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Chapter 1

Introduction

A Hopf band is an annulus embedded in R3 with a full twist. If the twist is positive,
we say that the Hopf band is positive and negative otherwise. An important
property of the boundary of a Hopf band is that it is a fibred link, which means
that the complement is endowed with a fibre bundle over S1. Fibred links were
first defined by Stallings in 1961, [31], and they are the main object of study in this
thesis. We can create more intricate surfaces using an operation called plumbing,
defined by Stallings who showed that plumbing two fibre surfaces yields a fibre
surface [32]. Giroux and Goodman later showed that any fibred surface can be
obtained by a sequence of plumbing and de-plumbing (the reverse operation) Hopf
bands [18]. A quick way to see this operation is to choose a proper arc in each
Hopf band or surface, then glue its corresponding neighbourhoods transversely in
such a way that the two bands are contained in complementary half-spaces. It is
possible to choose an arc that goes along the Hopf band n times, obtaining an even
more complicated surface (unless there are only two Hopf bands), like the one in
Figure 1, in which we plumb a third band that goes twice around the first one. In
such cases, the core curves of the Hopf bands may intersect multiple times. We
will give more examples of this in the next section. This thesis is focused on the
links arising by positive Hopf plumbing such that core curves intersect no more
than once.

The signature of a link, L, is a topological invariant found by Trotter [34] and
commonly denoted by σ(L). Let V be a Seifert matrix of L, then σ(L) can be
calculated by finding the signature of the symmetrized Seifert matrix of the link
(V + V T ). The signature is maximal when the matrix is a positive (or negative)
definite. Another interesting invariant is the signature function (defined in [23]
and [33] by Levine and Tristam), which can be constructed by calculating the
signature of the Hermitian matrix (1−w)V +(1− w̄)V T for different values of the
complex number w ∈ S1. This thesis is concerned mostly with the first invariant,
but we will glimpse the latter in the next chapter, where we find the signature
function for certain types of positive Hopf plumbed links.
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Figure 1.1: An example of three positive Hopf bands plumbed to-
gether. Note that the core curve α3 intersects twice α1. For sim-
plicity α3 is not fully drawn.

The symmetric Seifert matrices have the form of 2’s in the diagonal and 0 or
±1 otherwise. From the algebraic point of view, it is known that these positive
definite matrices are congruent to one of the Cartan matrices or direct sums of
the simply laced Dynkin diagrams: An, Dn, E6, E7 and E8, see Figure 1.2. We
will denote them by ADE diagrams. These diagrams have been widely studied in
connection with the classification of semi-simple Lie algebras and in the context of
graph theory where the Cartan matrix is written in terms of the adjacency matrix
[9], [10]. When plumbing positive Hopf bands according to these graphs we get
the torus links T (2, n + 1), T (3,4) and T (3,5) for An, E6 and E8, respectively,
and the pretzel links P (−2,2, n − 2) and P (−2,3,4) for Dn and E7 respectively,
[7]. An example of T (2, n + 1) is in Figure 6.1. We will use the notation L(G)

when referring to the link realized by the graph G, as suggested in [7].
The goal of this thesis is to classify links with a maximal signature within a

certain class of fibred links into one of the links realized by the ADE diagrams. A
similar study was carried out by Boileau, Boyer and Gordon [6] showing that for
strongly quasipositive links to have an L-space cyclic branched cover, they need
to have a maximal signature, and more recently they showed that certain strongly
quasipositive braids with a definite closure can be classified into the links realized
by the ADE diagrams.

We will differentiate plumbings in which the core curves of the Hopf bands
intersect at most once and those in which they can intersect more than once. In
the latter, Misev found that for such constructions, there is an infinite family of
distinct fibred knots having the same Seifert form as the torus knots T (2,2g + 1)
for any given genus g ≥ 2, [26]. That is why, from now on, we will consider plumb-
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ings of the former type.

Figure 1.2: The simply laced Dynkin diagrams.

We begin with the positive braid links, a class of links that has been studied in
the context of singularity theory, which can be constructed by plumbing positive
Hopf bands; see Figure 1.3 for the example of the positive trefoil link or check [16]
for more enlightening figures. Baader [1] showed that a prime positive braid with
maximal signature is isotopic to one of the ADE links. The proof involved braid
relations, conjugation and a list of graph minors.

Theorem 1.1. ([1, Theorem 2]) A prime positive braid with maximal signa-
ture is isotopic to one of the links realized by the ADE diagrams.

It is customary to represent positive braid links with a linking graph, the
construction of which consists of associating each Hopf band to a vertex, and
such that two vertices are connected whenever the corresponding core curves of
the Hopf bands intersect. Baader, Lukas and Liechti [3] not only showed that
linking graphs uniquely determines a positive braid link, but also built the basis
to construct a new class of links, which generalizes the previous ones, and uniquely
determines a strongly quasipositive fibred link. These were called checkerboard
graph links. One of the most noticeable differences between checkerboard graphs
and linking graphs is that the former has no restriction on the valency of the
vertices.

Figure 1.3
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Our first result (see Chapter 3) was to show that the ADE classification ex-
tends to checkerboard graph links. The proof uses the same list of graph minors
used in [1], and a set of moves on the checkerboard graph that preserves the link
type. These moves, which we call triangle- or t-moves have appeared before in
graph theory and were known as local switching [10]. Here, we use a restricted
set of those to prove the following theorem.

Theorem 3.3. A checkerboard graph link with maximal signature is isotopic
to one of the links realized by the ADE diagrams.

The next class of links, which includes positive braid links, are called basket
links and were introduced by Rudolph [30]. Their construction consists of plumb-
ing Hopf bands onto a disk in a given order. They can be represented by what is
known as a chord diagram [20]. The kind of freedom when plumbing Hopf bands
in such a manner breaks down the ADE classification. Examples of basket links
that were not L(Dn) but had a Seifert form of type Dn (we will refer to them as
‘fake’) were found by Boileau et al. [7], Theorem 1.13. This result and the pre-
vious theorem show that not all baskets are checkerboard graph links. It remains
an open question as to whether baskets are a generalization of checkerboard graph
links. We explore this question in Chapter 5.

Conjecture 5.1. Checkerboard graph links are basket links.

Using Boileau et al.’s Theorems 1.13 and 9.10 it is not difficult to show that
such fake knots can also be found for E6,7,8. However, our result shows that no
fake An type basket links exist.

Theorem 6.1. A basket link with n positive Hopf bands and symmetrized
Seifert form congruent to CAn is isotopic to a two-strand torus link.

In the more general class of links where plumbing positive Hopf bands only
have the restriction that core curves intersect at most once, we found that there
were links with the same Seifert form as An but different from the torus links
T (2, n + 1), (see the anticipated example in Figure 1.4). This shows the limits of
the ADE classification for this type of fibred links. Both results are discussed in
Chapter 6.

4



Figure 1.4: A 17-crossings fibred knot resulting from plumbing 6
positive Hopf bands. It has the same Seifert form as T (2,7) yet
they are not isotopic. Images plotted with knotscape [21].

The fake An links are interesting given the recent conjecture [7] stating that
fibred strongly quasipositive links such that its cyclic branched cover is an L-
space are simply laced arborescent, e.g., of the type T (2, n + 1). Secondly, these
examples also become interesting in the context of the prevailing slice-ribbon con-
jecture, since Baker proved that if K and K ′ are two distinct fibred strongly
quasipositive knots, then K# −K ′ is not ribbon, [4]. Although we show that the
two-component links (n odd) that we produce are not smoothly concordant to
T (2, n + 1), for n even, we do not know if our knot is concordant to T (2, n + 1).

Figure 1.5: A summary of the links constructed by plumbing posi-
tive Hopf bands, in such a way that the core curves intersect at most
once. The red square represents the ones with maximal signature.
The question mark is a reference to Conjecture 5.1.
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A characterization of two-strand torus links in terms of linking graphs was
given in [2] and dubbed triangle tree graphs. They proved the existence of a linear
time algorithm for detecting the torus links T (2, n + 1) out of a positive braid.
In Chapter 4 we complete the study of checkerboard graph links with maximal
signature by giving a new characterization in terms of checkerboard graphs of the
pretzel links P (−2,2, n − 2).

Proposition 4.1. Let Γ be a checkerboard graph with n vertices and L(Γ)

the associated link. Then, L(Γ) is isotopic to L(Dn) if and only if Γ is either a
1-balloon graph or one of the three types of graphs in Figure 4.1 below, where the
dashed circles represent triangle tree graphs.

Figure 1.6: The underlying graphs of type R, H and O. The trian-
gle tree graph in R must contain at least one edge.

To prove Proposition 4.1 we make use of the list of minors used in Theorem
3.3, and the set of t-moves. In addition, we provide a list of checkerboard graphs
such that their corresponding links are isotopic to L(E6) or L(E7). Finally, we
also found that there exists a linear time algorithm in the number of vertices plus
the number of edges to detect L(Dn) from a checkerboard graph.

Theorem 4.7. There exists an algorithm linear in E + V to detect checker-
board graph links with maximal signature from a checkerboard graph.

Outline: In Chapter 2 we give the definitions and examples of the main
links under study in this thesis: positive braids links, checkerboard graph links
and basket links. We also define the signature function of a link and compute it for
the cases of three and four positive Hopf bands plumbed together. In particular,
we investigate the behaviour of the signature function when the intersection of
the core curves of these Hopf bands goes to infinity. In Chapter 3, we define
the t-moves for checkerboard graphs and use them to prove Theorem 3.3. In
Chapter 4, we continue the study of checkerboard graphs of maximal signature.
We characterize those whose corresponding link is of the ADE type, and use this
to show that there is a linear time algorithm to find these links from a checkerboard
graph. In Chapter 5 we explain Conjecture 5.1 and prove some partial results. In
Chapter 6 we prove Theorem 6.1 and provide some examples of fake An links.
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Chapter 2

Background

2.1 Fibred links and Hopf plumbing

Let S be a Seifert surface of a link L. In this thesis we assume that links and
Seifert surfaces are smooth, compact, oriented and embedded in S3. We say that
L is a fibred link if S is a fibred surface, i.e., there exists a fibre bundle with
base and total space S1 and S3 −L, respectively. Pictorial examples of the fibred
bundle of a trefoil knot and the unknot can be found in [29]. A fibred surface
comes with a map h ∶ S Ð→ S called the monodromy, which fixes the boundary
pointwise, and is a very strong tool when studing fibred links. We refer the reader
to [29] for an introduction to knot theory, fibred links and monodromy maps.

Plumbing Hopf bands is a special case of an operation known as Murasugi sum
[27]. Here, we will go directly to the definition of plumbing Hopf bands as it was
defined by Stallings [32]. Let Σ1 be a fibred suface and H2 a Hopf band, define
two proper arcs α1 ⊂ Σ1 and α2 ⊂H2 and discs Dα1 , Dα2 to be the corresponding
neighborhoods of the arcs. Now, glue ∂Dα1 and ∂Dα2 transversely in such a way
that the two bands are contained in complementary half-spaces.

In the following sections we give a short insight into three types of fibred links
constructed by plumbing positive Hopf bands: positive braid links, checkerboard
graph links, and basket links.

2.1.1 Positive braid links

Let Bn be the braid group on n strands (also known as the Artin braid group), an
element in this group can be written as a finite product of the standard generators
σ1, . . . , σn−1 and their inverses. Now, a positive braid word is one in which no
inverses of the generators are allowed, and the closure is known as a positive braid
link. For instance, L(An) is the closure of σn1 , and in Figure 2.1, we show the

7



fibred surface associated with the closure of the positive braid σ2
2(σ1σ3σ2σ4)

2. A
result due to Stallings shows that the closure of a positive braid word is fibred
and can be constructed by positive Hopf plumbing [32].

When it comes to represent a positive braid link (apart form using a braid
word), we can do so by using what are called brick diagrams, which are a special
case of fence diagrams, the latter were defined by Rudolph as a way of representing
a more general class of links named strongly quasipositive links. A brick diagram,
as its name suggests, can be constructed by changing each crossing in a positive
braid by an horizontal line. Although we do not give a precise example of these,
in Figure 2.1, left, the red blocks form the brick diagram of the given positive
braid link. They represent a natural homology basis of the surface. Another rep-
resentation, which will be extensively used in this thesis, consists in associating
each brick to a vertex and joining two vertices whenever the corresponding ho-
mology elements of the bricks intersect. The result is an oriented, planar, finite
and simple graph with maximum valency 6, called linking graph. Remarkably, in
[3] it is proven that a linking graph uniquely determines a positive braid link.

We adopt the convention used in [3], there, “vertical” edges are oriented down-
wards and all other edges are oriented upwards. This assures that adjacent cycles
have different orientation. Moreover, the orientation of the edge ei,j give us the
sign of the linking number of the corresponding homology bases of the vertices vi
and vj. This motivates the following definition:

Definition 2.2: A signed graph is a finite and simple graph in which every
edge is assigned a value 1 or −1.

Figure 2.1: An example of the Seifert surface of σ2
2(σ1σ3σ2σ4)

2 and the
corresponding linking graph. The red curves represent a natural homology
basis. Note that they are in one-to-one correspondence with the vertices of
the linking graph and two vertices are joined by an edge if the corresponding
elements of the basis intersect.

Let G be a signed graph and A(G) be its adjacency matrix (where A(G)ij = ±1
if the vertices i and j are connected by an edge). Now, let β be a positive braid
word and Γ(β) be its linking graph, then there exists a signed graph Γ±(β) such

8



that 2I +A(Γ±(β)) is the symmetrized Seifert form of the closure of β, which we
will denote as L(Γ(β)), (Proposition 1.4.2, [16]). Clearly, the underlying graph
of Γ(β), which we will denote as ∣Γ(β)∣, is the same as ∣Γ±(β)∣.

2.1.2 Checkerboard graphs links

A checkerboard graph is a generalization of a linking graph. They are finite,
simple, plane and oriented graphs whose cycles are coherently oriented. The latter
property is equivalent to saying that they admit a checkerboard coloring, i.e., their
dual, without the vertex corresponding to the unbounded face, is a bipartite graph.
The interest of studying these graphs resides in the fact that a checkerboard graph
uniquely determines a strongly quasipositive fibred link [3, Theorem 2]. How to
recover a checkerboard graph link from a checkerboard graph is explained in [3].

In addition, as showed in [3] it is possible to associate to a checkerboard
graph an abstract open book i.e., a pair (Σ, φ), where Σ is an oriented compact
surface with boundary, and φ is a diffeomorphism, called the monodromy, that
fixes the boundary pointwise. Baader and Lewark use the open books realized
by checkerboard graphs in order to find two moves on these graphs that preserve
the corresponding link type [2], such moves will be of importance in the proof of
Theorem 3.3, and are a special case of the t′-moves defined in Chapter 3.

For positive braid knots the topological 4-genus is maximal exactly if the
signature is maximal [24]. Whether it is possible to obtain the same result for
checkerboard graph links is a question proposed by [3].

2.1.3 Baskets

Basket links were first defined by Rudolph [30]. They are strongly quasipositive
fibred links, that include positive braid links. They are constructed by plumbing
Hopf bands along the neighborhoods of properly embedded arcs in a disk. The
easiest and more intuitive representation of a basket as it appears in [20], is
by using the so called chord diagrams; a disk in R2 with ordered chords, see for
instance Figure 2.2, left. From there, we can build the basket surface by plumbing
Hopf bands in the given order and following the convention of plumbing the ith

band on bottom of the previous bands, see Figure 2.2, right.
The incidence graph, Γ, of a chord diagram has one vertex for each chord and

such that two vertices are connected whenever the corresponding chords intersect,
e.g, Figure 2.2 (left) is a chord diagram with incidence graph A3. It is worth
mentioning that, looking at Figure 2.2 (right), if we change a bottom plumbing
by a top plumbing, the basket surface does not change [30]. There are incidence
graphs, e.g, An, where the order in which we plumb is irrelevant. In fact, in [20]
it is shown that this is also true for tree graphs.

9



Figure 2.2: A chord diagram, left, and its basket surface, right.

A chord diagram with arcs α1, . . . , αn together with an order of plumbing
determines uniquely a signed graph, Γ±. We obtain Γ± as follows: identically as
we did with the incidence graph we associate one vertex for each arc and one edge
whenever two arcs intersect. In order to find the sign, let α′i be the oriented core
curve of the positive Hopf band plumbed along αi, then the sign of the edge [αi, αj]
is given by the sign of lk(α′i, α

′+

j ) + lk(α′+i , α
′

j), where α′+i is the curve resulting
from pushing a′i off in the positive normal direction of the surface. Clearly, the
incidence graph is the underlying graph of Γ±. Moreover, in this basis, the basket
surface has symmetrized Seifert matrix M(Γ±) = 2I + A(Γ±). In Chapter 6, we
consider basket links whose symmetrized Seifert matrix is congruent to the Cartan
matrix of An, which can be written as:

CAn =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1
−1 2 −1

−1 2 −1
⋱

−1 2 −1
−1 2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This is a positive definite matrix, so if M(Γ±) ≅ CAn then so is M(Γ±) and
the eigenvalues of A(Γ±) are > −2. This is why, in order to prove Theorem 6.1,
we use some of the results of spectral graph theory, in which they study precisely
the signed graphs whose eigenvalues are greater than −2.

2.2 The signature profile

To each link L ⊂ S3, there is associated a signature function (defined in [23] and
[33]), which can be constructed by calculating the signature of the Hermitian
matrix Mw for different values of the complex number w ∈ S1. Here,
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Mw = (1 −w)V + (1 − w̄)V T

where V is a Seifert matrix for L. Let S ⊂ S3 be the fibre surface obtained by
plumbing n positive Hopf bands H1, . . . ,Hn with oriented core curves α1, . . . , αn,
and let mij be the geometric intersection number between the core curves αi and
αj for i ≠ j. We can find a symmetrized Seifert matrix with twos in the diagonal
(the self-linking of the bands) and ±mij otherwise, where the sign depends on the
orientation of the core curves.

We are interested on what kind of signature function can be realized from the
link L = ∂S if we make the intersection numbers between the core curves tend to
infinity, more precisely, we study whether in this case there is a finite or infinite
number of signature profiles. Our first result is the following:

Proposition 2.1: There are only two types of signature profiles for a link
obtained by plumbing three positive Hopf bands, and an infinite number of signa-
ture profiles if obtained by plumbing four positive Hopf bands.

Proof: We will start with the case of three Hopf bands. Let S ⊂ S3 be the
fibre surface obtained by plumbing three positive Hopf bands H1,H2,H3 with core
curves α1, α2, α3 respectively. We want to construct a Seifert matrix for S. If we
plumb the first two Hopf bands H1 and H2 together, it is not difficult to see that
the intersection number between their core curves is always ±1 or 0. Let us choose
the orientation of α1 and α2 so that lk(α1, α2) = −1. Now, plumb a third band, H3,
so that the geometric intersection number between α1 and α3 is n ≥ 0 and between
α2 and α3 is m ≥ 0. Note that there is only one way of orienting α3, so it agrees
with the previous two bands, it follows that lk(α1, α3) = n and lk(α2, α3) = −m
(or equivalently lk(α1, α3) = −n and lk(α2, α3) = m), and a Seifert matrix V of
the surface S can be written as

V =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 n
0 1 −m
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Let Mw be an Hermitian matrix of V where w = eiπx and x ∈ [0,1]. In this proof
we calculate the signature of Mw as described by Macduffe [4], by subtracting the
number of sign changes to the number of sign permanences of the principal minors
of Mw.

In order to simplify the calculus denote B = (1 − w), B̄ = (1 − w̄) and A =

2(1−cos(x)). From our notation, it is not difficult to obtain the identities BB̄ = A
and B̄ +B = A, so the matrix Mw of V is

Mw =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A −B nB
−B̄ A −mB
B̄n −mB̄ A

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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Now, we can easily compute the principal minors of Mw, denote them by Mi with
i = 1,2,3. Then,

M1 = A, M2 = A
2 −A, M3 = A

3 −A2(n2 +m2 + 1 − nm).

Note that, n2+m2+1−nm > 0, and all values are realized by finitely many pairs
(n,m) ∈ Z2, in particular the values 1, 2 and 3. These are the values where the
minor M3 has a root between 0 and π. Make the substitution A = 2(1 − cos(x)),
now we want to evaluate the sign of the minors for different values of x ∈ [0, π].
Note that if x = 0 then Mi = 0 for all i.

The first two expressions are not hard to analyse: M1 > 0 for all x ∈ (0, π];
M2 has one root at δ2 = π/3, taking negative values for x < δ2 and positive values
otherwise. Now, if m and n takes the values (0,1), (1,0) or (1,1) then M3 has
one root at δ3 such that δ3 > δ2 and it takes negative values for x < δ3 and positive
ones otherwise. In the cases that m,n > 1 or m = 0 and n > 1 (or equivalently
n = 0, m > 1) then M3 has no roots in (0, π] and takes negative values in that
interval.

Define {1, sgn(M1), . . . , sgn(M3)} to be the sequence of signs of the principal
minors for a given value of x and recall that the signature of Mw is equal to
number of sign changes minus the number of sign permanences in this sequence
[4]. Thus, we can construct two types of signature profiles: first, if m and n takes
the values (0,1), (1,0) or (1,1) we obtain the sign sequences {1,+,-,-} if x ∈ (0, δ2)
and {1,+,+,-} if x ∈ (δ2, δ3) giving a signature equal to 1 in both cases, and if
x ≥ δ3 then {1,+,+,+} with signature equal to 3, see Figure 2.3 (bottom). Now,
if m,n > 1 or m = 0 and n > 1, then {1,+,-,-} for x ∈ (0, δ2) and {1,+,+,-} if x > δ2
both cases have signature 1, see Figure 2.3 (top). ◻

Figure 2.3: Top: signature function where m and n takes the values (0,1),
(1,0) or (1,1). Bottom: signature function for m,n > 1 or m = 0 and n > 1.
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Now, lets consider the case of four positive Hopf bands. Let S ⊂ S3 be the
fibre surface obtained by plumbing four positive Hopf bands, let V be a Seifert
matrix for S and m be the intersection number between two of the core curves of
the bands. We calculate the signature function of S for different values of m, in
a similar manner as we did in the previous section. We show that when m tends
to infinity there is an infinite number of signature profiles; one for each value of
m. Consider,

V =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 1
0 1 −1 m
0 0 1 1
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let Mw(V ) be the Hermitian matrix of V as defined before, and let Mi for
i = 1,2,3,4 be its principal minors,

M1 = A, M2 = A
2 −A, M3 = A

3 − 2A2, M4 = A
4 − (5 +m2)A3 + 4A2.

Note that the first three minors are the same as in the previous section (for
the case m = 1 and n = 0), and they do not depend on m. The real roots for M4

in x ∈ (0, π] are

A =
1

2
(m2 ±

√
m4 + 10m2 + 9 + 5).

Thus,

x1 = 2πk + arccos(1 −
1

4
(m2 −

√
m4 + 10m2 + 9 + 5))

for k ∈ Z, is one of the real roots after the substitution A = 2(1−cos(x)). Here,
x1 tends to zero as m goes to infinity and M4 takes positive values for x < x1 and
negative ones otherwise. Therefore, the sign sequence for x < x1 is {1,+,-,-,+}

which has signature 0 and for x > x1 it is not hard to see that the sign sequences
gives a signature of 2 in the three possible intervals: (x1, δ2) with sequence {1,+,-
,-,-}, (δ2, δ3) with {1,+,+,-,-} and (δ3,∞) with {1,+,+,+,-}. Since the signature
function has a discontinuity at x1, this represents a jump, which tends to zero as
m goes to infinity. ◻
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Chapter 3

Checkerboard graph links and Dynkin di-
agrams

In this chapter we define an equivalence relation on graphs with signed edges, such
that the associated adjacency matrices of two equivalent graphs are congruent over
Z. We show that signed graphs whose eigenvalues are larger than −2 are equiv-
alent to one of the simply laced Dynkin diagrams: An, Dn, E6, E7 and E8. We
use the previous result to prove that a checkerboard graph link with maximal sig-
nature is isotopic to one of the links realized by the simply laced Dynkin diagrams.

3.1 Introduction

Let G be a signed graph, we say that G is a positive signed graph if 2I +A(G) is
positive definite. For such graphs, we define a t-move that transforms one graph
into another such that their adjacency matrices are congruent. This defines an
equivalence relation that we call a t-equivalence.

Theorem 3.1. Let G be a positive signed graph, then G is t-equivalent to one
of the ADE diagrams.

A wide research in the field of spectral graph theory has been carried out on
the graphs whose adjacency matrix have eigenvalues > −2. Results from Cameron
et al. [9] characterize those graphs represented by one of the ADE root systems.
It is worth mentioning that a similar conclusion to the one in Theorem 3.1 can
be achieved by using their results. However, the advantage of using the t-moves
lies in the fact that, as we will further explain in Section 3.4, they are in close
connection with certain checkerboard graph moves that preserve the link type.

If we only consider signed graphs that are planar and admit a checkerboard
coloring (we shall call those graphs signed checkerboard graphs), we will find that
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Theorem 3.1 can be slightly sharpened. Indeed, we only need to use certain types
of t-moves, which we call the t′-moves. We say that two graphs are t′-equivalent
if there is a sequence of such moves relating one to another. Section 3.2 provides
a concise introduction to the t- and t′- moves on signed graphs and we give some
of their properties.

Theorem 3.2. Let G be a positive signed checkerboard graph, then G is t′-
equivalent to one of the ADE diagrams.

In Section 3.3 we will prove Theorems 3.1 and 3.2 by induction on the number
of vertices. We show that if we add a vertex to one of the ADE diagrams, we
obtain a graph that is either t′-equivalent to one of the ADE diagrams, or it has
a non-positive Seifert form. To show the latter, we make use of the forbidden
minors E, T , X and Y , which do not have a positive definite symmetrized Seifert
form, independently of their signs [1]. Figure 3.1 shows the unsigned minors.
In addition, we include the D̃ graph in our list of minors that have a positive
semidefinite symmetrized Seifert form. A key step in the proof is that moves on
unsigned graphs can be promoted to moves on signed graphs; therefore, simplifying
the proof considerably.

Figure 3.1: Forbidden minors, reading from left to right: E, T , X, Y and D̃.
Any signed graph containing an induced subgraph of these five types has an
non-positive Seifert form.

Finally, in Section 3.4 we slightly generalize the moves proposed in [2] to find
a version of the t′- moves for checkerboard graphs. We also explain the relation
between sign graphs and checkerboard graphs, and we prove Theorem 3.3:

Theorem 3.3. A checkerboard graph link with maximal signature is isotopic
to one of the links realized by the ADE diagrams.
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3.2 Moves on signed graphs

We dedicate this section to define what we call a t-move on a signed graph, as
well as the t′-moves, which are special cases of the former ones. Along that, we
also study some of their properties that will be of importance in order to prove
Theorems 3.1. and 3.2.

Before going into definitions, we discuss two three of detecting non-positive
graphs aside from the forbidden minors mentioned above. Note that the latter
are extremely useful when dealing with tree graphs, where signs can be ignored;
however, once we encounter a cycle, the signs are important. Indeed, the following
remarks show that the number of vertices and the number of negative edges in a
cycle play a crucial role for detecting non-positive graphs.

Remark 3.4. Suppose G is an n-cycle graph with x number of negative edges
and n ≥ 3. Let A(G) be its adjacency matrix. It is clear that if we change the
signs of the two incident edges of a vertex in G, then the corresponding adjacency
matrices are congruent. If the number of negative edges is even, we can transform
the cycle into one with only positive edges, otherwise we can reduce the number
of negative signs to one. Then, after a permutation of rows and columns

2I +A(G) ≅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 1 ±1
1 2 1

1 2 1
⋱

1 2 1
±1 1 2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Where ≅ denotes matrix congruence over Z. Here the entries (1, n) and (n,1)
are positive if x is even and negative otherwise. The determinant of the principal
minor (2I +A(G))n−a is n − a + 1 for 1 ≤ a ≤ n − 1. Hence, to determine whether
2I +A(G) is positive definite, it suffices to study its determinant. Using the co-
factor expansion it is not hard to check that det(2I +A(G)) = 0 if x and n have
the same parity and det(2I +A(G)) = 4 otherwise.

When the number of negative edges and the number of vertices in a cycle
have different parity we say that the cycle is positive. Remark 3.4 establishes a
necessary condition for a signed graph with cycles to be positive, namely, there is
an odd number of positive edges.

Remark 3.5. Let Θ be a graph consisting of two positive cycles sharing x ≥ 2
edges, t of which are negative. Let (n, p) and (m,q) be these two cycles, where n
and m are the number of vertices and p, q stand for the number of negative signs
in each cycle. Then, the outer cycle is an induced subgraph with m+n−2x edges
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and p + q − 2t of them are negative. Since the pairs n, p and m,q have different
parity, it follows that the outer cycle is not positive. Therefore, two positive cycles
sharing more than one edge form a non-positive graph. Note that in the case for
x = 1 there is not such an induced subgraph.

Remark 3.6. Consider the graph in Figure 3.2, where A, B and D represent
positive cycles of lengths ≥ 3. The outer cycle, as an induced subgraph, is not a
positive graph. The proof is similar to that in Remark 3.5.

Figure 3.2

We are now ready to define a t-move for signed graphs in three steps. Let G
be a signed graph, the cycles of which are positive:

Step 1. Pick any edge ε(x, y) in G, where ε ∈ {1,−1} is the sign of the edge, and
choose one of its endpoints, say x.

Step 2. Let {v1, . . . , vn} be the set of vertices adjacent to y (excluding x). In the
case x is the only adjacent vertex, jump directly to Step 3. Now, for all
vi ∈ {v1, . . . , vn} draw an edge from x to every vertex vi, with the same sign
as the edge (y, vi) if ε = −1 and opposite sign if ε = 1. If an edge already
exists, remove it.

Step 3. Change ε by −ε.

We say that two signed graphs G1 and G2 are t-equivalent, and we denote it
by G1 ∼ G2, if there exists a sequence of t-moves changing G1 into G2. Sometimes
we write the pair [v,w] to indicate that we perform a t-move on the edge (v,w)

and vertex v.

Figure 3.3: An example of a t-move on the vertex and edge marked with a
circle where the dashed lines indicate negative edges.

Let G be a signed graph and ∣G∣ the graph we obtain from G by ignoring the
signs of its edges, this is usually called the underlying graph of G, a name that
we adopt in this paper. Observe that the underlying graph of a signed graph that
results from a t-move on G does not depend on the signs of the edges in G. So
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it is possible to define the t-move for non-signed graphs (by simply ignoring edge
signs in steps 1 and 2 and skipping step 3).

Remark 3.7. It is easy to verify that if we have a signed graph G and a
sequence of t-moves on ∣G∣ such that ∣G∣ ∼ ∣G′∣, then the same sequence (choosing
the same edges and vertices) transforms G into G′, where the signs of G′ depend
on those in G and the chosen sequence.

Since we will consider forbidden minors that are trees and we are interested
on sequences that lead to tree graphs and the signs in a tree does not matter (see
Remark 3.4); henceforth, we will consider underlying graphs only. This includes
figures, starting at Figure 3.4.

For later use, consider the graph in Figure 3.4 (left side), which we call a B
graph. It is not hard to check that:

Figure 3.4: Graph B.

Similarly, one can check the following relations:

Figure 3.5: The graphs (A) and (C) are t-equivalent to Dn.

The graphs B, A and C are not only an instructive example, but they will
also be useful in the proof of Proposition 3.1.

Lemma 3.8. Let G1 be a signed graph the cycles of which are positive and let
G2 be a signed graph. If G1 ∼ G2, then 2I +A(G1) ≅ 2I +A(G2).

Proof: Consider the vertex vj and the edge (vi, vj) with sign ε in G1. The
matrix 2I +A(G1) has the form
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⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋮ ⋮

ami amj
⋮ ⋮

. . . aim . . . 2 ε . . .

. . . ajm . . . ε 2 . . .
⋮ ⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The row and column operations Rj → Rj ±Ri and Cj → Cj ±Ci, where we use
the plus sign if ε = −1 and the negative sign otherwise, give:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋮ ⋮

ami xmj
⋮ ⋮

. . . aim . . . 2 −ε . . .

. . . xjm . . . −ε 2 . . .
⋮ ⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Now, let ami ≠ 0 and amj ≠ 0, meaning that vi and vj are both connected to
vm forming a 3-cycle and since every cycle in G is assumed to be positive, if ε = 1,
then ami = amj = ±1 and if ε = −1, then ami = −amj. Hence, after the row and
column operation, xmj = 0 and vj loses its connection with vm. If ami ≠ 0 and
amj = 0, then xmj = ami for ε = −1 and xmj = −ami for ε = 1, meaning that vi is now
connected to vm. If ami = 0 and amj ≠ 0, then xmj = amj. Hence, the above matrix
can be written as 2I +A(G′) for some signed graph G′, where G′ is precisely the
graph that results from performing the move on G1 in the mentioned vertex and
edge. Moreover, if G1 has positive cycles, then the cycles of G′, if any, are also
positive so if there is a sequence of moves changing G1 into G2, we can find a
sequence of elementary operations changing 2I +A(G1) into 2I +A(G2). ◻

It is clear now, that Theorem 3.1 and Lemma 3.2 implies that a positive defi-
nite matrix of the form 2I +A(G), for some signed graph G, is congruent over Z
to a matrix 2I +A(Γ) where Γ is one of the ADE diagrams.

Definition 3.9. A t-move on a vertex v and edge (v,w) where degw ∈ {1,2,3}
will be called a t′-move. We say that two signed graphs G1 and G2 are t′-equivalent
if there exists a sequence of t′-moves changing G1 into G2. We denote it by
G1 ∼t′ G2.

For instance, all the moves in Figures 3.3 to 3.5 are t′-moves. For the case of
positive, planar graphs that admit a checkerboard coloring the t′-moves can be
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restricted into the following three types (we have excluded the degree one case
from Figure 3.6 for being trivial):

Figure 3.6: Dashed lines represents graphs connected to the line’s endpoints.

To see that, note that positivity and checkerboard coloring properties on a
planar signed graph G implies that the maximum degree of a vertex, v, in G is
6. Moreover, v is never an internal vertex (use Remark 3.6 and the fact that the
wheel graph, W7, is not positive). Also, exclude all the combinations that are
t′-equivalent to a non-checkerborad graph, see for instance Figure 3.7 (such moves
will not be allowed).

Figure 3.7

3.3 Proof of Theorems 3.1 and 3.2

In this section we first give the proof of Theorem 3.1. As explained in the intro-
duction, the proof is done by induction. We assume that a graph, Γ, is t-equivalent
to one of the ADE diagrams, so it is clear that if we add a vertex v to Γ, then
Γ ∪ v ∼ ADE ∪ v. Therefore, all we need to prove the Theorem 3.1 is to show
that connecting a vertex to one of the ADE diagrams results, after a sequence
of t′-moves, into another ADE diagram or a non-positive graph. We divide the
proof in two parts: first, we study the case in which we add a vertex to the graph
An and second, we study in a similar manner those in which we add a vertex to
Dn, E6, E7 and E8. Finally, we prove Theorem 3.2.
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Proposition 3.10. If Gn is a positive signed graph with n vertices such that
it is the union of An−1 with an extra vertex connected to An−1 by m edges, then
Gn is t′-equivalent to one of the simply laced Dynkin diagrams.

Proof: The graph ∣Gn∣ can be pictured as in Figure 3.8, where vn has degree
m and the number of cycles in Gn is therefore m − 1.

Figure 3.8: An example of ∣Gn∣ for m = 3.

Notice that, if m > 6, then we can easily find an induced subgraph of type X
(see Figure 3.1) in Gn, implying that Gn is not positive. Therefore, in order to
prove the proposition, we consider all possible graphs for m ≤ 6, which we divide
in the following cases, and show that each of them is either t′-equivalent to a
graph that contains a forbidden minor or it is t′-equivalent to one of the graphs
An, Dn, E6, E7 or E8.

First, observe that if m = 6, then Gn contains five cycles and these must have
length 3, otherwise Gn contains a minor of type X. Hence, if we perform a t′-move
on vn and the second and fifth edges we can reduce the degree of vn by four, which
brings us to the m = 2 case. In a similar fashion, If m = 5, then there are four cycles
in Gn. If at least two of these cycles have length > 3, then X ⊂ Gn. So there must
be at least three cycles of length 3; one can easily check that after a t′-move on
vn and one of the edges shared by these 3-cycles, degvn = 3. Consequently, we just
need to consider the following four cases, in which m takes the values 1, 2, 3 and 4.

Remark 3.11: Suppose that vn is connected to v1 and m > 1, i.e., vn is con-
nected to at least one other vertex, say vx. If x = 2, then [vn, v1] reduces the
degree of vn by one. If x ≠ 2, then [vn, v1] creates a 3-cycle and we can follow
the sequence in Figure 3.4 in order to reduce the degree of vn by one, the same
argument works in the case that vn is connected to vn−1. Therefore, for the cases
where m > 1 we will assume that vn is not connected to any of these.

Case 1: If m = 1, and vn is connected to the vertex v1 (or vn−1), then Gn ∼t′ An.
If vn is connected to the vertex v2 (or vn−2), then Gn ∼t′ Dn. If vn is connected to
the vertex v3 (or vn−3), then for n > 8; E ⊂ G, and for n ∈ {6,7,8}; G ∼t′ En. If vn is
connected to a vertex different from those mentioned above and n ≥ 8, then T ⊂ G.

Case 2: If m = 2, then there is one cycle in Gn, whose length we denote by x.
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If x = 3, then Gn ∼t′ An, see Figure 3.3. If x = 4, then we obtain Dn by a t′-move
on vn and the two edges that have vn as an endpoint leading to a graph of type
B or (a). For x = 5 we need to consider the following case:

Figure 3.9: The non-signed graph without the starred vertex is t′-equivalent
to E7. The same t′-moves can be used with the additional starred vertex:
leading to E8.

From the graph in Figure 3.10, it is clear that if we connect a new vertex to
the starred one the resulting graph is t′-equivalent to E. If instead we connect a
new vertex as it appears in Figure 8, then G is t′-equivalent to a graph with a T
minor.

Figure 3.10: The non-signed graph is t′-equivalent to a graph that contains
a T minor.

If x > 5, then Gn clearly contains a minor of type D̃.

Case 3: For m = 3, there are two cycles in Gn. If both of them have length 3,
we can perform a t′-move as in Figure 3.4 (middle case) which boils down to the
m = 1 case. If there is only one cycle of length 3, then Gn is a B type graph and
again, we are in case 1. If both cycles are ≥ 4, then D̃ ⊂ Gn.

Case 4: Now, consider m = 4, we know that there are three cycles in Gn and
if they all have length > 3, then X ⊂ Gn. If there are two cycles with length > 3
and the third has length 3, then we can reduce m by two as it is shown in Figure
3.11. There are two cases to consider:
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Figure 3.11

If there are two non-adjacent cycles of length 3 and one with length > 3, then
Gn appears as in Figure 3.5(A), so Gn ∼t′ Dn. If there are two adjacent 3-cycles
and one with length > 3, then we can reduce m by two, see Figure 3.11, and if all
three cycles have length 3, then we can easily reduce m by two, see the diagram
of Figure 3.5(A). ◻

Proof of Theorem 3.1: Let n be the number of vertices of G. We may assume
n ≥ 1 and proceed by induction on n. For n = 1 it is clear. Assume that the
positive signed graph Gn−1 with n− 1 number of vertices is t′-equivalent to one of
the ADE diagrams. In the following cases we show that if we connect one vertex
to Gn−1, the new graph G is either t′-equivalent to one of the ADE diagrams or
it is not positive (recall that we already know that this works for Gn−1 ∼t′ An−1).
Note that in a connected graph G we can choose a vertex v such that G − v is
connected (such a vertex exists; see e.g. [17]).

Case 1: Let Gn−1 ∼ Dn−1 for n > 4, so the graph ∣G∣ can be pictured as in
Figure 3.12, where v has degree m.

Figure 3.12: An example of ∣G∣ for m = 2.

If m > 6, then clearly X ⊂ G. Now recall that in the proof of Proposition
3.1 we only needed to consider the cases where m ∈ {1,2,3,4}, similar arguments
work for this case. In addition, we observe that if m > 2 and v is connected to v1
and v2, then there are two cycles sharing two edges, which makes G a non-positive
graph for any choice of signs, see Remark 3.5. If that is not the case, then one can
easily check that m can be reduced to 1, 2 or 3. Notice that, if v is not connected
to v1, v2 and m > 1, then clearly D̃ ⊂ G or X ⊂ G (except for m = 2 and with a
cycle of length 3, in which case G ∼t′ Dn by a t′-move). Thus, for m > 1, we will
only consider the cases when v is connected to at least one of the vertices v1 and v2.
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Case 1.1: If m = 1 and v is connected to the vertex v1 or v2 and n ≤ 8, then
G ∼t′ En for n ∈ {6,7,8}. If n > 8, then G contains an induced subgraph of type
E. If v is connected to the vertex vn−1, then Gn+1 ∼t′ Dn+1. If v is connected to
any other vertices, then D̃ ⊂ G or X ⊂ G.

Case 1.2: If m = 2, the cycle has length 3 and v is connected to v1(or v2)
and v3, then G ∼t′ En for n ∈ {6,7,8} by a t′-move on [v, v1] (or [v, v2]), and it
contains an E minor for n > 8. If the cycle has length > 3 and v is connected to
vi and vj for j = n − 1 and i ∈ {1,2}, then G can be treated as one of the graphs
in the proof of Proposition 3.10. But, if 3 < j < n − 1 and i ∈ {1,2}, then one can
check that:

Figure 3.13

This again brings us to Proposition 3.10. Finally, if v is connected to v1 and
v2, then G can also be treated as one of the graphs in the proof of Proposition 3.10.

Case 1.3: If m = 3, then G has two cycles:

• If both cycles have length 3 and v is connected to v1, v2 and v3, then

Figure 3.14: The non-signed graph is t′-equivalent to a graph as in the proof
of Proposition 3.10, case 2.

• If there is only one cycle with length 3, we need to consider either the case:

or

both of them reduce to case 1.2.
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• If both cycles have length > 3, then we need to consider the following cases:

– v is connected to v1, v2 and vi for 3 ≤ i ≤ n − 1, then G has two cycles
sharing two edges so by Remark 3.5, G is not positive.

– v is connected to v1, vn−1 and vi for 3 < i < n−1, then G is as in Figure
3.13 (middle case).

– If v is connected to v1 and two other vertices different from vn−1, v2
and v3, then the only relevant case is when both cycles have length 4
since for any other lengths one can easily find a minor of type D̃ or X.
In the former case, Figure 3.15 shows that we can reduce it to case 1.2.

Figure 3.15

Case 2: Assume Gn−1 is t′-equivalent to E6, E7 or E8. So we can picture the
graph ∣G∣ as in Figure 3.16.

Figure 3.16: Examples of ∣G∣ for m = 2. Left: Gn−1 ∼t′ E6. Right: Gn−1 ∼t′

E7. We can construct the E8 case by simply connecting a new vertex, say
v8, to v7.

Case 2.1: First, consider that Gn−1 ∼t′ E6. If m = 1 and v is connected to the
vertex v1 or v6, then G ∼t′ E7. If v is connected to the vertex v3, then X ⊂ G. If
v is connected to a vertex different from those mentioned above, then G contains
an induced subgraph of type D̃. The case where Gn−1 ∼t′ E7 works similarly, and
if ∼t′ E8, then either we encounter the induced subgraphs D̃, T and X, or G = E.

26



Figure 3.17

Figure 3.18: The graphs encircled with green contain an induced subgraph
of type X, those encircled in blue contain D̃, and those in red contain Y .
The right column includes the graphs in which v is connected to v4. The
graphs that are not encircled are t′-equivalent to E7, E8 or, in the case
where Gn−1 ∼t′ E8, to a graph with the induced subgraph E.
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Case 2.2: Let m = 2 so G has one cycle of length x. First, if x = 3 and v is
connected to v3 and v4, then G ∼t′ Y (by a t′-move on [v, v4]). If Gn−1 ∼t′ E6 and
v is connected to a different pair of vertices, then G ∼t′ E7; however, that is not
the case for Gn−1 ∼t′ E7, in which we can still find it is t′-equivalent to E8 or it
contains T . If Gn−1 ∼t′ E8, then it does not matter to which vertices we connect v,
the resulting graph is t-equivalent to a graph with T or E as a minor. Now, for the
cases where x > 3 we simply draw all possible diagrams, see Figure 3.18, and we
find that they are either non-positive or t′-equivalent to E7 or E8 (see Figure 3.17).

Case 2.3: If m = 3 and both cycles have length 3, we can easily reduce the
degree of m by a t′-move, bringing us to the cases 2.1 or to the case 2.2 if v is
connected to v3. If there is only one cycle of length 3, then we can reduce the
degree by one. If both cycles have length > 3, one can check all possibilities as we
did in Figure 3.18, and find that all of them contain either X or D̃.

Finally, if m > 3 we can easily reduce the degree of v by using t′-moves; taking
us to the previous cases. ◻

Lemma 3.12. Let G be a positive signed checkerboard graph with n ≥ 3 ver-
tices, then there exists at least one vertex in G of degree 2 or 3.

Proof: We show that if G is a graph whose vertices have degree one or ≥

4, then G is not positive. Recall from the previous section that positivity and
checkerboard coloring properties on G implies that the maximum degree of a
vertex, v, in G is 6 and v is never an internal vertex. Now, if v is a vertex in
G of degree six, then the graphs on the first row in Figure 3.19 are the only two
possible induced subgraphs involving v in G (any other combination is a non-
positive graph). Similarly, if the degree of v is five or four, we find that the graphs
on the second and third row of Figure 3.19 are the possible induced subgraphs
involving v.

Figure 3.19
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Theorem 3.1 shows that connecting a vertex to one of the special Dynkin
graphs results into a graph in this class or into a non-positive one. Since the
graphs in the green boxes of Figure 3.19 are t′-equivalent to E6 or E7, connecting
more than two vertices to them will result into a non-positive graph. Thus, if
we want to construct a positive graph whose vertices have degree one or ≥ 4, we
cannot use the graphs inside the boxes.

Figure 3.20: Two graphs t′-equivalent to E6.

Now, consider the graphs in Figure 3.20, they are t′-equivalent to E6. It is not
hard to see that we cannot increase to 4 the degree of all the adjacent vertices of
v in the graph (3), Figure 3.19 without encountering one of the graphs in Figure
3.20 (neither in (1), since (3) ⊂ (1)). Indeed, for the graphs (2), (4) and (5) only
connecting triangles as it appears in Figure 3.21 will work, but since the graph
must have all its vertices of degree ≥ 4 or one, for every vertex in the triangles we
need to add at least two more vertices of degree one, creating a D̃ minor. Note
that, joining two vertices of different triangles by an edge in the first graph of
Figure 3.21 results into a non-positive graph by Remark 3.6 By the same reason,
we cannot join more than two triangles in the second graph. As for the fourth
one, joining them results into a non-positive graph by direct computation.

Figure 3.21

◻

Lemma 3.13. Let Γ be a positive signed checkerboard graph. If there is a
sequence of moves such that Γ is t′-equivalent to one of the ADE diagrams, then
Γ ∪ v is t′-equivalent to one of the ADE diagrams union v.

Proof: If there is a sequence of moves such that Γ is t′-equivalent to one of
the ADE diagrams and if Γ ∪ v is such that all the vertices in Γ connected to v
have degree 2 or 3, then the same sequence can be used to transform Γ ∪ v into
one of the ADE diagrams union v. If the degree of a vertex connected to v is ≥ 4,
then we cannot always use the same sequence. However, as we prove next, we
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can always find a t′-sequence that transform Γ ∪ v into one of the ADE diagrams
union v.

Let G be a positive planar graph such that it has a finite set of vertices of
degree ≥ 4, then there is a t′-sequence that transforms G into a graph whose
vertices have degree at most 3. In order to prove it, assume that there exists in
G at least one vertex, say w, of degree ≥ 4 that cannot be reduced by t′-moves to
a degree ≤ 3. Using Figure 3.19, this means that at least three adjacent vertices
of w must have degree ≥ 4 and cannot be reduced to lower degrees (≤ 3) either.
By the proof of Lemma 3.12 we know that such graph is not positive.

Now, let us come back to the case where v is connected to a set of vertices of
Γ, some of them with degree ≥ 4. Then, we can find a sequence of t′-moves that
transforms Γ∪v into Γ′∪v where Γ′ is positive and all its vertices have degree ≤ 3.
Thus, by Theorem 3.1 there is a sequence of t-moves transforming Γ′ into one of
the ADE diagrams; but since all its vertices are of degree less or equal three, the
statement follows. ◻

Proof of Theorem 3.2: We prove it by induction on the number of vertices.
Assume that there is a sequence such that Γ is t′-equivalent to one of the ADE
diagrams. By Lemma 3.13 we know that there is a t′-sequence transforming Γ∪ v
into one of the ADE diagrams union v, denote this graph by G. Now, analogous
to the proof of Theorem 3.1 we get that G is t′-equivalent to one of the ADE
diagrams, completing the proof. ◻

3.4 Moves on checkerboard graphs

In this section we show that we can associate a signed graph to a checkerboard
graph. We provide two checkerboard graph moves that preserve the corresponding
link type; these are nothing but a generalization of the moves in [2]. Finally, we
use these facts together with Theorem 3.2 to prove Theorem 3.3.

Recall from the definition of a checkerboard graph Γ, as it appears in [3], that
this defines a strongly quasipositive fibred link, L(Γ), constructed by plumbing
positive Hopf bands according to the graph Γ. The signature, σ(L(Γ)), as defined
by Trotter [34], is the signature of the symmetric matrix M = V + V T . Thus, if
L(Γ) has maximal signature, M must be a positive definite matrix. It follows that
M = [xij] is a symmetric matrix such that xij = 2 if i = j. Now, since xTMx > 0 for
every non-zero vector x ∈ Rn, choose x = ei±ej then (ei+ej)TM(ei+ej) = 2xij+4 > 0
for all 1 < i, j < n and (ei − ej)TM(ei − ej) = −2xij + 4 > 0. Therefore, ∣ xij ∣< 2 if
i ≠ j, and the non-diagonal coefficients are 0, 1 or −1. So M is one of a finite list
of matrices, and these can be represented by signed graphs. Moreover, since the
vertices in a checkerboard graph and the ones in the corresponding signed graph
represents positive Hopf bands, and two vertices are connected whenever the core
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curves of the corresponding Hopf bands intersect, it follows that the underlying
graph of a checkerboard graph and the one of the corresponding signed graph are
the same.

Lemma 3.14. The following two checkerboard graph moves preserve the cor-
responding link types.

Figure 3.22: ΓA and ΓB represents checkerboard graphs connected to the
dashed line’s endpoints.

Proof: Recall that we can associate an abstract open book to a checkerboard
graph. The goal is to show that the open books associated to the graphs Γ1 and
Γ′

1 are equivalent, i.e. let (Σ1, φ1) and (Σ′

1, φ
′

1) be the open books associated to
the graphs, then there is a diffeomorphism, h, between the surfaces Σ1 and Σ′

1

such that h ○ φ′1 = φ1 ○ h. To do so, we will use the same argument as in [2] and
check that these surfaces, equipped with a family of preferred curves, differ by a
Dehn twist.

The way we construct an abstract open book from a checkerboard graph is
by gluing annuli; one for each vertex in Γ, and gluing disks; one for each cycle.
The orientation of the core curves in each annulus is chosen so the intersection
numbers with the other core curves corresponds to the orientations of the edges
in Γ, see [3] for further details about the construction. We can now construct the
surface associated with Γ1, see Figure 3.23 (left), where the grey areas represents
the disks and in the yellow squares we glue the parts that correspond to ΓA and
ΓB. Recall that the monodromy, φ, is the product of positive Dehn twists in a
certain order indicated by the orientation of the edges in Γ1. In our case, if we
label the vertices by α,β, γ, δ, one for each core curve in the surface and we take
into account the orientation of the cycles A and B, the monodromy can be written
as φAφBTγTδTαTβ (it is customary to write Ta as the Dehn twist of the curve a),
where we have used the fact that we can switch two elements if there is no edge
between them [3].

After performing a Dehn twist on δ along α we obtain the surface on the
right, which one can easily check that corresponds to Γ′

1. Since δ′ = T −1
α (δ), then
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Tδ′ = T −1
α TδTα and TαTδ′ = TδTα. The monodromy is isotopic to φAφBTγTαTδ′Tβ

which is precisely the monodromy that we obtain from the surface in the right.

Figure 3.23: This drawing is a modification of a drawing in [2]. Right: four
positive Hopf bands plumbed according to the graph in Figure 3.22 with four
2-handles(shaded regions). Left: the surface after a Dehn twist of δ along α.

The second move is a generalization of the one described in [2], only that this
time we have the cycles A and B, forming new grey regions as indicated in the
corresponding abstract surfaces in Figure 3.24. It is easy to check that the proof
also works in this case. ◻

Figure 3.24: Right: four positive Hopf bands plumbed according to the graph
in Figure 3.22 with three 2-handles(shaded regions). Left: the surface after
a Dehn twist of β along δ.

Proof of Theorem 3.3: Let Γ be a checkerboard graph and let L(Γ) be the
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associated link with maximal signature. We know that we can associate a signed
graph, say Γ±, to Γ and by Theorem 3.2. there exists a sequence of t′-moves that
transforms Γ± into one of the ADE diagrams. Therefore, we can find a sequence of
the moves in Lemma 4.14. (note that the moves in Figure 3.22 are a checkerboard
graph version of the t′-moves in Figure 3.6) that transforms Γ into a checkerboard
graph of ADE type preserving the corresponding link type. ◻
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Chapter 4

Balloon graphs

In this chapter we characterize the checkerboard graphs whose corresponding links
are isotopic to the ones realized by the simply laced Dynkin diagram Dn, An, E6

and E7. Finally, we use these results to prove that there exists a linear time al-
gorithm for finding definite checkerboard graphs.

4.1 Introduction

In the previous chapter we showed that checkerboard graph links with maximal
signature are isotopic to one of the ADE links. Here, we answer the question of
how these checkerboard graphs looks like. The motivation behind is to determine
if there exists a linear time algorithm to detect links with maximal signature out
of a checkerboard graph. In [2] it is shown that it is possible to characterize linking
graphs whose corresponding links are isotopic to L(An), such graphs were named
by triangle tree graphs, we define this in the next section. Consequently, they
found the existence of a linear time algorithm to detect L(An) out of a linking
graph.

The line graph of a graph, is one in which every vertex represents an edge,
and two vertices are adjacent if and only if their corresponding edges share a
vertex. Graphs with eigenvalues greater than −2 have been characterized in [13],
Theorem 2.1 showing that such graphs are either one of a finite list of graphs
(corresponding to the E6,7,8), the line graph of a tree or an odd unicycle graph, or
a certain generalized line graph, we refer the reader to [9] for a definition of the
latter graphs. A similar result was found in [19] for the case of signed graphs. It is
worth mentioning that the triangle tree graphs can be defined as the line graph of
a tree. In fact, one could recover the graphs introduced in Proposition 4.1 using
the definitions in [19] and [13]. Here, we rediscover these graphs in the context of
checkerboard graph links.
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Proposition 4.1. Let Γ be a checkerboard graph with n vertices and L(Γ)

the associated link. Then, L(Γ) is isotopic to L(Dn) if and only if Γ is either a
1-balloon graph or one of the three types of graphs in Figure 4.1 below, where the
dashed circles represent triangle tree graphs.

Figure 4.1: The underlying graphs of type R, H and O. The triangle tree
graph in R must contain at least one edge.

The triangle tree and 1-balloon graphs will be defined in the following section.
To show that checkerboard graph links of the four types above are isotopic to
L(Dn) is rather easy if we consider the t′-moves. Although originally the move
carries a change of orientation in the graph we will consider only graph moves on
the unoriented level as we did in the previous chapter.

We speak of the equivalence class of a graph as the set of all graphs that arise
from it by using sequences of t′-moves. For the second part of the proof, we use
two main ingredients: one is a list of criteria to determine when the graph is not
positive, like for example the list of forbidden minors E, X, Y , T and D̃, see
Figure 3.1, and the second is to treat the equivalence class of E6 as forbidden
minors. Recall that in [2] they use the equivalence class of D4 as forbidden minors
for the characterization of triangle tree graphs, which consist of a bicycle (an H
graph without the triangle tree graphs attached to it) and a big cycle, i.e. a cycle
with more than 3 vertices.

4.2 Balloon graphs

In this section we define m-balloon graphs and we show that they are t′-equivalent
to Dn for m = 1. A straightforward definition of m-balloon graphs is that they are
the line graphs of a planar graph with exactly m non-adjacent big cycles. Here,
we say that two cycles are adjacent when they share at least one edge. However,
it will be useful to have a better understanding of their structure in order to prove
that they are t′-equivalent to Dn, that is why we will give the following more
detailed definitions. Recall from [2] that a triangle tree graph can be constructed
from a forest of maximal degree 3, by substituting every vertex of degree three
with a triangle. It is easy to show that a triangle tree graph is t′-equivalent to An.
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Definition 4.2. A balloon graph is a finite and planar n-cycle for n > 2 with
an arbitrary number (from 0 to n) of triangles glued to its edges and such that
these triangles are not adjacent between each other. That leaves one vertex for
each triangle that does not belong to the n-cycle, we call these the free vertices of
a balloon graph.

Figure 4.2: Three examples of balloon graphs with 0, 2 and 6 triangles (glued
to its edges).

In a triangle graph, the vertices of degree 2 that belong to a cycle and the 1-
degree vertices will receive the name of free vertices of a triangle graph. It is clear
that every triangle graph has at least one free vertex. Similarly, for the graphs R,
H and O, we will define as the free vertices the ones that connect to the triangle
tree graph, see Figure 4.1.

Definition 4.3. Consider m ≥ 1 balloon graphs, each of them having at least
one free vertex and x ≥ 0 triangle tree graphs (for the case where m = 1 and x = 0,
the balloon graph is not required to have free vertices). With these two ingredients
we can construct a finite, connected graph by identifying free vertices in such a
way that the dual of the resulting graph, without the vertex corresponding to the
unbounded face, is a forest. Such graphs will receive the name of m-balloon graphs.

It is clear from the definition that a m-balloon graph admits a checkerboard
coloring.

Figure 4.3: An example of a 3-balloon graph (left), and a 1-balloon graph
(right).

Remark 4.4. The simplest 1-balloon graph is an n-cycle without free vertices,
and we know from the previous chapter that such a graph is t′-equivalent to Dn.
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Now, consider a 1-balloon graph, G, with n > 2 vertices and assume that at
least one of them is a free vertex. If it has no triangle graphs connected to it,
applying step 3 in Figure 4.4 for each of its triangles will transform G into an
n-cycle. If G contains triangle graphs, we can proceed as in Figure 4.4 for each
triangle, transforming G into a n-cycle. Thus, it follows that a 1-balloon graph is
t′-equivalent to Dn.

Figure 4.4: The dashed circle represents a triangle graph and the small circles
mark the vertex and edge chosen for the t′-move.

An important observation is that an m-balloon graph is not positive for m > 1.
In particular, it appears that 2-balloon graphs are t′-equivalent to D̃.

4.3 Proof of Proposition 4.1

Lemma 4.5. Let G be a checkerboard graph t′-equivalent to Dn, then:

(i) G has none of the equivalence classes of E6, E, X, T , Y and D̃ as induced
subgraphs.

(ii) G has no internal vertices and the maximal degree of a vertex is 4.

(iii) G does not contain any combination of at least two of the graphs R, H,
1-balloon or O connected by their free vertices.

Proof: (i) It is clear that the minors E, X, T , Y and D̃ form a non-positive
graph, [1]. Also, Theorem 3.3, shows that connecting a vertex to one of the special
Dynkin diagrams (E6, E7 and E8) results into a graph in this class or into a non-
positive one. Therefore, if G ∼Dn, then E6 is not an induced subgraph of G. For
(ii) see the proof of Lemma 3.12. (iii) Observe that if G contains any combination
of at least two of the graphs R, H or O connected by their free vertices, we get D̃
or X as an induced subgraph of G. Also, since a 1-balloon graph is t′-equivalent
to Dn, it follows that any combination of the latter graphs with a 1-balloon is
also t′-equivalent to a graph with D̃ as an induced subgraph, see for instance the
graphs in Figure 4.5.
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Figure 4.5: Form left to right: H+1-balloon, O+1-balloon, R+1-balloon.

◻

Proof of Proposition 4.1: We begin by proving that if G is t′-equivalent to Dn,
then G must be one of the graphs R, H, O or a 1-balloon.

Figure 4.6: Complete list of checkerboard graphs t′-equivalent to E6. Note
that all of them qualify as linking graphs.

Let us start by assuming that G is a tree graph. Because of the minor X, the
maximum degree of a vertex in G is 3, and G can only have one vertex of such
degree, otherwise D̃ is an induced subgraph in G. Thus, G must be Dn. The next
step is to analyze G when it contains cycles. For that, we consider the following
three cases:

Case 1 If G has two adjacent cycles, then G is either a 1-balloon graph or an H
graph.

First, it follows from Lemma 4.5 (ii) that these two cycles must share exactly
one edge, and since G admits a checkerboard coloring, there cannot be a
third cycle adjacent with the previous two. So, if both cycles have length
> 4, then D̃ is an induced subgraph in G. In the case where the lengths of
the cycles are 4 and x ≥ 4, G contains a graph t′-equivalent to E6, E7 and
E8 if x = {4,5,6} (see Figure 4.7 and Figure 4.6, graph 10), and for x > 6,
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G contains a graph t′-equivalent to E. Therefore, we are left with the cases
where the cycles length are 3 and x ≥ 3.

Figure 4.7: Top: two graphs t′-equivalent to E7 and E8 with cycle lengths
(4,5) and (4,6), respectively. Bottom: two graphs t′-equivalent to E7 and
E8.

First, consider the case where the cycles length are 3 and x > 3 (this is
nothing but a balloon with one triangle), we will use induction on the number
of vertices that we add to it, in order to show that G is a 1-balloon graph.
Let us start by connecting one vertex, v, of degree 1. A quick view shows
that this is only possible if we connect it to the free vertex of the balloon,
otherwise we get the minors (8) or (9) if x = 4, (7) if x = 5 or the ones in
Figure 4.7 for x ∈ {6,7} and for x > 7, we get an T as an induced subgraph,
see Figure 3.10. If the degv = 2 and we connect it to two adjacent vertices
(forming a triangle), either we connect it by adding triangles to the balloon
or the minors (2) for x = 4 and (12) for x > 4 appear. If we connect it to
two non-adjacent edges then we encounter interior vertices. Now, given a
balloon graph it is not hard to see that adding a vertex of degree ≥ 3 creates
interior vertices.

Note that, from Proposition 3.10. adding a vertex to a triangle tree graph
results into one of the simply laced Dynkin diagrams or a non-positive one,
since the only outcome we are interested in, is when the resulting graph
is t′-equivalent to An (otherwise G is not positive by Lemma 4.5 (iii)), we
conclude that the new vertex together with the triangle tree graph must be
another triangle tree graph. Therefore, the only way of connecting a vertex
to a 1-balloon graph is by preserving the 1-balloon structure.

With a little more effort one can show that for the case where the cycles
length are 3, G must be either a 1-balloon graph or an H graph.

Case 2 If G has two non-adjacent cycles sharing one vertex v, and there is not a
third cycle adjacent with both of them, then either these two cycles have
length 3 or G is an O graph. Moreover, in both cases degv = 4.

It is clear that if both cycles have lengths ≥ 4, then X is an induced subgraph
in G. If the cycles have lengths 3 and x > 4, then G contains the graph (7)
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in Figure 4.6, one of the graphs if Figure 4.7 for 6 ≥ x ≥ 7 or a T minor for
x > 7. If the cycles have lengths 3 and 4, then degv = 4, otherwise X is an
induced subgraph in G. Now, we can proceed by induction on the number
of vertices that we add as we did in case 1, assuming that G is an O graph
(see Figure 4.8, where the graphs A, B and C are triangle tree graphs) and
connecting a vertex, v, results in the following three cases, depending on its
degree.

– If degv = 1, we cannot connect v to the vertices 2 and 3 because that
would create an induced subgraph like the one in (5), neither to the
vertex 1 (we get an X minor).

– If degv = 2, connecting v by forming a triangle would create a graph of
type (8), (9) or a H+O, 1-ball+O graph. If connected to non-adjacent
vertices then either we get interior vertices, the minor (10) or, in the
case we connect two triangle tree graphs we get a 1-ball+O graph.

– If we add a vertex of degree > 2 we get either interior vertices or one of
the minors in Figure 4.6.

Therefore, since the only way of connecting a vertex is in the triangle tree
graphs A, B or C, we conclude that G must be an O graph.

Figure 4.8

If both cycles have length 3, then degv = 4, otherwise the graph in (1) would
be an induced subgraph. Also, it follows immediately that there cannot be
more than two non-adjacent cycles sharing a vertex.

Case 3 If G has a vertex v, belonging to exactly one cycle and degv = 3, then either
the cycle has length 3 or it has length 4 and G is an O graph. If degv = 4,
then the cycle must have length 3 and G is an R graph.

First, if the degree of v is 3, then the cycle must have length 3 or 4 (for
greater lengths we encounter the graphs in Figure 4.7 or Figure 4.6, (7)), for
the latter case we can proceed similarly as we did in Case 2, proving that
G must be an O graph. Second, if the degree of v is 4, then the cycle must
have length 3 (otherwise X is an induced subgraph) and since the graph (3)
is t′-equivalent to E6, we conclude that G must be an R graph.
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Now, since triangle-tree graphs are t′-equivalent to An it is straightforward
that R ∼t′ Dn. The t′-move below shows that H ∼t′ O and by Proposition 3.10 we
have that O ∼t′ Dn. Finally, recall that Remark 4.4 shows that a 1-balloon graph
is t′-equivalent to Dn, which completes the proof.

Figure 4.9

◻

4.4 Linear time algorithm

We will start by proving the following:

Corollary 4.6: Let G be a checkerboard graph such that:

(i) G has none of the equivalence classes of E6, E, X, T , Y and D̃ as induced
subgraphs.

(ii) G has no internal vertices and the maximal degree of a vertex is 4.

(iii) G does not contain any combination of at least two of the graphs R, H,
1-balloon or O connected by their free vertices.

Then, G is t′-equivalent to Dn or An.

Proof: Let us start assuming that G is a tree, then it is clear from Lemma
4.5 (i) that G is either Dn or An. Now, from Lemma 4.5 (iii) we know that G
cannot have two induced cycles with length ≥ 4, so let G have exactly one cycle
of size ≥ 4, then by the cases 1 and 2 of Proposition 4.1, G must be either a 1-
balloon graph or an H graph. Finally, consider the case where G has only cycles
of size 3. Then, either G has exactly one bicycle graph (more than one would
contradict (iii) in Lemma 4.5) or it has none. Either way, cases 1 to 3 in the pre-
vious proof shows that the resulting graph can only be t′-equivalent to Dn or An. ◻

Theorem 4.7. There exists an algorithm linear in E + V to detect checker-
board graph links with maximal signature from a checkerboard graph.

Proof: From Corollary 4.6 it is clear that to find out if a checkerboard graph
link is isotopic to L(Dn) (or L(An)) we need an algorithm to detect a finite list
of forbidden minors in the corresponding checkerboard graph, and to detect big
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cycles. The former is a linear time complexity problem. For the latter, we want
to know if there is more than one innermost big cycle, since a checkerboard graph
is planar, the total number of cycles is 2 − V +E where V and E are the number
of vertices and edges, respectively. Also, the number of big cycles is equal to the
number of all cycles minus the number of 3-cycles. Since there is an algorithm
linear in E for finding the number of 3-cycles in a planar graph [11], then, the
complexity of detecting L(Dn) or L(An) is linear in E + V . Now, using Theorem
3.3 it follows that we can detect checkerboard graph links with maximal signature
from a checkerboard graph. ◻

4.5 E7 graphs

A table of all connected graphs with six vertices can be found in [15], so it is not
hard to verify that the graphs in Figure 4.6 form a complete list of checkerboard
graphs t′-equivalent to E6. A similar table, but far more extensive, for connected
graphs with seven vertices can be found in [14]. The following Figures show a list
of 42 checkerboard graphs t′-equivalent to E7, some of them used in the previous
sections. Notice that they qualify as linking graphs. Although the list is far from
being complete, raises the question whether checkerboard graphs t′-equivalent to
E7 (or E8) are linking graphs.

43



Figure 4.10: List of checkerboard graphs t′-equivalent to E7
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Figure 4.11
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Chapter 5

Checkerboard graph links and baskets

In this short chapter we will explain how to explicitly construct the link corre-
sponding to the checkerboard graph Wn, i.e, the n-wheel graph. Second, we prove
that such checkerboard graph links are isotopic to basket links. The motivation
is to explore the question whether checkerboard graphs links are basket links.

Given a set of chords in a circle, the intersection graph of these chords is
called a circle graph. By [7, Theorem 1.1], the Wn graphs for n = {6,8} and W7

with three non-consecutive rays deleted are circle graph obstructions, and so is
any graph that, after a sequence of local complementation (we refer the reader
to [8] for a definition of local complementation for graphs) contains one of the
latter as an induced subgraph. As a result, in [8] they show that n-wheel graphs
for n ≥ 6 are not circle graphs. It follows that not every planar graph can be
the incidence graph of a basket link, and some of these exceptional graphs, e.g,
Wn for n odd and ≥ 9, are checkerboard graphs. Note that wheel graphs with
an even number of vertices does not admit a checkerboard coloring, so from now
on, we consider only wheels with an odd number of vertices. Also, note that the
7-wheel is a linking graph. The question then arises naturally: for n ≥ 9 are the
checkerboard graphs links arising from Wn basket links? Here, we show that the
answer is yes. In order to prove it, we start with a short explanation of how to
construct the link corresponding to the checkerboard graph Wn, following the con-
struction methods explained in [3]. Second, we find a basket link by sliding bands.

Figure 5.1: A Wn graph, for n odd and ≥ 9.
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Let Wn for n ≥ 9 be a checkerboard graph. To construct the corresponding
checkerboard graph link we will proceed as follows:

First, note that the linking graph with six vertices in Figure 4.6, (6), is an
induced subgraph of Wn. Construct the surface associated with (6) as it is shown
in Figure 5.2. Second, plumb the positive Hopf bands ai for 1 ≤ i ≤ n as shown
below.

Figure 5.2: The checkerboard graph link corresponding to Wn.

The result is the same as if we consider the construction method in [3] where
the shadow areas represent the disks to be attached. We are now ready to prove
the following lemma:
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Lemma 5.1: For n odd and ≥ 9, the checkerboard graph link corresponding to
the n-wheel graph is a basket link.

Proof: Consider the checkerboard graph link corresponding to W9, see Figure
5.3, which was constructed using the instructions above. For simplicity, remove
the Hopf bands with ends in the shadow areas. Then, slide the bands as indicated.
After reattaching the Hopf bands in the shadow areas, the result is a basket link.
The same procedure can be easily generalized to n > 9. ◻

Figure 5.3
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Chapter 6

Baskets and fibred links realizing An

This chapter is focused on proving that basket links, whose symmetrized Seifert
form is congruent to the Cartan matrix of the simply laced Dynkin diagram An,
are isotopic to the torus link T (2, n+1). In addition, we provide examples of links,
constructed by plumbing n positive Hopf bands the core curves of which intersect
at most once, with symmetrized Seifert form congruent to the Cartan matrix An,
that are not isotopic to T (2, n + 1).

6.1 Introduction

The torus links T (2, n+1) can be constructed by plumbing n positive Hopf bands
according to the diagram An (see Figure 6.1); such construction is an example
of what is known as a positive arborescent Hopf plumbing. While the congruence
class of CAn has been studied by graph theorist in the context of the adjacency
matrix, see e.g. [22], the links realizing such matrices are far from being under-
stood. As mentioned in the introduction, initial works in this direction show that
these are, for some types of links, precisely the two strand torus links T (2, n+ 1).
It is the case of positive braids [1], and for certain basket links as pointed out by
Boileau et al. [7]. Here, we show that this also works for basket links:

Theorem 6.1. A basket link with n positive Hopf bands and symmetrized
Seifert form congruent to CAn is isotopic to a two strand torus link.

To prove the theorem, in Section 6.2 we show that symmetrized Seifert matrices
that are congruent to CAn carry a signed graph with a specific structure; they are
what we call complete-tree graphs. This uses previous results on spectral graph
theory and constitutes the first part of the proof of Theorem 6.1. And in Section
6.3, we use this to show by sliding bands, that a basket with such intersection
graph is isotopic to a two strand torus link, completing the proof.

Recall that Misev [26] found that there exists an infinite family of distinct
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fibred knots having the same Seifert form as the torus knots T (2,2g + 1), for
any given genus g ≥ 2. These knots were constructed by plumbing positive Hopf
bands such that their core curves intersect more than once. Since for basket links,
the core curves of the Hopf bands intersect at most once, this fact together with
Theorem 6.1 motivates the question whether we can extend the result of Theorem
6.1. to the more general class of links arising by plumbing positive Hopf bands in
which the core curves of the bands intersect at most once.

Figure 6.1: Left: the An diagram. Right: positive Hopf bands plumbed
according to the diagram An.

Section 6.3 is dedicated to show, via an example, that this is not true. In the
same line as in Misev’s article, we show how to construct links and knots with
the same Seifert form as the Torus links T (2, n + 1) but distinct form it. The
construction method is to plumb an additional band to a given basket link.

6.2 A note on An graphs

Graphs whose eigenvalues are larger than −2 have been studied and classified by
Cameron et al. in connection with the root systems An, Dn, E6, E7 and E8 [9].
A characterization of these graphs was given by Doob and Cvetkovic [13]. Later,
Greaves et al. [19] found a similar characterization for signed graphs. In fact,
Ishihara [22] shows that the signed graphs of type An come with a specific struc-
ture, named Fushimi trees. Here, we give an insight in such theories and show an
alternative proof to the one of Ishihara.

Let G be a finite, connected, simple and signed graph. Denote by λ(G) the
least eigenvalue of A(G), and by M(G) the matrix 2I +A(G). If λ(G) > −2 we
will say that G is definite.

The root system An is the set of vectors in Rn+1 of the form ±(ei − ej) for
1 ≤ i < j ≤ n + 1. A graph G (signed or not) is said to be represented by a root
system if M(G) = KKT , where all the rows of K are vectors in the root system
[5]. The line graph of a graph G, denoted as L(G), is a graph in which every
vertex represents an edge of G, and two vertices are adjacent if and only if their
corresponding edges share a vertex. For example, the complete graph Kn is the
line graph of a star graph with n + 1 vertices. In [5], they show that a graph is
represented by the root system An if and only if it is the line graph of a bipartite
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graph. It is not hard to show, that if a graph is signed and represented by An,
then its underlying graph is the line graph of a bipartite graph. Denote by ∣G∣

the underlying graph of a signed graph G.

Lemma 6.2. Let G be a signed graph such that M(G) is congruent to CAn,
then ∣G∣ is the line graph of a tree.

Proof: If M(G) is congruent to CAn , then G is represented by the root system
An, meaning that ∣G∣ = L(S) for a bipartite graph S. Now, since the line graph
of an n-cycle is again a n-cycle, if S has an even cycle, then so does ∣G∣, but then
M(G) is not congruent to CAn as we saw in Chapter 3, independently of the signs.
Therefore, S must be a tree. ◻

For simplicity, we will call a signed and definite graph of type L(T ), for some
tree T by complete-tree graphs (or Fushimi trees). Note that, switching the signs
of the edges incident to a given vertex of a graph, G, does not change the con-
gruence class of M(G). Two signed graphs are switching equivalent if we can
transform one into another by switching signs without changing the congruence
class. It is worth mentioning, that a complete-tree graph is switching equivalent
to a complete-tree graph with only positive edges, see [22].

6.3 Proof of Theorem 6.1.

As proved by [7] Theorem 9.11, definite graphs of type An and Km have a unique
realization as baskets. Indeed, they show how these two baskets (when n = m)
are isotopic by sliding bands. Complete-tree graphs have a unique realization
as baskets as well (they are a tree-like amalgamation of the former). In this
section we will prove by induction on the number of complete subgraphs, that
baskets realized by a complete-tree graph are isotopic to one with incidence graph
An. Here, we will adopt the notation in [7], and we will say that a leg of size
n is an An graph attached at one of its leaves to a vertex of a complete graph,
and that a basket is definite when its symmetrized Seifert form is positive definite.

Lemma 6.3: Let Bs be a definite basket with s bands, the incidence graph
of which is Kn with m ≤ n legs and n > 2, then Bs is isotopic to a basket with
incidence graph of type As.

Proof: First, consider the configuration of positive Hopf bands plumbed in the
disk D as it appears in Figure 6.2 (a). In terms of the incidence graph the bands
b1, . . . , bs form a leg of size s. From now on, we assume that the legs extend to the
left, the proof works similarly otherwise. Slide c over b0 (obtaining the bands in
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(b)), then c′ over b1 and continue in this fashion till sliding it over bs−1, resulting
in (c).

Figure 6.2: Slide c over b0 to obtain c′ and repeat.

Now, consider as an example the complete graph K4 with 4 legs (the cases with
less number of legs work similarly) shown in Figure 6.3, where the shadow areas
represent where the legs are glued (for simplicity, the legs are not shown in the
figure). Note that sliding b over a and then sliding it over each of the subsequent
bands forming the leg connected to a (using the moves in Figure 6.2) results in
K3 with 3 legs. ◻

Figure 6.3: The graph K4 with four legs (represented by the shadow areas).
By sliding b over a and using the moves in Figure 6.2 we obtain K3 with
three legs.

Proof of Theorem 6.1: If a basket link with n positive Hopf bands has a sym-
metrized Seifert form congruent to CAn , by Lemma 6.2 we know that the incidence
graph of such basket is the underlying graph of a complete-tree graph, say G. We
will proceed by induction on the number of complete graphs in G. Observe that,
in G there is always at least one outermost complete graph with legs, such that
the subgraph of G that results after deleting it, is connected. Since, by Lemma
6.3, the basket with incidence graph the complete graph with legs is isotopic to
one with an An incidence graph, the induction follows. ◻
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6.4 Plumbing on a basket

In this section we will explain how to construct links, by plumbing positive Hopf
bands with symmetrized Seifert form congruent to CAn for n ≥ 5 which are not the
torus link T (2, n+ 1), and such that the core curves of these Hopf bands intersect
at most once. Recall that this differs from the knots studied by Misev [26], where
core curves intersect more than once. We consider separately the cases in which
n is odd and even. We will see that the former case are links composed of two
components: one of them is the pretzel link P (n − 3,1,1,1) while the other is
unknotted.

Figure 6.4: Left: Chord diagram with four arcs a1, a2, a3, a4 ⊂ D1 together
with a red arc, a5, that travels along the Hopf bands indicated with an arrow.
Right: an example with seven Hopf bands.

Let us consider the case in which the number of arcs is odd, say n = 2m + 1
for m ≥ 2. Consider a disk D ⊂ R2 with properly embedded arcs a1, . . . , a2m (a
chord diagram) such that its incidence graph is K2m. Let S2m be the surface after
plumbing positive Hopf bands on bottom of each other along a neighborhood of
the arcs ai for 1 ≤ i ≤ 2m. Let β be a properly embedded arc parallel to a1 and
intersecting all but a1 (note that there are two equivalent possibilities). Then
plumb along the arc a2m+1 = Ta2m⋯Ta2(β) (or Ta2⋯Ta2m(β)), where Ta(b) stands
for the Dehn twist of the curve a along b. It is clear that now the core curves of
the Hopf bands intersect according to the complete graph K2m+1. In Figure 6.4
there are two examples of this construction: for five and seven Hopf bands. We
can check that the Seifert matrix has congruence type An. In fact, this is easier
to check on Figure 6.5.
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Figure 6.5

We will move our attention to the case with five bands, the resulting surface
of which, after isotopy, appears in Figure 6.5. This is a two component link.
The linking number is 3 and can be easily computed using Figure 6.5, where
one component is marked with red (unknotted!) and the other with black. The
latter is the knot 52. Therefore, showing that this cannot be the Torus link
T (2,6). In order to see this, if we delete the red component, we are left with
a rather complicated knot that we have rearranged (using Reidemeister moves)
for our convenience as it appears in Figure 6.7, from which is relatively easy to
find moves that brings the knot into a a recognisable pretzel knot P (2,1,1,1)
(also known as 52 or P (3,1,1)). In particular, this shows that this link is not
smoothly concordant to T (2,6), since 52 is not concordant to the unknot. Snappy
[12] has shown that this is an hyperbolic link, therefore it has a pseudo-Asonov
monodromy.

Similarly as we did for the case with five bands, if n > 5, we still obtain an
unknotted component and the other one can be put as in Figure 6.6, from there
it is not too hard to obtain the pretzel knots P (n − 3,1,1,1) in a similar fashion
as in Figure 6.7.

The case with six Hopf bands can be obtained using a chord diagram with five
arcs and incidence graph K5. Let β be an arc intersecting a2, a3 and a4 (there are
two equivalent possibilities), and plumb the sixth band along a6 = Ta4Ta3Ta2(β) (or
a6 = Ta2Ta3Ta4(β)). The resulting knot has 17 crossings (computed with Knotscape
[21], see Figure 1.4) and its Jones polynomial is different from the one of T (2,7).

Remark 6.4. The number of links obtained by positive Hopf plumbing where
the core curves intersect at most once is finite. Indeed, by induction, assume that
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there are only a finite number of surfaces that can be obtained by plumbing n
positive Hopf bands. Plumb another positive Hopf band to that surface. This
must be done along a properly embedded arc in this surface. Now, a result from
Przytycki [28] shows that the number of essential simple arcs on a punctured
surface with Euler characteristic χ < 0, that are pairwise non-homotopic and
intersect at most once is exactly 2∣χ∣(∣χ∣ + 1). The induction follows.

Figure 6.6
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Figure 6.7

58



Bibliography

[1] S. Baader. Positive braids of maximal signature. Enseign. Math. 59 (2013),
no. 3-4, 351-358.

[2] S. Baader, L. Lewark. Positive two strand torus links. Preprint.

[3] S. Baader, L. Lewark, L. Liechti. Checkerboard graph monodromies. Enseign.
Math. 64 (2018), no. 2, 65-88.

[4] K. L. Baker A note on the concordance of fibered knots. Journal of Topology
9 (2016), no. 1, 1-4.

[5] L. W. Beineke, R. J. Wilson. Topics in algebraic graph theory. Encyclopedia
of Math. and its Appl. 102, Cambridge University press, Cambridge, 2014,
xvi+276pp., ISBN 0-521-80197-4.

[6] M. Boileau, S. Boyer, C. McA. Gordon. Branched covers of quasipositive links
and L-spaces. Journal of Topology 12(2) (2019), 536–576.

[7] M. Boileau, S. Boyer, C. McA. Gordon. On definite strongly quasipositive links
and L-space branched covers. Advances of Mathematics, 357 (2019), 106828,
63pp.

[8] A. Bouchet. Circle graph obstructions. Journal of combinatorial theory, Series
B 60 (1994), no.1, 107-144.

[9] P.J. Cameron, J.-M. Goethals, J.J. Seidel, E.E. Shult. Line graphs, root sys-
tems, and elliptic geometry. Journal of algebra 43 (1976), no. 1, 305-327.

[10] P.J. Cameron, J.J. Seidel, S. V. Tsaranov. Signed graphs, root lattices, and
Coxeter groups. Journal of algebra 164 (1994), no.1, 173-209.

[11] N. Chiba, T. Nishizeki. Arboricity and subgraph listing algorithms. Siam J.
Comput. 14 (1985), no.1, 210-223.

[12] M. Culler, N. M. Dunfield, M. Goerner, J. R. Weeks. SnapPy, a
computer program for studying the geometry and topology of 3-manifolds.
http://snappy.computop.org.

59
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