
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
5
4
9
/
3
5
1
3

|

d
o
w
n
l
o
a
d
e
d
:

2
6
.
4
.
2
0
2
4

Supporting Multiple Stakeholders in Agile

Development

Inauguraldissertation

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Nitish Patkar

aus Mumbai, Indien.

Leiter der Arbeit:

Prof. Dr. Oscar Nierstrasz

Institut für Informatik

Universität Bern

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 29 March 2022 Der Dekan:
Prof. Dr. Zoltan Balogh

This dissertation can be downloaded from scg.unibe.ch.

Copyright ©2022 by Nitish Patkar
Cover page illustration by Gauri Kanchan

This work is licensed under the terms of the Creative Commons
Attribution—ShareAlike 3.0 Switzerland license. The license is available at
http://creativecommons.org/licenses/by-sa/3.0/ch/

Attribution–ShareAlike
First edition, January 2022

http://scg.unibe.ch
http://creativecommons.org/licenses/by-sa/3.0/ch/

Abstract

Agile software development practices require several stakeholders with
different kinds of expertise to collaborate while specifying requirements,
designing and modeling software, and verifying whether developers have
implemented requirements correctly. We studied 112 requirements engi-
neering (RE) tools from academia and the features of 13 actively main-
tained behavior-driven development (BDD) tools, which support vari-
ous stakeholders in specifying and verifying the application behavior.
Overall, we found that there is a growing tool specialization targeted
towards a specific type of stakeholders. Particularly with BDD tools,
we found no adequate support for non-technical stakeholders— they are
required to use an integrated development environment (IDE)— which
is not adapted to suit their expertise.

We argue that employing separate tools for requirements specifica-
tion, modeling, implementation, and verification is counterproductive for
agile development. Such an approach makes it difficult to manage asso-
ciated artifacts and support rapid implementation and feedback loops.

To avoid dispersion of requirements and other software-related arti-
facts among separate tools, establish traceability between requirements
and the application source code, and streamline a collaborative software
development workflow, we propose to adapt an IDE as an agile develop-
ment platform. With our approach, we provide in-IDE graphical inter-
faces to support non-technical stakeholders in creating and maintaining
requirements concurrently with the implementation. With such graphical
interfaces, we also guide non-technical stakeholders through the object-
oriented design process and support them in verifying the modeled be-
havior. This approach has two advantages: (i) compared with employing
separate tools, creating and maintaining requirements directly within a
development platform eliminates the necessity to recover trace links, and
(ii) various natively created artifacts can be composed into stakeholder-
specific interactive live in-IDE documentation. These advantages have a
direct impact on how various stakeholders collaborate with each other,
and allow for rapid feedback, which is much desired in agile practices.
We exemplify our approach using the Glamorous Toolkit IDE. More-
over, the discussed building blocks can be implemented in any IDE with
a rich-enough graphical engine and reflective capabilities.

iii

Contents

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Problem statement . 2
1.2 Contributions . 3

1.2.1 A survey of state of the art collaborative approaches . . 3
1.2.2 A survey of the 62 software-related artifacts 3
1.2.3 A proposal of a novel approach for agile specification and

verification . 3
1.3 Outline . 3

2 State of the art 7
2.1 RE tools . 7

2.1.1 Results . 8
2.2 Software artifacts . 17

2.2.1 Results . 18
2.3 BDD tools . 20

2.3.1 Results for the exploratory study 22
2.3.2 Results of the BDD tool analysis 24

2.4 Related work . 26
2.4.1 RE tools . 26
2.4.2 Software artifacts . 27
2.4.3 BDD tools . 28

2.5 Summary and conclusion . 29

3 Citizen requirements 31
3.1 Background . 31

3.1.1 The naked objects pattern 31
3.1.2 Low-code development platforms 32
3.1.3 Moldable development 32
3.1.4 First-class entities . 32

iv

Contents

3.2 Building blocks . 33
3.2.1 Examples . 34
3.2.2 GUIs . 35
3.2.3 Views . 35

3.3 Discussion . 38
3.3.1 Impact analysis . 38
3.3.2 Modeling . 39
3.3.3 Documentation . 40

3.4 Conclusion . 40

4 Collaborative specification and management of requirements 41
4.1 Collaborative artifacts building 41

4.1.1 A running example . 41
4.1.2 Workflow . 42

4.2 Example artifacts . 42
4.2.1 User stories . 43
4.2.2 Mindmaps . 43
4.2.3 Scenarios . 43

4.3 Evaluation . 47
4.4 Threats to the validity . 47
4.5 Conclusion . 48

5 Collaborative requirements validation 49
5.1 Collaborative validation . 49

5.1.1 A running example . 49
5.1.2 Workflow . 50

5.2 Conclusion . 56

6 Implications 57
6.1 Live documentation . 57

6.1.1 A Kanban board . 57
6.1.2 An interactive tutorial 59

6.2 Agile modeling . 60
6.2.1 Analyze the textual requirements 60
6.2.2 Describe the responsibilities of domain entities 61

6.3 Conclusion . 62

7 Conclusions 63
7.1 Contributions . 63
7.2 Future work . 64

7.2.1 Empirical studies . 64
7.2.2 Improving the existing infrastructure 65
7.2.3 Evaluation in a practical setting 65

7.3 Summary and conclusion . 66

Bibliography 67

A Appendix 79
A.1 SLR methodology . 79

A.1.1 Planning phase . 79

v

Contents

A.1.2 Execution phase . 82
A.1.3 Reporting phase . 84

A.2 Overview of the identified tools 84
A.3 SLR: threats to the validity . 91
A.4 Artifact analysis . 92

A.4.1 Methodology . 92
A.4.2 List of artifacts . 93

A.5 The survey instrument . 96
A.5.1 Interviewee background 96
A.5.2 Post demo survey . 96

A.6 Model BDD scenarios . 97
A.7 BDD open-source project analysis 98

A.7.1 Study design . 98
A.8 BDD tools analysis . 100

A.8.1 Study design . 100
A.9 Included studies in the SLR . 103

vi

List of Figures

11 DevOps cycle . 1

21 Growing numbers of RE tools . 8
22 Topic awareness in different venues 9
23 RE tool affinity for different tracks 9
24 Tool support for RE activities . 10
25 Prevalence of tool prototypes . 12
26 Evolution of open-source RE tools 14
27 Evolution of project activity . 16
28 Project activity with single contributor 17
29 artifact distribution according to their formats 18
210 The flow of artifacts along SDLC phases 19

31 Citizen requirements potential workflow 34
32 Domain-specific view for non-technical stakeholders 37
33 Custom object representations . 38

41 Custom entity representations . 44
42 A sample in-IDE mindmap . 45
43 A sample in-IDE executable scenario 46

51 Proposed BDD process . 51
52 A GUI to create a simple domain object and save the example as

an operation . 52
53 Creating a custom GUI . 53
54 A GUI to select simple domain objects 54
55 Custom entity representations . 55
56 Scenarios are attached to a user story 55
57 Adding assertions to an example method 56

62 A sample in-IDE live Kanban board 58
61 Interactive in-IDE live tutorial . 59
63 An annotated user story . 60
64 A pool of sanitized entities and their relationships 61
65 Graphically editing a domain concept 61

vii

List of Figures

71 A modified DevOps cycle . 65

A1 SLR process . 80
A2 The data gathering process . 99

viii

List of Tables

21 Count of the target audience . 11
22 Information available on tools’ websites 15
23 Relation between RE tool contributors and repositories 16
24 The meta-level details of the selected repositories 23
25 General statistics across all Gherkin files 24
26 Repository-wise details . 25

A1 Used data sources . 81
A2 The distribution of the included studies by venues and years . . . 82
A3 Collected data from existing studies 83
A4 List of included studies . 86
A5 Dimensions of artifact characterization 92
A6 List of artifacts . 94
A7 Identified repositories according to programming languages 100
A8 BDD tool comparison . 102

ix

Chapter 1

Introduction

It has been about twenty years since the agile manifesto was published in
2001. Although the word “agile” is quite popular and mainstream since then,
development strategies that promoted iterative and incremental development
have existed even longer since the early 1970s. After decades of development,
agile practices are now widely adopted globally [88, 47, 108, 64]. However, as
we later discuss in chapter 2, our analysis of the state of the art of various
software engineering (SE) activities shows that some of them are ill-integrated
and lack support for agile development. There are essentially four software
engineering activities [121]:

1. Specification: wherein the functionality of the software and constraints
on its operation are defined,

2. Design and implementation: wherein software to meet the specification
is built,

3. Validation: wherein software is validated to ensure it does what the cus-
tomer expects, and

4. Evolution: wherein software evolves to meet changing customer needs.

Development strategies, such as DevOps, promote using toolchains for faster
feedback loops to support agility. Figure 11 shows a typical DevOps cycle and
various phases in it. These toolchains often automate coding, building, test-

Re
lea
se

Plan

Figure 11: DevOps cycle

ing, packaging, releasing, configuring, and monitoring of software. However, to

1

1. Introduction

the best of our knowledge, activities that demand direct collaboration among
various stakeholders, such as specification and validation, lack any direct inte-
gration in such toolchains. Yet, it does not mean that there is a lack of tools
to support specification and validation of requirements, or more generally, RE.
Our analysis of the state of the art shows that there are, in fact, numerous tools
that support various phases of RE. In our opinion, building dedicated tools to
be eventually integrated into toolchains is rather counterproductive for agile
development as it requires significant effort to synchronize and trace several
software-related artifacts produced in these tools. Besides, various stakehold-
ers are forced to work in their own tool bubbles, blurring the overall product
vision.

To support agile (i.e., iterative, incremental, collaborative, and rapid) de-
velopment, we believe that one platform should be used to create and maintain
all software-related artifacts— requirements, design, models, and the source
code. The recent advancements in development environments made us revisit
various existing research ideas, such as the naked objects pattern and low-code
development platforms (LCDPs), which present one way or the other to en-
gage various types of stakeholders in the development process. We wonder
whether these ideas can be adapted in integrated development environments
(IDEs) to support agile development. The moldable development approach has
already demonstrated how various in-IDE development-related tools (e.g., de-
bugger and coder) can be adapted to the underlying business domain to make
software explainable [35]. The Glamorous Toolkit IDE (henceforth, called the
Glamorous toolkit) is such a moldable development environment, which sup-
ports, through its numerous components, agile development [3]. The Glam-
orous toolkit presents us with an opportunity to develop a proof of concept
to demonstrate how we turn an IDE into a collaborative agile development
platform, especially for the specification, validation, and management of re-
quirements.

1.1 Problem statement

Hypothesis. We propose to transform an IDE into a collaborative software
engineering platform for multiple stakeholders by providing graphical user in-
terfaces (GUIs) that enable the creation and manipulation of business ob-
jects.1 Such a graphically enhanced IDE can support non-technical stake-
holders in performing software engineering tasks, particularly, requirements
specification, modeling, and management, concurrently with the software de-
velopers writing source code. Consequently, we answer the following research
question:

How can we adapt an IDE for technical and non-technical stakeholders to
create, validate, and overall manage requirements concurrently with the im-
plementation?

1Business objects represent a thing active in the business domain, including at least its
business name and definition, attributes, behavior, relationships, and constraints. Through
business objects, managers and users can understand each other by using familiar concepts
and creating a common model for interactions [52].

2

1.2. Contributions

1.2 Contributions

There are three main contributions of this doctoral thesis:

1.2.1 A survey of state of the art collaborative approaches

There exist numerous tools to support any one of the many RE activities. Like-
wise, numerous tools automate the BDD process, supporting domain experts
in describing and verifying application behavior. We surveyed the state of the
art tool landscape for RE and BDD. We discuss its limitations for being ef-
fective in an agile environment. We also present the results of an analysis of
open-source projects and discuss the peculiarities of the current adoption of
BDD in practice.

1.2.2 A survey of the 62 software-related artifacts

Numerous artifacts exists that facilitate work activities relating to a software
project. These include, specifying requirements, designing, or modeling. We
provide an overview of the 62 software-related artifacts identified from the
existing literature. We found that a significant number of artifacts (i.e., 54 out
of 62) are introduced in the early SDLC phases but, are in fact, consumed in
the later SDLC phases, presumably by technical stakeholders. Furthermore,
most artifacts (39 out of 62) have a mixed format, meaning they need IDE
capabilities to render both textual and graphical characteristics.

1.2.3 A proposal of a novel approach for agile specification and
verification

We describe an approach, which we call citizen requirements, to streamline
a collaborative development workflow. As a part of the citizen requirements
approach: (i) we discuss how various software-related artifacts can be created
natively in an IDE to specify and maintain requirements, and (ii) we discuss
BDD as a representative behavior specification and verification strategy, and
propose a novel in-IDE collaborative workflow support for it. We discuss the
building blocks that can be implemented in any IDE with rich enough support
for visualization and reflection. We exemplify our approach in the Glamorous
toolkit. We show how distinct stakeholders can be supported in specifying re-
quirements at varying levels of detail and verifying those with representations
specific to a particular application domain, natively in the Glamorous toolkit.
We evaluate our approach by conducting a survey to gather feedback on the
approach’s perceived usefulness in practice. Finally, we discuss two main im-
plications of our research proposal. There are two main implications of our
approach. First, it is a step towards maintaining live project documentation
directly in an IDE. Second, the same approach can be adapted to streamline an
agile modeling workflow. Overall, our approach could enable the integration of
specification and design phases into a DevOps cycle.

1.3 Outline

This doctoral thesis is structured as follows:

3

1. Introduction

• In chapter 2,

– we present the results of the analysis of state of the art RE and
BDD tools. We present the results of a systematic literature review
(SLR) of the current RE tools.

– We present the results of an analysis of open-source projects hosted
on GitHub to characterize the BDD usage in practice. We consid-
ered BDD as the current support for BDD is exclusively IDE-based,
which is the main focus of this doctoral thesis.

- The results of this study have been accepted for publication at
the 29th IEEE International Conference on Software Analysis, Evo-
lution and Re-engineering (SANER) [32].

– We also present the results of the feature analysis of 13 popular
BDD tools.

- The results of this study have been published in the Proceedings
of the 25th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (MODELS): Companion Pro-
ceedings [97].

Overall, we summarize the main limitations of the current RE and BDD
tools in support of agility.

• In chapter 3,

– we briefly discuss three existing research ideas and a concept, which
we adapt in building our proof of concept. We describe the under-
lying idea of citizen requirements and three building blocks, which
can be implemented in any IDE. Finally, we briefly discuss the im-
plications of our proposal.

- The results of this study have been published in the Proceedings of
the 19th Belgium-Netherlands software evolution workshop (Benevol
2020) [96].

• In chapter 4,

– we describe a collaborative workflow for creating and maintaining
software-related artifacts in an IDE. We exemplify our idea by pre-
senting three such artifacts. We also present the results of a pilot
survey we conducted to evaluate the perceived usefulness of such a
workflow.

- The results of this study have been accepted for publication at
the 29th IEEE International Conference on Software Analysis, Evo-
lution and Re-engineering (SANER) [98].

• In chapter 5,

– we describe a collaborative workflow for BDD, wherein non-technical
stakeholders compose behavior scenarios using GUIs and verify the
behavior using a domain-specific representation of the involved busi-
ness objects.

- The results of this study have been published in the Proceedings
of the 25th ACM/IEEE International Conference on Model Driven

4

1.3. Outline

Engineering Languages and Systems (MODELS): Companion Pro-
ceedings [97].

• In chapter 6,

– we discuss two of the main implications of the citizen requirements
approach: on project documentation and domain modeling.

- The live documentation part have been accepted for publication
at the 29th IEEE International Conference on Software Analysis,
Evolution and Re-engineering (SANER) [98].

• Finally, chapter 7 concludes this doctoral thesis.

• In Appendix A, we provide further supporting details, such as the method-
ologies we followed for the several analysis projects and the corresponding
threats to the validity, for those who are interested in exploring those de-
tails.

5

Chapter 2

State of the art

Before we present our vision of an agile development platform, it is important to
explore the existing methods of specifying and verifying requirements and point
out their limitations. In this chapter, we present the results of our analysis of
the state of art:

• RE tools: in section 2.1, we present the details of the 112 RE tools
proposed by researchers in recent years. We discuss their characteristics
and point out that there is a growing tool specialization for various RE
activities.

• Software artifacts: in section 2.2, we present the details of 62 software-
related artifacts used to accomplish one of the several software engineer-
ing tasks. We discuss why it makes sense to create and maintain them in
a single platform.

• BDD tools: in section 2.3, we present the details of 13 popular and well-
maintained BDD tools and show that their features are inadequate to
engage non-technical stakeholders in the BDD process.

2.1 RE tools

RE is a well-established discipline within software engineering. For more than
40 years, the RE community has been active in identifying and reacting to
the challenges pertaining to, for example, communication or specification of
requirements [25, 93, 33, 43]. In recent years, RE has been challenged by
several developments within SE, such as the adoption of agile methodologies
for software development. We did a systematic literature review (SLR) to
provide an overview of the “tool-landscape” in RE research and report on how
they support agile development. In this SLR, we examine literature published
in recent years, i.e., 2015-2019, in well-known SE venues and journals.

We closely followed Keele’s comprehensive guidelines [74], which make it
less likely that the results of the SLR will be biased. This method offers a
means to evaluate and interpret research relevant to a topic of interest by
evidence that is robust and transferable. In a nutshell,

• We used as our data sources the proceedings of the top nine SE confer-
ences and all issues from of top SE journals for the years 2015-2019.

7

2. State of the art

• After applying inclusion and exclusion criteria, we included 112 (55%)
relevant publications for detailed analysis.

We have included the details of the methodology we followed in section A.1.
Additionally, in section A.2, we present an overview of the identified RE tools,
while section A.3 summarizes the threats to the validity.

2.1.1 Results

Publication trends

We first summarize the distribution characteristics of the publications, specif-
ically, according to the year of publication, citations obtained in each track,
venue, and corresponding tracks. Figure 21 shows the number of publications
presented from different venues per year. The x-axis represents the venues and
the y-axis denotes the number of found publications split by the different years.
It is evident that the overall number of RE tools is relatively increasing during
2015-2019, except for 2019. It is evident from Figure 22 that, except for the
dedicated RE venue, i.e., the RE conference and the RE Journal, other top
venues have rather modest representation of RE-related publications.

RE tool correspondence

Figure 23 shows the RE tool correspondence in various categories, such as
whether they have been evaluated or are open-source, for each track. Note that
the same tool might appear multiple times for different characteristics, i.e., a
prototype tool can be open source as well. The x-axis denotes the number of
publications, whereas the y-axis correlates the affinity of the publications to
the characteristics across four publication types, i.e., three conference tracks
and journal publications. The grey area is used to illustrate the total number

Figure 21: Growing numbers of RE tools

8

2.1. RE tools

Figure 22: Topic awareness in different venues

Figure 23: RE tool affinity for different tracks

of included publications in each publication type. The grey area indicates
the whole to part relationship. As expected, a significant number of tools (a
total of 37) are published in a tool demo track. Moreover, the percentage of
evaluated studies is significantly higher in research tracks and journals, i.e.,

9

2. State of the art

83% of studies are evaluated in research and 95% in journals. This indicates
a more thorough review process for journals. We can further see that journal
publications (38%) are the most prevalent in our data set, followed by tool
demo (33%) and research papers (26%).

Supported RE activities

The distribution of the tools according to the supported RE activity can be
seen in Figure 24. The x-axis reports the different RE activities, whereas the y-
axis shows the corresponding number of publications. The studies in which the
supported RE activity is clearly mentioned by the authors are marked explicit,
whereas for the remaining studies we had to read the paper to understand
the focus, and consequently these are marked as implicit. We validated the
assignment to mitigate any selection bias. A typical example is study [S42],
which analyses user reviews received on application hosting platforms, such as
Google Play, to specify features that we exclusively assigned to “specification.”
Clearly, the activities “specification” and “analysis” are the most prevalent,

17

26

22

12 12

5

10

31

4

9

0

5

10

15

20

25

30

35

elicitation analysis specification validation management
explicit implicit

Figure 24: Tool support for RE activities

whereas “elicitation,” “management,” and “validation” are supported by fewer
than 20% of all tools. We only see negligible differences for management in
terms of implicit and explicit tools, simply because we classified prioritization
and traceability tools as management tools. Similarly, we see negligible differ-
ences for specification in terms of implicit and explicit tools, simply because we
classified modeling tools as specification tools. 18 authors claimed that their
tools can support multiple activities. Still, a significant number of tools (i.e.,
89 of 112) only support a single RE activity, regardless of whether it an implicit
or explicit assignment.

10

2.1. RE tools

Overall, all RE activities are moderately supported by the proposed tools,
specification being supported the most, whereas management being supported
the least (kindly refer to Table A4).

Ambreen et al. complained that RE solutions mainly address the middle and
late stages of the software development life cycle. Additionally, they pointed
out that most research projects focus on a single RE problem [25, 33]. They
found that the existing methods are not adequate for explicitly capturing and
representing “business and organizational knowledge.” Consequently, they ex-
pressed a need to integrate RE tools into a coherent requirements process.
Similarly, the empirical work in the area of requirements validation and verifi-
cation is very limited and shows a decreasing trend [13]. Despite a decade of
research activities, previous observations are still valid.

Unlike the view expressed by Alves et al., we think that supporting all RE
activities does not necessarily require cooperation from several researchers to
work jointly, but, instead, needs a different approach [11]. We believe that
proposing distinct tools for distinct tasks might create an unnecessary gap
between stakeholders, and lead to traceability issues, which is evident from the
challenges reported in a review of 600 research articles on the software product
lines (SPL) [34].

Target audience

Table 21 summarizes how many times target audience was reported by the
authors. As we can see, most of the tools are crafted for requirements engineers,
developers, and other non-technical stakeholders, while 33 tools (29%) targeted
multiple roles.

Table 21: Count of the target audience

Role Count
Requirements engineer 33

Developer 16
Non-technical stakeholder 10

end users 3
Business analyst 2

Requirements analyst 2
Manager 2

Product manager 2
Software architect 2

Domain expert 2
Designer 1

Minute taker 1
User story writer 1

Tester 1
Domain architect 1

Data scientist 1
Test manager 1
Test engineer 1

Software engineer 1
Project manager 1

11

2. State of the art

RE tools are not restricted to support requirements engineers alone; they
also aid other stakeholders, such as developers (kindly refer to Table 21).

Software projects are a joint endeavor. Several stakeholders, including techni-
cal and non-technical ones, have distinct responsibilities to make the project
a success. Although requirements engineers seem to be the central audience
in most cases, developers and other non-technical stakeholders were also men-
tioned several times. If we compare the target audience with the supported RE
activity, we see that several tools now encourage developers and non-technical
stakeholders to participate in requirements specification and management. It
indicates a decisive shift towards involving various stakeholders in RE activi-
ties.

Prototypes

The comparison between prototypes, i.e., the tools claimed by authors to be
prototypes, and other tools can be seen in Figure 25. The x-axis denotes the
number of tools, whereas the y-axis compares prototypes against other tools
in various categories, such as whether they have been evaluated or are open-
source. Note that the same tool might appear with multiple characteristics,
i.e., an open source tool can be evaluated as well. The grey area is used to
illustrate the total number of included publications in each category. The grey
area helps us to visualize the whole to part relationship. We found that a signif-

Figure 25: Prevalence of tool prototypes

icant proportion of the proposed tools, i.e., about 33%, were considered to be
prototypes by the respective authors. A web page is maintained for 16 of these
prototype tools. Only four of these webpages contain URLs to the respective
source code repository, making the rest hard to discover.

12

2.1. RE tools

A large number of RE tools (33%) are research prototypes that are not readily
available to a larger community (kindly refer to Table A4 and Figure 25).

Unlike industry projects, research projects focus on investigating new ideas or
facing promising research directions. Typical outcomes of research projects are
concepts, feasibility studies of novel approaches, and prototype applications
for demonstration purposes. Such research prototypes undergo several matu-
rity levels, i.e., vision, concept, research prototype, quality-assured prototype,
industry product, until they are adapted to an industrial context [144].

We speculate that the word “prototype” was perhaps used to indicate that
the tool in its current state only supports a limited number of features and
specific functionality. They were presumably proposed by the the author as a
throwaway proof of concept or to be used by a community close to the author to
obtain valuable feedback, and to provoke discussions on new ideas. Therefore,
a large number of these research prototypes do not have an online presence.

Collaborative tools

Only ten tools were claimed to be collaborative. These tools were mainly
intended to be used by a mixed audience, for example requirements engineers,
end users, or developers. We further found that three of these ten tools are
web applications, one is a desktop app, and one is a mobile application. The
diversity of explicitly designated types of tools led us to the question “how do
authors characterize support for collaboration in RE tools?” The corresponding
details were largely missing from all studies. We contacted authors to learn
what they understand by “collaboration.” In essence, we learned that the term
has not been used consistently. For the majority of tools, the authors used
the term to emphasize that the tool serves multiple roles, such as developers
and requirements engineers, and not necessarily that it allows simultaneous
operations on the same model such as in Google Docs, a popular tool suite for
collaborative editing of documents.1

Availability

We consider two aspects for the availability: (i) a tool should be easy to discover
on the internet to reach a large audience, and (ii) its source code should be
accessible for modification. We searched for URLs outside of the studies, i.e.,
within download and usage instructions, or installation manuals. We contacted
authors when a study failed to provide such URLs. In several cases, authors
reported to us that their tools have become obsolete or were not maintained
anymore. For instance, T80, which is a web browser extension, was reported
to be obsolete. Similarly, T41, T44, and T68 are either not maintained or
not published by authors for various reasons: the underlying technology being
obsolete or due to non-disclosure agreements with their industry partners.

Websites. We were able to collect website URLs of 45 tools out of 112 (40%).
The summary of information available on these 45 websites can be found in Ta-
ble 22. The first column indicates the tool identifier. The column “Tool intro-
duction” indicates whether the website introduces the tool, the context of use,

1Google Docs, accessed May 18, 2020, https://www.google.com/docs/about/

13

https://www.google.com/docs/about/

2. State of the art

and any other related information. The column “Usage instructions/ feature
introduction” indicates whether the website provides information regarding the
features and usage of the tool. The column “Link to the source code repository”
indicates whether the website contains a link to the source code repository such
as GitHub. Finally, the column “Download link” indicates whether the website
contains a link to download the tool. All “true” values are indicated with a
checkmark (X). A further 20 tools (18%) did not have any web page, and we
failed to collect information for other 47 (42%) tools. We also found that T14,
T18, T27, T31, T38, T40, T42, T51, T62, T68, T90, and T97 are web applica-
tions, but not hosted online by the authors. Instead, they need to be installed
and run locally by the user. In conclusion, we found that a large number of
RE tools lack any webpage, which can adversely affect their discoverability. It
is evident from Table 22 that even though one-third of tools have dedicated
webpages, still vital information, such as links to the source code repository, is
often missing.

Openness. Figure 26 shows the evolution of RE tool openness over the years
2015-2019. It is evident that the number of open-source tools is steadily in-

Figure 26: Evolution of open-source RE tools

creasing. However, we found some special cases: T80, although open-source,
does not have a source code repository, and T101 has only a private repository.
For T92 we could not find any repository details at all. In summary, the au-
thors of 50 tools (45%) reported their tool as being open-source, and 17 tools
(15%) were reported as closed-source. It is noteworthy that the adaptation of
open software development has increased in recent years.

Last activity on GitHub. In Figure 27 we show the evolution of Git activity
over the years 2015-2019 for 42 Git repositories. The x-axis enumerates the
publication years of the studies, whereas the y-axis shows the number source
code repositories with last commit in a specific year. Out of 47 tools for which
we have access to the source code, only 40 have Git repositories. Let us look

14

2.1. RE tools

Table 22: Information available on tools’ websites

Tool Tool introduction
Usage instructions/
feature introduction

Link to the source
code repository

Download link

T2 X X X X
T6 X X - -
T7 X X - -

T11 X - - -
T12 X X X -
T13 X X - -
T18 X X X X
T19 X X X -
T22 X X - X
T23 - - - -
T24 X X - -
T25 X X - -
T26 X X - X
T30 X X X X
T33 X X - X
T34 X X X -
T38 X X - X
T39 X X X -
T43 X X - X
T44 X - - -
T46 X X - X
T53 - - - -
T54 X X X X
T55 X X X X
T58 X X - -
T60 X X X X
T62 X X - X
T65 X X X X
T66 - - X -
T67 X - - X
T78 X - - X
T79 X X - X
T85 X - - X
T87 - - - -
T93 X X X X
T95 X X - X
T96 X - - -
T97 X X - -
T98 - - - -
T99 - - - -

T100 X X - X
T101 - - - -
T103 - - - X
T105 - - - -
T112 X X - -

at the third bar for the year 2017. Of the seven projects published in 2017
and had a source code repository accessible, only three had the last commit on
their repository in 2019. The data was collected on February 4, 2021. We see
that a very small number of tools are actively maintained over the years.

Number of contributors. Table 23 summarizes the number of code repositories
against the number of contributors they have. As we can see, most of the
tools are developed by a single developer. We further analyzed how well the 24
tools that are built by a single contributor are maintained. The corresponding

15

2. State of the art

1

3

1

2

1

1

2

1

1 1
2

1

3

1 1

3

5

7

1
2

2

0

2

4

6

8

10

12

14

2015 2016 2017 2018 2019

ac

tiv
e

re
po

si
to

rie
s

2014 2015 2016 2017 2018 2019 2020

Figure 27: Evolution of project activity

results can be seen in Figure 28. The x-axis enumerates the publication years
of the studies, whereas the y-axis shows the number of source code repositories
with their last commit in a specific year. Let us look at the first bar for the year
2015. Of the three projects published in 2015 with a source code repository
available, only one had the last commit in 2018.

Table 23: Relation between RE tool contributors and repositories

Contributors # Repositories
1 24
2 4
3 4
4 3
6 1
9 1
10 1
12 2

16

2.2. Software artifacts

1

2

1

2

2

1

1

3

1

3

5

1

1

0

1

2

3

4

5

6

7

8

9

10

2015 2016 2017 2018 2019

ac

tiv
e

re
po

si
to

rie
s

2014 2015 2016 2017 2018 2019 2020

Figure 28: Project activity with single contributor

Our results indicate that most RE tools published by researchers are main-
tained only for a short duration. The reason, we speculate, is that they are
built as throw-away prototypes (e.g., T4, T18).

2.2 Software artifacts

The ability of software development environments or tools to automatically
maintain the consistency of multiple and changing software-related artifacts is
called round-trip engineering [115]. The existing research in round-trip engi-
neering is limited to synchronizing modeling-related artifacts, e.g., UML dia-
grams, with the source code [89, 141, 31, 27, 67]. However, numerous other
artifacts are produced in other phases, e.g., requirements gathering, design, and
testing, of the software development lifecycle (SDLC) [60, 12, 40, 30]. These
artifacts support specific activities, such as project planning or prototyping,
and are created and managed in separate tools. For example, requirements-
related artifacts, e.g., user stories, are created and maintained in a project
management platform like Jira [19, 69]. Modeling artifacts, such as UML di-
agrams, are created in tools like Lucidchart, whereas testing artifacts, such as
behavior scenarios [125], are managed in a separate tool like Cucumber [4, 39].

17

2. State of the art

When requirements change, multiple associated artifacts, the implementation,
and eventually project documentation must be updated to ensure that all
stakeholders access the current state of the project. However, in practice,
an abundance of employed tools leads to inconsistencies among artifacts and
the source code [8]. Project and requirements management tools, e.g., IBM
Rational DOORS and Enterprise Architect, manage a variety of artifacts, yet
their support for round-trip engineering is limited to UML diagrams only [5, 1].
With the growing number of tools employed for artifact creation, management,
and source code implementation, supporting round-trip engineering becomes
difficult, eventually affecting project documentation [61, 60, 124].

Existing studies have discussed artifacts, especially those used in agile prac-
tices, both by analyzing the literature and surveying practitioners, thus giving
us a comprehensive overview of the available artifacts [12, 124, 114, 113, 16].
We compiled a list of 62 artifacts mentioned in the existing literature and ana-
lyzed their flow within the software development lifecycle. The list of artifacts
and methodology we followed to analyze those artifacts is sketched in subsec-
tion A.4.1 and subsection A.4.1, respectively. Next, we summarize the main
results of our analysis.

2.2.1 Results

Figure 29 shows distribution of artifacts according to their formats.

21

2

39

0 5 10 15 20 25 30 35 40

Textual

Graphical

Mixed

Figure 29: artifact distribution according to their formats

It is evident from Figure 29 that most artifacts (39 out of 62) have a mixed
format.

This finding suggests that if we wish to use an IDE to create and manage
requirements using several artifacts, the IDE needs to provide capabilities to
render both textual and graphical characteristics. Specifically, it should have
a graphical engine to create custom visualizations, and GUI components to
create, render, and manipulate artifacts.

Figure 210 shows the flow of artifacts from the phases of origin to the target
phases of usage. The left (“O ”: the phase of origin) and the right side (“T ”:
the target phase) indicate the SDLC phases. The height of each node (bar)
corresponds to the number of artifacts involved in a particular phase. Each
artifact is connected with at least one node from the left and right ends. The

18

2.2. Software artifacts

Figure 210: The flow of artifacts along SDLC phases

O_Requirements
61

T_Requirements
40

T_Design
45

T_Development
59

T_Maintenance
14

O_Design
80

O_Development
15

O_Maintenance
2

connections are color-coded according to the distinct phases. The numbers
next to the phase nodes signify the total number of artifacts involved in it.

Figure 210 shows that a significant number of artifacts (i.e., 54 out of 62)
are introduced in the early SDLC phases but, are in fact, consumed in the
later SDLC phases, presumably by technical stakeholders.

This finding suggests that artifacts have a longer lifespan. For example, a
specific user story might be created early during development to record re-
quirements and is used by developers later during implementation. Moreover,
for several other reasons, such as archival purposes or retrospective analysis, it
can be kept even after the implementation is finished. In successive develop-
ment iterations, artifacts might undergo alterations and be used by different
stakeholders for distinct purposes. If we wish to use an IDE to support agile

19

2. State of the art

development, we need to provide suitable GUIs for technical and non-technical
stakeholders to create and manage artifacts. Additionally, the IDE must sup-
port the creation of suitable visual representations of artifacts for different
stakeholders to accomplish their tasks.

2.3 BDD tools

BDD is an approach that enables domain experts to specify “live,” executable,
and testable requirements. Within BDD, domain experts specify application
behavior through scenarios that everybody in a team can understand [146].
They often leverage a constrained natural language, i.e., Gherkin, to write
behavior scenarios. For example, in Listing 1, we show a scenario written
in Gherkin that asserts the sum of two numbers for an arithmetic calculator
application to have a particular value.

20

2.3. BDD tools

1 Feature: Basic arithmetic operations
2 As a user
3 I want to use a calculator to add numbers
4 So that I do not need to add them myself
5 Scenario: Add two numbers 2 and 3
6 Given I have a Calculator
7 When I add 2 and 3
8 Then the result should be 5

Listing 1: A sample feature description with a scenario

A typical Gherkin template splits a scenario into three core steps: Given (i.e.,
a context assumed for this scenario execution), When (i.e., an action or event
that occurs in the given context), and Then (the expected outcome of the sys-
tem for the provided action and context). A step can have additional context,
expressed in the template by the keyword And. Apart from these four key-
words, Gherkin contains several other keywords, such as Background or Rule.
The BDD frameworks automatically tie the steps in scenarios to acceptance
test cases (also called step definitions, glue code, or fixtures) to verify the spec-
ified functionality. Listing 2 shows the corresponding glue code for the scenario
in Listing 1. The developers need to fill in the body of glue code methods.

1 public class CalculatorRunSteps {
2 private int total;
3 private Calculator calculator;
4 @Before
5 private void init() {
6 total = 999;
7 }
8 @Given("I have a calculator")
9 public void initializeCalculator() throws Throwable {

10 calculator = new Calculator();
11 }
12 @When("I add {int} and {int}")
13 public void testAdd(int num1, int num2) throws Throwable {
14 total = calculator.add(num1, num2);
15 }
16 @Then("the result should be {int}")
17 public void validateResult(int result) throws Throwable {
18 Assert.assertThat(total, Matchers.equalTo(result));
19 }
20 }

Listing 2: Glue code for the scenario from Listing 1

Next, developers implement the logic for the calculator application:

1 public class Calculator {
2 public int add(int a, int b) {
3 return a + b;
4 }
5 }

Listing 3: Implementation for the functionality from Listing 1

Finally, when domain experts execute the acceptance tests, the BDD frame-
works present them with the test run status, i.e., success or failure.

In a recent survey, software engineers and business analysts highlighted sev-
eral shortcomings of current BDD practices [21]. They complained that they
must write numerous scenarios with minor variations in input parameter val-
ues. Additionally, they must also specify the test assertions. They mentioned
that when requirements change, a lot of manual effort is needed to maintain
the textual scenarios and to manually propagate the changes to acceptance
tests, leading them to perceive BDD as only an additional task to writing unit

21

2. State of the art

tests [21, 149]. To reduce the redundancy in Gherkin files and improve their
readability, keywords, such as Scenario Outline, and features, such as data ta-
bles, were introduced in the year 2009 [2]. In Gherkin, a Scenario outline is
parameterized using Examples data tables. In Listing 4, we see how a data
table can be used to test several combinations of input numbers against the
corresponding result.

1 Scenario Outline: Sample arithmetic additions
2 Given I have a Calculator
3 When I add "<num1>" and "<num2>"
4 Then the result should be "<result>"
5

6 Examples: Numbers
7 | num1 | num2 | result |
8 | 1 | 3 | 4 |
9 | 5 | 8 | 13 |

10 | 7 | 2 | 9 |

Listing 4: A sample data table

Similarly, data tables can be passed into a step as an input data structure to
improve the readability. Nevertheless, practitioners still have difficulty main-
taining Gherkin files a decade after these features were introduced.

To explore the specifics of the current BDD practice, we conducted two
studies:

• An exploratory study : we analyzed the contents of 1,572 Gherkin files
extracted from 23 open-source projects. In section A.7, we describe the
methodology we followed.

• A tool analysis: we analyzed 13 BDD tools that are open-source and ac-
tively maintained on GitHub to provide documented proof of our claims
of the currently adopted BDD workflow shortcomings. In particular, we
studied how the IDE integration enables behavior specification and veri-
fication for non-technical stakeholders. We analysed Cucumber [39], JBe-
have [136], Concordion [134], SpecFlow [138], Spock [137], RSpec [132],
MSpec [87], LightBDD [80], ScalaTest [140], Specs2 [122], JGiven [131],
phpspec [105], and Gauge [135]. In section A.8, we describe the method-
ology we followed.

Next, we summarize the results of both studies.

2.3.1 Results for the exploratory study

Meta statistics

Table 24 summarizes the meta information for the selected repositories. We
used the following abbreviations: m1 : number of Gherkin files, m2 : date of
the last commit on the repository (a date), m3 : date of the last commit on
the Gherkin file (a date), m4 : number of contributors to the repository, m5 :
number of contributors to the Gherkin files. Columns m1-5 present results
for the corresponding metrics. It is evident from Table 24 that 11 out of 23
(about 48%) repositories have fewer than 20 Gherkin files, whereas only three
repositories have more than 100. Notably, one of those repositories is the Cu-
cumber project itself, making the high number not so surprising. The number
of contributors to the identified repositories is also quite diverse, ranging from

22

2.3. BDD tools

3 to 736. However, the number of contributors to the Gherkin files is quite
low, ranging from 6 to 15, meaning only a small fraction of all contributors
are involved in modifying them. Most of the repositories (about 83%) have
rather recent commits (in the year 2021), meaning these are actively main-
tained. However, only about 39% of the total repositories had last commits on
Gherkin files in 2021. Importantly, a similar number of repositories have the
last commit on Gherkin files before 2019, which makes us conclude:

Although repositories are maintained actively, teams might stop using BDD
in their project for some reason.

In Table 25, we report values for various parameters derived for metrics m6-
8. We used the following abbreviations: a: a total number of Gherkin files
containing tables, b: an average number of LoC in all Gherkin files, c: an
average number of LoC in all Gherkin files with tables, d : an average number of
LoC in scenarios in all Gherkin files, e: an average number of LoC in scenarios
in all Gherkin files with tables f : an average number of tables per Gherkin file,
g : an average number of scenarios per Gherkin file, h: an average number of
scenarios per Gherkin file with tables. It is evident from Table 25 that each
Gherkin file, on average, contains about 3.47 scenarios. The average use of the
Background keyword (0.25 times per Gherkin file) seems reasonable, meaning
a negligible number of steps were common among a very few scenarios present
in any Gherkin file. The average use of the Feature keyword (0.94 times per
Gherkin file) also seems reasonable as each Gherkin file will typically test a
single feature. A total of 590 Gherkin files (i.e., about 37.5%) contain tables.
On average, each file contained 11 tables. Notably, each table contains about
2.6 rows and 1.7 columns, on average, which leads us to conclude:

Table 24: The meta-level details of the selected repositories

Repo name Index m1 m2 m3 m4 m5
eugenp/tutorials R1 15 08 Jun 2021 30 May 2021 736 06

neo4j/neo4j R2 26 07 Jun 2021 04 Mar 2021 207 15
geoserver/geoserver R3 04 08 Jun 2021 19 Sep 2017 266 01

apache/servicecomb-pack R4 30 03 Apr 2021 16 Mar 2021 56 04
microservices-patterns/ftgo-application R5 02 02 Jun 2021 10 Jul 2018 3 01

apache/tinkerpop R6 59 07 Jun 2021 18 Jun 2021 142 06
iotaledger/iri R7 05 18 Aug 2020 07 May 2020 58 04

SmartBear/soapui R8 31 09 Dec 2020 07 Jul 2014 63 08
w3c/epubcheck R9 36 15 Mar 2021 26 Feb 2021 11 03

aws/aws-sdk-java-v2 R10 53 07 Jun 2021 14 Aug 2018 70 01
bugsnag/bugsnag-android R11 48 07 Jun 2021 15 Jun 2021 128 06

blox/blox R12 10 12 Mar 2018 12 Feb 2018 22 03
ddd-by-examples/factory R13 02 24 Apr 2021 22 Dec 2017 06 01

FluentLenium/FluentLenium R14 11 08 Jun 2021 14 Jul 2019 62 02
AppiumTestDistribution/AppiumTestDistribution R15 03 08 May 2021 19 Dec 2020 35 04

mzheravin/exchange-core R16 02 25 Apr 2021 07 Jun 2020 05 02
iriusrisk/bdd-security R17 11 08 Aug 2018 24 May 2018 10 01

jbangdev/jbang R18 18 07 Jun 2021 24 May 2021 56 04
SoftInstigate/restheart R19 31 07 Jun 2021 11 Jun 2021 27 04

intuit/karate R20 394 24 May 2021 16 Mar 2021 54 09
cucumber/common R21 439 07 Jun 2021 - 111 10

cucumber/cucumber-jvm R22 92 06 Jun 2021 - 225 06
JetBrains/intellij-plugins R23 103 07 Jun 2021 09 Apr 2021 208 06

23

2. State of the art

Table 25: General statistics across all Gherkin files

a b c d e f g h
590 38.53 73.41 35.53 71.11 11.41 3.47 5.85

Data tables are not widely used yet.

Table 26 further summarizes results for individual repositories. We used
the following abbreviations: a: an average number of LoC per Gherkin file, b:
an average number of LoC in scenarios per Gherkin file, c: an average number
of LoC per Gherkin file with tables, d : an average number of LoC in scenarios
per Gherkin file with tables, e: an average number of tables per Gherkin file,
f : an average number of scenarios per Gherkin file, g : an average count of the
Scenario outline keyword per Gherkin file, h: an average count of scenarios per
Gherkin file with tables, i : an average count of the Scenario outline keyword
per Gherkin file with tables, j : an average count of the Given keyword per
Gherkin file, k : an average count of the When keyword per Gherkin file, l : an
average count of the Then keyword per Gherkin file, m: an average count of the
And keyword per Gherkin file, n: an average count of the Feature keyword per
Gherkin file, o: an average count of the @ (i.e., tags) keyword per Gherkin file,
p: an average count of the Background keyword per Gherkin file, q : an average
count of the Examples keyword per Gherkin file. It is evident from Table 26
that the average number of tables per specification is higher than expected
because only four repositories, i.e., R16, R21, R13, and R2, contain significantly
more number of tables per Gherkin file than other repositories, on average.
The average number of LoC in Gherkin files varies greatly among selected
repositories: from 8.51 to 217. The average number of scenarios per Gherkin
file also varies significantly across those containing tables. For example, if we
compare repository R9 that has on average 21.2 scenarios per Gherkin file
without tables, in fact, has 32 scenarios per Gherkin file containing tables.
Finally, although the average number of scenarios per Gherkin file is low, i.e.,
3.47 times (for the top three repositories, i.e., R9, R19, R8, with a maximum
number of scenarios per Gherkin file, which is 21.2, 6.03, and 4.39 times), we
expected more use of the @ keyword (i.e., 0, 1.32, and 1 times), meaning that
users did not particularly attempt to optimize the test run time by marking
a subset of tests to be run independently. Not many practitioners have used
keywords, such as Examples (used on average 0.25 times per Gherkin file),
meaning there is not much test automation used. The use of the Scenario
outline keyword is negligible among all the repositories, i.e., less than 0, on
average.

2.3.2 Results of the BDD tool analysis

We analyzed features of 13 BDD tools that support the end users in specifying
and verifying application behavior. Next, we summarize our findings of our
analysis.

24

2.3. BDD tools
T

a
b

le
2
6
:

R
ep

o
si

to
ry

-w
is

e
d

et
a
il

s

In
d
e
x

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
R
1

1
3
.9
3

1
1
.6

1
9
.6

1
5
.8

2
2
.3
3

0
.0
7

2
.6

0
.2

1
.8

2
.4

2
.4

0
.8

1
0
.2

0
.1
3

0
.0
7

R
2

2
1
7
.1
5

2
1
5
.1
1

2
1
7
.1
5

2
1
5
.1
1

1
3
.0
4

1
2

0
.2
2

1
2

0
.2
2

7
.6
7

1
2
.8
9

1
2
.3

2
2
.5
9

1
0
.3
3

0
.3
3

0
.2
2

R
3

6
2

5
8
.7
5

-
-

0
4
.2
5

0
-

-
4
.2
5

4
.2
5

4
.2
5

1
6
.2
5

1
0
.6
5

0
0

R
4

2
5
.9
7

2
4
.9
7

2
5
.9
7

2
4
.9
7

3
.6
3

1
.1
7

0
1
.1
7

0
1
.6
3

1
.1
7

2
.5
7

4
.4
7

1
0

0
0

R
5

1
5

1
2

-
-

0
1
.5

0
-

-
4
.5

1
.5

2
.5

2
1

0
0

0
R
6

1
5
7
.3
9

1
5
6
.3
9

1
6
0
.5

1
5
9
.5

1
0
.8
1

1
1
.9
5

0
1
2
.4
3

0
1
1
.9
5

1
1
.6
4

1
1
.9
3

1
9
.4
7

1
0

0
0

R
7

7
5
.4

7
1
.6

1
1
8
.5

1
1
6
.5

5
.5

4
.8

0
7
.5

0
4
.8

3
.4

6
.6

6
.4

1
0

0
0

R
8

3
1
.8
7

2
9
.4
5

2
9

2
6
.6
7

2
4
.3
9

0
.4
5

1
1
.6
7

3
.1

2
.9
7

3
.1
6

1
2
.0
3

0
.9
4

1
0
.0
3

0
.4
5

R
9

9
7
.6
9

8
9
.5
8

1
4
5
.3
8

1
3
7
.5
4

1
.5
4

2
1
.2
2

0
3
2

0
1
.8
9

2
1
.2
2

2
1
.7
5

2
3
.6
9

1
0

1
0

R
1
0

1
0
.5
1

8
.4
2

1
0
.5
1

8
.4
2

1
.1
7

2
0

2
0

0
2

2
0
.2
3

1
1

0
0

R
1
1

3
8
.2

3
7
.0
4

5
0
.1
7

4
9

2
.1
7

2
.4
9

0
4

0
0

2
.5
5

2
.2
9

2
8
.9
4

1
0
.3
3

0
0

R
1
2

2
3
.4

1
9
.1

2
9
.8

2
4
.8

4
.4

2
.9

0
3

0
2
.4

3
3

3
.2

1
2
.2

0
.3

0
R
1
3

8
4
.5

5
8
.5

8
4
.5

5
8
.5

1
6
.5

4
.5

0
4
.5

0
7

6
1
6
.5

0
.5

1
0

0
0

R
1
4

8
.8
2

7
.8
2

-
-

0
1
.9
1

0
-

-
1
.5
5

1
.9
1

1
.9
1

0
.3
6

1
0
.1
8

0
0

R
1
5

1
2
.6
7

7
.6
7

1
7

1
2

1
1
.3
3

0
.3
3

1
1

1
1
.6
7

1
.3
3

0
.6
7

1
1

0
0
.3
3

R
1
6

8
9

8
2
.5

8
9

8
2
.5

2
4

1
.5

0
.5

1
.5

0
.5

3
.5

1
0
.5

1
0
.5

1
8
.5

1
2

0
.5

0
.5

R
1
7

4
2
.0
9

3
7
.1
8

2
3
.4

1
8
.8

1
.4

3
.8
2

0
.6
4

1
.2

1
2
.0
9

3
.6
4

4
.7
3

1
3
.3
6

1
5
.2
7

0
.2
7

0
.6
4

R
1
8

1
4
.8
3

1
3
.2
2

-
-

0
3
.1
7

0
-

-
0

2
.9
4

3
0
.2
8

1
0
.0
6

0
.2
8

0
R
1
9

1
0
1
.8
7

9
0
.1
6

-
-

0
6
.0
3

0
-

-
1
2
.1

1
1
.6
1

1
1
.4
2

2
6
.1
3

1
1
.3
2

1
0

R
2
0

1
9
.0
2

1
6
.0
4

4
5
.4
7

4
1
.3
4

2
.0
7

1
.9
2

0
.1
9

2
.8
7

1
.1
8

0
.8
1

0
.8
8

1
1
.7
4

1
0
.4
4

0
.4
4

0
.2
2

R
2
1

3
9
.7
8

3
6
.6

8
0
.5
5

7
8
.7
2

2
1
.0
4

3
.1
1

0
.4
3

5
.9
2

0
.9
4

3
.5
4

0
.0
6

0
.0
5

8
.7
1

0
.8
5

0
.6
6

0
.1
9

0
.4
8

R
2
2

1
1
.4
8

9
.0
6

2
1
.3
8

1
8
.8
8

2
.3
1

1
.4
9

0
.2
7

2
.1
6

0
.7
8

1
.6
2

1
.1
6

1
.2
8

0
.3

0
.9
5

0
.3
5

0
.1
3

0
.3
9

R
2
3

8
.5
1

7
.0
7

1
5
.1
7

1
4
.0
6

1
.2

1
.3
9

0
.2
9

2
.4
3

0
.7
4

2
.1

0
.5
4

0
.2
2

0
.4
4

0
.9
6

0
.1
5

0
.0
4

0
.3

25

2. State of the art

Type of input

Specifications are written either textually (5 tools) or as test cases enhanced
with annotations, such as [Given] (8 tools). The textual specifications are
written either with Gherkin syntax, in a Markdown format, or a combination
of both. Data tables with input and expected output values for behavior tests
are supported in a total of 4 tools, which means

Data tables are not supported universally across all tools.

Support for parameterized scenarios

We observed that only primitive types, such as strings or numbers, are allowed
as inputs to the scenarios. Data tables help to specify input parameters con-
cisely. However, how helpful the data tables are to specify complex domain
objects with numerous attributes has not yet been studied.

Specification interface

All the analyzed tools support textual specification only;

None of the tools allows specifications to be composed in any other way, e.g.,
graphically.

Type of output

All analyzed tools provide two ways to output their results: (i) test results that
indicate how many tests are passing and failing, and (ii) test reports that can
be customized with formats (i.e., charts and graphs) and color schemes (i.e.,
indicating passed and failed tests in different colors), meaning

There is no other alternative for non-technical stakeholders to verify whether
developers implemented the correct behavior in the source code.

2.4 Related work

2.4.1 RE tools

To the best of our knowledge, there is no SLR that reviews RE tools or those
specific to a single RE activity. However, there are several SLRs published
from the RE community that cover various aspects and branches of RE:

The work of Davis et al. reports the effectiveness of various RE tech-
niques [42]. The work of Pacheo et al. surveys studies on stakeholder iden-
tification methods in requirements elicitation [95]. Achimugu et al. surveyed
studies on requirements prioritization techniques [7]. Schoen et al. surveyed
publications in agile requirements engineering focused on stakeholder and user
involvement [114]. None of the above studies discuss or compare available tool
support for any of the RE techniques or activities they considered.

26

2.4. Related work

The work of Alves et al. focuses on software product line engineering and
reports open problems in it from the RE point of view [11]. Of the studies they
considered, 43% proposed no tool support. Similarly, Inayat et al. surveyed
studies that discuss agile RE with the motivation of mapping evidence about
how available RE practices are adopted by agile teams [66]. Of the the reviewed
studies, 18% were empirically evaluated tools. Recent work of Khan et al. sur-
veyed publications from crowd-based requirements engineering, which included
seven RE tool demos [72]. However, none of them performed an assessment
or evaluation of the found tools. Instead, they express it as a need for future
research.

The closest work in literature to ours is that of Carrillo de Gea et al. [44, 45]
and Shah et al. [117]. Shah et al. in their mapping study present a comparison
of 31 RE tools. They compare the tools based on the RE activity they sup-
port, the geographic origin of the study, and the number of RE activities they
cover. They searched the literature in four digital libraries with a search string
(“Software requirement Engineering tools” or “Software Elicitation tools”).
They claim to evaluate tools according to their performance, however, there
is no discussion about it in their work to understand the specifics of the term
“performance.” Carrillo de Gea et al. present an overview of 38 RE tools,
specifically proprietary tools. Their work is not an SLR, instead, they per-
formed an online survey with 146 questions based on ISO/IEC TR 24766:2009
in which vendors such as IBM and IRqA participated.2 The objective of their
work was to evaluate RE tools and technologies with different use cases to re-
port if they are adequate to cater to the present needs of software development
practices. They discovered that most of the tools they evaluated work well for
elicitation, and there is still scope to improve the modeling tools.

2.4.2 Software artifacts

Only a handful of studies, to our knowledge, have discussed the characteris-
tics of the artifacts, concerning their fitness for distinct stakeholders or ful-
filling specific purposes [103, 17, 48, 49]. A few studies have discussed classi-
fication schemes for artifacts. These include: (1) considering socio-technical
aspects (e.g., target audience) of artifacts [103, 48, 49], and (2) consider-
ing the abstraction levels based on phases of SDLC [17, 148]. Several other
studies have proposed solutions to establish traceability among numerous arti-
facts [61, 41, 107, 15, 10, 129, 118]. The existing classification schemes do not
characterize artifacts according to their physical properties. To build usable
user interfaces for artifact creation and manipulation, we need to understand
the format, nature of artifacts, and their relation to one another. In particular,
we consider characteristics that would help us to: (1) understand artifact flow
within SDLC, and (2) decide whether and how can we create these artifacts in
an IDE to be usable by distinct stakeholders.

2ISO/IEC TR, accessed 20 April, 2020, https://www.iso.org/standard/51041.
html

27

https://www.iso.org/standard/51041.html
https://www.iso.org/standard/51041.html

2. State of the art

2.4.3 BDD tools

BDD exploratory studies

Several studies in recent years have proposed approaches and techniques to
automate the BDD process. Soeken et al. proposed a technique to semi-
automatically generate step definitions and code skeletons from scenarios given
in natural language [119]. Patkar et al. analyzed the features of the current
BDD tools and proposed to specify application behavior through in-IDE graph-
ical interfaces [97]. With their approach, they engage non-technical stakehold-
ers in the BDD process equally. Binamungu et al. presented a dynamic tracing
based approach for detecting duplication in BDD suites [20].

Apart from these studies, several empirical studies shed light on various
aspects of the BDD. Binamungu et al. surveyed 75 BDD practitioners to
understand the extent of BDD use, its benefits and challenges, and specifically
the challenges of maintaining BDD specifications in practice [21]. Their results
showed that BDD specifications suffer from maintenance challenges due to
the huge size of the BDD suites. They also conducted another survey with
BDD practitioners, to hear their opinions on the quality criteria for the BDD
specifications established by the authors themselves [22].

Yang et al. from 59,933 open-source Java projects retrieved 133 projects
containing at least one .feature file [147]. They figure out whether and how
accurately could they identify co-changes between .feature and source code
files when either of those changes. In this study, they used natural language
processing to check both .feature files and the source code files to detect the
occurrences of common keywords. They did not study the step definitions, and
their results are specific to Cucumber related projects.

Zampetti et al. analyzed 20 Ruby projects shortlisted from the top 50,000
projects— ranked in terms of several stars— hosted on GitHub for the five
most popular programming languages, i.e., Java, Javascript, PHP, Python, and
Ruby [149]. Their goal was to study the extent to which open-source projects
use BDD-related frameworks, i.e., the percentage of projects that use one of
the several BDD frameworks. They also surveyed 31 developers to understand
how these developers use BDD frameworks in practice. They observed a co-
evolution between scenarios and fixtures, and source code in about 37% of
the projects. Specifically, the authors discovered that changes to scenarios
and fixtures often happen together or after changes to source code. Moreover,
survey respondents indicated that, while they understand the intended purpose
of BDD frameworks, most of them write tests while/after coding rather than
strictly applying BDD.

Neither of these studies shed light on the specifics of the Gherkin files.
The data published by Yang et al. contains repositories with fewer than ten
stars and consists of mostly small personal projects. Zampetti et al. offer to
download their dataset. Regrettably, it consists of only processed data and not
the data from the fetched repositories.

BDD tools analysis

Only a few prior studies have evaluated BDD tools. Previously analyzed tools
such as StoryQ [133], JDave [68], NBehave [91], Easyb [130], and BDDfy [139]
are either obsolete or no longer maintained [94, 78]. Lenka et al. analyzed five

28

2.5. Summary and conclusion

BDD tools and classified them either as testing tools or test automation frame-
works, essentially supporting the view of BDD tools as being testing tools [78].
Solis et al. analysed seven BDD tools according to six parameters, such as
the supported programming languages and supported software development
phases [120]. They observed poor support for BDD in the planning phase,
i.e., the analysed tools did not support the creation of features or user stories.
Okolnychyi et al. analyzed five BDD tools to characterize their support for
BDD in terms of ubiquitous language creation and automated scenario execu-
tion [94]. They compared the tools based on their primary target users and
specific tool features, such as support for mocking third-party libraries. They
observed that the support for ubiquitous language definition is limited. These
studies do not establish criteria to measure to what degree BDD tools enable
collaboration among both technical and non-technical stakeholders.

2.5 Summary and conclusion

Our analysis of state of the art RE and BDD tools, current BDD practices
from open-source projects, and software artifacts help us explain why there is
a lack of agile assistance for requirements specification, verification, and man-
agement. Our main findings suggest that numerous software-related artifacts
are created in several distinct tools. There is an increasing trend of develop-
ing specialized tools to support RE activities, which can lead to traceability
issues among produced artifacts. Our analysis of BDD tools shows that non-
technical stakeholders are required to use an IDE to verify the application
behavior but they do not have an adequate support as an IDE is not adapted
for non-technical stakeholders. These results give us confidence in imagining
an agile development platform to support various stakeholders with software
engineering activities, specifically, specification, validation, and management
of requirements, concurrently with the source code.

29

Chapter 3

Citizen requirements

In this chapter, we revisit three approaches from the existing research, discuss
their underlying ideas, and show how they can be adapted while re-imagining
a collaborative agile development platform. We discuss the building blocks,
which can be implemented in any IDE.

3.1 Background

3.1.1 The naked objects pattern

“Naked objects” is an architectural pattern wherein core business objects, such
as Customer, Product, and Order, are exposed directly to the user through the
auto-generated user interfaces [101]. User interfaces are generated at run-time
based on the capabilities of the core business objects. In software designed
using the naked objects pattern, all user actions involve explicitly invoking
methods on business entity objects. The naked objects pattern contributes to
the agility of the development process in two ways [102]:

• It facilitates communication between the developers and users during
requirements analysis as the business objects provide a common language.
The same idea is central in other approaches, such as domain-driven
design (DDD), where Evans promotes using a ubiquitous language that
appears in all aspects of the project: communication, test cases, and the
source code [54].

• It speeds up the development cycle as developers are not required to
design and implement the user interface. They only have to design and
implement the business object classes and their encapsulated business
methods.

The naked object framework has been designed specifically to support the
naked objects pattern [100]. Most IDEs support the creation and manipulation
of business objects programmatically. Very few IDEs, such as BlueJ,1 enable
non-technical stakeholders to create and manipulate objects interactively. For
example, in BlueJ, objects can be dynamically created, the contents of fields
are displayed, and their methods can be invoked through provided GUIs. Like

1https://www.bluej.org/

31

https://www.bluej.org/

3. Citizen requirements

in BlueJ, the auto-generated GUIs in the naked objects framework are generic
and cannot be customized to adapt to a particular application domain. Never-
theless, from the naked objects pattern, we adopt the idea that requirements
can be discussed at the level of business objects, and end users use GUIs to
manipulate core business objects directly.

3.1.2 Low-code development platforms

Although the term “low-code development platform” is very recent, it has its
roots in earlier ideas, such as the end user programming, visual programming,
and rapid application development (RAD) tools [110]. These ideas proposed
activities and tools to involve people with less or no programming experi-
ence in the software development process. For example, RAD tools combine
fourth-generation languages, GUI builders, database management systems, and
computer-aided software engineering tools, and allow changes to prototypes to
be made in-situ at user-developer meetings [18]. Similarly, end user program-
ming environments are heavily graphical in nature.

With LCDPs, end users without programming skills create software using
GUIs. LCDPs can lower the initial cost of setup, training, deployment, and
maintenance. They have proven to reduce the amount of traditional hand-
coding, enabling accelerated delivery of business applications [111]. LCDPs
leverage model-driven engineering principles and cloud infrastructures, auto-
matic code generation, declarative and high level, and graphical abstractions
to develop entirely functioning applications [112]. From LCDPs, we adopt the
idea that end users can be involved in the development workflow, in fact, can
be supported to build certain types of applications themselves, provided the
right GUIs exist.

3.1.3 Moldable development

With the moldable development approach, an IDE is modeled as a set of in-
terconnected context-aware tools [35]. Such tools (e.g., object inspector, de-
bugger) are aware of the current development context, enabling rapid cus-
tomization to new development contexts. Authors of moldable development
argue that IDEs often focus on low-level programming tasks that promote code
rather than data. Most IDEs suppress customization, offering limited support
for informed decision-making during software development. In contrast, the
moldable development approach helps to improve program comprehension as
context-aware tools can directly answer domain-specific questions. From the
moldable development approach, we adopt the idea of customizing an IDE to
support a range of software engineering tasks. We demonstrate that the mold-
able development approach can be leveraged to enable distinct stakeholders
in specifying requirements at different levels of detail and verify those with
representations specific to a particular application domain.

3.1.4 First-class entities

In programming language design, a first-class entity is an entity (e.g., run-
time object, value, type) that supports all operations (e.g., being passed as

32

3.2. Building blocks

an argument, returned from a function, assigned to a variable) generally avail-
able to other entities. Kiandl and Glinz independently envisioned representing
and organizing project requirements as run-time objects [58, 70]. With their
approach, one classifies and organizes requirements using classes and enjoys
various benefits of object-oriented design. For example, using inheritance, one
decomposes requirements into a hierarchical object structure. Such require-
ments hierarchies feature abstraction and information hiding, and exhibit the
benefits of comprehensibility for various stakeholders: non-technical stakehold-
ers benefit from high-level requirements, whereas technical stakeholders benefit
from low-level ones, such as use cases. In this thesis, we propose that not only
requirements, but also other software-related artifacts should be created as
first-class entities directly in an IDE.

3.2 Building blocks

In a previous work, we revisited several ideas and techniques for requirements
elicitation, e.g., SWOT analysis and Personas, and adapted them in an as-
sisted workflow for a web application [116]. The idea was to enable various
stakeholders in specifying requirements– with underlying contexts and goals–
whenever they wish in a single platform. We argued that while eliciting re-
quirements for niche application domains, it is possible to get insights into
domain-specific matters literally anytime and not necessarily only during the
requirements gathering workshops or interviews. Consequently, the web plat-
form guides non-technical stakeholders through the elicitation process without
having to work directly with requirements engineers. Requirements engineers
can go through the information entered by other stakeholders anytime. This
evolving information allows requirements engineers to extract tacit knowledge
and overall, serve as a vision of the application to be built.

In this doctoral thesis, we propose a similar approach, which we call citizen
requirements, as to maintain requirements in a single platform, allow them to
evolve, and support other phases of RE. But, instead of using a web application,
we propose to use an IDE. The main advantage of using an IDE is that the
first-class citizen requirements are always up-to-date and verifiable, evolving
concurrently with the implementation. As various stakeholders are provided
with the right interfaces to work within a single platform, we can streamline
an agile development workflow with faster implementation and feedback loops.
There are two main parts of our approach: creating first-class artifacts in an
IDE and verifying requirements collaboratively. To bring such an idea into
existence, we need the following three building blocks: Examples, GUIs, and
Views. Please note that some of these building blocks are research ideas already
discussed in the existing literature. We have reused them to build a proof of
concept to answer our research question. Specifically, we used the GUIs in
combination with views to specify requirements— we use them to create and
maintain software artifacts and business entities, natively in IDE. For verifying
the behavior, we used all three building blocks. In Figure 31, we show a
potential workflow within an IDE. Following this workflow, one would end up
with validated requirements maintained directly in an IDE, which are ready
to be pushed with the source code to source code management tools, such as
GitHub.

33

3. Citizen requirements

Create artifact
classes

Technical
stakeholders

Create GUIs to
create artifacts

Technical
stakeholders

Create artifacts

Non-technical
stakeholders

Create GUIs to
support modeling

workflow

Technical
stakeholders

Create domain
classes and

implement the
behavior

Technical
stakeholders

Create views for
domain objects

Technical
stakeholders

Create views to
create domain

objects

Technical
stakeholders

Create domain
objects

Non-technical
stakeholders

Create and run
test cases and

save as examples

Non-technical
stakeholders

Inspect the
behavior

Non-technical
stakeholders

Figure 31: Citizen requirements potential workflow

3.2.1 Examples

Examples are nothing but test cases, which return intermediate business ob-
jects. Gaelli et al. first leveraged code examples in proposing an approach
to unit testing, wherein they compose unit tests of code examples [55, 63, 76].
Their approach of example-driven testing states that fixture instances are valu-
able objects, and hence, to be reused and treated first-order by a testing frame-
work. In the Glamorous toolkit, the term “example” is generally used to refer
either to the example method or the example object produced. Examples are
annotated with a gtExample pragma. The example in Listing 5 creates and
returns an Order with a Coffee, checks whether the Order object contains a
Coffee instances, and returns the resulting Order object for further inspection.

1 orderWithCoffee
2 <gtExample>
3 <label: 'create order with coffee'>
4 <description: 'Create an order'>
5 |order coffee|
6 coffee := Coffee new.
7 order := self emptyOrder add: coffee.
8 self assert: order size equals: 1.
9 ˆ order

Listing 5: An example method that creates an order with coffee

Unlike tests, examples can be arbitrarily chained together so that domain ob-
jects flow through a series of examples emulating complex scenarios. For in-
stance, Listing 5 creates an Order with a Coffee by first calling Listing 6 that
creates an empty Order object. This makes examples reusable.

1 emptyOrder
2 <gtExample>
3 <label: 'create an empty order'>
4 <description: 'Create an empty order'>
5 | order |
6 order := Order new.
7 self assert: order size equals: 0.
8 ↑ order

Listing 6: An example that creates an empty order

34

3.2. Building blocks

One implication of such chaining is that we can order examples, and when
multiple examples fail, we can point to the most specific failure. Examples are
useful to create both simple business objects, i.e., objects that do not contain
or require other business objects (e.g., an empty Order object), and complex
business objects, i.e., run-time objects that contain other domain objects (e.g.,
an Order with a Coffee object).

Software testing is the act of examining the artifacts and the behavior of
the software under test by validation and verification. Often, writing test cases
is assumed to be a task of testers or developers. If we want to involve do-
main experts in validating requirements, assuming that they might lack any
technical knowledge, we need to provide them with the ways for writing, or
better composing, test cases or examples. Within citizen requirements, we use
examples in combination with GUIs to support non-technical stakeholders in
verifying the application behavior. We use GUIs to create both simple and
complex business objects, and to compose them in examples. To make gen-
erated examples understandable for non-technical stakeholders, a description
can be given that is understandable by all the stakeholders. A description is
provided by using a dedicated pragma, see line 4 of Listing 6. In chapter 5, we
describe this process in detail.

3.2.2 GUIs

In general, GUIs enable end users to interact with the low-level business objects.
For instance, imagine a web application. Low-level business objects are exposed
to the the end user on the frontend through GUIs. These GUIs enable end users
to perform standard manipulation operations, such as create, read, update, and
delete (CRUD), on the business objects. However, building a fully functioning
application and GUIs for object manipulation is quite expensive, especially
when requirements change frequently. We believe that, if we provide GUIs for
object manipulation directly in an IDE, we could enable fast feedback loops
with non-technical stakeholders.

Unlike the naked objects framework, the Glamorous toolkit is an IDE,
which is a fully reflective environment. It is built using a graphical frame-
work (i.e., Bloc) that enables the creation of customizable GUIs for various
types of objects. Within citizen requirements, we use GUIs to support non-
technical stakeholders in creating artifacts and business objects as first-class
entities. It is primarily developers’ responsibility to create tailored in-IDE
GUIs. This approach can only succeed if in-IDE GUIs are created at a cheaper
price in terms of efforts. In this thesis, we only show a proof of concept of
using in-IDE GUIs to support agile development and demonstrate how a cus-
tom development workflow engages non-technical stakeholders in an IDE. In
future, we need to provide easier ways (e.g., an API) to support non-technical
stakeholders specifying various kinds of GUIs, which will bring our idea even
closer to that of LCDPs.

3.2.3 Views

Most modern IDEs have an object inspector that allows developers to inspect
run-time objects. They show a standard representation for all types of objects
regardless of the underlying domain, which usually includes various attributes

35

3. Citizen requirements

of a particular object and the corresponding values [36]. This representation
is primarily targeted towards developers. Non-technical stakeholders, on the
other hand, often deal with business objects using a domain-specific represen-
tation. For example, in a web application, GUIs are used to display low-level
business objects with a representation that is understandable for the end users.
Imagine showing a clickable list of products with only essential details to the
end users instead of showing a raw JSON representation of the product list.
We can safely assume that most end users will only be able to work with a
product list and not the raw JSON.

A view in the Glamorous toolkit is a domain-specific representation of an
object. It is essentially a piece of code that generates a domain-specific visual
representation for an object. The piece of source code in Listing 7 generates a
domain-specific representation for a contact list as shown in Figure 32.

36

3.2. Building blocks

1 gtViewContactsOn: aView
2 <gtView>
3 ↑ aView columnedList
4 title: 'Contacts with details' translated;
5 priority: 5;
6 items: [self contacts];
7 column: 'Avatar'
8 icon: [:aContact | aContact avatar asElement
9 asScalableElement size: 32 @ 32]

10 width: 75;
11 column: 'Name' text: [:aContact | aContact fullName];
12 column: 'Phone' text: [:aContact | aContact telephone]

Listing 7: A sample source code for a view

Figure 32: Domain-specific view for non-technical stakeholders

It is primarily the developer’s responsibility to create views that are useful for
other stakeholders. Any number of views can be attached to an object. Creat-
ing views does not require much effort, e.g., on an average 12 lines of code for
a view in the Glamorous toolkit. In Figure 55, we show two representations of
an object of type Invoice. Figure 33a shows a raw view like in any other IDE,
whereas Figure 33b shows a domain-specific custom representation for an in-
voice object proposed by a developer. Within citizen requirements, developers
create views for the artifact as well as business objects. We believe that such
custom and domain-specific graphical representations available natively in an
IDE, are an excellent means for non-technical stakeholders to perform a variety
of operations.

37

3. Citizen requirements

(a) A raw view for an invoice object

(b) A custom view for an invoice object

Figure 33: Custom object representations

3.3 Discussion

There are various implications of citizen requirements. Below, we briefly discuss
three main implications. In chapter 6, we provide more details on two of them.

3.3.1 Impact analysis

Changing requirements impact the budget of a project and also affect the im-
plementation. As we reported in chapter 2, existing tools are specialized for
specific RE activities, often focusing on a limited set of artifacts. This ap-

38

3.3. Discussion

proach scatters artifacts across several tools, thereby making linking a tedious
task. In practice, several linking mechanisms are used to link and track ar-
tifacts [65, 106, 38, 62, 6, 14, 99, 81, 128]. These include manual referencing
with artifact IDs, and using attachments for containers. However, there are
several difficulties in applying linking mechanisms: the effort and time needed
to perform the linking, managing obsolete links, and a lack of clear guidelines
to establish a reliable linking structure.

In contrast, we maintain artifacts as first-class entities directly in the IDE.
No additional linking and tracing mechanisms are required as plain object-
oriented relationships are sufficient to connect a range of artifacts with each
other as well as the artifacts and the application source code. The bidirec-
tional references between requirements and the source code can help us assess
the impact of the changes. This effect is favorable to both developers and
project managers: developers know which exact classes or methods to update,
managers plan the subsequent development iterations with a more accurate es-
timate of the remaining workload. We do not claim that our approach requires
less effort for artifact creation. So far, the effort needed in deciding various
tools to be used in a project toolchain, figuring out integration among selected
tools can be diverted to creating artifacts in an IDE.

3.3.2 Modeling

To support agile development, models must be simple and easy to modify and
should provide rapid feedback [12]. Researchers in recent years have tried to
adapt several existing modeling mechanisms and approaches to be useful in
agile development. These mostly include proposing development environments
that serve as language workbenches to create domain-specific modeling lan-
guages (DSMLs) in an agile manner. Several DSMLs [24, 29, 142, 23, 59, 86],
particularly graphical ones with interactive capabilities, are perceived to be
suitable for domain experts [59, 90, 151]. Other studies provide an overview of
existing modeling tools [26]. The proposed tools that support code generation
and reverse engineering capabilities to varying degrees are all UML-based. Such
modeling approaches can be heavyweight for application domains that are not
well understood and are prone to evolve. Model-driven modeling approaches re-
quire considerable education and training. The fixed set of UML notations and
the available tooling make UML suboptimal for agile modeling [104]. Likewise,
the design and creation of an effective DSML requires language expertise, and
significant upfront effort before the actual application development begins. The
usability of DSMLs has been questioned, and in the context of highly volatile
domains, the DSML itself must evolve continuously [9, 59].

Views on software development, such as “programming is conceptual mod-
eling,” or more generally, “programming is modeling,” open a window to ap-
proach modeling for agile practices from a fresh perspective [53, 92, 37]. Rather
than relying on up-front investment in a dedicated domain-specific language
or model compiler, we envision a platform in which domain entities can be
incrementally identified, added, and described. Object-oriented designs were
introduced to close the gap between modeling and the code. Classes and ob-
jects in object-oriented design resemble the real world concepts, which are un-
derstandable by various stakeholders. However, creating classes and run-time
objects is largely seen as a task of technical stakeholders, while GUIs are de-

39

3. Citizen requirements

sired to support non-technical stakeholders to manipulate the business objects.
This is evident from various visual modeling approaches (e.g., business process
modeling) and tools (e.g., Rational Rose). In chapter 6, we discuss how we can
automate the object-oriented design process by providing custom GUIs and a
workflow, and support non-technical stakeholders to follow the best practices of
the object-oriented design. With citizen requirements, the process of identify-
ing domain entities, describing their behavior, and specifying the relationships
among them can be supported natively in an IDE.

3.3.3 Documentation

Project documentation is often created from existing artifacts, and to date, no
dedicated tool guarantees to keep it up-to-date [79, 8]. Documentation is vital
for future development, and must be created iteratively and collaboratively,
and kept up-to-date by all the team members [123]. Difficulties with linking
can leave artifacts out-of-sync, and hurt project documentation. As far as IDEs
are concerned, Visual Studio Code, for example, supports Markdown editing,
and as such, it is useful for documentation. Markdown format is less suitable
for embedding a range of custom created artifacts. Another example is Jupyter
Notebook, which supports writing code and documentation within the same
tool. However, Jupyter Notebook is primarily used for data engineering, and
achieving an executable and interactive documentation for a working software,
to the best of our knowledge is not yet explored with Jupyter Notebook [143].

On the contrary, being first-class entities, artifacts with our approach are
readily available in the IDE to prepare documentation. As artifacts serve dis-
tinct purposes, we can use them to create specific types of documents. With
our approach, documents become just another artifact that leverages other ar-
tifacts to present something meaningful to a user. For example, scenarios are
used to test a software feature against a number of input conditions. They can
be used to prepare a document that serves as a tutorial to explain a specific
software feature. In chapter 6, we revisit the idea of live programming, and
envision a live programming environment where changes made to artifacts are
immediately visible, giving stakeholders rapid feedback, much required in agile
development.

3.4 Conclusion

In this chapter, we revisited three existing research ideas, which we leverage to
propose an approach to support various stakeholders in agile development. We
presented the vision and three building blocks of the citizen requirements ap-
proach to support agile development within an IDE. With these building blocks,
we enable non-technical stakeholders to participate in creating and maintain-
ing requirements directly in an IDE. Likewise, they can interactively create test
cases to verify the application’s behavior. Finally, we briefly discussed some of
the implications of our proposal.

40

Chapter 4

Collaborative specification and
management of requirements

A multitude of artifacts are used for distinct tasks in software development, as
well as in requirements engineering [81, 57], each with its own merits and limi-
tations [81, 114]. There are, for example, design artifacts [40, 30], requirements
artifacts [60], agile modeling artifacts [12], and software artifacts [75]. We stick
to a broader definition of an artifact, which considers any object that is created
and used to facilitate work activities relating to a software project [56, 148].
To boost artifact connectivity and maintain their consistency, we propose to
create and manage software-related artifacts as first-class entities directly in
an IDE. This approach has two advantages: (i) compared to employing sep-
arate tools, creating various artifacts directly within a development platform
eliminates the necessity to recover trace links, and (ii) first-class artifacts can
be composed into stakeholder-specific live documentation. In this chapter, we
detail and exemplify this idea using the Glamorous toolkit. We present three
artifacts, namely user stories, mindmaps, and scenarios, to demonstrate that
our approach is feasible. Note that we do not discuss in detail how artifacts are
built from scratch, but we show how they can be used in a specific situation.
The construction of artifacts from scratch can vary from artifact to artifact
and require different amounts of effort. The results of this study have been ac-
cepted for publication at the 29th IEEE International Conference on Software
Analysis, Evolution and Re-engineering (SANER).

4.1 Collaborative artifacts building

4.1.1 A running example

We learned from a medical doctor how inefficiently their hospital prepares its
roster, thereby leaving no chance for doctors to have any social life. We use it
as an example to exemplify the first part of the citizen requirements approach
as it resembles a real-word situation and is elaborate enough to discuss various
artifacts.

Suppose a hospital needs to prepare its roster efficiently, and its manage-
ment wants to update or replace its existing shift scheduling software. Follow-
ing agile development practice, a business analyst needs to discuss requirements

41

4. Collaborative specification and management of requirements

with domain experts from the hospital (who are also the business stakeholders
here), express the requirements in some format, and then update the schedul-
ing software system in use. After every development iteration, the developers
need to present new functionality to the business stakeholders. After each
such meeting, the development team gets feedback and proceeds to update
the requirements, which means they need to update various artifacts, change
the implementation, and update the documentation respectively. Preparing a
schedule is a tedious task as the staff member responsible for preparing a sched-
ule needs to take into account numerous constraints, such as those related to
permissible working hours, constraints for assigning medical staff to each shift,
etc.

4.1.2 Workflow

The workflow below can be applied to build any artifact one wishes to model
in an IDE. Developers are required to invest once in building artifacts from
scratch. Once such infrastructure exists, it can be used for any future project.

Create meta infrastructure: artifact classes

First, developers need to build the requirements-related artifacts (e.g., user
stories, mindmaps) of choice as first-class entities from scratch, i.e., by creating
appropriate classes and implement their behavior in the methods. For instance,
a user story might be modeled with a class UserStory and have specific behavior
implemented in a method setStatus that will enable users to set the status of a
particular user story object. Developers also specify relationships among them.
For example, a Kanban board used to track work progress in agile practices can
be modeled to host user stories. Likewise, the UserStory class can be modeled
to have references to source code classes that model the domain entities referred
to in a specific user story. For example, concepts, such as waiter or order, from
a user story: As a waiter, I want to add Pizza and Cappuccino to an order,
can be connected to the corresponding Waiter and Order classes.

Create GUIs

Once various artifact classes are created and their relationships explicitly mod-
eled, developers then build custom GUIs, which enable other stakeholders to
create, access, and navigate the corresponding artifacts. For instance, a project
manager can create project-specific user stories as first-class entities by using
an in-IDE graphical interface instead of using dedicated tools, such as Trello.
Developers create appropriate views for the artifacts. For example, a user story
object can be represented using a story card metaphor for easy and intuitive
manipulation.

4.2 Example artifacts

Next, we discuss three artifacts that support their users in distinct software
development tasks. They are created in one phase and are used in other phases
of the development lifecycle. The implementation of the running example and

42

4.2. Example artifacts

the following artifacts can be explored by following the instructions provided
in the readme file.1 Specifically, we showcase artifacts used in:

• requirements engineering: user stories;

• modeling: a mindmap;

• testing: scenarios.

4.2.1 User stories

To record requirements in a collaborative way, there is a need for an artifact
that can be conveniently edited by technical and non-technical stakeholders
alike and is lightweight to manage. User stories are artifacts that serve to
record requirements from the end-user perspective [82]. User stories are a
nice fit for the IT company to collect and specify requirements together with
the hospital staff. In Figure 41, we show two representations of user stories.
The “Raw” representation shows raw data about a user story object, while
the “Minimal” representation of the same user story object presented as a
card gives additional details, such as assigned labels and team members, of a
specific user story, which are typically needed by project managers. A user
story object, being a first-class entity, can be embedded anywhere, in any live
document, or into a live Kanban board.

4.2.2 Mindmaps

Mindmapping is a visual way of organizing and representing information within
a radial hierarchy [83]. The most important concept appears at the center of
a given diagram and related concepts are connected via edges. Based on their
relevance, the related concepts appear farther and farther away from the center
of the diagram. Let us consider that a new developer joins the development
team and wants to understand the hospital management domain. A mindmap
of domain concepts from the scheduling application could assist a new developer
in understanding the main concepts.

In Figure 42, we show a mindmap of main domain entities in our schedul-
ing application. In Figure 42a, a user has clicked on a node “HMDoctor,” and
an object inspector window on the right-hand side shows the class comment
for the “HMDoctor” class, which allows the new developer to understand the
implementation details of each domain concept in an iterative and interactive
manner. Likewise, in Figure 42b, we show the tab “Related Stories,” which
enables a developer to explore the related user stories (i.e., requirements) for
a specific domain concept. Such a binding mechanism fosters two-way connec-
tivity between two artifacts.

4.2.3 Scenarios

Scenarios are popular in practice as they exhibit potential for collaborative
construction and review. Unlike test cases, a scenario contains high-level docu-
mentation, which describes an end-to-end functionality to be tested. Scenarios

1https://github.com/nitishspatkar/moldable-requirements

43

https://github.com/nitishspatkar/moldable-requirements

4. Collaborative specification and management of requirements

(a) A raw view for a user story

(b) A minimal card view for a user story

Figure 41: Custom entity representations

are created in various formats. For example, a UML sequence diagram models
a specific interaction scenario. Likewise, BDD scenarios are written using the

44

4.2. Example artifacts

(a) Exploring class comments for a domain concept

(b) Exploring user stories related to a domain concepts

Figure 42: A sample in-IDE mindmap

45

4. Collaborative specification and management of requirements

F
ig

u
re

4
3
:

A
sa

m
p

le
in

-I
D

E
ex

ec
u

ta
b

le
sc

en
a
ri

o

46

4.3. Evaluation

in-IDE user interface, see chapter 5 for more details.

4.3 Evaluation

To obtain some early feedback on the potential of our idea to be beneficial
for artifact management and, in particular, being suitable for non-technical
stakeholders, we conducted a semi-structured pilot survey with three practi-
tioners and researchers. We selected the participants through mutual contacts.
The participants had varying experiences with software development and ag-
ile methodologies, ranging within 7-20 years. The online survey consisted of
the following steps: a brief introduction to the identified issues with artifact
management, an introduction to the proposed approach, followed by a short
15 minute demo, and finally, an online survey for the participants. The survey
instrument was prepared and validated by the study team collaboratively, and
consisted of questions regarding participants’ background and their feedback
on various aspects of the proposed approach. We have included the survey
instrument and the responses in the provided additional supporting material,
in section A.5. We conducted a pilot demo session to ensure timely execu-
tion. The results, in particular the answers to the open-ended questions, were
codified by the study team.

All of the participants agreed that our approach could help project teams
in managing artifacts and handling artifact traceability, and will reduce the
number of tools employed in a software project. Similarly, all participants
agreed that our approach could reduce the context switches between various
tools to accomplish a single development-related task and provide more accu-
rate matrices (e.g., pending workload) for decision making. Notably, all of the
participants strongly agreed that our approach could reduce the manual effort
required in keeping the project documentation up-to-date.

While reflecting on the perceived advantages, they mentioned that “... the
approach can help to build a common language among different roles in a project
and could work as a single source of truth.” Similarly, it could also help with
“... better onboarding of new team members,” “... better understanding of rela-
tions between different artifacts,” and “... communication between domain and
technical experts.” Other stated advantages of our approach were that it leads
to “... up-to-date living documentation,” and “... shared understanding” among
several stakeholders. The notable limitations mentioned by participants con-
cerned the usability of the graphical interfaces presented in the demo and the
approach’s scalability in a large-scale project. One participant also expressed
concern regarding the effort that one might require to integrate numerous ar-
tifacts of different types.

4.4 Threats to the validity

• Less number of participants

• No real customers involved

47

4. Collaborative specification and management of requirements

4.5 Conclusion

To avoid scattering of various software-related artifacts among separate tools,
we argued that artifacts should be created as first-class entities directly in an
IDE. Our proposed approach helps maintain various software-related artifacts
in one platform, eliminating a need to recover trace links. Overall, this ap-
proach simplifies the artifact management and involves various stakeholders
in the development process equally. Moreover, with up-to-date artifacts, var-
ious stakeholders can provide quick feedback to others much desired in agile
development. We presented an advanced prototype implementation of three
artifacts in the Glamorous toolkit. We also conducted a semi-structured on-
line pilot survey with practitioners and researchers to evaluate the potential of
our idea for artifact management. The initial results are encouraging for us to
continue with this research line.

48

Chapter 5

Collaborative requirements validation

In the previous chapter, we discussed how requirements can be created as first-
class artifacts directly in an IDE. As we discussed in section 2.3, the current
workflow support for BDD expects non-technical stakeholders to use an IDE to
specify textual scenarios in the Gherkin language and verify the behavior using
test passed/failed reports. Research to date shows that this approach leads
them to write redundant Gherkin specifications and makes testers perceive
BDD as an overhead in addition to the testing. In this chapter, we discuss how
we can engage non-technical stakeholders in verifying requirements in an IDE.
The results of this study have been published in the Proceedings of the 25th
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems (MODELS): Companion Proceedings.

5.1 Collaborative validation

5.1.1 A running example

To exemplify the second part of citizen requirements, we need an example
that resembles a real-world situation. When the Corona pandemic started
in Europe and lockdowns were imposed in various parts in March 2020, the
German federal government proposed changes to the value-added tax (VAT)
system to help the gastronomy industry.1 We find the new VAT rules quite
interesting and wonder how they can be implemented on a short notice in all
restaurants.

Let us consider that we need to update an existing invoicing system for a
restaurant and consequently verify if the new invoices are calculated correctly.
The invoicing system allows its users to add menu items to an order, and
indicate if those items were consumed inside the restaurant or were ordered for
take away. The new invoices should correctly reflect a change in value added
tax (VAT) calculation. A different VAT should apply for the same menu item
depending on whether it is for take away or on-site consumption.

1The new VAT system: accessed November 12, 2020, https://www.hellotax.com/
blog/new-vat-rates-germany/

49

https://www.hellotax.com/blog/new-vat-rates-germany/
https://www.hellotax.com/blog/new-vat-rates-germany/

5. Collaborative requirements validation

Menu item On site VAT Takeaway VAT %

Black coffee 19 19
Cappuccino 19 7
Pizza Margherita 19 7

The invoice contains the total cost of ordered menu items and a VAT. The
invoicing example is a little more complicated as it involves complex domain
objects, such as of type Invoice and Order. To verify the user story As a
waiter, I want to be able to view the total price before printing the invoice, one
can write scenarios such as:

1 Scenario 1: Customers place an order to take away
2 (only milk products)
3 Given an empty order
4 When the waiter adds Cappuccino to the empty order
5 And a cup of Cappuccino costs 4 EUR
6 And a cup of Cappuccino is taxed at 7%
7 And the waiter generates the Invoice for the order
8 Then the total invoice price is 7.28 EUR
9

10 Scenario 2: Customers place an order to take away
11 (combination of non-milk and milk products)
12 Given an empty order
13 When the waiter adds a Cappuccino and a black coffee
14 to the empty order
15 And a cup of Cappuccino costs 4 EUR
16 And a cup of black coffee costs 3 EUR
17 And a cup of Cappuccino is taxed at 7%
18 And a cup of black coffee is taxed at 19%
19 And the waiter generates the Invoice for the order
20 Then the total invoice price is 7.85 EUR

Listing 8: Sample scenarios for the invoicing application

The final price in the Then statement in the first scenario is purposefully incor-
rect. In section A.6, we list the complete requirements for such an application
decomposed into user stories, and corresponding scenarios.

The typical current BDD workflow faces two issues here. First, this work-
flow leads non-technical stakeholders to write numerous scenarios with minor
variations, such as in input parameter values, and requires them to specify the
test assertions. As we mentioned earlier, keywords, such as Scenario Outline,
and data tables were introduced to reduce the redundancy in Gherkin spec-
ification. However, our manual inspection of 23 open-source projects shows
that data tables are rather moderately used. Second, using the test run status
as a means to verify behavior obscures details of logical mistakes made in the
scenario specification. A non-technical stakeholder manually had to calculate
the expected results during specification. Although it is a common practice in
testing in general, it can lead to software run-time errors that are difficult to
locate in the textual specifications.

5.1.2 Workflow

In Figure 51, we outline our proposed BDD workflow. Developers will create
classes and implement the behavior of those classes in the methods. How-
ever, instead of specifying behavior and updating test cases, they only need
to insert the assertions in the fully-generated test cases. Developers will also
create GUIs for object creation and views to explore details of run-time ob-
jects visually. Non-technical stakeholders, on the other hand, will use GUIs to
compose and save scenarios. If they wish, they can also insert the assertions

50

5.1. Collaborative validation

Create classes
and GUI

(technical
stakeholder)

Create views

(technical
stakeholder)

Create objects

(non-technical
stakeholder)

Generate and run
tests, save as

scenarios

(non-technical
stakeholder)

Figure 51: Proposed BDD process

in the fully-generated test cases. In other words, non-technical stakeholders do
not need to write textual scenarios. Instead of test run status, they will use a
domain-specific representation of the involved objects to verify the implemented
behavior. Technical stakeholders, on the other hand, need to implement GUIs
for object creation and object representation.

Let us consider that we have two stakeholders, Bob, who is a non-technical
domain expert, and Melinda, the developer. As scenarios elaborate a spe-
cific user story, by using the building blocks (i.e., GUIs, examples, and views)
Bob can interactively create scenarios as first-class entities as described next.
Note that except for the test case generation, no other step in the workflow
is automated– each step still requires manual effort from the concerned stake-
holders, however the type of interaction with the system is different compared
to the existing BDD workflow. Our proposed workflow divides the process
of scenario creation and verification into the following four steps: (1) create
classes and GUIs, (2) create domain objects, (3) generate test cases and save
as scenarios, and (4) create views. We detail below each step.

Create meta-infrastructure: classes and GUIs

The user story As a waiter, I want to add menu items to prepare an order
contains the following domain concepts: Waiter, MenuItem, and Order. This
user story also specifies expected behavior, i.e., an order is created by adding
menu items to it. Melinda creates classes for the domain concepts involved
in a particular user story and builds GUI that would enable Bob to create
run-time objects for these classes. For instance, the GUI in Figure 52 enables
creating run-time objects of type MenuItem. This interface enables Bob to create
a Cappuccino object, and provide details, such as the price and VAT. Melinda
also implements the methods that define behavior for each class. For generic
GUIs, which are often standard views to show a list of something, the cost of
creation is similar as in any other language. However, the GUIs for composing
examples are specific ones, which might require editing of properties of objects.
The creation of such kinds of GUIs could also be optimized. One way to do
it is using existing frameworks, such as Magritte.2 Magritte needs an object
with some annotations, and from that model it generates GUIs for editing that
object [109]. In our case, we generate GUIs for editing the examples from
the example method, see Figure 53. The view uses the annotations in the
source code of the example to determine how to create the GUI for specifying
parameters for the example.

2“Magritte,” https://github.com/magritte-metamodel/magritte

51

https://github.com/magritte-metamodel/magritte

5. Collaborative requirements validation

Figure 52: A GUI to create a simple domain object and save the example as
an operation

Create domain objects

Now, Bob can create several instances of concerned classes by using the pro-
vided GUI. When he clicks on the “Generate” button in Figure 52, the cor-
responding example method is created, see the right hand window. When
anyone executes this newly created example method, it always returns the
same Cappuccino object with selected price and tax. Once the basic domain
objects are created, they can be used to create more complex domain objects.
For example, an Order could be composed from various existing MenuItems. To
enable Bob to create such complex domain objects, Melinda creates a tailored
graphical interface. For instance, the graphical interface in Figure 54 is popu-
lated with various already created simple objects, i.e., Cappuccino and Coffee,
that appear as a list in a drop-down menu. Bob uses this interface to create
complex objects and save the selection as another example method (see Fig-
ure 55a). Here, Bob creates an Invoice object for an Order with two menu
items (i.e., Cappuccino and Coffee). However, instead of “Generate,” now he
clicks on the “Run” button to explore the resulting Invoice object visually.

Create test cases and save scenarios

The tailored graphical interfaces, shown in Figure 52 and Figure 54, essen-
tially enable Bob to create both simple and complex domain objects and also
generate an example method that when executed returns a specific domain ob-
ject. Examples represent a concrete scenario. To save an example method as a
scenario, Bob clicks on the “X” button in the right hand side window of Fig-
ure 52. This saves the newly created scenario for a particular user story, and
Bob can always access it from one of the views for a UserStory (see Figure 56).
Melinda or Bob add assertions (see Figure 57) to this newly generated example
method to test the specified behavior in the respective methods of the domain
classes. With this approach, instead of writing scenarios textually, Bob could
interactively create simple domain objects (e.g., Cappuccino and Coffee) and

52

5.1. Collaborative validation

(a) A GUI to create a simple domain object

(b) The source code of the corresponding example method

Figure 53: Creating a custom GUI

use those to create complex domain objects (e.g., Order). He could save the

53

5. Collaborative requirements validation

selection of Cappuccino and Coffee to an Order as an example method, which
will return the same Order instance with Cappuccino and Coffee when executed.
This example method is attached to the Scenario object.

Create views

Both Bob and Melinda need different representations of domain objects to
accomplish distinct tasks. For instance, Bob, being a non-technical stakeholder,
needs to determine whether the correct number of menu items are added to an
Order object, whether correct prices and tax rates are applied to each MenuItem

object, and whether the final price is accurately calculated in Invoice object.
He uses the printable representation of the Invoice object in Figure 55a that
fulfills his needs. Likewise, Melinda, being a developer, needs to understand
how an Invoice object is constructed. She uses the composition presentation of
the Invoice object in Figure 55b to explore how it is made up of other objects,
such as of type Cappuccino, with their corresponding properties, such as applied
tax rates. Note that the process of creating objects and views is iterative and
incremental— views can be designed as the necessity arises to explore some
specific details of a specific domain object. Theoretically, Melinda could create
the printable invoice view when she first created the class Invoice.

With this approach the application behavior becomes verifiable by stake-
holders by inspecting domain objects instead of reading a test report. Notably,
this approach does not eliminate the need for test cases. The example meth-
ods not only serve as test cases, but also augment them with domain-specific

Figure 54: A GUI to select simple domain objects

54

5.1. Collaborative validation

(a) A GUI to create complex domain object and explore the resulting object with
printable view

(b) A GUI to create complex domain object and explore the resulting object with
composition view

Figure 55: Custom entity representations

Figure 56: Scenarios are attached to a user story

representations of the involved run-time objects.

55

5. Collaborative requirements validation

Figure 57: Adding assertions to an example method

5.2 Conclusion

In this chapter, we proposed an alternative BDD process to engage both tech-
nical and non-technical stakeholders in specifying and verifying the application
behavior directly in an IDE. We demonstrate through a running example of
invoicing system for restaurants how non-technical stakeholders can visually
compose behavior tests and discover inconsistencies in the underlying domain
model through an inspectable output. Our proposed building blocks for an
IDE allow to better integrate both technical and non-technical stakeholders in
the BDD process.

56

Chapter 6

Implications

In this chapter, we discuss two main implications of citizen requirements,
namely, live documentation and agile domain modeling.

6.1 Live documentation

Live programming environments historically provide immediate feedback to
developers about their changes to the running system. Early research in this
area was mostly limited to constructing live visual languages [126, 127, 28].
More recent research efforts in live programming support live data analysis
and visualization [77, 46, 71, 150].

With the same idea discussed in chapter 4, we can create various project-
related documents as first-class entities themselves. One can dynamically create
several documents that consume different artifacts and explain specific aspects
of a running system. For non-technical stakeholders such documents can ag-
gregate project-related information for requirements-related entities. In this
section, we show how we can compose user stories, mindmaps, and scenarios
into an interactive and live documentation. We explain using two situations
and a type of documentation that might help a specific stakeholder to accom-
plish a goal in that situation.

6.1.1 A Kanban board

Now, let us consider a non-technical stakeholder, such as a product owner,
needs an overview of the up-to-date progress of the project. Traditionally,
she will use an existing project management tool, such as Trello or GitHub
projects. Such tools help to track a lot of development progress-related data:
an overview of accomplished work, types of remaining tasks in the pipeline etc.
With our approach, we can provide a similar overview in an IDE itself.

A Kanban board can serve as project documentation that helps product
owners track the live progress of the project. In Figure 62, we present a sample
Kanban board composed from existing user stories. Various user stories
are grouped into three columns: Not started, In progress, and Done, sorted
according to their current implementation status. Each user story is a first-
class entity and after clicking on the story card, its details are accessible right
next to the card representation.

57

6. Implications

F
ig

u
re

6
2
:

A
sa

m
p

le
in

-I
D

E
li

ve
K

a
n
b

a
n

b
o
a
rd

58

6.1. Live documentation

6.1.2 An interactive tutorial

Another example of documentation is tutorials. Tutorials explain various
things, e.g., an algorithm, a functionality, even a programming language, step
by step to users. Tutorials that involve programming are largely available as
video tutorials or blog posts that show a similar pattern: textual documents
with static code snippets. There exist online platforms that provide interac-
tive tutorials where users can copy-paste small code snippets in their editor and
subsequently explore the execution results. However, such tools and services
are limited in the functionality they provide, and cannot be used to explain
complicated domain-specific details. In Figure 61, we show an interactive tu-
torial that explains an algorithm that assigns medical staff to a schedule for
one day. This document embeds the already created executable scenarios with

Figure 61: Interactive in-IDE live tutorial

supporting text. A user executes scenarios inline and explores the results right
next to it without losing the context.

59

6. Implications

6.2 Agile modeling

Another implication of Citizen requirements is on domain modeling. We can
use the same building blocks to automate guided assistance through the best
practices of the object-oriented design to identify, add, and describe domain
entities. We imagine two main steps in such a modeling workflow: (1) analyzing
the textual requirements, and (2) describing the behavior of identified domain
entities.

6.2.1 Analyze the textual requirements

The object-oriented design process suggests to take the nouns and verbs from
the requirement as a starting point for domain modeling, and as candidate
classes and responsibilities [145]. Therefore, the first step in our envisioned
workflow is to identify domain entities from the textual requirements. In Fig-
ure 63, we show how domain experts could annotate a word in any textual
requirements document (in this case, a user story) to identify it as a domain
concept. However, the initial list of identified entities must periodically be

Figure 63: An annotated user story

sanitized to form the final list, which contains stable domain abstractions. For
instance, consider the following two user stories: As a waiter, I want to add
Cappuccino to an order, and As a customer, I want to order pizza to take away.
Although Cappuccino and Pizza are nouns and potential domain entities, both
are kinds of menu items. The modeling workflow must assist domain experts
in identifying and recording such relationships among identified domain en-
tities. At the end of the analysis step, we should have a sanitized pool of
domain entities to which everyone agrees. What we see in the right-hand side
window of Figure 64 is a pool of entities after a user has annotated multiple
words from textual requirements. This view allows users to specify the kind-
of relationships between identified entities. Borrowing the terminology from
domain-driven design, in this step, the team engages in creating a ubiquitous
language [54]. The language (and model) evolves as the team’s understanding

60

6.2. Agile modeling

of the domain grows.

Figure 64: A pool of sanitized entities and their relationships

6.2.2 Describe the responsibilities of domain entities

In the next step, users describe the responsibilities of the identified entities.
The responsibilities of an entity is the information it holds and services it
provides to other entities. Users could use a dedicated view that allows them
to edit the details (i.e., provided data and services) of the identified entities.
In Figure 65, in the rightmost window we see a view that lets users specify
data fields for a domain concept.

Figure 65: Graphically editing a domain concept

61

6. Implications

It is necessary to make sure that an entity is in a valid state after its
construction and before and after invoking every public method. Design by
contract is an approach to define formal, precise and verifiable interface speci-
fications [85]. These specifications are referred to as “contracts.” Such explicit
contracts bind the client entities to pose valid requests and bind the provider
entities to provide the service correctly. With our envisioned agile modeling
workflow, we also intend to support domain experts in specifying contracts for
the identified entities. With some improvements to the user interface, users can
add a textual description to each entity. With such a description, modelers can
specify any constraints. It is up to the developers to decide how to guarantee
the design by contract in their implementation so that they do not compromise
the performance.

Finally, a user must also specify a list of messages an entity understands and
reacts to. Pharo is based on the concept of sending messages to objects. This
reflects the idea that objects are responsible for their own actions and that the
method associated with the message is looked up dynamically. When sending
a message to an object, the object, and not the sender, selects the appropriate
method for responding to your message. In most cases, the method with the
same name as the message is executed [50]. For example, for a “waiter” entity,
some of the possible messages could be: receiveOrderFromTable, forwardOrder,
and deliverOrderToTable. Modelers can attach a textual description to each
identified message as well, which elaborates its content and intention. It is
up to the developers to decide how to implement the identified messages as
methods.

6.3 Conclusion

In this chapter, we discussed two main implications of the citizen requirements
approach. We showed how the discussed building blocks of citizen requirements
can help us create and maintain an in-IDE live documentation. We compose
documentation out of existing artifacts. Next, we showed how the same build-
ing blocks can help us design a modeling workflow that will automate guided
assistance through the best practices of the object-oriented design. We believe
that compared to existing modeling approaches, such a lightweight modeling
workflow is a better alternative to agile domain modeling.

62

Chapter 7

Conclusions

With more software development companies adopting agile methodologies, it
has become crucial to support collaboration among diverse stakeholders to fa-
cilitate rapid development and feedback loops. Developing more specialized
tools and integrating them into development toolchains is of little help for col-
laboration. Employing distinct tools requires a tremendous amount of effort
and coordination to make those tools interact with each other and establish
traceability among numerous artifacts produced in them. Below we elaborate
on the contributions that resulted from our research and describe future direc-
tions.

7.1 Contributions

Our contributions are the following:

1. We systematically studied the current landscape of requirements engi-
neering tools. We found that at present, a dedicated set of tools support
a particular requirements engineering activity and there is a growing tool
specialization. Notwithstanding, most of the studied tools were early pro-
totypes that were unavailable to the research community or industry as
of now. We present the results of an analysis of 62 software development-
related artifacts. We highlight that an artifact is often mutated in dif-
ferent development phases and is used by various stakeholders for dis-
tinct reasons. We also analyzed the contents of 1,572 Gherkin files from
23 open-source projects and features of 13 open-source BDD tools. We
found that the current support for BDD is not adequate for non-technical
stakeholders (chapter 2).

2. We discuss the building blocks that can be implemented in any IDE to
adapt it as a software and requirements engineering platform (chapter 3).
These building blocks help support stakeholders with agile development.

3. We discuss and demonstrate an approach to create and maintain software-
related artifacts as first-class entities in an IDE (chapter 4).

4. We discuss and demonstrate an alternative approach to specify and verify
domain entity behavior interactively and visually in an IDE (chapter 5).

63

7. Conclusions

5. We discuss the implications of our proposed approach on project docu-
mentation and domain modeling (chapter 6).

7.2 Future work

We believe that in requirements and software engineering there are several
avenues to follow up. As our next steps, we imagine several improvements to
the citizen requirements approach.

7.2.1 Empirical studies

There are various opportunities to conduct empirical studies.

Requirements engineering

There is no comprehensive information available about the current collabora-
tive requirements engineering tools and features they provide. An empirical
study investigating the current collaborative RE tools landscape would be a
novel contribution to the research community. Likewise, there are various pos-
sible extensions of our SLR, the obvious being investigating the underlying
purposes and features of the identified tools.

Behavior-driven development

Our analysis of Gherkin feature files makes us curious to understand the prac-
titioners’ viewpoint about Gherkin syntax. Likewise, we would also like to
investigate the efforts needed to maintain Gherkin feature files together with
the test cases.

Agile modeling

Although there exist few empirical studies that discuss collaborative modeling,
to the best of our knowledge, no empirical study regarding tool support for
agile modeling exists. Such a study will characterize the current advances
and support for modeling and contrast and compare it with the traditional
approaches.

Documentation

Although there exist few studies on knowledge-based documentation and doc-
umentation in agile practices, to the best of our knowledge, a comprehensive
overview of live documentation strategies and approaches is still missing. Such
a study can help us characterize the potentials and limitations of the proposed
approaches and compare ours with the existing ones.

Collaborative tools

Although there exist several tool survey studies, no recent one, to the best
of our knowledge, has analyzed contemporary collaborative development tools
and how they support various stakeholders in agile development. Such an

64

7.2. Future work

Re
lea
se

Plan

Figure 71: A modified DevOps cycle

empirical study will not only allow us to report the specifics of collaborative
features but also the limitations and barriers they pose to agile development.

7.2.2 Improving the existing infrastructure

In this doctoral thesis, we demonstrated sample implementation of various
research ideas. Going forward, a significant work can be done in various direc-
tions.

User interface design

We need to determine through an empirical study the interaction necessities
of non-technical stakeholders while using an IDE. The knowledge gathered
through such a study will help us design usable GUIs for artifact creation,
exploration, and manipulation. We must also put effort into designing GUIs
that could be useful across more number application domains.

Extending the current support

We can design a more stakeholder-inclusive workflow by implementing a wide
variety of artifacts. Likewise, the existing behavior verification and modeling
workflow can also be improved by adding intermediate steps and corresponding
GUIs.

Extending DevOps cycle

As we maintain various artifacts— produced in the early development phases—
together with the source code, the typical DevOps cycle can be adapted further
to include additional phases as shown in Figure 71.

7.2.3 Evaluation in a practical setting

Although a pilot survey gave us confidence that our proposed approach is
intriguing for practitioners, we need to conduct other types of evaluations.
Particularly, we need a user study to analyze how practitioners use such a
workflow in a real setting and compare time and effort needed to accomplish
various tasks in traditional and proposed settings. We also need to conduct a
user study to compare the efforts and time needed to do BDD in traditional
and proposed settings.

65

7. Conclusions

7.3 Summary and conclusion

By examining the existing literature, we found that existing tool support for
engineering requirements and behavior verification focuses on individual RE
activities and lacks collaborative features. In this doctoral thesis, we argued
that we should refrain from using independent tools and proposing toolchains
to support stakeholders with agile development. With this approach, numerous
software-related artifacts scatter among employed tools, and establishing trace-
ability between artifacts becomes cumbersome. Instead, we propose to adapt
an IDE to be a platform for both requirements and software engineering. With
our approach, we connect requirements at various levels of abstraction to each
other and to the application source code through object-oriented relationships.
We discuss the building blocks that can be implemented in any reflective IDE
with a rich-enough graphical engine. To enable such an approach in a soft-
ware world, we demonstrate how we can provide in-IDE support for various
stakeholders for creating and manipulating various software-related artifacts.
Similarly, we compose live executable documentation from the existing arti-
facts. We demonstrate how to provide support for non-technical stakeholders
for creating and manipulating business entities directly in an IDE through ap-
propriate graphical interfaces. Finally, we demonstrate how to provide support
for modeling rapidly evolving domains and verifying the application behavior.

We believe that with this work, in the future, we will approach the soft-
ware development process with a fresh mind. We will motivate researchers to
look at traceability and documentation problems from a different perspective.
Likewise, we will motivate researchers to look at collaboration from a process
perspective rather than a tool perspective.

66

Bibliography

[1] Enterprise architect. https://sparxsystems.com/. Accessed: 2021-
04-03.

[2] Gherkin reference. https://github.com/cucumber/common/
blob/main/gherkin/CHANGELOG.md. Accessed: 2021-04-03.

[3] Glamorous toolkit. http://gtoolkit.com/. Accessed: 2021-04-03.

[4] Lucid chart. https://www.lucidchart.com/pages/examples/
uml_diagram_tool. Accessed: 2021-04-03.

[5] Rational doors. https://www.ibm.com/products/
requirements-management. Accessed: 2021-04-03.

[6] Ulrike Abelein and Barbara Paech. A proposal for enhancing user-
developer communication in large it projects. In 2012 5th International
Workshop on Co-operative and Human Aspects of Software Engineering
(CHASE), pages 1–3. IEEE, 2012.

[7] Philip Achimugu, Ali Selamat, Roliana Ibrahim, and Mohd Naz’ri
Mahrin. A systematic literature review of software requirements prior-
itization research. Information and software technology, 56(6):568–585,
2014.

[8] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-
Vásquez, Laura Moreno, Gabriele Bavota, and Michele Lanza. Software
documentation issues unveiled. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 1199–1210. IEEE,
2019.

[9] Diego Albuquerque, Bruno Cafeo, Alessandro Garcia, Simone Barbosa,
Silvia Abrahao, and António Ribeiro. Quantifying usability of domain-
specific languages: An empirical study on software maintenance. Journal
of Systems and Software, 101:245–259, 2015.

[10] Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. Trustrace: Min-
ing software repositories to improve the accuracy of requirement trace-
ability links. IEEE Transactions on Software Engineering, 39(5):725–741,
2012.

67

https://sparxsystems.com/
https://github.com/cucumber/common/blob/main/gherkin/CHANGELOG.md
https://github.com/cucumber/common/blob/main/gherkin/CHANGELOG.md
http://gtoolkit.com/
https://www.lucidchart.com/pages/examples/uml_diagram_tool
https://www.lucidchart.com/pages/examples/uml_diagram_tool
https://www.ibm.com/products/requirements-management
https://www.ibm.com/products/requirements-management

Bibliography

[11] Vander Alves, Nan Niu, Carina Alves, and George Valença. Requirements
engineering for software product lines: A systematic literature review.
Information and Software Technology, 52(8):806–820, 2010.

[12] Scott Ambler. Agile modeling: effective practices for extreme program-
ming and the unified process. John Wiley & Sons, 2002.

[13] Talat Ambreen, Naveed Ikram, Muhammad Usman, and Mahmood Ni-
azi. Empirical research in requirements engineering: trends and oppor-
tunities. Requirements Engineering, 23(1):63–95, 2018.

[14] Pablo Oliveira Antonino, Thorsten Keuler, Nicolas Germann, and Brian
Cronauer. A non-invasive approach to trace architecture design, require-
ments specification and agile artifacts. In 2014 23rd Australian Software
Engineering Conference, pages 220–229. IEEE, 2014.

[15] Hazeline U Asuncion and Richard N Taylor. Automated techniques for
capturing custom traceability links across heterogeneous artifacts. In
Software and Systems Traceability, pages 129–146. Springer, 2012.

[16] Julian M. Bass. Artefacts and agile method tailoring in large-scale
offshore software development programmes. Information and Software
Technology, 75:1 – 16, 2016.

[17] Marina Berkovich, Sebastian Esch, Christian Mauro, Jan Marco Leimeis-
ter, and Helmut Krcmar. Towards an artifact model for requirements to
it-enabled product service systems. 2011.

[18] Paul Beynon-Davies, Chris Carne, Hugh Mackay, and Douglas Tudhope.
Rapid application development (rad): an empirical review. European
Journal of Information Systems, 8(3):211–223, 1999.

[19] Niels Bik, Garm Lucassen, and Sjaak Brinkkemper. A reference method
for user story requirements in agile systems development. In 2017
IEEE 25th International Requirements Engineering Conference Work-
shops (REW), pages 292–298. IEEE, 2017.

[20] Leonard Peter Binamungu, Suzanne M Embury, and Nikolaos Konstanti-
nou. Detecting duplicate examples in behaviour driven development spec-
ifications. In 2018 IEEE Workshop on Validation, Analysis and Evolution
of Software Tests (VST), pages 6–10. IEEE, 2018.

[21] Leonard Peter Binamungu, Suzanne M Embury, and Nikolaos Konstanti-
nou. Maintaining behaviour driven development specifications: Chal-
lenges and opportunities. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 175–
184. IEEE, 2018.

[22] Leonard Peter Binamungu, Suzanne M Embury, and Nikolaos Konstanti-
nou. Characterising the quality of behaviour driven development spec-
ifications. In International Conference on Agile Software Development,
pages 87–102. Springer, Cham, 2020.

68

Bibliography

[23] Steve Boßelmann, Markus Frohme, Dawid Kopetzki, Michael Lybecait,
Stefan Naujokat, Johannes Neubauer, Dominic Wirkner, Philip Zweihoff,
and Bernhard Steffen. Dime: a programming-less modeling environment
for web applications. In International Symposium on Leveraging Appli-
cations of Formal Methods, pages 809–832. Springer, 2016.

[24] Juan Boubeta-Puig, Guadalupe Ortiz, and Inmaculada Medina-Bulo.
Model4cep: Graphical domain-specific modeling languages for cep
domains and event patterns. Expert Systems with Applications,
42(21):8095–8110, 2015.

[25] Janis A Bubenko. Challenges in requirements engineering. In Proceedings
of 1995 IEEE International Symposium on Requirements Engineering
(RE’95), pages 160–162. IEEE, 1995.

[26] Thomas Buchmann. Towards tool support for agile modeling: sketching
equals modeling. In Proceedings of the 2012 Extreme Modeling Workshop,
pages 9–14, 2012.

[27] Thomas Buchmann and Sandra Greiner. Handcrafting a triple graph
transformation system to realize round-trip engineering between uml
class models and java source code. In International Conference on Soft-
ware Paradigm Trends, volume 2, pages 27–38. SCITEPRESS, 2016.

[28] Margaret M Burnett, John Wesley Atwood, and Zachary T Welch. Im-
plementing level 4 liveness in declarative visual programming languages.
In Proceedings. 1998 IEEE Symposium on Visual Languages (Cat. No.
98TB100254), pages 126–133. IEEE, 1998.

[29] Manuel F Caro, Darsana P Josyula, Jovani A Jiménez, Catriona M
Kennedy, and Michael T Cox. A domain-specific visual language for
modeling metacognition in intelligent systems. Biologically Inspired Cog-
nitive Architectures, 13:75–90, 2015.

[30] Laura Carvajal, Ana M Moreno, Maria-Isabel Sanchez-Segura, and
Ahmed Seffah. Usability through software design. IEEE Transactions
on Software Engineering, 39(11):1582–1596, 2013.

[31] Glenn Cavarlé, Alain Plantec, Steven Costiou, and Vincent Ribaud. Dy-
namic round-trip engineering in the context of fomdd. In Proceedings of
the 11th edition of the International Workshop on Smalltalk Technologies,
pages 1–7, 2016.

[32] Adwait Chandorkar, Nitish Patkar, Andrea Di Sorbo, and Oscar Nier-
strasz. An exploratory study on the usage of gherkin features in open-
source projects. 2022.

[33] Betty HC Cheng and Joanne M Atlee. Research directions in require-
ments engineering. In 2007 Future of Software Engineering, pages 285–
303. IEEE Computer Society, 2007.

[34] Sridhar Chimalakonda and Dan Hyung Lee. On the evolution of software
and systems product line standards. ACM SIGSOFT Software Engineer-
ing Notes, 41(3):27–30, 2016.

69

Bibliography

[35] Andrei Chis. Moldable tools. Lulu. com, 2016.

[36] Andrei Chiş, Oscar Nierstrasz, Aliaksei Syrel, and Tudor Gı̂rba. The
moldable inspector. In 2015 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software
(Onward!), pages 44–60, 2015.

[37] Rance Cleaveland. Programming is modeling. In International Sym-
posium on Leveraging Applications of Formal Methods, pages 150–161.
Springer, 2018.

[38] Oliver Creighton, Martin Ott, and Bernd Bruegge. Software cinema-
video-based requirements engineering. In 14th IEEE International Re-
quirements Engineering Conference (RE’06), pages 109–118. IEEE, 2006.

[39] Cucumber. Tool website at https://cucumber.io/. Accessed: 2020-
11-22.

[40] Robertas Damaševičius. Analysis of software design artifacts for socio-
technical aspects. INFOCOMP Journal of Computer Science, 6(4):7–16,
2007.

[41] Joern David, Maximilian Koegel, Helmut Naughton, and Jonas Helming.
Traceability rearmed. In 2009 33rd Annual IEEE International Computer
Software and Applications Conference, volume 1, pages 340–348. IEEE,
2009.

[42] Alan Davis, Oscar Dieste, Ann Hickey, Natalia Juristo, and Ana M
Moreno. Effectiveness of requirements elicitation techniques: Empiri-
cal results derived from a systematic review. In 14th IEEE International
Requirements Engineering Conference (RE’06), pages 179–188. IEEE,
2006.

[43] Alan Davis, Ann Hickey, Oscar Dieste, Natalia Juristo, and Ana Moreno.
A quantitative assessment of requirements engineering publications–
1963–2006. In International Working Conference on Requirements Engi-
neering: Foundation for Software Quality, pages 129–143. Springer, 2007.

[44] Juan M Carrillo de Gea, Joaqúın Nicolás, José L Fernández Alemán,
Ambrosio Toval, Christof Ebert, and Aurora Vizcáıno. Requirements
engineering tools. IEEE software, 28(4):86–91, 2011.

[45] Juan M Carrillo De Gea, Joaqúın Nicolás, José L Fernández Alemán,
Ambrosio Toval, Christof Ebert, and Aurora Vizcáıno. Requirements
engineering tools: Capabilities, survey and assessment. Information and
Software Technology, 54(10):1142–1157, 2012.

[46] Robert DeLine and Danyel Fisher. Supporting exploratory data analysis
with live programming. In 2015 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pages 111–119. IEEE, 2015.

[47] Philipp Diebold and Marc Dahlem. Agile practices in practice: a mapping
study. In Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering, pages 1–10, 2014.

70

https://cucumber.io/

Bibliography

[48] Andreas Drechsler. Designing to inform: Toward conceptualizing prac-
titioner audiences for socio-technical artifacts in design science research
in the information systems discipline. Informing Sci. Int. J. an Emerg.
Transdiscipl., 18:31–47, 2015.

[49] Andreas Drechsler, Alan R Hevner, and T Grandon Gill. Beyond rigor
and relevance: Exploring artifact resonance. In 2016 49th Hawaii inter-
national conference on system sciences (HICSS), pages 4434–4443. IEEE,
2016.

[50] Ducasse. Pharo by example https://books.pharo.org/
updated-pharo-by-example/. Accessed: 2021-30-11.

[51] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela
Damian. Selecting empirical methods for software engineering research.
In Guide to advanced empirical software engineering, pages 285–311.
Springer, 2008.

[52] Peter Eeles and Oliver Sims. Building business objects. Wiley Publishing,
1998.

[53] David W Embley and Bernhard Thalheim. Handbook of conceptual mod-
eling: theory, practice, and research challenges. Springer, 2012.

[54] Eric Evans. Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2004.

[55] Markus Gaelli, Rafael Wampfler, and Oscar Nierstrasz. Composing tests
from examples. J. Object Technol., 6(9):71–86, 2007.

[56] Uri Gal, Kalle Lyytinen, and Youngjin Yoo. The dynamics of it bound-
ary objects, information infrastructures, and organisational identities:
the introduction of 3d modelling technologies into the architecture, en-
gineering, and construction industry. European journal of information
systems, 17(3):290–304, 2008.

[57] Andrei Garcia, Tiago Silva da Silva, and Milene Selbach Silveira. Arti-
facts for agile user-centered design: a systematic mapping. Proceedings
of the 50th Hawaii International Conference on System Sciences, 2017.

[58] Martin Glinz. Should requirements be objects? In Tutorial Position
Paper, 14th Annual International Symposium on Systems Engineering.
Citeseer, 2004.

[59] Fahad R Golra, Antoine Beugnard, Fabien Dagnat, Sylvain Guerin, and
Christophe Guychard. Using free modeling as an agile method for de-
veloping domain specific modeling languages. In Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineer-
ing Languages and Systems, pages 24–34, 2016.

[60] Orlena Gotel and Anthony Finkelstein. Contribution structures [require-
ments artifacts]. In Proceedings of 1995 IEEE International Symposium
on Requirements Engineering (RE’95), pages 100–107. IEEE, 1995.

71

https://books.pharo.org/updated-pharo-by-example/
https://books.pharo.org/updated-pharo-by-example/

Bibliography

[61] Orlena CZ Gotel and CW Finkelstein. An analysis of the requirements
traceability problem. In Proceedings of IEEE International Conference
on Requirements Engineering, pages 94–101. IEEE, 1994.

[62] Orlena CZ Gotel, Francis T Marchese, and Stephen J Morris. On require-
ments visualization. In Second International Workshop on Requirements
Engineering Visualization (REV 2007), pages 11–11. IEEE, 2007.

[63] Lea Hänsenberger. Jexample-extending junit with explicit dependencies.
2008.

[64] Rashina Hoda and James Noble. Becoming agile: a grounded theory
of agile transitions in practice. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pages 141–151. IEEE, 2017.

[65] Manuel Imaz and David Benyon. How stories capture interactions. In
INTERACT, volume 99, pages 321–328, 1999.

[66] Irum Inayat, Siti Salwah Salim, Sabrina Marczak, Maya Daneva, and
Shahaboddin Shamshirband. A systematic literature review on agile re-
quirements engineering practices and challenges. Computers in human
behavior, 51:915–929, 2015.

[67] Marcin Jamro and Dariusz Rzonca. Agile and hierarchical round-trip
engineering of iec 61131-3 control software. Computers in Industry, 96:1–
9, 2018.

[68] JDave. Tool repository at https://github.com/jdave/JDave. Ac-
cessed: 2020-06-19.

[69] JIRA. Tool website at https://www.atlassian.com/software/
jira. Accessed: 2020-11-22.

[70] Hermann Kaindl. The missing link in requirements engineering. ACM
SIGSOFT Software Engineering Notes, 18(2):30–39, 1993.

[71] Hyeonsu Kang and Philip J Guo. Omnicode: A novice-oriented live
programming environment with always-on run-time value visualizations.
In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology, pages 737–745, 2017.

[72] Javed Ali Khan, Lin Liu, Lijie Wen, and Raian Ali. Crowd intelligence in
requirements engineering: Current status and future directions. In Inter-
national Working Conference on Requirements Engineering: Foundation
for Software Quality, pages 245–261. Springer, 2019.

[73] Barbara Kitchenham, O Pearl Brereton, David Budgen, Mark Turner,
John Bailey, and Stephen Linkman. Systematic literature reviews in
software engineering–a systematic literature review. Information and
software technology, 51(1):7–15, 2009.

[74] Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard, Pe-
ter W Jones, David C. Hoaglin, Khaled El Emam, and Jarrett Rosen-
berg. Preliminary guidelines for empirical research in software engineer-
ing. IEEE Transactions on software engineering, 28(8):721–734, 2002.

72

https://github.com/jdave/JDave
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira

Bibliography

[75] Charles W Krueger. Software reuse. ACM Computing Surveys (CSUR),
24(2):131–183, 1992.

[76] Adrian Kuhn, Bart Van Rompaey, Lea Haensenberger, Oscar Nierstrasz,
Serge Demeyer, Markus Gaelli, and Koenraad Van Leemput. Jexample:
Exploiting dependencies between tests to improve defect localization. In
International Conference on Agile Processes and Extreme Programming
in Software Engineering, pages 73–82. Springer, 2008.

[77] Remo Lemma and Michele Lanza. Co-evolution as the key for live pro-
gramming. In 2013 1st International Workshop on Live Programming
(LIVE), pages 9–10. IEEE, 2013.

[78] Rakesh Kumar Lenka, Srikant Kumar, and Sunakshi Mamgain. Behavior
driven development: Tools and challenges. In 2018 International Confer-
ence on Advances in Computing, Communication Control and Network-
ing (ICACCCN), pages 1032–1037. IEEE, 2018.

[79] Timothy C Lethbridge, Janice Singer, and Andrew Forward. How soft-
ware engineers use documentation: The state of the practice. IEEE
software, 20(6):35–39, 2003.

[80] LightBDD. Tool repository at https://github.com/LightBDD/
LightBDD. Accessed: 2020-06-19.

[81] Olga Liskin. How artifacts support and impede requirements communi-
cation. In Samuel A. Fricker and Kurt Schneider, editors, Requirements
Engineering: Foundation for Software Quality, pages 132–147, Cham,
2015. Springer International Publishing.

[82] Garm Lucassen, Fabiano Dalpiaz, Jan Martijn EM van der Werf, and
Sjaak Brinkkemper. The use and effectiveness of user stories in prac-
tice. In International working conference on requirements engineering:
Foundation for software quality, pages 205–222. Springer, 2016.

[83] Imran Mahmud and Vito Veneziano. Mind-mapping: An effective tech-
nique to facilitate requirements engineering in agile software develop-
ment. In 14th International Conference on Computer and Information
Technology (ICCIT 2011), pages 157–162. IEEE, 2011.

[84] Leonel Merino, Mohammad Ghafari, Craig Anslow, and Oscar Nierstrasz.
A systematic literature review of software visualization evaluation. Jour-
nal of Systems and Software, 144:165–180, 2018.

[85] Bertrand Meyer. Applying’design by contract’. Computer, 25(10):40–51,
1992.

[86] David Mosteller, Lawrence Cabac, and Michael Haustermann. Integrat-
ing petri net semantics in a model-driven approach: The renew meta-
modeling and transformation framework. In Transactions on Petri Nets
and Other Models of Concurrency XI, pages 92–113. Springer, 2016.

[87] MSpec. Tool repository at https://github.com/machine/
machine.specifications. Accessed: 2020-06-19.

73

https://github.com/LightBDD/LightBDD
https://github.com/LightBDD/LightBDD
https://github.com/machine/machine.specifications
https://github.com/machine/machine.specifications

Bibliography

[88] Brendan Murphy, Christian Bird, Thomas Zimmermann, Laurie
Williams, Nachiappan Nagappan, and Andrew Begel. Have agile tech-
niques been the silver bullet for software development at microsoft? In
2013 ACM/IEEE international symposium on empirical software engi-
neering and measurement, pages 75–84. IEEE, 2013.

[89] Leckraj Nagowah, Zarah Goolfee, and Chris Bergue. Rtet-a round trip
engineering tool. In 2013 International Conference of Information and
Communication Technology (ICoICT), pages 381–387. IEEE, 2013.

[90] Stefan Naujokat, Michael Lybecait, Dawid Kopetzki, and Bernhard Stef-
fen. Cinco: a simplicity-driven approach to full generation of domain-
specific graphical modeling tools. International Journal on Software Tools
for Technology Transfer, 20(3):327–354, 2018.

[91] NBehave. Tool repository at https://github.com/nbehave/
NBehave. Accessed: 2020-06-19.

[92] Oscar Nierstrasz. The death of object-oriented programming. In Interna-
tional Conference on Fundamental Approaches to Software Engineering,
pages 3–10. Springer, 2016.

[93] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a
roadmap. In Proceedings of the Conference on the Future of Software
Engineering, pages 35–46. ACM, 2000.

[94] Anton Okolnychyi and Konrad Fögen. A study of tools for behavior-
driven development. Full-scale Software Engineering/Current Trends in
Release Engineering, page 7, 2016.

[95] Carla Pacheco and Ivan Garcia. A systematic literature review of stake-
holder identification methods in requirements elicitation. Journal of Sys-
tems and Software, 85(9):2171–2181, 2012.

[96] Nitish Patkar. Moldable requirements. In Benevol 2020: Proceedings of
the 19th Belgium-Netherlands software evolution workshop, 2020.

[97] Nitish Patkar, Andrei Chis, Nataliia Stulova, and Oscar Nierstrasz. In-
teractive behavior-driven development: a low-code perspective. pages
128–137, 2021.

[98] Nitish Patkar, Andrei Chis, Nataliia Stulova, and Oscar Nierstrasz. First-
class artifacts as building blocks for live in-ide documentation. 2022.

[99] Jeff Patton and Peter Economy. User story mapping: discover the whole
story, build the right product. ” O’Reilly Media, Inc.”, 2014.

[100] Pawson. Framework website at http://www.nakedobjects.org/.
Accessed: 2021-12-17.

[101] Richard Pawson and Robert Matthews. Naked objects: a technique for
designing more expressive systems. ACM SIGPLAN Notices, 36(12):61–
67, 2001.

74

https://github.com/nbehave/NBehave
https://github.com/nbehave/NBehave
http://www.nakedobjects.org/

Bibliography

[102] Richard Pawson and Vincent Wade. Agile development using naked ob-
jects. In International Conference on Extreme Programming and Agile
Processes in Software Engineering, pages 97–103. Springer, 2003.

[103] Vito Perrone, Davide Bolchini, and Paolo Paolini. A stakeholders cen-
tered approach for conceptual modeling of communication-intensive ap-
plications. In Proceedings of the 23rd annual international conference on
Design of communication: documenting & designing for pervasive infor-
mation, pages 25–33, 2005.

[104] Marian Petre. Uml in practice. In 2013 35th international conference on
software engineering (icse), pages 722–731. IEEE, 2013.

[105] phpspec (http://www.phpspec.net/en/stable/). Tool repository
at https://github.com/phpspec/phpspec. Accessed: 2020-06-19.

[106] Awais Rashid, Peter Sawyer, Ana Moreira, and João Araújo. Early as-
pects: A model for aspect-oriented requirements engineering. In Proceed-
ings IEEE Joint International Conference on Requirements Engineering,
pages 199–202. IEEE, 2002.

[107] Sukanya Ratanotayanon, Susan Elliott Sim, and Derek J Raycraft. Cross-
artifact traceability using lightweight links. In 2009 ICSE Workshop on
Traceability in Emerging Forms of Software Engineering, pages 57–64.
IEEE, 2009.

[108] Mohammad S Raunak and David Binkley. Agile and other trends in
software engineering. In 2017 IEEE 28th Annual Software Technology
Conference (STC), pages 1–7. IEEE, 2017.

[109] Lukas Renggli, Stéphane Ducasse, and Adrian Kuhn. Magritte–a meta-
driven approach to empower developers and end users. In International
Conference on Model Driven Engineering Languages and Systems, pages
106–120. Springer, 2007.

[110] Clay Richardson and John R Rymer. New development platforms emerge
for customer-facing applications. 2014.

[111] Clay Richardson and John R Rymer. Vendor landscape: The fractured,
fertile terrain of low-code application platforms. FORRESTER, Janeiro,
2016.

[112] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso
Pierantonio. Supporting the understanding and comparison of low-code
development platforms. In 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 171–178. IEEE,
2020.

[113] E.-M. Schön, J. Thomaschewski, and M. J. Escalona. Identifying agile re-
quirements engineering patterns in industry. Association for Computing
Machinery, 2017.

[114] Eva-Maria Schön, Jörg Thomaschewski, and Maŕıa José Escalona. Ag-
ile requirements engineering: A systematic literature review. Computer
Standards & Interfaces, 49:79–91, 2017.

75

http://www.phpspec.net/en/stable/
https://github.com/phpspec/phpspec

Bibliography

[115] Shane Sendall and Jochen Küster. Taming model round-trip engineering.
In Proceedings of Workshop on Best Practices for Model-Driven Software
Development, volume 1. Citeseer, 2004.

[116] Björn Senft, Holger Fischer, Simon Oberthür, and Nitish Patkar. Assist
users to straightaway suggest and describe experienced problems. In In-
ternational Conference of Design, User Experience, and Usability, pages
758–770. Springer, 2018.

[117] Atif Shah, Mohamed Ali Alasow, Faisal Sajjad, and Jawad Javed Akbar
Baig. An evaluation of software requirements tools. In 2017 Eighth Inter-
national Conference on Intelligent Computing and Information Systems
(ICICIS), pages 278–283. IEEE, 2017.

[118] Thiago Rocha Silva, Jean-Luc Hak, and Marco Winckler. Testing pro-
totypes and final user interfaces through an ontological perspective for
behavior-driven development. In Human-Centered and Error-Resilient
Systems Development, pages 86–107. Springer, 2016.

[119] Mathias Soeken, Robert Wille, and Rolf Drechsler. Assisted behavior
driven development using natural language processing. In International
Conference on Modelling Techniques and Tools for Computer Perfor-
mance Evaluation, pages 269–287. Springer, 2012.

[120] Carlos Solis and Xiaofeng Wang. A study of the characteristics of be-
haviour driven development. In 2011 37th EUROMICRO Conference on
Software Engineering and Advanced Applications, pages 383–387. IEEE,
2011.

[121] Ian Sommerville. Software documentation. Software engineering, 2:143–
154, 2001.

[122] Specs2. Tool repository at https://etorreborre.github.io/
specs2/. Accessed: 2020-06-19.

[123] Christoph Johann Stettina, Werner Heijstek, and Tor Erlend Fægri. Doc-
umentation work in agile teams: The role of documentation formalism in
achieving a sustainable practice. In 2012 Agile Conference, pages 31–40.
IEEE, 2012.

[124] Christoph Johann Stettina and Egbert Kroon. Is there an agile han-
dover? an empirical study of documentation and project handover prac-
tices across agile software teams. In 2013 International Conference on
Engineering, Technology and Innovation (ICE) & IEEE International
Technology Management Conference, pages 1–12. IEEE, 2013.

[125] Alistair G Sutcliffe, Neil AM Maiden, Shailey Minocha, and Darrel
Manuel. Supporting scenario-based requirements engineering. IEEE
Transactions on software engineering, 24(12):1072–1088, 1998.

[126] Ivan E Sutherland. Sketchpad a man-machine graphical communication
system. Simulation, 2(5):R–3, 1964.

76

https://etorreborre.github.io/specs2/
https://etorreborre.github.io/specs2/

Bibliography

[127] Steven L Tanimoto. Viva: A visual language for image processing. Jour-
nal of Visual Languages & Computing, 1(2):127–139, 1990.

[128] Michael Alexander Tröls, Atif Mashkoor, and Alexander Egyed. Mul-
tifaceted consistency checking of collaborative engineering artifacts. In
2019 ACM/IEEE 22nd International Conference on Model Driven En-
gineering Languages and Systems Companion (MODELS-C), pages 278–
287. IEEE, 2019.

[129] Bernhard Turban. Tool-Based Requirement Traceability Between Require-
ment and Design Artifacts. Springer Science & Business Media, 2013.

[130] Easyb (http://easyb.io/v1/index.html). Accessed: 2020-06-19.

[131] JGiven (http://jgiven.org). Tool repository at https://
github.com/TNG/JGiven. Accessed: 2020-06-19.

[132] RSpec (http://rspec.info). Tool repository at https://github.
com/rspec. Accessed: 2020-06-19.

[133] StoryQ (https://archive.codeplex.com/?p=storyq). Ac-
cessed: 2020-06-19.

[134] Concordion (https://concordion.org). Accessed: 2020-06-19.

[135] Gauge (https://gauge.org). Tool repository at https://github.
com/getgauge/gauge. Accessed: 2020-06-19.

[136] JBehave (https://jbehave.org). Tool repository at https://
github.com/jbehave/jbehave-core. Accessed: 2020-06-19.

[137] Spock (http://spockframework.org/). Tool repository at https:
//github.com/spockframework/spock. Accessed: 2020-06-19.

[138] SpecFlow (https://specflow.org). Tool repository at https://
github.com/SpecFlowOSS/SpecFlow. Accessed: 2020-06-19.

[139] BDDfy (https://teststackbddfy.readthedocs.io/en/
latest/). Accessed: 2020-06-19.

[140] ScalaTest (http://www.scalatest.org/). Tool repository at
https://github.com/scalatest/scalatest. Accessed: 2020-
06-19.

[141] Ken Vanherpen, Joachim Denil, Hans Vangheluwe, and Paul De Meule-
naere. Model transformations for round-trip engineering in control de-
ployment co-design. In SpringSim (TMS-DEVS), pages 55–62, 2015.

[142] Niksa Visic, Hans-Georg Fill, Robert Andrei Buchmann, and Dimitris
Karagiannis. A domain-specific language for modeling method defini-
tion: From requirements to grammar. In 2015 IEEE 9th International
Conference on Research Challenges in Information Science (RCIS), pages
286–297. IEEE, 2015.

77

http://easyb.io/v1/index.html
http://jgiven.org
https://github.com/TNG/JGiven
https://github.com/TNG/JGiven
http://rspec.info
https://github.com/rspec
https://github.com/rspec
https://archive.codeplex.com/?p=storyq
https://concordion.org
https://gauge.org
https://github.com/getgauge/gauge
https://github.com/getgauge/gauge
https://jbehave.org
https://github.com/jbehave/jbehave-core
https://github.com/jbehave/jbehave-core
http://spockframework.org/
https://github.com/spockframework/spock
https://github.com/spockframework/spock
https://specflow.org
https://github.com/SpecFlowOSS/SpecFlow
https://github.com/SpecFlowOSS/SpecFlow
https://teststackbddfy.readthedocs.io/en/latest/
https://teststackbddfy.readthedocs.io/en/latest/
http://www.scalatest.org/
https://github.com/scalatest/scalatest

Bibliography

[143] Jiawei Wang, Li Li, and Andreas Zeller. Better code, better shar-
ing: on the need of analyzing jupyter notebooks. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineer-
ing: New Ideas and Emerging Results, pages 53–56, 2020.

[144] Dietmar Winkler, Richard Mordinyi, and Stefan Biffl. Research proto-
types versus products: lessons learned from software development pro-
cesses in research projects. In European Conference on Software Process
Improvement, pages 48–59. Springer, 2013.

[145] Rebecca Wirfs-Brock and Brian Wilkerson. Object-oriented design: A
responsibility-driven approach. ACM sigplan notices, 24(10):71–75, 1989.

[146] Matt Wynne, Aslak Hellesoy, and Steve Tooke. The cucumber book:
behaviour-driven development for testers and developers. Pragmatic
Bookshelf, 2017.

[147] Aidan ZH Yang, Daniel Alencar da Costa, and Ying Zou. Predicting co-
changes between functionality specifications and source code in behavior
driven development. In 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), pages 534–544. IEEE, 2019.

[148] Anna Zaitsev, Uri Gal, and Barney Tan. Coordination artifacts in ag-
ile software development. Information and Organization, 30(2):100288,
2020.

[149] Fiorella Zampetti, Andrea Di Sorbo, Corrado Aaron Visaggio, Gerardo
Canfora, and Massimiliano Di Penta. Demystifying the adoption of
behavior-driven development in open source projects. Information and
Software Technology, page 106311, 2020.

[150] Xiong Zhang and Philip J Guo. Ds. js: Turn any webpage into an
example-centric live programming environment for learning data science.
In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology, pages 691–702, 2017.

[151] Philip Zweihoff, Stefan Naujokat, and Bernhard Steffen. Pyro: Gen-
erating domain-specific collaborative online modeling environments. In
International Conference on Fundamental Approaches to Software Engi-
neering, pages 101–115. Springer, 2019.

78

Appendix A

Appendix

A.1 SLR methodology

In Figure A1, we sketch the process we followed. We assigned each of our
activities to one of the three SLR-related phases: planning, conducting the
review, and reporting.

A.1.1 Planning phase

In the planning phase, we established the objectives of the SLR, i.e., (i) to
identify publications that report a tool supporting one of the several RE ac-
tivities, i.e., elicitation, analysis, documentation, validation/negotiation, and
management, according to the CPRE syllabus, and (ii) to study the identified
tools from multiple dimensions as mentioned in the next subsection.

Specification of Research Questions

In conclusion, we specified the following two research questions:

• RQ1: What are the characteristics of RE tools?
We report our findings across three dimensions: (i) the publication trends
(e.g., publication venues, citations), (ii) the scope (e.g., supported RE
activities, types of the tools), and (iii) the tool availability (e.g., webpage
and source code repository URLs).

• RQ2: How mature are RE tools?
We present a “goal, question, metric” (GQM) approach to evaluate the
rigor and relevance of the evaluations to the field of RE. Additionally, we
report on the rigor and relevance scores of the included publications.

Development of the survey protocol

The survey protocol defines the activities required to carry out an SLR. It
helps to reduce researcher bias, and it defines the process of selecting the data
sources, searching them, and synthesizing the obtained information.

79

A. Appendix

Phase 1:
Planning

Phase 2:
Execution

Phase 3:
Reporting

1. Specification of Research Questions

2. Development of the Protocol

3. Validation of Protocol

4. Identification of Relevant Studies

5. Selection of Primary Studies

6. Extraction of Data

7. Synthesis of Information

8. Writing of a Review Report

9. Validation of the Review Report

Figure A1: SLR process

Data sources. SLRs often select as their data source digital libraries, such as
ACM DL1 or IEEE Xplore.2 To find relevant primary studies for analysis, they
define a search strategy that typically is based on keywords related to the topic
of interest. Instead, we decided to adopt as our data source complete set of
papers published by the top SE and RE conferences. We believe that hundreds
of papers dedicated to requirements engineering, and additionally, to software
engineering, constitute a sound body of literature — a strategy employed in
similar SLRs [84]. Specifically, we reviewed proceedings from the top nine SE
conferences, according to the Computing Research and Education Association
of Australasia (CORE) ranking during the years 2015-2019.3 We selected the
CORE ranking because the executive committee of CORE assigns ranks (i.e.,
A*, A, B, etc.) to conferences in the computing disciplines, and it is well-
regarded in the area of SE. We selected the years 2015-2019 as the previous
studies were either too old (i.e., from 2011-12) or did not cover important
SE venues [44, 45, 117]. We did not include the year 2020 because most of
the proceedings for the year 2020 were unavailable when we started the data
gathering process. Additionally, we examined all issues from of top SE journals,

1http://dl.acm.org/
2http://ieeexplore.ieee.org.
3CORE rankings portal, accessed March 18, 2020, http://www.core.edu.au/

80

http://dl.acm.org/
http://ieeexplore.ieee.org.
http://www.core.edu.au/

A.1. SLR methodology

Table A1: Used data sources

Abbr. Abbreviation in full Type Rank

ASE Automated Software Engineering Conference C A

ESEC European Software Engineering Conference C A*

ESEM International Symposium on Empirical Software
Engineering and Measurement

C A

ICSE International Conference on Software Engineering C A*

ICSME International Conference on Software Maintenance
and Evolution

C A

MSR International Working Conference on Mining
Software Repositories

C A

RE Requirements Engineering International Conference C A

REFSQ International Workshop on Requirements
Engineering: Foundations for Software Quality

C B

SANER International Conference on Software Analysis,
Evolution and Re-engineering

C A

EMSE Empirical Software Engineering J A

IST Information and Software Technology J A

JSS Journal of Systems and Software J A

RE J Requirements Engineering Journal J B

SoSyM Software and System Modeling J B

TOSEM Transactions on Software Engineering
and Methodology

J A*

TSE Transactions on Software Engineering J A*

as summarized in Table A1, released during the same time period.

In Table A1, the column “Type” specifies whether a publication originated
from a conference (marked with “C”) or a journal (“J”). The column “Rank”
indicates the corresponding CORE rank.

Study selection procedure. We systematically selected relevant publications by
following two steps: (i) examining the publication title, abstract, keywords,
and introduction to find a clear mention of a developed tool, a technique, an
approach, or a method that can support one or more of the RE activities, and
(ii) filtering the selected publications according to the inclusion and exclusion
criteria. We validated the selected publications to mitigate any selection bias.
We selected a total of 203 publications.

Inclusion and exclusion criteria. To include a publication, it must: (i) mention
an RE tool that clearly originates from the authors, (ii) indicate in the title,
keywords, or introduction that the tool can support RE (for the publications
from non-RE venues). We excluded publications that: (i) were mapping or SLR
studies, (ii) proposed or discussed the same tool from another publication, or
(iii) lacked concrete details of a tool. We included journal extensions of original

81

A. Appendix

Table A2: The distribution of the included studies by venues and years

Venue 2015 2016 2017 2018 2019 Total
ASE 0 2 2 0 2 6

ESEC 1 0 1 0 0 2
ESEM - - - - - -
ICSE - - 2 2 7 11

ICSME - - - - - -
MSR - - - - - -

RE 8 7 9 10 5 39
REFSQ 2 2 3 2 1 10
SANER - - - 1 - 1

EMSE 1 - - - 1 2
IST 2 4 1 2 4 13
JSS - - 1 4 - 5

RE J 2 3 5 7 4 21
SoSyM - - - 1 1 2

TOSEM - - - - - -
TSE - - - - - -

conference papers, as often they provide more details about the evaluation.

Validation of the protocol

The protocol was validated by the study team. In particular, all the members of
the team discussed and agreed upon: (i) which data sources must be considered,
(ii) which publication selection criteria must be considered, and (iii) the final
inclusion and exclusion criteria for the publications.

A.1.2 Execution phase

We followed the following four steps to conduct the actual SLR:

Identification of relevant studies

We searched relevant publications in the research, industry, and tool demo
tracks of the included conferences as they are peer reviewed or evaluated by
the research community. From 203 publications that we initially selected, 112
(55%) were relevant and included in this work. The publication counts are
listed by year in Table A2. The complete list of the selected publications can
be found in section A.9.

Selection of primary studies

Publications included in this SLR propose a tool to support at least one of
several RE activities. Often, the authors claimed to propose a tool to support
RE. However, in many other publications — especially from non-RE venues —
no such explicit claims are made by authors. Only after thoroughly reading
such a publication, could we decide to include it.

82

A.1. SLR methodology

Extraction of data

We thoroughly read the included publications to record information about the
32 parameters described in Table A3. These 32 parameters help us to answer
RQ1 and RQ2, and were selected by the study team through brainstorming
and discussion. In case we could not determine a value for the parameters 9 to
19 for a publication, we contacted the publication authors to obtain additional
information. The column “D” indicates one of the four dimensions mentioned

Table A3: Collected data from existing studies

D P Description Possible values
1 1 name of the tool string

2 publication year string
3 venue as mentioned in Table A1
4 track Research, Industry, Tool

demo, Journal
5 number of citations number

2 6 supported RE activity elicitation, analysis, specifi-
cation, validation, manage-
ment

7 whether the authors claim it to be a prototype yes, no
8 whether the authors claim it to be collabora-

tive
yes, no

9 the intended audience of the tool string
10 type of the tool web, desktop, mobile, plug-

in
11 the list of artifacts the tool works with string
12 the import and export formats of the artifacts string
13 the required operating system in case of a desk-

top or mobile app
string

14 programming languages used to develop the
tool

string

15 other technologies or frameworks used to de-
velop the tool

string

3 16 URL to access the project or download, instal-
lation page

string

17 whether the tool is open-source yes, no
18 URL of the source code repository string
19 last activity on the source code repository date

4 20 whether the authors carried out an evaluation
of their tool

yes, no

21 whether the authors mention any evaluation
guidelines

yes, no

22 the type of evaluation experiment, case study, sur-
vey

23 number of case studies number
24 the purpose of evaluation string
25 evaluation variables string
26 participant population number
27 number of participants of an experiment or a

survey
number

28 experience of participants in years number
29 motivation of the participant string
30 data collection method first, second, third
31 data analysis method string
32 whether raw data is available yes, no

earlier, i.e., the publication trends, the scope, the availability, and the relia-

83

A. Appendix

bility of performed evaluation. The column “P” denotes the number of the
parameter, followed by a description and possible values. The responses from
authors are recorded as free text, and are indicated either as a string or a num-
ber. After reading a specific publication, if the supported RE activity was not
clear, then we read the publication independently and proposed the activity to
be assigned. In case we disagreed, we then concluded through brainstorming
and discussion the activity to be assigned.

Synthesis of information

We codified the textual responses obtained from the publication authors.

A.1.3 Reporting phase

The reporting phase corresponds to plotting and reflecting on the recorded
information. This includes: analyzing data from multiple perspectives, and
combining information from multiple review parameters to detect patterns.
Data extracted from the publications were used to answer our two research
questions. From the recorded information, relevant plots, charts, and tables
were produced to answer the research questions. Finally, the discussion criti-
cally reflects on the main findings to show the research gaps and guide future
directions. The final results and conclusions were discussed with the study
team to confirm their validity. The discussion was thoroughly reviewed by all
study team members to ensure accurate interpretations. The review process
also reduced the bias in the discussion.

A.2 Overview of the identified tools

Table A4 summarizes the results of our data gathering. The first column
group (i.e., consisting of the attributes “Study” and “Name”) lists the identi-
fiers used for the publication and tool. For each study, the corresponding tool
can be identified with “T,” for example for [S1] the corresponding tool is T1.
Tools reported in an extended journal article as well as a previous conference
paper are marked with a “*” in front of their name. The second column group
lists the results corresponding to the publication trends. Specifically, “Venue”
represents the venue of publication as mentioned in Table A1, “Track” repre-
sents the corresponding conference track as mentioned in section A.1.2, “Year”
denotes the publication year, and “Citations” denotes the number of obtained
citations (as per Google Scholar) as of February 4, 2021. Research papers are
indicated with the letter “R,” industry papers with “I,” tool demos with “T,”
and journal papers with “J.” The third and fourth column groups list results
corresponding to the scope of the publications. The third column denotes the
supported RE activity. In particular, “E” denotes elicitation, “A” indicates
analysis, “S” specification, “V” validation, and “M” management. In practice,
relevant modeling tools are included as specification tools, reasoning tools as
validation tools, and prioritization, traceability, and monitoring tools as man-
agement tools. The “z” symbol indicates RE activities that were assigned by
us, in case the authors did not mention any, while a checkmark (X) indicates
claims by the authors.

84

A.2. Overview of the identified tools

The fourth column “Protot./Collab.” denotes whether authors claimed
their tool to be a prototype or collaborative. Finally, the last column group lists
results corresponding to the availability of the tools. In particular, “Webpage”
and “Source code” denote whether the URLs for the project web page and
source code repositories are available. The actual available URLs for both can
be found in section A.9. “Last Git activity” denotes the date of the last commit
in the Git repository as of February 4, 2021. We used “n/a” in places where
we lack such information.

85

A. Appendix

T
a
b

le
A

4
:

L
is

t
o
f

in
cl

u
d

ed
st

u
d

ie
s

S
tu

d
y

N
a
m

e

Venue

Track

Year

Citations

E
/
A

/
S

/
V

/
M

Protot./Collab.

Webpage

Sourcecode

LastGitactivity

[S
1
]

-
R

E
R

2
0
1
9

0
-/

-/
z

/
-/

-
X

/
-

n
/
a

n
o

-
[S

2
]

O
p

en
R

eq
R

E
T

2
0
1
9

0
X

/
X

/
-/

-/
-

-/
-

X
X

1
0
.F

eb
.2

0
[S

3
]

R
M

2
P

T
R

E
T

2
0
1
9

0
-/

-/
-/
X

/
-

-/
-

n
/
a

X
2
0
.J

a
n

.2
0

[S
4
]

C
A

R
G

o
R

E
T

2
0
1
9

0
-/
z

/
z

/
-/

-
X

/
-

n
/
a

X
2
3
.J

u
n

.1
9

[S
5
]

T
-S

ta
r

R
E

T
2
0
1
9

0
-/

-/
z

/
-/

-
X

/
-

n
/
a

n
/
a

-
[S

6
]

G
u

id
eG

en
R

E
R

2
0
1
8

0
-/

-/
-/

-/
X

-/
X

X
X

1
1
.J

a
n

.1
9

[S
7
]

R
E

M
IN

D
S

R
E

I
2
0
1
8

1
-/

-/
-/

-/
z

-/
-

X
n

o
-

[S
8
]

-
R

E
I

2
0
1
8

3
-/

-/
X

/
-/
X

-/
-

n
/
a

n
/
a

-
[S

9
]

B
lo

o
m

in
g
L

ea
f

R
E

T
2
0
1
8

4
-/
X

/
-/

-/
-

-/
-

n
/
a

X
2
3
.S

ep
.1

9
[S

1
0
]

E
L

IC
A

R
E

T
2
0
1
8

2
X

/
-/

-/
-/

-
X

/
X

n
/
a

n
/
a

-
[S

1
1
]

F
le

x
iV

ie
w

R
E

T
2
0
1
8

0
-/

-/
z

/
-/

-
-/

-
X

n
o

-
[S

1
2
]

P
iS

ta
r

R
E

T
2
0
1
8

9
-/

-/
X

/
-/

-
-/

-
X

X
1
5
.D

ec
.1

9
[S

1
3
]

S
u

S
o
ft

P
ro

R
E

T
2
0
1
8

5
-/
X

/
-/

-/
-

-/
-

X
n

o
-

[S
1
4
]

T
-R

eq
s

R
E

T
2
0
1
8

5
-/

-/
-/

-/
X

-/
-

n
o

X
0
6
.N

o
v
.1

9
[S

1
5
]

F
A

M
E

R
E

R
2
0
1
8

2
9

X
/
-/

-/
-/

-
-/

-
n

/
a

X
1
6
.O

ct
.2

0
[S

1
6
]

S
H

O
R

T
R

E
R

2
0
1
7

1
-/
z

/
z

/
-/

-
-/

-
n

/
a

X
0
7
.N

o
v
.1

6
[S

1
7
]

A
S

S
E

R
T

™
R

E
I

2
0
1
7

8
-/
X

/
X

/
-/

-
-/

-
n

/
a

n
/
a

-
[S

1
8
]

D
M

G
a
m

e
R

E
R

2
0
1
7

2
-/

-/
-/

-/
X

X
/
X

X
X

2
6
.A

p
r.

1
8

[S
1
9
]

U
C

A
n

a
ly

ze
r

R
E

T
2
0
1
7

4
-/
X

/
-/

-/
-

X
/
-

X
X

0
6
.A

u
g
.1

7
[S

2
0
]

R
E

T
T

A
R

E
T

2
0
1
7

8
X

/
-/

-/
-/

-
X

/
-

n
/
a

n
/
a

-
[S

2
1
]

E
C

ri
ts

R
E

T
2
0
1
7

4
z

/
-/

-/
-/
z

-/
X

n
o

n
o

-
[S

2
2
]

C
o
S

T
es

t
R

E
T

2
0
1
7

6
-/

-/
-/
X

/
-

X
/
-

X
n

o
-

[S
2
3
]

C
a
n

a
ry

R
E

T
2
0
1
7

5
z

/
-/
z

/
-/
z

-/
-

n
/
a

n
/
a

-
[S

2
4
]

R
es

p
ec

if
y

R
E

T
2
0
1
7

0
-/

-/
z

/
-/

-
-/

-
X

n
/
a

-
C
o
n
ti
n
u
ed

o
n
n
ex
t
pa

ge

86

A.2. Overview of the identified tools
T

a
b

le
A

4
–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa

ge

S
tu

d
y

N
a
m

e

Venue

Track

Year

Citations

E
/
A

/
S

/
V

/
M

Protot./Collab.

Webpage

Sourcecode

LastGitactivity

[S
2
5
]

G
ro

w
in

g
L

ea
f

R
E

R
2
0
1
6

3
-/
X

/
-/

-/
-

-/
-

X
X

1
0
.O

ct
.1

8
[S

2
6
]

R
eq

V
id

A
R

E
R

2
0
1
6

3
X

/
-/

-/
-/

-
X

/
-

X
n

/
a

-
[S

2
7
]

V
is

u
a
l

N
a
rr

.
R

E
R

2
0
1
6

3
-/

-/
z

/
-/

-
-/

-
n

o
X

2
3
.S

ep
.1

9
[S

2
8
]

P
R

O
D

R
E

T
2
0
1
6

4
-/

-/
z

/
-/

-
-/
X

n
/
a

n
/
a

-
[S

2
9
]

S
C

C
M

T
R

E
T

2
0
1
6

0
-/

-/
z

/
-/

-
-/
X

n
o

X
2
4
.O

ct
.1

4
[S

3
0
]

C
a
p

ra
R

E
T

2
0
1
6

1
7

-/
-/

-/
-/
X

X
/
-

X
X

2
4
.F

eb
.1

7
[S

3
1
]

M
o
R

E
R

E
T

2
0
1
6

2
-/
X

/
-/

-/
-

-/
-

n
/
a

X
0
5
.S

ep
.1

6
[S

3
2
]

A
Q

U
S

A
R

E
R

2
0
1
5

4
-/

-/
z

/
-/

-
X

/
-

n
o

X
1
2
.A

u
g
.1

6
[S

3
3
]

F
le

x
is

k
et

ch
T

.
R

E
R

2
0
1
5

5
-/

-/
z

/
-/

-
X

/
X

X
X

0
8
.M

a
y.

1
5

[S
3
4
]

S
A

C
R

E
R

E
T

2
0
1
5

7
-/
z

/
-/

-/
-

X
/
-

X
X

1
4
.F

eb
.1

8
[S

3
5
]

R
eq

P
a
t

R
E

T
2
0
1
5

3
-/

-/
X

/
X

/
-

-/
-

n
o

X
1
6
.J

u
l.
1
9

[S
3
6
]

B
re

ez
e

R
E

T
2
0
1
5

2
-/
X

/
-/

-/
-

-/
-

n
/
a

X
2
6
.M

a
r.

1
5

[S
3
7
]

S
ta

k
eC

lo
u

d
R

E
T

2
0
1
5

4
X

/
-/

-/
-/

-
-/

-
n

o
n

o
-

[S
3
8
]

O
b

je
ct

iv
er

R
E

T
2
0
1
5

6
-/
z

/
z

/
-/

-
-/

-
X

n
o

-
[S

3
9
]

G
A

T
O

R
E

T
2
0
1
5

4
-/

-/
z

/
-/

-
-/

-
X

X
2
7
.A

u
g
.1

5
[S

4
0
]

R
E

-S
W

O
T

R
E

F
S

Q
R

2
0
1
9

5
X

/
-/

-/
-/

-
X

/
-

n
o

X
1
3
.S

ep
.1

8
[S

4
1
]

-
R

E
F

S
Q

R
2
0
1
8

5
-/

-/
z

/
-/

-
-/

-
n

o
n

o
-

[S
4
2
]

R
E

V
V

R
E

F
S

Q
R

2
0
1
8

5
-/

-/
z

/
-/

-
X

/
-

n
o

X
0
3
.J

a
n

.1
9

[S
4
3
]

P
U

M
C

o
n

f
R

E
F

S
Q

R
2
0
1
7

6
-/

-/
z

/
-/

-
-/

-
X

n
/
a

-
[S

4
4
]

R
E

D
E

P
E

N
D

R
E

F
S

Q
R

2
0
1
7

7
-/

-/
z

/
-/
z

X
/
-

X
n

/
a

-
[S

4
5
]

T
a
ct

il
e

C
h

ec
k

R
E

F
S

Q
R

2
0
1
7

8
-/
X

/
-/

-/
-

-/
-

n
/
a

X
0
1
.J

a
n

.1
7

[S
4
6
]

jU
C

M
N

a
v

R
E

F
S

Q
R

2
0
1
6

9
-/
z

/
z

/
-/

-
-/

-
X

n
/
a

-
[S

4
7
]

re
q
T

R
E

F
S

Q
R

2
0
1
6

1
1

-/
-/
z

/
-/

-
X

/
-

n
/
a

X
2
2
.F

eb
.2

0
[S

4
8
]

-
R

E
F

S
Q

R
2
0
1
5

1
5

-/
X

/
-/

-/
-

X
/
-

n
/
a

n
/
a

-
[S

4
9
]

T
eA

L
R

E
F

S
Q

R
2
0
1
5

1
6

-/
z

/
-/

-/
-

-/
-

n
/
a

n
/
a

-
[S

5
0
]

E
n

L
ig

h
te

r
IC

S
E

R
2
0
1
9

1
8

-/
-/
X

/
-/

-
-/

-
n

/
a

X
1
5
.O

ct
.1

8
C
o
n
ti
n
u
ed

o
n
n
ex
t
pa

ge

87

A. Appendix

T
a
b

le
A

4
–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa

ge

S
tu

d
y

N
a
m

e

Venue

Track

Year

Citations

E
/
A

/
S

/
V

/
M

Protot./Collab.

Webpage

Sourcecode

LastGitactivity

[S
5
1
]

A
u

to
T

a
p

IC
S

E
R

2
0
1
9

1
8

-/
-/
z

/
-/

-
X

/
-

n
o

X
2
8
.J

a
n

.1
9

[S
5
2
]

S
to

ry
D

ro
id

IC
S

E
R

2
0
1
9

1
9

-/
-/
z

/
-/

-
-/

-
n

/
a

n
/
a

-
[S

5
3
]

G
u

ig
le

IC
S

E
T

2
0
1
9

3
-/

-/
z

/
-/

-
-/

-
X

n
o

-
[S

5
4
]

iA
rc

h
-U

IC
S

E
T

2
0
1
9

0
-/

-/
z

/
-/
z

-/
-

X
X

2
9
.J

a
n

.1
9

[S
5
5
]

P
sA

L
M

IC
S

E
T

2
0
1
9

6
-/

-/
X

/
-/

-
X

/
-

X
X

0
4
.J

u
l.
1
9

[S
5
6
]

D
IV

E
R

IC
S

E
R

2
0
1
9

1
z

/
-/

-/
-/

-
-/

-
n

/
a

n
/
a

-
[S

5
7
]

ID
E

A
IC

S
E

R
2
0
1
8

1
9

z
/
-/

-/
-/

-
-/

-
n

/
a

X
1
3
.J

u
n

.1
8

[S
5
8
]

G
V

T
IC

S
E

R
2
0
1
8

2
4

-/
-/

-/
z

/
-

-/
-

X
X

-
[S

5
9
]

-
IC

S
E

R
2
0
1
7

2
8

z
/
-/

-/
-/

-
-/

-
n

/
a

n
/
a

-
[S

6
0
]

R
A

D
A

R
IC

S
E

R
2
0
1
7

5
1

-/
X

/
-/

-/
-

-/
-

X
X

1
4
.A

p
r.

1
9

[S
6
1
]

k
E

E
P

E
R

E
S

E
C

R
2
0
1
7

7
0

-/
-/
X

/
-/

-
X

/
-

n
/
a

n
/
a

-
[S

6
2
]

N
A

R
C

IA
E

S
E

C
T

2
0
1
5

8
-/
X

/
-/

-/
-

-/
-

X
n

/
a

-
[S

6
3
]

P
re

m
a

A
S

E
T

2
0
1
9

0
-/
X

/
-/

-/
-

-/
-

n
/
a

n
/
a

-
[S

6
4
]

B
u

R
R

iT
o

A
S

E
T

2
0
1
9

0
z

/
-/

-/
-/

-
-/

-
n

/
a

n
o

-
[S

6
5
]

B
P

ro
V

e
A

S
E

T
2
0
1
7

5
-/

-/
-/
z

/
-

-/
X

X
X

1
5
.M

a
r.

1
8

[S
6
6
]

K
o
b

o
ld

A
S

E
T

2
0
1
7

8
-/

-/
-/
z

/
-

-/
-

X
X

2
2
.A

p
r.

1
9

[S
6
7
]

A
n

M
o
d

el
er

A
S

E
T

2
0
1
6

5
-/
X

/
-/

-/
-

-/
-

X
n

/
a

-
[S

6
8
]

T
es

tM
E

R
eq

A
S

E
T

2
0
1
6

1
0

-/
-/

-/
X

/
-

-/
X

n
o

n
/
a

-
[S

6
9
]

F
IN

A
L

Is
T

2
S

A
N

E
R

T
2
0
1
8

4
z

/
-/
z

/
-/

-
-/

-
n

o
n

o
-

[S
7
0
]

S
ce

n
a
ri

o
A

m
i.

R
E

J
J

2
0
1
9

2
-/

-/
X

/
-/

-
-/

-
n

/
a

X
2
7
.J

u
l.
1
7

[S
7
1
]

A
S

S
E

R
T

™
*

R
E

J
J

2
0
1
9

1
-/
X

/
X

/
-/

-
-/

-
n

/
a

n
/
a

-
[S

7
2
]

-
R

E
J

J
2
0
1
9

2
-/

-/
X

/
-/

-
-/

-
n

/
a

n
/
a

-
[S

7
3
]

-
R

E
J

J
2
0
1
9

6
X

/
-/

-/
-/

-
-/

-
n

/
a

n
/
a

-
[S

7
4
]

-
R

E
J

J
2
0
1
8

2
0

X
/
-/

-/
-/

-
-/

-
n

/
a

n
/
a

-
[S

7
5
]

A
M

A
N

-D
A

R
E

J
J

2
0
1
8

7
X

/
X

/
-/

-/
-

-/
-

n
/
a

n
/
a

-
[S

7
6
]

E
C

ri
ts

*
R

E
J

J
2
0
1
8

2
-/
z

/
-/

-/
z

-/
-

n
o

n
o

-
C
o
n
ti
n
u
ed

o
n
n
ex
t
pa

ge

88

A.2. Overview of the identified tools
T

a
b

le
A

4
–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa

ge

S
tu

d
y

N
a
m

e

Venue

Track

Year

Citations

E
/
A

/
S

/
V

/
M

Protot./Collab.

Webpage

Sourcecode

LastGitactivity

[S
7
7
]

-
R

E
J

J
2
0
1
8

1
-/

-/
-/

-/
X

-/
-

n
/
a

n
/
a

-
[S

7
8
]

C
G

M
R

E
J

J
2
0
1
8

3
0

-/
z

/
z

/
-/

-
-/

-
X

n
/
a

-
[S

7
9
]

B
P

S
T

S
-I

Q
R

E
J

J
2
0
1
8

8
-/
X

/
X

/
X

/
-

-/
-

X
X

-
[S

8
0
]

M
o
ck

P
lu

g
R

E
J

J
2
0
1
8

1
3

X
/
X

/
X

/
X

/
-

-/
X

n
o

n
o

-
[S

8
1
]

-
R

E
J

J
2
0
1
7

2
-/

-/
-/

-/
z

-/
X

n
/
a

n
/
a

-
[S

8
2
]

V
is

u
a
l

N
a
rr

.*
R

E
J

J
2
0
1
7

3
4

-/
-/
z

/
-/

-
-/

-
n

o
X

2
3
.S

ep
.1

9
[S

8
3
]

L
eC

A
R

E
J

J
2
0
1
7

1
9

-/
-/
z

/
-/

-
-/

-
n

/
a

n
/
a

-
[S

8
4
]

-
R

E
J

J
2
0
1
7

1
9

-/
-/

-/
X

/
-

X
/
-

n
/
a

n
/
a

-
[S

8
5
]

T
A

O
M

4
E

R
E

J
J

2
0
1
7

4
8

-/
X

/
X

/
-/

-
-/

-
X

n
/
a

-
[S

8
6
]

-
R

E
J

J
2
0
1
6

1
6

X
/
-/

-/
-/

-
X

/
-

n
/
a

n
/
a

-
[S

8
7
]

-
R

E
J

J
2
0
1
6

1
0
3

-/
z

/
-/

-/
-

X
/
-

X
X

-
[S

8
8
]

A
Q

U
S

A
*

R
E

J
J

2
0
1
6

9
5

-/
-/
z

/
-/

-
-/

-
n

o
X

1
2
.A

u
g
.1

6
[S

8
9
]

T
iQ

i
R

E
J

J
2
0
1
5

1
6

-/
-/
z

/
-/

-
X

/
-

n
/
a

n
/
a

-
[S

9
0
]

G
a
iu

sT
R

E
J

J
2
0
1
5

5
5

-/
X

/
-/

-/
-

-/
-

n
o

n
o

-
[S

9
1
]

M
A

R
C

E
M

S
E

J
2
0
1
9

2
X

/
-/

-/
-/

-
X

/
-

n
o

X
2
1
.O

ct
.1

8
[S

9
2
]

S
N

IP
R

E
M

S
E

J
2
0
1
5

2
1

-/
-/

-/
-/
z

X
/
-

n
o

n
/
a

-
[S

9
3
]

R
E

R
D

J
S

S
J

2
0
1
8

1
1

-/
-/

-/
X

/
-

-/
-

X
X

-
[S

9
4
]

T
R

A
IL

S
J
S

S
J

2
0
1
8

5
-/

-/
-/

-/
z

X
/
-

n
/
a

n
/
a

-
[S

9
5
]

U
-R

U
C

M
J
S

S
J

2
0
1
8

3
-/
X

/
X

/
X

/
-

-/
-

X
n

o
-

[S
9
6
]

S
O

V
A

R
-T

C
J
S

S
J

2
0
1
8

2
-/
X

/
-/
X

/
-

X
/
-

X
n

o
-

[S
9
7
]

S
m

el
la

J
S

S
J

2
0
1
7

6
8

-/
-/
X

/
X

/
-

X
/
-

X
n

o
-

[S
9
8
]

R
E

V
V

-l
ig

h
t*

IS
T

J
2
0
1
9

5
-/

-/
z

/
-/

-
-/

-
X

X
0
3
.J

a
n

.1
9

[S
9
9
]

G
u

id
eG

en
*

IS
T

J
2
0
1
9

1
-/

-/
-/

-/
X

-/
-

X
X

1
1
.J

a
n

.1
9

[S
1
0
0
]

S
T

S
-I

Q
IS

T
J

2
0
1
9

0
-/
X

/
X

/
X

/
-

X
/
-

X
X

-
[S

1
0
1
]

C
re

a
ti

v
e

L
ea

f
IS

T
J

2
0
1
9

5
X

/
X

/
-/

-/
-

-/
-

X
n

o
-

[S
1
0
2
]

S
R

E
G

IS
T

J
2
0
1
8

1
5

-/
-/

-/
z

/
-

-/
X

n
/
a

n
/
a

-
[S

1
0
3
]

U
P

R
O

M
IS

T
J

2
0
1
8

1
5

X
/
-/
X

/
-/

-
X

/
-

X
X

-
C
o
n
ti
n
u
ed

o
n
n
ex
t
pa

ge

89

A. Appendix

T
a
b

le
A

4
–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa

ge

S
tu

d
y

N
a
m

e

Venue

Track

Year

Citations

E
/
A

/
S

/
V

/
M

Protot./Collab.

Webpage

Sourcecode

LastGitactivity

[S
1
0
4
]

-
IS

T
J

2
0
1
7

1
4

X
/
-/

-/
-/

-
-/

-
n

/
a

n
/
a

-
[S

1
0
5
]

-
IS

T
J

2
0
1
6

1
1

-/
-/
z

/
-/

-
X

/
-

X
n

/
a

-
[S

1
0
6
]

-
IS

T
J

2
0
1
6

1
0

-/
X

/
-/

-/
-

X
/
-

n
/
a

n
/
a

-
[S

1
0
7
]

W
is

d
o
m

IS
T

J
2
0
1
6

2
1

-/
-/

-/
-/
z

X
/
-

n
/
a

n
/
a

-
[S

1
0
8
]

-
IS

T
J

2
0
1
6

2
7

-/
-/

-/
-/
X

-/
-

n
/
a

n
/
a

-
[S

1
0
9
]

-
IS

T
J

2
0
1
5

2
1

X
/
X

/
-/

-/
X

-/
-

n
/
a

n
/
a

-
[S

1
1
0
]

-
IS

T
J

2
0
1
5

8
-/
z

/
-/

-/
-/

X
/
-

n
/
a

n
/
a

-
[S

1
1
1
]

T
em

L
o
P

A
C

S
o
S

y
M

J
2
0
1
9

6
-/

-/
X

/
-/

-
-/

-
n

/
a

X
1
7
.N

o
v
.1

9
[S

1
1
2
]

M
U

S
E

R
S

o
S

y
M

J
2
0
1
8

8
-/
X

/
-/

-/
-

X
/
-

X
n

/
a

-

90

A.3. SLR: threats to the validity

A.3 SLR: threats to the validity

Several factors may have influenced the results of this study. These factors
may have influenced the search, the study selection, and the extraction of the
data from the selected studies.

Reliability. This concerns whether the study is reproducible by other re-
searchers [51]. To ensure reliability, instead of relying on automatic search,
we manually searched the proceedings of relevant venues. The selection pro-
cess indeed leaves room for variation, as different researchers are likely to have
different opinions about whether or not a publication can contribute to answer-
ing the research questions. To reduce this source of bias, the study team agreed
which publications to include for analysis in this study. To reduce personal bias
in selected publication assessment, at least two reviewers checked the extracted
data. Also, researchers did not extract or check their own publications, and
performed a pilot extraction study. Nevertheless, we only considered studies
from the years 2015-2019, which can introduce some bias in the final results.
We agree that several of the other SE conferences might also include RE as a
topic. However, our list of conferences and journals covers the top conferences
and journals the RE community uses to discuss their work. As the total num-
ber of publications included from non-RE venues (i.e., everything other than
RE, REFSQ, and REJ) is relatively low. Therefore, considering other non-RE
venues may not change the results significantly.

Construct validity. This concerns whether the constructs are measured and
interpreted correctly [51]. To ensure a common understanding of the relevant
concepts and terms, we checked the relevant literature and analyzed the defini-
tions therein. To ensure a common understanding of the data to be extracted
from the studies, we performed a pilot extraction. One member extracted the
data from one publication, and other study team members discussed the re-
sulting extracted data. Although agreed by the study team, the selection and
inclusion of the studies were performed primarily by the first and second au-
thor, which can introduce selection bias. Likewise, the implicit assignment of
the supported RE activities to certain tools where authors failed to mention
is subjective. The assignment of additional evaluation types to the studies in
case authors failed to mention one is also subjective.

Internal validity. This concerns whether the study results really follow from
the data [51]. Since we only use descriptive statistics in our data analysis,
the threats to internal validity are minimal. The accuracy of the results and
conclusions suffer from the fact that we could not collect data for all param-
eters for all included studies as some of the authors failed to respond to our
queries. Additionally, we also recognize the fact that our analysis of performed
evaluation by authors or tool types is based on the available information in the
study that may lack important details due to the nature of the publication,
i.e., being published as a tool paper versus being published as a full research
paper.

External validity. This concerns whether claims for the generality of the re-
sults are justified [51]. Kitchenham et al. propose four quality questions for
evaluating systematic literature reviews [73]. These are presented below, along

91

A. Appendix

with an evaluation of our study against these questions:
QA1 : Are the reviews of inclusion and exclusion criteria described and appro-
priate? We explicitly defined and discussed the inclusion and exclusion criteria
used in item A.1.1, therefore this quality criterion is met.
QA2 : Is the literature search likely to have covered all relevant studies? Ac-
cording to Kitchenham et al. this criterion is met if four or more digital libraries
have been searched and additional search strategies have been included. This
quality criterion is met, as instead of relying on digital libraries, we directly
and manually searched nine relevant SE and RE venues.
QA3 : Did the reviewers assess the quality/validity of the included studies? In-
stead of relying on defining quality attributes for selected studies, we selected
studies that are highly relevant to answer our research questions.
QA4 : Were the basic data/studies adequately described? We consider this
quality criterion as met as we used a detailed data collection form for each
study. The data collection form was piloted.

A.4 Artifact analysis

A.4.1 Methodology

For each artifact, we recorded attribute values across six dimensions. Table A5
provides an overview of the considered characterization dimensions. The first
column denotes the dimension followed by possible values.

Table A5: Dimensions of artifact characterization

Dimension Possible values

Format Textual, Graphical, Mixed
Nature Digital, Physical,

Contains other artifacts
Helps create other artifacts

SDLC phase(s) of origin Requirements, Design, Development and Testing,
Deployment and Maintenance

SDLC phase(s) of use Requirements, Design, Development and Testing,
Deployment and Maintenance

• The dimension “Format” denotes whether an artifact is purely textual,
graphical, or a mixture of both. This dimension will help us decide which
capabilities an IDE is required to have to model variouus artifacts.

• The dimension “Nature” denotes whether an artifact exists physically,
and whether its digital counterpart is possible. This dimension will help
us decide whether we can model an artifact in an IDE.

• The dimension “Contains” denotes whether an artifact can function as a
container for other artifact, e.g., a story map contains story cards. This
dimension will help us design relationships among various artifacts.

• The dimension “Helps create” denotes whether an artifact can be used
to construct another artifact, e.g., sketches help create UI wireframes.

92

A.4. Artifact analysis

• The dimensions “SDLC phase(s) of origin” and “SDLC phase(s) of use”
denote the SDLC phase from which a specific artifact originates, and
is consumed in, respectively. This dimension will also help us design
relationships among various artifacts.

For each selected artifact, we manually assigned values for analysis parameters.

A.4.2 List of artifacts

93

A. Appendix

T
a
b

le
A

6
:

L
is

t
o
f

a
rt

if
a
ct

s

#
C

a
te

g
o
ry

A
rt

if
a
ct

P
h
y
si

ca
l

T
ex

tu
a
l

G
ra

p
h

ic
a
l

M
ix

ed
S

o
u

rc
e

1

M
o
d

el
in

g
a
rt

ef
a
ct

s

U
M

L
d

ia
g
ra

m
-

-
-

X
[1

1
4
]

2
D

o
m

a
in

m
o
d

el
-

-
-

X
[1

1
4
]

3
P

ro
ce

ss
m

o
d
el

-
-

-
X

[1
1
3
]

4
U

se
-c

a
se

d
es

cr
ip

ti
o
n

-
X

-
-

[1
2
]

5
D

S
L

-
-

-
X

[1
2
]

6
D

a
ta

fl
o
w

d
ia

g
ra

m
-

-
-

X
[1

2
]

7
F

lo
w

ch
a
rt

-
-

-
X

[1
2
]

8
N

et
w

o
rk

d
ia

g
ra

m
-

-
-

X
[1

2
]

9
R

o
b

u
st

n
es

s
d

ia
g
ra

m
-

-
-

X
[1

2
]

1
0

S
tr

u
ct

u
re

d
ia

g
ra

m
-

-
-

X
[1

2
]

1
1

U
se

r
in

te
rf

a
ce

m
o
d

el
-

-
-

X
[1

2
]

1
2

S
y
st

em
m

o
d

el
-

-
-

X
[1

1
3
]

1
3

D
a
ta

m
o
d

el
-

-
-

X
[1

2
,

1
2
4
]

1
4

R
o
le

m
o
d

el
-

-
-

X
[1

1
4
]

1
5

U
se

r
m

o
d

el
-

-
-

X
[1

2
]

1
6

B
u

si
n

es
s

p
ro

ce
ss

m
o
d

el
-

-
-

X
[1

2
]

1
7

C
R

C
ca

rd
X

-
-

X
[1

2
]

1
8

T
a
sk

m
o
d

el
-

-
-

X
[1

1
4
,

1
1
3
]

1
9

T
es

ti
n

g
a
rt

ef
a
ct

s

T
es

t
sp

ec
ifi

ca
ti

o
n

-
X

-
-

[1
1
4
]

2
0

In
te

g
ra

ti
o
n

te
st

-
X

-
-

[1
6
]

2
1

R
eg

re
ss

io
n

te
st

-
X

-
-

[1
6
]

2
2

U
n

it
te

st
-

X
-

-
[1

6
]

2
3

T
es

t
p

la
n

-
X

-
-

[1
6
]

2
4

S
ce

n
a
ri

o
-

X
-

-
[1

2
]

2
5

M
a
p

s

M
in

d
m

a
p

-
-

-
X

[1
1
4
,

1
1
3
]

2
6

R
o
a
d

m
a
p

-
-

-
X

[1
1
4
,

1
1
3
]

2
7

Im
p

a
ct

m
a
p

-
-

-
X

[1
1
4
,

1
1
3
]

2
8

E
ff

ec
t

m
a
p

-
-

-
X

[1
1
4
]

2
9

S
to

ry
m

a
p

X
-

-
X

[1
1
4
,

1
1
3
]

3
0

V
is

io
n

-
-

-
X

[1
2
,

1
2
4
,

1
1
4
]

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa

ge

94

A.4. Artifact analysis
T

a
b

le
A

6
–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa

ge
#

C
a
te

g
o
ry

A
rt

if
a
ct

P
h
y
si

ca
l

T
ex

tu
a
l

G
ra

p
h

ic
a
l

M
ix

ed
S

o
u

rc
e

3
1

D
ev

el
o
p
m

en
t

a
rt

ef
a
ct

s

D
es

ig
n

co
n

ce
p

t
-

-
-

X
[1

1
4
]

3
2

B
u

si
n

es
s

ru
le

d
efi

n
it

io
n

-
X

-
-

[1
2
]

3
3

C
h

a
n

g
e

ca
se

-
X

-
-

[1
2
]

3
4

T
a
sk

-
X

-
-

[1
1
4
,

1
1
3
]

3
5

P
er

so
n

a
X

-
-

X
[1

1
4
,

1
1
3
]

3
6

Is
su

e
-

X
-

-
[1

2
,

1
2
4
,

1
1
4
,

1
1
3
,

1
6
]

3
7

C
o
n

st
ra

in
t

d
efi

n
it

io
n

-
X

-
-

[1
2
]

3
8

E
x
te

rn
a
l
in

te
rf

a
ce

sp
ec

ifi
ca

ti
o
n

-
X

-
-

[1
2
]

3
9

E
n

d
-u

se
r

re
la

te
d

a
rt

ef
a
ct

s

P
ro

to
ty

p
e

-
-

-
X

[1
2
,

1
1
4
,

1
1
3
]

4
0

M
o
ck

u
p

-
-

-
X

[1
2
,

1
1
4
]

4
1

S
k
et

ch
X

-
-

X
[1

2
,

1
1
4
]

4
2

W
ir

ef
ra

m
e

-
-

-
X

[1
2
4
,

1
1
4
]

4
3

In
te

ra
ct

io
n

sc
en

a
ri

o
-

-
-

X
[1

1
4
]

4
4

M
in

im
u

m
V

ia
b

le
P

ro
d

u
ct

-
-

-
X

[1
1
3
,

1
6
]

4
5

U
se

r
jo

u
rn

ey
-

-
-

X
[1

1
4
,

1
1
3
]

4
6

U
se

r
w

is
h

li
st

-
X

-
-

[1
1
4
]

4
7

P
ro

je
ct

m
a
n

a
g
em

en
t

a
rt

ef
a
ct

s

K
a
n
b

a
n

b
o
a
rd

X
-

-
X

[1
1
4
,

1
1
3
,

1
6
]

4
8

R
el

ea
se

p
la

n
-

-
-

X
[1

2
,

1
6
]

4
9

S
to

ry
es

ti
m

a
te

-
X

-
-

[1
6
]

5
0

P
ro

d
u

ct
b

a
ck

lo
g

-
X

-
-

[1
2
4
,

1
1
3
,

1
6
]

5
1

B
u

rn
d

o
w

n
ch

a
rt

-
-

-
X

[1
6
]

5
2

T
a
g

-
X

-
-

[1
1
4
]

5
3

O
rg

a
n

iz
a
ti

o
n

ch
a
rt

-
-

-
X

[1
2
]

5
4

S
to

ry
b

o
a
rd

X
-

-
X

[1
2
,

1
1
4
,

1
1
3
]

5
5

G
lo

ss
a
ry

-
X

-
-

[1
2
]

5
6

R
eq

u
ir

em
en

ts
re

la
te

d
a
rt

ef
a
ct

s

U
se

r
st

o
ri

es
-

X
-

-
[1

2
,

1
2
4
,

1
1
4
,

1
1
3
,

1
6
]

5
7

S
to

ry
ca

rd
X

-
-

X
[1

2
,

1
1
3
,

1
6
]

5
8

P
o
st

-i
t

n
o
te

s
X

-
-

X
[1

2
]

5
9

E
p

ic
-

X
-

-
[1

2
4
,

1
1
4
,

1
1
3
]

6
0

F
ea

tu
re

-
X

-
-

[1
2
,

1
2
4
,

1
1
4
,

1
1
3
,

1
6
]

6
1

P
ic

tu
re

X
-

X
-

[1
2
,

1
1
4
,

1
1
3
]

6
2

V
id

eo
-

-
X

-
[1

1
4
,

1
1
3
]

95

A. Appendix

A.5 The survey instrument

A.5.1 Interviewee background

1. Do you have previous experience working in a team on a software project?
(Yes, No)

2. How many years of experience do you have with software development or
working in a team on a project? (free text answer)

3. Do you have prior knowledge of agile development methodologies or pre-
vious experience with the same? (Yes, No)

4. How many years of experience do you have with agile development? (free
text answer)

5. Have you previously used several tools (intended to accomplish a certain
task) as a part of a toolchain in a software project? (Yes, No)

6. While working on a project, how often do you read project or product
documentation? Please provide a value from 1: very rarely to 4: very
often.

7. Could you please mention some of the main reasons you read any type
of documentation, and where do you read it? (free text answer)

8. What applies to you? (1) I have participated in research in software
engineering, (2) I am a practicing researcher, (3) I am a practitioner.

9. If you are/have been a researcher, in which research communities have
you been active? (free text answer)

A.5.2 Post demo survey

Perceived advantages of the “moldable artifacts” approach

1. In your opinion, is the “moldable artifacts” approach convenient for ar-
tifact management? Provide a value from 1: very low to 4: very high.

2. In your opinion, is the “moldable artifacts” approach promising for han-
dling artifact traceability? Provide a value from 1: very low to 4: very
high.

3. In your opinion, is the “moldable artifacts” approach promising for live
documentation? Provide a value from 1: very low to 4: very high.

4. In your opinion, does the “moldable artifacts” approach reduce the num-
ber of tools required to be used in a software project? Provide a value
from 1: very low to 4: very high.

5. In your opinion, does the “moldable artifacts” approach reduce the con-
text switches between different tools to accomplish a single task? Provide
a value from 1: very low to 4: very high.

96

A.6. Model BDD scenarios

6. In your opinion, does the “moldable artifacts” approach reduce the cost
of maintaining various artifacts up-to-date? Provide a value from 1: very
low to 4: very high.

7. In your opinion, does the “moldable artifacts” approach provide more
accurate and up-to-date matrices (e.g., pending workload, accomplished
tasks) necessary for decision making? Provide a value from 1: very low
to 4: very high.

8. In your opinion, does the “moldable artifacts” approach reduce the man-
ual efforts required in maintaining the project documentation up-to-date?
Provide a value from 1: very low to 4: very high.

9. Given that appropriate interfaces (e.g., GUI) and connectivity among
various artifacts exists, do you agree that instead of employing numer-
ous tools, an IDE would be a better platform for both technical and
non-technical stakeholders to manage the entire software development
process? Provide a value from 1: strongly disagree to 4: strongly agree.

10. Please describe three perceived advantages of “moldable artifacts” ap-
proach. (free text answer)

Perceived limitations of the “moldable artifacts” approach

1. In your opinion, what are the main limitations of the “moldable artifacts”
approach? (free text answer)

2. As a non-technical stakeholder, would you be comfortable working with
an IDE, given that an interactive workflow and appropriate GUIs for ar-
tifacts creation and management exist? Provide a value from 1: strongly
disagree to 4: strongly agree.

A.6 Model BDD scenarios

Let us consider the following scenarios for User story 11 :

1 Scenario 1: Customers place an order to take away
2 (only milk products)
3 Given an empty order
4 When the waiter adds Cappuccino to the empty order
5 And a cup of Cappuccino costs 4 EUR
6 And a cup of Cappuccino is taxed at 7%
7 And the waiter generates the Invoice for the order
8 Then the total invoice price is 7.28 EUR
9

10 Scenario 2: Customers place an order to take away
11 (combination of products)
12 Given an empty order
13 When the waiter adds a Cappuccino and a black coffee
14 to the empty order
15 And a cup of Cappuccino costs 4 EUR
16 And a cup of black coffee costs 3 EUR
17 And a cup of Cappuccino is taxed at 7%
18 And a cup of black coffee is taxed at 19%
19 And the waiter generates the Invoice for the order
20 Then the total invoice price is 7.85 EUR
21

22 Scenario 3: Customer place an order to take away
23 (no milk products)
24 Given an empty order

97

A. Appendix

25 When the waiter adds black coffee to the empty order
26 And a cup of black coffee costs 3 EUR
27 And a cup of black coffee is taxed at 19%
28 And the waiter generates the Invoice for the order
29 Then the total invoice price is 3.57 EUR
30

31 Scenario 4: Customer place an order to to take away
32 (combination of drink and food)
33 Given an empty order
34 When the waiter adds a black coffee and a pizza
35 margherita to the empty order
36 And a cup of black coffee costs 3 EUR
37 And pizza margherita costs 5 EUR
38 And a cup of black coffee is taxed at 19%
39 And pizza margherita is taxed at 7%
40 And the waiter generates the Invoice for the order
41 Then the total invoice price is 5.92 EUR

Listing 9: A sample feature description with a scenario

A.7 BDD open-source project analysis

A.7.1 Study design

The goal of this study is to investigate the characteristics of specification files in
open-source projects. The study context consists of 23 open-source repositories
hosted on GitHub, selected from a total of 50,000.

Data gathering process

For this analysis, we need a large set of projects that use Gherkin to specify ap-
plication behavior. We considered open-source projects hosted on GitHub that
use the Gherkin language. Figure A2 summarizes the data gathering process
we followed. First, we used the GitHub search API to retrieve a list of repos-
itories sorted by popularity. The limitation of this approach is that we must
add at least one restriction for the search API to provide any results. A similar
approach is applied in another study where the authors collected open-source
projects hosted on GitHub ranked in terms of the number of stars [149]. We
decided to retrieve only repositories with more than 500 stars, which resulted
in a total of 54,277 repositories (as of 29 January 2021). This strategy allowed
us to include the projects with a certain level of popularity, and enabled us
to exclude projects that are not maintained. Furthermore, it allowed us to
reduce the scope of the projects to be processed and allowed us to respect the
permitted quota of API requests for more in-depth qualitative analysis. For all
the identified repositories, we then fetched the list of programming languages.
Since our interest was in the BDD projects that use Gherkin language, we se-
lected only those that contain the Gherkin language. If repository languages
contain Gherkin, then it means they contain a specification file with .feature
extension. In this step, we retrieved a total of 318 repositories.

To analyze the specification files, we first grouped the identified repositories
according to the primary programming language. As we can see from Table A7,
projects with Ruby as the main programming language have used BDD the
most, followed by PHP and Java. For our analysis, we focused on Java as
the primary language, i.e., in total 37 repositories. In these 37 repositories,
we identified specification files by searching for the .feature extension. Addi-
tionally, we used the file search API to collect a list of files that contain the

98

A.7. BDD open-source project analysis

Step 1

Select projects with stars >
500

Step 2

Select projects that contain
Gherkin language

Step 3

Extract project
characteristics and relevant

BDD files

Step 4

Eliminate the false
positives

GitHub open-
source projects

Figure A2: The data gathering process

keywords Given and Cucumber. The BDD frameworks use the keyword Given
to describe the context of the test case in BDD tools. Likewise, they use the
word Cucumber when importing the libraries while writing the test case. We
only selected those repositories that had more than one .feature file, i.e., a
total of 27 repositories, as we speculate the projects with only one .feature file
probably only tried BDD and did not practice it rigorously. However, iden-
tifying specification files was not a trivial task as some repositories contained
.feature files, which were not Gherkin files (e.g., Torvalds and Linux). We
manually inspected the specification files, but found a few false positives. To
eliminate these occurrences, we compared the list of files ending with .feature
and the list of files containing the keyword Given. If at least one file occurs in
both list, it is very likely that the result is a true Gherkin file. Eventually, we

99

A. Appendix

Table A7: Identified repositories according to programming languages

Language # Repositories Language # Repositories
Ruby 82 Javascript 33
PHP 38 Go 16
Java 37 Emacs Lisp 11

Python 36 C# 10
C 17 TypeScript 5

eliminated a total of 4 false positives from these 27 repositories. We manually
cross-verified the obtained results. Consequently, the process resulted in a total
of 23 repositories for our qualitative analysis.

To provide the community with some meta-level information about the
repositories we analyzed, we gathered a few common characteristics includ-
ing: (1) number of stars, watchers, and forks, (2) number of contributors and
members, and (3) number of commits, pull requests, and issues (both open &
closed). We collected a total of 1,572 .feature files from 23 repositories. The
dataset to reproduce the results can be found in the replication package.4

A.8 BDD tools analysis

A.8.1 Study design

The aforementioned 13 BDD tools are available as IDE plugins. We evaluated
the IDE plugins according to six parameters to understand how these plug-
ins enable specification and verification of the behavior, in other words, what
opportunities non-technical stakeholders have in IDE plugins to specify and
verify the application behavior.

• Input type for specifying the scenario. (i) “Plain text,” which means a
specification is written as a natural language text, (ii) “Markdown text,”
which means a specification is written in a Markdown format, (iii) “Ta-
ble,” which means a specification accepts input values in a tabular format,
or (iv) “Code,” meaning a specification is written in some programming
language.

• Type of parameters in the glue code. (i) “Primitive,” such as strings,
numbers, or boolean values as input parameters, or (ii) “Object,” which
means a scenario can take domain objects as inputs.

• Specification interface. (i) “Textual,” which means specifications can be
written only as text, or (ii) “Graphical,” which means specifications can
be composed by using graphical elements.

• Output type. (i) “Test run status,” which means the tool only indicates
a pass or fail status for tests, or (ii) “Report,” which means the tool

4https://github.com/CodeOneTwo/software-composition-seminar

100

https://github.com/CodeOneTwo/software-composition-seminar

A.8. BDD tools analysis

provides alternatives to customize test run reports so that the output is
readable by non-technical stakeholders.

We define our assessment parameters in subsection A.8.1. The symbol
“X” denotes that the value is “true,” whereas “nc” means “not clear from the
documentation.”

101

A. Appendix

T
a
b

le
A

8
:

B
D

D
to

o
l

co
m

p
a
ri

so
n

T
o
o
l

In
p

u
t

ty
p

e
P

a
ra

m
et

er
ty

p
e

S
p

ec
ifi

ca
ti

o
n

in
te

rf
a
ce

O
u

tp
u

t
ty

p
e

P
la

in
te

x
t

M
a
rk

d
o
w

n
T

a
b

le
C

o
d

e
P

ri
m

it
iv

e
O

b
je

ct
T

ex
tu

a
l

G
ra

p
h

ic
a
l

R
u

n
S

ta
tu

s
R

ep
o
rt

C
u

cu
m

b
er

X
-

X
-

X
X

X
-

X
X

J
B

eh
a
v
e

X
-

-
-

n
c

n
c

X
-

X
-

C
o
n

co
rd

io
n

X
X

X
-

X
X

X
-

X
-

S
p

ec
F

lo
w

X
-

X
-

X
X

X
-

X
X

S
p

o
ck

-
-

-
X

X
X

X
-

X
-

R
S

p
ec

k
-

-
-

X
X

n
c

X
-

X
n

c
M

S
p

ec
-

-
-

X
X

n
c

X
-

X
-

L
ig

h
tB

D
D

-
-

-
X

X
n

c
X

-
X

X
S

ca
la

T
es

t
-

-
-

X
X

X
X

-
X

-
S

p
ec

s2
-

-
-

X
X

n
c

X
-

X
X

J
G

iv
en

-
-

-
X

X
n

c
X

-
X

X
p

h
p

sp
ec

-
-

-
X

n
c

X
X

-
X

X
G

a
u

g
e

-
X

X
-

X
n

c
X

-
X

X

102

A.9. Included studies in the SLR

A.9 Included studies in the SLR

S1. Yotaro Seki, Shinpei Hayashi, and Motoshi Saeki. 2019. Detecting Bad Smells
in Use Case Descriptions. In 2019 IEEE 27th International Requirements En-
gineering Conference (RE). IEEE, 98–108.

S2. Christoph Stanik and Walid Maalej. 2019. Requirements Intelligence with Open-
Req Analytics. In 2019 IEEE 27th International Requirements Engineering
Conference (RE). IEEE, 482–483. Webpage accessible at https://openreq.
eu/, Source code repo accessible at https://github.com/OpenReqEU.

S3. Yilong Yang, Wei Ke, and Xiaoshan Li. 2019. RM2PT: Requirements Valida-
tion through Automatic Prototyping. In 2019 IEEE 27th International Re-
quirements Engineering Conference (RE). IEEE, 484–485. Source code repo
accessible at https://github.com/RM2PT.

S4. Novarun Deb, Manjarini Mallik, Anwesha Roychowdhury, and Nabendu Chaki.
2019. CARGo: A Prototype for Contextual Annotation and Reconciliation
of Goal Models. In 2019 IEEE 27th International Requirements Engineering
Conference (RE). IEEE, 486–489. Source code repo accessible at https://
github.com/CARGoTool/CARGoV1.0.

S5. Yiwen Chen, Yuanpeng Wang, Yixuan Hou, and Yunduo Wang. 2019. T-
Star: A Text-Based iStar Modeling Tool. In 2019 IEEE 27th International
Requirements Engineering Conference (RE). IEEE, 490–491.

S6. Sofija Hotomski and Martin Glinz. 2018. A qualitative study on using Guide-
Gento keep requirements and acceptance tests aligned. In 2018 IEEE 26th
International Requirements Engineering Conference (RE). IEEE, 29–39. Web-
page at https://www.ifi.uzh.ch/en/rerg/research/GuideGen.html,
Source code repo accessible at https://github.com/hotomski/guidegen.

S7. Michael Vierhauser, Jane Cleland-Huang, Rick Rabiser, Thomas Krismayer, and
Paul Grünbacher. 2018. Supporting diagnosis of requirements violations in
systems of systems. In 2018 IEEE 26th International Requirements Engineering
Conference (RE). IEEE, 325–335. Webpage accessible at http://mevss.
jku.at/?page_id=1470.

S8. Dalton N Jorge, Patŕıcia DL Machado, Everton LG Alves, and Wilkerson L An-
drade. 2018. Integrating Requirements Specification and Model-Based Testing
in Agile Development. In 2018 IEEE 26th International Requirements Engi-
neering Conference (RE). IEEE, 336–346.

S9. Alicia M Grubb and Marsha Chechik. 2018. Bloomingleaf: a formal tool for re-
quirements evolution over time. In 2018 IEEE 26th International Requirements
Engineering Conference (RE). IEEE, 490–491. Source code repo accessible at
https://github.com/amgrubb/BloomingLeaf.

S10. Zahra Shakeri Hossein Abad, Munib Rahman, Abdullah Cheema, Vincenzo
Gervasi, Didar Zowghi, and Ken Barker. 2018. Dynamic visual analytics for
elicitation meetings with elica. In 2018 IEEE 26th International Requirements
Engineering Conference (RE). IEEE, 492–493.

S11. Parisa Ghazi and Martin Glinz. 2018. FlexiView Experimental Tool: Fair
and Detailed Usability Tests for Requirements Modeling Tools. In 2018 IEEE
26th International Requirements Engineering Conference (RE). IEEE, 494–495.
Webpage at https://www.ifi.uzh.ch/en/rerg/research/flexiview.
html.

S12. Joao Pimentel and Jaelson Castro. 2018. pistar tool–a pluggable online tool
for goal modeling. In 2018 IEEE 26th International Requirements Engineer-
ing Conference (RE). IEEE, 498–499. Webpage accessible at https://www.

103

https://openreq.eu/
https://openreq.eu/
https://github.com/OpenReqEU
https://github.com/RM2PT
https://github.com/CARGoTool/CARGoV1.0
https://github.com/CARGoTool/CARGoV1.0
https://www.ifi.uzh.ch/en/rerg/research/GuideGen.html
https://github.com/hotomski/guidegen
http://mevss.jku.at/?page_id=1470
http://mevss.jku.at/?page_id=1470
https://github.com/amgrubb/BloomingLeaf
https://www.ifi.uzh.ch/en/rerg/research/flexiview.html
https://www.ifi.uzh.ch/en/rerg/research/flexiview.html
https://www.cin.ufpe.br/~jhcp/pistar/
https://www.cin.ufpe.br/~jhcp/pistar/
https://www.cin.ufpe.br/~jhcp/pistar/

A. Appendix

cin.ufpe.br/˜jhcp/pistar/, Source code repo accessible at https://
github.com/jhcp/pistar.

S13. Ahmed D Alharthi, Maria Spichkova, and Margaret Hamilton. 2018. Susoftpro:
Sustainability profiling for software. In 2018 IEEE 26th International Require-
ments Engineering Conference (RE). IEEE, 500–501. Webpage accessible at
https://ahmedalharthi.net/susoftpro/.

S14. Eric Knauss, Grischa Liebel, Jennifer Horkoff, Rebekka Wohlrab, Rashidah
Kasauli, Filip Lange, and Pierre Gildert. 2018. T-Reqs: Tool support for
managing requirements in large-scale agile system development. In 2018 IEEE
26th International Requirements Engineering Conference (RE). IEEE, 502–503.
Source code repo accessible at https://github.com/regot-chalmers/
treqs.

S15. Marc Oriol, Melanie Stade, Farnaz Fotrousi, Sergi Nadal, Jovan Varga, Nor-
bert Seyff, Alberto Abello, Xavier Franch, Jordi Marco, and Oleg Schmidt.
2018. FAME: supporting continuous requirements elicitation by combining
user feedback and monitoring. In 2018 IEEE 26th International Requirements
Engineering Conference (RE). IEEE, 217–227. Source code repo accessible at
(CHECK) .

S16. George Mathew, Tim Menzies, Neil A Ernst, and John Klein. 2017. “SHORT”
er Reasoning About Larger Requirements Models. In 2017 IEEE 25th Inter-
national Requirements Engineering Conference (RE). IEEE, 154–163. Source
code repo accessible at https://github.com/dr-bigfatnoob/softgoals.

S17. Andrew Crapo, Abha Moitra, Craig McMillan, and Daniel Russell. 2017. Re-
quirements capture and analysis in ASSERT (TM). In 2017 IEEE 25th Inter-
national Requirements Engineering Conference (RE). IEEE, 283–291.

S18. Fitsum Meshesha Kifetew, Denisse Munante, Anna Perini, Angelo Susi, Al-
berto Siena, Paolo Busetta, and Danilo Valerio. 2017. Gamifying collaborative
prioritization: Does pointsification work?. In 2017 IEEE 25th International
Requirements Engineering Conference (RE). IEEE, 322–331. Webpage acces-
sible at
https://supersede-project.github.io/dm_game/, Source code repo
accessible at https://github.com/supersede-project/dm_game.

S19. Saurabh Tiwari and Mayank Laddha. 2017. UCAnalyzer: A Tool to An-
alyze Use Case Textual Descriptions. In 2017 IEEE 25th International Re-
quirements Engineering Conference (RE). IEEE, 448–449. Webpage accessible
at https://sites.google.com/view/ucanalyzer/home?authuser=0,
Source code accessible at https://github.com/maylad31/ucanalyzer.

S20. Mohammad Noaeen, Zahra Shakeri Hossein Abad, and Behrouz Homayoun
Far. 2017. Let’s hear it from RETTA: A Requirements Elicitation Tool for
TrAffic management systems. In 2017 IEEE 25th International Requirements
Engineering Conference (RE). IEEE, 450–451.

S21. Lloyd Montgomery, Emma Reading, and Daniela Damian. 2017. Ecrits—
visualizing support ticket escalation risk. In 2017 IEEE 25th international
requirements engineering conference (RE). IEEE, 452–455.

S22. Maria Fernanda Granda, Nelly Condori-Fernández, Tanja EJ Vos, and Oscar
Pastor. 2017. CoSTest: A tool for validation of requirements at model level.
In 2017 IEEE 25th International Requirements Engineering Conference (RE).
IEEE, 464–467. Webpage accessible at https://costestproject2017.
wordpress.com/.

104

https://www.cin.ufpe.br/~jhcp/pistar/
https://www.cin.ufpe.br/~jhcp/pistar/
https://www.cin.ufpe.br/~jhcp/pistar/
https://github.com/jhcp/pistar
https://github.com/jhcp/pistar
https://ahmedalharthi.net/susoftpro/
https://github.com/regot-chalmers/treqs
https://github.com/regot-chalmers/treqs
https://github.com/dr-bigfatnoob/softgoals
https://supersede-project.github.io/dm_game/
https://github.com/supersede-project/dm_game
https://sites.google.com/view/ucanalyzer/home?authuser=0
https://github.com/maylad31/ucanalyzer
https://costestproject2017.wordpress.com/
https://costestproject2017.wordpress.com/

A.9. Included studies in the SLR

S23. Georgi M Kanchev, Pradeep K Murukannaiah, Amit K Chopra, and Pete
Sawyer. 2017. Canary: an interactive and query-based approach to extract
requirements from online forums. In 2017 IEEE 25th International Require-
ments Engineering Conference (RE). IEEE, 470–471.

S24. Michael Ledger. 2017. A demonstration of Respecify: a requirements au-
thoring tool harnessing CNL. In 2017 IEEE 25th International Requirements
Engineering Conference (RE). IEEE, 472–473. Webpage accessible at http:
//quasimal.com/projects/respecify.html.

S25. Alicia M Grubb and Marsha Chechik. 2016. Looking into the crystal ball:
requirements evolution over time. In 2016 IEEE 24th International Require-
ments Engineering Conference (RE). IEEE, 86–95. Webpage accessible at
http://www.cs.utoronto.ca/˜amgrubb/growing-leaf/, Source code
repo accessible at https://github.com/amgrubb/GrowingLeaf.

S26. Oliver Karras, Stephan Kiesling, and Kurt Schneider. 2016. Supporting re-
quirements elicitation by
tool-supported video analysis. In 2016 IEEE 24th International Requirements
Engineering Conference (RE). IEEE, 146–155. Webpage accessible at http:
//www.se.uni-hannover.de/pages/en:projekte_reqvida.

S27. Marcel Robeer, Garm Lucassen, Jan Martijn EM van der Werf, Fabiano Dalpiaz,
and Sjaak Brinkkemper. 2016. Automated extraction of conceptual models
from user stories via NLP. In 2016 IEEE 24th International Requirements En-
gineering Conference (RE). IEEE, 196–205. Source code repo accessible at
https://github.com/MarcelRobeer/VisualNarrator.

S28. Ning Gao and Zhi Li. 2016. Generating testing codes for behavior-driven
development from problem diagrams: A tool-based approach. In 2016 IEEE
24th International Requirements Engineering Conference (RE). IEEE, 399–400.

S29. Yi Jiang, Shijun Wang, Kai Fu, Wei Zhang, and Haiyan Zhao. 2016. SCCMT:
AStigmergy-Based Collaborative Conceptual Modeling Tool. In 2016 IEEE
24th International Requirements Engineering Conference (RE). IEEE, 401–404.
Source code repo at https://github.com/Jexceed/Stigmergic-modeling.

S30. Salome Maro and Jan-Philipp Steghöfer. 2016. Capra: A configurable and
extendable traceability management tool. In 2016 IEEE 24th International
Requirements Engineering Conference (RE). IEEE, 407–408. Webpage acces-
sible at https://projects.eclipse.org/projects/modeling.capra,
Source code repo accessible at https://bit.ly/3JTu8Z4.

S31. Xiaozhou Li, Biswa Upreti, and Zheying Zhang. 2016. Mobility Requirements
Engineering Tool (MoRE). In 2016 IEEE 24th International Requirements En-
gineering Conference (RE). IEEE, 409–410. Source code repo accessible at
https://github.com/biswaupreti/MobilityRequirements.

S32. Garm Lucassen, Fabiano Dalpiaz, Jan Martijn EM van der Werf, and Sjaak
Brinkkemper. 2015. Forging high-quality user stories: towards a discipline for
agile requirements. In 2015 IEEE 23rd international requirements engineering
conference (RE). IEEE, 126–135. Source code repo accessible at https://
github.com/gglucass/aqusa.

S33. Dustin Wüest, Norbert Seyff, and Martin Glinz. 2015. Sketching and nota-
tion creation with FlexiSketch Team: Evaluating a new means for collaborative
requirements elicitation. In 2015 IEEE 23rd International Requirements Engi-
neering Conference (RE). IEEE, 186–195. Webpage at https://www.ifi.
uzh.ch/en/rerg/research/flexiblemodeling/flexisketch.html, Source

105

http://quasimal.com/projects/respecify.html
http://quasimal.com/projects/respecify.html
http://www.cs.utoronto.ca/~amgrubb/growing-leaf/
https://github.com/amgrubb/GrowingLeaf
http://www.se.uni-hannover.de/pages/en:projekte_reqvida
http://www.se.uni-hannover.de/pages/en:projekte_reqvida
https://github.com/MarcelRobeer/VisualNarrator
https://github.com/Jexceed/Stigmergic-modeling
https://projects.eclipse.org/projects/modeling.capra
https://bit.ly/3JTu8Z4
https://github.com/biswaupreti/MobilityRequirements
https://github.com/gglucass/aqusa
https://github.com/gglucass/aqusa
https://www.ifi.uzh.ch/en/rerg/research/flexiblemodeling/flexisketch.html
https://www.ifi.uzh.ch/en/rerg/research/flexiblemodeling/flexisketch.html

A. Appendix

code repo at https://files.ifi.uzh.ch/rerg/flexisketch/ICSE2015/.

S34. Edith Zavala, Xavier Franch, Jordi Marco, Alessia Knauss, and Daniela Damian.
2015. SACRE: a tool for dealing with uncertainty in contextual requirements
at runtime. In 2015 IEEE 23rd International Requirements Engineering Con-
ference(RE). IEEE, 278–279. Webpage accessible at https://gessi.upc.
edu/en/tools/sacre-tool/sacre, Source code repo accessible at https:
//github.com/edithzavala/sacre-sv.

S35. Markus Fockel and Jörg Holtmann. 2015. ReqPat: Efficient documentation
of high-quality requirements using controlled natural language. In 2015 IEEE
23rd International Requirements Engineering Conference (RE). IEEE, 280–281.
Source code repo accessible at https://github.com/fraunhofer-iem/
reqpat.

S36. Luxi Chen, Linpeng Huang, Hao Zhong, Chen Li, and Xiwen Wu. 2015. Breeze:
A modeling tool for designing, analyzing, and improving software architec-
ture. In 2015 IEEE 23rd International Requirements Engineering Conference
(RE). IEEE,284–285. Source code repo accessible at https://github.com/
BreezeCSA/Breeze.

S37. Irina Todoran Koitz and Martin Glinz. 2015. StakeCloud Tool: From cloud
consumers’ search queries to new service requirements. In 2015 IEEE 23rd
International Requirements Engineering Conference (RE). IEEE, 286–287.

S38. Robert Darimont and Christophe Ponsard. 2015. Supporting quantitative as-
sessment of requirements in goal orientation. In 2015 IEEE 23rd International
Requirements Engineering Conference (RE). IEEE, 290–291. Webpage acces-
sible at http://www.objectiver.com/index.php?id=4.

S39. João Pimentel, Jéssyka Vilela, and Jaelson Castro. 2015. Web tool for goal
modelling and statechart derivation. In 2015 IEEE 23rd International Require-
ments Engineering Conference (RE). IEEE, 292–293. Webpage accessible at
https://www.cin.ufpe.br/˜jhcp/gato/about.html, Source code repo
accessible at https://github.com/jhcp/GoalArch.

S40. Fabiano Dalpiaz and Micaela Parente. 2019. RE-SWOT: From User Feedback
to Requirements via Competitor Analysis. In International Working Confer-
ence on Requirements Engineering: Foundation for Software Quality. Springer,
55–70. Source code repo accessible at https://github.com/RELabUU/
RE-SWOT.

S41. Jonas Paul Winkler and Andreas Vogelsang. 2018. Using tools to assist iden-
tification of non-requirements in requirements specifications– A controlled ex-
periment. In International Working Conference on Requirements Engineering:
Foundation for Software Quality. Springer, 57–71.

S42. Fabiano Dalpiaz, Ivor Van der Schalk, and Garm Lucassen. 2018. Pinpoint-
ing ambiguity and incompleteness in requirements engineering via information
visualization and NLP. In International Working Conference on Requirements
Engineering: Foundation for Software Quality. Springer, 119–135. Source
code repo accessible at https://github.com/RELabUU/revv-light and
https://github.com/RELabUU/revv.

S43. Ines Hajri, Arda Goknil, Lionel C Briand, and Thierry Stephany. 2017. In-
cremental reconfiguration of product specific use case models for evolving con-
figuration decisions. In International Working Conference on Requirements
Engineering: Foundation for Software Quality. Springer, 3–21. Webpage ac-
cessible at https://sites.google.com/site/pumconf/.

106

https://files.ifi.uzh.ch/rerg/flexisketch/ICSE2015/
https://gessi.upc.edu/en/tools/sacre-tool/sacre
https://gessi.upc.edu/en/tools/sacre-tool/sacre
https://github.com/edithzavala/sacre-sv
https://github.com/edithzavala/sacre-sv
https://github.com/fraunhofer-iem/reqpat
https://github.com/fraunhofer-iem/reqpat
https://github.com/BreezeCSA/Breeze
https://github.com/BreezeCSA/Breeze
http://www.objectiver.com/index.php?id=4
https://www.cin.ufpe.br/~jhcp/gato/about.html
https://github.com/jhcp/GoalArch
https://github.com/RELabUU/RE-SWOT
https://github.com/RELabUU/RE-SWOT
https://github.com/RELabUU/revv-light
https://github.com/RELabUU/revv
https://sites.google.com/site/pumconf/

A.9. Included studies in the SLR

S44. James Lockerbie, Neil Maiden, Chris Williams, and Leigh Chase. 2017. A Re-
quirements Traceability Approach to Support Mission Assurance and Config-
urability in the Military. In International Working Conference on Requirements
Engineering: Foundation for Software Quality. Springer, 308–323. Webpage at
https://bit.ly/33gKutV.

S45. Martin Wilmink and Christoph Bockisch. 2017. On the ability of lightweight
checks to detect ambiguity in requirements documentation. In International
Working Conference on Requirements Engineering: Foundation for Software
Quality. Springer, 327–343. Source code repo accessible at https://github.
com/mwmk67/TactileCheck.

S46. Qin Ma and Sybren de Kinderen. 2016. Goal-based decision making. In In-
ternational Working Conference on Requirements Engineering: Foundation for
Software Quality. Springer, 19–35. Webpage accessible at http://jucmnav.
softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome.

S47. Björn Regnell. 2016. What is essential?– A pilot survey on views about the
requirements metamodel of reqT. org. In International Working Conference
on Requirements Engineering: Foundation for Software Quality. Springer,
232–239. Source code repo accessible at https://github.com/reqT/reqT.

S48. Tong Li, Jennifer Horkoff, and John Mylopoulos. 2015. Analyzing and en-
forcing security mechanisms on requirements specifications. In International
Working Conference on Requirements Engineering: Foundation for Software
Quality. Springer,115–131.

S49. Wenbin Li, Jane Huffman Hayes, and Miros law Truszczyński. 2015. Towards
More Efficient Requirements Formalization: A Study. In International Working
Conference on Requirements Engineering: Foundation for Software Quality.
Springer,181–197.

S50. Sami Lazreg, Maxime Cordy, Philippe Collet, Patrick Heymans, and Sébastien
Mosser. 2019. Multifaceted automated analyses for variability-intensive em-
bedded systems. In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE). IEEE, 854–865. Source code repo accessible at
https://bitbucket.org/SamiLazreg/enlighter/src/master/.

S51. Lefan Zhang, Weijia He, Jesse Martinez, Noah Brackenbury, Shan Lu, and
Blase Ur. 2019. AutoTap: synthesizing and repairing trigger-action programs
using LTL properties. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 281–291. Source code repo accessible at
https://github.com/zlfben/autotap.

S52. Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and
Lihua Xu. 2019. Storydroid: Automated generation of storyboard for An-
droid apps. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 596–607.

S53. Carlos Bernal-Cárdenas, Kevin Moran, Michele Tufano, Zichang Liu, Linyong
Nan, Zhehan Shi, and Denys Poshyvanyk. 2019. Guigle: a GUI search engine
for Android apps. In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering: Companion Proceedings (ICSE-Companion). IEEE, 71–74.
Webpage accessible at http://www.guigle.com/.

S54. Naoyasu Ubayashi, Takuya Watanabe, Yasutaka Kamei, and Ryosuke Sato.
2019. Git-based integrated uncertainty manager. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion). IEEE, 95–98. Webpage accessible at http://posl.
github.io/iArch/, Source code repo accessible at https://github.com/
posl/iArch.

107

https://bit.ly/33gKutV
https://github.com/mwmk67/TactileCheck
https://github.com/mwmk67/TactileCheck
http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome
http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome
https://github.com/reqT/reqT
https://bitbucket.org/SamiLazreg/enlighter/src/master/
https://github.com/zlfben/autotap
http://www.guigle.com/
http://posl.github.io/iArch/
http://posl.github.io/iArch/
https://github.com/posl/iArch
https://github.com/posl/iArch

A. Appendix

S55. Claudio Menghi, Christos Tsigkanos, Thorsten Berger, and Patrizio Pellic-
cione. 2019. PsALM: specification of dependable robotic missions. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Compan-
ion Proceedings (ICSE-Companion). IEEE, 99–102. Webpage at http://
roboticpatterns.com/psalm/, Source code repo at https://github.
com/claudiomenghi/PsAlM.

S56. Cuiyun Gao, Wujie Zheng, Yuetang Deng, David Lo, Jichuan Zeng, Michael R
Lyu, and Irwin King. 2019. Emerging app issue identification from user feed-
back: experience on WeChat. In 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
IEEE, 279–288.

S57. Cuiyun Gao, Jichuan Zeng, Michael R Lyu, and Irwin King. 2018. Online
app review analysis for identifying emerging issues. In Proceedings of the 40th
International Conference on Software Engineering. 48–58. Source code repo
accessible at https://github.com/armor-ai/IDEA.

S58. Kevin Moran, Boyang Li, Carlos Bernal-Cárdenas, Dan Jelf, and Denys Poshy-
vanyk. 2018. Automated reporting of GUI design violations for mobile apps.
In Proceedings of the 40th International Conference on Software Engineer-
ing. 165–175. Webpage accessible at https://www.android-dev-tools.
com/gvt, Source code repo accessible at https://www.dropbox.com/s/
7yuarlbinvgj6ck/GVT-SRC-ICSE18.tar.gz?dl=0.

S59. Paige Rodeghero, Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017.
Detecting user story information in developer-client conversations to generate
extractive summaries. In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE). IEEE, 49–59.

S60. Saheed A Busari and Emmanuel Letier. 2017. Radar: A lightweight tool for
requirements and architecture decision analysis. In 2017 IEEE/ACM 39th In-
ternational Conference on Software Engineering (ICSE). IEEE, 552–562. Web-
page accessible at https://ucl-badass.github.io/radar/, Source code
repo accessible at https://github.com/sbusari/RADAR.

S61. Dalal Alrajeh, Liliana Pasquale, and Bashar Nuseibeh. 2017. On evidence
preservation requirements for forensic-ready systems. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering. 559–569.

S62. Chetan Arora, Mehrdad Sabetzadeh, Arda Goknil, Lionel C Briand, and Frank
Zimmer. 2015. NARCIA: an automated tool for change impact analysis in
natural language requirements. In Proceedings of the 2015 10th Joint Meet-
ing on Foundations of Software Engineering. 962–965. Webpage accessible at
https://sites.google.com/site/svvnarcia/.

S63. Yihao Huang, Jincao Feng, Hanyue Zheng, Jiayi Zhu, Shang Wang, Siyuan
Jiang, Weikai Miao, and Geguang Pu. 2019. Prema: A Tool for Precise Re-
quirements Editing, Modeling and Analysis. In 2019 34th IEEE/ACM Interna-
tional Conferenceon Automated Software Engineering (ASE). IEEE, 1166–1169.

S64. Pavan Kumar Chittimalli, Kritika Anand, Shrishti Pradhan, Sayandeep Mi-
tra, Chandan Prakash, Rohit Shere, and Ravindra Naik. 2019. BuRRiTo: A
Framework to Extract, Specify, Verify and Analyze Business Rules. In 2019
34th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 1190–1193.

S65. Flavio Corradini, Fabrizio Fornari, Andrea Polini, Barbara Re, Francesco Tiezzi,
and Andrea Vandin. 2017. BProVe: tool support for business process ver-
ification. In 2017 32nd IEEE/ACM International Conference on Automated

108

http://roboticpatterns.com/psalm/
http://roboticpatterns.com/psalm/
https://github.com/claudiomenghi/PsAlM
https://github.com/claudiomenghi/PsAlM
https://github.com/armor-ai/IDEA
https://www.android-dev-tools.com/gvt
https://www.android-dev-tools.com/gvt
https://www.dropbox.com/s/7yuarlbinvgj6ck/GVT-SRC-ICSE18.tar.gz?dl=0
https://www.dropbox.com/s/7yuarlbinvgj6ck/GVT-SRC-ICSE18.tar.gz?dl=0
https://ucl-badass.github.io/radar/
https://github.com/sbusari/RADAR
https://sites.google.com/site/svvnarcia/

A.9. Included studies in the SLR

Software Engineering (ASE). IEEE, 937–942. Webpage accessible at http://
pros.unicam.it/bprove/, Source code repo accessible at https://bitbucket.
org/proslabteam/bprove/src/master/.

S66. Julián Grigera, Alejandra Garrido, and Gustavo Rossi. 2017. Kobold: web
usability as a service. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 990–995. Webpage accessible
at http://autorefactoring.lifia.info.unlp.edu.ar/, Source code
repo accessible at https://github.com/juliangrigera/Kobold.

S67. Jitendra Singh Thakur and Atul Gupta. 2016. AnModeler: a tool for gen-
erating domain models from textual specifications. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineer-
ing. 828–833. Webpage accessible at https://sites.google.com/site/
anmodeler/.

S68. Nor Aiza Moketar, Massila Kamalrudin, Safiah Sidek, Mark Robinson, and
John Grundy. 2016. An automated collaborative requirements engineering tool
for better validation of requirements. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. 864–869.

S69. Andreas Burger and Sten Grüner. 2018. Finalist 2: Feature identification,
localization, and tracing tool. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 532–537.

S70. Deokyoon Ko, Suntae Kim, and Sooyong Park. 2019. Automatic recommenda-
tion to omitted steps in use case specification. Requirements Engineering 24,
4 (2019), 431–458. Source code repo accessible at https://github.com/
maniara/ScenarioAmigo.

S71. Abha Moitra, Kit Siu, Andrew W Crapo, Michael Durling, Meng Li, Pana-
giotis Manolios, Michael Meiners, and Craig McMillan. 2019. Automating
requirements analysis and test case generation. Requirements Engineering 24,
3 (2019), 341–364.

S72. Jonas Westman and Mattias Nyberg. 2019. Providing tool support for specify-
ing safety-critical systems by enforcing syntactic contract conditions. Require-
mentsEngineering 24, 2 (2019), 231–256.

S73. Deepika Prakash and Naveen Prakash. 2019. A multifactor approach for elic-
itation of Information requirements of data warehouses. Requirements Engi-
neering 24, 1(2019), 103–117.

S74. Sarah Thew and Alistair Sutcliffe. 2018. Value-based requirements engineering:
method and experience. Requirements engineering 23, 4 (2018), 443–464.

S75. Amina Souag, Raúl Mazo, Camille Salinesi, and Isabelle Comyn-Wattiau. 2018.
Using the AMAN-DA method to generate security requirements: a case study
in the maritime domain. Requirements Engineering 23, 4 (2018), 557–580.

S76. Lloyd Montgomery, Daniela Damian, Tyson Bulmer, and Shaikh Quader. 2018.
Customer support ticket escalation prediction using feature engineering. Re-
quirements Engineering 23, 3 (2018), 333–355.

S77. Shinobu Saito, Yukako Iimura, Aaron K Massey, and Annie I Antón. 2018.
Discovering undocumented knowledge through visualization of agile software
development activities. Requirements Engineering 23, 3 (2018), 381–399.

S78. Chi Mai Nguyen, Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos.
2018. Multi-objective reasoning with constrained goal models. Requirements
Engineering 23, 2 (2018), 189–225. Webpage accessible at http://www.
cgm-tool.eu/index.html.

109

http://pros.unicam.it/bprove/
http://pros.unicam.it/bprove/
https://bitbucket.org/proslabteam/bprove/src/master/
https://bitbucket.org/proslabteam/bprove/src/master/
http://autorefactoring.lifia.info.unlp.edu.ar/
https://github.com/juliangrigera/Kobold
https://sites.google.com/site/anmodeler/
https://sites.google.com/site/anmodeler/
https://github.com/maniara/ScenarioAmigo
https://github.com/maniara/ScenarioAmigo
http://www.cgm-tool.eu/index.html
http://www.cgm-tool.eu/index.html

A. Appendix

S79. Mohamad Gharib, Paolo Giorgini, and John Mylopoulos. 2018. Analysis of in-
formation quality requirements in business processes, revisited. Requirements
Engineering 23, 2 (2018), 227–249.
Webpage at https://mohamadgharib.wordpress.com/bpsts-iq-tool/,
Source code at https://bit.ly/2AAdbnA.

S80. Diego Firmenich, Sergio Firmenich, José Mat́ıas Rivero, Leandro Antonelli, and
Gustavo Rossi. 2018. CrowdMock: an approach for defining and evolving web
augmentation requirements. Requirements Engineering 23, 1 (2018), 33–61.

S81. Ricardo Eito-Brun and Antonio Amescua. 2017. Dealing with software process
requirements complexity: an information access proposal based on semantic
technologies. Requirements Engineering 22, 4 (2017), 527–542.

S82. Garm Lucassen, Marcel Robeer, Fabiano Dalpiaz, Jan Martijn EM van der
Werf, and Sjaak Brinkkemper. 2017. Extracting conceptual models from
user stories with Visual Narrator. Requirements Engineering 22, 3 (2017),
339–358. Source code available at https://github.com/MarcelRobeer/
VisualNarrator.

S83. Nicolas Sannier, Morayo Adedjouma, Mehrdad Sabetzadeh, and Lionel Briand.
2017. An automated framework for detection and resolution of cross refer-
encesin legal texts. Requirements Engineering 22, 2 (2017), 215–237.

S84. Mohamed Amine Beghoura, Abdelhak Boubetra, and Abdallah Boukerram.
2017. Green software requirements and measurement: random decision forests-
based software energy consumption profiling. Requirements Engineering 22, 1
(2017), 27–40.

S85. Mirko Morandini, Loris Penserini, Anna Perini, and Alessandro Marchetto.
2017. Engineering requirements for adaptive systems. Requirements Engi-
neering 22, 1(2017), 77–103. Webpage accessible at http://se.fbk.eu/
technologies/taom4e.

S86. Luz Maŕıa Priego-Roche, Dominique Rieu, et al. 2016. A framework for virtual
organization requirements. Requirements Engineering 21, 4 (2016), 439–460.

S87. Walid Maalej, Zijad Kurtanović, Hadeer Nabil, and Christoph Stanik. 2016.
On the automatic classification of app reviews. Requirements Engineering
21, 3 (2016), 311–331. Webpage accessible at https://mast.informatik.
uni-hamburg.de/app-review-analysis/,
Source code available at https://mast.informatik.uni-hamburg.de/
wp-content/uploads/2014/03/ReviewClassifier4J.zip.

S88. Garm Lucassen, Fabiano Dalpiaz, Jan Martijn EM van der Werf, and Sjaak
Brinkkemper. 2016. Improving agile requirements: the quality user story
framework and tool. Requirements Engineering 21, 3 (2016), 383–403. Source
code available at https://github.com/gglucass/aqusa.

S89. Piotr Pruski, Sugandha Lohar, William Goss, Alexander Rasin, and Jane Cleland-
Huang. 2015. TiQi: answering unstructured natural language trace queries.
Requirements Engineering 20, 3 (2015), 215–232.

S90. Nicola Zeni, Nadzeya Kiyavitskaya, Luisa Mich, James R Cordy, and John My-
lopoulos. 2015. GaiusT: supporting the extraction of rights and obligations for
regulatory compliance. Requirements engineering 20, 1 (2015), 1–22.

S91. Nishant Jha and Anas Mahmoud. 2019. Mining non-functional requirements
from App store reviews. Empirical Software Engineering 24, 6 (2019), 3659–3695.
Source code available at https://github.com/seelprojects/MARC-3.0.

110

https://mohamadgharib.wordpress.com/bpsts-iq-tool/
https://bit.ly/2AAdbnA
https://github.com/MarcelRobeer/VisualNarrator
https://github.com/MarcelRobeer/VisualNarrator
http://se.fbk.eu/technologies/taom4e
http://se.fbk.eu/technologies/taom4e
https://mast.informatik.uni-hamburg.de/app-review-analysis/
https://mast.informatik.uni-hamburg.de/app-review-analysis/
https://mast.informatik.uni-hamburg.de/wp-content/uploads/2014/03/ReviewClassifier4J.zip
https://mast.informatik.uni-hamburg.de/wp-content/uploads/2014/03/ReviewClassifier4J.zip
https://github.com/gglucass/aqusa
https://github.com/seelprojects/MARC-3.0

A.9. Included studies in the SLR

S92. Jason McZara, Shahryar Sarkani, Thomas Holzer, and Timothy Eveleigh. 2015.
Software requirements prioritization and selection using linguistic tools and
constraint solvers— a controlled experiment. Empirical Software Engineering
20,6 (2015), 1721–1761.

S93. Emmanouela Stachtiari, Anastasia Mavridou, Panagiotis Katsaros, Simon Bli-
udze, and Joseph Sifakis. 2018. Early validation of system requirements and
design through correctness-by-construction. Journal of Systems and Software
145 (2018), 52–78. Webpage accessible at https://emmastac.github.io/
RERD-tool/, Source code available at https://github.com/emmastac/
RERD-tool.

S94. Thomas Wolfenstetter, Mohammad R Basirati, Markus Böhm, and Helmut Kr-
cmar. 2018. Introducing TRAILS: A tool supporting traceability, integration
and visualisation of engineering knowledge for product service systems devel-
opment. Journal of Systems and Software 144 (2018), 342–355.

S95. Man Zhang, Tao Yue, Shaukat Ali, Bran Selic, Oscar Okariz, Roland Nor-
gre, and Karmele Intxausti. 2018. Specifying uncertainty in use case models.
Journal of Systems and Software 144 (2018), 573–603. Webpage accessible at
http://zen-tools.com/rucm/U_RUCM.html.

S96. Michal Steinberger, Iris Reinhartz-Berger, and Amir Tomer. 2018. Cross life-
cycle variability analysis: Utilizing requirements and testing artifacts. Jour-
nal of Systems and Software 143 (2018), 208–230. Webpage accessible at
https://sites.google.com/is.haifa.ac.il/sova.

S97. Henning Femmer, Daniel Méndez Fernández, Stefan Wagner, and Sebastian
Eder. 2017. Rapid quality assurance with requirements smells. Journal of
Systems and Software123 (2017), 190–213. Webpage accessible at https:
//www.qualicen.de/?page_id=8949.

S98. Fabiano Dalpiaz, Ivor Van Der Schalk, Sjaak Brinkkemper, Fatma Başak Ay-
demir, and Garm Lucassen. 2019. Detecting terminological ambiguity in
user stories: tool and experimentation. Information and Software Technol-
ogy 110 (2019), 3–16. Webpage at http://www.staff.science.uu.nl/

˜dalpi001/revv-light/,
Source code at https://github.com/RELabUU/revv-light.

S99. Sofija Hotomski and Martin Glinz. 2019. GuideGen: An approach for keeping
requirements and acceptance tests aligned via automatically generated guid-
ance. Information and Software Technology 110 (2019), 17–38. Webpage
accessible at https://www.ifi.uzh.ch/en/rerg/research/GuideGen.
html, Source code accessible at https://github.com/hotomski/guidegen.

S100. Mohamad Gharib and Paolo Giorgini. 2019. Information quality requirements
engineering with STS-IQ. Information and Software Technology 107 (2019),
83–100. Webpage accessible at https://bit.ly/3GdCXuF.

S101. Jennifer Horkoff, NA Maiden, and David Asboth. 2019. Creative goal mod-
eling for innovative requirements. Information and software Technology 106
(2019), 85–100. Webpage at https://bit.ly/3JUrzpz.

S102. Affan Yasin, Lin Liu, Tong Li, Jianmin Wang, and Didar Zowghi. 2018.
Designand preliminary evaluation of a cyber Security Requirements Education
Game(SREG). Information and Software Technology 95 (2018), 179–200.

S103. Banu Aysolmaz, Henrik Leopold, Hajo A Reijers, and Onur Demirörs. 2018.
A semi-automated approach for generating natural language requirements doc-
uments based on business process models. Information and Software Tech-
nology 93 (2018), 14–29. Webpage accessible at http://www.bflow.org/

111

https://emmastac.github.io/RERD-tool/
https://emmastac.github.io/RERD-tool/
https://github.com/emmastac/RERD-tool
https://github.com/emmastac/RERD-tool
http://zen-tools.com/rucm/U_RUCM.html
https://sites.google.com/is.haifa.ac.il/sova
https://www.qualicen.de/?page_id=8949
https://www.qualicen.de/?page_id=8949
http://www.staff.science.uu.nl/~dalpi001/revv-light/
http://www.staff.science.uu.nl/~dalpi001/revv-light/
https://github.com/RELabUU/revv-light
https://www.ifi.uzh.ch/en/rerg/research/GuideGen.html
https://www.ifi.uzh.ch/en/rerg/research/GuideGen.html
https://github.com/hotomski/guidegen
https://bit.ly/3GdCXuF
https://bit.ly/3JUrzpz
http://www.bflow.org/uprom.html
http://www.bflow.org/uprom.html
http://www.bflow.org/uprom.html

A. Appendix

uprom.html,
Source code accessible at http://aysolmaz.com/PrcModReqGenTool.rar.

S104. Sangeeta Dey and Seok-Won Lee. 2017. REASSURE: Requirements elicita-
tion for adaptive socio-technical systems using repertory grid. Information and
SoftwareTechnology 87 (2017), 160–179.

S105. George Chatzikonstantinou and Kostas Kontogiannis. 2016. Run-time re-
quirements verification for reconfigurable systems. Information and Software
Technology 75 (2016), 105–121. Webpage accessible at http://www.softlab.
ntua.gr/˜gechatz/seb/.

S106. Janardan Misra. 2016. Terminological inconsistency analysis of natural lan-
guage requirements. Information and Software Technology 74 (2016), 183–193.

S107. Selami Bagriyanik and Adem Karahoca. 2016. Automated COSMIC Function
Point measurement using a requirements engineering ontology. Information and
Software Technology 72 (2016), 189–203.

S108. Naveed Ali and Richard Lai. 2016. A method of requirements change manage-
ment for global software development. Information and Software Technology
70 (2016), 49–67.

S109. Geri Georg, Gunter Mussbacher, Daniel Amyot, Dorina Petriu, Lucy Troup,
Saul Lozano-Fuentes, and Robert France. 2015. Synergy between Activity
Theory and goal/scenario modeling for requirements elicitation, analysis, and
evolution. Information and Software Technology 59 (2015), 109–135.

S110. M Brian Blake, Iman Saleh, Yi Wei, Ian D Schlesinger, Alexander Yale-Loehr,
and Xuanzhe Liu. 2015. Shared service recommendations from requirement
specifications: A hybrid syntactic and semantic toolkit. Information and Soft-
ware Technology 57 (2015), 392–404.

S111. Aamir M Khan, Frédéric Mallet, and Muhammad Rashid. 2019. A framework
to specify system requirements using natural interpretation of UML/MARTE
diagrams. Software & Systems Modeling 18, 1 (2019), 11–37. Source code
accessible at https://github.com/jadoonengr/TemLoPAC.

S112. Tong Li, Jennifer Horkoff, and John Mylopoulos. 2018. Holistic security re-
quirements analysis for socio-technical systems. Software & Systems Modeling
17, 4(2018), 1253–1285. Webpage accessible at http://disi.unitn.it/

˜li/MUSER/Intro.html.

112

http://www.bflow.org/uprom.html
http://www.bflow.org/uprom.html
http://www.bflow.org/uprom.html
http://aysolmaz.com/PrcModReqGenTool.rar
http://www.softlab.ntua.gr/~gechatz/seb/
http://www.softlab.ntua.gr/~gechatz/seb/
https://github.com/jadoonengr/TemLoPAC
http://disi.unitn.it/~li/MUSER/Intro.html
http://disi.unitn.it/~li/MUSER/Intro.html

A.9. Included studies in the SLR

113

	1
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem statement
	Contributions
	A survey of state of the art collaborative approaches
	A survey of the 62 software-related artifacts
	A proposal of a novel approach for agile specification and verification

	Outline

	State of the art
	RE tools
	Results

	Software artifacts
	Results

	BDD tools
	Results for the exploratory study
	Results of the BDD tool analysis

	Related work
	RE tools
	Software artifacts
	BDD tools

	Summary and conclusion

	Citizen requirements
	Background
	The naked objects pattern
	Low-code development platforms
	Moldable development
	First-class entities

	Building blocks
	Examples
	GUIs
	Views

	Discussion
	Impact analysis
	Modeling
	Documentation

	Conclusion

	Collaborative specification and management of requirements
	Collaborative artifacts building
	A running example
	Workflow

	Example artifacts
	User stories
	Mindmaps
	Scenarios

	Evaluation
	Threats to the validity
	Conclusion

	Collaborative requirements validation
	Collaborative validation
	A running example
	Workflow

	Conclusion

	Implications
	Live documentation
	A Kanban board
	An interactive tutorial

	Agile modeling
	Analyze the textual requirements
	Describe the responsibilities of domain entities

	Conclusion

	Conclusions
	Contributions
	Future work
	Empirical studies
	Improving the existing infrastructure
	Evaluation in a practical setting

	Summary and conclusion

	Bibliography
	Appendix
	SLR methodology
	Planning phase
	Execution phase
	Reporting phase

	Overview of the identified tools
	SLR: threats to the validity
	Artifact analysis
	Methodology
	List of artifacts

	The survey instrument
	Interviewee background
	Post demo survey

	Model BDD scenarios
	BDD open-source project analysis
	Study design

	BDD tools analysis
	Study design

	Included studies in the SLR

