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Abstract

Distributional regression estimates the probability distribution of a response variable condi-
tional on covariates. The estimated conditional distribution comprehensively summarizes the
available information on the response variable, and allows to derive all statistical quantities
of interest, such as the conditional mean, threshold exceedance probabilities, or quantiles.

This thesis develops isotonic distributional regression, a method for estimating condi-
tional distributions under the assumption of a monotone relationship between covariates and
a response variable. The response variable is univariate and real-valued, and the covariates
lie in a partially ordered set. The monotone relationship is formulated in terms of stochas-
tic order constraints, that is, the response variable increases in a stochastic sense as the
covariates increase in the partial order. This assumption alone yields a shape-constrained
non-parametric estimator, which does not involve any tuning parameters.

The estimation of distributions under stochastic order restrictions has already been stud-
ied for various stochastic orders, but so far only with totally ordered covariates. Apart from
considering more general partially ordered covariates, the first main contribution of this thesis
lies in a shift of focus from estimation to prediction. Distributional regression is the back-
bone of probabilistic forecasting, which aims at quantifying the uncertainty about a future
quantity of interest comprehensively in the form of probability distributions. When analyzed
with respect to predominant criteria for probabilistic forecast quality, isotonic distributional
regression is shown to have desirable properties. In addition, this thesis develops an efficient
algorithm for the computation of isotonic distributional regression, and proposes an estimator
under a weaker, previously not thoroughly studied stochastic order constraint.

A main application of isotonic distributional regression is the uncertainty quantification
for point forecasts. Such point forecasts sometimes stem from external sources, like phys-
ical models or expert surveys, but often they are generated with statistical models. The
second contribution of this thesis is the extension of isotonic distributional regression to al-
low covariates that are point predictions from a regression model, which may be trained on
the same data to which isotonic distributional regression is to be applied. This combination
yields a so-called distributional index model. Asymptotic consistency is proved under suitable
assumptions, and real data applications demonstrate the usefulness of the method.

Isotonic distributional regression provides a benchmark in forecasting problems, as it

allows to quantify the merits of a specific, tailored model for the application at hand over a

generic method which only relies on monotonicity. In such comparisons it is vital to assess

the significance of forecast superiority or of forecast misspecification. The third contribution

of this thesis is the development of new, safe methods for forecast evaluation, which require

no or minimal assumptions on the data generating processes.
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Chapter 1

Introduction

One of the main goals of statistical modeling is to provide forecasts for the future.
Because of its intrinsic uncertainty, the most natural and consistent way to predict the
future is to quantify its uncertainty in the form of probability distributions (Dawid,
1984), rather than issuing deterministic point forecasts.

The tool that allows statisticians to predict the future is regression analysis, the
study of the relationship between a response variable and covariates with statistical
models. Once a regression model has been formulated and its unknowns have been
estimated with data, it yields predictions for future realizations of the response vari-
able conditional on the information provided by newly observed covariates. In linear
regression analysis the model output is a single number, the predicted mean of the
response variable, and the prediction is deterministic and does not directly imply any
quantification of uncertainty. This distinguishes classical regression for the mean from
distributional regression, which aims at estimating the conditional probability distribu-
tion of the response variable given the covariates, thereby providing a full quantification
of the probabilities of all possible outcomes.

Probabilistic forecasting is one of the major areas of application of distributional re-
gression methods, and many methods have been developed specifically for the purpose
of forecasting. Therefore, criteria and measures for probabilistic forecast quality are
essential for the understanding and evaluation of distributional regression techniques.
Of central importance is the paradigm of maximizing sharpness subject to calibra-
tion (Gneiting et al., 2007), which requires that probabilistic forecasts should be as
informative and concentrated as possible, while still maintaining consistency between
predicted probabilities and observed event frequencies.

This thesis develops distributional regression methods and new tools to evaluate
and compare probabilistic forecasts. In Chapter 2, isotonic distributional regression
(IDR) is introduced as a generic method for estimating probability distributions when
there is a monotone relationship between a response variable and covariates. Chap-
ter 3 extends isotonic distributional regression to provide uncertainty quantification
for point forecasts from statistical models. The topic of Chapter 4 is the evaluation of
probabilistic forecasts, with a special focus on significance testing in sequential settings.
The following introduction motivates these topics, elaborates on their background and
connections, and gives a glance at some of the main results.

9



Isotonic distributional regression

Motivation and main results. The area with the most mature practical imple-
mentation of distributional regression and probabilistic forecasting is arguably weather
forecasting (Gneiting and Katzfuss, 2014). Nowadays, weather forecasts are produced
with advanced physical models and powerful computing systems, and ensemble fore-
casts are the current state-of-the-art (Bauer et al., 2015). An ensemble forecast is
a collection of point forecasts, generated by running a numerical weather prediction
model several times with slightly different initial conditions, each time producing a
different forecast. These resulting forecasts, typically 20 up to 50, provide both esti-
mates for the future value of a weather variable, and at the same time quantify the
forecast uncertainty. Let X = (X1, . . . , Xd) ∈ Rd denote ensemble forecasts for a
variable Y ∈ R, such as accumulated precipitation. One could try to estimate event
probabilities for Y by counting ensemble members, that is, for a set B ⊆ R, define

P̂ (B) =
1

d

d∑

i=1

1{Xi ∈ B}, (1)

where the indicator function 1{·} equals 1 if the statement in brackets is true and 0
otherwise. Unfortunately this approach often yields unsatisfactory results, because the
predicted probabilities P̂ (B) may strongly deviate from observed event frequencies. In
spite of tremendous progress, numerical weather predictions remain subject to biases
and errors, which require statistical correction. The goal of statistical post-processing is
to estimate the distribution of the observation conditional on the weather predictions,
L(Y | X = x), which correctly specifies all event probabilities given the forecasts.

The post-processing of ensemble forecasts is an active field of research (Vannitsem
et al., 2018). Post-processing is often done with specific models for the variable(s) at
hand. For example, a model for accumulated precipitation amounts proposed in the
literature relies on censored generalized extreme value (cGEV) distributions,

L(Y | X = x) = cGEV
(
m = α0 +α1x̄+α2

d∑

i=1

1{xi = 0}, σ = β0 +β1MD(x), ξ
)
, (2)

where the location parameter m is affine in the ensemble mean x̄ = (x1+· · ·+xd)/d and
the number of zero precipitation forecasts, the scale parameter σ is an affine function of
the mean difference MD(x) =

∑
k,l=1,...,d |xk − xl|/(d(d− 1)), and the shape parameter

ξ does not depend on the forecasts (Scheuerer, 2014). Censoring of the distribution
at zero ensures that the model only predicts non-negative precipitation amounts. All
model parameters are estimated on a training data set.

Parametric distributional regression methods like the cGEV model above have been
applied with success, but this example also indicates that their development and im-
plementation require a lot of expertise and fine-tuning. This motivates the question
whether there might be a universal post-processing approach for all types of weather
variables, which is free from tuning parameters and still yields reasonably precise pre-
dictions. This goal can indeed be achieved by borrowing ideas from shape-constrained
regression.

10



Shape-constrained regression refers to non-parametric estimators under qualitative
constraints such as monotonicity or convexity, see for instance the survey by Gun-
tuboyina and Sen (2018). Such methods do not involve tuning parameters, as desired
above. For the post-processing of ensemble forecasts, or more generally any point fore-
casts, a natural and safe qualitative assumption is that if the forecasts increase in a
certain sense, then the actual observation should also tend to attain higher values. This
requirement can be formalized as

P(Y > y | X = x) ≤ P(Y > y | X′ = x′), y ∈ R, if xi ≤ x′i, i = 1, . . . , d.

In words, when all d forecasts x′ are greater than x, then the conditional probability
that the observation exceeds any threshold y should be higher when the forecast is x′

than when it is x.1 Denoting the conditional cumulative distribution functions (CDFs)
P(Y ≤ y | X = x) by Fx(y) and the componentwise ordering xi ≤ x′i, i = 1, . . . , d, by
x � x′, the above condition can be compactly written as

Fx(y) ≥ Fx′(y), y ∈ R, if x � x′. (3)

Figure 1 illustrates with a real data example that (3) is indeed a plausible assumption.
Condition (3) is known as stochastic dominance (Lehmann, 1955), and the estimation
of CDFs under this constraint is not a new problem in statistics. It has already been
analyzed in the setting of univariate covariates, that is, when d = 1. Brunk et al. (1966)
and El Barmi and Mukerjee (2005) consider the case when the covariate takes at most
two or K < ∞ different values, respectively, and Mösching and Dümbgen (2020) the
more general case of a continuously distributed covariate. When d = 1, all pairs x, x′

of realizations of the covariate can be ordered, and thus one speaks of a total order.
On the other hand, when d > 1, it can occur that neither x � x′ nor x′ � x, which
makes the order “�” on Rd an instance of a partial order relation.

In the first part of Chapter 2 of this thesis, the problem of estimating condi-
tional distributions under restriction (3) is analyzed in detail, and it is shown that
the proposed estimation method is consistent and has desirable properties when ap-
plied to probabilistic forecasting. To give an impression of the challenges and results,
let (x1, y1), . . . , (xn, yn) ∈ Rd × R be a training data set from which the conditional
CDFs Fx are to be estimated. For a fixed threshold y, one approach to this problem
is to define the least squares estimator

(F̂x1(y), . . . , F̂xn(y)) = arg min
pi≥pj if xi�xj

n∑

i=1

(pi − 1{yi ≤ y})2 ∈ [0, 1]n. (4)

For covariates x 6∈ {x1, . . . ,xn}, any interpolation method satisfying the monotonicity
constraints can be applied. The estimator (4) is referred to as isotonic distributional
regression, from now on abbreviated IDR. IDR satisfies the constraints in (3) by defi-
nition. However, it is not self-evident that the functions y 7→ F̂xi

(y) define CDFs, but

1For ensemble forecasts this is a slight simplification for the ease of exposition. Ensemble forecasts
are regarded as exchangeable, that is, the ordering of the components in x is arbitrary. In this case
the proposed requirement is natural, but it can be weakened. See the detailed analysis in Section 2.1.

11



0

1

2

3

4

5

0 1 2 3 4 5
x1

x
2

(a)

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
Observed precipitation (millimeters)

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
ns

(b)

Figure 1: (a) Two ensemble forecasts for daily accumulated precipitation at Frankfurt airport,
Germany. Each dot corresponds to forecasts for one calendar day from the years 2007 to
2016. Data available in the R package isodistrreg (Henzi. et al., 2021). (b) Empirical
distribution functions of the observed precipitation (saturated colors, dashed), conditional
on the precipitation forecasts taking values in the boxes with the same colors as in (a), and
IDR CDFs (shaded colors) when the forecasts (x1, x2) are the colored larger dots in (a).

this follows from the celebrated min-max formula for monotone regression,

F̂xi
(y) = min

U∈U : xi∈U
max

V ∈U : xi 6∈V

1

#(U ∩ V c)

∑

j : xj∈U∩V c

1{yj ≤ y}, (5)

where U are the upper sets in {x1, . . . ,xn} and V c is the complement {x1, . . . ,xn} \V .
A set U is an upper set if u ∈ U implies that v ∈ U for all v with u � v. Formula (5)
can be found, for instance, in the monographs by Barlow et al. (1972) or Robertson
et al. (1988), and it sheds more light on IDR. Panel (b) of Figure 1 depicts IDR CDFs
F̂x for a real data example on the post-processing of precipitation forecasts. The CDFs
are piecewise constant, an immediate consequence of (5), and on each constant piece
the value of the IDR CDF is the empirical frequency of observations yj satisfying
yj ≤ y, where the corresponding xj lie in a certain set U ∩ V c depending both on the

covariate x and on the threshold y. The IDR CDFs F̂x look similar to the empirical
CDFs of the observations when the covariates take values in the boxes around x in
panel (a). However, IDR does not require the manual, arbitrary specification of such a
neighborhood, and avoids unintuitive crossings of the conditional CDFs when x � x′.

With the application of post-processing weather forecasts in mind, is natural to fur-
ther investigate IDR with respect to criteria for probabilistic forecast quality. Gneiting
et al. (2007) propose the paradigm that probabilistic forecasts should maximize sharp-
ness subject to calibration. Calibration means that observed event frequencies should
conform with the probabilities derived from a probabilistic forecast. The sharpness
principle states that probabilistic forecasts ought to be informative, ideally with pre-

12



dicted probabilities close to zero or one for most events of interest.
It will be shown that IDR has the remarkable property that conditional probabilities

of threshold (non-)exceedance in the training data set are always equal to the predicted
probabilities. Namely, for all thresholds y, it holds

Pn(Y ≤ y | F̂X(y)) = F̂X(y).

Here Pn denotes the empirical distribution of the training data (x1, y1), . . . , (xn, yn),
and (X, Y ) ∼ Pn. While this is no guarantee for correct calibration out-of-sample, it
indicates that IDR CDFs should have good calibration properties provided that the
training data set is large enough. The unconditional version of the above equation is

Pn(Y ≤ y) =
1

n

n∑

i=1

F̂xi
(y),

known as marginal calibration (Gneiting et al., 2007). It shows that the IDR CDFs
decompose the unconditional empirical distribution function Pn(Y ≤ y) into sharper
conditional distributions.

A standard tool for evaluating and comparing probabilistic forecasts are proper
scoring rules (Gneiting and Raftery, 2007), which assess calibration and sharpness
simultaneously. A proper scoring rule is a loss function S = S(P, Y ) mapping a prob-
abilistic forecast P and an observation Y to a numerical score, such that

EP [S(P, Y )] ≤ EQ[S(P, Y )]

for all P,Q in a certain family of probability measures such that the expectations
EP [·], EQ[·] with respect to P,Q are well-defined. Under proper scoring rules, the
correct forecast for Y attains a minimal expected score, which makes them suitable loss
functions for estimation and forecast comparison. A popular choice is the continuous
ranked probability score (CRPS; Matheson and Winkler, 1976), defined for real-valued
outcomes and predictive CDFs,

CRPS(F, y) =

∫ ∞

−∞
(F (z)− 1{y ≤ z})2 dz.

It can be seen that IDR, which was defined rather ad-hoc in (4) as least squares esti-
mator, also minimizes the CRPS over the training data,

∑n
i=1 CRPS(Gxi

, yi), among
all distribution functions Gx1 , . . . , Gxn satisfying the stochastic order constraints (3).
Even more, since IDR minimizes the integrand of the CRPS pointwise, it simultane-
ously minimizes all weighted versions of the CRPS (Gneiting and Ranjan, 2011),

CRPSw(F, y) =

∫ ∞

−∞
(F (z)− 1{y ≤ z})2w(z)dz,

which are also proper scoring rules with non-negative weight functions w.
It is well known that monotone regression for the mean has similar optimality

properties, see Barlow et al. (1972). Precisely, in the same way as IDR simultaneously
minimizes all weighted versions of the CRPS, monotone regression for the mean is
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simultaneously optimal with respect to so-called consistent scoring functions for the
mean (Gneiting, 2011). Jordan et al. (2021+) have shown that such results hold for
monotone regression for more functionals than only the mean. Their results, in con-
junction with the elementary score decompositions for quantiles and expectiles by Ehm
et al. (2016), yield a more comprehensive characterization of the proper scoring rules
which IDR simultaneously minimizes. Invariance under the choice of loss function is a
special property of monotone regression estimators. Most regression techniques, such
as the parametric cGEV model introduced earlier, yield different estimates on training
data when the loss function is changed. This may be problematic since there is often
no stringent criterion for preferring one loss function over another one (Patton, 2020).

Guaranteed in-sample calibration and invariance with respect to the choice of the
loss function make IDR an ideal benchmark for probabilistic forecasting problems, in
particular in the post-processing of weather forecasts but more generally in any situ-
ation with a monotone relationship between covariates and observations. Due to its
generality, it cannot be expected that IDR outperforms models tailored to a specific
problem, but it gives a benchmark relative to which the merits of such tailored methods
can be assessed. To illustrate this and complement the simulations and data applica-
tion from Section 2.1, consider the results of a study on the post-processing of ensemble
forecasts for wind speed in Germany by Schulz and Lerch (2021+, Table 3). Averaged
over different stations and forecast lead times, the CRPS of the raw ensemble, con-
verted to a probabilistic forecast as in (1), equals 1.33. A parametric post-processing
model reduces this error to 0.95, and the best-performing method, a distributional
neural network, achieves a CRPS of 0.84. The CRPS of IDR is 0.98 and thereby higher
than that of the other post-processing methods. But the relative reduction in CRPS
compared to the raw ensemble differs only by 2.3 percentage points between the para-
metric model and IDR, which shows that the average gains of the parametric model
over a generic benchmark are not large in this application.

Computational aspects. A challenge in the computation of IDR is that it requires
to solve the minimization problem (4) for all thresholds y. If ỹ1 < · · · < ỹm denote
the distinct values of {y1, . . . , yn}, then the squared error

∑n
i=1(pi − 1{yi ≤ y})2 as

a function of y is constant in between ỹj and ỹj+1, so it is sufficient to compute IDR
only for y = ỹ1, . . . , ỹm. But even with this simplification one still has to solve up to n
constrained minimization problems with n variables.

In Section 2.2 the relationship between the solutions of the minimization problem

A(z) = arg min
θi≥θj if xi�xj

n∑

i=1

(θi − zi)2

as a function of the vector z = (z1, . . . , zn) ∈ Rn is investigated, where x1, . . . , xn are
covariates in a general space X equipped with some binary relation “�”. It is shown
that when vectors z and z̃ only differ in one or few components, then also A(z) and
A(z̃) often are equal in most components, and if A(z) is already available, then A(z̃)
can be computed from it and z̃ with few operations. This directly applies to IDR, where
the vectors (1{y1 ≤ y}, . . . ,1{yn ≤ y}) ∈ {0, 1}n only change in one component when
y1, . . . , yn are all distinct and y is increased from ỹj to ỹj+1. In the case of a total order,
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the results give rise to an abridged version of the Pool-Adjacent-Violators Algorithm
(PAVA; de Leeuw et al., 2009) that reduces the computation time of IDR by a factor
of up to 100 for relevant sample sizes, when compared to a naive implementation.

Weaker stochastic orders. Isotonic distributional regression estimates conditional
CDFs under the constraint that Fx(y) ≥ Fx′(y) for all y ∈ R if x � x′. It was claimed
that this approach is natural for the post-processing of point forecasts, because higher
forecasts should imply that the observation also more likely attains higher values.
However, there are special situations where this is not true, because the variability of an
outcome variable strongly increases or decreases with the forecast. The example given
in Section 2.3 are income expectations. In economic surveys, respondents who expect a
very low income in future are sometimes overly pessimistic and, when questioned in the
second round of the survey, ultimately have an income above a substantial percentage
of respondents who expressed higher expectations. Formally, if x denotes the expected
future income and Fx the conditional CDF of the realized future income, then the
CDFs Fx and Fx′ may cross in the upper tail, for certain values of x and x′.

The stochastic dominance relation considered until now in this introduction is only
one instance of a stochastic order, and many more are studied in the monograph by
Shaked and Shanthikumar (2007). A solution to the problem of crossing CDFs is to
perform distributional regression under second order stochastic dominance (SSD), a
weaker constraint than stochastic dominance. If F and G are CDFs, then F is smaller
than G in SSD if ∫ y

−∞
F (t) dt ≥

∫ y

−∞
G(t) dt, y ∈ R.

This condition allows that F and G cross in the upper tail. The estimation of condi-
tional distributions under SSD constraints is more involved than under stochastic dom-
inance. It has been considered previously by Rojo and El Barmi (2003) and El Barmi
and Marchev (2009), but only for two samples, i.e. a binary covariate. In Section 2.3,
consistent estimators for conditional CDFs under SSD constraints for general real-
valued covariates are developed.

Distributional index models

Motivation and main results. IDR assumes that the covariate X exhibits a mono-
tone relationship with the response variable Y . Point forecasts from an external source,
such as numerical weather predictions, are the leading example for such a situation.
But what if the point forecasts are generated by the statistician, with a regression
model that is based on parameters estimates from the same data which is intended for
the estimation of the conditional distributions with IDR?

More formally, assume that a data set (z1, y1), . . . , (zn, yn) ∈ Z × R with a general
covariate space Z is used to estimate a regression function θ̂n : Z 7→ R generating
point forecasts. One could now again argue that as θ̂n(z) increases, the outcome
variable should increase too, and apply IDR to the data (θ̂n(z1), y1), . . . , (θ̂n(zn), yn) ∈
R×R. However, θ̂n is a function of (z1, y1), . . . , (zn, yn), and it is not sensible to impose
assumptions on the relationship between the outcome variable and an estimator θ̂n
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which depends on the data itself. A better model is to assume that the dependency
between Y and Z is fully described by an unknown underlying function θ : Z 7→ R,
that is, P(Y ≤ y | Z = z) = Fθ(z)(y) for some family of CDFs Fθ(z), z ∈ Z, and that
the conditional distributions are increasing in stochastic dominance as θ(z) increases,

Fθ(z)(y) ≥ Fθ(z′)(y), y ∈ R, if θ(z) ≤ θ(z′). (6)

Many classical models, such as the linear model with homoscedastic Gaussian errors
and certain generalized linear models (McCullagh and Nelder, 1989), impose assump-
tions which are stronger than (6). The difference to these parametric models is that
the distribution functions Fu for u ∈ θ(Z) are not specified in (6), resulting in a semi-
parametric model. This is similar to single index models for the mean (Härdle et al.,
1993), which postulate that Y = g(α>Z) + ε for α,Z ∈ Rp, an unspecified (smooth)
function g and a zero-mean error term ε. The model with assumption (6) is therefore
called distributional (single) index model (DIM).

Having formulated model (6), the question of main interest is whether the applica-
tion of IDR to the transformed data (θ̂n(z1), y1), . . . , (θ̂n(zn), yn) can possibly yield a
consistent estimator for the conditional distribution functions Fθ(z). As shown in Sec-

tion 3.1, this is indeed the case when θ̂n is consistent for θ at a sufficiently fast rate and
certain regularity conditions hold. This justifies the use of IDR for the post-processing
of statistical point forecasts, which may even be generated with a regression model
that is estimated on the same data to which IDR is applied in a second step.

The application of the DIM in Section 3.1 is the prediction of the length of stay
(LoS) of patients in intensive care units (ICUs), based on patient data available at the
latest 24 hours after admission. Models generating point forecasts for the LoS have
already been proposed in the literature (Verburg et al., 2017; Kramer, 2017), but they
are of limited usefulness for predicting individual patients’ LoS because, even condi-
tional on many patient specific covariates, the uncertainty in the LoS is high. However,
the point forecasts from these models can be combined with IDR to a distributional
index model. In Section 3.1, it is shown that this combination produces calibrated
probabilistic forecasts, which outperform other distributional regression methods in an
application on predicting the LoS of patients in Swiss ICUs.

Application to COVID-19 patients’ intensive care unit length of stay. In
2019, when the article on the distributional index model was written, no one anticipated
what relevance the problem of predicting ICU patients’ length of stay would gain only
a few months later. The COVID-19 pandemic, which began in late 2019 and started
spreading around the world in early 2020, induced a considerable strain on intensive
care unit resources. Apart from the high number of patients requiring treatment, a
key problem is the frequent need of prolonged ICU treatment of severely ill COVID-
19 patients. Bed planning in ICUs and estimating ICU capacity therefore depend
on knowledge about how long patients are expected to be in an ICU. The article in
Section 3.2, written during and after the first COVID-19 wave in Switzerland, applies
the DIM to provide probabilistic forecasts for COVID-19 patients’ ICU length of stay.
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New methods for forecast evaluation

Motivation. Probabilistic forecasts should be calibrated and sharp, and these prop-
erties are usually evaluated on a test data set where the forecasts are compared with
actual observations. But how can one verify if forecast miscalibration is statistically
significant, or if a forecast is significantly superior to a benchmark like IDR? Regarding
calibration testing, Gneiting et al. (2007) state that

the use of formal tests is often hindered by complex dependence structures,

and this statement also applies to forecast comparison. In many real situations, such
as the evaluation of weather forecasts, observations are not independent and identically
distributed, but rather characterized by (mostly) unknown dependence over space and
time. This complex dependence makes the application of many statistical tests impos-
sible, or at least questionable.

To illustrate these difficulties, consider one of the most influential contributions to
testing forecast superiority, the Diebold-Mariano test (Diebold and Mariano, 1995).
For error series e1,t, e2,t, t = 1, . . . , T , of two competing forecasts, such as the CRPS of
of probabilistic weather forecasts, the Diebold-Mariano test is based on the statistic

1

(T σ̂2
T )1/2

T∑

t=1

(e1,t − e2,t),

where σ̂2
T is a variance estimator for the error differences dt = e1,t − e2,t, t = 1, . . . , T .

Negative values of the test statistic imply that forecast 1 is superior to forecast 2,
because it achieves a smaller error on average. Under the null hypothesis of equal
expected forecast errors and under certain regularity conditions, the asymptotic distri-
bution of this test statistic is standard Gaussian, which allows to test the significance
of forecast superiority.

Unfortunately, it is often not clear in practice if the asymptotic theory behind the
Diebold-Mariano test applies. For example, Diebold and Mariano (1995) state that
asymptotic normality holds if the score differentials dt, t = 1, . . . , T are a stationary
process and if the variance estimator is consistent. But stationarity is often unplausible,
for example in weather forecasting, where forecasts exhibit different errors depending
on the season and on weather regimes. The selection of an unsuitable variance estima-
tor may further impair the test validity. Giacomini and White (2006) show that similar
tests of forecast superiority are valid under much weaker assumptions than stationarity,
but still, their asymptotic theory rules out many practically relevant situations. For
instance, it is not allowed that parameters of regression models generating the fore-
casts are estimated in an expanding window fashion, that is, use all past observations
from times 1, . . . , t − 1 to produce the forecast for time t. However, this procedure is
frequently applied in forecasting, also in the case study of Section 2.1, and it is unclear
whether the p-values derived from these tests are valid in such situations.

Hypothesis testing with e-values. Most forecasting situations are sequential. Pre-
dictions are issued at discrete time points t = 1, 2, 3, . . . , and the prediction at time t
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refers to an observation which is revealed at t+h for some lag h ∈ N. For example, this
setting encloses daily weather forecasts issued for the next day (h = 1), or quarterly
inflation forecasts two quarters ahead (h = 2). The observations are not independent,
neither are the forecast errors, and often little is known about the dependency struc-
ture. Moreover, when producing the forecast at time t the forecaster knows all past
observations and may use this information in the prediction.

While this setting makes the application of classical statistical tests difficult, it is
suitable for sequential testing procedures. Starting from 2019, there has been a surge
in new contributions to the field of sequential testing by various authors (Grünwald
et al., 2019; Ramdas et al., 2020; Shafer, 2021; Vovk and Wang, 2021). Their methods
rely on the concepts of e-values and test martingales, and in Sections 4.1, 4.2, and 4.3
of this thesis, these tools are used to develop new tests for forecast evaluation.

An e-value is a non-negative random variable E such that for all probability distri-
butions P in a set H representing the null hypothesis,

EP[E] ≤ 1.

In words, E has expected value less or equal to 1 under the null hypothesis, and high
values of E provide evidence against the null hypothesis, since by Markov’s inequality,

sup
P∈H

P(E ≥ 1/α) ≤ α, α ∈ (0, 1).

In particular, 1/E is a conservative p-value. E-values also have a financial interpreta-
tion in terms of betting (Shafer, 2021). If one unit of money is invested into an e-value
to bet against the null hypothesis, then E gives the factor by which the investment is
multiplied after the observations are revealed. If the null hypothesis is true, then one
cannot expect to gain money with the bet E, on average.

One main motivation for using e-values is their simple behavior under combinations.
The arithmetic mean of e-values is again an e-value, and so is the product of indepen-
dent e-values. Moreover, and most importantly for forecast evaluation, if (Et)t∈N is
sequence of conditional e-values adapted to a filtration (F)t∈N, that is, Et ≥ 0 almost
surely and E[Et | Ft−1] ≤ 1 for all t, then the cumulative product et =

∏t
i=1Ei is an

e-value, and the process (et)t∈N is a non-negative supermartingale, satisfying

P
(

sup
t∈N

et ≥ 1/α
)
≤ α, (7)

by optional stopping theorems for martingales (see for example Ramdas et al., 2020).
Non-negative supermartingales with initial value one are also called test martingales.
The above inequality implies that if (et)t∈N exceeds the level 1/α at least once, then
the null hypothesis H can be rejected at the level α. More generally, when deciding to
stop or continue the hypothesis testing at a time point τ , one may take into account
the values et, t = 1, . . . , τ , observed so far, which does not impair the validity of the
test. This is because the process (et)t∈N satisfies E[eτ ] ≤ 1 for any stopping time τ .
This property is in strong contrast to non-sequential testing procedures, where data-
dependent optional stopping or continuation may dramatically inflate the rate of false
rejections of the null hypothesis.
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Probability forecast comparison. Section 4.1 addresses the problem of testing
probability forecast superiority. Two probability forecasts pt, qt ∈ [0, 1] for a binary
event Yt+h ∈ {0, 1} are compared with a proper scoring rule S. For the ease of expo-
sition, consider the case of forecast lag h = 1. The null hypothesis is that pt achieves
a smaller error than qt at all times t, given the information at the time of forecasting,
which is represented by

H = {P : EP[S(pt, Yt+1)− S(qt, Yt+1) | Ft] ≤ 0 almost surely, t ∈ N}. (8)

Here the distributions P are distributions generating the process (pt, qt, Yt)t∈N of fore-
casts and observations, which is adapted to the filtration (Ft)t∈N. The null hypothe-
sis (8) is of interest when the pt are a benchmark, like predictions with IDR, since then
the new or more specific prediction method qt should significantly outperform pt.

An e-value with the null hypothesis (8) should be smaller than 1 if the observed
score differences S(pt, Yt+1) − S(qt, Yt+1) are negative, and greater than 1 if they are
positive. This suggests to define the e-value at time point t by

Ept,qt;λt(Yt+1) = 1 + λt
S(pt, Yt+1)− S(qt, Yt+1)

|S(pt,1{pt > qt})− S(qt,1{pt > qt})|
, (9)

for some λt ∈ (0, 1], where the normalization factor in the denominator ensures non-
negativity. Interestingly, as shown in Section 4.1, this is essentially the only way for
constructing e-values at a single time point t. The parameter λt has to be specified by
the test user. Its role is fundamentally different from parameters in classical statistical
tests, such as the variance estimator σ̂2

T in the Diebold-Mariano test, which may cru-
cially influence the validity of the test. Under the null hypothesis, Ept,qt;λt(Yt+1) is an
e-value for any choice of λt, but λt needs to be tuned well in order to maximize power
when the null hypothesis is violated. Furthermore, λt can be chosen sequentially based
on past data and on (pt, qt), since for the validity of the e-value, it is is only necessary
that λt is Ft-measurable.

E-values of the form (9) can be combined into the following product,

eT =
T−1∏

i=1

Epi,qi;λi(Yi+1),

and this cumulative product should grow fast with time T if the null hypothesis is
not true. A good strategy is to choose log(eT ) =

∑T−1
i=1 log(Epi,qi;λi(Yi+1)) as a target

criterion, penalizing small or even zero e-values which may have a devastating impact
on the power of the test. The (expected) logarithm of an e-value is also referred to as
the growth rate, and maximizing the growth rate under an alternative hypothesis is
suggested by Grünwald et al. (2019) as a method for constructing powerful e-values.

The e-values introduced above yield a valid test for forecast superiority without
imposing any assumptions on the data generating process, which is in strong contrast
to other methods such as the Diebold-Mariano test. Also, thanks to property (7), the
null hypothesis can be rejected as soon as the process (et)t∈N exceeds the level 1/α
for the first time, without having to fix a sample size in advance. These advantages
come at the price of reduced power. But as simulations and a case study in Section 4.1
demonstrate, it is usually possible to draw the same conclusions with e-values as with
extant tests for forecast superiority.
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Testing probabilistic calibration. Calibration requires that probabilistic forecasts
are consistent with observed event frequencies. This definition is unambiguous if the
event of interest is binary, but for Y ∈ R many different probabilities can be derived
from a predictive CDF F , and so there exist many different notions of calibration.
A popular notion is probabilistic calibration (see for example Gneiting et al., 2007),
which requires that

ZF (Y ) = F (Y−) + V (F (Y )− F (Y−)) ∼ UNIF(0, 1),

where F (Y−) = limz↑Y F (z), UNIF(0, 1) denotes the uniform distribution on (0, 1), and
V ∼ UNIF(0, 1) is independent of (F, Y ). The quantity ZF (Y ) is called probability
integral transform (PIT). In words, this definition states that the probability that Y is
less or equal to the predicted α-quantile should equal α, for all α ∈ (0, 1), with suitable
randomization in case the predictive CDF F has discontinuities. An ubiquitous tool
in forecast evaluation are histograms of PIT samples, where forecast biases become
visible as skewed PIT distributions, and errors in the variability, so-called dispersion
errors, in the form of U- or inverse U-shaped histograms.

The definition of probabilistic calibration above is non-sequential, because it is only
based on a single random forecast-observation pair (F, Y ). In practice, one observes
a sequence (Ft, Yt)t∈N of forecasts and observations, and the definition of calibration
must specify properties of the whole sequence. Considering again a forecast with lag 1
for simplicity, a reasonable extension of the definition is to require

L(ZFt(Yt+1) | ZFj
(Yj+1), j < t) = UNIF(0, 1), t ∈ N.

This means that, for a forecast to be calibrated, the distribution of the PIT at forecast
time t should be uniform, conditional on all values for the PIT that have been observed
in the past, which implies independence of (ZFt(Yt+1))t∈N.

To test this hypothesis with e-values one can follow a similar strategy as for the
comparison of probability forecasts, namely, first consider the task of testing uniformity
of ZFt(Yt+1) for a single t. An e-value Et = Et(z) must satisfy Et ≥ 0 and

E[Et(ZFt(Yt+1)) | ZFj
(Yj+1), j < t] =

∫ 1

0

Et(z) dz = 1,

since ZFt(Yt+1) is uniformly distributed conditional on ZFj
(Yj+1), j < t, under the null

hypothesis. That means, Et can be constructed by applying a density estimator f̂ to the
available PIT observations and setting Et(z) = f̂(z; ZFj

(Yt+j), j < t). In Section 4.2,

it is suggested to compute f̂ with beta distributions with parameters estimated from
ZFj

(Yt+j), j < t, or with suitable kernel density estimators,

f̂(z; ZFj
(Yt+j), j < t) =

1

b(t− 1)

t−1∑

j=1

κ

(
z − ZFj

(Yt+j)

b

)
, (10)

for some kernel density κ and bandwidth b > 0 that may depend on t. If the forecast is
not probabilistically calibrated and the miscalibration persists over time, then ZFj

(Yt+1)
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Figure 2: (a) PIT histograms for IDR (green) and cGEV (orange) post-processed accumulated
precipitation forecasts for Frankfurt airport, Germany. (b) Cumulative products of e-values
for testing probabilistic calibration of the forecasts (IDR: green, cGEV: orange). The dotted
black line shows the level 1.

should be more likely to attain values in regions where f̂ is greater than 1, accumulating
evidence against the null hypothesis. Furthermore, for forecast lag 1, the e-values can
again be combined into the cumulative product eT =

∏T−1
t=1 Et(ZFt(Yt+1)).

Figure 2 shows PIT histograms and e-values for testing probabilistic calibration of
post-processed daily accumulated precipitation forecasts. The data are weather station
observations for Frankfurt airport, Germany, from the years 2007 to 2016, and ensemble
forecasts by the European Centre for Medium-Range Weather forecasts (Molteni et al.,
1996). The ensemble consists of 50 forecasts. Post-processing models are estimated
on data from the years 2007 to 2011 and validated on 2012 to 2016. A cGEV model
(2) is estimated by CRPS minimization, and compared with a simple univariate IDR
taking only the ensemble mean as covariate. The e-values are constructed sequentially
with the kernel density estimator in (10) and described in detail in Section 4.2. One
advantage of e-values compared to classical tests is that the evidence against the null
hypothesis can be monitored over time. Both post-processing methods have small e-
values in the years 2012 to 2014, and start to increase more steeply after 2014. This
is an indication that the dependence between the ensemble forecasts and observations
changes over time, causing miscalibration, and that model parameters should be re-
estimated with more recent data. Such information is valuable for practitioners, who
need to understand when and why miscalibration occurs in order to improve the forecast
quality. The e-values for the cGEV post-processed forecasts reach a maximum of
1.5 · 107, corresponding to a p-value of about 6.7 · 10−8. For IDR the maximum is
40, which by (7) allows rejection of the null hypothesis at the level 0.025, even if the
e-value at the end of the validation period is close to 1 and does not give any evidence
against the null hypothesis.
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Testing probabilistic calibration amounts to testing if the PIT follows the continuous
uniform distribution on [0, 1]. There are other, closely related notions of calibration
which require testing the null hypothesis of a discrete uniform distribution, and of
stochastic order relations compared to the uniform distribution. These problems are
also analyzed in Section 4.2.

Assessing calibration of probability forecasts. The last two chapters of this
thesis treat calibration assessment for probability forecasts. A probability forecast
P ∈ [0, 1] for Y ∈ {0, 1} is calibrated if

P(Y = 1 | P = x) = x,

for all x in the support of P . To test calibration, one compares the predicted and
observed event frequencies for all values of the predictions P . This is a standard prob-
lem if P only attains few different values, but it becomes delicate if P is continuously
distributed, in which case a data set (xi, Yi) ∈ [0, 1]×{0, 1}, i = 1, . . . , n, only contains
one observation for each value of x1, . . . , xn.

Probably the most popular test of calibration is due to Hosmer and Lemeshow
(1980). To compute it, one starts by partitioning the interval [0, 1] into g bins Ik,
k = 1, . . . , g, typical choices being [0, 0.1], (0.1, 0.2], . . . , (0.9, 1] or intervals delimited
by quantiles of x1, . . . , xn. Then, one compares the observed and expected event fre-
quencies in each bin,

ojk =
∑

i : xi∈Ik
1{Yi = j}, j = 0, 1, ê1k =

∑

i : xi∈Ik
xi, ê0k =

∑

i : xi∈Ik
(1− xi).

Under independence and calibration, the statistic

k∑

j=1

(
(o1k − ê1k)2

ê1k
+

(o0k − ê0k)2
ê0k

)

asymptotically follows a χ2-distribution with g − 2 degrees of freedom. The graphical
counterpart of the Hosmer-Lemeshow test are reliability diagrams (Murphy and Win-
kler, 1977), where observed event frequencies for each bin are plotted against the bin
midpoint. Both the Hosmer-Lemeshow test and reliability diagrams have the draw-
back that they may be strongly influenced by the choice of the bins, which is usually
arbitrary and may cause untenable instabilities; see Bertolini et al. (2000) and Section
S2 in the supplementary material of Dimitriadis et al. (2021).

The instability problem of the Hosmer-Lemeshow test and reliability diagrams lead
us back to isotonic distributional regression. One of the main motivations for iso-
tonic distributional regression is that it provides a tuning-parameter free benchmark
method for generating probabilistic forecasts. To construct stable reliability diagrams
without manual binning, Dimitriadis et al. (2021) propose to plot x1, . . . , xn against
their isotonic re-calibration p̂(x1), . . . , p̂(xn),

(p̂(x1), . . . , p̂(xn)) = arg min
p1≤···≤pn

n∑

i=1

(pi − Yi)2, (11)
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assuming x1 < · · · < xn for simplicity. This is equivalent to isotonic distributional
regression, since for a binary outcome variable the expected value equals the proba-
bility of outcome 1. The isotonicity assumption is not a strong restriction, because
most probability predictions exhibit a monotone relationship with the event rate, and
otherwise the predictions can often be discarded without any deeper analysis.

The proposal by Dimitriadis et al. (2021) solves the instability problem of re-
liability diagrams, and the last two sections of this thesis complement their work
by developing stable alternatives to the Hosmer-Lemeshow test. In Section 4.3, the
e-Hosmer-Lemeshow (eHL) test is proposed, a test based on e-values which is extensi-
ble to sequential settings. If Y1, . . . , Yn are independent, then for any validation subset
V ⊆ {1, . . . , n} and given qi ∈ [0, 1], i ∈ V , the likelihood ratio

EV =
∏

i∈V

qYii (1− q1−Yii )

xYii (1− x1−Yii )

is an e-value under the null hypothesis of calibration. To specify qi, i ∈ V , one may
estimate the true conditional event probabilities p(x) = P(Y = 1 | P = x) on the
remaining part (xi, Yi), i 6∈ V , of the data. Any estimation method is admissible for
this purpose, but to complement the reliability diagrams by Dimitriadis et al. (2021)
and avoid tuning parameters or dependency on the loss function, the proposal in Sec-
tion 4.3 is to use isotonic regression.2 This is also a sensible choice from the perspective
of e-values. For binary outcomes, isotonic regression yields the maximum likelihood
estimator of the event probabilities under the constraint of isotonicity (Barlow et al.,
1972), and hence it maximizes the growth rate

log(E{1,...,n}\V) =
∑

i∈{1,...,n}\V

(
Yi log

qi
xi

+ (1− Yi) log
1− qi
1− xi

)
,

over all qi, i 6∈ V , such that qi ≤ qj if xi ≤ xj.
Usually, there is no generic choice for a validation subset V . Instead, one often

splits the data randomly into two subsets V and {1, . . . , n} \ V . To make the e-value
independent of the data split, one can repeat this procedure B times with different
splits V1, . . . ,VB, and average the resulting e-values, E =

∑B
b=1EVb/B. For example,

V1, . . . ,Vb could be all (or sufficiently many) subsets of V of size dn/2e drawn without
replacement. Such a data splitting and de-randomization is not necessary if (xi, Yi),
i = 1, . . . , n, are observed at sequential time points or have another natural ordering.
In this case, one can apply analogous strategies as in Sections 4.1 and 4.2, that is,
estimate the conditional event probabilities with the pairs (x1, Y1), . . . , (xi−1, Yi−1) to
generate qi, and combine the e-values with the cumulative product. In such a sequential
setting, independence is not required.

The Hosmer-Lemeshow and eHL test only allow to reject the null hypothesis of
calibration, but they do not give an indication of how serious the miscalibration is.
With large sample size n, the tests tend to reject the null hypothesis even for acceptably

2To be fair, also isotonic regression is not completely free of implementation decisions. It requires
the specification of an interpolation method for out-of-sample predictions, and for e-values one should
avoid predicted probabilities of exactly 0 or 1, which may cause the e-value to attain zero.
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Figure 3: (a) Predicted and conditional event probabilities for the simulation example on
calibration testing. Observed frequencies are computed by binning, with right-closed bins
delimited by quantiles of the predicted probabilities (red, dashes: 10 bins; blue, dot-dashes:
50 bins; green, long dashes: 100 bins), and by isotonic regression (brown, solid line). The
shaded blue region is a simultaneous 90% confidence band for the true conditional event
probabilities, and the fine black line is the bisection line for perfect calibration. The inset
plot in panel (a) shows a histogram of the distribution of the predicted probabilities. Panel
(b) enlarges the region for probabilities up to 0.15 from panel (a).

well calibrated predictions and provide no practically useful information. Instead of
rejecting calibration, one would often be more interested in showing that |p(x)− x| is
small for all values of x. This goal can be achieved with a simultaneous confidence band
for the function p. A confidence band consists of data-dependent functions Uα(x) =
Uα(x; (xi, Yi), i = 1, . . . , n), Lα(x) = Lα(x; (xi, Yi), i = 1, . . . , n) such that

P(p(x) ∈ [Lα(x), Uα(x)] for all x ∈ [0, 1]) ≥ 1− α,

for any small α ∈ (0, 1). If the band [Lα(x), Uα(x)], x ∈ [0, 1], contains the identity
function, then the null hypothesis of calibration cannot be rejected. More generally
the band allows to show that x is calibrated up to an error less than ε if max(Uα(x)−
x, x − Lα(x)) ≤ ε for all x ∈ [0, 1] simultaneously. In Section 4.4, a confidence band
is developed solely under the assumption that Y1, . . . , Yn are independent and that the
function p is increasing. The method requires large sample sizes to achieve sufficiently
narrow band, but large sample sizes are exactly the situation where only rejecting the
hypothesis of calibration becomes uninformative.

Figure 3 illustrates the different methods for assessing binary outcome predictions
with a simulation example by Kramer and Zimmerman (2007). The simulation starts by
defining the logit of binary event probabilities as a linear combination of 20 binary and
3 numerical covariates with certain coefficients. To introduce model misspecification,
the true event probabilities are a slight modification of these base probabilities, with a
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relative distortion of at most 0.6%. The model coefficients are estimated with logistic
regression on a training data set of size n = 10′000, and the predictions are evaluated
on an independent validation data set of the same size.3 The model is misspecified due
to the distortion of the original probabilities, but the misspecification could be regarded
as negligible in practice. Figure 3 assesses the calibration of the model predictions on
the validation data for one simulation. Conditional event probabilities are computed
by grouping the observations into bins delimited by 10, 50, and 100 quantiles of the
predicted probabilities with equally spaced levels, so that each bin contains 1000, 200,
or 100 observations, respectively. For only 10 bins the estimated conditional event
probabilities are close to the bin midpoint, and the corresponding Hosmer-Lemeshow
test has a p-value of 0.54. With 50 or 100 bins the estimates move erratically around
the bisection line, and the p-value of the Hosmer-Lemeshow test drops to 0.02 or 0.05,
respectively. The isotonic regression estimate of the conditional event probabilities
avoids these instabilities. The eHL test, performed with B = 50′000 random splits
of the validation data set into n/2 = 5000 observations for estimating the conditional
event probabilities and computing the e-values, yields an e-value of 0.2 and hence
no evidence against miscalibration. A simultaneous confidence band is constructed
with the raw method from Section 4.4. It contains the diagonal and therefore also
does not allow to reject calibration, but it provides much more information than this
sole test. For example, if a threshold of 0.05 for the conditional event probability is
used for decision making, say, deciding whether a patient requires a certain treatment,
then the confidence band suggests that patients with predicted probability above 0.114
(where the lower bound crosses 0.05) require treatment, while patients with predicted
probability below 0.017 (where the upper bound crosses 0.05) do not. For the remaining
patients, the predictions alone do not give a sufficient basis for decision making.

Structure of the thesis

The remainder of this thesis consists of three chapters, as introduced before: Isotonic
distributional regression (Chapter 2), Distributional index models (Chapter 3), and
New methods for forecast evaluation (Chapter 4). The sections of each chapter contain
published research papers or arXiv preprints (available on https://arxiv.org) in
their original format, with the exact reference given at the beginning of each section.

3In the original setting by Kramer and Zimmerman (2007) the predictions are validated in-sample.
An out-of-sample validation is performed here because none of the methods applied has guaranteed
validity when the coefficients of the logistic regression model are estimated in-sample.
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Chapter 2

Isotonic distributional regression

2.1 Isotonic distributional regression

The content of this section is published as

Henzi, A., Ziegel, J. F. and Gneiting, T. (2021). Isotonic distributional regression.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 83 963–993.

The version included in this thesis, which combines the paper and its supplementary
material, is published as arXiv preprint with identifier arXiv:1909.03725. The original
article is published under license Creative Commons CC BY-NC-ND 4.0).

29



Isotonic Distributional Regression

Alexander Henzi and Johanna F. Ziegel
University of Bern, Switzerland

E-mail: alexander.henzi@stat.unibe.ch johanna.ziegel@stat.unibe.ch
Tilmann Gneiting
Heidelberg Institute for Theoretical Studies (HITS) and Karlsruhe Institute of
Technology (KIT), Germany

E-mail: tilmann.gneiting@h-its.org

Summary. Isotonic distributional regression (IDR) is a powerful nonparametric tech-
nique for the estimation of conditional distributions under order restrictions. In a nut-
shell, IDR learns conditional distributions that are calibrated, and simultaneously opti-
mal relative to comprehensive classes of relevant loss functions, subject to isotonicity
constraints in terms of a partial order on the covariate space. Nonparametric isotonic
quantile regression and nonparametric isotonic binary regression emerge as special
cases. For prediction, we propose an interpolation method that generalizes extant
specifications under the pool adjacent violators algorithm. We recommend the use
of IDR as a generic benchmark technique in probabilistic forecast problems, as it
does not involve any parameter tuning nor implementation choices, except for the se-
lection of a partial order on the covariate space. The method can be combined with
subsample aggregation, with the benefits of smoother regression functions and gains
in computational efficiency. In a simulation study, we compare methods for distribu-
tional regression in terms of the continuous ranked probability score (CRPS) and L2

estimation error, which are closely linked. In a case study on raw and postprocessed
quantitative precipitation forecasts from a leading numerical weather prediction sys-
tem, IDR is competitive with state of the art techniques.

Keywords: conditional distribution estimation; monotonicity; probabilistic forecast;
proper scoring rule; stochastic order; subagging; weather prediction

1. Introduction

There is an emerging consensus in the transdisciplinary literature that regression
analysis should be distributional, with Hothorn et al. (2014) arguing forcefully that

[t]he ultimate goal of regression analysis is to obtain information about
the conditional distribution of a response given a set of explanatory vari-
ables.

This article is published as: Henzi, A., Ziegel, J.F. and Gneiting, T. (2021), Isotonic
distributional regression. Journal of the Royal Statistical Society Series B, https://doi.
org/10.1111/rssb.12450.
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Distributional regression marks a clear break from the classical view of regression,
which has focused on estimating the conditional mean of the response variable in
terms of one or more explanatory variable(s) or covariate(s). Later extensions have
considered other functionals of the conditional distributions, such as quantiles or
expectiles (Koenker, 2005; Newey and Powell, 1987; Schulze Waltrup et al., 2015).
However, the reduction of a conditional distribution to a single-valued functional
results in tremendous loss of information. Therefore, from the perspectives of both
estimation and prediction, regression analysis ought to be distributional.

In the extant literature, both parametric and nonparametric approaches to dis-
tributional regression are available. Parametric approaches assume that the con-
ditional distribution of the response is of a specific type (e.g., Gaussian) with an
analytic relationship between the covariates and the distributional parameters. Key
examples include statistically postprocessed meteorological and hydrologic forecasts,
as exemplified by Gneiting et al. (2005), Schefzik et al. (2013) and Vannitsem
et al. (2018). In powerful semi-parametric variants, the conditional distributions
remain parametric, but the influence of the covariates on the parameter values is
modeled nonparametrically, e.g., by using generalized additive models (Rigby and
Stasinopoulos, 2005; Klein et al., 2015; Umlauf and Kneib, 2018) or modern neural
networks (Rasp and Lerch, 2018; Gasthaus et al., 2019). In related developments,
semiparametric versions of quantile regression (Koenker, 2005) and transformation
methods (Hothorn et al., 2014) can be leveraged for distributional regression.

Nonparametric approaches to distributional regression include kernel or nearest
neighbor methods that depend on a suitable notion of distance on the covariate
space. Then, the empirical distribution of the response for neighboring covariates
in the training set is used for distributional regression, with possible weighting in
dependence on the distance to the covariate value of interest. Kernel smoothing
methods and mixture approaches allow for absolutely continuous conditional distri-
butions (Hall et al., 1999; Dunson et al., 2007; Li and Racine, 2008). Classification
and regression trees partition the covariate space into leaves, and assign constant
regression functions on each leaf (Breiman et al., 1984). Linear aggregation via boot-
strap aggregation (bagging) or subsample aggregation (subagging) yields random
forests (Breiman, 2001), which are increasingly being used to generate conditional
predictive distributions, as proposed by Hothorn et al. (2004) and Meinshausen
(2006).

Isotonicity is a natural constraint in estimation and prediction problems. Con-
sider, e.g., postprocessing techniques in weather forecasting, where the covariates
stem from the output of numerical weather prediction (NWP) models, and the re-
sponse variable is the respective future weather quantity. Intuitively, if the NWP
model output indicates a larger precipitation accumulation, the associated regres-
sion functions ought to be larger as well. Isotonic relationships of this type hold
in a plethora of applied settings. In fact, standard linear regression analysis rests
on the assumption of isotonicity, in the form of monotonicity in the values of the
covariate(s), save for changes in sign.

Concerning nonparametric regression for a conditional functional, such as the
mean or a quantile, there is a sizable literature on estimation under the constraint
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of isotonicity. The classical work of Brunk (1955), Ayer et al. (1955), van Eeden
(1958), Bartholomew (1959a,b) and Miles (1959) is summarized in Barlow et al.
(1972), Robertson et al. (1988) and de Leeuw et al. (2009). Subsequent approaches
include Bayesian and non-Bayesian smoothing techniques (e.g., Mammen, 1991;
Neelon and Dunson, 2004; Dette et al., 2006; Shively et al., 2009), and reviews are
available in Groeneboom and Jongbloed (2014) and Guntuboyina and Sen (2018).

In distributional regression it may not be immediately clear what is meant by
isotonicity, and the literature typically considers one ordinal covariate only (e.g.,
Hogg, 1965; Rojo and El Barmi, 2003; El Barmi and Mukerjee, 2005; Davidov
and Iliopoulos, 2012), with a notable exception being the work of Mösching and
Dümbgen (2020b), whose considerations allow for a real-valued covariate. In the
general case of a partially ordered covariate space, which we consider here, it is
unclear whether semi- or nonparametric techniques might be capable of handling
monotonicity contraints, and suitable notions of isotonicity remain to be developed.

To this end, we assume that the response Y is real-valued, and equip the co-
variate space X with a partial order ⪯. Our aim is to estimate the conditional
distribution of Y given the covariate X, for short L(Y |X), on training data, in
a way that respects the partial order, and we desire to use this estimate for pre-
diction. Formally, a distributional regression technique generates a mapping from
x ∈ X to a probability measure Fx, which serves to model the conditional distribu-
tion L(Y |X = x). This mapping is isotonic if x ⪯ x′ implies Fx ≤st Fx′ , where ≤st

denotes the usual stochastic order, i.e., G ≤st H if G(y) ≥ H(y) for y ∈ R, where
we use the same symbols for the probability measures G, H and their associated
conditional cumulative distribution functions (CDFs). Equivalently, G ≤st H holds
if G−1(α) ≤ H−1(α) for α ∈ (0, 1), where G−1(α) = inf{y ∈ R : G(y) ≥ α} is the
standard quantile function (Shaked and Shanthikumar, 2007).

Useful comparisons of predictive distributions are in terms of proper scoring
rules, of which the most prominent and most relevant instance is the continu-
ous ranked probability score (CRPS; Matheson and Winkler, 1976; Gneiting and
Raftery, 2007). We show that there is a unique isotonic distributional regression
that is optimal with respect to the CPRS (Theorem 2.1), and refer to it as the
isotonic distributional regression (IDR). As it turns out, IDR is a universal solu-
tion, in that the estimate is optimal with respect to a broad class of proper scoring
rules (Theorem 2.2). Classical special cases such as nonparametric isotonic quan-
tile regression and probabilistic classifiers for threshold-defined binary events are
nested by IDR. Simultaneously, IDR avoids pitfalls commonly associated with non-
parametric distributional regression, such as suboptimal partitions of the covariate
space and level crossing (Athey et al., 2019, p. 1167).

For illustration, consider the joint distribution of (X,Y ), where X is uniform on
(0, 10) and

Y | X ∼ Gamma(shape =
√
X, scale = min{max{X, 1}, 6}), (1)

so that L(Y |X = x) ≤st L(Y |X = x′) if x ≤ x′. Figure 1 shows IDR conditional
CDFs and quantiles as estimated on a training set of size n = 600. IDR is capable of
estimating both the strongly right-skewed conditional distributions for lower values
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Fig. 1. Simulation example for a sample of size n = 600 from the distribution in (1): (a)
True conditional CDFs (smooth) and IDR estimates (step functions) for selected values of
the covariate. (b) IDR estimated conditional distributions. The shaded bands correspond
to probability mass 0.10 each, with the darkest shade marking the central interval. Vertical
strips indicate the cross-sections corresponding to the values of the covariate in panel (a).

of X and the more symmetric distributions as X increases. The CDFs are piecewise
constant, and they never cross each other. The computational cost of IDR is of order
at least O(n log n) and may become prohibitive as n grows. However, IDR can
usefully be combined with subsample aggregation (subagging), much in the spirit
of random forests (Breiman, 2001), with the benefits of reduced computational
cost under large training samples, smoother regression functions, and (frequently)
improved predictive performance.

The remainder of the paper is organized as follows. The methodological core
of the paper is in Section 2, where we prove existence, uniqueness and universality
of the IDR solution, discuss computational issues and asymptotic consistency, and
propose strategies for prediction. In Section 3 we turn to the critical issue of the
choice of a partial order on the covariate space. Section 4 reports on a compara-
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tive simulation study that addresses both prediction and estimation, and Section
5 is devoted to a case study on probabilistic quantitative precipitation forecasts,
with covariates provided by the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ensemble system. Precipitation accumulations feature unfavorable
properties that challenge parametric approaches to distributional regression: The
conditional distributions have a point mass at zero, and they are continuous and
right skewed on the positive half-axis. In a comparison to state-of-the-art methods
that have been developed specifically for the purpose, namely Bayesian Model Av-
eraging (BMA; Sloughter et al., 2007), Ensemble Model Output Statistics (EMOS;
Scheuerer, 2014), and Heteroscedastic Censored Logistic Regression (HCLR; Mess-
ner et al., 2014), the (out-of-sample) predictive performance of IDR is competitive,
despite the method being generic, and being fully automatic once a partial order
on the covariate space has been chosen.

We close the paper with a discussion in Section 6, where we argue that IDR pro-
vides a very widely applicable, competitive benchmark in probabilistic forecasting
problems. The use of benchmark techniques has been called for across application
domains (e.g., Rossi, 2013; Pappenberger et al., 2015; Basel Committee on Banking
Supervision, 2016; Vogel et al., 2018), and suitable methods should be competitive
in terms of predictive performance, while avoiding implementation decisions that
may vary from user to user. IDR is well suited to this purpose, as it is entirely
generic, does not involve any implementation decisions, other than the choice of the
partial order, applies to all types of real-valued outcomes with discrete, continu-
ous or mixed discrete-continuous distributions, and accommodates general types of
covariate spaces.

2. Isotonic distributional regression

We proceed to introduce the isotonic distributional regression (IDR) technique. To
this end, we first review basic facts on proper scoring rules and notions of calibra-
tion. Then we define the IDR solution, prove existence, uniqueness and universality,
and discuss its computation and asymptotic consistency. Thereafter, we turn from
estimation to prediction and describe how IDR can be used in out-of-sample fore-
casting. Throughout, we identify a Borel probability measure on the real line R
with its cumulative distribution function (CDF), and we denote the extended real
line by R̄ = [−∞,∞].

2.1. Preliminaries
Following Gneiting and Raftery (2007), we argue that distributional regression tech-
niques should be compared and evaluated using proper scoring rules. A proper
scoring rule is a function S : P × R → R̄, where P is a suitable class of proba-
bility measures on R, such that S(F, ·) is measurable for any F ∈ P, the integral∫
S(G, y) dF (y) exists, and

∫
S(F, y) dF (y) ≤

∫
S(G, y) dF (y)
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6 A. Henzi, J. F. Ziegel, T. Gneiting

for all F,G ∈ P. A key example is the continuous ranked probability score (CRPS),
which is defined for all Borel probability measures, and given as

CRPS(F, y) =

∫

R
(F (z)− 1{y ≤ z})2 dz.

Introduced by Matheson and Winkler (1976), the CRPS has become popular across
application areas and methodological communities, both for the purposes of evalu-
ating predictive performance and as a loss function in estimation; see, e,g., Hersbach
(2000), Gneiting et al. (2005), Hothorn et al. (2014), Pappenberger et al. (2015),
Rasp and Lerch (2018) and Gasthaus et al. (2019). The CRPS is reported in the
same unit as the response variable, and it reduces to the absolute error, |x − y|, if
F is the point or Dirac measure in x ∈ R.

Results in Laio and Tamea (2007), Ehm et al. (2016) and Ben Bouallègue et al.
(2018) imply that the CRPS can be represented equivalently as

CRPS(F, y) = 2

∫

(0,1)
QSα(F, y) dα (2)

= 2

∫

(0,1)

∫

R
SQα,θ(F, y) dθ dα (3)

=

∫

R

∫

(0,1)
SPz,c(F, y) dcdz, (4)

where the mixture representation (2) is in terms of the asymmetric piecewise linear
or pinball loss,

QSα(F, y) =

{
(1− α) (F−1(α)− y), y ≤ F−1(α),

α (y − F−1(α)), y ≥ F−1(α),
(5)

which is customarily thought of as a quantile loss function, but can be identified
with a proper scoring rule (Gneiting, 2011, Theorem 3). The representations (3)
and (4) express the CRPS in terms of the elementary or extremal scoring functions
for the α-quantile functional, namely,

SQα,θ(F, y) =





1− α, y ≤ θ < F−1(α),

α, F−1(α) ≤ θ < y,

0, otherwise,

(6)

where θ ∈ R; and for probability assessments of the binary outcome 1{y ≤ z} at
the threshold value z ∈ R, namely

SPz,c(F, y) =





1− c, F (z) < c, y ≤ z,
c, F (z) ≥ c, y > z,

0, otherwise,

(7)

where c ∈ (0, 1). For background information on elementary or extremal scoring
functions and related concepts see Ehm et al. (2016).
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Predictive distributions ought to be calibrated (Dawid, 1984; Diebold et al., 1998;
Gneiting et al., 2007), in the broad sense that they should be statistically compati-
ble with the responses, and various notions of calibration have been proposed and
studied. In the spirit of Gneiting and Ranjan (2013), we consider the joint distri-
bution P of the response Y and the distributional regression FX . The most widely
used criterion is probabilistic calibration, which requires that the probability integral
transform (PIT), namely, the random variable

Z = FX(Y−) + V (FX(Y )− FX(Y−)), (8)

be standard uniform, where FX(Y−) = limy↑Y FX(y) and V is a standard uniform
variable that is independent of FX and Y . If FX is continuous the PIT is simply
Z = FX(Y ). Here we introduce the novel notion of threshold calibration, requiring
that

P(Y ≤ y |FX(y)) = FX(y) (9)

almost surely for y ∈ R, which implies marginal calibration, defined as P(Y ≤ y) =
E(FX(y)) for y ∈ R. If FX = L(Y |X) then it is calibrated in any of the above
senses (Gneiting and Ranjan, 2013, Theorem 2.8).

2.2. Existence, uniqueness and universality
A partial order relation ⪯ on a set X has the same properties as a total order,
namely reflexivity, antisymmetry and transitivity, except that the elements need
not be comparable, i.e., there might be elements x ∈ X and x′ ∈ X such that
neither x ⪯ x′ nor x′ ⪯ x holds. A key example is the componentwise order on Rn.

For a positive integer n and a partially ordered set X , we define the classes

X n
↑ = {xxx = (x1, . . . , xn) ∈ X n : x1 ⪯ · · · ⪯ xn},
X n
↓ = {xxx = (x1, . . . , xn) ∈ X n : x1 ⪰ · · · ⪰ xn}

of the increasingly and decreasingly (totally) ordered tuples in X , respectively. Sim-
ilarly, given a further partially ordered set Q and a vector xxx = (x1, . . . , xn) ∈ X n,
the classes

Qn
↑,xxx = {qqq = (q1, . . . , qn) ∈ Qn : qi ⪯ qj if xi ⪯ xj},
Qn

↓,xxx = {qqq = (q1, . . . , qn) ∈ Qn : qi ⪰ qj if xi ⪯ xj}

comprise the increasingly and decreasingly (partially) ordered tuples in Q, with the
order induced by the tuple xxx and the partial order ⪯ on X .

Let I ⊆ R be an interval, and let S be a proper scoring rule with respect to a class
P of probability distributions on I that contains all distributions with finite support.
Given training data in the form of a covariate vector xxx = (x1, . . . , xn) ∈ X n and
response vector yyy = (y1, . . . , yn) ∈ In, we may interpret any mapping from xxx ∈ X n

to Pn as a distributional regression function. Throughout, we equip P with the
usual stochastic order.

36



8 A. Henzi, J. F. Ziegel, T. Gneiting

Definition 2.1 (S-based regression). An element F̂̂F̂F = (F̂1, . . . , F̂n) ∈ Pn is an S-
based isotonic regression of yyy ∈ In on xxx ∈ X n, if it is a minimizer of the empirical
loss

ℓS(FFF ) =
1

n

n∑

i=1

S(Fi, yi)

over all FFF = (F1, . . . , Fn) in Pn
↑,xxx.

In plain words, an S-based isotonic regression achieves the best fit in terms of the
scoring rule S, subject to the conditional CDFs F̂1, . . . , F̂n satisfying partial order
constraints induced by the covariate values x1, . . . , xn. The definition and the sub-
sequent results can be extended to losses of the form ℓS(FFF ) =

∑n
i=1wiS(Fi, yi) with

rational, strictly positive weights w1, . . . , wn. The adaptations are straightforward
and left to the reader.

Furthermore, the definition of an S-based isotonic regression as a minimizer of
ℓS continues to apply when X is equipped with a pre- or quasiorder ⪯ instead of a
partial order. Preorders are not necessarily antisymmetric, and so there might be
elements x, x′ such that x ⪯ x′ and x′ ⪯ x but x′ ̸= x. In this setting, we define x
and x′ to be equivalent if x ⪯ x′ and x′ ⪯ x, and set [x] ⪯p [x

′] if representatives u, u′

of the equivalence classes [x], [x′] satisfy u ⪯ u′. Then the binary relation ⪯p defines
a partial order on the set of equivalence classes, and the S-based isotonic regression
with the new covariates and the partial order ⪯p coincides with the original S-based
isotonic regression.

In Appendix A we prove the following result.

Theorem 2.1 (existence and uniqueness). There exists a unique CRPS-based iso-

tonic regression F̂̂F̂F ∈ Pn of yyy on xxx.

We refer to this unique F̂̂F̂F as the isotonic distributional regression (IDR) of yyy on
xxx. In the particular case of a total order on the covariate space, and assuming that
x1 < · · · < xn, for each z ∈ I the solution F̂̂F̂F (z) = (F̂1(z), . . . , F̂n(z)) is given by

F̂i(z) = min
k=1,...,i

max
j=k,...,n

1

j − k + 1

j∑

l=k

1{yl ≤ z} (10)

for i = 1, . . . , n; see eqs. (1.9)–(1.13) of Barlow et al. (1972). A similar max–min
formula applies under partial orders (Robertson and Wright, 1980; Jordan et al.,

2021), and it follows that F̂i is piecewise constant with any points of discontinuity
at y1, . . . , yn.

At first sight, the specific choice of the CRPS as a loss function may seem arbi-
trary. However, the subsequent result, which we prove in Appendix A, reveals that
IDR is simultaneously optimal with respect to broad classes of proper scoring rules
that include all relevant choices in the extant literature. The popular logarithmic
score allows for the comparison of absolutely continuous distributions with respect
to a fixed dominating measure only and thus is not applicable here. Statements
concerning calibration are with respect to the empirical distribution of the training
data (x1, y1), . . . , (xn, yn).
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Theorem 2.2 (universality). The IDR solution F̂̂F̂F of yyy on xxx is threshold calibrated
and has the following properties.

i) The IDR solution F̂̂F̂F is an S-based isotonic regression of yyy on xxx under any
scoring rule of the form

S(F, y) =

∫

(0,1)×R
SQα,θ(F, y) dH(α, θ) (11)

or

S(F, y) =

∫

R×(0,1)
SPz,c(F, y) dM(z, c), (12)

where SQα,θ is the elementary quantile scoring function (6), SPz,c is the ele-

mentary probability scoring rule (7), and H and M are locally finite Borel
measures on (0, 1)× R and R× (0, 1), respectively.

ii) For every α ∈ (0, 1) it holds that F̂̂F̂F−1(α) = (F̂−1
1 (α), . . . , F̂−1

n (α)) is a mini-
mizer of

1

n

n∑

i=1

sα(θi, yi) (13)

over all θθθ = (θ1, . . . , θn) ∈ In↑,xxx, under any function sα : I × I → R̄ which is

left-continuous in both arguments and such that S(F, y) = sα(F
−1(α), y) is a

proper scoring rule on P.
iii) For every threshold value z ∈ I, it is true that F̂̂F̂F (z) = (F̂1(z), . . . , F̂n(z)) is a

minimizer of

1

n

n∑

i=1

s(ηi,1{yi ≤ z}) (14)

over all ordered tuples ηηη = (η1, . . . , ηn) ∈ [0, 1]n↓,xxx, under any function s :

[0, 1] × {0, 1} → R̄ that is a proper scoring rule for binary events, which is
left-continuous in its first argument, satisfies s(0, y) = limp→0 s(p, y), and is
real-valued, except possibly s(0, 1) = −∞ or s(1, 0) = −∞.

The quantile weighted and threshold weighted versions of the CRPS studied
by Gneiting and Ranjan (2011) arise from (11) and (12) with H = G0 ⊗ λ and
M = λ ⊗ G1, where λ denotes the Lebesgue measure, and G0 and G1 are σ-finite
Borel measures on (0, 1) and R, respectively. If G0 and G1 are Lebesgue measures,
we recover the mixture representations (3) and (4) of the CRPS. By results of Ehm
et al. (2016), if H is concentrated on {α}×R andM is concentrated on {z}× (0, 1),
these representations cover essentially all proper scoring rules that depend on the
predictive distribution F via F−1(α) or F (z) only, yielding universal optimality in
statements in parts ii) and iii) of Theorem 2.2.

In particular, as a special case of (13), the IDR solution is a minimizer of the
quantile loss under the asymmetric piecewise linear or pinball function (5) that lies
at the heart of quantile regression (Koenker, 2005). Consequently, as the mixture
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representation (2) of the CRPS may suggest, IDR nests classical nonparametric iso-
tonic quantile regression as introduced and studied by Robertson and Wright (1975)
and Casady and Cryer (1976). In other words, part ii) of Theorem 2.2 demonstrates
that, if we (hypothetically) perform nonparametric isotonic quantile regression at
every level α ∈ (0, 1) and piece the conditional quantile functions together, we re-
cover the IDR solution. However, the IDR solution is readily computable (Section
2.3), without invoking approximations or truncations, unlike brute force approaches
to simultaneous quantile regressions. Loss functions of the form (13) also include
the interval score (Winkler, 1972; Gneiting and Raftery, 2007, eq. (43)), which con-
stitutes the most used proper performance measure for interval forecasts.

In the special case of a binary response variable, we see from iii) and (14) that
the IDR solution is an S-based isotonic regression under just any applicable proper
scoring rule S. Furthermore, threshold calibration is the strongest possible notion
of calibration in this setting (Gneiting and Ranjan, 2013, Theorem 2.11), so the
IDR solution is universal in every regard. In the further special case of a total
order on the covariate space, the IDR and pool adjacent violators (PAV) algorithm
solutions coincide, and the statement in iii) is essentially equivalent to Theorem
1.12 of Barlow et al. (1972). In particular, the IDR or PAV solution yields both the
nonparametric maximum likelihood estimate and the nonparametric least squares
estimate under the constraint of isotonicity. The latter suggests a computational
implementation via quadratic programming, to which we tend now.

2.3. Computational aspects
The key observation towards a computational implementation is the aforementioned
special case of (14), according to which the IDR solution F̂̂F̂F ∈ Pn of yyy ∈ Rn on
xxx ∈ X n satisfies

F̂̂F̂F (z) = arg min
η∈[0,1]n↓,xxx

n∑

i=1

(ηi − 1{yi ≤ z})2 (15)

at every threshold value z ∈ R. In this light, the computation of the IDR CDF at
any fixed threshold reduces to a quadratic programming problem. The above target
function is constant in between the unique values of y1, . . . , yn, say ỹ1 < · · · < ỹm,
and so it suffices to estimate the CDFs at these points only. In contrast, exact imple-
mentations based on quantiles would need to consider all levels of the form i/j with
integers 1 ≤ i < j ≤ n, which is computationally prohibitive. In the threshold-based
approach, the overall cost depends on the quadratic programming solver applied,
and the computation becomes much faster if recursive relations between consecutive
conditional CDFs F̂̂F̂F (ỹk) and F̂̂F̂F (ỹk−1) are taken advantage of. In the case of a total
order, Henzi et al. (2020) describe a recursive adaptation of the PAV algorithm to
IDR that considerably reduces the computation time as compared to a naive im-
plementation which does not take into account recursive relations. Under general
partial orders, active set methods for solutions to the quadratic programming prob-
lem (15) have been discussed by de Leeuw et al. (2009). In our implementation, we
use the powerful quadratic programming solver OSQP (Stellato et al., 2020) as sup-
plied by the package osqp in the statistical programming environment R (Stellato
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(a) IDR based on full sample (n = 10'000)
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(b) IDR using subagging

Fig. 2. Simulation example for a sample of size n = 10 000 from the distribution in (1).
The true conditional CDFs (smooth dashed graphs) are compared to IDR estimates (step
functions) based on (a) the full training sample of size n = 10 000 and (b) linear aggregation
of IDR estimates on 100 subsamples of size 1 000 each.

et al., 2019; R Core Team, 2020), which can be warm-started efficiently by taking

F̂̂F̂F (ỹk−1) as a starting point for the computation of F̂̂F̂F (ỹk).

Clearly, a challenge in the computational implementation of IDR with general
partial orders is that the number of variables in the quadratic programming prob-
lem (15) grows at a rate of O(n). As a remedy, we propose subsample aggregation,
much in the spirit of random forests that rely on bootstrap aggregated (bagged)
classification and regression trees (Breiman, 1996, 2001). It was observed early on
that random forests generate conditional predictive distributions (Hothorn et al.,
2004; Meinshausen, 2006), and recent applications include the statistical postpro-
cessing of ensemble weather forecasts (Taillardat et al., 2016; Schlosser et al., 2019;
Taillardat et al., 2019). Bühlmann and Yu (2002) and Buja and Stützle (2006) ar-
gue forcefully that subsample aggregation (subagging) tends to be equally effective
as bagging, but at considerably lower computational cost.

In view of the superlinear computational costs of IDR, smart uses of subsample
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aggregation yield major efficiency gains, taking into account that the estimation on
different subsamples can be performed in parallel. Isotonicity is preserved under
linear aggregation, and the aggregated conditional CDFs can be inverted to gen-
erate isotonic conditional quantile functions, with the further benefit of smoother
estimates in continuous settings. A detailed investigation of optimal subsample ag-
gregation for IDR is a topic for future research. For illustration, Figure 2 returns
to the simulation example in Figure 1, but now with a much larger training sam-
ple of size n = 10 000 from the distribution in (1). Linear aggregation based on
100 subsamples (drawn without replacement) of size n = 1000 each is superior to
the brute force approach on the full training set in terms of estimation accuracy.
The computation on the full dataset for this simulation example takes 11.7 seconds
for the naive implementation, but only 1.1 seconds for the sequential algorithm of
Henzi et al. (2020). Subagging gives computation times of 9.9 and 2.5 seconds,
respectively, or 1.8 and 0.5 seconds when parallelized over eight cores.†

2.4. Consistency
We proceed to prove uniform consistency of the IDR estimator. While strong consis-
tency of nonparametric isotonic quantile regression for single quantiles was proved
decades ago (Robertson and Wright, 1975; Casady and Cryer, 1976), uniform con-
sistency and rates of convergence for the IDR estimator have been established only
recently, and exclusively in the case of a total order, see El Barmi and Mukerjee
(2005, Theorem 1) and Mösching and Dümbgen (2020b, Theorem 3.3).

For x ∈ X and y ∈ R, let F̂x(y) denote the IDR estimate based on fixed or

random pairs (X1, Y1), . . . , (Xn, Yn). As introduced thus far, the IDR solution F̂̂F̂F =

(F̂1, . . . , F̂n) is defined at the covariate values X1, . . . , Xn ∈ X only. For general

x ∈ X , we merely assume that F̂x(y) is some value in between the bounds given by

max
i∈s(x)

F̂i(y) ≤ F̂x(y) ≤ min
i∈p(x)

F̂i(y). (16)

Here, we define the sets of the indices of direct predecessors and direct successors of
x ∈ X among the covariate values as

p(x) = {i ∈ {1, . . . , n} : Xi ⪯ Xj ⪯ x =⇒ Xj = Xi, j = 1, . . . , n} (17)

and
s(x) = {i ∈ {1, . . . , n} : x ⪯ Xj ⪯ Xi =⇒ Xj = Xi, j = 1, . . . , n}, (18)

respectively.
In Appendix B we establish the following consistency theorem, which covers key

examples of partial orders and is based on strictly weaker assumptions than the
results of Mösching and Dümbgen (2020b). However, in contrast to their work,
we do not provide rates of convergence. The choice X = [0, 1]d for the covari-
ate space merely serves to simplify the presentation: As IDR is invariant under

†With Intel(R) Xeon(R) E5-2630 v4 2.20GHz CPUs, in R (R Core Team, 2020), using the
doParallel package for parallelization. Times reported are averages over 100 replicates.
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strictly isotonic transformations, any covariate vector X = (X1, . . . , Xd) ∈ Rd can
be transformed to have support in [0, 1]d, and the componentwise partial order can
be replaced by any weaker preorder. A key assumption uses the concept of an
antichain in a partially ordered set (S,⪯), which is a subset A ⊆ S that does not
admit comparisons, in the sense that u ⪯ v for u, v ∈ A implies u = v. As we discuss
subsequently, results of Brightwell (1992) imply that the respective distributional
condition is mild.

Theorem 2.3 (uniform consistency). Let X = [0, 1]d be endowed with the compo-
nentwise partial order and the norm ∥u∥ = maxi=1,...,d |ui|. Let further (Xni, Yni) ∈
[0, 1]d × R, n ∈ N, i = 1, . . . , n, be a triangular array such that (Xn1, Yn1), . . . ,
(Xnn, Ynn) are independent and identically distributed random vectors for each n ∈
N, and let Sn = {Xn1, . . . , Xnn}. Assume that

(i) for all non-degenerate rectangles J ⊆ X , there exists a constant cJ > 0 such
that

#(Sn ∩ J) ≥ ncJ
with asymptotic probability one, i.e., if An denotes the event that #(Sn∩J) ≥
ncJ , then P(An)→ 1 as n→∞;

(ii) for some γ ∈ (0, 1),

max{#A : A ⊂ Sn is antichain} ≤ nγ

with asymptotic probability one.

Assume further that the true conditional CDFs Fx(y) = P(Yni ≤ y | Xni = x)
satisfy

(iii) Fx(y) is decreasing in x for all y ∈ R;

(iv) for every η > 0, there exists r > 0 such that

sup{|Fx(y)− Fx′(y)| : x, x′ ∈ [0, 1]d, ∥x− x′∥ ≤ r, y ∈ R} < η.

Then for every ϵ > 0 and δ > 0,

lim
n→∞

P

(
sup

x∈[δ,1−δ]d, y∈R
|F̂x(y)− Fx(y)| ≥ ϵ

)
= 0. (19)

Assumption (i) requires that the covariates are sufficiently dense in X , as is sat-
isfied under strictly positive Lebesgue densities on X . In order to derive rates of
convergence, the size of the rectangles J in (i) would need to decrease with n, as in
condition (A.2) of Mösching and Dümbgen (2020b); we leave this type of extension
as a direction for future work. Assumption (iii) is the basic model assumption of
IDR, while assumption (iv) requires uniform continuity of the conditional distribu-
tions, which is weaker than Hölder continuity in condition (A.1) of Mösching and
Dümbgen (2020b).

42
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Assumption (ii), which is always satisfied in the case of a total order, calls for a
more detailed discussion. In words, the maximal number of mutually incomparable
elements needs to grow at a rate slower than nγ . Evidently, the easier elements
can be ordered, the smaller the maximal antichain. Consequently, Theorem 2.3
continues to hold under the empirical stochastic order and the empirical increasing
convex order on the covariates introduced in Section 3.3, and indeed under any
preorder that is weaker than the componentwise order. The key to understanding
the distributional implications of (ii) is Corollary 2 in Brightwell (1992), which states
that for a sequence of independent random vectors from a uniform population on
[0, 1]d the size of a maximal antichain grows at a rate of n1−1/d; see also the remark
following the proof of Theorem 2.3 in Appendix B.

As comparability under the componentwise order is preserved under monotonic
transformations, any covariate vector X ∈ Rd that can be obtained as a mono-
tone transformation of a uniform random vector of arbitrary dimension guarantees
(ii). This includes, e.g., all Gaussian random vectors with nonnegative correlation
coefficients. In this light, assumption (ii) is rather weak, and well in line with the
intuition that for multivariate isotonic (distributional) regression to work well, there
ought be at least minor positive dependence between the covariates. In the context
of our case study in Section 5, high positive correlations between the covariates are
the rule, as exemplified by Table 3 in Raftery et al. (2005).

2.5. Prediction
As noted, the IDR solution F̂̂F̂F = (F̂1, . . . , F̂n) ∈ Pn

↑,xxx is defined at the covariate

values x1, . . . , xn ∈ X only. Generally, if a (not necessarily optimal) distributional
regression FFF = (F1, . . . , Fn) ∈ Pn

↑,xxx is available, a key task in practice is to make a

prediction at a new covariate value x ∈ X where x ̸∈ {x1, . . . , xn}. We denote the
respective predictive CDF by F .

In the specific case X = R of a single real-valued covariate there is a simple
way of doing this, as frequently implemented in concert with the PAV algorithm.
For simplicity we suppose that x1 < · · · < xn. If x < x1 we may let F = F1; if
x ∈ (xi, xi+1) for some i ∈ {1, . . . , n− 1} we may interpolate linearly, so that

F (z) =
x− xi
xi+1 − xi

Fi(z) +
xi+1 − x
xi+1 − xi

Fi+1(z)

for z ∈ R, and if x > xn we may set F = Fn. However, approaches that are based
on interpolation do not extend to a generic covariate space, which may or may not
be equipped with a metric.

In contrast, the method we describe now, which generalizes a proposal by Wilbur
et al. (2005), solely uses information supplied by the partial order ⪯ on the covariate
space X . For a general covariate value x ∈ X , the sets of the indices of direct
predecessors and direct successors among the covariate values x1, . . . , xn in the
training data is defined as at (17) and (18), respectively with X1, . . . , Xn replaced
by x1, . . . , xn. If the covariate space X is totally ordered, these sets contain at most
one element. If the order is partial but not total, p(x) and s(x) may, and frequently
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do, contain more than one element. Assuming that p(x) and s(x) are non-empty,
any predictive CDF F that is consistent with FFF must satisfy

max
i∈s(x)

Fi(z) ≤ F (z) ≤ min
i∈p(x)

Fi(z) (20)

at all threshold values z ∈ R. We now let F be the pointwise arithmetic average of
these bounds, i.e.,

F (z) =
1

2

(
max
i∈s(x)

Fi(z) + min
i∈p(x)

Fi(z)

)
(21)

for z ∈ R. If s(x) is empty while p(x) is non-empty, or vice-versa, a natural choice,
which we employ hereinafter, is to let F equal the available bound given by the
non-empty set. If x is not comparable to any of x1, . . . , xn the training data lack
information about the conditional distribution at x, and a natural approach, which
we adopt and implement, is to set F equal to the empirical distribution of the
response values y1, . . . , yn.

The difference between the bounds (if any) in (20) might be a useful measure
of estimation uncertainty and could be explored as a promising avenue towards the
quantification of ambiguity and generation of second-order probabilities (Ellsberg,
1961; Seo, 2009). In the context of ensemble weather forecasts, the assessment of
ambiguity has been pioneered by Allen and Eckel (2012). Interesting links arise
when the envelope in (20) is interpreted in the spirit of randomized predictive sys-
tems and conformal estimates as studied by Vovk et al. (2019); compare, e.g., their
Figure 5 with our Figure 4b below.

3. Partial orders

The choice of a sufficiently informative partial order on the covariate space is critical
to any successful application of IDR. In the extreme case of distinct, totally ordered
covariate values x1, . . . , xn ∈ X and a perfect monotonic relationship to the response
values y1, . . . , yn, the IDR distribution associated with xi is simply the point measure
in yi, for i = 1, . . . , n. The same happens in the other extreme, when there are no
order relations at all. Hence, the partial order serves to regularize the IDR solution.

Thus far, we have simply assumed that the covariate space X is equipped with a
partial order ⪯, without specifying how the order might be defined. If X ⊆ Rd, the
usual componentwise order will be suitable in many applications, and we investigate
it in Section 3.1. For covariates that are ordinal and admit a ranking in terms of
importance, a lexicographic order may be suitable.

If groups of covariates are exchangeable, as in our case study on quantitative
precipitation forecasts, other types of order relations need to be considered. In
Sections 3.2 and 3.3 we study relations that are tailored to this setting, namely,
the empirical stochastic order and empirical increasing convex order. Proofs are
deferred to Appendix C.
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3.1. Componentwise order
Let x = (x1, . . . , xd) and x′ = (x′1, . . . , x

′
d) denote elements of the covariate space

Rd. The most commonly used partial order in multivariate isotonic regression is
the componentwise order defined by

x ⪯ x′ ⇐⇒ xi ≤ x′i for i = 1, . . . , d.

This order becomes weaker as the dimension d of the covariate space increases:
If x̃ = (x1, . . . , xd, xd+1) and x̃′ = (x′1, . . . , x

′
d, x

′
d+1) then x ⪯ x′ is a necessary

condition for x̃ ⪯ x̃′. The following result is an immediate consequence of this
observation and the structure of the optimization problem in Definition 2.1.

Proposition 3.1. Let xxx = (x1, . . . , xn) and xxx∗ = (x∗1, . . . , x
∗
n) have components

xi = (xi1, . . . , xid) ∈ Rd and x∗i = (xi1, . . . , xid, xi,d+1) ∈ Rd+1 for i = 1, . . . , n, and
let S be a proper scoring rule.

Then if Rd and Rd+1 are equipped with the componentwise partial order, and
F̂̂F̂F and F̂̂F̂F ∗ denote S-based isotonic regressions of yyy on xxx and xxx∗, respectively, it is
true that

ℓS(F̂̂F̂F
∗) ≤ ℓS(F̂̂F̂F ).

In simple words, under the componentwise partial order, the inclusion of further
covariates can only improve the in-sample fit. This behaviour resembles linear
regression, where the addition of covariates can only improve the (unadjusted) R-
square.

3.2. Empirical stochastic order
We now define a relation that is based on stochastic dominance and invariant under
permutation.

Definition 3.1. Let x = (x1, . . . , xd) and x
′ = (x′1, . . . , x

′
d) denote elements of Rd.

Then x is smaller than or equal to x′ in empirical stochastic order, for short x ⪯st x
′,

if the empirical distribution of x1, . . . , xd is smaller than the empirical distribution
of x′1, . . . , x

′
d in the usual stochastic order.

This relation is tailored to groups of exchangeable, real-valued covariates. The
following results summarizes its properties and compares to the componentwise
order, which we denote by ⪯.

Proposition 3.2. Let x = (x1, . . . , xd) and x′ = (x′1, . . . , x
′
d) denote elements of

Rd with order statistics x(1) ≤ · · · ≤ x(d) and x′(1) ≤ · · · ≤ x′(d).

i) The relation x ⪯st x
′ is equivalent to x(i) ≤ x′(i) for i = 1, . . . , d.

ii) If x ⪯ x′ then x ⪯st x
′.

iii) If x ⪯st x
′ and x and x′ are comparable in the componentwise partial order,

then x ⪯ x′.
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iv) If x ⪯st x
′ and x′ ⪯st x then x and x′ are permutations of each other.

Consequently, the relation ⪯st defines a partial order on Rd
↑.

In a nutshell, the empirical stochastic order is equivalent to the componentwise
order on the sorted elements, and this relation is weaker than the componentwise
order. However, unlike the componentwise order, the empirical stochastic order
does not degenerate as further covariates are added. To the contrary, empirical
distributions of larger numbers of exchangeable variables become more informative
and more easily comparable.

3.3. Empirical increasing convex order
In applications, the empirical stochastic order might be too strong, in the sense
that it does not generate sufficiently informative constraints. In this light, we now
define a weaker partial order on Rd

↑, which also is based on a partial order for

probability measures. Specifically, let X and X ′ be random variables with CDFs F
and F ′. Then F is smaller than F ′ in increasing convex order if E(ϕ(X)) ≤ E(ϕ(X ′))
for all increasing convex functions ϕ such that the expectations exist (Shaked and
Shanthikumar, 2007, Section 4.A.1).

Definition 3.2. Let x = (x1, . . . , xd) and x
′ = (x′1, . . . , x

′
d) denote elements of Rd.

Then x is smaller than or equal to x′ in empirical increasing convex order, for short
x ⪯icx x

′, if the empirical distribution of x1, . . . , xd is smaller than the empirical
distribution of x′1, . . . , x

′
d in increasing convex order.

This notion provides another meaningful relation for groups of exchangeable
covariates. The following result summarizes its properties and relates it to the
empirical stochastic order.

Proposition 3.3. Let x = (x1, . . . , xd) and x′ = (x′1, . . . , x
′
d) denote elements of

Rd with order statistics x(1) ≤ · · · ≤ x(d) and x′(1) ≤ · · · ≤ x′(d).

i) The relation x ⪯icx x
′ is equivalent to

d∑

i=j

x(i) ≤
d∑

i=j

x′(i) for j = 1, . . . , d.

ii) If x ⪯st x
′ then x ⪯icx x

′.

iii) If x ⪯icx x
′ then

1

d

d∑

i=1

xi +
d− 1

2(d+ 1)
g(x) ≤ 1

d

d∑

i=1

x′i +
d− 1

2(d+ 1)
g(x′),

where g is the Gini mean difference,

g(x) =
1

d(d− 1)

d∑

i,j=1

|xi − xj |. (22)
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Fig. 3. Regions of smaller, greater and incomparable elements in the positive quadrant
of R2, as compared to the point (1, 3), for the (left) componentwise, (middle) empirical
stochastic and (right) empirical increasing convex order. Coloured areas below (above)
of (1, 3) correspond to smaller (greater) elements, while blank areas contain elements
incomparable to (1, 3) in the given partial order.

iv) If x ⪯icx x′ and x′ ⪯icx x then x and x′ are permutations of each other.
Consequently, the relation ⪯icx defines a partial order on Rd

↑.

Figure 3 illustrates the various types of relations for points in the positive quad-
rant of R2. As reflected by the nested character of the regions, the componentwise
order is stronger than the empirical stochastic order, which in turn is stronger than
the empirical increasing convex order. The latter is equivalent to weak majorization
as studied by Marshall et al. (2011). In the special case of vectors with non-negative
entries, their Corollary C.5 implies that x ∈ Rd is dominated by x′ ∈ Rd in empirical
increasing convex order if, and only if, it lies in the convex hull of the points of the
form (ξ1x

′
π(1), . . . , ξdx

′
π(d)), where π is a permutation and ξi ∈ {0, 1} for i = 1, . . . , d.

4. Simulation study

Since we view IDR primarily as a tool for prediction, we compare it to other distri-
butional regression methods in terms of predictive performance on continuous and
discrete, univariate simulation examples, as measured by the CRPS. However, as
noted below and formalized in Appendix D, the CRPS links asymptotically to L2

estimation error, so under large validation samples prediction and estimation are as-
sessed simultaneously. A detailed comparative study on mixed discrete-continuous
data with a multivariate covariate vector is given in the case study in the next
section.

Here, our simulation scenarios build on the illustrating example in the introduc-
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tion. Specifically, we draw a covariate X ∼ Unif(0, 10) and then

Y1 | X ∼ Gamma(shape =
√
X, scale = min{max{X, 1}, 6}), (23)

Y2 | X = Y1 | X + 10 · 1{X ≥ 5}, (24)

Y3 | X = Y1 | X − 2 · 1{X ≥ 7}, (25)

Y4 | X ∼ Poisson(λ = min{max{X, 1}, 6})}). (26)

Under each scenario we generate 500 training sets of size n = 500, 1 000, 2 000, and
4 000 each, fit distributional regression models, and validate on a test set of size
m = 5000. For comparison with IDR, we use a nonparametric kernel (or nearest
neighbor) smoothing technique (NP; Li and Racine, 2008), semiparametric quan-
tile regression with monotone rearrangement (SQR; Koenker 2005; Chernozhukov
et al. 2010), conditional transformation models (TRAM; Hothorn et al., 2014), and
distributional or quantile random forests (QRF; Meinshausen 2006; Athey et al.
2019). These methods have been chosen as they are not subject to restrictive as-
sumptions on the distribution of the response variable and have well established
and well documented implementations in the statistical programming environment
R (R Core Team, 2020). We also include the ideal forecast, i.e., the true conditional
distribution of the response given the covariate, in the comparison.

Implementation details for the various methods are given in Table 3 in Appendix
E. Here we only note that QRF uses the grf package (Tibshirani et al., 2020)
with a splitting rule that is tailored to quantiles (Athey et al., 2019). We see
that, unlike IDR, its competitors rely on manual intervention and tuning. For
example, QRFs perform poorly under the default value of 5 for the tuning parameter
min.node.size, which we have raised to 40. Further improvement may arise when
tuning parameters, such as honesty fraction and node size, are judiciously adjusted
to the specific scenario and training sample size at hand. In contrast, IDR is entirely
free of implementation decisions, except for the subagging variant, IDRsbg, where
we average predictions based on estimates on 100 subsamples of size n/2 each.

Scenario (23) is the same as in the introduction and illustrated in Figure 1. It
has a smooth covariate–response relationship, and NP, SQR, and even the misspec-
ified TRAM technique, which are tailored to this type of setting, outperform QRF
and IDR. However, the assumption of continuity in the response is crucial, as the
results under the discontinuous scenario (24) demonstrate, where IDR and IDRsbg

perform best. In the non-isotonic scenario (25) IDR and IDRsbg retain acceptable
performance, even though the key assumption is violated. Not surprisingly, SQR
faces challenges in the Poisson scenario (26), where the conditional quantile func-
tions are piecewise constant, and IDR is outperformed only by TRAM. Throughout,
the simplistic subagging variant of IDR has slightly lower mean CRPS than the de-
fault variant that is estimated on the full training set, and it would be interesting
to explore the relation to the super-efficiency phenomenon described by Banerjee
et al. (2019).

These results lend support to our belief that IDR can serve as a universal bench-
mark in probabilistic forecasting and distributional regression problems. For suffi-
ciently large training samples, IDR offers competitive performance under any type
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Table 1. Mean CRPS in smooth (23), discontinuous (24), non-isotonic
(25), and discrete (26) simulation scenarios with training sets of size n.

Smooth (23) Discontinuous (24)

n 500 1 000 2 000 4 000 500 1 000 2 000 4 000

NP 3.561 3.542 3.532 3.525 3.614 3.582 3.562 3.549
SQR 3.571 3.543 3.530 3.524 3.647 3.619 3.606 3.600
TRAM 3.560 3.543 3.535 3.531 3.642 3.625 3.616 3.612
QRF 3.589 3.561 3.555 3.553 3.614 3.576 3.561 3.556
IDR 3.604 3.568 3.548 3.535 3.628 3.581 3.555 3.540
IDRsbg 3.595 3.561 3.543 3.532 3.620 3.577 3.551 3.537
Ideal 3.516 3.516 3.516 3.516 3.516 3.516 3.516 3.516

Non-isotonic (25) Discrete (26)

n 500 1 000 2 000 4 000 500 1 000 2 000 4 000

NP 3.564 3.544 3.534 3.527 1.136 1.131 1.128 1.126
SQR 3.574 3.546 3.533 3.527 1.129 1.121 1.116 1.114
TRAM 3.566 3.549 3.543 3.539 1.115 1.110 1.107 1.106
QRF 3.587 3.560 3.555 3.553 1.121 1.113 1.112 1.112
IDR 3.605 3.569 3.549 3.536 1.130 1.119 1.113 1.109
IDRsbg 3.597 3.564 3.545 3.534 1.128 1.118 1.112 1.109
Ideal 3.516 3.516 3.516 3.516 1.104 1.104 1.104 1.104

of type of linearly ordered outcome, without reliance on tuning parameters or other
implementation choices, except when subsampling is employed.

5. Case study: Probabilistic quantitative precipitation forecasts

The past decades have witnessed tremendous progress in the science and practice
of weather prediction (Bauer et al., 2015). Arguably, the most radical innovation
consists in the operational implementation of ensemble systems and an accompany-
ing culture change from point forecasts to distributional forecasts (Leutbecher and
Palmer, 2008). An ensemble system comprises multiple runs of numerical weather
prediction (NWP) models, where the runs or members differ from each other in
initial conditions and numerical-physical representations of atmospheric processes.

Ideally, one would like to interpret an ensemble forecast as a random sample
from the conditional distribution of future states of the atmosphere. However, this
is rarely advisable in practice, as ensemble forecasts are subject to biases and dis-
persion errors, thereby calling for some form of statistical postprocessing (Gneiting
and Raftery, 2005; Vannitsem et al., 2018). This is typically done by fitting a distri-
butional regression model, with the weather variable of interest being the response
variable, and the members of the forecast ensemble constituting the covariates, and
applying this model to future NWP output, to obtain conditional predictive distri-
butions for future weather quantities. State of the art techniques include Bayesian
Model Averaging (BMA; Raftery et al., 2005; Sloughter et al., 2007), Ensemble
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Table 2. Meteorological stations at airports, with International Air
Transport Association (IATA) airport code, World Meteorological Or-
ganization (WMO) station ID, and data availability in days (years).

IATA Code WMO ID Data Availability

Brussels, Belgium BRU 06449 3406 (9.3)
Frankfurt, Germany FRA 10637 3617 (9.9)
London, UK LHR 03772 2256 (6.2)
Zurich, Switzerland ZRH 06670 3241 (8.9)

Model Output Statistics (EMOS; Gneiting et al., 2005; Scheuerer, 2014), and Het-
eroscedastic Censored Logistic Regression (HCLR; Messner et al., 2014).

In this case study, we apply IDR to the statistical postprocessing of ensemble
forecasts of accumulated precipitation, a variable that is notoriously difficult to
handle, due to its mixed discrete-continuous character, which requires both a point
mass at zero and a right skewed continuous component on the positive half-axis. As
competitors to IDR, we implement the BMA technique of Sloughter et al. (2007),
the EMOS method of Scheuerer (2014), and HCLR (Messner et al., 2014), which
are widely used parametric approaches that have been developed specifically for the
purposes of probabilistic quantitative precipitation forecasting. In contrast, IDR
is a generic technique and fully automatic, once the partial order on the covariate
space has been specified.

5.1. Data
The data in our case study comprise forecasts and observations of 24-hour accu-
mulated precipitation from 06 January 2007 to 01 January 2017 at meteorological
stations on airports in London, Brussels, Zurich and Frankfurt. As detailed in Ta-
ble 2, data availability differs, and we remove days with missing entries station by
station, so that all types of forecasts for a given station are trained and evaluated
on the same data. Both forecasts and observations refer to the 24-hour period from
6:00 UTC to 6:00 UTC on the following day. The observations are in the unit of
millimeter and constitute the response variable in distributional regression. They
are typically, but not always, reported in integer multiples of a millimeter (mm).

As covariates, we use the 52 members of the leading NWP ensemble operated
by the European Centre for Medium-Range Weather Forecasts (ECMWF; Molteni
et al., 1996; Buizza et al., 2005). The ECMWF ensemble system comprises a high-
resolution member (xHRES), a control member at lower resolution (xCTR) and 50
perturbed members (x1, . . . , x50) at the same lower resolution but with perturbed
initial conditions, and the perturbed members can be considered exchangeable
(Leutbecher, 2019). To summarize, the covariate vector in distributional regres-
sion is

x = (x1, . . . , x50, xCTR, xHRES) = (xPTB, xCTR, xHRES) ∈ R52, (27)

where xPTB = (x1, . . . , x50) ∈ R50. At each station, we use the forecasts for the
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corresponding latitude-longitude gridbox of size 0.25×0.25 degrees, and we consider
prediction horizons of 1 to 5 days. For example, the two day forecast is initialized
at 00:00 Universal Coordinated Time (UTC) and issued for 24-hour accumulated
precipitation from 06:00 UTC on the next calendar day to 06:00 UTC on the day
after. ECMWF forecast data are available online via the TIGGE system (Bougeault
et al., 2010; Swinbank et al., 2016)

Statistical postprocessing is both a calibration and a downscaling problem: Fore-
casts and observations are at different spatial scales, whence the unprocessed fore-
casts are subject to representativeness error (Wilks, 2019, Chapter 8.9). Indeed, if
we interpret the predictive distribution from the raw ensemble (27) as the empirical
distribution of all 52 members — a customary approach, which we adopt hereinafter
— there is a strong bias in probability of precipitation forecasts: Days with exactly
zero precipitation are predicted much less often at the NWP model grid box scale
than they occur at the point scale of the observations.

5.2. BMA, EMOS and HCLR
Before describing our IDR implementation, we review its leading competitors, namely,
state of the art parametric distributional regression approaches that have been de-
veloped specifically for accumulated precipitation.

Techniques of ensemble model output statistics (EMOS; Gneiting et al., 2005)
type can be interpreted as parametric instances of generalized additive models for
location, scale and shape (GAMLSS; Rigby and Stasinopoulos, 2005). The specific
variant of Scheuerer (2014) which we use here is based on the three-parameter family
of left-censored generalized extreme value (GEV) distributions. The left-censoring
generates a point mass at zero, corresponding to no precipitation, and the shape
parameter allows for flexible skewness on the positive half-axis, associated with rain,
hail or snow accumulations. The GEV location parameter is modeled as a linear
function of xHRES, xCTR, mPTB = 1

50

∑50
i=1 xi and

pZERO =
1

52

(
1{xHRES = 0}+ 1{xCTR = 0}+

50∑

i=1

1{xi = 0}
)
,

and the GEV scale parameter is linear in the Gini mean difference (22) of the 52
individual forecasts in the covariate vector (27). While all parameters are estimated
by minimizing the in-sample CRPS, the GEV shape parameter does not link to the
covariates.

The general idea of the Bayesian model averaging (BMA; Raftery et al., 2005)
approach is to employ a mixture distribution, where each mixture component is
parametric and associated with an individual ensemble member forecast, with mix-
ture weights that reflect the member’s skill. Here we use the BMA implementation
of Sloughter et al. (2007) for accumated precipitation in a variant that is based
on xHRES, xCTR, mPTB = 1

50

∑50
i=1 xi only, which we found to achieve more stable

estimates and superior predictive scores than variants based on all members, as
proposed by Fraley et al. (2010) in settings with smaller groups of exchangeable
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members. Hence, our BMA predictive CDF is of the form

Fx(y) = wHRESG(y |xHRES) + wCTRG(y |xCTR) + wPTBG(y |mPTB)

for y ∈ R, where the component CDFs G(y | · ) are parametric, and the weights
wHRES, wCTR and wPTB are nonnegative and sum to one. Specifically, G(y |xHRES)
models the logit of the point mass at zero as a linear function of 3

√
xHRES and

pHRES = 1{xHRES = 0}, and the distribution for positive accumulations as a gamma
density with mean and variance being linear in 3

√
xHRES and xHRES, respectively,

and analogously for G(y |xCTR) and G(y |mPTB). Estimation relies on a two-step
procedure, where the (component specific) logit and mean models are fitted first,
followed by maximum likelihood estimation of the weight parameters and the (joint)
variance model via the EM algorithm (Sloughter et al., 2007).

Heteroscedastic censored logistic regression (Messner et al., 2014) originates from
the observation that conditional CDFs can be estimated by dichotomizing the ran-
dom variable of interest at given thresholds and estimating the probability of thresh-
old exceedance via logistic regression. The HCLR model used here assumes that
square-root transformed precipitation follows a logistic distribution censored at zero,
with location parameter linear in

√
xHRES,

√
xCTR and the mean of the square-root

transformed perturbed forecasts, and a scale parameter linear in the standard devi-
ation of the square-root transformed perturbed forecasts. Like EMOS, HCLR can
be interpreted within the GAMLSS framework of Rigby and Stasinopoulos (2005).

Code for BMA, EMOS and HCLR is available within the ensembleBMA, ensembleMOS
and crch packages in R (Messner, 2018). Unless noted differently, we use default
options in implementation decisions.

5.3. Choice of partial order for IDR
IDR applies readily in this setting, without any need for adaptations due to the
mixed-discrete continuous character of precipitation accumulation, nor requiring
data transformations or other types of implementation decisions. However, the
partial order on the elements (27) of the covariate space X = R52, or on a suitable
derived space, needs to be selected thoughtfully, considering that the perturbed
members x1, . . . , x50 are exchangeable.

In the sequel, we apply IDR in three variants. Our first implementation is based
on xHRES, xCTR and mPTB = 1

50

∑50
i=1 xi along with the componentwise order on

R3, in that

x ⪯ x′ ⇐⇒ mPTB ≤ m′
PTB, xCTR ≤ x′CTR, xHRES ≤ x′HRES. (28)

The second implementation uses the same variables and partial order, but combined
with a simple subagging approach: Before applying IDR, the training data is split
into the two disjoint subsamples of training observations with odd and even indices,
and we average the predictions based on these two subsamples.

Our third implementation combines the empirical increasing convex order for
xPTB with the usual total order on R for xHRES, whence

x ⪯ x′ ⇐⇒ xPTB ⪯icx x
′
PTB, xHRES ≤ x′HRES. (29)
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Henceforth, we refer to the three implementations based on the partial orders in (28)
and (29) as IDRcw, IDRsbg, and IDRicx. With reference to the discussion preceding
Theorem 2.1, the relations (28) and (29) define preorders on R52 and partial orders
on R3 and R50

↑ × R, respectively.
We have experimented with other options as well, e.g., by incorporating the

maximum maxi=1,...,50 xi of the perturbed members in the componentwise order
in (28), with the motivation that the maximum might serve as a proxy for the
spread of the ensemble, or by using the empirical stochastic order ⪯st in lieu of
the empirical increasing convex order ⪯icx in (29). IDR is robust to changes of this
type, and the predictive performance remains stable, provided that the partial order
honors the key substantive insights, in that the perturbed members x1, . . . , x50 are
exchangeable, while xHRES, due to its higher native resolution, is able to capture
local information that is not contained in xPTB nor xCTR. Hence, xHRES ought to
play a pivotal role in the partial order.

5.4. Selection of training periods

The selection of the training period is a crucial step in the statistical postprocessing
of NWP output. Most postprocessing methods, including the ones used in this
analysis, assume that there is a stationary relationship between the forecasts and the
observations. As Hamill (2018) points out, this assumption is hardly ever satisfied
in practice: NWP models are updated, instruments at observation stations get
replaced, and forecast biases may vary seasonally. These problems are exacerbated
by the fact that quantitative precipitation forecasts require large training datasets in
order to include sufficient numbers of days with non-zero precipitation and extreme
precipitation events.

For BMA and EMOS, a training period over a rolling window of the latest
available 720 days at the time of forecasting is (close to) optimal at all stations. This
resembles choices made by Scheuerer and Hamill (2015) who used a training sample
of about 900 past instances. Scheuerer (2014) took shorter temporal windows, but
merged instances from nearby stations into the training sets, which is not possible
here. In general, it would be preferable to select training data seasonally (e.g., data
from the same month), but in our case the positive effect of using seasonal training
data does not outweigh the negative effect of a smaller sample size.

As a nonparametric technique, IDR requires larger sets of training data than
BMA or EMOS. As training data for IDR, we used all data available at the time of
forecasting, which is about 2 500 to 3 000 days for the stations Frankfurt, Brussels
and Zurich, and 1 500 days for London Heathrow. The same training periods are
also used for HCLR, where no positive effect of shorter, rolling training periods has
been observed (Messner et al., 2014).

For evaluation, we use the years 2015 and 2016 (and 01 January 2017) for all
postprocessing methods and the raw ensemble. This test dataset consists of roughly
700 instances for each station and lead time.
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5.5. Results
Before comparing the BMA, EMOS, IDRcw, IDRsbg and IDRicx techniques in terms
of out-of-sample predictive performance over the test period, we exemplify them in
Figure 4, where we show predictive CDFs for accumulated precipitation at Brussels
on December 16, 2015, at a prediction horizon of 2 days. In panel (a) the marks
at the bottom correspond to xHRES, xCTR, the perturbed members x1, . . . , x50 and
their mean mPTB. The observation at 4 mm is indicated by the vertical line. Under
all four techniques, the point mass at zero, which represents the probability of no
precipitation, is vanishingly small. While the BMA, EMOS and HCLR CDFs are
smooth and supported on the positive half-axis, the IDRcw, IDRsbg and IDRicx

CDFs are piecewise constant with jump points at observed values in the training
period. Panel (b) illustrates the hard and soft constraints on the IDRcw CDF that
arise from (20) under the order relation (28), with the thinner lines representing the
IDRcw CDFs of direct successors and predecessors. In this example, the constraints
are mostly hard, except for threshold values between 4 and 11 mm.

We now use the mean CRPS over the test period as an overall measure of out-
of-sample predictive performance. Figure 5 shows the CRPS of the raw and post-
processed forecasts for all stations and lead times, with the raw forecast denoted
as ENS. While HCLR performs best in terms of the CRPS, the IDR variants show
scores of a similar magnitude and outperform BMA in many instances. Figure 7 in
Appendix E shows the difference of the empirical cumulative distribution function
(ECDF) of the PIT defined at (8) to the bisector for the distributional forecasts.
All three IDR variants show a PIT-distribution close to uniform, and so do BMA,
EMOS and HCLR, as opposed to the raw ensemble, which is underdispersed.

In Figure 6 we evaluate probability of precipitation forecasts by means of the
Brier score (Gneiting and Raftery, 2007), and Figure 8 in Appendix E shows re-
liability diagrams (Wilks, 2019; Dimitriadis et al., 2021). As opposed to the raw
ensemble forecast, all distributional regression methods yield reliable probability
forecasts. BMA, IDRcw, IDRsbg and IDRicx separate the estimation of the point
mass at zero, and of the distribution for positive accumulations, and the four meth-
ods perform ahead of EMOS. HCLR is outperformed by BMA and the IDR variants
at lead times of one or two days, but achieves a lower Brier score at the longest lead
time of five days.

Interestingly, IDR tends to outperform EMOS and HCLR for probability of
precipitation forecasts, but not for precipitation accumulations. We attribute this
to the fact that parametric techniques are capable of extrapolating beyond the
range of the training responses, whereas IDR is not: The highest precipitation
amount judged feasible by IDR equals the largest observation in the training set.
Furthermore, unlike EMOS and HCLR, IDR does not use information about the
spread of the raw ensemble, which is inconsequential for probability of precipitation
forecasts, but may impede distributional forecasts of precipitation accumulations.

In all comparisons, the forecast performance of IDRcw and IDRsbg is similar.
However, in our implementation, the simple subagging method used in IDRsbg re-
duced the computation time by up to one half.

To summarize, our results underscore the suitability of IDR as a benchmark
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Fig. 4. Distributional forecasts for accumulated precipitation at Brussels, valid 16 Decem-
ber 2015 at a prediction horizon of 2 days. (a) BMA, EMOS, IDRcw, IDRsbg and IDRicx

predictive CDFs. The vertical line represents the observation. (b) IDRcw CDF along with
the hard and soft constraints in (20) as induced by the order relation (28). The thin lines
show the IDRcw CDFs at direct predecessors and successors.

technique in probabilistic forecasting problems. Despite being generic as well as fully
automated, IDR is remarkably competitive relative to state of the art techniques
that have been developed specifically for the purpose. In fact, in a wide range of
applied problems that lack sophisticated, custom-made distributional regresssion
solutions, IDR might well serve as a ready-to-use, top-performing method of choice.

6. Discussion

Stigler (1975) gives a lucid historical account of the 19th century transition from
point estimation to distribution estimation. In regression analysis, we may be wit-
nessing what future generations might refer to as the transition from conditional
mean estimation to conditional distribution estimation, accompanied by a simul-
taneous transition from point forecasts to distributional forecasts (Gneiting and
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Fig. 5. Mean CRPS over the test period for raw and postprocessed ensemble forecasts
of 24-hour accumulated precipitation at prediction horizons of 1, 2, 3, 4 and 5 days. The
lowest mean score for a given lead time and station is indicated in green.

Katzfuss, 2014).

Isotonic distributional regression (IDR) is a nonparametric technique for es-
timating conditional distributions that takes advantage of partial order relations
within the covariate space. It can be viewed as a far-reaching generalization of
pool adjacent violators (PAV) algorithm based classical approaches to isotonic (non-
distributional) regression, is entirely generic and fully automated, and provides for a
unified treatment of continuous, discrete and mixed discrete-continuous real-valued
response variables. Code for the implementation of IDR within R (R Core Team,
2020) and Python (https://www.python.org/) is available via the isodistrreg

package at CRAN (https://CRAN.R-project.org/package=isodistrreg) and on
github (https://github.com/AlexanderHenzi/isodistrreg; https://github.

com/evwalz/isodisreg), with user-friendly functions for partial orders, estima-
tion, prediction and evaluation.

IDR relies on information supplied by order constraints, and the choice of the
partial order on the covariate space is a critical decision prior to the analysis. Only
variables that contribute to the partial order need to be retained, and the order
constraints serve to regularize the IDR solution. Weak orders lead to increased
numbers of comparable pairs of training instances and predictive distributions that
are more regular. The choice of the partial order is typically guided and informed
by substantive expertise, as illustrated in our case study, and it is a challenge for
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Fig. 6. Mean Brier score over the test period for probability of precipitation forecasts at
prediction horizons of 1, 2, 3, 4 and 5 days. The lowest mean score for a given lead time
and station is indicated in green.

future research to investigate whether the selection of the partial order could be
automated. Given that IDR gains information through order constraints, it is a
valid concern whether it is robust under misspecifications of the partial order. There
is evidence that this is indeed the case: IDR has guaranteed in-sample threshold
calibration (Theorem 2.2) and therefore satisfies a minimal requirement for reliable
probabilistic forecasts under any (even misspecified) partial order. Moreover, El
Barmi and Mukerjee (2005, Theorem 7) show that in the special case of a discrete,
totally ordered covariate, isotonic regression asymptotically has smaller estimation
error than non-isotonic alternatives even under mild violations of the monotonicity
assumptions, akin to the performance of IDR in the non-isotonic setting (25) in our
simulation study.

Unlike other methods for distributional regression, which require implementa-
tion decisions, such as the specification of parametric distributions, link functions,
estimation procedures and convergence criteria, to be undertaken by users, IDR is
fully automatic once the partial order and the training set have been identified. In
this light, we recommend that IDR be used as a benchmark technique in distribu-
tional regression and probabilistic forecasting problems. With both computational
efficiency and the avoidance of overfitting in mind, IDR can be combined with sub-
sample aggregation (subagging) in the spirit of random forests. In our case study
on quantitative precipitation forecasts, we used simplistic ad hoc choices for the size
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and number of subsamples. Future research on computationally efficient algorithmic
implementations of IDR as well as optimal and automated choices of subsampling
settings is highly desirable.

A limitation of IDR in its present form is that we only consider the usual stochas-
tic order on the space P of the conditional distributions. Hence, IDR is unable to
distinguish situations where the conditional distributions agree in location but differ
in spread, shape or other regards. This restriction is of limited concern for response
variables such as precipitation accumulation or income, which are bounded below
and right skewed, but may impact the application of IDR to variables with sym-
metric distributions. In this light, we encourage future work on ramifications of
IDR, in which P is equipped with partial orders other than the stochastic order,
including but not limited to the likelihood ratio order (Mösching and Dümbgen,
2020a). Similarly, the “spiking” problem of traditional isotonic regression, which
refers to unwarranted jumps of estimates at boundaries, arguably did not have ad-
verse effects in our simulation and case studies. However, it might be of concern in
other applications, where remedies of the type proposed by Wu et al. (2015) might
yield improvement and warrant study.

Another promising direction for further research are generalizations of IDR to
multivariate response variables. In weather prediction, this would allow simulta-
neous postprocessing of forecasts for several variables, and an open question is for
suitable notions of multivariate stochastic dominance that allow efficient estimation
in such settings.
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Mösching, A. and L. Dümbgen (2020a). Maximum likelihood estimation of a likelihood
ratio ordered family of distributions. Preprint, arxiv.org/abs/2007.11521.
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A. Proofs for Section 2.2

Proof of Theorem 2.1. Let A be the lattice of all subsets of {1, . . . , n} that yield
admissible superlevel sets for an increasing function {x1, . . . , xn} → R. More pre-
cisely, a set A ⊆ {1, . . . , n} belongs to A if and only if for any i ∈ A and any xj
with xi ⪯ xj it follows that j ∈ A.

Let z ∈ R. By Jordan et al. (2021, Theorem 1 and Lemma 4), the minimizer of
the criterion

1

n

n∑

i=1

(pi − 1{z ≥ yi})2 (30)

over all ppp = (p1, . . . , pn) ∈ Rn
↓,xxx is uniquely determined and given by F̂̂F̂F (z) =

(F̂1(z), . . . , F̂n(z)) ∈ Rn with

F̂i(z) = min
A∈A:i∈A

max
A′∈A:A′⊊A

1

#(A\A′)

∑

j∈A\A′

1{yj ≤ z}, (31)

for i = 1, . . . , n, where #B denotes the cardinality of a set B. From the definition
of the CRPS it is clear that FFF minimizes ℓCRPS(FFF ) over all tuples of functions FFF =
(F1, . . . , Fn) with Fi : R → R such that for each z ∈ R, (F1(z), . . . , Fn(z)) ∈ Rn

↓,xxx.
It remains to show that for each i = 1, . . . , n, Fi is a valid CDF.

Let i ∈ {1, . . . , n}, z ≤ z′, B ⊆ {1, . . . , n}. It is clear from (31) that the domain
of Fi in [0, 1]. Furthermore,

1

#B

∑

j∈B
1{yj ≤ z} ≤

1

#B

∑

j∈B
1{yj ≤ z′}, (32)

and therefore, by (31), Fi(z) ≤ Fi(z
′). The function Fi is also right-continuous

because for z′ ↓ z, the right-hand side of (32) converges to the left-hand side. Finally,
for z → ±∞ the left-hand side of (32) converges to zero and one, respectively, which
concludes the proof.

Proof of Theorem 2.2. First, we show threshold calibration. Let (X,Y ) be a ran-
dom vector with distribution (1/n)

∑n
i=1 δ(xi,yi) where δ(xi,yi) denotes the Dirac

measure at (xi, yi). Let z ∈ R. By Lee (1983, Theorem 6.4), there exists a partition
{Bm}Mm=1 of {1, . . . , n} such that

Fi(z) = Fxi
(z) =

M∑

m=1

1{i ∈ Bm}
1

#Bm

∑

j∈Bm

1{yj ≤ z}.
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Therefore, the σ-algebra generated by FX(z) is contained in the σ-algebra generated
by {B̄m}Mm=1 with B̄m = {(xi, yi) : i ∈ Bm}. Furthermore,

E
(
1{Y ≤ z}1{(X,Y ) ∈ B̄m}

)
=

1

n

∑

j∈Bm

1{yj ≤ z}

= E
(
FX(z)1{(X,Y ) ∈ B̄m}

)
.

Part i) for the scoring rules of type (12) follows directly from the arguments
in the proof of Theorem 2.1. Let z ∈ R. By Jordan et al. (2021, Theorem 1 and

Lemma 4) the solution F̂̂F̂F (z) at (31) is not only the unique minimizer of the criterion
(30) but also the unique solution that minimizes

1

n

n∑

i=1

(1{c < pi} − 1{yi ≤ z}) (c− 1{yi ≤ z}) (33)

over all ppp = (p1, . . . , pn) ∈ Rn
↓,xxx simultaneously for all c ∈ (0, 1). As F̂̂F̂F ∈ Pn

↓,xxx, and
(1/n)

∑n
i=1 Sz,c(Fi, yi) is equal to the expression at (33) with pi = Fi(z), we obtain

the claim.
Part iii) is a direct consequence of the arguments for the second part of part

i) and the representation theorem of Schervish (1989) for proper scoring rules of
binary events.

Let α ∈ (0, 1). Concerning part ii), observe that any function sα satisfying the

requirements of the theorem can be written as
∫
S̃Qα,θ(q, y) dh(θ) for some Borel

measure h on R; see Ehm et al. (2016, Theorem 1). Here,

S̃Qα,θ(q, y) =





1− α, y ≤ θ < q,

α, q ≤ θ < y,

0, otherwise.

By Jordan et al. (2021, Theorem 1 and Proposition 5) there exists a unique solution
q̂̂q̂q(α) = (q̂1(α), . . . , q̂n(α)) ∈ Rn

↓,xxx that minimizes

1

n

n∑

i=1

S̃Qα,θ(qi, yi)

over all qqq = (q1, . . . , qn) ∈ Rn
↓,xxx simultaneously over all θ ∈ R such that for each

i ∈ {1, . . . , n}, q̂i(α) is the lower α-sample-quantile of some subset of observations
Bi ⊆ {y1, . . . , yn}. Indeed, the solution has a max-min representation as in (31) with
the empirical mean of the indcators replaced by the lower α-sample quantile over
all observations in A\A′. The max-min representation for q̂i(α) yields that q̂i(·) is
increasing and left-continuous because lower α-sample-quantiles are increasing and
left-continuous as a function of α. Therefore, q̂i(·) is a valid quantile function for
each i = 1, . . . , n, and the generalized inverse q̂̂q̂q−1 = (q̂−1

1 , . . . , q̂−1
n ) is a member of

Pn
↑,xxx.
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Since SQα,θ(F, y) = S̃Qα,θ(F
−1(α), y) for any CDF F , it follows from (3) that q̂̂q̂q−1

is a CRPS-based isotonic regression of yyy on xxx. To conclude the proof of part ii), it

remains to note that q̂̂q̂q−1 = F̂̂F̂F due to the uniqueness of F̂̂F̂F . The initial statement in
part i) is now also immediate.

B. Proofs and remarks for Section 2.4

The proof of Theorem 2.3 requires the following lemma, which is established in
Mösching and Dümbgen (2020b, Theorem 4.6).

Lemma B.1. Let Z1, Z2, . . . be independent random variables with distribution
functions G1, G2, . . ., respectively. For k = 1, 2, . . ., let

Ĝk(·) =
1

k

k∑

i=1

1{Zi ≤ ·} and Ḡk(·) =
1

k

k∑

i=1

Gi(·).

Then there exists a universal constant M ≤ 25/2e such that for all η ≥ 0,

P
(√

k ∥Ĝk − Ḡk∥∞ ≥ η
)
≤M exp(−2η2),

where ∥ · ∥∞ denotes the usual supremum norm of functions.

Proof of Theorem 2.3. Let ϵ, δ > 0. By assumption (iv), there exists r > 0 such
that

sup{|Fx(y)− Fx′(y)| : x, x′ ∈ [0, 1]d, ∥x− x′∥ ≤ r, y ∈ R} < ϵ

4
. (34)

Let m = max(⌈2/r⌉, ⌈2/δ⌉ + 1) and define intervals I1 = [0, 1/m] and Ij = ((j −
1)/m, j/m] for j = 2, . . . ,m. For indices j1, . . . , jd ∈ {1, . . . ,m}, let I(j1, . . . , jd) =
×d

k=1Ijk ⊂ [0, 1]d. The collection of such rectangles, which we denote by R, parti-
tions [0, 1]d into md disjoint subsets with supx,x′∈I(j1,...,jd) ∥x− x′∥ ≤ r/2.

By assumption (i), for each J ∈ R, there exists cJ > 0 such that with asymp-
totic probability one, #(Sn ∩ J) ≥ ncJ . Define c = minJ∈R cJ > 0, so that with
asymptotic probability one, #(Sn ∩ J) ≥ nc > 0. We assume in the following that
for (Xn1, Ynn), . . . , (Xnn, Ynn) the event in assumption (i) occurs for all J ∈ R as
well as the event in assumption (ii). To ease notation, we drop the subscript n.

Let x = (x1, . . . , xd) ∈ [δ, 1−δ]d. Then 2/m < δ ≤ mini=1...,d xi and maxi=1,...,d xi ≤
1 − δ < (m − 2)/m, and there exist indices j1, . . . , jd ∈ {3, . . . ,m − 2} such that
x ∈ I(j1, . . . , jd). Define

L(x) = I(j1 − 1, . . . , jd − 1), U(x) = I(j1 + 1, . . . , jd + 1).

Then v ⪯ x ⪯ w for all v ∈ L(x) and w ∈ U(x), and

sup
v∈L(x)

∥v − x∥ ≤ r, sup
w∈U(x)

∥w − x∥ ≤ r.

We see from (34) that

sup
v∈L(x)∪U(x),y∈R

|Fv(y)− Fx(y)| ≤
ϵ

4
,
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whereas the bounds in (16) give

F̂Xu
(y) ≤ F̂x(y) ≤ F̂Xl

(y), y ∈ R, Xu ∈ U(x), Xl ∈ L(x).
Consequently, for y ∈ R,

|F̂x(y)− Fx(y)| ≤ max
j:Xj∈L(x)∪U(x)

|F̂Xj
(y)− FXj

(y)|+ ϵ

4

≤ sup
j:Xj∈(1/m,(m−1)/m]d,y∈R

|F̂Xj
(y)− FXj

(y)|+ ϵ

4
,

and this upper bound does not depend on x. Therefore, it is sufficient to show that

lim
n→∞

P

(
sup

j:Xj∈(1/m,(m−1)/m]d, y∈R
|F̂Xj

(y)− FXj
(y)| ≥ 3ϵ

4

)
= 0. (35)

Let An be the collection of upper sets in Sn. By the min-max formula for
antitonic regression, for j = 1, . . . , n and y ∈ R,

F̂Xj
(y) = min

A∈An:Xj∈A
max

A′∈An:Xj ̸∈A′

1

#(A \A′)

∑

i:Xi∈A\A′

1{Yi ≤ y}.

For Xj ∈ (1/m, (m − 1)/m]d, let ji = max{k : k/m < Xj,i} − 1 and xj =
(j1/m, . . . , jd/m) ∈ Rd. Here, Xj,i denotes the i-th component of Xj . Then, for all
v ∈ [xj , Xj ] := {u ∈ [0, 1]d : xj ⪯ u ⪯ Xj} it holds that ∥v−Xj∥ ≤ 2/m ≤ r. There-
fore, inequality (34) along with assumption (iii) imply that for all i in {1, . . . , n}
such that Xi ⪰ xj ,

FXi
(y) ≤ Fxj

(y) ≤ FXj
(y) +

ϵ

4
, y ∈ R.

Consequently, with Aj = {v ∈ [0, 1]d : v ⪰ xj},

F̂Xj
(y)− FXj

(y) ≤ max
A′∈An:Xj ̸∈A′

1

#(Aj \A′)

∑

i:Xi∈Aj\A′

(1{Yi ≤ y} − FXi
(y)) +

ϵ

4
.

By the definition of j1, . . . , jd, I(j1 +1, . . . , jd +1) ⊆ [xj , Xj ] ⊆ Aj \A′ for A′ ∈ An

with Xj ̸∈ A′. Therefore, #(Aj \ A′) ≥ cn > 0, where c is the constant introduced
at the beginning of the proof. Lemma B.1 implies that for all A′ ⊆ Aj with Xj ̸∈ A′,
conditional on X1, . . . , Xn,

P


sup

y∈R

1

#(Aj \A′)

∣∣∣∣∣∣
∑

i:Xi∈Aj\A′

(1{Yi ≤ y} − FXi
(y))

∣∣∣∣∣∣
≥ ϵ

2


 ≤M exp

(
− c
2
ϵ2n
)
,

with a constant M ≤ 25/2e that does not depend on j. In view of the Bonferroni
inequality we get the upper bound

P

(
sup
y∈R

(
F̂Xj

(y)− FXj
(y)
)
≥ 3ϵ

4

)
≤

∑

A′∈A:Xj ̸∈A′

M exp
(
− c
2
ϵ2n
)

≤ #(An) M exp
(
− c
2
ϵ2n
)
,
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which does not depend on j.
For A ∈ An, let m(A) = {x ∈ A : z ∈ A, z ⪯ x =⇒ z = x} ⊆ A be

the associated set of minimal elements. Then A = A′ ⇐⇒ m(A) = m(A′) for
A,A′ ∈ An, and so the number of upper sets in Sn equals the number of antichains.
The size of a maximal antichain, which we denote by sn, satisfies sn ≥ 1 and, by
assumption (ii), sn ≤ nγ . So if n is sufficiently large, nγ < n/2 and

#(An) ≤
sn∑

k=1

(
n

k

)
≤ sn

n!

(n− sn)! sn!
≤ ⌈nγ⌉ n!

(n− ⌈nγ⌉)! ⌈nγ⌉! .

By Stirling’s formula, the right hand side is asymptotically equivalent to

nγ
√
2πn (n/e)n√

2π(n− nγ) ((n− nγ)/e)n−nγ
√
2πnγ (nγ/e)nγ

=
n−γ/2

√
2π(1− nγ−1)

nn

(n− nγ)n−nγnγ nγ

=
1√

2π(1− nγ−1)
n−γ/2+nγ(1−γ)(1− nγ−1)n

γ−n

=
1√

2π(1− nγ−1)
exp

((
−γ
2
+ (1− γ)nγ

)
log n

)
(1− nγ−1)n

γ−n,

where the factor (1−nγ−1)n
γ−n = ((1−nγ−1)n

1−γ

)−nγ(1−nγ−1) grows no faster than
exp(nγ), because (1− 1/x)x ≤ exp(−1) for x ≥ 1. Combining these results, we see
that for n sufficiently large, #(An) ≤ exp(C1 n

γ log n), where C1 is a constant that
depends on γ. Hence, for n sufficiently large,

P

(
sup
y∈R

(
F̂Xj

(y)− FXj
(y)
)
≥ 3ϵ

4

)
≤ #(An)M exp

(
− c
2
ϵ2n
)

≤M exp
(
− c
2
ϵ2n+ C1n

γ log n
)

≤M exp (−C2n)

for some strictly positive constant C2 that depends on γ. This upper bound does
not depend on j, so

P

(
sup

j:Xj∈(1/m,(m−1)/m]p, y∈R

(
F̂Xj

(y)− FXj
(y)
)
≥ 3ϵ

4

)
≤M exp (−C2n)n

vanishes as n → ∞. Analogous arguments yield the bound with FXj
and F̂Xj

interchanged, which establishes (35) and completes the proof.

As noted, the broad applicability of Theorem 2.3 rests on a powerful combinato-
rial result of Brightwell (1992, Corollary 2), which enables us to deduce consistency
without having to check complex regularity conditions of the type in Robertson and
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Wright (1975). The size of a maximal antichain also appears in the derivation of risk
bounds for multiple isotonic regression for the mean in Han et al. (2019, p. 2447,
and Lemma 4 in their Supplementary Material). Their Lemma 4 gives an asymp-
totic lower bound of n1−1/d for the size of a maximal antichain among n independent
and identically distributed covariates X1, . . . , Xn ∈ Rd with any Lebesgue density
bounded from above, and might in fact also be derived from Brightwell (1992, Corol-
lary 2). An intuitive explanation for the lower bound n1−1/d is that any distribution
with bounded Lebesgue density can be restricted to a fixed subset where the density
is positive, and asymptotically the maximum antichain of X1, . . . , Xn within this
subset behaves as if Xi ∼ Unif[0, 1]d, regardless of the dependence structure. This
is an interesting result, because if the speed of convergence hinges on the maximal
size of an antichain, as our proof and results in Han et al. (2019) suggest, then it
may not be possible to improve the speed of convergence by assuming positively
correlated components. Therefore, we believe that positive dependency between
the components of the covariate vector does not affect convergence rates, though
clearly it may have positive effects in finite sample settings.

C. Proofs for Sections 3.2 and 3.3

Proof of Proposition 3.2. Denote the CDF corresponding to the empirical distribu-
tion of x1, . . . , xd and of x′1, . . . , x

′
d by F and G, respectively. For part i), assume

that x(i) ≤ x′(i) for i = 1, . . . , d, and let z ∈ R. Then,

F (z) =
#{i : x(i) ≤ z}

d
≥

#{i : x′(i) ≤ z}
d

= G(y),

hence F is smaller than G in the usual stochastic order. Conversely, if F is smaller
then G, by choosing z = x′(k), k = 1, . . . , d, we obtain

#{i : x(i) ≤ x′(k)}
d

= F (x′(k)) ≥ G(x′(k)) =
#{i : x′(i) ≤ x′(k)}

d
.

By definition of the k-th order statistic, we know that #{i : x′(i) ≤ x′(k)} ≥ k (with

equality if the x′i are distinct). Therefore, #{i : x(i) ≤ x′(k)} ≥ k. This can only be

true if x(k) ≤ x′(k).
Concerning part ii), we can assume without loss of generality that x1 ≤ x2 ≤

· · · ≤ xd, otherwise we reorder the pairs (xi, yi). Now apply part i): We know that
x1 ≤ x′1 and x′(1) ≥ xj for some j. But the components of x are sorted, hence

x′(1) ≥ xj ≥ x1 = x(1), and also x′1 ≥ x′(1) ≥ xj . So we can think of the positions of

x′1 and x′(1) in x
′ to be exchanged, without violating the condition x ⪯ x′. Now we

can ignore the pair (x′1, x
′
(1)) and proceed in the same way for remaining components

(xi)
d
i=2 and (x′i)

d
i=2.

For the proof of part iii), assume the opposite, i.e., xi ≥ x′i for i = 1, . . . , d. By
ii), we know that x ⪰st x

′. By assumption x ⪯st x
′, hence x and x′ are permutations
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of each other. But then either x = x′, or x and x′ cannot be comparable in the
componentwise order.

The last part is immediate from part i).

Proof of Proposition 3.3. Part i) is a consequence of Theorem 4.A.3 of Shaked and
Shanthikumar (2007). Part ii) follows from part i) and Proposition 3.2 i). For part
iii) note that the Gini mean difference has the equivalent formula

g(x) =
2

d(d− 1)

d∑

i=1

x(i)(2i− d− 1),

which can be rewritten as

g(x) =
4

d(d− 1)

d∑

i=1

d∑

j=i

x(j) − 2
d+ 1

d(d− 1)

d∑

i=1

xi.

Part i) implies that

g(x′) + 2
d+ 1

d(d− 1)

d∑

i=1

x′i =
4

d(d− 1)

d∑

i=1

d∑

j=i

x′(j)

≥ 4

d(d− 1)

d∑

i=1

d∑

j=i

x(j) = g(x) + 2
d+ 1

d(d− 1)

d∑

i=1

xi.

D. Large sample equivalence of CRPS and L2 measures

Here we show that the difference between the mean CRPS for the distributional
regression method at hand and the mean CRPS for the ideal forecast is large sample
equivalent to the (squared) L2 error in conditional distribution estimation. This
relates the CRPS, as introduced by Matheson and Winkler (1976) and arguably
the most prevalent measure of predictive performance in distributional forecasting
(Gneiting and Raftery, 2007), to traditional Lp measures, as used by Hall et al.
(1999) and Spady and Stouli (2018) in the evaluation of conditional cumulative
distribution function (CDF) estimation.

Specifically, suppose that the random variates (x1, y1), . . . , (xm, ym) are indepen-
dent identically distributed from a population with bivariate law G. Let F (Y |X)
be any estimate of the conditional distributions of Y given X, and for i = 1, . . . ,m
let Fi = F (Y | X = xi) and Gi = G(Y | X = xi) denote the respective conditional
CDFs for x1, . . . , xm. Subject to the conditions of the bivariate strong law of large
numbers,

S̄Fm =
1

m

m∑

i=1

CRPS(Fi, yi)→ E(X,Y )∼G [CRPS(F (Y |X), Y )]
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and

S̄Gm =
1

m

m∑

i=1

CRPS(Gi, yi)→ E(X,Y )∼G [CRPS(G(Y |X), Y )]

almost surely. Therefore, subject to the conditions of the strong law and Fubini’s
theorem,

S̄Fm − S̄Gm → EX∼G EY∼G(Y |X) [CRPS(F (Y |X), Y )− CRPS(G(Y |X), Y ) | X]

= EX∼G

[∫ ∞

−∞
(F (y | X)−G(y | X))2 dy

]

= EX∼G

[
L2
2 (F (· | X), G(· | X))

]

almost surely, where the first equality uses the analytic form of the CRPS divergence
(Gneiting and Raftery, 2007, p. 367).

In the context of the simulation study in Section 4, the above setting corresponds
to a single of the 500 Monte Carlo replicates, where F is an estimate on a training
set of size n, and performance is evaluated on an independent test sample of size
m = 5000. The large sample arguments remain valid when scores are averaged
across Monte Carlo replicates.

E. Additional tables and figures

Table 3 provides implementation details for the distributional regression methods
in the simulation study in Section 4.

Figure 7 assesses the probabilistic calibration of the postprocessing methods for
precipitation forecasts in the case study in Section 5. Similarly, Figure 8 shows re-
liability diagrams for the postprocessed probability of precipitation forecasts, using
the CORP approach developed by Dimitriadis et al. (2021).
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Table 3. Implementation details for the distributional regression methods in the simula-
tion study. We list the R packages and the specific functions used for estimation and
prediction, along with choices for tuning parameters. For nonparametric kernel smooth-
ing (NP) we use Gaussian kernels in (23), (24), and (25) and the liracine kernel in
the Poisson scenario (26). To fit semiparametric quantile regression (SQR) and condi-
tional transformation models (TRAM) we employ cubic B-splines with interior knots from
2 to 8 in steps of 2 and boundary knots 0 and 10 (bs(x, ...)). For TRAM, we use
continuous outcome logistic regression (Colr) for (23), (24), and (25), and ordered cat-
egorical regression (Polr) in (26). For further detail, see the code, which is available at
https://github.com/AlexanderHenzi/isodistrreg.

Package

NP np (Hayfield and Racine, 2008)

SQR quantreg (Koenker, 2020)

TRAM tram (Hothorn, 2020)

QRF grf (Tibshirani et al., 2020)

IDR isodistrreg

IDRsbg isodistrreg

Estimation

NP npcdistbw(nmulti = 4, oykertype = "liracine", bwtype = adaptive nn")

SQR rq(y∼., data = cbind(y = y, bs(x, ...)), tau = seq(0.005,0.995,0.001))

TRAM Colr/Polr(y∼., data = cbind(y = y, bs(x, ...)))

QRF quantile forest(min.node.size = 40, quantiles = seq(0.01,0.99,0.01))

IDR idr()

IDRsbg idrbag(b = 100, digits = 6, p = 1/2)

Prediction

NP npcdist(eydat = grid)

SQR predict.rqs()

TRAM predict.ctm(K = 5000, type = "distribution")

QRF predict.quantile forest(quantiles = seq(0.005,0.995,0.001))

IDR predict.idrfit(digits = 6)

IDRsbg idrbag(b = 100, digits = 6, p = 1/2)
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2.2 Accelerating the Pool-Adjacent-Violators Algorithm for
isotonic distributional regression

The content of this section is published as

Henzi, A., Mösching, A. and Dümbgen, L. (2022+). Accelerating the pool-adjacent-
violators algorithm for isotonic distributional regression. Methodology and Computing in
Applied Probability, to appear.

The version in this thesis is the arXiv preprint (identifier arXiv:2006.05527 ).
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Abstract

In the context of estimating stochastically ordered distribution functions, the pool-
adjacent-violators algorithm (PAVA) can be modified such that the computation times
are reduced substantially. This is achieved by studying the dependence of antitonic
weighted least squares fits on the response vector to be approximated.

Keywords: Monotone regression, sequential computation, weighted least squares

AMS 2000 subject classifications: 62G08, 62G30, 62-08

1 Introduction

Let X be a set equipped with a binary relation �, for instance, some partial order. The
general problem is as follows: For m ≥ 2 pairs (x1, z1), . . . , (xm, zm) ∈ X ×R and weights
w1, . . . , wm > 0, let

A(z) := arg min
f∈Rm

↓,x

m∑

j=1

wj(zj − fj)2, (1)

where
Rm↓,x := {f ∈ Rm : xi � xj implies that fi ≥ fj}.

Suppose that z(0), z(1), . . . ,z(n) are vectors in Rm such that for 1 ≤ t ≤ n, the two vectors
z(t−1) and z(t) differ only in a few components, and our task is to compute all antitonic (i.e.
monotone decreasing) approximations A(z(0)), A(z(1)), . . . , A(z(n)). We show that A(z(t))
can be computed efficiently, provided we know already A(z(t−1)). Briefly speaking, this
is achieved by noticing that A(z(t−1)) and A(z(t)) share some identical components, and
that the remaining components of A(z(t)) can be determined directly from A(z(t−1)) and
z(t) with only a few operations.

∗alexander.henzi@stat.unibe.ch
†alexandre.moesching@uni-goettingen.de
‡duembgen@stat.unibe.ch
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The efficient computation of a sequence of antitonic approximations appears naturally
in the context of isotonic distributional regression, see Henzi et al. (2021), Mösching and
Dümbgen (2020) and Jordan et al. (2021). There, one observes random pairs (X1, Y1),
(X2, Y2), . . . , (Xn, Yn) in X × R such that, conditional on (Xi)

n
i=1, the random variables

Y1, Y2, . . . , Yn are independent with distribution functions FX1 , FX2 , . . . , FXn , where (Fx)x∈X
is an unknown family of distribution functions. Then the goal is to estimate the latter
family under the sole assumption that Fx ≥ Fx′ pointwise whenever x � x′. This notion
of ordering of distributions is known as stochastic ordering, or first order stochastic dom-
inance. This isotonic distributional regression leads to the aforementioned least squares
problem, where x1, . . . , xm denote the different elements of {X1, X2, . . . , Xn}, and z(t) has
components

z
(t)
j := w−1j

∑

i :Xi=xj

1[Yi≤Y(t)]

with wj := #{i ≤ n : Xi = xj}, Y(0) := −∞ and Y(t) is the t-th order statistic of the
sample {Y1, Y2, . . . , Yn}.

Section 2 provides some facts about monotone least squares which are useful for the
present task. For a complete account and derivations, we refer to Barlow et al. (1972) and
Robertson et al. (1988). Then it is shown in Section 3 how to turn this into an efficient
computation scheme in case of a total order �. Finally, we discuss the specific application
to isotonic distributional regression, and provide numerical experiments which show that
computation times of the naive approach are decreased substantially with our procedure.

2 Some facts about antitonic least squares estimation

Since the sum on the right hand side of (1) is a strictly convex and coercive function of
f ∈ Rm, and since Rm↓,x is a closed and convex set, A(z) is well-defined. It possesses several
well-known characterizations, two of which are particularly useful for our considerations.

The first characterization uses local weighted averages. Let us first introduce some
notations. In this article, upper, lower and level sets are seen as subsets of {1, . . . ,m}
inheriting the structure of (X ,�). More precisely, a set U ⊂ {1, . . . ,m} is an upper set
if i ∈ U and xi � xj imply that j ∈ U . A set L ⊂ {1, . . . ,m} is a lower set if j ∈ L
and xi � xj imply that i ∈ L. The families of all upper and all lower sets are denoted by
U and L, respectively. For a non-empty set S ⊂ {1, . . . ,m}, its weight and the weighted
average of z over S are respectively defined as

wS :=
∑

j∈S
wj and MS(z) := w−1S

∑

j∈S
wjzj .

Characterization I. For any index 1 ≤ j ≤ m,

Aj(z) = min
U∈U : j∈U

max
L∈L: j∈L

MU∩L(z) = max
L∈L: j∈L

min
U∈U : j∈U

ML∩U (z).

For all vectors f ∈ Rm, numbers ξ ∈ R and relations n in {<,≤,=,≥, >}, let

[f n ξ] := {j ∈ {1, . . . ,m} : fj n ξ}.
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For example, the family of sets [f = ξ] indexed by ξ ∈ {f1, . . . , fm} yields a partition of
{1, . . . ,m} such that two indices i and j belong to the same block if and only if fi = fj .
In case of f ∈ Rm↓,x, [f < ξ] and [f ≤ ξ] are upper sets, whereas [f > ξ] and [f ≥ ξ] are
lower sets.

Characterization II. A vector f ∈ Rm↓,x equals A(z) if and only if for any number
ξ ∈ {f1, . . . , fm},

MU∩[f=ξ](z) ≥ ξ for U ∈ U such that U ∩ [f = ξ] 6= ∅, (2)

ML∩[f=ξ](z) ≤ ξ for L ∈ L such that L ∩ [f = ξ] 6= ∅. (3)

In particular, ξ = M[f=ξ](z).

One possible reference for Characterizations I and II is Domı́nguez-Menchero and
González-Rodŕıguez (2007). They treat the case of a quasi-order � and more general
target functions

∑m
j=1 hj(fj) to be minimized over f ∈ Rm↓,x. For the present setting

with an arbitrary binary relation � and weighted least squares, a relatively short and
self-contained derivation of these two characterizations is available from the authors upon
request.

The next lemma summarizes some facts about changes in A(z) if some components of
z are increased.

Lemma 2.1. Let z, z̃ ∈ Rm such that z̃ ≥ z component-wise. Then the following
conclusions hold true for f := A(z), f̃ := A(z̃) and K := {k : z̃k > zk}:

(i) f ≤ f̃ component-wise.

(ii) f̃i = fi whenever fi < mink∈K fk.

(iii) f̃i = fi whenever f̃i > maxk∈K f̃k.

(iv) f̃i = f̃j whenever fi = fj and xi, xj � xk for all k ∈ K.

Figure 1 illustrates the statements of Lemma 2.1 on R2 equipped with the compo-
nentwise order in case of K = {jo}. The colored areas show level sets of a hypothetical
antitonic regression f , and xjo is the point where z̃jo > zjo . By part (ii) of Lemma 2.1, we
know that f̃i = fi if fi < fjo , so the values of f and f̃ are equal on the orange and yellow
regions in the top right corner, which is indicated by saturated colors. Furthermore, when
passing from z to z̃, the slightly transparent pink, blue and green level sets on the bottom
left (including the point xjo) can only be merged, but never be split. This follows from
part (iv) of Lemma 2.1. Finally, for all points in the faded pink, blue and green areas,
there is no statement about the behavior of the antitonic regression when passing from z
to z̃.
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xjo

Figure 1: Illustration of the statements of Lemma 2.1 on R2.

Proof of Lemma 2.1. Part (i) is a direct consequence of Characterization I.

As to part (ii), if fi < mink∈K fk, then K ⊂ [f > fi], whence

f̃i = max
L∈L: i∈L

min
U∈U : i∈U

ML∩U (z̃) (Char. I)

≤ max
L∈L: i∈L

ML∩[f≤fi](z̃) (i ∈ [f ≤ fi] ∈ U)

= max
L∈L: i∈L

ML∩[f≤fi](z) (K ∩ [f ≤ fi] = ∅)

= max
L∈L: i∈L

∑

ξ≤fi:L∩[f=ξ] 6=∅

wL∩[f=ξ]
wL∩[f≤fi]

ML∩[f=ξ](z)

≤ max
L∈L: i∈L

∑

ξ≤fi:L∩[f=ξ] 6=∅

wL∩[f=ξ]
wL∩[f≤fi]

ξ (Char. II)

≤ fi.

This inequality and part (i) show that f̃i = fi.

Part (iii) is proved analogously. If f̃i > maxk∈K f̃k, then K ⊂ [f̃ < f̃i], whence

fi = min
U∈U : i∈U

max
L∈L: i∈L

MU∩L(z) (Char. I)

≥ min
U∈U : i∈U

M
U∩[f̃≥f̃i](z) (i ∈ [f̃ ≥ f̃i] ∈ L)

= min
U∈U : i∈U

M
U∩[f̃≥f̃i](z̃) (K ∩ [f̃ ≥ f̃i] = ∅)

= min
U∈U : i∈U

∑

ξ≥f̃i:U∩[f̃=ξ] 6=∅

wU∩[f̃=ξ]
wU∩[f̃≥f̃i]

M
U∩[f̃=ξ](z̃)

≥ min
U∈U : i∈U

∑

ξ≥f̃i:U∩[f̃=ξ] 6=∅

wU∩[f̃=ξ]
wU∩[f̃≤f̃i]

ξ (Char. II)

≥ f̃i.

This inequality and part (i) show that f̃i = fi.
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Part (iv) follows directly from parts (i) and (iii). Let i and j be different indices
such that fi = fj and xi, xj � xk for all k ∈ K. It follows from f̃ ∈ Rm↓,x that f̃i, f̃j ≥
maxk∈K f̃k. Consequently, if f̃j > f̃i, then f̃j > maxk∈K f̃k, so parts (i) and (iii) would
imply that

f̃i ≥ fi = fj = f̃j ,

contradicting f̃j > f̃i.

The special case of a total order. If one replaces the preorder � by a total order ≤
on X , as for example in the case of the usual total order on a subset of R, the conclusions
of Lemma 2.1 take a simpler form. In case of a total order, we assume that the covariates
are ordered as follows

x1 ≤ x2 ≤ · · · ≤ xm,

so that i ≤ j implies that xi ≤ xj , while xi < xj implies that i < j.

Corollary 2.2. Let z, z̃ ∈ Rm such that z ≤ z̃ component-wise. Then the following
conclusions hold true for f := A(z) and f̃ := A(z̃):

(i) f ≤ f̃ component-wise.

(ii) Let k ∈ {1, . . . ,m− 1} such that fk > fk+1 and (z̃j)j>k = (zj)j>k. Then

(f̃j)j>k = (fj)j>k.

(iii) Let k ∈ {2, . . . ,m} such that f̃k−1 > f̃k and (z̃j)j<k = (zj)j<k. Then

(f̃j)j<k = (fj)j<k.

(iv) Let k ∈ {2, . . . ,m} such that (z̃j)j<k = (zj)j<k. Then

{j < k : f̃j > f̃j+1} ⊂ {j < k : fj > fj+1}.

3 A sequential algorithm for total orders

Lemma 2.1 is potentially useful to accelerate algorithms for isotonic distributional regres-
sion with arbitrary partial orders, possibly in conjunction with the recursive partitioning
algorithm by Luss and Rosset (2014), but this will require additional research. Now we
focus on improvements of the well-known pool-adjacent-violators algorithm (PAVA) for a
total order.

3.1 General considerations

In what follows, we assume that x1 < · · · < xm, so Rm↓,x coincides with Rm↓ =
{
f ∈

Rm : f1 ≥ · · · ≥ fm}. To understand the different variants of the PAVA, let us recall
two basic facts about A(z). Let P = (P1, . . . , Pd) be a partition of {1, . . . ,m} into blocks
Ps = {bs−1 + 1, . . . , bs}, where 0 = b0 < b1 < · · · < bd = m, and let RmP be the set of
vectors f ∈ Rm such that fi = fj whenever i, j belong to the same block of P.
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Fact 1. Let r1 > · · · > rd be the sorted elements of {Ai(z) : 1 ≤ i ≤ m}, and let P consist
of the blocks Ps = {i : Ai(z) = rs}. Then rs = MPs

(z) for 1 ≤ s ≤ d.

Fact 2. Suppose that A(z) ∈ RmP for a given partition P with d ≥ 2 blocks. If s ∈
{1, . . . , d − 1} such that MPs

(z) ≤ MPs+1
(z), then Ai(z) is constant in i ∈ Ps ∪ Ps+1.

That means, one may replace P with a coarser partition by pooling Ps and Ps+1 and still,
A(z) ∈ RmP .

Fact 1 is a direct consequence of Characterization II. To verify Fact 2, suppose that
f ∈ Rm↓ ∩ RmP such that fi = rs for i ∈ Ps, fi = rs+1 for i ∈ Ps+1, and rs > rs+1. Now we
show that f cannot be equal to A(z). For t ≥ 0 let f(t) ∈ RmP be given by

fi(t) = fi − 1[i∈Ps]tw
−1
Ps

+ 1[i∈Ps+1]tw
−1
Ps+1

.

Then f(0) = f , and f(t) ∈ Rm↓ if t ≤ (rs − rs+1)/(w
−1
Ps+1

+ w−1Ps
). But

d

dt

∣∣∣
t=0

m∑

i=1

wi(fi(t)− zi)2 = 2(rs+1 − rs)− 2
(
MPs+1

(z)−MPs
(z)
)
< 0,

so for sufficiently small t > 0, f(t) ∈ Rm↓ and is superior to f(0). Hence f 6= A(z).

Facts 1 and 2 indicate already a general PAV strategy to compute A(z). One starts
with the finest partition P = ({1}, . . . , {m}). As long as P contains two neighboring blocks
Ps and Ps+1 such that MPs

(z) ≥ MPs+1
(z), the partition P is coarsened by replacing Ps

and Ps+1 with the block Ps ∪ Ps+1.

Standard PAVA. Specifically, one works with three tuples: P = (P1, . . . , Pd) is a
partition of {1, . . . , bd} into blocks Ps = {bs−1 + 1, . . . , bs}, where 0 = b0 < b1 < · · · < bd.
The number bd is running from 1 tom, and the number d ≥ 1 changes during the algorithm,
too. The tuples W = (W1, . . . ,Wd) and M = (M1, . . . ,Md) contain the corresponding
weights Ws = wPs

and weighted means Ms = MPs
(z). Before increasing bd, the tuples

P, W and M describe the minimizer of
∑bd

i=1wi(fi − zi)2 over all f ∈ Rbd↓ . Here is the
complete algorithm:

Initialization: We set P ← ({1}), W ← (w1), M← (z1), and d← 1.

Induction step: If bd < m, we add a new block by setting

P ← (P, {bd + 1}), W ← (W, wbd+1), M ← (M, zbd+1),

and d← d+ 1. Then, while d > 1 and Md−1 ≤Md, we pool the “violators” Pd−1 and Pd
by setting

P ←
(
(Pj)j<d−1, Pd−1 ∪ Pd

)
,

M ←
(

(Wj)j<d−1,
Wd−1Md−1 +WdMd

Wd−1 +Wd

)
,

W ←
(
(Wj)j<d−1,Wd−1 +Wd

)
,

and d← d− 1.

Finalization: Eventually, P is a partition of {1, . . . ,m} into blocks such that M1 > · · · >
Md and

Aj(z) = Ms for j ∈ Ps and 1 ≤ s ≤ d.
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Modified PAVA. In our specific applications of the PAVA, we are dealing with vectors
z containing larger blocks {a, . . . , b} on which i 7→ zi is constant. Indeed, in regression
settings with continuously distributed covariates and responses, z will always be a {0, 1}-
valued vector. Then it is worthwhile to utilize fact 2 and modify the initialization as well
as the very beginning of the induction step as follows:

For the initialization, we determine the largest index b1 such that z1 = · · · = zb1 and
the corresponding weight WP1 with P1 = {1, . . . , b1}. Then we set P ← (P1), W ← (wP1

)
and M← (zb1), where P1 = {1, . . . , b1}.

At the beginning of the induction step, we determine the largest index bd+1 > bd
such that zbd+1 = · · · = zbd+1

and the corresponding weight WPd+1
with Pd+1 = {bd +

1, . . . , bd+1}. Then we set P ← (P, Pd+1), W ← (W,WPd+1
), M ← (M, zbd+1

), and
d← d+ 1.

Abridged PAVA. Suppose that we have computed A(z) with corresponding tuples
P = (P1, . . . , Pd), W = (W1, . . . ,Wd) and M = (M1, . . . ,Md) via the PAVA. Now let
z̃ ∈ Rm such that z̃jo > zjo for one index jo ∈ {1, . . . ,m}, while (z̃j)j 6=jo = (zj)j 6=jo .
Let jo ∈ Pso with so ∈ {1, . . . , d}. By parts (ii) and (iv) of Corollary 2.2, the partition
corresponding to A(z̃) will be a coarsening of the partition with the following blocks:

Ps for 1 ≤ s < so, {bso−1 + 1, . . . , jo}, {j} for jo < j ≤ bso , Ps for so < s ≤ d.

Moreover, Ai(z̃) = Ai(z) for i > bso . This allows us to compute A(z̃) as follows, keeping
copies of the auxiliary objects for A(z) and indicating this with a superscript z:

Initialization: We determine so ∈ {1, . . . , dz} such that jo ∈ P z
so . Then we set

P ←
(
(P z

s )s<so , {bzso−1 + 1, . . . , jo}
)
,

M ←
(
(Mz

s )s<so ,MPso
(z̃)
)
,

W ←
(
(W z

s )s<so , wPso

)

and d ← so. While d > 1 and Md−1 ≤ Md, we pool the violators Pd−1 and Pd as in the
induction step of PAVA. (This initialization is justified by part (iv) of Corollary 2.2.)

Induction step: If jo < bzso , we run the induction step of PAVA for bd running from jo + 1
to bzso with z̃ in place of z.

Finalization: If bzso < m, we set

P ←
(
P, (P z

s )so<s≤dz
)
,

M ←
(
M, (Mz

s )so<s≤dz
)
,

W ←
(
W, (W z

s )so<s≤dz
)

and d ← d + dz − so. The new pair (P,M) yields the vector A(z̃). This finalization is
justified by part (ii) of Corollary 2.2.

Computational complexity. It directly follows from the algorithmic description that
when A(z) is available, the abridged PAVA for computing A(z̃) requires not more opera-
tions than the standard PAVA. Its computational complexity is therefore at most of order
O(m) if x1, . . . , xm are already sorted. More precisely, the number of averaging operations
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z 1 3 2 0 −1 1 1/2 −1 1

bd = 1 1 d = 1

bd = 2 1 3 d = 2
2 2 d = 1

bd = 3 2 2 2 d = 2
2 2 2 d = 1

bd = 4 2 2 2 0 d = 2

bd = 5 2 2 2 0 −1 d = 3

bd = 6 2 2 2 0 −1 1 d = 4
2 2 2 0 0 0 d = 3
2 2 2 0 0 0 d = 2

bd = 7 2 2 2 0 0 0 1/2 d = 3
2 2 2 1/8 1/8 1/8 1/8 d = 2

bd = 8 2 2 2 1/8 1/8 1/8 1/8 −1 d = 3

bd = 9 2 2 2 1/8 1/8 1/8 1/8 −1 1 d = 4
2 2 2 1/8 1/8 1/8 1/8 0 0 d = 3

Table 1: Running the PAVA for a vector z.

in the abridged PAVA is bounded from above by dz+(bzso−bzso−1), where dz is the partition
size of the antitonic regression A(z) and bzso − bzso−1 is the number of elements in the set
P z
so containing the index jo where the value of z changes. In many practical applications

this number is much smaller than m, but in the worst case it may equal exactly m; for
example, let wi = 1 and zi = m− i for i = 1, . . . ,m, jo = m, and z̃m = m2.

Numerical example. We illustrate the previous procedures with two vectors z, z̃ ∈ R9

and w = (1)9j=1. Table 1 shows the main steps of the PAVA for z. The first line shows the

components of z, the other lines contain the current candidate for (fj)
bd
j=1, where f = A(z)

eventually, and the current partition P is indicated by extra vertical bars. Table 2 shows
the abridged PAVA for two different vectors z̃.

3.2 Application to isotonic distributional regression

Now we consider a regression framework similar to the one discussed in Mösching and
Dümbgen (2020), Henzi et al. (2021) and Jordan et al. (2021). We observe pairs (X1, Y1),
(X2, Y2), . . . , (Xn, Yn) consisting of numbers Xi ∈ X (covariate) and Yi ∈ R (response),
where X is a given real interval. Conditional on (Xi)

n
i=1, the observations Y1, Y2, . . . , Yn

are viewed as independent random variables such that for x ∈ X and y ∈ R,

IP(Yi ≤ y) = Fx(y) if Xi = x.

Here (Fx)x∈X is an unknown family of distribution functions. We only assume that Fx(y)
is non-increasing in x ∈ X for any fixed y ∈ R. That means, the family (Fx)x∈X is
increasing with respect to stochastic order.
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z 1 3 2 0 −1 1 1/2 −1 1
A(z) 2 2 2 1/8 1/8 1/8 1/8 0 0
z̃ 1 3 2 0 1 1 1/2 −1 1

bd = 5 2 2 2 1/2 1/2 d = 2

bd = 6 2 2 2 1/2 1/2 1 d = 3
2 2 2 2/3 2/3 2/3 d = 2

bd = 7 2 2 2 2/3 2/3 2/3 1/2 d = 3

bd = 9 2 2 2 2/3 2/3 2/3 1/2 0 0 d = 4

z 1 3 2 0 −1 1 1/2 −1 1
A(z) 2 2 2 1/8 1/8 1/8 1/8 0 0
z̃ 1 3 2 2 −1 1 1/2 −1 1

bd = 4 2 2 2 2 d = 2
2 2 2 2 d = 1

bd = 5 2 2 2 2 −1 d = 2

bd = 6 2 2 2 2 −1 1 d = 3
2 2 2 2 0 0 d = 2

bd = 7 2 2 2 2 0 0 1/2 d = 3
2 2 2 2 1/6 1/6 1/6 d = 2

bd = 9 2 2 2 2 1/6 1/6 1/6 0 0 d = 3

Table 2: Running the abridged PAVA for two vectors z̃ ≈ z.
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Variant of PAVA mean (sd) of Tj
Standard T1 6.0394 (1.5257) mean (sd) of T1/Tj
Modified T2 1.7482 (0.4224) 3.4618 (0.3816) mean (sd) of T2/T3
Abridged T3 0.2080 (0.1052) 30.8308 (6.1209) 8.9012 (1.4469)

Table 3: Computation times in seconds and ratios of running times.

Let x1 < x2 < · · · < xm be the elements of {X1, X2, . . . , Xn}, and let

wj := #{i : Xi = xj}, 1 ≤ j ≤ m.

Then one can estimate F (y) := (Fxj (y))mj=1 by

F̂ (y) := A(z(y)),

where z(y) has components

zj(y) := w−1j
∑

i:Xi=xj

1[Yi≤y], 1 ≤ j ≤ m.

Suppose we have rearranged the observations such that Y1 ≤ Y2 ≤ · · · ≤ Yn. Let
z(0) := 0 and

z(t) :=
(
w−1j

∑

i≤t:Xi=xj

1[Yi≤Yt]
)m
j=1

for 1 ≤ t ≤ n. Note that z(t−1) and z(t) differ in precisely one component, and that

z(y) =





z(0) if y < Y1,

z(t) if Yt ≤ y < Yt+1, 1 ≤ t < n,

z(n) if y ≥ Yn.

Thus it suffices to compute A(z(t)) for t = 0, 1, . . . , n. But A(z(0)) = 0, A(z(n)) = 1,
and for 1 ≤ t < n, one may apply the abridged PAVA to the vectors z := z(t−1) and
z̃ := z(t). This leads to an efficient algorithm to compute all vectors A(z(t)), 0 ≤ t ≤ n, if
implemented properly.

Numerical experiment 1. We generated data sets with n = 1000 independent ob-
servation pairs (Xi, Yi), 1 ≤ i ≤ n, where Xi is uniformly distributed on [0, 10] while
L(Yi |Xi = x) is the gamma distribution with shape parameter

√
x and scale parameter

2+(x−5)/
√

2 + (x− 5)2. Figure 2 shows one such data set. In addition, one sees estimated

β-quantile curves for levels β ∈ {0.1, 0.25, 0.5, 0.75, 0.9}, resulting from the estimator F̂ .

Now we simulated 1000 such data sets and measured the times T1, T2, T3 for computing
the estimator F̂ via the standard, the modified and the abridged PAVA, respectively.
Table 3 reports the sample means and standard deviations of these computation times
in the 1000 simulations. In addition, one sees the averages and standard deviations of
the ratios Ti/Tj , for 1 ≤ i < j ≤ 3. It turned out that using the modified instead of
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Figure 3: Boxplots of computation times and ratios of running times for varying sample
sizes. The whiskers indicate the 10% and 90% sample quantiles. The other elements of
the boxplots are standard. A logarithmic scale was used for both axes.
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the standard PAVA reduced the computation time by a factor of 3.46 already. Using the
abridged PAVA yielded a further improvement by a factor of 8.90.

Figure 3 displays the result of simulation experiments for sample sizes ranging from 200
to 10 000, where the data were generated using the procedure mentioned earlier. The sim-
ulations indicate that the improvement due to using modified instead of standard PAVA is
almost constant in n, whereas the improvement due to abridged instead of modified PAVA
increases with n. Presumably, the complexity of the abridged PAVA for computing the
isotonic distributional regression remains quadratic in n. But our numerical experiments
show that the constant is substantially smaller than the one resulting from applying the
usual PAVA with complexity O(n) for n− 1 different levels of the response.

Numerical experiment 2. The goal of this experiment is to study the influence of
the strength of the monotone association between X and Y on the efficiency gain of the
abridged PAVA for isotonic distributional regression. The gains of abridged PAVA are
expected to be milder when Y is independent of X, and to become larger as the monotone
association strengthens. The reason behind it is that, while the standard PAVA proceeds
independently of the stochastic order, the abridged PAVA relies on the index jo indicating
the component increasing in z(t− 1) and on the nature of the partition corresponding to
A(z(t−1)), at a certain state t ∈ {1, . . . , n} of the procedure. If the monotone association
is weak, then the partition corresponding to A(z(t− 1)) tends to contain fewer blocks in
total and relatively large blocks in the middle of {1, . . . , n}. If the index jo happens to lie
in a block containing many indices to the right of jo, even the abridged PAVA will have
to inspect all of these.

To demonstrate this claim, we simulated n independent bivariate Gaussian random
vectors (X,Y )> with correlation Corr(X,Y ) = ρ ≥ 0. Note that the respective means
and variances of X and Y have no influence on the results of the experiment. Indeed,
the running times are invariant under strictly isotonic transformations of X and of Y . In
particular, the simulations for ρ = 0 cover all situations in which X and Y are stochas-
tically independent with continuous distribution functions. The stochastic order between
L(Y |X = x1) and L(Y |X = x2) for x1 < x2 becomes stronger as the correlation ρ ∈ [0, 1)
increases, from an equality in distribution when ρ = 0 to a deterministic ordering when ρ
approaches 1. Now, for sample sizes n ranging from 200 to 10 000 and for each correlation
ρ ∈ {0, 0.5, 0.9}, the mean and standard deviation of the time ratio T3/T1 were estimated
from 1 000 repetitions. The results are summarized in Table 4. As expected, the efficiency
gain is smallest for ρ = 0. But even then, it is larger than 6 for n ≥ 200 and larger than
9 for n ≥ 1 000.
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n ρ = 0 ρ = 0.5 ρ = 0.9

200 6.5337 (2.3496) 10.7581 (3.6704) 13.5695 (4.6390)

500 8.3029 (2.6393) 18.7010 (5.7806) 26.1813 (8.0763)

1 000 9.1351 (3.1800) 27.6290 (7.5007) 41.4116 (11.2161)

2 000 9.7559 (3.3532) 39.3180 (10.0337) 62.8382 (16.3293)

5 000 10.7495 (4.0525) 62.4600 (18.2002) 108.4198 (31.1414)

10 000 12.5190 (5.6193) 91.9084 (33.4657) 168.5030 (58.7712)

Table 4: Means (and standard deviations) of the factor of improvement T3/T1 for different
correlation values ρ between X and Y and sample sizes n.
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Abstract

A random variable Y1 is said to be smaller than Y2 in the increasing con-
cave stochastic order if E[φ(Y1)] ≤ E[φ(Y2)] for all increasing concave functions
φ for which the expected values exist, and smaller than Y2 in the increasing con-
vex order if E[ψ(Y1)] ≤ E[ψ(Y2)] for all increasing convex ψ. This article devel-
ops nonparametric estimators for the conditional cumulative distribution functions
Fx(y) = P(Y ≤ y | X = x) of a response variable Y given a covariate X, solely
under the assumption that the conditional distributions are increasing in x in the
increasing concave or increasing convex order. Uniform consistency and rates of
convergence are established both for the K-sample case X ∈ {1, . . . ,K} and for
continuously distributed X.

1 Introduction

The nonparametric estimation of distribution functions under stochastic order restric-
tions is a classical problem in statistics. It can be formulated very generally as the
task to estimate the conditional distributions of a random variable Y given a covari-
ate X, solely under the assumption that these distributions are increasing in a cer-
tain stochastic order. The classical and best understood order is first order stochastic
dominance, requiring that the conditional cumulative distribution functions (CDFs)
Fx(y) = P(Y ≤ y | X = x) are decreasing in x for every fixed y ∈ R. Brunk et al. (1966)
were the first to consider this constrained estimation problem in the two sample case
X ∈ {1, 2}. Almost 40 years later, El Barmi and Mukerjee (2005) have described an
estimator for the K-sample case X ∈ {1, . . . ,K}, and again after more than a decade,
Mösching and Dümbgen (2020b) extended it to continuously distributed X. In a further
leap of complexity, Henzi et al. (2021c) have shown that consistent estimation under first
order stochastic dominance is even possible with partially ordered covariates X ∈ Rd.
Stronger orders considered in the literature are the uniform stochastic ordering and the
likelihood ratio order, see El Barmi and Mukerjee (2016) and Mösching and Dümbgen
(2020a) and the references therein. A weaker constraint is stochastic precedence (Ar-
cones et al., 2002), and a structurally different stochastic order is the peakedness order,
where the variability of the conditional distributions of Y around a center is increasing
in the covariate (Rojo and Batún-Cutz, 2007; El Barmi and Mukerjee, 2012; El Barmi
and Wu, 2017).

190



So far, the main efforts in developing estimators under stochastic order restrictions
have been focused on first order stochastic dominance and stronger orders, and con-
sistency results in the case of continuously distributed X have only been derived for
first order stochastic dominance. This is a limitation insofar as these orders require the
conditional CDFs Fx(y) to be decreasing in x for all fixed y. In particular, the CDFs
for different values of x are not allowed to cross, which in practice often happens in
the tails when the variability of Y increases (or decreases) with x. The purpose of this
article is to develop consistent estimators under the increasing concave and increasing
convex stochastic order, which are weaker orders applicable in situations where first
order stochastic dominance is not appropriate. Estimation under the increasing con-
cave order has been studied before by Rojo and El Barmi (2003) and El Barmi and
Marchev (2009) in the two-sample case X ∈ {1, 2}. In this article, uniform consistency
and rates of convergence are established both in the K-sample case and for continuously
distributed X.

For two random variables Y1 and Y2 with finite expected values, Y1 is said to be
smaller in the increasing concave order than Y2 if E[φ(Y1)] ≤ E[φ(Y2)] for all increasing
concave functions φ for which the expectations exist. Similarly, Y1 is smaller than Y2 in
the increasing convex order if E[ψ(Y1)] ≤ E[ψ(Y2)] for all increasing convex functions ψ,
which is equivalent to −Y2 being smaller than −Y1 in the increasing concave order. In
the following, these orders are abbreviated as Y1 �icv Y2 and Y1 �icx Y2, respectively, and
�icx and �icv are both used as orders on random variables and on their CDFs. Another
characterization (see Shaked and Shanthikumar, 2007, Chapter 4) for the increasing
concave order is

E[(y − Y1)+] =

∫ y

−∞
F1(t) dt ≥

∫ y

−∞
F2(t) dt = E[(y − Y2)+], y ∈ R,

where (z)+ = max(z, 0), and F1 and F2 are the CDFs of Y1 and Y2, respectively. For
the increasing convex order, the analogous condition reads as

E[(Y1 − y)+] =

∫ ∞

y
1− F1(t) dt ≤

∫ ∞

y
1− F2(t) dt = E[(Y2 − y)+], y ∈ R.

A useful sufficient condition for the increasing concave order is that the CDFs F1 and F2

cross at a single point y0 with F1(y) ≤ F2(y) for y ≤ y0 and F1(y) ≥ F2(y) for y ≥ y0,
or with the reverse inequalities for the CDFs in case of the increasing convex order.
The increasing concave order is well-known in economics as second order stochastic
dominance, with ‘second order’ referring to the fact that monotonicity is required for
the integrated CDFs and not for the CDFs themselves. If Y1 and Y2 are portfolio returns,
then Y1 �icv Y2 means that all individuals with increasing concave utility functions φ,
i.e. all risk-averse utility maximizers, prefer Y2 over Y1. In the literature on finance and
insurance, the increasing convex order appears under the name stop-loss order, a term
introduced by Goovaerts et al. (1982) referring to the characterization E[(Y1 − y)+] ≤
E[(Y2 − y)+], which states that the expected stop-loss of Y2 over any retention limit y
exceeds the stop-loss of Y1. This suggests using �icx as an order for comparing risks.
Detached from its economic interpretation, the increasing concave (convex) order can
be seen as an order relation where the central tendency of Y increases with X, but
variability decreases (increases). In the special case that the expected values E[Y1] and
E[Y2] are equal, the orders reduce to the convex order (Shaked and Shanthikumar, 2007,
Chapter 3), which is a prominent example for variability orders.
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From a practical point of view, the estimation under stochastic order restrictions is
nothing but another method for estimating conditional distributions. The paradigm has
proven to be useful various applications where order restrictions appear naturally and
estimators under stochastic order constraints are attractive because they usually require
little tuning and no assumptions on the shape of the conditional distributions. For ex-
ample, Henzi et al. (2021c) have derived a competitive benchmark for postprocessing
numerical weather predictions, assuming that the conditional distribution of the actual
observation given the forecast(s) increases in first order stochastic dominance. In the
particular case of precipitation forecasts, their method can directly estimate the point
mass at zero (probability of no precipitation) and the continuous distribution of positive
precipitation amounts without any need for specific adaptations, whereas other postpro-
cessing methods have to be specially tailored to this mixed discrete-continuous distribu-
tion. Further applications are the estimation of growth curves (Mösching and Dümbgen,
2020b) and of survival times depending on the severity of a carcinoma (El Barmi and
Mukerjee, 2016), and the probabilistic prediction of the length of stay of intensive care
unit patients (Henzi et al., 2021b,a)

The structure of the article is as follows. Section 2 describes the estimator, and
it is shown that it generalizes the one by El Barmi and Marchev (2009) for the two-
sample case. This connection sheds light on the selection of a tuning parameter in
their method. As often in estimation under stochastic order restrictions, constructing
a proper estimator which satisfies the order constraints is not trivial, and the proposed
method relies heavily on tools and results from the monotone regression literature. In
Section 3, uniform consistency is proven both for discrete and continuous covariates X,
and rates of convergences are derived in different settings. All proofs deferred to the
appendix. Simulation examples in Section 4 illustrate the performance of the estimator
in comparison with extant methods, and Section 5 presents an application to conditional
distribution estimation and calibration testing in economic surveys.

2 Estimation

To avoid redundancy, only the estimation for the increasing concave order is presented
here; the necessary adaptations for the increasing convex order are straightforward.
Let (X1, Y1), . . . , (Xn, Yn) ∈ R × R be covariate-observation pairs based on which the
conditional distributions are to be estimated. In the literature on estimation under
stochastic order restrictions, the CDFs Fx(y) are often only estimated at the distinct
values x1 < · · · < xd of X1, . . . , Xn and y1 < · · · < ym and of Y1, . . . , Yn, and frequently
used estimation methods are nonparametric maximum likelihood estimation (NPLME)
(e.g. in Dykstra et al., 1991; Mösching and Dümbgen, 2020a) and monotone least squares
regression (e.g. in El Barmi and Mukerjee, 2005; Mösching and Dümbgen, 2020b). How-
ever, these two approaches turn out to be unrewarding in the case of the increasing
concave order. Firstly, they lead to a constrained optimization problem with O(n2)
variables in general, namely the estimators F̂xi(yj) for Fxi(yj), which is not efficiently
solvable for large n. And secondly, for the �icv-constrained estimator, proving consis-
tency using the definition of the estimator as maximizer of the likelihood or least squares
estimator seems intractable. The construction here is therefore an indirect approach.
For x, y ∈ R, define

Mx(y) =

∫ y

−∞
Fx(t) dt = E[(y − Y )+ | X = x].
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Under the assumption that Fx �icv Fx′ if x ≤ x′, the quantities Mx(y) should be
decreasing in x for all fixed y, and they satisfy

M ′x(y+) = lim
h→0, h>0

Mx(y + h)−Mx(y)

h
= Fx(y).

This suggests that an estimator M̂x for Mx may yield, under some conditions, an es-
timator for Fx. We restrict the estimation of Fx(y) to x ∈ {x1, . . . , xd}; in Section 3,
it is shown that under a continuity assumption, any interpolation method to obtain
estimates for x 6∈ {x1, . . . , xd} is sufficient for uniform consistency.

Since MXi(y) equals the expected value E[(y−Y )+ | X = Xi], a reasonable estimator
for it is the antitonic least squares regression M̃X1(y), . . . , M̃Xn(y) of (y−Y1)+, . . . , (y−
Yn)+ with covariates X1, . . . , Xn, that is,

[M̃X1(y), . . . , M̃Xn(y)] = argmin
η∈Rn: ηi≥ηj if Xi≤Xj

n∑

i=1

[ηi − (y − Yi)+]2.

The order constraints enforce M̃Xi(y) = M̃Xj (y) if Xi = Xj , so the above problem is
equivalent to the reduced, weighted antitonic regression

[M̃x1(y), . . . , M̃xd(y)] = argmin
η∈Rd: η1≥···≥ηd

d∑

i=1

wi[ηi − hi(y)]2,

where wi = #{j ≤ n : Xj = xi}, i = 1, . . . , d, and

hi(y) =
1

wi

∑

j:Xj=xi

(y − Yj)+.

This antitonic regression has the min-max-representation

M̃xi(y) = min
k=1,...,i

max
j=k,...,d

1
∑j

s=k ws

j∑

s=k

wshs(y), (1)

see Equations (1.9)-(1.13) of Barlow et al. (1972). In principle, one could now try to
estimate Fxi(y) by taking the right-sided derivative of M̃xi(·) at y. However, M̃xi is
not necessarily convex and therefore its derivative may be decreasing and not a CDF.
To correct this, let M̂xi be the greatest convex minorant to the function y 7→ M̃xi(y),
which is the pointwise greatest convex function bounded by M̃xi from above, and define
F̂xi(y) as the right-hand slope of M̂xi(·) at y. The following proposition, which is a
consequence of the above min-max-formula and properties of greatest convex minorants
(see Appendix A), shows that this is a valid strategy.

Proposition 2.1.

(i) The functions M̃xi(y) and M̂xi(y) are increasing and piecewise linear in y for fixed
i ∈ {1, . . . , d}, and decreasing in i for fixed y ∈ R.

(ii) The functions F̂xi(y) for fixed i ∈ {1, . . . , d} are piecewise constant CDFs with
Fxi(y) = 0 for y < y1 and Fxi(y) = 1 for y ≥ ym.
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In practice, it is not possible to compute M̃xi(y) and M̂xi(y) at all y ∈ R. Although
these functions are piecewise linear, there is no efficient procedure to identify the knots
where their slope changes. A pragmatic solution is to evaluate M̃x and M̂x on a fine
grid t1 < · · · < tk with t1 = y1 and tk = ym, and interpolate linearly in between.
This has the consequence that the CDFs F̂xi can only put mass on t1, . . . , tk. By a
standard result about isotonic regression (see Appendix A), the right-sided slope of the
greatest convex minorant to the interpolation of (t1, M̃xi(t1)), . . . , (tk, M̃xi(tk)) equals
the isotonic regression of the slopes

F̃xi(tj) =
M̃xi(tj+1)− M̃xi(tj)

tj+1 − tj
with weights tj+1 − tj , j = 1, . . . , k − 1. This isotonic regression directly yields the
estimators for the conditional CDFs,

[F̂xi(t1), . . . , F̂xi(tk−1)
]

= argmin
ξ∈Rk−1: ξ1≤···≤ξk−1

k−1∑

j=1

(tj+1 − tj)[ξj − F̃xi(yj)]2,

and F̂xi(tk) = 1 by Proposition 2.1 (ii) if tk = ym. To summarize, the estimation pro-
cedure consists of two series of monotone regressions, informally speaking one in the
X-direction for fixed threshold y to obtain �icv-ordered distributions, and another in
the Y -direction for fixed covariate xi to ensure that the CDFs are increasing. It is not
necessary to compute the functions M̂xi explicitly, since the computation of the greatest
convex minorant is indirect via its right-hand slope. The exact solution of monotone
regression problems can be obtained efficiently with the Pool-Adjacent Violators Algo-
rithm (PAVA), which has complexity O(N) with sorted covariate and sample size N .
Hence the overall complexity of the estimation procedure is O(n2) if the number of
distinct values in X1, . . . , Xn or Y1, . . . , Yn grows at the rate O(n).

If the distinct values y1, . . . , ym of Y1, . . . , Yn are taken as the grid for computation,
then the estimated distributions F̂xi can only put mass on the actual observations in the
data, and they are equal to the conditional empirical cumulative distribution functions
(ECDF) if these already satisfy the increasing concave order condition. That is, if F̌xj
is the ECDF of all Yi with Xi = xj and if F̌xi �icv . . . �icv F̌xd , then F̂xj = F̌xj for

j = 1, . . . , d. If in addition X1, . . . , Xn are pairwise distinct, F̂Xi is the Dirac measure
at Yi for i = 1, . . . , n. The estimators under first order stochastic dominance (El Barmi
and Mukerjee, 2005; Mösching and Dümbgen, 2020b) also have this property. However,
with the increasing concave order, even if the grid {t1, . . . , tk} contains {y1, . . . , ym},
the estimator can put probability mass on points outside of {y1, . . . , ym}. In particular,
if the response variable is known to take values in a discrete set, say Z, then the grid
should be chosen within this set to avoid positive estimated probabilities outside of the
actual support.

The increasing concave order is preserved under pointwise convex combinations of
CDFs, i.e. if F1 �icv F2 and G1 �icv G2, then also λF1 + (1−λ)G1 �icv λF2 + (1−λ)G2

for λ ∈ (0, 1). This fact opens the possibility to combine the estimation procedure with
sample splitting as suggested in Henzi et al. (2021c) for first order stochastic dominance.
Instead of estimating the conditional distributions with the complete dataset, one may
draw random subsamples from the data and aggregate the estimated conditional CDFs
from each run by their pointwise average. This subsample aggregation (subagging) yields
smoother estimated CDFs and prevents overfitting. Alternatively, the data can also be
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partitioned into several disjoint subsets instead of drawing subsamples, and Banerjee
et al. (2019) have proved that this divide and conquer strategy may lead to better
convergence rates of isotonic mean regression. While partitioning of the data is a valid
strategy for very large datasets, it seems more desirable to apply subagging in smaller
datasets to avoid that the estimator depends too strongly on the chosen partition. Note
that in principle, the averaging step in subagging or sample splitting could also be done
on the level of the estimators M̃x instead of the CDFs F̂x, but if the goal is to obtain
smoother CDFs, it is more natural to perform averaging of F̂x.

Finally, we show that the estimator proposed here generalizes the one by El Barmi
and Marchev (2009) for the case Xi ∈ {1, 2}. Their estimator depends on a parameter
α ∈ [0, 1], and equality holds for α = #{i ≤ n : Xi = 1}/n. This follows from the fact
that with M̌j(y) =

∫ y
−∞ F̌j(t) dt, one can write M̃j(y) as

M̃j(y) = 1{M̌j(y) ≥ M̌2(y)}M̌1(y) + 1{M̌1(y) < M̌2(y)}[αM̌1(y) + (1− α)M̌1(y)],

for j = 1, 2, where 1 is the indicator function. Taking the right-hand slope of the
greatest convex minorant of the above functions then yields Equation (8) from El Barmi
and Marchev (2009). The choice α = #{i ≤ n : Xi = 1}/n was already suggested in
their article, and it corresponds to the natural weight for which M̃j , j = 1, 2, are the
antitonic regression estimators.

3 Uniform consistency

The following notation and assumptions are required for stating the theorems about
uniform consistency. Let (Xni, Yni), i = 1, . . . , n, n ∈ N, be a triangular array de-
fined on a measurable space (Ω,F) with a probability measure P. For a sequence of
events (An)n∈N ⊂ F , the statement ‘An holds with asymptotic probability one’ means
limn→∞ P(An) = 1. The covariates Xn1, . . . , Xnn are assumed to be independent and
have distinct values x1 < · · · < xd, and the response variables Yn1, . . . , Ynn are indepen-
dent conditional on Xn1, . . . , Xnn such that P(Yni ≤ y | Xni) = FXni , with the CDFs Fx
increasing in x in the increasing concave order. The distinct values of Yn1, . . . , Ynn are
again denoted by y1 < · · · < ym. A subscript n in M̃n;x(y), M̂n;x(y), and F̂n;x(y) will be
used to indicate that these quantities depend on the sample size n, but the dependency
of m and d on n is not written explicitly to lighten the notation. If x 6∈ {x1, . . . , xd},
it is only assumed that M̃n;xi(y) ≥ M̃n;x(y) ≥ M̃n;xi+1(y) for all y ∈ R if x ∈ [xi, xi+1),

and M̃n;x(y) = M̃n;x1(y) if x < x1 or M̃n;x(y) = M̃n;xd(y) if x ≥ xd. The same property
then also holds for M̂n;x.

The key condition for proving consistency of F̂n;x(y) is the following.

(A) There exists (cn)n∈N ⊂ [0,∞) and a sequence of sets (In)n∈N, In ⊂ R, such that

lim
n→∞

P

(
sup

y∈R, x∈In
|M̃n;x(y)−Mx(y)| ≥ cn

)
= 0.

Sufficient conditions for (A) will be given below, and the convergence rate cn depends
on whether X is discrete or continuously distributed and on the tail properties of Fx.
If Xn1, . . . , Xnn ∈ {1, . . . ,K}, one can simply set In = {1, . . . ,K}. For continuously
distributed covariates on an interval I, In will be of the form In = {x ∈ I : x± δn ∈ I}
with δn → 0, that is, it is in general not possible to show consistency at the boundary of
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the covariate domain. This is also the case in isotonic mean regression and estimation
under first order stochastic dominance (Mösching and Dümbgen, 2020b).

The following proposition establishes the connection between the uniform consistency
of M̃n;x(y) and F̂n;x(y).

Proposition 3.1. Assume that (A) holds and I ⊆ R is a set such that In ⊆ I, n ∈ N.

(i) If there exist J ⊆ R and constants C ≥ 0, β > 0 such that |Fx(y) − Fx(z)| ≤
C|y − z|β for all y, z ∈ J , x ∈ I, then with Jn = {y ∈ J : y ± c1/(1+β)n ∈ J},

lim
n→∞

P

(
sup

y∈Jn, x∈In
|F̂n;x(y)− Fx(y)| ≥ (2 + C)cβ/(1+β)n

)
= 0.

(ii) If the distribution functions Fx, x ∈ I, have support in Z and if M̃n;x is computed
with grid {y1, y1 + 1, . . . , ym − 1, ym}, then

lim
n→∞

P

(
sup

y∈R, x∈In
|F̂n;x(y)− Fx(y)| ≥ 2cn

)
= 0.

Proposition 3.1 shows that if M̃n;x(y) is uniformly consistent in x and y at a rate
cn, then the estimator F̂n;x(y) is also uniformly consistent. When the response variable
is integer-valued, F̂n;x is consistent at the same rate. Otherwise, if the distribution
functions Fx are Hölder continuous with index β, the corresponding rate for F̂n;x(y)

is c
β/(1+β)
n , for example c

1/2
n if the Fx are Lipschitz continuous. Note that in the case

J = R, the sets Jn in Proposition 3.1 (i) are also equal to R.
We proceed to state conditions under which (A) holds. For the K-sample case, the

assumption on the covariate is the following.

(K) The covariates take values in I = {1, . . . ,K}, and minj=1,...,K P(Xni = j) = p for
some p > 0.

In the continuous case, the assumptions are analogous to (A.1) and (A.2) in Mösching
and Dümbgen (2020b).

(C1) The covariates Xn1, . . . , Xnn admit a Lebesgue density bounded away from zero
by p > 0 on an interval I.

(C2) There exists a constant L > 0 such that for all u, v ∈ I and y ∈ R,

|Mu(y)−Mv(y)| ≤ L|u− v|.

Note that the set I and the constants p in (K) and (C1) and L in (C2) do not
depend on n. Condition (C1) could be replaced by the weaker assumption that the
number of points in every subinterval of I of a certain size grows sufficiently fast, like
in (A.2) of Mösching and Dümbgen (2020b, see also their Remark 3.2). In particular,
it is not necessary to assume that the covariates Xn1, . . . , Xnn are pairwise distinct or
independent. However, this more general condition would require to introduce additional
notation and constants. Similarly, in (K), it is sufficient that each value j ∈ {1, . . . ,K}
is attained at least nδ times with asymptotic probability one for some δ > 0. The
Lipschitz assumption (C2) in the continuous case is standard in isotonic regression (see
e.g. Yang et al., 2019; Dai et al., 2020), and it could be replaced by Hölder continuity
with index α ∈ (0, 1) at the cost of a slower convergence rate.
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Since the goal is to prove consistency for an estimator of the expected values E[(y−
Y )+ | X = x], it is natural that some additional assumptions on the tail behaviour of
the distributions Fx are required. In the two cases below, the set I is assumed to be the
one from (K) or from (C1), (C2).

(P) There exist λ > 2 and y0 ≥ 0 such that for all y ≥ y0 and x ∈ I,

P(|Y | ≥ y | X = x) ≤ y−λ.

(E) There exist λ > 0 and y0 ≥ 0 such that for all y ≥ y0 and x ∈ I,

P(|Y | ≥ y | X = x) ≤ exp(−λy).

Theorem 3.2. Condition (A) holds with

cn =





4p−1/2n−1/2+1/λ log(n)1/2+1/λ, under (K) and (P),

8p−1/2λ−1n−1/2 log(n)3/2, under (K) and (E),

[4p−1/2 + L]n−1/3+2/(3λ) log(n)1/3+2/(3λ), under (C1), (C2), and (P),

[4p−1/2 + L](2/λ)2/3n−1/3 log(n), under (C1), (C2), and (E),

and

In =





{1, . . . ,K}, under (K),

{x ∈ I : x± n−1/3+2/(3λ) log(n)1/3+2/(3λ) ∈ I}, under (C1), (C2), and (P),

{x ∈ I : x± (2/λ)2/3n−1/3 log(n) ∈ I}, under (C1), (C2), and (E).

In the K-sample case, Theorem 3.2 implies uniform consistency at a rate of at
least (log(n)/n)1/4 if the distribution functions Fx(y) are Lipschitz continuous in y and
have exponential tails. This is slower than the n−1/2-rate of the empirical distribution
functions stratified by the K covariate values, and suggests that this lower bound is not
always tight. Indeed, if the conditional CDFs Fj , j = 1, . . . ,K, have support on disjoint,
pointwise increasing intervals, then F̂n;j are equal to the ECDFs of the corresponding
subsamples and hence known to converge at the faster rate. Nevertheless, the result
extends the ones from the current literature. In the two-sample case K = 2, Rojo and
El Barmi (2003) establish strong uniform convergence and pointwise but not uniform
root-n convergence for their estimator, while El Barmi and Marchev (2009) only prove
strong uniform consistency, but do not derive rates of convergence.

For a continuously distributed covariate and exponential tails, M̃x(y) converges uni-
formly in x and y at a rate of n−1/3 up to a logarithmic factor, which is known to be the
global rate of convergence of the isotonic regression estimator. When the conditional
distributions have power tails with exponent λ, the rate becomes slower by a factor
of n2/(3λ). In general, the global n−1/3-rate of convergence for isotonic regression does
not require the assumption of exponential tails, but the results across the literature are
not directly comparable. For example, Zhang (2002) shows that with bounded second
moments, the risk of the isotonic mean regression estimator, i.e. the root mean squared
error at the design points, scales at a rate of n−1/3, whereas Yang et al. (2019) prove
uniform consistency with the same rate (up to logarithmic factors) in the supremum
norm under sub-gaussianity of the error terms. Theorem 3.2 yields a stronger state-
ment since convergence is also uniform in the parameter y, and with exponential tails it
still matches the optimal global rate up to the logarithmic factor. For F̂x(y), Theorem
3.2 implies a rate of at least n−1/6 under the favorable assumption (E) and Lipschitz
continuity of Fx(y) in y.
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4 Simulations

In the following simulation examples, the �icv- and �icx-order constrained estimators
are compared to competitors in terms of the L1 distance between the estimated and the
true CDFs, and in terms of the mean absolute error (MAE) of quantile estimates,

L1(F̂n, F ) = E
(∫ ∞

−∞
|F̂n(y)− F (y)| dy

)
, dqγ(F̂n, F ) = E

(
|F̂−1n (γ)− F−1(γ)|

)
,

where F̂n denotes an estimator for F and the expected value is taken over the sampling
distribution of F̂n for the given sample size. The expected value in the definition of L1

and dqγ is approximated by the empirical mean over 10′000 simulations for the examples
with discrete and 5′000 simulations for those with continuously distributed covariates.

With covariate values X ∈ [1, 4], the following three settings are considered:

Y1 = X1/2 +
[
1 + (X − 2)/(1 + (X − 2)2)1/2

]
ε, ε ∼ Student(df = 10), (2)

Y2 ∼ Gamma(shape = X, rate = X9/10), (3)

Y3 ∼ Beta-binomial(n = 50, α = X3, β = 1 +X3). (4)

The conditional distributions of Y1 given X are ordered in the increasing convex order,
and the those of Y2 and Y3 with respect to the increasing concave order; see Figure 1
(a) for an illustration. In the K-sample case, X takes values in {1, 4}, {1, 2, 3, 4}, and
{1, 1.5, . . . , 3.5, 4}, i.e. K = 2, 4, 7, which allows comparing the change in estimation
error at previously available values of X when the number of samples increases. For
simulation examples with continuous covariate, the sample of X is generated indepen-
dent and uniformly distributed on [1, 4]. In all simulations the distinct observed values
of the response variable are taken as grid for the computation of the �icv- and �icx-order
constrained estimators.

Table 1 shows the performance order restricted estimators compared to the ECDF
in the K-sample case, with fixed group sizes n = 30, 50 as in El Barmi and Marchev
(2009). For K = 2 only few corrections are required to obtain conditional distributions
satisfying the order constraints, whence the order restricted estimator brings no improve-
ment over the ECDF stratified by X. However, as the number of groups increases, the
order restricted estimators benefit from the larger total sample size and achieve a lower
estimation error both globally, i.e. in L1-distance, and for most quantiles considered.

In the continuous case, the estimator under first order stochastic dominance by
Mösching and Dümbgen (2020b) is chosen as competitor. As Figure 1 (a) shows, for
the simulations (3) and (4) the conditional quantile curves up to the seventh decile are
all increasing in the covariate X, and so are the conditional quantile curves above the
third decile in (2). Therefore, although first order stochastic dominance is violated, it
serves as a reasonable approximation in these problems. Figure 2 shows the relative
performance of the estimators for n = 500. The estimator by Mösching and Dümbgen
(2020b) achieves a lower absolute error for the median, for the 0.1-quantile in (3) and
(4), and for the 0.9-quantile in (2), uniformly over all values of X. This has to be
expected, since the corresponding quantile curves are monotone and estimation under
this correct constraint is more efficient than with the weaker �icv- and �icx-constraints.
The picture is different for the low quantiles in (2) and the high quantiles in (3) and (4),
where the conditional quantile curves are antitonic and the best isotonic approximation
is constant, which generally provides a poor fit. Figure 2 also compares the errors of
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Figure 1: (a) Deciles of the conditional distributions in the simulation examples (2),
(3), (4). The median is depicted as a dashed line. (b) Quantile curves (levels
0.1, 0.3, 0.5, 0.7, 0.9) for simulation example (3) together with �icv-ordered estimator
(n = 500; ICV and subagging variant ICVsbg with 50 subsamples of size 250 = n/2).
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Table 1: Relative improvement in mean L1 distance, mean absolute error of quantile
estimates of �icv- and �icx-order constrained estimator compared to ECDF stratified
by the value of X, for K = 2, 4, 7 and group sizes of n = 30, 50.

n = 30 Student (2) Gamma (3) Beta-binomial (4)
K X L1 dq0.1 dq0.5 dq0.9 L1 dq0.1 dq0.5 dq0.9 L1 dq0.1 dq0.5 dq0.9

2 1.0 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.07 0.00 0.00 0.00 0.00
4.0 0.00 0.00 0.00 0.00 -0.03 0.00 0.00 -0.04 0.00 0.00 0.00 0.00

4 1.0 0.00 0.00 0.00 0.00 0.06 0.00 0.05 0.12 0.00 0.00 0.00 0.00
2.0 -0.01 -0.10 0.01 -0.01 0.08 0.05 0.12 0.19 0.05 0.00 0.05 0.09
3.0 0.06 0.19 0.08 0.05 0.09 0.13 0.18 0.21 0.13 0.09 0.09 0.12
4.0 0.05 0.16 0.10 0.10 0.03 0.11 0.11 0.14 0.08 0.09 0.15 0.10

7 1.0 0.00 -0.01 0.00 0.00 0.08 0.04 0.10 0.13 0.01 0.00 0.00 0.01
1.5 -0.02 -0.10 0.00 -0.01 0.14 0.13 0.21 0.29 0.05 0.00 0.04 0.05
2.0 0.01 0.01 0.05 0.00 0.16 0.20 0.26 0.35 0.12 0.05 0.12 0.14
2.5 0.08 0.23 0.15 0.08 0.18 0.25 0.31 0.37 0.21 0.14 0.22 0.24
3.0 0.13 0.33 0.23 0.19 0.17 0.28 0.32 0.36 0.28 0.24 0.22 0.29
3.5 0.14 0.33 0.26 0.25 0.15 0.28 0.30 0.32 0.27 0.29 0.29 0.20
4.0 0.09 0.23 0.19 0.21 0.07 0.19 0.19 0.22 0.15 0.15 0.26 0.19

n = 50 Student (2) Gamma (3) Beta-binomial (4)
K X L1 dq0.1 dq0.5 dq0.9 L1 dq0.1 dq0.5 dq0.9 L1 dq0.1 dq0.5 dq0.9

2 1.0 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.05 0.00 0.00 0.00 0.00
4.0 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 -0.02 0.00 0.00 0.00 0.00

4 1.0 0.00 0.00 0.00 0.00 0.04 0.00 0.02 0.10 0.00 0.00 0.00 0.00
2.0 -0.01 -0.07 0.00 0.00 0.05 0.02 0.08 0.14 0.03 0.00 0.02 0.08
3.0 0.04 0.13 0.05 0.04 0.07 0.08 0.14 0.20 0.09 0.05 0.04 0.07
4.0 0.04 0.13 0.07 0.07 0.03 0.07 0.09 0.11 0.06 0.06 0.12 0.05

7 1.0 0.00 0.00 0.00 0.00 0.07 0.02 0.07 0.13 0.00 0.00 0.00 0.00
1.5 -0.01 -0.07 0.00 0.00 0.11 0.09 0.16 0.25 0.03 0.00 0.02 0.03
2.0 0.00 -0.04 0.02 -0.01 0.13 0.14 0.21 0.29 0.08 0.02 0.08 0.12
2.5 0.05 0.15 0.09 0.03 0.15 0.19 0.26 0.32 0.16 0.09 0.19 0.20
3.0 0.11 0.28 0.19 0.15 0.16 0.23 0.28 0.34 0.23 0.17 0.16 0.25
3.5 0.13 0.27 0.23 0.22 0.14 0.24 0.27 0.31 0.25 0.26 0.26 0.16
4.0 0.08 0.20 0.16 0.18 0.07 0.16 0.16 0.18 0.14 0.11 0.26 0.12

11100



Figure 2: Relative improvement in L1 distance and mean absolute error of quantile
estimates of the �icv- and �icx-order constrained estimator compared to the estimator
under first order stochastic dominance, for n = 500. The solid lines show the improve-
ment when the estimators are computed on the full sample, and the dashed lines for a
subagging variant with 50 subamples of size 250.
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subagging variants of the estimators; see Figure 1 (b) for an illustration of the estimated
quantile curves in the Gamma example. For both estimators, 50 random subsamples
of size 250 = n/2 are drawn from the data, and the conditional CDFs from each fit to
the subsamples are averaged pointwise. It can be seen that the �icv- and �icx-order
constrained estimators benefit more from subagging than the estimator with first order
stochastic dominance. A more detailed comparison of different subagging variants and
results for other sample sizes are given in Appendix D.

5 Case study

It is well known that in the the evaluation of point forecasts, a wrongly specified loss
function, such as the absolute error for comparing mean forecasts, may lead to counter-
intuitive results and distorted forecast rankings (Gneiting, 2011). This causes problems
in the interpretation of economic surveys, where respondents are often asked to issue
point predictions for future quantities, but it is unspecified what functional of their
(hypothetical) predictive distribution is meant. As a remedy, various tests of forecast
rationality, or forecast calibration, have been proposed in the literature. A recent con-
tribution is by Dimitriadis et al. (2019), who develop tests for the hypothesis that a
given point forecast is the mean, median, or mode functional, or a convex combination
of the three. The case study in this section demonstrates that the estimation of con-
ditional distributions can complement such tests to gain additional information for the
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interpretation of point forecasts.
If X denotes a point forecast and Y the observation, the hypothesis of forecast

rationality with respect to a functional T can be defined as X = T [L(Y | X)], where
L(Y | X) denotes the conditional law of Y given the forecast X. This formulation is a
special but important case of equation (2.1) in Dimitriadis et al. (2019), which allows
including additional information available to the forecaster for conditioning. If T is
the mean functional, then forecast rationality is equivalent to the moment condition
E(Y −X | X) = 0. For the median, the corresponding condition is E(1{Y ≥ X} | X) =
0.5, provided that L(Y | X) is a continuous distribution. Based on such conditions,
Dimitriadis et al. (2019) developed asymptotic tests for forecast rationality.

Distributional regression provides a different, more qualitative approach to this prob-
lem. If the conditional distributions L(Y | X = x) were known, one could easily derive
the functional of interest T (x) = T [L(Y | X = x)] and detect violations of forecast ratio-
nality by directly comparing T (x) and x. Estimators with stochastic order restrictions
allow to mimic this ideal situation, without having to impose restrictive or implausi-
ble assumptions on the conditional distributions. For almost any sufficiently precise
point forecast, it is a reasonable assumption that the distributions L(Y | X = x) are
ordered in the increasing concave or convex order or even in first order stochastic dom-
inance. Moreover, estimating L(Y | X) under stochastic order constraints only requires
the ranks of the forecasts X1, . . . , Xn in a sample, but not their values. This makes
a comparison of Xi and T (Xi) sensible, because X1, . . . , Xn themselves have not been
provided to the model. Other estimation methods, such as kernel regression (Li and
Racine, 2008), generally do not have this property.

To illustrate the approach, consider the data example from Section 5.1 of Dimitri-
adis et al. (2019). In the Labor Market Survey by the Federal Reserve Bank of New
York1, respondents are asked three times per year to report their annualized income in
four months. The sample analysed here ranges from March 2015 to November 2019.
Some respondents participate in several rounds of the survey, and only the first round
is included for those individuals which occur several times to obtain independent obser-
vations. Additionally, like in Dimitriadis et al. (2019), observations with very high or
low expected income (above 300’000 or below 1000, 4.0% of the sample; an upper bound
of 1 million was used in Dimitriadis et al. (2019)) are removed since the data is very
sparse and uninformative for such values, as are cases when the ratio of expectation
and income or the inverse ratio is between 9 and 13 (27 instances), which might be
due to misplaced decimal points or erroneously reporting monthly instead of annualized
income. The remaining sample consists of 3161 observations.

Panels (a) and (b) of Figure 3 illustrate the joint distribution of the income ex-
pectations and realizations. There is a strong monotone relationship, and for income
expectations below 50’000, the variability in the realized income decreases as the ex-
pected income increases, in a similar fashion as in simulation example (3) from Section
4. It is therefore questionable if the distributions are increasing with respect to first
order stochastic dominance, but the weaker increasing concave order is an appropri-
ate constraint. To estimate the conditional distributions, a subagging version of the
�icv-order restricted estimator with 50 subsamples of half of the total sample size is
applied. From the estimated distributions, the mean, median, and mode functional are

1Source: Survey of Consumer Expectations, © 2013-2020 Federal Reserve Bank of New York. The
SCE data are available without charge at https://www.newyorkfed.org/microeconomics/sce, and may
be used subject to license terms posted there. The New York Fed disclaims any responsibility for this
analysis and interpretation of Survey of Consumer Expectations data.
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Figure 3: (a) Expected and realized income in the case study. (b) ECDF of the realized
income for binned expectations. The boundaries of the bins are the 0.1 to 0.4-quantile
of the income expectations. (c) Estimated quantile curves (levels 0.1, 0.3, 0.5, 0.7, 0.9).
(d) Mean, median and mode functional computed from the estimated conditional dis-
tributions (for expectations and incomes below 200’000).
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then computed, with the mode taken as the location of the largest jump of the condi-
tional CDFs, which are piecewise constant stepfunctions. Panels (c) and (d) of Figure
3 display estimated quantile curves and the three functionals depending on the income
expectation.

For the mean functional, the forecast rationality test of Dimitriadis et al. (2019)
yields a p-value of 1.7 · 10−12, computed with the R package fcrat available on https:

//github.com/Schmidtpk/fcrat. As can be seen in Figure 3, the conditional mean
curve lies above the bisector for expectations below 25’000, and below the bisector when
the expectation exceeds 75’000, so there is indeed a systematic deviation of the income
expectation from the estimated mean. For the median and the mode functional, the p-
values of the rationality test are 4.5 ·10−8 and 0.93, respectively. This huge difference in
the p-values is in contrast to the curves in Figure 3 (d), where the expected income does
not seem to deviate systematically from either functional. A simulation reveals that in
this particular application, the p-value for the median should indeed be interpreted with
care. By taking the estimated medians as new income expectation and simulating new
observations from the estimated conditional distributions, one obtains datasets which
look similar to the original data, but the income expectation equals the median of the
underlying distribution by construction. Over 10’000 simulations, the rejection rate for
the median rationality test is 0.03, 0.11 and 0.19 at the levels 0.01, 0.05, and 0.10 – the
test is anticonservative. The reason for the non-validity of the median rationality test
is likely to be the discreteness in the data: The realized incomes only take 526 distinct
values with a sample size of n = 3161, and in 22% of the cases the income expectation
is exactly equal to the realized income. Hence the condition E(1{Y ≥ X} | X) = 0.5
may be violated even if X is equal to the conditional median due a point mass of the
conditional distributions at the expected income X.

In conclusion, the �icv-constrained estimator suggests that both median and mode
could rationalize the income expectations, and it confirms that the income expectations
should not be interpreted as a mean forecast.

6 Discussion

In this article, the estimator for conditional distributions under increasing concave order
constraints by El Barmi and Marchev (2009) has been generalized to the K-sample case
and continuous covariates, and uniform rates of convergence have been established. This
augments the current literature on estimation under stochastic order constraints by a
general estimator under a weaker order than first order stochastic dominance.

There are several potential avenues for future work. A natural generalization is to
consider partially ordered instead of real-valued covariates X, like in Henzi et al. (2021c)
for first order stochastic dominance. A careful look at the construction of the estimator
in Section 2 reveals that this is indeed possible, by applying antitonic regression with
respect to the given partial order in the first estimation step. However, a proof of
consistency with partially ordered covariates remains an open task.

For practical applications, the simulation examples in this article suggest that the
�icv- and �icx-order constrained estimators benefit from smoothing. Motivated by the
fact that isotonic regression for the mean may be improved by data splitting and aver-
aging, subsample aggregating was suggested as method to smooth the estimated condi-
tional CDFs. A theoretical analysis of the superefficiency problem studied by Banerjee
et al. (2019) for the case of conditional distribution estimation is desirable, both for first
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order stochastic dominance and for the increasing concave and convex order.
A different approach for smoothing the conditional CDFs would be kernel smoothing.

If K is any CDF, h > 0 a bandwidth and (F̂x)x∈R are the estimators under the increasing
concave or convex order, then

K̂x(y) =

∫ ∞

−∞
K

(
y − t
h

)
dF̂x(t)

is again a CDF. These distributions are increasing in x in the given order by Theorem
4.A.18 of Shaked and Shanthikumar (2007), and smooth in y if the functions K are
smooth. In this approach, the conditional CDFs K̂x are a weighted average of (inte-
grated) kernel functions, with the weights chosen in such a way that the stochastic order
constraints are satisfied. Such a smoothing procedure is also applicable with first order
stochastic dominance or more generally any other stochastic order which is preserved
under convex mixing of distribution functions. The analysis of consistency and opti-
mal bandwidth selection for such estimators would be a valuable contribution to the
literature on estimation under stochastic order restrictions.

Acknowledgements

This work was supported by the Swiss National Science Foundation. The author is
grateful to Johanna Ziegel and Timo Dimitriadis for helpful comments and discussions.

References

Arcones, M. A., Kvam, P. H., and Samaniego, F. J. (2002). Nonparametric estimation of
a distribution subject to a stochastic precedence constraint. Journal of the American
Statistical Association, 97:170–182.

Banerjee, M., Durot, C., Sen, B., et al. (2019). Divide and conquer in nonstandard
problems and the super-efficiency phenomenon. Annals of Statistics, 47:720–757.

Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D. (1972). Statistical
inference under order restrictions. The theory and application of isotonic regression.
John Wiley & Sons, London-New York-Sydney. Wiley Series in Probability and Math-
ematical Statistics.

Brunk, H., Franck, W., Hanson, D., and Hogg, R. (1966). Maximum likelihood estima-
tion of the distributions of two stochastically ordered random variables. Journal of
the American Statistical Association, 61:1067–1080.

Dai, R., Song, H., Barber, R. F., and Raskutti, G. (2020). The bias of isotonic regression.
Electronic Journal of Statistics, 14:801.

Dimitriadis, T., Patton, A. J., and Schmidt, P. (2019). Testing forecast rationality for
measures of central tendency. arXiv preprint arXiv:1910.12545.
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A Greatest convex minorants

Let I ⊆ R be an interval and f : I → R a function. The greatest convex minorant of
f is the pointwise greatest convex function g such that g(x) ≤ f(x) for all x ∈ I. It
exists if and only if f can be bounded from below by an affine linear function, and if the
greatest convex minorant exists, it is unique since the pointwise supremum of convex
functions is again convex. By the same reason, if f1 and f2 are functions with greatest
convex minorants g1 and g2, then f1(x) ≥ f2(x) for all x implies that also g1 ≥ g2.

A standard result about isotonic regression (see e.g. Robertson et al., 1988, Theorem
1.2.1) states that the isotonic regression of z1, . . . , zr with weights w1, . . . , wr > 0, that
is, the minimizer of

r∑

i=1

wi(θi − zi)2

over all θ1 ≤ · · · ≤ θr, equals the left-hand slope of the greatest convex minorant to the
function that results from linearly interpolating

(0, 0),

(
k∑

i=1

wi,

k∑

i=1

wkzk

)
, k = 1, . . . , r.

This result allows to describe right-hand slope of the greatest convex minorant of any
piecewise linear function with finitely many knots.

Lemma A.1. Let f : [t1, tk] → R be piecewise linear with knots at t1 < · · · < tk and
let g be its greatest convex minorant. Then the right-hand slope of g at t1, . . . , tk−1 is
given by the isotonic regression of [f(ti+1) − f(ti)]/[ti+1 − ti] with weights ti+1 − ti,
i = 1, . . . , k − 1.

The following lemma is known as Marshall’s Inequality.

Lemma A.2. Let I ⊆ R be an interval and f : I → R a function, and let g be
the greatest convex minorant of f and h : I → R any convex function. Assume that
‖f − h‖∞ <∞, where ‖ · ‖∞ is the usual supremum norm of functions. Then,

‖g − h‖∞ ≤ ‖f − h‖∞.

Proof. Let ε = ‖f − h‖∞. The function h̃(x) = h(x)− ε is convex and satisfies f(x) ≥
h̃(x) for all x ∈ I by definition of ε. This and the definition of g imply that

f(x) ≥ g(x) ≥ h(x)− ε, x ∈ I.

Since also f(x)− h(x) ≤ ε by the definition of ε, this yields

−ε ≤ g(x)− h(x) ≤ f(x)− h(x) ≤ ε,

and so
‖g − h‖∞ ≤ ε = ‖f − h‖∞.
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B Proofs for Section 2

Proof of Proposition 2.1. Formula (1) shows that M̃xi(y) is decreasing in i and increas-
ing in y when the respective other argument is fixed, and

M̃xi(y) = 0, y ≤ y1, M̃xi(ym + t) = M̃xi(ym) + t, t > 0. (5)

In particular, it follows that the greatest convex minorant M̂xi of M̃xi exists. For
k, j ∈ {1, . . . , d} with k ≤ j, the functions

y 7→ 1
∑j

s=k ws

j∑

s=k

wshs(y).

are piecewise linear with finitely many knots, a property which is preserved when taking
pointwise maxima and minima of finitely many functions. Therefore, the M̃xi are also
piecewise linear. For any i ∈ {1, . . . , d}, y ∈ R and t > 0,

0 ≤ M̃xi(y + t) = min
k=1,...,i

max
j=k,...,d

1
∑j

s=k ws

j∑

s=k

wshs(y + t)

≤ min
k=1,...,i

max
j=k,...,d

1
∑j

s=k ws

j∑

s=k

ws[hs(y) + t] = M̃xi(y) + t,

so 0 ≤ [M̃xi(y + t) − M̃xi(y)]/t, and hence M̂xi(y) is increasing in y. Lemma A.1 and
(5) together with the inequality [M̃xi(y + t) − M̃xi(y)]/t ≤ 1 imply that F̂xi ∈ [0, 1]
with F̂xi(y) = 0 for y < y1 and F̂xi(y) = 1 for y ≥ ym, and F̂xi is continuous from the
right and increasing because is is the right-hand derivative of a convex function. Finally,
M̂xi(y) is decreasing in i because M̃xi(y) is pointwise decreasing in i for all fixed y; see
Appendix A.

C Proofs for Section 3

Proof of Proposition 3.1. The proof is similar to the proof of Corollary 1 in Dümbgen
et al. (2004). With (cn)n∈N from (A), define

An =

{
sup

y∈R, x∈In
|M̃n;x(y)−Mx(y)| < cn

}
.

Then limn→∞ P(An) = 1, and in the following derivations, assume that the inequality

in An holds. In case (i), let vn = c
1/(1+β)
n . For x ∈ In, by convexity of M̂x(·),

M̂n;x(y)− M̂n;x(y − vn)

vn
≤ F̂n;x(y) ≤ M̂n;x(y + vn)− M̂n;x(y)

vn
,

and the same property holds for Fx and Mx instead of F̂n;x and M̂n;x. The function
Mx(·) is convex, so due to Lemma A.2,

sup
y∈R
|M̂n;x(y)−Mx(y)| ≤ sup

y∈R
|M̃n;x(y)−Mx(y)|.
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Combining these facts yields, for any y ∈ Jn,

F̂n;x(y) ≥ M̂n;x(y)− M̂n;x(y − vn)

vn

≥ Mx(y)− |M̂n;x(y)−Mx(y)| −Mx(y − vn)− |M̂n;x(y − vn)−Mx(y − vn)|
vn

≥ Fx(y − vn)− 2cn/vn

≥ Fx(y)− Cvβn − 2cn/vn = Fx(y)− (2 + C)cβ/(1+β)n ,

and similarly

F̂n;x(y) ≤ M̂n;x(y + vn)− M̂n;x(y)

vn
≤ Fx(y) + (2 + C)cβ/(1+β)n .

Thus |F̂n;x(y) − Fx(y)| ≤ (2 + C)c
β/(1+β)
n with on An for x ∈ In and y ∈ Jn, for each

n ∈ N. Under (ii), for y ∈ Z and x ∈ In,

F̂n;x(y) = M̂n;x(y + 1)− M̂n;y(y) ≤Mx(y + 1)−Mx(y) + 2cn = Fx(y) + 2cn,

and analogously F̂n;x(y) ≥ Fx(y)−2cn, which gives |F̂n;x(y)−Fx(y)| ≤ 2cn For y ∈ R\Z,
the same bound is valid since Fx(y) = Fx(byc) and F̂n;x(y) = F̂n;x(byc), where the latter
holds if M̃n;x(y) and M̂n;x(y) are only computed at y ∈ Z and interpolated linearly.

The proof of Theorem 3.2 requires several auxiliary results.

Proposition C.1. Let Z1, . . . , Zk be random variables with values in a non-degenerate
interval [a, b] ⊂ R. Then there exists a universal constant M ≤ 25/2e such that for all
ε > 0,

P

(
sup
z∈R

1√
k

∣∣∣
k∑

i=1

(z − Zi)+ − E[(z − Zi)+]
∣∣∣ ≥ ε

)
≤M exp

( −2ε2

(b− a)2

)

Proof. Let Fi be the cumulative distribution function of Zi. The assumption Fi(z) = 0
for s < a implies that E[(z − Zi)+] =

∫ z
a Fi(z) ds, so

1√
k

∣∣∣
k∑

i=1

(z − Zi)+ − E[(z − Zi)+]
∣∣∣ =

1√
k

∣∣∣
k∑

i=1

∫ z

a
1{Zi ≤ s} − Fi(s) ds

∣∣∣

≤ 1√
k

∫ z

a

∣∣∣
k∑

i=1

1{Zi ≤ s} − Fi(s)
∣∣∣ ds

≤ 1√
k

∫ z

a
sup
u∈R

∣∣∣
k∑

i=1

1{Zi ≤ u} − Fi(u)
∣∣∣ ds

=
1√
k

(b− a) sup
u∈R

∣∣∣
k∑

i=1

1{Zi ≤ u} − Fi(u)
∣∣∣.

Theorem 4.6 of Mösching and Dümbgen (2020b) now yields the result.
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For γ > 0 and z ∈ R, let tγ(z) = min(max(−γ, z), γ). The following inequality,
which follows by simple case distinctions, will be applied several times: For all y, z ∈ R,

|(y − z)+ − (y − tγ(z))+| ≤ (γ + z)− + (z − γ)+, (6)

where (x)− = max(0,−x) and (x)+ = max(0, x) for x ∈ R.

Lemma C.2. Let Z be a random variable such that for some z0 > 0 and all z ≥ z0,

P(|Z| ≥ z) ≤
{
z−λ, for some λ > 1, or

exp(−λz), for some λ > 0.

Then for γ ≥ z0,

E
(

sup
z∈R
|(z − Z)+ − (z − tγ(Z))+|

)
≤
{
γ−λ+1/(λ− 1), or

exp(−λγ)/λ.

Proof. Replacing z by the random variable Z in (6) implies that for all γ ≥ 0,

E
(

sup
z∈R
|(z − Z)+ − (z − tγ(Z))+|

)
≤ E[(γ + Z)− + (Z − γ)+].

To compute the expected value in the upper bound, let F denote the cumulative distri-
bution function of Z. Then,

E[(γ + Z)−] =

∫ −γ

−∞
F (z) ds, E[(Z − γ)+] =

∫ ∞

γ
1− F (z) ds.

This implies

E
(

sup
z∈R
|(z − Z)+ − (z − tγ(Z))+|

)
≤
∫ ∞

γ
F (−s) + (1− F (s)) ds =

∫ ∞

γ
P(|Z| ≥ s) ds.

In the first case, for γ ≥ z0, it holds
∫∞
γ P(|Z| ≥ s) ds ≤ γ−λ+1/(λ − 1). In the second

case, the upper bound is exp(−λγ)/λ.

Proposition C.1 and Lemma C.2 allow to derive an analogous result to Corollary 4.7
of Mösching and Dümbgen (2020b), for which some additional notation is required. For
y ∈ R and r, s ∈ {1, . . . , n}, r ≤ s, define wrs = s− r + 1 and

Mrs(y) =
1

wrs

s∑

i=r

(y − Yni)+, M̄rs(y) =
1

wrs

s∑

i=r

E[(y − Yni)+].

Recall that the estimator M̃n;xi has the representation

M̃n;xi(y) = min
k=1,...,i

max
j=k,...,d

1
∑j

s=k ws

j∑

s=k

wshs(y),

for the distinct values x1 < · · · < xd of Xn1, . . . , Xnn, wi = #{j ≤ n : Xnj = xi}, and

hi(y) =
1

wi

∑

j:Xj=xi

(y − Ynj)+, i = 1, . . . , d.
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For fixed i ∈ {1, . . . , d}, let 1 ≤ r(i) ≤ s(i) ≤ d be indices such that

M̃n;xi(y) =
1

∑s(i)
k=r(i)wk

s(i)∑

k=r(i)

wkhk(y).

Assuming Xn1 ≤ · · · ≤ Xnn, with r̃(x) = min{j ≤ n : Xnj = xr(i)}, s̃(x) = max{j ≤ n :

Xnj = xr(i)}, the estimator M̃n;xi(y) equals

M̃n;xi(y) =
1

s̃(i)− r̃(i) + 1

s̃(i)∑

k=r̃(i)

(y − Ynk)+.

This implies that

max
1≤r≤s≤d

∥∥∥∥∥
1∑s

k=r wk

s∑

k=r

wk(hk −Mxk)

∥∥∥∥∥
∞
≤ max

1≤r≤s≤n
‖Mrs − M̄rs‖∞,

and an asymptotic upper bound for max1≤r≤s≤n ‖Mrs − M̄rs‖∞ is derived below.

Proposition C.3. Let Rn = max1≤r≤s≤nw
1/2
rs ‖Mrs − M̄rs‖∞. Then for any D > 2,

lim
n→∞

P
(
Rn ≤ D log(n)1/2γn

)
= 1,

where

γn =

{
(n log(n))1/λ, under (P),

2 log(n)/λ, under (E).

Proof. For γ > 0, define

u(γ) =

{
γ−λ+1/(λ− 1), under (P),

exp(−λγ)/λ, under (E),
p(γ) =

{
γ−λ, under (P),

exp(−λγ), under (E).

By Lemma C.2, for any y ∈ R and γ ≥ y0,

1

wrs

∣∣∣
s∑

i=r

E[(y − Yni)+]− E[(y − tγ(Yni))+]
∣∣∣ ≤ u(γ).

Also by (P) or (E) and by (6),

P

(
sup
y∈R
|(y − Yni)+ − (y − tγ(Yni))+| > 0

)
≤ P(|Yni| ≥ γ) ≤ p(γ).

This implies that the events

Bn =

{
sup

y∈R,i=1,...,n
|(y − Yni)+ − (y − tγ(Yni))+| = 0

}

satisfy P(Bn) ≥ 1−np(γ). Let γMrs and γM̄rs be defined as Mrs and M̄rs but with the
truncated variables tγ(Yni) instead of Yni. By the above considerations, conditional on
Bn, for any 1 ≤ r ≤ s ≤ n,

‖Mrs − M̄rs‖∞ = sup
y∈R

1

wrs

∣∣∣
s∑

i=r

(y − Yni)+ − E[(y − Yni)+]
∣∣∣ ≤ ‖ γMrs − γM̄rs‖∞ + u(γ)

22 111



Proposition C.1 implies that

P

(
sup
y∈R

w1/2
rs | γMrs(y)− γM̄rs(y)| ≥ ε

)
≤M exp

(−2ε2

(2γ)2

)
.

Replace now γ by

γn =

{
[n log(n)]1/λ, under (P),

2 log(n)/λ, under (E).

This yields

n · p(γn) =

{
n[n log(n)]−λ/λ = log(n)−1,

n exp(−2λ log(n)/λ) = n−1,

and therefore limn→∞ P(Bn) = 1. Also,

n1/2 · u(γn) =

{
n1/2[n log(n)](1−λ)/λ/(λ− 1) = n−1/2+1/λ log(n)1/λ−1/(λ− 1),

n1/2 exp(−2λ log(n)/λ)/λ = n−3/2/λ,

which gives limn→∞ n1/2 · un = 0, using λ > 2 in the first case. For δ > 0, define
εn = 2(1+δ) log(n)1/2γn. Then, for n large enough such that n1/2u(γn) ≤ δ log(n)1/2γn,
and by conditioning on Bn,

P(Rn ≥ εn) ≤
∑

1≤r≤s≤n
P(w1/2

rs ‖Mrs − M̄rs‖∞ ≥ εn)

≤
∑

1≤r≤s≤n
P
(
w1/2
rs ‖ γnMrs − γnM̄rs‖∞ + w1/2

rs u(γn) ≥ εn
)

≤
∑

1≤r≤s≤n
P
(
w1/2
rs ‖ γnMrs − γnM̄rs‖∞ + n1/2u(γn) ≥ εn

)

≤
∑

1≤r≤s≤n
P
(
w1/2
rs ‖ γnMrs − γnM̄rs‖∞ ≥ 2(1 + δ/2) log(n)1/2γn

)

≤ Mn(n+ 1)

2
exp

(
−8(1 + δ/2)2 log(n)γ2n

(2γn)2

)

≤ M

2
exp(2 log(n+ 1)− 2(1 + δ/2)2 log(n))→ 0, n→∞.

Proof of Theorem 3.2, discrete setting (K). For j = 1, . . . ,K, let Aj = {i ∈ {1, . . . , n} :
Xni = j}, and define M̌n;j =

∑
i∈Ai

(y−Yni)+/#Ai. Recall that M̃n;j(y) is the antitonic
regression of (Xni, (y − Yni)+), i = 1, . . . , n. Corollary B of Robertson et al. (1988, p.
42) implies that for all y ∈ R,

max
j=1,...,K

|Mj(y)− M̃n,j(y)| ≤ max
j=1,...,K

|Mj(y)− M̌n,j(y)|

This gives
max

j=1,...,K
‖Mj − M̃n,j‖∞ ≤ max

j=1,...,K
‖Mj − M̌n,j‖∞.

Assume that Xn1 ≤ · · · ≤ Xnn, and define k(j) = max{k ∈ {1, . . . , n} : Xnk = j} for
j = 1, . . . ,K, and k(0) = 0. Then #Aj = k(j)− k(j − 1), and by assumption (K),

min
j=1,...,K

k(j)− k(j − 1)

n
=

#Aj
n
≥ p/2.
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with asymptotic probability one. Since M̌n;j(y) = M(k(j−1)+1),k(j)(y) and w(k(j−1)+1),k(j) =
#Aj , Proposition C.3 implies that, with asymptotic probability one for any D > 2 and
j = 1, . . . ,K,

‖M̌n;j −Mj‖∞ ≤ (w(k(j−1)+1),k(j))
−1/2Rn ≤

(np
2

)−1/2
Rn ≤ Dγn

(
2

p

)1/2( log(n)

n

)1/2

.

With D =
√

8 > 2, the upper bound equals

cn =

{
4p−1/2n−1/2+1/λ log(n)1/2+1/λ, under (P),

8p−1/2λ−1n−1/2 log(n)3/2, under (E).

Proof of Theorem 3.2, continuous setting (C1), (C2). With Proposition C.3, one can
apply the same strategy of proof as for Theorem 3.3 in Mösching and Dümbgen (2020b).
Let δn be a sequence such that limn→∞ δn = 0 and limn→∞ nδn/ log(n) = ∞. By as-
sumption (C1) and by the result in Section 4.3 of Mösching and Dümbgen (2020b),
for all subintervals I ⊆ I of length at least δn and any q ∈ (0, p), the inequality
{i ≤ n : Xni ∈ I} ≥ qnδn holds with asymptotic probability one. Let x ∈ I such
that x− δn ∈ I, and define

r(x) = min{i ≤ n : Xni ≥ x− δn}, j(x) = max{i ≤ n : Xni ≤ x}.

By the above considerations, with asymptotic probability one, r(x) and j(x) are well-
defined, satisfy r(x) ≤ j(x), x − δn ≤ Xnr(x) ≤ Xnj(x) ≤ x, and #{j ≤ n : Xnj ∈
[x− δn, x]} ≥ qnδn. Therefore, for any y ∈ R,

M̃n;x(y)−Mx(y) ≤ M̃n;xj(x)(y)−Mx(y)

= min
k=1,...,i

max
j=k,...,d

1
∑j

s=k ws

j∑

s=k

wshs(y)−Mx(y)

≤ max
n≥s≥j(x)

Mr(x)s(y)−Mx(y)

≤ (qnδn)−1/2Rn + max
n≥s≥j(x)

M̄r(x)s(y)−Mx(y)

≤ (qnδn)−1/2Rn +Mxr(x)(y)−Mx(y) (7)

≤ (qnδn)−1/2Rn + Lδn, (8)

using antitonicity of t 7→ M̃t(y) in the first line, equation (1) in the second line, and
antitonicity of t 7→ Mt(y) in the second-last step. An analogous argument for Mx(y)−
M̃n;x(y) and the asymptotic bound for Rn in Proposition C.3 yield

|M̃n;x(y)−Mn,x(y)| ≤ (qnδn)−1/2 ·D log(n)1/2γn + Lδn.

for D > 2. The convergence rates of these two summands are balanced if δn =

(log(n)/n)1/3γ
2/3
n , and for D =

√
8 and q = p/2, the upper bound equals

cn =

{
[4p−1/2 + L]n−1/3+2/(3λ) log(n)1/3+2/(3λ), under (P),

[4p−1/2 + L](2/λ)2/3n−1/3 log(n), under (E).
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In Section 2, it is suggested to estimate M̃x(y) and M̂x(y) only on a finite grid
t1, . . . , tk. Below is a proof that this indeed does not influence the convergence rates,
provided that t1 = y1, tk = ym, and that the grid is fine enough.

Proof that convergence rates are valid under interpolation. Assume that (A) holds, i.e.

lim
n→∞

P

(
sup

y∈Jn,x∈In
|M̃n;x(y)−Mx(y)| ≥ cn

)
= 0

for some sequences of sets In, Jn ⊆ R. Let m̃n;x be the linear interpolation of M̃n;x com-
puted on this grid. That is, for y ∈ (ti, ti+1], set m̃n;x(y) = λM̃x(ti) + (1− λ)M̃n;x(ti+1)
with λ = (ti+1 − y)/(ti+1 − ti), and m̃n;x(y) = 0 = M̃n;x(y) for y ≤ y1 = t1 and
m̃n;x(y) = M̃n;x(ym) + (y − ym) = M̃n;x(tk) + (y − tk) for y ≥ ym = tk. Then, since
Mx(·) is Lipschitz continuous with Lipschitz constant 1,

|m̃n;x(y)−Mx(y)| ≤
max

(
|M̃n;x(ti)−Mx(ti)|+ |ti − y|, |M̃n;x(ti+1)−Mx(ti+1)|+ |ti+1 − y|

)

for all y ∈ R. Provided that supi=1,...,k−1 |ti− ti+1| ≤ cn, this implies supy∈Jn |m̃n;x(y)−
Mx(y)| ≤ 2cn, so the same convergence rate applies if M̃x(y) and M̂x(y) are evaluated
on a sufficiently fine grid. If Yn1 < · · · < Ynn are independent and admit a density
bounded away from zero on J ⊇ Jn, then the results of Section 4.3 in Mösching and
Dümbgen (2020b) imply that supi=1,...,n−1 |Yni − Yn(i+1)| ≤ cn holds with asymptotic
probability one for the cn from Theorem 3.2, so it is admissible in this case to take the
observed values y1, . . . , ym as the grid.

D Additional figures for Section 4

Figure 4 shows the same comparison as Figure 2 for n = 1000 and n = 1500. In Figures
5 and 6, different variants of subagging are compared. Using more than n/2 of the
total data in subsamples is generally not better than n/2 or less. A higher number of
subsamples improves the subagging variants of the estimators, but the effect diminishes
as the number of subsamples increases.
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Figure 4: Relative improvement in L1 distance and mean absolute error of quantile
estimates of the �icv- and �icx-order constrained estimator compared to the estimator
under first order stochastic dominance, for n = 1000 and n = 1500. The solid lines show
the improvement when the estimators are computed on the full sample, and the dashed
lines for a subagging variant with 50 subamples of size n/2.
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Figure 5: Relative improvement of subagging variants of the �icv- and �icx-constrained
estimators (ICV/ICX) and of the estimator with first order stochastic dominance con-
straints (FSD) compared to the version without subagging. The sample size is n = 1000
fraction of data in each subsample is n/2 = 500.
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Figure 6: Relative improvement of subagging versions of �icv- and �icx-constrained
estimators (ICV/ICX) and of the estimator with first order stochastic dominance con-
straints (FSD), compared to the variant with subsamples of size n/2. The sample size
is n = 1000 and the number of subsamples is 50 for the variants with subagging.

ICV ICX

L1

ICV ICX

dq0.1

ICV ICX

dq0.5

ICV ICX

dq0.9

FSD

L1

FSD

dq0.1

FSD

dq0.5

FSD

dq0.9

S
tudent  (2)

G
am

m
a  (3)

B
eta−

binom
ial  (4)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

−0.4

−0.2

0.0

0.2

−0.4

−0.2

0.0

0.2

−0.6

−0.4

−0.2

0.0

0.2

X

R
el

at
iv

e 
im

pr
ov

em
en

t c
om

pa
re

d 
to

 p
 =

 0
.5

Fraction p of data in each sample (1 = no subagging) 0.4 0.6 0.7 1

28 117



118



Chapter 3

Distributional index models

3.1 Distributional (single) index models

The content of this section is published as

Henzi, A., Kleger, G.-R. and Ziegel, J. F. (2021+). Distributional (single) index models.
Journal of the American Statistical Association, to appear.

The article is followed by its supplementary material. Both are available on https:

//doi.org/10.1080/01621459.2021.1938582.
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Abstract

A Distributional (Single) Index Model (DIM) is a semi-parametric model for dis-
tributional regression, that is, estimation of conditional distributions given covariates.
The method is a combination of classical single index models for the estimation of the
conditional mean of a response given covariates, and isotonic distributional regression.
The model for the index is parametric, whereas the conditional distributions are esti-
mated non-parametrically under a stochastic ordering constraint. We show consistency
of our estimators and apply them to a highly challenging data set on the length of stay
(LoS) of patients in intensive care units. We use the model to provide skillful and
calibrated probabilistic predictions for the LoS of individual patients, that outperform
the available methods in the literature.
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1 Introduction

Regression approaches for the full conditional distribution of an outcome given covariates are
gaining momentum in the literature (Hothorn et al., 2014, and the references therein). They
have already become an indispensable tool in probabilistic weather forecasting (Gneiting
and Katzfuss, 2014; Vannitsem et al., 2018) but also find numerous applications in other
fields such as economics, social sciences and medicine; see e.g. Machado and Mata (2000),
Chernozhukov et al. (2013), Klein et al. (2015), Duarte et al. (2017) and Silbersdorff et al.
(2018).

If the outcome is real-valued, then conditional distributions can be characterized in terms
of their cumulative distribution function (CDF) or quantile function, and various techniques
for the estimation of these objects have been proposed. Foresi and Peracchi (1995) and Perac-
chi (2002) build on the extant methods for the estimation of single quantiles or probabilities
(Koenker, 2005), and suggest to approximate the conditional distribution by a cascade of
regressions for quantiles or for the CDF evaluated at certain thresholds. A drawback of this
approach is that the resulting estimates are not necessarily isotonic (the so-called ’quan-
tile crossing problem’) and thus require correction, for which remedies have already been
developed, see e.g. Dette and Volgushev (2008); Chernozhukov et al. (2010).

A broad class of methods that directly yield well-defined probability distributions are
generalized additive models for location, shape and scale (Rigby and Stasinopoulos, 2005,
GAMLSS). They build on generalized linear models (McCullagh and Nelder, 1989, GLM)
and generalized additive models for the mean (Hastie and Tibshirani, 1990, GAM) but
also allow to model shape and scale parameters as functions of covariates. The GAMLSS
framework has has been extended to Bayesian statistics (Umlauf et al., 2018) and combined
with popular machine learning techniques such as boosting (Thomas et al., 2018), neural
networks (Rasp and Lerch, 2018) and regression forests (Schlosser et al., 2019).

Finally, there are also powerful semi-parametric and nonparametric techniques for the es-
timation of conditional distributions. Fully nonparametric methods estimate the conditional
distribution functions locally, for example by kernel functions (Hall et al., 1999; Dunson
et al., 2007; Li and Racine, 2008), or by partitioning of the covariate space, as in quantile
random forests (Meinshausen, 2006; Athey et al., 2019). A frequently used semi-parametric
distributional regression method is Cox regression (Cox, 1972), which models the hazard rate
of the outcome but also allows to derive its survival function. Conditional transformation
models (Hothorn et al., 2014) assume a parametric distribution for an unknown monotone
transformation of the response, which is estimated along with the model parameters. Hall
and Yao (2005); Zhang et al. (2017) propose semi-parametric methods that reduce the di-
mension of the covariate space by a suitable projection, and then estimate the conditional
distributions non-parametrically given the projections by kernel methods.

We introduce a new approach to distributional regression that can be seen as a combina-
tion of a single index model with isotonic distributional regression (IDR, Henzi et al., 2019).
The dimension reduction of the covariate space achieved by the single index assumption is
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in the spirit of Hall and Yao (2005); Zhang et al. (2017) but the combination with IDR is
new, and has the advantage to be free of any implementation choices or tuning parameters.

Let Y be a real-valued response and X a covariate in some covariate space X . We want
to estimate the conditional distribution of Y given X, that is, LpY | Xq. To expose the main
idea, suppose that X “ Rd. Then, a Distributional (Single) Index Model (DIM) could be

PpY ď y | Xq “ FαJ0 Xpyq, for all y P R, (1)

where α0 P Rd, αJ0X denotes the scalar product between α0 and X, and pFuquPR is a family
of CDFs such that

Fu ĺst Fv if u ď v, (2)

where ĺst denotes the usual stochastic order, that is Fu ĺst Fv if Fupyq ě Fvpyq for all y P R.
We call θpxq “ αT0 x in representation (1) the index (function).

If the parameter α0 in the previous example (1) is known, then a natural method to
estimate the unknown family pFuqu of stochastically ordered CDFs is IDR as introduced
by Henzi et al. (2019), see also Mösching and Dümbgen (2020). IDR is a nonparametric
technique to estimate conditional distributions under stochastic ordering constraints. In
brief, IDR works as follows. Given training data pϑ1, y1q, . . . , pϑn, ynq, where ϑi P Θ for some
partially ordered set Θ, IDR yields the unique optimal vector F̂ “ pF̂1, . . . , F̂nq of CDFs that
minimizes

1

n

nÿ

i“1
CRPSpFi, yiq,

over all vectors pF1, . . . , Fnq of CDFs that respect the stochastic ordering constraints Fi ĺst

Fj if ϑi ĺ ϑj, i, j “ 1, . . . , n. Here, for any CDF F and y P R,

CRPSpF, yq “
ż

R
pF pzq ´ 1ty ď zuq2 dz (3)

is the widely applied proper scoring rule called the continuous ranked probability score
(CRPS, Matheson and Winkler, 1976; Gneiting et al., 2007). If we have a sample px1, y1q,
. . . , pxn, ynq from pX, Y q P Rd ˆ R, we can apply IDR to the training data pαJ0 x1, y1q, . . . ,
pαJ0 xn, ynq, that is, we set ϑi “ αJ0 xi, i “ 1, . . . , n and Θ “ R. This yields a distributional
regression model for pX, Y q that may be used to provide probabilistic predictions for Y given
X, see Henzi et al. (2019, Section 2.5) and Section 4.

DIMs are closely related to generalized linear models, which assume that the conditional
distributions pFuqu belong to a known exponential family of distributions with mean EpY |
X “ xq “ gpαT0 xq, where g is a fixed, strictly monotone link function. In fact, the Gaussian,
Poisson, Gamma and Binomial GLM can be subsumed under the DIM, since they also
satisfy the stochastic ordering constraint on the conditional distributions. Our approach, to
leave the conditional distributions pFuqu unspecified, is already widely applied in classical
regression for the mean, where models of the type EpY | X “ xq “ gpαT0 xq with unknown link
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function g are called single index models. Typically, g is assumed to be a smooth function
and estimated by kernel regression or local polynomial approximation (Härdle et al., 1993)
or local polynomial approximation (Carroll et al., 1997; Zou and Zhu, 2014). More recently,
shape constrained single index models have been considered with monotone (Balabdaoui
et al., 2019a) and convex (Kuchibhotla et al., 2017) link functions. DIMs directly extend
monotone single index models for the mean, since the stochastic ordering assumption on the
conditional distributions implies an isotonic conditional mean function.

There is a vast literature on the estimation of the index in single index models, and we
refer to Lanteri et al. (2020) for a comprehensive overview. In Section 3, we discuss estimators
for the index and the distribution functions in DIMs. Briefly, when IDR is used to estimate
the conditional distribution functions, then it is sufficient to know the index function up to
isotonic transformations, i.e. to find a pseudo index function that approximates the ordering
implied by the true index. This approach is supported by the asymptotic analysis in Section
5, which shows that when a monotone transformation of the estimated index function is
consistent at the parametric rate, then a DIM with that index estimator is consistent.

A major application of distributional regression techniques is forecasting. It has been
recognized in many problems, such as weather prediction or economic forecasting, that point
forecasts are unable to account for the full forecast uncertainty and should be replaced by
probabilistic forecasts (Gneiting and Katzfuss, 2014). Distributional regression methods are
statistical tools to provide such probabilistic forecasts. One fundamental contribution of
DIMs is that they allow to associate a natural distributional prediction to point forecasts:
If a point forecast from a statistical model is taken as the index in a DIM, for example
the estimated conditional expected value, then the DIM naturally extends this deterministic
forecast to a probabilistic one. Moreover, the only prerequisite is an isotonic relationship
between the point forecast and the outcome in a stochastic ordering sense, which is often a
natural and intuitive assumption for reasonable point forecasts.

In Section 6, we use a DIM for predictions in a highly challenging dataset on the length
of stay (LoS) of intensive care unit (ICU) patients. Accurate LoS predictions could serve as
a tool for ICU physicians, for example to plan the number of available beds, or to identify
potential long stay patients at an early stage. Moreover, the same models that are used for
prediction may also be used for risk-adjustment and benchmarking across different ICUs. In
the last twenty years, there have been many approaches to find appropriate regression models
for LoS, see Zimmerman et al. (2006); Moran and Solomon (2012); Verburg et al. (2014) for
some examples and Verburg et al. (2014); Kramer (2017) for literature reviews. The extant
methods typically model the conditional mean and are unsatisfactory when applied for single
patient predictions, since the distribution of LoS is strongly right-skewed with a large variance
even after conditioning on covariates. We therefore argue that LoS predictions should be
probabilistic. In Section 6, we derive calibrated and informative probabilistic forecasts for
LoS, and show that the DIM outperforms existing distributional regression methods in terms
of predictive accuracy.
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2 Distributional index models

In this section, we define the DIM in its most general form. Let Y be a real-valued response,
and let X be covariates in some general space X . The link between X and Y is the index
function θ : X Ñ Rd, where Rd is equipped with some partial order ĺ. Let further pFuquPRd
be a family of CDFs such that Fu ĺst Fv if u ĺ v. The DIM then assumes that

PpY ď y | Xq “ FθpXqpyq. (4)

Due to the stochastic ordering assumption, it directly follows that the conditional distribu-
tions are ordered in the index, that is, θpxq ĺ θpx1q implies Fθpxq ĺst Fθpx1q.

We assume further that the function θ belongs to a finite dimensional vector space F ,
i.e. a parametric model for θ. If θ1, . . . , θp are a basis of F and if d “ 1, then we recover the
form PpY ď y | X̃ “ x̃q “ FαT0 x̃pyq, where x̃ “ pθ1pxq . . . , θppxqq, and hence, the analogy to
single index models. However, the estimation procedure suggested in the next section can
be applied with any dimension d and any partial order ĺ on Rd.

3 Estimation

Having motivated and formalized the DIM, we propose a method for estimation. Assume
that a training dataset pxi, yiq, i “ 1, . . . , n, of independent realizations of pX, Y q satisfying
the model assumption (4) is available.

In principle, it would be desirable to have a simultaneous estimator for both the index and
the distribution functions. In Section 5, we show that simultaneous estimation is possible
theoretically, but computationally infeasible. The method we propose here, and for which we
provide asymptotic results, is a two-stage estimation in which first the index θ is estimated,
say by θ̂, and then the conditional CDFs based on pairs pθ̂pxiq, yiq. This is inspired by the
’plug-in estimators’ for monotone single index models suggested in Balabdaoui et al. (2019a).
The estimation procedure is straightforward and reads as follows:

1. Estimate θ with some estimator θ̂ on the data pxi, yiqni“1,
2. compute the in-sample predictions ϑi “ θ̂pxiq, i “ 1, . . . , n,

3. estimate the distribution functions F̂u, u P Rd, using pϑi, yiqni“1.
In the next two subsections, we reverse the order of the estimation procedure and first

suggest our method for Step 3, because this has important implications for the choice of the
index estimators in Step 1.
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3.1 Isotonic distributional regression

Because of model assumption (4), we seek an estimator F̂u, u P Rd, such that F̂u ĺst F̂v if
u ĺ v, i.e. F̂upyq ě F̂vpyq for all y P R and given u, v. For fixed y, this suggests to define

F̂̂F̂F “ pF̂ϑ1 , . . . , F̂ϑnq as

F̂̂F̂F pyq “ argmin
ηkěηl if ϑkĺϑl

nÿ

i“1
pηi ´ 1tyi ď yuq2. (5)

It turns out that (5) indeed yields a collection of well-defined conditional CDFs, and this
estimator is called the IDR in Henzi et al. (2019). By Henzi et al. (2019, Theorem 2.2), IDR
can equivalently be defined in terms of conditional quantile functions, q̂̂q̂q “ pq̂ϑ1 , . . . , q̂ϑnq,
where

q̂̂q̂qpαq “ argmin
βkďβl if ϑkĺϑl

nÿ

i“1
p1tyi ď βiu ´ αqpβi ´ yiq (6)

for any α P p0, 1q, and the argmin is defined as the componentwise smallest minimizer if
it is not unique. IDR estimates the conditional distributions non-parametrically under the
stochastic order constraints. For IDR, the index u can take values in any partially ordered
set Θ. The particular choice of the loss functions, i.e. the squared error for the estimation of
probabilities in (5) and the classical quantile loss function in (6), is in fact irrelevant here:
Any other consistent loss function for the expectation or quantiles would yield the same
result (Henzi et al., 2019; Jordan et al., 2019).

The above estimators are defined when the index u (in F̂u or q̂u) is in tϑ1, . . . , ϑnu Ď
Θ. The CDFs or quantile functions for an arbitrary u can be derived by interpolation of
F̂ϑ1 , . . . , F̂ϑn or q̂ϑ1 , . . . , q̂ϑn for Θ “ R, and a suitable generalization thereof for general
partially ordered Θ (Henzi et al., 2019, Section 2.5).

The following proposition is a direct consequence of the above formulas. It shows in-
variance properties of IDR, which make it a suitable method for estimating the conditional
distributions in DIMs. We use the notation F̂upy; ϑϑϑ,yyyq and q̂upα; ϑϑϑ,yyyq for the IDR CDFs
and quantile functions estimated with training data ϑϑϑ “ pϑkqmk“1 and yyy “ pykqmk“1.
Proposition 3.1 (Invariance of IDR). Let yyy “ pykqmk“1 P Rm and ϑϑϑ “ pϑkqmk“1 P Θm, and let
Θ1 be a partially ordered set with order ĺ1. Let further g : Θ Ñ Θ1 be such that ϑk ĺ ϑl if
and only if gpϑkq ĺ1 gpϑlq and h : R Ñ R be strictly increasing. Define gpϑϑϑq “ pgpϑkqqmk“1.
Then, for j “ 1, . . . ,m, y P R, α P p0, 1q,

q̂gpϑjqpα; gpϑϑϑq, hpyyyqq “ hpq̂ϑjpα;ϑϑϑ,yyyqq, F̂gpϑjqphpyq; gpϑϑϑq, hpyyyqq “ F̂ϑjpy;ϑϑϑ,yyyq.
Proposition 3.1 shows that when IDR is used to estimate the conditional distributions in

Step 3, then it is sufficient to know the index θ up to increasing transformations. Moreover,
any isotonic transformation can be applied to the response Y to simplify the estimation of θ
in Step 1, and then reverted by its inverse, without affecting the estimation of the conditional
distributions. Hence, the task of estimating the index function θ is simplified to finding an
estimator for a pseudo index that induces the same ordering on θpxiq, i “ 1, . . . , n.
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3.2 Index estimators

A simple but effective way to estimate the index in DIMs are classical generalized linear
models. This might be surprising, because it seems that a parametric assumption has to be
imposed on the distribution functions pFuqu for this approach. However, due to the invariance
of DIMs under monotone transformations (Proposition 3.1), it is sufficient that such a para-
metric assumption holds only approximately, in the sense that a monotone transformation of
the index estimator converges to the index function; see Assumption (A4) in Section 5. The
only requirement is that the linear predictor of the GLM exhibits an isotonic relationship
with the outcome. This can be verified by the rank correlation between the index and the
outcome, or by plots of the empirical distribution of the outcome stratified according to the
index. A further advantage of this approach is that GLMs are well-understood, implemented
efficiently in nearly every statistical software, and one can directly build on extant literature
from non-distributional regression to find a suitable index estimator. The effectiveness of
GLMs in the context of DIMs is demonstrated in the data application in Section 6.

Another powerful tool for index estimation in DIMs is quantile regression (Koenker,
2005). The stochastic ordering of the conditional distributions in DIMs is equivalent to the
assumption that the conditional quantile functions qθpxqpαq are increasing in the index θpxq
for every α P p0, 1q. One can thus estimate one or several quantiles by quantile regression,
e.g. the median and/or the 90% quantile, and obtain estimates of the complete distribution
by taking this (these) quantile(s) as the index (vector) in a DIM. Compared to the direct
application of quantile regression for the estimation of conditional distributions, one does not
need to specify a grid of quantiles over the whole unit interval and correct quantile crossings,
but can focus on the estimation of a small number of quantiles that reveal the ordering of
the conditional distributions.

In the case of a distributional single index model FθpXqpyq “ FαT0 Xpyq, that is a DIM
with d “ 1, one might estimate the index α0 via methods for single index models. For the
monotone single index model, efficient estimators have been developed recently (Balabdaoui
et al., 2019b; Balabdaoui and Groeneboom, 2020). Index estimators for the single index
model, such the one proposed in Lanteri et al. (2020), also allow for non-monotone relation-
ships between the index function αT0 x and the response, and hence monotonicity should be
checked carefully. Compared to GLMs as a pseudo index, single index models gain flexi-
bility by not assuming any fixed functional form of the relationship between αT0X and the
outcome Y . The drawbacks are that it is more difficult to accommodate high dimensional
categorical variables and to let numeric covariates enter the index-function in a non-linear
fashion, e.g. via polynomial or spline expansions, which is essential in our data application
on ICU LoS. Since the DIM is already invariant under monotone transformations of the
index function, it is questionable whether the benefits of using single index methods surpass
these drawbacks. The same concerns are also valid for estimation methods for distributional
single index models in the spirit of Hall and Yao (2005), which requires a notion of distance
on the covariate space and is hence not directly applicable when categorical covariates are
present.
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3.3 Extension: Sample splitting and bagging

The estimation procedure suggested so far uses in-sample predictions with the estimated
index function, θ̂pxiq, as covariates for distributional regression with IDR. Depending on
the index estimator, this strategy may be prone to overfitting. As a remedy, we propose a
procedure in the spirit of (sub)sample aggregation (bagging).

Instead of estimating both the index function and the conditional distributions on the
whole dataset, one may split the data (randomly) into two separate parts for these tasks,
say D1 “ t1, . . . , tnξuu and D2 “ ttnξu ` 1, . . . , nu for some ξ P p0, 1q. The index function
is estimated with pxi, yiq, i P D1, and the second part of the data with the out-of-sample
predictions θ̂pxjq, j P D2, serves as training data for IDR. To avoid that the estimated
distribution functions depend on the random split of the training data, this procedure should
be repeated several times, every time with a different split of the training data, and the
conditional distribution functions are averaged in the end. The application of (sub-)sample
aggregating ((sub-)bagging) has already been suggested in Henzi et al. (2019) in conjunction
with IDR, where it yields smoother distribution functions and (in the case of subagging)
reduces the computation time for larger datasets with multivariate covariates (d ě 2). These
advantages can also be expected for the DIM. In addition, the consistency result (Theorem
5.1) still holds under sample splitting when the data is split into D1 and D2 at a constant
fraction ξ P p0, 1q.

4 Prediction

This section reviews basic tools for the evaluation of probabilistic forecasts, and related prop-
erties of DIMs when used for forecasting. We denote by F a generic, random probabilistic
forecast for a random variable Y , and all probability statements are understood with respect
to the joint distribution of F and Y , which we denote by P. For the distributional index
model, the randomness of F “ FθpXq is fully captured in the index θpXq.

As argued in Gneiting et al. (2007), calibration is a minimal requirement for probabilistic
forecasts, meaning that the forecast should be statistically compatible with the distribution
of the response. Of particular interest for DIMs is threshold calibration, requiring

PpY ď y | F pyqq “ F pyq, y P R. (7)

It is shown in Henzi et al. (2019) that IDR, and hence also the DIM, is always in-sample
threshold calibrated, that is, (7) holds when P is the empirical distribution of the training
data used to estimate the distribution functions. Threshold calibration can be assessed by
reliability diagrams (Wilks, 2011), in which estimated forecast probabilities F̂ pyq are binned
and compared to the observed event frequencies in each bin. Another prominent tool for
calibration checks is the probability integral transform (PIT)

Z “ F pY´q ` V pF pY q ´ F pY´qq , (8)
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where V is uniformly distributed on r0, 1s and independent of F and Y , and F py´q “
limzÒy F pzq. If Z is uniformly distributed, then the forecast F is said to be probabilistically
calibrated. The PIT can be used to identify forecast biases as well as underdispersion and
overdispersion (Diebold et al., 1998; Gneiting et al., 2007).

Among different calibrated probabilistic forecasts, the most informative forecast is ar-
guably the one with the narrowest prediction intervals. This property, which only concerns
the forecast distribution F , is referred to as sharpness (Gneiting et al., 2007). Sharpness
and calibration are often assessed jointly by means of proper scoring rules (Gneiting and
Raftery, 2007), which map probabilistic forecasts and observations to a numerical score. An
important example is the CRPS defined at (3). IDR enjoys in-sample optimality among
all stochastically ordered forecasts with respect to a broad class of proper scoring rules,
including the CRPS and weighted versions of it, that is,

CRPSµpF, yq “
ż

R
pF pzq ´ 1ty ď zuq2 dµpzq,

where µ is a locally-finite measure. This emphasizes that IDR is a natural way to estimate
the probability distributions in DIMs, since it is not tailored to a specific loss function.

5 Consistency

5.1 Two stage estimation

We work with a triangular array of random elements pXni, Yniq P X ˆ R, i “ 1, . . . , n, and
assume that for all n, the following hold:

(A1) The random elements Xni, i “ 1, . . . , n, are independent and identically distributed,
and Yni, i “ 1, . . . , n, are independent conditional on pXniqni“1 with

PpYni ď y | Xniq “ FθpXniqpyq,
where θ : X Ñ R is a function and pFuquPR is a family of distributions such that
Fu ĺst Fv if u ď v.

(A2) There exists a constant L ą 0 such that for all u, v, y P R,

|Fupyq ´ Fvpyq| ď L|u´ v|.

(A3) On an interval I, the random variables θpXniq admit a density with respect to the
Lebesgue measure which is bounded from below by C1 ą 0 and from above by C2.

(A4) There exist a strictly increasing function g : RÑ R and a constant C0 ą 0 such that

lim
nÑ8P

ˆ
sup
xPX

|gpθ̂npxqq ´ θpxq| ě C0plogpnq{nq1{2
˙
“ 0.
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We denote by F̂n;u the IDR estimator computed with training data pθ̂npXnjq, Ynjqnj“1, i.e.

F̂n;upyq “ F̂upy; pθ̂npXnjqqnj“1, pYnjqnj“1q,
with the notation of Section 3.1.

Theorem 5.1 (Consistency of DIM). Under assumptions (A1)-(A4), there exists a constant
C ą 0 such that

lim
nÑ8P

ˆ
sup

yPR,xPXn
|F̂n;θ̂npxqpyq ´ Fθpxqpyq| ě C

´ log n

n

¯1{6˙ “ 0,

where Xn “ tx P X : rθpxq ˘ plog n{nq1{6s Ď Iu.
An analogous result to Theorem 5.1 can be shown for the variant of the DIM with sample

splitting described in Section 3.3. The requirements under sample splitting are slightly
weaker, namely, the density of θpXniq does not have to be bounded from above in (A2), and
in (A4), it is sufficient that the index estimator θ̂n converges at a rate of opplogpnq{nq1{3q
instead of n´1{2. The resulting convergence rate of the DIM with sample splitting is of order
at least plogpnq{nq1{3. The proofs of Theorem 5.1, both, with and without sample splitting,
rely on the consistency results about the monotonic least squares estimator in Mösching and
Dümbgen (2020), and are given in Appendix A.

Assumption (A1) is the basic model assumption of DIMs. The Lipschitz-continuity in
(A2) also appears in the monotone single index model for the mean (Balabdaoui et al.,
2019a). Since the distributional single index model and the monotone single index model
are equivalent when Y is binary, the Lipschitz assumption (A2) is natural in this context;
also (A3) can be derived from the assumptions in Balabdaoui et al. (2019a). Assumptions
(A2) and (A3) are required for the consistency of the monotone least squares estimator,
with (A3) ensuring that the ’design points’ θpXnjq are dense enough in a region of interest,
c.f. Mösching and Dümbgen (2020). A parametric model θ “ α1θ1 ` ¨ ¨ ¨ ` αpθp satisfies this
assumption when at at least one of the summands αiθi admits a continuous distribution on I
with density bounded away from zero. In (A4), we require uniform consistency of a monotone
transformation of the index estimator at a rate of n´1{2, i.e. not necessarily consistency of
the index estimator itself. In a parametric model θ “ α1θ1` ¨ ¨ ¨ `αpθp, uniform consistency
is satisfied for any

?
n-consistent estimator of the coefficients α1, . . . , αp, when the functions

θ1, . . . , θp are bounded. All estimators suggested in Section 3.2 are consistent at the rate
n´1{2 under suitable conditions.

5.2 Simultaneous estimation

In this subsection, we treat the question to what extent simultaneous estimation of the index
and the distribution functions is possible and sensible in the DIM. Currently, the results are
of theoretical interest only.
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It has been shown in Balabdaoui et al. (2019a) that for the monotone single index model,
there exists a simultaneous minimizer pψ0, α0q of the squared error

nÿ

i“1
pψ0pαT0 xiq ´ yiq2

where ψ0 : R Ñ R is an increasing function, α0 P tx P Rp : }x} “ 1u is the index, and
pxi, yiq P Rp ˆ R, i “ 1, . . . , n. The minimizer is in general not unique.

A similar result also holds in the distributional index model, when the loss function is
defined as

lpθ̂, F̂̂F̂F q “
nÿ

i“1
CRPSpF̂θ̂pxiq, yiq. (9)

For basis functions θ1, . . . , θp of the vector space F containing the true index function θ,

every index estimator θ̂ : X Ñ Rd can be written as θ̂ “ α̂1θ1 ` ¨ ¨ ¨ ` α̂pθp. The loss (9)

has a unique minimizer F̂̂F̂F “ pF̂θ̂pxiq, . . . , F̂θ̂pxnqq for fixed θ̂, namely the IDR. This minimizer

only depends on θ̂ via the partial order on the points θ̂pxiq, i “ 1, . . . , n. But the number of
partial orders on n points is finite, and so there exists a minimizer of (9).

In general, the number of partial orders induced by index functions θ̂ is too large for a
direct minimization of (9) to be possible: When X “ Rp and θ1, . . . , θp are the coordinate
projections, then the number of total orders grows at a rate of n2pp´1q (Balabdaoui et al.,
2019a). Moreover, when the index space is partially but not totally ordered, trivial solutions
(a perfect fit to the training data) may appear, namely if the points θ̂pxiq, i “ 1, . . . , n, are
all incomparable in the partial order. Hence, the simultaneous estimation of the index and
the distribution functions in DIMs is generally not feasible. A related interesting question
for further research is to find a way to directly parametrize and estimate partial orders for
isotonic or isotonic distributional regression, instead of indirectly via an index function.

6 Data application

We apply a DIM to derive probabilistic forecasts for intensive care unit (ICU) length of stay
(LoS) based on patient information available 24 hours after admission. The main difficulty
of such predictions is that, even conditional on many demographic and physiologic patient
specific covariates, there is often great uncertainty in the LoS. In addition to unknown factors
(e.g. frailty status, patient or family wishes), the LoS also depends on non-patient-related
information such as ICU organization and resources. We therefore model the LoS using data
of single ICUs rather than a merged dataset, thus keeping the ICU-related variables fixed.
This allows forecasts within each single ICU as well as the comparison of the forecasted LoS
of patients across ICUs. The same methodology can also be used on a joint dataset of several
ICUs, giving a reference LoS forecast on the combined case-mix. Using these predictions for
risk-adjustment and benchmarking is promising but goes beyond the scope of this paper.
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All computations in this application were performed in R 4.0 (R Core Team, 2020) using
the packages mgcv (Wood, 2017) for the estimation of index models and Cox proportional
hazards regression, quantreg (Koenker, 2020) for quantile regression, and isodistrreg

(Henzi et al., 2019, https://github.com/AlexanderHenzi/isodistrreg) for IDR.

6.1 Data and variables

Since 2005, the Swiss Society of Intensive Care Medicine collects ICU key figures and in-
formation on patient admissions in the Minimal Dataset of the Swiss Society of Intensive
Care Medicine (MSDi). Our analysis is based on a part of this dataset suitable for LoS
predictions, namely, we include 18 out of 86 ICUs which, after the application of selection
criteria described below, include more than 10’000 patient admissions. The codes used as
identifiers for the ICUs were generated randomly. The sample sizes range from 10’041 to
36’865 with an average of 17’181 observations per ICU. The cutoff of 10’000 is based on our
experience with IDR and probabilistic forecasts in general, which require sufficiently large
datasets for a meaningful and stable evaluation, especially when the models involve large
numbers of covariates and a skewed response variable, as it is the case here. However, the
prediction methods can also be applied to smaller datasets.

Based on literature review, we identified the variables described in Table 1 as relevant
for LoS forecasts (Zimmerman et al. (2006); Verburg et al. (2014, Table S1); Niskanen et al.
(2009)). We exclude patients that were transferred from or to another ICU, because their
LoS is incomplete. As in Zimmerman et al. (2006), we also remove patients younger than 16
years and patients admitted after transplant operations or because of burns. Patients with
missing values in the variables in Table 1 are excluded, too.

Table 1 documents at what time after admission the relevant covariates for LoS predic-
tions are available. While all variables are available 24 hours after patient admission, the
information is completed also for patients staying at the ICU less than one day. For exam-
ple, ICU interventions within the first 24 hours are then only interventions performed until
patient discharge, and the SAPS II is computed based on the worst physiological values until
discharge instead of the worst values in the first 24 hours at the ICU.

In preliminary tests, we found that for probabilistic LoS forecasts, the usual definition
of LoS as the time between patient admission and discharge is problematic, because most
ICUs discharge patients during specific time windows, but the admission times are spread
throughout the day. As a consequence, it may happen that the predicted LoS for certain
patients does not conform with the discharge practice of a ICU, e.g. there might be a high
predicted probability for a patient being discharged around midnight but the ICU actually
discharges patients in the early afternoon. To circumvent this problem, we decided to mea-
sure the LoS as the time between the next midnight after patient admission until discharge,
thereby standardizing all admission to the same (day)time and revealing the true pattern
in the patient discharge times; see Figure 1. All results in this section use this definition of
the LoS. Patients who do not stay over at least two calendar days are excluded, which is
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Figure 1: Empirical distribution functions of the standardized and non-standardized LoS for
selected ICUs. The standardized LoS is defined as Y ´ 1 ` h{24, where h is the admission
hour of a patient and Y is the non-standardized LoS, i.e. the time between patient admission
and discharge. Only patients with positive standardized LoS are included.
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unproblematic since in practice, the data required for predictions is only available 24 hours
after admission and the forecast should be conditioned on the event that the patient already
stayed at the ICU for 24 hours. Forecasts for the non-standardized LoS, i.e. the time between
admission and discharge, can be derived via the relation

PpY ą 1` t|Y ą 1q “ PpỸ ą t` h{24|Ỹ ą 0q
PpỸ ą h{24|Ỹ ą 0q ,

where Y and Ỹ “ Y ´ 1`h{24 denote the LoS and the standardized LoS measured in days,
respectively, and h the admission hour of a given patient. Since only patients staying at
least until midnight of the admission day are used as training data, our LoS forecasts are
conditioned on the event tỸ ą 0u in the above equation.

We select the most recent 20% of the observations in each ICU for model validation,
thereby mimicking a realistic situation in which past data are used to predict the LoS of
present and future patients. This implies that forecasts might be inaccurate if the relation-
ship between the covariates and LoS changes over time, and it is part of our analysis to check
to what extent past data can be reasonably used to predict the LoS of future patients. Of
the remaining data, randomly selected 75% are used for model fitting and 25% for model se-
lection via out-of-sample predictions. All comparisons of different variants of a distributional
regression model were performed by such out-of-sample predictions.

6.2 Derivation of DIM

To derive an index estimator for the DIM, we can benefit from the comparisons of regression
models for point forecasts for LoS in the extant literature. Moran and Solomon (2012) and
Verburg et al. (2014) found that a Gaussian linear regression for the expected log-LoS is
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suitable for point forecasts, and we use this as our candidate for the index estimator and
will refer to it as the ’lognormal index model’. We use the transformation y ÞÑ logpy ` 1q,
which results in more symmetric distributions than the logarithm. All variables from Table
1 were included in the model, and the effects of the continuous variables age, SAPS and
NEMS were modeled by cubic regression splines. Interactions of variables were explored
but not included in the final model. We also tested whether merging factor levels with few
observations improved the model, but the untransformed covariates yielded the best forecasts
in out-of-sample predictions on the part of the data used for model selection.

We tested two other index estimators for the expected LoS to investigate the robustness
of the DIM with respect to the index. The first one estimates the expected log-LoS under the
assumption of a scaled t-distribution. The mean is modeled as a function of the covariates,
with the same specification as for the lognormal index model, and the degrees of freedom
are estimated, with a minimal threshold of 5 to ensure stability. This model is structurally
similar to the lognormal index model, but more robust with respect to outliers, which occur
even after the log-transformation. The second alternative is a gamma regression for the
untransformed LoS with logarithm as the link function. While the three index models yield
different predictions on the scale of the LoS, they largely agree when only the ordering of
the predictions is considered: Over the 18 ICUs, the rank correlation between predictions
by two of the models is 0.98 on average with a minimum of 0.86. As a consequence, there is
no significant difference between the corresponding DIM forecasts: Evaluated on the dataset
for model selections, the average CRPS over all ICUs of DIM forecasts based on different
models only differs by up to 0.01, while the averages are around 1.40. The predictions based
on the lognormal index model achieved the best results in most ICUs and were therefore
selected for the predictions on the validation data.

Due to the large training datasets, splitting of the training data as described in Section
3.3 only has a marginal effect on the predictions. Estimating the index function on the full
training data and the conditional distributions on in-sample predictions only increased the
average CRPS by 0.01 (on 1.40), compared to a bagging approach with 100 random splits
of the training data into equally sized parts for the estimation of the index and the CDFs.
For the final evaluation, we show the results of the simpler variant without bagging.

Figure 2 illustrates how to perform a check of the stochastic ordering assumption of
the DIM: We bin the observed LoS according to the index value, and plot the empirical
cumulative distribution functions (ECDFs) of the LoS in each bin. By varying the positions
and sizes of the bins, it can be seen that the empirical distributions are indeed sufficiently
well ordered. The Spearman correlation between the index and the observed LoS is 0.53 on
average over all ICUs (range 0.40´0.65), which confirms that there is an isotonic relationship
between the index and the actual LoS for most ICUs, taking into account the high uncertainty
in the LoS of ICU patients even conditional on patient information collected at the first day.
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Figure 2: (a) Index function and logpLoS ` 1q for selected ICUs. (b) ECDFs of the LoS
stratified into the bins given by the vertical shaded stripes in panel (a).
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6.3 Alternative regression methods

We compare the DIM to two other distributional regression methods: A Cox proportional
hazards model (Cox, 1972) and quantile regression with monotone rearrangement (Koenker,
2005; Chernozhukov et al., 2010). For both, we use the same variables and specifications as
in the index estimator for the DIM, which was superior compared to other variants tested;
detailed results are provided in the supplementary material.

A Cox proportional hazards model is a classical choice for modeling survival times, and
it shares some similarities with a DIM. Both models are semi-parametric and based on
stochastic order restrictions on the conditional distributions, namely the usual stochastic
ordering in the DIM and the hazard rate order in Cox regression, which is stronger than
the usual stochastic order (Shaked and Shanthikumar, 2007, Theorem 1.B.1). While the
distribution functions are estimated non-parametrically in Cox regression, the relationship
between different conditional distributions is modeled parametrically via the hazard ratio,
as opposed to the DIM, where only the ordering on the conditional distributions is modeled
parametrically by the index function.

Quantile regression, on the other hand, imposes less assumptions on the conditional dis-
tributions. The conditional quantiles are modeled separately and satisfy no stochastic order
constraints. In particular, if there are strong violations of the stochastic order assumptions
of the DIM or Cox regression, we would expect that the more flexible quantile regression
achieves better forecasts by fitting crossing quantile curves for different patients. This allows
an informal check of the underlying assumptions of Cox regression and the DIM (see Figure
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Figure 3: Predictive CDFs for four selected patients based on the training data of the ICU
the patients were admitted to.
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S1 in the supplementary material). We use a grid of quantiles from 0.005 to 0.995 with steps
of 0.001, which gave better results than a coarser grid with steps of 0.01.

We also tested fully parametric models of GAMLSS type, and kernel methods as imple-
mented in the np package in R (Hayfield and Racine, 2008). Unfortunately, we could not
find a sufficiently flexible parametric family for a GAMLSS, and the application of kernel
methods was not feasible due to computational problems with the large datasets and high
numbers of covariates. As for the DIM, computation is obviously more demanding than
for fully parametric methods, but still fast thanks to the sequential implementation of IDR
described in Henzi et al. (2020). On a personal computer with Intel(R) Core i7-8650 CPU,
computation with the lognormal index model without bagging takes 3 seconds for the small-
est ICU (6’024 observations in training dataset) and 25 seconds for the largest ICU (22’219
observations). Estimation and prediction on the total dataset (all 18 ICUs) require about
2.5 minutes.

6.4 Results

Figure 3 illustrates the probabilistic forecasts for different patients based on the training data
of the ICU the patients were admitted to. Patient 1, male, 32 years old, was admitted because
of a severe sepsis or septic shock. Patient 2 is a 67 years old female with aortic aneurysm
or aortic dissection, Patient 3 is 58 years old, male with a metabolic decompensation, and
Patient 4 is a 78 old female admitted from a high dependency unit with subarachnoidal
hemorrhage. Patient 2 has the shortest predicted LoS: The DIM and Cox regression predict
that she leaves the ICU at the first day after admission with a probability of almost 75%.
For the remaining patients, the predictive CDFs are more skewed, and a LoS of more than
three days is not unlikely. It is immediately visible that the DIM and Cox regression are
able to recover the pattern in the ICU discharge times, with flat pieces of the CDFs around
midnight. Quantile regression, on the other hand, merely interpolates this pattern.
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Figure 4: Reliability diagrams of probabilistic forecasts for the predicted probability
that the LoS exceeds 1, 5, 9, 13 days. The forecast probability is grouped into the bins
r0, 0.1s, p0.1, 0.2s, . . . , p0.9, 1s and the observed frequencies are drawn at the midpoints of the
bins. Only bins with more than two observations are included.
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Table 2: Summary statistics (mean, median and standard deviation) of numeric variables in
the dataset.

ICU LoS Age NEMS SAPS

mean med. sd mean med. sd mean med. sd mean med. sd
ICU44 3.9 1.5 7.8 59.0 61 17.6 27.1 27 8.5 34.0 31 18.9
ICU65 1.8 0.6 4.3 67.2 69 13.9 25.5 25 7.9 28.7 28 12.5
ICU76 4.3 1.7 7.2 63.2 66 15.6 30.3 30 8.3 41.2 40 17.2
ICU77 1.8 0.6 3.2 65.0 68 15.9 21.9 18 8.0 31.1 28 16.1
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Figure 5: PIT histograms of the probabilistic forecasts with bins of width 1{20.
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Here, detailed results are only shown for the best and worst two ICUs with respect to
the CRPS of the DIM forecasts; see the supplementary material for tables and figures for all
ICUs. Summary statistics of the LoS and other numeric variables for the patients of these
ICUs are given in Table 2. All probabilistic regression methods can reliably predict the
probability that the LoS exceeds k “ 1, 5, 9, 13 days; see Figure 4. Figure 5 shows that the
forecasts achieve a better probabilistic calibration than the ECDF of the LoS in the training
data, which is uninformative as a forecast and does not take into account changes in the ICU-
case mix that are reflected in the covariates. Further improvements of calibration may be
possible by selecting a tailored training dataset, taking into account organizational changes,
and developments in treatments that have an influence on the LoS or on the relationship
between covariates and the LoS. Such information is not available in our dataset.

While all three distributional regression methods yield similar results in terms of cali-
bration, there is a clear ranking with respect to forecast accuracy: In all ICUs, the DIM
achieves the lowest CRPS, followed by quantile regression in second and Cox regression in
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third place. For comparison, Table 3 also shows the CRPS of the ECDF forecast, and of
the deterministic point forecast of the lognormal index model, which is its mean absolute
error. Interestingly, the ECDF forecast achieves a lower mean CRPS in all ICUs (average
improvement of 13%) than the point forecast, although it does not take any covariate in-
formation into account. This highlights the superiority of even simple probabilistic forecast
over point forecasts in the context of ICU LoS. A further average improvement of 13% in
the mean CRPS is achieved when going from the uninformative ECDF forecast to the worst
of the probabilistic regression methods in terms of CRPS, which is Cox regression. The
differences in the CRPS of the forecasts using distributional regression methods are smaller,
but consistent over the ICUs: In terms of average CRPS, quantile regression outperforms
Cox regression in 15 out of 18 ICUs, and the DIM outperforms Cox regression in all and
quantile regression in all except 2 ICUs. The difference in CRPS between the DIM and
quantile regression is highly significant when tested with Wilcoxon’s signed rank test except
for the ICUs with identifiers 19 and 33, where the p-values are 0.101 and 0.219 and quantile
regression achieves lower average scores. Wilcoxon’s signed rank test was applied because
the CRPS differences are heavy-tailed, so a t-test is not appropriate (see Figure S6 in the
supplementary material).

In conclusion, with distributional regression methods and especially the DIM, it is possible
to obtain reliable, reasonably well calibrated, and informative probabilistic forecasts for ICU
LoS in a realistic setting. These forecasts are not only more informative than point forecasts,
but also reduce the forecast error by more than 25%.

7 Discussion

In this paper, we have introduced DIMs as intuitive and flexible models for distributional
regression. Distributional regression approaches provide full conditional distributions of the
outcome given covariate information, and are thus more informative than classical regres-
sion approaches for the conditional mean, median or specific quantiles. However, specifying
a good distributional regression model is usually less intuitive than specifying a regression
model for, say, the conditional mean. An appealing feature of DIMs is that for the modeling
of the index function classical approaches and intuition for modeling a conditional mean or
median can be used. Given the index function, the shape of the full conditional distribu-
tion is then learned from training data using IDR, that is, distributional regression under
stochastic ordering constraints. The second step does not involve any parameter tuning or
implementation choices.

The idea of reducing the complexity of a potentially high-dimensional covariate space by
using an index function in distributional regression has also been used in the work of Hall
and Yao (2005); Zhang et al. (2017). In these works, the index function has to be univariate
and parametrizes a distance on the covariate space that is then used for kernel methods to
estimate the conditional distributions. In contrast, the index function in a DIM parametrizes
partial orders on the covariate space allowing for stochastic order constrained distributional
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Table 3: CRPS of probabilistic forecasts. The column ’Point’ shows the mean absolute error
of the point forecast obtained from the lognormal index model, and p-values of Wilcoxon’s
signed rank test for the difference in CRPS between DIM and quantile regression are given
in the column labelled p. P-values smaller than 10´16 are written as 0.

ICU p DIM Quantile reg. Cox reg. ECDF Point

ICU4 1.18 ¨ 10´11 1.074 1.076 1.089 1.191 1.399
ICU6 3.81 ¨ 10´12 1.360 1.385 1.386 1.605 1.830
ICU10 0 1.194 1.221 1.209 1.312 1.553
ICU19 1.01 ¨ 10´1 1.041 1.032 1.048 1.189 1.350
ICU20 5.13 ¨ 10´6 2.216 2.223 2.241 2.505 2.859
ICU24 0 1.099 1.111 1.141 1.265 1.416
ICU33 2.19 ¨ 10´1 0.975 0.974 0.983 1.090 1.363
ICU39 1.38 ¨ 10´16 1.332 1.352 1.383 1.697 1.872
ICU44 1.06 ¨ 10´3 2.256 2.259 2.328 2.480 2.952
ICU47 3.69 ¨ 10´5 0.977 0.980 1.036 1.231 1.363
ICU52 7.40 ¨ 10´5 1.845 1.866 1.868 2.121 2.580
ICU55 0 1.062 1.085 1.055 1.253 1.445
ICU58 1.25 ¨ 10´15 1.393 1.409 1.442 1.763 1.970
ICU65 0 0.908 0.914 0.981 1.062 1.194
ICU76 0 2.420 2.448 2.458 2.783 3.468
ICU77 1.76 ¨ 10´16 0.921 0.936 0.938 1.117 1.260
ICU79 1.86 ¨ 10´11 1.446 1.457 1.512 2.172 2.228
ICU80 0 0.942 0.971 0.949 1.094 1.253

Mean 1.359 1.372 1.392 1.607 1.853
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regression in the second step.
Finding an informative index function is critical and usually requires expertise of the

problem at hand. However, in many cases, existing models for the conditional mean or
median can be used directly, as demonstrated in the application on ICU LoS. Indeed, it may
even happen that a poorly fitting conditional mean model works well for a DIM since it is
sufficient that the model is correct up to monotone transformations, or, in other words, that
it is a good model for a pseudo index.

The distributional regression approach in Chernozhukov et al. (2020) allows to accomo-
date continuous, discrete and mixed discrete-continuous outcomes. The same is true for
IDR, and thus for DIM models. While the case study in this paper concerns a continuous
outcome, IDR has been successfully applied to a mixed discrete-continuous outcome in Henzi
et al. (2019). It would be interesting to investigate the different benefits and drawbacks of
DIM models versus the methods of Chernozhukov et al. (2020) in particular in the case of
discrete outcomes.

Since IDR can be combined well with (sub-)bagging, the same also holds for DIMs.
(Sub-)bagging is useful to avoid overfitting, may increase computational efficiency, and lead
to smoother estimated conditional CDFs. We have explored bagging in our data application
in Section 6 with relatively at hoc choices for the number of random splits of the training
data. A systematic study of optimal choices for subsample sizes and/or iterations is desirable.

A promising future extension of DIMs is to replace the IDR step by distributional re-
gression under a stronger stochastic ordering constraint such as a likelihood ratio ordering
constraint, or by a weaker one such as second order stochastic dominance. However, this
requires fundamental advances concerning the estimation of distributions under these con-
straints.

A Proof of Theorem 5.1

The following lemma is Theorem 4.6 in Mösching and Dümbgen (2020), which we state for
completeness.

Lemma A.1. Let Z1, Z2, Z3, . . . be independent random variables with respective distribution
functions G1, G2, G3, . . .. For k P N, let

Ĝkp¨q “ 1

k

kÿ

i“1
1tZi ď ¨u and Ḡkp¨q “ 1

k

kÿ

i“1
Gip¨q.

Then there exists a universal constant M ď 25{2e such that for all η ě 0,

P
´?

k}Ĝk ´ Ḡk}8 ě η
¯
ďM expp´2η2q,

where } ¨ }8 denotes the usual supremum norm of functions.
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The results and proofs below use the following definitions. We denote by λpJq the
Lebesgue measure of a measurable set J Ă R, and define the events

Bn “
"

sup
xPX

|gpθ̂npxqq ´ θpxq| ă C0plogpnq{nq1{2
*
. (10)

For 1 ď r ď s ď n and a permutation σ of t1, . . . , nu, let

wrs “ s´ r ` 1, F̂σrs “
1

wrs

sÿ

i“r
1tYnσpiq ď ¨u,

F̄ σ
θ;rsp¨q “

1

wrs

sÿ

i“r
FθpXnσpiqqp¨q, F̄ σ

θ̂;rs
p¨q “ 1

wrs

sÿ

i“r
Fθ̂npXnσpiqqp¨q.

We use π to denote a permutation such that θ̂npXnπp1qq ď ¨ ¨ ¨ ď θ̂npXnπpnqq. The permutation

π is a function of pXni, Yniqni“1 via pXniqni“1 and θ̂n. Let

Mπ
n “ max

1ďrďsďnw
1{2
rs }F̂πrs ´ F̄ π

θ;rs}8. (11)

Lemma A.2. Under (A3) and (A4), there exists a constant s “ spC0, C2q ą 0 such that

lim
nÑ8PpMπ

n ě sn1{4 logpnq1{4q “ 0.

Proof. Define m “ mpnq “ maxp1, tλpIq{p2cnquq with cn “ C0plogpnq{nq1{2, where C0 is from
assumption (A4). Then, for n large enough such that cn ď λpIq{4,

2cn ď λpIq
m

ď 4cn. (12)

Slice the interval I from (A3) into m equally sized, disjoint intervals J1, . . . , Jm (ordered
increasingly). Let Ik “ ti P t1, . . . , nu : θpXniq P Jku, nk “ #Ik for k “ 1, . . . ,m, and
Nn “ maxk“1,...,m nk. Define also Ij “ H for j R t1, . . . ,mu and

Ťb
i“aAi “ H for any sets

Ai and a ą b.
Let r, s P t1, . . . , nu, r ď s, be indices that attain the maximum in (11), and define the

index set I˚ “ πptr, . . . , suq, so that

Mπ
n “

››› 1

p#I˚q1{2
ÿ

iPI˚

`
1tYni ď ¨u ´ FθpXniqp¨q

˘ ›››
8
.

Note that the indices r and s are (complicated but measurable) functions of pXi, Yiq, i “
1, . . . , n, and thus random variables. Therefore, the set I˚ is also a random set of indices.

If i, j P I˚ and gpθ̂npXniqq ă gpθ̂npXnjqq, with g from (A4), then k P I˚ for all k such that

gpθ̂npXniqq ă gpθ̂npXnkqq ă gpθ̂npXnjqq. This follows from θ̂npXnπp1qq ď ¨ ¨ ¨ ď θ̂npXnπpnqq,
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because if i “ πpi0q, j “ πpj0q and k “ πpk0q, then gpθ̂npXniqq ă gpθ̂npXnkqq ă gpθ̂npXnjqq
implies that i0 ă k0 ă j0, and k0 P ti0, . . . , j0u Ď tr, . . . , su gives k “ πpk0q P πptr, . . . , suq “
I˚.

Under the event Bn defined at (10), i P Ik and (12) imply that gpθ̂pXniqq P Jt for
some t P tk ´ 1, k, k ` 1u. Therefore, for l, k P t1, . . . ,mu with l ´ k ą 2, it follows
gpθ̂pXniqq ă gpθ̂pXnjqq for all i P Ik and j P Il. So if I˚ contains indices i P Ik and j P Il with
l´ k ą 2, then I˚ must also contain all elements of the sets It for k` 2 ă t ă l´ 2. Let κ “
mintj P t1, . . . ,mu : IjXI˚ ‰ Hu, ` “ maxtj P t1, . . . ,mu : IjXI˚ ‰ Hu. By the previous
considerations, I˚ may contain arbitrary elements of It with t P tκ, κ`1, κ`2, `´2, `´1, `u,
and it must contain all indices in Ij for κ ` 3 ď j ď ` ´ 3. In conclusion, under Bn, I˚ is
almost surely contained in the collection of index sets defined by

Sn “
ď

1ďkďlďm

#
J Y

˜
l´3ď

t“k`3
It
¸

: J Ď
˜
k`2ď

t“k
It
¸
Y
˜

lď

t“l´2
It
¸+

.

Indeed, on the event Bn, we know that I˚ must contain all elements of Ij for κ`3 ď t ď `´3.

This explains the part
Ťl´3
t“k`3 It in the definition of Sn. As for the Ik with subscript not in

tκ`3, . . . , `´3u, I˚ may contain any arbitrary selection from their elements. This arbitrary

selection is J Ď
´Ťk`2

t“k It
¯
Y
´Ťl

t“l´2 It
¯

. For κ and `, all pairs pk, lq with k ď l are possible,

which gives the union over 1 ď k ď l ď n.
Because #It ď Nn for all t, one can derive from the definition of Sn that

#Sn ď m2 ¨ 26Nn “ m2 expp6 logp2qNnq.
We now compute an upper bound for Nn, which is a function of θpXn1q, . . . , θpXnnq only.
Denote by P and G the distribution and the CDF of θpXn1q, and by P̂ and Ĝ the empirical
distribution and the empirical CDF of θpXn1q, . . . , θpXnnq. For any c ě 0,

PpNn ě cq ď
mÿ

k“1
Ppnk ě cq

ď
mÿ

k“1
P
´
P̂ pJkq ´ P pJkq ě c

n
´ P pJkq

¯

ď
mÿ

k“1
P
´

2}G´ Ĝ}8 ě c

n
´ P pJkq

¯
.

For n sufficiently large, P pJkq ď 4C2C0cn “ 4C2C0plogpnq{nq1{2 by (12) and by (A3). Re-
placing c by dn “ R logpnq1{2n1{2 with R “ maxp2, 8C2C0q and applying Lemma A.1 and
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(12) yields

PpNn ě dnq ď
mÿ

k“1
P
´

2}G´ Ĝ}8 ě dn
n
´ 4C2C0plogpnq{nq1{2

¯

ď
mÿ

k“1
P
´

2}G´ Ĝ}8 ě dn
2n

¯

ď mM exp

ˆ
´2n

´dn
4n

¯2
˙

ď λpIqM
2plogpnq{nq1{2 exp p´ logpnq{2q

ď λpIqM
2 logpnq1{2 exp p´ logpnq{2` logpnq{2q Ñ 0, nÑ 8.

So with asymptotic probability one,

#Sn ď m2 exp
`
6 logp2qR logpnq1{2n1{2˘ ď λpIq2

4c2n
exp

`
6R logp2q logpnq1{2n1{2˘

ď r0 exp
`
r1 logpnq1{2n1{2˘ ,

with r0 “ λpIq2{p4C0q and r1 “ 6R logp2q`1. Define Dn “ t#Sn ď r0 exppr1 logpnq1{2n1{2qu,
let Sn be the power set of t1, . . . , nu, and, for J P Sn,

MJ
n “

››› 1

p#J q1{2
ÿ

iPJ

`
1tYni ď ¨u ´ FθpXniqp¨q

˘ ›››
8
.

Then, for zn “ s logpnq1{4n1{4 with an arbitrary s ą 0,

PpMπ
n ě znq “ E

´
1

!
MI˚

n ě zn

)¯

“ E

˜ ÿ

J PSn
1tI˚ “ J u1  MJ

n ě zn
(
¸

ď PpBc
nq ` E

˜
1Bn

ÿ

J PSn
1tI˚ “ J u1  MJ

n ě zn
(
¸

“ PpBc
nq ` E

˜
1Bn

ÿ

J PSn
1tI˚ “ J u1  MJ

n ě zn
(
¸

ď PpBc
nq ` E

˜ ÿ

J PSn
1tI˚ “ J u1  MJ

n ě zn
(
¸

ď PpBc
nq ` PpDc

nq ` E

˜
1DnE

« ÿ

J PSn
1tI˚ “ J u1  MJ

n ě zn
(
ˇ̌
ˇ̌
ˇXn1, . . . , Xnn

ff¸
.
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In the last inequality we use the fact that 1Dn is a function of Xn1, . . . , Xnn and

E

« ÿ

J PSn
1tI˚ “ J u1  MJ

n ě zn
(
ˇ̌
ˇ̌
ˇXn1, . . . , Xnn

ff
ď 1 a.s.,

since I˚ “ J may only hold for exactly one index set J . Finally,

E

˜
1DnE

« ÿ

J PSn
1tI˚ “ J u1  MJ

n ě zn
(
ˇ̌
ˇ̌
ˇXn1, . . . , Xnn

ff¸

ď E

˜
1Dn

ÿ

J PSn
E
“
1
 
MJ

n ě zn
( | Xn1, . . . , Xnn

‰
¸
.

“ E

˜
1Dn

ÿ

J PSn
P
“
MJ

n ě zn | Xn1, . . . , Xnn

‰
¸
.

ď E
`
1Dnp#SnqM expp´2z2nq

˘

ď r0M exp
`´p2s2 ´ r1q logpnq1{2n1{2˘Ñ 0, nÑ 8,

for s ąa
r1{2, using Lemma A.1 in the second-last inequality.

Lemma A.3 shows that for suitable constants D and sequences pδnqnPN with limit zero,
all subintervals of I with length at least δn contain at least Dnδn elements of tgpθ̂npXnjqq :

j “ 1, . . . , nu. That is, the pseudo-covariates gpθ̂npXnjqq are asymptotically dense in I.

Lemma A.3. Under (A3) and (A4), with ŵpBq “ #tj P t1, . . . , nu : gpθ̂npXnjqq P Bu, for
any sequence pδnqnPN such that δn ě 4C0plogpnq{nq1{2, the event

"
inf

"
ŵpInq
nλpInq : intervals In Ă I with λpInq ě δn

*
ě D

*
(13)

has asymptotic probability one for any D ă C1{2.

Proof of Lemma A.3. Similarly to the definition of ŵ, let wpBq “ #tj P t1, . . . , nu : θpXnjq P
Bu for B Ď I. Define cn “ C0plogpnq{nq1{2 with C0 from (A4). Then on the event Bn defined
at (10), for any interval J Ď I with λpJq ě 2cn,

ŵpJq ´ wpJq ě ´#tj P t1, . . . , nu : θ̂npXnjq R J, θpXnjq P Ju
ě ´wptz P J : z ` cn R J or z ´ cn R Juq.

This gives ŵpJq ě wpJztz P J : z`cn R J or z´cn R Juq. The assumption δn ě 4cn implies
that δn ´ 2cn ě δn{2. For any interval In Ď I of length at least δn, the set Ĩn “ Inztz P In :
z ` cn R In or z ´ cn R Inu is an interval of length

λpĨnq “ λpInq ´ 2cn ě λpInq ´ δn{2 ě λpInq ´ λpInq{2 “ λpInq{2.
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This and ŵpInq ě wpĨnq yield

m̂n :“ inf

"
ŵpInq
nλpInq : intervals In Ă I with λpInq ě δn

*

ě inf

#
wpĨnq
nλpĨnq

: intervals Ĩn Ă I with λpĨnq ě δn{2
+
{2 “: mn.

Define An “ tm̂n ě Du and Ãn “ tmn ě Du for D ă C1{2. Then Ãn Ď An and

PpAnq ě PpAn XBnq ě PpÃn XBnq “ PpÃnq ` PpBnq ´ PpÃn YBnq Ñ 1, nÑ 8,
since limnÑ8 PpBnq “ 1 by (A4) and limnÑ8 PpÃnq “ 1 by (A3) and by Equation 4.6 of
Mösching and Dümbgen (2020, Section 4.3).

Proof of Theorem 5.1. Proposition 3.1 implies that for all u P R,

F̂upy; pθ̂npXnjqqnj“1, pYnjqnj“1q “ F̂gpuqpy; pgpθ̂npXnjqqqnj“1, pYnjqnj“1q.

To lighten the notation, we can therefore drop g from (A4) and simply write θ̂np¨q instead
of gpθ̂np¨qq. Assume that θ̂npXnπp1qq ď θ̂npXnπp2qq ď . . . ď θ̂npXnπpnqq and define δn “
plog n{nq1{6{2. Lemma A.3 and (A4) imply that for all x P Xn “ tx P X : rθpxq ˘ 2δns Ď Iu,
the indices

rpxq “ mintj P t1, . . . , nu : θ̂npXnπpjqq ě θ̂npxq ´ δnu
jpxq “ maxtj P t1, . . . , nu : θ̂npXnπpjqq ď θ̂npxqu

are well defined with asymptotic probability one, because rθ̂npxq´δn, θ̂npxqs is of length δn and
contained in I since θpxq ` plog n{nq1{6 ě θ̂npxq ě θ̂npxq ´ δn ě θpxq ´ δn´C0n

´1{2 ą θpxq ´
plog n{nq1{6 for n sufficiently large, on the event Bn defined at (10). They satisfy rpxq ď jpxq
and θ̂npxq ´ δn ď θ̂npXnrpxqq ď θ̂npXnjpxqq ď θ̂npxq and, with asymptotic probability one due

to Lemma A.3, wrpxqjpxq “ #tj P t1, . . . , nu : θ̂npxq ´ δn ď θ̂npXnπpjqq ď θ̂npxqu ě Dnδn
for 0 ă D ă C1{2. Therefore, almost surely with respect to the joint law of pXni, Yniq,
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i “ 1, . . . , n, for any y P R,

F̂n;θ̂npxqpyq ´ Fθpxqpyq ď F̂n;θ̂npXnjpxqqpyq ´ Fθpxqpyq
“ min

rďjpxq
max
sějpxq

F̂πrspyq ´ Fθpxqpyq
ď max

sějpxq
F̂πrpxqspyq ´ Fθpxqpyq

ď w
´1{2
rpxqjpxqM

π
n ` max

sějpxq
F̄ π
θ;rpxqspyq ´ Fθpxqpyq

ď pDnδnq´1{2Mπ
n

` max
sějpxq

`
F̄ π
θ;rpxqspyq ´ F̄ π

θ̂;rpxqspyq ` F̄ π
θ̂;rpxqspyq

˘´ Fθpxqpyq
ď pDnδnq´1{2Mπ

n ` L sup
xPX

|θ̂npxq ´ θpxq| ` max
sějpxq

F̄ π
θ̂;rpxqspyq ´ Fθpxqpyq

ď pDnδnq´1{2Mπ
n ` L sup

xPX
|θ̂npxq ´ θpxq| ` Fθ̂npXnrpxqqpyq ´ Fθpxqpyq

ď pDnδnq´1{2Mπ
n ` L sup

xPX
|θ̂npxq ´ θpxq| ` L|θ̂npXnrpxqq ´ θpxq|

ď pDnδnq´1{2Mπ
n ` L sup

xPX
|θ̂npxq ´ θpxq| ` Lδn.

The equality in the second line is the classical min-max formula for monotone regression,
see e.g. Equation (2.2) in Mösching and Dümbgen (2020), and the first and the third last
inequality use antitonicity of u ÞÑ Fupyq. By assumption (A4) and with the constant s ą 0
from Lemma A.2, the event

tMπ
n ď spn logpnqq1{4u X

"
sup
xPX

|θ̂npxq ´ θpxq| ă δn

*

has asymptotic probability one. On this event, the previous considerations imply

sup
xPXn,yPR

pF̂n;θ̂npxqpyq ´ Fθpxqqpyq ď spDnδnq´1{2pn logpnqq1{4 ` 2Lδn ď C

ˆ
logpnq
n

˙1{6
,

with C “ rsp2D´1q1{2 ` Ls. To finish the proof, we show that Fθpxqpyq ´ F̂n;θ̂npxqpyq can be
bounded in the same way.

Similar to before, define the indices r1pxq “ mintj P t1, . . . , nu : θ̂npXnjq ě θ̂npxqu,
j1pxq “ maxtj P t1, . . . , nu : θ̂npXnjq ď θ̂npxq ` δnu. Then with asymptotic probability one,

also r1pxq ď j1pxq and θ̂npxq ď θ̂npXnr1pxqq ď θ̂npXnj1pxqq ď θ̂npxq ` δn, wr1pxqj1pxq ě Dnδn.
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Thus,

F̂n;θ̂npxqpyq ´ Fθpxqpyq ě F̂n;θ̂npXnr1pxqqpyq ´ Fθpxq
“ min

rďr1pxq
max
sěr1pxq

F̂πrspyq ´ Fθpxqpyq
ě min

rďr1pxq
F̂πrj1pxqpyq ´ Fθpxqpyq

ě ´w´1{2r1pxqj1pxqM
π
n ` min

rďr1pxq
F̄ π
θ;rj1pxqpyq ´ Fθpxqpyq

ě ´pDnδnq´1{2Mπ
n

` min
rďr1pxq

`
F̄ π
θ;rj1pxqpyq ´ F̄ π

θ̂;rj1pxqpyq ` F̄ π
θ̂;rj1pxqpyq

˘´ Fθpxqpyq
ě ´pDnδnq´1{2Mπ

n ´ L sup
xPX

|θ̂npxq ´ θpxq| ` Fθ̂npXnj1pxqqpyq ´ Fθpxqpyq
ě ´pDnδnq´1{2Mπ

n ´ L sup
xPX

|θ̂npxq ´ θpxq| ´ L|θ̂npXnj1pxqq ´ θpxq|
ě ´pDnδnq´1{2Mπ

n ´ L sup
xPX

|θ̂npxq ´ θpxq| ´ Lδn.

Proof of Theorem 5.1 with sample splitting. Assume that the index estimator θ̂n is com-
puted with data pXni, Yniqtnξu

i“1 and the distribution functions with pθ̂npXniq, Yniqni“tnξu`1. The

statement of Lemma A.3 also holds when C0plogpnq{nq1{2 is replaced by plogpnq{nq1{3. By

conditioning on pXni, Yniqtnξu
i“1 and on Xni, i “ tnξu` 1, . . . , n, Corollary 4.7 of Mösching and

Dümbgen (2020) implies that Mπ
n (computed with the data pθ̂npXniq, Yniqni“tnξu`1) satisfies

PpMπ
n ě pR logpnp1 ´ ξqqq1{2q Ñ 0, n Ñ 8, for any R ą 1. This requires the fact that the

permutation π is constant when conditioned on pXni, Yniqtnξu
i“1 . One may now follow exactly

the same steps as in the proof for the theorem without sample splitting, but with sample
size tnp1 ´ ξqu instead of n, δn “ pnp1 ´ ξq{ logpnp1 ´ ξqqq1{3{2 instead of pn{ logpnqq1{6 and
tMπ

n ď pR logpnp1´ ξqqq1{2u instead of tMπ
n ď spn logpnqq1{4u, obtaining an upper bound of

C 1plogpnq{nq1{3 for the error, where C 1 ą 0 also depends on ξ.
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B Supplementary Material

B.1 Model selection

All models in the data application (Section 6 in the article) have been fine-tuned, and
different model variants were evaluated via out-of-sample predictions on the part of the data
left for model selection. Table S1 and Table S2 provide detailed results and show that the
performance of the methods is robust in terms of CRPS-ranking and consistent with the
findings in the article. The key steps in model tuning are summarized below.

Response transformations: The outcome variable, LoS, is strongly right skewed,
which suggests a log-transformation.

• The index estimation for DIM may benefit from response transformations, but the
transformation does not directly have an impact on the estimation of the condi-
tional CDFs. Index models with (lognormal, scaled-t) and without (gamma) log-
transformation of the LoS have been considered, c.f. Section 6.2 in the article.

• Cox regression is invariant under strictly isotonic transformations of the response, so
no response transformations need to be considered.

• Quantile regression is more robust to outliers than regression models for the mean, and
it does not necessarily require transformations with skew response variables. Neverthe-
less, we verified if transformation y ÞÑ logpy ` 1q as used in the DIM index estimation
improves the results. (The transformation logpyq was also checked but clearly inferior.)
The transformed model gave only a minor improvement on average over the ICUs, and
diverging, meaningless distributions for some patients (removed for the computation
of the averages in Table S1), and has therefore been discarded.

Covariate selection: The choice of covariates, including modelling effects of continuous
variables with splines, can be expected to have similar effects for all methods.

• In all models, cubic splines were used to model the effects of the continuous variables
age, NEMS and SAPS II. For Cox regression and for the index in DIM, determining a
suitable dimension of the spline basis was done by using k.check of the mgcv package
and by graphical tools for checking the robustness of the fit. The dimension parameter
k was finally fixed at 12 for both regression methods.

• For quantile regression, cubic splines with equispaced knots or with knots at quantiles
of the respective variables in the training data have been compared. The equispaced
knots yielded better results, with a spline space dimension similar to the one for DIM
and Cox regression. Additive quantile regression smoothing (rqss) in the quantreg

package has been explored, but it only offers estimation at single quantiles for each fit
and up to two continuous covariates, so the standard method rq has been selected.
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• We have explored whether merging factor levels with few observations (less than 30
or 50 per category) improves the predictions. The effect was clearly negative for point
forecasts for the mean LoS, as judged with the coefficient of predictive ability (Gneiting
and Walz, 2019), and has not been further pursued.

Model-specific parameters:

• DIM: The influence of different parametric families for the index function is discussed
in Section 6.2 in the article, see also Table S1. Detailed results on the CRPS differences
with and without bagging are in Table S2.

• Cox regression: A possibility to make Cox regression more flexible is stratification
by categorical variables. We did not pursue this approach because it may drastically
reduce the number of observations for the baseline hazard estimation and thus for the
CDF estimation for some groups of patients. (This may be less a problem if the hazard
rate and not the distribution functions are the object of interest.)

• Quantile regression: Quantile regression is estimated on a grid of quantiles. As men-
tioned in the article, grids with spacing of 0.01 and 0.001 have been compared. In
principle, the function rq in the quantreg package offers estimation of the full quan-
tile regression process, but the resulting grid was too fine and led to computational
difficulties. As can be seen by comparing the sixth and seventh column in Table S1, a
finer grid consistently reduces the CRPS over the ICUs. But given that the improve-
ment by moving from a spacing of 0.01 to 0.001 is rather small, we expect only minor
benefits from estimating the whole quantile regression process.

B.2 Discreteness of LoS

Chernozhukov et al. (2013, Appendix SB) demonstrate that discreteness in the outcome
variable influences the performance of quantile regression relative to other distributional
regression techniques. Table S3 and Figure S1 summarize the cumulative proportion of the
most frequent LoS values for each ICU as a measure of discreteness. Compared with Figure
SB.1. in the supplementary material of Chernozhukov et al. (2013), the discreteness in the
outcome variable is substantially lower in our study. Moreover, there is no relationship
between the performance of DIM and Cox regression relative to quantile regression (Table 3
in the article) and the degree of discreteness as summarized in Table S3. As mentioned in
the first paragraph of Section 6.4 and visible in Figure 3 in the article, quantile regression
indeed has difficulties in fitting the pattern in the ICU discharge times with marked peaks
before noon and in the afternoon. Nevertheless, it clearly outperforms Cox regression, which
is able to correctly recognize this pattern. Based on these two observations, we argue that
the disadvantage of quantile regression due to discreteness of the LoS is at most of limited
extent and not decisive in our study.
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Table S1: Mean CRPS on data for model selection for different variants of distributional
regression methods. Asterisks (˚, ˚˚, ˚˚˚) indicate the three models with the lowest CRPS for
each ICU. The DIM models are abbreviated as logn, scat and gamma for the variants with
lognormal, scaled-t and gamma parametric families for index estimation, without bagging.
The codes for quantile regression represent models with equispaced knots for splines (e) or
with knots at quantiles of the respective variables (q), untransformed response variable (u) or
with the transformation logp1` yq (log). The first quantile regression model (sixth column
in table) is fitted on a grid with spacing 0.001 (0.001), the others on a grid with spacing
0.01.

Cox. reg. DIM Quantile regression

Tuning logn scat gamma e u 0.001 e u e log q log q u

ICU4 1.212 1.188˚ 1.193˚˚˚ 1.190˚˚ 1.202 1.203 1.200 1.203 1.204
ICU6 1.632 1.606˚ 1.610˚˚ 1.622˚˚˚ 1.628 1.631 1.623 1.628 1.644
ICU10 1.094 1.076˚˚ 1.081˚˚˚ 1.075˚ 1.098 1.099 1.090 1.092 1.103
ICU19 1.253 1.248 1.252 1.262 1.241˚˚˚ 1.242 1.238˚˚ 1.237˚ 1.243
ICU20 1.880 1.839˚ 1.865˚˚˚ 1.853˚˚ 1.904 1.908 1.885 1.882 1.917
ICU24 0.972 0.937˚ 0.946 0.945˚˚˚ 0.948 0.948 0.951 0.945˚˚ 0.955
ICU33 0.903 0.895 0.897 0.897 0.893˚˚ 0.894 0.893˚ 0.893˚˚˚ 0.895
ICU39 1.907 1.865˚ 1.879˚˚˚ 1.870˚˚ 1.884 1.885 1.883 1.885 1.891
ICU44 2.266 2.232˚ 2.239˚˚˚ 2.238˚˚ 2.298 2.301 2.263 2.263 2.307
ICU47 1.306 1.233 1.255 1.245 1.220˚ 1.221˚˚ 1.234 1.227˚˚˚ 1.232
ICU52 2.034 1.998˚ 1.999˚˚ 2.012 2.002˚˚˚ 2.004 2.010 2.011 2.007
ICU55 1.196 1.178˚ 1.210 1.187 1.184 1.185 1.182˚˚ 1.182˚˚˚ 1.186
ICU58 1.344 1.312˚ 1.317˚˚ 1.320˚˚˚ 1.329 1.330 1.344 1.330 1.328
ICU65 1.069 1.004˚ 1.007˚˚ 1.010˚˚˚ 1.011 1.012 1.029 1.040 1.024
ICU76 2.552 2.521˚˚ 2.532˚˚˚ 2.517˚ 2.551 2.552 2.543 2.549 2.558
ICU77 0.838 0.832˚˚ 0.835˚˚˚ 0.825˚ 0.842 0.843 0.837 0.837 0.845
ICU79 1.266 1.211˚ 1.215˚˚ 1.233˚˚˚ 1.263 1.263 1.267 1.285 1.257
ICU80 0.996 0.983˚˚ 0.999 0.981˚ 0.998 0.998 0.992˚˚˚ 0.997 1.002

Mean 1.429 1.398˚ 1.407˚˚˚ 1.405˚˚ 1.416 1.418 1.415 1.416 1.422
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Table S2: Increase in CRPS of the DIM when in-sample predictions on the training data
are used for the estimation of the conditional CDFs instead of the bagging approach with
100 subsamples, for the lognormal, scaled-t and gamma index models. See Table S1 for
the average CRPS without bagging. Positive values correspond to higher CRPS (worse
predictions) of the variant without bagging.

Lognormal Scaled-t Gamma

ICU4 0.0030 ´0.001 0.0020
ICU6 0.0060 0.0050 0.0130
ICU10 0.0010 0.0010 0.0010
ICU19 0.0100 0.0060 0.0230
ICU20 0.0030 0.0240 0.0160
ICU24 0.0020 0.0040 0.0050
ICU33 0.0040 0.0010 0.0030
ICU39 0.0100 0.0070 0.0120
ICU44 ´0.002 ´0.002 0.0050
ICU47 0.0030 0.0020 0.0110
ICU52 0.0070 0.0040 0.0060
ICU55 0.0020 0.0190 0.0150
ICU58 0.0060 0.0040 0.0100
ICU65 0.0040 0.0030 0.0030
ICU76 000000 0.0030 000000
ICU77 0.0070 0.0070 0.0020
ICU79 0.0070 ´0.001 0.0110
ICU80 0.0040 0.0080 0.0020

Mean 0.0040 0.0050 0.0080
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Figure S1: Cumulative probabilities of LoS attaining one of the k most frequent values,
k “ 1, 2, . . . , 25, stratified by ICU (identifiers omitted).
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Table S3: Cumulative probabilities of LoS attaining one of the k most frequent values,
k “ 1, 2, 10, 25, stratified by ICU.

ICU 1 2 3 4 5 10 25

ICU4 0.006 0.012 0.017 0.022 0.027 0.050 0.099
ICU6 0.001 0.003 0.004 0.005 0.006 0.010 0.022
ICU10 0.002 0.003 0.005 0.006 0.007 0.014 0.030
ICU19 0.001 0.003 0.004 0.005 0.006 0.010 0.022
ICU20 0.002 0.004 0.005 0.007 0.009 0.016 0.034
ICU24 0.002 0.004 0.005 0.007 0.009 0.017 0.038
ICU33 0.001 0.001 0.002 0.003 0.004 0.007 0.015
ICU39 0.003 0.005 0.007 0.009 0.010 0.018 0.039
ICU44 0.003 0.007 0.010 0.013 0.016 0.030 0.064
ICU47 0.007 0.012 0.016 0.020 0.023 0.038 0.069
ICU52 0.001 0.001 0.002 0.002 0.002 0.005 0.010
ICU55 0.002 0.003 0.004 0.005 0.006 0.011 0.024
ICU58 0.002 0.003 0.004 0.006 0.007 0.013 0.028
ICU65 0.002 0.005 0.007 0.009 0.011 0.021 0.047
ICU76 0.001 0.001 0.002 0.003 0.003 0.006 0.014
ICU77 0.003 0.005 0.008 0.010 0.012 0.022 0.046
ICU79 0.005 0.010 0.015 0.020 0.025 0.047 0.105
ICU80 0.002 0.004 0.005 0.007 0.008 0.015 0.034
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Table S4: Summary statistics (mean, median and standard deviation) of numeric variables
in the dataset.

ICU identifier LoS Age NEMS SAPS

mean median sd mean median sd mean median sd mean median sd
ICU4 2.1 0.7 4.4 65.7 68 14.5 25.4 25 9.6 29.0 26 14.5
ICU6 2.8 0.8 5.5 65.2 69 16.7 23.3 21 7.9 35.8 33 18.1
ICU10 2.0 0.7 3.9 62.9 66 15.7 27.8 27 8.8 41.6 39 18.2
ICU19 2.1 0.9 4.7 64.7 67 15.3 20.1 18 7.4 29.9 25 16.6
ICU20 3.7 0.7 8.0 64.2 67 15.3 25.5 24 8.3 31.6 27 17.5
ICU24 2.0 0.6 4.5 63.4 66 15.4 24.1 18 7.7 29.5 26 16.8
ICU33 2.0 1.0 3.3 66.1 69 15.8 19.9 18 7.5 36.5 33 17.4
ICU39 2.9 1.0 6.2 62.6 65 16.5 23.2 18 7.1 28.8 26 15.9
ICU44 3.9 1.5 7.8 59.0 61 17.6 27.1 27 8.5 34.0 31 18.9
ICU47 2.5 1.5 5.1 67.6 69 12.8 25.9 25 7.4 27.7 26 12.7
ICU52 3.7 1.6 6.3 60.5 63 17.3 26.2 27 10.3 40.8 39 18.5
ICU55 2.4 0.8 4.4 64.6 67 16.1 20.6 18 7.8 30.8 27 16.4
ICU58 2.6 0.7 4.8 61.7 64 16.4 22.5 18 7.3 28.5 26 15.0
ICU65 1.8 0.6 4.3 67.2 69 13.9 25.5 25 7.9 28.7 28 12.5
ICU76 4.3 1.7 7.2 63.2 66 15.6 30.3 30 8.3 41.2 40 17.2
ICU77 1.8 0.6 3.2 65.0 68 15.9 21.9 18 8.0 31.1 28 16.1
ICU79 2.7 0.5 5.9 55.8 57 17.0 22.4 18 7.1 19.1 15 15.3
ICU80 1.8 0.6 3.7 65.3 68 16.1 19.4 18 7.3 29.0 27 13.1

B.3 Additional figures and tables

Table S4 shows summary statistics of the ICU LoS, patient age, SAPS II and NEMS for all
ICUs.

Figure S2 shows probabilistic LoS forecasts obtained by quantile regression, for eight
randomly selected patients per ICU. While there are some crossings in the CDFs (e.g. in ICUs
47 and 52), the CDFs for most patients do not cross and are hence comparable with respect
to stochastic dominance, suggesting that the model assumption of the DIM is reasonable for
ICU LoS.

Figures S3 and S4 show reliability diagrams for the predicted probability that the LoS
exceeds k “ 1, 2, . . . , 14 days for all forecasting methods and ICUs. PIT histograms are
shown in Figures S5 and S6.

Figure S7 shows the difference in CRPS between the quantile regression forecasts and
the DIM forecasts. For all ICUs, there is a considerable number of outliers (defined as points
outside the 25% (75%) quantile minus (plus) 1.5 times the interquartile range), so Wilcoxon’s
signed rank test was applied to compare the CRPS, instead of a t-test.
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Figure S2: Predictive CDFs obtained by quantile regression, for randomly selected patients.
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Figure S3: Reliability diagrams of probabilistic forecasts for the predicted probability
that the LoS exceeds 1, 2, . . . , 7 days. The forecast probability is grouped into the bins
r0, 0.1s, p0.1, 0.2s, . . . , p0.9, 1s. Only bins with more than two observations are included.
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Figure S4: Reliability diagrams of probabilistic forecasts for the predicted probability that
the LoS exceeds 8, 9, . . . , 14 days. The curves are as specified in Figure S3.
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Figure S5: PIT histograms of the probabilistic forecasts with bins of width 1{20 (first nine
ICUs).
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Figure S6: PIT histograms of the probabilistic forecasts with bins of width 1{20 (second half
of the ICUs).
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Figure S7: Boxplot of the difference in the CRPS of the quantile regression forecasts and of
the DIM forecasts. Outliers are displayed as crosses (with horizontal jitter).
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3.2 Probabilistic analysis of COVID-19 patients’ individual
length of stay in Swiss intensive care units

The content of this section is published as

Henzi, A., Kleger, G.-R., Hilty, M. P., Wendel Garcia, P. D., Ziegel, J. F.,
on behalf of the RISC-19-ICU Investigators for Switzerland (2021). Prob-
abilistic analysis of COVID-19 patients’ individual length of stay in Swiss intensive care
units. PLOS ONE 16 e0247265.

The article is followed by its supplementary material, which is also available on https:

//doi.org/10.1371/journal.pone.0247265.
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Abstract

Rationale

The COVID-19 pandemic induces considerable strain on intensive care unit resources.

Objectives

We aim to provide early predictions of individual patients’ intensive care unit length of stay,

which might improve resource allocation and patient care during the on-going pandemic.

Methods

We developed a new semiparametric distributional index model depending on covariates

which are available within 24h after intensive care unit admission. The model was trained on

a large cohort of acute respiratory distress syndrome patients out of the Minimal Dataset of

the Swiss Society of Intensive Care Medicine. Then, we predict individual length of stay of

patients in the RISC-19-ICU registry.

Measurements

The RISC-19-ICU Investigators for Switzerland collected data of 557 critically ill patients

with COVID-19.

Main results

The model gives probabilistically and marginally calibrated predictions which are more infor-

mative than the empirical length of stay distribution of the training data. However, marginal

calibration was worse after approximately 20 days in the whole cohort and in different sub-

groups. Long staying COVID-19 patients have shorter length of stay than regular acute

respiratory distress syndrome patients. We found differences in LoS with respect to age cat-

egories and gender but not in regions of Switzerland with different stress of intensive care

unit resources.
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Conclusion

A new probabilistic model permits calibrated and informative probabilistic prediction of LoS

of individual patients with COVID-19. Long staying patients could be discovered early. The

model may be the basis to simulate stochastic models for bed occupation in intensive care

units under different casemix scenarios.

1 Introduction

During the COVID-19 pandemic, governments worldwide imposed severe restrictions on

public life in order to limit the spread of the SARS-CoV-2 virus. A critical point in the decision

making process was the limitation of beds in intensive care units (ICU) in order to adequately

treat all severe cases of COVID-19. Many countries increased the number of ICU beds sub-

stantially at the onset of the crisis. A critical issue with severe COVID-19 disease is the frequent

need for prolonged ICU treatment. For informed decision making it is important to quantita-

tively assess how long the patients are expected to be in an ICU.

At the example of Switzerland, we propose a prediction method for the individual length of

stay (LoS) of patients in ICUs, and apply it to COVID-19 patients. The predictions are given

for each patient based on covariates available within 24 hours after ICU admission. The

method generates probabilistic predictions, that is, for each patient that enters the ICU, we

provide a predictive cumulative distribution function (CDF) that comprehensively quantifies

the uncertainty of the LoS at the time point of prediction. In particular, the predictive CDF

allows to give prediction intervals with nay desired coverage probability. More precisely, the

predictive CDF is an estimate of the conditional distribution of the LoS of the patient given

covariates, which include age, gender, Simplified Acute Physiology Score (SAPS II) [1], and

Nine Equivalents of nursing Manpower use Score (NEMS) (first shift) [2]. Fig 1 shows some

predictive CDFs for randomly selected COVID-19 patients black, and true LoS as vertical

lines. For each possible value t of the LoS, the value of the predictive CDF, F(t), gives the proba-

bility that the patient stays at most t days in the ICU. Conversely, 1 − F(t) gives the probability

that the patient stays longer than t days in the ICU. For example, patient 1 had an LoS of 20

days. The predicted probability that the patient stays at most 20 days was 0.91, and the proba-

bility for a stay of at least 10 days was 0.26 (or 0.74 for at most 10 days). Patient 4 stays longest

in the ICU. This is in agreement with the predictive CDFs, since for all possible t, the probabil-

ity of staying longer than t is highest for patient 4. The waves in the curves are explained by the

fact that patients have a higher possibility to leave the ICU at certain times of the day, and a

lower at others.

Probabilistic predictions allow to assess the uncertainty of the LoS comprehensively.

Therefore they are preferable to forecasts for the mean or median LoS only. Their usefulness is

illustrated by the following examples. The probabilistic LoS predictions allow to derive proba-

bilistic forecasts for the number of patients who are still at the ICU at a certain day in future.

This may be useful for planning purposes. For a single patient admitted today with predictive

LoS distribution F, the probability that the patient is still at the ICU after t days equals 1 − F(t).
From the probabilities for single patients, one may compute (with statistical software) the

probability that any given number of patients is still at the ICU after t days. This allows to

answer questions like ‘How likely is it that there are at least two free beds in five days?’ or

‘What is the smallest number of patients we expect to stay until next week with a high probabil-

ity (say, 90%)?’. The LoS forecasts, and so also the answers to such questions, take into account

the individual characteristics of the patients currently at the ICU. The probabilistic LoS
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predictions also allow to give alerts for patients that are likely to stay unusually long in the

LOS. For example, fix a threshold of x days, say x = 25, and give an alert if the probability that

the patient stays longer than x days exceeds, say, 90%. That is, if 1 − F(x) > 90%, where F is the

predictive LoS distribution of a specific patient.

For planning of normal ward and intermediate care unit to ICU patient flows, such infor-

mation is key to allow optimized resource allocation. On a larger scale, one could plan regional

patient allocations to multiple hospitals based on such algorithms. The current health care cri-

sis has emphasized the importance of patient flow logistics, and informative predictions of LoS

are essential for this purpose.

It is documented in the literature that the prediction of the LoS at the patient level is diffi-

cult, and none of the available prediction models is providing satisfactory forecasts [3] with

a possible exception being the complex models presented in [4, 5] for the purpose of bench-

marking. Furthermore, the focus has almost exclusively been on only point predictions for

the mean LoS, which is not ideal given that the LoS distribution is heavily skewed.

Recently, methodological progress has been made by Ziegel’s group [6]: Based on data in

the format of the Minimal Dataset of the Swiss Society of Intensive Care Medicine (MDSi), it

is possible to give skillful and calibrated probabilistic predictions for the LoS of patients in

ICUs 24h after their admission. In particular, the predictions for the probability of exceed-

ance of the LOS over a certain threshold is shown to be reliable. The proposed method is

semi-parametric, which makes it highly adaptive to the shape of the conditional LoS distribu-

tions. However, it requires large training data sets. The currently available data on COVID-

19 patients in Swiss ICUs is (fortunately) not sufficient. Therefore, we suggest to borrow

strength from the MDSi in order to predict the conditional LoS of COVID-19 patients.

The LoS of a patient in an ICU does not only depend on their physical condition but also

on the characteristics and policies of the ICU. Even within a small country such as Switzerland

such differences can be observed [6]. We restrict the analysis in this paper to Switzerland but

Fig 1. Predictive CDFs for the LoS of some COVID-19 patients with corresponding realizations as a vertical line. Four patients were drawn at

random. The four wavy lines represent their predictive CDFs for the LoS based on covariates that are available at most 24 hours after ICU admission,

that is, for each value t of the LoS on the horizontal axis, the curve gives the probability that the respective patient stays at most t days in the ICU. The

vertical dashed lines represent the actually observed values of the LoS of the patients, which are unknown at the time of prediction. The larger the

increase of the CDF on a given interval on the horizontal axis, the higher the probability of observing an LoS in this interval. For example, the predicted

probability for the LoS of patient 1 being between 0 and 5 days is 0.47, whereas this probability is 0.40 for patient 2, 0.35 for patient 3, and only 0.19 for

patient 4. The CDF of patient 4 lies substantially below the CDFs of the other patients which is in agreement with patient 4 having the longest realized

LoS.

https://doi.org/10.1371/journal.pone.0247265.g001
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the methodology can be adapted to other countries given sufficient data is available. We use

the prediction method for the LoS to analyze the characteristics of the LoS of COVID-19

patients with respect to age differences, and gender differences. Since some parts of Switzer-

land were hit harder by the pandemic than others, we also use the predictions to analyse

regional differences in the LoS.

2 Patients and methods

2.1 RISC-19-ICU and MDSi

Risk Stratification in COVID-19 patients in the Intensive Care Unit (RISC-19-ICU) registry, is

a collaborative effort with the participation of a majority of the Swiss ICUs to provide a basis

for decision support during the ongoing public health crisis, endorsed by the Swiss Society of

Intensive Care Medicine (https://www.risc-19-icu.net/) [7, 8]. ICU data were reported on a

daily basis, including near real-time data on LoS. The registry was deemed exempt from the

need for additional ethics approval and patient informed consent by the ethics committee of

the University of Zurich (KEK 2020-00322, ClinicalTrials.gov Identifier: NCT04357275). Fully

anonymized datasets, in regard to Swiss law, were collected using a secure REDCap infrastruc-

ture provided by the Swiss Society of Intensive Care Medicine.

557 critically ill patients with COVID-19 that have been admitted to an ICU in Switzerland

have entered the registry as of the snapshot date, June15, 2020, 481 of which have already been

dismissed from the ICU or have died, that is for 86.36% of the patients the LoS is available.

There are 18 patients for which one or more of the covariates are not available. Overall, covari-

ates and LoS observations are available for 473 patients, and we call these the COVID-19 data-

set. Censoring is a non-trivial problem in the COVID-19 dataset and we address this issue in

detail in Section A of S1 Appendix.

The Minimal Dataset of the Swiss Society of Intensive Care Medicine (MDSi) has been

introduced in 2005 and contains fully anonymized key data of the entire number of ICU

patients in certified Swiss ICU’s (https://www.sgi-ssmi.ch/de/datensatz.html). In addition to

demographic data, the MDSi includes SAPS II as initial illness severity score and NEMS per

nursing shift as a workload score.

Because almost any patient with severe COVID-19 disease presents chiefly like acute respi-

ratory distress syndrome (ARDS), the training data consists of all patients in the MDSi with

the diagnosis of ARDS which were admitted to Swiss ICUs in the years 2012 to 2018. Of the

2411 admissions, 856 were excluded because they satisfy one or more of the following criteria:

missing or implausible values for SAPS II or NEMS (135), age younger than 16 (5), admitted

with burns as initial diagnosis (3) or undergoing transplant operations 24 hours before or after

ICU admission (8), readmissions (132), and patients admitted from ICUs or transferred to

other ICUs (580). The exclusion of patients transferred from or to ICUs is because their LoS is

incomplete and therefore not suitable for prediction. For the LoS predictions, admissions are

standardized to a common admission time at midnight, in order to recover patterns in the

ICU discharge times [6]. As a consequence, 99 patients had to be excluded because they did

not stay in the ICU at least until midnight of the admission date. After exclusions, the training

dataset consists of 1555 observations.

Concerning the covariates that are available for prediction, the possibilities are limited to

covariates that are available in the COVID-19 dataset and the training data in the same for-

mat. Clear choices are the gender and age of patients. Furthermore, we have included SAPS

II and the NEMS of the first ICU shift as covariates since they are informative for the LoS

[9–11].

PLOS ONE Probabilistic analysis of COVID-19 patients’ individual length of stay in Swiss intensive care units
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2.2 Statistical methods

Distributional Index Models (DIMs) have been introduced in [6]. They are semi-parametric

models for distributional regression building on isotonic distributional regression (IDR) intro-

duced in [12, 13]. A distributional regression model allows to estimate the full conditional dis-

tribution of the LoS given covariates. For the DIM used in this paper, we use a parametric

model for a real-valued index function α, the DIM index, that depends on gender g, age a,

SAPS II s, and NEMS m, that is

aðg; a; s;mÞ ¼ b0 þ b11fg ¼ maleg þ cr1ðaÞ þ cr2ðsÞ þ cr3ðmÞ;

where β0 is the intercept, β1 the coefficient for gender, and cr1, cr2, cr3 are penalized cubic

regression splines for the continuous variables age, SAPS II and NEMS; see the documentation

of the mgcv package for details about the penalization. The model is fitted on the transformed

LoS log(LoS+ 1). The log-transformation decreases the skewness of the data, while the addition

of the constant 1 makes the resulting distribution more symmetric [6].

Furthermore, we assume that for the probability of the LoS Y of a randomly selected patient

with covariates (G, A, S, M) = (g, a, s, m) it holds that

PðY � yjðG;A; S;MÞ ¼ ðg; a; s;mÞÞ ¼ Faðg;a;s;mÞðyÞ; for all y 2 R ð1Þ

with a family ðFvÞv2R of stochastically ordered CDFs, that is Fv(y)�Fw(y) for all y 2 R if v� w.

We randomly split the training data in two and estimate α by â on the first half. Given â,

we use the second half of the training data to estimate Fv using IDR. In order to make the esti-

mation procedure less dependent on the splitting of the training data, we use repeat this proce-

dure 100 times and average the resulting estimated distributions to obtain our final estimate

F̂ â.

There are dependencies between the covariates age, SAPS II and NEMS but we argue that it

is still useful to include all of them in the model. The variable age is contained in SAPS II as a

discretized effect with 6 levels. Age enters the model as a cubic regression spline with suffi-

ciently high dimension, manually removing the age variable from SAPS II would essentially

correspond to a basis transformation of the model and not affect the prediction results. The

information provided by the NEMS is not redundant to SAPS II. NEMS is a crucial variable

for COVID-19 patients since it contains information on the ventilation status, therapy with

cardiovascular drugs and renal replacement treatment, which are not in the SAPS II. More

precisely than the SAPS II, the NEMS reflects the actual therapeutic intensity a patients needs,

and it is therefore likely to be one of the earliest markers for LoS.

Probabilistic predictions should be calibrated and sharp [14]. We assess probabilistic cali-

bration by Probability Integral Transform (PIT) histograms, and use Pearson’s chi-square test

with 10 bins to test for uniformity. Marginal calibration is checked by comparing average pre-

dicted CDFs to empirical CDFs (ECDFs). Sharpness is assessed using the Continuous Ranked

Probability Score (CRPS) and predictive power is compared with a Diebold-Mariano test

based on the CRPS, see Section B of S1 Appendix.

The implementation is done in R 4.0 [15] using the packages mgcv [16] for the estimation

of the index function, and isodistrreg for isotonic distributional regression [12]. Sample data

and code are provided in the supplement S1 Code of this article.

PLOS ONE Probabilistic analysis of COVID-19 patients’ individual length of stay in Swiss intensive care units
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3 Results

3.1 General

Summary statistics for the COVID-19 dataset and the training data are given in Table 1. The

figures are correct for the June 15, 2020, snapshot. The proportion of men in the COVID-19

dataset is higher than in the training data set. The age structure of both datasets is similar with

COVID-19 patients being slightly younger on average. COVID-19 patients generally have a

higher NEMS in the first shift. The median and mean SAPS II is similar in both datasets.

Fig 2 provides a quantitative comparison of the LoS in the COVID-19 dataset and the train-

ing data. Panel (a) shows that the probability PðY � yÞ of the LoS exceeding a fixed threshold

y is larger for COVID-19 patients than in the training data up to about y = 30 days, and after-

wards the relationship is reversed.

This observation does not exclude the possibility that given the covariates (G, A, S, M) for

an individual patient, the conditional distribution of the LOS can be predicted well using the

training data. Panel(b) of Fig 2 shows that the individual predictions are reasonable and are

marginally calibrated up to about 25 days. The tail of the average forecast distribution is

heavier than the tail of the empirical distribution of the COVID-19 dataset, meaning that very

long LoS are less likely in the COVID-19 dataset.

The DIM predictions for the LoS of the COVID-19 patients have an average CRPS of 5.29

compared to 5.69, which is the average CRPS when predicting the LoS of the COVID-19

patients with the ECDF of the training data, that is, for all patients, independently of the covar-

iates, the LoS is predicted by using the distribution of all the LoS values in the training data.

This difference is highly significant with a p-value of less than 5 � 10−4. This shows that the

DIM predictions are significantly more informative than the ECDF forecast. The DIM predic-

tions show better calibration than the ECDF predictions, see S3 Fig in S1 Appendix. Unifor-

mity of the PIT is rejected for the ECDF forecasts (p-value<10−4). For the DIM forecasts,

uniformity of the PIT is not rejected (p-value: 0.384).

3.2 Age differences

Fig 3(a) gives the empirical CDFs of COVID-19 patients grouped by age. Young patients, less

than 40 years, and very old patients, greater than 80 years have much shorter LoS than patients

between 40 and 80. Patients between 40 and 65 tend to have a shorter LoS than patients

between 65 and 80 except in cases of long LoS beyond 30 days. In Fig 3(c) the empirical CDFs

Table 1. Summary statistics of COVID-19 dataset and training data.

Variable Data Q25 Median Mean Q75 P-value

Age training 55.0 67.0 63.8 75.0 4.04 � 10−3

COVID-19 55.0 63.0 63.0 72.0

LoS training 4.5 9.1 12.4 15.8 5.79 � 10−5

COVID-19 5.0 12.0 13.9 19.0

NEMS training 18.0 27.0 28.6 34.0 <1.0 � 10−16

COVID-19 32.0 32.0 33.2 39.0

SAPS II training 35.0 46.0 48.5 59.0 1.39 � 10−1

COVID-19 29.0 50.0 44.9 58.0

Gender training Male: 61.9% Female: 38.1% 1.66 � 10−8

COVID-19 Male: 75.9% Female: 24.1%

P-values are for two-sided Wilcoxon’s rank sum test for continuous variables and Fisher’s exact test for gender.

https://doi.org/10.1371/journal.pone.0247265.t001
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are compared to the predictions based on the training data. The predictions for patients

younger than 40 seem reasonable but their quality is hard to judge given the small sample

size of this group in the COVID-19 dataset. For patients older than 80, the predicted LoS is

longer than observed, but again, a definite statement should not be made due to small sample

size. For patients between 40 and 65, marginal calibration is good until about 18 days. For

higher thresholds, a longer LoS is predicted than observed. For patients between 65 and 80

years, the predictions give too much weight to LoS shorter than 25 days, and substantially

overestimate the LoS beyond 25 days. Fig 3(b) shows that the training data leads to predic-

tions of shorter LoS for patients younger than 40 and older than 80. In contrast to the

COVID-19 data, the predicted LoS for patients between 65 and 80 is shorter than for

patients between 40 and 65.

3.3 Gender differences

Fig 4(a) shows the empirical CDF of COVID-19 patients grouped by gender. Female patients

show a slightly shorter LoS. The deviations of the predicted LoS from the observed LoS for

male and female patients is displayed in Fig 4(c). Qualitatively the differences are similar

with a slightly worse agreement of predictions and observations for female patients. The

average predictive distributions for male and female patients are displayed in Fig 4(b). The

predictions show a clear difference depending on gender with the same order as the COVID-

19 data in that the LoS for women tends to be shorter than the one for men. However, the

difference in average predicted LoS CDF is larger than the difference in ECDF based on the

COVID-19 data.

Fig 2. (a) EmpiricalCDF of the LoS in training and validation dataset. (b) Empirical CDF of the LoS in the validation dataset (black step function black,

same as in panel (a)) and average LoS forecast for the COVID-19 patients (orange curve). Shaded areas show the pointwise 25% and 75% (10% and 90%

for the outer bounds) quantiles of the predictive CDFs. For the average LoS forecast, the predictive CDFs of the COVID-19 patients are averaged

pointwise, that is, the curves show the vertical average of the predictive CDFs for all patients in the COVID-19 dataset. The computation of the

aggregated LoS CDFs is demonstrated in the sample code in S1 Code. The predictions take individual patient covariates into account and this allows to

mitigate some differences between training and validation data observed in panel (a); for further discussion see text.

https://doi.org/10.1371/journal.pone.0247265.g002
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In order to gain some insight on the reasons for this effect, we checked if there is a significant

difference in the LoS distribution of men and women in the training data. This is not the case.

Furthermore, a comparison of the distribution of the DIM index computed for the men and

women in the COVID-19 dataset shows that, indeed, the index values for women tend to be

smaller than those for men, which explains the differences between the CDFs in Fig 4(b). In

summary, it appears that a female patient with COVID-19 is likely to stay longer in the ICU

than a similar female patient in the training data, whereas this effect is less pronounced for men.

3.4 Regional differences

We have split the COVID-19 dataset according to the location of the ICU within Switzerland.

Region NE consisting of Northern and Eastern Switzerland and Region WT consisting of

Western Switzerland and Ticino. Region WT was hit earlier and more severely by the COVID-

19 crisis than Region NE. While ICU capacity limits were never reached in Region NE, ICU

occupation was possibly critical in Region WT.

Fig 3. Depending on age: (a) Empirical LoS distributions of COVID-19 patients. (b) Average DIM forecasts for COVID-19 patients. (c) Empirical LoS

distributions of COVID-19 patients and corresponding DIM forecasts. DIM forecasts are as in Fig 2.

https://doi.org/10.1371/journal.pone.0247265.g003
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The LOS distribution of COVID-19 patients is similar in both regions. The null hypothesis

of equal LoS distribution in both regions cannot be rejected (two-sample Kolmogorov-Smir-

nov test p-value: 0.510, Wilcoxon rank sum test p-value: 0.607), see also S4 Fig in S1 Appendix.

Comparing the regional LoS distributions to the DIM forecasts for the regions, we obtain that

both regions show the same pattern: Good marginal calibration until about 25 days and then

shorter LoS of the COVID-19 patients in comparison to the DIM predictions, see S5 Fig in S1

Appendix. The differences in the predictions for both regions are small, see S6 Fig in S1

Appendix.

4 Discussion

We have applied a new semi-parametric model, a DIM, for probabilistic predictions for the

LoS of COVID-19 patients in Swiss ICUs. The model is trained with data from the MDSi,

namely with data of patients with ARDS. Validation of the model using the COVID-19 dataset

shows that the predictions are probabilistically calibrated, marginally calibrated (except for the

Fig 4. Depending on gender: (a) Empirical LoS distributions for COVID-19 patients. (b) Average DIM forecasts for COVID-19 patients. (c) Empirical

LoS distributions of COVID-19 patients and corresponding DIM forecasts. DIM forecasts are as in Fig 2.

https://doi.org/10.1371/journal.pone.0247265.g004
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tail of the distribution), and significantly more informative then an ECDF forecast based on

the training data.

COVID-19 patients younger than 40 and older than 80 years tend to have a shorter stay in

the ICU than the patient groups between 40–65 and 65–80 years. Predictions for patients older

than 80 were longer than observed which could be an indicator of early treatment withdrawal

in very old patients with severe COVID-19 disease. In the age groups 65-80 years, forecasts

were shorter in the early phase than observations. This could be explained by prolonged recov-

ery times compared with ARDS in elderly patients. The forecasts in both age groups (40–65

and 65–80 years) were longer after 25 to 30 days. In those patient groups, withdrawal of treat-

ment is often executed after 20-30 days because of medical futility. The analysis of the LoS with

respect to age suggests that there are differences between ARDS (training data) and COVID-

19 in the sense that in terms of LoS COVID-19 patients might rather behave like slightly older

ARDS patients keeping the other covariates fixed.

The difference between the LoS distribution of female and male COVID-19 patients is

smaller than the difference between the predicted LoS distributions based on the training data,

that is, non-COVID-19 patients with ARDS. For male patients the predictions agree better

with the empirical distribution of observed LoS of the COVID-19 patients than for female

patients. In terms of LoS, male COVID-19 patients behave more similarly to patients in the

training data than female COVID-19 patients, making “longer than expected” LoS more likely

for female than for male patients.

Despite the fact that the Western Switzerland and Ticino (Region WT) were hit earlier, and

potentially less prepared for the COVID-19 crisis than Northern and Eastern Switzerland

(Region NE), we do not see an impact on the LoS of COVID-19 patients.

There are somepossible shortcomings of our study. First, the training dataset is not on

COVID-19 patients. Despite severe COVID-19 pneumonia behaving similar to ARDS, there

are some important differences [17]. Furthermore, multiple organ involvement is frequent in

severe COVID-19 disease [18, 19]. There have been discussions how and if classical ARDS and

ARDS secondary to COVID-19 (C-ARDS) are different. Initially, substantial differences were

postulated [20–22] but more recently consensus is growing that C-ARDS is most probably

similar to classical ARDS in treatment intensity and therapeutic approach [23]. In view of this,

the historical training data is as well chosen as historical data can be. Furthermore, the NEMS

evaluates how severe or nursing intensive a patient is, independently of the diagnosis. There-

fore, using is as a covariate in prediction is likely to mitigate confounders between training

data and COVID-19 dataset. Second, a limitation is imposed by the use of MDSi as training

dataset because the analysis is then constrained to the relatively few variables contained in

MDSi. Clearly, there are further relevant predictors for COVID-19 patients. However, most of

them concern mortality and not LoS, for example, coagulation status. These values are avail-

able in the RISC-19-ICU registry but not in the MDSi training data. Furthermore, we believe

that a successful model for probabilistic predictions of LoS should rely on values that are rou-

tinely recorded and available early after hospitalization such as SAPS II and NEMS. Since they

are compound variables, they are informative for the LoS. If training data sets with more

covariates are available, the DIM model we propose in Section 2.2 could be adapted to vari-

ables specific to COVID-19 patients. This may lead to an increase in predictive skill. Third,

there is possibly a bias towards a longer predicted LoS because of the data sampling process.

We have assessed whether the patients with missing LoS value in the RISC-19-ICU registry

have a substantially different distribution of covariate values than the patients with valid LoS

value. This is not the case which is an indication that many of them, rather than having a cen-

sored LoS, have indeed not been updated. We have also repeated all of our analyses on the

COVID-19 dataset restricted to patients with admission date before April 5, 2020. Here, the

PLOS ONE Probabilistic analysis of COVID-19 patients’ individual length of stay in Swiss intensive care units

PLOS ONE | https://doi.org/10.1371/journal.pone.0247265 February 19, 2021 10 / 14

177



update and the censoring problem should be less. Qualitatively, we obtained the same results

as the ones reported here. Nevertheless, it should be kept in mind that some of the very long

LoS are likely to be censored in either case. Fourth, LoS is often not only dependent on epide-

miological and physiologic variables but additionally on ICU resources, therapeutic restriction

policies [24] and withdrawal strategies (https://www.samw.ch/de/Ethik/Themen-A-bis-Z/

Intensivmedizin.html). Our forecasts predict a longer LoS compared with the observed LOS

overall and in almost any patient subgroups after 25 days. This may be due to an earlier with-

drawal of the intensive therapy compared to ARDS, especially in shortage of ICU resources.

However we did not find any significant difference in LoS distribution between two regions of

Switzerland with diverse ICU strain.

5 Conclusion

A new semiparametric model permits calibrated and informative probabilistic prediction of

LoS of individual patients with severe COVID-19 in ICUs, given covariate information. These

predictions would allow to simulate stochastic models for bed occupation in ICUs under dif-

ferent scenarios for the case mix. These scenarios could be different projections for the rate at

which COVID-19 patients and other patients arrive in the ICUs.
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Fig I. Illustration of the relation between admission date, LoS, update time and
snapshot date. For patients discharged before the update time, the (uncensored)
LoS is available. The censored LoS is available only if a patient is discharged
after the snapshot date, but not if the patient left the ICU between the update
time and the snapshot date.

✓ ↯ ✓

Admission LoS Update Time
LoS (overestimated
at snapshot date)

Snapshot date
LoS

(censored)

A. Censoring of LoS in the COVID-19 dataset

Since the COVID-19 pandemic is ongoing, it is likely that the set of patients
in the RISC-19-ICU registry with available LoS has a selection bias towards
shorter LoS. The natural approach to deal with this problem would be to treat
the patients with missing LoS as censored observations with censoring time
the number of days between admission and snapshot date. Unfortunately, this
approach appears to be misleading and overestimates the LoS for the following
reason. The data for each patient in the RISC-19-ICU registry is updated
periodically by the corresponding ICU. We call the date of the last update for a
given patient the update time. If the patient’s LoS in the ICU has terminated
before the update time, then we observe the LoS, if the patient is still in the
ICU at the snapshot date, then the LoS is censored as above. However, there is
the possibility that the patient has left the ICU between the update time and
the shapshot data, and there is no possiblity to see this from the data. Fig I
illustrates this problem, and Fig II shows how many patients are subject to this
issue.

B. Evaluation of probabilistic predictions

Probabilistic predictions should be calibrated and sharp [1]. Calibration refers
to the statistical compatibility of predictions and observations, and there are
several tools available in the literature to assess calibration graphically and with
statistical tests. The most prominent tool are so-called Probability Integral
Transform (PIT) histograms, which are a histogram of F1(y1), . . . , Fn(yn) [2, 3].
Here, (F1, y1), . . . , (Fn, yn) are a generic notation for the available prediction-
observation pairs. Predictions are called probabilistically calibrated if the PIT
histogram is flat, and there are strong arguments that probabilistic calibration is
an essential requirement for probabilistic forecasts [4]. The notion of probabilistic

2
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Fig II. Patient admission dates and LoS. Dots show the LoS of patients who
already left the ICU before the snapshot date (June 15). Black crosses show
the time between the admission and the snapshot date for patients for which no
discharge time is available in the database.
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calibration has been reintroduced in under the name of D-calibrated in [5].
Probabilistic predictions are called marginally calibrated if (1/n)

∑n
i=1 1{yi ≤

y} = (1/n)
∑n

i=1 Fi(y) for all y ∈ R, that is, the observed frequency of realizations
of Y below any threshold y should be equal to the average prediction of this
frequency [4].

Calibrated probabilistic predictions are not necessarily informative. Therefore,
the authors of [1] postulated the principle that probabilistic predictions should
maximize sharpness subject to calibration. Sharpness is a property of the forecasts
only and it refers to how concentrated the predictive distribution is. A forecast
is sharper if it yields shorter prediction intervals. Proper scoring rules allow to
assess sharpness and calibration of a forecast simultaneously [6]. A widely used
example is the Continuous Ranked Probability Score (CRPS) which is defined as

CRPS(F, y) =

∫ ∞

−∞
(F (t)− 1{y ≤ t})2d t.

for a CDF F and a real number y [7]. A forecast procedure is better the lower
the average realized CRPS

1

n

n∑

k=1

CRPS(Fk, yk).

The significance of differences in forecast performance can be assessed by a
Diebold-Mariano test [8].
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Fig III. PIT histograms for the ECDF and the DIM predictions.
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C. Diagnostic plots for calibration of DIM pre-
dictions

Fig III shows the PIT histograms for the ECDF predictions and the DIM
predictions.

D. Figures on LoS by regions

Figs IV, V, VI summarise the COVID-19 dataset and the corresponding predic-
tions split up by regions in Switzerland.

References

1. Gneiting T, Balabdaoui F, Raftery AE. Probabilistic forecasts, calibration
and sharpness. J R Stat Soc Series B Stat Methodol. 2007;69:243–268.

2. Dawid AP. Statistical theory: The prequential approach. Journal of the
Royal Statistical Society: Series A. 1984;147:278–290.

3. Diebold FX, Gunther TA, Tay AS. Evaluating density forecasts with
applications to financial risk management. International Economic Review.
1998;39:863–883.

4. Gneiting T, Ranjan R. Combining predictive distributions. Electronic
Journal of Statistics. 2013;7:1747–1782.

5. Andres A, Montano-Loza A, Greiner R, Uhlich M, Jin P, Hoehn B, et al. A
novel learning algorithm to predict individual survival after liver transplan-
tation for primary sclerosing cholangitis. PLOS one. 2018;13(3):e0193523.

4

185



Fig IV. (a) Empirical distribution of LoS of COVID-19 patients in the regions
NE and WT. (b) QQ-plot of the empirical distributions.
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Fig V. Empirical LoS distributions of COVID-19 patients and corresponding
DIM forecasts for the regions NE and WT. The DIM forecasts are as in Fig 2 in
the article.
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Fig VI. DIM forecasts for COVID-19 patients, depending on region.
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Chapter 4

New methods for forecast evaluation

4.1 Valid sequential inference on probability forecast
performance

The content of this section is published as

Henzi, A. and Ziegel, J.F. (2021+). Valid sequential inference on probability forecast
performance. Biometrika, to appear.

The article is directly followed by its supplementary material, which is also available on
https://doi.org/10.1093/biomet/asab047. The article is published under license
Creative Commons CC BY.
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Summary

Probability forecasts for binary events play a central role in many applications. Their quality
is commonly assessed with proper scoring rules, which assign forecasts numerical scores such
that a correct forecast achieves a minimal expected score. In this paper, we construct e-values
for testing the statistical significance of score differences of competing forecasts in sequential
settings. E-values have been proposed as an alternative to p-values for hypothesis testing, and
they can easily be transformed into conservative p-values by taking the multiplicative inverse.
The e-values proposed in this article are valid in finite samples without any assumptions on the
data-generating processes. They also allow optional stopping, so a forecast user may decide to
interrupt evaluation, taking into account the available data at any time, and still draw statistically
valid inference, which is generally not true for classical p-value-based tests. In a case study on
post-processing of precipitation forecasts, state-of-the-art forecast dominance tests and e-values
lead to the same conclusions.

Some key words: Consistent scoring function; E-value; Forecast dominance; Optional stopping; Probability forecast;
Proper scoring rule; Sequential inference.

1. Introduction

Consider a forecast user who compares probability predictions pt , qt ∈ [0, 1], t ∈ N, for a
binary event Yt+h ∈ {0, 1}, where h � 1 is the time lag between the forecasts and the observations.
At time t, the forecasts pt and qt , as well as any predictions and observations before t, are known.
This setting encompasses many practical situations, such as probability-of-precipitation forecasts
h days ahead or predictions of negative economic growth in the next quarter. The forecast user
wants to draw conclusions about the relative performance of pt and qt , that is, to identify the
better of the two forecasts.

Probability forecasts for binary events are arguably the simplest and best-understood type of
probabilistic forecasts; see Winkler (1996) for an earlier overview and more recent reviews in
Gneiting & Raftery (2007), Ranjan & Gneiting (2010) and Lai et al. (2011). The key requirements
for probability forecasts are calibration, meaning that events with a predicted probability of p
should occur at a frequency of p, and sharpness, which requires the forecast probabilities to be
as informative as possible, i.e., close to 0 or 1. These properties are simultaneously assessed
with proper scoring rules (Gneiting & Raftery, 2007), which coincide with consistent scoring
functions for the mean (Gneiting, 2011) in the case of probability forecasts, and will be simply
referred to as scoring functions in this article. A scoring function S = S(p, y) maps a forecast

©c 2021 Biometrika Trust
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is
properly cited.
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2 A. Henzi and J. F. Ziegel

probability p and an observation y to a numerical score, with smaller scores indicating a better
forecast. More precisely, S satisfies

Eπ {S(π , Y )} � Eπ {S(p, Y )} (1)

for all p, π ∈ [0, 1], where Eπ(·) denotes the expected value under the assumption that Y = 1
with probability π . That is, the true event probability attains a minimal expected score, and S is
strictly consistent if equality in (1) holds only for p = π . Well-known examples are the Brier
score (y − p)2 and the logarithmic score −log(|1 − y − p|).

To compare the predictions pt and qt , the forecast user would therefore collect a sample
yt+h, pt , qt , t = 1, . . . , T , and compute the empirical score difference (1/T )

∑T
t=1{S(pt , yt+h) −

S(qt , yt+h)}. To take into account the sampling uncertainty, such score differences are accom-
panied by p-values indicating whether the mean score differs significantly from zero. If the
observations are not independent, as is usual in sequential settings, a number of asymptotic tests
are available for computing p-values, prominent ones being the Diebold–Mariano test (Diebold
& Mariano, 1995) and the test of conditional predictive ability proposed by Giacomini and White
(Giacomini & White, 2006). Further examples are the martingale-based approaches of Seillier-
Moiseiwitsch & Dawid (1993) and Lai et al. (2011), and more recent tests of forecast dominance
(Ehm & Krüger, 2018; Yen & Yen, 2021).

In this article, we expand the tools for drawing inference on probability forecast performance by
using e-values. E-values, where the ‘e’refers to expectation, have been introduced as an alternative
to p-values for testing. The term e-value was first used in the literature by Vovk & Wang (2021),
but the concept also appears in Shafer (2021), under the name ‘betting score’, and in Grünwald
et al. (2020); see also the series of working papers at http://alrw.net/e/. In brief, an
e-value is a random variable E � 0, satisfying E(E) � 1 under a given null hypothesis. By
Markov’s inequality, this implies that pr(E > 1/α) � α for any α ∈ (0, 1), i.e., large realizations
of an e-value can be taken as evidence against the null hypothesis, and the value 1/E is a
conservative p-value. A main motivation for using e-values instead of p-values, explained in
more detail in Shafer (2021), Grünwald et al. (2020) and Wang & Ramdas (2020), is their simple
behaviour under combinations. The arithmetic average of e-values is again an e-value, and so is
the product of independent or sequential e-values. E-values also have advantages over p-values
with respect to false discovery rate control (Wang & Ramdas, 2020), which may be beneficial for
the comparison of forecasts over many locations, such as over a fine latitude-longitude grid around
the globe. The central property for this work is that e-values are valid under optional stopping and
continuation; that is, the collection of data for computing an e-value may be stopped or continued
based on seeing the past observations and e-values. It is well known that p-values in general do
not have these properties.

Our main contribution is the result that for any scoring rule S and forecasts p and q for Y ∈
{0, 1}, there exists an e-value which satisfiesEπ(E) � 1 if and only ifEπ {S(p, Y )−S(q, Y )} � 0.
This e-value allows one to draw inference on the relative performance of the forecasts p and q
with respect to S based on only a single observation. In a sequential setting, e-values from
different time-points can be merged by products into a nonnegative supermartingale or test-
martingale, which are analysed in detail by Ramdas et al. (2020). This gives a statistical test
of forecast dominance that is valid in finite samples without any further assumptions on the
data-generating process. Moreover, the constructed e-values are valid under optional stopping,
so a forecast user may decide to continue or stop forecast comparison based on only a part of
the data. These advantages are inherent to any e-value, but we believe that they make e-values
a particularly attractive tool in sequential forecast evaluation. The tests mentioned above for
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Sequential inference on probability forecast performance 3

comparing probability forecasts are all only asymptotically valid, and the underlying assumptions
are often difficult or impossible to verify. In the case of tests with asymptotic normality, the
selection of the variance estimator for the test statistic may have a dramatic impact on the test
validity; see, for example, Lazarus et al. (2018, Table 1). More serious is the problem of optional
stopping. In a simple but realistic simulation example, we demonstrate that commonly used tests
for forecast superiority at the level of 0.05 may yield rejection rates of up to 0.15 under optional
stopping, grossly misleading and invalidating statistical inference. Although statisticians and
practitioners should know that the sample size for classical tests must be determined in advance,
we believe that optional stopping is quite common in forecast evaluation, where data arrive
sequentially and it might be tempting to stop, or continue, an expensive or time-consuming
experiment upon seeing enough, or just not enough, evidence against a hypothesis. Moreover,
also in the analysis of past datasets, optional continuation may occur implicitly, in that methods
are often first evaluated on a smaller, manageable part of the data and the analysis is continued
if the results are promising. Last, but not least, even to a statistician fully aware of the problem
of optional stopping, it may be desirable to have a tool that allows the stopping of an evaluation
when enough evidence is collected, without having to bother about the implications for inference.

The advantages of e-values for forecast comparison relative to the currently available methods
come at a price, namely lower power. This is well known, not only for e-values, and is a general
phenomenon when tools for anytime-valid inference are compared with methods for inference
with a fixed sample size; see, for example, Fig. 1 in Waudby-Smith & Ramdas (2021), which
displays the widths of time-uniform and fixed-time confidence intervals for a mean. However, in
the case study in this article, p-values from classical tests and e-values lead to qualitatively the
same results.

2. Preliminaries

2.1. Scoring functions for probabilities

Throughout the article, EQ(·) denotes the expected value of the quantity in parentheses under
the probability distribution Q. If the measure Q is the probability π ∈ [0, 1] of a binary event,
we simply write Eπ(·).

When comparing probability forecasts with scoring functions, the choice of the scoring func-
tion plays a crucial role. While (1) guarantees that the true event probability always achieves
a minimal expected score, different scoring functions may yield different rankings when mis-
specified forecasts are compared (Patton, 2020). This problem can be avoided by basing forecast
comparisons on several or all scoring rules simultaneously. For probabilities of binary events,
under mild regularity conditions stated in Gneiting et al. (2007, Theorem 2.3), all consistent
scoring functions are of the form

S(p, y) =
∫

(0,1)

Sθ (p, y) dν(θ), (2)

where ν is a locally finite Borel measure on (0, 1) and

Sθ (p, y) = (θ − y){1(p > θ) − 1(y > θ)} =

⎧⎪⎨
⎪⎩

θ , y = 0, p > θ ,

1 − θ , y = 1, p � θ ,

0, otherwise.

(3)

In (3), 1 denotes the indicator function. This representation originally dates back to Schervish
(1989); see also Ehm et al. (2016). The scoring function S is strictly consistent if and only if ν

assigns positive mass to all nondegenerate intervals in (0, 1).
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4 A. Henzi and J. F. Ziegel

2.2. Forecast dominance and hypotheses

Let (�,F ,Q) be a probability space with a filtration Ft , t ∈ N. We assume that the competing
forecasts pt and qt and the observation Yt , constitute a random vector (Yt , pt , qt) adapted to Ft ,
and that (pt , qt) are forecasts for Yt+h for some integer lag h � 1. The measure Q describes the
joint dynamics of the forecasts and the observations.

When comparing forecasts using a given scoring function S, the quantity of interest is often
not the unconditional expected score difference EQ{S(pt , Yt+h) − S(qt , Yt+h)}, which describes
the average relative performance of pt and qt . More interesting is the question of whether, given
the information Ft at the time of forecasting, the conditional event probability is closer to pt than
to qt , i.e., EQ{S(pt , Yt+h) − S(qt , Yt+h) | Ft} � 0. This notion of forecast dominance is called
conditional forecast dominance and was introduced by Giacomini & White (2006).

The definition of forecast dominance used here does not require knowledge about the processes
generating (Yt , pt , qt), which are often unknown or not well enough understood to formulate a
suitable stochastic model. The relative performance of the forecasts pt and qt is governed by
the underlying distribution Q, and hypotheses about forecast dominance are hypotheses about
the data-generating process. Denoting by P the set of probability measures on (�,F), we will
construct tests for the following hypotheses:

HS;c = [
P ∈ P : ct EP{S(pt , Yt+h) − S(qt , Yt+h) | Ft} � 0 a.s., t ∈ N

]
, (4)

Hc =
[
P ∈ P : sup

θ∈[0,1]
ct EP{Sθ (pt , Yt+h) − Sθ (qt , Yt+h) | Ft} � 0 a.s., t ∈ N

]
, (5)

where a.s. stands for almost surely. Here, (ct)t∈N is a sequence ofFt-measurable random variables
ct ∈ {0, 1}. If ct = 1 for all t, we write HS;c = HS and Hc = H. In this case, hypothesis (4)
states that at all times t, forecast pt is at least as good as forecast qt under the scoring rule S, given
the information available at the time of forecasting. Hypothesis (5) is stronger and states that
pt is preferred over qt under all elementary scores (3), and it corresponds to what is denoted by
H s− in Ehm & Krüger (2018, (2.5)). Recently, hypotheses of the type H or HS have been called
into question by Zhu & Timmermann (2020), who demonstrate that the null hypothesis of equal
conditional predictive accuracy is basically never satisfied in realistic settings. Their criticism
does not directly apply to one-sided hypotheses, but we emphasize that the null hypotheses HS
and H are rather strong in that they require conditional dominance at all time-points. Tests for
these hypotheses are therefore most suitable for comparing a new method with an established
benchmark or a state-of-the-art method, where rejecting the null means that the new method
outperforms the benchmark at least in some situations, a minimal requirement.

The classical example for a situation with P ∈ H is pt = P(Yt+h = 1 | Ft), i.e., pt is
the ideal forecast in the sense of Gneiting & Ranjan (2013). For the hypotheses HS , one may
easily construct situations with dominance relations also among noncalibrated forecasts; see the
simulation examples in § 4.

In many practical situations, it cannot be expected that a certain forecast method will always
outperform another one, and forecast users want to know under what conditions a particular
forecast should be preferred. Choosing the sequence (ct)t∈N such that ct = 1 if the condition
holds and ct = 0 otherwise, allows us to formalize this question. Here the variables ct must be
Ft-measurable, i.e., known at the time of forecasting. In practice this is not a severe limitation,
since the information that one forecast is more accurate than another under a given condition
is useful only if this condition is known at the time of forecasting, and not ex post. But also
from a theoretical point of view, forecast evaluation should only be conditioned on the forecasts
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Sequential inference on probability forecast performance 5

themselves, and not on the observations or on information not available at the time of forecasting;
see Lerch et al. (2017) for a detailed analysis of this issue in the case of extreme events.

3. E-values for testing forecast dominance

3.1. One-period setting

We first construct e-values for the comparison of probability forecasts in a one-period setting,
where Y = 1 with probability π and the forecasts p and q are assumed to be fixed numbers in
(0, 1). These e-values give an absolute and valid interpretation of predictive performance with
only a single observation, e.g., for a single time-point in the sequential setting of § 2.2 or in
binary classification problems with independent forecast-observation pairs, where the competing
forecasts are based on covariates and π is the probability of Y = 1 conditional on the covariate
values. The null hypotheses that p is a better forecast than q with respect to a given score S or
with respect to all scoring functions simultaneously correspond to

HS = [
π ∈ [0, 1] : Eπ {S(p, Y ) − S(q, Y )} � 0

]
,

H =
[
π ∈ [0, 1] : sup

θ∈[0,1]
Eπ {Sθ (p, Y ) − Sθ (q, Y )} � 0

]
.

For p < q, a direct computation shows that HS is the interval [0, κν{[p, q)}] with

κν{[a, b)} =
∫
[a,b)

θ dν(θ)

ν{[a, b)} (0 < a < b < 1).

The stronger null hypothesis H is the intersection of these intervals for all mixing measures ν,
that is, [0, p]. In the case of q > p, the intervals HS and H take the form [κν{[q, p)}, 1] and [p, 1],
respectively. Table 1 gives the boundary κν{[p, q)} for commonly used scoring functions.

For a set P of probability measures and disjoint H , H ′ ⊂ P , we say that an e-value E has null
hypothesis H and alternative H ′ if EP(E) � 1 for all P ∈ H and EQ(E) > 1 for all Q ∈ H ′. The
following theorem characterizes e-values for testing HS .

Theorem 1. Let S be a consistent scoring function and let p, q ∈ (0, 1) with p |= q. Assume
that the mixing measure ν of S satisfies ν{[min(p, q), max(p, q))} > 0. Then a function E = E(y)
is an e-value with null hypothesis HS and alternative [0, 1] \HS if and only if for some λ ∈ (0, 1],

E(y) = Ep,q;λ(y) = 1 + λ
S(p, y) − S(q, y)

|S(p, 1{p > q}) − S(q, 1{p > q})| . (6)

Theorem 1 gives a family of e-values for testing forecast dominance with a given score S, and
in a next step we tune the parameter λ in (6) such that the corresponding e-value has maximal
power against a given alternative. The notion of power for e-values differs from the classical
power for p-values, and it is motivated in detail by Shafer (2021) and Grünwald et al. (2020).
An e-value can be interpreted as a bet against the null hypothesis, and a product

∏T
t=1 Et of

e-values represents the accumulated capital at time T if the initial capital is 1 and all money is
invested in the bet at each step. Maximizing the gains is equivalent to maximizing the growth
rate (1/T ) log

∏T
t=1 Et = (1/T )

∑T
t=1 log(Et), a strategy sometimes called Kelly betting after

Kelly Jr (1956). If an e-value maximizesEP{log(E)} under a measureP representing an alternative
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6 A. Henzi and J. F. Ziegel

Table 1. Commonly used scoring rules and the corresponding denominators in the GROW
e-values under the assumption p < q. The case of p > q is obtained by interchanging the roles of
p and q. The mixing measure ν is given in the form of its Lebesgue density h(θ), θ ∈ (0, 1). For
the spherical score, ‖p‖ = (2p2 − 2p + 1)1/2 denotes the Euclidean norm of the vector (p, 1 − p)

Score S(p, y) Mixing density ν κν{[p, q)}
Brier (p − y)2 2 (p + q)/2

Logarithmic −log(|1 − y − p|) θ−1(1 − θ)−1 log
( 1−p

1−q

)/
log

{ q(1−p)

p(1−q)

}
Spherical 1 − |1 − y − p|/‖p‖ (2θ2 − 2θ + 1)−3/2 (q−1)‖p‖−(p−1)‖q‖

(2q−1)‖p‖−(2p−1)‖q‖

hypothesis, it is said to be growth-rate-optimal, abbreviated GROW (Grünwald et al., 2020). One
such alternative could be that Y = 1 with probability q, but one can maximize the power under
any other alternative π1 �∈ HS .

Theorem 2. Under the assumptions of Theorem 1, for any π1 �∈ HS, Eπ1{log(Ep,q;λ)} is
maximal in λ if and only if

λ =

⎧⎪⎪⎨
⎪⎪⎩

(1 − π1) + π1
S(p, 1) − S(q, 1)

S(p, 0) − S(q, 0)
, p > q,

π1 + (1 − π1)
S(p, 0) − S(q, 0)

S(p, 1) − S(q, 1)
, p < q.

The corresponding e-value equals

Eπ1
p,q(y) =

⎧⎪⎪⎨
⎪⎪⎩

1 − π1

1 − κν{[min(p, q), max(p, q))} , y = 0,

π1

κν{[min(p, q), max(p, q))} , y = 1.

Theorem 2 shows that the GROW e-values for the comparison of probability forecasts take the
form of likelihood ratios with the alternative probability in the numerator and the integral of the
mixing measure ν over the interval [min(p, q), max(p, q), suitably normalized, in the denominator.
It is possible to obtain this result directly by applying Theorem 1 of Grünwald et al. (2020), since
κν{[min(p, q), max(p, q))} is the boundary of the null hypothesis HS . We have chosen to take
the indirect but more instructive approach via Theorem 1, because to the best of our knowledge
this is the first application of e-values to forecast comparison, and similar approaches might be
used to construct e-values for score differences in more general settings than the evaluation of
binary event forecasts. In fact, Waudby-Smith & Ramdas (2021, Proposition 2) contains a similar
representation of e-values to that in (6) for testing hypotheses about a constant mean.

For the test of the null hypothesis H , applying Theorem 1 of Grünwald et al. (2020) shows
that the GROW e-value is the likelihood ratio.

Theorem 3. Let p, q ∈ (0, 1). Then the GROW e-value with null hypothesis H and alternative
hypothesis that Y = 1 with probability π1 �∈ H is

Eπ1∗
p,q (y) =

{
(1 − π1)/(1 − p), y = 0,

π1/p, y = 1.
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In testing with e-values, the GROW e-value for testing the point null hypothesis {p} against
the alternative π1 is exactly the likelihood ratio, and Theorem 3 states that this is equivalent to
testing forecast dominance with respect to all scoring functions. Dominance with respect to all
scoring functions is a very strong requirement on p, since the null hypothesis is false as soon as
the true probability π is on the same side of p as q, that is, in (p, 1] for p < q or in [0, p) for
q < p, and the choice of π1 is restricted to these sets. Unlike the e-values Eπ1

p,q, Eπ1∗
p,q does not

depend directly on q, but rather indirectly via the admissible values for π1.

3.2. Sequential inference

We now turn to the sequential model with observations Yt and forecasts pt and qt defined on a
probability space (�,F ,Q) with a filtration Ft , t ∈ N. In the h = 1 case, for any Q ∈ HS;c and
any adapted sequence λt ∈ [0, 1], t ∈ N, with Ept ,qt ;λt as defined in (6),

EQ

{
T∏

t=1

Ept ,qt ;λt (Yt+1)

}
= EQ

[
EQ

{
T∏

t=1

Ept ,qt ;λt (Yt+1)

∣∣∣∣ FT

}]

= EQ

[
T−1∏
t=1

Ept ,qt ;λt (Yt+1)EQ{EpT ,qT ;λT (YT+1) | FT }
]

.

If ct = 0, then there is no hypothesis about pt and qt . For these cases, the definition in (6) may
be extended to λ = 0, so that Ept ,qt ;0 ≡ 1 if ct = 0. Then, if λT = 0 when cT = 0,

EQ{EpT ,qT ;λT (YT+1) | FT } = (1 − cT ) + cTEQ{EpT ,qT ;λT (YT+1) | FT } � 1

almost surely for Q ∈ HS;c, so

EQ

{
T∏

t=1

Ept ,qt ;λt (Yt+1)

}
� EQ

{
T−1∏
t=1

Ept ,qt ;λt (Yt+1)

}
.

Iterating this argument shows that the product
∏T

t=1 Ept ,qt ;λt (Yt+1) is an e-value for HS;c; more
precisely, the process

∏t
j=1 Epj ,qj ;λj (Yj+1), t = 1, 2, 3, . . ., is a nonnegative supermartingale with

respect to (Ft)t∈N. For a general lag h, sequential conditioning at time steps of 1 is not possible,
and one option is to average the products of all e-values with a time difference of h, in the spirit
of the U-statistics merging functions suggested by Vovk & Wang (2021). We summarize this in
the following proposition.

Proposition 1. Let (Yt , ct , pt , qt , λt) ∈ {0, 1}2 × (0, 1)2 × [0, 1] be defined on a measurable
space (�,F) and adapted to the filtration Ft (t ∈ N), and assume that λt = 0 if ct = 0. Further,
let S be a strictly consistent scoring function. Then for all T � h + 1,

eT = 1

h

h∑
k=1

∏
l∈Ik

Epl ,ql ;λl (Yl+h)

with Ik = {k + hs : s = 0, . . . , 	(T − k)/h
 − 1} are FT -measurable and are e-values under
HS;c.
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8 A. Henzi and J. F. Ziegel

Proposition 1 is an analogous result to Theorem 1 in the sense that it only characterizes possible
e-values for testing forecast dominance, but the parameters λt could be any adapted sequence
(λt)t∈N ⊂ [0, 1]. E-values for dominance testing under the conditions (ct)t∈N are obtained by
setting all e-values for which the condition is not satisfied to 1. The forecast user may, and in
fact has to, tune the (λt)t∈N in order to attain good power against a given alternative. Recall that
at any t, λt may be a function of all the forecasts and observations before time t. Instead of the
parameters λt , it is usually more intuitive to think of an alternative probability ηt for the event
Yt+h = 1 and then directly use the GROW e-values Eηt

pt ,qt constructed in Theorem 2. In that
respect, testing forecast dominance with e-values differs from p-value-based tests of a zero score
difference, which do not require the user to explicitly specify an alternative hypothesis. In the
applications in § 4 and § 5, we will give guidance on the selection of alternative hypotheses and
show that reasonable power can be attained with simple heuristic methods.

As a side remark, choosing an alternative hypothesis for e-values in sequential forecast domi-
nance testing is similar to the conditional predictive ability tests of Giacomini & White (2006),
where Ft-measurable test functions are used to weight score differences and improve power.
Whereas selection of the test functions in the Giacomini–White test is delicate, because they
may have an impact on the variance estimates and the finite-sample validity of the tests, e-values
remain valid under any choice of adapted weights (λt)t∈N.

Our final theoretical result states that the e-values eT constructed above are also valid when T
is replaced by a stopping time τ . This is a consequence of the fact that (et)t�h+1 is a nonnegative
supermartingale (see Ramdas et al., 2020, § 3).

Proposition 2. Let τ ∈ N be a stopping time. Then under the assumptions of Proposition 1,

EQ(eτ ) � 1, Q ∈ HS .

To understand validity under optional stopping intuitively, recall that at time t the forecast
user has to determine the parameter λt in the e-value Ept ,qt ;λt (Yt+h). Optional stopping at t0
corresponds to setting λt ≡ 0, or equivalently Ept ,qt ;λt (Yt+h) ≡ 1, for t � t0, i.e., ignoring all
observations starting from time t0 +h. In the case of forecast lag 1, this allows the forecast user to
stop evaluation at any time, since λt in Ept ,qt ;λt (Yt+1) is defined at the same time as Yt is observed.
However, when h > 1, the coefficients λt in Ept ,qt ;λt (Yt+h) for t = t0 − h + 1, . . . , t0 − 1 have
already been determined in the past and may not be set to zero at t0, since they must be (Ft)t∈N-
adapted. This implies that the stopped e-value depends on the unknown, future observations
Yt0+1, . . . , Yt0+h−1 and so is not deterministic at time t0.

In the case h = 1, optional stopping is a powerful strategy when the goal is to assess forecast
superiority at a significance level α ∈ (0, 1), because the stopping time

τα = min{T , inf (t � 2 : et � 1/α)}
allows us to reject the null hypothesis as soon as the sequential e-value et exceeds 1/α. If h > 1,
one may similarly define

τα,h = min
(

T , inf
[
t � h + 1 : et � max

j=t−h+1,...,t−1
Epj ,qj ;λj {1(pj > qj)}−1/α

])
,

which guarantees that when stopping at t0, the level 1/α is exceeded no matter what values
Yt0+1, . . . , Yt0+h−1 take; see the Supplementary Material. Instead of specifying a significance
level α in advance, one may as well transform the sequence (et)t∈N into so-called anytime-valid
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p-values pt0 = min{1, inf s=1,...,t0 1/es}, which are valid simultaneously for all t0 � h + 1 (see
Ramdas et al., 2020, § 3.1).

4. Simulation examples

4.1. Basic properties

For the simulation examples in this subsection and the next, we transform e-values E into
p-values by taking their inverse 1/E, so that direct comparisons with p-values are possible.
Further variations of these simulation examples are presented in the Supplementary Material.
An R package for the proposed methods and replication material for all results in this article are
available at https://github.com/AlexanderHenzi/eprob.

In the first example, for varying μ ∈ (0, 1), we simulate independent forecasts pt , qt ∼
Unif (0, 1), define πt = μqt + (1 − μ)pt , and generate independent Bernoulli observations Yt+1
with mean πt conditional on pt and qt . This represents a situation where forecasters only have
access to partial information and both forecasts are not calibrated, i.e., P(Yt+1 = 1 | pt) |= pt
and P(Yt+1 = 1 | qt) |= qt . We choose S to be the Brier score, so that pt outperforms qt if
and only if πt ∈ [0, (pt + qt)/2] if pt < qt or πt ∈ [(pt + qt)/2, 1] if pt > qt , i.e., if and only
if μ � 0.5. When μ > 0.5, the GROW e-value is obtained by choosing πt as the alternative
hypothesis probability, but in practice πt is not known. The forecast user might assume that the
true probability of Yt+1 = 1 lies somewhere between (pt + qt)/2 and qt , and choose a convex
mixture ηt(ξ) = ξ(pt + qt)/2 + (1 − ξ)qt with some ξ ∈ (0, 1) as an alternative. Proposition 1
implies that for k ∈ N and ξ1, . . . , ξk ∈ (0, 1),

et;ξj =
t∏

i=1

E
ηi(ξj)
pi ,qi (Yi+1), et = 1

k

k∑
j=1

et;ξj

are e-values under HS . In Fig. 1, we compare the rejection rates at the 5% level, corresponding to
e-values greater than or equal to 20, when the ξj are k equally spaced weights in (0, 1) for k = 1
and k = 5, i.e., ξ1 = 0.5 if k = 1 and ξl = l/6 for l = 1, . . . , 5 in the case of k = 5. We computed
both the unstopped e-value eT and the stopped variant eτ0.05 , and the e-values under alternatives
ηt = πt and ηt = qt . The rejection rates are compared with those of one-sided t-tests of the
null hypothesis that the mean Brier score difference is nonpositive. Additionally, we report the
rejection rates when the p-value is used for optional stopping at given time-points upon seeing a
significant difference.

Our simulations illustrate the known fact that classical statistical tests are not valid under
stopping. At the boundary of the null hypothesis, the rejection rate of the t-test amounts to
0.12 for T = 600 and optional stops at times 150, 300 and 450; given the number of optional
stops, this phenomenon occurs independently of the sample size. As for the e-values, stopping,
i.e., eτ0.05 , is always a more powerful but valid strategy compared to the e-value eT . While the
heuristic alternatives achieve a power close to that under the correct alternative hypothesis, the
misspecified hypothesis ηt = qt is clearly weaker. Interestingly, the correct alternative ηt = πt
has lower power than the heuristic alternatives close to the boundary of the null hypothesis. This
is not an error: specifying ηt = πt yields the optimal growth rate for the e-value, but this does not
necessarily mean that it gives optimal power for the stopped e-value at the threshold 1/α = 20
in finite samples. The t-test generally achieves higher power than the e-values, which is to be
expected given the absence of assumptions on the data-generating process and the validity under
optional stopping for the e-values. See also Waudby-Smith & Ramdas (2021).
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Fig. 1. Rejection rates of e-values and Student’s t-test for the hypothesis that pt dominates qt with respect to the
Brier score in the simulation of § 4.1. The sample size is T = 600 for panels (a)–(c) and the significance level is
α = 0.05 for all panels. (a) Rejection rate of t-test under optional stopping at one (triangles), three (squares) and five
(crosses) equispaced time-points between 1 and T = 600, and without optional stopping (dots). (b) Rejection rates of
stopped (dots) and unstopped (triangles) e-values with k = 1. (c) Rejection rates of e-values with different alternative
hypotheses: qt (triangles), πt (dots), k = 1 (crosses) and k = 5 (squares). (d) Rejection rates of e-values with k = 5
(solid lines) and t-test without stopping (dot-dashed lines) for sample sizes T = 300 (dots), 600 (triangles) and 1200

(squares).

4.2. Time series example

We simulate Zt from a moving-average process Zt = εt + θ
∑4

j=1 εt−j and define

Yt = 1{Zt > 0}, πt;h = P(Zt > 0 | Zt−j, j = h, . . . , 4) (h = 1, . . . , 4). (7)

The probability πt;h corresponds to the ideal forecast at lag h. We compare qt;h = πt;h and
pt;h = πt;h+1 for lags h = 1, 2, 3, so that qt;h always outperforms pt;h. As the parameter θ

decreases, serial dependence decreases and the forecasting skills of pt;h and qt;h become similar.
The alternative hypothesis for the e-values is the correct alternative ηt;h = qt;h, so that the effect
of a higher lag can be analysed in isolation from the question of how to choose the alternative
hypothesis. Rejection rates are compared with the Diebold–Mariano test at the 5% level.

Figure 2 shows the dependence of the rejection rates on the parameter θ for different sample
sizes T . The e-values use the stopping time τ0.05 for lag 1 and the stopping time τ0.05;h for lags
h = 2 and h = 3. As in the previous simulations, the power of the e-values is below that of
the p-values for the lag-1 forecasts, where the Diebold–Mariano test essentially coincides with
the t-test. For lags 2 and 3 this difference increases, since the combination method for e-values
becomes less powerful. With increasing lag, the rejection rates of both methods decrease, but the
difference to lag 1 is smaller for the Diebold–Mariano test than for the e-value. In this example,
the Diebold–Mariano test is valid because the forecasts are ideal and the data-generating process
is stationary. For the e-values, validity is guaranteed without such assumptions, which may be a
great advantage in applications.
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Fig. 2. Rejection rates of e-values (dots) and the Diebold–Mariano test (triangles) in the example (7) at the 5% level
for different sample sizes T (rows) and lags h (columns).

5. Case study

5.1. Data and methods

Henzi et al. (2021) compared post-processing methods for precipitation forecasts with lags of
one to five days at Brussels, Frankfurt, London Heathrow and Zurich airports. In their case study,
probability-of-precipitation, or PoP, forecasts were evaluated with the Brier score, but no tests
for significance of score differences were performed. We demonstrate here how to apply e-values
to probability forecasts, and we will compare the results with state-of-the-art forecast dominance
tests.

A detailed description of the dataset and methods is given in Henzi et al. (2021, § 5), so here
we only summarize the key information. The dataset covers the period from 6 January 2007 to
1 January 2017, and upon accounting for missing values, the numbers of available observations
are 3406 for Brussels, 3617 for Frankfurt, 2256 for London and 3241 for Zurich. Post-processing
is applied to the ensemble forecasts of the European Centre for Medium-Range Weather Forecasts
(Molteni et al., 1996; Buizza et al., 2005), which are issued on a latitude-longitude grid and consist
of a high-resolution forecast, 50 perturbed ensemble forecasts at a lower resolution, and the control
run for the perturbed forecasts. In simple terms, ensemble forecasts account for uncertainty by
running a numerical weather prediction model several times, each time under slightly perturbed
initial conditions; each run of the model yields a different forecast, and these forecasts together
form a so-called ensemble (Leutbecher & Palmer, 2008). Ensemble forecasts are usually subject to
biases and dispersion errors, which can be corrected by estimating the conditional distribution of
the weather variable, given the numerical weather prediction ensemble. This statistical procedure
is known as post-processing of ensemble forecasts (Vannitsem et al., 2018).

Henzi et al. (2021) proposed isotonic distributional regression, IDR, as a benchmark for such
post-processing methods. IDR estimates conditional distributions nonparametrically and without

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asab047/6375942 by U

niversitaetsbibliothek Bern user on 28 February 2022

200



12 A. Henzi and J. F. Ziegel

any tuning parameters. The method is not specifically tailored to forecasting precipitation, and one
would expect that a parametric model designed for this purpose will give more precise forecasts.
One such method is heteroscedastic censored logistic regression, HCLR (Messner et al., 2014),
which assumes that the square root of the precipitation follows a logistic distribution censored at
zero. The implementation is as in Henzi et al. (2021).While the covariates in IDR are only the high-
resolution forecast, the control forecast and the ensemble mean, the HCLR model additionally
includes a scale parameter depending on the ensemble standard deviation.

In contrast to the study in Henzi et al. (2021), which uses an expanding window for the post-
processing, we estimate both post-processed forecasts on half of the data for each airport for
simplicity, and keep the remaining half for validation.

5.2. Hypothesis tests

We illustrate the usage of e-values in the following hypothesis tests. Firstly, we try to reject
the null hypothesis that IDR PoP forecasts are better than HCLR PoP forecasts with respect to
the Brier score. Secondly, we modify HCLR by dropping the scale parameter. It is expected that
this variant, denoted by HCLR−, will be outperformed by the original version of HCLR and also
by IDR, since both IDR and HCLR− assume a monotone relationship between the covariates
and the PoP, but the nonparametric IDR can estimate a broader class of functions. Finally, we
further investigate the effect of the scale parameter on HCLR predictions for high precipitation.
Suppose a weather forecaster issues a warning if the probability that the precipitation exceeds
a high threshold is greater than 50%. As thresholds, we chose the empirical 90% quantile of
precipitation in the training data for each airport. Intuitively, the HCLR model should yield
more accurate warnings than HCLR−, because it includes the ensemble standard deviation as an
uncertainty measure.

The first and second sets of hypotheses are tested with the Brier score and the corresponding
e-values. As an alternative probability, we take the convex mixtures ηt = 0.25pt + 0.75qt , which
were explored in § 4, denoting by pt the forecasting method that is expected to have a better
performance than qt under the null hypothesis. The hypothesis about the extreme precipitation
warnings is a conditional comparison with the conditions ct = 1{max(pt , qt) � 0.5}. For this
hypothesis, instead of dominance with respect to the Brier score, we test the stronger hypothesis of
forecast dominance with respect to all scoring rules. The rationale is that the forecast dominance
hypothesis should be easily rejected if the HCLR model truly issues the better tail forecasts;
and, on the other hand, failing to reject may indicate either that, even with data of 10 years it is
not possible to clearly discriminate the quality of such warnings, or that the ensemble standard
deviation does not bring a benefit. For this hypothesis we define ηt = qt , assuming that the
conditional event probabilities should be much closer to those issued by HCLR than by HCLR−.
No optional stopping is applied in all e-values.

For comparison, we also compute p-values for the significance of score differences. The first
two hypotheses are tested with one-sided Diebold-Mariano tests (Diebold & Mariano, 1995;
see also Giacomini & White, 2006). To estimate the variance of the test statistics, we use the
heteroscedasticity and autocorrelation consistent estimator with Bartlett weights; see Lerch et al.
(2017, equation 2.18). For testing dominance of the tail probability forecasts, the test of Yen &Yen
(2021) would allow arbitrary forecast lags, but it assumes strict stationarity. Since the sequence ct
selects only particular instances, with possibly strongly varying time gaps in between, stationarity
is highly questionable. We therefore apply the dominance test of Ehm & Krüger (2018), which
is valid under weaker assumptions, but is limited to lag 1. Strictly speaking, both the Diebold-
Mariano test and the forecast dominance test are valid under larger null hypotheses than the
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Table 2. Brier scores for different PoP forecasting methods, along with e-values and p-values
for testing significance of score differences. The columns under HCLR/IDR show e-values and
p-values for tests of the null hypothesis that IDR PoP forecasts achieve a lower Brier score

than HCLR forecasts, with analogous interpretations for the other forecast pairs
Average Brier score HCLR/IDR IDR/HCLR− HCLR/HCLR−

Lag IDR HCLR HCLR− E p E p E p

BRU 1 0.107 0.117 0.118 0 0.9998 >100 <10−4 >100 0.0702
2 0.119 0.123 0.125 0.01 0.9471 >100 0.0101 13.602 0.0294
3 0.134 0.133 0.136 0.425 0.4405 >100 0.1916 15.185 0.0019
4 0.152 0.145 0.148 4.804 0.0138 1.943 0.9358 5.165 0.0074
5 0.171 0.161 0.164 16.969 0.0002 0.415 0.9965 3.436 0.0003

FRA 1 0.109 0.111 0.114 0 0.7784 >100 0.0213 >100 <10−4

2 0.114 0.119 0.122 0.054 0.9643 >100 0.0002 >100 0.0004
3 0.123 0.127 0.132 0.078 0.9352 >100 0.0001 26.569 <10−4

4 0.147 0.144 0.147 2.291 0.0966 9.618 0.5245 5.54 0.0001
5 0.166 0.161 0.163 1.526 0.0305 2.362 0.8871 3.227 0.0051

LHR 1 0.135 0.138 0.139 0.029 0.8136 14.979 0.1314 2.845 0.3721
2 0.138 0.143 0.143 0.188 0.9189 >100 0.0509 2.868 0.4369
3 0.152 0.154 0.155 0.734 0.7549 40.905 0.1394 2.488 0.3400
4 0.169 0.167 0.169 1.429 0.2455 1.7 0.5442 1.744 0.0785
5 0.186 0.181 0.182 1.577 0.0753 0.379 0.9288 1.118 0.3216

ZRH 1 0.104 0.108 0.110 0.003 0.9306 >100 0.0055 61.747 0.0003
2 0.110 0.112 0.114 0.116 0.7219 36.891 0.0304 10.276 0.0001
3 0.121 0.118 0.121 1.516 0.0892 31.924 0.4410 5.098 0.0001
4 0.138 0.132 0.134 4.069 0.0027 1.276 0.9588 2.771 0.0015
5 0.165 0.156 0.159 15.151 <10−4 0.842 0.9978 2.383 0.0002

IDR, isotonic distributional regression; HCLR, heteroscedastic censored logistic regression; HCLR−, heteroscedas-
tic censored logistic regression without the scale parameter; BRU, Brussels; FRA, Frankfurt; LHR, London
Heathrow; ZRH, Zurich; E, e-values; p, p-values.

e-values, as they only require the average score difference between pt and qt to be nonpositive,
whereas the null hypothesis for the e-values asks for conditional superiority at each time-point. A
comparison is nevertheless interesting, since these two tests represent commonly used methods
for testing the significance of score differences.

Tables 2 and 3 show the e-values and one-sided p-values for the hypotheses described above,
computed separately for each airport and forecast lag. The e-values are not transformed to p-values
here. For interpretation, Vovk & Wang (2020, § 3) suggested a discrete scale such that e-values in
(0, 1], (1, 3.16], (3.16, 10], (10, 31.6], (31.6, 100] and (100, ∞) represent no, poor, substantial,
strong, very strong and decisive evidence against the null hypothesis, respectively. E-values
greater than 100 are not displayed to improve readability, but an untruncated version of Table 2
is included in the Supplementary Material so that it is possible to update the e-values with more
recent data. For all hypotheses, the p-values and e-values largely lead to the same conclusions.
HCLR does not outperform IDR for PoP forecasts at lags 1–3, but for the Brussels and Zurich
airports there is substantial to strong evidence that it achieves lower Brier scores at lags 4 and 5.
HCLR− is clearly outperformed by the more complex variant with the ensemble-dependent scale
parameter at short lags; also, for the longer lead times there is some evidence that including the
scale parameter improves the forecasts, except for London airport. As for the difference between
IDR and HCLR−, both the e-values and the p-values suggest that IDR yields the better forecasts
at lags 1–3, but at lags 4 and 5 there are no rejections of the null hypothesis. Figure 3 shows how
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Table 3. Sample sizes, e-values and p-values for the comparison of tail probability
forecasts; the sample size is the number of observations for which the condition

min(pt , qt) � 0.5 holds
Brussels Frankfurt London Zurich

Lag n E (p) n E (p) n E (p) n E (p)

1 116 >100 (0.050) 79 0.175 (0.814) 72 0.45 (0.724) 92 0.047 (0.892)

2 88 23.409 87 3.327 69 1.332 99 2.961
3 68 10.704 62 3.542 60 1.429 75 0.567
4 49 2.338 53 1.166 39 0.868 52 0.773
5 28 1.029 26 1.033 30 1.077 36 1.073

2012 2014 2016 2012 2014 2016 2012 2014 2016

1e−02

1e+00

1e+02

Year

E
−

va
lu
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HCLR/IDR IDR/HCLR_ HCLR/HCLR_

Fig. 3. E-values for the hypotheses tests at lag 1 for Brussels (dots), Frankfurt (triangles), London (squares) and Zurich
(crosses). The abbreviations of the hypotheses are as in Table 2.

the cumulative products of the e-values for the hypothesis tests at lag 1 evolve over time. If the
goal was to accumulate strong evidence against the hypotheses, say exceeding the level 10, then
the hypothesis that IDR outperforms HCLR− could already be rejected with only 9% or 27% of
the data for Brussels and Frankfurt airport, respectively, which is where the corresponding lines
first cross the level 10. For Zurich airport, rejection happens at 85% of the total sample size.

Interestingly, in the comparison of HCLR and HCLR− for Brussels at lag 1, the p-value
is nonsignificant, at 0.07, but the e-value gives decisive evidence, being greater than 100. We
attribute this to the different null hypotheses of the tests. The mean difference in Brier score is
only 0.001 with an estimated standard deviation of 0.03, giving little evidence against the null
hypothesis of the Diebold-Mariano test. However, the null hypothesis for the e-value is smaller,
requiring that HCLR− outperform HCLR at all time-points. Even if the score differences are
only small, evidence eventually accumulates over the whole time period; see the rightmost panel
of Fig. 3. The fact that the e-values in the HCLR/HCLR− comparison decrease with the forecast
lag is an effect of the less powerful merging method for e-values with higher lag.

In the comparisons of extreme precipitation warnings, the p-value gives some evidence against
the null hypothesis for Brussels airport, and the corresponding e-value is decisive, E = 3703. For
the other lag-1 forecasts, both p-values and e-values do not indicate that including the ensemble
standard deviation brings a benefit. As for the higher lags, for London and Zurich airports there
is no evidence that HCLR outperforms HCLR−, and for Brussels and Frankfurt airports there is
evidence only at lags 2 and 3. Overall, the evidence in favour of the HCLR model for issuing
extreme precipitation warnings as compared to HCLR− is surprisingly weak.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asab047/6375942 by U

niversitaetsbibliothek Bern user on 28 February 2022

203



Sequential inference on probability forecast performance 15

Acknowledgement

The authors acknowledge financial support from the Swiss National Science Foundation. They
are grateful to Ruodu Wang for introducing them to e-values for hypothesis testing, and to Tobias
Fissler and Aaditya Ramdas for helpful comments.

Supplementary material

Supplementary Material available at Biometrika online includes extensions of the simulation
examples, a proof of the validity of the proposed stopping rule for lags h > 1, and a version of
Table 2 without truncation of the e-values.

Appendix

Proof of Theorem 1. If E(y) is of the stated form, then E(y) � E{1(p > q)} = 1 − λ � 0, and one
can easily verify that E has the given null hypothesis. Assume that p < q; the case of p > q is analogous.
Define dp,q(y) = S(p, y) − S(q, y) and, for π ∈ [0, 1],

f (π) = Eπ {dp,q(Y )} = (1 − π)dp,q(0) + πdp,q(1).

The elementary score representation (2) and ν{[p, q)} > 0 imply that dp,q(0) < 0 < dp,q(1), so f (π) is
strictly increasing in π and equal to zero for some π0 ∈ (0, 1). Let E = E(y) be an e-value under HS with
alternative H c

S , i.e., E(y) � 0 and

Eπ {E(Y )} = (1 − π)E(0) + πE(1) � 1 ⇐⇒ f (π) � 0. (A1)

Condition (A1) implies that Eπ {E(Y )} = 1 if and only if f (π) = 0, which yields

dp,q(0)

dp,q(1) − dp,q(0)
= E(0) − 1

E(1) − E(0)
. (A2)

Rearranging this equation gives E(1) = 1 − {1 − E(0)}dp,q(1)/dp,q(0). It follows from (A1) and (A2) that
E(0) ∈ (0, 1), so with λ = 1 − E(0) we obtain E(y) = 1 + λdp,q(y)/|dp,q(0)|. Similar arguments for the
case p > q show that in general,

E(y) = 1 + λ
dp,q(y)

|dp,q{1(p > q)}| .

�

Proof of Theorem 2. All e-values for the given null hypothesis are of the form (6). To find the GROW
e-value under the alternative that Y = 1 with probability π1, we have to maximize

Eπ1 [log{Ep,q;λ(Y )}] = (1 − π1) log
[

1 − λ
dp,q(0)

dp,q{1(p > q)}
]

+ π1 log
[

1 − λ
dp,q(1)

dp,q{1(p > q)}
]

,

where again dp,q(y) = S(p, y) − S(q, y). Let p < q; the p > q case is analogous. Under this assumption
dp,q(0) < 0 < dp,q(1), and g(λ) = Eπ1 [log{Ep,q;λ(Y )}] is continuous in λ with g(0) = 0 and limλ→1 g(λ) =
−∞, so a maximum is attained at some λ ∈ [0, 1). Define h = dp,q(1)/dp,q(0) < 0, so that

g(λ) = (1 − π1) log(1 − λ) + π1 log(1 − λh), g′(λ) = −1 − π1

1 − λ
− π1

h

1 − λh
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and g′(λ0) = 0 is equivalent to λ0 = π1 + (1 − π1)/h. By the definition of HS , π1 �∈ HS holds if and only
if Eπ1{dp,q(Y )} > 0, which is equivalent to π1 + (1 − π1)/h > 0, so indeed λ0 > 0 for all π1 �∈ HS , and

Ep,q;λ0(0) = 1 − λ0 = (1 − π1)

(
1 − 1

h

)
= (1 − π1)

dp,q(1) − dp,q(0)

dp,q(1)
,

Ep,q;λ0(1) = 1 − λ0
dp,q(1)

dp,q(0)
= π1

dp,q(0) − dp,q(1)

dp,q(0)
.

With dp,q(y) = ∫
1{p � θ < q}(θ − y) dν(θ), it now follows that

dp,q(1) − dp,q(0)

dp,q(1)
= −ν{[p, q)}

−ν{[p, q)} + ∫
[p,q)

θ dν(θ)
= 1

1 − κν{[p, q)}

and 1 − h = {dp,q(0) − dp,q(1)}/dp,q(0) = κν{[p, q)}−1 > π−1
1 , which gives the desired result. �

Proof of Theorem 3. A direct computation shows that H = [0, p] if p < q and H = [p, 1] if p > q,
and that Eπ {Eπ1∗

p,q (Y )} � 1 for all π ∈ H and Eπ {Eπ1∗
p,q (Y )} > 1 for π �∈ H . The result then follows by

Theorem 1 of Grünwald et al. (2020), with W1 being the Dirac measure of the point {π1}. �

Proof of Proposition 1. This follows as in the h = 1 case with sequential conditioning on Fk+hl , l =
1, . . . , 	(T − k)/h
, for each of the h products

∏
l∈Ik

Epl ,ql ;λl (Yl+h). �

References

Buizza, R., Houtekamer, P. L., Pellerin, G., Toth, Z., Zhu, Y. & Wei, M. (2005). A comparison of the ECMWF,
MSC, and NCEP global ensemble prediction systems. Mon. Weather Rev. 133, 1076–97.

Diebold, F. X. & Mariano, R. S. (1995). Comparing predictive accuracy. J. Bus. Econ. Statist. 13, 253–63.
Ehm, W., Gneiting, T., Jordan, A. & Krüger, F. (2016). Of quantiles and expectiles: Consistent scoring functions,

Choquet representations and forecast rankings. J. R. Statist. Soc. B. 78, 505–62.
Ehm, W. & Krüger, F. (2018). Forecast dominance testing via sign randomization. Electron. J. Statist. 12, 3758–93.
Giacomini, R. & White, H. (2006). Tests of conditional predictive ability. Econometrica 74, 1545–78.
Gneiting, T. (2011). Making and evaluating point forecasts. J. Am. Statist. Assoc. 106, 746–62.
Gneiting, T., Balabdaoui, F. & Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. J. R. Statist.

Soc. B. 69, 243–68.
Gneiting, T. & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. J. Am. Statist. Assoc.

102, 359–78.
Gneiting, T. & Ranjan, R. (2013). Combining predictive distributions. Electron. J. Statist. 7, 1747–82.
Grünwald, P., de Heide, R. & Koolen, W. M. (2020). Safe testing. In 2020 Information Theory and Applications

Workshop (ITA). IEEE.
Henzi, A., Ziegel, J. F. & Gneiting, T. (2021). Isotonic distributional regression. J. R. Statist. Soc. B 83, 963–93.
Kelly Jr, J. L. (1956). A new interpretation of information rate. Bell System Tech. J. 35, 917–26.
Lai, T. Z., Gross, S. T. & Shen, D. B. (2011). Evaluating probability forecasts. Ann. Statist. 39, 2356–82.
Lazarus, E., Lewis, D. J., Stock, J. H. & Watson, M. W. (2018). HAR inference: Recommendations for practice. J.

Bus. Econ. Statist. 36, 541–59.
Lerch, S., Thorarinsdottir, T. L., Ravazzolo, F. & Gneiting, T. (2017). Forecaster’s dilemma: Extreme events

and forecast evaluation. Statist. Sci. 32, 106–7.
Leutbecher, M. & Palmer, T. N. (2008). Ensemble forecasting. J. Comp. Phys. 227, 3515–39.
Messner, J. W., Mayr, G. J., Wilks, D. S. & Zeileis, A. (2014). Extending extended logistic regression: Extended

versus separate versus ordered versus censored. Mon. Weather Rev. 142, 3003–14.
Molteni, F., Buizza, R., Palmer, T. N. & Petroliagis, T. (1996). The ECMWF ensemble prediction system:

Methodology and validation. Q. J. R. Meteorol. Soc. 122, 73–119.
Patton, A. J. (2020). Comparing possibly misspecified forecasts. J. Bus. Econ. Statist. 38, 796–809.
Ramdas, A., Ruf, J., Larsson, M. & Koolen, W. (2020). Admissible anytime-valid sequential inference must rely

on nonnegative martingales. arXiv:2009.03167.
Ranjan, R. & Gneiting, T. (2010). Combining probability forecasts. J. R. Statist. Soc. B. 72, 71–91.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asab047/6375942 by U

niversitaetsbibliothek Bern user on 28 February 2022

205



Sequential inference on probability forecast performance 17

Schervish, M. J. (1989). A general method for comparing probability assessors. Ann. Statist. 17, 1856–79.
Seillier-Moiseiwitsch, F. & Dawid, A. P. (1993). On testing the validity of sequential probability forecasts. J. Am.

Statist. Assoc. 88, 355–59.
Shafer, G. (2021). Testing by betting: A strategy for statistical and scientific communication. J. R. Statist. Soc. A 184,

407–31.
Vannitsem, S., Wilks, D. S. & Messner, J., eds. (2018). Statistical Postprocessing of Ensemble Forecasts.Amsterdam:

Elsevier.
Vovk, V. & Wang, R. (2020). True and false discoveries with independent e-values. arXiv:2003.00593.
Vovk, V. & Wang, R. (2021). E-values: Calibration, combination, and applications. Ann. Statist. 49, 1739–54.
Wang, R. & Ramdas, A. (2020). False discovery rate control with e-values. arXiv:2009.02824v2.
Waudby-Smith, I. & Ramdas, A. (2021). Estimating means of bounded random variables by betting.

arXiv:2010.09686v4.
Winkler, R. L. (1996). Scoring rules and the evaluation of probabilities. Test 5, 1–60.
Yen, Y. & Yen, T. (2021). Testing forecast accuracy of expectiles and quantiles with the extremal consistent loss

functions. Int. J. Forecast. 37, 733–58.
Zhu, Y. & Timmermann, A. (2020). Can two forecasts have the same conditional expected accuracy?

arXiv:2006.03238.

[Received on 15 March 2021. Editorial decision on 6 September 2021]

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asab047/6375942 by U

niversitaetsbibliothek Bern user on 28 February 2022

206



Biometrika (2020), 103, 1, p. 1
Advance Access publication on 31 July 2018Printed in Great Britain

Supplementary material for “Valid sequential inference on
probability forecast performance”
BY ALEXANDER HENZI AND JOHANNA F. ZIEGEL

University of Bern, Institute of Mathematical Statistics and Actuarial Science,
Alpeneggstrasse 22, 3012 Bern, Switzerland. 5

alexander.henzi@stat.unibe.ch johanna.ziegel@stat.unibe.ch

1. OPTIONAL STOPPING FOR LAGS h > 1

In Section 3.2 of the article, the stopping rule

τα,h = min
(
T, inf

[
t ≥ h+ 1 : et ≥ max

j=t−h+1,...,t−1
Epj ,qj ;λj{1(pj > qj)}−1/α

])
,

is defined for e-values of the form

eT =
1

h

h∑

k=1

∏

l∈Ik(T )
Epl,ql;λl(Yl+h),

where Ik(T ) = {k + hs : s = 0, . . . , b(T − k)/hc − 1}. Assume that at time t, it is observed 10

that et ≥ maxj=t−h+1,...,t−1Epj ,qj ;λj{1(pj > qj)}−1/α, and that optional stopping is applied,
i.e. Eps,qs;λs(Yt+s) ≡ 1 for s ≥ t. The claim is that then et+h−1 ≥ 1/α no matter what values
Yt+1, . . . , Yt+h−1 take. Because Ept,qt;λt(Yt+h) ≡ 1, we have et+h−1 = et+h. For k = 1, . . . , h,
let sk = k + hb(t− k)/hc, so that {s1, . . . , sh} = {t− h+ 1, . . . , t}. Then, using that Ik(t+
h) \ {sk} = Ik(t), 15

et+h−1 = et+h =
1

h

h∑

k=1



Epsk ,qsk ;λsk (Ysk+h)

∏

l∈Ik(t+h)\{sk}
Epl,ql;λl(Yl+h)





≥ 1

h

h∑

k=1


Epsk ,qsk ;λsk{1(psk > qsk)}

∏

l∈Ik(t)
Epl,ql;λl(Yl+h)




≥ min
j=t−h+1,...,t−1

Epj ,qj ;λj{1(pj > qj)} ·
1

h

h∑

k=1

∏

l∈Ik(t)
Epl,ql;λl(Yl+h)

=

[
max

j=t−h+1,...,t−1
Epj ,qj ;λj{1(pj > qj)}−1

]−1
et ≥ 1/α.

2. SIMULATION EXAMPLES: ADDITIONAL FIGURES 20

The simulation example in Section 4.1 in the article has been tested for robustness with re-
spect to various parameters: significance levels (α = 0.001, 0.01, 0.05), scoring functions (Brier
score, spherical score, logarithmic score), sample sizes (150, 300, 600, 1200, 2400), tests for
computing p-values (Student’s t-test, Wilcoxon’s signed rank test), and alternative hypotheses
for constructing the e-values (parameter k as explained in Section 4.1 in the article). 25

C© 2020 Biometrika Trust
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For the spherical and the logarithmic score, the probability πt was computed in such a
way that µ = 0.5 corresponds to a score difference of zero, namely, with rt = Eν

{
θ | θ ∈

[min(pt, qt),max(pt, qt))
}

, we set πt = pt for µ = 0, πt = rt for µ = 0.5, πt = qt for µ = 1,
and interpolate linearly in between these three points for the other µ.

Figure S1 demonstrates that the rejection rates of the e-values are almost the same for all scoring30

functions.

Figure S2 shows how the rejection rates vary with the alternative hypothesis for the e-value.
In particular, it can be seen that the alternative πt is superior and qt is inferior for all sample
sizes and significance levels. As for the alternatives with the parameter k, smaller k give higher
rejection rates for small sample sizes and lower rejection rates for larger samples.35

Figure S3 shows that also the rejection rates of Student’s t-test are essentially equal for the
different scoring functions.

In Figure S4, it can be seen that the rejection rates of Student’s t-test and Wilcoxon’s signed rank
test for this simulation are almost equal.

Figure S5 shows that close to µ = 0.05, Student’s t-test under optional stopping has too high40

rejection rates independent of the significance level and the sample size.

The simulation example in Section 4.2 was tested with different significance levels and scoring
functions.

Figure S6 shows that the choice of the scoring function has a minor influence on the rejection
rates for the sample sizes 300 and 600, and almost no effect for 1200 and 2400.45

Figure S7 compares the rejection rates of the Diebold-Mariano test and the e-values for different
significance levels.

3. CASE STUDY: ADDITIONAL MATERIAL

Table S1 contains the e-vales and p-values of Table 2 in scientific digit notation.

[Received on 2 January 2017. Editorial decision on 1 April 2017]
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Fig. S1. Rejection rate of stopped e-value (alternative hypothesis with k = 1 as explained in the article) for Brier
score (dots), spherical score (squares), logarithmic score (triangles), and different significance levels (columns)

and sample sizes (rows).
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Fig. S2. Rejection of stopped e-values based on Brier score for different alternative hypotheses and different
sample sizes and significance levels. The alternatives are πt (dots), qt (triangles), k = 1 (filled squares), k = 3

(crosses), k = 5 (squares with cross).
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Fig. S3. Rejection rate of Student’s t-test for Brier score (dots), spherical score (squares), and logarithmic score
(triangles) differences, for different significance levels and sample sizes.
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Fig. S4. Rejection rates of Student’s t-test (circles) and Wilcoxon’s signed rank test (triangles) for Brier score
differences, for different significance levels and sample sizes.
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Fig. S5. Rejection rates of Student’s t-test under optional stopping, for different significance levels and sample
sizes. Optional stops are included at 1 (triangles), 3 (squares) and 5 equispaced time points in between 1 and the

sample size T . Dots show the rejection rates without optional stopping.
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Fig. S6. Rejection rates of Diebold-Mariano test (dashed lines) and e-values (normal lines) for the Brier score
(dots), spherical score (squares), and the logarithmic score (triangles), and for different lags (columns) and sample

sizes (rows).
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Fig. S7. Rejection rates of the Diebold-Mariano test and E-values for the significance levels 0.005 (dots), 0.01
(triangles), and 0.05 (squares), based on Brier score differences and a sample size of 600.
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Table S1. Brier scores for different probability of precipitation forecasting methods, and e-
values (E) and p-values (p) for testing significance of score differences. The columns HCLR/IDR
show e-values and p-values for tests tests of the null hypothesis that IDR probability of precipi-
tation forecasts achieve a lower Brier score the HCLR forecasts; the interpretation is analogous
for the other forecast pairs.

Average Brier score HCLR/IDR IDR/HCLR− HCLR/HCLR−

Lag IDR HCLR HCLR− E p E p E p

BRU 1 0.107 0.117 0.118 5.6e−08 1.0e+00 5.0e+09 1.3e−05 1.3e+02 7.0e−02
2 0.119 0.123 0.125 9.5e−03 9.5e−01 2.2e+02 1.0e−02 1.4e+01 2.9e−02
3 0.134 0.133 0.136 4.3e−01 4.4e−01 5.4e+02 1.9e−01 1.5e+01 1.9e−03
4 0.152 0.145 0.148 4.8e+00 1.4e−02 1.9e+00 9.4e−01 5.2e+00 7.4e−03
5 0.171 0.161 0.164 1.7e+01 2.3e−04 4.1e−01 1.0e+00 3.4e+00 3.3e−04

FRA 1 0.109 0.111 0.114 1.4e−06 7.8e−01 1.6e+11 2.1e−02 2.4e+03 2.8e−06
2 0.114 0.119 0.122 5.4e−02 9.6e−01 1.3e+06 2.3e−04 2.5e+02 4.2e−04
3 0.123 0.127 0.132 7.8e−02 9.4e−01 3.8e+04 1.3e−04 2.7e+01 5.4e−06
4 0.147 0.144 0.147 2.3e+00 9.7e−02 9.6e+00 5.2e−01 5.5e+00 5.9e−05
5 0.166 0.161 0.163 1.5e+00 3.0e−02 2.4e+00 8.9e−01 3.2e+00 5.1e−03

LHR 1 0.135 0.138 0.139 2.9e−02 8.1e−01 1.5e+01 1.3e−01 2.8e+00 3.7e−01
2 0.138 0.143 0.143 1.9e−01 9.2e−01 1.2e+02 5.1e−02 2.9e+00 4.4e−01
3 0.152 0.154 0.155 7.3e−01 7.5e−01 4.1e+01 1.4e−01 2.5e+00 3.4e−01
4 0.169 0.167 0.169 1.4e+00 2.5e−01 1.7e+00 5.4e−01 1.7e+00 7.8e−02
5 0.186 0.181 0.182 1.6e+00 7.5e−02 3.8e−01 9.3e−01 1.1e+00 3.2e−01

ZRH 1 0.104 0.108 0.110 3.0e−03 9.3e−01 3.0e+04 5.5e−03 6.2e+01 3.2e−04
2 0.110 0.112 0.114 1.2e−01 7.2e−01 3.7e+01 3.0e−02 1.0e+01 5.0e−05
3 0.121 0.118 0.121 1.5e+00 8.9e−02 3.2e+01 4.4e−01 5.1e+00 1.0e−04
4 0.138 0.132 0.134 4.1e+00 2.7e−03 1.3e+00 9.6e−01 2.8e+00 1.5e−03
5 0.165 0.156 0.159 1.5e+01 2.3e−05 8.4e−01 1.0e+00 2.4e+00 1.7e−04
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4.2 Sequentially valid tests for forecast calibration

The content of this section is published as an arXiv preprint,

Arnold, S., Henzi, A. and Ziegel, J. F. (2021). Sequentially valid tests for forecast
calibration. arXiv preprint arXiv:2109.11761.
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Abstract

Forecasting and forecast evaluation are inherently sequential tasks. Predictions are often
issued on a regular basis, such as every hour, day, or month, and their quality is monitored
continuously. However, the classical statistical tools for forecast evaluation are static, in the
sense that statistical tests for forecast calibration are only valid if the evaluation period is
fixed in advance. Recently, e-values have been introduced as a new, dynamic method for
assessing statistical significance. An e-value is a non-negative random variable with expected
value at most one under a null hypothesis. Large e-values give evidence against the null hy-
pothesis, and the multiplicative inverse of an e-value is a conservative p-value. E-values are
particularly suitable for sequential forecast evaluation, since they naturally lead to statisti-
cal tests which are valid under optional stopping. This article proposes e-values for testing
probabilistic calibration of forecasts, which is one of the most important notions of calibra-
tion. The proposed methods are also more generally applicable for sequential goodness-of-fit
testing. We demonstrate in a simulation study that the e-values are competitive in terms
of power when compared to extant methods, which do not allow for sequential testing. In
this context, we introduce test power heat matrices, a graphical tool to compactly visualize
results of simulation studies on test power. In a case study, we show that the e-values provide
important and new useful insights in the evaluation of probabilistic weather forecasts.

1 Introduction

Probabilistic forecasts incorporate the uncertainty about a future quantity Y comprehensively
in the form of probability distributions. A minimal requirement for useful probabilistic forecasts
is calibration, meaning that the predicted probabilities should conform with the actual observed
event frequencies. This article develops novel statistical tools to validate probabilistic calibration,
one of the most prominent and widely applied notions of calibration. Probabilistic calibration
requires that Y should be below the α-quantile of the forecast distribution with a frequency of
about α ·100%, for all α ∈ (0, 1). More precisely, the predictive cumulative distribution function
(CDF) F is evaluated at the outcome Y , and this quantity, suitably randomized in case of
discontinuities of F , is called the probability integral transform (PIT) and should be uniformly
distributed on (0, 1) for a probabilistically calibrated forecast. Checks of the uniformity of the
PIT, and of the closely related rank histogram, constitute a cornerstone of forecast evaluation
(Diebold et al., 1998; Hamill, 2001; Gneiting et al., 2007).

From a statistical point of view, testing probabilistic calibration for forecasts with lag 1 is
straightforward. For example, in the case of daily forecasts issued for the next day, it suffices
to apply any goodness of fit test for the standard uniform distribution to a sample of the PIT
from a series of forecasts and observations. However, it has been noted early on that statistical
tests alone are not informative enough, because they do not indicate the type of misspecification
(Diebold et al., 1998). Therefore, tests of calibration are commonly accompanied by a histogram
plot of the PIT distribution, which allows to identify classical types of misspecification at a

1
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glance, namely, biased forecasts lead to PIT histograms skewed to the left or the right, and under-
or overdispersed forecasts yield U-shaped or inverse U-shaped PIT histograms, respectively.

We argue that a drawback of the established tools for validating probabilistic calibration
is that they do not fully account for the sequential nature of forecasting. The relationship
between forecasts and observations is often complicated and forecast misspecification changes
over time. However, the classical tools for validating calibration require the sample size to be
fixed in advance and independently of the data. As an illustrative example, consider a weather
forecaster who, after updating a prediction model, monitors the quality of daily forecasts and
wants to check if the new forecasts are probabilistically calibrated. She aims at a sample size of
one year, and plans to check uniformity of the PIT at the end of the observation period. If, by
chance, the forecaster realizes after half of observation period that the forecast is strongly biased,
then a p-value from a classical goodness of fit test with all data at this time point is not valid
since the sample size depends on the data. On the other hand, if the forecaster does not look at
the data until the end of the observation period, then the PIT distribution with the sample of
the full year could again be close to uniform, for example if there is a change in the direction of
the bias in the second half of the year, and the forecaster is unable to detect the misspecification.
Such effects appear in practice as exemplified in the case study in Section 5. Any analysis of sub-
periods has to be planned in advance, which is often difficult and cumbersome since it is usually
not known in advance how forecast misspecification changes over time and what discretizations
of the time domain are appropriate.

This article develops new methodology for checks of probabilistic and related notions of
calibration in a sequential setting, based on the new concept of e-values. E-values have received
an increasing interest in recent years, see Vovk and Wang (2021), Grünwald et al. (2019), Shafer
(2021) (who uses the term betting score), Ramdas et al. (2020), and the references therein.
Henzi and Ziegel (2021) gave a first application of e-values to forecast comparison; see also the
more recent article by Choe and Ramdas (2021). An e-value is a non-negative random variable
E such that for all distributions P in a set P, the null hypothesis, the inequality EP (E) ≤ 1
holds. E-values can be easily transformed into (conservative) p-values since P (1/E ≥ α) ≤ α for
α ∈ (0, 1) by Markov’s inequality, and large e-values give evidence against the null hypothesis.
One main motivation for using e-values is their simple behaviour under combinations. Convex
combinations of e-values are again e-values, and so is the product of independent e-values.
In a a sequential setting, if (Et)t∈N, is a sequence of e-values adapted to a filtration (Ft)t∈N,
then by the tower property of conditional expectations the process et =

∏t
i=1Ei, t ∈ N, is

a non-negative supermartingale or test martingale and it satisfies Ville’s inequality, that is
P (supt∈N et ≥ 1/α) ≤ α; see Ramdas et al. (2020) for a comprehensive analysis of non-negative
martingales for statistical testing. In the example of the weather forecaster from the previous
paragraph, this implies that with e-values the forecaster may reject the hypothesis of calibration
at the level α as soon as the process (et)t∈N exceeds 1/α, without having to fix a sample size in
advance. The forecaster is allowed to monitor the PIT and the process (et)t∈N in real time. In the
special case of a simple null hypothesis, P = {P0}, e-values take the form of likelihood ratios or
Bayes factors (Grünwald et al., 2019). In particular, e-values for testing the null hypothesis that a
quantity Z ∈ (0, 1) is uniformly distributed on the unit interval, short UNIF(0, 1), are Lebesgue
densities on [0, 1]. It is therefore simple to construct valid e-values for testing probabilistic
calibration or, detached from the forecasting context, goodness-of-fit testing of the UNIF(0, 1)
distribution, with “valid” referring to type one error guarantees. The non-trivial task in the
construction of e-values is to achieve sufficient power to detect violations of the null hypothesis.
Shafer (2021) calls strategies for constructing e-values “betting strategies”, since an e-value can
be interpreted as a bet against the null hypothesis and the process (et)t∈N corresponds to the
capital over time if all gains are reinvested into the new bet at each t ∈ N.

The contributions of this article are as follows. In Section 3 we construct e-values for testing
the null hypothesis that a quantity Z ∈ [0, 1] is distributed according to UNIF(0, 1), and for the
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analogous hypothesis that a discrete R ∈ {1, . . . ,m} follows a uniform distribution on the inte-
gers 1 to m, short UNIF({1, . . . ,m}). These hypotheses appear naturally in calibration checks
for probabilistic forecasts and ensemble forecasts, and precise definitions of forecast calibration
are given in Section 2. Furthermore, we characterize and construct e-values for the weaker hy-
potheses that a random variable Z ∈ [0, 1] with distribution P is stochastically smaller than
UNIF(0, 1), short P ≤st UNIF(0, 1), which means P (Z ≤ z) ≥ z for all z ∈ (0, 1). This hy-
pothesis appears in a new definition of calibration for quantile forecasts which is closely related
to usual probabilistic calibration. Section 3 is of interest independent from the forecasting con-
text, and the methods can also be applied to general goodness-of-fit or stochastic order testing
problems in sequential settings. Proofs of theoretical results are deferred to Appendix A. In
Section 4 we demonstrate that the e-values are competitive in terms of power when compared to
established tests. Here, we suggest a new graphical tool to compactly display simulation results
on test power, so-called test power heat matrices. Section 5 presents an application to testing
calibration of postprocessed weather forecasts, and we show that the e-values give rise to novel
and informative graphical tools for the sequential evaluation of forecast calibration.

2 Probabilistic calibration

Let Y be a real-valued outcome defined on a probability space (Ω,F , P ). We denote by F the
CDF associated with a (random) probabilistic forecast for Y .

Definition 2.1. The probability integral transform (PIT) of a forecast F for an outcome Y is
defined as ZF (Y ) = F (Y−) + V (F (Y ) − F (Y−)), where F (y−) = limz→y,z<y F (z) and V is a
uniformly distributed random variable on (0, 1) independent of the pair (F, Y ). The forecast F
is probabilistically calibrated if ZF (Y ) ∼ UNIF(0, 1).

Of great importance in weather forecasting are ensemble forecasts (Bauer et al., 2015). An
ensemble forecast is a collection of point forecasts generated by running a numerical weather
prediction (NWP) model m times, typically m = 20 to 50, each time with different initial
conditions, which allows to quantify the forecast uncertainty. We denote ensemble forecasts by
vectors X = (X1, . . . , Xm) ∈ Rm. To define calibration, let the (randomized) rank of Y equal

rankX(Y ) = 1 + #
{
i = 1, . . . ,m | Xi < Y

}
+W ∈ {1, . . . ,m+ 1}, (1)

where W is a random variable that equals zero almost surely if N = #
{
i = 1, . . . ,m | Xi = Y

}

is zero, and is uniformly distributed on
{

1, . . . , N} otherwise.

Definition 2.2. An ensemble forecastX is rank calibrated if rankX(Y ) ∼ UNIF
(
{1, . . . ,m+1}

)
.

Remark. Rank calibration is commonly assessed with the rank histogram, a plot of the empirical
frequencies of the ranks over a sample (Anderson, 1996). We use a randomization of the rank
in case of ties because with this convention the PIT and the rank are related via the equation
rankX(Y ) = 1 + bmZFX

(Y )c, where FX is the empirical CDF (ECDF) of the ensemble X. The
definition of the rank given in (1) slightly generalizes the unified PIT introduced by Vogel et al.
(2018, p. 374) for evaluating precipitation forecasts, which randomizes ranks in case of multiple
occurrences of zero forecasts.

A closely related notion of calibration can be given for quantile forecasts. Let α0 = 0 < α1 <
· · · < αK < 1 = αK+1 be K quantile levels. Instead of issuing a complete predictive CDF for
the unknown quantity Y , we only aim to give point forecasts q1 ≤ · · · ≤ qK for the quantiles of
the distribution of Y at levels α1, . . . , αK . Recall, that qi is an αi-quantile of F if

F (qi−) ≤ αi ≤ F (qi), i = 1, . . . ,K.
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Therefore the set of quantile forecasts can be interpreted as a partial disclosure of the predictive
CDF F . With q0 = −∞ and qK+1 =∞, define

Fu(y) :=

K+1∑

i=1

(αi − αi−1)1{qi ≤ y}, F`(y) :=

K∑

i=0

(αi+1 − αi)1{qi ≤ y}, y ∈ R.

Proposition 2.1. Let 0 < α1 < · · · < αK < 1 be K quantile levels. Any (deterministic) CDF
F with corresponding quantiles q1 ≤ · · · ≤ qK satisfies

Fu(y) ≤ F (y) ≤ F`(y), y ∈ R. (2)

Furthermore

Fu(qi−) ≤ αi ≤ Fu(qi) and F`(qi−) ≤ αi ≤ F`(qi), i = 1, . . . ,K. (3)

Similar to the classical PIT, we define

ZFu(Y ) := V Fu(Y ) + (1− V )Fu(Y−) and ZF`(Y ) := V F`(Y ) + (1− V )F`(Y−),

where V is a uniformly distributed random variable on (0, 1) independent of Y and the quantile
predictions q1, . . . , qK . In the sequel, ZFu(Y ) and ZFl(Y ) will be referred to as the upper and
lower quantile PIT. By (2) these quantities satisfy

ZFu(Y ) ≤ ZF (Y ) ≤ ZF`(Y )

almost surely, and ZF`(Y )−ZFu(Y ) ≤ supi=0,...,K(αi+1 − αi) with equality if αi+1 − αi = c > 0
for all i. In this case, which is the important special case of equispaced quantile levels, ZF`(Y ) =
ZFu(Y ) + c.

Definition 2.3. A set of quantile forecasts q1 < · · · < qK is probabilistically calibrated if

ZFu(Y ) ≤st UNIF(0, 1) ≤st ZF`(Y ).

Remark. The functions Fu and F` are defective CDFs in the sense that limy→∞ Fu(y) = αK < 1
and limy→−∞ F`(y) = α1 > 0, respectively, but they satisfy the remaining conditions for being
a CDF. Note that the distribution of the upper (lower) quantile PIT is stochastically smaller
(greater) than UNIF(0, 1), which implies that its CDF is pointwise greater (smaller) than the
uniform CDF for probabilistically calibrated quantile forecasts.

The definitions of calibration introduced so far do not include any notion of time. In practice,
for example for the PIT, one observes a time series (Ft, Yt)t∈N of forecasts and observations, where
Ft is the forecast for a lagged observation Yt+h, with a fixed integer lag h ≥ 1. The definition
below formalizes calibration for such sequential settings.

Definition 2.4. Let (Ω,F , P ) be a probability space with a filtration (Ft)t∈N, and h be a
positive integer. Let further (Yt)t∈N be an adapted sequence of observations.

(i) A sequence of probability forecasts (Ft)t∈N is probabilistically calibrated at lag h if

L(ZFt(Yt+h) | ZFj (Yj+h), 0 ≤ j ≤ t− h) = UNIF(0, 1), t ∈ N.

(ii) A sequence of ensemble forecasts (Xt)t∈N of size m is rank calibrated at lag h if

L(rankXt(Yt+h) | rankXj (Yj+h), 0 ≤ j ≤ t− h) = UNIF({1, . . . ,m+ 1}), t ∈ N.

4
219



(iii) A sequence of quantile forecasts (q1;t, . . . , qK;t)t∈N is probabilistically calibrated at lag h if

ZFu;t(Yt+h) ≤st UNIF(0, 1) ≤st ZF`;t(Yt+h)

conditional on ZFu;j (Yj+h), ZF`;j (Yj+h), 0 ≤ j ≤ t− h, for t ∈ N.

Note that for t ≤ h there is no conditioning in all cases, and the requirements in (i)-
(iii) are understood to hold unconditionally. Furthermore we silently assume existence of a
sequence (Vt)t∈N of adapted, independent UNIF(0, 1) variables defined on the probability space,
independent of all other objects, in parts (i) and (iii) of Definition 2.4 to define the PIT and
quantile PIT. Similarly, existence of an analogous sequence (Wt)t∈N for the randomization of
the ranks in part (ii) is assumed. For forecasts with lag h > 1, the definition does not condition
on ZFj (Yj+h) with t − h < j < t, since the corresponding observations are not yet available at
time t when the forecasts are issued, and in this case, the joint distribution of the PIT (or ranks,
quantile PIT) which are less than t time units apart is not specified.

Remark. With lag h = 1, the definition of calibration implies that the sequence of the PIT,
(Ft(Yt+1))t∈N, or of the ranks, (rankXt(Yt+1))t∈N, are independent, since the conditional dis-
tributions in part (i) or (ii) do not depend on the past values in the sequence. Indeed, for a
probabilistically calibrated sequence of forecasts (Ft)t∈N and v, w ∈ [0, 1], it holds

P (ZF1(Y2) ≤ v, ZF2(Y3) ≤ w) = P (ZF2(Y3) ≤ w | ZF1(Y2) ≤ v)P (ZF1(Y2) ≤ v) = vw,

and it follows inductively that (ZFt(Yt+1))t∈N are independent. Hence the definition of proba-
bilistic calibration corresponds to the classic definition given in Diebold et al. (1998). However,
for lag h > 1 and for the quantile PIT, where no particular conditional distribution is assumed,
there may be dependence in the sequence of PITs, ranks, or quantile PITs.

3 E-values

3.1 E-values in sequential settings

We proceed with formal definitions and properties of e-values in sequential settings. The notation
largely follows Vovk and Wang (2021), but we formalize a new concept of lagged sequential e-
values which is particularly relevant in forecast evaluation. Throughout this section, let (Ω,F)
be the underlying measurable space and P be a suitable set of distributions.

Definition 3.1. Let H,H′ ⊂ P. An e-value for H is a non-negative random variable E such
that EPE ≤ 1 for all P ∈ H. An e-value for H is testing H against H′ if EQE > 1 for all Q ∈ H′.
Definition 3.2. Let (Ft)t∈N be a filtration, h be a positive integer and H,H′ ⊂ P. Adapted
non-negative random variables (Et)t∈N are called sequential e-values for H at lag h if EP (Et |
Ft−h) ≤ 1 for all P ∈ H and for all t ∈ N. Sequential e-values for H at lag h are testing H
against H′ if EQ(Et | Ft−h) > 1 for all Q ∈ H′ and for all t ∈ N. For t ≤ h expectations are
understood unconditionally.

For lag h = 1, sequential e-values can be combined by their cumulative product. For h > 1 we
can combine e-values with a U-statistics approach (see Vovk and Wang (2021) and Proposition
3.4 of Henzi and Ziegel (2021)).

Proposition 3.1. Let (Et)t∈N be sequential e-values for H ⊂ P at lag h adapted to the filtration
(Ft)t∈N. Then for all T ≥ h+ 1, with Ik(T ) = {k + hs : s = 0, . . . , b(T − k)/hc − 1},

eT =
1

h

h∑

k=1

∏

l∈Ik(T )

El (4)

is FT measurable and an e-value for H. In particular, eτ is an e-value for H for any stopping
time τ .
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The combination formula (4) in Proposition 3.1 transforms sequential e-values into a super-
martingale by averaging cumulative products of all e-values with lag h, which then allows to
apply results of Ramdas et al. (2020) to obtain validity under optional stopping. For rejecting
the null hypothesis at a fixed level α ∈ (0, 1), one may apply the aggressive stopping criterion

τ = inf{t ∈ N : et ≥ 1/α}.

Example 3.1. Assume that at each time point t ∈ N we are assessing a probabilistic forecast
Ft with prediction horizon h ≥ 1 for a quantity of interest. At time t, we are given the current
quantity Yt and the forecast Ft for Yt+h. We are interested in testing the null hypothesis that
the forecasts are calibrated. A natural choice for the filtration is Ft = σ

(
Y1, F1, . . . , Yt, Ft

)
.

Forecast evaluation is normally based on the observation and on the information available at
the time of forecasting. Therefore, an e-value Et for testing calibration at time t ≥ h+ 1 should
satisfy E(Et | Ft−h) ≤ 1. But E(Et | Fj) ≤ 1 may be violated for t − h < j < h even for
calibrated forecasts, since the conditional expectation involves information not available at the
time of forecasting. Therefore, e-values (Et)t∈N for testing calibration should be sequential at
lag h. In this case, combination formula (4) can be applied.

In the following sections we construct sequential e-values for the continuous and for the
discrete uniform distribution and for testing stochastic dominance relations with respect to the
uniform distribution. General construction principles for e-values, and possible caveats, are
explained in the special case of the continuous uniform distribution in Section 3.2, but also
apply to the other situations in Sections 3.3 and 3.4. An R package implementing the methods
is available on GitHub (https://github.com/AlexanderHenzi/epit), and technical details are
given in Appendix B.

3.2 Continuous uniform distribution

Let Z be a random variable with values in [0, 1]. We are interested in testing whether Z is
uniformly distributed, that is, constructing e-values for the hypothesis

HCUF := {UNIF(0, 1)}. (5)

The underlying set of distributions, P, simply consists of all distributions on the interval [0, 1].
As a first strategy, we suggest to test HCUF against the family of beta distributions which we
denote by H′. Any P ∈ H′ can be parametrized by a vector in the set

Θ = {(α, β) ∈ R2 | α > 0, β > 0}.

Let P(α,β) denote the beta distribution with parameters (α, β), so that HCUF = {P(1,1)}. As
mentioned in the introduction, the hypothesis HCUF is simple, and for any (α, β) 6= (1, 1) the
density, or likelihood ratio, with respect to UNIF(0, 1),

Eα,β(Z) :=
1

B(α, β)
Zα−1(1− Z)β−1

is an e-value testing HCUF against {P(α,β)}, where B(·, ·) denotes the beta function. Grünwald
et al. (2019) suggest to determine e-values in such a way that the expected logarithm of the
e-value is maximal in the worst case scenario, and refer to e-values with this property as growth
rate optimal in worst case (GROW). Following this criterion, parameters (α∗, β∗) ∈ Θ would
have to be found such that

inf
(α,β)∈Θ

EZ∼P(α,β)
[log(Eα

∗,β∗
(Z))]

is maximal. However, this approach is only feasible if either α or β (or their ratio or difference)
is fixed, which yields a one-parameter exponential family for which results of Grünwald et al.
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(2019) are applicable. In many situations this is a prohibitive limitation, since no sufficient prior
knowledge is available to restrict the parameters. On the other hand, if both α and β can take
any positive values, the GROW e-value is constant 1, because the infimum in the equation above
is negative unless α∗ = β∗ = 1.

As a different strategy in sequential settings, we propose to estimate (α, β) by maximum
likelihood estimation (MLE) to optimize power for the next e-value, in the spirit of the betting
strategies suggested by Waudby-Smith and Ramdas (2020) for estimating a bounded mean.
Given a sequence of observations (zt)t∈N ⊆ [0, 1], one can successively calculate e-values for
HCUF as follows: For t ≥ 2 estimate parameters (α̂t, β̂t) by MLE, that is

(α̂t, β̂t) = arg max
(α,β)∈Θ

t∑

i=1

log
(
p(α,β)(zi)

)
, (6)

where p(α,β) denotes the Lebesgue density of P(α,β). Set E1 = E2 = 1 and calculate

Et+1 = Eα̂t,β̂t(zt+1) (7)

to obtain a sequence (Et)t∈N of e-values for testing the null hypothesis that the sequence (zt)t∈N
is i.i.d. UNIF(0, 1).

To construct e-values at lag h, parameter estimation can be performed separately on all all
subsamples with indices {k + hs | s = 0, 1, . . . }, k = 1, . . . , h. That is, for t ≥ 2h calculate

(α̂kt , β̂
k
t ) = arg max

(α,β)∈Θ

∑

s:k+hs≤t
log
(
p(α,β)(zk+hs)

)
, k = 1, . . . , h. (8)

Set E1 = · · · = E2h = 1 and, for t = h, h+ 1, . . . ,

Ek+th = Eα̂
k
t ,β̂

k
t (zk+th), k = 1, . . . , h.

Then (Et)t∈N are sequential e-values at lag h for the null hypothesis that zt ∼ UNIF(0, 1)
conditional on z1, . . . , zt−h for all t, and these e-values can be combined with the formula (4).

Remark. Estimating the parameters by maximum likelihood can be considered as a sample
version of the GROW criterion, with Z distributed according to the empirical distribution of
z1, . . . , zn instead of taking the infimum over all parameters in Θ. The strategy to maximize
the expected logarithm of a product is also referred to as Kelly betting, in reference to Kelly Jr
(1956).

The beta family of distributions is flexible enough to adapt the most common violations
of uniformity which occur in practice, namely increasing, decreasing, unimodal and U-shaped
densities. This also covers the typical shapes of the PIT distribution for biased and over- or
underdispersed probabilistic forecasts. However, in certain applications or data-rich situations, it
may be desirable not to restrict the shape of the e-values to a parametric family. A powerful tool
for such cases is kernel density estimation, which allows with a sample ζk = (ζ1, . . . , ζk) ∈ [0, 1]k

to approximate any density on the unit interval by a mixture

EK,b,ζ
k

(Z) =

k∑

i=1

1

b
K

(
Z − ζi
b

)
,

where K is a suitable kernel density and b > 0 the bandwidth. The selection of the bandwidth,
and even of the kernel K, can be done in a sequential fashion like the parameter estimation for
the beta e-values. For the e-value at time t, the sample ζt−1 can be taken as (z1, . . . , zt−1) for

lag 1 forecasts, and the e-value EK,b,ζ
t−1

is evaluated at the observation zt. For higher lags, the
procedure is separated by subsamples with lag h like for MLE in (8).
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Compared to the e-values based on beta distributions, the kernel density approach offers
more flexibility, which on the other hand also implies more implementation decisions, especially
due to the complicating fact that the domain [0, 1] is a bounded interval. We describe our
implementation in Appendix B. Furthermore, while MLE for parameter estimation in the beta e-
values is theoretically motivated by maximizing the growth rate in sequential settings, estimation
methods for kernel densities are often based on different criteria, such as integrated mean squared
error, which do not have a natural interpretation in the context of e-values. However, this
does not mean that the beta e-values necessarily have a higher power even if the underlying
distribution can be approximated well by a beta distribution. For example, if the goal is to
reject the null hypothesis at a level α, then the growth-rate optimal e-value does not always
have the maximal power with respect to this particular criterion (see for example the simulations
in Henzi and Ziegel, 2021, Section 4.1).

In the practical implementation of e-values, some details should be taken into account.
Under the null hypothesis (5), the boundary points 0 and 1 occur with probability zero, but in
applications, observations of exactly 0 or 1 appear in most datasets, for example due to rounding.
This may be problematic for the construction of the e-values (for example, the estimator (6)
diverges if zi ∈ {0, 1} for some i), and it may lead to e-values equal to zero or infinity. In our
implementation, we decided to ignore observations in {0, 1} both in the parameter estimation
and when computing the e-values; the latter corresponds to setting Eα,β(z) = EK,b,ζ(z) = 1,
for z ∈ {0, 1}, which is a valid strategy since it does not change the expectation of the e-value
under the null hypothesis. The rationale is that if zeros or ones occur only rarely, then omitting
them should not influence the results. On the other hand, if they occur frequently then it is
questionable whether a test of the UNIF(0, 1) hypothesis is really necessary in the given problem
since the null hypothesis is obviously false.

A second practical issue is that e-values of exactly zero should be prevented since the e-
values lose their power once a level of zero is reached. For the beta distributions, zeros can only
occur when Z ∈ {0, 1}, but the kernel e-values may be zero also inside (0, 1) when there are
no data points in some region. A simple correction is to replace the e-values (Et)t∈N by convex
combinations (λt + (1 − λt)Et)t∈N for some λt > 0. We set λt = 1/t in our implementation,
since the danger of zero e-values is typically larger for smaller sample sizes, where the sequential
parameter estimation is less stable or observations may be sparse in some subsets of (0, 1).
When constructing e-values sequentially, one may also set the first n0 e-values to 1 and start
the sequential parameter estimations with a slightly larger sample size, which increases stability.
We set n0 = 10 for both the beta and kernel e-values; the minimum n0 to perform MLE for the
beta e-values is n0 = 2.

3.3 Discrete uniform distribution

For m ≥ 1 the null hypothesis in the discrete case is

HDUF :=
{

UNIF({1, . . . ,m})
}
,

and the underlying set P consists of all probability distributions on {1, . . . ,m}. Any P ∈ P can
be parametrized by m weights in the set {w ∈ [0, 1]m | ∑m

i=1wi = 1}, and HDUF = {Pw0} for
w0 = (1/m)mi=1. Let R be a random variable with values in {1, . . . ,m}. Since HDUF is a simple
null hypothesis, the likelihood ratio

E(R) =
p1(R)

p0(R)
= m p1(R)

is an e-value testing HDUF against the simple alternative hypothesis {P1}, where P1 ∈ P has
probability mass function p1. Like in the continuous case, we suggest a parametric and a
nonparametric method for constructing p1 sequentially.
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For parametric e-values, we propose to use the beta-binomial probability mass function

pα,β(r) =

(
m− 1

r − 1

)
B(α− r + 1, β +m− r)

B(α, β)
, α, β > 0

with support in {1, . . . ,m}. This yields e-values with properties similar to the beta e-values, and
estimation can again be performed sequentially with the maximum likelihood method. Like the
beta distribution on [0, 1], the beta-binomial distribution can approximate increasing, decreasing,
unimodal and U-shaped probability mass functions on {1, . . . ,m}.

The most natural nonparametric method for obtaining p1 is the empirical distribution. That
is, for a given sample r1, . . . , rt ∈ {1, . . . ,m}, p1(R) = p1;t(R) can be set as the empirical fre-
quency of R in the sample up to time t, and at time t+1, the frequencies are updated accordingly
with the value of rt+1. These empirical frequencies are in fact the maximum likelihood estimator
given the available sample and therefore also fit into the GROW approach. A drawback of this
procedure is that the e-values may attain zero if one of the frequencies p1;t(j), j = 1, . . . ,m, is
zero. To prevent this, one may start with a particular P1 ∈ P, which serves as a first guess for
what the actual frequencies will look like. For example, a neutral first guess is P1 = Pw0 , and
at time t, the weights could be updated with the formula

wt =

(
kt1 + 1

t+m
, . . . ,

ktm + 1

t+m

)
,

where ktj = #{i = 1, . . . , t | ri = j}. Here we successively update with the empirical distribution
and each component of the weight vector contains one artificial observation. In comparison with
the beta-binomial weights, it has to be expected that for even moderate m (say, 20 or 50, as
common in ensemble forecasting), much larger sample sizes are required to recover the actual
underlying distribution.

3.4 Stochastic ordering with respect to the uniform distribution

Instead of testing whether Z ∈ [0, 1] is distributed according to UNIF(0, 1), one is sometimes
only interested in whether it attains systematically lower or higher values than expected under
UNIF(0, 1). This is formalized by the hypotheses

HST = {P ∈ P([0, 1]) | P ≤st UNIF(0, 1)}, (9)

HST = {P ∈ P([0, 1]) | P ≥st UNIF(0, 1)}, (10)

where P([0, 1]) is the set of all distributions on [0, 1]. The quantile forecasts described in Section
2 give one motivation to test these hypotheses. More generally, for a random variable Y and
a strictly increasing CDF G, tests for HST or HST applied to G(Y ) allow to evaluate if the
distribution of Y is stochastically smaller or greater than G. Note that testing whether a random
variable Z ∈ [0, 1] has distribution in HST is equivalent to testing whether the distribution of
1− Z lies in HST.

The null hypotheses HST and HST are composite hypotheses, so the construction of e-values
is more involved than for the continuous and discrete uniform distribution. The following result
characterizes non-conservative e-values for HST and HST, with non-conservative meaning that
they have expectation 1 under the UNIF(0, 1) distribution.

Proposition 3.2. Let f be a Lebesgue density on [0, 1]. Then EP (f(Z)) ≤ 1 for all P ∈ HST

(P ∈ HST) if and only if there exists an increasing (decreasing) density f̃ and a Lebesgue null
set A such that f(x) = f̃(x) for all x 6∈ A and f(x) < f̃(x) for all x ∈ A.

Remark. Vovk and Wang (2021, Section 2) call random variables p ∈ [0, 1] which satisfy P (p ≤
α) ≤ α for all α ∈ (0, 1) p-variables, and a decreasing function f : [0, 1] 7→ [0,∞) a p-to-e
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calibrator if f(p) is an e-value for all p-variables p. In simple words, a p-to-e calibrator is
a function which transforms p-values into e-values. This is closely related to the stochastic
dominance hypotheses in this section. The set HST contains the distributions of all p-variables,
and Proposition 3.2 states that decreasing functions are indeed (essentially) the only p-to-e-
calibrators. Furthermore, a p-to-e calibrator f is called admissible if there exists no other
calibrator g such that g ≥ f and g 6= f , which is equivalent to f(0) = ∞ and f being upper
semicontinuous and integrating to one (Vovk and Wang, 2021, Proposition 2.1). For testing
stochastic dominance, this result in conjunction with Proposition 3.2 implies that all reasonable
e-values for HST (HST) are obtained by choosing left-continuous decreasing (right-continuous
increasing) Lebesgue densities f , so the null set A in Proposition 3.2 should be the empty set.
While it is valid to set f(0) = ∞ for HST, this may be not desirable in practical applications
when values of 0 may occur but should not immediately lead to a rejection of the null hypothesis.

For constructing e-values in a sequential setting, a suitable estimator for decreasing (or in-
creasing) density functions is the Grenander estimator (Grenander, 1956), which is the maximum
likelihood estimator among all decreasing density functions and therefore fits into the GROW
approach. The Grenander estimator produces piecewise constant density functions, and as a
smooth alternative, we propose the estimator by Turnbull and Ghosh (2014) based on mixtures
of Bernstein polynomials, that is, beta densities. This estimator was originally proposed for
the estimation of unimodal densities, but monotone densities can be easily accommodated by
setting the mode to zero or one. Estimation is based on minimizing a squared distance between
the ECDF of a sample z1, . . . , zn under constraints on the mixture weights to ensure monotonic-
ity. Different from the Grenander estimator, there is a tuning parameter, namely the maximum
degree in the Bernstein polynomials, for which Turnbull and Ghosh (2014) propose several se-
lection criteria. Sequential updating of the estimator, the construction of lag h e-values, and
potential corrections to avoid e-values of zero can be done as described for the case of the HCUF

hypothesis in Section 3.2.
The Grenander estimator has the additional advantage that it automatically adapts in the

case when it is known (or cannot be excluded) that the distributions of interest have discrete
support. To see this for the hypothesis HST, assume that the support is 0 = s1 < · · · < sk <
sk+1 = 1; here s1 = 0 and sk < 1 are necessary conditions for P ∈ HST. If f is an increasing
density, then EP (f(Z)) ≤ 1 by Proposition 3.2, but the piecewise constant density g = g(z; f)
defined by

g(z; f) =

∫ si+1

si
f(z) dz

si+1 − si
, z ∈ [si, si+1), i = 1, . . . , k − 1, g(z; f) =

∫ si+1

si
f(z) dz

1− sk
, z ≥ sk, (11)

is also increasing and satisfies g(si; f) ≥ f(si), i = 1, . . . , k, so g(·; f) yields a more power-
ful e-value than f . If f is computed with the Grenander estimator and all observations are
in {s1, . . . , sk}, then f is already piecewise constant on the intervals [si, si+1), and therefore
g(z; f) = f(z). The density (11) can also be interpreted as the likelihood ratio between the
probabilities gi =

∫ si+1

si
f(z) dz and the discretization of the uniform distribution which puts

mass pi = si+1 − si on the points si.

Remark. Assume that we are interested in the hypothesis

H =
{
P ∈ P

(
[0, 1]× [0, 1]

)
| P1 ≤st UNIF(0, 1) ≤st P2

}
, (12)

where P = P([0, 1] × [0, 1]) denotes the set of all bivariate distributions on [0, 1] × [0, 1] and
P1, P2 denote the marginal distributions of some P ∈ P. Then

H =
{
P ∈ P | P1 ≤st UNIF(0, 1)

}
∩
{
P ∈ P | UNIF(0, 1) ≤st P2

}
= HST;1 ∩HST;2.

Since we can writeH as an intersection of two hypotheses it follows immediately that (E1+E2)/2
is an e-value for H if E1, E2 are e-values for HST;1,HST;2 respectively. E-values for HST;1,HST;2
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can be constructed with the methods proposed in this section, since the hypotheses only impose
restrictions on one of the marginals.

Example 3.2. In this example we show how to use the e-values of Proposition 3.2 and the
above remark to check probabilistic calibration of quantile forecasts as defined in Section 2.
Assume that for given quantile levels 0 < α1 < · · · < αK < 1 we sequentially predict quantiles
(q1;t, . . . , qK;t)t∈N at lag 1 and observe the quantities (yt)t∈N. We calculate the sequence of upper
quantile PITs (zt)t∈N and lower quantile PITs (zt)t∈N ⊆ [0, 1], where

zt = ZFu;t(yt+1) and zt = ZF`;t(yt+1).

For t ≥ 1 and upper quantile PIT values z1, . . . , zt we estimate an increasing density ft.
Analogously, we estimate a decreasing density f t with the lower quantile PIT z1, . . . , zt. By
Proposition 3.2, Et+1 = ft(zt+1) is an e-value for HST;1 and Et+1 = f t(zt+1) is an e-value for
HST;2. Sequential e-values for probabilistic calibration of the quantile forecasts are obtained by
Ēt = (Et+Et)/2, as explained in the above remark. For for h > 1, we refer to the usual procedure
where we have to estimate densities separately on subsamples with indices {k+hs | s = 0, 1, . . . }
for k = 1, . . . , h.

4 Simulation study

To evaluate the power of the e-values, we generate independent observations Y ∼ N (0, 1) and
define forecasts F = N (ε, 1 + δ), where ε, δ ∈ {−0.5,−0.4, . . . , 0.5} are the bias and dispersion
error, respectively. Figure 1 illustrates the distribution of the PIT ZF (Y ) = F (Y ) for different
combinations of bias and dispersion error. For δ = ε = 0 the PIT is uniformly distributed.
To obtain comparable simulations for testing the discrete uniform distribution, we generate 20
independent ensemble forecasts X = (X1, . . . , Xm) according to F , and test for uniformity of
rankX(Y ) ∈ {1, . . . , 21}. The tests for stochastic order are applied to the PIT ZF (Y ), and
we only test if the distribution of ZF (Y ) is stochastically greater than UNIF(0, 1). For testing
calibration of quantile forecasts, we take K = 19 equispaced quantiles (levels 0.05, 0.1, . . . , 0.95)
of the distribution F and compute the e-values as described in Example 3.2. Since both F and
the distribution of Y are absolutely continuous, the lower and upper quantile PITs are discrete
in this case with values in {0.05, 0.1, . . . , 1} and {0, 0.05, . . . , 0.95}, respectively.

We display the result of our simulation experiments with test power hear matrices; see Figure
2 and the additional figures in the Supplementary Material. While this graphical display is self-
explanatory, we emphasize that it allows to compare test power across several tests with respect
to two directions of alternatives at a single glance. Figure 2 shows the rejection rates of different
tests in the simulation examples at a level of α = 0.05 with a sample size of n = 360. All e-values
apply the stopping criterion τ = min(360, inf{t ≥ 1 : et ≥ 1/α}), and we refer to Appendix B for
implementation details. The results for different values of α and n are qualitatively similar and
presented in the Supplementary Material. For the continuous uniform distribution, we compare
the beta e-values and the kernel e-values to the Kolmogorov-Smirnov test (abbreviated ks.test

in the following).1 While the ks.test has a higher power against biased forecasts, it is less
sensitive to dispersion errors than both e-values. The beta e-values generally achieve a higher
power than the e-values based on kernel density estimation, but this difference becomes smaller
for larger sample sizes; see the Supplementary Material. For the discrete uniform distribution,
we take the chisquare test for comparison. The e-values based on the betabinomial distribution
are most sensitive to violations of uniformity, whereas constructing e-values with the empirical

1The quantile PIT has a discrete distribution in this simulation study, but the ks.test as implemented in
R is still applicable since it applies an asymptotic distribution for the test statistic which is sufficiently precise
for the sample sizes considered here. We refer the reader to the detailed description and references in the R
documentation of ks.test.
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Figure 1: Histograms of the PIT in the simulation study, with 20 equispaced bins and a sample
size of (a) n = 10′000 (theoretical appearance of the underlying distribution), and (b) n = 360
(PIT histogram in a typical simulation). The rows in the figure panels give the dispersion error
δ, and the columns give the bias ε. The horizontal red line shows the uniform density. Note the
different scaling of the y-axis in the panel rows.

frequencies of the ranks is not powerful for the given simulation, since the empirical distribution
only recovers the shape of the underlying distribution very slowly. For testing the null hypothesis
that the PIT is stochastically greater than UNIF(0, 1), we apply a one sided version of the
ks.test, which turns out to be more powerful than the e-values. Nevertheless, the e-values
with Bernstein polynomials achieve a similar power when the forecast is underdispersed. For
testing calibration of the quantile forecasts, one-sided ks.tests are applied to the upper and
lower quantile PIT and corrected with the Bonferroni method, so that probabilistic calibration
can be rejected if at least one of the corrected p-values is below 0.05. The e-values based on
the Grenander estimator are more sensitive to forecast dispersion errors than the ks.test, but
less sensitive to the bias. The Bernstein e-values achieve a lower power, which is due to the fact
that they do not automatically adapt to the discreteness of the quantile PIT.

To summarize, in all simulations the e-values are able to achieve similar power as established
methods which do not possess the advantages of e-values, such as validity under optional stop-
ping. For the discrete uniform distribution, we suggest to use the betabinomial e-values unless
the sample size is large or the number of distinct values m is small. In stochastic dominance
testing with smooth distributions, it is generally better to apply the Bernstein e-values. The
Grenander estimator should be preferred for testing calibration of quantile forecasts when both
the underlying forecast distribution and the distribution of the outcome are continuous.

5 Case study

5.1 Data and methods

Ensemble prediction systems have tremendously improved the precision of weather forecasts
in the past decades (Bauer et al., 2015). However, it is well known that ensemble forecasts
remain subject to biases and dispersion errors, which require statistical correction, so called
postprocessing, and a variety of methods is available for this task and applied by weather
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Figure 2: Rejection rates of different tests for (a) the continuous uniform distribution (b) the
discrete uniform distribution (c) stochastic dominance (d) calibration of quantile forecasts, at
the level α = 0.05 with a sample size of n = 360, depending on the bias and dispersion error.
The red box highlights the rejection rates for bias and dispersion error equal to zero. Rejection
rates are computed over 5000 simulations.
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Table 1: Meteorological station information (latitude, longitude, World Meteorological Organi-
zation (WMO) station identifier, station name).

Latitude Longitude WMO ID Name Latitude Longitude WMO ID Name

54.18 7.90 10015 Helgoland 51.13 13.75 10488 Dresden-Klotzsche
53.63 9.98 10147 Hamburg-Fuhlsbüttel 50.87 7.17 10513 Köln-Bonn
53.65 11.38 10162 Schwerin 50.98 10.97 10554 Erfurt-Weimar
53.05 8.80 10224 Bremen 49.75 6.67 10609 Trier-Petrisberg
52.47 9.68 10338 Hannover 50.05 8.60 10637 Frankfurt/Main
52.13 11.60 10361 Magdeburg 49.77 9.97 10655 Würzburg
52.38 13.07 10379 Potsdam 49.52 8.55 10729 Mannheim
52.57 13.32 10382 Berlin-Tegel 48.68 9.23 10738 Stuttgart-Echterdingen
51.30 6.77 10400 Düsseldorf 49.50 11.05 10763 Nürnberg
51.50 9.95 10444 Göttingen 49.05 12.10 10776 Regensburg
51.42 12.23 10469 Leipzig/Halle 48.43 10.93 10852 Augsburg

forecasters (Vannitsem et al., 2018). Ensemble postprocessing methods try to estimate the
conditional distribution of the variable of interest given the ensemble forecasts. Postprocessed
forecasts usually achieve a better calibration than the raw ensemble forecasts, but they may
still be miscalibrated if the relationship between forecasts and observations changes over time
or if the postprocessing method (say, a parametric model), is not appropriate for the variable at
hand. The PIT is one important tool for identifying misspecification of postprocessed forecasts.

In this case study we apply the e-values to test calibration of postprocessed weather forecasts
for 22 SYNOP weather stations in Germany. The dataset is part of the data analysed by Hemri
et al. (2014) and was kindly provided by Sebastian Lerch. Forecast data are available through
the European Centre for Medium-Range Weather Forecasts (ECMWF) Meteorological Archival
and Retrieval System (https://www.ecmwf.int/en/forecasts) and via TIGGE (Bougeault
et al., 2010; Swinbank et al., 2016). Station observations can be downloaded from NOAA’s
Integrated Surface Database (https://www.ncdc.noaa.gov/isd). Station information is given
in Table 1. We postprocess the ensemble predictions from the ECMWF, which consists of 50
perturbed forecasts (Molteni et al., 1996; Buizza et al., 2005). The variables considered are 2
meter temperature, wind gust speed, and accumulated precipitation, for lead times of 24, 48,
and 72 hours. Data is available from January 1, 2002, to March 20, 2014, and all data until and
including the year 2008 is used for training the postprocessing models and the remaining part
for validation. The validation dataset consists of 1855 to 1896 days per station, slightly varying
due to different numbers of missing values.

Postprocessing is performed separately for each forecast lag and for seasons, namely, the
model parameters are estimated on data from the calendar months April to September and Oc-
tober to March for forecasts within the respective periods. The postprocessing for all variables is
based on the Ensemble Model Output Statistics (EMOS) approach with heteroscedastic regres-
sion: The conditional distribution of the variable of interest is approximated by a parametric
location-scale family, with the location parameter being an affine function of the ensemble mean
and the scale parameter beging the exponential of an affine transformation of the ensemble stan-
dard deviation. For temperature forecasts, the parametric family are Gaussian distributions.
Wind gust speed is modelled with the density of a logistic distribution truncated at zero and
rescaled so that it integrates to one. Forecasts for accumulated precipitation are based on the
censored logistic distribution, where the probability mass on the non-positive numbers gives
the probability of zero precipitation. Parameters are estimated by maximum likelihood for the
temperature and wind speed forecasts. For precipitation forecasts, parameters are estimated by
minimizing the continuous ranked probability score (CRPS) for precipitation, or by maximum
likelihood in case the minimization of the CRPS criterion did not converge. The implementation
is in R with the crch package (Messner et al., 2016).
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To evaluate probabilistic calibration we apply the e-values based on kernel density estimation.
To make full use of the large sample size, we use the data of the first year in the validation (more
precisely, the first 366 days) only for the computation of a reliable first guess of the density of
the PIT, and set all e-values for this period to 1. For lag 2 and lag 3 forecasts, this gives sample
sizes of 183 or 122, respectively, for each of the lagged sequences of e-values. Apart from this
modification, the implementation is as described in Appendix B.2. The e-values based on beta
distributions work less well than the kernel densities because the shape of the PIT distribution
is often more complicated than just unimodal or U-shaped. We also applied the e-values for the
discrete uniform distribution on the raw ensembles, which lead to very fast rejection of the null
hypothesis and extremely high e-values (see Table 1 in the Supplementary Material).

5.2 Results

Panels (a) and (b) of Figures 3, 4 and 5 display the PIT histograms and e-values for selected
stations, with the common choice of 20 bins for plotting the histograms. For many stations,
the PIT histograms indicate severe deviations from uniformity, and the e-values give decisive
evidence against the null hypothesis of probabilistic calibration. For higher lags, where e-values
cannot be merged by product, the power is generally lower than for lag 1. If the goal is purely
to check whether the violation of calibration is significant, then Figure 6 demonstrates that the
e-values indeed correlate well with the distance of the PIT from the uniform density.

As argued in the introduction, evaluating probabilistic calibration only at the end of an
observation period is often not informative since forecast misspecification changes over time,
and this change of forecast misspecification can indeed be seen in the e-values. Consider first
the 24 hour temperature forecasts for station 10015, Helgoland (Figure 3). The forecasts are
biased, with temperatures often being higher than expected under the forecast distribution.
Interestingly, the cumulative product of the e-values displayed in panel (b) of Figure 3 exhibits
a clear seasonal pattern: Evidence against calibration is usually gained in the first half of each
calender year, but not in the second half. To further investigate this effect, we plot the kernel
density estimates of the PIT (with the same method as used for constructing the e-values)
separated by time periods. Panel (c) of Figure 3 shows for each half year the density of the PIT
based on data until (but not including) the given period. For lag 1 forecasts, this is the e-value
EK,b,ζ

t
, where ζt are all PIT values before the period and b is the bandwidth estimated with

data ζt. The second density function is estimated based on data within the given time period.
For example, the solid line in the second plot in Figure 3 (c) uses PIT values from 2009 until
the end of June 2010, and the dashed density is based the PIT from July until December 2010.
If the two densities exhibit similar deviations from uniformity, then evidence against the null
hypothesis of calibration is gained, since the observed PIT lies in regions where the e-value is
greater than one. It can be seen that the bias of the forecast indeed only occurs in the months
January to June, where the e-value increases, but the forecasts are relatively well calibrated from
July to December. Improving the postprocessing method should therefore take into account that
there is a different seasonal behaviour of the forecasts and observations, which is not captured
by performing separate parameter estimation for the months April to September and October
to March, and this seasonal behaviour is directly visible in the e-values in panel (b).

A similar observation can be made for the 24 hour wind speed forecasts for station 10162,
Schwerin, in Figure 4. The PIT histogram looks close to uniform, and the e-value at the end
of the observation period is close to zero and therefore suggests that the forecast is calibrated.
However, when looking at the full time domain, there is in fact strong evidence against prob-
abilistic calibration: At the end of the year 2011 the e-value reaches a level of more than 107,
which corresponds to a highly significant p-value of 10−7. Rejecting calibration based on this
observation is statistically valid, because the probability that the process exceeds this level at
any time is less or equal to 10−7. The density estimates, in the same spirit as for the previous
station, show that the forecasts are in fact biased over the whole observation period, but the
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Figure 3: (a) PIT histograms of forecasts for station with ID 10015, for all variables and lead
times. (b) E-values (et) testing uniformity of the PIT of the given forecasts, where the dotted
horizontal show the levels 1 and 100. (c) Density estimates of the PIT for given time periods.
The same density estimation method is used as for the computation of the e-values. The dashed
density is based on all data until (but not including) the period indicated in the caption, and
the solid lines represent the density of the PIT only within the given period.
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Figure 4: Calibration checks for station 10162. The plots are as described in Figure 3.
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Figure 5: Calibration checks for station 10729. The plots are as described in Figure 3.

direction of the bias changes at the end of 2011. This change in forecast misspecification is
clearly visible in the plot of the e-value over time. Hence a decreasing e-value does not neces-
sarily indicate that the forecast is calibrated, but that there is a change in the miscalibration
(either to calibration or to a different type of miscalibration).

Finally we consider the 48 hour precipitation forecasts for station 10729, Mannheim (Figure
5). The e-value grows steadily over time and reaches a level of 105, indicating that the under-
dispersion visible in the PIT is indeed significant. The kernel density estimates in panel (c)
of Figure 5 confirm that this underdispersion is consistent over the whole time period and not
varying, as one could expect from the plot of the e-values.

To summarize, by examining how e-values develop over time, changes in forecast calibration
or miscalibration become visible at a glance. Furthermore, e-values make it is possible to detect
forecast miscalibration which cannot be seen directly in a PIT histogram based on the complete
data, and yield valid p-values for rejecting calibration at any time point without having to
stratify the data in advance. A stratified analysis by season or year, as in the panel (c) of the
figures in this section, does of course not necessarily require e-values. However, it has been
demonstrated that e-values may simplify this process by indicating whether or at what time
points forecast misspecification changes.

6 Discussion

Forecasting is an inherently sequential task. Most forecasts exhibit non-stationary errors, for
example due to seasonal effects, and forecasters adapt and improve their methods and models
over time, which results in systematic changes of forecast performance. For this reason forecast
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Figure 6: E-values for each station compared to the integrated absolute difference (L1 distance)
between the PIT histogram and the uniform density. The e-values are the ones obtained at the
end of the observation period, and ρ gives the Spearman rank correlation between the e-values
and the L1 distance for the given station and lead time. The dotted horizontal lines show the
nominal levels of 1 and 100.

evaluation should be sequential as well. Indeed, most practitioners and institutions continu-
ously evaluate the quality of their forecasts; for example, the EMCWF analyses their forecast
methods annually in their reports available on https://www.ecmwf.int/en/publications/

annual-reports. From the theoretical side, there is a lack of methods tailored for sequential
forecast evaluation, which do not simply rely on a discretization of the time domain and applying
static methods for fixed sample sizes.

E-values, which are arguably the suitable tool for sequential forecast evaluation, have received
increasing interest in recent years, but research is still mainly of theoretical nature and has not
yet systematically focused on the evaluation of probabilistic forecasts. We have shown how
e-values can be applied to obtain sequentially valid tests for probabilistic calibration, which is
one of the most important notions of forecast calibration. The e-values which are provided in
this paper are also of stand-alone interest and can be applied in other areas of statistics.

Simulation studies are an important tool to understand rejection rates (power) of newly
proposed tests across a range of relevant alternatives. Often, if several parameters are varied
in the study, readers are overwhelmed by too many numbers in large tables or too many lines
in graphs. We suggest to display summaries of rejection rates as test power heat matrices as
given in Figure 2. These diagrams allow to see a power comparison of several tests against many
alternatives at one glance.

Our paper focuses on probabilistic calibration. A topic for future work is to derive valid
tests for sequential forecast evaluation for other notions of calibration like auto-calibration.
In contrast to probabilistic calibration, the notion of auto-calibration extends readily also to
multivariate forecasts.
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A Proofs of theoretical results

Proof of Proposition 2.1. For y < q1 and z > qK the conditions Fu(y) = 0 ≤ F (y) and F (z) ≤
1 = F`(z) are always satisfied. If y ∈ (qi, qi+1) for some i = 1, . . . ,K − 1, then

Fu(y) = αi ≤ F (qi) ≤ F (y) ≤ F (qi+1−) ≤ αi+1 = F`(y).

For the second claim consider j ∈ {1, . . . ,K} and define Ij = {i ∈ {1, . . . ,K} | qi = qj}. Then,

Fu(qj−) = min
i∈Ij

αi−1 ≤ max
i∈Ij

αi = Fu(qj),

F`(qj−) = min
i∈Ij

αi ≤ max
i∈Ij

αi+1 = F`(qj),

which shows equation (3).

Proof of Proposition 3.2. We show the claim for HST. The arguments for HST are analogous.
Sufficiency: Assume that there exists an increasing function f̃ and a Lebesgue null set A such
that f(x) = f̃(x) for all x ∈ [0, 1] \ A and f̃(x) > f(x) for x ∈ A. Let P ∈ HST, then
P ≤st UNIF(0, 1) and

EP (f(Z)) ≤ EP (f̃(Z)) ≤ EUNIF(0,1)(f̃(Z)) = 1, (13)

using that f(x) ≤ f̃(x) for all x ∈ [0, 1], isotonicity of f̃ , and the fact that EF1(g(X)) ≤
EF2(g(X)) for all increasing functions g if F1 ≤st F2.
Necessity: Let f be a density on [0, 1] such that there exist no Lebesgue null set A and increasing
Lebesgue density f̃ such that f(x) = f̃(x) for x 6∈ A and f(x) < f̃(x) for x ∈ A. We show that
then EP (f(Z)) > 1 for some P ∈ HST.

Case 1: There is an increasing Lebesgue density f̃ such that f(x) = f̃(x) for all x 6∈ A, where
A is a Lebesgue null set. Then there must exist a ∈ [0, 1] such that

f(a) > f̃(a). (14)

If (14) only holds for a = 1, then f(x) ≤ f̃(x) for x 6= 1 and f(1) > f̃(1). This yields
a contradiction, because with the isotonic function f̌ defined as f̌(x) = f̃(x) for x < 1 and
f̌(1) = f(1), we have that f(x) = f̌(x) for all x ∈ ([0, 1] \ A) ∪ {1}, and f(x) < f̌(x) for
x ∈ A \ {1}. Hence we can assume that (14) holds for some a < 1. If f̃(x) ≥ f(a) for all x > a
and for all a such that (14) holds, then similar to before, define f̌(x) = f̃(x) for x 6= a and
f̌(a) = f(a) for all a for which (14) is true. Then f̌ is again an increasing function almost surely
equal to f and satisfies f̌ ≥ f , a contradiction (a figure illustrating this special case can be found
in the Supplementary Material). Therefore there must exist a ∈ [0, 1) such that f(a) > f̃(b) for
some b ∈ (a, 1]. This implies f(a) > f̃(y) for all y ∈ [a, b], by monotonicity of f̃ . Choose a, b
such that this condition holds, and define the CDF G by

G(x) =





x, x ∈ [0, a),

b, x ∈ [a, b),

x, x ∈ [b, 1].

Then G(x) ≥ x for x ∈ [0, 1], so G ∈ HST, and

EG(f(Z)) =

∫

[0,a)
f(z) dz + (b− a)f(a) +

∫

[b,1]
f(z) dz

=

∫

[0,a)
f̃(z) dz + (b− a)f(a) +

∫

[b,1]
f̃(z) dz

>

∫

[0,a)
f̃(z) dz +

∫

[a,b)
f̃(z) dz +

∫

[b,1]
f̃(z) dz = 1,
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using the fact that f = f̃ Lebesgue almost surely.
Case 2: There exists no monotone increasing Lebesgue density f̃ such that f(x) = f̃(x) for

all x ∈ [0, 1]\A, where A is a Lebesgue null set. For x ∈ [0, 1], define F (x) =
∫ x

0 f(z) dz. Then F
is not convex because otherwise, F would be differentiable almost everywhere and its derivative
would be increasing and equal to f for all x not contained in some set of Lebesgue measure zero.
This implies that there are points 0 ≤ x1 < x2 < x3 ≤ 1 such that

∫
[x1,x2] f(z) dz

x2 − x1
=
F (x2)− F (x1)

x2 − x1
>
F (x3)− F (x2)

x3 − x2
=

∫
[x2,x3] f(z) dz

x3 − x2
. (15)

Let c := (x3 − x1)/(x2 − x1) = 1 + (x3 − x2)/(x2 − x1) > 1 and define

G(x) =





x, x < x1,

x1 + c(x− x1), x ∈ [x1, x2),

x3, x ∈ [x2, x3),

x, x ∈ [x3, 1].

Then G(x) ≥ x for x ∈ [0, 1], and by (15),

EG(f(Z)) =

∫

[0,x1)
f(z) dz + c

∫

[x1,x2)
f(z) dz +

∫

[x3,1]
f(z) dz

=

∫

[0,x1)
f(z) dz +

∫

[x1,x2)
f(z) dz +

x3 − x2

x2 − x1

∫

[x1,x2)
f(z) dz +

∫

[x3,1]
f(z) dz

>

∫

[0,1]
f(z) dz = 1.

B Implementation details

B.1 Beta e-values

The parameters (α, β) in the beta e-values are estimated by maximum likelihood with Newton’s
method for maximization. The moment matching estimator is taken as a starting point, and
the Newton iterations are continued until the likelihood between subsequent iterations does not
differ by more than 10−6 or until a maximum number of 20 iterations is reached. For stability,
the values of (α, β) are truncated to lie in [0.001, 100], and parameter estimation is only started
after 10 observations are available (the first 10 e-values are set to 1). The implementation
of Newton’s method for maximizing the likelihood uses code adapted from the Rfast package
(Papadakis et al., 2020).

B.2 Kernel e-values

The kernel e-values use the boundary kernel densities as suggested by Muller and Wang (1994).
In their original form, these kernel functions may attain negative values, so the non-negativity
correction by Jones and Foster (1996) is applied. This estimation method is implemented in the
bde package in R (Santafe et al., 2015, function jonesCorrectionMuller94BoundaryKernel).
The resulting density may sometimes not integrate to one. Therefore, it is evaluated on the
discrete grid 0, 0.01, . . . , 0.99, 1 and rescaled so that this discretized version has integral one.
To estimate the bandwidth, the direct plug-in approaches as described in Section 3.6 of Wand
and Jones (1995) and implemented in the KernSmooth package (Wand and Jones, 2021) are
applied, with 2 levels of functional estimation for the plug-in rule. In this article, all results
with the kernel e-value are based on the boundary corrected Epanechnikov kernel, and only the
bandwidth is updated sequentially.
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B.3 Betabinomial e-values

For the estimation of the parameters (α, β) in the betabinomial e-values, Newton’s method is
applied to maximize the likelihood. The moment matching estimators are taken as starting point,
and iterations are continued until the sum of the absolute differences between the parameter
estimates, |αk − αk−1| + |βk − βk−1|, is smaller than 10−7 or until a maximum number of
20 iterations is reached. The stopping criterion is different from the estimation of the beta-
distribution, since the evaluation of the log-likelihood function for the betabinomial distribution
is more costly. The values of α and β are truncated to lie in [0.001, 100]. Parameter estimation
starts with 20 observations (the first 20 e-values are set to 1), because the smaller number of 10
observations, which is applied in the beta e-values, led to diverging parameter estimates in some
simulation examples. The implementation of Newton’s method for maximizing the likelihood
uses code adapted from the Rfast package (Papadakis et al., 2020).

B.4 E-values based on empirical frequencies

The e-values for the discrete uniform distribution based on the empirical frequencies start with
a minimum number of 10 observations, all previous e-values are set to 1. For each element of
the discrete set, one artificial observation is included at the beginning, so that the frequencies
in the t-th step equal (ktj + 1)/(m+ t), j = 1, . . . ,m, where ktj = #{i = 1, . . . , t | ri = j}.

B.5 Grenander e-values

The e-values based on the Grenander estimator start with a minimum number of 10 observations.
The Grenander estimator is recomputed with each new observation, applying the abridged pool-
adjacent violaters algorithm by Henzi et al. (2020). To avoid e-values of exactly zero, the
correction Ẽt = 1/t+ (1− 1/t)Et is applied.

B.6 Bernstein e-values

The estimation of monotone densities with mixtures of Bernstein polynomials is based on
adapted R code by Turnbull and Ghosh (2014). The mixture weights are computed by min-
imizing the error defined in Equation (5) in Turnbull and Ghosh (2014), subject to constraints
on the weights to ensure monotonicity. This leads to a quadratic programming problem, which
is solved with osqp from the identically named R package (Stellato et al., 2019). The osqp al-
gorithm is faster and more stable than the quadratic programming solver applied in the original
version of the code. The relative and absolute convergence tolerance parameters are set to 10−5

and the maximum number of iterations to 4000. A minimum number of 10 observations is re-
quired to compute the e-values, and the first 10 e-values are set to 1. The maximal degree of the
Bernstein polynomials is fixed at 20 and not estimated. To avoid zero e-values, the correction
Ẽt = 1/t+ (1− 1/t)Et is applied.

C Supplementary material

C.1 Simulation example

The rejection rates in all figures for the simulation study are computed over 5000 simulations.

Figures S1 and S2 are like Figure 2 in the article but with sample sizes n = 180 and n = 720.
Figures S3 and S4 have sample size n = 360 but α = 0.01 and α = 0.1 instead of α = 0.05.

Figure S5 shows the rejection rates of the tests for the discrete uniform distribution for ensembles
of size m = 10, 20, 50, with n = 360 and α = 0.05.
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Table S1: Number of observations (after the first n0 = 366 days where e-values are not computed)
until the e-value with the given method (empirical distribution and betabinomial distribution)
exceeds the level 108 for the first time, for each weather station, variable, and leadtime. Note
that due to the fact that both methods have very similar power, the values often coincide for
the two different methods.

Station ID Variable Empirical distr. Betabinomial Station ID Variable Empirical distr. Betabinomial

Leadtime 24 48 72 24 48 72 Leadtime 24 48 72 24 48 72

10015 Precipitation 19 39 86 19 39 86 10488 Precipitation 17 73 340 17 73 340
Temperature 37 99 141 37 99 141 Temperature 43 137 688 27 137 688
Wind speed 24 416 1428 27 416 1428 Wind speed 34 153 309 34 153 309

10147 Precipitation 21 100 328 21 100 328 10513 Precipitation 19 71 152 17 71 152
Temperature 22 205 550 22 205 550 Temperature 13 109 382 13 109 382
Wind speed 71 307 1096 69 307 1096 Wind speed 17 57 96 17 57 96

10162 Precipitation 19 128 141 19 128 141 10554 Precipitation 21 37 140 21 37 140
Temperature 29 157 442 31 157 442 Temperature 21 45 151 21 45 151
Wind speed 21 100 271 21 100 271 Wind speed 18 137 597 18 137 597

10224 Precipitation 31 123 233 31 123 233 10609 Precipitation 19 49 317 19 49 317
Temperature 36 165 538 36 165 538 Temperature 30 109 243 30 109 243
Wind speed 47 442 1258 47 442 1258 Wind speed 31 96 150 29 96 150

10338 Precipitation 23 66 144 23 66 144 10637 Precipitation 18 92 172 19 92 172
Temperature 18 137 460 18 137 460 Temperature 17 76 388 17 76 388
Wind speed 27 98 621 26 98 621 Wind speed 69 196 485 60 196 485

10361 Precipitation 14 55 244 13 55 244 10655 Precipitation 11 37 320 11 37 320
Temperature 15 169 679 15 169 679 Temperature 15 46 420 14 46 420
Wind speed 27 76 99 26 76 99 Wind speed 44 220 629 48 220 629

10379 Precipitation 14 105 333 14 105 333 10729 Precipitation 25 43 316 21 43 316
Temperature 20 111 418 19 111 418 Temperature 17 73 174 17 73 174
Wind speed 24 286 687 22 286 687 Wind speed 21 140 409 19 140 409

10382 Precipitation 10 42 111 10 42 111 10738 Precipitation 26 77 129 24 77 129
Temperature 16 165 693 16 165 693 Temperature 34 75 675 33 75 675
Wind speed 22 219 366 21 219 366 Wind speed 26 139 143 18 139 143

10400 Precipitation 19 72 76 18 72 76 10763 Precipitation 12 59 105 12 59 105
Temperature 14 160 498 16 160 498 Temperature 22 86 398 22 86 398
Wind speed 25 140 690 25 140 690 Wind speed 37 104 264 27 104 264

10444 Precipitation 33 79 185 33 79 185 10776 Precipitation 21 93 472 21 93 472
Temperature 38 302 476 38 302 476 Temperature 21 48 393 20 48 393
Wind speed 42 149 429 42 149 429 Wind speed 43 153 287 44 153 287

10469 Precipitation 20 71 340 19 71 340 10852 Precipitation 21 33 105 21 33 105
Temperature 18 44 73 17 44 73 Temperature 19 45 67 19 45 67
Wind speed 36 190 707 32 190 707 Wind speed 47 392 1531 45 392 1531

Figure S6 show the rejection rates of the tests for calibration of quantile forecasts for K = 9, 19
equispaced quantiles, with n = 360 and α = 0.05.

C.2 Case study

The e-values for testing the discrete uniform distributions have been applied to the rank his-
tograms of the raw ECMWF ensemble forecasts. Both methods (e-values based on the empirical
distribution and on the betabinomial distribution) clearly reject uniformity with only a few
observations, since the raw ensemble forecasts have strong biases and dispersion errors when
evaluated against station observations. Like for the PIT, the first n0 = 366 e-values are set to 1
and the corresponding ranks are used to estimate the rank histogram with the empirical distri-
bution or the betabinomial distribution. Table S1 shows how many observations after n0 = 366
are required until the sequential e-values first cross the level 108.

C.3 Illustration for the proof of Proposition 3.2

Figure S7 illustrates the special case in the proof of Proposition 3.2 where f is almost surely
equal to a Lebesgue density f̃ and f(a) > f̃(a) for some a ∈ [0, 1) but f(x) ≤ f̃(x) for all x > a.
In this case, the function f̌ defined by f̌(a) = f(a) for all such a and f̌(x) = f̃(x) for all other
x is increasing, almost surely equal to f , and f̌(x) ≥ f(x) for all x ∈ [0, 1].
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Figure S1: Rejection rates of different tests for (a) the continuous uniform distribution (b) the
discrete uniform distribution (c) stochastic dominance (d) calibration of quantile forecasts, at
the level α = 0.05 with a sample size of n = 180, depending on the bias and dispersion error.
The red box highlights the rejection rates for bias and dispersion error equal to zero.
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Figure S2: Rejection rates of different tests for (a) the continuous uniform distribution (b) the
discrete uniform distribution (c) stochastic dominance (d) calibration of quantile forecasts, at
the level α = 0.05 with a sample size of n = 720, depending on the bias and dispersion error.
The red box highlights the rejection rates for bias and dispersion error equal to zero.
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Figure S3: Rejection rates of different tests for (a) the continuous uniform distribution (b) the
discrete uniform distribution (c) stochastic dominance (d) calibration of quantile forecasts, at
the level α = 0.01 with a sample size of n = 360, depending on the bias and dispersion error.
The red box highlights the rejection rates for bias and dispersion error equal to zero.
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Figure S4: Rejection rates of different tests for (a) the continuous uniform distribution (b) the
discrete uniform distribution (c) stochastic dominance (d) calibration of quantile forecasts, at
the level α = 0.1 with a sample size of n = 360, depending on the bias and dispersion error.
The red box highlights the rejection rates for bias and dispersion error equal to zero.
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Figure S5: Rejection rates of different tests for uniformity of the rank histogram with ensemble
sizes of (a) m = 10 (b) m = 20 (c) m = 50, with n = 360 and at the level α = 0.05.
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Figure S6: Rejection rates of different tests for calibration of quantile forecasts, with (a) K = 9
and (b) K = 19 equispaced quantiles, n = 360, and α = 0.05.
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Figure S7: Illustration of the functions f , f̃ , and f̌ in the special case in the proof of Proposition
3.2. Here f(x) = f̃(x) = f̌(x) = 0.5 for x < 0.5 and f(x) = f̃(x) = f̌(x) = 1.5 for x > 0.5. At
a = 0.5 we have f̃(a) = 0.8 < 1.2 = f(a), and we set f̌(a) = f(a) = 1.2.
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4.3 A safe Hosmer-Lemeshow test

The content of this section is published as an arXiv preprint,

Dimitriadis, T., Henzi, A., Puke, M. and Ziegel, J. (2022). A safe Hosmer-Lemeshow
test. arXiv preprint arXiv:2203.00426.
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Abstract

This technical report proposes an alternative to the Hosmer-Lemeshow (HL) test for
evaluating the calibration of probability forecasts for binary events. The approach is based
on e-values, a new tool for hypothesis testing. An e-value is a random variable with expected
value less or equal to 1 under a null hypothesis. Large e-values give evidence against the null
hypothesis, and the multiplicative inverse of an e-value is a p-value. In a simulation study,
the proposed e-values detect even slight miscalibration for larger sample sizes, but with a
reduced power compared to the original HL test.

1 Introduction

Suppose that we have a sample of observations (pi, yi)
n
i=1 from (Pi, Yi)

n
i=1 such that (Pi, Yi)

has the same distribution as (P, Y ) ∈ [0, 1] × {0, 1}, i = 1, . . . , n. The interpretation is that
Pi is a prediction for the probability that Yi = 1. The random variables are defined on some
underlying probability space (Ω,F) and denotes P all probability measures on (Ω,F). Hosmer
and Lemeshow (1980) propose a test for the null of perfect calibration

HHL,n = {P ∈ P | EP(Yi|Pi) = Pi P-almost surely, i = 1, . . . , n}.

The Hosmer-Lemeshow (henceforth HL) test is based on partitioning the interval [0, 1] in
g ∈ N bins and counting the observed numbers of events, o1g, and no event occurrences, o0g, in
each bin. Based on that binning and counting procedure, the HL test statistic to test for perfect
calibration of the probability predictions is

Ĉ =

g∑

k=1

[
(o1k − ê1k)2

ê1k
+

(o0k − ê0k)2
ê0k

]
,

where ê1k and ê0k are the expected event and no event occurrences in bin k, respectively (Hosmer
et al., 2013). Asymptotically, Ĉ ∼ χ2

g−2 for P ∈ HHL,n. Technically, the choice of the binning
procedure is up the user of the HL test and conventionally implemented via quantile based
binning strategies with g = 10 which results in equally populated bins (decile-of-risk). Less
commonly, the test is based on equally spaced bins, where the interval [0, 1] is divided into g
equidistant bins.

While the choice of g obviously influences the test statistic, there are other known issues
with the HL test based on quantile binning. Using data on birth weight and maternal behaviors,

1
248



Hosmer et al. (1997) show that six major statistical software packages resulted in six different
p-values ranging from 0.02 to 0.16. Bertolini et al. (2000) find that in mortality data from 1393
intensive care patients in Italy, the standard implementation of the HL test is extremely unstable
upon sheer reordering of the same data set (that has ties in the values pi). The authors observe
p-values between 0.01 and 0.95 across all possible rearrangements. Those crude examples imply
that researchers can tailor any desired test decision to their will and casts doubt on the test’s
trustworthiness; see Kuss (2002) and the references therein for a summary of disconcerting and
paradoxical results regarding the HL test. In light of the reproducibility crises and also under
the consideration of the disadvantages outlined above, it seems surprising that the HL test
remains the literature’s favorite for checking the calibration of binary prediction models and is
still commonly used in current medical and epidemiological studies; see amongst many others
Neblett Fanfair et al. (2012); Ostrosky-Zeichner et al. (2017); Lee et al. (2020).

We suggest a new Hosmer-Lemeshow test using e-values, henceforth called eHL test. E-
values, where ‘e’ abbreviates the word ‘expectation’, were proposed recently as an alternative to
p-values in testing problems. In a nutshell, an e-value is a realization of a non-negative random
variable whose expected value is at most one under a given null hypothesis. This already signals
that an e-value itself allows for meaningful interpretations since an e-value greater than one
provides evidence against the null hypothesis. Additionally, an e-value can be transformed to
a conservative p-value by Markov’s inequality. From a game-theoretic perspective, the e-value
has a simple financial meaning in the sense that the e-value can be seen as the factor by which
a skeptic multiplies her money when betting against the null hypothesis; see Shafer and Vovk
(2019); Shafer (2021). An important advantage of e-values over p-values emerges in sequential
testing exercises, where e-values convince by their uncomplicated behaviors in combinations: the
arithmetic average of e-values also is an e-value, likewise the product of independent or successive
e-values; see Shafer (2021); Grünwald et al. (2020); Wang and Ramdas (2020). In practice, this
appeals because more evidence can be added later, i.e. evidence across studies can easily be
combined. As a result, e-values are valid under optional stopping and continuation, which is not
generally true for p-values. That is, the process of collecting data for obtaining an e-value might
be stopped or continued based on examining past realizations and e-values; see Henzi and Ziegel
(2021+) who exploit that property in forecast dominance tests. However, optional stopping
cannot be implemented sensibly for goodness-of-fit tests under the null of perfect calibration
since researchers are usually not interested in rejecting it. Hence, the proposed eHL test offers
a safe alternative to a fragile state-of-the-art approach by avoiding ad-hoc choices and software
instabilities.

The remainder of the report is structured as follows. Section 2 introduces the proposed
e-test. Section 3 assess the empirical performance of the test in a simulation study. Section 4
concludes. Replication material for all results is available on GitHub (https://github.com/
marius-cp/eHL)

2 Construction of HL e-values

2.1 Preliminaries

An e-variable for HHL,n is a non-negative random variable E (that is allowed to take the value
+∞) such that EP(E) ≤ 1 for all P ∈ P. An e-value is a realization of an e-variable. An
e-variable E always yields a valid p-variable 1/E (a p-value is a realized p-variable) by Markov’s
inequality, since

P
( 1

E
≤ α

)
= P

(
E ≥ 1

α

)
≤ αEP(E) ≤ α, for all P ∈ HHL,n. (1)

We will reject the null hypothesis HHL,n if we observe a large value of E. If we want to ensure a
classical p-guarantee then we have to determine the rejection region for a given α by (1). Vovk
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and Wang (2021) show that this is essentially the only way to transform an e-variable into a
p-variable.

We say that an e-variable has the alternative hypothesis H′ ⊂ P if EQ(E) > 1 for all Q ∈ H′.

2.2 Sample size one

We will first construct e-values for the sample size one Hosmer-Lemeshow null hypothesis

HHL,1 = {P ∈ P | EP(Y |P ) = P}.

Grünwald et al. (2020); Shafer (2021) show that e-variables are (essentially) likelihood ratios.
To see this in the special case here, assume that q ∈ [0, 1] and P(P ∈ {0, 1}) = 0. Then, an
e-variable for HHL,1 is given by

Eq(P, Y ) =
qY (1− q)1−Y
P Y (1− P )1−Y

=

{
q/P, if Y = 1,

(1− q)/(1− P ), if Y = 0.

The variable Eq(P, Y ) is clearly non-negative, and for P ∈ HHL,1,

EP(Eq(P, Y )) = EP

(
EP(Y | P )

q

P
+ EP(1− Y | P )

1− q
1− P

)

= EP

(
P
q

P
+ (1− P )

1− q
1− P

)
= 1.

To find alternative hypotheses for the e-variable Eq, let π = EQ(Y | P ). Then,

EQ(Eq(P, Y ) | P ) = π
q

P
+ (1− π)

1− q
1− P > 1

holds if and only if, π > p and q > P , or, π < P and q < P . This shows that if q < P , Eq has
the alternative

H′ = {Q ∈ P | EQ(Y | P ) < P}, (2)

and if q > P , Eq has the alternative

H′ = {Q ∈ P | EQ(Y | P ) > P}. (3)

It is possible to show that basically any e-variable for HHL,1 is of the form E = Eq(P, Y )
for some q (depending P ) but this requires some more arguments; it follows by the construction
in Henzi and Ziegel (2021+), see also Waudby-Smith and Ramdas (2021). The connection of
Eq(P, Y ) to the e-variables in Henzi and Ziegel (2021+) of type E = 1 + λD with D ≥ −1
such that EP(D) = 0 for P ∈ HHL,1, follows from the fact that λ in this representation can be
bijectively mapped to q. In this context,

E = 1 + λ(P − Y ) (4)

is an e-variable for HHL,1 for any λ that is σ(P )-measurable with −(1/P ) ≤ λ ≤ 1/(1 − P ). If
P = 1, there is no restriction on λ from above, and analogously if P = 0, there is no restriction
from below. By choosing λ = (P − q)/(P (1− P )), we obtain that E = Eq(P, Y ).

2.3 Combining e-values in the iid case

We assume now that (Pi, Yi)
n
i=1 are independent and identically distributed (iid). For testing

HHL,n, we suggest the e-variable

Eid
HL,n =

n∏

i=1

Eqi(Pi, Yi), (5)
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where qi is σ(P1, . . . , Pi, Y1, . . . , Yi−1)-measurable. For P ∈ HHL,n, we have

EPE
id
HL,n = EP

(
EP

( n∏

i=1

Eqi(Pi, Yi)|P1, . . . , Pn, Y1, . . . , Yn−1
))

= EP

( n−1∏

i=1

Eqi(Pi, Yi)EP

(
Eqn(Pn, Yn)|P1, . . . , Pn, Y1, . . . , Yn−1

))

= EP

( n−1∏

i=1

Eqi(Pi, Yi)
(

1 +
Pn − qn

Pn(1− Pn)
EP(Pn − Yn|P1, . . . , Pn, Y1, . . . , Yn−1)

))

= EP

( n−1∏

i=1

Eqi(Pi, Yi)
(

1 +
Pn − qn

Pn(1− Pn)
EP(Pn − Yn|Pn)

))

= EP

( n−1∏

i=1

Eqi(Pi, Yi)
)

= EPE
id
HL,n−1 = · · · = 1,

where we used the equivalent representation of Eq(P, Y ) in (4). In particular, from the above
derivation it is easy to see that (Eid

HL,n)n∈N is a test martingale.

The e-variable Eid
HL,n depends on the ordering of (Pi, Yi)

n
i=1 through the choice of qi. Let

Sn denote all permutations of {1, . . . , n}, and for σ ∈ Sn define EσHL,n as Eid
HL,n for the random

variables (Pσ(i), Yσ(i))
n
i=1 instead of (Pi, Yi)

n
i=1. Generally,

sup
σ∈Sn

EσHL,n

is not an e-variable for HHL,n, so one would guess that there are opportunities to fish for
(spurious) significance by choosing some specific ordering of a sample of observations (pi, yi)

n
i=1.

If there is a natural ordering of the observations such as a time stamp then the problem usually
does not occur in applications since a different ordering of the observations hard to justify.
Indeed, when the observations are sequential (and possibly dependent), the e-variable defined
at (5) is also an e-variable for the hypothesis

HHL,n,seq = {P ∈ P | EP(Yi|P1, . . . , Pi, Y1, . . . , Yi−1) = Pi P-almost surely, i = 1, . . . , n}.

Contrary to classical theory, the sequential case is easier to treat than the iid case and has been
the focus of many works employing e-values including for example (Waudby-Smith and Ramdas,
2021; Henzi and Ziegel, 2021+).

Coming back to our situation with iid data, an alternative to (5) could be

EHL,n,sym =
1

n!

∑

σ∈Sn

EσHL,n.

This strategy is essentially the merging technique for independent e-values in Section 4 of Vovk
and Wang (2021). Computationally, this seems rather intractable and we also might lose a lot
of power by averaging.

A second open problem is the choice of the quantities qi. If the goal is to maximize the
growth rate of the e-value, the true conditional probabilities π = EQ(Y | P ) are the optimal
choice, since

EQ(log(Eq(Y, P )) | P ) = π(log(q)− log(P )) + (1− π)(log(1− q)− log(1− P )),

and the derivative of this quantity with respect to q equals

d

dq
EQ(log(Eq(Y, P )) | P ) =

π

q
− 1− π

1− q =
π − q
q(1− q) ≤ 0 ⇐⇒ q ≤ π.
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We suggest to address both problems above by the following strategy: Split the dataset
into two parts, say {1, . . . , n/2} and {n/2 + 1, . . . , n} for simplicity. Estimate the conditional
expectations p 7→ E(Y | P = p) on the first part of the data with some statistical model,
and generate predictions qi for E(Y | Pi), i ≥ n/2 + 1. These e-values can then combined by
products like in Eid

HL,n thanks to independence. To avoid that the e-value depends on the split
of the dataset, we repeat this procedure several times and average the e-values from all splits.
This is essentially a bootstrapping procedure in which we try to estimate the true conditional
probabilities E(Y | Pi) and verify if they are far away from the predictions Pi. In the end we
obtain a valid e-value for the hypothesis HHL,n, which is different from bootstrap p-values or
confidence intervals, which may be difficult to interpret.

While the above procedure is valid no matter what method for the estimation of E(Y | P )
is applied, we suggest to use isotonic regression, which is solved by the pool-adjacent-violators
(PAV) algorithm (Ayer et al., 1955). Similar procedures are used for recalibration of binary
classifiers in machine learning application; see e.g. Zadrozny and Elkan (2002) or Flach (2012).
Recently, Dimitriadis et al. (2021) related the isotonic regression approach to reliability plots,
which are a key diagnostic tool in meteorological forecasting. In connection to the aforemen-
tioned literature isotonic regression would be an attractive choice because it maximizes

(q1, . . . , qn/2) 7→
n/2∑

i=1

log(1− qi)(1− Yi) + log(qi)Yi

over all q1 ≤ · · · ≤ qn/2 (assuming that P1 ≤ · · · ≤ Pn/2), that is, it maximizes the growth rate
among all monotone estimators. In particular we proceed as follows to estimate qi:

1. Split the data set into two parts: For s ∈ (0, 1)

a) randomly select bnsc observations without replacement

b) extract the non-selected observations.

2. Estimate the conditional expectations on the first part of the data with isotonic mean
regression and generate predictions qi for E(Yi|Pi), with i = dnse, . . . , n. Compute e-
values like in (5).

3. Repeat the procedure B times and average the e-values from all those splits.

The assumption of monotonicity is a restriction, but it is reasonable given that a model with
E(Y | P = p) not monotone in p is not particularly useful anyway and one would probably
even not need to perform a eHL test to discard it. Note, if one nonetheless does not like
the monotonicity assumption of the procedure described above, one might replace step two
by sufficiently general nonparametric methods, for example some nearest neighbor approach.
Another option is the use of flexible parametric models to estimate the curve p 7→ E(Y | P = p),
for instance parametrized by the CDFs of Beta-distributions.

3 Simulations

This section evaluates the empirical performance of the proposed HL goodness-of-fit test based
on e-values. Therefore, we simulate a sample (Pi, Yi) with iid observations i = 1, . . . , n according
to the classical setup of Hosmer et al. (1997) which is, if at all, just slightly modified in more
recent contributions; see e.g. Hosmer and Hjort (2002), Xie et al. (2008) and Allison (2014) or
Canary et al. (2017) and Nattino et al. (2020). While those contributions investigate several
different simulation setups to examine the empirical performance of the tests when a misspecified
logistic model is used to issue predictions, we here focus on the case of quadratic misspecification.
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3.1 Data generation: quadratic misspecification

We simulate data from a logistic model with two covariates using the logit link function by
following the tradition which was established in the above mentioned work. In doing so, we
define the true conditional event probability as

πi = π(Xi) = P(Yi = 1|Xi, β0, β1, β2) =
exp(β0 + β1Xi + β2X

2
i )

1 + exp(β0 + β1Xi + β2X2
i )
, (6)

where Xi ∼ U(−3, 3). Based on that we simulate the outcome variable Yi ∼ Bernoulli(πi). We
use the generated data to estimate a misspecified model without considering the quadratic term.
The probability of a positive outcome is predicted by

Pi = P (Xi) = P(Yi = 1|Xi, β̂0, β̂1) =
exp(β̂0 + β̂1Xi)

1 + exp(β̂0 + β̂1Xi)
. (7)

Depending on the severity of the misspecification, expressed through the magnitude of β2, a
goodness-of-fit test should detect the model fit to be poor. To consider that, we vary the
magnitude of β2 by parameterizing the lack of linearity in the true model. For that, we follow
the literature and specify the parameters such that the true regression curve crosses the points
π(−1.5) = 0.05, π(3) = 0.95 and π(−3) = j, where j is a positive value. This results in a
system of nonlinear equations which we can solve for the true model parameters β0, β1, and
β2; see Appendix A for details on the computation. For instance, setting j = 0.007 results
in the parameter vector β ≈ (−0.9578, 1.3165, 0). Thus, under this condition the specification
of the models in Equation (6) and (7) coincide (ignoring the difference between β and sample
estimate β̂) and we expect to obtain calibrated predictions. For a j that deviates from 0.007, the
model that generally omits the squared effect is expected not to predict the realizations perfectly
because the lack of linearity in the logit function becomes increasingly more pronounced. Note
that some simulation studies do not specify exactly which j was chosen. Instead, such studies
qualitatively describe the strength of the quadratic effect in the population model by using three
categories (e.g., Allison (2014) or Xie et al. (2008) refer only to true models that exhibit a strong,
moderate, or a weak lack of linearity).

3.2 Isotonic regression to estimate the conditional event probability

As shown, the e-variable for the data instance i depends on qi. When setting qi = πi the growth
rate of the e-value is maximized. Since πi is unknown in practice, we need to employ a suitable
estimation procedure, which ensures that the estimate of qi is independent of Yi. Following
the procedure described in Section 2.3, we split the data into two parts, where the estimation
sample holds bnsc randomly chosen observations. The remaining dnse are assigned to the test
sample. Using the estimation sample, we employ the estimation procedure based on the PAV-
recalibrated probabilities (see Section 2.3), such as for the CORP-estimates of Dimitriadis et al.
(2021). This effectively results in a stepwise regression curve which we use to obtain estimates
for qi in the test sample. Based on that we construct Eid

HL,n.
Using this estimation strategy, we may encounter two problems. Firstly, within the test

sample, we may find a prediction Pi that lies outside the available values of the estimation
sample. In that case, we interpolate constantly. In other words, if the range of the estimation
sample is [Pl, Pm] and we for example find Pi > Pm, then we use the qi at Pm. Secondly,
whenever isotonic regression estimates πi ∈ {0, 1} occur, an e-value of zero might be obtained,
which should be avoided. In these cases we set qi = Pi. Thus, we ignore each of those sample
points by forcing Eqi = 1, which is not affecting the validity of the e-value since qi can be chosen
arbitrarily under the null hypothesis.

Figure 1 presents CORP reliability diagrams for selected choices of j; for a detailed descrip-
tion of such plots see Dimitriadis et al. (2021). The plots use simulated data according to the
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Figure 1: CORP reliability diagrams based on Dimitriadis and Jordan (2020) for the predictions
from the correctly (j = 0.007) specified and some misspecified models. All plots are based on
50,000 observations. The data is generated as described in Section 2.
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procedure above, where we set n = 50, 000. Thus we can consider the red curve as a highly
accurate estimate of the true conditional event probability (CEP) under the imposed lack of
linearity. Based on that, the motivation for presenting Figure 1 is threefold. Firstly, the plots
reflect the severity of the misspecification. For example, consider the subfigure for the correctly
specified model, i.e. when j = 0.007. In that case, the predictions seem to be well-calibrated,
which is also indicated by the miscalibration (MCB) component of the CORP Brier score decom-
position. In contrast, the remaining graphics of Figure 1 show the reliability of the misspecified
models, where we set j 6= 0.007 for the underlying DGP. That results in poorly calibrated pre-
dictions for j = 0.2 since the corresponding model omits the quadratic term, which obviously is
of importance. Secondly, Figure 1 is suitable for visualizing the estimation procedure we intro-
duced above. Let us assume for now that the red curve is the correctly estimated CEP in the
estimation sample and suppose that we observe a prediction Pi = 0.4 in the test sample. Given
that prediction, we would obtain a GROW e-value if isotonic regression assigns qi equal to the
intersection with the red curve. Further, as follows from the alternative hypothesis, qi and Pi
are required the be on the same side of the diagonal (black solid line) to gain evidence against
the null. Thirdly, the CORP reliability diagrams reveal a critique of the simulation setup, which
is traditionally used to evaluate the performance of goodness-of-fit tests. While this classical
simulation setup allows us to control Xi and the parameter vector β, the distribution of Pi is
changing; e.g. compare the histograms. As an alternative, we should also consider simulating Pi
directly such that the distribution of the prediction remains unchanged over j.
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Table 1: Rejections of the tests under the null hypothesis of calibrated predictions in percent.
For the eHL test we present the sample splits s = {0.2, 0.3, · · · , 0.6}. For the oracle eHL we
implement an full sample (s = 0) and a half sample version (s = 0.5). The nominal significance
level of the cHL is 5%. The eHL tests are rejected whenever Eid

HL,n ≥ 20.

oracle eHL eHL

obs cHL 0 0.5 0.2 0.3 0.4 0.5 0.6

512 5.08 0 0 0.14 0.14 0.18 0.14 0.14
1024 4.58 0 0 0.08 0.24 0.24 0.28 0.28
2048 4.68 0 0 0.04 0.10 0.16 0.12 0.12
4096 4.42 0 0 0.02 0.06 0.12 0.10 0.14

3.3 Results

We apply several versions of the eHL goodness-of-fit tests for n ∈ {1024, 2048, 4096} and j on
a grid of values between 0.001 and 0.2. For the eHL, we reject the H0 if Eid

HL,n ≥ 20 which
follows from Markov’s inequality in Equation (1) for α = 0.05. Concerning the sample splits
we chose s ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. Concerning the bootstrap replications, we always set
B = 10, which should be sufficient since the aim is to eliminate dependencies from the sample
split. We compare the rejection rates to a classical HL test (cHL) with ten equally populated
bins. For the cHL we use a nominal significance level of 5%. Note, for the cHL we do not split
the data set. While the two tests above are feasible and thus ready to implement in practical
applications, it appeals from a theoretical perspective to simulate an eHL test where qi is set
equal to the true CEP. Since such a test can only be conducted in a simulation setting, we refer
to it as oracle eHL. For the oracle eHL we implement a full and a half sample version, i.e. we
use s = 0 or s = 0.5. We simulate all tests 5000 times.

The empirical sizes of the tests are reported in Table 1. From that table follows that the
cHL test is well-sized. In contrast, the eHL tests seem to be considerably undersized. Even
though the rejections under the null hypothesis are drastically close to zero for all eHL tests,
this should not be very surprising. An explanation might be that the so-called p-guarantee is
obtained by Markov’s inequality, which yields a conservative test by construction. That is, we
only know that the rejection rate for Eid

HL,n ≥ 20 is not greater than 5%. Remarkably, when
assigning the true CEP to qi (oracle eHL), the respective tests never reject the null hypothesis
when it is true.

Figure 2 presents the rejection rates for the tests. The solid colored lines illustrate the eHL
tests. The shapes indicate the proportion s of the data that was assigned to the estimation
sample. In comparison to other splits, we find higher rejection rates when choosing s closely
around 0.5. Intuitively, we would anticipate obtaining more powerful e-values when in large
samples s < 0.5 is set. Also, this should not affect the accuracy of the estimate for qi negatively.
However, this cannot be seen for the sample sizes chosen here. Therefore, it might be interesting
to consider larger sample sizes as well. Irrespectively of the sample splits, we find the eHL tests
performing similar to the cHL when n ≥ 2048 and j ≥ 0.05, which Hosmer et al. (1997) still
consider as slight degrees of misspecification. See also the CORP reliability diagrams in Figure 1
in that context. In contrast to the eHL, the cHL seems to detect such degrees of misspecification
even in smaller samples. Also be aware that the first plot in Figure 2 (n = 512) illustrates the
rejection rates for a wider range of j, i.e. we use 0.001 ≤ j ≤ 0.2. The other plots only visualize
rejection rates for 0.001 ≤ j ≤ 0.1.

The performance of the full sample oracle eHL approaches that of the cHL with the number
of observations. For n = 4096 the rejection rates of both tests are almost indistinguishable.
When comparing the half sample oracle eHL to the feasible eHL tests for n ∈ {512, 1024}, we
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Figure 2: Rejection rates of eHL tests are represented by the colored solid lines. The shapes
indicate the value of s used to estimate qi via isotonic regression. Further, the full and half
sample oracle eHL is visualized (black dotted and blue dashed curve). The H0 of an e-value test
is rejected if Eid

HL,n ≥ 20. The classical HL is performed using ten equally populated bins (gray
dot-dashed). The H0 of the cHL is rejected if the p-value is smaller than a nominal significance
level of 5% (horizontal gray dashed line). For j = 0.007, the DGP samples under the H0 (vertical
gray dashed line). Note that the x-axis for the plot with n = 512 also includes values of j > 0.1.
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Figure 3: Growth rate of the e-value for a given lack of linearity, j. All solid lines are the eHL
tests based on isotonic regression estimations for qi, where the shapes indicate the proportion of
data used to estimate qi. The full sample oracle eHL is the dotted black line. The black dashed
line is the half sample oracle eHL.
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might conclude that the estimates of qi are not always precise enough to obtain comparable
power properties. However, with increasing n, the differences between both tests are reducing
gradually; e.g. compare the rejection rates for j = 0.025. Thus, it seems plausible that the
difference in the power comes primarily from losing s · 100% observations for the feasible eHL
tests, and perhaps not from the fact that we use e-value tests or that we estimate the CEP
poorly.

The full sample oracle eHL can be shown to exhibit the maximal growth rate, which is
defined as (1/n) log

∏n
i=1Ei = (1/n)

∑n
i=1 log(Eid

HL,n) and illustrated for given values of j in
Figure 3. As expected, the full sample oracle eHL yields steeper growth curves than the other
tests. Interestingly, the half sample oracle eHL yields a growth rate that is comparable to the
feasible eHL tests for n ≥ 2048. Thus, in contrast to the rejection rates, the growth rate plots
match the intuition raised before: smaller choices of s are reasonable in large samples. This
becomes especially evident when examining the subplot with n = 4096. The inconsistent results
between growth rates and rejection rates might be explained by the fact that an optimal growth
rate is not necessarily implying optimal power at our given threshold of 20. We believe that the
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same argument may also explain the diverging performance of the half sample oracle eHL test,
which can be observed when comparing Figure 2 and 3.

4 Discussion

This technical report proposes an e-test for perfect calibration, which is a safe testing counterpart
to the widely used Hosmer-Lemeshow test. The proposed eHL test follows a simple betting
interpretation (see Shafer (2021)) where the e-value can be seen as the factor by which we
multiply the bet against the hypothesis of perfect calibration. Intuitively, when accumulating
money by the bet, we gain evidence against the null. Here, the e-value depends on the probability
prediction, its corresponding realization, and an arbitrary value, which we suggest estimating in
a two-step approach by isotonic regression. Further, we assess the empirical performance of the
test to detect quadratic model misspecifications. The simulations show that in samples of more
than 2000 observations, the eHL test allows to reliably detect levels of quadratic misspecification,
which Hosmer et al. (1997, p. 973) denote to be slight. The intrinsic flexibility of the e-values
allows the application of stable data-driven methods (here isotonic regression) instead of the
typical binning and counting technique in the HL test. However, this flexibility comes at the
cost of lower power small samples of less than 2000 observations.

Finally, we want to stress that a major advantage of e-values over p-values is their validity
in sequential testing. Theoretically the proposed testing framework allows to combine evidence
from multiple equally specified binary regression models.
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A Details on the data generation

The literature mentioned in the introduction obtains the parameter values β0, β1, and β2 by
solving the system of nonlinear equations

exp(β0 + (−1.5)β1 + 1.52β2)

1 + exp(β0 + (−1.5)β1 + (−1.5)2β2)
= 0.05,

exp(β0 + 3β1 + 32β2)

1 + exp(β0 + 3β1 + 32β2)
= 0.95,

exp(β0 + (−3)β1 + (−3)2β2)

1 + exp(β0 + (−3)β1 + (−3)2β2)
= j,

where j is a positive value. While one can solve the system for any positive value of j, the
literature just uses j ≥ 0.007. Within our simulation we also use j = 0.001, j = 0.002. For
example, we obtain a model with a parameter vector β = (−2.3366, 0.8569, 0.3013) if j = 0.1.
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4.4 Honest calibration assessment for binary outcome
predictions

The content of this section is published as an arXiv preprint,

Dimitriadis, T., Duembgen, L., Henzi, A., Puke, M. and Ziegel, J. (2022). Honest
calibration assessment for binary outcome predictions. arXiv preprint arXiv:2203.04065.
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Abstract

Probability predictions from binary regressions or machine learning methods ought to be
calibrated: If an event is predicted to occur with probability x, it should materialize with
approximately that frequency, which means that the so-called calibration curve p(x) should
equal the bisector for all x in the unit interval. We propose honest calibration assessment
based on novel confidence bands for the calibration curve, which are valid only subject to the
natural assumption of isotonicity. Besides testing the classical goodness-of-fit null hypothesis
of perfect calibration, our bands facilitate inverted goodness-of-fit tests whose rejection allows
for the sought-after conclusion of a sufficiently well specified model. We show that our bands
have a finite sample coverage guarantee, are narrower than existing approaches, and adapt
to the local smoothness and variance of the calibration curve p. In an application to model
predictions of an infant having a low birth weight, the bounds give informative insights on
model calibration.

Keywords: Binary regression, calibration validation, isotonic regression, confidence band,
goodness-of-fit, universally valid inference

1 Introduction

Let x1 ≤ · · · ≤ xn be given covariates in [0, 1] and Y1, . . . , Yn ∈ {0, 1} independent binary
observations such that P(Yi = 1) = p(xi) for some unknown function p : [0, 1] → [0, 1]. In
practice, the covariates can be probability predictions for the components of Y := (Yi)

n
i=1, e.g.,

stemming from a test sample of binary regressions, machine learning methods, or any other
statistical model for binary data. A reliable interpretation of these predictions relies on the
property of calibration, meaning that the so-called calibration curve p is sufficiently close to the
identity. For instance, if a fetus is predicted to have a low birth weight with probability x = 5%,
decisions on a potential medical treatment rely on this probability prediction being accurate
enough, |p(x)− x| < ε for some small ε > 0.

Testing calibration, closely related to goodness-of-fit testing, is crucial in applications (Tutz,
2011; Hosmer et al., 2013) and is still regularly carried out by the classical test of Hosmer
and Lemeshow (1980), which groups the predictions xi into bins and applies a χ2-test. It is
however subject to multiple criticisms: First, its ad hoc choice of bins can result in untenable
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Figure 1: Left: Calibration bands for the first model specification of the low birth weight application in
Section 6. The blue band denotes the calibration band and the grey step function the isotonic regression
estimate. Right: Magnified version focusing on predicted probabilities below 10%.

instabilities (Bertolini et al., 2000; Allison, 2014). Second, placing the hypothesis of calibration
in the null only allows for rejecting calibration rather than showing that a model is sufficiently
well calibrated, where the latter would be highly desirable for applied researchers. Third, the
test rejects essentially all, even acceptably well-specified models in large samples (Nattino et al.,
2020a; Paul et al., 2013), resulting in calls for a goodness-of-fit tests with inverted hypotheses
(Nattino et al., 2020b).

We propose a statistically sound solution to these criticisms by constructing honest, simulta-
neous confidence bands (Lα, Uα) for the function p. That is, for a given small number α ∈ (0, 1),
we compute data-dependent functions Lα = Lα(·,Y) and Uα = Uα(·,Y) on [0, 1] such that

P{Lα ≤ p ≤ Uα on [0, 1]} ≥ 1− α, (1)

which we call calibration band. It allows for the desirable conclusion that with confidence 1−α,
the true calibration curve p lies inside the band, simultaneously for all values of the predicted
probabilities.

Hence, it resolves the above mentioned criticisms of classical goodness-of-fit tests. Figure 1
shows the bands in a large data example for probit model predictions for the binary outcome of
a fetus having a low birth weight. See Section 6 for additional details. The test of Hosmer and
Lemeshow clearly rejects calibration even though our bands indicate a well-calibrated model,
especially for the, in this application, most important region of small probability predictions
shown in the magnified right panel of the figure. Our bands also nest a goodness-of-fit test with
classical hypotheses by checking whether the band contains the bisector b(x) = x for all relevant
values x ∈ [0, 1]. It is important to notice that even though we build our bands on the model
predictions, the methodology applies equally to both, causal and predictive regressions. An open-
source implementation in the statistical software R is available under https://github.com/marius-
cp/calibrationband.

Our confidence bands are valid in finite samples subject only to the mild assumption that
the function p is increasing,

p(x) ≤ p(x′), 0 ≤ x ≤ x′ ≤ 1, (2)
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which is natural in the context of assessing calibration as decreasing parts of the calibration
curve p can be dismissed as nonsensical predictions resulting from severely misspecified models
(Dimitriadis et al., 2021; Roelofs et al., 2020). As can be expected for a non-parametric, path-
wise and almost universally valid confidence band, we require large data sets of at least above
5 000 observations to obtain sensibly narrow bands. These are exactly the sample sizes where
the classical goodness-of-fit tests become uninformative by rejecting all models in applications.
For example, in a simulation study on assessing a logistic regression model with minor misspec-
ification, Kramer and Zimmerman (2007) find that the Hosmer-Lemeshow test at level α = 0.1
achieves a power of 18.5% for n = 5 000 and essentially 100% for n = 50 000.

A theoretical analysis shows that the proposed confidence band adapts locally to the smooth-
ness of the function p and to the variance of the observations. Adaptivity to the smoothness
means that the width of the bands decreases faster with the sample size n in regions where p
is constant, and at a slower rate where p is steeper. This property is known for more general
confidence bands for a monotone mean function developed by Yang and Barber (2019), which
are proved to be more conservative than our bands in the case of binary outcomes. Adaptivity
to the variance means that the band is substantially narrower at x if p(x) is close to zero or one,
compared to p(x) near 0.5. In many practical applications, including the low birth weight pre-
dictions analyzed in this article, predicted probabilities close to zero or one are of most relevance
and a sharp assessment of calibration is particularly important.

Existing methods for the construction of confidence bands in this setting are rare with the
following two exceptions: First, Nattino et al. (2014) propose the use of confidence bands based
on a parametric assumption on the function p, which we show to have incorrect coverage in
almost all of our simulation settings. Second, the nonparametric bands of Yang and Barber
(2019) are valid but shown to be wider than our bands as we show in theory and simulations.

We explain the absence of competing methods by their theoretical difficulties. Using asymp-
totic theory of the isotonic regression estimator is complicated as it requires the estimation of
nuisance quantities such as the derivative of the unknown function p, the convergence rate de-
pends on the functional form of p, it is subject to more restrictive assumptions and only results
in bands with a pointwise interpretation (Wright, 1981). Resampling schemes are theoretically
found to be inconsistent for the isotonic regression (Sen et al., 2010; Guntuboyina and Sen,
2018). Other non-parametric approaches in the literature for constructing confidence bands
for functions, many of them presented in the review by Hall and Horowitz (2013), are often
pointwise, not simultaneous, and require the selection of tuning parameters that may lead to
instabilities, similar to the choice of the bins in the Hosmer-Lemeshow test. In contrast, the
confidence bands proposed here are simple to compute and do not involve any implementation
decisions resulting in a stable and reproducible method as recently called for by Stodden et al.
(2016); Yu and Kumbier (2020).

2 Construction of the confidence bands

In what follows we focus on confidence bounds Lαi = Lαi (Y) and Uαi = Uαi (Y) for pi = p(xi),
where 1 ≤ i ≤ n. Indeed, if

P(Lαi ≤ pi ≤ Uαi for 1 ≤ i ≤ n) ≥ 1− α,

then

Uα(x) = Uαi , x ∈ (xi−1, xi], 1 ≤ i ≤ n+ 1,

Lα(x) = Lαi , x ∈ [xi, xi+1), 0 ≤ i ≤ n,

defines a confidence band (Lα, Uα) satisfying (1) with the auxiliary values x0 := −∞, Lα0 := 0
and xn+1 :=∞, Uαn+1 := 1.

3
264



Our confidence bands are based on the classical confidence bounds of Clopper and Pearson
(1934) for a binomial parameter. Suppose that Z is a binomial random variable with parameters
m and q ∈ [0, 1]. For δ ∈ (0, 1) let

uδ(Z,m) = max{ξ ∈ [0, 1] : pbin(Z,m, ξ) ≥ δ}

=

{
qbeta(1− δ, Z + 1,m− Z), Z < m,

1, Z = m,

`δ(Z,m) = min{ξ ∈ [0, 1] : pbin(Z − 1,m, ξ) ≤ 1− δ}

=

{
qbeta(δ, Z,m+ 1− Z), Z > 0,

0, Z = 0.

Here pbin(·,m, ξ) denotes the distribution function of the binomial distribution with parame-
ters m and ξ, while qbeta(·, a, b) stands for the quantile function of the beta distribution with
parameters a, b > 0. Then

P{q ≤ uδ(Z,m)} ≥ 1− δ and P{q ≥ `δ(Z,m)} ≥ 1− δ.

For the representation of `δ(Z,m) and uδ(Z,m) in terms of beta quantiles we refer to Johnson
et al. (2005).

Assumption (2) allows to construct confidence bands for p as follows. For arbitrary indices
1 ≤ j ≤ k ≤ n, the random sum

Zjk =

k∑

i=j

Yi

is stochastically larger than a binomial random variable with parameters njk = k − j + 1 and
pj , and it is stochastically smaller than a binomial variable with parameters njk and pk. Thus,
as explained in Lemma B.1,

P{pj ≤ uδ(Zjk, njk)} ≥ 1− δ, P{pk ≥ `δ(Zjk, njk)} ≥ 1− δ. (3)

If we combine these bounds for all pairs (j, k) in a given set J , then we may claim with confidence
1− 2|J |δ that simultaneously for all (j, k) ∈ J ,

pi ≤ uδ(Zjk, njk) ∀ i ≤ j, pi ≥ `δ(Zjk, njk) ∀ i ≥ k.

Specifically, let J be the set of all index pairs (j, k) such that j ≤ k and xj−1 < xj and xk < xk+1.
If there are tied covariate values, J selects the outermost indices of the tied values. Hence, if
{x1, . . . , xn} contains N ≤ n different points, then |J | = (N2 +N)/2. Consequently, for a given
confidence level 1 − α ∈ (0, 1), we may combine the bounds uδ(Zjk, njk) and `δ(Zjk, njk) with
δ = α/(N2 +N) to obtain a first confidence band.

Theorem 2.1. For 1 ≤ i ≤ n let

Uα,rawi = min
(j,k)∈J : xj≥xi

uα/(N
2+N)(Zjk, njk), (4)

Lα,rawi = max
(j,k)∈J : xk≤xi

`α/(N
2+N)(Zjk, njk). (5)

If p satisfies the isotonicity assumption (2), then the resulting confidence band (Lα,raw, Uα,raw)
satisfies requirement (1).

In the definition (4), taking the minimum over index pairs (j, k) with xj ≥ xi is equivalent
to the minimum over j ≥ i if x1 < · · · < xn. When there are ties in the covariate, it is possible
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that the minimum is attained with an index j < i but xj = xi. Analogously, it is possible that
the maximum in (5) is attained with an index k > i but xk = xi.

The confidence band proposed in Theorem 2.1 has two potential drawbacks. First, a natural
nonparametric estimator for the function p under the assmption (2) is given by a minimizer p̂
of
∑n

i=1{h(xi)− Yi}2 over all isotonic functions h : [0, 1]→ [0, 1] (Dimitriadis et al., 2021). This
minimizer is unique on the set {x1, . . . , xn}. But there is no guarantee that Lα,raw ≤ p̂ ≤ Uα,raw.
Second, the upper and lower bounds in (4) and (5) may even cross, resulting in an empty, and
hence, nonsensical confidence band. These problems can be dealt with by using the non-crossing
confidence band (Lα,nc, Uα,nc) with

Lα,nci = min{Lα,rawi , p̂(xi)}, Uα,nci = max{Lα,rawi , p̂(xi)}. (6)

This band satisfies Lα,nc ≤ p̂ ≤ Uα,nc on [0, 1], no matter how p̂(x) is defined for x 6∈ {x1, . . . , xn}.
Our simulations experiments indicate that (Lα,raw, Uα,raw) = (Lα,nc, Uα,nc) with probability
� 1− α; see Section 5 for details.

A potential obstacle in the practical application of the confidence bands proposed in this
section is that their computation requires O(N2) steps. This can be relieved by reducing the
number of distinct values in the covariate by rounding, which often has almost no visible effect
on the appearance of the bands. If differences in the covariate smaller than K−1 for some
K ∈ N are regarded as negligible, one can round up x1, . . . , xn to the next multiple of K−1 for
the computation of the upper bound, and round off x1, . . . , xn to the next lower multiple of K−1

to compute the lower bound. This still yields a valid confidence band for the function p but
guarantees that N ≤ K + 1, which also implies a less conservative correction of the confidence
level. The number K ∈ N should not be too small since the resulting confidence bands are
constant on intervals of length K−1 thereby limiting their adaptivity.

3 Relation to Yang and Barber (2019)

The methods of Yang and Barber (2019) may be adapted to the present regression setting with
covariates x1 ≤ · · · ≤ xn as follows: With the isotonic estimator p̂ introduced before, let

Z iso
jk =

k∑

i=j

p̂(xi).

Set

Uα,YB
i = min

(j,k)∈J : xj≥xi

[Z iso
jk

njk
+

√
log{(N2 +N)/α}

2njk

]
, (7)

Lα,YB
i = max

(j,k)∈J : xk≤xi

[Z iso
jk

njk
−
√

log{(N2 +N)/α}
2njk

]
. (8)

This defines a confidence band (Lα,YB, Uα,YB) with the following property:

P{Lα,YB ≤ p̃ ≤ Uα,YB on [0, 1]} ≥ 1− α, (9)

where p̃ : [0, 1] → [0, 1] is any fixed isotonic function minimizing
∑n

i=1{p̃(xi) − pi}2. Thus
one obtains a confidence band with guaranteed covergage probability 1 − α for an isotonic
approximation of p, even if (2) is violated. The proof of (9) follows from the arguments of Yang
and Barber (2019), noting that the random variables Yi are subgaussian with scale parameter
σ = 1/2. That means, E exp(t(Yi − pi)) ≤ exp(σ2t2/2) for all t ∈ R, which implies that for
arbitrary η ≥ 0,

P{±(Zjk − EZjk) ≥ η} ≤ exp(−2njkη
2),

5
266



see Hoeffding (1963). The following result shows that the confidence bands (Lα,raw, Uα,raw) and
(Lα,nc, Uα,nc) are always contained in the band (Lα,YB, Uα,YB).

Theorem 3.1. For all α ∈ (0, 1) and any data vector Y ∈ {0, 1}n,

Lα,YB ≤ Lα,nc ≤ Lα,raw, Uα,raw ≤ Uα,nc ≤ Uα,YB on [0, 1].

For the applications considered in the present paper, the validity of a confidence band
in case of p violating (2) is not essential. It should be mentioned, however, that the band
(Lα,YB, Uα,YB) has a computational advantage. For the computation of Uα,YB

i in (7), it suffices
to take the minimum over endpoints of constancy regions of p̂, that is, all (j, k) ∈ J such that
j = min(s : xs ≥ xi) and p̂(xk) < p̂(xk+1) or k = n, see Proposition B.3 in the appendix. Like-
wise, for the computation of Lα,YB

i in (8), it suffices to take the maximum over all (j, k) ∈ J
such that p̂(xj−1) < p̂(xj) or j = 1 and k = max(s : xs ≤ xi). While the computation of
(Lα,raw, Uα,raw) or (Lα,nc, Uα,nc) requires O(N2) steps, the following lemma implies that the
computation of (Lα,YB, Uα,YB) requires only O(N min{n2/3, N}) steps.

Lemma 3.2. The cardinality of {p̂(xi) : 1 ≤ i ≤ n} is smaller than 3n2/3.

4 Theoretical properties of the confidence bands

This section illustrates consistency and adaptivity properties of the confidence band (Lα,rawn , Uα,rawn ),
where the subscript n indicates the sample size, and we consider a triangular scheme of obser-
vations (xi, Yi) = (xni, Yni), 1 ≤ i ≤ n. We are interested in situations in which the observed
covariates xni could be the realizations of the order statistics of a random sample. Thus we have
to extend the framework of Yang and Barber (2019) and consider the following assumption.

(A) Let Leb(·) denote Lebesgue measure, and let Wn(B) =
∑n

i=1 1(xni ∈ B) for B ⊂ [0, 1].
There exist constants C1, C2 > 0 such that for sufficiently large n,

Wn(B) ≥ C1nLeb(B)

for arbitrary intervals B ⊂ [0, 1] such that Leb(B) ≥ C2 log(n)/n.

This assumption comprises the setting of Yang and Barber (2019). Let G be a differentiable
distribution function on [0, 1] such that G′ is bounded away from 0. If xni = G−1(i/n) for
1 ≤ i ≤ n, then (A) is satisfied for any C1 < inf [0,1]G

′ and arbitrary C2 > 0. The arguments
in Mösching and Dümbgen (2020, Section 4.3) can be modified to show that if xn1, . . . , xnn
are the order statistics of n independent random variables with distribution function G, then
Condition (A) is satisfied almost surely, provided that C1, C2 > 0 are chosen appropriately.

Theorem 4.1. Suppose that condition (A) is satisfied. Let ρn = log(n)/n.
(i) Suppose that p is constant on some non-degenerate interval [a, b] ⊂ [0, 1]. Then

sup
x∈[a,b′]

{
Uα,rawn (x)− p(x)

}+
+ sup
x∈[a′,b]

{
p(x)− Lα,rawn (x)

}+
= Op(ρ1/2n )

for any fixed interval [a′, b′] ⊂ (a, b).
(ii) Suppose that p is Lipschitz-continuous on a non-degenerate interval [a, b] ⊂ [0, 1]. Then

sup
x∈[a,b−ρ1/3n ]

{
Uα,rawn (x)− p(x)

}+
+ sup
x∈[a+ρ1/3n ,b]

{
p(x)− Lα,rawn (x)

}+
= Op(ρ1/3n ).

(iii) Suppose that for some constant γ ≥ 1, p(x) = O(xγ) as x→ 0. Then,

sup
x∈[0,1]

E{Uα,rawn (x)}
xγ + ρ

1/2
n

= O(1).
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Figure 2: Illustration of the five simulated calibration curves ps(·), where the solid red line corresponds
to the shape parameter value s = 0.3 and the dashed blue line to s = 0.7.

An analogous statement holds for the lower bound Lα,rawn .
(iv) Suppose that p is discontinuous at some point xo ∈ (0, 1). Then for any number q strictly
between p(xo−) and p(xo+) and a suitable constant C > 0,

Uα,rawn (xo − Cρn) < q < Lα,rawn (xo + Cρn)

with asymptotic probability one as n→∞.

Parts (i-ii) of this theorem are analogous to the results of Yang and Barber (2019, Sections
4.4 and 4.6). Part (iii) demonstrates that our bounds are particularly accurate in regions where
p(x) is close to 0 or 1. Presumably, the conclusions in parts (iii-iv) are not satisfied for the
confidence band (Lα,YB

n , Uα,YB
n ).

5 Simulations

Here, we illustrate that our calibration bands have correct coverage in the sense of (1) and are
narrower than existing techniques. We consider both, the raw method in (4) and (5) and the non-
crossing variant in (6). Both methods are combined with the rounding technique to three digits
after the comma as described in the end of Section 2 in order to facilitate faster computation
at a minimal cost in accuracy. For comparison, we use the isotonic bands of Yang and Barber
(2019) given in (7) and (8) with a minimal variance factor of σ2 = 1/4 and the parametric bands
of Nattino et al. (2014), implemented in the GivitiR package in the statistical software R (R
Core Team, 2022). Replication material for the simulations and applications is available under
https://github.com/marius-cp/replication DDHPZ22.

We use 1000 replications, a significance level of α = 0.05 and simulate the predictions
X ∼ U[0, 1]. The binary outcomes are generated by Y ∼ Bern{ps(X)} based on five distinct
functional forms of the calibration curve ps(x) for x ∈ [0, 1] depending on a shape parameter
s ∈ S := {0, 0.1, . . . , 1}. All specifications of ps(x) satisfy the isotonicity assumption in (2)
and they cover smooth, non-smooth as well as discontinuous setups. The choice s = 0 results
in perfectly calibrated forecasts with p0(x) = x whereas the misscalibration increases with s.
In particular, we consider the following specifications, which are illustrated in Figure 2 for two
exemplary shape values s ∈ {0.3, 0.7}.

1. Monomial: First, we use a calibration curve defined by ps(x) = x1−s, where s ∈ S \
{1}. This is already used in the simulations assessing the CORP reliability diagram in
Dimitriadis et al. (2021, Appendix A).

2. S-shaped: Second, the calibration curve follows an S-shaped form ps(x) =
(
1 + ((1− x)/x)1+s

)−1
,

where s ∈ S pronounces the curves for larger values of s.
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Figure 3: Empirical coverage rates of our calibration bands and the GiVitI bands for 1 − α = 0.95
averaged over all forecast values x ∈ [0, 1], for the five specifications of the calibration curve ps(·),
different shape values s and a range of sample sizes n. Notice that the choices s = 1 in the monomial,
and s = 0 in step specification are not defined.

3. Kink: Third, ps(x) linearly interpolates the points (0, 0), (0.2 + 0.8s, 0.2) and (1, 1) for
s ∈ S, resulting in a kink at the point (0.2 + 0.8s, 0.2) for all s > 0.

4. Disc: Fourth, we have a perfect calibration ps(x) = x close to the borders x 6∈ (0.1, 0.9),
and a rotating, miscalibrated disc, ps(x) = (1− s)x+ s/2 within x ∈ [0.1, 0.9], where the
rotation increases with s ∈ S.

5. Step: Fifth, we use a step function with s? ∈ {5, 6, . . . , 14} equidistant steps in the unit
interval. Formally, it is given by ps(x) =

{
bs?xc + 1(x 6= 1)

}
/s?, where s? = 15 − 10s

and s ∈ S \ {0}. Notice that this choice does not nest a correctly specified model, but its
misspecification still increases with s.

Figure 3 presents the average coverage rates for a range of sample sizes between 512 and
32 768. We find that, as predicted by our theory, our calibration bands have conservative coverage
throughout all simulation setups and sample sizes. We observe coverage rates between 0.998
and 1, with the majority of 179 out of the 212 displayed coverage values being exactly one. We
dispense with a presentation of the coverage rates of the non-crossing and Yang and Barber
(2019) bands, as both are guaranteed to be larger by Theorem 3.1. The non-crossing bands
differ from the raw ones in less than one out of a hundred thousand simulated forecast values.
These deviations occur exclusively for large values of s in the Step and Disc specifications within
constancy regions of the calibration curve p.

The parametric bands of Nattino et al. (2014) rarely achieve correct coverage rates unless in
the cases s = 0 and for the S-shaped calibration curve. This can be explained as these bands
are based on the assumption of a certain parametric form of ps(x), which is rarely satisfied. The
results get worse for the non-smooth and the two discontinuous specifications.

Figure 4 displays the average widths of the non-crossing and Yang and Barber (2019) bands.
We present the theoretically wider non-crossing bands instead of the raw versions thereof. Their
average widths is however non-distinguishable in these displays. We fix a medium degree of
miscalibration s = 0.5. The upper plot panel displays the widths averaged over all simulation
runs and forecast values depending on the sample size n. We find that the size of both bands
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Figure 4: Top: Average empirical widths of the 95% confidence bands by sample size for the non-
crossing and Yang and Barber (2019) bands for each of the five specifications of ps(x) given in the main
text for a fixed degree of misspecification s = 0.5. Bottom: Average empirical widths by forecast value
x for two sample sizes. In both panels, the solid red line corresponds to the non-crossing bands and the
dashed blue line to the Yang and Barber (2019) bands.

shrinks with n and that we can reconfirm the ordering established in Theorem 3.1. We further
see that our bands are only narrow enough for practical use in large samples. The relative gain
in width of our bands is the highest for large sample sizes, exactly for which we propose the
application of our method for calibration validation. It is worth noting that the bands of Yang
and Barber (2019) are more generally valid than for the special case of binary observations.

The lower plot panel shows the widths averaged over the simulation replications, but de-
pending on the forecast value x for two selected sample sizes. It shows that the relative gains
in width upon the bands of Yang and Barber (2019) are particularly pronounced close to the
edges of the unit interval. These regions of predicted probabilities close to zero or one are often
of the highest interest in assessing calibration as for example in the subsequent application to
low birth weight probability predictions.

6 Application: Predicting low birth weight probabilities

We apply our calibration bands to binary regressions predicting the probability of a fetus having a
low birth weight, defined as weighting less than 2500 grams at birth (World Health Organization,
2015). We use U.S. Natality Data from the National Center for Health Statistics (2017), which
provides demographic and health data for 3 864 754 births in the year 2017. For the data set at
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Figure 5: Calibration bands for the second model specification on the left and for the third specification
on the right for the low birth weight application. The blue band denotes the calibration band and the
grey step function the isotonic regression estimate. The bisector is given in red color whenever it is not
contained in the calibration band.

hand, a low birth weight is observed in 8.1% of the cases.
We estimate three binary regression models by maximum likelihood on the same randomly

drawn subset that contains all but 1 000 000 observations that we leave for external model
validation. All three models contain standard risk factors such as the mother’s age, body
mass index and smoking behavior but they differ as follows. The first model uses a probit
link function, and the explanatory variable week of gestation is categorized into four left-closed
and right-open intervals with lower interval limits of 0, 28, 32 and 37 weeks, pertaining to the
standard definitions of the World Health Organization of extremely, very, moderate and non
preterm (Quinn et al., 2016). Through this categorization, the model specification can capture
the week of gestation in a non-linear fashion. In contrast, the second model uses the week of
gestation as a continuous explanatory variable and the third specification employs the cauchit
instead of the probit link function, which is known to produce less confident predictions close
to zero and one (Koenker and Yoon, 2009). Additional details of the model specifications are
given in Appendix 1.

The classical Hosmer-Lemeshow test rejects perfect calibration of all three models with p-
values of essentially zero for both, internal and external model validation, which leaves an applied
researcher without any useful conclusions on model calibration. We show our calibration bands
for the first model in Figure 1 and for the other two model specifications in Figure 5. We use
the non-crossing method with rounding to three digits with a confidence level of 1− α = 95%.

For the first model, the calibration bands encompass the bisector for all forecast values,
meaning that we cannot reject the null hypothesis of perfect calibration at the 5% level. More
importantly, we are 95% certain that the true calibration curve lies within the the band at any
point x ∈ [0, 1], implying that we are confident that the model is at least as well calibrated as
specified by the band. This is especially notable in the important region of predictions below
10% in the magnified right panel of Figure 1, where the confidence bands are remarkably close
to the bisector implying a particularly well calibrated model. E.g., we are confident to conclude
that a prediction of x = 5% occurs on average with a probability between 4.6% and 6.7%.

In contrast, we reject calibration for both, the second and third model specifications as shown
in Figure 5. However, these bands are much more informative than a simple test rejection as they

10
271



directly show the exact form of model miscalibration. E.g., for the second model specification,
we can conclude that the predicted probabilities are particularly miscalibrated for values larger
than 20% whereas the third specification entails miscalibrated probabilities for predictions below
10% that are presumably of the highest importance for medical decision making. While small
predicted values from the second specification might still be treated as relatively reliable, they
should be interpreted with great caution when stemming from the third model. The wider bands
for the third model specification between predicted probabilities of 5% and 20% are caused by
relatively little predictions in this interval.
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A Model specifications in the low birth weight application

We give some additional details on the model specifications of the application here. The first
two models are based on the probit link function whereas the third one uses the cauchit link
function (Koenker and Yoon, 2009). The second model uses the week of gestation as a continuous
variable whereas the first and third models use the week of gestation as a categorical variable
with left-closed and right-open intervals with lower interval limits of 0, 28, 32 and 37 weeks,
which corresponds to the standard categorization of the World Health Organization (Quinn
et al., 2016).

Additionally, all three models contain the following common explanatory variables: the
mother’s age and its squared term, her body mass index prior to pregnancy, her smoking behavior
as a categorical variable with left-closed and right-open intervals with lower limits of 0, 1, 9,
and 20 cigarettes per day averaged over all three trimesters, individual binary variables for
mother’s diabetes, any form of hypertension, mother’s education below or equal to eight years,
employed infertility treatments, a cesarean in a previous pregnancy, a preterm birth in a previous
pregnancy, current multiple pregnancy, the sex of the unborn child, and an infection of one of
the following: gonorrhea, syphilis, chlamydia, hepatitis b, hepatitis c. Additional details on the
data are given in the user guide under https://data.nber.org/natality/2017/natl2017.pdf.

B Proofs and Technical Lemmas

Lemma B.1. Let Y1, . . . , Ym be independent Bernoulli variables with expectations p1 ≤ · · · ≤ pm,
and let Z = Y1 + · · ·+ Ym. Then for any δ ∈ (0, 1),

P{p1 ≤ uδ(Z,m)} ≥ 1− δ and P{pm ≥ `δ(Z,m)} ≥ 1− δ.

Proof of Lemma B.1. For the upper bound, note that uδ(z,m) is increasing in z. If b = min{z ∈
{0, . . . ,m} : uδ(z,m) ≥ p1}, then P{p1 ≤ uδ(Z,m)} = P(Z ≥ b). By Shaked and Shanthikumar
(2007, Example 1.A.25), Z is stochastically larger than Z̃ with binomial distribution with pa-
rameters m and p1, so P(Z ≥ b) ≥ P(Z̃ ≥ b) ≥ 1− δ, where the last inequality follows from the
validity of the Clopper-Pearson confidence bounds. The proof for the lower bound is similar.

The proof of Theorem 3.1 uses standard results for isotonic least squares regression and the
following inequalities of Hoeffding (1963, Theorem 1).
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Lemma B.2. Let Y1, Y2, . . . , Ym be independent random variables with values in [0, 1] and ex-
pectations p1, p2, . . . , pm. Suppose that q = m−1

∑m
i=1 pi ∈ (0, 1), and set q̂ = m−1

∑m
i=1 Yi.

Then for arbitrary r ∈ [0, 1],

P(q̂ ≤ r) ≤ exp{−mK(r, q)} ≤ exp{−2m(r − q)2} if r ≤ q,
P(q̂ ≥ r) ≤ exp{−mK(r, q)) ≤ exp{−2m(r − q)2} if r ≥ q,

where K(r, q) := r log(r/q) + (1− r) log[(1− r)/(1− q)].

Corollary 1. For integers m ≥ 1, z ∈ {0, 1, . . . ,m} and any number δ ∈ (0, 1),

uδ(z,m) ≤ max
{
ξ ∈ [q̂, 1] : K(q̂, ξ) ≤ log(1/δ)/m

}
≤ q̂ +

√
log(1/δ)/(2m),

`δ(z,m) ≥ min
{
ξ ∈ [0, q̂] : K(q̂, ξ) ≤ log(1/δ)/m

}
≥ q̂ −

√
log(1/δ)/(2m),

where q̂ = z/m.

In addition, the proof of Theorem 3.1 makes use of the following proposition which is of
independent interest, since it implies a more efficient method for computing the bounds of Yang
and Barber (2019).

Proposition B.3. For an arbitrary observation vector Y ∈ Rn, let p̂ : [0, 1]→ R be an increasing
function minimizing

∑n
i=1{Yi − p̂(xi)}2. For some τ > 0 and any index 1 ≤ i ≤ n, let

Ui = min
(j,k)∈J : xj≥xi

(Z iso
jk

njk
+

τ
√
njk

)
, Li = max

(j,k)∈J : xk≤xi

(Z iso
jk

njk
− τ
√
njk

)
.

Then, the minimum for Ui is attained at some (j, k) ∈ J such that j = min(s : xs ≥ xi) and
p̂(xk) < p̂(xk+1) or k = n. The maximum for Li is attained at some (j, k) ∈ J such that
p̂(xj−1) < p̂(xj) or j = 1 and k = max(s : xs ≤ xi).

Proof of Proposition B.3. Consider the statement about Ui. The claim about j follows from
the fact that for fixed k, Z iso

jk /njk is increasing and njk = n − j + k is decreasing in j ≤ k.

As to the upper index k, note that Ui is the minimum of ujk = Z iso
jk n

−1
jk + τn

−1/2
jk over all

k ≥ j = min(s : xs ≥ xi) such that (j, k) ∈ J . Let j ≤ k1 < k2 be indices such that p̂(xk) = q̂
for k1 < k ≤ k2. Then, for k1 ≤ k ≤ k2,

Z iso
jk = Z iso

jk1 + (k − k1)q̂ = B + njkq̂

with

B = Z iso
jk1 − njk1 q̂

{
≤ 0,

= 0 if p̂(xj) = q̂.

Consequently, for k1 ≤ k ≤ k2,

ujk = q̂ +Bn−1jk + τn
−1/2
jk

is a concave function of n−1jk ∈ [n−1jk2 , n
−1
jk1

], and it is increasing in n−1jk if q̂ = p̂(xj). This implies
that

ujk ≥
{

min(ujk1 , ujk2),

ujk2 if q̂ = p̂(xj).

Consequently, the minimum of ujk over all k ≥ j is attained at some k ≥ j such that p̂(xk) <
p̂(xk+1) or k = n, and this entails that (j, k) ∈ J . The statement about Li follows from the one
about Ui when x1, . . . , xn are replaced by 1−xn, . . . , 1−x1 and Y1, . . . , Yn by −Yn, . . . ,−Y1.
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Proof of Theorem 3.1. The inequalities Lα,nci ≤ Lα,rawi and Uα,rawi ≤ Uα,nci , as well as Lα,YB
i ≤

p̂(xi) ≤ Uα,YB
i hold by construction. It is therefore sufficient to show that Lα,YB

i ≤ Lα,rawi and

Uα,rawi ≤ Uα,YB
i . As to the inequality Uα,rawi ≤ Uα,YB

i , we know that Uα,YB
i equals

uYB
jk = Z iso

jk n
−1
jk + τn

−1/2
jk

for some (j, k) ∈ J with j = min{s : xs ≥ xi} and p̂(xk) < p̂(xk+1) or k = n, where τ =√
log{(N2 +N)/α}/2. As explained later, this implies that

Zjk ≤ Z iso
jk if p̂(xk) < p̂(xk+1) or k = n. (10)

But then it follows from Corollary 1 that Uα,YB
i = uYB

jk is greater than or equal to

Zjkn
−1
jk + τn

−1/2
jk ≥ uα/(N2+N)(Zjk, njk) ≥ Uα,rawi .

Inequality (10) follows from a standard result about isotonic regression (see for example Henzi
et al., 2022, Characterization II). The index interval {j, . . . , k} may be partitioned into index
intervals {`, . . . ,m} = {j, . . . , n} ∩ {s : p̂(xs) = q̂}, where q̂ is any value in {p̂(xj), . . . , p̂(xk)}.
For such an index interval, Z`m ≤ Z iso

`m, with equality if q̂ > p̂(xj).
The inequality for the lower bound follows from the one for the upper bound when x1, . . . , xn

are replaced by 1− xn, . . . , 1− x1 and Y1, . . . , Yn by 1− Yn, . . . , 1− Y1.

Proof of Lemma 3.2. Let q̂1 < · · · < q̂b be the different elements of {p̂(xi) : 1 ≤ i ≤ n}, where we
assume that b ≥ 2. There exists a partition of {1, . . . , n} into index intervals I1, . . . , Ib such that
q̂` = |I`|−1

∑
i∈I` Yi. For any integer d ≥ 1, let Md be the number of indices ` such that |I`| = d.

Since
∑

i∈I` Yi ∈ {0, 1, . . . , d}, the numbers Md satisfy the following constraints: Md ∈ [0, d+ 1],
and

∑n
d=1Mdd = n. The question is, how large the number b =

∑n
d=1Md can be under these

constraints, where we drop the restriction that the Md are integers. Suppose that Mc < c + 1
and Mc′ > 0 for integers 1 ≤ c < c′. Then we may replace (Mc,Mc′) with (Mc+γ/c,Mc′−γ/c′),
where γ is the minimum of (c + 1 −Mc)c and Mc′c

′. This does not affect the constraints, but
the sum

∑n
d=1Md increases strictly, while Mc = c + 1 or Mc′ = 0. Eventually, we obtain an

integer do ≥ 1 such that Md = d+ 1 if 1 ≤ d ≤ do and Md = 0 for d ≥ do + 2. In particular,

n ≥
do∑

d=1

(d+ 1)d =
(do + 2)(do + 1)do

3
>
d3o
3
,

whence do < (3n)1/3, while

b ≤
do+1∑

d=1

(d+ 1) =
do(do + 3)

2
≤ Cn2/3,

where C = 32/3(1 + 3/61/3)/2 < 3.

For the proof of Theorem 4.1, we need an inequality for the auxiliary function K(·, ·) in
Lemma B.2 which follows from Dümbgen (1998, Proposition 2.1).

Lemma B.4. For arbitrary q ∈ [0, 1], ξ ∈ (0, 1) and γ > 0, the inequality K(q, ξ) ≤ γ implies
that

|ξ − q| ≤
√

2γq(1− q) + |1− 2q|γ.
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Proof of Theorem 4.1. For notational convenience, we often drop the additional subscript n,
e.g. we write xi instead of xni. For symmetry reasons, it suffices to verify the assertions about
Uα,raw.

In what follows, let C be a generic (large) constant which does not depend on n, but the
value of which may change in each instance. It follows from Corollary 1 and Lemma B.4 that
simultaneously for all (j, k) ∈ J ,

uα/(N
2+N)(Zjk, njk) ≤ p̂jk + C min

{√
log(n)p̂jk(1− p̂jk)

njk
+

log(n)

njk
,

√
log(n)

njk

}
, (11)

where p̂jk = Zjk/njk. Moreover, one can deduce from Lemma B.2 that simultaneously for all
(j, k) ∈ J ,

p̂jk ≤ pjk + C

√
log(n)

njk
(12)

with asymptotic probability one, where pjk = E(p̂jk) = n−1jk
∑k

i=j pi ∈ [pj , pk].

As to part (ii), let B(x) = [x, x + ρ
1/3
n ] for x ∈ [a, b − ρ1/3n ]. For sufficiently large n, the

length ρ
1/3
n of these intervals is greater than C2ρn, so it follows from assumption (A) that

B(x) ∩ {x1, . . . , xn} = {xj(x), . . . , xk(x)} with (j(x), k(x)) ∈ J satisfying

nj(x)k(x) = Wn{B(x)} ≥ C1nρ
1/3
n .

Consequently, log(n)/nj(x)k(x) ≤ C−11 ρ
2/3
n , so we may deduce from inequalities (11), (12) and

Lipschitz-continuity of p on [a, b] that with asymptotic probability one, simultaneously for all

x ∈ [a, b− ρ1/3n ],

Uα,rawn (x) ≤ uα/(N2+N)(Zj(x)k(x), nj(x)k(x)) ≤ p̂j(x)k(x) + Cρ1/3n ,

p̂j(x)k(x) ≤ pj(x),k(x) + Cρ1/3n ,

pj(x)k(x) ≤ p(x) + Cρ1/3n .

Clearly, this implies the assertion about Uα,raw in part (ii).
Part (i) can be verified similarly. With δ = b − b′ > 0, let B(x) = [x, x + δ] for x ∈

[a, b′]. Now it follows from assumption (A) that for sufficiently large n, B(x) ∩ {x1, . . . , xn} =
{xj(x), . . . , xk(x)} with (j(x), k(x)) ∈ J satisfying nj(x)k(x) ≥ C1nδ, uniformly for all x ∈ [a, b′].
Now it follows from inequalities (11), (12) and p being constant on [a, b] that with asymptotic
probability one, simultaneously for all x ∈ [a, b′],

Uα,rawn (x) ≤ uα/(N2+N)(Zj(x)k(x), nj(x)k(x)) ≤ p̂j(x)k(x) + Cρ1/2n ,

p̂j(x)k(x) ≤ pj(x),k(x) + Cρ1/2n ,

pj(x)k(x) = p(x).

This implies the assertion about Uα,raw in part (i).

As to part (iii), it suffices to show that E{Uα,rawn (xn)} ≤ C(xγn + ρ
1/2
n ) for any sequence of

numbers xn ∈ [0, 1] converging to 0. Let tn = max(xn, ρ
1/2
n ) and Bn = [tn, 2tn]. For sufficiently

large n, Leb(Bn) ≥ ρ
1/2
n ≥ C1ρn, so Bn ∩ {x1, . . . , xn} = {xjn , . . . , xkn} with (jn, kn) ∈ J

satisfying
njn,kn = Wn(Bn) ≥ C1ntn.
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In particular, log(n)/njnkn ≤ C−11 ρn/tn, and the assumption that p(x) = O(xγ) as x→ 0 implies
that pjnkn = O(tγn). Hence, it follows from (11) that

E
{
Uα,rawn (xn)

}
≤ E

{
uα/(N

2+N)(Zjnkn , njnkn)
}

≤ E
{
p̂jnkn + C

(√
t−1n ρnp̂jnkn + t−1n ρn

)}

≤ pjnkn + C
(√

t−1n ρnpjnkn + t−1n ρn
)

= O
(
tγn + ρ1/2n t(γ−1)/2n + t−1n ρn

)
= Op(xγn + ρ1/2n ),

where the last inequality follows from Jensen’s inequality.
To verify part (iv), let Bn = [xo − C3ρn, xo) for some C3 ≥ C2. For sufficiently large n,

Bn ∩ {x1, . . . , xn} = {xjn , . . . , xkn} with (jn, kn) ∈ J satisfying

njnkn ≥ C1C3nρn ≥ C1C3 log(n) and pjnkn ≤ p(xo−) < q.

Consequently, log(n)/njnkn ≤ (C1C3)
−1 and thus with asymptotic probability one,

Uα,rawn (xo − C3ρn) ≤ uα/(N2+N)(Zjnkn , njnkn) ≤ p̂jnkn + CC
−1/2
3 ,

p̂jnkn ≤ p(xo−) + CC
−1/2
3 .

Consequently, Uα,rawn (xo − C3ρn) < q with asymptotic probability one, provided that C3 is
sufficiently large.
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