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SUMMARY 

The alarming increase in global temperature observed over the last hundred years, driven by the 

use of fossil fuels, has prompted a shift towards “greener” energy production. An extensive 

expansion of wind power exploitation is expected in the coming years, which makes its effect on 

vulnerable species an issue of growing conservation concern. Among the wildlife affected by wind 

turbines, vultures are probably the most vulnerable avian ecological guild. They have experienced 

a sharp decline during the last decades and their survival in many areas is the result of targeted 

recovery and conservation actions. The bearded vulture (Gypaetus barbatus) represents an 

emblematic example. After having been extirpated from the European Alps, the species once again 

inhabits its former habitat, thanks to the massive long-lasting effort of a dedicated reintroduction 

programme. There are concerns, however, that the sprawl of wind turbines in the Alpine massif 

will jeopardise this successful population recovery. The main goal of this PhD thesis was therefore 

to predict areas in the Swiss Alps where conflicts between bearded vulture conservation and wind 

energy development are likely to occur, thus allowing for a more biodiversity-friendly spatial 

planning of wind turbines. Using a spatially explicit modelling framework with combined 

information of casual observations and GPS data, I predicted species’ potential distribution as well 

as its flight behaviour in relation to landscape, wind, and foraging conditions. First, I investigated 

the species ecological requirements in relation to season and age and translated these into 

distribution maps covering the whole Swiss Alpine arc. Here the focus was on evaluating the ability 

of the models to predict the possible future expansion of the species, a crucial point for anticipating 

potential conflicts arising from the spread of wind energy. During this process, I secondly had to 

delve into methodological challenges, especially with regard to taking objective decisions for 

model tuning. Based on the example of modelling the distribution of the bearded vulture, I 

introduced a new genetic algorithm for hyperparameters tuning, which drastically reduces 

computation time while achieving a model performance comparable or equal to that obtained with 

standard methods. Moreover, I generalised the developed routines so as to make them applicable 

to the most common species distribution modelling techniques and compiled the solutions in an R 

package now available to the scientific community. Thirdly, I explored the flight height patterns of 

bearded vultures to identify key factors driving low-height flight activity and delineated areas 

where the species is likely to fly within the critical height range that is typically swept by the blades 

of modern wind turbines. 

Overall, I found that food availability is an important driver of both distribution and low-
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height flight activity of bearded vultures. Habitat selection differed between seasons and between 

age classes during the cold season. While food availability and geological substrates were the main 

drivers of the distribution during the warm season, I observed a shift in the requirement of adult 

birds in the cold season, where habitat selection was mainly influenced by climatic conditions. This 

suggests that adult birds may be constrained by favourable winter conditions for the selection of 

breeding territories. Combining the ecological requirements of both age classes and seasons I found 

that 40% of the Swiss Alps offers suitable habitat for the species. The model trained with species 

data collected between 2004 and 2014 was able to accurately predict new breeding territories 

established in 2015 – 2019, and thus adequately delineated areas where the spreading population 

will likely to occur in the future and where conflicts with wind energy development might arise. 

The flight-height analysis of the GPS-tagged birds revealed that bearded vultures mainly fly within 

the critical height range swept by the turbine blades (77.5% of GPS locations), which poses the 

species at high risk of collision. Flying at low heights most frequently occurred along south exposed 

mountainsides and in areas with a high probability of ibex (Capra ibex) presence, a key food source 

for bearded vulture. Synthesising the information on bearded vulture distribution with the flight 

height behaviour allowed identifying and mapping areas where the species is likely to fly at risky 

height within its habitat. This high resolution, spatially explicit information represents a valuable 

tool for planners involved in wind energy development as well as a first basis for detailed impact 

assessments, while the methodological framework I developed represents a transferable approach 

for scientists studying potential conflicts between the development of aerial infrastructure and other 

target organisms. 
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GENERAL INTRODUCTION 

The rapid demographic and economic growth of recent decades has been coupled with an 

increasing worldwide need for energy and a consequent sharp rise in CO2 emissions (Dong et al., 

2018). This scenario has raised awareness and concern about the negative effects of greenhouse 

gases on the environment and renewable energy sources have been introduced as alternatives to 

fossil fuels. Accordingly, several countries have started to support green energy production by 

means of energy policies. The European Union has set ambitious and specific targets in this 

direction: the aim to produce 20% of its energy from renewable sources by 2020 (Directive 

2009/28/EC) was recently extended to 32% by 2030 (Directive (EU) 2018/2001), with the 

challenging goal to become the first “climate-neutral” continent by 2050 (European Commission, 

2019). Various technologies have been developed over time to use renewable energy sources, 

including those to harness wind power. Given the rapid development of the wind energy industry 

(Lee & Zhao, 2020), wind power is likely to become one of the energy sources that will lead the 

transition towards green energy production worldwide. Also in Switzerland wind energy is being 

actively developed. Although not many wind turbines have been erected as to 2020, the government 

aims to reach an yearly wind energy production of 4300 GWh by 2050 (Bundesamt für 

Raumentwicklung ARE, 2017). Considering that less than 200 GWh per year are currently 

produced, the erection of numerous new wind turbines is envisioned in the coming years. However, 

around two third of the Swiss territory consists of mountain areas, representing a fragile ecosystem 

characterised by highly specialized species communities. There is thus a risk that the spread of 

wind turbines within these areas will have a negative impact on this valuable habitat and the 

wildlife it harbours. 

 

Wind energy – wildlife conflicts 

There is a general agreement that wind energy is a clean and environmentally friendly energy 

source. Although this holds true when compared to conventional fossil fuels, it still has negative 

effects on humans, climate, and especially on the environment and wildlife (rewied for example in 

Dai, Bergot, Liang, Xiang, & Huang, 2015; Leung & Yang, 2012). Given the rapid development 

of the wind industry, ignoring the negative effects, even those that so far seem only minor, could 

cause serious consequences in the future (Dai et al., 2015; Leung & Yang, 2012). Many studies 

have shown the negative impact on wildlife, whether marine or terrestrial. Offshore wind farms 

impact both flying vertebrates and aquatic fauna, with negative effects ranging from behavioural 
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changes to displacement and direct mortality of fish, marine mammals, sea turtles, birds and bats 

(Goodale & Milman, 2016). Offshore wind energy plants are still less numerous than their onshore 

counterparts (Lee & Zhao, 2020) as their location is largely limited to shallow water. However, 

new technologies have been developed with new floating turbines, which can be moored in deeper 

water. This technology allows to erect wind turbines far from the coast, paving the way for a further 

development of this sector, while their impact on wildlife remains still unclear and needs further 

research (Farr et al., 2021). Also onshore wind turbines cause several negative effects on wildlife. 

Numerous studies have shown their impact on insects (Voigt, 2021), bats (Arnett et al., 2008, 2015; 

Frick et al., 2017; Hein & Schirmacher, 2016; Rydell et al., 2010; Wellig et al., 2018), and birds 

(Coppes et al., 2020; Drewitt & Langston, 2006; Madders & Whitfield, 2006), with the main 

negative effects being displacement (Dohm et al., 2019; Millon et al., 2018; Taubmann et al., 2021) 

and mortality (Aschwanden et al., 2018; Johnson et al., 2002; Perold et al., 2020; Zimmerling & 

Francis, 2016). Among birds, large soaring raptors are the most affected by collision (Carrete et 

al., 2009; Dahl et al., 2012; de Lucas et al., 2012; Ferrer et al., 2012; Heuck et al., 2019; Katzner 

et al., 2017; Madders & Whitfield, 2006). Most raptors, such as vultures, are long-lived species 

with a low reproductive rate, often coupled with a delayed maturity. With this demographic 

predisposition, even a small increase in mortality could be detrimental (Beston et al., 2016; Carrete 

et al., 2009; Schaub et al., 2009; Watson et al., 2018). Moreover, vultures have a limited frontward 

visual field which limits their vision ahead (Martin et al., 2012) and consequently increases the risk 

of collision with turning turbine blades. In addition, vultures need specific wind conditions to 

sustain their soaring flight, conditions that are often available in areas selected for wind energy 

development (Poessel, Brandt, et al., 2018; Rushworth & Krüger, 2014). As vultures have 

experienced a sharp decline over the last decades (Ogada et al., 2012, 2016; Safford et al., 2019), 

there is a serious concern that the expected development of wind energy will pose a serious threat 

to them. This, together with the above mentioned traits, makes vultures suitable model species for 

assessing potential conflicts between wind turbine construction and raptor conservation. 

 

The bearded vulture 

The bearded vulture is a long-lived large soaring raptor with a bone-based diet (mainly marrow) 

(Margalida et al., 2009; Margalida & Villalba, 2017) that inhabits several mountain areas of the 

Old World. It breeds on cliffs and manifests a late sexual maturity with a remarkably delayed age 

at first successful reproduction (10.4-11.4 and 8-9 years on average in the Pyrenean and Alpine 
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populations, respectively) (Antor et al., 2007; López-López et al., 2013; Lörcher & Hegglin, 2020). 

Although bearded vultures usually lay two eggs, only one chick survives so reproductive rate is 

typically low (Margalida et al., 2003, 2004; Schaub et al., 2009). The species is sparsely distributed 

across the southern part of the Palearctic region and in the southern and eastern parts of the 

Afrotropical region. Based on morphological characteristics, Hiraldo et al. (1984) distinguished 

two subspecies: Gypaetus barbatus barbatus occurring in Nord Africa and Eurasia, and Gypaetus 

barbatus meridionalis present in South and East Africa. There are clear morphological differences 

between the two subspecies which probably result from adaptation to different environmental 

conditions, as the subspecies barbatus inhabits mountainous regions with a harsher climate 

(Delibes et al., 1984; Margalida, Negro, et al., 2008). Many bearded vulture populations have 

suffered strong declines and their distributional ranges have shrunk over time, as observed in Nepal 

(Acharya et al., 2010) and in southern Africa (S. C. Krüger et al., 2014). Within Europe the species 

was extirpated from the Alps (Mingozzi & Estève, 1997), the Balkans (Andevski, 2013), Andalucía 

in Spain (Simón et al., 2007), and Sardinia in Italy (Schenk et al., 2004). Towards the end of the 

twentieth century isolated breeding populations of bearded vultures remained only in the Pyrenees 

(Spain and France), Crete, and Corsica (Andevski, 2013; Margalida, Heredia, et al., 2008). Given 

the dramatic situation, a large-scale reintroduction project started in 1978 to reinstate the species 

in the Alpine arc (Coton & Estève, 1990; Frey & Walter, 1989). Regular releases of juvenile birds 

started in Austria in 1986, followed by continental France (1987), Switzerland and Italy (1991). 

Lately, the project was extended to Spain (2006) and Corsica (2016) with the aim of fostering the 

connection among the different European populations. Since the first successful breeding event in 

1997 (Heuret & Rouillon, 1998), thanks to this ambitious and successful programme, 308 chicks 

naturally fledged in the Alps (Llopis, 2020) and the population reached an estimated size of 300 

individuals in 2020 (Lörcher & Hegglin, 2020). 

The decline of the European bearded vulture populations occurring throughout the 

nineteenth and twentieth centuries was largely driven by direct and indirect human persecution 

(Mingozzi & Estève, 1997; Schenk et al., 2004; Simón et al., 2007). Shooting and poisoning was 

widely adopted for pest control and game management while specimens were collected for 

taxidermy (trophies and museums) (Mingozzi & Estève, 1997; Schenk et al., 2004; Simón et al., 

2007). These threats have not completely disappeared nowadays. Poisoning, which obviously also 

affects other scavengers (Berny et al., 2015; Margalida, 2012; Margalida et al., 2013; Pantović & 

Andevski, 2018), is listed as a critical threat to the bearded vulture in the European recovery action 
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plan (Izquierdo, 2017). Indeed, Margalida et al. (2008) found an increase in mortality due to 

intentional and unintentional poisoning in Europe since the start of the releasing project. Moreover, 

Krüger et al. (2015) ascribed half of the bearded vulture fatalities found during their study in 

Southern Africa to poisoning events. Although poisoning is still the major source of mortality 

worldwide, disturbance is also recognized as a threat to the species, since it negatively affects 

breeding success (Arroyo & Razin, 2006). Further threats are lead exposure (Hernández & 

Margalida, 2009; Margalida et al., 2013), the use of veterinary drugs like diclofenac (Acharya et 

al., 2010), and collisions with aerial infrastructures such as powerlines or other aerial cables 

(Margalida, Heredia, et al., 2008). Recently, a new threat, wind energy development, potentially 

impacts the species, adding to the many threats listed above. 

The bearded vulture is considered globally as near threatened by the IUCN Red List 

(BirdLife International, 2017), vulnerable in Europe (BirdLife International, 2015a) and critically 

endangered in Switzerland (Keller, Gerber, et al., 2010) where it is also included among the priority 

species requiring a targeted recovery programme (Keller, Aye, et al., 2010). 

 

Bearded vulture and wind energy in Switzerland 

Given their delayed sexual maturity and the low reproductive rate, bearded vultures are particularly 

vulnerable to any anthropical source of mortality. Schaub et al. (2009) prospected that an increase 

of 50% in the annual mortality would lead to a decline of the Alpine bearded vulture population. If 

the development of wind energy within the Swiss Alps doesn’t account for this emblematic species, 

there is a high risk that the successful reintroduction project will be jeopardised. The Swiss concept 

for wind energy development excludes buffer areas of five kilometers around nesting locations 

known in 2014 (Bundesamt für Raumentwicklung ARE, 2017) as a measure to limit collision risk 

for bearded vultures. Similarly, Horch et al (2013) proposed to exclude buffer areas of 15 

kilometers around breeding and releasing sites. Since 2014 several new breeding sites occurred as 

consequence of the bearded vulture population expansion, demonstrating that this method falls 

short to safely protect the species. As Switzerland hosts most of the breeding territories of the 

Alpine population (Lauper, 2020), more effective planning is required. A planning that can 

effectively protect both the present and future bearded vulture population. 

 

Assessing conflicts between wind energy and wildlife 

Several methods have been used to estimate the impact of wind energy on wildlife. Concerning 
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conflicts related to avifauna, many studies have focused on the effect of a certain wind energy 

project. Data are either collected by direct observations from vantage points or indirectly through 

radio telemetry or GPS devices to estimate densities, space use and behaviour of the studied species 

in the surrounding of wind turbines and thus assess the negative effects they might face from the 

realisation of a wind energy project (Strickland et al., 2011). For example, the collected data can 

be used to estimate the risk of collision, either empirically (Hoover & Morrison, 2005) or by using 

tailored collision risk models (Masden & Cook, 2016), or to assess displacement (Dahl et al., 2012; 

Dohm et al., 2019). Even though these methods are crucial for assessing a project’s impact prior to 

its implementation or for evaluating the negative effects after its construction, they are mostly site-

specific and cannot be generalised to other areas (but see Coppes et al., 2020). Other approaches 

look at the problem at a different scale. They aim to provide information which allows identifying 

broad areas of conflict, thus enabling strategic wind energy development planning (e.g. Braunisch, 

Coppes, Bächle, & Suchant, 2015). The simplest of these approaches relies on banning wind energy 

development within buffer areas around sensitive locations (Bright et al., 2008; Janss et al., 2010; 

Venter et al., 2019). Other approaches equate areas of conflict with areas where sensitive species 

occur (Allinson, 2017; Bright et al., 2008; Mc Guinness et al., 2015). Although the latter two are 

valid methods to delineate conflict zones, they fall short with regard to two key aspects, namely to 

estimate conflicts in areas where data are deficient or to anticipate conflicts in situations of non-

equilibrium of the population, e.g. when dealing with reintroduced species that do not yet occupy 

all suitable habitat. Predictive models in contrast, can be used to project their predictions also onto 

areas where data are missing or, in the case of species distribution models (SDMs), to predict the 

potential distribution of a species, and are thus powerful tools for anticipating future conflicts. 

However, for constructing valid models, many decisions have to be taken at various stages 

of the model building process, all of them potentially affecting the model predictions (Guisan & 

Thuiller, 2005). An important decision is the selection of environmental variables which might be 

particularly challenging when the ecology of the species is barely known or a choice should be 

made among ecologically equally relevant predictors. Moreover, many of the available predicting 

model algorithms require defining the values of their hyperparameters before model training, 

values that are specific of the modelling problem and dataset. Tuning the model hyperparameters 

is very time-consuming because it involves training and evaluating as many models as the possible 

combinations of their hyperparameters’ values. Therefore, there is a need of new methods to 

efficiently automate those decisions and objectively decide among predictors. 
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Scope of the thesis 

The main objective of the thesis was to develop a spatial modelling framework that allows 

identifying and anticipating conflict zones where the construction of wind energy infrastructure 

potentially interferes with vulnerable species, especially raptors. Using the example of the bearded 

vulture in the Swiss Alps, the aim was to 1) enhance methodological approaches to predict the 

spatio-temporal behavior of the target species and 2) provide a precise spatial planning tool that 

can support decision makers in avoiding turbine placement in key areas for species conservation. 

To achieve this goal I first had to refine our understanding of the species’ ecological requirements 

and then translate these into detailed spatially explicit information on species occurrence and 

behavior. Best practice suggests that wind turbines should be located away from areas of 

conservation importance, where endangered species occur and concentrate their activities (Arnett 

et al., 2015; Drewitt & Langston, 2006). However, when dealing with released species, such as the 

bearded vulture, it must be considered that they may spread into new, previously unconsidered 

areas, thus generating unforeseen conflicts. At first, I assessed the ecological requirements of the 

species and predicted its current and potential distribution across the entire Swiss Alpine arc so as 

to identify, on a broad-scale, the areas where environmental conditions are suitable for the bearded 

vulture, i.e. areas where attention should be focused from the perspective of wildlife-friendly wind 

turbine planning. I then delved into the methodological problems that arose during the analysis of 

the bearded vulture distribution, developed new methodological approaches to perform variable 

selection and hyperparameters tuning for SDMs, and integrated them into a novel R package 

released in CRAN. On a second step, to refine this model and predict hotspots of potential conflict 

within the area of species occurrence, I analysed the flight height patterns of bearded vultures in 

relation to environmental, wind, and foraging conditions. Finally, I combined predictions of habitat 

selection and flight behavior to provide evidence-based and spatially explicit information on 

potential airspace conflicts between bearded vulture and wind energy that can assist policy makers, 

environmental consultants, wildlife managers, and wind energy companies in the selection of areas 

for wind turbine installation that are as little detrimental to the species as possible, already at an 

early stage of planning.  
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Thesis outline 

This thesis consists of three chapters. 

Chapter 1 focusses on the ecological requirements and potential distribution of the bearded vulture 

in the Swiss Alps. Starting from casual observations of bearded vultures I studied the habitat 

selection of the species accounting for potential differences between immatures and adult 

individuals, i.e. distinguishing between the prospecting and settling phase, and between the warm 

and cold season, representing different weather conditions and consequential constraints with 

regard to foraging and reproduction. Given that the species has been reintroduced in the Alps, 

released birds are gradually recolonising their former range. Areas that have not been recolonised 

yet might see the establishment of the species in the coming decades due to a rapidly expanding 

population. Therefore, one of the main objectives was to properly evaluate the capacity of the 

models to correctly predict the future spatial expansion of the species in Switzerland. A problem 

that arises when using casual observations collected without systematic sampling scheme is that 

the data might potentially be biased towards easy accessible areas (Fourcade et al., 2014). For that 

endeavor we tested different bias-correction methods in order to avoid flawed predictions. The 

outputs of this Chapter are summarised in maps representing the probability of bearded vulture 

occurrence in each season and age class. I also combined the information of each season and age 

class into a final map that ranks suitable habitat according to the probability that an area would be 

used year round by all age classes, thereby highlighting sensitive areas and thus providing a useful 

and readable tool for stakeholders. 

 

Chapter 2 describes in detail the novel methodologies I developed for the species distribution 

models applied in Chapter 1, so as to make the routines available to other researchers and 

practitioners and thus enhance reproducible research. The main contributions of this Chapter are 

the automation of variable selection processes based on the signal produced by several evaluation 

metrics (data-driven variable selection) and the use of a genetic algorithm to reduce the 

computation time required to select among numerous hyperparameters’ values. Although in my 

work I used a single modelling approach, i.e. Maxent (Phillips et al., 2006), I generalised these 

routines to make them applicable to the most common SDM algorithms. Moreover, I 

complemented each algorithm by interactive charts showing in real-time the effect of each 

implemented step on model performance to ease the understanding of the underlying process. 
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In Chapter 3 I analysed a large dataset of GPS locations collected by bearded vultures within 

Switzerland to understand which environmental conditions drive the flight height patterns of the 

species. Based on the assumption that flight activity occurring below 200 meters above ground 

level would be highly risky for the species if a wind turbine were present, I modelled the probability 

of a bearded vulture flying below this critical height given environmental, foraging, and wind 

conditions. The model was projected to the entire Swiss Alpine range and combined with the 

outputs of Chapter 1 to obtain detailed spatially explicit information of flight activity within the 

species habitat. In that way I could delineate areas suitable for the species where flights would 

likely occur at risky height from the perspective of the species conservation. This map embraces 

the whole complexity of habitat selection and habitat use and allows a better siting of wind turbines 

within the Swiss Alps. 
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ABSTRACT 

Global warming impels countries to dramatically reduce their release of greenhouse gas emissions 

and increase their reliance on green energy, notably wind power. Yet, without cautious planning, 

the sprawl of wind turbines could negatively impact biodiversity, especially flying vertebrates that 

are otherwise already threatened. Inherent risks for vulnerable and endangered species are usually 

mitigated by banning constructions within buffer areas around nesting locations. This approach, 

however, neglects species’ range dynamics and particularly falls short of protecting expanding 

populations, as in the case of natural returns or reintroduction programmes. We present here an 

alternative approach to mitigate wildlife-infrastructure conflicts, applying it to the bearded vulture, 

a species reintroduced in the European Alps. Combining casual observations and GPS locations of 

tagged individuals, we built several predictive distribution models with respect to bearded vulture 

age class and season and tested for models’ ability to correctly predict its future expansion in the 

Alps. Although immature and adult birds showed different habitat se- lection patterns, both in 

summer and winter, wide areas of the Swiss Alps (40%) offer suitable habitat. The above combined 

information enabled correctly predicting today’s use by breeding bearded vultures of previously 

unused areas. This study not only provides a detailed analysis of the bearded vulture’s ecological 

requirements in the Alps but also helps delineating areas where conflicts with wind energy 

production and other aerial infrastructure will likely occur in Switzerland. The resulting maps 

provide a large-scale planning tool that companies, landscape planners and wildlife managers can 

use in any environmental risk assessments. 

 

 

 

 

Keywords: environmental impact assessment, growing population, reintroduction program, risk 

mitigation, spatial planning, wildlife-human conflicts, wind energy 
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INTRODUCTION 

Climate change and the increase in energy demand are leading to a progressive shift towards fossil-

free energy production worldwide. With the Paris Climate Agreement ratified in 2015, nations have 

agreed to diminish global warming by adopting several measures, notably increasing the share of 

their total energy consumption with at least 20% renewable energy. Among the available renewable 

energy sources, wind power has developed rapidly during the last decades (Leung & Yang, 2012) 

and is now playing a key role in the energy transition, having reached a worldwide capacity of 651 

GW in 2019 (Lee & Zhao, 2020). 

Although wind energy does not release greenhouse gases into the atmosphere, wind 

turbines can have a negative impact on wildlife, especially on flying vertebrates, i.e. bats (Arnett 

et al., 2015; Rydell et al., 2010) and birds (Barrios & Rodríguez, 2004; Carrete et al., 2009). The 

main negative effects are mortality resulting from collisions with rotor blades and related power 

lines, and displacement caused by disturbance or habitat loss (Drewitt & Langston, 2006; Madders 

& Whitfield, 2006). Large soaring raptors are highly affected by collisions (Carrete et al., 2009; 

Dahl et al., 2012; de Lucas et al., 2012; Ferrer et al., 2012; Katzner et al., 2017). Possible 

explanations include: 1) a low reproductive rate which, usually combined with a late sexual 

maturity, makes each additional source of mortality detrimental (Beston et al., 2016; Carrete et al., 

2009; Watson et al., 2018), 2) a limited visual field in the direction of movement, which reduces 

the perception of vertical obstacles ahead (Martin et al., 2012), and 3) the fact that the wind industry 

often deploys on areas with landforms and wind conditions similar to those selected by raptor 

species (Katzner et al., 2012; Poessel, Brandt, et al., 2018; Rushworth & Krüger, 2014). Collision 

with wind turbines is thus considered a major or even critical threat for some vulture species (Botha 

et al., 2017). 

Vultures represent a highly vulnerable ecological guild (Buechley & Şekercioğlu, 2016). 

Their populations have steadily and dramatically declined over the last few decades in many 

regions (Ogada et al., 2012, 2016; Safford et al., 2019), with few exceptions (e.g. griffon vulture 

(Gyps fulvus) in Western Europe (Safford et al., 2019)). Conservation action has thus been taken 

to avoid global or local extinction of many vulture species. For example, the withdrawal of 

diclofenac as veterinary drug prevented a further decline of vultures in India, Nepal and Pakistan 

(Cuthbert et al., 2011; Galligan et al., 2014; Prakash et al., 2012) while a release programme was 

necessary to save the California condor (Gymnogyps californianus) from extinction in North 

America (Walters et al., 2010). Other reintroduction programmes were initiated in Europe to 
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reinstate or reinforce vulture populations, including the cinereous vulture (Aegypius monachus) in 

France (Eliotout et al., 2007) and Bulgaria (Stoynov et al., 2019), and the griffon vulture in 

Southern France (Sarrazin et al., 1994), in the Balkans (Demerdzhiev et al., 2014; Stoynov et al., 

2018), in Sardina (Italy, Aresu et al., 2020) and in Cyprus. The bearded vulture (Gypaetus 

barbatus) was similarly reintroduced into the European Alps (Robin et al., 2004; Schaub et al., 

2009). 

The massive expansion of the wind industry in recent times represents a new rapidly 

growing source of threat for vultures and other raptors, which calls for a meticulous spatial planning 

of wind plants deployment. In Europe, the precautionary principle is usually applied to protect 

endangered species potentially affected by wind turbine infrastructure (Braunisch et al., 2015; 

Kriebel et al., 2001). This typically results in wind turbines being excluded from buffer areas 

around sensitive locations, principally nesting sites, with buffer radii defined based on expert 

knowledge or estimated according to species’ home range size (Bright et al., 2008; Janss et al., 

2010; Venter et al., 2019). However, this approach is limited and cannot safely protect the 

populations of vulnerable species for several reasons. Firstly, it is static. As it is based on the extant 

knowledge at a specific point of time, it inherently lacks predictive power and thus cannot address 

nor anticipate future conflicts, which is especially problematic for highly dynamic, expanding or 

declining populations (Braunisch et al., 2015). Secondly, it normally accounts for habitat selection 

at one life stage, namely breeding, but species could use habitats diversely at different life stages 

or times of the year (Hirzel et al., 2004; S. Krüger et al., 2014). Spatial and temporal variations in 

occurrence probability are thus usually not considered, with potentially dramatic consequences for 

both collision-prone species and wind energy planners: expanding populations may lose potentially 

suitable habitat while planners may face new, unforeseen restrictions because an endangered 

species suddenly appears in an area that had been pre-selected for a wind farm while the species 

was not yet inhabiting it. This may particularly be the case for reintroduced species that have not 

yet re-colonized parts of their historical distribution range. A good planning instrument identifying 

areas of actual and future potential conflict with wind turbine installations and other aerial 

infrastructures should be able to predict future circumstances and incorporate information on 

species’ ecological requirements at different life stages and times of the year. 

In our study, we focused on season and age-related variations in habitat selection of an 

endangered vulture species, the bearded vulture, a long-lived cliff-nesting bird that was extirpated 

from many European countries at the beginning of the 20 century (Mingozzi & Estève, 1997). An 
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ambitious large-scale reintroduction programme started in 1978 to reinstate bearded vulture 

populations in the Alpine arc. Releases of juvenile birds began in Austria as early as 1986 (Frey & 

Walter, 1989), and continued regularly in three additional countries: continental France (1987), 

Italy and Switzerland (1991), with more recent reintroductions in Spain (2006) and Corsica (2016). 

Since 1986, 227 individuals have been released from a captive population while 272 chicks 

naturally fledged in the wild in the Alps, all the latter originally stemming from reintroduced 

ancestors. If Schaub et al. (2009) evidenced a high annual survival probability for the Alpine 

population (ca 0.88 during the first year, 0.96 afterwards), they feared that a 50% increase in the 

annual mortality rate would result in a population decline (Schaub et al., 2009). This means that 

even a few additional fatalities per year, as feared with the ongoing and future expansion of wind 

turbines throughout the Alps, would reverse the steady population growth and jeopardize this long-

term reintroduction program whose success has been so inspirational. 

Regarding species’ ecological requirements in the Alpine range, if Hirzel et al. (2004) 

already distinguished two different age classes: juveniles/immatures (i.e. individuals typically in 

an exploring phase) and subadults/adults (phase of territory settlements), their model was restricted 

to an area of 5200 km2 in the SW Swiss Alps and did not account for seasonality. The present 

model is not only based on much more information, including GPS tracked individuals in addition 

to casual observations, but it encompasses the whole Swiss Alps and considers two time-periods. 

Its objective is also not only to predict habitat suitability throughout the Swiss Alps but also to 

properly evaluate the models’ potential to predict the future spatial expansion of the spreading 

Alpine bearded vulture population from a conservation perspective. In effect, identifying broad-

scale areas that are – and will be – potentially suitable for the species in the Alps is the only way 

to prevent conflicts with the development of wind energy and other aerial infrastructures. 

 

MATERIAL AND METHODS 

Study area and species 

The study area encompassed the entire Swiss Alpine range (Fig. 1), covering 25,808 km2, which 

represents about 13.4% of the total area of the Alpine massif (192,753 km2). Four of the six 

biogeographical regions present in Switzerland (Gonseth et al., 2001) were included: Northern 

Alps, Inner Western Alps, Inner Eastern Alps, and Southern Alps. Elevation ranges from 191 to 

4611 m a.s.l., with an average of ca 1720 m a.s.l. The area is characterized by highly heterogeneous 
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climate conditions, with an oceanic climate in the Northern Alps, continental and subcontinental 

conditions in the Inner Alps, and Insubric climate in the Southern Alps. The variety of climate 

conditions together with variegated geological substrates lead to a fairly inhomogeneous landscape 

across the study area. Since the beginning of the reintroduction programme, the bearded vulture 

population has been steadily increasing within the Swiss Alpine range. After first successful 

reproductions in 2007 in both the Western and Eastern Swiss Alps (Biollaz et al., 2011), the number 

of breeding pairs has increased to 21 breeding territories in 2019. The bearded vulture is a long-

lived species characterized by a low fecundity rate (clutch size of two eggs with obligate siblicide) 

(Margalida et al., 2003, 2004; Schaub et al., 2009) and a delayed age at first successful breeding 

(on average 11.4 years in the Pyrenees) (Antor et al., 2007). It feeds mostly on bones (Margalida 

& Villalba, 2017). It is listed as critically endangered in Switzerland (Keller, Gerber, et al., 2010) 

and vulnerable in Europe (BirdLife International, 2015b). 

 

Figure 1: Map of the study area (grey shaded) that encompasses the whole Swiss Alps, with casual 

observations of adult (violet) and immature (orange) bearded vultures between 2004 and 2014 

(unfiltered datasets). 
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Environmental predictors 

Environmental predictors were chosen based on extant literature (e.g. Hirzel et al., 2004) and 

ecological knowledge of the species. The original data sources consisted of digital maps in a vector 

or raster format. Vector data were first converted into raster data with 25 m spatial resolution. 

Given that the bearded vulture habitat selection is probably driven by habitat quality over a vast 

area, we accounted for the conditions within a circular moving window of 564 m radius (i.e. 1 

km2), corresponding to the sight-field scale of the species (Hirzel et al., 2004), by calculating the 

average (continuous variables) or the proportion (Boolean variables) within this range. The 

resulting raster maps were then resampled at 100 m spatial resolution. In that way we compiled a 

total of 31 environmental variables that can be grouped into six categories: 1) climate, 2) 

topography, 3) food availability, 4) geological substrate, 5) anthropogenic infrastructure, and 6) 

land cover and land use (Table 1). Solar radiation was calculated with the Area Solar Radiation 

tool available in the ArcGIS software version 10.2, taking 2009 as reference year. Chamois and 

ibex occurrence probabilities were modelled with Maxent version 3.4.1 (Phillips et al., 2006, 2017) 

(see supplementary material) and used directly as proxies for the potential availability of chamois 

and ibex carcasses. Sheep and goat densities were estimated by dividing the number of sheep and 

goats occurring in each community (taken as the average stock size between 2004 and 2014) by 

the area of alpine pastures present on the territory of the same community. 

 

Data on wind turbines 

Locations of operational wind turbines were gathered from the inventory provided by the Swiss 

Federal Office of Energy (Bundesamt für Energie BFE, 2014). We considered only tall wind plants 

within the study area, excluding small wind turbines (hub height 9–26 m, blade diameter 4–18 m) 

as risks of collision with low rotors is unlikely for this species. An additional dataset with the 

planned wind turbines was provided by the Swiss Foundation for Landscape Protection 

(Windparkkarte Schweiz - Stiftung Landschaftsschutz Schweiz, n.d.). 
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Table 1: Environmental predictors used for the analysis of the bearded vulture potential 

distribution across the Swiss Alps with unit of measurement, abbreviation and data source (warm 

season: May to October; cold season: November to April). 

Category Description Unit Abbreviation Source 

Climate Average precipitation in the cold season mm prec122 WSL a 

 Average precipitation in the warm season mm prec57 WSL 

 Average solar radiation in the cold season WH/m2 solar_rad122 DHM b 

 Average solar radiation in the warm season WH/m2 solar_rad57 DHM 

 Average temperature in the cold season °C temp122 WSL 

 Average temperature in the warm season °C temp57 WSL 

 Average wind speed at 100 m above ground m/s windspeed100 BFE c 

Topography Sine of the aspect -1 to 1 eastness DHM 

 Cosine of the aspect -1 to 1 northness DHM 

 Standard deviation (SD) of the altitude m roughness DHM 

 Slope degree slope DHM 

 Topographic Position Index d Index tpi DHM 

Food Ibex occurrence probability 0 to 1 ibex CSCF e 

 Chamois occurrence probability 0 to 1 chamois CSCF 

 Sheep and goat warm season density N/ha sheep_goat BsF f 

Geology Limestone frequency % limestone GeoKarten500 g 

 Gneiss frequency % gneiss GeoKarten500 

 Granite frequency % granite GeoKarten500 

 Other rock frequency h % other_rocks GeoKarten500 

Anthropogenic Distance from skilifts m skilift_d Vector 25 i 

 Distance from cableways, not including ski-lifts m cableway_d Vector 25 

 Distance from roads and railways m road_rail_d Vector 25 

Land cover Bush frequency % bush Vector 25 

 Forest frequency % forest Vector 25 

 Glacier frequency % glacier Vector 25 

 Marshland frequency % marsh Vector 25 

 Grassland and unproductive vegetation frequency % other_veg Vector_25 + BsF 

 Permanent culture frequency % permanent Vector 25 

 Rock frequency % rock Vector 25 

 Scree frequency % scree Vector 25 

 Distance from lakes and rivers m water_d Vector 25 
a Federal Institute for Forest, Snow and Landscape Research WSL; available upon request: www.wsl.ch. 

b Digital Height Model of Switzerland (Swisstopo): 

https://shop.swisstopo.admin.ch/en/products/height_models/dhm25. 

c Swiss Wind Atlas (Bundesamt für Energie BFE, 2016). 

d Topographic position index according to Wilson (1984). 

e Centre suisse de cartographie de la faune (CSCF): http://www.cscf.ch/cscf/de/home.html. 

f Federal Administration for Statistic Switzerland (BsF): https://www.bfs.admin.ch/bfs/de/home/statistiken.html. 

g Geo Maps: https://shop.swisstopo.admin.ch/de/products/maps/geology/GK500. 

h This environmental predictor includes gravels, sands, marl, conglomerate, and sandstone. 

i Digital Cartographic Model of Switzerland (Swisstopo): 

https://shop.swisstopo.admin.ch/en/products/maps/national/vector/smv25. 
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Species data 

Three different data sources were used for the analyses: casual observations, locations collected by 

birds tagged with Global Position System (GPS) devices, and nesting site locations. Casual 

observations, collected across the entire Swiss Alps between 2004 and 2014, were used to model 

the potential distribution of the bearded vulture. However, such observations, obtained without 

systematic sampling schemes, might suffer from a sampling bias towards easily accessible areas 

(Fourcade et al., 2014) and we had to account for it. Several techniques, usually referred to as 

thinning or filtering, have been successfully adopted to reduce the effect of sampling bias (Aiello-

Lammens et al., 2015; Varela et al., 2014), but their application cannot be generalized to all 

datasets. The best way to assess if the application of a given filter to the data improves the model 

performance is to train a model with filtered data and evaluate it against an independent, 

systematically collected dataset (Boria et al., 2014). We therefore used GPS locations from tagged 

bearded vultures, which can be considered free from any bias, to evaluate different filtering 

methods applied to the casual observations. Moreover, the dataset containing the precise location 

of all known nesting sites in 2019 (irrespective of breeding success that year) was used to verify if 

our models, trained using the casual observations from 2004 to 2014, could correctly identify 

breeding areas that established after this period. 

 

Casual observations 

Observations of bearded vulture were obtained from two databases: IBM (International Bearded 

Vulture Monitoring) and Ornitho.ch. IBM collects all the observations of the species in an 

international framework, coordinating the monitoring activities of the different partners of the 

reintroduction project. In its database are entered only observations which have been verified by 

local coordinators. Ornitho.ch is the Swiss birding online platform, into which amateur bird 

watchers and professional ornithologists enter their observation data. Each of the retrieved bearded 

vulture observations (N = 3890) included date, precise location and photographs of the bird. The 

portraits were inspected to determine bird’s age and accordingly classify the observations into two 

age classes: juveniles/immatures and subadults/adults. Juveniles/immatures included all 

individuals with a maximum age of three years (i.e. dark-brownish head and plumage, hereafter 

referred to as immatures), subadults/adults all older individuals (i.e. light colored head and 

underparts, hereafter referred to as adults). Moreover, we distinguished between observations 

collected during the warm season (May–October) and observations collected during the cold season 
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(November–April), producing a total of four distinct datasets that were analyzed separately. For 

each dataset, we randomly retained only one observation per 100 × 100 m raster pixel (hereafter 

referred to as unfiltered dataset, Fig. 1) to which different filtering methods were then applied. 

 

GPS data 

Within the alpine reintroduction programme framework, 81 captive-bred, young bearded vultures 

equipped with a GPS device were released since 2005. The GPS tag was fixed with a leg loop 

harness that included a weak breaking point (Hegglin et al., 2004). In addition, 10 wild-hatched 

fledglings (in 2016–2019) and one adult bird (2017) were tagged with the same method. All GPS 

data collected between 2004 and 2014 were from immatures. Therefore, assuming that the casual 

observations of adult bearded vultures are affected by the same sample bias as that of immature 

birds, we tested the different filtering techniques on the GPS locations of immatures, and then 

applied the best performing filter to the adult dataset. As we were not only interested in knowing 

the accuracy of contemporary models but also of their ability to predict future circumstances, we 

split the GPS positions into two time frames: fixes collected from 2004 to 2014, covering the same 

time period as casual observations, and fixes collected between 2015 and 2019, during which the 

species had been expanding into new areas not previously occupied. For this second time frame, 

GPS data from adults were also available (i.e. the adult tagged in 2017 and nine tags active for 

more than 36 months) and therefore tested in our final models. 

The GPS data were prepared as follows: 1) for each tagged bird we excluded all the GPS 

fixes recorded during the first eight weeks, to limit the bias in favor of the releasing or nesting site; 

2) all GPS positions collected outside of the Swiss study area, i.e. abroad, were excluded; 3) a 

subsample of two observations per month was randomly extracted from the remaining locations 

(we opted for two observations in order to obtain an amount of records comparable with the testing 

dataset held apart from the casual observations, see Table 3); 4) we merged the subsamples 

generated from each bird and randomly retained only one observation per raster pixel. This process 

was repeated for each season, age, and time frame, generating six datasets (warm and cold seasons 

for immatures during 2004–2014, and for immatures and adults during 2015–2019). 

 

Filtering procedure 

In order to identify the best filter type and intensity for our observation datasets, we tested two 

different techniques, namely the geographic filter (Aiello-Lammens et al., 2015), which selects 
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only one location within a predefined geographic distance, thereby removing spatial clumping, and 

the environmental filter (Varela et al., 2014), which subdivides the environmental gradient (e.g. of 

potentially bias-prone variables) into regular bins and selects only one location per bin, thereby 

reducing clumped samples in particular environmental conditions. Each filtering method was 

applied with three different intensity levels (i.e. geographic filter: different radii; environmental 

filter: different bin sizes). The geographic filter was performed using the function thin implemented 

in the spThin R package (Aiello-Lammens et al., 2019), and testing distances equal to 250, 500, 

and 1000 m. We tested two environmental filters, one built following the recommendation of 

Castellanos et al. (2019) using the first two Principal Component axes derived from all 

environmental variables used in our study as environmental gradients, and the other built using the 

distance from roads and the distance from cableways/ski-lifts, two variables defining site-

accessibility in the Alps and thus hypothesized to affect sampling intensity. Both environmental 

filters were applied dividing the range of their variables into 200, 100, and 80 equal-sized bins. 

This way we tested a total of nine filters in addition to the unfiltered dataset. The filtering methods 

were tested separately for the warm and the cold seasons, as mountain regions are less accessible 

during winter due to the harsh conditions (i.e. low ambient temperature, strong wind and deep snow 

cover), with the sampling bias changing accordingly. The performance of each filter was finally 

evaluated with the independent datasets generated from GPS locations using the area under the 

receiver operating characteristic (ROC) curve (AUC) (Fielding & Bell, 1997). 

 

Modelling approach 

Since 1986, the first year with releases, the bearded vulture is recolonizing the Alpine range from 

the few sites of reintroduction scattered across the massif. In this context, data on species absence 

are unreliable (in terms of reflecting habitat unsuitability) given that in the future the species will 

probably settle in areas that have not yielded any observation yet. We therefore selected the 

maximum entropy approach, implemented in Maxent version 3.4.1 (Phillips et al., 2006, 2017) that 

is widely used to assess the distribution of a species when only presence data is available. This 

method discriminates environmental conditions at presence locations against the overall conditions 

prevailing in the study area (i.e. at background locations) to find the probability distribution that 

maximizes the entropy while fitting the best possible distribution of the species data. 

Each of the ten datasets prepared from the casual observations of immature bearded vultures 

per season (unfiltered dataset plus the nine filtered datasets, see above) was randomly split into two 
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parts. One part, comprising 70% of the observations, was used for model training, and the 

remaining part (30%) was used as a testing dataset to evaluate the final model. The training dataset 

was further split into five random folds to perform cross validation and each model was trained 

using the same set of 10,000 randomly selected background locations. The whole analysis was 

conducted in R (R Core Team, 2019) through the RStudio software (RStudio Team, 2018) by using 

the R package SDMtune (see Vignali et al., 2020, for the explanation of the functions used in this 

analysis). For each dataset, the model was selected according to the following procedure. First, we 

reduced the initial set of environmental variables by removing highly correlated predictors 

(Spearman’s |rs| ≥ 0.7 based on 30,000 random locations) using the function varSel. Model 

hyperparameters were set to default values (i.e. feature classes: linear, quadratic, product and hinge; 

regularization multiplier: 1, maximum number of iterations: 500). We used the permutation 

importance to rank variable contributions and the mean training AUC across the five cross 

validation folds as performance metric. Second, we fine-tuned the models’ hyperparameters with 

the optimizeModel function using only the selected variables, checking for the increase in the mean 

validation AUC across the five cross validation folds. The best set of hyperparameters was searched 

among the following values: 1) feature classes combinations: lq, lh, lqp, lqh, lph, lqph, with l 

representing linear, q quadratic, p product and h hinge; 2) regularization multiplier ranging from 

0.1 to 2.9 with increments of 0.2; 3) maximum number of iterations: 300, 500 or 700. Third, starting 

from the model with the tuned hyperparameters combination, we removed variables with a low 

permutation importance (<2%) by means of the reduceVar function, using the Jackknife approach 

to control for the decrease in the mean validation AUC across the five cross validation folds. 

Finally, we trained the final, optimized model with all data (i.e. without cross validation). 

We evaluated the model’s performance by computing the AUC for two testing datasets: the 

one generated from the same pull of data (i.e. 30% of data held apart), and the one prepared from 

the GPS locations collected in the same time period (between 2004 and 2014). These two different 

evaluation datasets were used to select the best filtering approach, and consequently the best model, 

for the given season. The best season-specific filter was then applied to the corresponding dataset 

of casual observations of adult bearded vultures and the same method as described above was 

applied to perform variable and model selection. 

Each of the final models was projected to the full extent of the study area by applying the 

cloglog transformation (Phillips et al., 2017) to the raw output of the model. The four resulting 

raster maps, representing the predicted probability of species occurrence, were aggregated by 
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selecting the maximum value of the four overlapping pixels. This way we summarized the results 

to a final unique map that accounts for the requirements of both age classes during both seasons. 

Probability maps were converted into presence/absence maps using the threshold value that 

maximized the sum of sensitivity (i.e. proportion of presence locations correctly predicted) and 

specificity (i.e. proportion of absence locations correctly predicted) on the training dataset. This 

threshold has been suggested as a good criteria to convert continuous probabilities into a binary 

map when only presence data are available (Canran Liu et al., 2013). As a final step, we created a 

map of potential bearded vulture – wind turbine conflicts (hereafter referred to as potential conflict 

map) by summing the values of the four presence/absence maps. This map has pixel values ranging 

from zero to four, with zero indicating areas not suitable for the species (i.e. predicted as absence 

in each of the four models), and four suitable areas for both age classes during both seasons, and 

therefore areas particularly sensitive with regard to potential threats to the species. 

 

RESULTS 

Species data 

A total of 2364 casual observations were retained in the unfiltered datasets, with 630 and 474 

observations of immatures during the warm and cold season, respectively, and 719 and 541 

observations of adults during the two seasons, respectively (Fig. 1). The number of locations 

sampled from the GPS fixes varied depending on the number of tagged birds (44 used in the 

analysis) available for the respective time frame, season and age class (Table 2). On average, a 

GPS device was active for 25 months with a range of 4–69 months. 

 

Filtering 

Applying a filter to the casual observations generally improved the predictions on the independent 

datasets generated from the GPS locations, for both seasons (Fig. 2). However, the environmental 

filter built using the distance from roads and the distance from cableways/ski-lifts outperformed 

the other tested filters. Accounting for the highest testing AUC values on the GPS dataset, we 

selected the environmental filter created with 80 equal bins (e80 in Fig. 2) for the cold season. For 

the warm season, the environmental filters with 100 and 200 equal bins had a similar effect. We 

decided for the one with 200 equal bins (e200 in Fig. 2) given that it holds a narrowed difference 

between training and testing AUC. Contrasting the bias-corrected predictions against those 

generated with the unfiltered datasets indicates an over-prediction of vulture occurrence by the 
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latter in most of the study area, especially in the better accessible places (Fig. 3a–b). This effect 

was less substantial during the warm season (occurring in 58% of the total area) compared to the 

cold season (in 81% of the total area). Regarding binary predictions of presence and absence (Fig. 

3c–d), the application of the filter had an opposite effect for the two seasons. During the warm 

season the major effect was a reduction of the area predicted as presence (6.9% of the area predicted 

as presence by the model trained with the unfiltered dataset converted to absence, and 3.9% from 

absence converted to presence). In contrast, during the cold season, the major effect was an increase 

of the area predicted as presence (2.1% of the area predicted as presence converted to absence, and 

8.1% from absence converted to presence). 

 

Figure 2: Evaluation of the models trained with the datasets generated by applying the different 

filtering methods and intensities (the prefixes g and e refer to geographical and environmental 

filters, respectively, see Material and Methods for details) to the casual observations of immature 

bearded vultures during the warm (May–October, in orange) and cold (November–February, in 

violet) season, respectively, provided as the area under the receiver operating characteristics curve 

AUC. Circles represent the AUC values for the training datasets, triangles for the testing datasets 

held apart from the casual observations, and squares for the independent GPS locations collected 

in 2004–2014. 
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Table 2: Sample size of the bearded vulture GPS locations used in the analysis. Each dataset was 

randomly sub-sampled from the total amount of GPS fixes collected within the study area, retaining 

two locations per month after excluding the first eight weeks of recordings due to proximity to 

release site during the first weeks following fledging. Locations were sampled separately per age 

class, season, and time periods (in parenthesis the number of tagged birds from which the sample 

has been extracted). 

Age class Season 2004–2014 2015–2019 

Immature Warm 237 (N=20) 363 (N=25) 

Adult  NA 178 (N=10) 

Immature Cold 203 (N=18) 281 (N=23) 

Adult  NA 154 (N=10) 

 

Models’ predictions 

All four models performed well with regard to both training (≥0.861) and testing (≥0.830) AUC, 

underlining their high accuracy in predicting the occurrence probability of bearded vultures 

independently of age class or season. Yet, compared to the adult birds, the occurrence of immature 

bearded vultures was slightly less well predicted. When considering the AUC for the GPS datasets 

collected during 2015–2019, models for the warm season performed better than the models for the 

cold season (Table 3). The ten breeding sites that were known until 2014 all fall inside the projected 

potential conflict area. After 2014, twelve new breeding sites were settled as a result of range 

expansion and all but one were correctly predicted. According to the potential conflict map, about 

40% of the Swiss Alps (10,244 km2 ranging from 224 to 4420 m a.s.l.) offers suitable habitat for 

the bearded vulture. In general, the area was larger for immature birds (7097 km2 and 5362 km2 

in the warm and cold season, respectively) than for the adults (6060 km2 and 5421 km2 in the 

warm and cold season, respectively). 

 

Ecological requirements 

The environmental variables that contributed most (permutation importance) to explaining bearded 

vulture’s habitat in the warm season were the probability of ibex occurrence, gneiss frequency and 

the frequency of geological substrates other than granite, limestone, and gneiss (42.7%, 20.3%, and 

9.3% for immature birds, and 34.2%, 15.9%, and 9.5% for adult birds, respectively, Fig. 5a). 

Vulture occurrence increased with an increasing availability of ibex, whereas gneiss and other rock 

types were avoided in favor of limestone substrate (Fig. S1-2). During the cold season, the most 
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important environmental variables driving the habitat selection differed for the two age classes. 

Whereas immature bearded vultures selected areas with a high probability of Chamois occurrence 

(22%), an intermediate solar radiation (12%) and a low forest frequency (8.5%) (Fig. 5b), low 

levels of precipitation (21.5%), intense solar radiation (16.6%), and a high probability of ibex 

presence (13.4%) were most important for adult birds (Fig. S4). 

 

Figure 3: Error maps showing the difference between the model results based on the filtered and 

the unfiltered datasets, with positive and negative values showing where filtering increased or 

decreased the predicted occurrence probability of immature bearded vultures, respectively, during 

the warm (a, May–October) and cold (b, November–April) season. Increases in probability, due to 

the use of the filter, are displayed as a green gradient, while decreases are displayed as a red 

gradient. The last two maps show the changes occurring in the derived presence/absence maps (see 

Material and Methods for more detail) for the warm (c) and cold (d) season. The presence/absence 

map produced with the unfiltered dataset was subtracted from the one produced with the filtered 

dataset. Changes from suitable to unsuitable are colored in red, while changes from unsuitable to 

suitable are colored in green. 
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Wind turbines 

Within the study area 15 big to medium size wind turbines (hub height 46–119 m, blade diameter 

40–102 m) are present, 10 thereof arranged in three wind farms consisting of 2–4 wind turbines 

each, and five standing singly (Bundesamt für Energie BFE, 2014). Of those, two single wind 

turbines and two wind farms are located within the area predicted suitable for the bearded vulture 

(i.e. potential conflict map with values greater than zero). Furthermore, from the 106 wind turbines 

planned but not yet erected in the Swiss Alps, 35 are located inside suitable bearded vulture habitat 

according to our model predictions. 

 

Table 3: Model performance measured as the area under the receiving operating characteristic 

(ROC) curve (AUC) (Fielding & Bell, 1997) of the four models predicting habitat suitability for 

immature and adult bearded vultures in the warm and cold season, respectively. The AUC is 

provided for the training (Training AUC) and testing (Testing AUC) datasets, and for the testing 

dataset sampled from the GPS locations (Testing AUC GPS) collected during 2015–2019 (in 

parenthesis the number of observations included in each dataset). 

Age class Season Training AUC Testing AUC Testing AUC GPS 

Immature Warm 0.861 (N=417) 0.845 (N=179) 0.809 (N=363) 

Adult  0.909 (N=474) 0.879 (N=203) 0.818 (N=178) 

Immature Cold 0.893 (N=276) 0.830 (N=118) 0.759 (N=281) 

Adult  0.899 (N=265) 0.893 (N=113) 0.714 (N=154) 

 

DISCUSSION 

We estimated the potential distribution of the bearded vulture across the Swiss Alpine range, 

accounting for differences between the prospecting and settling phases, and between the warm and 

cold seasons. This delivered new insights into the ecological requirements of the species, which 

allowed delineating areas with a high – contemporary and future – probability of species 

occurrence, i.e. where conflicts with wind energy development will likely occur. Given that our 

models were mainly based on simple casual observations, which are today readily available from 

existing data-collection platforms where private naturalists report their findings, the approach used 

here would be easily transferable to other contexts. This study also establishes, however, that 

despite their great value for conservation purposes, casually collected data should not be used 

without cautiously checking for inherent issues and biases that may otherwise lead to flawed 

predictions. 
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Filtering 

Reducing or eliminating the spatial biases affecting observational data should be a prerequisite to 

any species distribution models (SDM). This is because sampling bias has been proven to 

artificially inflate evaluation metrics (Hijmans, 2012; Veloz, 2009). Although the effect of the 

filtering techniques varies with their intensity (Castellanos et al., 2019; Varela et al., 2014), data 

are often filtered using a predefined filter size, without exploring the effect of its gradient intensity 

on the specific dataset (Galante et al., 2018; Chunlong Liu et al., 2019; Rose et al., 2020; Santangeli 

et al., 2019). In our study, we tested different procedures and intensities and introduced a new 

alternative option by restrictively applying the environmental filter to the two variables that define 

site-accessibility (road and cableways/ski-lift network). This turned out to provide the best 

performing filter type in terms of model performance on the independent dataset. The dataset 

sampled from the GPS locations collected during 2015–2019 allowed us to further estimate the 

model’s ability to predict a future population expansion into areas that had apparently not been 

occupied previously. This is crucial for the bearded vulture since its Alpine population has not yet 

reached carrying capacity while the objective of the whole modelling exercise was to delineate 

sensitive areas from the viewpoint of wind industry development. 

 

Ecological requirements 

The ecological requirements of bearded vultures vary according to both age class and season. While 

the requirements of immature and adult birds were quite similar during the warm season 

(comparable permutation importance of the three top ranked environmental variables and similar 

response curves), clear differences emerged between seasons and between age classes within the 

cold season. Food availability and geological substrate mainly determined the distribution during 

the warm season. Whereas the species avoids areas characterized by gneiss and rocks of “other 

substrate types” (i.e. other than limestone, granite and gneiss) (Fig. 5 and S1-2), areas dominated 

by limestone were positively selected (Fig. S1-2). This is additionally supported by the high percent 

contribution of this variable (Fig. S5) which ranks second for adults and third for immatures, 

corroborating former findings (Hirzel et al., 2004). Indeed, limestone regions are characterized by 

fine-grained screes that offer the best conditions for bone-breaking, a key feeding strategy of 

bearded vultures (Hirzel et al., 2004). 

During the cold season food availability was again among the most important 

environmental variables, but with a noticeable difference between immature and adult birds. For 
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immature bearded vultures, chamois presence was most important, while for adult birds ibex 

presence was ranked as the third most important variable. This shift of food availability from the 

first to the third rank suggests that the habitat selection of adults in the cold season may be driven 

more by climatic conditions than food supply. Average precipitation and solar radiation were 

indeed the environmental variables with the highest permutation importance, with a negative and 

positive response type, respectively. Conceivably, this may be because adult birds could be 

constrained by the availability of favorable winter conditions in nest surroundings. In effect, the 

breeding season in this species starts in the middle of the winter, with egg laying between December 

and February, i.e. when environmental conditions are particularly harsh, with a probable preference 

for warm and dry breeding cliffs. 

The few discrepancies between this study and that by Hirzel et al. (2004) are, first, that 

chamois did not play a key role in the latter, contrary to ibex. This is maybe due to the fact that 

Hirzel’s et al. investigations were carried out in the southwestern Swiss Alps were chamois is 

uniformly widespread, while there is high spatial variability in chamois occurrence when 

considering the entire Swiss Alpine range. Second, limestone frequency was the most important 

variable for both immature and adult birds in that previous model. If we also evidenced a key role 

of limestone, this condition was less important than food availability during the warm season or 

climatic conditions during the cold season. This discrepancy could again be explained by both a 

greater extension of our study area and because we distinguished between seasonal requirements. 

Alternatively, our observational dataset was more recent, which may less well reflect species’ key 

ecological preferences given that bearded vultures have meanwhile started to colonize less optimal 

areas due to population growth and hence expansion. Sheep and goat densities, as an alternative 

food source, were discarded during the variable selection process. This was not a real surprise 

because domestic ungulates provide exploitable carcasses almost exclusively during the warm 

season: in winter they are in stables. 

 

Distribution maps and wind energy development 

The differences in habitat selection between the two age classes and seasons translated into 

distribution maps that somehow spatially differ in terms of habitat suitability. Specifically, if highly 

suitable areas fairly widely overlap between seasons and age classes (Fig. 4a–d), the synthetic map 

obtained by taking the maximum pixel value from each of the four maps (Fig. 4e) embraces the 

whole complexity of situations and provides basic information for conservation management. 
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Furthermore, the potential conflict map (Fig. 4f) ranks suitable areas into four classes and provides 

a readily useable tool for landscape planning and environmental impact assessments. This map 

indeed can be considered as a spatial-explicit estimation of the “sensitivity” of a given area from 

the perspective of bearded vulture conservation. In effect, it highlights sensitive areas that may 

easily be overlooked otherwise, in particular if bearded vultures are not yet regularly spotted there, 

i.e. it informs whether planning a wind turbine in a given area is a sensible option from the 

viewpoint of wildlife protection. However, this does not mean that outside these sensitive areas 

(i.e. in areas tagged with zero probability of risk) collisions with wind turbines can entirely be 

excluded, and that impact assessments would not be required. It simply means that the likelihood 

of a wind turbine-project to be opposed because of conflicts with bearded vulture conservation 

would be much lower there than in the other, more sensitive zones (1–4). 

The Swiss Wind energy concept, which delineates areas suitable for wind energy 

production, had proposed exclusion zones within a 5 km radius around all bearded vulture nesting 

sites known at the time (N = 10; 2014), aiming to reduce a priori the risk of collisions of bearded 

vultures with turbine blades in future installations (Bundesamt für Raumentwicklung ARE, 2017). 

Yet, the rapid expansion of the population has led to 22 breeding pairs in 2019 in Switzerland. 

Although not yet considered by the wind energy concept, all these novel sites are correctly 

predicted by our spatial models (only one nest location is situated 50 m beyond an area predicted 

as suitable for the species). It should be noticed that we obtained a correct prediction of the novel 

nesting sites even if our models have been trained using only observations spanning from 2004 to 

2014 (the last being the reference year in the wind concept). This demonstrates the power of 

predictive models to project and anticipate conflict zones, paving the way for more accurate 

estimates of critical sites for wind energy development. Further support for such models is provided 

by the fact that the breeding site of nine “pairs” have changed over time, with relocation distances 

ranging from 280 to 3632 m (median 1081 m), with all but one of these new sites (40 eyries for 22 

territories) falling within the areas delineated by the potential conflict map. For all these reasons, a 

simple delineation of buffer areas around known bearded vulture nest sites is not a meaningful way 

to guarantee the protection of a reestablishing breeding population. 
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Figure 4: Predicted probability (gradient from blue, zero probability to red, high probability) of 

bearded vulture occurrence, projected to the entire study area for immatures during the warm (a) 

and cold (c) season, and for adults during the warm (b) and cold (d) season, respectively. The map 

e results from the aggregation of the four raster maps a-d, taking the maximum value out of the 

four overlapping pixels and f is the potential conflict map (see Material and Methods for more 

detail); the red scale in f indicates the number of models out of four that predict that area as suitable. 

The map f can thus be considered as a spatial-explicit estimation of the “sensitivity” of a given area 

from the perspective of bearded vulture conservation. 
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Figure 5: Variable importance, given as permutation importance, of the environmental variables 

retained in the final models predicting species occurrence in the a) warm and b) cold season of 

adult (violet) and immature (orange) bearded vultures. The symbol above the bar indicates the 

response type for the univariate model trained using every variable separately (for the response 

curves see Figures S1-4), with +, –, ∩ or ∪ indicating a positive, negative, unimodal or bimodal 

response, respectively. The relative (normalized %) permutation importance is computed by 

randomly shuffling the values of each environmental predictor at a time for both training and 

background locations, evaluating the model with the shuffled data, and measuring the drop in 

training AUC. See Table 1 for the variable abbreviations and descriptions. The variable importance 

measured as Maxent percent contribution [sensu Phillips, (2017)] is provided in Fig. S5. 
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A recent Europe-wide study ranked Switzerland among the countries with the lowest per 

capita wind energy production (Iten & Nipkow, 2019), but the Swiss government has planned to 

boost, i.e. subsidize this industry with the objective to reach a yearly energy output of 4,3 TWh by 

2050 (Bundesamt für Raumentwicklung ARE, 2017). Areas with constant and sufficient wind 

speed in terms of economical profitability are rare, and mostly located in the Jura mountains and 

in the ridges and passes of the Alps – the latter being within the potential range of the bearded 

vulture. 

Numerous new wind turbine projects are thus expected in the coming years, with already 

106 new planned wind turbines within the Swiss Alps, and several additional projects being 

currently evaluated. Many of these new plants (N = 71) are outside of our potential conflict map 

but sometimes not far from the areas predicted as suitable for bearded vulture (minimum distance 

7 m, maximum distance 17,557 m, median value 649 m). This calls for much better, i.e. evidence-

based land-planning strategies. In this context, the present model represents a real asset. 

 

Potentials and limitations 

Our potential conflict map delineates areas that are suitable for the species, incorporating 

requirements of all life stages throughout the year cycle. Accounting for age-related habitat 

selection patterns is crucial for a species like the bearded vulture that explores vast areas during its 

teenage and becomes more and more territorial when becoming sexually mature (Margalida et al., 

2016). Season-related requirements are not less important given that winters in mountain 

environments can be harsh, limiting the availability of suitable nesting sites and food resources. 

The potential conflict map delineates suitable areas in a conservative way, meaning that even if an 

area is predicted suitable for the species, it may not necessarily represent a zone of conflict with 

wind energy development. This occurs for instance when bearded vultures overfly some areas only 

during commuting, i.e. at altitudes far above the air space potentially swept by the rotor blades of 

wind turbines. On the other hand, a conservative approach avoids overlooking species-relevant 

areas, thus providing a broad-scale framework that will serve as a base for refined risk assessments 

of potential collision risks locally. 

The single-species approach used here is of course inherently limited. There are other 

vulnerable species that should also be considered when estimating the collision risks generated by 

wind turbines, particularly soaring raptors with similar life-history traits and flight behaviour. The 

golden eagle (Aquila chrysaetos), for example, is another large resident raptor present in the Swiss 
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Alps that is potentially at risk given its large home range size and extensive daily movements. In 

this respect, combined spatial analyses conducted on the potentially most impacted mountain 

species would deliver a comprehensive spatial overview of the foreseen conflict areas to better 

inform management. 

 

CONCLUSION 

Here we demonstrate that, when dealing with reintroduced or spreading species, the use of buffer 

areas around extant nesting locations for precluding any potential threats – such as the collision 

risks generated by wind turbines – does not guarantee a protection of all key areas relevant for a 

breeding population. Our approach allows not only identifying key species’ ecological 

requirements but also predicting its future range expansions into previously unused areas. The 

resulting habitat suitability maps and the potential conflict map represent a set of predictive spatial 

projections of future conflicts with wind energy production. The potential conflict map accounts 

not only for the breeding fraction of the population but also for dispersing and roaming immature 

individuals, thus considering the whole life cycle for enhancing conservation. We stress that our 

maps are intended for general guidance purposes but can in no case replace the environmental 

impact assessments required for planning new wind turbines. We nevertheless hope our maps will 

help wind energy developers as well as planners of aerial infrastructures such as electric power 

lines, cable cars and ski-lifts, at an early stage of the planning process, to identify areas where 

bearded vulture would encounter a high risk of collision, which might compromise a project from 

the onset. 
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SUPPLEMENTARY MATERIAL 

Immatures, warm season 
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Figure S1: Response of immature bearded vultures to the environmental variables included in the 

final model for the warm season. The response curves show the change in cloglog prediction for a 

model trained using only the displayed variable (i.e. univariate model). The values of the variable 

at presence locations are shown on the top of the plot, the values at background locations on the 

bottom. See Table 1 for the variable abbreviations and descriptions. 

  



Chapter 1 

62 

Adults, warm season 
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Figure S2: Response of adult bearded vultures to the environmental variables included in the final 

model for the warm season. The response curves show the change in cloglog prediction for a model 

trained using only the displayed variable (i.e. univariate model). The values of the variable at 

presence locations are shown on the top of the plot, the values at background locations on the 

bottom. See Table 1 for the variable abbreviations and descriptions. 
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Immatures, cold season 
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Figure S3: Response of immature bearded vultures to the environmental variables included in the 

final model for the cold season. The response curves show the change in cloglog prediction for a 

model trained using only the displayed variable (i.e. univariate model). The values of the variable 

at presence locations are shown on the top of the plot, the values at background locations on the 

bottom. See Table 1 for the variable abbreviations and descriptions. 
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Adults, cold season 
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Figure S4: Response of adult bearded vultures to the environmental variables included in the final 

model for the cold season. The response curves show the change in cloglog prediction for a model 

trained using only the displayed variable (i.e. univariate model). The values of the variable at 

presence locations are shown on the top of the plot, the values at background locations on the 

bottom. See Table 1 for the variable abbreviations and descriptions. 
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Figure S5: Variable importance, given as Maxent percent contribution, of the environmental 

variables retained in the final model for adult (violet) and for immature (orange) bearded vultures 

in the a) warm and b) cold season. 
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Table S1: Environmental predictors used to model the occurrence probability of ibex and chamois 

across the Swiss Alps with unit, abbreviation and data source (warm season: May to October; cold 

season: November to April). 

Category Description Unit Abbreviation Source 

Climate Average precipitation in the cold season mm prec122 WSL1 

 Average precipitation in the warm season mm prec57 WSL 

 Average solar radiation WH/m2 solar_rad DHM2 

 Average temperature in the cold season °C temp122 WSL 

 Average temperature in the warm season °C temp57 WSL 

Topography Sine of the aspect -1 to 1 eastness DHM 

 Cosine of the aspect -1 to 1 northness DHM 

 Standard deviation (SD) of the altitude m roughness DHM 

 Slope degree slope DHM 

 Topographic Position Index3 Index tpi DHM 

Geology Limestone frequency % limestone GeoKarten5004 

 Gneiss frequency % gneiss GeoKarten500 

 Granite frequency % granite GeoKarten500 

 Other rock frequency % other_rocks GeoKarten500 

Anthropogenic Distance from skilifts m skilift_d Vector 255 

 Distance from cableways, not including ski-

lifts 

m cableway_d Vector 25 

 Distance from roads and railways m road_rail_d Vector 25 

Land cover Bush frequency % bush Vector 25 

 Forest frequency % forest Vector 25 

 Glacier frequency % glacier Vector 25 

 Marshland frequency % marsh Vector 25 

 Grassland and unproductive vegetation 

frequency 

% other_veg Vector_25 + BsF6 

 Permanent culture frequency % permanent Vector 25 

 Rock frequency % rock Vector 25 

 Scree frequency % scree Vector 25 

 Distance from lakes and rivers m water_d Vector 25 

 Distance from rock areas steeper than 45° m rock45_d Vector 25 + DHM 
1 Federal Institute for Forest, Snow and Landscape Research WSL; available upon request: www.wsl.ch. 

2 Digital Height Model of Switzerland (Swisstopo): 

https://shop.swisstopo.admin.ch/en/products/height_models/dhm25. 

3 Topographic position index according to Wilson (1984). 

4 Geo Maps: https://shop.swisstopo.admin.ch/de/products/maps/geology/GK500. 

5 Digital Cartographic Model of Switzerland (Swisstopo): 

https://shop.swisstopo.admin.ch/en/products/maps/national/vector/smv25. 

6 Federal Administration for Statistic Switzerland (BsF): https://www.bfs.admin.ch/bfs/de/home/statistiken.html. 
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Ibex and Chamois occurrence probability 

Ibex and chamois occurrence probability were modeled following the same procedure as described 

in methods. The datasets containing observations of the two species were provided by “info fauna” 

(Centre suisse de cartographie de la faune (CSCF): http://www.cscf.ch/cscf/de/home.html). The 

ibex dataset contained 7576 observations and was modelled using 10000 background locations. 

The chamois dataset included 18232 observations and was modelled using 20000 background 

locations. 

 
Figure S6: Variable importance, given as permutation importance, of the environmental variables 

retained in the final models predicting species occurrence for a) ibex and b) chamois. The symbol 

above the bar indicates the response type for the univariate model trained using every variable 

separately (see Figures S7-8), with +, –, ∩ or ∪ indicating a positive, negative, unimodal or 

bimodal response, respectively. The relative (normalized percentage) permutation importance is 

computed by randomly shuffling the values of each environmental predictor at a time for both 

training and background locations, evaluating the model with the shuffled data, and measuring 

the drop in training AUC. See Table S1 for the variable abbreviations and descriptions.  

http://www.cscf.ch/cscf/de/home.html
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Ibex 
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Figure S7: Response of ibex to the environmental variables included in the final model. The 

response curves show the change in cloglog prediction for a model trained using only the displayed 

variable (i.e. univariate model). The values of the variable at presence locations are shown on the 

top of the plot, the values at background locations on the bottom. Table S1 for the variable 

abbreviations and descriptions. 
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Chamois 
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Figure S8: Response of chamois to the environmental variables included in the final model. The 

response curves show the change in cloglog prediction for a model trained using only the displayed 

variable (i.e. univariate model). The values of the variable at presence locations are shown on the 

top of the plot, the values at background locations on the bottom. Table S1 for the variable 

abbreviations and descriptions. 

 

REFERENCES 

Wilson, J. D. (1984). Determining a TOPEX score. Scottish Forestry, 38(4), 251–256.



 

75 

CHAPTER 2 
 

 

 

 

SDMtune: An R package to tune and evaluate species 

distribution models 

  



 

76 

 

Chapter 2 of this thesis is published in Ecology and Evolution: https://doi.org/10.1002/ece3.6786 

under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0) 

https://creativecommons.org/licenses/by/4.0/. 

https://doi.org/10.1002/ece3.6786
https://creativecommons.org/licenses/by/4.0/


 

77 

 

 

 

 

SDMtune: An R package to tune and evaluate species 

distribution models 

 

Sergio Vignali1, Arnaud G. Barras1, Raphaël Arlettaz1 & Veronika Braunisch1,2 

 

 

1 Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, 

Baltzerstrasse 6, CH-3012, Bern, Switzerland 

2 Forest Research Institute of Baden-Wuerttemberg, Wonnhaldestrasse 4, D-79100, Freiburg, 

Germany 

 

 

 

 

 

 

 

 

 

 

Published in Ecology and Evolution (2020) 10: 11488–11506 

https://doi.org/10.1002/ece3.6786 

  

https://doi.org/10.1002/ece3.6786


Chapter 2 

78 

ABSTRACT 

Balancing model complexity is a key challenge of modern computational ecology, particularly so 

since the spread of machine learning algorithms. Species distribution models are often 

implemented using a wide variety of machine learning algorithms that can be fine-tuned to achieve 

the best model prediction while avoiding overfitting. We have released SDMtune, a new R package 

that aims to facilitate training, tuning, and evaluation of species distribution models in a unified 

framework. The main innovations of this package are its functions to perform data-driven variable 

selection, and a novel genetic algorithm to tune model hyperparameters. Real-time and interactive 

charts are displayed during the execution of several functions to help users understand the effect 

of removing a variable or varying model hyperparameters on model performance. SDMtune 

supports three different metrics to evaluate model performance: the area under the receiver 

operating characteristic curve, the true skill statistic, and Akaike's information criterion corrected 

for small sample sizes. It implements four statistical methods: artificial neural networks, boosted 

regression trees, maximum entropy modeling, and random forest. Moreover, it includes functions 

to display the outputs and create a final report. SDMtune therefore represents a new, unified and 

user-friendly framework for the still-growing field of species distribution modeling. 

 

 

 

 

Keywords: ecological niche model, fine-tuning, genetic algorithm, machine learning, model 

complexity, variable selection 
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INTRODUCTION 

Species distribution models (SDMs) encompass a variety of methods used to predict the occurrence 

of a species from the environmental conditions at a given site, thus providing a proxy of habitat 

suitability (Warren & Seifert, 2011). These methods are increasingly used in various fields of 

ecology (Guisan & Thuiller, 2005), often with the aim of guiding decision-making in species 

conservation management and planning (Guisan et al., 2013). Indeed, SDMs represent a crucial 

and cost-effective tool to identify current important areas for threatened species, and to forecast 

ecosystem impacts of rapid human-induced environmental change (Beaumont et al., 2016; Elith et 

al., 2010; Franklin, 2013; Guillera-Arroita et al., 2015; Guisan et al., 2013; Schwartz et al., 2006). 

Among the variety of available algorithms, machine learning approaches are becoming 

increasingly popular, facilitated by the recent availability of high computational power, and due to 

their ability to fit complex nonlinear relationships without requiring an a priori definition of a data 

model (Breiman, 2001). However, there still are many decisions to be made at various steps of the 

model building process that can influence the final output (Guisan & Thuiller, 2005). For example, 

the amount of complexity should be cautiously controlled to avoid models that underfit or overfit 

the underlying data (Merow et al., 2014; Warren & Seifert, 2011). 

In general, the amount of complexity of a model depends on the number of chosen 

predictors and their transformations (Merow et al., 2014). Moreover, each machine learning 

algorithm has a series of parameters, known as hyperparameters. In contrast to model parameters, 

which are estimated from the data during model training, hyperparameters have a fixed value that 

must be defined before model training. Even if most machine learning algorithms have predefined 

default values, the optimal value of each hyperparameter is unknown, as it is specific to the 

modeling problem and the dataset. However, its choice affects model complexity and/or 

performance. For example, in a neural network, the maximum number of iterations controls the 

amount of iterations executed by its optimization algorithm. This value does not affect model 

complexity but if it is too low the algorithm might not converge, thus generating a model with 

lower performance. On the other hand, increasing the size of the hidden layer increases the number 

of parameters of the model and consequently its complexity, which in turn might affect its 

performance. In a Maxent model (Phillips et al., 2006), the amount of regularization controls 

overfitting by shrinking some parameters toward zero which consequently penalizes model 

complexity. Although several authors have stressed the importance of inspecting the 
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hyperparameters because default settings did not always yield an optimal performance (Elith et al., 

2010; Merow et al., 2013; Warren et al., 2014; Warren & Seifert, 2011), the time-consuming task 

of comparing models trained with a multitude of possible combinations of hyperparameters' values 

(e.g., Zeng et al., 2016) may discourage many researchers from doing so in practice. 

In order to optimize model complexity and performance, both the predictors used to build 

the model and the values of hyperparameters should be carefully selected which represents a 

challenge given the often numerous possible options. The new package SDMtune described here 

offers a framework to build and systematically tune SDMs. The package includes utilities that help 

R users (R Core Team, 2019) all along the analysis process, from data preparation to graphical 

representation of the results and reporting. In particular, it contains dedicated functions to perform 

variable selection and hyperparameter tuning. Hyperparameter tuning, also called hyperparameter 

optimization, is a process usually based on a trial and error experiment during which several models 

with different values of the hyperparameters are trained and evaluated in order to identify which 

combination yields the best performance. The simplest algorithm for hyperparameter tuning, grid 

search, trains and compares models with all possible combinations of the defined hyperparameters' 

values and can thus be a very time-consuming process. While other available R packages contain 

functions for tuning one (e.g., ENMeval (Muscarella et al., 2014), wallace (Kass, Pinilla-Buitrago, 

et al., 2018)), kuenm (Cobos et al., 2019) or several statistical model types (e.g., biomod2 (Thuiller 

et al., 2019), sdm (Naimi & Araújo, 2016), zoon (Golding et al., 2018) and caret (Kuhn et al., 

2019)), functions for data-driven variable selection are not always included and the hyperparameter 

tuning is always based on grid search or random search algorithms. SDMtune offers an alternative 

that relies on a genetic algorithm for exploring the hyperparameter configuration space (Lessmann 

et al., 2005; Young et al., 2015), applicable to the most commonly used SDM algorithms. This 

method significantly reduces the time required to find a near-optimal or the optimal model 

configuration. As an additional advantage, all functions for selecting the variables and tuning the 

hyperparameters are supported by an interactive real-time displayed chart that shows the change in 

model performance during the different steps of function execution. The chart is created in the 

RStudio (RStudio Team, 2018) viewer pane using the open source library Chart.js 

(https://www.chartjs.org), thus facilitating the understanding of the underlying algorithm action 

through a graphical representation of the output and avoiding the user's feeling of handling a black 

box that usually comes up when dealing with complex methods. 

 

https://www.chartjs.org/
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Figure 1: Package workflow illustrating the seven steps of the model tuning process. The functions required to perform the different steps are 

given in the headline. The different colors indicate different types of steps with: orange: preparation of data and results; blue: model training 

and evaluation; yellow: variable selection; green: hyperparameter tuning. Dashed connections represent an iterative process. 
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PACKAGE WORKFLOW AND DESCRIPTION 

In this section, we present a possible use of the SDMtune package that covers a complete analysis 

in seven steps (Figure 1): (1) preparing data for the analysis; (2) training and evaluating a model; 

(3) performing variable selection; (4) tuning model hyperparameters; (5) optimizing model 

parsimony; (6) evaluating the final model; and (7) generating an output report. Users can combine 

the available functions in a way that best suits them. For example, step 4 could be repeated after 

step 5 to further fine-tune model hyperparameters. 

 

Preparing data for the analysis 

SDMtune uses a special object to compile the data for the analysis. This object, called SWD 

(samples with data, a format similar to the one used by the Maxent software), bundles all the 

information related to each record (name of the species, coordinates of the species' presence and 

absence/background locations, and the values of the environmental variables at these locations), 

thereby reducing the risk of mistakes in further analyses. 

Before starting the analysis the user should decide which evaluation strategy to use. 

SDMtune provides two methods: (1) simple hold-out validation and (2) k-fold cross-validation. 

The k folds for the cross-validation can be created either randomly, using the provided 

randomFolds function, or spatially/environmentally clustered, using functions included in the 

packages ENMeval and blockCV (Valavi et al., 2019): In this case, SDMtune will internally convert 

the folds into the required format. The selected validation strategy is used to perform the variable 

selection and/or tune the model hyperparameters in order to optimize the model performance and 

address overfitting. When tuning the hyperparameters, several models with different configurations 

are trained and evaluated in an iterative process that aims at improving the predictive performance 

on the validation dataset, or—if cross-validation is used—on the arithmetic mean of the evaluation 

metric across all folds. During this process, part of the information contained in the validation 

dataset is inevitably transferred into the trained model, even if the validation data are not directly 

used to train the model (Chollet & Allaire, 2018; Müller & Guido, 2016). It is therefore advisable 

to hold apart an independent partition of the data, that is, the testing dataset, to obtain an unbiased 

evaluation of the final model (Hastie et al., 2009; Merow et al., 2014). 

The selection of a metric and a validation strategy should therefore be done early in the 

model tuning process, because it has implications on how the data should be split before training 

the first model. Note that the AICc score is computed using all the observation locations (Warren 
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& Seifert, 2011) and does not require to partition the observation data into training and validation. 

 

Table 1. Overview of the hyperparameters that can be tuned per statistical method and underlying 

package. 

Method R package Hyperparameters Default value 

ANN nnet Size of hidden layer - 

 (Venables & Ripley, 2002) Weight decay 0 

  Initial random weights 0.7 

  Number of iterations 100 

BRT gbm Number of trees  100 

 (B. Greenwell et al., 2019) Interaction depth 1 

  Shrinkage 0.1 

  Bag fraction 0.5 

ME dismo Feature class combinations lqpha 

 (Hijmans et al., 2017) Regularization multiplier 1 

  Number of iterations 500 

 Maxnet  Feature class combinations lqph 

 (Phillips, 2017b) Regularization multiplier 1 

RF randomForest Number of randomly sampled 

variables 

floor(sqrt(#variables)) 

 (Liaw & Wiener, 2002) Number of trees 500 

  Minimum size of terminal nodes 1 

Note: The meaning of each hyperparameter can be found in the respective package documentation 

and default values, when available, are provided in the last column. 

a (l) linear, (q) quadratic, (p) product, and (h) hinge. 

 

Training and evaluating a model 

Currently, four machine learning methods are available (Table 1): artificial neural networks 

(ANN), boosted regression trees (BRT), maximum entropy (ME), and random forest (RF). Two 

different implementations of the ME method can be selected: “Maxent” to use the Java 

implementation (version 3.4.1 or higher) and “Maxnet” for the R implementation using the maxnet 

package (Phillips et al., 2006, 2017). There are specific arguments of the train function that can be 

used to set the model hyperparameters. By default, these arguments are set to the same values as 

implemented in the dependent packages. 
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A trained model can be evaluated using one of the three implemented metrics: (1) the area 

under the receiver operating characteristic (ROC) curve (AUC) (Fielding & Bell, 1997), (2) the 

true skill statistic (TSS) (Allouche et al., 2006), and (3) Akaike's information criterion corrected 

for small sample sizes (AICc, only for ME method) (Burnham & Anderson, 2004; Warren & 

Seifert, 2011). It should be noted that AICc is a relative measure describing the model fit in relation 

to complexity (parsimony) but holds no information on predictive performance. It can thus only be 

used to compare competing models trained using the same data but not for final model evaluation. 

 

Performing the variable selection 

When the environmental variables used to train the model are highly correlated, it is difficult to 

interpret the model output, especially the relative importance of the variables and their response 

curves. A common practice is thus to select a subset of variables among which collinearity falls 

below a predefined threshold. A reasonable approach to remove highly correlated variables is to 

base the selection on expert knowledge, that is, retaining the environmental variable that is most 

likely to be ecologically meaningful for the target species. When this is unknown, an alternative 

approach is a “data-driven” variable selection that uses the information contained in the data to 

select the variable with the highest explanatory value among those that are highly correlated. The 

function varSel iterates through several steps: Starting from a trained model, it checks if the 

variable ranked as the most important (using the permutation importance or, optionally for Maxent 

models, the percent contribution (Phillips, 2017a)) is correlated with any of the other variables, 

using a given correlation criterion (e.g., Spearman's rho) and correlation threshold. If so, a leave-

one-out Jackknife test is performed, starting with the full model, and among all correlated variables 

the one that decreases least model performance on the training dataset is discarded. A new model 

without this variable is then trained and again checked for highly correlated variables. The process 

is repeated until the correlations among all retained variables fall below the predefined threshold. 

During the execution of the function varSel, a real-time chart shows which variable is removed 

and the relative effect on the model performance. 

 

Tuning the model hyperparameters 

Tuning the model hyperparameters is a long process, as it requires testing many combinations of 

the hyperparameters in order to identify the best performing model. The simplest tuning method, 

known as “grid search,” is implemented in the function gridSearch. The user has the possibility to 
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define a set of possible values for one or several hyperparameters, out of which the function will 

create all possible combinations. The function also returns the value of the chosen evaluation metric 

so that the user can see the effect of varying the hyperparameters on the model performance. 

 

 
Figure 2: Flowchart illustrating the steps of the genetic algorithm implemented in the function 

optimizeModel, with orange ovals representing the begin and the end of the algorithm, blue boxes 

the main operations executed by the algorithm, and the green hexagons the iteration loops. In gray 

are provided the default values used by the function, with “size” indicating the initial population 

size; “keep best” the proportion of best models retained; “keep random” the proportion of less 

performing models retained; “mutation chance” the probability that a mutation event occurs. Keep 

best and keep random are provided as proportion of the initial population size. The dotted box 

shows an example of crossover during which two models, randomly selected from the selected 

"individuals", are combined to generate a child model that inherits the first and third 

hyperparameters' values from Model 2 and the second from Model 1. When the number of 

generations is zero, the flowchart represents the algorithm implemented in the function 

randomSearch. 
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Grid search is based on a brute force method that results in a very time-consuming process 

with high computational costs. A possible alternative is to randomly select some hyperparameters' 

combinations among the user-defined values (Bergstra & Bengio, 2012). This approach is 

implemented in the randomSearch function that usually finds a better performing model 

compared with the starting one. However, the disadvantage of the grid search and random search 

methods is that they do not use any information acquired during the iteration through the 

hyperparameter configuration space in order to improve the model performance. The function 

optimizeModel applies a genetic algorithm (Holland, 1992) instead, to more quickly optimize the 

combination of the hyperparameters (an example of a genetic algorithm used to define 

hyperparameters and architecture of a deep neural network is presented by Miikkulainen et al. 

(2019)). The algorithm (Figure 2) starts by generating a random initial “population” of models 

(using the randomSearch algorithm), with a given “population size". The “fitness” of the 

population is measured with the chosen evaluation metric computed on the validation dataset and 

models are ranked accordingly. During the evaluation of the “fitness,” underfitting is controlled by 

ensuring that models for which the evaluation metric computed for the validation dataset is higher 

than the one computed for the training dataset are ranked in the last positions. At this point starts, 

the selection process during which some models (“individuals”) are selected according to their 

“fitness” from the initial “population” to create the first “generation.” There are two selection 

criteria. At first, a predefined proportion of the “fittest” models (i.e., models ranked in the first 

positions) is retained. Afterward, a small portion of the poor performing models (i.e., those not 

selected as “fittest”) is randomly retained in order to keep more variation in the population and 

reduce the possibility that the algorithm falls in a local optimum. The retained models are then 

submitted to the optimization process: they are “bred” (i.e., combined) to create other "individuals" 

and to reach again the predefined “population” size. In this process, two models, called “parents,” 

are randomly selected from the retained models (“selected individuals”) to “breed” and generate a 

“child.” This new model will randomly inherit a value for each hyperparameter from one of the 

“parents,” a process called “crossover.” A “mutation” chance with a predefined probability is added 

to increase the variation in the population. When the “mutation” is triggered one of the model's 

hyperparameter is randomly selected and its value is randomly sampled from those available but 

not included in the “parents.” Once the population reaches the defined size, the “fitness” is 

calculated again, and the process is repeated for the number of generations specified in the function. 

The user can set all the arguments: population size, number of generations, fractions of both best 
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and worst performing models to be retained at each generation as well as the probability of mutation 

during crossover episodes, but default values—that will work in most cases—are also defined. All 

the functions described in this section come with a real-time chart showing the model performance 

while the algorithm is running in the background. 

 

Optimizing model parsimony 

As soon as an optimal hyperparameter combination has been selected, we may want to reduce 

model complexity by removing some environmental variables ranked as less important. The 

function reduceVar automates this with two alternative approaches: (a) removing all the variables 

with an importance lower than a given threshold in a stepwise fashion, starting from the variable 

with the lowest importance; (b) removing the variables only if the model performance does not 

decrease compared to the initial model, according to a given evaluation metric. In the second case, 

a leave-one-out Jackknife test is performed. If removing one of the variables ranked below the 

given threshold does not decrease the performance of the model on the validation dataset compared 

to the initial model, that variable is discarded. A new model, trained without this variable, is 

checked again with the Jackknife test, and the process is repeated until all the variables with an 

importance lower than the given threshold are either retained or discarded. A real-time chart 

showing the removed variable together with its relative effect on model performance is generated 

during the execution of the function. 

 

Evaluating the final model 

At this point, after the variable set has been optimized (varSel and reduceVar) and the 

hyperparameters of the model have been tuned (gridSearch, randomSearch, or optimizeModel) 

the model can be evaluated on the held apart testing dataset, which was never used during the 

tuning procedure, using one of the functions that compute the chosen metric (i.e., AUC or TSS). 

Another possibility would be to train a new model using the selected variables and hyperparameter 

combinations with the full dataset (i.e., without applying cross-validation or data partitioning) and 

evaluate it on the held apart testing dataset (Chollet & Allaire, 2018). This way the model can avail 

of a greater amount of information and might thus be able to generalize better. 

 

Creating the output 

There are several functions for visualizing the model results and predictions. The user can plot the 
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response curves, the variable importance, the ROC curve, project the predicted relative probability 

of species occurrence to the extent of the environmental variables, plot and save the results as a 

map with either continuous (relative occurrence probabilities) or binary (presence-absence) values 

based on various threshold values. SDMtune implements its own algorithm to make predictions for 

“Maxent” models without calling the Java software. This results in a much faster execution that 

allows considerably speeding up projections, which is particularly useful when models are 

evaluated using the AICc, as this metric requires computing the Maxent raw output for the full 

geographic extent of the environmental variables. The prediction produced by our algorithm may—

in some cases—differ marginally from the output of the Java implementation, which could result 

in only slightly different prediction values. Finally, the modelReport function creates a report 

similar to the one produced by the Maxent software, for all methods. 

 

PERFORMANCE ASSESSMENT OF GENETIC ALGORITHM 

We evaluated the performance of the genetic algorithm in terms of time-saving and model accuracy 

for the four SDM-methods available in SDMtune by comparing the output of the optimizeModel 

and gridSearch functions. We used the virtualSp dataset provided with the package. This dataset 

contains simulated presence, absence, and background locations generated with the package 

virtualspecies (Leroy et al., 2016). For artificial neural network, boosted regression trees, and 

random forest we used the presence and absence datasets, while for the maximum entropy method 

we used the presence and background datasets. The maximum entropy method was performed with 

the “Maxnet” implementation. In all cases, a 10-fold cross-validation was used as validation 

strategy and the AUC was used as evaluation metric. As first step, we trained a model with default 

hyperparameters' values (for artificial neural network we used an inner layer of a size equal to the 

number of environmental variables), and then executed the two functions testing 1200 possible 

hyperparameters' combinations (Table A1, for the optimizeModel function we used default 

arguments). The results of the analysis are presented in Table 2. In all cases, the optimizeModel 

functions found a near-optimal solution in a significantly reduced amount of time. 
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Table 2. Performance assessment of the gridSearch compared to the optimizeModel function for 

model tuning regarding execution time (expressed as HH:MM:SS) and evaluation metric (on the 

training dataset “Train AUC”, the validation dataset “Val AUC”, given as arithmetic mean across 

the folds of a 10-folds cross validation) for the four methods implemented in SDMtune. Models 

were trained using the virtualSp dataset available with the package and 1200 possible 

hyperparameters’ combinations. Presence and background locations were used for the Maxnet 

method, presence and absence locations for the other methods. 

Method 
Default model Genetic algorithm Grid search 

Train AUC Val AUC Train AUC Val AUC Time Train AUC Val AUC Time 

ANN 0.8600 0.8619 0.9839 0.9590 00:11:44 0.9814 0.9615 05:51:33 

BRT 0.9873 0.9750 0.9905 0.9779 00:01:33 0.9892 0.9787 00:29:45 

RF 1 0.9724 1 0.9740 00:02:16 1 0.9735 00:48:03 

Maxnet 0.8681 0.8561 0.8710 0.8565 00:17:49 0.8702 0.8567 05:01:21 

 

EXAMPLE OF APPLICATION: BEARDED VULTURE IN THE SWISS ALPS 

To demonstrate possible applications of SDMtune, we used 1947 observation locations of the 

Bearded vulture (Gypaetus barbatus) collected in Switzerland between 2004 and 2017. The 

occurrences were gathered from two databases: the International Bearded Vulture Monitoring 

(IBM) database and ornitho.ch, the official birding exchange platform in Switzerland. Clumped 

observations were removed with a spatial thinning of 250 m using the spThin package (Aiello-

Lammens et al., 2015). We randomly split the observations into two partitions and used 80% (1363 

observations) as training dataset and the remaining 20% (584) as testing dataset. A set of 39 

environmental predictors that might be relevant for the species was prepared for the analysis, as 

using numerous predictors together with a large amount of species observations allows for a better 

illustration of the advantages and time-saving functionalities provided by our package. The 

variables included information on topography, climate, geology, anthropogenic infrastructure, land 

cover, and food availability, referring to Hirzel et al. (2004). All predictors were prepared as raster 

maps with a resolution of 100 × 100 m, with each cell containing the average value of the respective 

variable within a 1 km2 circular moving window (a list of the variables is provided in Appendix 

A, Table A2). The whole analysis was conducted using R version 3.6.0 (R Core Team, 2019). 

We performed the data-driven variable selection using the function varSel on the initial set 

of 39 predictors. As a first step, we trained a model using the “Maxent” method with default settings 

(i.e., linear, quadratic, product and hinge as feature class combinations, regularization multiplier 

equal to 1, 10,000 background locations and 500 iterations) and the 39 environmental variables. 
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We then used the varSel function to execute the variable selection using the percent contribution 

to rank variable importance and the AUC as performance metric. The function arguments were set 

to check for Spearman's correlation coefficients |rs| greater than or equal to 0.7, based on 30,000 

random background locations (Table A3). 

 

Table 3. Performance of the gridSearch compared to the optimizeModel function for model 

tuning regarding execution time (expressed as HH:MM:SS) and evaluation metric (on the training 

dataset “Train AUC”, the validation dataset “Val AUC” and the difference between both “Diff 

AUC”, given as arithmetic mean of the 4-folds cross validation) on the case example data of the 

bearded vulture. 

Note: The models were trained using the Maxent method. 

The number of tested hyperparameters’ combinations is given by “h”. A description of the exact 

hyperparameters’ combinations is provided in Appendix A, Table A5. “FC” represents the feature 

class combination, “reg” the regularization multiplier and “iter” the number of iterations for the 

best performing model. 
a FC: (l) linear, (q) quadratic, (p) product, and (h) and hinge. 

 

Starting with the model trained using the 28 selected variables (i.e., the output of the varSel 

function, Table A4), we conducted a simple experiment to investigate the performance of the 

optimizeModel compared to the gridSearch function in terms of execution time and best 

hyperparameter combination. We selected the AUC as the performance metric running a fourfold 

cross-validation. The folds were created by randomly splitting the training dataset with the function 

randomFolds. For the optimizeModel function, we used the default arguments: a population size 

h Algorithm Exec. time Train AUC Val AUC Diff AUC FCa reg iter 

75 gridSearch 01:29:24 0.8687 0.8581 0.0106 lqph 3.0 500 

 optimizeModel 01:06:50 0.8687 0.8581 0.0106 lqph 3.0 500 

150 gridSearch 02:29:16 0.8687 0.8581 0.0106 lqph 3.0 500 

 optimizeModel 01:16:25 0.8687 0.8581 0.0106 lqph 3.0 500 

300 gridSearch 04:56:44 0.8691 0.8584 0.0107 lqph 2.9 500 

 optimizeModel 01:15:09 0.8691 0.8581 0.0110 lqph 2.8 500 

600 gridSearch 10:57:43 0.8707 0.8588 0.0119 lqph 2.7 700 

 optimizeModel 01:18:46 0.8707 0.8588 0.0119 lqph 2.7 700 

1200 gridSearch 21:14:45 0.8706 0.8588 0.0118 lqph 2.8 900 

 optimizeModel 01:06:58 0.8700 0.8550 0.0149 lqph 1.9 700 
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of 20 models, five generations, kept 40% of the best performing models, randomly retained 20% 

of the less performing ones and used a mutation chance of 40%. We tested different sets of 

hyperparameters (Table A5 and Figure A1), varying the feature class combinations, the 

regularization multiplier and the number of iterations. The results illustrate how using the 

optimizeModel function tremendously reduces computation time while providing a near-optimal 

solution when the number of hyperparameter combinations increases (Table 3). In our experiment, 

with 1200 possible hyperparameter combinations, the execution time dropped from 21 hr 14 min 

and 45 s using gridSearch to 1 hr 6 min and 58 s using optimizeModel with a similar predictive 

performance of the resulting models (mean validation AUC across the fourfold of 0.8588 and 

0.8550, respectively). 

 

Table 4. Comparison of model performance between models tuned using the genetic algorithm and 

grid search implemented in the optimizeModel and gridSearch function respectively, on the case 

example data of the Bearded vulture. 

Step Dataset Model performance 

Starting model 

Training 0.863 

Validation 0.846 

Testing 0.836 

  Genetic algorithm Grid search 

Hyperparameter tuning 

Training 0.870 0.871 

Validation 0.856 0.859 

Testing 0.848 0.853 

Optimize parsimony 

Training 0.865 0.868 

Validation 0.856 0.859 

Testing 0.846 0.854 

Final model evaluation 
Training 0.862 0.867 

Testing 0.846 0.855 

Note: Performance is evaluated with the AUC metric on the training, validation and testing datasets 

as mean AUC of the 4-fold cross validation at different steps of the modelling workflow. For the 

final model evaluation the model is trained merging training and validation datasets. The testing 

dataset refers to the dataset held apart and not used during the hyperparameter tuning and optimize 

parsimony steps and the starting model is the model trained after removing highly correlated 

variables. 
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In a next step, we investigated whether the final evaluation of the resulting models provided 

similar results. For this purpose, we selected the models with the optimized hyperparameters' 

combination (i.e., the output of the optimizeModel and gridSearch functions run with 1200 

different hyperparameters' combinations). We used the reduceVar function to test if some 

variables with low contribution could be removed without affecting the validation AUC. We 

considered the Maxent percent contribution to rank the environmental variables, a threshold of 2% 

for variable removal and used the Jackknife approach. We could remove nine and seven 

environmental variables, respectively, without reducing the mean validation AUC (Table A6 and 

Figure A2). 

Finally, we trained a model using the full training dataset without cross-validation, the 

selected environmental variables and the best hyperparameter configuration found by the two 

functions. We estimated the performance of these tuned models on the held apart testing dataset, 

obtaining very similar results (Table 4). 

 

DISCUSSION 

Most of the algorithms supported by the package have predefined default values for the 

hyperparameters, while ANN requires the size of the hidden layer to be specified (Table 1). Default 

values are not necessarily the best choice for any given dataset and modeling problem, and a tuning 

procedure can improve model performance considerably. For example, the default 

hyperparameters' values of the Maxent algorithm were derived based on an empirical tuning 

experiment conducted on 226 species (Phillips & Dudík, 2008), however, several authors found 

that these values were not always optimal for their specific datasets (Anderson & Gonzalez, 2011; 

Merow et al., 2013; Radosavljevic & Anderson, 2014; Warren et al., 2014; Warren & Seifert, 2011) 

While dedicated R packages are available for fine-tuning Maxent's hyperparameters, like ENMeval 

(Muscarella et al., 2014), wallace (Kass, Vilela, et al., 2018), and kuenm (Cobos et al., 2019), this 

process can be very time consuming (Table 2 and 3) and limiting, especially when performed for 

multiple species. With SDMtune, we introduce a genetic algorithm that drastically reduces the 

computation time of hyperparameter tuning while achieving an optimal or near-optimal model 

configuration. 

While the gridSearch function can be preferred for tuning a single or a few 

hyperparameters, it quickly comes to its limits when testing numerous hyperparameters' 
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combinations. In this case, the randomSearch function may represent a valid and time-efficient 

alternative for finding a better model compared to the one trained with default settings. By taking 

a random subsample from predefined hyperparameters' combinations, it has to train only n models 

(with n equal to the population size, i.e., 20 by default). During this process, it may select the best 

combination simply by chance. This chance, however, decreases with an increasing amount of 

possible combinations. The function optimizeModel, in contrast, can achieve a better result in a 

reasonable amount of time, as it makes use of the information generated during the tuning process, 

thanks to the genetic algorithm. This function also trains a reduced amount of models compared to 

gridSearch with the amount depending on: (1) the population size; (2) the fractions of both best 

and worst performing models to be retained at each generation; (3) the number of generations, 

which results in 60 models when using the default settings. 

Although there is no rule of thumb to decide when optimizeModel should be preferred to 

gridSearch or randomSearch, the choice can be supported by considering four important factors. 

The first and most important factor is the time necessary to train one model, which in turn depends 

on the sample size, the number of predictors, the selected method, and the setting of the 

hyperparameters. For instance, increasing the number of trees in RF or BRT increases the 

computation time as does decreasing the amount of regularization or using hinge or threshold future 

class combinations in ME methods. The second is the selected evaluation strategy: when k-fold 

cross-validation is performed, the required time to train one model is inflated by the factor k. 

Moreover, using k-fold cross-validation requires to compute the evaluation metric k times and 

compute their mean value, and this marginally increases the overall computation time. The third 

factor is the selected evaluation metric. To compute, the AICc is necessary to get the prediction for 

the whole study area which might take a long time in the case of large extents. The fourth factor is 

the number of hyperparameters' combinations used for the tuning procedure. Considering these 

aspects, the total amount of time necessary to tune the hyperparameters with the function 

gridSearch can be roughly estimated based on the time necessary to train and evaluate one model 

multiplied by the number of possible hyperparameters' combinations. Furthermore, the two 

functions could also be used in conjunction: the optimizeModel function returns n models, with n 

equal to the size of the predefined “population” of models (20 by default), ordered by decreasing 

model performance. The user could inspect the values of the hyperparameters of the returned 

models and further refine them using gridSearch. Finally, in case different hyperparameter-

configurations result in models with equal or similar values of the evaluation metric, the selection 
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of one among the competing models can be based on further exploration, for example, by 

computing multiple evaluation metrics. It should be stressed that hyperparameter tuning is limited 

to the values of the hyperparameters defined by the user and thus is not exhaustive. What we 

defined “best model” refers to the best model among those trained with all the possible 

combinations of the predefined values. Therefore, the definition of these values determines the 

quality of the final model. 

The genetic algorithm implemented in the function optimizeModel relies on some 

parameters that govern the optimization process (i.e., population size, number of generations, 

fractions of both best and worst performing models to be retained at each generation, and 

probability of mutation during crossover episodes), which are provided with default values. We 

defined these values based on a deep understanding of the algorithm and after testing it multiple 

times on varying datasets. Nevertheless, although these values could have been hard coded into the 

source code, we decided to provide a more flexible function making them available as arguments. 

In the performance assessment of the genetic algorithm and in the example of application presented 

here (Table 2 and 3), default values worked when testing as much as 1200 predefined 

hyperparameters' combinations. In case of a similar or higher amount of hyperparameters' 

combinations, these values might require small adjustments to introduce more variability, for 

instance by increasing the population size and the probability of mutation. 

With the implementation of the genetic algorithm, we introduced a new way of 

hyperparameters optimization in the field of SDMs. This way could be extended further by testing 

different modifications. For example, in our implementation only one model is created during the 

“crossover” event, but two “sibling” models could be produced instead. Furthermore, other 

optimization algorithms, like the Bayesian optimization, could be implemented. With our 

optimizeModel function, we provide a first implementation of a new algorithm that can be 

extended in future releases of the package. 

Not only the tuning of hyperparameters, but also the selection of environmental variables 

for SDMs has gained attention in recent years (Jueterbock et al., 2016; Warren et al., 2014; Zeng 

et al., 2016). Despite the fact that highly correlated environmental variables are not a problem when 

the aim of the study is prediction in the same extent of the observed data, reducing collinearity is 

recommended in order to reduce model complexity and increase the interpretability of the 

predictors (Dormann et al., 2013; Merow et al., 2014). In addition, although the degree of accepted 

model complexity varies according to the modeling scope(s) (Halvorsen, 2012; Halvorsen et al., 
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2015), it has been pointed out that models might perform best when trained with a reduced number 

of predictors (Brun et al., 2020; Halvorsen et al., 2015). Even though the selection should be driven 

by the knowledge of the modeled species, this might be difficult when the user must decide among 

several a priori ecologically relevant predictors for the species, or if the ecology of the species is 

poorly known. Cobos et al. (2019), with their package kuenm, provide a framework that enables 

tuning several models starting with different sets of environmental variables. Yet, this process still 

requires predefining the predictor sets. Warren et al. (2014) described a method where 

environmental variables are removed in a stepwise approach that accounts for regularization 

tuning, variable importance, and improvements in the AICc metric. A similar approach has been 

implemented in the package MaxentVariableSelection (Jueterbock, 2015), used by Jueterbock et 

al. (2016) to model the effect of climate change on the Arctic seaweed (Fucus distichus). In both 

examples, all predictors with a contribution-score lower than a given threshold and predictors 

highly correlated with the most important variable were removed simultaneously at each step. 

Given that removing a variable affects the contribution-score of the remaining predictors and 

therefore their resulting rank, our functions for data-driven variable selection remove only one 

variable at a time. For the same reason, removing highly correlated variables and variables with 

low contribution is performed by two distinct functions and not combined into the same process, 

as described in the previous examples. Furthermore, instead of relying merely on a variable's rank 

of importance for deciding which one to retain, our functions base the selection on a leave-one-out 

Jackknife test, while controlling the desired performance metric. Note that the varSel function aims 

at maintaining the value of the selected metric for the training dataset (i.e., removes the variables 

that decreases least the evaluation metric) while the reduceVar function aims to at least maintain 

the value of the selected metric for the validation dataset (i.e., removes a variable if the evaluation 

metric does not drop). The reasons are, first, that highly correlated predictors should be removed 

before performing any tuning, and second, that optimizing the selected metric for the training 

dataset allows capturing the information contained in the data, which is especially important if 

ecological selection criteria are lacking. The over- or underfitting can then be controlled later by 

fine-tuning the hyperparameters. On the other hand, removing variables with low predictive 

contribution aims to reduce model complexity and increase model generalization, which is why the 

validation dataset is used. 

There are other R packages which include functions for variable selection. Caret, for 

instance, implements several methods based, among others, on simulated annealing, recursive 
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elimination, or a genetic algorithm. Whereas these methods aim at identifying the best subset of 

the available variables, our implementations address different problems: varSel removes variables 

to reduce collinearity, and reduceVar removes variables that contribute least to the model to 

increase parsimony. The functions for data-driven variable selection can be particularly useful 

when the fitted model is extrapolated in space or time. In such cases, the currently prevailing 

correlations among the environmental variables may differ from those observed in the new time 

periods or geographical areas (Braunisch et al., 2013), causing unexpected predictions (Warren et 

al., 2014). This risk is reduced with a reduced number of predictors. Moreover, reducing the 

number of predictors may limit overfitting, and thus result in a model that generalizes better and 

thus yields more accurate predictions for data not used during training. The selection of a threshold 

to reduce the number of variables with the function reduceVar is quite arbitrary. If the aim is to 

remove as many variables as possible while preserving model performance, the threshold could be 

set to 100 and the Jackknife method must be selected. On the contrary, if the user, based on his 

expertise, judges a certain variable as ecologically important for the species and wants to retain it 

in the model, he could define a threshold that is lower than the importance of this variable. 

Nevertheless, the functions presented in this article should not be applied blindly. Therefore, 

SDMtune provides interactive real-time charts to visualize every step of the algorithms with the 

idea that the user further evaluates the validity of the final output. 

These charts are particularly useful for two reasons. First, because they are updated in real 

time, they confirm that the running function is working properly and is not frozen at some unknown 

step. This is especially important for functions that take long to be executed. Second, because they 

are interactive, different types of information can be provided without overloading a single graph, 

since extra information is embedded in a tooltip that appears when the user hovers over a specific 

element of the chart. Interactive real-time charts are well known and used in other fields that 

represent the state-of-the-art of machine learning, and available in few R packages such as keras 

(Allaire & Chollet, 2020) which allows the user to build complex deep learning models. 

 

CONCLUSION 

The new R package SDMtune enables data-driven variable selection and hyperparameters tuning 

within a unified and user-friendly framework. The core functions provide interactive real-time 

charts that represent the effect of each step of the implemented algorithms in relation to the model 
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performance and allow a deeper understanding of the automated processes. The new functions we 

present in this paper (i.e., genetic algorithm for hyperparameter tuning and automated variable 

selection) are implemented in a framework that also integrates functions already available in other 

packages. This unification, combining all required functions in a single package, offers the 

advantage for the user to learn a unique framework instead of jumping from one package to the 

other, each time having to adapt data structures. Currently, SDMtune supports three evaluation 

metrics (i.e., AUC, TSS, and AICc) and four modeling methods (i.e., ANN, BRT, RF, and ME) 

and more can be easily added in future releases. 

Despite providing comprehensive descriptions and visual illustration of the functions, we 

still stress that users should be familiar with their data and the selected algorithm used to train their 

model. Particular attention should be paid to preparing the data before modeling. SDMtune also 

offers functions to prepare the data, but it is upon the user's knowledge and expertise to decide 

upon the most appropriate way to partition and filter the dataset, accounting for sample size and 

possible sampling biases, or which metric is best to evaluate the model in relation to the modeling 

objectives. In this respect Araújo et al. (2019) defined best-practice standards for SDMs stressing 

the importance of evaluating models with a temporally or spatially independent dataset (Araújo et 

al., 2019: Supplement S2.4B). For this reason, SDMtune supports functions well developed in other 

packages (blockCV and ENMeval) to produce such data partitions. These best-practices have 

recently gained importance and have been integrated in the ODMAP standard protocol (Zurell et 

al., 2020) that provides a workflow for reproducible and good quality analyses. 

The package documentation provides a more complete description of all the available 

functions, and the articles hosted on the package webpage (https://consbiol-

unibern.github.io/SDMtune/) describe meaningful examples of application in various fields of 

ecological research. These examples are also included in the package and accessible through the 

vignettes. 

 

INSTALLATION 

The package SDMtune is available in the CRAN repository at https://CRAN.R-

project.org/package=SDMtune and can be installed in R with the command 

install.packages(“SDMtune”). The package is under development and the source code is hosted 

in GitHub (https://github.com/ConsBiol-unibern/SDMtune). We encourage future users to provide 

https://consbiol-unibern.github.io/SDMtune/
https://consbiol-unibern.github.io/SDMtune/
https://cran.r-project.org/package=SDMtune
https://cran.r-project.org/package=SDMtune
https://github.com/ConsBiol-unibern/SDMtune
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feedback and report bugs by opening an issue on the GitHub platform. 
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APPENDIX A 

R code to reproduce the performance assessment of the genetic algorithm 

The output presented in the article has been produced using R version 3.6 in a Linux operating 

system. Results might be slightly different with other versions of R or operating systems due to 

possible different random numbers generated after setting the seed. 

 
library(SDMtune) 

# Set general seed for all experiments 

seed = 186546 

 

## Load and prepare data--------------------------------------------------- 

files <- list.files(path = file.path(system.file(package = "dismo"), "ex"), 

                    pattern = "grd", full.names = TRUE) 

predictors <- raster::stack(files) 

p_coords <- virtualSp$presence 

a_coords <- virtualSp$absence 

data <- prepareSWD(species = "Virtual species", p = p_coords, a = a_coords, 

                   env = predictors[[1:8]]) 

folds <- randomFolds(data, k = 10, seed = seed) 

 

## ANN experiment 1200 hyperparameters------------------------------------- 

# Train starting model ==> size inner layer = number of variables 

set.seed(seed) 

model_ann <- train("ANN", data = data, size = 8, folds = folds) 

auc(model_ann) 

auc(model_ann, test = TRUE) 

 

# 1200 hyperparameters' combinations 

h_ann <- list(size = 2:81, decay = c(0.01, 0.05, 0.1, 0.3, 0.5), 

              maxit = c(100, 500, 1000)) 

nrow(expand.grid(h_ann)) == 1200  # Make sure there are 1200 combinations 

 

# Genetic Algorithm 

om_ann <- optimizeModel(model_ann, hypers = h_ann, metric = "auc", 

                        seed = seed) 

om_ann@results[1:5, ] 

# Grid Search 

set.seed(seed) 

gs_ann <- gridSearch(model_ann, hypers = h_ann, metric = "auc", 

                     save_models = FALSE) 

head(gs_ann@results[order(-gs_ann@results$test_AUC), ]) 

 

## BRT experiment 1200 hyperparameters------------------------------------- 

# Train starting model 

set.seed(seed) 
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model_brt <- train("BRT", data = data, folds = folds) 

auc(model_brt) 

auc(model_brt, test = TRUE) 

 

# 1200 hyperparameters' combinations 

h_brt <- list(n.trees = seq(40, 1020, 20), interaction.depth = 1:4, 

              shrinkage = seq(0.05, 0.1, 0.01)) 

nrow(expand.grid(h_brt)) == 1200  # Make sure there are 1200 combinations 

 

# Genetic Algorithm 

om_brt <- optimizeModel(model_brt, hypers = h_brt, metric = "auc", 

                        seed = seed) 

om_brt@results[1:5, ] 

 

# Grid Search 

gs_brt <- gridSearch(model_brt, hypers = h_brt, metric = "auc", 

                     save_models = FALSE) 

head(gs_brt@results[order(-gs_brt@results$test_AUC), ]) 

 

## RF experiment 1200 hyperparameters-------------------------------------- 

# Train starting model 

set.seed(seed) 

model_rf <- train("RF", data = data, folds = folds) 

auc(model_rf) 

auc(model_rf, test = TRUE) 

 

# 1200 hyperparameters' combinations 

h_rf <- list(ntree = seq(420, 1000, 20), mtry = 3:6, nodesize = 1:10) 

nrow(expand.grid(h_rf)) == 1200  # Make sure there are 1200 combinations 

 

# Genetic Algorithm 

om_rf <- optimizeModel(model_rf, hypers = h_rf, metric = "auc", 

                       seed = seed) 

om_rf@results[1:5, ] 

 

 

# Grid Search 

gs_rf <- gridSearch(model_rf, hypers = h_rf, metric = "auc", 

                    save_models = FALSE) 

head(gs_rf@results[order(-gs_rf@results$test_AUC), ]) 

 

## Maxnet experiment 1200 hyperparameters---------------------------------- 

# Train starting model 

bg_coords <- virtualSp$background 

data <- prepareSWD(species = "Virtual species", p = p_coords, 

                   a = bg_coords, env = predictors[[1:8]]) 

folds <- randomFolds(data, k = 10, only_presence = TRUE, seed = seed) 

model_mx <- train("Maxnet", data = data, folds = folds) 
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auc(model_mx) 

auc(model_mx, test = TRUE) 

 

# 1200 hyperparameters' combinations 

h_mx <- list(reg = seq(0.1, 4.88, 0.02), 

             fc = c("l", "lh", "lqp", "lqph", "lqpht")) 

nrow(expand.grid(h_mx)) == 1200  # Make sure there are 1200 combinations 

 

# Genetic Algorithm 

om_mx <- optimizeModel(model_mx, hypers = h_mx, metric = "auc", 

                       seed = seed) 

om_mx@results[1:5, ] 

 

# Grid Search 

gs_mx <- gridSearch(model_mx, hypers = h_mx, metric = "auc", 

                    save_models = FALSE) 

head(gs_mx@results[order(-gs_mx@results$test_AUC), ]) 

 

 

Table A1: Hyperparameter values used during the performance assessment of the genetic 

algorithm. 

Method Hyperparameters’ values 

ANN size = 2:81, decay = c(0.01, 0.05, 0.1, 0.3, 0.5), maxit = c(100, 500, 1000) 

BRT n.trees = seq(40, 1020, 20), interaction.depth = 1:4, shrinkage = seq(0.05, 0.1, 0.01) 

RF ntree = seq(420, 1000, 20), mtry = 3:6, nodesize = 1:10 

ME (Maxnet) reg = seq(0.1, 4.88, 0.02), fc = c("l", "lh", "lqp", "lqph", "lqpht") 

Note: The values are provided using the R code to generate them. 
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Table A2: Complete list of the environmental variables used in the case example of the Bearded 

vulture with metric and data source (warm season: May to October; cold season: November to 

April). 

Variable Abbreviation Source 

Average altitude (m a.s.l.) altitude_av DHM1 

Distance from anthropogenic areas (m) an_area_d_av Vector 252 

Bush frequency (%) bush_fr * Vector 25 

Limestone frequency (%) compact_limestone_fr * GeoKarten5003 

Distance from cableways without ski-lifts (m) c_way_d_av * Vector 25 

Sine of the aspect (-1 to 1) eastness * DHM 

Forest frequency (%) forest_fr * Vector 25 

Glacier frequency (%) glacier_fr * Vector 25 

Gneiss frequency (%) gneiss_fr * GeoKarten500 

Granite frequency (%) granite_fr * GeoKarten500 

Ibex density in the warm season (N/ha) ibex_summer_density_av * BAFU4 + CSCF5 

Ibex density in the cold season (N/ha) ibex_winter_density_av * BAFU + CSCF 

Distance from lakes (m) lake_d_av * Vector 25 

Marshland frequency (%) marsh_fr * Vector 25 

Cosine of the aspect (-1 to 1) northness_av * DHM 

Open forest frequency (%) open_forest_fr Vector 25 

Other rock frequency (%) other_rocks_fr * GeoKarten500 

Grassland and unproductive vegetation frequency (%) other_soil_fr * Vector_25 + BfS6 

Permanent culture frequency (%) permanent_fr * Vector 25 

Average precipitation in the cold season (mm) prec_122_av * WSL7 

Average precipitation in the warm season (mm) prec_57_av * WSL 

Distance from rivers and creeks (m) riv_cre_d_av * Vector 25 

Distance from roads and railways (m) ro_rail_d_av * Vector 25 

Rock frequency (%) rock_fr Vector 25 

Distance from rock steeper than 45° (m) rock45_d_sv Vector 25 + DHM 

Standard deviation (SD) of the altitude (m) roughness * DHM 

Chamois occurrence probability (0 to 1) rupicapra_hs_av * CSCF 

Scree frequency (%) scree_fr * Vector 25 

Sheep and goat warm season density (N/ha) sheep_goat_d_av * BsF 

Distance from ski-lifts (m) ski_d_av * Vector 25 

Slope (degree) slope_av DHM 

Frequency of slopes steeper than 30° (%) slope30_fr DHM 

Average solar radiation in the cold season (WH/m2) solar_rad122_av DHM 

Average solar radiation in the warm season (WH/m2) solar_rad57_av * DHM 

Average temperature in the cold season (°C) tave_122_av WSL7 

Average temperature in the warm season (°C) tave_57_av WSL 

Topographic Position Index8 (index) tpi_av * DHM 

Distance from water (m) water_d_av Vector 25 

Average wind speed at 100 m above ground (m/s) wind_100_av * BFE9 

Note: Variables were calculated as average value within a circular moving window with r=564m (1km2) on raster data 

of 100 x 100m resolution. The 28 variables selected by the varSel function are marked using the * symbol. 
1 Digital Height Model of Switzerland (Swisstopo): https://shop.swisstopo.admin.ch/en/products/height_models/dhm25. 
2 Digital Cartographic Model of Switzerland (Swisstopo): https://shop.swisstopo.admin.ch/en/products/maps/national/vector/smv25. 
3 Geo Maps: https://shop.swisstopo.admin.ch/de/products/maps/geology/GK500. 
4 Distribution of ibex colonies: https://www.bafu.admin.ch/bafu/de/home/themen/biodiversitaet/zustand/karten.html. 
5 Centre suisse de cartographie de la faune (CSCF): http://www.cscf.ch/cscf/de/home.html. 
6 Federal Administration for Statistic Switzerland (BsF): https://www.bfs.admin.ch/bfs/de/home/statistiken.html. 
7 Federal Institute for Forest, Snow and Landscape Research WSL; available upon request: www.wsl.ch. 
8 Topographic position index according to Wilson (1984). 
9 Swiss Wind Atlas (Bundesamt für Energie BFE, 2016). 
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Table A3: Spearman’ correlation coefficient of highly correlated environmental variables (rs ≤ -

0.7 and rs ≥ 0.7). For variable codes see Table A2. 

Var1 Var2 rs 

tave_122_av tave57_av 0.996 

altitude_av tave57_av -0.996 

altitude_av tave_122_av -0.995 

forest_fr open_forest_fr 0.993 

slope_av slope30_fr 0.970 

riv_cre_d_av water_d_av 0.925 

rock_fr rock45_d_av -0.903 

roughness slope_av 0.882 

roughness slope30_fr 0.863 

altitude_av ro_rail_d_av 0.826 

ro_rail_d_av tave57_av -0.826 

northness_av solar_rad122_av -0.814 

rock45_d_av slope_av -0.814 

ro_rail_d_av tave_122_av -0.814 

rock45_d_av slope30_fr -0.813 

an_area_d_av ro_rail_d_av 0.803 

solar_rad122_av solar_rad57_av 0.797 

an_area_d_av tave57_av -0.774 

an_area_d_av tave_122_av -0.764 

altitude_av an_area_d_av 0.762 

altitude_av scree_fr 0.738 

scree_fr tave57_av -0.734 

scree_fr tave_122_av -0.732 

open_forest_fr tave122_av 0.731 

open_forest_fr tave57_av 0.731 

altitude_av open_forest_fr -0.718 

forest_fr tave_122_av 0.718 

forest_fr tave57_av 0.718 

rock45_d_av roughness -0.717 

rock_fr scree_fr 0.707 

altitude_av forest_fr -0.705 
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Table A4: List of the environmental variables selected by the varSel function and relative percent 

contribution rounded to the first decimal place before executing the optimizeModel function. 

Variable P. contribution 

bush_fr 0.7 

compact_limestone_fr 3.5 

c_way_d_av 1.1 

eastness_av 0.6 

forest_fr 0.8 

glacier_fr 0.6 

gneiss_fr 1.4 

granite_fr 1.3 

ibex_summer_density_av 9.8 

ibex_winter_density_av 41.3 

lake_d_av 0.1 

marsh_fr 0.0 

northness_av 3.9 

other_rocks_fr 0.5 

other_soil_fr 1.4 

permanent_fr 0.8 

prec_122_av 11.2 

prec_57_av 1.9 

riv_cre_d_av 0.4 

ro_rail_d_av 0.1 

roughness 0.5 

rupicapra_hs_av 2.4 

scree_fr 4.2 

sheep_goat_d_av 1.4 

ski_d_av 1.4 

solar_rad57_av 0.9 

tpi_av 6.7 

wind_100_av 1.0 
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Table A5: Hyperparameter values used during the hyperparameter tuning experiment with h: 

number of tested hyperparameter combinations, FC: feature class combinations with linear (l), 

quadratic (q), product (p) and hinge (h) feature classes, reg: regularization multiplier and iter: 

number of iterations. 

h FC reg iter 

75 c(“lq”, “lh”, “lqp”, “lqh”, “lqph”) seq(0.2, 3, 0.2) 500 

150 c(“lq”, “lp”, “lh”, “lqp”, “lqh”, “lqph”) seq(0.2, 5, 0.2) 500 

300 c(“lq”, “lp”, “lh”, “lqp”, “lqh”, “lqph”) seq(0.1, 5, 0.1) 500 

600 c(“lq”, “lp”, “lh”, “lqp”, “lqh”, “lqph”) seq(0.1, 5, 0.1) c(500, 700) 

1200 c(“lq”, “lp”, “lh”, “lqp”, “lqh”, “lqph”) seq(0.1, 5, 0.1) seq(300, 900, 200) 

Note: the values are provided using the R code to generate them. In the optimizeModel function, 

in order to have consistent results, we set the seed argument to 186546 (a randomly generated 

number). 

 

Table A6: List of the remaining environmental variables after the execution of the reduceVar 

function (Fig. A2) and relative percent contribution rounded to the first decimal place. 

Variable Percent contribution 

 optimizeModel gridSearch 

bush_fr - 0.9 

compact_limestone_fr 7.7 6.8 

c_way_d_av 1.7 1.9 

eastness_av 1.4 1.4 

forest_fr 1.3 1.4 

gneiss_fr 1.5 1.7 

granite_fr 1.5 1.3 

ibex_summer_density_av 19.0 18.5 

ibex_winter_density_av 6.8 7.0 

northness_av 6.8 6.8 

other_rocks_fr 2.2 3.2 

other_soi_fr - 0.8 

permanent_fr 0.7 0.7 

prec_122_av 24.6 24.2 

prec_57_av 2.5 2.4 

roughness 1.5 1.0 

rupicapra_hs_av 3.5 3.5 

scree_fr 9.0 9.9 

ski_d_av 1.3 1.3 

solar_rad57_av 5.2 3.4 

wind_100_av 1.7 1.9 

Note: The model parsimony optimization was performed based on the output of the 

optimizeModel and gridSearch functions respectively, executed to tune 1200 possible 

combinations of hyperparameters.  
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Figure A1. Snapshot of the real-time chart after executing the optimizeModel function (with a 

“population size” of 20 models and five model generations) using 1200 different hyperparameter 

combinations on the case example data of the Bearded vulture. The scatterplot on top shows the 

training AUC (in orange) and the validation AUC (in blue) of the 20 ranked models at the end of 

the fifth generation, given as the arithmetic mean of the 4-folds cross validation. The line plot at 

the bottom shows the increase in model performance (based on the AUC on both training and 

validation dataset) at each generation with start: the starting model before running the optimization 

process, 0: the best performing model after the random population is created, 1-5: the best 

performing models in each of the five generations of the optimization process. 
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Figure A2. Snapshot of the real-time chart after executing the reduceVar function on the case 

example data of the Bearded vulture. The bar chart on top shows the 28 uncorrelated environmental 

variables with the percent contribution of the retained environmental variables at the end of the 

selection process, calculated according to Phillips et al. (2006). The line chart at the bottom shows 

the change in model performance (based on the AUC on both the training and validation dataset, 

given as arithmetic mean of the 4-folds cross validation) at each iteration where a single variable 

is removed. In the RStudio viewer pane the chart is interactive and when the user hovers over the 

line or bar chart a tooltip reports the variable that has been removed and the relative model 

performance values. Variable codes are provided in Table A2. 
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ABSTRACT 

The deployment of wind energy should contribute to the societal shift towards a massive reduction 

of greenhouse gas emissions. Yet, wind energy and large birds, notably soaring raptors, both 

depend on suitable wind conditions. Conflicts in airspace use may thus arise between wind energy 

development and wildlife protection due to the risks of collisions of birds with the blades of wind 

turbines. Using locations of GPS-tagged bearded vultures, a rare scavenging raptor reintroduced 

into the Alps, we built a spatially-explicit model to predict potential areas of conflict with future 

wind turbines deployment in the Swiss Alps. We modelled the probability of bearded vultures 

flying within the range of rotor-swept heights of wind turbines as a function of wind and 

environmental conditions, including food supply (wild ungulates presence). Flight activity within 

the blade-swept heights of wind turbines was generally high, concentrating on south-exposed 

mountainsides, especially in areas where ibex carcasses have a high occurrence probability, with 

critical areas covering vast expansions throughout the Swiss Alps. Our model provides a spatially-

explicit decision tool that will guide authorities and energy companies for planning the deployment 

of wind farms without jeopardising the chances of survival of emblematic Alpine wildlife. 

 

 

 

 

Keywords: wind energy, risk mitigation, wildlife-human conflicts, spatial planning, predictive 

modelling, vulture conservation 
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INTRODUCTION 

The evident negative impacts of global warming on our economy and the biosphere have led many 

countries to tackle the energy crisis and define objectives for reducing their fossil fuel consumption. 

Recently, the European Union has launched the “European Green Deal” (European Commission, 

2019), a new broad strategy that aims to drastically reduce greenhouse gas emissions and decouple 

the economic growth from the exploitation of natural resources. The goal of this EU’s initiative is 

to become “climatically neutral” by 2050 and this will involve, among others, the extensive use of 

renewable sources of energy. Yet, along with the claim to progressively rely exclusively on clean 

energy, another main target of this new deal is to preserve biodiversity. If the EU commits to 

combat biodiversity erosion, it remains to demonstrate that the expansion of renewable energy 

sources can proceed without jeopardising biodiversity conservation. 

Wind energy, together with solar energy, will likely lead the green energy revolution 

worldwide (Lee & Zhao, 2020). However, its negative effects on biodiversity have been the subject 

of an intense debate (Arnett et al., 2015; Drewitt & Langston, 2006; Katzner et al., 2019; Leung & 

Yang, 2012; Northrup & Wittemyer, 2013), known as the “green-green dilemma” (Dulluri & Rat, 

2019; Straka et al., 2020; Voigt, 2021; Voigt et al., 2019): even though wind energy can help to 

reduce greenhouse gas emissions, it may represent a new threat to sensitive wildlife whose 

protection may in turn hamper the development of this energy sector. 

Many of the species most affected by the large-scale expansion of the wind industry are 

already endangered or threatened, in particular among flying vertebrates such as birds (Drewitt & 

Langston, 2006; Madders & Whitfield, 2006) and bats (Frick et al., 2017; Wellig et al., 2018). 

Large soaring diurnal raptors are often the main avian victims of the blades of wind turbines 

(Barrios & Rodríguez, 2004; Perold et al., 2020; Smallwood & Thelander, 2008; Thaxter et al., 

2017). This is particularly concerning as they have a late sexual maturity and a low reproductive 

rate. Hence, even a slight increase in their mortality rates can exert strong negative impacts on their 

population dynamics (Beston et al., 2016; Carrete et al., 2009; Schaub et al., 2009; Watson et al., 

2018). Wind energy facilities are often erected in regions where landforms and climate generate 

favourable conditions to support the soaring flight of vultures (Poessel, Brandt, et al., 2018; 

Rushworth & Krüger, 2014), either via thermal or orographic lifts. The limited frontward visual 

field of diurnal raptors (Martin et al., 2012), which reduces their ability to perceive obstacles 

appearing in their direction of movement, further exacerbates collision risks. Moreover, when 
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soaring in a wind updraught, a raptor follows an ascending spiral (in case of thermals) or an eight-

shaped (in case of orographic lifts) (Pennycuick, 1973), which may suddenly expose it to a rotating 

blade that was still invisible a few seconds ago due to the -frequent change of flight azimuth 

(Allinson, 2017). 

Reconciling the transition towards a genuinely greener energy production thus necessitates 

a rigorous and strategic planning that satisfies the dual objective of a smooth energetic transition 

without jeopardising wildlife survival. To prevent any detrimental impacts of the wind industry 

development on endangered species, wildlife managers and wind energy companies need adequate 

planning tools to avoid deploying wind facilities in areas where major conflicts with biodiversity 

preservation will occur. 

Different approaches have been used as planning tools to mitigate the risks encountered by 

flying vertebrates, spanning from mere delineations of buffer areas around sensitive locations 

(Bright et al., 2008; Janss et al., 2010; Venter et al., 2019), through the compilation of distribution 

areas of sensitive species (Allinson, 2017; Bright et al., 2008; Mc Guinness et al., 2015), to more 

complex methods that account for fine-grained habitat use and/or flight behaviour of potentially 

impacted bat and bird species (Balotari-Chiebao et al., 2018; Murgatroyd et al., 2021; Reid et al., 

2015; Tikkanen et al., 2018; Wellig et al., 2018). The first approach is fairly imprecise, with for 

instance buffer areas created around nesting locations while neglecting habitat selection at other 

life stages. It is furthermore static, being incapable of accounting for range expansion caused by 

increases in population sizes of potentially affected species (Braunisch et al., 2015). The second 

method equates areas of species presence with areas of potential conflict; not accounting for actual 

fine-grained species-habitat associations it remains coarse but can be valuable for identifying broad 

areas of potential conflicts. The third method is the most sophisticated and also the most 

informative one, as spatially-explicit predictive models allows extrapolating to areas for which data 

about species presence may be deficient. Moreover, when relying on individual-based data such as 

radio- or GPS-tracking, it enables delineating areas of potential conflict with an unprecedented 

precision, most notably when providing information about the height above ground at which birds 

fly. This approach opens the gate towards 3D spatial modelling aimed to mitigate if not avoid 

conflicts between flying vertebrates and future wind facilities development. 

The aim of this study was to predict areas of the Swiss Alps where bearded vultures 

(Gypaetus barbatus) are likely to fly within the critical height range that is typically swept by the 

blades of modern wind turbines. The bearded vulture is a long-lived scavenger listed as vulnerable 
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in Europe (BirdLife International, 2015b). It is still critically endangered in Switzerland (Keller, 

Gerber, et al., 2010). Extirpated from many European countries in the early twentieth century 

(Mingozzi & Estève, 1997), the species has been reintroduced into the Alps since the 1980s, with 

a steadily growing population that progressively recolonises its former historical range (Hirzel et 

al., 2004). Several cases of collisions (including fatalities) with aerial anthropogenic structures 

have been reported in this re-established population (Izquierdo, 2017; Lörcher & Hegglin, 2020), 

including with wind turbines which may represent a new major source of hazard into the future 

(Vignali et al., 2021). In effect, Schaub et al. (2009) have shown that even a slight increase in 

mortality would push the Alpine population of bearded vultures below demographic self-

sustainability. If a spatial model we have recently developed predicts species’ potential distribution, 

including future expansion across the Swiss Alps (Vignali et al., 2021), the present model adds a 

vertical dimension to these projections. In effect, such a model would refine the prediction of 

potential conflicts, as the actual use of the airspace, i.e. the flight height with respect to the blade-

swept range is accounted for. 

Starting from a large dataset of GPS locations collected from tagged individuals, we thus 

modelled the probability that bearded vultures fly within the critical, blade-swept height range of 

wind turbines and identified the environmental and topographic variables that drive flight height 

selection. The model was projected to the entire Swiss Alpine range and combined with the 

previously modelled potential distribution of the species (Vignali et al., 2021) in order to show the 

joint probability of bearded vultures flying at risky heights within suitable habitat. The resulting 

map provides useful spatial information to delineate areas where the species would be at risk of 

colliding with wind turbine blades and therefore represents a useful decision tool for planning the 

deployment of wind power plants across the Swiss Alpine range while minimising their potential 

impacts on emblematic biodiversity. 

 

METHODS 

Study area and environmental variables 

We modelled the flight height of bearded vulture across the entire Swiss Alpine range, defined as 

four of the six biogeographical regions of Switzerland (Gonseth et al., 2001): Northern Alps, Inner 

Western Alps, Inner Eastern Alps, and Southern Alps. We used environmental variables that 

represent land cover characteristics, geology, topography, food availability and wind conditions 
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(Table 1). Land cover information was extracted from the digital cartographic model of Switzerland 

(Vector25, https://www.swisstopo.admin.ch/en/geodata/maps/smv/smv25.html). This vector layer 

was converted into a raster map with 25 m spatial resolution and reclassified to represent the 

following ten classes: orchards, forest, bush, scree, anthropic areas, marshland, water, rock, glacier, 

and remaining areas not included in the other classes (Table S1). The geological features were 

derived from the simplified geotechnical map of Switzerland which was provided as digitised 

vector map by the University of Bern (https://biblio.unibe.ch/maps/bis/publications/dl-oef21.html) 

and represents the types of the topmost rock strata 

(https://data.geo.admin.ch/ch.swisstopo.geologie-geotechnik-gk200/ (Bundesamt für Statistik, 

1967)). The shapefile was converted into a raster map with 25 m spatial resolution and reclassified 

into four classes: areas dominated by limestone, granite, gneiss, and remaining geological 

substrates (Table S2). 

 

Table 1: Environmental predictors used to model the probability of bearded vultures flying below 

200 m a.g.l. (i.e. within the flight height range swept by wind turbine blades) across the Swiss Alps, 

with indication of unit of measurement, abbreviation, and data source. 

Category Description Unit Abbreviation Source 

Land cover   landcover Vector 25a 

Geology   geology gk200b 

Topography Sine of the aspect -1 to 1 eastness DHM25c 

 Cosine of the aspect -1 to 1 northness DHM25 

 Slope degree slope DHM25 

 Slope unevenness Index slope_unev DHM25 

 Topographic Position Indexd Index tpi DHM25 

Food Ibex occurrence probability 0 to 1 ibex Vignali et al. (2021) 

 Chamois occurrence probability 0 to 1 chamois Vignali et al. (2021) 

Climate Average wind speed at 100 m 

above ground 

m/s windspeed BFEe 

a Digital Cartographic Model of Switzerland: https://www.swisstopo.admin.ch/en/geodata/maps/smv/smv25.html. 

b Simplified geotechnical map of Switzerland (Bundesamt für Statistik, 1967). 

c Digital Height Model of Switzerland: https://www.swisstopo.admin.ch/en/geodata/height/dhm25.html. 

d Topographic position index according to Wilson (1984). 

e Swiss Wind Atlas (Bundesamt für Energie BFE, 2016). 

  

https://www.swisstopo.admin.ch/en/geodata/maps/smv/smv25.html
https://biblio.unibe.ch/maps/bis/publications/dl-oef21.html
https://data.geo.admin.ch/ch.swisstopo.geologie-geotechnik-gk200/
https://www.swisstopo.admin.ch/en/geodata/maps/smv/smv25.html
https://www.swisstopo.admin.ch/en/geodata/height/dhm25.html
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Topography was characterised with five raster layers extracted from a digital elevation 

model with a spatial resolution of 25 m (DHM25, 

https://www.swisstopo.admin.ch/en/geodata/height/dhm25.html). The aspect of the study area was 

represented by the deviation from east and north (sine and cosine of aspect, respectively). Terrain 

characteristics were incorporated by using the Topographic Position Index (TPI, Wilson, 1984) and 

the slope unevenness, which describe the elevation or slope of a cell relative to the surrounding 

terrain, respectively (both calculated within a moving window of nine pixels). Northness and 

eastness were calculated with ArcGIS 10.2, TPI and slope unevenness were derived using the raster 

package in R (Hijmans, 2019). Food availability was described using the modelled probability of 

chamois and ibex occurrence, the two main providers of bones for bearded vultures, which thus 

served as a proxy for food supply (for methodological details see Vignali, Lörcher, Hegglin, 

Arlettaz, & Braunisch, 2021, Appendix A). Finally, average wind speed at 100 m a.g.l. was 

extracted from Swiss Wind Atlas (Bundesamt für Energie BFE, 2016). Pairwise Spearman’s 

correlations between all continuous environmental variables were |rs| < 0.6, calculated based on 

10,000 random locations. Categorical variables (i.e. land cover and geology) were one-hot encoded 

while continuous variables were normalised using the mean and standard deviation derived from 

the training dataset. 

 

Species data and data processing 

Between 2005 and 2020, as part of the Alpine reintroduction programme, 97 bearded vultures have 

been equipped with GPS loggers (battery or solar-powered) fitted with a leg loop harness (Hegglin 

et al., 2004). All birds but one were tagged as fledglings, 81 thereof captive-bred and 16 wild-

hatched. In addition, one adult bird, released in 1999, was tagged in 2017 after recapture, 

rehabilitation and re-release. Loggers from different manufacturers and relying on various power 

sources were deployed whilst GPS locations were collected with a very heterogenous schedule. 

For example, some devices were programmed to collect bursts with high frequency resolution (1 

Hz) as long as the bird was moving and the battery was sufficiently charged. Others collected GPS 

locations at 1-min resolution under similar conditions, while some devices recorded data with even 

lower temporal resolution. Since we were interested in modelling the flight height above ground 

level, we selected only data collected by GPS devices that simultaneously recorded information on 

both flight altitude and instantaneous ground speed so that non-flight locations could be excluded 

from the analysis (see below). Following the definition of Péron et al. (2020) we define “flight 

https://www.swisstopo.admin.ch/en/geodata/height/dhm25.html
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height” as the distance between the bird and the ground level, and “flight altitude” as the distance 

relative to a reference surface like the earth ellipsoid or the mean sea level. Some of the devices 

provided flight altitude estimates relative to the mean sea level while others measured it relative to 

the earth ellipsoid. In the latter case, flight altitude measures were converted to altitude relative to 

the mean sea level using the method described by Poessel et al. (2018, Appendix S1). The altitude 

relative to the mean sea level was then used to estimate the flight height above the ground level by 

subtracting the ground elevation extracted from the digital elevation model at each GPS location. 

Several authors described the problem of negative flight height values estimated from GPS 

locations (see for example Katzner et al. (2012); Péron et al. (2017, 2020); Poessel et al. (2018)). 

Negative flight height values are essentially due to the sum of errors in the measure of the altitude 

and/or position provided by the GPS tag and in the interpolation of the digital elevation model used 

to calculate the flight height. Visual inspection of GPS locations collected at 1 Hz resolution 

showed that most negative flight height values occurred close to steep slopes suggesting a 

significant influence of the position error in generating negative values. To reduce the position 

error we culled our data by removing observations with a Horizontal Dilution of Precision (HDOP) 

≥ 10 (when the HDOP was provided), which correspond to an error of about 30 m (Katzner et al., 

2012) or by discarding all locations with an error ≥ 30 m using the position error provided by the 

manufacturer. Moreover, we retained only locations with a flight height within the range of -50–

4000 m (Poessel, Brandt, et al., 2018), assuming that values outside of this range were probably 

generated by an erroneous measure of the flight altitude. 

In order to ensure that the locations retained for our analysis were all collected from flying 

vultures we considered a combination of two criteria. First, we selected only GPS locations 

recorded during the day, from sunrise to sunset, using the R package suncalc (Thieurmel & 

Elmarhraoui, 2019). Second, we removed all locations whose instantaneous ground speed was less 

than 2 m/s (Poessel, Brandt, et al., 2018). This second criterion might have removed some valid 

flying positions, but we preferred to be conservative and avoid the risk of including non-flight 

locations. Finally, for each bird we selected only observations collected within the Swiss Alpine 

range, removed all GPS locations recorded during the first eight weeks after fledging to reduce a 

potential bias related to the release event, and randomly sampled one observation per minute in the 

case of bursts collected at 1 Hz resolution. This last step was necessary to reduce potential 

autocorrelation among locations and avoid an overrepresentation of the vultures that collected high 

temporal resolution data. 
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Table 2: GPS-tagged birds included for modelling the flight height of bearded vultures in the Swiss 

Alps with mention of the country of first release (or subsequent recapture), origin (C: captive-bred; 

W: wild-fledged), year of fledging, sex (M: Male; F: Female; U: Unknown), manufacturer of the 

transmitter, number of GPS locations retained after data cleaning (N), total number of tracking days 

within the Swiss Alpine range, percent of locations below 200 m a.g.l. (%), and number of GPS 

locations retained after randomly subsampling one location per minute (S). 

Bird ID Country Origin Year Sex Manufacturer N Days % S 

BG1071 CH C 2020 F e-obs 4,855 102 82.92 1,667 

BG1068 CH C 2020 M e-obs 17,036 85 92.14 1,948 

BG1003 CH C 2018 F e-obs 831,178 664 84.00 24,356 

BG1001 CH C 2018 M e-obs 537,155 591 77.22 18,244 

BG964 CH C 2017 M e-obs 959,434 689 74.83 27,357 

BG899 CH C 2016 M Microwave 40,771 600 75.95 39,961 

BG900 CH C 2016 M Microwave 17,330 292 73.04 17,006 

BG841 CH C 2015 F Microwave 7,263 372 69.95 7,113 

BG838 CH C 2015 F e-obs 1,386 339 80.38 1,358 

BG802 CH C 2014 M Microwave 39,759 1,308 73.20 39,112 

BG797 CH C 2014 M Microwave 12,302 985 74.69 12,162 

BG321* CH C 1999 F Ornitela 3,764 263 58.95 671 

BG1031 FR C 2019 F Ornitela 3,358 32 58.87 421 

BG1022 FR C 2019 M Ornitela 2,782 1 70.13 77 

BG980 FR C 2018 M Ornitela 9,779 26 63.43 472 

BG983 FR C 2018 M Ornitela 5,789 13 72.62 268 

BG905 FR C 2016 M e-obs 4,001 5 73.41 255 

W361 FR W 2020 U Ornitela 4,710 19 67.56 303 

W356 FR W 2020 U Ornitela 170 44 84.71 170 

W346 FR W 2020 U Ornitela 20,172 15 81.60 666 

W285 FR W 2019 F Ornitela 139,526 173 74.28 4,734 

W284 FR W 2019 F Ornitela 29,788 58 60.37 1,306 

W313 FR W 2019 F Ornitela 11,563 10 68.36 345 

W251 FR W 2018 M Ornitela 14,482 109 61.89 840 

W209 FR W 2017 M Ornitela 99,304 137 71.68 3,594 

W196 FR W 2016 F Ornitela 46,655 986 83.41 12,056 

BG998 AT C 2018 M Ornitela 44,431 277 76.93 3,152 

BG843 AT C 2015 M e-obs 31,206 311 58.60 7,214 

BG840 AT C 2015 M e-obs 407 76 74.55 407 

W349 IT W 2020 F Ornitela 78 13 75.64 77 

* Tagged as adult bird in 2017 
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Modelling approach 

Tracking animals with GPS devices has expanded over the last years and new generation loggers 

are able to collect many locations at fine temporal resolution (López-López, 2016). Processing a 

large amount of data is challenging and computationally expensive. Often data are heavily 

subsampled not only to reduce autocorrelation problems but also meet computational capacities of 

classical statistical approaches (Murgatroyd et al., 2021; Poessel, Brandt, et al., 2018). On the other 

hand, more recent techniques like machine learning algorithms, and especially artificial neural 

networks, can capture complex nonlinear relationships present in the data but they require large 

datasets. In this regard many tools have been developed to speed up computation with graphics 

processing unit GPU acceleration and create data pipelines to efficiently pre-process data before 

model training. Artificial neural networks gained popularity in many fields of biology during the 

last decade, including behavioural classification from tri-axial acceleration data (Nathan et al., 

2012; Resheff et al., 2014) or from GPS data (Browning et al., 2018; Maekawa et al., 2020). In 

order to make use of all information included in the data and also develop a method that easily 

scales to potentially very large datasets we used a deep feedforward neural network to model the 

probability of a bearded vulture flying within a given height-range at a given location. Considering 

the still ongoing trend of increasing heights in newly constructed, modern wind turbines, we 

decided for a threshold of 200 m (hereafter referred to as critical height), below which the flight of 

a bird is deemed to be at potential risk of collision with the rotor blades (see also Murgatroyd et 

al., 2020; Reid, Krüger, Whitfield, & Amar, 2015). The flight height was converted to a binary 

response with 1 being a location within the critical height range. Our model was defined and trained 

within the tensorflow framework (Mart\’\in Abadi et al., 2016) and using the keras R package 

(Allaire & Chollet, 2020). The Keras application programming interface (API) allows great 

flexibility in defining the architecture of a neural network. We used two hidden layers connected 

by a dropout layer and a single unit as output of the network that used a sigmoid activation function 

(for model implementation, see R code in supplementary material). A dropout layer acts as a 

regularization layer by randomly deactivating some units during training, thus reducing the risk of 

overfitting the training data (Srivastava et al., 2014). The model was trained to minimise the binary 

cross entropy loss function using the Adam optimiser. 

During the modelling process, we first conducted a grid search experiment to identify the 

best model architecture, varying the number of units in the hidden layers independently from 16 to 

512, each time doubling the number of units (i.e. 16, 32, 64, 128, 256 and 512), and searching the 
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rate of the dropout layer in the range 0.2 – 0.7 with increments of 0.1, which resulted in a total of 

216 different model configurations. We trained the model on 70% of the data, used the remaining 

30 % for validation and stopped model training when the area under the operating characteristic 

(ROC) curve (AUC) (Fielding & Bell, 1997) computed for the validation dataset did not increase 

for more than 10 epochs. 

In a second step we used a cross-validation approach to evaluate the ability of the model to 

generalise among different individual birds and for different zones of the study area. Using the best 

model configuration, identified with the random search experiment, we trained 30 different models 

for 20 epochs, each time leaving out the locations collected from a different bird on which the 

model predictions were then evaluated. Similarly, we ran a spatial block cross validation dividing 

the study area into spatial blocks created with the blockCV R package (Valavi et al., 2019). The 

analysis of the spatial autocorrelation among continuous variables, conducted using the function 

spatialAutoRange, suggested a block size with a minimum side-length of 5719 m.  We decided for 

10 km (Fig. S1) so as to verify the ability of the model to generalise across wider areas. Using the 

blocks we randomly partitioned the GPS locations within them, into five cross-validation folds. 

As a third step we investigated the contribution and the marginal effect that each environmental 

variable had on the model predictions. The contribution of different variables was estimated via 

their permutation importance using the vip R package (B. M. Greenwell & Boehmke, 2020) and 

measuring the drop in AUC, while the marginal effect of the environmental variables was 

investigated using individual conditional expectation (ICE) (Goldstein et al., 2015) and partial 

dependence (PD) (Friedman, 2001) plots created with the pdp R package (B. M. Greenwell, 2017). 

ICE curves are generated for a given variable in the dataset, the range of which is subdivided into 

a grid of n equally spaced values. For one observation in the dataset, predictions are made by 

varying the focal variable within the grid while the other variables are kept constant, thus creating 

a single ICE curve. The process is repeated for each observation, generating as many ICE curves 

as there are observations in the dataset. This is a good method to show complex interactions among 

variables while the overall effect is shown by the PD curve, which simply represents the average 

of all ICE curves. 

Finally, we evaluated model uncertainty by means of a bagging procedure (Shu & Burn, 

2004). We sampled the training dataset (70% of the locations) 30 times, with replacement, and 

used the validation dataset to stop model training when the validation AUC didn’t increase for 

more than 10 epochs. We then used the 30 trained models to project predictions to the full extent 
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of the study area and used the mean of the 30 produced maps as final prediction. A 95% credible 

interval was also created to identify areas were model predictions are more uncertain. The full 

extent prediction was visually evaluated by field experts (R.A., D.H. and F.L.) to verify that known 

areas where the species flies close or far from the ground were correctly identified by the model. 

 

Conflict map for landscape planning 

The map obtained from the above modelling represents the probability of a bearded vulture flying 

within the critical height range swept by turbine blades, this regardless of whether the habitat 

conditions are suitable for the bearded vulture, i.e. independent of the probability of species 

occurrence. To identify areas within actual species’ suitable habitat in which there would exist a 

risk of collision in case of wind turbine installation, we combined the output of our previously 

developed habitat suitability model (see Vignali et al., 2021, figure 4e, reported also in Fig. 3c) 

with the output of the model described in this article. The joint probability of species occurrence 

and flying within the critical height range (Fig. 3e) was calculated by taking the product of the two 

raster maps (Reid et al., 2015). 

We also converted the predicted probabilities of a beaded vulture flying at risky heights 

into a binary map by means of the threshold which held a sensitivity of 95%. The resulting binary 

map was then intersected with the potential conflict map described in Vignali et al. (2021, Fig. 4d, 

reported alse in Fig 3d) in order to delineate the areas within the habitat where the species flies 

within the critical height range which would be particularly prone to collisions (Fig. 3f). Hereafter 

this synthetic map is referred to as high-risk conflict map. 

The whole analysis was run in R (R Core Team, 2020) version 4.0.2 through the RStudio 

software (RStudio Team, 2021). 

 

RESULTS 

Tracking data 

Among all bearded vultures GPS-tagged by the Alpine reintroduction programme, 32 individuals 

fulfilled the requirements for being included in the analysis. Two out of these 32 individuals also 

had to be discarded because they yielded only five and nine GPS locations in Switzerland, 

respectively. The retained 30 bearded vultures had been tagged in all four countries involved in the 

Alpine reintroduction project (i.e. Switzerland, France, Italy, and Austria), with the data used for 
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the analysis having been collected from September 2014 to the end of December 2020. The number 

of collected locations, as well as the amount of tracking days, varied significantly among tagged 

individuals, with larger sample sizes in birds released within Switzerland, and lower sample sizes 

in birds that only occasionally visited the study area, stemming from release sites in the 

neighbouring countries (Table 2). The number of tracking days within the Swiss Alpine range 

varied from 1 to 1308 per individual while the duration of the tracking period per individual varied 

according to the lifetime of the solar-battery system, any device loss or deficiency, or in case of a 

bird’s death. Some devices (N=9) recorded data for more than 3 years. This is approximately the 

age at which juvenile bearded vultures change their behaviour, shifting from an exploring phase to 

a phase of territory establishment (Hirzel et al., 2004; Vignali et al., 2021). A total of 2,939,411 

GPS locations were retained after data cleaning, of which 77.5% were collected below 200 m a.g.l. 

(average proportions varying between individuals from 58.6% to 92.1%). After applying the above 

subsampling procedure, flight height was finally modelled based on 227,313 GPS locations. 

 

Model architecture and predictions 

The best model configuration identified during the grid search experiment was a deep feedforward 

neural network with 256 units in the first hidden layer, a dropout rate of 60%, and 32 units in the 

second hidden layer. This model had an AUC value of 0.726 for the training dataset and 0.719 for 

the validation dataset. Overall, the model was able to generalise well across birds, which was 

indicated by a mean training and testing AUC of 0.716 (SD=0.003) and 0.721 (SD=0.045), 

respectively (Table S3), which was comparable to the performance of the model trained using all 

birds. Similarly, the model showed a good ability to generalise across different regions of the study 

area with a mean training and testing AUC of 0.719 (SD=0.005) and 0.710 (SD=0.016), 

respectively (Table S4). 

The combination of the potential conflict map (Fig. 3d) with binary representation of the 

probability of flying within the critical height below 200 m a.g.l. (Fig. 3b) revealed that about 77% 

of the area suitable for the species is likely to be overflown within the critical height range (Fig. 

3f). This area, ranging from 278 to 4502 m a.s.l., represents 30.6% (7871 km2, Table 3) of the 

overall extension of the Swiss Alpine massif. 
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Table 3: Percentage of shares of the different levels of sensitivity (increasing from 1 to 4) predicted 

in the potential conflict map (Fig. 3e) and the high risk conflict map (i.e. where the bearded vulture 

is likely to fly within the critical height range, i.e. below 200 m a.g.l., Fig. 3f) in the whole Swiss 

Alps. The last column reports the shares of areas where the bearded vulture is likely to fly above 

the critical height within the habitat. 

Level of sensitivity  Potential conflict map High risk conflict map Remaining 

1 12.3 8.2 4.1 

2 11.0 8.5 2.5 

3 7.2 5.8 1.3 

4 9.2 8.0 1.2 

Total 39.7 30.6 9.2 

 

Relative contribution of different variables 

The environmental conditions that mainly drove the probability of a bearded vulture flying within 

the critical height range were steepness of the terrain and food availability (permutation importance 

of 29.6 and 19.7%, respectively) (Fig. 1). 

 

Figure 1 Permutation importance of the environmental variables used to model the probability of 

bearded vultures flying below 200 m a.g.l. Permutation importance is presented as the drop in 

training AUC (%) when randomly permuting the values of the respective variable within their 

empirical range. Variable abbreviations are given in Table 1. 
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Bearded vultures were more likely to fly at lower height (<200 m a.g.l.) not only when 

approaching steeper slopes but also in areas with a high probability of ibex presence (Fig. 2), i.e. 

sectors where it is more likely to find ibex carcasses. This pattern is evidenced not only by the PD 

curves, but also by the increasing concentration of the ICE curves with increasing values of the 

two variables. Overall, the probability of flying within the critical height range was lower over 

north-facing mountainsides than over south-facing mountainsides and higher over areas dominated 

by scree, rocks, and glaciers compared to the remaining land cover conditions (i.e. forest, anthropic 

areas, water bodies, etc). Flying within the critical height range was also more likely to occur in 

areas typically exposed to stronger winds compared to areas with weaker winds. 

 

Figure 2 Marginal effect of the five most important environmental variables for predicting the 

probability of a bearded vulture flying below 200 m a.g.l. In grey are plotted 1000 randomly 

sampled individual conditional expectation (ICE) curves (Goldstein et al., 2015) and in blue the 

partial dependence (PD) curve (Friedman, 2001). For land cover, a categorical variable, each 

boxplot shows the ICE values without outliers and the blue dot the value of the PD. The curves for 

the remaining environmental variables are shown in Fig. S4. 
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Figure 3 Predictions of bearded vulture occurrence and the probability of the species flying within 

the risky height range (< 200m a.g.l.) that potentially generate risks of collisions with the blades of 

wind turbines in the Swiss Alps. The maps show a) the predicted probability of a bearded vulture 

flying below 200 m a.g.l. calculated as the mean prediction of a 30-bagging procedure and 

extrapolated to the whole Swiss Alpine range (gradient from blue, zero probability; to red, high 

probability); b) the probability of bearded vulture occurrence described in Vignali et al. (2021, Fig. 

4e); c) joint probability of occurrence and flying below 200m a.g.l., calculated as the product of 

map a and b. The map showed in d is the translation of a into a binary response using the threshold 

for which 95% of the locations occurring at risky heights are correctly predicted (the areas with a 

high probability that a bearded vulture flies within the critical height range are shown in red); e) 

the “potential conflict map” described in Vignali et al. (2021, Fig. 4f); f) the “high-risk conflict 

map” calculated as the product of d and e. 

DISCUSSION 
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The wildlife vs wind energy conflict model developed here extends commonly applied approaches 

of predicting areas of potential collision risk with wind turbine blades based on mere species’ 

spatial occurrences by adding a vertical dimension. In effect, its predictions are refined in the sense 

that it specifically predicts in which areas bearded vultures would effectively fly within the vertical 

segment of airspace swept by the blades of wind turbines if deployed. As the majority of the GPS 

locations (77.5%) indicated flight activity of bearded vultures at heights lower than 200 m a.g.l. 

(Fig. S3), bearded vultures in the Swiss Alps seem to be active most of the time in the dangerous 

height range. This concurs with former findings by Rushworth & Krüger (2014) who estimated 

that south African bearded vultures spend 74.7% of their foraging time below 200 m a.g.l. As a 

result, our final high-risk conflict map shows that 76.9% of the area of suitable habitat across the 

Swiss Alps (i.e. 30.5% of the entire Swiss Alpine range) may incur some potential collision risk 

(Fig. 3f, Table 3). 

Steep south-facing slopes and areas with high probability of ibex presence, i.e. providing 

carcasses potentially exploitable by bearded vultures, offered the best conditions for low-height 

flight (Fig. 1-2). Terrain steepness and exposition are indeed two key factors explaining the 

formation of updraughts, i.e. both thermals and orographic uplifts. Thermals are generated by 

unequal heating of the earth surface: solar radiation heats up certain land cover types faster than 

others (e.g. dark rocky outcrops), thus generating columns of warm air that rise from the ground. 

Orographic uplifts stem from the upward deviation of wind blowing against mountainsides. 

Although the former occur mostly along sun-exposed rocky slopes and over flat areas (Shamoun-

Baranes et al., 2003), the latter are generated exclusively along slopes and ridges. While thermals 

in lowlands are furthermore easily disrupted by dominant winds, mountain regions supply a year-

round source of uplifts, thus providing optimal conditions to support the flight of raptors exhibiting 

high wing-loading such as vultures (Shepard & Lambertucci, 2013). In line with this, various 

studies have showed that raptors fly relatively low over ridges and steep slopes (Hanssen et al., 

2020; Katzner et al., 2012; Murgatroyd et al., 2021) where orographic uplift is more likely to occur. 

As shown here, bearded vultures are no exception to that rule. 

While static and/or dynamic environmental conditions are frequently included to model 

flight behaviour in relation to potential collision risk with wind turbines (Hanssen et al., 2020; 

Katzner et al., 2012; Murgatroyd et al., 2021; Péron et al., 2017; Reid et al., 2015), the spatial 

distribution of potential food supply has – to the best of our knowledge - never been considered so 

far. Our model ranked this environmental variable as the second most important one in explaining 
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the probability of flying within the critical height range. Vultures, and large soaring birds in 

general, are constrained in their movements by the availability of updraughts. By soaring into 

ascending air currents for gaining height and then gliding to another location (Pennycuick, 2008), 

they achieve an energy-efficient commuting pathway (Duriez et al., 2014; Ruxton & Houston, 

2004). However, the optimal height to be gained with soaring is likely to result from a trade-off 

between mobility for long-range horizontal displacement and the ability to inspect the ground for 

locating food, the latter diminishing with height (Shepard et al., 2011). This might be particularly 

crucial for bearded vultures which, given their peculiar bone-based diet (Margalida et al., 2009; 

Margalida & Villalba, 2017), have to locate carrion and small parts of carcasses that may be easily 

overseen. Ibex carcasses represent the most important food supply of Alpine bearded vultures, to 

an extent that their distribution is largely driven by the presence of that ungulate species (Hirzel et 

al., 2004; Vignali et al., 2021). Our model could even capture that ecological requirement since the 

probability of flying within the dangerous height range was always high over areas with high 

probability of ibex presence, regardless of the other environmental conditions (Fig. 2). That a 

similar pattern was not found for chamois, another important food source for Alpine bearded 

vultures, is not surprising because chamois’ distribution is much more uniform as the species is 

less dependent on a rocky substrate than ibex. 

We used two different validation approaches to assess the ability of our model to generalise 

across individuals and geographic regions within the Swiss Alps. In this respect, the leave-one-

bird-out cross validation is important to ensure that model predictions are not biased by individuals 

with a prevailing number of GPS bearings. Only three birds out of 30 (i.e. W361, BG1022, and 

BG980, Table S3) caused some marked drop of the AUC when used to evaluate the model. These 

birds had all been tagged in France, visiting only occasionally the southwestern most part of the 

study area. These notwithstanding, a few birds yielded GPS locations exclusively from one part of 

the study area (e.g. only in western, central, or eastern Swiss Alps), while most of them roamed 

across the entire Swiss Alpine massif. The similarly good AUC values obtained across the 

individuals confirm the reliability of our model extrapolations to the entire study area. Finally, the 

spatial block cross validation further reinforced the validity of the model throughout the study area, 

given that it performed equally well  for predicting the locations in the spatial blocks not used for 

model training (Telford & Birks, 2009). 

The AUC values yielded by validation were not particularly high, although comparable 

with those obtained by Reid et al. (2015) for the bearded vulture population inhabiting southern 
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Africa. A model with an AUC greater than 0.7 is considered to be sufficiently accurate for 

discriminating positive from negative classes (i.e. distinguishing between locations where bearded 

vultures flew below vs above the critical height range) (Hosmer & LemeshowStanley, 2000). Since 

bearded vultures may fly both above and below the critical height range within any given place, 

there will always be situations where the model correctly predicts one class and therefore 

incorrectly predicts the other, resulting in low AUC values. In addition, there are plenty of 

situations for a mountain raptor, especially near sheer cliffs and steep slopes, where a small 

horizontal displacement can significantly change the height a.g.l., and thus the respective flight 

height class. Similarly, even tiny inaccuracies in GPS bearings collected in the vicinity of cliffs can 

affect the allocation to one of the two height flight classes. Therefore, if the AUC remains a valid 

threshold-independent metric useful to evaluate the overall model performance – which is the 

reason why we relied on it to tune the model’s hyperparameters and to check the ability of the 

model to generalise across birds and areas – one always benefits from a final, complementary 

validation by visually inspecting how the model performs in known areas where the birds have 

been regularly observed. Finally, a bagging procedure was carried out, which showed that model 

predictions remained stable over repetitions (Fig. S5). 

The projected map showing the probability of bearded vultures flying below the critical 

height range swept by wind turbine blades (Fig. 3a) revealed that wide areas of the Swiss Alps are 

potentially prone to collisions. The probability of flight at risky heights was particularly high along 

mountainsides and ridges. This is not surprising since valleys are overflown at high elevation, 

notably during commuting relocations. While this probability map gives a general overview of the 

areas with environmental conditions favouring low flight heights throughout the Swiss Alps, only 

the map resulting from the joint probability of species occurrence (Braunisch et al., 2015) and of 

flying below the critical height range (Fig. 3e) encompasses the whole complexity of the species-

habitat associations, including ecological requirements and flight behavioural routines. By 

intersecting these two probabilistic maps, we could filter out areas within the species’ habitat 

extension where it is unlikely that bearded vultures would fly within the critical height range, i.e. 

mainly the valley bottoms, while we managed to highlight critical hotspots of potential conflict 

with wind energy development. 

Selecting a threshold to convert a probability map into a binary map is always a critical step 

because it eventually determines the classification skills of the model. The Youden index, 

maximising sensitivity plus specificity, is probably the most frequently used threshold approach 
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for classifying species distribution models (Canran Liu et al., 2013). It has already been applied to 

flight height models (Murgatroyd et al., 2021). However, when the conservation of an endangered 

and vulnerable species is at stake, the ability of a model to correctly predict the risk-class is the 

most important aspect, even if it comes at the expense of the accuracy in predicting the other class. 

Applying the principle of precaution, we therefore chose a threshold that held a true positive rate 

of 95% since we considered it especially important to correctly predict locations where the species 

flew within the critical height range. By doing so we were fairly conservative, accepting the risk 

that some flight locations above 200 m a.g.l. were wrongly classified into the critical flight height 

range. The resulting probability map (Fig. 3b) might thus overrepresent critical areas, which is a 

minor issue from a conservation and risk assessment viewpoint. Therefore, the map showing areas 

with high risks of conflict (Fig. 3f) is a refinement of our previous conflict map (Vignali et al., 

2021) since it eventually subtracts the areas over which the species flies high above the ground. 

Although we adopted a conservative approach, 9,2% of the areas previously classified as potential 

conflict, which corresponds to around 2,358 km2, is most likely not overflown within the critical 

height range. 

Our model was developed in a framework particularly suitable for very large datasets. In 

effect, modern tracking devices are capable of collecting data at high temporal resolution, thereby 

introducing new challenges for their analysis (López-López, 2016). The use of artificial neural 

network approaches is a possible solution to address this challenge. First, contrary to other classical 

statistical methods, it does not require an a priori definition of the functional forms for each 

relationship between predictors. (Breiman, 2001) as complex non-linear relationships among 

variables are learned directly from the data. Second, it can take advantage of specific libraries 

developed to create efficient data pipelines (see for example the tensorflow dataset library and its 

R implementation (Allaire et al., 2020)). Data pipelines serve for transformations like 

normalization, standardization, and one-hot encoding of categorical variables on batches of data 

that are then fed into the neural network. This way it is not required to apply each transformation 

to the entire dataset but rather to the single batches, and the data can be loaded in batches directly 

from a file or database (see code in Supplementary material). 

Although innovative in several respects, our approach focuses only one species potentially 

affected by wind turbines deployment. We believed, however, that a similar method could be 

readily applied to any other raptor species, if not to other soaring birds such as storks or herons, for 

which flight heights might also be decisive. Of course, a combination of species-specific predictive 
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models obtained from different emblematic species potentially impacted by the wind industry 

development would be a major step towards a biodiversity-friendly spatial planning of these novel 

anthropogenic infrastructures that not only obliterate our landscapes but may also affect wildlife 

survival. Policy makers and land-use planners, wind energy promoters and conservation biologists 

would all benefit from the rapid development of such comprehensive decision tools. Wind energy 

companies, in particular, could from the onset evaluate whether their investments would be at risk 

of not obtaining official approval. It must be explicitly stressed, however, that models such as the 

one presented here can inform spatial planning but in no way represent substitutes to in-situ 

environmental impact assessments that are prerequisites for any infrastructure project 

development. 
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SUPPLEMENTARY MATERIAL 

Table S1: Reclassification table used to define the land cover classes used in the model from the 

classes provided by the Vector25, layer pri25_a. OBJECTVAL was the field used for the 

reclassification. 

Class OBJECTVAL Label 

1 

Z_BaumS 

Orchard, vineyard, and horticulture areas Z_ObstAn 

Z_Reben 

2 
Z_Wald 

Forest 
Z_WaldOf 

3 Z_Gebue Brush 

4 

Z_GerGeb 

Scree 

Z_GerGle 

Z_Geroel 

Z_GerWa 

Z_GerWaO 

5 
Z_GsPist 

Others 
Z_Uebrig 

6 

Z_HaPist 

Anthropic areas 

Z_KiGrub 

Z_LeGrub 

Z_Siedl 

Z_StauDa 

Z_StauMa 

Z_SteBru 

7 

Z_SumGeb 

Marsh 
Z_Sumpf 

Z_SumWa 

Z_SumWaO 

8 
Z_Fluss 

Water, lakes, and rivers 
Z_See 

9 Z_Fels Rock 

10 Z_Glet Glacier 
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Table S2: Reclassification of the classes defined in the simplified geotechnical map of Switzerland 

(Bundesamt für Statistik, 1967) used to define the classes within the geology environmental 

variable. GT_ID was the field used for the reclassification. 

Class GT_ID Label Short description 

1 1 Others Lake 

1 2 Others Glacier 

1 3 Others Sands to silts, usually clay, partly calcareous loess, often with attachments (ground 

moraines) or debris, fine to coarse, mixed with sand, silt, and clay (upper moraines) 

1 4 Others Clayey silts and clays, sometimes with inclusions of sand to gravel (sea soil clay, alluvial 

clay, hillside clay) 

1 5 Others Gravels and sands, clean or silty, sometimes slightly cemented (rubble of the ice age) 

1 6 Others Gravels and sands, mostly clean, sometimes with clayey-silty overlaps or retention, as 

well as extensive gravel deposits (current stream deposits) 

1 7 Others Larger areas with angular rubble, often by block size (landslide material, scree) 

1 8 Others Marl with intercalations of weakly consolidated sandstones, partly predominant, and 

occasional conglomerates or shell sandstones 

1 9 Others Marl and shale clay to shale, with limestone, dolomite and sandstone benches, 

sometimes with layers of gypsum and anhydrite 

1 10 Others Red, lime-free sandstones to sandy shale 

1 11 Others Ferruginous, mostly lime-free, lean to rich clay, often including iron ore, silica sand, 

refractory clay 

1 12 Others Marl with intercalations of medium strong consolidated sandstones, partly predominant, 

and occasionally of conglomerates 

1 13 Others Conglomerates, weakly to moderately consolidated, with aboundant to predominant 

sandstone and marl layers 

1 14 Others Conglomerates, weakly to moderately consolidated, always accompanied by sandstone 

and marl layers 

1 15 Others Conglomerates and breccias, highly strengthened, with different proportions of arkoses 

and sandstones, sometimes with sandy phyllite and volcanic rocks 

1 16 Others Slate to phyllites, often sandy, with deposits of sandstones and breccias to conglomerates 

1 17 Others Marl to lime phyllites, with inclusions of sandstones, partly predominant 

2 18 Limestone Lime phyllites to lime mica slate, frequently with inclusions of sandy limestone, 

dolomites, quartzites, low lime phyllites and green schists 

2 19 Limestone Limes in general in massive formation, often with marly interlayers, partly with siliceous 

limestones and green sandstones 

2 20 Limestone Limes, sand limes to pebble limes, slated, with layers of marl shale and lime phyllites, 

some with cherts and dolomites, rarely with rare breccia to conglomerate structure 

1 21 Others Significant layers of marl shale and marl limes 

2 22 Limestone Dolomite and cell lime, partly. with gypsum layers 

3 23 Granite Granite, quartz diorite, quartz syenite and diorite, predominantly homogeneous 

3 24 Granite Quartz porphyry, porphyrites and porphyry tufa, moderately to slightly slated 

3 25 Granite Quartzite, massive or platy to slaty 

4 26 Gneiss Two-mica to biotite gneisses, often with abundant feldspar, partly with amphibolites and 

hornblende-bearing gneisses 

4 27 Gneiss Slated, often sericite-rich conglomerates and breccias 

4 28 Gneiss Sericite-chlorite gneiss to shale, homogeneous or heterogeneous 

4 29 Gneiss Green shale, with transitions to basic rocks 

4 30 Gneiss Serpentinites, rarely with transitions to peridotites or olivine rocks 

  



Flight behaviour 

145 

Table S3: Model evaluation based on a leave-one-bird-out cross validation. Each model was trained 

without the GPS locations of one bird at a time and evaluated with the held apart locations of the 

respective bird using the area under the operating characteristic (ROC) curve AUC (Fielding & Bell, 

1997) as performance metric. Each line in the table represents the results of one model, with BirdID 

indicating the removed bird (for BirdIDs see Table 2), the AUC evaluated for the training and testing 

dataset, and the number of locations included in the testing dataset (N). 

Bird ID Training AUC Testing AUC N 

BG905 0.714 0.826 255 

W349 0.713 0.802 78 

W346 0.711 0.802 666 

W356 0.717 0.795 170 

BG1068 0.717 0.768 1,948 

BG983 0.717 0.762 268 

W313 0.716 0.745 345 

W196 0.714 0.745 12,056 

BG838 0.718 0.737 1,358 

BG1003 0.711 0.728 24,356 

BG1001 0.716 0.723 18,244 

BG964 0.716 0.723 27,357 

W251 0.719 0.722 840 

BG900 0.717 0.721 17,006 

W285 0.713 0.720 4,734 

BG899 0.717 0.716 39,961 

BG840 0.712 0.716 407 

BG841 0.712 0.713 7,113 

W209 0.715 0.706 3,594 

BG1031 0.718 0.705 421 

BG998 0.718 0.695 3,152 

W284 0.716 0.695 1,306 

BG843 0.718 0.694 7,214 

BG802 0.722 0.691 39,112 

BG1071 0.717 0.684 1,667 

BG321 0.711 0.676 671 

BG797 0.721 0.673 12,162 

W361 0.713 0.656 303 

BG1022 0.712 0.654 77 

BG980 0.719 0.639 472 
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Table S4: Model evaluation using a spatial block cross validation. The study area was divided in 

spatial blocks of 10 x 10 km that were randomly partitioned into five folds (Fig. S1). The folds 

were then used to run the cross validation and the models were evaluated with the area under the 

operating characteristic (ROC) curve AUC (Fielding & Bell, 1997) (in parenthesis the number of 

GPS locations included in each dataset). 

Fold Training AUC Testing AUC 

1 0.719 (N = 183,139) 0.703 (N = 44,174) 

2 0.726 (N = 184,238) 0.689 (N = 43,075) 

3 0.719 (N = 179,605) 0.716 (N = 47,708) 

4 0.721 (N = 184,260) 0.711 (N = 43,053) 

5 0.712 (N = 178,010) 0.732 (N = 49,303) 

 

 

 

Figure S1 Spatial block partitioning with spatial blocks of 10x10 km. Each block was randomly 

assigned to one of the five cross-validation folds. 
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Figure S2 Sensitivity (TNR: true positive rate) and specificity (TPR: true negative rate) under 

varying thresholds computed for the training dataset from the averaged probability of a 30-bagging 

procedure. The vertical dashed red line shows the selected threshold at 0.586, for which 95% of 

the locations occurring below 200 m a.g.l. are correctly predicted. 

 

 

 

Figure S3 Flight height breakdown. Proportion of bearded vulture GPS locations recorded in flight 

per bird within each 50 m height bin (1.93% of the locations were collected above 1000 m a.g.l., 

not shown in the graph). Each line represents the minimum maximum range and the blue dot the 

mean value. The dashed red line is the critical threshold of 200 m. 
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Figure S4 Marginal effects of the environmental variables (not shown in Fig. 2) used for predicting 

the probability of a bearded vulture flying below 200 m a.g.l. In grey are plotted 1000 randomly 

sampled individual conditional expectation (ICE) curves (Goldstein et al., 2015) and in blue the 

partial dependence (PD) curve (Friedman, 2001). For geology, a categorical variable, each boxplot 

shows the ICE values without outliers and the blue dot the value of the PD. 
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Figure S5 Model (un)certainty illustrated as the magnitude of the 95% credible interval calculated 

from the 30-bagging procedure for the predicted probability of a bearded vulture flying below 200 

m a.g.l. within the Swiss Alpine range (gradient from blue = zero to red = one). 
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R code to reproduce the analysis 

## ************************************************************************ 

## Title: CODE FOR ARTICLE 

## Purpose: Reproduce analysis presented in the article 

## Author: Sergio Vignali 

##.************************************************************************ 

# The code has five sections and each section can be executed without 

# having to run the previous ones. There is an initial part that loads 

# libraries, data, and create a utility function. This part of the code 

# needs to be executed at least once all the times a new R session is 

# created. 

 

# ************************************************************************* 

# SETUP---- 

# ************************************************************************* 

# R VERSION 4.0.2 

 

## Load libraries and data---- 

# Libraries 

library(reticulate)    # Version 1.18 

library(tensorflow)    # Version 2.2.0 

library(keras)         # Version 2.3.0.0 

library(tfdatasets)    # Version 2.2.0.9000, at the moment of writing it 

                       # was not possible to save the specifications using 

                       # the released version 

library(tidyverse)     # Version 1.3.0 

hp <- import("tensorboard.plugins.hparams.api") 

 

# The tensorflow python version was 2.4.1, check it with the following 

# command 

tf$version$VERSION 

 

# Load data, expected to be in the project folder and named 

# "bv-data.csv.gz" 

dataset <- read_csv( 

  file = "bv-data.csv.gz", 

  col_types = "ccddddddddici" 

) 

dataset %>% glimpse() 

 

# Create indexes for training (70%) and validation (30%) datasets 

set.seed(25) 

idx <- sample(nrow(dataset), size = 0.3 * nrow(dataset)) 

 

## Utility function---- 

# This function creates and compile a new model given the hyperparameters' 

# values, a dataset, and the feature specifications 
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getModel <- function(units_1l, units_2l, rate, ds, spec) { 

  input <- layer_input_from_dataset(ds) 

  output <- input %>% 

    layer_dense_features(feature_columns = dense_features(spec)) %>% 

    # First hidden layer 

    layer_dense(units = units_1l, activation = "relu", 

                kernel_initializer = initializer_he_normal(), 

                kernel_constraint = constraint_maxnorm(3)) %>% 

    # Dropout 

    layer_dropout(rate = rate) %>% 

    # Second hidden layer 

    layer_dense(units = units_2l, activation = "relu", 

                kernel_initializer = initializer_he_normal(), 

                kernel_constraint = constraint_maxnorm(3)) %>% 

    layer_dense(units = 1, activation = "sigmoid") 

 

  model <- keras_model(input, output) 

 

  # Compile model 

  model %>% compile( 

    loss = "binary_crossentropy", 

    optimizer = optimizer_adam(lr = 0.001), 

    metrics = tf$keras$metrics$AUC(name = "auc") 

  ) 

 

  return(model) 

} 

 

## Custom colors and theme---- 

# Custom colors 

grey <- "#969696" 

 

# Custom theme 

theme_custom <- function() { 

  theme_bw(base_size = 28) + 

    theme( 

      text = element_text(colour = "black"), 

      axis.ticks = element_blank(), 

      strip.background = element_rect(fill = "black", color = "black"), 

      strip.text = element_text(color = "white", size = rel(1), 

                                margin = margin(l = 5, r = 5)), 

      # Legend 

      legend.key = element_rect(fill = "white", color = NA), 

      legend.position = "top", 

      plot.title = element_text(margin = margin(b = 6), face = "bold") 

    ) 

} 
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# ************************************************************************* 

# 1) HYPERPARAMETERS TUNING---- 

# ************************************************************************* 

## Create folder to save results---- 

folder <- "hyperparamer-tuning" 

dir.create(folder) 

# Create folder to save logs from tensorflow 

logdir <- file.path(folder, "logs") 

dir.create(logdir) 

# Create folder to save model weights 

dir.create(file.path(folder, "weights")) 

 

## Prepare data pipeline---- 

# Remove unused columns 

data <- dataset %>% select(-bird, -fold_id) 

# Split training (70%) and validation (30%) datasets 

val_df <- data[idx, ] 

train_df <- data[-idx, ] 

 

# Feature specifications 

spec <- train_df %>% 

  # Define target as response variable 

  feature_spec(target ~ .) %>% 

  # Normalise numeric variables 

  step_numeric_column( 

    all_numeric(), normalizer_fn = scaler_standard() 

  ) %>% 

  # One hot encode categorical variables 

  step_categorical_column_with_vocabulary_list( 

    landcover, 

    vocabulary_list = as.character(1:10) 

  ) %>% 

  step_categorical_column_with_vocabulary_list( 

    geology, 

    vocabulary_list = as.character(1:4) 

  ) %>% 

  step_indicator_column(landcover, geology) %>% 

  # Fit the object 

  fit() 

 

# Save feature specifications 

saveRDS(spec, file.path(folder, "spec.Rds")) 

 

# Create datasets 

train <- train_df %>% 

  tensor_slices_dataset() %>%              # Convert dataframe to tensor 

  dataset_use_spec(spec) %>%               # Apply specifications 

  dataset_batch(batch_size = 256, 
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                drop_remainder = TRUE) %>% # Batch data 

  dataset_prefetch(1)                      # Pre-fetch one batch 

 

# This is used for evaluation, note that trailing elements in the last 

# batch are not removed 

train_eval <- train_df %>% 

  tensor_slices_dataset() %>% 

  dataset_use_spec(spec) %>% 

  dataset_batch(batch_size = 1024) %>%     # Faster during evaluation 

  dataset_prefetch(1) 

 

val <- val_df %>% 

  tensor_slices_dataset() %>% 

  dataset_use_spec(spec) %>% 

  dataset_batch(batch_size = 1024) %>%     # Faster during evaluation 

  dataset_prefetch(1) 

 

# In case of very large datasets, instead of load the data in memory, is 

# possible to use one of the following functions: 

# make_csv_dataset() 

# text_line_dataset() 

# sqlite_dataset() 

 

## Define hyperparameters grid---- 

# Number of units in the first hidden layer 

NUM_UNITS_1L <- hp$HParam( 

  "num_units_1l", 

  hp$Discrete(list(16, 32, 64, 128, 256, 512)) 

) 

# Number of units in the second hidden layer 

NUM_UNITS_2L <- hp$HParam( 

  "num_units_2l", 

  hp$Discrete(list(16, 32, 64, 128, 256, 512)) 

) 

# Dropout rate 

DROPOUT <- hp$HParam( 

  "dropout", 

  hp$Discrete(list(0.2, 0.3, 0.4, 0.5, 0.6, 0.7)) 

) 

 

# Write hyperparameters' grid, for each combination save training and 

# validation 

# AUC 

with(tf$summary$create_file_writer(logdir)$as_default(), { 

  hp$hparams_config( 

    hparams = list(NUM_UNITS_1L, NUM_UNITS_2L, DROPOUT), 

    metrics = list(hp$Metric("train_auc", display_name = "Train AUC"), 

                   hp$Metric("val_auc", display_name = "Val AUC") 
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    ) 

  ) 

}) 

 

## Run hyperparameters tuning experiment----------------------------------- 

# This takes few hours and results might be slightly different due to the 

# stochasticity of the model's weight initialization by Keras and the 

# random dropout. 

 

# Start tensorboard 

tensorboard(logdir) 

 

# Loop through the hyperparameters' grid 

trial <- 1 

for(units_1l in NUM_UNITS_1L$domain$values) { 

  for(units_2l in NUM_UNITS_2L$domain$values) { 

    for (rate in DROPOUT$domain$values) { 

      cat("Trial", trial, "- units 1L =", units_1l, "- units 2L =", 

          units_2l, "rate = ", rate, "\n") 

      # Define hyperparameters 

      hparams <- dict( 

        NUM_UNITS_1L = units_1l, 

        NUM_UNITS_2L = units_2l, 

        DROPOUT = rate 

      ) 

      cat("Trial", trial, "- units 1L =", units_1l, "- units 2L =", 

          units_2l, "rate = ", rate, "\n") 

      # Create the model 

      model <- getModel( 

        units_1l = units_1l, 

        units_2l = units_2l, 

        rate = rate, 

        ds = train, 

        spec = spec 

      ) 

 

      # Save model weights in the following file, file name is coded as: 

      # weights_number-units-first-layer_number-units-second-layer_dropout-

rate.hdf5 

      file_weights <- file.path( 

        folder, 

        "weights", 

        paste0("weights_", units_1l, "_", units_2l, "_", 

               sub("\\.", "", rate), ".hdf5") 

      ) 

 

      # Logs of each model are saved inside the run_dir folder coded as: 

      # number_units_first_layer-number_units_second_layer-dropout_rate 
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      name <- paste(units_1l, units_2l, sub("\\.", "", rate), sep = "-") 

      run_dir <- file.path(logdir, name) 

 

      # Define Callbacks 

      callbacks <- list( 

        # Tensorboard 

        callback_tensorboard(log_dir = run_dir), 

        # Save model weights only when validation auc improves 

        callback_model_checkpoint( 

          filepath = file_weights, 

          monitor = "val_auc", 

          save_best_only = TRUE, 

          save_weights_only = TRUE, 

          mode = "max", 

          verbose = 0 

        ), 

        # Stop training when validation auc doesn't increase for more than 

        # 10 epochs. Also recover best model weights at the end of training 

        callback_early_stopping( 

          monitor = "val_auc", 

          patience = 10, 

          verbose = 0, 

          mode = "max", 

          restore_best_weights = TRUE 

        ) 

      ) 

 

      # Train model 

      model %>% fit( 

        train %>% dataset_shuffle(buffer_size = 1000L),  # Shuffle training 

data 

        validation_data = val,  # Don't shuffle validation data 

        epochs = 100, 

        callbacks = callbacks, 

        verbose = 0 

      ) 

 

      # Evaluate model 

      results <- list( 

        train = model %>% evaluate(train_eval, verbose = 0), 

        val = model %>% evaluate(val, verbose = 0) 

      ) 

 

      # Log values in tensorboard 

      with(tf$summary$create_file_writer(run_dir)$as_default(), { 

        # Write the values used in this trial 

        hp$hparams(hparams) 

        # Write evaluation metrics in the logs 
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        tf$summary$scalar("train_auc", results$train["auc"], step = 1L) 

        tf$summary$scalar("val_auc", results$val["auc"], step = 1L) 

      }) 

 

      trial <- trial + 1 

    } 

  } 

} 

 

# Download the results from tensorboard at the end of the experiment. The 

# best model configuration in this run was: 

# - Number of units in the first hidden layer: 256 

# - Number of units in the second hidden layer: 32 

# - Dropout rate: 0.6 

 

# ************************************************************************* 

# 2) LEAVE ONE BIRD OUT CROSS VALIDATION---- 

# ************************************************************************* 

## Prepare data for cross validation---- 

# Create folders to save results 

folder <- "leave-one-bird-out-cv" 

dir.create(folder) 

# Create folder to save model weights 

dir.create(file.path(folder, "weights")) 

# Create folder to save logs from tensorflow 

logdir <- file.path(folder, "logs") 

dir.create(logdir) 

# Create folder to save feature specifications 

dir.create(file.path(folder, "specs")) 

 

# Prepare data, remove unused column 

data <- dataset %>% select(-fold_id) 

birds <- unique(data$bird) 

 

## Use tensorflow to log results---- 

BIRD = hp$HParam("bird", hp$Discrete(as.list(birds))) 

 

with(tf$summary$create_file_writer(logdir)$as_default(), { 

  hp$hparams_config( 

    hparams = list(BIRD), 

    metrics = list(hp$Metric("train_auc", display_name = "Train AUC"), 

                   hp$Metric("val_auc", display_name = "Val AUC")) 

  ) 

}) 

 

## Run cross validation---- 

# This takes a while and results might be slightly different due to the 

# stochasticity of the model's weight initialization by Keras and the 
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# random dropout. 

 

# Start tensorboard 

tensorboard(logdir) 

 

# Loop through the birds 

for(bird in BIRD$domain$values) { 

  cat("Testing using bird", bird, "\n") 

  hparams <- dict(BIRD = bird) 

 

  train_df <- data[data$bird != bird, ] %>% 

    select(-bird)  # Remove column bird 

  val_df <- data[data$bird == bird, ] %>% 

    select(-bird)  # Remove column bird 

 

  # Feature specifications 

  spec <- train_df %>% 

    # Define target as response variable 

    feature_spec(target ~ .) %>% 

    # Normalise numeric variables 

    step_numeric_column( 

      all_numeric(), normalizer_fn = scaler_standard() 

    ) %>% 

    # One hot encode categorical variables 

    step_categorical_column_with_vocabulary_list( 

      landcover, 

      vocabulary_list = as.character(1:10) 

    ) %>% 

    step_categorical_column_with_vocabulary_list( 

      geology, 

      vocabulary_list = as.character(1:4) 

    ) %>% 

    step_indicator_column(landcover, geology) %>% 

    # Fit the object 

    fit() 

 

  # Save feature specifications 

  saveRDS(spec, file.path(folder, "specs", paste0("spec-", bird, ".Rds"))) 

 

  # Create datasets 

  train <- train_df %>% 

    tensor_slices_dataset() %>%              # Convert dataframe to tensor 

    dataset_use_spec(spec) %>%               # Attach specifications 

    dataset_batch(batch_size = 256, 

                  drop_remainder = TRUE) %>% # Batch 

    dataset_prefetch(1)                      # Pre-fetch to speed up 

computation 

  val <- val_df %>% 
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    tensor_slices_dataset() %>% 

    dataset_use_spec(spec) %>% 

    dataset_batch(batch_size = 1024) %>%  # Faster during evaluation 

    dataset_prefetch(1) 

 

  model <- getModel( 

    units_1l = 256, 

    units_2l = 32, 

    rate = 0.6, 

    ds = train, 

    spec = spec 

  ) 

 

  # Save model weights, file name will be: weights_removed-bird-id.hdf5 

  file_weights <- file.path( 

    folder, "weights", paste0("weights_", bird, ".hdf5") 

  ) 

 

  # Logs of each model are saved inside the run_dir folder coded with the 

  # name of the removed bird 

  run_dir <- file.path(logdir, bird) 

 

  # Define callbacks 

  callbacks <- list( 

    # Tensorboard 

    callback_tensorboard(log_dir = run_dir), 

    # Save model weights only when validation auc improves 

    callback_model_checkpoint( 

      filepath = file_weights, 

      monitor = "val_auc", 

      save_best_only = TRUE, 

      save_weights_only = TRUE, 

      mode = "max" 

    ) 

  ) 

 

  # Train model 

  model %>% fit( 

    train %>% dataset_shuffle(buffer_size = 1000L), 

    validation_data = val, 

    epochs = 20, 

    callbacks = callbacks, 

    verbose = 0 

  ) 

 

  # Recover best weights 

  model %>% load_model_weights_hdf5(file_weights) 
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  # Note that trailing element in the last batch are not removed 

  train <- train_df %>% 

    tensor_slices_dataset() %>% 

    dataset_use_spec(spec) %>% 

    dataset_batch(batch_size = 1024) %>%  # Faster during evaluation 

    dataset_prefetch(1) 

 

  # Evaluate model 

  results <- list( 

    train = model %>% evaluate(train, verbose = 0), 

    val = model %>% evaluate(val, verbose = 0) 

  ) 

 

  # Log values in tensorboard 

  with(tf$summary$create_file_writer(run_dir)$as_default(), { 

    # Write the values used in this trial 

    hp$hparams(hparams) 

    # Write evaluation metrics in the logs 

    tf$summary$scalar("train_auc", results$train["auc"], step = 1L) 

    tf$summary$scalar("val_auc", results$val["auc"], step = 1L) 

  }) 

} 

 

## Update results---- 

# Add column with number of GPS fixes of the removed bird 

# From tensorboard download the csv file, name it "lobo-results.csv", and 

# save it inside the working folder (i.e. "leave-one-bird-out-cv") 

df <- read.csv(file.path(folder, "lobo-results.csv")) 

 

# Count number of observation per bird 

count <- data %>% count(bird) 

# Match bird columns 

ix <- match(df$bird, count$bird) 

 

# Add column with number of fixes of the removed bird and order by 

# descending validation AUC 

df <- cbind( 

  bird = df$bird, 

  n = count[ix, "n"], 

  df %>% select(-bird) 

) %>% arrange(desc(Val.AUC)) 

 

# Save updated data frame 

write_csv(df, file = file.path(folder, "lobo-results.csv")) 

 

# ************************************************************************* 

# 3) SPATIAL BLOCKS CROSS VALIDATION---- 

# ************************************************************************* 
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## Prepare data for cross validation---- 

# Create folder to save results 

folder <- "spatial-blocks-cv" 

dir.create(folder) 

# Create folder to save logs from tensorflow 

logdir <- file.path(folder, "logs") 

dir.create(logdir) 

# Create folder to save model weights 

dir.create(file.path(folder, "weights")) 

# Create folder to save feature specifications 

dir.create(file.path(folder, "specs")) 

 

# Prepare data, remove unused column 

data <- dataset %>% select(-bird) 

 

## Use tensorflow to log results---- 

FOLD = hp$HParam("fold", hp$Discrete(list(1, 2, 3, 4, 5))) 

 

with(tf$summary$create_file_writer(logdir)$as_default(), { 

  hp$hparams_config( 

    hparams = list(FOLD), 

    metrics = list(hp$Metric("train_auc", display_name = "Train AUC"), 

                   hp$Metric("val_auc", display_name = "Val AUC")) 

  ) 

}) 

 

## Run cross validation---- 

# This takes a while and results might be slightly different because of the 

# stochasticity of the model's weight initialization by Keras and the 

# random dropout. 

 

# Start tensorboard 

tensorboard(logdir) 

 

# Loop through the folders 

for(fold in FOLD$domain$values) { 

 

  cat("Testing using fold", fold, "\n") 

  hparams <- dict(FOLD = fold) 

 

  run_dir <- file.path(logdir, fold) 

 

 

  train_df <- data[data$fold_id != fold, ] 

  val_df <- data[data$fold_id == fold, ] 

 

  # Feature specifications 

  spec <- train_df %>% 
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    # Define target as response variable 

    feature_spec(target ~ .) %>% 

    # Normalise numeric variables 

    step_numeric_column( 

      all_numeric(), normalizer_fn = scaler_standard() 

    ) %>% 

    # One hot encode categorical variables 

    step_categorical_column_with_vocabulary_list( 

      landcover, 

      vocabulary_list = as.character(1:10) 

    ) %>% 

    step_categorical_column_with_vocabulary_list( 

      geology, 

      vocabulary_list = as.character(1:4) 

    ) %>% 

    step_indicator_column(landcover, geology) %>% 

    # Fit the object 

    fit() 

 

  # Save feature specifications 

  saveRDS(spec, file.path(folder, "specs", paste0("spec-", fold, ".Rds"))) 

 

  # Create datasets 

  train <- train_df %>% 

    tensor_slices_dataset() %>%              # Convert dataframe to tensor 

    dataset_use_spec(spec) %>%               # Attach specifications 

    dataset_batch(batch_size = 256, 

                  drop_remainder = TRUE) %>% # Batch 

    dataset_prefetch(1)                      # Pre-fetch to speed up 

computation 

  val <- val_df %>% 

    tensor_slices_dataset() %>% 

    dataset_use_spec(spec) %>% 

    dataset_batch(batch_size = 1024) %>%  # Faster during evaluation 

    dataset_prefetch(1) 

 

  model <- getModel( 

    units_1l = 256, 

    units_2l = 32, 

    rate = 0.6, 

    ds = train, 

    spec = spec 

  ) 

 

  # Save model weights, file name is coded as: weights_fold-used-fold.hdf5 

  file_weights <- file.path( 

    folder, "weights", paste0("weights_fold_", fold, ".hdf5") 

  ) 
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  # Define callbacks 

  callbacks <- list( 

    # Tensorboard 

    callback_tensorboard(log_dir = run_dir), 

    # Save model weights only when validation auc improves 

    callback_model_checkpoint( 

      filepath = file_weights, 

      monitor = "val_auc", 

      save_best_only = TRUE, 

      save_weights_only = TRUE, 

      mode = "max" 

    ) 

  ) 

 

  # Train model 

  model %>% fit( 

    train %>% dataset_shuffle(buffer_size = 1000L), 

    validation_data = val, 

    epochs = 20, 

    callbacks = callbacks, 

    verbose = 0 

  ) 

 

  # Recover best weights 

  model %>% load_model_weights_hdf5(file_weights) 

 

  # Note that trailing element in the last batch are not removed 

  train_eval <- train_df %>% 

    tensor_slices_dataset() %>% 

    dataset_use_spec(spec) %>% 

    dataset_batch(batch_size = 1024) %>%  # Faster during evaluation 

    dataset_prefetch(1) 

 

  # Evaluate model 

  results <- list( 

    train = model %>% evaluate(train_eval, verbose = 0), 

    val = model %>% evaluate(val, verbose = 0) 

  ) 

 

  # Log values in tensorboard 

  with(tf$summary$create_file_writer(run_dir)$as_default(), { 

    # Write the values used in this trial 

    hp$hparams(hparams) 

    # Write evaluation metrics in the logs 

    tf$summary$scalar("train_auc", results$train["auc"], step = 1L) 

    tf$summary$scalar("val_auc", results$val["auc"], step = 1L) 

  }) 
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} 

 

## Update results---- 

# Add column with number of birds and GPS fixes in each fold 

# From tensorboard download the csv file, name it "sb-results.csv", and 

# save it inside the working folder (i.e. "spatial-blocks-cv") 

# !IMPORTNT! Make sure that the output is sorted by ascending fold id 

# before download it 

df <- read.csv(file.path(folder, "sb-results.csv")) 

 

ids <- df$fold 

l <- length(ids) 

train_birds <- vector("integer", length = l) 

train_n <- vector("integer", length = l) 

val_birds <- vector("integer", length = l) 

val_n <- vector("integer", length = l) 

 

for (i in 1:l) { 

  # Train dataset 

  x <- dataset[dataset$fold_id != ids[i], ] %>% count(bird) 

  train_birds[i] <- length(x$bird) 

  train_n[i] <- sum(x$n) 

  # Test dataset 

  x <- dataset[dataset$fold_id == ids[i], ] %>% count(bird) 

  val_birds[i] <- length(x$bird) 

  val_n[i] <- sum(x$n) 

} 

 

# Add columns with number of fixes and birds 

df <- cbind( 

  fold = df$fold, 

  train_birds = train_birds, 

  val_birds = val_birds, 

  train_n = train_n, 

  val_n = val_n, 

  df %>% select(-fold) 

) 

 

# Save data frame with metrics 

write_csv(df, file = file.path(folder, "sb-results.csv")) 

 

# ************************************************************************* 

# 4) BAGGING---- 

# ************************************************************************* 

## Prepare data---- 

# Create folder to save results 

folder <- "bagging" 

dir.create(folder) 
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# Create folder to save model weights 

dir.create(file.path(folder, "weights")) 

# Create folder to save feature specifications 

dir.create(file.path(folder, "specs")) 

 

# Remove unused columns 

data <- dataset %>% select(-bird, -fold_id) 

 

# Recreate training and validation datasets used in the hyperparameters' 

# tuning experiment 

train_df <- data[-idx, ] 

val_df <- data[idx, ] 

 

## Run bugging procedure---- 

n <- 30 

# Create empty matrix to store results 

output <- matrix(0, nrow = nrow(train_df), ncol = n) 

 

# This takes quite long 

set.seed(25) 

for (i in 1:n) { 

  cat("Bagging", i, "|", n, "\n") 

  ix <- sample(nrow(train_df), size = nrow(train_df), replace = TRUE) 

  ds <- train_df[ix, ] 

 

  # Feature specifications 

  spec <- ds %>% 

    # Define target as response variable 

    feature_spec(target ~ .) %>% 

    # Normalise numeric variables 

    step_numeric_column( 

      all_numeric(), normalizer_fn = scaler_standard() 

    ) %>% 

    # One hot encode categorical variables 

    step_categorical_column_with_vocabulary_list( 

      landcover, 

      vocabulary_list = as.character(1:10) 

    ) %>% 

    step_categorical_column_with_vocabulary_list( 

      geology, 

      vocabulary_list = as.character(1:4) 

    ) %>% 

    step_indicator_column(landcover, geology) %>% 

    # Fit the object 

    fit() 

 

  # Save feature specifications 

  saveRDS(spec, file.path(folder, "specs", paste0("spec_", i, ".Rds"))) 
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  # Create datasets 

  train <- ds %>% 

    tensor_slices_dataset() %>%              # Convert dataframe to tensor 

    dataset_use_spec(spec) %>%               # Attach specifications 

    dataset_batch(batch_size = 256, 

                  drop_remainder = TRUE) %>% # Batch 

    dataset_prefetch(1)                      # Pre-fetch to speed up 

computation 

  val <- val_df %>% 

    tensor_slices_dataset() %>%              # Convert dataframe to tensor 

    dataset_use_spec(spec) %>%               # Attach specifications 

    dataset_batch(batch_size = 1024) %>%     # Batch 

    dataset_prefetch(1)                      # Pre-fetch to speed up 

computation 

 

  model <- getModel( 

    units_1l = 256, 

    units_2l = 32, 

    rate = 0.6, 

    ds = train, 

    spec = spec 

  ) 

 

  # Save model weights, file name will be: weights_trial.hdf5 

  file_weights <- file.path( 

    folder, "weights", paste0("weights_", i, ".hdf5") 

  ) 

 

  # Define callbacks 

  callbacks <- list( 

    callback_early_stopping( 

      monitor = "val_auc", 

      patience = 10, 

      verbose = 0, 

      mode = "max", 

      restore_best_weights = TRUE 

    ), 

    # Save model weights when validation auc improves 

    callback_model_checkpoint( 

      filepath = file_weights, 

      monitor = "val_auc", 

      save_best_only = TRUE, 

      save_weights_only = TRUE, 

      mode = "max" 

    ) 

  ) 
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  # Train model 

  model %>% fit( 

    train %>% dataset_shuffle(buffer_size = 1000L), 

    validation_data = val, 

    epochs = 100, 

    verbose = 0, 

    callbacks = callbacks 

  ) 

 

  # Make predictions 

  output[, i] <- model %>% predict(keras_array(train_df %>% select(-

target))) 

} 

 

## Select threshold---- 

# Take the mean of the bagging predictions 

preds <- apply(output, 1, mean) 

 

# Use the dismo package to get the confusion matrix for varying thresholds 

using 

# the training dataset 

eval <- dismo::evaluate( 

  p = preds[train_df$target == 1], 

  a = preds[train_df$target == 0] 

) 

 

id <- max(which(eval@TPR >= 0.95)) 

eval@t[id] 

eval@TPR[id] 

 

# Reproduce Figure S4 

data.frame( 

  x = eval@t, 

  tpr = eval@TPR, 

  tnr = eval@TNR 

) %>% 

  ggplot(mapping = aes(x = x, y = tpr)) + 

  geom_point(mapping = aes(color = "TPR")) + 

  geom_point(mapping = aes(y = tnr, color = "TNR")) + 

  scale_color_manual(values = c("TPR" = "#f1a340", "TNR" = "#998ec3")) + 

  geom_vline(xintercept = eval@t[id], color = "#d73027", linetype = 

"dashed") + 

  labs(x = "Threshold", y = "Rate", color = "") + 

  theme_bw(base_size = 18) + 

  theme_custom() 

ggsave( 

  filename = "tpr-tnr.jpeg", 

  device = "jpeg", 
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  path = folder, 

  width = 250, 

  height = 150, 

  units = "mm", 

  dpi = 300 

) 

 

# ************************************************************************* 

# 5) VARIABLE IMPORTANCE AND CURVES---- 

# ************************************************************************* 

# Use the best model of the hyperparameters' tuning experiment for the 

variable 

# importance and the curves 

library(vip) 

library(pdp) 

 

## Prepare data---- 

# Create folder to save results 

folder <- "plots" 

dir.create(folder) 

 

# Remove unused columns 

data <- dataset %>% select(-bird, -fold_id) 

 

# Recreate training dataset used in the hyperparameters' tuning experiment 

train_df <- data[-idx, ] 

 

# Load feature specifications 

spec <- readRDS(file.path("hyperparamer-tuning", "spec.Rds")) 

 

train <- train_df %>% 

  tensor_slices_dataset() %>%              # Convert dataframe to tensor 

  dataset_use_spec(spec) %>%               # Attach specifications 

  dataset_batch(batch_size = 1024) %>%     # Batch 

  dataset_prefetch(1) 

 

## Recreate model---- 

model <- getModel( 

  units_1l = 256, 

  units_2l = 32, 

  rate = 0.6, 

  ds = train, 

  spec = spec 

) 

 

# Load weights from tuning experiment 

model %>% load_model_weights_hdf5( 

  file.path("hyperparamer-tuning", "weights", "weights_256_32_06.hdf5") 
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) 

 

# Sanity check 

model %>% evaluate(train) 

 

# Wrap function used to make predictions 

pred_wrapper <- function(object, newdata) { 

  newdata <- as.data.frame(newdata) 

  predict(object, x = keras_array(newdata)) %>% 

    as.numeric() 

} 

 

## Permutation importance---- 

set.seed(25) 

vi <- vi( 

  object = model, 

  method = "permute", 

  pred_wrapper = pred_wrapper, 

  train = train_df %>% select(-target), 

  target = train_df$target, 

  metric = "auc", 

  reference_class = 1, 

  type = "difference", 

  progress = "text" 

) 

 

# Plot Variable Importance 

vi %>% 

  # Normalise values to percentage and create factor to maintain same order 

  mutate(Importance = Importance / sum(Importance), 

         Variable = fct_reorder(Variable, Importance)) %>% 

  ggplot(mapping = aes(x = Variable, y = Importance)) + 

    geom_col(fill = "grey", alpha = 0.8) + 

    scale_y_continuous(labels = scales::percent, 

                       expand = expansion(mult = c(0.01, 0.1))) + 

    coord_flip() + 

    labs(y = "Permutation importance", x = "") + 

    theme_custom() 

ggsave( 

  filename = "variable-importance.jpeg", 

  device = "jpeg", 

  path = folder, 

  width = 250, 

  height = 150, 

  units = "mm", 

  dpi = 300 

) 
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# Save variable importance 

saveRDS(vi, file.path(folder, "variable-importance.Rds")) 

 

## ICE and PD curves---- 

### Continuous variables---- 

#### Slope---- 

# ICE curves 

ice_slope <- partial( 

  model, 

  pred.var = "slope", 

  pred.fun = pred_wrapper, 

  train = train_df %>% select(-target), 

  prob = TRUE, 

  type = "classification", 

  progress = "text" 

) 

 

# Save ICE object for slope 

saveRDS(ice_slope, file.path(folder, "ice-slope.Rds")) 

 

# PD curve 

pdp_slope <- pdp:::average_ice_curves.ice(ice_slope) 

 

# There are too many ice curves to be plotted, take 1000 randomly 

set.seed(25) 

ice_slope %>% 

  structure(class = "data.frame") %>%  # Remove class ice 

  filter(yhat.id %in% sample(nrow(train_df), size = 1000)) %>% 

  ggplot(mapping = aes(x = slope, y = yhat)) + 

  geom_line(mapping = aes(group = yhat.id), alpha = 0.1, color = grey) + 

  geom_line(data = pdp_slope, mapping = aes(x = slope, y = yhat), 

            color = "black", size = 1) + 

  scale_x_continuous(expand = expansion(mult = c(0, 0.02))) + 

  scale_y_continuous(expand = expansion(mult = c(0, 0.02))) + 

  labs(x = "Slope (°)", y = "P (flight < 200 m a.g.l.)") + 

  theme_custom() 

ggsave( 

  filename = "slope-curve.jpeg", 

  device = "jpeg", 

  path = folder, 

  width = 250, 

  height = 150, 

  units = "mm", 

  dpi = 300 

) 

 

#### Ibex---- 

# ICE curves 
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ice_ibex <- partial( 

  model, 

  pred.var = "ibex", 

  pred.fun = pred_wrapper, 

  train = train_df %>% select(-target), 

  prob = TRUE, 

  type = "classification", 

  progress = "text" 

) 

 

# Save ICE object for ibex 

saveRDS(ice_ibex, file.path(folder, "ice-ibex.Rds")) 

 

# PD curve 

pdp_ibex <- pdp:::average_ice_curves.ice(ice_ibex) 

 

# There are too many ice curves to be plotted, take 1000 randomly 

set.seed(25) 

ice_ibex %>% 

  structure(class = "data.frame") %>%  # Remove class ice 

  filter(yhat.id %in% sample(nrow(train_df), size = 1000)) %>% 

  ggplot(mapping = aes(x = ibex, y = yhat)) + 

  geom_line(mapping = aes(group = yhat.id), alpha = 0.1, color = grey) + 

  geom_line(data = pdp_ibex, mapping = aes(x = ibex, y = yhat), 

            color = "black", size = 1) + 

  scale_x_continuous(expand = expansion(mult = c(0, 0.02))) + 

  scale_y_continuous(expand = expansion(mult = c(0, 0.02))) + 

  labs(x = "Probability of ibex presence", 

       y = "P (flight < 200 m a.g.l.)") + 

  theme_custom() 

ggsave( 

  filename = "ibex-curve.jpeg", 

  device = "jpeg", 

  path = folder, 

  width = 250, 

  height = 150, 

  units = "mm", 

  dpi = 300 

) 

 

#### Northness---- 

# ICE curves 

ice_northness <- partial( 

  model, 

  pred.var = "northness", 

  pred.fun = pred_wrapper, 

  train = train_df %>% select(-target), 

  prob = TRUE, 
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  type = "classification", 

  progress = "text" 

) 

 

# Save ICE object for northness 

saveRDS(ice_northness, file.path(folder, "ice-northness.Rds")) 

 

# PD curve 

pdp_northness <- pdp:::average_ice_curves.ice(ice_northness) 

 

# There are too many ice curves to be plotted, take 1000 randomly 

set.seed(25) 

ice_northness %>% 

  structure(class = "data.frame") %>%  # Remove class ice 

  filter(yhat.id %in% sample(nrow(train_df), size = 1000)) %>% 

  ggplot(mapping = aes(x = northness, y = yhat)) + 

  geom_line(mapping = aes(group = yhat.id), alpha = 0.1, color = grey) + 

  geom_line(data = pdp_northness, mapping = aes(x = northness, y = yhat), 

            color = "black", size = 1) + 

  scale_x_continuous(expand = expansion(mult = c(0, 0.02))) + 

  scale_y_continuous(expand = expansion(mult = c(0, 0.02))) + 

  labs(x = "Northness", y = "P (flight < 200 m a.g.l.)") + 

  theme_custom() 

ggsave( 

  filename = "northness-curve.jpeg", 

  device = "jpeg", 

  path = folder, 

  width = 250, 

  height = 150, 

  units = "mm", 

  dpi = 300 

) 

 

#### Wind speed---- 

# ICE curves 

ice_windspeed <- partial( 

  model, 

  pred.var = "windspeed", 

  pred.fun = pred_wrapper, 

  train = train_df %>% select(-target), 

  prob = TRUE, 

  type = "classification", 

  progress = "text" 

) 

 

# Save ICE object for wind speed 

saveRDS(ice_windspeed, file.path(folder, "ice-windspeed.Rds")) 
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# PD curve 

pdp_windspeed <- pdp:::average_ice_curves.ice(ice_windspeed) 

 

# There are too many ice curves to be plotted, take 1000 randomly 

set.seed(25) 

ice_windspeed %>% 

  structure(class = "data.frame") %>%  # Remove class ice 

  filter(yhat.id %in% sample(nrow(train_df), size = 1000)) %>% 

  ggplot(mapping = aes(x = windspeed, y = yhat)) + 

  geom_line(mapping = aes(group = yhat.id), alpha = 0.1, color = grey) + 

  geom_line(data = pdp_windspeed, mapping = aes(x = windspeed, y = yhat), 

            color = "black", size = 1) + 

  scale_x_continuous(expand = expansion(mult = c(0, 0.02))) + 

  scale_y_continuous(expand = expansion(mult = c(0, 0.02))) + 

  labs(x = "Wind speed (m/s)", y = "P (flight < 200 m a.g.l.)") + 

  theme_custom() 

ggsave( 

  filename = "windspeed-curve.jpeg", 

  device = "jpeg", 

  path = folder, 

  width = 250, 

  height = 150, 

  units = "mm", 

  dpi = 300 

) 

 

#### Chamois---- 

# ICE curves 

ice_chamois <- partial( 

  model, 

  pred.var = "chamois", 

  pred.fun = pred_wrapper, 

  train = train_df %>% select(-target), 

  prob = TRUE, 

  type = "classification", 

  progress = "text" 

) 

 

# Save ICE object for chamois 

saveRDS(ice_chamois, file.path(folder, "ice-chamois.Rds")) 

 

# PD curve 

pdp_chamois <- pdp:::average_ice_curves.ice(ice_chamois) 

 

# There are too many ice curves to be plotted, take 1000 randomly 

set.seed(25) 

ice_chamois %>% 

  structure(class = "data.frame") %>%  # Remove class ice 
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  filter(yhat.id %in% sample(nrow(train_df), size = 1000)) %>% 

  ggplot(mapping = aes(x = chamois, y = yhat)) + 

  geom_line(mapping = aes(group = yhat.id), alpha = 0.1, color = grey) + 

  geom_line(data = pdp_chamois, mapping = aes(x = chamois, y = yhat), 

            color = "black", size = 1) + 

  scale_x_continuous(expand = expansion(mult = c(0, 0.02))) + 

  scale_y_continuous(expand = expansion(mult = c(0, 0.02))) + 

  labs(x = "Probability of chamois presence", 

       y = "P (flight < 200 m a.g.l.)") + 

  theme_custom() 

ggsave( 

  filename = "chamois-curve.jpeg", 

  device = "jpeg", 

  path = folder, 

  width = 250, 

  height = 150, 

  units = "mm", 

  dpi = 300 

) 

 

#### Slope unevenness---- 

# ICE curves 

ice_slope_unev <- partial( 

  model, 

  pred.var = "slope_unev", 

  pred.fun = pred_wrapper, 

  train = train_df %>% select(-target), 

  prob = TRUE, 

  type = "classification", 

  progress = "text" 

) 

 

# Save ICE object for slope unevenness 

saveRDS(ice_slope_unev, file.path(folder, "ice-slope-unevenness.Rds")) 

 

# PD curve 

pdp_slope_unev <- pdp:::average_ice_curves.ice(ice_slope_unev) 

 

# There are too many ice curves to be plotted, take 1000 randomly 

set.seed(25) 

ice_slope_unev %>% 

  structure(class = "data.frame") %>%  # Remove class ice 

  filter(yhat.id %in% sample(nrow(train_df), size = 1000)) %>% 

  ggplot(mapping = aes(x = slope_unev, y = yhat)) + 

  geom_line(mapping = aes(group = yhat.id), alpha = 0.1, color = grey) + 

  geom_line(data = pdp_slope_unev, mapping = aes(x = slope_unev, y = yhat), 

            color = "black", size = 1) + 

  scale_x_continuous(expand = expansion(mult = c(0, 0.02))) + 
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  scale_y_continuous(expand = expansion(mult = c(0, 0.02))) + 

  labs(x = "Slope unevenness", 

       y = "P (flight < 200 m a.g.l.)") + 

  theme_custom() 

ggsave( 

  filename = "slope-unevenness-curve.jpeg", 

  device = "jpeg", 

  path = folder, 

  width = 250, 

  height = 150, 

  units = "mm", 

  dpi = 300 

) 

 

#### TPI---- 

# ICE curves 

ice_tpi <- partial( 

  model, 

  pred.var = "tpi", 

  pred.fun = pred_wrapper, 

  train = train_df %>% select(-target), 

  prob = TRUE, 

  type = "classification", 

  progress = "text" 

) 

 

# Save ICE object for TPI 

saveRDS(ice_tpi, file.path(folder, "ice-tpi.Rds")) 

 

# PD curve 

pdp_tpi <- pdp:::average_ice_curves.ice(ice_tpi) 

 

# There are too many ice curves to be plotted, take 1000 randomly 

set.seed(25) 

ice_tpi %>% 

  structure(class = "data.frame") %>%  # Remove class ice 

  filter(yhat.id %in% sample(nrow(train_df), size = 1000)) %>% 

  ggplot(mapping = aes(x = tpi, y = yhat)) + 

  geom_line(mapping = aes(group = yhat.id), alpha = 0.1, color = grey) + 

  geom_line(data = pdp_tpi, mapping = aes(x = tpi, y = yhat), 

            color = "black", size = 1) + 

  scale_x_continuous(expand = expansion(mult = c(0, 0.02))) + 

  scale_y_continuous(expand = expansion(mult = c(0, 0.02))) + 

  labs(x = "Topographic Position Index", 

       y = "P (flight < 200 m a.g.l.)") + 

  theme_custom() 

ggsave( 

  filename = "tpi-curve.jpeg", 
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  device = "jpeg", 

  path = folder, 

  width = 250, 

  height = 150, 

  units = "mm", 

  dpi = 300 

) 

 

#### Eastness---- 

# ICE curves 

ice_eastness <- partial( 

  model, 

  pred.var = "eastness", 

  pred.fun = pred_wrapper, 

  train = train_df %>% select(-target), 

  prob = TRUE, 

  type = "classification", 

  progress = "text" 

) 

 

# Save ICE object for eastness 

saveRDS(ice_eastness, file.path(folder, "ice-eastness.Rds")) 

 

# PD curve 

pdp_eastness <- pdp:::average_ice_curves.ice(ice_eastness) 

 

# There are too many ice curves to be plotted, take 1000 randomly 

set.seed(25) 

ice_eastness %>% 

  structure(class = "data.frame") %>%  # Remove class ice 

  filter(yhat.id %in% sample(nrow(train_df), size = 1000)) %>% 

  ggplot(mapping = aes(x = eastness, y = yhat)) + 

  geom_line(mapping = aes(group = yhat.id), alpha = 0.1, color = grey) + 

  geom_line(data = pdp_eastness, mapping = aes(x = eastness, y = yhat), 

            color = "black", size = 1) + 

  scale_x_continuous(expand = expansion(mult = c(0, 0.02))) + 

  scale_y_continuous(expand = expansion(mult = c(0, 0.02))) + 

  labs(x = "Eastness", 

       y = "P (flight < 200 m a.g.l.)") + 

  theme_custom() 

ggsave( 

  filename = "eastness-curve.jpeg", 

  device = "jpeg", 

  path = folder, 

  width = 250, 

  height = 150, 

  units = "mm", 

  dpi = 300 
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) 

 

### Categorical variables---- 

#### Land cover---- 

# ICE curves 

ice_landcover <- partial( 

  model, 

  pred.var = "landcover", 

  pred.grid = data.frame(landcover = as.character(1:10)), 

  pred.fun = pred_wrapper, 

  train = train_df %>% select(-target), 

  prob = TRUE, 

  cats = c("landcover", "geology"), 

  type = "classification", 

  progress = "text" 

) 

 

# Save ICE object for land cover 

saveRDS(ice_landcover, file.path(folder, "ice-landcover.Rds")) 

 

# PD curve 

pdp_landcover <- pdp:::average_ice_curves.ice(ice_landcover) 

 

# Plot curves 

ice_landcover %>% 

  structure(class = "data.frame") %>%  # Remove class ice 

  ggplot(mapping = aes(x = landcover, y = yhat)) + 

  geom_boxplot(outlier.shape = NA) +  # Remove outliers 

  coord_cartesian(ylim = quantile(ice_landcover$yhat, c(0.03, 1))) + 

  geom_point(data = pdp_landcover, mapping = aes(x = landcover, y = yhat), 

             color = "black", size = 1.5) + 

  scale_x_discrete(labels = c("1" = "Ochard", 

                              "2" = "Forest", 

                              "3" = "Bush", 

                              "4" = "Scree", 

                              "5" = "Other", 

                              "6" = "Antropic", 

                              "7" = "Marsh", 

                              "8" = "Water", 

                              "9" = "Rock", 

                              "10" = "Glacier")) + 

  labs(x = "Landcover", y = "P (flight < 200 m a.g.l.)") + 

  theme_custom() + 

  theme(axis.text.x = element_text(angle = 90)) 

ggsave( 

  filename = "landcover-curve.jpeg", 

  device = "jpeg", 

  path = folder, 
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  width = 250, 

  height = 150, 

  units = "mm", 

  dpi = 300 

) 

 

#### Geology---- 

# ICE curves 

ice_geology <- partial( 

  model, 

  pred.var = "geology", 

  pred.grid = data.frame(geology = as.character(1:4)), 

  pred.fun = pred_wrapper, 

  train = train_df %>% select(-target), 

  prob = TRUE, 

  cats = c("landcover", "geology"), 

  type = "classification", 

  progress = "text" 

) 

 

# Save ICE object for geology 

saveRDS(ice_geology, file.path(folder, "ice-geology.Rds")) 

 

# PD curve 

pdp_geology <- pdp:::average_ice_curves.ice(ice_geology) 

 

# Plot curves 

ice_geology %>% 

  structure(class = "data.frame") %>%  # Remove class ice 

  ggplot(mapping = aes(x = geology, y = yhat)) + 

  geom_boxplot(outlier.shape = NA) +  # Remove outliers 

  coord_cartesian(ylim = quantile(ice_geology$yhat, c(0.03, 1))) + 

  geom_point(data = pdp_geology, mapping = aes(x = geology, y = yhat), 

             color = "black", size = 1.5) + 

  scale_x_discrete(labels = c("1" = "Others", 

                              "2" = "Limestone", 

                              "3" = "Granite", 

                              "4" = "Gneiss")) + 

  labs(x = "Geology", y = "P (flight < 200 m a.g.l.)") + 

  theme_custom() + 

  theme(axis.text.x = element_text(angle = 90)) 

ggsave( 

  filename = "geology-curve.jpeg", 

  device = "jpeg", 

  path = folder, 

  width = 250, 

  height = 155, 

  units = "mm", 
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  dpi = 300 

) 
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GENERAL DISCUSSION 

The negative effects of wind energy on wildlife have been extensively studied (Drewitt & 

Langston, 2006; Goodale & Milman, 2016; Hein & Schirmacher, 2016; Madders & Whitfield, 

2006; Voigt, 2021) and there is a broad consensus that additional mortality due to collision with 

the rotor blades is highly detrimental to K-strategy bird species (Carrete et al., 2009; de Lucas et 

al., 2012). However, there is a lack of area-wide high-resolution spatial information on habitat use 

and flight behaviour of vulnerable species which hinders to effectively integrate species protection 

into strategic windfarm-planning. The predictive models I developed provide crucial information 

not only for site screening at the beginning of the planning process but also for micro-siting, i.e. 

the deployment of wind turbines in sites where they pose the least risk to target species. 

 

Modelling potential conflicts 

By combining spatially explicit information on habitat selection (Chapter 1) and flight height 

behaviour (Chapter 3) of the bearded vulture, I developed an evidence-based methodological 

framework to anticipate areas of potential conflicts with regard to wind energy deployment which, 

however, can be applied to any detrimental aerial infrastructure (Fig. 1). Several studies have aimed 

to spatially predict the distribution of potential conflicts arising from wind energy development for 

different species, either based on GPS locations of radio-tagged animals (Reid et al., 2015; Thaxter 

et al., 2019; Vasilakis et al., 2016, 2017) or on nest locations (Heuck et al., 2019; Murgatroyd et 

al., 2021; Tack & Fedy, 2015), but not so many combined information of habitat selection and 

flight behaviour into a single framework (Reid et al., 2015). This, however, is crucial for 

comprehensively capturing potential collision risks of vulnerable bird species. Although the 

collision risk is likely to increase in areas that are highly suitable for a species (Heuck et al., 2019), 

habitat suitability per se, which is usually calculated as the mere probability of species occurrence, 

does not include information on flight height behaviour and therefore also includes areas where 

birds mainly fly far above ground level. To the best of my knowledge, there is only one study that 

combines these two sources of information to predict areas of conflicts on a large extent (Reid et 

al., 2015). Compared to their results, my study goes a step further and introduces synthetic, ready-

to-use maps for practical application, delineating areas with different “sensitivity” levels from the 

perspective of bearded vulture conservation. Whereas the “potential conflict map" defines areas 

where conflicts are likely to occur, the “high-risk conflict map” refines it and facilitates the 

identification of areas within the species’ range that are suitable for wind energy development but 
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less likely to be detrimental to the species. 

Furthermore, I accounted for the potential future expansion of the bearded vulture 

population (Chapter 1). This aspect is paramount in the context of wind energy development in 

areas harbouring species with highly dynamic or expanding populations, where new areas of 

conflict, neglected by extant knowledge, are very likely to appear. For the bearded vulture in the 

Alps we are observing an ongoing recolonisation of its former range, confirmed by the number of 

new territories and the location of new breeding sites that year after year add to the known ones. 

2014 was the last year included in the casual observations used to train my models, corresponding 

to the reference year of the breeding locations considered in the Swiss wind energy concept 

(Bundesamt für Raumentwicklung ARE, 2017). All new breeding territories that were established 

after 2014, or relocated over time, appeared within the areas predicted as suitable for the species, 

except for one location that was very close to it, thus confirming the validity of my approach to 

anticipate conflict zones. 

 



 

 

1
8
1
 

 

Figure 1: Methodological framework used for predicting conflicts between bearded vultures and wind energy development in the Swiss Alps. 

In light grey is shown the information flow with the data (ovals) feeding the predictive models (dashed labels, MaxEnt: maximum entropy and 

ANN: artificial neural network) to produce information on different aspects of bearded vulture ecology and project it as maps (rectangles). 

Coloured rectangles represent the two main deliveries, i.e. maps delineating areas of potential conflict on a broad scale (orange) and hotspots 

with high risk conflict (red). 
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Bearded vulture ecology 

My approach also contributes to better understanding bearded vulture ecology. Inhabiting 

mountain regions in several areas of the Old world, there is a strong evidence that bearded vultures 

actively select steep slopes, cliffs, and ridges (Hirzel et al., 2004; Reid et al., 2015) which provide 

sites sheltered from adverse weather conditions and therefore optimal for both roosting and nesting 

(Hirzel et al., 2004). Moreover, these terrain features are optimal to generate updraughts which can 

efficiently support the flight of soaring birds and thus characterise areas where they predominantly 

fly at lower height (Hanssen et al., 2020; Katzner et al., 2012; Murgatroyd et al., 2021). My results 

corroborate these findings, but further highlight the importance of food supply for low-flying 

activity (i.e. below 200 m a.g.l., Chapter 3), specifically a high probability of ibex presence (Capra 

ibex), which is considered a proxy for the availability of ibex carcasses. I linked this association to 

the bearded vulture's ability to detect carrion. Shepard et al. (2011) suggested a similar pattern for 

the Andean condor (Vultur gryphus). Also other vulture species like the griffon vulture (Gyps 

fulvus) have been observed to fly at lower heights over areas with high density of ungulates 

(Houston, 1974), although they may also be able to locate food sources indirectly by flying high 

and observing other individuals (Houston, 1974). Bearded vultures instead feed mainly on smaller 

large bones of medium sized ungulates (Margalida et al., 2009) that might be difficult to detect 

when flying far above the ground. For this reason, the species may track areas where ibex colonies 

concentrate at low flight height, regardless of other environmental conditions. 

Food supply has also been identified as one of the main drivers of bearded vulture 

distribution, especially for immature birds (Chapter 1; Hirzel et al., 2004) and adults during the 

warm season (Chapter 1). Adult bearded vultures however changed their “priorities” during the 

cold season when climatic conditions became more important, probably because favourable winter 

conditions are required in the breeding territory. The fact that food supply is of critical importance 

for both habitat selection and flight height behaviour has a clear direct implication for wind energy 

development, which should be avoided in areas hosting ibex colonies. Moreover, given its critical 

importance, food supply should always be considered when investigating a species’ habitat 

selection. If this information is not available at sufficiently high resolution or in a format useful to 

run predictive models, a valid proxy may be used instead, for example by modelling the distribution 

of the main source of food using predictive models and survey data. For this study, for example, I 

modelled the probability of ibex and chamois occurrence (Rupicapra rupicapra) which proved to 

be a valid proxy for food supply (see supplementary material in Chapter 1). 
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Methodological challenges 

In all Chapters of this dissertation I emphasised key methodological challenges and contributed 

with novel approaches to address them objectively and efficiently. In Chapter 1 and 3 I built several 

models to predict either the potential distribution or the flight height behaviour of my target species 

so as to anticipate potential conflicts arising from detrimental aerial infrastructure. In these 

contexts, a model that can achieve accurate predictions from existing data is of prime importance, 

with hyperparameters tuning becoming a prerequisite for increasing model performance. Although 

several authors have stressed that the use of default values of the hyperparameters may not be 

optimal (Elith et al., 2010; Merow et al., 2013; Warren et al., 2014; Warren & Seifert, 2011), 

researchers may be discouraged by the time needed to test numerous hyperparameters 

combinations, notably when studies are conducted for several species, for multiple datasets, or 

dataset partitions. The new genetic algorithm for supporting hyperparameters tuning in SDMs that 

I presented in Chapter 2 drastically reduces computation time while achieving model performances 

comparable or equal to those obtained by testing all the possible combinations of the default 

hyperparameters values. Indeed, it leverages the information acquired during the tuning procedure 

and quickly discovers a valid solution. For example, when testing several methods to reduce the 

bias introduced by nonsystematic sampling of species data (Chapter 1), each repeated for two 

seasons, the new algorithm allowed tuning the hyperparameters for each trial in a reasonable time, 

saving valuable time for further progressing with my research. 

A second major challenge was to efficiently analyse large datasets of GPS locations, as 

used for predicting the flight height of bearded vultures in Chapter 3. I addressed this issue by 

selecting the tensorflow (Mart\’\in Abadi et al., 2016) and Keras (Allaire & Chollet, 2020) libraries 

which allow an easy and computationally optimised implementation of state-of-the-art models in 

the framework of artificial intelligence, tailored for large datasets. I also performed 

hyperparameters tuning in this context and provided the R code to show how to run such analyses 

with the tensorboard library (Martín Abadi et al., 2015). This code can serve as a template for 

reproducing similar analyses on large datasets requiring efficient data pipelines, a growing problem 

given the increasing availability of high temporal resolution GPS data (López-López, 2016). 

Finally, I was not only interested on model performance but also on model interpretability to 

properly elucidate bearded vulture ecological requirements. Machine learning algorithms like 

MaxEnt, which I used in Chapter 1 of my thesis, can fit complex nonlinear relationships but their 

interpretation is difficult when many variables are used or when variables are highly correlated 
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(Halvorsen, 2012; Halvorsen et al., 2015). Therefore, model complexity should be controlled to 

produce more reliable and better interpretable models (Brun et al., 2020; Halvorsen et al., 2015). I 

achieved this goal by developing two routines, one for selecting among highly correlated variables 

and the other for removing variables with low contribution without affecting model performance. 

Compared to expert-based selection among correlated or low-performing variables, which is 

particularly difficult when information on the species ecology is lacking, these routines perform 

their task in an objective way, thus providing reproducible results. 

Since reproducibility is also a main prerequisite for credibility of any research, I made all 

methodological solutions conceived in my dissertation available to the scientific community, first 

by releasing the package SDMtune in CRAN and second by providing the R code to fully reproduce 

the analysis conducted in Chapter 3. 

 

Further perspectives 

Although I believe that my research contributes significantly to the conservation of the bearded 

vulture in the Swiss Alps in relation to wind energy construction, first, by providing new insights 

on its ecological requirements, and second, by delivering a ready-to-use spatial planning tool, some 

questions are still open. There are three points which, in my opinion, deserve to be further explored: 

 

1. The risk of a bird colliding with the blades of a wind turbine depends, among others, on 

two factors, namely its flight height and the frequency with which it visits the area. While 

flight height has been studied in detail in the framework of this PhD thesis, information on 

the areas where bearded vultures concentrate their movement is still missing. Identifying 

areas that are intensively used by the species would allow discovering where, within the 

species’ habitat, the development of wind energy would most likely be particularly 

detrimental to the bearded vulture. 

 

2. Understanding if and under which weather conditions bearded vultures perceive and thus 

can avoid aerial obstacles is of paramount importance to guide mitigation measures. 

Assessing under which combinations of wind, precipitation and fog collision risk increases 

would allow providing detailed recommendations to temporarily shut down wind turbines 

located within the bearded vulture habitat. 
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3. Finally, GPS locations could be used in conjunction with collision risk models (CRMs) to 

estimate mortality rates at operational and planned wind turbines (Vasilakis et al., 2016, 

2017). This information, together with the parameters of the population dynamic model of 

Schaub et al. (2009) would provide new insights on the overall effects of wind turbine 

construction on the bearded vulture population. 

 

Conclusions 

The long-term large-scale bearded vulture reintroduction programme in the Alps launched in 1978 

is one of the successful examples of how humans can restore populations and thus at least partly 

repair the damage they have caused to nature in the past. Many resources, both financial and human, 

have been invested during the 43 years of this ongoing project. It is therefore crucial that any 

decisions affecting the establishing bearded vulture population or its habitat are carefully assessed 

to avoid any potential risk of jeopardising this project. Since more than one third of the Alpine 

breeding territories are in the Swiss Alps (Lauper, 2020) Switzerland assumes a critical role in the 

conservation of the species. Wind energy is rapidly developing worldwide (Lee & Zhao, 2021), 

and many new wind turbines are to be erected in Switzerland to achieve the country’s energy 

objectives (Bundesamt für Raumentwicklung ARE, 2017). Therefore, as part of the planning 

process, it is a paramount task to account for potential conflicts with the bearded vulture population, 

and to guarantee the coexistence of the species with wind energy exploitation. To this end, decision 

makers should be able to easily access all information needed to evaluate potential risks already 

during the initial planning stage. To date, the available information is insufficient to safely protect 

the species (Bundesamt für Raumentwicklung ARE, 2017; Horch et al., 2013). With this thesis I 

have contributed to filling this gap and developed several maps that provide spatial information 

tailored to the problem: With Chapter 1 I enhanced the knowledge of the present and future 

distribution of the species to provide broad information of risk-areas where conflicts with wind 

energy development can arise. Furthermore, I accounted for differences between seasons and age 

classes to provide a complete picture encompassing the requirements of all life stages in different 

seasons. In Chapter 3 I gained new insights on the species flight behaviour and integrated them in 

the results of Chapter 1. That way I could refine the previously identified risk-areas. All these 

deliveries are ready to use and easy to combine with any other kind of relevant information in any 

GIS application. Although my maps have been developed for estimating conflicts with wind energy 

development, they may also be valid for identifying air space conflicts induced by other aerial 
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infrastructures such as powerlines, ski lifts and cable cars. However, it is important to stress that 

these maps are intended to support planning but can in no case replace the required environmental 

risk assessment. Yet, they can provide general guidance and, for example, help to avoid that 

resources are invested in areas identified as high risk. 

Although I focused my research on the bearded vulture, there are other vulnerable species 

occurring in the Alps that might also be seriously impacted by wind energy expansion. The golden 

eagle (Aquila chrysaetos) is resident in the Swiss Alps and the griffon vulture is a frequent visitor, 

especially during the summer. Both perform extensive daily movements and are therefore 

potentially at high risk. Given the similar movement behavior, the developed maps may also be 

valid to some extent for those two species, but this requires further investigation. Moreover, there 

are other mountain bird species that should be considered, like the red billed chough (Pyrrhocorax 

pyrrhocorax), the capercaillie (Tetrao urugallus), the black grouse (Lyrurus tetrix) and the rock 

ptarmigan (Lagopus muta), with the latter not predominantly suffering from collision risk, but from 

effective habitat loss through avoiding wind energy infrastructure (Coppes et al., 2020). A more 

comprehensive study including these species would provide a more comprehensive overview of 

the problem and a better spatial tool for management. Furthermore, this study is limited to the 

Swiss Alps, while the problem should be addressed for the entire Alpine Arc. By providing the 

methodological framework for this purpose, I hope that the neighbouring countries will develop 

similar models and take measures to protect the species. The bearded vulture is an emblematic 

species that fascinates many people visiting the Alps. I sincerely wish that the results elaborated in 

this thesis can contribute effectively to the conservation of this species. 
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