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Abstract
This dissertation aims to investigate several aspects of the Poisson convergence: Poisson
approximation, multivariate Poisson approximation, Poisson process approximation and
weak convergence to a Poisson process.

The size-bias coupling is a powerful tool that, when combined with the Chen-Stein
method, leads to many general results on Poisson approximation. We define an approxi-
mate size-bias coupling for integer-valued random variables by introducing error terms,
and we combine it with the Chen-Stein method to compare the distributions of integer-
valued random variables and Poisson random variables. In particular, we provide explicit
bounds on the pointwise difference between the cumulative distribution functions. By
these findings, we show approximation results in the Kolmogorov distance for mini-
mal circumscribed radii and maximal inradii of stationary Poisson-Voronoi tessellations.
Moreover, we compare the distributions of Poisson random variables and U -statistics with
underlying Poisson processes or binomial point processes, which, in particular, allows us
to approximate the rescaled minimum Euclidean distance between pairs of points of a
Poisson process with midpoint in an observation window by an exponentially distributed
random variable using the Kolmogorov distance.

A multivariate version of the size-bias coupling is employed to investigate the Gaus-
sian approximation for random vectors by L. Goldstein and Y. Rinott. We extend the
notion of approximate size-bias coupling for random variables to random vectors, and
we combine it with the Chen-Stein method to investigate the multivariate Poisson ap-
proximation in the Wasserstein distance and the Poisson process approximation in a new
metric defined herein. As an application, we obtain a bound on the Wasserstein distance
between the sum of m-dependent Bernoulli random vectors and a Poisson random vector.
Moreover, we consider point processes of U -statistic structure, that is, point processes
that, once evaluated on a measurable set, become U -statistics. For point processes of
U -statistic structure with an underlying Poisson process, we establish a Poisson pro-
cess approximation result that is the analogue of the one shown by L. Decreusefond, M.
Schulte, and C. Thäle with the Kantorovich–Rubinstein distance replaced by our new
metric.

General criteria for the weak convergence of locally finite point processes to a Poisson
process are derived from the relation between probabilities of two consecutive values of
a Poisson random variable. P. Calka and N. Chenavier studied the limiting behavior of
characteristic radii of homogeneous Poisson-Voronoi tessellations. By our general results,
we extend and improve their findings by showing Poisson process convergence for point
processes constructed using inradii and circumscribed radii of inhomogeneous Poisson-
Voronoi tessellations.
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Chapter 1

Introduction

The study of the asymptotic behavior of random elements and the derivation of approxi-
mation results are of great interest among probabilists and have considerable importance
in all scientific fields, from astrophysics to genetics. Indeed, they permit the study of
complicated distributions using simpler ones and hence they can be used to express non-
trivial problems in a simple way with a certain level of accuracy. The Poisson distribution
is often used to model the occurrences of events, that is, situations involving the sum of
indicator functions. It is well known, for example, that the sum of n independent identi-
cally distributed Bernoulli trials with success probability p = p(n) > 0 such that pn ∼ λ
can be approximated using a Poisson distribution with mean λ when n is large. Nowa-
days, Poisson random variables, and more generally multivariate Poisson random vectors
and Poisson processes, are used to model many situations involving a large number of
rare events, not necessarily independent. For instance, they are employed in extreme
values theory, time series analysis, stochastic geometry and theory of summation (see
e.g. [26, 49]).

This thesis investigates the limit behavior of several random elements, mostly taken
from stochastic geometry problems. It establishes both limit theorems and (non-asympto-
tic) approximation results with Poisson random variables, Poisson random vectors and
Poisson processes as limits.

In the first part of this dissertation, we compare the distributions of integer-valued
random variables and Poisson random variables. For λ > 0 and a random variable X with
values in N0 = N ∪ {0}, a possible way to study the distance between the distributions
of X and a Poisson random variable Pλ with mean λ is via a sequence of error terms
qk, k ∈ N0, given by the equation

qk−1 = kP(X = k)− λP(X + Z = k − 1), k ∈ N, (1.1)

for some random variable Z with values in Z and defined on the same probability space
as X. Intuitively, if |qk|, k ∈ N0, are small and |Z| is zero with high probability, then X
behaves approximately like Pλ, while if both are zero, it follows the same distribution as
Pλ. If P(Z +X ≥ 0) = 1, one can show that

E[Xf(X)] = λE[f(X + Z + 1)] +

∞∑
k=1

f(k)qk−1 (1.2)

for all measurable f such that E[|Xf(X)|] < ∞. Observe that if qk = 0 for all k ∈ N0

and E[X] = λ, the random variable X+Z+1 in the previous equation has the size-biased
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distribution of X and the condition P(Z + X ≥ 0) = 1 is always satisfied. In this case
the total variation distance between X and Pλ is bounded by

dTV (X,Pλ) = sup
A⊂N0

∣∣P(X ∈ A)− P(Pλ ∈ A)
∣∣ ≤ (1 ∧ λ)E[|Z|],

where a ∧ b = min{a, b} for a, b ∈ R. This inequality was first proven in [9] for the sum
of Bernoulli random variables and later generalized to all non-negative integer-valued
random variables (see e.g. [60, Theorem 4.13]). On the other hand, if the error terms qk
are not zero, by (1.2) we can interpret the random variable X+Z+ 1 as an approximate
size-bias coupling of X. In this case, we prove that

dTV (X,Pλ) ≤ (1 ∧ λ)E[|Z|] +

(
1 ∧ 1√

λ

) ∞∑
k=0

|qk|.

Observe that, in contrast to the previous classical result, for this bound it is not required
that E[X] = λ. The employment of the error terms is sometimes necessary, as it is not
always possible to find an exact size-bias coupling, or equivalently, a Z for which the qk
defined by (1.1) with λ = E[X] are zero for all k.

By means of the previous results, and more generally using Poisson approximation
results, one can study the weak convergence for minima or maxima of collections of
random variables. This is possible because the tail distribution of an exponential random
variable E1 with mean 1 can be expressed using P(Pλ = 0), λ ≥ 0. Hence the difference
between the tail distribution functions of the minimum of a collection of non-negative
random variables Y1, . . . Yn, n ∈ N, and E1 can be bounded using Xλ =

∑n
j=1 1{Yj ≤ λ}

by ∣∣∣P( min
j=1,...,n

Yj > λ
)
− P(E1 > λ)

∣∣∣ = |P(Xλ = 0)− P(Pλ = 0)| ≤ dTV (Xλ, Pλ). (1.3)

Then, by showing that for any fixed λ ≥ 0, the total variation distance between Xλ

and Pλ goes to 0 as n increases to infinity, it is possible to prove that the minimum of
Y1, . . . , Yn converges weakly to E1. Similar arguments also apply if we replace E1 by
e.g. a Weibull random variable and Pλ by Pf(λ) for some positive real-valued function f .
However, since the total variation distance between Xλ and Pλ usually depends on λ, the
previous inequality does not permit the differences on the left-hand side to be bounded
uniformly in λ ≥ 0. As a result, the estimates for the total variation distance do not lead
to a bound for the Kolmogorov distance

dK

(
min

j=1,...,n
Yj , E1

)
= sup

λ≥0

∣∣∣P( min
j=1,...,n

Yj > λ
)
− P(E1 > λ)

∣∣∣
between the minimum of Y1, . . . , Yn and E1. To overcome this problem, we prove for
λ > 0 that the difference of the probabilities at 0 can be bounded by

|P(Xλ = 0)− P(Pλ = 0)| ≤ 1

λ
E[|Z|] + (1 ∧ λ)E

[
|Z|1{Xλ − Z− = 0}

]
+

(
1 ∧ 1

λ

)
|q0|+

(
1 ∧ 1

λ2

) ∞∑
k=1

|qk|,

where Z− is the negative part of a random variable Z in Z and the sequence qk, k ∈ N0, is
defined by (1.1) with X = Xλ, and Z and λ as above. As we shall see in many examples,
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for large λ and a proper choice of Z, this inequality establishes a better bound than the
total variation distance for the left-hand side of (1.3), and it permits the approximation
of minima or maxima of collections of random variables by suitable distributions in the
Kolmogorov distance.

In this work, we also estimate the pointwise difference between the cumulative dis-
tribution functions of Xλ and Pλ. Since the probability that the m-smallest element
of Y1, . . . , Yn is greater than a given threshold λ corresponds to P(Xλ ≤ m − 1) for
all m = 1, . . . , n, one can then derive Poisson approximation results for the m-smallest
(largest) element of Y1, . . . , Yn by our general results and similar arguments to the one
employed to study the distribution of min

j=1,...,n
Yj .

For a random vector X = (X1, . . . , Xd) with values in Nd0, d ∈ N, and (λ1, . . . , λd) ∈
[0,∞)d, a multivariate version of (1.1) is given by the equation

q
(i)
k1,...,ki

= kiP
(
(X1, . . . , Xi) = (k1, . . . , ki)

)
− λiP

(
(X1, . . . , Xi) + Z(i) = (k1, . . . , ki−1, ki − 1)

)
,

(1.4)

for k1, . . . , ki ∈ N0 with ki 6= 0, and i = 1, . . . , d, where Z(i) is a random vector with
values in Zi defined on the same probability space as X. Intuitively, when the error terms

q
(i)
k1,...,ki

are small in absolute value and Z(i) is the null vector with high probability for all i,
(X1, . . . , Xd) behaves like a Poisson random vector P with mean E[P] = (λ1, . . . , λd), that
is, a random vector in Nd0 whose components are independent and Poisson distributed
random variables with means λi, i = 1, . . . , d. Let Lipd(1) denote the set of Lipschitz
functions g : Nd0 → R with Lipschitz constant bounded by 1 with respect to the metric
induced by the 1-norm. In the second part of this dissertation, we derive an explicit
bound on the Wasserstein distance

dW (X,P) = sup
g∈Lipd(1)

∣∣E[g(X)]− E[g(P)]
∣∣

between X and P that depends on the sum of the absolute values of the error terms and
on the L1-norm of the components of the random vectors Z(i), i = 1, . . . , d. In [28], the
size-bias coupling for random vectors is defined as a particular case of the more general
definition of size-bias coupling for a collection of non-negative random variables and is
employed in the Gaussian approximation of random vectors. Similarly to what we have
seen for the one-dimensional case, the family of random vectors

Y(i) = Z(i) + (X1, . . . , Xi−1, Xi + 1), i = 1, . . . , d,

can be interpreted as an approximate size-bias coupling of X, and in the case when

Z(i), i = 1, . . . , d, are such that the error terms q
(i)
k1,...,ki

defined by (1.4) with (λ1, . . . , λd) =
E[X] are all zeros, they fulfill a slightly different requirement to that in the definition of
size-bias coupling from [28].

In this work, many problems from stochastic geometry are considered. In stochastic
geometry, one is often interested in random geometric structures, such as random tessella-
tions or geometric random graphs. These structures depend on random points in a measu-
rable space, which is often convenient to describe using a point process. Intuitively, a
point process ξ on a measurable space (X,X ) is a random collection of points in X, and
for any measurable set B ∈ X , the random variable ξ(B) gives the number of elements
from ξ that are in B. When the point process ξ is constructed from n independent
identically distributed (i.i.d.) random points, then ξ is called a binomial point process.
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In many situations, the random configurations consists of a random number of points,
which could also be infinite. For these, a better model is given by a Poisson process. A
point process η on a measure space (X,X , λ) is a Poisson process with intensity measure
λ if, for all measurable and disjoint sets B1, . . . , Bk, η(B1), . . . , η(Bk) are independent
and Poisson distributed random variables with means λ(B1), . . . , λ(Bk).

The distance between the distributions of a point process ξ and a Poisson process η
on X is usually measured using the total variation distance or the Kantorovich-Rubistein
distance, which are the analogues of the total variation and the Wasserstein distance for
point processes. In this work, we define a new distance between point processes ξ and ζ
on X with finite intensity measure as

dπ(ξ, ζ) = sup
(A1,...,Ad)∈X ddisj, d∈N

dW
(
(ξ(A1), . . . , ξ(Ad)), (ζ(A1), . . . , ζ(Ad))

)
,

where for d ∈ N, X ddisj denotes the set of all d-tuples of disjoint measurable sets in X.
Then, by applying the bound mentioned above for the Wasserstein distance to dW (X,P)
with X = (ξ(A1), . . . , ξ(Ad)) and P = (η(A1), . . . , η(Ad)), we derive a Poisson process
approximation result for point processes with finite intensity measure.

In a large variety of applications in the literature, the point processes are defined on
a locally compact second countable Hausdorff space S and are considered to be locally
finite, which means that they take finite values on compact sets (almost surely). In
other words, they are random elements in the space of locally finite counting measures
on S. Since this space is Polish, for these point processes it is also possible to derive
asymptotic results using the weak convergence. In the literature, several classical results
are available to establish weak convergence (see e.g. [33]). Following the intuition given
at the beginning of the introduction about (1.1), in the last part of this dissertation we
show that a tight sequence of locally finite point processes ξn, n ∈ N, on S satisfies

lim
n→∞

kP(ξn(B) = k)− λ(B)P(ξn(B) = k − 1) = 0, k ∈ N,

for any B ⊂ S in a certain family of sets and some locally finite measure λ, if and only
if ξn converges in distribution to a Poisson process with intensity measure λ. As a con-
sequence of this result, we obtain a general criterion for the weak convergence of locally
finite point processes constructed from Poisson processes and binomial point processes.

The non-asymptotic general results mentioned above are obtained by the Chen-Stein
method. This method is a powerful tool for computing an error bound when approxima-
ting probability distributions by the Poisson distribution. It is worth mentioning that our
multivariate Poisson approximation results are established by applying the Chen-Stein
method to each component of the random vectors.

To demonstrate the versatility of our findings we apply them to several examples.
The applications can be summarized as follows:

� U -statistics: A U -statistic is defined as the sum of a real-valued k-variate symme-
tric function h evaluated over all possible combinations of k distinct points from a
random sample. Bounds for the Poisson approximation of U -statistics constructed
from binomial point processes or Poisson processes with h being either 0 or 1/k!
are obtained in [51] and [66]. Moreover, limit theorems for the extreme values of
U -statistics were considered in [36], though without providing approximation re-
sults with respect to any distance. We derive similar Poisson approximation results
for U -statistics and establish explicit bounds on the pointwise difference between
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the cumulative distribution functions of a U -statistic and a Poisson random vari-
able. Our theoretical results permit the approximation of minima or maxima of
U -statistics by suitable distributions in the Kolmogorov distance. As an applica-
tion of our findings, we approximate the minimum inter-point distance between
the points of a Poisson process with midpoint in an observation window by an
exponential distribution.

The accuracy of the Poisson process approximation of point processes of U -statistic
structure, i.e. point processes that, once evaluated on a measurable set, become U -
statistics, is investigated in [22]. For an underlying Poisson process, we establish the
analogue of [22, Theorem 3.1] with the Kantorovich–Rubinstein distance replaced
by the distance dπ.

� Poisson-Voronoi tessellations: Given a cell of a Voronoi tessellation, the cir-
cumscribed radius is the smallest radius for which the ball centered at the nucleus
contains the cell, while the inradius is the largest radius for which the ball centered
at the nucleus is contained in the cell. For a homogeneous Poisson-Voronoi tessel-
lation generated by a stationary Poisson process with intensity t > 0, the limiting
distributions as t → ∞ of the maximal inradius and the minimal circumscribed
radius of cells with nucleus within an observation window were derived in [15]. In
our work, we extend these findings in two directions. Firstly, we prove Poisson pro-
cess convergence of point processes constructed from inradii (circumscribed radii)
of inhomogeneous Poisson-Voronoi tessellations. This generalizes the mentioned
results from [15] to inhomogeneous Poisson-Voronoi tessellations and allows us to
deal with the m-th largest (or smallest) value or combinations of several order
statistics. Secondly, we derive approximation results for certain transforms of the
maximal inradius and the minimal circumscribed radius of cells with nucleus in an
observation window for stationary Poisson-Voronoi tessellations.

� k-runs: A k-run means at least k successes in a row in a sequence of trials. When
the successes are generated by i.i.d. Bernoulli random variables, it is shown in
[45] that the difference between the probability that there are no more than v non-
overlapping k-runs among n trials, and P(Pα ≤ v) for a certain Poisson random vari-
able Pα, after taking the supremum over all k = 1, . . . , n, behaves asymptotically
like O(log n/n). We improve this result by finding an explicit (non-asymptotic)
bound for the supremum of the difference.

The Poisson approximation of the number of non-overlapping k-runs in a sequence
of n i.i.d. Bernoulli random variables has been investigated by several authors; see
e.g. the survey [46]. It is known that the first arrival time of a k-run in a sequence
of i.i.d. Bernoulli random variables multiplied by the probability of having a k-run
converges weakly to an exponentially distributed random variable as the success
probability converges to zero. We extend this result to the situation when the
Bernoulli random variables are weakly dependent. Moreover, we show that the
rescaled starting points of the k-runs behave like a Poisson process if the success
probabilities converge to zero and if some independence assumptions are satisfied.

� Multinomial distribution: The multivariate Poisson approximation of multino-
mial random vectors, and more generally of sums of independent Bernoulli random
vectors, has already been investigated by many authors using the total variation
distance; see e.g. [57] and references therein. In contrast to what is usually done in
the literature, we assume that the Bernoulli random vectors are m-dependent, and
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we study the multivariate Poisson approximation of their sum in the Wasserstein
distance.

This thesis is organised in the following way. In Chapter 2, we introduce some
important properties of point processes and present the Chen-Stein method and size-
bias coupling. The remaining chapters are based on the following papers:

� Pianoforte and Schulte 2021 : Poisson approximation with applications to stochas-
tic geometry. Preprint.

� Pianoforte and Turin 2021 : Multivariate Poisson and Poisson process approxima-
tions with applications to Bernoulli sums and U -statistics. Preprint.

� Pianoforte and Schulte 2021 : Criteria for Poisson process convergence with appli-
cations to inhomogeneous Poisson-Voronoi tessellations. Preprint.

In Chapter 3, we compare the distributions of integer-valued random variables and Pois-
son random variables. We consider the total variation and the Wasserstein distance
and provide, in particular, explicit bounds on the pointwise difference between the cu-
mulative distribution functions. In Chapter 4, we investigate the multivariate Poisson
approximation of random vectors in the Wasserstein distance and the Poisson process
approximation of point processes with finite intensity measure in the new metric dπ.
Finally, in Chapter 5, we study the weak convergence of point processes to a Poisson
process.
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Chapter 2

Preliminaries

This chapter is organised as follows. In the first section, we provide some basic notation
that will be used hereafter without necessarily being defined. In the second section, we
introduce point processes and locally finite point processes, following the approaches in
the textbooks [38] and [32], respectively. In the third section, we illustrate the Chen-
Stein method, mirroring what is done in [52]. Finally, the fourth section is devoted to an
introduction to size-bias coupling, which summarizes some results given in the survey [60].

2.1 Notation

Let (X,X ) be a measurable space. The integral of a measurable function f : X→ R with
respect to a measure µ on X is written as∫

X
f(x)dµ(x).

We say that f belongs to L1(µ) if∫
X
|f(x)|dµ(x) <∞.

Throughout this work, N is the set of positive integers and N0 = N∪ {0}. For n ∈ N, we
denote by µn the n-fold product measure of µ on the space Xn endowed with the σ-field
generated by X n. Analogously, given two measures µ1 and µ2 defined on measurable
spaces (X1,X1) and (X2,X2), respectively, we write µ1 × µ2 for the product measure of
µ1 and µ2 on X1 × X2 endowed with the σ-field generated by X1 × X2. A measure µ on
(X,X ) is said to be σ-finite if X can be written as countable union of measurable sets
Ai, i ∈ N, such that µ(Ai) < ∞ for all i ∈ N. The Lebesgue measure on (Rd,B(Rd)),
where B(Rd) stands for the Borel σ-field, is denoted by λd, and we use the shorthand
notation dx for the integration with respect to the Lebesgue measure.

For a finite set A, we write |A| for its cardinality. We use the shorthand notations
a ∧ b = min{a, b} and a ∨ b = max{a, b} for a, b ∈ R, and we indicate by X+ and X−
the positive and negative part of a random variable X, respectively. Whenever we write

α > 0, it is understood that α ∈ (0,∞). By
d−→, we denote the convergence in distribution,

and by
d
=, the equality in distribution. PZ stands for the probability distribution of a

random element Z in (X,X ).
In Chapter 4, since we will focus on the components of vectors, for convenience an

element in Rd, d ∈ N, is denoted using the bold notation x = (x1, . . . , xd).
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2.2 Point processes

2.2.1 Point processes on a measurable space

Throughout this subsection, we always assume that X is a measurable space endowed
with a σ-field X . We define NX as the space of all σ-finite counting measures on X. The
set NX is equipped with the σ-field NX generated by the collection of all subsets of NX
of the form

{µ ∈ NX : µ(B) = k}, B ∈ X , k ∈ N0.

This means that NX is the smallest σ-field on NX such that µ 7→ µ(B) is measurable for
all B ∈ X .

Definition 2.2.1. A point process on X is a random element in (NX,NX).

From now on, we write (Ω,F ,P) for the underlying probability space. If ξ is a point
process on X and B ∈ X , we denote by ξ(B) the mapping ω 7→ ξ(ω)(B). The intensity
measure of a point process ξ on X is the measure µ defined by µ(B) = E[ξ(B)], B ∈ X .
A point process ξ is said to be finite if ξ(X) <∞ almost surely.

In order to study the distribution of a point process it is convenient to consider its
finite dimensional distributions (see [38, Proposition 2.10]).

Proposition 2.2.2. Let ξ and ζ be point processes on X. Then, ξ
d
= ζ if and only if

(ξ(B1), . . . , ξ(Bm))
d
= (ζ(B1), . . . , ζ(Bm))

for all m ∈ N and all pairwise disjoint sets B1, . . . , Bm ∈ X .

In [38, Proposition 2.10] is also established that two point processes have the same
distribution if their Laplace functionals coincide or if, the integrals of any positive mea-
surable function on X with respect to the point processes have the same distribution.

Next, let us introduce binomial point processes and Poisson processes. We denote by
δx the Dirac measure concentrated at x ∈ X.

Definition 2.2.3. For n ∈ N, let X1, . . . , Xn be i.i.d. random elements in X. Then, we
call the random element

βn =
n∑
i=1

δXi

in NX a binomial point process.

Note that, if the Xi are distributed according to a probability measure Q, then βn(A)
follows a binomial distribution with parameters n and Q(A) for any A ∈ X .

Definition 2.2.4. Let λ be a σ-finite measure on X. A Poisson process with intensity
measure λ is a point process on X with the following properties:

(i) η(B) follows a Poisson distribution with mean λ(B) for all B ∈ X .

(ii) η(B1), . . . , η(Bn) are independent for disjoint sets B1, . . . , Bn ∈ X , n ∈ N.

The properties (i) and (ii) are not independent of each other. In fact, [38, Theorem
6.10] and [38, Theorem 6.12] show that under certain extra conditions, either of the
defining properties of the Poisson process implies the other.
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[38, Theorem 3.6] establishes that for any σ-finite measure λ on X there exists a
Poisson process η on X with intensity measure λ. Furthermore, [38, Corollary 3.7] proves
that there exists a probability space (Ω,F ,P) supporting random elements X1, X2, . . .
in X and a random variable τ in N0 ∪ {∞} such that

η
d
=

τ∑
n=1

δXn , (2.1)

with the standard convention η = 0 if τ = 0. Thus, we can think of η as the random
set (Xn)τn=1 in X, where it is allowed that two different elements in (Xn)τn=1 are the
same element in X. In the following we always consider Poisson processes represented as
in (2.1). More generally, a point process is said to be proper if it can be written as in
(2.1). By [38, Corollary 6.5], we obtain that any point process on a Borel space satisfying
some σ-finite conditions (e.g. locally finiteness) is proper. Recall that a Borel space is a
measurable space that can be identified to a Borel subset of R by a measurable bijection.
An example of a Borel space is any locally compact second countable Hausdorff space.

For any non-negative measurable function f : X→ [0,∞) and a proper point process
ξ on X, we indicate the random integral of f with respect to ξ by

ξ(f) =
∑
x∈ξ

f(x) =

∫
X
f(x)dξ(x),

From [38, Proposition 2.7] it follows that ξ(f) is a random variable. Since ξ is proper, for
almost surely every ω ∈ Ω, we may write ξ(ω) = (xi)i∈I for some xi = xi(ω) ∈ X and with
I = I(ω) at most countable. Given a non-negative measurable function g : Xk → [0,∞)
with Xk equipped with the σ-field generated by X k, k ∈ N, we define∑

(x1,...,xk)∈ξk6=

g(x1, . . . , xk) =
∑

i1,...,ik∈I:
il1
6=il2∀l1,l2∈{1,...,k},l1 6=l2

g(xi1 , . . . , xik),

Thus, ξk6= represents the set of all k-tuples of distinct points from ξ (where it is possible
that two distinct elements from ξ are the same element in X). For k = 1, we use the
convention ξ = ξ1

6=. The random sum
∑

(x1,...,xk)∈ξk6=
g(x1, . . . , xk) corresponds to ξ(k)(g),

where ξ(k) is the so called k-th factorial measure of ξ (see [38, Section 4.2]), which is a
proper point process on Xk because ξ is proper. Whence, again by [38, Proposition 2.7],∑

(x1,...,xk)∈ξk6=
g(x1, . . . , xk) is a random variable.

A characterization for the distribution of a Poisson process is given by the Mecke
equation (see [38, Theorem 4.1]).

Proposition 2.2.5. Let λ be an σ-finite measure on X and η be a point process on X.
Then η is a Poisson process with intensity measure λ if and only if

E
[∑
x∈η

f(x, η)
]

=

∫
X
E[f(x, η + δx)]dλ(x)

for all non-negative measurable functions f : X×NX → [0,∞).

Finally, we state the multivariate version of the Mecke formula (see [38, Theorem
4.4]).
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Proposition 2.2.6. Let η be a Poisson process on X with σ-finite intensity measure λ.
Then,

E
[ ∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk, η)
]

=

∫
X
E[f(x1, . . . , xk, η +

k∑
i=1

δxi)] dλ
k(x1, . . . , xk)

for all non-negative measurable functions f : Xk ×NX → [0,∞) and k ∈ N.

2.2.2 Locally finite point processes

Let S be a locally compact second countable Hausdorff space, abbreviated as lcscH space,
equipped with the Borel σ-field S. A topological space is second countable if its topology
has a countable basis, and it is locally compact if every point has an open neighborhood
whose topological closure is compact.

We denote by N (S) the space of all locally finite counting measures on S. Recall that
a measure µ on S is locally finite if, for any x ∈ S there exists an open set A ⊂ S with
x ∈ A such that µ(A) < ∞. N (S) is equipped with the corresponding trace σ-field of
NS . The σ-field of N (S) coincides with the Borel σ-field for the vague topology, which
is generated by the mappings

πf : µ 7→ µ(f) =

∫
S
f(x)dµ(x), f ∈ C+

K(S),

where C+
K(S) denotes the set of non-negative and continuous functions with compact

support (see [32, Theorem A2.3-(iv)]). N (S) endowed with the vague topology is a Polish
space, that is, a separable completely metrizable topological space (see [32, Theorem
A2.3-(i)]).

Definition 2.2.7. A locally finite point process on S is a random element in N (S)
equipped with the trace σ-field of NS.

Note that any point process on S with locally finite intensity measure is locally finite.
We denote by Ŝ the family of relatively compact Borel sets from S. For a point process
ξ on S, we define

Ŝξ = {B ∈ Ŝ : ξ(∂B) = 0 a.s.},

where ∂B indicates the boundary of B. Observe that, if λ denotes the intensity measure
of ξ, then

Ŝξ = Ŝλ = {B ∈ Ŝ : λ(∂B) = 0}.

A locally finite point process ξ is said to be simple if

P(ξ({x}) ≤ 1 for all x ∈ S) = 1.

We say that a measure λ on S is non-atomic if λ({x}) = 0 for all x ∈ S. It is possible
to verify whether a Poisson process is simple by checking if its intensity measure is
non-atomic (see [38, Proposition 6.9]).

Lemma 2.2.8. Let η be a Poisson process on S with locally finite intensity measure λ.
Then η is simple if and only if λ is non-atomic.
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Since N (S) is a Polish space, it follows from [32, Theorem 16.3] that a sequence of
locally finite point processes is tight if and only if it is relatively compact in distribution,
i.e., every subsequence has a further subsequence that converges in distribution. [32,
Lemma 16.4] guarantees that continuous mappings preserve tightness, and [32, Lemma
16.15] gives the following tightness criterion.

Lemma 2.2.9. Let ξ1, ξ2, . . . be locally finite point processes on S. Then the sequence
ξn, n ∈ N, is tight if and only if ξn(B), n ∈ N, is tight in R for every B ∈ Ŝ.

In the last part of this subsection, we give some general weak convergence criteria for
point processes. The proof of the following result is given in [32, Theorem 16.16].

Proposition 2.2.10. Let ξ, ξ1, ξ2, . . . be locally finite point processes on S. Then these
conditions are equivalent:

(i) ξn
d−→ ξ.

(ii) ξn(f)
d−→ ξ(f) for all f ∈ C+

K(S).

(iii) (ξn(B1), . . . , ξn(Bk))
d−→ (ξ(B1), . . . , ξ(Bk)) for all B1, . . . , Bk ∈ Ŝξ, k ∈ N.

If ξ is a simple point process, it is also equivalent that

(iv) ξn(B)
d−→ ξ(B) for all B ∈ Ŝξ.

A non-empty class U of subsets of S is called a ring if it is closed under finite unions
and intersections, as well as under proper differences. A ring U is said to be dissecting if
any open set G ⊂ S can be written as a countable union of sets in U , and every relatively
compact set B ∈ Ŝ is covered by finitely many sets in U .

When ξ, ξ1, ξ2, . . . are locally finite point processes and ξ is simple, ξn
d−→ ξ follows

already from the one-dimensional convergence ξn(U)
d−→ ξ(U) with U restricted to a

dissecting ring U ⊂ Ŝξ. In fact, this is a consequence of the following result (see [33,
Theorem 4.15]).

Proposition 2.2.11. Let ξ, ξ1, ξ2, . . . be locally finite point processes on S, where ξ is

simple, and fix a dissecting ring U ⊂ Ŝξ. Then ξn
d−→ ξ if and only if

(i) P(ξn(U) = 0)→ P(ξ(U) = 0), U ∈ U .

(ii) lim sup
n→∞

P(ξn(U) > 1) ≤ P(ξ(U) > 1), U ∈ U .

2.3 The Chen-Stein method

The Stein method is a technique employed to investigate the accuracy of the approxima-
tion to one distribution by another in various metrics. C. Stein in [69] initially conceived
it to study the approximation to the normal distribution for the sum of dependent ran-
dom variables. L. H. Y. Chen modified the Stein method to obtain approximation results
for the Poisson distribution; for this reason the Stein method applied to the problem of
Poisson approximation is referred to as the Chen-Stein method. For a detailed and more
general introduction into Stein’s method, we refer to [40, 60], and for the Chen-Stein
method for Poisson approximation to [10, 16, 60].
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Let Lip(1) denote the set of all Lipschitz functions g : N0 → R with Lipschitz constant
bounded by 1, and let Pλ be a Poisson random variable with mean λ ≥ 0. For any fixed
g ∈ Lip(1), the solution of Stein’s equation for the Poisson approximation is a function
fg : N0 → R with fg(0) = 0 that satisfies

λfg(i+ 1)− ifg(i) = g(i)− E[g(Pλ)], i ∈ N0. (2.2)

The function fg can be obtained by solving recursively (2.2) for i = 0, 1, . . . . An explicit
expression for this solution is given in [5, Lemma 1]. In particular for g = 1A with
A ⊂ N0, one has the following representation for fg (see [60, Lemma 4.2]).

Lemma 2.3.1. For any λ > 0 and A ⊂ N0 the unique solution fA of

λfA(i+ 1)− ifA(i) = 1{i ∈ A} − P(Pλ ∈ A), i ∈ N0, (2.3)

with fA(0) = 0 is given by

fA(i) =
eλ(i− 1)!

λi
[
P(Pλ ∈ A ∩ {0, 1, . . . , i− 1})− P(Pλ ∈ A)P(Pλ ≤ i− 1)

]
, i ∈ N.

From now on, we denote by fA the solution of the Stein equation (2.2) for g = 1A
with A ⊂ N0. Let X be a random variable with values in N0. The idea of the Chen-
Stein method for the Poisson approximation of X is to plug X in (2.2) and to take the
expectation, which yields

E[λfg(X + 1)−Xfg(X)] = E[g(X)]− E[g(Pλ)].

So we can control the difference between the expectations of g(X) and g(Pλ) on the right-
hand side by estimating the term on the left-hand side. This requires some bounds on
the solution of (2.2). These bounds are also called Stein’s factors or magic factors, where
the latter name derives from the fact that they tend to decrease as the mean λ of Pλ
increases. For a function h : N0 → R we define ∆h : N0 → R by ∆h(i) = h(i+ 1)− h(i).
The solution of the Stein equation (2.2) has the following bounds (see [11, Theorem 1.1]).

We use the shorthand notation a ∧ b = min{a, b} for a, b ∈ R.

Lemma 2.3.2. For any λ > 0 and g ∈ Lip(1), let fg be the solution of (2.2). Then,

max
i∈N0

|fg(i)| ≤ 1 and max
i∈N
|∆fg(i)| ≤ 1 ∧ 8

3
√

2eλ
≤ 1 ∧ 1.1437√

λ
.

Since fg(0) = 0, Lemma 2.3.2 implies for λ > 0 and g ∈ Lip(1) that

max
i∈N0

|fg(i)| ≤ 1 and max
i∈N0

|∆fg(i)| ≤ 1. (2.4)

Moreover, the solution of (2.3) for A ⊂ N0 has the following magic factors (see [60,
Lemma 4.4]).

Lemma 2.3.3. For fA as in Lemma 2.3.1,

max
i∈N0

|fA(i)| ≤ 1 ∧ 1√
λ

and max
i∈N0

|∆fA(i)| ≤ 1 ∧ 1

λ
.

In Chapter 3, we are interested, in particular, in the solutions of the Stein equation
fA with A = {0, . . . , v}, v ∈ N0. For these, in Section 3.2, we derive similar - potentially
sharper magic factors than those mentioned above.
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2.4 Size-bias coupling

The size-bias coupling first appeared in the context of Stein’s method for Gaussian ap-
proximation in [28]. In this section, we only present the main properties of size-bias
coupling focusing on its application to Poisson approximation; for a more detailed intro-
duction, we refer to [3, 60].

Definition 2.4.1. For a random variable Y ≥ 0 with µ = E[Y ] > 0, we say that the
random variable Y s has the size-bias distribution of Y if for all measurable functions
f : R→ R such that E [|Y f(Y )|] <∞, we have

E[Y f(Y )] = µE[f(Y s)].

Moreover, we say that Y s is a size-bias coupling of Y if it is defined on the same proba-
bility space as Y .

The size-bias distribution of a random variable Y ≥ 0 with finite mean always exists
(see [60, Proposition 3.18]). In particular, for a non-negative integer-valued random
variable, one obtains the following result (see [60, Corollary 3.19]).

Lemma 2.4.2. If X ≥ 0 is an integer-valued random variable with λ = E[X] > 0, then
a random variable Xs with the size-bias distribution of X is such that

P(Xs = k) =
kP(X = k)

λ
.

The first inequality in the next proposition is a classical result (see [60, Theorem
4.13]), whose proof is based on the Chen-Stein method and size-bias coupling, while the
second inequality, which gives a Poisson approximation result in the Wasserstein distance,
can be derived by combining the proof of [60, Theorem 4.13] with [11, Theorem 1.1].
Given two non-negative integer-valued random variables Y1 and Y2, the total variation
distance between Y1 and Y2 is defined as

dTV (Y1, Y2) = sup
A⊂N0

|P(Y1 ∈ A)− P(Y2 ∈ A)|,

and the Wasserstein distance between Y1 and Y2 is given by

dW (Y1, Y2) = sup
g∈Lip(1)

|E[g(Y1)]− E[g(Y2)]|.

Proposition 2.4.3. Let X ≥ 0 be an integer-valued random variable with λ = E[X] > 0,
and let Pλ be a Poisson random variable with mean λ. If Xs is a size-bias coupling of
X, then

dTV (X,Pλ) ≤ (1 ∧ λ)E[|X + 1−Xs|]

and

dW (X,Pλ) ≤ (1.1437
√
λ ∧ λ)E[|X + 1−Xs|].

From the previous proposition it follows that the total variation distance between X
and Pλ is small if the absolute value of the difference between X + 1 and Xs has small
expectation. For sums of random variables, standard techniques to construct size-bias
couplings are available. A general result in this direction is [60, Proposition 3.21]. The
following lemma is a corollary of such proposition for the situation when the random
variables take values in {0, 1}, (see [60, Corollary 3.24]).

13



Lemma 2.4.4. Let X1, . . . , Xn be zero-one random variables and also let pi = P(Xi =

1). For each i = 1, . . . , n, let (X
(i)
j )j 6=i have the distribution of (Xj)j 6=i conditional on

Xi = 1. If X =
∑n

i=1Xi, λ = E[X] > 0, and I is chosen independent of all else with

P(I = i) = pi/λ, then Xs =
∑

j 6=I X
(I)
j + 1 has the size-bias distribution of X.

Finally, we introduce the notion of size-bias coupling for random vectors. This defi-
nition was employed in [28] to study the multivariate Gaussian approximation. For a
random vector Y = (Y1, . . . , Yd) in Rd, d ∈ N, we write E[Y] = (E[Y1], . . . ,E[Yd]) for the
mean of Y.

Definition 2.4.5. Let Y = (Y1, . . . , Yd) be a random vector with values in [0,∞)d, d ∈ N,
with mean E[Y] = (µ1, . . . , µd) ∈ (0,∞)d. A family of random vectors Y(i), i = 1, . . . , d,
with values in Rd is a size-bias coupling of Y if the random vectors Y(i) are defined on
the same probability space as Y, and, for each i and all measurable functions f : Rd → R
such that E[|Yif(Y)|] <∞, they satisfy

E[Yif(Y)] = µiE[f(Y(i))].

14



Chapter 3

Poisson approximation

This chapter is a slightly modified and adjusted version of the following preprint article
jointly written with Matthias Schulte:

F. Pianoforte and M. Schulte. Poisson approximation with applications to stochastic
geometry. arXiv:2104.02528, 2021.

Abstract. In this chapter, we compare the distributions of integer-valued random vari-
ables and Poisson random variables. We consider the total variation and the Wasserstein
distance and provide, in particular, explicit bounds on the pointwise difference between
the cumulative distribution functions. Special attention is dedicated to estimating the
difference when the cumulative distribution functions are evaluated at 0. This permits
to approximate the minimum (or maximum) of a collection of random variables by a
suitable random variable in the Kolmogorov distance. The main theoretical results are
obtained by combining the Chen-Stein method with size-bias coupling and a generaliza-
tion of size-bias coupling for integer-valued random variables developed herein. A wide
variety of applications are then discussed with a focus on stochastic geometry.

Acknowledgments. This research was supported by the Swiss National Science Foun-
dation (grant number 200021 175584). We would like to thank Fraser Daly for some
valuable comments.

3.1 Introduction and main results

Let X be a random variable taking values in N0 and let Pλ be a Poisson random variable
with mean λ > 0. In this chapter, we employ Stein’s method, size-bias coupling and a
generalization of size-bias coupling for integer-valued random variables developed herein
to compare the distributions of X and Pλ. We derive upper bounds on the total variation
distance

dTV (X,Pλ) = sup
A⊂N0

|P(X ∈ A)− P(Pλ ∈ A)|

and the Wasserstein distance

dW (X,Pλ) = sup
g∈Lip(1)

|E[g(X)]− E[g(Pλ)]|
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between X and Pλ, where Lip(1) denotes the set of all Lipschitz functions g : N0 → R
with Lipschitz constant bounded by 1. In addition, we establish bounds on the pointwise
differences ∣∣P(X ≤ v)− P(Pλ ≤ v)

∣∣, v ∈ N0,

between the cumulative distribution functions of X and Pλ, which are smaller than those
for the total variation distance. Particular attention is paid to the case v = 0. This
permits to approximate the minimum (or maximum) of a collection of random variables
by a suitable random variable in the Kolmogorov distance. For example, let λd denote
the Lebesgue measure on Rd, let kd stand for the volume of the d-dimensional unit ball,
and let ηt be a Poisson process on Rd with intensity measure tλd, t > 0. From the
aforementioned bounds for v = 0 we deduce that the random variable Yt given by

Yt = min
(x,y)∈η2

t, 6= : x+y
2
∈[0,1]d

2−1t2kd‖x− y‖d,

which is the rescaled minimum (Euclidean) distance between pairs of points of ηt with
midpoint in [0, 1]d, satisfies

0 ≤ P(Yt > u)− P(E1 > u) ≤ 81

t
(3.1)

for u ≥ 0 (see Theorem 3.3.4), where E1 denotes an exponentially distributed random
variable with mean 1. This is possible because P(Yt > u) can be written as P(Xu = 0)
with

Xu =
1

2

∑
(x,y)∈η2

t, 6=

1
{x+ y

2
∈ [0, 1]d, 2−1t2kd‖x− y‖d ∈ [0, u]

}
and P(E1 > u) = P(Pu = 0). By estimating |P(Xu = 0) − P(Pu = 0)| uniformly for all
u ≥ 0, one obtains (3.1), which provides a bound on the Kolmogorov distance

dK(Yt, E1) = sup
u∈R
|P(Yt > u)− P(E1 > u)|

between Yt and E1.
Let us now give precise formulations of our main results. We use the shorthand

notation a∧ b = min{a, b} for a, b ∈ R, and we indicate by W+ and W− the positive and
negative part of a random variable W , respectively.

Theorem 3.1.1. Let X be a random variable taking values in N0 and let Pλ be a Poisson
random variable with mean λ = E[X] > 0. Assume there exists a random variable Z
defined on the same probability space as X with values in Z such that

iP(X = i) = λP(X + Z = i− 1), i ∈ N, (3.2)

is satisfied. Then,

dTV (X,Pλ) ≤ (1 ∧ λ)E[|Z|] and dW (X,Pλ) ≤ (1.1437
√
λ ∧ λ)E[|Z|]. (3.3)

Furthermore for all m ∈ N0,

|P(X = 0)− P(Pλ = 0)| ≤ m!

λm
E[|Z|] +

m−1∑
k=0

(
λ

k + 1
∧ k!

λk

)
E
[
|Z|1{X − Z− = k}

]
(3.4)

and for all v ∈ N,

|P(X ≤ v)− P(Pλ ≤ v)| ≤ (v + 1)2

λ
E[|Z|] + E

[
|Z|1{X − Z− ≤ v}

]
. (3.5)
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Recall that for a random variable Y ≥ 0 with µ = E[Y ] > 0, a random variable Y s

on the same probability space as Y is a size-bias coupling of Y if it satisfies

E[Y f(Y )] = µE[f(Y s)] (3.6)

for all measurable f such that E[|Y f(Y )|] <∞. Thus, (3.2) implies that X + Z + 1 is a
size-bias coupling of X so that we can replace Z by Xs−X − 1 with a size-bias coupling
Xs of X in Theorem 3.1.1. In this form the bounds in (3.3) were already presented in
Proposition 2.4.3.

Remark 3.1.2. Let X be as in Theorem 3.1.1 and assume that (3.2) is satisfied.

(i) The last expressions on the right-hand sides of (3.4) and (3.5) can be further
bounded using the inequalities

E[|Z|1{X − Z− = k}] ≤ E[Z−] + E[Z+1{X = k}], k ∈ N0,

E
[
|Z|1{X − Z− ≤ v}

]
≤ E[Z−] + E[Z+1{X ≤ v}], v ∈ N.

(ii) From (3.6) with f(x) = x we obtain λE[Xs] = E[X2] so that Z = Xs−X−1 yields

E[Z] =
1

λ

{
Var(X)− λ

}
. (3.7)

The next result constitutes our main achievement and generalizes Theorem 3.1.1.
Instead of assuming that Z satisfies (3.2) exactly, we allow error terms on the right-hand
side of (3.2).

Theorem 3.1.3. Let X be an integrable random variable with values in N0 and let Pλ
be a Poisson random variable with mean λ > 0. Let Z be a random variable defined on
the same probability space as X with values in Z, and let qi, i ∈ N0, be the sequence given
by

qi−1 = iP(X = i)− λP(X + Z = i− 1), i ∈ N. (3.8)

Then,

dTV (X,Pλ) ≤ (1 ∧ λ)E[|Z|] +

(
1 ∧ 1√

λ

) ∞∑
i=0

|qi| (3.9)

and

dW (X,Pλ) ≤ λE[|Z|] +
∞∑
i=0

|qi|. (3.10)

Moreover, if P(X + Z ≥ 0) = 1, then

dW (X,Pλ) ≤ (1.1437
√
λ ∧ λ)E[|Z|] +

∞∑
i=0

|qi|, (3.11)

for all m ∈ N0,

|P(X = 0)− P(Pλ = 0)| ≤ m!

λm
E
[
|Z|
]

+
m−1∑
k=0

(
λ

k + 1
∧ k!

λk

)
E
[
|Z|1{X − Z− = k}

]
+

(
1 ∧ 1

λ

)
|q0|+

(
1 ∧ 1

λ2

) ∞∑
i=1

|qi|

(3.12)
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and for all v ∈ N,

|P(X ≤ v)− P(Pλ ≤ v)| ≤ (v + 1)2

λ
E[|Z|] + E

[
|Z|1{X − Z− ≤ v}

]
+

(
1 ∧ 1√

λ

) ∞∑
i=0

|qi|.
(3.13)

Note that Theorem 3.1.1 is a special case of Theorem 3.1.3. Indeed, if qi = 0 for all
i ∈ N0, (3.8) becomes (3.2) and the bounds in Theorem 3.1.3 simplify to those in Theorem
3.1.1. In this situation X + Z + 1 is a size-bias coupling of X. Thus, we can think of
X + Z + 1 with Z satisfying (3.8) as a generalization of size-bias coupling. In order to
have good bounds in Theorem 3.1.3, the error terms qi, i ∈ N0, should be small. The
important advantage of Theorem 3.1.3 compared to Theorem 3.1.1 is that one only needs
to construct an approximate size-bias coupling instead of an exact size-bias coupling.

For our work the so-called magic factors or Stein’s factors play a crucial role. These
are bounds on the solutions of the Stein equation, which lead to the factors involving λ in
our results. Since different classes of test functions have different magic factors, the upper
bounds for the differences between P(X ≤ v) and P(Pλ ≤ v) for v ∈ N0 in Theorems
3.1.1 and 3.1.3 are of a better order in λ than those for the total variation distance or the
Wasserstein distance. This observation is essential for obtaining approximation results in
the Kolmogorov distance as (3.1) since it allows to bound the right-hand sides of (3.4),
(3.5), (3.12) and (3.13) uniformly in λ. For a different Poisson approximation result
where one has a better order in λ for the difference of the probabilities at zero than for
the total variation distance we refer the reader to [1, Theorem 1].

To demonstrate the versatility of our general main results we apply them to sev-
eral examples. In particular, we deduce bounds as (3.1), where we compare minima or
maxima of collections of dependent random variables with random variables having an
exponential, Weibull or Gumbel distribution.

We study the Poisson approximation of U -statistics constructed from an underlying
Poisson or binomial point process (see Subsections 3.3.1 and 3.3.2). As application of our
main finding on U -statistics with Poisson input, Theorem 3.3.3, we consider the minimum
inter-point distance problem discussed at the beginning of the introduction and establish
the bound (3.1) for the exponential approximation in Kolmogorov distance.

Our next example is the Poisson approximation of the number of non-overlapping
k-runs in a sequence of n i.i.d. Bernoulli random variables. By a k-run one means at
least k successes in a row. Here, we use Theorem 3.1.1 to bound the difference between
the probability that among n trials there are no more than v non-overlapping k-runs and
P(Pα ≤ v) for a certain Poisson random variable Pα; this bound is remarkable because
it does not depend on k, i.e., the number of required successes in a row.

For stationary Poisson-Voronoi tessellations we consider statistics related to circum-
scribed radii and inradii. We use the inequality (3.12) in Theorem 3.1.3 to compare a
transform of the minimal circumscribed radius of the cells with the nucleus in an observa-
tion window with a Weibull random variable in Kolmogorov distance. For this example
we use the full generality of Theorem 3.1.3 since we construct a coupling that satisfies
(3.8), but is not a size-bias coupling. By applying the inequality (3.4) in Theorem 3.1.1
we approximate a transform of the maximal inradius of the cells with the nucleus in an
observation window by a Gumbel random variable in the Kolmogorov distance.

A crucial contribution of this work to stochastic geometry is that we provide bounds
with respect to the Kolmogorov distance for the distributional approximation of some
minima and maxima. The limiting distributions of the minimal distance between the

18



points of a Poisson process and of large inradii and small circumscribed radii of Poisson-
Voronoi tessellations have been studied before in e.g. [15, 19, 65, 66]. Some of these
works provide quantitative bounds for the difference of the distribution functions at a
fixed u ∈ R, which depend on u. Thanks to our general Poisson approximation results
Theorem 3.1.1 and Theorem 3.1.3, we are able to derive uniform bounds for all u ∈ R.
An alternative approach to deducing such results via Poisson approximation is to apply
directly Stein’s method for the exponential, Weibull or Gumbel distribution; see e.g. [60]
for more details on Stein’s method for exponential approximation.

In [51], a general result for the Poisson approximation of statistics of Poisson pro-
cesses is derived by combining the Chen-Stein method and a kind of size-bias coupling
and applied to study some statistics of inhomogeneous random graphs such as isolated
vertices. Requiring some (stochastic) ordering assumptions between a random variable
and its size-bias coupling leads to Poisson approximation results. In a similar spirit to
our work, these ordering conditions were relaxed in [21]. For some recent Poisson pro-
cess convergence results related to stochastic geometry we refer the reader to [47] and
Chapters 4 and 5.

Other noteworthy general results derived in this chapter are lower and upper bounds
on the probability that X equals 0, which are given in Proposition 3.2.3 and Corollary
3.2.4. Informally, they say that P(X = 0) can be bounded from above or below by e−λ

for some λ > 0 if the random variable Z and the sequence qi, i ∈ N0, in Theorem 3.1.1
and Theorem 3.1.3 satisfy certain conditions on their signs; for Z as in Theorem 3.1.1,
it is understood that qi = 0 for all i ∈ N0. These results sometimes allow us to remove
the absolute values from the left-hand sides of (3.4) and (3.12).

The proof of Theorem 3.1.3 is based on the Chen-Stein method and the coupling in
(3.8). Using the solution of the Stein equation for the Poisson distribution, we derive
in Proposition 3.2.2 a new expression for the difference |E[g(Pλ)] − E[g(X)]| for any
g ∈ Lip(1). Taking in Proposition 3.2.2, the supremum over all functions in Lip(1) (or
all indicator functions) establishes a different way to represent the Wasserstein distance
(or the total variation distance). Moreover, choosing g = 1{· ≤ v} with v ∈ N gives a
new expression for |P(X ≤ v) − P(Pλ ≤ v)|. These identities are then manipulated and
combined with the magic factors and the coupling in (3.8) to prove Theorem 3.1.3.

Before we present our applications in Section 3.3, we prove our main results in the
next section.

3.2 Proofs of the results of Section 3.1

This section contains the proofs of Theorem 3.1.1 and Theorem 3.1.3. To this end,
we employ the Stein equation for Poisson random variables. Recall that for any fixed
g ∈ Lip(1) and λ > 0, the solution of the Stein equation is a function fg : N0 → R with
fg(0) = 0 that satisfies

λfg(i+ 1)− ifg(i) = g(i)− E[g(Pλ)], i ∈ N0, (3.14)

where Pλ denotes a Poisson random variable with mean λ > 0. We denote by fA the
solution of (3.14) for g = 1A with A ⊂ N0. That is, for any λ > 0 and A ⊂ N0, the
function fA is the unique solution of

λfA(i+ 1)− ifA(i) = 1{i ∈ A} − P(Pλ ∈ A), i ∈ N0, (3.15)

such that fA(0) = 0. For any indicator or Lipschitz function g, bounds on the solution of
the Stein equation fg are given in Section 2.3. We now derive similar - potentially sharper

19



- magic factors for the special cases fA with A = {0, . . . , v}, v ∈ N0. Similar bounds for
sets A that are singletons were deduced for the translated Poisson approximation in [56,
Lemma 3.7].

Lemma 3.2.1. Let f{0} be the unique solution of (3.15) for A = {0}. Then,

|f{0}(i)| ≤

{
1 ∧ 1

λ , if i = 1,

1 ∧ 1
λ2 , if i ≥ 2,

(3.16)

and for all i ∈ N,

∆f{0}(i) ≤ 0. (3.17)

Furthermore for all i, n ∈ N with i ≥ n,

|∆f{0}(i)| ≤
1

n
∧ (n− 1)!

λn
. (3.18)

Let f{0,...,v} be the unique solution of (3.15) for A = {0, . . . , v} with v ∈ N and v ≤ λ.
Then for all i ≥ v + 2,

∆f{0,...,v}(i) ≤ 1 ∧ (v + 1)2

λ2
. (3.19)

Proof. Obviously, the upper bound 1 in (3.16) follows from Lemma 2.3.3. Lemma 2.3.1
yields for i ∈ N that

f{0}(i) =
(i− 1)!

λi
(1− P(Pλ ≤ i− 1)) =

(i− 1)!

λi

∞∑
m=i

λm

m!
e−λ =

∞∑
`=0

λ`

(i+ `)!
(i− 1)!e−λ.

(3.20)
This implies (3.16) for i = 1, 2, and yields for i ≥ 3 that

f{0}(i) =

∞∑
`=0

λ`

(i+ `)!
(i− 1)!e−λ =

1

λ2

∞∑
`=0

λ`+2

(`+ 2)!

(i− 1)!(`+ 2)!

(i+ `)!
e−λ.

Thus, the elementary inequalities

(i− 1)!(`+ 2)!

(i+ `)!
=

(i− 1)!

(`+ 3) · . . . · (`+ i)
≤ 2(i− 1)!

i!
≤ 1

establish (3.16) for i ≥ 3. From (3.20) we also obtain for n ∈ N,

∆f{0}(i) =
∞∑
`=0

(
λ`

(i+ 1 + `)!
i!− λ`

(i+ `)!
(i− 1)!

)
e−λ

=
∞∑
`=0

λ`

(i+ 1 + `)!

(
i!− (i+ 1 + `)(i− 1)!

)
e−λ

= −
∞∑
`=0

λ`

(i+ 1 + `)!
(`+ 1)(i− 1)!e−λ

= −
∞∑
`=0

λ`

(n+ `)!

(`+ 1)(n+ `)!(i− 1)!

(i+ 1 + `)!
e−λ,
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which proves (3.17). For i, n ∈ N with i ≥ n the elementary inequalities

(`+ 1)(n+ `)!(i− 1)!

(i+ 1 + `)!
≤ (n+ `)!(i− 1)!

(i+ `)!
≤ (n− 1)!

lead to ∣∣∆f{0}(i)∣∣ ≤ (n− 1)!e−λ
∞∑
`=0

λ`

(n+ `)!
.

Now the observations that

∞∑
`=0

λ`

(n+ `)!
≤ eλ

λn
and

∞∑
`=0

λ`

(n+ `)!
≤ 1

n!

∞∑
`=0

λ`

`!

`!n!

(n+ `)!
≤ 1

n!

∞∑
`=0

λ`

`!
≤ eλ

n!

show (3.18). Finally assume λ ≥ v. By Lemma 2.3.1, we obtain for i ≥ v + 2,

∆f{0,...,v}(i) = eλP(Pλ ∈ {0, . . . , v})∆f{0}(i).

Then (3.18) with n = v + 2 implies that

|∆f{0,...,v}(i)| ≤
(v + 1)!

λv+2

v∑
`=0

λ`

`!
=

(v + 1)!

λ2

v∑
`=0

λ`−v

`!
≤ (v + 1)2

λ2
,

where we used the inequality λ`−v/`! ≤ 1/v! for ` = 0, . . . , v and λ ≥ v in the last step.
This and Lemma 2.3.3 establish (3.19).

The next proposition compares the distributions of an integer-valued random variable
and a Poisson distributed random variable.

Proposition 3.2.2. Let X be an integrable random variable taking values in N0, let
λ > 0, and define

D(i) = iP(X = i)− λP(X = i− 1), i ∈ N.

Then, for all g ∈ Lip(1),

E[g(Pλ)]− E[g(X)] =
∞∑
i=1

fg(i)D(i),

where fg is the solution of (3.14).

Proof. It follows from (3.14) and the definition of D(i), i ∈ N, that

E[g(Pλ)]− E[g(X)] = E[Xfg(X)− λfg(X + 1)] =
∞∑
i=0

P(X = i)(ifg(i)− λfg(i+ 1))

=

∞∑
i=1

P(X = i)ifg(i)−
∞∑
i=1

P(X = i− 1)λfg(i) =

∞∑
i=1

fg(i)D(i),

which gives the desired result.

From Proposition 3.2.2 we derive the identity

P(Pλ ∈ A)− P(X ∈ A) =
∞∑
i=1

fA(i)D(i), A ⊂ N0,

where fA is the solution of (3.15). We are now in position to show Theorem 3.1.3.
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Proof of Theorem 3.1.3. It follows from (3.8) that

D(i) = iP(X = i)−λP(X = i− 1) = λP(X +Z = i− 1)−λP(X = i− 1) + qi−1, i ∈ N.

Thus, Proposition 3.2.2 yields for g ∈ Lip(1) that

E[g(Pλ)]− E[g(X)]

= λ
∞∑
i=1

fg(i)
(
P(X + Z = i− 1)− P(X = i− 1)

)
+
∞∑
i=1

fg(i)qi−1 =: Hg +Qg.
(3.21)

With fg(0) = 0 and the convention fg(i) = 0 for i < 0, we obtain

Hg = λ
∑

j∈Z\{0}

∞∑
i=1

fg(i)
(
P(X = i− 1− j, Z = j)− P(X = i− 1, Z = j)

)
= λ

∑
j∈Z\{0}

∑
i∈Z

fg(i)
(
P(X = i− 1− j, Z = j)− P(X = i− 1, Z = j)

)
= λ

∑
j∈Z\{0}

∑
i∈Z

fg(i+ j)P(X = i− 1, Z = j)− fg(i)P(X = i− 1, Z = j)

= λ
∑

j∈Z\{0}

∑
i∈Z

(
fg(i+ j)− fg(i)

)
P(X = i− 1, Z = j)

= λ
∑

j∈Z\{0}

∞∑
i=1

(
fg(i+ j)− fg(i)

)
P(X = i− 1, Z = j),

(3.22)

where we used that X takes only values in N0 in the last step. The triangle inequality
implies that

|Hg| ≤ λmax
i∈N0

|∆fg(i)|
∑

j∈Z\{0}

∞∑
i=1

|j|P(X = i− 1, Z = j)

= λmax
i∈N0

|∆fg(i)|
∑

j∈Z\{0}

|j|P(Z = j) = λmax
i∈N0

|∆fg(i)|E[|Z|].

Furthermore, we have

|Qg| ≤ max
i∈N
|fg(i)|

∞∑
i=0

|qi|. (3.23)

Then combining (2.4) in Section 2.3 and the bounds on |Hg| and |Qg| establishes (3.10).
Moreover, from Lemma 2.3.3 and the bounds on |Hg| and |Qg| with g = 1A for A ⊂ N0,
we obtain (3.9).

Next, we notice that

|Hg| ≤ λ
∞∑
j=1

∞∑
i=1

|fg(i+ j)− fg(i)|P(X = i− 1, Z = j)

+ λ
∞∑
j=1

∞∑
i=1

|fg(i− j)− fg(i)|P(X = i− 1, Z = −j).
(3.24)
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The assumption P(X +Z ≥ 0) = 1 implies that P(X = i− 1, Z = −j) = 0 for all i, j ∈ N
with i ≤ j. Hence, we obtain

λ
∞∑
j=1

∞∑
i=1

|fg(i− j)− fg(i)|P(X = i− 1, Z = −j)

= λ
∞∑
j=1

∞∑
i=j+1

∣∣fg(i− j)− fg(i)∣∣P(X = i− 1, Z = −j)

= λ

∞∑
j=1

∞∑
i=1

∣∣fg(i)− fg(i+ j)
∣∣P(X = i+ j − 1, Z = −j).

(3.25)

From (3.24), (3.25) and the triangle inequality it follows that

|Hg| ≤ λmax
i∈N
|∆fg(i)|

∞∑
j=1

j
( ∞∑
i=1

P(X = i− 1, Z = j) +
∞∑
i=1

P(X = i+ j − 1, Z = −j)
)

≤ λmax
i∈N
|∆fg(i)|

∑
j∈Z\{0}

|j|P(Z = j) = λmax
i∈N
|∆fg(i)|E[|Z|].

Together with (3.21) and (3.23), this implies that

|E[g(Pλ)]− E[g(X)]| ≤ λmax
i∈N
|∆fg(i)|E[|Z|] + max

i∈N0

|fg(i)|
∞∑
i=0

|qi|.

Hence, Lemma 2.3.2 establishes (3.11).

Combining (3.21), (3.24) and (3.25) with g = 1A for A ⊂ N0 yields

P(Pλ ∈ A)− P(X ∈ A) =: HA +QA (3.26)

where HA = Hg and QA = Qg with g = 1A, and

|HA| ≤ λ
∞∑
j=1

∞∑
i=1

|fA(i+ j)− fA(i)|P(X = i− 1, Z = j)

+ λ

∞∑
j=1

∞∑
i=1

|fA(i)− fA(i+ j)|P(X = i+ j − 1, Z = −j) =: H
(1)
A +H

(2)
A .

For A = {0}, by (3.18) in Lemma 3.2.1 with n = i for i ≤ m and n = m+1 for i ≥ m+1,
we have

H
(1)
{0} ≤

∞∑
j=1

m∑
i=1

(
λ

i
∧ (i− 1)!

λi−1

)
jP(X = i− 1, Z = j) +

∞∑
j=1

∞∑
i=m+1

m!

λm
jP(X = i− 1, Z = j)

=
m−1∑
k=0

(
λ

k + 1
∧ k!

λk

)
E[Z+1{X = k}] +

m!

λm
E[Z+1{X ≥ m}].
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Again (3.18) in Lemma 3.2.1 with n = i for i ≤ m and n = m+ 1 for i ≥ m+ 1 leads to

H
(2)
{0} ≤

∞∑
j=1

m∑
i=1

(
λ

i
∧ (i− 1)!

λi−1

)
jP(X = i+ j − 1, Z = −j)

+
∞∑
j=1

∞∑
i=m+1

m!

λm
jP(X = i+ j − 1, Z = −j)

=
m∑
i=1

(
λ

i
∧ (i− 1)!

λi−1

)
E[Z−1{X + Z = i− 1}] +

m!

λm
E[Z−1{X + Z ≥ m}]

=

m−1∑
k=0

(
λ

k + 1
∧ k!

λk

)
E[Z−1{X + Z = k}] +

m!

λm
E[Z−1{X + Z ≥ m}].

From (3.16) in Lemma 3.2.1 it follows that

|Q{0}| ≤
(

1 ∧ 1

λ

)
|q0|+

(
1 ∧ 1

λ2

) ∞∑
i=1

|qi|.

Combining (3.26) and the bounds on |Q{0}|, H
(1)
{0} and H

(2)
{0} completes the proof of (3.12).

For λ < v, (3.13) follows directly from (3.9). By Lemma 2.3.3 for i ≤ v+1 and (3.19)
in Lemma 3.2.1 for i ≥ v + 2, we obtain

H
(1)
{0,...,v} ≤ (1 ∧ λ)

∞∑
j=1

v+1∑
i=1

jP(X = i− 1, Z = j) +
∞∑
j=1

∞∑
i=v+2

(v + 1)2

λ
jP(X = i− 1, Z = j)

= (1 ∧ λ)E[Z+1{X ≤ v}] +
(v + 1)2

λ
E[Z+1{X ≥ v + 1}]

and

H
(2)
{0,...,v} ≤ (1 ∧ λ)

∞∑
j=1

v+1∑
i=1

jP(X = i+ j − 1, Z = −j)

+

∞∑
j=1

∞∑
i=v+2

(v + 1)2

λ
jP(X = i+ j − 1, Z = −j)

= (1 ∧ λ)E[Z−1{X + Z ≤ v}] +
(v + 1)2

λ
E[Z−1{X + Z ≥ v + 1}].

Moreover, Lemma 2.3.3 yields

|Q{0,...,v}| ≤ max
i∈N0

|f{0,...,v}(i)|
∞∑
i=0

|qi| ≤
(

1 ∧ 1√
λ

) ∞∑
i=0

|qi|.

Combining (3.26) with A = {0, . . . , v} and the bounds on |Q{0,...,v}|, H
(1)
{0,...,v} and H

(2)
{0,...,v}

establishes (3.13).

Next we derive Theorem 3.1.1 from Theorem 3.1.3.

Proof of Theorem 3.1.1. It follows from (3.2) that X and Z satisfy (3.8) with λ = E[X]
and qi = 0 for i ∈ N0 and that

λ = E[X] =
∞∑
k=1

kP(X = k) =
∞∑
k=1

λP(X + Z = k − 1) = λP(X + Z ≥ 0),
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whence P(X + Z ≥ 0) = 1. This allows us to apply Theorem 3.1.3 which proves (3.3),
(3.4) and (3.5).

The next result provides some inequalities for the probability that a non-negative
integer-valued random variable equals zero.

Proposition 3.2.3. Let X be an integrable random variable with values in N0 and λ > 0.
Consider a random variable Z defined on the same probability space as X with values in
Z, and let (qi)i∈N0 be the sequence given by

qi−1 = iP(X = i)− λP(X + Z = i− 1), i ∈ N.

a) If Z is non-negative and qi ≤ 0 for i ∈ N0,

P(X = 0) ≥ e−λ.

b) If Z is non-positive, P(X + Z ≥ 0) = 1 and qi ≥ 0 for i ∈ N0,

P(X = 0) ≤ e−λ.

Proof. It follows from (3.21) and (3.22) for f = 1{0} as well as P(Pλ = 0) = e−λ that

e−λ − P(X = 0)

= λ
∑

j∈Z\{0}

∞∑
i=1

(
f{0}(i+ j)− f{0}(i)

)
P(X = i− 1, Z = j) +

∞∑
i=1

f{0}(i)qi−1.

By the assumption that Z ≥ 0 (resp. Z ≤ 0 and P(X +Z ≥ 0) = 1) the first sum on the
right-hand side runs only over j ≥ 1 (resp. j ≤ −1 and the inner sum runs over all i ∈ N
with i+ j ≥ 1). Together with

f{0}(i+ j)− f{0}(i) ≤ 0 for i, j ≥ 1 and f{0}(i+ j)− f{0}(i) ≥ 0 for j ≤ −1, i+ j ≥ 1,

which follows from (3.17) in Lemma 3.2.1, and the assumptions on (qi)i∈N0 , this leads to
the desired results.

Since (3.2) is a special case of (3.8) with P(X+Z ≥ 0) = 1 (see the proof of Theorem
3.1.1), the following corollary is a direct consequence of Proposition 3.2.3.

Corollary 3.2.4. Let X be a random variable taking values in N0 and let λ = E[X] > 0.
Assume there exists a random variable Z such that (3.2) is satisfied.

a) If Z is non-negative,

P(X = 0) ≥ e−λ.

b) If Z is non-positive,

P(X = 0) ≤ e−λ.

3.3 Applications

In this section, we discuss several applications of our general main results, Theorem 3.1.1
and Theorem 3.1.3. We consider problems from the following topics: U -statistics, k-
runs, Voronoi tessellations. Throughout this section, by Pλ we always denote a Poisson
random variable with mean λ ≥ 0.
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3.3.1 U-statistics of binomial point processes

Let (X,X ) be a measurable space. We consider a binomial point process βn on X of n ∈ N
independent points in X that are distributed according to a probability measure K. Let
` ∈ N and let h : X` → {0, 1} be a measurable symmetric function. In the following we
study the U -statistic

S =
1

`!

∑
(x1,...,x`)∈β`n,6=

h(x1, ..., x`),

where β`n,6= denotes the set of all `-tuples of distinct points of βn. We refer to the
monographs [34, 39] for more details on U -statistics and their applications in statistics.
A straightforward computation shows that

λ := E[S] =
(n)`
`!

∫
X`
h(x1, . . . , x`)dK

`(x1, . . . , x`),

where (n)` stands for the `-th descending factorial.
In this subsection, we establish bounds on the Poisson approximation of S in the total

variation and Wasserstein distances. We also provide bounds on the pointwise difference
between the cumulative distribution functions of S and Pλ. To this end, we define

r = max
1≤i≤`−1

(n)2`−i

∫
Xi

(∫
X`−i

h(x1, . . . , x`)dK
`−i(xi+1, . . . , x`)

)2

dKi(x1, . . . , xi)

for ` ≥ 2, and put r = 0 for ` = 1. Moreover for n ≥ 2`, we define

S̃ =
1

`!

∑
(x1,...,x`)∈β`n−2`, 6=

h(x1, ..., x`).

Theorem 3.3.1. Let n ≥ 2` and let S, λ > 0, r and S̃ be as above. Then,

dTV (S, Pλ) ≤ (1 ∧ λ)

(
2`r

`!λ
+

2`2λ

n

)
and dW (S, Pλ) ≤ (1.1437

√
λ ∧ λ)

(
2`r

`!λ
+

2`2λ

n

)
.

(3.27)
Moreover, for all m ∈ N,

∣∣∣P(S = 0)− e−λ
∣∣∣ ≤ [m−1∑

k=0

(
λ

k + 1
∧ k!

λk

)
P
(
S̃ ≤ k

)
+
m!

λm

](
2`r

`!λ
+

2`2λ

n

)
(3.28)

and for all v ∈ N,

|P(S ≤ v)− P(Pλ ≤ v)| ≤
[

(v + 1)2

λ
+ P(S̃ ≤ v)

](
2`r

`!λ
+

2`2λ

n

)
. (3.29)

The bound on the Wasserstein distance in (3.27) slightly improves that in [22, The-
orem 7.1] since it has a better order in λ. The bound for the total variation distance
was also derived in [66, Proposition 2] by rewriting [8, Theorem 2]. By means of (3.28),
one can study for some measurable symmetric function g : X` → R the maximum (minu-
mum) of g(p) over all p ∈ β`n,6=, which is called U -max-statistic (U -min-statistic). This
is possible because for any u ∈ R, the probability that maxp∈β`n,6=

g(p) is less than u can

be written as the probability that
∑

p∈β`n,6=
1{g(p) ≥ u} equals 0. Limit theorems for
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U -max-statistics were considered in [36], yet without providing approximation results
with respect to any distance; see also [42]. In contrast to these works, (3.28) may lead
to approximation results in the Kolmogorov distance; see Theorem 3.3.4 in Subsection
3.3.3 and the discussion below it. To the best of our knowledge, the last two inequalities
presented in Theorem 3.3.1 have no analogues in the literature.

From now on assume that n ≥ `. Let χ be a point process of ` random points
X ′1, . . . , X

′
` in X that are independent of βn and distributed such that

P((X ′1, . . . , X
′
`) ∈ A) =

(n)`
`!λ

∫
X`

1{(x1, . . . , x`) ∈ A}h(x1, . . . , x`)dK
`(x1, . . . , x`)

for all A from the product σ-field generated by X `. Now we define

S′ = −h(X ′1, . . . , X
′
`) +

1

`!

∑
(x1,...,x`)∈(βn−`∪χ)`6=

h(x1, ..., x`).

Proposition 3.3.2. For all n ≥ ` and k ∈ N,

kP(S = k) = λP(S′ = k − 1).

Proof. We have that

kP(S = k) = E[k1{S = k}] =
1

`!
E

∑
(x1,...,x`)∈β`n,6=

h(x1, . . . , x`)1{S = k}.

Using the fact that for any measurable map g : Xu ×NX → [0,∞) with u ∈ N,

E
∑

(x1,...,xu)∈βun,6=

g(x1, . . . , xu, βn)=(n)u

∫
Xu

E[g(x1, . . . , xu, βn−u+

u∑
i=1

δxi)]dK
u(x1, . . . , xu),

we obtain

kP(S = k) =
(n)`
`!

∫
X`
h(x1, . . . , x`)P

(
1

`!

∑
(y1,...,y`)∈(βn−`∪{x1,...,x`})`6=

h(y1, . . . , y`) = k

)
× dK`(x1, . . . , x`)

= λP(S′ + h(X ′1, . . . , X
′
`) = k) = λP(S′ = k − 1),

where we used h(X ′1, . . . , X
′
`) = 1 in the last step. This concludes the proof.

Proof of Theorem 3.3.1. Suppose n ≥ 2`. Our goal is to apply Theorem 3.1.1 with Z =
S′ − S, which satisfies the assumption (3.2) by Proposition 3.3.2. We define s : NX → R
by

s(ν) =
1

`!

∑
(x1,...,x`)∈ν`6=

h(x1, . . . , x`)

so that S = s(βn) and S′ = s(βn−` + χ) − h(X ′1, . . . , X
′
`). By the monotonicity of s, we

have

|Z| = |S′ − S| = |s(βn−` + χ)− h(X ′1, . . . , X
′
`)− s(βn−`)− (s(βn)− s(βn−`))|

≤ (s(βn−` + χ)− h(X ′1, . . . , X
′
`)− s(βn−`)) + s(βn)− s(βn−`).

(3.30)
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Together with

s(βn−` + χ)− h(X ′1, . . . , X
′
`)− s(βn−`) + s(βn)− s(βn−`)

= s(βn−` + χ)− h(X ′1, . . . , X
′
`)− s(βn) + 2(s(βn)− s(βn−`)) = Z + 2(s(βn)− s(βn−`))

(3.31)

this implies

E[|Z|] ≤ E[Z] + 2E[s(βn)− s(βn−`)].

From (3.7) in Remark 3.1.2 we know that

E[Z] =
1

λ
(Var(S)− λ) =

1

λ
(E[S2]− λ2 − λ).

Thus, it follows from [22, Lemma 6.1] and the definition of r that

E[Z] ≤ 2`r

`!λ
.

A straightforward computation shows that

E[s(βn)− s(βn−`)] =

(
1− (n− `)`

(n)`

)
λ =

(n)` − (n− `)`
(n)`

λ ≤ `2(n− 1)`−1

(n)`
λ =

`2λ

n
.

Combining the previous estimates yields

E[|Z|] ≤ 2`r

`!λ
+

2`2λ

n

so that (3.27) follows from (3.3).
Let k ∈ N be fixed. Note that S ≥ s(βn−`) and S′ ≥ s(βn−`). If Z ≥ 0, this implies

1{S − Z− ≤ k} = 1{S ≤ k} ≤ 1{s(βn−`) ≤ k}.

For Z ≤ 0 we obtain

1{S − Z− ≤ k} = 1{S + Z ≤ k} = 1{S′ ≤ k} ≤ 1{s(βn−`) ≤ k}.

Combing the two cases leads to

1{S − Z− = k} ≤ 1{S − Z− ≤ k} ≤ 1{s(βn−`) ≤ k}.

Together with (3.30) we obtain

E[|Z|1{S − Z− = k}]
≤ E[1{s(βn−`) ≤ k}(s(βn−` + χ)− h(X ′1, . . . , X

′
`)− s(βn−`) + s(βn)− s(βn−`))].

(3.32)

For u ∈ {1, . . . , `− 1} and g : Xu → [0,∞), we have

E[1{s(βn−`) ≤ k}
∑

(x1,...,xu)∈βun−`, 6=

g(x1, . . . , xu)]

= (n− `)u
∫
Xu

P(s(βn−`−u +
u∑
i=1

δxi) ≤ k)g(x1, . . . , xu)dKu(x1, . . . , xu)

≤ P(s(βn−2`) ≤ k)(n− `)u
∫
Xu
g(x1, . . . , xu)dKu(x1, . . . , xu)

= P(s(βn−2`) ≤ k)E
∑

(x1,...,xu)∈βun−`, 6=

g(x1, . . . , xu),

(3.33)
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where the inequality follows from the monotonicity of s. Because of

s(βn−` + χ)− h(X ′1, . . . , X
′
`)− s(βn−`) =

`−1∑
u=1

∑
(x1,...,xu)∈βun−`,6=

h̃u(x1, . . . , xu;χ)

and

s(βn)− s(βn−`) =
`−1∑
u=1

∑
(x1,...,xu)∈βun−`, 6=

hu(x1, . . . , xu;βn \ βn−`)

with suitable functions h̃u and hu, u ∈ {1, . . . , ` − 1}, we can rewrite the second factor
on the right-hand side of (3.32) as sum of U -statistics with respect to βn−`. Now an
application of (3.33) and (3.31) yield

E[|Z|1{S − Z− = k}]
≤ P(s(βn−2`) ≤ k)E[s(βn−` + χ)− h(X ′1, . . . , X

′
`)− s(βn−`) + s(βn)− s(βn−`)]

= P(s(βn−2`) ≤ k)
(
E[Z] + 2E[s(βn)− s(βn−`)]

)
.

Bounding the second factor on the right-hand side as above leads to

E[|Z|1{S − Z− = k}] ≤ P(s(βn−2`) ≤ k)

(
2`r

`!λ
+

2`2λ

n

)
.

Thus, (3.28) and (3.29) are immediate consequences of (3.4) and (3.5).

3.3.2 U-statistics of Poisson processes

In this subsection, we study the Poisson approximation of U -statistics, where one sums
over all `-tuples of distinct points of a Poisson process instead of those of a binomial
point process as in the previous subsection. In this case, the summation can run over
infinitely many `-tuples. As the results for U -statistics with binomial input in Subsection
3.3.1, the theory developed herein permits to study extreme value problems arising in
stochastic geometry. For example, in the next subsection, we employ our main result
for U -statistics with Poisson input to investigate the limiting behavior of the minimum
inter-point distance between the points of a Poisson process in Rd.

Let (X,X ) be a measurable space and let η be a Poisson process with a σ-finite
intensity measure L on X. For a fixed ` ∈ N and a symmetric measurable function
h : X` → {0, 1} that is integrable with respect to L` we consider the U -statistic

S =
1

`!

∑
(x1,...,x`)∈η`6=

h(x1, . . . , x`),

where η`6= denotes the set of all `-tuples of distinct points of η. It follows from the
multivariate Mecke formula that

λ := E[S] =
1

`!

∫
X`
h(x1, . . . , x`)dL

`(x1, . . . , x`).

We define

r = max
1≤i≤`−1

∫
Xi

(∫
X`−i

h(x1, . . . , x`)dL
`−i(xi+1, . . . , x`)

)2

dLi(x1, . . . , xi)

for ` ≥ 2, and put r = 0 for ` = 1. The expression r is used to quantify the accuracy of
the Poisson approximation for S and it is the analogue of r given in Subsection 3.3.1 for
binomial U -statistics.
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Theorem 3.3.3. Let S, λ > 0 and r be as above. Then,

dTV (S, Pλ) ≤
(

1 ∧ 1

λ

)
2`r

`!
and dW (S, Pλ) ≤

(
1 ∧ 1.1437√

λ

)
2`r

`!
. (3.34)

Moreover, for all m ∈ N,

0 ≤ P(S = 0)− e−λ ≤

[
m−1∑
k=0

(
1

k + 1
∧ k!

λk+1

)
P
(
S ≤ k

)
+

m!

λm+1

]
2`r

`!
(3.35)

and for all v ∈ N,

|P(S ≤ v)− P(Pλ ≤ v)| ≤

[
(v + 1)2

λ
+ P(S ≤ v)

]
2`r

`!λ
. (3.36)

The result for the total variation distance in (3.34) was shown in [66, Proposition
1], which improved [65, Proposition 4.1], and in [51, Section 8]. The bound for the
Wasserstein distance in (3.34) was also derived in [51, Section 8] and has a slightly better
order in λ than that in [22, Theorem 7.1]. To the best of our knowledge, the other
inequalities presented in Theorem 3.3.3 have no analogues in the literature.

Proof of Theorem 3.3.3. We follow a similar approach as in the proof of Theorem 3.3.1.
For ` = 1, Theorem 3.3.3 is a direct consequence of [38, Theorem 5.1], whence we assume
` ≥ 2 from now on.

Let χ be a point process of ` random points X ′1, . . . , X
′
` that are independent of η

and distributed according to

P((X ′1, . . . , X
′
`) ∈ A) =

1

`!λ

∫
X`

1{(x1, . . . , x`) ∈ A}h(x1, . . . , x`)dL
`(x1, . . . , x`)

for A from the product σ-field generated by X `. We define

S′ = −h(X ′1, . . . , X
′
`) +

1

`!

∑
(x1,...,x`)∈(η∪χ)k6=

h(x1, . . . , x`).

For k ∈ N the multivariate Mecke formula implies that

kP(S = k) = E[S1{S = k}]

=
1

`!
E

∑
(x1,...,x`)∈η`6=

h(x1, . . . , x`)1

{
1

`!

∑
(y1,...,y`)∈η`6=

h(y1, . . . , y`) = k

}

=
1

`!

∫
X`
h(x1, . . . , x`)P

(
1

`!

∑
(y1,...,y`)∈(η∪{x1,...,x`})`6=

h(y1, . . . , y`) = k

)
dL`(x1, . . . , x`)

= λP(S′ + h(X ′1, . . . , X
′
`) = k) = λP(S′ = k − 1),

where we used h(X ′1, . . . , X
′
`) = 1 in the last step. Thus, we see that S satisfies the

hypothesis of Theorem 3.1.1 with Z = S′ − S ≥ 0.
Next we compute the expressions on the right-hand sides of the bounds in Theorem

3.1.1. Let k ∈ N be fixed. Define s(ν) = 1
`!

∑
(x1,...,x`)∈ν`6=

h(x1, . . . , x`) for ν ∈ NX and

note that S = s(η). Since

s(ν + χ+ δx)− s(ν + δx) ≥ s(ν + χ)− s(ν) and 1{s(ν + δx) ≤ k} ≤ 1{s(ν) ≤ k}
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for all ν ∈ NX and x ∈ X, by [38, Theorem 20.4] we obtain

E
[
Z1{S ≤ k}

]
≤ E[Z]P(S ≤ k).

Together with Z ≥ 0, we have

E[|Z|1{S − Z− = k}] = E[Z1{S = k}] ≤ E[Z1{S ≤ k}] ≤ E[Z]P(S ≤ k). (3.37)

Furthermore, from Remark 3.1.2-(ii) it follows that

E[Z] =
1

λ

{
Var(S)− λ

}
=

1

λ

{
E[S2]− λ2 − λ

}
. (3.38)

Then, from Z ≥ 0 and [22, Lemma 6.1] we deduce

E[|Z|] = E[Z] ≤
`−1∑
i=1

1

`!λ

(
`

i

)
r ≤ 2`

`!λ
r. (3.39)

Finally, combining this bound with (3.3) shows (3.34), while (3.4) and (3.5) together with
(3.37) and (3.39) lead to (3.35), where the first inequality is a consequence of Corollary
3.2.4 a), and (3.36).

3.3.3 The distances between the points of a Poisson process

We consider random points in Rd distributed according to a Poisson process. For any
pair of these points with the midpoint in a bounded measurable set W ⊂ Rd, we take
a transform of the Euclidean distance, and we study the Poisson approximation for
the number of times that these quantities belong to a certain range of values. More
importantly, we consider the exponential approximation for a transform of the minimal
distance between pairs of points with midpoint in W .

Let ηt be a Poisson process on Rd with intensity measure tλd, t > 0, where we denote
by λd the d-dimensional Lebesgue measure. For convenience, we assume λd(W ) = 1;
nonetheless, the following arguments are valid for every W with a positive and finite
volume. Define

ξt =
1

2

∑
(x,y)∈η2

t,6=

1
{x+ y

2
∈W

}
δ2−1t2kd‖x−y‖d , t > 0,

Yt = min
(x,y)∈η2

t, 6=:x+y
2
∈W

2−1t2kd‖x− y‖d, t > 0,

where ‖ · ‖ denotes the Euclidean norm.

Theorem 3.3.4. Let ξt and Yt be as above for t > 0. Let γ be a Poisson process on
[0,∞) with the restriction of the Lebesgue measure to [0,∞) as intensity measure. Then
for all u ≥ 0 and all measurable B ⊂ [0, u],

dTV (ξt(B), γ(B)) ≤ (1 ∧ u)
8u

t
(3.40)

and

0 ≤ P(Yt > u)− e−u ≤ 81

t
. (3.41)
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The minimal distance between the points of a Poisson process was also considered
in [15, 22, 65, 66], sometimes formulated as minimal edge length of the random geo-
metric graph or the minimal inradius of a Poisson-Voronoi tessellation. The important
achievement of Theorem 3.3.4 is that a rate of convergence for the Kolmogorov distance is
provided in (3.41). So far it was only possible to prove bounds on the difference between
P(Yt > u) and e−u that depend on u > 0 (see e.g. [65, Theorem 2.4] or [66, Corollary 3]).

In the works mentioned above all pairs of points are considered such that one or both
points belong to W . Our approach, where we only require that the midpoint of the points
is in W , can be extended to this different way of counting, but one might get additional
terms in the bounds since E[ξt([0, u])] is not necessarily u due to boundary effects.

In [65, 66], beside Poisson approximation results for the number of inter-point dis-
tances below a given threshold it was shown that the point process of rescaled inter-point
distances converges weakly to a Poisson process. By (3.40) and Proposition 2.2.10, we
can also deduce that ξt converges weakly to γ as t→∞.

The related problem of small distances between the points of a binomial point process
was first studied in [67]. Because of the similarity to Theorem 3.3.3, we believe that by
applying Theorem 3.3.1 it is possible to prove a similar result to Theorem 3.3.4 for an
underlying binomial point process.

By using in the proof of Theorem 3.3.4 the corresponding bound of Theorem 3.3.3 for
the Wasserstein distance, one can obtain the counterpart of (3.40) for the Wasserstein
distance with a different power in u and the same rate of convergence in t.

Proof of Theorem 3.3.4. First, we show that the intensity measure of the point process

ξt is the restriction of the Lebesgue measure to [0,∞). Let vt =
(

2u
kdt2

)1/d
. The change

of variable z = x+y
2 yields

E[ξt([0, u])] =
t2

2

∫
Rd

∫
Rd

1
{x+ y

2
∈W

}
1{‖x− y‖ ≤ vt} dydx

= 2d−1t2
∫
Rd

∫
Rd

1
{
z ∈W

}
1{2‖x− z‖ ≤ vt} dzdx

= 2d−1t2
∫
W

∫
Rd

1{2‖x− z‖ ≤ vt} dxdz = u.

For B ⊂ [0, u] with u > 0 define

rt(B) = t

∫
Rd

(
t

∫
Rd

1
{x+ y

2
∈W

}
1{2−1t2kd‖x− y‖d ∈ B} dy

)2

dx.

Again from the change of variable z = x+y
2 , it follows that

rt(B) ≤ rt([0, u]) = 22dt3
∫
Rd

(∫
W

1{2‖x− z‖ ≤ vt} dz
)2

dx

≤ 22dt3
∫
Rd

(∫
Rd

1{2‖x− z‖ ≤ vt} dz
∫
W

1{2‖x− z̃‖ ≤ vt} dz̃
)
dx

= 2d+1ut

∫
Rd

∫
W

1{2‖x− z̃‖ ≤ vt} dz̃dx

= 2d+1ut

∫
W

∫
Rd

1{2‖x− z̃‖ ≤ vt} dxdz̃ =
4u2

t
.
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Therefore (3.34) in Theorem 3.3.3 with h(x, y) = 1
{x+y

2 ∈ W
}
1{2−1t2kd‖x − y‖d ∈ B}

yields for B ⊂ [0, u] that

dTV (ξt(B), γ(B)) ≤
(

1 ∧ 1

u

)
2rt(B) ≤ (1 ∧ u)

8u

t
.

From (3.38) and (3.39) in the proof of Theorem 3.3.3 with S = ξt([0, u]), r = rt([0, u])
and h as above, we know that

Var(ξt([0, u])) ≤ E[ξt([0, u])] + 2rt([0, u]) = u+
8u2

t
.

Thus it follows from the Chebyshev inequality that

P(ξt([0, u]) = 0) ≤ P(|ξt([0, u])− u| ≥ u) ≤ Var(ξt([0, u]))

u2
=

1

u
+

8

t
.

Together with (3.35) in Theorem 3.3.3 with m = 1 and straightforward arguments, this
leads to

0 ≤ P(ξt([0, u]) = 0)− e−u = P(Yt > u)− e−u ≤
[

1

u
P(ξt([0, u]) = 0) +

1

u2

]
8u2

t
(3.42)

≤
(

1

u2
+

8

ut
+

1

u2

)
8u2

t
=

16

t
+

64u

t2

so that

sup
u∈[0,t]

|P(Yt > u)− e−u| ≤ 80

t
.

Thus, we have

P(Yt > t) ≤ 80

t
+ e−t ≤ 81

t

and

sup
u∈[0,∞)

|P(Yt > u)− e−u| ≤ max
{

sup
u∈[0,t]

|P(Yt > u)− e−u|,P(Yt > t), e−t
}
≤ 81

t
,

which combined with the left-hand side of (3.42) completes the proof.

3.3.4 k-runs in a sequence of i.i.d. Bernoulli random variables

Consider n independent and identically distributed Bernoulli random variables. A k-
head run is defined as an uninterrupted sequence of k successes, where k is a positive
integer. For example, for k = 1, one simply studies the successes, while for k = 2, one
considers the occurrence of two consecutive successes in a row. Several authors have
investigated the number of k-head runs in a sequence of Bernoulli random variables;
see e.g. the book [4]. In this subsection, we discuss the Poisson approximation of the
number of non-overlapping k-runs among n i.i.d. Bernoulli random variables, denoted
by Sn,k. In particular, we obtain an explicit bound on the pointwise difference between
the cumulative distribution functions of Sn,k and PE[Sn,k] that is independent from the
number k of required successes in a row.

Let k ∈ N and Xj , j ∈ N0, be a sequence of independent and Bernoulli distributed
random variables with parameter 0 < p ≤ 1/2. We denote by I(i) with i ∈ N0 the random
variable

I(i) = 1{Xi−1 = 0, Xi = 1, . . . , Xi+k−1 = 1},
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where X−1 = 0. For k ≤ n the number Sn,k of non-overlapping k-runs in X0, . . . , Xn−1

is given by

Sn,k =
n−k∑
i=0

I(i). (3.43)

Theorem 3.3.5. Let Sn,k be the random variable given by (3.43) with k, n ∈ N, k ≤ n.
Then,

dTV
(
Sn,k, PE[Sn,k]

)
≤ (2k + 1)

(
1 ∧ E[Sn,k]

)
pk. (3.44)

Moreover, for v ∈ N0 and n ≥ 2,

max
1≤k≤n

|P(Sn,k ≤ v)− P(PE[Sn,k] ≤ v)| ≤ 40(v + 2)2 log n

n
. (3.45)

The bound (3.44) was shown in [46, Corollary 15] as a consequence of [1, Theorem
1]. The Poisson approximation for Sn,k is also investigated in e.g. [2, 10, 27, 35]. The
explicit bound in (3.45) on the pointwise difference between the cumulative distribution
functions of Sn,k and PE[Sn,k] does not depend on the number k of required successes in a
row. Hence, (3.45) improves [45, Corollary 3.23] and [46, Corollary 16] because we found
an explicit bound. Furthermore, since the proof of Theorem 3.3.5 is based on Theorem
3.1.1, by applying the second inequality of (3.3) in Theorem 3.1.1, it is possible to attain
a bound on the Wasserstein distance between Sn,k and PE[Sn,k].

For the proof of Theorem 3.3.5 we define

U` =

(n−k)∧(`+k)∑
i=0∨(`−k)

I(i), ` = 0, . . . , n− k,

where a ∨ b = max{a, b} for any a, b ∈ R, and let Y be a random variable independent
from Xj , j ∈ N0, and with distribution given by

P(Y = `) =
E[I(`)]

E[Sn,k]
, ` = 0, . . . , n− k.

The next proposition is derived by a standard construction of size-bias couplings (see
Lemma 2.4.4).

Proposition 3.3.6. Let k, n ∈ N with k ≤ n. For any m ∈ N,

mP(Sn,k = m) = E[Sn,k]P(Sn,k − UY = m− 1).

Proof. Let ` ∈ {0, . . . , n− k} and m ∈ N be fixed. Then, we have

E[I(`)1{Sn,k − I(`) = m− 1}] = E[I(`)1{Sn,k − U` = m− 1}].

Since I(`) and Sn,k − U` are independent, it follows that

mP(Sn,k = m) =
n−k∑
`=0

E[I(`)1{Sn,k = m}] =
n−k∑
`=0

E[I(`)1{Sn,k − I(`) = m− 1}]

=

n−k∑
`=0

E[I(`)]P(Sn,k − U` = m− 1) = E[Sn,k]P(Sn,k − UY = m− 1),

which concludes the proof.
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Remark 3.3.7. Since UY ≥ 0, from Corollary 3.2.4 b) it follows that P(Sn,k = 0) ≤
e−E[Sn,k]. Thus, straightforward calculations imply that

P(Sn,k = 0) ≤ exp
(
− (n− k + 1)pk(1− p)

)
.

Proof of Theorem 3.3.5. From (3.3) in Theorem 3.1.1 and Proposition 3.3.6, it follows
that

dTV (Sn,k, PE[Sn,k]) ≤ (1 ∧ E[Sn,k])E[UY ] ≤ (2k + 1)(1 ∧ E[Sn,k])p
k,

where we used E[U`] ≤ (2k+1)pk for ` = 0, . . . , n−k in the last step. This proves (3.44).
Let n ≥ 2 be fixed. Since (2k + 1)pk, k ≥ 1, is decreasing in k for any p ≤ 1/2, by

(3.44) we deduce for k ≥ 2 log n that

|P(Sn,k ≤ v)− P(PE[Sn,k] ≤ v)| ≤ (2k + 1)pk ≤ (4 log n+ 1)2−2 logn ≤ 4 log n+ 1

n
.

(3.46)

Let k < 2 log n. From (3.4) in Theorem 3.1.1 with m = 1 for v = 0 and (3.5) in Theorem
3.1.1 for v ∈ N, it follows that

|P(Sn,k ≤ v)− P(PE[Sn,k] ≤ v)| ≤ (v + 1)2E[UY ]

E[Sn,k]
+ E[UY 1{Sn,k − UY ≤ v}]. (3.47)

From 0 ≤ U` ≤ 2 for ` ∈ {0, . . . , n− k} and the definition of Y it follows that

E[UY 1{Sn,k − UY ≤ v}] ≤ E[UY 1{Sn,k ≤ v + 2}] = E
n−k∑
`=0

E[I(`)]

E[Sn,k]
E[U`1{Sn,k ≤ v + 2}]

≤ pk

E[Sn,k]
E
n−k∑
`=0

(n−k)∧(`+k)∑
i=0∨(`−k)

I(i)1{Sn,k ≤ v + 2}.

Thus, by the inequality

n−k∑
`=0

(n−k)∧(`+k)∑
i=0∨(`−k)

ai ≤ (2k + 1)

n−k∑
m=0

am, a0, . . . , an−k ≥ 0,

we obtain

E[UY 1{Sn,k − UY ≤ v}] ≤
(2k + 1)pk

E[Sn,k]
E[Sn,k1{Sn,k ≤ v + 2}] ≤ (2k + 1)pk(v + 2)

E[Sn,k]
.

Together with (3.47) and the inequalities

E[Sn,k] ≥ (n− k + 1)pk/2 and E
[
UY
]
≤ (2k + 1)pk,

this shows for k < 2 log n and n > 4 log n that

|P(Sn,k ≤ v)− P(PE[Sn,k] ≤ v)| ≤ 2(v + 1)2(2k + 1)

n− k + 1
+

2(v + 2)(2k + 1)

n− k + 1

≤ 4(v + 2)2(4 log n+ 1)

n− 2 log n
≤ 40(v + 2)2 log n

n
,

where we used the inequalities 4 log n+1 ≤ 5 log n and n−2 log n ≥ n/2 for n > 4 log n in
the last step. Combining this and (3.46) establishes (3.45) for n > 4 log n. In conclusion,
note that n > 4 log n for n > 10, and for 2 ≤ n ≤ 10, the right-hand side of (3.45) is
greater than 1. Thus, (3.45) holds for all n ≥ 2.
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3.3.5 Minimal circumscribed radii of stationary Poisson-Voronoi tes-
sellations

In this subsection, we consider circumscribed radii of stationary Poisson-Voronoi tessel-
lations. The aim is to continue the work started in [15] by proving that the Kolmogorov
distance between a transform of the minimal circumscribed radius and a Weibull ran-
dom variable converges to 0 at a rate of 1/t1/(d+1) when the intensity t of the underlying
Poisson process goes to infinity.

For any locally finite counting measure ν on Rd, we denote by N(x, ν) the Voronoi
cell with nucleus x ∈ Rd generated by ν + δx, that is

N(x, ν) =
{
y ∈ Rd : ‖y − x‖ ≤ ‖y − x′‖, x 6= x′ ∈ ν

}
,

where ‖·‖ denotes the Euclidean norm. Voronoi tessellations, i.e., tessellations consisting
of Voronoi cells N(x, ν), x ∈ ν, arise in different fields such as biology [53], astrophysics
[54] and communication networks [12]. For more details on Poisson-Voronoi tessellations,
i.e., Voronoi tessellations generated by an underlying Poisson process, we refer the reader
to e.g. [14, 44, 61]. We denote by B(x, r) the open ball centered at x ∈ Rd with radius
r > 0. The circumscribed radius of the Voronoi cell N(x, ν) is defined as

C(x, ν) = inf {R ≥ 0 : B(x,R) ⊃ N(x, ν)} ,

i.e., the circumscribed radius is the smallest radius for which the ball centered at the
nucleus contains the cell.

Throughout this subsection we consider the stationary Poisson-Voronoi tessellation
generated by a Poisson process ηt on Rd with intensity measure tλd, t > 0, where λd is
the d-dimensional Lebesgue measure. Let W ⊂ Rd be a measurable set with λd(W ) = 1.
For any Voronoi cell N(x, ηt) with x ∈ ηt ∩W, we take the circumscribed radius of the
cell, and we define the point process ξt on the positive half line as

ξt =
∑

x∈ηt∩W
δα2kdt(d+2)/(d+1)C(x,ηt)d

. (3.48)

Here kd denotes the volume of the d-dimensional unit ball, and the constant α2 > 0 is
given by

α2 =

(
2d(d+1)

(d+ 1)!
pd+1

)1/(d+1)

(3.49)

with

pd+1 := P
(
N
(

0,
d+1∑
j=1

δYj

)
⊆ B(0, 1)

)
, (3.50)

where Y1, . . . , Yd+1 are independent and uniformly distributed random points in B(0, 2).
We denote by Tt the first arrival time of ξt, i.e.,

Tt = min
x∈ηt∩W

α2kdt
(d+2)/(d+1)C(x, ηt)

d, (3.51)

which is - up to a rescaling - the d-th power of the minimal circumscribed radius of the
cells with nucleus in W . Recall that a random variable Y has a Weibull distribution if
its cumulative distribution function is given by P(Y ≤ u) = 1− e−(u/s)k for u ≥ 0, and 0
otherwise; k > 0 is the shape parameter and s > 0 is the scale parameter.
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Theorem 3.3.8. Suppose t ≥ 1. Let ξt and Tt be the point process and the random
variable given by (3.48) and (3.51), respectively. Let Y be a Weibull distributed random
variable with shape parameter d + 1 and scale parameter 1. Then, there exist constants
CTV, CK > 0 only depending on d such that

dTV
(
ξt([0, u]), Pud+1

)
≤ CTV

ud+2

t1/(d+1)
(3.52)

for u > 0, and

dK(Tt, Y ) ≤ CK
t1/(d+1)

. (3.53)

Note that explicit formulas for the constants CTV and CK are given in the proof
of Theorem 3.3.8. In [15, Theorem 1, Equation (2d)], the weak convergence of Tt to
Y as t → ∞ is shown. For an underlying inhomogeneous Poisson process, the weak
convergence of ξt to a Poisson process and the weak convergence of Tt to Y are proven
in Subsection 5.3.3. Although we only consider stationary Poisson processes, we believe
that the arguments employed in this subsection may also establish similar results on the
minimal circumscribed radius for more general Poisson processes with a different rate
of convergence in t under some constraints on the density (e.g. Hölder continuity). To
the best of our knowledge, the present work is the first time the rates of convergence for
the Poisson approximation of ξt([0, u]) and the Weibull approximation of Tt have been
addressed.

The proof of Theorem 3.3.8 requires several preparations. We set

st = α2kdt
(d+2)/(d+1).

Let Mt denote the intensity measure of ξt, and let the quantities M̂t and θt on [0,∞) be
defined by

M̂t([0, u]) = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))

= d+ 1
}]
dx,

θt([0, u]) = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))
> d+ 1

}]
dx

for u ≥ 0. For x ∈W and u ≥ 0 we have

ηt(B(x, 2(u/st)
1/d)) ≥ d+ 1 whenever stC(x, ηt + δx)d ≤ u. (3.54)

This is the case since stC(x, ηt + δx)d ≤ u implies that the nuclei of the neighboring cells
of x are in B(x, 2(u/st)

1/d) and each Voronoi cell has at least d + 1 neighboring cells.
From the Mecke formula and (3.54) it follows that

Mt([0, u]) = M̂t([0, u]) + θt([0, u]), u ≥ 0.

Lemma 3.3.9. For all u > 0 and t > 0,

M̂t([0, u]) = ud+1 exp
(
− 4du

α2t1/(d+1)

)
, θt([0, u]) ≤ 2d(d+3)

α2pd+1

ud+2

t1/(d+1)
and Mt([0, u]) ≤ ud+1

pd+1
.

Proof. First we compute M̂t([0, u]). From (3.54) and the definition of pd+1 in (3.50) we
derive

M̂t([0, u]) = t

∫
W
e−2dkdtu/st

(
2dkdtu/st

)d+1

(d+ 1)!
pd+1

× P
(
ηt
(
B
(
x, 4(u/st)

1/d
)
\B
(
x, 2(u/st)

1/d
))

= 0
)
dx.
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Substituting st = α2kdt
(d+2)/(d+1) and α2 =

(
2d(d+1)

(d+1)! pd+1

)1/(d+1)
into the previous equa-

tion implies that the right-hand side equals

ud+1

∫
W

exp

(
− 2du

α2t1/(d+1)
− tλd

(
B
(
x, 4(u/st)

1/d
)
\B
(
x, 2(u/st)

1/d
)))

dx

= ud+1 exp

(
− 2du

α2t1/(d+1)
− 2du

α2t1/(d+1)
(2d − 1)

)
= ud+1 exp

(
− 4du

α2t1/(d+1)

)
,

which completes the first part of the proof.

For u > 0, we have

θt([0, u]) ≤ t
∫
W

E
[
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))
> d+ 1

}]
dx = t

∞∑
k=d+2

e−βt
βkt
k!

with βt = 4dkdtu/st. Elementary calculations imply that

t
∞∑

k=d+2

e−βt
βkt
k!

= tβd+2
t

∞∑
k=d+2

e−βt
βk−d−2
t

k!
= tβd+2

t

∞∑
`=0

e−βt
β`t

(`+ d+ 2)!

≤ tβd+2
t

(d+ 2)!
=
t
(
4dkdtu/st

)d+2

(d+ 2)!
.

Substituting st = α2kdt
(d+2)/(d+1) and α2 =

(
2d(d+1)

(d+1)! pd+1

)1/(d+1)
into the latter term

yields

θt([0, u]) ≤ 2d(d+3)

α2pd+1

ud+2

t1/(d+1)
,

which is the desired result.

From the Mecke formula, (3.54) and the same arguments as above, we obtain

Mt([0, u]) ≤ t
∫
W

P(ηt(B(x, 2(u/st)
1/d)) ≥ d+ 1)dx = t

∞∑
k=d+1

(2dkdtu/st)
k

k!
e−2dkdtu/st

≤ t(2dkdtu/st)
d+1

(d+ 1)!
=

2d(d+1)kd+1
d td+2ud+1

kd+1
d

2d(d+1)pd+1

(d+1)! (d+ 1)!td+2
=
ud+1

pd+1
,

which concludes the proof.

We now provide a statement that will be employed in the proof of the subsequent
proposition. This result is a direct consequence of Lemma 5.3.14 in Subsection 5.3.3.

Lemma 3.3.10. Let x0, . . . , xd+1 ∈ Rd be in general position (i.e., no k-dimensional
affine subspace of Rd with k ∈ {0, . . . , d− 1} contains more than k+ 1 of the points) and
assume that N(x0,

∑d+1
j=0 δxi) is bounded. Then N(xi,

∑d+1
j=0 δxi) is unbounded for any

i ∈ {1, . . . , d+ 1}.

Next we construct a random variable that satisfies (3.8) for ξt([0, u]) with remainder
terms qi, i ∈ N0, which vanish as t → ∞. By Bc we denote the complement of B ⊂ Rd
and by ηt|B the restriction of ηt to B.
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Proposition 3.3.11. Let X be uniformly distributed in W and independent of ηt. Then
for u > 0,

kP(ξt([0, u]) = k) = M̂t([0, u])P(ξt([0, u]) + Zt,u = k − 1) + qk−1(t, u), k ∈ N,

with
Zt,u = ξt

(
ηt|B(X,4(u/st)1/d)c

)
([0, u])− ξt([0, u])

and

qi(t, u) = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))
> d+ 1

}
× 1
{ ∑
y∈ηt∩W

1
{
stC(y, ηt + δx)d ≤ u

}
= i
}]
dx

for i ∈ N0.

Proof. The Mecke equation implies for k ∈ N that

kP(ξt([0, u]) = k) = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ξt(ηt + δx)([0, u]) = k

}]
dx

= t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{ ∑
y∈ηt∩W

1
{
stC(y, ηt + δx)d ≤ u

}
= k − 1

}]
dx.

Now we divide the integral in

Ak + qk−1(t, u) := t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))

= d+ 1
}

× 1
{ ∑
y∈ηt∩W

1
{
stC(y, ηt + δx)d ≤ u

}
= k − 1

}]
dx

+ t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))
> d+ 1

}
× 1
{ ∑
y∈ηt∩W

1
{
stC(y, ηt + δx)d ≤ u

}
= k − 1

}]
dx.

Then, it is enough to show that Ak = M̂t([0, u])P(ξt([0, u]) + Zt,u = k − 1). In order to
simplify the notation throughout this proof, we write

B2(x) := B
(
x, 2(u/st)

1/d
)

and B4(x) := B
(
x, 4(u/st)

1/d
)
, x ∈ Rd.

In case there are only d+1 points of ηt in B4(x), we have by (3.54) that stC(x, ηt+δx)d ≤ u
only if the d+ 1 elements of ηt belong to B2(x). Therefore we obtain

Ak = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt(B4(x) \B2(x)) = 0, ηt(B2(x)) = d+ 1

}
× 1
{ ∑
y∈ηt∩W

1{stC(y, ηt + δx)d ≤ u
}

= k − 1
}]
dx.

(3.55)

The observation that

stC(y, ηt + δx)d ≤ u if and only if stC
(
y, (ηt + δx)|B2(y)

)d ≤ u (3.56)
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for y ∈ ηt establishes that

Ak = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt(B4(x) \B2(x)) = 0, ηt(B2(x)) = d+ 1

}
× 1
{
ξt(ηt|B4(x)c)([0, u]) +

∑
y∈ηt∩B2(x)∩W

1
{
stC(y, ηt + δx)d ≤ u

}
= k − 1

}]
dx.

Suppose that stC(x, ηt + δx)d ≤ u and that there are exactly d+ 1 points y1, . . . , yd+1 of
ηt in B2(x) and ηt ∩B4(x)∩B2(x)c = ∅. From Lemma 3.3.10 it follows that the Voronoi
cells N(yi, ηt|B4(x) + δx), i = 1, . . . , d+ 1, are unbounded. In particular, we have

C(yi, ηt + δx) > (u/st)
1/d, i = 1, . . . , d+ 1.

Together with the same arguments used to show (3.55) and independence, this implies
that

Ak = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1{ηt(B4(x) \B2(x)) = 0, ηt(B2(x)) = d+ 1}

× 1{ξt(ηt|B4(x)c)([0, u]) = k − 1}
]
dx

= t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1{ηt(B4(x)) = d+ 1}

]
× P

(
ξt(ηt|B4(x)c

)
([0, u]) = k − 1

)
dx.

Then, because the expectation in the latter equation does not depend on the choice of
x ∈W , we have that

Ak = M̂t([0, u])

∫
W

P
(
ξt
(
ηt|B4(x)c

)
([0, u]) = k − 1

)
dx

= M̂t([0, u])P(ξt([0, u]) + Zt,u = k − 1)

with
Zt,u = ξt

(
ηt|B4(X)c

)
([0, u])− ξt([0, u]).

This and B4(X) = B
(
X, 4(u/st)

1/d
)

give the desired conclusion.

Lemma 3.3.12. For u > 0, t > 0 and Zt,u as in Proposition 3.3.11,

E[|Zt,u|] ≤
6d

α2pd+1

ud+2

t(d+2)/(d+1)
.

Proof. For x ∈W it follows from the observation in (3.56) that

0 ≤ ξt([0, u])− ξt
(
ηt|B(x,4(u/st)1/d)c

)
([0, u]) ≤

∑
y∈ηt∩W∩B(x,6(u/st)1/d)

1{stC(y, ηt)
d ≤ u}.

By the Mecke formula and the stationarity of ηt, we obtain

E
∑

y∈ηt∩W∩B(x,6(u/st)1/d)

1{stC(y, ηt)
d ≤ u} ≤ tλd(W ∩B(x, 6(u/st)

1/d))P(stC(0, ηt + δ0)d ≤ u)

≤ 6du

α2t(d+2)/(d+1)
tP(stC(0, ηt + δ0)d ≤ u).

From Lemma 3.3.9 we deduce

tP(stC(0, ηt + δ0)d ≤ u) = Mt([0, u]) ≤ ud+1

pd+1
,

which proves the assertion.
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Lemma 3.3.13. For u > 0 and t > 0,

P(Tt > u) = P(ξt([0, u]) = 0) ≤ e−M̂t([0,u]).

Proof. The first identity is obvious. Let Zt,u be the random variable defined in Proposi-
tion 3.3.11. Since Zt,u ≤ 0, P(ξt([0, u]) +Zt,u ≥ 0) = 1 and qi(t, u) ≥ 0 for all i ∈ N0, the
inequality follows from Proposition 3.2.3 b).

In the next lemma, we combine the results obtained above and Theorem 3.1.3 to
derive intermediate bounds on the quantities considered in Theorem 3.3.8.

Lemma 3.3.14. For u > 0 and t > 0,

dTV
(
ξt([0, u]), P

M̂t([0,u])

)
≤ 6d

α2pd+1

ud+2

t(d+2)/(d+1)
+ θt([0, u]) (3.57)

and

0 ≤ e−M̂t([0,u]) − P(Tt > u) ≤
(

1 +
1

M̂t([0, u])

)
6d

α2pd+1

ud+2

t(d+2)/(d+1)
+

2θt([0, u])

M̂t([0, u])2
.

(3.58)

Proof. From Proposition 3.3.11 it follows that the assumptions of Theorem 3.1.3 are
satisfied. Then, (3.9) in Theorem 3.1.3 yields

dTV (ξt([0, u]), P
M̂t([0,u])

) ≤ (1 ∧ M̂t([0, u]))E[|Zt,u|] +
(
1 ∧ M̂t([0, u])−1/2

)
θt([0, u])

so that (3.57) follows from Lemma 3.3.12.
Let us now prove (3.58). From Lemma 3.3.13, (3.12) in Theorem 3.1.3 with m = 1

and
∑∞

i=1 qi(t, u) ≤ θt([0, u]) we obtain

0 ≤ e−M̂t([0,u]) − P(Tt > u) ≤
E
[
|Zt,u|

]
M̂t([0, u])

+ E
[
|Zt,u|

]
+

q0(t, u)

M̂t([0, u])
+

θt([0, u])

M̂t([0, u])2
.

The first two terms on the right-hand side can be bounded by Lemma 3.3.12. Recall that

q0(t, u) = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))
> d+ 1

}
× 1
{ ∑
y∈ηt∩W

1{stC(y, ηt + δx)d ≤ u} = 0
}]
dx.

Since the product of the first two indicator functions is increasing with respect to addi-
tional points, while the third indicator function is decreasing, it follows from [38, Theorem
20.4] that

q0(t, u) ≤ t
∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))
> d+ 1

}]
× P

( ∑
y∈ηt∩W

1{stC(y, ηt + δx)d ≤ u} = 0
)
dx.

Now Lemma 3.3.13 and the elementary inequality ve−v ≤ 1 for v ≥ 0 lead to

q0(t, u) ≤ θt([0, u])P(ξt([0, u]) = 0) ≤ θt([0, u])e−M̂t([0,u]) ≤ θt([0, u])

M̂t([0, u])
,

which concludes the proof.
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Proof of Theorem 3.3.8. Let u > 0 be fixed. From (3.57) in Lemma 3.3.14, Lemma 3.3.9
and t ≥ 1 it follows that

dTV
(
ξt([0, u]), P

M̂t([0,u])

)
≤ 6d

α2pd+1

ud+2

t(d+2)/(d+1)
+ θt([0, u]) ≤ 6d + 2d(d+3)

α2pd+1

ud+2

t1/(d+1)
.

(3.59)

Using a well-known bound for the total variation distance between two Poisson dis-
tributed random variables, Lemma 3.3.9 and the inequality 1 − e−v ≤ v for v ≥ 0, we
obtain

dTV
(
Pud+1 , PM̂t([0,u])

)
≤ ud+1−M̂t([0, u]) = ud+1

(
1−exp

(
− 4du

α2t1/(d+1)

))
≤ 4dud+2

α2t1/(d+1)
.

Now the triangle inequality yields

dTV
(
ξt([0, u]), Pud+1

)
≤ 3 · 2d(d+3)

α2pd+1

ud+2

t1/(d+1)
,

which proves (3.52).
Let us now show (3.53). From (3.59) and Lemma 3.3.13 we have that, for u ∈ [0, 1],

0 ≤ e−M̂t([0,u]) − P(Tt > u) ≤ 2d(d+3)+1

α2pd+1

1

t1/(d+1)
.

In the following we consider the case 1 ≤ u ≤ t1/(2d+2)τ with τ = α2/4
d. From Lemma

3.3.9 and t ≥ 1 we obtain

ud+1 ≥ M̂t([0, u]) ≥ ud+1

e
. (3.60)

Together with Lemma 3.3.13, (3.58) in Lemma 3.3.14, Lemma 3.3.9 and u ≥ 1 we obtain

0 ≤ e−M̂t([0,u]) − P(Tt > u) ≤
(

1 +
1

M̂t([0, u])

)
6d

α2pd+1

ud+2

t(d+2)/(d+1)
+

2θt([0, u])

M̂t([0, u])2

≤ (1 + e)
6d

α2pd+1

ud+2

t(d+2)/(d+1)
+ 2e2 1

u2d+2

2d(d+3)

α2pd+1

ud+2

t1/(d+1)
.

Using 1 ≤ ud+2 ≤ t(d+2)/(2d+2)αd+2
2 /4d(d+2), t ≥ 1 and the definition of α2 in (3.49), we

deduce

0 ≤ e−M̂t([0,u]) − P(Tt > u) ≤ (1 + e)6d

4d(d+2)

αd+1
2

pd+1

1

t1/(d+1)
+ 2e2 1

u2d+2

2d(d+3)

α2pd+1

ud+2

t1/(d+1)

≤ 1

t1/(d+1)
+

2d(d+3)+4

α2pd+1

1

t1/(d+1)

so that

sup
u∈[0,t1/(2d+2)τ ]

|e−M̂t([0,u]) − P(Tt > u)| ≤
[
1 +

2d(d+3)+4

α2pd+1

]
1

t1/(d+1)
.

Moreover, by Lemma 3.3.9, (3.60) and elementary arguments we obtain for 0 ≤ u ≤
t1/(2d+2)τ that

0 ≤ e−M̂t([0,u]) − e−ud+1 ≤
[
ud+1 − M̂t([0, u])

]
e−M̂t([0,u])

≤ 4dud+2

α2t1/(d+1)
e−u

d+1e−1 ≤ 4de
d+2
d+1

α2t1/(d+1)
≤ 22d+3

α2t1/(d+1)
,

42



where we used the inequalities 1− e−x ≤ x and e−x
d+1
xd+2 ≤ 1 for x ≥ 0. This implies

that

sup
u∈[0,t1/(2d+2)τ ]

|e−ud+1 − P(Tt > u)| ≤
[
1 +

2d(d+3)+4

α2pd+1
+

22d+3

α2

]
1

t1/(d+1)
.

On the other hand, x2e−x
d+1 ≤ 1 for x ≥ 0 leads to

exp
(
−(t1/(2d+2)τ)d+1

)
≤ 1

(t1/(2d+2)τ)2
≤ 16d

α2
2

1

t1/(d+1)
.

Combining the two previous inequalities gives a bound for P
(
Tt > t1/(2d+2)τ

)
and it

implies

sup
u∈[0,∞)

|e−ud+1 − P(Tt > u)|

≤ max
{

sup
u∈[0,t1/(2d+2)τ ]

|e−ud+1 − P(Tt > u)|,P
(
Tt > t1/(2d+2)τ

)
, exp

(
−(t1/(2d+2)τ)d+1

)}
≤
[
1 +

2d(d+3)+4

α2pd+1
+

22d+3

α2
+

16d

α2
2

]
1

t1/(d+1)
.

Now the identity P(Tt > 0) = 1 concludes the proof.

3.3.6 Maximal inradii of stationary Poisson-Voronoi tessellations

In this subsection, we consider the inradii of stationary Poisson-Voronoi tessellations.
Recall that the inradius of a cell is the largest radius for which the ball centered at the
nucleus is contained in the cell. The aim is to continue the work started in [15] by proving
that the Kolmogorov distance between a transform of the largest inradius and a Gumbel
random variable converges to 0 at a rate of log(t)/

√
t as the intensity t of the underlying

Poisson process goes to infinity. More details on Poisson-Voronoi tessellations are given
in Subsection 3.3.5.

Let W ⊂ Rd be a measurable set with Lebesgue measure λd(W ) = 1. Let ηt be
a Poisson process on Rd with intensity measure tλd, t > 0. Consider the measurable
function ht : W ×N (Rd)→ R defined as

ht(x, µ) = min
y∈µ\{x}

tkd‖x− y‖d − log(t),

where µ \ {x} denotes µ − δx if x ∈ µ, and µ otherwise, kd is the volume of the d-
dimensional unit ball, and ‖ · ‖ denotes the Euclidean norm. Note that for any x ∈ ηt,
min{‖x − y‖ : y ∈ ηt \ {x}} is twice the inradius of the Voronoi cell with nucleus x
generated by ηt. Then, the random variable

Tt = max
x∈ηt∩W

ht(x, ηt) (3.61)

is a transform of the maximal inradius over the cells with nucleus in W . We define the
point process ξt as

ξt = ξt(ηt) =
∑

x∈ηt∩W
δht(x,ηt). (3.62)

Recall that a random variable Y has a standard Gumbel distribution if its cumulative
distribution function is given by P(Y ≤ u) = e−e

−u
for u ∈ R.
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Theorem 3.3.15. Suppose t > e2. Let Tt and ξt be the random variable and the point
process given by (3.61) and (3.62), respectively. Let Y be a random variable with a
standard Gumbel distribution. Then,

dTV
(
ξt((u,∞)), Pe−u

)
≤ 2d

u+ log(t)

eu/2
√
t

+
u+ log(t)

eut
(3.63)

for u > − log(t), and

dK(Tt, Y ) ≤ [2d+2(4d + 2d + 2) + 1]
log(t)√

t
. (3.64)

The main achievement of Theorem 3.3.15 is the rate of convergence for the Kol-
mogorov distance in (3.64). In [15, Theorem 1, Equation (2a)], the weak convergence
of Tt to a Gumbel random variable is proven. For d = 2 one obtains from the proof
of [19, Proposition 8] that for any fixed u ∈ R the difference between P(Tt ≤ u) and
P(Y ≤ u) behaves like O(log(t)/

√
t), where the constant hidden in the big-O-notation

depends on u. However this result does not permit the difference between P(Tt ≤ u) and
P(Y ≤ u) to be bounded uniformly in u ∈ R, whence it does not lead to a bound for
the Kolmogorov distance. Note that [19, Proposition 8] concerns the maximal inradii of
planar Gauss-Voronoi tessellations, which are generated by a Poisson cluster process and
include planar Poisson-Voronoi tessellations as a special case. For this model it is shown
that for any fixed u ∈ R, |P(Tt ≤ u) − P(Y ≤ u)| behaves like O(log(t)−1/2), where the
big-O-term depends on u.

For an underlying inhomogeneous Poisson process, the weak convergence of ξt to a
Poisson process and the weak convergence of Tt to Y are established in Subsection 5.3.2,
and for an underlying inhomogeneous binomial point process, the weak convergence of
Tt to Y is studied in [31, Theorem 1]. As for the results stated in Subsection 3.3.5
about the minimal circumscribed radius, we believe that similar arguments as in this
subsection could lead to comparable results with a different rate of convergence in t for
the maximal inradius of a Voronoi tessellation generated by an inhomogeneous Poisson
processes under some constraints on the density.

Counting cells whose inradius is larger than a given value is equivalent to counting
isolated vertices in random geometric graphs. The related problem of finding the longest
edge of a k-nearest neighbor graph or a minimal spanning tree is studied, for example, in
[49, Chapter 8] or [50] for underlying finite Poisson processes or binomial point processes,
where one needs to take care of boundary effects.

Since the proof of Theorem 3.3.15 is based on Theorem 3.1.1, together with the second
inequality of (3.3) in Theorem 3.1.1, the same arguments used to show (3.63) may also
lead to a bound on the Wasserstein distance between ξt((u,∞)) and Pe−u .

For the proof of Theorem 3.3.15 we introduce some notation. By Mt we denote the
intensity measure of ξt. For u > − log(t), set

vt = vt(u) =

(
u+ log(t)

tkd

)1/d

. (3.65)

Then, for u > − log(t) we have

Mt((u,∞)) = t

∫
W

E
[
1{ht(x, ηt + δx) > u}

]
dx = t

∫
W

P
(
ηt(B(x, vt)) = 0

)
dx

= t

∫
W
e−tv

d
t kddx = te−u−log(t) = e−u.
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Let X be a uniformly distributed random vector in W independent of ηt. In the next
proposition we show that for each u > − log(t), and for an opportune choice of a random
ball B centered at X, the random variable ξt(ηt|Bc)((u,∞)) − ξt((u,∞)) satisfies (3.2)
for ξt((u,∞)), where ηt|Bc denotes the restriction of ηt to the complement of B.

Proposition 3.3.16. For any t > e and u > − log(t),

kP(ξt((u,∞)) = k) = Mt((u,∞))P(ξt((u,∞)) + Zt(u) = k − 1), k ∈ N,

where the random variable Zt(u) is defined as

Zt(u) = ξt(ηt|B(X,vt)c)((u,∞))− ξt((u,∞))

with vt = vt(u) given by (3.65).

Proof. Let B = (u,∞) with u > − log(t). The Mecke equation yields for k ∈ N that

kP(ξt(B) = k) = t

∫
W

E
[
1{ht(x, ηt + δx) > u}1{ξt(ηt + δx)(B) = k}

]
dx.

Since ht(x, ηt + δx) > u if and only if ηt(B(x, vt)) = 0, the right-hand side equals

t

∫
W

E
[
1{ηt(B(x, vt)) = 0}1{ξt(ηt|B(x,vt)c)(B) = k − 1}

]
dx

= t

∫
W

P
(
ηt(B(x, vt)) = 0

)
E
[
1{ξt(ηt|B(x,vt)c)(B) = k − 1}

]
dx

= e−u
∫
W

P
(
ξt(ηt|B(x,vt)c)(B) = k − 1

)
dx.

Hence, elementary arguments lead to

kP(ξt(B) = k) = Mt(B)P
(
ξt(ηt|B(X,vt)c)(B) = k − 1

)
= Mt(B)P

(
ξt(B) + Zt(u) = k − 1

)
,

which is the desired conclusion.

Proof of Theorem 3.3.15. Suppose u > − log(t) and let Zt(u) be as in Proposition 3.3.16.
We can rewrite Zt(u) as

Zt(u) = ξt(ηt|B(X,vt)c)((u,∞))− ξt((u,∞))

=
∑

z∈ηt∩W∩B(X,2vt)∩B(X,vt)c

1{ht(z, ηt|B(X,vt)c) > u} − 1{ht(z, ηt) > u}

−
∑

z∈ηt∩B(X,vt)∩W

1{ht(z, ηt) > u}

=: Z ′t,X(u)− Z ′′t,X(u),

where Z ′t,X(u) and Z ′′t,X(u) are non-negative. For a fixed x ∈W , the Mecke formula and
short computations yield

E[Z ′t,X(u)] ≤ E
[ ∑
z∈ηt∩B(x,2vt)∩B(x,vt)c

1
{
ht(z, ηt|B(x,vt)c) > u

}]
= t

∫
B(x,2vt)∩B(x,vt)c

P
(
ηt(B(z, vt) ∩B(x, vt)

c) = 0
)
dz

≤ t
∫
B(x,2vt)∩B(x,vt)c

e−tv
d
t kd/2dz ≤ 2d(u+ log(t))e−(u+log(t))/2 = 2d

u+ log(t)

eu/2
√
t

(3.66)
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and, similarly,

E[Z ′′t,X(u)] ≤ E
[ ∑
z∈ηt∩B(x,vt)

1
{
ht(z, ηt) > u

}]
= t

∫
B(x,vt)

P
(
ηt(B(z, vt)) = 0

)
dz

≤ t
∫
B(x,vt)

e−tv
d
t kddz ≤ (u+ log(t))e−u−log(t) =

u+ log(t)

eut
.

(3.67)

It follows from the triangle inequality that

E[|Zt(u)|] ≤ 2d
u+ log(t)

eu/2
√
t

+
u+ log(t)

eut
.

Then, by the first inequality of (3.3) in Theorem 3.1.1, we obtain (3.63).
Let us now show (3.64). We consider the cases u ≥ 0, u ∈ [− log(log(t)), 0) and

u < − log(log(n)) separately. Because of ue−u ≤ 1 and ue−u/2 ≤ 1 for u ≥ 0 and
log(t) ≥ 1, by (3.63) we have

dTV
(
ξt((u,∞)), Pe−u

)
≤ (2d+1 + 2)

log(t)√
t

for u ≥ 0, which proves (3.64) for u ≥ 0.
In the following let u ∈ [− log(log(t)), 0) be fixed. Since Zt(u) = Z ′t,X(u) − Z ′′t,X(u)

and the terms on the right-hand side are both non-negative, we obtain that

Zt(u)+ ≤ Z ′t,X(u) and Zt(u)− ≤ Z ′′t,X(u).

Combining these inequalities and (3.4) in Theorem 3.1.1 with m = 1 establishes

|P(Tt ≤ u)− P(Pe−u = 0)| = |P(ξt((u,∞)) = 0)− P(Pe−u = 0)|
≤ euE[|Zt(u)|] + E[|Zt(u)|1{ξt((u,∞))− Zt(u)− = 0}]
≤ euE[|Zt(u)|] + E[Z ′t,X(u)1{ξt((u,∞)) = 0}] + E[Z ′′t,X(u)].

Moreover, by (3.66) and (3.67) we have

E[Z ′t,X(u)] ≤ 2d
u+ log(t)

eu/2
√
t
≤ 2d

log(t)

eu/2
√
t

and

E[Z ′′t,X(u)] ≤ u+ log(t)

eut
≤ (log(t))2

t
≤ log(t)√

t
.

Thus the identity Zt(u) = Z ′t,X(u)− Z ′′t,X(u) with Z ′t,X(u), Z ′′t,X(u) ≥ 0 implies that

|P(Tt ≤ u)− P(Pe−u = 0)| ≤ (2d + 2)
log(t)√

t
+ E[Z ′t,X(u)1{ξt((u,∞)) = 0}]. (3.68)

For x ∈W we define

ξt,x((u,∞)) =
∑

z∈ηt∩W∩B(x,4vt)c

1{ht(z, ηt) > u}.

Since, for any x ∈ W , 1{ξt((u,∞)) = 0} ≤ 1{ξt,x((u,∞)) = 0} and Z ′t,x(u) and
1{ξt,x((u,∞)) = 0} are independent, we have

E[Z ′t,X(u)1{ξt((u,∞)) = 0}] ≤
∫
W

E[Z ′t,x(u)1{ξt,x((u,∞)) = 0}]dx

=

∫
W

E[Z ′t,x(u)]P(ξt,x((u,∞)) = 0)dx.

(3.69)
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For x ∈W , the Markov and the triangle inequalities, (3.63) and eu/2
√
t ≥ 1 imply that

P(ξt,x((u,∞)) = 0) ≤ P(ξt((u,∞)) = 0) + P
( ∑
z∈ηt∩B(x,4vt)

1{ht(z, ηt) > u} > 0
)

≤ 2d
log(t)

eu/2
√
t

+
log(t)

eut
+ e−e

−u
+ E

[ ∑
z∈ηt∩B(x,4vt)

1
{
ht(z, ηt) > u

}]
≤ (2d + 1)

log(t)

eu/2
√
t

+ e−e
−u

+ E
[ ∑
z∈ηt∩B(x,4vt)

1
{
ht(z, ηt) > u

}]
.

Similar arguments as used in (3.67) and eu/2
√
t ≥ 1 lead to

E
[ ∑
z∈ηt∩B(x,4vt)

1
{
ht(z, ηt) > u

}]
≤ 4d(u+ log(t))

eut
≤ 4d log(t)

eu/2
√
t
.

Since log(t)eu ≥ 1 and log(t)2
√
t
≤ 4 for t > e2, we obtain

log(t)

eu/2
√
t
≤ log(t)2eu

eu/2
√
t
≤ log(t)2

√
t

eu/2 ≤ 4eu/2.

Together with exp(−e−u − u/2) ≤ 1, which follows from u < 0, we have shown

P(ξt,x((u,∞)) = 0) ≤ 4(4d + 2d + 1)eu/2 + eu/2 ≤ (4(4d + 2d + 1) + 1)eu/2

so that, by (3.66) and (3.69),

E[Z ′t,X(u)1{ξt((u,∞)) = 0}] ≤ (4(4d + 2d + 1) + 1)eu/2
2d log(t)

eu/2
√
t

= (2d+2(4d + 2d + 1) + 2d)
log(t)√

t
.

Combining this with (3.68) leads to∣∣∣P(Tt ≤ u)− e−e−u
∣∣∣ ≤ (2d+2(4d + 2d + 1) + 2d + 2d + 2)

log(t)√
t

≤ 2d+2(4d + 2d + 2)
log(t)√

t
,

(3.70)

which establishes (3.64) for u ∈ [− log(log(t)), 0).
Finally for u < − log(log(t)) we have

P(Tt ≤ u) ≤ P(Tt ≤ − log(log(t))),

which by (3.70) and the triangle inequality is bounded by

2d+2(4d + 2d + 2)
log(t)√

t
+

1

t
.

Therefore elementary arguments lead to

sup
u<− log(log(t))

∣∣P(Tt ≤ u)− e−e−u
∣∣ ≤ [2d+2(4d + 2d + 2) + 1]

log(t)√
t
,

which concludes the proof of (3.64).
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Remark 3.3.17. Note that the integral in the middle of (3.66) cannot be bounded with
a better exponent for t. Indeed, using substitution, we can rewrite the integral as

u+ log(t)

kd

∫
B(0,2)∩B(0,1)c

e
−(u+log(t))

λd(B(y,1)∩B(0,1)c)

kd dy.

For any sufficiently small ε > 0 there exists a set A ⊂ B(0, 2) ∩B(0, 1)c with λd(A) > 0
such that the ratio in the exponent is at least (1 + ε)/2 for all y ∈ A. This provides a
lower bound of the order log(t)t−(1+ε)/2.
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Chapter 4

Multivariate Poisson and Poisson
process approximations

This chapter is a slightly modified and adjusted version of the following preprint article
jointly written with Riccardo Turin:

F. Pianoforte and R. Turin. Multivariate Poisson and Poisson process approximations
with applications to Bernoulli sums and U-statistics. arXiv:2105.01599, 2021.

Abstract. In this chapter, we derive quantitative limit theorems for multivariate Pois-
son and Poisson process approximations. Employing the solution of Stein’s equation for
Poisson random variables, we obtain an explicit bound for the multivariate Poisson ap-
proximation of random vectors in the Wasserstein distance. The bound is then utilized in
the context of point processes to provide a Poisson process approximation result in terms
of a new metric called dπ defined herein, which is the supremum over all Wasserstein dis-
tances between random vectors obtained by evaluating the point processes on arbitrary
collections of disjoint sets. As applications, the multivariate Poisson approximation of
the sum of m-dependent Bernoulli random vectors, the Poisson process approximation of
point processes of U -statistic structure and the Poisson process approximation of point
processes with Papangelou intensity are considered. Our bounds in dπ are as good as
those already available in the literature.

Acknowledgments. This research was supported by Swiss National Science Foundation
(grant number 200021 175584). The authors would like to thank Chinmoy Bhattacharjee,
Ilya Molchanov and Matthias Schulte for valuable comments.

4.1 Introduction and main results

Let X = (X1, . . . , Xd) be an integrable random vector taking values in Nd0, d ∈ N, and let
P = (P1, . . . , Pd) be a Poisson random vector, that is, a random vector with independent
and Poisson distributed components. The first result of this chapter is an upper bound
on the Wasserstein distance

dW (X,P) = sup
g∈Lipd(1)

∣∣E[g(X)]− E[g(P)]
∣∣

between X and P, where Lipd(1) denotes the set of Lipschitz functions g : Nd0 → R
with Lipschitz constant bounded by 1 with respect to the metric induced by the 1-norm,
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|x|1 =
∑d

i=1 |xi| for x = (x1, . . . , xd) ∈ Rd.
The accuracy of the multivariate Poisson approximation has mostly been studied in

terms of the total variation distance; among others we mention [1, 5, 6, 10, 25, 58, 59]. In
contrast, we consider the Wasserstein distance. Note that, since the indicator functions
defined on Nd0 are Lipschitz continuous, for random vectors in Nd0 the Wasserstein distance
dominates the total variation distance, and it is not hard to find sequences that converge
in total variation distance but not in Wasserstein distance. Our goal is to extend the
approach developed in Chapter 3 for the Poisson approximation of random variables to
the multivariate case.

Throughout this chapter, for any x = (x1, . . . , xd) ∈ Rd and index 1 ≤ j ≤ d,
we denote by x1:j and xj:d the subvectors (x1, . . . , xj) and (xj , . . . , xd), respectively.
Moreover, to simplify the notation, we use the convention E|Y | = E[|Y |] for any random
variable Y .

Theorem 4.1.1. Let X = (X1, . . . , Xd) be an integrable random vector with values in Nd0,
d ∈ N, and let P = (P1, . . . , Pd) be a Poisson random vector with E[P] = (λ1, . . . , λd) ∈
[0,∞)d. For 1 ≤ i ≤ d, consider any random vector Z(i) = (Z

(i)
1 , . . . , Z

(i)
i ) in Zi defined

on the same probability space as X, and define

q(i)
m1:i

= miP
(
X1:i = m1:i

)
− λiP

(
X1:i + Z(i) = (m1:i−1,mi − 1)

)
(4.1)

for m1:i ∈ Ni0 with mi 6= 0. Then,

dW (X,P) ≤
d∑
i=1

λiE∣∣Z(i)
i

∣∣+ 2λi

i−1∑
j=1

E
∣∣Z(i)

j

∣∣+
∑

m1:i∈Ni0
mi 6=0

∣∣∣q(i)
m1:i

∣∣∣
 . (4.2)

For a random variable X, Equation (4.1) corresponds to the condition required in
Theorem 3.1.3. There, sharper bounds on the Wasserstein distance for the case of random
variables are shown. However, Theorem 4.1.1 tackles the case of random vectors instead
of just considering random variables.

In order to give an interpretation of the hypothesis in Theorem 4.1.1, for a random
vector X = (X1, . . . , Xd) in Nd0, d ∈ N, let us consider the family of random vectors

Y(i) = (X1:i−1, Xi + 1) + Z(i), i = 1, . . . , d, (4.3)

where Z(i), i = 1, . . . , d, are defined as in Theorem 4.1.1. Under the additional condition

P(X1:i+Z(i) ∈ Ni0) = 1, a sequence of real numbers q
(i)
m1:i ,m1:i ∈ Ni0 with mi 6= 0, satisfies

Equation (4.1) if and only if

E[Xif(X1:i)] = λiE[f(Y(i))] +
∑

m1:i∈Ni0,mi 6=0

q(i)
m1:i

f(m1:i) (4.4)

for all functions f : Ni0 → R such that E |Xif(X1:i)| < ∞. When the elements q
(i)
m1:i are

all zeros and E[Xi] = λi, (4.4) becomes

E[Xif(X1:i)] = E[Xi]E[f(Y(i))]. (4.5)

In this case, by taking the sum over all m1:i ∈ Nd0 with mi 6= 0 in (4.1), we obtain that the
condition P(X1:i + Z(i) ∈ Ni0) = 1 is always satisfied. Recall that, for a random variable
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X ≥ 0 with E[X] > 0, a random variable Xs defined on the same probability space as X
is a size bias coupling of X if it satisfies

E[Xf(X)] = E[X]E[f(Xs)] (4.6)

for all measurable f : R → R such that E |Xf(X)| < ∞. Therefore, if the q
(i)
m1:i are all

zeros for any i = 1, . . . , d and E[X] = (λ1, . . . , λd), the random vectors Y(i), i = 1, . . . , d,
can be seen as a size bias coupling of X, as they are defined on the same probability
space as X and satisfy (4.5), which corresponds to (4.6) in the one-dimensional case.
Note that this suggests a definition of size bias coupling of random vectors that is slightly
different from the one introduced by Definition 2.4.5. Following this interpretation, when

E[X] = (λ1, . . . , λd) and the random vectors Z(i) are chosen such that the q
(i)
m1:i are not

zero, we can think of the random vectors Y(i) defined by (4.3) as an approximate size
bias coupling of X, where instead of assuming that Y(i) satisfies (4.5) exactly, we allow

error terms q
(i)
m1:i and obtain (4.4). This is an important advantage of Theorem 4.1.1,

since one does not need to find an exact size bias coupling (in the sense of (4.5)), it only

matters that the error terms q
(i)
m1:i are sufficiently small and that the random vectors Z(i)

are the null vector with high probability.

The second main contribution of this chapter concerns Poisson process approximation
of point processes with finite intensity measure. Let (X,X ) be a measurable space and
consider a point process ξ and a Poisson process η on X with finite intensity measure.
For any choice of subsets A1, . . . , Ad ∈ X , the random vectors (ξ(A1), . . . , ξ(Ad)) and
(η(A1), . . . , η(Ad)) take values in Nd0 (almost surely). Thus, Theorem 4.1.1 provides
bounds on the Wasserstein distance

dW ((ξ(A1), . . . , ξ(Ad)), (η(A1), . . . , η(Ad)))

for all A1, . . . , Ad ∈ X and d ∈ N. Then, by taking the supremum of over all arbi-
trary collections (A1, . . . , Ad) of disjoint sets, these bounds permit the comparison of the
distributions of ξ and η.

Definition 4.1.2. Let ξ and ζ be point processes on X with finite intensity measure. The
distance dπ between ξ and ζ is defined as

dπ(ξ, ζ) = sup
(A1,...,Ad)∈X ddisj, d∈N

dW
(
(ξ(A1), . . . , ξ(Ad)), (ζ(A1), . . . , ζ(Ad))

)
,

where

X ddisj = {(A1, . . . , Ad) ∈ X d : Ai ∩Aj = ∅, i 6= j}.

That dπ is a probability distance between the distributions of point processes with
finite intensity measure follows immediately from its definition and Proposition 2.2.2.

To the best of our knowledge, this is the first time the distance dπ is defined and
employed in Poisson process approximation. We believe that it is possible to extend
dπ to larger classes of point processes by restricting X ddisj to suitable families of sets.
For example, for locally finite point processes on a locally compact second countable
Hausdorff space, we may define the distance dπ by replacing X ddisj with the family of
d-tuples of disjoint and relatively compact Borel sets. However, this falls out of the
scope of this chapter. Let us now state our main theoretical result on Poisson process
approximation.
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Theorem 4.1.3. Let ξ be a point process on X with finite intensity measure, and let η be a
Poisson process on X with finite intensity measure λ. For any i-tuple (A1, . . . , Ai) ∈ X idisj

with i ∈ N, consider a random vector ZA1:i = (ZA1:i
1 , . . . , ZA1:i

i ) defined on the same
probability space as ξ with values in Zi, and define

qA1:i
m1:i

= miP
(
(ξ(A1), . . . , ξ(Ai)) = m1:i

)
− λ(Ai)P

(
(ξ(A1), . . . , ξ(Ai)) + ZA1:i = (m1:i−1,mi − 1)

) (4.7)

for m1:i ∈ Ni0 with mi 6= 0. Then,

dπ(ξ, η) ≤ sup
(A1,...,Ad)∈X ddisj,d∈N

d∑
i=1

 ∑
m1:i∈Ni0
mi 6=0

∣∣qA1:i
m1:i

∣∣+ 2λ(Ai)
i∑

j=1

E
∣∣ZA1:i

j

∣∣
 .

The Poisson process approximation has mostly been studied in terms of the to-
tal variation distance in the literature; see e.g. [2, 5, 7, 13, 17, 63, 64] and references
therein. In contrast, [22, 23] deal with Poisson process approximation using the Kan-
torovich–Rubinstein distance. In Proposition 4.2.5, we establish that the total variation
distance

dTV (ξ, ζ) = sup
B∈NX

|P(ξ ∈ B)− P(ζ ∈ B)|

between two point processes ξ and ζ on X with finite intensity measure is bounded from
above by dπ(ξ, ζ). Moreover, since dπ(ξ, ζ) ≥ |E[ξ(X)] − E[ζ(X)]|, Example 2.2 in [22]
provides a sequence of point processes (ζn)n∈N that converges in total variation distance
to a point process ζ even though dπ(ζn, ζ) → ∞ as n goes to infinity. This shows that
dπ is stronger than dTV in the sense that convergence in dπ implies convergence in total
variation distance, but not vice versa. The Kantorovich-Rubinstein distance between
two point processes ξ and ζ is defined as the optimal transportation cost between their
distributions, when the cost function is the total variation distance between measures;
see [22, Equation 2.5]. When the configuration space X is a locally compact second
countable Hausdorff space (lcscH), which is indeed the case considered in [22] and [23],
the Kantorovich duality theorem ([70, Theorem 5.10]) yields an equivalent definition for
this metric:

dKR(ξ, ζ) = sup |E[h(ξ)]− E[h(ζ)]|

where the supremum runs over all measurable functions h : NX → R that are 1-Lipschitz
with respect to the total variation distance between measures and make h(ξ) and h(ζ)
integrable. For a lcscH space X, we prove in Lemma 4.2.6 that dπ ≤ 2dKR. The constant
2 in this inequality cannot be improved, as shown by the following simple example: let
X = {a, b} with X = {∅, {a}, {b},X}, and let δa and δb be deterministic point processes
corresponding to the Dirac measures centered at a and b, respectively. Since the function
g : (x1, x2) 7→ x1 − x2 is 1-Lipschitz, it follows

dπ(δa, δb) ≥ | g(δa({a}), δa({b}))− g(δb({a}), δb({b})) | = 2.

On the other hand, dKR is bounded by the expected total variation distance between
the two counting measures, thus dKR(δa, δb) ≤ 1. Hence, in this case dπ(δa, δb) =
2dKR(δa, δb).

It remains an open problem whether the distances dπ and dKR are equivalent or
not. It is worth mentioning that our general result, Theorem 4.1.3, permits to study the
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Poisson process approximation in the metric dπ of point processes on any measurable
space. Then, Theorem 4.1.3 can be used to obtain approximation results for point
processes also when the notion of weak convergence is not defined.

To demonstrate the versatility of our general main results, we apply them to several
examples. In Subsection 4.3.1, we approximate the sum of Bernoulli random vectors
by a Poisson random vector. This problem has mainly been studied in terms of the
total variation distance and under the assumption that the Bernoulli random vectors are
independent (see e.g. [57]). We derive an explicit approximation result in the Wasserstein
distance for the more general case of m-dependent Bernoulli random vectors.

In Subsections 4.3.2 and 4.3.3, we apply Theorem 4.1.3 to obtain explicit Poisson pro-
cess approximation results for point processes with Papangelou intensity and point pro-
cesses of Poisson U -statistic structure. The latter are point processes that, once evalua-
ted on a measurable set, become Poisson U -statistics. Analogous results were already
proven for the Kantorovich-Rubinstein distance in [23, Theorem 3.7] and [22, Theorem
3.1], under the additional condition that the configuration space X is lcscH. It is inter-
esting to note that the proof of our result for point processes with Papangelou intensity
employs Theorem 4.1.3 with ZA1:i set to zero for all i, while for point processes of U -
statistic structure, we find ZA1:i such that Equation (4.7) in Theorem 4.1.3 is satisfied
with qA1:i

m1:i
≡ 0 for all collections of disjoint sets.

The proof of Theorem 4.1.1 is based on the Chen-Stein method applied to each com-
ponent of the random vectors and the coupling in (4.1). For the proof of Theorem 4.1.3,
we mimic the approach used to prove [1, Theorem 2], as we derive the process bound as
a consequence of the d-dimensional bound.

Before we discuss the applications in Section 4.3, we prove our main results in the
next section.

4.2 Proofs of the results of Section 4.1

Throughout this section, X = (X1, . . . , Xd) is an integrable random vector with values
in Nd0 and P = (P1, . . . , Pd) is a Poisson random vector with mean E[P] = (λ1, . . . , λd) ∈
[0,∞)d. Without loss of generality we assume that X and P are independent and defined
on the same probability space. We denote by Lipd(1) the collection of Lipschitz functions
g : Nd0 → R with respect to the metric induced by the 1-norm and Lipschitz constant
bounded by 1, that is

|g(x)− g(y)| ≤ |x− y|1 =

d∑
i=1

|xi − yi|, x,y ∈ Nd0.

Clearly, this family of functions contains the 1-Lipschitz functions with respect to the
metric induced by the Euclidean norm. For d = 1, we use the convention Lip(1) =
Lip1(1).

From now on, for any g ∈ Lip(1), we denote by ĝ(λ) the solution of the Stein equation

λĝ(λ)(i+ 1)− iĝ(λ)(i) = g(i)− E[g(Pλ)], i ∈ N0, (4.8)

such that ĝ(λ)(0) = 0, where Pλ is a Poisson random variable with mean λ ≥ 0. From
the inequalities (2.4) in Section 2.3, we obtain the following result for the Stein factors
(Note that the case λ = 0 is trivial).
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Lemma 4.2.1. For any λ ≥ 0 and g ∈ Lip(1), let ĝ(λ) be the solution of the Stein
equation (4.8) with initial condition ĝ(λ)(0) = 0. Then,

sup
i∈N0

∣∣∣ĝ(λ)(i)
∣∣∣ ≤ 1 and sup

i∈N0

∣∣∣ĝ(λ)(i+ 1)− ĝ(λ)(i)
∣∣∣ ≤ 1. (4.9)

Recall that, for any x = (x1, . . . , xd) ∈ Rd and index 1 ≤ j ≤ d, we write x1:j and
xj:d for the subvectors (x1, . . . , xj) and (xj , . . . , xd), respectively. For g ∈ Lipd(1), we

denote by ĝ
(λ)
x1:i−1|xi+1:d

the solution of (4.8) for the Lipschitz function g(x1:i−1, · , xi+1:d)

with fixed x1:i−1 ∈ Ni−1
0 and xi+1:d ∈ Nd−i0 . Since ĝ(λ) takes vectors from Nd0 as input, we

do not need to worry about measurability issues. The following proposition is the first
building block for the proof of Theorem 4.1.1.

Proposition 4.2.2. For any g ∈ Lipd(1),

E[g(P)− g(X)] =

d∑
i=1

E
[
Xiĝ

(λi)
X1:i−1|Pi+1:d

(Xi)− λiĝ(λi)
X1:i−1|Pi+1:d

(Xi + 1)
]
.

Proof of Proposition 4.2.2. First, observe that

E [g(P)− g(X)] =
d∑
i=1

E [g(X1:i−1, Pi:d)− g(X1:i, Pi+1:d)] . (4.10)

The independence of Pi from Pi+1:d and X1:i implies

E
[
g(X1:i−1, Pi:d)− g(X1:i, Pi+1:d)

]
= E

[
EPi [g(X1:i−1, Pi:d)]− g(X1:i, Pi+1:d)

]
,

where EPi denotes the expectation with respect to the random variable Pi. From the

definition of ĝ
(λi)
x1:i−1|xi+1:d

with x1:i−1 = Xi:i−1 and xi+1:d = Pi+1:d, it follows

EPi [g(X1:i−1, Pi:d)]− g(X1:i, Pi+1:d) = Xiĝ
(λi)
X1:i−1|Pi+1:d

(Xi)− λiĝ(λi)
X1:i−1|Pi+1:d

(Xi + 1)

for all i = 1, . . . , d. Together with (4.10), this leads to the desired conclusion.

Proof of Theorem 4.1.1. In view of Proposition 4.2.2, it suffices to bound∣∣∣E [Xiĝ
(λi)
X1:i−1|Pi+1:d

(Xi)− λiĝ(λi)
X1:i−1|Pi+1:d

(Xi + 1)
]∣∣∣ , i = 1, . . . , d.

For the remaining of the proof, the index i is fixed and we omit the superscript (i) in

Z
(i)
i:d and q

(i)
m1:i . Define the function

h(X1:i) = E
[
ĝ

(λi)
X1:i−1|Pi+1:d

(Xi)
∣∣X1:i

]
,

where E[ · |Y ] denotes the conditional expectation with respect to a random element Y .

With the convention ĝ
(λi)
m1:i−1|mi+1:d

(mi) = 0 if m1:d /∈ Nd0 or mi = 0, it follows from (4.1)

that

E
[
Xiĝ

(λi)
X1:i−1|Pi+1:d

(Xi)
]

= E[Xih(X1:i)] =
∑

m1:i∈Ni0

mih(m1:i)P(X1:i = m1:i)

=
∑

m1:i∈Ni0
mi 6=0

h(m1:i)qm1:i + λi
∑

m1:i∈Ni0
mi 6=0

h(m1:i)P (X1:i + Z1:i = (m1:i−1,mi − 1))

=
∑

m1:i∈Ni0
mi 6=0

h(m1:i)qm1:i + λiE
[
ĝ

(λi)
X1:i−1+Z1:i−1|Pi+1:d

(Xi + Zi + 1)
]
.
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Since |h(X1:i)| ≤ 1 by (4.9), the triangle inequality establishes∣∣∣E [Xiĝ
(λi)
X1:i−1|Pi+1:d

(Xi)− λiĝ(λi)
X1:i−1|Pi+1:d

(Xi + 1)
]∣∣∣ ≤ ∑

m1:i∈Ni0
mi 6=0

|qm1:i |+ λi(H1 +H2),

(4.11)
with

H1 =
∣∣∣E [ĝ(λi)

X1:i−1+Z1:i−1|Pi+1:d
(Xi + Zi + 1)− ĝ(λi)

X1:i−1+Z1:i−1|Pi+1:d
(Xi + 1)

]∣∣∣
and

H2 =
∣∣∣E [ĝ(λi)

X1:i−1+Z1:i−1|Pi+1:d
(Xi + 1)− ĝ(λi)

X1:i−1|Pi+1:d
(Xi + 1)

]∣∣∣ .
The inequalities in (4.9) guarantee

H1 ≤ E|Zi| and H2 ≤ 2P(Z1:i−1 6= 0) ≤
i−1∑
j=1

2P(Zj 6= 0) ≤ 2
i−1∑
j=1

E|Zj |.

Combining (4.11) with the bounds for H1 and H2, and summing over i = 1, . . . , d con-
cludes the proof.

Remark 4.2.3. It follows directly from the previous proof that the bound (4.2) in The-
orem 4.1.1 can be improved in the following way:

dW (X,P) ≤
d∑
i=1

λiE∣∣Z(i)
i

∣∣+ 2λiP
(
Z

(i)
1:i−1 6= 0

)
+

∑
m1:i∈Ni0
mi 6=0

∣∣∣q(i)
m1:i

∣∣∣
 .

Next, we derive Theorem 4.1.3 from Theorem 4.1.1.

Proof of Theorem 4.1.3. Let d ∈ N and A = (A1, . . . , Ad) ∈ X ddisj. Define

XA = (ξ(A1), . . . , ξ(Ad)) and PA = (η(A1), . . . , η(Ad)),

where PA is a Poisson random vector with mean E[PA] = (λ(A1), . . . , λ(Ad)). By
Theorem 4.1.1 with Z(i) = ZA1:i , we obtain

dW (XA,PA) ≤
d∑
i=1

 ∑
m1:i∈Ni0
mi 6=0

∣∣qA1:i
m1:i

∣∣+ 2λ(Ai)
i∑

j=1

E|ZA1:i
j |

 .

Taking the supremum over all d-tuples of disjoint measurable sets concludes the proof.

Let us now prove that the total variation distance is dominated by dπ. Recall that
the total variation distance between two point processes ξ and ζ on X is defined as

dTV (ξ, ζ) = sup
B∈NX

|P(ξ ∈ B)− P(ζ ∈ B)| . (4.12)

The result is obtained by a monotone class Theorem, [41, Theorem 1.3], which is stated
hereafter as a lemma. A monotone class A is a collection of sets closed under monotone
limits, that is, for any A1, A2, . . . ∈ A with An ↑ A or An ↓ A, then A ∈ A.
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Lemma 4.2.4. Let U be a set and let U be an algebra of subsets of U . Then, the
monotone class generated by U coincides with the σ-field generated by U .

Proposition 4.2.5. Let ξ and ζ be two point processes on X with finite intensity measure.
Then,

dTV (ξ, ζ) ≤ dπ(ξ, ζ).

Proof. Let us first introduce the set of finite counting measures

N<∞
X = {ν ∈ NX : ν(X) <∞},

with the trace σ-field
N<∞

X = {B ∩N<∞
X : B ∈ NX}.

As we are dealing with finite point processes, the total variation distance is equivalently
obtained if NX is replaced by N<∞

X in (4.12):

dTV (ξ, ζ) = sup
B∈N<∞X

|P(ξ ∈ B)− P(ζ ∈ B)|.

Let P(Nd0) denote the power set of Nd0, that is, the collection of all subsets of Nd0. For
any d ∈ N and M ∈ P(Nd0) note that 1M (·) ∈ Lipd(1), therefore

dπ(ξ, ζ) ≥ sup
U∈U
|P(ξ ∈ U)− P(ζ ∈ U)| , (4.13)

with

U =
{{
ν ∈ N<∞

X : (ν(A1), . . . , ν(Ad)) ∈M
}

: d ∈ N, A ∈ X ddisj, M ∈ P(Nd0)
}
⊂ N<∞

X .

It can be easily verified that U is an algebra and σ(U) = N<∞
X . Moreover, by (4.13), U

is a subset of the monotone class{
U ∈ N<∞

X : |P(ξ ∈ U)− P(ζ ∈ U)| ≤ dπ(ξ, ζ)
}
.

Lemma 4.2.4 concludes the proof.

In the last part of this section, we show that the distance dπ is dominated by 2dKR
when the underlying space is locally compact second countable Hausdorff (lcscH). Recall
that, a topological space is second countable if its topology has a countable basis, and
it is locally compact if every point has an open neighborhood whose topological closure
is compact. Suppose that X is lcscH with Borel σ-field X . Recall that the Kantorovich-
Rubinstein distance between two point processes ξ and ζ on X with finite intensity
measure is given by

dKR(ξ, ζ) = sup
h∈L(1)

|E[h(ξ)]− E[h(ζ)]| ,

where L(1) is the set of all measurable functions h : NX → R that are Lipschitz continuous
with respect to the total variation distance between measures

dTV,NX(µ, ν) = sup
A∈X ,

µ(A),ν(A)<∞

|µ(A)− ν(A)|, µ, ν ∈ NX,

and with Lipschitz constant bounded by 1. Since ξ and ζ take values in N<∞
X , we can

consider h to be defined on N<∞
X by [43, Theorem 1].
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Lemma 4.2.6. Let ξ and ζ be two point processes with finite intensity measure on a
lcscH space X with Borel σ-field X . Then,

dπ(ξ, ζ) ≤ 2dKR(ξ, ζ).

Proof. For g ∈ Lipd(1) and disjoint sets A1, . . . , Ad ∈ X , d ∈ N, define h : N<∞
X → R by

h(ν) = g(ν(A1), . . . , ν(Ad)). For finite point configurations ν1 and ν2, we obtain

|h(ν1)− h(ν2)| ≤ |g(ν1(A1), . . . , ν1(Ad))− g(ν2(A1), . . . , ν2(Ad))|

≤
d∑
i=1

|ν1(Ai)− ν2(Ai)| ≤ 2dTV,NX(ν1, ν2).

This implies h/2 ∈ L(1). Hence |E[h(ξ)]− E[h(ζ)]| ≤ 2dKR(ξ, ζ).

4.3 Applications

In this section, we discuss some applications of Theorem 4.1.1 and Theorem 4.1.3. We
study the multivariate Poisson approximation of the sum of m-dependent Bernoulli ran-
dom vectors, and we prove the analogues of [23, Theorem 3.7] and [22, Theorem 3.1] for
the metric dπ in a slightly more general set up.

4.3.1 Sum of m-dependent Bernoulli random vectors

In this subsection, we consider a finite family of Bernoulli random vectors Y(1), . . . ,Y(n)

and investigate the multivariate Poisson approximation of X =
∑n

r=1 Y(r) in the Wasser-
stein distance. If the Bernoulli random vectors are i.i.d., then X has the so called multi-
nomial distribution. The multivariate Poisson approximation of the multinomial distri-
bution, and more generally of the sum of independent Bernoulli random vectors, has
already been tackled by many authors in terms of the total variation distance. Among
others, we refer the reader to [6, 24, 57, 59] and the survey [46]. Unlike the mentioned
papers, we assume that Y(1), . . . ,Y(n) are m-dependent. Note that the case of sums
of 1-dependent random vectors has recently been treated in [25] using metrics that are
weaker than the total variation distance. To the best of our knowledge, this is the first
time the Poisson approximation of the sum of m-dependent Bernoulli random vectors is
investigated using the Wasserstein distance.

More precisely, for n ∈ N, let Y(1), . . . ,Y(n) be Bernoulli random vectors with distri-
butions given by

P(Y(r) = ej) = pr,j ∈ [0, 1], r = 1, . . . , n , j = 1, . . . , d,

P(Y(r) = 0) = 1−
d∑
j=1

pr,j ∈ [0, 1], r = 1, . . . , n,
(4.14)

where ej denotes the vector with entry 1 at position j and entry 0 otherwise. Assume
that Y(1), . . . ,Y(n) are m-dependent for a given fixed m ∈ N0. This means that for
any two subsets S and T of {1, . . . , n} such that min(S)−max(T ) > m, the collections
(Y(s))s∈S and (Y(t))t∈T are independent. Define the random vector X = (X1, . . . , Xd)
as

X =

n∑
r=1

Y(r). (4.15)
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Note that if Y(r), r = 1, . . . , n, are i.i.d., then m = 0 and X has the multinomial distri-
bution. The mean vector of X is E[X] = (λ1, . . . , λd) with

λj =

n∑
r=1

pr,j , j = 1, . . . , d. (4.16)

For k = 1, . . . , n, let Q(k) be the quantity given by

Q(k) = max
r∈{1,...,n} : 1≤|k−r|≤m

i,j=1,...,d

E
[
1{Y(k) = ei}1{Y(r) = ej}

]
.

We now state the main result of this subsection.

Theorem 4.3.1. Let X be as in (4.15), and let P = (P1, . . . , Pd) be a Poisson random
vector with mean E[P] = (λ1, . . . , λd) given by (4.16). Then,

dW (X,P) ≤
n∑
k=1

d∑
i=1

[ ∑
r=1,...,n,
|r−k|≤m

pr,i + 2

i−1∑
j=1

∑
r=1,...,n,
|r−k|≤m

pr,j

]
pk,i + 2d(d+ 1)m

n∑
k=1

Q(k).

The proof of Theorem 4.3.1 is obtained by applying Theorem 4.1.1. In the one-
dimensional case, Equation (4.1) corresponds to the condition required in Theorem 3.1.3,
which establishes better Poisson approximation results than Theorem 4.1.1. Then, for
the sum of dependent Bernoulli random variables, a sharper bound for the Wasserstein
distance than one in Theorem 4.3.1 can be derived from the inequality (3.11) in Theorem
3.1.3, while for the total variation distance, a better bound can be deduced from the
inequality (3.9) in Theorem 3.1.3, [1, Theorem 1] and [68, Theorem 1]. As a consequence
of Theorem 4.3.1, we obtain the following result for the sum of independent Bernoulli
random vectors.

Corollary 4.3.2. For n ∈ N, let Y(1), . . . ,Y(n) be independent Bernoulli random vectors
with distribution given by (4.14), and let X be the random vector defined by (4.15). Let
P = (P1, . . . , Pd) be a Poisson random vector with mean E[P] = (λ1, . . . , λd) given by
(4.16). Then,

dW (X,P) ≤
n∑
k=1

[ d∑
i=1

pk,i

]2

.

A sharper bound for the total variation distance than the one obtained by Corol-
lary 4.3.2 is established in e.g. [57, Theorem 1].

Proof of Theorem 4.3.1. Without loss of generality we may assume that λ1, . . . , λd > 0.
Define the random vectors

W(k) =
(
W

(k)
1 , . . . ,W

(k)
d

)
=

∑
r=1,...,n,

1≤|r−k|≤m

Y(r),

X(k) =
(
X

(k)
1 , . . . , X

(k)
d

)
= X−Y(k) −W(k),

for k = 1, . . . , n. Let us fix i = 1, . . . , d and `1:i ∈ Ni0 with `i 6= 0. From straightforward
calculations it follows that

`iP(X1:i = `1:i) = E
n∑
k=1

1{Y(k) = ei}1{X1:i = `1:i} (4.17)

= E
n∑
k=1

1{Y(k) = ei}1
{
X

(k)
1:i +W

(k)
1:i = (`1:i−1, `i − 1)

}
.
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Let H
(i)
`1:i

and q
(i)
`1:i

be the quantities given by

H
(i)
`1:i

= E
n∑
k=1

1{Y(k) = ei}1
{
X

(k)
1:i = (`1:i−1, `i − 1)

}
,

q
(i)
`1:i

= `iP(X1:i = `1:i)−H(i)
`1:i

so that

`iP(X1:i = `1:i) = H
(i)
`1:i

+ q
(i)
`1:i
.

For i = 1, . . . , d, let τi be a random variable independent of (Y(r))nr=1 with distribution

P(τi = k) =
pk,i
λi
, k = 1, . . . , n .

Since Y(r), r = 1, . . . , n, are m-dependent, the random vectors Y(k) = (Y
(k)

1 , . . . , Y
(k)
d )

and X(k) are independent for all k = 1, . . . , n. Therefore

H
(i)
`1:i

=
n∑
k=1

pk,iP
(
X

(k)
1:i = (`1:i−1, `i − 1)

)
=

n∑
k=1

pk,iP
(
X1:i −W (k)

1:i − Y
(k)

1:i = (`1:i−1, `i − i)
)

= λiP
(
X1:i −W (τi)

1:i − Y
(τi)

1:i = (`1:i−1, `i − i)
)
.

Then, by Theorem 4.1.1 we obtain

dW (X,P) ≤
d∑
i=1

(
λiE

[
W

(τi)
i + Y

(τi)
i

]
+2λi

i−1∑
j=1

E
[
W

(τi)
j + Y

(τi)
j

]
+
∑

`1:i∈Nd0
`i 6=0

∣∣q(i)
`1:i

∣∣). (4.18)

From (4.17) and the definition of q
(i)
`1:i

it follows that

|q(i)
`1:i
| ≤ E

n∑
k=1

1{Y(k) = ei}
∣∣∣1{X(k)

1:i +W
(k)
1:i = (`1:i−1, `i − 1)

}
−1
{
X

(k)
1:i = (`1:i−1, `i − 1)

}∣∣∣
≤ E

n∑
k=1

1{Y(k) = ei}1{W (k)
1:i 6= 0}1

{
X

(k)
1:i +W

(k)
1:i = (`1:i−1, `i − 1)

}
+ E

n∑
k=1

1{Y(k) = ei}1{W (k)
1:i 6= 0}1

{
X

(k)
1:i = (`1:i−1, `i − 1)

}
.

Thus, by the inequality 1{W (k)
1:i 6= 0} ≤

∑i
j=1W

(k)
j , we obtain

∑
`1:i∈Ni0
`i 6=0

∣∣q(i)
`1:i

∣∣ ≤ 2E
n∑
k=1

1{Y(k) = ei}1{W (k)
1:i 6= 0}

≤ 2E
n∑
k=1

i∑
j=1

1{Y(k) = ei}W (k)
j ≤ 4mi

n∑
k=1

Q(k).

(4.19)
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Moreover, for any i, j = 1, . . . , d, we have

λiE
[
W

(τi)
j + Y

(τi)
j

]
= λiE

∑
r=1,...,n,
|r−τi|≤m

1{Y(r) = ej}

=
n∑
k=1

pk,i E
∑

r=1,...,n,
|r−k|≤m

1{Y(r) = ej} =
∑

k,r=1,...,n,
|r−k|≤m

pk,ipr,j .

Together with (4.18) and (4.19), this leads to

dW (X,P) ≤
d∑
i=1

∑
k,r=1,...,n,
|r−k|≤m

pk,ipr,i + 2
d∑
i=1

i−1∑
j=1

∑
k,r=1,...,n,
|r−k|≤m

pk,ipr,j + 2d(d+ 1)m
n∑
k=1

Q(k)

≤
n∑
k=1

d∑
i=1

[ ∑
r=1,...,n,
|r−k|≤m

pr,i + 2
i−1∑
j=1

∑
r=1,...,n,
|r−k|≤m

pr,j

]
pk,i + 2d(d+ 1)m

n∑
k=1

Q(k),

which completes the proof.

4.3.2 Point processes with Papangelou intensity

Let ξ be a proper point process on a measurable space (X,X ), that is, a point process
that can be written as ξ =

∑τ
i=1 δXi , for some random elements X1, X2, . . . in X and a

random variable τ ∈ N0 ∪ {∞}. Recall that any Poisson process can be seen as a proper
point process, and that, by [38, Corollary 6.5], all locally finite point processes are proper
if (X,X ) is a Borel space. The so-called reduced Campbell measure C of ξ is defined on
the product space X×NX by

C(A) = E
∫
X

1A(x, ξ \ {x}) dξ(x)

for all A from the product σ-field generated by X ×NX, where ξ \ {x} denotes the point
process ξ− δx if x ∈ ξ, and ξ otherwise. Let ν be a σ-finite measure on (X,X ) and let Pξ
be the distribution of ξ on (NX,NX). If C is absolutely continuous with respect to ν×Pξ,
any density c of C with respect to ν×Pξ is called (a version of) the Papangelou intensity
of ξ. This notion was originally introduced by Papangelou in [48]. In other words, c
is a Papangelou intensity of ξ relative to the measure ν if the Georgii–Nguyen–Zessin
equation

E
∫
X
u(x, ξ \ {x}) dξ(x) =

∫
X
E[c(x, ξ)u(x, ξ)] dν(x) (4.20)

is satisfied for all measurable functions u : X × NX → [0,∞). Intuitively c(x, ξ) is a
random variable that measures the interaction between x and ξ; as a reinforcement of
this exposition, it is well-known that if c is deterministic, that is, c(x, ξ) = f(x) for some
positive and measurable function f , then ξ is a Poisson process with intensity measure
λ(A) =

∫
A f(x)dν(x), A ∈ X , (see e.g. [38, Theorem 4.1]). For more details on this

interpretation, we refer to [23, Section 4]. See also [37] and [64] for connections between
Papangelou intensity and Gibbs point processes. We show that for any proper point
process ξ that admits Papangelou intensity c relative to a measure ν, the dπ distance
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between ξ and a Poisson process with finite intensity measure λ, which is absolutely
continuous with respect to ν, can be bounded by the distance in L1(ν × Pξ) between c
and the density of λ. For a locally compact metric space, Theorem 4.3.3 yields the same
bound as [23, Theorem 3.7], but for the metric dπ instead of the Kantorovich-Rubinstein
distance. Observe that the inequality in Theorem 4.3.3 follows with an additional factor
2 immediately from [23, Theorem 3.7] and Lemma 4.2.6 when the underlying space is a
locally compact metric space.

Theorem 4.3.3. Let ξ be a proper point process on X that admits Papangelou intensity
c with respect to a σ-finite measure ν such that

∫
X E |c(x, ξ)| dν(x) < ∞. Let η be a

Poisson process on X with finite intensity measure λ having density f with respect to ν.
Then,

dπ(ξ, η) ≤
∫
X
E |c(x, ξ)− f(x)| dν(x).

Proof of Theorem 4.3.3. The condition
∫
X E |c(x, ξ)| dν(x) < ∞ and (4.20) ensure that

ξ has finite intensity measure. Consider i ∈ N and (A1, . . . , Ai) ∈ X idisj. Hereafter,
ξ(A1:i) is shorthand notation for (ξ(A1), . . . , ξ(Ai)). The idea of the proof is to apply
Theorem 4.1.3 with the random vectors ZA1:i assumed to be 0. In this case,

qA1:i
m1:i

= miP
(
ξ(A1:i) = m1:i

)
− λ(Ai)P

(
ξ(A1:i) = (m1:i−1,mi − 1)

)
= miP

(
ξ(A1:i) = m1:i

)
−
∫
X
E
[
f(x)1Ai(x)1{ξ(A1:i) = (m1:i−1,mi − 1)}

]
dν(x)

for m1:i ∈ Ni0 with mi 6= 0, i = 1, . . . , d. It follows from (4.20) that

miP
(
ξ(A1:i) = m1:i

)
= E

∫
X

1Ai(x)1{ξ \ {x}(A1:i) = (m1:i−1,mi − 1)} dξ(x)

=

∫
X
E
[
c(x, ξ)1Ai(x)1{ξ(A1:i) = (m1:i−1,mi − 1)}

]
dν(x).

Hence

qA1:i
m1:i

=

∫
X
E
[
(c(x, ξ)− f(x))1Ai(x)1{ξ(A1:i) = (m1:i−1,mi − 1)}

]
dν(x).

By Theorem 4.1.3, we obtain

dπ(ξ, η) ≤ sup
(A1,...,Ad)∈X ddisj,d∈N

d∑
i=1

∑
m1:i∈Ni0
mi 6=0

∣∣qA1:i
m1:i

∣∣ .
Furthermore, the inequalities∑
m1:i∈Ni0
mi 6=0

∣∣qA1:i
m1:i

∣∣ ≤ ∑
m1:i∈Ni0,
mi 6=0

∫
X
E
[
|c(x, ξ)− f(x)|1Ai(x)1{ξ(A1:i) = (m1:i−1,mi − 1)}

]
dν(x)

≤
∫
X
E
[
|c(x, ξ)− f(x)|1Ai(x)

∑
m1:i∈Ni0
mi 6=0

1{ξ(A1:i) = (m1:i−1,mi − 1)}
]
dν(x)

≤
∫
X
E
[
|c(x, ξ)− f(x)|1Ai(x)

]
dν(x)
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imply that
d∑
i=1

∑
m1:i∈Ni0
mi 6=0

∣∣qA1:i
m1:i

∣∣ ≤ ∫
X
E |c(x, ξ)− f(x)| dν(x)

for any A1:d ∈ X ddisj with d ∈ N. Thus, we obtain the assertion.

4.3.3 Point processes of Poisson U-statistic structure

Let (X,X ) and (Y,Y) be measurable spaces. For ` ∈ N and a symmetric domain D ∈ X `,
let g : D → Y be a symmetric measurable function, i.e., for any (x1, . . . , x`) ∈ D and any
index permutation σ, g(x1, . . . , x`) = g(xσ(1), . . . , xσ(`)). Let η be a Poisson process on
X with finite intensity measure L. We are interested in the point process on Y given by

ξ =
1

`!

∑
(x1,...,x`)∈η`6=∩D

δg(x1,...,x`), (4.21)

where for any ζ =
∑

i∈I δxi ∈ NX with I at most countable, ζ`6= denotes the collection
of all `-tuples (x1, . . . , x`) of points from ζ with pairwise distinct indexes. The point
process ξ has a Poisson U -statistic structure in the sense that, for any B ∈ Y, ξ(B) is a
Poisson U -statistic. In Subsections 3.3.1 and 3.3.2, we studied the Poisson approximation
of U -statistics. Hereafter we discuss the Poisson process approximation in the metric dπ
for the point process ξ. We prove the exact analogue of [22, Theorem 3.1], with the
Kantorovich–Rubinstein distance replaced by dπ. Several applications of this result are
presented in [22], alongside with the case of underlying binomial point processes. It
is worth mentioning that [22] relies on a slightly less general setup: X is assumed to
be a locally compact second countable Hausdorff space (lcscH), while in the present
work any measurable space is allowed. Observe that, when X is lcscH, the inequality in
Theorem 4.3.4 follows with an additional factor 2 immediately from [22, Theorem 3.1]
and Lemma 4.2.6.

Let λ denote the intensity measure of ξ, and note that, since L is a finite measure on
X, then λ(Y) <∞ by the multivariate Mecke formula. Define

R = max
1≤i≤`−1

∫
Xi

(∫
X`−i

1{(x1, . . . , x`) ∈ D} dL`−i(xi+1, . . . , x`)

)2

dLi(x1, . . . , xi)

for ` ≥ 2, and put R = 0 for ` = 1. The expression R is used to quantify the accuracy
of the Poisson process approximation of ξ, and corresponds to the quantity r given
in Subsection 3.3.2 for h = 1{(x1, . . . , x`) ∈ D}, which is used to study the Poisson
approximation of Poisson U -statistics.

Theorem 4.3.4. Let ξ, λ and R be as above, and let γ be a Poisson process on Y with
intensity measure λ. Then,

dπ(ξ, γ) ≤ 2`+1

`!
R.

If the intensity measure λ of ξ is the zero measure, then the proof of Theorem 4.3.4 is
trivial. From now on, we assume 0 < λ(Y) <∞. The multivariate Mecke formula yields
for every A ∈ Y that

λ(A) = E[ξ(A)] =
1

`!
E
∑

x∈η`6=∩D

1{g(x) ∈ A} =
1

`!

∫
D

1{g(x) ∈ A} dL`(x).
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Define for λ(A) > 0 the random element XA = (XA
1 , . . . , X

A
` ) in X` independent of η

and distributed according to

P
(
XA ∈ B

)
=

1

`!λ(A)

∫
D

1{g(x) ∈ A}1{x ∈ B} dL`(x)

for B from the product σ-field generated by X `, and put XA = x0 ∈ X` for λ(A) = 0. For
any vector x = (x1, . . . , x`) ∈ X`, denote by ∆(x) the sum of ` Dirac measures located
by the vector components, that is

∆(x) = ∆(x1, . . . , x`) =
∑̀
i=1

δxi .

In what follows, for any point process ζ on X, ξ(ζ) is the point process defined as in
(4.21) with η replaced by ζ. As in Section 4.3.2, ξ(A1:i) denotes the random vector
(ξ(A1), . . . , ξ(Ai)) for all A1, . . . , Ai ∈ Y, i ∈ N.

Proof of Theorem 4.3.4. For ` = 1, Theorem 4.3.4 is a direct consequence of [38, Theo-
rem 5.1]. Whence, we assume ` ≥ 2. Let A1, . . . , Ai ∈ Y with i ∈ N be disjoint sets and
let m1:i ∈ Ni0 with mi 6= 0. Suppose λ(Ai) > 0. The multivariate Mecke formula implies
that

miP(ξ(A1:i) = m1:i) =
1

`!
E

∑
x∈η`6=∩D

1{g(x) ∈ Ai}1{ξ(A1:i) = m1:i}

=
1

`!

∫
D

1{g(x) ∈ Ai}P(ξ(η + ∆(x))(A1:i) = m1:i) dL
`(x)

=
1

`!

∫
D

1{g(x) ∈ Ai}P
(
ξ(η + ∆(x))(A1:i)− δg(x)(A1:i) = (m1:i−1,mi − 1)

)
dL`(x)

= λ(Ai)P
(
ξ
(
η + ∆

(
XAi

))
(A1:i)− δg(XAi)(A1:i) = (m1:i−1,mi − 1)

)
,

(4.22)

where the second last inequality holds true because δg(x)(A1:i) is the vector (0, . . . , 0, 1) ∈
Ni0 when g(x) ∈ Ai. The previous identity is verified also if λ(Ai) = 0. Hence, for

ZA1:i = ξ
(
η + ∆

(
XAi

))
(A1:i)− ξ(A1:i)− δg(XAi)(A1:i) ,

the quantity qA1:i
m1:i

defined by Equation (4.7) in Theorem 4.1.3 is zero. Note that ZA1:i

has non-negative components. Therefore for any (A1, . . . , Ad) ∈ X ddisj with d ∈ N,

d∑
i=1

λ(Ai)

i∑
j=1

E
∣∣∣ZA1:i

j

∣∣∣ =

d∑
i=1

λ(Ai)

i∑
j=1

E
[
ξ
(
η + ∆

(
XAi

))
(Aj)− ξ(Aj)− δg(XAi)(Aj)

]

≤
d∑
i=1

λ(Ai)E
[
ξ
(
η + ∆

(
XAi

))
(Y)− ξ(Y)− 1

]
=

1

`!

d∑
i=1

∫
D

1{g(x) ∈ Ai}E [ξ(η + ∆(x))(Y)− ξ(Y)− 1] dL`(x)

≤ λ(Y)E
[
ξ
(
η + ∆

(
XY
))

(Y)− ξ(Y)− 1
]
.
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Thus, Theorem 4.1.3 establishes

dπ(ξ, γ) ≤ 2λ(Y)E
[
ξ
(
η + ∆

(
XY
))

(Y)− ξ(Y)− 1
]
. (4.23)

From (4.22) with i = 1 and A1 = Y, it follows that the random variable ξ
(
η+∆

(
XY) )(Y)

is the size bias coupling of ξ(Y). Property (4.6) with f being the identity function and
simple algebraic computations yield

E
[
ξ
(
η + ∆

(
XY
))

(Y)− ξ(Y)− 1
]

= λ(Y)−1
{
E
[
ξ(Y)2

]
− λ(Y)2 − λ(Y)

}
= λ(Y)−1 {Var(ξ(Y))− λ(Y)} .

(4.24)

Moreover, [55, Lemma 3.5] gives

Var(ξ(Y))− λ(Y) ≤
`−1∑
i=1

1

`!

(
`

i

)
R ≤ 2` − 1

`!
R .

Combining these inequalities with (4.23) and (4.24) concludes the proof.
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Chapter 5

Criteria for Poisson process
convergence

This chapter is a slightly modified and adjusted version of the following preprint article
jointly written with Matthias Schulte:

F. Pianoforte and M. Schulte. Criteria for Poisson process convergence with applications
to inhomogeneous Poisson-Voronoi tessellations. arXiv:2101.07739, 2021.

Abstract. In this chapter, we employ the relation between probabilities of two consecu-
tive values of a Poisson random variable to derive conditions for the weak convergence
of locally finite point processes to a Poisson process. As applications, we consider the
starting points of k-runs in a sequence of Bernoulli random variables and point processes
constructed using inradii and circumscribed radii of inhomogeneous Poisson-Voronoi tes-
sellations.

Acknowledgments. The research was supported by the Swiss National Science Foun-
dation Grant No. 200021 175584. We would like to thank two anonymous referees for
valuable hints and comments.

5.1 Introduction and main results

Let X be a random variable taking values in N0 and let λ > 0. It is well-known that

kP(X = k) = λP(X = k − 1), k ∈ N, (5.1)

if and only if X follows a Poisson distribution with parameter λ. We use this observation
to establish weak convergence to a Poisson process. Indeed, we will prove that a tight
sequence of locally finite point processes ξn, n ∈ N, satisfies

lim
n→∞

kP(ξn(B) = k)− λ(B)P(ξn(B) = k − 1) = 0, k ∈ N,

for any B in a certain family of sets and some locally finite measure λ, if and only if ξn
converges in distribution to a Poisson process with intensity measure λ. Many different
methods to investigate Poisson process convergence are available in the literature; we refer
to surveys and classical results [33, 45, 46]. Using Stein’s method, one can even derive
quantitative bounds for the Poisson process approximation; see Chapter 4 and e.g. [2, 5,
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7, 10, 17, 18, 22, 47, 62, 63, 71] and the references therein. In contrast to these results, the
findings in this chapter are purely qualitative and do not provide rates of convergence,
but they have the advantage that the underlying conditions are easy to verify. This
is demonstrated in Sections 5.3.2 and 5.3.3, where weak convergence of locally point
processes constructed using inradii and circumscribed radii of inhomogeneous Poisson-
Voronoi tessellations is established.

The proof of our abstract criterion for Poisson process convergence relies on characte-
rizations of locally finite point process convergence from Subsection 2.2.2 and the cha-
racterizing equation (5.1) for the Poisson distribution.

Let us now give a precise formulation of our results. Let S be a locally compact second
countable Hausdorff space (lcscH space) with Borel σ-field S. Recall that, a non-empty
class U of subsets of S is called a ring if it is closed under finite unions and intersections,
and under proper differences. Let Ŝ denote the class of relatively compact Borel sets of
S. We say that a measure λ on S is non-atomic if λ({x}) = 0 for all x ∈ S, and we define

Ŝλ = {B ∈ Ŝ : λ(∂B) = 0},

where ∂B indicates the boundary of B.
Our first main result provides a characterization of weak convergence to a Poisson

process.

Theorem 5.1.1. Let ξn, n ∈ N, be a sequence of locally finite point processes, and let λ
be a non-atomic locally finite measure on S. Let U ⊆ Ŝλ be a ring containing a countable
topological basis of S. Then the following statements are equivalent:

(i) For all open sets B ∈ U and k ∈ N, ξn(B), n ∈ N, is tight and

lim
n→∞

kP(ξn(B) = k)− λ(B)P(ξn(B) = k − 1) = 0. (5.2)

(ii) ξn, n ∈ N, converges in distribution to a Poisson process with intensity measure λ.

Remark 5.1.2. Note that the sequence ξn(B), n ∈ N, in Theorem 5.1.1 is tight by the
Markov inequality if E[ξn(B)]→ λ(B).

Remark 5.1.3. For a point process %, the function f : S ×N (S)→ [0,∞) defined as

f(x, µ) = 1B(x)1{µ(B) = k} (5.3)

with k ∈ N and B ∈ U satisfies

E
∑
x∈%

f(x, %)−
∫
S
E
[
f(x, %+ δx)

]
dλ(x) = kP(%(B) = k)− λ(B)P(%(B) = k − 1). (5.4)

By the Mecke formula, the left-hand side of (5.4) equals zero for all integrable functions
f : S × N (S) → R, if and only if % is a Poisson process with intensity measure λ (see
Proposition 2.2.5). Theorem 5.1.1 shows that, if we replace % by ξn, n ∈ N, satisfying a
tightness assumption, then the left-hand side of (5.4) vanishes as n→∞ for all f of the
form (5.3) if and only if ξn, n ∈ N, converges weakly to a Poisson process with intensity
measure λ.

Next we apply Theorem 5.1.1 to investigate point processes on S that are constructed
from an underlying Poisson or binomial point process on a measurable space (Y,Y). For
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t ≥ 1 let ηt be a Poisson process on Y with a σ-finite intensity measure Pt, while βn is a
binomial point process of n ∈ N independent points in Y which are distributed according
to a probability measure Qn. For a family of measurable functions ht : Vt ×NY → S
with Vt ∈ Y, t ≥ 1, we are interested in the point processes∑

x∈ηt∩Vt

δht(x,ηt), t ≥ 1, and
∑

x∈βn∩Vn

δhn(x,βn), n ∈ N.

In order to deal with both situations simultaneously, we introduce a joint notation. In
the sequel, we study the point processes

ξt =
∑

x∈ζt∩Ut

δgt(x,ζt), t ≥ 1, (5.5)

where ζt = ηt, gt = ht and Ut = Vt in the Poisson case, while ζt = βbtc, gt = hbtc and
Ut = Vbtc in the binomial case. We assume

P(ξt(B) <∞) = 1 for all B ∈ Ŝ

so that ξt is locally finite. Let Mt be the intensity measure of ξt. By Kt we denote the
intensity measure of ζt, i.e. Kt = Pt if ζt = ηt and Kt = btcQbtc if ζt = βbtc. Moreover,

we define ζ̂t = ηt in the Poisson case and ζ̂t = βbtc−1 in the binomial case. From Theorem
5.1.1 we derive the following criterion for convergence of ξt, t ≥ 1, to a Poisson process.

Theorem 5.1.4. Let ξt, t ≥ 1, be a family of locally finite point processes on S given
by (5.5) and let M be a non-atomic locally finite measure on S. Fix any ring U ⊂ ŜM
containing a countable topological basis, and assume that

lim
t→∞

Mt(B) = M(B) (5.6)

for all open sets B ∈ U . Then,

lim
t→∞

∫
Ut

E
[
1{gt(x, ζ̂t + δx) ∈ B}1

{ ∑
y∈ζ̂t∩Ut

δgt(y,ζ̂t+δx)(B) = m
}]
dKt(x)

−M(B)P(ξt(B) = m) = 0

(5.7)

for all open sets B ∈ U and m ∈ N0, if and only if ξt, t ≥ 1, converges weakly to a Poisson
process with intensity measure M .

Remark 5.1.5. One is often interested in Poisson process convergence for S = Rd,
d ≥ 1, and for the situation that the intensity measure of the Poisson process is absolutely
continuous (with respect to the Lebesgue measure). In this case, we can apply Theorem
5.1.1 and Theorem 5.1.4 in the following way. The family Rd of sets in Rd that are finite
unions of Cartesian products of bounded intervals is a ring contained in the relatively
compact sets of Rd. For any absolutely continuous measure the boundaries of sets from
Rd have zero measure. By Id we denote the subset of open sets of Rd, which contains a
countable topological basis of Rd. Note that the sets of Id are finite unions of Cartesian
products of bounded open intervals. Thus, we prove weak convergence for sequences of
locally finite point processes on Rd to Poisson processes with absolutely continuous locally
finite intensity measures by showing (5.2) or (5.6) and (5.7) for all sets from Id. For
d = 1 we use the convention I = I1.
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Theorem 5.1.4 says that in order to establish Poisson process convergence for point
processes of the form (5.5), one has to deal with the dependence between

1{gt(x, ζ̂t + δx) ∈ B} and 1
{ ∑
y∈ζ̂t∩Ut

1{gt(y, ζ̂t + δx) ∈ B} = m
}
.

We say that a statistic is locally dependent if its value at a given point depends only on
a local and deterministic neighborhood. That is, for any fixed x ∈ Y and B ∈ U , there
exists a set At,x ∈ Y with x ∈ At,x such that

1{gt(x, ζ̂t + δx) ∈ B} = 1{gt(x, ζ̂t|At,x + δx) ∈ B}, (5.8)

where µ|A denotes the restriction of a measure µ to a set A. For further notions of local
dependence in the context of point processes we refer to [7, 17, 18]. Next we describe
heuristically how (5.8) can be applied to show (5.7) in Theorem 5.1.4 for ζt = ηt if

1
{ ∑
y∈ηt∩Ut

δgt(y,ηt+δx)(B) = m
}
≈ 1

{ ∑
y∈ηt∩Act,x∩Ut

δgt(y,ηt|Act,x )(B) = m
}

(5.9)

for x ∈ Y , where Ac denotes the complement of A ⊂ Y , and where by ≈ we mean that,
as t increases to infinity, the two indicator functions have the same limit behavior. Under
the assumption (5.8), the integral in (5.7) coincides with∫

Ut

E
[
1{gt(x, ηt|At,x + δx) ∈ B}1

{ ∑
y∈ηt∩Ut

δgt(y,ηt+δx)(B) = m
}]
dKt(x). (5.10)

By (5.9), the last expression can be approximated by∫
Ut

E
[
1{gt(x, ηt|At,x + δx) ∈ B}1

{ ∑
y∈ηt∩Act,x∩Ut

δgt(y,ηt|Act,x )(B) = m
}]
dKt(x). (5.11)

Due to the independence of ηt|At,x and ηt|Act,x , this can be rewritten as∫
Ut

P
( ∑
y∈ηt∩Act,x∩Ut

δgt(y,ηt|Act,x )(B) = m
)
E
[
1{gt(x, ηt|At,x + δx) ∈ B}

]
dKt(x). (5.12)

Using once more (5.8) and (5.9), the previous term can be approximated by

P(ξt(B) = m)

∫
Ut

E
[
1{gt(x, ηt + δx) ∈ B}

]
dKt(x) = P(ξt(B) = m)Mt(B), (5.13)

where the last equality follows from the Mecke formula. Consequently, the expression on
the left-hand side of (5.7) becomes small if the approximation in (5.9) is good.

We believe that, under the assumption (5.8), condition (5.9) is similar to the ones
from [62, Theorem 2.1]. For example, suppose S = R, Y = Rd with d ∈ N, and assume
for any fixed B = (u, v) ⊂ R with u < v ∈ R that there exists r(t) > 0 such that r(t)→ 0
as t→∞, and

At,x ⊂ x+ r(t)[−1, 1]d, x ∈ Ut ⊂ Rd. (5.14)

68



Then, verifying that the approximation in (5.9) is good (in the sense that the steps above
are correct) is almost equivalent to consider

ξt|(u,v) =

N(t)∑
i=1

∑
x∈ηt∩Uti

δgt(x,ηt)1{gt(x, ηt) ∈ (u, v)} =:
N∑
i=1

ξti ,

where Pt = {U ti , i = 1, . . . , N(t)} is a partition of Ut of d-dimensional cubes of side
length r(t) (here we are not considering technical issues related to the existence of such
partition), and to prove that

H1 +H2 +H3 :=

N(t)∑
i=1

P
(
ξti(Ut) ≥ 2) +

N(t)∑
i=1

∑
j∈Γsi

P
(
ξti(Ut) ≥ 1

)
P
(
ξtj(Ut) ≥ 1

)

+

N(t)∑
i=1

∑
j∈Γsi

P
(
ξti(Ut) ≥ 1, ξtj(Ut) ≥ 1

)
vanishes as t→∞, where for each i, Γsi consists of the indexes of the sets in Pt surround-
ing U ti . Indeed, if H1 is small,

1{ξti(B) ≥ 1} ≈ ξti(B)

for all i = 1, . . . , N(t), and hence, by the Mecke formula, P
(
ξti(B) ≥ 1, ξtj(B) ≥ 1

)
can be

approximated by∫
Uti

E
[
1{gt(x, ηt|At,x + δx) ∈ B}1{ξtj(ηt + δx)(B) ≥ 1}

]
dKt(x)

for i 6= j, where ξtj(ηt + δx) is defined as ξtj with ηt replaced by ηt + δx. Now, since for

each x ∈ U ti , gt(x, ηt) ∈ (u, v) depends only on the points of ηt in U ti + r(t)[−1, 1]d, ξti
is independent of all ξtj except of the ones corresponding to the sets U tj surrounding U ti .
Therefore, we obtain that the difference between (5.10) and (5.11) can be estimated by

N(t)∑
i=1

∫
Uti

E
[
1{gt(x, ηt|At,x + δx) ∈ B}1{ξti(ηt + δx)(Ut) ≥ 2}

]
dKt(x)

+

N(t)∑
i=1

∑
j∈Γsi

∫
Uti

E
[
1{gt(x, ηt|At,x + δx) ∈ B}1{ξtj(ηt + δx)(Ut) ≥ 1}

]
dKt(x)

which corresponds approximately to H1 + H3. By similar arguments, one can use H1

and H2 to estimate the difference between (5.12) and (5.13).
The previous quantities, H1, H2 and H3, correspond to the first and third sums on

the right-hand side of the inequality in [62, Theorem 2.1]. Since ξti is independent of
all ξtj except of the ones corresponding to the sets U tj surrounding U ti , the third and the
fourth quantities on the right-hand side of the inequality in [62, Theorem 2.1] are zero.
Then, under the assumptions (5.8) and (5.14), one may try to apply [62, Theorem 2.1]
to prove Poisson process convergence of ξt, which unlike Theorem 5.1.4, provides also an
estimate for the accuracy of the approximation. However, the reader should notice that
the discussion below Remark 5.1.5, concerning possible situations for which Theorem
5.1.4 can be applied, also holds when the sets At,x, x ∈ X, do not satisfy (5.14), while,
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Figure 5.1: Triangles orientation.

𝜃𝑥

𝑥
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(−1,0)

since [62, Theorem 2.1] is based on a discretization argument, it may not be applicable
without this hypothesis. For instance, if ξt, t ≥ 1, is a family of point processes on
S with Papangelou intensity ct(x, ξt) (see Subsection 4.3.2 for the definition), one can
obtain from Theorem 5.1.4 and a simple modification of the proof of Theorem 4.3.3 that
ξt converges weakly to a Poisson process, if ct(x, ξt) converges in L1 to a deterministic
function as t → ∞. Hence, Theorem 5.1.4 permits the derivation of the qualitative
version of Theorem 4.3.3, while showing this result using [62, Theorem 2.1] may not
be possible. Furthermore, Theorem 5.1.4 can also be applied when the point processes
ξt, t ≥ 1, defined by (5.5) have an underlying binomial point process, and for these, the
fourth and fifth expressions on the right-hand side of the inequality in [62, Theorem 2.1]
are not zero. Let us now consider an example where Theorem 5.1.4 can be easily applied
to prove Poisson convergence, whereas it is unclear how to employ [62, Theorem 2.1] to
establish the same result.

Example 5.1.6. Let D ⊂ R2 be the open disk centered at (0, 0) with radius 1, and let
W = {D ∩ (0, 1)2} ∪ {(−1, 0) × (0, 1)}. For any fixed x ∈ W , let ∆x be an isosceles
triangle with x as the vertex that connects two sides of equal length. We denote by bx
the side of ∆x that does not have x as vertex. For x ∈ W ∩ (0, 1)2, we assume that bx
has length ‖x‖5 and height π2/(2‖x‖), where ‖ · ‖ denotes the Euclidean norm, and we
consider ∆x such that the angle between the vector e1 = (1, 0) and

w(x) := argmin {‖x− y‖ : y ∈ bx} − x

is equal to the angle between e1 and x, which we denote by θx ∈ (0, π/2). For x = (a, b) ∈
(−1, 0) × (0, 1), we assume that bx has length |a|3 and height 4/|a|, and that the angle
between e1 and w(x) is 0. Under the previous assumptions, ∆x is uniquely determined
for all x ∈ W (see Figure 5.1). Let λ2 be the Lebesgue measure on R2. Since λ2(∆x)
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Figure 5.2: Geometrical interpretation of Example 5.1.6.

(1,0)(0,0)

(0,1)(−1,1)

(−1,0)
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𝑧

equals π2‖x‖4/4 for x ∈ D ∩ (0, 1)2, and 4|a|2 for x = (a, b) ∈ (−1, 0)× (0, 1), it can be
easily verified that

λ2

({
x ∈W :

√
λ2(∆x) ∈ (0, α)

})
= α, α ∈ [0, 1]. (5.15)

Let z ∈ W be fixed. For each circle C centered at the origin with radius r < 1, the set
of all x ∈ C ∩ {W ∩ (0, 1)2} with z ∈ ∆x is an arc of length bounded by s‖x‖5 for some
s > 0 independent of C (see Figure 5.2). Moreover, for any a ∈ (−1, 0), the length of
{b ∈ (0, 1) : z ∈ ∆(a,b)} is bounded by 3|a|3. Therefore

lim
t→∞

tλ2

({
x ∈W :

√
λ2(∆x) ∈ (0, α/t), z ∈ ∆x

})
= lim

t→∞
t
[
λ2

(
{x ∈W ∩ (0, 1)2 : π‖x‖2/2 ≤ α/t, z ∈ ∆x}

)
+ λ2

(
{x = (a, b) ∈W ∩ {(−1, 0)× (0, 1)} : 2|a| ≤ α/t, z ∈ ∆x}

)]
≤ lim

t→∞
t

[ ∫ √2α/(πt)

0
sr6dr +

∫ 0

−α/(2t)
3|a|3da

]
= 0

(5.16)

for all α > 0 and z ∈ W . Let ηt be a Poisson process on R2 with intensity measure
tλ2, t > 0. Define gt(x, ηt) =

√
λ2(∆x) if ηt(∆x) = 0, and 0 otherwise. Consider the

point process on (0,∞) given by

ξt =
∑

x∈ηt∩W
δtgt(x,ηt)1{tgt(x, ηt) > 0},
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and observe that

1{gt(x, ηt + δx) ∈ B} = 1{gt(x, ηt|∆x + δx) ∈ B} = 1
{
ηt(∆x) = 0, t

√
λ2(∆x) ∈ B

}
(5.17)

for any B ⊂ (0,∞) and x ∈ W . In this example it is not possible to define a square
r(t)[−1, 1]2 for some r(t) > 0, r(t) → 0 as t → ∞, such that (5.14) is satisfied for
all x ∈ W , because the triangles ∆x become thinner and longer as we approach the
origin, and rotate along the circles for x ∈ D ∩ (0, 1)2, while they are horizontal for
x ∈ (−1, 0) × (0, 1). For this reason, showing that ξt converges weakly to a Poisson
process as t→∞ by applying [62, Theorem 2.1] may be complicated. On the other hand,
one can derive this result from Theorem 5.1.4 in a simple way. Indeed, from the Mecke
formula and the assumptions on ∆x, we have for all finite unions of open and bounded
intervals B ⊂ (0,∞),

lim
t→∞

E[ξt(B)] = lim
t→∞

t

∫
W

P(ηt(∆x) = 0)1
{
t
√
λ2(∆x) ∈ B

}
dx

= lim
t→∞

t

∫
W

1
{
t
√
λ2(∆x) ∈ B

}
dx,

where we used that λ2(∆x) ≤ (sup(B)/t)2 for t
√
λ2(∆x) ∈ B in the last step. From

(5.15) it follows that the previous limit equals the Lebesgue measure of B. Moreover, the
independence of ηt|∆x and ηt|∆c

x
and (5.17) imply for all m ∈ N0 that

lim
t→∞

t

∫
W

E
[
1{gt(x, ηt + δx) ∈ B}1

{ ∑
y∈ηt∩W

δgt(y,ηt+δx)(B) = m
}]
dx

− λ2(B)P(ξt(B) = m)

= lim
t→∞

t

∫
W

1
{
t
√
λ2(∆x) ∈ B

}
P
(
ηt(∆x) = 0,

∑
y∈ηt∩W∩∆c

x

δgt(y,ηt|∆cx+δx)(B) = m
)
dx

− λ2(B)P(ξt(B) = m)

= lim
t→∞

t

∫
W

1
{
t
√
λ2(∆x) ∈ B

}
P(ηt(∆x) = 0)

× P
( ∑
y∈ηt∩W∩∆c

x

δgt(y,ηt|∆cx+δx)(B) = m
)
dx− λ2(B)P(ξt(B) = m)

= lim
t→∞

t

∫
W

1
{
t
√
λ2(∆x) ∈ B

}
×
[
P
( ∑
y∈ηt∩W∩∆c

x

δgt(y,ηt|∆cx+δx)(B) = m
)
− P(ξt(B) = m)

]
dx,

where we used that λ2(∆x) ≤ (sup(B)/t)2 for t
√
λ2(∆x) ∈ B in the last step. The

right-hand side is bounded by

lim
t→∞

t

∫
W
1{t
√
λ2(∆x)}

[
P(ηt(∆x) > 0) + P

(
ηt
({
y ∈W : t

√
λ2(∆y) ∈ B, x ∈ ∆y

})
> 0
)]
dx.

By applying the Markov inequality and the Mecke formula, and using the bound for λ2(∆x)
and (5.16), we obtain that the previous limit equals 0. Therefore, from Theorem 5.1.5 and
Remark 5.1.4 it follows that ξt converges weakly to a Poisson process with the restriction
of the Lebesgue measure to (0,∞) as the intensity measure.
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In Section 5.3, we provide further examples for applying our abstract main results
Theorem 5.1.1 and Theorem 5.1.4. Our first example in Subsection 5.3.1 are k-runs, i.e.
at least k successes in a row in a sequence of Bernoulli random variables. For the situation
that the success probabilities converge to zero, we show that the rescaled starting points
of the k-runs behave like a Poisson process if some independence assumptions on the
underlying Bernoulli random variables are satisfied.

As the second and third example, we consider statistics related to inradii and cir-
cumscribed radii of inhomogeneous Poisson-Voronoi tessellations. We study the Voronoi
tessellation generated by a Poisson process ηt, t > 0, on Rd with intensity measure tµ,
where µ is a locally finite and absolutely continuous measure with density f . In Subsec-
tion 5.3.2, for any cell with the nucleus in a compact set, we take the µ-measure of the
ball centered at the nucleus and with twice the inradius as the radius. We prove that the
point process formed by these statistics converges in distribution after a transformation
depending on t to a Poisson process as t → ∞ under some minor assumptions on the
density f . Our transformation allows us to describe the behavior of the balls with large
µ-measures. In Subsection 5.3.3, we consider for each cell with the nucleus in a compact
convex set the µ-measure of the ball around the nucleus with the circumscribed radius
as radius and establish, after rescaling with a power of t, convergence in distribution to
a Poisson process for t → ∞. This result requires continuity of f , but under weaker
assumptions on f , we provide lower and upper bounds for the tail distribution of the
minimal µ-measure of these balls having the circumscribed radii as radii.

In [15], the limiting distributions of the maximal inradius and the minimal circum-
scribed radius of a stationary Poisson-Voronoi tessellation were derived. In our work,
we extend these results in two directions. First, our findings imply Poisson process
convergence of the transformed inradii and circumscribed radii for the stationary case.
This implies the mentioned results from [15] and allows to deal with the m-th largest
(or smallest) value or combinations of several order statistics. Second, we deal with
inhomogeneous Poisson-Voronoi tessellations. In Subsections 3.3.5 and 3.3.6 Poisson ap-
proximation results for the minimal circumscribed radius and the maximal inradius for
the stationary case are established, while in [19] some general results for the extremes of
stationary tessellations were deduced. For stationary Poisson-Voronoi tessellations the
convergence of the nuclei of extreme cells to a compound Poisson process was studied in
[20].

As our Theorem 5.1.4 deals with underlying Poisson and binomial point processes,
we expect that one can extend our results on inradii and circumscribed radii of Poisson-
Voronoi tessellations to Voronoi tessellations constructed from an underlying binomial
point process.

Before we discuss our applications in Section 5.3, we prove our main results in the
next section.

5.2 Proofs of the results of Section 5.1

Let S be a locally compact second countable Hausdorff space, which is abbreviated as
lcscH space. Recall that a family of sets C ⊂ Ŝ is called dissecting if

(i) every open set G ⊂ S can be written as a countable union of sets in C,

(ii) every relatively compact set B ∈ Ŝ is covered by finitely many sets in C.

Lemma 5.2.1. A countable topological basis T of S is dissecting.
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Proof. By the definition of a countable topological basis T has property (i) of a dissecting
family of sets. Since, for any B ∈ Ŝ, ∪T∈T T = S ⊃ B, the compactness of B implies
that (ii) is satisfied.

Let us now state a consequence of Proposition 2.2.10 and Proposition 2.2.11. This

result will be used in the proof of Theorem 5.1.1. We write
d→ to denote convergence in

distribution.

Lemma 5.2.2. Let ξn, n ∈ N, be a sequence of locally finite point processes on S, and
let γ be a Poisson process on S with a non-atomic locally finite intensity measure λ. Let
U ⊂ Ŝλ be a ring containing a countable topological basis. Then the following statements
are equivalent:

(i) ξn
d−→ γ.

(ii) ξn(B)
d−→ γ(B) for all open sets B ∈ U .

Proof. Observe that [38, Theorem 3.6] ensures the existence of a Poisson process γ with
intensity measure λ. Since λ has no atoms, from Lemma 2.2.8 it follows that γ is a
simple point process (i.e. P(γ({x}) ≤ 1 for all x ∈ S) = 1). Elementary arguments also
yield Ŝλ = {B ∈ Ŝ : γ(∂B) = 0 a.s.} = Ŝγ , and it follows from Lemma 5.2.1 that U is
dissecting.

By Proposition 2.2.10, we obtain that (i) implies (ii).

Conversely, if ξn(U)
d−→ ξ(U) for all U ∈ U , the desired result follows from Proposition

2.2.11, whose conditions are satisfied with U as dissecting ring. Thus, it is enough to

show that (ii) implies ξn(U)
d−→ ξ(U) for all U ∈ U .

For any U ∈ U there exists a sequence of open sets Aj , j ∈ N, such that

U ⊂ Aj , Aj+1 ⊂ Aj and U = ∩j∈NAj .

Since U contains a countable topological basis, for any Aj one can find a countable family

of open sets B
(j)
` , ` ∈ N, in U such that ∪`∈NB

(j)
` = Aj . In particular, they cover the

compact set U . So there exists a finite subcover of elements from B
(j)
` , ` ∈ N, that covers

U . Since U is a ring, the union of the elements belonging to this subcover of U is in U for
each j ∈ N. Because U is closed under finite intersections, we can make this family of sets
from U that contain U monotonously decreasing in j. Thus, without loss of generality,
we may assume Aj ∈ U for all j ∈ N.

Since U is a ring and contains a countable topological basis, for the interior int(U) of
U there exists a sequence of open sets Bj ∈ U , j ∈ N, such that

Bj ⊂ U, Bj ⊂ Bj+1 and int(U) = ∪j∈NBj .

For a fixed m ∈ N, we have that

P(ξn(Bj) ≥ m) ≤ P(ξn(U) ≥ m) ≤ P(ξn(Aj) ≥ m)

for all n ∈ N. By ξn(U ′)
d−→ γ(U ′) for all open sets U ′ ∈ U , we obtain

P(γ(Bj) ≥ m) ≤ lim inf
n→∞

P(ξn(U) ≥ m) ≤ lim sup
n→∞

P(ξn(U) ≥ m) ≤ P(γ(Aj) ≥ m).

(5.18)
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Moreover, from U ∈ Ŝλ, whence λ(∂U) = 0, it follows that λ(Bj) → λ(int(U)) = λ(U)
and λ(Aj) → λ(U) = λ(U) as j → ∞. Thus, letting j → ∞ in (5.18) and using that γ
is a Poisson process lead to

lim
n→∞

P(ξn(U) ≥ m) = P(γ(U) ≥ m).

This establishes ξn(U)
d−→ ξ(U) and concludes the proof.

We are now in the position to prove the first main result of Section 5.1.

Proof of Theorem 5.1.1. Let us show (i) implies (ii). By Lemma 5.2.2 it is enough to

prove that ξn(B)
d−→ γ(B) for all open sets B ∈ U . Since P(ξn(B) = 0), n ∈ N, is

a bounded sequence in [0, 1], there exists a subsequence such that lim
j→∞

P(ξnj (B) = 0)

exists; then repeated applications of (5.2) yield for k ∈ N that

lim
j→∞

P(ξnj (B) = k) =
λ(B)k

k!
lim
j→∞

P(ξnj (B) = 0). (5.19)

Consequently we have for any N ∈ N,

N∑
k=0

lim
j→∞

P(ξnj (B) = k) = lim
j→∞

P(ξnj (B) ∈ {0, . . . , N})

= 1− lim
j→∞

P(ξnj (B) ∈ {N + 1, N + 2, . . . }).

By tightness of ξnj (B), j ∈ N, the right-hand side of the equation converges to 1 as
N →∞ so that ∑

k∈N0

lim
j→∞

P(ξnj (B) = k) = 1.

Thus, from (5.19) we deduce lim
j→∞

P(ξnj (B) = 0) = e−λ(B). Together with (5.19), this

proves that

lim
j→∞

P(ξnj (B) = k) =
λ(B)

k!
e−λ(B)

for all k ∈ N0. In conclusion, since for any subsequence (n`)`∈N there exists a further
subsequence (n`i)i∈N such that P(ξn`i (B) = 0), i ∈ N, converges to e−λ(B), we obtain

lim
n→∞

P(ξn(B) = k) =
λ(B)

k!
e−λ(B)

for all k ∈ N0. The result follows by applying Lemma 5.2.2.

Conversely, let us assume ξn
d−→ γ for some Poisson process γ with intensity measure

λ. It follows from Lemma 5.2.2 that, for any open set B ∈ U , ξn(B)
d−→ γ(B) so that

ξn(B), n ∈ N, is tight and

0 = k P(γ(B) = k)− λ(B)P(γ(B) = k − 1)

= lim
n→∞

k P(ξn(B) = k)− λ(B)P(ξn(B) = k − 1)

for k ∈ N, which shows (i).

Finally, we derive Theorem 5.1.4 from Theorem 5.1.1.
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Proof of Theorem 5.1.4. By (5.6) and the Markov inequality we deduce that ξt(B), t ≥ 1,
is tight for all open B ∈ U . Let f : S ×N (S)→ [0,∞) be the function given by

f(x, µ) = 1B(x)1{µ(B) = k}

for k ∈ N and B ∈ U . Then, by applying the Mecke equation (if ζt = ηt) and the identity

E
∑
x∈βn

u(x, βn) = n

∫
Y
E[u(x, βn−1 + δx)]dQn(x)

for any measurable function u : Y ×NY → [0,∞) (if ζt = βbtc), we obtain

kP(ξt(B) = k) = E
∑
z∈ξt

f(z, ξt) = E
∑

x∈ζt∩Ut

f(gt(x, ζt), ξt(ζt))

=

∫
Ut

E
[
1{gt(x, ζ̂t + δx) ∈ B}1

{ ∑
y∈ζ̂t∩Ut

δgt(y,ζ̂t+δx)(B) = k − 1
}]
dKt(x).

Thus, Theorem 5.1.1 yields the equivalence between (5.7) and the convergence in distri-
bution of ξt, t ≥ 1, to a Poisson process with intensity measure M .

5.3 Applications

All our examples throughout this section concern locally finite point processes on R.
These are constructed from the starting points of the k-runs in a sequence of Bernoulli
random variables, and from circumscribed radii or inradii of an inhomogeneous Poisson-
Voronoi tessellation. We show the Poisson convergence of these point processes using
our general criteria Theorem 5.1.1 and Theorem 5.1.4. By Remark 5.1.5, it is sufficient
for the convergence of such point processes to a Poisson process on R with absolutely
continuous locally finite intensity measure to show (5.2) or (5.6) and (5.7) for all sets
from I, i.e. for all finite unions of open and bounded intervals.

5.3.1 k-runs in a sequence of Bernoulli random variables

Consider a sequence of Bernoulli random variables. A k-head run is defined as an unin-
terrupted sequence of k successes, where k is a positive integer. In Subsection 3.3.4 we
derived Poisson approximation results for the number of k-runs in a sequence of n i.i.d.
Bernoulli random variables. Here, we are interested on the limiting behavior of the point
process constructed from the starting points of the k-runs in a sequence of Bernoulli
random variables. Let the starting point of a k-head run be the index of its first success.
Our goal is to find explicit conditions under which the point process of rescaled starting
points of the k-head runs converges weakly to a Poisson process. Our investigation relies
on two assumptions: the probability of having a k-head run is the same for all k con-
secutive elements of the sequence, and the Bernoulli random variables are independent
if far away. We will see that if these conditions are satisfied and if the probability of
having a k-head run goes to 0 slower than the probability of having a k-head run with
at least another k-head run nearby, then the aforementioned point process converges in
distribution to a Poisson process.

Let us now give a precise formulation of our result. Let X
(n)
i , i, n ∈ N, be an array

of Bernoulli distributed random variables and let k ∈ N. Assume that there exists a
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function f : N → N such that for all q, n ∈ N the random variable X
(n)
q is independent

of {X(n)
` : |q − `| ≥ f(n), ` ∈ N} and that

yn := P
(
X(n)
q = 1, . . . , X

(n)
q+k−1 = 1

)
> 0

does not depend on q. If X
(n)
i , i ∈ N, are i.i.d. for n ∈ N, then yn = pkn with pn :=

P
(
X

(n)
1 = 1

)
. Define

I
(n)
i = 1

{
X

(n)
i = 1, . . . , X

(n)
i+k−1 = 1

}
, i ∈ N.

Let ξn be the point process of the k-head runs for X
(n)
i , i ∈ N, that is

ξn =
∞∑
i=1

I
(n)
i δiyn . (5.20)

For any i0 ∈ N, let

W
(n)
i0

=
∑

j∈N : 1≤|j−i0|≤f(n)+k−2

I
(n)
j .

We denote by λ1 the restriction of the Lebesgue measure to [0,∞).

Theorem 5.3.1. Let ξn, n ∈ N, be the sequence of point processes given by (5.20).
Assume that f(n)yn → 0 and that

lim
n→∞

sup
i∈N

y−1
n E

[
I

(n)
i 1{W (n)

i > 0}
]

= 0. (5.21)

Then ξn converges weakly to a Poisson process with intensity measure λ1.

For underlying independent Bernoulli random variables, the Poisson approximation of
the random variable ξn((0, u)), u > 0, is considered in Subsection 3.3.4 and [2, 10, 27, 35],
and the Poisson process convergence follows from the results of [2]. Quantitative bounds
for the Poisson process approximation of 2-runs in the i.i.d. case were derived in [63,
Proposition 3.C] and [71, Theorem 6.3]; see also [17, Subsection 3.5], where the Poisson
process approximation for the more general problem of counting rare words is considered.

As a consequence of Theorem 5.3.1, we can study the limiting distribution of

Tn = min{i ∈ N : I
(n)
i = 1},

which gives the first arrival time of a k-head run for a sequence of Bernoulli random
variables.

Corollary 5.3.2. If the assumptions of Theorem 5.3.1 are satisfied, then ynTn converges
in distribution to an exponentially distributed random variable with parameter 1.

Clearly, in the case when the Bernoulli random variables (X
(n)
i )i∈N are i.i.d. with

parameter pn > 0, if pn converges to 0, the assumptions of Theorem 5.3.1 are fulfilled
with f(n) ≡ 1, and so ξn converges in distribution to a Poisson process. Other conditions
for weak convergence are given in the following corollary. This result can also be shown
by applying [62, Theorem 2.1] to the restriction of ξn on (0, u) for each u > 0.
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Corollary 5.3.3. Let ξn, n ∈ N, be the sequence of point processes given by (5.20). Let
us assume that f(n)yn → 0 and

lim
n→∞

sup
i∈N

y−1
n

∑
j∈N : 1≤|i−j|≤f(n)+k−2

E[I
(n)
i I

(n)
j ] = 0.

Then ξn converges weakly to a Poisson process with intensity measure λ1.

Let us now prove the main result of this subsection, Theorem 5.3.1.

Proof of Theorem 5.3.1. For any bounded interval A ⊂ [0,∞), the assumptions on X
(n)
i ,

i ∈ N, imply that

E[ξn(A)] = yn

∞∑
i=1

δiyn(A) = (sup(A)y−1
n + bn)yn − (inf(A)y−1

n + an)yn

for some an, bn ∈ [−1, 1]. By yn → 0, we have E[ξn(A)] → λ1(A) and, consequently,
E[ξn(B)] → λ1(B) for all B ∈ I. Moreover, ξn(B), n ∈ N, is tight (see Remark 5.1.2).
Then, we can write ξn(B) as

ξn(B) =
∑
i∈An

I
(n)
i

with An = {i ∈ N : iyn ∈ B}.
For i0 ∈ An, we have for any m ∈ N that∣∣E[I(n)

i0
1
{
ξn(B)− I(n)

i0
= m− 1

}]
− E

[
I

(n)
i0

1
{
ξn(B)−W (n)

i0
− I(n)

i0
= m− 1

}]∣∣
≤ E

[
I

(n)
i0

1{W (n)
i0

> 0}
]
.

Together with E
[
ξn(B)

]
= |An|yn, this yields

Hn :=
∣∣∣ ∑
i∈An

E
[
I

(n)
i 1

{
ξn(B)− I(n)

i = m− 1
}]

−
∑
i∈An

E
[
I

(n)
i 1

{
ξn(B)−W (n)

i − I(n)
i = m− 1

}]∣∣∣
≤
∑
i∈An

E
[
I

(n)
i 1{W (n)

i > 0}
]
≤
(

sup
i∈N

y−1
n E

[
I

(n)
i 1{W (n)

i > 0}
])

E[ξn(B)].

Therefore from (5.21), we obtain Hn → 0. From the independence of I
(n)
i0

and ξn(B) −
W

(n)
i0
− I(n)

i0
for i0 ∈ An, it follows that

E
[
I

(n)
i0

1
{
ξn(B)−W (n)

i0
− I(n)

i0
= m− 1

}]
= E

[
I

(n)
i0

]
P
(
ξn(B)−W (n)

i0
− I(n)

i0
= m− 1

)
.

Combining the previous arguments implies for m ∈ N that

lim sup
n→∞

∣∣mP(ξn(B) = m)− λ1(B)P(ξn(B) = m− 1)
∣∣

= lim sup
n→∞

∣∣∣ ∑
i∈An

E
[
I

(n)
i 1

{
ξn(B)− I(n)

i = m− 1
}]
− λ1(B)P(ξn(B) = m− 1)

∣∣∣
= lim sup

n→∞

∣∣∣ ∑
i∈An

E
[
I

(n)
i 1

{
ξn(B)−W (n)

i − I(n)
i = m− 1

}]
− E[ξn(B)]P(ξn(B) = m− 1)

∣∣∣
= lim sup

n→∞

∣∣∣ ∑
i∈An

E[I
(n)
i ]P

(
ξn(B)−W (n)

i − I(n)
i = m− 1

)
−
∑
i∈An

E[I
(n)
i ]P(ξn(B) = m− 1)

∣∣∣
≤ lim sup

n→∞

∑
i∈An

E[I
(n)
i ]P

(
W

(n)
i + I

(n)
i > 0

)
≤ λ1(B) lim sup

n→∞
sup
i∈N

P
(
W

(n)
i + I

(n)
i > 0

)
.
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Finally, the inequality

P
(
W

(n)
i + I

(n)
i > 0

)
≤ (2k + 2f(n)− 3)yn, i ∈ N,

and the assumption f(n)yn → 0 lead to

lim
n→∞

∣∣mP(ξn(B) = m)− λ1(B)P(ξn(B) = m− 1)
∣∣ = 0.

The result follows by applying Theorem 5.1.1.

Proof of Corollary 5.3.3. This follows directly from Theorem 5.3.1 and

E
[
Ii1{W (n)

i > 0}
]
≤ E

[
I

(n)
i W

(n)
i

]
=

∑
j∈N : 1≤|i−j|≤f(n)+k−2

E
[
I

(n)
i I

(n)
j

]
for any i ∈ N.

5.3.2 Inradii of an inhomogeneous Poisson-Voronoi tessellation

In this subsection, we consider the inradii of an inhomogeneous Voronoi tessellation gene-
rated by a Poisson process with a certain intensity measure tµ, t > 0; recall that the
inradius of a cell is the largest radius for which the ball centered at the nucleus is
contained in the cell. We study the point process on R constructed by taking for any cell
with the nucleus in a compact set, a transform of the µ-measure of the ball centered at the
nucleus and with twice the inradius as the radius. In Subsection 3.3.6, we proved that, for
the stationary case, the Kolmogorov distance between a transform of the largest inradius
and a Gumbel random variable converges to 0 at a rate of log(t)/

√
t as the intensity t

of the underlying Poisson process goes to infinity. Now, we aim to continue the work in
[15] by extending the result on the largest inradius to inhomogeneous Poisson-Voronoi
tessellations and proving weak convergence of the aforementioned point process to a
Poisson process. More details on Poisson-Voronoi tessellations are given in Subsection
3.3.5. Recall that, for any locally finite counting measure ν on Rd, we denote by N(x, ν)
the Voronoi cell with nucleus x ∈ Rd generated by ν + δx, that is

N(x, ν) =
{
y ∈ Rd : ‖x− y‖ ≤ ‖y − x′‖, x 6= x′ ∈ ν

}
,

where ‖ · ‖ denotes the Euclidean norm. The inradius of the Voronoi cell N(x, ν) is given
by

c(x, ν) = sup{R ≥ 0 : B(x,R) ⊂ N(x, ν)},

where B(x, r) denotes the open ball centered at x ∈ Rd with radius r > 0.
Let ηt, t > 0, be a Poisson process on Rd with intensity measure tµ, where µ is

a locally finite measure on Rd with density f : Rd → [0,∞). Consider a compact set
W ⊂ Rd with µ(W ) = 1, and assume that there exists a bounded open set A ⊂ Rd with
W ⊂ A such that fmin := infx∈A f(x) > 0 and fmax := supx∈A f(x) < ∞. For any
Voronoi cell N(x, ηt) with x ∈ ηt, we take the µ-measure of the ball around x with twice
the inradius as radius, and we define the point process ξt on R as

ξt = ξt(ηt) =
∑

x∈ηt∩W
δtµ(B(x,2c(x,ηt)))−log(t). (5.22)

Let M be the measure on R given by M([u,∞)) = e−u for u ∈ R.
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Theorem 5.3.4. Let ξt, t > 0, be the family of point processes on R given by (5.22).
Then ξt converges in distribution to a Poisson process with intensity measure M .

This result is obtained by applying Theorem 5.1.4. We believe that an alternative
proof can be deduced from [62, Theorem 2.1]. The next theorem shows that if the
density function f is Hölder continuous, it is possible to take out the factor 2 from
µ(B(x, 2c(x, ηt))) and to consider 2dµ(B(x, c(x, ηt))). Recall that a function h : Rd → R
is Hölder continuous with exponent b > 0 if there exists a constant C > 0 such that

|h(x)− h(y)| ≤ C‖x− y‖b

for all x, y ∈ Rd. We define the point process ξ̂t as

ξ̂t = ξ̂t(ηt) =
∑

x∈ηt∩W
δ2dtµ(B(x,c(x,ηt)))−log(t).

Theorem 5.3.5. Let f be Hölder continuous. Then ξ̂t, t > 0, converges in distribution
to a Poisson process with intensity measure M .

As a corollary of the previous theorems, we have the following generalization to the
inhomogeneous case of the result obtained in [15, Theorem 1, Equation (2a)] for the
stationary case; see also [19, Section 5] for the maximal inradius of a stationary Poisson-
Voronoi tessellation and of a stationary Gauss-Poisson-Voronoi tessellation.

Corollary 5.3.6. For u ∈ R,

lim
t→∞

P
(

max
x∈ηt∩W

tµ(B(x, 2c(x, ηt)))− log(t) ≤ u
)

= e−e
−u
. (5.23)

Moreover, if f is Hölder continuous,

lim
t→∞

P
(

max
x∈ηt∩W

2dtµ(B(x, c(x, ηt)))− log(t) ≤ u
)

= e−e
−u
. (5.24)

For an underlying binomial point process, (5.23) was shown under similar assumptions
in [29]. The related problem of maximal weighted r-th nearest neighbor distances for the
points of a binomial point process was studied in [30]; see also [31].

For the proofs of Theorem 5.3.4 and Theorem 5.3.5, we will use the quantities vt(x, u)
and qt(x, u), which are introduced in the next lemma.

Lemma 5.3.7. For any u ∈ R there exists t0 > 0 such that for all x ∈W and t > t0 the
equations

tµ(B(x, 2vt(x, u))) = u+ log(t) and 2dtµ(B(x, qt(x, u))) = u+ log(t) (5.25)

have unique solutions vt(x, u) and qt(x, u), respectively, which satisfy

max{vt(x, u), qt(x, u)} ≤
(u+ log(t)

2dfminkdt

)1/d
, (5.26)

where kd is the volume of the d-dimensional unit ball.

Proof. Let u ∈ R be fixed and set m = inf{‖x − y‖ : x ∈ ∂W, y ∈ ∂A} ∈ (0,∞). Note
that B(x,m) ⊂ A for all x ∈W . Choose t0 > 0 such that

u+ log(t)

t
< fminkdm

d
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for t > t0. For x ∈W and t > t0 this implies that

2dtµ(B(x,m)) ≥ tµ(B(x,m)) ≥ tfminkdmd > u+ log(t)

and, obviously, tµ(B(x, 0)) = 0. Since the function [0,m] 3 a→ µ(B(x, a)) is continuous
and strictly increasing because of fmin > 0, by the intermediate value theorem, the equa-
tions in (5.25) have unique solutions vt(x, u) and qt(x, u). Since max{2vt(x, u), qt(x, u)} <
m, we obtain

u+ log(t)

t
= µ(B(x, 2vt(x, u))) ≥ 2dfminkdvt(x, u)d

and
u+ log(t)

t
= 2dµ(B(x, qt(x, u))) ≥ 2dfminkdqt(x, u)d,

which prove (5.26).

Let Mt be the intensity measure of ξt. Then from the Mecke formula and Lemma
5.3.7 it follows that for any u ∈ R there exists t0 > 0 such that for t > t0,

Mt([u,∞)) = t

∫
W

P
(
tµ(B(x, 2c(x, ηt + δx))) ≥ u+ log(t)

)
f(x)dx

= t

∫
W

P(c(x, ηt + δx) ≥ vt(x, u))f(x)dx

= t

∫
W

P
(
ηt(B(x, 2vt(x, u))) = 0

)
f(x)dx

= t

∫
W
e−tµ(B(x,2vt(x,u)))f(x)dx = te−u−log(t)µ(W ) = e−u = M([u,∞)),

(5.27)

where we used (5.25) and µ(W ) = 1 in the last steps. For any y ∈ R and point configu-
ration ν on Rd with y ∈ ν, we denote by ht(y, ν) the quantity

ht(y, ν) = tµ(B(y, 2c(y, ν)))− log(t), (5.28)

where c(y, ν) is the inradius of the Voronoi cell with nucleus y generated by ν. So we
can rewrite ξt as

ξt =
∑

x∈ηt∩W
δht(x,ηt).

Proof of Theorem 5.3.4. From Theorem 5.1.4 and (5.27) it follows that it is enough to
show that

lim
t→∞

t

∫
W

E
[
1{ht(x, ηt + δx) ∈ B}1

{ ∑
y∈ηt∩W

δht(y,ηt+δx)(B) = m
}]
f(x)dx

−M(B)P(ξt(B) = m) = 0

(5.29)

for any m ∈ N0 and B ∈ I. Let B =
⋃`
j=1(u2j−1, u2j) with u1 < u2 < · · · < u2` and

` ∈ N. By Lemma 5.3.7 there is a t0 > 0 such that vt(x, uk) exists for all k = 1, . . . , 2`,
x ∈W and t > t0. Assume t > t0 in the following. Elementary arguments imply that

t

∫
W

E
[
1{ht(x, ηt + δx) ∈ B}1

{ ∑
y∈ηt∩W

δht(y,ηt+δx)(B) = m
}]
f(x)dx

=
∑̀
j=1

t

∫
W

E
[
1{ht(x, ηt + δx) ∈ (u2j−1, u2j)}1

{ ∑
y∈ηt∩W

δht(y,ηt+δx)(B) = m
}]
f(x)dx.

(5.30)
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For each k = 1, . . . , 2`, set wk,t,x = 2vt(x, uk). Since ht(x, ηt + δx) ∈ (u2j−1, u2j) if and
only if c(x, ηt+δx) ∈ (vt(x, u2j−1), vt(x, u2j)), or equivalently, ηt(B(x,w2j−1,t,x)) = 0 and
ηt(B(x,w2j,t,x)) > 0, we obtain that

Sj : = t

∫
W

E
[
1{ht(x, ηt + δx) ∈ (u2j−1, u2j)}1

{ ∑
y∈ηt∩W

δht(y,ηt+δx)(B) = m
}]
f(x)dx

= t

∫
W

E
[
1
{
ηt
(
B(x,w2j−1,t,x)

)
= 0
}

× 1
{
ηt
(
B(x,w2j,t,x)

)
> 0,

∑
y∈ηt∩W

δht(y,ηt+δx)(B) = m
}]
f(x)dx.

For any point configuration ν on Rd and x ∈ W , let ξt,x(ν) be the counting measure
given by ξt,x(ν) =

∑
y∈ν∩W δht(y,ν+δx) so that

Sj = t

∫
W

E
[
1
{
ηt
(
B(x,w2j−1,t,x)

)
= 0
}

× 1
{
ηt
(
B(x,w2j,t,x)

)
> 0, ξt,x

(
ηt|B(x,w2j−1,t,x)c

)
(B) = m

} ]
f(x)dx

= t

∫
W

P
(
ηt
(
B(x,w2j−1,t,x)

)
= 0
)

× P
(
ηt
(
B(x,w2j,t,x) \B(x,w2j−1,t,x)

)
> 0, ξt,x

(
ηt|B(x,w2j−1,t,x)c

)
(B) = m

)
f(x)dx.

Similar arguments as used to compute Mt([u,∞)) for u ∈ R imply for x ∈W that

tP
(
ηt
(
B(x,w2j−1,t,x)

)
= 0
)

= e−u2j−1 ,

and so we deduce that

Sj = e−u2j−1

∫
W

P
(
ξt,x
(
ηt|B(x,w2j−1,t,x)c

)
(B) = m

)
f(x)dx

− e−u2j−1

∫
W

P
(
ηt
(
B(x,w2j,t,x) \B(x,w2j−1,t,x)

)
= 0,

ξt,x
(
ηt|B(x,w2j−1,t,x)c

)
(B) = m

)
f(x)dx.

(5.31)

Furthermore, we can rewrite the second integral as∫
W

P
(
ηt
(
B(x,w2j,t,x) \B(x,w2j−1,t,x)

)
= 0
)
P
(
ξt,x
(
ηt|B(x,w2j,t,x)c

)
(B) = m

)
f(x)dx

=

∫
W
e−tµ(B(x,w2j,t,x))+tµ(B(x,w2j−1,t,x))P

(
ξt,x
(
ηt|B(x,w2j,t,x)c

)
(B) = m

)
f(x)dx

= e−u2j+u2j−1

∫
W

P
(
ξt,x
(
ηt|B(x,w2j,t,x)c

)
(B) = m

)
f(x)dx.

Combining this and (5.31) yields

Sj = e−u2j−1

∫
W

P
(
ξt,x
(
ηt|B(x,w2j−1,t,x)c

)
(B) = m

)
f(x)dx

− e−u2j

∫
W

P
(
ξt,x
(
ηt|B(x,w2j,t,x)c

)
(B) = m

)
f(x)dx.
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Substituting this into (5.30) implies that to prove (5.29) and to complete the proof, it is
enough to show for all x ∈W and k = 1, . . . , 2` that

lim
t→∞

P
(
ξt,x
(
ηt|B(x,wk,t,x)c

)
(B) = m

)
− P(ξt(B) = m) = 0. (5.32)

Let x ∈W , k ∈ {1, . . . , 2`} and ε > 0 be fixed. Set

at = 2
(u2` + log(t)

2dfminkdt

)1/d
.

From the application of Lemma 5.3.7 at the beginning of the proof it follows that wk,t,y ≤
w2`,t,y ≤ at for all y ∈ W and t > t0. Without loss of generality we may assume that
2at < min{‖z1 − z2‖ : z1 ∈ ∂W, z2 ∈ ∂A}. Therefore the observation

ht(y, ν) ∈ B if and only if ht(y, ν|B(y,w2`,t,y)) ∈ B

for any point configuration ν on Rd and y ∈ ν ∩W leads to∣∣P(ξt,x(ηt|B(x,wk,t,x)c
)
(B) = m

)
− P (ξt(B) = m)

∣∣ ≤ E
[
|ξt,x

(
ηt|B(x,wk,t,x)c

)
(B)− ξt(B)|

]
≤ E

∑
y∈ηt∩B(x,2at)∩B(x,wk,t,x)c∩W

1{ht(y, ηt|B(x,wk,t,x)c + δx) ∈ B}

+ E
∑

y∈ηt∩B(x,2at)∩W

1{ht(y, ηt) ∈ B}

≤ E
∑

y∈ηt∩B(x,2at)∩B(x,wk,t,x)c∩W

1{ht(y, ηt|B(x,wk,t,x)c + δx) > u1}

+ E
∑

y∈ηt∩B(x,2at)∩W

1{ht(y, ηt) > u1}.

Then, the Mecke formula and (5.28) imply that∣∣P(ξt,x(ηt|B(x,wk,t,x)c
)
(B) = m

)
− P (ξt(B) = m)

∣∣
≤ t
∫
B(x,2at)∩B(x,wk,t,x)c∩W

P(ht(y, ηt|B(x,wk,t,x)c + δx + δy) > u1)f(y)dy

+ t

∫
B(x,2at)∩W

P(ht(y, ηt + δy) > u1)f(y)dy

= t

∫
B(x,2at)∩B(x,wk,t,x)c∩W

P
(
tµ(B(y, 2c(y, ηt|B(x,wk,t,x)c + δx+ δy)))>u1 + log(t)

)
f(y)dy

+ t

∫
B(x,2at)∩W

P
(
tµ(B(y, 2c(y, ηt + δy))) > u1 + log(t)

)
f(y)dy.

Since c(y, ν+δy+δx) > vt(y, u1) only if c(y, ν+δy) > vt(y, u1) for any point configuration
ν on Rd and x, y ∈W , it follows for x ∈W and y ∈ B(x, 2at) ∩B(x,wk,t,x)c ∩W that

P
(
tµ(B(y, 2c(y, ηt|B(x,wk,t,x)c + δx + δy))) > u1 + log(t)

)
= P

(
c(y, ηt|B(x,wk,t,x)c + δx + δy) > vt(y, u1)

)
≤ P

(
c(y, ηt|B(x,wk,t,x)c + δy) > vt(y, u1)

)
= P

(
ηt|B(x,wk,t,x)c(B(y, 2vt(y, u1))) = 0

)
= exp(−tµ(B(y, 2vt(y, u1)) ∩B(x,wk,t,x)c)).
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Let λd denote the Lebesgue measure on Rd. For A1, A2 ∈ B(Rd) with A1, A2 ⊂ A and
λd(A2) > 0 we obtain

µ(A1)

µ(A2)
≥ fmin
fmax

λd(A1)

λd(A2)
.

With τ := fmin/fmax ∈ (0, 1],

A1 = B(y, 2vt(y, u1)) ∩B(x,wk,t,x)c and A2 = B(y, 2vt(y, u1)),

this implies for x ∈W and y ∈ B(x, 2at) ∩B(x,wk,t,x)c ∩W that

tµ(B(y, 2vt(y, u1)) ∩B(x,wk,t,x)c) ≥ τ

2
tµ(B(y, 2vt(y, u1))) =

τ

2
(u1 + log(t)).

Moreover, we have that

P
(
tµ(B(y, 2c(y, ηt + δy))) > u1 + log(t)

)
= P

(
ηt(B(y, 2vt(y, u1))) = 0

)
= e−u1−log(t).

In conclusion, combining the previous bounds leads to∣∣P(ξt,x(ηt|B(x,wk,t,x)c
)
(B) = m

)
− P (ξt(B) = m)

∣∣
≤ t1−τ/2e−τu1/2µ(B(x, 2at)) + e−u1µ(B(x, 2at)) ≤ (2at)

dkdfmax(t1−τ/2e−τu1/2 + e−u1),

where in the last step we used the fact that f is bounded by fmax in A and, by the choice
of at, B(x, 2at) ⊂ A. Again, from the definition of at it follows that the right-hand side
converges to 0 as t→∞. This shows (5.32) and concludes the proof.

Next, we derive Theorem 5.3.5 from Theorem 5.3.4.

Proof of Theorem 5.3.5. Assume that f is Hölder continuous with exponent b > 0. From
Lemma 5.2.2, Theorem 5.3.4 and Remark 5.1.5 we obtain that it is enough to show that
E[|ξt(B) − ξ̂t(B)|] → 0 as t → ∞ for all B ∈ I. By Lemma 5.3.7, for any u ∈ R there
exists t0 > 0 such that

µ(B(x, 2vt(x, u))) = 2dµ(B(x, qt(x, u)))

= 2dkdf(x)qt(x, u)d + 2d
∫
B(x,qt(x,u))

(f(y)− f(x))dy

= µ(B(x, 2qt(x, u)))−
∫
B(x,2qt(x,u))

(f(y)− f(x))dy + 2d
∫
B(x,qt(x,u))

(f(y)− f(x))dy

for all x ∈W, t > t0, where

max{vt(x, u), qt(x, u)} ≤
(u+ log(t)

2dfminkdt

)1/d
.

Thus, the Hölder continuity of f and elementary arguments establish that

|µ(B(x, 2vt(x, u)))− µ(B(x, 2qt(x, u)))| ≤ C
(u+ log(t)

t

)1+b/d
, x ∈W, t > t0, (5.33)

for some C > 0. In particular, from the definition of vt(x, u) it follows that

µ(B(x, 2vt(x, u))) =
u+ log(t)

t

µ(B(x, 2qt(x, u))) ≥ u+ log(t)

t
− C

(u+ log(t)

t

)1+b/d
(5.34)
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for t > t0. Next, we write B =
⋃`
j=1(u2j−1, u2j) for some ` ∈ N and u1 < · · · < u2`. The

triangle inequality yields

E[|ξt(B)− ξ̂t(B)|] ≤
∑̀
j=1

E[|ξt((u2j−1, u2j))− ξ̂t((u2j−1, u2j))|]

≤
∑̀
j=1

E[|ξt((u2j−1,∞))− ξ̂t((u2j−1,∞))|] + E[|ξt([u2j ,∞))− ξ̂t([u2j ,∞))|].

(5.35)

Moreover, the Mecke formula establishes for u ∈ R that

E[|ξt((u,∞))− ξ̂t((u,∞))|]

≤ E
∑

x∈ηt∩W
|1{c(x, ηt + δx) > vt(x, u)} − 1{c(x, ηt + δx) > qt(x, u)}|

= t

∫
W

P
(
ηt(B(x, 2vt(x, u))) = 0, ηt(B(x, 2qt(x, u))) > 0

)
f(x)dx

+ t

∫
W

P
(
ηt(B(x, 2vt(x, u))) > 0, ηt(B(x, 2qt(x, u))) = 0

)
f(x)dx

≤ fmaxt
∫
W

[
exp

(
− tµ(B(x, 2vt(x, u)))

)
+ exp

(
− tµ(B(x, 2qt(x, u)))

)]
×
[
1− exp

(
− t|µ(B(x, 2qt(x, u)))− µ(B(x, 2vt(x, u)))|

)]
dx.

Therefore, from (5.33) and (5.34), it follows that

lim
t→∞

E[|ξt((u,∞))− ξ̂t((u,∞))|] = 0. (5.36)

Together with (5.35) and a similar computation for the half-closed intervals on the right-
hand side of (5.35), this concludes the proof.

Proof of Corollary 5.3.6. Let u ∈ R be fixed. By Markov’s inequality we have for u0 > u
that

P(ξt((u, u0)) > 0) ≤ P(ξt((u,∞)) > 0) = P
(

max
x∈ηt∩W

tµ(B(x, 2c(x, ηt)))− log(t) > u
)

≤ P(ξt((u, u0)) > 0) + E[ξt([u0,∞))].

Thus, Theorem 5.3.4 and (5.27) yield

lim sup
t→∞

|P
(

max
x∈ηt∩W

tµ(B(x, 2c(x, ηt)))− log(t) > u
)
− 1 + e−M((u,u0))| ≤ e−u0 .

Then, letting u0 →∞ leads to (5.23). Since, for u > 0,∣∣P(ξt((u,∞)) > 0)− P(ξ̂t((u,∞)) > 0)
∣∣ ≤ E[|ξt((u,∞))− ξ̂t((u,∞))|],

(5.23) and (5.36) imply (5.24).

5.3.3 Circumscribed radii of an inhomogeneous Poisson-Voronoi tes-
sellation

In this last subsection, we consider the circumscribed radii of an inhomogeneous Voronoi
tessellation generated by a Poisson process with a certain intensity measure tµ, t > 0;
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recall that the circumscribed radius of a cell is the smallest radius for which the ball
centered at the nucleus contains the cell. We study the point process on the non-negative
real line constructed by taking for any cell with the nucleus in a compact convex set, a
transform of the µ-measure of the ball centered at the nucleus and with the circumscribed
radius as the radius. In Subsection 3.3.5, we proved that, for the stationary case, the
Kolmogorov distance between a transform of the minimal circumscribed radius and a
Weibull random variable converges to 0 at a rate of 1/t1/(d+1) when the intensity t of
the underlying Poisson process goes to infinity. In this subsection, we continue the
work started in [15] by extending the result on the smallest circumscribed radius to
inhomogeneous Poisson-Voronoi tessellations and by proving weak convergence of the
aforementioned point process to a Poisson process.

More precisely, let µ be an absolutely continuous measure on Rd with continuous
density f : Rd → [0,∞). Consider a Poisson process ηt with intensity measure tµ, t > 0.
The circumscribed radius of the Voronoi cell N(x, ηt) with x ∈ ηt is given by

C(x, ηt) = inf {R ≥ 0 : B(x,R) ⊃ N(x, ηt)} ,

with the convention inf ∅ =∞; see Subsection 3.3.5 for more details on Voronoi tessella-
tions.

Let W ⊂ Rd be a compact convex set with f > 0 on W . We consider the point
process

ξt =
∑

x∈ηt∩W
δα2t(d+2)/(d+1)µ(B(x,C(x,ηt)))

. (5.37)

Here the positive constant α2 is given by

α2 =

(
2d(d+1)

(d+ 1)!
pd+1

)1/(d+1)

with

pd+1 := P
(
N
(

0,
d+1∑
j=1

δYj

)
⊆ B(0, 1)

)
,

where Y1, . . . , Yd+1 are independent and uniformly distributed random points in B(0, 2).
We write M for the measure on [0,∞) satisfying M([0, u]) = µ(W )ud+1 for u ≥ 0.

Theorem 5.3.8. Let ξt, t > 0, be the family of point processes on [0,∞) given by (5.37).
Then ξt converges in distribution to a Poisson process with intensity measure M .

This result is obtained by applying Theorem 5.1.4. We believe that an alternative
proof can be deduced from [62, Theorem 2.1]. An immediate consequence of this theorem
is that a transform of the minimal µ-measure of the balls, having circumscribed radii
and nuclei of the Voronoi cells as radii and centers respectively, converges to a Weibull
distributed random variable. This generalizes [15, Theorem 1, Equation (2d)]. For the
situation that, in contrast to Theorem 5.3.8, the density of the intensity measure of the
underlying Poisson process is not continuous, we can still derive some upper and lower
bounds.

Theorem 5.3.9. Let ζt be a Poisson process with intensity measure tϑ, where t > 0 and
ϑ is an absolutely continuous measure on Rd with density φ. Let f1, f2 : Rd → [0,∞) be
continuous and f1, f2 > 0 on W .
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(i) If there exists s ∈ (0, 1] such that sφ ≤ f1 ≤ φ, then

lim sup
t→∞

P
(
sα2t

(d+2)/(d+1) min
x∈ζt∩W

ϑ(B(x,C(x, ζt))) > u
)
≤ exp

(
− sϑ(W )ud+1

)
for u ≥ 0.

(ii) If there exists r ≥ 1 such that φ ≤ f2 ≤ rφ, then

lim inf
t→∞

P
(
rα2t

(d+2)/(d+1) min
x∈ζt∩W

ϑ(B(x,C(x, ζt))) > u
)
≥ exp

(
− rϑ(W )ud+1

)
for u ≥ 0.

Let us now prepare the proof of Theorem 5.3.8. We first have to study the distribution
of C(x, ηt + δx), which is defined as the circumscribed radius of the Voronoi cell with
nucleus x ∈ Rd generated by ηt + δx. To this end, we define g : W × T → [0,∞) by the
equation

µ(B(x, g(x, u))) = u (5.38)

for T := [0, µ(W )]. Since W is compact and convex and f > 0 on W , we have that (5.38)
admits a unique solution g(x, u) for all (x, u) ∈ W × T . As this is the only place where
we use the convexity of W , we believe that one can omit this assumption. However, we
refrained from doing so in order to not further increase the complexity of the proof. Set

st = α2t
(d+2)/(d+1).

Thus, we may write

P(stµ(B(x,C(x, ηt + δx))) ≤ u) = P(C(x, ηt + δx) ≤ g(x, u/st)), u/st ∈ T. (5.39)

Lemma 5.3.10. For any u ∈ T , g(·, u) : W → R is continuous and

lim
u→0+

sup
x∈W
|g(x, u)| = 0.

Proof. First we show that g(·, u) is continuous for any fixed u ∈ T . For u = 0, we obtain
g(x, u) = 0 for all x ∈ W . Assume u > 0 and let x0 ∈ W and ε > 0. Then for all
x ∈ B(x0, ε

′) with ε′ := min{g(x0, u)/2, ε}, we have

B(x0, g(x0, u)) ⊂ B(x, g(x0, u) + ε′) and B(x, g(x0, u)− ε′) ⊂ B(x0, g(x0, u)).

Together with (5.38), this leads to

µ(B(x, g(x0, u) + ε′)) ≥ u and µ(B(x, g(x0, u)− ε′)) ≤ u.

Now it follows from the definition of g that

g(x, u) ≤ g(x0, u) + ε′ and g(x, u) ≥ g(x0, u)− ε′.

This yields
|g(x, u)− g(x0, u)| ≤ ε′ ≤ ε

for all x ∈ B(x0, ε
′) so that g is continuous at x0. In conclusion since

lim
u→0+

g(x, u) = 0

and g(x, u1) < g(x, u2) for all x ∈ W and 0 ≤ u1 < u2, Dini’s theorem implies that
supx∈W |g(x, u)| → 0 as u→ 0.
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We define
β = min

x∈W
f(x) > 0.

Lemma 5.3.11. There exists u0 ∈ T such that

g(x, u) ≤
( 2u

βkd

)1/d
(5.40)

for all u ∈ [0, u0] and x ∈W .

Proof. Since f is continuous and f > 0 on W , it follows that

min
x∈W+B(0,δ)

f(x) >
β

2

for some δ > 0. Furthermore, by Lemma 5.3.10 we obtain that there exists u0 ∈ T such
that g(x, u) ≤ δ for all u ∈ [0, u0] and x ∈W . Then, we obtain

u = µ(B(x, g(x, u))) =

∫
B(x,g(x,u))

f(y)dy ≥ β

2
kdg(x, u)d

for all x ∈W and u ∈ [0, u0], which shows (5.40).

For x ∈ W and u ≥ 0, we consider a sequence of independent and identically dis-

tributed random points (X
(x,u)
i )i∈N in Rd with distribution

P
(
X

(x,u)
i ∈ E

)
=
µ(B(x, 2u) ∩ E)

µ(B(x, 2u))
, i ∈ N, E ∈ B(Rd).

Recall that, for k ≥ d + 1, N
(
x,
∑k

j=1 δX(x,u)
j

)
denotes the Voronoi cell with nucleus x

generated by X
(x,u)
1 , . . . , X

(x,u)
k and x. Then the distribution function of C(x, ηt + δx) is

equal to

P
(
C(x, ηt + δx) ≤ u

)
=

∞∑
k=d+1

P
(
ηt(B(x, 2u)) = k

)
pk(x, u) (5.41)

for u ≥ 0, with pk(x, u) defined as

pk(x, u) = P
(
N
(
x,

k∑
j=1

δ
X

(x,u)
j

)
⊆ B(x, u)

)
.

Combining (5.39) and (5.41) establishes for u/st ∈ T that

P(stµ(B(x,C(x, ηt + δx))) ≤ u)

=

∞∑
k=d+1

P
(
ηt(B(x, 2g(x, u/st))) = k

)
pk(x, g(x, u/st)).

(5.42)

For k ∈ N with k ≥ d+ 1, we define the probability

pk = P
(
N
(

0,

k∑
j=1

δYj

)
⊆ B(0, 1)

)
,

where Y1, . . . , Yk are independent and uniformly distributed random points in B(0, 2).
As discussed in [14, Section 5.2.3] and [15, Section 3], one can reinterpret pk as the
probability to cover the unit sphere with k independent spherical caps with random
radii. In the next lemma, we prove that pk(x, r) → pk as r → 0 for all x ∈ W and
k ≥ d+ 1, which together with Lemma 5.3.11 yields pk(x, g(u/st))→ pk as t→∞.
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Lemma 5.3.12. For any k ≥ d+ 1 and x ∈W ,

lim
r→0+

pk(x, r) = pk.

Proof. In this proof, to simplify the notation, for any x ∈W , k ≥ d+ 1 and y1, . . . , yk ∈
Rd, we denote by K

(x)
k (y1, . . . , yk) the Voronoi cell N

(
x,
∑k

j=1 δyj
)

with nucleus x gener-
ated by y1, . . . , yk and x. Thus, we may write

pk(x, r) = P
(
K

(x)
k

(
X

(x,r)
1 , . . . , X

(x,r)
k

)
⊆ B(x, r)

)
,

and so from the independence of X
(x,r)
1 , . . . , X

(x,r)
k it follows that

pk(x, r) =
1

µ(B(x, 2r))k

∫
B(x,2r)k

1
{
K

(x)
k (z1, . . . , zk) ⊆ B(x, r)

} k∏
i=1

f(zi) dz1 . . . dzk

=
(2r)kd

µ(B(x, 2r))k

∫
B(0,1)k

1
{
K

(x)
k (x+ 2rz1, . . . , x+ 2rzk) ⊆ B(x, r)

}
×

k∏
i=1

f(x+ 2rzi) dz1 . . . dzk.

Furthermore, by the definition of K
(x)
k we deduce that

1
{
K

(x)
k (x+ 2rz1, . . . , x+ 2rzk) ⊆ B(x, r)

}
= 1

{
K

(0)
k (2z1, . . . , 2zk) ⊆ B(0, 1)

}
for all z1, . . . , zk ∈ B(0, 1), whence

pk(x, r) =
(2r)kd

µ(B(x, 2r))k

∫
B(0,1)k

1
{
K

(0)
k (2z1, . . . , 2zk) ⊆ B(0, 1)

}
×

k∏
i=1

f(x+ 2rzi) dz1 . . . dzk.

Using the dominated convergence theorem for the integral, the continuity of f and

lim
r→0+

(2r)kd

µ(B(x, 2r))k
=

1

kkdf(x)k
,

we obtain

lim
r→0+

pk(x, r) =
1

kkd

∫
B(0,1)k

1
{
K

(0)
k (2z1, . . . , 2zk) ⊆ B(0, 1)

}
dz1 . . . dzk

=
1

(2dkd)k

∫
B(0,2)k

1
{
K

(0)
k (z1, . . . , zk) ⊆ B(0, 1)

}
dz1 . . . dzk = pk,

which concludes the proof.

Let Mt be the intensity measure of ξt and let

M̂t([0, u]) = t

∫
W

E
[
1
{
stµ(B(x,C(x, ηt + δx))) ∈ [0, u]

}
× 1
{
ηt

(
B
(
x, 4
( 2u

βstkd

)1/d))
= d+ 1

}]
f(x)dx

89



and

θt([0, u]) = t

∫
W

E
[
1
{
stµ(B(x,C(x, ηt + δx))) ∈ [0, u]

}
× 1
{
ηt

(
B
(
x, 4
( 2u

βstkd

)1/d))
> d+ 1

}]
f(x)dx

for u ≥ 0. Observe that

Mt([0, u]) = M̂t([0, u]) + θt([0, u]), u ≥ 0. (5.43)

Lemma 5.3.13. For any u ≥ 0,

lim
t→∞

M̂t([0, u]) = µ(W )ud+1

and

θt([0, u]) ≤ t
∫
W

P
(
ηt

(
B
(
x, 4
( 2u

βstkd

)1/d))
> d+ 1

)
f(x)dx→ 0 as t→∞.

Proof. Let u ≥ 0 be fixed and ut := u/st. Without loss of generality we may assume
ut ∈ T . For x ∈ W we deduce from (5.38), g(x, ut)→ 0 as t→∞ and the continuity of
f that

lim
t→∞

µ(B(x, 2g(x, ut)))

ut
= lim

t→∞

µ(B(x, 2g(x, ut)))

2dkdg(x, ut)d
2dkdg(x, ut)

d

µ(B(x, g(x, ut)))
=

2df(x)

f(x)
= 2d.

Together with ut = u/st and st = α2t
(d+2)/(d+1), this leads to

lim
t→∞

td+2µ
(
B(x, 2g(x, ut))

)d+1
= (2du/α2)d+1. (5.44)

Similarly, we obtain from Lemma 5.3.11 that for t sufficiently large,

sup
x∈W

td+2µ
(
B(x, 2g(x, ut))

)d+1 ≤ td+2(2d+1ut/β)d+1 sup
x∈W

sup
y∈B(x,2g(x,ut))

f(y)d+1

≤ (2d+1u/(α2β))d+1 sup
y∈W+B(0,1)

f(y)d+1.
(5.45)

Let us now compute the limit of M̂t([0, u]). By Lemma 5.3.11 we obtain for `t :=

4
(

2ut
βkd

)1/d
that there exists t0 > 0 such that 2g(x, ut) ≤ `t for all t > t0 and x ∈ W .

From (5.42) we deduce for x ∈ W that stµ(B(x,C(x, ηt + δx))) ∈ [0, u] only if there are
at least d+ 1 points of ηt in B

(
x, 2g(x, ut)

)
. Then for t > t0, we have

M̂t([0, u]) = t

∫
W

P
(
ηt(B(x, 2g(x, ut))) = d+ 1

)
pd+1(x, g(x, ut))

× P
(
ηt
(
B(x, `t) \B(x, 2g(x, ut))

)
= 0
)
f(x)dx

=

∫
W

td+2µ
(
B(x, 2g(x, ut))

)d+1

(d+ 1)!
e−tµ(B(x,`t))pd+1(x, g(x, ut))f(x)dx.

Elementary arguments imply that

lim
t→∞

tµ(B(x, `t)) = 0.
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Therefore combining (5.44) and Lemma 5.3.12 yields

lim
t→∞

td+2µ
(
B(x, 2g(x, ut))

)d+1

(d+ 1)!
e−tµ(B(x,`t))pd+1(x, g(x, ut))f(x)

=
(2du

α2

)d+1 pd+1

(d+ 1)!
f(x) = ud+1f(x),

where we used α2 =
(

2d(d+1)

(d+1)! pd+1

)1/(d+1)
in the last step. Thus, by (5.45) and the

dominated convergence theorem we obtain

lim
t→∞

M̂t([0, u]) = ud+1

∫
W
f(x)dx = µ(W )ud+1.

Finally, let us compute the limit of θt([0, u]). For a Poisson distributed random variable
Z with parameter v > 0 we have

P(Z ≥ d+ 2) =

∞∑
k=d+2

vk

k!
e−v ≤ vd+2

∞∑
k=0

vk

k!
e−v = vd+2.

This implies that

θt([0, u]) ≤ t
∫
W

P
(
ηt

(
B
(
x, 4
( 2ut
βkd

)1/d))
> d+ 1

)
f(x)dx

≤ td+3

∫
W
µ
(
B
(
x, 4
( 2ut
βkd

)1/d))d+2
f(x)dx

≤ sup

y∈W+B

(
0,4

(
2ut
βkd

)1/d) f(y)

∫
W
f(x)dx

22d2+5d+2

βd+2
td+3ud+2

t

= sup

y∈W+B

(
0,4

(
2ut
βkd

)1/d) f(y)µ(W )
22d2+5d+2

βd+2

1

αd+2
2

t−
1
d+1ud+2.

Here, the supremum converges to a constant as t → ∞ so that the second inequality in
the assertion is proven.

In the next lemma, we show a technical result, which will be needed in the proof of
Theorem 5.3.8. For A ⊂ Rd, let conv(A) denote the convex hull of A.

Lemma 5.3.14. Let x0, . . . , xd+1 ∈ Rd be in general position (i.e. no k-dimensional
affine subspace of Rd with k ∈ {0, . . . , d− 1} contains more than k+ 1 of the points) and
assume that N(x0,

∑d+1
j=0 δxj ) is bounded. Then,

a) x0 ∈ int(conv({x1, . . . , xd+1}));

b) N(xi,
∑d+1

j=0 δxj ) is unbounded for any i ∈ {1, . . . , d+ 1}.

Proof. Assume that x0 /∈ int(conv({x1, . . . , xd+1})). By the hyperplane separation the-
orem for convex sets there exists a hyperplane through x0 with a normal vector u ∈ Rd
such that 〈u, xi〉 ≤ 〈u, x0〉 for all i ∈ {1, . . . , d+1}, where 〈·, ·〉 denotes the standard scalar
product on Rd. Define the set R = {x0 +ru : r ∈ [0,∞)}. For any y ∈ R, x0 is the closest
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point to y out of {x0, . . . , xd+1}, whence R ⊂ N(x0,
∑d+1

j=0 δxj ) and N(x0,
∑d+1

j=0 δxj ) is
unbounded. This gives us a contradiction and, thus, proves part a).

Let i ∈ {1, . . . , d + 1} and assume that N(xi,
∑d+1

j=0 δxj ) is bounded. It follows from
part a) that xi ∈ int(conv({x0, . . . , xi−1, xi+1, . . . , xd+1})). On the other hand, again by
part a), we have that x0 ∈ int(conv({x1, . . . , xd+1})). This implies that

conv({x0, . . . , xi−1, xi+1, . . . , xd+1}) = conv({x0, . . . , xd+1}) = conv({x1, . . . , xd+1}),

and, thus, either xi, x0 ∈ conv({x1, . . . , xi−1, xi+1, . . . , xd+1}) or xi = x0. This gives us a
contradiction and concludes the proof of part b).

Finally, we are in position to prove the main result of this subsection.

Proof of Theorem 5.3.8. From Lemma 5.3.13 and (5.43) we deduce that Mt(B)→M(B)
as t→∞ for all B ∈ I. Then, by Theorem 5.1.4 it is sufficient to show

lim
t→∞

t

∫
W

E
[
1{stµ(B(x,C(x, ηt + δx))) ∈ B}

× 1
{ ∑
y∈ηt∩W

δstµ(B(y,C(y,ηt+δx)))(B) = m
}]
f(x)dx−M(B)P(ξt(B) = m) = 0

for m ∈ N0 and B ∈ I. Put u = sup(B) and let `t = 4
(

2u
βstkd

)1/d
. We write

t

∫
W

E
[
1
{
stµ(B(x,C(x, ηt + δx))) ∈ B

}
1
{ ∑
y∈ηt∩W

δstµ(B(y,C(y,ηt+δx)))(B) = m
}]
f(x)dx

= t

∫
W

E
[
1
{
stµ(B(x,C(x, ηt + δx))) ∈ B

}
1
{
ηt(B(x, `t)) = d+ 1

}
× 1
{ ∑
y∈ηt∩W

δstµ(B(y,C(y,ηt+δx)))(B) = m
}]
f(x)dx

+ t

∫
W

E
[
1
{
stµ(B(x,C(x, ηt + δx))) ∈ B

}
1
{
ηt(B(x, `t)) > d+ 1

}
× 1
{ ∑
y∈ηt∩W

δstµ(B(y,C(y,ηt+δx)))(B) = m
}]
f(x)dx

=: At +Rt.

By Lemma 5.3.13, we obtain Rt → 0 as t→∞. Let us study At. From Lemma 5.3.11 it
follows that there exists t0 > 0 such that u/st ∈ T and `t ≥ 4g(y, u/st) for all y ∈W and
t > t0. Assume t > t0. In case there are only d + 1 points of ηt in B(x, `t), we deduce
that stµ(B(x,C(x, ηt + δx))) ∈ B only if the d + 1 points belong to B(x, 2g(x, u/st)).
Then, by `t ≥ 4g(x, u/st) we obtain

At = t

∫
W

E
[
1
{
stµ(B(x,C(x, ηt + δx))) ∈ B

}
× 1
{
ηt(B(x, `t) \B(x, `t/2)) = 0, ηt(B(x, `t/2)) = d+ 1

}
× 1
{ ∑
y∈ηt∩W

δstµ(B(y,C(y,ηt+δx)))(B) = m
}]
f(x)dx.

(5.46)

Furthermore, since `t ≥ 4g(y, u/st) for all y ∈W , we have that

B(y, 2g(y, u/st)) ∩B(x, `t/2) = ∅, y ∈ B(x, `t)
c ∩W.
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Now the observation that

stµ(B(y, C(y, ηt + δx))) ∈ B if and only if stµ(B(y, C(y, (ηt + δx)|B(y,2g(y,u/st))))) ∈ B

for y ∈ ηt establishes that

At = t

∫
W
E
[
1
{
stµ(B(x,C(x, ηt + δx))) ∈ B

}
× 1
{
ηt(B(x, `t) \B(x, `t/2)) = 0, ηt(B(x, `t/2)) = d+ 1

}
× 1
{
ξt(ηt|B(x,`t)c)(B) +

∑
y∈ηt∩B(x,`t/2)∩W

δstµ(B(y,C(y,ηt+δx)))(B) = m
}]
f(x)dx.

Suppose that stµ(B(x,C(x, ηt + δx))) ∈ B and that there are exactly d + 1 points
y1, . . . , yd+1 of ηt in B(x, `t/2) and ηt ∩B(x, `t) ∩B(x, `t/2)c = ∅. From Lemma 5.3.14
it follows that x ∈ int(conv({y1, . . . , yd+1})) and that the Voronoi cells N(yi, ηt|B(x,`t) +
δx), i = 1, . . . , d+ 1, are unbounded. In particular, we have

C(yi, ηt + δx) > `t/4 > g(yi, u/st), i = 1, . . . , d+ 1.

Together with the same arguments used to show (5.46), this implies that

At = t

∫
W

E
[
1
{
stµ(B(x,C(x, ηt + δx))) ∈ B

}
× 1
{
ηt(B(x, `t) \B(x, `t/2)) = 0, ηt(B(x, `t/2)) = d+ 1

}
× 1
{
ξt(ηt|B(x,`t)c)(B) = m

}]
f(x)dx

= t

∫
W

E
[
1
{
stµ(B(x,C(x, ηt + δx))) ∈ B

}
1
{
ηt(B(x, `t)) = d+ 1

}]
× P

(
ξt(ηt|B(x,`t)c)(B) = m

)
f(x)dx.

Furthermore, we obtain∣∣P(ξt(ηt|B(x,`t)c)(B) = m
)
− P

(
ξt(B) = m

)∣∣ ≤ P(ηt(B(x, `t)) > 0) ≤ tµ(B(x, `t))

for any x ∈ W , where we used the Markov inequality in the last step. Combining the
previous formulas leads to∣∣At −M(B)P(ξt(B) = m)

∣∣
≤ |Mt(B)−M(B)|

+ t

∫
W

E
[
1
{
stµ(B(x,C(x, ηt + δx))) ∈ B

}
1
{
ηt(B(x, `t)) > d+ 1

}]
f(x)dx

+ t

∫
W

E
[
1
{
stµ(B(x,C(x, ηt + δx))) ∈ B

}
1
{
ηt(B(x, `t)) = d+ 1

}]
×
∣∣P(ξt(ηt|B(x,`t)c)(B) = m

)
− P(ξt(B) = m)

∣∣f(x)dx

≤ |Mt(B)−M(B)|+ t

∫
W

P
(
ηt(B(x, `t)) > d+ 1

)
f(x)dx+ M̂t([0, u]) sup

x∈W
tµ(B(x, `t)).

It follows from Lemma 5.3.13 that, as t → ∞, M̂t([0, u]) → M([0, u]), Mt(B) → M(B)
and the integral on the right-hand side vanishes. Without loss of generality we may
assume `t ≤ 1, and thus the continuity of f on W + B(0, 1) implies that

tµ(B(x, `t)) ≤ kd max
z∈W+B(0,1)

f(z)t`dt
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for all x ∈ W . Now `t = 4
(

2u
βstkd

)1/d
and st = α2t

(d+2)/(d+1) yield that the right-hand
side vanishes as t→∞. Thus, we obtain

lim
t→∞

At −M(B)P(ξt(B) = m) = 0,

which together with Rt → 0 as t→∞ concludes the proof.

Proof of Theorem 5.3.9. Let γ be a Poisson process on Rd × [0,∞) with the restriction
of the Lebesgue measure as intensity measure. Let µ1 and µ2 denote the absolutely
continuous measures with densities f1 and f2, respectively. Then, [38, Corollary 5.9 and
Proposition 6.16] imply that

%
(1)
t =

∑
(x,y)∈γ

1{y ≤ tf1(x)}δx, %
(2)
t =

∑
(x,y)∈γ

1{y ≤ tf2(x)}δx

and
%t =

∑
(x,y)∈γ

1{y ≤ tφ(x)}δx

are Poisson processes on Rd with intensity measures tµ1, tµ2 and tϑ, respectively. They
satisfy

%
(1)
t (A) ≤ %t(A) ≤ %(2)

t (A) a.s. and %t
d
= ζt, A ⊂ Rd, t > 0.

Therefore for any v ≥ 0, we obtain

P
(

min
x∈ζt∩W

µ1(B(x,C(x, ζt))) > v
)
≤ P

(
min

x∈%(1)
t ∩W

µ1(B(x,C(x, %
(1)
t ))) > v

)
(5.47)

and similarly

P
(

min
x∈ζt∩W

µ2(B(x,C(x, ζt))) > v
)
≥ P

(
min

x∈%(2)
t ∩W

µ2(B(x,C(x, %
(2)
t ))) > v

)
. (5.48)

From Theorem 5.3.8, it follows for j = 1, 2 and ν(t) = u(α2t
(d+2)/(d+1))−1 with u ≥ 0,

that
lim
t→∞

P
(

min
x∈%(j)

t ∩W
µj(B(x,C(x, %

(j)
t ))) > ν(t)

)
= e−µj(W )ud+1

.

If sφ ≤ f1 ≤ φ for some s ∈ (0, 1], combining (5.47), the previous limit with j = 1, and
the inequality

P
(

min
x∈ζt∩W

sϑ(B(x,C(x, ζt))) > ν(t)
)
≤ P

(
min

x∈ζt∩W
µ1(B(x,C(x, ζt))) > ν(t)

)
implies that

lim sup
t→∞

P
(

min
x∈ζt∩W

sϑ(B(x,C(x, ζt))) > ν(t)
)
≤ e−µ1(W )ud+1

.

Then, sϑ(W ) ≤ µ1(W ) concludes the proof of (i). Analogously, if φ ≤ f2 ≤ rφ for some
r ≥ 1, combining (5.48), the limit above with j = 2, the inequality

P
(

min
x∈ζt∩W

rϑ(B(x,C(x, ζt))) > ν(t)
)
≥ P

(
min

x∈ζt∩W
µ2(B(x,C(x, ζt))) > ν(t)

)
and µ2(W ) ≤ rϑ(W ) for u ≥ 0 shows (ii).
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[25] V. Čekanavičius and P. Vellaisamy. Compound Poisson approximations in `p-norm
for sums of weakly dependent vectors. J. Theor. Probab., 2020. DOI: 10.1007/s10959-
020-01042-9.
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