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Abstract
Learning Representations

for
Controllable Image Restoration

Givi MEISHVILI, Ph.D. in Computer Science

Universität Bern, 2022

Deep Convolutional Neural Networks have sparked a renaissance in all the sub-
fields of computer vision. Tremendous progress has been made in the area of image
restoration. The research community has pushed the boundaries of image deblur-
ring, super-resolution, and denoising. However, given a distorted image, most exist-
ing methods typically produce a single restored output. The tasks mentioned above
are inherently ill-posed, leading to an infinite number of plausible solutions. This
thesis focuses on designing image restoration techniques capable of producing mul-
tiple restored results and granting users more control over the restoration process.
Towards this goal, we demonstrate how one could leverage the power of unsuper-
vised representation learning.

Image restoration is vital when applied to distorted images of human faces due to
their social significance. Generative Adversarial Networks enable an unprecedented
level of generated facial details combined with smooth latent space. We leverage the
power of GANs towards the goal of learning controllable neural face representa-
tions. We demonstrate how to learn an inverse mapping from image space to these
latent representations, tuning these representations towards a specific task, and fi-
nally manipulating latent codes in these spaces. For example, we show how GANs
and their inverse mappings enable the restoration and editing of faces in the context
of extreme face super-resolution and the generation of novel view sharp videos from
a single motion-blurred image of a face.

This thesis also addresses more general blind super-resolution, denoising, and
scratch removal problems, where blur kernels and noise levels are unknown. We
resort to contrastive representation learning and first learn the latent space of degra-
dations. We demonstrate that the learned representation allows inference of ground-
truth degradation parameters and can guide the restoration process. Moreover, it
enables control over the amount of deblurring and denoising in the restoration via
manipulation of latent degradation features.

https://www.unibe.ch


vi

Dedicated to the memory of my beloved grandfathers,
Givi Meishvili, Robert Begalishvili,

and
Roland Begalishvili



vii

Acknowledgements
Foremost, I would like to acknowledge the role of my Ph.D. advisor Prof. Dr.

Paolo Favaro. I appreciate the opportunities and guidance he granted me during the
last couple of years. I am thankful for his dedication, commitment, and various en-
couraging conversations. Most importantly, I am very grateful for long discussions
during which he inspired, motivated, and challenged me, pushing the boundaries
of what I thought I could.

A special thanks goes to Prof. Dr. Sabine Süsstrunk and Prof. Dr. Timo Kehrer
for serving as thesis examiners. I appreciate their valuable feedback.

I would like to acknowledge all the members of the Computer Vision Group
(CVG) in Bern: Dragana Esser, Meiguang Jin, Qiyang Hu, Xiaochen Wang, Adrian
Wälchli, Adam Bielski, Abdelhak Lemkhenter, Josué Page, Tomoki Watanabe, Ric-
cardo Fantinel, Florence Aellen, Llukman Çerkezi, Aram Davtyan, Alp Eren Sari,
Sepehr Sameni, and Viktor Shipitsin. It was a pleasure to spend time together dur-
ing lunch and coffee breaks. I am pleased by the positive and friendly atmosphere
that reigned in our lab.

One side of pursuing a Ph.D. was doing research and working on exciting prob-
lems. But apart from that, I want to express my appreciation to several colleagues
who have turned into great friends over time. Dr. Attila Szabó and Dr. Mehdi
Noroozi defended their Ph.D.-s a while ago. Nevertheless, we meet frequently. I
appreciate their support and attention that went far beyond discussing scientific re-
search. I want to express my special thanks to Dr. Simon Jenni, with whom I shared
the office for four years. This page is not enough to tell everything. Besides brain-
storming and collaborating on different projects, Simon also is a best friend that
supported me in any aspect of life during the Ph.D. and still does so. He is the one
who always lent his shoulder to me in difficult minutes as well as celebrated every
little victory and the happy moments I had.

Thanks also to Dr. Abdelaziz Djelouah, Dr. Christopher Schroers, Dr. Jingjing
Shen, and Dr. Federica Bogo, with whom I collaborated during internships at Dis-
ney Research Zurich and Microsoft Mixed Reality & AI Labs.

Nothing of this would have been imaginable without my family. Its often said
that children would never pay off the effort and contribution of their parents. In-
deed, I am very grateful to my mother Inesa Begalishvili for her immense attention,
diligence, and the time she has dedicated to me.





ix

Contents

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Image Degradations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 On The Ambiguities and Controllability of Restoration . . . . . . . . . 2

1.2.1 Deblurring Motion-Blurred Scene . . . . . . . . . . . . . . . . . 2
1.2.2 Deblurring Motion-Blurred Faces . . . . . . . . . . . . . . . . . 3
1.2.3 Extreme Face Super-Resolution . . . . . . . . . . . . . . . . . . . 4
1.2.4 Controllable Blind Video Restoration . . . . . . . . . . . . . . . 5

1.3 Can Humans Restore? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Can Machines Restore? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 11
2.1 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Generative Adversarial Learning . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Contrastive Representation Learning . . . . . . . . . . . . . . . . . . . . 13
2.4 Deblurring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Uniform Deblurring . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Non-Uniform Deblurring . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Video Deblurring . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Face Deblurring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Super-Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1 General Super-Resolution . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Blind Super-Resolution . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.3 Face Super-Resolution . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Learning to Extract a Video Sequence from a Single Motion-Blurred Image 19
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 From Video to Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Unraveling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 From Image to Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Globally Ordering-Invariant Loss . . . . . . . . . . . . . . . . . 23
3.4.2 Pairwise Ordering-Invariant Loss . . . . . . . . . . . . . . . . . 23
3.4.3 Learning a Temporal Direction . . . . . . . . . . . . . . . . . . . 24

3.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6.1 Middle Frame Reconstruction . . . . . . . . . . . . . . . . . . . . 28
3.6.2 Independent Frame Reconstruction . . . . . . . . . . . . . . . . 31



x

3.6.3 Global Frame Reconstruction . . . . . . . . . . . . . . . . . . . . 31
3.6.4 Pairwise Frame Reconstruction . . . . . . . . . . . . . . . . . . . 31
3.6.5 Sequential Pairwise Frame Reconstruction . . . . . . . . . . . . 31
3.6.6 Teacher Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6.7 Importance of the Middle Frame Estimate . . . . . . . . . . . . . 33

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Learning to Deblur and Rotate Motion-Blurred Faces 37
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 3D Face Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Novel Face View Synthesis . . . . . . . . . . . . . . . . . . . . . 39

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Bern Multi-View Face Dataset . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Inverting a Generative Face Model . . . . . . . . . . . . . . . . . 41
4.2.4 Predicting Sharp Latent Codes from a Blurry Image . . . . . . . 43
4.2.5 Regressing a 3D Face Model . . . . . . . . . . . . . . . . . . . . . 43
4.2.6 Learning to Rotate Faces in Latent Space . . . . . . . . . . . . . 44
4.2.7 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 Pose-Regression Accuracy of Ev . . . . . . . . . . . . . . . . . . 45
4.3.3 Identity Preservation and Pose Accuracy under Novel View

Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.4 Comparison to Prior Work . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Learning to Have an Ear for Face Super-Resolution 55
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Use of Audio in Vision Tasks . . . . . . . . . . . . . . . . . . . . 58
5.2 Extreme Face Super-Resolution with Audio . . . . . . . . . . . . . . . . 58

5.2.1 Combining Aural and Visual Signals . . . . . . . . . . . . . . . . 58
5.2.2 Inverting the Generator . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.3 Encoder Pre-Training . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.4 Encoder and Generator Fine-Tuning . . . . . . . . . . . . . . . . 59
5.2.5 Pre-Training Low-Res and Audio Encoders . . . . . . . . . . . . 60
5.2.6 Fusing Audio and Low-Resolution Encodings . . . . . . . . . . 61
5.2.7 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Audio-Only to High-Resolution Face . . . . . . . . . . . . . . . 62
5.3.3 Identity, Gender and Age Classification Accuracy as a Perfor-

mance Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.4 Ablations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.5 Comparisons to Other Super-Resolution Methods . . . . . . . . 66
5.3.6 Editing by Mixing Audio Sources . . . . . . . . . . . . . . . . . 68
5.3.7 Failure Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



xi

6 Contrastive Learning for Controllable Blind Video Restoration 75
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1.1 Scratch Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Video Degradation Representation . . . . . . . . . . . . . . . . . 79
6.2.2 Learning to Manipulate Degradations . . . . . . . . . . . . . . . 80
6.2.3 Learning Conditional Restoration . . . . . . . . . . . . . . . . . 81
6.2.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.1 Datasets & Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.2 Ablations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.2.1 Single vs Pairwise Contrasting . . . . . . . . . . . . . . 83
6.3.2.2 Initial vs Mutated Kernels . . . . . . . . . . . . . . . . 83

6.3.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.3.1 Video Super-Resolution . . . . . . . . . . . . . . . . . . 84
6.3.3.2 Video Denoising . . . . . . . . . . . . . . . . . . . . . . 85
6.3.3.3 Video Scratch Removal . . . . . . . . . . . . . . . . . . 86
6.3.3.4 Manipulating Real Videos . . . . . . . . . . . . . . . . 87

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Conclusions 93

Bibliography 97





xiii

List of Figures

1.1 Deblur and rotate motion-blurred faces . . . . . . . . . . . . . . . . . . 3
1.2 Extreme face super-resolution ambiguities . . . . . . . . . . . . . . . . . 4
1.3 Blind video super-resolution, denoising, and film scratch removal . . . 5
1.4 Image restoration using our brain . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Autoencoding of faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Image restoration using our brain . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Multiple frames extracted from a single motion blurred image . . . . . 19
3.2 Temporal ordering ambiguities . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Middle frame prediction network architecture . . . . . . . . . . . . . . 25
3.4 Details of our architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Examples with real images . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Middle frame prediction comparison . . . . . . . . . . . . . . . . . . . . 29
3.7 Middle frame prediction comparison . . . . . . . . . . . . . . . . . . . . 30
3.8 Ablation study on real data with different loss functions . . . . . . . . 32
3.9 A synthetic example from [2] test image . . . . . . . . . . . . . . . . . . 33

4.1 Blurry inputs and reconstructed sharp multi-view videos on our dataset 37
4.2 Overview of our system during inference . . . . . . . . . . . . . . . . . 38
4.3 Overview of our multi-view video capture setup . . . . . . . . . . . . . 40
4.4 Overview of the model architecture . . . . . . . . . . . . . . . . . . . . . 42
4.5 Qualitative novel view comparison to Zhou et al. [222] . . . . . . . . . . 48
4.6 Sample sharp video reconstructions from our model . . . . . . . . . . . 49
4.7 Sample sharp video reconstructions from our model . . . . . . . . . . . 50
4.8 Qualitative sample on real-world motion blurred face . . . . . . . . . . 51
4.9 Qualitative samples on VIDTIMIT . . . . . . . . . . . . . . . . . . . . . 52
4.10 Qualitative samples on VIDTIMIT . . . . . . . . . . . . . . . . . . . . . 53

5.1 Pixelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Audio helps image super-resolution . . . . . . . . . . . . . . . . . . . . 56
5.3 Simplified training and operating scheme of the proposed model . . . 57
5.4 Examples of generator inversions . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Illustration of how we compute the targets for the audio encoder pre-

training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.6 Audio-to-Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.7 Selected examples of reconstructions to some of our ablation experi-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.8 Comparison to other super-resolution methods . . . . . . . . . . . . . . 66
5.9 Low-Resolution and audio mixing . . . . . . . . . . . . . . . . . . . . . 67
5.10 Examples of failure cases in our method . . . . . . . . . . . . . . . . . . 68
5.11 Mixing examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.12 Mixing examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.13 Mixing examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



xiv

5.14 Mixing examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1 Controllable Blind Video Restoration . . . . . . . . . . . . . . . . . . . . 75
6.2 Overview of our controllable restoration pipeline . . . . . . . . . . . . 76
6.3 Overview of our degradation learning pipeline . . . . . . . . . . . . . . 78
6.4 Degradation Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Qualitative Comparison Super-Resolution . . . . . . . . . . . . . . . . . 88
6.6 Qualitative Comparison Denoising . . . . . . . . . . . . . . . . . . . . . 89
6.7 Qualitative Comparison Scratch Removal . . . . . . . . . . . . . . . . . 90



xv

List of Tables

3.1 Summary of networks, loss functions and training procedure . . . . . . 24
3.2 Comparison of the middle frame prediction networks . . . . . . . . . . 28
3.3 Execution time comparison . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Middle frame prediction network architecture . . . . . . . . . . . . . . 35

4.1 Same view landmark error . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Identity agreement between frontal and rotated sequences . . . . . . . 46
4.3 Face landmark accuracy for different fusion models . . . . . . . . . . . 46
4.4 Novel view pose error comparison . . . . . . . . . . . . . . . . . . . . . 48
4.5 Novel view PSNR and SSIM comparison . . . . . . . . . . . . . . . . . 48

5.1 Ablation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Comparison to other general-purpose super-resolution methods . . . . 66
5.3 Agreement of Cg predictions with labels of low-resolution and audio

labels on mixed reconstructions. . . . . . . . . . . . . . . . . . . . . . . 67
5.4 The network architecture of the low-resolution encoder El . . . . . . . 73
5.5 The network architecture of the high-resolution encoder Eh . . . . . . . 73
5.6 The network architecture of the audio encoder Ea . . . . . . . . . . . . 73

6.1 Kernel estimation accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Quantitative comparison to other video super-resolution methods at

4x scaling factor. We report PSNR/SSIM values of our and competi-
tor methods on VID4 and Set8 datasets. Different rows and columns
correspond to different AWGN levels and blur kernels, respectively.
Rows labeled as "All" correspond to average PSNR/SSIM values
across different noise levels. Columns denoted as "All" correspond to
average PSNR/SSIM values across different blur kernels. . . . . . . . . 84

6.3 Quantitative comparison to the non-blind video denoising method of
Tassano et al. [167], [243], and Sheth et al. [259]. We report PSNR/SSIM
values on VID4 and Set8 datasets. . . . . . . . . . . . . . . . . . . . . . 85

6.4 Quantitative comparison to the scratch removal method of Wan et
al. [251] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5 The network architecture of contrastive MLP head . . . . . . . . . . . . 91
6.6 The network architecture of encoder Ek . . . . . . . . . . . . . . . . . . 91
6.7 The network architecture of encoder Es . . . . . . . . . . . . . . . . . . 91
6.8 The network architecture of mutator M . . . . . . . . . . . . . . . . . . 91





1

Chapter 1

Introduction

It is often said that photos capture the memory of an instant in time. Parents like
to capture pictures of significant events of their little ones: a birthday party, the first
day at school, the first time on a bicycle, and so on. Nowadays, we can capture these
moments due to the invention of imaging technology. The first known record de-
scribing a camera dates from the 4-th century BC. The Han Chinese philosopher,
Mozi, documented the natural optical phenomenon known as "camera obscura."
Several centuries after, in 1833, Louise Daguerre managed to figure out the world’s
first photographic process. The first photographic camera developed for commercial
manufacture was built by Alphonse Giroux in 1839. Giroux signed a contract with
Daguerre and Isidore Niépce to produce the cameras in France.

The photographic camera was considered a piece of luxury for quite a long time.
Fortunately, due to significant technological advances in recent decades, imaging
sensors have become so cheap and compact that almost every device currently fea-
tures a built-in camera. Moreover, some devices are shipped with multiple built-in
cameras. These factors led to a wide spread of imaging devices. In conjunction with
the development of the internet, this allowed people to capture photos with their
smartphones and share them on different social media platforms.

1.1 Image Degradations

Current cameras allow capturing an unprecedented level of detail due to the
availability of high-resolution imaging sensors. However, our ever-so-special mem-
ories can still be entirely spoiled by different degradations like motion blur, the sen-
sor’s noise due to the low-light conditions, etc. Often, the details that matter the
most, such as the face, are distorted.

Image blur is caused by the photographer’s shaky hands and the subjects, with
whom cooperation cannot be continuously established. This problem is even more
evident when capturing a picture of the subject while moving with a camera phone.
In this case, one might reduce the exposure time of the sensor. However, this leads
to insufficient light, usually compensated by increasing the sensor’s gain. Unfortu-
nately, increased gain results in large amounts of sensors noise. Motion blur is not
the only possible source of the blur. Defocus blur and spherical aberration are yet
other causes of a blur. Defocus blur can be avoided by capturing the object of inter-
est in focus. Spherical aberration can be resolved by pre-calibrating the lens of the
camera. In this thesis, we focus only on motion blur.

Blur is not the only adversary during the imaging process. Sometimes, details
of the beautiful scenery can be missing due to the long distance to the objects of
interest in the scene. Long-distance to the object leads to a low spatial resolution
of the captured object. Details might be missing even if the object is close to the
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camera. In this case, a potential reason for the lack of details can be simply a limited
resolution of the camera.

One can face another problem while working with old legacy content such as
old photos and movies. In addition to being blurry and low-resolution, this type of
content can also suffer from film scratches.

All the distortions above motivated a constant development of image restoration
algorithms usually applied in a post-processing stage.

1.2 On The Ambiguities and Controllability of Restoration

The previous section briefly mentioned different image restoration problems and
their possible causes. Now we will discuss some of the restoration ambiguities. We
will highlight ambiguities presented in the following image restoration tasks: gen-
eral deblurring, face deblurring, face super-resolution, and blind video restoration.
We also briefly mention possible ways to minimize the ambiguities for specific tasks
via adding additional methods of controlling and guiding the restoration process.

1.2.1 Deblurring Motion-Blurred Scene

Two Common sources of motion blur are the movement of the camera or the ob-
ject itself. Photos require a finite exposure to accumulate light from the scene. Thus,
objects moving during the exposure generate motion blur in an image. If we dis-
cretize the motion occurring during the exposure of the camera sensor, the blurring
process can be viewed as averaging sharp instant frames over time. Therefore, the
task of deblurring can be defined as the process of recovering one of the sharp in-
stant frames. The number of output frames can be infinitely large as it depends on
how fine-grained we discretize the time. The problem is ill-posed since there exist
multiple plausible outputs.

Most of the algorithms in this area restore the sharp middle frame of the sequence
since it corresponds to the center of mass of the local blur, which can be unambigu-
ously extracted given the blurry input image [1], [2]. However, what if a photog-
rapher wanted to capture the state of the scene corresponding to one of the very
first or last frames of the sequence? Hence, one might reformulate the deblurring
problem and extract a video of all consecutive sharp frames that define the blurry
input frame. Such a formulation allows more fine-grained control over the restora-
tion process and the additional possibility of choice for the end-user. Unfortunately,
this formulation of the problem leads to additional temporal ambiguities. Averag-
ing over time destroys the temporal ordering of the instant frames. Therefore, even
if our algorithm can restore N sharp frames, it’s still a challenge to identify the nat-
ural order of the frames. The data-driven solution to the reformulated problem and
associated ambiguities is covered in Chapter 3.
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FIGURE 1.1: Rotate and deblur motion-blurred faces. High-level
idea of our model that deblurs and rotates motion-blurred faces. Our
system takes a blurry input image of the face and residual viewpoints
defining how much it should rotate the restored video sequence rela-

tive to the input pose of the blurry face.

1.2.2 Deblurring Motion-Blurred Faces

In Section 1.2.1 we covered the general scene deblurring. Now we will focus
on domain-specific deblurring of motion-blurred faces. We consider this problem
separately due to the high social importance of faces. Following a similar line of
thoughts as in Section 1.2.1, we aim to restore a sharp video sequence from a single
motion-blurred image of the face.

Imagine a little daughter laughing and turning her head while her father is trying
to make a lovely photoshoot. Unfortunately, the daughter’s face might be blurry and
partially occluded due to the rotation of the head. In the case of teleconferencing, at-
tendees might observe a motion blur due to the face’s motion. Also, the interaction is
found to be more engaging when the person on the screen looks towards the receiver
[3]. However, it is necessary to look directly into the camera to achieve this configu-
ration, but this does not allow one to watch the person on the screen that one talks to.
Therefore we consider a problem of recovering a sharp video rendered from an arbi-
trary viewpoint from a single blurry image of a face. Thus, the viewpoint will be an
additional input controlling the person’s gaze in a recovered sharp video. However,
in addition to the inherent temporal ambiguity discussed in the previous section,
our problem is even more ill-posed due to the need to recover occluded parts of the
face. Luckily, we can address the ambiguity in Chapter 4 due to the domain-specific
nature of the problem. We envision the system presented in Fig. 1.2. To enable the
training of such a system, we have collected a synchronized, high-speed, multi-view
face video dataset. The faces of 52 participants were captured in a lab setting from 8
fixed viewpoints.
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FIGURE 1.2: Extreme face super-resolution ambiguities. We demon-
strate some of the inherent ambiguities associated with the extreme
face super-resolution problem. A 8 × 8 low-resolution facial image
can correspond to multiple identities with a different gender. On the
right, we incorporate an audio speech sample and resolve such ambi-
guity via gender-related information presented in the audio signal.

1.2.3 Extreme Face Super-Resolution

In sections Sections 1.2.1 and 1.2.2, we discussed the motion blur; now, we
will consider the challenging problem of tiny face restoration. Extreme face super-
resolution refers to the task of recovering high-resolution facial images from their
tiny, low-resolution counterparts. Particularly when the scaling factor is 16× or
above, the loss of detail can be so dire that important semantic information is lost.
Let us consider a small, low-resolution face presented in Fig. 1.2. One can see that
identity, gender, or age-related information is missing. The only information still
available in such a low-resolution image is perhaps the viewpoint and average col-
ors of the face and the background. Although it is possible to hallucinate numerous
plausible high-resolution images from such limited information, missing attributes
such as identity, gender, or age might be incorrect. For example, a low-resolution
face from Fig. 1.2 can be mapped to two identities with different genders. Therefore,
the problem is ill-posed since there exist multiple plausible outputs. We can incor-
porate alternative sources of information to address the ambiguities caused by the
absence of identity, gender, and age attributes. It has been demonstrated that even
a short audio speech sample of a human carries information about age and gender
[4]. Therefore, we can reformulate the problem of extreme face super-resolution and
use an audio signal to guide the face restoration process. In Chapter 5 we show
how to train the extreme face super-resolution model that can leverage the identity,
gender, and age-related information presented in the audio signal. Moreover, our
new formulation allows controlling the super-resolution of a face via evaluating the
model with a fixed low-resolution face and multiple different audio tracks.
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FIGURE 1.3: Blind video super-resolution, denoising, and film
scratch removal. High-level idea of our model that performs joint
video super-resolution, denoising, and film scratch removal. Degra-
dation Mapper and Mutator blocks enable fine-grained control over

the restoration process.

1.2.4 Controllable Blind Video Restoration

In Sections 1.2.1 to 1.2.3 we considered general, as well as domain-specific de-
blurring and super-resolution problems. We assumed that an input image is cor-
rupted by a single source of degradation, either motion blur or extreme downsam-
pling. However, sometimes we have a mixture of different degradations presented
in an input image or a video. Input videos are sometimes available in noisy, blurry,
and low-resolution format and additionally may contain scratches in the case of old
legacy content. Moreover, we are frequently in a blind setting without prior knowl-
edge of how strong each degradation is presented in the input. Therefore, in this
section, in addition to blur and downsampling, we aim to simultaneously address
different distortions and perform denoising and film scratch removal. We incor-
porate information from the temporal dimension and thus perform restoration on
videos.

Addressing multiple degradations in a blind setting is a challenging task. The
output of the restoration model might contain artifacts caused by exaggeration or,
on the contrary, disregarding some of the initial degradations presented in the in-
put. This undesirable behavior is caused by the model underestimating or over-
estimating different degradations to some extent. One particular example of this
phenomenon is a combination of blur with high levels of Gaussian noise, where the
model mainly focuses on denoising. Consequently, resulting in an over-smoothed
solution due to the high noise levels in the input, leading to the inability to detect
the initial blur presented in the input video. Thus, to alleviate these problems and
control the restoration process, we first need to estimate degradations present in the
input video. Once we know the strength of different degradations, we can use them
to perform the restoration. However, our output might still contain certain artifacts.
In this case, we can adjust the estimated degradation parameters and obtain the
adjusted restoration output. In Chapter 6 we learn a latent space of different degra-
dations allowing us to tackle a combination of various distortions with the ability to
adjust the restored output if necessary.
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FIGURE 1.4: Image restoration using brain. We illustrate how the
human brain observes faces with different levels of detail and asso-
ciates them with the sharp face of identity. We additionally show that
the human brain can associate audio speech with the corresponding

identity.

1.3 Can Humans Restore?

We discussed possible image distortions arising during the image acquisition
process. Now we will examine how a human visual system handles these scenarios
before diving into the problem’s computational and algorithmic side. Towards this
goal, we will raise some questions and consequently try to address them. The main
question is, "Are humans able to restore distorted images?" If yes, then how? To find
the answer, let’s discuss some examples.

Imagine we see a close friend standing far away from us, so far that we can not
see the exact details of the face. Can we recognize our friend in this case? Well,
sometimes yes, sometimes no, and sometimes we might be thinking of several pos-
sible identities. How are we able to identify our friend if he stands far enough? Well,
one might say that the human brain has an excellent visual memory. However, we
can not search in our memory since we don’t see the details of the person’s face.
One explanation might be that we interacted with the friend in many different cir-
cumstances. More specifically, we might have seen him from a variety of different
distances. It’s fair to consider that our brain has built some latent representation
where it tries to map every appearance of our friend. This might potentially explain
why we can identify the people we have seen. Yet another example is the ability to
hallucinate the invisible part of the human’s face.

Like the previous example, let’s imagine our friend running towards us. In this
case, we can not focus on his face as well as before. However, the closer he is, the
more confident we are in his identity. This might be possible due to the similar line
of thoughts we used in the previous example.

Now let us consider yet another example. Imagine our friend is calling us and
we pick up the phone. In this case, we don’t see the person at all. We only hear the
voice of the person. Our brain can immediately associate the person’s voice with his
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FIGURE 1.5: Autoencoding of faces. Facial image is first encoded to
some latent space and after decoded back to image space.

face in most cases. In this case, we might think that our brain can map aural and
visual modalities into some shared latent representation.

We can not make specific claims about how humans restore distorted or partial
visual information. However, we can safely assume that the human brain can restore
visual details. We can assume that our brain maps signals of different quality and
nature (e.g. audio) to some latent representation. More specifically, a brain can be
seen as a physical implementation of a function that encodes visual signals into a
latent representation of neural activations.

Let us consider the phenomenon of dreaming during the night. It has been
shown that our brain can unconsciously imagine and experience certain situations
during sleep. These situations are sometimes related to our everyday experiences
during the day. However, sometimes they might be random and unreal. We might
consider it just as sampling and synthesis from our memory (representation).

We can conclude from these examples that our brain can perform a wide variety
of image restoration tasks. Thus a biological solution exists for them. The following
section will view these problems from a machine learning perspective.

1.4 Can Machines Restore?

The previous section positively answered whether the human brain could per-
form image restoration tasks. We hypothesized that the human brain builds latent
representation where different signals are mapped. Our goal is to achieve the same
computationally. We need to have a machine learning perspective on the problem
towards this goal.

We will start with the analogy of the human visual cortex. Humans tend to re-
member things they see, especially faces, due to their high social importance. Simi-
larly, we can incorporate a machine learning model E to map the face to some high-
dimensional latent space. We can also mimic memorizing the person via associating
the latent code with the person’s face. More specifically, our latent feature can be
processed by a machine learning model G and output a corresponding humans face.
Intuitively the process of observing a person as well as memorization is shown in
Fig. 1.5.

The main goal of the framework presented in Fig. 1.5 is to perform autoencoding
of an input image. The natural question arising is "What are the desirable properties
for models E and G?". Some of the essential requirements are: (i) model G should
generate realistic faces; (ii) the shared latent space should cover a wide range of dif-
ferent identities; (iii) to allow meaningful editing capabilities the latent space should
be smooth and disentangled; (iv) model E should be able to find the latent code cor-
responding to an input image. We will describe how one can train models E and G
in Chapters 4 and 5.
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FIGURE 1.6: Image restoration using our brain. We illustrate how
the human brain observes faces with different levels of detail and as-
sociates them with the sharp face of identity. We additionally show
that the human brain can associate audio speech with the correspond-

ing identity.

We assume that we are given model G to sample sharp natural facial images from
the latent space and model E to output appropriate latent code corresponding to an
input image. Now we can define some restoration task-specific components. Fig. 1.6
shows the high-level idea for different types of restoration tasks. We can now define
models Elowres, Eblurry and Eaudio for Face Super-Resolution, Deblurring and Audio-
to-Image restoration tasks respectively. Each model performs task-specific restora-
tion of input images and maps them to the corresponding high-resolution, sharp
latent code. Elowres and Eblurry take low-resolution and blurry facial images and map
them to our latent space. Similarly, encoder Eaudio maps the human speech sample
to the latent space. We also define a task-specific fusion model F that manipulates
latent codes. In the context of the Chapter 5, model F will enhance the output Elowres
to recover some identity-related attributes based on the latent audio code provided
by model Eaudio. In the case of the Chapter 4, model F will be used to generate the
novel views of deblurred output latent feature provided by model Eblurry. Finally,
our model G takes the regressed or manipulated latent code and outputs the associ-
ated person’s face.

1.5 Thesis Contributions

In this thesis, we first introduce the novel task of extracting a video sequence
from a single motion-blurred image. Motion-blurred images result from an averag-
ing process, where instant frames are accumulated over time during the exposure
of the sensor. Unfortunately, reversing this process is nontrivial since averaging de-
stroys the temporal ordering of the frames. We present a deep learning solution
with novel loss functions that enable the gradual recovery of a temporal ordering by
sequentially extracting pairs of frames from the middle to the end of the sequence.

This thesis studies techniques to learn image representations that enable editing,
control, and guidance of different image restoration methods. Generative Adver-
sarial models (GAN) allow an unprecedented level of generated details combined
with smooth latent space. We leverage the power of GANs towards the goal of
learning controllable neural face representations. We demonstrate how to learn an
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inverse mapping from image space to these latent representations, tuning these rep-
resentations towards a specific task, and finally manipulating latent codes in these
spaces. We demonstrate the efficiency of this methodology on two novel tasks we
introduced: extreme face super-resolution using audio and restoration of novel view
videos from a single motion-blurred image of the face.

The thesis further addresses a more general class of blind video restoration prob-
lems. We designed a system that simultaneously addresses video deblurring, super-
resolution, denoising, and scratch removal. Towards this goal, we first built the
latent space of degradations via contrastive representation learning. The proposed
solution restores videos by conditioning the model with latent codes from learned
degradation space. This design allows the fine-grained control over the restoration
process and enables modification of restored outputs via manipulating the latent
codes from learned representation.

1.5.1 Chapter Outline

Chapter 2: Background. We first discuss autoencoders, GANs, and contrastive
representation learning. After we provide a general overview of prior works in
image deblurring, super-resolution, and denoising. More discussions of prior works
specific to a given chapter are given in separate sections of the remaining chapters.
Chapter 3: Learning to Extract a Video Sequence from a Single Motion-Blurred
Image. We introduce the novel task of extracting a sharp video sequence from
a single motion-blurred image. Our main contribution is to introduce loss func-
tions invariant to the temporal order. This lets a neural network choose what
frame to output among the possible combinations during training. We also ad-
dress the ill-posedness of deblurring by designing a network with a large receptive
field implemented via resampling to achieve higher computational efficiency. Our
proposed method can successfully retrieve sharp image sequences from a single
motion-blurred image and generalizes well on synthetic and real datasets captured
with different cameras.
Chapter 4: Learning to Deblur and Rotate Motion-Blurred Faces. We introduce
the novel task of extracting a sharp video sequence of the face from an arbitrary
viewpoint given a single motion-blurred image of the face. The proposed method
handles the complexity of face blur by implicitly learning the geometry and motion
of faces. We train a neural network to reconstruct a 3D video representation from a
single image and the corresponding face gaze. We then provide a camera viewpoint
relative to the estimated gaze and the blurry image as input to an encoder-decoder
network to generate a video of sharp frames with a novel camera viewpoint. We
demonstrate our approach on test subjects of our multi-view dataset and VIDTIMIT.
Chapter 5: Learning to Have an Ear for Face Super-Resolution. We introduce the
novel task of super-resolving tiny faces using very low-resolution images and associ-
ated audio tracks. Towards this goal, we propose a model and a training procedure
to extract information about a person’s face from her audio track and combine it
with the information extracted from her low-resolution image, which relates more
to the pose and colors of the face. We demonstrate that the combination of these
two inputs yields high-resolution images that better capture the correct attributes of
the face. In particular, we show experimentally that audio can assist in recovering
attributes such as gender, age, and identity and thus improve the correctness of the
image reconstruction process. Our procedure does not make use of human annota-
tion and thus can be easily trained with existing video datasets. Moreover, we show
that our model builds a factorized representation of images and audio as it allows
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one to mix low-resolution images and audio from different videos and to generate
realistic faces with semantically meaningful combinations.
Chapter 6: Contrastive Learning for Controllable Blind Video Restoration. We
address the task of blind image super-resolution, denoising and scratch removal
simultenaously. We propose a representation learning pipeline that helps separate
content from the degradation by reasoning on pairs of degraded patches, where both
content and degradation vary independently and provide hard negative examples.
The degradation representation is used as conditioning for a video restoration model
that can denoise and upscale to arbitrary resolutions and remove film scratches. Fi-
nally, the learned representation can be mutated to fine-tune the restoration results,
and both the denoising and deblurring levels can be modified. We demonstrate
state-of-the-art results compared to the most recent video super-resolution and de-
noising methods.
Chapter 7: Conclusions and Future Work.
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Chapter 2

Background

This chapter provides an overview of prior works in representation learning, de-
blurring, super-resolution, and denoising. The common design pattern proposed in
this thesis is first to encode degraded input to some latent space, perform restoration
and manipulation in the latent space and finally map the result back to the image
space. Therefore, we first revisit prior work on representation learning which is the
bedrock of different image restoration methods presented in this thesis. Sections 2.1
to 2.3 cover different methods of representation learning. Section 2.4 reviews al-
gorithms addressing different types of deblurring problems. Finally, Sections 2.5
and 2.6 acknowledge prior works addressing the problems of super-resolution and
denoising, respectively.

2.1 Autoencoders

The autoencoder is a model for unsupervised representation learning [5] consist-
ing of two parts: an encoder and a decoder. During training, encoder and decoder
are typically trained to minimize the mean-squared error between input and output
of the model. Therefore, the model learns to reconstruct the training data. With-
out any additional design choices, this system can learn identity function. This is
alleviated by limiting the dimensionality of the encodings denoted as a bottleneck.
Bottlenecks encourage the model to focus on the structure of the data to preserve as
much information as possible. The simplest autoencoder consists of a single dense
layer as the encoder and a single dense layer as the decoder. However, for vision
tasks, deep autoencoders with multiple convolutional layers learn better representa-
tions [6]. Two well-known extensions of the basic autoencoder model are denoising
autoencoder (DAE) [7] and the variational autoencoder (VAE) [8].

In the simplest case of denoising autoencoder, the input image to the encoder
is corrupted by adding random noise, and the autoencoder is trained to restore the
undistorted input image. However, a significant disadvantage of DAEs is that they
do not allow a random sampling of the learned data distribution. Therefore, DAE
can not be used as a generative model.

In VAEs, the entries of the hidden state of the model are pushed towards a stan-
dard Normal prior via a KL-Divergence loss term resulting in multivariate Gaussian
with a diagonal covariance matrix. Consequently, first VAEs are generative models
that allow a random sampling of the learned data distribution via decoding samples
of a standard Normal; secondly, representations learned through VAEs can capture
and disentangle the factors of variation on some datasets [9]. As a result, such mod-
els allow image manipulation and editing. Numerous extensions and variations of
VAEs have been proposed: a variant with discrete hidden states [10] and an adver-
sarial training approach to enforce the prior on the hidden variables [11]. However,
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many previous works on autoencoders suffered from blur presented in reconstruc-
tions.

We will often use autoencoder to refer to a general encoder-decoder network de-
sign pattern typical in image restoration and translation tasks [12]. The goal in these
cases is not typically to learn a good representation but rather to achieve some spe-
cific image processing.

2.2 Generative Adversarial Learning

Goodfellow et al. [13] introduced one of the first generative adversarial network
(GAN) models. The original GAN is an unsupervised generative model consisting
of a generator network and a discriminator network. The generator is trained to
generate samples similar to the training data from random Standard Normal noise.
The discriminator is trained to judge how similar they are to the training data. Gen-
erator and discriminator are trained in an adversarial game. Ideally, the generator
should faithfully model the data distribution at the game’s equilibrium. Radford et
al. [14] introduced a GAN model utilizing convolutional layers. The proposed model
enabled training at higher resolution and improved the quality of the samples. The
learned representation has some desirable properties. Firstly, interpolations in the
latent space result in flawless, reasonable interpolations in image space. Secondly,
the representation allows for semantically meaningful arithmetic operations. There-
fore, directions in the latent space separate factors of variation to some extent. To
leverage this representation, Donahue et al. [15] introduced a Bidirectional Genera-
tive Adversarial Network (BiGAN) that learns the inverse mapping of the generator.
Inverse mapping allows leveraging the learned representation for image editing and
meaningful semantical manipulations. Donahue et al. [16] showed that learning the
inverse mapping also improves training and mode coverage.

Classical image restoration tasks like image super-resolution [17], deblurring
[18], and image inpainting [19] have largely benefited from principles of adversarial
learning. In these settings, discriminator was used as a learnable loss function quan-
tifying the perceptual dissimilarity to some natural reference distribution of images
and thus, enhancing the realism in restored images.

Part of the research community focused on addressing the inherent instability
of GANs training. Salimans et al. [20] introduced a set of techniques and heuristics,
Radford et al. [14] proposed improved architectural designs and hyper-parameter
settings, [20] suggested using one-sided label smoothing and the injection of Gaus-
sian noise into the layers of the discriminator, Arjovsky et al. [21] provided a theoret-
ical analysis of the unstable training and the vanishing gradients phenomena. Some
of the works addressed the instability issues by introducing alternative training ob-
jectives [21]–[28].

Another line of work specifically focused on the problem of very high-resolution
image generation. Karras et al. [29] grow both the generator and discriminator pro-
gressively starting from a low resolution, they add new layers that model increas-
ingly fine details as training progresses. This speeds the training up and significantly
stabilizes it, allowing it to produce images of unprecedented quality. Karras et al. [30]
proposed an alternative generator architecture that first processes a random noise
sample using a multi-layer perceptron and passes the output to every layer of gen-
erators architecture. Authors additionally mixed two different random codes during
training that led to an automatically learned, unsupervised separation of high-level
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attributes (e.g., pose and identity when trained on human faces) and stochastic varia-
tion in the generated images (e.g.., freckles, hair), and enables intuitive, scale-specific
control of the synthesis. Karras et al. [31] further improved [30] via additional path
length regularizer of the latent space resulting in a more straightforward and easier
inversion of the generator.

2.3 Contrastive Representation Learning

Sections 2.1 and 2.2 covered representation learning from generative learning
perspective. This section focuses on contrastive learning of representations. The
main objective of these methods is to learn representations that are discriminative
to certain types of data transformations while being invariant to the other types
of transformations. Dosovitskiy et al. [32] were the very first who exploited this
principle and introduced instance discrimination task. The goal is to associate each
training example with its unique label while being invariant to different data aug-
mentations defining desired invariances in the learned representation. Wang et al.
[33] showed that properties of the contrastive loss function and the embedding
space significantly influence learned representation. Wu et al. [34] introduced a
non-parametric formulation of this task leveraging a noise-contrastive estimation,
consequently enabling training on larger datasets. Chen et al. [35] proposed a simple
framework for contrastive learning of visual representations via instance discrim-
ination among large minibatches, requiring neither specialized architectures nor
a memory bank. He et al. [36] proposed to avoid large minibatches by sampling
negatives from a queue of past encoded samples, while [37], [38] diverted sam-
pling negatives explicitly. Caron et al. [39] and Wang et al. [40] suggested learning
a clustering of examples using the contrastive framework. Some works consid-
ered contrastive learning on videos to learn representations sensitive to temporal
information [41]–[43]. Another line of works performed contrastive learning on
multi-modal data: depth[44], optical flow[45], text[46], audio[47], [48].

2.4 Deblurring

This section focuses on various categories of deblurring algorithms, which
mainly differ in underlying assumptions about the blur model. Section 2.4.1 covers
prior work addressing the most straightforward scenario of a uniform blur model,
where blur is assumed to be the same across the image. Section 2.4.2 discusses
a line of works tackling a more general non-uniform (space-varying) blur model,
where blur might differ across the image. Section 2.4.3 considers video deblurring
methods separately. Finally, Section 2.4.4 reviews domain-specific solutions to the
face deblurring problem.

2.4.1 Uniform Deblurring

In its most general form, blur removal requires unknowns that considerably out-
number the number of measurements. Therefore, it is typically necessary to use
simplifying assumptions. The most common approach assumes that the blur is uni-
form across the image plane. The uniform model is particularly convenient because
it translates into an elegant and simple mathematical model. The problem has re-
ceived enormous attention from the research community, and it is typically solved
in a Bayesian framework. The uniform motion blur model describes a blurry image
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as the convolution between a blur kernel and a sharp image. Since only the blurry
image is given, the task of recovering both the blur and the sharp image is highly ill-
posed. A classic approach to solve motion deblurring is to formulate accurate char-
acterizations of the unknowns. These characterizations are also called priors when a
Bayesian formulation is used. The problem is generally cast as an energy minimiza-
tion with a term measuring how well the convolutional model matches the blurry
input image and a term measuring how well the unknowns fit their priors. Image
priors usually specify the distribution of gradient magnitudes. This follows from
the work of Srivastava et al. [49] on natural image statistics. One widespread image
prior choice is total variation, initially introduced by Rudin et al. [50]. Total variation
is used to characterize sharp images by discouraging the presence of gradients and
was first exploited for blind deconvolution by You et al. [51] and Chan et al. [52]. An-
war et al. [53] explored the potential of a class-specific image prior. Pan et al. [54] in-
corporated dark channel prior based on the observation that dark pixels from sharp
images are not dark when averaged with neighboring high-intensity pixels during
the blurring process. Yan et al. [55] presented an extremely effective image prior by
combining the bright and dark channel priors of Pan et al. [54]. Zhou et al. [56] pro-
posed a MAP-estimation framework for Blind deblurring that uses high-level edge
priors. Priors for the blur have also been used to discourage blur estimates that are
too close to a Dirac delta. The prior used for the blur is usually a constant [57], [58],
a Gaussian prior [59] or a Laplace prior [60].

Michaeli et al. [61] incorporated a patch-based approach and leveraged recur-
rence of small image patches across different scales of a natural image. Dong et al.
[62] addressed the influence of outliers on deblurring. Another line of works specif-
ically addressed the case of camera shake blur [63], [64]. Gong et al. [65] introduced
a gradient activation algorithm for blur kernel estimation. Chakrabarti [66] was the
first to introduce the neural approach for uniform deblurring. However, the pro-
posed method is limited to small blurs.

In practice, however, the uniform blur assumption is not satisfied. For example,
at occlusions, motion blur may vary sharply. Also, when the camera rotates around
its optical axis, the blur at the image corners is much larger than the blur at the image
center. Nonetheless, the shift-invariant assumption has led to a better understanding
of the general blind deconvolution problem.

2.4.2 Non-Uniform Deblurring

Recently, the general motion deblurring problem has attracted a lot of attention.
In general, motion blur might be generated by an object moving relative to the cam-
era in the scene. Its motion blur depends on several factors: its depth, its shape, and
its motion trajectory. Due to the Hyun Kim et al. [67] proposed an energy model to es-
timate different motion blurs and their associated pixel-wise weights. Hyun Kim et
al. [68] used a TV-L1 model to estimate motion flow and a latent sharp image simul-
taneously. Sun et al.[69] trained a convolutional neural network (CNN) for predict-
ing a probability distribution of motion blurs. A sharp image is estimated by using
a patch-level image prior. Pan et al. [70] developed an efficient algorithm to jointly
estimate object segmentation and camera motion, where each layer is deblurred un-
der the guidance of a soft-segmentation. Gong et al. [71] estimated a dense motion
flow with a fully convolutional neural network and recovered the latent sharp im-
age from the estimated motion flow. Bahat et al. [72] recover the unknown blur field
by analyzing the spectral content and deblur the image from the estimated blur field
with a patch recurrence prior. Pan et al. [73] proposed a method to learn data fitting



2.4. Deblurring 15

functions from a large set of motion-blurred images with the associated ground truth
blur kernels. Nimisha et al. [74] used adversarial training to learn blur-invariant fea-
tures, which fed to a decoder to produce a deblurred image. Recent work [1], [2],
[75] generated synthetic data for dynamic scene motion blur by averaging consecu-
tive frames captured with a high frame rate camera. This dataset could then be used
to train a neural network. During training, the center frame of the averaged sharp
sequence is used as the ground truth of the corresponding blurry frame. Nah et al.
[2] trained an end-to-end model with a multi-scale convolutional neural network to
restore the latent image directly.

2.4.3 Video Deblurring

Several methods consider the task of restoring a sharp sequence from a blurry
video sequence. One big advantage of such methods is the possibility to leverage
temporal information from distorted video frames. Zhang et al. [76] proposed a
method that jointly estimates the motion between consecutive frames as well as blur
within each frame. Sellent et al. [77] instead exploited a stereo video sequence. Wi-
eschollek et al. [78] introduced a recurrent network architecture to deblur images by
taking temporal information into account. Hyun Kim et al. [75] also exploits a spatio-
temporal recurrent network while achieving real-time performance. Kim et al. [79]
proposed a method for simultaneously removing general blurs and estimating op-
tical flow from a video sequence. Ren et al. [80] exploited semantic segmentation of
each blurry frame to understand the scene contents and used different motion mod-
els for image regions to guide the optical flow estimation. Su et al. [81] proposed a
CNN that deblurs videos by incorporating information accumulated across frames.
Pan et al. [82] proposed a framework to estimate the scene flow and deblur the image
jointly. Park et al. [83] developed a method for the joint estimation of camera pose,
depth, deblurring, and super-resolution from a blurred image sequence.

2.4.4 Face Deblurring

Faces play an essential role due to their societal importance. Deblurring motion-
blurred image of a face is particularly difficult due to several factors. One issue
is that the motion blur generated by a moving face depends on the 3D surface of
the face as well as its 3D motion. A second issue is that the moving surface causes
several self-occlusions, which break the usual blur models. As an example for the
last point, if a head rotates using the neck as a rotation axis, the image of the initial
pose does not contain the texture of the image of the final pose and vice versa. More
specifically, the area around the nose will be the combination of partial occlusion
and disocclusion processes. The classic approach of [84] addressed face deblurring
by leveraging facial structures from an exemplar dataset. They first collected an
exemplar dataset of face images and extracted important structures from exemplars
to express the structural information. Fortunately, with the rise of modern learning-
based approaches, several works designed specialized neural network architectures
to target face deblurring. Chrysos et al. [85], [86] performed face alignment to the
input of the network and introduced a two-stage architecture where the first stage
restores low-frequency and the second stage restores high-frequency content. Jin
et al. [87] designed computationally efficient architecture that exploits a very large
receptive field.

Some methods incorporate additional information in the form of semantic label
maps [88], [89] or 3D priors from a 3DMM [90]. Lu et al. [91] disentangled image
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content and blur and exploited cycle-consistency to learn deblurring in the unsu-
pervised, i.e., unpaired setting. Face deblurring has also been combined with super-
resolution by restoring high-resolution facial images from blurry low-resolution im-
ages [92], [93].

2.5 Super-Resolution

In this section, we discuss image super-resolution. Image super-resolution refers
to the problem of reconstructing high-resolution images from their low-resolution
counterparts. In Section 2.5.1 we first consider methods that impose specific assump-
tions about degradations presented in the input. These methods assume a known
blur kernel and a noise level. In Section 2.5.2 we acknowledge methods address-
ing the more challenging, blind super-resolution problem where blur kernel, as well
as the noise level, is unknown. Finally, Section 2.5.3 reviews methods designed for
more restricted, class-specific face super-resolution problem.

2.5.1 General Super-Resolution

Singe Image Super-Resolution (SISR) is a very active research area, which largely
benefitted from the latest developments in deep learning (see, e.g., [94]–[102]). An
important part of super-resolution research works has focused on improving task-
specific CNN architectures and components (see e.g., [103]–[117]). A wide set of
instances of this problem has been addressed, ranging from arbitrary scale factors
[118], to improving the realism of the training set through accurate modeling [119],
[120] or through using real zoomed in images [121], [122], to robustness against ad-
versarial attacks [123] and generalization [124], and to modeling multiple degrada-
tions [125]–[127]. Finally, [128], [129] focus on the evaluation of the image qual-
ity in SISR. Temporal information can also be used in the context of video super-
resolution [99], [130]–[137].

Advances in general super-resolution have also mainly been driven by the intro-
duction of task-specific network architectures and components (see e.g., [103]–[111],
[138]–[145]). Several works incorporated adversarial training to improve the realism
of super-resoled images further and alleviate over smoothed solutions introduced
due to common L1,L2 loss functions [96], [146]–[148].

2.5.2 Blind Super-Resolution

Blind Super-Resolution methods assume that information about degradation
presented in the image is unknown. Recent methods [126], [149]–[152] addressing
blind image super-resolution rely on some form of test-time optimization to estimate
the blur kernel and predict the corresponding high-resolution output. These two
steps can be done separately [149], jointly [126], [150] or require a fine-tuning of
the super-resolution model [151], [152]. In the case of blind video super-resolution,
Pan et al. [153] estimate a blur kernel used in an image deconvolution step. The re-
sulting image is then restored using a neural network and aligned adjacent frames.
We can note that this strategy may not be optimal as the restoration neural network
cannot directly leverage the blur kernel information. A significant step was made
by Wang et al. [154], who avoid test-time optimization while still conditioning the
restoration model on the estimated degradation. This provides a clear advantage.
However, the proposed model is limited to images, fixed scaling factors, and the
learned representation cannot be interpreted or manipulated.
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2.5.3 Face Super-Resolution

The face super-resolution problem has been tackled with a wide variety of ap-
proaches. For example, Huang et al. [155] trained a CNN to regress wavelet coef-
ficients of HR face, and Yu et al. [156] introduced a transformative discriminative
autoencoder to super-resolve unaligned and noisy LR face images. More in general,
recent methods addressed the problem by using additional supervision, for exam-
ple, in the form of facial landmarks, heatmaps or the identity label, and multi-task
learning [157]–[161]. In contrast, by using videos with corresponding audio tracks,
our method does not rely on additional human annotation, and thus its training
can scale more easily to large datasets. Several face super-resolution methods lever-
age adversarial training to improve further the realism of restored faces[157], [159],
[161], [162].

2.6 Denoising

Similarly to super-resolution, a lot of progress has been made since early works
based on neural networks [163]–[165]. We focus here on recent video denoising
methods: Yue et al. [166] proposed a raw video denoising network (RViDeNet) by
exploring the temporal, spatial, and channel correlations of video frames. Tassano et
al. [167] proposed a video denoising algorithm based on a convolutional neural net-
work model conditioned on the noise level. Maggioni et al. [168] introduced a multi-
stage algorithm to reduce the complexity while maintaining denoising performance.
These methods strongly rely on providing noise level as input. Claus et al. [169] ad-
dressed the blind problem using a multi-frame neural network architecture to de-
noise videos and considered varied noise models during training. Although more
robust than specialized denoisers, results are not competitive with recent methods
leveraging noise parameters at test time.
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Chapter 3

Learning to Extract a Video
Sequence from a Single
Motion-Blurred Image

FIGURE 3.1: Multiple frames extracted from a single motion blurred
image. On the left column we show the input image and two en-
larged details with different motion blur. On the columns to the right
we show the estimated 7 frames and corresponding enlargements.

It is often said that photos capture a memory, an instant in time. Technically,
however, this is not strictly true. Photos require a finite exposure to accumulate light
from the scene. Thus, objects moving during the exposure generate motion blur in a
photo.

Motion blur is an image degradation that makes visual content less interpretable
and is often seen as a nuisance. However, motion blur also combines information
about both texture and motion of the objects in a single blurry image. Hence, recov-
ering texture and motion from motion-blurred images can be used to understand the
dynamics of a scene (e.g., in entertainment with sports or surveillance when mon-
itoring the traffic). The task of recovering a blur kernel and a sharp image, whose
convolution gives rise to a given blurry image, is called motion deblurring or blind
deconvolution. Unfortunately, this formulation of the task is accurate only for some
special cases of motion blur. In particular, it holds in the instances where blur is the
same across an image (the so-called shift-invariant blur [170]) or when blur can be
modeled as a linear combination of a basis of shift fields (e.g., in the case of camera
shake [171]). However, in the case of multiple moving objects, also called dynamic
blur [2], a blurry image is no longer some convolution of a blur pattern with a sin-
gle sharp image. In this case, a blurry image is the averaging over time of instant
frames, where multiple objects move independently and cause occlusions.

In this chapter, we introduce blind deconvolution with dynamic blur as the task
of recovering a sequence of sharp frames from a single blurry image. As illustrated
in Fig. 3.1, given a single motion-blurred image (left column), we aim at recover-
ing a sequence of 7 frames each depicting some instantaneous motion of the objects
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in the scene. To the best of our knowledge, this is the first time this problem has
been posed and addressed. The two main challenges in solving this task are: 1) blur
removal is an ill-posed problem, and 2) averaging over time destroys the temporal
ordering of the instant frames. We use a deep learning approach and train a con-
volutional neural network with a large receptive field to handle the ill-posedness of
deblurring. A large receptive field could be achieved by using large convolutional
filters. However, such filters would have a detrimental impact on the memory re-
quirements and the computational cost of the network. We avoid these issues by
using a re-sampling layer (see Sec. 3.5). Handling the loss of the temporal ordering
is instead a less well-studied problem in the literature. To make matters worse, this
ordering ambiguity extends to the motion of each object in the scene, thus leading to
a combinatorial explosion of valid solutions. One possible exception to this scenario
is the estimation of the frame in the middle of the sequence. In most motion-blurred
images, the middle frame corresponds to the center of mass of the local blur, which
can be unambiguously identified given the blurry input image [1], [2]. However, as
shown in the Experiments section, the other frames do not enjoy uniqueness. We
find that training a neural network by defining a loss on a specific frame of the se-
quence, other than the middle one, yields very poor results (see Sec. 3.6). We thus
analyze temporal ambiguities in Sec. 3.3 and present a novel deep learning method
that sequentially extracts instant frames. Our main contribution is to train neural
networks via loss functions that are invariant to the temporal ordering of the frames.
These loss functions use the average of two frames and the absolute value of their
difference as targets. This allows each network to choose which frames to output
during training. Moreover, to make the network outputs more realistic and sharp,
we use adversarial training [13]. In the Experiments section, we demonstrate that
our trained networks can successfully extract videos from both synthetic and real
motion-blurred images. In addition to providing accurate motion information about
objects in the scene, we plan to use our method for video editing and temporal su-
perresolution of videos. By exploiting the information embedded in motion blur,
our approach can interpolate subsequent frames with high accuracy.

3.1 Background

In Section 2.4 we mentioned some of the prior works about uniform motion de-
blurring, non-uniform motion deblurring, and video deblurring. However, none of
these approaches solves the task of extracting a video sequence from a single motion-
blurred image. In the following sections, we first illustrate the main challenges of
our problem, then we introduce our novel loss functions and show how they ad-
dress these challenges. The network design is presented in Sec. 3.5 and tested on
synthetic and real datasets in the Experiments section.

3.2 From Video to Image

An image y ∈ RM×N captured with exposure τ can be written as

y = g
(

1
τ

∫ τ
0 x̃(t)dt

)
= g

(
1
T ∑T−1

i=0 x[i]
)

, (3.1)

where g is the camera response function, which relates the irradiance at the image
plane to the measured image intensity, and x̃(t) is the instant image (irradiance) at
time t. We discretize the time axis into T segments, and define a sequence of frames
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x[i], with i = 1, . . . , T. Each frame x[i] corresponds to the integral of x̃(t) over a
segment, i.e.,

x[i] = T
τ

∫ τ
T (i+1)

τ
T i x̃(t)dt. (3.2)

Object motion introduces a relative shift (in pixels) of regions between subsequent
instant images x̃(t). Given the maximum shift ∆ that we are interested in handling,
and by defining negligible blur as a shift of 1 pixel, we can define the maximum
number T of time segments by setting T = ∆. This choice only ensures that each
frame x[i] will have no motion blur on average. However, motions with acceleration
may cause blur larger than 1 pixel in some frames.

The motion-blur model (3.1) thus far described is quite general, as regions can
shift in an unconstrained way, and subsequent instant images can introduce or re-
move texture (occlusions). Indeed, this model can handle the most general case of
motion-blur, often called dynamic blur. This suggests a new formulation of motion
deblurring with dynamic blur:

Given a motion-blurred image y, recover the T frames x[1], . . . , x[T] sat-
isfying model (3.1).

As mentioned in the Introduction, the task of recovering a sharp image from a blurry
one is already known to be highly ill-posed. In our formulation, however, the task
is made even more challenging by the loss of frame ordering in the model (3.1). It
may be possible to determine the local ordering of subsequent frames by exploit-
ing temporal smoothness. However, there exist several ambiguities that we describe
and discuss in the next section. For example, given y, it is impossible to know if
the ordering of the original sequence was x[1], . . . , x[T] or x[T], . . . , x[1], which cor-
responds to all objects moving forward or backward in time. Due to the complexity
of our task, we adopt a data-driven approach. We build a dataset of blurry images
with corresponding ground truth frames by exploiting high frame-rate videos as
in recent methods [1], [2], and devise a novel training method with convolutional
neural networks (see Sec. 3.4.3).

3.3 Unraveling Time

In our data-driven approach, we define a dataset of input data (a blurry image)
and target (a sequence of frames) pairs and then train a neural network to learn this
mapping. However, the averaging of frames in model (3.1) destroys the tempo-
ral ordering of the sequence x[1], . . . , x[T]. This makes the recovery of the frames
x[i] challenging because it is impossible to define the target uniquely. We might
expect that local temporal ambiguities between subsequent frames can be resolved
by learning the temporal smoothness (frames are more likely to form a sequence
describing smooth motions). However, several other ambiguities still remain. For
example, the global motion direction is valid for forward and backward in time. This
directional ambiguity applies independently to each moving object in the scene so
that all motion direction combinations are valid.

We illustrate these ambiguities in Fig. 3.2 with a toy example. We consider two
moving objects: a red and a green ball, both translating along the horizontal axis.
The first 5 columns show all 5 frames (T = 5) in the averaging model. Because there
are 2 objects, there are 4 possible combinations of motion directions (2n motions with
n the number of objects). These are shown in the 4 rows of the figure. Column (f)
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (l)

FIGURE 3.2: Temporal ordering ambiguities. In this toy example,
we show two moving objects: a red and a green ball. Both are trans-
lating horizontally. Columns (a)-(e) show five video frames in four
scenarios. Each of the four rows shows a plausible motion scenario of
the two objects. Column (f) shows the blurry average of the first five
columns. These averages are all identical, thus demonstrating that
all four sequences are equally valid solutions. Column (g) shows the
average of frame (b) and (d). Column (h) shows the average of frame
(a) and (e). Column (i) shows the absolute difference of frame (b) and
(d). Finally, column (h) shows the absolute difference of frame (a) and

(e).

shows that the corresponding average of the frames is the same motion-blurred im-
age in all 4 cases. Therefore, any of the target frames across the 4 rows is a valid one,
and it would be unfeasible for the network to learn to predict a specific choice for
just one of these 4 cases. Indeed, as we show in the Experiments section, training a
network to predict a single frame results in a network that predicts a blurry output
that is the average of the possible choices. There is one exception to these ambigu-
ities. The middle frame in an odd-numbered sequence does not change across the
4 cases. This explains why prior methods [1], [2] could successfully train a neural
network to predict the middle frame.

To address the temporal ordering ambiguities we introduce novel loss functions.
In the next section we explore different options and show how we arrived at our
proposed loss function. These cases are also discussed and evaluated in the Experi-
ments section.

3.4 From Image to Video

Our training data has been obtained from a GoPro Hero 5 and features videos at
240 frames per second. To obtain blurry frames at standard real-time video rates (30
frames per second), we thus need to average 8 frames. However, as we have shown
in our previous section, we can avoid ambiguities in the estimation of the middle
frame by using an odd number of frames, and hence we use T = 7. However, our
method can generalize to other choices of T. We denote the neural network that
predicts the frame x[i] with φi. Since the middle frame x[4] can be predicted directly
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without ambiguities, we train φ4 with the following loss

Lmiddle = |φ4(y)− x[4]|2 + Lperceptual(φ4(y), x[4]), (3.3)

where Lperceptual is the perceptual loss [172]. For the perceptual loss, we use the
relu2_2 and relu3_3 layers of vgg16 net [173]. All other losses in the sections below
will focus on the other frames.

3.4.1 Globally Ordering-Invariant Loss

A first way to recover all other frames is to use a loss function based on the image
formation model (3.1)

Lmodel =
∣∣∑i 6=4 x̂[i]−∑i 6=4 x[i]

∣∣
1 , (3.4)

where we have defined x̂[i] = φi(y). This loss does not suffer from ambiguities
and lets the networks decide what frames to output. In practice, however, we find
that it is too weak. This loss works well only when a blurry frame is generated by
averaging no more than 3 frames. We find experimentally that with more averaging
frames, the network does not converge well and may not generate a meaningful
sequence.

3.4.2 Pairwise Ordering-Invariant Loss

Inspired by the previous observation, we notice that any pair of symmetric
frames (about the middle frame) results in the same average and absolute differ-
ences. This choice is motivated by the observations made in the previous section
and illustrated in Fig. 3.2. Columns (g) and (i) in Fig. 3.2 show the average and
absolute difference respectively of columns (b) and (d). These combinations yield
the same target frame regardless of the object’s motion direction. Thus, we propose
to use a loss made of two components, one based on the sum and the other based on
the absolute difference between only two frames. We find experimentally that this
scheme imposes a much stronger constraint. Based on these observations, for each
pair of symmetric frames (φi, φ8−i), we propose the following loss function

Lpair = ∑3
i=1

∣∣∣|x̂[i] + x̂[8− i]| − |x[i] + x[8− i]|
∣∣∣
1

+
∣∣∣|x̂[i]− x̂[8− i]| − |x[i]− x[8− i]|

∣∣∣
1
,

(3.5)

where x̂[i] = φi(y) and x̂[8 − i] = φ8−i(φi(y), y) for i = 1, 2, 3. Notice that
φ8−i(φi(y), y) takes as inputs both the blurry image y and the output of the other
network φi(y). The reason for this additional input is so that the network φ8−i can
learn to generate a frame different from that of φi(y). Therefore, it needs to “know”
what frame the network φi(y) has chosen to generate. Compared with the loss
function in eq. (3.4), this loss function is easier to optimize and converges better
(see results in the Experiments section). We also find experimentally that we can
further boost the performance of our networks by additionally feeding the mid-
dle frame prediction to each network. That is, we define x̂[i] = φi(φ4(y), y) and
x̂[8− i] = φ8−i(φ4(y), φi(y), y) for i = 1, 2, 3.
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1. Let x̂[4] = φ4(y) and minimize

Lmiddle = |x̂[4]− x[4]|2 + Lperceptual(x̂[4], x[4]).

2. Let x̂[3] = φ3(φ4(y), y),
x̂[5] = φ5(φ3(y), φ4(y), y) and minimize

L3,5
pair =

∣∣∣|x̂[3] + x̂[5]| − |x[3] + x[5]|
∣∣∣
1

+
∣∣∣|x̂[3]− x̂[5]| − |x[3]− x[5]|

∣∣∣
1

+L3
adv + L5

adv.

3. Let x̂[i] = φi(φi+1(y), φi+2(y), y), x̂[8 − i] = φ8−i(φ7−i(y), φ6−i(y), y),
with i = 1, 2 and minimize

L1,2,6,7
pair =

∣∣∣|x̂[1] + x̂[6]| − |x[1] + x[6]|
∣∣∣
1

+
∣∣∣|x̂[1]− x̂[6]| − |x[1]− x[6]|

∣∣∣
1

+
∣∣∣|x̂[2] + x̂[7]| − |x[2] + x[7]|

∣∣∣
1

+
∣∣∣|x̂[2]− x̂[7]| − |x[2]− x[7]|

∣∣∣
1

+L1
adv + L2

adv + L6
adv + L7

adv.

TABLE 3.1: Summary of networks, loss functions and training.

3.4.3 Learning a Temporal Direction

Up to this point, each pair of networks φi and φ8−i operates independently from
the other pairs. This is not ideal, as it leaves a binary ambiguity in the temporal
ordering of each pair: We do not know if φi 7→ x[i] and φ8−i 7→ x[8− i] or φi 7→
x[8− i] and φ8−i 7→ x[i]. Thus, after training, one needs to find a smooth temporal
ordering of the outputs of these networks for each new input.

To avoid this additional task, we sequentially train our networks and use the
outputs of the previous networks to determine the ordering for each data sample
during training. This is needed only for frames away from the central core with i =
3, 4, 5. Moreover, once the temporal ordering chosen by the middle core networks
is known to the other networks, there is no need to feed other inputs. Hence, we
define the non-core networks as φi(φi+1(y), φi+2(y), y) and φ8−i(φ7−i(y), φ6−i(y), y)
for i = 1, 2. In practice, we find that φi and φ8−i can share weights for i = 1, 2. This
opens up the possibility of designing a recurrent network to predict all non-core
frames. We also use an adversarial loss Ladv to enhance the accuracy of the output
of each network φ. Except for the network that generates the middle frame, all other
networks use the adversarial loss during training. We summarize our training losses
and procedure in Table 3.1.



3.4. From Image to Video 25

FIGURE 3.3: Middle frame prediction network architecture.

FIGURE 3.4: Details of our architecture. Left to right: the residual
block, the feature refinement block and the feature fusion block (see

Fig. 3.3).
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3.5 Implementation Details

Our middle frame prediction network employs a residual learning strategy like
many recent image restoration networks [2], [174]. The overall structure of the mid-
dle frame prediction network is shown in Fig. 3.3. It consists of feature extraction,
feature refinement, and feature fusion. Feature extraction is a convolutional layer
(conv0 in Table 3.4), where filters with size 5× 5 elements are used. The architec-
tures of the feature refinement and feature fusion blocks are shown in Fig. 3.4.

A blurry image is first split into three color channels. Resampling with factor 4 is
applied to each color channel separately. Resampling creates factor2 sub-sampled
images. Each sub-sampled image is obtained by sampling the original image one
pixel every factor pixels (along both axes). Every sub-sampled image differs by the
initial sampled pixel on the original input (up to factor2 possible initial positions).
Moreover, 16 sub-sampled images are generated for each color channel. We evalu-
ated the different resampling factors for the middle frame estimation and found that
4× resampling gives a better trade-off between accuracy and execution time. Resam-
pling can also be seen as the inverse process of the sub-pixel convolution proposed
in [175].

In the feature refinement part, we use 12 residual blocks [176], where each one
includes two 3× 3 and one 1× 1 convolution layers with a pre-activation structure
[177]. The architecture of each residual block is shown on the left column of Fig. 3.4.
Dilated convolutions are applied to the middle six residual blocks to increase the re-
ceptive field further. The feature extraction and refinement parts work on grayscale
images, and three color-refined features are generated separately. The feature fu-
sion part works on color images to compensate for misalignments from the three
separately-generated color-refined features.

The structure of our proposed middle frame prediction network is also described
in Table 3.4. For the non-middle frame prediction networks, similar architectures
are also used. The differences are the feature extraction part, where features are ex-
tracted from multiple inputs separately and then concatenated, resampling factor,
and the number of channels. More specifically, the number of channels (128 instead
of 144), the resampling factor (5 instead of 4), and the feature extraction layers. For
networks with two inputs, e.g., φi(B, φ4(B)), 64 features are extracted from B and
φ4(B) respectively, and concatenated.
Training Dataset and Implementation Details. Although there is a GoPro train-
ing set available from [2], containing 22 diverse scenes, we captured additional 20
scenes. In training, we downsample the GoPro frames to 45% of their original size
(1280× 720 pixels) to suppress noise. Blurry frames are generated by averaging 7
consecutive frames randomly cropped of size 320× 320. For training, we use about
15K samples. Data augmentation is applied to avoid overfitting by randomly shuf-
fling color channels, rotating images, and adding 1% white Gaussian noise. Net-
works are implemented using PyTorch, and training is done with 2 GTX 1080 Ti
GPUs. The batch size of the middle frame prediction network and other networks
are 32 and 24, respectively. Training at each stage takes one day, and the entire net-
work training takes four days.
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Blurry Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 6 Frame 7

Blurry Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 6 Frame 7

Blurry Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 6 Frame 7

FIGURE 3.5: Examples with real images. Top row: an image with
multiple moving objects snd static background. Rows 2 and 3: green
blurry patch and reconstructed video. Rows 4 and 5: red blurry patch
and reconstructed video. Notice that the reconstruction shows both
cars moving left to right. This is not the true motion (it would cor-
respond to one vehicle reversing on the street). Last two rows: a
rotating ball. The network can correctly reconstruct a video with a

complex motion field.
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Method 45% [2] (dB) Our testset (dB) [2] (dB)

Nah [2] 30.52 28.19 28.48
Middle 32.20 29.02 26.98

TABLE 3.2: Comparison of the middle frame prediction networks.

3.6 Experiments

In this section, we perform a quantitative comparison of the middle frame pre-
diction network with the state-of-the-art method [2]. For non-middle frame predic-
tions, we carry out a qualitative evaluation as there is no existing method predicting
a video sequence from a single motion-blurred input. We show some examples of
video reconstructions from real motion-blurred images in Fig. 3.5. We validate our
design through ablation studies of different loss functions.

3.6.1 Middle Frame Reconstruction

We take Nah’s [2] test set, which contains 11 different sequences, and generate
1700 blurry frames by averaging seven consecutive frames. The same process is also
applied to our own test set, where 450 blurry images are generated. All blurry im-
ages are downsampled to 45% as during training. Table 3.2 shows the quantitative
results of Nah’s network and our proposed network on two datasets. Our network
is consistently performing better on the last two datasets (the first two columns in
the table). This is because the motion blur in the data matches the motion blur ob-
served by our network during training. In contrast, Nah’s network was trained with
much more challenging data, where motion blur could be even larger. Thus, we also
evaluate our network on Nah’s original 1111 test images for a fairer comparison.
These images are averaged by more than 7 frames without any downsampling. In
this case, Nah’s network is performing better, as our network has not learned to deal
with such large motion blur. However, the performance loss is not too significant.

Some visual comparisons on both synthetic and real images are shown in
Figs. 3.6 and 3.7, respectively. Fig. 3.7 1 and 3 show two synthetic examples, one
with an extremely large blur from Nah’s original test images and the other one with
a moderate blur from our test set. It can be seen that although our method does
not outperform Nah’s, it can give better visual results when blur is moderate. Two
real examples captured with a DSLR (Nikon D7100) are shown in rows 5 and 7. In
practice, we find that if a network is trained with large blurs, it may not remove
moderate blur to the same extent as networks trained with small blurs. As we will
show later in the Experiments section, the accuracy of the middle frame prediction
has a dramatic impact on the reconstruction of the other frames.

In Table 3.3 we show the execution time for three different resolutions and the
number of parameters used in Nah’s and our networks. It can be seen that our
middle frame prediction network is approximately ten times faster than Nah’s but
has half as many parameters. Additionally, in Fig. 3.6 we also compare to the state of
the art video deblurring method [81]. Notice that in [81], they use five consecutive
blurry frames to predict the sharp middle frame, whereas we predict the middle
frame directly from only one blurry input. Three real results are shown in Fig. 3.6.
It can be seen that, although our method suffers from some jpeg artifacts, it gives
comparable results.
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Method 320P 480P 720P # params

Nah [2] 2.43 3.52 4.80 12M
Middle 0.24 0.30 0.45 5M
Full 0.61 0.74 1.10 17M

TABLE 3.3: Execution time comparison between the state of the art
single image dynamic scene deblurring network [2] and our model

on three different resolutions on a Titan X GPU.

Blurry crop Su [81] crop Proposed crop

FIGURE 3.6: Middle frame prediction comparison. The first column
shows the blurry inputs and cropped regions. The second column
corresponds to frame predictions from [81] network. Last column
corresponds to frame predictions from our proposed network. Rows

1, 3, and 5 are real images from [178] and [81].
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Blurry crop Nah [2] crop Proposed crop

FIGURE 3.7: Middle frame prediction comparison. The first column
shows the blurry inputs and cropped regions. Second column cor-
responds to frame predictions from [2] network. Last column corre-
sponds to frame predictions from our proposed network. The first
and third rows have been generated synthetically through averaging.

The fifth and seventh rows are real images.
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3.6.2 Independent Frame Reconstruction

A straightforward way of estimating a sharp sequence is to replicate the training
for each frame by minimizing the loss Lindep = ∑T

i=1 |φi(y) − x[i]|2, where φi is a
network to predict x[i]. In this section, we show that this scheme is not applicable
beyond middle frames due to the temporal ordering ambiguity. Fig. 3.8 (a) and (g)
show the results with an independent frame reconstruction scheme. The quality of
the reconstructed frame worsens as the distance from the middle frame increases.

3.6.3 Global Frame Reconstruction

In this section, we show that the global ordering-invariant loss is not a good
option either. Fig. 3.8 (b) and (h) show the reconstructed seven frames, where the
middle frame is reconstructed independently with the loss Lmiddle and the other
six frames are reconstructed jointly with the globally ordering-invariant loss Lmodel.
The non-middle frame prediction network does not converge well and generates
artifacts.

3.6.4 Pairwise Frame Reconstruction

Fig. 3.8 (c), (d), (i) and (j) show the reconstructions with the pairwise ordering-
invariant loss Lpair. Rows (d) and (j) show the case where the middle frame pre-
diction is also fed to the network, while the third row shows the case without the
middle frame prediction. There are two main limitations of using Lpair: 1) One has
to reorder non-middle frame predictions manually; 2) Although feeding the middle
frame prediction to the network gives better visual results than in the case without
it, still both of these two schemes generate artifacts, especially for the frames tempo-
rally away from the middle frame.

3.6.5 Sequential Pairwise Frame Reconstruction

Fig. 3.8 (e) and (k) show the visual results with a sequential pair-wise reconstruc-
tion scheme. Notice that this scheme and the pairwise ordering scheme only differ
at the 4 frame predictions x[1], x[2], x[6], and x[7]. We can see that the sequential
scheme generates fewer artifacts especially at frames x[1] and x[7] in Fig. 3.8 (k).

3.6.6 Teacher Forcing

We also explore the teacher forcing method used to train recurrent neural net-
works [179]. During training, we substitute the middle frame prediction φ4(y) with
the ground truth middle frame x[4] in steps 2 and 3 of our full training procedure
in Table 3.1. This strategy brings several benefits: 1) In practice, we observe that the
teacher forcing training strategy converges faster than with a standard sequential
pairwise training; 2) It also gives visually better predictions as shown in Fig. 3.8 (l),
where non-middle frames are predicted by a network trained with teacher forcing; 3)
The middle frame and non-middle frame prediction training can be done in parallel.
We use teacher forcing training as our default network training scheme.

We use four different networks to predict all 7 frames: one for the middle frame
and the others for the middle-symmetric pair-wise frames. We found that sharing
the parameters of the pair-wise networks for frames 1, 2, 6, and 7 during training
would not result in a loss of visual accuracy. This could make predicting more than
seven frames feasible.
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FIGURE 3.8: Ablation study on real data with different loss functions.
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Blurry Blurry crop

Frame 1 Frame 4 Frame 7

FIGURE 3.9: A synthetic example from [2] test image. (b)-(d) Frame
4 show our estimated middle frame, Nah’s estimate and the ground
truth, respectively. As can be seen, the middle frame estimates from
both our method and Nah’s are incorrect and affect the estimates of
the other frames. Only when the ground truth middle frame is pro-

vided, the other frames can be estimated correctly.

3.6.7 Importance of the Middle Frame Estimate

We observe experimentally that a good initialization is key in making the non-
middle frame prediction network work well.

Fig. 3.9 (a) shows a blurry image and an enlarged detail with significant mo-
tion blur. In Fig. 3.9 (b), we show the reconstructions of frames 1, 4 (middle), and
7 with our trained network, where we used our estimated frame 4 to recover the
other frames. In Fig. 3.9 (c), we show the corresponding frames reconstructed when
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feeding our network with Nah’s [2] frame 4 estimate. Both cases fail to reconstruct
the middle frames and the other frames. However, when we feed our networks with
the ground truth middle frame (see Fig. 3.9 (d)), they can correctly reconstruct the
other frames.

3.7 Discussion

In this chapter, we have presented the first method to reconstruct a video from
a single motion-blurred image. We have shown that the task is more ambiguous
than deblurring a single frame because the temporal ordering is lost in the motion-
blurred image. We have presented a data-driven solution that allows a convolutional
neural network to choose a temporal ordering at the output. We have demonstrated
our model on several datasets and have shown that it generalizes on real images
captured with different cameras from those used to collect the training set.

Although our system can predict seven frames from a motion-blurred image,
there are two main limitations. One main limitation of our approach is that it is
not robust to large blurs. Whenever our middle frame prediction network fails to
remove blur, the non-middle frame prediction networks also fail.
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Middle Frame Prediction Network Architecture
Layer Norm Activation Kernel Dilation
conv0 144× 16× 5× 5 1× 1

RB(1-3)
IN ReLU 144× 144× 3× 3 1× 1
IN ReLU 144× 144× 3× 3 1× 1
IN ReLU 144× 144× 1× 1 1× 1

RB(4)
IN ReLU 144× 144× 3× 3 1× 1
IN ReLU 144× 144× 3× 3 2× 2
IN ReLU 144× 144× 1× 1 1× 1

RB(5)
IN ReLU 144× 144× 3× 3 2× 2
IN ReLU 144× 144× 3× 3 4× 4
IN ReLU 144× 144× 1× 1 1× 1

RB(6)
IN ReLU 144× 144× 3× 3 4× 4
IN ReLU 144× 144× 3× 3 8× 8
IN ReLU 144× 144× 1× 1 1× 1

RB(7)
IN ReLU 144× 144× 3× 3 8× 8
IN ReLU 144× 144× 3× 3 4× 4
IN ReLU 144× 144× 1× 1 1× 1

RB(8)
IN ReLU 144× 144× 3× 3 4× 4
IN ReLU 144× 144× 3× 3 2× 2
IN ReLU 144× 144× 1× 1 1× 1

RB(9)
IN ReLU 144× 144× 3× 3 2× 2
IN ReLU 144× 144× 3× 3 1× 1
IN ReLU 144× 144× 1× 1 1× 1

RB(10-12)
IN ReLU 144× 144× 3× 3 1× 1
IN ReLU 144× 144× 3× 3 1× 1
IN ReLU 144× 144× 1× 1 1× 1

conv1-4 16× 144× 3× 3 1× 1

conv5 64× 3× 3× 3 1× 1

RB
IN ReLU 64× 64× 3× 3 1× 1
IN ReLU 64× 64× 3× 3 1× 1
IN ReLU 64× 64× 1× 1 1× 1

conv6 3× 64× 3× 3 1× 1

TABLE 3.4: The layer architecture of the middle frame prediction net-
work. RB and IN in the table indicate a residual block and instance

normalization.
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Chapter 4

Learning to Deblur and Rotate
Motion-Blurred Faces

FIGURE 4.1: Blurry inputs and reconstructed sharp multi-view videos on our
dataset (to play the videos open the paper pdf with Adobe Acrobat Reader).
We propose a model that, given the image of a blurry face, can render a corre-

sponding sharp video from arbitrary viewpoints.

Faces are a fundamental subject in image processing and recognition due to their
role in applications such as teleconferencing, video surveillance, biometrics, video
analytics, entertainment, and smart shopping, just to name a few. In particular, in
the case of teleconferencing, the interaction is found to be more engaging when the
person on the screen looks towards the receiver [3]. However, it is necessary to look
directly into the camera to achieve this configuration. Unfortunately, this does not
allow one to watch the person on the screen that one talks to. A solution to this issue
is to design a system that can render the captured face from an arbitrary viewpoint.
Then, it becomes possible to dynamically adapt the gaze of the face on the screen to
ensure that it aims at the observer. Moreover, because of the low frame rate of web
cameras, especially when used in low light, it becomes essential to solve the above
task in the presence of motion blur. Since a blurry image is a result of averaging
several sharp frames [2], one could pose the problem of recovering not one but a
sequence of sharp frames from the single blurry input. This capability enables a
smooth temporal rendering of the video. In addition, one might use this capability
to deal with a limited connection bandwidth. Current software fits the available
bandwidth by reducing the frame rate of the captured video. However, instead of
selecting temporally distant frames, one could also transmit the average of several
frames and then restore the original (high) frame rate at the destination terminal.

In this chapter, we present a method that recovers a sharp video rendered from
an arbitrary viewpoint from a single blurry image of a face (see Fig. 4.1). Fig. 4.2
shows our model during the inference stage. We design a neural network and a
training scheme to remove motion blur from an image and produce a video of sharp
frames with a general viewpoint. Our neural network is built in two steps: First,
by training a generative model that outputs face images from zero-mean Gaussian
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FIGURE 4.2: Overview of our system during inference. The encoder
Ev encodes a blurry image into a sequence of latent codes that are then
manipulated based on a relative viewpoint (e.g., ∆p0, ∆p1, or ∆p2) via
the fusion network F to produce encodings of images from a novel
view. Finally, the generator G maps the novel view encodings to the

image space.

noise, which we call the latent space, and then by training encoders to map images to
the latent space. The primary motivation for using a generative model is that face
rotations can be handled more easily in the latent space than in the image space. This
property was recently observed for generative adversarial networks [180]. One en-
coder is trained so that, when concatenated with the generator, it autoencodes face
images. Then, rather than using sharp images as targets in a loss, we use their en-
codings, the latent vectors, as targets. As a second step, we obtain a blurry image by
averaging several sharp frames. Then, we train a second encoder to map the blurry
image to a sequence of latent vectors that match the target latent vectors correspond-
ing to the original sharp frames. Finally, the change of the face viewpoint requires
the availability of the latent vectors corresponding to the same face instance, but ro-
tated. To the best of our knowledge, there are no public face datasets with such data.
Thus, we built a novel multiview face dataset. This dataset consists of videos cap-
tured at 112 fps of 52 individuals performing several expressions. Thanks to the high
frame rate, we can simulate realistic blur through temporal averaging. Each perfor-
mance is captured simultaneously from 8 different viewpoints so that it is possible
to encode multiple views of the same temporal instance into target latent vectors
and then train a fusion network to map the latent vector of one view and a relative
viewpoint to the latent vector of another view of the same face instance. The rela-
tive viewpoint we provide as input should be the relative pose between the input
and the output face poses. While we can use the viewpoint information from our
calibrated camera rig during training, this information may be unknown with new
data. Hence, we also train a neural network to estimate the head pose. The network
learns to map an image to Basel Face Model [181] (BFM) parameters, such that, when
rendered (through a differential renderer), it matches the input image.
Contributions. We make the following contributions: (i) We introduce BMFD, a
novel high frame rate multi-view face dataset that allows more accurate modeling
of natural motion blur and the incorporation of 3D constraints; (ii) As a novel task
enabled through this data, we propose a model that, given a blurry face image, can
synthesize a sharp video from arbitrary views; (iii) We demonstrate this capability
on our multiview dataset and VIDTIMIT [182].

4.1 Background

In Section 2.4.4 we acknowledged works covering the task of face deblurring.
Since our method allows the rendering of deblurred faces from novel views, we
briefly discuss relevant work on novel face view synthesis. Prior works can
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be divided into two main groups: full 3D face reconstruction-based works and
GAN/Autoencoder-based works. In the first group of works, 3D (e.g. mesh and tex-
ture) is the direct output of the model. Therefore, novel view synthesis is achieved
via rendering the resulting mesh and texture from any point of view. In the second
group of works, 3D is not explicitly modeled or regressed; instead, it is backed into
the latent representation of the model. The input image is first encoded into some
latent space and decoded into some novel view using the decoder model.

4.1.1 3D Face Reconstruction

3D morphable models (3DMM) [183] provide an interpretable generative model
of faces in the form of a linear combination of base shapes. In the past decades many
improvements were made using more data, better scanning devices or more detailed
modelling [181], [184]–[193]. 3D face reconstruction can be cast as regressing the pa-
rameters of such 3DMMs. The model parameters can be fit using multi-view images
[194]–[198]. Since 3DMMs provide a strong shape prior, they also enable single-
image 3D reconstruction [199]–[201]. These methods learn to estimate the model pa-
rameters by matching input images with differentiable rendering techniques [202]–
[205]. We also leverage a 3DMM to learn a controllable representation of faces. In our
work, these representations are used to manipulate the latent space of a StyleGAN
generator.

4.1.2 Novel Face View Synthesis

Xu et al. [206] use an encoder-decoder architecture. The encoder extracts view
independent features, which are fed to the decoder along with sampled camera pa-
rameters. Realism and pose consistency are enforced via GANs. [207] use face land-
marks to guide and condition the novel face view reconstruction. A special case
of novel-view synthesis on faces is face frontalization [208]–[210]. [211] design a
GAN architecture for face frontalization. Their generator consists of two pathways:
A global pathway processes the whole image, and a local pathway processes local
patches extracted at landmarks. Tackling the opposite problem, [212] train a GAN
to generate silhouette images to reduce the pose bias in existing face datasets. To the
best of our knowledge, we are the first to deblur and synthesize frames from a novel
view simultaneously.

4.2 Model

Our goal is to design a model that can generate a sharp video of a face from a sin-
gle motion-blurred image. Additionally, we want to synthesize novel views of these
videos, i.e., rotate the reconstructions. We design a modular architecture to achieve
this goal (see Fig. 4.4). We give an overview of the components here and provide
more details in the following subsections. The bedrock of our approach is a genera-
tive model G of sharp face images. We describe how we can leverage the generative
model G by learning an inverse mapping Es from image-space to G’s latent space in
section 4.2.3. The sharp image encoder Es then acts as a teacher for a blurry image
encoder Ev. In section 4.2.4 we describe how to train Ev to predict latent codes of
multiple sharp frames by using encodings of Es as targets. To perform novel view
synthesis, we require to capture the 3D viewpoint of the face. To this end, we learn
a viewpoint extractor E3D that maps a blurry image to coefficients of a 3DMM. We
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FIGURE 4.3: Overview of our multi-view video capture setup. We
arranged eight high-speed cameras in a circular grid in our lab set-
ting. The cameras capture synchronized videos of participants per-
forming a wide range of facial expressions from a wide variety of
viewpoints. We show an example of 8 synchronized views of one of
the 52 participants in BMFD. Background and clothing are black, al-

lowing the easier extraction of skin regions.

describe how to train E3D using a differentiable renderer in section 4.2.5. The view-
point from E3D can then be used to manipulate the latent codes of a blurry image
obtained through Ev. We do so by training a model F that, given relative viewpoint
changes obtained through E3D and latent codes from Ev, outputs updated latent
codes corresponding to the desired change of viewpoint. This process is described
in section 4.2.6.

4.2.1 Data

Our dataset consists of a set of sharp frames {yi}N
i=1. We synthesize blurry images

by averaging 2m + 1 consecutive frames, i.e., xi = 1
2m+1 ∑i+m

j=i−m yi. As targets we
define a sequence of 5 sharp frames yi = [yi−m, yi−m/2, yi, yi+m/2, yi+m]. The training
dataset then is given by

D =
{
(xν

i , yν
i ) | i = 1, . . . , n; ν = 1, . . . , 8

}
, (4.1)

where the superscript ν indicates the viewpoint (we omit ν when it is not needed).

4.2.2 Bern Multi-View Face Dataset

Most prior face deblurring methods tackle the shift-invariant blur case, i.e., blur
that might arise from camera shake. Training data for such methods can be syn-
thesized by convolving sharp face images with random blur kernels [87], [88], [91].
However, such models do not generalize well to blur caused by face motion since the
resulting blurs are no longer spatially invariant. To tackle motion blur, Ren et al. [90]
generate training data by averaging consecutive frames of the 300-VW dataset [213].
This is a valid approximation of natural motion blur when the frame rate of the
videos is sufficiently high. Since the 300-VW data has a relatively low frame rate
of 25-30 fps, the resulting synthetic motion blurs are not always of high quality and
can exhibit ghosting artifacts. Additionally, existing face datasets exhibit a pose bias,
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with most images showing faces in a frontal pose. Methods trained on such data can
show poor generalization to non-frontal views.

To overcome these limitations, we introduce a dataset of high-speed, multi-view
face videos. The faces of 52 participants were captured in a lab setting from 8 fixed
viewpoints simultaneously. The cameras were arranged in a circular grid, ensuring
that the faces are captured from all sides (see Fig. 4.3). Videos are captured at 112
frames per second at a resolution of 1440×1080. The duration of the recordings
ranges between 75 and 90 seconds.

4.2.3 Inverting a Generative Face Model

In order to generate novel views of a video sequence, we rely on a generative
model of face images with a latent space where manipulations that change view-
points are feasible. Consequently, we chose to train a SyleGAN2 [214] as the genera-
tor G of sharp face images. SyleGAN2 provides state-of-the-art image quality and a
smooth, disentangled latent space. To reconstruct or manipulate a given face image
yi, we require a corresponding latent code zi, s.t. G(zi) = yi. To this end, we train a
sharp image encoder Es to invert the generator G, i.e., we want that G(Es(y)) = y.
We adopt the inversion strategy of Meishvili et al. [215], where the encoder Es is
trained while the generator G is fine-tuned. The training objective is given by

min
Es,G

n

∑
i=1

`s (G (Es(yi)) , yi) + λg
∣∣Ginit − G

∣∣2
2 + λs

∣∣1− |Es(yi)|
∣∣, (4.2)

where `s represents the following combination of different reconstruction losses:

`s (x, y) = λidLid (x, y) + λperLper (x, y) + λedgeLedge (x, y) +
∣∣x− y

∣∣,
Lid (x, y) = 1− < φid(x), φid (y) >

|φid(x)| · |φid (y)|
,

Lper (x, y) =
∣∣φper(x)− φper(y)

∣∣2
2,

Ledge (x, y) =
∣∣S(x)− S(y)

∣∣.
Lid is a term minimizing the cosine between embeddings of a pre-trained identity
classification network φid of Cao et al. [216]. Lper is a perceptual loss on features of
an ImageNet pre-trained VGG16 network φper [217]. Ledge is a Sobel edge matching
term. We used a naive Bayes classifier with Gaussian Mixture Models trained on a
skin image dataset from [218] to double the contribution of the skin pixels in all the
losses.

λg = 1 controls how much G is allowed to deviate from the initial generator
parameters Ginit (before fine-tuning), and λs = 1 softly enforces that the predicted
latent codes lie on the unit hypersphere. During training, we gradually relax λg until
we reach the desired reconstruction quality. Similar to [215] we regress multiple
latent codes per frame, each injected at different layers of the StyleGAN2. Thus
Es(yi) = zi ∈ R14×512. Weights controlling the contribution of each term are set as
follows: λid = 0.5, λper = 10−6, λedge = 0.2, λg = 1.
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FIGURE 4.4: Overview of the model architecture. From top to bot-
tom, on the right side of the figure, we show the individual pre-
training stages of encoders: Es, Ev, and E3D. A sharp image gener-
ator G, is pre-trained using StyleGAN2. The training of the model F
is shown on the right side of the figure. The encoder Ev encodes a
blurry image into a sequence of latent codes corresponding to a se-
quence of sharp frames (step 1). Pose information is extracted via the
viewpoint encoder E3D, which is trained to regress the coefficients
of a 3DMM (step 2). The predicted sharp latent codes are then ma-
nipulated based on the pose encodings via the fusion network F to
produce latent codes of images from a novel view (step 3). Finally,
generator G maps the novel view encodings to the image space (step

4).
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4.2.4 Predicting Sharp Latent Codes from a Blurry Image

In this section we describe how to train a blurry image encoder Ev that maps a
blurry image xi to a sequence of 5 latent codes zi = [zi−m, zi−m/2, zi, zi+m/2, zi+m] cor-
responding to the target sharp frame sequence yi. We train the encoder Ev by using
the the pre-trained sharp image encoder Es as teacher. Let zi = [Es(yi−m), . . . , Es(yi+m)]
denote the sequence of target codes obtained by encoding each target sharp image
in the sequence yi with Es.

Jin et al. [219] point out ambiguities when regressing a sequence of sharp frames
from a blurry image. Indeed, the order of the regressed frames can be ambigu-
ous since the output sequence is often valid whether it is played forward or back-
ward. We handle this forward/backward ambiguity by allowing for either solu-
tion in the training objective. Let the reversed target sequence be denoted with
z̄i = [Es(yi+m), . . . , Es(yi−m)]. The training objective for Ev is then given by

min
Ev

n

∑
n=1

min (|Ev(xi)− zi| , |Ev(xi)− z̄i|) , (4.3)

where we minimize either over the forward or backward target sequence, depending
on which one better matches the prediction.

4.2.5 Regressing a 3D Face Model

To perform a novel view synthesis of the reconstructed sharp frame sequence,
we need to know the 3D rotation of the face. Our approach is to learn to extract
the 3D viewpoint of a face by training an encoder E3D to regress the coefficients of
a 3DMM [181] along with camera parameters that define the rotation angles R ∈
R3, the translation t ∈ R3, and the illumination coefficients γ ∈ R9. The 3DMM
coefficients can be grouped into components responsible for representing identity
α, texture β, and facial expression δ. Given a blurry face image xν

i from view ν,
we thus train a ResNet-50 [176] to regress the vector cν

i = (αi, βi, δi, γν
i , Rν

i , tν
i ) ∈

R460 of 3D coefficients corresponding to the sharp middle frame yν
i . The predicted

3D coefficients cν
i are passed through a differentiable renderer φ [204] and the 3D

encoder E3D is trained by minimizing

min
E3D

n

∑
i=1

νi

∑
ν=1

`im (φ (E3D(xν
i )) , yν

i ) + `3D (E3D(xν
i ), yν

i ) + λc(|αi|2 + |βi|2 + |δi|2), (4.4)

where `im and `3D represents the following combination of different reconstruction
losses:

`im

(
x, y
)

= λidLid

(
x, y
)
+ λedgeLedge

(
x, y
)
+ λdata

∣∣x− y
∣∣,

`3D

(
x, y
)
= λlanLlan

(
x, y
)
+ λmviewLmview

(
x
)

,

Llan

(
x, y
)
=
∣∣Qbasel(x)−Qimage(y)

∣∣2
2,

Lmview

(
x
)
= ∑

ν

|ᾱ− αv|2 + |β̄− βv|2 + |δ̄− δv|2.

where, λdata = 5, λid = 0.5, λedge = 30, λmview = 0.25 and λlan = 1. We use the per-
spective camera model in the renderer φ, with an empirically selected focal length
for the 3D-2D projection. The term Llan is a MSE between 2D projections of facial
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landmarks of the predicted mesh and pre-computed landmarks in sharp images.
Qbasel projects the 3D landmark vertices of the reconstructed mesh onto the image
(obtaining 68 facial landmarks), and Qimage extracts landmarks using the method of
[220] from the ground-truth targets. Lmview ensures that the identity, texture, and
expression parameters of the BFM are consistent across views for samples of our
multi-view dataset.

where `im and `3D are a combination of different reconstruction losses (see supple-
mentary for details), and λc = 10−4 controls the amount of regularization applied to
the 3DMM coefficients to prevent a degradation of face shape and texture. Note that
the coefficients, α, β, γ, are shared across different views, promoting the accurate
learning of facial expressions.

4.2.6 Learning to Rotate Faces in Latent Space

Given a blurry image xν
i from viewpoint ν and associated latent codes zν

i =
Ev(xν

i ) as well as pose information E3D(xν
i ), we aim to manipulate zν

i in latent space
such that the reconstruction exhibits a desired change of viewpoint. We implement
this by learning a fusion network F that takes as input a pair (zν

j , ∆p) consisting of a
single frame encoding zν

j and a relative change in pose ∆p. The output modified la-
tent codes are then given by applying F to all frames in the sequence independently,
i.e., the modified codes are given by zν+∆p

i = [F(zν
i−m, ∆p), . . . , F(zν

i+m, ∆p)].
During training, we sample two blurry images xu

i and xv
i from two different

viewpoints, but with the same timestamp. The change in viewpoint is then com-
puted from E3D(xu

i ) − E3D(xv
i ), which corresponds to ∆puv

i = (Rv
i − Ru

i ), i.e., the
difference in the estimated 3D rotation angles between the two views. We train the
fusion model F to regress the latent codes zv

i from the pair (zu
i , ∆puv

i ) by optimizing
the following objective

min
F

n

∑
i=1

∑
u 6=v

min(|F(zu
i , ∆puv

i )− zv
i | , |F(zu

i , ∆puv
i )− z̄v

i |), (4.5)

where the min function again takes care of possible frame order ambiguities.

4.2.7 Implementation Details

We employed ResNet-50 [176] as a backbone architecture for Es, Ev and E3d. The
average-pooled features are fed through fully-connected layers with 14× 512 (single
frame), 5× 14× 512 (5 frames) and 460 neurons for Es, Ev and E3d respectively. The
generator G is pre-trained with all hyper-parameters set to their default values on
8 NVIDIA GTX 1080Ti GPUs (see Karras et al. [214] for details). All other networks
were trained on 3 NVIDIA GeForce RTX 3090 GPUs. The Adam optimizer [221] with
a fixed learning rate of 10−4 was used for the training of all the networks. We used
batch sizes of 72, 96, 90, 84 samples for Es, Ev, E3d and F respectively. We trained
our models Es, Ev, E3d and F for 1000K, 100K, 600K, and 500K iterations each. The
ratio of samples within one batch stemming from FFHQ, 300VW and BMFD is 2:1:1.
All the models are trained on an image resolution of 256× 256. We used random
jittering of hue, brightness, saturation, and contrast for data augmentation.
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Frames
Views

1,8 2,7 3,6 4,5 All

Middle 3 2.93 2.78 2.89 2.82 2.85
Frames 2,4 3.31 3.13 3.29 3.27 3.25
Frames 1,5 3.94 3.84 3.99 4.01 3.95
All Frames 3.50 3.35 3.51 3.49 3.46

TABLE 4.1: Same view landmark error. We report the landmark er-
ror (in pixels) between the ground-truth and reconstructed frame se-

quences without rotation.

4.3 Experiments

In this section, we perform experiments to quantify the facial pose accuracy of
the reconstructed original frame sequence and novel view frame sequence. We also
evaluate identity preservation under novel view synthesis. Finally, we compare our
method qualitatively and quantitatively to the state-of-the-art methods of Jin et al.
[219] and Zhou et al. [222].

4.3.1 Datasets

Besides our novel multi-view face dataset we also use 300VW [223], FFHQ [224]
and VIDTIMIT [182] in our experiments. To synthesize motion-blurred images for
training, we average (i) 65 consecutive frames from videos of 40 identities of our new
dataset, and (ii) 9 consecutive frames from 65 identities of 300VW. To increase the
number of identities for training and avoid overfitting, we also incorporate samples
from FFHQ. Since FFHQ consists of still images, we simulate blurs by convolving
images with randomly sampled 9 × 9 motion blur kernels. Because 300VW and
FFHQ lack multiple views, we simulate them via horizontal mirroring of frames.
We evaluate our method on the remaining identities of our new dataset and the
VIDTIMIT dataset.

4.3.2 Pose-Regression Accuracy of Ev

We perform experiments to quantify the facial pose accuracy of the reconstructed
frame sequence G(Ev(x)). To this end, we extract facial landmarks using the method
of [220] from both the reconstructed and the ground-truth frame sequence on test
subjects of our dataset. We report the MSE between them in Table 4.1 (again ad-
justing for the forward/backward ambiguity). We observe that the mean landmark
error is slightly larger for peripheral frames (1, 2, 4, and 5) than the middle one (3).
The mean landmark error is 3.46 pixels which amounts to 1.35% of the 256 × 256
image resolution.

4.3.3 Identity Preservation and Pose Accuracy under Novel View Synthe-
sis

A key component of our method is the fusion model F, which performs the ma-
nipulation in the latent space that results in a change of the viewpoint. We thus
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Fusion
Viewpoint Change

±30◦ ±45◦ ±60◦

FC3 51% (86%)27% (62%)14% (37%)
FC3R 56% (84%)36% (66%)22% (45%)

TABLE 4.2: Identity agreement between frontal and rotated se-
quences. We report the Top-1 (Top-5) label agreement of a pre-trained
identity classifier between frontal and rotated views. Note that the
classifier has a sensitivity of 61% (87%) on average over all view-

points.

Frames Fusion
Views

1,8 2,7 3,6 4,5 All

Middle 3
FC3R 6.07 7.37 7.03 3.80 6.07
FC3 6.67 7.51 7.02 3.99 6.30

Frames 2,4
FC3R 6.08 7.33 7.03 3.85 6.07
FC3 6.61 7.49 6.99 4.02 6.28

Frames 1,5
FC3R 6.20 7.46 7.17 4.03 6.21
FC3 6.63 7.63 7.14 4.20 6.40

All Frames
FC3R 6.12 7.39 7.09 3.91 6.13
FC3 6.63 7.55 7.06 4.09 6.33

TABLE 4.3: Face landmark accuracy for different fusion models. In
the table we report the landmark error of different frames in the re-
constructed sequence (rows) and when faces are rotated to the differ-
ent views in BMFD (columns). The blurry input image is taken from
view 4 in all cases. An illustration of the frame and view layout is

given on the right.
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perform ablation experiments for different architecture designs of F, where we mea-
sure how well they reconstruct the pose in novel views and how well they preserve
the identity of the face. We consider two functional designs: (i) FCxR, where F is
modelled via residual computation, i.e., F(z, ∆p) = z + MLPx([z, ∆p]), and (ii) FCx,
where F simply consists of x fully-connected layers, i.e., F(z, ∆p) = MLPx([z, ∆p]) (x
indicates the number of layers in the MLP). We want F only to affect the 3D orienta-
tion of the face in our method and preserve the face identity as much as possible. To
quantify the consistency of face identities under novel view synthesis, we compute
the agreement of a pre-trained identity classifier [216] between a restored frontal
view and reconstructions under varying amounts of rotation. We report the result-
ing Top-1 and Top-5 label agreements on VIDTIMIT in Table 4.2. Because the identity
classifier is not perfectly robust to face rotations, we also report the estimated iden-
tity agreement of the classifier (its sensitivity) on sharp ground-truth rotations. We
observe that the identity labels of rotated sequences are relatively consistent with
the classifier’s sensitivity on ground truth rotations up to ±30◦. The residual ver-
sion FCxR performs considerably better. To quantify the accuracy of the predicted
face pose under novel view synthesis, we measure the face landmark error between
the ground truth views and our reconstructions on test subjects of our multi-view
dataset. Blurry frontal images (view 4) are fed through our model to reconstruct
sharp frame sequences corresponding to the other seven views in our dataset. We
report the mean landmark errors of different fusion models for all the views and
predicted frames in Table 4.3. We observe that the average error across all views and
frames varies between 6.13 and 6.33 pixels. Note that the reconstructions without ro-
tations already show a mean landmark error of 3.46 pixels (see Table 4.1). Qualitative
reconstructions of frontal and rotated frame sequences obtained with our method
can be found in Figs. 4.6 and 4.7. A real-world deblurring example is presented
in Fig. 4.8. Some more qualitative examples of our multi-view reconstructions on
VIDTIMIT[182] can be found in Figs. 4.9 and 4.10.

4.3.4 Comparison to Prior Work

We compare to Zhou et al. [222] on novel face view synthesis quantitatively in
Table 4.4 and qualitatively in Fig. 4.5. Since [222] is trained on non-blurry face im-
ages, we feed it with sharp frontal views from VIDTIMIT and our test set. Our
method was instead evaluated on blurry input images. Despite this disadvantage,
our method yields a comparable accuracy. More results are shown in the supple-
mental material.
We evaluated the performance of our system using conventional metrics such as
PSNR and SSIM. None of the existing prior deblurring work can generate novel
views from a blurry input. Therefore, we use the combination of two methods for
comparison purposes. We extract the sharp video sequence from a blurry input uti-
lizing the method of Jin et al. [219] and subsequently rotate the resulting frames using
the method of Zhou et al. [222]. The mean PSNR and SSIM between ground-truth
and rotated sequences are reported in Table 4.5.
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FIGURE 4.5: Qualitative novel view comparison to Zhou et al. [222].
We compare on VIDTIMIT (top) and BMFD (bottom). Note that
[222] predicts novel views from the sharp input image on the right,

whereas we predict it from the blurry image on the left.

Method
BMFD

VIDTIMIT
1,8 2,7 3,6 4,5 All

Zhou et al. [222] 7.12 6.42 5.40 5.61 6.14 3.12
Ours 6.07 7.37 7.03 3.80 6.07 3.96

TABLE 4.4: Novel view pose error comparison. We compare to the
prior novel face view synthesis method by [222] in terms of face land-

mark accuracy on VIDTIMIT and BMFD.

Method PSNR SSIM

Jin et al. [219] + Zhou et al. [222] 16.07 0.38
Ours 19.45 0.60

TABLE 4.5: Novel view PSNR and SSIM comparison. We compare
to the prior work in terms of PSNR and SSIM metrics on our dataset.
First, the blurry input images from view 4 are fed to the method of Jin
et al. [219], then, the resulting deblurred sequences are rotated using

the method of Zhou et al. [222].

4.4 Discussion

In this chapter, we have presented the first method to reconstruct novel view
videos from a single motion-blurred face image. Capabilities of the method were
demonstrated on the VIDTIMIT dataset and a novel high frame rate, multi-view
facial dataset, which we introduced. The multi-view dataset is crucial in enabling
the training of our model. Moreover, our dataset is not limited to our proposed
task: It can also be used to evaluate facial restoration methods for 3D reconstruction,
single/video super-resolution, and temporal frame interpolation.
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FIGURE 4.6: Sample sharp video reconstructions from our model.
We show reconstructed frame sequences without viewpoint change
(odd columns) and with random viewpoint changes (even columns).
The first row shows the blurry input image followed by landmarks
computed on the first and last frame in the reconstructed sequence.
The first three examples are computed on VIDTIMIT and the last two

on our test set.
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FIGURE 4.7: Sample sharp video reconstructions from our model.
We show reconstructed frame sequences without viewpoint change
(odd columns) and with random viewpoint changes (even columns).
The first row shows the blurry input image followed by landmarks
computed on the first and last frame in the reconstructed sequence.
The first three examples are computed on VIDTIMIT and the last two

on our test set.
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FIGURE 4.8: Qualitative sample on real-world motion blurred face.
The first column corresponds to the blurry input image. All the other
columns are output sequences rotated by a different amount. Rows
from 1 to 5 correspond to the appropriate frame in the output se-
quence. The last column is the copy of the previous one with rect-
angles on top of different facial regions. Rectangles are at a fixed lo-
cation with respect to the image in all frames. Note how both eyes

and the nose move upwards as we go from the top to the bottom.
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FIGURE 4.9: Qualitative samples on VIDTIMIT. The first column
corresponds to the blurry input image. All the other columns are
output sequences rotated by a different amount. Rows from 1 to 5

correspond to the appropriate frame in the output sequence.
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FIGURE 4.10: Qualitative samples on VIDTIMIT. The first column
corresponds to the blurry input image. All the other columns are
output sequences rotated by a different amount. Rows from 1 to 5

correspond to the appropriate frame in the output sequence.
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Chapter 5

Learning to Have an Ear for Face
Super-Resolution

low resolution region of interest
(e.g., due to pixelation)

audio track

super-resolved region of interest
(e.g., depixelation)

image-audio fusion

FIGURE 5.1: Pixelation is used to hide the identity of a person (left).
However, audio could assist in recovering a super-resolved plausible

face (right).

Image super-resolution is the task of recovering details of an image that has been
captured with a limited resolution. Typically, the resolution of the input image is
increased by a scaling factor of 4× to 8×. In the more extreme case, where the scal-
ing factor is 16× or above, the loss of detail can be so considerable that important
semantic information is lost. This is the case, for example, of images of faces at an
8× 8 pixels resolution, where information about the original identity of the person
is no longer available. The information still available in such a low-resolution image
is perhaps the viewpoint and colors of the face and the background. While it is pos-
sible to hallucinate plausible high-resolution images from such limited information,
useful attributes such as the identity or even just the gender or the age might be
incorrect (see Fig. 5.2 (a)-(d)).

If the low-resolution image of a face is extracted from a video, we could also have
access to the audio of that person. Despite the very different nature of aural and vi-
sual signals, they both capture some shared attributes of a person and, in particular,
her identity. In fact, when we hear the voice of an iconic actor, we can often picture
his or her face in our minds. [4] recently showed that such capability can be learned
by a machine as well. The possibility to recover a full identity is typically limited to
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(a) (b) (c) (d) (e) (f)

FIGURE 5.2: Audio helps image super-resolution. (a) and (b) are the
ground-truth and 16× downsampled images respectively; (c) results
of the SotA super-resolution method of Huang et al. [155]; (d) our
super-resolution from only the low-res image; (e) audio only super-
resolution; (f) fusion of both the low-res image and audio. In these

cases all methods fail to restore the correct gender without audio.

a set of known people (e.g., celebrities). Nonetheless, even when a person’s identity
is entirely new, his or her voice indicates important facial attributes such as gender,
age, and ethnicity. If such information is not present in the visual data (e.g., with a
low-resolution image), audio could be a benefit to image processing and, in partic-
ular, image super-resolution (see Fig. 5.2 (e)-(f)). For example, in videos where the
identity of a speaker is hidden via pixelation, as shown in Fig. 5.1, audio could be
used to recover a more plausible face than from the lone low-resolution image.

Therefore, we propose to build a model for face super-resolution by exploiting
both a low-resolution image and its audio. To the best of our knowledge, this has
never been explored before. A natural way to solve this task is to build a multimodal
network with two encoding networks, one for the low-resolution image and one for
audio, and a decoding network mapping the concatenation of the encoders outputs
to a high-resolution image. In theory, a multi-modal network should outperform its
uni-modal counterparts. In practice, however, this does not happen with standard
networks and training strategies, as shown empirically in [225]. According to [225]
the performance gap is due to: 1) the difference between modalities in term of con-
vergence and over-fitting speeds, 2) The susceptibility of multi-modal architectures
to over-fitting due to their higher capacity. To address the training issues of multi-
modal networks, we propose to train the low-resolution image encoder and the au-
dio encoder separately to equalize their disentanglement accuracy. To this aim, we
first train a generator G that starts from a Gaussian latent space and outputs high-
resolution images (see Fig. 5.3). The generator is trained as in the recent StyleGAN
of [226], which produces very high-quality samples and a latent space with a useful
hierarchical structure. Then, we train a reference encoder to invert the generator by
using an autoencoding constraint. The reference encoder maps a high-resolution im-
age to the latent space of the generator, which then outputs an approximation of the
input image. Then, given a matching high/low-resolution image pair, we pre-train
a low-resolution image encoder El to map its input to the same latent representa-
tion of the reference encoder (on the high-resolution image). As a second step, we
train an audio encoder Ea and a fusion network to improve the latent representa-
tion of the (fixed) low-resolution image encoder El . To speed up the training of the
audio encoder, we also pre-train it by using as latent representation the average of
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G

El

low-res 
image

Ea F

audio track 

high-res image
(matching)

Ea F G

(a)

(b)

audio track 

high-res image
(mixed)

high-res images
(ground truth)

FIGURE 5.3: Simplified training and operating scheme of the pro-
posed model. The model can be used (a) with matching inputs or (b)
by mixing low-resolution images with audios from other videos. The
low-resolution image (8× 8 pixels) is fed to an encoder El to obtain an
intermediate latent representation. A residual is computed by fusing
in the network F the encoded audio track (through the encoder Ea)
with the encoded low-resolution image. The residual is used to up-
date the latent representation of the low-resolution image and then

produce the high-resolution image through the generator G.

the outputs of the reference encoder on a high-resolution image and its horizontally
mirrored version. Thanks to the hierarchical structure of the latent space learned
through StyleGAN, this averaging removes information, such as the viewpoint, that
audio cannot possibly carry. In Section 5.2, we describe in detail the training of
each of the above models. Finally, in Section 5.3 we demonstrate experimentally
that the proposed architecture and training procedure successfully fuses aural and
visual data. We show that the fusion yields high-resolution images with more accu-
rate identities, gender, and age attributes than the reconstruction based on the lone
low-resolution image. We also show that the fusion is semantically meaningful by
mixing low-resolution images and audio from different videos (see an example in
Fig. 5.3 (b)).
Contributions: Our method builds three models for the following mappings: 1)
Audio to high-resolution image; 2) Low-resolution image to high-resolution image;
3) Audio and low-resolution image to high-resolution image. The first mapping was
developed concurrently to Speech2Face [4]. A notable difference is that Speech2Face
is trained using a pre-trained face recognition network as additional supervision,
while our method is fully unsupervised. In the second mapping, we show in our
Experiments section that we achieve state-of-the-art performance at 16×. In the last
mapping, which is the main novelty of this paper, we show that our trained model
can transfer and combine facial attributes from audio and low-resolution images.

5.1 Background

In Section 2.5 we discussed super-resolution prior works including: general
super-resolution, GAN based super-resolution, and face super-resolution. However,
to the best of our knowledge, none of these works take as input audio signal, and
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we are the first to combine audio and images in the context of a super-resolution
problem. The next section covers prior works that incorporated audio signals in
vision tasks.

5.1.1 Use of Audio in Vision Tasks

The use of audio in combination with video has received a lot of attention re-
cently (see, e.g., [227], [228]). Audio and video have been combined to learn to local-
ize objects or events [229], [230], to learn how to separate audio sources [231]–[234],
to learn the association between sound and object geometry and materials [235], and
to predict body dynamics [236]. A significant body of work has also been devoted
to the mapping of audio to visual information (see, e.g., [4] and references therein).

5.2 Extreme Face Super-Resolution with Audio

Our goal is to design a model that can generate high-resolution images based on
a (very) low-resolution input image and an additional audio signal. The dataset is
therefore given by D =

{
(xh

i , xl
i , ai) | i = 1, . . . , n

}
where xh

i is the high-resolution
image, xl

i is the low-resolution image and ai is a corresponding audio signal. Our
model consists of several components: a low-resolution encoder El , an audio en-
coder Ea, a fusion network F and a face generator G. An overview of the complete
architecture is given in Fig. 5.3.

5.2.1 Combining Aural and Visual Signals

As mentioned in the introduction, a natural choice to solve our task is to train a
feedforward network to match the ground truth high-resolution image given its low-
resolution image and audio signal. Experimentally, we found that such a system
tends to ignore the audio signal and to yield a one-to-one mapping from a low-
resolution to a single high-resolution image. We believe that this problem is due to
the different nature of the aural and visual signals, and the choice of the structure
of the latent space. Combining both signals requires mapping their information to
a common latent space through the encoders. However, we find experimentally
that the audio signal requires longer processing and more network capacity to fit
the latent space (this is also observed in [225]). This fitting can also be aggravated
by the structure of the latent space, which might be biased more towards images
than audio. Ideally, the low-resolution image should only condition the feedforward
network to produce the most likely corresponding high-resolution output, and the
audio signal should introduce some local variation (i.e., modifying the gender or the
age of the output). Therefore, for the fusion to be effective, it would be helpful if the
audio could act on some fixed intermediate representation from the low-resolution
image, where face attributes present in the audio are disentangled.

For these reasons, we opted to pre-train and fix the generator of a StyleGAN
[226] and then train encoders to autoencode the inputs by using the generator as a
decoder network. StyleGAN generators have been shown to produce realistic high-
resolution images along with a good disentanglement of some meaningful factors
of variation in the intermediate representations. Such models should therefore act
as good priors for generating high-resolution face images, and the disentangled in-
termediate representations should allow better editing based on the audio signal.
Formally, we learn a generative model of face images G(z), where z ∼ N (0, Id), by
optimizing the default non-saturating loss of StyleGAN (see [226] for details).
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5.2.2 Inverting the Generator

Our goal is that the fusion of the information provided by the low-resolution
image and audio track results in a reconstruction that is close to the corresponding
high-resolution image. We pose this task as mapping an image x to its latent space
target z, such that G(z) = x. In other words, we need to invert the pre-trained gener-
ator G. Recently, this problem has attracted the attention of the research community
[237]. In this chapter, we introduce a novel GAN inversion approach, where we first
pre-train the encoder Eh while the generator is fixed. Then we train the encoder Eh
and the generator G (fine-tuning) through an autoencoding constraint and anchor
the weights of G to its initial values through an L2 loss. Then, the latent representa-
tion zi corresponding to the image xi can be generated by the encoder Eh, and used as
a target by the encoders of the low-resolution images and the audio, and the fusion
network.

5.2.3 Encoder Pre-Training

As a first step we train a high-resolution image encoder Eh by minimizing

min
Eh

n

∑
i=1

∣∣∣G(zi)− xh
i

∣∣∣
1
+ λ f `feat

(
G(zi), xh

i

)
, (5.1)

where zi = Eh(xh
i ), λ f > 0 is a tuning parameter, and `feat is a perceptual loss based

on VGG features (see Supplementary material for more details). We found that re-
gressing a single zi is insufficient to recover a good approximation of xh

i . In the
original style-based generator [226] each zi is mapped to a vector wi, which is then
replicated and inserted at k different layers of the generator (each corresponding to
different image scales). To improve the high-resolution reconstruction, we instead
generate k different zij, j = 1, . . . , k, and feed the resulting wij to the corresponding
layers in the generator. The output of Eh therefore lies in Rk×d. Note that this is
not too dissimilar from the training of the style-based generator, where the w-s of
different images are randomly mixed at different scales.

5.2.4 Encoder and Generator Fine-Tuning

This second optimization problem can be written as

min
Eh,G

n

∑
i=1

∣∣∣G(zi)− xh
i

∣∣∣
1
+ λ f `feat

(
G(zi), xh

i

)
+ λt |Ginit − G|22 ,

where zi = Eh(xh
i ), λt > 0 is a tuning parameter, and Ginit denotes the weights of G

after StyleGAN training. Moreover, during training, we relax the regularizer of the
weights of G by reducing λt by a factor of 2 as soon as the overall loss is minimized
(locally). The purpose of the pre-training and the regularizer decay procedure is
to encourage a gradual convergence of both the encoder and the decoder without
losing the structure of the latent representation of G. Examples of inversions before
and after the fine-tuning are shown in Fig. 5.4. There is a visible improvement in the
face’s reconstruction accuracy and background. Quantitative results are shown in
the Experiments section.
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FIGURE 5.4: Examples of generator inversions. Top row: Autoen-
coding results with a fixed pre-trained generator (see eq. (5.1)). Mid-
dle row: Autoencoding results with our fine-tuned generator (see

eq. (5.2)). Bottom row: Input images to the autoencoders.

5.2.5 Pre-Training Low-Res and Audio Encoders

Given the high-resolution image encoder, we now have targets zi for the low-
resolution and audio fusion. However, training a fusion model directly on these
targets runs into some difficulties. As mentioned before, we find experimentally
that, given enough capacity, a fusion model F(xl

i , ai) trained to predict zi = Eh(xh
i ),

ignores the audio signal ai almost completely. To address this degenerate behavior,
we train two encoders El and Ea separately to extract as much information from
the two modalities as possible and only later fuse them. To ensure that neither of
the two encoders can overfit the whole training set D we extract the subset Dpre ={
(xh

i , xl
i , ai) | i = 1, . . . , n/2

}
for the encoders pre-training and use the entire D only

for the later fusion training. The low-resolution encoder El is trained to regress the
high-resolution encodings zi = Eh(xh

i ) from xl
i by minimizing

min
El

∑
xl

i ,x
h
i ∈Dpre

∣∣∣El

(
xl

i

)
− zi

∣∣∣
1
+ λ

∣∣∣D ◦ G
(

El

(
xl

i

))
− xl

i

∣∣∣
1

, (5.2)

where D ◦ x is the 16× downsampling of x and λ = 40.
In the case of the audio encoding, regressing all the information in zi with Ea(ai)

is not possible, as many of the factors of variation in zi, e.g., the pose of the face, are
not present in ai. To remove the pose from zi we generate the targets for the audio
encoder as z̄i = 1

2

(
Eh(xh

i ) + Eh(x̂h
i )
)
, where x̂h

i is a horizontally flipped version of
the image xh

i . As it turns out, due to the disentangled representations of G, the
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FIGURE 5.5: Illustration of how we compute the targets for the audio
encoder pre-training. We feed a high-resolution training image and
its horizontally flipped version through the high-resolution encoder.
The resulting latent codes are then averaged and used as targets. Be-
cause of the hierarchical structure of the latent space of StyleGAN,
the averaged latent code produces a face in the neutral frontal facing

pose.

reconstruction G(z̄i) produces a neutral frontal facing version of G(zi) (see Fig. 5.5).
The audio encoder Ea is finally trained by minimizing

min
Ea

∑
ai,xh

i ∈Dpre

|Ea(ai)− z̄i|1 . (5.3)

5.2.6 Fusing Audio and Low-Resolution Encodings

We now want to fuse the information provided by the pre-trained encoders El
and Ea. Since the low-resolution encoder El already provides a good approxima-
tion to Eh, it is reasonable to use it as a starting point for the final prediction. Con-
ceptually, we can think of El as providing a zl

i = El(xl
i) that results in a canon-

ical face G(zl
i) corresponding to the low-resolution image xl

i . Ambiguities in zl
i

could then possibly be resolved via the use of audio, which would provide an es-
timate of the residual ∆zi = zi − zl

i . We therefore model the fusion mechanism as
z f

i = El(xl
i) + F

(
El(xl

i), Ea(ai)
)
, where F is a simple fully-connected network acting

on the concatenation of El(xl
i) and Ea(ai). Since the audio-encoding Ea might be sub-

optimal for the fusion, we continue training it along with F. The limited complexity
of the function F prevents the overfitting to the low-resolution encoding, but pro-
vides the necessary context for the computation of ∆zi. To summarize, we train the
fusion by optimizing

min
Ea,F

∑
ai ,xh

i ,xl
i∈D

∣∣∣z f
i − zi

∣∣∣
1
+ λ

∣∣∣D ◦ G
(

z f
i

)
− xl

i

∣∣∣
1

. (5.4)

5.2.7 Implementation Details

The style-based generator G was pre-trained on the entire training set D with all
hyper-parameters set to their default values (see [226] for details). It has seen a total
of 31 million images. The high-resolution encoder Eh was trained for 715K iterations
and a batch-size of 128 on the 128× 128 images from D. The low-resolution encoder
El and the audio encoder Ea were trained on Dpre. El was trained for 240K iterations
with a batch-size of 256, and Ea was trained for 200K iterations and a batch-size of
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64. The inputs xl
i to El are of size 8 × 8 pixels and the inputs to Ea are the audio

log-spectrograms of ai of size 257× 257. The fine-tuning of Ea and the training of the
fusion layer F was performed for 420K iterations onD. We used the Adam optimizer
[221] with a fixed learning rate of 10−4 for the training of all the networks.

We provide details of the used network architectures in Tables 5.4 to 5.6. All the
networks are convolutional using strided convolutions to reduce the spatial resolu-
tion. We apply instance normalization [238] to both the high-resolution encoder Eh
and the low-resolution encoder El . Notice that we also process the audio spectro-
gram using a CNN architecture. However, we found that applying instance nor-
malization to the audio-encoder Ea leads to significantly worse performance. Con-
sequently, no normalization was applied for Ea. We use the leaky ReLU activation
function in all our networks with a leak of 0.2.

To train the high-resolution encoder Eh, we used a perceptual loss on features of
an ImageNet pre-trained VGG16 network. We extracted features from the outputs
of the layers conv1_1, conv1_2, conv3_2 and conv4_2.

The fusion network F consists of three fully-connected layers, each with a hidden
dimension of 6’144. We again applied leaky ReLU activations in the hidden layers
and did not use any normalization.

All networks were trained with multi-GPU training on 4 NVIDIA GTX 1080Ti
GPUs.

5.3 Experiments

We demonstrate our contributions by evaluating three models with different
input-output mappings: 1) Audio to high-resolution image; 2) Low-resolution im-
age to high-resolution image; 3) Audio and low-resolution image to high-resolution
image. In particular, we focus our attention on the third case as it is the main objec-
tive of this paper.

5.3.1 Dataset

We performed all our experiments on a subset of the VoxCeleb2 dataset [239].
The dataset contains over one million audio tracks extracted from 145K videos of
people speaking. For the whole training set D we selected 104K videos with 545K
audio tracks and extracted around 2M frames at 128 × 128 pixels such that each
speaker has at least 500 associated frames. We then extracted half of this dataset
to create Dpre in such a way that Dpre and D contain the same speakers, but Dpre
has fewer videos than D. We selected 39K frames and 37K utterances from 25K
videos not contained in the training set (again from the same speakers) for the test
set. In the end, we select around 4K speakers out of the 6K speakers in the entire
dataset (filtering out speakers with very few videos and audio tracks). Note that this
selection is purely done to allow the evaluation via a speaker identity classifier. We
call experiments closed set when the training and test sets share the same set of face
identities; instead, we call them open set when the test set has identities that were
not in the training set.

5.3.2 Audio-Only to High-Resolution Face

Although our main objective is to obtain super-resolved images from the fu-
sion of low-resolution images and audio, we provide a brief comparison between
our model for face reconstruction from audio (Ea + G) with Speech2Face [4]. Since
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FIGURE 5.6: Audio-to-Image. To demonstrate qualitatively the
capabilities of our audio-to-image model Ea + G we picked sev-
eral audio tracks and the corresponding generated faces by Oh
et al. [4] from https://speech2face.github.io/supplemental/
retrieve/index.html. Images in every column are generated from
the same audio sources. Oh et al. [4] is shown on the first row, and

our results on the second row.

the dataset of [4] is not public, we performed a qualitative and a quantitative com-
parison based on audio tracks and reconstrucitons by Oh et al. [4] from https://
speech2face.github.io/supplemental/retrieve/index.html. In Fig. 5.6 we show
the reference faces obtained by Speech2Face and our output using the same audio
tracks. We can see that the gender and age match. In the second evaluation, we per-
form gender classification on the output of our audio-to-image model when given
audio from the VoxCeleb dataset [239] as input. Given a voice of the male or female
person, our Ea + G model generates faces of males and females in 97% and 96%
of the cases, respectively. The results match those reported by [4]. Notice that [4]
uses supervision from a classifier during training while our training is completely
unsupervised.

https://speech2face.github.io/supplemental/retrieve/index.html
https://speech2face.github.io/supplemental/retrieve/index.html
https://speech2face.github.io/supplemental/retrieve/index.html
https://speech2face.github.io/supplemental/retrieve/index.html
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FIGURE 5.7: Selected examples of reconstructions to some of our ab-
lation experiments. We show selected examples of reconstructions to
some of our ablation experiments. The 8× 8 pixels low-resolution in-
puts are shown in (a) and the corresponding 128× 128 pixels ground
truth images are shown in column (f). In-between, we show results
for encodings from Eh in (b), El in (c), Ea in (d) and from our fusion

model F with fine-tuned Ea in (e).

Ablation Acc Ci Acc Cg Err Ca Acc Ci Acc CgErr Ca

Closed Set Open Set

(a) Eh + fixed G 34.31% 95.60% 3.59 29.42% 92.65% 3.28
(b) Eh + tuned G 71.62% 98.20% 2.85 64.95% 95.14% 2.74

(c) El only 36.47% 95.51% 3.62 15.55% 91.08% 3.76
(d) Ea only 26.06% 97.07% 4.29 0.20% 96.38% 4.85
(e) F1 + tuned Ea 35.91% 95.88% 3.56 15.03% 91.75% 3.64
(f) F + zero Ea 36.95% 95.53% 3.60 15.38% 90.89% 3.73
(g) F + fixed Ea 48.43% 97.17% 3.46 14.57% 92.86% 3.74
(h) F + tuned Ea 51.65% 97.32% 3.31 15.67% 93.11% 3.68

TABLE 5.1: Results of our ablation experiments. We report the accu-
racy of an identity classifier Ci and a gender classifier Cg as well as
the error of an age classifier Ca on generated high-resolution images.
All the models in (c)-(h) were trained using the fine-tuned generator

G.
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5.3.3 Identity, Gender and Age Classification Accuracy as a Performance
Measure

To evaluate the capability of our model to recover gender and other identity at-
tributes based on the low-resolution and audio inputs, we propose to use the accu-
racy of a pre-trained identity classifier Ci and gender classifier Cg, which achieve an
accuracy of 95.25% and 99.53% respectively on the original high-resolution images.
To this end, we fine-tune two VGG-Face CNNs of [240] on the training set D for 10
epochs on both face attributes. As one can see in Table 5.1 these classifiers perform
well on the test set on both face attributes. Although we do not have the ground
truth age of our dataset, we use a pre-trained age classifier Ca [241] as the refer-
ence. Then, we measure the performance of our models by checking the consistency
between the classified age of the input and the output.

5.3.4 Ablations

We performed ablation experiments to understand the information retained in
the encoders and justify our final model’s design. The accuracy of the classifiers
Ci and Cg, as well as the consistency error of Ca, are reported in Table 5.1 for the
following ablation experiments:

(a)-(b) The importance of fine-tuning: In (a) we show the performance after pre-
training of Eh without fine-tuning, and in (b) we show the improvement in
performance with the fine-tuning of G as in eq. (5.2).

(c)-(d) Individual components: Shows the performance of the individual encoders
without fusion. Results for the low-resolution encoder El and the audio en-
coder Ea should be compared to the reference high-resolution encoder Eh.

(e)-(h) Fusion strategies: The performance of different fusion strategies are re-
ported. As a reference, we report results of a fusion model F1 with a single
fully-connected layer and fine-tuning of Ea. We compare this to a more com-
plex fusion network F with three fully-connected layers when the audio is not
used (f), the audio encoder is fixed (g), and when fine-tuning Ea (h).

We can observe that Ea can predict the correct gender more often than El . All
the fusion approaches lead to an improvement in terms of identity prediction over
Ea and El alone, thus showing that the information from both inputs is successfully
integrated. Note that the performance of all methods in Table 5.1, including the
SotA [242], is lower in the open set experiments than in the closed set ones. This
is expected since all methods were trained only on identities present in the training
set, and most likely, only a small amount of information is shared across identities.
The open set experiments show how much the methods can identify such shared
information, which is a sign of generalization. See also Fig. 5.7 for qualitative results.
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FIGURE 5.8: Comparison to other super-resolution methods on our
test set. The first column shows the 8× 8 pixels inputs; the second
column shows the output of LapSRN [103]; the third column shows
the output of W-SRNet [155]. Our model is shown in the fourth col-
umn. The ground-truth high-resolution image is shown in the last

column.

Closed Set Open Set

Method Factor PSNR SSIM Acc Ci Acc Cg Err Ca PSNR SSIM Acc Ci Acc Cg Err Ca

LapSRN ([103]) 4× 31.99 0.91 93.83% 99.38% 2.81 31.66 0.91 95.84% 95.37% 2.81

LapSRN ([103]) 16× 22.75 0.64 5.27% 83.27% 5.16 22.39 0.62 6.80% 79.57% 5.16
W-SRNet ([155]) 16× 21.55 0.67 34.91% 95.68% 4.28 19.18 0.59 13.54% 89.45% 4.57
Ours 16× 21.64 0.68 51.65% 97.32% 3.31 19.97 0.60 15.67% 93.11% 3.68

TABLE 5.2: Comparison to other general-purpose super-resolution
methods at different super-resolution factors. We report PSNR and
SSIM obtained on the test set. Note that the target resolution is fixed
at 128× 128 pixels and therefore the inputs to the 4×methods is 32×

32 pixels while our model only uses 8× 8 pixels input images.

5.3.5 Comparisons to Other Super-Resolution Methods

We compare to state-of-the-art super-resolution methods in Table 5.2 and Fig. 5.8.
The standard metrics PSNR and SSIM, along with the accuracy of Ci and Cg, and the
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FIGURE 5.9: Low-Resolution and audio mixing. Examples where we
mix a given low-resolution image with different audio sources. The
top row shows the high-resolution images from which we take the
audio track. The first two columns on the left show the same high-
resolution images and the corresponding low-resolution images used
as input. The rest of the images in the matrix are generated by mixing

the low-res from a row with the audio of a column.

Label Source Closed Set Open Set

Audio 10.76% 13.74%
Low-Resolution Image 89.24% 86.26%

TABLE 5.3: Agreement of Cg predictions with labels of low-resolution
and audio labels on mixed reconstructions.

errors of Ca are reported for super-resolved images of our test set. Note that most
methods in the literature are not trained on extreme super-resolution factors of 16×,
but rather on factors of 4×. Therefore, we report the results of one method using
a factor of 4× as a reference for the changes with the 16× factor. We retrained the
methods of [103] and [155] on our training set before evaluating their performance.
Notice that although LapSRN trained on 16× super-resolution performs better in
terms of PSNR and SSIM than our method, the quality of the recovered image is
clearly worse (see Fig. 5.8). This difference in the quality is instead revealed by
evaluating the gender and identity classification accuracies and the age classifica-
tion error of the restored images. This suggests that while PSNR and SSIM may be
suitable metrics to evaluate reconstructions with small super-resolution factors, they
may not be suitable to assess the reconstructions in more extreme cases, such as with
a factor of 16×.
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FIGURE 5.10: Examples of failure cases in our method. The 8 × 8
pixels low-resolution inputs are shown in (a) and the corresponding
128 × 128 pixels ground truth images are shown in column (e). In
the middle, we show results for encodings from the high-resolution
encoder Eh in (b), the low-resolution encoder El in (c) and from our

fusion model F with the fine-tuned Ea in (d).

5.3.6 Editing by Mixing Audio Sources

Our model allows us to influence the high-resolution output by interchanging
the audio tracks used in the fusion. To demonstrate this capability, we show exam-
ples where we mix a fixed low-resolution input with several different audio sources
in Fig. 5.9. We provide some additional qualitative results of our mixing experiments
in Fig. 5.12. These results were computed on images and audio tracks of identities
that were not included in the training set (open set). Results computed on images
and audio tracks from the closed test set are shown in Figs. 5.11, 5.13 and 5.14. To also
quantitatively evaluate such mixing, we feed low-resolution images and audios from
persons of different gender and classify the gender of the resulting high-resolution
faces. In Table 5.3, we report the accuracy with respect to the ground-truth gender
labels of low-resolution images and audios.

5.3.7 Failure Cases

We observe that failures may correspond more to the inherent bias presented
in the training set than the training algorithm or network architecture. Failure
cases sometimes happen when the gender can be easily guessed just from the low-
resolution image. Some of the failure cases are reported in Fig 5.10.

5.4 Discussion

We have introduced a new paradigm for face super-resolution, where also audio
contributes to the restoration of missing details in the low-resolution input image.
We have described the design of a neural network and the corresponding training
procedure to successfully use the audio signal despite the difficulty of extracting
visual information from it. We have also shown quantitatively that audio can im-
prove the accuracy of the restored face’s identity, gender, and age. Moreover, we
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FIGURE 5.11: Mixing examples. We show examples where we mix
a given low-resolution image with different audio sources. The top
row shows the high-resolution images from which we take the audio
track. The column on the left show the corresponding low-resolution
images used as input. The rest of the images in the matrix are gener-
ated by mixing the low-res from a row with the audio of a column.

have shown that it is possible to mix low-resolution images and audios from dif-
ferent videos and obtain semantically meaningful high-resolution images. A funda-
mental challenge in this work was the fusion of information from these very differ-
ent modalities. As we have shown, valuable information is present in both. How-
ever, we observed that naive end-to-end training tends to ignore audio information.
We conjecture that this problem might be a fundamental issue with current train-
ing schemes of neural networks, and its solution could provide insights on how to
improve the training on tasks in general.
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FIGURE 5.12: Mixing examples. We show examples where we mix
a given low-resolution image with different audio sources. The top
row shows the high-resolution images from which we take the audio
track. The column on the left show the corresponding low-resolution

images used as input.
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FIGURE 5.13: Mixing examples. We show examples where we mix
a given low-resolution image with different audio sources. The top
row shows the high-resolution images from which we take the audio
track. The column on the left show the corresponding low-resolution

images used as input.
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FIGURE 5.14: Mixing examples. We show examples where we mix
a given low-resolution image with different audio sources. The top
row shows the high-resolution images from which we take the audio
track. The column on the left show the corresponding low-resolution

images used as input.
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The network architecture of the low-resolution encoder El
Layer Kernel Stride Norm. Activation # Filters

conv 3× 3 1 - lReLU 128
conv 3× 3 2 IN lReLU 128
conv 3× 3 1 IN lReLU 256
conv 3× 3 2 IN lReLU 256
conv 3× 3 1 IN lReLU 512
conv 3× 3 2 IN lReLU 512
dense - - - lReLU 6144
dense - - - linear 6144

TABLE 5.4: Images are assumed to be of size 8× 8. The output size of
6144 matches the targets zi.

The network architecture of the high-resolution encoder Eh
Layer Kernel Stride Norm. Activation # Filters

conv 4× 4 1 - lReLU 64
conv 4× 4 2 IN lReLU 64
conv 4× 4 1 IN lReLU 128
conv 4× 4 2 IN lReLU 128
conv 4× 4 1 IN lReLU 256
conv 4× 4 2 IN lReLU 256
conv 4× 4 1 IN lReLU 512
conv 4× 4 2 IN lReLU 512
conv 4× 4 1 IN lReLU 1024
conv 4× 4 2 IN lReLU 1024
conv 4× 4 1 IN lReLU 1024
conv 4× 4 2 IN lReLU 1024
dense - - - linear 6144

TABLE 5.5: Input images are of size 128× 128. The output size of 6144
matches the input input of the generator which is of size 12× 512.

The network architecture of the audio encoder Ea
Layer Kernel Stride Norm. Activation # Filters

conv 4× 4 2 - lReLU 64
conv 4× 4 1 - lReLU 64
conv 4× 4 2 - lReLU 64
conv 4× 4 1 - lReLU 128
conv 4× 4 2 - lReLU 128
conv 4× 4 1 - lReLU 256
conv 4× 4 2 - lReLU 256
conv 4× 4 1 - lReLU 512
conv 4× 4 2 - lReLU 512
conv 4× 4 1 - lReLU 1024
conv 4× 4 2 - lReLU 1024
conv 4× 4 1 - lReLU 2048
conv 4× 4 2 - lReLU 2048
dense - - - lReLU 8192
dense - - - linear 6144

TABLE 5.6: The input spectrograms are of size 257× 257. The output
size of 6144 matches the targets zi.
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Chapter 6

Contrastive Learning for
Controllable Blind Video
Restoration

LR Denoised x4 Tuned

FIGURE 6.1: Controllable Blind Video Restoration. Given a low res-
olution and degraded input video, our model can be used to denoise
and/or upscale. We automatically estimate the degradation present
in the image. Moreover, it is possible to manipulate the degradation
representation to control the restoration result and for example in-

crease sharpness.

With the development of video streaming services and the increased competition
between the different providers in terms of catalog size, there is a regain of interest
for the studios to remaster old shows and productions to make them available on
their streaming platform. Our work addresses the problem of video restoration in
this context of remastering legacy video content. This type of content is often avail-
able in noisy, blurry, and low-resolution format and may contain scratches. Because
of this combination of degradations, the remastering process has to be carefully en-
gineered to produce the best results and, more importantly, avoid exaggerating any
of the degradations in the image.

Recent developments in deep learning have pushed the state of the art in the sub-
problems independently, by exploring different architectures or training settings in
super-resolution [96], [97], [104], [105], [109], [136] and video denoising [166], [243].
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Estimated Degradation

Alternative w. user adjusted Degradation

FIGURE 6.2: Overview of our controllable restoration pipeline. We
first estimate the degradation feature by feeding the corrupted video
to the encoder Ed. The degradation feature is used as conditioning
for the restoration backbone RB. The same features are used both for
the Super-Resolution head SR and denoising head DN. It is possible
to adjust both the denoising strength and blur kernel: Ek and Es ex-
plicitly map back the latent representation to a blur kernel and noise
levels, that can be adjusted before using the mutator M to output the
corresponding degradation embedding. This mutated version of the
embedding (in orange) can similarly be used as conditioning for the
restoration. It corresponds to the alternative outputs indicated by the

dotted arrows.

These specialized tools can be chained to denoise and upscale video content. How-
ever, sequentially applying different restoration methods may lead to sub-optimal
results and increased computation costs, which has motivated jointly addressing
multiple restoration problems [244]. Additionally, we can mention the blind restora-
tion methods [126], [150] where the parameters of the degradation, such as the blur
kernel, are estimated. More recently, Wang et al. [154] proposed an unsupervised
degradation representation learning scheme for blind super-resolution without ex-
plicit degradation estimation. Although this provides a clear advantage over test-
time optimization methods, the proposed models are limited to images, fixed scaling
factors and the learned representation cannot be interpreted or manipulated. Here
we propose a pipeline that is designed for video quality enhancement of older con-
tent that contains a combination of degradations. A brief overview of our method
during inference is presented in Fig. 6.2. Our proposed method consists of three ma-
jor steps: (i) extracting an interpretable and controllable representation of different
degradations; (ii) manipulating the degradations if necessary; (iii) finally condition-
ing the restoration backbone with estimated/manipulated degradation embedding.
To the best of our knowledge, there is no solution that considers the full problem of
video restoration that takes into account: scratch removal, denoising and upscaling,
while offering flexibility in terms of manual fine-tuning for the restoration of the sig-
nal. Our training strategy leverages contrastive learning to learn an abstract repre-
sentation that distinguishes various degradations in the representation space rather
than explicit estimation in the pixel space. A key difference from Wang et al. [154]
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is the possibility to control the restoration process via manipulating the degrada-
tion features. This requires better estimates for the degradation parameters, which
is possible thanks to our training strategy using pairs of degraded training samples
and hard negative samples. Finally, we consider a wider range of degradations and
address video restoration in a general setting where super-resolution is not limited
to a discrete set of scaling factors which is necessary when processing some video
formats like NTSC. Our contributions can be summarized as follows:

• A video restoration model that can jointly address the most common degrada-
tion present in legacy content.

• A new contrastive training strategy to learn an interpretable and controllable
representation of different degradations.

• State of the art results in blind video restoration.

6.1 Background

In Sections 2.5 and 2.6 we covered prior works on super-resolution and denoising
respectively. Unlike prior works, our pipeline addresses different video restoration
tasks simultaneously and allows fine-grained control of the restoration process. The
closest works that also tackle the mixed degradation restoration problem are specif-
ically designed for old content restoration. Old content is usually available in noisy,
blurry, and low-resolution format and may contain scratches. In the next section, we
briefly mention some of these works.

6.1.1 Scratch Removal

Scratch removal is a classical mixed degradation problem when working with
old photo/video data, and most existing methods consider it an image inpainting
problem [245]–[248]. Some works consider joint restoration of images corrupted by
a combination of different distortions [249], [250]. Wan et al. [251] proposed a novel
triplet domain translation network by leveraging real photos along with massive
synthetic image pairs and trained two variational autoencoders (VAEs) to respec-
tively transform old photos and clean photos into two latent spaces. And the trans-
lation between these two latent spaces is learned with synthetic paired data.

6.2 Method

We aim to build a model that can restore videos corrupted by the most common
degradations present in legacy film content: scratches, noise, and the implicit blur
in the low-resolution input. We can briefly formulate the degradation model of a LR
video y as follows:

y = S ◦
(
(x ∗ k) ↓s +n

)
(6.1)

where x is the HR video, ∗ is convolution operation, k is a blur kernel, ↓s denotes
downsampling operation by factor s, n stands for noise, and S represents a film
scratch as a mask that sets pixel color values to 1.

As illustrated in Fig. 6.2, we train an encoder Ed capable of extracting a latent
representation for the degradation present in the input frames. For this, we leverage
recent advances in contrastive learning [36], [154]. This latent representation is then
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FIGURE 6.3: Overview of our degradation learning pipeline. We
first degrade two high-resolution input images with a pair of degra-
dations d1, d2. We encode low-resolution degraded image pairs using
encoder Ed. Later features of the first and second rows are concate-
nated and passed to a two-layer MLP network. Final outputs con-
nected with a green arrow form a positive pair for contrastive learn-
ing. A red feature from the third row creates a hard negative example
for the feature from the first row since its obtained via encoding the
same image corrupted with degradations d3 and d4. We additionally
regress the blur kernel k1 and noise level σ1 via encoders Ek and Es,
respectively. We also learn to manipulate features using encoder M
by supplying it with adjusted degradation parameters k5, σ5 and ob-

tain z5
p = M(z6

p, k5, σ5).
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used as a conditioning for the feature restoration backbone RB, which is used both
for low-resolution denoising, with RDN , and the super-resolution path RSR. Our
model also learns to decode the degradation representation into blur kernel and
noise levels. Furthermore, it is possible to modify these parameters and adjust the
latent representation accordingly, thanks to the mutator model M. This flexibility
is needed in the context of real-world applications where artists may want to ad-
just sharpness levels and denoising strength. In the following, we first present in
section 6.2.1 our contrastive learning strategy, then our proposal to allow the manip-
ulation of the learned latent representation (section 6.2.2). Finally, we take advantage
of the learned representation to condition the restoration task in section 6.2.3.

6.2.1 Video Degradation Representation

The objective is to learn to extract from the input frames, a latent representation
that should be discriminative towards different degradations that might be in the
input. More precisely, two different videos similarly degraded should lead to two
embeddings that are close to each other, while the two differently degraded ver-
sions of the same video should result in latent representations further apart. This is
a more challenging objective than the one considered by Wang et al. [154] which is
a more straightforward application of the Moco [36] representation learning frame-
work: the loss was designed such as to push further away the embedding of patches
from different images, while bringing closer patches from the same image. Such an
objective doesn’t encourage a clear disentanglement between the content and the
degradation.

We are interested in disentangling the degradation from the content but differ-
ent samples from the training set are captured with sensors of varying resolutions,
exposures, and noise levels. Any high-resolution image already contains a certain
amount of degradation and the application of the degradation model from Equa-
tion 6.1 will result in a mixture of two degradations: inherent from a high-resolution
image and one from equation 6.1. Separating these two degradations is an ill-posed
problem. Therefore, directly training the encoder Ed with a Multilayer Perceptron
(MLP) that tries to optimize our contrastive learning objective is not optimal.

To address this issue, we propose to train the encoder Ed using pairs of degraded
patches obtained from sampling a random high-resolution image and degrading it
with two different degradations. Consequently, the MLP should focus on differences
between degradations introduced during training rather than ones present in the
original high-resolution video.

An overview of the training procedure is presented in Fig. 6.3. Let us denote a
specific set of different degradations from equation 6.1 as di ∼ D parameterized by
blur kernel ki and noise level σi, yi

p = di(xp) as video xp degraded with degradation
di, and zi

p = Ed(yi
p) as latent vector obtained by encoding yi

p using encoder Ed. We
sample pairs of degradations (di, dj), (dk, dl), and videos xp, xq. We apply pairs of
sampled degradations to the videos and encode them using encoder Ed:

xp →
(

di(xp), dj(xp)
)
→ (yi

p, yj
p)→ (zi

p, zj
p) (6.2)

xq →
(

di(xq), dj(xq)
)
→ (yi

q, yj
q)→ (zi

q, zj
q) (6.3)

xp →
(

dk(xp), dl(xp)
)
→ (yk

p, yl
p)→ (zk

p, zl
p) (6.4)
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where superscripts and subscripts denote degradations and input videos respec-
tively. Note that embedding pairs (zi

p, zj
p) and (zi

q, zj
q) are obtained by degrading

two different videos xp and xq, with the same pair of degradations (di, dj). There-

fore, they form a positive pair. Hard negative pairs (zi
p, zj

p) and (zk
p, zl

p) are obtained
by degrading the same video xp with different pairs of degradations: (di, dj) and
(dk, dl). We provide these difficult negative examples during training to force the
neural representation to focus on the degradation rather than the content. Next,
we define the relative degradations via concatenating the resulting embedding pairs
and following the Moco framework feed them to a two-layer MLP projection head

F: ψ
ij
p = F

(
[zi

p, zj
p]
)

, ψ
ij
q = F

(
[zi

q, zj
q]
)

, and ψkl
p = F

(
[zk

p, zl
p]
)

. We want ψ
ij
p to be

similar to ψ
ij
q since they share the same relative degradations and dissimilar to ψkl

p
since degradations are different. Therefore, an InfoNCE loss is used to measure the
similarity:

Lc =
V
∑
p,q

D
∑
i,j
− log

e
(

ψ
ij
p ·ψ

ij
q /τ

)

∑
NQ
t=1 e

(
ψ

ij
p ·ψt/τ

)
+ e

(
ψ

ij
p ·ψkl

p /τ
) (6.5)

where NQ is the number of samples in MoCo queue, V is a set of training videos, D
is set of degradations, τ is a temperature parameter, and · denotes the dot product
between two vectors.

In addition to optimizing for Lc we also estimate the parameters ki and σi of
applied degradation di from encoded feature zi

p. We train a degradation regression
that is able to recover the degradation parameters in a standardized format. This
is important to allow the modification of the results and fine tuning of the outputs.
Towards this goal, we train a small MLP: Ek and Es that regress the parameters ki
and σi , by optimizing:

Lk =
V
∑

p

D
∑

i

∣∣∣∣∣Ek

(
Ed

(
di(xp)

))
− ki

∣∣∣∣∣ (6.6)

Ls =
V
∑

p

D
∑

i

∣∣∣∣∣Es

(
Ed

(
di(xp)

))
− σi

∣∣∣∣∣ (6.7)

where subscripts k and σ identify the specific output of the model E.
Overall training objective can be summarized as follows:

L = λcLc + λkLk + λsLs (6.8)

where λc = 1, λk = 400, λs = 1 control the contribution of individual loss terms.

6.2.2 Learning to Manipulate Degradations

Our goal is to restore the distorted videos. However, we also want to have fine-
grained control over this process. For example, one might need to correct the blur
kernel, adjust the noise level and obtain the alternatively restored video. Therefore,
we freeze the pre-trained encoder Ed and train the model M to perform manipula-

tions in the latent space of degradations. Given the embedding zi
p = Ed

(
di(xp)

)
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and some new adjusted parameters k j, σj, the model M enables the manipulations

in the latent space and regresses the feature zj
p = M(zi

p, k j, σj). During training we
sample video xp, and a pair of degradations: di, dj. Next, we degrade xp obtaining

yi
p = di(xp) and yj

p = dj(xp). We compute encodings zi
p = Ed(yi

p), zj
p = Ed(y

j
p) using

frozen encoder Ed. Finally, we train model M by minimizing the following objective:

Lm =
V
∑

p

D
∑
i,j

∣∣∣∣∣M(zi
p, k j, σj)− zj

p

∣∣∣∣∣ (6.9)

6.2.3 Learning Conditional Restoration

As illustrated in Fig. 6.2, the proposed model extracts from consecutive frames
an encoding of the degradation that is present in the video. This degradation, ex-
pressed as a latent vector, is then used as conditioning for the restoration. Formally
our model consists of restoration backbone RB and two task-specific branches: RSR
and RDN for super-resolution and denoising, respectively. The motivation for hav-
ing a shared back-bone RB is to learn features that are beneficial for different restora-
tion tasks simultaneously. While the networks RSR and RDN should learn features
tailored for super-resolution, denoising, and scratch removal, respectively.

Given a corrupted input yi
p we first obtain the corresponding degradation em-

bedding Ed(yi
p). We pass both yi

p and Ed(yi
p) to the restoration backbone RB. Con-

sequently, the resulting final feature map from RB is fed to RSR and RDN subnet-
works, respectively. Therefore, we produce two outputs in this model. The first
is the low-resolution denoised image and consequently the original low-resolution
noise. The second is the denoised high-resolution image. Rather than outputting a
fixed 4× super-resolved frame, we employ Meta Upscale module [252] at the end
of our RSR model to enable non-integer upsampling factors and address more gen-
eral scenarios. Additionally, for both super-resolution and denoising branches, our
model must also remove the possible scratches presented in the video. Hence in ad-
dition to the losses mentioned in the section 6.2.1, during training models RSR and
RDN are trained to minimize objectives LSR and LDN respectively.

LSR =
V
∑

p

D
∑

i

∣∣∣∣∣RSR

(
Ed(yi

p), yi
p

)
− x̂p

∣∣∣∣∣ (6.10)

LDN =
V
∑

p

D
∑

i

∣∣∣∣∣RDN

(
Ed(yi

p), yi
p

)
−
(
x̂p ∗ ki

)
↓s

∣∣∣∣∣ (6.11)

where yi
p = di(xp) and x̂p corresponds to the degraded video and middle sharp

high-resolution ground-truth frame of the video sequence xp. Additionally to the
content losses mentioned in equations 6.10 and 6.11, we also keep fine-tunning the
models from section 6.2.1. Therefore our final objective becomes:

L = λSRLSR + λDNLDN + λcLc + λkLk + λsLs (6.12)

where λSR = 1 and λDN = 1 are the weights of super-resolution and denoising
terms respectively.
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6.2.4 Implementation Details

We train our models on the Vimeo90K dataset[133]. This dataset consists of
89,800 video clips, which cover a large variety of scenes and actions. During training,
we randomly sample 5 consecutive 192x192 frames from the dataset. We employed
R3D-18 [253] architecture as a backbone for the encoder Ed. Before contrasting, the
output features of encoder Ed are fed to two fully connected layers with 512 and
256 neurons, respectively. Contrastive MLP head consists of the layers presented in
Table 6.5. Encoders Ek, Es, and M are implemented using fully-connected percep-
trons, presented in Tables 6.6 to 6.8, respectively. Rb, RSR, and RDN models consist
of Degradation-aware (DA) blocks introduced by Wang et al. [154]. The high-level
structure is borrowed from the RCAN [254] model. Model RB starts with three 3d
convolutional layers to leverage the temporal information presented in the input.
Next, the aggregated feature is processed using 5 DA [154] blocks. Finally, we give
the output of the last block to models RSR and RDN as input. We pass the input
feature map from model RB to 2 consecutive DA blocks[154]. The output of the last
DA block is summed with the middle frame feature of the first convolutional layer of
model RB. Finally, we get the super-resolved output using the commonly used Pixel-
Shuffle layer [255]. Alternatively, instead of Pixel-Shuffle, we employ Meta Upscale
module [252] at the end of our RSR model to enable non-integer upsampling factors
and address more general scenarios. We pass the input feature map from model RB
to 2 consecutive DA blocks[154]. The output of the last DA block is summed with
the middle frame feature of the first convolutional layer of model RB. Finally, we get
the denoised output using the last conv_2d layer.

Our models were trained on 2 NVIDIA TITAN X GPUs with a mini-batch size
of 32 samples. In our experiments, we used τ = 0.07 and NQ = 8192, respectively.
Degradation encoder Ed was pre-trained for 65 epochs prior to the final fine-tuning
together with models Rb, RSR, and RDN for additional 40 epochs. We use the Adam
optimizer [221] with an initial learning rate of 10−4 for the training of all the net-
works.

6.3 Experiments

Our pipeline is simultaneously addressing multiple restoration problems. There-
fore, we compare with some of the task-specific recent prior works. Specifically,
we perform comparisons on video super-resolution, denoising, and scratch removal
tasks.

6.3.1 Datasets & Metrics

We incorporated the Vid4 and Set8 datasets for comparison and ablation pur-
poses. We generated multiple degraded versions of original datasets to demonstrate
the capabilities of our pipeline in different settings. First, we created multiple blurry
versions of each dataset using nine blur kernels presented in Table 6.2. After, we
downsampled and corrupted each of the blurry datasets using AWGN of different
magnitudes. And finally, we followed the method of Wan et al. [251] to generate
scratched versions of the datasets. For quantitative comparison purposes, we em-
ploy commonly used metrics in the field: PSNR and SSIM.
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LR middle GTSingle Pairwise

Feature Contrasting MAE↓ Kernel Similarity↑
Single 0.0008 0.9438

Pairwise 0.0005 0.9821

TABLE 6.1: Kernel estimation accuracy for single and pairwise feature
contrasting strategies. The first and second rows correspond to single
and pairwise feature contrasting strategies, respectively. We report

Mean Absolute Error and Kernel Similarity [256].

6.3.2 Ablations

In this section, we ablate single and pairwise contrasting strategies for encoder
Ed. We also evaluate the quality of mutated kernels produced by our model M.

6.3.2.1 Single vs Pairwise Contrasting

An essential component of our pipeline is the encoder Ed that learns to map the
degraded videos to the latent space. As we mentioned previously, features from
the latent space should reflect as much information as possible about the degrada-
tion contained in the input video. Therefore, we evaluate the latent space via the
quality of the blur kernels that the encoder Ek produces given a feature from Ed as
input. We use Kernel Similarity [256] and Mean Absolute Error (MAE) as evaluation
metrics between ground-truth and estimated kernels. We thus perform ablation
experiments for different ways to train the encoder Ed and justify the choice of the
pairwise training strategy. We consider two possible design choices: (i) training Ed
by contrasting single video embeddings, and (ii) training Ed by contrasting pairs of
video embeddings. MAE’s and Kernel Similarities are reported in Table 6.1. One
can observe that the Pairwise feature contrasting strategy leads to a better quality of
the estimated kernels.

6.3.2.2 Initial vs Mutated Kernels

We also evaluated how well mutator M manipulates the latent input features.
Specifically, we are interested in consistency between the input kernel to the model
M and kernel-related information contained in the output manipulated latent code.
Towards this goal, we first feed model M with a latent code, noise level, and ad-
justed blur kernel; and obtain the adjusted code. After, we provide the modified
latent code to the Kernel estimator Ek and estimate the adjusted kernel. Finally, we
measure the MAE and Kernel Similarity between the initial adjusted blur kernel and
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σ Method Blur Kernels
All

SE
T

8
0

Ours 27.51 / 0.82 27.17 / 0.79 24.25 / 0.67 27.76 / 0.81 26.40 / 0.77 25.52 / 0.73 27.74 / 0.81 26.44 / 0.77 25.38 / 0.72 26.46 / 0.77
Tian et al. [131] 29.22 / 0.84 26.20 / 0.75 24.20 / 0.67 27.38 / 0.79 25.66 / 0.74 24.94 / 0.70 27.49 / 0.80 25.80 / 0.74 25.02 / 0.70 26.21 / 0.75
Pan et al. [257] 26.89 / 0.79 25.76 / 0.73 23.99 / 0.66 25.82 / 0.74 24.74 / 0.70 24.66 / 0.69 26.52 / 0.77 25.02 / 0.71 24.72 / 0.69 25.35 / 0.72
Zhang et al. [258] 25.80 / 0.72 24.95 / 0.70 23.95 / 0.65 25.17 / 0.71 24.09 / 0.66 24.12 / 0.66 25.38 / 0.71 24.32 / 0.67 24.22 / 0.66 24.67 / 0.68

5

Ours 27.94 / 0.82 27.74 / 0.79 24.74 / 0.68 28.22 / 0.81 26.81 / 0.76 26.06 / 0.73 28.10 / 0.81 26.82 / 0.77 26.10 / 0.73 26.95 / 0.77
Tian et al. [131] 29.44 / 0.83 26.51 / 0.74 24.42 / 0.66 27.71 / 0.78 25.89 / 0.73 25.18 / 0.69 27.82 / 0.79 26.06 / 0.73 25.28 / 0.69 26.48 / 0.74
Pan et al. [257] 27.18 / 0.78 26.07 / 0.73 24.22 / 0.65 26.11 / 0.74 24.97 / 0.70 24.90 / 0.68 26.85 / 0.76 25.28 / 0.71 24.98 / 0.69 25.62 / 0.72
Zhang et al. [258] 26.16 / 0.72 25.27 / 0.69 24.21 / 0.65 25.49 / 0.71 24.35 / 0.66 24.40 / 0.66 25.73 / 0.71 24.64 / 0.66 24.52 / 0.66 24.97 / 0.68

10

Ours 28.51 / 0.81 28.14 / 0.78 25.26 / 0.68 28.58 / 0.80 27.13 / 0.75 26.53 / 0.73 28.52 / 0.80 27.35 / 0.76 26.72 / 0.73 27.42 / 0.76
Tian et al. [131] 29.01 / 0.79 26.68 / 0.71 24.61 / 0.63 27.74 / 0.75 26.03 / 0.69 25.36 / 0.66 27.80 / 0.75 26.17 / 0.70 25.47 / 0.66 26.54 / 0.70
Pan et al. [257] 27.32 / 0.77 26.35 / 0.71 24.45 / 0.64 26.35 / 0.73 25.21 / 0.68 25.14 / 0.67 27.06 / 0.75 25.53 / 0.70 25.23 / 0.67 25.85 / 0.70
Zhang et al. [258] 26.51 / 0.72 25.61 / 0.68 24.35 / 0.63 25.86 / 0.70 24.72 / 0.65 24.69 / 0.65 26.07 / 0.70 24.99 / 0.66 24.81 / 0.65 25.29 / 0.67

15

Ours 28.54 / 0.81 28.26 / 0.77 25.55 / 0.68 28.61 / 0.79 27.35 / 0.75 26.78 / 0.72 28.60 / 0.79 27.48 / 0.75 26.92 / 0.72 27.57 / 0.75
Tian et al. [131] 28.17 / 0.75 26.49 / 0.67 24.58 / 0.59 27.31 / 0.70 25.87 / 0.65 25.30 / 0.62 27.35 / 0.71 25.99 / 0.66 25.40 / 0.62 26.27 / 0.66
Pan et al. [257] 27.15 / 0.75 26.35 / 0.69 24.51 / 0.61 26.33 / 0.71 25.27 / 0.67 25.20 / 0.64 26.98 / 0.73 25.58 / 0.68 25.29 / 0.64 25.85 / 0.68
Zhang et al. [258] 26.62 / 0.71 25.77 / 0.67 24.44 / 0.62 26.05 / 0.69 24.98 / 0.65 24.88 / 0.64 26.22 / 0.69 25.20 / 0.65 25.00 / 0.64 25.46 / 0.66

25

Ours 27.44 / 0.79 27.52 / 0.75 25.51 / 0.67 27.63 / 0.77 26.82 / 0.73 26.48 / 0.71 27.65 / 0.78 26.88 / 0.74 26.55 / 0.71 26.94 / 0.74
Tian et al. [131] 25.89 / 0.65 25.16 / 0.57 23.86 / 0.50 25.58 / 0.61 24.72 / 0.56 24.39 / 0.53 25.61 / 0.61 24.80 / 0.56 24.44 / 0.53 24.94 / 0.57
Pan et al. [257] 25.97 / 0.70 25.44 / 0.61 24.05 / 0.54 25.52 / 0.66 24.74 / 0.62 24.61 / 0.57 25.92 / 0.66 25.00 / 0.63 24.66 / 0.57 25.10 / 0.61
Zhang et al. [258] 25.96 / 0.70 25.41 / 0.65 24.30 / 0.60 25.63 / 0.67 24.85 / 0.64 24.73 / 0.62 25.72 / 0.68 24.97 / 0.64 24.79 / 0.62 25.15 / 0.65

All

Ours 27.99 / 0.81 27.77 / 0.78 25.06 / 0.68 28.16 / 0.80 26.90 / 0.75 26.27 / 0.72 28.12 / 0.80 26.99 / 0.76 26.33 / 0.72 27.07 / 0.76
Tian et al. [131] 28.35 / 0.77 26.21 / 0.69 24.33 / 0.61 27.14 / 0.73 25.63 / 0.67 25.03 / 0.64 27.21 / 0.73 25.76 / 0.68 25.12 / 0.64 26.09 / 0.68
Pan et al. [257] 26.90 / 0.76 25.99 / 0.69 24.24 / 0.62 26.03 / 0.72 24.99 / 0.67 24.90 / 0.65 26.67 / 0.73 25.28 / 0.69 24.98 / 0.65 25.55 / 0.68
Zhang et al. [258] 26.21 / 0.71 25.40 / 0.68 24.25 / 0.63 25.64 / 0.70 24.60 / 0.65 24.56 / 0.65 25.82 / 0.70 24.82 / 0.66 24.67 / 0.65 25.11 / 0.67

V
ID

4

0

Ours 22.84 / 0.73 23.49 / 0.71 21.11 / 0.53 23.41 / 0.73 22.60 / 0.68 22.44 / 0.64 23.53 / 0.73 22.63 / 0.66 21.99 / 0.61 22.67 / 0.67
Tian et al. [131] 24.62 / 0.77 22.17 / 0.62 20.79 / 0.51 23.17 / 0.69 21.86 / 0.61 21.32 / 0.55 23.09 / 0.68 21.82 / 0.60 21.32 / 0.55 22.24 / 0.62
Pan et al. [257] 22.82 / 0.69 21.88 / 0.59 20.66 / 0.50 21.97 / 0.62 21.11 / 0.56 21.12 / 0.54 22.37 / 0.64 21.27 / 0.57 21.12 / 0.53 21.60 / 0.58
Zhang et al. [258] 22.24 / 0.62 21.65 / 0.59 20.82 / 0.53 21.80 / 0.61 20.91 / 0.56 20.96 / 0.55 21.85 / 0.60 20.97 / 0.55 21.07 / 0.55 21.36 / 0.57

5

Ours 23.03 / 0.74 23.59 / 0.71 21.47 / 0.55 23.60 / 0.73 22.76 / 0.67 22.55 / 0.64 23.54 / 0.73 22.65 / 0.66 22.47 / 0.63 22.85 / 0.67
Tian et al. [131] 24.52 / 0.76 22.22 / 0.61 20.84 / 0.50 23.21 / 0.68 21.88 / 0.60 21.35 / 0.54 23.12 / 0.67 21.84 / 0.59 21.36 / 0.54 22.26 / 0.61
Pan et al. [257] 22.81 / 0.69 21.94 / 0.59 20.71 / 0.49 22.03 / 0.62 21.15 / 0.56 21.16 / 0.53 22.40 / 0.64 21.31 / 0.56 21.18 / 0.53 21.63 / 0.58
Zhang et al. [258] 22.29 / 0.63 21.76 / 0.59 20.96 / 0.52 21.90 / 0.61 20.99 / 0.56 21.07 / 0.55 21.91 / 0.60 21.03 / 0.55 21.16 / 0.55 21.45 / 0.57

10

Ours 23.52 / 0.74 23.51 / 0.69 21.68 / 0.56 23.67 / 0.72 22.71 / 0.66 22.59 / 0.63 23.64 / 0.72 22.84 / 0.66 22.62 / 0.63 22.98 / 0.67
Tian et al. [131] 24.15 / 0.72 22.21 / 0.58 20.85 / 0.47 23.09 / 0.65 21.82 / 0.57 21.39 / 0.52 22.96 / 0.64 21.82 / 0.56 21.36 / 0.51 22.18 / 0.58
Pan et al. [257] 22.69 / 0.67 21.95 / 0.57 20.75 / 0.48 22.01 / 0.61 21.16 / 0.55 21.22 / 0.52 22.32 / 0.62 21.34 / 0.55 21.20 / 0.52 21.63 / 0.57
Zhang et al. [258] 22.24 / 0.62 21.75 / 0.58 20.85 / 0.51 21.91 / 0.60 21.04 / 0.55 21.13 / 0.54 21.87 / 0.59 21.10 / 0.54 21.14 / 0.53 21.45 / 0.56

15

Ours 23.36 / 0.74 23.31 / 0.68 21.69 / 0.55 23.48 / 0.72 22.73 / 0.65 22.49 / 0.62 23.56 / 0.71 22.77 / 0.65 22.49 / 0.61 22.88 / 0.66
Tian et al. [131] 23.62 / 0.68 22.02 / 0.54 20.76 / 0.44 22.79 / 0.61 21.73 / 0.54 21.25 / 0.49 22.74 / 0.60 21.65 / 0.53 21.24 / 0.48 21.98 / 0.55
Pan et al. [257] 22.51 / 0.66 21.86 / 0.55 20.72 / 0.46 21.90 / 0.60 21.18 / 0.53 21.15 / 0.50 22.26 / 0.60 21.29 / 0.54 21.15 / 0.50 21.56 / 0.55
Zhang et al. [258] 22.11 / 0.61 21.62 / 0.56 20.73 / 0.49 21.82 / 0.59 21.09 / 0.54 21.04 / 0.52 21.84 / 0.58 21.07 / 0.53 21.04 / 0.52 21.37 / 0.55

25

Ours 22.61 / 0.72 22.70 / 0.66 21.39 / 0.54 22.73 / 0.70 22.22 / 0.64 22.09 / 0.60 22.77 / 0.69 22.17 / 0.63 22.00 / 0.59 22.30 / 0.64
Tian et al. [131] 22.33 / 0.60 21.38 / 0.47 20.35 / 0.38 21.85 / 0.54 21.09 / 0.47 20.81 / 0.42 21.78 / 0.53 21.03 / 0.46 20.73 / 0.42 21.26 / 0.48
Pan et al. [257] 21.85 / 0.61 21.41 / 0.50 20.43 / 0.41 21.40 / 0.55 20.83 / 0.50 20.86 / 0.45 21.63 / 0.55 20.94 / 0.50 20.79 / 0.44 21.13 / 0.50
Zhang et al. [258] 21.54 / 0.59 21.18 / 0.54 20.40 / 0.48 21.32 / 0.57 20.78 / 0.53 20.75 / 0.51 21.26 / 0.56 20.71 / 0.52 20.66 / 0.50 20.96 / 0.53

All

Ours 23.07 / 0.73 23.32 / 0.69 21.47 / 0.55 23.38 / 0.72 22.60 / 0.66 22.43 / 0.63 23.41 / 0.72 22.61 / 0.65 22.31 / 0.61 22.73 / 0.66
Tian et al. [131] 23.85 / 0.71 22.00 / 0.56 20.72 / 0.46 22.82 / 0.63 21.68 / 0.56 21.22 / 0.50 22.74 / 0.62 21.63 / 0.55 21.20 / 0.50 21.98 / 0.57
Pan et al. [257] 22.54 / 0.66 21.81 / 0.56 20.65 / 0.47 21.86 / 0.60 21.09 / 0.54 21.10 / 0.51 22.20 / 0.61 21.23 / 0.54 21.09 / 0.50 21.51 / 0.56
Zhang et al. [258] 22.08 / 0.61 21.59 / 0.57 20.75 / 0.51 21.75 / 0.60 20.96 / 0.55 20.99 / 0.53 21.75 / 0.59 20.98 / 0.54 21.01 / 0.53 21.32 / 0.56

TABLE 6.2: Quantitative comparison to other video super-resolution
methods at 4x scaling factor. We report PSNR/SSIM values of our and
competitor methods on VID4 and Set8 datasets. Different rows and
columns correspond to different AWGN levels and blur kernels, re-
spectively. Rows labeled as "All" correspond to average PSNR/SSIM
values across different noise levels. Columns denoted as "All" corre-

spond to average PSNR/SSIM values across different blur kernels.

the estimated blur kernel after manipulation. We performed the mentioned proce-
dure on degraded videos from Set8 and obtained MAE = 0.0004 and KS = 0.9837
(Kernel Similarity).

6.3.3 Comparisons

In this section, we perform qualitative and quantitative comparisons with some
of the state-of-the-art methods in video super-resolution, denoising, and scratch re-
moval.

6.3.3.1 Video Super-Resolution

We performed a quantitative comparison with the non-blind video super-
resolution approach of Tian et al. [131], and with the blind methods of Pan et
al. [257], and Zhang et al. [258]. We report PSNR/SSIM metrics for different blur
kernels and noise levels in Table 6.2. Our method achieves the best performance in
all settings except for the one closest to the bicubic kernel, which is the one where
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Dataset
σ Method VID4 SET8

5

Ours 40.85 / 0.99 40.22 / 0.99
UDVD [259] 36.66 / 0.98 38.11 / 0.97
DVDnet [243] 37.92 / 0.99 39.30 / 0.99
FastDVDnet [167] 40.68 / 0.99 39.80 / 0.99

10

Ours 35.46 / 0.99 35.09 / 0.99
UDVD [259] 33.41 / 0.97 33.96 / 0.95
DVDnet [243] 34.27 / 0.98 34.02 / 0.96
FastDVDnet [167] 34.83 / 0.99 34.52 / 0.99

15

Ours 32.30 / 0.99 31.78 / 0.98
UDVD [259] 31.52 / 0.96 31.27 / 0.94
DVDnet [243] 31.94 / 0.97 30.81 / 0.94
FastDVDnet [167] 31.64 / 0.99 31.24 / 0.99

25

Ours 27.76 / 0.99 27.50 / 0.97
UDVD [259] 28.48 / 0.95 27.48 / 0.93
DVDnet [243] 28.15 / 0.94 26.67 / 0.89
FastDVDnet [167] 27.11 / 0.99 26.98 / 0.99

All

Ours 34.09 / 0.99 33.65 / 0.98
UDVD [259] 32.52 / 0.97 32.71 / 0.95
DVDnet [243] 33.07 / 0.97 32.7 / 0.95
FastDVDnet [167] 33.57 / 0.99 33.14 / 0.99

TABLE 6.3: Quantitative comparison to the non-blind video denois-
ing method of Tassano et al. [167], [243], and Sheth et al. [259]. We

report PSNR/SSIM values on VID4 and Set8 datasets.

Dataset
Method VID4 SET8

Ours 36.09 / 0.99 31.93 / 0.98
Wan et al. [251] 24.54 / 0.83 26.98 / 0.86

TABLE 6.4: Quantitative comparison to the scratch removal method
of Wan et al. [251].

naturally a specialized model [131] performs best. To understand the benefits of our
multi-frame and pairwise training, we retrained the model of Wang et al. [154] on
the Vimeo90K[133] and evaluated it on the Vid4 and Set8 test sets. Retrained model
achieves 22.47 / 0.63 and, 26.80 / 0.74 for Vid4 and Set8, respectively. In contrast,
our model achieves 22.73 / 0.66 on Vid4 and 27.07 / 0.76 on Set8, while addressing
multiple restoration tasks simultaneously, handling non-integer scaling factors, and
allowing result manipulation. Qualitative results are presented in Fig. 6.5.

6.3.3.2 Video Denoising

We performed a quantitative comparison with the video denoising methods of
Tassano et al. [167], [243], and Sheth et al. [259]. We report results for different noise
levels in Table 6.3. Our blind method achieves competitive performance and even
slightly outperforms the model of [167], which has access to the noise level as input.
Qualitative results are presented in Fig. 6.6.
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FIGURE 6.4: Degradation Manipulation. Our pipeline takes a low-
resolution corrupted video from the first column and outputs the 4x
super-resolved frame. Columns 2-5 show different magnified regions
of the restored frame. We show the ground-truth patch in Column 6.
In column 4, we have the result obtained without adjusting the latent
feature from encoder Ed. Columns 2, 3, and 5 contain results obtained
using latent codes from mutator model M. One can observe how blur

levels vary between different columns (2-5).

6.3.3.3 Video Scratch Removal

We performed a quantitative comparison with the method of Wan et al. [251]. In
this experiment, we generated corrupted versions of Vid4 and Set8 by first adding
AWGN with σ = 5 and applying synthetic scratches following Wan et al. [251]’s
protocol. We report PSNR/SSIM metrics in Table 6.4. Our method outperforms the
competitor’s method. Note that our pipeline takes scratched videos as input while
[251] takes a single scratched frame. A significant performance gap can be explained
by our method leveraging information from the temporal dimension, which is not
available in the case of [251]. On the other hand, [251] takes the mask of the scratched
region as input, which simplifies the restoration process. Qualitative results are pre-
sented in Fig. 6.7.
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6.3.3.4 Manipulating Real Videos

We demonstrate the editing capabilities of our pipeline by evaluating it on the
degraded versions of 4K high-resolution real videos. The illustration is presented in
Fig. 6.4. One can observe the gradual decrease of the blur level in restored frames
from left to the right. Initially, we pass the feature from encoder Ed to backbone Rb
and obtain the results in the 4-th column. We manipulate the blur kernel to both
more and less blur. We feed the mutator M with the modified blur kernels to obtain
new embeddings to condition the restoration. One can see the effect from blurry to
sharper results.

6.4 Discussion

In this chapter, we proposed a discriminative learning strategy that helps sepa-
rate content from the degradation by reasoning on pairs of degraded patches, where
both content and degradation vary independently. The degradation representation
is used as conditioning for a video restoration model that can handle denoising,
super-resolution, and scratch removal. More importantly, the learned representa-
tion can be manipulated to fine-tune the results, which is crucial for real applica-
tion scenarios. Our model achieves state-of-the-art results while avoiding any test
time optimization contrary to many existing blind methods. An important direction
for future work would be to explore a broader range of degradation, such as com-
pression artifacts or deinterlacing. Additionally, it should still be possible to better
leverage temporal information.
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LR Middle Frame Tian et al. [131] Pan et al. [257] Ours Ground-Truth

FIGURE 6.5: Qualitative Comparison Super-Resolution. We per-
formed a qualitative comparison with methods of Tian et al. [131]
and Pan et al. [257]. Different rows correspond to different combina-
tions of blur kernels and a noise levels. The first column corresponds
to a low-resolution input middle frame. Next, the second and third
columns correspond to the restored results of Tian et al. [131] and Pan
et al. [257], respectively. The fourth column shows the results of our
pipeline. Finally, the last column corresponds to the ground-truth

frame.
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FIGURE 6.6: Qualitative Comparison Denoising. We performed a
qualitative comparison with method of Tassano et al. [167]. First two
rows correspond to a noise level of σ = 25. Last two rows correspond
to a noise level of σ = 15. The first column corresponds to a noisy
input middle frame. The second column correspond to the restored
results of Tassano et al. [167]. The third column shows the results of
our pipeline. Finally, the last column corresponds to the ground-truth

frame.
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FIGURE 6.7: Qualitative Comparison Scratch Removal. We per-
formed a qualitative comparison with method of Wan et al. [251]. The
first column corresponds to a scratched input middle frame. The sec-
ond column correspond to the restored results of Wan et al. [251]. The
third column shows the results of our pipeline. Finally, the last col-

umn corresponds to the ground-truth frame.
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MLP Head of Degradation Encoder Ed
Layer Kernel Stride Norm. Activation # Filters

dense 1024 - - lReLU 512
dense 512 - - linear 256

TABLE 6.5: The network architecture of contrastive MLP head. The
input pairwise concatenated features are of size 1024. The output size

is 256.

Encoder Ek
Layer Kernel Stride Norm. Activation # Filters

dense 512 - - lReLU 441
dense 441 - - lReLU 441
dense 441 - - Softmax 441

TABLE 6.6: The input embedding is 512 dimensional vector. The out-
put size is 441 which gives 21× 21 blur kernel after reshaping.

Encoder Es
Layer Kernel Stride Norm. Activation # Filters

dense 512 - - lReLU 128
dense 128 - - linear 1

TABLE 6.7: The input degradation embedding is 512 dimensional
vector. The output size is 1.

Degradation Mutator M
Layer Kernel Stride Norm. Activation # Filters

dense 954 - - lReLU 954
dense 954 - - lReLU 954
dense 954 - - linear 512

TABLE 6.8: The input embedding is 954 dimensional vector. The out-
put size is 512 dimensional vector.

Restoration Backbone RB
Layer Kernel Stride Norm. Activation # Filters

conv_3d 1 × 5 × 5 1 - linear 128
conv_3d 3 × 7 × 7 1 - lReLU 128
conv_3d 3 × 7 × 7 1 - lReLU 128

DA - 1 - lReLU 128
DA - 1 - lReLU 128
DA - 1 - lReLU 128
DA - 1 - lReLU 128
DA - 1 - lReLU 128
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Super-Resolution Branch RSR
Layer Kernel Stride Norm. Activation # Filters

DA - 1 - lReLU 128
DA - 1 - lReLU 128

Pixel-Shuffle - 1 - linear 3

Denoising Branch RDN
Layer Kernel Stride Norm. Activation # Filters

DA - 1 - lReLU 128
DA - 1 - lReLU 128

conv_2d 3 × 3 1 - linear 3
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Chapter 7

Conclusions

In this thesis, we studied challenging and ill-posed image and video restora-
tion tasks. Throughout Chapters 3 to 5, we introduced three novel computational
photography tasks. Common to all problems that we covered are inherent ambi-
guities due to the limited or missing amount of information presented in the input.
Chapter 3 introduced the novel problem of extracting a video sequence from a sin-
gle motion-blurred image. We investigated the associated temporal ambiguities and
proposed novel frame-ordering invariant loss functions. We showed that our loss
functions and a specific system design enable the extraction of temporally coherent
sharp video sequences from single motion-blurred images. This opened up two pos-
sibilities for the end-user of the framework. Firstly, the capability to obtain a sharp
video sequence corresponding to the blurry input. Secondly, the ability to choose a
specific sharp frame from the sequence rather than a single central deblurred output.
In Chapters 4 to 6, we tackled various degradations by first learning the proper la-
tent representation of the data via leveraging the advances in generative adversarial
and contrastive learning. Furthermore, we introduced an effective framework for
inverting the learned representations. First, we learn the inverse of the frozen rep-
resentation and then further finetune the representation and the inverse jointly. We
demonstrated how one could leverage the representation together with its inverse
mapping to enable image restoration, editing, and generation of multiple differently
restored versions of the degraded input.

In Chapter 4, we proposed the novel task of deblurring and rotating motion-
blurred faces. Towards this goal, we collected a new Bern Multi-View Face Dataset.
Our unique dataset enabled simulating realistic motion blur through averaging
sharp ground-truth frames. Moreover, it allowed the enforcement of multi-view
constraints, which are crucial to synthesizing sharp videos from a new camera
view. Given a generative model of faces, its inverse together with our dataset, we
proposed a method that generates a sharp video sequence from a blurry face. More-
over, our solution allows controlling the viewpoint of the output face, which is an
additional feature for the system’s end-user.

In Chapter 5, we pushed the boundaries of facial degradations to the edge and
tackled the problem of extreme face super-resolution. Specifically, we considered
the upsampling of 8 × 8 facial images by a factor of 16×. The task is inherently
ambiguous due to the limited information presented in the input. We compensated
for the lack of information by additionally leveraging the information presented in
the short audio speech sample corresponding to the distorted 8 × 8 image of the
person. We were the first to introduce the task of extreme face super-resolution
using audio. Our solution first maps two different modalities (low-resolution image
and audio sample) to a shared representation, fuses the resulting latent codes in the
representation, and finally maps the fused result to the high-resolution image space.
A byproduct of our system is the ability to obtain multiple reconstructions from a
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single low-resolution image via supplying the method with a fixed low-resolution
image and multiple audio tracks of the distorted identity. This allows additional
flexibility to the final consumers of the model.

In Chapter 6, we addressed the problem of blind video super-resolution. We
focused on reversing the degradation process where a sharp image is sequentially
convolved with an unknown anisotropic gaussian blur kernel, sub-sampled by a fac-
tor of 4×, summed with unknown gaussian noise, and finally scratched. Similar to
Chapters 4 and 5, here, we also first learned a representation; however, we learned
the representation of degradations this time. Next, we showed how the learned
representation guides the restoration process. Furthermore, we demonstrated that
our latent space allows: (i) regressing the original degradation parameters such as
blur kernel and a noise level; (ii) encoding degradation parameters back to the latent
space. More importantly, we showed that our system allows us to adjust the result-
ing output by manipulating degradation parameters in the latent space and pass-
ing the feature corresponding to the revised parameters to the restoration branch.
This enables more flexibility and fine-grained control over reconstructing missing
high-frequency details in the input video. For example, an end-user can adjust the
sharpness and noise present in the final output.

Methods presented throughout Chapters 3 to 6 addressed different image or
video restoration tasks. However, besides restoring degraded inputs, our models
also empower users to have more control over the output and freedom of choice
between multiple plausible results. The method presented in Chapter 3 allows
choosing a frame from the resulting sharp video sequence. In Chapter 4, users can
additionally obtain a novel view of a restored video sequence of the face. Given
a very low-resolution image of a face and corresponding audio, the method pre-
sented in Chapter 5 enables obtaining multiple high-resolution reconstructions.
Finally, one can control the resulting sharpness and noise in the context of the blind
video restoration method introduced in Chapter 6. These editing capabilities were
achieved by leveraging invertible image representations.

We presented different modular image restoration techniques that heavily rely
on learning invertible image representations. We demonstrated that these latent
spaces opened up the doors for controllable image restoration. Therefore, advances
in learning better representations will further boost the performance and abilities
of the presented methods. The research community has seen tremendous progress
in generative adversarial training. However, there remain some challenges while
training these systems. We outline below four possible directions that continue this
work towards this goal.

Pushing the Limits of Invertible Generative Modeling. Some methods pre-
sented in this thesis heavily rely on generative adversarial learning. Therefore, any
future improvements in this area will be substantially beneficial. While generative
adversarial networks can generate human faces with unprecedented resolution and
realism, it remains challenging to train their inverse models. More specifically, the
final system occasionally cannot precisely reconstruct some facial details. These
details are essential for such a sensitive subject as a human face. Therefore, explor-
ing generative models and their inverses with richer representation capabilities is
crucial.

Extra Control via Further Disentanglement of the Latent Space. Recent advances
in generative modeling already achieve a certain degree of disentanglement of dif-
ferent factors of variation in learned representations. This allowed us to rotate faces
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in the latent space in Chapter 4 and incorporate audio in the face super-resolution
method presented in Chapter 5. However, one might envision a system that sup-
ports a richer set of editing capabilities. For example, one might want to manipulate
attributes like shape, brightness, and expressions. Towards this goal, we believe that
achieving a higher degree of disentanglement is one of the promising directions.

3D Aware Representations. Current advances in novel view synthesis literature
are largely based on breakthroughs in Neural Rendering [260]–[265]. Nerfs achieved
an unprecedented quality of reconstructions. Unfortunately, these methods are com-
putationally demanding. Therefore, the research community is currently focusing
on decreasing training and inference time. Recently, Chan et al. [260] proposed
geometry-aware 3D generative adversarial networks based on StyleGAN and Nerfs.
We believe that future progress in this direction and incorporation of these ideas in
proposed solutions can improve the 3D consistency of our restoration pipelines.

Incorporating Other Modalities. In Chapter 5 we demonstrated how leverag-
ing information presented in an audio speech sample can assist in recovering a
high-resolution image of the face. What about other modalities? Radford et al. [266]
successfully connected language and image domains via Contrastive Language-
Image Pre-training (CLIP). Patashnik et al. [267] proposed interactive text-driven
image manipulation by capitalizing on CLIP and StyleGAN. Therefore, it might
be promising to incorporate the text domain in the context of image restoration.
One can reduce the ambiguities during the restoration process of severely degraded
input images by incorporating information presented in the text.
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