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A seed, through support, patience, and persistency, becomes a tree.



Abstract

Previous studies have shown that high-quality code comments sup-
port developers in software maintenance and program comprehension
tasks. However, the semi-structured nature of comments, several con-
ventions to write comments, and the lack of quality assessment tools for
all aspects of comments make comment evaluation and maintenance a
non-trivial problem. To understand the specification of high-quality com-
ments to build e↵ective assessment tools, our thesis emphasizes acquir-
ing a multi-perspective view of the comments, which can be approached
by analyzing (1) the academic support for comment quality assessment,
(2) developer commenting practices across languages, and (3) developer
concerns about comments.

Our findings regarding the academic support for assessing comment
quality showed that researchers primarily focus on Java in the last decade
even though the trend of using polyglot environments in software projects
is increasing. Similarly, the trend of analyzing specific types of code com-
ments (method comments, or inline comments) is increasing, but the
studies rarely analyze class comments. We found 21 quality attributes
that researchers consider to assess comment quality, and manual assess-
ment is still the most commonly used technique to assess various qual-
ity attributes. Our analysis of developer commenting practices showed
that developers embed a mixed level of details in class comments, rang-
ing from high-level class overviews to low-level implementation details
across programming languages. They follow style guidelines regarding
what information to write in class comments but violate the structure
and syntax guidelines. They primarily face problems locating relevant
guidelines to write consistent and informative comments, verifying the
adherence of their comments to the guidelines, and evaluating the overall
state of comment quality.

To help researchers and developers in building comment quality as-
sessment tools, we contribute: (i) a systematic literature review (SLR)
of ten years (2010–2020) of research on assessing comment quality, (ii)
a taxonomy of quality attributes used to assess comment quality, (iii)
an empirically validated taxonomy of class comment information types
from three programming languages, (iv) a multi-programming-language
approach to automatically identify the comment information types, (v)
an empirically validated taxonomy of comment convention-related ques-
tions and recommendation from various Q&A forums, and (vi) a tool to
gather discussions from multiple developer sources, such as Stack Over-
flow, and mailing lists.

Our contributions provide various kinds of empirical evidence of the
developer’s interest in reducing e↵orts in the software documentation
process, of the limited support developers get in automatically assessing
comment quality, and of the challenges they face in writing high-quality
comments. This work lays the foundation for future e↵ective comment
quality assessment tools and techniques.
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Introduction

You are only entitled to the action, never to its fruits.

Gita

Software documentation is an essential component of software systems. It sup-
ports developers in understanding various levels of detail about a software. It
exists in various forms, such as software architecture documents, requirement
documents, wikis, code comments etc. Among others, developers consider
code comments one of the most trustworthy forms of documentation as it as-
sists them in code comprehension and maintenance tasks. However, achieving
high-quality comments is di�cult due to loose natural language syntax conven-
tions, developers adopting di↵erent conventions, and the lack of tools to assess
comment quality. Given the increasing usage of multi-programming language
environments, it is essential to understand the specification of high-quality
code comments across programming languages and how to assess them.

In this thesis, we study code comments from various aspects, such as devel-
oper commenting practices, their concerns related to comments, and quality
attributes, in order to understand the specification of high-quality comments
to build e↵ective assessment tools. We first conduct a systematic literature
review to gather the overview of comment quality assessment attributes and
techniques. Next, we analyze what type of information developers usually
write in comments and how they write them across languages. Then, we pro-
pose a novel multi-programming language approach to identify the relevant
types of information. We further analyze to what extent developers follow
the style guidelines in writing various types of information. Finally, we an-
alyze various community platforms to understand developer concerns about
commenting practices.

1



1. Introduction

S
oftware systems are often written in several programming languages
[1], and interact with many hardware devices and software components

[87, 167]. To deal with such software complexity, and to ease maintenance
tasks, developers tend to document their software with various artifacts, such
as design documents and code comments [38]. They document various lev-
els of detail about code in various types of documentation, such as software
architecture information in the architecture documents, design components
in design documents, functional and non-functional software requirements in
requirement documents, and code entities in code comments. Moreover, well-
documented code facilitates various software development and maintenance
activities [38, 34]. Recent studies show that developers consider code com-
ments to be more trustworthy than other forms of software documentation
and use them for implementing new features, selecting suitable APIs [185, 99],
and detecting bugs [162, 163]. Code comments are written using a mix of code
and natural language sentences, and their syntax and semantics are neither
enforced by a programming language nor checked by the compiler. Conse-
quently, developers are free to use any convention for writing comments [112],
thus making comment quality assessment a non-trivial problem.

Researchers have proposed numerous comment quality evaluation models
based on a number of metrics [82, 112] and classification approaches [160].
Zhi et al. conducted a systematic mapping of software documentation studies
(from 1971 to 2011) and proposed a meta-model for documentation quality
[184]. They considered various types of documentation, such as requirement
and architecture documentation in addition to code comments, but not all
attributes to assess documentation fit exactly to code comments. For instance,
the consistency quality attribute for software documentation indicates that
the documentation is consistent with other documents. In contrast, for code
comments, it is also used to express that the comment is consistent with the
associated code. Additionally, only 10% of the studies considered by Zhi et al.
concern code comments. Since the number of studies targeting comments has
been increasing in the past decade, it is important to have a unifying model
of quality attributes researchers use to assess comment quality, and tools and
techniques they use to measure these quality attributes.

Although the unifying model presents the notion of high comment quality
according to the researchers’ perspective, it lacks the developers’ perspective
regarding comments, such as what they write inside comments, how they write
them, what comment conventions they follow in writing comments, what con-
cerns them about commenting practices, and what are their information needs.
To gain an insight into the developer perspective, we need to characterize de-
veloper commenting practices and their concerns.

Previous studies have characterized developer commenting practices in
OOP languages by classifying comments based on the information that com-
ments contain [71, 160, 116, 183]. Given the variety of comment types (class,
method, or inline) not all comment types describe the source code at the same

2



levels of abstraction. Therefore, the quality assessment tools need to be tai-
lored accordingly. For example, class comments in Java should present high-
level information about a class, whereas method comments should present
implementation-level details [110]. These commenting conventions vary across
programming languages. For instance, in comparison to Java, class comments
in Smalltalk are expected to contain both high-level design details and low-
level implementation details. However, what information developers actually
embed in class comments across languages is not well studied. Given the in-
creasing use of multi-language software systems [166] and persistent concerns
about maintaining high documentation quality, it is critical to understand
what developers write in a particular comment type, and to build tools to
check the embedded information across languages.

Code conventions to write good comments vary across programming lan-
guages. To support developers in writing consistent and informative com-
ments, programming language communities, such as those for Java and Python,
and large organizations such as Google, and Oracle provide coding style guide-
lines [77, 122, 66]. However, to what extent these guidelines cover commenting
conventions, such as conventions to write content, style, and syntax of com-
ments is unknown. It is essential to identify which aspects they cover and
study the extent to which developers follow these aspects while writing com-
ments. This can help in building tools and approaches to support developers
adhere to the style guidelines to have high-quality comments.

As the guidelines provide brief conventions to write comments, and these
conventions are often scattered across the guidelines, developers find it hard
to locate the required commenting conventions and comply with them [48].
Additionally, the availability of several guidelines for a language makes de-
velopers unsure about which comment conventions to use for what kinds of
comments. Previous works have highlighted that developers ask questions
on various platforms, such as Stack Overflow (SO), and mailing lists, to sat-
isfy their information needs about software documentation [17, 4]. However,
which specific concerns developers raise about commenting practices are un-
clear. For example, do developers seek best practices for comments, or verify
if their comments follow the guidelines? Understanding this aspect can help
other developers and the scientific community to know where developers need
support to ensure high-quality comments.

Even when a comment adheres to its coding style guidelines from all as-
pects, such as content, syntax, and style, it is still possible that the comment
is incomplete or inconsistent with the code, and thus lacks the desired high
quality [151, 86, 46]. Therefore, numerous quality attributes that can a↵ect
comment quality need to be considered in the overall assessment of comments.
To bridge the gap between the notion of high comment quality researchers
propose and the concrete commenting practices developers follow, we need a
deeper understanding of both researcher and developer perspectives.

To gain the required understanding, we analyze comments from both per-
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spectives, of researchers in terms of what they use and propose to measure
comment quality, and of developers in terms of what they ask and what they
write in comments. Figure 1.1 illustrates the exploration of these perspectives
(e.g., P1, P2) with respect to each chapter and research question.
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Figure 1.1: Thesis overview

1.1 Thesis Statement

The goal of this thesis is to investigate practices in writing and evaluation of
code comments in a stepwise manner to ultimately improve comment quality
assessment techniques. We state our thesis as follows:

Understanding the specification of high-quality comments to build e↵ective
assessment tools requires a multi-perspective view of the comments. The
view can be approached by analyzing (P1) the academic support for comment
quality assessment, (P2) developer commenting practices across languages,
and (P3) their concerns about comments.

To explore each perspective, we conduct various studies, such as systematic
mapping and empirical studies focusing on four main research questions:

P1 : Identifying the quality attributes, tools, and techniques that researchers
propose to assess comment quality.

RQ1: How do researchers measure comment quality?
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1.2. Contributions

P2 : Understanding the commenting practices developers follow in writing
comments in various programming languages, such as Java, Python,
and Smalltalk with the research questions:

RQ2: What kinds of information do developers write in comments across
languages?

RQ3: To what extent do developers follow the style guidelines in their
comments?

P3 : Identifying the key concerns developers post on Q&A forums related to
comments with the research question:

RQ4: What do developers ask about commenting practices on Q&A
forums?

Exploring each perspective provides various insights into developer practices,
concerns, and support that can be leveraged to improve the current under-
standing about the code comments. It can also help in establishing advanced
approaches to assess comments automatically, thus, laying the foundation of
a novel comment quality assessment system in this field.

1.2 Contributions

The contribution of this research is presented with respect to each perspective.
We use the � icon for published papers, � for submitted papers, � for
taxonomies, and � for the proposed tools.

P1 : We present for the first perspective:

– Chapter 3 ! � a list of relevant quality attributes to assess com-
ments, and a review of existing tools and techniques that assess
these quality attributes.
� Pooja Rani, Arianna Blasi, Nataliia Stulova, Sebastiano Panichella,
Alessandra Gorla, and Oscar Nierstrasz. A decade of code comment
quality assessment: A systematic literature review. Journal of Sys-
tems and Software, 2021

P2 : We present for the second perspective:

– Chapter 4 ! � an overview of the Smalltalk class commenting
trends over seven major releases from 2008 till 2019, an empiri-
cally validated taxonomy, called CCTM (Class Comment Types
Model), characterizing the information types found in class com-
ments of Smalltalk, and mapping of the CCTM taxonomy to the
taxonomies available in Java and Python.
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� Pooja Rani, Sebastiano Panichella, Manuel Leuenberger, Mo-
hammad Ghafari, and Oscar Nierstrasz. What do class comments
tell us? An investigation of comment evolution and practices in
Pharo Smalltalk. Empirical Software Engineering, 26(6):1–49, 2021

– Chapter 5 !, an automated approach that is able to classify class
comments according to CCTM with high accuracy in a language
independent manner.
� Pooja Rani, Sebastiano Panichella, Manuel Leuenberger, Andrea
Di Sorbo, and Oscar Nierstrasz. How to identify class comment
types? A multi-language approach for class comment classification.
Journal of Systems and Software, 181:111047, 2021

– Chapter 6 ! � an empirically validated taxonomy, called CCT,
characterizing the convention types found in various coding style
guidelines of Java, Python, and Smalltalk, and an assessment of
the extent to which developers follow these conventions in writing
class comments.
� Pooja Rani, Suada Abukar, Nataliia Stulova, Alexander Bergel,
and Oscar Nierstrasz. Do comments follow commenting conven-
tions? A case study in Java and Python. In 2021 IEEE 21st In-
ternational Working Conference on Source Code Analysis and Ma-
nipulation (SCAM), 2021

P3 : We present for the third perspective:

– Chapter 7 ! � an empirically validated taxonomy of commenting
practices related questions from various Q&A forums, and recom-
mendations given by experts on Q&A forums about commenting
practices.
� Pooja Rani, Mathias Birrer, Sebastiano Panichella, Mohammad
Ghafari, and Oscar Nierstrasz. What do developers discuss about
code comments? In 2021 IEEE 21st International Working Con-
ference on Source Code Analysis and Manipulation (SCAM), 2021

– Appendix A ! � a tool to conduct a mining study on multiple
sources or forums.
� Mathias Birrer, Pooja Rani, Sebastiano Panichella, and Oscar
Nierstrasz. Makar: A framework for multi-source studies based
on unstructured data. In 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages
577–581, 2021

6



1.3. Outline

1.3 Outline

In this thesis, we explore each perspective with respect to the state of the art
works, their motivation, methodology, results, and contributions.

Chapter 2 reviews the state of the art of comment analysis with respect
to each perspective and their corresponding research questions. The chapter
addresses various topics concerning this thesis and highlights the gaps that
needs to be addressed.

Chapter 3 explores the notion of quality in the context of comments
by conducting a systematic literature review (SLR). In the SLR, we review
the proceedings of the past ten years i.e., 2010 until 2020 from the relevant
Software Engineering (SE) conferences and journals that assess comment qual-
ity. We gather which quality attributes the relevant papers assess, and which
tools and techniques they propose or use to evaluate them. Our results sug-
gest that consistency of comments with the code, readability of comments,
and relevancy of the content are often analyzed, whereas conciseness, coher-
ence, and accessibility are rarely analyzed. We find that manual assessment is
still the most frequently used technique to measure various quality attributes.
Most of the studies analyze code comments mainly in Java, especially method
comments. However, they rarely analyze class comments even though class
comments in object-oriented languages assist developers in comprehending a
high-level overview of the class. We address many of these concerns in the
following chapters, for instance, we analyze the content of class comments of
three programming languages (chapter 4), establish a language-independent
machine learning-based approach to identify relevant information from com-
ments (chapter 5), compare developer commenting practices to the suggested
guidelines (chapter 6), and gather their commenting concerns (chapter 7) to
improve the overall quality aspect of comments. As chapter 3 provides insight
into the researchers’ perspective, the subsequent chapters provide insights into
the developers’ perspective on writing comments, following various guidelines
to write them, and raising concerns about comments.

Chapter 4 shows how previous studies have investigated the commenting
practices in various systems independently, but have not observed the com-
menting practices across languages and specific to a comment type. We also
confirm these results in our previous study (chapter 3). To address this con-
cern, we first analyze class comments in Smalltalk and formulate a taxonomy,
called CCTM. We then map the CCTM taxonomy to the code comment tax-
onomies available in Java and Python specific to their class comments. Our
results highlight that developers express di↵erent kinds of information (more
than 15 information types) in class comments ranging from the high-level
overview to low-level implementation details across programming languages.
As these information types can help developers in accessing the relevant in-
formation for their tasks, it can help researchers in developing the approaches
to identify them automatically and then assessing their quality. Chapter 5
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establishes an approach to automatically identify the information types.

In Chapter 5 we automate the identification of information types from
class comments using CCTM across languages. The results from chapter 3
highlighted such a need for an automated approach to assess comments. We
apply various machine learning algorithms with di↵erent feature sets to find
the most suitable method for identifying the information types in comments.
Our results suggested that the Random Forest algorithm fed by the combi-
nation of NLP+TF-IDF features achieved the best classification performance
for the frequent categories over the investigated languages. It identified the
top six most frequent categories with relatively high precision (ranging from
78% to 92% for the selected languages), recall (ranging from 86% to 92%),
and F-measure (ranging from 77% to 92%). However, it achieved less stable
results for Smalltalk compared to Python and Java. Though initial results
seem promising, comment classification is still not perfect for evaluating all
aspects of comments.

Chapter 6 shows what comment conventions various coding style guide-
lines suggest and to what extent developers follow them. Our results from
chapter 4 highlighted that class comments contain various types of informa-
tion. In this chapter, we found that not all of these information types are
suggested by coding guidelines and vice versa, and this behavior is observed
across all the selected languages. This analysis provides insight into support-
ing developers in following the commenting conventions to have consistent
comments. As developers become confused in following the conventions, it is
vital to understand which specific challenges they face related to code com-
ments. We gather such challenges in the next chapter (chapter 7).

Chapter 7 attempts to identify developer discussions from the Q&A fo-
rums about commenting practices. In the first part, we identify the types of
questions developers often ask about commenting practices on SO and Quora.
Then we analyze what recommendations expert developers from these forums
suggest to questioners to resolve their confusions. Our results indicate that
developers ask questions about the best practices to write comments (15% of
the questions), and generate comments automatically using various tools and
technologies. We also observe that developers are interested in embedding
various kinds of information, such as code examples and media e.g., images in
their code comments, but lack clear guidelines to write them. Additionally,
the results show that developers are interested in automatically assessing their
comments to ensure quality, but lack the tools and techniques to do so.

Chapter 8 revisits the research questions, presents the concluding re-
marks, and indicates potential future work in the direction of developing tools
and techniques to improve code comments, software documentation, and code
comprehension.

Appendix A presents the supplementary results and the tool named
Makar.
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1.4 Study Replicability

González et al. characterized the reproducibility of a study in empirical soft-
ware engineering studies and showed that Dataset Availability is an essential
dimension [65]. To provide replicability of our studies, and to promote the
open-science movement, various tools and datasets produced along with the
manuscripts are made publicly accessible.

Table 1.1: Tool and datasets produced in our studies

Dataset Host
� Comment quality assessment attributes and techniques GitHub [127]
� � Comment information types in Smalltalk Zenodo [131]
� � Comment information types in Java and Python GitHub [130]
� � Automated identification of comment information types GitHub [130]
� � Java and Python comment conventions Zenodo [128]
� Developer commenting concerns Zenodo [129]
� Makar tool Zenodo [132]
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2

State of the Art

D
evelopers document code in various types of software documentation
[38]. Code comments are an important type of software documentation

that has been proven to assist developers in various software engineering tasks
[39, 99, 162]. As code comments are written in natural language form, and
not checked by the compiler, developers are free to use various conventions
to write them. Developers embed various kinds of information in comments
to support other developers in understanding and maintaining code. Given
the importance of code comments in software development, researchers put
e↵ort into various comment-related tasks, such as automatically generating
and summarizing comments [70, 109], using comments to detect bugs [162],
assessing comment quality [82, 160], detecting inconsistency between code
and comments [138, 177], and examining co-evolution of code and comments
[55, 76]. Their aim is to have high-quality comments to support developers in
various software engineering-related tasks at di↵erent phases of the software
development life cycle (SDLC). However, the lack of a standard definition,
appropriate measures, and tools make comment quality assessment a non-
trivial task.

Several empirical studies have targeted understanding code comments fo-
cusing on di↵erent aspects and aims. In the following sections, we describe
the state of the art for each perspective and their corresponding research ques-
tions.

11
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2.1 Academic Support for Comment Quality Assess-
ment

Software quality is frequently represented as a contextual concept [61]. In a
marketplace of highly cut-throat technologies, the significance of having qual-
ity software is currently not a benefit, but a vital factor for organizations to be
successful [16]. Therefore, the identification and quantification of important
characteristics is required as a first step to measure a high-quality piece of
software [16]. The object-oriented paradigm has changed the code elements
and metrics that we used to measure software, such as size, performance, and
complexity to metrics based on inheritance, polymorphism, encapsulation, and
abstraction [32]. However, SE (object-oriented) metrics vary in their applica-
bility of what they measure, and how they measure. The metric and quality
models developed for such systems are not restricted to code, but they can
also be applied to code comments. Though there is no standard definition
of a “good comment”, there exist various assumptions about it. According
to Wan et al., a good comment should be at least correct, fluent, and con-
sistent [172]. On the other hand, according to Khamis et al. and Steidl et
al. the comments that are long and textually similar to the code are consid-
ered high-quality [82, 160]. Another similar assumption is that if a comment
helps the developer understand the code, it is considered to be a high-quality
comment. However, beyond the various assumptions, there is currently no
study to present all quality attributes (QAs) important for code comments.
Additionally, an overall picture of how these di↵erent QAs are evaluated in
an automatic or semi-automatic manner is also missing for comments.

2.1.1 Comment Quality Attributes

Arthur et al. identified the desirable QAs as a first step to measure software
quality, especially main QAs of good documentation [13]. Various researchers
conducted surveys with developers from industry to find important QAs of
a good software documentation. Forward and Lethbridge surveyed 48 devel-
opers and highlighted developer concerns about outdated documentation and
thus documentation being untrustworthy [56]. Chen and Huang surveyed 137
project managers and software engineers [30]. Their study highlighted the typ-
ical quality problems developers face in maintaining software documentation,
such as adequacy, completeness, traceability, consistency, and trustworthi-
ness. Robillard et al. conducted personal interviews with 80 practitioners and
presented the important attributes for good documentation, such as including
examples and usage information, complete, organized, and better design [139].
Similarly, Plosch et al. surveyed 88 practitioners and identified consistency,
clarity, accuracy, readability, organization, and understandability as the most
important QAs for documentation [119]. They also indicated that developers
do not consider documentation standards important (e.g., ISO 26514:2008,
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IEEE Std.1063:2001). Sohan et al. in their survey study highlighted the
importance of examples in documentation [154]. The majority of the high-
lighted documentation QAs apply to code comments as well (as a type of soft-
ware documentation). However, which specific QAs (e.g., outdated, complete,
consistent, traceable) researchers consider important to assess code comment
quality and how these QAs are measured is yet to to be study.

2.1.2 Comment Quality Assessment Techniques

Researchers have focused on evaluating comment quality based on various as-
pects, such as assessing the adequacy of comments [13], their content quality
[82, 160], analyzing co-evolution of comments and code [55], or detecting in-
consistent comments [138, 177]. For instance, Ying et al. and Storey et al.
assessed task comment quality [181, 161]. They highlighted the need to au-
tomatically assess comment quality. Several works have proposed tools and
techniques to automatically assess the comments using specific QAs and met-
rics [82, 160, 186, 138, 90, 177]. Specifically, Khamis et al. assessed the inline
comment quality based on the two quality attributes: consistency and lan-
guage quality [82]. They used a heuristic-based approach to measure these
quality attributes. Steidl et al. evaluated documentation comment quality
based on four QAs, such as consistency, coherence, completeness, and use-
fulness of comments using a machine learning-based model [160]. Zhou et
al. proposed a heuristic and natural language processing-based technique to
detect incomplete and incorrect comments [186]. These works have proposed
various new QAs to assess comment quality, such as completeness, coherence,
and language quality, that are not included in previous quality models. There-
fore, a unifying overview of comment QAs and their assessment approaches is
still missing. In this regard, we complement these previous works by investi-
gating comment QAs discussed in the last decade of research by conducting
an SLR.

2.1.3 Previous SLRs on Code Comments

Previous literature reviews have provided the quality models for software doc-
umentation [45, 184, 155, 107]. Specifically, Ding et al. conducted an SLR to
explore the usage of knowledge-based approaches in software documentation
[45]. They identified twelve QAs. They also highlighted the need to improve
QAs, especially conciseness, credibility, and ambiguity. Zhi et al. have ex-
plored various types of software documentation to see which QAs impact it
[184]. Both of the studies considered the timeline until 2011. Additionally,
only 10% of their studies focused on code comments, and they have not stud-
ied how the proposed quality assessment approaches are computed in practice
for comments. Inspired by these related studies, we focus specifically on the
code comment aspect. Song et al. conducted a literature review on code
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comment generation techniques, and indicated the need to design an objec-
tive comment quality assessment model [155]. Complementarily, Nazar et al.
[107] presented a literature review in the field of summarizing software arti-
facts, which included source code comment generation as well as bug reports,
mailing lists and developer discussion artifacts. We complement these previ-
ous studies since we mainly focus on quality assessment of manually-written
comments.

With the increasing amount of literature in the field of assessing comment
quality, and still persistent need to improve comment quality assessment ap-
proaches, we conduct an SLR. With this work, we identify various QAs that
are either not included in previous quality models, or used with a di↵erent ter-
minology. We gather various techniques that are used to measure the identified
QAs to see which of them are more frequently used than others in assessing
comment quality.

Our results show that researchers focus on various kinds of comments, such
as method comments, inline comments, and todo comments. However, none
of them analyze specifically class comments. Though the trend of analyzing
comments of more than one programming language is increasing, 90% of the
studies primarily focus on the Java programming language and only 15% of
them focus on Python. Thus, the empirical evidence for these languages is
restricted to one language and generalizing it to other languages requires more
analysis and e↵orts.

Understanding the QAs and techniques researchers propose to assess com-
ments is important, but it is incomplete without understanding how developers
write comments, i.e., what information they write, what conventions they fol-
low, and what their concerns are regarding comments. In the next sections, we
characterize developer commenting practices and their related concerns about
comments.

2.2 Developer Commenting Practices

To characterize developer commenting practices, we analyzed comments based
on their evolution, specific comment types, classification, and adherence to the
guidelines.

Considering the importance of code comments, several researchers ana-
lyzed comments quantitatively and qualitatively. Woodfield et al. studied the
usefulness of comments quantitatively, and measured the e↵ects of comments
on program comprehension [179]. They found that the groups of programmers
who were given a program with comments were better able to answer more
questions about a program in a quiz than the programmers who were given
the program without comments.

A few studies focused on the evolution of comments. Schreck et al. quali-
tatively analyzed the evolution of comments over time in the Eclipse project
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[145], whereas Jiang et al. [78] quantitatively examined the evolution of source
code comments in PostgreSQL. Fluri et al. analyzed the co-evolution of code
and comments in Java and discovered that changes in comments are triggered
by a change in source code [54]. They found that newly-added code is rarely
commented. Interestingly, in contrast to their results, we find that the com-
menting behavior of Smalltalk developers is di↵erent. Developers comment
newly-added code, as well as commenting old classes. In another study, Fluri
et al. claimed that the investigation of commenting behavior of a software sys-
tem is independent of the object-oriented language under the assumption that
common object-oriented languages follow similar language constructs to add
comments [55]. We investigate the assumption with another object-oriented
programming language and discover that Smalltalk follows di↵erent comment
conventions for class comments. Smalltalk separates the class comment from
the source code and supports di↵erent kinds of information like warnings,
pre-conditions, and examples in class comments. Thus, it indicates that pro-
gramming languages use di↵erent conventions for writing comments. However,
what information developers actually embed in class comments and how these
practices vary across languages requires further investigation.

2.2.1 Comment Information Types

Previous studies indicated that code comments contain various types of in-
formation that can help developers in various activities and tasks [181, 112,
160, 116, 186, 73]. We summarize these related works based on the develop-
ment systems, programming language, and comment entity (e.g., source code
comments, class comments, inline comments) as shown in Table 2.1.

Ying et al. [181] inspected specific types of comments, namely the Eclipse
task comments, and categorized them on the basis of the di↵erent uses of such
comments made by developers, for example, for communication purposes, or
to bookmark current and future tasks. Padioleau et al. proposed comment
categories based on the actual meaning of comments [112]. They use “W
questions”, such as What is in a comment?, Who can benefit?, Where is the
comment located?, When was the comment written? Hata et al. have cate-
gorized only the links found in comments [73]. Similar to these studies, our
work is aimed at supporting developers in discovering important types of in-
formation from class comments. Specifically, we rely on the question: What
is in a comment?, and classify the comments accordingly.

Our results from the SLR highlight that researchers focus on various kinds
of comments, such as method comments, inline comments, or TODO com-
ments, however, none of them specifically analyze class comments. The results
also show that although the trend of analyzing comments of more than one
programming language is increasing, 90% of the studies focus on Java and only
15% of them focus on Python. Therefore, we focus specifically on class com-
menting practices of various programming languages. We specifically classify
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Table 2.1: Comparison of related works on comment information categorization

Study Comment
types

System analyzed Proposed categories

Ying et al.
(2005)
[181]

Task [Java]: Eclipse
Architect’s Workbench
(AWB) project

communication, pointer to a change
request, bookmark, current task,
future task, location marker, concern
tag (7 categories)

Padioleau
et al.
(2009)
[112]

Source
code

[C]: Linux, FreeBSD,
OpenSolaris [Java]:
Eclipse, [C/C++]:
MySQL and Firefox

type, interface, code relationship, past
future, meta, explanation (6
categories)

Haouari et
al. (2011)
[71]

Source
code

[Java]: DrJava,
SHome3D, jPlayMan

explanation comments, working
comments, commented code, other (3
categories)

Steidl et al.
(2013)
[160]

Source
code

[Java]: CSLessons,
EMF, Jung, ConQAT,
jBoss, voTUM, mylun,
pdfsam, jMol, jEdit,
Eclipse, jabref, C++

copyright comments, header
comments, member comments, inline
comments, section comments, code
comments (commented code), task
comments (7 categories)

Pascarella
et al.
(2017)
[116]

Source
code

[Java]: Apache
(Spark, Hadoop),
Google (Guava,
Guice), Vaadin,
Eclipse

summary, expand, rational (intent),
deprecation (warning), usage,
exception, TODO, incomplete,
commented code, directive, formatter,
license, pointer, auto-generated, noise
(16 categories)

Zhang et
al. (2018)
[183]

Source
code

[Python]: Pandas,
Django, Pipenv,
Pytorch, Ipython,
Mailpile, Requests

metadata, summary, usage,
parameters, expand, version,
development notes, todo, exception,
links, noise (11 categories)

Shinyama
et al.
(2018)
[149]

Local
(inside
methods)

[Java]: 1 000 projects
[Python]: 990
projects

preconditions, post conditions, value
description, instructions, guide,
interface, meta information, comment
out, directive, visual cue,
uncategorized (11 categories)

Hata et al.
(2019) [73]

Links in
comments

[C, C++, Java,
JavaScript, Python,
PHP, Ruby]:
Projects from GitHub

links (1 category)

class comments of three languages, Java, Python, and Smalltalk and develop
an approach to identify comment types in a language independent manner.

2.2.2 Automation of Comment Information Types

Steidl et al. classified the comments in Java and C/C++ programs based on
the position and syntax of the comments, e.g., inline comments, block com-
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ments, header comments, etc. [160]. Di↵erently from Steidl et al., our work
focuses on analyzing and identifying semantic information found in class com-
ments in Java, Python, and Smalltalk. We classify class comments by mapping
them to their “header comments” category. In the case of Smalltalk, their four
other categories of comments (task comments, copyright comments, member
comments, and section comments) are available inside the class comment but
are not annotated with any specific tags as in Java and C/C++. Pascarella et
al. identified the information types from Java code comments and presented
a taxonomy [116]. Similarly, Zhang et al. identified information types from
Python code comments[183]. In the case of Java, we use the taxonomy from
Pascarella et al. to build our Java CCTM categories and the taxonomy from
Zhang et al. to build Python CCTM categories.

Compared to the Java code comment taxonomy of Pascarella et al., we
rarely find formatter, commented code, todo, directive, or license categories
in class comments. Similarly, compared to the Python comment taxonomy
of Zhang et al., we rarely observe the version, todo, or noise categories in
our Python class comment taxonomy. More importantly, we find other types
of information in Java and Python class comments that developers embed in
the class comments but were not included in their taxonomies, such as the
warning, observation, recommendation and precondition categories. More in
general, our work complements and extends the studies of Pascarella et al.
and Zhang et al. by focusing on class comments in three di↵erent languages,
which makes our work broader in terms of studied languages as well as the
types of code comments reported and automatically classified.

Forward and Lethbridge surveyed 48 developers and highlighted develop-
ers’ interest in automating the documentation process [56]. Specifically, they
indicated that documentation tools should extract knowledge from core re-
sources. Automatically identifying various information types embedded in
comments and extracting them can help developers find relevant information
easily. To achieve this goal, several studies explored numerous approaches
based on heuristics or textual features [47, 182, 149, 60]. For instance, Dra-
gan et al. used a rule-based approach to identify the stereotype of a class
based on the class signature [47]. Their work is aimed at recognizing the class
type (e.g., data class, controller class) rather than the type of information
available within class comments, which is the focus of our work. Steidl et
al. classified the comments in Java and C/C++ programs automatically us-
ing machine learning approaches. They used the position and syntax of the
comments as features to classify comments. Shinyama et al. [149] focused
on discovering specific types of local comments (i.e., explanatory comments)
that explain how the code works at a microscopic level inside the functions.
Similarly to our work, Shinyama et al. and Geist et al. considered recurrent
patterns, but crafted them manually as extra features to train the classifier.
Thus, our approach is di↵erent, as it is able to automatically extract di↵er-
ent natural language patterns (heuristics), combining them with other textual
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features, to classify class comment types of di↵erent languages.
In contrast to these previous approaches, we extract the natural language

patterns (heuristics) automatically using a tool, NEON, combine them with
other textual features, and test our approach across languages. We found that
our natural language-based approach combined with TF-IDF classifies class
comments with high accuracy for the investigated languages.

2.2.3 Comment Adherence to Conventions

Comment conventions. Coding style guidelines or standards suggest various
conventions to write comments [66, 122, 77]. Kernighan and Pike highlighted
the need to follow commenting standards, and proposed various guidelines [81].
Nevertheless, to what extent developers follow commenting standards in writ-
ing comments is not well explored. Therefore, after characterizing developer
commenting practices in terms of what they write in comments, we move to
understand commenting conventions various guidelines provide, whether de-
velopers follow these guidelines in writing their comments, and what specific
conventions they follow.

Numerous studies have measured the impact of di↵erent coding styles on
program comprehension [23, 179] and on open source collaboration [175]. The
studies suggested researchers to put e↵ort into improving the stylistic consis-
tency of the projects. However, quantifying the coding style and measuring
the stylistic inconsistency of projects is not a trivial task. Oman et al. jus-
tified the need for a programming (coding) style taxonomy and designed the
taxonomy for comprehending and identifying the specific style factors [111].
Taking inspiration from their work, Mi et al. attempted to characterize the
programming style quantitatively and measured the stylistic inconsistency in
C++ [100]. However, the metrics to measure comment style are restricted to
the ratio of the number of comment lines (inline comments or multiline com-
ments) to the code. In this context, we study diverse coding style guidelines of
Java, Python, and Smalltalk and identify the type of conventions they provide
for comments. We develop a taxonomy of comment conventions types (i.e.,
CCT) to specify which aspect (syntax, style, content, or format) is covered in
the style guidelines and to what extent.

Adherence of comments to the conventions. Jiang et al. studied the source
code comments in the PostgreSQL application. They focused on function com-
ments i.e., comments before the declaration of a function (header comments)
and comments within function body and trailing the functions (non-header
comments). They observed that there is an initial fluctuation in the ratio
of header and non-header comments due to the introduction of a new com-
menting style, but they did not investigate further the commenting style [78].
Marin investigated the psychological factors that drive developers to com-
ment [95]. The study concluded that developers use di↵erent comment styles
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in their code depending on the programming language they have used earlier.
We also partially confirm this result as we found Java style block comments
within Smalltalk class comments.

Nurvitadhi et al. studied the impact of class comments and method com-
ments on program comprehension in Java, and created a template for class
comments in Java [110]. They suggested to include the purpose of the class,
what the class does, and the collaboration between classes. The Smalltalk class
comment template covers similar aspects with a CRC style for the class com-
ment. The CRC style emphasizes mentioning the intent, responsibilities, and
collaborations of the class. However, whether developers follow these aspects
or not in their comments is unstudied. Previous works, including Bafatakis et
al. and Simmons et al., evaluated the compliance of Python code to Python
style guidelines [15, 150]. However, they included only few comment conven-
tions and missed many other content and writing style conventions. To the
best of our knowledge, we are the first to conduct a study to characterize the
commenting conventions of the guidelines, the commenting styles of develop-
ers, and to measure the extent of their adherence to the standard guidelines
across languages.

In our study, we find various comment conventions, such as grammar rules,
the syntax of writing di↵erent types of information that developers often fol-
low, or violate. We measure the adherence of Smalltalk class comments to
the default comment template and find that developers follow the writing and
content conventions of the template. Java and Python do not provide any
default template to write comments, but support multiple style guidelines for
each project, thus collecting and verifying their comment conventions against
comments is more tricky. We study diverse projects in Java and Python and
find that developers follow writing and content conventions more than other
types, confirming the prior results of Smalltalk.

2.3 Commenting Practice Concerns

Happel et al., in their survey on some popular recommender systems, dis-
cussed that getting useful documentation is not a trivial task, and requires
many challenges to be addressed [72]. To understand the challenges develop-
ers face, and their information needs, researchers mine various crowd-sourced
knowledge-based platforms.

Examining developer engagements and activities from di↵erent sources and
understanding them in a topic context can guide the improvement of tools and
practices within the topic [18, 4]. It also helps researchers and other developers
in gathering developer information needs regarding a topic and understanding
where they face challenges. Developers frequently use web resources to satisfy
their information needs. Recently, researchers have started leveraging these
resources, such as version control systems [31], archived communications [147,
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148], execution logs [62], newsgroups [75], Q&A forums [7, 17, 142, 180, 85, 4],
and mailing lists [4] to comprehend developer information needs.

Stack Overflow (SO) is one of the most popular platforms that researchers
have studied to capture developers questions about trends and technologies
[7], security-related issues [180], and documentation issues, etc. [4]. Recently
researchers have started investigating Quora to get more insight into developer
communities [85], e.g., finding and predicting popularity of the topics [173, 85],
finding answerability of the questions [93], detecting the experts on specific
topics [117, 108, 59], or analyzing anonymous answers [97]. According to our
knowledge, our study is the first to investigate the Quora platform for code
comments.

In the context of software documentation, Aghajani et al. studied docu-
mentation issues on SO, GitHub and mailing lists [4], and formulated a tax-
onomy of these issues. However, they focused on the issues related to project
documentation, such as wikis, user manuals, and code documentation, and
did not focus on the style issues of the code comments. Our study focuses
on all aspects of code comments including the content and style aspect of
code comments. Barua et al. found questions concerning coding style and
practice to be amongst those most frequently appearing on SO [17], but did
not investigate further. They considered the topic amongst common English
language topics instead of a software technical category due to the usage of
generic words in this topic. As their focus was on technical categories, they
did not explore the coding style questions further. Our study complements
their work by exploring the specific aspects of coding styles, and focusing on
comment conventions.

2.4 Summary and Conclusion

In this chapter, we reviewed the state of the art with respect to commenting
practices and challenges, which focus mainly on (i) identifying various QAs
for comment quality and approaches to measure the attributes, (ii) charac-
terizing developer commenting practices across languages, and (iii) various
sources utilized to understand developer information needs. The state of the
art shows various approaches and aspects to characterize comments and assess
their quality. They list various QAs that are important to measure software
documentation quality and propose various approaches to measure these at-
tributes. However, there is currently no study to present all quality attributes
important for code comments. Additionally, an overall picture of how these
di↵erent QAs are evaluated in an automatic or manual manner is also missing
for comments. We address this limitation by providing a unifying view of the
QAs used to assess comment quality and various techniques to measure these
QAs.

The approaches to assess comment quality generally vary in the scope of
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the comments, the content inside comments, the software system comments
belong to, and the techniques used to analyze comments. The majority of
the analyses focus on Java comments, and do not investigate if developers’
commenting practices vary across languages despite the increasing trend of
using polyglot environments in software projects. Additionally, they only fo-
cus on limited metrics to assess comments automatically and do not consider
information embedded inside comments. Thus, the e↵orts to automatically
assess comment quality require a deeper understanding of the nature of devel-
oper commenting practices in terms of what information they embed inside
comments, how they embed, and how they adhere to the coding guidelines to
establish the QAs required for comment assessment. Our results highlighted
the need to establish the QAs for comments, such as, completeness, coherence,
consistency of an overall comment with respect to code and of a specific com-
ment type. For instance, to decide whether the summary embedded in class
comment is coherent or not, we must identify summary information from a
class comment and then measure its coherence based on the definition of co-
herence quality attribute for comments. The first step in this direction is to
automatically identify the information available in the comments. This is re-
quired to get useful documentation for novice or expert developers for various
software development and maintenance tasks. We address these limitations
by identifying various information types across languages, and by automat-
ically classifying class comments from three programming languages, Java,
Python, and Smalltalk. To further characterize developer commenting prac-
tices, we analyze various coding style guidelines that provide conventions to
write comments.

To understand the challenges developers face, and their information needs,
researchers mine various crowd-sourced knowledge-based platforms. However,
what specific challenges developers face related to code comments have not
yet been investigated. We fill this gap by analyzing popular Q&A forums and
gather the questions related to commenting practices. Identifying the devel-
oper challenges with comments can help us to establish the knowledge about
what kinds of comments they consider as good, and what features developers
seek in the future documentation tools. Therefore, we collect various comment
conventions that developers recommend on these Q&A forums.

In the following chapters, we explore each perspective mentioned in the
thesis statement and conduct various studies to fill the knowledge gaps.
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3

Academic Support for Comment
Quality Assessment

While it is widely accepted that high quality matters in code comments just as
it matters in source code, assessing comment quality in practice is still an open
problem. There is no unique definition of quality when it comes to assessing
code comments. Previous studies have investigated documentation quality
from various aspects and measured using various QAs and metrics. However,
none of them provide a unifying model for comment quality assessment.

In this chapter, we present a systematic literature review (SLR) on the last
decade of research in SE to identify the comment quality QAs and assessment
approaches.

Our evaluation, based on the analysis of 2 353 papers which led to 48 relevant
ones, shows that (i) most studies and techniques focus on comments in Java
code, thus may not be generalizable to other languages, and (ii) the analyzed
studies focus on four main QAs out of 21 QAs identified in the literature,
with a clear predominance of checking consistency between comments and the
code.

This chapter is based on the journal article:

� “P. Rani, A. Blasi, N. Stulova, S. Panichella, A. Gorla, and O. Nierstrasz. A Decade of
comment quality assessment: A systematic literature review, JSS’21” [135]
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W
ell-Documented code facilitates various software development and main-
tenance activities [38, 34]. Developers document their code in various

software documentation forms, code comments being one of the important
forms where developers document various details, such as the rationale be-
hind their code, an overview of the code, and algorithmic details [156]. Several
studies have demonstrated that high-quality code comments can support de-
velopers in software comprehension, bug detection, and program maintenance
activities [39, 99, 162].

Maintaining high-quality code comments is vital for software evolution
activities, however, assessing the overall quality of comments is not a triv-
ial problem. Developers use various programming languages, adopt project-
specific conventions to write comments, and embed di↵erent kinds of infor-
mation in a semi-structured or unstructured form [112, 116]. Additionally,
the lack of quality assessment tools for comments makes ensuring comment
quality in practice a complex task. Therefore, writing high-quality comments
and maintaining them in projects is a responsibility mostly left to developers
[6, 81].

The problem of assessing the quality of code comments has gained a lot
of attention from researchers during the last decade [82, 160, 138, 116, 177].
Despite the interest of the research community in this topic, there is no clear
agreement yet on what quality means when referring to code comments. Ex-
isting work on assessing comment quality rather mentions specific attributes of
quality that can be easily quantified and evaluated, e.g., by reporting spelling
mistakes, or computing completeness by counting how many code elements
have no comments. Having a general definition of quality when referring to
code comments is challenging, as comments are diverse in their purpose and
scope.

Even though specific comments follow all language-specific guidelines in
terms of syntax, it is still di�cult to automatically determine whether they
satisfy other quality aspects, such as whether they are consistent or com-
plete with respect to the code or not [186]. There exist various such aspects,
e.g., readability, content relevance, and correctness that should be considered
when assessing comments, but tools do not support all of them. Therefore,
a comprehensive study of the specific attributes that influence code comment
quality and techniques proposed to assess them is essential for advancing the
commenting tools.

Previous mapping and literature review studies have collected numerous
QAs that are used to assess the quality of software documentation based
on their importance and e↵ect on the documentation quality. Ding et al.
[45] focused specifically on software architecture and requirement documents,
while Zhi et al. [184] analyzed code comments along with other types of
documentation, such as requirement and design documents. They identified
16 QAs (shown in Table 3.3 later on) that influence the quality of software
documentation. However, the identified QAs are extracted from a body of
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literature concerning rather old studies (i.e., studies conducted prior to the
year 2011) and are limited in the context of code comments. For instance,
only 10% of the studies considered by Zhi et al. concerned code comments.
It is still unknown which tools and techniques researchers propose to assess
comment quality.

To achieve these objectives, we conduct an SLR to answer our main re-
search question, RQ1: How do researchers measure comment quality? We
formulate various subsidiary research questions (SRQs), described in 3.1.1.
We believe that mapping such studies to gather the overview of quality as-
pects and techniques can (i) help developers to adopt assessment techniques to
have high-quality comments, and (ii) assist researchers in the field to identify
comment QAs with tool support.

In particular, we review 2 353 studies and find 48 relevant to assessing
comment quality from which we extract the programming language, the types
of analyzed comments, QAs for comments, techniques to measure them, and
the preferred evaluation type to validate their results. We observe that (i)
the most studies and techniques focus on comments in Java code (ii) many
techniques that are used to assess QAs are based on heuristics and thus may
not be generalizable to other languages, (iii) a total of 21 QAs are used across
studies, with a clear dominance of consistency, completeness, accuracy, and
readability, and (iv) several QAs are often assessed manually rather than with
the automated approaches. We find that the studies are rather evaluated by
measuring performance metrics and surveying students than by performing
validations with practitioners.

3.1 Study Design

3.1.1 Research Questions

Our goal is to foster research that aims at building better code comment as-
sessment tools. To achieve this goal, it is essential to identify all QAs that
influence comment quality and the tools and techniques which have been pro-
posed in recent research to assess their quality. We formulate the following
SRQs to answer RQ1:

• SRQ1: What types of comments do researchers focus on when assessing
comment quality?
Rationale: Comments are typically placed at the beginning of a file, to
report licensing or author’s information, or placed preceding a class or
function to describe the overview of a class or function and their im-
plementation details. Depending on the specific type of comment used
in source code and the specific programming language, researchers may
use di↵erent techniques to assess them. These techniques may not be
generalizable to other languages. For example, studies analyzing class
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comments in object-oriented programming languages may need extra
e↵ort to generalize the comment assessment approach to functional pro-
gramming languages.

• SRQ2: What QAs do researchers consider in assessing comment quality?
Rationale: QAs may solely concern the syntactic aspects (e.g., syntax
of comments), writing style (e.g., grammar), or content aspects (e.g.,
consistency with the code) of the comments. Researchers may use di↵er-
ent terminology for the same QA and thus these terms must be mapped
across studies to have a unifying view of them [184], for instance, whether
the accuracy QA is defined consistently across studies or not. Future
studies that aim to improve specific attributes of comment quality eval-
uation may find this information useful.

• SRQ3: Which techniques do researchers use to assess comment QAs?
Rationale: Researchers may resort to simple heuristics-based techniques,
or may use complex supervised or unsupervised machine learning (ML)
techniques to automatically assess QAs. We aim to assess if there are
clear winning techniques for this domain.

• SRQ4: What kinds of contributions do studies often make?
Rationale: Researchers may contribute various types of solutions, such
as a metric, method, or tool to improve comment quality field, how-
ever, it is unknown if there are specific kinds of solutions that are often
proposed.

• SRQ5: How do researchers evaluate their comment quality assessment
studies?
Rationale: Researchers may evaluate their comment assessment ap-
proaches, e.g., by surveying developers, or by using a dataset of case
studies. However, how often they involve professional developers and
industries in such studies is unknown.
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Figure 3.1: Data collection method implemented in the literature review

We perform an SLR which is an auditable and rigorous research method
for “Evidence-Based Software Engineering (EBSE).” This method provides a
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way to collect, evaluate, and interpret relevant studies to a topic of interest
(comment quality assessment). We carry out the SLR by following the widely
accepted guidelines of Kitchenham et al. [83] and Keele [80]. Concretely, our
SLR approach comprises three main steps, i.e., data collection, data selection,
and data evaluation, as shown in Figure 3.1.

3.1.2 Data Collection

Venue selection. We use the CORE ranking portal as a primary data source
to identify all the potentially relevant conference and journal venues.1 The
portal provides assessments of major conferences and journals in the com-
puting disciplines, and it is a well-established and regularly-validated registry
maintained by the academic community. We extract all ranked journals in SE
(search code 803 on the CORE portal) from the CORE portal2 and all top
conferences and workshops in the SE field (search code 4612).3 This process
provides us with an initial list of 85 journals and 110 conference venues.

We select in step 1 26 SE conferences and journals from 195 candidate
venues based on the likelihood of finding relevant papers in the proceedings.
We consider the proceedings from 2011 to 2020 since Zhi et al. investigated
the works on software documentation quality — including code comments —
from 1971 to 2011 [184]. We focus on A* and A conferences and journals, and
add conferences of rank B or C if they are co-located with previously selected
A* and A conferences to have venues, such as the IEEE/ACM International
Conference on Program Comprehension (ICPC) or the IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM) that focus on
source code comprehension and manipulation. We prune venues that may
not contain relevant contributions to source code comments. Specifically, we
exclude a venue if its ten years of proceedings contain fewer than five occur-
rences of the words documentation or comment. This way, we exclude con-
ferences, such as IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS), Foundations of Software Science and Compu-
tational Structures (FoSSaCS), and many others that primarily focus on other
topics, such as verification or programming languages. Thus, we reduce our
dataset to 20 conferences and six journals, as shown in 3.1.

In Table 3.1, we present the included venues: the column Abbreviation
denotes the abbreviation used for the venue given in the Venue column, the
column R denotes the corresponding CORE rank of the venue as of April
2021, and the column T specifies whether a venue is a conference (C) or a
journal (J).

1https://www.core.edu.au/conference-portal
2http://portal.core.edu.au/jnl-ranks/?search=803&by=for&source=CORE2020&

sort=arank&page=1
3http://portal.core.edu.au/conf-ranks/?search=4612&by=for&source=CORE2020&

sort=arank&page=1
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Table 3.1: Included journals, conferences, and workshops

Abbreviation Venue R T

CSUR ACM Computing Surveys A* J
TOSEM ACM Transactions on Software Engineering and Methodology A* J
TSE IEEE Transactions on Software Engineering A* J
EMSE Empirical Software Engineering: an international journal A J
JSS Journal of Systems and Software A J
IST Information and Software Technology A J
ESEC/FSE ACM SIGSOFT Symposium on the Foundations of Software Engineering A* C
ICSE International Conference on Software Engineering A* C
ASPLOS Architectural Support for Programming Languages and Operating Systems A* C
CAV Computer Aided Verification A* C
ICFP International Conference on Functional Programming A* C
OOPSLA ACM Conference on Object Oriented Programming Systems Languages and

Applications
A* C

PLDI ACM-SIGPLAN Conference on Programming Language Design and Imple-
mentation

A* C

POPL ACM-SIGACT Symposium on Principles of Programming Languages A* C
SIGMETRICS Measurement and Modeling of Computer Systems A* C
ASE Automated Software Engineering Conference A C
EASE International Conference on Evaluation and Assessment in Software Engi-

neering
A C

ESEM International Symposium on Empirical Software Engineering and Measure-
ment

A C

ICSME IEEE International Conference on Software Maintenance and Evolution A C
MSR IEEE International Working Conference on Mining Software Repositories A C
ISSRE International Symposium on Software Reliability Engineering A C
VISSOFT IEEE International Working Conference on Software Visualisation B C
ICGSE IEEE International Conference on Global Software Engineering C C
ICPC IEEE International Conference on Program Comprehension C C
MISE International Workshop on Modelling in Software Engineering C C
SCAM IEEE International Workshop on Source Code Analysis and Manipulation C C
WISA International Conference on Web Information Systems and Applications - C
- Software Quality Journal C J
SPE Software: Practice and Experience B J
SAC ACM Symposium on Applied Computing B C
MaLTeSQuE IEEE Workshop on Machine Learning Techniques for Software Quality Eval-

uation
- C

JSEP Journal of Software: Evolution and Process B J
Internetware Asia-Pacific Symposium on Internetware - C
IJCNN IEEE International Joint Conference on Neural Networks A C
COMPSAC International Computer Software and Applications Conference B C
APSEC Asia-Pacific Software Engineering Conference B C
SEKE International journal of software engineering and knowledge engineering - J

We consider only full papers (published in a technical track and longer
than five pages) and retrieve in step 2 the list of authors, the title of the
paper, its abstract, and the number of pages of the publication for a total of
17 554 publications.

Keyword-based filtering. We apply in step 3 a keyword-based filtering ap-
proach to select potentially relevant papers. To collect the relevant keywords
for the keyword-based approach, we define three sets of keywords: K1, K2, and
K3. We examine the definition of documentation and comment in IEEE Stan-
dard Glossary of Software Engineering Terminology (IEEE Standard 610.12-
1990) and add the identified keywords comment, documentation, and specifi-
cation to the set K1. We add further comment-related keywords to the set K1

that are frequently mentioned in the context of code comments. Due to our
specific interest in identifying the QAs that a↵ect the comment quality, and
the approaches to measure them, we formulate another keyword set K2. To
narrow down our search to the code comment-related studies, we formulate
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a third set of keywords K3, to discard irrelevant studies in the initial phase.
Based on the constructed keyword sets, we perform a three-step search on
the conference proceedings using regular expressions. We account for possible
upper- and lowercase letters in the keywords, and use word stems to select
variations of keywords, e.g., singular and plural forms. The script is publicly
available in the replication package [127].

In the keyword-based filtering process, for every publication metadata
record, we automatically check if the title and abstract fields:

1. contain at least one keyword from K1: comment, documentation, API,
annotation, summar, or specification

2. and contain at least one keyword from K2: quality, assess, metric,
measure, score, analy, practice, structur, study, or studied

3. but do not contain any of the keywords from K3: code review (to
exclude papers about code review comments) and test. We also extend
K3 with the words keynote, invited, and poster that sometimes appear
in publications record titles, to exclude potential entries of non-technical
papers that were not filtered out using the heuristics on the number of
pages.

Such filtering will result in papers that explicitly mention concepts in which
we are interested. For example, the paper “A Human Study of Comprehen-
sion and Code Summarization” from ICPC 2020 [159] contains the keywords
summar from K1 in the title and quality from K2 in the abstract. However,
the papers not su�ciently close to our research subject are excluded, e.g.,
“aComment: mining annotations from comments and code to detect interrupt
related concurrency bugs” from ICSE 2011 has two keywords comment and
annotation from K1 but none from K2.

The final set of keywords (used for filtering) results from an iterative ap-
proach in which we manually scan the full venue proceedings metadata to make
sure the set of keywords does not prune relevant papers, and refine the set
of keywords during several iterative discussions. After applying the keyword-
based filtering, we identify 2 043 studies as potentially relevant papers from a
total of 17 554, which we review manually.

3.1.3 Data Selection

Four evaluators participate in assessing in step 4 the 2 043 filtered papers to
ensure that the papers indeed assess comment quality. Each paper is reviewed
by three evaluators. The first evaluator independently decides the relevance
of the paper, and then another evaluator reviews the paper. If they do not
agree, the third evaluator reviews it, and the final decision is taken based on
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the majority-based voting mechanism. Evaluators decide by applying the in-
clusion and exclusion criteria to these papers.

Inclusion criteria

1. The topic of the paper is about code comment quality.

2. The study presents a model/technique/approach to assess code com-
ments or software documentation including code comments.

Exclusion criteria

1. The paper is not in English.

2. It does not assess any form of quality aspects of comments e.g., content,
style, or language used.

3. It is not published in a technical track.

4. It is a survey paper.

5. It is not a peer reviewed paper, or it is a pre-print.

6. It covers other documentation artifacts, i.e., not comments.

7. It is shorter than five pages.

Thus, we reduce 2 043 papers to 71 candidate relevant papers with a fair
agreement according to Cohen’s Kappa (k=0.36). During this analysis pro-
cess, some additional papers were found to be irrelevant. For example, the
study by Aghajani et al. talks about the developer’s perspective of software
documentation. It seems relevant based on the title and abstract, but does
not really assess code comment quality, and we thus discarded it [3]. We read
in step 5 their introduction, conclusion, and the study design (if needed) and
discuss them amongst ourselves to ensure their relevance. After the discussion,
we keep 30 papers.

To include other relevant papers that we might have missed with the
venues-based approach, we perform in step 6 a forward and backward snow-
balling approach for the 30 papers and retrieve 3 704 unique papers [178]. We
apply in step 7 the same keyword-based search and manual analysis in step 8

to these 3 704 papers to find the candidate relevant papers, ending up with
39. After the discussion, we keep in step 9 18 papers.

In total, we find 48 relevant papers shown in Table 3.2 published in years
shown in Figure 3.3 in the venues shown in Figure 3.2. In Table 3.2, the
column SID indicates the study ID assigned to each paper (shown in A.2),
and the column Title shows the title of the paper. In Figure 3.2, the color of
a bar indicates the data collection phase in which the venue was first selected
through the search process or snowball process.
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Table 3.2: Included studies
SID Title

[S1] How Good is Your Comment? A Study of Comments in Java Programs.
[S2] Quality analysis of source code comments.
[S3] Evaluating usage and quality of technical software documentation: an empirical study.
[S4] Inferring method specifications from natural language API descriptions.
[S5] Using Traceability Links to Recommend Adaptive Changes for Documentation Evolution.
[S6] On using machine learning to identify knowledge in API reference documentation.
[S7] Detecting fragile comments.
[S8] Automatically assessing code understandability: how far are we?
[S9] Analyzing APIs documentation and code to detect directive defects.
[S10] The e↵ect of poor source code lexicon and readability on developers’ cognitive load.
[S11] A Large-Scale Empirical Study on Linguistic Antipatterns A↵ecting APIs.
[S12] Improving API Caveats Accessibility by Mining API Caveats Knowledge Graph.
[S13] A learning-based approach for automatic construction of domain glossary from source code

and documentation.
[S14] A framework for writing trigger-action todo comments in executable format.
[S15] A large-scale empirical study on code-comment inconsistencies.
[S16] Software documentation issues unveiled.
[S17] The Secret Life of Commented-Out Source Code.
[S18] Code Comment Quality Analysis and Improvement Recommendation: An Automated

Approach
[S19] A Human Study of Comprehension and Code Summarization.
[S20] CPC: automatically classifying and propagating natural language comments via program

analysis.
[S21] Recommending insightful comments for source code using crowdsourced knowledge.
[S22] Improving code readability models with textual features.
[S23] Automatic Source Code Summarization of Context for Java Methods.
[S24] Automatic Detection and Repair Recommendation of Directive Defects in Java API

Documentation.
[S25] Measuring Program Comprehension: A Large-Scale Field Study with Professionals.
[S26] Usage and usefulness of technical software documentation: An industrial case study
[S27] What should developers be aware of? An empirical study on the directives of API

documentation.
[S28] Analysis of license inconsistency in large collections of open source projects.
[S29] Classifying code comments in Java software systems.
[S30] Augmenting Java method comments generation with context information based on neural

networks.
[S31] Improving Source Code Lexicon via Traceability and Information Retrieval.
[S32] Detecting API documentation errors.
[S33] A Method to Detect License Inconsistencies in Large-Scale Open Source Projects.
[S34] Recommending reference API documentation.
[S35] Some structural measures of API usability
[S36] An empirical study of the textual similarity between source code and source code summaries.
[S37] Linguistic antipatterns: what they are and how developers perceive them.
[S38] Coherence of comments and method implementations: a dataset and an empirical investigation
[S39] A comprehensive model for code readability
[S40] Automatic Detection of Outdated Comments During Code Changes
[S41] Classifying Python Code Comments Based on Supervised Learning
[S42] Investigating type declaration mismatches in Python
[S43] The exception handling riddle: An empirical study on the Android API.
[S45] Migrating Deprecated API to Documented Replacement: Patterns and Tool
[S46] A Topic Modeling Approach To Evaluate The Comments Consistency To Source Code
[S47] Comparing identifiers and comments in engineered and non-engineered code: a large-scale

empirical study
[S48] Analyzing Code Comments to Boost Program Comprehension

3.1.4 Data Evaluation

We perform a final data evaluation on the 48 relevant publications identified
in the data collection and selection phases. Then, we read in step 10 each rel-
evant study to identify various parameters to answer the research questions.
For each paper, we extract common metadata, such as publication year, venue,
title, authors, authors’ country, and authors’ a�liation. We then extract var-
ious fields (described in the following paragraphs) formulated to answer all
research questions.
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To answer SRQ1: What types of comments do researchers focus on when
assessing comment quality? we extract the comment scope and language fields,
where the former describes what kinds of comment are under assessment, such
as class, API, method (function), package, license, or inline comment and the
latter describes the programming language for which comments are assessed.
In case a specific comment type is not mentioned, we consider it as “code
comments.”

To answer SRQ2: What QAs do researchers consider in assessing comment
quality? we gather various QAs that researchers mention to assess comments.
Previous work by Zhi et al. listed various QAs that are considered important
for software documentation quality, including code comments [184]. We adopt
their QAs as an initial list and extend it if a study mentions any other QA.
Their QAs are highlighted in bold in Table 3.3. As they considered various
types of documentation, such as requirement and architecture documentation,
not all their attributes fit exactly in our study. For instance, the category
format indicates the format of the documentation (e.g., UML, flow chart) in
addition to the other aspects, such as the writing style of the document, use
of diagrams, etc. As the format of the documentation is not applicable in our
case due to our comment-specific interest, we keep only the applicable aspect
of this QA. In the case a study uses di↵erent terminologies but has the same
intent for the QAs in our list, we map them to our list and update the list of
possible synonyms, or map them to the other category as shown in the column
Synonyms in Table 3.3.

For the cases where the studies do not mention any specific QA and men-
tion comment quality analysis in general, we map the study to the list of ex-
isting attributes or classify it as other based on their goal behind the quality
analysis. For example, to support developers in easily finding relevant infor-
mation for code comprehension tasks and to improve the comment quality
assessment, Pascarella et al. identified various information types in comments
[116]. They mentioned the study goal to improve comment quality and find
relevant content, but did not mention any specific QA. Thus, we map their
study to the content relevance attribute based on their study goal. Similarly,
we map other comment classification studies, such as S06, S29, S41, and S48
to the content relevance attribute. At the same time, the studies on linguis-
tic anti-patterns are mapped to the consistency attribute given that LAs are
practices that lead to lexical inconsistencies among code elements, or between
code and associated comments [12, 51, 2]. Negative attributes appearing in
studies, such as incompleteness, or incorrectness are mapped to their positive
counterpart completeness, or correctness to avoid duplication.

To answer SRQ3: Which techniques do researchers use to assess comment
QAs?, we collect the techniques (technique type) researchers propose or use
to assess comment QAs. It describes if a technique, used to assess an QA,
is based on natural language processing (NLP), heuristics, static analysis,
metrics, machine-learning (ML), or deep neural network (DNN) approaches.
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Table 3.3: QAs mentioned by Zhi et al. and other works

Quality Attribute Synonyms Description

Accessibility availability,
information

hiding, easiness to

find

if comment content can be accessed or retrieved by
developers or not

Readability clarity the extent to which comments can be easily read by
other readers

Spelling and

grammar

natural language
quality

grammatical aspect of the comment content

Trustworthiness the extent to which developers perceive the
comment as trustworthy

Author-related identity of the author who wrote the comment

Correctness the information in the comment is correct

Completeness adequacy how complete the comment content is to support
development and maintenance tasks or whether
there is missing information in comments

Similarity uniqueness,
duplication

how similar the comment is to other code documents
or code

Consistency uniformity,
integrity

the extent to which the comment content is
consistent with other documents or code

Traceability the extent to which any modification in the
comment can be traced, including who performed it

Up-to-date-ness how the comment is kept up-to-date with software
evolution

Accuracy preciseness accuracy or preciseness of the comment content, if
the documentation is too abstract or vague and does
not present concrete examples, then it can seem
imprecise.

Information

organization

how the information inside a comment is organized
in comments

Format including visual
models, use of
examples

quality of documents in terms of writing style,
description perspective, use of diagram or examples,
spatial arrangement, etc.

Coherence how comment and code related to each other, e.g.,
method comment should be related to the method
name (S02, S38)

Conciseness the extent to which comments are not verbose and
do not contain unnecessary information (S23, S30,
S47)

Content relevance how relevant a comment or a part of a comment
content is for a particular purpose (documentation,
communication) (S01, S03, S29, S41, S47)

Maintainability the extent to which comments are maintainable
(S15-S17,S20-S21)

Understandability the extent to which comments contribute in
understanding the system (S19, S23)

Usability usefulness to which extent comments can be used by readers to
achieve their objectives (S02, S16, S34, S35)

Documentation
technology

whether the technology to write, generate, store
documentation is the latest

Internationalization the extent to which comments are correctly
translated to other languages (S16)

Other the study do not mention any QA and cannot be
mapped to any of the above attributes
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The intention behind it is to know which QAs are frequently assessed manually
or using a particular automated approach. For example, if the study uses
abstract syntax tree (AST)-based static analysis approaches then it is assigned
to static analysis, if it uses machine-learning or deep-learning-based techniques
then it is classified as ML-based, or DNN-based respectively. A study, using a
mix of these techniques to assess an attribute can be assigned to each technique
for the corresponding attribute. The studies do not always use automated
techniques and can instead ask other developers to assess them manually; we
assign such cases to the manual assessment category. In case the study uses
a di↵erent technique than the mentioned ones, we extend the field values.

Table 3.4: Type of contributions the study makes

Category Description

Method/technique The study provides a novel or significant extension of an existing

approach

Model Provides a taxonomy to describe their observations or an automated

model based on machine/deep learning

Metric Provides a new metric to assess specific aspects of comments

Survey Conducts survey to understand a specific problem and contribute

insights from developers

Tool Develops a tool to analyze comments

To answer SRQ4: What kinds of contributions do studies often make? we
capture the type of contribution researchers use or propose to assess comment
quality. For instance, what kind of solutions the solution proposal research
often proposes, such as a method, metric, model, or tool as described in Ta-
ble 3.4.

SRQ5: How do researchers evaluate their comment quality assessment
studies? concerns how various kinds of contribution (paper contribution di-
mension) are evaluated in the studies. For example, it helps us to observe
that if a study proposes a new method/technique to assess comments, then
the authors also conduct an experiment on open-source projects to validate
the contribution, or they consult the project developers, or both. We capture
the type of evaluation in the evaluation type dimension. The dimension states
the type of evaluation researchers conduct to validate their approaches, such
as conducting an experiment on open-source projects, or surveying students,
practitioners, or both. For automated approaches, we consider various per-
formance metrics, also known as Information Retrieval (IR) metrics, that are
used to assess the machine or deep learning-based models, such as Precision,
Recall, F1-Measure, or accuracy under the performance metrics. In case the
approach is validated by the authors of the work, we identify the evaluation
type as authors of the work. The rationale behind capturing this information
is to identify the shortcomings in their evaluations, e.g., how often the studies
proposing a tool are validated with practitioners.
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Figure 3.4: Types of comments per programming language

3.2 Results

3.2.1 Comment Types

Our results show that although researchers analyze comments from various
programming languages, not all of these languages are equally popular. We
find that Java is considered the most often in the comment quality assess-
ment studies (in 88% of the studies), whereas, only 15% of the studies ana-
lyze comments of Python systems, and 10% of them analyze C++. The re-
sults are in contrast to the fact that various developer boards (GitHub, Stack
Overflow4, TIOBE [164]) show C/C++, Python, or JavaScript as equally
or more commonly used programming languages. Only one study analyzes
JavaScript comments (S44) despite JavaScript being reported to be the most
popular language according to the Stack Overflow surveys of 2020 and 2021.5

Given the emerging trend of studies leveraging natural-language information
in JavaScript code [105, 94], more research on comment quality may be needed
in the JavaScript environment.

As various types of source code comments exist in various programming
languages to describe the code at various abstraction levels, half of the stud-
ies analyze all types of source code comments (code comments), whereas the
remaining half focus on a specific type of comments, such as method or API,
inline, or TODO comments as shown in Figure 3.4. The intent of various com-
ment types varies, e.g., Java class comments should present high-level informa-
tion about the class, while method comments should present implementation-
level details [110]. By looking at the specific types of comments, we find
that 25% of the studies focus exclusively on method and API comments. It
shows the e↵ort the research community puts into improving the API doc-
umentation. Other comment types are also analyzed to support developers
with specific information types, such as license comments (S28, S33), TODOs

4https://insights.stackoverflow.com/survey/2020
5https://insights.stackoverflow.com/survey/2021

36

https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2021


3.2. Results

(S14), inline (S17), or deprecation (S45) comments; we find no relevant paper
that focuses specifically on the quality of class or package comments.

Figure 3.5: Frequency of analyzed QAs over year

Finding. Even though 50% of the studies analyze all types of code com-
ments, the rest focus on studying a specific type of comment, such as method
comments, or inline comments, indicating research interest in leveraging a
particular type of comment for specific development tasks. In terms of com-
ment types, we observe class comments are not studied separately.

Finding. 90% of the studies analyze comments from Java, while other lan-
guages have not yet received enough attention from the research community.

Zhi et al. showed that a majority of studies analyze just one type of
system [184]. In contrast, our findings suggest that the trend of analyzing
comments of multiple languages and systems is increasing. It also reflects the
increasing use of polyglot environments in software development [166]. The
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“Other” label in Figure 3.4 comprises language-agnostic studies, e.g., S16 or
the studies considering less popular languages, e.g., S33 focuses on COBOL.
We find only one study (S44) that analyzes comments of six programming
languages.

Finding. The trend of analyzing multiple software systems of one or more
programming languages, shows the increasing use of polyglot environments
in software projects.

3.2.2 Comment Quality Attributes

Figure 3.5 shows all the attributes on the y-axis and the corresponding years
on the x-axis. Each bubble in the plot highlights the quantity by the size of
the bubble and IDs of the studies. In addition to the QAs found by Zhi et
al., highlighted in Table 3.3, we find 10 additional QAs that researchers use to
assess comment quality, such as usefulness, use of examples, usability, refer-
ences, preciseness, natural language quality, maintainability, visual models, in-
ternationalization, documentation technology, content relevance, conciseness,
coherence, and availability. However, not all attributes reported by Zhi et al.
for software documentation quality are used for comment quality. We find no
mention of trustworthiness and similarity attributes even though several works
highlighted their importance for high-quality documentation [170, 9, 37]. Sim-
ilarly, Maalej et al. showed that developers trust code comments more than
other types of software documentation [92]. This indicates the need to in-
vestigate the importance of trustworthy comments and develop approaches to
assess them.

Finding. Compared to the previous work by Zhi et al., we find 10 additional
QAs researchers use to assess code comment quality.

We find that some attributes, such as completeness, consistency, content
relevance, and readability are often investigated, and consistency received con-
stant and consistent attention across the years (S07, S08, S09, S29, S10, S11,
S39, S42, S43) in contrast to up-to-date-ness, which received attention only in
the last three years of the decade (S15, S16). We also find other attributes that
are rarely investigated, such as format, understandability, spelling and gram-
mar, organization, internationalization, documentation technology, coherence,
conciseness, author-related and accessibility. More research is required to de-
termine why these attributes draw intrinsically less attention than others for
comments according to researchers or practitioners.

Finding. While the QAs, such as accuracy, consistency, and completeness
are frequently used to assess comment quality, other attributes, such as
coherence, conciseness, and understandability are rarely investigated.

As each QA has its role and importance in overall comment quality, they
are not measured in a mutually exclusive way. For instance, accuracy is mea-
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sured by measuring the correctness and completeness of comment, such as
“the documentation is incorrect or incomplete and therefore no longer accu-
rate documentation of an API ”(S24). Similarly, up-to-date-ness is measured
through consistency of comments (S40) and consistency is evaluated and im-
proved using traceability (S31). This indicates the need to clearly establish
the dependency between various QAs and make developers and researchers
aware of them to improve overall comment quality and build techniques ac-
cordingly. However, which techniques are currently used to measure various
QAs is unknown. We explore this aspect in the next subsection.

Finding. Many studies lack a clear definition of the QAs they use in their
studies. This poses various challenges for developers and researchers, e.g.,
understanding what a specific QA means, mapping the attribute to other
similar attributes, and adapting the approaches to assess the attribute to a
certain programming environment.

3.2.3 Comment Quality Assessment Techniques

We gather the types of techniques researchers use to measure the identified
QAs. Figure 3.6 shows that the majority of the attributes are measured manu-
ally, i.e., by asking developers to manually assess the QA (manual assessment)
in comments. For instance, coherence, format, organization, understandability,
and usability attributes are often measured manually. This indicates the need
to investigate the challenges developers and researchers face in automating
the measurement of such attributes. However, various studies did experi-
ment with various automated approaches to speed up the comment quality
assessment process. For instance, machine learning and heuristics-based ap-
proaches are often used to measure specific QAs, such as consistency, content
relevance, and up-to-date-ness while ignoring other attributes. In machine
learning-based approaches, researchers mostly use supervised machine learn-
ing techniques, which require human e↵ort in labeling data. To avoid the
longer training time and memory consumption of ML strategies, Kallis et al.
used fastText to classify the issues reports on GitHub [79]. The fastText tool
uses linear models and has achieved comparable results in classification to
various deep-learning based approaches.

Minaee et al. showed that deep learning-based approaches surpassed com-
mon machine learning-based models in various text analysis areas, such as
news categorization, and sentiment analysis [102]; It is worth exploring such
approaches in the context of comments to reduce the e↵ort in supervised ma-
chine learning techniques. In our study, we find studies, such as S06, S13,
and S20 that use deep learning-based techniques partly along with machine
learning-based techniques for specific attributes, such as conciseness, spelling
and grammar, and completeness. However, there is still a huge number of at-
tributes that are assessed manually and require heavy automation to support
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Figure 3.6: Types of techniques used to analyze various QAs

developers in automatically assessing comment quality.

Finding. Manual assessment is still the most frequently-used technique to
measure various QAs.

3.2.4 Study Contribution Types

Contribution types. By categorizing the papers according to the paper con-
tribution definition, Figure 3.7 shows that over 40% of papers propose an
approach to assess code comments. A large part (75%) of them are heuristics-

40



3.2. Results

3DSHU�FRQWULEXWLRQ (YDOXDWLRQ�W\SH

$XWKRUV�RI�WKH�
ZRUN ([SHULPHQW 3HUIRUPDQFH�PHWULFV 6XUYH\�

SUDFWLWLRQHUV

6XUYH\�
SUDFWLWLRQHUV�
DQG�VWXGHQWV

6XUYH\�
VWXGHQWV

(PSLULFDO�UHVXOWV 6���6�� 6�� 6�� 6��

0HWKRG�7HFKQLTXH 6���6���6���6�� 6���6���6���6���6���6���6�� 6���6���6���6���6���
6���6���6���6�� 6���6���6�� 6���6���6�� 6���6��

0HWULF 6�� 6�� 6��

0RGHO 6���6�� 6���6���6���6���6�� 6���6���6���6���6�� 6�� 6��
6XUYH\ 6���6���6�� 6��

7RRO 6���6�� 6���6�� 6���6�� 6���6��

Figure 3.7: Types of evaluation for each contribution type

based approaches, e.g., Zhou et al. and Wang et al. present such heuristics
based on NLP (S9, S13). Models are the second contribution by frequency,
which makes sense considering the increasing trend of leveraging machine
learning during the considered decade: 60% of the relevant papers propos-
ing models are based on such approaches.

Tool availability. Previous work indicated the developers’ e↵ort in seeking
tools to assess documentation quality, and highlighted the lack of such tools [4].
Our study finds that 31% of the studies propose tools to assess specific QAs,
mainly for detecting inconsistencies between comments and code. Of these
studies proposing tools, 60% provide a link to them, indicating the potential
hindrance in reproducibility of the remaining 40% of such studies.

Dataset availability. In terms of dataset availability, 50% of the studies pro-
vide a link to a replication package. Of the remaining papers, some provide
a link to the case studies they analyze (typically open-source projects) [71],
build on previously existing datasets [143], or mention the reasons why they
could not provide a dataset. For instance, Garousi et al. indicated the com-
pany policy as a reason not to share the analyzed documentation in their case
study [57].

Finding. Nearly 50% of the studies still lack in the replicability dimension,
as their respective dataset or tool is often not publicly accessible.

3.2.5 Study Evaluation

Figure 3.7 shows how authors evaluate their contributions. We see that code
comment assessment studies generally lack a systematic evaluation, surveying
only students, or conducting case studies on specific projects only. Most of the
time, an experiment is conducted without assessing the results through any
kind of external expertise judgment. Hence, only 30% of the relevant studies
evaluate their approach with practitioners. This can lead to overfitting the
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approaches, and the approaches are unaware or not aligned exactly to indus-
trial needs. Similarly, when a new method/technique or comment classification
model is proposed, it is often assessed based on conventional performance met-
rics, such as Precision, Recall, or F1-Measure (S02, S04, S07, S29, S41, etc.)
and rarely are the results verified in an industry setting or with practitioners.

3.3 Implications and Discussion

Comment Types and languages. The analysis of the comment quality as-
sessment studies in the last decade shows that the trend of analyzing comments
from multiple languages and systems is increasing compared to the previous
decade where a majority of the studies focus on one system [184]. It reflects the
increasing use of polyglot environments in software development [166]. Addi-
tionally, while in the past researchers focused on the quality of code comments
in general terms, there is a new trend of studies that narrow their research
investigation to specific comment types (methods, TODOs, deprecation, in-
line comments), indicating the increasing interest of researchers in supporting
developers in providing a particular type of information for program compre-
hension and maintenance tasks.

Emerging quality attributes. Our analysis shows that several new QAs are
being studied by researchers, which were not identified in the previous work
[184]. This change can be explained by the trend of analyzing specific types of
comments. As a consequence of this shift of focus towards specific comment
types, the same attributes used in prior studies can assume di↵erent definition
nuances, depending on the kinds of comments considered. For example, the
up-to-date-ness attribute, originally referred to as a cause of code-comment
inconsistency, assumes a di↵erent interpretation in the context of TODO com-
ments. A TODO comment that becomes outdated consists of a feature that will
not be implemented, which means that such a comment should be addressed
within some deadline, and then removed from the codebase (S14).

Mapping taxonomies. In recent years, several taxonomies concerning code
comments have been proposed; however, all of them are characterized by a
rather di↵erent focus, such as the scope of the comments (S02), the infor-
mation embedded in the comment (S29, S41), the issues related to specific
comment types (S06, S40, S48), as well as the programming language they
belong to, thus missing an overall view of code comment taxonomy. Addi-
tionally, which taxonomy serves which purpose for developers, for example,
accessing a certain kind of information, assessing a specific aspect of comment
quality, or code, is not well explained. Thus, there is a need for a compre-
hensive code comment taxonomy or model that maps all these aspects and
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definitions in a more coherent manner to have a better overview of developer
commenting practices across languages.

Investigation of less frequent quality attributes. While some QAs are fre-
quently investigated, some are largely overlooked in the literature, such as
accessible, trustworthy, and understandable. Additionally, there is not enough
research into approaches and automated tools that ensure that comments are
accessible, trustworthy, and understandable, despite numerous studies suggest-
ing that having good code comments brings several benefits. As the techniques
based on natural language processing and machine learning are increasingly
used in assessing various aspects of comments, deep learning techniques do
not yet seem to have gained a foothold within the community for assessing
comment quality.

3.4 Threats to Validity

Threats to construct validity. This principally concerns the estimations used
in the evaluation process. In this case, threats arise mainly because of (i)
the imprecision in the automated selection and retrieval of relevant studies
(i.e., the three-step search on the conference proceedings based on regular
expressions), and (ii) the subjectivity and error-proneness of the following
manual classification and categorization of the papers.

We alleviated the first threat by manually classifying a sample of relevant
papers from a set of conference proceedings, and comparing this classifica-
tion with the one recommended by the automated approach based on regular
expressions. This allowed us to gradually improve the initial set of regular
expressions. To avoid any bias in the selection of the papers, we selected the
regular expression in a deterministic way (as detailed in section 3.1): we first
examined the definition of documentation and comment in IEEE Standard
Glossary of Software Engineering Terminology (IEEE Standard 610.12-1990)
and identified the relevant keywords. We further extended comment-related
keywords that are frequently mentioned in the context of code comments.
In addition, we formulated a set of keywords to discard irrelevant studies
that presented similar keywords, e.g., code review comments. To verify the
correctness of the final set of keywords, we manually scanned the full venue
proceedings metadata to ensure the set of keywords did not prune relevant
papers. This iterative approach allowed us to verify that our keyword-based
filtering approach does not lead to false negatives for the selected venues.

We mitigated the second threat by applying a multi-stage manual classifi-
cation of conference proceedings, involving multiple evaluators and reviewers,
as discussed in section 3.1.
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Threats to internal validity. This concerns confounding factors that could
impact our outcomes. A potential source of bias might be related to the way
we chose and analyzed the conference proceedings. To deal with potential
threats regarding the actual regular expressions considered for the selection of
relevant studies, we created regular expressions that tend to be inclusive, i.e.,
that select papers that are at least marginally related to the topic of interest,
and we took a final decision only after a manual assessment.

Threats to external validity. This concerns the generalization and complete-
ness of results and findings. Although the number of analyzed papers is large,
since it involves studies spanning the last ten years of research, there is still
the possibility that we missed some relevant studies. We mitigated this threat
by applying various selection criteria to select relevant conference proceed-
ings, considering the well-established venues and communities related to code
comment-related studies, as discussed in section 3.1. It is important to men-
tion that we intentionally limit the scope in two ways, which poses threats to
the completeness of the study results and findings. First, we mainly focus on
research work investigating code comment quality, without integrating studies
from industry tracks of conference venues (as done in previous studies close to
ours [45, 184]). Second, we focus on the studies that involve manually written
code comments in order to avoid auto-generated comment (already investi-
gated in recent related work [155, 107]). To limit further potential threats
concerning the completeness of our study, we use the snowball approach to
reach potentially relevant studies that we could have missed with our venue
selection. However, we support the argument of Garousi et al. [58] who report
that a multivocal literature review, with further replications, is desirable to
the overall interpretation of code comment QAs. It can be more complete
by studying the grey literature, which can o↵er a more broad or practical
perspective on the problem from industry and academic practitioners alike.

3.5 Summary and Conclusion

In this chapter, we studied the problem of assessing the quality of code com-
ments by answering our RQ1: How do researchers measure comment quality?.
To answer the research question, we conducted an SLR on source code com-
ment quality evaluation practices in the decade of 2011 — 2020. We reviewed
2 353 studies and studied 48 relevant ones to understand the e↵ort of SE re-
searchers. We specifically explored the types of comments they focus on, the
QAs they consider relevant, the techniques they use to assess their QAs, and
finally, their contributions.

Our findings showed that most studies consider only comments in Java
source files, and thus may not generalize to comments of other languages. Al-
though the trend of analyzing specific types of comments has increased in the
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past decade, we highlighted that the studies rarely analyze class comments.
We found 21 in total QAs to assess comments but the studies often focused on
only a few QAs, with a clear dominance of consistency, completeness, accu-
racy, and readability. Some QAs, such as conciseness, coherence, organization,
and understandability are rarely investigated. Compared to previous work by
Zhi et al., we found ten additional QAs researchers use to assess code com-
ment quality. We also observed that the majority of the approaches to assess
various QAs are based on manual evaluation or heuristics rather than auto-
mated approaches. Such approaches require validation on other languages and
projects to generalize them.

We address some of these concerns in the next chapters. Specifically, in
chapter 4, we analyze class comments of three languages, Java, Python, and
Smalltalk, and map class commenting practices across languages. Addition-
ally, in chapter 5, we address the concern of manual assessment rather than
automated approaches, by establishing a language-independent approach to
automatically identify specific information types from comments.
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4

Comment Information Types (CITs)

The previous chapter discussed the notion of comment quality, the quality
attributes, and tools and techniques researchers propose to assess comment
quality. However, in order to understand the specification of high-quality
comments, it is essential to comprehend the current developer commenting
practices.

Previous studies have investigated code comments in various programming
languages from di↵erent aspects, showing the importance of high-quality com-
ments in program comprehension and maintenance activities, and the chal-
lenges in achieving high-quality code comments. However, very few studies
have explored developer commenting practices, such as what types of informa-
tion developers embed in comments, how they write such information types,
and whether such practices vary across programming languages. Additionally,
they have investigated source code comments as a whole unit, whereas di↵er-
ent kinds of comments contain di↵erent types of information and can support
developers in development tasks accordingly. In this chapter, we investigate
class comments of various object-oriented programming languages to better
understand developer commenting practices.

This chapter is based on the journal articles:

� “P. Rani, S. Panichella, M. Leuenberger, M. Ghafari, and O. Nierstrasz. What do class
comments tell us? An investigation of comment evolution and practices in Pharo Smalltalk,
EMSE’21” [137] and

� “P. Rani, S. Panichella, M. Leuenberger, A. Sorbo, and O. Nierstrasz. How to identify
class comment types? A multi-language approach for class comment classification, JSS’21”
[133]
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G
iven the relevance of code comments in program comprehension and
maintenance tasks, previous works have analyzed code comments from

various aspects, such as examining the co-evolution of comments and code
[78, 54, 55, 76], assessing comment quality [82, 160, 89], identifying incon-
sistencies between code and comments [138, 177], or identifying bugs using
comments [186]. Recently, few studies have focused on analyzing the infor-
mation developers embed in comments with the aim to improve the quality
of comments [112, 71, 160, 116, 183]. However, these works have focused on
source code comments as a whole unit, and of a specific programming lan-
guage, mainly Java. Thus, in this chapter, we aim to answer RQ2: What
kinds of information do developers write in comments across languages?

In object-oriented programming languages, various types of source code
comments exist, such as inline comments, block comments, method comments,
and class comments, but not all types are intended to contain the same in-
formation. For example, class comments in Java play an essential role in
providing the high-level overview of a class [35], while method comments in
providing the low-level implementation details [110]. We start our analysis by
focusing on class comments as they help understand complex programs [110].

Class comments are written using di↵erent notations and guidelines in
various languages [52]. Therefore, commenting practices of developers in terms
of what they write in comments may vary across programming languages. For
example, in Java (a statically-typed language), a class comment provides a
high-level outline of a class e.g., the purpose of the class, what the class
does, and other classes of the system it interacts with [110]. In Python (a
dynamically-typed language), the class comment guidelines suggest adding
low-level details about public methods, instance variables, and subclasses, in
addition to the high-level summary of the class [122, 121]. On the other hand,
in Smalltalk (a dynamically-typed language), class comments contain high-
level design details as well as low-level implementation details of the class,
e.g., the rationale behind the class, its instance variables, key methods, and
important implementation-specific details. We argue that the extent to which
class commenting practices vary across di↵erent languages is an aspect that
has been only partially investigated in previous works.

Indeed, our results from the previous chapter confirm that class comments
are rarely analyzed, while method comments and inline comments are often
explored. With the recent development of complex frameworks and tools,
multi-language software systems are increasingly common [166]. Therefore,
investigating developer class commenting practices across languages is critical
to assess and monitor the quality and evolution of comments. We examine
developer class commenting practices (e.g., comment content) in Java, Python,
and Smalltalk. We describe the motivation that makes these languages ideal
candidates for our analysis in section 4.1.

Our results highlight that developers embed 16 types of information in
class comments, which vary from the high-level overview of the class to the
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low-level implementation details of the class across the investigated languages.
Specifically, Python and Smalltalk class comments contain more low-level im-
plementation details about the class compared to Java. Although various
types of information are interweaved in class comments, we observed that
developers use common natural language patterns to write similar types of
information. Such patterns can be utilized to automatically identify these in-
formation types from comments and support developers in assessing them to
have high-quality comments.

4.1 Motivation

Code commenting practices vary across programming languages depending on
the language’s paradigm, its involved communities, its purpose, and its usage
in di↵erent domains.

For our investigation, we selected (i) Java and Python, two of the top
programming languages according to the Google Trend popularity index [67]
and the TIOBE index [164], and (ii) Pharo Smalltalk, as its class commenting
practices emerged from Smalltalk-80 [118, 64]. Other criteria to select these
languages are explained in the following paragraphs.

	

/**	

	*	The	server-side	interface	that	controls	Grid's	selection	state	

	*	SelectionModel	should	extend	{@link	AbstractGridExtension}.	

	*		

	*	@author	Vaadin	Ltd	

	*	@since	8.0	

	*		

	*	@param	<T>	

	*												the	grid	bean	type	

	*	@see	AbstractSelectionModel	

	*	@see	SingleSelectionModel	

	*	@see	MultiSelectionModel		

	*/	

public	interface	GridSelectionModel<T>	extends	SelectionModel<T>,	Extension	{	

				...	

}	

Figure 4.1: A class comment in Java

class	OneHotCategorical(Distribution):	
				r"""	
				Creates	a	one-hot	categorical	distribution	parameterized	by	:attr:`probs`	or	
				:attr:`logits`.	

				Samples	are	one-hot	coded	vectors	of	size	``probs.size(-1)``.	

				..	note::	The	`probs`	argument	must	be	non-negative,	finite	and	have	a	non-zero	sum,	
														and	it	will	be	normalized	to	sum	to	1	along	the	last	dimension.	:attr:`probs`	
														will	return	this	normalized	value.	
														The	`logits`	argument	will	be	interpreted	as	unnormalized	log	probabilities	
														and	can	therefore	be	any	real	number.	It	will	likewise	be	normalized	so	that	
														the	resulting	probabilities	sum	to	1	along	the	last	dimension.	:attr:`logits`	
														will	return	this	normalized	value.	

				See	also:	:func:`torch.distributions.Categorical`	for	specifications	of	
				:attr:`probs`	and	:attr:`logits`.	

				Example::	

								>>>	m	=	OneHotCategorical(torch.tensor([	0.25,	0.25,	0.25,	0.25	]))	
								>>>	m.sample()		#	equal	probability	of	0,	1,	2,	3	
								tensor([	0.,		0.,		0.,		1.])	

				Args:	
								probs	(Tensor):	event	probabilities	
								logits	(Tensor):	event	log	probabilities	(unnormalized)	
				"""

Figure 4.2: A class comment in Python

Java and Python. On the one hand, Java is a general-purpose and statically-
typed object-oriented programming language with wide adoption in the indus-
try. Python, on the other hand, is dynamically-typed and supports object-
oriented, functional, and procedural programming. We can observe di↵erences
in the notations used by Java and Python developers for commenting source
code elements. For instance in Java, a class comment as shown in Figure 4.1
is usually written above the class declaration using annotations (e.g., @param,
@version, etc.), whereas a class comment in Python is typically written below
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the class declaration as “docstrings” which is shown in Figure 4.2.1 Devel-
opers use dedicated annotations to denote specific types of information, for
instance, Java developers use @author and @see Javadoc annotations to men-
tion the author details and referenced classes. Python developers use similar
docstring annotations, such as See also:, Example: and Args:, and they use
tools, such as Pydoc and Sphinx to process them. However, not all languages
support annotations and structured guidelines to write comments.

Figure 4.3: A class comment in Smalltalk

Smalltalk. Smalltalk is a pure object-oriented, dynamically-typed, and re-
flective programming language. It is still widely used in software systems, and
has gained the second place for most loved programming language in the Stack
Overflow survey of 2017.2 Pharo is an open-source and live development en-
vironment incorporating a Smalltalk dialect. The Pharo ecosystem includes a
significant number of projects used in research, and industry [118]. We com-
puted the ratio of comment sentences to code lines in the most recent Pharo
release (i.e., Pharo 7) and found that 15% of the total lines are comments.

A typical class comment in Pharo (the Smalltalk environment) is a source
of high-level design information about the class as well as low-level implemen-
tation details. For example, the class comment of the class MorphicAlarm

in Figure 4.3 documents (i) the intent of the class in the first line, followed
by (ii) a code example to instantiate the class, (iii) a note explaining the
corresponding comparison, and (iv) the features of the alarm system in the

1https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.
html

2https://insights.stackoverflow.com/survey/2017/ last accessed on Aug 4, 2021
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last paragraph. The class comment uses complete sentences, often written
in the first-person form, and does not use any kind of annotations, such as
@param or @see to mark the information type, as opposed to class comments
in other languages [110, 112, 183]. We summarize the key characteristics that
make Smalltalk ideal for our investigation of class commenting practices in
object-oriented programming languages:

• Class comments are a primary source of documentation in Smalltalk.

• As a descendant of Smalltalk-80, Pharo has a long history of class com-
ments being separated from the source code [63], and is thus appropriate
to analyze various aspects (evolution aspect, information embedded in
them, writing style) of class comments.

• Smalltalk has supported liveness for more than three decades, there-
fore, it can reveal interesting insights into code documentation in live
programming environments.

• Class comments in Pharo neither use any annotations nor the writing
style used in Javadocs or Pydocs, thus presenting a rather di↵erent as-
pect on commenting practices, and challenges for existing information
identification approaches [116, 183].

• Pharo traditionally o↵ers a default class comment template, which fol-
lows a CRC (Class-Responsibility-Collaboration) model, but no other
standard guidelines are o↵ered for the structure and style of the com-
ments. The template follows a di↵erent and informal writing style com-
pared to Java, Python, and C/C++, and it has evolved over the years.

Consequently, Pharo is appropriate as a case study to investigate what addi-
tional information developers embed in comments and to what extent devel-
opers follow the template in writing comments.

4.2 Study Design

By analyzing multiple languages that vary in their class comments, we can
provide a more general overview of class commenting practices. To understand
the multi-language nature of comments, we investigate RQ1: What kinds of in-
formation do developers write in comments across languages? by formulating
the following two subsidiary research questions (SRQs):

4.2.1 Research Questions

• SRQ1: To what extent do information types vary across programming
languages?
Rationale: As code comments are written using di↵erent notations and
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guidelines in various programming languages [52], commenting practices
of developers may vary. Although previous works provide a taxonomy of
code comments of a specific programming language, there is still a need
to map these taxonomies to better understand developer commenting
practices.

• SRQ2: What types of information are present in class comments across
languages?
Rationale: Various types of code comments, such as inline, method, or
class comments, exist in object-oriented languages, but not all types in-
tend to contain the same type of information. Depending on the specific
type of comment and the particular programming language, developers
may embed di↵erent kinds of information in them. Since our SLR re-
sults highlight that class comments are rarely analyzed, we study class
comments of three programming languages. Extracting class comment
information types or simply CCTM (Class Comment Type Model) can
further help in providing custom details to both novice and expert de-
velopers at di↵erent stages of development.

4.2.2 Data Collection

We selected popular, open-source, and heterogeneous projects for all the lan-
guages, i.e., Java, Python, and Smalltalk. Such projects vary in terms of size,
contributors, domains, ecosystems, and coding style or comment guidelines.
As not all classes of a project contain class comments, we identified the classes
with class comments. Afterwards, we extracted a statistically significant sam-
ple of class comments to conduct a manual analysis.

To determine the minimum size of the statistically significant sample for
each language dataset, we set the confidence level to 95%, and the margin of
error to 5% [168]. Next, we selected the number of comments from each project
based on the proportion of the project’s class comments of all comments (from
all projects). For instance, class comments from the Eclipse project in Java
contribute to 29% of the total comments, i.e., comments from all Java projects.
Therefore, we selected the same proportion of sample comments, i.e., 29% of
the Java sample size from of Eclipse project (110 class comments) as shown
in Table 4.1. To select representative sample comments from each project, we
applied the stratified random sampling strategy and selected a proportional
number of comments from each stratum. The strata were defined based on
the length of comments (in terms of lines). In particular for each project, we
first computed the quintiles based on the distribution of the comments’ length
and treated them as strata. For example, to choose 110 sample comments for
Eclipse as shown in Table 4.1, we explored the distribution of number of lines
in comments and obtained quintiles as follows 1, 3, 4, 5, 7, and 1473. Hence,
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the five strata of comment lines are 1-3, 4-4, 5-5, 6-7, and 8-1473. Then from
each stratum, we selected the proportional number of comments.

Java. We selected six open-source projects analyzed in previous work [116]
to ease the comparison of our work with the previous achievements. Mod-
ern complex projects are commonly developed using multiple programming
languages. For example, Apache Spark contains 72% Scala classes, 9% Java
classes, and 19% classes from other languages [10]. In the context of our study,
we only considered classes from the language under investigation. For each
class, we parsed the Java code and extracted the code comments preceding the
class definition using an Abstract Syntax Tree (AST)-based parser. During
the extraction, we found instances of block comments, which start with /*
symbol in addition to Javadoc class comments, which start with /** symbol
before the class definition. In such cases, the parser detected the immediately
preceding comment, i.e., a block or Javadoc comment as a class comment,
and treated the other comment above it as a dangling comment. To not miss
any kinds of class comment, we adapted our parser to merge both comments,
i.e., the detected class comment and the dangling comment as the whole class
comment.

Table 4.1: Comments found in Java projects

Project % Java
classes

# Java
classes

# Class
comments

%
Dataset

# Sampled
comments

Eclipse 98% 9 128 6 253 29% 110
Spark 9.3% 1 090 740 3.4% 13
Guava 100% 3 119 2 858 13% 50
Guice 99% 552 466 2.1% 10
Hadoop 92% 11 855 8 846 41% 155
Vaadin 55% 5 867 2 335 11% 41
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Figure 4.4: Distribution of Java projects
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Figure 4.5: Distribution of Python projects
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We present an overview of the selected Java projects in Table 4.1 of which
the corresponding raw files can be found in the replication package [130].
We established 379 class comments as the statistically significant sample size
based on the total number of classes with comments. The number of lines in
Java class comments varies from 1 to 4605 as shown in Figure 4.4. From each
project’s distribution, we established strata based on the measured quintiles,
and then we selected the number of representative comments from each stra-
tum. We followed the same approach for Python and Smalltalk to sample and
select representative comments.

Python. Similar to Java, we selected seven open-source Python projects an-
alyzed in previous work [183]. To extract class comments from Python classes,
we implemented an AST-based parser and extracted the comments preceding
the class definitions. The metadata related to the selected projects for Python

Table 4.2: Comments found in Python projects

Project # Python
classes

# Class
comments

% Dataset # Sampled
comments

Requests 79 43 1.1% 4
Pandas 1753 377 9.9% 35
Mailpile 521 283 7.5% 26
IPython 509 240 6.3% 22
Djnago 8 750 1 164 30% 107
Pipenev 1 866 1 163 30% 107
Pytorch 2 699 520 13% 48

are reported in Table 4.2, while the class comments are found in our replica-
tion package [130]. We measured 349 sample comments to be the statistically
significant sample size.

Smalltalk-CCTM. In contrast to Java and Python, Smalltalk does not have
an existing taxonomy of class comments or code comments. To prepare a
Smalltalk taxonomy for class comments, we analyzed the core libraries of the
latest stable version of Pharo, namely Pharo 7. The Pharo core environment
presents a default template to write class comments and encourages develop-
ers to write them.3 The initial categories of the taxonomy are constructed
based on the content available in the template. Since each class has one class
comment, every class of Pharo 7 that contains class comment contributed to
the analysis dataset. This resulted in a dataset of 6 324 classes, which includes
classes related to files, collections, sockets, streams, exceptions, graphical in-
terfaces, unit tests, etc. Following the methodology described for Java and

3https://pharo.org/features

54

https://pharo.org/features


4.2. Study Design

Python, we selected a statistically significant sample of 363 comments from
6 324 classes. The number of lines in the comments varied from 1 to 272 as

Table 4.3: Comments found in Pharo 7 core

Stratum # Class comments % Dataset # Sampled comments

1-1 3 040 48% 175
2-2 945 15% 54
3-6 1 224 19% 69

7-272 1 115 18% 65

Total 6 324 100% 363
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Figure 4.7: Distribution of Pharo7 comments

shown in Figure 4.7, and provided the five quintiles 1, 1, 2, 3, 6, and 272. Based
on the quintile values, we obtained comment strata shown in Table 4.3, and
calculated the comment proportion of each stratum. Once we formulated the
taxonomy for Smalltalk class comments, we verified it on external Smalltalk
projects similar to Java and Python. We explain the selection criteria for
these projects in the following paragraphs.

Smalltalk: To generalize the Smalltalk CCTM, verify the practices of
Smalltalk core developers, and compare its commenting practices to Java and
Python, we analyzed seven external open-source projects. We retrieved the
external projects from GitHub4 based on several criteria: (i) the project is not
part of Pharo 7 core, (ii) it is an active project (it has an activity since 2019),
(iii) the project history spans at least two years with at least 600 commits,
(iv) it is not a repository for books, an article, or documentation, (v) it has
more than five contributors, and (vi) the project does not contain more than
20% code from other programming languages to avoid polyglot projects, e.g.,
we did not consider Opensmalltalk-vm which contains 89% code from C, and

4https://github.com/topics/pharo?o=desc&s=stars
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SmalltalkCI which contains 35% shell scripts,5 and (vi) the project contains
more than 20 000 lines of Smalltalk code to remove small projects, such as
MaterialDesignLite,6 Kendrick,7 and PharoLauncher.8

We sorted the projects based on commits and size (size is computed based
on lines of code), and selected the top seven projects. These projects conse-
quently vary in size, domain, and contributors. We selected 351 comments
from the selected projects, following the methodology of selecting representa-
tive comments in Java and Python.

Table 4.4: Comments found in Smalltalk projects

Projects Total
classes

# Class
comments

%
Dataset

# Sampled
comments

GToolkit 4 191 1 315 43% 148
Seaside 841 411 14% 46
Roassal 830 493 16% 56
Moose 1 283 316 10% 36
PolyMath 300 155 5% 17
PetitParser 191 99 3% 11
Pillar 420 237 8% 27

Table 4.4 shows the details of each Smalltalk project. We extracted a
stable version of each project that is compatible with Pharo 7 except for
GToolkit, which required Pharo 8 due to the lack of backward compatibility.
We archived the selected projects and made them available in the replication
package [130].

4.2.3 Analysis Method

Preparing Smalltalk-CCTM. Compared to Java and Python, a code com-
ment taxonomy did not exist in Smalltalk. To prepare the class comment
taxonomy for Smalltalk, three evaluators, i.e., two Ph.D. candidates and one
faculty member, each with at least four years of programming experience, man-
ually analyzed the selected 363 comments. The 363 comments were equally
divided among the three evaluators so that each subset (of size 121) had an
equal number of randomly selected comments from each of the groups identi-
fied (see column # Sampled comments of Table 4.3). This ensured that each
evaluator’s dataset included comments of all lengths and projects. At first,
they constructed new categories and placed the comment sentences into them
according to the intent of the sentence. Then, they used a two-step validation
approach (described later in the section) to validate the content classification

5https://github.com/OpenSmalltalk/opensmalltalk-vm
6https://github.com/DuneSt/MaterialDesignLite
7https://github.com/UNU-Macau/kendrick
8https://github.com/pharo-project/pharo-launcher
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of the comment and the category name assigned to the content type. This
way, all the categories were discussed by all the evaluators for a better naming
convention, and whenever required, unnecessary categories were removed, and
duplicates were merged using a majority voting mechanism.
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Figure 4.8: Information types found in Smalltalk comments

Resulting Smalltalk-CCTM. As a result of the Smalltalk-CCTM process,
we identified 23 types of information (categories) in Smalltalk class comments
as shown in Figure 4.8. Seven of the categories were inspired from the class
comment template. We observed that developers have mentioned these cat-
egories more often than other categories. For instance, the intent and the
responsibility categories (suggested by the template) were found in 65% of the
sampled class comments, while the warnings category was found in 12% of
them. This indicates the relevance of the template in terms of its suggested
information types. However, to which extent developers follow the template
in following the style of these information types is yet unknown.

Table 4.5 presents a detailed overview of this taxonomy. The column De-
scription describes the category, Implicitness level defines the degree to which
information is hidden in the text, and Keywords lists the keywords and pat-
terns observed during the manual analysis of each category. The implicitness
level is taken from a five-level Likert scale with the labels: implicit, often im-
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Table 4.5: The 23 identified information types

Category Description Implicitness level Keywords

Intent Describes the purpose of a class Often implicit I represent, I am,
I’m, This class is,
A *Class* is

Responsibility Lists responsibilities of a class Often implicit provide,
implement, I do, I
know, responsible

Collaborator Lists interactions of a class with other
classes

Implicit use, interact,
provide,
collaborate

Key messages Lists key methods and public APIs of a
class

Sometimes implicit Key Messages,
Public API

Example Provides code examples to instantiate a
class and to use the APIs of the class

Often explicit Usage, Example,
For example, code
examples

Implementation points Provides internal details of objects,
particular implementation logic,
conditions about the object state, and
settings

Often implicit Internal
representations,
Implementation
points:

Instance variables Lists state variables of an object Often explicit instance variables:

Class references Overlaps with Collaborator category but
includes extra cases when developers refer
to other classes in the class comment to
explain the context of a class

Implicit

Warnings Warns readers about using various
implementation details of the class

Often implicit Note, do not,
remarks, should

Contracts Informs readers about potential
conditions before or after using a
class/method/component of a class

Often implicit Precondition:,
do..when..

Dependencies Describes the dependency of a class on
other classes/methods/components

Implicit used by

Reference to other resources Refers readers to additional internal or
external resources

Often explicit See, Look

Discourse Informs the readers about a few class
details in an informal manner

Implicit developers use
conversational
language

Recommendation Recommends improvements for the class
implementation

Implicit recommended, see,
should be

Subclasses explanation Describes details about its subclasses, the
intent of creating the subclasses, and
when to use which subclass

Implicit My subclasses

Observations Records developer observations while
working with a class

Often implicit

License Stores the license information of the code Often implicit

Extension Describes how to extend a class Often implicit extend, extension

Naming conventions Records the di↵erent naming convention
such as acronyms used in the code

Implicit

Coding guideline Describes coding rules for developers who
write a class

Often implicit

Link Refers to a web link for detailed
information

Sometimes implicit

TODO comments Records actions to be done or remarks for
developers

Explicit todo

Other Includes code comments of other
languages

Explicit Javadoc
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4.2. Study Design

plicit, sometimes implicit, often explicit, and explicit. A category is marked
implicit when it is either in the same line or paragraph with other categories
or without a header in the comment, making it challenging to identify. For
example, the category TODO is always mentioned in a separate paragraph
with a header “Todo”, which makes it explicit. Moreover, a majority of the
time the category intent is combined with responsibility in one line, thus make
them often implicit. Based on the formulated criteria, one author evaluated
the implicitness level of each category, and other authors reviewed them and
possibly proposed changes. All authors resolved their disagreements by the
majority voting mechanism and refined the measurement criteria by mutual
discussions. All categories, including examples and assigned comments are
presented in the replication package [131]. In the other category, we observed
a few comments having the source code of other languages and following the
commenting style of other languages, such as C and Java.
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Figure 4.9: Research methodology to answer SRQ1 and SRQ2

Figure 4.9 depicts the research approach followed to answer SRQ1 and
SRQ2. The outcome of this research consists of a mapping taxonomy (SRQ1)
and a comprehensive taxonomy of class comment types called CCTM (SRQ2),
which are mined from the actual commenting practices of developers.
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4. Comment Information Types (CITs)

Mapping taxonomies. Before preparing the CCTM, we map earlier com-
ment taxonomies, such as the code comment taxonomy for Java [116] and
Python [183], and the class comment taxonomy for Smalltalk (Smalltalk-
CCTM), since they are formulated using di↵erent approaches and focus on
di↵erent scope of comments and categories. For instance, the Python code
comment taxonomy [183] is inspired by the Java code comment taxonomy
[116], whereas the Smalltalk class comment taxonomy is formulated using
an open-card sorting technique. Given the importance of mapping categories
from heterogeneous environments [33], we establish a semantic interoperability
of the categories from each taxonomy [50].

One evaluator mapped the categories from Smalltalk to Java and Python
categories. Two other evaluators validated the mapping by reviewing each
mapping and by proposing changes. The original evaluator accepted or re-
jected the changes. All the disagreement cases were reviewed by the fourth
evaluator and discussed among all to reach a consensus. The categories that
did not match the categories of other taxonomy were added as new categories
in that taxonomy. For example, the precondition category from Smalltalk did
not match any in Java or Python, and thus we added it as a new category in
Java and Python. Thus, we proposed the CCTM taxonomy, which highlights
the existing and new categories for class comments.

CCTM taxonomy. To understand the class commenting practices of devel-
opers, we mined class comments of 20 GitHub projects and extracted 1 066
class comments from a total of 37 446 class comments. We qualitatively clas-
sified them in the classification step and validated them in the validation step
by reviewing and refining the categorization.

Classification: Four evaluators (two Ph.D. candidates and two faculty
members), each with at least four years of programming experience, partici-
pated in the study. We partitioned the comments equally among all evalua-
tors based on the distribution of the language’s dataset to ensure the inclu-
sion of comments from all projects and diversified lengths. Each evaluator
classified the assigned class comments according to the CCTM taxonomy of
Java, Python, and Smalltalk [116, 183, 137]. For example, the Python class
comment in Figure 4.2 is classified into the categories summary, warnings,
parameters, etc. shown in Figure 4.10.

Validation: The evaluators after completing their individual evaluations,
continued with the validation step. The evaluators adopted a three-iteration
method to validate the correctness of the performed class comments classi-
fication shown in Figure 4.9. In the first iteration called “Review others’
classification”, every evaluator was tasked to review 50% of the comments,
which were randomly assigned and classified by other evaluators. This step
allowed us to confirm that each evaluator’s classification is checked by at least
one of the other evaluators. In reviewing the classifications, the reviewers in-
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class	OneHotCategorical(Distribution):	
				r"""	
				Creates	a	one-hot	categorical	distribution	parameterized	by	:attr:`probs`	or	
				:attr:`logits`.	

				Samples	are	one-hot	coded	vectors	of	size	``probs.size(-1)``.	

				..	note::	The	`probs`	argument	must	be	non-negative,	finite	and	have	a	non-zero	sum,	
														and	it	will	be	normalized	to	sum	to	1	along	the	last	dimension.	:attr:`probs`	
														will	return	this	normalized	value.	
														The	`logits`	argument	will	be	interpreted	as	unnormalized	log	probabilities	
														and	can	therefore	be	any	real	number.	It	will	likewise	be	normalized	so	that	
														the	resulting	probabilities	sum	to	1	along	the	last	dimension.	:attr:`logits`	
														will	return	this	normalized	value.	

				See	also:	:func:`torch.distributions.Categorical`	for	specifications	of	
				:attr:`probs`	and	:attr:`logits`.	

				Example::	

								>>>	m	=	OneHotCategorical(torch.tensor([	0.25,	0.25,	0.25,	0.25	]))	
								>>>	m.sample()		#	equal	probability	of	0,	1,	2,	3	
								tensor([	0.,		0.,		0.,		1.])	

				Args:	
								probs	(Tensor):	event	probabilities	
								logits	(Tensor):	event	log	probabilities	(unnormalized)	
				"""

Summary

Expand

Development notes,  
Warnings

Links

Usage

Parameters

Figure 4.10: The Python class comment classified in various categories

dicated their judgment by labeling each comment with the agree or disagree
label. In the second iteration called “Evaluator accept or reject reviews”, the
original evaluator examined the disagreements and proposed changes. They
indicated their opinion for the changes by accepting the change or rejecting
it, stating the reason. If the reviewer’s changes were accepted, the classifica-
tion was directly fixed. Otherwise, the disagreements were carried to the next
iteration. The third iteration assigned all identified disagreements for review
to a new evaluator, who had not yet looked at the classification. A decision
was made based on the majority voting mechanism, and the classification was
fixed according to the agreed changes. The levels of agreement and disagree-
ment among the evaluators for each project and language can be found in the
replication package [130].

After arriving at a decision on all comment classifications, we merged
the overlapping categories or renamed the classes by applying the majority
voting mechanism, thus converging on a final version of the taxonomy, i.e.,
the CCTM. This way, all the categories were discussed by all the evaluators
to select the best naming convention, and whenever required, unnecessary
categories were removed, and duplicates were merged.

4.3 Results

4.3.1 Mapping Taxonomies

As a first step to formulating the CCTM taxonomy, we systematically map
the available taxonomies from previous works and identify the unmapped cat-
egories as shown in Figure 4.11. The mapping taxonomy shows several cases
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Figure 4.11: Mapping of Smalltalk categories to Java and Python

in which Java and Python taxonomies do not entirely fit the Smalltalk taxon-
omy, as shown by pink and violet edges in Figure 4.11. This figure shows the
information types particular to a language (highlighted with red edges and
unmapped nodes), such as subclass explanations, observation, precondition,
and extension are found in the Smalltalk taxonomy, but not in the Python
or Java taxonomy. However, our results in Figure 4.12 show that these infor-
mation types are present in the class comments of Java and Python projects.
We introduce such categories to the existing taxonomies of Java and Python,
and highlight them in green in Figure 4.12. Moreover, the categories such as
commented code, exception, and version are found in Java and Python class
comments, but not in Smalltalk. One reason can be that the commented code
is generally found in inline comments instead of documentation comments.
However, information about exception and version is only found in Java and
Python class comments, but not in those of Smalltalk.

The mapping taxonomy also highlights the cases where categories from
di↵erent taxonomies match partially. We define such categories as subset
categories and highlight them with violet edges. For example, the deprecation
category in Java and the version category in Python are found under the
warning category in Smalltalk, but their description given in the respective
earlier work covers only a subset of that information type according to our
investigation. Pascarella et al. defined the deprecation category as “it contains
explicit warnings used to inform the users about deprecated interface artifacts.
The tag comment such as @version, @deprecated, or @since is used” whereas
Zhang et al. defined the category version as “identifies the applicable version
of some libraries”, but did not mention the deprecation information in this
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category or any other category in their taxonomy [116, 183]. Thus, we define
the version category as a subset or a partial match of the deprecation category.
On the other hand, the warning category in Smalltalk (“warns readers about
various implementation details of a class”) covers a broader aspect of warnings
than the deprecation category, which does not mention the version information
type [137]. We mark these categories as subset categories, and highlight them
with violet edges. Similarly, the collaborator category in Smalltalk partially
matches expand and links in Python. The categories such as expand, links, and
development notes in Python combine several types of information under them
compared to Smalltalk. For example, expand includes collaborators of a class,
key methods, instance variables, and implementation-specific details. Such
categories formulate challenges in identifying a particular type of information
in a comment.

Finding. The Python taxonomy focuses more on high-level categories,
which combines various types of information into each category, whereas
the Smalltalk taxonomy is more specific to the information types.

4.3.2 CCTM Taxonomy

Using the categories from the mapping taxonomy, we analyze class comments
of various languages and formulate the taxonomy for each language to answer
SRQ2. Figure 4.12 shows the frequency of information types per language per
project. The categories shown in green are the newly-added categories in each
taxonomy. The categories in each heatmap are sorted according to the fre-
quency of their occurrence in total. For example in Java, summary appeared
in 336 of 378 comments (88%) in six Java projects. Pascarella [116] pro-
posed a hierarchical taxonomy by grouping the lower-level categories within
the higher-level categories, e.g., the categories summary, rationale, and ex-
pand within the purpose category. We show only lower-level categories that
correspond with identified information types from other languages.

Figure 4.12 shows that a few types of information are found in class com-
ments of all languages, such as the summary of the class (shown in the sum-
mary, and intent categories), the responsibility of the class (responsibility,
summary), links to other classes or sources (pointer, collaborator, links), de-
veloper notes (todo, development notes), and warnings about the class (warn-
ing). Summary being the most prevalent category in all languages a�rms the
importance of summarizing the classes automatically [70, 107, 24, 104, 47].
As a majority of summarization techniques focus on generating the intent and
responsibilities of the class for program comprehension tasks [104], other in-
formation types, such as warning, recommendation, and usage are generally
ignored even though developers often write them and coding style guidelines
suggest them in documentation comments.

Our results indicate that developers mention them frequently, but whether
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4. Comment Information Types (CITs)

Figure 4.12: The categories found in class comments (CCTM) of various projects of each

programming language shown on the y-axis. The x-axis shows the categories inspired from

existing work in black and the new categories in green

                    Color scale according to percentage of comments falling into a category 
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they find these information types important to support specific development
tasks, or they write them just to adhere to the coding guidelines, requires a
more thorough analysis. Nevertheless, such information types present an in-
teresting aspect to investigate in future work. For example, the usage of a class
(usage), its key responsibilities (responsibility), warnings about it (warning),
and its collaborators (collaborator) are found in significant numbers of com-
ments in all languages. The coding guidelines often suggest these information
types to support developers in various development and maintenance tasks.
These information types can be included in the customized code summaries
based on the development tasks of a developer. For instance, a developer
seeking dependant classes can quickly find such classes from the class com-
ment without reading the entire comment. Similarly, a developer expected
to refactor a legacy class can quickly go through the warnings, if present, to
understand the specific conditions better and thus can save time.

Finding. Developers embed various types of information in class comments,
varying from a high-level overview of the class to low-level implementation
details of a class across the investigated languages.

According to Nurvitadhi et al. [110], a class comment in Java should
describe the purpose of a class, its responsibilities, and its interactions with
other classes. Our results indicate that Java class comments often contain the
purpose and responsibilities of the class (summary and expand), but its inter-
actions with other classes (pointer) less often. On the contrary in Smalltalk,
the information about interactions with other classes, i.e., collaborator, is the
third most frequent information type after intent and responsibility compared
to Java and Python. One of the reasons can be that Smalltalk class comments
are guided by a CRC (Class, Responsibility, Collaborator) design template,
and developers write the template-inspired information types more often than
others.

Class comments in Java also contain many other types of information.
The most frequent type of information present in class comments is sum-
mary, which shows that developers summarize most classes. Pascarella et al.
found usage to be the second most prevalent category in code comments. In
contrast, we find expand to be the second most prevalent category in class
comments, and usage to be the fifth most prevalent type of information [116].
However, the most prevalent categories vary across projects of a language, and
also across programming languages. For example, usage is mentioned more
often than expand in Google projects (Guice and Guava), whereas in Apache
projects (Spark, Hadoop) it is not. In contrast to Java, Python class com-
ments contain expand and usage equally frequently, thus showing that Python
targets both end-user developers and internal developers.

We notice that Python and Smalltalk class comments contain more low-
level implementation details about a class compared to Java. For instance,
Python class comments contain details about the class attributes and the
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instance variables of a class with a header “Attributes” and “Parameters”, its
public methods with a header “Methods”, and its constructor arguments in
the parameters and expand categories. Additionally, Python class comments
often contain explicit warnings about a class, i.e., with a header “warning:”
or “note:” in the new line, making the information easily noticeable, whereas
such behavior is rarely observed in Java. Whether such variations in the
categories across projects and languages are due to di↵erent project comment
style guidelines or developers’ personal preferences is unknown. We observe
that developers use common natural language patterns to write similar types
of information. For example in Listing 1, a Smalltalk developer described the
collaborator class of the PMBernoulliGeneratorTest class. Similarly, a Java
developer described the collaborator of the SequenceFileRecordReader as
shown in Listing 2. This reveals a common pattern “[This class] for [other
class]” to describe the collaborating classes. This information type is captured
in the categories collaborator in Smalltalk and pointer in Java.

1 A BernoulliGeneratorTest is a test class for testing the
2 behavior of BernoulliGenerator

Listing 1: Collaborator mentioned in the PMBernoulliGeneratorTest class in Smalltalk

1 An {@link RecordReader} for {@link SequenceFile}s.

Listing 2: Collaborator mentioned in the SequenceFileRecordReader class in Java

Identifying such patterns can help in easily extracting the type of informa-
tion from a comment, and they can support a developer by highlighting the
required information necessary for a particular task, e.g., to modify dependent
classes in a maintenance task.

In contrast to earlier studies, we observed that developers mention details
of their subclasses in a parent class comment in all languages. We grouped
this information under the subclass explanation category. In the Javadoc
guidelines, this information is generally indicated by a special @inherit tag
in method comments, but we did not find such a guideline for Java class
comments. Similarly, we found no such guideline to describe subclasses for
Smalltalk class comments or method comments. In contrast, the standard
Python style guideline [122] suggests to add this information to the class com-
ment, but other Python style guidelines, such as those from Google9 and
Numpy10 do not mention this information type. However, we found instances
of class comments containing subclass information in the IPython and Pytorch
projects that follow the Numpy and Google-style guidelines respectively. In-
vestigating which information types each project style guidelines suggest for
the comments, and to what extent developers follow these style guidelines in
writing class comments requires further analysis.

9https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.
html

10https://numpydoc.readthedocs.io/en/latest/format.html
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4.4. Implications and Discussion

Finding. Not all information types found in class comments are suggested
by the corresponding project style guidelines.

4.4 Implications and Discussion

Disagreements in classification. In the process of validating the taxonomies,
reviewers (evaluators reviewing the classification) marked their disagreement
for the classification, stating their reason and proposing the changes. A ma-
jority of disagreements in the first Smalltalk iteration were due to the long
sentences containing di↵erent types of information (intent and responsibility
information types were commonly interweaved), and the assignment of infor-
mation to the categories implementation point and collaborator. In Java and
Python, we observed that disagreements were due to the broad and loosely
defined categories, such as expand in Java and development notes in Python.
Several information types, such as warning, recommendation, observation, and
development notes are not structured by special tags and thus pose a challenge
for automatic identification and extraction. On the contrary, a few categories
such as example and instance variable in Smalltalk, and deprecation, links,
and parameters in Java and Python were explicitly marked by the headers
or the tags in comments, such as usage, instance variable, @since, @see,
@params respectively. We observed that developers use common keywords
across languages to indicate a particular information type. For example, notes
were mentioned in the comments by using the keyword “note” as a header as
shown in Listing 3, Listing 4, and Listing 5.

1 Note that even though these
2 * methods use {@link URL} parameters, they are usually not appropriate for
3 * HTTP or other non-classpath resources.

Listing 3: Explicit note mentioned in the Resources class in Java

1 .. note::
2

3 Depending on the size of your kernel, several (of the last)
4 columns of the input might be lost, because it is a valid
5 �cross-correlation�_, and not a full �cross-correlation�_.
6 It is up to the user to add proper padding.

Listing 4: Explicit note mentioned in the Conv3d class in Python

1 Note: position may change even if an element has no parent

Listing 5: Explicit note mentioned in the BlElementPositionChangedEvent class in Smalltalk

Lack of comment conventions. The project-specific style guidelines sug-
gest several information types, but not their exact syntax, whereas they do
not mention many information types, which we found in our results. Due to
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the lack of conventions for these information types, developers use their own
conventions when writing comments. For instance, developers write subclass
details (subclass explanation) in class comments, but no tag or header infor-
mation is suggested by the style guidelines to write this detail [122, 77]. In
Smalltalk, we found developers using a di↵erent syntax for writing examples
(example), warnings (warning), and extensions (extension). This analysis in-
dicates the need to revise the comment conventions suggested by the coding
style guidelines.

Identifying specific information types. Maalej et al. [92] demonstrated that
developers consult comments in order to answer their questions regarding pro-
gram comprehension. However, di↵erent types of information are interweaved
in class comments, and not all developers need to know all types of informa-
tion. Cioch et al. presented the documentation information needs of devel-
opers depending on the stages of expertise [34]. They showed that experts
need design details and low-level details, whereas novice developers require a
high-level overview with examples. The task of accessing the type of infor-
mation embedded in comments depends on the kind of information (warning,
rationale), the level of detail (design level or implementation level) developers
seek, the type of development activities they are performing, and the type of
audience (user or developers) accessing them. Tools to automatically identify
these information types can reduce developers’ and other stakeholders’ ef-
forts to read code comments when gathering particular types of information.
In addition, on top of these automated tools, visualization strategies could be
implemented to highlight and organize the content embedded in the comments
to ease further the process of obtaining the required information. Our results
highlight that a substantial number of comments contain a warning informa-
tion, i.e., a note about the code, or behavior of the class, an important point
to keep in mind while extending the class. Identifying such warnings from
the comments can help to turn them into executable test cases, so that de-
velopers can automatically check that the mentioned warnings are respected.
Similarly, automatically identifying code examples from the comments and
executing them can ensure that they are up to the date.

Pascarella et al. built a machine learning-based approach to automatically
identify information types for Java [116]. Similarly, Wang et al. developed
such an approach for Python [183]. However, which specific information types
from comments can support developers in which specific tasks and how these
information types should be presented to developers require further investiga-
tion. Additionally, given the increasing trend of open-source systems written
in multiple programming languages, these approaches can be of limited use for
developers contributing to these projects [166]. Our work has the aim to foster
language-independent tools for comment analyses based on the comprehensive
taxonomies.
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4.5 Threats to Validity

Threats to construct validity. This mainly concerns the measurements used
in the evaluation. We did not consider the full ecosystem of projects in each
language but selected a sample of projects for each language. To alleviate this
concern to some extent, we selected heterogeneous projects used in the earlier
comment analysis work of Java and Python [116, 183]. The projects in each
language focus on di↵erent domains, such as visualization, data analysis, or
development frameworks. They originate from di↵erent ecosystems, such as
from Google and Apache in Java, or from the Django Foundation, and com-
munity projects in Python. Thus, the projects follow di↵erent commenting
guidelines or coding style guidelines. Additionally, the projects are devel-
oped by many contributors, which further lowers the risk towards a specific
developer commenting style.

Another critical issue could be the sampling of only a subset of the ex-
tracted class comments. However, (i) the sample size limits the estimated
imprecision to an error of 5% for a confidence level of 95%, and (ii) to limit
the subjectiveness and the bias in the evaluation, three evaluators manually
analyzed the resulting sample. To reduce the possibility that the chosen com-
ments are not representative of the whole population, we used a stratified
sampling approach, thus considering the quintiles of the comment distribu-
tion from various projects.

A second threat involves the taxonomy definition since some categories
could overlap or be missing in the CCTM. To alleviate these issues, we used
the categories defined by the earlier works in comment analysis [116, 183]
and performed a broader validation which involved three evaluators on three
programming languages.

Threats to internal validity. This concerns confounding factors that could
influence our results. The main threat to internal validity in our study is
related to the manual analysis carried out to prepare the CCTM and the
mapping taxonomy. Since human subjects performed it, it could be biased.
Indeed, there is a level of subjectivity in deciding whether a comment type
belongs to a specific category of the taxonomy or not, and whether a category
of one language taxonomy maps to a category in another language taxon-
omy or not. To counteract this issue, the evaluators of this work were two
Ph.D. candidates and two faculty members, each having at least four years
of programming experience. We performed a two-level validation step. This
validation step involved a further discussion among the evaluators whenever
they had divergent opinions until they reached a final decision. All the deci-
sions made during the evaluation process and validation steps are reported in
the replication package to provide evidence of the non-biased evaluation, and
we discussed a few instances in section 4.4
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Threats to external validity. This concerns the generalization of the re-
sults. The main aim of this chapter is to investigate the class commenting
practices for the selected programming languages. The results may vary in
other programming languages or projects. To limit this threat, we considered
both static and dynamic object-oriented programming languages with di↵erent
commenting styles and guidelines. To reduce the threat related to the project
selection, we chose diverse projects that have been used in previous studies
about comment analysis and assessment. The projects vary in terms of size,
domain, contributors, and ecosystems. Thus, our empirical investigation is
currently limited to these ecosystems and might not be generalizable to other
programming languages. For instance, our results highlight how comments in
Java contain information like exceptions, IDE directives, bug references, for-
matters, and author ownership, however, they do not apply to the Smalltalk
environment.

Finally, during the definition of our taxonomy, i.e., CCTM we mainly rely
on a quantitative analysis of class comments, without involving the actual
developers of each programming language. Specifically, for future work, we
plan to involve developers with surveys and interviews. This step is particu-
larly important to improve our work results and design and evaluate further
automated approaches that can help developers achieve a high quality of com-
ments.

4.6 Summary and Conclusion

Class comments provide a high-level understanding of the program and help
one to understand a complex program. Di↵erent programming languages have
their own commenting guidelines and notations. Thus, identifying a particular
type of information from them is essential to generalize the class commenting
practices but, a non-trivial task.

We investigated class commenting practices of 20 projects from three pro-
gramming languages: Java, Python, and Smalltalk. The multi-language tax-
onomy (CCTM) highlights the information types found in class comments and
provides the patterns developers use to write them. We utilize these patterns
in the next chapter and develop a language-independent approach to auto-
matically identify frequent information types from class comments of these
languages. Once the information types are identified, they can be verified
for their quality and can be recommended to developers to support them in
suitable software development and maintenance tasks.

Our results highlighted many instances of specific information types found
in class comments, but their respective coding style guidelines do not mention
them. For instance, the Smalltalk template suggests seven types of infor-
mation to write in class comments, but developers embedded 16 other types
of information. This indicates the need to study the extent to which devel-
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oper commenting practices adhere to these guidelines. We argue that such an
analysis can help in evaluating the quality of comments, which has also been
suggested by previous works [112, 71, 160]. Therefore, in chapter 6, we ex-
tract the coding style guidelines of these heterogeneous projects and compare
the extracted guidelines with the identified comment information types in this
chapter.
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Automated Identification of CITs

The previous chapter showed that class comments contain various types of
information in various programming languages. These information types can
help developers to gain knowledge about program behavior, reasons behind
certain implementations inside the program, or recommendations about mod-
ifying the program, regardless of the programming language they are using.
The automated identification of such information types can help developers in
completing their code comprehension and maintenance tasks faster. Addition-
ally, it can support them in assessing the quality of their class comments. The
programming languages present di↵erent language-specific code commenting
notations and guidelines, which complicates the task of identifying the relevant
information from class comments for developers.

To handle this challenge, this chapter proposes an approach that leverages two
techniques —namely Natural Language Processing (NLP) and Text Analy-
sis (TA)— to automatically identify class comment types (CCTM), i.e., the
specific types of semantic information found in class comments.

The chapter is based on the journal article:

� “P. Rani, S. Panichella, M. Leuenberger, A. Sorbo, and O. Nierstrasz. How to iden-
tify class comment types? A multi-language approach for class comment classification,
JSS’21”[133]
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S
oftware maintenance and evolution tasks require developers to perform
program comprehension activities [53, 70]. Though comments support de-

velopers in various software engineering tasks, and well-documented code sim-
plifies software maintenance activities, many programmers often delay code
commenting tasks or overlook comment quality [36, 104, 113, 114]. Develop-
ers overlook the comment quality aspect because code comments are written
in a mixture of natural languages and code. Consequently, developers in vari-
ous object-oriented programming languages adopt di↵erent code commenting
notations, guidelines, and tools [52], and they embed di↵erent kinds of in-
formation in the comments. Indeed, our results from the previous chapter
confirms it.

On the one hand, having comments in natural language sentences enables
developers to express the overview and the rationale behind the code more
freely. On the other hand, natural language makes it hard for other develop-
ers to identify the specific information from the comment required for their
tasks. It also makes assessing the overall comment quality a non-trivial task
as comments are not usually checked by the built-in tools or external plug-ins
tools for their content. For example, if a style guide requires a class com-
ment to have information about its public methods, or instance variables for
the completeness of class comments, it is important to individually identify
the public methods and instance variables from the comment and verify their
quality.

The identification of various information types has many additional ben-
efits in improving comment quality. We identified 21 QAs that are used to
assess comment quality, e.g., accessibility, correctness, conciseness etc. Sev-
eral of the QAs can be measured more easily with respect to each information
type. For instance, accessibility and content relevance QAs measure the ease
to find a specific type of information in comments. Separating the information
types can help developers to easily find such information in comments, thus
improving the accessibility and content relevance of comments. This chapter
aims to establish an approach to identify these information types automati-
cally according to the CCTM in a language-independent manner. We achieve
this objective by answering the research question SRQ1: Can machine learning
be used to automatically identify class comment types according to CCTM?

We propose an approach that leverages NLP and TA techniques to infer
relevant features characterizing the class comment types, i.e., CCTM and
then classify the comment types accordingly. These features are then used to
train various machine learning models on our manually labeled dataset of class
comments. Our results confirm that these techniques can be used to classify
class comments with high accuracy for all the investigated languages. We
believe that our solution can serve as a crucial component for tools to assess
the quality and evolution of code comments in several programming languages
because it can automatically detect the presence or absence of various CITs
required for program comprehension tasks.
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5.1 Motivation

Previous work has focused on identifying information types from code com-
ments scattered throughout the source code, from high-level class overviews to
low-level method details [160, 116, 183, 60]. These works have focused individ-
ually on code comments in Java, Python, C++, and COBOL. In the case of
class comments, researchers focused on mainly three types of information, i.e.,
class intent, responsibilities, and examples in class comments [47, 182]. How-
ever, there exist many other types of information in class comments, and the
majority of the comment analysis studies focus on mainly code comments of
Java. Di↵erently from our study, none of these works attempted to automat-
ically identify information types in class comments across multiple languages.
We are interested in exploring strategies that can achieve this goal in multiple
languages, such as Python, Java, and Smalltalk.

5.2 Study Design

Techniques

Textual Analysis (TA)

Features

1) 2) 3) 

Learning phase Evaluation

4) 

TA Features

NLP Rule Features

J48  
Naive Bayes  
Random Forest, 

Natural Language  
Processing (NLP)

Automated identification of comments types 
(SRQ of this chapter)

Projects CCTM

Taxonomy 
(Chapter 4)

CCTM

Figure 5.1: Research methodology to answer SRQ1

As shown in Figure 5.1, the goal of this study is to build a recommender
system that can automatically identify the di↵erent types of information in
class comments based on the obtained understanding of class comment types.
Such a system can provide custom details to both novice and expert develop-
ers, and assist them at various stages of development without much manual
e↵ort.

5.2.1 Data Collection

Our previously established dataset includes 37 446 class comments from 20
projects and 1 066 class comments manually classified according to the CCTM
[130]. In this chapter, we utilize this labeled dataset to apply our approach.
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5. Automated Identification of CITs

5.2.2 Analysis Method

Based on the definition of CCTM, we propose an approach, called TESSERACT

(auTomated multi-languageE claSSifiER of clAss CommenTs), which lever-
ages machine learning (ML) techniques and automatically classifies class com-
ments according to CCTM. The approach consists of four main phases:

1. Preprocessing : All the manually-labeled class comments were used as
a ground truth to classify the unseen class comments. It is important
to note that we split the comments into sentences, because the classi-
fication was sentence-based. We changed the sentences to lower case
and removed all special characters. Moreover, we applied additional
preprocessing steps to the sentences [14] e.g., stop-word removal for TA
features, but not for NLP features to preserve the word order and to cap-
ture the important n-gram patterns that we observed in class comments.
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Figure 5.2: Matrix representation of a classifier

2. NLP feature extraction : In this phase, we focused on extracting
the NLP features, which we added to to the initial term-by-document
matrix M shown in Figure 5.2, where each row represents a comment
sentence i.e., a sentence belongs to our language dataset composing
CCTM and each column represents the extracted feature. To extract the
NLP features, we used a tool named NEON that has been proposed in
previous work [43]. The tool can automatically detect NLP patterns, i.e.,
recurrently used predicate-argument structures for specific intents [42],
which are available in natural language descriptions composing various
types of software artifacts, e.g., mobile user reviews, emails etc. [43]. We
used the tool to infer all NLP patterns characterizing comment sentences
modeled in the matrix M. We then added the identified NLP patterns
as feature columns to M, where each column models the presence or
absence (using binomial features) of an NLP pattern in the comment
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sentences. More formally, the boolean presence or absence of a j�th
NLP feature in a generic i�th sentence in M is modeled by 0 (absence)
and 1 (presence), respectively. The output of this phase is the matrix
M, where each i�th row represents a comment sentence and each j�th
column represents an NLP feature.

3. TA features: In this phase, we added TA features to the matrix M.
To extract the TA features, we preprocessed the comment sentences
by applying stop-word removal1 and stemming [91].2 The output of
this phase corresponds to the matrix M, where each row represents a
comment sentence, i.e., a sentence that belongs to our language dataset
composing CCTM, and each column represents a term contained in it.
More formally, each entry M[i,j] of the matrix represents the weight (or
importance) of the j�th term contained in the i�th comment sentence.

For the TA features, terms in M were weighted using the tf-idf score
[14], which can identify the most important terms in the sentences. In
particular, we used tf-idf as it downscale the weights of frequent terms
that appear in many sentences. Such a weighting scheme had been
successfully adopted in recent work [103] for performing code comment
classification. The output of this phase consisted of the weighted ma-
trix M, where each row represents a comment sentence, and a column
represents the weighted term contained in it.

It is important to note that a generic i�th comment sentence could
be classified into multiple categories according to CCTM. To model this
state, we prepared the matrixM for each category (C[t]) of each language
(P[y]). The generic (last) column M[m] of the matrix M, where m�1 is
the total number of features extracted from all sentences, represents the
category C[t] of a language P[y] as shown in Figure 5.2. More formally,
each entry M[im] of the matrix represents the boolean value if the i�th
sentence belongs to the matrix C[t] (1) or not (0).

4. Classification : We automatically classified class comments by adopt-
ing various ML models and a 10-fold cross-validation strategy. These
models were fed with the aforementioned matrix M. Specifically, to in-
crease the generalizability of our findings, we experimented with the
Weka tool [176], and used several ML techniques, namely, the stan-
dard probabilistic Naive Bayes classifier, the J48 tree model, and the
Random Forest model. It is important to note that the choice of these
techniques was not random, but based on their successful usage in recent
work on code comment analysis [160, 116, 183, 149] and classification of
unstructured texts for software maintenance purposes [115, 41].

1http://www.cs.cmu.edu/~mccallum/bow/rainbow/
2https://weka.sourceforge.io/doc.stable/weka/core/stemmers/

IteratedLovinsStemmer.html
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Table 5.1: Top frequent comment categories with at least 40 comments

Language Categories # Comments

Java Summary 336
Expand 108
Ownership 97
Pointer 88
Usage 87
Deprecation 84
Rationale 50

Python Summary 318
Usage 92
Expand 87
Development notes 67
Parameters 57

Smalltalk Responsibility 240
Intent 190
Collaborator 91
Examples 81
Class reference 57
Key message 48
Key implementation point 46

Evaluation metrics & statistical tests. To evaluate the performance
of the tested ML techniques, we adopted well-known information retrieval
metrics, namely Precision, Recall, and the F-measure [14]. During our em-
pirical investigation, we focused on the best configuration of features and
ML models as well as alleviating concerns related to overfitting and the se-
lection bias. Specifically, (i) we investigated the classification results of the
aforementioned ML models with di↵erent combinations of features (NLP, TA,
and TA+NLP features), and by adopting a 10-fold validation strategy on
the term-by-document matrix M ; (ii) to avoid potential bias or overfitting
problems, we trained the model for the categories having at least 40 man-
ually validated instances in our dataset. The average number of comments
that belong to a category varied from 43 comments to 46 comments across
all languages. Therefore, we selected the categories with a minimum of 40
comment instances. The top categories selected from each language with the
number of comments are shown in Table 5.1. In order to determine whether
the di↵erences between the di↵erent input features and classifiers were statis-
tically significant or not, we performed a Friedman test, followed by a post-hoc
Nemenyi test as recommended by Demšar [40].

5.3 Results

Haiduc et al. [70] performed a study on automatically generating summaries
for classes and methods and found that the experimented summarization tech-
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niques work better on methods than classes. More specifically, they discov-
ered that while developers generally agree on the important attributes that
should be considered in method summaries, there were conflicts concerning
the types of information, in particular whether class attributes and method
names should appear in class summaries. We found that while Smalltalk and
Python developers frequently mention class attributes or method names in
class comments, it rarely happens in Java. Automatically identifying vari-
ous kinds of information from comments can generate customized summaries
based on what information individual developers consider relevant for their
task at hand, e.g., maintenance task. To this aim, we empirically experi-
mented with a ML-based multi-language approach to automatically recognize
the types of information available in class comments.

Table 5.2 provides an overview of the average precision, recall, and F-
measure results considering the top frequent categories for all languages shown
in Table 5.1. The results are obtained using multiple ML models and various
combination of features: (i) TA features only, (ii) NLP features only, (iii) both
NLP and TA features. All results can be found in the replication package [130].
The results in Table 5.2 show that the NLP+TA configuration achieves the
best results with the Random Forest algorithm with a relatively high precision
(ranging from 78% to 92% for the selected languages), a recall (ranging from
86% to 92%), and a F-measure (ranging from 77% to 92%). Figure 5.3 shows
the performance of the di↵erent algorithms with NLP+TA features for the
most frequent categories in each language.

Finding. Our results suggest that the Random Forest algorithm fed by
the combination of NLP+TA features achieves the best classification perfor-
mance for the di↵erent programming languages.

According to Table 5.2, NLP features alone achieve the lowest classifica-
tion performance for both Java and Python, while we observe that this type
of feature works well when dealing with Smalltalk class comments. Class
comments can often contain mixtures of structured information, e.g., code el-
ements such as class and attribute names and unstructured information, i.e.,
natural language. We used the NEON tool to leverage models trained on
general-purpose natural language sentences to construct the parse tree of the
sentences. The tool relies on the generated parse trees to identify common
NLP patterns. We found that the presence of code elements degrades NEON’s
capability to generate accurate parse trees, and consequently complicates its
pattern recognition task.
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5. Automated Identification of CITs

1 Terms subclasses Bag with support for handling stop words etc.
2

3 example: string
4 | terms |
5 terms := Terms new.
6 terms addString: string using: CamelCaseScanner new.
7 terms withCountDo: [ :term :count |term -> count ].

Listing 6: Smalltalk Code in MalTerms comment resembles natural language

Smalltalk code often resembles natural language phrases in English, e.g.,
the method addString: using: shown in Listing 6 takes two parameters
string and CamelCaseScanner new written in a natural language sentence-
style. Similarly, class comments in Smalltalk are written in a more informal
writing style often using the first-person form, and use complete sentences
as shown in Figure 4.3. In contrast, Java and Python suggest writing class
comments in a more formal way using phrases and the third-person form. As
demonstrated in previous works [115, 42], the usage of predicate-argument
patterns is particularly well-suited when dealing with classification problems
in highly unstructured and informal contexts.

Finding. When dealing with the sentences that contain mixtures of code
elements and natural language texts, NLP tools based on parse trees fail to
correctly identify well-suited NLP features. The usage of these features is
otherwise recommended when class comments are mostly unstructured.

Table 5.3: Results for Java using the Random Forest classification model

Category
NLP + TA

Precision Recall F-measure
Summary 0.87 0.88 0.87
Expand 0.86 0.87 0.86
Ownership 0.99 0.99 0.99
Pointer 0.91 0.91 0.91
Usage 0.88 0.88 0.87
Deprecation 0.98 0.98 0.98
Rationale 0.95 0.95 0.95

For the sake of brevity, we base the following analysis on the NLP+TA
configuration in combination with the Random Forest classifier. Table 5.3,
Table 5.4, and Table 5.5 report the precision, recall, and the F-measure respec-
tively for the top frequent categories (shown in Table 5.1) obtained through
the Random Forest model with the NLP+TA features.

According to Table 5.3, the categories deprecation, ownership, and ratio-
nale achieve a high F-measure scores (� 95%), while expand, summary and
usage achieve the lowest F-measure values, but still higher than 85%. This
means that for the most Java categories, the Random Forest model achieves
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very accurate classification results. However, we observed a certain variability
in the results, depending on the categories presented in Table 5.1. While in
our manually validated sampled comments the summary and usage categories
occurred more frequently than others, they achieved a lower classification
performance than deprecation and ownership (see Table 5.3). This outcome
can be due to the presence of specific annotations or words that often oc-
cur in sentences belonging to the deprecation (e.g., @since) and ownership
(e.g., @author) categories. Although we removed all the special characters
(including annotation symbols) from the sentences, the techniques based on
the NLP+TA features could well capture the specific terms that frequently
occurred and were useful for identifying these categories. For instance, in
the Vaadin project, the ownership category always contained “Vaadin” in the
@author field. Similarly, in the other Java projects, author name patterns
were included in the NLP+TA feature set.

In contrast with the deprecation and ownership categories, we did not ob-
serve recurrent annotations or words in the sentences of the rationale category.
However, sentences in this category are more accurately classified compared
to the sentences in the summary, and expand categories. This could depend
on the quantity and quality of the NLP features captured in these categories,
jointly with a lower variability in the structure of comments falling in the
rationale category. In particular, we observed that for the rationale category,
twelve unique NLP features have higher information gain values than 0.01,
whereas two unique NLP features for the summary category, and only one NLP
feature for the expand category have information gain scores higher than 0.01.
In terms of quality, the top-ranked NLP feature of the summary category, i.e.,
“Represents [something]” occurs in only 3% of the overall comments that fall
in this category, whereas the top-ranked feature of the rationale category, i.e.,
“Has [something]” occurs in 8% of the total comments belonging to this cat-
egory. Nevertheless, the NLP patterns of various categories are not mutually
exclusive since one sentence can be classified into multiple categories. For
instance, the NLP patterns that occur in the sentences that belongs to the
expand category are also frequent in the instances of the pointer and usage
categories, making it harder to correctly predict the type of the sentences
falling in these categories. Specifically, the NLP pattern with the highest in-
formation gain score, i.e., “See [something]” for the expand category (with
an information gain of 0.00676) is also relevant for identifying sentences of the
pointer category, exhibiting an information gain value higher than the one ob-
served for the expand category (i.e., 0.04104). A careful selection of suitable
features exclusive to a specific category could further improve our approach.

In the case of Python, the F-measure results are still positive (> 80%)
for all the considered categories as shown in Table 5.4. Similar to Java, more
frequent categories do not achieve the best performance. For example, the
category parameter is the least frequent among the categories considered, but
still achieves a higher performance than most of the other categories. In con-
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Table 5.4: Results for Python using the Random Forest classification model

Category
NLP + TA

Precision Recall F-measure
Summary 0.86 0.86 0.85
Usage 0.83 0.83 0.82
Expand 0.83 0.86 0.83
Development notes 0.87 0.89 0.87
Parameters 0.86 0.86 0.85

trast to Java, Python developers frequently use specific words, e.g., params,
args, or note, rather than annotations to denote a specific information type.
We observe that these words frequently appear in sentences of the parameter
and development note categories and these terms are captured in the related
feature sets. In the Python classification, the usage category reports the lowest
F-measure due to its maximum ratio of incorrectly classified instances, i.e.,
17% among all categories. This outcome can be partially explained by the
small number of captured NLP heuristics, i.e., one heuristic “[something] de-
faults” is selected according to the information gain measure with a threshold
of 0.005. We also observe that instances of the usage category often contain
code snippets mixed with informal text, which increases the di�culty of iden-
tifying features that would be good predictors of this class. Similarly, the
instances in the expand category also contain mixtures of natural language
and code snippets. Separating code snippets from natural language elements
and treating each portion of the mixed text with a proper approach can help
(i) to build more representative feature sets for these types of class comment
sentences, and (ii) to improve overall classification performance.

Table 5.5: Results for Smalltalk using the Random Forest classification model

Category
NLP + TA

Precision Recall F-measure
Responsibility 0.79 0.82 0.78
Intent 0.92 0.92 0.90
Collaborator 0.83 0.94 0.83
Example 0.85 0.84 0.85
Class references 0.29 0.98 0.29
Key messages 0.92 0.92 0.89
Key implementation points 0.87 0.89 0.85

Concerning Smalltalk, the Random Forest model provides slightly less sta-
ble results compared to Python and Java as shown in Table 5.2. Moreover,
Table 5.5 shows that the intent category achieves the highest F-measure. How-
ever, for most categories the F-measure values are high (> 78%), except for
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the class references category. The class references category captures the other
classes referred to in a class comment. For this category, the Random Forest
model achieves the worst results, i.e., F-measure of 29%. However, the Naive
Bayes model achieves an F-measure score of 93% for it. Similarly for the col-
laborator category, the Naive Bayes model achieves better results compared
to the Random Forest model. Both categories can contain similar informa-
tion, i.e., the name of other classes the class interacts with. We noticed in
Smalltalk comments that the camel case class names are generally split into
separate words, which makes it more di�cult to identify them as classes from
the text. Nevertheless, as demonstrated in previous work [116], the Naive
Bayes algorithm can achieve a high performance in classifying information
chunks in code comments containing code elements, e.g., pointer, while its
performance degrades when dealing with less structured texts, e.g., rationale.
We observed a similar behavior for the links category in the Python taxonomy.
Figure 4.11 shows that all these categories, such as links, pointer, collaborator,
and class references contain similar types of information. In contrast, devel-
opers follow specific patterns in structuring sentences that belong to other
categories, such as intent and example as shown in the previous chapter. In
future work, we plan to combine various ML algorithms to improve our results
[5].

To qualitatively corroborate the quantitative results and understand the
importance of each considered NLP heuristic, we computed the popular sta-
tistical measure information gain for the NLP features in each category, and
ranked these features based on their scores. We used the default implementa-
tion of the information gain algorithm and the ranker available in Weka with
a threshold value of 0.005 [123]. Interestingly, for each category the heuristics
that have the highest information gain values also exhibit easily explainable
relations with the intent of the category itself. For instance, for the respon-
sibility category in Smalltalk which lists the responsibilities of the class, we
observed that “Allows [something]” and “Specifies [something]” are among
the best-ranked heuristics. Similarly, the heuristics “[something] is used” and
“[something] is applied” are among the heuristics that have the best informa-
tion gain values for the collaborator category which lists the interactions of
the class with other classes. Furthermore, the heuristics “[something] is class
for [something]” and “Represents [something]” have higher information gain
values when used to identify comments of the intent category, which describes
the purpose of the class. These heuristics confirm the patterns identified
by us in our manual analysis of Smalltalk class comments [137]. We observed
similar results for the other languages. More specifically, for the summary cat-
egory in Java the heuristics “Represents [something]” and “[something] tests”
are among the NLP features with the highest information gain. Instead, in
the case of the expand and pointer categories, we observed a common rele-
vant heuristic: “See [something]”. The analysis of the top heuristics for the
considered categories highlights that developers follow similar patterns (e.g.,

85



5. Automated Identification of CITs

“[verb] [something]”) to summarize the purpose and responsibilities of the
class across the di↵erent programming languages. However, no common pat-
terns are found when discussing specific implementation details, i.e., expand
and usage in Java and Python, and example in Smalltalk.

Finding. In all the considered programming languages, developers fol-
low similar patterns to summarize the purpose and the responsibilities of
a class. No common patterns are observed when implementation details are
discussed.

Statistical tests. To further confirm the reliability of our results, we comple-
mented our results with relevant statistical tests. In particular, the Friedman
test reveals that the di↵erences in performance among the classifiers is statis-
tically significant in terms of the F-measure. Thus, we can conclude that when
comparing the performance of classifiers and using di↵erent input configura-
tions, the choice of the classifier significantly a↵ects the results. Specifically,
to gain further insights about the groups that statistically di↵er, we performed
the Nemenyi test. The test results suggested that the Naive Bayes and the
J48 models do not statistically di↵er in terms of the F-measure, while the
Random Forest model is the best performing model with statistical evidence
(p� value < 0.05).

To analyze how the usage of di↵erent features (NLP, TA, or NLP+TA) af-
fects the classification results, we executed a Friedman test on the F-measure
scores obtained by the Random Forest algorithm for each possible input com-
bination. The test concluded that the di↵erence in the results with di↵erent
inputs is statistically significant (p � value < 0.05). To gain further insight
into the groups that statistically di↵er, we performed a Nemenyi test. The test
revealed a significant di↵erence between the NLP and NLP+TA combinations
(p � value < 0.05). This result confirms the importance of both NLP and
TA features when classifying class comment types in di↵erent languages. The
input data and the scripts used for the tests are provided in the replication
package [130].

5.4 Implications and Discussion

Specific information types. Rajlich presented a tool that gathers impor-
tant information, such as a class’s responsibilities, its dependencies, member
functions, and authors’ comments to facilitate the developer’s need to access
the particular information types [126]. We advanced the work by automati-
cally identifying and extracting several other frequent information types from
the class comments. Researchers have suggested various ways to satisfy the
information needs of developers, such as On-Demand Developer Documen-
tation (OD3) [140]. Such a system (OD3) would automatically generate a
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high-quality response for a developer query based on a mixture of informa-
tion extracted from various artifacts, such as source code, documentation, and
Q&A posts. This requires an automatic identification of relevant information
types from other artifacts as well. Our work provides leads in this direction by
presenting an approach to identify the comments according to the comprehen-
sive class comment taxonomy extracted from various programming languages.

Quality attributes for various information types. Identifying various infor-
mation types in comments can help to improve comment content quality with
respect to several QAs identified in chapter 3. Table 5.6 presents such QAs
in the column QA and how can they facilitate assessment of comments in the
column Description. For instance, the correctness quality attribute can be
measured with respect to certain information, and thus incorrect information
types can be indicated to the developers to update or delete them.

Improvements in our approach. Our approach can be further improved by
focusing on several aspects. First, various other types of comments, such as
method comments, and inline comments, and other artifacts, such as wikis,
bug reports, Q&A posts, commit messages, and mailing lists can be added
as data sources. The NEON tool, used to extract natural language patterns,
is already tested successfully on the mailing lists artifact for user reviews[42].
To avoid the longer training time and memory consumption of ML strategies,
Kallis et al. used fastText, a tool using linear models that achieved comparable
results in classification to various deep-learning based approaches, to classify
the issues reports on GitHub. Since, fastText is tailored and trained on natural
language datasets, it can be more e↵ective in classifying comments. Second,
more algorithms based on unsupervised ML and deep learning can be used to
identify various types of information in comments. Third, our automatically
extracted features can be further refined by employing more advanced word
embedding, text processing, and feature selection techniques. This can help
identify not only a specific type of information, but also refine the related
information types. For example, intent and responsibilities information types
in Smalltalk often occur together and are found mixed within one sentence.
Such refinement approaches can help to separate the part of the sentence
indicating the intent and responsibilities information. Fourth, the patterns
related to specific domains, such as visualization, file systems can be extended
to other domains, languages, and artifacts.

5.5 Threats to Validity

Threats to construct validity. This mainly concerns the measurements used
in the evaluation. We did not consider the full ecosystem of projects in each
language, but selected a sample of projects for each language. To alleviate
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Table 5.6: Assessment of the information types based on QAs (identified in chapter 3)

QA Description

Accessibility Easiness to find specific information from comments, e.g., if a comment
contains warnings they can be easily accessed

Readability Whether the specific information is easily readable, e.g., the example to
instantiate a class is readable with other available information

Trustworthiness Whether an information type is reliable

Author-related If an author information is present in a comment

Correctness Whether an information type is correct

Completeness If specific information, important to support developers in various tasks,
is available

Similarity Given information type is already mentioned in a comment

Consistency Given information type follows a consistent style as suggested by its style
guideline, or consistent to other sources, such as code or external
documents

Up-to-dateness The information type is kept up-to-date with software evolution, e.g., if a
class is deprecated then the deprecation information should be updated
in class comment

Accuracy Given information is enough precise or not, e.g., usage information about
the class includes a code example or not.

Organization The Information types are organized or structured as suggested by the
project guidelines, e.g., summary information should be in the first line
of a comment followed by parameters etc.

Format Given information follows the correct writing style, includes visuals or
code examples, e.g., summary is written using phrases rather than
complete sentences

Conciseness Given information type is succinct and necessary in a comment

Content relevance The information is relevant to developers to support them in a particular
purpose, such as documentation, communication

Maintainability The extent to which an information can be maintained easily, e.g.,
certain information types require more update than others, such as the
deprecation information might require less update than the frequently
updated responsibilities of the class

Understandability To what extent specific information contributes to understandability,
e.g., summary help developers understand a class more than author
information

Internationalization The information can be correctly translated to other natural languages

this concern to some extent, we selected heterogeneous projects used in the
earlier comment analysis work of Java and Python [116, 183]. The projects in
each language focus on di↵erent domains, and originate from di↵erent ecosys-
tems. Thus, the projects follow di↵erent comment guidelines (or coding style
guidelines).

Threats to external validity. This concerns the generalization of our results.
The main aim of our proposed approach is to automate the identification
of comment information types of the selected programming languages. The
approach may achieve di↵erent results in other programming languages or
projects. To limit this threat, we considered both static and dynamic object-
oriented programming languages with di↵erent commenting styles and guide-
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lines. While we believe that the comments from these diverse projects and
languages will represent comments in other projects and languages, we do not
expect to reach any general conclusion. We plan to train the classifiers with
more labeled comments of other software systems to generalize our results.

Threats to internal validity. This concerns the problem of overfitting the
ML algorithms. For instance, certain models such as the Random Forest
model can be prone to overfitting, thus providing too optimistic results. To
alleviate this threat, we trained di↵erent models, and tested them using ten-
fold cross validation. Our analysis only includes three traditional supervised
ML algorithms, i.e., Naive Bayes, J48, and Random Forest. Nevertheless,
there can be other algorithms based on unsupervised ML and deep learning,
and other configurations worthy of investigation.

Threats to conclusion validity. This concerns the relationship between treat-
ment and outcome. Appropriate statistical procedures have been adopted to
draw our conclusions. We investigated whether the di↵erences in the perfor-
mance achieved by the di↵erent ML models with di↵erent combinations of
features were statistically significant. To perform this task, we used the Fried-
man test, followed by a post-hoc Nemenyi test, as recommended by Demšar
[40].

5.6 Summary and Conclusion

In this chapter, we built various classifiers using supervised ML algorithms
to automate the identification of specific information types from comments
defined in CCTM. We used the manually labeled class comments of Java,
Python, and Smalltalk as a dataset for training and testing various classifiers.
We proposed an approach based on natural language processing (NLP) and
text analysis (TA) techniques. The approach classifies the most frequent in-
formation types of all the investigated languages using ML models with a high
accuracy.

We found that the Random Forest model fed by the combination of NLP+TA
features achieves the best classification performance over the di↵erent pro-
gramming languages. The approach identified the cases where NLP tools
(based on parse tree) fail to identify well-suited NLP features for the sen-
tences that contain a mixture of code elements and natural language texts.
However, these features are recommended when class comments are mostly
unstructured. Based on this approach, we plan to implement a tool, e.g., a
browser plugin to filter various relevant information types for developers. We
also plan to verify our approach based on deep learning algorithms specifically
CNN-based approaches.
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Although, we characterized developer commenting practices (chapter 4 and
5) in terms of what developers embed in class comments, how they write such
information, but do they follow coding style guidelines in writing comments is
unknown. In chapter 6, we extract the coding style guidelines of the projects,
and evaluate the adherence of code comments to the guidelines.
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Comment Adherence to Conventions

Previous chapters showed that developers embed various types of information
in class comments, and they follow di↵erent syntax and style to write the
same kind of information. Several coding style guidelines have been created
with an aim to encourage developers in writing informative, readable, and
consistent comments. However, it is not yet clear from the research which
specific aspects of comments these guidelines cover, e.g., syntax, content, or
structure, and to which extent developers follow these guidelines when they
write code comments.

We analyze various style guidelines used in several programming languages,
and uncover that most of them address more the content aspect of the com-
ments than the syntax or format aspect. However, when considering the di↵er-
ent types of information developers embed in comments of Java, Python, and
Smalltalk, existing comment conventions are not yet specified clearly enough,
nor do they adequately cover important concerns.

The chapter is mainly based on the paper:

� “P. Rani, S. Abukar, N. Stulova, A. Bergel, and O. Nierstrasz. Do comments follow
commenting conventions? A case study in Java and Python, SCAM’21” [133], and partly

based on the journal article:

� “P. Rani, S. Panichella, M. Leuenberger, M. Ghafari, and O. Nierstrasz. What do class
comments tell us? An investigation of comment evolution and practices in Pharo Smalltalk,
EMSE’21” [137].
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A
part from the syntax given by a programming language to write code,
there are various other aspects of code that can be written in several

ways, such as, naming variables, formatting the code statements, or writ-
ing comments. Other than code, code comments are usually written in a
semi-structured manner using natural language sentences, and they are not
verified overall by the compiler. Therefore, developers have quite much free-
dom to write comments in numerous ways [96, 6]. To encourage developers
to write consistent, readable, and informative code comments, programming
language communities and several large organizations, such as Google and
Apache provide coding style guidelines that suggest comment-related conven-
tions [77, 122, 66]. These conventions cover various aspects of comments, e.g.,
syntax, style, and content. For example, “Use 3rd person (descriptive), not
2nd person (prescriptive)” is an example of a stylistic comment convention for
Java documentation comments [77]. However, which other comment aspects
di↵erent style guidelines and languages cover is unknown. Understanding var-
ious commenting conventions the guidelines suggest can help the community
to know what our current style guidelines lack, and where developers need the
most tool support.

Software that adheres to coding standards or style guidelines improves
maintainability and readability of code [46], and fosters a common under-
standing among developers [86]. Developers perceive the adherence to code
convention as important [151], but they find it di�cult to comply with [48].
There is no universal set of rules that apply to comments of all programming
languages. Instead, di↵erent languages follow various standard style guide-
lines. For example, Java and Python have widely accepted standard coding
guidelines [77, 122, 66]. In contrast, Pharo (a Smalltalk-based environment)
traditionally o↵ers a concise template that consists of commenting guidelines
to write class comments for the newly-created classes. However, it remains
largely unknown whether developers who write code comments in these lan-
guages adhere to their style guidelines or not. Studying the adherence aspect
is crucial to encourage them to follow commenting conventions, and in design-
ing tools to assess the overall comment quality. In this chapter, we study RQ3:
To what extent do developers follow the style guidelines in their comments?

We analyzed 1 089 sampled class comments of 20 projects written in Java,
Python, and Smalltalk. We identified the coding style guidelines of each
project, extracted commenting conventions from them, and manually com-
pared the conventions to the sampled comments.

Our results for Java and Python show that the majority of style guidelines
propose more content-related conventions, i.e., what information to write in
comments than other types of conventions, e.g., how to format comments.
However, compared to various information types developers actually embed
in comments, it is clear that existing comment conventions are neither ade-
quate, nor precise enough. Similarly in Smalltalk, the template provides an
example of how a class comment should look like, but it is not precise about
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which syntax to follow to write what information, and the required formatting
conventions. Overall, our results highlight the mismatch between the conven-
tions suggested by the style guidelines and conventions developers follow in
their projects and vice versa.

6.1 Motivation

Coding style guidelines across languages provide conventions with an aim to
help developers in writing high-quality comments.

Java. On the one hand, there exist various style guidelines in Java that sug-
gest commenting conventions. Not all style guidelines provide the same level
of detail for writing comments. For instance, Oracle provides documentation
guidelines, which suggest summarizing a class in the first sentence of a class
comment and then listing various other tags or information types [77]. On
the other hand, Google provides very limited documentation guidelines [66].
In addition to the standard guidelines o↵ered by the languages, various ma-
jor open-source projects modify conventions of the standard guidelines, e.g.,
Apache Spark extends the Oracle documentation guideline [10].

Python. Similar to Java, Python o↵ers the standard PEP8 or PEP257 guide-
lines to write code comments [122], which suggest using the docstring format
to write class comments. In contrast to Java, the PEP8 and PEP257 guidelines
recommend writing public methods and instance variables in a class comment
using di↵erent syntax and style conventions. Furthermore, the Numpy guide-
line proposes to add warnings, notes, and references to external sources to
class comments.

Smalltalk. Pharo, the Smalltalk-based environment, o↵ers a semi-structured
default template to guide developers in writing a class comment as shown in
the Pharo 7 template in Figure 6.1. The template encourages developers to
write di↵erent types of information, such as intent, responsibilities, collabora-
tors, and key messages to document important properties and implementation
details of a class. Not all versions of the template suggest embedding all these
information types. Pharo and its template has evolved over the years in dif-
ferent versions, but it is still unclear how developers adopt the template when
writing comments.

An overall understanding of comment conventions and their use across
projects can help researchers and practitioners to build a recommender sys-
tem for comments. We envision such a recommender system to automatically
identify comment-related conventions from a guideline, and to measure the
mismatch between commenting practices of developers and the used conven-
tions. Such a system should be adaptable to project-specific guidelines, and
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Figure 6.1: Class comment template in Pharo 7

thus can reduce the developers’ e↵ort in maintaining high-quality comments.
Additionally, the knowledge of developer practices in following the comment
conventions can provide insight into how developers write various information
types, and whether they follow conventions or not. In this chapter, we collect
various kinds of empirical evidence to enable designing such a system. It can
help us to improve the guidelines to define comment assessment measures,
and to design methodologies to encourage developers to write high-quality
comments.

6.2 Study Design

This chapter aims to further understand developer commenting practices by
answering two subsidiary research questions (SRQs) that eventually answer
RQ3.

6.2.1 Research Questions

• SRQ1: Which type of class comment conventions are suggested by vari-
ous style guidelines?
Rationale: Coding style guidelines suggest comment conventions that
relate to the syntax of class comments, i.e., syntax conventions, how to
format comments, i.e., format conventions, and what content to write
in comments, i.e., content conventions. However, these conventions are
scattered across pages, sections, and paragraphs in the guidelines. It
is unknown which comment aspects are covered and to what extent in
these style guidelines.
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• SRQ2: To what extent do developers follow commenting conventions in
writing class comments?
Rationale: Commenting conventions are provided to help developers in
writing informative, consistent, and maintainable comments. However,
whether developers follow these guidelines or not is unknown. For in-
stance, we do not know yet whether they write their comments as stated
by the guideline or write additional information in comments.
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Figure 6.2: Research methodology to answer SRQ1 and SRQ2

Figure 6.2 presents the methodology followed to answer these SRQs. We
consider the sampled labeled class comments of Java, Python, and Smalltalk
from chapter 4 to understand what syntax, structure, and content developers
follow when they write the comments.

6.2.2 Data Collection

Java and Python. We considered all Java and Python projects that we
have reported in subsection 4.2.2. That is, we considered six projects for
Java: Eclipse, Hadoop, Vaadin, Spark, Guava, and Guice; and seven projects
for Python: Django, Requests, Pipenv, Mailpile, Pandas, iPython, and Py-
torch. These projects belong to di↵erent ecosystems, i.e., Apache, Google,
and Eclipse, and they follow a variety of coding style guidelines including
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project-specific guidelines. The projects indicate the coding style guidelines
they refer to in their corresponding web pages, GitHub repositories, or mailing
lists.

Smalltalk. We considered the Pharo 7 core project, i.e., the 363 sampled
class comments that we have analyzed in chapter 4 to construct the Smalltalk
CCTM. However, we excluded the external Smalltalk projects shown in Ta-
ble 4.4 for two reasons: (i) some external projects lacked a web page that
indicates the coding style guidelines they use, and (ii) the ones that had a
project web page did not mention which documentation guidelines they fol-
lowed to write class comments.

The Pharo core environment presents a default comment template for new
classes and encourages developers to write class comments.1 We expect that
Pharo core developers are more aware and exposed to the template than other
Smalltalk developers who are working on external projects. Pharo has evolved
over the years, and many classes in Pharo 7 originate from previous Pharo ver-
sions. Similarly, the comment template in Pharo 7 has evolved since the first
version of Pharo, i.e., Pharo 1. In the Pharo environment, the default tem-
plate appears only when a developer adds for the first time a class comment
to a class. To ensure that a developer had a chance to look at the template
of that version, the classes chosen for the analysis should be the newly added
classes of that version. Therefore, for each comment in the sample set, we
identified the original Pharo version when the comment was first added to
a class. We then extracted that class comment and compared it to the cor-
responding comment template, e.g., we compared a class comment added in
Pharo 2 to the corresponding template in Pharo 2. Thus, we analyzed classes
from Pharo version 1 to 7 and their corresponding template.

6.2.3 Analysis Method

SRQ1: Comment conventions. The goal of SRQ1 (Which type of class com-
ment conventions are suggested by various style guidelines? ) is to investigate
the type of the comment conventions that various style guidelines o↵er. The
term comment convention refers to suggestions or rules about various com-
ment aspects, such as syntax, format, content, or writing style. In Table 6.1,
we show the identified coding style guidelines the projects mentioned on their
web page. We show the standard guidelines in column Standard guideline.
Each project might refer to project-specific guidelines in addition to the stan-
dard guidelines to customize its coding style. We show if a project supports
project-specific commenting guidelines (X) or not (×) in the column Project
guideline. The project-specific guidelines extend, clarify, or conflict with the

1https://github.com/pharo-project/pharo
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Table 6.1: Overview of the selected projects and their style guidelines.

Language Project Standard guideline Project guideline
Java Eclipse Oracle X

Hadoop Oracle X
Vaadin Oracle X
Spark Oracle X
Guava Google ×
Guice Google ×

Python Django PEP8/257 X
Requests PEP8/257 X
Pipenv PEP8/257 ×
Mailpile PEP8/257 ×
Pandas Numpy X
iPython PEP8/257, Numpy X
Pytorch Google X

Smalltalk Pharo 1 Template v1 ×
Pharo 2 Template v2 ×
Pharo 3 Template v2 ×
Pharo 4 Template v3 ×
Pharo 5 Template v4 ×
Pharo 6 Template v4 ×
Pharo 7 Template v4 ×

standard guidelines such as Pandas.2 For Smalltalk, we considered the default
class comment template provided by Pharo.

Identifying the style guideline version. Coding style guidelines evolve over
time, and new conventions are changed, added, or deleted. Therefore, we
first identified the referenced coding style guidelines, and then we determined
the version available at the time of the snapshot of our projects. Since the
snapshots of Java and Python projects date from the end of 2019, we had to
trace the version of the style guideline that was available at that time and
compare it to the current online version of the style guideline. As the content
of the Java and Python style guidelines are often stored as a text file in a
GitHub repository, we traced back older versions of the style guidelines. We
then compared the online version from which we extracted the rules to the
version that dates from the end of 2019. We found that most style guidelines
did not change at all or did not change any comment-related conventions.
Pandas has changed the wording of conventions, however, the meaning is still
the same. We could not find any versioning of project-specific conventions
defined for Eclipse. Therefore, we used the conventions available on its website
at the time of writing. To guarantee the reproducibility of the work, we provide
a copy of each style guideline version that is considered in the thesis in the

2https://pandas.pydata.org/pandas-docs/stable/development/contributing_
docstring.html
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replication package [128]. In the case of Smalltalk, we found that the template
had been updated in specific Pharo versions, i.e., Pharo 1, Pharo 2, Pharo 4,
and Pharo 5. Thus, we analyzed the template of all these versions, as shown
in Table 6.1.

Identify comment conventions. Once we found the referenced style guide-
lines of each project, we started to identify the comment related conventions
in these guidelines, and turned them into rules. We organized these rules into
a taxonomy of the five main categories: content, structure, format, syntax,
and writing style as described in Table 6.2. If a rule does not fit any of these
categories, we assigned it to the other category. The rationale behind the
taxonomy is that the approaches to evaluate comment quality can focus on a
specific aspect of comments that they want to improve. To answer SRQ1, we
analyzed the frequency of these rule categories in the style guidelines.

Table 6.2: Types of comment conventions or rules

Category Description

Content Contains the rules that describe the type of information
comments should contain

Writing style Contains natural-language specific rules, such as grammar,
punctuations, and capitalization

Format Contains the rules related to indentation, blank lines, or
spacing in comments

Structure Contains the rules about text organization, and location
of the information, e.g., how tags/sections/information
should be ordered in comments

Syntax Contains the syntax rules to write specific types of com-
ments, e.g., which symbol to use to denote a class comment

Other Contains the rules that do not fit into one of the other
categories

Java and Python. Various code conventions exist in a typical coding style
guideline, such as to name variables, methods, or classes, the syntax to write
and format them, or add comments to them. Moreover, comment conven-
tions can be scattered across multiple paragraphs or pages. We scanned every
sentence of a style guideline and selected those that mentioned any comment
convention as shown in Figure 6.3. To preserve the context of the conven-
tions, we extracted the section titles and examples in the guidelines. In the
next step, we turned these conventions into individual rules that can be vali-
dated for a comment type. For instance, the shown convention 1 was turned
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Multi-line	Docstrings	

Multi-line	docstrings	consists	of	a	summary	line	just	like	a	one-line	docstrings,	followed	

by	a	blank	line,	followed	by	a	more	elaborate	description.	The	summary	line	may	be	used	by	

automatic	indexing	tools;	it	is	important	that	fits	on	one	line	and	is	separated	from	the	

rest	of	the	docstring	by	a	blank	line.	The	summary	line	may	be	on	the	same	line	as	the	

opening	quotes	or	on	the	next	line.	The	entire	doctoring	is	intended	the	same	as	the	

quotes	at	its	first	time.	

Content Format

3

4

5

1 2

6

Figure 6.3: Comment conventions in Python PEP 257 Docstring conventions
a

ahttps://www.python.org/dev/peps/pep-0257/

into the rule: “Multi-line docstrings should consist of a summary line.” A
convention can target various types of comments, such as class, package, or
inline comments, or it can target a part of a comment, e.g., a summary, or pa-
rameters. In case a sentence targeted multiple comment types, we formulated
the rule for each type. In total, we collected 600 comment-related rules. Since
we focused on class comments, we could filter rules related to class comments,
which skip 210 rules.

Three evaluators participated in the study and independently analyzed
each style guideline. They scanned each guideline and extracted the corre-
sponding comment conventions in more details. The first evaluator identified
and converted the conventions to rules and categorized them according to the
taxonomy. The remaining evaluators validated the classification using an it-
erative process where each of them reviewed their assigned classification. In
case any evaluator disagreed with the first evaluator, the third evaluator who
had not yet seen the classification validated it. The final decision was taken
based on the majority voting mechanism.

Smalltalk. In contrast to Java and Python, many syntax and format rules
did not apply to the template as it is limited to class comments, and class
comments in Pharo (shown in Figure 4.3) are written into a separate pane
rather than mixed with the code. For instance, the Java and Python guidelines
describe the syntax to write a class comment in terms of symbols (/** .. */,
or ‘‘‘ a comment ’’’), or to indent with respect to the code, whereas such
rules are not found in Smalltalk. Additionally, we did not extract the format
conventions from the template due to these conventions not being apparent
in the initial stages like Java or Python. The format conventions were clearly
mentioned in Java and Python style guidelines, e.g., “Four spaces should be
used as the unit of indentation” or “limit the line length to 80 characters” and
thus only became apparent later on.

For each version of the template, we manually extracted the information
types hinted by the template, and then extracted the syntax, structure, and
writing style guidelines hinted for each information type. Three evaluators
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participated in the analysis of a template, discussed each extracted guideline,
and formulated several rules for each information type. Next, we used a
two-step validation approach, thus validating the content classification of the
template and the name assigned to the classified content. Specifically, the
content classification was validated by an iterative evaluation process, where
each evaluator reviewed the other’s content classification. This way, all the
information types were discussed by all the evaluators to achieve a better
naming convention and classification.

Class

Intent

description: Text1
InstanceVariable

 name: Identifier
 type: Object

0..*

KeyMessage

name: Identifier 0..*

1

InstantiationProcess

description: CodeOrText 0..*

Collaborator

name: Identifier
interactions: Interaction

Example

description: CodeOrText
0..*

ImplementationPoint

description: CodeOrText 0..*

Responsibility
0..* description: Text

if self.description -> notEmpty()
then 
   self.description.lines = 1.
   self.description.style =  firstPersonPronouns.
   self.description.startsWith =  ‘I represent’.
end if

self.listOfInstanceVariables -> notEmpty() 
then 
  self.name and self.type -> notEmpty()
end if
self.header = ‘Instance Variable’.

self.interactions.lines = 1.
self.description.style = firstPersonPronouns.
self.description.useSimilarWordsTo =  ‘I interact’.

self.description = CodeOrText.

self.description = CodeOrText.
self.header = ‘Implementation Points’ or 
‘Internal Represenation’

self.description = CodeOrText.

self.listOfKeyMessages -> notEmpty() 
self.header = ‘Public API’ or ‘Key Messages’.

if self.description -> notEmpty()
then
   self.description.lines <= 3.
   self.description.style = firstPersonPronouns.
   self.description.useSimilarWordsTo = {‘I do’, ‘I 
know’).
end if

self.orderOfInfoTypes = Intent -> Responsibility -> Collaborator -> KeyMessage -> 
InstantiationProcess -> Example -> InstanceVariable -> ImplementationPoint

Figure 6.4: Comment convention rules formulated from the Pharo 7 template

For example, we identified the For the Class part section in the Pharo
7 template shown in Figure 6.1 as the intent information type. For this infor-
mation type, we extracted the guidelines from the keywords State one line,

I represent and converted them into rules, such as “description should be
one line, the subject should be first person”, and that it should follow the pat-
tern <subject>, <verb> from the keywords I represent. Figure 6.4 shows
the final rules for each information type in the Pharo 7 template. In total, we
could identify 128 rules from all versions of the template. A complete list of
all rules, their examples for each Pharo version, and the process of finalizing
the rules can be found in the replication package [137]. There were a few in-
termediate Pharo versions where the template had not changed; in such cases,
we used the same guidelines from the earlier template.

SRQ2: Adherence of comments to conventions. The goal of SRQ2 (To
what extent do developers follow commenting conventions in writing class com-
ments? ) is to verify whether developers follow the comment conventions that
we identified in the previous SRQ in their projects.

Collecting sample class comments. Classifying all comments into various
information types and comparing them to corresponding conventions is a time-
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consuming and tedious task. To restrict the scope, we focused on the adher-
ence of class comments to class comment conventions.

Java and Python. Currently, there are no tools available that can auto-
matically check comments against all types of rules. Therefore, we manually
validated a sample of class comments against all related rules. We used the
statistically significant sample of 700 class comments from the projects shown
in Table 6.1. We used 390 class comment-related rules extracted from stan-
dard and project-specific guidelines. For the scope of this work, we focused on
the rule types that require manual validation due to limited tool support i.e.,
all types of rules except format. Thus, we could validate 270 rules against the
sampled class comments.

Smalltalk. We used the dataset of 363 classes from Pharo 7, of which
many classes originated in previous Pharo versions. Moreover, the template
appears only once when a class comment is added for the first time, therefore,
each class comment of a version should be compared to the template of that
corresponding version.
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Figure 6.5: The trend of classes with and without comments in Pharo versions.

Identifying the origin of the classes led to an unequal number of classes
from various Pharo versions, thus giving an unbalanced number of represen-
tative classes of each Pharo version. To balance the sampled classes from
each version, we set a lower threshold of 52 classes for each Pharo version,
increasing from a total of 363 classes to 364 classes. For each Pharo version
in which the number of classes was lower than 52, we sampled newly added
classes with comments shown in the top dark blue segment of Figure 6.5. We
followed the same approach to choose representative class comments in the
Smalltalk-CCTM study, i.e., according to the distribution of comments based
on the number of sentences present in a comment. Similarly, we removed
the classes from Pharo versions where there were more than 52 classes, i.e.,
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Pharo 1, Pharo 6, and Pharo 7, based on the distribution of comments of each
version.

In summary, we grouped 364 comments according to their original Pharo
versions so that we could di↵erentiate the comments of one version from
another version, and compare them to the corresponding template of that
version. Then, we identified the comment information types for the newly
added class comments, following the same methodology that we used for the
Smalltalk-CCTM study.

Adherence measurement. In this step, we compared the 1 064 sampled class
comments from Java, Python, and Smalltalk to the 270 class comment-related
rules from Java and Python, and 128 rules for Smalltalk. In case a comment
followed a particular rule, we labeled the rule as followed, otherwise as not
followed. There were often cases where a rule was not applicable to a comment
due to missing information in the comment. For instance, the rules related
to syntax, content, or style of a version information in a class comment could
not be verified if the information was not mentioned in the comment. In
such cases, we labeled rules as not applicable to the comment. We excluded
a few rules that could not be verified with the current dataset due to the
abstract nature of a rule, the unavailability of the symbols that denote the
class comment, or code associated with the class, e.g., to verify the Oracle
rule “for the @deprecated tag, suggest what item to use instead”, the class
comment is not enough and requires code of the class to verify the mentioned
replacement item.

Finally, we measured how many comments followed a particular rule and
how many did not. One author labeled the comments, and another author
reviewed the labeled comments. In cases where they disagreed, the third
author was consulted, and conflicts were resolved using the majority voting
mechanism (Cohen’s kappa = 0.80).

Impact of templates on comments. To find the impact of the template on
comments, we assessed the adherence of comments to the template via two
main aspects: content and content style.

Content adherence: In SRQ1, we identified the information types the tem-
plates contain, and formulated them as content type rules. Then, we compared
them to each version’s comment information types. For example, we compared
the information types of a class comment in Pharo 2 to the information types
suggested by the template in Pharo 2. Thus, we can compare what develop-
ers typically write in their comments to the information recommended by the
template.

Content style adherence: The templates suggest specific styles for vari-
ous information types, e.g., which header to use for what information type,
or in which order these information types should be written. In SRQ1, we
clustered these rules into various categories, such as syntax, style, or struc-
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ture. Some rules identified from the template can be verified automatically
for comments, and do not require manual intervention. However, this could
lead to less reliable results due to the freedom of writing free text in comments,
non-availability of formatting standards, and limited patterns available in the
template. Additionally, there were chances to miss the cases where selected
patterns are not present. Instead, developers used synonyms to describe the
same detail in a comment or did not describe the detail under a specific sec-
tion header inside the comment, e.g., Instance variables, and just wrote the
instance variables without any header. We, therefore, manually analyzed 364
comments, i.e., 52 comments from each version. We used the same setup
from our previous manual analysis performed in chapter 4 to identify the in-
formation types, i.e., we followed the same iterative approach for evaluating
and validating the rules. In addition, we used the pair sorting approach to
decide whether a sentence in the comment follows the rules, and whether the
template influences it. Similar to Java and Python, there were often cases in
Smalltalk class comments where a rule did not apply to a comment due to
missing information, thus marking such rules as not applicable to the com-
ment.

6.3 Results

6.3.1 Comment Conventions Suggested by the Guidelines

Figure 6.6 shows a total of 600 conventions from Java and Python for each
standard guideline from Oracle and Google, and project-specific guidelines
that include conventions from the standard guidelines on the y-axis. The
numbers in parentheses, e.g., 149 for Oracle, indicate the number of comment-
related rules found in the respective style guideline. The x-axis indicates the
ratio of conventions belonging to a particular category from our taxonomy. We
observed that the numbers of comment-related rules vary across projects and
guidelines, because not all guidelines provide the same details for comment
conventions. For instance, the Oracle Java code convention has an entire cod-
ing style guideline dedicated to code comments. In contrast, the Google Java
style guideline has dedicated only a small section to code comments. Thus,
the Oracle guideline contains 149 rules, whereas the Google Java guideline
contains only 19 rules.

Moreover, Figure 6.6 shows the distribution of rule types for Python style
guidelines. The Numpy style guideline and the projects following it (Pandas
and iPython) contain the most rules about what type of information to write
in comments and how to write it, compared to other standard guidelines, such
as those of Google, PEP, and Oracle. For example, the Numpy guideline
suggests to write both a short and an extended summary of the class, usage
examples, notes, and warnings in a class comment. It also provides syntax
and style conventions to follow when writing these types of information. Class
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Figure 6.6: Convention types in Java and Python guidelines

comments of iPython and Pandas contain all of these information types and
follow the syntax conventions to write them. Interestingly, developers write
such types of information in all other projects [183, 136] regardless of whether
the project guideline suggests or not, but they write them in inconsistent ways.
Previous comment analysis studies of Java and Python showed that develop-
ers embed other types of information in comments, such as usage, expand,
rationale, or pointer. Still, we did not find conventions to write such types
of information in their corresponding style guidelines (Google, PEP, Oracle)
[116, 183]. However, whether such detailed conventions in the Numpy guide-
line are one of the reasons for the low number of questions on Stack Overflow
about the Numpy documentation (only 50 questions with the numpydoc tag)
compared to the 2 784 Java questions with the javadoc tag, requires further
investigation.3

Finding. The Numpy style guideline provides more rigorous content con-
ventions for comments compared to other style guidelines, such as Oracle,
PEP257, or Google.

Our results further show that the majority of style guidelines present more
rules about the content to write in comments, i.e., content conventions, ex-

3https://stackoverflow.com/questions/tagged/numpydoc accessed on Oct, 2021
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cept for the Google style guideline in Java, which contains more rules on
how to format and structure comments, i.e., format, and structure conven-
tions. Since the Oracle guideline is used as a baseline in several Java projects,
project-specific guidelines suggest only few additional comment conventions.
These additional conventions often either clarify or conflict with the baseline
conventions. For example, comment conventions, such as “line length limit”
and “indentation with two spaces, four spaces, or tab” are often among such
conflicting rules across projects. Identifying such rules and ensuring they are
properly configured in tools can help developers in following them automati-
cally.

Finding. The majority of the style guidelines in Java and Python predom-
inately propose content and format-related comment conventions. However,
content conventions are not easy to locate in style guidelines.

We observed that although style guidelines are meant to encourage and
help developers to write good comments, comment conventions are scattered
across multiple sources, documents, and paragraphs. Thus, it is not always
easy to locate conventions particular to one entity like class, function, or inline,
which causes developers to seek conventions in online sources [134].

Figure 6.7 shows the total number of class comment conventions that we
extracted from standard and project-specific guidelines on the y-axis. In the
case of Smalltalk, it denotes the total class comment conventions extracted
from the template of each Pharo version. The x-axis indicates the ratio of
conventions that belongs to a particular category from our taxonomy.

Our results show that the majority of the Java style guidelines present
more content-related rules, whereas Python style guidelines except Numpy fo-
cus rather on the format aspect of comments. In contrast, the Pharo template
focuses on the syntax of various information types. This fosters the under-
standing of Pharo templates, and the di↵erences among them. Table 6.3 shows
that the template in the initial three versions of Pharo suggested only a few
information types for class comments. Later on, the template suggested seven
types of information. Similarly, early versions suggested to write comments
in the third-person form, whereas later ones suggested the first-person form.

6.3.2 Adherence of Comments to Conventions

Figure 6.8 shows the distribution of comments within each project that follow
the rules, does not follow them, or to which the rules are not applicable.
For example, in Eclipse, on average 27% of the comments follow the rules,
whereas 3% of the comments violate the rules, and 70% of the comments
do not hold enough relevant information to check them against a rule. The
high ratio of non-applicable rules to selected comments indicates that the
style guidelines suggest various comment conventions, but developers rarely
adopt them. For instance, the Oracle rules, such as “use FIXME to flag
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Figure 6.7: Types of class comment conventions in Java, Python, and Smalltalk guidelines

something that is bogus or broken”, or “use @serial tag in class comment”
are not applicable to comments due to the general unavailability of the FIXME
or @serial information in comments and thus showing the developers’ lack
of interest in adopting such rules. Similarly, some rules in Python such as
“Docstrings for a class should list public methods and instance variables” are
also rarely adopted. Similarly in Smalltalk, the high ratio of non-applicable
rules is due to the unavailability of the suggested information types in the
template, such as instance variable, key messages, or implementation point.

Finding. Style guidelines suggest various comment conventions, but not all
of them are adopted by developers in their comments.
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Figure 6.8: Percentage of comments that follow the rules, do not follow them, or to which rules

are not applicable.

Finding. Compared to Python, Java class comments violate rules less often
(see Figure 6.8).

Figure 6.9 shows the rules that are applicable to comments. The rules writ-
ing style and content are more often followed than syntax and structure rules
in Java and Python. In contrast, Smalltalk developers follow structure and
writing style rules more often than others. However, comparing the frequency
of the information types suggested by the template to other information types
found in comments, we observed that they mention the template suggested
information types more often than other types of information. For instance,
intent and responsibility are present in 65% of the sampled class comments,
while warnings (not suggested by the template) are present in 12% of the sam-
pled class comments, which indicates the relevance of the template in terms
of its information types. Figure 6.9 shows the rules that comments do not fol-
low. For instance, the structure rules are often violated in Java and Python.
In contrast, Smalltalk developers violate content and syntax rules more often
than others.
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Figure 6.9: Types of rules followed or not in Java, Python, and Smalltalk projects

Finding. Most Class comments in Java and Python often follow writing
style and content conventions, but about every third comment violates struc-
ture conventions (kindly refer to Figure 6.9). In contrast, Smalltalk devel-
opers follow structure conventions in about three of four comments and less
frequently writing style conventions. However, every third comment violates
content conventions.

Furthermore, we realized that some rules are often followed, whereas oth-
ers are frequently violated. For instance, in Pandas, the rule “a few sentences
giving an extended summary of the class or method after the short (one-line)
summary” is often followed, but the rule “there should be a blank line between
the short summary and extended summary” is often violated. Similarly, in
Pharo 2 and 3, the rules “describe the intent behind the class” and “Instance
variables should be written after the intent information” are almost always fol-
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lowed, whereas “describe the instance variables of the class” is rarely followed.
We found only one structure convention that is about the order of information
types in the template, which developers often follow (78%). This can be the
reason for achieving a high rate of comments that follow the structure conven-
tion. By surveying developers, such conventions can be further investigated
to know the specific factors behind their adherence or violation, such as the
usage of linters for comments, the team strictness, or developer awareness.

Although the project-specific guidelines in Java and Python provide few
additional conventions, these conventions are followed more often in projects
compared to the conventions provided by their standard guidelines. Precisely,
85% of Python class comments and 89% of Java class comments follow the
project-specific conventions, whereas 81% of their comments follow standard
guideline conventions. One such example is the rule “Do not use @author
tags”, which is specific to Hadoop and in contrast with the Oracle style guide-
line, however, it is always followed in Hadoop comments. It would be an
interesting future work to explore the reasoning behind such conventions.

Finding. Project-specific class comment conventions are followed more of-
ten than conventions suggested by the standard guidelines.

Impact of templates on comments. Wemeasured the adherence of Smalltalk
comments to the template by assessing content adherence, and content style
adherence to see the impact of templates on comments.

Content adherence: The analysis of the information embedded in the com-
ments shows that developers document di↵erent kinds of information in the
class comments to make their classes more understandable and maintainable.
However, whether the practice of embedding di↵erent information in class
comments has recently emerged or it has been there since initial Pharo ver-
sions, is unexplored and unknown.

In Figure 6.10, the x-axis lists the information types and the y-axis shows
the Pharo versions with the number of classes considered for each Pharo ver-
sion. A darker shade of orange indicates a large number of comments that
have a particular type of information, and a lighter shade indicates a smaller
number of comments that fall into an information type. From our analysis,
we found that most of the information types are present in the comments
since Pharo 1 except Todo comments, coding guidelines, and observations. A
few information types like intent, responsibility, collaborators, and examples
are highly frequent in all versions of Pharo. Table 6.3 shows that the tem-
plates suggest only a few information types to write in a class comment. Still,
there exist other information types mentioned by developers than those rec-
ommended by the templates. For example, the Pharo 1 template mentions
only three types of information shown in Table 6.3, but Smalltalk developers
have mentioned 20 other types of information shown in Figure 6.10. In Pharo
7, 23 types of information are found in comments, but its template mentions
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Figure 6.10: The trend of information types in Pharo versions

only seven types.

Finding. Most of the information types in comments are available since
Pharo version 1. A few information types like, Todo comments, coding guide-
lines, and observations do not exist in the initial version.

Finding. The template-suggested information types are mentioned more
frequently in the comments than other types of information.
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Content style adherence: In Figure 6.11, we see that Pharo 1 comments
follow the content style rules 50% of the time, whereas since Pharo 4, the
trend of comments adhering to the rules increased to 75%. To understand
these di↵erences between Pharo versions, we grouped comments of various
Pharo versions according to the changes in the template e.g., Pharo 2 and
Pharo 3 templates are identical and therefore, we grouped Pharo 2 and Pharo
3 comments. We then measured the percentage of comments that adhere to
content style rules. After the grouping, we used the Wilcoxon test as well
as the Vargha-Delaney Â12 measure to observe potential statistically signifi-
cant di↵erences in the results. The results of the Wilcoxon test highlight a
marginally significant di↵erence, i.e., a p-value of 0.0673 has been observed
between Pharo 1 and the Pharo 4, 5, 6 groups. For these groups, the Vargha-
Delaney measure also revealed a large di↵erence.

Finding. Since Pharo 4, Developers adhere rather to content style guide-
lines, especially in describing the intent, responsibilities, and instance vari-
ables of a class.

In Figure 6.12, we further explored the di↵erences between Pharo versions
by measuring the adherence of comments to specific information types of each
template version. We found that example and KIP (Key Implementation
Points) are always inconsistent due to the unavailability of strict guidelines to
write or format them. Developers, therefore, follow various conventions when
they mention examples, such as using the dedicated headers usage, examples,
and code examples. Similarly, for KIP, one of the rules just suggests to write
the header Internal representation and Implementation points when mention-
ing the implementation details, but this is rarely followed by developers.

1 I am a base class for commands which perform operations with
2 collection of methods.
3

4 Internal Representation and Key Implementation Points.
5

6 Instance Variables
7 methods: <Collection of<CompiledMethod>>
8

Listing 7: Key Implementation Points header present in the SycMethodCommand class

Our analysis found several comments where only the header was present
without any further details mentioned below it. We believe that this is due to
a lack of attention from developers in deleting unused section headers. One of
the cases we encountered is in the class SycMethodCommand shown in Listing 7,
where the developers have not provided any details under the Internal repre-
sentation and Implementation points section, but the header is still present.
In the case of the instance variable information, its header is mostly men-
tioned with the instance variables. One of the reasons for such a behavior can
be the Pharo feature which automatically adds an instance variable section
to the class comment template if a class is created with instance variables.
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This indicates a careful consideration for the approaches that aim to generate
comments automatically.
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We observed a high degree of inconsistency in using headers to delimit dif-
ferent information types in class comments. Figure 6.13 (Header rule) shows
that the use of headers fluctuates significantly across all Pharo versions. We
noted a similar fluctuation in the adherence to the listing rules, which doc-
ument instance variables and Key APIs as lists. This indicates the need to
have a better and consistent standard for formatting and providing headers for
di↵erent information types. For a few rules, we noticed the consistent declin-
ing rate in following them. For instance, in Pharo 1 the rules ask developers
to write specific information types in the third person. Instead, developers
often write this information in the first person. Since Pharo version 5, such
rules are respected more than 50% of the time, showing increased use of the
first-person. We confirmed our observation by mining the rules related to the
first and third person from all information types in all versions as shown in
Figure 6.14. We found that the use of the third person started to decline in
the initial versions even though the template proposed to use it. Since Pharo
4, the use of the first person and active-voice rules have been increasing, how-
ever, they are still not entirely followed. These results indicate the need to
have standard and detailed rules to consistently write various information in
the comment template.

Finding. Developers use various verb forms to describe the top three infor-
mation types intent, responsibilities, and collaborators of a class, but mainly
adhere to the template’s use of the first-person pronouns.
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Finding. In most Pharo versions, fewer than 40% of the comments make
use of the headers suggested by the comment template. Where headers are
used, developers often use di↵erent and inconsistent headers for the same
information types.

Overall, our results highlight the mismatch between developer commenting
practices and commenting guidelines. Figure 6.8 indicates the number of
conventions the style guidelines suggest, but developers do not adopt them.
Table 6.3 shows various information types found (in the column Information
types) for each language and highlight which of them are suggested (X) or not
(x) by their style guidelines. The symbol ‘-’ denotes that the style guideline
does not mention the information type.

6.4 Implications and Discussion

Java and Python. There are some conventions that the guidelines suggest
to write in comments, but developers do not seem to adopt them. For ex-
ample, the Oracle style guideline suggests to write @version information in
class comments, but we found no instance of this tag in our sampled class
comments. In contrast, there were some information types that the guidelines
suggested to avoid, but developers nevertheless wrote. For example, the Ora-
cle style guideline suggests “Documentation comments are meant to describe
the specification of the code, from an implementation-free perspective”, but we
found developers writing implementation details in class comments under the
expand category. In contrast, the guideline suggests to write such details in
block comments. We found similar instances for Python where the guidelines
suggest to write ownership information, but comments did not contain that.
We highlighted some of these mismatches in Table 6.3. However, whether
writing the implementation information in class comments is due to the ease
of embedding the information, or the laziness of developers, would require
surveying the developers.

Smalltalk. When we analyzed the content style aspect, we found that devel-
opers follow a mix of the first person and third person to express the same
information about the class. Although more than 75% of the comments in re-
cent versions follow the style conventions of the template, there is a substantial
proportion of comments that are written di↵erently, creating an inconsistent
style across projects. This suggests a need for better structure conventions, as
the template does not follow any strict structural guidelines to organize the
content, thus forcing developers to look through the entire comment to find
a piece of information. Encouraging developers to follow structural guidelines
in the text, and writing comments with standard headers will allow other de-
velopers to easily extract information from them. We suggest that the Pharo
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Table 6.3: The information types from the CCTM suggested or not by the guidelines

Java Eclipse Hadoop Vaadin Spark Guava Guice

Summary X X X X X X
Expand X X X X X X
Ownership X x X X - -
Pointer X X X X - -
Usage X X X X - -
Deprecation x X X X X X
Rationale X X X X - -
Warning X X X X - -
Exception x x x x X X
Todo - - - X - -
Recommendation - - - - - -
Precondition X X X X - -
Observation - - - - - -
Formatter x x x x - -
Subclass explanation - - - - - -
Commented code - - - - - -
Directive - - - - - -
Incomplete x x x x - -
Auto generated - - - - - -
Python Django Pipenv Pytorch iPython Pandas Requests Mailpile

Summary X X X X X X X
Usage X X X X X X X
Expand X X X X X X X
Development notes X - X X X - -
Parameters x x X X X x x
Warning - - X X X - -
Links - - - X X - -
Recommendation - - - X X - -
Subclass explanation X X - X - X X
Exception - - X X X - -
Version - - - X X - -
Precondition - - - - - - -
Coding guideline - - - X X - -
Todo - - - - - - -
Observation - - - - X - -
Dependency - - - - - - -
Extension - - - - - - -
Noise - - - - - - -
Smalltalk Pharo1 Pharo2 Pharo3 Pharo4 Pharo5 Pharo6 Pharo7

Intent X X X X X X X
Responsibility – – – X X X X
Collaborators X – – X X X X
Instance variables X X X X X X X
Key messages - - - X X X X
Examples - - - X X X X
Implementation points - - - X X X X
Refer other resources - - - - - - -
Subclass explanation - - - - - - -
Class references - - - - - - -
Todo - - - - - - -
Naming conventions - - - - - - -
Coding guideline - - - - - - -
Warnings - - - - - - -
Discourse - - - - - - -
Links - - - - - - -
Extensions - - - - - - -
Recommendations - - - - - - -
Observations - - - - - - -
Contracts - - - - - - -
Dependencies - - - - - - -
License - - - - - - -
Other - - - - - - -
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comment template should impose a formatting and markup style to structure
the details in comments.

Impact of coding conventions. Coding style guidelines impact program
comprehension and maintenance activities. However, not all conventions from
the guidelines have the same impact on these activities. Binkley et al. eval-
uated the impact of identifier conventions on code comprehension, but the
conventions were limited to identifiers [23]. Smit et al. [152] ranked 71 code
conventions that are most important to maintainable code. However, they
accounted only for missing or incomplete Javadoc comments on public types
and methods, and did not account for other comment-related conventions,
especially about their content. Similarly, most previous work has focused on
building tools for formatting and naming conventions for code entities, while
being very limited on comment conventions [6, 11]. Therefore, assessing the
impact and importance of comment conventions depending on a specific do-
main and project, and on various development tasks appears to be another
potential direction. We labeled a dataset of 1 050 class comments of three
languages and 687 comment conventions. This dataset can help researchers
rank the specific comment conventions to find out their importance and im-
pact on program comprehension and maintenance activities, and thus help
in developing comment quality tools based on supervised machine-learning
approaches.

Adherence of comment conventions. Previous works, including Bafatakis
et al. and Simmons et al., evaluated the compliance of Python code to Python
style guidelines [15, 150]. However, they included only a few comment con-
ventions and missed other types of conventions, such as writing style, or con-
tent. Our study found various comment conventions that developers often
follow, such as grammar rules, and rules governing the syntax for writing dif-
ferent types of information, but these are not covered in previous studies. We
measured the adherence of Smalltalk class comments to the default comment
template and found that developers write the template suggested informa-
tion types more often and follow the writing conventions to write them. Java
and Python do not provide any default template to write comments, but our
results show that developers follow content and writing style conventions sug-
gested by the style guidelines, thus indicating the need for the future studies
to include such conventions in their analysis.

To ensure developers follow such guidelines, various automated style check-
ers or linters, e.g., Checkstyle,4 Pylint,5 and ESLint6 turn such guidelines into
rules and then evaluate the rules against comments automatically. However,

4https://checkstyle.org/checks.html
5https://www.pylint.org/
6https://eslint.org/
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these style checkers are not available for all programming languages, and for
the supported ones, they provide limited rules for addressing code commenting
guidelines. The majority are limited to detecting missing comments and to
verifying formatting guidelines, but not checking the adherence to guidelines
that concern the content and style of comments. Furthermore, the results
indicated the need to conduct extensive studies on (i) which comment-related
conventions linters provide, (ii) how well linters cover comment conventions
from various style guidelines, and (iii) building tools and techniques to reduce
the mismatch between developer commenting practices and style guidelines.
Our dataset provides relevant data to observe which commenting guidelines
developers frequently follow in their comments and which they do not. We
plan to survey some popular tools to see the extent they support various com-
ment conventions that we identified. Thus, it can help enhance the rule set of
these tools and conduct studies in other languages.

Comment quality attributes. We identified several quality attributes (QAs),
such as completeness, or consistency to assess comment quality. However, the
results show that several studies either fail to specify the definition of QAs, or
refer to di↵erent terminologies for the same attribute. The guidelines suggest
various comment conventions that describe QAs, such as how to write concise,
precise, or consistent comments. Collecting such conventions can define the
QAs for comment content in a uniform and standard way. For instance, the
completeness quality attribute measures how complete a comment is [184],
and the style guidelines suggest which types of information should be written
for which type of comment, e.g., a class comment should contain a summary
of the class, i.e., summary information type, or a method comment should
have its parameter details. Thus, according to the guideline, the completeness
quality attribute can be defined as ‘the information types suggested by the
guideline for a particular comment type (class, or method comment) are avail-
able or not in the comment’. If all of the information types are available in a
comment, then the comment can be considered complete. Table 6.4 presents
our identified QAs in the column QA and their definition based on the style
guidelines in the column Description. For instance, completeness can be mea-
sured with respect to the availability of certain information types, and thus
missing information types can be indicated to developers to add them.

6.5 Threats to Validity

Threats to construct validity. This mainly concerns the measurements used
in the evaluation. First, we are aware that we sampled only a subset of the
extracted class comments. However, (i) the sample size limits the estimation
imprecision to 5% of error for a confidence level of 95%, and (ii) to limit the
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Table 6.4: Various QAs emerged from the style guidelines

QA Description

Accessibility To what extent the information available in comments is easy to find or access
Readability To what extent the comment is readable, and use of certain words
Author-related Author information is written as required by the guidelines
Completeness Types of information suggested by a guideline are mentioned in the comment
Similarity The information is already available in comments
Consistency The comment follows the consistent style that is described in the style guideline
Accuracy The information is enough precise, e.g., usage information about the class in-

cludes a code example as required by the guideline
Organization Information types are organized or structured as suggested by the guidelines,

e.g., summary information should be on the top of a comment
Format The information type follows the correct writing style, includes visuals or code

examples, e.g., a summary is written using phrases rather than complete sen-
tences

Conciseness The information is succinct and necessary in comments according to the guide-
line, e.g., a summary should be one line

Internationalization Comment can be correctly translated to other natural languages

subjectiveness and the bias in the evaluation, three evaluators (three authors
of this work) manually analyzed the resulting sample.

Another threat to construct validity concerns the definition of the rule
taxonomy, information types, and writing rules from the template, which are
performed on data analyzed by three subjects. Indeed, there is a level of
subjectivity in deciding whether a convention belongs to a specific taxonomy
category or not and whether a comment follows the rule. To counteract this
issue, we performed a two-level validation step. This validation step involved
further discussion among the evaluators, whenever they had divergent opin-
ions, until they reached a final decision.

Threats to internal validity. This concerns confounding factors that could
influence our results. To analyze whether developers follow a rule in their com-
ments or not, we performed a manual analysis. The main threat to internal
validity in our study is that the assessment is performed on data provided by
human subjects; hence it could be biased. To counteract this issue, the eval-
uators of this work were two Ph.D. candidates and one faculty member, each
having at least four years of programming experience. To make all decisions
drawn during the evaluation process transparent, all results of the various
validation steps are shared in the replication package (to provide evidence of
the non-biased evaluation) and described in detail in the paper.

A second threat involves the rule taxonomy definition since some categories
could overlap or be missing. To alleviate these issues, the authors performed a
pilot study that involved a validation task on a Pharo comment template and
then extended this work to Java and Python style guidelines. Then a wider
validation was performed involving the three evaluators.

Threats to external validity. This concerns the generalization of the re-
sults. Our main aim is to investigate the commenting conventions and devel-
oper commenting practice characterizing the comments of three programming
languages. Programmers developing di↵erent kinds of applications such as
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end-user applications, might follow di↵erent commenting guidelines and have
entirely di↵erent commenting practices. To alleviate this concern to some ex-
tent, we analyzed a sample set of comments from a combination of projects
from di↵erent ecosystems of Pharo, Java, and Python. Thus, our empirical
investigation is currently limited to these ecosystems and not generalizable
to other programming languages. On the other hand, our results highlight
how various languages provide commenting guidelines, e.g., Pharo provides
a comment template, whereas Java and Python provide standard documen-
tation guidelines. However, it is important to point out that variables such
as developer experience could have influenced the results and findings of this
work, e.g., more experienced developers could be more prone to following or
violating the rules or be more aware of the actual commenting guidelines.

Finally, during the definition of our rule taxonomy, we mainly relied on a
quantitative analysis of coding style guidelines, without directly involving the
actual developers. Thus, for future work, we plan to involve developers in the
loop, via surveys and face-to-face or conference call interviews.

Conclusion threats. This concerns the conclusion derived from the results.
We supported our findings by using appropriate statistical tests, such as the
Wilk-Shapiro normality test to verify whether the non-parametric test could
be applied to our Smalltalk data. Finally, we used the Vargha and Delaney
Â12 statistical test to measure the magnitude of the di↵erences between the
studied distributions.

6.6 Summary and Conclusion

Given the importance of code comments and consistency concerns in projects,
we studied various style guidelines and diverse open-source projects in the
context of comment conventions. We highlighted the mismatch between what
conventions the style guidelines suggest for class comments, and how often
developers adopt and follow them, and what conventions they follow, but
are not suggested by the style guidelines. Similarly, in Java and Python we
highlighted certain rules that developers often follow or violate. We found that
developers follow the content and writing style rules, but violate structure and
syntax rules in Java and Python.

However, automatically identifying this mismatch is not yet fully achieved.
This indicates the need to automate the software documentation field further.
Our results also indicate the need to conduct extensive studies on various
linters and quality assessment tools to know the extent they cover comment
conventions and improve them to support the missing conventions.
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Commenting Practice Concerns

The previous chapter showed the varying standards for code comments, avail-
ability of numerous coding style guidelines for a project, and scattered com-
menting conventions within the guidelines. This makes it hard for developers
to find relevant commenting conventions. Given the unstructured or semi-
structured nature of comments and availability of numerous guidelines, de-
velopers become easily confused (especially novice developers) about which
convention(s) to follow, or what tools to use while writing code documenta-
tion. Thus, they post related questions on external online sources to seek
better commenting practices. In this chapter, we analyze code comment dis-
cussions on online sources Stack Overflow (SO) and Quora to shed some light
on the questions developers ask about commenting practices.

Our results highlight that on SO nearly 40% of the questions discuss how to
write or process comments in documentation tools and development environ-
ments. In contrast on Quora, developer questions focus rather on background
information (35% of the questions) or asking opinions about whether to add
comments to code or not (16% of the questions).

The chapter is based on the papers:

� “P. Rani, M. Birrer, S. Panichella, M. Ghafari, and O. Nierstrasz. What do developers
discuss about code comments?, SCAM’21” [134] and

� � “P. Rani, M. Birrer, S. Panichella, and O. Nierstrasz. Makar: A Framework for
Multi-source Studies based on Unstructured Data, SANER’21” [26].
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T
here exist various coding style guidelines or project documents to guide
developers in writing code comments. However, the availability of multiple

syntactic alternatives for comments, the freedom to adopt personalized style
guidelines,1 the challenges in finding relevant comment conventions, and the
lack of tools for assessing comments, confuse developers about which comment-
ing practice to adopt [6], or how to use a tool to write and verify comments.

To resolve potential confusion and learn best commenting practices, de-
velopers post questions on various Q&A forums. SO, one of the most popular
Q&A forums, enables developers to ask questions to experts and other devel-
opers [158]. Barua et al. determined the relative popularity of a topic across
all SO posts and discovered that the “coding style” topic is the most popular
[17]. Similarly, Quora [124] is another platform widely adopted by developers
to discuss software development aspects [85]. However, what specific problems
developers report about code comments, such as challenges in locating conven-
tions, writing comments in development environments, or lack of commenting
conventions, is unknown. Consequently, we gather developer concerns by an-
swering RQ4: What do developers ask about commenting practices on Q&A
forums?

Our results show that developers frequently ask the best syntactic con-
ventions to write comments, ways to retrieve comments from the code, and
background information about various comment conventions. Specifically, the
questions about how to write or process comments, i.e., implementation strat-
egy in a development environment, e.g., documentation tool, integrated de-
velopment environment (IDE) are frequent on SO. In contrast, the questions
concerning background information behind various conventions or opinions on
the best commenting practices are frequent on Quora. Our analysis shows that
developers are interested in embedding various kinds of information, such as
code examples and media, e.g., images in their code comments, but lack the
strategies and standards to write them. Additionally, developers ask about
the ways of automating the commenting workflow with documentation tools
or IDEs to foster commenting practices and to assess them. This shows the
increasing need to improve the state of commenting tools by emphasizing bet-
ter documentation of the supported features, and by providing their seamless
integration in the development environments.

7.1 Study Design

7.1.1 Research Questions

To get an insight into developer needs and challenges, we answer RQ4 by
formulating the following subsidiary research questions (SRQs):

1https://github.com/povilasb/style-guides/blob/master/cpp.rst

120

https://github.com/povilasb/style-guides/blob/master/cpp.rst


7.1. Study Design

SRQ1: What high-level topics do developers discuss about code comments?
Our interest is to identify high-level concerns and themes developers
discuss about code comments on Q&A platforms.

SRQ2: What types of questions do developers ask about code comments?
Developers may ask how to write comments, or what is the problem in
their comments, or why a specific comment convention should be used
etc. Our aim is to identify the types of questions developers frequently
ask and which platform they prefer for which types of questions.

SRQ3: What information needs do developers seek about commenting prac-
tices? Developers may face problems in writing or using comments in
a specific development environment, e.g., language, tool, or IDE. Such
questions may include how to set up a tool to write comments in an
IDE, what is the syntax to write a class comment, how to format inline
comments etc.

SRQ4: What specific commenting conventions are recommended by devel-
opers? Developers may face a dilemma in adopting various commenting
conventions. Expert developers on Q&A forums may support such de-
velopers by recommending the best commenting practices, or describing
the limitations of current tools and conventions. Our aim is to collect
such recommendations.

7.1.2 Data Collection

SO. To identify the relevant discussions concerning commenting practices, we
used an approach similar to Aghajani [4]: we selected the initial keywords
(Ik), such as comment, convention, and doc to search them on the SO tag
page.2 The search converged to a set of 70 potentially relevant tags, referred
to as initial tags (It).

Two authors independently examined all the tags, their descriptions, and
the top ten questions in each tag, and selected the relevant tags. We observed
that certain tags are ambiguous due to their usage in di↵erent contexts. For
example, the comment tag with 5 710 questions on SO contains questions
about development frameworks e.g., Django, which can attach comments to a
website or other external sources, i.e., 478 questions tagged with the wordpress
tag, or about the websites where users add comments to a post, i.e., 512 ques-
tions tagged with the facebook tag. We discarded posts where co-appearing
tags were wordpress and facebook, or django-comment. The resulting set of
tags (It) contains 55 tags out of the 70 initial tags, and can be found in the
Replication Package (RP) [129].

We extracted all questions tagged with at least one tag from the It set,
which resulted in 19 705 unique questions. For each question, we extracted

2https://stackoverflow.com/tags (accessed on Jun 2021)
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various metadata fields, such as ID, title, body, tags, creation date, and view
count from SO using the Stack Exchange Data Explorer interface [157]. The
interface facilitates the users to query all Stack Exchange sites in an SQL-like
query language.3

Quora. Extracting data from Quora is non-trivial due to the lack of pub-
licly available datasets, its restrictive scraping policies [117], and the absence
of a public API to access that data. Thus, to extract its data, we implemented
a web scraper in Python using the Selenium framework, and BeautifulSoup
to parse the HTML code [19, 146]. In Quora, the notion of topics is the same
as for tags on SO, so a question in Quora can be tagged with multiple topics.
Unlike the SO tag page, Quora provides neither an index page that lists all
its topics, nor a list of similar topics on a topic page. We, therefore, used
the relevant SO tags as initial Quora topics, searched for them on the Quora
topic search interface, and obtained 29 topics, such as Code Comments, Source
Code, and Coding Style. The list of all Quora topics and their mapping to
SO tags can be found in the RP [129].4 We scraped all questions with their
metadata, such as the URL, title, body, and topics, which resulted in 3 671
questions.

7.1.3 Analysis Method

Since each SRQ focuses on a di↵erent aspect of the questions, we analyzed the
questions at various levels, such as focusing only on the title of the question,
the entire question body, or the answers to the question. The rationale behind
each level is that future approaches for identifying and automating developers’
intent, needs, and recommendations can focus on that specific aspect of com-
ments they want to evaluate and improve. Our manually labeled questions for
SRQs, i.e.,SRQ2, SRQ3, and SRQ4 can serve as an initial dataset for building
such approaches. Figure 7.1 illustrates the steps of identifying and extracting
relevant posts from the selected sources, and analyzing them for each SRQ.

SRQ1: High-Level Topics. To answer SRQ1, (What high-level topics do
developers discuss about code comments? ), we used a semi-automated ap-
proach involving LDA [27], a well-known topic modeling technique used in
SE, to explore topics from the SO and Quora posts [17, 174, 180, 120]. LDA
infers latent discussion topics to describe text-based documents. Each docu-
ment can contain several topics, and each topic can span several documents,
thus enabling the LDA model to discover ideas and themes in a corpus. We
applied LDA to the SO dataset, but excluded the Quora dataset as it contains
nearly 80% irrelevant posts based on the manually analyzed sampled questions
shown in Table 7.1. Additionally, as LDA uses the word and co-occurrence

3
File ‘Stack-exchange-query.md’ in our RP

4
File Tags-topics.md in the RP
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Figure 7.1: Research methodology to answer the SRQs

frequencies across documents to build a topic model of related words, having
a high number of irrelevant posts can impact the model quality. Since our ob-
jective is to discover the high-level concerns of developers, we extracted only
titles of the SO questions. The title summarizes the main concern, whereas
the body of a question adds irrelevant information, such as details of the de-
velopment environment, the strategies that the developer has tried, or already
referred sources.

To achieve reliable high-level topics from LDA, we performed the following
preprocessing steps on the question titles: removal of HTML tags, code ele-
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ments, punctuation, and stop words using the Snowball stop word list5, and
applied Snowball stemming[31]. We used the data management tool, Makar,
to prepare the data for LDA [26]. We provide the concrete preprocessing steps
Makar performed on the data in the Case study subsection A.1.2. The pre-
processed title field of the questions served as the input documents for LDA.
We used the Topic Modeling Tool [49], i.e., a GUI for MALLET [98] that
uses a Gibbs sampling algorithm, and facilitates augmenting the results with
metadata. The input data used for the MALLET tool and its output can be
found in the RP [129].

LDA requires optimal values for the k,↵, and � parameters to be chosen,
which depends on the type of data under analysis, however, selecting optimal
parameters remains an open challenge in SE tasks. Wallach et al. pointed out
that choosing a smaller k value may not separate topics precisely, whereas a
larger k does not significantly vary the quality of the generated topics [171].
Therefore, to extract distinct topics that are both broad and high-level, we
experimented with several values of k ranging from 5 to 25, as suggested by
Linares-Vásquez et al. [88]. We assessed the optimal value of k by analyzing
the topic distribution, the coherence value (large negative values indicate that
words do not co-occur together often)6 [141], and the perplexity score (a low
value indicates that a model correctly predicts unseen words) [74] for each
value of k from the given range [29]. This process suggested k = [10] as the
most promising value for our data (with the lowest perplexity of –6.9 and a
high coherence score of –662.1) as fewer redundant topics were selected with
these values.

In the next iterations, we optimized the hyperparameters ↵ and � by us-
ing the best average probability of assigning a dominant topic to a question,
inspired by the existing studies [142]. We selected the initial values of hy-
perparameters ↵ = 50

k , � = 0.01 using the de facto standard heuristics [22],
but allowed these values to be optimized by having some topics to be more
prominent than others. We ran the model optimizing the hyperparameters
after every ten iterations in a total of 1000 iterations. Thus, we concluded
that the best hyperparameter configuration for our study is k = 10, ↵ = 5,
and � = 0.01. As LDA does not assign meaningful names to the generated
topics, we manually inspected a sample of 15 top-ranked questions from each
topic to assign the topic names.

Table 7.1: Posts or questions extracted from SO and Quora

Source # Extracted # Sampled # Relevant
SO 19 700 644 415
Quora 3 671 565 118

5http://snowball.tartarus.org/algorithms/english/stop.txt
6http://mallet.cs.umass.edu/diagnostics.php
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SRQ2, SRQ3: Taxonomy Study. To answer SRQ2 (What types of ques-
tions do developers ask about code comments? ) and SRQ3 (What informa-
tion needs do developers seek about commenting practices? ), we analyzed a
statistically significant sample set of posts from the SO and Quora posts reach-
ing a confidence level of 99% and an error margin of 5%. Thus, the resulting
sample set contained 644 posts for SO and 565 posts for Quora as shown in
Table 7.1. We selected the sampled posts using the random sampling approach
without replacement approach. We then derived a taxonomy of question types
and information needs for SRQ2 and SRQ3 respectively.

Table 7.2: Categories of question types

Category Description Keywords and examples

Implementation
strategy

The questioners are not aware of ways to write
or process comments, and ask questions about
integrating di↵erent information in their
comments, or using features of various tools

“How to”, e.g., How to use
@value tag in javadoc?

Implementation
problem

The questioners tried to write or process a
comment, but they were unsuccessful

“What is the problem?”, e.g.,
Doxygen \command does not
work, but @command does?

Error The questioners post an error, exception, crash,
or any warning produced by a documentation
tool while writing or generating comments

Contain an error message from
the exceptions or stack trace

Limitation and
possibility

The questioners seek information about
limitations of a comment related approach, tool,
or IDE, and various possibilities to customize a
comment

“Is it possible or allowed”, e.g.,
Is there a key binding for
block comments in Xcode4?

Background
information

The questioner seek background details on the
behavior of comments in a programming
language, a tool, or a framework.

“Why something”, e.g., Why
in interpreted languages the #
usually introduces a
comment?

Best practice The questioners are interested in knowing the
best commenting practice, guidelines, or a
general advice to tackle a comment-related
problem or convention

“Is there a better way to”, e.g.,
What is the proper way to
reference a user interaction in
Android comments?

Opinion The questioners are interested in knowing the
judgment of other developers for a comment
convention

“What do you think”, e.g., Are
comments in code a good or
bad thing?

Classification: We classified the sampled posts into a two-dimensional
taxonomy, which mapped the concepts of the selected questions. The first
dimension question types aims to answer SRQ2, and the second dimension
information needs answers SRQ3. The first dimension, which is inspired from
an earlier SO study [21], defines the categories that concern the kind of ques-
tion, e.g., if a developer is asking how to do something related to comments,
what is the problem with their comments, or why comments are written in a
particular way. We renamed their categories to fit our context, e.g., we re-
named their what type of questions to implementation problem [21]. We used
the closed card-sorting technique to classify the sampled questions in the first
dimension categories as shown in Table 7.2.

The second dimension information needs dimension outlines more fine-
grained categories about the types of information developers seek [69], e.g.,
development environment-related needs, such as comments in programming
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languages, tools, or IDEs, or about comments in general. The majority of
these categories are based on the software documentation work by Aghajani
et al. [4]. The questions were classified into those categories using the hybrid
card-sorting technique [101]. In the development environment-related needs,
we identified if a question is about IDE and editors, e.g., Intellij, Eclipse, pro-
gramming languages, e.g., Java, Python, or documentation tools, e.g., Javadoc,
Doxygen. The further sublevels of the information needs taxonomy focus on
specific information a questioner is seeking in these development environments,
such as asking about the syntax to add a comment in code, or specific infor-
mation in the Javadoc comment [69]. For instance, the question “How to
reference an indexer member of a class in C# comments” [SO:341118 ]7 is
asking how to refer to an element in C# comments, and thus gets classified
into the implementation strategy category according to the first dimension. In
more detail, the question is about the C# language and asking for the syntax
required to refer to a member in a class comment, thus it gets classified into the
three hierarchical levels Programming languages—Syntax and format—Class
comment according to the second dimension taxonomy shown in Figure A.9.

Execution and Validation: Three evaluators, i.e., a Ph.D. candidate,
a master’s student, and a faculty member, each having more than three years
of programming experience, participated in the evaluation of the study. The
sampled questions were divided into three equally-sized subsets of questions,
and random questions were selected for each subset to ensure that each eval-
uator got a chance to look at all types of questions. We followed a three
iteration-based approach to categorize the questions. In the first iteration, we
classified the posts into the first and second-dimension categories. In the sec-
ond iteration, each evaluator (as a reviewer) reviewed the classified questions
of the other evaluators and marked their agreement or disagreement with the
classification. In the third iteration, the evaluator agreed or disagreed with
the decision and the changes proposed by the reviewers. In the case of dis-
agreements, another reviewer who has not yet been involved in that particular
classification reviewed it and decided. Finally, if all evaluators disagreed, we
chose the category based on the majority voting mechanism. This way, it was
possible to ensure that at least one other evaluator reviewed each classifica-
tion. In case of a question belonging to more than one category, we reviewed
the other details of the question, such as tags and comments of the questions,
and chose the most appropriate one. We finalized the category assignment
and their names based on the majority voting mechanism.

Based on the validation approach, all three evaluators checked the rele-
vance of their assigned questions, and then they reviewed the questions that
the other evaluators marked as irrelevant. The third evaluator reviewed and
resolved the disagreement cases using a majority voting mechanism (Cohen’s

7
We use the notation SO:<id> to refer to Stack Overflow hyperlinks that are generated

according to the structure: https://www.stackoverflow.com/questions/<id>
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k = 0.80). As a result, 415 questions of SO and 118 questions of Quora were
found relevant to our study. In the end, the irrelevant questions were once
again manually inspected, but no new relevant topic could be identified.

SRQ4: Recommended comment conventions. Various organizations and
language communities present numerous comment conventions to support the
consistency and readability of their comments. However, not all of these
conventions are recommended by developers in actual practice, and some con-
ventions are even discouraged, depending on a development environment. We
observed some cases in which developers assumed that conventions were fea-
sible, e.g., overriding docstrings of a parent class in its subclasses. Still, other
developers pointed them out as a limitation of current documentation tools
or environment. We collected such comment conventions recommended by
developers in their answers on SO and Quora. From the classified questions in
SRQ2, we chose the questions categorized in the best practice category. Based
on the accepted answers of these questions, we identified the recommenda-
tion or limitation of various comment conventions. In case a question had no
accepted answer, we referred to the top-voted answer.

7.2 Results

7.2.1 High-Level Topics

Table 7.3 shows the 10 topics generated by the LDA analysis, where the column
Relevance denotes if a topic is relevant (R) or irrelevant (IR) in the context
of code comments, and Topic name is the assigned topic label. The column
Topic words shows the words generated by LDA, which are sorted in the order
of their likelihood of relevance to the topic.

In the first topic syntax and format , developers mainly ask about the syn-
tax of adding comments, removing comments, parsing comments, or regular
expression to retrieve comments from code. Occasionally, the questions are
about extracting particular information from comments to provide customized
information to their clients, such as obtaining descriptions, or to-do comments.
Depending on a programming language or a tool, strategies to add informa-
tion in the comments vary, such as adding a description in XML comments
[SO:9594322 ], in the R environment [SO:45917501 ], or in the Ruby environ-
ment [SO:37612124 ]. This confirms the relevance of recent research e↵orts on
identifying the comment information types in various programming languages
[116, 183, 136].
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7.2. Results

The IDEs and editors topic contains questions about adding or removing
comments in the code in various IDEs, or setting up documentation tools to
write comments. The R Documentation topic groups questions about docu-
mentation features provided in the R language such as creating various formats
of documents including Markdown, Latex, PDF, or HTML. “R Markdown”, a
documentation format available in the knitr package, provides these features
in R. The Code convention topic groups the questions concerning best prac-
tices, such as printing the docstrings of all functions of an imported module,
or conventions to check types in Javascript. This topic also includes questions
where developers ask for the reasons behind code conventions, such as having
only one class that contains the main method in Java, or using particular
symbols for comments. In the documentation generation topic, developers
inquire about problems in automatically generating project HTML documen-
tation from comments using various documentation tools, such as Sphinx, or
Doxygen. Besides code comments, software projects support other forms of
documentation, such as wikis, user manuals, API documentation, or design
documentation. As a project documentation is divided into various compo-
nents, developers post questions about locating them in the topic seeking doc-
umentation. Additionally, developers also showed interest in learning various
programming languages and thus sought documentation to learn them.

Overall, developers complained about the inability to locate various syntax
or format-related conventions, and guides describing the use of the documenta-
tion tools in their development environment, and their integration. Developers
were also interested in automating their code documentation and thus asked
for related features.

7.2.2 Question Types
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Figure 7.2: Types of questions identified on SO and Quora
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7. Commenting Practice Concerns

To get insights into the types of questions developers ask about comments
and where they ask these questions more often, we categorized the sampled
questions from SO and Quora according to the (question type). Figure 7.2
shows such categories on the x-axis with respect to both sources, and the
y-axis indicates the percentage of questions belonging to a category out of
the total question of that source. The figure highlights that implementation
strategy (how-to) is the most frequent category on SO, confirming prior study
results [20, 7, 174, 17]. Di↵erent from previous studies, we found best practice
and background information questions to arise more frequently than questions
about implementation problem.

We also observed that di↵erent types of questions are prevalent on the
investigated platforms, i.e., developers ask implementation strategy questions
and implementation problem questions more frequently on SO compared to
Quora. Despite Quora being an opinion-based Q&A site, we observed com-
menting best practice and background information questions. This shows how
developers rely on Quora to gather knowledge behind numerous conventions
and the features provided by a development environment. Such questions are
also found on SO, but to a lesser extent. For instance, we observed the ques-
tion: “What are these tags @ivar @param and @type in python docstring”
[SO:379346 ] on SO. Based on the thousands of views the post has received,
we can say that the question has attracted the attention of many develop-
ers. Uddin et al. gathered developers’ perceptions about APIs in SO by
mining opinions automatically [169]. Our study provides the evidence to in-
clude Quora as another source to validate their approach and mine developer’s
opinions.

Finding. Di↵erent kinds of questions are prevalent on SO and Quora e.g.,
implementation strategy and implementation problem questions are more
common on SO, whereas best practice and background information questions
besides opinion-based questions are more prevalent on Quora. This suggests
that Quora can be a useful resource to understand how developers perceive
certain development aspects, whereas SO can be useful to understand what
technical challenges they face during development.

Finding. The implementation strategy category questions are the most
frequently viewed questions on SO and limitation and possibility questions
are the second most viewed questions based on their view count. Based
on the answer count of questions, best practice questions trigger the most
discussions along with implementation strategy.

7.2.3 Developer Information Needs

To gain a better insight into developer needs, we analyzed the questions from
two di↵erent perspectives in Figure 7.3. The x-axis shows the kinds of prob-
lems developers face with code comments in their development environments,
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Figure 7.3: Distribution of question types and information needs categories

whereas the y-axis shows the types of questions developers ask, e.g., imple-
mentation strategy, problem. For example, the most frequent category imple-
mentation strategy contains questions about how to do something (comment-
related) in a development environment, be it specific to a programming lan-
guage, a documentation tool, or the IDE itself. Furthermore, many developers
discuss possible features of the tools and IDEs and editors in the limitation
and possibility category. This category highlights the developers’ struggle in
locating feature details in the documentation of such tools and indicates the
vital need for improving this aspect. However, which specific features and syn-
taxes of comments developers seek in the development environment is essential
information required to progress in this direction. Therefore, we first sepa-
rated general questions about comment conventions to the commenting high
levels category, and moved other development environment-related questions
to the programming languages, tools, and IDEs and editors categories, which
are first level categories shown in Figure A.9. We then added subcategories,
such as syntax and format, asking for feature, change comment template etc.
under each first level category to highlight the specific need related to it. This
is explained in Table 7.4 and illustrated in Figure A.9 [134]. Table 7.4 shows
the hierarchy of categories with the definition (D) and one example (E) of each
category in the column Definition and Example. The example uses only the
titles of the questions taken from SO or Quora due to space reasons. In the
following paragraphs we explain the most prevalent second level categories.
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7. Commenting Practice Concerns

Finding. One-third of the commenting questions are about their specific
development environment. The top two most frequent questions concern the
categories syntax and format and asking for feature indicating developers’
interest in improving their comment quality. The rest focus on setting up or
using documentation tools in IDEs to generate comments automatically.

Figure 7.4: Distribution of comments’ syntax and format discussions
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Figure 7.5: Distribution of the features developers are interested in

In the syntax and format category shown in Figure 7.4, developers dis-
cuss syntax to add various kinds of comments to the code, such as function
comments, class comments, block comments, and di↵erent tags. Specifically,
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7.2. Results

the syntax of writing function comments is asked more frequently, i.e., nearly
24% of questions, showing the importance of improving API documentation.
In this analysis, we found 23% of the questions marked as other are either
about the syntax of writing comments in a programming language or a tool
without stating the kind of comment (class/function/block), or concerning
the intent of syntax conventions. Such background questions are more often
posted on Quora compared to SO.

Finding. Developers often ask about the syntax to write method comments
compared to other kinds of comments like class, or package, showing the
trend of an increasing e↵ort towards API documentation. Another frequently
asked question on SO concerns the conventions to add di↵erent kinds of
information to code comments, such as code examples, media, or custom
tags, indicating developers’ interest in embedding various information in
comments.

Asking for feature is another frequent information that developers seek
on SO to locate various features provided by the documentation tools. We
rarely found such questions on Quora. We report such inquiries, as shown
in Figure 7.5, and in the category asking for feature under all development
environment categories in Figure A.9. Figure 7.5 shows that developers fre-
quently need to add di↵erent kinds of information to the code comments, such
as code examples: “How to add code description that are not comments?”
[SO:45510056 ], performance-related: “Javadoc tag for performance consid-
erations” [SO:39278635 ], and media-related [SO:43556442 ]. Additionally,
developers ask about features to add comments automatically, detect vari-
ous information from the comments, or synchronize the comments with code
changes [SO:23493932 ]. These questions show the worthiness of devoting re-
search e↵orts to the direction of identifying information types from comments,
detecting inconsistent comments, and assessing and generating comments au-
tomatically to improve code comments [116, 177]. We separated the feature-
related questions, i.e., the di↵erent features of the tools and IDEs into two
categories, using feature and asking for feature based on the user awareness.
In the former category, the user is aware of the existence of a feature in the
environment, but finds problems in using it as shown in Listing 8. In the latter
category, users inquire about the existence of a feature, or try to locate it, as
shown in Listing 9.

1 How to use @value tag in javadoc?

Listing 8: Using the @value feature in Javadoc

1 How can I show pictures of keyboard keys in-line with text with Sphinx?

Listing 9: Asking for a feature to add inline images
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7. Commenting Practice Concerns

Finding. Apart from the questions related to comment syntax and features,
developers ask about adopting commenting styles from other programming
languages, modifying comment templates, understanding comments, and
processing comments for various purposes.

In addition to the above categories, we observed that SO encourages de-
velopers, especially novice developers, to ask questions about the basics of
various topics [84]. We grouped such questions into the commenting high lev-
els category. Figure A.9 reports all levels of the second dimension according to
each source. For instance, the questions about setting up tools, ie tool setup,
or asking for various features , i.e., asking for features under IDE and editors
are not found on Quora. Similarly, the majority of the questions about doc-
umentation tools, i.e., tools are asked on SO, whereas the general questions
about comments, i.e., commenting high levels often exist on Quora.

7.2.4 Recommended Comment Convention

We discovered that there are various syntactic and semantic commenting con-
ventions mentioned in the style guides, and developers are often confronted
with several of them. In this chapter, we discovered that developers find it dif-
ficult to locate the conventions for a specific purpose. In Table 7.5, we collected
various comment conventions recommended by developers in their answers on
SO and Quora. For example, a developer asked “Should .net comments start
with a capital letter and end with a period?” [SO:2909241 ], concerning gram-
mar rules in the comments. The accepted answer a�rmed the convention and
described how it helps to improve readability. We, therefore, constructed the
recommendation “Long inline comments should start with a capital letter and
end with a period” under “.NET” in the column DE, i.e., Development Envi-
ronment. In some answers, developers describe the limitation of a convention,
we included Limitation for such answers. For instance, a developer asked if
an API documentation can be generated for di↵erent target audience using
the Doxygen tool, e.g., developer and users. The accepted answer indicated
that it is a currently not supported in the tool. For each recommendation, we
indicated whether it is specific to a programming language, a tool, an IDE, or
is instead a general recommendation, using tags such as “[Java], [Doxygen],
[General]” respectively. It is important to note that we did not verify how
widely these recommendations are adopted in the commenting style guide-
lines or projects, or how well they are supported by current documentation
checker tools or style checkers. This is a future direction for this work. On
the positive side, it represents an initial starting point to collect various com-
ment conventions confirmed by developers. We argue that it can also help
researchers in conducting the studies to assess the relative importance of com-
ment conventions or help tool developers in deciding which recommendation
they should include in their tools to address frequent concerns of developers.
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7.2. Results

Table 7.5: Comment conventions recommended by developers on SO and Quora

Topic DE Recommendation
Grammar .NET Long inline comments should start with a capital letter and end with a period.

.NET Long inline comments should be written as a complete English sentence (with
subject, verb, object).

General Check your coding style guidelines to verify how to write plural objects in the
comments, for example, Things(s) or Things.

General Do not mark the code section with an inline comment to highlight the modified
code section, but use the version control system to keep track of code changes.

Python Use backslash escape whitespace to use punctuations like apostrophe symbol in
docstring.

Python Use ‘truthy’ and ‘falsy’ words to denote boolean values ‘True’ and ‘False’
respectively.

General Do not write filler words, such as ‘please’ and ‘thank you’, nor swearing words
in the comments.

General Remove TODO comments when you finish the task.
Language General Comments should explain why and not how.

General Use correct notation to write block or multiline comments.
General Position your inline comments (about variable declaration) above the variable

declaration to remain consistent with method comment conventions.
General Do not write nested comments in the code.
General Use di↵erent tags to categorize the information in the comments.
General Do not use multiple single line comments instead of multi-line comments.
General Do not document file specifications in the code comments but rather document

them in the design specs.
General Use a consistent style, such as ‘variable’ or <variable> to di↵erentiate the

code variable names in the inline comments.
Java Implementation notes about the class should be mentioned before the class

definition rather than inside the class.
Java To denote a method (someMethod() of the class ClassA ) in the comments, use

the template the <someMethod> method from the <ClassA> class instead of
ClassA.someMethod().

.NET Document ‘this’ parameter of an extension method by describing the need of
‘this’ object and its value.

Javascript Limitation: Currently, there is no existing standard to document AJAX calls
of Javascript in PHPDoc style comments.

PHP Use ‘->’ symbol to reference instance/object method rather than ‘::’ in the
method comments.

SQL Use the same documentation style for SQL objects as you are using for other
code.

Groovy Limitation: There is no standard way to document properties of a dynamic
map in Javadoc like JSDoc’ @typedef.

Tool Javadoc Limitation: Currently, it is not possible to generate documentation of an API
in multiple languages (in addition to English) with the same source code.

Javadoc Limitation: The tag @value support fields having literal values. Javadoc and
IntelliJ IDEA do not support fetching value from an external file using the
@value tag in Javadocs.

Javadoc Write annotations after the method Javadoc, before the method definition.
Doxygen Use @copydoc tag to reuse the documentation from other entities.
Doxygen Limitation: Currently, it is not possible to generate documentation of an API

for di↵erent readers, such as developers and users.
Doxygen Use @verbatim / @endverbatim to document console input and output.
Roxygen Limitation: It is not possible to override docstrings so the parent docstring is

used when inheriting a class.
PHPDoc Limitation: Currently, it is not supported to document array details in the

return type of a method.
PHPDoc Limitation: Currently, using the @value tag or any similar tag to refer to the

value of a field is not supported in PHPDoc, so developers should use the @var
tag instead.

PHPDoc Use class aliases in import statement to write a short name in docblock.
PHPDoc,

JSDoc
Do not put implementation details of a public API in the API documentation
comments, rather put them in inline comments inside the method.

JSDoc Mention the class name in the description to denote the instance of the class.
GhostDoc Create your default comment template using c# snippets.

Sphinx Limitation: It can’t create sections for each class. Add yourself the sections in
the .rst file.
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7.3 Implications and Discussion

Coding Style Guidelines. Although various coding style guidelines provide
conventions to write comments, our results showed that SO developers seek
help in writing correct syntax of various comment types, i.e., class, function,
or package comments highlighted in Figure 7.4. They also seek help in adding
specific information in comments, or formatting comments. Typical types of
questions are “What is the preferred way of notating methods in comments?”
[SO:982307 ], and “Indentation of inline comments in Python” [SO:56076686 ],
or “Indentation of commented code” [SO:19275316 ].

Organizing the information in the comments is another concern highlighted
in the study, for example, “How to di↵erentiate the variables within a com-
ment” [SO:2989522 ], “Where to put class implementation details” (in a class
comment or in an inline comment) [SO:35957906 ], and “Which tag to use for
a particular type of information” [SO:21823716 ]. We also found developer
concerns regarding grammar rules and word usage in all the sources we ana-
lyzed, i.e.,SO [SO:2909241 ] and Quora [125]. Although various style guide-
lines propose comment conventions, there are still many aspects of comments
for which either the conventions are not proposed, or developers are unable
to locate them. Developers commonly ask questions, such as “Any coding/-
commenting standards you use when modifying code?” [SO:779025 ] on SO
and “Why is there no standard for coding style in GNU R?” on Quora. This
indicates a need to cover detailed aspects of comments in the coding style
guidelines and assure their discoverability to developers to help them write
high-quality comments.

Tools to Assess Comment Quality. Our results showed that developers are
interested in various automated strategies, such as automatic generation of
comments, detection of bad comments, identification of information embed-
ded in comments, and the quality assessment of comments. However, they lack
tools that can be integrated into their IDE, especially to automatically verify
commenting style [SO:14384136 ]. Moreover, a limited set of documentation
tools supports the comment quality assessment or the adherence of comments
to their commenting conventions. For example, current style checker tools,
such as Checkstyle, RuboCop, and pydocstyle provide support for format con-
ventions, but lack support for comprehensive checks for grammar rules and
content.8,9,10 Additionally, some languages with advanced style checkers do
not support comment checkers at all, such as OCLint for Objective-C, Ktlint
for Kotlin, and Smalltalk.11,12 We found instances of developers asking about

8https://checkstyle.org/checks.html
9https://rubocop.org/

10http://www.pydocstyle.org/
11http://oclint.org/
12https://github.com/pinterest/ktlint
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the existence of such tools [SO:8834991 ] in Figure 7.5 and in asking tool ex-
istence category in Table 7.4. Therefore, more tool support is needed to help
developers in verifying the high-quality of comments.

Tomasottir et al. showed in their interview study that developers use
linters to maintain code consistency and to learn about the programming
language [165]. By configuring linters early in a project, developers can use
them similarly to learn the correct syntax to write and format comments
according to a particular style guideline. However, due to their support to
multiple languages, assisting developers in language-specific conventions, or
customizing comments to add more information would still require further
e↵ort.

7.4 Threats to Validity

Threats to construct validity. This concerns the relationship between theory
and experimentation. In our study, they mainly relate to the potential impre-
cision in our measurements. To mitigate the potential bias in the selection of
developer discussions on SO, we relied on SO tags to perform an initial filter-
ing. However, it is possible that this tag-based filtering approach missed some
relevant posts concerning comment convention practices and topics. We there-
fore investigated the co-appearing tags to find similar relevant tags. Aghajani
et al. studied software documentation-related posts, including code comments
on SO and other sources [4]. We extracted their documentation-related tags
from the given replication package and compared them to our tags (It) to
verify if we missed any. We mapped the selected SO tags as keywords on
Quora and searched these keywords on the Quora search interface. To avoid
eventual biases in this manual process, we also adopted LDA to investigate
high-level topics emerging in the SO posts. Thus, a mix of qualitative and
quantitative analysis was performed to minimize the potential bias in our in-
vestigation, providing insights and direction into the automated extraction of
relevant topics.

Threats to internal validity. This concerns confounding factors, internal to
the study, that can a↵ect its results. In our study, they mainly a↵ect the
protocol used to build the taxonomies, which could directly or indirectly in-
fluence our results. To limit this threat, we used di↵erent strategies to avoid
any subjectivity in our results. Specifically, all posts were validated by at least
two reviewers, and in case of disagreement, a third reviewer participated in
the discussion to reach a consensus. Thus, for the definition of the taxonomy,
we applied multiple iterations involving di↵erent authors of this work.

Threats to conclusion validity. This concerns the relationship between the-
ory and outcome. In our study, they mainly relate to the extent to which the
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produced taxonomy can be considered exhaustive. To limit this threat, we
focused on more than one source of information (SO and Quora), so that the
resulting taxonomies have a higher likelihood to be composed of an exhaustive
list of elements i.e., comment convention topics.

Threats to external validity. This concerns the generalizability of our find-
ings. These are mainly due to the choice of SO and Quora as the main sources.
SO and Quora are widely used for development discussions to date, although
specific forums such as Reddit could be considered for future works.13 More-
over, besides all written sources of information, we are aware that there is
still a portion of the developer communication taking place about these topics
that are not traceable. Thus, further studies are needed to verify the general-
izability of our findings.

7.5 Summary and Conclusion

In this chapter, we investigated developer discussions regarding commenting
practices occurring on SO and Quora. To understand the high-level concerns
of developers, we performed an automated analysis, i.e., LDA on extracted
discussions, and then complemented it with a more in-depth manual analy-
sis on the selected sampled posts. From the manual analysis, we derived a
two-dimensional taxonomy. The first dimension of the taxonomy focuses on
the question types, whereas the second dimension focuses on five types of first
level concerns and 20 types of second level concerns developers express. The
first level concerns the leading topics developers write about various devel-
opment environments, such as an IDE, an editor, a documentation tool, or
a programming language. The second level concerns further specify the first
level concerns regarding code comments, such as writing the correct syntax,
asking for a particular feature, or understanding a part of the documentation
in a development environment.

We qualitatively discussed our insights, and presented implications for
developers, researchers, and tool designers to satisfy developer information
needs with respect to commenting practices. We provide the data used in
our study including the validated data and the detailed taxonomy, in the
replication package [134]. We also presented a list of recommendations given
by experts on SO and Quora to help developers in verifying their comment
conventions.

13https://www.reddit.com
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Conclusion and Future Work

8.1 Conclusion

I
n order to build e↵ective comment quality assessment tools, we first need
to understand the practices in evaluating and writing code comments. We

proposed a multi-perspective view of the comments to gain this understand-
ing. The first perspective explored the quality attributes and techniques that
are used to assess comment quality. The second perspective focused on the
analysis of developer commenting practices across programming languages,
and the automated identification of the information types used in comments.
The third perspective gathered developer concerns about commenting prac-
tices from major Q&A forums. This chapter revisits our research questions
formulated for each introduced perspective, presents the implications. We
outline possible directions and the concluding remarks to improve comment
quality assessment tools for future research.

RQ1: How do researchers measure comment quality?

To understand the researchers’ perspective, we conducted a systematic lit-
erature review on the comment quality assessment studies of the past ten
years i.e., 2010 until 2020. We found that researchers focus mainly on code
comments of Java despite the increasing trend of developers in using multi-
language environments in software projects. Similarly, the trend of analyzing
specific types of comments, e.g., method comments, or inline comments is
increasing, but the studies rarely focus on class comments. Compared to pre-
vious work by Zhi et al., we could identify ten additional quality attributes
(QAs) researchers use to assess code comment quality. We have identified
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21 quality attributes, but not all of them are considered equally important
in academia. Researchers consider some attributes more often, such as com-
pleteness, consistency, content relevance, and readability. Whereas they rarely
consider other attributes, such as coherence, conciseness, accessibility, and un-
derstandability even though numerous studies showed the benefits of coherent,
concise, or understandable comments. Why some attributes hold intrinsically
less importance than others requires further research.

We learned from this analysis that the studies miss a precise definition
of comment QAs. This poses various challenges for other researchers and
developers, e.g., comprehending what a specific quality attribute means, es-
tablishing metrics and approaches to measure the attributes and adapting such
approaches to di↵erent programming environments. Additionally, the major-
ity of the attributes are still assessed manually despite the advancements in
technology.

RQ2: What kinds of information do developers write in comments across
languages?

To understand the developers’ perspective, we analyzed 1 066 class comments
from 20 open-source projects that used three di↵erent programming languages,
i.e., Java, Python, and Smalltalk. We mapped the code comment taxonomies
of the selected languages against each other and, as a result, proposed the
CCTM taxonomy. We found that developers embed at least 16 types of in-
formation in class comments across languages. For instance, the information
type categories summary, responsibilities, collaborators, usage, warnings, and
references to external sources are found across all languages. In contrast, we
found that language-specific categories, such as exception are found in Java
and Python but not in Smalltalk. Class comments are typically meant to pro-
vide a high-level overview of the class from an implementation independent
perspective, however, we found low level implementation details such as usage,
development notes, key implementation point, warning, or coding guidelines.
These information types can support developers in several SE activities, but
identifying them in comments is a manual and challenging task. In our study,
we observed that developers follow specific natural language patterns in writ-
ing these information types. We extracted such patterns using NLP and TA-
based techniques, and utilized them to build a language-independent approach
(TESSERACT) to automatically identify top frequent information types from
class comments according to the CCTM. Our results suggest that the Ran-
dom Forest algorithm fed by the combination of NLP+TA features achieves
the best classification performance across di↵erent programming languages.

RQ3: To what extent do developers follow the style guidelines in their com-
ments?
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To further understand developer commenting practices in terms of how they
write comments, we analyzed 1 066 class comments from 20 projects, and
identified 21 coding style guidelines these projects recommended. We mea-
sured whether the comments follow comment conventions extracted from the
guidelines. Our results highlight the mismatch between what conventions the
guidelines suggest for class comments, and how often developers adopt and
follow them, and what conventions developers follow in their class comments,
but the guidelines do not mention them. For instance, the Smalltalk comment
template suggests seven types of information, but developers embed 16 other
types of information in comments. In Java and Python comments, we found
that developers follow the content and writing style conventions, but violate
the structure and syntax conventions. These insights of developer commenting
practices across languages can help researchers to improve comment quality
assessment tools, and to evaluate comment summarization and comment gen-
eration approaches.

RQ4: What do developers ask about commenting practices on Q&A forums?

For this RQ, we investigated SO and Quora forums to identify developer dis-
cussions regarding commenting practices. We manually analyzed 1 209 com-
menting practices-related posts, and derived a two-dimensional taxonomy to
characterize their concerns. The first dimension question types focused on
seven types of questions , e.g., implementation strategy, best practice. The
second dimension information needs focused on specific commenting concerns,
such as asking for a syntax convention, or a particular feature to process
comments in a specific development environment. Our results showed that
developers often seek questions about the implementation strategy and limi-
tation and possibility of comments on SO. In contrast, developers often seek
best practice and background information questions on Quora. These results
indicated that Quora can be a valuable resource to understand how devel-
opers perceive certain development aspects. At the same time, SO can be a
useful resource to understand what technical challenges they face during its
development. We also presented a list of recommendations given by experts
on SO and Quora to help developers verify their comments conventions. The
analysis of questions from Q&A forums showed that developers face several
problems in locating the specific comment guidelines, verifying the adherence
of their comments to the coding standards, and evaluating the overall state of
the comment quality.
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8.2 Future Work

8.2.1 Comment Quality Assessment Tools and Techniques

Comment quality attributes. Chapter 3 listed the QAs researchers use to
assess comment quality. As mentioned, not all of them are considered equally
important as some of them are rarely used. Additionally, they are not mea-
sured in mutually exclusive ways, e.g., accuracy is measured by using the
correctness and completeness of comment, such as “the documentation is in-
correct or incomplete and therefore no longer accurate documentation of an
API.” (S24). Another aspect is the measurement process for the attributes.
We found that there are still many attributes that are evaluated manually
rather using automated approaches. This analysis indicates new opportuni-
ties (i) to find the reasoning behind why certain attributes lack support for
automated approaches, (ii) to identify the dependency between various QAs
measurement, and (iii) to establish automated approaches to measure them.

Comment quality assessment techniques. Our results from chapter 3 pre-
sented the techniques researchers use or propose to evaluate comment quality.
However, these approaches are often based on heuristics that provide lim-
ited checks, they focus on particular programming languages, mainly Java,
and they are not designed to be used for other domains and languages [82,
160, 144]. For instance, Smalltalk code comments follow a di↵erent comment
structure and writing style, and do not rely on annotations, making these
approaches unsuitable for this language. Hence, our study insights about
comment quality assessment approaches and commenting practices of various
languages, and we provide further data to help researchers design tools for
evaluating comment quality across languages and domains.

8.2.2 Information Granularity in Comments

Accessing specific information from comments. Cioch et al. presented
developers’ documentation information needs based on the stages of exper-
tise [34]. The task of accessing specific information from documentation is
not just limited to expert and novice developers, or to low-level and high-
level information; it also depends on the task developers are performing, the
software development phase they are working in, e.g., development or main-
tenance phase, and the target audience, e.g., users or developers accessing the
documentation. The tools automatically extracting specific information from
comments based on these factors can reduce developer and stakeholder e↵ort
in reading comments, seeking specific information from them, or evaluating
them for their quality. For instance, identifying warnings in comments can
help to turn them into executable test cases, so that developers can ensure
that these warnings are respected. Similarly, the automatic identification and
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execution of code examples in comments can ensure that they are up to date,
and consequently, they can be assessed with respect to the up-to-dateness
quality attribute. Currently, our multi-language approach can identify fre-
quent information types from class comments, however, it needs to be im-
proved for low frequent information types, and needs to be tested on other
types of comments, documentation, and programming languages to verify its
generalizability.

Designing an annotation language. Annotation languages have proven to
improve the reliability of software.1 They can help the community in label-
ing and organizing a specific type of information, and to convert particular
information types into formal specifications, which can further help in syn-
chronizing comments with code [112]. We identified various information types
in chapter 4, but not all of them are denoted by annotations or tags. For
instance, in Java and Python, the categories Expand, or Usage are not de-
noted by any specific annotation or tag in comments. Even though Smalltalk
comments do not follow any annotation at all, they do have some explicit pat-
terns for di↵erent information types, such as instance variables denoted by the
Instance variables header, or main methods of a class that are indicated by
Key Messages. Tool or language designers can utilize the identified patterns
to design information headers, annotations, and default comment templates.
Designing such templates based on developer commenting practices can sup-
port developers in writing high-quality comments, as our results showed that
developers follow them.

Visualizing the comment information types. Once various types of infor-
mation are automatically identified and their purpose for various software
activities is known, the next challenge would be to find a suitable visualiza-
tion to present it to developers. Cioch et al. proposed to use di↵erent docu-
ments for each phase, e.g., interns require task-oriented documentation, such
as process description, examples, and step-by-step instructions, whereas ex-
perts require low-level documentation as well as a design specification [34]. In
the current state of code comments, developers who seek specific information
have to skim entire comments due to a lack of annotations, the non-uniform
way of placing information, and relaxed style conventions. Building visualiza-
tions to automatically highlight the required information from comments can
help developers to notice the information more quickly. At the same time,
such a visualization could also be used to identify the individual parts of a
comment or code that lacks documentation, thus making comments adequate,
consistent, and complete.

1https://docs.microsoft.com/en-us/cpp/c-runtime-library/sal-annotations?
redirectedfrom=MSDN&view=vs-2019

145

https://docs.microsoft.com/en-us/cpp/c-runtime-library/sal-annotations?redirectedfrom=MSDN&view=vs-2019
https://docs.microsoft.com/en-us/cpp/c-runtime-library/sal-annotations?redirectedfrom=MSDN&view=vs-2019


8. Conclusion and Future Work

8.2.3 Tool Support for Comments

More accurate tools to automate the detection of comment changes.
Soetens et al. envision that future IDEs will use the notion of changes as first-
class entities, which are also known as change reification approaches. These
change-based approaches can help in communicating changes between IDEs
and their architectures, and to produce accurate recommendations to boost
complex modular and dynamic systems [153]. Analyzing and detecting change
patterns of comments can enable the vision of Soetens et al. of integrating
code comments easily in such change-oriented IDEs. Additionally, detecting
which types of information in the comments tend to change more often can
help researchers generate comments automatically. For example, in Smalltalk
we found a code change due to a class deprecation, which triggered a change
in the class comment by adding the deprecation notice information to inform
other developers. This manual e↵ort of updating the class comment when-
ever a code deprecation change is introduced can be reduced by automatically
generating that notice information. These comment change patterns are not
only helpful for developers to reduce their commenting e↵ort, but also for
researchers to improve their bug-prediction models. For instance, Ibrahim et
al. showed statistically significant improvements in their bug-prediction mod-
els using comment update patterns [76]. Similarly, analyzing what change in
which information type triggers changes in the code or vice versa can fur-
ther improve these models. This can assist in answering particular developer
questions, such as “what specific type of the code change led to this comment
change?” or “which specific comment changes does a commit consist of?”
[44]. Wen et al. presented a large-scale study in this direction to highlight
code-comment inconsistencies [177]. However, our results highlighted that
commenting practices vary to some extent across languages. Thus, it is pos-
sible that developers show a di↵erent behavior when they change comments
across languages.

Style checker support. Tomasottir et al. showed in their interview study
that developers use linters to maintain code consistency and to learn about
the programming language [165]. By configuring linters early in a project,
developers can use them similarly to learn the correct syntax to write and
format comments according to a particular style guideline. However, only a
limited set of linters, also known as style checkers, support the adherence of
comments to the commenting conventions. For example, tools such as Check-
style,2 RuboCop,3 and pydocstyle4 provide support for formatting comment
conventions, but they lack support for comprehensive grammar and content
rules. In chapter 6, we identified the convention types and the associated

2https://checkstyle.org/checks.html
3https://rubocop.org/
4http://www.pydocstyle.org/
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rules as various style guidelines suggest. Based on this taxonomy of conven-
tion types, researchers can investigate the extent to which various comment
conventions or rules are covered in style checkers. Some languages with ad-
vanced style checkers do not support comment checkers at all, such as OCLint
for Objective-C, 5 and Ktlint for Kotlin,6 Smalltalk. We found instances of
questions where developers ask about the existence of such tools in chapter
7. Therefore, more tool support is required to help developers in verifying the
high-quality of comments. However, supporting multiple languages, assisting
developers in language-specific conventions, or customizing comments to add
more information would still require further e↵ort.

8.2.4 Documentation Sources

Coding style guidelines. Our results from chapter 7 indicated that devel-
opers find it di�cult to locate various comment-related conventions. This
can be due to the availability of multiple coding style guidelines and scat-
tered conventions across web pages or paragraphs. This indicates the need
to improve the findability of coding style guidelines related to comments. We
futher found that developers embed various types of information in comments,
but not all of them are suggested by the style guidelines (see Table 6.3). In
fact, the majority of the information types mentioned by developers in com-
ments are not suggested by the guidelines. Even though some information
types are suggested, the syntax and style conventions to write them are not
usually described in the style guidelines. Therefore, there is a need to cover
more detailed comment-related aspects in the coding style guidelines to help
developers in writing high-quality comments.

Project sources and online platforms. Finding the required conventions to
write good comments is not just limited to the exploration of coding style
guidelines. Our results in chapter 7 showed that developers also seek online
sources, such as SO and Quora to gather such information. There exist other
sources where developers often discuss software information, such as Wikis,
GitHub, issue trackers, and mailing lists. We plan to exploit such web-based
project sources. We have already started to develop such a tool, Makar which
can conduct multi-source studies [26]. Currently, it supports the mining of SO,
Apache mailing lists, and GitHub. We plan to extend this tool to conduct a
follow-up study to gather more diverse developer information needs.

8.2.5 Speculative Analysis of Comment Quality

Brun et al. presented speculative analysis with an analogy to speculative ex-
ecution (e.g., branch prediction and cache pre-fetching) [28, 106]. The spec-

5http://oclint.org/
6https://github.com/pinterest/ktlint
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ulative analysis explores and speculates possible future development states
of software in the background. The analysis results can provide information
about the consequences of performing various actions on software, thus guid-
ing developers in making better decisions based on the results. Such analysis
can eventually lead to increased developer productivity and software quality.

We can use speculative analysis to inform developers early about their
comment quality. The quality of available comments can be assessed in back-
ground based on identified quality attributes (e.g., adequacy, consistency), or
aspects (e.g., content, syntax ). Developers interested in improving specific
aspects of comments can be presented with quality indications of each aspect
and informed about which aspect will bring them what amount of gain in
comment quality. By speculating on various options in the background, the
analysis can present context-sensitive information to developers in a proactive
and live manner and help them make an informed decision. In this thesis,
we provide the groundwork to build such speculative analysis-based tools to
generate comments, or assess comment quality.

8.3 Concluding Remarks

Software quality is a multidimensional concept and thus require a multi-
perspective view of the comments to ensure high-quality comments. This
thesis primarily studied code commenting practices and their evaluation from
the perspective of developers and researchers. We studied the current state of
literature for assessing comment quality by conducting an SLR. Furthermore,
we conducted various empirical studies mining multiple software systems and
online Q&A sources to understand the nature of developer commenting prac-
tices. The resulting analysis demonstrates that developers embed di↵erent
kinds of information in comments and follow the style guidelines in writing
the content. However, they seek support in locating relevant commenting
guidelines, reducing e↵orts in writing comments, verifying the adherence of
their comments to the guidelines, and evaluating the overall state of comment
quality.

We believe that comment quality should be given much more importance
with regard to software quality. Our analysis just scratched the surface
by highlighting developer concerns regarding comments, and establishing a
ground truth for various comment-related tasks. We are convinced that such
research is more important than before when considering the latest trends in
the software industry, e.g., the common use of polyglot languages in highly
complex software projects. We hope more researchers and developers will
accept the notion of comment quality and design tools to fill the identified
gaps.

148



A

Appendix

A.1 Makar: A Framework for Multi-source Studies based
on Unstructured Data

As a software system continues to evolve, developers need various kinds of
information to perform activities, such as adding features, or performing cor-
rective maintenance [87]. Developers typically seek information on internal
sources available within IDE or external sources, such as Stack Overflow (SO),
mailing lists, and GitHub to satisfy their information needs [68]. To support
developers in various activities and to understand their information needs,
researchers have analyzed these external sources [18]. However, extracting
and preprocessing unstructured data from these sources, and maintaining the
processed data due to a lack of automated techniques pose various challenges
in conducting reproducible studies [31, 8, 18].

To address these concerns, we proposeMakar, a tool that leverages popular
data retrieval, processing, and handling techniques to support researchers in
conducting reproducible studies. We established its requirements from the
surveyed studies. We conducted a case study shown in chapter 7, in which
we analyze code comment related discussions from SO and Quora to evaluate
Makar.

Requirements. To gain a deeper understanding of these challenges, we
surveyed the literature that focuses on studying developers information needs
from di↵erent external sources [25]. Based on the gathered challenges in the
survey, we identified relevant functional and non-functional requirements for

� This appendix is based on the paper “P. Rani, M. Birrer, S. Panichella, and O.
Nierstrasz. Makar: A Framework for Multi-source Studies based on Unstructured Data,
SANER’21” [26].
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Makar. The tool intends to cover the common use cases found in the survey
while being extensible to support additional or more specific scenarios en-
countered in the case study. We identified five main functional requirements:
data import, data management, data processing, data querying, and data ex-
port. Data import focuses on di↵erent possibilities to import data into the
tool, data management on building and maintaining data, data processing fo-
cuses on the need to preprocess data, e.g., HTML removal, stop word removal,
data Querying on searching data, and data export focuses on exporting data
from the tool in order to support further analyses. We also identified several
non-functional requirements for Makar. It should be easily extensible in areas
where projects have di↵erent technical requirements, such as import adapters,
preprocessing steps, or export adapters. The tool should further be able to
handle large amounts of data (scale of 100k records) while still o↵ering an
acceptable usage performance, e.g., for search queries.

A.1.1 Makar Architecture

Makar is a web application that can be hosted on public accessible and pos-
sibly powerful servers. Thus, it allows multiple users to work concurrently on
the same dataset. It is a Ruby on Rails (RoR)1 web application with a Post-
greSQL2 database in the back end. Makar runs in a Docker container to have
minimal technical requirements to run the tool, to maximize the compatibil-
ity, and to ease the installation on di↵erent platforms and operating systems.3

The instructions to run the tool can be found in the tool repository4 and
its demonstration on YouTube.5 We show its architecture and features in
Figure A.1 and explain them in more details in the following paragraphs.
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Figure A.1: Architecture overview of Makar

1https://rubyonrails.org/
2https://www.postgresql.org/
3https://www.docker.com/
4https://github.com/maethub/makar
5https://youtu.be/Yqj1b4Bv-58
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• Data import. A user can directly import data from diverse sources,
such as CSV and JSON. The tool also supports import adapters for the
following sources: Apache Mailing List Archive,6 GitHub Pull Requests
(via GitHub Archive),7 GitHub Issues Via the GitHub API,8 and Stack
Overflow Search Excerpts.9 The import adapters can be extended easily
using the ImportAdapter component for other sources.

• Data management. Makar provides schemas, collections, filters and
records to manage datasets as shown in Figure A.1. Schemas define
the structure of a dataset and its records, and records are rows of the
dataset which are similar to schemas and records in databases. Collec-
tions are arbitrary selections of records, which can be used to manage
various subsets of the data. A record can belong to multiple collec-
tions. Filters are the search queries that help one to filter data from
existing collections or schemas, and can be saved to provide an e�cient
querying and rebuild the dataset. For example, a study analyzing SO
questions first has to import the SO dataset into Makar. If the study
design requires only questions with the word “javadoc” in the question
title, a user could create a filter, e.g., “All Questions with Javadoc in
Title” filter, that searches the question titles for “javadoc” as shown in
Figure A.2. The user could then create a collection that uses this filter
and can use the collection as their dataset for further analyses. In the
case, the user would add more data from SO to update her dataset (or
collection), Makar facilitates syncing the collection using the Auto-filter
option, which reapplies the same filter as shown in Figure A.3.

• Data processing. The user can preprocess the data in Makar through
transformation steps. A transformation step is a single operation that
is applied to all records in a collection. Currently, the tool supports
operations, such as text cleaning, natural language processing, data re-
structuring, and arithmetics and counting.

– In text cleaning, the user can strip all HTML tags, or selected
HTML tags, or replace records with custom values, e.g., remove
HTML tags from questions in SO.

– In natural language processing, the user can apply word stemming,
remove all stop words, or remove all punctuation marks.

– In data restructuring, the user can merge records with the same
value, create new records, remove duplicates, split text on defined
substring, or add a static value. In addition, the user can create a

6https://mail-archives.apache.org/mod_mbox/
7http://www.gharchive.org/
8https://developer.github.com/v3/search/#search-issues
9https://api.stackexchange.com/docs/excerpt-search
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Figure A.2: Search interface of Makar

Figure A.3: Dataset preparation interface of Makar

new dataset with a randomized sample, which is widely performed
in manual analysis studies.

– In arithmetics and counting, the user can also perform simple arith-
metic steps, e.g., counting frequent occurrences of a particular value
or a word.

• Data export. The user can select attributes for the export and then
export the data in the required format as shown in Figure A.3. Cur-
rently, the tool supports the CSV, JSON, and plain text (.txt file)
formats. Makar also supports more complex export formats via the
ExportAdapter component. To o↵er LDA analysis using Mallet, we
added a Mallet adapter as a custom export adapter.10

10http://mallet.cs.umass.edu/
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A.1.2 Case Study

Makar supported us in preparing the dataset suitable for the LDA analysis
and the manual analyses in chapter 7.

Code HTML Punctuation Stop Word Word 
Stemming

Transformation extract_code strip_html string_replace remove_stopwords word_stemming

Attributes - Question | Body - Question | Body - Question | Body
- Question | Title

- Question | Body
- Question | Title

- Question | Body
- Question | Title

Figure A.4: Preprocessing steps in Makar with the transformations

• Data import: We imported the SO data using the CSV import adapter,
and Quora data with the JSON adapter. The CSV files of the dataset
are provided in the RP [132].

• Data processing: The data from SO contains HTML code, other code
snippets, links, and natural language text. To get meaningful results
from LDA analysis, the data needs to be cleaned, with the text cleaning
and language cleaning steps. All preprocessing steps, such as removing
code, HTML mark-up, punctuations, and stop words,11 and stemming
words12 are performed by Makar using its built-in transformations as
shown in Figure A.4. Further, it shows various built-in transformations
of Makar and available Attributes of selected fields, e.g., Title, Body
from the sources. Each transformation is designed to produce a new
attribute (a column) in the data records, that allows us to retrace the
changes applied to the data. Generally it is uncertain in the beginning of
a study which combination of preprocessing steps would lead to the best
results, and therefore the flexible approach of Makar e�ciently supported
us in trying several scenarios.

• Data export: The dataset prepared for chapter 7 has been exported
as CSV and provided in the RP [132].

Overall, Makar assisted us to process multi-source data for chapter 7 in
a uniform way and allowed us to investigate various combinations of features
for both LDA analysis and the manual analyses. Moreover, Makar provides
an extensible framework to support custom requirements, so that further tex-
tual analysis techniques can be integrated to perform more advanced text
operations.

11http://snowball.tartarus.org/algorithms/english/stop.txt
12https://snowballstem.org/algorithms/porter/stemmer.html
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A.3 Pharo Template Models

Variable
 name: Identifier
 type: ProtoObject

0..*

0..* Collaborator

1 Intent

  className: Identifier
Class

self.listOfVariables -> notEmpty() 
then 
  self.name and self.type -> notEmpty()
end if
self.header = ‘Instance Variables’.

self.className -> notEmpty()
self.description.style =thirdPerson.

InstanceVariable ClassInstanceVariable

self.listOfVariables -> notEmpty() 
then 
  self.name and self.type -> notEmpty()
end if
self.header = ‘Class Instance Variables’.

self.orderOfInfoTypes = Intent -> 
Collaborator -> Variables

Figure A.5: Writing style constraints formulated from the Pharo 1 template

InstanceVariable
 name: Identifier
 type: Object
description: Text

0..* 1 Intent

description: Text

self.className -> notEmpty()
self.description.style =  thirdPerson

self.listOfVariables -> notEmpty() 
then 
  self.name and self.type -> notEmpty()
end if
self.header = ‘Instance Variables’.

if self.description -> notEmpty()
then 
   self.description.style =  thirdPerson
end if

  className: Identifier

Class

self.orderOfInfoTypes = Intent -> 
InstanceVariable

Figure A.6: Writing style constraints formulated from the templates of Pharo 2 and 3
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Class

Intent
className: Identifier
description: Text

1
InstanceVariable

 name: Identifier
 type: Object

0..*

KeyMessage

name: Identifier 0..*

1

InstantiationProcess

description: 
CodeOrText

0..*

Collaborator

name: Identifier
interactions: Interaction

Example
description: 
CodeOrText

0..*
ImplementationPoint

description: 
CodeOrText

0..*

Responsibility
0..* description: Text

self.className -> notEmpty()
if self.description -> notEmpty()
then 
   self.description.lines = 1.
   self.description.style =  firstPersonPronouns.
   self.description.startsWith =  ‘I am’.
end if

self.listOfInstanceVariables -> notEmpty() 
then 
  self.name and self.type -> notEmpty()
end if
self.header = ‘instance Variable’.

self.interactions.lines = 1.
self.description.style = firstPersonPronouns.
self.description.useSimilarWordsTo =  ‘I interact’.

self.description = CodeOrText.

self.description = CodeOrText.
self.header = ‘Implementation Points’ or 
‘Internal Represenation’

self.description = CodeOrText.

self.listOfKeyMessages -> notEmpty() 
self.header = ‘Public API’ or ‘Key Messages’.

if self.description -> notEmpty()
then
   self.description.lines <= 3.
   self.description.style = firstPersonPronouns.
   self.description.useSimilarWordsTo = {‘I do’, ‘I 
offer’).
end if

self.orderOfInfoTypes = Intent -> Responsibility -> Collaborator -> KeyMessage -> 
InstantiationProcess -> Example -> InstanceVariable -> ImplementationPoint

Figure A.7: Writing style constraints formulated from the Pharo 4 template

Class

Intent

description: Text1
InstanceVariable

 name: Identifier
 type: Object

0..*

KeyMessage

name: Identifier 0..*

1

InstantiationProcess

description: CodeOrText 0..*

Collaborator

name: Identifier
interactions: Interaction

Example

description: CodeOrText
0..*

ImplementationPoint

description: CodeOrText 0..*

Responsibility
0..* description: Text

if self.description -> notEmpty()
then 
   self.description.lines = 1.
   self.description.style =  firstPersonPronouns.
   self.description.startsWith =  ‘I represent’.
end if

self.listOfInstanceVariables -> notEmpty() 
then 
  self.name and self.type -> notEmpty()
end if
self.header = ‘Instance Variable’.

self.interactions.lines = 1.
self.description.style = firstPersonPronouns.
self.description.useSimilarWordsTo =  ‘I interact’.

self.description = CodeOrText.

self.description = CodeOrText.
self.header = ‘Implementation Points’ or 
‘Internal Represenation’

self.description = CodeOrText.

self.listOfKeyMessages -> notEmpty() 
self.header = ‘Public API’ or ‘Key Messages’.

if self.description -> notEmpty()
then
   self.description.lines <= 3.
   self.description.style = firstPersonPronouns.
   self.description.useSimilarWordsTo = {‘I do’, ‘I 
know’).
end if

self.orderOfInfoTypes = Intent -> Responsibility -> Collaborator -> KeyMessage -> 
InstantiationProcess -> Example -> InstanceVariable -> ImplementationPoint

Figure A.8: Writing style constraints formulated from the templates of Pharo 5, 6, and 7
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[50] Jérôme Euzenat. Towards a principled approach to semantic interop-
erability. In Proc. IJCAI 2001 workshop on ontology and information
sharing, pages 19–25, Seattle, United States, aug 2001. No commercial
editor.

[51] Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola O. Ades-
ope. The e↵ect of poor source code lexicon and readability on devel-
opers’ cognitive load. In Foutse Khomh, Chanchal K. Roy, and Janet
Siegmund, editors, Proceedings of the 26th Conference on Program Com-
prehension, ICPC 2018, Gothenburg, Sweden, May 27-28, 2018, pages
286–296. ACM, 2018.

[52] M.S. Farooq, S.A. Khan, K. Abid, F. Ahmad, M.A. Naeem, M. Shafiq,
and A. Abid. Taxonomy and design considerations for comments in
programming languages: A quality perspective. Journal of Quality and
Technology Management, 10(2), 2015.

[53] R. K. Fjeldstad and W. T. Hamlen. Application Program Maintenance
Study: Report to Our Respondents. In Proceedings GUIDE 48, April
1983.

[54] Beat Fluri, Michael Wursch, and Harald C Gall. Do code and comments
co-evolve? on the relation between source code and comment changes.
In Reverse Engineering, 2007. WCRE 2007. 14th Working Conference
on, pages 70–79. IEEE, 2007.
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and Frank Ortmeier. Commenting source code: Is it worth it for small
programming tasks? Empirical Software Engineering, 24(3):1418–1457,
2019.

[110] Eriko Nurvitadhi, Wing Wah Leung, and Curtis Cook. Do class com-
ments aid Java program understanding? In 33rd Annual Frontiers in
Education, 2003. FIE 2003., volume 1, pages T3C–T3C. IEEE, 2003.

[111] Paul W Oman and Curtis R Cook. A taxonomy for programming style.
In Proceedings of the 1990 ACM Annual Conference on Cooperation,
pages 244–250, 1990.

173



Bibliography

[112] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. Listening to program-
mers — taxonomies and characteristics of comments in operating system
code. In Proceedings of the 31st International Conference on Software
Engineering, pages 331–341. IEEE Computer Society, 2009.

[113] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall. The
impact of test case summaries on bug fixing performance: An empirical
investigation. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), pages 547–558, May 2016.

[114] Sebastiano Panichella, Jairo Aponte, Massimiliano Di Penta, Andrian
Marcus, and Gerardo Canfora. Mining source code descriptions from
developer communications. In Dirk Beyer, Arie van Deursen, and
Michael W. Godfrey, editors, IEEE 20th International Conference on
Program Comprehension, ICPC 2012, Passau, Germany, June 11-13,
2012, pages 63–72. IEEE Computer Society, 2012.

[115] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A
Visaggio, Gerardo Canfora, and Harald C Gall. How can I improve my
app? Classifying user reviews for software maintenance and evolution.
In 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 281–290. IEEE, 2015.

[116] Luca Pascarella and Alberto Bacchelli. Classifying code comments in
Java open-source software systems. In Proceedings of the 14th Inter-
national Conference on Mining Software Repositories, MSR ’17, pages
227–237. IEEE Press, 2017.

[117] Sumanth Patil and Kyumin Lee. Detecting experts on Quora: by their
activity, quality of answers, linguistic characteristics and temporal be-
haviors. Social Network Analysis and Mining, 6(1):5, 2016.

[118] Pharo consortium, 2020. verified on 10 Jan 2020.
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To help researchers and developers in building comment quality assessment 
tools, we contribute: (i) a systematic literature review (SLR) of ten years 
(2010–2020) of research on assessing comment quality, (ii) a taxonomy of 
comment quality attributes, (iii) an empirically validated taxonomy of class 
comment information types (CITs) from three programming languages, (iv) a 
multi-programming-language approach to automatically identify the CITs, and 
(v) an empirically validated taxonomy of comment convention-
related questions and recommendation from various Q&A forums.

Our contributions provide various kinds of empirical evidence of the 
developer’s interest in reducing efforts in the software documentation process, 
of the limited support developers get in automatically assessing comment 
quality, and of the challenges they face in writing high-quality comments.

High-quality code comments support developers in software 
maintenance and program comprehension tasks. However, the 
semi-structured nature of comments, several conventions to 
write comments, and the lack of quality assessment tools for 
all aspects of comments make comment evaluation and 
maintenance a non-trivial problem. 
To understand the specification of high-quality comments to 
build effective assessment tools, we emphasize on acquiring a 
multi-perspective view of the comments, which can be 
approached by analyzing (1) the academic support for 
comment quality assessment, (2) developer commenting 
practices across languages, and (3) developer concerns about 
comments.

Pooja Rani
PhD in Computer Science
https://poojaruhal.github.io/
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