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Abstract 

Phosphorus (P) released from sediments into surface waters, termed internal P loadings, has 

been widely recognized as a key P source contributing to delayed recovery from human-

induced eutrophication in lakes where external P loadings have been reduced. It is critically 

important to evaluate the availability of sediment-P and its release risks into lake water by 

studying P fractions in sediment profiles. However, previous studies focused only on well-

mixed shallow lakes and did not examine the relationships between sediment records of P 

fractions and lake trophic status in seasonally stratified, deep lakes. Additionally, records of P 

fractions spanning longer than a few decades have not been studied. Hypolimnetic waters in 

temperate eutrophic deep lakes tend to become anoxic during stratification periods, which can 

lead to high internal P loadings and sustain eutrophication. It is not yet fully understood 

whether, and how, lake trophic levels and hypolimnetic redox conditions can influence the 

long-term behavior of sedimentary P fractions and potentials of internal P loadings in deep 

lakes. 

Our research questions were: (i) How have P fractions in sediment profiles and potentials of 

internal P loadings varied with different lake trophic levels over the past few decades? (ii) What 

was the role of hypolimnetic anoxia and lake trophic state in affecting P cycling, sediment P 

fractions stratigraphy, and potentials of internal P loadings in the last century prior to cultural 

eutrophication? (iii) Is the P cycling under natural or pre-anthropogenic anoxic conditions 

comparable with the P cycling under anthropogenic eutrophication and anoxia in recent times? 

In order to address these questions, we selected three deep lakes in Switzerland: the Ponte 

Tresa basin of Lake Lugano, Lake Burgäschi, and Soppensee. We investigated sediment 

cores from these lakes to produce records of P fractions in sediments, lake trophy, and anoxia 

history covering the past few decades, more than one century, and the Late-glacial and 

Holocene periods, respectively. The Ponte Tresa basin was selected because it is one of 

several deep lakes in Switzerland that have not yet recovered from human-induced 

eutrophication after large reductions of external P loadings, and the lake’s eutrophication 

history since the mid-20th century is already well documented. Lake Burgäschi was selected 

because there were substantial changes in trophic levels and possibly lake mixing regimes 

during the last century, and the lake has exceptionally long historical and limnological survey 

data available for most of the last 50 years. We selected Soppensee because it is a deep, 

eutrophic lake featuring a varved sediment record, its sediments have an exceptionally good 

chronology, and it has a record of diatom-inferred epilimnetic total P (DI-TP) concentrations 

available for the entire Holocene.  
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Hyperspectral imaging (HSI) was applied for high-resolution analysis of sedimentary pigments, 

combined with geochemical analyses, which allows reconstructions of lake primary production 

(eutrophication history) and hypolimnetic redox conditions. XRF core scanning was used to 

determine the elemental composition of sediments and these geochemical variables were 

related to in-lake and catchment processes (e.g. XRF-Mn and Fe/Mn ratios as redox proxies). 

In this study, different P forms in sediments were characterized by P-fractionation schemes, 

mainly by sequential P extraction procedures and the standards, measurements and testing 

(SMT) protocol. The results of P-fractionation showed that, in each lake, labile P fractions 

(mainly the redox sensitive Fe-bound P or Fe/Al metal oxides bound P) were the dominant P 

form in anoxic sediments during most of the periods studied. This phenomenon suggests high 

potentials of internal P loadings in the three lakes. Hypolimnetic redox conditions appear to 

control contents of redox-sensitive Fe and Mn in sediments, which in turn influences P 

retention in sediment profiles of the lakes. 

In the Ponte Tresa basin of Lake Lugano, we find that net burial rates of total P and the labile 

P fraction (mainly redox sensitive Fe-bound P) in sediments showed significant decreasing 

trends from 1959 to 2017, when the lake underwent higher eutrophic levels and severe anoxia. 

This finding suggests that, in the Ponte Tresa basin, higher eutrophication conditions 

increased internal P loadings, thus reducing net burial rates of P in sediments. This case study 

highlights the concern that eutrophication restoration might be hindered in deep, seasonally 

stratified lakes by extensive internal P cycling and reduced capacity of P-trapping in surface 

sediments. 

In Lake Burgäschi, the results highlight the importance of hypolimnetic redox conditions in 

controlling the long-term P cycling and P retention in sediments since the 1900s. We found 

relatively high total P and labile P fractions in Fe- and Mn enriched layers when the 

hypolimnion was seasonally oxygenated. The results also imply that hypolimnetic water 

withdrawal in Lake Burgäschi can effectively reduce P retention in sediments and potentials 

of internal P loadings. 

In Soppensee, we estimated long-term qualitative internal P loadings by comparing the 

Holocene record of DI-TP concentrations with the labile P fraction (Fe/Al-P) concentrations in 

sediments under changing trophic, redox, and lake mixing regimes. The results demonstrate 

that enhanced internal P loadings acted as a positive feedback to promote and maintain 

natural eutrophication process in Soppensee from ~9000 to 6000 cal BP. However, such a 

positive feedback was not inferred for other eutrophic phases. For example, ferromagnetic 

minerals from magnetotactic bacteria preserved in sediments from ~6000 to 2000 cal BP and 
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Fe-rich layers formed from ~2000 to 200 cal BP appear to have prevented internal P loadings 

in these two periods, resulting in high labile P fraction in sediments. 

In summary, this project provides new insights about the influence of lake primary production 

and hypolimnetic redox conditions on P cycling and the record of sediment P fractions on short 

and long timescales in seasonally stratified, deep lakes. We conclude that, in stratified deep 

lakes, sedimentary total P and P fractions may not reflect lake trophic evolution and the history 

of external P loadings. However, comparisons of the lake trophic history and the record of 

sediment P fractions can shed light on in-lake P cycling in the past.  
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1.1 Research background  

1.1.1 Lake eutrophication and phosphorus cycling  

Eutrophication is originally a natural process of nutrient enrichment as a water ecosystem 

ages and is gradually filled in with sediments, which might take a very long time (perhaps 

thousands of years) (Chislock et al., 2013). However, intensified agriculture and rapid 

industrial development since the late nineteenth century have greatly accelerated the 

eutrophication process by introducing excessive loadings of nutrients (particularly nitrogen (N) 

and phosphorus (P)) into aquatic ecosystems. This human-induced eutrophication 

phenomenon is thus referred to as “cultural eutrophication” (Schindler, 2012). Cultural 

eutrophication in fresh aquatic ecosystems has become an environmental problem of global 

concern for several decades (Schindler, 1974; 2006). The detrimental ecosystem imbalances, 

water oxygen depletion, and cyanobacterial blooms caused by eutrophication have long been 

recognized to lead to poor water quality, loss of ecosystem services to society, and human 

health concerns (Paerl and Fulton, 2006). The scientific community has long agreed that 

excessive P loadings are the main cause of lake eutrophication because P is the limiting 

nutrient controlling primary production in many freshwater lakes, especially in deep ones 

(Lewis Jr and Wurtsbaugh, 2008; Qin et al., 2020). The nutrient P enters in freshwater lakes 

from nonpoint sources, for example, catchment runoffs (agricultural fertilization, non-

agricultural or groundwater) and atmospheric deposition (Fig. 1.1), and from point sources 

such as municipal and industrial sewage and wastewater treatment plants discharges. 

Since as early as the 1960s, multiple remediation measures have been adopted worldwide to 

decrease eutrophication in freshwater lakes and to improve water quality, mostly by reducing 

external loadings of N and especially P (Carpenter, 2008). For example, nutrient diversions 

(Edmondson, 1970), implementation of wastewater treatment plants, decreased use of 

fertilizers, and regulations requiring elimination of P in detergents were applied in most 

developed countries in Europe and North America (Hering et al., 2012). These strategies have 

proven to be generally successful in decreasing water-P concentrations and trophic levels in 

some lakes (Schindler et al., 2016), with the typical examples of Lake Zurich in Switzerland 

(Hering et al., 2012), Lake Erie in the USA (DePinto et al., 1986), and Lake Bourget in France 

(Jacquet et al., 2014) etc. Nevertheless, other lakes witnessed a delayed response to such 

reductions of external P loadings, usually because of recycling of nutrients from bottom 

sediments into surface waters (Marsden, 1989; Jeppesen et al., 2005). Alternative 

management practices for eutrophication control include chemical treatments to remove P 

from the water column (Lürling and van Oosterhout, 2013), biomanipulation (Benndorf, 1990), 

and artificial mixing (Gibbs and Howard-Williams, 2018) etc. Despite good improvements of 
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water quality in many freshwater lakes after decades of restoration, lake eutrophication is still 

a prevalent global problem, especially in developing countries (Smith and Schindler, 2009). 

 

 

Figure 1.1: The overview conceptual scheme of external nutrient (N or P) loadings and internal P 

loadings. Water over-nourishment (eutrophication) causes algal blooms, O2 depletion or hypoxia in the 

hypolimnion after decomposition of sedimented organic matter, and, ultimately, internal P loadings 

(here mainly P release after the reductive dissolution of Fe-bound P from anoxic sediments) under 

stratified water-column conditions. The figured is modified from Paerl and Justic (2011). 

 

1.1.2 Sediment phosphorus release (internal phosphorus loadings) in freshwater lakes 

P accumulated in lake sediments exists in various inorganic and organic forms, where it can 

be either permanently buried or released back into water columns via pore water (commonly 

referred to as “internal P loadings”). Internal P loadings have been known to keep P 

concentrations in the lake water high and to delay lake recovery from eutrophication after 

reductions of external P loadings (Nürnberg, 1991; Wu et al., 2017).  
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Figure 1.2: A conceptual model of the external P input and output in a shallow lake and P forms in 

sediments. The left-side figure emphasizes the process of gross sedimentation of P, sediment P 

release, and permanent P immobilization (P retention) in sediments (left side). The right-side text shows 

the main P fractions and compounds in sediments. Note that ads. represents adsorption. The figure is 

from Sondergaard et al. (2001).  

 

The classical model from Einsele (1936) and Mortimer (1941) has long been accepted to 

emphasize that, under anoxic conditions at the sediment–water interface (SWI), the reductive 

dissolution of Fe (oxyhydr)oxides bound P is the main mechanism responsible for internal P 

loadings. However, this paradigm has recently been revised based on findings that indicate 

internal P loadings involve physical and biogeochemical processes that are more complex 

than anoxia-driven P release from sediments into surface waters (Golterman, 2001; Prairie et 

al., 2001; Katsev et al., 2006; Hupfer and Lewandowski, 2008). Internal P loadings can also 

occur under various, even oxic conditions (Marsden, 1989; Caraco et al., 1991). Nowadays, 

the scientific community has agreed that there are numerous physical, chemical, and 

biological mechanisms that cause internal P loadings in lakes. Alternative proposed 

mechanisms include: pH at the SWI that affects the competition between hydroxyl ions and 

phosphate anions in metal (Fe, Al) (oxyhydr)oxide complexes in aerobic sediments 

(Christophoridis and Fytianos, 2006), release and uptake of polyphosphate by sediment 

bacteria (Gächter, 1998; Hupfer et al., 2007), organic matter (OM) decomposition under both 

aerobic and anaerobic conditions (Hupfer and Lewandowski, 2008; Joshi et al., 2015), and 

precipitation and dissolution of carbonate-bound P (Ramisch et al., 1999; Jin et al., 2006) etc. 

Solid-phase P can also be recycled into the water column via resuspension of sediment 

particles (Orihel et al., 2017). 

Sulfate and nitrate concentrations in bottom waters, climate change and temperature, and 

sediment characteristics have been recognized as potentially important factors in affecting P 
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availability of surface sediments (Jensen and Andersen, 1992). For example, increases of 

sulfate concentrations in bottom waters are suggested to increase P availability in sediment 

porewaters via two main mechanisms: 1) preventing ferrous-P mineral formation (e.g. 

vivianite) during the scavenging of porewater Fe ions by iron-sulfide mineral formation 

(Gächter and Müller, 2003), and 2) reductive dissolution of ferric (oxyhydr)oxides bound P by 

H2S generated by microbially mediated sulfate reduction (Katsev et al., 2006). By contrast, 

nitrate has a duel effect on sediment P mobility. High nitrate concentrations in overlaying 

waters can prevent the release of Fe-bound P from surface sediments by keeping Fe oxidized 

at the SWI (Caraco et al., 1993). On the other hand, the addition of nitrate has been shown to 

stimulate Fe-reducing bacteria growth at anoxic SWIs, leading to more sediment P release 

back into surface waters (Jensen and Andersen, 1992).  

The impact of climate changes on lake primary productivity and P cycling has been recognized 

in temperate lakes. Climatic changes strongly influence phytoplankton growth and lake mixing 

regimes, particularly in seasonally stratified lakes (North et al., 2014). Under modeling 

scenarios with higher air temperatures in the 21st century, many lakes worldwide are predicted 

to experience enhanced surface water temperature and water column stability, and seasonally 

stratified lakes will mix less frequently (Woolway and Merchant, 2019). A warmer climate, in a 

direct way, will boost cyanobacterial dominance in freshwater systems (Paerl and Huisman, 

2008). Indirectly, with increasing temperatures, OM degradation and microbial respiration are 

stimulated, which leads to lower redox potentials at SWIs and increased release of Fe/Al-

bound P, exacerbating internal P loadings (Jensen and Andersen, 1992). Additionally, in-situ 

experiments and modeling studies suggest that warmer temperatures are likely to stimulate 

sediment P release and, as a consequence, intensify eutrophication and harmful algal blooms 

in shallow lakes (Genkai-Kato and Carpenter, 2005; Kosten et al., 2012). The monitoring data 

from Loch Leven, Scotland, demonstrated summer water temperature being the positive driver 

of internal P loadings during 1968-2008 (Spears et al., 2011). North et al. (2014) 

acknowledged the importance of climate-induced expansion of deep-water hypoxia in driving 

internal P loadings of the last 40 years in (Lower) Lake Zurich, Switzerland. Given the 

importance of anoxia-induced sediment P release in deep lakes, rising temperatures may 

consequently introduce more internal P loadings under stratification/anoxia events, ultimately 

making restoration more challenging and less successful in eutrophic lakes.  

Parameters of surface sediments like bulk density, porewater P-bearing minerals saturation, 

and metal and clay minerals contents, etc. additionally exert strong influences on P mobility 

at the SWI (Søndergaard et al., 1996; Katsev et al., 2006), which subsequently influences 

internal P loadings. The environmental drivers of internal P loadings are complex and vary in 

space and time within the same freshwater ecosystem. This also makes controlling internal P 
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loadings in eutrophic lakes a great challenge for long-term lake management. Furthermore, 

the dominant mechanisms of internal P loadings may differ among different lake systems and 

environments (e.g. shallow and deep lakes, oligotrophic and eutrophic lakes, and calcareous 

and non-calcareous lakes) and depend on timescales of interest (e.g. seasonal versus 

decadal). For example, for deep lakes (> 5 m water depth), particularly with seasonally anoxic 

hypolimnions, Fe-bound P release accounts for a large portion of internal P loadings during 

lake stratification (Parsons et al., 2017). Compared with deep lakes, shallow lakes often have 

fewer anoxia-driven internal P loadings because of generally good mixing and higher O2 

concentrations throughout the water column (Sondergaard et al., 2001; Hickey and Gibbs, 

2009). The exceptions are some shallow eutrophic lakes where the decomposition of dead 

algae during algal blooms causes O2 depletion in bottom waters. In shallow lakes, given a 

high ratio of sediment surface vs water column depth and short-term redox oscillations at the 

SWI, sediment-water interactions have potentially higher significance in the water P budget 

(Søndergaard, 2003). Bioturbation, wind resuspension, and high pH conditions at the SWI can 

contribute to high internal P loadings in shallow lakes (Welch and Cooke, 2005; Jensen et al., 

2017).  

The widely reported conclusions from short-term (days or months) laboratory and in-situ 

observations demonstrate that, in seasonally anoxic lakes, higher O2 concentrations in bottom 

waters potentially restrict seasonal P release from the SWI (Penn et al., 2000; Chen et al., 

2018). However, it is proposed that SWI oxygenation might not influence long-term (e.g. 

decades) internal P loadings and may not be appropriate for universal situations (Gächter, 

1998). The general failure of the hypolimnetic oxygenation/aeration restoration in controlling 

long-term internal P loadings (Müller et al., 2012; Kuha et al., 2016; Tammeorg et al., 2017) 

supports this notion. In fact, oxygen levels at the SWI only affect internal P loadings over the 

timescale of the Fe cycle in sediments (i.e. years), and thus should not be the main controlling 

factor on longer timescales (Katsev and Dittrich, 2013). Reactive-transport model simulations 

(Katsev et al., 2006; Dittrich et al., 2009; Katsev and Dittrich, 2013) revealed that, on decadal 

and longer timescales, internal P loadings are predominantly sensitive to the sedimentation 

flux of degradable OM, followed by dissolved O2 levels at the SWI. All in all, on the long term, 

the restoration of eutrophic lakes still predominantly relies on reducing external P inputs into 

lakes.  

To minimize internal P loadings and speed-up lake recovery after reductions of external P 

loadings, lake managers employ a variety of strategies in eutrophic lakes. For well-mixed 

shallow lakes, sediment dredging and clay capping (e.g. the use of alum and zeolite) are 

widely applied measures and are observed as highly effective in controlling internal P loadings 

in multiple cases (Welch and Cooke, 2005). In seasonally stratified or deep lakes, hypolimnetic 
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oxygenation/aeration is a commonly used tool for preventing anoxia in bottom waters and 

reducing internal P loadings (Nürnberg, 2007). In some cases, hypolimnetic oxygenation 

clearly improved bottom-water oxygen conditions, but no desired effects on internal P loadings 

and water quality were observed, e.g. in Lake Sempach in Switzerland (Gächter, 1998) and 

in Lake Jyväsjärvi in Finland (Kuha et al., 2016). In recent years, the long-term effectiveness 

of this restoration measure has been questioned (Gächter, 1987; Liboriussen et al., 2009). 

Hypolimnetic water withdrawal is another in-lake restoration treatment normally applied to 

thermally stratified lakes or reservoirs. It is carried out by pumping the nutrient-rich bottom 

water to the lake discharge during thermal stratification, whereby P and other nutrients in the 

hypolimnion are directly removed from the lake. Several studies have reported an overall 

positive assessment of this restoration technique. For instance, decreased P concentrations 

in the lake water and possibly lower internal P loadings after the treatment have been reported 

(Gächter, 1976; Nürnberg et al., 1987; 2007; Premazzi et al., 2005). Nevertheless, the long-

lasting effectiveness of this method is still questionable for well-mixed shallow lakes mainly 

because thermal stratification of the water column is a prerequisite for treatment success. 

Regardless of all restoration techniques above, the considerable reduction of external nutrient 

loadings is still the best practice to improve lake water quality and accelerate recovery of 

eutrophic lakes. 

1.1.3 Sediment phosphorus fractionation 

The down-core distribution of sedimentary P in dated sediment cores can be used to assess 

historical biogeochemical cycling of P and P inputs in lakes. Theoretically, P retention in 

sediments is the difference between gross P sedimentation and internal P loadings from 

sediments into the water column. Specifically, short-term P retention in surficial lake sediments 

(uppermost ~ 20 cm depths) is the result of the dynamic interplay among gross P 

sedimentation from water columns, downward P flux into deeper sediment layers, and upward 

P flux into dissolved P in water columns. These processes often depend on the lake trophic 

state and environmental drivers, such as redox-potentials and pH changes (Orihel et al., 

2017). Long-term stable P retention within sediments represents the P pool which is 

permanently deposited in sediments, and it is ultimately determined by the P-retaining 

capacity of deeper sediment layers after early diagenesis.  

P in sediments exists as dissolved and particulate forms (Fig. 1.2). Dissolved P represents P 

in the aqueous phase. Particulate P includes P that is absorbed to clay minerals or to Fe, Al, 

and Ca compounds, coprecipitated with metal minerals (e.g. apatite, vivianite, and variscite), 

and organic P etc. (Sondergaard et al., 2001). P speciation in lake sediments has received 

considerable attention by researchers aiming to precisely estimate the risks of sediment P 
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release (a.k.a. potentials of internal P loadings) at the SWI and within a sediment profile 

(Søndergaard et al., 1996; Fytianos and Kotzakioti, 2005; Gao et al., 2005; Shilla et al., 2008). 

This approach relies on the fact that different P fractions in sediments have different labilities 

of P release. Moreover, knowing P fractionation patterns in sediment profiles is also critically 

important to better understand P cycling in whole-lake systems. This information can also 

inform management decisions on controlling internal P loadings and water-quality 

improvements in specific cases. A variety of P fractionation schemes has been established to 

characterize P fractions in sediments, e.g. the sequential extraction (SEDEX) method 

(Ruttenberg, 1992), the Williams method (Williams et al., 1976; Burrus et al., 1990), the 

Standards Measurements and Testing (SMT) method (Ruban et al., 2001), and the Jensen 

method (Jensen and Thamdrup, 1993; Jensen et al., 1998). Among these, the sequential P 

extraction has been widely used to determine operationally defined P fractions in lake 

sediments.  

The different P forms in sediments commonly include (i) loosely absorbed P in porewater, (ii) 

redox sensitive Fe and Mn (oxyhydr)oxides bound P, (iii) P bound to hydrated oxides of Al and 

nonreducible Fe (surface-bound), (iv) Ca-bound P (e.g. apatite-P), and (v) organic P. Loosely 

absorbed P is water-soluble P and the most bioavailable P form. Redox sensitive Fe-bound P 

often exists in the ferric Fe (III)-phosphate phase and, under oxic conditions, is strong 

adsorbed to Fe (oxyhydr)oxides in sediments (Dittrich et al., 2013). However, under anoxic 

conditions, it undergoes reductive dissolution, which leads to both P and Fe(II) releases into 

the porewater and, ultimately, into the overlaying water. Core incubation experiments (Sun 

Loh et al., 2013), in-situ porewater profiles (Ding et al., 2016; Wu and Wang, 2017), and 

chemical extraction data (Smith et al., 2011) further provide direct evidence that sediment P 

mobility is mostly coupled with Fe cycling. Although more complex mechanisms rather than 

the classical concept of Fe-P coupling have been suggested (see Section 1.1.2), the Fe-bound 

P fraction in lake sediments is typically considered as one of the major potentially labile P 

sources for internal P loadings (Rydin, 2000; Petticrew and Arocena, 2001).  

Ferric and ferrous-P minerals can be spectroscopically or mineralogically identified in lake 

sediments. For example, several studies have shown that vivianite (Fe3(PO4)2·H2O) in lake 

sediments represents a permanent P sink in anoxic sediments (Nembrini et al., 1983; Fagel 

et al., 2005; Rothe et al., 2014). Al/Fe-bound P can also be released under anoxic conditions 

or high pH environments via P exchange with soluble OH- in bases (Dittrich et al., 2009). Ca-

P usually results from the co-precipitation of P with calcium carbonate and is relatively stabile 

under anoxic conditions, but it can be released in low pH environments (pH < 6; Orihel et al., 

2017). Organic P in sediments is divided into refractory and labile forms, of which the labile 

fraction may become a potentially bioavailable P source for lake primary production. 
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1.1.4 Hyperspectral imaging of sedimentary pigments 

Contemporary lake monitoring data is commonly used to evaluate lake trophic status and 

recovery status after lake restoration measures. However, monitoring data in lake waters, in 

many cases, spans only short periods of time (decades). To better understand lake responses 

to recent and past environmental changes (e.g. climate changes and human impacts), and to 

identify pre-disturbance conditions, it is critically necessary to have longer-term perspectives 

of lake history. Fortunately, paleolimnological evidence from sedimentary records can shed 

light on lake ecosystem developments on timescales from years to millennia and provide 

information of the background or reference conditions of the lake (Simpson and Hall, 2012). 

This information is helpful in guiding management of nutrient-enriched lakes and setting 

restoration targets for lake recovery.  

Well-preserved algal and bacterial pigments in anoxic sediments play a useful role in 

reconstructing past trophic changes in aquatic systems (Reuss et al., 2005). Recently, novel, 

non-destructive hyperspectral imaging (HSI) scanning techniques (in the visible and near 

infrared range, VNIR) have been used to quantify sedimentary chloropigments and 

bacteriopheophytins at very high (μm-scale) resolution (Butz et al., 2015). Specifically, HSI-

inferred green pigment (chlorophyll-a and its diagenetic products) concentrations in sediments 

are used to reconstruct lake primary production (Butz et al., 2016; Schneider et al., 2018). 

HSI-inferred bacteriopheophytin a (Bphe-a) serves as a proxy for lake stratification and 

hypolimnetic anoxia (Butz et al., 2017; Makri et al., 2020; Zander et al., 2021). 

1.2 Research gaps, motivation and questions 

Lake eutrophication, along with increased external P loads into lakes and gross P 

sedimentation from water columns, has not always increased concentrations and net burial 

rates of P in surface sediments. The eutrophication process, however, tends to cause anoxic 

bottom waters and subsequently higher internal P loadings (Jeppesen et al., 2005; Smith et 

al., 2011). Higher internal P loadings have been reported from eutrophic and hypereutrophic 

lakes and reservoirs in Canada (Penn et al., 2000; Orihel et al., 2017), Denmark (Andersen 

and Ring, 1999), and the USA (Carter and Dzialowski, 2012). Understanding the fate and 

availability of P in lake sediments is essential for evaluating P cycling and its potential impacts 

on water quality. Nonetheless, most of the relevant research has been conducted in well-

mixed shallow lakes and on short-term timescales. There is a lack of studies on investigating 

the response of sediment P availability to changes in lake trophy and hypolimnetic redox 

conditions from deep lakes. To our knowledge, few studies have reported the influence of lake 

eutrophication on potentials of internal P loadings and sediment P availability on longer 

timescales (from decadal to millennial timescales; prior to human-induced eutrophication). 
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This project aims at filling the abovementioned research gaps by studying sediments of three 

eutrophic deep lakes in Switzerland: the Ponte Tresa basin of Lake Lugano, Lake Burgäschi, 

and Soppensee (Fig. 2.1). The Ponte Tresa basin was selected because it is one of several 

deep lakes in Switzerland that have not yet recovered from anthropogenic eutrophication after 

large reductions of external P loadings, and the lake’s eutrophication history since the mid-

20th century is already well documented. Lake Burgäschi was selected because there were 

substantial changes in trophic levels and possibly lake mixing regimes documented during the 

last century, and the lake has exceptionally long historical and limnological survey data 

available for most of the last 50 years. We selected Soppensee because it is a deep, eutrophic 

lake featuring a varved sediment record, its sediments have an exceptionally good chronology, 

and it has a record of diatom-inferred epilimnetic total P (DI-TP) concentrations available for 

the entire Holocene.  

This study addresses the following research questions: 

i. How have P fractions in sediment profiles and potentials of internal P loadings varied 

with different lake trophic levels over the past several decades? 

ii. What was the role of hypolimnetic anoxia and lake trophic state in affecting P cycling, 

sediment P fractions, and potentials of internal P loadings in the last century prior to 

cultural eutrophication? 

iii. Is the P cycling under natural or pre-anthropogenic anoxic conditions comparable with 

the P cycling under the anthropogenic eutrophication and anoxia in recent times? 

To answer these research questions, we investigated P fractions in sediments and their net 

burial rates in response to aquatic productivity and anoxia through time.  

1.3 Outline of the thesis 

The thesis consists of six chapters. Chapter 1 is the introduction of the topic and the research 

questions of the study.  

Chapter 2 provides a general description of the three studied lakes and the applied methods. 

Chapter 3 presents the case study of the Ponte Tresa basin of Lake Lugano. Net burial rates 

(NBR) of different P fractions and potentially bioavailable organic P in sediments were 

evaluated in relation to lake trophic history from 1959 to 2017. The aim of the chapter is to 

answer the first research question addressed in the previous section. This chapter has been 

published in the journal Science of the Total Environment (Tu et al., 2019). 

Chapter 4 investigates the main factors controlling the long-term retention of P fractions in 

sediments of Lake Burgäschi since the 1900s and examines the effects of 40-years of 
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hypolimnetic water withdrawal on sedimentary P fractions. The main aim of this chapter is to 

answer the second research question. This chapter has been published in the journal 

Biogeosciences (Tu et al., 2020). 

Chapter 5 investigates a 15,000-year record of P fractions in sediments, lake paleoproduction, 

and anoxia in Lake Soppensee. We estimated long-term qualitative internal P loadings by 

comparing the Holocene record of diatom-inferred epilimnetic total P (DI-TP) concentrations 

(Lotter, 2001) with sedimentary labile P fraction data under changing trophic, redox, and lake 

mixing regimes during the Late-glacial and Holocene periods. The main aim of this chapter is 

to answer the third research question. We have submitted this chapter to the journal Earth 

and Planetary Science Letters (Tu et al., 2021, submitted). 

Chapter 6 highlights the main findings and conclusions of the present study and thesis. 
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2.1 Site description 

The lakes studied in this project are situated in the southern Swiss Alps (the Ponte Tresa basin 

of Lake Lugano) and the Swiss Plateau (Lake Burgäschi and Soppensee; Fig. 2.1). Detailed 

information about the three lakes is provided in Table 2.1. 

 

 

Figure 2.1: Map of Switzerland showing the locations of the three lakes investigated in this thesis. 

Lake Burgäschi, Lake Soppen (Soppensee), and the Ponte Tresa basin of Lake Lugano are indicated 

by the red dots. 
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Table 2.1: Morphological and hydrological characteristics of the studied lakes. 
 

Ponte Tresa 

basin 

Lake Burgäschi Soppensee 

Latitude (N) 45°58′ 47°10′ 47°05′ 

Longitute (E) 8°52′ 7°40′ 8°05′ 

Lake elevation (m a.s.l.) 271 465 596 

Lake surface area (km2) 1.1 0.21 0.227 

Lake volume (km3) 0.03 0.0028 0.0029 

Maximun depth (m) 50 31 27 

Mean depth (m) 33 12.9 12.3 

Catchment area (km2) 5.6 3.2 1.6 

Residence time (years) 0.04 1.4 3.2 

Total phosphorus (μg L-1) 180 20-50a 50-116 

pHa 7.0–9.1 7.3–8.7 7.2–8.5 

Core name PTRE 17-2 Burg17-B 

Burg17-C 

So08-3 

Time period covered by the 

sediment cores (~years) 

60 120 15,000 

a measured in water depths of 0–20 m 

2.1.1 The Ponte Tresa basin of Lake Lugano 

Lake Lugano (45°59′0″ N, 8°58′0″ E) is a deep lake situated at the border between Switzerland 

and Italy in the southern Alps (Fig. 2.2). This fluvio-glacial tectonic lake was formed by fluvial 

erosion during the Tertiary and reshaped during repeated Alpine glaciations in the Pleistocene 

(Barbieri and Simona, 2001). The watershed of the lake (624 km2) consists of calcareous 

rocks, gneiss, and porphyry bedrock. The Ponte Tresa basin is the smallest basin of Lake 

Lugano with only ~50 m of maximum water depth and 1.1 km2 of lake surface area. The details 

about the morphometric and hydrological characteristics of the three different basins of Lake 

Lugano are described in Simona et al. (2015). The main outflow of Lake Lugano is in the north-
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west of the Ponte Tresa basin (Fig. 2.2). The waters from northern and southern basins are 

the main nutrient supplier for the Ponte Tresa basin.  

 

 

Figure 2.2:  Location of Lake Lugano and the three basins: the northern basin, the southern basin, 

and the Ponte Tresa basin. The figure is from Lepori and Roberts (2017). 

 

Lake Lugano became highly eutrophic from the 1960s to the 1970s onwards due to large loads 

of nutrients (principally P) in sewage from increasing urbanization and industrialization in the 

watershed. Eutrophication restoration measures, such as the installation of wastewater 

treatment plants around the lake in 1976 and Switzerland banning phosphate detergents in 

1986, have reduced annual external P loadings by 75%. Despite decreased concentrations of 

water phosphate from the early 1980s until the last decade (2006–2015), the lake is still 

eutrophic, as shown by phosphate concentrations of 50–60 μg L-1 in the northern basin 

(Barbieri and Simona, 2001). Today, in Lake Lugano sewage and households contribute a 

large part (85%) of the total external nutrient loadings, followed by industrial and agricultural 

sources only representing 15% (Barbieri and Simona, 2001). Additionally, internal P loadings 

in Lake Lugano are an important factor maintaining eutrophication, which is likely favored by 

the long eutrophication history and the warm monomictic lake mixing regime (Lepori and 

Roberts, 2017).  

This study focusses on the Ponte Tresa basin where varved sediments are formed under 

highly productive and anoxic bottom-water conditions (Züllig, 1982). The history of human-

induced eutrophication in this basin is well-documented by high-resolution sedimentary 

pigment records (Schneider et al., 2018). It has been shown that eutrophication in the Ponte 
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Tresa basin started during the 1940–1950s, and then the lake remained highly eutrophic from 

the 1960s to the present (Sanchini and Grosjean, 2020). Therefore, the Ponte Tresa basin 

provides an ideal study site for investigating the relationship between net burial rates of 

sediment P and the lake’s eutrophication history in the last few decades. The sediments of the 

Ponte Tresa basin are presented in Chapter 3. 

2.1.2 Lake Burgäschi 

Lake Burgäschi is a small postglacial lake at 465 m a.s.l. on the Swiss Plateau (Fig. 2.1). The 

catchment area geologically belongs to the Molasse basin and mostly consists of carbonate-

rich sandstone and mudstone (Schmid et al., 2004). The catchment area of this kettle lake is 

relatively small (~3.2 km2) compared to its maximum water depth of ~31 m (Guthruf et al., 

1999). The landscape was originally dominated by mixed beech (Fagus sylvatica) forests and 

peat bogs but was later intensively shaped by agricultural activities. Today, agricultural areas 

cover ~55% of the total lake catchment (Guthruf et al., 1999).  

Lake Burgäschi sediments exhibit annual laminations for most of the last ~6,800 years (Rey 

et al., 2017). The laminated sediment profile provides an exceptional archive for high-

resolution paleolimnology studies. Limnological monitoring data of Lake Burgäschi covers the 

last 50 years. The lake has been highly productive since the mid-20th century due to 

intensified agricultural activities around the lake. The high lake primary production leads to 

strong O2 depletion in deep waters. For example, according to water profile measurements in 

September 2003, the lake water was completely anoxic at depths greater than 9 m (Guthruf 

et al., 2013). The restoration technique of hypolimnetic water withdrawal started operating in 

1977. However, this treatment has stabilized but not fundamentally improved the lake’s trophic 

state (GSA, 2007; Guthruf et al., 2013). Although hypolimnetic water withdrawal has 

decreased P concentrations in surface waters, its influence on sediment P fractions has not 

been examined. Therefore, it is necessary to explore this effect with sediment P data. 

Importantly, Lake Burgäschi provides a suitable testbed for investigating the response of net 

burial rates of sedimentary P fractions to changes in lake trophy and hypolimnetic redox 

conditions since the 20th century, prior to recent eutrophication. Lake Burgäschi sediments 

were investigated in Chapter 4. 

2.1.3 Soppensee 

Lake Soppensee is a kettle lake in the Swiss Central Plateau (Fig. 2.1). The lake sediments 

began to accumulate at the end of the last glacial period (~15,000 years; Lotter, 2001). It has 

a small surface area (0.227 km2) relative to its maximum water depth (27 m). It is mainly fed 

by groundwater and seasonal surface run-off from a small calcareous sandstone catchment 

of 1.6 km2 (Lotter, 1989).  
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In 2008, a field campaign was carried out in Soppensee, and three parallel cores (So08/01–

03) were retrieved at the deepest site using an UWITEC piston corer (van Raden, 2012). 

Sediment cores of So08-01/2 have been studied for XRD mineralogy (van Raden, 2012), 

terrestrial biomarkers (Gierga et al., 2016), and rock and mineral magnetism (Kind et al., 

2012). Soppensee is a naturally nutrient-enriched lake based on trophic reconstructions from 

diatom assemblages (Lotter, 2001) and chironomids and cladocera (Hofmann, 2001). The 

diatom-inferred epilimnetic total P (DI-TP) concentrations (20–40 μg L-1) suggest mesotrophic 

to eutrophic conditions for most parts of the Holocene (Lotter, 2001). The long-term sediment 

record of Soppensee is presented in Chapter 5.   

2.2 Methods 

This section briefly introduces the methods applied during this project. More details about the 

methods can be found in the corresponding publications (Chapters 3-5). 

2.2.1 Field methods 

In 2008, piston cores (Core So08 3A-C) were recovered from the deepest part of Soppensee 

(van Raden, 2012) and were transferred to the lab in Geological Institute, ETH Zürich. The 

cores were tightly sealed and stored in a dark cold room (~4 °C) before opening. In 2017, 

several short sediment cores (< 1.5 m) were collected from the deepest parts of the Ponte 

Tresa basin of Lake Lugano and Lake Burgäschi using an UWITEC gravity corer (6 cm PP-

tubes). The cores were sealed and transferred into the lab at the Institute of Geography, 

University of Bern and stored in a dark cold room (~4 °C) before opening.  

2.2.2 Non-destructive scanning techniques 

After the cores were split lengthwise in two halves, A and B, surface sediments of the A-half 

cores were described following the method in Schnurrenberger et al. (2003). Then, pictures 

of A-half cores from the Ponte Tresa basin and Lake Burgäschi were taken with a Nikon D80 

digital camera. The A-half cores of the three lakes were used for visual correlation and non-

destructive scanning techniques including x-ray fluorescence (XRF) and hyperspectral 

imaging (HSI). The B-half cores were subsampled for destructive geochemical analyses, e.g., 

P extraction and pigment analysis. 

XRF core scanning was applied on fresh sediment cores of Lake Burgäschi and Soppensee 

for the measurement of the semi-quantitative element composition. For Lake Burgäschi, we 

used an Avaatech XRF core scanner equipped with a rhodium anode and a 25 µm Be window 

at the Swiss Federal Institute of Aquatic Science and Technology and applied a 0.5-mm 

scanning resolution. For Soppensee, we used an ITRAX core scanner equipped with a 

Chromium anode at the Geological Institute, University of Bern and applied a 5-mm scanning 
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resolution. Further scanning settings can be found in Chapters 4 and 5. The elements Mg, Si, 

Al, K, Ti, Rb, P, Fe, Mn, and Ca were selected for the project. The XRF-data are expressed 

as counts per second (cps) for Lake Burgäschi and total counts per area (cts) for Soppensee. 

For sediments of Lake Burgäschi and Soppensee, the HSI scans were made with a Specim 

Ltd. single core scanner equipped with a hyperspectral linescan camera (Specim PFD-CL-65-

V10E) in the visual to near-infrared range (VNIR, 400–1000 nm) following the methodology in 

Butz et al. (2015). Based on spectral endmembers, relative absorption band depth (RABD) 

indices were calculated to quantify the absorbance troughs caused by sedimentary 

chloropigments and bacteriopheophytins in sediments. The spectral index indicative of 

chloropigments (calculated using the method in Schneider et al., 2018) is used as a proxy for 

lake primary production of Lake Burgäschi. The RABD845 spectral index (calculated following 

Butz et al., 2015) represents bacteriopheophytins a and b, a specific biomarker diagnostic for 

purple sulfur bacteria (PSB) that live at the chemocline of stratified lakes. 

2.2.3 Pigment extraction and HSI index-calibration 

To calibrate RABD indices to absolute concentrations of green pigments (chlorophyll-a + 

pheophytin-a) and bacteriopheophytin-a (Bphe-a) in sediments of Soppensee, we followed a 

calibration method in Butz et al. (2015). The pigment extraction procedure in Amann et al. 

(2014) was applied. The pigment concentrations in extracts of selected sediment samples 

were measured by spectrophotometry (Shimadzu UV-1800). HSI-inferred green pigment 

concentrations indicate aquatic primary production (Schneider et al., 2018); HSI-inferred 

Bphe-a indicates the presence of chemocline of stratified water columns and serves as a proxy 

for hypolimnetic anoxia (Butz et al., 2017).  

2.2.4 Chronologies 

At the Ponte Tresa basin, the ages of sediment samples were determined by careful visual 

stratigraphic correlation (layer by layer) to the dated core in Schneider et al. (2018). At Lake 

Soppensee, the chronology of the sediment cores was obtained from the correlation of XRF 

data and sedimentary marker layers to core So08-01/2 dated by Hajdas and Michczyński 

(2010) and van Raden (2012). 

At Lake Burgäschi, the method of 210Pb, 226Ra, and 137Cs radionuclide dating was applied on 

freeze-dried and homogeneous sediments. The radionuclide activities were measured with 

gamma spectrometry at University of Bern. The correction for the total missing inventory of 

unsupported 210Pb was done according to the protocol in Tylmann et al. (2016). Two 137Cs-

and 241Am-peaks serve as the time markers of peak fallouts from nuclear weapons testing in 

1963 and Chernobyl accident in 1986, respectively. The 210Pb chronology was determined 
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using the constant rate of supply (CRS) model (Appleby, 2002). We tested two CRS models: 

one has the chronological marker constraint of 137Cs-peaking in 1963, and the other is without 

any chronological constrains. The time marker of 137Cs-peaking in 1986 was used to test and 

validate the two CRS models.  

2.2.5 Phosphorus fractions extraction and analysis 

Different P fractions in fresh anoxic sediments from the Ponte Tresa basin and Lake Burgäschi 

were determined with a sequential P extraction protocol that was slightly modified from Lukkari 

et al. (2007). The applied extraction procedures separate P forms mainly into loosely 

absorbed-P, redox-sensitive Fe-bound P, metal oxides bound P (Al and nonreducible Fe), Ca-

bound P (apatite-P), and refractory organic P (Lukkari et al., 2007). At the Ponte Tresa basin, 

the potential bioavailability of organic P in sediments was evaluated using a phosphatase 

enzymatic hydrolysis method (Jarosch et al., 2015) after the chemical NaOH-EDTA (0.25 M-

0.05 M) extraction on bulk sediments (Bowman and Moir, 1993). The organic P in NaOH-

EDTA extracts was further characterized into potentially bioavailable (i.e. enzyme-labile) and 

potentially non-bioavailable (i.e. enzyme stabile) fractions.  

The P fractionation in Soppensee sediments principally followed the harmonized protocol 

developed by the standards, measurements and testing (SMT) of the European Commission 

as modified in Ruban et al. (1999) and Ruban et al. (2001) based on Williams et al. (1976). 

The SMT protocol consists of three independent extraction procedures and defines five P 

fractions including non-apatite inorganic P, apatite P, inorganic P, organic P, and total P.  

Inorganic P concentrations in extracts of samples were analyzed spectrophotometrically with 

the malachite green method (Ohno and Zibilske, 1991) and the absorbance measured at 610 

nm using a UV-VIS spectrophotometer. Total P concentrations in extracts of samples were 

measured with inductively coupled plasma mass spectroscopy (ICP-MS). 

2.2.6 Bulk elements analyses 

For Lake Burgäschi sediments, total inorganic carbon (TIC) content was determined by loss 

on ignition (LOI950°C) following the method in Heiri et al. (2001). Concentrations of total carbon 

(TC), total nitrogen (TN), and total sulfur (S) in sediments were determined using an Elementar 

vario EL cube elemental analyzer. Total organic carbon (TOC) content was calculated using 

the equation TOC = TC −TIC. Water contents (%), dry bulk density (g·cm−3), and sediment 

mass accumulation rates (MAR; g·cm-2·y−1) were calculated according to the method in 

Håkanson and Jansson (2002).  
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Highlights 

• Redox sensitive Fe-P (NaBD-Ptot) is the dominant P fraction in the anoxic sediments. 

• Phosphorus in the sediment profiles is mainly present as the inorganic form. 

• Potentially bioavailable organic P (Po) is high in the surface sediments (top 5 cm). 

• Net burial rates of total P and NaBD-Ptot in sediments show significantly negative trends 

with increasing eutrophication levels. 
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3.1.1 Abstract  

Lake Lugano is one of several deep lakes in Switzerland that have not yet recovered from 

eutrophication after large reductions of external phosphorus (P) loadings. Persistent 

eutrophication has been attributed mainly to internal P loadings from sediments. To achieve 

the restoration goals, it is critically important to evaluate the sediment P availability and release 

risk in this lake. In this study, we combined sequential P extraction (four fractions) with enzyme 

hydrolysis to assess distribution characteristics of P forms and potential bioavailability of 

organic P in an anoxic sediment profile from the Ponte Tresa basin of Lake Lugano, southern 

Switzerland. Labile P forms, i.e. mostly redox-sensitive iron bound P and metal oxides bound 

P (Al/Fe-P), comprised ~70% of total P in the sediment profile (1959-2017 CE), suggesting a 

high potential for P release from the anoxic sediment. Potentially bioavailable organic P forms 

(determined by addition of substrate specific enzymes) were considerably higher in the 

surface sediments (top 5 cm), which is very likely to release P in the near future with early 

diagenesis. The net burial rates (NBR) of redox sensitive Fe-P fraction and total P in sediments 

both showed significant decreasing trends from 1959 to 2017 CE, when trophic levels of the 

lake increased from mesotrophic to hypertrophic status. We suggest that, in the Ponte Tresa 

basin, higher eutrophication conditions led to enhanced sediment P release (mainly from 

redox sensitive Fe-P fraction), thus reducing P-NBR in sediments. This study highlights the 

concern that in deep monomictic lakes, eutrophication restoration might be hindered by 

extensive internal P cycling and reduced capacity of sediment P-trapping. 

3.1.2 Introduction 

Eutrophication of aquatic ecosystems has been a global environmental concern for decades, 

especially in freshwater lakes (Cao et al., 2016; Hu et al., 2007; Smith et al., 1999). Excessive 

phosphorus (P) loading is recognized as one of the main causes of eutrophication as P is the 

limiting element for primary productivity in many freshwater lakes (Rothe et al., 2014; Worsfold 

et al., 2016). In many cases, however, management efforts focusing on reducing external P 

loads have resulted in delayed or even failed lake-system recovery from eutrophication 

(Søndergaard et al., 2001). The main cause for this was found to be the development of 

internal P loadings (P release from sediments), which recycles P back to the overlying water, 

thereby enhancing lake primary productivity and adversely affecting the lake trophic status 

(Gächter, 1987; Horppila et al., 2017; Tammeorg et al., 2016). 

Phosphorus accumulated in lake sediments as a potential source of lake eutrophication has 

received considerable attention over the last decades. Numerous studies have applied 

sediment P fractionation to evaluate potential P availability and P release risks into lake water 

(Cavalcante et al., 2018; Jin et al., 2006; Kaiserli et al., 2002; Kangur et al., 2013; Ruttenberg, 
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1992). The rational of these fractionation procedures is that different P forms in sediments 

have different labilities and, thus, potentials to release P back into lake water. For example, 

apatite-P is considered a relatively stable P fraction contributing to permanent P burial in 

sediments of most lakes (Zhang et al., 2013), whereas P bound to redox-sensitive Fe and 

Al/Fe (oxyhydr) oxides can potentially be released under anoxic or varying redox conditions 

(Burley et al., 2001; Lai and Lam, 2008). While inorganic P (Pi) forms in lake sediments were 

the focus of most previous studies, organic P (Po) speciation has been relatively under-studied 

(Mitchell, 2005). However, in recent years, Po has been demonstrated to be a significant 

component in lake sediments and might play the dominant role in sediment P release in some 

eutrophic lakes (Ahlgren et al., 2005; Torres et al., 2014; Zhang et al., 2008). To estimate 

potentially bioavailable Po in lake sediments, enzymatic hydrolysis has been commonly 

considered as a useful approach (Zhu et al., 2018; Zhu et al., 2013). 

In general, the distribution of P fractions in lake-sediment profiles is affected by various factors, 

such as external P inputs, sedimentation rates, sediment P release, sediment composition, 

early diagenetic processes, redox conditions, and other environmental conditions in lakes 

(Carey and Rydin, 2011; Kaiserli et al., 2002; Søndergaard et al., 1996; Trolle et al., 2010). 

Sedimentary P species also largely depend on the lake trophic status (Carey and Rydin, 2011; 

Torres et al., 2014; Torres et al., 2016; Wang et al., 2006). Eutrophication is usually associated 

with changes in physicochemical conditions such as higher pH in lake water and lower redox 

potentials in the water-sediment interface, which can prompt P mobility and change P forms 

in sediments (Cao et al., 2016; Zhang et al., 2009). Heretofore, studies mainly have focused 

on the relationships between surface sediment P-fraction concentrations and various trophic 

status in different lakes (Carey and Rydin, 2011; Gonsiorczyk et al., 1998; Huo et al., 2011; 

Jin et al., 2006; Zhang et al., 2009). To our knowledge, few studies have reported P-fraction 

net burial rates (NBR) in short sediment cores and their temporal responses to the 

eutrophication history of the lake. Moreover, most of the sediment P-fractionation studies were 

conducted in rather shallow polymictic eutrophic lakes (Gao et al., 2005; Søndergaard et al., 

2003). By comparison, sedimentary P fractions in deep, eutrophic monomictic or even 

meromictic lakes remain poorly understood, in particular regarding the time series of P-fraction 

NBR. 

In the present study, we examined a short sediment core from the Ponte Tresa basin (Lake 

Lugano). We have selected this basin because it is a deep, warm monomictic subalpine lake 

and its eutrophication history since the mid-last century is well documented. Importantly, Lake 

Lugano is suffering from a delay of eutrophication recovery despite the reduction of external 

P loads since the 1980s (Lepori and Roberts, 2017). This delay is mainly reflected by presently 

still enhanced primary productivity as well as phytoplankton assemblage typically found in 
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eutrophic waters (Bechtel and Schubert, 2009; Simona, 2003). The recovery from 

anthropogenic eutrophication in Lake Lugano has been hindered by sediment P release 

(Lepori and Roberts, 2017) which is further reinforced by some symptoms of eutrophication 

(e.g. longer stratification and anoxic periods of up to one year) (Lepori et al., 2018). However, 

little is known about the P composition and availability in the sediment profiles of the lake, and 

the question how P fractions NBR in sediments changed with different trophic conditions 

through time. 

The aims of this study were to (1) investigate P fractions and potential bioavailability of Po in 

sediment profiles of the Ponte Tresa basin, and (2) explore how the P-fraction NBR in 

sediments have varied with different trophic levels of the lake over the recent past decades. 

For these purposes, a sequential extraction scheme and enzyme addition assay were 

employed to characterize different P forms and potentially bioavailable Po in sediments. The 

temporal changes of P-fraction NBR were evaluated in relation to the reconstructed trophic 

history of the lake. 

3.1.3 Materials and methods 

Study site 

Lake Lugano is a tectonic-glacial lake situated on the border between Switzerland and Italy in 

the southern Alps (Fig. 3.1a). The lake is fed by a large number of mountain streams and 

rivers (Cannata et al., 2018), with a total catchment area of 565.6 km2 (Fig. 3.1a). The Ponte 

Tresa basin (45°58'N, 8°52'E; Fig. 1b) is the smallest (surface area 1.1 km2) and most shallow 

(maximum water depth at ~51m) basin of Lake Lugano connected to  outlet river Tresa (Fig. 

3.1a) The direct watershed (land area, 5.6 km2) of this basin is mainly made up of calcareous 

rocks, gneiss, and porphyry, and mean water residence time is relatively short  (ca. 0.04 year; 

Simona, 2003). A more detailed description on the morphological and hydrological 

characteristics of the Ponte Tresa basin is reported in Simona (2003). 

The climate in the Ponte Tresa catchment is classified as oceanic with warm summers and 

temperate winters. The basin water remains mostly ice-free during winter season (Franchini 

et al., 2017). The vegetation in the catchment is composed of oak (Quercus petraea and Q. 

robur) and chestnut (Castanea sativa) forests (colline belt) with agricultural fields in the lower 

parts. Residential and industrial buildings dominate on the Holocene alluvial fans to the north 

and west, and around the lake (Fig. 3.1b). The Ponte Tresa basin has a warm monomictic 

mixing regime: it is seasonally stratified between early summer and mid-autumn (Premazzi 

and Marengo, 1982), and experiences typically one mixing event per year, usually in February 

or March (Lepori and Roberts, 2017). 
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Lake Lugano has a long history of nutrient pollution starting as early as in the 1930s-1940s 

(Lehmann et al., 2004). In the Ponte Tresa basin, nutrient enrichments in the lake water started 

after the 1940s due to increasing urbanization and industrialization in the watershed, and the 

first massive algal bloom occurred in 1958 (Schneider et al., 2018). The basin was classified 

as eutrophic according to the measured water phosphate concentrations during 1972-1982 

(mostly between 45-160 μg·L-1 in the late summer months) (Premazzi and Marengo, 1982; 

Rimer, 2017). From ca. 1970 onwards, the basin has been eutrophic to hypertrophic as 

indicated by diatom-assemblages data (Lotter, 2001). The eutrophication in the Ponte Tresa 

basin has led to permanently or temporarily anoxic conditions on the surface of lake sediments 

(Züllig, 1982). In Lake Lugano, high productivity during summer also tends to cause an 

increase of pH and calcite preciptation in the surface waters (Bernasconi et al., 1997). 

To manage eutrophication in Lake Lugano, several remediation measures were implemented 

to reduce external P loadingss, such as the installation of wastewater treatment plants in 1976, 

and a ban on phosphates in detergents in Switzerland in 1986 (Barbieri and Simona, 2001; 

Span et al., 1994). These lake restoration endeavors have resulted in reductions of external 

P loads (from 77 to 36 tons per year) and lake-water P concentration during lake mixing (from 

113 to 38 µg·L-1) in the southern basin of the lake from the early 1980s until the last decade 

(2006-2015) (IST-SUPSI, 2016). Nonetheless, primary productivity in the lake remains at high 

levels and, in the southern basin of Lake Lugano (connected to Ponte Tresa basin), annual 

primary production remained as high as > 400 g C· m−2·y−1 between 1983 and 2014 (Franchini 

et al., 2017). 
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Figure 3.1: Study site. (a) An overview of the watershed of Lake Lugano, with the maps of Lake 

Lugano (in the dark blue color), the Ponte Tresa basin (red rectangle), and Switzerland (left inset). (b) 

Bathymetric map of the Ponte Tresa basin. The black asterisk indicates the coring site (color figure 

online); Grey areas around the lake indicate dwellings, and green areas forests. The figure was adapted 

from Schneider et al. (2018). 

Sediment coring and sampling 

In September 2017, several short sediment cores were collected from the depocenter  (i.e. 

the deepest point where the sediment surface is well preserved) of the Ponte Tresa basin 

using a UWITEC gravity corer (45°58’00.4’’N, 8°51’56.5’’E, Fig. 3.1b). After the cores were 

collected, they were tightly sealed, kept in a cooling box, and , within 5 hours , stored in a dark 

cold room (~4 °C).  

The sediment core selected for this study (PTRE 17-2) was 105 cm long. It was stored for two 

months before opening. After opening and splitting lengthwise, one-half core (PTRE 17-2-A) 

was transferred immediately into a glove box with an anoxic atmosphere. Sampling in the 

glove box was done in a nitrogen (N2) atmosphere to protect sediment samples from oxidation 

and possible changes in P forms (Lukkari et al., 2007a; Lukkari et al., 2007b). The sediments 

were continuously sampled from top 0 to 37.5 cm in 2.5 cm intervals. The fresh sediments for 

each sample slice were homogenized. After sampling the sediment for sequential P extraction, 

the remaining sediment was freeze-dried for water contents measurements and NaOH-EDTA 

extraction. The other half core (PTRE 17-2-B) was stored in the cold (4°C) conditions. After 

the sediment surface became oxidized and  varves were more visible, core pictures were 

taken with a Nikon D80 digital camera for visual stratigraphic correlation and chronology. 

Sequential P extraction   

The P-fractionation extraction protocol was slightly modified from the method described by 



Chapter 3: A case study from the Ponte Tresa basin 

 40 

Lukkari et al. (2007a). In our procedure (Fig. 3.2), P in fresh sediments (corresponding to ~0.4 

g dry weight) was sequentially extracted by 50 mL extractants into four different fractions (F1 

to F4). The first two steps (F1 and F2) were performed in the absence of oxygen (N2 

atmosphere). Fraction 1 was extracted with 0.46M sodium cloride (NaCl) (ACS grade, Carl 

Roth GmbH&Co.), fraction 2 with 0.11 M sodium dithionite (Na2S2O4) (assay (iodometric) ≥87 

%, Merck KGaA) in 0.11 M sodium bicarbonate (NaHCO3) (ACS grade, Merck KGaA) buffer 

(pH 7.0) which is referred to later as NaBD, fraction 3 with 0.1 M sodium hydroxide (NaOH) 

(R.G. grade, Hänseler AG), and fraction 4 with 0.5 M hydrochloric acid (HCl) (ACS grade). 

Extractant solutions were all prepared using deionized and filtered water (Merck MilliQ-water). 

All extractions were performed in triplicates for each sediment slice. All extraction steps 

described in Fig. 3.2 were carried out in Corning® 50 mL centrifuge tubes at room temperature 

using an orbital shaker table (400 rpm). The extraction time depended on the extractants (from 

1 to 18 h, Fig. 3.2), and all rinse steps were 15 min. After each extraction and rinsing step, 

supernatant was seperated by centrifugation at 4000 rpm for 15 min at room temperature. We 

made the following adjustments compared to the originally published extraction method 

(Lukkari et al., 2007a). Firstly, the extraction procedure was ended after the F4 fraction 

because, in our study, we are not interested in the residuals after F4 fraction, which is mostly 

refractory organic P accoring to Lukkari et al. (2007a); Secondly, we did not aerate the 

supernatants of NaBD-extracted samples prior to colorimetric quantification of soluble reactive 

P, as recommended in the original method. The aeration procedure was skipped because we 

used the malachite green method (Ohno and Zibilske, 1991) instead of the molybdenum blue 

method to determine the soluble reactive P concentrations in all extracts (Lukkari et al., 

2007a). Tests showed that sample aeration between 0 to 4 hours had no effect on the 

quantified P concentrations in NaBD extracts (Fig. S3.1a-c in Supplementary data). In the 

malachite green method, decomposition products of dithionite in aerobic aqueous solutions 

have no effect on malachite green and the phosphomolybdate complex and thus, no 

interference with spectrophotometric analysis of soluble reactive P (Barberis et al.,1998). 

Lastly, P quantification in all obtained extracts (F1 to F4) was perfomed in the unfiltered 

samples. Pre-tests comparing colorimetrically determined P concentrations in both unfiltered 

and filtered samples (0.45 μm nitrocellulose membrane) from F1 to F3 fractions showed an 

average difference of 1.3% (data not shown), suggesting that particulate P (undissolved P) in 

the extracts was minor. This appears to agree with previous findings in the Ponte Tresa basin 

that a great part of particulate P is mineralized at the water-sediment interface (Premazzi and 

Marengo, 1982). 

We assigned the four obtained P fraction (F1 to F4) to different P forms, according to the 

literature. NaCl-Ptot (F1) represents loosely adsorbed P on particle surfaces of sediments and 
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in pore water. This P fraction can easily be released from the interstitial water to overlaying 

waters, and thus be available for algae growth (Jin et al., 2006; Ribeiro et al., 2008). NaBD-

Ptot (F2) includes redox-sensitive fractions of P bound to hydrated oxides, mainly those of Fe. 

It has been confirmed that, under anoxic conditions, this fraction is highly labile and can be 

released from sediments to the lake water where it is available for algae growth (Ding et al., 

2016; Rydin, 2000). NaOH-Ptot (F3) is partly inorganic P (NaOH-Pi) bound to metal oxides 

(mainly Al, Fe) and partly organic P compounds (NaOH-Po). NaOH-Pi is potentially labile and 

may release P under anoxic or high pH environments (Rydin, 2000). NaOH-Po contains 

moderately labile Po in fulvic acids and refractory Po bound with humic acids (Zhu et al., 2013). 

The NaOH-Po fraction could also be bioavailable when labile parts of Po are released and 

subjected to enzymatic hydrolysis (Monbet et al., 2007). HCl-Ptot (F4) is usually referred to as 

apatite-P and P bound to carbonates sourced from either co-precipitation with endogenic 

carbonates or from allochthonous lithogenic material (Gonsiorczyk et al., 1998; Kaiserli et al., 

2002). This fraction is mostly considered as non-bioavailable and “permanently” buried P pool 

in lake sediments but it can dissolve in acidic environments (Wang and Liang, 2015). 

We chose the described procedure because it highlights the redox sensitive Fe-bound P and 

organic P fractions (Lukkari et al., 2007a) which are crucial P pools in deep lakes with 

seasonally anoxic conditions in the hypolimnion (Gu et al., 2016). Sediments for extraction 

were shielded from oxygen until the start of step F3 of the procedure (Fig. 3.2) to avoid 

alterations in P and Fe fractionations due to oxidation artifacts (Lukkari et al., 2007a). 

However, this method only provides information about total Po in sediments. It is unclear to 

what extent the total Po in sediments is potentially bioavailable. Thus, enzymatic hydrolysis 

(see Section 3.4.4) was performed to estimate hydrolyzable and, thus, potentially bioavailable 

Po in sediment samples. 
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Figure 3.2: Sequential P extraction protocol. Sodium dithionite (Na2S2O4) dissolved in 0.11 M sodium 

bicarbonate (NaHCO3) buffer (pH 7.0) henceforth is termed as NaBD. Extraction steps inside the 

dashed rectangle were carried out in a nitrogen (N2) atmosphere (Color figure online). 

NaOH-EDTA extraction and enzymatic hydrolysis  

The extraction with 0.25M NaOH and 0.05M ethylenediamine tetraacetic acid (EDTA) was 

used for total Po extraction on bulk sediments (Bowman and Moir, 1993; Turner et al., 2005; 

Zhang et al., 2009). For that, 30 ml NaOH-EDTA (0.25 M-0.05 M) solution was used for total 

Po extraction on freeze-dried and homogenized bulk samples (~3 g). Total Po (NaOH-EDTA 

Po) was quantified as the difference between total P and inorganic P in NaOH-EDTA extracts. 

The Po in NaOH-EDTA extracts was further characterised into potentially bioavailable (i.e. 

enzyme-labile) and potentionally non-bioavailable (i.e. enzyme stabile) Po. In principle, the 

NaOH-EDTA extract is treated with a combination of different Po hydrolysing phosphatase 

enzymes (Jarosch et al., 2015). The increase in Pi in the extract is indicative on the amount of 

Po hydrolysed by the substrate specific enzymes. By using a combination of different 

phosphatases the potential bioavailabilty of Po can be estimated. Three different enzymes (an 

acid phosphatase (Sigma P1146), a phosphodiesterase (nuclease, Sigma N8630), and a 

phytase (Ronozyme ® HiPhos (M)) were used in combination to determine enzyme-labile Po 

in the NaOH-EDTA extract. Enyzme dillutions were chosen to ensure full hydrolysis of added 

model compounds (glycerol phosphoate (Sigma G6501), deoxyribonucleic acid (Sigma 
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D3159) and phytic acid (Simga P8810)) during incubation at 37°C for 24h. Incubations were 

performed on 96-well plates with eight analytical replicates per sediment sample under sterile 

conditions. 

Extracts and sediment sample analysis  

Phosphorus extracted in each fraction (F1-F4, Fig. 3.2) and NaOH-EDTA extracts was divided 

into inorganic P (Pi) and organic P (Po). The Pi concentrations were measured in the unfiltered 

samples colorimetrically by the malachite green method (Ohno and Zibilske, 1991) which 

quantifies the same Pi as the traditional molybdenum blue mothed (Murphy et al., 1962), yet 

with a higher accuracy at lower Pi concentrations (Uemura et al., 2010). We used 4 mL 

polystyrene macro-cuvettes with a 10 mm light path, and determined the absorbance at 610 

nm using a UV-1800 UV-VIS spectrophotometer (Shimadzu Europe GmbH, Germany). 

Calibration curves for all colorimetrial analyes were made including the respective extract 

matrixes. Total P in extract samples was measured by inductively coupled plasma mass 

spectroscopy (7700x ICP-MS) (Agilent Technologies, Germany) after the dilution with nitric 

acid (HNO3) to reach a final concentration of 1% v/v HNO3 in Corning® 15 mL centrifuge tubes. 

The Po in extracts was determined by the difference between total P and P i. Total P in 

sediments was obtained from the sum of total P of the four fractions (F1-F4; Fig. 3.2). In the 

same way, total Pi and total Po in sediments were calculated by the sum of Pi and Po of the 

four fractions, respectively. 

Water contents (%), dry bulk density (g·cm-3), and sediment mass accumulation rates (MAR; 

g ·cm-2·· y-1) were determined according to the method of Håkanson and Jansson (1983). The 

concentrations and net burial rates NBR (fluxes) of P fractions in sediments are expressed as 

mg·kg-1 DW (dry weight) and μg·cm-2·yr-1, respectively. We calculated NBR of all P fractions 

by multiplying sediment MAR and P-fraction concentrations in sediments. 

Sample dating  

The sample ages of Core PTRE 17-2 were based on careful visual stratigraphic correlation 

(layer by layer) with the chronology of Core PTRE 15-3 (Schneider et al., 2018) which was 

dated with varve counting and historically documented flood-layer markers. Characteristic 

marker layers (e.g. flood layers, algae bloom layers, conspicuously thick varves) were 

identified in Core PTRE 17-2 and used for precise correlation between the two cores (Fig. 

3.3). The mean age of each sample was obtained by averaging the ages of the top and bottom 

depth of the sample. 
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Data analysis  

Statistical analysis was performed using R statistical computing (R Development Core Team, 

2017). Significant trends in time series of NBR of different P fractions and TP in sediments 

were tested using univariate Mann-Kendall's trend test at the 5% significance level (R-package 

‘‘Kendall’’; McLeod, 2005). 

3.1.4 Results  

Sample ages 

The sediment core of PTRE 17-2 correlated well with the core PTRE 15-3-A from Schneider 

et al. (2018) but was less compacted (Fig. 3.3). The mean age of each sample with the age 

uncertainty is shown in the right table of Fig. 3.3. The average resolution of each sample is 

approximately 4 years and the sediment sample in the lowest part analyzed (35-37.5 cm) 

dates back to 1959 CE (Common Era). 

 

       Figure 3.3: Core picture and sediment chronology. The left side: RGB (red, green and blue) contrast 

enhanced sediment core picture of Core PTRE-15-3-A (Schneider et al., 2018), high-resolution true 

color picture of Core PTRE 17-2 (oxidized sediment surface) and pictograph of the top 0-37.5 cm of 

Core PTRE 17-2. Red lines between two cores indicate the stratigraphic marker layers; yellow colors 

highlight the detrital layers from the visual comparison with Core PTRE-15-3-A (Color figure online). 
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The table on the right side describes the mean age of each sample including the uncertainties (PTRE 

17-2), derived from visual stratigraphic correlation (layer by layer) with the chronology of Core PTRE 

15-3 (Schneider et al., 2018).  

Sequentially extracted P fractions in sediment profiles 

Total P concentrations of all P fractions (F1-F4), and Pi and Po concentrations of each fraction 

in sediment profiles (0-37.5 cm) are shown in Fig. 3.4. Total P (TP) concentration in sediments 

ranged from 972 to 5143 mg·kg-1 (Fig. 3.4a). Sedimentary P was mainly present in the 

inorganic form (Fig. 3.4b-e), with total Pi concentrations ranging from 739 to 4527 mg·kg-1 

(average ~79% of TP in sediments). In the NaBD-Ptot and HCl-Ptot fractions, most of the P was 

present as Pi (average 83% and 80%, respectively), whereas in the NaCl-Ptot and NaOH-Ptot 

fractions, the proportions of Pi were relatively lower (average 70% and 52%, respectively). 

The rank order of P fractions in the whole sediment profile was NaBD-Ptot (472-2677 mg·kg-1, 

36-60% of TP in sediments) > NaOH-Ptot (325-2000 mg·kg-1, 20-39% of TP) > HCl-Ptot (134-

613 mg·kg-1, 7-38% of TP) > NaCl-Ptot (34-209 mg·kg-1, 2-10% of TP), as seen in Fig. 3.4b-e 

(relative proportions are given in Fig. S3.2 in Supplementary data). 

The vertical variation of TP and P-fraction concentrations in sediment profiles show that TP, 

NaBD-Ptot and NaOH-Ptot fractions exhibited a generally similar pattern (Fig. 3.4a, c, and d). 

The concentrations of TP, NaBD-Ptot and NaOH-Ptot sharply increased from the bottom (35-

37.5 cm, 1959 CE) to a maximum value at 27.5-30 cm (1969 CE). They had a generally 

decreasing trend towards the topmost sediments, except for a short but distinct peak at a 

depth of 5-7.5 cm (2004 CE). In contrast, NaCl-Ptot and HCl-Ptot showed a different structure 

(Fig. 3.4b and 4e). NaCl-Ptot increased from the bottom depth to a peak at 17.5-20 cm (1987 

CE), and then declined towards the surface sediments. HCl-Ptot decreased from the bottom 

until a depth of 15-17.5 cm (1990 CE) and then, after a sharp peak at 10-12.5 cm (ca. 1998 

CE), declined towards the surface sediments. 
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Figure 3.4:  Vertical profiles of P fractions concentrations. (a) The total phosphorus concentrations 

with stacked four P fractions. (b-e) The Pi (inorganic P) and Po (organic P) concentrations of the four P 

fractions in sediments. Error bars represent one standard deviations of three analysed replicates. The 

concentration is shown as the mean value of the three replicates in dry weight of sediments (DW); note 

the different scales for the x-axes (Color figure online). 

Organic P and enzymatic hydrolysis of Po from NaOH-EDTA extraction on bulk 

sediments  

The average recovery of NaOH-EDTA Po in all sediment samples was 124%, compared with 

the sum of Po from the sequential P extraction (F1-F4, Fig. 3.2; Table S3.1 in Supplementary 

data), suggesting that a large proportion of sediment Po was extracted with the NaOH-EDTA 

procedure. NaOH-EDTA Po concentrations in sediments ranged from 162 mg·kg-1 to 991 

mg·kg-1, which contributed to 13-57% of NaOH-EDTA TP in sediments (Fig. 3.5a and Fig. 
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S3.3b in Supplementary data). The vertical variations of NaOH-EDTA Po in sediments 

throughout the profile did not follow a discernable pattern (Fig. 3.5a). However, the sediments 

above the depth of 32.5 cm obviously contained more NaOH-EDTA Po than those in the 

bottom layers (32.5-37.5 cm). 

Enzyme labile Po concentrations varied between 56 and 730 mg·kg-1, with contributions of 9-

91% to NaOH-EDTA Po (Fig. 3.5b). In the sediment profile (Fig. 3.5a), enzyme labile Po also 

displayed higher contents above the depth of 32.5 cm. The concentrations of enzyme labile 

Po remained relatively constant in the middle-section sediments (7.5-27.5 cm), but then 

showed an increasing trend towards the topmost sediments (0-7.5 cm). 

Phosphorus fractions net burial rates (NBR) in sediments during 1959-2017 CE 

We define four stages in the time series of net burial rates (NBR) of all P fractions and 

sedimentary TP from 1959 to 2017 CE (Fig. 3.6b), based on the differences of the P data 

among different stages.  

In Stage I (1959-1963 CE; 37.5-32.5 cm), most of the P fractions and TP in sediments had 

high NBR, except for NaCl-Ptot, NaOH-Po, and enzyme labile Po with low NBR values. This 

stage was marked with multiple flood layers in sediments and considerably high mass 

accumulation rates (MAR) with values exceeding 0.08 g·cm-2·yr-1. 

In Stage II (1963-1973 CE; 32.5-25 cm), NBR of NaBD-Ptot, NaOH-Pi, enzyme labile Po and 

TP of sediments remained high, whereas NaCl-Ptot, NaOH-Po, and HCl-Ptot had generally low 

NBR values. The MAR values declined from Stage I, remaining at ~ 0.07 g·cm-2·yr-1. 

In Stage III (1973-2004 CE; 25-7.5 cm), compared with Stage II, NBR of labile P fractions, 

enzyme labile Po and TP of sediments decreased. At the same time, NaCl-Ptot and NaOH-Po 

NBR increased. HCl-Ptot and enzyme stabile Po NBR remained mostly at the same levels as 

in Stage II. After 1994 until 2004 CE, all the P fractions and TP NBR increased, except for 

enzyme stabile Po with a decrease at ~ 2000 CE. The MAR in this section was mostly constant 

except for a sharp increase after 1994 CE. 

In Stage IV (2004-2017 CE; 7.5-0 cm), enzyme labile Po and NaOH-Po showed enhanced 

NBR values, whereas NBR of other P fractions and TP of sediments decreased to the lowest 

levels. The MAR firstly declined but increased again after ~ 2010 CE. 

The results from the univariate Mann-Kendall trend test are shown in Table S3.2 (in 

Supplementary data). From 1959 to 2017 CE, we observe significantly decreasing trends in 

the NBR of sediment TP and NaBD-Ptot fraction (TP: Kendall Score (S) = −37, p-value = 0.04; 

NaBD-Ptot: S = −38, p-value = 0.04). For other P fractions, no significant trends in NBR were 
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found (p-values > 0.05). 

3.1.5 Discussion 

Phosphorus composition in sediments of the Ponte Tresa basin (1959-2017 CE) 

NaBD-Ptot is the overall largest P-fraction in sediments of the Ponte Tresa basin (since 1959 

CE). According to Ribeiro et al. (2008) and Ding et al. (2016), this is the most important fraction 

for sediment P release to lake water under anoxic conditions. Indeed, the recent sediments in 

the Ponte Tresa basin are anoxic (Schneider et al., 2018; Züllig, 1982), implying that there is 

still a high potential for sediment NaBD-Ptot release back to the lake water supporting 

continuing eutrophication. 

NaOH-Ptot  is the second largest P form in our sediments. The inorganic part of this fraction 

(i.e. NaOH-Pi) also constitutes a relatively large part of sediment TP (~24%). The anoxic 

sediment conditions of the Ponte Tresa basin could also prompt P release from NaOH-Pi. 

However, P release from NaOH-Po is more related to organic matter degradation in sediments 

(Huo et al., 2011; Zhu et al., 2013). When the mineralization process of organic matter in 

sediments of Ponte Tresa increases due to a higher trophic level of Lake Lugano (Barbieri 

and Mosello, 1992), NaOH-Po might be released from sediments. 

HCl-Ptot is the third largest P form with generally constant contributions to sedimentary TP 

(Fig. 3.4a and Fig. S3.2 in Supplementary data), which are within the range of HCl-Ptot  

proportions of TP for calcareous lake sediments (Gonsiorczyk et al., 1998; Jin et al., 2006; 

Kaiserli et al., 2002; Zhang et al., 2013). The calcareous rocks in the watershed (Harloff, 1926; 

Salmaso et al., 2007) and endogenic Ca-P formation during CaCO3 precipitation in the lake 

are possibly responsible for the high contents of sediment HCl-Ptot in this basin. Nevertheless, 

this fraction is minor and relatively stable in sediments compared with NaBD-Ptot and NaOH-

Ptot. HCl-Ptot is thought to be released only in low pH environments (pH < 6) (Jin et al., 2006). 

In Lake Lugano, pH in the surface waters was observed to vary from 7 to 9 during the annual 

cycle (Bernasconi et al., 1997). The pH in the hypolimnion was measured between 6 and 7 

during summer stratification of the Ponte Tresa basin (Rimer, 2017), which is unlikely to favor 

sediment Ca-P release at the water-sediment interface. 

NaCl-Ptot is the smallest P fraction in the sediments under investigation. NaCl-Ptot, NaBD-Ptot, 

and NaOH-Pi fractions are generally considered as potentially reactive or labile P forms in lake 

sediments and, therefore, critically important P sources for internal P loadings (Cavalcante et 

al., 2018). As the concentrations of NaCl-Ptot were very low (Fig. 3.4a), NaBD-Ptot and NaOH-

Pi represent the major labile-P fractions in the present study. Therefore, our results imply that 

under anoxic conditions, there is still a large proportion of labile P present in the sediments 
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(~70% of TP, 1959-2017 CE) which might, potentially, be released as internal P loads to the 

overlying water. 

Distribution and potential bioavailability of Po in sediment profiles 

Organic P (Po) production within Lake Lugano is predominantly derived from autochthonous 

organic matter (Bechtel and Schubert, 2009; Bernasconi et al., 1997) and increases, in 

principle, with higher primary productivity. However, Po preserved in sediment profiles is, 

instead, the net balance of Po sedimentation, which is the result of Po deposition to the 

sediment-water interface and Po recycling back to lake water or diffusion into deeper layers 

after early diagenesis and Po degradation over time (Matisoff et al., 2016; Zhu et al., 2018). 

Microbial phosphatase enzymes have been found in sediments of numerous reported lakes 

and may play an important role in the P release from anoxic breakdown of sedimentary Po 

(Torres et al., 2016; Zhang et al., 2007; Zhu et al., 2018). Additionally, the decomposition of 

organic matters can alter the pH-redox conditions within the sediments facilitating the P 

release to pore water (Yuan, 2017). 

Because of the natural degradation of Po during diagenesis (Ahlgren et al., 2006; Zhang et al., 

2013), declines of Po with increasing sediment depth have been widely observed in 

mesotrophic-eutrophic lakes, such as Lake Erken (Ahlgren et al., 2005; Reitzel et al., 2007), 

Lake Taihu (Ding et al., 2013), Lake Dianchi (Zhu et al., 2018), and also in the Baltic Sea 

(Ahlgren et al., 2006). In the Ponte Tresa basin, we observed no clear declines in 

concentrations of NaOH-EDTA Po with greater sediment depth (Fig. 3.5a) and total Po of 

sediments from sequential P extraction (Fig. S3.4 in Supplementary data). This may suggest 

that no intense diagenetic changes occurred over time or the mineralization of Po was 

coincidently balanced by its sedimentation. Nevertheless, considerably higher Po 

concentrations in the top 0 to 32.5 cm sediments can be likely attributed to increased Po- and 

OM-sedimentation with eutrophication. 

In the Ponte Tresa basin, enzyme labile Po (i.e. potentially bioavailable Po) concentrations 

showed a strong decrease from the surface sediments to a depth of 5 cm (Fig. 3.5a), which 

might be associated with the early degradation of fresh organic matters. According to Torres 

et al. (2016) and Wobus et al. (2003), microbial phosphatase activity in surface sediments was 

higher than in deeper layers from many reported lakes in the USA and Europe. Therefore, it 

appears likely that the recently-sedimented labile Po in sediments of the Ponte Tresa basin 

would be degraded by microbes and, eventually, diffuse back to the lake water. The relatively 

constant enzyme labile Po in the middle-section sediments (7.5-27.5 cm) is closely related to 

similarly stable NaOH-EDTA Po contents (Fig. 3.5a). This could be explained by the fact that 

at greater depth, microbial phosphatase activities and corresponding enzyme hydrolysis of Po 
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have been stabilized in sediments (Reitzel et al., 2007). Interestingly, the maximum contents 

of enzyme labile Po existed at greater depths (27.5-32.5 cm). Several studies have suggested 

that Al/Fe (oxyhydr) oxide minerals in sediments can absorb and stabilize Po in-situ and, thus, 

protect Po from extracellular enzymes hydrolysis (Ruttenberg and Sulak, 2011; Zhu et al., 

2018). The high amounts of NaBD-Ptot and NaOH-Pi fractions in these layers (27.5-32.5 cm) 

(Fig. 3.4c and d) indicated high sedimentary Al/Fe contents, which might help stabilize and 

preserve labile Po in sediments. The high Al/Fe contents can possibly explain the high contents 

of enzyme labile Po in these deeper layers. 

Relationship between P-fraction NBR in sediments and lake trophic state since 1959 

CE 

In the Ponte Tresa basin, the eutrophication history since the 1920s is very well documented 

by sedimentary green pigments data (Chl-a and Pheophytin-a) at almost annual resolution 

(Fig. 3.6a) (Schneider et al., 2018). In our study, the time-series of P-fraction NBR only 

focused on the period when lake mesotrophic conditions changed to eutrophic or even 

hypertrophic conditions around 1960 CE. Based on our results, during the last 50-60 years, 

we observed marked differences in the NBR of different P forms and TP in sediments among 

Stages I-IV (Fig. 3.6b), which generally coincided with different lake trophic conditions since 

1959 CE. 
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       Figure 3.5: Vertical profiles of organic P (Po) concentrations. (a) Enzyme labile Po and enzyme stabile 

Po concentrations and (b) their average proportions in NaOH-EDTA extracted total Po in sediments 

(Color figure online). Error bars show one standard deviation of eight analytical replicates.  

In Stage I and Stage II (1959-1973 CE), overall increasing green pigments concentrations and 

fluxes (Fig. 3.6a) indicate that the lake was transitioning from mesotrophic to eutrophic 

conditions (i.e., the trophic level was lower than today but increasing). This is also supported 

by the study from Salmaso and Mosello (2010). During this period, NBR of TP in sediments 

and labile P fractions (here NaBD-Ptot, NaOH-Pi and enzyme labile Po) were clearly higher. 

This might result from high external P loads and relatively less sediment P release. During this 

time period (1959-1973 CE), large external P-loadings were reported from Lake Lugano 
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(Lehmann et al., 2004), which could have resulted in enhanced P sedimentation to surface 

sediments. Meanwhile, the Ponte Tresa basin had shorter summer stratification/anoxic 

periods (compared to Stage III) and oxic conditions in the hypolimnion persisted during winter 

(Züllig, 1982). This should, in principle, have caused less P release from sediments to lake 

water, and resulted in less dissolved P accumulation in the hypolimnion. Consequently, more 

NaBD-Ptot and NaOH-Pi were preserved in sediments. Moreover, the high NBR of potentially 

bioavailable Po was likely related to Al, Fe oxides/minerals as discussed above. However, 

during Stage I (1959-1960 CE), high NBR of green pigments and some P fractions (e.g. NaBD-

Ptot, NaOH-Pi) might be biased through the presence of flood layers and related sediment 

focusing (including erosion of littoral sediments), both giving rise to very high sediment mass 

accumulation rates (MAR). High values of MAR, in turn, would result in high NBR of sediment 

P and green pigments, although the concentrations of both were relatively low (Fig. 3.4 and 

Fig. 3.6a). 

In Stage III (1973-2004 AD), the Ponte Tresa basin was in highly eutrophic to hypertrophic 

conditions, which is reflected by high levels of green pigments fluxes and several algal blooms 

(the peaks of green pigment fluxes; Fig. 3.6a). Similar conclusions were reported from studies 

of Lotter (2001) and Bechtel and Schubert (2009). It is noteworthy that, under severely 

eutrophic conditions, NBR of NaBD-Ptot, NaOH-Pi and TP in sediments were generally lower 

than before (Stage II). This result may be explained by a combined effect of enhanced P 

release from sediments due to ongoing eutrophication and progressing hypolimnetic anoxia. 

In seasonally anoxic lakes (e.g. the Ponte Tresa basin and the southern basin of Lake 

Lugano), and when lake productivity remains sufficiently high, it is very likely to engender 

prolonged stratification (up to one year) with more severe anoxia at the water-sediment 

interface (Lepori et al., 2018). Anoxic conditions favor sediment P release from NaBD-Ptot and 

NaOH-Pi fractions and, as a result, the NBR of these two fractions in sediments declined 

compared with Stage II. Moreover, Al/Fe oxyhydroxides would have decreased in the 

sediments of this section compared with Stage II, given the low amounts of Al/Fe bound P 

fractions (i.e. NaBD-Ptot and NaOH-Pi). Therefore, extracellular phosphatase activity in 

sediments has been possibly less affected by the protection of Po by Al/Fe oxyhydroxides. 

Consequentially, Po hydrolysis in the sediment layers of Stage III (maximum eutrophication) 

was likely enhanced. This might be the main reason for lower amounts of enzyme labile Po 

preserved in sediments during Stage III. The enhanced NBR of TP and most of the P fractions 

during the upper part of Stage III (1994 to 2000 CE, 7.5-15 cm depth) is also noteworthy, but 

it seems to be influenced by increased MAR (possibly not all related with flood layers) whereas 

the concentrations of P fractions and TP in sediments changed with little variation (Fig. 3.4). 

In Stage IV (2004-2017 CE), lake productivity slightly decreased until 2006 CE (see green 
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pigment fluxes, Fig. 3.6a), but the basin became again more eutrophic up to the present. In 

the 1980s until the last decade, external P loadings in the entire Lake Lugano have been 

reduced by ~ 50% (Barbieri and Simona, 2001; Lepori and Roberts, 2017). In the Ponte Tresa 

basin, the contrast between higher eutrophic status and low P NBR in sediments would 

suggest a substantial contribution of internal P loads from sediments under high eutrophic 

levels, which in turn sustained or augmented on-going eutrophication. This process was 

possibly further favored by complete mixing events after a long stratification period 2006-2009 

CE (Schneider et al., 2018; Veronesi et al., 2002) when P from the hypolimnion was brought 

up to the photic zone. Such high internal P loads were also observed in the southern basin of 

Lake Lugano, where they were estimated to contribute about 40% to the turnover TP in the 

lake water during the last decade (Lepori and Roberts, 2017). 

Overall, we found significantly decreasing trends in NBR of sediment TP and NaBD-Ptot from 

1959 to 2017 CE, the time with increasing eutrophic levels in the Ponte Tresa basin. Our 

results might indicate that, in such a deep seasonally-stratified lake as the Ponte Tresa basin, 

higher eutrophication levels would be associated with enhanced sediment P release (mainly 

from the Fe-P fraction). This can serve as a plausible explanation for the reduced sediment 

TP and NaBD-Ptot NBR in the past few decades. On the other hand, our study suggests an 

importance of sediment P release (internal P loadingss) for the delayed recovery of 

eutrophication in Lake Lugano, similarly to the conclusions in Lepori and Roberts (2017). 

Furthermore, during the last few decades climate warming has influenced Lake Lugano's 

restoration by affecting the surface water temperature and mixing regime of the lake (Lepori 

and Roberts, 2015). One implication of this study is that the warming scenario would very 

likely enhance stratification in the Ponte Tresa basin and more internal P loadings might be 

expected. 
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       Figure 3.6: Time series of P fractions net burial rates in sediments of the Ponte Tresa basin. 

(a) Green pigments (Chl-a + Phe-a) concentrations (green color) and fluxes (blue color) recorded in 

sediments of the Ponte Tresa basin from 1920 to 2015 CE (Schneider et al., 2018); RABD590-730 

represents the hyperspectral scanning image (HSI) inferred green pigments. (b) The sediment mass 

accumulation rates (MAR) and net burial rates (NBR) of all P fractions and total P (TP) in sediments of 

the Ponte Tresa basin between 1959 and 2017 CE. All of the P fractions NBR data except the year of 

1960 (flood layer at 32.5-35 cm depth) were used. The light yellow shading highlights flood layers in 

the Core PTRE 17-2. Green horizontal lines separate the four stages (Stage I to IV) (Color figure online). 

3.1.6 Conclusions 

The P-fractionation results show that labile P fractions (mainly NaBD-Ptot and NaOH-Pi) were 

the dominant forms (~70% of TP) in sediments of the Ponte Tresa basin (1959-2017 CE). The 

anoxic sediment environment highlights high potentials for P-release from the labile P fractions 

sustaining continuing eutrophication of the lake. The potentially bioavailable Po in deeper 

layers seems to be stabilized, but high concentrations of enzyme labile Po in the top-most 

sediments (0-5 cm) are very likely to degrade and release P in the future. To the best of our 

knowledge, this study is the first to investigate the relationship between P-fraction NBR in 

sediments and historical lake eutrophication of the last few decades in a deep, eutrophic lake. 

It is interesting to observe that NBR of sediment TP and the NaBD-Ptot fraction showed 

significantly decreasing trends under more eutrophic conditions since the 1960s. We further 

suggest that, in seasonally stratified deep lakes with hypolimnetic anoxia, of which the Ponte 
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Tresa basin is an example, higher eutrophication levels could lead to enhanced sediment P 

release and, thus, reduce P NBR in sediments. This study calls for the concern that, under 

such conditions, the recovery from anthropogenic eutrophication might be slow and difficult 

because of extensive internal P cycling and reduced capacity of sediment P-trapping. This 

study reveals the importance to adopt effective measures to minimize internal P-fertilization in 

lake restoration programs. The labile-phosphorus data presented by this study supports the 

geochemical approaches to reduce P release from sediments by applying aluminum and iron 

as “capping” materials. 
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3.2 Supplementary materials 

 

 

Figure S3.1: Pre-test for the effect of aeration on the calibration curve for colorimetric soluble reactive 

P quantification using NaBD extractant (fraction F2) as matrix. The NaBD extractant was either non-

aerated or aerated for 1 hour and either 0.2 mL (Fig. S3.1a) or 0.4 mL (Fig. S3.1b) NaBD were added 

to the cuvettes with a final volume of 2 mL per colorimetric cuvette. Note that aeration had no effect on 

slope and intercept of the calibration curve. NaBD extractants may hold minor P impurities as indicated 

by a slightly higher intercept in Fig. S3.1b. However, when preparing the calibration curve for 

colorimetric soluble reactive P quantification, the same amount of NaBD matrix was added to the 

calibration curve as was used for quantification in the cuvettes. Thus, these minor impurities are 

accounted for. Fig. S3.1c shows the effect of different aeration times of the fraction F2 extractant NaBD 

(1 to 4 hours) on the calibration curve for colorimetric soluble reactive P quantification. A 1.2 mL matrix 

aliquot was used in each cuvette with a final volume of 2 mL for colorimetric quantification. Note the 

constant slopes and intercepts of the calibration curves irrespective of aeration time. 
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Figure S3.2: Vertical profiles of the four different P fractions (F1-F4) expressed as relative proportions. 

Error bars represent one standard deviation of the three replicates.  

 

 

Figure S3.3: Vertical profiles of (a) NaOH-EDTA Pi (orange) and NaOH-EDTA Po (blue) concentrations 

and (b) their average proportions of total P from NaOH-EDTA extraction on bulk sediments. The 

concentrations refer to dry weight of sediments (DW). 
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Figure S3.4: Vertical profiles of average total Po as the sum of Po of the four fractions (F1-F4) from the 

sequential extraction protocol.  
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Table S3.1. Recovery percentages (%) of Po, Pi and total P extracted by NaOH-EDTA on bulk dry 

sediment samples, compared with those from the sequential extraction protocol (F1 to F4 fractions). 

Sediment 

Depth 

(cm) 

NaOH-EDTA Po 

/total Po (∑F1 to F4) 

NaOH-EDTA  Pi  

/total Pi (∑F1 to F4) 

NaOH-EDTA TP  

/TP (∑F1 to F4) 

0-2.5 221 181 189 

2.5-5 93 69 76 

5-7.5 95 81 83 

7.5-10 60 88 81 

10-12.5 112 51 63 

12.5-15 133 43 69 

15-17.5 107 58 70 

17.5-20 98 62 69 

20-22.5 123 67 76 

22.5-25 165 61 80 

25-27.5 109 76 82 

27.5-30 170 86 94 

30-32.5 190 81 95 

32.5-35 44 69 63 

35-37.5 135 55 67 

Average recoveries 124 68a 76a 

a Values are calculated excluding the first sample (0-2.5 cm depth) as this is detected as an outlier by 

the boxplot method. 
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Table S3.2. Results from the non-parametric Mann-Kendall trend tests on the time series of NBR of 

different P fractions and total P in the sediment of lake Ponte Tresa between 1959 to 2017 CE. All of 

the P fractions and total P NBR data except the year of 1960 (flood layer at 32.5-35 cm depth) were 

used. (Positive and negative Kendall Score values indicate positive and negative trends, respectively). 

P fractions 

Kendall 

Score 

(S) 

 

Kendall's 

tau 

Var(Score) a Denominatorb 

 

p-valuec 

NaCl-Ptot  -10 -0.11 332.7 90.5 0.62 

NaBD-Ptot -38 -0.42 332.7 90.5 0.04* 

NaOH-Pi  -28 -0.31 332.7 90.5 0.14 

NaOH-Po  5 0.06 331.7 90.0 0.82 

HCl-Ptot -34 -0.38 330.0 89.5 0.07 

enzyme labile Po -4 -0.04 332.7 90.5 0.87 

enzyme stabile Po -24 -0.27 332.7 90.5 0.21 

Total P -37 -0.41 333.7 91.0 0.04* 

a Variance of Kendall Score. 

b denominator (D), such that Kendall's tau=S/D. 

c Two-sided p-value; *= p-value < 0.05 indicating statistically significant (monotonic) trends at 

the 95% confidence level. 
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Table S3.3. The results for the effect of aeration (0 and 1h) on quantified soluble reactive P 

concentrations. They are shown for extracts of three selected sediment samples (see Table 

below). Calibration curves used to determine soluble reactive P concentrations were exposed 

to the same treatment (no aeration and 1h aeration) as the respective samples and are shown 

in Fig. S3.1a, b.  

 

 

 

 

 

 

 

 

 

 

Depth (cm) Treatment P (µgmL-1) 

2.5-5.0 no aeration 2.64 

 1h aeration 3.06 

12.5-15.0 no aeration 0.24 

 1h aeration 0.22 

32.5 -35.0 no aeration 2.35 

 1h aeration 2.44 
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4.1.1 Abstract  

Hypolimnetic anoxia in eutrophic lakes can delay lake recovery to lower trophic states via the 

release of sediment phosphorus (P) to surface waters on short time scales in shallow lakes. 

However, the long-term effects of hypolimnetic redox conditions and trophic state on 

sedimentary P-fraction retention in deep lakes are not clear yet. Hypolimnetic withdrawal of 

P-rich water is predicted to diminish sedimentary P and seasonal P recycling from the lake 

hypolimnion. Nevertheless, there is a lack of evidence from well-dated sediment cores, in 

particular, from deep lakes, about the long-term impact of hypolimnetic withdrawal on 

sedimentary P retention. In this study, long-term sedimentary P-fraction data since the early 

1900s from Lake Burgäschi provides information on the benthic P retention under the 

influence of increasing lake primary productivity (sedimentary green-pigments proxy), variable 

hypolimnion oxygenation regimes (Fe/Mn ratio proxy), and hypolimnetic withdrawal since 

1977. Results show that, before hypolimnetic withdrawal (during the early 1900s to 1977), 

redox-sensitive Fe/Mn-P fraction comprised ~50% of total P in the sediment profile. 

Meanwhile, long-term retention of total P and labile P-fractions in sediments was 

predominantly affected by past hypolimnetic redox conditions, and P retention increased in 

sedimentary Fe- and Mn enriched layers when the sediment overlaying water was seasonally 
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oxic. However, from 1977-2017, eutrophication-induced persistent anoxic conditions in the 

hypolimnion and due to hypolimnetic water withdrawal increasing the P export out of the lake, 

net burial rates of total and labile P fractions decreased considerably in surface sediments. By 

contrast, refractory Ca-P fraction retention was primarily related to lake primary production. 

Due to the lake restoration since 1977, Ca-P fraction became the primary P fraction in 

sediments (representing ~39% of total P), indicating a lower P bioavailability of surface 

sediments. Our study implies that in seasonally-stratified eutrophic deep lakes (like Lake 

Burgäschi), hypolimnetic withdrawal can effectively reduce P retention in sediments and 

potentials of sediment P release (internal P loads). However, more than 40 years of 

hypolimnetic syphoning have not improved the lake trophic state or decreased lake 

productivity. Also, this restoration has not enhanced water-column mixing and oxygenation in 

hypolimnetic waters. The findings of this study are relevant regarding management of deep 

eutrophic lakes with mixing regimes typical for temperate zones. 

4.1.2 Introduction  

Phosphorus (P) eutrophication in freshwater lakes is a global problem and has been a matter 

of concern to the public for several decades. In lakes where the external P loadings has been 

reduced, internal P loadings (sediment P release to surface waters) is widely recognized as 

the key factor affecting lake trophic status and delaying lake recovery from eutrophication 

(Burley et al., 2001; Trolle et al., 2010). Considerable work has been done on sediment-P 

speciation to evaluate sediment P release potentials and implications for lake restoration 

management (Gonsiorczyk et al., 1998; Ribeiro et al., 2008).  

The paradigm that oxygen levels control the sediment P release via reductive dissolution of 

Fe-P fraction in surface sediments has been accepted as the classical model for a long time 

(Einsele, 1936, 1938; Moosmann et al., 2006). Under anoxic conditions, P bound to redox-

sensitive Fe and Al/Fe (oxyhydr)oxides can be potentially released from surface sediments 

into lake water (Burley et al., 2001), which was supported by numerous short-term (days or 

seasonal) laboratory or in-situ studies (Chen et al., 2018). Based on this paradigm, it was 

assumed that an oxic sediment–water interface might limit the release of Fe-P from sediments 

and, therefore, improve P retention in lake sediments. However, the restoration measures with 

artificial hypolimnetic oxygenation/aeration applied in eutrophic lakes proved to have only 

short-lasting effects but no direct effects on internal P loadings and redox-dependent 

sediment-P retention on longer terms (Gächter, 1987; Gächter and Wehrli, 1998; Moosmann 

et al., 2006; Hupfer and Lewandowski, 2008). Gächter and Müller (2003) and Moosmann et 

al. (2006) further argued that, on multi-decadal or longer time scales, P retention in lake 

sediments might eventually primarily depend on the P-binding capacity of anoxic sediments 
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and sediment composition (e.g. Fe, Mn, Al, and Ca contents). Nevertheless, until now, there 

is a lack of evidence from well-dated sediment cores, and there is still a need to know which 

processes may have a dominant influence on sediment P-fraction retention on longer time 

scales (e.g., decades or more). This information is crucial for predicting and, ultimately, 

managing sediment P release, especially in deep lakes, because hypolimnetic anoxia in deep 

lakes can lead to large loads of sediment P release. In contrast to the well-established studies 

about sediment-P speciation in shallow polymictic lakes (e.g. Kaiserli et al., 2001; 

Søndergaard et al., 2001; Cavalcante et al., 2008), there are only a few studies available from 

seasonally-stratified deep lakes. Furthermore, eutrophication has been demonstrated to affect 

sediment P release via controlling hypolimnetic anoxia and lake mixing regime in seasonally 

stratified deep lakes (Tu et al., 2019). It is not yet fully understood whether and how lake 

trophic levels and hypolimnetic anoxia can influence the long-term behavior of sedimentary P-

fraction retention in deep lakes. 

The restoration technique of hypolimnetic withdrawal has been frequently applied in 

seasonally stratified lakes in Europe (Kucklentz and Hamm, 1988; Nürnberg, 2007), whereby 

P-enriched water from the hypolimnion is discharged directly into the lake outflow. This 

restoration technique has been shown to efficiently reduce P concentrations in lake waters 

(Nürnberg, 2007). Hypolimnetic withdrawal was also expected to reduce P retention in 

sediments and seasonal P recycling from the lake hypolimnion to the upper waters, for 

example, in Lake Mauen, a shallow, eutrophic lake (maximum depth 6.8 m; Gächter, 1976). 

However, there is lack of empirical evidence from sedimentary P-fraction data, which provides 

valuable information on possible sediment P release characteristics and potentials of internal 

P loadingss. Furthermore, for deep lakes, the long-term influence of this restoration on 

sedimentary P release potentials is unclear. 

The objectives of this study were to (1) explore the main factors controlling long-term changes 

of P-fraction retention in sediments of deep lakes, (2) investigate how sediment P-fraction 

retention responds to changes in lake eutrophication and hypolimnetic anoxia of the past prior 

to anthropogenic eutrophication, (3) examine the long-term effects of lake hypolimnetic 

withdrawal restoration on sedimentary P-fraction retention in seasonally-stratified deep lakes, 

and (4) evaluate with sediment-P data the predictions from Gächter (1976) that hypolimnetic 

withdrawal should result in reduced total P contents in sediments and sediment P release to 

lake water. To achieve these objectives, we investigated short sediment cores from Lake 

Burgäschi, a deep and eutrophic lake on the Swiss Plateau. Sedimentary green-pigments 

(chlorophylls and diagenetic products) inferred from hyperspectral imaging (HSI) scanning and 

XRF-inferred Fe/Mn ratios primarily reflect lake trophic state evolution (aquatic primary 

productivity) and hypolimnetic oxygenation, respectively. A sequential P-extraction with five P 
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fractions was performed to uncover P fractionation in sediment profiles. We combined all data 

to identify the dominant factors responsible for temporal changes in P-fraction retention.  

Lake Burgäschi is an excellent study site because there were substantial changes in lake 

trophic levels and possibly lake-mixing regimes since the last century (Guthruf et al., 1999; 

Van Raden, 2012), and exceptionally long historical and limnological survey data are available 

for most of the last 50 years. Hypolimnetic withdrawal restoration is in operation since 1977. 

4.1.3 Study site 

Lake Burgäschi (47°10′8.5″N, 7°40′5.9″E) is a small lake located on the Swiss Plateau (Fig. 

4.1a). It has a very restricted catchment (3.2 km2). The catchment area geologically belongs 

to the Molasse Basin, and mostly consists of carbonate-rich sandstones and mudstones 

(Schmid et al., 2004). The kettle hole lake was formed after the retreat of the Rhone glacier 

(ca. 19 k yr. BP; Rey et al., 2017). Currently the maximum water depth is ~31 m, which is quite 

deep in contrast to the small surface area of 0.21 km2 (Guthruf et al., 1999). The mean 

retention time of the lake water is ~1.4 year (Nürnberg, 1987). The lake has several small 

inflows in the southwest (Rey et al., 2017) and one outflow in the north (Fig. 4.1c).  

Since the 19th century, the lake’s water level was lowered several times to create farmland, 

with the most recent lowering (up to 2 m) during 1943-1945 (Guthruf et al., 1999). Agricultural 

area currently covers ~55% of the lake catchment, followed by ~29% area of forests. The lake 

region experiences a warm humid continental climate (Dfb; Köppen-Geiger classification). The 

mean annual air temperature is 9 °C and the warmest month is July (mean temperature 19 

°C).  
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Figure 4.1: Study site. (a) Overview map of Switzerland and the Swiss Plateau. Lake Burgäschi is 

indicated as the red asterisk. (b) Photo of Lake Burgäschi and catchment (© 2018 Google Maps). (c) 

Bathymetric map of Lake Burgäschi adapted from Guthruf et al. (1999). The red dot indicates the 

coring site (color figure online). Green areas around the lake indicate forests, white areas agricultural 

lands. Inflow and outflow to the lake are indicated by blue arrow lines (topographic maps: © 

swisstopo).  

Lake Burgäschi has been highly productive (eutrophic to highly eutrophic state) since the 

1970s with high algal-biomass production and anoxic conditions in the hypolimnion (Guthruf 

et al., 1999, 2013). The eutrophication in Lake Burgäschi has been linked to increased 

agricultural P inputs via drainage into the lake in the second half of the 20th century (Guthruf 

et al., 1999). To mitigate the eutrophication, hypolimnetic withdrawal restoration has been 

applied in Lake Burgäschi since 1977, and the lake water has been monitored twice a year for 

more than 30 years for various parameters, such as pH, oxygen content, phosphorus 

concentrations, phytoplankton biomass, etc. Despite a sharp decline in hypolimnetic 

phosphorus concentrations due to the restoration, a high production of algal biomass 

continues today (GSA, 2007). Additionally, hypolimnetic oxic/anoxic conditions and the lake 

trophic state have been stabilized but not fundamentally improved (GBL, 1995; Guthruf et al., 
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2013). 

4.1.4 Materials and methods 

Core collection and sampling 

In September 2017, two 75-cm-long sediment cores (Burg17-B and Burg17-C) were retrieved 

from the deepest point of Lake Burgäschi (water depth ~31 m) (47°10'8.6''N, 07°40'5.3''E; 

coring site in Fig. 4.1c) using a UWITEC gravity corer. After the collection, the cores were 

stored in a dark cold room (~4 °C). After opening and splitting lengthwise, core-half A of 

Burg17-B was continuously subsampled at 2-cm resolution from 0 to 60 cm for 210Pb and 137Cs 

dating. The oxidized surface of core-half B (Burg17-B) was visually described 

(Schnurrenberger et al., 2003) before non-destructive XRF core and HSI scanning. After the 

opening, one-half of core Burg17-C was transferred immediately into a glove box with an 

anoxic atmosphere where it was continuously subsampled at 2-cm resolution from 0 to 72 cm. 

The fresh sediments from each sample slice were homogenized and used for sequential P 

extraction. After sampling for P extraction, the remaining sediment of the 2-cm slice was 

freeze-dried and homogenized for bulk element analyses.  

Chronology 

The chronology of the core Burg17-B is based on 210Pb and 137Cs activity profiles. The freeze-

dried and homogeneous samples were stored dry and dark until analysis. The 210Pb, 137Cs 

and 226Ra radiometric activities were measured by gamma spectrometry at the University of 

Bern Department of Chemistry and Biochemistry. 1.3-5.1 g of the freeze-dried samples were 

encapsulated into polystyrene petri dishes (68 mm O.D., 11 mm height; Semadeni, 

Ostermundigen, Switzerland) together with a polystyrene disk to fill in the headspace above 

the sample material, and the petri dishes were vacuum-sealed into a gas-tight aluminum foil 

for equilibration. 210Pb (46.5 keV), 241Am (59.5 keV), 226Ra progenies 214Pb and 214Bi (295.2, 

351.9 and 609.3 keV), as well as 137Cs (661.7 keV) were measured using a Broad Energy 

Germanium (BEGe) detector (Canberra GmbH, Rüsselsheim, Germany). This system is 

composed of a high-purity germanium crystal of 50 cm2 area and 30 mm thickness with a 0.6 

mm thick carbon epoxy window, which shows high absolute full-energy peak efficiencies for 

close on-top geometries of >20% and ~5% for 210Pb and 137Cs, respectively. Low integrated 

background count rates of 0.20 s-1 (energy range of 30-1800 keV) were achieved by 

application of low-background materials, installation in third underground floor (~10 m of 

water-equivalent overburden), passive shielding (outside to inside: 10 cm low-background 

lead, 3 mm ancient lead with negligible 210Pb content, 2 mm cadmium), flushing of the shield 

interior with nitrogen gas and an active anti-cosmic shield (plastic scintillator panels of totally 

1 m2 area mounted directly above the passive shielding). Supported 210Pb in each sample was 
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assumed to be in equilibrium with the in-situ 226Ra (equilibration time 4 weeks). Unsupported 

210Pb activity was calculated by subtracting 226Ra activity from total 210Pb activity level-by-level. 

The correction for the total unsupported 210Pb missing inventory followed Tylmann et al. 

(2016).  

The 210Pb chronology of core Burg17-B was determined using the Constant Rate of Supply 

(CRS) model (Appleby, 2002), which accounts for variation in sediment accumulation rates. 

We tested two CRS models: CRS-1 model was unconstrained (i.e. without reference points 

from the 137Cs activity). The CRS-2 model was constrained with the chronologic marker of 

peak fallout from nuclear weapons testing in 1963 (137Cs and 241Am). Both models were then 

tested and validated with independent time-markers at the onset of nuclear weapons testing 

in 1953/54 and the Chernobyl accident in 1986/87 (onset of 137Cs and peak of 137Cs and 241Am, 

respectively). 

The two sediment cores (Burg 17-B and Burg 17-C) are visually very similar but show a length-

offset due to coring compaction of approximately 2-6 cm (Fig. S4.1 in Supplementary data). 

The age-depth stratigraphy of Burg17-C core was inferred from the dated core Burg17-B by 

visual stratigraphic correlation from high-resolution core pictures.  

Non-destructive geochemical methods 

Non-destructive X-ray fluorescence (XRF) core scanning was done using an Avaatech XRF 

Core Scanner (Richter et al., 2006) for semi-quantitative element composition measurements 

at 0.5 mm resolution to capture relative elemental concentrations of the laminae. The core 

surface was smoothed and covered with a 4-μm-thick Ultralene foil prior to the analysis. 

Elements were measured using a Rhodium anode and a 25 µm Be window. The lighter 

elements (e.g. Al, Si, P etc.) were measured for 15 seconds count time at 10 kV with 1500 A, 

no filter; while the heavier elements (e.g. Mn, Fe, Br etc.) were exposed for 40 seconds at 30 

kV with 2000 A, Pd-thin filter.  Element intensities (semi-quantitative concentrations) of the 

selected elements (Mg, Si, Al, K, Ti, Rb, P, Fe, Mn, Ca) are expressed as count rates (counts 

per second, cps). 

Following the methodology in Butz et al. (2015), hyperspectral imaging (HSI) scanning was 

performed using a Specim Ltd. Single Core Scanner equipped with a visual to near infrared 

range (VNIR, 400–1000 nm) hyperspectral linescan camera (Specim PFD-CL-65-V10E). 

Parameters were set for a spatial resolution of ~70 μm/pixel and a spectral sampling of 1.57 

nm (binning of 2). Spectral endmembers were determined using the “Spectral Hourglass 

Wizard” of the ENVI 5.5 software package (Exelisvis ENVI, Boulder, Colorado). The relative 

absorption band depth (RABD) index calculation was performed following the method in 

Schneider et al. (2018). However, based on the spectral end members (Fig. S4.2), we used 
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the absorption feature between the wavelengths R590 and R765 (590-765 nm), i.e. RABD590-

765. Butz et al. (2017) and Schneider et al. (2018) revealed that this index is well calibrated to 

absolute green-pigments (chlorophyll a + pheophytin a) concentrations in sediments. The 

sediments in Lake Burgäschi are mostly laminated and organic-rich (Van Raden, 2012), which 

indicates that the sediments are anoxic, bioturbation is absent, and sedimentary pigments are 

well-preserved (Reuss et al., 2005). Therefore, in our study, the relative concentrations of 

green-pigments inferred from RABD590-765 index values provide a semi-quantitative 

reconstruction of lake primary productivity (total algal abundance) at sub-annual resolution, 

and are suggested to reflect the trophic state evolution of Lake Burgäschi. 

Phosphorus fractionation scheme and bulk elements analyses  

The P-fractionation extraction protocol (Fig. S4.3) principally follows the four-step extraction 

protocol in Tu et al., (2019). In addition, we added the last extraction step from Lukkari et al. 

(2007) to determine refractory organic P (F5). This P fraction (F5) is practically biologically 

unavailable and subject to permanent P burial. The first four fractions are NaCl-TP (F1: loosely 

bound P), NaBD-TP (F2: redox-sensitive Fe- and Mn-bound P), NaOH-TP (F3: Al- and Fe-

bound P), and HCl-TP (F4: Ca-bound P) (Tu et al., 2019), whereby NaCl-TP, NaBD-TP and 

NaOH-TP fractions together are considered as relatively labile P fractions because they may 

release P back to the water column under anoxic or high pH environments (Rydin, 2000). The 

HCl-TP and refractory organic P (Ref.-Po) fractions are classified as relatively stable or 

refractory P fractions. Total P in sediments was obtained from the sum of the five P fractions. 

The P in extract samples was measured by inductively coupled plasma mass spectroscopy 

(7700× ICP-MS) (Agilent Technologies, Germany) after the dilution with nitric acid (HNO3) to 

reach a final concentration of 1% v/v HNO3.  

Concentrations of total carbon (TC), total nitrogen (TN), and total sulfur (S) in sediment 

samples were determined using an Elementar vario EL Cube elemental analyzer. Total 

inorganic carbon (TIC) content was calculated by multiplying loss on ignition at 950 °C (LOI950, 

following the method proposed by Heiri et al. (2001)) by 0.273, i.e. the ratio of the molecular 

weight of C and CO2. Total organic carbon (TOC) content was calculated using the equation 

TOC =TC-TIC. Sediment dry bulk density and water content were determined using wet mass 

(g), dry mass (g) and wet volume (cm3) following the method in Håkanson and Jansson (2002). 

4.1.5 Data analyses  

Multivariate statistical analyses were performed with R version 3.4.2 (R Development Core 

Team, 2017). Prior to data analyses, RABD590-765 index values (resolution 70 μm) were 

aggregated to a spatial resolution of 0.5 mm (the spatial resolution of XRF data). 

Stratigraphically constrained incremental sum of squares clustering (CONISS; Grimm, 1987) 
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was then performed on semi-quantitative proxies (i.e. RADB590–765 index and XRF-element 

data) with R-package ‘‘rioja’’ (Juggins, 2017). The number of significant clusters was 

determined with a broken-stick test (Bennett, 1996). A principal components analysis (PCA) 

was performed on the centered and standardized data of semi-quantitative proxies, using the 

“Vegan” package (Oksanen et al., 2013). XRF-element and RABD590-765 index values were 

averaged within the depth range of each sample taken from core Burg17-C for P fractions. In 

order to identify the primary factors influencing the variations in sedimentary P fractions, a 

redundancy analysis (RDA) was performed on the centered and standardized dataset of P 

fractions (response variables) and other sediment geochemical parameters (explanatory 

variables) with the “vegan” package. In the RDA computation, the correlation matrix option 

was selected and the scaling was conducted on a correlation biplot.  

4.1.6 Results  

137Cs and 210Pb chronology  

The two distinctive peaks of 137Cs in sediment profiles are detected at 31 cm and 15 cm depths 

(Fig. 4.2b), corresponding to the 1963 and 1986 major fallout events, respectively (Appleby, 

2002). Furthermore, 241Am activity peaks at the same depths (Fig. 4.2b) confirm that the 1963 

and 1986 137Cs peaks were due to atmospheric fallouts (Michel et al., 2001). The first traces 

of 137Cs occur at 37 cm depth, indicating the first widely detectable fallout from atmospheric 

nuclear testing in 1953/1954 (Pennington et al., 1973).  

The 210Pb activity in core Burg17-B shows a relatively monotonic decrease down to a sediment 

depth of 17 cm. Further down, larger variations are found (Fig. 4.2a). The 210Pb and 226Ra 

activities do not reach equilibrium; unsupported 210Pb activity in the oldest sample (59 cm) is 

still above the limit of detection (14.0±6.8 Bq·kg-1). The observed cumulative inventory of 

unsupported 210Pb is 2941 Bq·m−2. We corrected this value (missing inventory correction; 

Tylmann et al., 2016) by applying an exponential equation using the lowermost values of 

cumulative dry mass and unsupported 210Pb activity between 8 and 60 cm depths. As a result, 

a correction value of 125.2 Bq·m−2 (missing inventory) is added to the final total unsupported 

210Pb inventory (3066 Bq·m−2).   

The CRS-2 model (constrained through 1963) shows a better agreement with the independent 

137Cs markers at 1953/54 and 1986/87 than the CRS-1 model (Fig. 4.2c). Therefore, CRS-2 

model results were chosen for determining the age-depth profile and sediment mass 

accumulation rates (MAR) of core Burg17-B. The mean age at 59 cm sediment depth dates 

back to ~1930. The extrapolated mean age at 61 cm depth is ~1926 calculated using the 

mean sediment accumulation rate between 54-60 cm (2 yr·cm-1).  
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Figure 4.2: Sediment chronology. (a) Total 210Pb, 226Ra, and (b) 137Cs and 241Am activity concentration 

profiles in sediment core Burg17-B from Lake Burgäschi; (c) The comparison of different 210Pb CRS 

models: unconstrained CRS-1 model and constrained CRS-2 model at 1963; the mass accumulation 

rates (MAR) are obtained from the CRS-2 model. 

 

Sediment lithology, green-pigments (RABD590-765 index) and XRF-element records  

Four sediment facies (I to IV, Fig. 4.3 and 4.4a) are identified based on visual classification 

and the CONISS-analysis results of XRF-element intensities.  
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Figure 4.3: Stratigraphic records of HSI-inferred green-pigments (RABD590-765) and XRF-data in 

sediments of core Burg17-B. Elemental counts are represented in cps (counts per second). The red 

horizontal lines separate the four significant clusters retrieved by the CONISS analysis (color figure 

online).  

 



Chapter 4: A case study from Lake Burgäschi 

 83 

 

Figure 4.4: Core lithology and spectral index. (a) Lithological description of Burg17-B sediment core. 

The intensities of Ca, Fe and Mn in each unit were inferred from XRF-element counts in Fig. 4.3; Yellow 

colors highlight the turbidite layers identified from the XRF peaks of siliciclastic elements e.g. K, Ti, and 

Rb. (b) RGB contrast enhanced sediment core picture. (c) The map of the spectral index RABD590-765 

(i.e. green-pigments) distribution, and (d) the graphic output of RABD590-765 spectral index within the 

boundary of the red lines (c) which shows the 2-mm wide sampling range. The red line in (d) indicates 

the mean index value and the grey lines represent the one-standard deviations (sd). The colorbar 

represents the index values of the distribution map (color figure online). n is the number of rows of the 

RABD590-765 index map.  

 

In Zone I (75.4-61cm, pre ~1926), the sediments consist of visible thin brown-to-reddish 

laminae (Mn- and Fe rich). Green-pigment concentrations inferred from RABD590-765 index 

values show a homogenous distribution with the lowest values within the sediment profile (Fig. 

4.4d). Fe/Mn ratios vary within very low values (mostly below 10). The Mn, Fe, P and Fe/Ti 

values show high levels with large variability. Extremely low Ca amounts are noted in this 

zone.  
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In Zone II (61-34cm, ~1926-1960), the sediments are dark gyttja, partly laminated with light 

Ca-rich layers. Green-pigment concentrations slightly increase yet still show little variability. A 

sharp increase of green-pigments concentrations occurs at 60 cm, and the first two local peaks 

near 55 cm (~1938) and 48 cm (1945) are notable. Fe/Mn ratios remain at slightly higher 

values than in Zone I. The Mn, Fe, P contents and Fe/Ti values all decline to low levels and 

remain relatively stable. Ca counts increase gradually over the whole Zone II. 

In Zone III (34-21.5 cm, ~1960-1977), the sediments are mostly characterized by brown-to-

reddish laminations (Mn-Fe rich), with thicker and more distinct laminae contacts than in Zone 

I. Green-pigment concentrations exhibit much higher values with positive trends, intensified 

variability, and several maxima (seasonal algal blooms). Fe/Mn ratios first drop in the lower 

part (34-27 cm) and then continue to increase upward to the top-part of Zone III.  Fe, Mn, P, 

and Fe/Ti values show generally opposing trends to Fe/Mn ratios. Ca contents are elevated 

during this period relative to Zones I and II. 

In Zone IV (21.5-0 cm, ~1977-2017), the sediments exhibit a clear laminated structure with 

much more pronounced light calcite layers. The laminations are characterized by a regular 

succession of light calcite layers (Ca-rich) and dark organic-rich layers (Fig. S4.4). Green-

pigment concentrations display the highest levels with large fluctuations, and reach distinct 

local maxima at 18 cm (1981), 15 cm (1985), 13 cm (1987), 12 cm (1988), and 8 cm (1997) 

depths (Fig. 4.4d). Fe/Mn ratios are at similarly high values as in Zone II, yet with more 

variability. The Fe, Mn, and P element counts and Fe/Ti all show constantly very low values. 

The Ca amounts are the highest in the profile and show considerable variability.   

Two principle components, PC1 and PC2 were shown to be significant using a broken stick 

model. They explain ~35 % and ~30 % of the total variance in the dataset, respectively (PCA-

biplot; Fig. S4.5). The PC1 has strong positive loadings for the terrigenous elements (K, Ti, 

Rb etc.; Fig. 4.3 and S4.6) and thus represents mainly erosional processes related to 

allochthonous inputs. The PC2 has strong positive loadings for redox-sensitive elements (Fe, 

Mn), P and Fe/Ti, but negative loadings for Ca, Fe/Mn ratios and green-pigments index values. 

Therefore, PC2 reflects changes in redox conditions of hypolimnetic water and lake primary 

productivity. The results of additional PCA analyses zone by zone (Fig. S4.7b) show that Mn, 

Fe and P were mostly independent of terrigenous elements (in Zones I to III), however in Zone 

IV, Mn, Fe and P become correlated with the terrigenous elements. The vertical profile of XRF-

P matches very well with the changes of total P concentrations in sediments (Fig. S4.8). It 

reveals that XRF-P data can reliably represent qualitative variations of total P concentrations 

in sediment profiles of Lake Burgäschi. 
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Bulk elements and P fractions in sediment profiles 

Sediment TIC, TOC, TOC/TN ratio, S and P fractions also show distinctive features along the 

four stratigraphic zones (Fig. 4.5). From the upper part of Zone I (65.2-61 cm; ~1926) to Zone 

IV, TIC shows a similar pattern to the XRF-Ca contents (Fig. 4.3 and 4.5) suggesting that TIC 

is mostly present in the form of CaCO3. Over the whole profile, TOC/TN ratios are within the 

range of 9-11. TOC and TOC/TN ratios exhibit mostly similar patterns from Zone I to Zone III. 

By contrast, total sulfur (S) contents display a different pattern, showing very low values in 

Zone I and II (mean ~0.5%), and a substantial increase in Zone III and IV. 

 

Figure 4.5: Time series of Bulk elements and P fractions data. The stratigraphy of total inorganic 

carbon (TIC), total organic carbon (TOC), sulfur (S) contents, TOC/TN ratio and five phosphorus 

fractions in sediments of Lake Burgäschi. The y-axis (left) refers to the sediment depth of core Burg17-

B. The horizontal red lines separate the significant CONISS zones as in Fig. 4.3. The secondary y-axis 

(right) indicates approximate ages of sediments inferred from the Burg17-B core chronology. 

The concentrations of labile P fractions (i.e. NaCl-TP, NaBD-TP and NaOH-TP) and total P 

have a similar trend over the whole profile (Fig. 4.5 and 4.6a). They all display rather large 

values within the upper part of Zone I and generally decreased values in Zone II. In Zone III, 

the values increase to peaks at ~25 cm depth but sharply decrease to the lowest values in the 

upper boundary of Zone III and throughout Zone IV. HCl-TP and Ref.-Po fractions vary 

differently compared with the other fractions. Low contents of HCl-TP fraction are observed in 
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Zone I and II. HCl-TP fraction has a rather similar pattern as labile P fractions in Zone III, but 

then it remains at high levels in Zone IV. Ref.-Po fraction contents show relatively stable values 

from Zone I to Zone II, followed by a gradual rise in Zone III and in the upper part of Zone IV. 

The net burial rates (NBR) of P-fraction since 1934 (Fig. S4.9) show similar trends to the P-

fraction concentrations (Fig. 4.5) (because sedimentation rates MAR are rather constant in 

core Burg17-C; Fig S4.9), except for the Ca-P and Ref.-Po fractions with decreasing NBR 

throughout the Zone IV. 

 

 

Figure 4.6: Vertical profile of P fractions in sediments. (a) P fractions concentrations and (b) their 

proportions of total P in sediments. The y-axis (left) refers to the sediment depth of Core Burg17-B. 

Note that the sample between 3.6-4.5 cm depth was removed from dataset because the values were 

extremely higher than any sample data (data not shown), which is abnormal according to XRF-P counts 

at the corresponding depth (Fig. S4.8b). We attributed this to the result of contamination during the 

sample measurements. 

Regarding the P composition in sediment profiles (Fig. 4.6, absolute and relative amounts), 

from Zone I to Zone III (65.2-21.5 cm) NaBD-TP fraction is the most important P-form 

representing ~50% of total P followed by NaOH-TP fraction. However, in Zone IV (depth above 

~ 21.5 cm), HCl-TP becomes the main P fraction (~39% of total P) over NaBD-TP (~30% of 

total P).  

The relationships between response variables and explanatory variables are visible on the 

redundancy analysis (RDA) biplot (Fig. 4.7), which, in most cases, correspond well to the 

results of Spearman rank correlation test (Fig. S4.10). The relatively labile P fractions (NaCl-

TP, NaBD-TP and NaOH-TP) and total P in sediments are strongly positively correlated with 
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redox-sensitive elements (Fe and Mn) and autochthonous Fe (Fe/Ti). However, these P 

fractions are negatively related to hypolimnetic oxygenation proxy (Fe/Mn ratios) and, to some 

extent, to lake productivity indicators (green-pigments, XRF-Ca and TIC). HCl-TP and Ref.-Po 

fractions are positively correlated. However, only HCl-TP fraction has close positive 

relationships with lake productivity indicators. 

 

 

Figure 4.7: RDA biplot displaying correlation between response variables (P fraction dataset; red 

arrows) and explanatory variables (green-pigments and other geochemical records; blue arrows). The 

colored points represent data points of individual cluster zones in Fig. 4.3, 4.5 and S4.6. 

4.1.7 Discussion 

Trophic state evolution of Lake Burgäschi 

Four main phases of different lake trophic levels (based on RABD590-765 index values) were 

distinguished since the early 1900s, as summarized in Fig. 4.8 and Fig. S4.11. During the 

period prior to ~1926 in Zone I, the lowest green-pigments index values reflect low lake 

primary productivity. In the early 1900s, agricultural impacts around the catchment area of 

Lake Burgäschi were not prominent (Guthruf et al., 1999). It can be expected that the lake 

received low nutrient loads from the catchment drainage during this period. Lake Burgäschi is 

classified as naturally oligotrophic based on morphometric parameters (LAWA, 1998) and as 

naturally mesotrophic according to Binderheim-Bankay (1998). Therefore, at the times of Zone 

I, Lake Burgäschi was likely oligo- to mesotrophic. 
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Figure 4.8: Conceptual diagram, summarising the inputs/outputs of phosphorus (P), hypolimnetic 

withdrawal restoration, lake trophic levels, mixing regime and phosphorus (P) fractions retention in 

sediments of Lake Burgäschi during four stages/zones. Note that the illustrated sizes of P fractions 

(Fe/Mn/Al-P and Ca-P) among different stages overall indicate the relative amounts of P fractions in 

sediments. 

The transition to Zone II (~1926-1960) was marked by generally increased sedimentary green-

pigment concentrations and CaCO3 contents (Fig. 4.3, 4.4d and 4.5), respectively, indicating 

enhanced lake primary productivity. The slightly decreased TOC/TN ratio also suggests a rise 

in autochthonous organic matter proportion (Meyers and Ishiwatari, 1993). The first two algal 

blooms (peaks of green-pigments index; Fig. 4.4d) imply a very likely mesotrophic to eutrophic 

state of the lake. Indeed, the study of Büren (1949) revealed that in 1943-1945, the trophic 

state of Lake Burgäschi had already shifted between mesotrophic and eutrophic. Interestingly, 

the water-table lowering during 1943-1945 (Guthruff et al., 1999) with related enhanced 

drainage of intensive agricultural fields and meadows (Büren, 1949) did not seem to have had 

an immediate impact on lake primary productivity (Fig. 4.3).  

In Zone III (~1960-1977), continuously increasing green-pigment concentrations indicating 

several algal bloom events and intensified CaCO3 precipitation (TIC) and sulfur (S) contents 

in sediments (Fig. 4.4a and 4.5) are in agreement with the findings from other eutrophic lakes 

(Holmer and Storkholm, 2001; Bonk et al., 2016; Schneider et al., 2018). 

During Zone IV (1977-2017), we interpret that Lake Burgäschi was in highly eutrophic 
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conditions, based on constantly high green-pigments index values and multiple prominent 

algal blooms (Fig. 4.3). Low and decreasing TOC/TN ratio values (< 10) in this zone suggest 

a dominant source of organic matter in sediments from aquatic primary production, which has 

been interpreted as a signal of eutrophic waters (Enters et al., 2006). Our interpretation is 

further supported by high chlorophyll-a concentrations in surface waters (>8 ug L-1; GSA, 

2007) and the dominance of blue-green algae in the phytoplankton biomass during 1977 to 

1992, which characterized Lake Burgäschi as highly eutrophic (GBL, 1995; Guthruf et al., 

2013).  

Reconstruction of hypolimnetic oxygenation regimes of Lake Burgäschi  

A large number of studies have used the proxy of Fe/Mn ratios in sediments to reconstruct 

past water oxygenation and mixing regimes of the lake, such as Mackereth (1966), Frugone‐

Álvarez et al. (2017), and Żarczyński  et al. (2019) etc. However, this proxy and its 

interpretation are limited to cases in which the annual cycle of Fe and Mn deposition in lakes 

is mostly driven by redox changes in the hypolimnion and related diagenetic processes in 

surface sediments instead of driven by terrestrial inputs (Boyle, 2001; Naeher et al., 2013). In 

Lake Burgäschi, in Zone I to III, Mn and Fe varied mostly independently of erosion indicators 

as shown in Fig. S4.7b. Furthermore, Van Raden (2012) has revealed that the presence of 

Mn-rich laminae in sediments of Lake Burgäschi can indicate frequent short-term wind-

induced mixing events in the lake. Therefore, we suggest that the deposition of Fe and Mn 

during these three zones was mainly controlled by in-lake processes. The proxy of XRF-

inferred Fe/Mn ratios together with Mn precipitation in sediments reliably tracks past changes 

of hypolimnetic oxygenation of Lake Burgäschi.  

In Zone I (pre ~1926), the sediments feature well-preserved Mn-Fe rich laminations and very 

low Fe/Mn ratios (Fig. 4.3 and 4.4a), suggesting that the lake hypolimnion was seasonally 

well-oxygenated. The similar occurrence of visible Mn-and Fe rich laminae in sediments were 

also reported by Rey et al. (2017) in Lake Burgäschi and from other lakes, for example, Lake 

of the Clouds in the US (Anthony, 1977), Lake Cadagno in the Swiss Alps (Wirth et al., 2013), 

and Lake Żabińskie in Poland (Żarczyński et al., 2018). They revealed that the red-orange 

Mn-rich layers mostly consist of authigenic rhodochrosite (MnCO3) that was formed when Mn-

rich anoxic bottom waters are mixed with oxygenated surface waters for short intervals. The 

preservation of this Mn-rich layer is only possible when its sedimentation process exceeds the 

release process under anoxic hypolimnetic conditions (Stevens et al., 2000). Therefore, during 

this period, short-term mixing events and associated oxygenation may have occurred during 

overall stratified or anoxic conditions in the hypolimnion.  

In Zone II (~1926-1960), the higher Fe/Mn ratios and very low Mn- and autochthonous Fe 
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(Fe/Ti) amounts are interpreted as the results of stable anoxic hypolimnetic waters. The 

formation and preservation of Fe-and Mn-oxides in sediments is largely prevented under long-

term stratification/reducing conditions (Stevens et al., 2000). The lake most likely developed 

anoxic hypolimnetic conditions with yearly incomplete or missing circulation in the 

hypolimnion. 

In Zone III (1960-1977), overall decreased Fe/Mn ratios combined with reappearing Mn-and 

Fe-rich laminations reflect better short-term oxic conditions in hypolimnetic waters than in 

Zone II. However, during ~1970 to 1977, Fe/Mn ratios gradually increased (Fig. 4.3), which 

points to less oxic conditions in the hypolimnion. It seems to be related to synchronously 

progressive lake eutrophication. Higher primary productivity and strengthened anoxia in the 

hypolimnion are commonly observed in stratified lakes (Giguet-Covex et al., 2010; Mikomägi 

et al., 2016). Higher lake primary productivity increases high-rate aerobic degradation of 

organic matter and, consequently, oxygen-depletion in the hypolimnion and sediments 

(Gächter and Müller, 2003; Nürnberg, 2007).  

Finally, in Zone IV (1977- 2017) Fe/Mn ratios proxy is no longer valid to indicate hypolimnetic 

oxygenation regime, as suggested by predominantly terrestrial sources of sediment Fe and 

Mn (Fig. S4.7b). Nevertheless, the well-preserved laminated sediments during this period are 

a clear sign of absent benthic bioturbation and thus represent an indicator of generally strong 

anoxic conditions in hypolimnetic waters, occurring simultaneously with a highly eutrophic 

period. According to the limnological monitoring data of Lake Burgäschi between 1978 and 

2007 (GSA, 2007), the lake water was anoxic at depths below 20 m during the summer-

autumn stratification; even during winter overturn of most years, the lake water was not 

completely mixed.  

Phosphorus composition and factors controlling long-term P-fraction retention in 

sediments 

Prior to 1977 (i.e. Zones I-III), NaBD-TP (redox-sensitive Fe- and Mn bound P) and NaOH-TP 

(partly non-reducible Fe oxides-P) fractions were the primary P forms in sediments of Lake 

Burgäschi (Fig. 4.6 and 4.8). This seems to compare well with the study of Moosmann et al. 

(2006), who suggested that sediment Fe contents control P retention in sediments of the Swiss 

Plateau lakes. However, after ~1977, we observed a change to predominantly Ca-P (apatite-

P), occurring concurrently with the operation of hypolimnetic withdrawal restoration. This clear 

pattern in sedimentary P-fraction change can be largely attributed to this restoration measure. 

The hypolimnetic withdrawal treatment in Lake Burgäschi removes not only hypolimnetic P 

but also dissolved metal (Al, Fe and Mn) ions and, thus leads to calcite as the main sorbent 

for P in upper waters and to an enhanced proportion of Ca-P fraction in sediments. 
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In spite of the effects of lake restoration on sedimentary P retention in Zone IV, overall, the 

retention of total P and labile P fractions in the sediment profile was mainly controlled by 

autochthonous Fe (Fe/Ti), Mn, and hypolimnetic oxygenation proxy-Fe/Mn ratios, as shown 

by the results of RDA analysis (Fig. 4.7). Our results support the previous suggestion that 

long-term permanent sediment-P retention is largely limited by the sediment’s binding capacity 

in anoxic conditions (Moosmann et al., 2006; Hupfer and Lewandowski, 2008), which, 

specifically in our case, is determined by redox-sensitive elements (autochthonous Fe and 

Mn) preserved in sediments. These findings are discussed in the context of each cluster zone 

as follows: During Zone I and Zone III, when the hypolimnion had better seasonally oxic 

conditions (see Fig. 4.8 and Fig. S4.11), the increased retention of Mn and Fe, and labile P 

fractions occurred simultaneously (Fig. 4.3 and 4.5). This phenomenon might be caused by 

efficient P-trapping in Mn- and Fe enriched layers. It has been suggested that the formation 

of laminated Mn- and Fe enriched layers could serve as a protective cap to reduce P release 

from surface sediment layers to the anoxic hypolimnion (Żarczyński et al., 2018) which, thus, 

can help improve P retention within these sedimentary layers. In Zone II, small amounts of 

labile P fractions might result from decreased P-bearing solid phases (Mn and Fe minerals) in 

sediments under anoxic conditions in the hypolimnion (see higher Fe/Mn ratios in Section 

Reconstruction of hypolimnetic oxygenation regimes of Lake Burgäschi; Fig. S4.11). However, 

in Zone IV, we observed the lowest retention and NBR of total P and labile P fractions in recent 

sediments (Fig. 4.5; Fig. S4.9). We interpret this as a combined result of eutrophication-

induced hypolimnetic anoxia and hypolimnetic withdrawal since 1977 whereby P-rich 

hypolimnetic water is discharged out of the lake. On the one hand, under stable anoxic 

conditions in the hypolimnion caused by strong eutrophication, reduced Mn and Fe 

preservation (Fig. 4.3) suggests a low capacity of permanent P-trapping within the anoxic 

sediments. On the other hand, hypolimnetic withdrawal restoration in Lake Burgäschi has 

substantially reduced hypolimnetic P concentrations by a factor of 5-6 since 1978 (Fig. S4.11; 

GSA, 2007) and MARs (Fig. 4.2c and Fig. S4.9). This indicates a concomitant decrease in 

sediment P release to the hypolimnion and P sedimentation to the water-sediment interface 

(gross sedimentation of P) as well. Consequently, decreased total P concentrations and total 

P-NBR in sediments were observed (Fig. 4.6a and S4.9). The reduction of total P contents in 

upper sediments caused by hypolimnetic withdrawal was also reported from Lake Kortowskie 

of Poland (Dunalska et al., 2007). Moreover, our findings confirm that this restoration is an 

effective method to reduce sediment P release potentials, as indicated by considerably 

decreased NBR of labile P fractions in upper sediments (Fig. S4.9). 

In the whole sediment profile, HCl-P and Ref.-Po fractions had mainly autochthonous origins 

and were mainly controlled by in-lake processes rather than by clastic inputs (e.g. apart from 
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molasses sandstone), as indicated by absent positive correlations between the two fractions 

and detrital elements such as Ti, K and Al (Fig. 4.7). HCl-P (i.e. Ca-P) fraction retention, to a 

large extent, resulted from authigenic CaCO3-P precipitation, and increased with higher 

eutrophic levels in Zone III and IV (Fig. 4.5). We interpret this as an incidence of biologically 

driven co-precipitation of Ca and P in highly productive lakes. The phenomenon of Ca-P co-

precipitation has been observed and studied in many calcareous lakes (Dittrich and Koschel 

2002; Whitehouse, 2010), and is assumed to be responsible for the scavenging of dissolved 

P from surface waters of eutrophic lakes (Hamilton et al., 2009). In addition, large amounts of 

Ca-P in surface sediments (top 21 cm) can act as a potential negative feedback to 

eutrophication in Lake Burgäschi, because Ca-P fraction is relatively stable in sediments and 

has low potentials of P-release from surface sediments back to lake waters. Interestingly, HCl-

P fraction retention and NBR in sediments of Zone IV were generally lower than in Zone III 

(Fig. 4.5 and Fig. S4.9), although the lake in Zone IV had relatively higher eutrophic levels 

(see Section Trophic state evolution of Lake Burgäschi; Fig. S4.11). The pH in the hypolimnion 

of Lake Burgäschi varied between 7.0 and 7.5 according to the monitoring data in 1993, 2003, 

and 2013 (Guthruf et al., 2013). Therefore, the acid dissolution of Ca-P in the hypolimnion and 

at the water-sediment interface is small and unlikely significant during Zone IV. The generally 

decreased retention and NBR of Ca-P fraction were seemingly related to hypolimnetic 

withdrawal, which has caused lower water-P concentrations and MAR of sediments as 

discussed above. As a result, there are reductions of CaCO3-P co-precipitation in the 

epilimnion and consequently of Ca-P net sedimentation in surface sediments. Overall, Ref.-

Po fraction retention and NBR in the sedimentary profile show less variability compared with 

other P fractions (Fig. 4.5 and Fig. S4.9). Nevertheless, the lower NBR of Ref.-Po fraction in 

the upper sediments (~ top 10 cm) could be derived from the ongoing early degradation of 

fresh organic matters. 

The interesting observation is that the water-P reductions caused by the hypolimnetic 

withdrawal in Lake Burgäschi (GSA, 2007; Nürnberg, 2007) have been ineffective in reducing 

algal blooms and curbing eutrophication. Similar findings were also reported from some lakes 

in Europe and the US (Kosten et al., 2012; Kolzau et al., 2014; Fastner et al., 2016). These 

authors have attributed this phenomenon to insufficient external P-load reduction, higher water 

temperatures under global warming of the last few decades, and the light or nitrogen limitation 

of surface-water phytoplankton. In Lake Burgäschi, phytoplankton growth in the trophic zone 

is more likely limited by P during growth season after 1978 rather than by the nitrogen (GSA, 

2007) as the algae-available ortho-phosphate is almost completely used up in the epilimnion 

when the nitrate concentrations stay as high as 0.5-3 mg N / L in the upper 5-m waters (GBL, 

1995). Hence, we suggest that these factors mentioned above, except for nitrogen limitation 
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of lake productivity, may also contribute to promoting persistently high primary productivity in 

Lake Burgäschi. But the main driver keeping productivity high, is the continuing high external 

P loads from the lake catchment. During summer stratification, the high lake external P load 

into the epilimnion primarily supports phytoplankton growth in the photic zone, which is not 

strongly influenced by the hypolimnetic-P discharge and internal P loadingss. From a 

management perspective, it is still critically important to focus on lowering external P loads in 

order to decrease primary production and eutrophication in seasonally-stratified small deep 

lakes which are more likely to favor stable stratification during phytoplankton growth season. 

4.1.8 Conclusion  

This study shows that in Lake Burgäschi, more than half of sediment P is buried in relatively 

labile P fractions (Fe/Mn/Al-P), yet with low potentials for P-release from these labile P 

fractions in deeper layers (below ~21 cm). Our results highlight the importance of hypolimnetic 

oxygenation/mixing regime in controlling long-term P retention and net burial rates of labile P 

fractions in sediments of this small deep lake. Irrespective of increasing lake primary 

productivity during early 1900s to 1977, the two periods of high sedimentary retention of total 

P and labile P-fraction occurred in Fe- and Mn enriched laminae, which appears to be linked 

to seasonal mixing of the hypolimnion in the past. Importantly, the positive effects of 

hypolimnetic withdrawal in Lake Burgäschi were observed primarily in sediment P-fraction 

data but not in lake trophic state. The 40-year operation of hypolimnetic withdrawal has 

impoverished sedimentary P, in particular largely decreased net burial rates of labile P 

fractions (potential internal P loads), and increased the relative proportion of stable Ca-P 

fraction in top sediment layers (0-21 cm). Nevertheless, the lake is currently still highly 

eutrophic. We attribute the delay of lake recovery primarily to still high nutrient inputs from the 

nearby or surrounding agricultural area into the lake trophic zone during stratification seasons. 

This study calls for consistently more effective measures to minimize external P loadings from 

the catchment, such as optimizing fertilizer application practices and technical measures in 

the drainages.  
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4.2 Supplementary materials 

 

Figure S4.1: Core correlation between Core Burg17-C and Core Burg17-B (the dated core) sediment 

images. The core picture of Burg17-B is a true colour RGB (R: 640 nm, G: 545 nm, B: 460 nm) linear-

stretch image. The core picture of Burg17-C was taken with a Nikon D80 digital camera. 
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Figure S4.2: (a) Spectral endmembers obtained from Spectral Hourglass Wizard. The highlighted red 

endmember spectrum #19 is used in (b). (b) Continuum removed spectrum of endmember #19, showing 

the formula for RABD590-765 calculation for a trough minimum at R673. 
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Figure S4.3: Five-step sequential P extraction protocol. The F1-F4 fractions follow the four-step 

extraction protocol in Tu et al., (2019), and F5 follows the last extraction step in Lukkari et al. (2007).  

Sodium dithionite (Na2S2O4) dissolved in 0.11 M sodium bicarbonate (NaHCO3) buffer (pH 7.0) 

henceforth is termed as NaBD.  
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Figure S4.4: The laminations from depth 16 cm to 18.5 cm with a regular succession of light calcite 

layers (Ca-rich) and dark organic-rich (RABD590-765 inferred green-pigments) layers indicated by 

different colored lines (color figure online). The background is the RGB contrast enhanced core picture 

(Sp: Spring; Su: Summer). The algal bloom in the autumn of 1981 year coincides with the historical 

record in GSA (2007). 
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Figure S4.5: The biplot on standardized data of variables from Fig. 4.3 and S4.6, the screeplot and 

the loadings of the PCA. 
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Figure S4.6: Stratigraphical records of several XRF-elements in sediments of Core Burg17-B. 

Elemental counts are represented in cps (counts per second). The red horizontal lines separate the 

four significant clusters retrieved by the CONISS analysis in Fig. 4.3. 
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Figure S4.7: Multivariate analysis of green-pigments and geochemical dataset from Fig. 4.3 and S4.6. 

(a) Distribution of four CONISS-zones, and PC1 and PC2 scores along with the sediment Core Burg17-

B. (b) Biplots of PC1 and PC2 for individual CONISS-zones in Fig. 4.3. 
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Figure S4.8: The profiles of (a) total P concentrations from sequential P extraction (Burg17-B) and (b) 

semi-quantitative XRF-P (Burg17-C). The colored sections indicate the matching between the two 

profiles. 
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Figure S4.9: Net burial rates (NBR) of geochemical records. Total inorganic carbon (TIC), total organic 

carbon (TOC), sulfur (S) contents, all the five P fractions, total P (TP) and the sediment mass 

accumulation rates (MAR) in sediments of Lake Burgäschi are between 1934 and 2017 CE.  The 

horizontal red lines separate the significant CONISS zones as in Fig. 4.3 and Fig. 4.5. The y-axis (left) 

refers to the sediment depth of Core Burg17-C.  
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Figure S4.10: Spearman’s rank correlation matrix of all variables (presented in Fig. 4.7) at the 

significance level of 0.05. Only the p-value of the correlation < 0.05 is shown. In total 35 samples points 

are included. The variable-order follows the output of hierarchical clustering.  

 

 

 



Chapter 4: A case study from Lake Burgäschi 

 112 

 

Figure S4.11: The synthesis of Lake Burgäschi proxy records. It shows lake trophic levels, 

hypolimnetic withdrawal restoration, hypolimnetic redox conditions, sedimentary P fractions (e.g. 

NaBD-P and Ca-P ) retention and lake monitoring data of hypolimnetic total P and Chl-a concentrations 

(GSA, 2007) between early 1900s and 2017.  
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Highlights 

• First qualitative estimates of internal P loadings in a deep stratified lake during the 

Holocene 

• Evidence of pre-anthropogenic feedbacks between productivity, anoxia and P 

cycling. 

• Microorganisms modulate the Holocene geochemical cycle of P under meromictic 

conditions. 

• Postglacial forest and climate changes affect lake productivity, anoxia and P cycling. 
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5.1.1 Abstract 

Increased man-made eutrophication since the 20th century caused by phosphorus (P) 

enrichment has become a major threat worldwide. In deep, stratified lakes, eutrophication-

induced hypolimnetic anoxia often stimulates the release of labile P from the sediment into the 

water column. This positive feedback, termed internal P loadings, maintains or even 

accelerates eutrophication. However, most of the studies on internal P loadings concentrate 

on recent times. Little is known whether such positive feedbacks and labile P recycling from 

sediments have also played a role under natural conditions with no or little human impact. 

Here, we investigated a high-resolution 15,000-year sediment record of paleoproduction, 

anoxia, and five sedimentary P fractions from a small, deep lake, Soppensee, on the Swiss 

Central Plateau. We estimated long-term qualitative internal P loadings by comparing the 

Holocene record of diatom-inferred epilimnetic total P (DI-TP) concentrations with labile P 

fraction (Fe/Al-P) concentrations in sediments under changing trophic, redox, and lake mixing 

regimes. The results demonstrate that intensified P cycling from sediments into the water 

column (enhanced internal P loadings) apparently occurred as a positive feedback of natural 

eutrophication with persisting bottom-water anoxia during the early to mid-Holocene (~9000–

6000 cal BP). However, this positive feedback could not be inferred for other eutrophic phases, 

when Fe-rich layers formed during seasonal mixing of the lake or when magnetite-type 

minerals produced by magnetotactic bacteria (MTB) appeared to prevent internal P loadings 

during anoxic phases in the mid- to late Holocene (6000 – 2000 cal BP). This resulted in high 

concentrations of potentially labile Fe/Al-P in sediments. Our study demonstrates the potential 

contribution of internal P loadings during long-term natural eutrophication of deep stratified 

lakes. The example of Soppensee also highlights the importance of the coupled geochemical 

cycles of P and Fe in the long-term trophic evolution of ferruginous, low sulfate water lakes. 

Our findings have implications for current lake eutrophication management and restoration. 

5.1.2 Introduction  

Human-induced eutrophication since the 20th century, also known as cultural eutrophication, 

has become a major environmental threat to freshwater ecosystems worldwide. It can create 

toxic algae blooms and result in deep-water hypoxia or even anoxia among other adverse 

effects (Paerl, 1988). In most cases, lake eutrophication is attributed to excessive phosphorus 

(P) inputs from either external or internal loads because P is often the limiting nutrient for lake 

primary production (Worsfold et al., 2016). There is increasing recognition that lake internal P 

loadings (i.e. P released from sediments into the water column) can trigger a positive feedback 

of eutrophication, delaying lake recovery after reducing external P loadings (Orihel et al., 

2017). This holds particularly true for seasonally stratified, deep lakes, where hypolimnetic 
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anoxia caused by thermal and/or eutrophication-related biochemical stratification is expected 

to trigger effective P recycling from surface sediments back into the water column (Lepori and 

Roberts, 2017; Tu et al., 2019). Hypolimnetic anoxia or meromixis-induced sediment-P 

release in deep eutrophic lakes has received increasing attention (e.g. Cyr et al., 2009; 

Nurnberg et al., 2018). In stratified eutrophic lakes, the mineralization of organic matter (OM) 

tends to cause depletion of dissolved oxygen in deep waters, leading to the reductive 

dissolution of Fe/Mn oxyhydroxides and release of adsorbed P back into bottom waters 

(Steinsberger et al., 2017). Studies in two seasonally stratified eutrophic lakes in Switzerland 

(Tu et al., 2019; 2020) have recently demonstrated that enhanced internal P loadings and P-

recycling leads to a depletion of the labile P fraction in sediments. 

Besides such anthropogenic drivers as residential, industrial, and agriculture discharges, 

natural drivers can also be responsible for lake eutrophication and hypolimnetic anoxia in deep 

lakes. For example, higher lake surface temperatures due to climate warming very likely 

prolong the growing season for phytoplankton and thus strengthen stratification, ultimately 

leading to an elevated and growing risk of eutrophication and anoxia in deep lakes (Straile et 

al., 2003). Furthermore, temperate deep lakes in Europe have mostly been found to be 

naturally nutrient-rich due to their geological or geomorphological settings and ontogenesis 

(e.g., Kirilova et al., 2009; Makri et al., 2020a; Sanchini et al. 2020).  

For decades, many researchers have investigated the potentials of sediment-P release using 

different P fractions in sediments and their potential bioavailability (e.g. Gao et al., 2005; 

Kapanen, 2008). Net burial of labile P fractions in sediments, in combination with productivity, 

redox, and lake mixing proxies, might shed light on P cycling and internal P loads as well as 

feedbacks in the past under pre-anthropogenic conditions. However, most of the empirical 

and modeling research dealing with potentials of internal P loadings has focused on timespans 

of a few decades (Katsev and Dittrich, 2013) and on shallow, polymictic, well-oxygenated 

lakes (Søndergaard et al., 2001). There is yet a lack of long-term (i.e., Holocene and longer) 

records of sediment-P fraction retention, eutrophication, and anoxia history, in particular in 

stratified, deep lakes. This has hampered efforts to reliably test whether past internal P 

loadings and related positive feedbacks sustaining eutrophication also operated on long time 

scales under natural or early-anthropogenic impact conditions. 

Soppensee is an ideal site to study this question because it is a deep, eutrophic lake offering 

a sediment record with annual laminations (varves), and its sediments have an exceptionally 

good chronology. Moreover, a record of diatom-inferred epilimnetic total P (DI-TP) 

concentrations is available for the entire Holocene (Lotter, 2001), which provides quantitative 

information about the past lake-water P levels.  
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In this study, we aim to answer three research questions: 1) How have sedimentary labile and 

stable P-fraction retention and potentials of internal P loadings changed under pre-

anthropogenic, natural conditions in Soppensee? 2) Were there large differences between 

sedimentary labile P-fraction retention and lake-water P levels or lake primary production? 3) 

Is there evidence for long-term, pre-anthropogenic positive feedbacks between 

eutrophication-triggered anoxia and enhanced internal P loadings, which could be detected 

by depletion of labile P fractions in sediments while DI-TP in the lake water remained 

elevated? To answer these questions, we combined a Holocene high-resolution 

paleoproduction and anoxia record with a record of five sedimentary P fractions and DI-TP 

concentration data. If DI-TP is assumed to be an unbiased estimate of the epilimnetic total P, 

then this approach allows us to investigate the relationships between epilimnetic total P 

concentrations and sedimentary labile P fraction concentrations under changing primary 

production and lake mixing regimes throughout the Holocene. We hypothesize that differences 

between the DI-TP and sediment labile P records enable qualitative inferences of internal P 

loadings that indicate a positive feedback of natural eutrophication.  

5.1.3 Study site  

Soppensee is a small, hard-water lake situated on the Swiss Central Plateau at 596 m above 

sea level (47°05'30"N, 08°05'E). This kettle-hole lake was formed after the retreat of the Reuss 

glacier around 17–18 ka cal BP (Lotter, 1989). It has a small surface area (0.227 km2) relative 

to its maximum water depth (27 m). The lake does not have surface inflows and is mainly fed 

by groundwater and seasonal surface run-off with negligible detrital inputs from a small 

calcareous sandstone catchment of 1.6 km2. One outflow leaves the lake in the northwest 

(Fig. 5.1b). The water volume amounts to 2.9 × 106 m3 with a residence time of ~ 3.1 years 

(Fischer, 1996).  
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Figure 5.1: Study site. (a) Map of Switzerland with the location of Soppensee. (b) Aerial image of the 

catchment area of Soppensee (inside the blue polygon; background map © swisstopo) and a 

bathymetric map of the lake with the coring site. (c) Age-depth model and lithology of Core So08-3 and, 

on the left, the six lithological units A-F according to Gierga et al. (2016). LST marks the Laacher See 

Tephra at 521–521.5 cm depth.  

Soppensee sediments are characterized by well-preserved varves that provide a continuous 

record of most of the Early-Mid Holocene and part of the Late-glacial (Lotter 1989). The 

sediments are very well dated with varve counting paired with 14C dates (Hajdas and 

Michczyński, 2010) and provide an excellent archive for chironomids (Hofmann, 2001), pollen 

(Lotter, 1999), and diatoms (Lotter, 2001). According to the DI-TP concentrations record, 

Soppensee remained in meso- to eutrophic conditions throughout the Holocene (Lotter, 2001). 

Today, the lake is classified as eutrophic to hypertrophic with lake-water total P concentrations 

in the range of 50–116 μg L-1 (Müller et al., 1998). Currently, Soppensee is holomictic with 

strong thermal and chemical stratification and hypolimnetic anoxia in summer (Gruber et al., 

2000). Mixing mostly occurs in fall and winter.  

The catchment area of Soppensee is intensively farmed, with arable and pastoral uses 

accounting for 82% of the catchment area and wooded areas representing 12% (Langenegger 

et al., 2019). The wooded areas are composed of mixed forest dominated by Picea abies 
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(spruce; planted) and Fagus sylvatica (beech). A temperate and oceanic climate prevails in 

the region, with July (~17.6 °C) the warmest month and January (~ -0.3 °C) the coldest. 

5.1.4 Materials and methods 

Sediment sampling and chronology 

In August 2008, several UWITEC piston cores with overlapping sequences were retrieved 

from the deepest part of the lake at a water depth of 27 m (47°05'26.6"N, 08°04'49.4"E; Fig. 

5.1a, b). After core collection, the cores were tightly sealed and stored in a cold room at 4°C 

before opening. In 2019, the cores were split lengthwise in two halves, A and B, and the 

oxidized surfaces were described according to Schnurrenberger et al. (2003). The A-half cores 

were used for visual correlation and non-destructive scanning techniques including x-ray 

fluorescence (XRF) and hyperspectral imaging (HSI). The B-half cores were subsampled for 

destructive geochemical analysis such as pigment analysis and P extraction. The composite 

core So08-3 examined in this study was assembled from three overlapping cores based on 

stratigraphic marker layers and XRF data correlation. The composite sequence has a total 

length of 571 cm, covering the past ~15,000 years (Fig. 5.1c). The chronology of core So08-

3 is based on the correlation of XRF data and sedimentary marker layers to core So08-01/2 

dated by Hajdas and Michczyński (2010) and van Raden (2012) using 42 tie points (see Table 

S1 and Fig. S5.1 in supplementary material).   

Sediment lithology 

Previous research (Hajdas and Michczyński, 2010; Kind et al., 2012; Gierga et al., 2016) has 

shown that the uppermost ~6 m sediments of Soppensee are organic-rich lacustrine deposits 

that are divided into six sedimentary units (A to F) based on lithological parameters.  

Unit A (571–548 cm in Core So08-3; Fig. 5.1c) contains detrital deposits with light-grey silty 

clays deposited between ~15,115 and 13,800 cal BP during the deglaciation of the Swiss 

Plateau (see Gierga et al. 2016). In unit B (548–474 cm), sediments are dark-brownish and 

rich in organic matter and carbonates. As Fischer (1996) described, unit B is partly laminated 

with Fe-rich layers formed in the Late-glacial period. According to Gierga et al. (2016), unit B 

can be attributed to the Allerød interstadial (~13,800–12,700 cal BP) and the Younger Dryas 

(YD, ~12,700–11,500 cal BP). The Laacher See tephra (LST), dated to ~12,800 cal BP 

(Hajdas and Michczyński, 2010), is found within this unit prior to the onset of the YD. Unit C 

(474–350 cm) consists of continuous biogenic calcite varves formed during the early to mid-

Holocene until ~6000 cal BP. In unit D (350–187 cm; ~6000–2000 cal BP), sediments are rich 

in organic matter with an overall very dark color. Vivid blue crystals (vivianite) are visible at 

some spots from parts of the oxidized core surface in unit D. Unit E (187–35 cm), representing 



Chapter 5: A case study from Soppensee 

 120 

the period ~2000–200 cal BP, consists of very faint laminations and organic-rich sediments 

with lighter color than unit D. The uppermost unit, F, (above 35 cm) consists of light brown 

sediments of the most recent 200 years.  

Geochemical methods 

The semi-quantitative elemental composition was measured on the fresh sediment surface of 

core So08-3 using an ITRAX XRF Core Scanner (Cox Ltd.) equipped with a Cr-Anode-Tube 

set to 30 kV and 50 mA at the Institute of Geological Sciences, University of Bern. 

Measurements were made at 5-mm contiguous intervals and an integration time of 30 s. Prior 

to scanning, the sediment surface was carefully cleaned and smoothed. All XRF data are 

given as total counts per area (cts). For the interpretation of selected XRF elements, Ti was 

used as indicator of lithogenic content; Ca of endogenic calcite content; and Mn of water 

column redox conditions (van Raden, 2012). 

The HSI scans were made with a Specim Ltd. single core scanner equipped with a 

hyperspectral linescan camera (Specim PFD-CL-65-V10E) in the visual to near-infrared range 

(VNIR, 400–1000 nm) following the methodology in Butz et al. (2015). Parameters were set 

to a spatial resolution of ∼75 µm per pixel and a spectral sampling of 1.57 nm (binning of 2). 

Relative absorption band depth (RABD) indices were calculated to quantify the absorbance 

troughs caused by sedimentary chloropigments and bacteriopheophytins. The RABD567-769 

spectral index was retrieved from a local minimum of the absorption feature between 

wavelengths of 567 nm and 769 nm after the method in Schneider et al. (2018), as described 

in Fig. S2 of supplementary material. The RABD567-769 spectral index indicates total 

chlorophylls and diagenetic products in sediments, from which lake primary production can be 

inferred (Schneider et al., 2018; Makri et al., 2020a). The RABD845 spectral index represents 

bacteriopheophytins a and b, a specific biomarker diagnostic for purple sulfur bacteria (PSB). 

PSB are anoxygenic phototrophic bacteria that live at the chemoclines of stratified lakes with 

oxic–anoxic interfaces; thus the presence of PSB indicates seasonal hypolimnetic anoxia or 

meromixis in the lake with light penetration to the chemocline (Butz et al., 2016; Zander et al., 

2021).   

The pigment extraction of 32 sediment samples (1 cm slices) followed the method in Amann 

et al. (2014), which was applied to ~ 0.1–0.5 g freeze-dried homogenized sediments using 

100% acetone (HPLC grade) solution. The pigments concentrations in extracts were 

determined with a Shimadzu UV-1800 spectrometer. We used the molar extinction coefficients 

for chlorophyll-a and chlorophyll-a derivatives (here green pigments) from Jeffrey and 

Humphrey (1975) and for bacteriopheopigments-a (Bphe-a) from Fiedor et al. (2002). 

RABD567-769 and RABD845 values were calibrated to spectrophotometrically determined 
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concentrations (μg g-1 dry sediments) of green pigments and Bphe-a, respectively, using linear 

regression models following Butz et al. (2015). The calibration models were validated by R2 

and the root mean squared errors of prediction (RMSEP) (see Fig. S5.3 in supplementary 

material). Residual analyses of the linear calibration models (Fig. S5.4 and S5.5 in 

supplementary material) revealed that three samples cause a slight tailing in the normal QQ-

plot (Fig. S5.4b and S5.5b) and higher leverage (Fig. S5.4d and S5.5d); a weak 

heteroscedastic pattern is visible in Fig. S5.4c and S5.5c. However, the Shapiro-Wilk and the 

Kolmogorov-Smirnov tests both indicate most likely normal distributions of the residuals for 

the two linear regression models; thus, the inferences from the two calibration models are 

valid.  

The sediment P fractionation procedure in this study principally followed the harmonized 

protocol developed by the standards, measurements and testing (SMT) of the European 

Commission as modified in Ruban et al. (1999) and Ruban et al. (2001) based on Williams et 

al. (1976). The SMT protocol consists of three independent extraction procedures and defines 

five P fractions: non-apatite inorganic P (mostly P bound to Fe, Al including vivianite, and Mn 

oxides and hydroxides, hereafter Fe/Al-P), apatite P (calcium bound P, hereafter Ca-P), 

inorganic P, organic P, and total P. Fe/Al-P in sediments is a labile P source under anoxic 

conditions and in high pH environments and can be considered potentially bioavailable. Ca-P 

in sediments is considered non-available, and organic P partly available. In this study, we 

made slight modifications to the SMT protocol: a) In each extraction step, we used 40 mL 

(instead of 20 mL) extractant (i.e., NaOH and HCl) for ~0.2 g aliquots of freeze-dried 

homogenized sediments. The lower dry sediment weight-to-extractant volume ratio (1:200) 

was to avoid the saturation limit of P released from the solid phase. b) Two 1 M NaCl rinse 

steps (20 mL) were added after each main extraction step. The P determined in rinsing 

solutions was added to the corresponding P pools to maximize the extraction efficiency. 

Following each extraction and rinsing step, supernatant was collected after centrifugation at 

4000 rpm for 15 min at room temperature.   

Phosphate concentrations in all unfiltered extracts were determined spectrophotometrically 

with the malachite green method (Ohno and Zibilske, 1991) and the absorbance measured at 

610 nm (Shimadzu UV-1800 spectrophotometer). The details of the colorimetrical analyses 

can be found in Tu et al. (2019). Certified reference sediment material (CRM) BCR-684 was 

used for quality control of the analytical data and efficiency of the extraction procedure. The 

analytical results for BCR-684 are in good agreement with the certified contents from the 

certification report for the SMT procedure (see Table S5.2 in supplementary material). 
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5.1.5 Results  

Time series of geochemical data 

Fig. 5.2 shows that HSI-pigment, P fractions, and XRF data exhibit distinctive features across 

the six stratigraphic units (A to F in Fig. 5.1c). The long-term phase relationship between Fe/Al-

P data and lake paleoproduction history reveals an approximately coherent pattern across the 

units. Labile P (Fe/Al-P) is the dominant P fraction in most periods (Fig. S5.6a in 

supplementary material). The labile P fraction exhibits a pattern very similar to total P and 

inorganic P over time (Fig. 5.2). The Fe- and Mn-rich laminae (Fischer, 1996) and calcite 

varves (Hajdas and Michczyński, 2010) coincide with relatively high XRF Fe and Mn counts 

and high Ca counts, respectively (Fig. 5.2). Fig. 5.3 shows four distinct 2-cm example sections 

with corresponding high-resolution HSI-pigment data from the Late-glacial (Fig. 5.3a and 3b) 

and Holocene periods (Fig. 5.3c and 3d). Fig. 5.4 primarily compares sedimentary Fe/Al-P 

data with the DI-TP concentration record (Lotter, 2001) and with centennial-scale records of 

lake paleoproduction and anoxia. DI-TP data is not available for the Late-glacial period (units 

A and B) due to diatom dissolution in these sediments. Instead, we compared HSI-pigment-

inferred lake primary production with the Fe/Al-P stratigraphy (Fig. 5.4c and 4e).  

 

 

Figure 5.2: Time series of HSI-inferred pigment data, P fractions concentrations (μg g-1 dry weight; DW 

and selected XRF data (Fe, Mn and Ca). For the pigment data, purple and green lines show the data 

at highest resolution (~75 μm) and red lines are 2-cm aggregate averages (267 samples). The vertical 

dashed lines represent the lower and upper limits of the calibration models (refer to Fig. S5.3 in the 

supplementary material). The appearance of Fe- and Mn-rich laminae (with siderite) and biogenic 

calcite varves in sediments was taken from Fischer (1996). MTB: Magnetotactic bacteria, detected by 
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Kind et al. (2012). The horizontal dashed grey lines separate the different units (A to F; Gierga et al. 

2016). Note the different scales of the x-axes. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

Figure 5.3: Example sections from four phases showing 2-cm sediment core sections (sediment depth 

of the composite core) covering approx. 40 years according to the age-depth model in Fig. 5.1c; 

variations of Bphe-a (in purple) and green pigments (in green) are shown with the spectral indices and 

the calibrated pigment concentrations at high resolution (~75 μm). For each image, the vertical red lines 

show the 2-mm wide window used for determining the spectral-index time series for the individual core 

section; the three grey lines represent the mean value and standard deviations of the two spectral 

indices for the entire sediment core; and the vertical yellow lines represent the lower limits of the 

calibration models. a) close-up section from the Allerød interstadial: this is a period with high lake 

primary production and high Bphe-a concentrations, indicating anoxia. b) close-up section from the 

Younger Dryas (YD), showing decreased lake primary production and almost absent Bphe-a, 

concurrent with Fe- and Mn-rich layers (Fischer, 1996), suggesting a seasonally mixed hypolimnion. c) 

close-up section from the mid-Holocene: showing high primary production and persistently high Bphe-

a concentrations, which suggests strongly stratified conditions with anoxia or even meromixis. d) close–

up section from the late Holocene, showing high lake production and low Bphe-a concentrations in Fe- 

and Mn-rich sediments, which suggests mostly a well oxygenated water column. The calibration model 

is valid for green pigments between 13.6 and 321.8 µg g-1 dry sediments and for Bphe-a between 9.7 

and 233.3 μg g-1 dry sediments (see Fig. S5.3 in the supplementary material). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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Figure 5.4: Comparison of millennial and centennial scale variations of Soppensee trophic status with 

sediment Fe/Al-P (labile P) data over the Late-glacial and Holocene. (a) Percentage of arboreal pollen 

(AP) including tree and shrub pollen (Lotter, 2001). (b) The diatom-inferred past epilimnetic total 

phosphorus (DI-TP) concentrations in Soppensee (Lotter, 2001); the dashed black line represents the 

mean value of the DI-TP record (30 µg L-1). (c) Record of Fe/Al-P concentrations in sediments (µg g-1
dry 

weight, DW). (d) The anoxia and (e) aquatic paleoproduction proxies are shown as 100-year running 

means. The yellow and green vertical bars at the top of the figure highlight the Late-glacial Allerød 

interstadial and the Younger Dryas (YD) cold period, respectively (according to Gierga et al. 2016).  

Phase a to Phase d refer to Fig. 5.5. In (c)-(e), dashed red (blue) lines mark relative maxima (minima) 

in lake paleoproduction/anoxia synchronously with relative minima (maxima) of Fe/Al-P in sediments. 
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(For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

In unit A, the deglaciation period (~15,115–13,800 cal BP; Gierga et al., 2016), green pigments 

and Bphe-a values remain at minimal levels, indicative of low lake primary production with a 

poorly stratified water column. High Mn counts (Fig. 5.2) imply a well-mixed water column; 

high Ti counts (Fig. S5.7) imply high quantities of lithogenic sediments. The values for the 

Fe/Al-P and all the other P fractions are very low.  

In unit B (~13,800–11,500 cal BP), green pigments and Bphe-a values generally increase, as 

do concentrations of Fe/Al-P in sediments. The very beginning of unit B (~13,800–13,600 cal 

BP, latest part of the Allerød interstadial; Gierga et al. 2016) exhibits the first distinct peaks of 

green pigments and Bphe-a concentrations. This suggests substantially enhanced lake 

primary production and strongly stratified and anoxic conditions; Bphe-a values are well above 

the limit of quantification (9.7 μg g-1 dry sediments) for more than 40 years, which in turn 

suggests strongly stratified and mostly anoxic, maybe even meromictic conditions (see 

example image Fig. 5.3a). Concurrently, Fe/Al-P concentrations in sediments remain low 

during the peak of the green pigments and Bphe-a. During the remainder of the Allerød 

interstadial (~13,600–12,700 cal BP), lake primary production is still relatively high; Bphe-a 

concentrations drop to substantially lower levels, yet counts of Fe and Mn are high, which 

suggests seasonally oxygenated bottom waters. In the same period, Fe/Al-P and total P 

concentrations in sediments increase sharply but then decrease to low values at the transition 

to the YD cold phase at ~12,700 cal BP. During the YD, Bphe-a is largely absent or close to 

the detection limit for several years (see example image Fig. 5.3b), indicating consistently 

good oxygenation of the hypolimnion. This is also confirmed by high Mn counts (Fig. 5.2). 

Lake paleoproduction in this phase is relatively low, except for a small peak at ~12,400 cal 

BP. Concurrently, low values of the Fe/Al-P are found throughout this period.  

Unit C is characterized by relatively high Bphe-a and aquatic production, as well as overall 

increased values of all P fractions in the sediments (Fig. 5.2). At the onset of the early 

Holocene (~11,500–11,000 cal BP), green pigments and Bphe-a increase rapidly to a relative 

maximum between ~11,200 and ~11,000 cal BP, whereas the Fe/Al-P value is still low. 

Subsequently (11,000–9000 cal BP), lake primary production decreases slightly, yet Fe/Al-P 

values slightly increase. In the early Holocene (1,500–9000 cal BP), Bphe-a values are clearly 

higher, with multiple local peaks, indicating a strongly stratified water column and sustained 

anoxia in the hypolimnion for most of this period. This interpretation is supported by constantly 

declining Mn counts in this phase (Fig. 5.2), suggesting less frequent mixing of the bottom 

water. Slightly low but increasing DI-TP concentrations from ~11,500 cal BP to 9000 cal BP 

coincide with moderately low values of Fe/Al-P (Fig. 4b and c). The following early to mid-
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Holocene (~9000–6000 cal BP) is characterized by relatively high and increasing lake primary 

production and constantly elevated Bphe-a concentrations. The example section from this 

period (Fig. 5.3c) shows high concentrations of Bphe-a above the detection limit for several 

years, which is indicative of a strongly stratified water column under mostly meromictic 

conditions. The persistent anoxia in the bottom water is further supported by very low Mn 

counts in this period (Fig. 5.2). In contrast to an increasing trend of lake paleoproduction (Fig. 

5.4e) and higher DI-TP concentrations (Fig. 5.4b), Fe/Al-P values decline substantially and 

remain at minimal levels between ~9000 cal BP and 6000 cal BP (Fig. 5.4c).  

In unit D, from the mid- to late-Holocene (~6000–2000 cal BP), aquatic production further 

increases and remains high (Fig. 5.2). High Bphe-a well above the detection limit occurs 

throughout most of this unit (Fig. 5.2), which indicates strongly stratified conditions with anoxia. 

This interpretation is confirmed by constantly low Mn counts in this period. Both DI-TP and, 

interestingly, Fe/Al-P records exhibit considerably increased and more variable values (Fig. 

5.4b and 4c).  

In unit E, from ~2000 to 200 cal BP, lake paleoproduction declines slowly, and Bphe-a remains 

at very low concentrations overall (Fig. 5.2). The example section from this period (Fig. 5.3d) 

displays that Bphe-a concentrations are close to the detection limit (~9.7 μg g-1 dry sediments) 

for several years. This indicates the absence of a stable chemocline. The Fe- and Mn-rich 

laminae present in this phase (Fig. 5.2) most likely imply seasonal mixing of the water column 

with strong anoxia during the summer season. The decreased DI-TP concentrations are 

synchronous with relatively high but continuously decreasing Fe/Al-P values (Fig. 5.4b and 

4c).  

In the most recent 200 years (unit F), lake primary production considerably increased; Bphe-

a concentrations stay at sustained minimal levels (Fig. 5.2), indicating the general absence of 

a persistent chemocline. However, Mn counts are very low in this period (Fig. 5.2), which still 

suggests seasonal hypolimnetic anoxia. DI-TP concentrations reach the highest levels, 

whereas sedimentary Fe/Al-P concentrations decrease to very low values. 

Centennial-scale relationship between lake primary production and sediment labile-P 

data 

Over the past ~15,000 years and superposed on the long-term (multi)millennial trends, our 

results (Fig. 5.4c-4e) reveal, at the shorter-term (centennial) time scale, a commonly occurring 

inverse relationship between sediment Fe/Al-P concentrations and lake primary production 

and anoxia: in many, but not all cases, relative minima (maxima) in lake paleoproduction and 

anoxia tend to correspond to relative maxima (minima) of Fe/Al-P (dashed blue and red lines 

in Fig. 5.4). For example, during the Late-glacial period represented by unit B, enhanced lake 
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primary production with stronger anoxia at ~13,700 cal BP and ~12,400 cal BP coincides with 

relatively low values of Fe/Al-P (see dashed red lines). In contrast, lake primary production 

and anoxia indicators display decreased values at ~13,500 cal BP and 13,000 cal BP, which 

corresponds to local peaks of Fe/Al-P (see dashed blue lines). Similar observations can be 

made in other units during most of the Holocene, pointing to a negative relationship between 

paleoproduction, anoxia, and sedimentary Fe/Al-P at short (multidecadal to centennial) time 

scales. 

5.1.6 Discussion 

Late-glacial and Holocene lake trophic evolution and anoxia history 

Here we present a Late-glacial and Holocene overview of aquatic production and anoxia in 

Soppensee reconstructed by HSI-inferred sedimentary pigments data. Diatom assemblages 

and pigment concentrations are two palaeolimnological indicators commonly used to infer past 

changes of lake trophic status (Davidson and Jeppesen, 2013). In Soppensee, DI-TP 

concentrations (Lotter, 2001) demonstrated mesotrophic to eutrophic conditions during most 

of the Holocene, suggesting that Soppensee is a naturally nutrient-rich lake. Our lake primary 

production record generally exhibits a pattern coherent with the DI-TP record throughout the 

Holocene (Fig. 5.4b and 4e). For example, both records show moderately high levels from 

11,500 to 9,000 cal BP, very high levels from 6000 to 2000 cal BP, and decreased values from 

~2000 to 200 cal BP. This coherence confirms that HSI-inferred green pigment data reliably 

capture epilimnetic aquatic production in Soppensee.  

The green pigment record (Fig. 5.2) suggests that the lake primary production was relatively 

low before ~13,800 cal BP and in the YD cold phase (~12,700–11,500 cal BP), but underwent 

increasing nutrient enrichment during the Allerød interstadial (~13,800–12,700 cal BP) and for 

most of the Holocene. From ~8000 to ~3000 cal BP, early human impact was very limited and 

there is no evidence for strong human disturbance or extensive forest clearance in the 

catchment (Lotter, 1999; 2001); thus, the long-term eutrophication that Soppensee underwent 

during this time was mostly natural. Interestingly, the lake evolved into more eutrophic 

conditions (higher primary production and higher DI-TP) during warm climatic conditions e.g. 

in the Allerød interstadial and in the mid-Holocene after ~6000 cal BP. During the Allerød 

interstadial, chironomid-inferred summer temperature increased in Central Europe (Heiri, et 

al., 2015), and in the mid-Holocene, warm and humid climate conditions prevailed on the 

Swiss Plateau (Rey et al., 2020). These climate factors likely prolonged the growing season 

of lake phytoplankton and leached more nutrients from developing catchment soils into the 

lake, which then promoted natural eutrophication in Soppensee during these long warm 

phases. Between ~3000 and 200 cal BP, and especially from ~2000 to 200 cal BP, strong 
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human impact with intense land use occurred in the Soppensee catchment (Lotter, 1999), but 

less eutrophic conditions prevailed in Soppensee (Fig. 5.4e). Decreased aquatic production 

during the late Holocene has also been reported from Lake Łazduny and Lake Żabińskie in 

Poland (Sanchini et al., 2020; Zander et al., 2021). Late-Holocene climate cooling, particularly 

in summer (Davis et al., 2003), can partly explain this phenomenon. Since the 20th century, 

lake primary production has increased sharply as a result of cultural eutrophication (see green 

pigments record; Fig. 5.2). We attribute this observation to anthropogenic nutrient inputs from 

the catchment into the lake.  

Under pre-anthropogenic conditions (here mainly before ~3000 cal BP), strong stratification 

and anoxic conditions in the hypolimnion (high Bphe-a; Fig. 5.2) tended to occur during times 

of higher lake primary production (high green pigments), for instance ~13, 800–13,600 cal BP 

and ~8000–4000 cal BP. Similar results (higher lake production causing stronger stratification 

and anoxia) have also been found in other small lakes in Europe, for example, Moossee in 

Switzerland (Makri et al., 2020a) and Lake Jaczno (Makri et al., 2020b) and Lake Żabińskie 

(Zander et al., 2021) in Poland. However, in all these examples closed forest cover around 

the small lakes was also found to be an important factor favoring long seasonal stratification 

and stable hypolimnetic anoxia (Makri et al., 2020a; Zander et al., 2021). This was also the 

case around Soppensee during the early to mid-Holocene (~9000–3000 cal BP), when the 

lake catchment was covered with dense closed forest (arboreal pollen AP > 90 %; Fig. 5.4a; 

Lotter, 1999) that reduced wind fetch, thus increasing lake anoxia. From ~2000 cal BP until 

recent centuries, weaker stratification with periodical oxygen mixing into the hypolimnion is 

suggested by constantly low Bphe-a concentrations (close to the detection limit; Fig. 5.3d) and 

Fe-and Mn-rich laminae (Fig. 5.2). Indeed, after ~2000 cal BP, better lake mixing can be seen 

as a result of intense forest clearance during Roman times and the Middle Ages (mostly AP < 

80 %; Fig. 5.4a; Lotter, 2001) which increased wind-induced mixing of the water column. A 

similar process has been well studied in several small deep lakes of Europe e.g. Makri et al. 

(2020a), Sanchini et al. (2020), and Zander et al. (2021). During Modern Times, Mn counts in 

sediments of Soppensee are very low (Fig. 5.2), suggesting hypolimnetic anoxia. This 

confirms Gruber et al.’s (2000) finding that in recent times Soppensee is under holomictic 

conditions but has strong chemical stratification and persistent anoxia of the deep waters. 

However, Bphe-a values are very low at this time, which is likely explained by poor light 

conditions at the chemocline due to high algal productivity in the photic zone. Similar 

observations have been made in Moossee (Makri et al., 2020a; Switzerland) and Lake 

Żabińskie (Zander et al., 2021; Poland). 

 



Chapter 5: A case study from Soppensee 

 129 

Estimating internal P loadings in response to lake trophic evolution  

Labile Fe/Al-P was the primary sedimentary P form for most of the Late-glacial and Holocene 

periods (Fig. S5.6a). In principle, this suggests a high potential of sediment-P release back to 

the water column in Soppensee’s history. Tu et al.’s (2019) conceptual model implies that 

deep and eutrophic lakes tend to undergo bottom-water anoxia that increases internal 

recycling of sedimentary labile P forms (mainly Fe/Al-P fraction), referred to as internal P 

loadings, a positive feedback that sustains or even accelerates epilimnetic eutrophication. As 

a result, labile-P fraction retention in sediments is depleted because it is recycled back into 

the water column. We investigate the possibility of such positive feedback during long-term 

phases of natural eutrophication and evaluate whether Tu et al.’s (2019) conceptual model is 

valid for Soppensee’s long-term Holocene record. For these purposes, the long-term 

qualitative internal P loadings in Soppensee are inferred by comparing the difference between 

the record of DI-TP concentrations, as a proxy for lake primary production, and sediment 

Fe/Al-P data (Fig. 5.4b, 4c and 4e). We hypothesize that higher DI-TP but depleted sediment 

Fe/Al-P demonstrates that internal P loadings operated as a positive feedback to sustain 

eutrophication. Fig. 5.5 outlines four distinct phases in a conceptual model that summarizes 

Fe/Al-P retention in sediments and internal P loadings in response to biogeochemical P 

cycling coupled with Fe, primary production, and anoxia since the early Holocene.  
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Figure 5.5: Conceptual model of four phases (a to d) of lake primary production, mixing regime, P 

cycling in a small deep eutrophic lake (like Soppensee) during the Holocene (Section 5.1.6). MTB: 

magnetotactic bacteria; PSB: purple sulfur bacteria; OM: organic matter. Note that, overall, the 

illustrated sizes of Fe/Al-P among different phases indicate the relative amounts of Fe/Al-P in 

sediments; the bottom-water (brown-green color) in (c)-(d) represents anoxia during seasonal 

stratifications. Parts of the symbols for this figure were taken from Symbols courtesy of the Integration 

and Application Network (ian.umces.edu/symbols/). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

 

We infer largely high internal P loadings to be a positive feedback of eutrophication arising 

from high lake primary production from the early to mid-Holocene (~9000–6000 cal BP; Phase 

a in Fig. 5.5). This is the long period in which we observe high DI-TP levels in comparison to 

notably low values of Fe/Al-P (Fig. 5.4b and 4c). This pattern suggests mobilization of large 

amounts of internal P loads from labile Fe/Al-P to sustain aquatic production in the photic 

zone. In Phase a (~9000–6000 cal BP; Fig. 5.5a), the lake had strongly stratified and anoxic 

conditions, as indicated by persistently high Bphe-a (Fig. 5.4d). Bottom-water anoxia during 
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times of eutrophication is expected to cause large internal P cycling of Fe/Al-P from the 

sediments (Burley et al., 2001; Tu et al., 2019) and thus depleted the Fe/Al-P in sediments 

(Fig. 5.5a). This interpretation supports Tu et al.’s (2019) conceptual model. 

Interestingly, during the mid- to late Holocene period (~6000–2000 cal BP, Phase b Fig 5.5) 

both DI-TP levels and sedimentary Fe/Al-P values are very high (Fig. 5.4b and 4c) which does 

not follow Tu et al.’s (2019) model. Generally, we interpret this period as one of limited 

sediment-P release into surface waters; thus, internal P loadings might not have operated as 

the positive feedback of eutrophication (see Phase b in Fig. 5.5), although Soppensee was 

strongly stratified with anoxia (Fig. 5.4d). During this period, ferromagnetic minerals (e.g., 

magnetite and hematite, magnetofossils) produced by magnetotactic bacteria (MTB) were 

found in Soppensee sediments (Kind et al., 2012), which might explain the high burial rates 

and high amounts of sedimentary Fe/Al-P at this time (Fig. S5.8 in the supplementary material 

and Fig. 5.2). MTB live around the chemocline, and colonization in the water column is favored 

by persistent stratification and high epilimnetic P concentrations (Paasche et al., 2004). From 

~6000 to 2000 cal BP, high DI-TP levels and stratified, anoxic conditions in Soppensee largely 

promoted the growth of MTB. These MTB have been shown to be preserved as pure or 

oxidized magnetite minerals in Soppensee sediments (Kind et al., 2012). Paasche and Larsen 

(2010) and Rivas-Lamelo et al. (2017) revealed that MTB-produced Fe oxyhydroxides in lake 

sediments can escape from sulfidization and progressive reductive dissolution and, ultimately, 

be better preserved together with P accumulation in reductive sediments. This mechanism, in 

the long term, reduced internal P loadings by lowering P release from sedimentary Fe/Al-P 

(Phase b in Fig. 5.5), which is different from Phase a (Fig. 5.5). As a result, very high amounts 

of Fe/Al-P were preserved in sediments during this period. However, throughout this time, the 

short-term (centennial-scale; dashed red and blue lines in Fig. 4.4c and 4e) inverse 

relationship between lake paleoproduction and sediment Fe/Al-P records still held true overall. 

Apparently, the positive feedback between paleoproduction, anoxia, and internal P cycling, 

and sustained eutrophication still played a subordinate role in shorter terms, but the long-term 

Fe/Al-P trends in the sediment were largely controlled by MTB between 6000–2000 cal BP. 

Thus, Tu et al.’s (2019) model needs to be expanded and modified to account for the presence 

of MTB (Phase b; Fig. 5.5).  

The phase of the late Holocene (~2000–200 cal BP; Phase c in Fig. 5.5) is noticeable for 

generally decreased DI-TP concentrations but relatively high Fe/Al-P values (Fig. 5.4b and 

4c), suggesting decreased internal P loadings. Sediments of this phase are marked by the 

occurrence of Fe- and Mn-rich laminae (Fig. 5.2; Fischer, 1996). The pale-brown Fe- and Mn-

rich laminae are commonly formed in holomictic temperate lakes with seasonal anoxia 

(Zolitschka et al., 2015), where bottom waters are seasonally oxygenated (van Raden, 2012). 
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This notion agrees well with the better mixed and less stratified water column in Soppensee 

at this time. Previous research has demonstrated that Fe-oxide layers can reduce internal P 

loadings by hindering P release from anoxic surface sediments and favor permanent P 

trapping and P sequestration in sediments (Zarczynski et al., 2019). Such a process very likely 

led to lower internal P loadings between ~2000 and 200 cal BP, resulting in high amounts of 

Fe/Al-P preserved in sediments (Phase c in Fig. 5.5). In addition, the inverse relationship 

between lake primary production and sediment Fe/Al-P record on centennial time scales is 

not clearly observable between ~2000 and 200 cal BP (Fig. 5.4c and 4e). Therefore, on both 

long and short time scales, internal P loadings may not have operated as the positive feedback 

in this phase.  

In the most recent 200 years (Phase d in Fig. 5.5), we infer high internal P loadings to be the 

positive feedback that sustains cultural eutrophication in Soppensee, which can be seen from 

high water P levels (Fig. 5.4b) and severe hypolimnetic anoxia (indicated by very low Mn 

counts; Fig. 5.2) in comparison with depleted Fe/Al-P in sediments (Fig. 5.4c). Given this, the 

pattern of Phase d is very similar to that of Phase a (Fig. 5.5) discussed above, and thus also 

supports Tu et al.’s (2019) conceptual model. 

Due to the lack of preserved diatoms, DI-TP values are not available for the Late-glacial period 

(Allerød and YD). However, the frequent inverse correlation between paleoproduction and 

anoxia with Fe/Al-P during the Allerød and the beginning of the YD (Fig. 5.4c-4e) suggests 

that a mechanism of strong internal P cycling, depleted Fe/Al-P in sediments, and sustained 

primary production (with related anoxia) also operated in the Allerød interstadial. By contrast, 

for most of the YD cold phase, better oxygenation of bottom waters, together with low aquatic 

production and Fe/Al-P (Fig. 5.4c-4e), demonstrates low amounts of internal P cycling into 

surface waters to promote aquatic production. After the transition of the YD to the Holocene 

(~11,500–9000 cal BP), DI-TP concentrations were comparatively low while Fe/Al-P values 

were moderately low but increased slightly compared with the YD (Fig. 5.4b and 4c). This 

period is characterized by Fe- and Mn-enriched layers in sediments (Fig. 5.2; Fischer, 1996), 

suggesting a seasonal mixing of the water column and very likely lower internal P loadings in 

the long term, a pattern similar to Phase c (~2000–200 cal BP; Fig. 5.5) discussed above. 

Nonetheless, Fe/Al-P values in this period were lower than in Phase c (Fig. 5.4c), which may 

have resulted from more intense internal P cycling from Fe/Al-P in response to the strongly 

stratified water column during most of the period from 11,500 cal BP to 9000 cal BP (higher 

Bphe-a values; Fig. 5.4d). Between ~11,500 and 9000 cal BP, on centennial time scales, the 

inverse relationship of paleoproduction and anoxia with Fe/Al-P (Fig. 5.4c-4e) mostly 

demonstrates internal P loadings operating as the positive feedback. 
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We note that our core was taken from the deepest part of the lake, where the sediment P 

records might not comprehensively reflect the overall P dynamics, burial rates, and releases 

in the lake. Horizontal variations and geochemical focusing (Schaller and Wehrli, 1996) in the 

sedimentary P concentrations must be considered. Because of vertical variations of the redox 

front and horizontal mixing, P sedimentation, net burial rates, and cycling are likely quite 

different in shallower and in deeper parts of the lake. Sediments from shallower parts of the 

lake tend to have better oxygen conditions than those in the deepest parts (at least seasonally; 

Schaller and Wehrli, 1996), potentially causing less sediment P release into the photic zone 

and better P trapping. It is possible that in Soppensee, internal P loadings as we infer from 

the core at the deepest part of the lake are overall overestimated and could have been 

balanced to some extent by higher P sedimentation and net burials in the shallower parts of 

the lake. Thus, these changes overall would not substantially influence P levels in the 

epilimnion, where planktonic diatoms live. Therefore, inferences of sedimentary P records 

from cores at the deepest parts of the lake should be interpreted with caution; they might not 

show the full picture of the lake. Further work on horizontal distribution patterns (geochemical 

focusing) of sedimentary P fractions from short cores across a water-depth gradient may 

provide important insights into whole-lake P dynamics and mass-balance modeling in deep 

lakes.  

5.1.7 Conclusion 

We propose that internal P loadings have played an important role in the long-term natural 

eutrophication of stratified deep lakes such as Soppensee during the Late-glacial and 

Holocene periods. The increased internal P loadings as a positive feedback of eutrophication 

and related anoxia were inferred in Soppensee from the early to mid-Holocene (~9000–6000 

cal BP) under natural conditions and during the most recent 200 years of cultural 

eutrophication. However, strong recycling and depletion of labile P fractions in the sediment 

was not observed in other long phases of high aquatic production and anoxia. Fe-rich minerals 

(magnetofossils) produced by magnetotactic bacteria (MTB) and Fe-rich laminae preserved 

in anoxic sediments potentially reduced internal P loadings despite high eutrophication 

between 6000 and 200 cal BP. Our study implies that the presence of (bacterially-mediated) 

endogenous Fe-minerals restricting P recycling and bioavailability should be considered in 

conceptual models of biogeochemical P cycling on long-term (multi)millennial timescales in 

deep stratified eutrophic lakes. This presence helps potentially enhance P removal from the 

water and decrease internal P loadings in lakes, an implication for the present-day 

eutrophication management. In future studies, it will be important to assess further related 

microbially mediated processes that contribute to the P cycle in similar environments.   
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5.2 Supplementary materials 

Table S5.1: List of the stratigraphic correlation depths between the So08-3 core (this study) and the 

So08-01/2 core from van Raden (2012) and the ages of the correlation depths. The numbers in the 

first column correspond to numbers of Figure S5.1. 

 

Correlation points 

No. in Figure S2 

So08-3 

sediment 

depth (cm) 

So08-01/2 

sediment 

depth (cm) 

Mean age at 

depth (cal. BP) 

1 27.3 30.2 197 

2 54.3 45.3 303 

3 76.1 69.2 467 

4 80.1 74.9 505 

5 100.1 92.1 617 

6 109.6 97.3 652 

7 120.1 106.7 713 

8 123.1 108.2 723 

9 126.6 114.5 808 

10 130.1 119.1 886 

11 135.1 124.3 972 

12 153.1 142.0 1264 

13 166.6 168.5 1702 

14 182.8 182.6 1933 

15 193.8 191.9 2088 

16 199.8 201.3 2242 

17 204.3 205.5 2311 

18 229.2 226.8 2663 

19 240.7 237.2 2835 
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20 262.7 256.4 3199 

21 281.7 277.2 3719 

22 288.7 301.7 4331 

23 301.7 320.9 4828 

24 323.3 337.0 5459 

25 333.3 346.4 5647 

26 346.7 362.0 5959 

27 361.8 379.6 6525 

28 376.3 394.3 7044 

29 421.2 454.5 8771 

30 435.7 466.5 9220 

31 453.8 486.8 10,188 

32 464.7 496.1 10,644 

33 480.9 514.3 11,494 

34 491.9 521.6 11,898 

35 500.9 526.8 12,201 

36 513.9 537.7 12,673 

37 524.4 542.4 12,907 

38 535.9 554.9 13,355 

39 548.9 564.3 13,849 

40 554.4 570.0 14,318 

41 560.9 574.7 14,701 

42 563.4 578.8 15,043 

 

 



Chapter 5: A case study from Soppensee 

 142 

Table S5.2: Analytical results obtained from the certified reference material BCR-684 using the SMT 

extraction protocol. 
 

Certified values 

(mg/kg)a 

Measured values 

(mg/kg)b 

Recovery (%) 

Total P 1373 ±35 1344±73 97.9 

Inorganic P 1113 ± 24 1038±12 93.3 

Organic P 209 ± 9 169±4 80.8 

Non-apatite inorganic P 550 ± 21 551±9 100.1 

Apatite P 536 ± 28 482±12 90 

a  Certified values are expressed as mean value ± confidence interval (P=0.05) 

b Experimental results are expressed as mean value of three replicates ± one standard 

deviation 

 

Quality control of the applied extraction procedure  

Table S5.2 shows that the analytical results are in good agreement with the certified contents, 

giving recovery percentages ranging from 93% to 100% for total P, inorganic P, and Fe/Al-P 

fractions. The recovery rates are ~81% and 90 % for organic P and Ca-P, respectively. The 

underestimates of these two P fractions might have three causes: i) P may be lost from solid 

samples when the residue is rinsed, and the supernatant is transferred. ii) A small part of 

organic P may be lost after calcination, although the crucible is rinsed carefully. iii) It is possible 

that not all organic P and apatite-P is extracted when 1 M HCl is added. Despite these 

limitations, the results indicate that large proportions of sediment organic P and Ca-P fractions 

were extracted with the procedure applied. Total P, potentially bioavailable P (Fe/Al-P), and 

inorganic P fractions in the sediment samples can be accurately determined with this 

procedure. 
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Figure S5.1: Chronostratigraphic correlation of the So08-3 core (this study) with the well-dated core 

So08-1/2 of van Raden (2012). We use, besides diagnostic marker layers, color and texture also XRF-

Fe counts in the upper part (Fig. S5.1a) and XRF-Ca counts in the lower part of the core (Fig. S5.1b). 

The 42 identified tie points (red-color numbers) enable the dating of So08-3 core using the chronology 

of So08-01/2 core. The corresponding depths of tie points are shown in Table S1. Ages between the 

tie points were linearly interpolated. 
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Figure S5.2: (a) Spectral endmembers derived from the ENVI Spectral Hourglass Wizard; (b) 

Continuum removed mean spectrum of these spectral endmembers, indicating the relative 

absorption band depth (RABD) for the absorption band minima (here for a local trough minimum at 

673 nm) between 567 and 769 nm, and at 845 nm. The calculation formulas of the spectral indices 

RABD567-769 (e.g. for a trough minimum at R673, according to Schneider et al., 2018) and RABD845 

(according to Butz et al., 2016) are shown. 
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Hyperspectral indices: proxy-proxy calibration 

Fig. S5.3a shows the calibration model for 27 RABD567-769 values compared with absolute 

green pigments concentrations as measured with a Shimadzu UV-1800 spectrometer. The 

model has a strong linear correlation (RPearson = 0.92, R2 = 0.84). The root mean squared error 

of prediction (RMSEP) calculated using tenfold, leave-one-out and bootstrap methods is 

around 40.99 µg/g, corresponding to an uncertainty of 13.3 %. The calibration model covers 

a broad range from minimum values (RABD567-769 = 1.03; green pigments = 13.6 µg/g) to 

maximum values (RABD567-769 = 1.25; green pigments = 321.8 µg/g) (see the vertical dashed 

lines in Fig. 5.2). For RABD567-769 values smaller than 1.069, this calibration model calculates 

negative concentrations of green pigments. This offset is attributed to a matrix effect in the 

hyperspectral data (Makri et al., 2020). All negative values of green pigments were set to 0.  

Fig. S5.3b shows the calibration model for 29 RABD845 values with absolute Bphe-a 

concentrations (spectrophotometer) with a strong linear correlation (RPearson = 0.98, R2 = 0.96) 

and a mean RMSEP of 16.18 µg/g (~6.9 %). The calibration model covers the lower and upper 

limits from RABD845 value of 1.0 (Bphe-a= 9.7 μg/g) to 1.26 (Bphe-a= 233.3 μg/g) (see the 

vertical dashed lines in Fig. 5.2).  

Different residual plots of the two linear calibration models are shown in Fig. S5.4 and S5.5. 

The Shapiro-Wilk and the Kolmogorov- Smirnov tests both indicate most likely normal 

distributions of the residuals for the two linear regression models, thus the inferences from the 

two calibration models are valid. 
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Figure S5.3: Pigments calibration. (a) Calibration of RABD567–769 with UV/VIS-derived green 

pigments concentations (chlorophyll-a and chlorophyll-a derivatives); (b) calibration of RABD845 with 

UV/VIS-derived bacteriopheophytin-a (Bphe-a) concentrations. The linear regression models are 

shown in red; the black dots indicate the sample measurements from dry sediments. The dashed lines 

are the 95% confidence intervals for the regression function (black) and the predicted values (green). 

 

 

Figure S5.4: Different residual plots of the linear calibration model of RABD567-769 with absolute green 

pigments concentrations (a) residuals versus fitted values, (b) standardized residuals versus theoretical 

quantiles, (c) scale-location plot, and (d) standardized residuals versus leverage plot. 
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Figure S5.5: Different residual plots of the linear calibration model of RABD845 with absolute Bphe-a 

concentrations: (a) residuals versus fitted values, (b) standardized residuals versus theoretical 

quantiles, (c) scale-location plot, and (d) standardized residuals versus leverage plot. 

 

Sediment P composition and different P fractions 

The total P concentrations throughout the sediment core range from 399 μg/g (at ~8300 cal 

BP) to 20,396 μg/g (at ~2000 cal BP). Sedimentary P is primarily present in inorganic form 

(i.e. mainly Fe-P and Ca-P), with organic P fraction constituting mostly less than 20% of the 

sum of Fe-P, Ca-P and organic P (Fig. S5.6b). The Ca-P is the dominant P fraction during the 

three intervals of ~15,100-13,800 cal BP, ~12,700-11,200 cal BP, and ~9000-6350 cal BP, 

contributing to ~30-70% of the sum of the abovementioned three P fractions. Correspondingly, 

Fe-P represents the primary P fraction for the remainder of the sediment record. For example, 

in the last 6000 years (Zones VI and VII), the Fe-P fraction accounts for 40% up to >60% of 

the sum of the three P fractions (Fig. S5.6b). 
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Figure S5.6: Time series of (a) concentrations of P fractions and (b) their relative proportions 

compared to sum of the three P fractions in (a). The concentrations refer to dry weight of sediments 

(DW). 
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Figure S5.7: Time series of key geochemical proxies of Soppensee additional to those shown in Fig 

5.2 (main text) including sediment mass accumulation rate (MAR) and XRF data (Fe, Mn, P, Ti and 

Ca). The grey dotted lines separate different lithological units (A to F in Fig. 5.1c; Gierga et al., 2016). 
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Figure S5.8: Vertical distribution of fluxes (net burial rates μg/(cm2
*yr)) of different P fractions in the 

sediments of Soppensee and diatom-inferred past epilimnetic total phosphorus (Diatom-TP) 

concentrations according to Lotter (2001). The grey dotted lines separate different lithological units (A 

to F in Fig. 5.1c; Gierga et al., 2016). 
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6.1 Conclusions 

The main objective of this thesis was to investigate the vertical profiles of P fractions in 

sediments and potentials of internal P loadings in response to lake trophic status and anoxia 

over time spans from the past decades to the Late-glacial and Holocene periods. Three Swiss 

lakes, the Ponte Tresa basin of Lake Lugano, Lake Burgäschi, and Soppensee, were selected 

because they are seasonally stratified deep lakes. The records obtained from these lakes 

cover a wide range of possible lake conditions from oligotrophic to hypertrophic states and 

from well-oxygenated to anoxic conditions. These lakes have been very well studied for 

paleoenvironmental information under pre-anthropogenic and anthropogenic conditions. 

Importantly, all of the lake sediments are organic-rich, anoxic, and favorable for good 

preservation of organic substances (biomarkers) e.g. sedimentary pigments.  

Major conclusions can be drawn from this thesis as follows: 

i. In the Ponte Tresa basin, net burial rates of total P and the labile P fraction in 

sediments show significantly decreasing trends under more eutrophic and anoxic 

conditions since the 1960s. We conclude that, in seasonally stratified deep lakes with 

hypolimnetic anoxia, of which the Ponte Tresa basin is an example, eutrophication-

induced hypolimnetic anoxia can increase sediment P release (mainly from the redox 

sensitive Fe-P fraction) into surface waters and, thus, reduce net burial rates of P in 

sediments. Consequently, the intense internal P cycling from surface sediments will 

work against the restoration actions to decrease eutrophication.  

ii. In Lake Burgäschi, before the restoration of hypolimnetic water withdrawal, long-term 

retention of total P and labile P fractions in sediments was predominately controlled by 

past hypolimnetic redox conditions. When the hypolimnetic water was seasonally 

oxygenated, the retention of total P and labile P fractions in anoxic sediments 

increased, even during eutrophic phases. Moreover, the operation of hypolimnetic 

water withdrawal in Lake Burgäschi has largely decreased net burial rates of labile P 

fractions in sediments and potentials of internal P loadings. Nevertheless, the positive 

effects of hypolimnetic water withdrawal were not observed in the lake trophic state 

because the lake is currently still highly eutrophic. These findings can inform the 

management of deep eutrophic lakes in temperate zones.  

iii. In Soppensee, enhanced internal P loadings triggered by bottom-water anoxia were 

inferred under pre-anthropologic conditions. These internal P loadings served as a 

positive feedback to promote natural eutrophication. However, this inference does not 

always hold true for other long phases of high aquatic production and anoxia. In the 

presence of magnetite-type minerals produced by magnetotactic bacteria and Fe-and 
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Mn rich laminae, internal P loadings were potentially decreased, resulting in high net 

burial rates of Fe/Al-P in anoxic sediments. These iron minerals may be considered as 

new models playing a potentially important role in internal P loadings, geochemical 

cycles of Fe and P, and long-term trophic evolution of ferruginous lakes with low sulfate 

contents.  

iv. All studied lake records illustrate that labile P fractions are the primary P form in 

sediments, which suggests high potentials for internal P loadings. Thus, the labile-P 

data support the geochemical restoration approaches to limit P release from sediments 

by applying aluminum and iron as “capping” materials. On short (decadal to centennial) 

time spans, hypolimnetic anoxia that is caused by human-induced eutrophication tends 

to trigger higher internal P loadings, which serve as a positive feedback to sustain or 

accelerate eutrophication. However, on long-term millennial scales, this process is 

strongly modulated by the Fe-cycle and the presence of magnetotactic bacteria. Our 

findings suggest that the general interpretation model of internal P loadings needs to 

be extended to account for the role of Fe-minerals binding labile P in sediments. 

6.2 Outlook 

The present thesis underlines that, in ferruginous deep lakes, hypolimnetic redox conditions 

and elements of Fe and Mn play an important role in the biogeochemical cycling of P and 

sedimentary P fractions. In future studies, it will be important to assess microbially mediated 

processes or specific processes that are related to Fe- and Mn-rich laminae and ferromagnetic 

minerals endogenously formed in lakes. Also, the combination of P fractionation with the 

analysis of Fe and Mn speciation will help to better understand the effects of lake 

environmental conditions and specific processes on P cycling on short-term and long-term 

timescales.  

The studies that use sediment profiles of P fractions to reconstruct past P dynamics of lakes 

need further attention. The records of total P and P fractions in sediment cores retrieved from 

the deepest sites might not reflect overall external P loadings and P burial rates in sediments, 

particularly in stratified deep lakes. For better understanding of the whole-lake P cycling under 

various environmental conditions, determining the lateral distributions of P fractions in 

sediments in different lake systems may be of great help. This approach may also provide 

important insights into P mass-balance modeling in different lakes. 
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P-fractionation extraction protocol used for Soppensee sediments. 
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