventions, the tree-level SM couplings read

ΛL
SM = s2

w −
1
2 , ΛR

SM = s2
w , ΘSM = 1

2 , (8.46)

with sw (cw) being the sine (cosine) of the Weinberg angle. Beyond tree-level, also the SM
couplings receive momentum dependent corrections, which are included in the predictions for
EW observables that we study later in the phenomenological analysis.

In our calculation we only include contributions of O(m2
EW/m

2
LQ), i.e. effects from the top

quark, the Z mass as well as the ones induced by LQ mixing, while setting all other masses to
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zero33. In case where the Z boson has a squared momentum q2 we find
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33Similar results for the diquark contribution to Z → `+`− have been obtained in Ref. [466].
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where we expanded the results in q2/m2
LQ and m2

t /m
2
LQ. Finally, the contributions from LQ

mixing read
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where the H-functions are given in Appendix 8.7.2.
Now we turn to the Z → νf ν̄i amplitudes, where we show the contributions again separated

by each representation
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Finally, we again have the contributions from LQ mixing
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(8.50)
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Figure 8.5: Vertex diagrams contributing to W− → `−
f ν̄i. In the case of massless down-type quarks

the diagram on the left-hand side is only present with charge-conjugated quarks, since the W boson
couples to purely to left-handed quarks.

In case of zero momentum transfer, i.e. q2 = 0, the form factors correspond to effective Z``
and Zνν couplings. We define them for later purposes in an effective Lagrangian

LZ``
int = g2

cw

[¯̀
f

(
ΛL

`f `i(0)γµPL + ΛR
`f `i(0)γµPR

)
`i
]
Zµ , (8.51a)

LZνν
int = g2

cw
Θνfνi(0) [ν̄fγµPLνi]Zµ , (8.51b)

where only the ∆̃, Θ̃ and the top contributions remain.

8.4.3 W `ν

We define the amplitude of this process, also considered for generic new scalars and fermions
in Ref. [289], as follows

A(W− → `−f ν̄i) = g2√
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q2)ū(p`f ,m`f )/ε(q)PL v(pνi) , (8.52)

with
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The diagrams are shown in Fig. 8.5. The form factors ΛΦ
fi

(
q2) again contain the parts with no

LQ mixing, grouped by representation with Φ = {Φ1, Φ̃1,Φ2, Φ̃2,Φ3}, while Λ̃fi contains the
part with LQ mixing. In the SM we have at tree-level

ΛW
SM = 1 . (8.54)

The single LQ contributions read

ΛΦ1
fi (q2) ≈
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, (8.55a)

ΛΦ2
fi (q2) ≈

3∑
j=1

Nc q
2

288π2
λ2RL∗

jf λ2RL
ji

m2
2

, (8.55b)

ΛΦ̃2
fi (q2) ≈

3∑
j=1

Nc q
2

288π2
λ̃2∗

jf λ̃
2
ji

m̃2
2

, (8.55c)

138



Calculation of the One-Loop Effects

ΛΦ3
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−
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Additionally, we have the O(v2/m2
LQ) effects from LQ mixing
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(8.56)

with the loop functions given in the Appendix 8.7.2. Note that the terms in the last two lines
in Eq. (8.56) are anti-hermitian in flavor space. Therefore, like the anti-hermitian part of the
self-energy contributions, see Eq. (8.33), they are not physical. In fact, we checked that the
terms originating from LQ mixing for Z``, Zνν and W`ν respect the structure required by the
dim-6 operators with manifest SU(2)L invariance if the anti-hermitian terms are absorbed by
the PMNS matrix.

At the level of effective couplings, we have to evaluate the contributions at q2 = 0, which
can be treated in the context of an effective Lagrangian

LW `ν
int = g√

2
ΛW

`fνi(0)
[¯̀

fγ
µPLνi

]
W−

µ . (8.57)

The effective coupling ΛW
`fνi

(0) then only receives LQ effects from loop-induced top quarks and
from LQ mixing.

8.4.4 h``

Let us turn next to the Higgs decays h → `−f `
+
i . We define the amplitude analogously to the

leptonic W and Z decays as

A(h→ `−f `
+
i ) = − mfi√

2 v
ū(pf ,m`f )

(
ΥL

`f `i(q
2)PL + ΥR

`f `i(q
2)PR

)
v(pi,m`i) , (8.58)

with

ΥL
`f `i(q

2) = δfi +
∑
Φ

ΥΦ
L,fi(q2) + Υ̃L,fi , (8.59a)

ΥR
`f `i(q

2) = δfi +
∑
Φ

ΥΦ
R,fi(q2) + Υ̃R,fi . (8.59b)
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Figure 8.6: Vertex diagrams generating h→ `−
f `

+
i at the 1-loop level.

The sum over Φ refers to the LQ representations Φ = {Φ1, Φ̃1,Φ2, Φ̃2,Φ3}, Υ̃L(R),fi contain the
terms which are only generated by LQ mixing and

mfi = max[m`f ,m`i ] , q2 = (pf + pi)2 . (8.60)

Note that due to hermicity

ΥR
`f `i = ΥL∗

`i`f
. (8.61)

If f 6= i we can safely neglect the lighter lepton mass. The corresponding Feynman diagrams
are shown in Figure 8.6.

We expand again in v2/m2
LQ and set the lepton masses to zero. In the phenomenologically

most relevant case of an internal top quark, we additionally use the fact that for Higgs decays
m2

t > m2
h ≡ q2, finding

ΥΦ1
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The mixing-induced terms read up to O(v2/m2
LQ)
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(8.63)

The loop functions that we used in this section can be found in the Appendix 8.7.2. In Ap-
pendix 8.7.5 we additionally present the generic results for light quarks, i.e. for the case where
m2

qj � q2 ≡ m2
h.

8.4.5 4`

To describe processes involving four charged leptons, we define the effective Hamiltonian as

H4`
eff = H``γ

eff +
∑

f,i,a,b

(
CV LL

fiab O
V LL
fiab + CV LR

fiab OV LR
fiab + CS LL

fiab O
S LL
fiab + L↔ R

)
, (8.64)

with the effective operators

OV LL
fiab =

[¯̀
fγ

µPL`i
][¯̀

aγµPL`b
]
,

OV LR
fiab =

[¯̀
fγ

µPL`i
][¯̀

aγµPR`b
]
,

OS LL
fiab =

[¯̀
fPL`i

][¯̀
aPL`b

]
.

(8.65)
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Figure 8.7: Feynman diagrams giving rise to `f `i`a`b amplitudes. Left and center: Penguin diagrams
with off-shell Z boson or photon exchange. Right: Box diagram involving two LQs.

Note that we sum over all flavor indices. Therefore, all other operators can be reduced to the
ones in (8.64), using Fierz identities. As an advantage, we do not need to distinguish between
decays involving the same or different flavors.

There are two types of diagrams which give a contribution to these operators: penguins and
boxes, see Fig 8.7. Starting with the photon penguin, we have

CV LL
fiab = −πα

(
ΞL

fiΞL
ab + ΞL

fbΞL
ai

)
,

CV LR
fiab = −2παΞL

fiΞR
ab ,

(8.66)

with

ΞL(R)
fi = δfi + Ξ̂L(R)

fi . (8.67)

The Z boson gives an analogous contribution

CV LL
fiab =

√
2GF

(
ΛL

`f `i(0)ΛL
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`f `b

(0)ΛL
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)
,
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2
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(0) .
(8.68)

The coefficients CV RL
fiab and CV RR

fiab are obtained in a straightforward way by simply exchanging
L↔ R.

The box diagrams generate the following contributions
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where the loop function H1 is again given in Appendix 8.7.2. The indices j and k run from 1
to 3. Note that we only consider the leading effects in v/m. In scenarios where the λ-couplings
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are smaller than the gauge couplings (e ≈ 0.3 and g2 ≈ 0.6), the box contributions are typically
less important than the gauge boson penguins.

8.4.6 2`2ν

For these fields we use the effective Hamiltonian

H2`2ν
eff = DL,ab

`f `i
OL,ab

`f `i
+DR,ab

`f `i
OR,ab

`f `i
(8.70)

with

O
L(R),ab
`f `i

=
[¯̀

fγµPL(R)`i
][
ν̄aγ

µPLνb

]
. (8.71)

There are three types of contributions: Z penguins, W penguins and boxes. The Z boson yields

DL,ab
`f `i

= 8GF√
2

ΛL
`f `i(0)Θνaνb(0) , DR,ab

`f `i
= 8GF√

2
ΛR

`f `i(0)Θνaνb(0) , (8.72)

while we have for the W boson

DL,ab
`f `i

= 4GF√
2

ΛW ∗
`iνa(0)ΛW

`fνb
(0) . (8.73)

The box diagrams yield
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DR,ab
`f `i

= Nc
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ka λ1L
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m2
1

+
λ2LR∗
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m2
2

]
. (8.74b)

Again the indices j and k run from 1 to 3 and we only considered the leading order LQ effects
in v/mLQ.

8.5 Phenomenology

Let us now study the phenomenology of scalar LQs in leptonic processes. Due to the large
number of observables and the many free parameters, we will choose some exemplary processes
of special interest and use simplifying assumptions for the couplings in order to show the effects
and the possible correlations between observables. In particular, we will consider:

• EW gauge-boson couplings to leptons: the effects of scalar LQs in (effective) off-shell Z``,
Zνν and W`ν couplings and the associated gauge-boson decays.

• Muonic observables: correlations between the AMM of the muon, Z → `+`−, effective
Wµν couplings and h→ µ+µ−.

• Charged lepton flavor violation: correlations between τ → µγ, Z → τµ and τ → 3µ as
well as the analogues in µ→ e transitions.
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Figure 8.8: LQ effects in Z`` , Zνν and W`ν couplings for the scalar LQ representations which
give rise to m2

t effects (Φ1, Φ2 and Φ3) as a function of the LQ mass. We neglected LQ mixing and
considered only the couplings of third generation quarks to a single lepton flavor with unit strength, i.e.
λ3` = 1. Here, ∆L,R, Θ and Λ stand for the corrections in Z``, Zνν and W`ν couplings, respectively (see
Sec. 8.4.2). The solid (dashed) lines refer to the couplings entering on-shell decays (effective couplings
at q2 = 0). The green region is excluded by LEP data [353] from Z → νν̄ decays. The blue region is
excluded by Z → τ+τ− which is more constraining than Z → µ+µ− (not shown explicitly). Note that
we also do not show Z → e+e− exclusions here for the sake of clarity since couplings to electrons are
usually much smaller in setups motivated by the B anomalies, leading to suppressed effects.

8.5.1 Electroweak Gauge-Boson Couplings to Leptons: Z``, Zνν and W `ν

We start our phenomenological analysis by considering the effects of scalar LQs in Z``, Zνν and
W`ν effective couplings (at q2 = 0) and the associated gauge boson decays (at q2 = m2

Z ,m
2
W ),

calculated in Sec. 8.4.2. While among Z → `+`− decays NP effects are strongly bounded
by LEP [353] measurements, the effective W`ν couplings are best constrained by low-energy
observables, testing LFU of the charged current (see Ref. [275] for an overview).

We first focus on the LQ representations which generate an m2
t /m

2
LQ effect in EW gauge-
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3`| = 1.

boson couplings to leptons, i.e. Φ1, Φ2 and Φ3. In the absence of LQ mixing, we can expect
this effect to be dominant and couplings to third generation quarks are well motivated by the
flavor anomalies. Note that we nonetheless included the q2 = {m2

Z ,m
2
W } terms which, due to

SU(2)L invariance, can also arise from bottom loops for some of the representations shown in
Fig. 8.8. In order to keep the number of free parameters small, we did not include mixing
among the LQs and assumed that only couplings to one lepton flavor ` = e, µ, τ at a time exist.
This avoids limits from charged lepton flavor violating observables, which we consider later in
this article. Furthermore, we normalized the LQ effect to the respective SM coupling and the
LQ-quark-lepton coupling to one ( i.e. λ3` = 1) while all other couplings are zero. Note that
the effect in Fig. 8.8, given for couplings of unit strength, are consistent with Z → `+`− bounds
for masses around 1.5 TeV or more. Furthermore, Z → νν̄ is constrained by the number of
neutrino families

Nν =
∑
f,i

∣∣∣∣δfi +
∑

Φ ΘΦ
fi

(
q2)+ Θ̃fi

ΘSM(m2
Z)

∣∣∣∣2 , (8.75)

where the experimental value lies at [353]

Nν = 2.9840± 0.0082 , (8.76)

while the LQ effect is predicted to be constructive. Future colliders are expected to reach a 20
times better precision [409].

Let us now turn to the case of non-vanishing LQ couplings to the SM Higgs. We study
as an example the scalar doublet Φ̃2 which couples only down-type quarks to leptons such
that the v2/m̃2

2 effects from the mixing with Φ1 (generated by A2̃1) and/or Φ3 (generated by
A2̃3) are expected to be dominant compared to the m2

Z/m̃
2
2 effects. In Fig. 8.9 we present

the impact of LQs on on-shell Z and W couplings. Again, we set λ̃2
3` = 1 and we assume

m̃2 = m1 = m3 = 1 TeV, which is compatible with current LHC limits [291,362,425]. Note that
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Figure 8.10: Correlations between Br[h → µ+µ−], normalized to its SM value, and the NP contri-
bution to the AMM of the muon (δaµ) for scenario Φ1 (left) and Φ2 (right) with m1,2 = 1.5 TeV. The
predictions for different values of the LQ couplings to the Higgs are shown, where for Φ1 Y = Y1 while
for Φ2 Y = Y2 + Y22. Even though the current ATLAS and CMS results are not yet constraining this
model, sizeable effects are predicted, which can be tested at future colliders. Furthermore, Φ1 yields
a constructive effect in h → µ+µ− while the one of Φ2 is destructive such that they can be clearly
distinguished with increasing experimental precision.

a non-zero A2̃1 yields a destructive effect in Z`` and W`ν couplings while the terms with A2̃3
are constructive.

8.5.2 Correlating the AMM of the Muon with Z → `+`− and h → µ+µ−

In this sub-section, we focus on possible LQ explanations of the long-standing anomaly in
the AMM of the muon. The discrepancy between its measurement [123] and the SM predic-
tion [124]34 amounts to

δaµ = (279± 76)× 10−11 , (8.77)

corresponding to a 3.7σ tension. Note that this tension is quite large, i.e. of the order of the EW
contribution of the SM. Since LQs are colored, the LHC bounds rule out masses significantly
below 1 TeV such that an enhancement in aµ is needed to compensate for the mass suppression.
In fact, there are LQ representations that are able to generate mt/mµ enhanced contributions,
see Eq. (8.39). These NP effects enter the AMM of the muon as

aµ = mµ

4π2 Re
[
CR

µµ

]
, (8.78)

with the Wilson coefficient defined in Eq.(8.37).
First of all, we can expect a direct correlation with h → µ+µ− [50] since both processes

are chirality changing and therefore involve the same couplings of LQs to fermions35. We can
34This result is based on Refs. [128,130,133,135,139,142–144,303,304,306,436–444]. The recent lattice result

of the Budapest-Marseille-Wuppertal collaboration (BMWc) for the hadronic vacuum polarization (HVP) [302]
on the other hand is not included. This result would render the SM prediction of aµ compatible with experiment.
However, the BMWc results are in tension with the HVP determined from e+e− → hadrons data [130, 133, 135,
303,304,306]. Furthermore, the HVP also enters the global EW fit [307], whose (indirect) determination is below
the BMWc result [308]. Therefore, the BMWc determination of the HVP would increase the tension in EW
fits [445,446] and we opted for using the community consensus of Ref. [124].

35Similar results for τ → µγ were obtained in Refs. [451–453].
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Figure 8.11: Allowed parameter space by LEP [353] (light green) for the couplings to left- and right-
handed muons. In addition, we give the expected sensitivities of future collider experiments, see Tab. 8.2.
The finite renormalization of g2, induced by the effect in the Fermi constant, yields a LFU effect which
is depicted by the blue lines in the plot on the left.

express the NP effect in terms of ΥΦ
L and Υ̃L, defined in (8.58), as

Br
[
h→ µ+µ−]

Br
[
h→ µ+µ−]

SM
=
∣∣∣1 +

∑
Φ

ΥΦ
L,µµ + Υ̃L,µµ

∣∣∣2 . (8.79)

The resulting correlations are shown in Fig. 8.10 for Φ1 and Φ2. Note that even though the
current CMS and ATLAS measurements [433, 434] are not able to constrain these models yet,
a FCC-hh [424] can test them.

The LQ interactions with top quarks and muons also generate effects in Zµµ couplings.
Therefore, let us as a next step consider the correlations of aµ with Z → `+`− where we
refine the analysis of Ref. [368] by including the indirect effect, originating from the finite
renormalization of the very precisely measured Fermi constant [52]

GF = 1.166 378 7(6)× 10−5 GeV−2 , (8.80)

which can be expressed in terms of the SM parameters

GF =
√

2g2
2

8m2
W

. (8.81)

Since mW itself is measured in W decays, g2 can be determined once GF is measured via the
muon lifetime. However, also NP contributions enter such that

GF → GF

(
1 + ΛW ∗

µνµ(0)
)(

1 + ΛW
eνe(0)

)
, (8.82)

resulting in a redefinition of g2.
The SU(2)L singlet Φ1 with non-zero real couplings λ1L

32 and λ1R
32 affects Zµµ as well as

Wµνµ, while the effect on Zνν is very small, see Fig. 8.11. The modified W coupling by λ1L
32

then yields a finite, LFU renormalization of g2. This has been included in our analysis depicted
in Fig. 8.11, leading to the allowed, green region deviating slightly from a circled shape.

The SU(2)L doublet Φ2 with non-zero couplings λ2LR
32 and λ2RL

32 only yields a negligible
contribution to Wµνµ. However, there is an mt effect in Z → νν̄, affecting Nν , which has been
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` g`
A/gASM LEP [353] FCC-ee [357] ILC [467] CEPC [423] CLIC [408]

e 0.999681± 0.000698227 ±4.1× 10−6 ±4.1× 10−5 ±8.7× 10−6 ±4.4× 10−5

µ 0.99986± 0.00107726 ±6.3× 10−6 ±6.3× 10−5 ±1.3× 10−5 ±6.7× 10−5

τ 1.00154± 0.00127676 ±7.5× 10−6 ±7.5× 10−5 ±1.6× 10−5 ±8.0× 10−5

LFU 0.99992± 0.000518683 ±3.1× 10−6 ±3.0× 10−5 ±6.5× 10−6 ±3.2× 10−5

Table 8.2: Experimental values for Z`` couplings, extracted from LEP [353] data and normalized to
their SM values with g`

A = ΛL
``(m2

Z)−ΛR
``(m2

Z). We further show various expected sensitivities for future
colliders (second to fifth row) under the assumption that the measurements of gA are improved by the
same factor as s2

w.

precisely measured, see Eq. (8.76). This then constrains λ2RL
32 as we show in the plot in the

right-hand side of Fig. 8.11. We additionally show in Fig. 8.11 the expected sensitivities of
future experiments for Zµµ, which are summarized in Tab. 8.2.

8.5.3 Charged Lepton Flavor Violation

Let us now correlate different charged lepton flavor violating observables, i.e. `→ `′γ, Z → ``′

and `→ 3`′. We do not study µ→ e conversion in nuclei, which could be dominant in case of
couplings to first generation quarks, but rather again assume only couplings to third generation
quarks.

The branching ratios for lepton flavor violating radiative lepton decays, as a function of the
(effective) Wilson coefficients in Eq. (8.37), are given by

Br [`i → `fγ] =
αm3

`i

256π4 τ`i

(∣∣CL
`f `i

∣∣2 +
∣∣CR

`f `i

∣∣2) , (8.83)

with τ`i as the life time of the decaying lepton. Similarly, the branching ratio for Z → `+`′− is
given by

Br
[
Z → `+i `

−
f

]
= GFm

3
Z

3
√

2πΓtot
Z

(∣∣ΛL
`f `i(m

2
Z)
∣∣2 +

∣∣ΛR
`f `i(m

2
Z)
∣∣2) , (8.84)

with Γtot
Z = 2.495 GeV [468] being the total Z boson decay width and the ΛL,R

`f `i
(q2) are defined

in (8.44a).
For the three body decays we have

Br
[
τ∓ → µ∓µ+µ−

]
= m3

τ

768π3 ττ

[
α2

π2
∣∣CL

µτ

∣∣2(log
(m2

τ

m2
µ

)
− 11

4
)

+ m2
τ

4

(∣∣CSLL
µµµτ

∣∣2 + 16
∣∣CV LL

µτµµ

∣∣2 + 4
∣∣CV LR

µτµµ

∣∣2 + 4
∣∣CV LR

µµµτ

∣∣2)
− 2α

π
mτ Re

[
CL∗

µτ

(
CV RL

µτµµ + 2CV RR
µτµµ

)]
+ L↔ R

]
,

(8.85)

with the Wilson coefficients defined in Eq. (8.64). The analogous expression for µ→ 3e can be
obtained by obvious replacements. These rates have to be compared to the experimental limits
given in Tab. 8.3 where we also quote the expected future sensitivities. We do not consider
decays like τ∓ → µ∓e±e∓ as the experimental constraints are slightly worse.

In our numerical analysis, we again assume that the LQs only couple to third generation
quarks but now allow for the possibility that they couple to more than one lepton flavor at
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Br [Z → ``′] Ref. Br [`→ `′γ] Ref. Br [`→ 3`] Ref.
Z → e±µ∓ < 7.5× 10−7 [354] µ→ eγ < 4.2× 10−13 [351] µ→ 3e < 1.0× 10−12 [469]
Z → e±τ∓ < 9.8× 10−6 [356] τ → eγ < 3.3× 10−8 [352] τ → µee < 1.5× 10−8 [359]
Z → µ±τ∓ < 1.2× 10−5 [355] τ → µγ < 4.4× 10−8 [352] τ → 3µ < 2.1× 10−8 [359]
Z → µ±τ∓ < 1.0× 10−8 [467] µ→ eγ < 6.0× 10−14 [470] µ→ 3e < 5.5× 10−15 [471]
Z → µ±τ∓ < 1.0× 10−9 [357] τ → µγ < 1.0× 10−9 [472] τ → 3µ < 1.0× 10−9 [274]

τ → 3µ < 3.3× 10−10 [472]

Table 8.3: Current experimental limits (top panel) and projected future experimental sensitivities
(bottom panel) on lepton flavor violating decays of charged leptons.

the same time. Let us start by examining the correlations between τ → µγ and Z → τµ
in Fig. 8.12. One can see that this correlation is very direct under the assumption that only
one representation contributes and that for Φ1 and Φ2 only either the left- or the right-handed
couplings to leptons are non-zero at the same time such that chirality enhanced effects in τ → µγ
are absent. Although currently τ → µγ is more constraining, even in the absence of chirality
enhanced contributions, in the future Z → τµ can provide competitive or even superior bounds.
The situation for τ → e transitions is very similar and therefore not shown explicitly.

In Fig. 8.13 we show the correlations between τ → µγ and τ → 3µ. These correlations are not
as clear as in the case of Z → τµ due to the additional box contributions to τ → 3µ. Therefore,
one obtains a cone instead of a straight line. Interestingly, for Φ1 the effect in τ → µγ is smallest
among the LQ representations due to the electric charge of the LQ. Hence, even though phase
space suppressed, τ → 3µ is more sensitive to this particular LQ than τ → µγ. Again, the
situation in τ → e transitions is very similar and therefore not shown explicitly. However, we
show our analysis for µ → e transitions in Fig. 8.14. For the µ → eγ scenario we do not show
Z → µe since the low energy bounds are so stringent that the former cannot compete, even
when taking into account future prospects. The (lower) upper boundary of the cone is obtained
for a hierarchic flavor structure, i.e. λ33 (�) � λ32 for τ → µ and λ32 (�) � λ31 for µ → e
transitions, respectively, such that the box contributions are (sub)dominant. The opening angle
of the cone is determined by the size of the box contributions to `→ 3`′. For example, the LQ
triplet yields the biggest box contribution, which can easily be seen from Eq. (8.69).

8.6 Conclusions
Leptoquarks are prime candidates to explain the flavor anomalies, i.e. the discrepancies between
measurements and the SM predictions in b→ s`+`−, b→ cτν and the AMM of the muon. With
this motivation in mind, we calculated the one-loop amplitudes generated by scalar LQs for the
purely leptonic transitions, involving:

• ``γ

• Z`` and Zνν

• W`ν

• h``

• 4`
• 2`2ν

Taking into account the most general set of interactions of the LQs with the SM Higgs doublet,
we obtained relatively simple analytic expressions for the amplitudes by expanding the LQ
mixing matrices in v/mLQ, corresponding to a mass insertion approximation.
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Figure 8.12: Correlations between τ → µγ and Z → τµ for the three LQ representations which
generate an m2

t/m
2
LQ effect in Z`` couplings. We assume that Φ1 and Φ2 couple either to left or to

right-handed leptons only such that chirally enhanced effects (which would result in dominant effects in
τ → µγ) are absent.

In our phenomenological analysis, we illustrated the results of our calculation by studying:

• LQ effects in effective Z``, Zνν and W`ν couplings and the associated gauge boson decays.
Here we found for the three representations which generate m2

t /m
2
LQ enhanced effects (Φ1,

Φ2 and Φ2) that Z → `+`− is smaller than within the SM while Z → νν is enhanced. For
order one couplings, the effect is at the percent level for TeV scale LQs.

• Correlations between the AMM of the muon, Z → `+`−, effective Wµν couplings and
h → µ+µ−. Here we found that, since an explanation of the (g − 2)µ anomaly requires
a mt/mµ enhanced effect, also the contribution in h→ µ+µ− is pronounced by the same
factor. Furthermore, effects scaling like m2

t /m
2
LQ in Z → µ+µ− are generated which are

most relevant in case where the left-handed couplings are much larger than the right
handed ones and vice versa.

• Correlations between τ → µγ, Z → τµ and τ → 3µ, as well as the analogues in µ → e
transitions. Here we observed that τ → µγ and Z → τµ can be directly correlated under
the assumption the LQs couple only to left-handed or to right-handed leptons (but not
to both of the same time). Furthermore, in this setup τ → µγ and µ→ eγ do not receive
chirally enhanced effects such that τ → 3µ and µ → 3e can give competitive bounds,
which is in particular the case for Φ1.

These interesting correlations can be tested at future precision experiments and high-energy
colliders.
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Excluded HL-LHC
projection

Belle II
projection

Figure 8.13: The correlations between τ → µγ and τ → 3µ for a LQ mass of 1.5 TeV where we
scanned λ33 and λ32 in the range [−1.5, 1.5]. The gray regions are currently excluded by experiment.
The dashed (solid) lines show the projected sensitivities for the HL-LHC (Belle II), see Tab. 8.3 for the
numerical values.
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Excluded MEG II
projection

Mu3e
projection

Figure 8.14: The analogue to the plots above for the µ → e transition. The dashed lines depict the
expected sensitivity from MEG II [470] and the solid line the one of Mu3e [471]. Note that the color
scaling shows the product of two couplings, as can be seen from the legend in the bottom-right.
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8.7 Appendix

8.7.1 Self-Energies

Focusing on the non-decoupling, momentum-independent parts of the self-energies, we have
generically

Σ`LR
fi =

−mqjNc

16π2 ΓL,a∗
qj`f

ΓR,a
qj`i
I0
( µ2

M2
a

,
m2

qj

M2
a

)
, (8.86a)

Σ`LL
fi = −Nc

32π2 ΓL,a∗
qj`f

ΓL,a
qj`i
I1
( µ2

M2
a

,
m2

qj

M2
a

)
, (8.86b)

with Σ`RR
fi and Σ`RL

fi obtained by interchanging chiralities and ΣνLL
fi by replacing ` with ν. We

set all quark masses within the loop equal to zero, except for the top mass. Additionally, one
has to sum over all internal quarks uj , dj , u

c
j and dc

j , as well as over their flavors j = {1, 2, 3}.
The loop functions take the simple form

I0(x, y) = 1
ε

+ 1 + log(x) + y log(y) , (8.87a)

I1(x, y) = 1
ε

+ 1
2 + log(x)− y , (8.87b)

where the last terms in I0 and I1 are only relevant for the top quark and can be neglected in
all other cases.

Now we expand the expressions in Eq. (8.86) in terms of v/mLQ up to O(v2/m2
LQ)

ΣLL
`,fi ≈

−Nc

32π2
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ΣRR
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with Σ`LR
fi = Σ`RL∗

if and

I4(x) = 1− x+ x log(x)
x(x− 1)2 (8.89a)

I5(x, y) = log(x)
(x− 1)(x− y) + log(y)

(y − 1)(y − x) (8.89b)

I6(x) = x− 1− log(x)
(x− 1)2 . (8.89c)

For neutrinos we have
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8.7.2 Loop Functions

The loop-functions for ``γ with on-shell photons read

E1(x) = 7 + 4 log(x) (8.91a)
E2(x) = 11 + 4 log(x) (8.91b)
E3(x) = 1 + 4 log(x) (8.91c)
E4(x) = 5 + 4 log(x) (8.91d)

E5(x, y) = 4
y

log(x) + 7y − 11
y(y − 1) + 4 2y − 1

y(y − 1)2 log(y) (8.91e)

E6(x, y) = E1(x) + 4log(y)
y − 1 (8.91f)

E7(x, y, z) = −1
z
E1(x) + 4

y − z

( log(y)
y − 1 −

x

z

log(z)
(z − 1)

)
(8.91g)

E8(x, y) = 5
y

+ 2 log(x)
y

+ 2 log(y)
y(y − 1) (8.91h)

E9(x, y) = −2
y

+ 4 log(x)
y

+ 4 log(y)
y − 1 , (8.91i)

see Eqs. (8.39) and (8.40).

For off-shell photons, the results are given in Eqs. (8.42) and (8.43), we have

F1(x) = 5 + log(x) (8.92a)
F2(x) = 9 + 4 log(x) (8.92b)

F3(x, y) = 4
y

log(x) + 5y − 9
y(y − 1) + 4(2y − 1) log(y)

y(y − 1)2 (8.92c)

F4(x) = 2 + log(x) (8.92d)
F5(x) = 7 + 4 log(x) (8.92e)
F6(x) = 11 + 4 log(x) (8.92f)
F7(x) = 1 + log(x) (8.92g)
F8(x) = 3 + log(x) (8.92h)

F9(x, y) = 2
y

log(x) + 2(2y − 1)
y(y − 1) −

2 log(y)
y(y − 1)2 (8.92i)

F10(x, y) = 4
y

log(x) + 5y − 5 + 4 log(y)
y(y − 1) , (8.92j)

F11(y, z) = − 4
yz

log(x)− 5
yz

+ 4 log(y)
y(y − 1)(y − z) −

4 log(z)
z(z − 1)(y − z) . (8.92k)
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The H-functions are defined for the Z and W decays in Sections 8.4.2 and 8.4.3

H0(x) = x
(
1 + log(x)

)
(8.93a)

H1(x) = log(x)
x− 1 (8.93b)

H2(x) =
3
(
x2 − 1− 2x log(x)

)
(x− 1)3 (8.93c)

H3(x) = 2− 2x+ (1 + x) log(x)
(x− 1)3 (8.93d)

H4(x, y) = 1
(x− 1)(y − 1) + x log(x)

(x− 1)2(x− y) + y log(y)
(y − 1)2(y − x) (8.93e)

H5(x) = 2− 2x+ (x+ 1) log(x)
(x− 1)2 , (8.93f)

H6(x, y) = 2− x− y
(x− 1)(y − 1)(x− y) + (2x2 − x− y) log(x)

(x− 1)2(x− y)2 − (2y2 − x− y) log(y)
(y − 1)2(x− y)2 . (8.93g)

Finally, we have the loop functions used for Higgs decays in Section 8.4.4

Jt(x, y) = 2(x− 4) log(y)− 8 + 13
3 x−

x2y

5 (8.94a)

J1(x) = x− 1− x log(x)
x(x− 1)2 (8.94b)

J2(x, y) = log(x)
(x− 1)(x− y) −

y

x

log(y)
(y − 1)(x− y) (8.94c)

J3(x) = x− 1− x log(x)
(x− 1)2 . (8.94d)

8.7.3 Exact Result for ``γ

If we expand the amplitudes obtained from the diagrams in Fig. 8.3 up to first non-vanishing
order in the external masses and momenta, we obtain [286,361]

CL
`f `i = −Nc

4
∑

q

[m`fΓL,a∗
qj`f

ΓL,a
qj`i

+m`iΓ
R,a∗
qj`f

ΓR,a
qj`i

6M2
a

(
1 + 3Qq

)

+
mqjΓ

R,a∗
qj`f

ΓL,a
qj`i

M2
a

(
1− 2Qq − 2Qq log

( µ2
`

M2
a

))]
,

(8.95)

where q can be, depending on the LQ representations, either a (charge-conjugated) up- or down-
type quark and Qq refers to its electric charge, i.e. Qq = {±1/3,±2/3}. The quark flavour index
j runs from 1 to 3.

Note that we naively integrated out the internal LQs and quarks at the same scale. There-
fore, in the case of light internal quarks, i.e. all except the top quark, the contribution contains
both the hard matching part, the mixing within the effective theory and the soft contribution.
For this reason, care is required if the internal quarks are lighter than the incoming lepton (e.g.
the charm contribution to τ → µγ) since the RGE only contributes from the LQ scale down to
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the scale of the process and not to the scale of the internal quark. Therefore, we defined µ` in
Eq. (8.95) as follows

µ` =
{
mqj mqj > m`i

m`i mqj ≤ m`i

. (8.96)

Next we give the exact results for off-shell photons, whereof the expanded expressions are given
in Eqs. (8.42) and (8.43). They read

Ξ̂L
fi =

∑
q

NcΓL,a∗
qj`f

ΓL,a
qj`i

576π2M2
a

FQq

(m2
qj

M2
a

)
, (8.97a)

Ξ̂R
fi =

∑
q

NcΓR,a∗
qj`f

ΓR,a
qj`i

576π2M2
a

FQq

(m2
qj

M2
a

)
, (8.97b)

with Ξ̂L(R)
fi defined in (8.41) and

FQq(y) = 2 + 18Qq + 12Qq log(y) . (8.98)

Again, j runs from 1 to 3.

8.7.4 Exact Results for Z``, Zνν, W `ν and h``

In this section we give the exact expressions for the Z and W decays. The T̃Q and B̃Wi matrices,
used in this section, are given in Appendix 8.7.5. In this whole section, the Mi stand for the
diagonal bilinear mass terms in the charge eigenstates, given in Eq. (8.14). It is implied by the
corresponding coupling matrix Γi with same index i which of the eigenstates is concerned, e.g.
Γuc` corresponds to M−1/3. For the Z decays, we use the conventions defined in Eq. (8.44), this
time with

ΛL(R)
`f `i

(
q2) = ΛL(R)

SM (q2)δfi +
∑
Q

∆Q
L(R),fi

(
q2)+ ∆̃Q

L(R),fi , (8.99a)

Θνfνi

(
q2) = ΘSM(q2)δfi +

∑
Q

ΘQ
fi

(
q2)+ Θ̃Q

fi , (8.99b)

where contrary to Eq. (8.45) we show the results sorted by the charges of the LQs, since we do
not distinguish between the cases with and without LQ mixing. Hence, the results cannot be
grouped by representation. For Q = −1/3 we have for the mt-enhanced contributions

∆−1/3
L,fi

(
q2) =

−NcΓL,a∗
tc`f

ΓL,b
tc`i

32π2

[
m2

t

M2
a

[
δab

(
1 + log

(m2
t

M2
a

))
+ T̃

−1/3
ab H1

(M2
b

M2
a

)]
− q2

18M2
a

[
2T̃−1/3

ab H2
(M2

b

M2
a

)
+ δab

(
11− 10s2

w + 2(3− 4s2
w) log

(m2
t

M2
a

))]]
, (8.100a)

∆−1/3
R,fi

(
q2) =

NcΓR,a∗
tc`f

ΓR,b
tc`i

32π2

[
m2

t

M2
a

[
δab

(
1 + log

(m2
t

M2
a

))
− T̃−1/3

ab H1
(M2

b

M2
a

)]
+ q2

18M2
a

[
2T̃−1/3

ab H2
(M2

b

M2
a

)
− δab

(
3 + 10s2

w + 8s2
w log

(m2
t

M2
a

))]]
, (8.100b)
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and the case with light up-type quarks yields

∆−1/3
L,fi

(
q2) =

2∑
j=1

NcΓL,a∗
ucj`f

ΓL,b
ucj`i

864π2
q2

M2
a

[
3T̃−1/3

ab H2
(M2

b

M2
a

)
− δab

(
3− 3iπ(4s2

w − 3)− 5s2
w + 3(4s2

w − 3) log
( q2

M2
a

))]
, (8.100c)

∆−1/3
R,fi

(
q2) =

2∑
j=1

NcΓR,a∗
ucj`f

ΓR,b
ucj`i

864π2
q2

M2
a

[
3T̃−1/3

ab H2
(M2

b

M2
a

)
+ δab

(
5s2

w + 12iπs2
w − 12s2

w log
( q2

M2
a

))]
. (8.100d)

The terms, induced by LQ mixing, read

∆̃−1/3
L,fi =

3∑
j=1

NcΓL,a∗
ucj`f

ΓL,b
ucj`i

64π2 T̃
−1/3
ab

(
3 + 2 log

( µ2

M2
a

)
− 2H1

(M2
a

M2
b

))
, (8.101a)

∆̃−1/3
R,fi =

3∑
j=1

NcΓR,a∗
ucj`f

ΓR,b
ucj`i

64π2 T̃
−1/3
ab

(
3 + 2 log

( µ2

M2
a

)
− 2H1

(M2
a

M2
b

))
. (8.101b)

For Q = 2/3 we have (massless) down-type quark effects

∆2/3
L,fi

(
q2) =

3∑
j=1

−NcΓL,b∗
dj`f

ΓL,a
dj`i

864π2
q2

M2
a

[
3T̃ 2/3

ab H2
(M2

b

M2
a

)
− δab

(
4s2

w + 6iπs2
w − 6s2

w log
( q2

M2
a

))]
, (8.102a)

∆2/3
R,fi

(
q2) =

3∑
j=1

−NcΓR,b∗
dj`f

ΓR,a
dj`i

864π2
q2

M2
a

[
3T̃ 2/3

ab H2
(M2

b

M2
a

)
+ δab

(
3− 3iπ(2s2

w − 3)− 4s2
w + 3(2s2

w − 3) log
( q2

M2
a

))]
, (8.102b)

again with a, b = {1, 2, 3} and the mixing terms read

∆̃2/3
L,fi =

3∑
j=1

−NcΓL,b∗
dj`f

ΓL,a
dj`i

128π2

(
2(2T̃ 2/3

ab − δab) log
( µ2

M2
a

)
+ 6T̃ 2/3

ab − δab− 4T̃ 2/3
ab H1

(M2
a

M2
b

))
,

(8.103a)

∆̃2/3
R,fi =

3∑
j=1

−NcΓR,b∗
dj`f

ΓR,a
dj`i

128π2

(
2(2T̃ 2/3

ab + δab) log
( µ2

M2
a

)
+ 6T̃ 2/3

ab + δab− 4T̃ 2/3
ab H1

(M2
a

M2
b

))
.

(8.103b)

157



Scalar Leptoquarks in Leptonic Processes

For the LQs with electric charge Q = −4/3 we have

∆−4/3
L,fi

(
q2) =

3∑
j=1

NcΓL,a∗
dcj`f

ΓL,b
dcj`i

864π2
q2

M2
a

[
3T̃−4/3

ab H2
(M2

b

Ma

)
+ δab

(
3− 3iπ(2s2

w − 3) + 2s2
w + 3(2s2

w − 3) log
( q2

M2
a

))]
, (8.104a)

∆−4/3
R,fi

(
q2) =

3∑
j=1

NcΓR,a∗
dcj`f

ΓR,b
dcj`i

864π2
q2

M2
a

[
3T̃−4/3

ab H2
(M2

b

Ma

)
+ δab

(
2s2

w − 6iπs2
w + 6s2

w log
( q2

M2
a

))]
, (8.104b)

with a, b = {1, 2} and

∆̃−4/3
L,fi =

3∑
j=1

NcΓL,a∗
dcj`f

ΓL,b
dcj`i

64π2

(
2(T̃−4/3

ab + δab) log
( µ2

M2
a

)
+ 3T̃−4/3

ab + δab − 2T̃−4/3
ab H1

(M2
a

M2
b

))
, (8.105a)

∆̃−4/3
R,fi =

3∑
j=1

NcΓR,a∗
dcj`f

ΓR,b
dcj`i

64π2 T̃
−4/3
ab

(
2 log

( µ2

M2
a

)
+ 3− 2H1

(M2
a

M2
b

))
, (8.105b)

and for Q = 5/3

∆5/3
L,fi

(
q2) =

−NcΓL∗
t`f

ΓL
t`i

32π2

[
H0
(m2

t

M2

)
− q2

9M2

(
1 + 7s2

w + 4s2
w log

(m2
t

M2

))]
, (8.106a)

∆5/3
L,fi

(
q2) =

2∑
j=1

−NcΓL∗
uj`f

ΓL
uj`i

1728π2
q2

M2

[
3− 2s2

w + 24iπs2
w − 24s2

w log
( q2

M2

)]
, (8.106b)

∆5/3
R,fi

(
q2) =

NcΓR∗
t`f

ΓR
t`i

32π2

[
H0
(m2

t

M2

)
− q2

9M2

(
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w + (3− 4s2
w) log

(m2
t

M2

))]
, (8.106c)

∆5/3
R,fi

(
q2) =
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j=1

NcΓR∗
uj`f

ΓR
uj`i

1728π2
q2

M2

[
3 + 2s2

w − 6iπ(4s2
w − 3) + 6(4s2

w − 3) log
( q2

M2

)]
, (8.106d)

with M2 = m2
2 + v2(Y22 + Y2).

For Z → νiν̄f with left-handed neutrinos only, we have for Q = −1/3 with (charge-
conjugated) down-type quarks

Θ−1/3
fi (q2) =

3∑
j=1

NcΓL,a∗
dcjνf

ΓL,b
dcjνi

864π2
q2

M2
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−
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864π2
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w log
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))]
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(8.107)
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The LQ indices run like a, b = {1, 2, 3}. Analogously to Z → `−f `
+
i we have the Θ̃ terms,

originating from the LQ mixing

Θ̃−1/3
fi =

3∑
j=1

NcΓL,b∗
dcjνf

ΓL,a
dcjνi

64π2 T̃
−1/3
ab

(
3 + 2 log

( µ2

M2
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)
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(M2
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M2
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))

−
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djνf

ΓL,b
djνi
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(
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ab + δab) log
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M2
a

)
(8.108)

+ 6T̃−1/3
ab + δab − 4T̃−1/3

ab H1
(M2

a

M2
b

))
.

In case of Q = 2/3, we have the diagrams which include a heavy top quark

Θ2/3
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−
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(8.109)

and light up-type quarks

Θ2/3
fi (q2) =

2∑
j=1
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864π2
q2

M2
a

[
3T̃ 2/3

ab H2
(M2

b

M2
a

)
+ δab

(
2s2

w + 12iπs2
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+
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(8.110)

The LQ indices take the values a, b = {1, 2, 3}. We finally have

Θ̃2/3
fi =
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(8.111)

For W → `−f ν̄i decays, our definition of the amplitude is given in Eq. (8.52) and contrary to
Eq. (8.53), we use

ΛW
`fνi

(
q2) = ΛW

SM(q2)δfi + Λq
fi

(
q2)+ Λ̃q

fi + Λqc

fi

(
q2)+ Λ̃qc

fi , (8.112)
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where we choose to group the results by the fact whether a quark (q) or a charge-conjugated
quark (qc) runs in the loop. Because of obvious reasons, a grouping by representation is again
not possible. We have

Λqc

fi

(
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64π2
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3kΓL,a∗
tc`f

ΓL,a
dc
k

νi
log
(m2

t

M2
a

)
− 2B̃W2

ab ΓL,a∗
tc`f
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(8.113)

and its massless case

Λqc
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(8.114)

The LQ indices a and b run from 1 to 3, while c = {1, 2}. In case of quarks in the loop we have
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(8.115)

Here, the index b runs from 1 to 3. The Λ̃’s read

Λ̃qc
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,
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))]
,

again with a, b = {1, 2, 3} and c = {1, 2}.
Next, we give the results for the Higgs decay into a pair of charged leptons, where our ampli-

tude is defined in Eq. (8.58). Again, we sort the results by the charge eigenstate contributions

ΥL(R)
`f `i

(q2) = δfi +
∑
Q

ΥQ
L(R),fi(q

2) + Υ̃Q
L(R),fi . (8.117)
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In case of a heavy top quark in the loop, the results read
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, (8.118a)
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with M2 = m2
2 + v2(Y22 + Y2).

In all the scenarios where q2 ≡ m2
h � m2

qj � m2
fi the Higgs mass gives the dominant

contribution
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∑
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with
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J 5/3(q2) = q2
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2 log
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)
− 8 Y2√

2
v2 . (8.120b)

In Eq. (8.119a) the range of j depends on whether we have up- (j = {1, 2}) or down-type
(j = {1, 2, 3}) quarks in the loop, since we treat the top separately. Finally, we consider as a
last scenario mfi � mqj ∼ 0 and we have

ΥQ
L,fi = vNcΓ̃Q

ab

32π2

(
m`f

mfi

ΓL,a∗
qj`f

ΓL,b
qj`i

M2
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a
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+ m`i

mfi

ΓR,a∗
qj`f

ΓR,b
qj`i
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J3
(M2
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b
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, (8.121a)

Υ5/3
L,fi = −

√
2v2NcY2

64π2M2

(
m`f

mfi
λ2RL∗

jf λ2RL
ji + m`i

mfi
λ2LR∗

jf λ2LR
ji

)
. (8.121b)

8.7.5 Higgs, Z and W Boson Coupling Matrices

The Higgs-LQ interaction matrices Γ̃, used in Eqs. (8.120a) and (8.118a), and Λ̃ expanded up
to O(v2/m2

LQ) read

Γ̃−1/3 ≈ 1√
2


2v
(
Y1 + |A2̃1|2

m2
1−m̃2

2

)
A∗

2̃1 v
(
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2)(m̃2

2−m2
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)
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22 A2̃3
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2)(m̃2
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2̃3 2v
(
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2
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 ,

with Γ̃−1/3
22 = 2v

(
Y2̃ −

|A2̃1|2

m2
1 − m̃2

2
− |A2̃3|2

m2
3 − m̃2

2

)
, (8.122a)

Γ̃2/3 ≈ 1√
2


2vY2 2vY2̃2 0
2vY ∗

2̃2 2v
(
Y2̃ + Y2̃2̃ −

2|A2̃3|2
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(
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2

)
 , (8.122b)

Γ̃−4/3 ≈ Γ−4/3 , (8.122c)
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and

Λ̃−1/3 ≈ 1
2
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(8.123a)

Λ̃2/3 ≈ 1
2
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Λ̃−4/3 ≈ Λ−4/3 . (8.123c)

Next, we will give the expressions for the weak isospin matrices TQ, expanded in terms of
v. They read in case of no LQ mixing

T−1/3 =

0 0 0
0 −1

2 0
0 0 0

 , T 2/3 =

−1
2 0 0

0 1
2 0

0 0 1

 , T−4/3 =
(

0 0
0 −1

)
, T 5/3 = 1

2 , (8.124)

using the basis defined in Eq. (8.10). A unitary redefinition of the LQ fields in order to
diagonalize the mass matrices in Eq. (8.9) also affects the TQ matrices

T̃Q = WQTQWQ† . (8.125)

Note that the LQ field redefinition has no impact the electromagnetic interaction, since the
coupling matrix is proportional to the unit matrix and the WQ then cancel due to unitarity. If
we use the perturbative diagonalization ansatz, we obtain

T̃−1/3≈
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 , (8.126a)
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T̃−4/3≈
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3−m̃2
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2v2Y31̃

m2
3−m̃2

1
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 , (8.126c)

valid up to O(v2/m2
LQ). T 5/3 is not affected, since the LQ with charge Q = 5/3 does not mix.

Analogously to the isospin coupling ot the Z boson, different LQ generations mix under W
interactions. Without LQ mixing, the interactions with the W boson can be written in terms
of the following matrices

BW1 =
(

0 0 0
0 0

√
2

)
, BW2 =

0 0 0
0 1 0
0 0 −

√
2

 , BW3 =
(
1 0 0

)
, (8.127)
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arranging the LQ in their charge eigenstates according to Eq. (8.10). BW1 describes the
interaction of LQs with electric charges Q = −4/3 and Q = −1/3, BW2 the ones with Q = −1/3
and Q = 2/3, BW3 with Q = 5/3 and Q = 2/3. If we include LQ mixing, the matrices expanded
up to O(v2/m2

LQ), then read

B̃W1≈

 0 0 2v2Y ∗
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B̃W3≈
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0
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. (8.128c)
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8.7.6 4`

Besides the penguin diagrams, mediated by the off-shell photon and Z boson, we also have the
box diagrams. The matching results on `−i → `−f `

−
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+
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where CV RR
fipr , CV RL

fipr and CS RR
fipr are obtained by simply exchanging ΓL ↔ ΓR.

8.7.7 2`2ν

Here we show the box contributions, induced by the Q = −1/3 and Q = 2/3 LQs. We obtain
for `−i → `−f νpν̄r
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Chapter 9

Towards Full mc Dependence of the
O2 Contribution at O(α2

s) in b → sγ

Rare inclusiveB decays like B̄ → Xsγ offer the unique possibility to access potential NP at scales
much higher than currently within direct experimental reach. This is due to the fact that such
processes only occur via loops in the SM. If BSM particles contribute at the same order, assuming
a NP scale that is not orders of magnitude above the EW scale, the contributions stemming from
NP relative to the SM can be expected to be large (see also Sec. 1.4). In order to constrain such
NP models, precise SM predictions of the branching ratios of such processes are needed. This is
especially true in the light of the recent flavor anomalies, which we have explored in much detail
throughout this thesis. Already at the current level of precision, NP in b→ sγ contained in the
Wilson coefficient C7 is highly constrained to the region −0.01 < CNP

7 (mb) < 0.05 [98]. In this
chapter we compute a subset of three-loop diagrams induced by the operator O2 contributing
to b→ sγ at O(α2

s) while retaining the full dependence on the charm mass mc. Such diagrams
have so far only beeen calculated in the limits of mc = 0 [473] and mc � mb/2 [474]. These
results were used in Ref. [473] to estimate the contribution at the physical charm mass via
interpolation in mc. The error associated with the interpolation is the largest contribution to
the theory prediction uncertainty after nonperturbative effects.

First, we give an overview of the current status of the theoretical calculations. We then
describe some technical details about our calculation procedure and, as a preparatory step,
present results for the two-loop diagrams shown in Fig. 9.1, which can be compared to the
literature [475]. In this step, we give the amplitudes up to O(ε), where ε is the dimensional
regulator, which is needed to obtain O(α2

s) contributions stemming from counterterm insertions.
Finally, we will present our results for the mentioned subset of diagrams.

9.1 Current Status

The CP- and isospin-averaged measurements of Br[B̄ → Xsγ] by CLEO [476], Belle [477, 478]
and BaBar [479–482] lead to the combined result of [483]

Br[B̄ → Xsγ] = (3.43± 0.21± 0.07)× 10−4 (9.1)
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M1 M2

M3a M3b

M4a M4b

Figure 9.1: The six diagrams M1, M2, M3a, M3b, M4a and M4b associated with the operator O2 at
O(αs).

for a photon energy of Eγ > E0 = 1.6 GeV in the decaying meson rest frame. In the SM,
radiative B meson decays can be described by the effective Hamiltonian

Heff = −4GF√
2
VtbV

∗
ts

8∑
i=1

Ci(µ)Oi ,

O1 = (s̄γµ PL T
a c) (c̄ γµ PL T

a b) , O2 = (s̄γµ PL c) (c̄ γµ PL b) ,

O3 = (s̄γµ PL b)
∑

q

(q̄ γµq) , O4 = (s̄γµ PL T
a b)

∑
q

(q̄γµ T a q) ,

O5 = (s̄γµγνγρ PL b)
∑

q

(q̄ γµγνγρq) , O6 = (s̄γµγνγρ PL T
a b)

∑
q

(q̄ γµγνγρT a q) ,

O7 = e

16π2 [s̄ σµν (m̄b(µ)PR + m̄s(µ)PL) b] Fµν , (9.2)

O8 = gs

16π2 [s̄ σµν (m̄b(µ)PR + m̄s(µ)PL)T a b] Ga
µν ,

which completes the basis given in Eq. (1.54). The sums in the operators O3-O6 run over all
active flavors q = {u, d, s, c, b}. The branching ratio for B̄ → Xsγ can be written as

Br[B̄ → Xsγ] = Br[b→ Xsγ] + δBr[B̄ → Xsγ] , (9.3)

where Br[b → Xsγ] represents the contribution calculable in perturbation theory and
δBr[B̄ → Xsγ] are nonperturbative contributions. The perturbative part can further be written
as

Br[b→ Xsγ]Eγ>E0 ∼
∑
i,j

Ci(µ)Cj(µ)Gij(E0, µ) , (9.4)
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where E0 is the energy cut in the photon spectrum and Gij represent the interference contri-
butions associated with the operators Oi and Oj . Several groups have performed involved and
laborious calculations, leading to the current SM prediction of [484]

Br[B̄ → Xsγ]SM = (3.36± 0.23)× 10−4 (9.5)

for E0 = 1.6 GeV. The individual contributions to the cited uncertainty are of nonperturbative
(±5%), higher-order (±3%), interpolation (±3%) and parametric (±2%) origin. The interpo-
lation uncertainties stem from the G27 contribution at O(α2

s) as mentioned in this chapter’s
introduction. Even though the reduction of nonperturbative uncertainties seems unlikely [485],
the goal of the community is to reduce the remaining uncertainties to a minimum, which is neces-
sary to compete with the planned measurements at Belle II [486]. The completion of the NNLL
calculation is also needed with regards to the strong dependence on the renormalization scheme
of the charm mass at NLL, which is induced due to the fact that the current-current operator O2
only contributes to the process at O(αs). To date, the NNLO calculation is almost completed.
The matching of the Wilson coefficients has been completed at O(α2

s) in Refs. [487,488,488], and
the four-loop anomalous dimension matrix allowing for NNLL resummation has been worked
out in Ref. [489]. The contributions to G77 were computed in Refs. [490–493]. Effects of charm
and bottom quark masses in loops on gluon lines were obtained for G77 [494], G78 [495] and
G(1,2)7 [496] and a complete calculation of G78 is also available [497]. For details on the (N)LO
calculations see e.g. Refs. [484,493,498,499]. The challenging calculation of G(1,2)7 with full mc

dependence remains an open task which we will partly address in the following.

9.2 Details about the Calculation
In this section we present the calculation, which we performed fully analytic and hence exact
in mc, of the matrix element associated with the operator O2 for b→ sγ at O(αs) and partially
at O(α2

s). In the former case we can directly compare our results to the ones obtained as an
expansion in mc/mb in Ref. [475]. We denote the contributions by

MNLO = M1 +M2 +M3a +M3b +M4a +M4b , (9.6)

MNNLO =
10∑
i

Di , (9.7)

where MNLO is the two-loop result and MNNLO is the result of the subset of diagrams at O(α2
s)

considered in this work. The diagrams are labeled according to Fig. 9.1 (two-loop) and Fig. 9.2
(three-loop). The consideration of diagrams where the photon is radiated from an external
quark line is not necessary. Since only O7 contributes to b→ sγ at tree-level, the contribution
of O2 is necessarily proportional to it at any order

〈sγ|O2|b〉 ∼ 〈sγ|O7|b〉tree = mb
e2

8π2 ū(ps)/ε /q u(pb) ∼ ū(ps) (/εPLmb − 2(p · ε)PR)u(pb) , (9.8)

where pb(s) is the b (s) quark momentum and q the photon momentum. Since diagrams with
external photons will be proportional to the Dirac structure /εPL, it is sufficient to compute the
contributions proportional to (p · ε)PR in every diagram to retain the full contribution.

Let us now describe the procedure of the calculation. First, we simplified the Dirac algebra
with the algebraic program REDUCE. We then used the Kira program [500] to reduce the scalar
integrals contained in the amplitudes to a set of master integrals (MIs), which allowed us to
formulate a set of differential equations governing the mc dependence of the MIs. In a next
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D1 D2

D3 D4

D5 D6

D7 D8

D9 D10

Figure 9.2: The ten diagrams D1-D10 associated with the operator O2 at O(α2
s) considered in this

work.

step, we used the CANONICA package [501] to perform the basis change to a canonical form
(see Sec. 1.3.3). This required the application of a variable change in the differential equations.
In the case of the diagrams where the gluon(s) is (are) exchanged between the s and c quark,
the substitution reads

x = 1√
1− 4z

, (9.9)
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where z = m2
c/m

2
b . For a gluon exchange between the b and c quark, we used

u = t− 2i
2− 2i , t = 2

√
1− 4z

1 + 2
√
z
. (9.10)

Both variables have the same distinct behavior for extreme values of z

lim
z→∞

x = lim
z→∞

u = 0 , lim
z→0

x = lim
z→0

u = 1 . (9.11)

Having the canonical basis at hand, the main task was to fix the integration constants arising
when iteratively constructing the solution in terms of the Goncharov polylogarithms (GPLs),
see Eq. (1.63). Some constants could be fixed right away by calculating the simplest of the
MIs by hand. We fixed the remaining constants using information about the solution in the
asymptotic limit z →∞. This finally allowed us to obtain a fully analytic result for the matrix
elements expressed in terms of GPLs and some irrational constants. A numerical result for the
matrix elements was then easily obtained with the help of the Ginac library [502] which allows
to evaluate the GPLs to arbitrary precision. Finally, to obtain an approximate expression for
the matrix elements in terms of powers and logarithms of z, we also deployed an expansion of
the GPLs around x = 1 and u = 1, corresponding to an expansion around z = 0, as described
in Sec. 1.3.3.

While the steps for the two- and three-loop calculations were in principle the same, the
computational challenges increased drastically. In the two-loop case, our problem contained
four MIs (eight in the case where the gluon is exchanged between the b and c quark), which in
the canonical basis had to be calculated over four powers of ε in order to obtain a result up to
O(ε). In the three-loop case, we encountered up to 44 MIs, which on the other hand had to be
calculated over ten ε powers in the canonical basis to obtain a result at O(ε0). We expect the
diagrams involving gluons on the b line to be even more involved.

9.3 Results for the Matrix Elements

In this section we present the results of our calculations. The approximate results, obtained
after expanding the GPLs as described above, contain irrational constants and constant GPLs.
To shorten the notation, we evaluated those constants numerically again using the Ginac library.
Our results can be expressed in a compact form

M(D)a =
∑

m,n=0
amnz

mLn , (9.12)

with numerical coefficients amn and L = log(z). Note that we took into account all occurring
powers of L to any given order of z.

Two-Loop Results

For convenience, we directly calculated the sums of the diagrams 3a + 3b and 4a + 4b. Our
results read

M1 =
{

1
36ε + 37

216 + iπ

18 + z

[
−L−

(5
2 + iπ

)]
(9.13)

+ z2
[
−L2 + (1− 6.28319i)L+ (7.36960 + iπ)

]
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+ z3
[2

3L
2 − (1.11111− 4.18879i)L− (7.20937 + 3.49066i)

]

+ ε

(
0.110471 + 1.076286i+ z

[
L2 + (4.2645− 15.7080i)

]
+ z2

[
L3 −

(5
2 − iπ

)
L2 + (16.6595− 9.4248i)L+ (0.7522 + 36.6293i)

]
+ z3

[
− 2

3L
3 +

(2
3 − 2.09440i

)
L2 − (9.88409 + 2.79253i)L

+ (16.4092− 35.0079i)
])}

× αs

π
CFQd〈sγ|O7|b〉tree ×

(
mb

µ

)−4ε

,

M2 =
{
−5
36ε + 13

216 + 1.144934z − 6.57974z3/2 + z2
[1

2
(
L2 − 6L+ 6

)]
(9.14)

+ z3
[4

3

(
L2 + L

24 + 3.02206
)]

+ ε

(
− 0.726892 + 7.69509z + z3/2 [13.1595L+ 7.97361]

+ z2
[
−1

2L
3 + 9

4L
2 − 19

4 L− 33.1417
]

+ z5/2
[
−23

9 (L− 12.8589)
]

+ z3
[
−4

3

(
L3 − 3L2

8 − 61
8 L+ 5.70675

)])}

× αs

π
CFQd〈sγ|O7|b〉tree ×

(
mb

µ

)−4ε

,

M3 =
{
− 1

8ε −
15
16 − 0.785398i+ z

[
L3

6 +
(1

4 + 1.57080i
)
L2 (9.15)

− (2.93480− 1.57080i)L− (3.37151− 1.11547i)
]

+ z2
[
L3

6 −
(1

2 − 1.57080i
)
L2 − (4.43480 + iπ)L+ (3.78069− 3.59692i)

]

+ z3
[
L− 17

12 − iπ
]

+ ε

(
− 1.98323− 5.89049i

+ z
[ (1

4 − 1.57080i
)
L3 + (1.14493 + 3.92699i)L2

− (6.89222 + 0.91065i)L− (11.89070− 3.67302i)
]

+ z2
[ (5

6 − 1.57080i
)
L3 + (0.39493 + 4.71239i)L2

− (4.8378 + 15.0478i)L+ (29.7761− 1.7791i)
])}
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× αs

π
CFQu〈sγ|O7|b〉tree ×

(
mb

µ

)−4ε

,

M4 =
{
− 1

4ε −
7
8 + z

[
− 1

12L
3 − 1.96740L− 1.024524

]
(9.16)

+ z2
[
− 1

12L
3 + L2

4 −
L

2 + 4.54905
]

+ z3
[
−1

43L2 + L− 2.21740
]

+ ε

(
− 3.70743 + z

[
−1

4L
3 + 1.233701L2 − 10.54612L− 22.5418

]

+ 39.4784z3/2 + z2
[
−1

4L
3 + 5L2

8 + 2.06788L− 5.08920
]

− 21.9325z5/2 + z3
[

3L3

4 − 3L2

8 − 2.39583L+ 13.55839
])}

× αs

π
CFQu〈sγ|O7|b〉tree ×

(
mb

µ

)−4ε

,

where αs is the strong coupling constant, CF = 4/3 a color factor and Qd(u) the down (up)
quark electric charge. The matrix elements up to O(ε0) are in perfect agreement with the ones
obtained in Ref. [475].

Three-Loop Results

We present the three-loop results in the same manner as previously the two-loop results. Here,
the additional color factor CA arises. To shorten the notation, we introduced coefficient matrices
aimn and fimn which are listed in the Appendix 9.4. Note that in this case we expanded our
results up to z5 since the agreement to our exact result was not satisfactory at lower orders of
the expansion.

D1+2 =
{

2CA − 5CF

288ε3 (9.17)

+ 1
ε2

(
(0.0438683 + 0.0654498i)CA − (0.145959 + 0.163625i)CF

+
5∑

m=1

3∑
n=1

(
a−2

1mnCA + f−2
1mnCF

)
zmLn

)

+ 1
ε

(
(0.0540364− 1.37563i)CF − (0.203523− 0.413449i)CA

+
5∑

m=1

4∑
n=1

(
a−1

1mnCA + f−1
1mnCF

)
zmLn

)

+
(

(3.34448− 4.33545i)CF − (2.00146− 0.0197299i)CA
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+
5∑

m=1

5∑
n=1

(
a0

1mnCA + f0
1mnCF

)
zmLn

)}

× α2
s

π2CFQu〈sγ|O7|b〉tree ×
(
mb

µ

)−6ε

,

D3+4 =
{

1
ε2

(
0.00509514CA − 0.0412139CF (9.18)

+
5∑

m=1

3∑
n=1

(
a−2

3mnCA + f−2
3mnCF

)
zmLn

)

+ 1
ε

(
(0.0970453 + 0.0480206i)CA − (0.418501 + 0.388432i)CF

+
5∑

m=1

4∑
n=1

(
a−1

3mnCA + f−1
3mnCF

)
zmLn

)

+
(

(0.799133 + 0.914631i)CA − (1.16206 + 3.94428i)CF

+
5∑

m=1

5∑
n=1

(
a0

3mnCA + f0
3mnCF

)
zmLn

)}

× α2
s

π2CFQu〈sγ|O7|b〉tree ×
(
mb

µ

)−6ε

,

D5+6 =
{

5CF − 2CA

288ε3 (9.19)

+ 1
ε2

(
(0.249673 + 0.163625i)CF − (0.101047 + 0.0654498i)CA

+
5∑

m=1

3∑
n=1

(
a−2

5mnCA + f−2
5mnCF

)
zmLn

)

+ 1
ε

(
(1.04676 + 2.35311i)CF − (0.353214 + 0.952343i)CA

+
5∑

m=1

4∑
n=1

(
a−1

5mnCA + f−1
5mnCF

)
zmLn

)

+
(

(1.68832− 5.26685i)CF − (1.2017− 14.7102i)CA

+
5∑

m=1

5∑
n=1

(
a0

5mnCA + f0
5mnCF

)
zmLn

)}

× α2
s

π2CFQu〈sγ|O7|b〉tree ×
(
mb

µ

)−6ε

,

D7+8 =
{
− CA

1728ε3 (9.20)

172



Appendix

+ 1
ε2

(
(−0.0078125− 0.00545415i)CA

)

+ 1
ε

(
0.0241312CF − (0.032069 + 0.0736311i)CA

+
5∑

m=1

4∑
n=1

a−1
7mnCAz

mLn

)

+
(

(0.153411 + 0.227431i)CF + (0.0504689− 0.463735i)CA

+
5∑

m=1

5∑
n=1

(
a0

7mnCA + f0
7mnCF

)
zmLn

)}

× α2
s

π2CFQd〈sγ|O7|b〉tree ×
(
mb

µ

)−6ε

,

D9+10 =
{
− 17CA

1728ε3 (9.21)

+ 1
ε2

(
0.00694444CF − (0.0752315 + 0.0927206i)CA

)

+ 1
ε

(
(0.0706534− 0.70904i)CA + (0.0267947 + 0.0654498i)CF

+
5∑

m=1

4∑
n=1

(
a−1

9mnCA + f−1
9mnCF

)
zmLn

)

+
(

(2.07777− 2.07946i)CA − (0.310375− 0.252534i)CF

+
5∑

m=1

5∑
n=1

(
a0

9mnCA + f0
9mnCF

)
zmLn

)}

× α2
s

π2CFQd〈sγ|O7|b〉tree ×
(
mb

µ

)−6ε

.

9.4 Appendix

Here we list the coefficient matrices aimn and fimn encoded in our results explicitly. Note that
the coefficients are in principle available to arbitrary precision.

a−2
1mn =


−0.125 + 0.19635i 0.03125 0

−0.0831085− 0.883573i −0.140625 + 0.0981748i 0.0104167
−0.138889 + 0.1309i 0.0208333 0
−0.0651042 + 0.0981748i 0.015625 0
−0.0611111 + 0.1309i 0.0208333 0

 , (9.22)
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f−2
1mn =


0.125 − 0.785398i −0.125 0

0.894934 + 2.35619i 0.375 − 0.392699i −0.0416667
0.305556 − 0.523599i −0.0833333 0
0.0729167 − 0.392699i −0.0625 0
−0.00555556− 0.523599i −0.0833333 0

 , (9.23)

a−1
1mn =


−1.90308− 0.785398i 0.0625 −0.03125 0
0.138377 + 1.82692i 0.621042 + 2.79798i 0.4375 − 0.261799i −0.0286458
−6.74501− 16.4715i −2.41319 + 2.94524i 0.291667 0
−4.00269 + 2.81434i 0.545573 + 0.245437i 0.0104167 0
−3.35865 + 2.40637i 0.474653 + 0.327249i 0.0138889 0

 ,

(9.24)

f−1
1mn =


6.71795 + 4.77501i 1.39493 + 0.392699i 0.166667 − 0.261799i −0.0208333
−10.1678− 11.3271i −3.5564− 4.61421i −0.864583 + 0.916298i 0.104167
32.4592 + 53.7125i 8.09028 − 11.781i −1.16667 0
11.8572 − 14.1917i −2.36806− 0.490874i 0.0104167 0
7.8209 − 10.4982i −1.6625− 0.654498i 0.0138889 0

 ,

(9.25)

a0
1mn =


0.586291 − 5.60236i 1.65456 + 0.785398i 0.0208333 − 0.19635i 0.0078125 0
−9.00333 − 9.97666i −5.86453 + 12.1779i 0.739608 − 2.97536i −0.564897 + 0.302706i 0.0364583
88.2687 − 0.509204i −0.655595 − 3.56227i 2.03523 − 2.68344i −0.432292 0
−36.2101 − 53.9965i −3.51506 + 7.69036i 0.270399 − 0.343612i −0.0351563 0
−49.106 − 19.273i 0.736926 + 7.23003i 0.292477 − 0.458149i −0.046875 0

 ,

(9.26)

f0
1mn =


−2.92857 + 19.2604i −2.89921 − 1.48828i −1.55285 − 0.916298i −0.197917 + 0.392699i 0.0375
34.7211 + 1.01355i 16.7987 − 27.6265i 0.350983 + 5.25306i 1.06646 − 1.01447i −0.127083

−284.672 + 34.5018i −1.6631 + 10.0603i −7.02285 + 11.1265i 1.76042 0
148.011 + 172.287i 12.1019 − 26.1527i −0.406829 + 0.785398i 0.0546875 0
170.688 + 42.6231i −1.65786 − 23.6624i −0.848148 + 1.0472i 0.0729167 0

 ,

(9.27)

a−2
3mn =


0.125 + 0.19635i 0.03125 0

−0.458109− 0.0981748i −0.015625 + 0.0981748i 0.0104167
0.0277778 + 0.1309i 0.0208333 0

0.0598958 + 0.0981748i 0.015625 0
0.105556 + 0.1309i 0.0208333 0

 , (9.28)

f−2
3mn =


−0.5− 0.785398i −0.125 0

1.83243 + 0.392699i 0.0625 − 0.392699i −0.0416667
−0.111111− 0.523599i −0.0833333 0
−0.239583− 0.392699i −0.0625 0
−0.422222− 0.523599i −0.0833333 0

 , (9.29)

a−1
3mn =


−2.40518 + 0.557736i −0.509967 + 0.392699i 0.0104167 + 0.1309i 0.0104167
3.47161 − 3.38703i 0.250909 − 0.343612i −0.0208333− 0.229074i −0.0260417
−7.03021 + 1.63625i 0.21875 + 0.981748i 0.0833333 0
−0.0748058 + 2.86616i 0.366319 − 0.0490874i −0.0208333 0

0.47593 + 3.16777i 0.345833 − 0.0654498i −0.0277778 0

 ,

(9.30)
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f−1
3mn =


5.93899 − 4.25707i 0.894934 − 0.785398i 0.0416667 − 0.261799i −0.0208333
−12.6171 + 5.23881i −3.14857 + 1.37445i 0.0833333 + 1.1781i 0.125
28.0375 − 4.97419i −0.625− 3.92699i −0.333333 0
0.722834 − 10.592i −1.32639 + 0.19635i 0.0833333 0
−1.1308− 11.6021i −1.21319 + 0.261799i 0.111111 0

 ,

(9.31)

a0
3mn =


−2.62273 − 1.5548i 0.173252 − 0.253265i 0.483095 − 0.0654498i −0.0130208 − 0.19635i −0.01875
8.75567 − 0.999793i −1.65725 + 4.12201i 0.220719 − 0.346221i −0.0119264 + 0.261799i 0.0322917
−19.371 − 12.6559i 9.55915 + 2.68653i 0.134838 − 2.48709i −0.260417 − 0.0163625i −0.00104167
−17.9008 + 7.68761i −0.309202 − 2.65345i −0.647859 + 0.474511i 0.0533854 0
−14.2314 + 18.384i 1.04685 − 2.47155i −0.608073 + 0.305433i 0.0451389 0

 ,

(9.32)

f0
3mn =


12.0371 − 3.45954i −2.46812 + 2.07733i −0.674523 + 0.523599i 0.0104167 + 0.392699i 0.0375

−8.69495 + 9.45469i 8.79664 − 2.8529i 3.32564 + 0.365193i −0.0334389 − 1.58716i −0.176042
42.8319 + 48.9221i −32.5338 − 2.03444i 0.180674 + 8.08669i 0.893519 + 0.0545415i 0.00347222
67.871 − 24.3428i 0.594441 + 8.57121i 2.23582 − 1.5708i −0.1875 0
56.0738 − 59.3654i −3.77677 + 7.8142i 2.0423 − 1.00356i −0.163194 0

 ,

(9.33)

a−2
5mn =


−0.392699i −0.0625 0

0.541217 + 0.981748i 0.15625 − 0.19635i −0.0208333
0.111111 − 0.261799i −0.0416667 0
0.00520833 − 0.19635i −0.03125 0
−0.0444444− 0.261799i −0.0416667 0

 , (9.34)

f−2
5mn =


0.375 + 1.5708i 0.25 0

−2.72737− 2.74889i −0.4375 + 0.785398i 0.0833333
−0.194444 + 1.0472i 0.166667 0
0.166667 + 0.785398i 0.125 0
0.427778 + 1.0472i 0.166667 0

 , (9.35)

a−1
5mn =


1 +0.785398i 0.145833 0

−5.1927− 4.16534i −2.19442− 1.66897i −0.333333 + 0.621774i 0.0651042
14.2336 + 15.6207i 2.31944 − 3.92699i −0.375 0
4.56707 − 5.24417i −0.842448− 0.19635i 0.0104167 0
3.60946 − 5.03964i −0.735417− 0.261799i 0.0138889 0

 ,

(9.36)

f−1
5mn =


−10.4558− 1.69605i −2.47737− 0.785398i −0.333333 + 0.523599i 0.0416667

26.111 + 8.4445i 7.07997 + 2.06167i 0.65625 − 2.0944i −0.229167
−61.2467− 48.7383i −7.46528 + 15.708i 1.5 0
−12.9967 + 24.7837i 3.69444 + 0.294524i −0.09375 0
−7.20051 + 22.1002i 2.87569 + 0.392699i −0.125 0

 ,

(9.37)

a0
5mn =


−4.06365 + 0.287461i −3.71603 + 3.84447i 0.682067 − 0.261799i −0.130208 − 0.0654498i −0.00416667

25.1275 − 20.6835i 4.44577 − 14.0329i 0.328536 + 1.88167i 0.39974 − 0.695405i −0.0833333
−57.4362 + 58.1576i −4.72635 − 8.64175i −3.3049 + 5.90139i 0.750868 + 0.0163625i 0.00104167
55.3826 + 21.4733i −4.15271 − 5.49233i 0.259693 + 0.916298i 0.0651042 0
63.0421 + 29.5963i 3.75148 − 5.13345i 0.190741 − 0.501782i −0.0503472 0

 ,

(9.38)
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f0
5mn =


7.61581 − 31.9124i 4.025 − 11.0582i 0.755745 + 1.309i 0.354167 − 0.654498i −0.0666667

−20.2979 + 96.5113i −17.6377 + 33.0546i −1.58512 − 1.96349i −0.648438 + 2.07803i 0.269792
144.62 − 285.148i 5.75246 + 29.3679i 10.8098 − 20.0204i −2.71817 − 0.0545415i −0.00347222

−208.708 + 69.8459i 43.976 + 12.0788i −2.41291 − 6.02139i −0.408854 0
−202.565 − 142.899i −36.4801 + 9.22952i −1.89641 + 5.45415i 0.527778 0

 ,

(9.39)

a−1
7mn =


−0.0443832 0 0 0

0.599504 + 0.956145i 0.152175 0 0
−2.18369− 1.39626i −0.222222 + 0.523599i 0.0555556 0
−0.0868056 + 0.785398i 0.125 0 0
0.178125 + 0.523599i 0.0833333 0 0

 , (9.40)

a0
7mn =


−0.196903 0.0665749 0 0 0

−3.79152 + 0.92215i −0.752492 + 0.519332i −0.0970723 0 0
8.18238 − 1.52317i 0.154474 − 1.32061i 0.082101 − 0.1309i −0.0520833 0
−6.73632− 3.25977i −0.3886 + 0.981748i −0.0208333 0 0
−4.72912 + 1.86718i 0.0299841 + 0.368155i −0.0442708 0 0

 ,

(9.41)

f0
7mn =


−0.57954 + 1.19252i 0.189795 0 0 0
−1.86758− 7.93934i 0.586965 + 0.500821i 0.0531387 − 0.589049i −0.046875 0
3.78214 + 5.78728i 1.675 − 0.922478i −0.097878− 0.239983i −0.0190972 0
1.4128 − 1.21173i −0.192853− 0.490874i −0.0520833 0 0
0.136517 − 1.4353i −0.228435− 0.0818123i −0.00868056 0 0

 ,

(9.42)

a−1
9mn =


−0.4375 0 0 0

0.198715 − 3.19851i −0.509058 0 0
−0.576689 + 2.61799i 0.416667 0 0

0.697917 0 0 0
0.500463 0 0 0

 , (9.43)

f−1
9mn =


0.75 0 0 0

−0.75 + 4.71239i 0.75 0 0
0.833333 − 3.14159i −0.5 0 0

−0.75 0 0 0
−0.5 0 0 0

 , (9.44)

a0
9mn =


−0.790823− 1.88819i 0.355736 0 0 0
21.8428 − 9.06134i −1.74023− 0.772597i 0.427083 0 0
−31.3912− 8.40017i 1.58427 + 5.0458i 0.118709 − 0.654498i −0.0520833 0
9.63742 + 23.1565i 2.6386 − 4.51604i −0.479167 0 0
14.2629 + 7.03331i 0.368692 − 3.50157i −0.371528 0 0

 ,

(9.45)

f0
9mn =


1.75712 + 2.35619i −0.75 0 0 0
−25.2637 + 23.5864i 3.02834 − 1.79275i −0.940217 + 0.589049i 0.046875 0
21.9485 − 5.32201i −2.85095− 0.550144i 0.441628 + 0.239983i 0.0190972 0
−7.86975− 15.318i −1.31293 + 3.04342i 0.322917 0 0
−12.2499− 4.25566i 0.072691 + 2.78162i 0.295139 0 0

 .

(9.46)
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Chapter 10

Complete Bremsstrahlung
Corrections to the O2 − O7
Interference Contribution for
B → Xsγγ

We have encountered FCNCs many times during this thesis and have emphasized the necessity
for precise SM predictions of the single radiative decay B̄ → Xsγ in the previous chapter. Even
though its branching ratio is much larger than the one of the double radiative decay B̄ → Xsγγ,
the latter has some distinct advantages. The current-current operators O1,2 already contribute
at LO to this process, leading to interesting interference patterns with the dipole operator O7.
Therefore, potential NP contributions to O2 should be clearly visible not only at the level of
the branching ratio but also in the (double) differential decay width. A precise determination
of Br[B̄ → Xsγγ] is also desirable with regards to the planned experiments at Belle II [486,503].

In this chapter, we calculate bremsstrahlung corrections to the O2 − O7 interference con-
tribution36 associated with the double differential decay with dΓ/ds1ds2 of this process, where
si = (pb − qi)2/m2

b . Here, pb corresponds to the momentum of the b quark and qi are the
momenta of the individual photons. We will first give an overview of the current status of the
calculation, proceed with some details about our calculation and then present our results.

10.1 Current Status

The LL results for the branching ratio of B̄ → Xsγγ have been known for a long time [504–507]
and are summarized in Ref. [508]. Concerning NLL contributions, the numerically dominant
self-interference contribution of the dipole operator O7 has been worked out in Refs. [509,
510] in a certain approximation and was completed in Ref. [508]. The self-interference of the
chromomagnetic dipole operator O8 was computed in Ref. [511]. A relevant contribution that
has not yet been calculated is the O2−O7 interference contribution at O(αs), which is the task
of this chapter. One of the main challenges of this endeavor is the treatment of singularities
stemming from collinear photon or gluon emissions. In principle this requires nonperturbative
methods such as fragmentation functions, which however suffer from experimental uncertainties.
Therefore, following the argumentation of Refs. [508, 510, 512], we will use the strange quark
mass ms as a regulator and interpret it to be a constituent mass and vary it in the typical range

36Even though not explicitly mentioned in this chapter, we also include the O1 − O7 interference contribution
in our numerical analysis, which can be obtained from the O2 − O7 contribution in a straightforward manner.
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Figure 10.1: Diagrams associated with the operator O2 and O7 contributing to b→ sγγg. Diagrams
not shown explicitly here are obtained by an exchange of the photon momenta.

Figure 10.2: Diagrams associated with the operator O2 and O7 contributing to b → sγγg. Interfer-
ences among these diagrams give rise to the IR singularities. Diagrams not shown explicitly here are
obtained by an exchange of the photon momenta.

of 400-600 MeV [513]. This method has been employed previously [508, 510–512, 514] and is
expected to give comparable results as the one using fragmentation functions.

10.2 Theoretical Framework and Calculation

The b → sγγ transitions can be described by the same effective Hamiltonian as b → sγ, given
in Eq. (9.3). In the previous chapter we saw that the Wilson coefficients for a NLL calculation
are available to sufficient precision. This is not true for the matrix elements 〈sγγ|Oi|b〉 and
〈sγγg|Oi|b〉 which to NLL precision have so far only been worked out for the self-interference
contributions of O7 and O8. In this work we focus on the four particle final state b → sγγg,
i.e. on bremsstrahlung corrections to b → sγγ. To be more precise, we want to work out
its contribution to the double differential decay width dΓ/ds1ds2 of the branching ratio of
B̄ → Xsγγ, where

s1 = (pb − q1)2

m2
b

, s2 = (pb − q2)2

m2
b

, (10.1)
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Figure 10.3: Virtual corrections associated with the operator O7 and O2. These diagrams in addition
to counterterm insertions cancel the IR singularities. Diagrams not shown explicitly here are obtained
by an exchange of the photon momenta.

with pb being the b quark momentum and qi the momenta of the photons. Furthermore we
write the normalized total squared hadronic mass as

s3 = (ps + k)2

m2
b

, (10.2)

where ps and k are the momenta of the strange quark and the gluon, respectively. Writing
x4 = m2

s/m
2
b we see that si > x4 > 0 which avoids collinear singularities for the photons and

the gluon.
In total there are 18 diagrams associated with the operator O2 and 12 diagrams associ-

ated with O7 that contribute to b → sγγg, leading to a total of 196 interference terms, see
Figs. 10.1 and 10.2. The infrared singularities arise from interference terms of diagrams where
the gluon is radiated from an external leg as depicted in Fig. 10.2. Note that interferences with
only one radiation from an external leg are IR finite. We write the bremsstrahlung corrections
to the double differential spectrum as

dΓbrems
(1,2)7

ds1ds2
=
dΓhard

(1,2)7
ds1ds2

+
dΓsoft

(1,2)7
ds1ds2

, (10.3)

where dΓsoft
(1,2)7/ds1ds2 contains the IR singularities. We worked this part out analytically, using

the soft gluon approximation described in Sec. 1.3.4, and obtain

dΓsoft
(1,2)7

ds1ds2
=
dΓLO

(1,2)7
ds1ds2

(I11(µ, ω, ε) + I22(µ, ω, ε)− 2I12(µ, ω, ε)) , (10.4)

where dΓLO
(1,2)7/ds1ds2 is the leading order contribution of the O1,2−O7 interference contribution

whose analytical form can be found e.g. in Ref. [508]. After the application of the approximation,
the gluon is excluded from the phase space and the soft function is automatically in double dif-
ferential form. The functions I(µ, ω, ε) explicitly contain the 1/εIR poles and are given in
Appendix 10.3. One easily verifies that the IR singularities are canceled by the UV divergences
arising from the virtual corrections depicted in Fig. 10.3 and counterterm insertions on the LO
contribution. In the soft gluon approximation, a cut is applied on the gluon momentum, which
we restrict to be smaller than some energy ω, i.e. |k| < ω. The finite part of the soft expression
is dependent on this cutoff, which also appears in the hard part. There, the gluon energy is
required to be larger than this cutoff, i.e. |k| > ω and therefore, IR singularities are avoided. In
principle, one only needs to apply this cutoff to the interferences that are susceptible to those IR
divergences. For computational convenience however, we applied this cutoff to all interferences
and made sure that our numerical simulation remained unchanged for different small values
of ω. This also ensures the validity of the soft gluon approximation. Concerning the hard
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contribution, we used the phase space formulas derived in Ref. [515] and adopted to our case
in Ref. [508], which we give explicitly in the Appendix 10.3. In that way the phase space is
described by five dimensionless variables (including s1, s2 and s3), three of which we integrated
numerically to obtain the double differential spectrum. We used the CUBA library [516] for the
Monte-Carlo integration of the phase space and the Fortran library Collier [517] to numerically
calculate the one-loop integrals, where we also did some crosschecks with LoopTools [518]. Our
results for the bremsstrahlung corrections only are shown in Fig. 10.4 for different values of
the renormalization scale µ and the constituent mass ms. The results contain the complete
bremsstrahlung corrections as defined in Eqs. (10.3) and (10.4) where we only removed the
IR singularities, since these will eventually cancel once virtual corrections are also taken into
account. We find a sizable ms dependence in the region where the contribution is the largest.
The effects on the complete double differential spectrum are shown in Fig. 10.5 and the relative
effect is shown in Fig. 10.6. While the effect of the bremsstrahlung corrections calculated in this
work are small for µ = mb/2, this changes for larger values of µ, where the corrections reach up
to 15% in a certain region of the spectrum. We emphasize that while our calculations without
the inclusion of O(αs) virtual corrections are not very meaningful by themselves, the large
relative effect of the bremsstrahlung contributions on the complete double differential spectrum
should provide enough argumentation for the necessity of a completion of the NLL calculation.
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Figure 10.4: Overall contribution of the O(αs) bremsstrahlung corrections for the O1,2−O7 interfer-
ence contribution to the double differential spectrum dΓ[B̄ → Xsγγ]/ds1ds2 for different values of the
constituent mass ms and renormalization scale µ for s1 fixed at s1 = 0.2. The points are exact data
points while the lines are interpolated functions.
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Figure 10.5: NLL spectrum for exact ms based on all operator contributions available. The colored
lines are taken from Ref. [508] and do not include the corrections calculated in this work; the black crosses
represent the complete double differential spectrum when our bremsstrahlung corrections are added. For
simplicity, we only show the data points for ms = 500 MeV.

10.3 Appendix

Soft Functions

The analytic form of the functions introduced in Eq. 10.4 reads

I11 = − 1
4π2ε

+ 1
4π2

[
log

(
4ω2

µ2

)
+ p0

s

ps
log

(
p0

s − ps

p0
s + ps

)]
,

I22 = − 1
4π2ε

+ 1
4π2

[
log

(
4ω2

µ2

)
− 2

]
,

I12 = 1
8π2

(
1
ε

log
(
p0

s − ps

p0
s + ps

)
− log

(
4ω2

µ2

)
log

(
p0

s − ps

p0
s + ps

)
+ Li2

( 2ps

ps − p0
s

)
− Li2

( 2ps

ps + p0
s

)]
,

(10.5)

where ps = |~ps| with ~ps the three-momentum of the strange quark and p0
s is its energy. In the

rest frame of the b quark, we can write

p0
s = mb

2 (s1 + s2) , (10.6)

and as usual ps =
√
p0

s
2 −m2

s.
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of the renormalization scale µ. The data points are exact values while the lines represent interpolated
functions.

Phase Space Formula for the Four Particle Final State

The differential decay width Γ of a particle with mass M decaying into n final states can always
be written as

dΓ = 1
2m |M |

2 DΦ(1→ n) , (10.7)

where |M |2 is the squared matrix element, summed and averaged over spins and colors of the
initial and final state particles and m is the mass of the decaying particle. Derived in Ref. [515]
and adopted to our case in Ref. [508], the four particle phase space can be written in terms of
five dimensionless quantities λi which all run independently in the interval [0, 1]

dΦ(1→ 4) =(4π)
−3d

2 mb
3d−8

22d−7 Γ
(

d−2
2

)
(d− 3)Γ(d− 3)2 (1− x4)3d−7 [(1− λ1)(1− λ2)λ2]d−3

× λ1
2d−5 [λ1(1− x4) + x4)(λ1λ2(1− x4) + x4)]

2−d
2

× [(1− λ3)λ3(1− λ4)λ4]
d−4

2 [(1− λ5)λ5]
d−5

2 dλ1 dλ2 dλ3 dλ4 dλ5 ,

(10.8)

where x4 = ms
2/mb

2 and d = 4− 2ε. All scalar products in our application can be expressed in
terms of the variables sij = (pi + pj)2/m2

b and sijk = (pi + pj + pk)2/m2
b with p1 = q1, p2 = q2,

p3 = k and p4 = ps, which relates to the variables s1, s2 and s3 of the main text as s234 = s1,
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s134 = s2 and s34 = s3. The parameters λi are related to sij and sijk via

s234 = λ1(1− x4) + x4 ,

s34 = λ1λ2(1− x4) + x4 ,

s23 = λ1
2(1− λ2)λ2λ4(1− x4)2

λ1λ2(1− x4) + x4
,

s134 = λ1(1− x4) [λ2(1− (1− λ1)λ3(1− x4)) + λ3(1− λ1)(1− x4)] + x4
λ1(1− x4) + x4

,

s13 = (s+
13 − s

−
13)λ5 + s−

13 ,

(10.9)

where

s± = (1− λ1)λ1λ2(1− x4)2

(λ1 + x4 − λ1x4)(λ1λ2 + x4 − λ1λ2x4)
{
x4 [(1− λ3)(1− λ4) + λ3λ4]

+ (1− x4)λ1 [λ2(1− λ3)(1− λ4) + λ3λ4]

∓ 2
√

(1− λ3)λ3(1− λ4)λ4(λ1 + x4 − λ1x4)(λ1λ2 + x4 − λ1λ2x4)
}
.

(10.10)
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