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Abstract

Part I The (2+1)-dimensional O(2) model in the continuum limit at the Wilson-Fisher
fixed point approached from the broken phase contains massless Goldstone bosons and
vortices. The latter are infraparticles and therefore have a mass that is expected to
diverge logarithmically with the volume due to the infinite cloud of massless Goldstone
bosons that surrounds them. Making use of the exact duality that relates the O(2)
model on the lattice to a gauge theory with integer-valued link variables, we perform
Monte Carlo simulations to calculate the mass of the vortex as a function of the finite
and C-periodic volume non-perturbatively. We confirm the logarithmic divergence of
the vortex mass numerically, and calculate the strength of the divergence that is related
to the vortex charge, to be b = 3.55(9). This constitutes a universal amplitude ratio
associated with the Wilson-Fisher fixed point.

Part II In a large external magnetic field, spin chains saturate. We study defects in
the saturated state for the XXZ Heisenberg spin chain as well as for a SU(3) spin chain
that is related to a regularization of the CP (2) model suitable for quantum simulation.
The Hamiltonian is diagonalized in the one- and two-defects sectors and the results are
matched to an effective theory of non-relativistic point particles with a contact inter-
action. We find that the defects in the saturated state of the SU(3) spin chain are
equivalent to the ones in an antiferromagnetic, anisotropic XXZ Heisenberg spin chain,
and that they interact repulsively.
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1. Introduction

Magnetic phenomena have fascinated humanity for thousands of years. Mentions of the
magnetic properties of lodestone, a naturally occurring permanent magnet, can be found
in Greek texts from as early as 800 B.C.. The ability of lodestone to attract and move
iron even led Thales to attribute a soul to it. While the technological application of
magnetism in the form of the compass had a great impact on navigation, its origins
remained mysterious [1]. For example, it was widely believed well into the seventeenth
century that garlic diminishes the force exhibited by a magnet [2]. Even today, one of
the very few experimental hints of physics beyond the Standard Model of particle physics
is in the intrinsic magnetic properties of the muon [3].

The understanding of the relationship between electricity and magnetism started in
the nineteenth century and culminated in 1861 in the work of James C. Maxwell, whose
famous equations give a coherent picture of electromagnetism. In 1928, Werner Heisen-
berg [4] proposed what is now known as the quantum Heisenberg model, a simple yet
extremely successful model that describes magnetism in solids as a collective phenomenon
based on the exchange interaction of electron spins.

Figure 1.1 shows the magnetization of five different materials as a function of temper-
ature close to their critical point compared to predictions of the quantum Heisenberg
model. Magnetization and temperature are scaled by appropriate powers of an external
magnetic field. Two things are remarkable in Figure 1.1: Even though the five materi-
als differ substantially in their microscopic properties (CrBr3 has an anisotropic lattice
structure, Pd3Fe is an alloy and YIG is a ferrimagnet), they show the same dependence of
the scaled magnetization on the temperature. Moreover, despite its idealized simplicity,
the quantum Heisenberg model makes accurate predictions. In fact, one could use an
even simpler model, the classical Heisenberg model where the quantum spins are replaced
by classical unit vectors. The additional Euclidean time dimension that implements the
temperature in the quantum Heisenberg model in the calculation of thermal expectation
values, only affects its critical structure at zero temperature.

This is an instance of what is known as universality. Close to a continuous phase
transition, many properties of a considered system (such as the rescaled magnetization
of a magnet) become independent of the microscopic details of the system and only
depend on its symmetry properties and the number of its dimensions. Thus, continuous
phase transitions can be classified in different universality classes.

This phenomenon can be understood in terms of renormalization group (RG) theory
[6–8]. Each universality class can be associated with an RG fixed point. Universality
is also part of the reason why physics is so successful at explaining certain aspects of
our world. For instance, to accurately describe the phase transition in a ferromagnetic
material, one does not have to include the details of the atomic structure of the material

1



1. Introduction

Figure 1.1.: The magnetization of several magnetic materials as a function of tempera-
ture. Magnetization and temperature are scaled by an appropriate power of
the externally applied magnetic field. The solid line is the prediction of the
quantum Heisenberg model in three spatial dimensions. The materials are:
4 CrBr3, ◦ EuO, N Ni, • Pd3Fe, � YIG. Reprinted figure with permission
from [5] Copyright (1999) by the American Physical Society.

and can simply use an idealized system with the same symmetry properties, such as
the (quantum) Heisenberg model. Another example is the liquid-vapor transition at the
critical point of a fluid that can be described by the Ising model, a model system even
simpler than the Heisenberg model.

This applies not only to phase transitions in condensed matter physics but also to
certain aspects of quantum field theory. The continuum limit of a quantum field theory
can be attributed to a universality class. To calculate e.g., the mass of a particle, one
can then again use a (relatively) simple model system in the same universality class, for
which it is possible to perform computer simulations.

Part I of the present thesis is concerned with the O(2) model, a simple model within
the three-dimensional XY universality class, where the defining symmetry properties
of the interactions are invariance under rotations and reflections in the plane. This
universality class contains the critical point in magnets with an easy-plane anisotropy,
several phase transitions in liquid crystals and is relevant for type-II superconductors
(see e.g. [9] and references therein). Moreover, the phase transition between liquid and
superfluid 4He along the λ-line also lies within the three-dimensional XY universality
class. We study the O(2) model, as a quantum field theory in (2 + 1) dimensions, and
calculate the mass of the vortex, a topological excitation, in a finite volume. This mass
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is a universal quantity that can be attributed to the Wilson-Fisher fixed point.

Vortices play an important role in the physics of superfluids. In 1949, Lars Onsager
first predicted the existence of quantized vortices in superfluids [10]. This idea was
further developed by Feynman [11] and also applied to superconductors by Abrikosov
[12]. The existence of quantized vortices in liquid helium was confirmed first indirectly
in 1956 by Hall and Vinen [13] and directly in 1961 by Vinen [14]. Because they are
coupled to massless Goldstone bosons, static vortices have an energy, or equivalently a
rest mass, that diverges with the volume. Concerning the kinetic mass, the situation is
less clear. Different ways of assigning such a mass to the vortex exist. Mapping vortices
and phonons in a superfluid to charged particles and photons in electrodynamics, Popov
concluded that the kinetic mass of a vortex corresponds to the static energy divided
by the square of the speed of sound [15]. A similar conclusion was reached by Duan
based on fluid dynamics arguments [16]. From the velocity dependence of the energy
change induced by a moving vortex he extracted the kinetic mass and found it to diverge
logarithmically with the volume. He further argued, that what he calls the dynamic
mass can be obtained from the velocity dependence of the total momentum of the same
system and that it coincides with the kinetic mass. On the other hand, a finite core-mass
can be attributed to the vortex as kinetic mass. According to Baym and Chandler [17]
the core-mass corresponds to the mass of the superfluid within the core. An equivalent
concept, the Kopnin-mass exists for superconductors and fermionic superfluids [18–20].
In 2007, Thouless and Anglin [21] studied the reaction of a vortex to an external force by
a pinning potential by means of the Gross-Pitaevskii equation [22, 23]. They found that
the kinetic vortex mass contains an infinite contribution (confirming Duan and Popov)
and that it depends on the form of the pinning potential, from which they concluded that
the kinetic vortex mass is ambiguous. Their conclusion was later questioned by Simula
[24], who studied the circular motion of a vortex without external forces, and obtained
a kinetic vortex mass in line with the core-mass suggested by Baym and Chandler [17]
as well as Kopnin [19], again, based on the Gross-Pitaevskii equation.

In the framework of the O(2) model as a quantum field theory in (2 + 1) dimensions,
vortices are topological excitations. In the symmetric phase, the vortices condense and in
the broken phase they correspond to topologically charged particles. Also in this context,
the mass of the vortex is somewhat controversial: The (2 + 1)-dimensional O(2) model
is exactly dual to a lattice gauge theory with integer-valued link variables [25–27]. The
latter corresponds to a certain limit of non-compact scalar quantum electrodynamics.
This duality was exploited to study properties of vortices in the dual gauge theory, that
is related to superconductivity in [28–31]. The vortices and Goldstone bosons in the
O(2) model are dual to the charged scalar particles and photons, respectively. Charged
particles are so-called infraparticles [32–34] and as such surrounded by a cloud of soft dual
photons that extends to infinity. In two spatial dimensions where the Coulomb potential
is logarithmic, this photon cloud gives the dual charged particle, and thus the vortex, a
mass that diverges logarithmically with the volume. This expectation is contrasted by a
relatively recent study [35], where the vortex mass in the (2+1)-dimensional O(2) model
was found to be finite.

3



1. Introduction

Topological excitations, such as the vortex are often quantized semi-classically [36, 37],
but there exists also a rigorous non-perturbative approach in the framework of lattice
field theory due to Fröhlich and Marchetti, based on disorder operators [38]. They gave a
quite generic construction of the soliton sectors in a broad class of quantum field theories
[39] and applied it to a variety of models (e.g., vortices in the abelian Higgs model in
(2 + 1) dimensions [40], monopoles in the (3 + 1) dimensional U(1) gauge theory [41] and
kinks in (1 + 1)-dimensional φ4-theory [42]).

Along these lines, we construct the vortex two-point function for the (2+1)-dimensional
O(2) model in a finite volume. Topological reasons forbid the existence of field configu-
rations containing a single vortex in a periodic geometry. To overcome this obstruction,
we make use of C-periodic boundary conditions [43, 44]. From the vortex two-point func-
tion, we extract the vortex mass. The numerical calculations are carried out in the dual
formulation of the theory, i.e., the integer gauge theory. We calculate the mass of the
vortex as a function of the fixed physical volume in the continuum limit at the Wilson-
Fisher fixed point approached from the broken phase. We confirm that the vortex mass
diverges logarithmically with the volume. The strength of the logarithmic divergence
that is related to the Coulomb charge of the vortex, represents a new universal quantity
associated with the Wilson-Fisher fixed point.

The first part of the present thesis is organized as follows. In Chapter 2, we consider
the vortex as a field configuration in the classical O(2) model. The non-perturbative
formulation of the vortex two-point function is then reviewed in Chapter 3. In Chapter 4
we discuss the details of the duality that maps the vortex to a dual charged particle
before describing the Monte Carlo calculation of the vortex mass in the continuum limit
in Chapter 5. Finally, we present our conclusions and a summary in Chapter 6.

Part II of the thesis is again related to the Heisenberg model. Spin models such as the
Heisenberg model and generalizations thereof, so-called quantum link models [45–49],
also provide an alternative non-perturbative regularization for strongly coupled quan-
tum field theories such as quantum chromodynamics (QCD). While the standard lattice
formulation of quantum field theory due to Wilson [50] proves to be highly successful
for e.g., hadron spectroscopy [51, 52], sign and complex action problems prohibit its use
for the exploration of the non-zero density and real-time physics of QCD [53]. A long-
standing proposal for an alternative approach is the use of quantum simulators [54–59],
where a quantum system in a laboratory, e.g., ultracold atoms in an optical lattice, is
specifically designed to encode the quantum field theory of interest.

The quantum spin or quantum link regularization is extremely well suited for such a
quantum simulation experiment. However, many challenges remain to be solved before
such experiments can be performed for full QCD [60]. For example, the regularization of
QCD in terms of quantum links [48], contains an additional spatial dimension that has
to be encoded in the internal degrees of freedom in a quantum simulation experiment.

The CP (2) model in (1+1) dimensions [61, 62] shares many features with QCD, such as
a non-perturbatively generated mass gap, asymptotic freedom and non-trivial topology.
At the same time it is much simpler than QCD, and therefore a natural candidate to
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explore the challenges that lie on the path towards quantum simulation of QCD. It can
be regularized in terms of a (2 + 1)-dimensional ladder of SU(3)-symmetric quantum
spins [63, 64]. Moreover, it is possible to perform quantum simulation experiments of
this regularization with currently available technology [65].

In [66], we have explored the finite density phase diagram of the CP (2) model at zero
temperature to provide a benchmark for possible quantum simulation experiments. We
have used the same regularization in terms of SU(3) quantum spins to perform Monte
Carlo simulations on a classical computer. The symmetry group SU(3) has rank two,
and thus two commuting generators, T 3 and T 8. To each of those a chemical potential,
µ3 and µ8, can be associated. Figure 1.2 shows a sketch of the zero temperature phase
diagram of the CP (2) model in the µ3-µ8 plane. If the chemical potential is large enough
to overcome the mass gap, particles are created. They interact repulsively and form a
gas that undergoes the Kosterlitz-Thouless phenomenon and condenses. Along the lines
that pass through the corners of the vacuum hexagon, a two-component ferromagnetic
condensate is formed. This can be understood as follows: While a generic chemical
potential breaks the global SU(3) symmetry down to U(1)3 × U(1)8, along the line
µ3 = 0, µ8 6= 0 for example, the global symmetry is broken down to SU(2)123 × U(1)8.

µ3

µ8

Vacuum
Single-species BEC

Double-species BEC

Saturation

Figure 1.2.: A sketch of the zero temperature phase diagram of the (1 + 1)-dimensional
CP (2) model, according to [66]. If the chemical potential is large enough
to overcome the mass gap, particles are created. They interact repulsively
and form a gas that undergoes the Kosterlitz-Thouless phenomenon. Only
the region close to the vacuum was explored in [66], the extension of the
condensate phase all the way to a saturated phase was conjectured.

For very large values of the chemical potentials, the spin ladders saturate, i.e. the
spins align with the direction of the chemical potential. In [66] only the region close
to the vacuum was explored, the extension of the condensate phase all the way to a
saturated phase was conjectured. If interactions between defects in the saturated state
are attractive, this would be a strong indication that another phase transition should
exist in between.

In this work, we study a chain of SU(3) spins with a large chemical potential µ3,
close to saturation. This system can be treated analytically in closed form. We find

5



1. Introduction

that the defects in the saturated state are completely equivalent to the defects in an
antiferromagnetic XXZ quantum spin chain and that they interact repulsively. While
this result still needs to be generalized to a (2 + 1)-dimensional ladder to make a definite
statement on the phase structure of the CP (2) model, it is still a strong hint.

Furthermore, this work can be viewed as a simple and pedagogical example for the use
of effective theory methods. We show that the low-energy physics of the defects in the
saturated state of the considered spin chains can be effectively described in terms of the
quantum mechanics of non-relativistic particles with contact interactions in a continuous
space.

The second part of the present thesis is organized as follows. In Chapter 7, we di-
agonalize the Hamiltonian of the XXZ-chain in the one- and two-defect sectors. To do
so, we explicitly solve the recursion relation corresponding to the stationary Schrödinger
equation. We show in Chapter 8 that the defects in the saturated state of the SU(3)
spin chain are equivalent to the defects in a specific anisotropic XXZ spin chain, and
therefore, the same methods can be applied there. We then provide a consistent effective
description of the low-energy physics of these defects in terms of non-relativistic point
particles in Chapter 9. Finally, we summarize the results and conclude in Chapter 10.

6



Part I.

The Vortex in the
(2 + 1)-dimensional O(2) Model
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2. The Vortex in the O(2) Symmetric
Classical Field Theory

2.1. The O(2) Model as a Classical Field Theory

In this chapter, we consider the O(2) model in two spatial and one temporal dimension
as a classical field theory. A simple yet nontrivial classical field theory that is invariant
under a global O(2) symmetry is the scalar field theory of a complex scalar field with a
quartic interaction — φ4 theory. The Lagrangian density is

L =
1

2
∂µφ∗∂µφ− V (φ) , (2.1)

with the potential

V (φ) =
λ

4!

(
|φ|2 − v2

)2
, (2.2)

and φ, a complex valued scalar field such that,

φ(x) = φ1(x) + iφ2(x) . (2.3)

The Lagrangian density is invariant under global O(2) or U(1) field rotations of the form

φ(x)′ = φ(x) exp(iϕ) , (2.4)

and of course under Poincaré transformations and charge conjugation, that is

Cφ(x) = φ(x)∗ . (2.5)

In three space-time dimensions (and in units where c = 1), the Lagrangian density has
the following dimension,

[L] =
energy

length2 . (2.6)

From that we can infer the units of the field and the parameters,

[φ] = energy1/2 , [v] = energy1/2 , [λ] = energy−1length−2 . (2.7)

The dimensionful parameters, v and λ, thus define the characteristic length and energy
scales, λ−1/2v−1 and v2.

The Hamiltonian density is obtained from the canonically conjugate momenta to φ1

9



2. The Vortex in the O(2) Symmetric Classical Field Theory

and φ2,

πi =
δL
δ∂tφi

= ∂tφi , (2.8)

as

H = π1∂tφ1 + π2∂tφ2 − L

=
1

2
∂tφ
∗∂tφ+

1

2
∂iφ
∗∂iφ+ V (φ)

=
1

2
π∗i πi +

1

2
∂iφ
∗∂iφ+ V (φ) . (2.9)

The Euler-Lagrange equations of motion,

δL
δφi

= ∂µ

(
δL
δ∂µφ

)
, (2.10)

are

∂µ∂
µφi =

∂V (φ)

∂φi
=
λ

6

(
|φ|2 − v2

)
φi . (2.11)

For static solutions, the time derivative vanishes and the equations of motion become

∆φ =
λ

6

(
|φ|2 − v2

)
φ . (2.12)

The lowest energy solution to the equations of motion is the trivial vacuum solution
φ(x, t) = v.

2.2. Vortices as Classical Field Configurations

Besides the trivial solution there are other static field configurations that solve the equa-
tions of motion. Here we are interested in solutions of the form

φ(r, ϕ) = f(r) exp(ilϕ) . (2.13)

Since the argument of φ wraps around the unit circle l times while it is traced along a
closed loop around the origin, we will refer to these solutions as vortex-like or simply
vortex field configurations. If the ansatz of eq. (2.13) is plugged into the equations of
motion, an ordinary differential equation for the radial function f(r) is obtained. Making
use of the Laplacian in polar coordinates,

∆ = ∂2
r +

1

r
+

1

r2
∂2
ϕ , (2.14)

we obtain (
∂2
r +

1

r
∂r −

l2

r2

)
f(r) = −λ

6

(
f(r)2 − v2

)
f(r) . (2.15)

10



2.2. Vortices as Classical Field Configurations

We are not aware of a closed form solution to this nonlinear differential equation and we
will be satisfied with a numerical solution and a discussion of the asymptotic behavior.
We start with a discussion of the asymptotic form of f(r) around r = 0. In order for
φ(r, ϕ) to be continuous, f(r) must vanish at r = 0. Using an ansatz of the form,

f(r) =

∞∑
n=1

anr
n , (2.16)

the differential eq. (2.15) turns into a recursion relation for the ai, namely,

a1(1− l2) = 0 ,

6

λ

(
(n+ 2)2 − l2

)
an+2 + v2an =

n∑
i=1

i∑
j=1

ajai−jan−i . (2.17)

For the first few values of n, the recursion evaluates to

a1(1− l2) = 0 ,

a2

(
4− l2

)
= 0 ,

a3

(
9− l2

)
= −v2a1 ,

a4

(
16− l2

)
=
a3

1λ

6
− a2v

2 ,

a5

(
25− l2

)
=

1

6

(
a2a

2
1 + 2a2

2a1

)
λ− a3v

2 . (2.18)

Thus the power series expansion of f(r), eq. (2.16), starts at n = l, and the first two
terms are

l = 1 : f(r) = ar − av2

8
r3 +O(r4) ,

l = 2 : f(r) = ar2 − av2

12
r4 +O(r6) ,

l = 3 : f(r) = ar3 − av2

16
r5 +O(r7) , (2.19)

with a = al unconstrained. For large values of r, we expect f(r) to approach v, and
make the ansatz

f(r) = v − c

rα
. (2.20)

11



2. The Vortex in the O(2) Symmetric Classical Field Theory

We plug it into the equation of motion, eq.(2.15), and obtain

−cα(α+ 1)

rα+2
+

cα

rα+2
− l2v

r2
+

cl2

rα+2
=
λv

6

(
−2cv

rα
+

c2

r2α

)
+
λ

6

2c2v

r2α

cl2 − cα2

rα+2
− l2v

r2
=
λvc2

2r2α
− λv2c

3rα
(2.21)

This implies that α = 2. From the terms proportional to r−2, we can then read off

c =
3l2

vλ
. (2.22)

In order for this to be consistent for the terms of the order of r−4, a term c2r
−4 has to be

added to the ansatz. Then −v2λ/6f(r) gives rise to another term proportional to r−4,
and with a suitable choice of c2, the differential equation can be solved to the order r−4.

Eq. (2.15) can also be solved numerically as a boundary value problem with the bound-
ary conditions f(0) = 0 and f(R) = v − 3l2/vλR2. To do so we solve the equation with
the help of solve_bvp from the SciPy library [67] in units, where λ = 1 and v = 1 and
therefore also the field is dimensionless. The result is shown in Figure 2.1 for l = 1, 2, 3.
To impose the asymptotic boundary condition, we have chosen a value of R = 80/v

√
λ

which is well in the asymptotic regime. Two-dimensional visualizations of the vortex
field configurations are shown in Figure 2.2.

0/v
√
λ 10/v

√
λ 20/v

√
λ

r

0

v/2

v

f
(r

)

arl

v − 3l2

vλr2

l = 1

l = 2

l = 3

Figure 2.1.: The radial profile f(r) for field configurations of the form φ(r, ϕ) =
f(r) exp(ilϕ) with vortex number l = 1, 2, 3. The dashed grey lines show
the asymptotic approach to v for r →∞, and the dotted lines the behavior
around r = 0 with the prefactor a fitted to the numerical solution.
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−15/v
√
λ 15/v

√
λ

l = 1

−15/v
√
λ 15/v

√
λ

l = 2

−15/v
√
λ 15/v

√
λ

l = 3

Figure 2.2.: The vortex field configuration φ(r, ϕ) = f(r) exp(ilϕ). The background
color indicates the absolute value |φ(r, ϕ)| from 0 (white) to v (light blue).
The arrows’ vertical and horizontal component correspond to the real and
imaginary part of φ, respectively. The polar angle is zero along the positive
y axis and increases clockwise. The arrows are drawn on random positions
in order for the otherwise appearing grid pattern not to distract the eye.

2.3. The Vortex in a Finite Volume

In the following, we discuss the vortex inside a finite box. That is, static field configura-
tions, φ(x), which obey the equations of motion and for which the field is confined to a
box of size L× L, as

xi ∈ [−L/2, L/2] . (2.23)

In order to do so, boundary conditions have to be imposed. Periodic boundary condi-
tions are often used since they preserve translation invariance and thus the momentum
structure of the theory. However, a vortex solution similar to the solutions considered
previously cannot exist in that geometry for topological reasons: For a continuous peri-
odic field configuration, the integral of the complex phase around the boundary of the
finite box is always zero since the contributions from opposite boundaries cancel each
other. For a field configuration that contains a single vortex, it should be 2π. A natural
candidate to cure this problem and still preserve translation invariance are C-periodic
boundary conditions [43, 44].

As we will see, purely C-periodic boundary conditions do not support continuous
vortex solutions with a form akin to the infinite volume configurations that we have
discussed in Section 2.2. Instead we will make a more general ansatz for the boundary
conditions that includes twists at the spatial boundaries. After discussing how these
boundary conditions affect the symmetries of the model, we will constrain them by
demanding that a vortex configuration similar to the infinite volume vortex solution is
continuous at the boundaries.

13



2. The Vortex in the O(2) Symmetric Classical Field Theory

Twisted C-periodic boundary conditions have the following form,

φ(x+ e1L) = φ(x)∗ exp(ib1)

φ(x+ e2L) = φ(x)∗ exp(ib2) . (2.24)

The twists, b1 and b2, are constrained by a cocycle condition,

φ(x+ e1L+ e2L) = φ(x+ e1)∗ exp(ib2) = φ(x) exp(i(b1 − b2))

= φ(x+ e2)∗ exp(ib1) = φ(x) exp(i(b2 − b1)) , (2.25)

in order to be consistent. It follows that

b1 − b2 = b2 − b1 mod 2π (2.26)

and therefore
b1 − b2 mod 2π ∈ {0, π} . (2.27)

These boundary conditions clearly break rotation invariance to 90 degrees rotation in-
variance. Also the internal O(2) symmetry,

φ(x)′ = φ(x) exp(iγ) ,

φ(x)′ = φ(x)∗ , (2.28)

is affected. While the potential term of the Lagrangian density is still invariant under
the full O(2) symmetry, the term ∂µφ∂

µφ∗ is not. Consider e.g.,

∂1φ(e1L)∂1φ(e1L)∗ = lim
ε→0

1

ε2
|φ(e1(L+ ε))− φ(e1L)|2

= lim
ε→0

1

ε2
|φ(e1ε)

∗ exp(ib1)− φ(e1L)|2 . (2.29)

Under a global transformation φ(x)′ = φ(x) exp(iγ), this expression transforms into

∂1φ(e1L)′∂1φ(e1L)′∗ = lim
ε→0

1

ε2
|φ(e1ε)

∗ exp(ib1) exp(−iγ)− φ(e1L) exp(iγ)|2 . (2.30)

It is only invariant for γ ∈ {0, π}. The same is true for an equivalent term at the
other boundary. The transformation Cφ = φ∗, charge conjugation, is also no longer a
symmetry. To see this, we consider the transformation φ′(x) = φ∗(x) exp(iγ),

∂1φ
′(e1L)∂1φ

′∗(e1L) = lim
ε→0

1

ε2
|φ(e1ε) exp(ib1) exp(−iγ)− φ(e1L)∗ exp(iγ)|2 , (2.31)

which only is an invariance if γ = b1 +mπ for an integer m. At the other boundary we
find γ = b2 +mπ. This is consistent if the cocycle condition b1 − b2 = mπ is taken into
account. Thus, the twisted C-periodic boundary conditions explicitly break the global

14



2.3. The Vortex in a Finite Volume

O(2) symmetry down to Z2 × Z2 given by

Rφ(x) = −φ(x)

C̃φ(x) = φ(x)∗ exp(ib1) . (2.32)

Note that the twisted C-periodic boundary conditions can be expressed in terms of theses
symmetry operations as

φ(x+ e1L) = C̃φ(x)

φ(x+ e2L) = RmCφ(x)

φ(x+ e2L+ e1L) = Rmφ(x) , (2.33)

with m = (b1 − b2)π.

We will now discuss for which values of b1 and b2 continuous vortex solutions are
naturally supported by the boundary conditions. In polar coordinates, a general field
configuration can be written as

φl(r, ϕ) = f(r, ϕ) exp(ilθ(r, ϕ) + iβ) . (2.34)

In the infinite volume, the vortex field configurations have the following symmetries,

φ(r, ϕ) = φ(r, ϕ− δ) exp(+ilδ)

φ(r, ϕ) = φ(r,−ϕ)∗ . (2.35)

They combine spatial rotation and reflection with the internal O(2) symmetry. In a
finite box, the spatial rotation symmetry can only be assumed to hold for δ = nπ/2 with
n ∈ Z. Imposing these symmetries on the general form of eq. (2.34) yields the following
constraints,

f(r, ϕ) = f
(
r, ϕ+ n

π

2

)
, f(r, ϕ) = f (r,−ϕ) ,

θ(r, ϕ) = θ
(
r, ϕ+ n

π

2

)
− nπ

2
, θ(r, ϕ) = −θ (r,−ϕ) . (2.36)

If furthermore ∫ 2π

0
θ(r, ϕ)dϕ = 2π , (2.37)

the field configuration φl(r, ϕ) is indeed an l-fold vortex. This condition is however not
necessary for the following discussion. We now consider a point on the boundary normal
to the e1 direction, p1, as illustrated in Figure 2.3. The field configuration φl(r, φ) is
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−L/2 L/2 3L/2

p1

p2

ϕ

ϕ2

π − ϕ2

−ϕ

φ C̃φ

RmC̃φ Rmφ

Figure 2.3.: A schematic drawing of the twisted C-periodic geometry. Demanding con-
tinuity for φ at the generic points p1 and p2 constrains the twists at the
boundaries that support vortex field configurations.

continuous at p1, if the field value agrees with its twisted C-periodic copy,

φl(r, ϕ) = φl(r,−ϕ)∗ exp(ib1) ,

f(r, ϕ) exp(ilθ(r, ϕ) + iβ) = f(r,−ϕ) exp(−ilθ(r,−ϕ)− iβ + ib1)

= f(r, ϕ) exp(ilθ(r, ϕ)− iβ + ib1) . (2.38)

It follows that
β = b1 − β mod 2π . (2.39)

A similar equation arises from considering a point p2 on the other boundary (confer
Figure 2.3). The field configuration is continuous if

φl(r, ϕ) = φl(r, π − ϕ)∗ exp(ib2) ,

f(r, ϕ) exp(ilθ(r, ϕ) + iβ) = f(r, π − ϕ) exp(−ilθ(r, π − ϕ)− iβ + ib2)

= f(r, ϕ) exp(ilθ(r, ϕ)− ilπ − iβ + ib2) . (2.40)

This implies that
β = −lπ − β + b2 mod 2π . (2.41)

From eqs. (2.39) and (2.41) we deduce that

b1 − b2 = lπ mod 2π . (2.42)

That is, for a vortex configuration with l = 1 to naturally fit into the C-periodic geome-
try, twists that differ by an odd multiple of π have to be imposed on the two boundaries.
Specifically, pure C-periodic boundary conditions do not support such a field configu-
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2.4. Numerical Solutions in the Finite Volume

ration. They do support a two-fold vortex field configuration with l = 2, however. In
summary, a twisted C-periodic box with twists b1 and b2, naturally supports vortex field
configurations with the phase dependence on the polar angle, exp(ilθ(ϕ, r) + iβ) with

l =
±(b1 − b2)

π
+ 2n , β =

b1
2

+ kπ , (2.43)

for n, k ∈ Z. This amounts to a total of four distinct field configurations for given |l| and
θ(r, ϕ), as well as f(r, ϕ). They can be labeled as φl±±(r, ϕ) with the first ± referring to
the sign of l and the second to whether k is even (+) or odd (−). These configurations
are related by R and C̃ as

C̃φl±± = φl∓± , Rφl±± = φl±∓ . (2.44)

2.4. Numerical Solutions in the Finite Volume

Here we discuss numerical solutions of the equations of motion (2.10), subject to the
boundary conditions discussed in the previous section. After a qualitative discussion of
these vortex-like solutions, we will also look at the scaling of their energy with the size
of the C-periodic box.

To solve the equations of motion numerically, we discretize the system on an N ×N
lattice Λ and minimize the lattice energy,

E = a2
∑
x∈Λ

H(x)

= v2
∑
x∈Λ

(
2∑
i=1

1

2
|φ̃(x+ ei)− φ̃(x)|+ λa2

(
|φ̃(x)|2 − 1

)2
)
. (2.45)

Here, a denotes the lattice spacing and the fields are rescaled to be dimensionless as

φ̃(x)v = φ(x) . (2.46)

Furthermore, we impose the 90 degrees rotation invariance, described in eq. (2.35), ex-
plicitly by considering only the quadrant 0 ≤ x1 < L/2, 0 < x2 < L/2 of the lattice, and
continue the field to the other quadrants according to

φ̃(r, ϕ+ nπ/2) = φ̃(r, ϕ) exp(ilnπ/2) , (2.47)

for n ∈ {1, 2, 3}. In addition, we choose φ̃(0, 0) = 0. The minimization is performed with
a cooling algorithm: In a sweep through the lattice, at each site the field φ̃(x) is set to
the value that minimizes its contribution to the total energy,

H̃(x) = H(x) +

2∑
i=1

H(x+ ei) +H(x− ei) . (2.48)
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2. The Vortex in the O(2) Symmetric Classical Field Theory

This field value corresponds to one of the three solutions to

∂φ1(x)H̃(x) = 0 , ∂φ2(x)H̃(x) = 0 .

They can be obtained in closed form as

φ̃1 = −
i
(

3
√

2α2/3 + 2 3
√

3a2λ
(
a2λ− 24

)
c2
r

(
c2
i + c2

r

))
62/3a2 3

√
αλcr (ci + icr)

,

φ̃2 =
22/3 3
√

3
(√

3 + i
)
α2/3 + 2i 3

√
2 6
√

3
(√

3 + 3i
)
a2λ

(
a2λ− 24

)
c2
r

(
c2
i + c2

r

)
12a2 3

√
αλcr (ci + icr)

,

φ̃3 =
2 3
√

2 6
√

3
(
3 + i

√
3
)
a2λ

(
a2λ− 24

)
c2
r

(
c2
i + c2

r

)
− 22/3 3

√
3
(√

3− i
)
α2/3

12a2 3
√
αλcr (ci + icr)

, (2.49)

where

cr = 2 Re

(
2∑
i=1

φ̃(x+ ei) + φ̃(x− ei)

)
,

ci = 2 Im

(
2∑
i=1

φ̃(x+ ei) + φ̃(x− ei)

)
, (2.50)

and

α =
√

3

√
−a6c6

rλ
3
(
c2
i + c2

r

)3 (
4a6λ3 − 288a4λ2 − 27a2λ

(
9c2
i + 9c2

r − 256
)
− 55296

)
− 27a4c3

rλ
2
(
c2
i + c2

r

)2
. (2.51)

At each step, φ̃1, φ̃2 and φ̃3 are evaluated, and φ̃ is then set to the one that minimizes
H̃(x). The cooling is stopped if in ten consecutive sweeps, the total energy changes by
less than 10−8v2. In smaller systems, where the cooling can be continued to machine
precision in a reasonable time, we have observed that this stopping criterion yields energy
values that differ from the machine precision result by roughly 10−6. As an initial guess,
we take the infinite volume vortex field configuration,

φ̃0(r, ϕ) = exp (ilϕ) , (2.52)

for r > 0. If instead a random initial configuration is used, the algorithm takes sig-
nificantly more time to stop, but eventually converges to the same vortex like field
configuration as with the educated initial guess.

Before discussing the scaling of the energy we will take a qualitative look at the nu-
merical solutions in order to confirm the conclusions of Section 2.3. Figure 2.4 shows
the numerical solution to the equations of motion for various twisted C-periodic geome-
tries. In addition to the actual box in the lower left corner, the continuation into three
adjacent boxes according to the boundary conditions is shown. A further continuation
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2.4. Numerical Solutions in the Finite Volume

then simply corresponds to a periodic repetition of the four displayed boxes. The bound-
aries are marked by white lines. In the top two rows, the difference between the twists
is b1 − b2 = π and, as expected, single vortex solutions are supported. The value b1
determines the overall orientation of the vortex, and can indeed be identified with 2β.
Furthermore, for each value of b1, the four types of vortices, φ±±, appear in the four
adjacent boxes. In the bottom row, b1− b2 = 0 and only two-fold vortices are supported.
Here no reflection R is applied at either of the boundaries and only two types of two-fold
vortices appear in the four adjacent boxes. The case of b1 = b2 = 0 (bottom left) corre-
sponds to C-periodic boundary conditions without a twist. It seems difficult to construct
numerical solutions for larger values of l because the boundary conditions do still allow
the solutions with l = 1 or l = 2 and the algorithm converges to those even with initial
conditions exp(ilϕ) with l > 2. The phase pattern, θ(r, ϕ) in Section 2.3, is very similar
to the one of the infinite volume solutions (confer Figure 2.2).

Let us now turn to the scaling of the energy of the single vortex field configuration,
l = 1, with the box size L. We use system extents L ∈ {10a0, 15a0, 20a0, 25a0, 30a0}
and lattice spacings a ∈ {a0, a0/2, a0/4, a0/5, a0/6}. In addition, we set λa2

0 = 10. With
this choice of parameters, the vortex core is significantly smaller than the box and at
the same time still reasonably resolved in the discretized field. For the smallest box this
corresponds to L ≈ 32/v

√
λ and for the largest box to L ≈ 95v

√
λ . This is several

times the vortex core size in the infinite volume, if we estimate it crudely as 10/v
√
λ

from Figure 2.1.

At a given physical system size, the energy dependence on the lattice spacing is well
described by E(a) = αa2 + βa + E(0). The linear term is necessary to describe the
dependence on the lattice spacing a satisfactorily. An example is shown in Figure 2.5.
Since the quantities E(a) do not come with a statistical error, it is not straightforward
to assess the quality of the fits. We do so according to the following ad hoc scheme. If
a relative error of 10−5 is assumed on E(a), the chi square per degree of freedom is of
order 1. This relative error is comparable to the expected accuracy of the energy values.
On the other hand, if the linear term is left out of the fit, the artificial relative error has
to be increased to 10−3 in order to get a chi square per degree of freedom that is of the
order of one.

Figure 2.6 shows the dependence of E(0) on L and a fit of the form b log(L/a0) + c.
The best fit estimate of the prefactor of the log is b = 3.139. To give an order of
magnitude estimate, of the systematic uncertainty of this number, we compare it to
the result obtained from a fit to E(1/6a0). There we find b(1/6a0) = 3.155. Taking
|(b− b(1/6a0))/2| as a rough estimate for the systematic error, we find

b = 3.139(8) (2.53)

as a final estimate for the prefactor of the log, which is well compatible with the infinite
volume value of b = π. We recover not only the logarithmic scaling of the large volume
energy but also find a prefactor consistent with the rotation invariant large volume result.
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Rφ

RCφ

Cφ

φ

b1 = 0 b2 = b1 + π
Rφ

RCφ

Cφ

φ

b1 = 1/2π b2 = b1 + π

Rφ

RCφ

Cφ

φ

b1 = π b2 = b1 + π
Rφ

RCφ

Cφ

φ

b1 = 3/2π b2 = b1 + π
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Figure 2.4.: Vortex field configurations in various twisted C-periodic geometries. The
background indicates the absolute value of φ(x) and the vertical and hori-
zontal component of the arrows correspond to the real and imaginary part
of φ. The size of the box is L ≈ 31.6/v

√
λ. For b2−b1 = π, as in the top two

rows, the resulting configuration is a single vortex (l = 1) and for b2 = b1
(bottom rows) it is a two-fold vortex, i.e., l = 2.
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Figure 2.5.: The continuum limit of the vortex energy at L = 10a0.

2.5. Vortices and Charged Particles

In this section, we look at a classical Coulomb point charge in a two-dimensional C-
periodic geometry and show that it exhibits a logarithmic divergence of the energy with
the box size. This allows us to relate the prefactor of the logarithmic divergence to the
charge of the vortex.

In two spatial dimensions, the Coulomb potential generated by a point particle with
charge e is logarithmic,

V (r) = − e

4π
log

(
r

r0

)
, (2.54)

where r0 is an integration constant and we have used units where ε0 = 1. A particle
of charge e in a box of size L with C-periodic boundary conditions can equivalently be
described as an infinite checkerboard, where the black and white squares correspond to
periodic and C-periodic copies of the original box. That is, a particle with charge e
sitting in the center of each black square, and a particle with charge −e in the centers
of all white squares. The energy of a particle in a C-periodic box corresponds to the
energy per particle in the (infinite) checkerboard system. This can be calculated as the
energy of a point charge in the Coulomb potential exhibited by all its infinite periodic
and C-periodic copies. A part of an infinite checkerboard is visualized in Figure 2.7. The
squares of size L × L are labeled with nx ∈ Z and ny ∈ Z, such that the coordinates of
the point particles correspond to L(nx, ny). The energy of the particle at (0, 0) in the
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Figure 2.6.: The logarithmic scaling of the vortex energy with the system extent L.

Coulomb potential generated by its copies is

E = − e
2

4π

∑
nx,ny 6=(0,0)

(−1)nx+ny log

L
√
n2
x + n2

y

r0

 . (2.55)

In order for this sum to be well-defined, it has to be set up as a limit, where it is
important to consider only systems with an even number of boxes such that the overall
charge vanishes,

E = − lim
N→∞

e2

4π

N∑
nx=−N+1

N∑
ny=−N+1

(nx,ny) 6=(0,0)

(−1)nx+ny log

L
√
n2
x + n2

y

r0

 . (2.56)

To infer the scaling with the box size L, we separate the logs as

E = − lim
N→∞

e2

4π

N∑
nx=−N+1

N∑
ny=−N+1

(nx,ny)6=(0,0)

(−1)nx+ny

(
log

(
L

r0

)
− log

(√
n2
x + n2

y

))
. (2.57)

Since the point nx = ny = 0 is left out in the sum, there is one more contribution of
+ log(L/r0) than there is of − log(L/r0), independent of N , and the energy is simply

E =
e2

4π
log

(
L

r0N0

)
, (2.58)
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Figure 2.7.: The Coulomb potential in a part of the infinite checkerboard array equivalent
to a charged particle in a C-periodic box. The potential has been calculated
numerically according to eq.qeq:coulombenergy. The sums were truncated
at |ni| = 20.

with

log(N0) = − lim
N→∞

e2

4π

N∑
nx=−N+1

N∑
ny=−N+1

(nx,ny)6=(0,0)

(−1)nx+ny log
(√

n2
x + n2

y

)
. (2.59)

The exact value of N0 is not so interesting, however, it is important that it converges.
Although not a proof [68], in order to justify this, we will be satisfied with a numerical
calculation of N0 at N = 10, N = 100 and N = 1000. We find that

N = 10 : N0 = 0.5400271938 ,

N = 100 : N0 = 0.5393593431 ,

N = 1000 : N0 = 0.5393526686 . (2.60)

The identification of the vortex as a charged Coulomb particle will become clear in
Chapter 4. Granted this equivalence, we conclude that the Coulomb charge of the vortex
in the classical 2 + 1-d O(2) model is

e = 2πv . (2.61)
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3. The Vortex in the O(2) Symmetric
Quantum Field Theory

3.1. The O(2) Model as a Quantum Field Theory on the
Lattice

In the context of lattice quantum field theory, the mass of a particle can be obtained
from Euclideantime two-point functions,

〈O1(0)O2(t)〉 =
∑
n

〈0|Ô1|n〉 〈n|Ô2|n〉 exp(−Ent) . (3.1)

If Ô1 and Ô2 are chosen such that they create and annihilate the particle of interest
respectively, the t-dependence of the two-point function at large t is dominated by an
exponential decay with the inverse mass of that particle as decay length at large t. In
order to calculate this two-point function as a path integral, we regularize the (2 +
1)-dimensional O(2) model on a Euclidean space-time lattice, and represent the O(2)
symmetric scalar field by an angle ϕc0 attached to each lattice site c0. We make use of
the formalism of differential forms on the lattice, which is briefly reviewed in appendix
A. The Euclidean time path integral then reads

〈O1(0)O2(t)〉 =
1

Z

∏
c0

∫ π

−π
dϕc0

1

2π
exp(−S[ϕ])O1[φ(·, 0)]O2[φ(·, t)] . (3.2)

The operator insertions, O1[φ(·, 0)] and O2[φ(·, t)], are functionals of the field configura-
tions in the Euclidean time slices at 0 and t. This is indicated by the dot in the spatial
argument of φ. The normalization constant Z, the partition function, corresponds to the
above path integral without operator insertions. In the context of statistical mechanics,
this model is usually referred to as the XY -model, originally proposed to describe the λ
transition in liquid helium [69, 70]. The standard action is

S[ϕ] =
∑
c1

−1

g2
cos (dϕc1) . (3.3)
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3. The Vortex in the O(2) Symmetric Quantum Field Theory

Another choice for the action, that is very convenient to do calculations with, and that
we will therefore mostly adopt in the next sections, is the Villain action [71],

exp(−S[ϕ]) =
∏
c1

∑
nc1∈Z

exp

(
− 1

2g2
‖dϕ− 2πn‖2

)
. (3.4)

Both actions are, of course, invariant under global O(2) symmetry transformations of
the form ϕ′c0 = ϕc0 + α.

To calculate the vortex mass, it remains to find a suitable operator, Φ, that creates or
annihilates a vortex. Following Banks [25], the O(2) model in three space-time dimen-
sions can be rewritten as a Coulomb gas of closed vortex world lines. This construction is
reviewed in Section 3.2. The vortex correlation function can then be found by inserting
an additional open vortex world line [39]. We will discuss this in Section 3.3. The whole
construction is analogous to the one given in [72] for magnetic monopoles in scalar QED
in four space-time dimensions and we will follow the derivation there quite closely.

3.2. The O(2) Model as a Gas of Vortex World Lines

We start with the partition function of the (2 + 1)-dimensional O(2) model with the
Villain action,

Z =
∏
c0

∫ π

−π
dϕc0

∏
c1

∑
nc1∈Z

exp

(
− 1

2g2
‖dϕ+ 2πn‖2

)
. (3.5)

Here, n is a 1-form that associates an integer to each link, and can be hodge-decomposed
into

n = d∆−1δn+ δ∆−1dn . (3.6)

Introducing m = dn and l = ∆−1δn , the sum over n can be replaced by sums over m
and l.

Z =
∏
c0

∫ π

−π
dϕc0

∑
lc0∈Z

∏
c2

∑
mc2∈Z
dm=0

exp

(
− 1

2g2

∥∥dϕ+ 2πd l + 2πδ∆−1m
∥∥2
)

(3.7)

In order not to enlarge the configuration space, the 2-form m, is subject to the constraint
dm = 0. An equivalent constraint, δl = 0, would have to be imposed on l, but is trivially
fulfilled since l is a 0-form. A non-compact field, A = (ϕ+ 2πdl), can now be introduced
and the partition function reads

Z =
∏
c2

∑
mc2∈Z
dm=0

∏
c0

∫ π

−π
dAc1 exp

(
− 1

2g2

∥∥dA+ 2πδ∆−1m
∥∥2
)
. (3.8)
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3.2. The O(2) Model as a Gas of Vortex World Lines

The newly introduced field, A, decouples from m since∥∥dA+ 2πδ∆−1m
∥∥2

= (dA+ 2πδ∆−1m, dA+ 2πδ∆−1m)

= ‖dA‖2 + 4π(dA, δ∆−1m) +
∥∥2πδ∆−1m

∥∥2

= ‖dA‖2 + 4π(A, δ2∆−1m) +
∥∥2πδ∆−1m

∥∥2

= ‖dA‖2 +
∥∥2πδ∆−1m

∥∥2
. (3.9)

In the second last step we have used partial integration. Furthermore, again making use
of partial integration, one finds that∥∥δ∆−1m

∥∥2
= (δ∆−1m, δ∆−1m) = (dδ∆−1m,∆−1m) . (3.10)

Since dm = 0, it follows that ∆m = dδm, and thus

(dδ∆−1m,∆−1m) = (m,∆−1m). (3.11)

Putting it all together, we obtain

Z =
∏
c2

∑
mc2∈Z dm=0

∏
c0

∫ π

−π
dAc1 exp

(
− 1

2g2
‖dA‖2

)
exp

(
−2κπ2(m,∆−1m)

)
. (3.12)

This partition function can be interpreted as the one of a Coulomb gas of vortex world
lines. The 2-form m counts the vorticity of the individual plaquettes. Its dual form ∗m,
associated to dual links, describes the world lines of vortices on the dual lattice. The
constraint, dm = 0, is equivalent to a continuity equation, δ∗m = 0, and implies that
the vortex world lines are closed loops and thus vorticity is conserved. In (m,∆−1m),
the expression ∆−1m is nothing but the Coulomb potential generated by m. The vortex
world lines form a Coulomb gas.

To develop some intuition on why m corresponds to the vorticity of a plaquette,
consider a plaquette with the four attached angles labeled by ϕi, 1 ≤ i ≤ 4. To assess
whether this plaquette contains a vortex, one considers the sum of the differences of
these angles,

m =
1

2π
((ϕ2 − ϕ1)) + (ϕ3 − ϕ2) + (ϕ4 − ϕ3) + (ϕ1 − ϕ4)) . (3.13)

If the ϕi were non-compact real numbers, this would trivially add up to zero. The differ-
ence of two angles, however, is only unique up to an integer multiple of 2π, depending on
the interpolation that is implicitly assumed between the individual spins. In the Villain
action, these interpolations are all explicitly accounted for by the term 2πn, that is added
to dϕ at each link. We can therefore think of a configuration of n as an interpolation
prescription for each link. The sum of the difference of the angles around our example
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3. The Vortex in the O(2) Symmetric Quantum Field Theory

plaquette according to this interpolation prescription is then

m = n21 + n32 + n43 + n14 , (3.14)

where nij is the integer added to the link connecting the sites that ϕi and ϕj are attached
to. If the orientation of the links is taken into account, this is equivalent to dn evaluated
at that plaquette. Thus m = dn does indeed account for the vorticity of a plaquette.

3.3. The Vortex Two-Point Function

Following Fröhlich and Marchetti [39], the vortex two-point function is given as

〈Φ(x1)Φ∗(x2)〉 =

∏
c2

∑
mc2∈Z ,dm=−dB exp

(
−2π2

g2
(m+B,∆−1(m+B))

)
∏
c2

∑
mc2∈Z ,dm=0 exp

(
−2π2

g2
(m,∆−1(m))

)
=
Z(x1, x2)

Z
. (3.15)

The partition function, Z(x1, x2), describes a Coulomb gas of closed vortex world lines
with an additional open world line that starts at the dual lattice point x1 and ends at
the dual lattice point x2. This is illustrated schematically in Figure 3.1. To implement

x

t

y

x1

x2

Figure 3.1.: A schematic drawing of a configuration contributing to Z(x1, x2). The lines
correspond to vortex world lines that form closed loops of vortex antivortex
pairs, with the exception of a single open world line that starts at x1 and
ends at x2, where an single vortex is created and anihilated.

this, an external 2-form field B is added with

dB = ∗δx1 − ∗δx2 , (3.16)

where ∗δx is a 2-form Kronecker delta function that is equal to 1 on the space-time cube
dual to x and 0 otherwise. The field B is not uniquely defined by the constraint of
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3.3. The Vortex Two-Point Function

eq. (3.16). A suitable choice is to take

B = Bx1 −Bx2 , (3.17)

with dBxi = ∗δxi , and Bxi nonzero only on plaquettes dual to links in the dual time slice
that contains xi. The field Bxi is then given by

Bxi = δ2∆−1
2
∗δxi . (3.18)

The subscript 2 indicates, that δ2 and ∆2 refer to the two-dimensional coderivative and
Laplacian respectively. Confer Figure 3.2.

In the original formulation of the Villain model in terms of angles, ϕc0 , the vortex
two-point function is

〈Φ(x1)Φ∗(x2)〉 =
1

Z

∏
c0

∫ π

−π
dϕc0

∏
c1

∑
nc1∈Z

exp

(
− 1

2g2

∥∥dϕ+ 2πn+ 2πδ∆−1(B − ω)
∥∥2
)
.

(3.19)
In addition to the field B, another 2-form field ω appears that describes the Dirac string,
connecting the vortex creation point x1 to its annihilation point x2. It is integer-valued
and fulfills

dω = ∗δx1 − ∗δx2 , (3.20)

but is otherwise arbitrary. A simple realization is, ω = 1 on plaquettes dual to links on a
path that connects x1 to x2 on the dual lattice and zero otherwise. Figure 3.2 illustrates
this geometry. The vortex two-point function does not depend on the exact form of ω
and the Dirac string is invisible. To see this, we consider two realizations ω1 and ω2.
Since dω1 = dω2 they differ by an exact form. We therefore consider the transformation

ω′ = ω + dξ (3.21)

with ξ an integer valued 1-form. Under such a transformation,

2πδ∆−1(B − ω′) = 2πδ∆−1(B − ω)− 2πδ∆−1dξ

= 2πδ∆−1(B − ω)− 2πξ + 2πd∆−1δξ , (3.22)

where we have used the Hodge decomposition of ξ,

ξ = d∆−1δξ + δ∆−1dξ. (3.23)

This leaves the vortex correlation function, eq. (3.19), invariant since the terms 2πξ and
2πd∆−1δξ can be absorbed into n and ϕ by simple shifts.

It is easy to see that the vortex correlation function in terms of the angle field ϕ,
eq. (3.19), is indeed equivalent to the formulation in terms of vortex world lines, eq. (3.15).
In fact the only modification to the previous derivation of the equivalence of the respective
partition functions is thatm is replaced bym+B−ω. The non-compact field, A = ϕ+2πl,
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3. The Vortex in the O(2) Symmetric Quantum Field Theory

Figure 3.2.: An illustration of the geometry employed in the vortex correlation function.
The thick red line corresponds to the path on the dual lattice that connects
the vortex creation point x1 to the annihilation point x2. The fields, Bxi ,
are nonzero only in the (blue) plaquettes within the time slices of the vortex
creation and annihilation point.

still decouples from m+B − ω, since

(dA, 2πδ∆−1(m+B − ω)) = (A, 2πδ2∆−1(m+B − ω)) = 0 (3.24)

and furthermore∥∥2πδ∆−1(m+B − ω)
∥∥2

= 4π2(δ∆−1(m+B − ω), δ∆−1(m+B − ω))

= 4π2
(
dδ∆−1(m+B − ω),∆−1(m+B − ω)

)
= 4π2

(
m+B − ω,∆−1(m+B − ω)

)
, (3.25)

since d(m+B − ω) = 0. To obtain eq. (3.15) one finally replaces m by m− ω.
We now have a fully non-perturbative formulation of the vortex correlation function.

And in principle it is possible to evaluate it with Monte Carlo techniques in order to
retrieve, for instance, the vortex mass. However, neither of the representations, eq. (3.19)
and eq. (3.15), are practically suited to do numerical calculations. Their evaluation
amounts to the measurement of ratios of Boltzmann weights, quantities that typically
vary over many orders of magnitude. Fortunately there is a way out. The vortex in the
O(2) model in (2 + 1) dimensions is exactly dual to an ordinary charged particle in an
integer valued gauge theory, whose correlation function is calculable with Monte Carlo
simulations. The concept of duality is interesting on its own, beyond being a mere trick
that enables numerical calculations and is discussed in the next chapter.
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4. The Vortex as a Dual Charged
Particle

4.1. Kramers-Wannier Duality

While a dualism (such as in “mind matter dualism”) refers to something consisting of
two completely separate parts, the term duality means that there are two different per-
spectives on a single entity with possibly different emphasis. Dualities are ubiquitous in
mathematics and physics [73]. Examples in physics range from the classic electromag-
netic duality over wave-particle duality up to gauge-gravity duality.

Here, we will be concerned with a duality in the spirit of the self-duality of the two-
dimensional Ising model described in 1941 by Kramers and Wannier [74]. They discovered
a symmetry that relates the high-temperature to the low-temperature physics of the
two-dimensional Ising model: The partition function at inverse temperature β can be
rewritten again as an Ising model partition function (up to an overall factor) with inverse
temperature, β̃, that is a monotonically decreasing function of β, namely,

β̃ = −1

2
log (tanh(β)) . (4.1)

Assuming that the Ising model has only a single phase transition, this relation allows
the exact determination of the critical temperature as follows. At the critical point, the
free energy, F (β), is non analytic. Since

F (β) = − sinh(2β̃) + F (β̃) , (4.2)

a non-analyticity can only occur if β = β̃ and the critical temperature is obtained as the
solution to

βc = −1

2
log (tanh(βc)) . (4.3)

The extra sinh term in eq. (4.2) accounts for the overall factor that relates original
partition function to its dual.

By now it is understood that this symmetry is an instance of a more general duality
transform that can be applied to a broad class of lattice systems [75, 76]. This duality
transform is a kind of Fourier transform of the path integral. We consider models whose
partition functions are of the following form

Z =
∏
ck

∫
G
dφck

∏
ck+1

W (dφck+1
) , (4.4)
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4. The Vortex as a Dual Charged Particle

i.e., the degrees of freedom are associated to the cells ck (e.g. points, c0, for a spin model
or links, c1, for a gauge theory) and take on values in an Abelian group G. Furthermore
the Boltzmann weight of a configuration can be expressed as a product over (k+ 1)-cells
of local weights, that depend only on dφck+1

. In the first step of the duality transform,
the integration over the field variables, φck , is replaced by an integration over a newly
introduced (k+ 1)-form, χck+1

= dφck+1
. In order not to enlarge the configuration space,

one has to ensure that the integration is only over configurations of χ that can indeed be
obtained as an exterior derivative of some φ. This is ensured by inserting a constraint,
δ(dχck+2

), for each (k + 2)-cell,

Z =
∏
ck+1

∫
G
dχck+1

∏
ck+1

W (χck+1
)
∏
ck+2

δ(dχck+2
) . (4.5)

The delta function on an Abelian group can be expressed as a sum or integral over
its characters, that form the dual group G̃. The latter corresponds to the group of
one-dimensional unitary representations of G. Doing so yields,

Z =
∏
ck+1

∫
G
dχck+1

∏
ck+2

∫
G̃
dkck+2

∏
ck+1

W (χck+1
) exp(i(k, dχ)) . (4.6)

With a partial integration, (k, dχ) is then replaced by (δk, χ) and the integration over χ
is carried out as

Z =
∏
ck+2

∫
G̃
dkck+2

∏
ck+1

W̃ (δkck+1
) , (4.7)

where W̃ is the Fourier transform of W . For an abelian group it is given by

W̃ (δkck+1
) =

∫
G
dχck+1

W (χck+1
) exp(iδkck+1

χck+1
) . (4.8)

Eq. (4.7) can be interpreted as the partition function of a model with degrees of freedom
attached to dual k + 1 cells on the dual lattice,

Z =
∏
∗ck+2

∫
G̃
d∗k∗ck+1

W̃ (d∗k∗ck+1
) . (4.9)

Therefore, in two dimensions, a spin model, i.e. a model with degrees of freedom attached
to the sites c0 is dual to a spin model with degrees of freedom attached to the dual lattice
sites, ∗c2. In three dimensions on the other hand, ∗c2 refers to the links of the dual lattice
and therefore a spin model is dual to a gauge theory.

Two comments are in order. First, the delta function constraints only ensure the
integration over χ to be over the correct configuration space if the lattice has a trivial
cohomology and therefore by virtue of the Poincaré lemma, all closed forms are exact.
This is not the case, e.g., for a square lattice with periodic boundary conditions: In the
case of a spin model (k = 0), there exist configurations of χ that obey the constraint
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dχ = 0 but cannot be obtained as χ = dφ for some φ. One example is χc1 = const.
The case of nontrivial cohomology has been discussed in [77]. Second, the above duality
construction also fails if the symmetry group, be it local or global, is non-Abelian. Several
attempts for generalizations to non-Abelian models exist, e.g. [78].

4.2. Duality of the Villain Model

Applying the duality transform described in Section 4.1 to the (2 + 1)-dimensional O(2)
model yields an integer valued gauge theory. In the following, we review this duality on
the level of partition functions and for the vortex correlation function.

The O(2) model partition function in the Villain formulation reads

Z =
∏
c0

∫ π

−π
dϕc0

∏
c1

∑
nc1∈Z

exp

(
− 1

2g2
‖dϕ+ 2πn‖2

)
. (4.10)

We start the dualization by replacing the spin field associated to lattice sites, ϕ, by a
field that is associated to the links, χ. In order not to enlarge the configuration space,
we have to add an additional delta function constraint, that ensures that the 1-form χ
can indeed be obtained from a 0-form ϕ as en exterior derivative. Expressed in this way,
the partition function reads

Z =
∏
c1

∫ π

−π
dχc1

∏
c1

∑
nc1∈Z

exp

(
− 1

2g2
‖χ+ 2πn‖2

)∏
c2

δ(dχc2) . (4.11)

The delta function can be rewritten as a sum of exponentials as

Z =
∏
c1

∫ π

−π
dχc1

∏
c1

∑
nc1∈Z

exp

(
− 1

2g2
‖χ+ 2πn‖2

)∏
c2

∑
kc2∈Z

exp (i (k, dχ)) . (4.12)

We can now perform a partial integration, (k, dχ) = (δk, χ), and add a trivial 2πn to χ
in the second term, to obtain

Z =
∏
c1

∫ π

−π
dχc1

∏
c1

∑
nc1∈Z

∏
c2

∑
kc2∈Z

exp

(
− 1

2g2
‖χ+ 2πn‖2 + i (δk, χ+ 2πn)

)
. (4.13)

In the next step, the field χ is replaced by the non-compact field A = χ + 2πn that is
integrated over the real numbers. We find that

Z =
∏
c1

∫ ∞
−∞

dAc1
∏
c2

∑
kc2∈Z

exp

(
− 1

2g2
‖A‖2 + i (δk,A)

)
. (4.14)
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The integral over A is Gaussian and can be explicitly performed. The result is,

Z =
∏
c2

∑
kc2∈Z

exp

(
−g

2

2
‖δk‖2

)
=
∏
∗c2

∑
k∗c2∈Z

exp

(
−g

2

2
‖d∗k‖2

)
. (4.15)

This is the partition function of a (2 + 1)-dimensional pure gauge theory on the dual
lattice with integer-valued link variables.

The duality transformation can also be performed for the vortex correlation function,
eq. (3.19). The transformation is analogous to the one for the partition function. The
additional term 2πδ∆−1(B − ω) is included in the non-compact field, A, which in this
case is

A = χ+ 2πn+ 2πδ∆−1(B − ω) . (4.16)

The vortex correlation function before the integration of the non-compact field, the
analog of eq. (4.14) is,

〈Φ(x1)Φ∗(x2)〉 =

1

Z

∏
c1

∫ π

−π
dχc1

∏
c2

∑
kc2∈Z

exp

(
−g

2

2
‖A‖2 + i(dA, k)− i(2πdδ∆−1(B − ω), k)

)
. (4.17)

Because d(B − ω) = 0, it holds that dδ∆−1(B − ω) = (B − ω) and we find

〈Φ(x1)Φ∗(x2)〉 =
1

Z

∏
c2

∑
kc2∈Z

exp

(
−g

2

2
‖δk‖2

)
exp (−2πi((B − ω), k))

=
1

Z

∏
c2

∑
kc2∈Z

exp

(
−g

2

2
‖δk‖2

)
exp (−2πi(B, k))

=
1

Z

∏
∗c2

∑
∗k∗c2∈Z

exp

(
−g

2

2
‖d∗k‖2

)
exp (−2πi(∗B, ∗k)) . (4.18)

In the second step we have used that ω is integer-valued and thus exp(−2πi(ω, k)) = 1.
This form of the vortex two-point function suggests to use the following definition for
the vortex creation operator,

Φ(x) = exp(−2πi(∗Bx,
∗k)) . (4.19)

With ∗Bx given by eq. (3.18), the classical electric field generated by a point charge.

The vortex creation operator is invariant under gauge transformations of the dual
theory,

∗k′ = ∗k + d∗α , (4.20)

again, because exp(−2πi(∗Bx,
∗dα)) = 1 for α integer-valued.
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4.3. The Vortex as a Charged Particle

As realized by Fröhlich and Marchetti [41], the dual integer gauge theory corresponds to
a limit of non-compact scalar QED with a U(1) valued scalar field, ∗φ∗c3 = exp(i∗η∗c3).
The partition function reads,

Z =
∏
∗c2

∫ ∞
−∞

d∗A∗c2
∏
∗c3

∫ π

−π
d∗η∗c3 exp

(
− 1

2e2
‖d∗A‖2 + κ

∑
∗c2

cos (d∗η∗c2 + ∗A∗c2)

)
.

(4.21)
In unitary gauge, where ∗η = 0, it simplifies to

Z =
∏
∗c2

∫ ∞
−∞

d∗A∗c2dη exp

(
− 1

2e2
‖d∗A‖2 + κ

∑
∗c2

cos (∗A∗c2)

)
. (4.22)

In the limit κ→∞, the second term in the action fixes the gauge field ∗A∗c2 to take on
values of an integer multiple of 2π,

∗A∗c2 = ∗k∗c22π . (4.23)

In this limit the partition function reads,

lim
κ→∞

Z =
∏
∗c2

∑
∗k∗c2∈Z

exp

(
−2π2

e2
‖d∗k‖2

)
, (4.24)

which is equal to the partition function of the integer gauge theory given in eq. (4.15) if
the couplings are related as

e =
2π

g
. (4.25)

The photon is dual to the massless Goldstone boson and the vortex can be identified
with the charged scalar particle in this dual QED. To create a physical charged scalar
particle, one needs a gauge invariant operator and cannot simply use ∗φ. Under a gauge
transformation, the fields transform as

∗A′ = ∗A+ d∗α
∗φ′ = ∗φ exp(ie∗α) . (4.26)

Furthermore, charged particles are infraparticles and always surrounded by a cloud of
massless photons, that extends to infinity. To construct a gauge invariant operator that
creates a charged particle, this photon cloud has to be taken into account. A possible
choice, following Dirac [79], is,

∗φc(x) = ∗φ(x) exp(i(Ex, A)) , (4.27)

where Ex is the classical electric field of a point charge located at x and thus equals Bx. It
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is now clear, that the vortex in the (2+1)-dimensional O(2) model is dual to the charged
particle in the κ→∞ limit of scalar QED. The infinite dual photon cloud surrounding
a charged particle gives it a mass that diverges logarithmically with the system extent.
In the next section we will therefore address the vortex in a finite volume.

4.4. The Vortex in a Box

Here we discuss the integer gauge theory, defined by eq. (4.15), in a finite volume. Before
looking at the implications of the finite system extent on the vortex creation operator,
we start with a brief discussion of the symmetries of the gauge theory subject to periodic
and C-periodic boundary conditions. We consider the theory on a (2 + 1)-dimensional
Euclidean space-time lattice that extends over Ni = Li/a lattice sites in the direction
specified by the unit vector ei.

We start by addressing periodic boundary conditions of the form

∗k∗c′2 = ∗k∗c2 , (4.28)

where ∗c′2 is a periodic copy of the dual lattice site ∗c2, i.e., if ∗c2 is located at x, ∗c′2 is
located at x + Lei for some i. First and foremost there is gauge invariance. Under a
periodic (dual) gauge transformation ∗α, the gauge field transforms as

∗k′ = ∗k + d∗α , (4.29)

and the action is invariant, since dd∗α = 0. We have already seen, that also the vortex
operator is invariant under gauge transformations in Section 4.2. In addition, there is
charge conjugation C that operates as

Ck = −k . (4.30)

This is again a symmetry of the action. Furthermore, there is a Z3 global symmetry,
that is given by

∗k′∗c2 = ∗k∗c2 + qi , ∀∗c2 ∈ ∗Si , (4.31)

where qj is an integer and ∗Sj is a lattice slice perpendicular to ej . The location of the
slice does not matter since for different choices of slices (but the same values for the qj),
the ∗k′ are related by gauge transformations. In Section 2.3 we have seen that classically,
a single vortex cannot exist in the (2+1)-dimensional O(2) model with periodic boundary
conditions. The same is also true for the charged particle, because the charge creation
operator refers to the field

Bx = δ2∆−1
2
∗δx , (4.32)

which is ambiguous with periodic boundary conditions since the Laplacian has zero-
modes, the constant forms, and is thus not invertible.
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This problem does not occur when C-periodic boundary conditions, of the form

∗k∗c′2 = C∗k∗c2 = −∗k∗c2 , (4.33)

are employed. Then the Laplacian does not have zero-modes and Bx in eq. (4.32) is well
defined. We will use C-periodic boundary conditions in space and periodic boundary
conditions in Euclidean time, nevertheless, we will refer to these mixed boundary condi-
tions sometimes simply as C-periodic boundary conditions. These boundary conditions
break the global symmetry defined in eq. (4.31): While for dual plaquettes in the bulk
d∗k remains invariant, for dual plaquettes that extend over a boundary and contain a
modified link as well as a C-periodic copy of a modified link, it does not. Under the
transformation k′ = k′ + qi, such a plaquette transforms as d∗k′ = d∗k + 2qi. If however
q = qi = qj , for all directions i, j, and the Si are chosen as the boundaries of the lattice,
d∗k is invariant also on these plaquettes. This transformation has the form of a global
constant gauge transformation,

∗k′ = ∗k + d∗ϕ , ϕ(c0) =
q

2
(4.34)

The gauge group being Z, for even q this is a proper gauge transformation, for odd q it
is not. The remaining global symmetry up to gauge transformations is therefore reduced
to Z2 and is given as

∗k′∗c2 = ∗k∗c2 + q , ∀∗c2 ∈ Si , (4.35)

with q ∈ {0, 1}. Under this transformation, the vortex creation operator transforms as

Φ(x)′ = Φ(x) exp (−2πi (∗Bx, d
∗ϕ))

= Φ(x) exp (−2πi (δx, ϕ))

= −Φ(x) . (4.36)

In the following, we will refer to this transformation as vortex field reflection or simply
R. Under charge conjugation, the vortex creation operator transforms as,

CΦ(x) = Φ∗(x) . (4.37)

Its C-even and C-odd components are

C Re Φ(x) = Re Φ(x)
C Im Φ(x) = − Im Φ(x) . (4.38)

Thus in a C-periodic volume, the real part of Φ(x) is periodic and the imaginary part
is anti-periodic. This implies that they have different allowed spatial momenta, (p1, p2),
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4. The Vortex as a Dual Charged Particle

namely,

Re Φ : pi =
2πni
L

ni ∈ Z ,

Im Φ : pi =
2π
(
ni + 1

2

)
L

ni ∈ Z . (4.39)

We introduce the vortex creation operators at fixed spatial momentum as

Re Φ(p1, p2, t) =
∑
x1,x2

exp(ip1x1 + p2x2) Re Φ(x1, x2, t) ,

Im Φ(p1, p2, t) =
∑
x1,x2

exp(ip1x1 + p2x2) Im Φ(x1, x2, t) . (4.40)

In order to obtain the mass of the vortex from numerical simulations we will consider
the correlation functions of the operators

Φ+(t) = Re Φ(0, 0, t) ,

Φ−(t) = Im Φ(π/L, π/L, t) . (4.41)

For large Euclidean time differences, their correlation functions decay exponentially

c+(t) = 〈Φ+(0)Φ+(t)〉 ∼ exp(−mt)
c−(t) = 〈Φ−(0)Φ−(t)〉 ∼ exp(−Et) (4.42)

where m is the energy of the lowest energy state |V +〉 for which

〈0|Φ+|V +〉 6= 0 , (4.43)

and E, the energy of the lowest energy state |V −〉 for which

〈0|Φ−|V −〉 6= 0 . (4.44)

The states |V +〉 and |V −〉 are even and odd, respectively, under charge conjugation,
i.e. they are eigenstates of C with eigenvalues plus and minus one. Charged vortex and
anti-vortex states should be formed as

|V 〉 =
1√
2

(
|V +〉+ |V −〉

)
|V 〉 =

1√
2

(
|V +〉 − |V −〉

)
. (4.45)

Then indeed the charge conjugated state of the vortex is the anti-vortex, C |V 〉 = |V 〉.
However, in the finite volume with C-periodic boundary conditions the states |V 〉 and
|V 〉 are not energy eigenstates since |V +〉 and |V −〉 have different momenta. This is a
manifestation of the infraparticle nature of the vortex.
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In a finite volume, a vortex or its dual charged particle is always surrounded by a
cloud of massless bosons that extends to the boundary, and the global U(1) symmetry is
broken to the Z2 vortex reflection symmetry by the C-periodic boundary conditions. In
the infinte volume, where the U(1) symmetry is restored, the energies of |V+〉 and |V−〉
become degenerate as the momentum π/L of the C-odd state vanishes. There, charged
states can be formed albeit with infinite energy.

4.5. Twisted C-Periodic Boundary Conditions

In the previous section, we have imposed C-periodic boundary conditions (and periodic
boundary conditions in time) on the gauge fields. It is, however, more natural to impose
the boundary conditions on gauge invariant quantities only. This is achieved with twisted
boundary conditions, where the vector potential is periodic or C-periodic only up to a
gauge transformation. Twisted boundary conditions were first introduced in [80]. In this
section, we will be rather explicit, and therefore switch back to component notation for
the gauge field, i.e., the value of ∗k(c2) is denoted as kµ(x), where µ ∈ {1, 2, 3} denotes
the direction in which the link dual to c2 points from the site x. With that notation, we
express the twisted C-periodic boundary conditions as

kµ(x+ Liei) = −kµ(x) + ∂µϕi(x) ,

kµ(x+ L3e3) = kµ(x) + ∂µϕ3(x) , (4.46)

with i ∈ {1, 2}.
The functions ϕµ are known as transition functions and are subject to cocycle condi-

tions, i.e. consistency conditions for shifts in two directions. Specifically, kµ(x+ Lµeµ +
Lρeρ) is expressed in terms of kµ(x) and the transition function has to be single-valued,
independent of the order in which the boundary conditions are applied. We start by
considering the two spatial directions,

kµ(x+ L1e1 + L2e2) = −kµ(x+ L1e1) + ∂µϕ2(x+ L1e1)

= kµ(x)− ∂µϕ1(x) + ∂µϕ2(x+ L1e1) ,

kµ(x+ L2e2 + L1e1) = −kµ(x+ L2e2) + ∂µϕ1(x+ L2e2)

= kµ(x)− ∂µϕ2(x) + ∂µϕ1(x+ L2e2) . (4.47)

This leads to the following consistency condition,

∂µ (ϕ2(x+ L1e1)− ϕ1(x+ L2e2)− ϕ1(x) + ϕ2(x)) = 0 . (4.48)

It is fulfilled if the so-called twist tensor, or rather its spatial component, introduced as

n12 = ϕ2(x+ L1e1)− ϕ1(x+ L2e2)− ϕ1(x) + ϕ2(x) (4.49)

is constant. Furthermore it is antisymmetric, n12 = −n21. Next, we consider a spatial
direction, i, and the temporal direction. The equations analogous to the spatial cocylce
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4. The Vortex as a Dual Charged Particle

conditions, eqs. (4.47), read,

kµ(x+ Liei + L3e3) = kµ(x+ Liei) + ∂µϕ3(x+ Liei)

= −kµ(x) + ∂µϕi(x) + ∂µϕ3(x+ Liei)

kµ(x+ L3e3 + Liei) = −kµ(x+ L3e3) + ∂µϕi(x+ L3e3)

= −kµ(x)− ∂µϕ3(x) + ∂µϕi(x+ L3e3) . (4.50)

The resulting consistency condition is fulfilled if the space-time components of the twist
tensor,

n3i = ϕ3(x+ Liei)− ϕi(x+ L3e3) + ϕi(x) + ϕ3(x) , (4.51)

are constant. Note that also the space-time part of the twist tensor is antisymmetric and
ni3 therefore is

ni3 = ϕi(x+ Liei)− ϕ3(x+ L3e3)− ϕi(x)− ϕ3(x) . (4.52)

A further constraint on the twist tensor arises from considering

ϕi(x+ Ljej + L3e3)− ϕj(x+ L3e3) + ϕ3(x)

= ϕj(x+ Liei + L3e3)− ϕi(x+ L3e3) + ϕ3(x) + nij

= ϕj(x+ Liei + L3e3)− ϕ3(x+ Liei)− ϕi(x) + nij + n3i

= ϕ3(x+ Liei + Ljej) + ϕj(x+ Liei)− ϕi(x) + nij + n3i + nj3 , (4.53)

on the one hand, and

ϕi(x+ Ljej + L3e3)− ϕj(x+ L3e3) + ϕ3(x)

= ϕi(x+ Ljej + L3e3)− ϕ3(x+ Ljej)− ϕj(x) + n3j

= ϕ3(x+ Ljej + Liei) + ϕi(x+ Ljej)− ϕj(x) + n3j + ni3

= ϕ3(x+ Liei + Ljej) + ϕj(x+ Liei)− ϕi(x) + n3j + ni3 + ni3 , (4.54)

on the other hand, namely,
n3i + nj3 = 0 , (4.55)

and therefore n13 = n23.

Different transition functions ϕµ do not necessarily reflect different physical situations,
the difference might be a gauge transformation. To extract the gauge invariant content
of the twisted boundary conditions, we will now derive the transformation properties of
the twist tensor under a general gauge transformation, i.e., under a gauge transformation
that is not necessarily C-periodic,

kµ(x)′ = kµ(x) + ∂µϕ(x) . (4.56)

While such transformations are inconsistent with purely C-periodic boundary conditions,
they relate twisted boundary conditions with different transition functions but leave the
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physical content, e.g. the field strength invariant. To see how the transition functions
transform, we consider

kµ(x+ Liei)
′ = kµ(x+ Liei) + ∂µϕ(x+ Liei)

= −kµ(x) + ∂µϕi(x) + ∂µϕ(x+ Liei) ,

kµ(x+ Liei)
′ = −kµ(x)′ + ∂µϕi(x)′

= −kµ(x)− ∂µϕ(x) + ∂µϕi(x)′ . (4.57)

From this we conclude that

ϕi(x)′ = ϕi(x) + ϕ(x+ Liei) + ϕ(x) + ni . (4.58)

A similar transformation rule arises for the transition function in Euclidean time,

kµ(x+ L3e3)′ = kµ(x+ L3e3) + ∂µϕ(x+ L3e3)

= kµ(x) + ∂µϕ3(x) + ∂µϕ(x+ L3e3) ,

kµ(x+ L3e3)′ = kµ(x)′ + ∂µϕ3(x)′

= kµ(x) + ∂µϕ(x) + ∂µϕ3(x)′ . (4.59)

Therefore the temporal transition function transforms as

ϕ3(x)′ = ϕ3(x) + ϕ(x+ L3e3)− ϕ(x) + n3 . (4.60)

We now investigate how the spatial component of the twist tensor transforms

n′ij = ϕj(x+ Liei)
′ − ϕi(x+ Ljej)

′ − ϕi(x)′ + ϕj(x)′

= nij + ϕ(x+ Liei + Ljej) + ϕ(x+ Liei) + nj

− ϕ(x+ Ljej + Liei)− ϕ(x+ Ljej)− ni
− ϕ(x+ Liei)− ϕ(x)− ni
+ ϕ(x+ Ljej) + ϕ(x) + nj

= nij + 2(nj − ni) , (4.61)

A similar calculation for the space-time components reads,

n′3i = ϕ3(x+ Liei)
′ − ϕi(x+ L3e3)′ + ϕi(x)′ + ϕ3(x)′

= n3i + ϕ(x+ Liei + L3e3)− ϕ(x+ Liei) + n3

− ϕ(x+ L3e3 + Liei)− ϕ(x+ L3e3)− ni
+ ϕ(x+ Liei) + ϕ(x) + ni

+ ϕ(x+ L3e3)− ϕ(x) + n3

= n3i + 2n3 . (4.62)

With that we now investigate the gauge invariant content of the twist tensor. Previously
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4. The Vortex as a Dual Charged Particle

we have seen that n3i = n3j . This constraint is gauge invariant. The antisymmetric
twist tensor therefore has two independent components, n12 and n13 = n23. Under
gauge transformations, they change by an even integer. Up to gauge transformations,
we can thus distinguish the four physical situations characterized by

n12 ∈ {0, 1} , n13 ∈ {0, 1} . (4.63)

We conclude this section with the following comment: The above calculation has been
performed for the integer-valued pure gauge theory, and the twist tensor is therefore
trivially integer-valued. Notably, for scalar QED the twist tensor is still quantized due
to the additional cocycle condition for the matter field.

4.6. Duality and Boundary Conditions

The duality transformation in Section 4.2, allows us to identify the vortex with a dual
charged particle, is set up in an infinite lattice. In this section we perform the duality
transformation on a finite lattice to illuminate the relation between the boundary condi-
tions of the original theory to the boundary conditions of the dual theory. Also here, we
will sometimes make use of the explicit component notation. We start by briefly recalling
the steps in the duality transformation, this time starting from the integer-valued dual
gauge theory, but formulated on the original lattice,

Z =

∏
c2

∑
kc2∈Z

∏
c1

W̃ (δkc1) . (4.64)

In the first step, the dual weights W̃ are expressed by their Fourier representation as

Z =

∏
c2

∑
kc2∈Z

∏
c1

∫ π

−π
dχc1

∏
c1

W (χc1) exp(−i(χ, δk)) . (4.65)

Next a partial integration is performed. Here the boundary conditions need to be taken
into account. In Appendix B we show that

(χ, δk) = (dχ, k) + (dχ, ϕ)b + P1n23 + P2n31 − P3n12 . (4.66)

The Pi correspond to the Polyakov loops of the link variables χ, and nij is the twist tensor
of the boundary conditions for the dual gauge theory. Furthermore, (dχ, ϕ)b denotes a
scalar product over the plaquettes at the boundaries where the 3-form, φ, is projected
onto the plaquettes at the boundaries. The field χ is subject to C-periodic boundary
conditions in space and periodic boundary conditions in time, without a twist. Now the
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sum over k is performed, resulting in a constraint on the link variables,

Z =

(∏
c1

∫ π

−π
dχc1

)∏
c2

δ(dχc2)
∏
c1

W (χc1) exp(−i(P1n23 + P2n31 − P3n12)) . (4.67)

In the final step, the constrained integration over the link variables χ is replaced by an
unconstrained integration over spin variables. In the infinite volume, this is justified by
the Poincare lemma. In Appendix C, we show by an explicit construction that this is still
justified in the finite volume, and that the Pi correspond to the twist in the boundary
conditions of the spin theory, bi,

ϕ(x+ Liei) = −ϕ(x+ Liei) + bi ,

ϕ(x+ L3e3) = ϕ(x+ L3e3) + b3 , (4.68)

such that

Z =
1

2π

∏
c0

∫ π

−π
dφc0

∫ π

−π
db1

∑
b2∈{b1,b1+π}

∑
b3∈{0,π}


×
∏
c1

W (dφc1) exp(−i(b1 − b2)n31 − ib3n12) . (4.69)

It is now apparent that the gauge invariant part of the boundary conditions of the dual
gauge theory, the twist tensor, is related to the boundary conditions of the original
spin model by a Fourier transform. Therefore, even if no twist is imposed on the dual
gauge theory boundary conditions, it naturally appears in the boundary conditions of the
original spin theory and the sectors that classically admit vortex solutions, i.e., b1−b2 = π
are taken into account. We will therefore restrict the numerical calculation of the vortex
mass and charge, presented in Chapter 5, to the nij = 0 sector of the gauge theory.

43





5. The Vortex in the Continuum Limit

5.1. The Continuum Limit at the Wilson-Fisher Fixed
Point

In this chapter, we present the calculation of the finite volume vortex mass in the con-
tinuum limit at the Wilson-Fisher fixed point of the (2 + 1)-dimensional O(2) model.

In the previous two chapters, we have discussed in detail how the correlation functions
of the C-even and C-odd part of the vortex, c+(t) and c−(t), can be realized as path
integrals of an ordinary but non-local operator in the integer gauge theory dual to the
(2 + 1)-dimensional O(2) model on the lattice, which can be evaluated with Monte Carlo
techniques as described in Appendix D,

c+(t) =
1

Z

∏
∗c2

∑
∗k∗c2∈Z

exp

(
−g

2

2
‖d∗k‖2

)
φ+(0)φ+(t) ,

c−(t) =
1

Z

∏
∗c2

∑
∗k∗c2∈Z

exp

(
−g

2

2
‖d∗k‖2

)
φ−(0)φ−(t) . (5.1)

For completeness, we also restate the definition of the operators,

φ+(t) =
∑
x1,x2

Re exp(−2πi(Bx1,x2,t,
∗k))

φ−(t) =
∑
x1,x2

Im exp
(
i
π

L
(x1 + x2)

)
exp(−2πi(Bx1,x2,t,

∗k)) . (5.2)

From these correlation functions, the vortex mass, m, and the energy of the lowest
energy C-odd state, E, can be extracted. In order to relate such an observable of a
lattice regularized quantum field theory to a universal physical quantity, a continuum
limit has to be taken. The lattice has to be made finer and finer, and at the same
time, the coupling has to be adjusted, such that a fundamental scale of the theory
remains constant. Furthermore, the continuum limit result should be independent of the
regularization, i.e., of the exact form of the action and the lattice structure.

This can be achieved as follows: If the lattice regularized quantum field theory has a
continuous phase transition at some critical bare coupling with a divergent length-scale,
ξ, the latter can be used as a fundamental scale for the continuum limit. From some
starting bare coupling and lattice that extents over N × N × Nt lattice sites, the bare
coupling is tuned closer and closer to the phase transition, and the size of the lattice is
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increased simultaneously, such that N/ξ remains constant. Because the length-scale ξ is
divergent, the lattice can be made arbitrarily fine, limited only by computational power,
if e.g. Monte Carlo simulations are performed. In addition, universality assures that the
continuum limit of a physical quantity is indeed independent of the microscopic details
of the regularization, i.e., of the specific choice of the action and the lattice geometry. In
other words, all lattice regularizations in a given universality class give rise to the same
quantum field theory in the continuum limit.

The critical properties of the lattice regularized O(2) or XYmodel have been studied
in great detail (see e.g., [81–85], or [9] for a comprehensive review of older work). It
has a second order phase transition. We perform the continuum limit in the broken
phase, where the vortices correspond to massive particles. The fundamental energy scale
of this theory is the helicity modulus or spin stiffness. Its divergence approaching the
phase transition from the broken phase is governed by the universal critical exponent ν.
Taking into account the leading order corrections to scaling, it obeys [9]

ρs(t) = Aρst
ν (1 + aρst

ω + bρst+ . . .) , (5.3)

where also the correction to scaling exponent ω is universal, and t is the reduced coupling,
e.g.,

t = |g2
c − g2| (5.4)

for the Villain action. Other physical quantities, O, with the dimension of an energy,
such as the vortex mass, obey the same scaling law with their respective amplitudes
AO and aO. While the amplitudes depend on the microscopic details, amplitude ratios,
AO1/AO2 , are universal. The continuum limit of an observable subject to eq. (5.3) at the
Wilson-Fisher fixed point, in units of the fundamental scale, that is the helicity modulus,
is then simply AO/Aρs . In order to illustrate the universal nature of the vortex mass, we
employ both the Villain action and the standard action.

After discussing the helicity modulus and its measurement in some more detail in
Section 5.2, we give a detailed account on the setup of the continuum limit in Section
5.3.

5.2. The Helicity modulus

At small bare couplings in the symmetric phase, the spin-spin correlation function of the
XY model decays exponentially as

〈s(x)s(y)〉 ∝ exp

(
−|x− y|

ξ

)
, (5.5)

with the correlation length ξ. In the broken phase, that we are interested in, the correla-
tion length diverges and a natural scale is provided by the helicity modulus [86] or spin
stiffness, ρs. It measures the free energy response to a twist, α, in the boundary condi-
tions, along a single dimension. The spin stiffness corresponds to the Goldstone boson
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decay constant, the prefactor of the leading term in the effective action that describes
the low-energy physics dominated by the Goldstone bosons [87]. It is a property of the
infinite volume lattice theory at a given value of the coupling.

In a Monte Carlo simulation, ρs can be obtained from the finite-size behavior of the
magnetic susceptibility and other observables [87, 88], or measured directly as

ρs = − L1

L2L3

∂2 logZ(α)

∂2α

∣∣∣∣
α=0

. (5.6)

By spreading out the twist throughout the lattice this formula can be evaluated to

ρs =
1

V

〈∑
c1

s′′(dθc1)

〉
−

〈(∑
c1

s′(dθc1)

)2〉 . (5.7)

Inserting the local form of the Villain action, we find

ρs = 4
1

g2
+

16π2
(
1/g2

)2
V

(〈 ∑
c1∈Λ1

(
g1(dθc1)2

g0(dθc1))2
− g2(dθc1)

g0(dθc1))

)〉

−

〈(∑
c1

(
dθc1
2π
− g1(dθc1)

g0(dθc1))

))2〉)
. (5.8)

The sum is over all links, c1 ∈ Λ1, which point in the direction e1, and

gm(µ) =
∑
n∈Z

nm exp

(
− 1

g2
(µ− 2πn)2

)
. (5.9)

The analogous expression for the standard action is [89],

ρs =
β

L1L2L3

〈 ∑
c1∈Λ1

cos (dϕc1)

〉
− β2

L1L2L3

〈 ∑
c1∈Λ1

sin (dϕc1)

2〉
. (5.10)

The finite-size effects of this observable are proportional to L−3.

To calculate the helicity modulus, ρs, as a function of the coupling, we perform sim-
ulations with the Wolff cluster algorithm [90] for the (2 + 1)-dimensional O(2) model
with the Villain action and measure ρs according to eq. (5.8). The minor modifications
to the algorithm described in [90] due to the use of the Villain action are discussed
in Appendix D. We use cubic lattices with periodic boundary conditions and extents
L = 12a, 24a, 48a, 64a, and several couplings between 1/g2 = 0.334 and 1/g2 = 0.46, the
critical coupling being 1/g2 = 0.333068(7) [30]. At each coupling, we extrapolate ρs to
the infinite volume limit by fitting a function of the form ρs(L) = ρs+ cL−3. For the two
couplings closest to the critical point, the measurement for L = 12a does not obey the
scaling law and is omitted in the fits. For all values of 1/g2, the extrapolated results are
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consistent with the direct measurement of the helicity modulus at L = 64a and L = 48a.
An example of the extrapolation to the infinite volume limit is shown in Figure 5.1.
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s

ρs + a/L3

ρs Simulation

Figure 5.1.: The helicity modulus as a function of the lattice size, L, for 1/g2 = 0.338.

The coupling-dependence of the infinite-volume helicity modulus is very well described
by eq. (5.3). A fit of this scaling form to the numerical data is shown in Figure 5.2. With
the reduced coupling as t = g2

c − g2. For the critical exponents we have taken the values
from the literature [84], i.e.

ν = 0.67169(7) , ω = 0.789(4) . (5.11)

The fit yields a χ2 per degree of freedom of 0.6 and the best fit values for the amplitudes
are

A(v)
ρs = 0.531(3) , a(v)

ρs = −0.25(2) , b(v)
ρs = 0.11(2) . (5.12)

Very accurate data for the helicity modulus are available in the literature for the
standard action. Fitting the scaling form of eq. (5.3) to the data provided in [83] yields

A(s)
ρs = 1.422(6) , b(s)ρs = −0.28(7) , e(s)

ρs = −0.4(2) , (5.13)

with a χ2 per degree of freedom of 0.3. The fit is shown in Figure 5.3. With that, we
have arrived at a formula for the helicity modulus as a function of the coupling for both
the standard and the Villain action.
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Figure 5.2.: The scaling of the helicity modulus as a function of the reduced coupling for
the Villain action.
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Figure 5.3.: The scaling of the helicity modulus as a function of the reduced coupling for
the standard action. The data are taken from reference [83].
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Li Nij

0.71(1) 4 6 8 10 12 14 16
1.43(2) 8 12 16 20 24 28 32
2.14(3) 12 18 24 30 36 42 48
2.85(4) 16 24 32 40 48 56 64
3.57(6) 20 30 40 50 60 70 80
4.28(7) 24 36 48 60 72 84 96
4.99(8) 28 42 56 70 84 98 112
5.71(9) 32 48 64 80 96 112 128
6.42(10) 36 54 72 90 108 126 144

g2
j /2 1.38719 1.44099 1.46277 1.47400 1.48067 1.485 1.48800

βj 0.50539 0.48103 0.47134 0.46634 0.46338 0.46145 0.46012

Table 5.1.: The values of the simulation parameters N , β, g2, that have been used to
calculate the vortex correlation function at different lattice spacings for the
physical lattice extents L.

5.3. The Vortex Mass in the Continuum Limit

In order to calculate the finite volume vortex mass, we perform Monte Carlo simulations
of the integer gauge theory dual to the O(2) model with C-periodic boundary conditions
in space and periodic boundary conditions in Euclidean time. The applied heat bath and
Metropolis algorithms are outlined in Appendix D. The lattice extends over N ×N ×Nt

lattice sites. In all cases, we find that a Euclidean time extent of Nt = 64 is sufficient
to reliably extract the vortex mass. We set up the continuum limit at different physical
lattice extents, Li. For each Li, we perform simulations at several steps j towards the
continuum limit, whereby the number of lattice sites, Ni,j is increased and, at the same
time, the coupling, g2

j , is adjusted such that

Li = Nijρs(g
2
j ) (5.14)

remains fixed. We choose Nij = i(2j + 2), with i ∈ {1, . . . , 9} and j ∈ {1, . . . , 7}, that
is nine distinct physical volumes and seven steps towards to continuum limit for each of
those. From a preliminary run, we know that simulations at g2 = 2.97 and N = 100
are feasible. Taking this as a reference, the couplings were determined by numerically
solving

Nijρs(g
2
j ) = Ni6ρs(2.97) . (5.15)

For the standard action, the values of β have then been calculated to yield the same
physical extents. The resulting values for Nij , g

2
j , β and Li are summarized in Table

5.1. At each i, j, the vortex correlation functions c−(t) and c+(t) are evaluated as
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5.3. The Vortex Mass in the Continuum Limit

follows. After 40’000 thermalization sweeps, 120’000 measurements are taken separated
by 30 sweeps each, which are then averaged into 6000 bins. For all parameter values,
the simulations were run in 60 identical replicas. For the standard action, only 40’000
measurements have been taken respectively and averaged into 2000 bins. Despite the
binning, for couplings closer to the critical couplings a residual correlation in Monte
Carlo time is present. The covariance matrix of the correlation functions is estimated
according to the procedure described in [91]. A few examples of the C-even vortex
correlation functions, alongside their correlation matrices are shown in Figure 5.4. The
figure at the top shows three steps towards the continuum limit for the physical volume
Lρs = 1.43 and the bottom figure for Lρs = 5.00. The points correspond to the results
of the Monte Carlo simulations. The central region, where the correlation function is
consistent with zero, is omitted in the plots. Furthermore, c+(t) follows the expected
cosh behavior. Note that c+(t) is shown in lattice units, therefore we do not expect the
curves to collapse to a continuum limit curve. Instead, the mass should approach zero
for increasing j, this is seen as the decrease in the slope of c+(t) with increasing j. If the
c+(t) were instead plotted against t/Nij × Lρs, the correlation functions would indeed
approach a limiting curve. Beneath each c+(t), the corresponding correlation matrix,

ρ(c+(t)c+(t′)) =
Cov(c+(t)c+(t′))

σc+(t)σc+(t)

=
〈c+(t)c+(t′)〉 − 〈c+(t)〉 〈c+(t′)〉√(〈

c2
+(t)

〉
− 〈c+(t)〉2

)(〈
c2

+(t′)
〉
− 〈c+(t′)〉2

) (5.16)

is shown. For large volumes and small couplings, the correlation matrices are diago-
nally dominated and correlations in Euclidean time are small. Correlations of the form
ρc(t),c(T−t) (visible as the cross shape in Figure 5.4) start to build up, when the critical
point is approached. This can be attributed to the way c±(t) is measured. In each
measurement, a hook time, th is chosen at random, and then, the value of c±((th − t)
mod Nt) = φ(th)φ∗(t) is updated for all t. In the next measurement, a different hook
time t′h is chosen. In the two steps,

c±((th − t′h) mod Lt) = φ(th)φ(t′h)

c±((t′h − th) mod Lt) = φ(th)φ(t′h) (5.17)

are recorded, and the vortex operator evaluated at the same Euclidean times contributes
to the vortex correlation function at ∆t and at Lt −∆t. In this way, Monte Carlo time
correlations manifest themselves as correlations in Euclidean time.

From the C-even vortex correlation function, c+(t), we retrieve the vortex massm(g2, L)
and from the C-odd vortex correlation function, c−(t), we obtain the minimal energy
E(g2, L) by a single-cosh fit. The fitting routine is described in detail in Appendix E. The
resulting energies follow the same scaling form as the helicity modulus. The vortex mass
for the Villain action is depicted in Figure 5.5 as a function of the coupling, alongside
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Figure 5.4.: Some examples of C-even vortex correlation functions, c+(t), from Monte
Carlo simulations, alongside their covariance matrices. Two physical vol-
umes are shown, Lρs = 1.43 (top) and Lρs = 5.00 (bottom) and three steps
towards the continuum limit each.
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Figure 5.5.: The vortex mass for various physical volumes as a function of the reduced
coupling. In lattice units, the mass approaches zero in the continuum limit.

with fits of the scaling form.

Therefore, m(g2, L) and E(g2, L) approach a finite continuum limit, when expressed
in terms of the helicity modulus, confer Figure 5.6. In order to extract that continuum
limit, we fit a function of the form

m(g2, L) = AmL(g2
c − g2)ν

(
1 + amL(g2

c − g2)ω
)

(5.18)

to the masses and energies. The χ2 per degree of freedom varies between 0.2 and 1.6,
indicating that the masses obey the scaling law, and that their uncertainty is estimated
in a reasonable way. The amplitude of the next order correction term, emL , cannot be
fitted reliably to our data, and is left out. The continuum limit of the vortex mass or
energy in units of the vortex mass is then simply

m(L) =
AmL

Aρs
. (5.19)

The continuum limits of m(L) and E(L) are shown in Figure 5.7. As expected, we find
that for larger L, the vortex mass diverges logarithmically with the physical extent L.
For small values of L, the L dependence of m is not captured by this log behavior. In
order to take into account the thereby induced systematic error due to the fit range
selection, we employ the same method that we have used to fit the correlation functions.
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Figure 5.6.: The vortex mass expressed in units of the physical scale, ρs. It approaches
a finite continuum limit, namely the universal amplitude ratio AmL/Aρs .

Fitting a log of the form

m(L) = b log

(
L

L0

)
(5.20)

yields a prefactor of
b = 3.55(9) (5.21)

for the Villain action, and
b = 3.53(11) (5.22)

for the Standard action. In Section 2.5 we have seen that for a classical point particle
that interacts with itself in a C-periodic geometry via the Coulomb potential in two
dimensions, the energy diverges logarithmically with the size of the box, and that the
prefactor of this logarithmic divergence is nothing but the charge squared of the particle
divided by 4π. We can thus identify the universal quantity 4πb with the charge of the
vortex squared in units of the helicity modulus.

The energy of the C-odd state, E, asymptotically approaches m with the increasing
physical volumes that we have considered. The vortex mass and E for the standard
action show small but significant discrepancies to the results of the Villain action but
only for volumes outside of the asymptotic regime. This indicates that there is a residual
systematic error that is not accounted for. As the main focus of the present work lies on
the extraction of the strength of the logarithmic divergence in the asymptotic regime,
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1 2 3 4 5 6 7

Lρs

0

2

4

6

8

10
m
/ρ
s

b log(Lρs/L0) b = 3.55(9)√
p2 +m2

E Villain Action

E Standard Action

m Standard Action

m Villain Action

Figure 5.7.: The vortex mass, m and energy E in the continuum limit, as a function
oft the physical volume, Lρs. As expected, the vortex mass diverges loga-
rithmically, and the difference between E and m vanishes with increasing
volume. Villain and standard action yield compatible results in the scaling
regime. The markers were slightly shifted horizontally to increase visibility.
The points for m from the Villain action are drawn at the true values of Lρs.
The dashed gray line shows the energy of the energy of the state with the
lowest possible non-zero momentum according to a relativistic dispersion re-
lation with the mass taken from the logarithmic fit. The measured energies,
E, do not follow this prediction.

where we find good agreement, we leave a detailed investigation of this discrepancy to
be subject of future studies.

The extended infraparticle nature of the vortex spontaneously breaks Lorentz invari-
ance [92, 93]. Therefore we do not expect a relativistic dispersion relation. In Figure 5.7
the energy of the state with the smallest possible non-zero momentum (i.e., p = π/L)
according to such an energy momentum relation is shown. Indeed, the measurements do
not follow this behavior.

Instead, motivated by a non-relativistic dispersion relation of the form E = m+p2/mk

that we assume for the state with the smallest allowed non-zero momentum, we define a
kinetic mass for the vortex as

mk =
(π/L)2

2(E −m)
. (5.23)
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Lρs 0.71(1) 1.43(2) 2.14(3)

Villain action
mk/ρs 2.62(4) 1.99(5) 2.5(2)
m/ρs 1.48(1) 2.78(3) 4.25(5)

Standard action
mk/ρs 2.77(6) 2.08(7) 2.3(3)
m/ρs 1.53(1) 2.96(4) 4.41(6)

Table 5.2.: The kinetic mass of the vortex assuming a non-relativistic dispersion relation
compared to its rest mass.

The resulting values for the cases where E−m significantly differs from zero are summa-
rized in Table 5.3. They differ substantially from the respective rest masses, confirming
the spontaneous breaking of Lorentz invariance numerically.
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6. Summary and Conclusions

We have studied the vortex in the (2+1)-dimensional O(2) model in the continuum limit
at the Wilson-Fisher fixed point approached from the broken phase. We have regularized
the O(2) model on the lattice and constructed the vortex two-point function according
to the rigorous and non-perturbative scheme by Fröhlich and Marchetti [39]. In this
formulation, the vortex two-point function is given as a ratio of partition functions which
is not well-suited for numerical calculations. To overcome this difficulty, we have made
use of the exact duality transformation that relates the (2+1)-dimensional O(2) model to
a gauge theory with integer-valued link variables. In order for configurations with a single
vortex to exist in the finite volume, we have employed C-periodic boundary conditions.
The duality relation also holds in the finite volume if C-periodic boundary conditions
are used. The vortices in the O(2) model are dual to charged scalar particles and their
two-point function is an ordinary albeit non-local observable that can be calculated
numerically.

We have taken a continuum limit of the vortex mass for several physical volumes at
the Wilson-Fisher fixed point approached from the broken phase. In accordance with
theoretical expectations from the infraparticle nature of the vortex, we find that its
mass diverges logarithmically with the volume. Classical considerations of a charged
particle in a C-periodic geometry imply that the prefactor of the logarithmic divergence
can be identified with the Coulomb charge of the vortex squared. We have found that
e2/4πρs = 3.55(9) . This is a new universal amplitude ratio associated with the Wilson-
Fisher fixed point. To underscore the universal character of this quantity, we have used
two different lattice actions for the O(2) model, the Villain action and the standard
action, and found that the numerical results are consistent.

Because of the extended infraparticle nature of the vortex, we do not expect a rel-
ativistic dispersion relation. We have confirmed that the energy of the state with the
smallest allowed non-zero momentum does not follow such an energy momentum rela-
tion. Instead, we have defined a kinetic mass for the vortex according to a non-relativistic
dispersion relation for the lowest non-zero momentum states, and found that it differs
substantially from the rest mass of the vortex. This confirms numerically the sponta-
neous breaking of Lorentz invariance that is expected for infraparticles [92, 93]. The
present dataset only allowed to calculate the kinetic mass at the three smallest volumes.
It would be most interesting to further investigate the dispersion relation of the vortex,
e.g., by looking into the energies of states with larger momentum or by increasing the
statistics to take into account larger volumes.

Our results are in contradiction with the findings of [35], where the vortex mass was
found to be finite. There, fixed boundary conditions were employed in order to enforce
the presence of a vortex. The vortex mass was then obtained from a fit of an order
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parameter profile from a semi-classical approximation. Fixed boundary conditions break
translation invariance and often give rise to strong finite-volume effects. Furthermore,
we think that the approach pursued in [35] is too semi-classical and not sufficiently
well-founded to do justice to the subtle nature of the vortex.

Topological excitations such as the vortex are delicate objects, even more so if they
are infraparticles. Nevertheless, the seminal work in the framework of algebraic quantum
field theory [32–34, 39], makes it possible to treat them rigorously and non-perturbatively
with lattice field theory methods. It would be interesting to study the inner structure
of the vortex, e.g. its charge radius, beyond the semi-classical approximation with this
approach.

It would also be most interesting to apply this methodology to other cases, such as
in the continuum limit of the (2 + 1)-dimensional O(2) model approached from the
symmetric phase, where the vortices condense, or directly at the Wilson-Fisher fixed
point in the conformal field theory. Another compelling case is the quantum XY -model,
where it is an open question, whether vortices exist and can be described consistently.
A more ambitious candidate are infraparticles with a non-Abelian charge, such as single
quarks in QCD.
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A. Differential Forms on the Lattice

A convenient formalism for lattice field theory is the one of differential forms. We adopt
the notation in [72]. A lattice, Λ, consists of k-cells, ck. For a three dimensional cubic
lattice, the c0 correspond to lattice points, c1 to the links between the points, c2 to the
plaquettes that are surrounded by links, and finally, the c3 to the cubes.

The dual lattice ∗Λ, is obtained form the original lattice, by shifting it by half a lattice
spacing in all directions. It consists of dual cells, ∗ck. The dual to a cubic lattice is again
a cubic lattice. Its points, ∗c3, correspond to the centers of the cubes, c3, of the original
lattice, the dual links, ∗c2, that connect the dual lattice sites pierce the plaquettes, c2,
of the original lattice, the dual plaquettes, ∗c1, are themselves pierced by the links of the
original lattice, c1, and the dual cubes, ∗c0, have a point of the original lattice at the
center. The k-cells are visualized for a three-dimensional cubic lattice in Figure A.1.

c0 c1 c2 c3

∗c0
∗c1

∗c2
∗c3

Figure A.1.: The different cells, that make up a three-dimensional cubic lattice, ck.

The k-cells with k > 0 have a boundary, ∂ck, which is the set of oriented (k − 1)-cells

that surround it. E.g., for a link, c1, which extends from the site c
(1)
0 to the site c

(2)
0 , the

boundary consists of c
(2)
0 with positive orientation, and c

(1)
0 with negative orientation.

A k-form Φ associates a value, Φck , to each k-cell. The spin field of the O(2) model,
ϕ, for instance associates an angle to each site and therefore is a 0-form. The vector
potential in a gauge theory on the other hand is a 1-form. An example for a 2-form is
the field strength tensor.

The exterior derivative, d, maps a k-form, Φ, to a k + 1 form, dΦ, as

dΦck+1
=

∑
ck∈∂ck+1

Φck , (A.1)

where the sum is understood to be oriented. For instance, for a 0-form, ϕ, the value of
its derivative on the link c1 is

dϕc1 = ϕ
c
(2)
0

− ϕ
c
(1)
0

, (A.2)
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where again, the link c1 connects the site c
(1)
0 to the site c

(2)
0 . The exterior derivative of a

1-form, on the other hand, is a 2-form that associates values to plaquettes. If a plaquette

c2 is surrounded counter-clockwise by the links c
(i)
1 with i ranging from one to four, the

exterior derivative of the 1-form A on the plaquette c2 is

dAc2 = A
c
(1)
1

+A
c
(2)
1

−A
c
(3)
1

−A
c
(4)
1

. (A.3)

The exterior derivative applied twice always gives zero, d2 = 0. The field strength of
a vector potential, A, in a gauge theory corresponds to F = dA. Furthermore, gauge
transformations correspond to

A′ = A+ dφ , (A.4)

where φ is a 0-form. This trivially leaves F = dA invariant because d2φ = 0.

The co-derivative, δ = ∗d∗, maps a k form to a k − 1 form as

δΦck−1
=

∑
∗ck∈∂∗ck−1

Φck . (A.5)

For instance, the co-derivative of a 1-form, is a 0-form. It associates to a site the oriented
sum of the values that are associated to all the links that point into or out of that site.
The Laplacian in terms of differential forms corresponds to

∆ = dδ + δd , (A.6)

and maps a k-form to a k-form.

A scalar product can be defined for two differential k-forms as

(Φ,Ψ) =
∑
ck

ΦckΨck . (A.7)

It induces the norm
‖Φ‖2 = (Φ,Φ) , (A.8)

and fulfills
(dΦ,Ψ) = (Φ, δΨ) , (A.9)

which corresponds to partial integration. Finally, each form can be Hodge decomposed
into

Φ = d∆−1δΦ + δ∆−1dΦ . (A.10)

We conclude this short account with some comments that apply in three dimensions.
There, vector calculus can efficiently be described with differential forms (although not
necessarily on the lattice.) A scalar field corresponds to a 0-form, a vector field to a
1-form, a pseudo-vector field to a 2-form and a pseudo-scalar field to a 3-form. The
exterior derivative corresponds to the gradient, curl, and divergence respectively. The
identities

∇× (∇φ) = 0 , (A.11)
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for a scalar field φ and
∇ · (∇× V ) = 0 , (A.12)

for a vector field V , are then simply manifestations of d2 = 0.
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B. Partial Integration with a Twist

In this appendix we show that

(χ, δk) = (dχ, k) +
3∑
i=1

(dχDi , ϕDi) + P1n23 + P2n31 − P3n12 . (B.1)

The expression (χ, δk) can be written explicitly as

(χ, δk) =
∑
x

(
χ1(x)(k12(x)− k31(x)− k12(x− e2) + k31(x− e3))

+χ2(x)(k23(x)− k12(x)− k23(x− e3) + k12(x− e1))

+χ3(x)(k31(x)− k23(x)− k31(x− e1) + k23(x− e2))
)
. (B.2)

The terms can be regrouped into

(χ, δk) =
∑
x

(
k12(x)(χ1(x)− χ1(x+ e2)− χ2(x) + χ2(x+ e1))

+k23(x)(χ2(x)− χ2(x+ e3)− χ3(x) + χ3(x+ e2))

+k31(x)(χ3(x)− χ3(x+ e1)− χ1(x) + χ1(x+ e3))
)

+
∑
x∈D1

(χ2(x)k12(x− e1)− χ2(x+ Le1)k12(x+ (L− 1)e1)

− χ3(x)k31(x− e1)− χ3(x+ Le1)kr1(x+ (L− 1)e1))

+
∑
x∈D2

(χ3(x)k23(x− e2)− χ3(x+ Le2)k23(x+ (L− 1)e1)

− χ1(x)k12(x− e2)− χ1(x+ Le2)k12(x+ (L− 1)e2))

+
∑
x∈D3

(χ1(x)k31(x− e3)− χ1(x+ Le3)k31(x+ (L− 1)e3)

− χ2(x)k23(x− e3)− χ2(x+ Le3)k23(x+ (L− 1)e3)) . (B.3)

The first sum is simply (dχ, k), and the remaining three sums, we will later on refer to
them as Bi, account for possible corrections at the three boundaries Di = {x|xi = 0}. If
A and χ obey C-periodic boundary conditions without a twist, they vanish and

(χ, δk) = (dχ, k) . (B.4)
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If the field k obeys twisted C-periodic boundary conditions, this is no longer true, the
boundary conditions on k cannot be forged into boundary conditions of χ of the same
form.

The transition functions, ϕj , are dual 0-forms and therefore 3-forms associated to the
cubes. The boundary conditions on k are

A12(x+ eiL) = A12(x) + ϕi(x)− ϕi(x− e3)

A23(x+ eiL) = A23(x) + ϕi(x)− ϕi(x− e1)

A31(x+ eiL) = A31(x) + ϕi(x)− ϕi(x− e2) . (B.5)

The boundary terms are

B1 =
∑
x∈D1

χ2(x)(−ϕ1(x) + ϕ1(x− e3))− χ3(x)(−ϕ1(x) + ϕ1(x− e2))

B2 =
∑
x∈D2

χ3(x)(−ϕ2(x) + ϕ2(x− e1))− χ1(x)(−ϕ2(x) + ϕ2(x− e3))

B3 =
∑
x∈D3

χ1(x)(−ϕ3(x) + ϕ3(x− e2))− χ2(x)(−ϕ3(x) + ϕ3(x− e1)) . (B.6)

They can be interpreted as
Bi = (χDi , δϕDi) , (B.7)

where in this scalar product on the boundary, χDi is the 1-form χ on the links of the
boundary Di and ϕDi is the projection of the 3-form φ to the boundary Di, where it
now associates its values to plaquettes and therefore corresponds to a 2-form. We will
now repeat the procedure we just applied in order to perform a partial integration in
the boundary terms. This is again nontrivial because the transition function does not
necessarily obey C-periodic boundary conditions. We rearrange the terms in B1 to

B1 =
∑
x∈D1

ϕ1(x)(χ3(x)− χ3(x+ e2)− χ2(x) + χ2(x+ e3))

+
L−1∑
n=0

ϕ1(ne2 − e3)χ2(ne2)− ϕ1(ne2 + (L− 1)e3)χ2(ne2 + Le3)

−
L−1∑
n=0

ϕ1(ne3 − e2)χ3(ne2)− ϕ1(ne3 + (L− 1)e2)χ2(ne3 + Le2)

= (dχD1 , φD1)

+

L−1∑
n=0

χ2(ne2)(ϕ1(ne2 − e3)− ϕ1(ne2 + (L− 1)e3))

−
L−1∑
n=0

χ3(ne3)(ϕ1(ne3 − e2) + ϕ1(ne3 + (L− 1)e2)) . (B.8)
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Note the difference in the sign in the last two lines. It is present because the boundary
conditions in the Euclidean time direction, e3, are periodic, and the boundary conditions
in space are C-periodic. The terms for B2 and B3 are completely analogous. Let us now
consider the sum of all three boundary terms

B1 +B2 +B3 =
3∑
i=1

(dχDl
, ϕDi)+

+
L−1∑
n=0

χ3(ne3)
(

(ϕ2(ne3 − e1) + ϕ2(ne3 + (L− 1)e1))

− (ϕ1(ne3 − e2) + ϕ1(ne3 + (L− 1)e2))
)

+

L−1∑
n=0

χ2(ne2)
(

(ϕ1(ne2 − e3)− ϕ1(ne2 + (L− 1)e3))

− (ϕ3(ne2 − e1) + ϕ3(ne2 + (L− 1)e1))
)

+
L−1∑
n=0

χ1(ne2)
(

(ϕ3(ne1 − e2) + ϕ3(ne1 + (L− 1)e2))

− (ϕ2(ne1 − e3)− ϕ2(ne1 + (L− 1)e3))
)
. (B.9)

To make the appearance of the twist tensor in the boundary terms explicit, we make the
substitutions

ϕ̃1(x) = −ϕ1(x− e2 − e3) , ϕ̃2(x) = −ϕ2(x− e1 − e3) , ϕ̃3(x) = ϕ3(x− e1 − e2) .
(B.10)

This substitution is equivalent to a general gauge transformation, and does therefore not
affect the twist tensor. The sum over the boundary terms then reads,

B1 +B2 +B3 =

3∑
i=1

(dχDl
, ϕDi)+

+
L−1∑
n=0

χ3(ne3)
(

(−ϕ̃2(ne3 + e3 + Le1)− ϕ̃2(ne3 + e3))

− (−ϕ̃1(ne3 + e3(L)e2)− ϕ̃1(ne3 + e3))
)

+
L−1∑
n=0

χ2(ne2)
(

(ϕ̃1(ne2 + e2 + Le3)− ϕ̃1(ne2 + e2))

− (ϕ̃3(ne2 + e2 + Le1) + ϕ̃3(ne2 + e2))
)
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+
L−1∑
n=0

χ1(ne2)
(

(ϕ̃3(ne1 + e1Le2) + ϕ̃3(ne1 + e1))

− (ϕ̃2(ne1 + e1 + Le3)− ϕ̃2(ne1 + e1))
)
. (B.11)

Inserting the twist tensor, from eqs. (4.49) and (4.51), one arrives at the concise form

B1 +B2 +B3 =

3∑
i=1

(dχDl
, φDi) + P1n32 + P2n13 − P3n21 , (B.12)

and indeed eq. (B.1) follows.
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C. Closed and Exact Forms with
Boundary Conditions

In the last step of the duality transformation, the integration over the 1-form χ with the
constraint dχ = 0, is replaced by an integration over the 0-form ϕ, with χ = dϕ. In the
infinite volume the Poincaré Lemma assures that all closed forms are exact, i.e., for each
χ with dχ = 0 there exists a ϕ such that dϕ = χ.

In the finite volume this is no longer true. E.g., with periodic boundary conditions in
the 3-direction, a constant 1-form with

χ1(x) = 0 , χ2(x) = 0 , χ3(x) = c , (C.1)

obviously satisfies dχ = 0 but cannot be written as dϕ. This can be seen by looking at
the Polyakov loop,

Pi =

Ni−1∑
n=0

χi(nei). (C.2)

If there is a 0-form ϕ such that χ = dϕ, Pi has to be zero, which clearly is not the case for
a constant χ with χi(x) 6= 0. For an example involving C-periodic boundary conditions
consider

χ1(x) = π , χ2(x) = 0 , χ3(x) = 0 . (C.3)

This 1-form satisfies dχ = 0 mod 2π. Furthermore,

P1 − P2 =

N1−1∑
n=0

χ1(ne1)−
N2−1∑
n=0

χ2(ne2) = N1π . (C.4)

If there exists a ϕ with χ = dϕ, from telescoping the sums one finds P1 = P2 and
therefore P1 − P2 = 0. Thus, for N1 odd, this 1-form is closed but not exact.

The 1-form χ of both examples can still be obtained as a derivative of a 0-form ϕ, if
the proper twist is added to the boundary conditions of ϕ. In this appendix, we will
give an explicit construction of such a 0-form, ϕ, plus boundary twists bi, for any 1-form
χ with dχ = 0, such that dϕ = χ. We find it instructive to first consider periodic and
then C-periodic boundary conditions in all directions, before discussing the actual case
of interest, C-periodic boundary conditions in space and periodic boundary conditions
in time. Note that the boundary conditions of χ in the constraint dχ = 0 are strictly
periodic or C-periodic. The twist on the boundary conditions of ϕ does not affect the
boundary conditions of dϕ.
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C. Closed and Exact Forms with Boundary Conditions

This construction will not be unique. The additional redundancy corresponds to a
global O(2) symmetry in the spin system, which is not present in the link variables, χ.
In the final step of the duality transform, the different boundary conditions will have to
be summed over, and the redundancy be divided out.

Periodic Boundary Conditions

In the case of periodic boundary conditions, each χ can be written as dϕ for

ϕ(x, y, z) = ϕ(0, 0, 0) +

x−1∑
n=0

χ1(n, y, z) +

y−1∑
n=0

χ2(x, n, z) +

z−1∑
n=0

χ3(x, y, n) (C.5)

with the boundary conditions,

ϕ(x+ Lei) = ϕ(x) + bi , (C.6)

where, bi = Pi. The Pi are the Polyakov loops of the link variables χ and are given as

Pi =

Li∑
n=1

χi(x+ nei) . (C.7)

They are independent of x due to the constraint dχ = 0. Then

χi(x) = ϕ(x+ ei)− ϕ(x) (C.8)

holds. The equation is trivially fulfilled in the bulk. On a link that extends over the
boundary, it is easy to see that eq. (C.8) holds by considering, e.g.,

ϕ(L, y, z)− ϕ(L− 1, y, z) = ϕ(0, y, z) + b1 − ϕ(L− 1, y, z)

= P1 −
L−2∑
n=0

χ1(n, y, z)

= χ1(L− 1, y, z) . (C.9)

This construction fixes the boundary conditions and the field ϕ up to a global constant,
ϕ(0, 0, 0). In fact all 0-forms, ϕ with dϕ = χ, have to be of the form of eq. (C.5),
since once ϕ(0, 0, 0) is fixed, ϕ is uniquely determined by χ throughout the lattice. The
redundancy corresponds to the global O(2) symmetry of the spin model.

C-Periodic Boundary Conditions

For C-periodic boundary conditions, the situation is somewhat different. For a given
field χ and boundary twists, bi on ϕ, the value of ϕ(x, y, z) is fixed by constraints from
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any of the three lines that span the lattice through the point (x, y, z) as

ϕ(1)(x, y, z) =
1

2
(b1 +

x−1∑
n=0

χ1(n, y, z)−
L1−1∑
n=x

χ1(n, y, z))

ϕ(2)(x, y, z) =
1

2
(b2 +

y−1∑
n=0

χ2(x, n, z)−
L2−1∑
n=y

χ2(x, n, z))

ϕ(3)(x, y, z) =
1

2
(b3 +

z−1∑
n=0

χ3(n, y, n)−
L3−1∑
n=z

χ3(x, y, n)) . (C.10)

Because of the constraint dχ = 0, the three values agree for suitable choices of bi.
Consider for instance,

ϕ(1)(x, y, z)− ϕ(2)(x, y, z) =
1

2

(
b1 − b2 +

x−1∑
n=0

χ1(n, y, z)−
L1−1∑
n=x

χ1(n, y, z)

−
y−1∑
n=0

χ2(x, n, z) +

L2−1∑
n=y

χ2(x, n, z)
)

=
1

2

(
b1 − b2 +

L2−1∑
n=y

χ2(0, n, z) +
x−1∑
n=0

χ1(n,L2, z)

−
L1−1∑
n=x

χ1(n, 0, z)−
y−1∑
n=0

χ2(L1, n, z)
)

=
1

2

(
b1 − b2 +

L2−1∑
n=y

χ2(0, n, z)−
x−1∑
n=0

χ1(n, 0, z)

−
L1−1∑
n=x

χ1(n, 0, z) +

y−1∑
n=0

χ2(0, n, z)
)

=
1

2
(b1 − b2 + P2 − P1) (C.11)

If we choose bi such that
bi − bj = Pi − Pj , (C.12)

for all i, j, then indeed, ϕ(i)(x, y, z) = ϕ(j)(x, y, z). In the first step of the calculation
above, we have made use of the fact that due to the constraint, dχ = 0, the oriented
sum of the links around any closed path inside the lattice vanishes. In particular, for the
rectangular path from (0, y, z) via (x, y, z) to (x, L2, z) and back to (0, y, z), we find

x−1∑
n=0

χ1(n, y, z) +

L2−1∑
n=y

χ2(x, n, z)−
x−1∑
n=0

χ1(n,L2, z)−
L2−1∑
n=y

χ2(0, n, z) = 0 . (C.13)
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C. Closed and Exact Forms with Boundary Conditions

An analogous relation holds for the path from (x, 0, z) via (x, y, z) to (L1, y, z) and back
to (x, 0, z). In the second step in eq. (C.11), we made use of the C-periodic boundary
conditions.

The constraint, dχ = 0, further restricts the values of Pi. Consider the sum over all
plaquettes of a lattice boundary,

0 =

Li∑
ni=0

Lj∑
nj=0

dχij(niei + njej) = 2Pi − 2Pj . (C.14)

This implies, that
bi − bj = 0 mod π . (C.15)

While in the case of periodic boundary conditions, ϕ(0, 0, 0) was unconstrained by χ,
for C-periodic boundary conditions one of the boundary twists bi is free. As in the case
of periodic boundary condition there is a global symmetry: dϕ is invariant under the
change ϕ′ = ϕ + δ and b′i = bi + 2δ. The case of δ = π, which leaves the boundary
conditions invariant, corresponds to the Z2 symmetry that the global O(2) symmetry is
reduced to by the twisted C-periodic boundary conditions. From this global symmetry,
as in the case of periodic boundary conditions, a redundancy of a factor of 2π arises.

Mixed Boundary Conditions

Let us now turn to the actual case of interest, namely C-periodic boundary conditions
in space and periodic boundary conditions in time. Also here, we can give an explicit ϕ
for a given χ = dϕ as

ϕ(1)(x, y, z) =
1

2
(b1 +

x−1∑
n=0

χ1(n, y, z)−
L1−1∑
n=x

χ1(n, y, z))

ϕ(2)(x, y, z) =
1

2
(b2 +

y−1∑
n=0

χ1(x, n, z)−
L2−1∑
n=y

χ1(x, n, z))

ϕ(3)(x, y, z) = ϕ(1,2)(x, y, 0) +
z−1∑
n=0

χ1(n, y, n) . (C.16)

Again, the constraint dχ = 0 assures that the three definitions agree if the twists bi are
chosen such that

b2 − b1 = P1 − P2 (C.17)

and
b3 = P3 . (C.18)
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The Polyakov loops Pi are restricted by the sum over all plaquettes of the lattice bound-
aries as

P1 − P2 = 0 mod π , (C.19)

and

0 =

L3−1∑
n3=0

Li−1∑
ni=0

dχ3i(niei + n3e3) = 2P3 + Pi − Pi , (C.20)

resulting in

b1 − b2 = 0 mod π , b3 = 0 mod π . (C.21)

The redundancy is the same as in the case of purely C-periodic boundary conditions.
We obtain the final expression

Z =
1

2π

∏
c0

∫ π

−π
dϕc0

∫ π

−π
db1

∑
b2∈b1,b1+π

∑
b3∈0,π


×
∏
c1

W (dϕc1) exp(−i((b1 − b2)n23 − b3n12)) . (C.22)
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D. Monte Carlo Techniques

In lattice quantum field theory and statistical mechanics, one is interested in observables
of the form

〈O〉 =

∫
DΦW (Φ)O(Φ) , (D.1)

where the integral is over all possible field configurations, i.e., an integral over the field
values for each lattice site (or link in the case of a gauge theory). Except in some special
cases, such an integral cannot be evaluated analytically, and one is forced to employ
numerical techniques. Because the integral over DΦ is extremely high-dimensional, also
its numerical evaluation is a nontrivial endeavour.

Conventional numerical integration methods suffer from the curse of dimensionality
[94], i.e., the required computational effort to achieve a certain precision grows expo-
nentially with the number of dimensions of the integration domain. For an integral as
in eq. (D.1), this corresponds to the number of points (or links, in the case of a gauge
theory) of the lattice. In many interesting cases, the curse can be overcome with Monte
Carlo techniques, where the high dimensional integration domain is sampled in a clever
way: If the weight function W (Φ) is non-negative, it can be interpreted as a proba-
bility distribution and the integral in eq. (D.1) is then performed by evaluating O at
configurations, Φ, drawn from that distribution.

This can be achieved by designing a Markov process, defined by an updating scheme
that creates a new configuration Φ′ from a current configuration, Φ, in a way that fulfills
detailed balance,

P (Φ→ Φ′)

P (Φ′ → Φ)
=
W (Φ′)

W (Φ)
, (D.2)

and ergodicity. The term P (Φ → Φ′) in the detailed balance condition refers to the
probability that the configuration Φ′ is obtained from the configuration Φ. The resulting
configurations Φ then follow the distribution given by W , and 〈O〉 can be obtained as
the mean of O evaluated at a set of configurations, generated in this way.

Metropolis Algorithm

Perhaps the paradigmatic Monte Carlo algorithm is the Metropolis algorithm [95, 96].
A new configuration Φ′ that is obtained from Φ via a local change is proposed and then
accepted according to the probability,

p = min

(
1,
W (Φ′)

W (Φ)

)
, (D.3)
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to ensure detailed balance. The Metropolis algorithm can be applied to the integer gauge
theory. There the field configuration corresponds to an integer ∗k, associated to every
link on the lattice.

A change is proposed as
∗k′∗c2 = ∗k∗c2 + δ , (D.4)

where ∗c2 is a random link and δ = ±1 with a randomly chosen sign. The acceptance
probability is then

p = min (1, exp(−∆S)) , (D.5)

where ∆S = S′ − S is the change in the action induced by the proposed modification of
the gauge field. The gauge field at a given link contributes to the field strength, d∗k, and

thus to the action, at four different plaquettes, ∗c
(n)
1 , with the sign σn, such that

σnd
∗k∗c(n)

1

= run + ∗k∗c2 . (D.6)

The four staple terms, rui are independent of ∗k∗c2 . For the action dual to the Villain
action, the overall change is,

∆S =
g2

2

(
4∑

n=1

(
k∗c2 + δ + run

)2 − 4∑
n=1

(
k∗c2 + run

)2)

=
g2

2

(
4δ2 + 8δk∗c2 + 2δ

4∑
n=1

run

)
. (D.7)

For the action dual to the standard action, we find

exp(−∆S) =
4∏

n=1

Idk∗c(n)
1

+σnδ(β)

Idk∗c(i)1

(β)
. (D.8)

A sweep corresponds to Nlinks = 3×N2 ×Nt consecutive updates of the form described
above, where N and Nt correspond to the spatial and Euclidean time extent of the lattice,
respectively.

Heatbath Algorithm

In the heat bath algorithm, a new configuration is again obtained by a local update of a
single degree of freedom. Detailed balance is fulfilled by setting

P (Φ→ Φ′) = c(Φ)W (Φ′), (D.9)

where the constant, c, may depend on the configuration, but not on the degree of freedom
that is updated, such that c(Φ) = c(Φ′).

We employ this method for the action dual to the Villain action. There the distribu-
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tion, W (Φ), is Gaussian and thus straightforward to sample. It is realized as follows. A
link, ∗c2, is chosen at random and the associated gauge field, ∗k∗c2 , is sampled from the
distribution

p(∗k′∗c2) = exp

(
−g

2

2

(
∗k′∗c2 +

4∑
n=1

run

))
. (D.10)

Again, 3×N2 ×Nt consecutive updates are referred to as a sweep.

Overrelaxation

A way to reduce simulation time auto-correlations in Monte Carlo calculations is to
introduce deterministic overrelaxation sweeps between stochastic updates. In a micro-
canonical overrelaxation step, the configuration is changed locally in a way that leaves
the action invariant. For the gauge theory dual to the Villain action, this can be achieved
by choosing

∗k′∗c2 = −∗k∗c2 −
1

2

∑
n=1

run , (D.11)

if the sum over the staple terms is even. If it is odd, no update is performed. In an over-
relaxation sweep, the above transformation is applied to all links of the lattice as follows.
In a loop over all lattice sites that passes systematically from timeslices to timeslice, at
each site all three links that exit the site are updated. In the numerical calculations
of the vortex mass for the Villain action, every fifth sweep is replaced by an overrelax-
ation sweep. A comparison of different updating schemes, Metropolis only, heatbath
only, and heatbath with overrelaxation is shown in Figure D.1 for a test observable. The
autocorrelation function decreases significantly faster if overrelaxation steps are inserted.

For the action dual to the standard action, the weight as a function of a local change,
δ, in the Metropolis setup is not a symmetric function of δ, and therefore a simple
overrelaxation step as described above is not possible.

Implementation of the Vortex Operator

We have seen that the vortex creation operator is

Φ(x) = exp(−2πi(∗Bx,
∗k)) = exp(−2πi∆−1

2 δ2
∗k) . (D.12)

In this section, we discuss how the vortex operator can be implemented in a Monte Carlo
simulation. In order to be completely explicit, we will again use component notation and
denote the integer gauge field as ki(x) = ∗k(∗c2), where i denotes the direction the dual
link, ∗c2, points to from the site x on the dual lattice.

In this explicit notation, the spatial divergence, of the dual gauge field ki(x) is given
as

δ2k(x) = k1(x)− k1(x− e1) + k2(x)− k2(x− e2) , (D.13)
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0 500 1000 1500

Monte Carlo sweeps, τ
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Heatbath + OR

Figure D.1.: A comparison of different updating schemes. The autocorrelation function
of a test observable, the vortex correlation function at euclidean time dis-
tance t = a, on an 8× 8× 16 lattice. The action dual to the Villain action
is used with coupling g2 = 2.94. The Metropolis and heatbath schemes
perform comparably. If every fifth sweep is replaced by an overrelaxation
sweep (“Heatbath + OR”), the correlations decay much faster.

where C-periodic boundary conditions are employed. In lattice units, where a = 1, the
inverse Laplacian for a generic field associated to the dual lattice sites, φ(x), can be
constructed explicitly with the help of Fourier transforms as,

∆−1φ(x) =
1

N2

∑
p

exp(ipx)

p̂2

∑
x′

exp(−ipx′)φ(x′) . (D.14)

The summation extends over

p =
2π

N

(
n1 +

1

2
, n2 +

1

2

)
, (D.15)

with ni ∈ {0, . . . , N − 1}, and furthermore

p̂2 = 4− 2 cos(p1)− 2 cos(p2) . (D.16)
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To convince ourselves that this is the inverse Laplacian, we consider

∆∆−1φ(x) = 4∆−1φ(x) +

2∑
i=1

(
∆−1φ(x− ei) + ∆−1φ(x+ ei)

)
=

1

N2

∑
p

(
4−

2∑
i=1

(exp(ipi) + exp(−ipi))

)
exp(ipx)

p̂2

∑
x′

exp(−ipx′)φ(x′)

=
1

L2

∑
p

exp(ipx)
∑
x′

exp(−ipx′)φ(x′)

= φ(x) . (D.17)

In the second line, we have used the fact that exp(ipx) is C-periodic due to the momentum
shift of π/L. Had we worked with periodic boundary conditions, the above construction
would formally work analogously, then without the momentum shift. In that case, k̂2 = 0
would be part of the summation and the above expression would thus be ill-defined. The
operator can also be expressed in terms of the standard discrete Fourier transforms,

DFT (φ)(n) =

N−1∑
x1=0

N−1∑
x2=0

exp(−2π/Ni(x1n1 + x2n2))φ(x) = φ̃(n)

DFT−1(φ̃)(x) =

N−1∑
n1=0

N−1∑
n2=0

1

N2
exp(2π/Ni(x1n1 + x2n2))φ̃(n) = φ(x) (D.18)

In terms of these, the inverse Laplacian can be expressed as

∆−1φ(x) = exp(iπ/Lx)DFT−1

(
DFT (φ′)

g

)
(x) (D.19)

with

φ′(x) = exp

(
−iπx
N

)
φ(x)

g(n) = 4 + cos(2π/L(n1 + 1/2) + cos(2π/L(n2 + 1/2)) . (D.20)

This version is used in the Monte Carlo calculation presented in this work. We employ
the very efficient Fast Fourier Transform implementation from the FFTW library [97] to
calculate the DFT .

Wolff Algorithm

For the O(2) model, an extremely efficient cluster algorithm is available, namely the Wolff
algorithm [90], an adaptation of the Swendsen-Wang algorithm [98] for Potts models to
O(n) models. In contrast to the local heatbath and Metropolis algorithms, where the
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configuration is updated by changing a single degree of freedom at a time, in the Wolff
cluster algorithm, the spin degrees of freedoms are grouped into clusters that are then
updated jointly.

For the calculation of the helicity modulus in the spin formulation of the O(2) model,
we employ the Wolff algorithm in its single cluster version. For the O(2) model, it works
as follows.

1. Choose a random angle w ∈ {−π, π}, and a random starting site c0. Add c0 to the
queue, and to the cluster, C.

2. Remove a site, c0, from the queue, and activate a bond on each link, c1, attached
to c0 with probability, p(c1, w, ϕ). If the bond is activated and the site it connects
to, c′0, is not in the cluster, append c′0 to the cluster and to the queue.

3. As long as the queue is not empty, go to step 2.

4. Flip the cluster at the angle w, i.e.,

ϕ′c0 = 2w − ϕc0 ∀c0 ∈ C . (D.21)

The probabilities to add a bond at a given link are given by

p(c1, w, ϕ) = 1−min

(
1,

exp(−s(dϕc1))

exp(−s(dϕ′c1))

)
, (D.22)

where s(dϕc1), is the contribution of the link c1 to the action and in dϕ′c1, one of the
degrees of freedom, ϕ, attached to the link c1 is flipped at w. For the standard action,
this probability simplifies to

p(c1, w, ϕ) = 1−min
(

1, exp(−2β cos(ϕc0 − w) cos(ϕc′0 − w)
)
, (D.23)

where the link c1 connects the site c0 to c′0. For the Villain action, one cannot make such
a simplification and we simply use

p(c1, w, ϕ) = 1−min

(
1,

∑
n∈Z exp

(
−1/g2(dϕc1 + 2πn)2

)∑
n∈Z exp

(
−1/g2(dϕ′c1 + 2πn)2

)) . (D.24)

In the numerical simulations, the sums over n are truncated at n = ±5. At the cou-
plings that are relevant for our purposes, the thereby introduced discrepancy to the true
acceptance probability is smaller than machine precision.
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The Monte Carlo simulations yield estimates for the vortex correlation function, 〈c±(t)〉
and its covariance matrix, σtt′ = Cov(c±(t)c±(t)). A Euclidean time correlation function
has the following form,

g(t) =
∑
n

an (exp(−Ent) + exp(−En(T − t))) . (E.1)

At large Euclidean time separation, g(t) is dominated by the contribution from the lowest
energy state, E0. Therefore, in order to retrieve m and E, we neglect contributions from
excited state and fit

g(t) = a (exp(−mt) + exp(−m(T − t))) (E.2)

to the Monte Carlo data by minimizing

χ2 =

T−t0∑
t=t0

T−t0∑
t′=t0

(g(t)− 〈c(t)〉) (σ−1)tt′
(
g(t′)−

〈
c(t′)

〉)
. (E.3)

The optimization is performed with the help of the SciPy library [67]. The approximation
of the two-point function with eq. (E.2) is only justified for sufficiently large Euclidean
time separations. That is, t0 has to be chosen sufficiently large in the fit. This is a
delicate matter and may be the source of a systematic error. Here we employ a Bayesian
model averaging method [99], where the fit is performed for different values of t0 between
0 and tmax

0 and the retrieved masses are averaged according to

〈m〉 =

tmax
0∑
t0=0

〈m〉t0 pr(t0|D) (E.4)

In the above equation, 〈m〉t0 corresponds to the best fit result for m in a fit with a fixed
value of t0, according to eq. (E.3). In the cases where the vortex mass is large, for t
larger than some tt, the vortex correlation function is consistent with zero. In order to
exclude the very unstable cases, where only values consistent with zero enter the fit, we
use tmax

0 = max(3, tt − 4). The term pr(t0|D) corresponds to the model weight, i.e., the
probability assigned to the model, which in our case corresponds to a specific value of
t0, given the data. It can be approximated as [99]

− 2 log(pr(t0|D)) ≈ −2 log(pr(t0)) + χ2 + 2k + 4t0 . (E.5)

79



E. Fitting Masses

Here, k is the number of parameters in the model, i.e. k = 2 in our case and pr(t0) is
the prior attributed to t0. We use a flat prior distribution, i.e., pr(t0) = 1/(tmax

0 + 1).
An uncertainty can be associated to m according to

σ2
m =

〈
m2
〉
− 〈m〉2

=

tmax
0∑
t0

σ2
m,t0pr(t0|D) +

tmax
0∑
t0

〈
m2
〉
t+0

pr(t0|D)−

tmax
0∑
t0=0

〈
m2
〉
t0
pr(t0|D)

2

. (E.6)

The first term corresponds to the model average of the statistical errors for the various
fit ranges and the remaining terms account for systematic errors due to the choice of t0.
The procedure is illustrated in Figures E.1 and E.2, for two examples, from the dataset
used in Chapter 5. In the case shown in Figure E.1, the mass is much smaller than for
the case shown in Figure E.2, and tmax

0 is therefore much larger. Both cases are handled
well by the model averaging procedure.
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Figure E.1.: Illustration of the model averaging procedure to extract the vortex mass
from c+(t) at L = 1.43 and g2 = 2.976. The plot on the right shows the
correlation function from Monte Carlo simulations and the best fit, using
the model averaged parameters. On the left, the masses from fits with fixed
t0 ∈ {0, tmass

0 } (top), and the model probability as well as the p-values of the
fits are displayed. The latter refers to the probability, to draw a value bigger
than the χ2 of the fit from a χ2-distribution, and is shown for comparison.
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Figure E.2.: Illustration of the model averaging procedure to extract the vortex mass
from c+(t), for L = 3.57 and g2 = 2.924. The same plots as in Figure E.1
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7. The SU(2) Spin Chain Close to
Saturation

7.1. The XXZ Spin Chain

We consider a chain of N SU(2) quantum spins in the fundamental representation, {2}.
The length of the chain is L = aN , however, we will mostly work in the limit N → ∞,
otherwise periodic boundary conditions are assumed. Here a denotes the lattice spacing.
The spins form the Hilbert space C2N , on which the local spin operators act. A local
basis of the Hilbert space is given by

|s0sa . . . sNa〉 =
⊗
x

|sx〉 (7.1)

with sx ∈ {↑, ↓}. The spin operators obey the following commutation relations

[Sax, S
b
y] = iδxyεabcS

c
x . (7.2)

We choose the 3-direction as quantization axis. Then the spin operators are given in
terms of the Pauli matrices

Sax =
1

2
σa . (7.3)

From the spin operators, the rising and lowering operators are constructed as

S±x = S1
x ± iS2

x . (7.4)

We consider the XXZ-Hamiltonian with an external magnetic field, µ, in the 3-direction.

H = J
∑
x

(
1

2
(S+
x S
−
x+a + S−x S

+
x+a) + ∆S3

xS
3
x+a

)
− µ

∑
x

S3
x . (7.5)

Furthermore, we restrict the discussion to the case of |∆| > 1.

This model has a U(1) symmetry generated by S3 =
∑

x S
3
x, and a full SU(2) symmetry

for ∆ = 1 and µ = 0 (the isotropic Heisenberg Hamiltonian). This can be seen from the
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following expression,

[H,Sa] = J
∑
y

[∑
x

S1
xS

1
x+a + S2

xS
2
x+a + ∆S3

xS
3
x+a, S

a
y

]
= J

∑
x

(
[S1
x, S

a
x](S1

x−a + S1
x+a) + [S2

x, S
a
x](S2

x−a + S2
x+a)

+ ∆[S3
x, S

a
x](S3

x−a + S3
x+a)

)
= iJ

∑
x

(
ε1acS

c
x(S1

x−a + S1
x+a) + ε2acS

c
x(S2

x−a + S2
x+a)

+ ∆ε3acS
c
x(S3

x−a + S3
x+a)

)
. (7.6)

For a = 3, the commutator vanishes for arbitrary ∆, and for ∆ = 1 it vanishes for all
a. The term µS3 in the Hamiltonian only commutes with S3 and therefore breaks the
global SU(2) symmetry, even for ∆ = 1. The remaining U(1) symmetry allows us to
investigate the Hamiltonian in sectors of fixed magnetization, S3. In addition there is
translation symmetry by one lattice spacing, i.e., the Hamiltonian commutes with the
translation operator Ta. This symmetry allows us to characterize the eigenstates of the
Hamiltonian in terms of their momenta, the eigenvalues of the translation operator. For
J < 0, this is a model for ferromagnetism and for J > 0 for antiferromagnetism.

In addition, for N even, there is a unitary transformation

U =

Na/2∏
x=a

2S3
2x , (7.7)

that maps J → −J and ∆→ −∆, as

UHU † = U

(
J
∑
x

(
1

2
(S+
x S
−
x+a + S−x S

+
x+a) + ∆S3

xS
3
x+a

)
− µ

∑
x

S3
x

)
U †

= −J
∑
x

(
1

2
(S+
x S
−
x+a + S−x S

+
x+a)−∆S3

xS
3
x+a

)
− µ

∑
x

S3
x . (7.8)

Therefore, two Hamiltonians with J1 = −J2 and ∆1 = −∆2 have the same spectrum.
E.g., a ferromagnet (J < 0) with ∆ = −1 is unitarily equivalent to an isotropic antifer-
romagnet (J > 0,∆ = 1). The respective eigenstates are related as |ψ1〉 = U |ψ2〉.

In the presence of a strong magnetic field, µ � |J∆|, the ground state of the Hamil-
tonian is the state with all spins aligned along the magnetic field,

|S〉 = |↑↑ . . . ↑〉 , (7.9)
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the unique state with the largest possible S3-magnetization,

S3 |S〉 = N
1

2
|S〉 . (7.10)

Its energy is

H |S〉 = Es |S〉 =

(
JN∆

4
− µN

2

)
|S〉 . (7.11)

In the following we will diagonalize the Hamiltonian in the magnetization sectors ∆S3 =
−1 and ∆S3 = −2, corresponding to one and two flipped spins, in the background of
the saturated state respectively. These flipped spins will be referred to as defects. Even
though the spin one-half XXZ chain is exactly diagonalizable with the Bethe ansatz [100,
101], we will pursue a more elementary (and more explicit) approach and directly solve
the stationary Schrödinger equation in the symmetry sectors that contain the states we
are interested in. This method is also applicable to the SU(3) spin chain.

7.2. Defects Close to Saturation

We start with the ∆S3 = −1 sector, i.e., one flipped spin in the saturated background.
A complete basis of this sector consists of the states with all spins except one up and
one spin down. We will refer to such states as |x〉, where x refers to the location of the
down spin. Up to normalization such a state corresponds to

|x〉 = S−x |S〉 . (7.12)

The Hamiltonian acts on |x〉 as

H |x〉 =

(
J∆

(N − 4)

4
− µ(N − 2)

2

)
|x〉+

J

2
|x+ a〉+

J

2
|x− a〉 . (7.13)

We can construct eigenstates of the translation operator for each momentum in the
Brillouin zone, p ∈ {0,±2π/L, . . . ,±π/a},

|p〉 =
∑

exp(ipx) |x〉 . (7.14)

It is easy to see, that those are eigenstates of the XXZ-Hamiltonian,

H |p〉 = (J∆(N − 4)/4− µ(N − 2)/2 + J cos(ap)) |p〉 , (7.15)

and therefore have the well defined energy

Ep = ES − J∆ + µ+ J cos(ap) . (7.16)

For a ferromagnetic coupling, J < 0, the low-energy physics of that sector is concentrated
around p = 0, and for an antiferromagnetic coupling, J > 0, around p = π/a. This is
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consistent with the unitary equivalence of two models with J1 = −J2 and ∆1 = −∆2,
since under the transformation U , that maps ∆ → −∆ and J → −J , the states |p〉
transform as

U |p〉 =
∑
x

exp(ipx)U |x〉 =
∑
x

exp(ipx)(−1)x/a |x〉

=
∑
x

exp(i(p+ π/a)x) |x〉 = |p+ π/a〉 . (7.17)

Let us now turn to the ∆S3 = −2 sector, i.e., two flipped spins in a saturated back-
ground. We diagonalize the Hamiltonian in this sector by imposing stability conditions
on the solutions to the recursion relation corresponding to the stationary Schrödinger
equation.

Up to normalization, a basis of this sector consists of the N(N − 1)/2 states

|x, y〉 := S−x S
−
y |S〉 , (7.18)

with y ≥ x+ a. From those, a translation invariant basis can be constructed as

|p, r〉 :=
∑
x

exp(ipx) |x, x+ r〉 . (7.19)

In this set, there are again N(N − 1)/2 states: we have N momenta in the Brillouin
zone, for each of which r can vary from 1 to N − 1, however in that way each state is
counted twice, giving the factor of 1/2. Under the unitary transformation U , the states
|p, r〉 transform as

U |p, r〉 =
∑
x

exp(ipx)(−1)x/a(−1)(x+r)/a |x, x+ r〉 = exp(iπr/a) |p, r〉 . (7.20)

In the ∆S3 = −1 sector, translation invariance is sufficient to diagonalize the Hamilto-
nian which is not the case here. With

H |x, x+ r〉 =

(
J∆

4
(N − 8)− µ

2
(N − 4)

)
|x, x+ r〉

+
J

2
(|x+ a, x+ r〉+ |x− a, x+ r〉+ |x, x+ r + a〉+ |x, x+ r − a〉)

(7.21)

for r > a, and

H |x, x+ a〉 =

(
J∆

4
(N − 4)− µ

2
(N − 4)

)
|x, x+ a〉

+
J

2
(|x− a, x+ a〉+ |x, x+ 2a〉) , (7.22)
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we find that the states, |p, r〉, transform as

H |p, r〉 =

(
J∆

4
(N − 8)− µ

2
(N − 4)

)
|p, r〉+ J (w |p, r + a〉+ w |p, r − a〉)

H |p, a〉 =

(
J∆

4
(N − 4)− µ

2
(N − 4)

)
|p, r〉+ J (w |p, 2a〉) . (7.23)

We have introduced the notation w = (1 + exp(ipa))/2 . To find eigenstates of the
Hamiltonian, we make the general ansatz

|ψ, p〉 =
∑
r

ψ(r) |p, r〉 , (7.24)

and act on it with the Hamiltonian,

H |ψ, p〉 =

[
Jwψ(2a) +

(
J∆

4
(N − 4)− µ

2
(N − 4)

)
ψ(a)

]
|p, a〉

+
∑
r

[
J (wψ(r − a) + wψ(r + a)) +

(
J∆

4
(N − 8)− µ

2
(N − 4)

)
ψ(r)

]
|p, r〉 .

(7.25)

The stationary Schrödinger equation, i.e., the condition that |ψ, p〉 is an eigenstate of H,

H |ψ, p〉 = E |ψ, p〉 , (7.26)

gives a second order recursion relation for the wave function ψ(r),

εψ(r) = wψ(r − a) + wψ(r + a) r > a

(ε−∆)ψ(a) = wψ(2a) r = a , (7.27)

where we have introduced the dimensionless energy parameter

ε =
1

J

(
E − J∆

4
(N − 8) +

µ

2
(N − 4)

)
=

1

J
(E − ES + 2J∆− 2µ) . (7.28)

This recursion relation can be brought into matrix form(
ψ(r + a)
ψ(r)

)
= M

(
ψ(r)

ψ(r − a)

)
, (7.29)

where the matrix, M , is

M =

(
ε/w −w/w

1 0

)
. (7.30)
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In the limit N →∞, the recursion is solved by(
ψ(r)

ψ(r − a)

)
= M r/a−2

(
ψ(2a)
ψ(a)

)
. (7.31)

Writing (ψ(2a), ψ(a))T in terms of eigenvectors of M , assuming that λ+ 6= λ−, gives

ψ(r) = Aλ
r/a
+ +Bλ

r/a
− . (7.32)

This solution is implicit, as the matrix M depends on ε, which is still unknown. From
stability considerations, we now derive conditions on ε to obtain explicit solutions. We
consider an infinite system, and impose that the states are normalizable, either to 1,
which will lead us to localized states or to a delta function, which gives scattering states.

7.3. Localized Two-Defect States

A necessary condition on the state |ψ, p〉 to be normalizable to 1 in the limit N → ∞,
is ψ(r)→ 0 for r →∞. The solution to the recursion relation, eq. (7.31), can be of that
form if M has at least one eigenvalue of absolute value less than one. The matrix M has
eigenvalues and eigenvectors,

λ+ =
ε+
√
ε2 − 4ww

2w
λ− =

ε−
√
ε2 − 4ww

2w

v+ =

(
λ+

1

)
v− =

(
λ−
1

)
. (7.33)

The absolute value of λ± is plotted in Figure 7.1. Since |λ+| < 1 implies |λ−| > 1 and
vice versa, at most one eigenvalue is of absolute value less than one at any given ε. A
localized state is therefore possible only if the initial condition vector, (ψ(2a), ψ(a))T , is
proportional to the eigenvector with eigenvalue of absolute value smaller than one. This
condition corresponds to the following equation,

λ± =
ε−∆

w̄
, (7.34)

which has a solution that is valid in both cases, + and −, namely

ε =
ww̄ + ∆2

∆
=

cos(ap) + 2∆2 + 1

2∆
. (7.35)
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−2
√
ww̄ 0 2

√
ww̄

0

1

2

3

εb (∆<0) εb (∆>0)

ε

|λ+|
|λ−|

Figure 7.1.: The absolute values of λ± (the eigenvalues of the recursion relation matrix
M). Note that |λ+| < 1 implies |λ−| > 1.

It depends on the sign of ∆, which of the eigenvalues is of magnitude less than one. If
we plug the resulting ε back into the expressions for λ±, we find

λ± =
1

2∆w

ww + ∆2 ±∆

√
(∆2 − ww)2

∆2

 (7.36)

=
1

2∆w

(
ww + ∆2 ± sgn(∆)(∆2 − ww)

)
.

In the second line we have imposed that |∆| ≥ 1. Simplifying further, we find

∆ > 0 : λ+ =
∆

w
, λ− =

w

∆
,

∆ < 0 : λ− =
∆

w
, λ+ =

w

∆
. (7.37)

The eigenvalue of absolute value less than 1 is therefore always w/∆, corresponding to
λ− for ∆ > 0 and to λ+ for ∆ < 0.

The reduced energy, ε, from eq. (7.35) corresponds to a total energy for the localized
state of

Eloc = ES − J∆ + 2µ+ J

(
cos(ap) + 1

2∆

)
. (7.38)

Note that for ∆ = 1 and µ = 0, we recover the well known result for the bound state
energy E = ES − J sin2(ap/2) for the isotropic Heisenberg Model [100]. The wave
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function ψ(r) follows from eq. (7.31) as

ψ(r) = λ
r/a−1
± ψ(a) = Cλ

r/a
± = C

(w
∆

)r/a
= C

(
cos(ap/2)

∆

)r/a
exp(ipr/2)

= C exp(κlr) exp(ipr/2) . (7.39)

In expressing w = exp(iap/2) cos(ap/2), it seems that we have introduced a sign ambi-
guity since the division of p by 2 gives rise to a phase ambiguity of π. This ambiguity
is, however, canceled by the multiplication of the two terms. We can therefore safely
assume that −π/2a < p/2 < π/2a. The constant κl in the exponent,

κl =
1

a
log

(
cos (ap/2)

∆

)
, (7.40)

is indeed negative for ∆ > 0, and the wave function is thus exponentially suppressed
for large r. For ∆ < 0, an additional factor of (−1)r/a has to be included in the phase
factor, exp(ipr/2), in order to give a positive argument to the logarithm. Note that this
staggering phase factor is also produced by the transformation of |p, r〉 under the unitary
transformation U , that maps J → −J and ∆→ −∆. This is also what we would expect,
as the energy of a localized state with momentum p is unaffected by the transformation
U . In contrast to the one-defect sector, where the transformation U corresponds to a
momentum shift by π/a, for the localized two-defect states it introduces a staggering
factor in the relative coordinate, that is not captured by a total momentum shift.

To retrieve the full wave function, ψ(x, y), which we will later use in order to compare
the results to an effective theory, we plug ψ(r) and the definition of the translation
invariant states, eq. (7.19), into our ansatz, eq. (7.24), and obtain

|ψ, p〉 =
∑
y>x

ψ(y − x) exp(ipx) |x, y〉 = C
∑
y>x

exp(ip(x+ y)/2) exp(κl(y − x)) |x, y〉 ,

(7.41)

where the sum is over all x and all y with y > x. From here we can read off

ψ(x, y) = C exp(ip(x+ y)/2) exp(κl(y − x)) . (7.42)

7.4. Scattering of Defects

Let us now turn to the scattering states. As scattering states, we refer to states for which
the wave function ψ(r) is not vanishing but bounded for large r. They resemble plane
wave states. Their wave function and energy is again derived from the recursion relation.

In the region −2
√
ww < ε < 2

√
ww, the eigenvalues of the recursion matrix M are

pure complex phases and thus the solutions specified in eq. (7.31) are bounded for all
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initial conditions. Expressing the right-hand side of eq. (7.31) in terms of eigenvectors
of M yields

ψ(r) = λ
r/a
+ A+ λ

r/a
− B , (7.43)

where so far A and B are unspecified constants. Since in this regime λ± are pure complex
phases, we introduce

λ+ = exp(iaq), (7.44)

which implies that

λ− = exp(−iaq)w
w

= exp(−iaq) exp(iap) . (7.45)

From eq. (7.44), we obtain the dispersion relation

λ+ = exp(iaq) ,

ε+
√
ε2 − 4ww = 2w exp(iaq) . (7.46)

Taking the real part on both sides yields

ε = cos(aq) + cos(aq − ap) . (7.47)

The wave function becomes

ψ(r) = A exp(iqr) +B exp(−iqr) exp(ipr) , (7.48)

where the ratio of A and B is further constrained by the boundary condition equations,

ψ(2a) =
ε−∆

w
ψ(a)

λ2
+A+ λ2

−B =
ε−∆

w
(Aλ+ +Bλ−) , (7.49)

from which we obtain that

A

B
= −1 + exp(iap)− 2∆ exp(ia(p− q))

1 + exp(iap)− 2∆ exp(iaq)
. (7.50)

The full wave function ψ(x, y) is

ψ(x, y) = ψ(y − x) exp(ipx)

= A exp(iqy + i(p− q)x) +B exp(iqx+ i(p− q)y) , (7.51)

and the total energy of the scattering states is

Esc = ES − 2J∆ + 2µ+ J cos(aq) + J cos(aq − ap) . (7.52)
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7.5. Discussion

The energy levels and the corresponding eigenstates of the three considered sectors are
summarized in Table 7.1. We now continue with discussing a few specific cases in more
detail. The energy levels of the selected cases are illustrated in Figure 7.2.

Table 7.1.: Energies of defect states.

Sector State Energy

∆S3 = 0 |S〉 ES =
JN∆

4
− µN

2
∆S3 = −1 |p〉 Ep = ES − J∆ + µ+ J cos(ap)

∆S3 = −2 |loc, p〉 El = ES − J∆ + 2µ+ J
cos(ap) + 1

2∆
|sc, p, q〉 Esc = ES − 2J∆ + 2µ+ J cos(aq) + J cos(aq − ap)

First, we consider a ferromagnet with weak anisotropy, ∆ = 1 + δ. For any µ > 0, the
saturated state is the lowest energy state and the energy gap to the sector ∆S3 = −1 is
|µ| + δ|J |. The low-energy physics of each sector is centered around p = 0 and q = 0.
The localized state is a bound state, in the sense that its energy, for p = 0, is lower than
the energy of the lowest energy scattering state where p = q = 0. To see this, consider

Eloc − Esc =
Jδ2

1 + δ
, (7.53)

which is negative for J < 0.

In the antiferromagnetic case, the situation presents itself differently. Without an
external magnetic field, µ = 0, the spectrum corresponds to the one of a ferromagnetic
Hamiltonian, but it is inverted. While the saturated state is the ground state in the
ferromagnetic case, it is the highest excited state in the antiferromagnetic case, confer
Figure 7.2. In a large external magnetic field, the saturated state becomes the ground
state due to the contribution of µS3 to the energy. There exists a value of µ = µc
for which the one and two-defect sectors have the same energy as the saturated states,
namely for p = π/a in the one-defect sector and for p = 0, q = π/a in the two-defect
sectors. This value is

µc = −J(1 + ∆) (7.54)

for both states |p = π/a〉 and |sc, 0, π/a〉. The low energy physics is centered around
p = π/a in the ∆S3 = −1 sector and around p = 0 and q = π/a in the ∆S3 = −2 sector.

Two models with J1 = −J2 and ∆1 = −∆2 are unitarily equivalent and the respective
Hamiltonians have the same eigenvalues but not necessarily the same eigenstates. Rather,
the eigenstates are related by the unitary transformation U . While the saturated state
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µ

=
0

J < 0,∆ = 3/2 J > 0,∆ = 3/2 J < 0,∆ = −3/2

ES
Ep
Eloc

µ
=
−

5|
J
|

Figure 7.2.: Energy levels for various XXZ-models as a function of total momentum p
ranging from −π/a to π/a. The thick blue line corresponds to the energy
of the saturated state, the dashed line to the one-defect sector. The dotted
line represents the localized state energy and the thin lines correspond to
the scattering state energies for various q (magenta for q = 0 and blue green
for q = π/a).

is invariant under U , the one- and two-defect states transform as

U |p〉 = |p+ π/a〉 ,
U |sc, p, q〉 = |sc, p, q + π/a〉 ,

U |loc, p〉 =
∑
r>0

exp(ipr/2) exp(κlr) exp(iπr/a) |p, r〉 . (7.55)

This implies that in the sector ∆S3 = −1, the momentum p is shifted by π/a, and in the
sector ∆S3 = −2, the relative momentum q is shifted by π/a. Since localized states do
not have relative momentum, the transformation U gives rise to an additional staggering
factor.

In Figure 7.2, this can be appreciated as follows. The models in the second and third
column are unitarily equivalent. The energy of the one-defect state is shifted by π/a,
while the energy of the localized state is not shifted. For the energy of the scattering
states, the internal momentum q is shifted by π/a, i.e., the energy of the scattering state
with q = 0 is interchanged with the energy of the scattering state with q = π/a.
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8.1. The SU(3) Spin Chain

We consider a bipartite chain of SU(3) quantum spins, a one-dimensional version of
the spin ladder that is employed as a regularization of the CP (2) model in [66]. The
spins on the even sites, referred to as sublattice A, are in the fundamental representation
{3} and the spins on the odd sites, sublattice B, in the anti-fundamental representation
{3̄} of SU(3). Their interaction is governed by an antiferromagnetic Heisenberg type
Hamiltonian,

H0 = J

∑
x∈A

T bxT
b
x+a +

∑
y∈B

T
b
yT

b
y+a

 (8.1)

where a denotes the lattice spacing, and sometimes an index of the SU(3) algebra.

Furthermore, we restrict the discussion to J > 0. T bx and T
b
y are the generators of the

fundamental and anti-fundamental representations of SU(3) respectively. The spin chain
extends over L = Na, but as in Chapter 7, we will work in the limit where N →∞. The
SU(3) generators obey the commutation relations

[T ax , T
b
x′ ] = iδxx′fabcT

c
x , [T

a
x, T

b
x′ ] = iδxx′fabcT

c
x , (8.2)

where fabc are the structure constants. In the basis where T 3
x and T 8

x are diagonal, the
T a correspond to the Gell-Mann matrices

T ax =
1

2
λa . (8.3)

Analogous to the case of SU(2), one can rewrite the Hamiltonian in terms of shift
operators

T±x = T 1
x ± iT 2

x , V ±x = T 4
x ± iT 5

x , U±x = T 6
x ± iT 7

x , (8.4)
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as

H0 =
J

2

∑
x∈A

(
T+
x T
−
x+a + T−x T

+
x+a + V +

x V
−
x+a + V −x V

+
x+a + U+

x U
−
x+a + U−x U

+
x+a

+ 2T 3
xT

3
x+a + 2T 8

xT
8
x+a

)
+
J

2

∑
y∈B

(
T

+
y T
−
y+a + T

−
y T

+
y+a + V

+
y V
−
y+a + V

−
y V

+
y+a + U

+
y U
−
y+a + U

−
y U

+
y+a

+ 2T
3
xT

3
x+a + 2T

8
xT

8
x+a

)
. (8.5)

This system has a global SU(3) symmetry, generated by

T a =
∑
x∈A

T ax +
∑
x∈B

T
a
y . (8.6)

Therefore, the eigenstates ofH fall in different charge sectors of the two conserved charges
T 3 and T 8. A basis of the Hilbert space is given by

|fa . . . fNa〉 =
⊗
x∈A
|fx〉 ⊗ |f̄x+a〉 , (8.7)

with fx ∈ {u, d, s} and f̄y ∈
{
ū, d̄, s̄

}
, such that |fx〉 and |f̄x〉 are simultaneous eigenstates

of T 3
x as well as T 8

x and T
3
x as well as T

8
x respectively. The action of the shift operators

on theses states is visualized in Figure 8.1.
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Figure 8.1.: The action of the shift operators on the states |u〉, |d〉, and |s〉, that form
the fundamental representation, {3} (on the left), as well as |ū〉, |d〉, |s〉,
that form the anti-fundamental representation (on the right). The states
are drawn at coordinates corresponding to their eigenvalues with respect to
T 3 and T 8.
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8.2. Defects Close to Saturation

We will also add a chemical potential coupled to T 3

H = H0 − µ3T
3 . (8.8)

This term reduces the global SU(3) symmetry to U(1)3 × U(1)8. Because of the al-
ternating fundamental and anti-fundamental representations, this Hamiltonian is only
invariant under translations by two lattice spacings. It is, however, invariant under T 8-
charge conjugation (which maps d̄ ↔ u, ū ↔ d, s̄ ↔ s) combined with translation by
one lattice spacing. It is this operator that we will denote by T̃ , whose eigenvalues will
be referred to as momenta in the following. They take on values in the full Brillouin
Zone p ∈ [−π/a, π/a]. In contrast to SU(2), the (anti-)fundamental representation of
SU(3) is complex and there is no unitary transformation that relates this system to a
ferromagnetic one.

As in SU(2), for sufficiently large chemical potential µ3 � J , the system saturates to
the unique state with the largest possible T 3 charge, namely

|S〉 =
⊗
x∈A
|ux〉 ⊗ |d̄x+a〉 . (8.9)

This state is an eigenstate, and for µ3 sufficiently large, it is the ground state of H with

H |S〉 =

(
JN

6
− µ3

N

2

)
|S〉 . (8.10)

In the following we will examine the behavior of different defects in this saturated state
and the scattering thereof.

8.2. Defects Close to Saturation

We start by introducing the following defect operators in terms of the SU(3) ladder
operators,

ŝx :=

{
V −x x ∈ A
U+
x x ∈ B

,

φ̂x := T−x − ŝxŝx+a − ŝxŝx−a ,
χ̂x := T−x + ŝxŝx+a + T−x+a . (8.11)

The defect states, up to normalization, are generated by acting with these operators on
the saturated state as

|sx〉 := ŝx |S〉 , |φx〉 := φ̂x |S〉 , |χx〉 := χ̂x |S〉 . (8.12)

In this way, ŝx replaces a u with an s and a d̄ with an s̄. T−x replaces a u with a d
and a d̄ with a u. The operators φ̂x and χ̂x thus generate composite extended defects,
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8. The SU(3) Spin Chain Close to Saturation

e.g. for x ∈ A,

|φx〉 = |dx〉 ⊗
⊗

y∈A\{x}

|uy〉
⊗
y∈B
|d̄y〉

− |sx〉 ⊗ |s̄x+a〉 ⊗
⊗

y∈A\{x}

|uy〉
⊗

y∈B\{x+a}

|d̄y〉

− |sx〉 ⊗ |s̄x−a〉 ⊗
⊗

y∈A\{x}

|uy〉
⊗

y∈B\{x−a}

|d̄y〉

|χx〉 = |dx〉 ⊗
⊗

y∈A\{x}

|uy〉
⊗
y∈B
|d̄y〉

+ |sx〉 ⊗ |s̄x+a〉 ⊗
⊗

y∈A\{x}

|uy〉
⊗

y∈B\{x+a}

|d̄y〉

+ |dx+a〉 ⊗ |s̄x−a〉 ⊗
⊗

y∈A\{x+a}

|uy〉
⊗
y∈B
|d̄y〉 . (8.13)

The states |sx〉, form a basis of the Hilbert space in the sector ∆T 3 = −1
2 . The sector

∆T 3 = −1, is spanned by |φx〉, |χx〉, and ŝxŝy |S〉, where y > x+ a. As we will see, the
use of this seemingly strange basis significantly facilitates the solution of the Schrödinger
equation since they form subspaces closed under the action of the Hamiltonian.

While |sx〉 and |φx〉 are eigenstates of H, |χx〉 transforms as

H |χx〉 =

(
ES −

J3

2
+ µ3

)
|χx〉 −

J

2
|χx+a〉 −

J

2
|χx−a〉 , (8.14)

akin to a one-defect state of an SU(2)-XXZ model with ∆ = −3/2.

Under translation, the defect states transform as

T̃ ŝx |S〉 = ŝx+a |S〉 , T̃ φ̂x |S〉 = φ̂x+a |S〉 , T̃ χ̂x |S〉 = χ̂x+a |S〉 , (8.15)

we can therefore introduce

ŝp =
∑
x

exp(ipx)ŝx , φ̂p =
∑
x

exp(ipx)φ̂x , χ̂p =
∑
x

exp(ipx)χ̂x . (8.16)

The translation invariant defect states generated by these operators are all eigenstates
of the Hamiltonian

Hŝp |S〉 =

(
ES +

1

2
µ3

)
ŝp |S〉

Hφ̂p |S〉 = (ES + µ3) φ̂p |S〉

Hχ̂p |S〉 =

(
ES + µ3 −

3J

2
− J cos(ap)

)
φ̂p |S〉 . (8.17)
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As expected from the fact that |sx〉 and |φx〉 are already eigenstates, the eigenvalue of
the s- and φ-type translation invariant defects do not depend on the momentum, these
states are immobile. Note that (as in the antiferromagnetic XXZ models) there is a
critical chemical potential, where the energy of χ0 |S〉 is lower than the energy of the
saturated state, and the latter is no longer the ground state, namely,

µc =
5

2
J . (8.18)

At this chemical potential, saturation occurs. In the following, we will look into two-
defect states, that involve a dynamical χ-type defect.

8.3. χ-φ Scattering

The two particle state is defined as

|χ, φ, x, y〉 = χ̂xφ̂y |S〉 (8.19)

with y ≥ x+ 2a or y ≤ x− 3a. We define translation invariant states as

|χ, φ, r, p〉 =
∑
y

exp(ipy) |χ, φ, y + r, y〉 . (8.20)

For r ≥ 3a or r ≤ −4a, the Hamiltonian acts on those as

H |χ, φ, r, p〉 =

(
ES + 2µ3 −

3

2
J

)
|χ, φ, r, p〉 − J

2
|χ, φ, r + a, p〉 − J

2
|χ, φ, r − a, p〉 .

(8.21)
The states |χ, φ, a〉 and |χ, φ,−2a〉 are defined by imposing that |χ, φ, 3a〉 and |χ, φ,−4a〉
transform under the Hamiltonian as the states |χ, φ, r〉 for r > 3a or r < −4a. This is
achieved by imposing eq. (8.21) also for r = 2a and r = −3a. The resulting states are,

|χ, φ, a, p〉 = − 2

J

(
H |χ, φ, 2a, p〉 −

(
ES + 2µ3 −

3

2
J

)
|χ, φ, 2a, p〉+

J

2
|χ, φ, 3a, p〉

)
|χ, φ,−2a, p〉 = − 2

J

(
H |χ, φ,−3a, p〉 −

(
ES + 2µ3 −

3

2
J

)
|χ, φ,−3a, p〉

+
J

2
|χ, φ,−4a, p〉

)
. (8.22)
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8. The SU(3) Spin Chain Close to Saturation

Under the Hamiltonian, they transform as

H |χ, φ, a, p〉 =

(
ES + 2µ3 −

3

2
J

)
|χ, φ, a, p〉

− J

2
|χ, φ, 2a, p〉 − J

2
exp(−2iap) |χ, φ,−2a〉

H |χ, φ,−2a, p〉 =

(
ES + 2µ3 −

3

2
J

)
|χ, φ,−2a, p〉

− J

2
|φ, χ,−3a, p〉 − J

2
exp(2iap) |χ, φ, a, p〉 . (8.23)

Remarkably, this set of states, {|χ, φ, r, p〉 , r ≥ a or r ≤ −2a}, is closed under the action
of the Hamiltonian, and to obtain energy eigenstates we can proceed exactly as in the
case of SU(2) by making an ansatz of the form

|ψχφ, p〉 =
∑
r≤−2a

ψχφ(r) |χ, φ, r, p〉+
∑
r≥a

ψχφ(r) |χ, φ, r, p〉 . (8.24)

The equation H |ψχφ, p〉 = E |ψχφ, p〉, translates into two recursion relations for ψχφ(r),
namely,

r ≥ 2a :

(
ψχφ(r + a)
ψχφ(r)

)
=

(
εχφ −1
1 0

)(
ψχφ(r)

ψχφ(r − a)

)
,

r ≤ −3a :

(
ψχφ(r − a)
ψχφ(r)

)
=

(
εχφ −1
1 0

)(
ψχφ(r)

ψχφ(r + a)

)
, (8.25)

with

εχφ =
2

J

(
ES − E −

3

2
J + 2µ3

)
, (8.26)

and the coupled boundary conditions

εχφψχφ(a) = ψχφ(2a) + exp(+2iap)ψχφ(−2a) ,

εχφψχφ(−2a) = ψχφ(−3a) + exp(−2iap)ψχφ(a) . (8.27)

The recursion relation matrix has the spectral structure familiar from the discussion of
the SU(2)-XXZ Hamiltonian, with the additional simplification of w = 1. Thus, for a
given εχφ, at most one eigenvalue is smaller than 1 in absolute value and in the region,
εχφ ∈ [−2, 2], |λ±| = 1 holds. The eigenvalues and eigenvectors are

λ+ =
1

2

(
εχφ +

√
ε2χφ − 4

)
, λ− =

1

2

(
εχφ −

√
ε2χφ − 4

)
,

v+ =

(
λ+

1

)
, v− =

(
λ−
1

)
. (8.28)
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8.3. χ-φ Scattering

The general solution of the coupled recursion relations, eq. (8.25), is

r > 0 : ψχφ(r) = Aλ
r/a
+ +Bλ

r/a
− ,

r < 0 : ψχφ(r) = Cλ
−r/a
+ +Dλ

−r/a
− , (8.29)

where, making use of εχφ = λ+ + λ−, A,B,C, and D are related by the boundary
conditions, eqs. (8.27), as

A = −
exp(2iap)

(
Cλ−λ

3
+ − Cλ2

+ +Dλ2
−
(
λ2

+ − 1
))

(λ− − λ+)λ+
= D exp(2iap)λ−2

+

B =
exp(2iap)

(
λ2
−
(
Cλ2

+ − C
)
− Cλ2

+ +Dλ+λ
3
−
)

λ− (λ− − λ+)
= C exp(2iap)λ2

+ . (8.30)

We have made use of the relation λ− = λ−1
+ . For a localized state to exist, one of the

eigenvalues, λ±, has to be smaller than 1 in absolute value, which in turn implies that the
other is larger than 1 in absolute value. This implies either A = C = 0 or B = D = 0,
which is incompatible with eqs. (8.30). Therefore no localized state exists.

The scattering states correspond to the region εχφ ∈ [−2, 2], where λ+ and λ− are
pure complex phases and conjugate to each other. Defining

exp(±iaq) := λ± , (8.31)

the wave function, eq. (8.29), becomes

ψχφ(r) =

{
A exp(iqr) +B exp(−iqr), r ≥ a
C exp(−iqr) +D exp(iqr), r ≤ −2a

, (8.32)

with

A = D exp(2ia(p− q)) ,
B = C exp(2ia(p+ q)) . (8.33)

The dispersion relation is obtained from

εχφ = λ+ + λ− = 2 cos(aq) . (8.34)

Expressed as total energy eigenvalue of H, it reads

E = ES −
3

2
J + 2µ3 − J cos(aq) . (8.35)
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8.4. χ-s Scattering

The scattering of a χ- and an s-type defect is almost completely equivalent to the scat-
tering of a χ- and a φ-type defect. The two-particle states are defined as

|χ, s, x, y〉 = χ̂xŝy |S〉 ,

|χ, s, r, p〉 =
∑
y

exp(ipy) |χ, s, y + r, y〉 , (8.36)

where x ≥ y + a or x ≤ y − 2a. For r ≥ 2a or r ≤ −3a, the translation invariant states
transform under the Hamiltonian as

H |χ, s, r, p〉 =

(
ES +

3

2
µ3 −

3

2
J

)
|χ, s, r, p〉 − J

2
|χ, s, r + a, p〉 − J

2
|χ, s, r − a, p〉 .

(8.37)
For r = a and r = −2a we find

H |χ, s, a, p〉 =

(
ES +

3

2
µ3 −

3

2
J

)
|χ, s, a, p〉 − J

2
|χ, s, 2a, p〉

− J

2
exp(−2iap) |χ, s,−2a〉

H |χ, s,−2a, p〉 =

(
ES +

3

2
µ3 −

3

2
J

)
|χ, s,−2a, p〉 − J

2
|φ, s,−3a, p〉

− J

2
exp(+2iap) |χ, s, a, p〉 . (8.38)

Up to a constant energy shift of 1/2µ3, due to the different charges of the s- and φ-
type defect, this is exactly what we have found for χ-φ scattering. We can therefore
immediately write down the energy and wave function of the scattering state as

ψχs(r) =

{
A exp(iqr) +B exp(−iqr), r ≥ a
C exp(−iqr) +D exp(iqr), r ≤ −2a

E = ES −
3

2
J +

3

2
µ3 − J cos(aq) , (8.39)

where again,

A = D exp(2ia(p− q)) ,
B = C exp(2ia(p+ q)) . (8.40)

Therefore, as in χ-φ scattering, no localized state exists.
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8.5. χ-χ Scattering

We now turn to the most interesting case of two dynamical defects of χ-type. The
two-defect states are

|χ, χ, x, y〉 = χ̂xχ̂y |S〉 (8.41)

with y ≥ x+2a, since the two defects are now indistinguishable. Introducing the relative
coordinate r, we define translation invariant states as

|χ, χ, r, p〉 =
∑
x

exp(ipx) |χ, χ, x, x+ r〉 . (8.42)

For r ≥ 2a, they transform under the Hamiltonian as

H |χ, χ, r, p〉 = (ES + 2µ3 − 3J) |χ, χ, r, p〉 − Jw |χ, χ, r + a, p〉 − Jw̄ |χ, χ, r − a, p〉 ,
(8.43)

where again w = 1
2 (1 + exp(iap)). As for χ-φ scattering, the state |χ, χ, a, p〉 is defined

by imposing the action of the Hamiltonian for r > 2a, eq. (8.43), for r = 2a as,

|χ, χ, a, p〉 = − 1

Jw̄
(H |χ, χ, 2a, p〉 − (ES + 2µ3 − 3J) |χ, χ, 2a, p〉+ Jw |χ, χ, 3a, p〉) .

(8.44)
The set of states {|χ, χ, r, p〉 , r ≥ a} is again closed under the action of the Hamiltonian
since

H |χ, χ, a, p〉 =

(
ES + 2µ3 −

3

2
J

)
|χ, χ, a, p〉 − Jw |χ, χ, 2a, p〉 . (8.45)

To find eigenstates of the Hamiltonian, we proceed as before and make the ansatz

|ψχ,χ, p〉 =
∑
r≥a

ψχχ(r) |χ, χ, r, p〉 . (8.46)

Plugging it into the stationary Schrödinger equation then gives the recursion relation for
the wave function ψχχ,(

ψχχ(r + a)
ψχχ(r)

)
=

(
εχχ/w̄ −w/w̄

1 0

)(
ψχχ(r)

ψχχ(r − a)

)
, (8.47)

with

εχχ =
1

−J
(E − ES − 2µ3 + 3J) . (8.48)

Eq. (8.47) is valid for all r ≥ 2a. The interaction point, eq. (8.45), gives a constraint on
the boundary conditions of the recursion relation, namely(

ψχχ(2a)
ψχχ(a)

)
=

((
εχχ + 3

2

)
/w̄

1

)
ψχχ(a) . (8.49)
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8. The SU(3) Spin Chain Close to Saturation

This recursion relation and its boundary condition correspond to the ones encountered for
the two-defect sector of the SU(2)−XXZ model for JXXZ = −J and ∆ = −3/2, a model
unitarily equivalent to an anisotropic antiferromagnet. This case is discussed thoroughly
in Section 7.1, and we will therefore simply state the results here. The localized state
wave function is obtained from eq. (7.39)

ψχχ(r) = C(−2
w

3
)r/a = C exp(κχχl r)(−1)r/a exp

(
ipr

2

)
, (8.50)

where

κχχl =
1

a
log

(
2 cos(ap/2)

3

)
. (8.51)

The corresponding εχχ is obtained from eq. (7.35) as

εχχ = −1

3
cos(ap)− 11

6
. (8.52)

With that, we find for the full energy,

E = ES +
1

3
J cos(ap)− 7J

6
+ 2µ . (8.53)

For scattering states we obtain the wave function,

ψχχ(r) = A exp(iqr) +B exp(−iqr) exp(ipr) . (8.54)

with
A

B
= −1 + exp(iap) + 3 exp(ia(p− q))

1 + exp(iap) + 3 exp(iaq)
. (8.55)

The dispersion relation follows from εχχ = cos(aq) + cos(aq − ap) and reads

E = ES − 3J + 2µ− J cos(a(p− q))− J cos(aq) . (8.56)

The energies for the various defect states we have considered are summarized in Fig-
ure 8.2.
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Figure 8.2.: The energy levels of the SU(3) spin chain. The energy of the scatter-
ing states, |χ, s, p〉 and |χ, φ, p〉, only depend on the internal momentum
q, and are represented by extended bands. The energies of the states
|χ, p〉 , |χ, χ, p, scat〉 , |χ, χ, p, loc〉 correspond to the ones of an XXZ Hamil-
tonian with JXXZ = −J and ∆ = −3

2 .
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9. Effective Low-Energy Quantum
Mechanics

9.1. An Effective Hamiltonian

The various defects in the saturated states of the SU(2) and SU(3) spin chains discussed
in the previous chapters can effectively be described as quantum mechanical point parti-
cles. In the following, we will look into this effective quantum mechanics, for the various
charge sectors. By the term “effective quantum mechanics”, we refer to a quantum me-
chanical System in continuous space, defined by a Hamiltonian He alongside a matching
prescription that specifies the way in which the wave function of the point particles in
the effective theory is to be compared to the wave functions of the defects in the exact
solution.

The effective theory only captures the low-energy physics of a given sector, character-
ized by a low-energy expansion parameter, e.g. the momentum of the one-defect state
for the SU(2) XXZ-spin chain with J < 0. We impose, that the wave functions and
energies of continuum and lattice theory match up to second order in this expansion pa-
rameter. In the two-defect sectors, the effective theory will be obtained by matching the
scattering state wave function and energies. The predictions for the localized state are
regarded as a consistency check. In all cases, we will set ES = 0. We start, by discussing
the quantum mechanics of non-relativistic point particles with contact interactions, our
candidate for the effective description.

The Hamiltonian of a free non-relativistic point particle is

H(1)
e = M0 +

p̂2

2m
= M0 −

∂2
x

2m
, (9.1)

with rest energy M0 and kinetic mass m. It has the eigenstate wave functions

ψe(x) = exp(ipex) (9.2)

with energy eigenvalues

E(1)
e (p) = M0 +

p2
e

2m
. (9.3)

The contact interaction of two such particles is described by the Hamiltonian

H(2)
e = 2M0 +

p̂2
1

2m
+

p̂2
2

2m
+ “contact interaction” , (9.4)
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where the term “contact interaction” means that the domain of the wave functions is
D(ψ) =

{
(x, y) ∈ R2, x 6= y

}
with a boundary condition at x = y that characterizes the

interaction. Introducing center of mass and relative coordinates, the Hamiltonian takes
the form

H(2)
e = 2M0 +

P̂ 2

4m
+
q̂2

m
+ “contact interaction” , (9.5)

with

r = x1 − x2 , R =
x1 + x2

2
,

q̂ =
1

2
(p̂1 − p̂2) , P̂ = p̂1 + p̂2 . (9.6)

According to the theory of self-adjoint extensions, the most general boundary condition
at r = 0, that leaves H self-adjoint and at the same time permits eigenstates that respect
parity is

lim
ε→0+

(
ψe(r,R)
∂rψe(r,R)

)
r=+ε

=

(
a b
c a

)
lim
ε→0+

(
ψe(r,R)
∂rψe(r,R)

)
r=−ε

, (9.7)

with a, b, c real and a2−bc = 1. This Hamiltonian has the symmetric scattering eigenstate
wave function

ψe(R, r) = exp(ipeR)

{
Ae exp(iqer) +Be exp(−iqer) , r > 0

Ae exp(−iqer) +Be exp(iqer) , r < 0
, (9.8)

where the boundary condition, eq. (9.7), fixes the ratio

Ae
Be

=
qe + iκe
qe − iκe

, (9.9)

with

κe =
−c
a+ 1

. (9.10)

The scattering state energy is

Es(pe, qe) = 2M0 +
p2
e

4m
+
q2
e

m
. (9.11)

For κe > 0, the contact interaction allows a bound state with the wave function

ψ(R, r) = C exp(ipeR)

{
exp(−κer) , r > 0

exp(+κer) , r < 0
(9.12)

and energy

Eb(pe) = 2M0 +
p2
e

4m
− κ2

e

m
. (9.13)

This Hamiltonian is invariant under Galilean boosts. The relative coordinate wave func-
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tion, especially the ratio of Ae/Be, does not depend on the total momentum. On the
microscopic side, on the other hand, boost invariance is broken by the lattice, and the
relative coordinate wave functions do depend on the total momentum. Therefore, in the
two defect charge sector, each total momentum sector is described by its own effective
theory, only valid at the respective total momentum.

The low-energy physics of the effective theory is centered around pe = 0 for H(1) and
around qe = 0 for each pe for H(2). Therefore, pe and qe serve as expansion parameters
and are mapped to a suitable counterpart of the exact solution.

9.2. Effective Description of Defects in an SU(2)
Ferromagnet

In the case of a ferromagnetic SU(2) spin chain, where J < 0, the low-energy physics
of the exact solution of the ∆S3 = −1 sector is centered around p = 0. Employing the
obvious matching prescription

ψ(x)
!

= ψe(x) , (9.14)

and identifying pe = p, lattice and continuum wave functions agree to all orders in pe.
Expanding the lattice energy to second order in pe yields (recall that we set ES = 0),

E = J(1−∆)− µ− J a
2p2
e

2
+O(a3p3

e) . (9.15)

Comparing this expression to the effective energy, eq. (9.3), gives

M0 = J(1−∆)− µ ,

m =
−1

Ja2
. (9.16)

For the effective description of the two-defect sector, ∆S3 = −2, the matching pre-
scription becomes more subtle. In order to obtain consistent results, the contact point
has to be explicitly removed. We start by bringing the lattice wave function to a form
comparable to the one of the effective theory, namely,

ψ(x, y) = exp
(
i
p

2
(x+ y)

)(
A exp

(
i
(
q − p

2

)
r
)

+B exp
(
−i
(
q − p

2

)
r
))

, (9.17)

where the sign ambiguity introduced by the division of p by 2 cancels. We therefore
impose that −π/2a ≤ p/2 ≤ π/2a. Matching the momenta as

qe = q − p

2
, (9.18)

we recover the form of the continuum wave function, eq. (9.8), with pe = p. Note that
the low-energy physics of each p-sector of the lattice theory is centered around qe = 0.
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The energy is

E = −2∆J − 2µ+ 2J cos
(ape

2

)
cos(aqe) . (9.19)

In terms of the momentum qe, the ratio A/B reads

A

B
= −

cos
(ape

2

)
−∆ exp(−iaqe)

cos
(ape

2

)
−∆ exp(+iaqe)

. (9.20)

Explicitly excluding the contact point, the lattice and effective wave functions are
matched regarding the prescription

ψe(x+ a/2, y − a/2)
!

= ψ(x, y) , y > x+ a , (9.21)

where we assume y > x + a and symmetric continuation of the effective wave function.
At this stage, this matching prescription seems somewhat arbitrary. We will comment
on that in Section 9.5. The amplitude ratio is compared according to

A

B
exp(2iqea) =

Ae
Be

. (9.22)

Expanding both sides to second order in qe gives

− 1 +
2iaqe cos

(ape
2

)
∆− cos

(ape
2

) +
2a2q2

e

(
cos
(ape

2

))2(
∆− cos

(ape
2

))2 = −1 +
2iqe
κe

+
2q2
e

κ2
e

, (9.23)

from where we can identify

κe =
∆
(
cos
(ape

2

))−1 − 1

a
. (9.24)

The kinetic mass and rest energy are obtained from the comparison of the energy
dispersion relations, expanded to second order in pe and qe.

E = −2∆J − 2µ+ 2J cos
(ape

2

)
cos(aqe)

≈ −2∆J + 2J − 2µ− 1

4
a2Jp2

e − a2Jq2
e ,

Ee = 2M0 +
p2
e

4m
+
q2
e

m
. (9.25)

From this we find, in agreement with the one-defect sector,

m =
−1

Ja2
, M0 = J(1−∆)− µ . (9.26)

In the case of a weakly anisotropic ferromagnet, ∆ = 1+δ the effective theory predicts
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a bound state with energy

Eb,e = 2M0 +
p2
e

4m
− κ2

e

m

≈ J(δ2 − 2δ)− 2µ− 1

4
a2Jp2

e +
1

4
a2δJp2

e +
J

4
a2δ2Jp2

e (9.27)

whereas from the microscopic lattice calculation, we have

Eb =
J(cos(ape) + 1)

2∆
−∆J − 2µ

≈ J(δ2 − 2δ)− 2µ− 1

4
a2Jp2

e +
1

4
a2δJp2

e −
J

4
a2δ2Jp2

e . (9.28)

The lattice and effective energy agree up to and including order O(p2
e) and O(δ2). In

addition, we can also compare the decay length of the localized state wave function,

κ =
1

a
log

(
cos
(ape

2

)
∆

)
≈ −δ

a
− ap2

e

8
+
δ2

2a

−κe =
1

a

(
∆

cos
(ape

2

) − 1

)
≈ −δ

a
− ap2

e

8
− 1

8
aδp2

e (9.29)

and find that they agree up to second order in pe and to first order in δ. For a model
unitarily equivalent to an antiferromagnet, i.e., ∆ < −1, we find that κe < 0, and the
effective theory does not have a bound state.

9.3. Effective Description for Defects in an SU(2)
Antiferromagnet

For J > 0, the low-energy physics of the exact solution in the one-defect sector, ∆S3 =
−1, is centered around p = π/a. The rapid oscillation of such a state cannot be incor-
porated into a continuum theory and is explicitly excluded in the matching prescription
for the wave functions as

ψ(x) exp(iπx/a)
!

= ψe(x) . (9.30)

The expansion parameter of the continuum theory pe is identified with the lattice mo-
mentum shifted by π/a,

pe = p− π/a . (9.31)

The wave functions again agree to all orders in pe. Expanding the exact energy to second
order in pe gives

E = −J(∆ + 1)− µ+ J
a2p2

e

2
+O(a3p3

e) , (9.32)
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from where we can read off the rest energy and kinetic mass,

M0 = J(−1−∆)− µ , m =
1

Ja2
. (9.33)

These results are consistent with the ones obtained for J < 0, regarding the unitary
equivalence (J → −J and ∆→ −∆).

The low-energy physics of the ∆S3 = −2 sector scattering state is centered around
q − p/2 = π/a. The relative momenta are therefore identified as qe = q − p/2− π/a and
the total momenta as pe = p. Explicitly excluding the rapid oscillation as well as the
contact point, we employ the following matching prescription for the wave function,

ψe(x+ a/2, y − a/2)
!

= ψ(x, y) exp

(
iπ
y − x
a

)
, y > x+ a . (9.34)

In terms of qe, the ratio A/B is

A

B
= −

cos
(ape

2

)
+ ∆ exp(−iaqe)

cos
(ape

2

)
+ ∆ exp(+iaqe)

, (9.35)

equivalent to the J < 0 case, but with flipped sign of ∆, as it should be, regarding the
unitary equivalence of the two models. The wave function in terms of qe is

ψ(x, y) = exp(ip/2(x+ y)) exp
(
iπ
r

a

)
(A exp(iqer) +B exp(−iqer)) . (9.36)

Matching the wave functions according to eq. (9.34) results in the condition

A

B
exp(2iqea) =

Ae
Be

, (9.37)

which is equivalent to the condition we had in the discussion of the ferromagnetic case,
eq. (9.22). Thus the discussion there applies, but with ∆ replaced by −∆.

9.4. Effective Quantum Mechanics for the SU(3) Spin
Chain

Completely analogous to the XXZ-chain, the single-defect eigenstates of the SU(3) spin
chain Hamiltonian are effectively described by a quantum mechanical free particle Hamil-
tonian. The low-energy physics of the χ-type defect is centered around p = 0. The non-
dynamical defects can be described by particles with an infinite kinetic mass. Comparing
the energy eigenvalues of the one particle states, eq. (8.15), to second order in p with
eq. (9.3) and again disregarding the trivial constant ES , we obtain the following effective
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masses for the single defects,

M (0)
s =

1

2
µ3 , ms =∞ ,

M
(0)
φ = µ3 , mφ =∞ ,

M (0)
χ = µ3 −

5J

2
, mχ =

1

Ja2
. (9.38)

In the exact solution of the SU(3) spin chain, we have encountered sectors describing
scattering of distinguishable defects, namely χ- and φ-type defects as well as χ- and
s-type defects. For both cases we have found the same results except for an energy shift
due to the T 3 charge difference of the φ- and the s-type defect. We can therefore restrict
the following discussion to χ-φ scattering.

As an effective theory, we again employ the contact interaction Hamiltonian, but this
time without symmetrizing the resulting wave functions. The effective Hamiltonian in
terms of the total rest mass, M t

0, and the total and reduced kinetic masses mt, and mr

is

H(2)
e = M t

0 +
p2

2mt
+

q2

2mr
, (9.39)

this time with the more general boundary condition

lim
ε→0+

(
ψe(r,R)
∂rψe(r,R)

)
r=+ε

= exp(iθ)

(
a b
c d

)
lim
ε→0+

(
ψe(r,R)
∂rψe(r,R)

)
r=−ε

. (9.40)

An ansatz of the following form is an eigenstate of this Hamiltonian,

ψ(R, r) = exp(ipeR)

{
exp(iqer) +R exp(−iqer) r < 0

T exp(iqer) r > 0
. (9.41)

The boundary conditions at the contact point, eq. (9.40), yields the reflection and trans-
mission amplitudes

Re = −−iaqe + bq2
e + c+ idqe

−iaqe − bq2
e + c− idqe

, Te =
2 exp(iθ)qe

aqe − ibq2
e + ic+ dqe

. (9.42)

If we impose the interaction to be parity invariant (a = d, θ = 0), the reflection and
transmission coefficients simplify to

Re = − bq2
e + c

−2iaqe − bq2
e + c

, Te =
2qe

2aqe − ibq2
e + ic

. (9.43)

In order to match the effective quantum mechanics to the exact results, we start by
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recalling the wave function from the exact solution

ψχφ(x, y) = exp(ipy)

{
A exp(iq(x− y)) +B exp(−iq(x− y)) , x > y

C exp(−iq(x− y)) +D exp(iq(x− y)) , x < y − a
. (9.44)

Since the φ defect is infinitely heavy, the center of mass coordinates are

R = y , r = x− y , (9.45)

and the exact lattice wave function is of the same form as the one in the continuum,
eq. (9.41), if we identify pe = p and qe = q. The reflection and transmission coefficients
are obtained from eq. (8.33) by setting D = 1, C = R, and B = 0 as

R = 0 , T = exp(2iap− 2iaq) . (9.46)

The phase shift in the transmission coefficient is a consequence of the immobile defect
being moved by two lattice spacings during the scattering event. This should not reflect
itself in the continuum effective theory and we explicitly exclude it by using the following
non-trivial matching condition

ψe(R, r) = ψ(R, r) , r < 0 ,

ψe(R, r) = ψ(R− 2a, r + 2a) , r > 0 . (9.47)

For exact and effective reflection and transmission coefficients this implies,

Re = R , Te = T exp(−2iape + 2iaqe) , (9.48)

and therefore

Re = 0 ,Te = 1 . (9.49)

Thus the effective theory is completely free.

Since the φ defect has infinite kinetic mass, the total and reduced kinetic masses are
mt = mφ = ∞ and mr = mχ. With that the dispersion relation of the effective theory
becomes

Ee = M
(0)
φ +M (0)

χ +
q2
e

2mχ
. (9.50)

The exact dispersion relation to second order, on the other hand, again disregarding the
constant energy shift of ES , is

E =

(
2µ3 −

5J

2

)
+

1

2
a2Jq2

e . (9.51)
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Equating eqs. (9.51) and (9.50), we can identify

mχ =
1

Ja2
, M

(0)
φ +M (0)

χ =

(
2µ3 −

5J

2

)
, (9.52)

which is consistent with the rest and kinetic masses obtained by matching the one-particle
wave functions to a free one particle effective quantum mechanics, as listed in eq. (9.38).

Let us now turn to the final case, the scattering of two χ-type defects. Since the exact
solution of this sector is equivalent to the one for an XXZ Hamiltonian with J < 0 and
∆ = −3/2, the same is true for its effective description. The χ-type defects are effectively
described by particles that interact with a (repulsive) contact interaction characterized
by the parameter

κe = −1

a

(
3

2
cos−1

(ape
2

)
+ 1

)
. (9.53)

The rest energy and kinetic mass are consistent with the one-particle effective quantum
mechanics.

9.5. The Non-trivial Matching Prescription

In the previous sections, we have explicitly excluded the contact point in the matching
of lattice and effective two-defect scattering wave functions. This is necessary in order to
obtain a consistent description of the low-energy physics. Seemingly arbitrary, we have
employed the matching condition

ψe(x+ α/2, y − α/2) = ψ(x, y) , (9.54)

with α = a. In the following we will show, that this is the only choice for α, that gives
consistent predictions for the existence of a bound state for the SU(2) spin chain with
arbitrary ∆.

We now examine what happens for α 6= a. In that case, we retrieve for two SU(2)
defects with J < 0,

κ(α) =
∆− cos

(ap
2

)
a∆− α∆ + α cos

(ap
2

) . (9.55)

For total momentum zero, this expression simplifies to

κ(α) =
∆− 1

−∆α+ a∆ + α
=

1

a

(
−1

α/a− γ

)
. (9.56)

with γ := ∆/(∆− 1). For the considered case of |∆| ≥ 1, we find that γ > 0.

From the microscopic solution we know that for ∆ > 1 the effective theory should
support a bound state and for ∆ < −1 it should not. The existence of a bound state is
determined by the sign of κ and therefore by the sign of γ − α/a. Consistency with the
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microscopic solution implies

∆ > 1 ⇒ α/a < γ ,

∆ < −1 ⇒ α/a > γ . (9.57)

If we impose that the effective theory gives consistent results for arbitrary |∆| ≥ 1, the
limits ∆→ ±∞ constrain α/a to 1 and therefore imply that

α = a . (9.58)

We conclude this section with the following comment. An alternative but equivalent
procedure to the non-trivial matching prescription is to employ a contact interaction of
finite extent with a trivial matching prescription as effective theory. The Hamiltonian is
again a free Hamiltonian but with an interval of finite extent, [−α, α], excluded instead
of just a point. In that case, the boundary conditions are applied not to the contact
point but to the edges of the excluded interval, i.e., to the points r = ±α. In that case,
we find, e.g., for the ratio of

A

B
= exp(−2iαq)

q + iκ

q − iκ
. (9.59)

The additional phase factor exp(−2iαq) then arises not from the matching but from the
extended contact interaction.

118



10. Summary and Conclusions

The low-energy physics of spin 1/2 XXZ-Heisenberg chains and the SU(3) spin chain in
a strong magnetic field is well described by an effective quantum mechanics, where the
spin defects are represented by non-relativistic point particles with a contact interaction.

For J < 0, the effective theory captures the physics around zero momentum. The
masses of the one- and two-particle (or defect) sector are retrieved consistently. For
a weak anisotropy ∆ = 1 + δ, the effective theory predicts a weakly bound state in
accordance with the exact results. The predicted effective bound state energy agrees
up to and including O(p2

e) and O(δ2), and the bound state wave function decay length,
κ, agrees up to and including O(p2

e) and O(δ). For a model with ∆ < −1, the contact
interaction does not permit a localized state. Although such a state is present in the
exact solution, it is not part of the low-energy physics of the ∆S3 = −2 sector and
therefore not expected to be part of the effective description. In the case of J > 0,
the effective theory predictions are completely consistent with the results for J < 0,
regarding the unitary transformation U .

The defects in the saturated state of the SU(3) spin chain are classified into two
types of static and one type of dynamical defects. Remarkably, the dynamical defect is
completely analogous to a defect in the saturated state for an XXZ model with ∆ = −3/2
and J < 0, both in its exact and effective description. The dynamical defects do not
form a bound state, they interact repulsively. In the matching of the effective theory to
the exact solution a subtlety arises. The contact point has to be explicitly excluded in
order to obtain a consistent description of the low-energy physics at arbitrary ∆.

This illustrates, on the one side, the power of effective theory methods but also, on the
other side, that great care has to be taken in the application of such techniques. Even
for the simple case considered here, unexpected subtleties may arise.

One motivation for the investigation of the defects in the saturated state of the SU(3)
symmetric spin chain is the possibility of an additional phase transition in the CP (2)
model that can be regularized with an SU(3) spin ladder. The repulsive interaction of
the dynamical defects is a hint that no additional phase transition occurs. In order to
make a definite statement, it would be interesting to generalize this result to the case of
a spin ladder, a two dimensional system.
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[41] J. Fröhlich and P. A. Marchetti, Europhys. Lett. 2 (1986), 933.

[42] P. A. Marchetti, EPL 4 (1987), 663.

[43] A. S. Kronfeld and U.-J. Wiese, Nucl. Phys. B 357 (1991), 521.

[44] A. S. Kronfeld and U.-J. Wiese, Nuclear Physics B 401 (1993), 190.

[45] D. Horn, Phys. Lett. B 100 (1981), 149.

[46] P. Orland and D. Rohrlich, Nucl. Phys. B 338 (1990), 647.

[47] S. Chandrasekharan and U.-J. Wiese, Nucl. Phys. B 492 (1997), 455.

[48] R. Brower, S. Chandrasekharan, and U.-J. Wiese, Phys. Rev. D 60 (1999), 094502.

[49] R. Brower et al., Nucl. Phys. B 693 (2004), 149.

[50] K. G. Wilson, Phys. Rev. D 10 (1974), 2445.

[51] A. Bazavov et al., Rev. Mod. Phys. 82 (2010), 1349.
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