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Abstract

We investigate the Schwinger model in the canonical formulation with fixed fermion numbers. For this,
Wilson fermions and a formalism which describes the determinant of the Dirac operator in terms of
dimensionally reduced canonical determinants are used. These canonical determinants are built from
sums over principal minors of canonical transfer matrices.
We consider the 1-flavour Schwinger model in a regime where the sign problem is absent and investigate

several structural properties of the canonical determinants and their transfer matrices.
Next, we discuss the 2-flavour Schwinger model in the canonical formulation. The transfer matrices

allow the direct examination of arbitrary multi-particle (meson) sectors and the determination of the
corresponding ground state energies. We determine the ground state energies and utilize them to perform
some basic scattering theory and investigate finite volume effects in the meson mass. From the 2-meson
energies the scattering phase shifts as a function of the volume were determined. Using a low-energy
scattering theory, we describe the scattering process in terms of a few physical parameters. We use the
scattering phase shifts to solve 3-particle quantization conditions which allow us to make predictions for
the 3-meson energies at finite volume. These predictions are compared to direct measurements of the
3-meson energies.
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1 Introduction

In recent years non-perturbative lattice calculations of Quantum Chromodynamics (QCD) at zero density
have provided remarkable results. However, lattice simulations for non-zero quark or baryon density
remain a problem. At non-zero density the grand-canonical partition function obtains complex-valued
weights, which do not allow for standard Monte Carlo importance sampling. These difficulties make it
impossible to fully explore the QCD phase diagram [1].
One approach to QCD at finite density is to make use of the canonical formulation, where the net

quark number (or baryon number) is fixed. In the canonical formulation, we split the grand-canonical
partition function into canonical ones which allow us to investigate the physics of the system with fixed
fermion content. Quantities in the standard grand-canonical formulation of QCD can be obtained by
averaging over canonical partition functions. The canonical formulation has been used in the context
of QCD with staggered and Wilson fermions, see Refs. [2, 3, 4] and [5], respectively, but also in the
context of supersymmetric Yang-Mills quantum mechanics [6]. The canonical formalism has also been
used as a tool to solve sign problems as in Refs. [7, 8, 9]. The computation of the canonical determinants
on the lattice is based on the dimensional reduction of the fermion determinant in terms of transfer
matrices [10]. Using those transfer matrices one can construct the canonical determinants, which are the
building blocks of the canonical partition functions.
In order to gain a deeper understanding of the canonical formalism we use the Schwinger model as a

toy model which allows us to investigate the properties and benefits of the canonical formulation. We
define the Schwinger model as Quantum Electrodynamics in two dimensions (QED2), the number of
flavours will be explicitly mentioned. The name Schwinger model originates from Julian Schwinger, who
investigated the 1-flavour Schwinger model with massless fermions and presented it as a solvable model
in 1962 [11, 12]. In this work we also utilize the 1-flavour variant of the Schwinger model to investigate
basic properties of the canonical formulation, before turning to the 2-flavour variant.
The 2-flavour Schwinger model is of great interest since it shares many similarities with Quantum

Chromodynamics (QCD), such as confinement, chiral symmetry breaking, charge shielding, and a topo-
logical θ-vacuum [13, 14]. We perform numerical calculations in the 2-flavour Schwinger model using
the canonical formulation. The corresponding canonical partition functions allow us to investigate the
physics of the system at a fixed number of quarks. Those quarks form (multi-)meson states characterized
by their isospin content I. Consequently, the lowest-lying energy state in the isospin I = n sector is
given by a state of n mesons with maximal isospin. By forming appropriate ratios of canonical partition
functions we can determine the ground state energies of those multi-meson states. This allows us to
completely circumvent the use of correlators, which become more complex with an increasing number of
mesons [15]. In contrast, the complexity for the computation of ground state energies using the canonical
formulation is independent of the number of mesons involved.
In this work, we discuss several topics related to the Schwinger model in the canonical formulation.

The thesis is written to be as complete and pedagogical as possible, however, for the sake of readability,
many details will be postponed to the appendix. The structure is as follows:
In the first part of chapter 2, we introduce the 1- and 2-flavour Schwinger model and consider the

most important properties. The second part of the chapter is dedicated to the implementation of the
Schwinger model on the Euclidean lattice and the discussion of several effects which arise when discussing
a gauge theory on the lattice. In particular, the review of scattering phenomena in a finite periodic box
is of major importance for chapter 5.
Chapter 3 is dedicated to the discussion of the Schwinger model in the canonical formulation. We

introduce the canonical partition function for the 1-flavour Schwinger model and perform the dimensional
reduction on the Wilson Dirac determinant. Next, we present the 2-flavour variant of the Schwinger
model in the canonical formalism. We introduce the needed formulas for the extraction of the ground
state energies in the different isospin sectors and explain that these (multi-)meson ground states can be
identified as (multi-)pion states.
We discuss some qualitative results related to the canonical formalism in chapter 4. First, we compare

autocorrelation effects for the topological charge between quenched and dynamical simulations. Next, we
turn to the 1-flavour Schwinger model and investigate some interesting quantities related to the intrinsic
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structure of the canonical formalism. We finish this chapter by going to the 2-flavour Schwinger model.
We show empiric evidence for the one-to-one correspondence between the ground state energies extracted
from the canonical formalism and the ground state energies extracted by using π+, π+π+ and π+π+π+

correlators.
In chapter 5 we follow up with the main part of this thesis, where we use the extracted (multi-)pion

ground state energies to perform some basic pion scattering analysis. To perform scattering in a finite
volume L, we start with the extraction of the ground state energy of the isospin I = 1 sector yielding
the pion mass as a function of the volume mπ(L). We calculate mπ(L) for a variety of different volumes
in order to investigate the finite volume effects on the pion mass and extract interesting parameters,
such as the 3-pion coupling. We proceed by measuring the ground state energies of the isospin I = 2
sector, which is used to determine the scattering phase shift δ. From the scattering phase shifts we
use 3-particle quantization conditions to make predictions for the 3-pion ground state energy Eδ3π(L).
Finally, we compare these predictions to the direct measurements of the ground state energies in the
isospin I = 3 sector.
We summarize the results and conclude this thesis in chapter 6.
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2 The Schwinger model - 2D QED

In this section we examine the Schwinger model and its properties. We start the discussion by having
a look at the continuum model before turning to the discretized Schwinger model on the lattice. The
original Schwinger model was first introduced by Julian Schwinger in 1962 who discussed 2-dimensional
Quantum Electrodynamics with one massless fermion [11, 12]. The Schwinger Model (respectively QED2)
describes a quantum field theory in 1 + 1 dimensions, with a U(1) gauge symmetry. The Lagrangian is
given by

L[ψ̄, ψ,Aµ] =

Nf∑
k=1

ψ̄k(x)[i /D −mk]ψk(x)− 1

4
FµνF

µν , (2.1)

where Dµ = ∂µ + igAµ is the covariant derivative, g denotes the bare gauge coupling and ψ̄ = ψ†γ0

are 2-spinors. The gauge field is described by Aµ(x) and Fµν = ∂µAν(x)− ∂νAµ(x) is the Abelian field
strength tensor. The field of the k’th particle is denoted by ψk and its corresponding mass by mk, where
k runs over the total number of flavours, k ∈ {1, 2, . . . , Nf}. Since we are dealing with QED in two
dimensions the Lorentz indices µ, ν run over 0 and 1. The Schwinger model in Minkowski spacetime
uses the metric

g =

(
1 0
0 −1

)
= diag[1,−1]. (2.2)

We construct the γ matrices in terms of Pauli matrices, such that

γ0
M =

(
1 0
0 −1

)
= σz, γ1

M = −i
(

0 1
1 0

)
= −iσx, satisfying {γµ, γν} = 2gµν , (2.3)

where the subscript M denotes the fact that we are dealing with γ matrices in Minkowski spacetime.
Additionally, one defines the matrix

γ5 = γ0γ1 = σy. (2.4)

Due to our choice of γ-matrices γ0 and γ5 are hermitian whereas γ1 is antihermitian, in complete
analogy to the 4-dimensional chiral representation (or Weyl representation). One can verify that γ5 is
anticommuting with the other gamma matrices, such that {γµ, γ5} = 0 for µ ∈ {0, 1}.
We first discuss the 1-flavour Schwinger model with Nf = 1, before turning to the 2-flavour case with

Nf = 2.

2.1 1-flavour Schwinger model
In this section we have a brief look at the 1-flavour Schwinger model.
Confinement only allows for uncharged particles, therefore the 1-flavour Schwinger model was con-

sidered to be a model where the vacuum polarization yields complete charge screening. This was then
further discussed by Rothe et al. in Ref. [16] and has become known as “quark trapping”. The Lagrangian
of the 1-flavour Schwinger model is given by

L[ψ̄, ψ,Aµ] = ψ̄(x)[i /D −m0]ψ(x)− 1

4
FµνF

µν , (2.5)

and can be used to compute the Euler-Lagrange equations, which yield the equations of motion

∂µψ̄γ
µ = igψ̄ /A+ im0ψ̄ and /∂ψ = −ig /Aψ − im0ψ. (2.6)

The action of the 1-flavour Schwinger model in Minkowski spacetime is given by

S[ψ̄, ψ,Aµ] =

∫
d2xL[ψ̄, ψ,Aµ], (2.7)

where we integrate over 2-dimensional spacetime d2x = dx0dx1.
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2.1.1 Gauge symmetry
To show the local U(1) symmetry we start with the free fermionic action

L[ψ̄, ψ] = ψ̄(x)[i/∂ −m0]ψ(x). (2.8)

This action has a global U(1) symmetry, i.e. a transformation

ψ(x)→ Gψ(x), (2.9)

ψ̄(x)→ ψ̄(x)G−1, (2.10)

where G ∈ U(1) leaves the Lagrangian invariant. The group element G can be written as G = eiΛ, where
Λ is independent of the spacetime x.
The next step consists in modifying the action in such a way that it becomes invariant under local

U(1) transformations i.e. transformations where Λ = Λ(x). This can be accomplished by introducing a
2-vector potential Aµ(x), and replacing the ordinary derivative ∂µ = ( ∂

∂x0 ,
∂
∂x1 ) by the covariant one

∂µ → Dµ = ∂µ + igAµ(x). (2.11)

The Lagrangian then stays invariant if we apply a local U(1) transformation and transform the 2-vector
potential Aµ(x) accordingly

ψ(x)→ G(x)ψ(x),

ψ̄(x)→ ψ̄(x)G(x)−1,

Aµ(x)→ G(x)AµG
−1(x)− i

g
G(x)∂µG

−1(x), (2.12)

where G(x) = eiΛ(x). Since G(x) is just a U(1) phase, we can simplify the transformation behaviour for
the gauge fields Aµ such that

Aµ(x)→ Aµ(x)− 1

g
∂µΛ(x). (2.13)

We introduced gauge fields to ensure local gauge invariance, but now we also need to add a kinetic term
for said gauge fields. This term needs to be invariant under local gauge transformations and is given by

−1

4
FµνF

µν , (2.14)

which basically leads to our starting point, eq. (2.5). Noether’s Theorem tells us that a symmetry also
has a corresponding conserved quantity. In this case we obtain the conserved vector current JµV given by

JµV = ψ̄γµψ, such that ∂µJ
µ
V = 0. (2.15)

2.1.2 Chiral symmetry
We showed that the Schwinger model is constructed in such a way that it has a local U(1) symmetry.
However, it also acquires an additional symmetry in the massless limit m0 → 0. To see this we introduce
some new quantities. Consider the orthogonal projectors

PL =
1

2
(1− γ5) and PR =

1

2
(1 + γ5), (2.16)

satisfying P 2
L = PL, P 2

R = PR, PLPR = PRPL = 0, PL + PR = 1. We decompose the fermion field into a
left-handed and a right-handed part where PL and PR are the corresponding projection operators, such
that

ψ = ψL + ψR, where ψL = PLψ and ψR = PRψ. (2.17)

Using the commutation rules the Lagrangian can be written as

L = ψ̄(i /D −m0)ψ − 1

4
FµνF

µν (2.18)

= ψ̄Li /DψL + ψ̄Ri /DψR −m0(ψ̄LψR + ψ̄RψL)− 1

4
FµνF

µν , (2.19)
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where we used

ψ̄γµψ = ψ̄Lγ
µψL + ψ̄Rγ

µψR and ψ̄ψ = ψ̄LψR + ψ̄RψL. (2.20)

From the previous expression we can see that the mass term mixes the chiralities. In the chiral limit
m0 → 0, the global U(1) symmetry we had for ψ extends to a separate symmetry for the left-handed
and for the right-handed fields ψL and ψR. The new symmetry group is given by U(1)L×U(1)R. Hence
in the massless case the global transformations

(ψ̄L, ψL)→ (ψ̄Le
−iα, eiαψL) and (ψ̄R, ψR)→ (ψ̄Re

−iβ , eiβψR) (2.21)

leave the action invariant. The corresponding conserved quantities belonging to this symmetry are the
left-handed and the right-handed currents given by

jµL = ψ̄γµPLψ and jµR = ψ̄γµPRψ, (2.22)

satisfying ∂µj
µ
L = 0 and ∂µj

µ
R = 0. It is useful to form the linear combinations

JµV = jµL + jµR = ψ̄γµψ and JµA = jµR − j
µ
L = ψ̄γµγ5ψ, (2.23)

which are called vector current and axial current. As a result instead of a U(1)L × U(1)R symmetry
we work with a U(1)V × U(1)A symmetry in the massless limit. The two currents JµV and JµA are the
Noether currents corresponding to the two transformations

(ψ̄, ψ)→ (ψ̄e−iΛ, eiΛψ) and (ψ̄, ψ)→ (ψ̄eiΛ̃γ
5

, eiΛ̃γ
5

ψ). (2.24)

The first one of these symmetries has already been discussed in the previous section, where we introduced
the vector current JµV in eq. (2.15). The second transformation is called a chiral transformation and is a
symmetry of the Lagrangian in the massless limit. This can be seen by just carrying out the divergence
on jµA and by using the equation of motions given in eq. (2.6). One obtains

∂µj
µ
A = 2im0ψ̄γ

5ψ, (2.25)

which vanishes in the massless limit.

2.1.3 Axial anomaly
Consider a classical field theory which has a symmetry, giving us some conserved quantity. In order
to do Quantum Field Theory (from now on QFT) we want to quantize the fields, which means that
we impose equal-time-commutation relations on the fields and treat these fields as operators acting on
physical states (e.g. the vacuum). When a symmetry is present in the classical theory, but is absent in
any regularization of the full QFT, a symmetry is said to be anomalous. We have seen in the previous
section that the axial current is conserved in the massless limit

∂µj
µ
A = 0, for m0 = 0, (2.26)

a result which holds true in the classical picture, using classical field theory. However, trying to derive
this result from a QFT point of view does not yield the same result, which is a consequence of the
so-called chiral anomaly. This anomaly can be derived in different ways, for example by using explicit
calculations of loop integrals or by using Ward identities. We give the explicit derivation using Ward
identities in appendix G.1, resulting in

∂µj
µ
A =

g

2π
εµνFµν , (2.27)

where εµν is the totally antisymmetric tensor in two dimensions with ε01 = +1.

2.1.4 Properties of the 1-flavour Schwinger model
The 1-flavour model was extensively discussed by Coleman in Refs. [13, 14]. The massless 1-flavour
Schwinger model has no free quarks, nor are there any photons, since a 1 + 1 dimensional theory does
not allow for any transversal modes. Despite starting from a massless theory, it can be shown that there

5



is a massive free scalar meson η with mass mη = g√
π
. The dynamics of the system can therefore be

described by a Hamiltonian, which takes into account the bosonic nature of the theory. The bosonized
Hamiltonian1 of the massless 1-flavour Schwinger model reads,

H =
1

2
: Π2 + (∇φ)2 +m2

ηφ
2 :mη , (2.28)

where Π denotes the conjugate momenta of the scalar field φ and :: denotes the conventional normal
ordering, with respect to mη.
For the massive 1-flavour Schwinger model Coleman has shown that its bosonized model contains

an angular parameter θ, independent of the quark mass m0 and the bare coupling g. He derived the
Hamiltonian density given by

H = Hθ =
1

2
: Π2 + (∇φ)2 +m2

ηφ
2 + cm0mη cos(2

√
πφ+ θ) :mη , (2.29)

where c = eγ

2π is a numerical constant and γ ≈ 0.577 the Euler number. The Hilbert space of states has
an infinite number of orthonormal vacuum states, which are labelled by this particular parameter θ. The
appearance of this somewhat arbitrary angle θ is related to the existence of a constant electric background
field, which can appear in 2-dimensional QED, but is absent in 4-dimensional QED. This form of the
Hamiltonian density for the massive 1-flavour Schwinger model explicitly displays the structure of the
massless model, furthermore it also reveals that the parameter θ might be physically significant (for
example in mass perturbation theory, the mass of the meson depends non-trivially on θ).
An interesting additional feature is the appearance of a non-vanishing vacuum condensate [12, 18]

〈ψ̄ψ〉(m0 = 0)

g
=

eγ

2π3/2
≈ 0.1599. (2.30)

2.2 2-flavour Schwinger model

Up to this moment we considered the 1-flavour Schwinger model. Now we turn to the 2-flavour Schwinger
model, which is of great interest since it shares many similarities with Quantum Chromodynamics, such
as confinement, chiral symmetry breaking, charge shielding and a topological θ-vacuum [13, 14, 16]. We
consider two fermions an up quark u and a down quark d, in complete analogy to QCD, which shall
be mass degenerate mu = md = m0. Since we have two flavours the Dirac spinor now forms a doublet
ψ = (u, d). The Lagrangian of the 2-flavour theory reads

L[ψ̄, ψ,Aµ] = ψ̄k(x)[i /D −m0]ψk(x)− 1

4
FµνF

µν (2.31)

= ū(x)[i /D −m0]u(x) + d̄(x)[i /D −m0]d(x)− 1

4
FµνF

µν , (2.32)

where, in the first line, a summation over the quark flavours k ∈ {u, d} is implied.

2.2.1 Symmetries

The up and down quarks form an isospin doublet with quantum numbers presented in table 2.1. The 2-
flavour Lagrangian is now invariant under global transformations in flavour space with a matrix U ∈ U(2).
This symmetry can be split up into two parts

U(2) = SU(2)V × U(1)V . (2.33)

The U(1)V part corresponds to the gauge symmetry, which is already present in the 1-flavour Schwinger
model (see subsection 2.1.1). The U(1)V part is covariantized as in the 1-flavour case and the gauge
transformation can easily be generalized, the fields transform as

ψ → eiΛ(x)ψ and ψ̄ → ψ̄e−iΛ(x). (2.34)

1The basis of bosonization is the equivalence between the Sine-Gordon model and the massive Thirring model as explained
in Ref. [17].
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The corresponding conserved vector current is given by

JµV = ψ̄
12×2

2
⊗ γµψ, with ∂µJ

µ
V = 0, for U(1)V . (2.35)

The 2-flavour version of the Schwinger model acquires an additional internal SU(2)V symmetry, which
corresponds to a rotation in flavour space. Consider the generators of the su(2) Lie algebra in the
Cartan-Weyl form

T 0 =
1

2
σ3, T 1 =

1

2
(σx + iσy)

!
= T+, T 2 =

1

2
(σx − iσy)

!
= T−. (2.36)

Then, a non-trivial global SU(2)V transformation in flavour space is characterized by

ψ → eiω
aTaψ and ψ̄ → ψ̄e−iω

aTa , (2.37)

the resulting Noether currents are given by

JaµV = ψ̄T a ⊗ γµψ, with ∂µJ
aµ
V = 0, for SU(2)V . (2.38)

Similar to the 1-flavour case, also the 2-flavour Schwinger model acquires an additional symmetry in the
chiral limit m0 → 0. In the chiral limit the axial U(1)A symmetry is present as well and also spoiled by
an anomaly, similarly to the 1-flavour Schwinger model. Consider a global chiral transformation, which
is trivial in flavour space

ψ → eiΛ̃γ
5

ψ and ψ̄ → ψ̄eiΛ̃γ
5

. (2.39)

Then the axial current is conserved in the massless limit, up to an anomaly

JµA = ψ̄
12×2

2
⊗ γµγ5ψ, with ∂µJ

µ
A = 2im0ψ̄

12×2

2
⊗ γ5ψ + anomaly, for U(1)A. (2.40)

Also the SU(2)A symmetry is broken for massive quarks. Consider a global chiral transformation, which
also acts in flavour space

ψ → eiω̃
aTaγ5

ψ and ψ̄ → ψ̄eiω̃
aTaγ5

, (2.41)

then the Noether currents read

JaµA = ψ̄T a ⊗ γµγ5ψ, with ∂µJ
aµ
A = 2im0π

a, for SU(2)A, (2.42)

where we introduced the pion correlator πa = (ψ̄T a ⊗ γ5ψ). Contrary to the U(1)A case the SU(2)A
symmetry does not have an anomaly, due to an additional trace in flavour space, which cancels the axial
anomaly (appendix G.1).

flavour Isospin I Iz

u 1
2

1
2

d 1
2 − 1

2

Table 2.1: Isospin quantum numbers.

2.2.2 Spectrum

Due to confinement the up and down quarks do not appear as free particles in the theory, but rather form
meson states which make up the spectrum of the theory. We follow mostly the results from Coleman in
Ref. [14] and label the mesons as proposed in Refs. [19, 20, 21]. In order to investigate the spectrum of
the massive 2-flavour Schwinger model, we write down its bosonized form similar to the 1-flavour case.
The bosonization of the up and down quark fields allows us to express the quark fields (u, d) by two
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bosonic fields (φ+, φ−) and their corresponding conjugate momenta Π±. The Hamiltonian of this theory
reads

Hθ =
1

2
: Π2

+ + (∂1φ+)2 +m2
ηφ

2
+ + Π2

− + (∂1φ−)2 :m0

− 2cm2
0 : cos(

√
2πφ+ −

θ

2
) :m0

: cos(
√

2πφ−) :m0
(2.43)

=
1

2
: Π2

+ + (∂1φ+)2 +m2
ηφ

2
+ :mη +

1

2
: Π2
− + (∂1φ−)2 :m0

− 2cm
3/2
0 m1/2

η : cos(
√

2πφ+ −
θ

2
) :mη : cos(

√
2πφ−) :m0

, (2.44)

where m0 denotes the mass of the original up and down quarks and we used m2
η = 2g2

π . The objects
::m0

/ ::mη denote normal-ordering w.r.t. the free fields with masses m0 and mη. The relation between
those two types of normal-ordering are elaborated in Ref. [17] and given by

1

2
: Π2

+ + (∂1φ+)2 +m2
ηφ

2
+ :m0

=
1

2
: Π2

+ + (∂1φ+)2 +m2
ηφ

2
+ :mη

and : cos(
√

2πφ+ −
θ

2
) :m0

=

(
mη

m0

)1/2

: cos(
√

2πφ+ −
θ

2
) :mη .

The expression for the Hamiltonian displays a theory of a heavy scalar field φ+ (which retains mass
mη in the massless limit m0 → 0) and a light scalar field φ−. The original isospin invariance has been
obscured but is still present. Based on the transformation behaviour one can show that φ+ represents
an iso-singlet (η boson), while the φ− has a more complicated transformation behaviour. In order to
make further statements about the spectrum of the massive 2-flavour Schwinger model, we consider the
strong coupling limit, i.e. we take the limit where

m0

g
→ 0 ⇔ m0

mη
→ 0. (2.45)

The strong coupling limit is equivalent to a situation, where the mass of the φ− field is negligible
compared to the mass of the η boson and therefore the influence of the field φ+ on the dynamics of
the field φ− can be dismissed. If we ignore the φ+ fields altogether and introduce a new mass term
m′ = (2cm0m

1/2
η cos( θ2 ))2/3, we end up with a reduced form of the theory

Hθ =
1

2
: Π2
− + (∂1φ−)2 :m0

−2cm
3/2
0 m1/2

η cos

(
θ

2

)
: cos(

√
2πφ−) :m0

=
1

2
: Π2
− + (∂1φ−)2 :m′ −(m′)2 : cos(

√
2πφ−) :m′ , (2.46)

where we used the normal ordering rules

: Π2
− + (∂1φ−)2 :m0=: Π2

− + (∂1φ−)2 :m′ and : cos(
√

2πφ−) :m0=

(
m′

m0

)1/2

: cos(
√

2πφ−) :m′ .

The only mass parameter in the theory is nowm′, which carries the dependence on the angular parameter
θ. Numerical calculations performed by Gutsfeld et al. in Ref. [21] suggest that θ ≈ 0, therefore we set
θ = 0 from now on. The Hamiltonian Hθ presented in eq. (2.46) can be related to the Hamiltonian of
the Sine-Gordon model (see Refs. [17, 22]), that is

HSG[α0, β0, γ0] =
1

2

[
π2 + (∂1ϕ)2

]
− α0

β0
cos(βϕ)− γ0, (2.47)

by identifying α0 =
√

2π(m′)2, β0 =
√

2π, γ0 = 0. We conclude that the Schwinger model turns into the
Sine-Gordon model in the strong coupling limit

2-flavour Schwinger model
m0
g →0
−→ Sine-Gordon model .

Hence, it is possible to obtain the spectrum of the 2-flavour Schwinger model at strong coupling by using
known results from the Sine-Gordon model. The Sine-Gordon model describes a theory of a scalar field
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in two dimensions and has been extensively discussed by Dashen et al. in Ref. [22], who computed the
particle spectrum for arbitrary values of β0 based on the WKB approximation. It was shown that the
Sine-Gordon model contains two particles, a soliton A and an antisoliton Ā of equal massM . In addition,
the theory has soliton-antisoliton bound states, with masses

Mn = 2M sin
(
β̃2 n

16

)
, where β̃2 =

β2
0

1− β2
0

8π

. (2.48)

The number of these bound states is restricted by β̃, with n = 1, 2, . . . , < 8π
β̃2

. In our specific case we
have β2

0 = 2π, which yields two bound states B1, B2, with masses

MB1
= M and MB2

=
√

3M. (2.49)

With the identification of particle B1 we have completed an isospin triplet (A, Ā,B1), which corresponds
to a pion triplet in the 2-flavour Schwinger model (see Refs. [14, 21]). The mass and quantum numbers
(isospin, parity, G-parity) of said pion triplet are given by

M = 6

√
2

π
c2/3

(
m0

g

)2/3

g
!
= mπ and IPG = 1−+. (2.50)

We additionally found a particle B2, which has no partner with non-zero I3, therefore it must be an
iso-singlet, which will be called f0 meson with mass and quantum number

mf0 =
√

3mπ and IPG = 0++. (2.51)

The next particle in line is the η meson resulting from the fields φ+, with mass and quantum numbers

mη =

√
2

π
g + corrections and IPG = 0−−. (2.52)

It was argued by Gutsfeld et al. [21], that the mass corrections to the η meson are given by

mη

g
=

√
2

π
+A

(
m0

g

)p
, (2.53)

with A ≈ 1.73 and p ≈ 1. Note that for vanishing quark mass (m0 → 0) the mass-corrections to the η
boson vanish. We conclude that in the strong coupling limit the three lightest particles of the massive
2-flavour Schwinger model are given by the pion triplet π, the f0 meson and the η meson. It can be
shown (see Ref. [14]) that in the weak coupling regime, the mass hierarchy changes. The lightest meson
is still the pion, however, the next lightest state is the η instead of the f0 meson. The heaviest 1-meson
state is given by a scalar triplet with quantum numbers IPG = 1+−, which is being referred to as the a0

meson (see Refs. [14, 19]).

2.2.3 Spectrum summary

Here we summarize the 1-meson states in the massive 2-flavour Schwinger model and present them
in a well-arranged way. We encountered four different meson states so far, which are summarized in
table (2.2).

Operator Meson Quantum numbers (IPG) Meson Interpolator J(x, t)

Pseudo-scalar Triplet π 1−+ ψ̄(T 0, T+, T−) · γ5ψ

Pseudo-scalar Singlet η 0−− ψ̄1 · γ5ψ

Scalar Triplet a0 1+− ψ̄(T 0, T+, T−) · 1ψ
Scalar Singlet f0 0++ ψ̄1 · 1ψ

Table 2.2: Summary of the 1-meson states, including the quantum number and the meson interpola-
tors, which are used for spectroscopy (appendix chapter B).

9



The lightest meson of the theory is the pion |π〉, which shows up in a mass-degenerate triplet with
mass mπ

|π〉 =


|π+〉 = |ud̄〉,
|π0〉 = 1√

2
(|uū〉 − |dd̄〉),

|π−〉 = |ūd〉.
(2.54)

Depending on whether we are working in the strong or weak-coupling regime, the order of the me-
son masses looks different, however, the pion triplet is always the lightest one. We present a visual
representation of the 1-meson spectrum in figure (2.1).

E

Strong coupling limit
with mπ

g � 1

|π〉

|f0〉

|η〉

|a0〉

Weak coupling limit
with mπ

g � 1

//

|π〉

|η〉

|f0〉 and |a0〉

Figure 2.1: Graphical representation of the mass hierarchy of the 1-meson states in the 2-flavour
Schwinger model.

2.3 Dimensional analysis
The Schwinger model is super-renormalizable, i.e. only a finite number of Feynmann diagrams superfi-
cially diverge. Consequently, all divergences can be removed in order to obtain a physically meaningful,
finite theory. One can see this by explicitly showing that the coupling parameter g has positive mass
dimension. Consider the action of the Schwinger model in d dimensions (in the end we set d = 2, the
number of flavours does not play a pivotal role here) and let [O] denote the mass dimension of an operator
O. The action

S =

∫
ddxL =

∫
ddx

(
ψ̄(i /D −m0)ψ − 1

4
FµνF

µν

)
, (2.55)

is dimensionless and since [dx] = −1, we conclude that L has dimension d ([L] = d). Using [m0] = 1 and
[ ∂∂x ] = 1, one immediately gets all the mass dimensions for the Lagrangian

[ψ̄] = [ψ] =
d− 1

2
, [Fµν ] =

d

2
, [Aµ] =

d

2
− 1, (2.56)

and [g] = 2 − d
2 . In the case of d = 2 the coupling parameter g has positive mass dimension, therefore

the theory is super-renormalizable according to Peskin in Ref. [23].

2.4 Introducing the lattice
So far we discussed general properties of the Schwinger model in 2-dimensional continuous Minkowski
spacetime. In order to numerically examine the Schwinger model we have to implement this theory on
an Euclidean lattice. Here we briefly sketch the procedure, further details are given in the appendix
chapter A, for a more in depth discussion we recommend Rothe [24].

• We start by performing a so-called Wick rotation, i.e. we let the time-variable go to t→ −iτ . As
a consequence the action picks up a factor i and the complex path integral Z can be identified as
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a well-behaved, real valued partition function Z

t→ −iτ =⇒ SM → iSE =⇒ Z =

∫
Dψ̄DψDUeiSM → Z =

∫
Dψ̄DψDUe−SE .

• After the transformation to Euclidean spacetime, we discretize the Lagrangian on a square lattice
with spacing a and physical extent L× Lt, with periodic boundary conditions in spatial direction
and antiperiodic ones in temporal direction for the fermion fields. The partition function Z is a
function of the temperature T , which is related to the temporal extent of the lattice via T = 1/Lt.

• We introduce Wilson lines for the gauge fields Un,n+µ̂ ∈ U(1) and include a Wilson term in the
fermion action to circumvent the fermion doubling problem.

Numerical simulations on the lattice are not a perfect representation of the real world and have systematic
errors, which need to be taken care of. One of these systematics are so-called lattice artefacts, which
arise due to the non-zero lattice spacing and can be examined by taking the continuum limit a → 0,
while keeping all other parameters fixed.
Another problem is the already mentioned fermion doubling problem, which appears upon discretizing

fermions on the lattice [25]. The added Wilson term breaks chiral invariance, which makes the definition
of the fermion mass more complicated. To define the quark mass in the 2-flavour Schwinger model we
use the so-called PCAC mass, which is explained in the next section 2.5.
Finite volume effects arise due to the finite spatial extent of the lattice and will be elaborated in

section 2.6.
For the rest of this chapter, we restrict ourselves to the 2-flavour Schwinger model as introduced in

section 2.2, on an Euclidean square lattice with spacing a = 1 and physical extent L× Lt.

2.5 PCAC mass

The bare fermion mass m0, which is a parameter in the Lagrangian L, is related to the “true” quark
mass mq by some relation

mq = ZMm0, (2.57)

where ZM denotes a multiplicative renormalization factor. The Wilson fermions, which are being intro-
duced to circumvent the fermion doubling problem (see appendix A.2), lead to an additional additive
correction to the quark mass such that

mq = ZM (m0 −mcrit) = ZMm(q,b), (2.58)

where m(q,b) defines the bare subtracted quark mass. The critical quark mass mcrit is defined as the
value of the bare quark mass m0, where the physical quark mass vanishes. To determine the chiral limit
we use the so-called PCAC mass (PCAC stands for partially conserved axial current).
In order to obtain the PCAC-relation, we require the SU(2)A-Ward identity for the 2-flavour Schwinger

model, given by eq. (2.42). We utilize a lattice version of said relation, which holds in Euclidean space-
time, that is

∂µJ
aµ
A = 2m0π

a, with πa = ψ̄T a ⊗ γ5ψ. (2.59)

Both, the naive discretization (which has a fermion doubling problem) as well as the Wilson-discretization
lead to the same SU(2)A lattice operator identity. Hence, the parameter m0 can be considered to be the
bare mass regardless of the discretization, allowing us to identify m0 ∼ m(q,b) in eq. (2.59).
We sandwich the operator relation eq. (2.59), between suitable states such that

2m(q,b) =
〈0|πa,†∂µJµaA |0〉
〈0|πa,†πa|0〉

. (2.60)

We can now compute the chiral limit by tuning m0 in the numerical simulations in such a way that m(q,b)

vanishes in eq. (2.60). This then defines the critical bare mass mcrit, where also the physical quark mass
mq vanishes. For more details we refer to Hip et al. in Ref. [26].
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2.6 Finite volume effects
In order to discuss finite volume effects (FVE) consider a lattice of extent L× Lt, ideally the temporal
lattice extent is chosen to be infinite, such that the temperature of the system is zero (Lt = 1

T =
∞). Consider a particle with non-zero momentum which is allowed to propagate freely within the 1-
dimensional box. Once this particle reaches the boundaries, it will show up at the opposite side of
the box, due to the periodic boundary conditions. The Schrödinger wave function of such a particle
state spreads out within the box if the box size L is big enough. However, if we shrink the box, the
wavefunction gets squeezed and laps over via the boundaries, meaning that the particle interacts “with
itself” via the boundaries. Lüscher appropriately called these kinds of effects “interactions around the
world” [27, 28, 29]. These kinds of interactions also have an effect on the spectrum of the theory. Since the
lightest particle of the massive 2-flavour Schwinger model is the pion, we identify the mass gap with the
pion mass and denote the mass gap by mπ. The mass gap does not only depend on the input parameters
of the theory like the bare coupling g or the bare mass of the fermion m0, but also, as mentioned, on the
size of the box L. The infinite volume mass gap mπ can be extracted from finite volume calculations by
extrapolating to infinite volume

mπ = lim
L→∞

mπ(L), (2.61)

while keeping all the other parameters fixed. Lüscher showed that for a 4-dimensional massive quantum
field theory the finite volume corrections to the mass gap are given by the three Feynman diagrams
depicted in figure 2.2.

L

L

L

Figure 2.2: Graphical representation of the Feynman diagrams contributing to the finite volume ef-
fects. It is worth noticing that only the first diagram yields contributions related to the
3-particle coupling λ. The circles which include an L denote a crossing of the spatial
boundaries.

However, he also argued that the same corrections arise for a 2-dimensional massive quantum field
theory [29]. After calculating those diagrams one obtains the finite volume corrections to the mass gap

mπ(L) = mπ − λ2m−3
π

1

8π
(

4π√
3
ξ)

1
2K− 1

2
(

√
3

2
ξ)− 1

2mπ

∫
dq

(2π)2q0
e−q0LF (iq1), (2.62)

where λ denotes the effective 3-particle coupling, Kl the modified Besselfunction, ξ = mπL and F (iq1)
denotes the forward scattering amplitude. After some simplifications, approximations and rescaling,
assuming sufficiently large volumes L, one obtains

mπ(L) = mπ +

(
λ2

4
√

3m3
π

)
e−
√

3
2 ξ +

1√
ξ

(
F (0)

4mπ

√
2π

)
e−ξ. (2.63)

The interested reader is referred to the appendix G.2 for more details. Some comments with respect to
the 3-particle coupling need to be made. Contrary to QCD, the pion triplet in the 2-flavour Schwinger
model has positive G-parity (see subsection 2.2.2, also Refs. [30, 31]), which means that a 3-pion vertex
is allowed2 and appears in the topological Wess-Zumino-Witten term [32]. This means that when con-
sidering finite volume effects, we are not allowed to dismiss the contribution arising from the 3-particle
coupling.
Note that the Schwinger model turns into the Sine-Gordon Model in the strong coupling limit mπg → 0.

Since the Sine-Gordon model does not exhibit any 3-particle coupling (i.e. λ = 0), one expects a
decreasing 3-particle coupling when approaching the strong coupling limit.
2Of course other quantum numbers must not be violated.
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2.7 Scattering phase shift
In this section we consider scattering phenomena in 1 + 1 dimensions on the lattice and introduce the
scattering phase shift. Literature discussing scattering theory in 3 + 1 dimensions is available en masse,
Griffiths [33] for example provides a very nice introductory read and Lüscher examines scattering in 3+1
dimensions on the lattice in Ref. [34]. Scattering phenomena for 1 + 1 dimensions in a finite box are
discussed by Lüscher [27, 29], Guo for a more extensive discussion [35, 36], Eberly [37] or Barlette et al.
in Refs. [38, 39].
So far we considered finite volume effects on a single particle in a box and saw that the mass gap

(resp. the pion mass) mπ of the 2-flavour Schwinger model is affected by finite volume corrections. Now
we discuss the effects of adding a second particle to the box. Having two particles in the box, it should
be intuitively clear that finite volume effects become more severe. In a 1-dimensional box scattering
processes are inevitable and the mean free path decreases if we shrink the box.
Due to the finite volume of the box the relative wave-function of the 2-particle state requires a correction

at the boundaries, which is being taken care of by the so-called scattering phase shift δ(k). The derivation
of the scattering phase shift is straightforward and can be understood using simple quantum mechanics.
Consider two identical spinless bosons with mass m moving within a 1-dimensional box of size L with
positions and momenta (x1, x2) and (p1, p2), respectively. The wavefunction is then given by

ψ(x1, x2), with x1, x2 ∈ [0, L], (2.64)

and the Schrödinger wavefunction reads[
− 1

2m

d2

dx2
1

− 1

2m

d2

dx2
2

+ V (x1 − x2)− E
]
ψ(x1, x2) = 0, (2.65)

where E denotes the total energy of the system E =
p21
2m +

p22
2m and V denotes some symmetric short

ranged potential, which depends on the spatial difference between the two particles only. Since the
two bosons are identical the wavefunction has to be the same under the exchange of x1 and x2, except
for an irrelevant complex phase which drops out from physical observables. Let us now introduce the
center of mass position R, the relative position r, together with the total momentum P and the relative
momentum k via

R =
x1 + x2

2
, r = x1 − x2, P = p1 + p2, k =

p1 − p2

2
, respectively. (2.66)

Due to the translational invariance of the center of mass motion, the total wavefunction can be written
as a product of a plane wave eiPR and a relative wavefunction ψ(r, k), which only depends on the relative
motion between the two particles

ψ(x1, x2) = eiPRψ(r, k). (2.67)

After this transformation of variables, the Schrödinger equation reads[
− 1

m

d2

dr2
− 1

4m

d2

dR2
+ V (r)− E

]
eiPRψ(r, k) = 0 (2.68)[

− 1

m

d2

dr2
+
P 2

4m
+ V (r)− E

]
eiPRψ(r, k) = 0. (2.69)

Upon restricting ourselves to the center of mass frame with total vanishing momentum (P = 0), we
obtain [

− 1

m

d2

dr2
+ V (r)− E

]
ψ(r, k) = 0, (2.70)

with energy E = k2

m . The scattering potential shall be short-ranged and symmetric V (r) = V (−r)
such that we have even and odd solutions to the Schrödinger equation. Using an exchange-symmetric
ansatz we can immediately find a stationary (time-independent) scattering solution for large r, where
the potential V (r) is negligible

ψ0(r, k)
r→∞∼ cos(k|r|+ δ(k)). (2.71)
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If the particle is now confined within a box of size L, some modifications need to be made, due to the
periodicity of the box. We take into account the periodicity of the system by making the replacement

V (|r|)→ VL(|r|) =
∑
ν

V (|r + νL|), (2.72)

and by modifying the stationary solution ψ0(r, k). We require that the wavefunction is continuous and
differentiable at the boundaries such that

ψ0

(
−L

2
, k

)
= ψ0

(
L

2
, k

)
and ψ′0

(
−L

2
, k

)
= ψ′0

(
L

2
, k

)
= 0, respectively, (2.73)

where the ψ′(r, k) denotes a derivative with respect to r. Both equations yield the same result, which is
the quantization condition for the relative momentum k of two particles in a 1-dimensional box

2δ(k) = −kL+ 2πn, n ∈ Z. (2.74)

Note that this quantization condition holds true for any short-range interaction V (|r|) and directly links
the phase shifts to the finite volume L. The physical interpretation of this quantization condition and
the correction term δ can be understood by comparing the free case (with V = 0) to the interacting case.
In the free case (where no interaction happens) the relative momentum is given by some k = 2πn

L with
n ∈ Z and the relative wavefunction smoothly connects at the boundaries. However, in the interacting
case the wave function gets distorted by the influence of the potential at r ≈ 0, and does not connect
nicely to itself at the boundaries. The scattering phase shift in the quantization condition (2.74) corrects
for this, by adding a correction to the relative momentum [27].
It was argued by Lüscher (also in Ref. [27]) that the quantization conditions presented above are only

valid for a lattice field theory where certain conditions are fulfilled. It is required that the lattice spacing
is small enough, such that we are close to the continuum limit. This ensures that corrections to the
quantization condition eq. (2.74) based on the lattice spacing can be neglected. Furthermore, the box of
size L must be chosen large enough such that virtual particle exchanges “around the world” are strongly
suppressed. The box size L also needs to be chosen larger than the interaction range of the potential,
such that the particles can travel freely, before scattering again off each other. Additionally, we must
work with energies below a certain threshold, where only elastic scattering occurs and no new particles
are being created.
The derivation of the quantization conditions becomes more involved once we leave the center of mass

frame. A generalization of the quantization condition eq. (2.74) has been derived by Guo [35, 36] and
reads

cot(δ(k)) + cot

(
PL

4
+
kL

2

)
= 0, (2.75)

where P = p1 + p2 and k = p1−p2
2 denote the center of mass and the relative momenta of the two

particles. The total momentum is quantized due to the periodic boundary conditions

P =
2π

L
d, d ∈ Z. (2.76)

Note, that eq. (2.75) reduces to Lüscher’s quantization condition eq. (2.74) by going into the center of
mass frame with P = 0.

2.7.1 Partial wave decomposition
So far we have been concerned with the physical interpretation of the scattering phase shift and followed
a simple intuitive example presented by Lüscher.
In this section we present a self-contained discussion about non-relativistic quantum scattering. We

focus on the partial wave expansion, the effective range expansion and their relation to the scattering
phase shift δ(k). We closely follow Barlette et al., for a more elaborate discussion we refer to Ref. [38].
We adopt the notation introduced in section 2.7 and consider scattering solutions to the Schrödinger

equation (eq. (2.70)), that is [
− 1

m

d2

dr2
+ V (r)− E

]
ψ(r, k) = 0, (2.77)
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where V (r) = V (−r) denotes a centrally symmetric potential and the energy is given by E = k2

m . The
asymptotic behaviour of the wavefunction can be written as

lim
r→∞

ψ(r, k) = eikr +
i

k
fk(ε)eik|r|, (2.78)

where ε = r
|r| , fk(ε) denotes the scattering amplitude, eikr the incident wave and eik|r| the scattered

outgoing wave. In one spatial dimension there are only two scattering directions, forward scattering
(with ε = 1) and backwards scattering (with ε = −1), contrary to scattering in 3 dimensions, where we
have an infinite number of scattering directions. The total cross-section σtot is given by a sum of those
two contributions, such that

σtot =
∑
ε

σε =
1

k2

[
|fk(+1)|2 + |fk(−1)|2

]
. (2.79)

Analogous to the 3-dimensional case one can expand the wavefunction in partial waves with correspond-
ing scattering phase shifts. Since we are working with a symmetric potential in 1 + 1 dimension the
expansion in partial waves is heavily restricted and allows for two partial waves only. We have an even-
parity wavefunction (symmetric, L = 0) and an odd-parity wavefunction (antisymmetric, L = 1), in the
asymptotic limit we obtain

lim
r→∞

ψ(r, k) =
∑
L=0,1

εLψL(r, k). (2.80)

In order to derive those two required wavefunctions ψL with L = 0, 1, we use

eikr = cos(k|r|) + iε sin(k|r|), (2.81)

and expand the scattering amplitude such that

fk(ε) =
∑
L=0,1

εLeiδL(k) sin(δL(k))
!
=
∑
L=0,1

εLfL, (2.82)

where we introduced the scattering phase shifts for the two partial waves δ0(k) and δ1(k), respectively.
Note, that the expansions presented in eq. (2.80) and (2.82), are standard expansions which show up in
a similar form in 3-dimensional scattering theory. Using eqs. (2.81) and (2.82) and plugging them into
eq. (2.80) yields the partial wave expansion in the asymptotic limit

lim
r→∞

ψ(r, k) =
∑
L=0,1

εLAL cos(k|r|+ Lπ

2
+ δL(k)), (2.83)

with AL = (−i)LeiδL(k). This result should not come as a surprise after the derivation of the symmetric
solution in section 2.7, here we basically just added an antisymmetric solution to the mix. Using the
expansion of the scattering amplitude the total cross-section becomes

σtot = 2
∑
L=0,1

sin2(δL), (2.84)

which satisfies the optical theorem

σtot =
2

k
=(fk(ε)), (2.85)

where = denotes the imaginary part.

2.7.2 Effective range expansion
Next we discuss the derivation of the so-called effective range expansion for both partial waves L = 0
and 1, in close analogy to the 3-dimensional case. The effective range expansion can be used in the study
and analysis of low-energy scattering problems. It is being used as a functional tool for the description of
scattering problems in nuclear [40, 41] and atomic physics [42], but it can also be used for the description
of scattering phenomena on the lattice, see Refs. [38, 39].
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Consider the same scattering scenario as introduced in section 2.7. In most cases, the exact form of the
scattering potential V (r) is unknown to us, which impedes a sophisticated discussion of the scattering
behaviour. The basic idea of the effective range expansion is to describe the low-energy scattering theory
using just a few parameters, similar to an effective theory.
We start the derivation by rescaling the Schrödinger equation for the relative wavefunction and intro-

ducing r0 = |r|. Now we can write down the Schrödinger equation for the two partial waves separately[
− d2

dr2
0

+ Ṽ (r0)− k2

]
ψL(r0, k) = 0, (2.86)

with Ṽ = mV . The full symmetric and antisymmetric solutions (with L = 0 and L = 1, respectively)
can be found by solving eq. (2.86) and by imposing the asympotic behaviour given by eq. (2.83). Close
to the interaction range r0 ≈ 0, those solutions behave like simple cosines and sines

ψ0(r0, k) ∼ cos(kr0) and ψ1(r0, k) ∼ sin(kr0), (2.87)

while in the asympotic region we have the solutions presented in eq. (2.83)

ψ0(r0, k) ∼ cos(kr0 + δ0(k)) and ψ1(r0, k) ∼ sin(kr0 + δ1(k)), for r0 →∞. (2.88)

For the sake of readability, we define

χL(z) ∼

{
cos(z), for L = 0,

sin(z), for L = 1.
(2.89)

Consider two solutions u1(r0) and u2(r0) of eq. (2.86) with energies k2
1, k

2
2, respectively. We normalize

them in such a way, that they retain

lim
r0→∞

ui(r0)→ χL(r0ki + δL(ki))

χL(r0k)
, for i = 1, 2 and L = 0, 1, (2.90)

in the asympotic limit. We write down the Schrödinger equation for one solution u1 and multiply it with
the second one u2, the same is being done vice-versa. Upon subtracting both equations from each other,
one obtains

[u1(r0)u′′2(r0)− u2(r0)u′′1(r0)] = (k2
1 − k2

2)u1(r0)u2(r0), (2.91)

where u′i denotes a derivative with respect to r0. After integrating over all relative positions r0 between
0 and some radial distance R > 0, we obtain

[u1(r0)u′2(r0)− u2(r0)u′1(r0)]
∣∣R
0

= (k2
1 − k2

2)

∫ R

0

dr0u1(r0)u2(r0). (2.92)

The same construction can be made for the free Schrödinger equation (with Ṽ = 0) yielding two free-
particle solutions v1(r0), v2(r0) which take the form

vi(r0) =
χL(r0ki + δL(ki))

χL(r0k)
, for i = 1, 2 and L = 0, 1. (2.93)

Performing the same kind of manipulations, we end up with the same equation just as in the interacting
case (2.92). Subtracting both equations from each other, leads to a “master equation” which reads

(k2
2 − k2

1)

∫ R

0

dr0(v1(r0)v2(r0)− u1(r0)u2(r0)) =

(v′1(r0)v2(r0)− v1(r0)v′2(r0) + u1(r0)u′2(r0)− u′1(r0)u2(r0))
∣∣R
0
. (2.94)

Let us first consider the odd-parity solutions, with L = 1. We let R → ∞ and have ui(0) ≈ sin(0) = 0,
for i = 1, 2. Evaluating the master equation then leads to

(k2
2 − k2

1)

∫ ∞
0

dr0 [v1(r0)v2(r0)− u1(r0)u2(r0)] = −k1 cot(δ1(k1)) + k2 cot(δ1(k2)). (2.95)
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After setting k1 = 0 and k2 = k, we make the following changes in notation

(u1, u2, v1, v2)→ (u0, uk, v0, vk), (2.96)

where the subscript now denotes the energy. Consequently, we obtain

k cot(δ1(k)) = − 1

a1
+ k2

∫ ∞
0

dr0 [v0(r0)vk(r0)− u0(r0)uk(r0)] , (2.97)

where we defined the L = 1 scattering length a1, similarly as in three dimensions, via

− 1

a1
= lim
k→0

k cot(δ1(k)). (2.98)

After a Taylor expansion of the integral for small momenta k, we obtain the effective range expansion
for the L = 1 partial wave

k cot(δ1(k)) = − 1

a1
+
r1

2
k2 +O(k4), (2.99)

where we introduced the effective range for L = 1, which is given by

r1 = 2

∫ ∞
0

dr0

[
v0(r0)2 − u0(r0)2

]
. (2.100)

Similarly, we can derive the effective range expansion for the even-parity solutions (with L = 0). Again,
we start with the master equation eq. (2.94) and utilize the boundary conditions u′1(0) = u′2(0) = 0,
which yields

(k2
2 − k2

1)

∫ ∞
0

dr0 [v1(r0)v2(r0)− u1(r0)u2(r0)] = k1 tan(δ0(k1))− k2 tan(δ0(k2)). (2.101)

After doing the same replacements and calculations (as in the L = 1 case), we end up with

k tan(δ0(k)) =
1

a0
+
r0

2
k2 +O(k4) , (2.102)

where we defined the L = 0 scattering length a0 via

1

a0
= lim
k→0

k tan(δ0(k)), (2.103)

and the coefficient r0 denotes the effective range for the L = 0 partial wave, given by

r0 = −2

∫ ∞
0

dr0

[
v0(r0)2 − u0(r0)2

]
. (2.104)

We conclude this section with two effective range expansions, one for the even-parity wave (with L = 0)
and one for the odd-parity wave (with L = 1). In order to describe the low-energy scattering theory we
used effective parameters ai and ri, if we expand further (O(k4) etc.) more contributions arise and more
parameters need to be introduced.
When discussing scattering phenomena in the 2-flavour Schwinger model we consider two bosons

scattering off each other via a short-ranged, symmetric interaction potential. Following Guo [35], the
wavefunction for two bosons is of even parity. Therefore, to describe meson scattering in this thesis, we
use the effective range expansion for the L = 0 partial wave, i.e. eq. (2.102) with parameters a0 and r0.
The physical meaning of the effective range r0 is somewhat complicated and will not be discussed here,

the interested reader is referred to Barlette in Refs. [38, 39]. The meaning of the scattering length a0

can be understood in terms of a simple toy model, for example, the symmetric 1-dimensional square well
with potential

V (r) =

{
V0, for r ∈ [−R2 ,

R
2 ],

0, else.
(2.105)
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The corresponding scattering length for the L = 0 partial wave is given by

a0(R, V0) =
R

2
+

cot(R2
√
−V0)

√
−V0

, (2.106)

and can be derived using quantum mechanical considerations or by looking up Barlette in Ref. [38]. The
scattering length is real for all values of V0 ∈ R, the potentially complex phases in the numerator and
denominator cancel each other out.
For an attractive potential V0 < 0 we can have bound states in our system, the number of these bound

states scales with the strength of the potential and the width of the square well. There is at least one
bound state for all values of

z =
R
√
−V0

2
, (2.107)

and new bound states appear as z crosses nπ, where n is a positive integer. As a result we have n number
of bound states for z ∈ ((n − 1)π, π]. Their appearance can be observed in the scattering length a0 as
well, which diverges whenever z crosses a multiple of π. The scattering length a0 can be either negative
or positive, depending on the characteristics of the square well.
For a repulsive potential V0 > 0 no bound states appear and the discussion of the scattering length a0

becomes easier. The scattering length a0 is positive and gives us information about the strength of the
repulsion caused by the potential V (r).
In the 2-flavour Schwinger model we can investigate elastic scattering processes, such as two pions

scattering off each other. Therefore our physical situation is comparable to the repulsive square well
presented above, meaning that we expect the scattering length a0 to be positive and scale with the
strength of the interaction potential.

2.8 3-particle scattering
So far we discussed scenarios with either one or two particles in the box and considered finite volume
effects thereof. We saw that for 2-particle states the relative momentum is quantized and requires a
correction due to the periodic nature of the finite box. This leads to a quantization condition for 2-
particle scattering which is given by eq. (2.75) and a power series expansion of the scattering phase
shift given by eq. (2.102). By adding more particles to the system we augment the number of degrees
of freedom, which increases the difficulty for studying interactions between the particles. However,
scattering processes with three particles in the box can be understood if one is willing to make some
simplifying assumptions. In order to make the problem as simple as possible, we ignore relativistic effects
and continue working with a 1-dimensional box of size L. We restrict ourselves to a scenario where we
only allow for short-ranged 2-particle interactions, such that multi-particle interactions can only occur
as a sequence of 2-particle interactions. This allows us to discuss 3-particle interactions in terms of
quantities used for the 2-particle scattering process, such as the scattering phase shift δ(k). Under these
aforementioned assumptions Guo [35, 36] was able to derive quantization conditions by following those
three steps:

• Construct the free space 3-particle wavefunction.

• Construct the finite volume 3-particle wavefunction (i.e. the wavefunction bounded by the box of
size L), using the free space wavefunction.

• Match those two expressions against each other and derive the desired quantization conditions for
the 3-particle interaction.

Using this strategy, Guo derived the following quantization conditions

cot (δ(−q31)− δ(−q23)) + cot

(
PL− p3L

2

)
= 0,

cot (−δ(−q31)− δ(q12)) + cot

(
PL− p1L

2

)
= 0, (2.108)

cot (δ(−q23) + δ(q12)) + cot

(
PL− p2L

2

)
= 0,
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where δ denotes the 2-particle scattering phase shift and L is the box size. The total momentum is given
by P , while qij denote the relative momenta between particle i and j. The parameter qk denotes some
modified relative momentum between the particle k and the remaining two particles. Concretely, we
have

P =

3∑
i=1

pi, qij =
pi − pj

2
and qk =

pi + pj − 2pk
3

. (2.109)

Again the center of mass momentum P is quantized within the box and takes values given by P = 2π
L d

with d ∈ Z. Note, that out of the three equations, only two are independent.
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3 Canonical formulation

In this chapter we introduce the canonical formulation for the 1- and 2-flavour Schwinger model and
discuss some related subjects. We start from the grand-canonical partition function for the 1-flavour
Schwinger model and recapitulate some details of the Wilson Dirac formulation. We proceed with the
dimensional reduction of the determinant of the Wilson Dirac operator, which establishes the connection
between the grand-canonical partition function and the canonical one. Next, we discuss several topics
related to the dimensional reduction and the resulting quark sectors. We finish this chapter by general-
izing the introduced concepts to the 2-flavour variant of the Schwinger model and setting the framework
needed for further calculations.
Throughout this chapter, we will be working on the lattice as introduced in section 2.4 and explained

in more detail in the appendix chapter A. The lattice will be of extent L×Lt (with T = 1
Lt

) and for the
sake of readability we set the lattice spacing to one, a = 1.

3.1 Partition function for the 1-flavour Schwinger model
Consider the Euclidean lattice action S[ψ̄, ψ, U, µq] for the 1-flavour Schwinger model (we omit the index
E), as derived in appendix chapter A. We assume that the reader has read appendix chapter A and is
familiar with the notation used in this chapter. The grand-canonical partition function at temperature
T and quark chemical potential µq is defined as

ZGC(T, µq) =

∫
DUDψ̄Dψe−S[ψ̄,ψ,U,µq ] (3.1)

=

∫
DU

(∫
Dψ̄Dψe−SF [ψ̄,ψ,U,µq ]

)
e−Sg [U ] (3.2)

=

∫
DUZF [U, µq]e

−Sg [U ], (3.3)

where Sg[U ] is the discretized plaquette action, describing the kinetic part of the gauge fields and
ZF [U, µq] is the fermionic part of the action, which can be evaluated explicitly. In order to do so
we rewrite the fermionic part SF . We consider the full Wilson Dirac operator Kα,β(n,m) given by
eq. (A.65), with Dirac indices {α, β} and spacetime indices {n,m} and merge the indices together, such
that

Kα,β(n,m)→ Ki,j . (3.4)

As a result, the fermionic part of the action reads,

SF [ψ̄, ψ, U, µq] =
∑

α,β,n,m

ψ̄α(n)Kα,β(n,m)ψβ(m) =

N∑
i,j

ψ̄iKi,jψj , (3.5)

with N = 2LLt even. Utilizing the Grassmann integration rules, one can integrate out the fermion fields
and obtains

ZF [U, µq] =

∫
Dψ̄Dψe−SF [ψ̄,ψ,U,µq ] = det(K[U, µq]), (3.6)

where K[U, µq] = Kα,β(n,m) denotes the full Wilson Dirac operator. Consequently, the grand-canonical
partition function for the 1-flavour Schwinger model reads

ZGC(T, µq) =

∫
DU det(K[U, µq])e

−Sg [U ]. (3.7)

Compared to the canonical partition function, the grand-canonical partition function is a more general
object, which not only allows for variation of the energy but also a variation of the particle number. The
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parameter for the variation of the particle number is the quark chemical potential µq. The canonical
partition function at a temperature T and fixed net number of fermions k is given by

Zk(T ) =

∫
DUe−Sg [U ]detk(K[U ]), (3.8)

where detk(K[U ]) denotes the canonical determinant of order k. The grand-canonical partition function
can be connected to the canonical ones by using the fugacity expansion

ZGC(T, µq) =

L∑
k=−L

eµqk/TZk(T ). (3.9)

The fugacity expansion allows us to decompose the grand-canonical partition function into sectors with
different net-fermion numbers, which are characterized by the difference of fermions going forward and
antifermions going backwards in time. Note that on the lattice this sum is restricted by the volume.
Furthermore, due to the Gauss law, the only non-vanishing canonical contribution arises from the k = 0
sector. The fugacity expansion eq. (3.9) makes it evident that the canonical partition function can be
written as a Fourier transformation of the grand-canonical partition function, which is accomplished by
utilizing

detk(K[U ]) =
1

2π

∫ 2π

0

dφe−ikφ det(K[U, µq = iφT ]), (3.10)

such that

Zk(T ) =
1

2π

∫ 2π

0

dφe−ikφZGC(T, µ = iφT ). (3.11)

Those relations establish the connection between the canonical and the grand-canonical partition function
of the 1-flavour Schwinger model. We will have a detailed look at the dimensional reduction of the Wilson
Dirac operator in section (3.3) and establish the formal connection between the canonical and grand-
canonical partition function on the lattice via the corresponding determinants

det(K[U, µq])↔ detk(K[U ]). (3.12)

This allows us to gain deeper insight into the structure and symmetries of the partition functions and
allows us to show that

Zk(T ) = Z∗−k(T ). (3.13)

3.2 Outline of the 1-flavour Schwinger model on the lattice

First, we want to recall the Wilson Dirac formulation for the Schwinger model. As illustrated in the
appendix chapter A the fermionic part of the 1-flavour Schwinger model Euclidean action with quark
chemical potential µq is given by

SF [ψ̄, ψ, U, µq] =
∑

α,β,n,m

ψ̄α(n)Kα,β(n,m)ψβ(m), (3.14)

where the Dirac operator is given by eq. (A.65), that is

Kα,β(n,m) = δα,βδn,m(m0 + 2r)− 1

2

(
(r − γ1)α,βUn,mδm,n+1̂ + (r + γ1)α,βUn,mδm,n−1̂

)
− 1

2

(
eµq (r − γ0)α,βUn,mδm,n+0̂ + e−µq (r + γ0)α,βUn,mδm,n−0̂

)
. (3.15)

The gamma matrices γ0, γ1 are given by γ0 = σz and γ1 = σx. The vectors n and m are 2-component
vectors denoting points on the spacetime lattice. A point n reads n = (n0, n1), where n0 ∈ {1, 2, 3, . . . , Lt}
denotes the Euclidean time-component and n1 ∈ {1, 2, 3 . . . , L} the space-component. The gauge-links
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are represented by the factors Un,m ∈ U(1), fulfilling Un,m = U†m,n. Spatial shifts are indicated by ±1̂

and temporal shifts are indicated ±0̂, such that

n+ µ̂ =

{
(n0 ± 1, n1), if µ̂ = ±0̂,

(n0, n1 ± 1), if µ̂ = ±1̂.
(3.16)

In the first step we are going to rescale the theory by a factor 2κ = 1
m0+2r , such that 1√

2κ
ψ → ψ. We

define the projectors in temporal direction by P (±0) = 1
2 (1∓ σz) and the projectors in spatial direction

by P (±1) = 1
2 (1 ∓ σx). Finally, we can write down the massive 1-flavour Wilson Dirac operator in the

form

Kα,β(n,m) = δα,βδn,m − 2κ
(
P (1)α,βUn,mδm,n+1̂ + P (−1)α,βUn,mδm,n−1̂

)
(3.17)

− 2κ
(
P (0)α,βUn,mδm,n+0̂e

µq + P (−0)α,βUn,mδm,n−0̂e
−µq
)
,

which is a matrix of size N2 = (2LLt)
2. We impose periodic boundary conditions in spatial direction

and antiperiodic boundary conditions for the fermions in temporal direction.

3.3 Dimensional reduction of the Wilson Dirac operator

In the previous section we introduced the rescaled Wilson Dirac operator. The determinant of the Wilson
Dirac operator describes the set of all possible closed paths on the lattice, weighted and restricted by
the specific form of the Dirac operator. Note that the dimensional reduction we perform here also works
- slightly modified - for the Dirac operator of the QCD-action [10], however, in this section we will
only consider the reduction for the 1-flavour Schwinger model specifically. For convenience we introduce
P± = P (±0) and A+

t = eµq · 12,2 ⊗ Ut = (A−t )−1, where Ut is diagonal and represents all the temporal
gauge-links on the lattice from time-slice t to timeslice t+ 1. Note that these two objects commute since
A±i acts trivial in Dirac space, s.t. [A±i , Ps] = 0,∀s ∈ {+,−}. The first line of eq. (3.17) describes the
spatial part of the Wilson Dirac operator. Plugging in P (±1), this part can be expressed in terms of a
spatial matrix Bt (for a fixed time-slice t), which is given by

Bt =

(
D C
C D

)
, (3.18)

with the matrices C and D, each of size L2, given by

D = δn,m − κ(Un,mδm,n+1̂ + Un,mδm,n−1̂) (3.19)

C = κ(Un,mδm,n+1̂ − Un,mδm,n−1̂). (3.20)

Using the spatial matrices Bt the Wilson Dirac operator is given by

K =



B1 −2κP+A
+
1 ±2κP−A

−
Lt

−2κP−A
−
1 B2 −2κP+A

+
2

−2κP−A
−
2 B3 −2κP+A

+
3

. . . . . . . . .
−2κP−A

−
Lt−2 BLt−1 −2κP+A

+
Lt−1

±2κP+A
+
Lt

−2κP−A
−
Lt−1 BLt


, (3.21)

where we used the short hand notation

K = K[U, µq] = Kα,β(n,m). (3.22)

We denoted the boundary conditions in time-direction by a factor ±1 on the very off-diagonal elements,
i.e. the very top right and the very bottom left entries. Antiperiodic boundary conditions require a +1,
periodic ones a −1. For the sake of convenience, we will work with periodic boundary conditions and
make the replacement A±Lt → −A

±
Lt

in the end. Some more objects are needed, namely a projection
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matrix

P =



P+ P−
P+ P−

P+ P−
. . . . . . . . .

P+ P−
P− P+


, (3.23)

which is of size (2LLt)
2 and fulfills det(P) = 1. Furthermore, we need the following matrices of size (2L)2

Ri = BiP+ − 2κA−i−1P− = (BiP+ + P−).(P+ − 2κA−i−1P−) = Q−i .(P+ − 2κA−i−1P−), (3.24)

Si = BiP− − 2κA+
i P+ = (BiP− + P+).(P− − 2κA+

i P+) = Q+
i .(P− − 2κA+

i P+), (3.25)

which describe hops forward (Si) and backwards in time (Ri). Note that the Q±i are completely inde-
pendent of any temporal gauge fields.
After setting up all the needed definitions, we perform the dimensional reduction on the Wilson Dirac

operator. In a first step we rewrite the Wilson Dirac operator into the form

K =



B1 0 −2κP−A
−
Lt

−2κP−A
−
1 B2 0
−2κP−A

−
2 B3 0

. . . . . . . . .
−2κP−A

−
Lt−2 BLt−1 0

0 −2κP−A
−
Lt−1 BLt


P−

+



B1 −2κP+A
+
1 0

B2 −2κP+A
+
2

B3 −2κP+A
+
3

. . . . . . . . .
BLt−1 −2κP+A

+
Lt−1

−2κP+A
+
Lt

BLt .


P+, (3.26)

where we just took advantage of the properties of the projection operators. The multiplication with
the matrices P± is meant to be componentwise. The object of interest which is the determinant of the
Wilson Dirac operator then fulfills

|K| = |K.P|, (3.27)

where we introduced a shorthand notation for the determinant in terms of vertical lines

|K| := det (K) . (3.28)

The product K.P is given by

K.P =



R1 S1

0 R2 S2

0 R3 S3

. . . . . . . . .
RLt−1 SLt−1

SLt RLt


. (3.29)

After definining the block-diagonal matrix R = diag[R1, . . . , RLt ], one concludes that the determinant
of K can be written as

|K| = |R.R−1.K.P| = |R||R−1.K.P|, (3.30)
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where |R| is a bulk factor and can be written as |R| =
∏Lt
i=1 |Ri|. We continue working with R−1.K.P

and notice that

R−1.K.P =



1 T1

0 1 T2

0 1 T3

. . . . . . . . .
1 TLt−1

TLt 1


, (3.31)

where Ti is defined as Ti = R−1
i Si and can be interpreted as a transfer matrix from time-slice i to

timeslice i + 1. Furthermore, we see that R−1.K.P has the form needed in order to utilize the Schur
complement formula (see appendix section D.2), that is

det

(
A B
C D

)
= (detA) det(D − CA−1B). (3.32)

Using the Schur complement formula with A = 1, B = (T1, 0, . . . , 0), C = (0, . . . , TLt)
T and

D =



1 T2

0 1 T3

0 1 T4

. . . . . . . . .
1 TLt−1

1


, (3.33)

we obtain for the determinant

|R−1.K.P| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 T2

0 1 T3

0 1 T4

. . . . . . . . .
1 TLt−1

−TLt .T1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.34)

Applying the Schur complement formula Lt − 1 times then leads to

|R−1.K.P| = |1 + (−1)Lt−1TLt .T1.T2 . . . TLt−1| (3.35)

= |1 + (−1)Lt−1T1.T2 . . . TLt−1.TLt |. (3.36)

For the sake of convenience we will assume Lt to be even such that we obtain

|K| = |R||R−1.K.R| (3.37)
= |R||1− T1.T2 . . . TLt−1.TLt | (3.38)
ap.
bc.= |R||1 +

Lt∏
i=1

Ti|. (3.39)

In the last step, that is line (3.39), we took into account the antiperiodic boundary condition by replacing
TLt → −TLt (which is equivalent to making the replacement A±Lt → −A

±
Lt
). In order to separate the

dependence of the chemical potential µq from the gauge fields At we examine the bulk factor |R| and
the factor |1 +

∏Lt
i=1 Ti| separately.

3.3.1 Examination of the bulk factor |R|
The complex-valued bulk factor |R| contains an e−µq factor which can be factorized out by using the
block structure of Ri

|R| =
Lt∏
i=1

|Ri| =
Lt∏
i=1

|BiP+ − 2κA−i−1P−| =
Lt∏
i=1

|Bi||2κA−i−1| (3.40)

=

Lt∏
i=1

|Bi||2κU†i |e
−µqL = e−µqLtL

Lt∏
i=1

|Bi||2κU†i |. (3.41)
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Although we were able to factorize out the quark chemical potential, the bulk factor still contains a
complex phase of the form

|R| ∝
Lt∏
i=1

|U†i |, (3.42)

which will be of importance once we demonstrate the reflection symmetry of the canonical determinant
in appendix section G.4.

3.3.2 Examination of |1 +
∏Lt

i=1 Ti|
We note that each transfer matrix Ti can be computed as

Ti = R−1
i .Si = (P+ − 2κP−A

−
i−1)−1.(Q−i )−1.Q+

i .(P− − 2κP+A
+
i ), (3.43)

where we used the expressions for Ri and Si in eqs. (3.24) and (3.25). The inverse of (P+ − 2κP−A
−
i−1)

can be evaluated to be

(P+ − 2κP−A
−
i−1)−1 = (P+ −

1

2κ
P−A

+
i−1), (3.44)

which yields a simplified expression for two consecutive transfer matrices TiTi+1, such that

TiTi+1 ∝ (P− − 2κP+A
+
i ).(P+ −

1

2κ
P−A

+
i ) = −(2κP+ +

1

2κ
P−)A+

i . (3.45)

After recalling the definition of A+
i and definining

Ũi = (2κP+ +
1

2κ
P−).(12,2 ⊗ Ui) (3.46)

we realize that the µq-dependence can be factorized out such that

−(2κP+ +
1

2κ
P−)A+

i = −Ũieµq . (3.47)

Since we assumed Lt to be even, we have an even number of these minus signs. Upon combining all
contributions we obtain

|1 +

Lt∏
i=1

Ti| = |1 +

Lt∏
i=1

(Q−i )−1Q+
i Ũie

µq | = |1 + eµqLtT |, (3.48)

where in the last step we implicitely defined the full transfer matrix T

T =

Lt∏
i=1

(Q−i )−1Q+
i Ũi . (3.49)

Note, that we use the definition of a transfer matrix interchangeably, it can either mean the transfer
matrix Ti on a fixed time-slice i or the product presented above. Additionally, it is worth noticing that
for vanishing quark chemical potential µq = 0 the full transfer matrix can be written as product of the
time-slice transfer matrices Ti

T =

Lt∏
i=1

(Q−i )−1Q+
i Ũi

!
=

Lt∏
i=1

Ti

∣∣∣∣∣
µq=0

. (3.50)

After recalling that the transfer matrix is of size (2L)2 and using the multilinearity of the determinant,
one obtains

|1 +

Lt∏
i=1

Ti| = |1 + eµqLtT | = e2µqLtL|e−µqLt + T |. (3.51)
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3.3.3 Constructing the full Wilson Dirac determinant
Combining the two factors we obtain

|K| = |R||1 +

Lt∏
i=1

Ti|

=

(
Lt∏
i=1

|Bi||2κU†i |

)
eµqLtL|e−µqLt + T |. (3.52)

The last factor can be simplified using the algebraic formulas for the characteristic polynomial derived
in the appendix chapter D. Specifically, we will use the characteristic polynomial (D.23), that is

pA(t) = |t1−A| = tn − E1(A) + · · ·+ (−1)nEn(A), (3.53)

where A denotes a n×n matrix and the factor Ek(A) denotes the sum over all principal minors of size k

Ek(A) =
∑

I,|I|=k

det(AII). (3.54)

We use the characteristic polynomial with t = e−µqLt , A = −T and n = 2L. Upon using the multilin-
earity of the determinant we conclude that

Ek(−T ) :=
∑

I,|I|=k

det(−T II) = (−1)k
∑

I,|I|=k

det(T II) = (−1)kEk(T ). (3.55)

As a result, we obtain

|K| =

(
Lt∏
i=1

|Bi||2κU†i |

)
eµqLtL|e−µqLt + T | (3.56)

=

(
Lt∏
i=1

|Bi||2κU†i |

)
eµqLtL(e−µqLt2L + E1(T )e−µqLt(2L−1) + · · ·+ E2L−1(T )e−µqLt + E2L(T )).

(3.57)

After simplifying this expression, we obtain

det(K[U, µq]) =

L∑
k=−L

eµqLtkdetk(K[U ]) , (3.58)

where we implicitely defined the canonical determinant detk(K[U ]) as

detk(K[U ]) =

(
Lt∏
i=1

|Bi||2κU†i |

)
Ek+L(T ) =

(
Lt∏
i=1

|Bi||2κU†i |

) ∑
I,|I|=k+L

det(T II) , (3.59)

where the full transfer matrix T is given by eq. (3.49). These last two equations conclude the derivation
of the canonical determinant for the 1-flavour Schwinger model. In order to establish the connection
between the canonical and the grand-canonical partition function (see section 3.1), we simply plug in
eq. (3.58) into the formula for the grand-canonical partition function, that is eq. (3.7).

3.3.4 The structure of the transfer matrix T
In this subsection we want to have a closer look at the transfer matrix T and its components. We already
established that the basic form of T is given by

T =

Lt∏
i=1

(Q−i )−1Q+
i Ũi, where Ũi = (2κP+ +

1

2κ
P−).(12,2 ⊗ Ui), (3.60)
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is diagonal and represents all the temporal gauge-links on time-slice i. First we want to have a closer
look at the Q±i ’s which are of size (2L)2. Utilizing the explicit form of Bi and P± one obtains

Q−i = BiP+ + P− =

(
1 Ci
0 Di

)
and Q+

i = BiP− + P+ =

(
Di 0
Ci 1

)
. (3.61)

This simplified form is of great utility, since it allows us to compute the inverse of Q−i in a straightforward
way, such that

(Q−i )−1 =

(
1 −CiD−1

i

0 D−1
i

)
. (3.62)

Next we will have a look at the specific form of Ũi. Assume that all the temporal U(1) gauge-links on
time slice i are described by L angles {ϕ1, . . . , ϕL}, then the matrix Ũi is diagonal with entries

Ũi = diag
[

1

2κ
eiϕ1 ,

1

2κ
eiϕ2 , . . . ,

1

2κ
eiϕL , 2κeiϕ1 , 2κeiϕ2 , . . . , 2κeiϕL

]
. (3.63)

The objects Q±t describe spatial hops of fermions on time-slice t, while Ũt describes fermions hopping
forward in time from time-slice t to t + 1. The first odd thing we notice is the factor 1

2κ in the first L
entries and the factor 2κ in the last L entries, which appear naturally when deriving this contribution.

3.3.5 Spectrum of the transfer matrix T
In the construction of the reduced Wilson Dirac operator the object of importance is the transfer matrix
T . In particular the spectrum of the transfer matrix, denoted by σ(T ), has some interesting properties,
which we would like to explore. First, we have a look at the determinant of T , which can easily be
computed

det T =

Lt∏
i=1

det((Q−i )−1) det(Q+
i ) det(Ũi) (3.64)

=

Lt∏
i=1

det(Ui)
2, (3.65)

where we used the specific form of Ũ and det((Q−i )−1) det(Q+
i ) = detD−1 detD = 1. Secondly one can

show that the eigenvalues of T come in pairs. In order to see this we first convince ourselves that the
combination (Q−i )−1Q+

i can be written as

(Q−i )−1Q+
i =

(
1 −Ci
0 1

)(
Di 0
0 D−1

i

)(
1 0
Ci 1

)
. (3.66)

In this form it is easy to compute the inverse

[(Q−i )−1Q+
i ]−1 =

(
1 0
−Ci 1

)(
D−1
i 0
0 Di

)(
1 Ci
0 1

)
. (3.67)

Utilizing the fact that D is hermitian and C = −C† we obtain

([(Q−i )−1Q+
i ]−1)† =

(
1 0
−Ci 1

)(
D−1
i 0
0 Di

)(
1 Ci
0 1

)
, (3.68)

and find

([(Q−i )−1Q+
i ]−1)† = S(Q−i )−1Q+

i S
−1, with S = S−1 =

(
0 1
1 0

)
. (3.69)

Furthermore, also the gauge fields transform similarly as

(Ũ−1
i )† = SŨiS

−1. (3.70)
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Using these previous results one obtains for the full transfer matrix T

(T −1)† = ([(Q−1 )−1Q+
1 ]−1)†(Ũ−1

1 )† . . . ([(Q−Lt)
−1Q+

Lt
]−1)†(Ũ−1

Lt
)† (3.71)

= S[(Q−1 )−1Q+
1 ]Ũ1 . . . [(Q

−
Lt

)−1Q+
Lt

]ŨLtS
−1, (3.72)

(T −1)† = ST S−1. (3.73)

Consequently, the transfer matrix T shares its eigenvalue-spectrum with (T −1)† i.e. σ(T ) = σ((T −1)†),
which indicates that for every eigenvalue λ ∈ σ(T ) we have an eigenvalue 1

λ∗ ∈ σ(T ). This symmetry
hints that one could further reduce the transfer matrix by a factor 2 without losing information. The
spectrum of the transfer matrix T can be written down as

σ(T ) = {λ1, . . . , λL,
1

λ∗1
, . . . ,

1

λ∗L
}, (3.74)

respectively

σ(T ) = {r1e
iφ1 , . . . , rLe

iφL ,
1

r1
eiφ1 , . . . ,

1

rL
eiφL}, (3.75)

where we introduced radii and angles to describe the spectrum of the transfer matrix. If we write the
determinant of T as a product of the eigenvalues, we obtain

det T =

L∏
i=1

λi
λ∗i

= e2iΦ, with Φ =

L∑
i=1

φi, (3.76)

where Φ denotes the sum over all angles. Utilizing above relation for the determinant of T , one can show
that the canonical determinant fulfills a reflection symmetry, such that

det∗k(K) = det−k(K) ∀k ∈ {0, . . . , L}. (3.77)

The details of this derivation are given in the appendix section G.4.

3.4 Discussion and interpretation of the canonical determinant
Each entry in the Wilson Dirac operator can be interpreted as a fermion hopping from one lattice site
to another one. These entries are now processed into the canonical determinant and still retain their
meaning. We discussed the derivation of the reduced matrix, which allows us to directly compute the
determinant of the Wilson Dirac operator by using eqs. (3.58) and (3.59), that is

det(K[U, µq]) =

L∑
k=−L

eµqLtkdetk(K[U ]), with (3.78)

detk(K[U ]) =

(
Lt∏
i=1

|Bi||2κU†i |

) ∑
I,|I|=k+L

det(T II). (3.79)

The summation over all principal minors of a canonical sector is quite trivial if one is interested in cases of
“extreme” fermion numbers, i.e. a system which is saturated either by fermions or antifermions. In order
to have a close look at these cases, one fixes the net-fermion number to either k = L (saturation with
L fermions propagating forward in time) or k = −L (saturation with L antifermions going backwards
in time). Here we discuss these cases, the computational aspects for the calculations of the canonical
determinant are elaborated in the appendix chapter E.

3.4.1 Saturation with antifermions k = −L
Let us first consider the extreme case, where we saturate the system with L antifermions propagating
backwards in time. Each of those antifermions wraps around the lattice at the temporal boundary,
which yields a factor (e−µq )Lt . Taking into account not one, but all the L antifermions we end up with
an overall factor (e−µq )LtL, which is exactly the prefactor of the canonical determinant det−L(K[U ])
in eq. (3.78). To obtain the canonical determinant det−L(K[U ]) we compute a sum over all principal
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minors of size |I| = −L + L = 0. However, an index set I of size 0 is just the empty set I = ∅ and by
convention, the empty principal minor is 1 (see appendix chapter D). Consequently we end up with the
bulk factor only

det−L(K[U ]) =

(
Lt∏
i=1

|Bi||2κU†i |

)
· 1, (3.80)

which factorizes nicely into a spatial and temporal contribution. Only the first component of the Dirac
fermion ψ1 (from ψ = (ψ1, ψ2)) can propagate backwards in time, while only the second component ψ2

propagates forward in time. The backwards propagating fields pick up all the L possible gauge field
contributions when passing through a time-slice i, hence we obtain the determinant of 2κU†i . Since those
antifermions pass through all time-slices we end up with a factor

Lt∏
i=1

|2κU†i |. (3.81)

The fields ψ2 also need to be saturated for the Grassmann integration. Since we fixed the net-fermion
number externally, the fields ψ2 can only move within a fixed time-slice. The determinant |Bi| takes
into account all the possible closed paths of the fields ψ2 on a fixed time-slice t = i. In the end the
contributions from all the different time-slices read

Lt∏
i=1

|Bi|. (3.82)

The origin of these contributions stems from the bulk factor |R|

Lt∏
i=1

|Ri| =
Lt∏
i=1

|BiP+ +A−i−1P−|
!
=

Lt∏
i=1

|Bi||U†i 2κe−µq |, (3.83)

which displays very nicely all the discussed contributions and shows their affiliation to the corresponding
fields ψ1,2 via the projection matrices P±.

3.4.2 Saturation with fermions k = L

Let us now consider the opposite scenario, where the lattice is saturated with k = L fermions going
forward in time. Now the summation over all principal minors reduces to a summation over all index
sets I of size |I| = 2L. Since the transfer matrix T is of size (2L)2 itself, there is only one possible index
set which comes into play, given by I = {1, 2, . . . , 2L}, yielding the full determinant

E2L(T ) =
∑

I,|I|=2L

det(T II) = det(T ). (3.84)

As a result one obtains

detL(K) =

Lt∏
i=1

|Bi||2κU†i | · det(T ) (3.85)

=

Lt∏
i=1

|Bi||2κU†i | ·
Lt∏
i=1

|Ui|2 (3.86)

=

Lt∏
i=1

|Bi||2κUi|. (3.87)

Similar to before, this expression makes sense. We have L fermions travelling forward in time and
consequently, the corresponding canonical determinant comes with a prefactor (eµq )LLt in the fugacity
expansion. Along the way the fermions pick up all the contributions from the gauge field resulting in a
multiplicative factor of

∏Lt
i=1 |2κUi|. Similar to before the factor

∏Lt
i=1 |Bi| arises in order to take into

account the spatial hops of the remaining fermionic degrees of freedom on each time-slice.
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3.5 Canonical formalism with two flavours
From now on we consider the 2-flavour Schwinger model on the lattice as introduced in section 2.2. In
order to discuss the 2-flavour Schwinger model in the canonical formulation some simple generalizations
need to be made. We denote the two mass-degenerate quark flavours with u and d (up and down
quarks) which turns the fermion wave-function into a doublet ψ = (u, d). The continuum Lagrangian in
Minkowski spacetime is then given by eq. (2.31)

L[ψ̄, ψ,Aµ] = ψ̄k(x)[i /D −m0]ψk(x)− 1

4
FµνF

µν (3.88)

= ū(x)[i /D −m0]u(x) + d̄(x)[i /D −m0]d(x)− 1

4
FµνF

µν , (3.89)

where a summation over the quark flavours k ∈ {u, d} is implied. After performing a Wick rotation and
discretizing the quark fields we implement this theory on the lattice, similar as in the 1-flavour case. We
introduce quark-chemical potentials for the up and down quark (µu, µd) and define the isospin chemical
potential µI via µI

2 = µu = −µd. The grand-canonical partition function for the 2-flavour Schwinger
model then reads

ZGC(T, µ) =

∫
DU det(K[U, µI ]) det(K[U,−µI ])e−Sg [U ]. (3.90)

Similar to the 1-flavour case, we can now perform a dimensional reduction on each of the Wilson Dirac
operators, which yields

ZGC(T, µ) =

∫
DUe−Sg[U ]

L∑
nu=−L

L∑
nd=−L

e
µI
2 Lt(nu−nd)detnu(K[U ])detnd(K[U ]) (3.91)

=

L∑
nu=−L

L∑
nd=−L

e
µI
2 Lt(nu−nd)Z(nu,nd)(T ). (3.92)

Here we introduced the 2-flavour canonical partition function

Z(nu,nd)(T ) =

∫
DUdetnu(K[U ])detnd(K[U ])e−Sg[U ], (3.93)

which describes the quark-sector with nu up quarks and nd down quarks. The number of up and down
quarks in our system is restricted by the Gauss’ law. It requires that the total electric charge Q is zero,
while the total isospin charge I is not restricted, i.e.

Q = nu + nd = 0, and I =
nu − nd

2
arbitrary. (3.94)

As a result a canonical sector with n up quarks also contains n antidown quarks (resp. −n down quarks)
which bind together to form n-meson states. The collection of all states with n up and −n down quarks
forms the canonical partition function Z(n,−n)(T ). The vacuum sector contains flavour singlet states and
meson-antimeson states with isospin I = 0 and is described by the partition function Z(0,0)(T ).
Using the canonical formalism, we can draw a connection between the ground states of the n-meson

sectors in the 2-flavour Schwinger model and the particle-spectrum thereof. The partition function
Z(1,−1) describes a theory consisting of an up quark and an antidown quark which are used to build up
mesons with isospin I = 1. The ground state of this 1-meson sector is just the 1-meson state |ud̄〉 at zero
momentum constructed from the two available components.
However, the 1-meson ground state |ud̄〉 is just the well-known pion state |π+〉, which is a member of

the pion-triplet introduced in subsection (2.2.3)!
This argument displays the one-to-one correspondence between the lightest particle of the system,

which is the pion |π〉 and the ground state of the 1-meson sector. Using this line of argument one can
immediately assign each member of the pion-triplet to its corresponding canonical partition function

|π〉 =


|π+〉 = |ud̄〉 ∈ Z(1,−1),

|π0〉 = 1√
2
(|uū〉 − |dd̄〉) ∈ Z(0,0),

|π−〉 = |ūd〉 ∈ Z(−1,1).

(3.95)
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This game can be played for any n-meson ground state. In analogy to before, the lowest energy state of
the n-meson sector is constructed by taking n up quarks and n antidown quarks. The simplest state one
can build with these components is the multi-pion bound state constructed from n π+-pions

|(π+)n〉 = |(ud̄)(ud̄) . . . (ud̄)〉 ∈ Z(n,−n), (3.96)

which is a member of a pion multiplet with Isospin I = n and Iz = n.
In theory, one can build arbitrarily complicated states with more exotic quark number configurations

such as |ud̄uū〉 etc., however, these are considered to be higher order energy states.

3.6 Ground state energies of the 2-flavour Schwinger model
We are interested in finding the energy of the lowest state in each n-meson sector, that is the ground
state energies of the n-pion states. In order to do so, one has to examine the low-temperature behaviour
of the free energy corresponding to that canonical sector

F (n) := F(n,−n)(T ) = −T log(Z(n,−n)), (3.97)

as explained by Fodor et al. in Ref. [4]. The free energy can also be used in order to define the isospin-
chemical potential µI , a quantity which describes the response of the system, when introducing a new
meson to the system. After labelling the number of mesons with n we can introduce the isospin chemical
potential as

µI(n) = F (n+ 1)− F (n). (3.98)

The canonical partition function of the n-meson sector can be expressed as a sum over all energy states

Z(n,−n)(T ) =

∞∑
k=0

m(k)
n e−E

(k)
n /T , (3.99)

where m(k)
n denotes the multiplicity and E

(k)
n the energy of the k-th state of the n-meson sector. We

assume these energies to be ordered, such that E(k+1)
n > E

(k)
n , for all k and n. In the vacuum sector

(nu, nd) = (0, 0) the lowest energy state is the vacuum state, which is assumed to be non-degenerate
(m(0)

0 = 1), such that

Z(0,0)(T ) = e−E
(0)
0 /T +

∞∑
k=1

m
(k)
0 e−E

(k)
0 /T . (3.100)

Using the expansion of the canonical partition function, the free energy difference can be written down
as

F(n,−n)(T )− F(0,0)(T ) = −T log

(Z(n,−n)

Z(0,0)

)

= −T log

m(0)
n e−E

(0)
n /T (1 +

∑∞
k=1

m(k)
n

m
(0)
n

e−(E(k)
n −E

(0)
n )/T )

e−E
(0)
0 /T (1 +

∑∞
k=1m

(k)
0 e−(E

(k)
0 −E

(0)
0 )/T )


= Enπ − T log(m(0)

n )− T log

 1 +
∑∞
k=1

m(k)
n

m
(0)
n

e−(E(k)
n −E

(0)
n )/T

1 +
∑∞
k=1m

(k)
0 e−(E

(k)
0 −E

(0)
0 )/T

 , (3.101)

where we introduced the ground state energy of the n-meson sector as

Enπ = (E(0)
n − E

(0)
0 ) (3.102)

and the last term in eq. (3.101) denotes corrections from higher order energy states.1 One can define the
temperature-dependent ground state energy of the n-meson sector, as a difference of the corresponding
free energies

Enπ(T ) = F(n,−n)(T )− F(0,0)(T ). (3.103)
1We denoted the ground state energies with an additional subscript π, since we established that the ground state energies
of the different n-meson sectors are multi-pion states.
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The true ground state energy Enπ of the n-meson sector, can be obtained by extrapolating to zero
temperature (T → 0), such that

Enπ = lim
T→0

Enπ(T ) = − lim
T→0

T log

(Z(n,−n)(T )

Z(0,0)(T )

)
. (3.104)

Throughout chapter 4 and 5 above equation will be referred to as the “master formula”.

3.6.1 Bosonic dispersion relation on the lattice
Consider now the 2-flavour Schwinger model as introduced in section 3.5 on a lattice of extent L × Lt.
The spectrum consists of multi-meson states as discussed in subsection 2.2.2. In order to describe the
energy of those multi-meson states we write down the bosonic dispersion relation [43]. The bosonic
dispersion relation for n mesons with momenta pi, i ∈ {1, . . . , n} reads

En(p1, p2, . . . , pn) =

n∑
i=1

cosh−1 (cosh(mπ) + 1− cos(pi)) , (3.105)

where the total momentum P is quantized on the lattice

P =

n∑
i=1

pi =
2π

L
d, with d ∈ Z. (3.106)

One can show, that by taking the continuum limit a → 0, one reproduces the well-known bosonic
dispersion relation in the continuum

En(p1, p2, . . . , pn) =

n∑
i=1

√
m2
π + p2

i . (3.107)

However, for our purposes the correct dispersion relation is given by eq. (3.105).

3.6.2 Examination of the vacuum sector with isospin content I = 0

Upon discussing the extraction of ground state energies and the bosonic dispersion relations, we are
sufficiently equipped to examine the expansion for the canonical sectors

Z(n,−n)(T ) =

∞∑
k=0

m(k)
n e−E

(k)
n /T , (3.108)

and write down explicit expressions for the multiplicities m(k)
n and the energies E(k)

n . This allows us
to describe the finite temperature behaviour of the system as precisely as possible. In the last part of
this chapter, we derive simplified and applicable expressions for the canonical partition functions in the
isospin sectors I = 0, 1, 2 and I = 3, which will be used for the numerical investigations in chapter 5.
First, let us consider the vacuum sector Z(0,0) which has isospin content I = 0 and contains the vacuum

state, which is the lowest lying energy state of the theory (assumed to be non-degenerate) such that

Z(0,0)(T ) = e−E
(0)
0 /T +

∞∑
k=1

m
(k)
0 e−E

(k)
0 /T . (3.109)

All other energy states have to be taken relative to the vacuum energy E(0)
0 . Since the overall lightest

particle of the system is given by the pion-triplet, the π0 pion at rest denotes the ground state of the
vacuum sector, above the vacuum state itself. The multplicity of the π0 state is m(1)

0 = 1, similar to the
vacuum state. For the tower of states we have

vacuum state Z(0,0) :|0〉, E
(0)
0 ,m

(0)
0 = 1,

ground state Z(0,0) :|π0〉, E
(0)
π0 ,m

(1)
0 = 1,

(3.110)
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so far, where the energy of the ground state is taken as a difference to the vacuum energy

E
(0)
π0 = E

(1)
0 − E(0)

0 = mπ. (3.111)

The next particles which could be in line are the pseudo-scalar singlet state η or the scalar singlet state
f0. For the sake of simplicity we assume, that the η meson and the f0 meson are much heavier than
the pion. There is also a member of the a0 triplet state presented in subsection 2.2.2 and 2.2.3, which
is included in the vacuum sector. However, it is much heavier than the two singlet states and will be
omitted as well.
Upon making these assumptions higher order energy states of the vacuum sector are given by excited

states of the π0 pion, which are basically π0 pions with additional momenta p1 6= 0. The total momentum
is quantized on the lattice, it is therefore straightforward to write down those excited states. Since the
moving π0 pion can only go in two directions the multiplicity of these states is just 2 i.e. m(k)

0 = 2, k ≥ 2.
We can now finish the list of states we started before, by writing down all states, their energy and
multiplicity. Note that the number of excited π0 states is restricted on the lattice by the volume L. We
obtain

vacuum state Z(0,0) :|0〉, E
(0)
0 ,m

(0)
0 = 1,

ground state Z(0,0) :|π0〉, E
(0)
π0 ,m

(1)
0 = 1,

1st. excited state of Z(0,0) :|π0〉(1), E
(1)
π0 ,m

(2)
0 = 2,

2nd. excited state of Z(0,0) :|π0〉(2), E
(2)
π0 ,m

(2)
0 = 2,

...
...

L

2
’th excited state of Z(0,0) :|π0〉(L2 ), E

(L2 )

π0 ,m
(L2 )
0 = 2,

where we implicitely defined the energies of the π0 pion states as

E
(k)
π0 = E

(k+1)
0 − E(0)

0 = cosh−1
(

cosh(mπ) + 1− cos(p(k))
)
, with p(k) =

2π

L
· k. (3.112)

For the sake of illustration we show the tower of excited states in figure 3.1.
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Figure 3.1: Graphical representation of the energies of the π0 states.

Under these aforementioned assumptions the canonical partition function of the vacuum sector can be
written as

Z(0,0)(T ) = e−E
(0)
0 /T

1 + e−mπ/T + 2

L
2∑

k=1

e−E
(k)

π0 /T +O

 , (3.113)
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where O denotes contributions from higher order energy states. We finish this section by emphasizing
once again, that we only derived leading contributions to the vacuum sector. We assumed that secondary
particles are of much higher energy, which allowed us to just write down the contributions arising from
the π0 pion.

3.6.3 Examination of the isospin I = 1 sector
Let us now examine the isospin I = 1 sector

Z(1,−1)(T ) =

∞∑
k=0

m
(k)
1 e−E

(k)
1 /T , (3.114)

and characterize the states, which are living within this sector. We have already established that the
lightest particles of the 2-flavour Schwinger model are given by members of the pion-triplet |π〉. One
member of the pion-triplet, the |π+〉 state lives in the isospin I = 1 sector and denotes the ground state
thereof. As before we can write down the tower of excited states for the π+ pion, that is

ground state Z(1,−1) :|π+〉, E
(0)
π+ ,m

(0)
0 = 1,

1st. excited state of Z(1,−1) :|π+〉(1), E
(1)
π+ ,m

(1)
0 = 2,

2nd. excited state of Z(1,−1) :|π+〉(2), E
(2)
π+ ,m

(2)
0 = 2,

...
...

L

2
’th excited state of Z(1,−1) :|π+〉(L2 ), E

(L2 )

π+ ,m
(L2 )
0 = 2,

which differs slightly from the tower of states in the isospin I = 0 sector. In the Isospin I = 0 sector the
vacuum state takes up the first state and all energy states are considered relative to that vacuum state.
In the isospin I = 1 sector, the lowest state is given directly by the ground state of the π+ pion. The
energies are taken relative to the vacuum energy E(0)

0 again

E
(k)
π+ = E

(k)
1 − E(0)

0 = cosh−1
(

cosh(mπ) + 1− cos(p(k))
)
, with p(k) =

2π

L
· k. (3.115)

Also here, the appearance of additional particles cannot be excluded. Contrary to the I = 0 case, we
will take into account a second particle, which yields higher order energy contributions to the isospin
I = 1 sector. We presented in subsection 2.2.2 the existence of an additional scalar triplet state a0,
which (similar to the pion state) has a member living in Z(1,−1), the a+

0 meson. The tower of states is
analogous to the π+ pion tower of states and given by

E(k)
a0 = E

(k+1+L
2 )

1 − E(0)
0 = cosh−1

(
cosh(ma0) + 1− cos(p(k))

)
, with p(k) =

2π

L
· k. (3.116)

The precise order of the excited energy states is not really relevant here - changing the order of energy
states in the partition function boils down to a rearrangement of summands in Z(1,−1). However, the
correct identification of the ground state is important.
After factorizing out the lowest energy state E(0)

1 in Z(1,−1) we obtain energy differences which need
to be taken relative to the vacuum energy

E
(k)
1 − E(0)

1 = (E
(k)
1 − E(0)

0 )− (E
(0)
1 − E(0)

0 ) = (E
(k)
1 − E(0)

0 )−mπ, (3.117)

where we implicitely defined the ground state energy of the 1-pion state, which is simply given by the
pion mass

Eπ = E
(0)
1 − E(0)

0
!
= mπ. (3.118)

Furthermore, the contribution (E
(k)
1 − E(0)

0 ) is given either by E(k)
π+ or by E(k)

a0 , depending on the value
of k. This allows us to write down the partition function as

Z(1,−1)(T ) = e−E
(0)
1 /T

1 + 2

L
2∑

k=1

e−(E
(k)

π+−mπ)/T + e−(ma0−mπ)/T + 2

L
2∑

k=1

e−(E(k)
a0
−mπ)/T +O

 , (3.119)

where the third and fourth term in the brackets are contributions from the a+
0 meson and O again denotes

higher order energy contributions.
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3.6.4 Examination of higher order isospin sectors
The examination of higher order isospin sectors unfortunately puts forth some problems. We follow the
procedure as executed for the isospin I = 0 and I = 1 sector and continue with the isospin sector I = 2.
The difficulties which we are going to illustrate arise for all isospin sectors I ≥ 2. Consider the partition
function for the isospin I = 2 sector

Z(2,−2)(T ) =

∞∑
k=0

m
(k)
2 e−E

(k)
2 /T , (3.120)

then the ground state of that sector is given by the 2-pion state |π+π+〉 at rest and its tower of excited
states. Here we omit other possible particle states for the sake of simplicity. Consider two pions with
momenta (p1, p2). In order to construct the lowest-lying energy state we go into the center of mass frame,
such that the total and the relative momenta are given by

P = p1 + p2 = 0, and k =
p1 − p2

2
, respectively. (3.121)

The energy of a 2-pion state with momentum k is then given by

E2π(k) = 2 cosh−1(cosh(mπ) + 1− cos(k)). (3.122)

Naively, one would think that the ground state is given by two π+ pions at rest with relative momentum
k = 0. However, from section 2.7 we know that the two pions in a box scatter off each other, which
results in a correction to the relative momentum k.
The relative momenta of the 2-pion states are not multiples of 2π

L , but follow a quantization condition
which is given by eq. (2.74), that is

2δ(k) = −kL+ 2πn, n ∈ Z. (3.123)

All the relative momenta k need to fulfill said non-trivial quantization condition, unfortunately, we do
not have any information for the scattering phase shift δ(k) in the 2-flavour Schwinger model. If we build
the tower of states and write down the expansion of the isospin I = 2 sector in terms of excited |π+π+〉
states we obtain

Z(2,−2)(T ) = e−E
(0)
2 /T

1 + 2

L
2∑

k=1

e−(E
(k)

2π+−E2π)/T +O

 , (3.124)

where the energies E(k)
2π+ are given by

E
(k)
2π+ = 2 cosh−1(cosh(mπ) + 1− cos(k(k))) (3.125)

and we defined the 2-pion ground state energy as

E2π = E
(0)
2 − E(0)

0
!
= E

(0)
2π+ . (3.126)

In above equations the relative momenta k(i) fulfill the quantization conditions presented in eq. (3.123).
The relative momentum k(0), belonging to the ground state energy of the |π+π+〉 state, is the smallest
relative momentum fulfilling said quantization condition. Note that we denote the multiplicity of the
ground state with m(0)

2 = 1, since its continuum analogon, would not have any momentum at all k(0) = 0.
Above formula for the expansion of the isospin I = 2 sector is not really suitable to determine the

ground state energy E2π, since the relative momenta k(i) cannot be determined beforehand and we
are left with many free variables. In order to have a description of the temperature behaviour we
propose an effective ansatz, where we express the partition function Z(2,−2)(T ) with as few parameters
as possible. We only consider the ground state |π+π+〉 and its energy E2π and summarize all excited
state contributions into an effective correction term. We propose for the partition function

Z(2,−2)(T ) = e−E
(0)
2 /T

(
1 +A2e

−A1/T
)
, (3.127)

where the second term in the bracket denotes the effective corrections with A1, A2 > 0.
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Similar arguments hold true when examining the isospin I = 3 sector. Also here, the 3-pion states
E

(k)
3π+ rely on quantized momenta due to scattering phenomena in a finite box. To obtain a description

for the partition function of the isospin I = 3 sector we use again an effective description. The only
physical state we consider is the 3-pion ground state |π+π+π+〉 with energy

E3π = E
(0)
3 − E(0)

0 , (3.128)

higher order contributions are summarized in an effective correction term. The used effective description
for the partition function of the isospin I = 3 sector reads

Z(3,−3)(T ) = e−E
(0)
3 /T

(
1 +B2e

−B1/T
)
, (3.129)

where B1, B2 > 0 parametrize these effective corrections.

3.6.5 Conclusion
So far we had a closer look at the partition functions of the isospin I = 0, I = 1, I = 2 and I = 3
sectors. Upon making some simplifying assumptions about the spectrum, we considered the dominant
contributions to each partition function and wrote down the expansion thereof. We can now write
down a heuristic ansatz for the ground state energies of those sectors using the free energy difference.
These expressions will be used to numerically determine the temperature dependence of the ground state
energies.
Using the master formula eq. (3.104) with n = 1 and upon omitting higher order corrections O we

obtain for the temperature dependence of the pion mass Eπ(T )

Eπ(T ) ≈ mπ − T log

1 + 2
∑L

2

k=1 e
−(E

(k)

π+−mπ)/T + e−(ma0−mπ)/T + 2
∑L

2

k=1 e
−(E(k)

a0
−mπ)/T

1 + e−mπ/T + 2
∑L

2

k=1 e
−E(k)

π0 /T

 .

(3.130)

Similarly, we obtain expressions for the temperature dependent ground state energies of 2- and 3-pion
states

E2π(T ) ≈ E2π − T log

(
1 +A2e

−A1/T

1 + e−mπ/T + 2
∑L

2

k=1 e
−E(k)

π0 /T

)
(3.131)

and

E3π(T ) ≈ E3π − T log

(
1 +B2e

−B1/T

1 + e−mπ/T + 2
∑L

2

k=1 e
−E(k)

π0 /T

)
. (3.132)

We show the tower of states in figure 3.2 for the sake of clarity.
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Figure 3.2: Graphical representation of the energy levels of the different canonical sectors.
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4 Numerical studies - Qualitative results

In this chapter we discuss some general topics related to the Schwinger model in the canonical formalism.
First, we examine autocorrelation effects of the topological charge, which arise when performing quenched
(Nf = 0) and dynamical simulations (Nf = 2). Next, we discuss the average plaquette, which will be
used in order to confirm the validity of our quenched simulations.
We use quenched simulations to discuss aspects of the 1-flavour Schwinger model in the canonical

formalism. A big part of this chapter is dedicated to canonical determinants, transfer matrices and the
interesting properties which come with them. We show that the principal minors of a canonical sector
arrange themselves nicely into “classes”, yielding a very interesting substructure.
We finish this chapter with the 2-flavour Schwinger model. We present some results confirming the

correspondence between the ground state energies of the 1-, 2- and 3-meson sectors and the direct
measurements of the corresponding energies extracted from correlators formed with π+, π+π+ and
π+π+π+ operators. We also examine condensation phenomena in the 2-flavour Schwinger model using
the canonical formulation.
Throughout this chapter we work on a lattice of extent L × Lt, where we set the lattice spacing to

one, i.e. a = 1, if not mentioned otherwise.

4.1 Topological charge and autocorrelation effects

Since there is no efficient prescription on how to perform canonical simulations yet, we utilize quenched
(Nf = 0) and dynamical simulations (Nf = 2) instead. To access the canonical sectors one must perform
a reweighting procedure, as explained in the appendix section C.9.
Here we want to discuss the autocorrelation effects of the topological charge Q, which arise when

working with quenched and dynamical simulations. An explanatory description of autocorrelation effects
is given in the appendix section C.4.
The sampling of decorrelated configurations in lattice simulations can be very tedious, if large energy

barriers exist between regions in configuration space. In the Schwinger model energy barriers separate the
so-called topological sectors, which are characterized by the topological charge of the gauge configuration.
We use the geometrical definition of the topological charge [44, 45], that is

Q =
1

2π

∑
P

log(UP ), UP = eiθP , (4.1)

where UP denotes the gauge plaquette and θP is the plaquette angle as introduced in eq. (A.61). With
increasing β the tunnelling rate between different topological sectors decreases, which yields an ergodicity
problem. This effect is known as “topological freezing” and also occurs in other lattice gauge theories
such as QCD, see Refs. [46, 47]. Although the autocorrelation time for the topological charge increases
drastically with augmenting β (see figure 4.1 for a Monte Carlo history of the topological charge in
quenched simulations), other observables seem to be less affected.
Nonetheless one needs to be attentive with measurements originating from different topological sectors.

For example, it was hinted that different topological sectors yield different pion masses [21]. Furthermore,
one can show that in the chiral limit dynamical simulations (i.e. simulations performed with 2 flavours.)
also exhibit the same kind of topological freezing.

4.2 Plaquette

Albeit having access to quenched and dynamical simulations we work almost exclusively with quenched
simulations, in particular, the computations in chapter 5, have all been done using quenched simulations.
Quenched simulations are quick to generate and allow more flexibility, for example when reweighting to
different masses. Preliminary examinations have also shown that quenched simulations in general have
a higher rate of change between topological sectors and access topological sectors with large charges
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Figure 4.1: Monte Carlo history for topological charge Q. Quenched simulations with L = Lt = 8,
were used here. We made 10′000 thermalization steps and 10′000 measurements after-
wards. Between each measurement we skipped 100 metropolis update steps.
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Figure 4.2: Monte Carlo history for topological charge Q. Dynamical simulations (Nf = 2) with
L = Lt = 8, fixed coupling β = 5.0. Similar to the quenched simulations, these simulations
have been performed with a simple metropolis algorithm, for the sake of comparison. We
made 10′000 thermalization steps and 10′000 measurements afterwards. Between each
measurement we skipped 100 metropolis update steps. We approach the chiral limit
by approaching small negative bare mass m0, such that m0 → mcrit, as explained in
section 2.5.

|Q|. Therefore, we believe that quenched simulations cover a larger subset of configuration space. To
confirm the validity of our simulations analytical results are useful for numerical checks, in our case,
these analytical results will be provided by the average plaquette. The average plaquette is defined as

〈P 〉 = 〈 1

2Ω

∑
P

(UP + U†P )〉 = 〈 1

Ω

∑
P

cos(θP )〉, (4.2)

where Ω = L · Lt denotes the number of plaquettes on the lattice. For quenched simulations one can
show (appendix section (G.3)) that the average plaquette is given by

〈P 〉 =

I1(β)
I0(β) +

∑∞
n=1

[(
In(β)
I0(β)

)Ω−1 (
In−1(β)
I0(β) + In+1(β)

I0(β)

)]
1 + 2

∑∞
n=1

(
In(β)
I0(β)

)Ω
. (4.3)

Our simulations have been cross-checked with those analytic predictions, as shown for example in fig-
ure 4.3.
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Figure 4.3: Comparison between the average measured plaquette 〈P 〉 and the analytical results
(dashed lines). We used quenched simulations with coupling β = 5.0 and three differ-
ent volumes L = 4, 8, 12.

41



4.3 Comparison between grand-canonical and canonical weights

For the next discussion, we take the quenched simulations and reweight them to the 1-flavour Schwinger
model in the canonical formulation. Although the 1-flavour Schwinger model has a sign problem it can
be ignored if we choose the bare mass m0 of the quark to be sufficiently large. A more careful discussion
of the sign problem in the 1-flavour Schwinger model is given in section C.8, but for the following
considerations we consider the bare mass to be large enough (resp. the coupling κ to be small enough)
such that the sign problem is absent.
The grand-canonical partition function for the 1-flavour Schwinger model has been discussed in detail

in section 3.1. The fugacity expansion reads

ZGC(T, µ) =

∫
DU det(K[U, µq])e

−Sg [U ] (4.4)

!
=

L∑
k=−L

eµqk/TZk(T ), (4.5)

where Zk(T ) denotes the canonical partition function given by

Zk(T ) =

∫
DUe−Sg [U ]detk(K[U ]). (4.6)

The connection between the two partition functions is established via the dimensional reduction of the
determinant of the Wilson Dirac operator, which has been extensively discussed in section 3.3.
The final result of said reduction is given by eq. (3.58), that is

det(K[U, µq]) =

L∑
k=−L

eµqLtkdetk(K[U ]). (4.7)

From now on, we set the quark chemical potential to zero µq = 0 and introduce a new notation for the
sake of readability. We use

det(K) = det(K[U, µq]) and detk(K) = detk(K[U ]), (4.8)

such that above relation simply reads

det(K) =

L∑
k=−L

detk(K). (4.9)

The canonical weights detk(K) fix the number of fermions (resp. quarks) in the system, while det(K)
takes into account all contributions with varying quark numbers.
By taking the ratio between the weights

detk(K)

det(K)
, (4.10)

we can make statements about how much the canonical sectors contribute to the overall grand-canonical
system. Note, that the Gauss law states that the total charge of the system on the lattice needs to be
zero. Since we are only working with 1 quark flavour, the Gauss law simply states that

〈detk(K)〉 = 0, ∀k 6= 0, (4.11)

indicating, that the only non-vanishing canonical contribution is coming from the vacuum sector with no
quark content (k = 0). However, for individual configurations we can have non-zero contributions from
other quark sectors, which means that for a single configuration we can have a naive look at the relative
weights given by eq. (4.10). In order to do so, we introduce the quark density

ρ(k) =
k

L
, k ∈ {−L, . . . , . . . , L}, (4.12)
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where k denotes the number of quarks and L denotes the volume. Note, that the resolution of the quark
density increases with the volume L. The lattice can be completely saturated with L anti quarks or L
quarks, resulting in

ρ(−L) = −1, and ρ(L) = 1, respectively. (4.13)

The vacuum sector with no quark content is then described by ρ(0) = 0. For the full real determinant of
the Wilson Dirac operator eq. (4.9), the complex phases in the canonical determinant cancel each other
out, due to the reflection symmetry

det∗k(K) = det−k(K) ∀k ∈ {0, . . . , L}. (4.14)

This allows us to restrict ourselves to the real part of the canonical determinants and consider the ratio

<[detk(K)]

det(K)
, (4.15)

as a function of the quark density. We only consider a single thermalized configuration for two different
volumes L = 10 and L = 20. The results are given in figure 4.4, we expressed the volume using the
dimensionless combination gL, where the two couplings g and β are related to each other via β = 1/(ag)2.
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Figure 4.4: We plot here the contribution <[detk(K)]
det(K)

for a single configuration with β = 7.0,m0 =
0.0266 and fixed temperature gLt ≈ 15.12. The continuous bars denote positive contri-
butions, while the dashed ones denote negative contributions.

There are a few interesting phenomena one can observe. As expected the dominant contribution is
given by the vacuum sector with no quark content ρ(k) = 0, where <[detk(K)]

det(K) becomes approximately
one (difficult to see in figure 4.4 due to the scaling of the plot). For the neighbouring sectors the
contributions are continuously decreasing and either positive or negative (continuous bars represent
positive contributions, dashed ones represent negative contributions). This ambiguity in the sign makes
sense, the Gauss law states that the only surviving contribution in the ensemble average should be coming
from the vacuum sector, see eq. (4.11).
It is also very interesting to examine the differences between the two volumes. It seems that for

larger volumes the distribution is more sharply peaked around the vacuum sector. This means that
neighbouring sectors become more suppressed with increasing quark density.
Since we established the non-trivial behaviour of the canonical weights, we consider the ratio

det0(K)

det(K)
− 1, (4.16)
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and examine lattice artefacts by fixing the volume gL and the temperature gLt. We vary the coupling β,
which is related to the lattice spacing a via β = 1/(ag)2. We measure the ratio given by eq. (4.16), bin the
results and present them in a histogramm given in figure (4.5). We see that the results fluctuate around
0, as expected. However, there is no visible difference between the three lattice spacings, indicating
that lattice artefacts are very well under control. We obtain a seemingly universal behaviour for the
distribution.
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Figure 4.5: Examination of lattice artefacts for the distribution of det0(K)
det(K)

− 1, for fixed volume and
temperature gL = gLt ≈ 15.10. The measurements correspond to L = 26 for β = 3.0,
L = 34 for β = 5.0 and L = 40 for β = 7.0. The bare masses were chosen in such a
way that the infinite volume pion mass in the 2-flavour Schwinger model would be fixed,
mπ/g ≈ 0.75.

Next, we examine the same fluctuations given by eq. (4.16) at fixed lattice spacing β and fixed tem-
perature gLt. This time we vary the volume dependence instead. We present the results in figure 4.6,
where we see that with increasing volume the distribution becomes wider until eventually saturating.
The y-axis in figure 4.6 is log-scaled, the fact that the distribution approaches a triangle-shape indicates

clearly that the original distribution is exponentially decaying.
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− 1, with fixed lattice spacing β, fixed temperature
gLt ≈ 15.12 and for different volumes.

45



4.4 Spectrum of the transfer matrix T
We continue with the 1-flavour Schwinger model in the canonical formulation and consider now the
spectrum of the transfer matrix T . The derivation of the full transfer matrix is given in subsection 3.3.2
and the examination of the spectrum σ(T ) has been done in subsection 3.3.4. Here we briefly recapitulate
the most important details and give some results. The transfer matrix is related to the canonical
determinants via eq. (3.59), that is

detk(K) =

(
Lt∏
i=1

|Bi||2κU†i |

) ∑
I,|I|=k+L

det(T II), (4.17)

and is constructed by using the building blocks from the Wilson Dirac operator

T =

Lt∏
i=1

(Q−i )−1Q+
i Ũi. (4.18)

One interesting property, which has been derived in subsection 3.3.4, is the symmetry property of the
spectrum. We argued, that

σ(T ) = {λ1, . . . , λL,
1

λ∗1
, . . . ,

1

λ∗L
} = {r1e

iφ1 , . . . , rLe
iφL ,

1

r1
eiφ1 , . . . ,

1

rL
eiφL}, (4.19)

which means that the eigenvalues split up nicely into two sectors, either

|λ| < 1.0, or |λ| > 1.0. (4.20)

In figures 4.7 and 4.8 we show the distribution of the eigenvalues for 100 thermalized configurations.
Close to the circle with radius r = 1 (denoted by a blue line on the right plot in figure 4.7 and 4.8) one
can find partnered eigenvalues, which are related to each other via

λi = rie
iφi and

1

λ∗i
=

1

ri
eiφi . (4.21)
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Figure 4.7: Distribution of the eigenvalue spectrum for 100 thermalized configurations with β =
5.0,m0 = 0.0220 and (L,Lt) = (8, 4). The blue circle denotes the boundary, which
separates the eigenvalues into two subsets - if |λi| > 1.0, then that eigenvalue is outside
the blue circle and has a partner 1

λ∗i
living inside the circle. We denote some examples of

partnered eigenvalues with coloured circles.

46



5000 2500 0 2500 5000
6000

4000

2000

0

2000

4000

6000

1 0 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 4.8: Distribution of the eigenvalue spectrum for 100 thermalized configurations with (L,Lt) =
(8, 8), β = 5.0,m0 = 0.0220. We denote some examples of partnered eigenvalues with
coloured circles.

4.5 Distribution of the principal minors
After investigating the spectrum of the transfer matrix, we want to discuss the principal minors related
to the transfer matrix. For the sake of simplicity (and if not mentioned otherwise) we combine the
principal minor with its prefactor and redefine the principal minor as

P II =

(
Lt∏
i=1

|Bi||2κU†i |

)
det(T II). (4.22)

We consider the quark sector with k quarks in our system, corresponding canonical partition function
Zk(T ) and canonical determinant detk(K). Then the complete number of principal minors N [P II ] is
given by the number of possible index sets one can build, such that

N [P II ] =

(
2L

L+ k

)
, for |I| = L+ k, and k ∈ {−L, . . . , L}. (4.23)

We hinted, in the end of subsection 3.3.4, that the canonical determinants fulfill some sort of reflection
symmetry, such that

det∗k(K) = det−k(K) ∀k ∈ {0, . . . , L}, (4.24)

which was also used in the previous section. This symmetry can be confirmed on the level of the principal
minors, which has been done in the appendix section G.4. There we showed that for each principal minor
P II , belonging to the canonical sector detk(K),

P II =

(
Lt∏
i=1

|Bi||2κU†i |

)
det(T II), with |I| = k + L (4.25)

there is a complex conjugated partner P̃ JJ living in the canonical sector det−k(K)

P̃ JJ =

(
Lt∏
i=1

|Bi||2κU†i |

)
det(T JJ), with |J | = −k + L, (4.26)

such that

P̃ JJ = (P II)†. (4.27)

This relationship ensures that the reflection symmetry eq. (4.24), is fulfilled. Interestingly, this also
means that the canonical determinant corresponding to the vacuum sector with k = 0 is real

det0(K) ∈ R, (4.28)
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and that each principal minor of det0(K) is either real or has a complex-conjugate partner, which is also
in det0(K).
In figure 4.9 we show the values of the principal minors in the vacuum sector det0(K) for a single

configuration, which displays nicely the mentioned symmetry on the level of the principal minors.
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Figure 4.9: Principal minors in the vacuum sector (no quark content) for a single configuration, with
β = 5.0, m0 = 0.0220 and (L,Lt) = (8, 8). We have a lone principal minor to the far right,
which seems completely isolated from the rest. This principal minor shows up in each
configuration, belongs to the index set {1, 2, 3, . . . , L}, and is always real and positive.

One interesting observation we make is that the contributions seem to be dominated by a single
principal minor sitting on the real axis, to the very right. This principal minor shows up in the vacuum
sector det0(K) on all configurations and is described by the index set I = {1, 2, 3, . . . , L}, we refer to it
as the maximal principal minor. Its contribution will be discussed in detail later when illustrating the
division of the principal minors into different classes.
Each principal minor in the vacuum sector is either real or has a complex conjugate partner. If we

interpret these contributions as weights, we can consider the real parts only and examine the overall
distribution of the weights. Since the principal minors can differ several orders of magnitude we take the
logarithm for the sake of illustration. We consider the distributions of the positive and negative principal
minors separately and use

log(<[P II ]) for <[P II ] > 0 and log(−<[P II ]) for <[P II ] < 0. (4.29)

The distributions belonging to the positive principal minors <[P II ] > 0 are denoted with continuous
lines, while the distributions belonging to negative principal minors <[P II ] < 0 are denoted with dotted
lines, which allows us to compare both distributions in a much cleaner way.
In figure 4.10 we show the distribution of the principal minors in the vacuum sector, for two different

temperatures. Our results display nicely that the positive contributions outnumber the negative ones,
indicating that potential sampling algorithms using principal minors would only encounter a minor sign
problem.
In figure 4.11 we show the distribution of the principal minors for a variety of different temperatures.

We see that -especially for high temperatures (i.e. small Lt)- the distributions seem to have an additional
substructure, indicated by the multiple spikes. Upon decreasing the temperature the distributions become
smoother until the substructure is not recognizable anymore. For the remainder of this thesis, we label
these substructures as classes. These classes are characterized by their index sets and will be discussed
in the next section. However, it is worth noting, that we have already encountered one of these classes
characterized by the maximal principal minor with index set {1, 2, 3, . . . , L}.
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Figure 4.10: Histogram of all the contributions from the principal minors P II in the vacuum sector,
we keep β = 5.0,m0 = 0.0220, L = 8 fix and consider two different temperatures Lt. The
plot on the left has been done at a high temperature Lt = 8, while the plot on the right
has been done at a low temperature Lt = 40. For each plot we used 1′000 configurations
and the dotted lines indicate the negative weights with <[P II ] < 0.0. The distribution
of the principal minors becomes smoother for increasing Lt (decreasing temperature),
for high temperature the distribution displays an interesting substructure.
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Figure 4.11: Distribution of the principal minors P II in the vacuum sector, we keep β = 5.0,m0 =
0.0220, L = 8 fix and vary the temperature Lt. The dotted lines indicate negative contri-
butions, that is <[P II ] < 0.0. If we compare the positive with the negative contributions
we see that the net-weight is always positive. Similar as in figure 4.10, the distributions
become smoother with decreasing temperature.
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4.6 Class structure of the principal minors
The appearance of the class structure has already been mentioned in the previous sections and will be
elaborated in more detail here, meaning that we continue with the 1-flavour Schwinger model in the
canonical formulation. In this section we work exclusively with the vacuum sector, that is Z0(T ), and
its corresponding canonical determinant

det0(K) =
∑

I,|I|=L

[(
Lt∏
i=1

|Bi||2κU†i |

)
det(T II)

]
!
=

∑
I,|I|=L

P II , (4.30)

where the full transfer matrix T is given by

T =

Lt∏
i=1

(Q−i )−1Q+
i Ũi. (4.31)

The principal minor P II

P II =

(
Lt∏
i=1

|Bi||2κU†i |

)
· det(T II), (4.32)

decomposes into a bulkfactor and the original principal minor of the transfer matrix T . The princi-
pal minors of the transfer matrix T , respectively the index sets thereof, cause the appearance of the
aforementioned class structure.
We give a heuristic argument, explaining the reasoning behind the appearance of said class structure

and show that it is indeed related to the index sets.
For the following discussion we choose the coupling in such a way that

0 < κ� 1, resp.
(

1

2κ

)
!
= m0 + 2� 1

2
. (4.33)

Furthermore, we consider a simplified scenario, where we set the temporal extent of the lattice to Lt = 1,1
such that

T = (Q−1 )−1Q+
1 Ũ1. (4.34)

The last factor Ũ1 has been discussed in subsection 3.3.4 and is given by a block-diagonal matrix with
two submatrices Ũ11, Ũ22 of size L× L

Ũ11 = diag[

(
1

2κ

)
eiϕ1 , . . . ,

(
1

2κ

)
eiϕL ] and Ũ22 = diag[(2κ)eiϕ1 , . . . , (2κ)eiϕL ], (4.35)

such that Ũ1 can be written as

Ũ1 =

(
Ũ11 0
0 Ũ22

)
∼
(
O( 1

2κ ) 0
0 O(2κ)

)
. (4.36)

In the last step, we recognized that the contributions are either of order O( 1
2κ ) or O(2κ). Consider now

the first two factors of this transfer matrix, which have been discussed in subsection 3.3.5 and are given
by

(Q−1 )−1Q+
1 =

(
D1 − C1.D

−1
1 .C1 −C1D

−1
1

D−1
1 C1 D−1

1

)
. (4.37)

Upon reminding ourselves of the definitions of C1 and D1

D1 = δn,m − κ(Un,mδm,n+1̂ + Un,mδm,n−1̂) (4.38)

C1 = κ(Un,mδm,n+1̂ − Un,mδm,n−1̂), (4.39)

1We ignore any kind of additional minus signs, which might arise with an odd Lt.
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We can express (Q−1 )−1.Q+
1 in terms of contributions of order 1 or order κ

(Q−1 )−1Q+
1 =

(
D1 − C1.D

−1
1 .C1 −C1D

−1
1

D−1
1 C1 D−1

1

)
∼
(

1 +O(κ) O(κ)
O(κ) 1 +O(κ)

)
. (4.40)

Multiplying all contributions together yields

T = (Q−1 )−1Q+
1 Ũ1 ∼

(
O( 1

2κ ) +O( 1
2 ) O(2κ2)

O( 1
2 ) O(2κ) +O(2κ2)

)
. (4.41)

Since we restricted ourselves to a regime with κ � 1, it is evident, that the dominant contribution is
coming from the upper left part of the transfer matrix corresponding to a principal minor with index set
I = {1, 2, 3, . . . , L}. The same line of argument holds for arbitrary Lt > 1.
The presented argument shows that index sets containing numbers from 1 to L are favoured, while

index sets containing numbers from L+ 1 to 2L are seemingly unfavoured. The extreme case, which we
have already encountered before, is the maximal principal minor

P II , with I = {1, 2, 3, . . . , L}. (4.42)

The “next”-extreme case, would be with a principal minor P II with L−1 indices chosen from 1 to L and
one index choosen in between L+ 1 and 2L. We continue this construction of index sets until ending up
with the smallest principal minor

P II , with I = {L+ 1, L+ 2, L+ 3, . . . , 2L}. (4.43)

Following this explanation we define the classes based on the number of dominant indices in the index
set I.
We emphasize once again that this discussion holds in the vacuum sector, i.e. the canonical sector

with no quark content k = 0, where the total number of principal minors is given by

N [P II ] =

(
2L

L

)
, for |I| = L. (4.44)

We define “class 0” to be the dominant class, that is the class describing the maximal principal minor
with index set I = {1, 2, . . . , L}. Since we only have one index set we denote N0[P II ] = 1. Class 1 shall
be the class, where the index set is chosen in such a way that

I = {i1, i2, . . . , iL−1︸ ︷︷ ︸
Choice between

1 and L

, iL︸︷︷︸
Choice between
L+ 1 and 2L

}. (4.45)

The number of index sets in class 1 is therefore just given by N1[P II ] = L2. We have L choices of which
index to include in {L+ 1, . . . , 2L} and L choices of which index to exclude from {1, . . . , L}. Following
this kind of argument, we can build up the tower of classes and write down the number of principal
minors belonging to each class. The general formula describing the number of principal minors for class
J with J ∈ {0, 1, 2, . . . , L}, reads

Class J NJ [P II ] =

(
L

J

)(
L

L− J

)
.

If we sum up all the principal minors of each class, we obtain, as expected, the total number of principal
minors of det0(K), that is (

2L

L

)
=

L∑
J=0

(
L

J

)(
L

L− J

)
, (4.46)

where we used Vandermonde’s identity. Note, that the splitting of the principal minors into classes is
not an exclusive feature of the vacuum sector, but also shows up in the other canonical sectors.
Next, we can split up all the principal minors of the vacuum sector into those classes and examine

the distribution of the principal minors for each class separately. As before we consider log(<[P II ]) for
positive principal minors and log(−<[P II ]) for negative principal minors. The results for the distributions
for a high temperature of Lt = 8, are given in figure 4.12.
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Figure 4.12: Class structure of the principal minors in the vacuum sector, with β = 5.0, m0 = 0.0220,
L = 8 fix and Lt = 8. The continuous lines represent the positive contributions, while
the dotted lines (below the continuous ones) represent the negative contributions. We see
that the dominant class 0 (cyan-coloured, collection of all dominant prinicipal minors),
is presented to the far right with a little bump. Each class seems to have “subclasses”,
denoted by bumps again.

As expected, the dominant class, that is class 0, can be found to the very far right and is always positive
- giving the largest relative contribution to the positive determinant of the Wilson Dirac operator. With
increasing “class-number” the principal minors become smaller and smaller and the contributions from
the highest class L = 8, are sitting to the very left. Additionally, we notice that there seems to be some
kind of substructure to each class, indicating that there is more information hidden within those classes.
For decreasing temperatures, the classes smoothen out and become almost log-normal. We show the
division of principal minors into classes for a low temperature of Lt = 40 in figure 4.13.
Upon examining the figures it seems that for low temperatures the distributions for the dominant

classes become smoother, almost Gaussian. This might be an indication, that the principal minors are
log-normal distributed at low temperatures. We investigate this further, by restricting ourselves to the
dominant class, that is class 0 and investigating its distribution for various temperatures in figure 4.14.
We see very nicely how for decreasing temperature the distribution becomes “smoother” and “rounder”
and the overall contribution shifts to the right.
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Figure 4.13: Class structure of the principal minors in the vacuum sector, with β = 5.0, m0 = 0.0220,
L = 8 fix and Lt = 40. With decreasing temperature the subclass structure seems to
get “washed out”.
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Figure 4.14: Distribution of the maximal principal minor (class 0) in the vacuum sector for fixed
β = 5.0,m0 = 0.0220, L = 8 and varying Lt. We can see, that for decreasing temperature
the distribution looks very much normal-distributed.
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4.7 Spectroscopy with the canonical formalism
So far we worked in this chapter with the quenched Schwinger model (Nf = 0), as well as with 1-
flavour Schwinger model (Nf = 1). Throughout this section and the next section, we turn to the
2-flavour Schwinger model. We extract ground state energies of multi-pion states, by using the canonical
formalism as illustrated in section 3.5. By using the master formula (eq. (3.104))

Enπ = lim
T→0

Enπ(T ) = − lim
T→0

T log

(Z(n,−n)(T )

Z(0,0)(T )

)
, (4.47)

we can compute the pion masses mπ(L), the 2-pion ground state energies E2π(L) and the 3-pion ground
state energies E3π(L) as a function of the volume L. The details of these computations are a main part
of this thesis and will be elaborated in detail in chapter 5.
These energies can also be extracted by using the correlators formed with π+, π+π+ and π+π+π+

operators. This is explained in more detail in the appendix chapter B.
We argued in section 3.5 that the energies coincide with each other, here want to provide some empirical

evidence for that statement. We compare the ground state energies mcan.
π (L), Ecan.2π (L) and Ecan.3π (L) to

energies extracted from π+, π+π+ and π+π+π+ correlators.
Note, that the canonical results have been obtained by reweighting quenched simulations onto the

canonical sectors, while the results obtained from traditional spectroscopy were done separately using
dynamical simulations with two flavours. We used a publicly available code, provided by Urbach et
al. in [48], which simulates the 2-dimensional Schwinger model with Nf = 2 quarks using a Hybrid
Monte Carlo (HMC) algorithm. Those simulations were performed with different volumes L and for
fixed Lt = 120.
Despite being from completely different simulations, we obtain a very nice agreement between the

measurements, as can be seen in figure 4.15. The only differences seem to stem from the pion mass
at extremely small volume L. We believe that this discrepancy stems from reweighting difficulties, as
elaborated in the appendix section C.9.
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Figure 4.15: We use different volumes and compare the ground state energies mcan.
π (L), Ecan.2π (L) and

Ecan.3π (L) to the direct measurements using correlation functions. We use β = 5.00 and
m0 = 0.0220 such that mπ/g ≈ 0.75.
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4.8 Saturating the lattice with mesons
The biggest advantage of the canonical formalism is the direct access to ground state energies of multi-
meson sectors. This allows us to directly investigate the condensation of pions in the 2-flavour Schwinger
model, circumventing the use of correlators, as explained in the previous section.
To illustrate said condensation phenomenon, we determine the expectation value of the isospin density,

resp. pion density as a function of the isospin chemical potential µI

ρπ(µI) =
〈n〉
L
, (4.48)

where n denotes the number of pions. We compute the pion density by using reweighting methods as
explained in section C.9, where the pion number 〈n〉 can be expressed using simulations of the 2-flavour
Schwinger model, such that

〈n〉 =
〈
∑L
k=−L k · R[Nf = 2, k] · eµIkLt〉Nf=2

〈
∑L
k=−LR[Nf = 2, k] · eµIkLt〉Nf=2

. (4.49)

In above equation we used a reweighting factor, which allows us to reweight to the canonical sectors of
the 2-flavour Schwinger model

R[Nf = 2, k] =
detk(K[U ])det−k(K[U ])

|det (K[U, µI = 0]) |2
. (4.50)

We show results for a fixed volume L = 24 and varying temperatures Lt = 1
T = {20, 60, 180} in

figure 4.16. As expected, we see condensation where the number of pions - and therefore the pion density
- rises as a function of µI . We also notice that the behaviour of the pion density depends heavily on
the temperature. For low temperatures Lt = 60, 180 the pion density rises from ρ = 0 to ρ = 1

24 at
some critical chemical potential µ1 which can be identified as the pion mass µ1 = mπ. If we increase the
isospin chemical potential further, a second pion condensates at some critical value µ2. With increasing
chemical potential more and more pions condensate until eventually saturating the lattice.
This condensation behaviour is different for all three temperatures, at high temperature (given by

Lt = 20) the line is “washed out” denoting a slow continuous change of the pion-density. However, for
low temperatures the behaviour becomes much more distinct, basically resembling a step-function. For
zero temperature one expects discontinuous jumps.
It was shown in Ref. [49] that at very low temperatures the condensation thresholds µi are related to

physical multi-pion energies, i.e.

mπ(L) = µ1(L) and Enπ(L) =

n∑
i=1

µi(L), (4.51)

where we explicitly take into account the volume dependence.
The symbols (circle, square, triangle) in figure 4.16 denote the direct calculations of the isospin chemical

potentials via

µI(n) = F (n)− F (n− 1) = −T log

( Z(n,−n)

Z(n−1,−(n−1))

)
. (4.52)
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Figure 4.16: Pion condensation in the 2-flavour Schwinger model. We used dynamical simulations
(HMC), with β = 5.00,m0 = 0.00, fixed volume L = 24 and 3 different temperatures
Lt = 20, 60, 80.
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5 Numerical studies - Pion scattering using
the canonical partition functions

In this chapter we will be working exclusively with the 2-flavour variant of the Schwinger model in the
canonical formulation on the lattice, as introduced in section 3.5. We consider two mass-degenerate
quarks, an up quark u and a down quark d. The fugacity expansion on the lattice then reads

ZGC(T, µ) =

L∑
nu=−L

L∑
nd=−L

e
µI
2 Lt(nu−nd)Z(nu,nd)(T ), (5.1)

where the isospin chemical potential µI , is related to the quark chemical potentials via

µI
2

= µu = −µd, (5.2)

and the canonical partition functions

Z(nu,nd)(T ) =

∫
DUdetnu(K[U ])detnd(K[U ])e−Sg[U ], (5.3)

fix the number of up and down quarks in our system with the subscript (nu, nd). The number of up
and down quarks is restricted due to the Gauss law, such that the total quark number is zero, while the
isospin is not restricted

Q = nu + nd = 0, and I =
nu − nd

2
arbitrary. (5.4)

Consequently, the meson sectors can be completely characterized by their isospin I. We have argued
in section 3.6, that the ground states of n-mesons sectors are actually multi-pion states, with quantum
numbers I = n. In the canonical formalism it is straightforward to compute the ground state energies
of those multi-pion states Enπ, by taking the free energy difference between the corresponding canonical
sectors

Enπ = − lim
T→0

T log

(Z(+n,−n)(T )

Z(0,0)(T )

)
. (5.5)

Formula (5.5) is of major importance, it will be used to compute multi-pion ground state energies, instead
of correlators. Throughout this chapter we refer to eq. (5.5) as the “master formula”.
The basis of the calculations presented here is given by a range of measurements for multi-pion ground

state energies, where we vary multiple parameters. The simulations are performed for different couplings
β = 1

(ag)2 and different bare quark masses m0, given in table 5.1. From now on, if not mentioned
otherwise, we set the lattice spacing to one, that is a = 1.

Dataset β am0 κ amπ mπ/g

A3 3.0 0.0000 0.5000 0.4330(3) 0.7500(5)
A5 5.0 0.0220 0.4892 0.3387(2) 0.7574(3)
A7 7.0 0.0266 0.4870 0.2859(1) 0.7564(3)
B5 5.0 -0.0400 0.5208 0.1921(4) 0.4296(8)
B7 7.0 -0.0220 0.5112 0.1701(6) 0.450(2)

Table 5.1: Datasets which have been used throughout this chapter.
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For the first three and the remaining two datasets we tuned the bare mass m0 in such a way that the
infinite volume pion mass is more or less the same

{A3, A5, A7} ⇒ mπ

g
≈ 0.75, and {B5, B7} ⇒ mπ

g
≈ 0.44. (5.6)

By fixing the infinite volume pion mass we can make statements about the continuum limit.
In order to outline the strategy of this work, we restrict ourselves to a single dataset from table 5.1,

for the sake of simplicity.
For said dataset, we perform quenched simulations for different volumes L and different temperatures

Lt = 1
T . We extract 1-, 2- and 3-pion ground state energies, such that we obtain a set of measurements

Enπ(L,Lt), with n ∈ {1, 2, 3}, L ∈ {4, 6, 8, . . . , 40}, Lt ∈ {4, 6, 8, . . . , 60}. (5.7)

A summary of the performed simulations is given in the appendix H.1. Here we give a short superficial
description of how these measurements will be processed, the details follow suit in the corresponding
sections.

• We first discuss the temperature behaviour of the 1-pion ground state energies Eπ(T ), for fixed
small and large volumes.

For each volume L, we compute the ground state energies Eπ(L) by performing the extrapolation
to zero temperature, using the master formula eq. (5.5) with n = 1. Note, that the ground state
energy for the 1-pion state corresponds to the pion mass

Eπ(L)
!
= mπ(L). (5.8)

Using the pion mass for different volumes mπ(L), we can discuss finite volume effects, as explained
in section 2.6. By utilizing Lüschers formula eq. (2.62) we determine the pion mass in the infinite
volume

mπ = lim
L→∞

mπ(L). (5.9)

• We use the master formula with n = 2 and extract the ground state energies of the isospin I = 2
sector. We obtain the finite volume dependence of the 2-pion ground state energy E2π(L).

• With these two measurements we can compute the scattering phase shift (see section 2.7) via

2δ(k) = −kL+ 2πn, n ∈ Z, (5.10)

for each volume L. The relative momentum k = k(L) can be extracted via the bosonic dispersion
relation for two bosons in the center of mass frame

E2π(L) = 2 cosh−1(cosh(mπ) + 1− cos(k(L))). (5.11)

We obtain discrete measurements for the scattering phase shifts for each volume L

δ(k(L)) ≡ δ(L). (5.12)

• These values δ(k(L)) ≡ δ(L) can be fitted to an effective range expansion presented in subsec-
tion 2.7.2. In our particular case, we use the bosonic ansatz (labelled with L = 0), which allows us
to obtain a heuristic ansatz for the scattering phase shift δ(k).

• Using the previously determined scattering phase shift δ(k) and the 3-particle quantization condi-
tions presented in section (2.8), we can make predictions for the 3-pion ground state energies. Since
these predictions are based on the scattering phase shift, we will denote them with an additional
superscript Eδ3π(L).

• Finally the determinations of Eδ3π(L) can be compared to the direct measurements of the 3-pion
ground state energies, which have been extracted using the master formula with n = 3.

58



5.1 Isospin I = 1 sector and extraction of the pion mass mπ(L)

Let us briefly recapitulate the most important properties of the isospin I = 1 sector, for further infor-
mation we refer to section 3.6. The lightest particle in the massive 2-flavour Schwinger model is given
by the mass-degenerate pion triplet |π〉 = {|π−〉, |π0〉, |π+〉}. Within this triplet, the state with maximal
z-component of the isospin is built from an up and antidown quark |π+〉 = |ud̄〉. It can be identified as
the ground state of the isospin I = 1 sector described by the canonical partition function in eq. (5.3)
with (nu, nd) = (1,−1). Hence, the ground state energy of the 1-meson sector, i.e., the mass of the pion,
is determined by using the master equation eq. (5.5) with n = 1.
For the sake of simplicity, we consider a single dataset from table 5.1, that is dataset A5, the discus-

sion we present here is analogous to all the other datasets. The objective is to understand the finite
temperature behaviour of the ground state energy

Eπ(T ), resp. mπ(T ), for a fixed volume L. (5.13)

We illustrate the finite temperature behaviour of the pion mass for small volumes in figure 5.1 and for
large volumes in figure 5.2.
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Figure 5.1: Dataset A5. Finite temperature behaviour of the pion mass mπ(Lt), for different small
volumes. The lines with error bands represent fits including excited state contributions
from the I = 1 and the vacuum sector. The temperature is related to the temporal extent
of the lattice via T = 1/Lt.

For a fixed volume, we can examine the behaviour of the ground state energy as a function of the
temperature (reminder: T = 1

Lt
). According to the discussion in subsection 3.6.5, we obtain

Eπ(T ) ≈ mπ − T log

(
1 + 2

∑L
2
i=1 e

−(E
(i)

π+−mπ)/T + e−(ma0−mπ)/T + 2
∑L

2
i=1 e

−(E(i)
a0
−mπ)/T

1 + e−mπ/T + 2
∑L

2
i=1 e

−E(i)

π0 /T

)
. (5.14)

We deduce that the behaviour of the pion mass towards high temperatures (Lt → 0) is dominated by
contributions from the isospin I = 1 sector. These dominant contributions arise from excited π+ states
and possibly from a+

0 states. However, we can also see that upon approaching small temperatures,
those higher order contributions vanish fast and the asymptotic behaviour can easily be described by a
constant.
At large volumes, a similar behaviour can be observed (figure 5.2). For large volumes higher order con-

tributions from the isospin I = 1 sector are more dominant than for small volumes, negative corrections
and the resulting curvatures are already visible at small temperatures.
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Figure 5.2: Dataset A5. Finite temperature behaviour of the pion mass mπ(Lt), for different large
volumes. The lines with error bands represent fits including excited state contributions
from the I = 1 and the vacuum sector. The temperature is related to the temporal extent
of the lattice via T = 1/Lt.

The reason for this effect lies in the spectrum of the theory. The energy differences for subsequent
excited states differ between small and large volumes due to the quantization of the momenta. To explain
this argument in more detail, consider the first excited state contribution arising from the π+ pion in
the isospin I = 1 sector, that is

E
(1)
π+ = cosh−1(cosh(mπ) + 1− cos(p(1))), with p(1) =

2π

L
· 1. (5.15)

We can see that the energy gap to the pion mass mπ becomes larger the smaller the volume is. Vice-versa
this gap becomes smaller the larger the volume is. This means, that for large volumes contributions from
high energy states become noticeable already at low temperatures.
This finite temperature behaviour of the pion mass mπ(L) puts forth some problems when trying

to take the zero temperature limit. These problems can be summarized as “model-selection” problems,
which describe an unsatisfactory ambiguity when it comes to choosing fit models and fit ranges which
are used to extrapolate to zero temperature.
To circumvent this ambiguity and obtain feasible model-independent results we use a combination of

Bayesian model averaging as described in the appendix F and what we call “systematic averaging” as
described in section F.4.
For each volume L we consider three possible fit functions, which are truncations of the function

presented in eq. (5.14) and allow us to extrapolate to zero temperature. We utilize the following three
models

Mmπ,1(T,mπ) = mπ,

Mmπ,2(T,mπ) = mπ − T log

(
1 + 2

∑L
2
i=1 e

−(E
(i)

π+−mπ)/T

1 + e−mπ/T + 2
∑L

2
i=1 e

−E(i)

π0 /T

)
, (5.16)

Mmπ,3(T,mπ,ma0) = mπ − T log

(
1 + 2

∑L
2
i=1 e

−(E
(i)

π+−mπ)/T + e−(ma0−mπ)/T + 2
∑L

2
i=1 e

−(E(i)
a0
−mπ)/T

1 + e−mπ/T + 2
∑L

2
i=1 e

−E(i)

π0 /T

)
.

The first and second models depend on one fit parameter mπ, while the third one also takes into account
contributions from an a0 state, yielding an additional parameter ma0 .
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For each model we perform a variety of fits with varying fit ranges (the details are given in the ap-
pendix H section H.2). The resulting pion masses are being averaged for each fit ansatz using the Bayesian
model averaging procedure, yielding model-dependent pion masses, which are then being averaged using
systematic averaging. This yields a final model-independent result for the pion mass mπ(L). In table 5.2
we show such a calculation for a few selected volumes for the dataset A5.

L mπ(L) from Mmπ,1 mπ(L) from Mmπ,2 mπ(L) from Mmπ,3 Final results
4 0.85634(29) 0.85626(22) 0.85647(22) 0.85636(25)
6 0.56785(17) 0.56785(17) 0.56795(16) 0.56788(17)
8 0.45550(21) 0.45550(20) 0.45540(18) 0.45546(21)
38 0.33238(82) 0.33805(25) 0.33814(22) 0.3379(11)
40 0.3304(11) 0.33799(33) 0.33808(26) 0.3378(14)

Table 5.2: Dataset A5. Some sample results of the three fitting approaches after the Bayesian model
averaging. The last column denotes the results after the systematic averaging.

The resulting pion masses for different volumes mπ(L) indicate the appearance of finite volume effects
as discussed in section 2.6. We discuss these finite volume effects in the next section.
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5.2 Finite volume effects
In the previous section we considered the pion masses as function of temperature for a fixed volume,
that is

mπ(T ), for a fixed volume L. (5.17)

After extrapolating to zero temperature we obtain the pion masses as a function of the volume mπ(L),
which allows us to discuss finite volume effects in detail. As elaborated in section 2.6, finite volume
effects arise when the pion wavefunction overlaps at the boundaries of the box and interacts with itself.
As a result, the pion mass gets artificially inflated for small volumes. Lüscher appropriately called these
kinds of effects “interactions around the world” and provided the needed formula, which can be used to
describe these effects. In case of a massive 2-dimensional quantum field theory, this formula is given by
eq. (2.63), that is

mπ(L) = mπ +

(
λ2

4
√

3m3
π

)
e−
√

3
2 mπL +

1√
mπL

(
F (0)

4mπ

√
2π

)
e−mπL, (5.18)

wheremπ = limL→∞mπ(L) defines the infinite-volume pion mass, F (0) the forward scattering amplitude
and λ some effective 3-particle coupling (resp. 3-pion coupling in our case). We use Lüscher’s ansatz
to describe the finite volume behaviour using mπ, F (0) and λ as fit parameters. The results for the two
different pion masses mπ/g ≈ 0.75 and mπ/g ≈ 0.44 are presented in figure 5.3 and figure 5.4. The
ansatz allows us to describe the measurements of mπ(L) down to small volumes. For the datasets A3,
A5 and A7 we can go as far as mπL & 3.0, for the smaller pion mass with datasets B5 and B7 this
ansatz is even better, allowing us to describe the finite volume behaviour down to mπL & 2.0. For the
two sets of measurements presented in the two figures 5.3 and 5.4, we separately kept the infinite volume
pion mass fixed, which allows us to estimate lattice artefacts. Our results indicate nicely, that lattice
artefacts are very well under control, even for small volumes.
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Figure 5.3: Datasets A3, A5 and A7. Rescaled finite volume behaviour of the pion mass mπ(L),
for mπ/g ≈ 0.75. The lines with errorbands represent finite volume fits using Lüscher’s
formula.

We extract the dimensionless 3-pion coupling a2λ, forward scattering amplitude a2F (0) and the di-
mensionless ratio λ

g2 for all available datasets, using different fitting approaches. In order to get a final
model-independent result, we perform a combination of Bayesian model averaging and systematic aver-
aging, yielding the final results depicted in table 5.3. The details of said calculations are given in the
appendix section H.3.
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Figure 5.4: Datasets B5 and B7. Rescaled finite volume behaviour of the pion mass mπ(L), for
mπ/g ≈ 0.44. The lines with errorbands represent finite volume fits using Lüscher’s
formula.

Dataset mπ/g a2λ λ/g2 a2F (0)

A3 0.7500(5) 0.922(11) 2.765(34) 2.31(35)
A5 0.7574(3) 0.56747(90) 2.8373(45) N/A
A7 0.7564(3) 0.40796(42) 2.8557(29) N/A
B5 0.4296(8) 0.1528(18) 0.7639(91) 0.913(49)
B7 0.450(2) 0.1235(19) 0.865(13) 0.644(63)

Table 5.3: Results for the 3-pion coupling a2λ, λ/g2 and a2F (0). For the datasets A5 and A7 we were
not able to extract the forward scattering a2F (0) due to a lack of good fits.

We perform a continuum extrapolation of the dimensionless parameter λ/g2, for fixed coupling g and
varying pion mass mπ. For the sake of simplicity, we use a linear function for the extrapolation, shown
in figure 5.5. The numerical results are given by table 5.4.
We know (from section 2.6) that in the strong coupling limit mπ/g → 0 the Schwinger model goes

over into the Sine-Gordon model, where the 3-pion coupling λ vanishes. As expected this is reinforced
here, we see that for a fixed coupling g the 3-pion coupling λ decreases with the pion mass.

63



0.0 0.1 0.2 0.3 0.4 0.5 0.6
ag = 1

0.5

1.0

1.5

2.0

2.5

3.0

g2

m
g 0.75

m
g 0.44

Figure 5.5: Continuum extrapolation of λ/g2, for fixed coupling g and varying pion mass mπ. A
linear function was used for the continuum extrapolation.

mπ/g λ/g2

0.75 2.968(30)
0.44 1.414(97)

Table 5.4: Continuum extrapolation of λ/g2, for fixed coupling g and varying pion massmπ, numerical
results.
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5.3 Isospin I = 2 sector
So far we used the master formula eq. (5.5) with n = 1, to determine the pion massesmπ(L) as a function
of the volume. In the next step, we can utilize said formula with n = 2 to determine the ground state
energy of the isospin I = 2 sector, that is the ground state energy E2π of a 2-pion state |π+π+〉. We first
investigate the temperature behaviour of the 2-pion ground state energy

E2π(T ), for a fixed volume L, (5.19)

in figure 5.6 and figure 5.7.
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Figure 5.6: Dataset A5. Finite temperature behaviour of the 2-pion ground state energy E2π(Lt),
for different small volumes. The lines with error bands represent the best fits. The
temperature is related to the temporal extent of the lattice via T = 1/Lt.

Upon examining the temperature behaviour of the 2-pion ground state energy we encounter all the
known effects we have seen when investigating the temperature dependence of the pion mass. For high
temperatures E2π(T ) is governed by corrections arising from excited meson states living in the isospin
I = 2 sector (for example excited 2-pion states). For decreasing temperature, we obtain the usual
plateau, which indicates the desired ground state energy E2π. Upon comparing the behaviour of E2π(T )
between the different volumes we see that for large volumes temperature corrections are much more
dominant than for small volumes. This is no surprise, also in the isospin I = 2 sector the energy levels
for subsequent energy states move closer to each other with increasing volume, analogous to the isospin
I = 1 case.
As before, we extract the ground state energies E2π by extrapolating to zero temperature using a com-

bination of Bayesian model averaging and systematic averaging. The proposed fit models are motivated
by eq. (3.131) as discussed in subsection 3.6.5

ME2π,1(T,E2π) = E2π (5.20)

ME2π,2(T,E2π, A1, A2) = E2π − T log

(
1 +A2e

−A1/T

1 + e−mπ/T + 2
∑L

2
i=1 e

−E(i)

π0 /T

)
. (5.21)

The parameter mπ = mπ(L) in the second function ME2π,2 is determined beforehand from the zero tem-
perature extrapolation of the pion mass. Consequently, the fit models have one and three fit parameters,
respectively.
The results for the relative finite volume corrections

E2π(mπL)− 2mπ

2mπ
, (5.22)
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Figure 5.7: Dataset A5. Finite temperature behaviour of the 2-pion ground state energy E2π(Lt),
for different small volumes. The lines with error bands represent the best fits. The
temperature is related to the temporal extent of the lattice via T = 1/Lt.

are depicted in figure 5.8 and 5.9. We can see very nicely, how the measurements asymptotically approach
the infinite volume limit

2mπ = 2 lim
L→∞

mπ(L), (5.23)

as expected. Furthermore, we can see that lattice artefacts become more dominant, contrary to the
examination of the finite volume effects on the pion mass in the previous section. This can especially
be seen for the datasets A3, A5 and A7 in figure 5.8, where the data points seem to split up around
mπL ≈ 5.0. The continuous lines and error bands represent fits, which have been made based on the
scattering phase shift δ(k), which will be discussed in the next section.
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mπ/g ≈ 0.75. Shown are the relative finite volume corrections. The lines with error bars
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the scattering phase shift δ(k). Note that we obtain bad agreement between data and fit
for the data set A3. This problem originates from the difficulties of fitting the scattering
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5.4 Extraction of the scattering phase shift δ(k) ≡ δ(L)

Upon extracting E2π(L) we can examine the finite volume behaviour of the 2-pion ground state energy
and tackle the extraction of the so-called scattering phase shift, discussed in section 2.7. Consider a
situation where one has two pions in a box of size L with equal masses mπ and momenta p1 and p2.
The lattice dispersion relation for such a state in the center of mass frame (P = p1 + p2 = 0) has been
discussed in subsection 3.6.1 and is given by

E2π(L) = 2 cosh−1(cosh(mπ) + 1− cos(k(L))), (5.24)

where the k(L) denote the volume-dependent momenta of the two pions. These momenta have to obey
some quantization condition due to the periodic nature of the box. Said quantization condition is related
to the scattering phase shift δ(k) and given by eq. (2.74), that is

δ(k(L)) = −kL
2
≡ δ(L). (5.25)

If the scattering phase shift δ(k) is known, one can construct the relative momenta k(L) and compute
the 2-pion ground state energies for arbitrary volumes L. Conversely, one can determine the scattering
phase shift from the 2-pion energies by using the quantization condition eq. (5.25), where the relative
momenta k = k(L) are determined by using the dispersion relation eq. (5.24).
Note, that we use the infinite volume pion mass mπ = limL→mπ(L) instead of the finite volume

pion mass in eq. (5.24). Philosophically speaking, it would make more sense to use mπ(L), simply
because finite volume quantities like E2π(L) should not have any information about the infinite volume
pion mass - a box of size L only sees mπ(L). The literature is not clear about this: Guo et al. who
investigated the 2d ϕ4-model in Ref. [36] used the infinite volume pion mass mπ for the extraction of
E2π(L), while Romero-López et al. who investigated the 4d ϕ4-model in Ref. [50] argued for the opposite.
Our results indicate clearly that using the infinite volume pion mass in eq. (5.24) yields better results
for the scattering phase shift, which is why we proceed to use mπ instead of mπ(L) in the dispersion
relation.
The discussion of the scattering phase shifts is quite interesting and offers a lot to talk about. We

plot the scattering phase shifts for all 5 datasets A3, A5, A7, B5 and B7, such that we can examine
lattice artefacts by comparing the results of {A3, A5, A7} and {B5, B7} with each other. We describe
the scattering phase shift δ(x) as a function of the dimensionless variable x = k/mπ. The measured
scattering phase shifts are shown in figure 5.10 and 5.11.
Before turning to the discussion of the scattering phase shift we need to keep in mind that the used

2-particle quantization conditions eq. (5.25) are only valid provided that some conditions are fulfilled.
These conditions were discussed in section 2.7, for the sake of completeness we repeat them here once
more

• Small enough lattice spacings (close enough to the continuum).

• Large enough volumes, such that the interaction range of the potential is small compared to the
volume, and self-interactions of the 2-particle states via the boundaries can be neglected.

• We only consider elastic scattering, i.e. we are working in an energy regime, where no new particles
are being created.

Let us now discuss our results for the scattering phase shift, by starting with the large energy regime,
that is k

mπ
� 1.

Upon approaching large energies (resp. small volumes), the measurements become more precise, since
the 2-pion ground state energies E2π(L) are easier to extract for small volumes. As a consequence,
differences between the measurements for different datasets become much more pronounced. We see
that for large energies and fixed pion masses mπ/g the scattering phase shifts start to drift away from
each other. This effect can be attributed to many factors since many of Lüscher’s conditions are violated
here. The discrepancies for large energies are believed to stem from severe finite volume effects. It is also
not clear how much credibility should be given to measurements for large energies, given the potential
crossing of an inelastic threshold, where 3-pion states could be produced.
Now we turn to the low-energy regime, that is k

mπ
� 1.

One universal effect, which holds true for all datasets, are the fluctuations of the scattering phase
shift which arise when approaching low energies k/mπ. By approaching small energies, we consider
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Figure 5.10: Scattering phase shifts δ( k
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) for the datasets A3, A5 and A7. The lines with errorbands
represent fits with an effective ansatz. Note that the measurements for the coarse lattice
A3 seem to be problematic for small energies.
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Figure 5.11: Scattering phase shifts δ( k
mπ

) for the datasets B5 and B7. The lines with errorbands
represent fits with an effective ansatz.

measurements of the scattering phase shift for large volumes L. For large volumes, the spectrum of the
isospin I = 2 sector is very dense, making the extraction of E2π(L) more involved and more prone to
errors. This explains the increased uncertainty for the scattering phase shifts when approaching small
energies. Note that these effects appear for all datasets.
Lattice artefacts, can be investigated by fixing the pion mass mπ/g and the momentum k/mπ and

comparing the measurements for {A3, A5, A7} and {B5, B7} with each other (see insetplots in figure 5.10
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and 5.11). We immediately notice that the accuracy of the scattering phase shifts becomes better for finer
lattices, as expected. In particular, the scattering phase shifts for the dataset A3 (which was conducted
at a large lattice spacing) are of bad quality at low energies.
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5.5 Effective range expansion of δ(k)

We have extracted the scattering phase shifts δ(k(L)) ≡ δ(L) for different volumes which can now be
fitted using an effective range expansion. Contrary to the effective range expansion in 3+1 dimensions we
do not consider an expansion in k cot(δ(k)), but an expansion in k tan(δ(k)) for the bosonic wavefunction,
as explained in subsection 2.7.2. The effective range expansion - which is basically a Taylor expansion
for small relative momenta k - is given by eq. (2.102), that is

k tan(δ0(k)) =
1

a0
+
r0

2
k2 +O(k4), resp.

x tan(δ0(x)) =
1

a0mπ
+
r0mπ

2
x2 +O(x4), with x =

k

mπ
, (5.26)

where a0 denotes the scattering length and r0 the effective range. By adding more correction terms on
the r.h.s. of eq. (5.26), the expansion is also valid for large momenta. Upon fitting δ(k), resp. δ(x), we
get a heuristic ansatz for the scattering phase shift but also obtain physically relevant parameters like
the scattering length a0 and the effective range r0.
Let us first consider the extraction of a0 and r0. We perform Bayesian model averaging with different fit

models motivated by the effective range expansion (5.26), which are then being averaged using systematic
averaging.
We fit the dimensionless combination x tan(δ(x)), with x = k

mπ
, to the following fit functions

Mδ
1(x, c0, c1) = c0 + c1x

2 (5.27)

Mδ
2(x, c0, c1, c2) = c0 + c1x

2 + c22x
4 (5.28)

Mδ
3(x, c0, c1, c2, c3) = c0 + c1x

2 + c2x
4 + c3x

6, (5.29)

extract the desired parameters

c0 =
1

a0mπ
and c1 =

r0mπ

2
, (5.30)

and therefore also the scattering length a0 and the effective range r0.
The obtained results are then averaged using systematic averaging, yielding the final model-independent

results for each parameter. The details are given in the appendix section H.5, a summary of the extracted
parameters, including the calculation of the rescaled scattering length a0mπ and rescaled effective range
r0mπ is given in table 5.5.

Dataset mπ/g c0 a0mπ c1 r0mπ

A3 0.7500(5) 0.318(25) 3.147(80) 0.157(51) 0.31(10)
A5 0.7574(3) 0.3883(53) 2.576(14) 0.0241(48) 0.0482(96)
A7 0.7564(3) 0.3835(43) 2.607(11) 0.0106(35) 0.0212(71)
B5 0.4296(8) 0.3817(71) 2.620(19) 0.0145(23) 0.0290(46)
B7 0.450(2) 0.3721(85) 2.688(23) 0.0098(18) 0.0195(35)

Table 5.5: All model-independent parameters after taking the systematic average in the very end.

Upon investigating the results in table 5.5, some interesting observations can be made. It is worth
mentioning, that one can fit almost the whole range of extracted scattering phase shifts (between 17 to
18 data points) using between 3 and 4 fit parameters only, the best fits are summarized in table H.26.
We also notice that for all datasets (except for dataset A3) the parameters a0mπ and r0mπ seem to

be somewhat compatible with each other. The vastly different results for dataset A3 can be attributed
to lattice artefacts and finite volume effects, which underrate the scattering phase shift at low energies.
As a result, the extraction of low-energy parameters such as a0 and r0 become unreliable for dataset A3.
By using linear fits, we perform the continuum limit for the parameters a0mπ and r0mπ for fixed

infinite volume pion mass and two different couplings, as shown in figure 5.12. For these calculations we
exclude the data point for dataset A3.
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Figure 5.12: Results for a0mπ and r0mπ for all 5 datasets. For the continuum extrapolations linear
functions in combination with the datasets A5, A7, B5 and B7 have been used.

a0mπ r0mπ

mπ/g ≈ 0.75 2.78(10) -0.126(74)
mπ/g ≈ 0.44 3.06(19) -0.032(32)

Table 5.6: Scattering length a0mπ and effective range r0mπ for two different pion masses extracted
from the four datasets A5, A7, B5 and B7 via continuum extrapolation.

The continuum extrapolations show very nicely, that the scattering length a0mπ is positive as expected,
whereas the effective range seems to be compatible with 0. The numerical results are summarized in
table 5.6.
Considering these results we ask ourselves, whether the effective range r0mπ is actually just zero,

r0mπ = 0. This can be checked, by performing the continuum extrapolation with a fixed offset 0, such
that the fit function is just given by a linear term only. The resulting χ2 is then a measure for the
goodness of the fit. The χ2 values, given in table 5.7 indicate that for the measurements conducted at
pion mass mπ/g ≈ 0.44 the value of r0mπ is compatible with 0. On the other hand, for mπ/g ≈ 0.75 the
value of r0mπ is not compatible with 0 and is most likely negative. However, these results need to be
taken with a grain of salt, since only two data points have been used for the continuum extrapolation.

mπ/g ≈ 0.75 mπ/g ≈ 0.44

χ2/d.o.f 3.28 0.90

Table 5.7: Value of χ2/d.o.f for effective range r0mπ fitted with a single linear function y = a ·x only.
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5.6 Isospin I = 3 sector
Here we consider three pions in a finite box of size L and determine the ground state energies in the
corresponding isospin I = 3 sector using the master formula eq. (5.5) with n = 3. The ground state is
given by a 3-pion state |π+π+π+〉. Also here, we first examine the finite temperature behaviour of

E3π(T ), for a fixed volume L, (5.31)

in figure 5.13.
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Figure 5.13: Dataset A5. Finite temperature behaviour of the 3-pion ground state energy E3π(Lt),
for different small and large volumes. The temperature is related to the temporal extent
of the lattice via T = 1/Lt.

The complete discussion of the temperature behaviour is analogous to the discussion of mπ(T ) and
E2π(T ):

• Large temperature behaviour is dominated by corrections from the Isospin I = 3 sector.

• These corrections become more dominant for larger volumes, due to the volume-dependent structure
of the spectrum.

The fit functions used for the extrapolation to zero temperature are the same as for E2π(T )

ME3π,1(T,E3π) = E3π (5.32)

ME3π,2(T,E3π, B1, B2) = E3π − T log

(
1 +B2e

−B1/T

1 + e−mπ/T + 2
∑L

2
i=1 e

−E(i)

π0 /T

)
, (5.33)

where the parameter mπ = mπ(L) is extracted beforehand from the zero temperature extrapolation of
the pion mass, as explained in section 5.1. As before we first perform Bayesian model averaging and
average those results afterwards using systematic averaging.
Upon extracting mπ(L), E2π(L) and E3π(L) we can plot the results, giving us a visual overview of the

finite volume behaviour of said quantities. In figure 5.14 we consider the results for the datasets {A3,
A5, A7}, minor miss tunings in the pion mass will be omitted for this superficial discussion. We can see
very nicely how finite volume effects and lattice artefacts increase with the number of pions in the box.
For the pion mass mπ finite volume effects arise around mπL ≈ 4, for the 2-pion ground state energy
those effects already arise around mπL ≈ 8. Finally, finite volume effects for the 3-pion ground state
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energy, are already visible for mπL ≈ 14. Although somewhat heuristic, these results show very nicely
that finite volume effects increase with an increasing number of pions in the box, as expected.
Similar considerations can be made with respect to lattice artefacts. For the pion mass, no lattice

artefacts are visible (on that scale), which means that Lüscher’s formula for finite volume effects can be
used universally, to describe the pion mass as a function of the volume. However, for the 2-pion ground
state energies, we can see that lattice artefacts arise around mπL ≈ 4, where the data points seem to
diverge for the three datasets. For the 3-pion ground state energies this situation becomes even worse,
lattice artefacts already showing up at mπL ≈ 8.
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Figure 5.14: Finite volume behaviour of mπ(L), E2π(L) and E3π(L) for the datasets A3, A5 and A7.
Finite volume corrections and lattice artefacts increase with the number of pions in the
box.
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5.7 Computing the 3-pion ground state energy Eδ
3π based on the

scattering phase shifts δ(k)
Up to this point we used the master formula eq. (5.5) with n = 1 and n = 2, which allowed us to
determine mπ(L) and E2π(L). By using the volume-dependent pion masses we determined the infinite
volume pion mass mπ = limL→∞mπ(L) and by combining mπ with the 2-pion ground state energies
E2π(L) we computed the scattering phase shifts δ(k(L)) ≡ δ(L) for different volumes. These discrete
measurements were used to make a heuristic ansatz for δ(k) based on the effective range expansion.
The scattering phase shift δ(k) can be used to make predictions for the 3-pion ground state energies

Eδ3π(L), where we use the superscript to distinguish between the δ-dependent predictions and the direct
computations using the master formula with n = 3. We start the discussion by writing down the bosonic
lattice dispersion relation for the energy of a 3-pion state

E3π(L) =
∑

i=1,2,3

cosh−1 (cosh(mπ) + 1− cos(pi(L))) , (5.34)

where the pi(L) denote the volume-dependent momenta of the 3 pions. Following the discussion in
section 2.8 the momenta pi(L) obey quantization conditions. These quantization conditions are valid
in a nonrelativistic setup, where we only assume short-ranged 2-particle interactions. Of course, it is
not clear up to which extent, these conditions are fulfilled here. We know for example that a 3-pion
coupling λ is present in the 2-flavour Schwinger model. The 3-particle quantization conditions have been
discussed in section 2.8 and are given by eq. (2.108), that is

cot (δ(−q31)− δ(−q23)) + cot

(
PL− p3L

2

)
= 0, (5.35)

cot (−δ(−q31)− δ(q12)) + cot

(
PL− p1L

2

)
= 0, (5.36)

cot (δ(−q23) + δ(q12)) + cot

(
PL− p2L

2

)
= 0, (5.37)

where the parameters are given by

P =

3∑
i=1

pi, qij =
pi − pj

2
and qk =

pi + pj − 2pk
3

. (5.38)

In order to construct the lowest lying energy state we restrict ourselves to the center of mass frame with
P = p1 + p2 + p3 = 0 and assume the third particle to be at rest p3 = 0, such that p2 = −p1. This choice
of momentum configuration was used by Guo in Ref. [36], to construct the smallest 3-particle energy
for the 2d ϕ4 model. Upon using these assumptions, we are left with one single quantization condition
which reads

cot
(
δ
(x

2

)
+ δ(x)

)
+ cot

(
x · (mπL)

2

)
= 0, with x =

p1

mπ
. (5.39)

This quantization condition can now be solved using the previously determined scattering phase shift δ(x),
yielding the momenta pi(L). This allows us to determine the momentum configuration (p1, p2, p3) and
the 3-pion energy, through the bosonic dispersion relation eq. (5.34). As a result, we obtain predictions
for the 3-pion ground state energies and the corresponding relative finite volume corrections based on
the 3-particle quantization conditions and the scattering phase shift.
We plot the relative finite volume corrections, that is

Eδ3π(mπL)− 3mπ

3mπ
, (5.40)

in figure 5.15 for all datasets A3, A5, A7, B5 and B7.
For increasing volumes, the 3-pion energies approach 3mπ as expected and lattice artefacts become

increasingly more suppressed. For the larger pion massmπ/g ≈ 0.75 lattice artefacts arise formπL . 8.0,
while for the smaller pion mass mπ/g ≈ 0.44 they arise for mπL . 4.0. In general, the relative finite
volume corrections show a very nice continuous behaviour and indicate a universal behaviour for large
volumes.
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Figure 5.15: Relative finite volume corrections of the predictions Eδ3π for all datasets.

So far we considered the relative finite volume corrections of the predicted 3-pion energy Eδ3π. However,
it is far more interesting to compare the predictions of the 3-pion ground state energies Eδ3π to the direct
measurements E3π which have been extracted using the master formula eq. (5.5) with n = 3.
This allows us to judge in which regime the predictions hold true and whether our prescription for the

3-pion energy needs to be modified. The relative corrections are given by

E3π(mπL)− Eδ3π(mπL)

3mπ
, (5.41)

and the results are presented in figure 5.16.
The first thing we notice is that the predictions are generally underestimated for smaller volumes.

However, for large volumes, it seems that asymptotically the predictions fit the direct measurements
perfectly.
For the larger pion mass mπ/g ≈ 0.75 we consider the results for the two datasets A5 and A7 and see

that we obtain perfect agreement for mπL & 10.0. The dataset A3 exhibits strong fluctuations at large
volumes which stem from the difficulties of fitting the scattering phase shift for small energies and the
problems of extracting E3π(mπL) for large volumes.
For the smaller pion mass mπ/g ≈ 0.44 we can see that for increasing volumes the predictions coincide

with the direct measurements asymptotically. Unfortunately, the measurements stop around mπL ≈ 8.0,
due to the small pion mass. Having access to more data would most likely confirm the compatibility
between the direct measurements and the predictions.
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6 Conclusion and outlook

This thesis aimed to investigate the 1- and 2-flavour Schwinger model in the canonical formulation and
to illustrate the utility of the canonical formalism, which allows us to investigate the physics of a system
with a fixed number of fermions. The fundamental building block of this formalism is the decomposition
of the grand-canonical partition function into canonical partition functions with fixed fermion number.
We started this thesis by introducing the 1- and 2-flavour Schwinger model on the lattice and discussing

the most important properties of these models.
Next, we focused on the 1-flavour variant of the Schwinger model and derived the relation between

the grand-canonical partition function and the canonical ones, by performing a dimensional reduction
on the determinant of the Wilson Dirac operator.
We discussed several topics related to the canonical formalism, such as the construction of the transfer

matrix T , its properties and the description of the canonical partition functions in terms of principal
minors. The distribution of the principal minors showed very interesting properties, which leave room
for more research.
In the last part of this thesis, we used the canonical formalism to perform some pion scattering analysis

in the 2-flavour Schwinger model. We discussed finite volume effects on the pion mass by using Lüscher’s
formula for finite volume effects. Utilizing said formula we determined the infinite volume pion mass
mπ and showed that the dominant corrections are coming from contributions proportional to a 3-pion
coupling. Lüscher’s formula allows us to describe the measurements down to small volumes mπL ≈ 3.0.
The infinite volume pion mass was used in combination with the 2-pion ground state energies E2π(L)

to determine the scattering phase shift δ(k(L)), based on 2-particle quantization conditions in the finite
volume. By using an effective range expansion for the bosonic wavefunction we present a heuristic ansatz,
which allows us to describe the scattering phase shift in terms of fundamental physical parameters, such
as the scattering length and the effective range. Remarkably, we were able to describe almost the full
range of scattering phase shifts δ = δ(L) (between 17 and 18 data points) using between 3 and 4 fit
parameters only. Difficulties arose for ensembles generated with large lattice spacings, indicating that
lattice artefacts are indeed a problem when discussing scattering phase shifts δ(k).
Upon making some simplifying assumptions and using our ansatz for the scattering phase shift, we

can utilize 3-particle quantization conditions to make predictions for the 3-pion ground state energies
Eδ3π(L). These can be directly compared to the 3-pion ground state energies extracted from the canonical
formalism E3π(L). Our results show very nicely, that the predictions coincide with the direct measure-
ments for sufficiently large volumes mπL ≈ 10, as expected. For smaller volumes there seems to be a
systematic discrepancy, indicating that our strategy for the prediction of the 3-pion ground state energies
is not complete yet. The used quantization conditions for 3-particle scattering (derived by Guo) assume
nonrelativistic scattering, where multi-particle interaction can only occur as sequences of short-ranged
2-particle interactions. These assumptions are not necessarily fulfilled in our case. We know, from the
finite volume analysis of the pion mass, that we have a non-zero 3-pion coupling, allowing for 3-pion in-
teraction. In order to take these effects into account, we must consider 3-particle quantization conditions,
which are better suited to our problem.
In this thesis, we discussed several aspects of the 1- and 2-flavour Schwinger model in the canonical

formalism, resulting in many starting points for interesting future studies.
The structural behaviour of the principal minors is a very interesting subject, worth investigating. Once

we have a complete understanding of the structure of the principal minors, one could use those principal
minors P II to perform canonical simulations. As a starting point, one can interpret the principal minors
as weights and perform simulations, where we not only vary the gauge fields but also the index sets I.
In a next step, one could write out the principal minors using Cauchy-Binet (see Ref. [51]), such that

for vanishing quark chemical potential,1 we obtain

det(T I0I0) =
∑

I1,I2,...,ILt−1

det(T I0I11 ) det(T I1I22 ) . . . det(T
ILt−1I0
Lt

). (6.1)

1In this case one can factorize the full transfer matrix T as a product of time-slice transfer matrices Ti, such that
T =

∏Lt
i=1 Ti.
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This allows us to perform simulations, where we sample gauge fields and index sets on a single time-slice
while keeping all other time-slices fixed.
The biggest advantage of the canonical formalism is the direct access to ground state energies of multi-

meson sectors. This allows us to directly investigate the phase structure of the Schwinger model and
completely circumvent the use of correlators, which become more complex with an increasing number of
mesons. In this work, we only tipped our toes into this topic, as illustrated in section 4.8.
The scattering analysis performed in chapter 5 can be improved by increasing the number of data

points and utilizing suitable 3-particle quantization conditions.
We conclude, that the Schwinger model in the canonical formulation opens up many directions for

interesting future research.
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Man wird am besten für seine Tugenden bestraft.

F. Nietzsche, Jenseits von Gut und Böse, 1886
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A Fermions on the lattice

In order to perform numerical simulations of the Schwinger model, we require a discretization of the
theory, which can be implemented on the lattice. In this part of the appendix, we derive the lattice
action for the 1-flavour Schwinger model, in close analogy to Rothe in Ref. [24]. We require the action
of the 1-flavour Schwinger model

S[ψ̄, ψ,Aµ] =

∫
d2xL[ψ̄, ψ,Aµ], with L[ψ̄, ψ,Aµ] = ψ̄(x)[i /D −m0]ψ(x)− 1

4
FµνF

µν , (A.1)

as discussed in section 2.1 and some basic knowledge about Grassmann variables, which can also be
found in Ref. [24].
We start the derivation by making a transition from Minkowski spacetime to Euclidean spacetime.

Next, we discretize the fermion fields and discuss the resulting fermion doubling problem. In order to
solve the fermion doubling problem we introduce a Wilson-term which breaks chiral symmetry. We
finish the derivation by implementing the gauge fields, eventually leading to the final results given by
eqs. (A.63) to (A.65).

A.1 Euclidean field theory

In a quantum field theory the fields ψ̄(x) and ψ(x) in the Lagrangian L become operators satisfying the
equal-time anticommutation relations

{ψa(x), ψ†b(y)} = δabδ(x− y), with x0 = y0. (A.2)

The physical information is contained in the Green functions in Minkowski spacetime, given by

〈ψα(x) . . . ψ̄β(y) . . . 〉M = 〈0|T{ψα(x) . . . ψ̄β(y) . . . }|0〉, (A.3)

where |0〉 stands for the ground state of the physical system and T describes the time-ordered product of
the operators (ψ(x) . . . ψ̄(y) . . . ). This Greens function has a path-integral representation, which reads

〈ψα(x) . . . ψ̄β(y) . . . 〉M =

∫
Dψ̄DψDU(ψα(x) . . . ψ̄β(y) . . . )eiS̄M[ψ̄,ψ,U ]∫

Dψ̄DψDUeiS̄M[ψ̄,ψ,U ]
, (A.4)

where U describes the gauge field degrees of freedom (related to the original gauge fields Aµ) and S̄M
denotes the path-integral version1 of the Minkowski action SM. In eq. (A.4) the fields are defined at
every point in spacetime and we integrate over all possible field configurations. We will require a careful
definition of the integration measure Dψ, however, at the moment our main concern is the weighting
factor eiS̄M , which is an oscillating function and therefore unsuitable for numerical simulations.
To get rid of this factor, we rotate the time-axis by an angle of 90◦ degree i.e. we perform a so-called

Wick rotation. This is done by substituting x0 → −iτ , where τ denotes the Euclidean time, such that

x2
M = xµx

µ = x2
0 − x2

1 → −τ2 − x2
1 = −x2

E , (A.5)

as a result we obtain new Euclidean coordinates xE . We have to make appropriate changes to other
objects as well, in practice the following replacements take place

x0 → −iτ, ∂0 → i∂τ , A0 → iAτ (A.6)

γ0
M → γ0

E , γ1
M → −iγ1

E , such that γ1
E = iγ1

M . (A.7)

1i.e. the action is appropriately discretized to be suitable for a path-integral representation.
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By making these replacements the new action reads

SM[ψ̄, ψ, U ] =

∫
d2x{ψ̄(i/∂ − g /A−m0)ψ − 1

4
FµνF

µν} (A.8)

= i

∫
dτdx1{ψ̄(/∂ + ig /A+m0)ψ +

1

4
FµνF

µν} (A.9)

= iSE[ψ̄, ψ, U ], (A.10)

where SE denotes the action in Euclidean spacetime and the gamma matrices satisfy {γµE , γνE} = 2δµν

with metric δ = diag[1, 1]. In the lattice formulation the gauge field degrees of freedom will be character-
ized with Wilson lines (denoted by Un,m) which will be introduced later. This is why, from now on, we
label the gauge field degrees of freedom with U instead of Aµ. Using S̄E as the path-integral version of
SE , the denominator of the Green’s function can be identified with a partition function Z of a statistical
mechanical system

Z =

∫
Dψ̄DψDUe−S̄E[ψ̄,ψ,U ]. (A.11)

After the Wick-rotation the weighting factor is now positive and suitable for numerical simulations and
the Greens function takes the form of a well-behaved correlation function

〈ψα(x)ψ̄β(y)〉E =

∫
Dψ̄DψDU(ψα(x) . . . ψ̄β(y) . . . )e−S̄E[ψ̄,ψ,U ]∫

Dψ̄DψDUe−S̄E[ψ̄,ψ,U ]
, (A.12)

with partition function

Z =

∫
Dψ̄DψDUe−S̄E[ψ̄,ψ,U ]. (A.13)

For the rest of this chapter, we work in Euclidean spacetime. For the sake of readability, we omit the
indices E and relabel τ → x0.

A.2 Lattice formulation

We showed that the Euclidean action reads

S[ψ̄, ψ, U ] =

∫
d2xψ̄(x)( /D +m0)ψ(x) +

1

4
FµνF

µν , (A.14)

where x0, x1 are continuous variables now describing Euclidean time and space. In order to illustrate
the discretization procedure and the fermion doubling problem we start with the free fermionic action,
that is

Sf[ψ̄, ψ] =

∫
d2xψ̄(x)(/∂ +m0)ψ(x). (A.15)

We discretize spacetime and consider a lattice of extent L×Lt = aL̂×aL̂t, where a is the lattice spacing
and L̂, L̂t are fixed positive integers. The fields ψ̄ and ψ live on the lattice sites an, where n = (n0, n1) is
a 2-vector describing a spacetime point on the lattice, with n0 ∈ {1, 2, 3, . . . L̂t} and n1 ∈ {1, 2, 3, . . . L̂}.
We formally write down the integration measure of the partition function as

Dψ̄Dψ =
∏
α,n

dψ̄α(na)
∏
β,m

dψβ(ma), (A.16)

where α and β denote the Dirac indices, α, β ∈ {1, 2} and n,m denote spacetime points on the lattice.
In order to discretize the partition function we also need to discretize the action. Note, that we are
allowed to use any discretization we want, the only requirement being that in the continuum limit (i.e.
for a→ 0) one retrieves the correct continuum theory. Before applying the most straightforward, naive
discretization we are going to introduce dimensionless lattice variables, which can be obtained by scaling
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m, ψ̄, ψ according to their canonical dimensions. We make the following replacements:

m0 →
1

a
m̂0, g → 1

a
ĝ,

ψα(x)→ 1

a1/2
ψ̂α(n), ψ̄α(x)→ 1

a1/2
ˆ̄ψα(n), (A.17)

∂µψα(x)→ 1

a3/2
∂̂µψ̂α(n),

∫
d2x→ a2

∑
n

.

The antihermitian lattice derivative ∂̂µ is given by

∂̂µψ̂α(n) =
1

2
[ψ̂α(n+ µ̂)− ψ̂α(n− µ̂)], (A.18)

where µ̂ denotes a unit vector pointing in x0 or x1 direction. The discretized action in the 1-flavour case
can be written as

S[ ˆ̄ψ, ψ̂] =
∑

α,β,n,m

ˆ̄ψα(n)Kα,β(n,m)ψ̂β(m), (A.19)

with Kα,β(n,m) given by

Kα,β(n,m) =
∑
µ

1

2
(γµ)α,β(δm,n+µ̂ − δm,n−µ̂) + m̂0δm,nδα,β . (A.20)

A.3 Fermion doubling problem
In order to illustrate the fermion doubling problem we introduce the lattice 2-point function given by

〈ψ̂α(n) ˆ̄ψβ(m)〉 =

∫
D ˆ̄ψDψ̂

(
ψ̂α(n) ˆ̄ψβ(m)

)
e−Sf[

ˆ̄ψ,ψ̂]∫
D ˆ̄ψDψ̂e−Sf[

ˆ̄ψ,ψ̂]
. (A.21)

A complete, detailed derivation of the lattice 2-point function is quite technical, in this section we just
briefly sketch the arguments. For a detailed derivation we refer to Rothe in Ref. [24]. We construct
the 2-point function by using the generating functional of the partition function, which is obtained by
introducing Grassmann-valued fields {ρ̄, ρ}, such that

Z[ρ̄, ρ] =

∫
D ˆ̄ψDψ̂e−Sf[

ˆ̄ψ,ψ̂]+
∑
n,α[ρ̄α(n)ψ̂α(n)+ ˆ̄ψα(n)ρα(n)]. (A.22)

By using the explicit form of Sf[
ˆ̄ψ, ψ̂] and applying the following substitutions

ψ̂β(m) = ψ̂′β(m) +
∑
γ,r

K−1
β,γ(m, r)ργ(r) and ˆ̄ψα(n) = ˆ̄ψ′α(n) +

∑
δ,s

ρ̄δ(s)K
−1
δ,α(s, n) (A.23)

one obtains

Z[ρ, ρ̄] = det[K]e
∑
α,β,n,m ρ̄α(n)K−1

α,β(n,m)ρβ(m), (A.24)

where K denotes the Dirac operator, given by eq. (A.20) and we used the well-known result for Gaussian
integrals over Grassmann variables. In this particular form the generating functional can be used to
obtain the numerator of the 2-point function eq. (A.21) by taking derivatives with respect to ρ and ρ̄.
After some careful calculations using the generating functional and the Grassmann integration rules we
obtain

〈ψ̂α(n) ˆ̄ψβ(m)〉 = K−1
α,β(n,m). (A.25)

One can compute K−1
α,β(n,m) by working in Fourier space and using∑

λ,l

K−1
αλ (n, l)Kλβ(l,m) = δαβδnm, (A.26)
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also here for details we refer to Ref. [24]. The final result for K−1
αβ (n,m) is given by

K−1
αβ (n,m) =

∫
d2k̂

(2π)2

[−i
∑
µ(γµ) sin(k̂µ) + m̂0]αβ∑
µ sin2(k̂µ) + m̂2

0

eik̂(n−m) =: T̃ (n,m; m̂0), (A.27)

where we used k̂.µ̂ = k̂µ and defined a new quantity T̃ (n,m; m̂0) in the last equation. So far all the
calculations went smoothly and there is no reason to believe that our naive lattice discretization would
fail. However, one can show that one does not retrieve the correct continuum limit. Let us derive the
continuum 2-point function 〈ψα(x)ψ̄β(y)〉 starting from the lattice 2-point function 〈ψ̂α(n) ˆ̄ψβ(m)〉. The
the continuum 2-point function can be computed by letting the lattice spacing go to zero a → 0, such
that

〈ψα(x)ψ̄β(y)〉 = lim
a→0

1

a
〈ψ̂α(n) ˆ̄ψβ(m)〉 (A.28)

= lim
a→0

1

a
T̃ (
x

a
,
y

a
;m0a) (A.29)

= lim
a→0

∫
(−πa ,

π
a ]

dk0

(2π)

∫
(−πa ,

π
a ]

dk1

(2π)

[−i
∑
µ(γµ) 1

a sin(akµ) +m0]αβ∑
µ( 1
a sin(akµ))2 +m2

0

eik(x−y), (A.30)

where we wrote out the integration measure in the last step. As a side-product we obtain the fermion
propagator in momentum space which is given by

S̃(k)α,β =
[−i
∑
µ(γµ) 1

a sin(akµ) +m0]αβ∑
µ( 1
a sin(akµ))2 +m2

0

. (A.31)

The easiest way to illustrate the fermion doubling problem is to consider a massless theory with m0 = 0.
In this case, for fixed momentum k, the momentum space fermion propagator has the correct continuum
limit

S̃(k)α,β |m0=0 =
[−i
∑
µ(γµ) 1

a sin(akµ)]αβ∑
µ( 1
a sin(akµ))2

a→0−→
[−i
∑
µ γµkµ]αβ

k2
. (A.32)

In the continuum the momentum space propagator for massless fermions has a pole at k = (0, 0),
corresponding to the single fermion, which is described by the continuum Dirac operator.
However, on the lattice this situation is different. Not only do we have the “correct” pole at k = (0, 0)

but additional unphysical poles at the boundaries of the Brillouin zone

k = (
π

a
, 0), k = (0,

π

a
), and k = (

π

a
,
π

a
). (A.33)

We see that these values of k give rise to 3 unwanted poles, the so-called fermion doublers, which have
no meaning in the continuum. The appearance of these unwanted fermion doublers is described by the
Nielsen-Ninomiya theorem, see Ref. [25], for a more pedagogical explanation we recommend Refs. [52]
and [43]. To circumvent the fermion doubling problem we implement so-called Wilson fermions which
explicitly break chiral symmetry.

A.4 Wilson fermions
To circumvent the fermion doubling problem we remind ourselves that any discretization of the original
action is valid, as long as we retrieve the correct continuum limit. We now exploit this ambiguity by
modifying the action in such a way that the pole of the massless propagator is only given by the physical
pole at k = (0, 0). In order to do this, we add an additional term to the lattice action, such that

SW [ ˆ̄ψ, ψ̂] = S[ ˆ̄ψ, ψ̂]− r

2

∑
n

¯̂
ψ(n)�̂ψ̂(n), (A.34)

where r is the so called Wilson parameter2 and �̂ is the 2-dimensional, dimensionless, lattice Laplacian
given by

�̂ψ̂(n) =
∑
µ

[ψ̂(n+ µ̂) + ψ̂(n− µ̂)− 2ψ̂(n)]. (A.35)

2Note, that the Wilson parameter will always be set to r = 1 in lattice simulations.
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Making the inverse replacements as we did in eqs. (A.17) and (A.18) one can see that this additional
Wilson term vanishes linearly with a in the continuum limit a → 0. Consequently, we can write down
the Wilson action as

SW [ ˆ̄ψ, ψ̂] =
∑

α,β,n,m

ˆ̄ψα(n)KW
α,β(n,m)ψ̂β(m), (A.36)

where the Wilson Dirac operator KW
α,β(n,m) is now given by

KW
α,β(n,m) = (m̂0 + 2r)δmnδα,β −

1

2

∑
µ

[(r − γµ)αβδm,n+µ̂ + (r + γµ)αβδm,n−µ̂]. (A.37)

The Wilson action leads to the following 2-point function of the continuum theory

〈ψα(x)ψ̄β(y)〉 = lim
a→0

∫ π
a

−πa

d2k

(2π)2

[−i
∑
µ(γµ) 1

a sin(akµ) +m(k)]αβ∑
µ( 1
a sin(akµ))2 +m(k)2

, (A.38)

where m(k) is now given by

m(k) = m0 +
2r

a

∑
µ

sin2

(
kµa

2

)
. (A.39)

For any fixed value of k, which is not at the edges of the Brillouin zone, we obtain m(k) → m in the
continuum limit. However, at the edges of the Brillouin zone the mass diverges in the continuum limit,
giving an infinite mass to the fermion doublers, which then decouple.

A.5 Implementation of the gauge fields

From now on, we will be working with Wilson fermions. Thus, we omit the index W in the Wilson Dirac
operator and the corresponding action. For the sake of simplicity, we also drop the hats on the lattice
variables. We work with dimensionless variables unless mentioned otherwise. So far we derived the free
lattice action

Sf[ψ̄, ψ] =
∑

α,β,n,m

ψ̄α(n)Kα,β(n,m)ψβ(m), (A.40)

where Kα,β(n,m) is given by

Kα,β(n,m) = (m0 + 2r)δmnδα,β −
1

2

∑
µ

[(r − γµ)αβδm,n+µ̂ + (r + γµ)αβδm,n−µ̂]. (A.41)

Up to this point, we derived this expression by working in the free formulation only, where no gauge
fields exist (i.e. Aµ = 0). However, we know that the continuum Schwinger model has a local U(1)
invariance, which was described in subsection (2.1.1). The next step consists in making the discretized
lattice action invariant under a local U(1) transformations given by

ψ(n)→ G(n)ψ(n), ψ̄(n)→ ψ̄(n)G(n)−1, (A.42)

where G(n) ∈ U(1) describes a local gauge transformation depending on the lattice site n. Since the
group element G(n) does not act on the Dirac degrees of freedom, it is sufficient to look at a bilinear
term like ψ̄(n)ψ(n+ µ̂). A bilinear combination of fields transforms as

ψ̄(y)ψ(x)→ ψ̄(y)G(y)−1G(x)ψ(x), (A.43)

which is not invariant. However, it is also known that in the continuum formulation a particle travelling
along a path C picks up a phase of the form

U(y, x) = eig
∫ x
y
dzµAµ(z), (A.44)
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which is the so-called Wilson line. The Wilson line is an element of U(1) and fulfills U(y, x)† = U(x, y).
Under a local gauge-transformation Aµ(x)→ Aµ(x)− 1

g∂µΛ(x) this object transforms as

U(y, x)→ G(y)U(y, x)G(x)−1, (A.45)

where G(x) = eiΛ(x). Consequently the following object is locally gauge-invariant

ψ̄(y)U(y, x)ψ(x). (A.46)

The above expression can be interpreted as a particle travelling in spacetime from point y to x and
picking up all the contributions from the gauge fields. Now, let us construct the discretized Wilson
line Un,n+µ̂ ∈ U(1), starting from the continuum expression U(x, y) ∈ U(1). In order to build local
gauge-invariance into the lattice formulation the following replacements need to be made

ψ̄(n)(r − γµ)ψ(n+ µ̂)→ ψ̄(n)(r − γµ)Un,n+µ̂ψ(n+ µ̂) and
ψ̄(n+ µ̂)(r + γµ)ψ(n)→ ψ̄(n+ µ̂)(r + γµ)Un+µ̂,nψ(n), (A.47)

where Un+µ̂,n = U†n,n+µ̂. These replacements ensure local gauge invariance under the following transfor-
mations

ψ(n)→ G(n)ψ(n), ψ̄(n)→ ψ̄(n)G−1(n), (A.48)

Un,n+µ̂ → G(n)Un,n+µ̂G
−1(n+ µ̂), Un+µ̂,n → G(n+ µ̂)Un+µ̂,nG

−1(n). (A.49)

Now, let us discuss the construction of these new discretized link variables Un,n+µ̂ ∈ U(1). Take the
most general ansatz

Un,n+µ̂ = eiφµ(n), with φµ(n) ∈ [0, 2π), (A.50)

and compare this expression to the Wilson line in the continuum U(y, x). Assume that x = y+εµ̂, where
εµ̂ describes an infinitesimal shift in µ̂-direction, then the continuum Wilson line can be approximated
as

U(y, y + εµ̂) = eig
∫ y+εµ̂
y

dzνAν(z) ≈ 1 + igεAµ(y). (A.51)

After comparison with the continuum expression and making some dimensional considerations we make
the ansatz φµ(n) = gaAµ(n) such that for a small lattice spacing a we obtain

Un,n+µ̂ ≈ 1 + igaAµ(n). (A.52)

By assuming that the discretized gauge fields transform as

Aµ(n)→ Aµ(n)− 1

g
∂µΛ(n) = Aµ(n)− 1

g
(Λ(n+ µ̂)− Λ(n)), (A.53)

one can now verify that the discretized link variables transform correctly. The discretized Wilson line
also has a graphical representation on the lattice (see figure A.1).

n n+ µ̂

Un,n+µ̂

n n+ µ̂

U†n,n+µ̂ = Un+µ̂,n

Figure A.1: Wilson line on the lattice.

Upon implementing the Wilson line in the fermionic action, we have

S[ψ̄, ψ, U ] =
∑

α,β,n,m

ψ̄α(n)Kα,β(n,m)ψβ(m), with (A.54)

Kα,β(n,m) = δα,βδn,m(m0 + 2r)− 1

2

∑
µ

[(r − γµ)α,βUn,mδm,n+µ̂ + (r + γµ)α,βUn,mδm,n−µ̂]. (A.55)
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To complete the construction of the lattice action, we require a lattice version of the kinetic term

1

4
FµνF

µν , (A.56)

which should be gauge-invariant as well and depend on the link variables only. Such gauge-invariant
quantities can be constructed by taking the product of link-variables around closed loops on the lattice.
We consider the smallest possible loop, which is a loop around an elementary plaquette. Its contribution
is given by

UPµν(n) = Un,n+µ̂Un+µ̂,n+µ̂+ν̂Un+µ̂+ν̂,n+ν̂Un+ν̂,n

= Un,n+µ̂Un+µ̂,n+µ̂+ν̂U
†
n+ν̂,n+µ̂+ν̂U

†
n,n+ν̂ , (A.57)

where we have path ordered the link variables.

n n+ µ̂

n+ ν̂ n+ µ̂+ ν̂

Figure A.2: Plaquette variable UPµν .

Note, that for an abelian gauge theory the path ordering is irrelevant, since all the link variables
commute with each other. Additionally, we also specified the plaquette to be in the µν plane starting
from the point n. However, since we are working with a 1 + 1-dimensional theory it should be evident,
that every plaquette lies in the x0x1-plane. Upon inserting our known expression for the link variables
we obtain

UPµν = eigaAµ(n)eigaAν(n+µ̂)e−igaAµ(n+ν̂)e−igaAν(n) = eiga
2Fµν(n), (A.58)

with Fµν =
1

a
[(Aν(n+ µ̂)−Aν(n)) + (Aµ(n+ ν̂)−Aµ(n))].

One can show that for small a one obtains

1

g2

∑
n

∑
µ,ν
µ<ν

(1− 1

2
(UPµ,ν + UP,†µ,ν )) ≈

∑
n

∑
µ,ν
µ<ν

(
1

2
a4FµνFµν) =

1

4

∑
n

∑
µν

(a4FµνFµν). (A.59)

We conclude that the discretized kinetic part of the action can be written as

Sg[U ] =
1

g2

∑
P

[1− 1

2
(UP + UP,†)]. (A.60)

For future purposes we also introduce the plaquette angle θP , which is related to the plaquette UP via

UP = eiθP , (A.61)

allowing us to rewrite the kinetic part of the action as

Sg[U ] =
1

g2

∑
P

[1− cos(UP )]. (A.62)

In the last step, we introduce the quark chemical potential µq, which couples to the fermion number and
is introduced on the lattice (see e.g. Ref. [53]) by furnishing the forward and backward temporal hopping
terms by factors of e±µq , respectively. We conclude this section by giving the complete grand-canonical
partition function for the 1-flavour Schwinger model and the complete discretized lattice action. The
grand-canonical partition function of the 1-flavour Schwinger model is given by

ZGC(T, µ) =

∫
DUDψ̄Dψe−S[ψ̄,ψ,U,µq ], (A.63)
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with Euclidean action

S[ψ̄, ψ, U, µq] = Sg[U ] + SF [ψ̄, ψ, U, µq]

=
1

g2

∑
P

[1− 1

2
(UP + UP,†)] +

∑
α,β,n,m

ψ̄α(n)Kα,β(n,m)ψβ(m), (A.64)

where the Wilson Dirac operator is given by

Kα,β(n,m) = δα,βδn,m(m0 + 2r)

− 1

2
[(r − γ1)α,βUn,mδm,n+1̂ + (r + γ1)α,βUn,mδm,n−1̂]

− 1

2
[eµq (r − γ0)α,βUn,mδm,n+0̂ + e−µq (r + γ0)α,βUn,mδm,n−0̂]. (A.65)
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B Traditional spectroscopy

In lattice simulations particle masses are traditionally computed from the asymptotic decay of the Eu-
clidean time-correlation function (short correlation functions or correlators). A typical 2-point correlator
is formed by taking the vacuum-expectation value of an operator O

C(t− t0) = 〈0|O(t)O(t0)|0〉, with t ≥ t0. (B.1)

Using the Euclidean time-evolution

O(t) = eHtOe−Ht, (B.2)

and inserting a complete set of eigenstates

1 =
∑
n≥0

|n〉〈n|, with energies E0 ≤ E1 ≤ E2 ≤ . . . , (B.3)

one obtains (after setting t0 = 0 for the sake of simplicity)

C(t) =
∑
n≥0

|〈0|O|n〉|2e−(En−E0)t. (B.4)

For big time separations, higher order contributions are suppressed and the Euclidean correlation function
reads

C(t) ∼ |〈0|O|0〉|2 + |〈0|O|1〉|2e−(E1−E0)t, (B.5)

where E0 is the vacuum energy and E1 is the energy of the lowest energy state which the operator O
can create from the vacuum. The first part is the vacuum disconnected part, correlation functions are
usually defined without it. After defining the mass gap m = E1 − E0 one obtains

C(t) ∼ |〈0|O|1〉|e−mt. (B.6)

If we are extracting particle masses using correlation functions in lattice simulations we also must take
into account the periodic nature of the lattice. Assume that the temporal extent of the lattice is tmax,1
then the correlator needs to be symmetrized with respect to t→ tmax − t, such that

C(t) =
1

2
(〈0|O(t)O(0)|0〉+ 〈0|O(tmax − t)O(0)|0〉)

=
1

2

∑
n≥0

|〈0|O|n〉|2e− 1
2 (En−E0)tmax

(
e−(En−E0)(t− tmax2 ) + e−(En−E0)( tmax2 −t)

)
(B.7)

→ |〈0|O|1〉|2e−
mtmax

2 cosh

(
m(t− tmax

2
)

)
, for t → tmax

2
.

This is the basic way how one finds hadronic masses in lattice gauge theories, the specific form of the
operators O, determine the kind of particle we are measuring.
Although most of the following discussion can be held in a more generalized context, we restrict

ourselves to the computation of correlators in the 2-flavour Schwinger model, which was introduced in
section 2.2. Furthermore, we set the lattice spacing to a = 1, for the rest of this chapter.
Let us suppose we want to determine the mass of a meson in the 2-flavour Schwinger model. Then we

measure a correlator of the form

C2(t− t0) =
∑
x,y

〈J(x, t)J†(y, t0)〉, (B.8)

1On a lattice of extent L× Lt, we have tmax = Lt.

91



where we sum over all lattice points x, y ∈ {1, 2, . . . , L} and J(x, t) denotes a meson interpolator, given
by one of the wavefunctions in table (B.1). The meson interpolator J†(y, t0) is considered a source
operator, where the meson is being created, while J(x, t) is considered to be a sink operator, where the
meson is being annihilated. A meson interpolator J(x, t) is of the form

J(x, t) = ψ̄(x, t)ΓTψ(x, t) = ψ̄Aa (x, t)ΓabT
ABψBb (x, t), (B.9)

where Γ denotes the gamma structure and T describes the flavour structure of the meson. We labelled
the flavour indices with capital letters A,B and Dirac indices with lower case letters a, b. Since we
are working with the 2-flavour Schwinger model, the spinor ψ is a doublet in flavour space ψ = (u, d).
Depending on whether we are interested in a triplet or a singlet state, we modify the flavour matrix T .
For a singlet state we choose T = 1, for triplet states we use one the generators of the su(2) algebra in
the Cartan-Weyl form

T 0 =

(
1
2 0
0 − 1

2

)
, T+ =

(
0 1
0 0

)
, T− =

(
0 0
1 0

)
, (B.10)

as illustrated in table B.1.

operator particle name Quantum numbers (IPG) Meson Interpolator J(x, t)

Pseudo-scalar Triplet π 1−+ ψ̄(T 0, T+, T−) · γ5ψ

Pseudo-scalar Singlet η 0−− ψ̄1 · γ5ψ

Scalar Triplet a0 1+− ψ̄(T 0, T+, T−) · 1ψ
Scalar Singlet f0 0++ ψ̄1 · 1ψ

Table B.1: Summary of the 1-meson states, including the quantum number and the meson interpola-
tors, which are used for spectroscopy. Compared to four dimensions, we only have a finite
number of meson interpolators, other potential meson interpolators are related to the ones
presented here by the relation iγ5γµ = εµνγν .

The Dirac structure needs to be chosen depending on the quantum numbers of the particle we want to
measure. For instance, a positively charged pion π+, consisting of an up and down quark, is a pseudo-
scalar particle and a member of the triplet {π−, π0, π+}. In order to form the corresponding interpolator
J , we choose the corresponding Dirac-structure Γ = γ5 and the generator T = T−, such that

J(x, t) = ψ̄(x, t)T− ⊗ γ5ψ(x, t) = d̄(x, t)γ5u(x, t) =: π+(x, t). (B.11)

We finish this section by mentioning that mesons can have higher order energy states, which are con-
structed by giving the meson a momentum p. To measure the energy of those states one has to modify
the meson interpolator and give it some momentum

J(x, t)→ J(x, t)e−ip
(k)x, where p(k) =

2π

L
· k, (B.12)

denotes the quantized momentum of the meson on the lattice. The new 2-point correlation function then
reads

C2(t− t0, k) =
∑
x,y

e−
2π·k
L (x−y)〈J(x, t)J†(y, t0)〉 ∝ e−E

(k)
J (t−t0), (B.13)

and allows us to extract the energy of the k-th excited energy state of the measured meson belonging to
the interpolator J .

B.1 Contractions

For the remainder of this section we restrict ourselves to the computation of ground state energies, i.e.
we do not give any momenta to the mesons we measure. Then the most general expression for the 2-point
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correlation function reads

C2,TΓ,T ′Γ′(t− t0) =
∑
x,y

〈J(x, t)J†(y, t0)〉 (B.14)

=
∑
x,y

∑
ABCD

∑
abcd

〈ψ̄Aa (x, t)TABΓabψ
B
b (x, t)ψ̄Cc (y, t0)T ′CDΓ′cdψ

D
d (y, t0)〉 (B.15)

=
∑
x,y

∑
ABCD

∑
abcd

TABT ′CDΓabΓ
′
cd〈ψBb (x, t)ψ̄Aa (x, t)ψDd (y, t0)ψ̄Cc (y, t0)〉, (B.16)

where we explicitly used the expressions for the source and the sink operators. To evaluate the Wick
contractions, we define the fermion propagator

SBAba (x′, t′, x, t) = 〈0|ψBb (x′, t′)ψ̄Aa (x, t)|0〉, (B.17)

which is determined from the inverse Dirac operator and denotes a fermion propagating from (x, t) to
(x′, t′). Making use of the fermion propagator, the Einstein sum convention and implicitely summing
over all spatial lattice points x, y one obtains

C2,TΓ,T ′Γ′(t− t0) = TABT ′CDΓabΓ
′
cd(S

BA
ba (x, t, x, t)SDCdc (y, t0, y, t0)− SBCbc (x, t, y, t0)SDAda (y, t0, x, t)).

(B.18)

For Wilson fermions the fermion propagator is diagonal in flavour space, SAB ∼ δAB , such that the flavour
structure can be evaluated separately. Performing the summation over the flavour indices A,B,C,D leads
to

C2,TΓ,T ′Γ′(t− t0) = Tr(T ) Tr(T ′)ΓabΓcdSba(x, t, x, t)Sdc(y, t0, y, t0)

− Tr(T.T ′)ΓabΓcdSbc(x, t, y, t0)Sda(y, t0, x, t). (B.19)

After summing over all Dirac indices and reintroducing the suppressed summation over the spatial lattice
points, the final expression for a 2-point function reads

C2,TΓ,T ′Γ′(t− t0) =
∑
x,y

{Tr(T ) Tr(T ′) Tr[S(x, t, x, t)Γ] Tr[S(y, t0, y, t0)Γ]

− Tr(T.T ′) Tr[S(x, t, y, t0)ΓS(y, t0, x, t)Γ]}. (B.20)

B.2 1- and 2-pion correlators
In the 2-flavour Schwinger model the pion triplet has fermion number Q = 0 and isospin I = 1. The
three members of the triplet are distinguished by the z-component of their isospin. In our work we are
interested in energies of n-meson ground states, which all happen to be multi-pion states. One way
to compute the energies of those multi-pion states is by measuring 2n-point correlation functions (or
short n-pion correlators), with the corresponding interpolator J . We start by writing down the complete
expression for the correlation function of a single pion π. We restrict ourselves to the calculation of states
with maximal isospin Iz = I = 1, such that the 1-pion correlator reads

C2(t− t0) = 〈(
∑
x

π−(x, t))(
∑
y

π+(y, t0))〉. (B.21)

Plugging in the required flavour matrices T = T+, T ′ = T− and setting Γ = Γ′ = γ5 we obtain

C2(t− t0) ∝
∑
x,y

Tr[S(x, t, y, t0)γ5S(y, t0, x, t)γ5], (B.22)

where we omitted the prefactor. It is worth noticing that the flavour triplet does not have any discon-
nected contribution in the 1-pion correlator, due to the traceless nature of the generators of the su(2)
algebra.
For pedagogical reasons let us also compute the 2-pion correlator. Similar to the case for n = 1,

multi-pion correlation functions do not pick up disconnected contributions. The most general expression
for a 4-point function is given by

C4,TΓ,T ′Γ′(t− t0) = TABTCDT ′EFT ′GHΓabΓcdΓefΓgh (B.23)

× 〈ψBb (x1, t)ψ̄
A
a (x1, t)ψ

D
d (x2, t)ψ̄

C
c (x2, t)ψ

F
f (y1, t0)ψ̄Ee (y1, t0)ψHh (y2, t0)ψ̄Gg (y2, t0)〉,
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where we implicitely sum over all spatial points x1, x2, y1, y2 and over all Dirac and flavour indices. In
order to get the 2-pion correlator we perform the same kind of replacements, as for the 1-pion correlator,
that is T = T+, T ′ = T− and Γ = Γ′ = γ5. Given that Tr[T+] = Tr[T−] = 0 and T+.T+ = T−.T− = 0,
many of the Wick contractions vanish and the remaining ones are easily computed. Using

Tr[T+.T−] = Tr[T+.T−.T+.T−] = 1, (B.24)

and relabelling the spatial indices we obtain

C4(t− t0) ∝

(∑
x1,y1

Tr[S(x1, t, y1, t0)γ5S(y1, t0, x1, t)γ5]

)2

−
∑

x1,x2,y1,y2

Tr[S(x1, t, y1, t0)γ5S(y1, t0, x2, t)γ5S(x2, t, y2, t0)γ5S(y2, t0, x1, t)γ5] (B.25)

This game can be played for arbitrary n-pion correlators, i.e. correlators of the form

C2n(t− t0) = 〈(
∑
x

π−(x, t))n(
∑
y

π+(y, t0))n〉, (B.26)

however, it is quite evident that the calculations become more involved and time-consuming. By realizing
that each contribution describes a different type of closed graph on the lattice (see for example figure B.1,
for the 2-pion correlator), we can find a generalized formula, which allows us to determine all pion
correlators up to arbitrary order. Detmold, Savage et al. did this and wrote down all the n-pion
correlators for up to n = 13 pions in Ref. [15]. In the next section we present an argument which allows
us to compute the very same multi-pion correlator in terms of so-called “quark loop propagators”.

y1

y2

x1

x2

y1

y2

x1

x2

y1

y2

x1

x2

y1

y2

x1

x2

Figure B.1: Graphical representation of the contractions for the 2-pion correlator. The spatial points
y1, y2 are sitting at the source at time t0, while the spatial points x1, x2 are sitting at the
sink at time t. The first two figures on the left show two closed quark loops, corresponding
to the contribution T 2

1 . The remaining two figures show quarks making a “complete” loop,
hopping twice between time-slices, before closing the loop.

B.3 Multi-pion correlators
We would like to derive a generalized formula for n-pion correlators, that is

C2n(t− t0) = 〈(
∑
x

π(x, t)−)n(
∑
y

π(y, t0)+)n〉. (B.27)

To do so, we introduce the so-called “quark loop propagator” as

Π =
∑
x,y

S(x, t, y, t0)S†(x, t, y, t0) (B.28)

=
∑
x,y

S(x, t, y, t0)γ5S(y, t0, x, t)γ5, (B.29)

where we used an identity for the path-reversed propagator S†(x, t, y, t0) = γ5S(y, t0, x, t)γ5. Note, that
we do not follow any naming conventions, the object Π does not really have a name. We choose to label
it quark loop propagator, since it describes a quark being created at spacetime point (y, t0), visiting
spacetime point (x, t), before going back to (y, t0), completing the loop. Furthermore, we introduce the
trace of the quark loop propagator as

Ti = Tr[Πi], (B.30)
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where the trace is taken over the Dirac indices and the index i denotes the power to which Π is raised.
Note, that by raising the power of the quark loop propagator, it is meant that we prolong the path of
quark, so for example

Π2 =
∑

x1,x2,y1,y2

S(x1, t, y1, t0)γ5S(y1, t0, x2, t)γ5S(x2, t, y2, t0)γ5S(y2, t0, x1, t)γ5. (B.31)

Upon making these definitions, we identify that the 1- and 2-pion correlators is given by

C2(t− t0) ∝ T1, (B.32)

C4(t− t0) ∝ T 2
1 − T2, (B.33)

respectively. Using intuitive arguments, one can show that n-pion correlators can be computed in terms
of the traces of quark loop propagators

Ti = Tr[Πi], with Π =
∑
x,y

S(x, t, y, t0)γ5S(y, t0, x, t)γ5. (B.34)

Consider two time-slices on the lattice, t0 and t with t > t0, each consisting of L spatial points. Upon
having a closer look at the structure of the correlation functions, one comes to understand, that an n-pion
correlator describes sets of closed paths on the lattice which alternate between the time slices. The exact
spatial points the path visits do not matter, in the end, we sum over all the different possibilities anyway.
Let us revisit the two examples we calculated before. The 1-pion correlator describes the set of all

paths, where the pion travels from the source at some spacetime point (y1, t0) to the sink at some
spacetime point (x1, t) and back again to the source (y1, t0). This path yields an overall factor T1 and
therefore the result for C2(t− t0) given by eq. (B.32). The 2-pion correlator has two parts. The first part
describes two separate paths with two pions travelling similarly as before, yielding a contribution T 2

1 .
The second part describes a pion travelling twice between time-slices. Its path2 is given by something
like

(y1, t0)→ (x1, t)→ (y2, t0)→ (x2, t)→ (y1, t0). (B.35)

The second part yields an overall contribution of T2 and has a minus sign compared to the first one,
since the number of quark loops changes from an even number to an odd one. The underlying reasons
are of course the commutation rules of the Grassmann fields ψ and ψ̄. The two contributions for the
2-pion correlator are shown in figure B.1. Combining those two parts we obtain the well known result
for C4(t− t0) that is eq. (B.33).
The important quantities which are crucial for the determination of the pion correlators are the number

of closed paths and the lengths of each of these paths. The length of a path shall be defined by the
number of times, where the pion jumps from time-slice t to t0 and back. In the next section we give
an idea of how to compute arbitrary n-pion correlators using the symmetric group Sn, which describes
permutations of n elements, and the so-called integer partitions IP(n).

B.4 Revisiting 1- and 2-pion correlators and computing 3-pion
correlators

Here we present a description, allowing us to determine n-pion correlators using simple algebra. We do
this by presenting the calculations of the 1-, 2- and 3-pion correlators, the computations for higher pion
numbers follow the same strategy. The needed mathematical background for this section is provided by
Dummit and Foote in Ref. [54] and Cameron et al. in Ref. [55].
To describe the different sets of paths mathematically, we utilize the symmetric group Sn, which

describes permutations of n elements. The order of Sn is given by the number of ways one can rearrange
the elements of the set {1, 2, . . . , n}. This is a simple combinatorial task and we conclude that the order
of Sn is n!. In order to characterize an element σ ∈ Sn, the cycle notation is very handy. A cycle is a
string of integers which represents the elements of Sn which cyclically permutes these integers (and fixes
all other integers). For example, the cycle

(a1, a2, . . . , am), (B.36)

2We emphasize, once more, that the specific choice of spatial points the quark visits does not matter.
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with m ≤ n, sends ai to ai+1 for all i < m and am to a1.
For a more concrete example, consider an element σ = (123) in S3 which maps 1 → 2, 2 → 3 and

3→ 1. The element σ = (12) in S3, just exchanges 1 and 2, while keeping 3 fixed.
Throughout this section we use a slightly modified form of the cycle notation, we will explicitly write

down the cycles of length 1 for the sake of completeness. This means, that for example a cycle like
σ = (12) in S3 becomes σ = (12)(3).
Furthermore, so-called integer partitions IP(n) will be used, in particular, the equivalence between the

integer partitions of n and the conjugacy classes of Sn, as illustrated in Ref. [54].
Let us start the computations with the 1-pion correlator C2(t − t0). We need the symmetry group

S1 = {(1)} which contains just the unit element denoting a “trivial” permutation. In order to obtain the
conjugacy classes of S1 we compute the integer partition of n = 1, which are simply given by

1 = 1, (B.37)

therefore IP(1) = {{1}}. The element {1} can be understood as the conjugacy class of one cycle of length
1, belonging to the unit element of S1. For the computation of the 1-pion correlator the conjugacy class
{1} can be interpreted as a path of length 1, which allows us to draw a connection to the trace of the
quark loop propagator T1. We make the assignment

{1} → T1, (B.38)

and since we only have one conjugacy class, the final result reads

C2(t− t0) ∝ T1. (B.39)

We turn to the computation of the 2-pion correlator C4(t− t0). The corresponding symmetric group

S2 = {(1)(2), (12)} (B.40)

has two elements, (1)(2) denotes the unit element, while (12) denotes a permutation of the two elements.
In order to get the conjugacy classes we compute the integer partitions

2 = 1 + 1, (B.41)
= 2, (B.42)

therefore

IP(2) = {{1, 1}, {2}}. (B.43)

The first element {1, 1} belongs to the conjugacy class corresponding to two cycles of length 1. The only
member of this conjugacy class is the unit element of S2, that is (1)(2). The second element {2} belongs
to the conjugacy class corresponding to one cycle of length 2, belonging to (12). For the computation of
the 2-pion correlator we make the following assignments

{1, 1} → T 2
1 and {2} → T2. (B.44)

To construct C4(t − t0) we take into account the number of elements in each conjugacy class and add
a minus sign if the number of quark loops changes. Since we have one element for each conjugacy class
the computation is straightforward and we obtain our well-known result

C4(t− t0) ∝ T 2
1 − T2. (B.45)

Well, that was fun! Now let us turn to something new, the 3-pion correlator C6(t−t0), with the symmetric
group

S3 = {(1)(2)(3), (12)(3), (1)(23), (13)(2), (123), (132)}. (B.46)

As before, we determine the conjugacy classes by computing the integer partitions of n = 3

3 = 1 + 1 + 1, (B.47)
= 2 + 1, (B.48)
= 3, (B.49)
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such that

IP(3) = {{1, 1, 1}, {2, 1}, {3}}. (B.50)

We associate the conjugacy classes to the corresponding traces of quark loop propagators

{1, 1, 1} → T 3
1 , {2, 1} → T1T2 and {3} → T3, (B.51)

and compute the number of elements of each conjugacy class, by identifying

{1, 1, 1} ∼ (1)(2)(3) → 1 element, (B.52)
{2, 1} ∼ (12)(3), (1)(23), (13)(2) → 3 elements, (B.53)
{3} ∼ (123), (132) → 2 elements. (B.54)

After adding the mandatory change of sign, we obtain

C6(t− t0) ∝ T 3
1 − 3T1T2 + 2T3. (B.55)

We obtain these results using just the traces of the quark loop propagators, without engaging in extensive
indices algebra coming from multiple Wick contractions. Following this strategy, one can construct all
the n-pion correlators in a straightforward way, but also here, the computations become more complex
with an increasing number of pions.
Let us discuss the reason for the increase in complexity. Based on the integer partitions of n, we

determine the conjugacy classes and write down the different kinds of contributions in terms of traces of
quark loop propagators Ti. However, the prefactors of these contributions are related to the number of
elements in the given conjugacy class and are not always easy to determine. It is therefore necessary to
have an analytic expression for the number of elements in each conjugacy class. Such an analytic formula
for the size of a conjugacy class can be found in Ref. [54] and will be discussed next.
Suppose we want to find the size of a conjugacy class C of Sn, that is |C|. Consider an element

of that conjugacy class σ ∈ C, which can be decomposed into s different cycle types. Then σ can be
characterized by the number of cycles ki and the length of each of these cycles li, with i ∈ {1, . . . , s},
such that

s∑
i=1

kili = n. (B.56)

The number of conjugates of σ - and therefore the size of the conjugacy class C - is given by

|C| = n!

(k1!lk11 )(k2!lk22 ) . . . (ks!l
ks
s )

. (B.57)

If we revisit our computation for the 3-pion correlator we recognize our well-known prefactors from
eq. (B.55)

C({1, 1, 1}) =
3!

3!13
= 1, (B.58)

C({2, 1}) =
3!

(1!21)(1!12)
= 3, (B.59)

C({3}) =
3!

(1!31)
= 2, (B.60)

confirming the validity of eq. (B.57).
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C Monte Carlo simulations

Explicitly evaluating the partition function Z for a lattice gauge theory of interacting particles is a
hopeless task, which is why we resort to numerical methods. The idea of Monte Carlo sampling is to
compute physical quantities we are interested in (observables) by numerically generating new configura-
tions, according to their Boltzmann weight. For the Schwinger model on the lattice, the configurations
are characterized by the gauge fields

[s] := [s[U ]] = {Un,n+µ̂, with n ∈ {1, 2, . . . ,Ω}, µ̂ ∈ {0̂, 1̂}}, (C.1)

where we introduced a lattice with a total of Ω = L · Lt spacetime points (we set the lattice spacing to
one, a = 1). In case of the quenched (0-flavour) Schwinger model we simulate a pure U(1) gauge theory
with no fermion content, such that the Euclidean action reduces to the kinetic part only

SE [U ] = Sg[U ]. (C.2)

The partition function can then be expressed as sum over all Boltzmann weights

Z =

∫
DUe−Sg [U ] =

∫
DUe−H[U ], (C.3)

where we interpret the action as a measure of the energy of the system. The probability that a configu-
ration [s] is occupied is then given by

p[s] =
1

Z
e−H[s]. (C.4)

For a more detailed discussion consider Ref. [56].

C.1 Markov chains
The concept of Markov chains is of central importance in Monte Carlo simulations. A Markov chain is
a sequence of configurations which begins with an initial configuration [s(1)] and then evolves from [s(i)]
to [s(i+1)] recursively by applying some algorithm

[s(1)]→ · · · → [s(N)]. (C.5)

In the end, when computing observables the choice of the initial configuration should not matter. After
a certain number of Monte Carlo steps (i.e. iterations from [s(i)] to [s(i+1)]), the system has reached
equilibrium; from this point on we start measuring an observable O. The measurement of an observable is
carried out by averaging over all measurements after approaching equilibrium. Assuming that equilibrium
is reached after M iterations, 〈O〉 is estimated as

O =
1

N −M

N∑
i=M+1

O[s(i)]. (C.6)

C.2 Measurements and error estimations
As in experimental physics, when measuring quantities we have to take into account statistical errors.
Let the quantity O be normally distributed with mean value 〈O〉 and width σ =

√
Var(O). Additionally,

let us assume that we have N statistically independent observations within equilibrium {O[s(i)]}Ni=1 of a
certain observable O. An unbiased estimator for the mean value is the sample mean

O =
1

N

N∑
i=1

O[s(i)], (C.7)
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such that 〈O〉 = 〈O〉. By using the definition of the variance and assuming that the measurements are
independent of each other, the standard deviation of the measurement is given by

∆O =
σ√
N
. (C.8)

An unbiased estimator of the variance σ2 is given by the sample variance S2

S2 =
1

N − 1

N∑
i=1

(O[s(i)]−O)2. (C.9)

Consequently ∆O can be written as

∆O =
S√
N

=
1√

N(N − 1)

√√√√ N∑
i=1

(O[s(i)]−O)2 =
1√
N − 1

√
O2 −O2

. (C.10)

C.3 The Bootstrap method
The bootstrap method was introduced as an automated computer-based method to estimate the errors
of an observable O. This method does not rely on any assumptions about the underlying distribution of
the data and the complexity of the estimator Ô, which makes it a very universal tool for data analysis.
For a more detailed discussion, we recommend Efron and Tibshirani in Ref. [57]. The bootstrap method
relies on so-called bootstrap samples. Consider a set of n independent measurements, which may or may
not be generated from a Monte Carlo simulation

~x = (x1, x2, . . . , xn). (C.11)

We now construct NB independent bootstrap samples, each one consisting of n data values drawn with
replacement from ~x. Mathematically speaking, we construct a bootstrap sample xα, α = 1, . . . , NB as

xα =

n∑
i=1

nαi xi, (C.12)

where nα denotes a vector of random positive integers, such that

n∑
i=1

nαi = n. (C.13)

We construct the bootstrap estimator Ô based on the bootstrap samples

Ôα = Ô(xα), α = 1, . . . , NB . (C.14)

Note that in case of a direct error estimation of the measurements, we just set Ôα = xα. An estimator
of the standard error is given by the sample standard deviation of the NB bootstrap samples

∆OB =
1√

NB − 1

√√√√NB∑
α=1

(Ôα −O)2, (C.15)

where we implicitely defined

O =
1

NB

NB∑
α=1

Ôα. (C.16)

C.4 Autocorrelation
The ideal Monte Carlo algorithm would create a Markov chain of statistically independent configurations,
but since a new configuration is generated from the previous one, subsequent configurations may be
correlated. This means that the true statistical error is larger than the naive estimate of the standard
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deviation. In order to take into account correlations of subsequently generated observations we modify
the standard deviation by

∆O2 =
S2

N

(
1 +

2τO
δt

)
= ∆O2

naive

(
1 +

2τO
δt

)
, (C.17)

where we introduced the integrated autocorrelation time τO which is measured in units of δt. The
additional term in ∆O2 can be considered as a correction term for the true statistical error. A normalized
autocorrelation function is used in order to estimate the number τ of iterations that separate statistically
independent configurations. Consider the Markov chain as a statistical system evolving in Monte Carlo
time. The normalized autocorrelation function for some observable O (within equilibrium) is defined as

φ(t) =
〈O[s(t0)]O[s(t0+t)]〉 − 〈O〉2

〈O2〉 − 〈O〉2
,

with the properties that φ(0) = 1, limt→∞ φ(t) = 0 and φ(t) decays monotonically with increasing time t.
The long-time behavior of the normalized autocorrelation function is exponential, such that

φ(t) ∝ e− t
τ , for t→∞. (C.18)

For the error analysis, the relevant quantity is the integrated autocorrelation time τO, given by

τO
δt

=

∞∑
t=1

φ(t). (C.19)

Note, that if the autocorrelation function was purely exponential φ(t) = e−t/τ , we would obtain τO = τ .
Since φ(t) becomes noisy for t� τO, the sum in eq. (C.19) can behave badly for large t. Thus, the sum
should be truncated self-consistently as the summation proceeds. In our case we truncate the sum at
some upper limit Imax, which is chosen to be the smallest integer such that

0.5 +

Imax∑
t=1

φ(t) ≤ 1

6
Imax. (C.20)

C.5 Detailed balance and ergodicity
In order to ensure that a Monte Carlo algorithm converges to the correct equilibrium distribution, it is
sufficient that the algorithm obeys ergodicity and detailed balance. Ergodicity means that all possible
configurations which contribute to the partition function should theoretically be accessible within a finite
number of Monte Carlo steps. This condition is necessary, since we must be able to take into account all
possible contributions. Detailed balance means that

p[s]w[s, s′] = p[s′]w[s′, s], (C.21)

where p[s] is the probability for the system to be in configuration [s] (see for example eq. (C.4)), and
w[s, s′] is the transition probability to turn the configuration [s] into [s′]. The transition probability is
normalized to ∑

[s′]

w[s, s′] = 1, (C.22)

since the algorithm necessarily turns a configuration [s] into some other configuration [s′]. In order to
ensure that the algorithm converges towards the correct equilibrium distribution, we require that the
distribution p[s] is an eigenvector of the transition matrix w[s, s′] with eigenvalue 1∑

[s]

p[s]w[s, s′] = p[s′]. (C.23)

Using the detailed balance condition (C.21), and the normalization of the transition probability we see
that this requirement is fulfilled ∑

[s]

p[s]w[s, s′] =
∑
[s]

p[s′]w[s′, s] = p[s′]. (C.24)

By using ergodicity one can show that such an eigenvector exists, is unique, and that the equilibrium
distribution is therefore indeed approached asymptotically.
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C.6 Metropolis algorithm for the quenched Schwinger model
The Metropolis algorithm is a simple algorithm, which is being used to sample the quenched Schwinger
model. In this algorithm we construct a new gauge configuration [s′] based on the old one [s]. This is
done by choosing a random spacetime point and direction ñ, µ̃ and furnishing the corresponding gauge
field with a random phase eiϕ, such that

{U1,1+0̂, . . . , Uñ,ñ+µ̃, . . . , UΩ,Ω+1̂}︸ ︷︷ ︸
[s]

→ {U1,1+0̂, . . . , Uñ,ñ+µ̃e
iϕ, . . . , UΩ,Ω+1̂}︸ ︷︷ ︸

[s′]

. (C.25)

If the new configuration is energetically favorable, it is accepted which means that if

∆H = H[s′]−H[s] < 0, then w[s, s′] = 1. (C.26)

If the new energy is larger, we accept the new configuration with a certain probability

∆H = H[s′]−H[s] > 0, then w[s, s′] = e−β∆H. (C.27)

The algorithm is ergodic since every configuration of gauge fields is accessible with a non-vanishing
probability. In order to show detailed balance consider the case where H[s] − H[s′] > 0, such that
H[s′]−H[s] < 0 and w[s, s′] = 1. Then detailed balance is fulfilled since

p[s′]w[s′, s] =
e−βH[s′]

Z(β)
e−β(H[s]−H[s′]) = p[s] · 1 = p[s]w[s, s′]. (C.28)

C.7 Hybrid Monte Carlo methods
The Hybrid Monte Carlo method (HMC) is an alternative method for sampling lattice gauge theories.
Compared to the Metropolis algorithm, the HMC method reduces correlations between subsequently
sampled states by proposing moves to distant states which maintain a high probability of acceptance.
This allows us to sample a big portion of configuration space with reduced autocorrelation effects. Due
to its efficiency, the HMC is used for the sampling of the 2-flavour Schwinger model. The code we used
for the sampling of the 2-flavour Schwinger model is publicly available and provided by Urbach et al.
in Ref. [48]. The implementation of the HMC algorithm is quite complicated and a thorough discussion
would be beyond the scope of this thesis. For more details about the HMC algorithm, the interested
reader is referred to Ref. [24].

C.8 Sign problem
The Metropolis algorithm, but also the Hybrid Monte Carlo algorithm rely on positive Boltzmann
weights. However, depending on the kind of simulations one is interested in, certain configurations
might have a complex Boltzmann weight, which is known as the infamous “sign problem”.

Sign problem in the quenched Schwinger model

Assume that we are interested in simulating the quenched (0-flavour) Schwinger model, with partition
function given by eq. (C.3). Then the Boltzmann weight WB , which is used for numerical simulations,
is always strictly real and positive

WB [Nf = 0] = e−Sg[U ] > 0, (C.29)

which indicates the absence of the sign problem.

Sign problem in the 1-flavour Schwinger model

Let us examine the Boltzmann weight for the grand-canonical partition function of the 1-flavour Schwinger
model, with quark chemical potential µq and Wilson Dirac operator K[U, µq]. The Euclidean action can
then be written as

SE [q̄, q, U, µq] = Sg[U ] + q̄.K[U, µq].q, (C.30)
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where q denotes the 2-component spinorfield for the quark q. After integrating out the quark fields using
Grassmann integration rules, the Euclidean action is

SE [U, µq] = Sg[U ]− log(det(K[U, µq])), (C.31)

and the corresponding Boltzmann weight is given by

WB [Nf = 1, µq] = det(K[U, µq])e
−Sg[U ]. (C.32)

The known exponential factor is always strictly positive, but the determinant of the Wilson Dirac operator
may become negative or even complex. In order to discuss that problematic factor, we first discuss the
case for µq = 0. For vanishing quark chemical potential the Wilson Dirac operator fulfills γ5 hermiticity,
that is

γ5.K[U, µq = 0].γ5 = K[U, µq = 0]†, (C.33)

then since det γ5 = 1, one obtains

det(K[U, µq = 0]) = det(K[U, µq = 0]†) = det(K[U, µq = 0])†. (C.34)

We conclude that K[U, µq = 0] always has a real determinant. However, to ensure positivity we need to
be working in a regime where the quark masses are positive. Similar to the discussion in section 2.5 also
for the 1-flavour Schwinger model with Wilson fermions the true quark mass is given by

mq = ZM (m0 −mcrit), (C.35)

where ZM denotes a multiplicative renormalization factor and mcrit denotes an additive correction due
to the use of Wilson fermions. If we approach the chiral limit m0 → mcrit or work in a regime where
m0 < mcrit the sign problem amplifies and simulations become impossible. However, if we work in a
regime where the bare quark mass fulfills m0 � mcrit then the determinant of the Wilson Dirac operator
is always positive and the sign problem is absent.
If we turn on the quark chemical quark potential µq 6= 0, the γ5 hermiticity is broken and the deter-

minant gets a complex phase

det(K[U, µq 6= 0]) = eiϕ|det(K[U, µq 6= 0])|. (C.36)

One way to remove this unwanted phase is by utilizing a generalized version of the γ5 hermiticity, which
reads

γ5.K[U, µq].γ5 = K[U,−µ∗q ]†. (C.37)

This equation tells us, that if we complexify the chemical potential µq = iµ̃q, with µ̃ ∈ R, we obtain once
again

det(K[U, iµ̃q]) = det(K[U, iµ̃q])
†. (C.38)

We conclude that complexifying the quark chemical potential yields a real determinant and therefore a
real weight WB [Nf = 1, µq = iµ̃q] ∈ R. However, we still need to choose the bare quark mass m0 to be
sufficiently large to avoid the sign problem.
Note, that we can also derive that WB [Nf = 1, µq = iµ̃q] is real by using the canonical formalism.

Consider the dimensionally reducedWilson Dirac determinant with complexified quark chemical potential
µq = iµ̃q, that is

det(K[U, iµ̃]) =

L∑
k=−L

eiµ̃Ltkdetk(K[U ]). (C.39)

The right-hand side of above equation is real due to the reflection symmetry of the canonical determinants,

det∗k(K) = det−k(K) ∀k ∈ {0, . . . , L} (C.40)

which is shown in section G.4. Therefore also the determinant on the left-hand side, must be real.
We conclude that the Boltzmann weight of the 1-flavour Schwinger model can be constructed to be

real and positive if we turn off the quark chemical potential (µq = 0) and work with a suitable bare
quark mass m0 � mcrit.
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Sign problem in the 2-flavour Schwinger model

In a final step, we consider the Boltzmann weight of the mass-degenerate 2-flavour Schwinger model with
an up and down quark ψ = (u, d), as introduced in section 2.2. We have an isospin chemical potential µI ,
which is related to the quark chemical potentials via µu = −µd = µI

2 . The Euclidean action decomposes
similarly as in the 1-flavour case

SE [ψ̄, ψ, U, µI ] = Sg[U ] + ū.K[U, µI ].u+ d̄.K[U,−µI ].d, (C.41)

and after integrating out the quark fields we have

SE [U, µI ] = Sg[U ]− log(det(K[U, µI ]))− log(det(K[U,−µI ])). (C.42)

Using relation (C.37), we can show that the Boltzmann weight is always strictly positive

WB [Nf = 2, µI ] = e−Sg [U ] det(K[U, µI ]) det(K[U,−µI ]) (C.43)

= e−Sg [U ]|det(K[U, µI ])|2 ≥ 0. (C.44)

We conclude that the quenched Schwinger model (0 flavour) and the mass-degenerate 2-flavour Schwinger
model (with µu = −µd = µI

2 ) can be sampled without a sign problem. The 1-flavour Schwinger model
on the other hand exhibits a sign problem, which is more difficult to handle. In this thesis, when working
with the 1-flavour Schwinger model, we choose the input parameters in such a way, that the sign problem
is absent.

C.9 Reweighting technique

Using Metropolis and Hybrid Monte Carlo (HMC) algorithms we are able to sample the partition func-
tions of the quenched and the 2-flavour Schwinger model, respectively. However, we are interested in
sampling the canonical partition functions with a fixed number of up and down quarks (nu, nd)

Z(nu,nd)(T ) =

∫
DU (detnuK[U ]) (detndK[U ]) e−Sg [U ], (C.45)

with the Boltzmann weights

WB [Nf = 2, n = (nu, nd)] = (detnuK[U ]) (detndK[U ]) e−Sg[U ]. (C.46)

The computation of those canonical weights requires the dimensional reduction of the Wilson Dirac de-
terminant discussed in section 3.3, which is very time-consuming and therefore not practical for numerical
simulations.
An alternative method is the so-called reweighting technique, which is a standard tool in Monte Carlo

approaches. The rough idea of reweighting is to access a certain part of configuration space characterized
by some input parameters P ′ from an ensemble of configurations which has been created with some
different input parameters P. These Input parameters may be very general such as the number of
flavours, the coupling β, the bare mass m0, etc. Let us discuss a concrete example of how we can use
this reweighting technique to make measurements with respect to canonical sectors.

Canonical Simulations
n = (nu, nd)

P = {L,Lt, β,m0}

Quenched Simulations
Nf = 0, P = {L,Lt, β}

Dynamical Simulations
Nf = 2, P = {L,Lt, β,m0}

Reweighting to canonical sectors,
with mass m0

Reweighting to canonical sectors

Figure C.1: Reweighting onto canonical sectors from quenched and dynamical simulations. Note that
we set µI = 0 in both cases.
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Assume that we are interested in measuring an observable O of the 2-flavour Schwinger model in the
fixed canonical sector with nu up and nd down quarks (nu, nd). By using the canonical partition function
in eq. (C.45) statistical mechanics tell us that the expectation value for the observable O reads

〈O〉(nu,nd) =

∫
DU · O · (detnuK[U ]) (detndK[U ]) e−Sg [U ]∫
DU (detnuK[U ]) (detndK[U ]) e−Sg [U ]

(C.47)

=
1

Z(nu,nd)(T )

∫
DU · O · (detnuK[U ]) (detndK[U ]) e−Sg[U ]. (C.48)

After introducing the following abbreviations for the reweighting factors

R[Nf = 0] = (detnuK[U ]) (detndK[U ]) and R[Nf = 2] =

(
detnuK[U ]detndK[U ]

|det(K[U, µI ])|2

)
, (C.49)

we can derive these intriguingly simple relations, which are the reweighting formulas used in this thesis

〈O〉(nu,nd) =
〈OR[Nf = 0]〉Nf=0

〈R[Nf = 0]〉Nf=0
(C.50)

=
〈OR[Nf = 2]〉Nf=2

〈R[Nf = 2]〉Nf=2
. (C.51)

The first equation can be used to reweight from quenched simulations onto canonical sectors of the 2-
flavour Schwinger model, with nu up and nd down quarks. The second one can be used to reweight from
the dynamical 2-flavour simulations onto canonical sectors with nu up and nd down quarks.
This result indicates that we can make “measurements” with respect to canonical sectors, by using

configurations from quenched and 2-flavour simulations, respectively.

Dangers of reweighting

Although the reweighting formulas derived in eqs. (C.50) and (C.51) are mathematically correct, they
do not show the full picture and there are some pitfalls one has to respect. This can be understood
by making some simple thought experiments. Consider an ensemble of configurations which has been
created from quenched simulations, i.e. with zero fermion-content, and assume that we want to measure
some observable 〈O〉(nu,nd) with respect to the canonical sector (nu, nd). The quenched simulations cover
a certain subset of configuration space, that is, the subset of configuration space, where the quenched
Boltzmann weight WB [Nf = 0] is dominant. However, for the measurements of 〈O〉(nu,nd) we would
like to cover the part of configuration space where the Boltzmann weight for the canonical sectors in
the 2-flavour Schwinger model WB [Nf = 2, n = (nu, nd)] is predominant. In general, those two subsets
are not overlapping, which means that we are basically “extrapolating” from one subset of configuration
space to another one using the reweighting formulas. This idea can be prone to systematical errors and is
well-known as the so-called overlap problem [58]. In order to apply reweighting techniques successfully,
it is important that the configuration space covered by the original simulations is overlapping as much
as possible with the target configuration space.
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D Matrix formulas

Here we review some basic formulas needed throughout this thesis without giving any proofs. The
interested reader is referred to Horn and Johnson in Ref. [51].

D.1 Partitions of matrices
Let A ∈ Mat(m × n,C) be a m × n-dimensional matrix and I ⊆ {1, . . . ,m}, J ⊆ {1, . . . , n} be two sets
of index sets. Then we define

AIJ , (D.1)

to be the submatrix of entries that lie in the rows indexed by I and in columns indexed by J . Consider
the following examples

AIJ = Aij , for I = {i}, J = {j} (D.2)

AIJ = ∅, for I = J = ∅ (D.3)

AIJ = A, for I = {1, . . . ,m}, J = {1, . . . , n}. (D.4)

similarly one can also define define a submatrix

A/I/J , (D.5)

which now denotes the submatrix one obtains after deleting all the rows in I and all the columns in J .
As a non-trivial example consider

A =

(
a b c
d e f

)
, with I = {1} and J = {2, 3}. (D.6)

Then

AIJ =
(
b c

)
, and A/I/J =

(
d
)

= d. (D.7)

Throughout this thesis, we will be working exclusively with quadratic matrices and with principal sub-
matrices. A principal submatrix is a quadratic submatrix AIJ where the two index sets, denoting the
selected rows and columns, are equal J = I. For a quadratic matrix A ∈ Mat(n,C) one has

(
n
k

)
, distinct

principal submatrices of size (k × k). The determinant of such a quadratic principal submatrix is called
principal minor of size k and denoted by

det(AII), with |I| = k. (D.8)

By convention, the empty principal minor is just one 1, that is detA/0/0 = 1. One can also take the sum
of all

(
n
k

)
principal minors, which then leads to the following two definitions and a resulting theorem.

Definition: Sum of all principal minors

Let A ∈ Mat(n,C), then the sum of all principal minors of size |I| = k is denoted by Ek(A), such that

Ek(A) :=
∑

I,|I|=k

det(AII). (D.9)

We mention, once again, that the number of principal minors is given by
(
n
k

)
. Note, that for the trivial

cases k = 0, 1, n one obtains

E0(A) = 1, (D.10)
E1(A) = Tr[A], (D.11)
En(A) = det(A). (D.12)
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Definition: Symmetric functions

Let {λ1, . . . , λn} be a set of arbitrary complex numbers, then the k’th elementary symmetric function
reads

Sk(λ1, . . . , λn) =
∑

1≤i1≤···≤ik≤n

k∏
j=1

λij . (D.13)

Note that the sum has
(
n
k

)
summands as well. Next consider some A ∈ Mat(n,C) and assume that the

eigenvalue-spectrum of A is given by σ(A) = {λ1, . . . , λn}, then we define Sk(A) = Sk(λ1 . . . , λn).

Theorem: Equivalence of Ek(A) and Sk(A)

Let A ∈ Mat(n,C). Then Ek(A) = Sk(A) for all k ∈ {1, . . . n}.

The previous theorem will be of great use throughout this thesis, since it allows us to make statements
about the sum of principal minors, while utilizing properties of the eigenvalue spectrum. The proof is
given in Ref. [51].

D.2 Schur complements and determinantal formulae
Let M ∈ Mat(n,C) and suppose that I ⊆ {1, . . . , n} is an index set, such that M II is non-singular (and
therefore invertible). For the sake of simplicity we define

A = M II , B = M I/I , C = M/II and D = M/I/I , (D.14)

such that the matrix M can be written in blockform

M =

(
A B
C D

)
. (D.15)

Upon further investigation we see that M can be written as

M =

(
1 0

CA−1 1

)(
A 0
0 D − CA−1B

)(
1 A−1B
0 1

)
, (D.16)

where D − CA−1B denotes the so-called Schur complement. Following this observation we see that the
determinant of M can be written as

detM = (detA) det(D − CA−1B). (D.17)

D.3 Characteristic polynomial
Let A ∈ Mat(n,C), λ ∈ C a scalar and x ∈ Cn an non-zero n-dimensional vector. If A, λ and x satisfy
the following equation

Ax = λx, (D.18)

then λ is called an eigenvector of A and x is called an eigenvector of A associated with λ. The set of all
eigenvalues of A is called spectrum and denoted by σ(A). We rewrite the eigenvalue equation such that

(λ1−A)x = 0, for x 6= 0. (D.19)

Thus, λ ∈ σ(A) if and only if λ1 − A is singular, i.e. det(λ1 − A) = 0. Therefore the formal definition
of the spectrum is given by

σ(A) = {λ ∈ C : det(λ1−A) = 0}. (D.20)

The characteristic polynomial for the matrix A is defined as

pA(t) = det(t1−A), (D.21)
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and the characteristic equation is given by

pA(t) = 0. (D.22)

The characteristic polynomial pA(t) has degree n and fulfills the characteristic equation if and only if
t ∈ σ(A). We can derive every coefficient of pA(t), however, the computations are somewhat involved
and require a lot of buildup. The interested reader is again referred to Horn in Ref. [51], here we just
present the result. One can show that in the end, the expression for the characteristic polynomial pA(t)
is given by

pA(t) = det(t1−A) = tn + (−1)1E1(A)tn−1 + · · ·+ (−1)n−1En−1(A)t+ (−1)nEn(A) (D.23)

= tn + (−1)1S1(A)tn−1 + · · ·+ (−1)n−1Sn−1(A)t+ (−1)nSn(A), (D.24)

where we used the equivalence of Ek(A) = Sk(A) in the last step.
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E Computation canonical determinants
In this chapter we discuss the computation of the canonical determinants in detail. As such, this chapter
is a direct follow-up to section (3.3). We work with a lattice of extent L×Lt and set the lattice spacing
to one, i.e. a = 1. After having discussed the derivation of the reduced matrix, we are now able to
compute the determinant of the Wilson Dirac operator using the fugacity expansion (eq. (3.58))

det(K[U, µq]) =

L∑
k=−L

eµqLtkdetk(K[U ]) (E.1)

for any quark chemical potential, provided we have an efficient method of calculating the canonical
determinants (eq. (3.59)), that is

detk(K[U ]) =

(
Lt∏
i=1

|Bi||2κU†i |

) ∑
I,|I|=k+L

det(T II), ∀k ∈ {−L, . . . , L}. (E.2)

The computation of the bulkfactor
∏Lt
i=1 |Bi||2κU

†
i | is straightforward and does not require any special

treatment. However, the construction of the full transfer matrix and the summation over the principal
minors thereof require some discussion. For this chapter we set the quark chemical potential to zero
µq = 0, such that the full transfer matrix can be written as

T =

Lt∏
i=1

Ti. (E.3)

The full transfer matrix T is of size (2L)2, the precise form of the time-slice transfer matrices Ti is not
relevant for the following discussion.

E.1 Construction of the transfer matrix T
Numerical inaccuracy is one of the problems we face when computing canonical determinants. The
problems already arise when constructing the full transfer matrix via eq. (E.3). Thankfully, we have
analytical results which allow us to verify whether the constructed transfer matrix T is sufficiently precise
or not. For example, one could test whether the symmetry of the eigenvalues (λ ∈ σ(T ) =⇒ 1

λ∗ ∈ σ(T ))
is fulfilled as described in subsection (3.3.5). However, since we are interested in calculating the canonical
determinants, the easiest way to test the accuracy is to see whether we retain the reflection symmetry
mentioned in eq. (3.77) and proven in section G.4, that is

det∗k(K) = det−k(K) ∀k ∈ {0, . . . , L}. (E.4)

We worked out that double precision is sufficient to construct a transfer matrix T built up from Lt ≈ 30
time-slice transfer matrices Ti without losing any significant information. However, in order to extrapo-
late to zero temperature (T → 0⇔ Lt →∞), we need to reach higher values of Lt. This means that we
need to add more time-slices to the lattice and thus add more components Ti to the final transfer matrix
T . However, this procedure renders the full transfer matrix T numerically unstable. In order to perform
these numerically challenging tasks, we utilize a multi-precision library by Bailey [59], which allows us
to convert a transfer matrix Ti to a multi-precision object

Ti → (Ti)MP . (E.5)

These multi-precision objects (Ti)MP can be multiplied together without loosing any accuracy, allowing
us to perform the delicate task of constructing the full transfer matrix

TMP =

Lt∏
i=1

(Ti)MP (E.6)

without loosing any information. We also use multi-precision routines to compute eigenvalues and canon-
ical determinants, yielding numerical results which retain all the expected symmetries.
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E.2 Extensive numbers of principal minors
The summation over all principal minors of a canonical sector is quite trivial if one is interested only in
the case of “extreme” quark numbers, i.e. a system which is either saturated by quarks or by antiquarks.
In both cases there exists only one principal minor. For saturation with antiquarks (k = −L) the
corresponding index set is given by I = ∅, if we have saturation with quarks (k = L), the index set is
given by I = {1, 2, . . . , 2L}. We easily obtain the results which we already discussed in subsection 3.4.1
and 3.4.2, that is

det−L(K) =

Lt∏
i=1

|Bi||2κU†i | · 1, for I = ∅, and (E.7)

detL(K) =

Lt∏
i=1

|Bi||2κU†i | · det(T ), for I = {1, 2, . . . , 2L}. (E.8)

In order to have a look at an arbitrary canonical sector one fixes the net-quark number to some k ∈
{−L, . . . , L} and considers the number of possible principal minors T II , with index set I of size |I| = k+L.
The total number of index sets - and therefore principal minors - shall be denoted by N (T II). Since
the transfer matrix T is of size (2L)2 we have a total of 2L possible indices we can choose from, s.t.
I ⊆ {1, 2, . . . , 2L}. As a results computing the number of principal minors for each canonical sector is a
simple combinatorial task

k = −L |I| = 0 N (T II) =

(
2L

0

)
= 1,

k = −L+ 1 |I| = 1 N (T II) =

(
2L

1

)
= L,

...
...

...

k = 0 |I| = L N (T II) =

(
2L

L

)
,

...
...

...

k = L− 1 |I| = 2L− 1 N (T II) =

(
2L

2L− 1

)
= L,

k = L |I| = 2L N (T II) =

(
2L

2L

)
= 1,

which also includes the two extreme cases discussed before. Note that the sectors which are the most
interesting for our calculations are the ones close to quark number k = 0, unfortunately these are exactly
the ones which require the biggest computational effort. Even for a relative small lattice of volume L = 8,
the canonical sector det0(K) requires the computation of

(
16
8

)
= 12870 principal minors. This means

that for each principal minor the determinant of an 8 × 8-matrix needs to be evaluated and summed
over. Not only is this task very time-consuming (especially for increasing volumes), but it is also prone to
numerical errors. The principal minors can differ from each other by several orders of magnitude, which
makes their summation very delicate, especially if only double precision is used. In order to circumvent
these problems we suggest an alternative way of calculating the canonical determinants by using the
spectrum of the transfer matrix σ(T ).

E.3 Calculation of the projected determinants
Let us reconsider the expansion in eq. (3.52), that is

|K| ∝ eµqLtL|e−µqLt + T |, (E.9)

where we omitted the bulkfactor for the sake of simplicity. First we diagonalize the transfer matrix such
that

T = DΛD−1, with Λ = diag[λ1, . . . , λ2L]. (E.10)
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This allows us to rewrite the determinant of the Wilson Dirac operator as

|K| ∝ eµqLtL|e−µqLt + Λ|, (E.11)

which leads to an expansion in t = e−µqLt , such that

|K| ∝ t−L
2L∏
i=1

(t+ λi) = t−L
2L∑
k=0

ckt
k =

L∑
k=−L

ck+Lt
k. (E.12)

In above equation the ck’s are the coefficients of the expansion and the λi belong to the spectrum of T ,
i.e. λi ∈ σ(T ). After comparing this result to the fugacity expansion in eq. (3.58), it becomes evident
that the coefficients are directly related to the canonical determinants. One identifies

det−L(K) ∝ c2L,
det−L+1(K) ∝ c2L−1,

...
detL−1(K) ∝ c1,

detL(K) ∝ c0.

Some coefficients can be computed easily, for instance c0 =
∏2L
i=1 λi = det(T ) or c2L = 1. All other

coefficients can be computed recursively by using the partial product defined by

Πn(t) =
∏
i≤n

(t+ λi) =
∑
k≤n

c
(n)
k tk. (E.13)

After identifying

Πn+1(t) = (t+ λn+1)Πn(t), (E.14)

we obtain a recursive relation for the coefficients∑
k≤n+1

c
(n+1)
k tk =

∑
k≤n

c
(n)
k tk+1 + λn+1

∑
k≤n

c
(n)
k tk (E.15)

⇔ c
(n+1)
k = c

(n)
k−1 + λn+1c

(n)
k , (E.16)

for all 0 ≤ k ≤ n+ 1 (we set c−1 = 0). In order to start we need to calculate c(0), however, a quick look
at our definition of Π0(t) tells us that c(0)

k = 0 for all k ∈ {1, . . . , 2L} except for c(0)
0 = 1.

Starting from c
(0)
k we can recursively compute c(n+1)

k from c
(n)
k and after 2L steps we obtain the desired

coefficients ck = c
(2L)
k . This method allows us to compute the canonical determinants in a much more

efficient way.
Suppose we are interested in the computation of the canonical determinant det0(K). Computation of

all the principal minors would leave us with the construction of
(

2L
L

)
matrices and the computation of

the determinants thereof. Using the formulas presented here, we require only the computation of the
2L eigenvalues of T and some small manageable manipulations thereof. Unfortunately, the eigenvalues
can differ several orders of magnitude, meaning that also here multi-precision tools are required. These
multi-precision tools are provided by Bailey, see Ref. [59].
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F Bayesian theory

After doing experiments one has to perform data analysis to extract the needed physical quantities from
the measurements. One part of this analysis concerns statistical modelling, where we take the data and
perform a least-squares fit to some physically motivated model. However, this procedure can be quite
tricky, since the precise form of the fit model might not always be clear. Bayesian model averaging can
be used to extract quantities of a physically motivated model given the measured data, by taking into
account the possible fit models at hand and averaging over them.
Let us consider an example, where this problem can be made more evident. Assume that we measured

the 1-pion correlator C2(t) for different times t and we want to extract the pion mass mπ. The full
model, expected to describe those correlations, involves an infinite tower of exponentials1

C2(t) ∝
∞∑
k=0

Ake
−E(k)

π t, (F.1)

where the Ak’s and the energies E(k)
π ’s denote fit parameters. Furthermore, the parameter E(0)

π = mπ

denotes the desired pion mass, while the E(k)
π ’s k ≥ 1 denote the energies of excited 1-pion states. In

practice one picks up the first dominant term (model truncation) and a minimum value for the time tmin
below which the data is simply ignored (data truncation). Then one proceeds to fit

C2(t) ∝ A0e
−mπt, for t ≥ tmin, (F.2)

to determine the desired pion mass mπ. This example illustrates perfectly, the ambiguity which arises
when performing this kind of data analysis. On one side, one can add additional correction terms to
the fit model, without worsening the quality of the fits and on the other hand, there is no precise
prescription on how to determine tmin. Note, that choosing the appropriate fit domain of the data can
also be interpreted as a model selection problem.
Consequently, there is no clear prescription on how to perform these fits in detail, which introduces

a kind of unsatisfactory ambiguity. In the end, one is only interested in the pion mass, regardless of
truncation parameter tmin or the number of correction terms involved in the fit model. From the Bayesian
perspective, this problem can be solved by using model averaging methods, which allow us to obtain a
probability-weighted average over all potential models and a reasonable error estimation thereof. In this
chapter we review some basic concepts of Bayesian theory. For a more elaborate discussion of Bayesian
theory, we refer to Sivia in Ref. [60, 61]. Most results we use are motivated by the work of Jay and Neil,
for proofs and more details see Refs. [62] and [63].

F.1 Introduction

Assume the following set-up, where we have a set of data D and N different models {M1,M2, . . .MN}
which can be used to describe the data. More specifically, we consider the case where all models are
an extension of a base model M1. The base model M1 describes the data with the smallest number
of parameters a0, all other available models {M2, . . .MN} are an extension thereof and might include
additional parameters ai = (a0,ami). The extended models usually take into account higher order
correction terms.
If we revisit the previous example the base model could be given by

M1(A0,mπ) = A0e
−mπt (F.3)

and an extension thereof would be given by

M2(A0, A1,mπ, E
(1)
π ) = A0e

−mπt +A1e
−E(1)

π t. (F.4)

1Note, that here we omit periodic effects on the lattice, for the sake of simplicity.
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To obtain the marginalized probabilities for the common parameters, we marginalize over all models,
including their additional parameters. As a result we obtain a model-independent posteriori distribution
for the desired parameters a0 given the data D

pr(a0|D) =

N∑
i=1

∫
dami

pr(D|ai,Mi)pr(ai|Mi)

pr(D)
. (F.5)

The posteriori distribution pr(a0|D) has all the relevant information needed to make statements about
the parameters a0. Any expectation value of some well-behaved function can be written in the standard
way as

〈f(a0)〉 =

∫
da0f(a0)pr(a0|D). (F.6)

It is also instructive to see that one can write the model-independent expectation value 〈f(a0)〉 as a
weighted sum over all individual "model-fixed" expectation values 〈f(a0)〉i, such that

〈f(a0)〉 =

N∑
i=1

〈f(a0)〉i · pr(Mi|D), (F.7)

where 〈f(a0)〉i is given by

〈f(a0)〉i =

∫
da0f(a0)pr(a0|Mi,D) (F.8)

and pr(Mi|D) are model weights, which are normalized such that

N∑
i=1

pr(Mi|D) = 1. (F.9)

F.2 Estimation of model parameters
As a specific example, to illustrate how to extract the model parameters, we consider a base model with
only a single parameter a0. Using eq. (F.7) we can write down the best estimate for a0, which is given
by the model average

〈a0〉 =

N∑
i=1

〈a0〉i · pr(Mi|D). (F.10)

An estimate for the uncertainty is given by the variance

σ2
a0 = 〈a2

0〉 − 〈a0〉2 (F.11)

=

N∑
i=1

〈a2
0〉pr(Mi|D)− 〈a0〉2 (F.12)

=

N∑
i=1

σ2
a0,ipr(Mi|D) +

N∑
i=1

〈a0〉2pr(Mi|D)− 〈a0〉2 (F.13)

=

N∑
i=1

σ2
a0,ipr(Mi|D) +

N∑
i=1

(〈a0〉i − 〈a0〉)2pr(Mi|D), (F.14)

where σ2
a0,i

denotes the variance of a0 in the modelMi. We can see, that the variance can be decomposed
into two contributions. The first contribution can be interpreted as a statistical error, while the second
term can be interpreted as a systematical one, such that σ2

a0 = σ2
stat + σ2

sys, with

σ2
stat =

N∑
i=1

σ2
a0,ipr(Mi|D) and σ2

sys =

N∑
i=1

(〈a0〉i − 〈a0〉)2pr(Mi|D). (F.15)

Our inference about the parameter a0 is therefore summarized in the statement

a0 = 〈a0〉 ± σa0 . (F.16)
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F.3 Model weights for least-square problem
The goal of this section is to discuss the model weight

pr(Mi|D), (F.17)

in the context of a least-squares fitting problem. Suppose that our dataset D consists of d data points
characterized by their x and y values

(x1, y1), (x2, y2), . . . , (xd, yd), (F.18)

where we summarize the x- and y-values in vectors denoted by x and y, respectively. The covariance
between the measurements shall be described by a covariance matrix Σ ∈ Rd×d. Throughout this section
we will be working with a single modelMi, which shall be characterized by its fit functionMi = Mi(x,ai)
with parameters ai and domain D. For the start, we assume that the model Mi takes the full range of
data points into account Di = D.
The complete derivation of the model weight is very tedious, here we simply discuss the results derived

by Jay and Neil in Ref. [62]. After a lengthy calculation one can show that the model weight can be
written as

pr(Mi|D) ∝ e−
GAPi

2 , (F.19)

where GAPi denotes the so called "Gaussian approximate posterior" for the model Mi, given by

GAPi ∝ −2 log(pr(Mi|D)) (F.20)

∝ −2 log(pr(Mi)) + χ2
T (a∗i ) + (log(det Σ̃)− log(det Σ∗)) + 2 Tr[J−1

N IN ]. (F.21)

Since we skipped the derivation, the terms in the above expression need to be explained. The first term
pr(Mi) quantifies our prior preference for a model Mi and the second term is the augmented chi-squared
value evaluated at the best fit parameter a∗i . In our computations we do not discriminate against any
model and ignore the contribution coming from pr(Mi). In this work we also do not implement any
priors for the fit parameters. As a result the augmented chi-squared is given by the “normal” chi-squared
value, one obtains when performing a least squares fit

χ2
T (ai) = χ2

0(ai) = (y−Mi(x,ai))T .Σ−1.(y−Mi(x,ai)), (F.22)

where x = (x1, . . . , xd) and y = (y1, . . . , yd).
The next two terms are given by the covariance matrix of the fit parameters Σ̃ and the best-fit

covariance matrix Σ∗ related to Σ. The remaining contribution Tr[J−1
N IN ] is a bias-correction term.

The last three terms for GAPi are quite tedious to work with, however, in the limit of large sample
size d→∞ they can be simplified. By using a cross-validation argument one can show that in the limit
d→∞, the quantity (log(det Σ̃)−log(det Σ∗)) is a correction which behaves like 1/d. The bias-correction
term reduces to a factor 2k, where k denotes the number of fit parameters for the model Mi. This leads
to the so-called Akaike information criterion (AIC) given by

GAPi
d→∞−−−→ AICi = −2 log(pr(Mi)) + χ2

T (a∗i ) + 2k. (F.23)

This result requires some correction in case one does not only vary the fit function but also the domain
D thereof. Following the discussion at the beginning of this chapter, we want to consider cases where
we restrict the fit ranges and omit data points. The number of ignored data points will be denoted by
Ncut. Following the construction of Jay and Neil in Ref. [62] the Akaike-Information Criterion receives
an additional term such that

AICi = −2 log(pr(Mi)) + χ2
T (a∗i ) + 2k + 2Ncut, (F.24)

where χ2
T (a∗i ) is minimized and evaluated only for data which remains after the truncation. In the end

the model weight pr(Mi|D) reads

pr(Mi|D) ∝ e−
AICi

2 . (F.25)

By constructing the model weight in such a manner we naturally encompass the principle of Ockham’s
razor2. Models which describe the data badly have a large χ2

T and are penalized for that, on the other
side models with a large number of parameters or small number of data points (’overfitting’) are penalized
by a factor 2k or 2Ncut, respectively.
2’Frustra fit per plura quod potest fieri per pauciora’, or in English it is vain to do with more what can be done with
fever.
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F.4 Systematic averaging
Sometimes the model averaging based on the AIC fails, in that case one could use a systematic averaging
scheme. Here we illustrate this scheme with the extraction of a single parameter a0.
We know that different models yield different estimates and variances for the desired parameter a0

〈a0〉i ± σa0,i, for i = 1, . . . , N, (F.26)

where N denotes the number of models. By using the formulas presented in section F.2, we can process
the results for the parameter a0 into a single model-independent result

〈a0〉 ± σa0 , (F.27)

which represents our inference about the parameter a0. This is the quint-essence of the Bayesian model
averaging procedure, however, this procedure might fail in certain cases. We have made the experience
that Bayesian model averaging fails if we have very noisy data in combination with vastly different
models. In such cases, one would ideally investigate the Gaussian approximate posterior (GAP) and
come up with a different information criterion (instead of the AIC one), which is more conservative and
takes the noisy data and the differences between the models into account.
Instead, for the sake of simplicity, we present a method which allows us to perform model averaging

without the construction of a complex model weight pr(Mi|D). In order to obtain a more conservative,
model-independent estimate of a paramater a0, we utilize once again the formulas presented in section F.2.
This time, we modify the weights such that

pr(Mi|D) =
1

σ2
a0,i

1∑N
j=1

1
σ2
a0,j

, (F.28)

where N denotes the number of models. This method was presented and used by the twisted mass
collaboration in Refs. [64, 65] and is applied in this thesis in cases where “traditional” Bayesian model
averaging is problematic.
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G Analytical results for the Schwinger model

In this section we present some analytical results concerning the Schwinger model. We start with the
derivation of the axial anomaly in the 1-flavour Schwinger model, as discussed in subsection 2.1.3. In
section G.2 we turn to the 2-flavour Schwinger model and discuss Lüscher’s formula for the finite volume
effects on the pion mass. Next, we investigate the average plaquette 〈P 〉, which is used to confirm the
validity of our quenched simulations. We finish this chapter by proving the often mentioned reflection
symmetry of the canonical determinants.

G.1 Axial anomaly
Here we sketch the derivation of the axial anomaly for the 1-flavour Schwinger model using the Ward-
Takahashi identity. In this section we work in Minkowski spacetime and closely follow the derivation in
Peskin (see Ref. [23]). Consider the fermionic functional integral

Z =

∫
DψDψ̄ exp

[
iSF [ψ̄, ψ,Aµ]

]
, (G.1)

where SF denotes the fermionic part of the action at mass zero (m0 = 0) in Minkowski spacetime1

SF [ψ̄, ψ,Aµ] =

∫
d2xψ̄i /Dψ. (G.2)

Let O be a product of local fields ψ, ψ̄, then the expectation value of O is given by

〈O〉 =
1

Z

∫
DψDψ̄O exp

[
iSF [ψ̄, ψ,Aµ]

]
. (G.3)

Suppose now, that we perform an infinitesimal local, chiral transformation

ψ → ψ′ = (1 + iΛ̃(x)γ5)ψ and ψ̄ → ψ̄′ = ψ̄(1 + iΛ̃(x)γ5), (G.4)

where Λ̃(x) is chosen such that it vanishes at infinity. The expectation value 〈O〉 cannot be affected by
an infinitesimal variation of the fields, therefore

δ〈O〉 = 〈δO〉+ 〈O(iδSF )〉+ 〈OδJ−2〉 !
= 0, (G.5)

where the last term arises due to a non-trivial transformation behaviour of the Dirac fields and is related
to the Jacobian J via

Dψ̄′Dψ′ = J−2Dψ̄Dψ. (G.6)

Equation (G.5) is also often referred to as the Ward-Takahashi identity in the path integral formalism.
For the derivation of the axial anomaly we will use a reduced form of this identity, we consider the case
with O = 1, such that

〈iδSF + δJ−2〉 = 0. (G.7)

We will show, that the appearance of the axial anomaly is related to the non-trivial transformation
behaviour of the Jacobian. Consider the fermionic functional integral after a change of variable given by
eq. (G.4)

Z =

∫
DψDψ̄J−2 exp

[
i

∫
d2x

[
ψ̄i /Dψ − (∂µΛ̃(x))(ψ̄γµγ5ψ)

]]
,

=

∫
DψDψ̄J−2 exp

[
i

∫
d2x

[
ψ̄i /Dψ + Λ̃(x)∂µ(ψ̄γµγ5ψ)

]]
, (G.8)

1Note, that after a so-called Wick rotation the Minkowski action can be written as an Euclidean action, turning the
functional integral into a partition function (see section A.1).
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where we immediately identify the axial current JµA = ψ̄γµγ5ψ and

δSF =

∫
d2xΛ̃(x)∂µJ

µ
A. (G.9)

The derivation of the Jacobian is a bit more involved, but can also be done in a straightforward way.
Consider a basis of eigenstates of i /D, with right and left eigenvectors such that

i /Dφm = λmφm and φ̃(i /D) = −iDµφ̃γ
µ = λmφ̃. (G.10)

For vanishing background fields Aµ = 0, the eigenvectors are just plane waves, with eigenvalues λm =

k2 = (k0)2 − ~k2. These eigenfunctions can be used to expand the fermion fields

ψ(x) =
∑
m

amφm(x) and ψ̄(x) =
∑
m

ãmφ̃m(x), (G.11)

where am, ãm are anticommuting coefficients multiplying the c-number eigenfunctions. The functional
measure can now be defined as

DψDψ̄ =
∏
m

damdãm and Dψ′Dψ̄′ =
∏
m

da′mdã
′
m. (G.12)

The transformation we perform, relates the coefficients to each other via an infinitesimal linear trans-
formation (1 + C). The determinant of this transformation yields the Jacobian J . We compute this
transformation by expanding the coefficients a′m as

a′m =
∑
n

〈φ′m, φn〉an =
∑
n

∫
d2x

(
φ†m(x)(1 + iΛ̃(x)γ5)φn(x)

)
an =

∑
n

(δmn + Cmn) an. (G.13)

Since the parameter Cnn is related to Λ̃ and therefore an infinitesimal correction, we can expand the
sought-after Jacobian J as

J = det(1 + C) = exp [Tr[log(1 + C)]] ≈ exp

[∑
n

Cnn + corrections

]
, (G.14)

such that, after ignoring higher order terms, we arrive at

log(J ) ≈
∑
n

Cnn = i

∫
d2xΛ̃(x)

∑
n

φ†n(x)γ5φn(x). (G.15)

The sum over all eigenvectors, resp. eigenstates must be regularized in a gauge-invariant way. Such a
regularization reads ∑

n

φ†n(x)γ5φn(x)→ lim
M→∞

∑
n

φ†n(x)γ5φn(x)eλ
2
m/M

2

, (G.16)

where we used the eigenvalues introduced in eq. (G.11) and introduced a hard momentum cut-off M ,
which will be taken to infinity in the end. Since the sign of λ2

m will be negative after a Wick rotation,
the overall sign in the exponent of the convergence factor is given correctly. Utilizing operator rules we
can write the above equation in operator form∑

n

φ†n(x)γ5φn(x)→ lim
M→∞

∑
n

φ†n(x)γ5e(i /D)2/M2

φn(x) (G.17)

→ lim
M→∞

〈x|γ5e(i /D)2/M2

|x〉 (G.18)

→ lim
M→∞

〈x|γ5e−
D2

M2−
g

2M2 σ
µνFµν |x〉, (G.19)

where we used that

(i /D)2 = −γµγνDµDν

= −D2 − 1

2
σµνFµν , with σµν =

i

2
[γµ, γν ].
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Since Tr[γ5] = 0, we must bring down Dirac matrices from the exponent by expanding it. The leading
contribution, yields a non-zero trace and is given by (σµνFµν). Since we take the limit M → ∞, we
can ignore the background fields Aµ in the derivative, such that we arrive at an expression with two
independent contributions∑

n

φ†n(x)γ5φn(x)→ lim
M→∞

Tr[γ5(− g

2M2
σµνFµν)]︸ ︷︷ ︸

Part 1

〈x|e−
∂2

M2 |x〉︸ ︷︷ ︸
Part 2

, (G.20)

which can be evaluated separately. Thanks to γ5 = γ0γ1, we have

σµν =
i

2
[γµ, γν ] = iεµνγ5, (G.21)

where εµν denotes the totally antisymmetric Levi-Civita tensor with ε01 = 1. The first part can be
computed to be

Part 1 = − ig

2M2
εµνFµν Tr[γ5.γ5] = − ig

M2
εµνFµν . (G.22)

The second part can be obtained after using the Fourier representation of the matrix element and
performing a Wick rotation

Part 2 = lim
x→y

∫
d2k

(2π)2
e−ik(x−y)e

k2

M2 (G.23)

= i

∫
d2kE
(2π)2

e−
k2E
M2 = i

M2

4π
. (G.24)

After combining the two contributions and taking the (trivial) limit M →∞, we obtain∑
n

φ†n(x)γ5φn(x)→ g

4π
εµνFµν . (G.25)

Consequently, up to first order, the Jacobian can be written as

J = exp

[
i

∫
d2xΛ̃(x)

g

4π
εµνFµν

]
, (G.26)

and the transformed fermionic functional integral (eq. (G.8)) becomes

Z =

∫
DψDψ̄ exp

[
i

∫
d2x

[
ψ̄i /Dψ + Λ̃(x){∂µJµA −

g

2π
εµνFµν}

]]
. (G.27)

We can immediately read off the contribution arising from the axial anomaly

∂µJ
µ
A =

g

2π
εµνFµν . (G.28)

Alternatively, one obtains this relation by using the Ward-Takahashi identity eq. (G.5), with δSF given
by eq. (G.9) and

δJ−2 = −i
∫
d2xΛ̃(x)

g

2π
εµνFµν . (G.29)

G.2 Lüscher’s formula for finite volume effects
For the rest of this chapter we will be working in Euclidean spacetime on a lattice of extent L× Lt and
with a lattice spacing of one, a = 1. We consider a scalar field theory in two dimensions describing a
single self-interacting particle of mass m0. After imposing restrictions on the lattice Lüscher derived
a formula for the finite volume effects on the particle mass (see Ref. [29]). We require a lattice whose
temporal extent is sufficiently large (ideally Lt = 1

T = ∞), such that finite temperature corrections are
negligible. Also the lattice spacing needs to be small enough, such that lattice artefacts can be considered
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absent. If we further restrict ourselves to large lattices (Lüscher suggests m0L ≥ 3.0), Lüscher’s formula
for finite volume corrections to the particle mass is given by

m0(L) = m0 − λ2m−3
0

1

8π
(

4π√
3
ξ)

1
2K− 1

2
(

√
3

2
ξ)︸ ︷︷ ︸

Part 1

− 1

2m0

∫
dq

(2π)2q0
e−q0LF (iq1)︸ ︷︷ ︸

Part 2

, (G.30)

where m0(L) denotes the finite volume particle mass, m0 the infinite volume particle mass, λ is the
effective 3-particle coupling, Kl the modified Besselfunction, ξ = m0L and F (iq1) denotes some forward
scattering amplitude. We sketch in detail the modifications which have to be made to obtain eq. (2.63).
We start by examining the first correction (Part 1), proportional to the effective 3-particle coupling λ.
In order to work with Lüscher’s formula, we write down the expansion of the modified Bessel function
(see nr. 8.432 in Ref. [66])

Kα(z) =

∫
e−z cosh(t) cosh(αt)dt, (G.31)

for large values of z, which reads

Kα(z) ≈
√

π

2z
e−z

(
1 +

4α2 − 1

8z
+ higher order

)
. (G.32)

However, the expansion naturally truncates for α = − 1
2 , such that

K− 1
2
(z)

!
=

√
π

2z
e−z, for all z ≥ 0. (G.33)

Using this expression with z =
√

3
2 ξ, we can simplify Part 1 greatly and obtain

Part 1→
(

λ2

4
√

3m3
0

)
e−
√

3
2 ξ. (G.34)

Similarly we can proceed with Part 2, which can be rewritten using q1 = k1
L such that

1

2m0

∫
dq1

(2π)2q0
e−q0LF (iq1) ≈ 1

4m2
02π

F (0)

L

∫
dk1√
1 +

k21
ξ2

e
−
√

1+
k21
ξ2
ξ
, (G.35)

where we used that for large lattices F ( ik1L ) ≈ F (0). In order to obtain the large ξ behaviour one expands
the integrand, such that

e
−
√

1+
k21
ξ2
ξ√

1 +
k21
ξ2

≈ e−ξ−
k21
2ξ . (G.36)

After performing the Gaussian integration we obtain

Part 2→ 1√
ξ

(
F (0)

4m0

√
2π

)
e−ξ. (G.37)

After combining both parts we can describe the finite volume effects using the formula

m0(L) = m0 −
(

λ2

4
√

3m3
0

)
e−
√

3
2 ξ − 1√

ξ

(
F (0)

4m0

√
2π

)
e−ξ. (G.38)

For decreasing volumes the pion mass becomes artificially inflated due to the self-interactions via the
boundaries, meaning that finite volume effects on the pion mass are always positive. As a next step,
we modify eq. (G.38) such that the positive sign of the corrections becomes evident. It was argued by
Gutsfeld et al. in Ref. [21], that F (0) ∝ −m2

0, showing that the contribution of F (0) is negative. Upon
fixing F (0) as negative, we investigated finite volume effects on the pion mass in the 2-flavour Schwinger
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model. We found out that the finite volume corrections proportional to the 3-particle coupling (given by
Part 1), are positive as well.
In order keep the notation simple, we make the replacements

λ→ iλ, and F (0)→ −F (0), (G.39)

where λ is now assumed to be real and F (0) is considered positive. As a result, we obtain the formula
for finite volume corrections presented in eq. (2.63) which are used throughout this thesis

mπ(L) = mπ +

(
λ2

4
√

3m3
π

)
e−
√

3
2 ξ +

1√
ξ

(
F (0)

4mπ

√
2π

)
e−ξ. (G.40)

G.3 Pure gauge susceptibility
Throughout this thesis, we work mostly with quenched simulations and access the desired configuration
space by using reweighting techniques, as explained in section C.9. One of the easiest ways to test whether
our quenched simulations provide correctly generated configurations is to find observables which can be
derived analytically and measure them on the generated ensembles. One such observable is given by the
pure gauge plaquette

〈P 〉 = 〈 1

2Ω

∑
P

(
UP + UP,†

)
〉, with Ω = L · Lt, (G.41)

whose behaviour can be analytically derived, as shown by Elser in Ref. [19]. We write down the full
partition function of the quenched Schwinger model which reads

Z =

∫
DUe−Sg [U ] =

∫
DUe−β

∑
P [1− 1

2 (UP+UP,†)], (G.42)

where UP denotes the contribution around an elementary plaquette, which is given by eq. (A.57), that
is

UPµν(n) = Un,n+µ̂Un+µ̂,n+µ̂+ν̂U
†
n+ν̂,n+µ̂+ν̂U

†
n,n+ν̂ (G.43)

= exp (i(φµ(n) + φν(n+ µ̂)− φµ(n+ ν̂)− φν(n))) (G.44)
= exp(iθP (n)). (G.45)

We choose to characterize a plaquette based on its point on the very bottom to the left and follow the
gauge-links in a counterclockwise direction s.t.

UP (n) = exp
(
i(φ1(n) + φ0(n+ 1̂)− φ1(n+ 0̂)− φ0(n))

)
= exp(iθP (n)). (G.46)

∼ φ1(n)

∼ φ0(n+ 1̂)

∼ −φ1(n+ 0̂)

∼ −φ0(n)

n

Figure G.1: Orientation of the plaquette, the gauge fields are characterized by angles φi(n).

Now we can rewrite the partition function as

Z = e−βΩ

∫ ∏
n1

(
dφ0(n1)

2π

dφ1(n1)

2π

)
eβ

∑
n2

cos(θP (n2)) (G.47)

= e−βΩ

∫ ∏
n1

(
dφ0(n1)

2π

dφ1(n1)

2π

)∏
n2

eβ cos(θP (n2)). (G.48)
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Next, we introduce the Fourier-transform of the exponential

eβ cos(φ) =

∞∑
n=−∞

cne
inφ, (G.49)

where the coefficients can be identified with the modified Bessel-functions (see Ref. [67])

cn =
1

2π

∫ π

−π
eβ cos(φ)e−inφdφ =

1

π

∫ π

0

eβ cos(φ) cos(nφ)dφ = In(β). (G.50)

Now, the partition function reads

Z =e−βΩ

∏
n2

∑
kn2

∫ ∏
n

(
dφ0(n)

2π

dφ1(n)

2π

)
×
∏
n2

(
eiβkn2

(φ1(n2)−φ1(n2+0̂)+φ0(n2+1̂)−φ0(n2))Ikn2
(β)
)
. (G.51)

The evaluation of this partition function can be simplified, once we order all the contributions accordingly
and evaluate the integrals step-by-step. Each integration picks up two (multiplicative) factors from the
integrand. For example, if we perform the integration over dφ0(n) we obtain∫

dφ0(n)

2π
e−iβkn1φ0(n1)+iβkn1−1̂φ0(n1) = δn,n1

δkn1
,kn1−1̂

, (G.52)

where kn1−1̂ just denotes one of the summation indices {k1, k2, . . . , kΩ}, which is being summed over.
After evaluating all the integrals in the same manner and relabelling n2 → n, we obtain

Z = e−βΩ

(∏
n

∑
kn

)∏
n

(δkn,kn−1̂
δkn,kn−0̂

Ikn(β)), (G.53)

which is non-zero only if all the indices are the same s.t.

k1 = k1−0̂ = k1−1̂ = . . . , resp. k1 = k2 = k3 = · · · = k.

Now the evaluation of the partition function is straightforward and we obtain

Z = e−βΩ
∑
k∈Z

Ik(β)Ω = e−βΩ

(
I0(β)Ω + 2

∞∑
k=1

Ik(β)Ω

)
, (G.54)

where we used a symmetry-property of the modified Bessel-function In(x) = I−n(x) for all n ∈ N and
x ∈ R. In order to extract the plaquette, we use

〈P 〉 = 1 +
1

ZΩ

∂Z

∂β
and

∂In(β)

∂β
=

1

2
(In−1(β) + In+1(β)) (G.55)

and after some calculus we obtain the desired result, presented in section 4.2, that is

〈P 〉 =

I1(β)
I0(β) +

∑∞
n=1

[(
In(β)
I0(β)

)Ω−1 (
In−1(β)
I0(β) + In+1(β)

I0(β)

)]
1 + 2

∑∞
n=1

(
In(β)
I0(β)

)Ω
. (G.56)

G.4 Reflection symmetry of the canonical determinant
After discussing the dimensional reduction in chapter 3, in this section we derive the reflection symmetry
of the canonical determinants

det∗k(K) = det−k(K), ∀k ∈ {0, 1, . . . , L}. (G.57)
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as mentioned in subsection 3.3.5. As in chapter 3 we will be working on a lattice of extent L × Lt and
we set the lattice spacing to one (a = 1) for the sake of readability. Consider the canonical determinant
as derived in eq. (3.59), that is

detk(K[U ]) =

(
Lt∏
i=1

|Bi||2κU†i |

) ∑
I,|I|=k+L

det(T II) =

(
Lt∏
i=1

|Bi||2κU†i |

)
Ek+L(T ) (G.58)

and make the replacement Ek+L(T ) and Sk+L(T ) as illustrated in section D.1 such that

detk(K[U ]) =

(
Lt∏
i=1

|Bi||2κU†i |

)
Sk+L(T ). (G.59)

For the sake of readability, we abbreviate n = L and recapitulate the definition of the symmetric
function, discussed in section D.1. Let A ∈ Mat(m,C) and assume that the spectrum of A is given
by σ(A) = {λ1, . . . , λm}. Then the k’th elementary symmetric function reads

S(A) = Sk(λ1, . . . , λm) =
∑

1≤i1≤···≤ik≤m

k∏
j=1

λij . (G.60)

We showed in subsection 3.3.5 that the spectrum of the transfer matrix T can be written as

σ(T ) = {λ1, . . . , λn,
1

λ∗1
, . . . ,

1

λ∗n
} = {r1e

iφ1 , . . . , rne
iφn ,

1

r1
eiφ1 , . . . ,

1

rn
eiφn}, (G.61)

and that the determinant is given by

det T =

Lt∏
i=1

det(Ui)
2 !

= e2i(φ1+···+φn) = e2iΦ, (G.62)

where we defined

Φ =

n∑
i=1

φi. (G.63)

We extract the temporal gauge-link dependence of the bulkfactor via(
Lt∏
i=1

|Bi||2κU†i |

)
=

(
Lt∏
i=1

|Bi||2κ|

)
Lt∏
i=1

detU†i =

(
Lt∏
i=1

|Bi||2κ|

)
e−iΦ, (G.64)

which then leads to

detk(K[U ]) =

(
Lt∏
i=1

|Bi||2κ|

)
e−iΦSn+k(T ). (G.65)

Note that the prefactor
(∏Lt

i=1 |Bi||2κ|
)
is now completely real. The potentially complex part is now

given by

S̃k(T ) = e−iΦSk(T ). (G.66)

If we can prove the reflection property of the quantity S̃k(T ), that is

S̃∗n−k(T ) = S̃n+k(T ), for k ∈ {0, 1, . . . n}, (G.67)

then we have proven the reflection symmetry for the canonical determinant as well.
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G.4.1 Reflection symmetry of S̃n+k(T )
We argued that in order to prove reflection symmetry of the canonical determinants, we can show that
the rescaled symmetric functions S̃n+k(T ) have a reflection property, such that

S̃∗n−k(T ) = S̃n+k(T ), for k ∈ {0, 1, . . . n}, with σ(T ) = {λ1, . . . , λn,
1

λ∗1
, . . . ,

1

λ∗n
}. (G.68)

To prove this we take an arbitrary k and we show that for every summand q in S̃n−k(T ), there exists
a summand p in S̃n+k(T ) which is exactly complex conjugated i.e. p = q∗. Then every summand in
S̃n−k(T ) has a complex conjugated “partner” in S̃n+k(T ) and it is therefore trivially true that

S̃∗n−k(T ) = S̃n+k(T ). (G.69)

Take some arbitrary summand q in S̃n−k(T ) which is built from a combination of n − k eigenvalues of
T . We assume that a ≤ n eigenvalues have been taken from the subset {λ1, . . . , λn} ⊆ σ(T ) and b ≤ n
eigenvalues have been chosen from { 1

λ∗1
, . . . , 1

λ∗n
}, such that a+ b = n− k. We denote these collections of

eigenvalues with

{λi1 , λi2 , . . . , λia} and { 1

λ∗i1
,

1

λ∗i2
, . . . ,

1

λ∗ib
}, (G.70)

respectively. Then we can write down the summand q in S̃n−k(T ) as

q = e−iΦ
a∏
j=1

λij

b∏
k=1

1

λ∗ik
, with a+ b = n− k. (G.71)

Upon utilizing the “normalization” of the eigenvalues

det(T ) =

n∏
i=1

λi

n∏
i=1

1

λ∗i

!
= e2iΦ, (G.72)

we can relate the chosen eigenvalues for q, to the ones which have been omitted

a∏
j=1

λij

b∏
k=1

1

λ∗ik
= e2iΦ

n∏
j=a+1

1

λij

n∏
k=b+1

λ∗ik , (G.73)

where on the r.h.s we have n+ k factors. However, this means that we can write down q as a product of
n+ k eigenvalues,

q = eiΦ
n∏

j=a+1

1

λij

n∏
k=b+1

λ∗ik︸ ︷︷ ︸
n+k eigenvalues of σ(T ).

, (G.74)

and upon defining the complex conjugate as p

p = e−iΦ
n∏

j=a+1

1

λ∗ij

n∏
k=b+1

λik (G.75)

we see that that p = q∗ takes the form of a summand in S̃n+k(T ) = e−iΦSn+k(T ), which concludes the
proof.

126



H Numerical results details

Here we want to include the details for the numerical results, which have been omitted in chapter 5.
In the following sections we present a detailed description of the performed calculations, the precise
numerical details can be found in the tables at the end of each section. Throughout this chapter we set
the lattice spacing to a = 1.

H.1 Datasets
In order to examine the 2-flavour Schwinger model in the canonical formalism we performed quenched
simulations, that is simulations with no fermion content. We vary the coupling β = 1

(ag)2 , where g
denotes the bare coupling, such that β ∈ {3.0, 5.0, 7.0}. For each coupling we perform measurements for
different volumes L and temperatures T = 1

Lt
, in steps of ∆L = 2 and ∆Lt = 2, such that

L ∈ {4, 6, 8, . . . , 38, 40} and Lt ∈ {4, 6, 8, . . . , 58, 60}. (H.1)

Utilizing the prescription presented in the appendix section C.9, we can reweight those quenched
simulations into simulations of the mass-degenerate 2-flavour Schwinger model where we have an up
and a down quark. After reweighting those simulations, we obtain five different datasets which will be
labelled with A3, A5, A7, B5 and B7. For the datasets A3, A5 and A7 the bare masses are tuned in such
a way that we have a fixed infinite volume pion mass mπ/g ≈ 0.75, while the remaining two datasets are
fixed such that mπ/g ≈ 0.44. A summary of the used datasets is given in table H.1.

Datasets β m κ amπ mπ/g

A3 3.0 0.0000 0.5000 0.4330(3) 0.7500(5)
A5 5.0 0.0220 0.4892 0.3387(2) 0.7574(3)
A7 7.0 0.0266 0.4870 0.2859(1) 0.7564(3)
B5 5.0 -0.0400 0.5208 0.1921(4) 0.4296(8)
B7 7.0 -0.0220 0.5112 0.1701(6) 0.450(2)

Table H.1: Datasets used in chapter 5.

H.2 Extrapolation to zero temperature
Consider one of the datasets presented in table H.1. For each dataset we have calculated the ground
state energies Enπ(L,Lt), for n ∈ {1, 2, 3} and L,Lt given in eq. (H.1). In this section we want to
discuss in detail the extraction of the ground state energies in multi-meson sectors. From the discussion
in section 3.5 we know that the ground state energies of the multi-meson sectors are given by multi-pion
states. The ground state energies of those multi-pion states are obtained by measuring the free energy
difference between the corresponding canonical sectors (as explained in section 3.6) and extrapolating to
zero temperature. The needed formula is given by

Enπ = lim
T→0

Enπ(T ) = − lim
T→0

T log

(Z(n,−n)(T )

Z(0,0)(T )

)
, (H.2)

which has been referred to as the master formula in chapter 5. For fixed volumes, the finite temperature
behaviour differs depending on the volume L and the isospin sector which is being considered. In chapter 5
we present some plots for the dataset A5 (figures 5.1,5.2,5.6,5.7 and 5.13), showing the temperature
behaviour of the ground state energies as a function of the volume and the meson sector. In order
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to describe the temperature behaviour, we use different models, resp. fit functions, which have been
motivated in section 3.5. The measured energies for fixed meson sector and fixed volume Enπ(L,Lt)
can then be fitted to those models, allowing us to extract the ground state energies as a function of
the volume. The detailed procedure involves Bayesian model averaging and systematic averaging as
explained in the appendix in chapter F.

H.2.1 Isospin I = 1 sector and the extraction of Eπ(L) = mπ(L)

For a fixed volume we can examine the behaviour of the ground state energy of the isospin I = 1 sector,
that is Eπ(L,Lt) = mπ(L,Lt), as a function of the temperature, which is related to the temporal lattice
extent via T = 1

Lt
. Following the discussion in subsection 3.6.5 an ansatz we are going to use for the

extraction of mπ is given by

Eπ(T ) ≈ mπ − T log

(
1 + 2

∑L
2
i=1 e

−(E
(i)

π+−mπ)/T + e−(ma0−mπ)/T + 2
∑L

2
i=1 e

−(E(i)
a0
−mπ)/T

1 + e−mπ/T + 2
∑L

2
i=1 e

−E(i)

π0 /T

)
, (H.3)

which, after making the replacement T → 1
Lt

, can be used to derive three different fit functions

Mmπ,1(Lt,mπ) = mπ, (H.4)

Mmπ,2(Lt,mπ) = mπ −
1

Lt
log

(
1 + 2

∑L
2
i=1 e

−(E
(i)

π+−mπ)Lt

N

)
, (H.5)

Mmπ,3(Lt,mπ,ma0) = mπ −
1

Lt
log

(
Z

N

)
, (H.6)

where we introduced some abbreviations such as

Z = 1 + 2

L
2∑
i=1

e−(E
(i)

π+−mπ)Lt + e−(ma0−mπ)Lt + 2

L
2∑
i=1

e−(E(i)
a0
−mπ)Lt ,

N = 1 + e−mπLt + 2

L
2∑
i=1

e−E
(i)

π0Lt .

We vary the fit ranges for each ansatz, for the constant fit Mmπ,1(Lt,mπ) we fix the upper limit of
the fit range Lmax.

t in such a way that Lmax.
t ∈ {60, 58, 56, 54, 52, 50}. The lower fit boundary of the

fit Lmin.
t is chosen in such a way, that there is at least a difference of ∆Lt = 10, such that Lmin.

t ∈
{4, 6, 8, . . . , Lmax.

t −10}, yielding a total of 129 combinations of [Lmin.
t , Lmax.

t ] and therefore 129 fits. This
choice of fit ranges, specifically restricting the upper boundary Lmax.

t , ensures good quality fits in the
low temperature regime, where the energy reaches a constant plateau.
Similar considerations play a role when fitting Mmπ,2(Lt,mπ) and Mmπ,3(Lt,mπ,ma0). We choose

the fit ranges in such a way, that the fits turn out well. Since we have an additional correction term we
need to set the lower boundary Lmin.

t of the fit in such a way that temperature corrections are taken into
account. For Mmπ,2 we fix Lmax.

t ∈ {60, 58, 56, 54, 52, 50, 48, 46} and choose Lmin.
t ∈ {26, 24, 22, 20, . . . , 4},

which yields a total of 108 fits. For the model Mmπ,3(Lt,mπ,ma0) we take even more corrections
into account and by adding an additional mass parameter ma0 . Upon fixing the upper boundary to
Lmax.
t ∈ {60, 58, 56, 54, 52, 50, 48, 44}, we have to vary the lower boundary in a high temperature regime,

to obtain reliable results, which is why we choose Lmin.
t ∈ {18, 16, 14, . . . , 4}.

Note that these fit ranges, although somewhat ambiguous, have been determined after multiple tests
and trials. We summarize the results

Mmπ,1(Lt,mπ), Lmax.
t ∈ {60, 58, 56, 54, 52, 50}, Lmin.

t ∈ {Lmax.
t − 10, . . . , 6, 4}, (H.7)

Mmπ,2(Lt,mπ), Lmax.
t ∈ {60, 58, 56, 54, 52, 50, 48, 46}, Lmin.

t ∈ {26, 24, 22, 20, . . . , 4}, (H.8)

Mmπ,3(Lt,mπ,ma0), Lmax.
t ∈ {60, 58, 56, 54, 52, 50, 48, 46, 44}, Lmin.

t ∈ {18, 16, 14, . . . , 4}. (H.9)

For each model (with their corresponding) fit ranges we perform the least-squares fits and determine the
pion mass mπ = limLt→∞mπ(Lt). Note, that we do not use any priors in our definition of the χ2

T and
just utilize the standard χ2

0, that is

χ2
T = χ2

0 =
∑
Lt

(
Mmπ,i(Lt, ·)−mπ(Lt)

smπ(Lt)

)2

, ∀i ∈ {1, 2, 3} (H.10)
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where mπ(Lt) denotes the measurement for the ground state energy as a function of temperature and
smπ(Lt) its error. We consider each model separately and perform Bayesian model averaging as explained
in chapter F, where the used Akaike information criterion (AIC, the most general form is given by
eq. (F.24)) is given by

AIC = χ2
T + 2k + 2Ncut. (H.11)

The number of fit parameters k for the three different fit functions is given by k = 1, 1, 2, respectively.
The parameter Ncut is given by the number of data points which have been left out.

H.2.2 Isospin I = 2, 3 sector and the extraction of E2π(L), resp. E3π(L)

The very same strategy can be performed for investigating the ground state energies of the isospin I = 2
and isospin I = 3 sectors. The used fit functions are motivated by the discussion in subsection 3.6.5 and
are given by

ME2π,1(T,E2π) = E2π (H.12)

ME2π,2(T,E2π, A1, A2) = E2π − T log

(
1 +A2e

−A1/T

1 + e−mπ/T + 2
∑L

2
i=1 e

−E(i)

π0 /T

)
, (H.13)

and

ME3π,1(T,E3π) = E3π (H.14)

ME3π,2(T,E3π, B1, B2) = E3π − T log

(
1 +B2e

−B1/T

1 + e−mπ/T + 2
∑L

2
i=1 e

−E(i)

π0 /T

)
, (H.15)

respectively. Note, that the values for mπ have been determined beforehand from the zero temperature
extrapolation of the 1-pion ground state energy. The fit ranges are also chosen similarly as for the ground
state energies of the 1-pion state. The constant fits ME2π,1(T,E2π) and ME3π,1(T,E3π) have the same fit
ranges as Mmπ,1(Lt,mπ) given in eq. (H.7). The fit ranges for the exponential corrections on the other
hand are chosen to be the same as the fit ranges for Mmπ,3(Lt,mπ,ma0) in eq. (H.9). We summarize all
the used fit functions for the 2- and 3-pion ground state energies, such that

ME2π,1(T,E2π), Lmax.
t ∈ {60, 58, 56, 54, 52, 50}, Lmin.

t ∈ {Lmax.
t − 10, . . . , 6, 4}, (H.16)

ME2π,2(T,E2π, A1, A2), Lmax.
t ∈ {60, 58, . . . , 46, 44}, Lmin.

t ∈ {18, 16, 14, . . . , 4}, (H.17)

ME3π,1(T,E3π), Lmax.
t ∈ {60, 58, 56, 54, 52, 50}, Lmin.

t ∈ {Lmax.
t − 10, . . . , 6, 4}, (H.18)

ME3π,2(T,E3π, B1, B2), Lmax.
t ∈ {60, 58, . . . , 46, 44}, Lmin.

t ∈ {18, 16, 14, . . . , 4}. (H.19)

After executing all the fits and performing Bayesian model averaging with each model separately, we
obtain the model-dependent volume dependence of the 2- and 3-pion ground state energies E2π(L) and
E3π(L). The results, including the extracted pion masses mπ(L), are nicely summarized for each dataset
in tables H.2 to H.6.

H.2.3 Systematic averaging
After performing the Bayesian model averaging for each model, we do not have final results for mπ(L),
E2π(L) and E3π(L) yet. For each volume, we have model-dependent results, which need to be averaged
consistently. To estimate the systematics, as conservatively as possible we propose systematic averaging
as explained in section F.4.
For the sake of completeness, we would like to discuss the reason for this somewhat odd approach

used for the analysis of the data. It is evident, that one also could have used Bayesian model averaging
to average over all available models, this is exactly what Bayesian model averaging is used for, after
all. However, in our investigations, we found out, that this prescription does not lead to satisfactory
results. The reason for that, is the combination of fluctuating data and different fit models, with different
asymptotic behaviour. The Bayesian model averaging procedure (utilized with the Akaike Information
Criterion (AIC )) is not conservative enough, and usually favours one of the models, while heavily dis-
criminating against the others. If the favoured fit model is the same for all volumes this is not a big
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problem, however, if the favoured models fluctuate with the volume, we obtain vastly fluctuating data
for the ground state energies mπ(L), E2π(L) and E3π(L). This is why we choose the more conservative
approach given by a “systematic averaging” of the models. This approach is not only being used for the
extrapolation to zero temperature, but also in future calculations.
The very final, model-independent results for mπ(L), E2π(L) and E3π(L) are now given tables H.7,H.8

and H.9. The results for mπ(L) were used for the discussion of finite volume effects on the pion mass in
the next section.

Extraction mπ(L) Extraction E2π(L) Extraction E3π(L)

L Mmπ,1 Mmπ,2 Mmπ,3 ME2π,1 ME2π,2 ME3π,1 ME3π,2

4 0.85322(30) 0.85340(31) 0.85352(31) 2.52507(87) 2.52566(33) 4.50446(59) 4.5072(11)
6 0.59915(26) 0.59919(26) 0.59937(28) 1.92127(40) 1.92082(20) 3.66680(38) 3.66682(24)
8 0.50842(40) 0.50837(35) 0.50857(34) 1.57875(37) 1.57898(28) 3.08776(41) 3.08788(40)
10 0.47167(85) 0.46953(59) 0.46952(43) 1.36835(73) 1.36806(47) 2.68113(96) 2.67966(66)
12 0.45086(87) 0.44988(59) 0.44989(59) 1.2352(12) 1.23435(75) 2.3858(15) 2.3873(12)
14 0.44348(84) 0.44185(39) 0.44244(54) 1.14266(90) 1.1427(19) 2.1678(13) 2.1658(11)
16 0.43746(93) 0.43591(74) 0.43559(87) 1.0813(16) 1.0799(18) 2.0096(16) 2.0049(20)
18 0.4376(12) 0.43418(58) 0.43393(50) 1.0347(20) 1.0289(16) 1.8816(46) 1.8738(14)
20 0.43395(77) 0.43344(58) 0.43355(67) 0.9990(20) 1.0027(37) 1.7798(23) 1.7817(38)
22 0.43566(82) 0.43273(79) 0.43259(76) 0.9758(33) 0.9723(32) 1.7106(30) 1.7075(44)
24 0.4367(11) 0.43170(42) 0.43187(36) 0.9613(20) 0.9569(59) 1.6460(26) 1.6490(52)
26 0.4320(23) 0.43219(55) 0.43218(49) 0.9401(27) 0.9398(20) 1.6039(24) 1.6016(53)
28 0.43070(94) 0.43413(48) 0.43371(73) 0.9305(18) 0.9363(64) 1.5603(27) 1.5653(82)
30 0.4282(12) 0.43271(56) 0.43226(57) 0.9190(17) 0.9237(55) 1.5245(33) 1.5286(67)
32 0.4325(10) 0.43424(55) 0.43561(67) 0.9180(19) 0.9208(31) 1.5071(28) 1.5085(68)
34 0.4249(16) 0.43185(43) 0.43207(40) 0.9150(25) 0.9251(91) 1.4845(55) 1.4776(66)
36 0.4309(10) 0.43357(73) 0.43415(85) 0.9080(33) 0.912(10) 1.4649(27) 1.4557(65)
38 0.4290(15) 0.43450(63) 0.43436(66) 0.9010(22) 0.911(10) 1.4532(25) 1.460(14)
40 0.4254(12) 0.43385(55) 0.43416(64) 0.8998(18) 0.915(13) 1.4399(33) 1.453(16)

Table H.2: Extracted values of the volume dependent pion masses, 2-pion and 3-pion ground state
energies mπ(L), E2π(L), E3π(L), for each volume (dataset A3).
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Extraction mπ(L) Extraction E2π(L) Extraction E3π(L)

L Mmπ,1 Mmπ,2 Mmπ,3 ME2π,1 ME2π,2 ME3π,1 ME3π,2

4 0.85634(29) 0.85626(22) 0.85647(22) 2.55702(25) 2.55665(17) 4.59490(66) 4.59768(100)
6 0.56785(17) 0.56785(17) 0.56795(16) 1.903660(84) 1.903708(77) 3.68285(21) 3.68294(17)
8 0.45550(21) 0.45550(20) 0.45540(18) 1.52939(15) 1.52938(11) 3.05828(22) 3.05833(16)
10 0.40205(22) 0.40190(23) 0.40205(22) 1.29602(19) 1.29593(15) 2.61775(38) 2.61784(24)
12 0.37452(25) 0.37449(22) 0.37458(26) 1.14148(32) 1.14126(23) 2.29846(33) 2.29880(40)
14 0.35917(38) 0.35903(26) 0.35907(27) 1.03422(55) 1.03378(32) 2.06002(60) 2.05955(34)
16 0.35008(47) 0.34965(27) 0.34975(23) 0.95635(50) 0.95647(33) 1.87620(87) 1.87602(39)
18 0.34483(37) 0.34502(21) 0.34517(26) 0.90135(71) 0.9022(14) 1.73363(52) 1.73409(70)
20 0.34298(43) 0.34214(31) 0.34209(23) 0.86024(81) 0.8594(16) 1.62245(76) 1.62215(73)
22 0.34144(38) 0.34065(22) 0.34063(22) 0.82240(85) 0.82277(69) 1.5320(11) 1.5329(12)
24 0.33854(90) 0.33947(23) 0.33941(16) 0.7976(13) 0.7982(11) 1.45647(85) 1.45695(96)
26 0.33860(46) 0.33903(23) 0.33892(30) 0.77838(90) 0.7800(13) 1.3977(11) 1.3984(12)
28 0.33653(50) 0.33842(19) 0.33858(17) 0.7621(17) 0.7605(17) 1.3504(12) 1.3486(25)
30 0.33595(88) 0.33849(26) 0.33840(23) 0.74806(87) 0.7508(12) 1.3048(12) 1.3071(18)
32 0.33507(75) 0.33870(22) 0.33859(19) 0.7393(11) 0.7413(13) 1.2706(14) 1.2723(25)
34 0.33415(49) 0.33853(22) 0.33864(18) 0.7301(17) 0.7348(23) 1.2408(16) 1.2424(18)
36 0.33435(53) 0.33818(27) 0.33833(21) 0.7190(14) 0.7226(14) 1.2161(38) 1.2158(32)
38 0.33238(82) 0.33805(25) 0.33814(22) 0.7143(18) 0.7144(17) 1.1935(25) 1.1925(44)
40 0.3304(11) 0.33799(33) 0.33808(26) 0.7121(26) 0.7137(61) 1.1739(29) 1.1755(59)

Table H.3: Extracted values of the volume dependent pion masses, 2-pion and 3-pion ground state
energies mπ(L), E2π(L), E3π(L), for each volume (dataset A5).

Extraction mπ(L) Extraction E2π(L) Extraction E3π(L)

L Mmπ,1 Mmπ,2 Mmπ,3 ME2π,1 ME2π,2 ME3π,1 ME3π,2

4 0.86114(21) 0.86114(19) 0.86123(18) 2.57105(17) 2.57117(15) 4.62974(65) 4.63139(50)
6 0.55661(18) 0.55661(18) 0.55667(17) 1.89866(10) 1.89862(10) 3.68860(25) 3.68885(21)
8 0.43398(20) 0.43398(20) 0.43401(20) 1.50921(13) 1.50921(12) 3.04495(21) 3.04503(21)
10 0.37240(21) 0.37241(21) 0.37249(22) 1.26355(26) 1.26377(19) 2.59008(21) 2.59010(21)
12 0.33827(22) 0.33828(22) 0.33831(22) 1.09923(22) 1.09932(22) 2.25841(25) 2.25835(24)
14 0.31791(26) 0.31799(23) 0.31803(22) 0.98396(26) 0.98402(24) 2.00917(30) 2.00913(30)
16 0.30574(28) 0.30569(23) 0.30575(24) 0.89986(31) 0.90006(29) 1.81786(32) 1.81797(33)
18 0.29808(27) 0.29802(20) 0.29805(22) 0.83750(62) 0.83687(42) 1.66775(41) 1.66772(37)
20 0.29325(32) 0.29330(21) 0.29343(22) 0.78955(54) 0.78986(50) 1.54745(42) 1.54784(46)
22 0.29013(33) 0.29071(26) 0.29078(27) 0.75152(53) 0.75176(46) 1.45101(68) 1.45136(60)
24 0.28861(53) 0.28848(24) 0.28854(22) 0.72166(75) 0.72167(62) 1.36954(59) 1.37014(61)
26 0.28737(71) 0.28764(23) 0.28758(25) 0.69856(96) 0.69850(68) 1.3050(15) 1.30530(95)
28 0.28584(40) 0.28660(20) 0.28668(20) 0.67830(58) 0.67922(79) 1.24803(89) 1.24900(91)
30 0.28543(47) 0.28621(20) 0.28628(18) 0.66462(78) 0.66536(81) 1.2035(13) 1.2042(14)
32 0.28500(57) 0.28601(22) 0.28613(19) 0.65041(75) 0.65085(79) 1.16541(92) 1.1675(29)
34 0.28443(50) 0.28612(17) 0.28611(17) 0.64049(82) 0.64015(77) 1.1301(10) 1.1294(10)
36 0.28132(45) 0.28557(19) 0.28572(18) 0.6295(25) 0.6317(22) 1.1006(20) 1.1028(50)
38 0.28282(32) 0.28580(22) 0.28592(20) 0.62395(86) 0.6250(12) 1.0740(13) 1.0744(16)
40 0.28151(53) 0.28568(17) 0.28576(18) 0.6191(10) 0.6139(17) 1.0521(19) 1.0481(19)

Table H.4: Extracted values of the volume dependent pion masses, 2-pion and 3-pion ground state
energies mπ(L), E2π(L), E3π(L), for each volume (dataset A7).
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Extraction mπ(L) Extraction E2π(L) Extraction E3π(L)

L Mmπ,1 Mmπ,2 Mmπ,3 ME2π,1 ME2π,2 ME3π,1 ME3π,2

4 0.84889(31) 0.84881(24) 0.84903(25) 2.52614(29) 2.52572(19) 4.52904(77) 4.5321(12)
6 0.53958(20) 0.53958(20) 0.53969(19) 1.86239(14) 1.86244(12) 3.61761(33) 3.61782(26)
8 0.40552(29) 0.40555(27) 0.40543(23) 1.467772(84) 1.467838(84) 2.97975(27) 2.97998(22)
10 0.33219(24) 0.33220(23) 0.33230(24) 1.21211(17) 1.212060(85) 2.52044(28) 2.52070(27)
12 0.28766(31) 0.28760(30) 0.28765(35) 1.03610(17) 1.03629(21) 2.18097(31) 2.18112(30)
14 0.25836(45) 0.25822(39) 0.25816(42) 0.90972(48) 0.90893(24) 1.92263(69) 1.92247(40)
16 0.23769(48) 0.23745(39) 0.23749(31) 0.81420(43) 0.81426(27) 1.71974(59) 1.71976(43)
18 0.22389(49) 0.22394(38) 0.22408(48) 0.74374(65) 0.7448(19) 1.55941(59) 1.55968(62)
20 0.21551(70) 0.21485(54) 0.21460(50) 0.68989(85) 0.6883(18) 1.43204(88) 1.43187(81)
22 0.21086(92) 0.20845(57) 0.20940(49) 0.63894(86) 0.63962(70) 1.3270(13) 1.3285(20)
24 0.20292(85) 0.20297(53) 0.20307(59) 0.6032(12) 0.6039(11) 1.2364(10) 1.23678(87)
26 0.20005(94) 0.19950(49) 0.19973(52) 0.5758(12) 0.5781(26) 1.1634(16) 1.1642(13)
28 0.19816(96) 0.19725(54) 0.19740(66) 0.5504(19) 0.5492(11) 1.1065(13) 1.1034(27)
30 0.19519(90) 0.19617(47) 0.19660(62) 0.5294(11) 0.5338(26) 1.0465(14) 1.0517(33)
32 0.1950(11) 0.19454(60) 0.19474(84) 0.5120(13) 0.5136(15) 1.0022(16) 1.0034(31)
34 0.1963(11) 0.19392(65) 0.19451(81) 0.4994(14) 0.5049(31) 0.9618(17) 0.9643(29)
36 0.1950(12) 0.19178(73) 0.19237(79) 0.4820(14) 0.4889(20) 0.9251(22) 0.9276(25)
38 0.1916(13) 0.19245(81) 0.19355(83) 0.4768(21) 0.4771(36) 0.8974(32) 0.8936(64)
40 0.1896(17) 0.19119(78) 0.1914(10) 0.4598(23) 0.4641(30) 0.8575(36) 0.8596(28)

Table H.5: Extracted values of the volume dependent pion masses, 2-pion and 3-pion ground state
energies mπ(L), E2π(L), E3π(L), for each volume (dataset B5).

Extraction mπ(L) Extraction E2π(L) Extraction E3π(L)

L Mmπ,1 Mmπ,2 Mmπ,3 ME2π,1 ME2π,2 ME3π,1 ME3π,2

4 0.85731(23) 0.85731(19) 0.85737(19) 2.54859(19) 2.54868(19) 4.58007(70) 4.58188(56)
6 0.54011(18) 0.54011(18) 0.54014(17) 1.87219(10) 1.87221(10) 3.64358(28) 3.64380(20)
8 0.40352(18) 0.40352(18) 0.40354(19) 1.470410(82) 1.470410(80) 2.99319(25) 2.99329(20)
10 0.32808(24) 0.32805(23) 0.32810(21) 1.20976(18) 1.210004(93) 2.52627(21) 2.52641(24)
12 0.28093(22) 0.28092(22) 0.28090(21) 1.03020(13) 1.03021(11) 2.18034(26) 2.18038(26)
14 0.24918(25) 0.24925(23) 0.24923(23) 0.90033(16) 0.90037(15) 1.91659(29) 1.91661(28)
16 0.22737(33) 0.22729(27) 0.22733(26) 0.80300(22) 0.80314(21) 1.71141(35) 1.71153(35)
18 0.21224(33) 0.21193(28) 0.21204(26) 0.72836(57) 0.72802(31) 1.54819(36) 1.54842(49)
20 0.20045(35) 0.20041(29) 0.20069(32) 0.66968(46) 0.67015(43) 1.41533(41) 1.41583(44)
22 0.19303(59) 0.19280(36) 0.19284(37) 0.62222(51) 0.62243(43) 1.30740(76) 1.30790(71)
24 0.18635(54) 0.18647(44) 0.18645(39) 0.58336(88) 0.58353(58) 1.21524(59) 1.21612(62)
26 0.1841(10) 0.18241(37) 0.18271(50) 0.5522(12) 0.55266(64) 1.1416(17) 1.1417(12)
28 0.17860(98) 0.17858(39) 0.17880(39) 0.52526(92) 0.52659(87) 1.07363(96) 1.07515(92)
30 0.1759(11) 0.17583(49) 0.17576(54) 0.50472(93) 0.5060(12) 1.0198(17) 1.0209(24)
32 0.17538(93) 0.17417(58) 0.17440(48) 0.4845(10) 0.48526(90) 0.9741(12) 0.9745(26)
34 0.17501(83) 0.17306(51) 0.17388(62) 0.4689(10) 0.46977(75) 0.9305(12) 0.9304(11)
36 0.1725(12) 0.17208(53) 0.17196(46) 0.4560(27) 0.4573(18) 0.8952(17) 0.8929(42)
38 0.17237(81) 0.17060(51) 0.17105(82) 0.4449(13) 0.4468(19) 0.8582(16) 0.8590(18)
40 0.1705(14) 0.17061(41) 0.17114(48) 0.4351(17) 0.4327(32) 0.8269(23) 0.8288(21)

Table H.6: Extracted values of the volume dependent pion masses, 2-pion and 3-pion ground state
energies mπ(L), E2π(L), E3π(L), for each volume (dataset B7).
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mπ(L)

L A3 A5 A7 B5 B7
4 0.85337(33) 0.85636(25) 0.86118(20) 0.84891(28) 0.85733(20)
6 0.59923(28) 0.56788(17) 0.55663(18) 0.53962(20) 0.54012(18)
8 0.50846(37) 0.45546(21) 0.43399(20) 0.40549(26) 0.40353(18)
10 0.46983(94) 0.40201(23) 0.37243(22) 0.33223(24) 0.32808(23)
12 0.45007(76) 0.37453(24) 0.33829(22) 0.28763(32) 0.28092(22)
14 0.44223(75) 0.35907(29) 0.31798(24) 0.25824(43) 0.24922(24)
16 0.4362(11) 0.34975(31) 0.30573(25) 0.23751(38) 0.22733(28)
18 0.4344(12) 0.34504(28) 0.29805(23) 0.22396(45) 0.21205(31)
20 0.43360(69) 0.34225(44) 0.29334(25) 0.21489(66) 0.20052(34)
22 0.4336(16) 0.34075(37) 0.29060(39) 0.20927(99) 0.19286(42)
24 0.4321(12) 0.33941(26) 0.28852(27) 0.20300(62) 0.18644(45)
26 0.43218(63) 0.33894(33) 0.28760(29) 0.19966(60) 0.18264(66)
28 0.4335(14) 0.33839(52) 0.28655(34) 0.19745(73) 0.17868(47)
30 0.4321(15) 0.33835(55) 0.28619(31) 0.19616(75) 0.17581(60)
32 0.4345(12) 0.33851(71) 0.28602(35) 0.19466(79) 0.17445(71)
34 0.4317(13) 0.3383(12) 0.28602(44) 0.1945(12) 0.17369(95)
36 0.4332(15) 0.3379(11) 0.2853(12) 0.1925(14) 0.17206(59)
38 0.4340(17) 0.3379(11) 0.2854(12) 0.1928(12) 0.17109(97)
40 0.4331(27) 0.3378(14) 0.28551(94) 0.1910(12) 0.17082(59)

Table H.7: Extracted values of the volume dependent pion masses mπ(L), for each volume and for all
datasets after the systematic averaging.
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E2π(L)

L A3 A5 A7 B5 B7
4 2.52559(48) 2.55677(26) 2.57112(17) 2.52585(30) 2.54864(20)
6 1.92091(31) 1.903686(84) 1.89864(10) 1.86241(13) 1.87220(10)
8 1.57890(34) 1.52938(13) 1.50921(12) 1.467805(90) 1.470410(81)
10 1.36815(57) 1.29596(17) 1.26370(24) 1.21207(11) 1.20995(15)
12 1.23459(98) 1.14133(28) 1.09928(22) 1.03618(21) 1.03021(12)
14 1.1427(12) 1.03389(44) 0.98399(25) 0.90909(44) 0.90035(15)
16 1.0807(18) 0.95644(39) 0.89996(32) 0.81424(33) 0.80307(22)
18 1.0311(33) 0.90153(95) 0.83707(57) 0.74385(93) 0.72810(41)
20 0.9998(29) 0.8601(11) 0.78972(54) 0.6896(13) 0.66993(50)
22 0.9740(36) 0.82262(78) 0.75166(50) 0.63935(84) 0.62234(48)
24 0.9609(29) 0.7979(12) 0.72167(68) 0.6036(12) 0.58348(69)
26 0.9399(23) 0.7789(13) 0.69852(79) 0.5762(18) 0.55255(82)
28 0.9309(28) 0.7613(19) 0.67863(79) 0.5496(15) 0.5260(11)
30 0.9194(26) 0.7490(16) 0.66498(88) 0.5301(22) 0.5052(12)
32 0.9188(26) 0.7401(15) 0.65062(80) 0.5127(16) 0.4849(10)
34 0.9157(42) 0.7318(30) 0.64031(82) 0.5003(27) 0.46946(96)
36 0.9084(46) 0.7207(23) 0.6308(26) 0.4843(37) 0.4569(22)
38 0.9015(37) 0.7143(18) 0.6243(11) 0.4769(25) 0.4455(18)
40 0.9001(32) 0.7123(34) 0.6177(26) 0.4614(33) 0.4346(23)

Table H.8: Extracted values of the volume dependent 2-pion ground state energies E2π(L), for each
volume and for all datasets after the systematic averaging.
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E3π(L)

L A3 A5 A7 B5 B7
4 4.5051(14) 4.5957(15) 4.63079(97) 4.5300(17) 4.5812(11)
6 3.66682(29) 3.68291(19) 3.68875(26) 3.61774(31) 3.64373(25)
8 3.08782(41) 3.05831(18) 3.04499(21) 2.97988(27) 2.99325(23)
10 2.6801(10) 2.61782(29) 2.59009(21) 2.52057(30) 2.52633(24)
12 2.3867(15) 2.29859(40) 2.25838(24) 2.18105(31) 2.18036(26)
14 2.1666(16) 2.05966(47) 2.00915(30) 1.92251(49) 1.91660(28)
16 2.0079(29) 1.87605(51) 1.81791(33) 1.71976(49) 1.71147(35)
18 1.8745(29) 1.73379(63) 1.66773(38) 1.55954(62) 1.54827(42)
20 1.7803(29) 1.62229(76) 1.54762(48) 1.43195(85) 1.41556(49)
22 1.7096(38) 1.5324(12) 1.45120(66) 1.3274(17) 1.30767(77)
24 1.6466(35) 1.45668(93) 1.36983(67) 1.23660(96) 1.21565(75)
26 1.6035(32) 1.3980(12) 1.3052(11) 1.1639(15) 1.1416(14)
28 1.5607(39) 1.3501(17) 1.2485(10) 1.1059(21) 1.0744(12)
30 1.5253(45) 1.3056(18) 1.2038(14) 1.0473(26) 1.0202(20)
32 1.5073(37) 1.2711(19) 1.1656(14) 1.0025(21) 0.9741(15)
34 1.4817(69) 1.2414(19) 1.1298(11) 0.9625(24) 0.9304(11)
36 1.4636(48) 1.2159(35) 1.1009(28) 0.9262(27) 0.8949(23)
38 1.4534(37) 1.1933(31) 1.0742(14) 0.8966(44) 0.8585(18)
40 1.4405(54) 1.1742(37) 1.0501(27) 0.8588(33) 0.8279(24)

Table H.9: Extracted values of the volume dependent 3-pion ground state energies E3π(L), for each
volume and for all datasets after the systematic averaging.
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H.3 Extrapolation to infinite volume and extraction of a2λ and
a2F (0)

By utilizing the final model-independent results for mπ(L) in table H.7, we can use Lüscher’s formula,
that is eq. (2.63)

mπ(L) = mπ +

(
λ2

4
√

3m3
π

)
e−
√

3
2 mπL +

1√
mπL

(
F (0)

4mπ

√
2π

)
e−mπL, (H.20)

and determine the infinite volume pion mass mπ = limL→∞mπ(L), the 3-pion coupling λ and the
forwards scattering amplitude F (0). Also here, we perform a combination of Bayesian model averaging
and systematic averaging, as explained in chapter F. The fit functions we use are variations of eq. (H.20)
and given by

MFVE
1 (L) = mπ +

(
λ2

4
√

3m3
π

)
e−
√

3
2 mπL +

1√
mπL

(
F (0)

4mπ

√
2π

)
e−mπL, (H.21)

MFVE
2 (L) = mπ +

(
λ2

4
√

3m3
π

)
e−
√

3
2 mπL, (H.22)

MFVE
3 (L) = mπ +

1√
mπL

(
F (0)

4mπ

√
2π

)
e−mπL, (H.23)

with varying fit ranges from Lmin to Lmax. The fit ranges have been chosen based on the dataset and
not based on the model. Only the lower boundaries have been varied among the datasets, to ensure good
quality fits

A3 : Lmin ∈ {4, 6, 8} Lmax ∈ {16, 18, . . . , 40}, (H.24)

A5 : Lmin ∈ {4, 6, 8, 10} Lmax ∈ {16, 18, . . . , 40}, (H.25)

A7 : Lmin ∈ {4, 6, 8, 10} Lmax ∈ {16, 18, . . . , 40}, (H.26)

B5 : Lmin ∈ {4, 6, 8, 10} Lmax ∈ {16, 18, . . . , 40}, (H.27)

B7 : Lmin ∈ {4, 6, 8, 10, 12} Lmax ∈ {16, 18, . . . , 40}. (H.28)

The next step is to perform those fits and perform Bayesian model averaging to get separate model-
dependent values for the infinite volume pion mass mπ, the 3-pion coupling and the forward scattering
amplitude. The results are summarized in tables H.10 to H.14.
In each table we first show the results for MFVE

1 , then MFVE
2 and finally MFVE

3 . However, we only
show the fits which have χ2/d.o.f ≤ 2.0 and where the relative errors on the fit parameters do not exceed
50%. As a result we can see that for all datasets the third model MFVE

3 can be completely discarded, not
yielding a single reasonable fit. This indicates, that the contributions arising from the 3-pion coupling are
more dominant than the ones from the forward scattering term. For the smaller pion mass mπ/g ≈ 0.44,
i.e. dataset B5 and B7 (table H.13 and H.14), we can see that the complete fit function MFVE

1 is necessary
to obtain a reasonable fit. This is reasonable, given that we are working in a much smaller volume. On
the other hand for datasets A5 and A7 (table H.11 and H.12) the only model yielding good results is
MFVE

2 . Intuitively one would think that also MFVE
1 would describe the data well, however, as it turns

out, the fit parameters become numerically unstable after adding the additional fitting term proportional
to F (0).
We summarize, that for all datasets MFVE

3 needs to be completely discarded. In addition to that,
we discard MFVE

1 for A5 and A7, and MFVE
2 for B5 and B7. This means that for A5, A7, B5 and B7

we only consider results from one fit model and we directly adopt the results obtained after Bayesian
model averaging. For dataset A3 we must perform systematic averaging as explained in section F.4. The
model-dependent results are depicted in table H.15, after the systematic averaging we obtain the very
final model-independent results shown in table H.16.
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amπ a2λ a2F (0) fit range χ2/ndof ndof
0.43421(58) 0.853(13) 2.90(44) 6 - 18 1.80 4
0.43366(45) 0.861(12) 2.62(39) 6 - 20 1.89 5
0.43363(45) 0.862(12) 2.60(39) 6 - 22 1.59 6
0.43343(43) 0.864(12) 2.50(39) 6 - 24 1.62 7
0.43304(35) 0.870(11) 2.29(36) 6 - 26 1.81 8
0.43306(34) 0.870(11) 2.31(35) 6 - 28 1.62 9
0.43301(33) 0.870(11) 2.28(35) 6 - 30 1.50 10
0.43311(32) 0.869(11) 2.33(35) 6 - 32 1.48 11
0.43304(31) 0.870(11) 2.29(35) 6 - 34 1.44 12
0.43304(30) 0.870(11) 2.30(35) 6 - 36 1.33 13
0.43307(30) 0.869(11) 2.31(35) 6 - 38 1.26 14
0.43307(30) 0.869(11) 2.31(35) 6 - 40 1.17 15
0.43329(42) 0.9239(23) - 8 - 20 0.90 5
0.43328(41) 0.9239(23) - 8 - 22 0.75 6
0.43314(40) 0.9239(23) - 8 - 24 0.81 7
0.43286(34) 0.9240(23) - 8 - 26 0.96 8
0.43289(32) 0.9240(23) - 8 - 28 0.88 9
0.43285(32) 0.9240(23) - 8 - 30 0.82 10
0.43295(31) 0.9240(23) - 8 - 32 0.90 11
0.43289(30) 0.9240(23) - 8 - 34 0.89 12
0.43290(29) 0.9240(23) - 8 - 36 0.82 13
0.43293(29) 0.9240(23) - 8 - 38 0.79 14
0.43293(29) 0.9240(23) - 8 - 40 0.74 15

Table H.10: Results for the finite volume fits of the 1-pion ground state energies (resp. pion mass
mπ) for dataset A3. We only show results with χ2/d.o.f ≤ 2.0 and relative error on
the fit parameters smaller than 50%. The first fits are given by MFVE

1 (L) (both fitting
contributions), the second ones by MFVE

2 (L) (only one contribution proportional to λ2).
At the very bottom, we would have fits performed with MFVE

3 (L), however, this fit model
is unreliable and we have no fits to present.

amπ a2λ a2F (0) fit range χ2/ndof ndof

0.33912(19) 0.56704(92) - 10 - 22 1.28 5
0.33889(16) 0.56727(91) - 10 - 24 1.99 6
0.33875(14) 0.56741(90) - 10 - 28 1.99 8
0.33872(13) 0.56745(90) - 10 - 30 1.89 9
0.33871(13) 0.56746(90) - 10 - 32 1.72 10
0.33870(13) 0.56746(90) - 10 - 34 1.58 11
0.33869(13) 0.56747(90) - 10 - 36 1.49 12
0.33868(13) 0.56748(90) - 10 - 38 1.41 13
0.33868(13) 0.56749(90) - 10 - 40 1.34 14

Table H.11: Results for the finite volume fits of the 1-pion ground state energies (resp. pion mass
mπ) for dataset A5. We only show results with χ2/d.o.f ≤ 2.0 and relative error on the
fit parameters smaller than 50%. The first fits would be given by MFVE

1 (L) (both fitting
contributions), however, as we see, we do not obtain any reliable fits for dataset A5. The
second fits are given by MFVE

2 (L) (only one contribution proportional to λ2), these are
the only ones which work here. The fits performed with MFVE

3 (L) are of bad quality,
which is why they do not show up as well.
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amπ a2λ a2F (0) fit range χ2/ndof ndof

0.28612(17) 0.40810(43) - 10 - 22 0.66 5
0.28605(15) 0.40805(42) - 10 - 24 0.68 6
0.28603(13) 0.40804(42) - 10 - 26 0.59 7
0.28597(12) 0.40801(42) - 10 - 28 0.73 8
0.28592(12) 0.40798(42) - 10 - 30 0.81 9
0.28589(11) 0.40796(42) - 10 - 32 0.78 10
0.28589(11) 0.40796(42) - 10 - 34 0.72 11
0.28588(11) 0.40796(42) - 10 - 36 0.69 12
0.28588(11) 0.40795(42) - 10 - 38 0.66 13
0.28587(11) 0.40795(42) - 10 - 40 0.62 14

Table H.12: Results for the finite volume fits of the 1-pion ground state energies (resp. pion mass
mπ) for dataset A7. We only show results with χ2/d.o.f ≤ 2.0 and relative error on the
fit parameters smaller than 50%. The first fits would be given by MFVE

1 (L) (both fitting
contributions), however, as we see, we do not obtain any reliable fits for dataset A7. The
second fits are given by MFVE

2 (L) (only one contribution proportional to λ2), these are
the only ones which work. The fits performed with MFVE

3 (L) are of bad quality and do
not show up.

amπ a2λ a2F (0) fit range χ2/ndof ndof
0.19333(95) 0.1508(25) 1.002(82) 10 - 22 0.65 4
0.19271(72) 0.1517(22) 0.958(68) 10 - 24 0.70 5
0.19237(55) 0.1523(20) 0.934(59) 10 - 26 0.68 6
0.19227(47) 0.1525(19) 0.926(55) 10 - 28 0.60 7
0.19229(42) 0.1524(19) 0.928(52) 10 - 30 0.52 8
0.19222(38) 0.1526(19) 0.922(50) 10 - 32 0.48 9
0.19226(37) 0.1525(18) 0.925(50) 10 - 34 0.44 10
0.19219(36) 0.1526(18) 0.919(49) 10 - 36 0.45 11
0.19216(34) 0.1527(18) 0.916(48) 10 - 38 0.42 12
0.19201(33) 0.1530(18) 0.903(47) 10 - 40 0.57 13

Table H.13: Results for the finite volume fits of the 1-pion ground state energies (resp. pion mass
mπ) for dataset B5. We only show results with χ2/d.o.f ≤ 2.0 and relative error on
the fit parameters smaller than 50%. The first fits are given by MFVE

1 (L) (both fitting
contributions). Next we would have fits performed with MFVE

2 (L) and MFVE
3 (L), but

since they are of bad quality they do not show up here.
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amπ a2λ a2F (0) fit range χ2/ndof ndof
0.17322(60) 0.1163(11) 0.916(37) 10 - 22 0.93 4
0.17251(51) 0.1168(10) 0.883(33) 10 - 24 1.52 5
0.17237(46) 0.1170(10) 0.876(31) 10 - 26 1.34 6
0.17146(71) 0.1209(20) 0.751(67) 12 - 24 0.73 4
0.17144(62) 0.1210(19) 0.750(62) 12 - 26 0.59 5
0.17083(48) 0.1221(17) 0.702(54) 12 - 28 0.90 6
0.17042(43) 0.1229(16) 0.669(50) 12 - 30 1.20 7
0.17028(39) 0.1232(15) 0.657(47) 12 - 32 1.12 8
0.17028(37) 0.1232(15) 0.657(46) 12 - 34 1.00 9
0.17008(32) 0.1236(14) 0.640(42) 12 - 36 1.03 10
0.17000(31) 0.1238(14) 0.632(41) 12 - 38 1.00 11
0.16987(28) 0.1241(14) 0.621(40) 12 - 40 0.98 12

Table H.14: Results for the finite volume fits of the 1-pion ground state energies (resp. pion mass
mπ) for dataset B7. We only show results with χ2/d.o.f ≤ 2.0 and relative error on
the fit parameters smaller than 50%. The first fits are given by MFVE

1 (L) (both fitting
contributions). Fits performed with MFVE

2 (L) and MFVE
3 (L) are of bad quality and do

not show up here.

Dataset (amπ)MFVE
1

(amπ)MFVE
2

(amπ)av. (a2F (0))MFVE
1

(a2F (0))MFVE
2

(a2F (0))av.

A3 0.7501(5) 0.7499(5) 0.7500(5) 2.31(35) N/A 2.31(35)
A5 N/A 0.7574(3) 0.7574(3) N/A N/A N/A
A7 N/A 0.7564(3) 0.7564(3) N/A N/A N/A
B5 0.4296(8) N/A 0.4296(8) 0.913(49) N/A 0.913(49)
B7 0.450(2) N/A 0.450(2) 0.644(63) N/A 0.644(63)

Dataset (a2λ)MFVE
1

(a2λ)MFVE
2

(a2λ)av. (λ/g2)MFVE
1

(λ/g2)MFVE
2

(λ/g2)av.

A3 0.869(11) 0.9240(23) 0.922(11) 2.608(33) 2.7720(68) 2.765(34)
A5 N/A 0.56747(90) 0.56747(90) N/A 2.8373(45) 2.8373(45)
A7 N/A 0.40796(42) 0.40796(42) N/A 2.8557(29) 2.8557(29)
B5 0.1528(18) N/A 0.1528(18) 0.7639(91) N/A 0.7639(91)
B7 0.1235(19) N/A 0.1235(19) 0.865(13) N/A 0.865(13)

Table H.15: Results for the different parameters describing finite volume effects after performing
Bayesian model averaging.

Dataset mπ/g a2λ λ/g2 a2F (0)

A3 0.7500(5) 0.922(11) 2.765(34) 2.31(35)
A5 0.7574(3) 0.56747(90) 2.8373(45) N/A
A7 0.7564(3) 0.40796(42) 2.8557(29) N/A
B5 0.4296(8) 0.1528(18) 0.7639(91) 0.913(49)
B7 0.450(2) 0.1235(19) 0.865(13) 0.644(63)

Table H.16: Final model-independent results for the 3-pion coupling and the forward scattering am-
plitude a2λ, λ/g2 and a2F (0), after systematic averaging.
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H.4 Scattering phase shift
In this section we want to provide the details, which have been omitted during the discussion of the
scattering phase shift in section 5.4. After extracting the infinite volume pion mass mπ and the 2-pion
ground state energies E2π(L), as explained in section H.2 and section H.3, we can discuss the extraction
of the scattering phase shift via

δ(k(L)) = −kL
2
≡ δ(L), (H.29)

where the relative momentum k is extracted from the bosonic lattice dispersion relation given by

E2π(L) = 2 cosh−1(cosh(mπ) + 1− cos(k(L))). (H.30)

The numerical results for the scattering phase shift δ(x), with x = x(L) = k(L)
mπ

are given by table H.18
and H.17.

A3
L x = x(L) δ(x(L)) = δ(L) ak(L)

4 3.1953(28) 0.37447(83) 1.38356(41)
6 2.1490(20) 0.35002(82) 0.93052(27)
8 1.6086(17) 0.3555(12) 0.69652(31)
10 1.2727(17) 0.3863(24) 0.55106(47)
12 1.0492(22) 0.4157(47) 0.45432(78)
14 0.8847(27) 0.4601(72) 0.3831(10)
16 0.7649(40) 0.492(13) 0.3312(17)
18 0.6608(77) 0.566(30) 0.2861(33)
20 0.5891(72) 0.591(31) 0.2551(31)
22 0.5250(96) 0.641(45) 0.2273(41)
24 0.4900(83) 0.595(43) 0.2122(36)
26 0.4297(71) 0.723(40) 0.1860(30)
28 0.4014(93) 0.708(56) 0.1738(40)
30 0.3630(93) 0.784(60) 0.1572(40)
32 0.3606(95) 0.643(66) 0.1561(41)
34 0.350(15) 0.57(11) 0.1514(67)
36 0.322(19) 0.63(15) 0.1395(81)
38 0.294(16) 0.72(13) 0.1274(69)
40 0.288(14) 0.65(12) 0.1247(62)

Table H.17: Scattering phase shifts δ(x), as a function of x = k
mπ

for dataset A3.
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A5 A7
L x = x(L) δ(x(L)) = δ(L) ak(L) x = x(L) δ(x(L)) = δ(L) ak(L)

4 4.2729(22) 0.24713(44) 1.44723(22) 5.1634(21) 0.18938(29) 1.47610(15)
6 2.8483(15) 0.24746(26) 0.964711(85) 3.4337(14) 0.19669(24) 0.981634(79)
8 2.1294(12) 0.25673(45) 0.72122(11) 2.5667(12) 0.20653(35) 0.733767(89)
10 1.6905(11) 0.27881(73) 0.57256(15) 2.0394(11) 0.22642(78) 0.58303(16)
12 1.3939(11) 0.3089(13) 0.47211(22) 1.68467(99) 0.25193(91) 0.48161(15)
14 1.1793(13) 0.3457(24) 0.39941(34) 1.4295(10) 0.2809(13) 0.40867(18)
16 1.0161(12) 0.3885(26) 0.34414(33) 1.2364(11) 0.3139(19) 0.35346(23)
18 0.8933(25) 0.4187(71) 0.30254(79) 1.0851(17) 0.3497(38) 0.31021(43)
20 0.7946(28) 0.4505(93) 0.26911(93) 0.9653(16) 0.3821(42) 0.27595(42)
22 0.6988(22) 0.5381(80) 0.23668(73) 0.8635(16) 0.4261(45) 0.24687(41)
24 0.6308(36) 0.578(14) 0.2137(12) 0.7786(21) 0.4707(70) 0.22257(58)
26 0.5748(41) 0.611(18) 0.1947(14) 0.7090(25) 0.5066(91) 0.20269(70)
28 0.5190(62) 0.681(29) 0.1758(21) 0.6455(27) 0.558(11) 0.18454(76)
30 0.4772(57) 0.717(29) 0.1616(19) 0.5994(31) 0.571(13) 0.17134(87)
32 0.4452(58) 0.729(31) 0.1508(19) 0.5479(31) 0.636(14) 0.15662(87)
34 0.413(12) 0.762(68) 0.1400(40) 0.5085(33) 0.670(16) 0.14536(94)
36 0.367(10) 0.903(62) 0.1244(35) 0.470(11) 0.724(56) 0.1343(31)
38 0.3383(84) 0.965(54) 0.1146(28) 0.4421(49) 0.740(27) 0.1264(14)
40 0.329(17) 0.92(11) 0.1113(56) 0.412(12) 0.785(69) 0.1178(35)

B5 B7
L x = x(L) δ(x(L)) = δ(L) ak(L) x = x(L) δ(x(L)) = δ(L) ak(L)

4 7.606(15) 0.21889(50) 1.46135(25) 8.723(32) 0.17335(38) 1.48412(19)
6 5.128(10) 0.18596(36) 0.98521(12) 5.856(22) 0.15273(42) 0.99629(14)
8 3.8637(77) 0.17230(46) 0.74232(11) 4.407(17) 0.14253(64) 0.74977(16)
10 3.0873(64) 0.17584(68) 0.59315(14) 3.521(14) 0.1462(10) 0.59907(20)
12 2.5621(56) 0.1881(11) 0.49224(19) 2.923(12) 0.1579(14) 0.49728(23)
14 2.1819(52) 0.2072(22) 0.41920(32) 2.492(10) 0.1737(19) 0.42399(27)
16 1.8945(46) 0.2298(22) 0.36398(27) 2.1671(95) 0.1921(25) 0.36868(31)
18 1.6769(53) 0.2420(56) 0.32218(62) 1.9129(90) 0.2125(37) 0.32545(41)
20 1.5051(57) 0.2498(81) 0.28918(81) 1.7120(84) 0.2289(47) 0.29127(47)
22 1.3413(47) 0.3069(65) 0.25770(59) 1.5439(80) 0.2523(53) 0.26266(49)
24 1.2207(56) 0.327(10) 0.23452(85) 1.4030(79) 0.2773(73) 0.23869(61)
26 1.1253(73) 0.331(16) 0.2162(12) 1.2877(80) 0.2937(91) 0.21907(70)
28 1.0290(65) 0.374(15) 0.1977(11) 1.1855(84) 0.318(12) 0.20170(89)
30 0.9558(90) 0.387(24) 0.1836(16) 1.1032(88) 0.326(15) 0.18769(99)
32 0.8882(73) 0.411(20) 0.1706(13) 1.0205(84) 0.364(15) 0.17361(94)
34 0.838(12) 0.404(37) 0.1610(22) 0.9549(83) 0.380(16) 0.16246(95)
36 0.771(17) 0.475(57) 0.1481(31) 0.900(13) 0.385(34) 0.1531(19)
38 0.738(12) 0.446(41) 0.1419(22) 0.849(11) 0.399(29) 0.1444(15)
40 0.668(16) 0.575(61) 0.1283(31) 0.798(13) 0.428(41) 0.1357(20)

Table H.18: Scattering phase shifts δ(x), as a function of x = k
mπ

for the four datasets A5, A7, B5
and B7.
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H.5 Effective range expansion
After calculating δ(x(L)) ≡ δ(L), we can use the data and fit it to some ansatz. Motivated by the
discussion in subsection 2.7.2 we will fit the data to a so-called effective range expansion, given by
eq. (2.102), that is

k tan(δ0(k)) =
1

a0
+
r0

2
k2 +O(k4), (H.31)

where a0 denotes the scattering length and r0 the effective range. From the extracted scattering phase
shifts we compute f(x) = x tan(δ(x(L))), which can be described using the following three fit models,
motivated by the effective range expansion

Mδ
1(x, c0, c1) = c0 + c1x

2 (H.32)

Mδ
2(x, c0, c1, c2) = c0 + c1x

2 + c2x
4 (H.33)

Mδ
3(x, c0, c1, c2, c3) = c0 + c1x

2 + c2x
4 + c3x

6, (H.34)

where c0 = 1/(mπa0) and c1 = 1
2 (mπr0). The fit ranges used for each model are characterized by values

of x = x(L), the larger the volume L the smaller is x(L). For each model we perform fits for different fit
ranges which are then being averaged using Bayesian model averaging. The fit ranges are given by

Mδ
1(x, c0, c1), xmin ∈ {x(L = 40), x(38), . . . , x(34)}, xmax ∈ {x(16), . . . , x(4)} (H.35)

Mδ
2(x, c0, c1, c2), xmin ∈ {x(40), x(38), . . . , x(34)}, xmax ∈ {x(10), . . . , x(4)} (H.36)

Mδ
3(x, c0, c1, c2, c3), xmin ∈ {x(40), x(38), . . . , x(34)}, xmax ∈ {x(10), . . . , x(4)}. (H.37)

The numerical results are depicted in subsection in tables H.19 to H.23, where we only show the results
with χ2/d.o.f ≤ 2.0 and relative error smaller than 50%. Note, that for the datasets A7 (and A5 as
well), we obtain somewhat odd fit results, see table H.21 for the last fit function Mδ

3. Because of over
fitting, for some of the fits the parameter c1 changes the sign. This indicates that those fits converged to
a different area in parameter space. This is normally not a problem, however, to obtain reliable results
after model averaging the fit parameters need to be somewhat consistent. Consequently, we discard the
fits in A5 and A7 which have negative values for c1 and proceed to average the remaining ones.
After Bayesian model averaging we end up with the values for {c0, c1} in table H.24, where the last

column shows the results for each dataset after performing systematic averaging. The last column will
be used for the extraction of a0mπ and r0mπ, yielding the very final results, which have been presented
in section 5.5 and are summarized in table H.25.
To make predictions for the 3-pion ground state energy, we must restrict ourselves to a single final fit

for δ(x), which will be used to solve the 3-particle quantization conditions. This is needed to correctly
take into account correlations between the fit parameters. Since we want to describe as much of the data
as possible, we fix the lower bound of the fits to xmin = x(L = 40) and choose the upper bound of the fit
range xmax = x(L) as large as possible, i.e. we choose L as small as possible. Next, we choose between
the three fit models and we take the one which allows us to describe the data with a reasonable χ2 and
the smallest number of parameters. For the 5 datasets the following fits have been used:

A3 ∼ Mδ
3(x, c0, c1, c2, c3), with [xmin, xmax] = [x(40), x(6)], (H.38)

A5 ∼ Mδ
2(x, c0, c1, c2), with [xmin, xmax] = [x(40), x(8)], (H.39)

A7 ∼ Mδ
2(x, c0, c1, c2), with [xmin, xmax] = [x(40), x(8)], (H.40)

B5 ∼ Mδ
2(x, c0, c1, c2), with [xmin, xmax] = [x(40), x(6)], (H.41)

B7 ∼ Mδ
2(x, c0, c1, c2), with [xmin, xmax] = [x(40), x(6)], (H.42)

as a result we obtain the fit results depicted in table H.26. Remarkably, almost the full range of data
points, that is between 17 and 18 data points, can be described using the presented fit models with 3
and 4 fit parameters only.
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c0 c1 c2 c3 fit range χ2/d.o.f ndof
0.289(18) 0.226(41) - - 40 - 16 1.51 11
0.303(14) 0.178(21) - - 40 - 14 1.52 12
0.326(12) 0.129(12) - - 40 - 12 1.84 13
0.3398(80) 0.1108(53) - - 40 - 10 1.87 14
0.298(18) 0.208(41) - - 38 - 16 1.38 10
0.310(15) 0.168(21) - - 38 - 14 1.36 11
0.332(12) 0.124(12) - - 38 - 12 1.61 12
0.3426(80) 0.1089(53) - - 38 - 10 1.60 13
0.3628(34) 0.09131(80) - - 38 - 6 1.99 15
0.302(19) 0.200(42) - - 36 - 16 1.46 9
0.314(15) 0.163(22) - - 36 - 14 1.40 10
0.334(12) 0.121(13) - - 36 - 12 1.62 11
0.3440(80) 0.1079(53) - - 36 - 10 1.58 12
0.3630(34) 0.09124(80) - - 36 - 6 1.95 14
0.308(19) 0.189(42) - - 34 - 16 1.45 8
0.318(15) 0.157(22) - - 34 - 14 1.36 9
0.337(12) 0.118(13) - - 34 - 12 1.54 10
0.3456(80) 0.1068(53) - - 34 - 10 1.47 11
0.3642(51) 0.0907(20) - - 34 - 8 1.98 12
0.3633(34) 0.09117(80) - - 34 - 6 1.83 13
0.306(15) 0.190(30) -0.04(1) - 40 - 10 1.57 13
0.323(11) 0.147(12) -0.016(3) - 40 - 8 1.60 14
0.314(16) 0.176(30) -0.03(1) - 38 - 10 1.40 12
0.327(11) 0.142(12) -0.014(3) - 38 - 8 1.39 13
0.3573(42) 0.0960(15) -0.0008(1) - 38 - 4 1.95 15
0.317(16) 0.169(31) -0.03(1) - 36 - 10 1.43 11
0.329(11) 0.139(12) -0.014(3) - 36 - 8 1.39 12
0.3576(42) 0.0958(15) -0.0008(1) - 36 - 4 1.93 14
0.332(11) 0.136(12) -0.013(3) - 34 - 8 1.31 11
0.3581(41) 0.0957(15) -0.0008(1) - 34 - 4 1.82 13
0.253(23) 0.480(96) -0.4(1) 0.13(4) 40 - 10 1.12 12
0.295(18) 0.238(44) -0.09(3) 0.016(7) 40 - 8 1.46 13
0.313(12) 0.176(18) -0.038(8) 0.0047(10) 40 - 6 1.48 14
0.265(24) 0.437(100) -0.4(1) 0.12(4) 38 - 10 1.05 11
0.318(12) 0.168(18) -0.035(8) 0.0043(10) 38 - 6 1.29 13
0.270(25) 0.42(10) -0.3(1) 0.11(4) 36 - 10 1.12 10
0.321(12) 0.164(18) -0.033(8) 0.0042(10) 36 - 6 1.30 12
0.277(25) 0.39(10) -0.3(1) 0.10(4) 34 - 10 1.12 9
0.324(12) 0.160(18) -0.031(8) 0.0039(10) 34 - 6 1.24 11

Table H.19: Fits for the scattering phase shift δ(x), for the 3 fit models Mδ
1,Mδ

2,Mδ
3 (dataset A3). We

only show the fits with χ2/d.o.f. ≤ 2.0 and where the relative errors of the fit parameters
are less than 50%.
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c0 c1 c2 c3 fit range χ2/d.o.f ndof
0.3953(55) 0.0199(47) - - 40 - 14 1.48 12
0.3865(40) 0.0294(23) - - 40 - 12 1.62 13
0.3952(55) 0.0200(47) - - 38 - 14 1.60 11
0.3864(40) 0.0294(23) - - 38 - 12 1.74 12
0.3941(56) 0.0209(48) - - 36 - 14 1.51 10
0.3859(40) 0.0298(23) - - 36 - 12 1.63 11
0.3934(56) 0.0215(48) - - 34 - 14 1.54 9
0.3856(40) 0.0300(23) - - 34 - 12 1.64 10
0.3859(37) 0.0262(24) 0.0026(4) - 40 - 8 1.63 14
0.3859(37) 0.0263(24) 0.0026(4) - 38 - 8 1.75 13
0.3854(37) 0.0266(24) 0.0026(4) - 36 - 8 1.64 12
0.3850(37) 0.0268(24) 0.0026(4) - 34 - 8 1.65 11
0.3912(43) 0.0181(36) 0.0060(9) -0.00040(7) 40 - 6 1.43 14
0.3911(43) 0.0182(36) 0.0060(9) -0.00040(7) 38 - 6 1.54 13
0.3905(43) 0.0188(36) 0.0058(9) -0.00039(7) 36 - 6 1.43 12
0.3900(43) 0.0191(36) 0.0057(9) -0.00038(7) 34 - 6 1.44 11

Table H.20: Fits for the scattering phase shift δ(x), for the 3 fit models Mδ
1,Mδ

2,Mδ
3 (dataset A5). We

only show the fits with χ2/d.o.f. ≤ 2.0 and where the relative errors of the fit parameters
are less than 50%. Note, that dataset A5 also has some fits of Mδ

3 with negative values
for c1. However, since the relative errors were large enough they do not show here. Those
fits will not be used for the model averaging procedure.
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c0 c1 c2 c3 fit range χ2/d.o.f ndof
0.3840(33) 0.0130(19) - - 40 - 14 1.04 12
0.3760(27) 0.0194(11) - - 40 - 12 1.86 13
0.3839(33) 0.0130(19) - - 38 - 14 1.12 11
0.3759(27) 0.0194(11) - - 38 - 12 1.99 12
0.3835(33) 0.0133(19) - - 36 - 14 1.17 10
0.3895(42) 0.0067(33) - - 34 - 16 0.89 8
0.3834(33) 0.0134(19) - - 34 - 14 1.25 9
0.3865(37) 0.0063(30) 0.0034(6) - 40 - 10 0.97 13
0.3770(28) 0.0165(15) 0.0012(2) - 40 - 8 1.76 14
0.3864(37) 0.0063(30) 0.0033(6) - 38 - 10 1.03 12
0.3769(28) 0.0166(15) 0.0012(2) - 38 - 8 1.87 13
0.3859(37) 0.0067(30) 0.0033(6) - 36 - 10 1.08 11
0.3766(28) 0.0168(15) 0.0012(2) - 36 - 8 1.93 12
0.3857(37) 0.0068(30) 0.0033(6) - 34 - 10 1.15 10
0.4027(58) -0.0252(94) 0.019(5) -0.0022(6) 40 - 10 0.37 12
0.3811(31) 0.0117(21) 0.0027(4) -0.00013(2) 40 - 6 1.38 14
0.4025(59) -0.0250(95) 0.019(5) -0.0021(6) 38 - 10 0.40 11
0.3810(31) 0.0117(21) 0.0027(4) -0.00013(2) 38 - 6 1.46 13
0.4021(60) -0.0244(97) 0.019(5) -0.0021(6) 36 - 10 0.43 10
0.3806(32) 0.0120(21) 0.0026(4) -0.00012(2) 36 - 6 1.51 12
0.4018(60) -0.0240(98) 0.018(5) -0.0021(6) 34 - 10 0.47 9
0.3805(31) 0.0121(21) 0.0026(4) -0.00012(2) 34 - 6 1.61 11

Table H.21: Fits for the scattering phase shift δ(x), for the 3 fit models Mδ
1,Mδ

2,Mδ
3 (dataset A7). We

only show the fits with χ2/d.o.f. ≤ 2.0 and where the relative errors of the fit parameters
are less than 50%. Note, that for the fit model Mδ

3 we do have some fits with negative
values of c1 showing up here. These fits will not be considered for the model averaging
procedure, we just show them for the sake of completeness.
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c0 c1 c2 c3 fit range χ2/d.o.f ndof
0.3755(94) 0.0182(27) - - 40 - 16 1.33 11
0.3777(80) 0.0173(19) - - 40 - 14 1.23 12
0.3798(60) 0.01652(91) - - 40 - 12 1.14 13
0.3727(45) 0.01827(42) - - 40 - 10 1.29 14
0.3743(95) 0.0186(27) - - 38 - 16 1.39 10
0.3769(80) 0.0175(19) - - 38 - 14 1.28 11
0.3794(59) 0.01659(91) - - 38 - 12 1.19 12
0.3725(45) 0.01830(42) - - 38 - 10 1.33 13
0.3762(96) 0.0180(28) - - 36 - 16 1.46 9
0.3782(81) 0.0171(19) - - 36 - 14 1.33 10
0.3802(59) 0.01646(91) - - 36 - 12 1.22 11
0.3728(45) 0.01825(42) - - 36 - 10 1.39 12
0.3759(96) 0.0181(28) - - 34 - 16 1.64 8
0.3781(80) 0.0172(19) - - 34 - 14 1.47 9
0.3801(59) 0.01647(91) - - 34 - 12 1.34 10
0.3728(44) 0.01826(42) - - 34 - 10 1.51 11
0.3842(82) 0.0136(24) 0.0004(2) - 40 - 10 1.21 13
0.3843(58) 0.0135(10) 0.00039(5) - 40 - 8 1.12 14
0.3756(43) 0.01612(45) 0.00024(1) - 40 - 6 1.32 15
0.3839(58) 0.0136(10) 0.00038(5) - 38 - 8 1.17 13
0.3753(42) 0.01615(45) 0.00024(1) - 38 - 6 1.37 14
0.3850(83) 0.0133(25) 0.0004(2) - 36 - 10 1.28 11
0.3847(58) 0.0134(10) 0.00039(5) - 36 - 8 1.18 12
0.3757(42) 0.01610(45) 0.00024(1) - 36 - 6 1.42 13
0.3850(83) 0.0133(25) 0.0004(2) - 34 - 10 1.41 10
0.3847(58) 0.0134(10) 0.00039(5) - 34 - 8 1.28 11
0.3756(42) 0.01611(45) 0.00024(1) - 34 - 6 1.53 12
0.3867(67) 0.0121(15) 0.0006(1) -0.000008(3) 40 - 6 1.14 14
0.3830(46) 0.01345(61) 0.00047(3) -0.0000054(3) 40 - 4 1.09 15
0.3862(67) 0.0122(15) 0.0006(1) -0.000008(3) 38 - 6 1.19 13
0.3828(46) 0.01349(61) 0.00047(3) -0.0000054(3) 38 - 4 1.13 14
0.3874(67) 0.0119(16) 0.0006(1) -0.000009(3) 36 - 6 1.19 12
0.3833(46) 0.01341(61) 0.00048(3) -0.0000055(3) 36 - 4 1.15 13
0.3873(66) 0.0119(16) 0.0006(1) -0.000009(3) 34 - 6 1.30 11
0.3832(46) 0.01341(60) 0.00048(3) -0.0000055(3) 34 - 4 1.24 12

Table H.22: Fits for the scattering phase shift δ(x), for the 3 fit models Mδ
1,Mδ

2,Mδ
3 (dataset B5). We

only show the fits with χ2/d.o.f. ≤ 2.0 and where the relative errors of the fit parameters
are less than 50%.
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c0 c1 c2 c3 fit range χ2/d.o.f ndof
0.370(10) 0.0111(18) - - 40 - 16 0.18 11
0.3712(90) 0.0107(12) - - 40 - 14 0.17 12
0.3700(79) 0.01108(74) - - 40 - 12 0.16 13
0.3657(68) 0.01209(45) - - 40 - 10 0.29 14
0.3555(57) 0.01390(22) - - 40 - 8 1.35 15
0.371(10) 0.0109(18) - - 38 - 16 0.19 10
0.3716(89) 0.0106(11) - - 38 - 14 0.17 11
0.3703(78) 0.01105(73) - - 38 - 12 0.17 12
0.3658(67) 0.01208(44) - - 38 - 10 0.31 13
0.3555(57) 0.01390(22) - - 38 - 8 1.44 14
0.372(10) 0.0106(18) - - 36 - 16 0.15 9
0.3725(88) 0.0104(11) - - 36 - 14 0.14 10
0.3708(77) 0.01096(72) - - 36 - 12 0.14 11
0.3662(66) 0.01205(44) - - 36 - 10 0.30 12
0.3556(56) 0.01389(22) - - 36 - 8 1.55 13
0.373(10) 0.0104(18) - - 34 - 16 0.14 8
0.3730(87) 0.0104(11) - - 34 - 14 0.13 9
0.3711(76) 0.01091(70) - - 34 - 12 0.14 10
0.3663(66) 0.01203(43) - - 34 - 10 0.32 11
0.3556(55) 0.01389(21) - - 34 - 8 1.68 12
0.3738(98) 0.0090(18) 0.0002(1) - 40 - 10 0.18 13
0.3745(82) 0.0087(10) 0.00023(4) - 40 - 8 0.16 14
0.3682(67) 0.01055(50) 0.00015(1) - 40 - 6 0.34 15
0.3743(97) 0.0088(18) 0.0002(1) - 38 - 10 0.18 12
0.3747(81) 0.0087(10) 0.00024(4) - 38 - 8 0.16 13
0.3684(66) 0.01054(50) 0.00015(1) - 38 - 6 0.36 14
0.3755(96) 0.0085(18) 0.00024(10) - 36 - 10 0.13 11
0.3755(80) 0.00852(99) 0.00024(4) - 36 - 8 0.12 12
0.3687(65) 0.01050(49) 0.00015(1) - 36 - 6 0.35 13
0.3762(94) 0.0083(17) 0.00025(10) - 34 - 10 0.12 10
0.3759(79) 0.00844(98) 0.00025(4) - 34 - 8 0.11 11
0.3688(65) 0.01048(48) 0.00015(1) - 34 - 6 0.37 12
0.3761(90) 0.0078(14) 0.00035(8) -0.000004(1) 40 - 6 0.18 14
0.3738(71) 0.00862(66) 0.00029(2) -0.0000027(2) 40 - 4 0.18 15
0.3765(89) 0.0077(14) 0.00036(8) -0.000004(1) 38 - 6 0.18 13
0.3740(70) 0.00859(65) 0.00029(2) -0.0000027(2) 38 - 4 0.19 14
0.3775(88) 0.0075(14) 0.00037(8) -0.000004(1) 36 - 6 0.13 12
0.3745(70) 0.00852(64) 0.00029(2) -0.0000027(2) 36 - 4 0.15 13
0.3780(87) 0.0073(14) 0.00038(8) -0.000004(1) 34 - 6 0.12 11
0.3747(69) 0.00848(63) 0.00029(2) -0.0000027(2) 34 - 4 0.15 12

Table H.23: Fits for the scattering phase shift δ(x), for the 3 fit models Mδ
1,Mδ

2,Mδ
3 (dataset B7). We

only show the fits with χ2/d.o.f. ≤ 2.0 and where the relative errors of the fit parameters
are less than 50%.
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Dataset c0 from Mδ
1 c0 from Mδ

2 c0 from Mδ
3 Final result for c0

A3 0.319(24) 0.324(16) 0.282(34) 0.318(25)
A5 0.3914(67) 0.3856(37) 0.3907(44) 0.3883(53)
A7 0.3846(40) 0.3863(38) 0.3810(31) 0.3835(43)
B5 0.3771(70) 0.3825(70) 0.3842(56) 0.3817(71)
B7 0.3687(81) 0.3726(85) 0.3747(77) 0.3721(85)

Dataset c1 from Mδ
1 c1 from Mδ

2 c1 from Mδ
3 Final result for c1

A3 0.156(46) 0.151(28) 0.35(16) 0.157(51)
A5 0.0240(61) 0.0265(25) 0.0186(38) 0.0241(48)
A7 0.0123(31) 0.0064(31) 0.0118(21) 0.0106(35)
B5 0.0173(15) 0.0140(17) 0.0130(12) 0.0145(23)
B7 0.0114(10) 0.0093(14) 0.0083(10) 0.0098(18)

Table H.24: Results for c0 and c1 after performing Bayesian model averaging for the three fitting
functions separately. The last column denotes the results after the systematic averaging.

Dataset c0 a0mπ c1 r0mπ

A3 0.318(25) 3.147(80) 0.157(51) 0.31(10)
A5 0.3883(53) 2.576(14) 0.0241(48) 0.0482(96)
A7 0.3835(43) 2.607(11) 0.0106(35) 0.0212(71)
B5 0.3817(71) 2.620(19) 0.0145(23) 0.0290(46)
B7 0.3721(85) 2.688(23) 0.0098(18) 0.0195(35)

Table H.25: Summary of all the extracted parameters after taking the systematic average.

Dataset c0 c1 c2 c3 fit range χ2/d.o.f ndof
A3 0.313(12) 0.176(18) -0.0379(77) 0.00473(97) 40 - 6 1.48 14
A5 0.3859(37) 0.0262(24) 0.00265(39) N/A 40 - 8 1.63 14
A7 0.3770(28) 0.0165(15) 0.00120(18) N/A 40 - 8 1.76 14
B5 0.3756(43) 0.01612(45) 0.000240(14) N/A 40 - 6 1.32 15
B7 0.3682(67) 0.01055(50) 0.000147(13) N/A 40 - 6 0.34 15

Table H.26: Choice of the best fits for each dataset. For dataset A3 we choose the fit model given by
Mδ

3, while for all other datasets Mδ
2 is being used.
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H.6 Calculation 3-pion ground state energy Eδ
3π based on δ(k)

In order to make predictions for the 3-pion ground state energy Eδ3π we first want to establish the needed
measurements. For each dataset we require the following quantities

• The model-independent infinite volume pion mass mπ, extracted in section H.3.

• The best model-fit for the scattering phase shift δ(x), with x = k
mπ

, which is needed to solve the
3-particle quantization conditions. These fits have been discussed in section H.5 and are given in
table H.26.

As explained in section 5.7, we use the pion mass mπ and the scattering phase shift δ(x) to solve the
quantization conditions in the center of mass frame, that is

cot
(
δ
(x

2

)
+ δ(x)

)
+ cot

(
x · (mπL)

2

)
= 0, with x =

k

mπ
. (H.43)

Note that due to the periodicity of the cotangens, there are several solutions for x, which solve the quan-
tization condition. Since we are looking for the smallest possible 3-pion ground state energy Eδ3π, we
start with the largest volume mπL

max and choose the smallest solution x of the quantization condition.
Next, we continuously decrease the volume mπL, such that also the solutions for the quantization con-
dition vary continuously. This allows us to predict the 3-pion ground state energies Eδ3π in a consistent
well-behaved way. In the end we obtain the solutions presented in figure 5.15 and 5.16.
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