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Chapter 1

Introduction

1.1 Two examples of interval-valued data

Data in the form of intervals naturally appear in many contexts. Let us consider the
snapshots of two data sets. Data set (a) presents the temperature on April 1, 2020 in
different cities and (b) includes patients registered in a clinical study. The variables of
interest are daily temperature in Data (a) and age at registration which was derived
from the year of birth and registration date in Data (b). Comparing with conventional
numerical data where one observes the exact value, in these examples temperature and
age are presented as intervals. The reason of having such data is because the exact value
could not be identified or on purpose converted to intervals. For the data set (a), the
lowest and the highest temperatures form an interval which describes the variability of
the temperature on a particular day. In order to protect the patients’ privacy, the date
of birth in (b) is not allowed to be collected in a clinical study, and so only the year of
birth is available. Therefore, the age could not be exactly identified and we only know
that the true age of each patient lies in a certain interval of one year length.

In these examples, the observed variables are said to be partially identified, while
observations are said to be point-identified if their exact values are available. Comparing
with the point-identified data where we can observe the realization of singleton-valued
variable of interest, in the partially identified data one can only observe sets to which a
realization of a variable of interest belongs.

Table 1.1: Data examples

(a)

City
Temperature

(℃)

Paris 1 - 13
Berlin 2 - 9
Beijing 2 - 16
New York 4 - 13
Tokyo 9 - 13
...

...

(b)

ID
Year of
birth

Registration
date

Age at
registration

1 1950 JAN 01, 2019 68-69
2 1967 MAR 31, 2019 51-52
3 1962 SEP 02, 2019 56-57
4 1983 DEC 18, 2019 35-36
5 1970 JAN 31, 2020 49-50
...

...
...

...
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The setting is very close but still different from the case where the data are sets and one
deals with a sample of sets. In case of partially identified models the underlying quantity
of interest is the distribution of a point sampled from sets, while for set-valued data the
distribution of a set is of primary importance. In the thesis we address statistical inference
problems in both settings, which are closely related: the distribution of a set yields the
distributions of points sampled from it, while the distribution of a point sampled from
a set provides information about the distribution of the set itself. The framework goes
beyond the interval-valued data and deals with general set-valued observations that are
interpreted either as samples of sets or as partially identified observations of a multivariate
parameter.

1.2 Partial identification and random set

The simplest way to handle partially identified data is to replace the observed interval
with a real number, typically by its minimum, maximum or middle point, so that the
conventional statistical methods can be used to estimate the parameter of interest and
to perform statistical inference. However, this approach neglects the nature of the data-
generation process that results in interval-identified or set-identified observations. With
the onset of research on partial identification in the area of econometrics in the early
1990s (see, e.g., Manski [2003]), the nature of this data-generation process has been
incorporated into the statistical analysis.

Partial identification is an approach to handle

1) data which is not an all-or-nothing (point-identified or missing) concept and

2) models which is not necessary point-identified (not all parameters could be point-
identified) but can still provide valuable information.

In this case, the term “partial identification” is quite self-explaining. The variables age
and daily temperature in the previous examples can be called partially identified. Note
that the partial identification does not only deal with incomplete data (partially identified
data as in the examples), but also concerns incomplete models, see Ciliberto and Tamer
[2009], Tamer [2003]. The latter setting is out of scope of this thesis.

The main philosophy behind the partial identification is the law of decreasing credi-
bility :

“The credibility of inference decreases with the strength of the assumptions
maintained”, see Manski [2003].

The conventional method based on replacing observed sets with a single value is equiv-
alent to adding an assumption that the set can be represented by a single value. This
doesn’t always make sense. The partial identification analysis suggests first focusing on
what can be learned from the observed data without any assumption (except the ba-
sic restriction on the sampling process) and then combining the empirical evidence with
plausible assumptions to study the effect of the assumptions on what one learns. With
this procedure, one obtains first all possible values (a set of values) for the parameter
of interest. This set may be reduced by strengthening the assumptions. In the ultimate
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case, this set turns into a singleton. However, this should not be the ultimate goal, but
we should rather focus on

• obtaining a useful characterization of the parameter of interest with available data
and a set of plausible assumptions;

• estimating the set of values;

• conducting hypothesis testing and drawing conclusions.

For example, Manski [2003, 2007] considered learning the distribution function from the
interval data and proposed to estimate it based on the worst case bounds. It is simple
to understand and easy to compute. In another example in the context of linear models
with interval data, sets of parameters that are consistent (in the Hausdorff metric) with
the argmin of a particular objective function could be constructed, see Manski and Tamer
[2002]. However, these papers did not discuss the inference issues.

In order to develop statistical inference techniques, Beresteanu and Molinari [2008]
relied on the concept of a random set as a mathematical technique to handle the partial
identification analysis in the linear regression with interval outcomes. In this paper,
Beresteanu and Molinari considered the partially identified data as a set-valued sample
drawn from the distribution of a random set and developed a whole statistical procedure
involving the structure of the model, estimation of the linear regression parameter, the
central limit theorem, hypothesis testing and construction of confidence regions.

The studies of random sets can be traced back to early 1930s where this concept
was first mentioned, see Kolmogorov [1950]. Later, its mathematical theory including
the exact definition of a random closed set and the relevant techniques was introduced
by Matheron [1975] and later discussed in depth by Molchanov [2017]. Random set
theory provides a relevant mathematical basis to partial identification analysis, such as
distributions of random sets and their selections, operations with sets (Minkowski sum
and union), limit theorems for Minkowski sums, involving important techniques from
probabilities in Banach spaces.

One of the key ideas lies in interpreting a random set as a family of random singletons
(or random vectors), and these random vectors are called selections of the random set.
In many cases, it is possible to find a countable family of integrable selections to fill a
random closed set, and then the expectation of the random closed set is defined as the set
of expectations of all integrable selections; we call it the selection expectation or Aumann
expectation. The practical calculation of the selection expectation is performed in terms
of the support function of a random set, which measures the (signed) distance between
its supporting hyperplanes and the origin. The Minkowski sum of random sets is defined
as set of sums of all their selections. The support function uniquely identifies a convex
closed set and therefore the Minkowski sum of convex closed sets can be equivalently
obtained as the arithmetic sum of their support function. These are very powerful tools
to make inference for set-valued data.

1.3 Goal and structure of this thesis

Taking these concepts as starting point, we are interested in

3



• How do numeric explanatory variables affect the set-valued outcome?

• How should we plan an experiment with set-valued outcome?

• How to identify the outlier in set-valued data?

To answer these questions, we studied three aspects of set-valued data, namely re-
gression, optimal design and outlier identification. The first two aspects were motivated
by Beresteanu and Molinari [2008] where linear regression with interval outcome have
been thoroughly studied. In this thesis we want to investigate an extension of results
on nonparametric regression to general set-valued data in Rd. Beside the modelling, we
also interested in using such models to design an experiment. Taking the linear model
in Beresteanu and Molinari [2008], we focus on identifying the location of design points
which ensure the best properties of the unbiased estimator of the parameter.

Finally, we deal directly with set-valued samples. Generally speaking, there are two
reasons of having set-valued data. One reason is the partial identification problem where
only one selection of the observed set from each observation is the true value but it is
impossible to identify which selection (as age in Data (b)). The other is that due to the
nature of the observation only set can be taken as value, such as daily temperature (in
Data (a)). Further details regarding various interpretation of set-valued data could be
found in Couso and Dubois [2014].

Particles, like stones or sand grains (see Stoyan and Stoyan [1994]) provide another
source of set-valued data. Statistics of particles is different from the inference for interval-
valued data like daily temperature, since statistical inference for particles should be in-
variant with respect to their positions and rotations, and, possibly, scaling. Regardless of
the reason of having set-valued data, we aims to explore possible way to identify outliers
in samples of sets.

This thesis consists of three papers (see Appendix), each of them addressing one
question above.

Paper A Q. Li, I. Molchanov, F. Molinari, S. Peng: Local regression smoothers with
set-valued outcome data. International Journal of Approximate Reasoning, 128:
129-150, 2021.

Paper B Q. Li and I. Molchanov: Optimal design for multivariate multiple linear regres-
sion with set-identified response. Statistical Planning and Inference, 203: 215-223,
2019.

Paper C I. Cascos, Q. Li, I. Molchanov: Depth and outliers for samples of sets and ran-
dom sets distributions. Australian and New Zealand Journal of Statistics, https:
//doi.org/10.1111/anzs.12326, 2021

In the next chapter we introduce the notation and recall some important concepts
from the theory of random sets. In Chapter 3 we provide an overview of results from
these three papers with unified notation from Chapter 2, so that it may differ a bit from
the papers. In Section 3.1, we propose a way of fitting local constant and local linear
regression to set-valued outcome observations in Rd. The proposed estimator is shown to
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be consistent and its mean squared error and asymptotic distribution are derived. Addi-
tionally, we show how to find the best bandwidth by leave-one-out cross-validation and
provide a method to build error tubes around the estimator, considered as confidence in-
tervals for the set-valued prediction. In the framework of Beresteanu and Molinari [2008],
Section 3.2 identifies optimal experimental designs under several the objective functions
corresponding to the classical A, G, E and MV optimal designs. By adding some mild
conditions, we are able to show that these objective functions can be simplified and they
coincide with their classic objective functions of point-identified data. Finally, in Sec-
tion 3.3 we provide different approaches to identify outliers in relation to the distribution
of a random convex set or a sample of convex sets. Beside a generalization of the clas-
sic depth concept to set-valued data, we propose a new concept relaying on sub- and
superlinear expectations. These nonlinear expectations have been studied Peng [2004,
2019] for random variables and later elaborated by Molchanov and Mühlemann [2021] for
distributions of random convex sets.
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Chapter 2

Preliminaries

Throughout the thesis, we work in Euclidean space Rd equipped with the Euclidean norm
‖ · ‖. The inner product is denoted by 〈·, ·〉. The bold letters are used for random vectors
in Rd, while capital bold letters stand for random sets in Rd. The normal font lower case
and capital letters denote deterministic vectors in Rd and deterministic subsets of Rd. For
x ∈ R, we denote the positive and negative parts of x respectively by x+ = max(0, x) and
x− = −min(0, x). In the following we recall some important definitions and concepts for
sets.

Operation. Let F(Rd) be the family of closed sets in Rd, and let FC(Rd) denote its
subfamily consisting convex and closed sets. Furthermore, we denote the collection of
compact subsets of Rd by K(Rd) and the family of non-empty compact convex sets by
KC(Rd). Note that K(Rd) ⊂ F(Rd) and KC(Rd) ⊂ FC(Rd).

The (Minkowski) sum of two subsets A,B of Rd is defined as

A+B = {a+ b : a ∈ A, b ∈ B}.

The scaling of set A is denoted by cA = {ca : a ∈ A} with c ∈ R. In particular,

−A = {−x : x ∈ A}.

Norm and distance. Let A and B be subsets of Rd. The directed Hausdorff distance
from A to B is defined by

dH(A,B) = inf{ε ∈ R : A ⊆ Bε},

where Bε = {x ∈ Rd : infb∈B ‖x − b‖ ≤ ε} is the ε-neighborhood of B. The Hausdorff
distance is defined as

H(A,B) = max{dH(A,B), dH(B,A)}.

The norm is defined as

‖A‖H = H(A, {0}) = sup{‖a‖ : a ∈ A}.

6



Support function. Let Sd−1 be the unit sphere in Rd. The support function of a subset
A of Rd in a direction u ∈ Sd−1 is given by

s(A, u) = sup
a∈A
〈a, u〉.

If A ∈ FC(Rd), then A is uniquely identified by its support function. The support function
has the following properties:

• s(tA, v) = ts(A, v) for t ≥ 0,

• s(A1 + A2, v) = s(A1, v) + s(A2, v) for A1, A2 ∈ FC(Rd).
We define the width function of A in direction v ∈ Sd−1 as

w(A, v) = s(A, v) + s(A,−v). (2.1)

The Hausdorff distance between A,B ∈ FC(Rd) can be written as

H(A,B) = sup
v∈Sd−1

|s(A, v)− s(B, v)|,

meaning that the Hausdorff distance between closed convex sets is the uniform (L∞)
distance between their support functions, see Lemma 1.8.14 in Schneider [2014]. Other
distances based on the Lp-norm are also available:

Lp(A,B) =

(∫

v∈Sd−1

|s(A, v)− s(B, v)|p dv
)1/p

,

for any p ∈ [1,∞).

Random set. Let (Ω,F,P) be a probability space, where Ω is the space of elementary
events equipped with σ-algebra F and probability measure P. A map Y : Ω→ F(Rd) is
called random closed set if

Y−1(K) = {ω ∈ Ω : Y(ω) ∩K 6= ∅} ∈ F (2.2)

for each compact set K in Rd.
A random convex closed set Y is a map from Ω to FC(Rd) satisfying the same mea-

surability condition (2.2). A similar definition applies for a compact random set as well
as a compact convex random set.

Expectation. A random variable y with value in Rd is called a (measurable) selection
of a random closed set Y if y(ω) ∈ Y(ω) for almost all ω ∈ Ω. We denote this by
y ∈ Y a.s. Assuming that Y admits at least one integrable selection (then Y is said to
be integrable), the Aumann expectation of Y is defined as

E(Y) = cl {Ey : y ∈ Ya.s. and E‖y‖ <∞} ,
where cl denotes the topological closure.

If Y is integrably bounded, that is, ‖Y‖ is integrable, then the closure on the right-
hand side can be omitted, all selections of Y are integrable, E(Y) is convex and

E(s(Y, u)) = s(E(Y), u), u ∈ Sd−1.

7



Chapter 3

Main results and discussions

3.1 Local regression smoothers with set-valued out-

come data

We are interested in estimating E(Y|x = x0) using a local regression smoother based on
an i.i.d. sample (xi,Yi)

n
i=1 drawn from (x,Y), where x0 is a given value from the support

of a random vector x ∈ Rr and Y is an integrably bounded random compact convex set
in Rd. This was motivated by fitting linear regression for such data with d = 1 (so that
Y is a random interval) proposed by Beresteanu and Molinari [2008]. They interpreted
(x,Y) as a family of the pairs (x,y), where y belongs to Y almost surely, that is, y is a
selection of Y. Then

E(Y|x = x0) = {E(y|x = x0) : y ∈ Y a.s.} (3.1)

is the conditional selection expectation of Y.
Let θ be a vector taking values in Rr. Each choice (x,y) yields a value of θ such that

E(y|x) = x>θ, and this value θ can be easily estimated by the classical ordinary least
squares. The collection of all these θ’s based on different choices of (x,y) from (x,Y)
forms a compact and convex set, denoted by Θ. It can be considered as the set of the
best linear prediction parameters for (x,Y). Consequently, its estimator is the family of
the least square estimator of θ’s. Equation (3.1) can be expressed as

E(Y|x = x0) = {x>0 θ : θ ∈ Θ}.

Based on this model setting, Bontemps et al. [2012] extended the familiar Sargan test
for over-identifying restrictions and Chandrasekhar et al. [2012] provided inference meth-
ods for the best linear approximation of any function f(x) that is known to lie within
two identified bounding functions. Fisher [2010] extended the model of Beresteanu and
Molinari [2008] for the case where the regressor is set-valued and provided the inference.
By simulations, he observed that the estimator for Θ is convex in most of time but
not in general. Kaido [2016] proposed an estimator for weighted average derivatives of
conditional mean and conditional quantile functionals when either the outcome variable
or a regressor is interval-valued. Adusumilli and Otsu [2017] proposed empirical likeli-
hood methods for random sets to conduct inference in the class of problems analyzed by
Beresteanu and Molinari [2008].
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The approach of Beresteanu and Molinari [2008] differs from other approaches in the
literature relying on set-valued arithmetics; see Schollmeyer and Augustin [2015] for a
discussion bridging this literature to other papers on set-valued data. For example, the
model based on the interval arithmetics proposed by Blanco-Fernández et al. [2013b,a]
assumes that E(Y|x) = Ax + B, where Y, A and B are intervals and x ∈ R. This
interval model can be transformed into two linear relationships

midY = midAx+ midB,

sprY = sprAx+ sprB,

where mid and spr denote the mid-point and half of the length of a interval, respectively.
If the regressor is an interval, denoted by X, the linear model was initially assumed to
be E(Y|X) = aX + B with a ∈ R (see Sinova et al. [2012], González-Rodŕıguez et al.
[2007]) and generalized afterwards to a more flexible model

E(Y|X) = α (midX)[1, 1] + β sprX[−1, 1] + γ[1, 1] +B,

where α, β, γ ∈ R (see Blanco-Fernández et al. [2012], Blanco-Fernández et al. [2011]).
Further discussions of the linear regression problems related to such models can be found
in the papers by Diamond [1990] and Gil et al. [2001]. Maatouk [2003] proposed using
weighted least-squares to estimate the parameters in such models.

Comparing to the literature above, our approach works for both interval-valued (d =
1) and general set-valued outcome (d > 1). Furthermore, working with local regression
smoother we give fewer specifications on the conditional expectation than in the literature
related to interval arithmetics. Finally, our proposal is distinct from the literature on data
coarsening, see Gill et al. [1997], Heitjan [1994], Heitjan and Rubin [1991], where the key
assumption “coarsening at random” restricts directly the conditional distribution of the
random set Y with P(Y = A|x = x0) being constant for all x0 ∈ A.

Before introducing our approach, we shortly recall the standard construction of the
local polynomial estimator for the observations (xi,yi)

n
i=1, where yi is point-identified in

R, see Fan and Gijbels [1996]. The aim is to estimate m(x0) = E(y|x = x0), assuming
that the data have been generated from the model

y = m(x) + ε, (3.2)

where E(ε) = 0 and x and ε are independent. Assume that the (p + 1)th derivative of
m(x) at x0 exists. Then we use the Taylor expansion to approximate m(x) for x in a
neighbourhood of x0 as

m(x) ≈ m(x0) +m′(x0)(x− x0) +
m′′(x0)

2!
(x− x0)2 + · · ·+ m(p)(x0)

p!
(x− x0)p.

Fix a kernel function K(·) and a tuning parameter hn called the bandwidth. We assume
that hn → 0 and nhn → ∞ as n → ∞. Generally speaking, kernel function can also
be negative, see Condition 1 (iv) imposed by Fan [1993]. However, in this thesis we put
more restrictions (see Assumption A in Paper A) on the kernel function due to technical
reason.

9



By minimizing the weighted mean squared error

n∑

i=1

[
yi −

p∑

j=0

θj(xi − x0)p
]2
K

(
xi − x0
hn

)

with respect to θ0, . . . , θp, we obtain the estimator

m̂(x0) = θ̂0 =
n∑

i=1

`i(x0)yi,

which is the sum of weighted outcomes. The weights `i(x0) depend on i = 1, . . . , n, the
reference point x0, the choice of K and hn, but not on the observed outcomes yi. While
`i(·) can be negative, they sum up to one. To simplify the notation, denote

κin = K((xi − x0)/hn),

so that

sj =
1

n

n∑

i=1

κin(xi − x0)j, j = 0, 1, 2.

In case of p = 0 (local constant regression), m̂(x0) is the Nadaraya–Watson estimator
with `i(x0) = κin/ns0. If p = 1 (local linear regression), then

`i(x0) =
κin
n

s2 − (xi − x0)s1
s2s0 − s21 + n−4

. (3.3)

Our goal is to provide a local linear regression estimator for the expectation of each
random variable y ∈ Y conditional on x by assuming that the tuple (x,y) almost surely
belongs to a random set {x}×Y. Each choice of (x,y) ∈ {x}×Y gives rise to a function
m as in (3.2), and we denote by M the family of all regression functions generated in
this way, so that M(x) = {m(x) : m ∈ M} is the set of values of all possible regression
functions at x. Assume that (xi,Yi)

n
i=1 are generated from the model

s(Yi, v)− s(M(xi), v) = εi(v), v ∈ Sd−1, (3.4)

whereM(xi) = E(Y|xi) and ε1(·), . . . , εn(·) are i.i.d. copies of a square integrable random
function ε(v), v ∈ Sd−1, such that E[εi(v)|xi] = 0 for all v ∈ Sd−1. More details about
this model and the discussion of the existence of the function ε(·) can be found in the
discussion concerning Assumption B in Paper A. The proposed estimator of M(x0) is the
weighted Minkowski average of Yi defined as follows

M̂(x0) =
n∑

i=1

`i(x0)Yi, (3.5)

where `i(x0) is defined by (3.3). By representing `i = `+i − `−i and using the fact that
s(−A, v) = s(A,−v) for a convex compact set A, the support function of the estimator
is

s(M̂(x0), v) =
n∑

i=1

`i(x0)s(Yi, v) +
n∑

i=1

`−i w(Yi, v),

10



where w(·, v) is the width function defined in (2.1).
To quantify the properties of our estimator, the following L2 distance is used to define

the mean square error

MSE(M̂(x0, v),M(x0, v)) = E

(∫

Sd−1

(s(M̂(x0), v)− s(M(x0), v))2 dv

)

=

∫

Sd−1

b2x0(v) dv +

∫

Sd−1

σ2
x0

(v) dv,

where b2x0(v) and σ2
x0

(v) are squared bias and variance in the direction v. Using the
properties of support function (see Chapter 2) and (3.4), these two terms can be expressed
as

b2x0(v) = E

(
n∑

i=1

`i(s(Mi(xi), v)− s(M(x0), v)) +
n∑

i=1

`−i w(M(xi), v)

)2

(3.6)

and

σ2
x0

(v) = E

(
n∑

i=1

`iεi(v) +
n∑

i=1

`−i (εi(v)− εi(−v))

)2

.

Comparing to the classical case where yi is point-identified, the negative part (with `−i )
in (3.6) plays essential role for the set-valued outcome. Moving xi closer to x0, the width
w(M(xi), v) does not vanish. Therefore, the bias may not tend to zero if some weights
are negative and not close to zero. Much of our asymptotic analysis is concerned with
establishing the asymptotic behavior of these negative weights. This is also the reason
why the assumption on the kernel function (Assumption A of Paper A) is stricter than
those imposed by Fan [1993] and Fan and Gijbels [1992]. Still, many kernel functions
satisfy our assumption. Imposing additionally a general assumption on the density f(·)
of x (Assumption D of Paper A), we show that the second moment of the sum of all
negative weights converges to 0.

Proposition 3.1.1 (Proposition 4.2 in Paper A). Let hn → 0 and nhn →∞ as n→∞.
Under Assumptions A and D, for sufficiently large r,

E

( n∑

i=1

`−i

)2

=
1

hn
O
((

1/
√
nhn

)r)
.

Note that we use O and O to denote the deterministic order of magnitude uniformly
in the Hölder class H(1, γ) (see Assumption D in Paper A).

Proposition 3.1.1 shows that the negative part converges to 0 much faster than h4n +
1/nhn (see Theorem 3.1.2 below) by choosing sufficiently large r. This can be explained
by the construction of sj and `i(x0). Write Zn = Or(an) if

sup
f∈H(1,γ)

E|Zn|r = O(arn).

If the rth moment of Zn exists, we write

Zn = EZn +Or[(E|Zn − EZn|r)1/r].
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Since in Assumption A we require that the kernel function has compact support and is
bounded, we have ∫

zrK(z) dz <∞, for any integer r > 1.

Therefore, the rth moment of sj always exists and sj can be expressed as

sj = Esj + hj+1
n Or

(
1/
√
nhn

)

= hj+1
n

(
f(x0)

∫
zjK(z) dz +O(hn) +Or(

1√
nhn

)

)

= hj+1
n

(
f(x0)

∫
zjK(z) dz +Or(hn +

1√
nhn

)

)

=





hn

(
f(x0) +Or(hn + 1√

nhn
)
)
, j = 0,

h2nOr(hn + 1√
nhn

), j = 1,

h3n

(
f(x0)

∫
z2K(z) dz +Or(hn + 1√

nhn
)
)
, j = 2.

The dominant terms of s0 and s2 are hnf(x0) and h3nf(x0)
∫
z2K(z) dz, respectively, while

for s1 it is 0. Thus, the dominant part of s2s0−s21 is positive. Considering (3.3), `i(x0) is
negative only if κin(s2 − (xi − x0)s1) is negative. By Assumption A, the kernel function
κ is bounded and |xi − x0| ≤ cKhn. This leads to the fact that the dominant part of
κin(s2 − (xi − x0)s1) is not negative. This explains reasons behind Proposition 3.1.1.

With this result in hand, we establish the asymptotic behavior of MSE and a limit
theorem for the support function of the estimator by adding assumption on the model
structure (Assumption B in Paper A) and differentiability of the support function of the
theoretical response function (Assumption C in Paper A).

Theorem 3.1.2 (Theorem 4.3 in Paper A). Under Assumptions A, B, C and D, if
hn = cn−β with 0 < β < 1 and a constant c > 0, the mean squared error of the local
linear estimator (3.5) is

MSE(x0) =
h4n
(∫

z2K(z) dz
)2

4

∫

Sd−1

s′′(M(x0), v)2 dv +

∫
Sd−1 E(ε(v)2) dv

nhnf(x0)

∫
K2(z) dz

+ O

(
h4n +

1

nhn

)
.

Let ζ(v), v ∈ Sd−1, be a centered Gaussian process on the unit sphere with the
covariance

E[ζ(v)ζ(u))] =
E(ε(v), ε(u))

f(x0)

∫
K(z)2 dz. (3.7)

Theorem 3.1.3 (Theorem 4.4 in Paper A). Assume that hn = cn−β with 0 < β < 1,
and fix x0 from support of x. Under Assumptions A, B, C and D, the stochastic process

√
nhn

(
s(M̂(x0), v)− s(M(x0), v)− h2n

1

2
s′′(M(x0), v)

∫
z2K(z) dz

)

constructed using the local linear estimator in (3.5) converges in distribution in the space
of continuous functions on Sd−1 with the uniform metric to the Gaussian process ζ.
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The optimal bandwidth which minimize the MSE in Theorem 3.1.2 is hn,MSE = Cn−1/5

with constant C that does not depend on n but on some unknown quantities such as
s′′(M(x0), v), E(ε(v)2) and f(x0). This problem exist also in the classical case where the
outcome is singleton-valued. One possible way to determine the optimal bandwidth is to
substitute the unknown term by its estimators (plug-in type bandwidth). Other practical
approaches were summarised in Chapter 4 of Fan and Gijbels [1996]. We propose to use
leave-one-out cross-validation with the cross-validation score defined as

CV =
1

n

n∑

i=1

∫

Sd−1

(s(Yi, v)− s(M̂(−i)(xi), v))2 dv, (3.8)

where M̂(−i)(x) =
∑n

j=1 Yj`j,(−i)(x) and

`j,(−i)(x) =

{
0 if j = i,

`j(x)∑
k 6=i `k(x)

if j 6= i.

This procedure assigns zero weight to xi and renormalizes other weights to sum to one.
Beside the selection of bandwidth, we also interested in assessing statistical uncer-

tainty of the estimator using pointwise error tubes, which are similar to the pointwise
confidence interval for the singleton-valued outcome. Given x0, the error tube is con-
structed as

Ĉ(x0) = M̂(x0) +
cα√
nhn

B, (3.9)

where B = {b : ‖b‖ ≤ 1} is the unit ball. According to Theorem 3.1.3, cα is chosen so
that

P

(
max
v: ‖v‖=1

{ζ(v)}+ > cα

)
= α, (3.10)

where ζ is the centered Gaussian process with covariance kernel (3.7). The critical value
cα can be obtained by simulation or bootstrap. The validity of the bootstrap can be
established as in Theorem 4.13 in Molchanov and Molinari [2018].

We have performed some simulation studies for the cases when d = 1 (outcome is
interval-valued) and d = 2 (see Section 6 and Appendix E in Paper A) in order to
investigate the coverage probability of the proposed error tube by varying the optimal
bandwidth hn,CV from that obtained using the cross-validation by multiplying 1, 1/2, 1/3.
All these simulation results lead to the same conclusion. The coverage probability based
on hn,CV is lower than the nominal level of 95%, while using 1/3hn,CV (undersmoothing)
we observed the opposite result. Choosing 1/2hn,CV (less undersmoothing than using fac-
tor 1/3) the coverage probability is very close to the nominal level. This can be explained
by the fact that choosing optimal hn = Cn−1/5 the bias term in Theorem 3.1.3 does not
vanish because nh5n 6→ 0. It is also the case in the classical local polynomial regression
with singleton-valued outcomes. To deal with this problem, one can use undersmoothing
as an approach to reduce the bias. However, over undersmoothing increases the variance
of the estimator, which leads to conservative error tubes.

Remark 3.1.4 (Appendix C in Paper A). In the local constant case, the weights i =
κin/(ns0) are always nonnegative. Then the estimator M(x0) can be constructed as
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the convex set whose support functions is obtained by calculating the Nadaraya–Watson
estimator for the sample s(Yi, v), i = 1, . . . , n, in each particular direction v. In other
words, M(x0) is the sum of the observed sets Yi multiplied by nonnegative coefficients
i. Therefore, the bias and variance of the set-valued local constant estimator can be
obtained similarly to the singleton-valued data case. For this, it suffices to assume that
the function s(M(x), v) is Lipschitz in x with the same constant for all v, which is
equivalent to requiring that M(x), x ∈ R, is Lipschitz in the Hausdorff metric.

3.2 Optimal design for multivariate multiple linear

regression with set-identified response

The basic problem in the theory of optimal design for regression models aims to identify
the locations of design points which ensure the best properties of the unbiased estimator
of the parameter of interest, see Atkinson et al. [2007], Silvey [1980]. Taking the basic
linear regression as an example, we believe that the random tuple (x,y) taking value
from ({1} × Rr,R) satisfies

y = x>θ + ε,

where θ is a vector of (r+ 1) numerical unknown parameters and ε is a centered random
variable with Var(ε) = σ2. In the setting of experimental design, x contains factors
affecting the outcome y and all these factors can be chosen arbitrarily from some given
domain. Let us denote this domain by I, which is a compact subset of {1}×Rr. Our goal
is to choose n points x1, . . . , xn from I, so that the estimator of θ based on the sample
(xi, yi)

n
i=1 is optimal with respect to a pre-specified criteria.

Let

X = (x>1 , . . . , x
>
n )> =




1 x11 · · · x1r
...

...
...

...
1 xn1 · · · xnr




be the design matrix with n rows and r + 1 columns. If the linear model has full rank,
the least square estimator of θ is

θ̂ = Σ−1X >



y1
...
yn


 ,

where Σ = X >X . Then Eθ̂ = θ and

Var(θ̂) = σ2Σ−1.

The most common optimality criteria are the following ones.

• D-optimal design aims to minimize the determinant of Σ−1 which represents the
volume of the confidence ellipsoid

{
θ ∈ Rr+1 : (θ − θ̂)>Σ(θ − θ̂) ≤ c

}
.
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• A-optimal design minimizes the trace of Σ−1 and therefore minimizes the sum of
the variance of all estimated parameters.

• E-optimal design minimizes the largest eigenvalue of Σ−1, and thus minimizes the
least well estimated contrast a>θ̂ under the constraint ‖a‖ = a>a = 1.

• MV-optimal design: as in the E-optimal design, if the L1 norm ‖a‖1 =
∑r+1

i=1 |ai| = 1
instead of the L2 norm is used, it gives another criterion called minimum vari-
ance (MV) optimality, which was first introduced for block designs by Jacroux
[1983] and later has been generalized for simple as well as weighted linear regres-
sion for all choices in a compact design space by Torsney and López-Fidalgo [1995],
López-Fidalgo et al. [1998]. The MV-optimal design minimizes the maximum of the
variance of individual parameters, and therefore minimizes the maximum diagonal
element of Σ−1.

• G-optimal design minimizes maxx∈I x>Σ−1x, and thus minimizes the maximum of
the variance of the predicted response over the design region I.

Special relationships between some of optimal designs are provided by the equivalence
theorem proved by Kiefer and Wolfowitz [1960] for real-valued outcome and later gener-
alized for vector-valued outcome as well as for the polynomial regression model by Imhof
[2000], Kiefer [1974], Krafft and Schaefer [1992], Soumaya et al. [2015].

Remark 3.2.1. In the multiresponse setting of dimension p (so that the response variable
has p components), it is possible to vectorize the parameter matrix by modifying the
linear equation as



y(1)

...
y(p)


 =




X
. . .

X






θ1
...
θp


+



ε1
...
εp


 . (3.11)

The vector on the left-hand side arises by stacking together n observations for each
component y(p), j = 1, . . . , p, of the response. Furthermore, diag(X , . . . ,X ) is an np×
(r + 1)p block-diagonal matrix built of the n × (r + 1) dimensional design matrix X ;
θj ∈ Rr+1, j = 1, . . . , p, are the parameters to be estimated, and εj, j = 1, . . . , p, are n-
dimensional random vectors. Using the vector representation like (3.11), we assume that
for each component of the response the regression function is the same. In this setting,
Chang [1994] proved that under the framework of approximate designs the D-optimal
design in the multiresponse model is exactly the D-optimal design arising in the case of
a univariate response. Kurotschka and Schwabe [1996] extended this reduction result for
both exact and approximate designs for D, A, and E-optimality criteria and for more
general Φ-optimality defined by Kiefer [1974].

In this thesis we extend the optimal design concepts for the i.i.d. data (xi, Yi)
n
i=1, where

xi ∈ I and Yi is a compact convex set in Rp. Considering linear regression technique for
such data proposed by Beresteanu and Molinari [2008], we assume that for each sample
(xi, yi)

n
i=1 with (xi, yi) ∈ (xi, Yi), there exist a (r + 1)× p matrix Θ, so that

Y = X Θ + E , (3.12)
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where

Y = (y>1 , . . . , y
>
n )>

is a matrix and the matrix E = (ε>1 , . . . , ε
>
n )> consists of i.i.d. square integrable centered

random vectors εi = (εi1, . . . εip)
> such that Cov(εij, εik) = σjk for i = 1, . . . , n and

j, k = 1, . . . , p and Cov(εij, εi′k) = 0 for i 6= i′. We assume that E does not depend on
X . The least square estimator of Θ is

Θ̂ = Σ−1X >Y .

Then EΘ̂ = Θ and

Cov(Θ̂(j), Θ̂(k)) = σjkΣ
−1, j, k = 1, . . . , p,

where Θ̂(k) denotes the kth column of Θ̂. Therefore, all these least square estimators Θ̂’s
based on arbitrarily selected samples from (xi, Yi)

n
i=1 form a family of matrices

Θ̂ = (X >X )−1X >







y>1
...
y>n


 : yi ∈ Yi for all i ∈ {1, . . . , n}




. (3.13)

Note the Θ̂ is the estimator of the unknown parameters based on the linear regression
on the data (xi, Yi)

n
i=1.

In order to define the variance of Θ̂, we consider products of all matrices in Θ with
a given u ∈ Sp−1; and then the support function of the obtained random convex set in
Rr+1 in direction v from the unit sphere Sr in Rr+1. In other words, we work with the
variance

VarX s(Θ̂u, v) = EX (s(Θ̂u, v)− s(EX (Θ̂u), v))2

of the support function of Θ̂u and aim to minimize it as the function of the design. Note
that Θ̂u is a random convex set in Rr+1 and EX is the expectation assuming that the
design matrix is X . Following the classical definitions of A, G and E-optimal designs,
we define the objective function for these designs in the set-identified framework as

fA(X ) =

∫

Sp−1

∫

Sr
VarX s(Θ̂u, v) dvdu, (3.14)

fG(X ) = max
x∈I

∫

Sp−1

VarX s(Θ̂>x, u) du = max
x∈I

∫

Sp−1

VarX s(Θ̂u, x) du, (3.15)

fE(X ) = max
v∈Sr

max
u∈Sp−1

VarX s(Θ̂u, v). (3.16)

Here the integrals over spheres are understood with respect to a finite rotation invariant
measure (the Haar measure) and I is a compact subset of {1} × Rr. If p = 1 (in the
case of interval-valued response) the integrals over Sp−1 is the sum of the values of the
support function at +1 and −1.

Working with L1 norm, the unit sphere Sr becomes a cube in Rr+1, denoted by SrL1
,

with vertices in {ek : k ∈ {1, . . . , (r + 1)}} ∪ {−ek : k ∈ {1, . . . , (r + 1)}, where ek is a
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vector with the kth element equal to 1 and other elements equal to 0. Thus, we propose
the objective function for the MV-optimal design as

fMV (X ) = max
v∈SrL1

max
u∈Sp−1

VarX s(Θ̂u, v). (3.17)

Denote M(x) = E(Y|x = x). Under rather mild assumptions, we are able to show
that the optimal designs under the set-valued setting correspond to their classical coun-
terparts.

Theorem 3.2.2 (Theorem 4.2 in Paper B). Assume that

s(Y, u)− s(M(x), u) = ε(u), u ∈ Sp−1, (3.18)

where ε is a random function on the unit sphere that does not depend on x and satisfies
Eε(u) = 0 and Var(ε(u)) = σ2

u < ∞ for all u ∈ Sp−1. Then the designs minimizing
the objective functions defined in (3.14) and (3.15) correspond to the classical A and
G-optimal designs.

Theorem 3.2.3 (Theorem 4.3 in Paper B). Assume that (3.18) holds with ε being a
random function that does not depend on x and satisfying Eε(u) = 0 and Var(ε(u)) =
Var(ε(−u)) = σ2

u < ∞ for all u ∈ Sp−1. Then the design minimizing the objective
function (3.16) coincides with the classical E-optimal design.

Theorem 3.2.4. Keep the same assumption as in Theorem 3.2.3. Then the design
minimizing the objective function (3.17) coincides with the classical MV-optimal design.

The vectorization representation in (3.11) was not applied to multivariate set-valued
outcome. Instead, we used the matrix representation (see (3.12)) because of the model
assumption (3.18). Technically, the vectorization representation can also be used for the
multivariate set-valued outcome to derive the optimal design and we denote corresponding
parameter by Θ̂′. It is a set with vectors in R(r+1)p and the variance of Θ̂′ in direction
u ∈ S(r+1)p−1 can be expressed as

VarX s(Θ̂′, u) = EX (s(Θ̂′, u)− s(EX (Θ̂′), u))2.

The objective function can be defined similarly to (3.14)–(3.17). To derive the results
mentioned above, Y in the model assumption (3.18) should be replaced by

Y′ =







y(1)

...
y(p)


 : y ∈ Y




,

where y(j) is a random vector replicating the jth component of y for (r + 1) times.
Further, M(x) is replaced by E(Y′), and Sp−1 is replaced by S(r+1)p−1.

Remark 3.2.5. For the classic D-optimal design, we choose the design points so that the
column of the confidence ellipsoid of the parameter is minimized. However, in the set-
valued setting the parameter Θ is a family of matrices. It is unclear what would be
the “confidence ellipsoid” of a set. Therefore, using our approach we can not offer a a
generalization of D-optimal designs.
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3.3 Random sets: depth and outliers

While a boxplot is a useful tool to identify outliers in samples of real numbers, it is not
straightforward to generalize it for samples in Rd. For a sample of values of a random
vector ξ ∈ Rd, outliers are conventionally identified by depth functions and associated
depth-trimmed regions, so that points lying outside these regions are considered as outliers
(see Liu et al. [1999], Mosler [2002]). The depth function D(x, ξ) assigns to a point x ∈ Rd

a certain level of centrality regarding to the distribution of ξ and takes values between
0 and 1. The higher the level of a point, the nearer is this point to the center of the
distribution of ξ. The excursion set of ξ

Dα(ξ) = {x ∈ Rd : D(x, ξ) ≥ α}

is called a depth-trimmed region at level α. In statistical applications, the probability
distribution of ξ is usually replaced by its empirical probability measure.

Zuo and Serfling [2000] postulate four desirable properties of a depth function, namely
affine invariance, maximality at center, monotonicity relative to deepest point and van-
ishing at infinity. Further properties, such as subadditivity of depth-trimmed region and
upper semicontinuity of the depth function have been discussed by Cascos [2010], Cascos
and Molchanov [2007]. The subadditivity means that if D(z, ξ + η) ≥ α and so z is not
an outlier for ξ + η, then it is possible to find two non-outliers from the support of ξ and
η respectively so that z = x + y. A upper semicontinuity property of a depth-function
means that its depth-trimmed region at any level α is closed.

There are several general approaches to construct depth-trimmed region, such as half-
space depth (see Nagy et al. [2019], Rousseeuw and Ruts [1999], Tukey [1975]), simplicial
depth (see Liu [1990]) and convex hull depth (see Cascos [2010]). The construction of
these depth functions become more complicated if data consist of functions. Since a
sample of functions is a too meagre set in a functional space, there is a danger that most
of functions will be assigned depth zero. Various proposals of depth for functional data
with its advantages and drawbacks were discussed by Gijbels and Nagy [2017], Kuelbs
and Zinn [2013], López-Pintado and Romo [2009].

Further generalizations of the concept of depth to other data types have been elab-
orated by Pandolfo et al. [2018] for directional data (and so belonging to a nonlinear
space), by Chen et al. [2018] and Paindaveine and Van Bever [2018] for matrix-valued
data, and by Lafaye De Micheaux et al. [2020] for curves.

We continue the programme of exploring non-traditional data types and aim to con-
struct suitable depth of a convex closed set with respect to the distribution of a random
convex closed set X. The depth function of a convex closed set F regarding to X is
denoted by D(F,X).

A closed set F ∈ FC(Rd) is said to belong to the support of X if X with a positive
probability belongs to any open neighbourhood of F in the Fell topology. Furthermore,
F belongs to the convex hull of the support of X if F is the limit of convex combinations
p1F1 + · · · + pnFn, where n ≥ 1, p1, . . . , pn are nonnegative numbers that sum up to 1,
and F1, . . . , Fn belong to the support of X. If F does not belong to the convex hull of
the support of X, we set D(F,X) = 0.

Translating the properties of depth functions into the set-valued framework, one comes
up with the affine invariance property (Property (D1), Paper C), upper semicontinuity
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with convergency in the context of Fell topology (Property (D2), Paper C) and

(D3) If X is deterministic, that is, X = L almost surely for an L ∈ FC(Rd), then
D(F,L) = 1F=L.

According to the general classification scheme of Zuo and Serfling [2000], we can
classify the depth functions for set-valued data into four types:

• Type A depth function is constructed as expectation of functionals φ(F ; X1, . . . ,Xj)
of F and j i.i.d. copies of X. The functional φ measures the closeness of F to the
sample of sets.

• Type B depth function is defined by (1 + Eφ(F ; X1, . . . ,Xj))
−1, where φ describes

certain distance of F to the family of i.i.d. copies of X.

• Type C depth function is defined as Type B, but φ measures the outlyingness of F
to the chosen sets.

• Type D depth function relies on taking infimum of probabilities that X belongs to
certain families of sets related to F .

In the following four subsections we shortly present depth functions of each type.

3.3.1 Band depth [Type A]

Originally, the concept of band depth was introduced for functional data, see López-
Pintado and Romo [2009]. The band is defined as the family of functions with values
lying between the pointwise minimum and maximum of j functions. The band depth is
the probability that a given function lies in the band generated by j independent copies
of a given random function.

Given the i.i.d. copies X1, . . . ,Xi of X, we can consider the convex hull of ∪ji=1Xi and
∩ji=1Xi as “maximum” and “minimum” of these j sample sets, respectively. Therefore,
the band depth of a convex closed set F can be defined as

BDj(F,X) = P{∩ji=1Xi ⊆ F ⊆ conv∪ji=1Xi}.

It is obvious that such band depth for j = 1 is not informative. It becomes nontrivial for
j ≤ 2. As advised by López-Pintado and Romo [2009], we can combine the bands built
out a varying number j of sets by taking their averages as

BD
J
(F,X) =

1

J − 1

J∑

j=2

BDj(F,X),

where 2 ≤ J . It is recommended to choose J = 3. By choosing a larger J , it is difficult
to detect F as an outlier, if F has a very peculiar shape but rather normal magnitude.
On the other hand, too many sets F will have depth zero by choosing J = 2.

The empirical version of the band depth with data X1, . . . , Xn drawn from X is the
average of 1{∩ji=1Xki ⊆ F ⊆ conv∪ji=1Xki} with 1 ≤ k1 < · · · < kj ≤ n over

(
n
j

)
samples

(see equation (23) in Paper C).
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Another variant of band depth for functional data suggested by Cascos and Molchanov
[2018] can also be generalized for the set-valued data. Indeed, each convex and closed set
is uniquely described by its support function. The specific construction and example can
be found on page 16 in Paper C.

3.3.2 Simplicial depth [Type B]

The simplicial depth for random vectors is defined as the probability that a point belongs
to the convex hull of (d+ 1) independent copies of this vector, see Liu [1990]. Following
this idea, the convex combination of sets X1, . . . , Xj is the family of sets obtained as

p1X1 + · · ·+ pjXj

for nonnegative p1, . . . , pj that sum to one. However, the family of such convex combina-
tions is a meagre set in FC(Rd). Because of this, a direct generalization of the simplicial
depth for random sets fails. Note that taking convex hull of the union of X1, . . . , Xj

substantially differs from taking their convex combination.
Following the idea of type B depth functions from Zuo and Serfling [2000], it is possible

to define the depth by letting

D(F,X) =
Eψ(conv(X1 ∪ · · · ∪Xj))

Eψ(conv(F ∪X1 ∪ · · · ∪Xj))
, (3.19)

where ψ is a monotone functional on FC(Rd). For instance, it is possible to let ψ be the
Lebesgue measure on Rd; this yields a generalization of the simplicial volume depth, see
[Zuo and Serfling, 2000, Example 2.2]. Another possibility is to let ψ be the surface area.

The depth function (3.19) is not sensitive to small F (see Example 7.1 in Paper C).
A possible correction is to replace the the numerator in equation (3.19) by Eψ(conv(F ∩
(X1 ∪ · · · ∪Xj))); this has been done in Paper C.

3.3.3 Depth based on nonlinear expectations [Type C]

The concept of sublinear expectation for random variables was initially brought to prob-
ability theory by Peng [2004, 2019]. Later on this concept was introduced for random
sets by Molchanov and Mühlemann [2021]. They worked with two functions E and U
which are called the sub- and superlinear expectations with

E(X + Y) ⊆ E(X) + E(Y)

U(X + Y) ⊇ U(X) + U(Y),

for all p-integrable random convex closed sets X and Y. Other properties of these two
functions are given in Section 4.1 of Paper C. Note that E and U are set-valued.

Consider families of nonlinear expectations Uα(X) and Eα(X) for α ∈ (0, 1] such that
Uα(X) becomes larger and Eα(X) becomes smaller with increasing α ∈ (0, 1]. Let F
belong to the convex hull of the support of X. We propose to define the depth of F as

D(F,X) = sup{α : Uα(X) ⊆ F ⊆ Eα(X)}. (3.20)

The depth function constructed by (3.20) fulfills (D1)–(D3) (see Proposition 4.3 in Pa-
per C) and a variation of the classic subadditivity property
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(D4) If D(F,X + Y) ≥ α, then there exist F1, F2, F
′
1, F

′
2 ∈ FC(Rd), such that D(F1,X) ≥

α, D(F ′1,X) ≥ α, D(F2,Y) ≥ α, and D(F ′2,Y) ≥ α, and

F1 + F2 ⊆ F ⊆ F ′1 + F ′2.

Property (D4) is the set-valued version of subadditivity. Because not all convex sets are
decomposable as sum of nontrivial summands (see Section 3.2 by Schneider [2014]), we
only require that F is sandwiched between two summands instead satisfying an exact
equation.

The depth-trimmed region Dα(X) corresponding to (3.20) consists of convex closed
sets sandwiched between Uα and Eα.

We consider two basic constructions of (Uα,Eα). The first construction is based on
i.i.d. copies {Xn, n ≥ 1} of X. Fix a pair of nonlinear expectations U and E . For each
α ∈ (0, 1], let

Eα(X) = E(conv(X1 ∪ · · · ∪X[α−1]))

Uα(X) = U(X1 ∩ · · · ∩X[α−1]),

where [α−1] is the integer part of α−1. The corresponding depth function is

D(F,X) =
(

min{n : U(X1 ∩ · · · ∩Xn) ⊆ F ⊆ E(conv(X1 ∪ · · · ∪Xn))}
)−1

. (3.21)

In particular, D(F,X) = 1 if U(X) ⊆ F ⊆ E(X). If X is a singleton and E(·) = U(·) =
E(·) is the (linear) selection expectation, (3.21) corresponds to the expected convex hull
depth suggested by Cascos [2007].

Remark 3.3.1 (see also Example 4.9 in Paper C). In order to construct the empirical
version of (3.21) and make it more intuitive, consider a sample of convex closed sets
X1, . . . , Xn drawn from a random closed set X and assume that E(X) = U(X) = E(X)
for convenience. For each m ∈ {1, . . . , n}, we draw

(
n
m

)
samples. Each sample consists

of m observations drawn with replacement from X1, . . . , Xn, denoted by Xj1 , . . . , Xjm ,
where j denote the jth sample. Therefore, the depth of F with respect to a sample
X1, . . . , Xn is the m−1 for the smallest m such that

1(
n
m

)
(nm)∑

j=1

conv(Xj1 ∩ · · · ∩Xjm) ⊆ F ⊆ 1(
n
m

)
(nm)∑

j=1

conv(Xj1 ∪ · · · ∪Xjm).

Another possible construction is based on average quantiles. Let Mα with α ∈ (0, 1]
be the family of random variables with values in [0, α−1]. Call

Eα(X) = conv
⋃

γ∈Mα,E(γ)=1

E(γX),

Uα(X) =
⋂

γ∈Mα,E(γ)=1

E(γX),

the average quantile nonlinear expectation. The reason for this name stems from the fact
that

s(Eα(X), u) = eα(s(X, u)) (3.22)
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with

eα(β) =
1

α

∫ 1

1−α
qt(β)dt (3.23)

being the average of the quantiles of β ∈ L1(R) at levels from [1− α, 1], see Föllmer and
Schied [2004][Th. 4.47]. Note that the function e(·) : L1(R) → (−∞,∞] is a numerical
sublinear expectation, see Peng [2019].

However, a variant of (3.22) is not possible in the superlinear case — the support func-
tion of Uα(X) is only dominated by uα(s(X, u)), where uα(β) = −eα(−β) is a superlinear
expectation with

uα(β) =
1

α

∫ α

0

qt(β)dt.

Note that uα(β) is the average of lower quantiles of β ∈ L1(R). With this construction,
we define the depth function of F as

D(F,X) = sup{α : uα(s(X, u)) ≤ s(F, u) ≤ eα(s(X, u)), for all u ∈ Sd−1}. (3.24)

The construction can be modified if X almost surely contains the origin. Then X is
star-shaped and can be identified by its radial function

r(X, u) = sup{t ∈ R : xu ∈ X}, t 6= 0.

This function has a nice property, namely

r(Uα(X), u) = uα(r(X, u)),

which overcomes the problem of using support function with

s(Uα(X), u) ≤ uα(s(X, u)).

In this case, we can replace (3.24) by

D(F,X) = sup {α : uα(r(X, u)) ≤ r(F, u) and

s(F, u) ≤ eα(s(X, u)), for all u ∈ Sd−1
}
.

Example 3.3.2 (Examples 4.10 and 4.11 in Paper C). If X = {ξ} is a random variable
with ξ ∈ Lp(Rd), then Eα({ξ}) is the convex closed set with the support function given by
eα(〈ξ, u〉) and it coincides with the zonoid-trimmed region of ξ introduced by Koshevoy
and Mosler [1997], while Uα({ξ}) = ∅ for α < 1 when ξ is not deterministic. Recall that
the zonoid-trimmed region of ξ is the set

ZDα(ξ) = α−1
{
x ∈ Rd : (α, x) ∈ E(co(0, (1, ξ)))

}
(3.25)

obtained as the normalized section of the expectation E(Y) of the random closed convex
set Y, being the convex hull of the origin and the point (1, ξ) in Rd+1. The expectation
E(Y) is termed the lift zonoid of ξ. The corresponding depth concept is called the zonoid
depth of ξ, see Koshevoy and Mosler [1997] and Mosler [2002]. The lift zonoid concept
was extended for general random convex sets by Diaye et al. [2018]. By considering X is
a random interval (see Example 4.1 in Diaye et al. [2018]), the proposed depth-trimmed
region of X is equivalent to

Dα(X) = α−1{a ∈ R : a× u ≤ eα(s(X, u)), for u ∈ [−1, 1]}.
This proposal is very similar to our proposal (3.24) but only giving the upper bound.
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3.3.4 Half-space depth [Type D]

Since the support function s(F, u), u ∈ Sd−1, uniquely identifies each closed convex set
F , it is possible to use the concept of half-space depth for functional data suggested by
Kuelbs and Zinn [2013]. Then the half-space depth of F ∈ FC(Rd) with respect to X is
defined as

HD(F,X) = min(HD+(F,X),HD−(F,X)),

where

HD+(F,X) = inf
u∈Sd−1

P{s(X, u) ≥ s(F, u)}, (3.26)

HD−(F,X) = inf
u∈Sd−1

P{s(X, u) ≤ s(F, u)}. (3.27)

Given a sample X1, . . . , Xn drawn from X, one can replace the probabilities by the sample
averages of 1{s(Xi, u) ≥ s(F, u)} to construct the empirical versions of HD+ and HD−.

Using this definition working in a general functional space, most of the function will
have zero depth. However, it is not the case for support functions of random convex
compact sets.

Theorem 3.3.3 (Theorem 5.3 in Paper C). If X is a random convex compact set, then
HD+(F,X) > 0 (respectively, HD−(F,X) > 0) for all F from the support of X such that
P{s(F, u) ≤ s(X, u)} > 0 (respectively, P{s(F, u) ≥ s(X, u)} > 0) for all u. Further-
more, the infima in (3.26) and (3.27) are attained.

Another concept called half-region depth and its variation for functional data (see
López-Pintado and Romo [2011], Kuelbs and Zinn [2015]) can also be generalized to the
set-valued data, see equation (19) and (20) in Paper C.

3.3.5 Other set-valued data

In Example 9.1 of Paper C we considered a data set, where observations are random
cumulative distribution functions, equivalently, a sample of random measures. Using
the fact that lift zonoid uniquely identifies a probability distribution, each distribution
function can be represented by its lift zonoid which is a compact convex set in R2. Then
we can use any of previously introduced depth-based methods to identify outliers for
samples of random measures.

Generally, sets have special features that may be taken into account in statistical
procedures, such as position, size and shape, see Dryden and Mardia [1997]. However, in
some cases not all these factors are relevant. For example, the locations and orientations
of particles, like stones are not relevant for their statistical analysis, see Stoyan and
Stoyan [1994], Stoyan and Molchanov [1997]. On the other hand, position of a partially
identified variable (e.g., salary interval from a questionnaire) is important for the analysis.
In Section 8 of Paper C, we propose a depth function factoring out location, if locations
are irrelevant for the statistical analysis. In Section 10.2 we applied our depth functions
to a sample of particles. A comparison with the visual perception shows that the half-
region depth is too sensitive to outliers, while the average quantile depth, band depth
and modified half-space depth show the best performance.
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tubes around the estimator is provided, and a small Monte Carlo exercise is conducted to 
confirm the good finite sample properties of the estimator. The usefulness of the method 
is illustrated on a novel dataset from a clinical trial to assess the effect of certain genes’ 
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1. Introduction

Statistical analysis has traditionally contended with problems of data imprecision due to limits in the measuring instru-
ments and to measurement error, as well as with missing data, data coarsening and grouping. Geostatistical analysis and 
mathematical morphology have contended with observational frameworks where the outcome of interest is a two or three 
dimensional set-valued object, e.g. a tumor or a grain. The common denominator of these challenging data-frameworks is 
the presence of set-valued data. Within the social sciences in particular, collection of data in the form of sets, especially 
intervals, has become increasingly widespread. For example, the Health and Retirement Study is one of the first surveys 
where, in order to reduce item nonresponse, income data is collected from respondents in the form of brackets, with de-
generate (singleton) intervals for individuals who opt to fully report their income (see, e.g. [1]). To reduce response burden, 
the Occupational Employment Statistics (OES) program at the Bureau of Labor Statistics collects wage data from employers 
as intervals, and uses these data to construct estimates for wage and salary workers in 22 major occupational groups and 
801 detailed occupations. Privacy concerns often motivate providing public use tax data as the number of tax payers in 
each of a finite number of cells. In the medical field, due to ethical and cost reasons, time-to-event measurements are not 
collected on a continuous scale, but at pre-specified time intervals.

The partial identification literature in econometrics (e.g., [2]) has addressed the question of what can be learned about 
functionals of probability distributions, when some of the variables are only known to belong to (random) sets and no 
assumptions are imposed on the distribution of the true variables within these sets. We take the identification results of 
this literature as our point of departure. Our contribution is to provide statistical results on local linear regression smoothing 
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when the outcome data is set-valued and the regressors are exactly measured. Our paper relaxes the textbook setting (e.g., 
[3]) of nonparametric regression – where regressors and outcome data (xi, yi), i = 1, . . . , n, are precisely measured – by 
assuming that yi is only known to belong to an observed set Y i . In other words, we deal with an independently and 
identically distributed sample of observations for the pair (xi, Y i) composed of a random vector xi in Rm and a random 
convex compact set Y i in Rd . Independence and identical distribution for random sets and measurability of Y are notions 
made precise in Appendix D, while in Section 2 we explain that the distribution of Y can be characterized as a belief 
function. The true (however unobservable) outcome associated with x is a random vector y that almost surely takes values 
in Y . Our goal is to provide a nonparametric regression estimator for the expectation conditional on x of each random 
vector y ∈ Y . One can think of such expectation as the first-order moment of the belief function generated by Y conditional 
on x.

For a given tuple (x, y) that almost surely belongs to {x} × Y , we denote by m(x) = E[y|x = x] the regression function 
for the chosen (x, y). Each choice of (x, y) ∈ {x} × Y a.s. gives rise to a function m and we denote by M the family of all 
regression functions generated in this manner. We let M(x) ≡ {m(x) : m ∈ M} and we observe that

M(x) = E[Y |x = x] =
{

E[y|x = x] : y ∈ Y a.s.
}

is the conditional selection expectation of Y , see [4, Sec. 2.1.6] and Section 2.
For example, consider the empirically relevant case that d = 1 and Y = [yL, yU] for two random variables yL, yU such 

that P(yL ≤ yU) = 1. Then

M(x) =
[

E[yL|x = x],E[yU|x = x]
]
. (1)

Our proposal is to estimate M(x) as a weighted sum of the sets Y 1, . . . , Y n , with weights defined as in the local linear 
estimation literature.1 The development of our technical results directly builds on classic references such as [5] and [6], and 
is closely related to [7] and [3].

For the case that d = 1, inspection of equation (1) might suggest to report an estimator given by the interval between 
a local constant or local linear regression of yL on x and one of yU on x. Alternatively, it might suggest to report a local 
constant or local linear regression of the interval midpoint, ỹ = (yL + yU)/2, and of the interval width, w = yU − yL, on 
x. While both in finite sample and asymptotically these approaches are equivalent to what we propose for the case of a 
local constant regression, for the case of local linear regression equivalence breaks down in finite sample. The difference 
is important: we show in Remark 3.1 below that the alternative estimators just described may lead to a finite sample bias 
understating the width of M(x) and are therefore unpalatable. For example, such estimators might be empty or a singleton 
in finite sample even though M(x) is an interval of strictly positive width in population. In contrast, the estimator that we 
propose does not suffer from this problem, although it does have an asymptotic bias term similar to that of point identified 
local linear regression estimators.

Our approach is the first contribution in the literature to local regression smoothing when the set-valued outcome 
variable is in Rd with d > 1. We derive the asymptotic properties of our estimator and extend results from [8] to obtain 
pointwise confidence bands that asymptotically cover the functional of interest with probability 1 −α. We report the results 
of Monte Carlo simulations with interval-valued Y and with Y being a ball randomly placed on the plane that support our 
theoretical findings.

We also demonstrate the usefulness of our approach with an empirical illustration that uses a novel dataset from a 
clinical trial on non-small-cell lung cancer patients, to study the relationship between time to tumor progression and specific 
gene expression measures.

Related literature. Within the partial identification literature, there is a large body of work analyzing regression with 
interval-valued data. [9] consider models where one variable (either outcome or covariate) is observed as intervals and 
all others are perfectly measured, and provide identification results for nonparametric as well as parametric models in this 
setting. [8] introduce to the partial identification literature the use of random set theory and provide results on identification 
and inference on best linear prediction parameters (ordinary least squares) when the outcome variable is interval-valued 
and the regressors are perfectly measured. [10] extend the familiar Sargan test for overidentifying restrictions to the setting 
studied by [8]. [11] extend [8]’s approach to cover best linear approximation of any function f (x) that is known to lie 
within two identified bounding functions. [12] proposes an estimator for weighted average derivatives of conditional mean 
and conditional quantile functionals when either the outcome variable or a regressor is interval-valued. [13] propose em-
pirical likelihood methods for random sets to conduct inference in the class of problems analyzed by [8]. All these papers 
focus exclusively on the case that the set-valued outcome data is in R.

In contrast, our approach leverages the theory of random sets to propose a set-valued local linear regression estimator 
for conditional set-valued expectations with Y ⊂ Rd, d ≥ 1, and to establish its asymptotic properties. This estimator is 
novel in the literature, and so are our results establishing its consistency and asymptotic distribution.

1 We comment on the case of local constant (Nadaraya–Watson) estimator in Appendix C.
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The method that we propose differs significantly from other approaches in the statistical literature; see [14] for a dis-
cussion bridging this literature with partial identification. In particular, our proposal is distinct from the large and closely 
related literature that posits parametric models for set-valued data. In these models tools from interval arithmetic are used 
to build analogs of the classic linear regression model for perfectly measured data, e.g. by assuming that E[Y i |xi] = Axi + B , 
where A and B are intervals. See e.g. [15], [16], [17], and [18] among others for a discussion of least squares analysis of 
this and related models. [19] proposes nonparametric smoothing for this model, by applying weighted least squares to the 
interval data and then using the resulting intercept as the estimator. [20] discuss various interpretations of set-valued data. 
Compared to this literature, we leave the conditional set-valued expectation completely unspecified, and nonparametrically 
estimate all regression functions compatible with the interval-valued data.

Finally, our proposal is distinct from the literature on data coarsening, e.g. [21], [22] and [23]. In that literature, the 
key assumption of “coarsening at random” requires that for any possible value A of the random set Y and a random 
vector y that almost surely belongs to Y , the conditional probability P(Y = A|y = y0) does not depend on y0 ∈ A. This 
assumption restricts directly the conditional distribution of the random set Y , whereas we leave this distribution completely 
unrestricted.

Structure of the paper. In Section 2 we set up our notation and we briefly review local linear regression with singleton 
data. Our method implicitly applies it to each tuple (x, y) : (x, y) ∈ {x} × Y a.s. In Section 3 we propose our estimator and 
in Section 4 derive its asymptotic properties. In Section 5 we describe a cross-validation method for bandwidth selection, 
and we extend the methods proposed by [8] to test a hypothesis about the conditional expectation (evaluated at x0) and 
to build pointwise error bands with prespecified asymptotic coverage. In Section 6 we report the results of Monte Carlo 
experiments and in Section 7 the results of our empirical illustration. Section 8 concludes. All technical proofs are collected 
in Appendix A. Throughout we consider the case that the regressors x are random variables (random design case). In 
keeping with the tradition in the statistics literature (e.g., [3]), we also report in Appendix B the case of deterministic 
design (nonstochastic explanatory variables). Appendix C briefly discusses the local constant regression case. Appendix D
reports some basic facts in convex geometry and random set theory that we use throughout the paper. We refer to [4] for 
a thorough account of random sets theory. Appendix E provides additional simulation results.

2. Notation and preliminaries

We begin with listing our notation. We use boldface capital letters X, Y , Z to denote random compact convex sets, 
normal font capital letters X, Y , Z and A, B, C to denote deterministic compact convex sets, boldface lower case letters 
x, y, z to denote random vectors or random variables, and normal font lowercase letters x, y, z to denote deterministic 
vectors. For x ∈R, we denote the positive and negative parts of x respectively by x+ = max(0, x) and x− = − min(0, x). We 
let (�, F, P) denote a nonatomic probability space on which all random vectors and random sets that we work with are 
defined, where � is the space of elementary events equipped with σ -algebra F and probability measure P. We denote the 
Euclidean space by Rd , and equip it with the Euclidean norm (which is denoted by ‖ ·‖). We denote by K(Rd) the collection 
of compact subsets of Rd and by KC(Rd) the family of non-empty compact convex sets, also called convex bodies. We let 
Sd−1 = {x ∈Rd : ‖x‖ = 1} denote the unit sphere in Rd .

We assume that Y is a random set in Rd taking almost surely compact and convex values. In terms of measurability 
requirements, this amounts to

{ω : Y (ω) ∩ K 
= ∅} ∈ F ∀K ∈ K(Rd). (2)

The probabilities P(Y ⊆ K ), K ∈ K(Rd), called the containment functional of Y , fully characterize the distribution of Y , [e.g.,4, 
Thm. 1.8.9]. As function of K , these probabilities are special cases of the belief functions, see [24] and more recently [25] and 
[26]. While general belief functions do not necessarily satisfy regularity conditions specific for the containment functional, 
the containment functionals are exactly semicontinuous belief functions. Then Y describes the possible regions where a true 
value lies, and hence represents the ambiguity embedded in the observations, and coincides with the multivalued mapping 
� in [24].

To set the stage for local regression smoothing, we recall the standard construction of the local polynomial estimators for 
singleton-valued outcomes, see e.g. [6]. Suppose one is interested in estimating E(y i |xi = x0) based on observations (xi, yi), 
i = 1, . . . , n, where x0 is a given value on the support of x (e.g., a particular level of the gene expression measure in our 
empirical study). Then one fits a p-th order local model

yi = θ0(x0) + θ1(x0)(xi − x0) + · · · + θp(x0)(xi − x0)
p + εi,

using the regressor xi − x0 (rather than xi ) so that the intercept equals E(y i |xi = x0). In this expression, the coefficients θ
are written as a function of x0 to emphasize that they change with the evaluation point (and this is what makes the model 
“local”); to simplify notation, such dependence is suppressed henceforth. The local polynomial estimator of order p is then 
obtained by minimizing the weighted least squares
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n∑
i=1

(
yi − θ0 − θ1(xi − x0) − · · · − θp(xi − x0)

p
)2

K
(xi − x0

hn

)
(3)

with respect to θ0, . . . , θp . The kernel function K (·) is a nonnegative integrable function and the tuning parameter hn is the 
bandwidth. As it is typically done, we assume that hn → 0 and nhn → ∞ as n → ∞. The following condition on the kernel 
function is imposed throughout this paper.

Assumption A (Kernel function). The kernel K (z), z ∈R, is a nonnegative function bounded above by Kmax < ∞, with com-
pact support [−cK , cK ] for some cK ∈ (0, ∞), and satisfying∫

K (z)dz = 1,

∫
zK (z)dz = 0.

Denote VarK = ∫ z2 K (z) dz.

The normalization conditions on K are standard, while the compact support ensures that observations sufficiently far 
(compared to the order of the bandwidth) from the current point do not influence the estimator at this point, see also 
Appendix B.

Solving explicitly the weighted least squares minimization problem in (3), one obtains the minimizer θ̂ , and the first 
entry of it, the intercept θ̂0, is the estimate of m(x0). This estimator can be written as

m̂(x0) =
n∑

i=1

	i(x0)yi, (4)

where

	i(x0) = 1

nhn
u�(0)B−1

nx0
u
(xi − x0

hn

)
κ in,

u(z) =
(

1, z, z2/2!, . . . , zp/p!
)�

,

Bnx0 = 1

nhn

n∑
i=1

u
(xi − x0

hn

)
u�(xi − x0

hn

)
κ in,

with κ in = K
( xi−x0

hn

)
. Note that 	i(x0), i = 1, . . . , n, sum up to one, and write

s j = 1

n

n∑
i=1

κ in(xi − x0)
j, j = 0,1, . . .

It is easy to see that s2s0 − s2
1 ≥ 0, and that the right-hand side of (4) is linear in the response variables, since the weights 

do not depend on the yi ’s.
If p = 0 (local constant regression), m̂(x0) is the Nadaraya-Watson estimator with 	i(x0) = κ in/(ns0). If p = 1 (local linear 

regression), then

	i(x0) = κ in

n

s2 − (xi − x0)s1

s2s0 − s2
1

. (5)

Our goal is to extend the local linear regression framework to set-valued outcomes: we propose an analog to estimator 
(4) with p = 1 and 	i(x0) as given in (5), for the case that instead of knowing the exact value of y , it is only assumed that 
y almost surely belongs to a random set Y . In this case y is said to be a (measurable) selection of Y . Distributions of all 
selections of Y can be identified with the probability measures from the core of the belief function generated by Y , that is, 
probability measures dominating the belief function. The pair (x, y) is a selection of {x} × Y , a random closed set in I ×Rd

with I the support of x. This framework can alternatively be described as associating with each value of the explanatory 
variable x a belief function describing the (conditional) distribution of Y .

Whereas in the standard case of singleton-valued outcomes one observes singleton-valued data (xi, yi), i = 1, . . . , n, in 
our framework the observations are set-valued, (xi, Y i), i = 1, . . . , n. As a result, our estimators are also set-valued, and in 
order to assess their properties, we need to define square loss for sets, so as to formalize consistency results and the notion 
of mean squared error. To do so, and to provide a computationally tractable estimator, we exploit the duality between convex 
sets and their support function (see, e.g., Chapter 13 in [27], and (D.2) in Appendix D). The support function of Y in direction 
v ∈ Sd−1 is given by s(Y , v) ≡ supy∈Y v� y, and can be used to define the width function of Y in direction v ∈ Sd−1, 
w(Y , v) ≡ s(Y , v) + s(Y , −v) (see Appendix D). We assume that Y is integrably bounded, that is, ‖Y ‖ = supy∈Y ‖y‖ is 
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integrable (Assumption B in the next section provides sufficient conditions guaranteeing that this is the case), and since 
|s(Y , v)| ≤ ‖Y ‖ for all v from the unit sphere, this implies that the support function is integrable. It is possible to show 
that Es(Y , v) = s(EY , v) [see4, Theorem 2.1.35], i.e. the expected support function is the support function of a convex body 
EY , which in turn is called the expectation of Y . This expectation equals the set of values E y for all random vectors y such 
that y ∈ Y a.s.

Similarly, for given x it is possible to define the conditional expectation

E[Y |x = x] =
{

E[y|x = x] : y ∈ Y a.s.
}
,

and also in this case it holds that E[s(Y , v)|x = x] = s(E[Y |x = x], v) [see, e.g.,4, Sec. 2.1.6]. The set E[Y |x = x] is the object 
of interest in this paper, and one can think of it as the first-order moment of the belief function generated by Y conditional 
on x.

To simplify the exposition, henceforth we assume that x is a scalar random variable and that I is an interval, I ⊂ R. 
Our results apply, subject only to modification in notation and convergence rates (as in the point identified case), with 
vector-valued x provided the real-valued bandwidth is replaced by a matrix-valued one.

The family of support functions of all non-empty compact convex subsets in Rd is a subset of the family of continuous 
functions on the unit sphere Sd−1. In particular, the Hausdorff metric between compact convex sets equals the uniform 
(L∞) distance between their support functions, see e.g. [28, Lemma 1.8.14]. For our purposes, it is convenient to endow the 
family of continuous functions on the unit sphere with the L2-metric, so that the distance between two non-empty compact 
convex sets A1 and A2 is given by

L(A1, A2) =
⎛
⎜⎝ ∫

Sd−1

(s(A1, v) − s(A2, v))2 dv

⎞
⎟⎠

1
2

. (6)

The integration is performed with respect to the uniform measure on Sd−1. If d = 1, the integral turns into the sum of two 
terms for v = 1 and v = −1. The distance to the empty set is assigned to be infinite.

In Section 3, we employ this distance to define the mean square error of our estimator. This distance differs from 
the standard Hausdorff distance used in the related literature in partial identification and in the standard laws of large 
numbers and central limit theorems for Minkowski averages of random sets. However, under our assumptions the result 
of Theorem 3 in [29] yields that these two metrics define the same topology, and so the consistency with respect to the 
L2-distance implies consistency with respect to the L∞-distance. At the same time, use of the L2-distance is particularly 
well suited to analyze properties of estimators based on least squares minimization.

3. Nonparametric smoothing for random sets

In the following we assume that (xi, Y i), i = 1, . . . , n, is a sample of i.i.d. realizations of (x, Y ) as defined in Appendix D, 
where Y satisfies Assumption B introduced below. This i.i.d. assumption is consistent with many collection processes of set-
valued data, such as, e.g., the use of unfolding brackets in the Health and Retirement Study, in the Occupational Employment 
Statistics survey of the Bureau of Labor Statistics, and in the empirical application that we present in Section 7. We relate it 
to the typical i.i.d. assumption for singleton-valued data following our statement of Assumption B below.

When the outcome data is set-valued, it is necessary to obtain an estimator for the collection of conditional expectations 
E[y|x = x] for all (x, y) ∈ {x} × Y a.s. This can be accomplished by repeating the procedure in the previous section for all 
selections of {x} × Y . Computationally this is easily achieved by taking the weighted Minkowski average of the Y i data (see 
Appendix D for a formal definition of Minkowski sum):

M̂(x0) =
n∑

i=1

	i(x0)Y i . (7)

For p = 0 we obtain a local constant set-valued regression estimator; the choice p = 1 yields a local linear set-valued 
regression estimator. Note that (7) is also the Fréchet mean of the observed values Y 1, . . . , Y n in the metric given by (6), 
see [30] and Sec. 2.2.5 in [4].

The estimator in (7) yields a convex set, therefore we can characterize its properties by working with its support function 
(see (D.2) in Appendix D and Chapter 13 of [27]). To simplify notation, in what follows we omit the argument x0 in 	i(x0)

and write shortly 	i , unless the dependence on x0 is essential. By representing the difference of its positive and negative 
parts as 	i = 	+

i − 	−
i , and using that s(−A, v) = s(A, −v) for a convex compact set A and its centrally symmetric set 

−A = {−x : x ∈ A}, we arrive at
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s(M̂(x0), v) = s
( n∑

i=1

(
	+

i − 	−
i

)
Y i, v
)

=
n∑

i=1

	+
i s(Y i, v) +

n∑
i=1

	−
i s(Y i,−v)

=
n∑

i=1

(	i + 	−
i )s(Y i, v) +

n∑
i=1

	−
i s(Y i,−v) =

n∑
i=1

	i s(Y i, v) +
n∑

i=1

	−
i w(Y i, v).

A key feature of the above estimator is that it averages the support function of the set Y i in direction +v when 	i > 0, and 
in direction −v when 	i < 0. In doing so we guarantee that the estimator is always non-empty for any n, a highly desirable 
feature in light of Assumption B.

Remark 3.1. When d = 1 and Y = [yL, yU] with P(yU ≥ yL) = 1, one might consider two estimators as alternatives to M̂(x0). 
One is given by

N̂(x0) =
[

n∑
i=1

	i yiL,

n∑
i=1

	i yiU

]
.

The other is obtained by regressing the midpoint ( ỹ) and the width (w) of the interval [yL, yU] on x and letting

Ô (x0) =
[

n∑
i=1

	i ỹi −
n∑

i=1

	i
w i

2
,

n∑
i=1

	i ỹi +
n∑

i=1

	i
w i

2

]
.

Standard arguments in [5] yield that N̂(x0) and Ô (x0) are consistent estimators of

M(x0) = E[Y |x = x0] =
[

E[yL|x = x0],E[yU|x = x0]
]

with respect to the L2-distance. However, these estimators can have large finite sample bias, and even be empty (with 
asymptotically vanishing probability), as illustrated in the following example. Suppose that for i with 	i > 0, yiL = yiU; and 
for i with 	i < 0, yiU > yiL.2 Then

n∑
i=1

	i yiL =
n∑

i=1

	+
i yiL −

n∑
i=1

	−
i yiL =

n∑
i=1

	+
i yiU −

n∑
i=1

	−
i yiL

>

n∑
i=1

	+
i yiU −

n∑
i=1

	−
i yiU =

n∑
i=1

	i yiU,

and N̂(x0) is empty. One can similarly show that Ô (x0) is empty. Similarly empty estimators may result even if yiU > yiL

whenever 	i > 0, depending on the realizations of yiL and yiU, see Fig. 1 for N̂(x0). Even if one censors w i = 0 if 	i < 0, 
the resulting estimator may still in finite sample significantly understate the width of M(x0).

While the example in Remark 3.1 might appear stylized, it highlights a finite sample problem that can easily occur in 
practice with interval-valued data, but does not affect the corresponding estimators in the singleton-valued case. The reason 
is that in the singleton case, local regression smoothers are weighted averages of the observed outcomes. That is also the 
case for our estimator, M̂(x0), which averages the sets Y i and indeed is always non-empty. On the other hand, N̂(x0) and 
Ô (x0) average specific selections of Y i (e.g., the extreme points), without recognizing that the sign of the weight may affect 
which selection is extreme in a given direction.

Throughout the paper we assume I = R and we impose the following restrictions on the observed and theoretical 
responses and on the density function of x.

Assumption B (Observed responses). 

(i) Let (xi, Y i), i = 1, . . . , n, be a sample of i.i.d. realizations of (x, Y ), i = 1, . . . , n. Conditional on x1, . . . , xn , the observa-
tions Y 1, . . . , Y n , are non-empty random compact convex sets.

(ii) Y i ⊂ ξi + B a.s. for square integrable random vectors ξi , i = 1, . . . , n, and a deterministic compact set B that is the same 
for all i.

2 While the example is provided for the case d = 1, similar constructions can be obtained also when d ≥ 2.
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Fig. 1. Possible emptiness of the estimator N̂(x0). Stars: (xi , yiL); Circles: (xi , yiU); dashed line:
∑n

i=1 	i yiL; solid line:
∑n

i=1 	i yiU.

Define

εi(v) ≡ s(Y i, v) − s(M(xi), v), v ∈ Sd−1. (8)

By Assumption B, εi(·), i = 1, . . . , n, are i.i.d. copies of a square integrable random function ε(v), v ∈ Sd−1, such that 
E[εi(v)|xi] = 0 xi -a.s. for all v ∈ Sd−1. The square integrability follows from the inequality,

εi(v) ≤ s(B, v) + |ξ�
i v|+|η�

i v|,
where ηi is a square integrable selection of M(xi). This selection exists in view of Assumption B(ii) and can be chosen as 
the point of M(xi) = E(Y i |xi) ⊂ E(ξi |xi) + B nearest to E(ξi |xi). Note that ε does not admit a geometric interpretation as the 
support function of a random set.

Denote by C(v, u) = E[ε(v)ε(u)] the covariance function of ε and let σ 2
max be the supremum of C(v, v) = E[ε(v)2]

over all v from the unit sphere. Assumption B(ii) guarantees that Y i is uniformly integrably bounded, and implies that 
the diameters of all Y i ’s are bounded by a deterministic constant. Hence, the ambiguity range is limited to belong to a 
deterministic set, and σ 2

max is finite.
It is worth to compare our random sampling assumption with the standard one for singleton-valued variables. In that 

context, one has yi = m(xi) + εi , and (xi, yi) are assumed i.i.d., and as a consequence εi are i.i.d. In our context, we assume 
that (xi, Y i) are i.i.d., and as a consequence εi(v) are i.i.d.

In dimension d = 1, we have s(Y i, 1) = yiU, s(Y i, −1) = −yiL, and Part (i) of Assumption B requires that yiL = E[yL|x] −
εi(−1), yiU = E[yU|x] + εi(1) with εi(1) + εi(−1) ≥ −(E[yU|x] − E[yL|x]) almost surely. The latter condition replicates the 
requirement that P(yU ≥ yL) = 1.

Next, we require the conditional expectation of E[Y |x] to have a sufficiently smooth support function, thereby allowing 
for standard expansions used in obtaining the asymptotic properties of the local linear estimator.

Assumption C (Theoretical response function). The function M(x), x ∈ R, is such that s(M(x), v) admits a second derivative 
s′′(M(x), v) in x, uniformly bounded for all v ∈ Sd−1.

In dimension d = 1, Assumption C means the second order differentiability of the end-points of the interval-valued 
function M(x). Finally, we assume that the common density f of the independent design points satisfies the following 
condition, which is similar to that imposed in Condition 1(ii) of [5] with singleton responses. This is a standard condition 
in nonparametric regression; it guarantees that the design points are not too concentrated in some areas.

Assumption D (Density). The density f is strictly positive at x0 and belongs to the family H(1, γ ) of Lipschitz functions 
with constant γ > 0, that is,

| f (x′) − f (x′′)| ≤ γ |x′ − x′′|
for all x′, x′′ ∈R.
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We measure the quality of M̂(x0) as set-valued estimator of M(x0) by the quadratic loss function defined in (6),

L(M̂(x0), M(x0))
2 =
∫

Sd−1

(s(M̂(x0), v) − s(M(x0), v))2 dv.

The mean squared error (MSE) of the estimator is then the expectation of L(M̂(x0), M(x0))
2. A classic bias-variance decom-

position yields

MSE(x0) =
∫

Sd−1

b2
x0

(v)dv +
∫

Sd−1

σ 2
x0

(v)dv,

where b2
x0

(v) and σ 2
x0

(v) are squared bias and variance, given by

b2
x0

(v) = E
(

E[s(M̂(x0), v)|x1, . . . , xn] − s(M(x0), v)
)2

,

σ 2
x0

(v) = E
(

s(M̂(x0), v) − s(E[M̂(x0)|x1, . . . , xn], v)
)2

.

Because E[Y i |xi] = M(xi), we have

E[s(M̂(x0), v)|x1, . . . , xn] =
n∑

i=1

	i s(M(xi), v) +
n∑

i=1

	−
i w(M(xi), v).

Rearranging the terms, we arrive at

b2
x0

(v) = E
( n∑

i=1

	i(s(M(xi), v) − s(M(x0), v)) +
n∑

i=1

	−
i w(M(xi), v)

)2
(9)

and

σ 2
x0

(v) = E
( n∑

i=1

	i(s(Y i, v) − s(M(xi), v)) +
n∑

i=1

	−
i (w(Y i, v) − w(M(xi), v))

)2
.

By Assumption B, the variance can be expressed as

σ 2
x0

(v) = E
( n∑

i=1

	iεi(v) +
n∑

i=1

	−
i (εi(v) + εi(−v))

)2
. (10)

Differently from the classical case with singleton responses y i , the negative parts of the weights in (9) play an essential 
role with set-valued responses. This is because while the difference between s(M(xi), v) and s(M(x0), v) is small when xi
is close to x0, the width w(M(xi), v) does not vanish as xi becomes closer to x0. Thus, the bias increases by a constant and 
may not tend to zero if some weights are negative and not close to zero. Much of our asymptotic analysis is concerned with 
establishing the asymptotic behavior of these negative weights.

The methodology that we propose for local linear regression smoothing can be applied also in the case of local poly-
nomial regression models with p ≥ 2. In this case, however, extra care is required to show that the negative weights are 
asymptotically negligible.

4. Asymptotic properties of the set-valued estimators

In the local linear regression setting, negative weights may appear in (9) and hence affect the bias in the case of set-
valued data. Following [5], in order to avoid zero in the denominator of the local linear estimator, we redefine 	i by letting

	i = κ in

n

s2 − (xi − x0)s1

s2s0 − s2
1 + n−4

. (11)

We use O and O to denote the deterministic order of magnitude uniformly in f ∈ H(1, γ ). For a sequence {zn, n ≥ 1} of 
random variables determined through the design points and the observations, write zn = Or(an) if

sup
f ∈H(1,γ )

E|zn|r = O(ar
n).

The notation Or(an) is defined similarly. We then have Or(an)Or(bn) = Or/2(anbn), and
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zn = Ezn + Or(E|zn − Ezn|r)1/r .

To determine the contribution to the bias resulting from the negative weights, we first derive the expected sum of the 
squared weights 	2

i . Proofs of the following results are given in Appendix A.

Proposition 4.1. Let hn → 0 and nhn → ∞ as n → ∞. Under Assumptions A and D,

E
n∑

i=1

	2
i = 1

nhn f (x0)

∫
K 2(z)dz + O

( 1

nhn

)
. (12)

Next, we obtain the second moment of the sum of the negative weights.

Proposition 4.2. Let hn → 0 and nhn → ∞ as n → ∞. Under Assumptions A and D, for sufficiently large r,

E
( n∑

i=1

	−
i

)2

= 1

hn
O
((

1/
√

nhn
)r)

.

With this result in hand, we can derive the mean squared error of our estimator. As the mean squared error converges 
to zero as n increases to infinity, this result yields consistency of our estimator as well as its rate of convergence.

Theorem 4.3. Under Assumptions A, B, C, and D, if hn = cn−β with 0 < β < 1 and a constant c > 0, the mean squared error of the 
local linear estimator (7) is

MSE(x0) = h4
n(VarK )2

4

∫
Sd−1

s′′(M(x0), v)2 dv +
∫
Sd−1 C(v, v)dv

nhn f (x0)

∫
K 2(z)dz + O

(
h4

n + 1

nhn

)
.

We conclude this section by deriving a limit theorem for the support function of the estimators as processes on the unit 
sphere. In turn, this limit theorem can be used to build error tubes for the estimator as explained in Section 5. Let ζ(v), 
v ∈Sd−1, be a centered Gaussian process on the unit sphere with the covariance

E[ζ(v)ζ(u))] = C(v, u)

f (x0)

∫
K (z)2 dz. (13)

Theorem 4.4. Assume that hn = cn−β with 0 < β < 1, and fix x0 ∈ I . Under Assumptions A, B, C, and D, the stochastic process√
nhn

(
s(M̂(x0), v) − s(M(x0), v) − h2

n
1

2
s′′(M(x0), v)VarK

)

constructed using the local linear estimator in (7) converges in distribution in the space of continuous functions on Sd−1 with the 
uniform metric to the Gaussian process ζ .

5. Cross-validation and error tubes

Cross-validation. In the classical setting, where the observation pairs (xi, yi) are real-valued, one typically chooses the 
bandwidth hn to minimize the leave-one-out cross-validation score, defined as

CV = 1

n

n∑
i=1

(yi − m̂(−i)(xi))
2,

where m̂(−i)(x) =∑n
j=1 y j	 j,(−i)(x) and

	 j,(−i)(x) =
{

0 if j = i,
	 j(x)∑

k 
=i 	k(x) if j 
= i.

This procedure assigns weight zero to xi and renormalizes the other weights to sum to one.
Following the same idea, we define the cross-validation score for the set-valued responses Y i as

CV = 1

n

n∑
i=1

∫
Sd−1

(s(Y i, v) − s(M̂ (−i)(xi), v))2 dv, (14)
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where M̂ (−i)(x) =∑n
j=1 Y j	 j,(−i)(x). If one is interested in a specific projection in direction v , the above expression simpli-

fies by removing the integral.
If Y i = [yiL, yiU] ⊂R, (14) turns into

CV = 1

n

n∑
i=1

(
(yiL − M̂ (−iL)(xi))

2 + (yiU − M̂(−iU )(xi))
2
)
, (15)

where M̂ (−iL)(xi) and M̂ (−iU )(xi) denote the lower and upper bounds of M̂ (−i)(xi). We denote by hn,CV the bandwidth that 
minimizes (15) (or (14), depending on the application).

Error tubes. The optimal bandwidth which minimizes the MSE in Theorem 4.3 is hn,mse = Cn−1/5, with some constant C
that does not depend on n. However, such a choice of bandwidth implies nh5

n 
→ 0 and the leading bias term in Theorem 4.4
does not vanish, as in the classical case for singleton-valued outcomes. Similarly to that case, one can use undersmoothing 
as an approach to bias reduction. In Section 6 we illustrate the impact of undersmoothing on the error tubes that we 
describe next.

Rather than undersmooth, we propose to report statistical uncertainty in our estimates in the form of pointwise error 
tubes – an analog of error bands for singleton-valued data. Specifically, for each value x0 considered we propose to report 
the set

Ĉ(x0) = M̂(x0) + cα√
nhn

B, (16)

where B = {b : ‖b‖ ≤ 1} is the unit ball. In (16) cα is chosen so that

P
(

max
v: ‖v‖=1

{ζ(v)}+ > cα

)
= α, (17)

where ζ is the centered Gaussian process with covariance kernel (13), see Theorem 4.4. The critical value cα can be ob-
tained by simulation, or can be estimated using the bootstrap. Validity of the bootstrap can be formally established as in 
Proposition 2.1 of [8] [see also31, Theorem 4.13]. It follows from Theorem 4.4 that

lim
n→∞ P

(
max

v: ‖v‖=1
{s(M̂(x0), v) − s(M(x0), v)

− h2
n

1

2
s′′(M(x0), v)VarK −s(Ĉ(x0), v)}+ = 0

)
≥ 1 − α. (18)

If one is interested in a specific projection in direction v , a valid error band for s(M(x0), v) is obtained by replacing (16)
with [

s(M̂(x0), v) − cα,v√
nhn

, s(M̂(x0), v) + cα,v√
nhn

]
, (19)

where cα,v is obtained as in (17) replacing the maximization over v with ‖v‖ = 1 by a fixed direction v .
Existing methods of bias correction (other than undersmoothing, the effect of which we are already investigating in 

our Monte Carlo exercise) could be extended to the case of set-valued outcomes. However, we do not report such findings 
here,3 because any form of bias reduction may result in an empty estimator, which we regard as an undesirable feature as 
discussed in Remark 3.1.

6. Monte Carlo simulations

We perform a simulation study for the case that d = 1 and for the case that d = 2. In the first case, we use the following 
data generating process (DGP1):

yL = 0.90 + 1.27x + 5.18x2 − εL

yU = 0.90 + 1.27x + 10.18x2 + εU ,

with x drawn from a Beta distribution with support shifted to be [−1, 1] and with shape parameters (2, 4), and εL and εU

drawn independently from a Uniform distribution on [0, 1]. We let the sample size n = 200, 500, 1000, 2000. For values of 
x0 = −0.4, 0, 0.2, 0.4 we evaluate the coverage probability of the error tubes in equation (16).

We compare different implementations of the error tubes, and in Table 1 we report: (i) coverage probability of the true 
set M(x0) by the error tube (meaning that the true set is a subset of the tube) in (16) computed using the cross-validation 

3 Although these are available from the authors upon request.
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Table 1
Coverage probability at 95% nominal level using cross-validation for DGP1.

sample x0 Coverage of Coverage of Coverage of M(x0) Coverage of M(x0)

size M(x0) E(M̂(x0)) with h = 1/2hn,C V with h = 1/3hn,C V

200 -0.4 0.8315 0.8245 0.9055 0.9695
0 0.8855 0.8550 0.8565 0.9515
0.2 0.9330 0.9270 0.9865 0.9980
0.4 0.9270 0.9040 0.9255 0.9875

500 -0.4 0.8580 0.8485 0.9300 0.9790
0 0.9245 0.9095 0.9710 0.9920
0.2 0.9240 0.9200 0.9710 0.9950
0.4 0.9340 0.9145 0.9180 0.9760

1000 -0.4 0.8910 0.8760 0.9430 0.9845
0 0.9035 0.8935 0.9360 0.9830
0.2 0.9230 0.9210 0.9570 0.9890
0.4 0.9225 0.9125 0.9125 0.9760

2000 -0.4 0.8820 0.8710 0.9450 0.9835
0 0.9020 0.8915 0.9390 0.9870
0.2 0.9320 0.9125 0.9525 0.9900
0.4 0.9335 0.9170 0.9635 0.9915

bandwidth (column 3); (ii) coverage probability as in (18), with the error tube in (16) computed using the cross-validation 
bandwidth (column 4); (iii) same exercise as in (i) but using undersmoothed bandwidths (columns 5 and 6). The results are 
based on 200 Monte Carlo replications.

In these simulations, the asymptotic bias does not affect the ability of the error tube in (16) to cover the true set M(x0)

compared to E[M̂(x0)], see columns (3) and (4) of the table. If we undersmooth the bandwidth, the confidence interval 
enlarges substantially and coverage of the true set becomes conservative. In Appendix E (Tables E.4 and E.5) we report the 
results of two additional simulation studies that vary the expressions for E(yL|x) and E(yU|x), as well as the distribution of 
εL (to be Beta(2,2) instead of Uniform(0,1)). Qualitatively the results are similar to what we report here.

We also perform a simulation study for the case that d = 2 with the following data generating process (DGP2):

Y =
[

0.90 + 1.27x + 10.18x2

0.60 − 1.00x − 5.18x2

]
+ Bξ ,

where Bξ is a ball of radius 1 centered at the random vector ξ , and ξ is uniformly distributed on the unit ball in R2. 
As in the previous simulation, x is drawn from a Beta distribution with support shifted to be [−1, 1] and with shape 
parameters (2, 4). We let the sample size n = 200, 500, 1000, 2000. For values of x0 = −0.4, 0, 0.2, 0.4 we evaluate the 
coverage probability of the error bands in equation (19) for v = (1, 0), v = (1, 1)/

√
2, and v = (0, 1). To conserve space, we 

report the results for v = (1, 0) in Table 2 here, and for v = (1, 1)/
√

2 and v = (0, 1), respectively, in Tables E.6 and E.7 in 
Appendix E. Overall the results are qualitatively similar to those reported for DGP1: once the bandwidth is undersmoothed 
and sample size is sufficiently large, coverage becomes valid.

7. Empirical application

We demonstrate the usefulness of our approach with an empirical illustration that studies the association between cancer 
treatment outcomes and certain gene expression measures.

A key outcome of interest in cancer treatment research is the progression-free survival (PFS), which is defined as the 
time measured in months from baseline until tumor progression or death (whichever occurs first). Tumor progression is 
defined as an increase in the diameter of the tumor lesions of 20% compared with the smallest diameters of all previous 
tumor assessments or the appearance of new lesions, as measured by CT-scans or MRIs (this is called RECIST criterion in 
the medical literature, see [32]). However, due to ethical and cost constraints, CT-scans and MRIs cannot be performed daily, 
but rather scheduled every 3 to 6 months. Hence, the PFS of patients can only be measured by intervals (with the true PFS 
falling between the last assessment without tumor progression and the assessment with progression), and no information 
is available on the distribution of true PFS within the interval. In contrast, the PFS of patients who died without tumor 
progression is measured exactly.

The question that we focus on in this paper is part of a subproject of the Swiss Cancer Research Group (SAKK) 19/09 for 
anti-cancer treatment regimens described in [33]. This subproject is concerned with finding, out of a total of 202 investi-
gated genes, those whose baseline expression affects patient’s PFS differently in two treatment arms described below. Genes 
expression is evaluated by isolating RNA from baseline tumor tissue sections and processing it for gene expression analysis 
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Table 2
Coverage probability at 95% nominal level using cross-validation for DGP2 with v = (1, 0).

sample x0 Coverage of Coverage of Coverage of M(x0) Coverage of M(x0)

size M(x0) E(M̂(x0)) with h = 1/2hn,C V with h = 1/3hn,C V

200 -0.4 0.8290 0.8395 0.8960 0.9725
0 0.8515 0.8760 0.8525 0.9530
0.2 0.9290 0.9360 0.9840 0.9985
0.4 0.9085 0.9290 0.9220 0.9835

500 -0.4 0.8580 0.8665 0.9345 0.9805
0 0.9195 0.9275 0.9745 0.9960
0.2 0.9260 0.9325 0.9730 0.9945
0.4 0.9210 0.9270 0.8965 0.9675

1000 -0.4 0.8830 0.8910 0.9315 0.9820
0 0.9055 0.9125 0.9330 0.9785
0.2 0.9210 0.9255 0.9425 0.9875
0.4 0.9325 0.9345 0.9120 0.9725

2000 -0.4 0.8805 0.8835 0.9495 0.9875
0 0.8900 0.8985 0.9355 0.9860
0.2 0.9220 0.9300 0.9490 0.9915
0.4 0.9270 0.9360 0.9595 0.9900

using the Nanostring nCounter® System (Nanostring Technologies), including 6 housekeeping genes.4 The gene expression 
measure that we report and use for our analysis is the log2 of the output of Nanostring.

It is worth mentioning that classical statistical methods of survival analysis, such as Cox regression or the accelerated 
failure time model, can also be applied to this data (and we do so below). These models are typically implemented with 
a parametric or semi-parametric specification of the hazard rate to construct the likelihood function. For example, the 
Cox proportional hazard model [34] assumes a hazard rate that is constant over time, and the resulting survival data 
follow a Markovian process; the accelerated failure time model posits an acceleration factor that is constant over time. The 
probability of censoring can then be calculated based on the functional form assumption. For example, the PFS variable 
in our example is usually treated as an interval censored data, for which one can construct the likelihood function and 
obtain point identified estimates of the model’s parameters, and then back out the implied conditional expectation of the 
treatment outcome given gene expression. In contrast, our method provides a consistent estimator of the set of admissible 
values for the conditional expectation of treatment outcome given gene expression, as well as 1 − α pointwise confidence 
bands for it as in (16), without making any assumption on how PFS is distributed over the measured intervals that it is 
known to belong to, nor how it is related to the genes, as these assumptions may fail to hold in a given application.5

We use a novel dataset that follows 132 patients who were accrued between November 2010 and July 2014 to the 
SAKK 19/09 clinical trial for anti-cancer treatment regimens described in [33]. These patients are affected by advanced non-
squamous non-small cell lung cancer and present an epidermal growth factor receptor (EGFR) of the wild type. Excluding 
3 patients with protocol violations, 77 patients were treated with the drug Bevacizumab plus chemotherapy (C1) and 52 
were treated with chemotherapy alone (C2). The question of interest of the SAKK 19/09 subproject that we revisit in this 
section is whether the gene expression of PTGS2 (COX2) at baseline affects differently patient’s PFS in the two treatment 
arms. The gene PTGS2 (COX2) is frequently expressed in lung cancer patients and the drug Bevacizumab directly interacts 
with the COX2 pathway. One speculates that in patients with a high expression of COX2 the tumor cells are predominately 
dependent on this signaling pathway for proliferation and the use of Bevacizumab has a more pronounced effect. Vice-versa, 
if COX2 is only expressed at a low level, this could reflect a tumor that is not dependent on this inflammatory pathway and 
therefore the use of Bevacizumab is not beneficial. Another gene of interest (whose effect on cancer treatment efficacy has 
not been previously analyzed) is CDC25A, which is a key regulator of the cells cycles. One speculates that overexpression of 
gene CDC25A is associated with a poorer prognosis with regard to its biological role.

In our analysis, y = PFS, yL is the time of the last assessment without tumor progression, and yU is the time of the 
assessment with tumor progression. Table 3 reports descriptive statistics for these data. The sample used for the analysis is 
constituted by 99 patients, from which four were excluded because they were still alive at the last follow up (and therefore 
for these patients yiU = ∞). Of the sample used for our analysis, 58 patients were treated following protocol C1, and 37 
following protocol C2. Because durations are non-negative by definition while local linear regression smoothers may yield 
negative predictions, we work with the natural logarithm of our data, adjusted as follows

ỹk = ln(yk + 0.033), k = L,U

4 See https://www.nanostring .com for a description of this method.
5 [35] point out that individual heterogeneity and hazard rate cannot be jointly non-parametrically point identified.
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Table 3
Descriptive statistics for interval-valued PFS and genes PTGS2 and 
CDC25A; y denotes the progression-free survival (time from baseline 
until tumor progression or death), yL is last assessment without tu-
mor progression, and yU is the assessment with tumor progression.

variable mean stdErr max min N

yL 7.62 9.08 52.40 0 95
yU 9.25 9.65 55.16 0.23 95
CDC25A 7.23 2.76 14.22 0 95
PTGS2 8.66 1.90 13.37 2.86 95

where we add 0.033 because for some individuals yL = 0. The choice of 0.033 is motivated by the unit of measure for y, 
which is months: following the convention in the medical literature, we add one day (approximately 0.033 months).

The results of the analysis are reported in the top panels of Fig. 2 for the gene PTGS2 (COX2), with panel A reporting 
the results using the Accelerated Failure Time (AFT) model, and Panel B reporting our set-valued local linear regression 
estimator. The bottom panels of Fig. 2 report the results for the gene CDC25A, with panel C reporting the results using the 
AFT model, and Panel D reporting our set-valued local linear regression estimator.

We first comment on the comparison between the standard AFT model and our set-valued estimator in terms of the 
shape of the predicted conditional PFS. For the PTGS2 (COX2) gene, the patterns are similar, although we uncover a more 
markedly nonlinear relation (especially for treatment C1). For the gene CDC25A, the pattern uncovered by the AFT method 
and our method are similar for treatment C2, but for treatment C1 we uncover a remarkably more nonlinear relationship.

The results of the AFT analysis suggest that the use of Bevacizumab in cancer treatment is quite beneficial for pa-
tients with moderate to relatively high (6-10) expression of gene PTGS2 (COX2), although the benefit seems to taper off 
at extremely high levels of the gene. Similarly, at medium to high levels (6-12) of expression of gene CDC25A the use of 
Bevacizumab seems beneficial, while at low levels of the gene the two treatment arm’s effects are not significantly different. 
Our results, however, suggest that these findings might result from the functional form assumptions: for the gene PTGS2 
(COX2) we find that for patients with moderate to relatively high (6-10) levels of the gene the set-valued estimates are 
consistent with a beneficial effect of Bevacizumab, but the confidence bands overlap, suggesting that the difference is not 
statistically significant. For the gene CDC25A we find that for CDC25A levels between 9 and 10, Bevacizumab is (statistically
significantly) beneficial, but not at other levels of gene expression.

We note, however, that the results of this analysis are retrospective. To confirm the medical findings, a prospective 
randomized clinical trial needs to be carried out. We also highlight a drawback of our method: it is not able to handle 
survival data censored on the right, where the observations become half-lines unbounded on the right. In our example such 
observations have been eliminated.

8. Conclusions

This paper has introduced local linear regression smoothing for set-valued data. We have established consistency of the 
set-valued estimator, derived its mean squared error, and its (pointwise) asymptotic distribution. We have extended the 
cross-validation method for bandwidth selection to the case of set-valued local linear regression, and examined the finite 
sample properties of our estimator in a Monte Carlo exercise. We have illustrated the usefulness of our method in an 
empirical illustration studying the effect of gene expression on cancer therapy outcomes.
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Appendix A. Proofs of main results

Proof of Proposition 4.1. Our proof builds on [5, Eqs. (6.4), (6.6) and (6.13)]. Since the kernel is assumed to have a compact 
support, we have 

∫
z2r K (z)dz < ∞ for all r ≥ 0. For any integer r ≥ 1,

s j = Es j + h j+1
n Or

(
1/
√

nhn
)
, j = 0,1,2, (A.1)

as n → ∞, hn → 0 and nhn → ∞. The expectations of s j can be calculated as follows:

Es0 = hn

∫
K (z) f (zhn + x0)dz = hn

∫
K (z)( f (x0) + O(hn))dz = hn[ f (x0) + O(hn)],

Es1 = h2
n

∫
zK (z) f (zhn + x0)dz = h2

n

∫
zK (z)( f (x0) + O(hn))dz = h2

nO(hn),
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Fig. 2. Results of the analysis for the genes PTGS2 and CDC25A (log2 of the Nanostring output).

Es2 = h3
n

∫
z2 K (z) f (zhn + x0)dz = h3

n

∫
z2 K (z)( f (x0) + O(hn))dz = h3

n( f (x0)VarK +O(hn)).

In view of (A.1), for an integer r ≥ 1,

s j = h j+1
n

(
f (x0)

∫
z j K (z)dz + Or(hn + 1√

nhn
)

)
, j = 0,1,2. (A.2)

Thus,

s0 = hn f (x0)(1 + Or(1)), (A.3)

s1 = h2
nOr(1), (A.4)

s2 = h3
n f (x0)VarK (1 + Or(1)). (A.5)

It is easy to see that

n∑
i=1

	i = s2s0 − s2
1

s2s0 − s2
1 + n−4

.

Moreover, for a sufficiently large r,

h4
n

s2s0 − s2
1 + n−4

= 1

f (x0)2 VarK
+ Or(1), (A.6)

cf. [5, Eq. (6.6)]. In view of (A.3), (A.4), and (A.5),

s2s0 − s2
1 = h4

n f (x0)
2 VarK (1 + Or(1)). (A.7)

By (11),

n∑
i=1

	2
i =
∑n

i=1 κ2
in(s2 − (xi − x0)s1)

2

n2(s2s0 − s2
1 + n−4)2

= s2
2s∗

0

n(s2s0 − s2
1 + n−4)2

+ (−2s2s1s∗
1 + s2

1s∗
2)

n(s2s0 − s2
1 + n−4)2

, (A.8)
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where

s∗
j = 1

n

n∑
i=1

κ2
in(xi − x0)

j = h j+1
n

(
f (x0)

∫
z j K 2(z)dz + Or(1)

)
, j = 0,1,2.

Furthermore, (A.2) implies that

s2
2s∗

0 = h7
n f 3(x0)(VarK )2

∫
K 2(z)dz + h7

nOr/2(1).

Combining this with (A.6) and letting r = 4, we obtain

E

(
s2

2s∗
0

n(s2s0 − s2
1 + n−4)2

)
= h7

n f 3(x0)(VarK )2
∫

K 2(z)dz

nh8
n f 4(x0)(VarK )2

+ h7
n

nh8
n

O(1)

=
∫

K 2(z)dz

nhn f (x0)
+ O
(

1

nhn

)
.

Since 
∫

zK (z) dz = 0,

−2s2s1s∗
1 = h7

n( f (x0)VarK +O8(1))O8(1)( f (x0)

∫
z j K 2(z)dz + O4(1)) = h7

nO2(1).

Analogously, s2
1s∗

2 = h7
nO2(1). Both these terms are as small as the minor term of s2

2s∗
0. Therefore, (A.8) is dominated by its 

first term, whence (12) holds. �

Proof of Proposition 4.2. By definition, 	i < 0 if and only if s2 − (xi − x0)s1 < 0. Hence,

E
( n∑

i=1

	−
i

)2

= E
( n∑

i=1

−	i1{s2 − (xi − x0)s1 < 0}
)2

≤ nE
( n∑

i=1

	2
i 1{s2 − (xi − x0)s1 < 0}

)

≤ nE
( n∑

i=1

	2
i 1{s2 < cK hn|s1|}

)
= nE
(

1{s2 < cK hn|s1|}
n∑

i=1

	2
i

)

≤ n
√

P(s2 < cK hn|s1|)
(

E
( n∑

i=1

	2
i

)2
)1/2

, (A.9)

where the second inequality relies on Assumption A and the last one follows from the Chebyshev inequality. Using (A.2), 
we have, for an integer r ≥ 1,

s1 = h2
n

(
O(hn) + Or

(
1/
√

nhn
))

,

s2 = h3
n

(
f (x0)VarK +O(hn) + Or

(
1/
√

nhn
))

.

Hence,

P(s2 < cK hn|s1|) (A.10)

≤ P
(

f (x0)VarK +O(hn) + Or
(
1/
√

nhn
)
< |O(hn)| +

∣∣∣Or
(
1/
√

nhn
)∣∣∣ )

= P
(

f (x0)VarK < |O(hn)| +
∣∣∣Or
(
1/
√

nhn
)∣∣∣ ). (A.11)

For sufficiently large n, there exists a ξ with 0 < ξ < f (x0) VarK so that |O(hn)| ≤ ξ for all sufficiently large n. Building on 
(A.11), the Markov inequality and the definition of Or(an) yield that

P(s2 < cK hn|s1|) ≤ P
(

f (x0)VarK < ξ +
∣∣∣Or
(
1/
√

nhn
)∣∣∣ )

= P
( ∣∣∣Or
(
1/
√

nhn
)∣∣∣> f (x0)VarK −ξ

)

≤ sup f ∈H(1,γ ) E
∣∣Or
(
1/

√
nhn
)∣∣r

( f (x0)VarK −ξ)r
= cr

(
1/

√
nhn
)r

( f (x0)VarK −ξ)r

for a positive constant cr . Therefore,
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P(s2 < cK hn|s1|) = O
((

1/
√

nhn
)r)

. (A.12)

From the proof of Proposition 4.1 with r = 8, squaring and taking expectation,

E
( n∑

i=1

	2
i

)2 = 1

n2h2
n

(∫
K 2(z)dz

)2

(1 + O(1)). (A.13)

Substituting (A.12) and (A.13) into (A.9),

E
( n∑

i=1

	−
i

)2 ≤ 1

hn

∫
K 2(z)dz

√
1 + O(1)O

((
1/
√

nhn
)r)

,

which converges to 0 by choosing a sufficiently large r. �

Proof of Theorem 4.3. The squared bias can be written as

b2
x0

(v) = E[(b1 + b2)
2],

for b1 =∑n
i=1 	i(s(M(xi), v) − s(M(x0), v)) and b2 =∑n

i=1 	−
i w(M(xi), v). We have

1

n

n∑
i=1

κ in(s2 − (xi − x0)s1)(s(M(xi), v) − s(M(x0), v))

= 1

n

n∑
i=1

κ in(s2 − (xi − x0)s1)(s(M(xi), v) − s(M(x0), v) + s′(M(x0), v)(xi − x0))

= h6
n f (x0)VarK an + O4(h

6
n),

where

an = h−3
n E
(

s(M(x), v) − s(M(x0), v) − s′(M(x0), v)(x − x0)K
(x − x0

hn

))
.

By (A.6), and using the definition of Or , we have

Eb2
1 = E

(
1
n

∑n
i=1 κ in(s2 − (xi − x0)s1)(mv(xi) − mv(x0))

s2s0 − s2
1 + n−4

)2

=
(

Un

f (x0)

)2

h4
n + O(h4

n),

where, taking a Taylor expansion,

Un = h−2
n

(
1

2
s′′(M(x0), v)VarK f (x0)h

2
n + O(h2

n)

)
.

Therefore,

Eb2
1 = 1

4
s′′(M(x0), v)2(VarK )2h4

n + O(h4
n), (A.14)

cf. the proof of [5, Theorem 3].
By Proposition 4.2,

Eb2
2 ≤ w2

maxE
( n∑

i=1

	−
i

)2 = 1

hn
O
((

1/
√

nhn
)r)

, (A.15)

where wmax is a finite deterministic bound on the width of M(x) in any direction v ∈ Sd−1 resulting from Assumption B. 
By the Cauchy-Schwarz inequality, (A.15) and (A.14),

E(b1b2) ≤
√

Eb2
1Eb2

2 = 1

2

(
s′′(M(x0), v)2(VarK )2h4

n + O(h4
n)
)1/2

h−1/2
n O

((
1/
√

nhn
)r/2
)
,

which, for sufficiently large r and given that hn = cn−β , is of a smaller order than h4
n . Thus,∫

Sd−1

b2
x0

(v)dv = 1

4

∫
Sd−1

s′′(M(x0), v)2 dv(VarK )2h4
n + O
(

h4
n + 1

nhn

)
. (A.16)
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Now we bound the variance of the estimator splitting (10) into the sum of three terms. By Proposition 4.1, the first term 
is

E
( n∑

i=1

	iεi(v)
)2 = E

n∑
i=1

	2
i C(v, v) = 1

nhn f (x0)
C(v, v)

∫
K 2(z)dz + O

(
1

nhn

)
.

The second term is

E
∑

1≤i< j≤n

	i	
−
j εi(v)(ε j(v) + ε j(−v)) = 0.

Finally, consider

E
( n∑

i=1

	−
i (εi(v) + εi(−v))

)2 = (C(v, v) + 2C(v,−v) + C(−v,−v))E
n∑

i=1

(	−
i )2

≤ 4σ 2
maxE

n∑
i=1

(	−
i )2 ≤ 4σ 2

maxE
( n∑

i=1

	−
i

)2

= 4σ 2
max h−1

n O
((

1/
√

nhn
)r)

.

For a large r, (nhn)(−r/2) is of smaller order than (nhn)−1. Hence,∫
Sd−1

σ 2
x0

(v)dv = 1

nhn f (x0)

∫
Sd−1

C(v, v)dv

∫
K 2(z)dz + O

(
1

nhn

)
,

and the result follows by adding (A.16) to it. �

Proof of Theorem 4.4. It suffices to establish the convergence of one-dimensional distributions; the weak convergence of 
finite dimensional distributions follows from the Cramér–Wold device, and the functional convergence is established by 
bounding the Lipschitz constants of the processes as in [4, Theorem 3.2.1].

First, decompose

s(M̂(x0), v) − s(M(x0), v) =
n∑

i=1

	i s(Y i, v) +
n∑

i=1

	−
i w(Y i, v) − s(M(x0), v)

=
n∑

i=1

	i s(M(xi), v) +
n∑

i=1

	iεi(v) +
n∑

i=1

	−
i w(Y i, v) − s(M(x0), v). (A.17)

By Proposition 4.2, noticing that the L2-convergence implies the convergence in probability, and choosing r large enough, 
we have that

n∑
i=1

	−
i w(Y i, v) ≤ wmax

n∑
i=1

	−
i = Op

(
1/
√

nhn
)
.

Using a Taylor expansion,

s(M(xi), v) = s(M(x0), v) + (xi − x0)s′(M(x0), v) + 1

2
(xi − x0)

2s′′(M(x0), v) + R(x0, xi, v),

where the remainder term R(x0, xi, v) is of a smaller order than 1
2 (xi − x0)

2s′′(M(x0), v). Since the local linear estimator 
satisfies 

∑n
i=1 	i(xi − x0) = 0, we have

n∑
i=1

	i s(M(xi), v) +
n∑

i=1

	iεi(v) − s(M(x0), v)

=
n∑

i=1

	i(s(M(xi), v) − s(M(x0), v)) − n−4

s2s0 − s2
1 + n−4

s(M(x0), v) +
n∑

i=1

	iεi(v)

=
n∑

i=1

	i

(
1

2
(xi − x0)

2s′′(M(x0), v) + R(x0, xi, v) + εi(v)

)
− n−4

s2s0 − s2
1 + n−4

s(M(x0), v).
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Since for a sequence of {Zn, n ≥ 1} of square integrable random variables

Zn = EZn + Op(
√

Var Zn),

(A.2) yields that

s j = h j+1
n f (x0)

∫
z j K (z)dz (1 + Op(1)), j = 0,1,2,3. (A.18)

By (A.7) and since nhn → ∞, we have

s2s0 − s2
1 + n−4 = h4

n VarK f 2(x0) (1 + Op(1)). (A.19)

Therefore,

n−4

s2s0 − s2
1 + n−4

s(M(x0), v) = Op

(
n−4h−4

n

)
= Op

(
n−3h−3

n

)
.

Combining (A.18) and (A.19), we have

n∑
i=1

	i

(
1

2
(xi − x0)

2s′′(M(x0), v) + R(x0, xi, v) + εi(v)

)

=
(

1

2
(s2

2 − s3s1)s′′(M(x0), v) + 1

n

n∑
i=1

κ in(s2 − (xi − x0)s1)εi(v)

)
(s2s0 − s2

1 + n−4)−1

= 1

2
VarK s′′(M(x0), v)h2

n(1 + Op(1)) + 1

nhn f (x0)

n∑
i=1

κ inεi(v)(1 + Op(1)). (A.20)

By the central limit theorem,

1√
nhn

n∑
i=1

κ inεi (A.21)

converges in distribution to the centered normal random variable with variance equal to that of ζ(v). The combination of 
(A.17), (A.19), (A.20) and (A.21) yields the result. �

Appendix B. Deterministic design points

When the design points xi = xi , i = 1, . . . , n, are deterministic,6 (9) turns into

b2
x0

(v) =
(

n∑
i=1

	i(s(M(xi), v) − s(M(x0), v)) +
n∑

i=1

	−
i w(M(xi), v)

)2

.

Since K (·) has compact support in [−cK , cK ], we have 	i = 0 if |xi − x0| > cK hn . It is easy to see that all weights are 
nonnegative if and only if

∑
κin

(
xi − x0

hn

)2

≥
∣∣∣∣∑κin

xi − x0

hn

∣∣∣∣ .
This assumption means that the sample rescaled around each point to lie in the range [−1, 1] has the variance that domi-
nates the absolute value of the expectation. For this, the rescaled points should be sufficiently balanced on the left and on 
the right of x0. The assumption can be alternatively expressed as

s2

h3
n

≥ cK

∣∣∣∣ s1

h2
n

∣∣∣∣ .
It holds when s1/h2

n → 0 as n → ∞.
By a direct computation, it is possible to show that, in the regular design case, the weights are nonnegative for all n.

6 Because with deterministic design xi = xi , i = 1, . . . , n, s j , j = 0, 1, 2 and κ in, i = 1, . . . , n are also deterministic and we write s j = s j and κ in = κin .
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Proposition B.1. Consider the local linear setting with uniform kernel supported on [−cK , cK ] and equally spaced (regular) design 
points x1, . . . , xn on a bounded interval I . If 1/n ≤ cK hn ≤ 1, then 	i(x0) ≥ 0 for all i, n and each

x0 ∈ In = {x ∈ I : [x − cK hn, x + cK hn] ⊂ I}.

In case of deterministic design points in a bounded interval I , the following assumptions are often imposed; they appear 
as (LP1)-(LP2) in [3].

Assumption E (Design points). The design points x1, . . . , xn are such that:

(i) There exists λ0 > 0 such that all eigenvalues of Bnx0 are greater than or equal to λ0 for all sufficiently large n and all 
x0 ∈ I .

(ii) There exists a0 > 0 such that, for any interval J ⊂ I and all n > 1,

1

n

n∑
i=1

1xi∈ J ≤ a0 max(Leb( J )/Leb(I),1/n),

where Leb(·) denotes the Lebesgue measure.

We impose the following assumption on the response function.

Assumption F (Theoretical response function). The function M(x), x ∈ I , is defined on a bounded closed interval I ⊂ R, and 
there exists γ > 0 such that, for all v ∈ Sd−1, the derivative of s(M(x), v) with respect to x is Lipschitz with constant γ .

The following result is similar to [3, Prop. 1.13] in the singleton-valued data framework.

Proposition B.2. If x0 ∈ In, 	i ≥ 0 for all i, and Assumptions A, B, E and F are satisfied, then

|bx0(v)| ≤ c2
K C∗γ h2

n, σ 2
x0

(v) ≤ σ 2
maxC2∗
nhn

for sufficiently large n and hn ≥ 1/(2n), where the constant C∗ depends only on λ0 , a0 and Kmax.

Proposition B.2 implies

MSE(x0) ≤ c4
K C2∗γ 2h4

n + σ 2
maxC2∗
nhn

.

Therefore, the upper bound is minimized for the bandwidth given by

h∗
n =
(

σ 2
max

4c4
K γ 2

) 1
5

n− 1
5 ,

and the following result holds.

Theorem B.3. If the bandwidth is chosen to be hn = αn− 1
5 for α > 0 and Assumptions A, B, E hold, then

lim sup
n→∞

sup
x0∈In

E[n 2
5 L(M̂(x), M(x))] ≤ C1 < ∞,

uniformly over all response functions satisfying Assumption F, where L is the loss function given by (6), C1 is a constant depending only 
on γ , a0 , λ0 , σ 2

max , Kmax and α.

Appendix C. Local constant regression

In the local constant case, the weights 	i = κ in/(ns0) are always nonnegative. Then the estimator M̂(x0) can be con-
structed as the convex set whose support functions is obtained by calculating the Nadaraya–Watson estimator for the 
sample s(Y i, v), i = 1, . . . , n, in each particular direction v . In other words, M̂(x0) is the sum of the observed sets Y i mul-
tiplied by nonnegative coefficients 	i . Therefore, the bias and variance of the set-valued local constant estimator can be 
obtained similarly to the singleton-valued data case. For this, it suffices to assume that the function s(M(x), v) is Lipschitz 
in x with the same constant for all v , which is equivalent to requiring that M(x), x ∈ I , is Lipschitz in the Hausdorff metric.
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Appendix D. Basic definitions from random set theory

A random compact set Y is a map from (�, F, P) to K(Rd) such that

{ω : Y (ω) ∩ K 
= ∅} ∈ F, (D.1)

for each compact set K ⊂Rd .
Random sets Y 1, . . . , Y n are said to be independent and identically distributed if

P(Y 1 ∩ K1 
= ∅, . . . , Y n ∩ Kn 
= ∅) =
n∏

i=1

P(Y i ∩ Ki 
= ∅),

for all K1, . . . , Kn ∈ K(Rd) and P(Y i ∩ K 
= ∅) = P(Y j ∩ K 
= ∅) for all i 
= j ∈ {1, . . . , n} and K ∈ K(Rd).
We define the Minkowski sum of two compact sets A1 and A2 in Rd elementwise as

A + B = {x + y : x ∈ A, y ∈ B}.
We let c A = {cx : x ∈ A} denote the scaling of A by c ∈R. Given a compact convex set (a convex body) A ⊂ Rd , the support 
function of A is

s(A, v) = sup
a∈A

v�a, v ∈ Rd,

where v�a denotes the scalar product. If A is convex, its support function uniquely identifies A, because

A =
⋂

v∈Sd−1

{a ∈ Rd : v�a ≤ s(A, v)}. (D.2)

Because s(t A, v) = ts(A, v) for t ≥ 0, the support function is often restricted to v ∈ Sd−1. Note that

s(A1 + A2, v) = s(A1, v) + s(A2, v).

The width function of A is defined by

w(A, v) = s(A, v) + s(A,−v) = w(A,−v), v ∈ Sd−1,

and it is easy to see that the width function is nonnegative. If d = 1, then A is a closed interval in R, and the unit sphere 
Sd−1 = {−1, 1} consists of two points. In this case, the width function is the length of the interval.

A random convex compact set Y is a map from (�, F, P) to KC(Rd) satisfying equation (D.1). Its measurability is equivalent 
to the fact that s(Y , v) is a random variable for each v ∈Rd .

Appendix E. Additional simulation results

Table E.4
Coverage probability at 95% nominal level using cross-validation for a modified DGP1 with yL = 0.90 + 1.27x +
10.18x2 − εL , yU = 0.90 + 1.27x + 10.18x2 + εU , and εL , εU ∼i.i.d. Uni f orm[0, 1].

sample x0 Coverage of Coverage of Coverage of M(x0) Coverage of M(x0)

size M(x0) E(M̂(x0)) with h = 1/2hn,C V with h = 1/3hn,C V

200 -0.4 0.8630 0.8540 0.9165 0.9690
0 0.8965 0.8865 0.8790 0.9520
0.2 0.9465 0.9405 0.9825 0.9980
0.4 0.9330 0.9215 0.9200 0.9745

500 -0.4 0.8705 0.8595 0.9290 0.9755
0 0.9460 0.9410 0.9760 0.9935
0.2 0.9315 0.9280 0.9655 0.9910
0.4 0.9415 0.9320 0.9260 0.9800

1000 -0.4 0.9070 0.9040 0.9525 0.9855
0 0.8990 0.8985 0.9175 0.9695
0.2 0.9205 0.9160 0.9425 0.9760
0.4 0.8965 0.8940 0.9090 0.9570

2000 -0.4 0.8970 0.8925 0.9440 0.9820
0 0.9305 0.9290 0.9585 0.9865
0.2 0.9230 0.9215 0.9425 0.9815
0.4 0.8925 0.8935 0.9040 0.9600
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Table E.5
Coverage probability at 95% nominal level using cross-validation for a modified DGP1 with yL = 0.90 + 1.27x − εL , 
yU = 0.90 + 1.27x + 10.18x2 + εU , εL ∼ Beta(2, 2) and εU ∼ Uni f orm(0, 1).

sample x0 Coverage of Coverage of Coverage of M(x0) Coverage of M(x0)

size M(x0) E(M̂(x0)) with h = 1/2hn,C V with h = 1/3hn,C V

200 -0.4 0.6510 0.8945 0.9515 0.9865
0 0.6610 0.9125 0.9050 0.9770
0.2 0.7495 0.9600 0.9920 0.9995
0.4 0.7210 0.9565 0.9680 0.9960

500 -0.4 0.6255 0.8945 0.9575 0.9875
0 0.7200 0.9445 0.9870 0.9995
0.2 0.7355 0.9605 0.9825 0.9985
0.4 0.7155 0.9575 0.9525 0.9880

1000 -0.4 0.6345 0.9175 0.9660 0.9955
0 0.6485 0.9330 0.9625 0.9895
0.2 0.6960 0.9580 0.9715 0.9945
0.4 0.7025 0.9535 0.9545 0.9870

2000 -0.4 0.6195 0.9255 0.9710 0.9935
0 0.6290 0.9360 0.9610 0.9905
0.2 0.6605 0.9500 0.9750 0.9935
0.4 0.6755 0.9600 0.9785 0.9955

Table E.6
Coverage probability at 95% nominal level using cross-validation for DGP2 with v = (1, 1)/

√
2.

sample x0 Coverage of Coverage of Coverage of M(x0) Coverage of M(x0)

size M(x0) E(M̂(x0)) with h = 1/2hn,C V with h = 1/3hn,C V

200 -0.4 0.8225 0.9475 0.9490 0.9870
0 0.8150 0.9370 0.9400 0.9820
0.2 0.7825 0.9170 0.9330 0.9835
0.4 0.7310 0.9020 0.9265 0.9815

500 -0.4 0.8445 0.9495 0.9635 0.9890
0 0.7655 0.9195 0.9525 0.9895
0.2 0.7385 0.9150 0.9410 0.9830
0.4 0.6820 0.8745 0.9475 0.9890

1000 -0.4 0.8230 0.9500 0.9595 0.9895
0 0.7945 0.9350 0.9455 0.9825
0.2 0.7270 0.9185 0.9580 0.9900
0.4 0.6830 0.8645 0.9290 0.9825

2000 -0.4 0.7965 0.9440 0.9480 0.9900
0 0.7925 0.9430 0.9390 0.9860
0.2 0.7485 0.9370 0.9390 0.9845
0.4 0.7370 0.9250 0.9515 0.9890

Table E.7
Coverage probability at 95% nominal level using cross-validation for DGP2 with v = (0, 1).

sample x0 Coverage of Coverage of Coverage of M(x0) Coverage of M(x0)

size M(x0) E(M̂(x0)) with h = 1/2hn,C V with h = 1/3hn,C V

200 -0.4 0.8395 0.9450 0.9485 0.9875
0 0.8085 0.9160 0.9230 0.9765
0.2 0.7815 0.9090 0.9445 0.9840
0.4 0.7405 0.8945 0.9310 0.9820

500 -0.4 0.8020 0.9395 0.9530 0.9875
0 0.7995 0.9330 0.9545 0.9905
0.2 0.7550 0.9210 0.9380 0.9805
0.4 0.7215 0.9025 0.9495 0.9875

1000 -0.4 0.8175 0.9485 0.9560 0.9905
0 0.7900 0.9405 0.9420 0.9870
0.2 0.7290 0.9345 0.9535 0.9865
0.4 0.7070 0.8830 0.9415 0.9895

2000 -0.4 0.7945 0.9440 0.9475 0.9895
0 0.7935 0.9430 0.9395 0.9860
0.2 0.7495 0.9375 0.9400 0.9845
0.4 0.7355 0.9245 0.9515 0.9890
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a b s t r a c t

We consider the partially identified regression model with set-identified responses,
where the estimator is the set of the least square estimators obtained for all possible
choices of points sampled from set-identified observations. We address the issue of
determining the optimal design for this case and show that, for objective functions
mimicking those for several classical optimal designs, their set-identified analogues
coincide with the optimal designs for point-identified real-valued responses.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Consider the basic regression model

yi = x⊤

i θ + εi , i = 1, . . . , n ,

where the design points x1, . . . , xn belong to Rr+1 called the design space, yi, i = 1, . . . , n, are observed real-valued
responses, θ is a vector of (r + 1) unknown numerical parameters, and ε1, . . . , εn are independent identically distributed
(i.i.d.) centred random variables with variance Var(εi) = σ 2. This setting includes the classical multivariate linear model,
and also other models, like the quadratic one that appears if

yi = θ0 + θ1xi1 + θ2x2i1.

The basic problem in the theory of optimal design for regression models aims to identify the locations of design points
x1, . . . , xn which ensure the best properties of the unbiased estimator θ̂ of θ . As the objective function to minimize, one
can choose, e.g., the sum of the variances of the components of θ̂ (the criterion function for the A-optimal design) or the
largest variance of a⊤θ̂ over all unit vectors a (which yields the E-optimal design). Further optimality criteria lead to a
multitude of other optimal designs, see Atkinson et al. (2007) and Silvey (1980).

In this paper we consider the situation when the possibly multivariate response y is set-identified, so instead of
observing y1, . . . , yn, the statistician is only given sets Y1, . . . , Yn that contain the true observations. It is assumed that
the specific points yi ∈ Yi are chosen by a completely unknown selection mechanism which is not a subject to statistical
modelling. In this partially identified setting, it is not possible to come up with a single-valued estimator for θ . We follow

∗ Corresponding author at: University of Bern, Institute of Mathematical Statistics and Actuarial Science, Sidlerstrasse 5, CH-3012 Bern, Switzerland.
E-mail addresses: qiyu.li@stat.unibe.ch (Q. Li), ilya.molchanov@stat.unibe.ch (I. Molchanov).
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the approach advocated by Beresteanu and Molinari (2008) who suggested considering all possible points (selections)
yi ∈ Yi, i = 1, . . . , n, fitting to them the linear regression model in order to obtain particular (least squares) estimator
θ̂ and, finally, use the set of all estimators θ̂ obtained in this way as the estimator for the set-identified regression, see
also Molchanov and Molinari (2018). The most important special case arises if the observations Y1, . . . , Yn are intervals
on the line; then one talks about interval regression, see also Blanco-Fernández et al. (2013), Diamond (1990) for an
alternative approach based on the interval arithmetics. The main reason of having interval-identified data is variability
and uncertainty. For example, the temperature on a certain day is typically reported by weather forecasts as an interval
between the lowest and the highest temperature. This interval represents the variability of the temperature. In social
surveys, salaries of respondents are usually reported as intervals. Another example in the field of oncology is the time
to recurrence of a tumour. The recurrence status of a patient is assessed by imaging techniques such as a CT scan at
every visit, which is not scheduled every day but rather every two or three months. Therefore, we only know that
recurrence occurs between two visits but not its exact time point. In this case, the data of time to recurrence are also
interval-identified. In case of several interval-identified responses, the obtained multiple response is set-identified by a
parallelepiped or its subset determined by the imposed constraints.

In this paper, we address the issue of optimal design in the partially identified least squares setting of Beresteanu and
Molinari (2008). The crucial issue is to properly handle the variance of the estimated parameters; unlike the expectation,
the variance of random sets is rather poorly understood, see Molchanov (2017).

In Section 2 we introduce the notation used throughout the paper and recall some definitions and results from random
set theory. This is followed by Section 3, where we recall the classical A-, G- and E-optimal designs with point-identified
data. In Section 4, we introduce the objective functions for the set-identified setting and prove that the corresponding
optimal designs coincide with the classical A-, G- and E-optimal design under some assumptions on the model structure.
As a corollary, we deduce that the A-, G-, and E-optimal multiresponse designs in the multiresponse point-identified
setting coincide with their classical analogues; this extends the result of Chang (1994) derived for D-optimal designs.

2. Random convex sets and their expectation

We use ∥ · ∥ to denote the Euclidean norm. Let Sd−1
= {v ∈ Rd

: ∥v∥ = 1} denote the unit sphere in Rd. If d = 1, then
the sphere consists of two points {−1, 1}. The family of non-empty compact convex sets (also called convex bodies) in
Rd is denoted by K(Rd). The support function of K ∈ K(Rd) is defined as

s(K , v) = max
y∈K

v⊤y, v ∈ Sd−1,

so that s(K , v) is the signed length of the projection of K onto the line with direction v. If K = [a, b], then s(K , 1) = b and
s(K , −1) = −a.

The support function identifies uniquely the corresponding convex compact set and satisfies

s(tK , v) = ts(K , v), t > 0,
s(−K , v) = s(K , −v),

s(K1 + K2, v) = s(K1, v) + s(K2, v),

where −K = {−x : x ∈ K } is the centrally symmetric set to K , and

K1 + K2 = {x + y : x ∈ K1, y ∈ K2}

is the Minkowski sum of two convex bodies K1 and K2.
Let (Ω, F, P) be a nonatomic probability space, where all random vectors and random sets are defined. The map

Y : Ω ↦→ K(Rd) is called a random convex body, if {ω ∈ Ω : Y (ω) ∩ A ̸= ∅} ∈ F for every compact set A in Rd. A
random vector y in Rd is called a selection of Y if y(ω) ∈ Y (ω) for almost all ω ∈ Ω . We denote this as y ∈ Y a.s.

We assume throughout that Y is integrably bounded, that is, ∥Y∥ = sup{∥y∥ : y ∈ Y } is an integrable random variable.
In this case, all selections of Y are integrable and the expectation EY is defined as the set of Ey for all selections y of Y .
Equivalently, EY is the convex body that satisfies

Es(Y , v) = s(EY , v), v ∈ Sd−1.

If Y = [yL, yU] is the interval then EY = [EyL, EyU].
Similarly, the conditional expectation of Y given a random vector (or matrix) x is defined as

E(Y |x) =
{
E(y|x) : y ∈ Y a.s.

}
,

and then E(s(Y , v)|x) = s(E(Y |x), v) a.s.
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3. Classical optimal designs in the multiresponse setting

Consider i.i.d. sample (xi, yi), i = 1, . . . , n, where yi = (yi1, . . . , yip)⊤ ∈ Rp designates response and xi =

(1, xi1, . . . xir )⊤ ∈ Rr+1 is the vector composed of explanatory variables. Let

X = (x⊤

1 , . . . , x⊤

n )
⊤

=

⎛⎜⎝1 x11 · · · x1r
...

...
...

...

1 xn1 · · · xnr

⎞⎟⎠
be the design matrix with n rows and r + 1 columns. Collect all the responses in the matrix

Y = (y⊤

1 , . . . , y⊤

n )
⊤

=

⎛⎜⎝y11 · · · y1p
...

...
...

yn1 · · · ynp

⎞⎟⎠ .

Consider the regression model

Y = X Θ + E ,

where

Θ =

⎛⎜⎜⎝
θ01 · · · θ0p
θ11 · · · θ1p
...

...
...

θr1 · · · θrp

⎞⎟⎟⎠
is the matrix of unknown parameters, and the matrix E = (ε⊤

1 , . . . , ε⊤
n )

⊤ consists of i.i.d. square integrable centred random
vectors εi = (εi1, . . . εip)⊤ such that Cov(εij, εik) = σjk for i = 1, . . . , n and j, k = 1, . . . , p and Cov(εij, εi′k) = 0 for i ̸= i′.

Assume that the model has full rank, meaning that

Σ = X ⊤X

is invertible. We stress that Σ depends on X . The least square estimator of Θ is

Θ̂ = Σ−1X ⊤Y .

Then EΘ̂ = Θ and

Cov(Θ̂(j), Θ̂(k)) = σjkΣ
−1, j, k = 1, . . . , p,

where Θ̂(k) denotes the kth column of Θ̂ .
The sum of variances of all elements in the matrix Θ̂ is

p∑
k=1

σkk Tr(Σ−1),

where Tr(·) denotes the trace of a matrix. The A-optimal design minimizes this sum of variances and so can be obtained
by minimizing Tr(Σ−1) over all designs. Depending on the framework, the designs mentioned here could be exact n-trial
designs or approximate ones. Note that the objective function for the A-optimality does not depend on the dimension of
the response variable. The objective function can be equivalently written as

r+1∑
j=1

1
λj

,

where λ1, . . . , λr+1 are the eigenvalues of Σ .
The E-optimal design is chosen to minimize the variance of the least well estimated contrast a⊤(Θ̂(1), . . . , Θ̂(p))⊤ under

the constraint ∥a∥ = a⊤a = 1. This objective function could be expressed as the maximum element on the diagonal of
Σ−1, which is also known as the MV-optimal designed introduced by Jacroux (1983). The E-optimality criterion can be
equivalently expressed as minimization of max(λ−1

1 , . . . , λ−1
r+1).

The variance of the response at certain x ∈ {1} × Rr could be expressed as

Var(ŷ(x)) =

⎛⎜⎝σ11 · · · σ1p
...

...
...

σp1 · · · σpp

⎞⎟⎠ x⊤Σ−1x.

The design which minimizes the maximum of the variance of the predicted response over an arbitrary design region
I ⊂ {1} × Rr is called G-optimal. The corresponding objective function is maxx∈I x⊤Σ−1x.
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4. Optimal designs for set-identified response

Assume that the response is set-identified, and the statistician observes compact convex sets Y1, . . . , Yn in Rp,
where possible responses y1, . . . , yn take their values. The explanatory variables are assumed to be point-identified.
Following Beresteanu and Molinari (2008) and given the i.i.d. data (xi, Yi)ni=1, the least square estimators of the regression
coefficients Θ form the family of matrices

Θ̂ = (X ⊤X )−1X ⊤

⎧⎪⎨⎪⎩
⎛⎜⎝y⊤

1
...

y⊤
n

⎞⎟⎠ : yi ∈ Yi

⎫⎪⎬⎪⎭ = Σ−1
n∑

i=1

diag(xi)G i, (1)

where throughout this paper diag(·) of a vector denotes the diagonal matrix built from this vector, and G i is the set of
(r + 1) × p matrices with

G i =

⎧⎪⎨⎪⎩
⎛⎜⎝y⊤

i
...

y⊤

i

⎞⎟⎠ : yi ∈ Yi

⎫⎪⎬⎪⎭ , i = 1, . . . , n.

Denote by EX the expectation assuming that the design matrix is X . Note that Θ̂ is a set of matrices, each of them is
a least square estimator for a certain sample of responses y1, . . . , yn arbitrarily selected from Y1, . . . , Yn. In order to define
its variance, we consider products of all matrices with a given u ∈ Sp−1; and then the support function of the obtained
random convex set in Rr+1 in direction v from the unit sphere Sr in Rr+1. In other words, we work with the variance

VarX s(Θ̂u, v) = EX (s(Θ̂u, v) − s(EX (Θ̂u), v))2

of the support function of Θ̂u and aim to minimize it as function of the design. Note that Θ̂u is a random convex set in
Rr+1, and its expectation is defined in Section 2.

Following the classical definitions of A-, G- and E-optimal designs, we define the objective function for these designs
in the set-identified framework as

f A(X ) =

∫
Sp−1

∫
Sr

VarX s(Θ̂u, v) dvdu, (2)

f G(X ) = max
x∈I

∫
Sp−1

VarX s(Θ̂⊤x, u) du = max
x∈I

∫
Sp−1

VarX s(Θ̂u, x) du, (3)

f E(X ) = max
u∈Sp−1

max
v∈Sr

VarX s(Θ̂u, v). (4)

Here the integrals over spheres are understood with respect to a finite rotation invariant measure (the Haar measure)
and I is a compact subset of {1} × Rr .

Example 4.1 (Univariate Set-Identified Response). If p = 1 and Y = [yL, yU] (like in the examples mentioned in the
introduction), then Θ̂ is a family of (r + 1) × 1 matrices, equivalently, vectors in Rr+1. In this case, u = ±1 and the
integrals (or maximum) with respect to u in the objective functions reduce to the sum (or maximum) over u = ±1 of the
variances of the support function of the predicted response at v ∈ Sr .

We denote M(x) = E(Y |x = x) and m(x) = E(y|x = x), and also Mi = M(xi) and mi = m(xi).

Theorem 4.2. Assume that

s(Y , u) − s(M(x), u) = ε(u), u ∈ Sp−1, (5)

where ε is a random function on the unit sphere that does not depend on x and satisfies Eε(u) = 0 and Var(ε(u)) = σ 2
u < ∞

for all u ∈ Sp−1. Then the designs minimizing the objective functions defined in (2) and (3) correspond to the classical A- and
G-optimal designs.

Remark 4.3. Condition (5) is a modelling assumption. In case of random intervals Y = [yL, yU], it means that{
yL = E(yL|x) − ε(−1),
yU = E(yU|x) + ε(1),

for a centred random vector (ε(−1), ε(1)) such that

ε(1) + ε(−1) ≥ E(yL|x) − E(yU|x) a.s.

The latter condition replicates the requirement that P(yU > yL) = 1.
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Proof of Theorem 4.2. First, consider the A-optimal design. Using (1) and the additivity of support function as function
of convex bodies,

s(Θ̂u, v) − s(EX (Θ̂u), v)

=

n∑
i=1

{
s
(
Σ−1 diag(xi)G iu, v

)
− s

(
Σ−1 diag(xi)EX (G iu), v

)}
=

n∑
i=1

{
s
(
G iu, diag(xi)Σ−1v

)
− s

(
EX (G iu), diag(xi)Σ−1v

)}
.

Denote ṽi = diag(xi)Σ−1v and

δi(u, v) = s (G iu, ṽi) − s (EX (G iu), ṽi) .

Then

f A(X ) =

∫
Sp−1

∫
Sr

EX

( n∑
i=1

δi(u, v)
)2

dvdu

=

n∑
i=1

∫
Sp−1

∫
Sr

EX δ2i (u, v)dvdu +

∑
i̸=i′

∫
Sp−1

∫
Sr

EX (δi(u, v)δi′ (u, v))dvdu.

By expressing G iu and EX (G iu) as

G iu =

⎧⎪⎨⎪⎩
⎛⎜⎝y⊤

i u
...

y⊤

i u

⎞⎟⎠ : yi ∈ Yi

⎫⎪⎬⎪⎭ ,

EX (G iu) =

⎧⎪⎨⎪⎩
⎛⎜⎝m⊤

i u
...

m⊤

i u

⎞⎟⎠ : mi ∈ Mi

⎫⎪⎬⎪⎭ ,

we have

δi(u, v) = max
yi∈Yi

⎛⎜⎝y⊤

i u
...

y⊤

i u

⎞⎟⎠
⊤

ṽi − max
mi∈Mi

⎛⎜⎝m⊤

i u
...

m⊤

i u

⎞⎟⎠
⊤

ṽi = max
yi∈Yi

y⊤

i uṽ
⊤

i e − max
mi∈Mi

m⊤

i uṽ
⊤

i e,

where e is the (r + 1)-dimensional vector with all entries equal to one. Then

EX δ2i (u, v) = EX

[
1

{ṽ⊤
i e≥0}ṽ

⊤

i e
(
max{y⊤

i u : yi ∈ Yi} − max{m⊤

i u : mi ∈ Mi}

)
+ 1

{ṽ⊤
i e<0}ṽ

⊤

i e
(
min{y⊤

i u : yi ∈ Yi} − min{m⊤

i u : mi ∈ Mi}

)]2
= (ṽ⊤

i e)2EX

[
1

{ṽ⊤
i e≥0}

(
s(Yi, u) − s(Mi, u)

)
+ 1

{ṽ⊤
i e<0}

(
−s(Yi, −u) + s(Mi, −u)

)]2
= (ṽ⊤

i e)2EX

[
1

{ṽ⊤
i e≥0}εi(u) − 1

{ṽ⊤
i e<0}εi(−u)

]2
= (ṽ⊤

i e)2EX

[
1

{ṽ⊤
i e≥0}εi(u)

2
+ 1

{ṽ⊤
i e<0}εi(−u)2

]
= (ṽ⊤

i e)2
[
1

{ṽ⊤
i e≥0}σ

2
u + 1

{ṽ⊤
i e<0}σ

2
−u

]
. (6)

Since

EX δ2i (u, v) + EX δ2i (−u, v) = (ṽ⊤

i e)2
[
1

{ṽ⊤
i e≥0}σ

2
u + 1

{ṽ⊤
i e<0}σ

2
−u + 1

{ṽ⊤
i e≥0}σ

2
−u + 1

{ṽ⊤
i e<0}σ

2
u

]
= (ṽ⊤

i e)2(σ 2
u + σ 2

−u),
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we have∫
Sp−1

∫
Sr

EX δ2i (u, v) dvdu =
1
2

∫
Sp−1

∫
Sr

(
EX δ2i (u, v) + EX δ2i (−u, v)

)
dvdu (7)

=
1
2

∫
Sr

(
(Σ−1 diag(xi)e)⊤v

)2
dv
∫

Sp−1
(σ 2

u + σ 2
−u)du

=
1
2
∥Σ−1xi∥2

∫
Sr

(
w⊤v

)2
dv
∫

Sp−1
(σ 2

u + σ 2
−u)du,

where w = Σ−1xi/∥Σ−1xi∥ is a unit vector in Rr+1. Note that∫
Sr
(w⊤v)2 dv = E

(
Z2
j∑r+1

j=1 Z2
j

)
, (8)

where i ∈ {1, . . . , r + 1} and (Z1, . . . , Zr+1)⊤ is multivariate standard normal.
Taking the sum on the right-hand side of (8) over j = 1, . . . , r + 1 and noticing that this sum is one, we obtain∫

Sr

(
w⊤v

)2
dv =

1
r + 1

,

whence∫
Sp−1

∫
Sr

EX δ2i (u, v) dvdu =
1

2(r + 1)
∥Σ−1xi∥2

∫
Sp−1

(σ 2
u + σ 2

−u)du.

Since εi are centred i.i.d., we have

EX (δi(u, v)δj(u, v)) = 0, i ̸= j. (9)

Thus,

f A(X ) =
1

2(r + 1)

n∑
i=1

∥Σ−1xi∥2
∫

Sp−1
(σ 2

u + σ 2
−u)du, (10)

so that the A-optimal design minimizes
∑n

i=1 ∥Σ−1xi∥2. This sum can be expressed as
n∑

i=1

∥Σ−1xi∥2
=

n∑
i=1

x⊤

i Σ−2xi =

n∑
i=1

Tr
(
x⊤

i Σ−2xi
)

=

n∑
i=1

Tr
(
Σ−2xix⊤

i

)
= Tr

(
n∑

i=1

Σ−2xix⊤

i

)

= Tr

(
Σ−2

n∑
i=1

xix⊤

i

)
= Tr

(
Σ−1)

=

r+1∑
j=1

1
λj

,

where λj is the jth eigenvalue of Σ .
The design minimizing this expression is exactly the A-optimal one for the case of real-valued responses.
In order to prove the statement concerning the G-optimal design, note that

s(Θ̂⊤x, u) =

n∑
i=1

s(G i
⊤Σ−1 diag(xi)x, u) =

n∑
i=1

s(G iu, diag(xi)Σ−1x),

where G i
⊤ is the family of all transposed matrices from G i. Denote ξi(x) = diag(xi)Σ−1x and

∆i(u, x) = s(G iu, ξi(x)) − s(EX (G iu), ξi(x)).

Then

VarX s(Θ̂⊤x, u) du = EX

(
n∑

i=1

∆i(u, x)

)2

=

n∑
i=1

EX (∆2
i (u, x)) +

∑
i̸=j

EX (∆i(u, x)∆j(u, x))

=

n∑
i=1

EX (∆2
i (u, x))
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by the same argument as in (9). Following the derivation of (6), we get

∆i(u, x) = max
yi∈Yi

y⊤

i uξi(x)
⊤e − max

mi∈Mi
m⊤

i uξi(x)
⊤e

and

EX ∆2
i (u, x) = (ξi(x)⊤e)2[1{ξi(x)⊤e≥0}σ

2
u + 1{ξi(x)⊤e<0}σ

2
−u].

The idea used to obtain (7) is also applicable here, namely,∫
Sp−1

EX (∆2
i (u, x)) du =

1
2

∫
Sp−1

(
EX ∆2

i (u, x) + EX ∆2
i (−u, x)

)
du

=
1
2
(ξi(x)⊤e)2

∫
Sp−1

(σ 2
u + σ 2

−u) du.

Therefore,

f G(X ) = max
x∈I

n∑
i=1

(ξi(x)⊤e)2
1
2

∫
Sp−1

(σ 2
u + σ 2

−u) du. (11)

Furthermore,
n∑

i=1

(ξi(x)⊤e)2 =

n∑
i=1

(x⊤Σ−1 diag(xi)e)2 =

n∑
i=1

(x⊤Σ−1xi)2

=

n∑
i=1

(x⊤

i Σ−1x)2 =

n∑
i=1

[
(x⊤

i Σ−1x)⊤x⊤

i Σ−1x
]

=

n∑
i=1

[
x⊤Σ−1xix⊤

i Σ−1x
]

= x⊤Σ−1

(
n∑

i=1

xix⊤

i

)
Σ−1x

= x⊤Σ−1x. (12)

Combine (11) and (12) to see that the design minimizing f G(X ) minimizes maxx∈I x⊤Σ−1x, which corresponds to the
objective function of the classical G-optimal design. □

Remark 4.4. The Equivalence Theorem by Kiefer and Wolfowitz (1960) establishes that the approximate design which
is G-optimal is also D-optimal in the case of point-identified univariate response. By letting I be a singleton in (11), it is
immediately seen that the classical D-optimal design minimizes VarX s(Θ̂⊤x, u) for each given x.

Now consider the case of E-optimal designs.

Theorem 4.5. Assume that (5) holds with ε being a random function that does not depend on x and satisfying Eε(u) = 0
and Var(ε(u)) = Var(ε(−u)) = σ 2

u < ∞ for all u ∈ Sp−1. Then the design minimizing the objective function (4) coincides with
the classical E-optimal design.

Proof. Similarly to the case of the A-optimal design, Eq. (6) can be written as

EX δ2i (u, v) = (ṽ⊤

i e)2σ 2
u (13)

due to the assumption that Var(ε(u)) = Var(ε(−u)) = σ 2
u . The expression of variance can be simplified by using (13) and

(9), so that

f E(X ) = max
u∈Sp−1

max
v∈Sr

n∑
i=1

EX δ2i (u, v) = max
u∈Sp−1

σ (u)2 max
v∈Sr

n∑
i=1

(ṽ⊤

i e)2. (14)

Thus, using the same approach of developing (12), the E-optimal design in the set-identified setting minimizes the
maximum over v ∈ Sr of

n∑
i=1

(ṽ⊤

i e)2 = v⊤Σ−1v.

Finally, observe that this maximum is the maximal eigenvalue of Σ−1, that is,

max
v∈Sr

v⊤Σ−1v = max
j∈(1,...,r+1)

1
λj

. □
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Remark 4.6. If Y = {y} is a singleton in Rp, we are in the situation of the multiresponse design, and (5) holds with
s(Y , u) = y⊤u and ε(−u) = −ε(u). Then Θ̂ = {Θ̂} is a singleton, and

VarX s(Θ̂u, v) = EX [((Θ̂ − EX Θ̂)u)⊤v]
2.

For a matrix A,∫
Sr
((Au)⊤v)2 dv = cr∥Au∥2

with a constant cr depending only on dimension r and maxv∈Sr ((Au)⊤, v)2 = ∥Au∥2. Therefore, the objective functions of
these designs in the multiresponse setting are given by

f A(X ) = cr

∫
Sp−1

EX ∥(Θ̂ − EX Θ̂)u∥2du,

f G(X ) = cp−1 max
x∈I

EX ∥(Θ̂ − EX Θ̂)⊤x∥2,

f E(X ) = max
u∈Sp−1

EX ∥(Θ̂ − EX Θ̂)u∥2.

By Theorem 4.2, the multiresponse A- and G-optimal designs coincide with their univariate response analogues, the same
is the case for E-optimal designs, since the condition of Theorem 4.5 is automatically satisfied.

In the case of univariate responses, Θ̂ becomes a vector θ̂ , u = ±1, and so the objective functions f A and f G become
E∥θ̂ − Eθ̂∥

2 and f G is the maximum of E((θ̂ − Eθ̂ )⊤x)2 (up to dimension-dependent constants).

5. Discussion

The choice of objective functions in our setting is explained by the lack of a standard definition of the variance for
random sets, see Molchanov (2017). In the set-identified multiple response setting, the estimated parameter is a (convex)
family Θ̂ of matrices, which is a convex set in dimension (r + 1) × p. Then s(Θ̂u, v) can be interpreted as the support
function of Θ̂ in direction u ⊗ v understood in the tensor space Rp

× Rr+1. Then f A(X ) corresponds to the expectation
of the squared L2 distance between the support functions of Θ̂ and its expectation, see Vitale (1985) for a study of this
distance between convex sets. Hence, the A-optimal design aims to minimize the expected square distance between Θ̂

and its expectation. The E-optimal design minimizes the L∞ distance between the variance of the support function and
zero, which is the support function of the origin. In case of the objective function (3) for the G-optimal design, the metric
is mixed — the L2 distance for one component of the tensor product Rp

× Rr+1 and the L∞ distance for the other one.
In the classic linear univariate response setting with normal errors, the D-optimal design minimizes the confidence

ellipsoid of parameter θ ∈ Rr+1

{θ : (θ − θ̂ )⊤Σ−1(θ − θ̂ ) ≤ c}

for a constant c , where θ̂ is the least square estimator of θ . The volume of this ellipsoid is proportional to det(Σ)−1/2, so
that the objective function for D-optimal design becomes det(Σ)−1.

In the multiresponse setting of dimension p, it is possible to vectorize the parameter matrix by modifying the linear
equation as(Y1

Yp

)
=

⎛⎜⎝X

. . .

X

⎞⎟⎠
⎛⎜⎝θ1

...

θp

⎞⎟⎠+

⎛⎜⎝ε1
...

εp

⎞⎟⎠ . (15)

The vector on the left-hand side arises by stacking together n observations for each component Yj, j = 1, . . . , p, of the
response. Furthermore, diag(X , . . . , X ) is an np × (r + 1)p block-diagonal matrix built of the n × (r + 1) dimensional
design matrix X ; θj ∈ Rr+1, j = 1, . . . , p, are the estimated parameters, and εj, j = 1, . . . , p, are n-dimensional random
vectors. Using the vector representation (15), Chang (1994) proved that under the framework of approximate designs
the D-optimal design in the multiresponse model is exactly the D-optimal design arising in the case of a univariate
response. Kurotschka and Schwabe (1996) extended this reduction result for both exact and approximate designs for
D-, A-, E-optimality criteria and for more general Φ-optimality defined by Kiefer (1974).

However, it is not possible to come up with an analogue of (15) for multivariate set-identified responses. In this case,
one estimates the support function of Θ = EΘ̂, which is an infinite-dimensional parameter. Still, if one aims to reduce
the integrated variance of s(Θ̂u, x) for each x, then the optimal design is the classical D-optimal one, see Remark 4.4.

It is worth to mention that our results in this paper are also applicable for multivariate polynomial regression models
with set-identified response. In the classical setting of point-identified responses, Krafft and Schaefer (1992) determined
the approximate D-optimal design for the polynomial regression model and obtained a partial result for exact n-point
D-optimal designs complemented later by Imhof Imhof (2000) with a conjecture on G-optimum.

Our setting is restricted to the case of responses identified to belong to convex sets. In the non-convex setting, even
the estimation of parameters is poorly understood not to mention the optimal design issues. In this case, the least square
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estimator (1) involves taking the sum of possibly non-convex sets. However, due to the convexification effect of Minkowski
sums (see Molchanov (2017, Sec. 3.1.1)), the estimator Θ̂ asymptotically becomes a convex set, and so such an estimator
neglects the non-convexity of observations. Besides, we did not consider the case where the design matrix for each
component of the response may be different. This was thoroughly studied by Soumaya et al. (2015) for the approximate
D-optimal design with point-identified response.

Finally, note that our results are applicable only in the framework of Beresteanu and Molinari (2008); the optimal
design issues in the interval regression setting of Blanco-Fernández et al. (2013) based on interval arithmetics do not fall
into our scope of investigation.
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Depth and outliers for samples of
sets and random sets distributions
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Summary

We suggest several constructions suitable to define the depth of set-valued observations
with respect to a sample of convex sets or with respect to the distribution of a random
closed convex set. With the concept of a depth, it is possible to determine if a given convex
set should be regarded an outlier with respect to a sample of convex closed sets. Some
of our constructions are motivated by the known concepts of half-space depth and band
depth for function-valued data. A novel construction derives the depth from a family of
non-linear expectations of random sets. Furthermore, we address the role of positions of
sets for evaluation of their depth. Two case studies concern interval regression for Greek
wine data and detection of outliers in a sample of particles.

Key words: depth; half-space depth; outliers; random set; set-valued data; sublinear expectation.

1. Introduction

Statistical data in the form of sets or images are relevant in many fields of research. In
a large number of applications in biology, microscopy and image analysis, the observed sets
are non-convex, see Chiu et al. (2013). In some cases, for instance in statistics of particles (see
Stoyan & Stoyan 1994) and in partially identified models in econometrics (see Molchanov
& Molinari 2018), the data consist of convex sets, which is the setting of this paper. In the
simplest one-dimensional case, observations are given by intervals, for example, data on daily
price ranges in finance, imprecise measurements, salary brackets in econometrics, to name
a few sources, see Beresteanu & Molinari (2008), Blanco-Fernández, Colubi & González-
Rodrı́guez (2012), Blanco-Fernández, Corral & González-Rodrı́guez (2011), Manski & Tamer
(2002) and Yang et al. (2016) and references therein. A substantial body of these works
focuses on regression with interval responses and sometimes also interval regressors.

This paper aims to explore possible ways to identify outliers in samples of general
convex sets. This obviously includes the case of random points, typical in multivariate
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2 DEPTH FOR SAMPLES OF SETS

statistics. For multivariate samples (of points), the outliers are conventionally identified
using depth functions and associated depth-trimmed regions, so that sample points lying
outside these regions are regarded outliers, see Liu, Parelius & Singh (1999) or Mosler
(2002). Decreasing transformations of depth functions serve as outlyingness functions, see
Dang & Serfling (2010).

There are several general approaches to construct multivariate depth-trimmed regions.
The historically first and most popular one is the Tukey depth (also called the half-space
depth): the depth of a point x with respect to a probability distribution in Euclidean space is
the smallest probability content among all half-spaces having x on the boundary, see Tukey
(1975) and Rousseeuw & Ruts (1999). Various interpretations of this depth can be found
in the recent survey by Nagy, Schütt & Werner (2019). Hamel & Kostner (2018) discussed
the quantile-based multivariate depth in relation to a partial order on the space. Further
depth notions (simplicial depth, convex hull depth, etc.) are based on assessing the location
of a point with respect to an i.i.d. sample from a given distribution, see Liu (1990) and
Cascos (2010). General properties of statistical depth functions have been analysed in Zuo
& Serfling (2000), where further references can be found.

Extensions of the concept of depth to the functional data setting go back to the
work of Fraiman & Muniz (2001). However, the construction of depth often causes dif-
ficulties when the data consist of functions. The main problem lies in the fact that a
sample of functions is a too meagre set in a functional space and so most functions
have depth zero in relation to the sampled ones. Difficulties with the half-space depth
of functional data are discussed in Dutta, Ghosh & Chaudhuri (2011) and Kuelbs &
Zinn (2013). This degeneracy of the half-space depth can be overcome by considering
band depth, see López-Pintado & Romo (2009). The key idea is to replace taking the
convex hull of functions with their envelopes determined by pointwise minima and
maxima of functions. An alternative way to deal with the degeneracy problem is by
considering the infimum of the half-space depth over the domain of the function, ob-
taining the so-called infimal depth, see Mosler (2013) and Gijbels & Nagy (2015).
Various concepts of the depth in the functional setting are discussed by Gijbels & Nagy
(2017).

Further generalisations of the concept of depth to other data types have been elaborated
by Pandolfo, Paindaveine & Porzio (2018) for directional data (and so belonging to a
non-linear space), by Chen, Gao & Ren (2018) and Paindaveine & Van Bever (2018) for
matrix-valued data, and by Lafaye De Micheaux, Mozharovskyi & Vimond (2020) for curves.
Already in the context of set-valued data discussed in this manuscript, Whitaker, Mirzargar
& Kirby (2013) extended the band constructions of López-Pintado & Romo (2009) by
considering intersections and unions of sets. The current paper continues this programme
of exploring non-traditional data types and presents several constructions suitable to define
depth of a convex set with respect to a sample of sets or with respect to the distribution
of a random convex closed set. In this way, it is possible to identify outliers as sets of
low depth. Some of our constructions are applicable for closed convex sets, which are
not necessarily bounded. Unlike points and functions, sets are visually perceived objects –
it is very difficult to compete with human perception in identifying outliers. Still, the suggested
tools might outperform the human eye for sets in higher-dimensional spaces. Deriving
deep properties of the introduced depth functions is a challenging task, left for future
work.

© 2021 Australian Statistical Publishing Association Inc.
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Section 2 recalls main concepts of a random convex closed set and its expectation.
General properties of depth functions for sets are discussed in Section 3. Such depth functions
are functionals D(F ,X) of a convex closed set F and the distribution of random convex
closed set X. In statistical applications, the theoretical distribution of X is replaced by its
empirical version.

Section 4 presents a concept of the depth based on set-valued non-linear expectations.
In the general classification scheme suggested by Zuo & Serfling (2000), this definition
corresponds to Type C depth functions. In this framework, one associates with the distri-
bution of X and an �∈ (0, 1] a family F�(X) of convex closed sets in Rd , which becomes
richer as � decreases. The depth of F is the largest � such that F ∈F�(X), so that F�(X)
becomes the depth-trimmed region at level �. As we see in Section 4, the families F�(X)
can be conveniently chosen to be all convex closed sets sandwiched between U�(X) and
E�(X), which are convex sets determined by X such that U�(X) becomes larger (as a set)
and E�(X) becomes smaller as � increases between 0 and 1. These two functions U�(X)
and E�(X) are termed set-valued non-linear expectations. In the special case of singleton
sets and a particular choice of the non-linear expectations, this definition corresponds to the
expected convex hull depth suggested by Cascos (2007) and the zonoid depth introduced
by Koshevoy & Mosler (1997), see also Mosler (2002).

Sets can be represented as functions: the most obvious representation uses their indicator
functions, while in the convex case one typically represents sets as support functions. Section
5 describes the half-space depth concept applied to support functions. Such a depth function
is of Type D of Zuo & Serfling (2000); the depth of a set F is the infimum of probabilities
that X belongs to certain families of sets related to F . It is related to the infimal depth studied
by Gijbels & Nagy (2015).

Type A depth functions D(F ,X) are constructed as expectations of functionals
�(F ;X1,…,Xj) of F and a fixed number j of i.i.d. copies of X. The functional � mea-
sures the closeness of F to the sample of sets. An important example of this construction
is motivated by the band depth for functions, see Section 6.

Type B depth functions are defined as (1 + E�(F ;X1,…,Xj))−1, where � describes a
kind of distance of F to the sample of sets X1,…,Xj. A variant of this construction for
random convex sets is presented in Section 7. Further concepts of depth of sets can be
elaborated by considering the space of closed convex sets a metric space and following the
general approach by Mizera (2002).

Sets can be described in terms of their locations, shapes and sizes. While locations of sets
are usually essential in econometric applications, they are irrelevant in statistics of particles.
Section 8 considers a possibility of factoring out the location effect. It is considerably more
complicated to eliminate effects of arbitrary rotations and/or scaling; this non-trivial (even
for samples of point tuples, see Kendall et al. 1999) question is left outside the scope of
the current work.

Section 9 defines depth of random integrable probability measures by associating them
with special convex sets called lift zonoids. This is important in view of several recent works
concerning statistics in the Wasserstein space, which is the space of integrable probability
measures, see, for example, Bigot, Cazelles & Papadakis (2019), Cazelles et al. (2018) and
Zemel & Panaretos (2019). In view of this, it is often desirable to consider samples of empirical
probability measures (e.g. collections of empirical cumulative distribution functions) and
identify outliers in such samples.

© 2021 Australian Statistical Publishing Association Inc.
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Section 10 presents two case studies. The first one concerns a Greek wine data (see
Kallithrakaa et al. 2001) with the aim to fit regression lines to interval-valued responses. The
second one identifies outliers in a sample of particles analysed by Stoyan & Molchanov (1997).

2. Random convex sets and their mean values

A random closed set X in Euclidean space is a measurable map from a probability space
(�,F, Pr) to the family F of closed sets in Rd . The measurability condition requires that
{� : X(�)∩K �=∅}∈F for all compact sets K in Rd . The empty set is closed and compact.
The random closed set X is said to be convex if it almost surely takes values from the family
coF of convex closed sets; X is compact convex if X almost surely belongs to the family
coK of convex compact sets. Non-empty compact convex sets are also called convex bodies.
A set F ∈coF is said to belong to the support of X if X with a positive probability belongs
to any open neighbourhood of F in the Fell topology. Recall that a sequence {Fn, n� 1}
converges to F ∈F in the Fell topology if Fn ∩ G �=∅ for all sufficiently large n and any
open set G that hits F , and Fn ∩K =∅ for all sufficiently large n and any compact set K
that misses F , see Molchanov (2017, Appendix C).

A random vector � in Rd is said to be a selection of X if �∈X almost surely, that
is, �(�) belongs to X(�) for almost all �. The family of all selections of X is denoted by
L0(X).

For p∈ [1, ∞], a random closed set X is said to be p-integrable (simply, integrable if
p=1) if the family Lp(X) of its p-integrable (essentially bounded if p=∞) selections is not
empty. Note that Lp(X) is the intersection of L0(X) with the family Lp(Rd ) of p-integrable
random vectors. If X is integrable, its selection expectation is defined by

E(X)= cl
{

E(�) : �∈L1(X)
}
.

The closure on the right-hand side is not needed if X is a subset of a centred ball with
integrable radius. If the underlying probability space is non-atomic, the expectation of X
and the expectation of its closed convex hull convX are the same, see Molchanov (2017,
Sec. 2.1).

Convex closed sets are uniquely identified by their support functions

h(F , u)= sup{〈u, x〉 : x ∈F}, u ∈Rd ,

where 〈u, x〉 is the scalar product in Rd . The support function may take the value ∞; it takes
the value −∞ only if F is empty. For a random convex closed set X, the support function
h(X, u) is a random function of u ∈Rd , and

E(h(X, u))=h(E(X), u), u ∈Rd ,

if X is integrable.
Distances between convex bodies can be defined using Lp-distances between their sup-

port functions restricted for u belonging to the unit sphere Sd−1. Most importantly, the
L∞-distance between support functions

�H (K , L)=‖h(K , ·)−h(L, ·)‖∞ = sup
u∈Sd−1

|h(K , u)−h(L, u)|

is called the Hausdorff distance between K and L from coK. Furthermore,

© 2021 Australian Statistical Publishing Association Inc.
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‖K‖=�H (K , {0})= sup
u∈Sd−1

|h(K , u)|

is called the norm of K . If K ={x} is a singleton, then ‖K‖=‖x‖ is the Euclidean norm of x.
The Lp-distance between the support functions yields the metric on coK given by

�p(K , L)=
(∫

u∈Sd−1
|h(K , u)−h(L, u)|pdu

)1=p

, 1�p <∞.

Other distances between sets arise by taking Lp-distances between their (truncated) distance
functions, see Baddeley (1992). Recall that the distance function of a set A is defined by
d (x, A)= inf{‖x − y‖ : y ∈A}.

Closed sets in Rd can be added elementwisely (in the Minkowski sense), so that

F1 +F2 = cl{x + y : x ∈F1, y ∈F2}.
The closure on the right-hand side is not needed if at least one of the summands is bounded
(and so is compact). In particular, F +a ={x +a : x ∈F}, for a ∈Rd .

3. General depth functions and depth-trimmed regions for set-valued observations

Classical depth functions for random vectors associate to each point x in Rd its depth
D(x, �) in relation to the distribution of a random vector �, see Zuo & Serfling (2000).
The depth function is assumed to take values between 0 and 1, and can be equivalently
represented in terms of its upper level sets

D�(�)={x ∈Rd : D(x, �)��},
called the depth-trimmed regions. A point x with D(x, �) < � and so lying outside D�(�)
is considered an outlier at level �; then � is chosen to be rather small. For larger �s, the
depth-trimmed region can be used to describe the centre of the probability distribution. It
should be noted that some definitions of depth functions impose integrability assumptions on
�. In the empirical variant of the depth, the probability distribution of � is usually replaced
by the empirical probability measure.

If X is a random closed set, its depth function D(F ,X) is a function of a closed set F . For
random vectors �, all points outside the convex hull of the support of � are usually assigned
zero depth. For random sets, we let D(F ,X)=0 if F does not belong to the convex hull of
the support of X, that is, for F that cannot be represented as a limit (in the Fell topology) of
the sums p1F1 +· · ·+pnFn for n�1, with closed sets F1,…, Fn from the support of X and
non-negative weights p1,…, pn that sum up to one. In particular, if X is a random convex
closed set, then all non-convex sets F are of zero depth.

Translating some general properties of depth-trimmed regions of random vectors pos-
tulated in Zuo & Serfling (2000) into the set-valued framework, one comes up with the
following list.

(D1) Affine invariance:
D(AF +b, AX+b)=D(F ,X)

for all non-singular d ×d matrices A and b∈Rd .
(D2) Upper semicontinuity:
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D(F ,X)� lim sup
n→∞

D(Fn,X),

if Fn →F as n→∞ in the Fell topology on coF.
(D3) If X is deterministic, that is, X=L a.s. for L∈ coF, then D(F , L)=1(F =L).

For a random convex closed set X, the depth-trimmed region

D�(X)={F ∈ coF : D(F ,X)��} (1)

is a family of convex closed sets. The following result is a straightforward reformulation of
the properties (D1) and (D2).

Proposition 3.1. The properties of the depth imply the following properties of the depth-
trimmed regions

(i) Affine equivariance: D�(AX+ b) = {AF + b : F ∈ D�(X)} for all non-singular d × d
matrices A and b∈Rd .

(ii) Closedness: the family D�(X) is closed in the Fell topology on coF.

4. Depth based on non-linear expectations

4.1. Non-linear expectations of random convex closed sets

The systematic study of sublinear expectations in probability theory was initiated by
Peng (2004), see also the recent monograph Peng (2019). For random variables, sublinear
expectations are deeply related to constructions of depth-trimmed regions, see Example 4.10
and Cascos & Molchanov (2007).

A set-valued generalisation of non-linear expectations elaborated in Molchanov &
Mühlemann (2021) relies on working with two functions, one E being subadditive and
the other U being superadditive for the conventional set inclusion. These functions are called
sublinear and superlinear expectations; they are defined on p-integrable random closed sets,
and in the following we fix p ∈ [1, ∞]. In the set-valued setting, it is not possible to pass
from a sublinear expectation to a superlinear one by changing the sign (corresponding to
the central symmetry transform for sets) – separate treatments of them are necessary.

Definition 4.1. A sublinear set-valued expectation is a function E defined on p-integrable
random convex closed sets in Rd with values in the family coF and such that

(i) for each deterministic a ∈Rd ,

E(X+a)=E(X)+a;

(ii) E(F)⊇F for all deterministic F ∈ coF;
(iii) E(X)⊆E(Y) if X(�)⊆Y(�) for almost all �;
(iv) E(cX)= cE(X) for all c > 0;
(v) E is subadditive, that is,

E(X+Y)⊆E(X)+E(Y), (2)

for all p-integrable random convex closed sets X and Y.
A superlinear set-valued expectation U satisfies the same properties with the exception of
(ii) replaced by U(F)⊆F and (v), where (2) is replaced by the supperadditivity property

© 2021 Australian Statistical Publishing Association Inc.

68



I. CASCOS, Q. LI, AND I. MOLCHANOV 7

U(X+Y)⊇U(X)+U(Y). (3)

A non-linear expectation is said to be law-determined (often called law invariant) if it
depends only on the distribution of X. A non-linear expectation is called constant preserving
if it preserves deterministic sets from coF, for example, E(F) = F for all F ∈ coF. In
the following all non-linear expectations are assumed to be law-determined and constant
preserving. Additionally, assume that all non-linear expectations are affine equivariant , for
example, E(AX)=AE(X) for all non-singular d ×d matrices A.

Two non-linear expectations U and E are said to form a dual pair if U(X)⊆E(X) for all
p-integrable random convex closed sets X. Note that U(X) is allowed to take empty values.
The superlinear expectation is consistently extended for random sets which are empty with
a positive probability (and so are not p-integrable) by letting it to be empty in such cases.

Numerous examples of sublinear and superlinear expectations are obtained by letting

E(X)= conv
⋃

�∈M,E(�)=1

E(�X) (4)

and

U(X)=
⋂

�∈M,E(�)=1

E(�X), (5)

where M is a convex subset of the family Lq(R+) consisting of q-integrable non-negative
random variables with 1=p + 1=q = 1. The set M is chosen to be closed in the �(Lq, Lp)-
topology, that is, in the weak-star topology on Lq(R+). Note that �X={�x : x ∈X}, which is
X scaled by �.

The sublinear expectation E(X) given by (4) is the convex closed set satisfying

h(E(X), u)=e(h(X, u)), u ∈Rd , (6)

where e : Lp(R) → (−∞, ∞] is a numerical sublinear expectation, see Peng (2019). Such
an equality may be violated in the superlinear case – the support function of U(X) is only
dominated by the superlinear expectation of h(X, u).

4.2. Depth defined using a general parametric family

Definition 4.2. A family (U�,E�), �∈ (0, 1], of dual pairs of non-linear expectations is said to
form a parametric family if, for each p-integrable random closed set X, U�(X) is increasing
and E�(X) is decreasing (in the sense of set inclusions) as functions of �∈ (0, 1].

Two basic constructions of parametric families are suggested in Sections 4.3 and 4.4. Fix
a parametric family (U�,E�), �∈ (0, 1], of dual pairs of constant preserving law-determined
affine equivariant non-linear expectations.

Let F belong to the convex hull of the support of X. Define a depth function of such
F by letting

D(F ,X)= sup
{
�∈ (0, 1] : U�(X)⊆F ⊆E�(X)

}
(7)

and sup∅=0. If U� =∅ is the trivial (always empty) superlinear expectation, then the above
definition of the depth is also applicable; it reduces to the only inclusion for the sublinear
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expectation. This definition of depth can be regarded as of Type C depth according to the
classification from Zuo & Serfling (2000). The depth-trimmed region D�(X) consists of
convex closed sets from the convex hull of the support of X which contain U�(X) and are
subsets of E�(X).

Proposition 4.3. The depth function constructed by (7) using a parametric family (U�,E�)
of non-linear expectations satisfies conditions (D1)–(D3).

Proof. (D1) It suffices to note that

D(AF +b, AX+b)= sup
{
� : U�(AX+b)⊆AF +b⊆E�(AX+b)

}

=D(F ,X).

Here we have used the properties (i) and (iv) of non-linear expectations and the additionally
imposed affine equivariance.

(D2) Let Fn →F in the Fell topology, and let D(Fn,X)=�n, n�1, with �= lim sup�n.
For each " > 0, there exists a subsequence {nk} such that �nk ��− ", and the monotonicity
property implies

U�−"(X)⊆U�nk
(X)⊆Fnk ⊆E�nk

(X)⊆E�−"(X).

Hence D(F ,X)��− " for all " > 0.
(D3) follows from the constant preserving property of the chosen non-linear

expectations.

Remark 4.4. Standard properties of depth functions for random vectors have been further
augmented in Cascos & Molchanov (2007) and Cascos (2010) by assuming that D�(�+	)⊆
D�(�)+D�(	) for any two random vectors � and 	 from the domain of definition of the depth
function. In other words, this means that if D(z, �+	)�� and so z is not an outlier for �+	,
then it is possible to represent z as the sum of two non-outliers for � and 	, respectively.
Then, if � is a random variable, inf D�(�) is a superadditive homogeneous function of �. By
changing the sign, one obtains a subadditive antimonotonic function of �, which is influenced
by the lower tail of � and is usually called a risk measure, see for example, Delbaen (2002).
This explains a connection between risk measures of random variables and depth-trimmed
regions in dimension one, see Cascos & Molchanov (2007). However, such a connection
fails in higher dimensions, since changing the sign does not alter the direction of inclusion
for sets.

A variant of the above subadditivity property holds for depth functions defined
using non-linear expectations of random sets. If D(F ,X+Y)��, equivalently, F ∈D�(X+Y),
then

F1 +F2 ⊆F ⊆F ′
1 +F ′

2,

for some F1, F ′
1 ∈D�(X) and F2, F ′

2 ∈D�(Y). Indeed, it suffices to let F1 =U�(X), F ′
1 =E�(X),

and define F2, F ′
2 in the same way for Y.
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Remark 4.5. The above construction of depth also applies without assuming sub- and
superadditivity of the set-valued functions U� and E�. All properties (D1)–(D3) hold in this
case. However, we do not pursue this in the current work.

Example 4.6. Assume that U(X) = FX is the set of fixed points of X, which is the set of
x ∈Rd such that Pr(x ∈X)=1. Furthermore, let E(X)=RX be the range of X, which is the
set of all x ∈Rd such that X hits any neighbourhood of x with positive probability, the set
RX is sometimes called the support of X. Each parametric family of dual pairs (U�,E�) can
be consistently extended for �=0 by letting U0(X)=FX and E0(X)=RX. These non-linear
expectations are defined for all random closed sets; they form the dual pair of the smallest
superlinear and the largest sublinear expectations. Thus, FX ⊆U�(X) and E�(X) ⊆ RX for
all � ∈ (0, 1], hence, all convex closed sets F of a strictly positive depth should satisfy
FX⊆F ⊆RX.

4.3. Parametric families constructed using i.i.d. copies

Let {Xm, m�1} be i.i.d. copies of X. For each �∈ (0, 1],

E∪
� (X)=E(conv(X1 ∪· · ·∪X[�−1])) (8)

is a sublinear expectation, and

U∩
� (X)=U(X1 ∩· · ·∩X[�−1]) (9)

is a superlinear expectation, where [�−1] is the integer part of �−1. The intersection of random
sets on the right-hand side of (9) may be empty with a positive probability; in this case the
superlinear expectation is also set to be empty. If (U,E) is a dual pair, then U∩

� and E∪
� also

form a dual pair.
For the parametric family given by (8) and (9), we have

D(F ,X)=max
{

m−1 : U(X1 ∩· · ·∩Xm)⊆F ⊆E(conv(X1 ∪· · ·∪Xm))
}
. (10)

In particular, D(F ,X) = 1 if U(X) ⊆ F ⊆E(X). The empirical variant of this depth function
is obtained by resampling m values from the set of n realisations of X and treating the
intersections and the convex hull of the unions of these values as realisations of X1 ∩· · ·∩Xm

and conv(X1 ∪· · ·∪Xm), respectively.

Remark 4.7. The above definition (10) yields depth functions with a discrete range of
values. It is possible to obtain the depth with the whole range of values in (0, 1] using
‘smooth’ parametric families of non-linear set-valued expectations constructed as follows.
Let N
 denote a geometrically distributed random variable with parameter 
 ∈ (0, 1], that
is, Pr(N
 = k) = 
(1 − 
)k−1, k � 1. The depth is defined as in (10) by replacing m−1 with

 and Xm with XN
 for a sequence {Xm, m�1} of independent copies of X, which are also
independent of N
.

Example 4.8. (Random singletons). Let X={�} be a random singleton with �∈ Lp(Rd ).
The superlinear expectation of a singleton is either a singleton or is empty, and it is additive
on the subfamily of random vectors in Lp(Rd ) where it is not empty, see Molchanov &
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Mühlemann (2021). Furthermore, if � is not deterministic, the intersection of at least two
independent copies of X={�} is empty with a positive probability. Since possible values of
X are singletons and convex combinations of singletons are also singletons, non-singleton
sets are assigned zero depth, and for a singleton F ={x} we have

D({x}, {�})=max
{

m−1 : x ∈E(conv{�1,…, �m})}.
If E(X)=E(X) is the expectation, we recover the expected convex hull depth, whose empirical
version was considered in Cascos (2007). Then E(conv{�1,…, �m}) is the expected random
polytope, see Fresen & Vitale (2014) for the relevant asymptotic results.

Example 4.9. Assume that X is integrable, and let the dual pairs (U∩
� ,E∪

� ) be derived from
U(X)=E(X)=E(X). Then the only closed set F of depth one is the expectation of X. The
depth of a convex closed set F from the support of X is m−1 for the smallest m such that

E(X1 ∩· · ·∩Xm)⊆F ⊆E(conv(X1 ∪· · ·∪Xm)),

whereX1,…,Xm are i.i.d. copies ofX. In order to handle the empirical variant of this construc-
tion, consider a sample of convex closed sets F1,…, Fn. The corresponding random convex
closed set X is assumed to equally likely take any of the values F1,…, Fn. Then X1 ∪· · ·∪Xm

is distributed as Fi1 ∪· · ·∪Fim , where i1,…, im are i.i.d. random variables equally likely taking
values 1,…, m. A similar construction applies to the intersection. Note that F1 ∩· · ·∩Fn is
the set of fixed points for the empirical distribution and conv(F1 ∪· · ·∪Fn) is the range.

If X= [xL, xU] is a random interval and [xLi,xUi], i =1,…, n, are its independent copies,
then the depth of F = [a, b] is m−1 for the smallest m such that

E min(xL1,…, xLm)�a�E max(xL1,…,xLm)

�E min(xU1,…, xUm)�b�E max(xU1,…,xUm),

if E max(xL1,…, xLm)�E min(xU1,…, xUm), and

E min(xL1,…, xLm)�a�b�E max(xU1,…,xUm),

otherwise.

4.4. Parametric families constructed using weights: average quantiles

Fix a dual pair (U,E) of non-linear expectations. Let M� with �∈ (0, 1] be a parametric
family of random variables � in L0(R+) which is decreasing in �, that is, M� ⊇M�′ if ���′,
and such that E(�X) and U(�X) are well defined for a p-integrable random closed convex set
X. Define

E�(X)= conv
⋃

�∈M� ,E(�)=1

E(�X),

U�(X)=
⋂

�∈M� ,E(�)=1

U(�X).

In particular, the parametric variants of (4) and (5) arise by letting E(X)=U(X)=E(X).
The most important case arises when M� is the family of all random variables with

values in [0, �−1] for �∈ (0, 1]. Using this family M� with E(X)=U(X)=E(X), we arrive at
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a parametric family of sublinear and superlinear expectations E� and U� called the average
quantile ones. The reason for this name stems from the fact that

h(E�(X), u)=e�(h(X, u)) (11)

with

e�(�)= 1

�

∫ 1

1−�
qt(�)dt, (12)

being the average of the quantiles of �∈L1(R) at levels in [1−�, 1], see Föllmer & Schied
(2004, Th. 4.47) for this fact derived for the risk measure e�(−�). Furthermore, U�(X) is
the largest convex set whose support function is dominated by u�(h(X, u)), where u�(�)=
−e�(−�) is a numerical superlinear expectation, equivalently,

u�(�)= 1

�

∫ �

0
qt(�)dt (13)

is the average of lower quantiles of � ∈ L1(R). Note that this construction may result in
superlinear expectation being empty on some random sets. With this construction, the depth-
trimmed region D�(X) is the family of convex closed sets sandwiched between the intersection
and the convex hull of the union of the sets E(�X) for �∈M�.

Example 4.10. (Singletons). If X={�} with �∈L1(R), then

E�({�})= [u�(�), e�(�)],

while U�({�}) =∅ for � < 1 whenever � is not deterministic. If X={�} for an integrable
random vector � in Rd , then E�({�}) is the convex closed set with the support function given
by e�(〈�, u〉). In this case, U�({�})=∅ for �< 1 whenever � is not deterministic, and E�({�})
equals the zonoid-trimmed region of � introduced in Koshevoy & Mosler (1997). Recall
that the zonoid-trimmed region of � is the set

ZD�(�)=�−1
{

x ∈Rd : (�, x)∈E(co(0, (1, �)))
}

(14)

obtained as the rescaled section of the expectation E(Y) of the random closed convex set
Y, being the convex hull of the origin and the point (1, �) in Rd+1. The expectation E(Y) is
termed the lift zonoid of �. The corresponding depth concept is called the zonoid depth of
�, see Koshevoy & Mosler (1997) and Mosler (2002).

Example 4.11. (Lift-expectation). The lift zonoid concept was extended for general random
convex sets by Diaye, Koshevoy & Molchanov (2018). Assume that E‖X‖<∞; in this case
X is called integrably bounded. Let Y be the convex hull of the origin in Rd+1 and the set
obtained as the Cartesian product {1}×X (so to say, the uplifted X). Since Y is integrably
bounded, its expectation E(Y) is a convex body in Rd+1 called the lift-expectation of X
and denoted by ẐX. If the support function h(X, u) has a non-atomic distribution for all u,
then

E�(X)=�−1
{

x ∈Rd : (�, x)∈ ẐX
}

is a sublinear expectation and (11) holds.
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Example 4.12. (Random intervals). Let X= [xL, xU] be a random interval on R. Then
E�(X)= [u�(xL), e�(xU)], and U�(X)= [e�(xL), u�(xU)] if e�(xL)�u�(xU) and is empty oth-
erwise. Hence, the depth of an interval F = [a, b], see (7), is the largest � such that

u�(xL)�a�e�(xL)�u�(xU)�b�e�(xU),

if e�(xL)�u�(xU), and

u�(xL)�a�b�e�(xU),

otherwise. The interval [E(xL), E(xU)] has depth 1.
In order to illustrate the intervals E�(X) and U�(X) obtained for a specific random set

X= [xL, xU] and value of �, Figure 1 represents them together with the lift-expectation of X,
which was introduced in Example 4.11. The centrally symmetric lower almond-shaped set
is the lift zonoid of xL, denoted by ẐxL , while the upper almond-shaped set is the lift zonoid
of xU, denoted by ẐxU , and the whole shaded region is the lift-expectation of X. The zonoid-
trimmed regions at level � of xL and xU, see (14), are the intervals obtained after scaling by
�−1 the projection on the second coordinate of the intersection of the vertical line x =� with
the corresponding lift zonoid. For example, the vertical line x =0.4 in Figure 1 represents
of � ZD�(xL) and � ZD�(xU) for �= 0.4. The set E�(X) is �−1 times the projection on the
second coordinate of the intersection of the vertical line x =� with the lift expectation of X,
while the set U�(X) is �−1 times the projection on the second coordinate of the intersection
of the vertical line x =� with the lift-expectation of X and not in the lift zonoids of either
of xL and xU. See the vertical line x =0.8 in the chart for the representation of �E�(X) and
�U�(X) for �=0.8.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lift−expectation of [xL,xU] with xL ~ U(0,1) and xU = xL+1/2

ẐxL

ẐxU

αZDα(xL)

αZDα(xU)

αUα(X)α α(X)ε

Figure 1. Lift expectation of the random interval X= [xL,xU], where xL is uniformly distributed on
the unit interval [0, 1] and xU =xL +1=2.
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5. Half-space depth

Since each random compact convex setX is uniquely associated with its support function
h(X, u) defined on the unit sphere Sd−1, it is possible to apply known concepts of depth for
functional data in order to quantify the depth of sets.

Following the half-space functional depth concept of Kuelbs & Zinn (2013), the half-
space depth of F ∈ coF with respect to X is defined as

HD(F ,X)=min(HD+(F ,X), HD−(F ,X)), (15)

where

HD+(F ,X)= inf
u∈Sd−1

Pr(h(X, u)�h(F , u)), (16)

HD−(F ,X)= inf
u∈Sd−1

Pr(h(X, u)�h(F , u)). (17)

It is easy to see that HD(F ,X) satisfies the properties (D1)–(D3). Furthermore, HD+(F ,X)�
Pr(F ⊆X), and HD−(F ,X)�Pr(X⊆F). If X={�} is a random singleton and F ={x}, both
HD+ and HD− equal the Tukey’s half-space depth of x with respect to the distribution of �.

Example 5.1. Let X be the random ball B� of radius � centred at the origin. For F = Br ,
we have

HD(Br ,X)=min(Pr(�� r), Pr(�� r)).

The deepest ball F =Br has the radius r, being the (assuming unique) median of �.

Example 5.2. Let X= [xL, xU] be a random interval on the line. Then

HD([a, b],X)=min
(
Pr(xU �b), Pr(xU �b), Pr(xL �a), Pr(xL �a)

)
.

While for random elements in Banach spaces (in particular, for stochastic processes)
the half-space depth assigns zero values to most of reference points (functions), this is not
the case for the above defined half-space depth. The reason is that, when compact convex
sets are substituted by their support functions as in (16) and (17), the depth considered here
becomes an infimal depth, see Gijbels & Nagy (2015), which typically does not degenerate.

Theorem 5.3. If X is a random convex compact set, then HD+(F ,X) > 0 (respectively,
HD−(F ,X)>0) for all F from the support ofX such that Pr(h(F , u)�h(X, u))>0 (respectively,
Pr(h(F , u)�h(X, u)) > 0), for all u. Furthermore, the infima in (16) and (17) are attained.

Proof. Assume that HD+(F ,X)=0, that is, there exists a sequence {un, n�1} on the unit
sphere such that

Pr(h(X, un)�h(F , un))→0, as n→∞.

Without loss of generality assume that un → u as n →∞. For each F ∈ coK, its support
function h(F , u) is Lipschitz with the Lipschitz constant being the norm of F , see (Schneider
2014, Lemma 1.8.12). Hence,
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Pr(h(X, u)−�n‖X‖�h(F , un)+�n‖F‖)→0, as n→∞,

where �n =‖un −u‖. Therefore, for all c > 0,

Pr(h(X, u)�h(F , u)+�n(‖F‖+ c), ‖X‖� c)→0, as n→∞.

By letting c increase to infinity, we have that

Pr(h(X, u)�h(F , u))=0,

contrary to the assumption. The statement for HD−(F ,X) has a similar proof.

The finite sample version of the half-space depth involves the empirical variants of
HD+ and HD−, for example,

HD+(F , {X1,…, Xn})= inf
u∈Sd−1

1

n

n∑

i=1

1(h(Xi, u)�h(F , u)),

where X1,…, Xn are sample values of X.
Since the values of the support function at u and −u determine the width of the set,

it is possible to modify (16) (and (17) as well) by letting

HD′
+(F ,X)= inf

u∈Sd−1
Pr(h(X, u)�h(F , u), h(X, −u)�h(F , −u)).

A variant of the half-space depth for functional data is the half-region depth introduced
by López-Pintado & Romo (2011) and further studied by Kuelbs & Zinn (2015). In case
of random sets, it is defined by

HRD(F ,X)=min
(

Pr(F ⊆X), Pr(F ⊇X)
)
. (18)

Note that HRD(F ,X)�min
(
HD+(F ,X), HD−(F ,X)

)
. Like HD−(F ,X), this depth returns

zero value if Pr(F ⊆X) vanishes. This is the case for most F if X is ‘thin’, like singletons or
other lower-dimensional sets in Euclidean space. To avoid this phenomenon, it is possible
to enlarge X by taking its "-envelope (which is the set of all points within distance " to X).
This is akin to smoothing procedures in density estimation theory, and " plays the role of a
bandwidth. A similar ‘smoothing’ construction in the context of the functional band depth
was discussed by Gijbels & Nagy (2015, Sec. 3.2).

The modified half-region depth is defined by

MHR(F ,X)=min
(∫

Sd−1
Pr(h(F , u)�h(X, u))
(du),

∫

Sd−1
Pr(h(F , u)�h(X, u))
(du)

)
, (19)

where 
 is the normalised Haar measure on the unit sphere (i.e. the surface area measure). It
is also possible to treat symmetrically the values of the support function at opposite directions
by letting

MHR′(F ,X)=min
(∫

Sd−1
Pr(h(F , u)�h(X, u), h(F , −u)�h(X, −u))
(du),

∫

Sd−1
Pr(h(F , u)�h(X, u), h(F , −u)�h(X, −u))
(du)

)
. (20)

© 2021 Australian Statistical Publishing Association Inc.

76



I. CASCOS, Q. LI, AND I. MOLCHANOV 15

6. Band depth for sets and set-valued functions

6.1. Samples of convex sets

López-Pintado & Romo (2009) introduced the concept of a band depth for functional
data. The band generated by j functions is defined as the family of functions with values
lying between the pointwise minimum and pointwise maximum of these j functions. The
band depth is the probability that a given function lies in the band generated by j independent
copies of a random function. The band depth avoids the problem of having too many functions
of depth zero.

Following López-Pintado & Romo (2009), the band generated by F1,…, Fj ∈ coF is
the family of sets F ∈ coF such that

min
1�i�j

h(Fi, u)�h(F , u)� max
1�i�j

h(Fi, u), u ∈Sd−1.

While the right-hand side is a support function, namely, that of conv(F1 ∪· · ·∪Fj), the left-
hand side is not necessarily a support function. Since López-Pintado & Romo (2009) did not
specifically consider the case of convex functions, it is reasonable to adjust their definition
of the band so that the lower bound becomes the largest convex function dominated by the
pointwise minimum of h(Fi, u), i =1,…, j. This function is called the subdifferential of this
minimum, see Rockafellar (1970). This largest convex function is the support function of
F1 ∩· · ·∩Fj.

With such an adjustment, the band generated by F1,…, Fj ∈ coF is defined as

Bj(F1,…, Fj)={F ∈ coF :∩j
i=1 Fi ⊆F ⊆ conv ∪j

i=1 Fi}.
This band is almost identical to the band proposed by Whitaker, Mirzargar & Kirby (2013),
except for the fact that we consider here the case of convex sets, and so use the closed
convex hull of the union of the generating sets.

The population version of the band depth is then

BDj(F ,X)=Pr
(∩j

i=1 Xi ⊆F ⊆ conv ∪j
i=1 Xi

)
, (21)

where X1,…,Xj are i.i.d. copies of X. Property (D1) is easy to see, (D2) is a consequence
of the fact that the convergence in the Fell topology preserves the inclusion relations, and
(D3) is evident. For a sample F1,…, Fn ∈ coF, the empirical version of the band depth is
given by

BDj(F ; F1,…, Fn)=
(

n
j

)−1 ∑

1�k1<···<kj�n

1
(∩j

i=1 Fki ⊆F ⊆ conv∪j
i=1 Fki

)
. (22)

It describes the proportion of j-bands containing F . Since the empirical band depth is a
symmetric statistics of F1,…, Fn, it is possible to use limit theorems for U-statistics to obtain
limit theorems for the empirical band depth.

A modified band depth for sets can be built from (21) and (22) adapting the construction
of the (functional) modified band depth of López-Pintado & Romo (2009). The required
adaptation has already been used here to build the modified half-region depth for sets,
see (19), and its symmetrised version, see (20), from the half-region depth given in (18).
Specifically, the modified band depth for sets is the average fraction of surface area of the
unit sphere such that, when evaluated on any of its points, the support function of a set F
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is sandwiched between the support functions of the intersection and union of j sets. In its
symmetrised version, it is the average fraction of the surface area of the unit sphere such
that, when evaluated on any of its points u, the support function of a set F is sandwiched
between the support functions of the intersection and union of j sets, and the same is the
case for −u.

In order to overcome consistency issues with the band depth of Whitaker, Mirzargar
& Kirby (2013), Nagy (2017) presented an alternative modified band depth, which does not
use support functions and is thus applicable for general (non-convex) compact sets.

If j =1, then BD1(F ,X)=Pr(F =X) which vanishes for most F and so is not informative.
This depth function becomes non-trivial for j�2. Following López-Pintado & Romo (2009),
it is advisable to combine the band depths built using a varying number j of functions by
taking their averages as

BD
J
(F ,X)= 1

J −1

J∑

j=2

BDj(F ,X), (23)

where 2� J . It is recommended to use J = 3 for this type of band depth due to various
reasons. By choosing larger J , the band depth increases, and so F with a very peculiar
shape but rather normal magnitude comparing with other sets from the sample might attain
a higher depth. This makes identification of F as a shape outlier rather difficult. In contrast,
for J =2 too many sets F will be of depth zero.

Remark 6.1. The band depth can be constructed for distance functions d (x,X)= inf{‖x−y‖ :
y∈X} generated by random closed sets. For this, one calculates the band depth of the function
d (x, F) with respect to functions d (x,Xi), i =1,…, n, obtained using i.i.d. copies X1,…,Xn

of X. This construction makes it possible to introduce the depth for not necessarily convex
random closed sets.

A refined variant of the band depth suggested by Cascos & Molchanov (2018) relies
on considering tuples of values for the functions. Fix m�1 and F1,…, Fj ∈coF. In terms of
support functions, F belongs to the m-band if, for all u1,…, um from the unit sphere, the vector
(h(F , u1),…, h(F , um)) belongs to the convex hull in Rm of the vectors (h(Fi, u1),…, h(Fi, um)),
i =1,…, j, that is,

min
1�i�j

m∑

k=1

h(Fi, uk )vk �
m∑

k=1

h(F , uk )vk � max
1�i�j

m∑

k=1

h(Fi, uk )vk , (24)

for every v = (v1,…, vm) ∈ Rm. Note that the left inequality can be derived from the right
one by altering the sign of v.

Imposing (24) only for every v ∈Rm
+ results in a larger band called the positive m-band.

It admits a nice geometrical interpretation in terms of inclusions of intersections and unions
of sets,

Bj
m,+(F1,…, Fj)=

{
F ∈ coF :∩j

i=1 F×m
i ⊆F×m ⊆ conv ∪j

i=1 F×m
i

}
,

where F×m is the convex set in Rdm obtained as the Cartesian product of m factors, all being
F . Indeed, h(F×m, (u1,…, um))=∑m

i=1 h(F , ui) for every (u1,…, um)∈Rdm.
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Example 6.2. Let X= [xL,xU] be a random interval on R, and let [xL1,xU1],…, [xLj, xUj]
be its j independent copies. Then the band depth of the interval [a, b] (with a�b) becomes

Pr( min
1�i�j

xLi �a, b� max
1�i�j

xUi, max
1�i�j

xLi > min
1�i�j

xUi)

+Pr( min
1�i�j

xLi �a� max
1�i�j

xLi � min
1�i�j

xUi �b� max
1�i�j

xUi).

The two-band depth becomes

Pr((a, b)∈ conv{(xL1,xU1),…, (xLj,xUj)}).
The positive two-band depth becomes

Pr([xLk , xUk ]⊆ [a, b]⊆ [xLl ,xUl] for some 1� k, l � j

or (a, b)∈ conv{(xL1, xU1),…, (xLj,xUj)}).

6.2. Samples of set-valued functions

The concept of a band can be naturally extended to handle samples of set-valued
functions. Such functions also appear as sections of a convex set parameterised by one of
the coordinates, see Example 9.1. Consider set-valued functions Fi(t), for i =1,…, j, where
the argument for simplicity is assumed to belong to [0, 1]. The band formed by these functions
is the family of set-valued functions F such that

j⋂

i=1

Fi(t)⊆F(t)⊆ co
j⋃

i=1

Fi(t), t ∈ [0, 1]. (25)

Note that the left-hand side may be void, and then becomes irrelevant for the corresponding t.
Figure 2(left) represents the interval-valued functions given by the monthly averages

of daily minimum and maximum temperatures over the decade 2007–2016 in Boulder
(Colorado). The shades of grey at each point reflect the percentage of the intervals where
this observed temperature lies on a particular day. Figure 2(right) represents the interval
band of these interval-valued functions, which consists of all interval-valued functions whose
upper and lower end-points respectively lie in the upper and lower shaded regions.
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Figure 2. Temperature ranges in Boulder (Colorado) over 2007–2016 (left) and their band (right).
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Figure 3. Temperature ranges in Boulder (Colorado) over 2007–2016 and 1899 (left) and their band
(right).

Figure 3 has been produced similarly to Figure 2, but the temperatures of the year
1899 have been considered together with those from the decade 2007–2016. In order to
highlight the interval-valued function associated with the 1899 temperatures, its end-points
are represented as dashed lines in Figure 3(left). In particular, one notices the extremely low
temperatures recorded in February 1899. Figure 3(right) represents the interval band of the
11 interval-valued functions, constituted again by all interval-valued functions whose upper
and lower end-points respectively lie in the upper and lower shaded regions. Observe that in
February there is no separation between the shaded regions. The reason is that the average
of the daily maximum temperatures in February 1899 is below the average of the daily
minimum temperatures in February during some other year over the decade 2007–2016, and
thus the only restrictions imposed by the band in February appear in the form of an upper
bound for the average maximum temperature and a lower one for the average minimum
temperature.

7. Simplicial depths for sets

The simplicial depth for random vectors is defined as the probability that a point belongs
to the convex hull of (d +1) independent copies of this vector, see Liu (1990). Following
this idea, the convex combination of sets F1,…, Fj is the family of sets obtained as

p1F1 +· · ·+pjFj

for non-negative p1,…, pj that sum to one. However, the family of such convex combinations
is a finite-dimensional subset of coF; only few convex sets are representable as convex
combinations of given convex sets. Because of this, a direct generalisation of the simplicial
depth for random sets fails. Note that taking convex hull of the union of F1,…, Fj substantially
differs from taking their convex combination.

Following the idea of type B depth functions from Zuo & Serfling (2000), it is possible
to define the depth function of a convex compact set X by letting

D(F ,X)= E�(conv(F ∩ (X1 ∪· · ·∪Xj)))

E�(conv(F ∪X1 ∪· · ·∪Xj))
, (26)
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where � is a monotonic functional on coK which does not vanish on non-empty convex sets,
and F ∈coK. In order to ensure (D1), it is possible to assume that �(AF)=g(A)�(F), where
g(A) is a function of the matrix A. For (D2), we impose that � is continuous with respect to
the convergence of convex compact sets in the Hausdorff metric. Property (D3) holds if � is
strictly monotone on coK. For instance, it is possible to let � be the Lebesgue measure on
Rd ; this yields a generalisation of the simplicial volume depth, see Zuo & Serfling (2000,
Example 2.2).

A similar construction was recently suggested by Staerman, Mozharovskyi & Clémençon
(2020) in view of assessing the depth for a sample of curves. An empirical variant of this
depth function is defined by replacing the expectations with U-statistics constructed by
replacing X1 ∪· · ·∪Xj with Xi1 ∪· · ·∪Xij , where Xi1 ,…, Xij are sampled from the realisations
X1,…, Xn of X.

Example 7.1. Let X= [�, � + 1] ⊆ R, where � is a uniform random variable in the unit
interval. Let � be the Lebesgue measure. Then D({1},X) = 0, since the singleton {1} has
Lebesgue measure 0, while for j =1, the interval [1=2, 3=2] has depth 3=5.

8. Splitting location and shape effects

A rather specific feature of samples of sets relates to the rôle of positions, sizes and
shapes of sets in the statistical procedures. This is a well-known issue in the statistical theory
of shape, see Dryden & Mardia (1997). For samples of sets representing particles, like stones
or sand grains, see, for example, Stoyan & Stoyan (1994) and Stoyan & Molchanov (1997),
the locations and orientations of particles are irrelevant for their statistical analysis. On the
other hand, positions of convex sets arising from econometric applications are usually very
relevant for the statistical analysis. In the context of outlier detection in functional data,
Febrero, Galeano & González-Manteiga (2008) pointed out that both of location and shape
are relevant, since most outliers are curves that are either significantly far from the average
of the process or have a different shape than the rest of curves.

In order to leverage the effects of the location and shape in the detection of set-outliers,
we adapt the principle that a point is a multivariate outlier if it is a univariate outlier for
at least one of its projections. Namely, we define the location-scale depth as the minimum
of a (multivariate) location depth (for points chosen from the sets) and a set depth (for the
sample of translated sets).

Let X be a random convex closed set. The location-shape depth of F ∈ coF is defined
by letting

Dls(F ,X)= sup
x∈F ,�∈L0(X)

min(D(x, {�}), D(F − x,X−�)). (27)

This concept of depth relies on the choice of a point x in F and a selection � of X that
ensures that x is deep with respect to the distribution of � and the ‘centred’ F is deep with
respect to the ‘centred’ X. Note that D(x, {�}) can be defined by specialising the underlying
depth function for sets, being singletons. Alternatively, any standard multivariate depth can
be chosen for this purpose.

Example 8.1. For convex sets on the line, the shape refers to the width of intervals. Consider
the random interval X= [0, �] with � following an exponential distribution of rate 
 = 1.

© 2021 Australian Statistical Publishing Association Inc.

81



20 DEPTH FOR SAMPLES OF SETS

Consider the average quantile depth from Section 4.4, which becomes the zonoid depth if
applied to singletons. Clearly, the depth of F = [−1, 1] with respect to [0, �] is 0, since X
does not contain negative numbers and so the set [−1, 1] does not belong to the convex
hull of the support of X. Nevertheless, we can take x =1 as a reference point from [−1, 1]
and � as selection of X= [0, �]. Since the mean of � is 1, the zonoid depth of x = 1 with
respect to � is one, and F − x becomes [−2, 0], while X− � = [−�, 0]. Finally, we have
Dls(F ,X)�D([−2, 0], [−�, 0])= e−1.

Example 8.2. Consider now random sets in the plane. Let C = [0, 1]2 be the unit square
and let 	 and � be two independent uniform random variables in the unit interval. Define
the random set X= (	, 	)+ �C and consider the deterministic set F =−(0.25, 0.25)+0.5C,
being the square with two opposite corners at (−0.25, −0.25) and (0.25, 0.25). Clearly, F
does not lie in the convex hull of the support of X, so its depth is 0. Take now �= (	+�, 	+�)
which is a selection of X (it is actually its upper right corner) and x = (0.25, 0.25)∈F (also
its upper right corner). Now D(x, �) > 0, in fact, for the zonoid depth it equals 9=128, and
F − x =−0.5C, X− �=−�C, so D(F − x,X− �) = D(0.5C, �C). For the average quantile
depth of Section 4.4, we conclude that D(0.5C, �C)=0.5 calculated as the zonoid depth of
0.5 with respect to �. Hence Dls(F ,X)�9=128.

An advantage of the definition (27) is that the translated random set X−� contains the
origin. In this case, another description of sets using functions is available. Assume that X
almost surely contains the origin. Since X is convex, it is also star-shaped and so is identified
by its radial function

r(X, u)= sup{t : tu ∈X}, u �=0.

The radial sum of X and Y is the set whose radial function equals the sum of the radial
functions of X and Y. In this case, it is useful to consider radially superlinear expectation,
which satisfies (3) with the radial sum replacing the Minkowski sum on the left-hand side.
The dual pair of non-linear expectations is then given by

h(E(X), u)=e(h(X, u)), r(U(X), u)=u(r(X, u))

for a dual pair (u, e) of numerical non-linear expectations. For the latter, one usually chooses
the exact dual pair given by u(�)=−e(−�) for �∈Lp(R). Note that the sublinear expectation
is applied to the support function, while the superlinear one to the radial function of X. The
so defined set U(X) is star-shaped, but not necessarily convex.

Example 8.3. Let u(�)=e(�)=E(�). Following the approach of Section 4.3, the depth of
F with respect to X that almost surely contain the origin is m−1 for the smallest m such that

h(F , u)�E max(h(X1, u),…, h(Xm, u))

and

r(F , u)�E min(r(X1, u),…, r(Xm, u))

for all u from the unit sphere.

Example 8.4. By using the approach based on average quantiles, the depth of F with respect
to X that almost surely contain the origin is the largest �∈ (0, 1] such that h(F , u)�e�(h(X, u))
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and r(F , u)�u�(r(X, u)) for all u from the unit sphere, where e� and u� are defined in (12)
and (13).

9. Depth of random measures

An integrable probability measure 
 on Rd is uniquely identified by a convex set Ẑ


in Rd+1 called the lift zonoid of 
, see Koshevoy & Mosler (1998) and Mosler (2002). The
set Ẑ
 is the expectation of the random segment in Rd+1 with one end-point at the origin
and the other at (1, �), where � is distributed according to 
.

If 
 is a random integrable probability measure, then the expectation of the segment
should be conditional upon 
, and Ẑ
 becomes a random convex closed set in Rd+1. Then all
concepts of depth for random sets are applicable in this setting in order to identify outliers
in a sample of probability measures.

Example 9.1. We use here notions of depth for sets and curves to compare (empirical)
distributions. Consider a parametric distribution model, and several samples taken from it,
each of them corresponding to a different value of the parameter. Among the values of the
parameter, there are some outliers, and the goal is to detect them. In order to do so, we will
study the empirical cumulative distribution functions together with a notion of functional
depth and the empirical lift zonoids together with a notion of depth for sets.

We have simulated 30 samples of 100 observations, each from the Beta distribution
B(p, q) with parameters (p, q) given by a sample of random points uniformly distributed on
the square [0.5, 1.5]2, see the 30 bullets in Figure 4a. Then we simulated four further samples
of Beta distributions with parameters equal to those identified with asterisks in Figure 4a.
Observe that the four asterisks enclose the 30 bullets in their convex hull. In order to detect
possible outliers in our set of samples, we considered two alternative procedures. First, we
built the empirical cdfs for the samples grouped in five bins of equal width, see Figure 4b.
The second approach was to approximate the lift zonoid of each of the samples by grouping
each data set in five bins of equal size (100=5=20 observations each). In Figure 4c, the lift
zonoids of all 34 samples are represented (each sample was shifted 0.5 units to the left for
better visualisation of the lift zonoids).

The detection of outliers in the set of empirical cdfs was performed by computing the
band depth for j =3 of each cdf with respect to the sample of curves. In the case of the lift
zonoids, for each of them, the set-valued function F(t) that represents the projection on the
last d coordinates of the intersection of the lift zonoid Ẑ
 with the hyperplane whose first
coordinate is t was built. Finally, the bands for j =3 were built as in (25), see Figure 4d for
an example of a band (generated by three arbitrary lift zonoids, none of which corresponds
to an outlier in the set of parameters), and the band depth was computed.

For the particular simulated data set used in Figure 4, the band depths of the lift zonoids
achieved the identification of the four outliers which are the only four lift zonoids attaining
the minimum depth, while the band depth of the empirical cdfs achieved the identification
of three out of the four outliers which together with other four empirical cdfs attained the
minimum depth. They failed to identify the sample from the Beta distribution with shape
parameters p=0.8 and q=0.4. Showing these results we do not mean that one procedure
is better than the other, but instead present an application of depth notions for curves and
sets that describe distributions (cdfs and lift zonoids).
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Figure 4. A total of 34 samples of Beta B(p, q) distributions were simulated. The scatter plot in (a)
represents the 34 pairs of parameters (p, q) among which there are 4 outliers marked as asterisks.
All 34 data sets are summarised by their empirical cdfs in (b) and their lift zonoids in (c). The solid
lines in (b) and (c) represent the samples drawn from the outlying parameters. The shaded region in
(d) corresponds to the band generated by three arbitrary lift zonoids.

Both band depths for j =3 were computed using brute force algorithms, with complexity
O(kn3), where n is the sample size (in this case 34 curves), and k the number of points at
which each scalar or interval-valued function is evaluated (in this case 5).

10. Examples

10.1. Interval regression

Consider interval regression setting with data given by (xi, [yLi, yUi]), i = 1,…, n, so
that the response values are given by intervals. Such data appear in the econometric analysis
of wages, which are often reported as intervals, see Beresteanu & Molinari (2008) and

© 2021 Australian Statistical Publishing Association Inc.

84



I. CASCOS, Q. LI, AND I. MOLCHANOV 23

Molchanov & Molinari (2018). In this case, the convex set formed by all intercepts and
slopes compatible with the model is obtained applying ordinary least squares to all possible
samples (xi, yi), where yi ∈ [yLi, yUi], i =1,…, n, see Beresteanu & Molinari (2008). Such a
set of intercepts and slopes is a zonotope, which is a convex set given by the Minkowski
sum of a number of line segments, see Schneider (2014, Sec. 3.5).

As in the simple linear regression setting, we build the n×2 design matrix X whose
first column is filled with 1s, while the second column contains the observed values of the
explanatory variable x. The zonotope that contains all possible intercepts and slopes is

{
(X �X )−1X �y : y = (y1,…, yn)� with yi ∈ [yLi, yUi], i =1,…, n

}
.

The set of all possible adjusted response values corresponds to the multiplication of the
design matrix X by all elements of the set of intercepts and slopes, and finally the residual
errors are obtained as

{
(In −X (X �X )−1X �)y : y = (y1,…, yn)� with yi ∈ [yLi, yUi], i =1,…, n

}
,

where In is the n × n identity matrix. Observe that, while the set of intercepts and slopes
lies in the plane, these last two sets lie in Rn, each coordinate corresponding to one of
the observations. Nevertheless, for each observation (xi, [yLi, yUi]) we are interested in its
associated residual, and that corresponds to the projection of the set of residual errors on
the ith coordinate, which is an interval.

With the interval residuals, we can study the presence of outliers in the original data
set by computing the depth of each residual with respect to the sample of all of them. In
the subsequent example we will also show how to determine which observations are more
influential by deleting each individual observation from the data set and comparing the
zonotope of intercepts and slopes obtained for each of such subsamples with that of the
original sample.

Example 10.1. Kallithrakaa et al. (2001) presented data on 33 Greek wines for classification
purposes. They consider several interval-valued instrumental variables together with other
point-valued variables obtained from sensory analysis. In Figure 5a, we present in x-axis
the astringency evaluation of each of the wines, while the y-axis corresponds to the caffeic
acid (interval-valued). The number to the right of each segment is its wine code, while the
dashed straight line is the ordinary least squares regression line that predicts the mid-point
of the caffeic acid interval with information from the astringency.

Figure 5b shows the interval residual for each wine versus the wine code. The dashed
vertical lines separate each group of five wines in order to facilitate the identification of the
wine codes. Finally, the number to the right of each segment represents the ranking of the
residual with respect to the 1-band depth for j =2 described in detail in Example 6.2. The
outermost intervals are associated with the smallest values. They correspond to wine codes
12 and 16, while wines 10 and 28 come next among the less deep wines. The complexity
of the algorithm to compute the 1-band depth for intervals when j =2 is O(n2) for a sample
of n intervals.

Once the outliers have been detected, we conclude our regression analysis studying
the influence of each observation in the set of intercepts and slopes. In Figure 5c, the
region in grey is the set of all intercepts and slopes obtained for the complete data set.
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Figure 5. Regression analysis for explanatory variable Astringency (point-valued) and response vari-
able Caffeic Acid (interval-valued) of 33 Greek wines. Raw data are presented in (a), interval-valued
residuals in (b) and the set of all intercepts and slopes for the complete data set as well as after
deleting some individual wines from the data set in (c).

The point marked on it corresponds to the intercept and slope of the regression line that
predicts the mid-point of the caffeic acid interval with information from Astringency. The
remaining seven sets have been obtained after deleting a single observation from the data
set. The code of the deleted wine is represented by a number in the centre of the region.
Specifically, the sets presented here correspond to wine codes 6, 8, 10, 12, 16, 28, and
29. Wines 10, 16 and 6 have been selected because they are the most influential ones
in our regression model, while the other four (including wine 12 which was marked as
an outlier) have been selected to show the standard behaviour of most wines from this
data set.

In conclusion, we should be particularly concerned with wines 16 and 10. Wine 16 is
an influential outlier, while wine 10 is a not-so-obvious outlier which strongly influences
the regression model.

© 2021 Australian Statistical Publishing Association Inc.

86



I. CASCOS, Q. LI, AND I. MOLCHANOV 25

(a) (b)

(c)

Figure 6. Sample of particles (a) and their optimal rotations (b). Shaded particles from top to bottom
have numbers 1, 2, 15, 31, 35, 10, 43. The contours of the centred superimposed particles from (b)
are shown in (c) (enlarged).

10.2. Sample of particles

Consider the sample of 44 planar images of particles taken from the collection of
sand particles analysed in Stoyan & Molchanov (1997), see Figure 6a. Each particle was
placed so that its centre of mass is located at the origin. Then all particles have been
rotated following the iterative algorithm described in Stoyan & Molchanov (1997): it aims
to minimise the L2-distance between the indicator function of a particle and the average of
indicator functions of all other particles. The L2-distance between two indicator functions
was evaluated over 250,000 grid points uniformly located in the smallest square, which
covers all centred particles. The optimal rotation of each particle was searched over a
sequence of angles with common difference 0.1� in [0, 2�). The rotated particles are shown
in Figure 6b.

The half-region depth and the band depth have been computed by explicit evaluation
of the intersections of convex hulls of the particles as binary images. All other depths
have been evaluated using the support and radial functions of the particles as functions on
[0, 2�] discretised using a mesh of 60 equidistant points. The average quantile depth was
computed as described in Example 8.4 using the parametric family of sublinear expectations
constructed with average quantiles. For all depths involving support functions, such as half-
space, modified half-region, half-region symmetrised and average quantile depth, the same
sequence of angles as in searching for the optimal rotation was used. To check the inclusions
of the intersections in the half-space and band depths, we used the function gCovers from
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Table 1. Depths of 7 marked particles.

Particle number 1 2 10 15 31 35 43

Half-space, (15) 0.000 0.000 0.000 0.093 0.093 0.256 0.000
Half-region, (18) 0.000 0.000 0.000 0.093 0.047 0.186 0.000
Modified half-region, (19) 0.126 0.025 0.106 0.282 0.296 0.414 0.000
Half-region symmetrised, (20) 0.110 0.020 0.094 0.234 0.276 0.378 0.000
Band (22), j =2 0.000 0.000 0.000 0.062 0.055 0.097 0.000
Band (23), J =3 0.000 0.000 0.000 0.112 0.089 0.189 0.000
Average quantile, Example 8.4 0.000 0.000 0.000 0.305 0.165 0.595 0.000

R package rgeos, see Bivand & Rundel (2020). See Table 1 for the values of this 7 notions
of depth computed for the 7 marked particles.

The symmetrised version of the modified half-region depth returns similar results to its
non-symmetric version, since many particles are rather close to being centrally symmetric.
All suggested depth concepts identify particles 2 and 43 as outliers. For other particles, the
half-region depth may be regarded as far too sensitive, while the average quantile depth,
band depth and modified half-space depth show the best performance comparing to visual
perception of outliers.
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