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 ABSTRACT 

  i 

Abstract 

Muon tomography is an imaging technique that emerged in the last decades. The principal concept is 

similar to X-ray tomography, where one determines the spatial distribution of material densities by 

means of penetrating photons. It differs from this well-known technology only by the type of particle. 

Muons are continuously produced in the Earth’s atmosphere when primary cosmic rays (mostly protons) 

interact with the atmosphere’s molecules. Depending on their energies these muons can penetrate 

materials up to several hundreds of metres (or even kilometres). Consequently, they have been used for 

the imaging of larger objects, including large geological objects such as volcanoes, caves and fault 

systems. This research project aimed at applying this technology to an alpine glacier in Central 

Switzerland to determine its bedrock geometry, and if possible, to gain information on the bedrock 

erosion mechanism. To this end, two major experimental studies have been conducted with the aim to 

reconstruct bedrock geometries of two different glaciers. Given this framework, I present in this thesis 

my contribution to the project in which I worked for 5 years.  

Most of the technological know-how of muon tomography still lies within physics institutes who were 

the key drivers in the development of this method. As the geophysical/geological community is 

nowadays an important user of this technology, it is important that also non-physicists familiarise 

themselves with the theory and concepts behind muon tomography. This can be seen as an effective 

method to bring more geoscientists to utilize this new technology for their own research. The first part 

of this thesis is designed to tackle this problem with a review article on the principles of muon 

tomography and a guide to best practice. A second important aspect is the reconstruction of the bedrock 

topography given muon flux measurements at various locations. Many to-date reconstruction algorithms 

include supplementary geological information such as density and/or compositional measurements only 

on the side. A probabilistic framework was successfully set up that allows for such additional data to be 

included into the inversion. This may be used to better constrain the bedrock geometry. Moreover, this 

flexible framework allows also for the inclusion of modelling errors in the physical models which may 

result in a more reliable estimate of the mean and standard deviation of the bedrock position. The third 

article is concerned with the determination of the effect of rock composition on the muon flux 

measurements. Researchers in the community use a made-up rock, called “standard-rock” in their 

calculations. Hitherto, it was unclear in which geological settings this is a valid assumption and in which 

the induced error becomes too large. Simulations that use this fantasy rock are performed and compared 

to simulations that use a more realistic rock model. It was found that for felsic rocks the standard-rock 

approximation is valid over all thickness ranges, while for mafic rocks and limestones this can lead to a 

serious bias if the rock is thicker than 300m. 
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Chapter 1  

Introduction 

1.1 The project 

This dissertation is part of the SNF (Swiss National Science Foundation) project 159299 with the title: 

“Development and scientific application of nuclear emulsion particle detectors to geological problems 

in 3D”. This work also presents my contribution within this captivating interdisciplinary research field 

between earth sciences and particle physics. The main objectives of the two disciplines were twofold. 

The particle physicists on the one hand planned to test their detector technology in a new field in the 

geoscience domain. The geologists on the other hand had the rather practical question of whether it is 

feasible to measure the bedrock geometry underneath an active glacier. The problem here was the 

scarcity of knowledge on subglacial erosion processes. It is always possible to examine the glacial 

remnants within moraines or a cirque (e.g. Hooke, 1991; Sanders et al., 2010), that means circularly 

shaped valleys in the top region of mountain ridges. This however only marks the end state of glacial 

erosion, with a time integrated erosion signal. Thus, it would be highly intriguing if erosion processes 

underneath an active glacier could be examined at the very moment they act. As those processes are 

closely linked to the glacial bedrock geometry (e.g. Brocklehurst & Whipple, 2002, 2004; Herman et 

al., 2011), one may gain substantial information on these erosion mechanisms by resolving the bedrock 

shape underneath an active glacier. 

For such an undertaking, geophysical survey methods are usually the tool of choice, as they allow to 

gain insight on the bedrock geometry in all three dimensions. This contrasts to information from 

boreholes, which yield point information only. The latter does not necessarily pose a restriction as 

boreholes can yield important information if they are incorporated into a larger model (see Dürst Stucki 

& Schlunegger, 2013). At this point the question naturally emerges as to why we use a completely new 

technology to assess subglacial bedrock shapes, when the arsenal of geophysical methods offers other 

well explored and thus standard tools. This may be answered by the fact that even those well-established 

methods may pose major logistic and technical challenges upon employing in a high alpine, icy terrain. 

Gravimetry as all potential field methods suffers inherently from non-unique solutions, which makes it 

a great support, but not a standalone tool. Nevertheless, it is a frequently used method in alpine settings 

(e.g. Annecchione et al., 2001; Studinger et al., 2004). Seismological methods rely greatly on a cohesive 

material, which is required such as that the seismic signals are not lost or do not get scattered upon 

penetrating the material of interest. In particular, cracks on a glacier or generally void cavities and glacial 

meltwater may lead to a loss of signal. Lastly, the geometry of the subglacial bedrock must be 

sufficiently flat to allow for enough reflections., and thus a steep bedrock geometry may be prohibitive. 

Consequentially it is more frequently used in the context of overdeepened valleys (e.g. Barnaba et al., 

2010). The third method, Ground penetrating radar (GPR), which usually is the primary choice for 
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cryospheric applications (e.g. Grab et al., 2018), does also have some shortcomings when the material 

of interest in situated in or close to a water table. These difficulties of the aforementioned geophysical 

methods leave an interesting opening for new technologies, such as muon tomography. 

Our interdisciplinary team consisted of a group of particle physicists from the laboratory of high energy 

physics (LHEP) who contributed to the project with their know-how on the detector technology. Thus, 

the project could profit from the already present detector and analysis infrastructure at the physics 

department at the University of Bern. This infrastructure has been put in place as part of their 

contribution to the OPERA experiment (Acquafredda et al., 2009). On the other hand, the geologists 

from the University of Bern shared their knowledge on the characterisation of erosion processes in 

glacial and fluvial environments and the geological architecture of the target area. 
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1.2 The study region 

1.2.1 Geographical situation 

 

Figure 1.1: Map of the larger Jungfrau region. The city of Interlaken is located in the north, and the villages 

Lauterbrunnen and Grindelwald are visible in the West and Northeast respectively. The extent of the study region is 

shown as a green square (see Fig. 1.2 for details).  

The study region is located around three prominent summits of the Central Swiss Alps: Eiger, Mönch 

and Jungfrau. More precisely our project investigated two different glaciers, which are highlighted in 

Figure 1.1. Here, I provide a rough geographical introduction to this region.  

The study region can be reached by public transport from Interlaken, a well-known city in the Bernese 

Oberland, that is located between two lakes (Lake Thun and Lake Brienz). Farther south along the river 
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Lütschine, the valley splits at Zweilütschine. One valley leads towards Grindelwald in the east, whereas 

the other valley heads south to Lauterbrunnen. The southernmost point of the watershed between these 

two resulting valleys is called the Kleine Scheidegg, which can be reached from either Grindelwald or 

Lauterbrunnen by train. It is also the starting point of the ascent by train to the Jungfraujoch. The train 

tunnel, which enters the mountain to the west of Mt. Eiger ascends in a half-circle beneath Mt. Eiger 

and later Mt. Mönch until it leads to the Jungfraujoch, SW of Mt. Mönch. This station, although of 

primarily touristic interest, also contains a research station that is part of the trust High Alpine Research 

Station Jungfrajoch & Gornergrat (HFSJG; German: Hochalpine Forschungsstationen Jungfraujoch & 

Gornergrat), where even nowadays particle physics and meteorological experiments (HFSJG, 2021) are 

performed.  

The Jungfraujoch station is located on a steep ridge that strikes from SW to NE. Interestingly this ridge 

is the continental watershed, that splits the catchment area of the Aare river, to the north of our study 

region, from the catchment area of the Rhone river to the south of our study region. While the Aare joins 

the Rhein river and flows towards the north through Germany, France and the Netherlands before it 

discharges into the North Sea, the Rhone flows into the Lake Geneva before it continues its flows across 

southern France, where it flows into the Mediterranean Sea. The mountains Eiger and Mönch surround 

one of our target glaciers, the Eiger Glacier, which flows towards the Kleine Scheidegg in the NW. The 

second target glacier is the very margin of the Jungfraufirn towards the south of the Jungfraujoch. This 

latter glacier, which is referred to as the Aletsch Glacier, is part of one of the largest remaining alpine 

glaciers in the Swiss Alps. 

1.2.2 Geological situation 

The geological structure of this region is rather intricate and still an issue of ongoing research. A detailed 

description of the structural architecture of the region goes beyond the scope of this thesis and I therefore 

gladly refer the reader to the work of Mair et al. (2018), where the geological architecture is presented 

at a high level of detail. However, for the sake of completeness I shortly describe the important aspects, 

that may affect the muon tomographic experiment. 

The local geological architecture is dominated by the Aar-Massif, which is the part of the basement of 

the European continental plate, and which experience a phase of rapid block uplift c. 20 Ma ago 

(Herwegh et al., 2017). Due to this uplift in conjunction, which occurred in the course of the Alpine 

orogeny (i.e. the NW-SE subduction of the European plate beneath the Adriatic plate) the overlying 

sedimentary cover units were stacked upon each other and deformed during thrusting and folding. A 

geological overview is presented in Figure 2 of Mair et al. (2018). From this map I may use two crucial 

pieces of information. First, in the upper region of the Jungfrau Railway tunnel, where we installed one 

detector (see Ch. 1.3 for more detail), the rock consists mostly of gneisses from the Aar-Massif. Second, 

in the part of the tunnel directly south of Mt. Eiger as well as below the Eiger-glacier, the rock consists 
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predominantly of limestones of the Meszoic sedimentary cover. This information can be incorporated 

in the inversion algorithm, which is shown in more detail in Ch. 3. 

1.3 Measurement campaigns 

In the study region that was introduced in Fig. 1.1, we conducted two experiments. Both locations are 

indicated in Fig. 1.2 on a close-up map of the study region. The first experiment was a feasibility study 

near the top of the Jungfrau railway facing south. This project was designed to evaluate the processing 

chain from detector installation, over data acquisition to inversion into a sensible result. So, we could 

locate the nooks and crannies in the hardware, software and workflow and improve them for an 

application to the larger main experiment. This feasibility study was then also dubbed “Side Project”, 

whereas the principal experiment was named “Main Project”. 

 

Figure 1.2: Close-up map of the study region around the mountains Eiger and Mönch. The blue patch indicates the 

mapped glacier bedrock region in a small feasibility study (called “Side Project”) whereas the green patch shows the 

extent of main observational target (called “Main Project”). The red line corresponds to the railway train tunnel where 

the detectors for both projects were installed.  

The goal of both experimental campaigns was nevertheless the same: We were interested in 

reconstructing the ice-bedrock interface geometry in order to gain insight into the mechanisms of 

subglacial erosion. In addition to that, the results of the Side Project were also interesting for the 

Jungfraubahnen railway company as the study region is a touristic hotspot, where tourists have access 

to the glacier. In light of global warming and the subsequent shrinking of the glaciers, the railway 

company was interested in knowing the geometry of the bedrock-ice contact for long-term safety reasons. 

The results of the main project on the other hand were primarily of academic interest. 
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More details on these two measurement campaigns, their situation and data analysis can be found in Ch. 

6 & 7, where I have included the respective scientific articles. 

1.4 Project goals 

In order to carry this project into execution several smaller “building blocks” had to be addressed. In the 

following paragraphs I summarise the various goals and the consequential tasks that were defined for 

the subdisciplines of geology, physics, and geophysics, respectively. 

From the geological side, one of the major tasks was to provide an updated 3D geological model of the 

study region to ensure that the experimental measurements can be constrained with independent data. 

Due to the scarce nature of up-to-date data in this region Mair et al. (2018) have compiled a new 

geological map including recent field data and condensed it into an updated and tectonically as well as 

stratigraphically coherent 3D model of the geological architecture. The laboratory measurements of the 

physical properties of the lithological units were not essential to that paper. They are presented in 

Chapter 3 where it is shown how these measurements may constrain the results of the muon tomography 

experiment. Mair et al. (2019, 2020) further investigated the erosion processes in the Eiger region by 

means of concentrations of cosmogenic radionuclides and frost cracking modelling. These latter two 

studies are mostly independent from the (geo)physical problems of the muon tomography experiment 

but serve to offer the geological frame of this project.  

From the physics point of view several goals had to be achieved in addition to the data acquisition. The 

first being the construction of a facility that allows to produce our own emulsion films. This was required 

because our project needed a steady supply of emulsion films, which were the main component of our 

detectors (please refer to Ch. 2 and Ariga et al. (2018) for a justification and a description of how these 

detectors work). Second, the existing analysis infrastructure had to be extended by a facility that allowed 

to photographically develop the emulsion films. Third, as muon tomography necessitates the analysis of 

a big emulsion film area for the purpose of collecting statistically sufficient data, the microscope 

laboratory had to be upgraded for faster scanning speeds and higher data throughput. These hardware 

upgrades also include the development and/or upgrade of the related software. 

Physicists conduct the raw measurement, whereas geologists deliver frame conditions and the 

embedment of the final result into a specific picture. The space in-between these two disciplines is then 

taken by geophysicists and this was my personal operating range within this project. Several objectives 

were initially defined for this project role, the main part being the development of a suitable inversion 

algorithm. Inversion in the geophysical sense connotes the retrieval of physical parameters and their 

respective uncertainties from measurements. Likewise, a major goal was to establish a common 

vocabulary between both disciplines. Interestingly, despite both being natural sciences, physicists and 

geologists have two quite different mind-sets embedded in their communities. As an illustrative example 

I name the handling of measurement “errors”. While in particle physics uncertainties are mostly given 

in 5𝜎 (i.e. 5 times the standard deviation), in geology 1𝜎 is often good enough. On top of this, there is 



CHAPTER 1 1.5 OUTLINE 

  7 

an enormous difference in scale involved in research. Particle physicists work with objects that 

encompass several nanometres and even down to femtometres in size, whereas geologists handle length 

scales of metres up to kilometres. The discrepancy in timescales is even more astounding, as particle 

interactions occur in nanoseconds, while geological processes may take hundreds to thousands of years 

(in the case of glacial processes) or even millions of years (for tectonic processes). 

1.5 Outline 

The main findings of this doctoral thesis are condensed in 3 scientific articles that either have already 

been published or are currently in the publication pipeline. These papers are reformatted here into three 

self-contained chapters (2, 3 and 4). For the sake of offering a common thread throughout this thesis, 

the articles (and thus chapters) are not ordered by publication date. Instead I compiled the chapters 

according to their accessibility for a reader who is not familiar with muon tomography.  

Chapter 2 is conceptualized as a review article on muon tomographic experiments in geoscientific 

research. This paper is addressed to a broader geoscientific community and thus describes the origins 

and the physical principles behind muon tomography. This article is designed to be a practical 

“handbook” for earth scientists and does not focus too much on the details of physical formulae. It covers 

the most basic physical models (i.e. cosmic ray muon flux, energy loss of muons in matter) as well as 

important concepts (like multiple scattering, or the influence of rock composition) and explains the 

related roles in the entire processing chain but refers the readers to other literature when necessary. 

Subsequently, the readers are introduced in the same manner to the various detector types and exemplary 

geoscientific experiments as inspiration. The study concludes with a guide to best practice, raising 

important points that a prospective user should consider, if he/she decides to use muon tomography in 

their own research. 

After having established the broad topic of muon tomography and its most important building blocks in 

Ch. 2, Ch. 3 focuses on the development of an inversion algorithm, as a natural continuation of the 

equations presented in Ch. 2. Therefore, this particular study is written as a theory paper alongside a 

python toolbox that allows researchers to apply the methodology designed in this paper. The main idea 

behind this work is to introduce the broader muon tomography community to the tools that are available 

if a Bayesian framework is established. We show how additional, geological (field-/lab-) information 

can be integrated into a muon tomographic experiment and how the resulting equations can be 

approached. For this study we explicitly use a Monte Carlo method to solve the inverse problem. 

Chapters 2 and 3 already give the reader information on the internal workings of muon tomography that 

we consider sufficient to devise an own experiment. Chapter 4 on the other hand covers a much more 

specific problem, which is centred on exploring the influence of rock composition on muon tomography 

measurements. This is an effect that mainly appears when one attempts to measure through a rock pile 

that is thicker than 300m, such that only a part of the muon tomography studies will have to consider 

such a correction. This effect can be traced back to the use of a “standard rock” in the community. The 
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correction is then necessary if the target rock deviates compositionally from that “standard rock”. 

Although the sensitivity of a muon tomographic experiment to rock composition is small for thin rock, 

the consideration of a rock-dependency muon attenuation opens up an avenue to draw further inferences 

on it. This study explores the magnitude of the rock composition effect for various rock types and various 

thicknesses. 

The summary and a retrospect over the project including possible avenues for future developments of 

muon tomography are presented in the conclusive, fifth chapter. 

For completeness, the main (muon tomographic) results of this project (Nishiyama et al., 2017, 2019) 

are presented as separate chapters in the appendix of this thesis. 
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2.1 Abstract 

The use of muon tomography in geoscience projects has been increasing constantly over the past few 

years. This led to a variety of applications that often use custom tailored solutions for data acquisition 

and processing. The respective know-how is splintered and mainly available in semi-published state in 

various physics departments that developed these methods. This complicates the design of new studies 

and the decision whether muon tomography is a suitable tool and feasible for a specific geoscientific 

issue. In this study we review the current state of muon tomography in geosciences with the goal of 

equipping interested geoscientists with the basic knowledge on the physical basics that constitute muon 

tomography. After an explanation into the topics of how muons are produced, how they traverse matter 

and how they are recorded, a showcase is made of recent applications. These studies show the variety 

of applicability of muon tomography experiments, such that interested readers may implement this 

technology for their own research. Finally, we provide a guide to best practice to help interested 

geoscientists decide if and how muon tomography could be implemented in their own research. We 

believe that through better mutual understanding, new interdisciplinary collaborations are initiated that 

advance the whole field of muon tomography. 

2.2 Introduction 

2.2.1 General introduction 

Many industrial and scientific problems dealing with geological matters require some form of 

geophysical exploration, or remote sensing in the broader sense. Often detailed knowledge of the local 

geology, i.e. lithological structures in the surroundings, is needed as an integral part of most surveys. 

The field of geophysics offers a rather large variety of well-established methods to meet this need. 

Depending on the exact nature of information that has to be gathered and the deployment constraints in 

the field, one is usually free to choose between seismological (sensitive to density), gravimetric (also 
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sensitive to density), and electromagnetic (like ground penetrating radar or electrical resistivity 

tomography; both sensitive to electrical resistivity) methods (e.g. Kearey et al., 2002). 

A large amount of scientific work in geophysics is dedicated to the refinement of existing techniques, 

e.g. by deploying advanced mathematical and computational models supported by powerful computers 

(e.g. Reichstein et al., 2019) improving workflows for data analysis, optimising the experimental setups 

(e.g. Maurer et al., 2010), etc., such that these methods may be applied to new fields or even to extensive 

data sets that could not be handled before. It is thus rare to see a new technology emerge next to the 

continuously improving, established geophysical methods. Nevertheless, since the start of the 

millennium naturally occurring cosmic rays – they are already exploited in the geochronology 

community for dating purposes – have increasingly been utilised to gain insights on geological matters 

(see Ch. 2.4 for an overview). As only the muonic part of the cosmic ray spectrum is used, this novel 

research field has been given the name of “muon tomography” (see Ch. 2.3.1 for nomenclature, as also 

other notions are commonly used). Tanaka and Oláh (2019) show how the number of studies employing 

this new technology has been continuously growing.  

Nowadays the technology has advanced beyond a pure proof-of-concept state, such that it may be 

applied as a central part of geological/geophysical research. Even though a few companies have begun 

to develop muon detectors at an industrial level (e.g. Harel and Yaish, 2019), the vast majority of 

detector design and construction is still very much concentrated at the universities. This entails that the 

detector know-how is splintered across the physics departments where particle detectors have been 

developed over the past years (e.g. Ariga et al. 2019). 

This is the starting point of the present work as we see much potential for the further development of 

muon tomography with a large field of applications in geoscience research. We consider that a broader 

understanding of this technique would enable earth scientists, to shape the direction of future muon 

tomography research. Once geoscientists are able to clearly state their needs, while knowing the 

capabilities and limitations of this technique, particle physicists may be encouraged to develop their 

detectors accordingly. This paper addresses primarily geoscientists who have few to none experience 

with muon tomography. The scope of this review article is to equip them with the necessary information 

to approach a physics group for potential collaborations. We aim at providing a broad overview of how 

this technology works and setting the important geophysical equations in context, thereby considering 

different settings and questions, and we develop a guide that serves to facilitate decisions along with 

guidelines of how to proceed.  

Accordingly, we first introduce in Ch. 2.2.2 the particle physical context from which this technology 

historically emerged. Chapter 2.3 explains central technical elements of muon tomography. This starts 

with a thorough description of the various muon flux models that can be utilised. The chapter continues 

with an explanation of the energy loss equation and possible ways to solve it. It is followed by an 

overview on the various detector types, their advantages, and drawbacks. The chapter then concludes 
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with a brief description of various methods to tackle the whole data analysis aspect, to provide the user 

with a few starting points for their own research. Chapter 2.4 provides the reader with a showcase of 

muon tomographic studies that were employed in a geoscientific setting. This is supposed to give the 

prospective users an overview of the range of possible applications of this technology. Chapter 2.5 

outlines the most important steps that a geoscientist interested in using muon tomography for their 

project needs to consider.  

2.2.2 A short history of muon tomography 

The story of how muon tomography has evolved has to be taken as far back as to the first measurements 

of cosmic rays on the Eiffel tower (Wulf, 1910), underwater (Pacini, 1912) and during balloon flights 

(Hess, 1912) at the onset of the 20th century. These important experiments marked the beginning of 

numerous discoveries that were to come and eventually established the field of particle physics, which 

has turned out as a new branch of physics. Aided by the parallel advances in quantum mechanics, many 

new subatomic particles were found, most notably the proton (Bohr, 1913; Rutherford, 1919), the 

neutron (Chadwick, 1932), the positron (Anderson, 1932) and the muon (Neddermeyer and Anderson, 

1937). Naturally occurring particles from the aforementioned cosmic ray flux were the most important 

sources to experimentally study particles, their interactions and decays. This has been the state of 

research even long before the gargantuan particles accelerators have been built. 

The circumstance that electrically charged particles lose energy and/or change momentum when they 

penetrate any kind of material was already known at this time, as the experiments by Rutherford (1911) 

show. This model of energy loss is still used today as backbone for particle tomographic applications 

and has been refined since the early 20th century through meticulous experiments. The reader is referred 

to Tanabashi et al. (2018) for an overview of all the intricacies that are involved in the energy loss 

calculations as well as to Groom et al. (2001) for the case of muons. 

These early discoveries have sparked the interest of numerous researchers to utilise cosmic rays to gain 

insight into a body placed between the source of cosmic rays and a particle detector. This was first done 

by George (1955) for the calculation of the overburden of a tunnel, which can be viewed as the first 

application of a tomographic setup where cosmic rays were used as the primary signal source. 15 years 

later Alvarez et al. (1970) set another milestone for this technology as they examined the famous 

pyramids at Giza, Egypt for presumed hidden chambers. However, as the detector technology as well as 

the physical theories of energy loss were not that advanced at this stage, and thus the quality of the 

results was not good enough for any further examination, following-up studies have not been undertaken 

for about 20 years. 

The next steps of developments of the detector technology took a significant step forward with the 

establishment of numerous underground laboratories and the subsequent onset of large-scale 

experiments in particle physics. Bettini (2014b) presents an overview of different underground 

laboratories around the world. Among these are the Gran Sasso National Laboratory in Abruzzo in 



2.2 INTRODUCTION CHAPTER 2 

14 

Central Italy and the Kamioka Underground Observatory in Gifu prefecture in Central Japan that hosted 

the milestone neutrino oscillation experiment OPERA (Acquafredda et al., 2009) and the nucleon decay 

experiment KamiokaNDE (e.g. Kajita et al., 2012), respectively. The progress in detector technology 

was possible because physicists had to filter out noise induced by the naturally occurring cosmic rays 

that were interfering with their measurements. Underground laboratories provide a natural “shielding” 

against a large part of the cosmic ray particles that perpetually hit the Earth from above. The soil/rock 

overburden thus functions like a lead coat during an X-ray examination at the medical doctor, as this 

shield hinders particles to penetrate regions where they are undesired either for medical or technical 

reasons. Even though a significant part of the cosmic ray spectrum can be filtered out by performing an 

experiment in an underground laboratory, there exists still a component that may penetrate matter up to 

several kilometres and thus can be identified, measured, and analysed. These are the so-called muons. 

Without relying on too much particle physics theory (see reference below), these muons may be 

considered a “heavy version” of the electron, featuring a roughly 207-times higher mass. For more 

information on the physics of muons and how they were discovered, the reader is referred to the textbook 

by Bettini (2014a, p. 64-66). The mass difference between muons and electrons is the main reason why 

a muon of equal velocity penetrates more matter than its electron counterpart, which incidentally also 

occurs in the cosmic ray particle flux. This is one of the peculiar cases, where geoscientists (especially 

those working in cosmogenic nuclide dating, e.g. Gosse and Phillips, 2001) and particle physicists are 

confronted with the very same problem, when they are trying to quantify the muonic component in their 

measurements.  

Particle detectors have continuously improved due to the ever-growing precision requirements of new 

experiments. In parallel, the theory of how charged particles lose energy while travelling through matter 

has been largely improved by dedicated absorption experiments (see Groom et al. 2001, and references 

therein). The advances in these two areas were the prerequisites for the resurgence of tomographic 

applications of cosmic rays (or more precisely cosmogenic muons). First attempts were made during the 

90ies to characterise the internal structure of volcanoes in Japan (Nagamine, 1995; Nagamine et al., 

1995). But only after the turn of the millennium the number of performed muon tomographic 

experiments started to increase. It was again the same Japanese research group from the Earthquake 

Research Institute in Tokyo (e.g. Tanaka et al., 2001, 2003, 2005) that pushed this new technology to a 

point where it can be considered as another valid method in the geophysical arsenal.  

Several studies reviewed some technical aspects or the applications to specific sub-fields in recent years. 

Lesparre et al. (2010) provides a succinct overview of the technical basis of muon flux measurements, 

including a thorough review of time-dependent effects that might have a significant effect on result 

quality. They also discuss extensively different existing muon flux models. Although the subject is rather 

technical, the reader is referred to Groom et al. (2001) for a showcase of the central equations that govern 

the energy loss of muons traversing matter. Please note that the latter article does not focus on muon 

tomography in particular but presents the physical equations which are valid for all muons. We would 
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also like to point out a study by Kaiser (2019) that takes a rather unconventional standpoint. He explores 

the technology from an economic point of view and shows different evolving directions in the future. 

Marteau et al. (2012) is an earlier review that focuses mainly on volcanological applications and 

Procureur (2018) strongly focuses on scattering tomographic applications. Athanassas (2020) focuses in 

his on the muon tomography applications in the context of hazard assessment (mostly in volcanic 

environments). 

A very detailed review on muon tomography as a whole is given by Bonechi et al. (2020). Readers will 

find this review to be quite complementary to this work. While we focus on compiling the most 

important equations, they provide a resourceful overview on detectors, applications, and common 

problems. 

2.3 Principles of muon tomography 

This section aims at introducing the corner posts of this technology. After a start where we explain of 

how this technology is called, we progress to an explanation of the basic equations, namely the energy 

loss equation and the mathematical description of the cosmic ray flux. We complement this section with 

an overview of the main inversion techniques. In a subsequent section, the reader is introduced to the 

most important types of detectors.  

In this chapter, we proceed by following the path of a muon from its origin high in the stratosphere, to 

the matter it traverses and finally to the detector where it will be recorded. We find this the simplest way 

to describe the cascade of processes that are involved in the passage of muons from their origins to the 

site where they are registered. 

2.3.1 Terminology 

As already mentioned in the introduction, there exist different terms that describe this technology, that 

vary from one research group to another. Here, we summarise the most common notions. We begin with 

a rather rare term, “muon radiography”. Radiography is usually an imaging technology where absorbing 

qualities of an object are rendered visible by exposing them to a form of radiation. A typical example of 

this method is the X-ray image at a medical doctor’s or dentist’s office, where photons in the wavelength 

band of ca. 10 nm to 10 pm are used. This procedure is, however, not limited to only photons, as the 

detectors are usually sensitive to electrons which are produced by interactions of incident photons with 

the detector’s material and not the photons directly. Consequently, any charged particle could be utilised 

to produce such a radiography.  

A second, widely used term is “muon tomography”. Incidentally, this is also the notion that we use 

throughout this work. This selection bases on our own background in geophysics, where the term 

“tomography” is more widely spread (i.e. seismic tomography, electric resistivity tomography) than 

“radiography”. 
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A third notion, which recently has gained some interest in the community, is “muography”. This 

circumvents any historically grown connotations as this fictional word composition just means 

“draw/write with muons”. 

Until the community agrees to use a “standard” description, one may take a pragmatic approach to this 

issue and use the 3 terms above interchangeably. However, as the practitioner in muon tomography 

inevitably has to research literature at some point, it is useful to be aware of all different notions that 

describe this technology. 

2.3.2 The cosmic ray flux 

This chapter aims at providing the reader with an overview on the different available muon flux models. 

This is done by introducing first the mechanisms that produce the muons in the first place. Afterwards, 

we present the reader with four selected muon flux models and show how they are parametrised. This 

includes a specification of how these models account for various parameters, such as height, incidence 

direction, etc. We close this section with a crude analysis of the uncertainty that are attached to these 

muon flux models and recommendations for novice users. 

2.3.2.1 Muon generation from primary cosmic rays 

The starting point in our description of muon tomography is the site where the muons originate, i.e. the 

upper part of the atmosphere. In fact, muons are considered to be only “secondary” cosmic rays, as they 

are only produced by interactions of so called “primary” cosmic rays with the atoms in our atmosphere. 

These primary cosmic rays have different origins. Whereas the largest part of the particles originates 

within our own galaxy and the sun, there is also a small fraction (although consisting of much higher 

velocity particles) that are of an intergalactic nature. A thorough description of the incident primary 

particle spectra can be found in the chapter “Cosmic Rays” in Tanabashi et al. (2018, p. 424ff.).  

Figure 2.1 (Fig 29.1 from Tanabashi et al., 2010, p. 424) shows the incident fluxes of different types of 

primary cosmic ray particles. Strikingly, the most abundant particles to hit the atmosphere are hydrogen 

nuclei, i.e. protons. However, towards higher energies this difference seems to shrink, as can be verified 

by the ratio of hydrogen to helium nuclei in the inset of Fig. 2.1. Other heavier nuclei do also hit the 

upper atmosphere; however, their contributions are negligible compared to hydrogen (and helium). 
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Figure 2.1: Differential energy spectrum of primary cosmic ray particles, from Tanabashi et al. (2018, p. 424). Coloured 

markers denote different experiments. Please refer to Tanabashi et al. (2018, p. 424ff.) and references therein for further 

information.  

When these primary particles hit an atom in the upper atmosphere, new particles may be created (similar 

to collision experiments in particle accelerators). There are a large number of different interactions that 

might occur during these collisions. For a comprehensive overview, the reader is referred to Gosse and 

Phillips (2001, p. 1485ff.). Although this is a standard paper in the cosmogenic nuclide geochemistry 

community, we can make use of the same physical principles when we describe the cosmic ray flux 

(primary and secondary). As only a small portion of the overall interactions generate muons, we 

recreated a simplified version of Fig. 1 of Gosse and Phillips (2001, p. 1486) below (see Fig. 2.2). 
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Figure 2.2: Interactions of primary cosmic ray particles (pr) with the atoms in the upper atmosphere (•). Simplified 

version of Fig. 1 of Gosse and Phillips (2001, p. 1486).  

The incident primary cosmic ray particle (denoted with “pr” in Fig. 2.2) interacts with atoms and 

molecules in the upper atmosphere (the black circles, •, in Fig. 2.2) and produces so-called “mesons” 

(e.g. Gaisser et al., 2016). These are elementary particles that consist of only two quarks compared to 

the three quarks in protons and neutrons (which are part of another group, the “baryons”). The important 

mesons for muon tomography are the pions (𝜋−, 𝜋+) and the kaons (𝐾−, 𝐾+). Readers interested in 

additional information on these particles are referred to a standard particle physics textbook (e.g. Bettini, 

2014a). Pions as shown in Fig. 2.2 decay in 99.99 % of the cases (Tanabashi et al., 2018, p. 1069f.) in 

the following form: 

𝜋+ → 𝜇+ + 𝜈𝜇  (2.1a) 

𝜋− → 𝜇− + �̅�𝜇  (2.1b) 

The products of such decays are a muon (𝜇−, 𝜇+) and a neutrino, 𝜈𝜇 (or antineutrino,  �̅�𝜇). Neutrinos are 

weakly interacting particles, which are often formed during decays of particles and as a by-product of 

various radioactive decays. Neutrinos are currently a very intensively studied branch of particle physics 

where considerable progress is being made. The award of the Nobel Prize in Physics to Takaaki Kajita 

and Arthur B. McDonald for their contributions to research in neutrino oscillations illustrates the 

importance to this development. Incidentally, this part of physics is another example of a fruitful 

collaboration between physicists and geoscientists, as in recent years they began to examine Earth’s heat 

generation by radioactive elements (potassium, uranium and thorium). The emitted neutrinos during the 
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radioactive decay of the aforementioned elements allow inferences on their abundances (see for example 

Šrámek et al., 2013 or McDonough et al., 2020). 

The second kind of mesons, the kaons, have experienced a more complicated cascade of decays. In 

general, we are safe to consider that about two thirds, i.e. ~67 % of the kaons directly decay to muons, 

𝐾+ → (𝜋0 +) 𝜇+ + 𝜈𝜇  (2.22a) 

𝐾− → (𝜋0 +) 𝜇− + �̅�𝜇  (2.2b) 

where one of the two channels produces also a neutral pion (i.e. without electric charge; this is however 

only a by-product and has no influence on any subsequent muons). Another ~28 % decay first into pions, 

which in turn decay according to the channels described above. As there are too many channels for 

presenting them in a simple list, we resort to a schematic notation: 

𝐾± → 𝜋± → 𝜇±  (2.3) 

The rest of the kaons decay into particles that are of no particular interest to muon tomographers (but 

mostly electrons). For a detailed list of the kaon decay channels please refer to Tanabashi et al. (2018, 

p. 1188f.). 

Once we know how the incoming muons are created, it is possible to construct cosmic ray flux models 

that describe the muon particle flux at a given location, which is defined by height above sea level, 

latitude and longitude, and a given incidence angle, i.e. any oblique angle with respect to the zenith 

(straight above). 

Different researchers came up with various ways of how to describe this cosmic ray muon flux 

mathematically. In this work we present four commonly encountered muon flux models. We 

additionally show, how a reasonable model error for the muon flux, which in turn may be used in any 

further computation. 

Generally, the best way to model the incident muon flux on an experimental site is to perform a Monte 

Carlo simulation with a dedicated framework, for example CORSIKA (Heck et al., 1998). Unfortunately, 

this is a rather tedious work, as the trajectory of every single particle has to be simulated. For the Monte 

Carlo simulation to be statistically meaningful many particles have to be calculated, which takes a 

significant amount of time. This circumstance becomes worse if the Monte Carlo flux simulation has to 

be included in a Monte Carlo inversion (as will be explained in Ch. 2.3.5.3). This might even be 

prohibitive as the computational power is not good enough to produce results in a useful amount of time. 

We therefore prefer an analytical form of the muon flux model to boost the calculation performance, 

while still conserving the correctness of the model. 
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2.3.2.2 Tang model (modified Gaisser model) 

The basic analytical muon flux model that one learns when working with muons originating from cosmic 

rays can be found in Eq. 29.4 of Tanabashi et al., (2018, p. 426), which reads 

𝑑ΦG

𝑑𝐸
(𝐸, 𝜃) = 0.14𝐸−2.7 {

1

1+
1.1𝐸 cos(𝜃)

115 𝐺𝑒𝑉

+
0.054

1+
1.1𝐸 cos(𝜃)

850 𝐺𝑒𝑉

} ,  (2.4) 

This may be interpreted as a term that describes the production of muons from decaying pions and kaons, 

where both values are multiplied by an overall scaling factor. Here 𝐸 denotes the muon’s energy and 𝜃 

is the incidence angle relative to the zenith. The exact derivation of Eq. (2.4) can be found in Gaisser et 

al. (2016), which is acknowledged by the subscript 𝐺 in Φ𝐺. This simplified model already reproduces 

the muon flux quite well (see Fig. 29.5 in Tanabashi et al., 2018). However, because the agreement 

between model and measurements worsens especially in the low energy region, several modifications 

as well as other model parametrisations have been proposed. In this context, Tang et al. (2006) 

introduced a slight modification of the “Gaisser equation”, Eq. (2.5), to account for this issue: 

𝑑ΦT

𝑑𝐸
(𝐸, 𝜃) = A ∗ 0.14𝐸−2.7 {

1

1+
1.1�̃� cos(𝜃∗)

115 𝐺𝑒𝑉

+
0.054

1+
1.1�̃� cos(𝜃∗)

850 𝐺𝑒𝑉

+ 𝑟𝑐} .  (2.5) 

Here the necessary additional parameters are given by 

𝑟𝑐 = 10
−4 ,  (2.6) 

Δ = 2.06 ∗ 10−3 ∗ (
950

cos(θ∗)
− 90) ,  (2.7) 

�̃� = 𝐸 + Δ ,  (2.8) 

𝐴 = 1.1 ∗ (
90√cos(θ)+0.001

1030
)

4.5

𝐸cos(𝜃∗)

 ,  (2.9) 

where 

cos(𝜃∗) =  √
𝑥2+𝑝1

2+𝑝2𝑥
𝑝3+𝑝4𝑥

𝑝5

1+𝑝1
2+𝑝2+𝑝4

  (2.10) 

and the muon energy 𝐸 is substituted by 

𝐸 →
3𝐸+

7

cos(𝜃∗)

10
 ,  (2.11) 

if it fulfils the inequality 𝐸 ≤  1 cos(𝜃∗) 𝐺𝑒𝑉⁄ . The parameters in Eq. (2.10) are𝑥 = cos(𝜃), 𝑝1 =

0.102573, 𝑝2 = −0.068287, 𝑝3 = 0.958633, 𝑝4 = 0.0407253 and 𝑝5 = 0.817285. 
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2.3.2.3 Reyna-Bugaev model 

A second muon flux model is given by Bugaev et al. (1998) who proposed an empirical fitting formula 

to the muon flux measurements at sea level for vertical (i.e. zenith angle 𝜃 = 0∘) incident muons. The 

related equation is given by 

𝑑Φ𝐵

𝑑𝐸
(𝐸) = 𝐶 ∗ 𝑝−(𝛾0+𝛾1 log10(𝑝)+𝛾2 log10

2 (𝑝)+𝛾3 log10
3 (𝑝)) ,  (2.12) 

where 𝑝 ≡ 𝑝(𝐸) is the momentum of the muon in 𝐺𝑒𝑉 𝑐−1. This is related to the muon energy by the 

relativistic energy-momentum relation 

𝑝2𝑐2 = 𝐸2 −𝑚𝜇
2𝑐4 .  (2.13) 

In Eq. (2.13), 𝑚𝜇  denotes the rest mass of the muon, which equals 0.10566  𝐺𝑒𝑉 𝑐−2. The gamma 

parameters in Eq. (2.12) include different values for different ranges of momentum and can be looked 

up in Table II of Bugaev et al. (1998). Attentive readers have realised that Eq. (2.12) does not have any 

zenith angle dependence. This shortcoming of the model has been accounted for by Reyna (2006) by 

modifying Eq. (2.12) by 

𝑑Φ𝑅𝐵

𝑑𝐸
(𝐸, 𝜃) = �̃� ∗ �̃�−(�̃�0+�̃�1log(�̃�)+�̃�2 log

2(�̃�)+�̃�3 log
3(�̃�)) ∗ cos3(𝜃) ,  (2.14) 

where  

�̃� = 𝑝 ∗ cos(𝜃) ,  (2.15) 

with 𝑝 taken from Eq. (2.13). The tilde parameters in Eq. (2.14) have been re-evaluated by Reyna (2006) 

to �̃� = 0.00253 , �̃�0 = 0.2455 , �̃�1 = 1.288 , �̃�2 = −0.2555  and �̃�3 = 0.0209  respectively. The 

subscript 𝑅𝐵 stands for Reyna-Bugaev. 

2.3.2.4 Reyna-Hebbeker model 

A third model was presented by Hebbeker & Timmermans (2002). It is empirical in nature, very similar 

to the Bugaev model described above, and it follows a power law relationship as well, 

𝑑Φ𝐻

𝑑𝐸
(𝐸) = C ∗ 10H(y) .  (2.16) 

Here, 𝑦 = log10(𝑝), with again 𝑝 from Eq. (2.13) and  

𝐻(𝑦) = 𝐻1 (
𝑦3

2
−
5𝑦2

2
+ 3𝑦) + 𝐻2 (−

2𝑦3

3
+ 3𝑦2 −

10𝑦

3
+ 1)  

          +𝐻3 (
𝑦3

6
−
𝑦2

2
+
𝑦

3
) + 𝑆2 (

𝑦3

3
− 2𝑦2 +

11𝑦

3
− 2) . (2.17) 

The parameters in Eq. (2.17) have been fitted to 𝐶 = 0.86, 𝐻1 = 0.133, 𝐻2 = −2.521, 𝐻3 = −5.78 

and 𝑆2 = −2.11. Following Lesparre et al. (2010), we may again equip this pure zenith muon flux with 

an angle dependency as this has been done with Eq. (2.14). The resulting 𝑅𝐻, i.e. Reyna-Hebbeker, flux 

is written as 
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𝑑Φ𝑅𝐻

𝑑𝐸
(𝐸, 𝜃) = 𝐶 ∗ 10𝐻(�̃�) ∗ cos3(𝜃),  (2.18) 

with 

�̃� = log10(𝑝 ∗ cos(𝜃)) .  (2.19) 

2.3.2.5 Sato model 

The last model that we present here is the one described by Sato (2016), which we address from here 

onwards as 𝑑Φ𝑆 𝑑𝐸⁄ . This model is based on a Monte Carlo Simulation in the particle transport 

framework PHITS (Sato et al., 2013). Two variants are available for users who are interested in adapting 

this model into their calculations. These variants are either what is referred to as EXPACS, which lets 

the user calculate the (among other particles) muon flux by an Excel spreadsheet, or a more involved 

one, referred to as PARMA, where the user alters the input files of the model itself. In both cases the 

user is returned a list of energy vs. muon flux. Table 2.A1 in Appendix A (Ch. 2.7) shows our calculated 

muon flux at Bern, Switzerland (Lat: 46.94 °N, Lon: 7.44 °E) at sea level (see Ch. 2.3.2.7 on information 

on how to incorporate height information) for the three different zenith angles 𝜃 = 0∘, 45∘, 60∘. This is 

theoretically not possible, as the city of Bern is situated around 550 m above sea level. However, for the 

sake of comparability to the other fluxes, we calculated the flux for sea level. 

2.3.2.6 Application to muon tomography 

Usually in muon tomography one does not use the differential muon fluxes directly, because this would 

require a measurement device that is capable of resolving the energy of the incident particle precisely. 

As a consequence, most present-day muon tomography experiments rely on the measurement of the 

integrated muon flux (e.g. Lesparre et al., 2010). Therefore, one only measures the presence of a muon 

and does not consider its energy. This becomes clear if one envisions the working principles of the 

various detectors in the corresponding Ch. 2.3.4. This limitation to an integrated flux may be expressed 

by an integral formulation for the differential fluxes presented above. Because one generally measures 

only muons above a certain energy threshold, the integrated flux can be written as 

Φ(𝐸𝑐𝑢𝑡) = ∫
𝑑Φ

𝑑𝐸
𝑑𝐸

∞

𝐸𝑐𝑢𝑡
 , (2.20) 

where the integrand is any flux model one considers using. In order to assess the uncertainty on the flux 

model, we employed a straightforward scheme. For the same location (i.e. Bern, Switzerland) we 

calculated the differential and integrated variants of the four muon fluxes introduced above. To portray 

their differences in a clearer way we also calculated their ratio to the mean flux, which is given by a 

simple arithmetic mean, 

〈
𝑑Φ

𝑑𝐸
〉 =

1

4
∗ (

𝑑ΦT
𝑑𝐸
+
𝑑ΦRB
𝑑𝐸
+
𝑑ΦRH
𝑑𝐸

+
𝑑ΦS
𝑑𝐸
)  (2.21) 

as well as the respective standard deviation,  
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σ𝑑Φ
𝑑𝐸⁄
=
1

3
∗ √∑ (

𝑑Φ𝑖

𝑑𝐸
− 〈

𝑑Φ

𝑑𝐸
〉)i

2
 , (2.22) 

where 𝑖 ∈ {𝑇, 𝑅𝐵, 𝑅𝐻, 𝑆} denotes the four muon flux models. Analogously, we computed the mean and 

the standard deviation of the integrated flux models 〈Φ〉, 𝜎Φ. The resulting plot for vertical muons (i.e. 

𝜃 = 0∘) are shown in Fig. 2.3. Please refer to Appendix B (Ch. 2.8) for the respective plots of higher 

zenith angles (𝜃 = 45∘, 60∘). The 1𝜎-uncertainty on this mean flux has been calculated by 

휀𝑑𝑖𝑓𝑓,±1𝜎 =
〈
𝑑Φ

𝑑𝐸
〉 ± σ𝑑Φ

𝑑𝐸⁄

〈
𝑑Φ

𝑑𝐸
〉

  (2.23) 

and 

휀𝑖𝑛𝑡,±1𝜎 = 
〈Φ〉 ±𝜎Φ

〈Φ〉
 , (2.24) 

where the indices 𝑑𝑖𝑓𝑓 and 𝑖𝑛𝑡 refer to the differential and integrated flux, respectively.  

If the scope is to attach an uncertainty to a flux model, the purple line in Figs. 2.3, 2.B1 and 2.B2 may 

be used. Muon tomography experiments for geological purposes usually operate in environments with 

material thicknesses of few 10 𝑚 to 1 𝑘𝑚 of rock, although 1 𝑘𝑚 is already considered as a thick mass 

of rock. This corresponds to an energy range of about 10 𝐺𝑒𝑉 to 1 𝑇𝑒𝑉 (The origin of these numbers is 

explained separately in Ch. 2.3.3). Instead of using the precise value of the error envelope, we may also 

attribute a conservative error estimate to the flux of around 15 % (Hebbeker and Timmermans, 2002), 

which is a commonly used value in the community. This constant error simplifies the description of the 

uncertainties because it is now independent of the energy. There is also a specific reason for the 

conservative error estimate. We have computed the error based on four selected muon flux models only 

to get a rough overview. Accordingly, a conservative approach is reasonable in order not to exclude a 

higher variation due to other models. 
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Figure 2.3: Comparison of the four muon flux models (Ch. 2.3.2.2 – 2.3.2.5) including an uncertainty estimate for a 

zenith angle of 𝜽 = 𝟎∘. Top left: Differential muon flux as a function of energy. Top right: Differential muon flux ratio 

to the mean differential flux 〈𝒅𝚽 𝒅𝑬⁄ 〉 (see Eq. 2.21). Bottom left: Integrated muon flux as a function of the lower 

integration boundary (i.e. 𝑬𝒄𝒖𝒕 in Eq. 2.20). Bottom right: Integrated muon flux ration to the mean integrated flux 〈𝚽〉. 
The 𝟏𝝈-uncertainty in the right-hand side plots has been calculated according to Eq. (2.23).  

The above presented muon flux models are equally suitable for the use in experiments. They can also 

be easily exchanged as the different models lie within the 15 %-uncertainty boundary in the typical 

working energy range. We, however, found that the simple parametrisation by Reyna/Bugaev is a good 

starting point for the application in an experimental campaign. Of course different muon flux models 

should be tested during the experiment and the most suitable one should be chosen and employed. 

2.3.2.7 Factors affecting the muon flux model 

Apart from the different muon flux models, there are additional geophysical factors, such as the Earth’s 

magnetic field or the weather conditions, that may affect the muon flux. This topic is discussed in Ch. 

2.2 of Lesparre et al. (2010) in detail and we therefore limit ourselves to a short summary of that chapter. 

The most important factor is the height of the measurement point. Any of the above-mentioned flux 

models may be scaled to another altitude by the relation (see for example Hebbeker & Timmermans, 

2002) 

Φ𝑖(ℎ) = 𝜙(0) ∗ exp (−
ℎ

ℎ0
) . (2.25) 

Here ℎ0 = 4900 + 750 𝑝  is in 𝑚 and "𝑝" denotes the muon’s momentum. Users may find that another 

local scaling height, ℎ0, may be more appropriate to describe the local muon flux. This has for example 
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been done by Nishiyama et al. (2017), where ℎ0 =  3400 + 1100 𝑝, according to the results of a Monte 

Carlo simulation. 

A second important effect concerns the atmospheric density variations over the cycle of the year. As 

temperature changes during the different seasons, so does the density of the air, which may impact the 

muon flux model. This factor is important if one desires to reconstruct a time dependent signal, which 

might, for example, be related to changes in a magma chamber of a volcano. Lesparre et al. (2010) show 

how the related effects may be corrected for. 

2.3.3 Energy loss of muons in matter 

In the preceding chapter we have presented how muons are produced in the outer atmosphere and how 

one can describe the amount of these particles showering down on Earth using a muon flux model. The 

next step in the journey of such a muon towards the detector, usually involves the penetration of a given 

amount of solid material. By various interactions with the electrons and nuclei within the matter, the 

muon (which is also a charged particle) loses energy as it traverses the solid body. We note here that the 

matter does not have to be in a solid state but may also be fluid or even gaseous. The processes of energy 

loss remain the same. However, in most practical muon tomography experiments the body in question 

is almost always a solid. 

2.3.3.1 The energy loss equation 

The processes of energy loss are well explained in Groom et al. (2001), and we gladly refer to this work 

and the references therein for detailed discussion of the involved particle physics. The resulting energy 

loss equation takes the form of a first order ordinary differential equation, 

−
𝑑𝐸

𝑑𝑥
= 𝜌(𝑥) ∗ [𝑎(𝑥, 𝐸) + 𝐸 ∗ 𝑏(𝑥, 𝐸)] , (2.26) 

where 𝐸 is the energy of the muon, 𝑥 its position along the path, 𝜌(𝑥) the density of the traversed matter 

and 𝑎(𝑥, 𝐸) & 𝑏(𝑥, 𝐸) the ionisation and radiative energy losses, respectively. By ionisation one refers 

to the excitation and/or ionisation of atomic electrons in the matter that were given some energy from 

the incident muon, whereas the radiation term encompasses bremsstrahlung, electron-positron pair 

production and photonuclear interactions. Important here is the fact that 𝜌, 𝑎 & 𝑏 are matter dependent 

properties. Groom et al. (2001) provide an energy loss list, where they tabulate the −𝑑𝐸 𝑑𝑥⁄  for each 

element and selected compounds. Unfortunately, the only geologically relevant materials are 𝑆𝑖𝑂2 , 

𝐶𝑎𝐶𝑂3 and an entity called “standard rock”. An earlier work (Lechmann et al., 2018) addressed this 

problem and showed in which cases this standard rock is a valid approximation and when it should be 

exchanged with a more realistic rock model, that includes information on the composition. The 

Lechmann et al. (2018) study also provides energy loss calculations for several major rock types (i.e. 

granite, limestone, basalt) and developed a simple method to account for these different compositions. 

The result for a realistic rock model yields an energy loss formula in the same form as Eq. (2.26), i.e. 
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−
𝑑𝐸

𝑑𝑥
= {𝜌(𝑥)}𝑟𝑜𝑐𝑘 ∗ [{𝑎(𝑥, 𝐸)}rock + 𝐸 ∗ {𝑏(𝑥, 𝐸)}rock] , (2.27) 

such that all subsequent calculations can be treated equally. In summary, one should consider a realistic 

rock model if the rock is either basalt or limestone and features an expected thickness of more than 

300𝑚. If these criterions are not met one is usually fine using the standard rock approximation. 

2.3.3.2 Solution of the energy loss equation 

There are multiple ways to solve Eq. (2.27), all of which share one common first step. We have to 

assume that the physical parameters are homogeneously distributed throughout our material block. In 

this case, it is possible to represent the material with a set of constant parameters. If this can be 

reasonably achieved, the most straightforward method would be to program a numerical solver for Eq. 

(2.27). Usually for this kind of problem a Runge-Kutta integration scheme (e.g. Stoer and Bulirsch, 

2013) is sufficient. Naturally, any higher order numerical scheme is also possible. However, in any case 

they have to be compared to already existing calculations, as the numerical errors in these solvers have 

not yet been investigated systematically when applied to the energy loss equation. Alternatively, it is 

possible to recast Eq. (2.27) as an integral, 

𝐿(𝐸) = ∫ 𝑑𝑥 =  ∫
1

𝜌∗ [𝑎(𝐸′)+𝐸′∗𝑏(𝐸′)]
𝑑𝐸′

𝐸

𝐸0
 ,  (2.28) 

where 𝐸0 “is sufficiently small that the result is insensitive to its exact value” (Groom et al., 2001). A 

good value can be chosen around several 𝑀𝑒𝑉. The range 10 𝑀𝑒𝑉 − 100 𝑀𝑒𝑉 is reasonable as muons 

in this energy range only penetrate a few centimetres into a material. Moreover, this range is also covered 

by the energy loss tables, which makes it easier to use if one does not want to implement a sophisticated 

solver. An example of such an energy loss table and information on where it may be retrieved can be 

found in Appendix C (Ch. 2.9). The parameter 𝐿 in Eq. (2.28) denotes the penetration distance, which 

is in usually presented centimetres (depends on the units of 𝑎, 𝑏 & 𝜌). Instead of 𝐿, however, the range 

𝑅 is often reported in physics literature. This quantity relates to the penetration distance as follows: 

𝑅(𝐸) = 𝐿(𝐸) ∗ 𝜌 = ∫ 𝜌(𝑥) 𝑑𝑥 =  ∫
1

[𝑎(𝐸′)+𝐸′∗𝑏(𝐸′)]
𝑑𝐸′

𝐸

𝐸0
 . (2.29) 

Equation (2.29) has the advantage that the results are better comparable if the equation is applied to 

different materials. Please note, that the second equality sign in Eq. (2.29) only holds for homogeneous 

media, where the material parameters do not change spatially. In applications with muon tomography, 

however, it is more convenient to use the penetration distance 𝐿 of Eq. (2.28), even though these to 

equations convey the same information. In Table 2.C1 of Appendix C (Ch. 2.9) one can also verify, that 

the usual initial muon energies lie between 10 𝐺𝑒𝑉 and 1 𝑇𝑒𝑉 for penetration ranges 𝐿 between 10 𝑚 

and 1 𝑘𝑚. 

As Groom et al. (2001) provide energy loss and range tables for selected materials it is useful to keep in 

mind the relation between 𝑅(𝐸) and 𝐿(𝐸), see Eq. (2.29). It is thus also possible to quickly adapt these 
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tables for a version where the densities are modified. Thus, a “standard rock” with modified density may 

be used in scenarios, where the actual rock density is not exactly 2.65 𝑔 𝑐𝑚−3. This inherently assumes 

no variation in composition, as only density changes are considered. Please refer to Lechmann et al. 

(2018) for more information about how this can be meaningfully achieved in geological settings. In the 

aforementioned article, the reader may also find additional information on the exact geochemical and 

mineralogical composition of this “standard rock”. These authors also discuss how to proceed if a more 

realistic rock model is required.  

We conclude this section with a cautionary note. Even though Eqs. (2.28) & (2.29) may proof very 

useful, one has to consider that some part of the ionisation losses, 𝑎(𝐸), is dependent on the density, 

such that the right-hand side of the equation would change with different densities. If the modified 

densities are close (within ~5 %) the tabulated density (again for standard rock this is 2.65 𝑔 𝑐𝑚−3 ) 

one should however be fine upon employing Eqs. (2.28) & (2.29). At this stage, we know of no 

publication where this possible bias has been systematically analysed within a geological context. 

2.3.3.3 Multiple Scattering 

The calculations listed above represent a good model, which should suit the needs for many applications. 

However, they carry an implicit assumption one has to be aware of. In particular, the solution to the 

energy loss equation assumes that muons penetrate the matter of interest along a straight path, i.e. a line. 

This does, however, not reflect reality. In fact, the muon is continuously deflected by small angles upon 

travelling through the material. These angles sum up, and upon leaving the material the muon may find 

itself within a cone, where the centre axis represents the perfect line path that is usually considered. 

Tanabashi et al. (2018) provide the following scheme (see Fig. 2.4) to illustrate the problem. 

 

Figure 2.4: Scheme to illustrate multiple coulomb scattering of an incident particle (Figure 33.10 of Tanabashi et al. 

2018, p. 452.). A particle hits a block of matter of thickness 𝒙 and is continuously deflected. It exits this block with a 

mean angular deflection of 𝛉𝒑𝒍𝒂𝒏𝒆 and an offset of 𝒚𝒑𝒍𝒂𝒏𝒆. For the other quantities, which we do not need for further 

computations (i.e. 𝚿𝒑𝒍𝒂𝒏𝒆, 𝒔𝒑𝒍𝒂𝒏𝒆) we refer the reader to the original source of this diagram.  

In this context, we are mainly interested in the quantity 𝜃𝑝𝑙𝑎𝑛𝑒. This is a measure of the angular deviation 

of a muon after crossing a definite thickness of rock. The consideration of such a deviation is important 
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if the angular resolution of the detector is used as a reference. This then leaves the question of how to 

calculate 𝜃𝑝𝑙𝑎𝑛𝑒. For this purpose, we may use Highland’s formula (see e.g. Lynch & Dahl, 1991) 

𝜃𝑝𝑙𝑎𝑛𝑒 =
13.6

𝛽𝑝𝑐
√
λ

Λ0
[1 + 0.088 log10 (

𝜆

Λ0
)]  ,  (2.30) 

where, 𝑝 is the momentum of the muon, 𝑐 is the speed of light, 𝛽 = 𝑣 𝑐⁄  a relativistic parameter and 𝜆 

is the thickness of the material in density length units (i.e. [𝑔 𝑐𝑚−2] can be obtained by 𝜆 = 𝜌𝑟ℎ𝑜𝑐𝑘 ∗ 𝑥, 

when 𝑥 is the thickness in [𝑐𝑚]). Finally, Λ0 is the radiation length of the material that can be obtained 

by the formula of Tasi (1974), 

1

Λ0
=
𝑍2[𝐿𝑟𝑎𝑑−𝑓(𝑍)]+𝑍𝐿𝑟𝑎𝑑

′

716.405 𝐴
 .  (2.31) 

The term 𝑓(𝑍) in Eq. (2.34) may be calculated by 

𝑓(𝑍) = (𝛼𝑍)2[(1 + (𝛼𝑍)2)−1 + 0.20206 − 0.0369(𝛼𝑍)2 + 0.0083(𝛼𝑍)4 − 0.002(𝛼𝑍)6] , (2.32) 

where 𝑍  is the atomic number of the element and 𝛼 =  1 137⁄  is Sommerfeld’s constant. The two 

auxiliary quantities 𝐿𝑟𝑎𝑑 , 𝐿𝑟𝑎𝑑
′  on the other hand have to be chosen according to Table 2.1. 

Unfortunately, it is often the case that we need to know Λ0 not for a pure element, but for a rock, which 

is a mixture of elements. To solve this problem, we could conduct the aforementioned calculations for 

a standard rock, for example. Lesparre et al. (2010) as well as the PDG (Particle Data Group; 

https://pdg.lbl.gov) list the radiation length for standard rock as Λ0,𝑆𝑅 = 26.54 𝑔 𝑐𝑚
−2. 

Table 2.1: Key on how to calculate the quantities 𝑳𝒓𝒂𝒅 and 𝑳𝒓𝒂𝒅
′  necessary for Eq. (2.31). Table 33.2 of Tanabashi et al. 

(2018, p. 452).  

Element Z 𝐿𝑟𝑎𝑑 𝐿𝑟𝑎𝑑
′  

    

H 1 5.31 6.144 

He 2 4.79 5.621 

Li 3 4.74 5.805 

Be 4 4.71 5.924 

Others > 4 ln(184.15 𝑍−1 3⁄ ) ln (1194 𝑍−2 3⁄ ) 

 

But generally, we want to calculate the radiation length of a mixture of elements (Tanabashi et al., 2018) 

by 

〈
1

Λ0
〉 = ∑ 𝑤𝑗

1

Λ0,𝑗
𝑗  .  (2.33) 

Here, 𝑤𝑗 is the weight fraction of the j-th element in the compound and Λ0,𝑗 is the radiation length of 

the j-th element, respectively. We show in Appendix D (Ch. 2.10) how the user may derive a radiation 

length, given some XRF (X-ray fluorescence) measurements. The resulting radiation length for our 

exemplary “real” rock is Λ0,𝑟𝑜𝑐𝑘 = 25.72 𝑔 𝑐𝑚
−2.  
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Please note, that even though the difference is ~3 % and thus very small considering the overall scheme, 

our host rock, that we measured had a rather granitic composition. As shown in Lechmann et al. (2018) 

granitic rocks tend to be well approximated by standard rock, while others may not. We recommend 

performing an analogous calculation as shown in Appendix D (Ch. 2.10) for every experiment, even if 

one has no XRF data at hand and has to rely on a rough (usually macroscopic) description of the lithology. 

With this Λ0,𝑟𝑜𝑐𝑘 it is now possible to calculate the scattering parameters from Fig. 2.4. Unfortunately, 

Eq. (2.31) is only valid for a relatively thin absorber, where the energy stays roughly constant, i.e. the 

energy loss is negligible. As Lesparre et al. (2010) state, we need a differential form of Eq. (2.30) to also 

account for the energy, which is lost during the passage through matter. Even though they do not provide 

the differential form, one might get an idea from the CERN report of Schwarz (2013), where the total 

deviation is calculated by adding the “thin slab”-contributions together in quadrature, taking into account 

the energy loss. Tailoring this idea to Eq. (2.30) yields 

𝜃𝑝𝑙𝑎𝑛𝑒 =  13.6 [1 + 0.088 log10 (
𝜆

Λ0
)] (

𝜌𝑟𝑜𝑐𝑘

Λ0,𝑟𝑜𝑐𝑘
∫ (

1

𝛽𝑝𝑐
)
2
𝑑𝑥′

𝐷

0
)
1 2⁄

    . (2.34) 

Note that this is already the integrated formula for a thick absorber such as a mass of rock. One would 

end up with a similar result when the original formula from Lesparre et al. (2010) would be used. The 

only difference lies in the integrand (i.e. (𝛽𝑝𝑐)−1 vs. 𝐸−1). This may be explained by the high energy 

nature of the experiments in the field of muon tomography. Usually, these kinds of studies require muon 

energies on the 𝐺𝑒𝑉 level. 𝛽𝑝𝑐 may be expressed as (𝛾 − 𝛾−1)𝑚𝜇𝑐
2. When energies are high, then 𝛽 →

1 and (𝛾 − 𝛾−1) → 𝛾, such that 𝛽𝑝𝑐 → 𝛾𝑚𝜇𝑐
2 = 𝐸. For example, a 1.05 𝐺𝑒𝑉 muon has roughly a 𝛾 ≈

10 and thus the difference between the two different formulae is 1 %. As 1 𝐺𝑒𝑉 is rather a lower 

threshold, one should be fine in using the energy approximation 

𝜃𝑝𝑙𝑎𝑛𝑒 =  13.6 [1 + 0.088 log10 (
𝐷𝜌𝑟𝑜𝑐𝑘

Λ0
)] (

𝜌𝑟𝑜𝑐𝑘

Λ0,𝑟𝑜𝑐𝑘
∫ (

1

𝐸
)
2
𝑑𝑥′

𝐷

0
)
1 2⁄

.  (2.35) 

Table 2.2 shows the calculations of 𝜃𝑝𝑙𝑎𝑛𝑒  for standard rock for different thicknesses, 𝐷 , and exit 

energies, 𝐸𝑒𝑥, (i.e. energy of the muon after the thick absorber). 

Table 2.2: Calculations of the mean angular deviation, 𝜽𝒑𝒍𝒂𝒏𝒆, for different absorber thicknesses, 𝑫, and different muon 

exit energies, 𝑬𝒆𝒙.  

D [𝑚]  50 150 300 

     

𝐸𝑒𝑥 [𝐺𝑒𝑉]   𝜃𝑝𝑙𝑎𝑛𝑒 [𝑚𝑟𝑎𝑑]  

0.1  316.53 316.71 316.74 

1  77.34 78.04 78.18 

10  19.85 21.57 22.00 

100  3.39 4.69 5.30 
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We note that 𝜃𝑝𝑙𝑎𝑛𝑒 is only weakly dependent on the thickness of the absorber and more sensitive to the 

exit energy of the muon. This has a rather direct implication on how the detector needs to be constructed 

(we briefly address this issue in Ch. 2.3.4).  

First, these 𝜃𝑝𝑙𝑎𝑛𝑒  values are a lower threshold for the angular resolution that we may achieve, 

irrespective of the actual angular resolution of the detector. Second, according to Fig. 2.4, one would 

also expect that certain muons are deflected away from the detector, such that we may end up with an 

underestimation of our muon flux because these muons are not registered on the detector. We address 

this problem in Appendix E (Ch. 2.11) and show that usually, this does not affect our measurements in 

a significant way. 

These two biases (but especially the first one) can be rather well mitigated by building the detector in a 

way that allows only allows to register those muons with a sufficiently high energy. Thus, one gains 

some control over this rather difficult problem. The possible bias that results from the sensitivity of the 

equations to is also discussed in Lesparre et al. (2010) and attributed to the fact that we integrate in Eq. 

(2.35) over 1 𝐸2⁄ . This means that the muons are scattered more, the slower they become, i.e. during 

the very last part of their trajectories. 

2.3.4 Detectors 

In this chapter we present the detectors that are commonly used in a muon tomography experiment, so 

that the user may form an own idea which device may be suitable for his/her own research. As our own 

expertise lies with the application of nuclear emulsion films, we will portray the corresponding detector 

type in more detail. However, we will also present the other technologies, summarise them and redirect 

the user to studies for more information and/or applications. In general, muon detectors are passive 

detectors as they only record the naturally occurring cosmic ray muon flux at a position in a certain 

direction. The main difference of the following detector types lies in their deployment conditions, that 

are closer described in the respective sections. 

2.3.4.1 Nuclear Emulsions 

The concept of how nuclear emulsions work may probably be best described through a comparison to 

photographic films that were used decades ago. An overview of how we built our detectors and 

processed the data can be found in Ariga et al. (2018) and we limit our presentation here to the most 

important production and data processing steps. 

Figure 2.5 shows a small sketch of how an emulsion film is built up and how it works. Even though the 

setup for one emulsion film looks rather straightforward, already their production is rather involved. A 

short overview over the different production steps can be found in Morishima et al. (2017). The result 

is a doubly layered emulsion film that is vacuum packed in a completely lightproof sleeve (see Fig 5. of 

Morishima et al., 2017). For visibility reasons, the sleeve has been omitted in our Fig. 2.5. 
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Figure 2.5: Structure and working principles of an emulsion film detector. Left: Structure of a single emulsion film. It 

consists of a plastic base (~𝟏𝟖𝟎 𝝁𝒎) coated on both sided with a photosensitive (i.e. contains 𝑨𝒈𝑩𝒓-crystals) emulsion 

(~𝟓𝟎 𝝁𝒎). Right: Schematic view of the state of an emulsion film when it is developed after exposure to the cosmic ray 

muon flux. Stars indicate activated 𝑨𝒈𝑩𝒓-crystals (i.e. clusters; they will show as dark grains). Black lines connecting 

clusters are reconstructed particle tracks. Muons are assumed to propagate straight through the detector. Dashed red 

lines denote the part of the muon track within the emulsion, whereas the solid red lines indicate the “basetrack”, i.e. the 

unobserved muon track within the plastic base.  

The right panel of Fig. 2.5 shows the principles of how emulsion films register incoming and outgoing 

muons. In particular, when muons hit the prepared muon film, then parts of the silver-bromide crystal 

are broken up into bromide and silver ions. The latter tend to aggregate on the surface of the crystal and 

form a latent image, which then show up as clusters (i.e. stars in Fig. 2.5) when the film is developed in 

the laboratory. In each emulsion layer a linear sequence of clusters can be assembled to a “microtrack” 

(see solid black lines in Fig. 2.5). Through the matching of microtracks from the top and the bottom 

layer on one film one may construct so called “basetracks” (i.e. tracks of muons that must have 

penetrated the whole film, including the plastic base; see solid red lines in Fig. 2.5). However, as this 

film also records tracks in the time span between the production and the deployment at the experimental 

site, one would have to deal with a hard signal-noise separation problem. One possible solution to this 

problem, is to build the emulsion detector in a ECC (emulsion cloud chamber) arrangement (Nishiyama 

et al., 2014, 2015). 

The principle is to form a “sandwich” of single emulsion films interlaced with metal plates as depicted 

in Fig. 2.6. This arrangement of the detector has two big advantages. First, the ECC structure may 

assembled upon arrival at the experimental site, and one is sure to only record muon tracks from the 

study site. The trick lies in the fact that one only has to consider muon tracks that penetrate the whole 

detector. These tracks and their orientations may be reconstructed using the same logic (i.e. alignment 

of the different layers) as the processing step from microtracks to basetracks. Second, the addition of 

metal plates acts as an artificial threshold to filter out the low energy particles. This filtering occurs 

mainly through the deflection of low energy particles at a higher angle, such that they do not appear as 

straight tracks anymore. This means that also electrons that may produce a substantial bias, or even 

worse a background noise within the films, are filtered out and do not significantly contaminate the 

measurement (Nishiyama et al., 2015). Therefore, such a detector setup is better suited for geological 

purposes than an emulsion film detector that is made up of a to the blank single layer only, because it 

considerably facilitates the data processing afterwards. For an example image we refer to Fig. 2.7, where 

two of our deployed instruments are shown. 



2.3 PRINCIPLES OF MUON TOMOGRAPHY CHAPTER 2 

32 

 

Figure 2.6: Emulsion cloud chamber (ECC) arrangement. This type of emulsion detector consists of alternating layers 

of emulsion film and metal plates.  

Emulsion detectors are thus very versatile and, once packed in a lightproof sleeve, relatively easy to 

handle and transport. The most outstanding feature, however, is the fact that emulsion detectors do not 

need any form of electric power supply. They collect the data passively and continuously, which means 

that there is theoretically no dead time in the detector. This enables scientists to place these detectors in 

tunnels underground or other remote places in the mountains, without having to worry about excessive 

hauling or, as said, installing an equipment for power supply. 

These advantages do not come without any significant drawbacks. In comparison to the other detectors, 

we sacrifice the ability to retrieve time resolved data. In particular, emulsion detectors record a time-

integrated signal, and one has no chance of reconstructing, which track has been recorded at which 

moment and under what conditions. Additionally, emulsions require a rather long pre- and post-

processing time. This means that the production of emulsion films, their development in the dark 

chamber as well as their scanning may take some time. Finally, emulsion detectors can lose their 

recorded signal (“fading”) if the film is exposed for too long a time span (> 3-4 months). In addition, 

the equipment has to be kept always around the same temperature and humidity conditions, because any 

fluctuations of these parameters may favour the occurrence of premature fading. 

 

Figure 2.7: Deployed ECC detector frames in two different formats. Left: Small scale detector consisting of two ECC 

pouches with a total detection area of ~𝟐𝟓𝟎 𝒄𝒎𝟐. Right: Large scale detector consisting of four ECC pouches with a 

total detection area of ~𝟏. 𝟐 𝒎𝟐.  Humans are included for scale.  
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2.3.4.2 Scintillators 

A second type of detector, that has been widely employed in muon tomography studies are scintillators. 

Here the incoming charged particles excite the electrons of the scintillating material to higher energy 

levels. These electrons fall back into their ground state, thereby releasing energy in form of a photon. 

The latter is then often detected by a photomultiplier and converted into an electronic signal (see also 

Lesparre et al., 2010; Gibert et al., 2010; and Pla-Dalmau et al., 2001, for more information). The 

scintillation detectors are in a way the opposites of the emulsion detectors. The former need an external 

power supply, which is often provided by a photovoltaic panel (e.g. Gibert et al., 2010). Thus, much of 

the detector design is focused on the power consumption to render the detector energetically self-

sufficient. By recording each particle live, it is possible to record the muon flux in real time, even if the 

flux will then be manually time integrated during the subsequent processing steps. Therefore, on the 

positive side, one may keep the control over the integration step, such that possible seasonal effects may 

be analysed. On the downside, scintillation detectors may consist of too many heavy parts, which make 

the transport and the installation difficult to organise. Furthermore, by using scintillation bars one often 

has to limit the angular resolution of the detector, as these bars cannot be made arbitrarily small. Another 

point to consider is the dead time of the detector (as with nearly every real time detector). Once the 

detector records a track, it needs to recharge and cannot record another track during this time. Ambrosino 

et al. (2015) report the dead time in the order of 20 % for their scintillation detector. For readers 

interested in how such a detector looks like, please see Figure 2.8.  
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Figure 2.8: Example of a deployed scintillation detector. Fig. 5 from Lesparre et al. (2010). Top: Sketch of a muon 

detector consisting of horizonal and vertical scintillator bars. Middle: Electronics of the muon telescope. Bottom: 

Example of two muon detectors deployed in the field.  

2.3.4.3 Gaseous detectors 

A further type of detector uses a gas to record a charged particle’s presence and movement (see Fig. 

2.9). When a charged particle traverses the gas, then its electrons are ionised. As the gas is enclosed by 

an anode and a cathode, both of which maintain an electric field, the ionised electrons are accelerated 

towards the anode. This acceleration of the electrons initiates a chain reaction where further electrons 

are ionised thereby resulting in an electron avalanche. This, in turn, induces a signal in the electrodes, 

that can then be measured. The interested reader is referred to Asmundis et al. (2007) for further 

information on resistive plate chamber (RPC) detectors. Another similar detector type, that has been 

deployed for muon tomographic experiments, is the Mircomegas detector (see e.g. Giomataris et al., 

1996). This is basically a variant of the RPC detector. 
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Figure 2.9: Basic structure and working principles of a gaseous detector. A charged particle (here a muon) crosses the 

gas volume and ionises electrons along its trajectory. Due to the presence of an electrical field (produced by the 

cathode/anode strips) the electron is accelerated towards the anode, producing an avalanche of even more electrons. 

The avalanche is usually large enough to induce a signal in the electrodes, that may be read out. The resistive plates 

(RP) damp the electron avalanche in order to reset the detector (such that it can record a new particle). A segmentation 

of the cathode/anode into strips enables localisation of the particle.  

Figure 2.9 shows the concept of one single detector layer, which, however, is not suitable to detect the 

directionality of the incident particle. For this reason, RPCs usually are deployed as stacks of multiple 

RPCs on top of each other, an arrangement which is often called a “hodoscope”. Accordingly, most 

particle detectors presented here fulfil the description of a hodoscope. 

As a detector that records passing particles in real time, it features similar advantages and drawbacks as 

the scintillation detectors. The most important advantage is the time resolution of the recorded muon 

flux. The dead time in modern-day gaseous detectors is reported to be around 6 % (Ambrosino et al., 

2015) and can be even lower than 1 % (Varga et al., 2020). On the negative side, the generation of an 

electrical field needs an external power supply, that may require more planning before an experiment. 

2.3.4.4 Cherenkov detectors 

The last instrument that we describe in this review is a rather niche detector. This type records the 

Cherenkov radiation that is emitted when a charged particle traverses a block of matter while exceeding 

the speed of light within the traversed matter. This may be best described by an analogy to the supersonic 

wave that is created when an object travels faster through the matter than its speed of sound, with the 

difference that the wave that is created in the Cherenkov process is an electromagnetic wave, i.e. a 

photon. We refer here to the study of Catalano et al. (2016) who deployed a Cherenkov detector to 

perform a muon radiography experiment at Mt. Etna in Sicily, Italy. These authors also describe how 

the detector works, and they provide illustrative photographs that nicely show the dimensions of this 

device. As a real time detector, it has very much the same advantages as the other real time detectors as 

well as the need for an external power source. Moreover, due to its sheer size, this detector is probably 
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more suited for a long-term, quasi-stationary observation ward (The mirror of the Cherenkov telescope 

in Catalano et al., 2016, has a diameter of roughly 4m). 

There are also more recent developments that aim at reducing the size of the detector by hybridising 

with another detector type. For example Vesga-Ramírez et al. (2021) employed with their MuTe a hybrid 

telescope that uses two scintillator panels and a water Cherenkov detector. 

2.3.5 Inversion schemes and tools 

In this chapter we present several inversion techniques that are commonly utilised to invert results from 

muon tomography experiments. The selection of the corresponding approach mostly depends on the 

goal of the muon flux measurement, and the data analysis procedure is then often adapted accordingly. 

We also want to present a few tools, that may be useful when designing and implementing an own 

inversion procedure. 

2.3.5.1 The Density-Length approach 

This is by far the most used technique in muon tomography, mainly due to its simplicity. The idea comes 

from Eq. (2.29), where 

∫ 𝜌(𝑥) 𝑑𝑥 = Λ , (2.36) 

and Λ, the “density-length” or opacity, can be calculated from the muon flux model and a material table 

(see Ch. 2.3.3) given some measurement results. From the expression in Eq. (2.36) one can construct a 

wide array of parametrisations, i.e. 

𝐿1 ∗ 𝜌1 = Λ , (2.37) 

when only one material is present or  

𝐿1 ∗ 𝜌1 + 𝐿2 ∗ 𝜌2 = Λ ,  (2.38) 

for a stack of two different materials, etc. In any case Eqs. (2.37) & (2.38) are underdetermined and thus 

need additional information to resolve the involved parameters well. In case of Eq. (2.37) one usually 

knows the material thickness, 𝐿1 , and tries to draw inferences on the mean density, 𝜌1 . In many 

vulcanological applications this is the procedure, as one is mostly interested in mapping the density 

anomalies. Eq. (2.38) is an example which could be used for an interface detection, i.e. one is interested 

in 𝐿1 and 𝐿2. This can be solved by assuming that we know the densities 𝜌1 & 𝜌2 and the total material 

thickness 𝐿1 + 𝐿2 = 𝐿𝑡𝑜𝑡. From this short discussion one sees that the growing number of parameters is 

countered with additional information, which is the only practicable way when facing an 

underdetermined problem. The popularity of this approach comes largely from its ease to use and the 

relatively robust result it produces.  

The aforementioned approach is often formulated as a deterministic inverse problem, i.e. a least squares 

problem, that can be solved using a matrix equation. We refer here to Nishiyama et al. (2014) or Barnoud 

https://www.sciencedirect.com/science/article/pii/S0895981121000936?casa_token=04jsHF5wufYAAAAA:WFCPE9RC9fbvVNeQ8mcTwYCfoCkRhq_87HemhmUqw_4kou_bVkvIdgFGgOB54EJ-CyRBl5QvD7c#!
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et al. (2019) for an example on how this may be set up. In those studies, the authors have combined 

muon tomography measurements with gravimetric measurements (a reasonable choice, as will be 

discussed in Ch. 2.5). 

2.3.5.2 Bayesian approaches 

Even though Bayesian techniques provide a large arsenal of techniques to tackle the inverse problem, 

their use in muon tomography is far from ubiquitous. The reason for this circumstance lies most probably 

in the intricacies of design and solution of a probabilistic model. Despite these involved problems, 

Bayesian methods shine when information on parameters from various sources such as the results of 

laboratory measurements, literature data or even state-of-the art knowledge (on boundaries of parameter 

values, for example has to be incorporated. As the probabilistic formulation remains the same these 

different datasets can be integrated with ease. In this approach, the physical laws take the form of 

surfaces within the multidimensional data-model space in which each datum and each parameter has its 

own dimension. A comprehensive explanation of this line of thought can be found in the book of 

Tarantola (2005). Barnoud et al. (2019) as well as Lelièvre et al. (2019) provide an interesting example 

of how a Bayesian approach to merge gravimetric and muon tomographic inversion might look like. 

Other, muon tomographic stand-alone, studies were undertaken by Lesparre et al. (2012, 2017) and 

Vesga-Ramírez et al. (2021) by using a technique called simulated annealing. We refer the reader to 

Kirkpatrick et al. (1983) for the original paper on this technique or to Sivia and Skilling (2012, p.63, 

203–208) for an easy introduction to the topic. Lechmann et al. (in prep) present an approach on how to 

construct the joint posterior, i.e. the central quantity in every Bayesian calculation, from a directed 

acyclic graph. 

Even though we advocate in favour of Bayesian approaches, we have to stress that usually this comes 

at the price of having to solve the inverse problem by means of a Monte Carlo simulation, in order to 

properly sample the posterior probability density function. The aforementioned simulated annealing 

technique serves as a prime example. This is often associated with higher computational costs, and 

therefore the chosen algorithms have to be programmed carefully. For example, this does usually not 

allow for another Monte Carlo simulation to be performed within the Monte Carlo inversion. We think, 

however, that if care is taken in the design of the inversion, this should not pose a grave hindrance. 

2.3.5.3 Tools 

As the state of this technology is still very much in its beginnings, no commercial software and therefore 

no standardised way exists for data processing. Thus, for this last step in the whole data processing chain, 

one is often confronted with the situation, that some own code has to be written. Here we would like to 

compile a few tools that we think are useful if one desires to build an own application. 

The first tool we refer to is GEANT4 (Agostinelli et al., 2003), an all-purpose toolkit to simulate particle 

transport through a variety of materials. In addition, with PUMAS, Niess et al. (2018) released a 

backward simulation modification, such that the Monte Carlo Simulation of the particles is sped up 

https://www.sciencedirect.com/science/article/pii/S0895981121000936?casa_token=04jsHF5wufYAAAAA:WFCPE9RC9fbvVNeQ8mcTwYCfoCkRhq_87HemhmUqw_4kou_bVkvIdgFGgOB54EJ-CyRBl5QvD7c#!
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considerably, by only considering muons that actually hit the detector. In light of its use in gravimetric 

inversion, pyGIMLi (Rücker et al., 2017) might also prove useful if one wants to invert joint 

measurements. Moreover, in another study a toolset, SMAUG (Lechmann et al., in prep), is provided 

that allows the user to perform a Bayesian inversion of muon flux data, with customisable materials. 

2.4 Recent applications 

In this chapter we will show an overview of the recent applications to redirect the reader to studies that 

might be useful or similar to one’s own research. This is intended to provide the reader with a rough 

idea on how muon tomography can be applied in the specific contexts. We focus solely on geological 

contexts, as other reviews, that were listed in previous chapters, cover the other fields (mostly 

archaeology and civil engineering) in great detail.  

In general, muon tomography can be applied in two main ways. First, this technology allows to detect 

regions of relatively high/low density. This is a feature, that is often used in volcanological contexts (e.g. 

Tanaka et al., 2005; Oláh et al., 2019) to visualise the conduit in the corona region of a volcano. The 

other possibility is to detect boundaries with a high density contrast. This has for example been 

performed on glaciers (e.g. Nishiyama et al., 2017) to detect the rock-ice interface or in a tunnel to detect 

the location of a (low-density) karstic network (see Lesparre et al., 2017). Most of the muon tomography 

studies fall into either of the two categories. We have compiled a list of recent application of muon 

tomography to tackle geoscientific questions in Table 2.3. 
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Table 2.3: Selected publications of muon tomography experiments in geoscientific contexts.  

Volcanology Muon detector Location Summary 

Tanaka et al. (2005) Plastic scintillator Mt. West-Iwate, 

Honshu Japan 

Muon tomographic and gravimetric data have been 

collected on two Volcanoes (Mt. Kurokura & Mt. 

Ubakura). Alongside a density estimation of the 
volcanic lithology, a time dependent change in 

muon intensity has been linked to volcanic activity. 

The observation lasted 1 year; the detector was 
designed to withstand also snowy weather 

conditions. 

Tanaka et al. (2007) ECC Mt. Asama, Honshu, 

Japan 

A survey in which muon tomography was used to 

depict lithological density differences in the top 
region of the volcano. Density anomalies were 

related to volcanological structures of previous 

eruptions (lava cap, magma conduits). The device 

recorded for 2 months. 

Tanaka et al. (2009) Plastic scintillator Satsuma-Iojima, 

Osumi islands, Japan 

Imaging of the magma head in the main conduit of the 

Mt. Io volcano is performed. Degassing processes 

were identified and characterised according to the 
muon measurements. 

Lesparre et al. (2012) Scintillator La Soufrière, 

Guadeloupe, France 

This work presents relative 2D density distributions, 

retrieved from muon measurements. These are 

compared to separate electric resistivity and 
gravimetric models. Volcanic features are identified 

with the different observed structures in the various 

density models. Data acquisition took around 82 
days. 

Nishiyama et al. (2014) ECC Mt. Usu region, 

Hokkaido, Japan 

This study combined measurements of gravimetry and 

muon flux of the Showa-Shinzan lava dome (side 

peak of Mt. Usu). A joint inversion, i.e. a 3D 
structural density analysis of the volcanic complex 

is performed, i.e. horizontal cross-sections for 

various altitudes across the volcano. The muon data 
has been collected for 3 months. 

Tanaka et al. (2014) Plastic scintillator Satsuma-Iojima, 

Osumi islands, Japan 

The muon flux measurements have been used to depict 

a temporally resolved image of an eruption of the 

upper region of Mt. Io in 2013. The measurements 
have been aggregated to periods of 3 days over the 

course of a month. 

Ambrosino et al. (2015) Plastic scintillator  

(MU-RAY) 
Glass RPC 

(TOMUVOL) 

Puy de Dôme, 

Auvergne, France 

Comparison of two different detector types from two 

independent measurement campaigns used to 
unravel systematic errors that are invisible from 

only one measurement.  

Rosas-Carbajal et al. (2017) Scintillator La Soufrière, 

Guadeloupe, France 

Joint 3D inversion of gravity and muon flux data that 

are compared to a conductivity model, received 
from electric resistivity tomography. Identification 

of the volcanic hydrothermal system and its 

connection to the mechanical instabilities of the 

volcano’s southern slope. 

Oláh et al. (2019) Multiwire 

proportional 
chamber (see 

Varga et al. 2016) 

Sakurajima, Kyushu, 

Japan 

This survey investigated the possible formation of a 

magma plug in the volcano’s conduit and its relation 
to the eruption frequency of two neighbouring 

craters. 2D tomographic images have been 

produced to strengthen the empirical basis. 

Tioukov et al. (2019) ECC Stromboli, Aeolian 
islands, Italy 

A study that determines the internal structure of the 
crater region and the north-eastern flank of the 

volcano with 2D tomographic images. Links 

between eruption dynamics and volcano structure 
are investigated. The detector was operated for 5 

months. 

Lo Presti et al. (2020) Plastic scintillator Etna, Sicilly, Italy 2D tomographic images of the volcano’s crater region 

are produced and used to monitor ongoing 
eruptions. Measurements were taken during 2017 (2 

months) and 2018 (4-5 months). Changes in muon 

tomographic images could be linked to visually 

observable volcanic processes. 
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Table 2.3 (Continued) 

Glaciology Muon detector Location Summary 

Nishiyama et al. (2017) ECC Jungfrau region, Bern, 

Switzerland 

3D tomographic images of the bedrock-ice interface 

were produced and used to infer the stability of the 
rock mass above in light of the gradual melting of 

the glaciers. Observation duration was 3 months. 

Nishiyama et al. (2019) ECC Jungfrau region, Bern, 

Switzerland 

This survey took muon flux measurements during a 

total period of 6 months. A 3D model of the glacier 
bedrock was reconstructed, and its geometry was 

linked to possible erosion processes that dominate 

in upper glacial regions. 

Caves    

Caffau et al. (1997) RPC Grotta Gigante, 
Trieste, Italy 

The measurement of the atmospheric muon flux was 
used to determine the shape of the cave vault. For 

comparison, available gravity measurements and 

digital elevation models were considered. The data 
acquisition timeframe is stated to be at least 24 

hours. 

Oláh et al. (2012) Closed cathode 

chamber (see 
Barnaföldi et al. 

2012) 

Various caves around 

Budapest, Hungary 

This study presents a nice assembly of various test 

sites, where muon flux measurements have been 
performed. Another, projection-based, approach of 

3D visualisation has been taken to present the 

results. 

Fault zones    

Tanaka et al. (2011) Scintillator Itoigawa-Shizuoka 

Tectonic Line (ISTL), 
Itoigawa, Japan 

Use of 2D muon tomographic imaging to locate a low-

density, i.e. highly fractured, zone parallel to the 
ISTL and identification thereof as a possible new 

fault. A correlation between water content (i.e. 

rainfall) and muon attenuation has been observed to 
strengthen this implication. 

Lesparre et al. (2017) Scintillator Tournemire, Aveyron, 

France 

The authors present an approach to perform a 3D 

inversion based on a voxel parametrisation of a 

geologically well-known section. A low-density 
zone in one geologic unit is interpreted as a karstic 

network, that was able to form due to the presence 

of localised fault zones. 

Borehole applications    

Oláh et al. (2018) Closed cathode 
chamber (see 

Barnaföldi et al. 

2012) 

NEC Tamagawa Plant, 
Kanagawa, Japan 

In this study the muon detector was deployed in a 
vertical borehole for the imaging of a near concrete 

pillar. Images were produced at different total 

measurement lengths (up to 2 weeks). 

Bonneville et al. (2019) Scintillator Los Alamos Canyon, 
New Mexico, USA 

A borehole detector (horizontal borehole) has been 
tested against a large-scale detector in a nearby 

tunnel. It was shown that small-scale borehole 

detectors may prove useful if accessibility below the 
target is not given. 

Geophysical exploration    

Bryman et al. (2014) Scintillator Nyrstar Myra Falls 

mine, British 

Columbia, Canada 

In this book chapter a case study is presented where 

the authors applied a muon detector inside a mine, 

where a known ore body is located between tunnel 
and surface. The collected muon data is compared 

to ample existing borehole data and a good 

agreement is found in the two different inversions. 

Baccani et al. (2019) Scintillator San Silvestro Archaeo-
Mining Park, Tuscany, 

Italy 

A 53-day measurement campaign was conducted in an 
abandoned mine. There, a high-resolution image of 

the rock space above was made, thereby locating 

previously unknown cavities and a high-density 
vein. 
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2.5 Best practice guidelines 

We would like to conclude our review with a rough guide on how a (geo)scientist who is interested in 

utilising this technology might proceed. In the subsequent paragraphs we define various criteria which, 

we think, a prospective user must ask him-/herself whilst preparing for a project. Even though the points 

we raise are also valid for many other geophysical methods one wishes to use, here, they are set in the 

context of muon tomography experiments. We split the basic planning steps in two. While Ch. 2.5.1 

explains the basic planning steps before deciding on whether to use muon tomography or not, Ch. 2.5.2 

focuses more on some technical questions regarding detector selection, exposure length and alternative 

methods. 

2.5.1 Planning phase 

In this chapter we quickly summarise three basic questions that should ideally be answered with “Yes” 

for muon tomography to be considered a serious alternative. These considerations can already be made 

in an early planning phase, where it is not already clear how the parameters of interest are supposed to 

be measured. 

 

1) Applicability: “Is the method sensitive to the parameter in question?” 

The first question a potential user must answer, concerns the general applicability of the method to the 

problem at hand. Muon tomography is mainly sensitive to material density and only slightly to material 

composition. However, state-of-the-art muon tomography is not capable of resolving compositions very 

well, due to the systematic errors in the cosmic ray flux models. Thus, if the research question requires 

information about a 3D density structure, then muon tomography is a valid option. 

 

2) Alternatives: “Is there another method that would yield more useful results?” 

Intricately linked to the previous point is the question whether muon tomography is the optimal method 

for the problem at hand. We advise the prospective user to inform themselves if there are other 

geophysical methods, that may provide better results. In this case one could ask if muon tomography is 

then a valid auxiliary method (seeing that nowadays many experimental field campaigns do rely on 

multiple geophysical measurements). 

 

3) Accessibility (Location): “Is there a suitable place to deploy a muon detector?” 

If the technology can be applied to the researcher’s problem, the issue of accessibility has to be solved 

next. As the reader might have picked up, muon tomography requires the detector to be located 

underneath the study object. This is because, so far, one measures muons that originate from the natural 
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cosmic ray flux, i.e. from above. This implies that the study object must either be topographically distinct 

(like a volcano) or accessible from underneath (for example caves, mines and tunnels); a circumstance 

that might be considered one of the greatest limitations of muon tomography. As can be seen in Ch. 2.4, 

researchers have already begun to examine the possibilities of borehole muon detectors which might 

prove a potent solution for future applications. In every case one has to remember that muon tomography 

remains a shallow subsurface imaging technique, meaning that when the overburden is larger than ~1km, 

reliable results are difficult to obtain (see Ch. 2.5.2 for more details on this). 

 

4) Accessibility (Technology): “Is there a physics institute nearby that can provide detectors and know-

how?” 

We stated earlier that the know-how of particle detection (i.e. detector construction and analysis) is still 

very much concentrated in the (particle) physics community. Unless this state of affairs changes, most 

prospective muon tomography experiments will typically require the collaboration with a particle 

physics institute. Thus, it is advantageous to enquire at the local university, as it facilitates the quick 

exchange of personnel, knowledge, and material. 

2.5.2 Operation phase 

Whereas Ch. 2.5.1 focused on the issues during the planning of an experimental campaign, we like to 

discuss here some central problems that appear once the decision has been taken to use muon 

tomography. Usually, these questions revolve around some technical aspects, that are nevertheless 

important to consider. 

 

5) Detectors: “Which detector should I use?” 

As explained in Ch. 2.3.4, there are a lot of muon detector variants to choose from. In reality, this choice 

is smaller due to the availability of the know-how and hardware at the collaborating physics institute 

(i.e. not every physics lab possesses a dedicated emulsion analysis infrastructure). Thus, it is a viable 

strategy to think about the deployment conditions and the instrumental specifics that a muon detector 

should encompass. For example, it would make no sense to deploy a detector inside a tunnel for a long 

time without any power supply or a nuclear emulsion in conditions that exhibit large temperature 

changes over the measurement period. As particle detectors are very often custom made, they can also 

be designed to operate in the desired environment. Therefore, one is best advised to discuss this matter 

within the collaboration and elaborate a roadmap. 
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6) Exposure: “How long do I need to collect muons until I get useful results?” 

In the course of the experimental planning, it is of utmost importance to have a rough idea of how long 

the data acquisition will take until the processing of data can start, such that subsequent project steps 

can be meaningfully scheduled. In order to answer this, a back-of-the-envelope calculation is usually 

enough. We quickly show how this can be read of a chart that was singularly produced for this reason. 

Interested readers are also referred to Appendix F, where we elucidate the rationale behind this approach. 

The aforementioned chart is depicted in Fig. 2.10 as a series of straight lines in a log-log plot. Every line 

denotes another relative spatial resolution (1 %, 5 %, 10 %, 20 %). Users usually haver already a target 

spatial resolution in mind before deciding on the exposure parameters (i.e. exposure time and detector 

area). The chart can be used by first deciding on which spatial resolution the experiment should have 

and then deciding on detector size (i.e. area) and exposure time. The resulting point in the graph should 

lie in the vicinity of the chosen spatial resolution line. This is nothing else as the trade-off between 

detector area and exposure time, i.e. the longer one records the muon flux, the smaller the detector can 

be, in order to record a muon flux of equal statistical significance. 

 

Figure 2.10: Decision help chart for the two experimental parameters detector size and exposure time in case of an 

overburden of around 600 m. Parallel lines indicate the amount of desired lateral precision one can achieve by using a 

corresponding area/time-point. The three blue dots represent an example from an earlier study performed on a glacier 

(Nishiyama et al., 2019).   

As this sounds very technical, we included in Fig. 2.10 a small example from our own experimental 

campaign (Nishiyama et al., 2019). In that study we had three operating detector sites, that calculated 

from the digital elevation model an overburden of roughly 600 𝑚 (i.e. distance from the detector to the 

middle of the surface of the study object; in our case this was glacier). We were targeting a relative 

spatial resolution of 10 %, which corresponds to an absolute spatial resolution of around 60 𝑚. Please 

note, that this value is the lateral spatial resolution (i.e. perpendicular to) and not along the viewing 

direction. This can also be understood as the bin size, that one plans on using during the data processing. 
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Limited by the total scanning throughput of our infrastructure, the 0.1 𝑚2 − 0.2 𝑚2 were an upper 

boundary to the overall detector size. Thus, we settled with an exposure time of around 100 𝑑 − 200 𝑑. 

In Appendix F, we provide the prospective user with similar plots as Fig. 2.10 but for different expected 

thicknesses of the overburden. Alternatively, the reader may use the respective formulae to plot his/her 

own version of this graph. 

 

7) Placement: “Where should I position my detectors?” 

This question relates somewhat to point 3 in the previous Ch. 2.5.1 where we discussed the physical 

accessibility of the measurement location. For one, it is still important that the detector is located below 

the target, in order to detect the natural cosmic ray muons. Another issue, that should be regarded from 

an experimental design point of view is the arrangement of different detectors with respect to each other. 

Frankly, if a 3D muon tomography is desired, one is advised to distribute the detectors as much as 

possible around the object in question. This could help prevent somewhat against an underdetermined 

inverse problem, where individual parameters cannot be resolved well because the detector geometry 

only allows to gain information on the correlation between the parameters and not their absolute values. 

A similar problem exists in seismology, where the detectors (i.e. seismographs) are preferably stationed 

around the earthquake to optimally resolve the earthquake source position. 

 

8) Synergies: “Can I improve my results by means of other geophysical methods?” 

This last issue ties strongly to point 2 from the previous Ch. 2.5.1. Namely, the question if other 

geophysical methods are better suited to fill the needs of the researcher. Here, we change the perspective 

on that question slightly and ask if there are other geophysical methods that may reinforce the muon 

tomography measurements. Many of the examples given in Ch. 2.4 are studies that utilise gravimetry in 

addition to muon tomography. This is a natural choice, as both methods are sensitive to the same physical 

parameter, i.e. material density. Additionally, both methods compensate many weaknesses of the 

respective other. This yields a superb synergy between these methods. It may at this point also be a good 

idea to consult fellow geoscientists who are experienced in geophysical imaging methods to get an idea 

if they are compatible with muon tomography.  
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2.6 Conclusions 

Until now insights into the Earth’s interior have mostly utilised well-established geophysical methods 

such as seismic tomography, electric resistivity tomography, ground penetrating radar etc. In recent 

years a new method originating from particle physics, muon tomography, was the longer the more used 

gain insights into shallow geological features. This new technology synergises well with the well-

established geophysical methods as their advantages and drawbacks balance each other. Muon 

tomography brought to geology the possibility to measure structural properties (like the density 

distribution) within the object in question, while not having to go near dangerous or inaccessible places. 

Naturally, there are also scenarios where the established geophysical methods yield much better results. 

To be able to make the decision whether this new technology could benefit one’s research, well-founded 

knowledge on the possibilities and limitations of muon tomography are needed. However, due to 

originating from a particle physics environment the know-how is located mostly in particle physics 

laboratories around the globe. With this work, we present a starting point for prospective users with a 

geoscientific background to delve deeper into the matter of muon tomography. The summaries of 

important aspects should help interested readers to form a solid foothold. From there on the acquisition 

of new particle physics knowledge is hopefully facilitated. The aspects in the previous chapters are not 

meant to be exhaustive. They consist, however, of a few important cornerstones that we think are 

important to get a good idea on the whole topic of muon tomography. The guidelines are also intended 

to point the prospective users into the right direction. The showcase of different applications is thought 

to be an inspiration for readers. Knowing about the potential uses of muon tomography, one can employ 

this technology in their own research field. The possible applications of this technology are still far from 

exhausted.  

  



2.7 APPENDIX A – RESULTS FROM PARMA CHAPTER 2 

46 

2.7 Appendix A – Results from PARMA 

Table 2.A1: Numerical results from PARMA (Sato, 2016) for the location of Bern, Switzerland (Lat: 46.94 °N, Lon: 

7.44 °E) for an altitude of 0 m above sea level.  

Total energy 𝐸 [𝐺𝑒𝑉] Differential muon flux 
𝑑Φ𝑆

𝑑𝐸
 [𝐺𝑒𝑉−1𝑚−2𝑠−1𝑠𝑟−1] 

 

𝜃 = 0∘ 𝜃 = 45∘ 𝜃 = 60∘ 

    

1.13 2.12E-03 5.93E-04 2.39E-04 

1.42 1.80E-03 5.36E-04 2.29E-04 

1.79 1.49E-03 4.73E-04 2.15E-04 

2.25 1.19E-03 4.05E-04 1.97E-04 

2.84 9.23E-04 3.36E-04 1.74E-04 

3.57 6.90E-04 2.69E-04 1.48E-04 

4.50 4.97E-04 2.06E-04 1.21E-04 

5.66 3.45E-04 1.52E-04 9.41E-05 

7.13 2.31E-04 1.07E-04 6.98E-05 

8.97 1.49E-04 7.25E-05 4.93E-05 

11.29 9.30E-05 4.70E-05 3.31E-05 

14.22 5.62E-05 3.10E-05 2.30E-05 

17.90 3.30E-05 1.99E-05 1.55E-05 

22.54 1.88E-05 1.24E-05 1.01E-05 

28.37 1.05E-05 7.52E-06 6.32E-06 

35.72 5.68E-06 4.42E-06 3.83E-06 

44.97 3.01E-06 2.52E-06 2.25E-06 

56.61 1.56E-06 1.40E-06 1.29E-06 

71.26 7.91E-07 7.49E-07 7.12E-07 

89.72 3.93E-07 3.93E-07 3.85E-07 

112.94 1.95E-07 2.05E-07 2.07E-07 

142.19 9.72E-08 1.07E-07 1.11E-07 

179.01 4.80E-08 5.48E-08 5.93E-08 

225.36 2.35E-08 2.79E-08 3.12E-08 

283.71 1.14E-08 1.40E-08 1.63E-08 

357.17 5.12E-09 6.42E-09 7.73E-09 

449.65 2.26E-09 2.88E-09 3.58E-09 

566.08 9.93E-10 1.28E-09 1.62E-09 

712.64 4.35E-10 5.59E-10 7.25E-10 

897.16 1.90E-10 2.42E-10 3.19E-10 

1129.40 8.32E-11 1.05E-10 1.39E-10 

1421.90 3.62E-11 4.56E-11 6.06E-11 

1790.10 1.58E-11 1.99E-11 2.64E-11 

2253.60 6.87E-12 8.64E-12 1.15E-11 

2837.10 2.99E-12 3.76E-12 4.99E-12 

3571.70 1.30E-12 1.63E-12 2.17E-12 

4496.50 5.63E-13 7.09E-13 9.41E-13 

5660.80 2.45E-13 3.08E-13 4.09E-13 

7126.40 1.06E-13 1.34E-13 1.77E-13 

8971.60 4.60E-14 5.80E-14 7.69E-14 
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2.8 Appendix B – Uncertainty estimates for muon flux 

 

Figure 2.B1: Comparison of the four muon flux models (Ch. 2.3.2.2 – 2.3.2.5) including an uncertainty estimate for a 

zenith angle of 𝜽 = 𝟒𝟓∘. Top left: Differential muon flux as a function of energy. Top right: Differential muon flux ratio 

to the mean differential flux 〈𝒅𝚽 𝒅𝑬⁄ 〉 (see Eq. 2.21). Bottom left: Integrated muon flux as a function of the lower 

integration boundary (i.e. 𝑬𝒄𝒖𝒕 in Eq. 2.20). Bottom right: Integrated muon flux ration to the mean integrated flux 〈𝚽〉. 
The 𝟏𝝈-uncertainty in the right-hand side plots has been calculated according to Eq. (2.23).  
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Figure 2.B2: Comparison of the four muon flux models (Ch. 2.2.2 – 2.2.5) including an uncertainty estimate for a zenith 

angle of 𝜽 = 𝟔𝟎∘. Top left: Differential muon flux as a function of energy. Top right: Differential muon flux ratio to the 

mean differential flux 〈𝒅𝚽 𝒅𝑬⁄ 〉 (see Eq. 2.21). Bottom left: Integrated muon flux as a function of the lower integration 

boundary (i.e. 𝑬𝒄𝒖𝒕 in Eq. 2.20). Bottom right: Integrated muon flux ration to the mean integrated flux 〈𝚽〉. The 𝟏𝝈-

uncertainty in the right-hand side plots has been calculated according to Eq. (2.23).  
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2.9 Appendix C – Energy loss tables 

The energy loss tables, as mentioned in Ch. 2.3.3.2 may be found on the website of the Particle Data 

Group, the international collaboration of particle physicists (https://pdg.lbl.gov/ → Atomic & Nuclear 

Properties). They offer energy loss tables for every pure element as well as for selected compounds. As 

an example, we present the table for “standard rock”, reduced only to the most important information. 

Please note that in Table 2.C1 the indicated energy is the kinetic energy of the muon, 𝑇 and not the total 

energy, 𝐸. They are however related by the formula 

𝑇 = 𝐸 − 𝐸𝜇 ,  (2.C1) 

where 𝐸𝜇 = 105.7 𝑀𝑒𝑉 is the rest mass of the muon. For 𝐸 ≫ 𝐸𝜇 we have 𝐸 ≈ 𝑇. 

Table 2.C1: Excerpt from the energy loss table for standard rock between 𝟏 𝑮𝒆𝑽 − 𝟗𝟎𝟎 𝑮𝒆𝑽.  

T 
 [𝑀𝑒𝑉] 

dE/dx 
[𝑀𝑒𝑉 𝑐𝑚2 𝑔−1] 

Range 
 [𝑔 𝑐𝑚−2] 

T 
[𝑀𝑒𝑉] 

dE/dx 
[𝑀𝑒𝑉 𝑐𝑚2 𝑔−1] 

Range 
[𝑔 𝑐𝑚−2] 

      

1.000E+03 1.808E+00 5.534E+02 1.000E+05 2.747E+00 4.084E+04 

1.200E+03 1.837E+00 6.631E+02 1.200E+05 2.837E+00 4.800E+04 

1.400E+03 1.862E+00 7.712E+02 1.400E+05 2.925E+00 5.495E+04 

1.700E+03 1.895E+00 9.309E+02 1.700E+05 3.057E+00 6.498E+04 

2.000E+03 1.922E+00 1.088E+03 2.000E+05 3.187E+00 7.459E+04 

2.500E+03 1.960E+00 1.346E+03 2.500E+05 3.400E+00 8.977E+04 

3.000E+03 1.990E+00 1.599E+03 3.000E+05 3.611E+00 1.040E+05 

3.500E+03 2.016E+00 1.848E+03 3.500E+05 3.824E+00 1.175E+05 

4.000E+03 2.038E+00 2.095E+03 4.000E+05 4.037E+00 1.302E+05 

4.500E+03 2.058E+00 2.339E+03 4.500E+05 4.250E+00 1.423E+05 

5.000E+03 2.075E+00 2.581E+03 5.000E+05 4.465E+00 1.538E+05 

5.500E+03 2.091E+00 2.821E+03 5.500E+05 4.677E+00 1.647E+05 

6.000E+03 2.105E+00 3.059E+03 6.000E+05 4.890E+00 1.752E+05 

7.000E+03 2.130E+00 3.531E+03 7.000E+05 5.318E+00 1.948E+05 

8.000E+03 2.152E+00 3.998E+03 8.000E+05 5.748E+00 2.129E+05 

9.000E+03 2.171E+00 4.461E+03 9.000E+05 6.180E+00 2.296E+05 

      

1.000E+04 2.188E+00 4.920E+03 1.000E+06 6.615E+00 2.453E+05 

1.200E+04 2.218E+00 5.827E+03 1.200E+06 7.475E+00 2.737E+05 

1.400E+04 2.244E+00 6.724E+03 1.400E+06 8.340E+00 2.990E+05 

1.700E+04 2.277E+00 8.051E+03 1.700E+06 9.647E+00 3.324E+05 

2.000E+04 2.306E+00 9.360E+03 2.000E+06 1.096E+01 3.616E+05 

2.500E+04 2.347E+00 1.151E+04 2.500E+06 1.314E+01 4.032E+05 

3.000E+04 2.383E+00 1.362E+04 3.000E+06 1.533E+01 4.384E+05 

3.500E+04 2.416E+00 1.571E+04 3.500E+06 1.754E+01 4.688E+05 

4.000E+04 2.447E+00 1.776E+04 4.000E+06 1.976E+01 4.957E+05 

4.500E+04 2.476E+00 1.979E+04 4.500E+06 2.198E+01 5.197E+05 

5.000E+04 2.503E+00 2.180E+04 5.000E+06 2.422E+01 5.413E+05 

5.500E+04 2.530E+00 2.379E+04 5.500E+06 2.643E+01 5.611E+05 

6.000E+04 2.556E+00 2.575E+04 6.000E+06 2.865E+01 5.792E+05 

7.000E+04 2.606E+00 2.963E+04 7.000E+06 3.311E+01 6.117E+05 

8.000E+04 2.654E+00 3.343E+04 8.000E+06 3.759E+01 6.400E+05 

9.000E+04 2.701E+00 3.717E+04 9.000E+06 4.208E+01 6.651E+05 
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2.10 Appendix D – Radiation length of a real rock 

In this chapter we guide the reader through an exemplary calculation from the raw XRF measurements 

to a radiation length. 

We start off by showing the raw XRF data that was collected during our measurement campaign for 

Nishiyama et al. (2017) in Table 2.D1. 

Table 2.D1: Raw XRF measurement data taken during the muon tomography measurement campaign of Nishiyama et 

al. (2017). Data in columns denote weight percent oxide fractions.  

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 

              

Oxide              

SiO2 0.6131 0.5981 0.6997 0.6139 0.6201 0.6401 0.5691 0.6555 0.7101 0.7181 0.6287 0.7593 0.6771 

TiO2 0.0123 0.0067 0.0076 0.0094 0.0084 0.0088 0.0156 0.0089 0.0069 0.0065 0.0075 0.0055 0.0083 

Al2O3 0.1567 0.1873 0.1481 0.1921 0.178 0.1736 0.1875 0.1719 0.1394 0.1455 0.1902 0.1142 0.147 

Fe2O3 0.087 0.0791 0.0496 0.0686 0.065 0.0586 0.0833 0.0648 0.0486 0.0428 0.0683 0.0303 0.0558 

MnO 0.001 0.0012 0.0009 0.0009 0.0008 0.0008 0.0011 0.0009 0.0007 0.0006 0.0009 0.0005 0.0009 

MgO 0.0359 0.0285 0.0206 0.0288 0.0254 0.0246 0.0318 0.0215 0.0225 0.0192 0.0266 0.0139 0.0229 

CaO 0.0202 0.0071 0.0201 0.0137 0.0147 0.0244 0.0325 0.0146 0.0168 0.0167 0.012 0.0161 0.0125 

Na2O 0.0228 0.0248 0.0404 0.0323 0.0369 0.0372 0.0518 0.0442 0.0365 0.0378 0.0451 0.0264 0.0199 

K2O 0.0343 0.0465 0.0287 0.0469 0.0465 0.0406 0.0315 0.0354 0.0233 0.0282 0.0452 0.0223 0.031 

P2O5 0.0041 0.0029 0.0021 0.0027 0.0035 0.0064 0.0123 0.0014 0.0016 0.003 0.0014 0.0019 0.0009 

              

Sum 0.9874 0.9822 1.0178 1.0093 0.9993 1.0151 1.0165 1.0191 1.0064 1.0184 1.0259 0.9904 0.9763 

 

Following the methodology in Ch. 3.9.2 we may rearrange Table 2.D1 into pure element data by 

decomposing them into their elementary constituent weight fractions. This is shown in Table 2.D2. 

Table 2.D2: Raw data from Table 2.D1 decomposed into elementary weight fractions.  

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 

              

Element              

Si 0.2866 0.2796 0.3271 0.2870 0.2899 0.2992 0.2660 0.3064 0.3319 0.3357 0.2939 0.3549 0.3165 

Ti 0.0074 0.0040 0.0046 0.0056 0.0050 0.0053 0.0093 0.0053 0.0041 0.0039 0.0045 0.0033 0.0050 

Al 0.0829 0.0991 0.0784 0.1017 0.0942 0.0919 0.0992 0.0910 0.0738 0.0770 0.1007 0.0604 0.0778 

Fe 0.0609 0.0553 0.0347 0.0480 0.0455 0.0410 0.0583 0.0453 0.0340 0.0299 0.0478 0.0212 0.0390 

Mn 0.0008 0.0009 0.0007 0.0007 0.0006 0.0006 0.0009 0.0007 0.0005 0.0005 0.0007 0.0004 0.0007 

Mg 0.0216 0.0172 0.0124 0.0174 0.0153 0.0148 0.0192 0.0130 0.0136 0.0116 0.0160 0.0084 0.0138 

Ca 0.0144 0.0051 0.0144 0.0098 0.0105 0.0174 0.0232 0.0104 0.0120 0.0119 0.0086 0.0115 0.0089 

Na 0.0169 0.0184 0.0300 0.0240 0.0274 0.0276 0.0384 0.0328 0.0271 0.0280 0.0335 0.0196 0.0148 

K 0.0285 0.0386 0.0238 0.0389 0.0386 0.0337 0.0261 0.0294 0.0193 0.0234 0.0375 0.0185 0.0257 

P 0.0018 0.0013 0.0009 0.0012 0.0015 0.0028 0.0054 0.0006 0.0007 0.0013 0.0006 0.0008 0.0004 

O 0.4656 0.4627 0.4909 0.4751 0.4708 0.4808 0.4704 0.4842 0.4893 0.4952 0.4822 0.4913 0.4737 

              

Sum 0.9874 0.9822 1.0178 1.0093 0.9993 1.0151 1.0165 1.0191 1.0064 1.0184 1.0259 0.9904 0.9763 

 

At this point we may normalise the data, i.e. rescale each data column to 1, as depicted in Table 2.D3. 
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Table 2.D3: Elementary weight fraction data from Table 2.D2 normalised to 1.  

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 

              

Element              

Si 0.2902 0.2846 0.3213 0.2843 0.2901 0.2948 0.2617 0.3007 0.3298 0.3296 0.2865 0.3584 0.3242 

Ti 0.0075 0.0041 0.0045 0.0056 0.0050 0.0052 0.0092 0.0052 0.0041 0.0038 0.0044 0.0033 0.0051 

Al 0.0840 0.1009 0.0770 0.1007 0.0943 0.0905 0.0976 0.0893 0.0733 0.0756 0.0981 0.0610 0.0797 

Fe 0.0616 0.0563 0.0341 0.0475 0.0455 0.0404 0.0573 0.0445 0.0338 0.0294 0.0466 0.0214 0.0400 

Mn 0.0008 0.0009 0.0007 0.0007 0.0006 0.0006 0.0008 0.0007 0.0005 0.0005 0.0007 0.0004 0.0007 

Mg 0.0219 0.0175 0.0122 0.0172 0.0153 0.0146 0.0189 0.0127 0.0135 0.0114 0.0156 0.0085 0.0141 

Ca 0.0146 0.0052 0.0141 0.0097 0.0105 0.0172 0.0229 0.0102 0.0119 0.0117 0.0084 0.0116 0.0092 

Na 0.0171 0.0187 0.0294 0.0237 0.0274 0.0272 0.0378 0.0322 0.0269 0.0275 0.0326 0.0198 0.0151 

K 0.0288 0.0393 0.0234 0.0386 0.0386 0.0332 0.0257 0.0288 0.0192 0.0230 0.0366 0.0187 0.0264 

P 0.0018 0.0013 0.0009 0.0012 0.0015 0.0028 0.0053 0.0006 0.0007 0.0013 0.0006 0.0008 0.0004 

O 0.4716 0.4711 0.4823 0.4707 0.4711 0.4736 0.4628 0.4751 0.4862 0.4862 0.4700 0.4961 0.4852 

              

Sum 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

The last step consists of forming so called log-ratios. This means that we divide our rows by one 

arbitrarily chosen row (we decided on the last row, i.e. oxygen) and take the natural logarithm of the 

resulting value. See Table 2.D4 for these results. 

Table 2.D4: Log-ratios of the values given in Table 2.D3.  

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 

              

ln (𝑆𝑖 𝑂)⁄  -0.4853 -0.5038 -0.4061 -0.5042 -0.4850 -0.4742 -0.5701 -0.4575 -0.3881 -0.3887 -0.4952 -0.3252 -0.4032 

ln (𝑇𝑖 𝑂)⁄  -4.1457 -4.7469 -4.6800 -4.4348 -4.5381 -4.5125 -3.9183 -4.5083 -4.7734 -4.8450 -4.6753 -5.0043 -4.5561 

ln (𝐴𝑙 𝑂)⁄  -1.7253 -1.5406 -1.8346 -1.5418 -1.6089 -1.6549 -1.5561 -1.6718 -1.8920 -1.8610 -1.5665 -2.0955 -1.8063 

ln (𝐹𝑒 𝑂)⁄  -2.0349 -2.1238 -2.6497 -2.2928 -2.3375 -2.4621 -2.0887 -2.3686 -2.6669 -2.8058 -2.3119 -3.1435 -2.4962 

ln (𝑀𝑛 𝑂)⁄  -6.3989 -6.2103 -6.5572 -6.5245 -6.6331 -6.6541 -6.3139 -6.5434 -6.8053 -6.9713 -6.5393 -7.1459 -6.5214 

ln (𝑀𝑔 𝑂)⁄  -3.0684 -3.2929 -3.6767 -3.3090 -3.4254 -3.4784 -3.1999 -3.6202 -3.5853 -3.7557 -3.4032 -4.0710 -3.5351 

ln (𝐶𝑎 𝑂)⁄  -3.4736 -4.5129 -3.5314 -3.8821 -3.8025 -3.3167 -3.0083 -3.8373 -3.7076 -3.7254 -4.0293 -3.7542 -3.9707 

ln (𝑁𝑎 𝑂)⁄  -3.3152 -3.2248 -2.7960 -2.9871 -2.8448 -2.8577 -2.5048 -2.6923 -2.8943 -2.8711 -2.6680 -3.2224 -3.4684 

ln (𝐾 𝑂)⁄  -2.7944 -2.4838 -3.0255 -2.5017 -2.5011 -2.6578 -2.8898 -2.8019 -3.2307 -3.0517 -2.5534 -3.2787 -2.9127 

ln (𝑃 𝑂)⁄  -5.5615 -5.9015 -6.2834 -5.9995 -5.7308 -5.1482 -4.4732 -6.6751 -6.5522 -5.9354 -6.6710 -6.3844 -7.0950 

ln (𝑂 𝑂)⁄  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

              

 

As these log-ratios are usually statistically well-behaved, i.e. gaussian-like, we may form a meaningful 

mean log-ratio of our different samples. For an explanation why this works, the reader is referred to the 

textbook of Aitchison (1986). Normality plots of this data may additionally be found in Ch. 3.9.2. 

Now we may calculate the mean of the data in Table 2.D4 (see Table 2.D5 for results). 
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Table 2.D5: Mean values of the 13 log-ratios given in Table 2.D4.  

Log-ratio Mean value 

  

ln(𝑆𝑖 𝑂⁄ ) -0.4528 

ln(𝑇𝑖 𝑂⁄ ) -4.5645 

ln(𝐴𝑙 𝑂⁄ ) -1.7197 

ln(𝐹𝑒 𝑂⁄ ) -2.4448 

ln(𝑀𝑛 𝑂⁄ ) -6.6014 

ln(𝑀𝑔 𝑂⁄ ) -3.4939 

ln(𝐶𝑎 𝑂⁄ ) -3.7348 

ln(𝑁𝑎 𝑂⁄ ) -2.9498 

ln(𝐾 𝑂⁄ ) -2.8218 

ln(𝑃 𝑂⁄ ) -6.0316 

ln(𝑂 𝑂⁄ ) 0.0000 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 2.D6: Back-transformed mean values from Table 2.D5. Additionally, the inverse value of the radiation length 

is also shown. 𝟏/𝚲𝟎 has been calculated according to Eqs. (2.34) & (2.35) and Table 2.1.  

Element Wt-mean 1 Λ0⁄  (rad. length) [𝑐𝑚2 𝑔−1] 

   

Si 0.3054 0.0458 

Ti 0.0050 0.0619 

Al 0.0860 0.0416 

Fe 0.0417 0.0723 

Mn 0.0007 0.0683 

Mg 0.0146 0.0399 

Ca 0.0115 0.0619 

Na 0.0251 0.0361 

K 0.0286 0.0578 

P 0.0012 0.0472 

O 0.4803 0.0292 
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Using the back transformation from log-ratios to element weight fractions, i.e. 

𝑤𝑡𝑒𝑙𝑒,𝑖 =
exp(𝑟𝑖)

1+∑ exp(𝑟𝑗)
𝑁𝑒𝑙𝑒−1

𝑗=1

  (2.D1) 

for the numerator elements and 

𝑤𝑡𝑒𝑙𝑒,𝑁𝑒𝑙𝑒 =
1

1+∑ exp(𝑟𝑗)
𝑁𝑒𝑙𝑒−1

𝑗=1

  (2.D2) 

for de denominator element (oxygen), we can transform these mean log-ratios from Table 2.D5 back to 

meaningful element weight fractions (see Table 2.D6). Once we have these weight fractions, we may 

perform a weighted average over the inverse values of the radiation length (see Eq. 2.36) to get the 

radiation length of our rock. We eventually end up with  1 Λ0,rock⁄ = 0.0389 𝑐𝑚2 𝑔−1 or equivalently, 

Λ0,𝑟𝑜𝑐𝑘 = 25.72 𝑔 𝑐𝑚
−2. 

With the log-ratio formalism it is theoretically also possible to calculate an error on this radiation length. 

As this however goes too far for the purpose of this calculation, we omit this step. 
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2.11 Appendix E – Treatment of multiple Coulomb scattering 

In this appendix we try to illustrate how we can apply the concepts from Ch. 2.3.3.3 to an example 

experimental setup in order to understand how we can cope with the potential outscattering of particles. 

Following Tanabashi et al. (2018) we assume that our scattering can be well described by a 2D-Gaussian 

distribution around zero deviation with a “standard deviation” of 𝜎 = 𝜃𝑝𝑙𝑎𝑛𝑒, i.e. 

𝑝(𝜃𝑥 , 𝜃𝑦) =
1

2𝜋𝜃𝑝𝑙𝑎𝑛𝑒
2 exp (−

𝜃𝑥
2+𝜃𝑦

2

2𝜃𝑝𝑙𝑎𝑛𝑒
2 ) .  (2.E1) 

An example of how this looks like when this scattering cone hits a detector please see a) of Fig. 2.E1. 

We see that not all muons hit the detector. However, we also have to account for muons, that would not 

normally hit the detector and are scattered into the detector. We present here a conceptual approach for 

this non-trivial phenomenon. We may add some imaginary detectors around our real device, which then 

forms a sort of detector lattice, with one detector being a “unit cell”. For every imaginary detector we 

can form also such a muon scattering cone, coming from the same direction as the original one (i.e. they 

are parallel to each other). Muons that would normally not hit this imaginary detector, will instead hit 

our real detector (at least on the side where real and imaginary detector touch). These particles are then 

scattered into our detector (see b) of Fig. 2.E1). This is valid for every point on our detector; c) & d) of 

Fig. 2.E1 depict the situation for a non-centred point on the detector. 

One sees that out-scattering and in-scattering are always balanced and thus the measured muon flux can 

be reliably measured. One warning has to be made though. If we have to deal with in- and out-scattering, 

we actually lower the spatial resolution of our measurement. This can be explained by the fact, that if 

we have to rely on imaginary detectors to “catch” our stray muons, then we actively enlarge the effective 

detector area relative to the structures that we want to observe. In the example from Fig. 2.E1. we tripled 

the height and width of our detector, meaning that we cannot resolve structures below ~3 𝑚 anymore, 

as they tend to be “smoothed” out in our measurements. This effect is expected to become even more 

prominent with lower-energy (i.e. higher scattering angle) muons. 

Luckily, as we usually do not use only muons from one energy, but from the whole flux (i.e. energy 

integrated), this “blurring”-effect is usually mitigated to an extent where the blurring is below the 

resolution one tries to achieve.  

Note, that this is only a very rough sketch of the problem and we do not present a definitive solution, 

but only a way on how one might conceptualise this issue. Certainly, more research is needed in this 

area. 
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Figure 2.E1: Examples of out-scattering and in-scattering from different (adjacent) incident muon trajectories on a 

detector (red rectangle) with side lengths 𝒍 = 𝟏 𝒎. Dashed circles denote the isolines from a 2D Gaussian distribution 

(here with the parameters for 𝟏𝟓𝟎 𝒎 of standard rock and an exit energy of 𝟏𝟎𝟎 𝑮𝒆𝑽; this means 𝜽𝒑𝒍𝒂𝒏𝒆 = 𝟒. 𝟔𝟗 𝒎𝒓𝒂𝒅 

(see Table 2.2). a) A small part of the scattered muons does not hit the detector, i.e. they are scattered “out”. b) 

Scattering-in of muons that would normally not hit the detector. c) & d) show the same phenomenon if we look at a 

decentral position on the detector. One can always find a periodic arrangement of detectors to balance in- and out-

scattering.  
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2.12 Appendix F – Derivation of the exposure decision helper 

The basis for this derivation is formed by Eq. (2.20), i.e. the formulation of the integrated flux. However, 

one does usually not measure the integrated flux directly, but a number of muons, 𝑁𝜇, in a certain solid 

angle, ΔΩ, over a certain time, Δ𝑇, on a detector with a definite size, Δ𝐴. Given this description, the 

relation between the integrated flux and the number of muons becomes 

Φ(𝐸𝑐𝑢𝑡) =  
𝑁𝜇

Δ𝐴∗Δ𝑇∗ΔΩ
 . (2.F1) 

One may also think of the number of recorded muons as the integral of the (integrated) flux over the 

detector area, the total exposure time and the covered solid angle. Eq. (2.F1) is consequently the reduced 

formulation if the integrated flux does not depend on the experimental parameters Δ𝐴, Δ𝑇 or ΔΩ. In 

contrast to the detector size where this is generally the case, the exposure time may be an integral over 

seasonal variations. However, if the experiment is short enough or if the seasonal variations are small 

in the energy range one is looking at, one is usually fine with this approximation. The solid angle on the 

other hand could potentially introduce a large bias if unaccounted for (the muon flux depends strongly 

on the zenith angle). One remedy to this problem is the introduction of small bins that do not cover a 

large zenith angle interval.  

If we can assume that the errors on Δ𝐴, Δ𝑇 & ΔΩ are well controllable and are thus negligible, the only 

real source of uncertainty is given by the counting statistics of 𝑁𝜇. This can very well be modelled by a 

Poisson distribution, yielding a statistical error of 

휀N = √Φ ∗ Δ𝐴 ∗ Δ𝑇 ∗ ΔΩ , (2.F2) 

or 

휀N = √Φ ∗ Δ𝐸𝑋𝑃,  (2.F3) 

where Δ𝐸𝑋𝑃 = Δ𝐴 ∗ Δ𝑇 ∗ ΔΩ, is defined to be the “exposure”. Performing a (gaussian) uncertainty 

propagation on the equation Φ = 𝑁𝜇 Δ𝐸𝑋𝑃⁄  yields an absolute error of 

휀Φ = √
Φ

Δ𝐸𝑋𝑃
 ,  (2.F4) 

and a relative error of 

𝜖Φ =
Φ

Φ
= √

1

Φ∗Δ𝐸𝑋𝑃
 , (2.F5) 

respectively. Equation (2.F5) can now be rearranged for the exposure,  

Δ𝐸𝑋𝑃 = 
1

Φ∗𝜖Φ
2  . (2.F6) 
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This formulation now allows for the calculation of the necessary exposure for a given flux and relative 

uncertainty. Recalling from Ch. 2.3.2.6 that the systematic error of the flux model is in the order of 15 %, 

or 0.15, we may use this value for 𝜖Φ as we want the statistical error of the number of muons to be 

smaller or equal compared to the systematic flux error.  

With help from the equations of Ch. 2.4 we compiled a graph (see Fig. 2.F1) that shows how large the 

integrated muon flux after a certain thickness of rock is. Additionally, we put an equivalent graph next 

to it that converts the necessary exposure for a given rock thickness by using Eq. (2.F6) and 𝜖Φ = 0.15. 

 

Figure 2.F1: Expected muon flux and required exposure as a function of rock thickness. Left: Integrated muon flux 

(Reyna-Bugaev model, see Ch. 2.3.2.3) as a function of rock thickness. Right: Required exposure to achieve a relative 

statistical error of 0.15 as a function of rock thickness (calculated with Eq. 2.F6).  

We can use this newly gained information on what amount of exposure we need to construct a function 

that may help us visualise which combinations of exposure parameters (i.e. detector area, exposure time 

and solid angle) are feasible. We proceed in writing the equation for the exposure in a slightly different 

way, 

Δ𝐴 = 
Δ𝐸𝑋𝑃

ΔT∗ΔΩ
 .  (2.F7) 

At this point we make use of the fact that the solid angle is often rather small, as researchers tend to bin 

the measured muons in directional bins. This way detailed directional information can be used for a 

much more precise tomography. The definition of the solid angle is given as the surface of the sphere at 

distance 𝐷 within the bin margins divided by the radius of the sphere squared, 𝐷2. At large distances 

this spherical surface can be approximated by the tangential surface, whose area is much easier to 

compute, i.e. Δ𝑋 ∗ Δ𝑌, where 𝑋 and 𝑌 are the width and the height of the tangential surface. The solid 

angle can thus be approximately calculated by 



2.12 APPENDIX F – DERIVATION OF THE EXPOSURE DECISION HELPER CHAPTER 2 

58 

ΔΩ ≈
Δ𝑋∗Δ𝑌

𝐷2
 . (2.F8) 

For computational convenience we assume a quadratic bin, such that Eq. (2.F8) can be recast into 

ΔΩ =
Δ𝑅𝑒𝑠2

𝐷2
 ,  (2.F9) 

where we substituted Δ𝑋  and Δ𝑌  each with Δ𝑅𝑒𝑠 , the lateral resolution in a distance unit (usually 

metres). 

Putting Eq. (2.F9) into Eq. (2.F7) gives 

Δ𝐴 = 
Δ𝐸𝑥𝑝∗𝐷2

Δ𝑇∗Δ𝑅𝑒𝑠2
 .  (2.F10) 

This equation can be put in an even simpler form by taking the logarithm on both sides, 

log(Δ𝐴) = − log(Δ𝑇) + log (
Δ𝐸𝑋𝑃∗𝐷2

Δ𝑅𝑒𝑠2
) .  (2.F11) 

Equation (2.F11) is a linear equation on a Log-Log plot where the exposure time is on the x-axis while 

the detector size is on the y-axis. For a given rock thickness, 𝐷, also the exposure is fixed (see Fig. 2.F1), 

this making the lateral spatial resolution, Δ𝑅𝑒𝑠, the last variable, that has to be chosen. A summary for 

different rock thicknesses can be seen in Fig 2.F2. 

For computational simplicity, we display the detector size axis in two different colours indicating two 

different measurement units that are often used to describe the detector area. One sees also nicely that 

the variation of the lateral spatial resolution affects the linear relationship only as an offset. 

A recipe and an example on how to choose valid exposure parameters can be found in Ch. 2.5.2. 
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Figure 2.F2: Decision help chart for the two experimental parameters detector size and exposure time for various rock 

thicknesses. Parallel lines indicate the amount of desired lateral precision one can achieve by using a corresponding 

area/time-point.  
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3.1 Abstract 

Knowledge about muon tomography has spread in recent years in the geoscientific community and 

several collaborations between geologists and physicists have been founded. As the data analysis is still 

mostly done by particle physicists, we address the need of the geoscientific community to participate in 

the data analysis, while not having to worry too much about the particle physics equations in the 

background. The result hereof is SMAUG, a toolbox consisting of several modules that cover the various 

aspects of data analysis in a muon tomographic experiment. In this study we show how a comprehensive 

geophysical model can be built from basic physics equations. The emerging uncertainties are dealt with 

by a probabilistic formulation of the inverse problem, which is finally solved by a Monte Carlo Markov 

Chain algorithm. Finally, we benchmark the SMAUG results against a recent study and show that they 

reach identical results with the same level of accuracy and precision. 

3.2 Introduction 

Among the manifold geophysical imaging techniques, muon tomography has increasingly gained the 

interest of geoscientists during the course of the past years. Before its application in Earth sciences, it 

was initially used for archaeological purposes. Alvarez et al. (1970) used this method to search for 

hidden chambers in the pyramids of Giza, in Egypt; an experiment which was recently repeated by 

Morishima et al. (2017), as better technologies have continuously been developed. Other civil 

engineering applications include the monitoring of nuclear power plant operations (Takamatsu et al., 

2015) and the search for nuclear waste repositories (Jonkmans et al., 2013) as well as the investigation 

of underground tunnels (e.g. Thompson et al., 2020; Guardincerri et al., 2017). A serious deployment of 

muon tomography in Earth sciences has only begun in the past decades. These undertakings mainly 

encompass the study of the interior of volcanoes in France (Ambrosino et al., 2015; Jourde et al., 2016; 

Noli et al., 2017; Rosas-Carbajal et al., 2017), Italy (Ambrosino et al., 2014; Lo Presti et al., 2018; 



3.2 INTRODUCTION CHAPTER 3 

68 

Tioukov et al., 2017) and Japan (Kusagaya and Tanaka, 2015; Nishiyama et al., 2014; Oláh et al., 2018; 

Tanaka, 2016). Other experiments have been performed in order to explore the geometry of karst cavities 

in Hungary (Barnaföldi et al., 2012) and Italy (Saracino et al., 2017). Further studies have been 

conducted by our group to recover the ice-bedrock interface of Alpine glaciers in central Switzerland 

(Nishiyama et al., 2017; 2019). 

The core component of every geophysical exploration experiment is formed by the inversion, which 

might be better known to other communities as fitting or modelling. This is where the model parameters 

are found which best fit the observed data. Up until now, this central part has mostly been built 

specifically to meet the needs of the experimental campaign at hand. On the one hand this approach has 

the advantage of allowing for the peculiarities of particle detectors, their data processing chain and other 

models involved (e.g. the cosmic ray flux model). On the other hand, when every group builds a separate 

inversion, the reconstruction of the precise calculations performed in the data analysis procedure 

becomes a challenge. For a researcher who is not familiar with the intricacies of inversion, this might 

even be tougher. We thus see the need for a lightweight programme that incorporates a structured and 

modular approach to inversion, that also allows users with little inversion experience to familiarise 

themselves with this rather involved topic. This programme can be used to directly analyse experimental 

data in a stand-alone working environment, and the modules and theoretical foundations can be adapted, 

customised, and integrated into new programmes. For this reason, the code is built in the programming 

language Python as to facilitate exchange between researchers and to enhance modifiability. Moreover, 

the source code is freely available online (see code availability section below). 

3.2.1 Inversion – a modular view 

The goal of every muon tomography study is essentially to infer physical parameters of the radiographed 

object by a measurement of the cosmic ray muon flux and its absorption through that object. In 

geological applications these objects are almost always lithological underground structures such as 

magma chambers, cavities, or other interfaces with a high-density contrast. The reconstruction of the 

geometry of such structures can only be achieved if the measured muon data is compared to the results 

of a muon flux simulation. As stated earlier, this is the basic principle of the inversion procedure. 

However, the aforementioned “muon flux simulation” is not just a simple programme, but it consists of 

several physically independent models that act together. Taking a modular view, we will call those 

models “modules” from here on, as they will inevitably be part of a larger inversion code. We have 

visualised the components that are necessary to build an inversion in Fig. 3.1.  

The first of the modules is the input module for the experiment results, which also considers the detectors 

that were used in the experiment. Typical detector setups include nuclear emulsion films (e.g. Ariga et 

al., (2018), cathode chambers (e.g. Oláh et al., 2013), scintillators (e.g. Anghel et al., 2015) or other 

hardware solutions. Although the detailed data processing chain may be comprehensive, the related 

output almost always comes in the form of a measured directional (i.e. from various incident angles) 
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muon flux, which will be the input to the inversion scheme. Here, we primarily work with the premise 

that the muon flux data and the associated errors are given. The corresponding errors can then be 

furnished to the code by means of an interface. The simulation module on the other hand, consists of 

four autonomous components (see Fig. 3.1). First, a cosmic ray muon flux model is necessary, which 

describes the muon abundance in the atmosphere, generally dependent on muon energy, incident angle 

and height. Lesparre et al. (2010) list and compare various muon flux models that may be incorporated 

into an extensive simulation. Second, it is necessary to model the spatial distribution of the detectors as 

well as the initial distribution of the lithologies. Related pre-existing software solutions mainly comprise 

GIS- and geological 3D-modelling applications, that excel at capturing and compiling geological 

information from various sources (e.g. field, maps, etc.) into a spatially organised database. Third, the 

lithologies consisting of different minerals have to be translated to a set of parameters, which are a 

necessary input for the subsequent physical simulation. This can be done by a rock model (e.g. 

Lechmann et al., 2018), which considers the effects of the mass density as well as the average atomic 

mass and charge of the rock as a function of its mineralogical composition. Lastly, the muon fluxes at 

the detector sites have to be simulated by means of a muon transportation model, which calculates all 

physical processes by which a muon loses kinetic energy while travelling through matter. The particle 

physics community has a great variety of particle simulators, the most prominent being GEANT4 

(Agostinelli et al., 2003), a Monte Carlo based simulator. These have the advantage that stochastic 

processes resulting in energy loss are simulated according to their probabilistic occurrence - an upside 

that has to be traded off for longer computation times. In contrast to obtaining the full energy loss 

distribution, lightweight alternatives often resort to the calculation of only the mean energy loss. The 

solution of the resulting differential equation can even be tabulated, as has been done by Groom et al. 

(2001). The interplay of these four submodules allows for the simulation of muon fluxes at the detector 

sites that are mostly located in an underground environment.  
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Figure 3.1: A schematic flowchart showing the different involved models in a muon tomographic experiment. The muon 

simulation consists of a model for rocks, detectors, the cosmic ray flux and a particle physical model on how muons lose 

energy upon travelling through rocks. These models allow for a synthetic data set to be computed, which will be 

compared to the actual measured data from the experiment. An optimisation problem then solves for the best set of 

parameters.  

3.2.2 The need for a consistent inversion environment 

The sole combination of the aforementioned four submodules does not fully justify the need for a new 

software, as cosmic ray flux models as well as rock model can also be programmed within existing 

Monte Carlo simulators such as GEANT4 (Agostinelli et al., 2003) or MUSIC (Kudryavtsev, 2009). 

Unfortunately, the application of such a Monte Carlo approach requires a rather good understanding of 

programming and nuclear physics processes. Thus, it might prove time-consuming to programme a 

specific code. Moreover, these codes are often written in a specialised programming language such as 

C++, which is already a rather specialised language. Third, the compatibility between different modules 

(e.g. cosmic ray flux and energy loss) may be severely hampered, if the programme interfaces are not 

taken into consideration. It might be even worse if the two modules are written in two different 

programming languages. In addition, one has to carefully evaluate the benefit of such an undertaking, 

especially if the resulting code will most likely be tailored only to a specific problem. We thus see the 

need for a versatile, user-friendly simulator, which allows users not only to quickly perform the 

necessary calculations, without the need of additional coding, but also tailor the individual models to 

custom needs. A new simulator can be more useful if an inversion functionality is already included. As 

can be seen in Fig. 3.1, the inversion compares the simulated flux data with the measured ones. It also 

attempts to reduce the discrepancy between measurements and simulations by optimising the parameters 

in the simulation, namely material density and the thickness distribution of the overlying materials. This 

results in a density- or structural rock model, which best reproduces the measured data. As the 

mathematical optimization in muon tomography generally is nonlinear, one has to employ nonlinear 

solvers or even Monte Carlo techniques. This circumstance encourages us to work with a lightweight 
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version of a muon transport simulator, because a nonlinear inversion of Monte Carlo simulations, 

although mathematically preferable, is computationally prohibitive. This allows us to make use of 

methods from the Bayesian realm, that thrive when measurements from different sources have to be 

combined into a single comprehensive model. With the code presented in this paper, we aspire to make 

muon tomography accessible to a broader geoscientific community, as the know-how in this field is 

mainly concentrated in particle physics laboratories. We want to provide the tools for Earth scientists, 

or users that are mainly focused on the application of the method, so that they can perform their own 

analyses. 

In this contribution we present our new code, SMAUG (Simulation for Muons and their Applications 

UnderGround), that allows a broader scientific community to plan and analyse muon tomographic 

experiments more easily, by providing them with data analysis and inversion tools. Specifically, we 

describe the governing equations of the physical models, and the mathematical techniques that were 

used. Chapter 3.3 depicts how the muon flux simulation is conducted by its submodules and how a muon 

flux simulation is performed. Chapter 3.4 then dives into the inversion module and explains how the 

parameters of the inferred density/rock-model can be estimated based on measured data. This chapter 

includes a description of the model and data errors and an explanation on how a subsurface material 

boundary can be constructed. Chapter 3.5 provides a short overview of the program, explaining which 

functionality can be found in which source code. Chapter 3.6 discusses the model’s performance based 

on the data that we collected in the framework of an earlier experimental campaign (see supplement of 

Nishiyama et al., 2017). Chapter 3.7 concludes this study by outlining a way of how this code can be 

developed further to fit the needs of the muon tomography and geology community. 

3.3 The forward model: Muon flux simulation 

In geophysical communities this part is generally known as the forward model, i.e. a mathematical model 

which calculates synthetic data for given “model” parameters. In muon tomography experiments this 

forward model consists of different physical models which are serially connected. 

3.3.1 Cosmic ray flux model 

The nature of the data used in muon tomography generally consists of several counts within a directional 

bin, defined by two polar and two azimuthal angles. Additionally, the measurement is taken over a 

defined period of time, as well as over a given extent within the detector area. The simulated number of 

muons, in the i-th bin, can be calculated by this integral, 

𝑁𝜇,𝑖
𝑠𝑖𝑚 = ∫ ∬ ∬ ∫

𝑑𝐼

𝑑𝐸𝐸
𝑑𝐸 𝑑𝐴 𝑑Ω 𝑑𝑇

AΩT
 . (3.1) 

Here, T denotes the exposure time interval, A the detector area, Ω the solid angle of the bin and E the 

energy range of the muons that were able to be registered by the detector. There are various differential 

muon flux models, also referred to as the integrand in Eq. (3.1), that can be employed at this stage. 

Lesparre et al. (2010) provide a good overview on the different flux models, which can broadly be 
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divided in two classes. On the one hand theoretical models exist, which capture the manifold production 

paths of muons and condense them in an analytical equation, e.g. the Tang et al., (2006) model. They 

contrast with empirical models that were generated by fitting formulae to the results of muon flux 

measurements. The model of Bugaev et al. (1998) falls into this category, with later adjustments for 

different zenith angles (Reyna, 2006) and altitude (Nishiyama et al., 2017), which are also utilised in 

this study. The details of the formula are explained in Appendix A (Ch. 3.8). The evaluation of Eq. (3.1) 

is rather cumbersome as strictly speaking several of the integration variables depend on each other. We 

may facilitate the calculation by considering that the differential muon flux model is only dependent on 

energy, E, and zenith angle, 𝜃 whereas the effective area, Δ𝐴𝑒𝑓𝑓,𝑖, is solely dependent on the orientation 

of the bin. This is the case because muons do not necessarily hit the detector perpendicularly, such that 

the effective target area is usually smaller. By averaging over the zenith angle and keeping the bin size 

reasonably small, we may approximate Eq. (3.1) by 

𝑁𝜇,𝑖
𝑠𝑖𝑚(Ecut,i) = ∫

𝑑𝐼

𝑑𝐸
(𝐸, 𝜃�̂�) 𝑑𝐸

∞

𝐸𝑐𝑢𝑡,𝑖
∗ Δ𝑇 ∗  Δ𝐴𝑒𝑓𝑓,𝑖(𝜑�̂�, 𝜃�̂�) ∗  ΔΩ𝑖 , (3.2) 

where Δ𝑇 is the exposure time and Δ𝐴𝑒𝑓𝑓,𝑖 is the effective detector area. ΔΩ𝑖 is the solid angle, 𝜑�̂� and 

𝜃�̂� are the mean azimuth and zenith angle of the i-th bin, respectively. 𝐸𝑐𝑢𝑡,𝑖 describes the energy needed 

for a muon to enter the detector. Δ𝐴𝑒𝑓𝑓,𝑖  has to be scaled by the cosine of the angle between bin direction 

and detector facing direction, which can be calculated using the formula for a scalar product, 

Δ𝐴𝑒𝑓𝑓,𝑖 = Δ𝐴 ∗
�⃗�  ⋅𝑑 𝜇(�̂�𝑖,�̂�𝑖)

‖�⃗� ‖‖𝑑 𝜇(�̂�𝑖,�̂�𝑖)‖
, (3.3) 

where �⃗�   is the normal vector to the detector surface and 𝑑 𝜇(𝜑�̂�, 𝜃𝑖) is the mean vector of muon incidence 

within the i-th bin, both of which can be chosen to feature unit length. Evaluating the scalar product in 

spherical coordinates, Eq. (3.3) yields 

Δ𝐴𝑒𝑓𝑓,𝑖 = Δ𝐴 ∗ [sin(𝜃𝑑) sin(𝜃𝑖) cos(𝜑𝑑 − �̂�𝑖) + cos(𝜃𝑑) cos(𝜃𝑖)]. (3.4) 

Here, 𝜃𝑑 and 𝜑𝑑 are the zenith and azimuth angles of the detector facing direction. It is important to 

note that except for 𝐸𝑐𝑢𝑡,𝑖 all variables in Eq. (3.2) are predetermined by the experimental setup (Δ𝑇, 

ΔA) as well as the data processing (�̂�𝑖, 𝜃𝑖), such that the number of muons 𝑁𝜇,𝑖
𝑠𝑖𝑚 can be interpreted as a 

function of one variable, 𝐸𝑐𝑢𝑡,𝑖 only. 

3.3.2 Muon transportation model 

Since muons permanently lose energy when travelling through matter, they also need a certain amount 

of energy to enter the detector. This energy, 𝐸𝑐𝑢𝑡,𝑖, was introduced in Eq. (3.2) and is called the cutoff 

energy. If the detector is now positioned underground, the muons have to traverse more matter to reach 

the detector and consequently need a higher initial energy to reach the target. For this purpose, we 

introduce the new variable 𝐸0, which refers to the energy needed to penetrate the detector, and we 
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reinterpret 𝐸𝑐𝑢𝑡,𝑖 as the minimum energy that is required to traverse the matter and to be registered at 

the detector. For the goal of studying the interactions between particles and matter, physicists regularly 

use energy loss models. We base our calculations in large parts on the equations of Groom et al. (2001), 

where the energy loss of a muon along its path is described by an ordinary differential equation of 1st 

order, 

−
𝑑𝐸

𝑑𝑥
= 𝜌(𝑥) ∗ [𝑎(𝑥, 𝐸) + 𝐸 ∗ 𝑏(𝑥, 𝐸)] . (3.5) 

In Eq. (3.5), 𝜌 denotes the density of the traversed material, and 𝑎 and 𝑏 are the ionisation loss and 

radiation loss parameters respectively. The radiation loss parameter groups the effects related to 

bremsstrahlung, 𝑏𝑏𝑟𝑒𝑚𝑠, pair-production, 𝑏𝑝𝑎𝑖𝑟, and photonuclear interactions, 𝑏𝑝ℎ𝑜𝑡𝑜, where 

𝑏(𝑥, 𝐸) = 𝑏𝑏𝑟𝑒𝑚𝑠(𝑥, 𝐸) + 𝑏𝑝𝑎𝑖𝑟(𝑥, 𝐸) + 𝑏𝑝ℎ𝑜𝑡𝑜(𝑥, 𝐸). (3.6) 

Each of the radiative process is, in turn, calculated through 

𝑏𝑘 =
𝑁𝐴

𝐴
∫ 𝜈

𝑑𝜎𝑘

𝑑𝜈

1

0
𝑑𝜈 , (3.7) 

where 𝑘 ∈ �̃� = {bremsstrahlung, pair-production, photonuclear} is the set of radiative processes,  𝑁𝐴 is 

Avogadro’s number, 𝐴 is the atomic weight of the traversed material, 𝜈 is the fractional energy transfer 

and 𝑑𝜎𝑘 𝑑𝜈⁄  the differential cross-section of the process. Eq. (3.7) becomes important when modelling 

errors have to be included (see Ch. 3.4). For a detailed discussion of the equations for 𝑎 and 𝑏 we refer 

to Groom et al. (2001). The only exception in Eq. (3.6) is 𝑏𝑝𝑎𝑖𝑟, which is calculated after GEANT4 

(Agostinelli et al., 2003). We selected the solution of these latter authors because it is computationally 

less time consuming. As the two results agree within 1 %, we deem it acceptable to exchange the two 

differential cross-sections.  

Because Eq. (3.5) describes the energy loss in response to the interaction with a single-element material, 

certain modifications have to be made to make it also valid for rocks, which in this context represent a 

mixture of minerals and elements. In this case, the modified equation takes an equivalent form to Eq. 

(3.5) when replacing 𝜌, 𝑎, 𝑏 with their mixture counterparts {𝜌}𝑟𝑜𝑐𝑘 , {𝑎}𝑟𝑜𝑐𝑘 , {𝑏}𝑟𝑜𝑐𝑘 (Lechmann et al., 

2018), thus yielding 

−
𝑑𝐸

𝑑𝑥
= {𝜌(𝑥)}𝑟𝑜𝑐𝑘 ∗ [{𝑎(𝑥, 𝐸)}rock + 𝐸 ∗ {𝑏(𝑥, 𝐸)}rock] . (3.8) 

We show in Appendix B3 (Ch. 3.9.3) how the rock model (explained in Ch. 3.3.3) can be used to 

determine these quantities. 

By applying a change of variables to Eq. (3.8), i.e. 𝑥′ = −𝑥, the energy loss equation can be transformed 

to an energy gain equation. This has the advantage of being much easier to solve than the “final value 

problem” in Eq. (3.8). We can reorganise Eq. (3.8) into an initial value problem by setting the initial 

energy to 𝐸0, 
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𝑑𝐸

𝑑𝑥
= {𝜌(𝑥)}𝑟𝑜𝑐𝑘 ∗ [{𝑎(𝑥, 𝐸)}rock + 𝐸 ∗ {𝑏(𝑥, 𝐸)}rock]  (3.9) 

𝐸(0) = 𝐸0 .  

In this context 𝐸0 is the minimal energy needed for a muon to penetrate the detector, which can be 

influenced by the detector design. Equation (3.9) is a well-investigated problem that can be solved by 

numerous methods. In our work we employ a standard Runge-Kutta integration scheme (see for example 

Stoer and Bulirsch, 2013), with a step size of 10 cm. As a result, it is now possible to write the cut-off 

energy in functional form, where 

𝐸𝑐𝑢𝑡,𝑖 = 𝑟𝑘(𝑥 𝑖, 𝜌 , 𝑐 ) . (3.10) 

Here 𝑟𝑘(⋅) is the function that returns the Runge-Kutta solution of Eq. (3.9) for defined thicknesses of 

materials, 𝑥 𝑖, with densities 𝜌  and compositional parameters 𝑐 . Thickness and density are allowed to be 

vectors, as there may be more than just one material. In this case, the final energy, after the muon has 

passed through the first segment of materials, is the initial energy for the second segment, etc. In order 

to speed up the computations – especially the calculation of the pair production cross-section, which 

includes two nested integrations – a log-log table of muon energy vs. radiation loss parameters is 

produced, from which the b-values, see Eq. (3.7), can be interpolated. We justify this approach because 

the radiative losses are almost linear in a log-log plot, as can be seen in Fig. 33.1 of Tanabashi et al. 

(2018, p.447) for the example of copper. The general shape of the energy loss function remains the same 

for various materials even if the absolute values differ. 

3.3.3 Rock model 

Equation (3.10) shows, that for the calculation of the cut-off energy two types of material parameters 

are required, the material density 𝜌  and its average composition 𝑐 . The pre-tabulated values from Groom 

et al. (2001), however, include only pure elements as well as certain compounds. To extract the relevant 

parameters in a geological setting, a realistic rock model is needed. In an earlier work (Lechmann et al., 

2018) we have shown how an integrated rock model can be constructed and how the physical parameters 

for a realistic rock can be retrieved. In the present work we largely use the same approach, apart from a 

few aspects. First, we measured the average material density directly in the laboratory, using various 

techniques which are explained in detail in Appendix B1 (Ch. 3.9.1). Second, in order to be able to 

compare the results of this study with the previous Nishiyama et al. (2017) publication, we consider a 

rock composition that corresponds to a density modified standard rock. This is applicable, as the rock 

in the study region is mostly of granitic/gneissic origin, with thicknesses rarely larger than 200 m, such 

that the differences are negligible. However, as the inclusion of compositional data is a planned feature 

for a future version of our code, we decided to include the theoretical treatment in this work. Hence, all 

equations are tailored to include the statistical description of such data. Compositional data for whole 

rock samples which can be scaled to outcrop scale are usually presented in one of two forms, the first 

being measurements of X-Ray Diffraction (XRD). This kind of data yields the mineral phases within a 
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rock. Unfortunately, XRD is a rather time-consuming method. This is the reason why in muon 

tomographic experiments researchers often resort to a bulk chemical analysis of the rock, which is the 

second form of compositional data. This type of data is usually the output of dedicated X-Ray 

Fluorescence (XRF) measurements, describing the bulk rock composition by major oxide fractions. We 

note here that by the absence of information on the spatial distribution of mineral phases within a rock, 

we implicitly infer a homogeneous mixture of elements within the rock itself, which is thus different 

from our previous work (Lechmann et al., 2018). From a particle physics perspective this does not pose 

a real problem as the difference to a mixture of minerals is rather small. Nevertheless, we lose the power 

to obtain meaningful compositional inferences. As the present work aims to infer positions and uses 

material parameters as constraints, we can accept this circumstance. Details on how compositional 

parameters are constructed from XRF information, including an example, can be found in Appendix B2 

(Ch. 3.9.2), and an explanation of their influence on the energy loss equation in Appendix B3 (Ch. 3.9.3). 

3.3.4 Spatial models of detectors and materials 

In addition to the above explained physical models, we may also utilise available spatial data for our 

purposes. In this context, the use of a digital elevation model (DEM) of the surface allows the 

visualisation of the position of the detectors relative to the surface, as well as the spatial extent of the 

bins, and it allows us to determine the location where they intersect with the topographic surface. As a 

first deliverable, we can draw conclusions on which bins consist of how many parameters. For example, 

if we know that the detector is located underground and that there is ice at the surface, we can already 

infer the existence of at least 2 materials (rock and ice). For this purpose, we wrote the script 

“modelbuilder.py”, which allows the user to attach geographic and physical information to the selected 

bins. This process of building a coherent geophysical model is needed for the subsequent employment 

of the inversion algorithm to process all the data. 

3.4 The inverse model: A Bayesian perspective 

As stated in the Introduction, we solve the inversion by using Bayesian methods. This needs an 

explanation as to why we chose this way and not another. First, the equations in Ch. 3.3 enable us to 

calculate a synthetic dataset for fixed parameter values. There, one can see that the governing equations 

constitute a nonlinear relationship between parameter values and measured data. Despite this being of 

no particular interest in the forward model, the parameter estimation problem from measured data is 

rendered vastly more complicated. Among muon tomographers, linearised versions have been 

extensively used with deterministic approaches (e.g. Nishiyama et al., 2014; Rosas-Carbajal et al., 2017), 

which are successfully applicable when the only variables are the density or the intersection boundaries. 

When deterministic approaches are viable, they efficiently produce good results. Descent algorithms or, 

generally speaking, locally optimising algorithms, pose a valid alternative, as they could cope with the 

nonlinearity of the forward model, while including all desired parameters. Even though these algorithms 

suffer from possible non-uniqueness solutions (i.e. the solution depends heavily on the starting model, 
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yielding possibly multiple solutions), the main problem is the calculation of the derivatives of the 

forward model with respect to the parameter values. The analytical calculation of the derivatives is 

enormously tedious because the cut-off energy is the result of a numerical differential equation solver, 

as can be seen in Eq. (3.9) & (3.10). Unfortunately, numerical derivatives do not produce better results, 

because they might easily produce artefacts, which are hard to track down. This is especially true if the 

derivative has to be taken on a numerical result, which is always slightly noisy. In that case the 

differentiation amplifies the “noise”, resulting in unreliable gradient estimates. A good overview over 

deterministic inversion methods can be found in Tarantola (2005).  

The reasons stated above and our desire to include as much information on the parameters as possible 

nudge us towards probabilistic methods. Those approaches are also known as Bayesian methods. The 

main feature that distinguishes them from the deterministic methods described above is the consistent 

formulation of the equations and additional information in a probabilistic manner, i.e. as probability 

density functions (pdfs). This allows us to incorporate for example density values that were measured 

in the lab (including its error), set bounds on the location of the material interface or define a plausible 

range for the composition of the rock. All these changes act on the pdf of the respective parameter and 

does naturally integrate into the Bayesian inversion. Readers may find the book of Tarantola (2005) very 

resourceful for the explanation and illustration of probabilistic inversion. Several studies in the muon 

tomography community have already employed such methods with success (e.g. Lesparre et al., 2012; 

Barnoud et al., 2019).  

The flexibility of being able to include as much information on the parameters as we desire comes at the 

price of having to solve the inversion in a probabilistic way. This can either be done using Bayes’ 

Theorem and solving for the pdfs of the parameters of interest, or if the analytical way is not possible 

by employing Monte Carlo techniques. As the presence of a numerical solver renders the analytical 

solution impossible, we resort to the Monte Carlo approaches. In the following sections we guide the 

reader through the various stages of how such a probabilistic model can be set up, how probabilities 

may be assigned and how the inversion can finally be solved. 

3.4.1 Probabilistic formulation of the forward model 

The starting point for a probabilistic formulation is denoted by the equations that were elaborated in Ch. 

3.3. These deterministic equations need to be upgraded into a probabilistic framework, where their 

attributed model and/or parameter uncertainties are inherently described. In the following paragraphs 

we describe how each model component can be expressed by a pdf before the entire model is composed 

at the end of this subchapter. The model is best visualised by a directed acyclic graph (DAG), i.e. see 

Kjaerulff and Madsen (2008), that depicts which variables enter the calculation at what point. For our 

muon tomography experiment this is visualised in Fig. 3.2. In the following the pdfs are denoted with 

the bold Greek letter 𝝅, to differentiate them from normal parameters. 
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Figure 3.2: Directed acyclic graph (DAG) for the problem of muon tomography. Variables in a square (□) denote fixed, 

i.e. known values and variables in a circle/ellipse (○) are generally unknown and have to be represented by a pdf. Solid 

arrows (→) denote a deterministic relation, i.e. within a physical model, whereas dashed arrows (⇢) indicate a 

probabilistic relationship, i.e. a parameter within the statistical description of the variable. �⃗⃗� , �⃗�  are the density and 

composition for different materials, whereas �⃗⃗� 𝒄𝒔 contains the errors on the physical cross-sections in the energy-loss 

equation. 𝝈𝒇 describes the error on the cosmic-ray flux model. Within each cone, 𝒙𝒊 is the position of the bedrock-ice 

interface, 𝑴(𝒙𝒊, �⃗⃗� , �⃗� , �⃗⃗� 𝒄𝒔) is the calculated flux (i.e. energy-loss model and flux model combined), 𝒇𝒊 the actual muon flux 

and 𝒅𝒊 the observed number of muon tracks.  

3.4.1.1 Muon data 

The data in muon tomography experiments are usually count data, i.e. a certain number of measured 

tracks within a directional bin, which has been collected over a certain exposure time and detector area. 

As the measured number of muons is always an integer, we may model such data by a Poisson 

distribution, 

𝝅(𝑑𝑖|𝑁𝑖) =
𝑁
𝑖

𝑑𝑖𝑒−𝑁𝑖

𝑑𝑖!
 ,  (3.11) 

where 𝑑𝑖 denotes the measured number of muons in the i-th bin and 𝑁𝑖 is the poisson parameter in the 

same bin, which can be interpreted as mean and variance of this distribution. Equation (3.11) may be 

rewritten in terms of a flux, 𝑓𝑖 by 

𝝅(𝑑𝑖|𝑓𝑖) =
(𝑓𝑖Δ𝐸𝑥𝑖)

𝑑𝑖𝑒−(𝑓𝑖Δ𝐸𝑥𝑖)

𝑑𝑖!
 ,  (3.12) 

where 𝑓𝑖 is the muon flux in the i-th bin and 

Δ𝐸𝑥𝑖 = Δ𝐴𝑒𝑓𝑓,𝑖 ∗ Δ𝑇 ∗ ΔΩi  (3.13) 
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is the exposure, in which Δ𝐴𝑒𝑓𝑓,𝑖 is the effective total detector area from Eq. (3.4), Δ𝑇 is the exposure 

time and ΔΩ𝑖 is the solid angle. 

3.4.1.2 Flux model 

The next step is to set up a probabilistic model for the muon flux. First, we observe that “flux” is a purely 

positive parameter, i.e. 𝑓𝑖 ∈ [0,∞). Thus, it is natural to model it by a lognormal probability distribution 

if estimates of mean and variance are readily available. The uncertainty on the muon flux is generally 

taken around 15% of the mean value. As it is possible, by Eq. (3.2), to calculate a flux for a given cut-

off energy, which we interpret as the mean of the non-logarithmic values, the parameters of the 

lognormal distribution (i.e. 𝜇𝑓𝑖  , 𝜎𝑓𝑖
2 ) may be expressed by 

𝜎𝑓𝑖
2 = ln(1 + (

𝐹𝑖(𝐸𝑐𝑢𝑡,𝑖)∗0.15

𝐹𝑖(𝐸𝑐𝑢𝑡,𝑖)
)
2

) = ln(1.0225)  (3.14) 

and 

𝜇𝑓𝑖 = ln(𝐹𝑖(𝐸𝑐𝑢𝑡,𝑖)) − 
𝜎𝑓𝑖
2

2
 , (3.15) 

which yield the probability density function for the flux, conditional on the cut-off energy 

𝝅(𝑓𝑖|𝜇𝑓𝑖 , 𝜎𝑓𝑖
2) = 𝝅(𝑓𝑖|𝐸𝑐𝑢𝑡,𝑖) =

1

√2𝜋 ∗ 𝑓𝑖 ∗ 𝜎𝑓𝑖
exp (−

1

2
(
ln(𝑓𝑖)−𝜇𝑓𝑖

𝜎𝑓𝑖
)
2

) . (3.16) 

3.4.1.3 Energy loss model 

The energy loss model has multiple sources of error that have to be taken into account. Most notably, 

the relative errors on the different physical cross sections are given by Groom et al. (2001) as 휀𝑖𝑜𝑛 =

6 %, 휀𝑏𝑟𝑒𝑚𝑠 = 1 %, 휀𝑝𝑎𝑖𝑟 = 5 %, 휀𝑝ℎ𝑜𝑡𝑜𝑛𝑢𝑐𝑙 = 30 % . As it is not clearly stated as to what this error 

relates, i.e. one or more standard deviations, we interpret an error like 휀𝑖𝑜𝑛 = 6 % as: “within a factor 

of 1.06”, which can be written as 

𝜎𝑘
(1+ 𝑘)

 ≤ 𝜎𝑘 ≤ 𝜎𝑘(1 + 휀𝑘) , (3.17) 

where 𝑘 ∈ 𝐾 = {ionisation, bremsstrahlung, pair-production, photonuclear}. Dividing this inequality 

by 𝜎𝑘 and taking the logarithm yields 

− ln(1 + 휀𝑘)  ≤ 0 ≤ ln(1 + 휀𝑘).  (3.18) 

Thus, we may attribute a Gaussian pdf in the log-space for a “log-correction factor, 𝑙𝜎𝑘” by setting its 

mean to zero and its standard deviation to ln(1 + 휀𝑘), i.e. 

𝝅(lσk) =  
1

√2𝜋 ∗ln(1+ 𝑘)
exp (−

1

2
(

𝑙𝜎𝑘

ln(1+ 𝑘)
)
2
) .  (3.19) 

With a change of variables, using the Jacobian rule as explained in Tarantola (2005), we get 
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𝝅(σk) =  
1

√2𝜋 ∗σk∗ln(1+ 𝑘)
exp (−

1

2
(
ln(𝜎𝑘)

ln(1+ 𝑘)
)
2
),  (3.20) 

the lognormal pdf for the correction factor. The pdf for the cross-section uncertainty 𝝅(𝜎 𝑐𝑠) can now be 

written as a product of the four different pdfs described by Eq. (3.20) 

𝝅(𝜎 𝑐𝑠) =  ∏ 𝝅(𝜎𝑘)𝑘∈𝐾 ,  (3.21) 

as the errors of the physical cross-sections are stochastically independent from each other. 

The calculated energy loss depends also on material parameters and subsequently on their uncertainties. 

However, these will be explained in detail in Ch. 3.4.1.4. A last error enters by the numerical solution 

of the ordinary differential equation, Eq. (3.9). We decided not to model this error, as its magnitude is 

directly controlled by the user (by setting a small enough step length in the Runge-Kutta algorithm) and 

thus can be made arbitrarily small. Lastly, we assume that all the errors in the energy loss model are 

explained by uncertainties in the cross sections as well as in the material parameters. Although this 

assumption is rather strong, as it excludes the possibility of a wrong model, we argue that this approach 

works as long as the variation in these parameters can explain the variation in the calculated cut-off 

energy. If this requirement is met, we may model the pdf for the energy loss model as a delta function, 

𝝅(𝐸𝑐𝑢𝑡,𝑖|𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖) = 𝜹(𝐸𝑐𝑢𝑡,𝑖 − 𝑟𝑘(𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖)), (3.22) 

where 𝜎 𝑐𝑠 = (𝜎𝑘), 𝜌  is the vector of all material densities, 𝑐  is the vector of all compositions and 𝑥𝑖 is 

the vector of thicknesses of segments used in this cone. It is now already possible to eliminate 𝐸𝑐𝑢𝑡,𝑖 as 

a parameter by first multiplying Eqs. (3.16) & (3.22), which yields 

𝝅(𝑓𝑖, 𝐸𝑐𝑢𝑡,𝑖|𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖) = 𝝅(𝑓𝑖|𝐸𝑐𝑢𝑡,𝑖) ∗  𝝅(𝐸𝑐𝑢𝑡,𝑖|𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖). (3.23) 

From this expression it is possible to marginalise the parameter 𝐸𝑐𝑢𝑡,𝑖, by simply integrating over it, i.e. 

𝝅(𝑓𝑖|𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖) = ∫𝝅(𝑓𝑖, 𝐸𝑐𝑢𝑡,𝑖|𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖) 𝑑𝐸𝑐𝑢𝑡,𝑖 . (3.24) 

Due to the presence of the delta function in Eq. (3.22), this integral is solved analytically resulting in  

𝝅(𝑓𝑖|𝜎 𝑐𝑠, 𝜌 𝑖, 𝑐 𝑖 , 𝑥𝑖) =  
1

√2𝜋 ∗ fi ∗ 𝜎𝑓𝑖
exp (−

1

2
(
ln(𝑓𝑖)−𝜇𝑓𝑖

𝜎𝑓𝑖
)
2

),  (3.25) 

where the parameters are given by 

𝜎𝑓𝑖
2 = ln (1 + (

𝑀(�⃗⃗� 𝑐𝑠,�⃗⃗� ,𝑐 ,𝑥𝑖)∗0.15

M(�⃗⃗� 𝑐𝑠,�⃗⃗� ,𝑐 ,𝑥𝑖)
)
2

) = ln(1.0225)  (3.26) 

and 

𝜇𝑓𝑖 = ln(M(𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖)) − 
𝜎𝑓𝑖
2

2
 . (3.27) 
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Please note that M(𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖) =  𝐹𝑖(𝑟𝑘(𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖)) describes the combined parts of the forward 

model that include the energy loss and the integrated flux calculation, which is basically a composition 

of functions. 

3.4.1.4 Rock model 

The density model can take different forms of probability densities (see Appendix B1, Ch. 3.9.1), such 

as fixed, normal, lognormal or even multimodal. For either form, it is possible to describe it by a generic 

function 𝝅(𝜌 ), which is short for a multidimensional pdf, i.e. 𝝅(𝜌𝑖𝑐𝑒 , 𝜌𝑟𝑜𝑐𝑘) if the i-th cone is known to 

consist of two segments with two specific densities. Equivalently, the pdf for the composition (see 

Appendix B2, Ch. 3.9.2) is either fixed or a multidimensional Gaussian distribution in the space of log-

ratios. Thus 𝝅(𝑐 ) can be split up to 𝝅(𝑐𝑖𝑐𝑒 , 𝑐𝑟𝑜𝑐𝑘), like in the example above. Generally, we may assume 

that in our problem j different materials exist.  

The situation for the thicknesses of the segments, 𝝅(𝑥𝑖), within the i-th cone presents itself in a similar 

light as for the compositions. As the total thickness is known (detector position and a digital elevation 

model are given), the thickness parameter sub-space is endowed with the same mathematical structure 

as the composition parameter sub-space (i.e. one sum constraint), if the cone consists of more than just 

one segment. One can therefore safely assume that the thickness parameters live in a log-ratio space, 

within which we a-priori possess no information about the parameters. Thus, we attribute the thickness 

parameters a multidimensional uniform distribution on the log-ratio space. 

3.4.1.5 The Joint probability density function 

With the help of the DAG, introduced in Fig. 3.2, it is now straightforward to factorise the joint 

probability distribution for the whole problem, as their structure is equal. This results in 

𝝅(𝑑 , 𝑓 , 𝜎 𝑐𝑠, 𝜌 , 𝑐 , x⃗ ) = ∏ 𝝅(𝑑𝑖|𝑓𝑖)𝝅(𝑓𝑖|𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖)𝝅(𝑥𝑖) ∗ ∏ 𝝅(𝜌𝑗)𝝅(𝑐𝑗)
𝑁𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠
𝑗=1 ∗ ∏ 𝝅(𝜎𝑘)𝑘∈𝐾

𝑁𝑐𝑜𝑛𝑒𝑠
𝑖=1 ,

 (3.28) 

or equivalently (and this will also be of much better use later on) the log joint pdf 

𝒍𝝅(𝑑 , 𝑓 , 𝜎 𝑐𝑠, 𝜌 , 𝑐 , x⃗ ) = ∑ 𝒍𝝅(𝑑𝑖|𝑓𝑖) + 𝒍𝝅(𝑓𝑖|𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖) + 𝒍𝝅(𝑥𝑖)
𝑁𝑐𝑜𝑛𝑒𝑠
𝑖=1 + ∑ 𝒍𝝅(𝜌𝑗) +

𝑁𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠
𝑗=1

𝒍𝝅(𝑐𝑗) + ∑ 𝒍𝝅(𝜎𝑘)𝑘∈𝐾 ,  (3.29) 

where the prefix "𝒍" denotes the logarithm of the pdf. This has the benefit of reducing the size of numbers 

that the code has to cope with. Moreover, many computational statistics packages already have this 

feature included, which renders it easy to use. 

Equation (3.28) depicts the full joint pdf. However, the relations between the parameters, as shown by 

the DAG (see Fig. 3.2), classify this model as a hierarchical model (Betancourt and Girolami, 2013). 

The key characteristic of such models is their tree-like parameter structure, i.e. the measured number of 

muons is related to the thickness or the density of the material only by the flux parameter, which “relays” 
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the information. A central problem of such models is the presence of a hierarchical “funnel” (see Fig. 2 

& 3 of Betancourt and Girolami, 2013), which renders it very difficult for standard MCMC methods to 

adequately sample the model space. In high-dimensional parameter spaces this problem exacerbates 

even more. 

Our aim to provide a simple and easy-to-use program somewhat contradicts this necessity of a 

sophisticated method (which inevitably requires the user to possess a strong statistical background). As 

the main problem is the rising number of parameters, it should be possible to mend the joint pdf by 

imposing thought-out simplifications. 

We first get rid of the flux parameter, as for our problem it merely is a nuisance parameter. This is an 

official term for a parameter in the inversion which is of no particular interest but still has to be accounted 

for. Here specifically, we integrate over all possible values of the muon flux, 𝑓  within its uncertainty, 

so that we can relate the results of the energy loss calculation (encoded in 𝜇𝑓𝑖; see Eq. 3.27) directly to 

the measured number of muons, 𝑑𝑖. This effectively reduces the number of parameters and thus the 

number of dimensions of the model space. This can be achieved by marginalising the flux parameter out 

of the joint pdf, 

𝝅(𝑑 , 𝜎 𝑐𝑠, 𝜌 , 𝑐 , x⃗ ) = ∫ 𝝅(𝑑 , 𝑓 , 𝜎 𝑐𝑠, 𝜌 , 𝑐 , x⃗ ) 𝑑𝑓  . (3.30) 

This effectively reduces to problem to the calculation of the new likelihoods (as 𝑑𝑖 is given) 

𝝅(𝑑𝑖|𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖) = ∫ 𝝅(𝑑𝑖|𝑓𝑖)𝝅(𝑓𝑖|𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖) 𝑑𝑓𝑖, (3.31) 

or fully, 

𝝅(𝑑𝑖|𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖) =  ∫
(𝑓𝑖Δ𝐸𝑥𝑖)

𝑑𝑖𝑒−(𝑓𝑖Δ𝐸𝑥𝑖)

𝑑𝑖!

∞

0

1

√2𝜋 ∗ fi ∗ 𝜎𝑓𝑖
exp (−

1

2
(
ln(𝑓𝑖)−𝜇𝑓𝑖

𝜎𝑓𝑖
)
2

)𝑑𝑓𝑖 , (3.32) 

where 𝜇𝑓𝑖  and 𝜎𝑓𝑖  are given by Eqs. (3.26) and (3.27), respectively. This integral is not solvable 

analytically but can be evaluated by numerical integration schemes. The likelihood has a maximum 

when the Poisson and the log-normal pdfs fully overlap. Interestingly, this directly shows the trade-off 

between the flux model and the data uncertainty. Usually, we want to measure enough muons that the 

statistical counting error is smaller than the systematic uncertainty of the flux model (i.e. the width of 

the Poisson pdf is smaller than the width of the log-normal pdf). This can be controlled directly by the 

exposure of the experiment, via larger detector area, coarser binning, or longer exposure time. 

This marginalisation roughly halves the number of parameters, but there is still another simplification, 

which we may use. Many muon tomography applications deal with a two-material problem, while there 

may also be measurement directions where only one material is present. If we conceptually split those 

two problems and solve them independently, it is possible to further reduce the number of 
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simultaneously modelled parameters. In our study these two cases encompass bins where we measured 

only rock and others where we know there is ice and rock. The joint pdf for rock bins subsequently is 

𝝅(𝑑 , 𝜎 𝑐𝑠, 𝜌𝑟𝑜𝑐𝑘 , 𝑐rock) = ∏ 𝝅(𝑑𝑖|𝜎 𝑐𝑠, 𝜌𝑟𝑜𝑐𝑘 , 𝑐rock) ∗ 𝝅(𝜌𝑟𝑜𝑐𝑘)𝝅(𝑐𝑟𝑜𝑐𝑘) ∗ ∏ 𝝅(𝜎𝑘)𝑘∈𝐾
𝑁𝑐𝑜𝑛𝑒𝑠
𝑟𝑜𝑐𝑘

𝑖=1 ,  (3.33) 

which leaves the problem effectively with only a handful of parameters. Solving Eq. (3.33), for the rock 

density we retrieve  �̃�(𝜌𝑟𝑜𝑐𝑘), the posterior marginal pdf for the rock density. We refer the reader to Ch. 

3.4.2 for the details of how to solve this inverse problem. Theoretically we could also retrieve �̃�(𝜌𝑖𝑐𝑒), 

but this would require the detector to be positioned within the glacier, which poses more of a practical 

difficulty than a mathematical one. 

For the second problem, we can interpret �̃�(𝜌𝑟𝑜𝑐𝑘) as the new prior pdf for the rock density. At this 

point we employ one last simplification by assuming that the parameters between different cones are 

independent form each other. This is a rather strong presumption, which must be justified. The main 

problem mathematically lies in the hierarchical nature of the density parameter, which is the same for 

each cone, thus not independent in different cones. We, however, argue that in cones with two materials, 

there are more parameters than in bins with only rock, such that we may expect the posterior pdf of the 

rock density of these second kind of models to be less informative than the posterior rock density pdf of 

Eq. (33). This, in turn, means that the posterior rock density pdf of the two-material model largely equals 

the prior one if we select the posterior of the first kind of models as the prior of the second kind of 

models. The same is valid for the composition 𝑐 𝑖 and the cross-section error parameters 𝜎 𝑐𝑠. As long as 

this assumption is valid, we may decompose the joint pdf into independent joint pdfs for each cone 

𝝅(𝑑𝑖 , 𝜎 𝑐𝑠,𝑖, 𝜌 𝑖, 𝑐 𝑖, 𝑥𝑖  ) = 𝝅(𝑑𝑖|𝜎 𝑐𝑠,𝑖, 𝜌 𝑖, 𝑐 𝑖 , 𝑥𝑖)𝝅(𝑥𝑖)∏ �̃�(𝜌𝑖𝑗)�̃�(𝑐𝑖𝑗)
𝑁𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠
𝑗=1 ∗ ∏ �̃�(𝜎𝑖𝑘)𝑘∈𝐾 . (3.34) 

Our inversion program enables the user to choose the type of model parametrisation. Either the full 

hierarchical model, which is given by Eqs. (3.28) & (3.29) or the simplified single-cone-bin inversion 

model (“Sicobi”-model), given by Eqs. (3.33) & (3.34) can be run. 

3.4.2 Solution to the inverse problem 

Usually in Bayesian inference, the goal is to calculate the posterior pdf, given the measured data, i.e. the 

quantity 

𝝅(𝜎 𝑐𝑠, 𝜌 , 𝑐 , x⃗ |𝑑 ) =
𝝅(𝑑 ,�⃗⃗� 𝑐𝑠,�⃗⃗� ,𝑐 ,x⃗ )

𝝅(𝑑 )
.  (3.35) 

This can be interpreted as the inferences one may draw on the parameters in a model given measured 

data. The denominator on the right-hand side of Eq. (3.35), also called the “evidence”, can be rewritten 

as the data marginal of the posterior, i.e. 

𝝅(𝑑 ) = ∫ ∫ ∫ ∫ 𝝅(𝑑 , 𝜎 𝑐𝑠, 𝜌 , 𝑐 , x⃗ ) 𝑑𝜎 𝑐𝑠 𝑑𝜌  𝑑𝑐  𝑑𝑥  . (3.36) 
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As Eq. (3.36) basically describes an integration over the whole model parameter space, this may become 

such an extensive computation (especially when the number of model parameters is large), that it cannot 

be solved in meaningful time. However, as the evidence usually is a fixed value, the left- and right-hand 

side of Eq. (3.35) are merely scaled by a scalar and thus proportional to each other, i.e. 

𝝅(𝜎 𝑐𝑠, 𝜌 , 𝑐 , x⃗ |𝑑 ) ∝ 𝝅(𝑑 , 𝜎 𝑐𝑠, 𝜌 , 𝑐 , x⃗ ).  (3.37) 

This is the starting point of Monte Carlo Markov Chain (MCMC) methods.  

3.4.2.1 The Metropolis-Hastings algorithm 

The basic MCMC algorithm, which we also use in this study is the Metropolis-Hastings (MH) algorithm 

(Hastings, 1970; Metropolis et al., 1953), which allows for the sampling of the joint pdf to obtain a 

quantitative sample. We note, however, that many different MCMC algorithms exist for various 

purposes and that the MH has no special status except for being comparatively simple to use and 

implement. An example of another MCMC algorithm in muon tomography can be found in Lesparre et 

al. (2017). The authors used a simulated annealing technique on the posterior pdf in order to extract the 

maximum a posteriori (MAP) model. As every simulated annealing algorithm has some type of MH-

algorithm at its core, we directly use the MH-algorithm in its original form such that we not only retrieve 

a point estimate but a pdf for the posterior parameter distribution. The algorithm is explained in detail 

by Gelman (2014), such that we only provide a short pseudo-code description. 

Algorithm 3.1 (Metropolis-Hastings): 

(1) Draw a starting model, �⃗⃗� 0 = (𝜎 𝑐𝑠,0, 𝜌 0, 𝑐 0, x⃗ 0), by drawing 𝜎 𝑐𝑠,0, 𝜌 0, 𝑐 0, x⃗ 0 from their respective prior 

pdfs and determine the log-pdf value of this model 

(2) Until convergence: 

a. Propose a new model according to �⃗⃗� 𝑛𝑒𝑤 = �⃗⃗� 0 + 𝐽(0, 𝑐
2Σ) , where Σ  is the matrix of prior 

variances and 𝑐 =  2.4 √𝐷⁄  and 𝐷 is the number of parameters. 

b. Evaluate log-pdf value of �⃗⃗� 𝑛𝑒𝑤 and calculate: 

𝑟 = exp(𝑙𝑝(�⃗⃗� 𝑛𝑒𝑤) − 𝑙𝑝(�⃗⃗� 0)) 

c. Evaluate the acceptance probability, 𝑝𝐴 = min (1, 𝑟) and draw a number q from the uniform 

distribution U(0,1). 

d. If 𝑞 < 𝑝𝐴: sample �⃗⃗� 𝑛𝑒𝑤 & set  �⃗⃗� 𝑛𝑒𝑤 → �⃗⃗� 0, 

Else: sample �⃗⃗� 0 

 

The advantage of this algorithm, compared to a “normal” sampling, lies in its efficiency. It is often not 

possible, or even reasonable, to probe the whole model space, as the largest part of the model space is 

“empty”, where the pdf-value of the posterior is uninterestingly small. This fact that regions of high 

probability are scarce, and this becomes worse in high dimensional model spaces, is known as the “curse 

of dimensionality” (Bellman, 2016). MCMC algorithms (including the here presented MH-algorithm) 

allow the focus on regions of high probability, and therefore we are able to construct a reliable and 
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representative sample of the posterior pdf. We again refer to Gelman (2014) for a discussion why the 

MH-algorithm converges to the correct distribution and why we may use samples that were gained this 

way as estimate of the posterior probability density. 

3.4.2.2 Assessing convergence, mixing, and retrieving the samples 

The above stated advantages however, come at a price. First and foremost, we must ensure that the 

algorithm advances fast enough, but not too fast, through the model space. This is mainly controlled by 

the proposal distribution 𝐽(0, 𝑐2Σ), which is taken to be a multivariate Gaussian distribution. Ideally, 

the covariance matrix of the proposal distribution Σ is equal to the covariance structure of the posterior 

pdf. As at the start of the algorithm one generally has no idea what this looks like, but we assume that a 

combination of the prior variances is a reasonable starting point. After a certain number of steps, it is 

possible to approximate the covariance matrix of the proposal distribution with the samples taken up to 

this point. 

A second crucial point is the presence of a warm-up period. The starting point, which usually lies in a 

region of high prior probability, does not necessarily also lie in a region of high posterior probability. 

The time it takes to move from the latter to the former is exactly this warm-up. This can usually be 

visualised by a trace plot, e.g. Fig. 3.3, in which the value of a parameter is plotted against the number 

of iterations. After this warm-up phase, the algorithm can be run in operational mode and “true” samples 

can be collected. 

 

Figure 3.3: Example of a trace plot of a MH run with 1000 Draws. This plot shows the parameter value (y-axis) vs. # of 

steps (x-axis). This simplistic model consists of one cone with Sodium (“Natrium”) as material. The only two parameters 

are the density of sodium (upper) and the flux within that cone (lower). The warm-up phase takes around 80-100 MH 

steps.  

As in a Markov Chain the actual sample is dependent on the last one, we need a criterion to argue that 

the samples created in that way really represent “independent” samples. Qualitatively, we may say that 

if the Markov Chain forgets the past samples fast enough, then we may sooner treat them as independent 



CHAPTER 3 3.4 THE INVERSE MODEL: A BAYESIAN PERSPECTIVE 

  85 

from each other. Gelman (2014) suggests that in order to assess this quantitatively, multiple MH-chains 

could be run in parallel and statistical quantities within and between each chain are analysed. For a 

detailed discussion thereof, we refer the reader to Appendix C (Ch. 3.10).  

Once a satisfying number of samples has been drawn from the posterior pdf, marginalisation of nuisance 

parameters can be done by looking at the parameters of interest only. These samples may then be treated 

like counts in a histogram, i.e. distributional estimates, or simply the interesting statistical moments, 

such as mean and variance, can be obtained. 

3.4.3 Construction of the bedrock-ice interface 

The main analysis program allows us to export all parameters either as a full chain data, where every 

single draw is recorded, or as a statistical summary (i.e. mean and variance); both converted to point 

data, i.e. (x, y, z) – data. For the subsequent construction of the interface between rock and ice we only 

need the full-chain point-data. In the present study we restrict ourselves to a probabilistic description 

until the bedrock positions within a cone. It would also be possible to treat the bedrock construction 

within a Bayesian framework, however this would go beyond the scope of this study and is therefore 

left for a future adaption of the code. Nonetheless, in order to construct a surface, we rely on 

deterministic methods, which are explained in detail in what follows. 

3.4.3.1 Interpolation to a grid 

The “modelviewer.py” routine is able to read datasets from different detectors (which are saved as 

JSON-files) and computes for each cone the statistic, which the user is interested in (see “sigma” entry 

in program). Thus, it is possible to use the mean or, for example, the +1 𝜎 position of each cone. From 

here onwards this point cloud is named 𝐻 and contains one interface position (x, y & z coordinates) per 

cone. These are shown as triangles (▲) in Fig. 3.4. 

As a second step, the program interpolates this point cloud in a bilinear way to a rectangular grid with a 

user specified cell size, Δ𝑐𝑠. This grid can be described by a matrix 𝑃 ∈ ℝ𝑟×𝑐, where 𝑟 and 𝑐 are the 

number of rows and columns (i.e. the number of y- and x-cells, needed to cover the whole grid). The 

procedure is similar to the bilinear interpolation of Lagrangian markers (that carry a physical property) 

to a (fixed) Eulerian grid in geodynamical modelling (see Gerya, 2010, p. 116), with the difference that 

our physical property is the height of the ice-bedrock interface. 

We could also have fitted a surface through the resulting point cloud. However, by formulating this 

surface as a matrix we gain access to the whole machinery of linear algebra. Moreover, 𝑃 can directly 

be interpreted as a rasterised DEM, which can be easily loaded and visualised in any GIS software. Thus, 

from a modular design perspective we think the matrix formulation has more advantages than drawbacks. 

The bilinear interpolation is shown in more detail in Fig. 3.4. 
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Figure 3.4: Example of a two-dimensional stencil. This is used to summarise the bilinear interpolation of interface 

positions within cones (𝑯𝒌, ▲) to a fixed grid (𝑷𝒊𝒋, ■) with a user-defined cell size 𝚫𝒄𝒔. Every interface position within a 

±𝚫𝒄𝒔 interval contributes to the grid height 𝑷𝒊𝒋.  

In order to calculate the height at a grid point, 𝑃𝑖𝑗, one has to form a weighted sum over all cone interface 

positions within a ±Δ𝑐𝑠 interval, i.e. 

𝑃𝑖𝑗 = 
∑ 𝑤𝑘𝐻𝑘𝑘

∑ 𝑤𝑙𝑙
 ,  (3.38) 

where the weights, 𝑤𝑘, are given by 

𝑤𝑘 = (1 −
Δ𝑥𝑘

Δ𝑐𝑠
) ∗ (1 −

Δ𝑦𝑘

Δ𝑐𝑠
) .  (3.39) 

3.4.3.2 Damping & Smoothing 

The concept of damping usually revolves around the idea to force parameters to a certain value (e.g. in 

deterministic inversion by introducing a penalty term in the misfit function for deviations from that 

value). From a Bayesian viewpoint this would be accomplished by setting the prior mean to a specific 

value. In our code we implemented this idea by allowing the user to read a DEM and a “damping weight” 

to the code (see “fixed length group” in code). The program effectively computes a weighted average 

between the bedrock positions within the cones and a user defined DEM. The higher the chosen damping 

weight, the more the resulting interface will match the DEM, when pixels overlap. 

The matrix formulation also enables us to use a further data processing technique without much tinkering. 

As geophysical data are often quite noisy, a standard procedure in nearly every geophysical inversion is 

a smoothing constraint. This effectively introduces a correlation between parameters and forces them to 

be similar to each other. From a Bayesian perspective, we could have achieved this correlation by 

defining a prior covariance matrix of the thickness parameters, such that neighbouring cones should 
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have similar thicknesses (which makes sense as we do except the bedrock-ice interface to be relatively 

continuous). As we work with independent cones in this study, we leave the exploration of this aspect 

open for a future study. Nevertheless, we offer the possibility in our code to use a smoothing on the final 

interpolated grid. This is achieved by a convolution of a smoothing kernel, 𝐾 (see Appendix D, Ch. 3.11, 

for details), with the surface matrix 𝑃, which results in a smoothed surface matrix 

𝑃𝑆 = 𝐾 ∗ 𝑃.  (3.40) 

Please note that the ∗ operator in Eq. (3.40) denotes a convolution. In index notation the advantage of 

the linear algebra formalism becomes clear, as 𝑃𝑆 can be expressed by 

𝑃𝑖𝑗
𝑆 = ∑ ∑ 𝐾𝑘+𝑠+1,𝑙+𝑠+1𝑃𝑖+𝑘,𝑗+𝑙

𝑠
𝑙=−𝑠

𝑠
𝑘=−𝑠  .  (3.41) 

The user is free to choose the number of neighbouring pixels, 𝑠, across which the program smooths over. 

As a smoothing matrix we use an approximation to a Gaussian kernel, which corresponds to a Gaussian 

blur in image processing. Whereas “smoothing” is a general term used in the geophysical community 

for the forced correlation of parameters, in our case where the parameters describe a surface, the 

convolution effectively smooths the surface, i.e. removes small scale variations. 

Finally, we added a checkbox to our code to allow it to change the order of the damping and smoothing 

operations. Sometimes when a strong damping is necessary, this may result in rather unsmooth features 

at DEM boundaries, such that it makes sense to perform a smoothing only afterwards. 
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3.5 Main modules of SMAUG 

Our toolbox, SMAUG, contains several subprograms, which are executed separately. This allows the 

user to inspect intermediate results without any difficulty. We also tried to keep the intermediate results 

as portable as possible, by using JSON-files, as often as possible. Here we explain, in logical order, the 

rational of the submodules (a detailed user manual is separately available): 

 

MATERIALIZER.py 

This subroutine allows the user to create their own material that will be used in the subsequent model 

builder. The user may choose a density (either from data or directly insert mean and standard deviation) 

and a composition (also either from data or from the list of Groom et al., 2001). 

 

DATA_BINNING.py 

As the name suggests, this subroutine is used to spatially bin the recorded track data. The bin data (i.e. 

the output hereof) is then fed to the model builder. 

 

MODEL_BUILDER.py 

The model builder takes the bin data and the materials as inputs and allows the user, with help of DEMs, 

to allocate data and materials to certain cones. This is basically the spatial setup of the model. The 

resulting model file is then provided to the inversion code. 

 

INVERSION.py 

This is the main module in SMAUG, providing the functionality to perform a MCMC algorithm on the 

probabilistic model created with MODEL_BUILDER.py. It also includes several analysis tools to assess 

MCMC performance. 

 

MODEL_VIEWER.py 

The model viewer allows us to visualise the interface results, obtained and exported by INVERSION.py. 

It also has the functionality to dampen and smooth the resulting surfaces. 
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3.6 Model verification 

In this section we present examples of how the model can be employed, what it calculates and how the 

output is structured. We proceed by verifying, in a first step, that the physical models employed in this 

work yield results which are numerically consistent with the results of calculations from other studies. 

We will compare our results with reported values from literature in Ch. 3.6.1. We do this because we do 

not change the parameters of the flux model (except the height scaling, which has been verified by 

Nishiyama et al. (2017), and since the energy loss calculations is based on equations that stem from 

different frameworks. 

In a second step, we will benchmark the results obtained by this code from real data against previously 

published results. For this purpose, we will reanalyse the raw data from Nishiyama et al. (2017). This is 

a study that was conducted in the Central Swiss Alps in a railway tunnel that featured a glacier (part of 

the Great Aletsch glacier) above. Our goal there was to estimate the thickness of the overlying glacier 

and thus the subsurface structure of the ice-bedrock interface. The respective calculation and discussion 

thereof are presented in Ch. 3.6.2. 

3.6.1 Verification of energy loss calculations 

The energy loss model, that we use in our code generally reproduces the literature values well (below 

1%) across the different energy loss processes and relevant energies. In Fig. 3.5 we present the energy 

loss calculations for each energy loss process (i.e. ionisation, bremsstrahlung, pair-production and 

photonuclear interactions) across energies from 10 MeV to 100 TeV for silicon. 

 

Figure 3.5: Log-log plot of the stopping power of the different energy loss processes for silicon. At ~ 10 GeV the radiative 

processes (i.e. bremsstrahlung, pair-production and photonuclear interactions) reach around 1 % of the total stopping 

power. At a few hundred GeV (at the so called “critical energy”) the radiative processes start to become dominant over 

the ionisation losses.  
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The overall characteristics between different elements are the same with minor differences regarding 

the position of the critical energy and the 1 % - radiative point. In Fig. 3.6 we show the relative error of 

our calculations to the tabulated values from Groom et al. (2001) for the whole energy range. 

 

Figure 3.6: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for 

silicon. Ionisation losses agree very well with the literature values (within 0.025 %). At low energies the relative errors 

of the radiative processes are large and converge to a value close to 0 towards higher energies, resulting in a relative 

error on the total energy loss of around 0.5 % compared to literature.  

We note that the energy losses by ionisation are reproduced very well over the entire energy range. We 

also note that the relative error on the radiative energy losses is rather large below 10 GeV. This does, 

however, not introduce a major bias, because below this energy, radiative energy losses are negligible 

compared to ionisation losses, as can be seen in Fig. 3.5. Furthermore, the related errors are in an 

acceptable range at the energy level at which radiative losses begin to become noticeable (i.e. around 

100 GeV). This can be seen in Fig. 3.6, in the sense that the total relative error remains well bounded 

within 0.5 %. In the ionisation domain (i.e. below 100 GeV) the total relative error is dominated by the 

ionisation relative error, whereas above this energy level the relative errors on radiative losses start to 

prevail. A close-up of this energy range is given in Fig. 3.7. 

There are different sources and circumstances that contribute to the error in the process energy losses. 

The scatter of the relative ionisation loss error around 0 with a rather small deviation can be viewed as 

simple rounding errors. The errors on the radiative processes, however, seem to be of a more systematic 

nature. We explain this behaviour through a different numerical integration scheme in Eq. (3.7), which 

tend to systematically under-/overestimate the true value, especially when the integrand comprises 

exponential functions. Whereas we used a Double Exponential Integration scheme (see Takahasi & Mori, 
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1974), the integration scheme from Groom et al. (2001) is not discernible. However, as the relative 

errors on the energy loss processes remain well within the theoretical uncertainties, (see Ch. 3.4.1.3), 

we consider, that our calculation accurately reproduces the literature values for elements. 

 

Figure 3.7: Relative error of our energy loss calculations for silicon compared to the tabulated values from Groom et 

al. (2001) at higher energies (100 GeV – 100 TeV). The relative errors remain bounded within their theoretical 

uncertainties (see Ch. 3.1.3).  

The above calculations were performed for pure silicon. The respective figures for other four important 

elements in the Earth’s crust (Al, Fe, Ca & O) can be found in Appendix E (Ch. 3.12). Those elements 

are, however, not representative for any real material encountered in geological applications. For this 

reason, we compiled the same computations for four selected, geologically important compounds (SiO2, 

CaCO3, Standard Rock, ice) that are also shown in Appendix E (Ch. 3.12). We summarise, that with the 

exception of Standard Rock, all calculations yield results that are similar to the silicon calculation above. 

The discrepancy for Standard Rock stems from its inconsistent definition, with respect to the different 

parameters. In particular, the “Standard Rock” according to Lohmann et al. (1985) has an atomic number 

Z of 11 (i.e. sodium) and an atomic weight A of 22, which yield the characteristic parameter values of 

〈𝑍 𝐴⁄ 〉 = 0.5 and 〈𝑍2 𝐴⁄ 〉 = 5.5 respectively. Groom et al. (2001), on the other hand, list sodium as the 

only constituent of a standard rock. However, this material cannot be modelled by any mixture of pure 

elements, as common sodium consists of one neutron more and thus has a higher atomic weight (i.e. 

𝐴𝑁𝑎 = 23). Consequently, the use of standard sodium would lead to different characteristic parameter 

values, i.e. 〈𝑍 𝐴⁄ 〉 = 0.478  and 〈𝑍2 𝐴⁄ 〉 = 5.263 , thus leading to an inconsistency. This is often 

conveyed by the phrase that standard rock “is not-quite-sodium” (see Groom et al. 2001, p.203). In order 

to circumvent this problem, we advocate the exchange of 𝑁𝑎11
23  with its 𝑁𝑎11

22  isotope, that would lead 
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to the characteristic parameter values 〈𝑍 𝐴⁄ 〉 = 0.500 and 〈𝑍2 𝐴⁄ 〉 = 5.501, which are much closer to 

the actual definition of standard rock. For this reason, we extended the element/compound-list, (which 

is available from http://pdg.lbl.gov/2019/AtomicNuclearProperties/expert.html) by the 𝑁𝑎11
22  isotope, 

assuming that all parameters are equal to the ones from 𝑁𝑎11
23 . Additionally, we redefined the standard 

rock (i.e. material number 281 in the list) to consist only of 𝑁𝑎11
22 . With this change, standard rock does 

not need any more special treatment and can be calculated in a way that is consistent to all other 

compounds. 

Furthermore, the relative error between the tabulated values and our modified calculation falls in line 

with the calculations for the other compounds and elements (Figures 3.8 and 3.9).  

 

Figure 3.8: Relative error of our energy loss calculations for a standard rock consisting of 𝐍𝐚𝟏𝟏
𝟐𝟑 , compared to the 

tabulated values from Groom et al. (2001) at higher energies (100 GeV – 100 TeV).  
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Figure 3.9: Relative error of our energy loss calculations for a standard rock consisting of 𝐍𝐚𝟏𝟏
𝟐𝟐 , compared to the 

tabulated values from Groom et al. (2001) at higher energies (100 GeV – 100 TeV).  

3.6.2 Verification of the bedrock-ice interface reconstruction 

In this part we test the presented reconstruction algorithm on previously published data. For this purpose, 

we compare our calculations to the ones already published in the study by Nishiyama et al., (2017), 

where the goal was to measure the interface between the glacier and the rock, in order to determine the 

spatial distribution of the rock surface (also below the glacier). We could access the Railway Tunnel to 

install the muon detectors beneath the ice. A situation sketch is shown in Fig. 3.10. 

The results shown below (Figs. 3.11 – 3.13) represent the bedrock-ice interface interpolated to an 8-

metre grid, which was first damped (weight 8) and then smoothed (2 grid pixel). We assess the goodness 

of fit according to the three cross-sections (East, Central, West), that are shown in Fig. 3.10. The 

crosscuts are nearly perpendicular to the train tunnel and roughly 40 𝑚 apart from each other. Figures 

3.11 to 3.13 show the three cross-sections in detail. In every plot, we also indicate the solution from 

Nishiyama et al. (2017). Please note that we added a systematic error of 2 m to the uncertainty planes, 

as the DEM we are working with has itself an uncertainty of ± 2 𝑚. The dash-dotted lines mark thus 

the most conservative error estimate. Moreover, we highlighted the parts of the cross-section that had 

either been damped to the bedrock DEM or that have been solely resolved by the measurement (see 

“damping marker” in Fig. 3.10). 
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Figure 3.10: Overview map of the study area around Jungfraujoch. The brown line separates the visible bedrock in the 

DEM from the glacier part (“Ice”). The three profiles (East, Central & West) are depicted with a red line, on which the 

damping marker is shown by a grey point. The extent of the reconstructed bedrock-ice interface is shown by the blue 

area. Additionally, the three detector positions (D1, D2 & D3) are shown by orange pentagons, including their viewfield. 

Basemap: Orthophotomosaic Swissimage, © Federal Office of Topography swisstopo.  

Figure 3.11 shows the western profile, where our bedrock-ice interface and the one from the previous 

study agree well and both lie within the given error margins. The lack of fit in areas where the steepness 

changes rapidly (i.e. around 40 𝑚 and 80 𝑚) can be explained as a smoothing artefact. Towards the end 

of the profile, the decreasing data coverage becomes evident as the uncertainties rise. This effect can 

also be seen in the jagged behaviour of the interface curves around 100 𝑚  to 120 𝑚 , hinting at 

interpolations with few data. 
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Figure 3.11: Western cross-section. The brown and dashed blue line indicate the ice-bedrock interface solutions of this 

study and the one from Nishiyama et al. (2017), respectively.  𝟏 𝝈-error margins are shown in yellow (upper) and red 

(lower). The dotted margins encompass only the statistical variation of the interface position, whereas the dash-dotted 

include a ±𝟐 𝒎 systematic error which stems from the inherent DEM-uncertainty. For completeness we also show the 

position of the railway tunnel as a black square.  

 

Figure 3.12 presents the central profile. Similar to the western profile (Fig. 3.11) the fits match quite 

well and are within the error margins. It may be possible that the point where the actual bedrock begins 

might be further down (i.e. ~80𝑚 instead of 65 𝑚). Here we used the same DEM and aerial photograph 

as the previous study. This means that newer versions might be available, that show more bedrock (due 

to the glacial retreat as a response to global warming).  
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Figure 3.12: Central cross-section. The brown and dashed blue line indicate the ice-bedrock interface solutions of this 

study and the one from Nishiyama et al. (2017), respectively.  𝟏 𝝈-error margins are shown in yellow (upper) and red 

(lower). The dotted margins encompass only the statistical variation of the interface position, whereas the dash-dotted 

include a ±𝟐 𝒎 systematic error which stems from the inherent DEM-uncertainty. For completeness we also show the 

position of the railway tunnel as a black square.  

 

The eastern profile is shown in Fig. 3.13. One sees that the results from this study are internally 

consistent. The surface from the previous study plunges down earlier with respect to the surfaces 

calculated here. This may in fact be a damping effect, as the bedrock-ice interface from Nishiyama et al. 

(2017) has not been constrained to the bedrock (via damping) and thus plunges down before the damping 

mark at ~72 𝑚. Still, the two surfaces agree within 5 𝑚, which we consider as acceptable. 
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Figure 3.13: Eastern cross-section. The brown and dashed blue line indicate the ice-bedrock interface solutions of this 

study and the one from Nishiyama et al. (2017), respectively.  𝟏 𝝈-error margins are shown in yellow (upper) and red 

(lower). The dotted margins encompass only the statistical variation of the interface position, whereas the dash-dotted 

include a ±𝟐 𝒎 systematic error which stems from the inherent DEM-uncertainty. For completeness we also show the 

position of the railway tunnel as a black square.  

 

All together the performance of the whole workflow, which is shown in this study, produces results, 

which are similar to the ones published in the previous study (Nishiyama et al., 2017). We use the results 

of this comparison to validate the base of our code.  
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3.7 Conclusions 

In this study we have presented a model that allows us to integrate geological information into a muon 

tomography framework. The inherent parameter estimation problem has been formulated in a 

probabilistic way and solved accordingly. The propagation of uncertainties thus occurs automatically 

within this formalism. We also considered approaches including DAGs or the simplex subspace of 

compositions which could be helpful to the muon tomography community while tackling their own 

research. We condensed these approaches in a modular toolbox. This assortment of python programs 

allows the user to address the subproblems during the data analysis of a muon tomography experiment. 

The programs are modular in the sense that the user can always access the intermediate results, as the 

files are mostly in a portable format (JSON). Thus, it is perfectly possible to only use one submodule of 

the toolbox while working with an own codebase. As every “tool” is embedded in a GUI, the program 

is made accessible without the need to first read and consider several thousand code lines. Furthermore, 

we have shown that the results we obtain with our code are largely in good agreement with an earlier, 

already published experiment. The small deviations may be attributed to data analysis subtleties.  

We would like to stress that this work is merely a foundation upon which many extensions can be built 

when it is used in other applications as well. Future content might for example include a realistic 

treatment of multiple scattering and the inclusion of compositional uncertainties in the inversion, for 

which we laid out the basis in this study. 
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3.8 Appendix A – Muon flux model 

As many empirical muon flux models, the one that we employed consists of an energy spectrum for 

vertically incident muons at sea level at its core. An accepted instance is the energy spectrum of Bugaev 

et al. (1998), that takes the form 

Φ𝐵(𝑝) = 𝐴𝐵𝑝
−(𝛼3 log10

3 (𝑝)+𝛼2 log10
2 (𝑝)+𝛼1 log10(𝑝)+𝛼0), (3.A1) 

where 𝑝 denotes the momentum of the incident muon in 𝐺𝑒𝑉 ∗ 𝑐−1. The values of the 𝛼𝑖 and 𝐴𝐵 are, 

for example, listed in Lesparre et al. (2010). This model is an extended version of Renya (2006), to 

account for different incident angles, 

Φ𝑅(𝑝, 𝜃) = cos
3(𝜃)Φ𝐵(𝑝 cos(𝜃)), (3.A2) 

where 𝜃 is the zenith angle of the incident muon. It is important to note that the parameter values in Eq. 

(3.A1) are changed to 𝛼0 = 0.2455, 𝛼1 = 1.288, 𝛼2 = −0.2555, 𝛼3 = 0.0209 and 𝐴𝐵 = 0.00253. In 

order to include height above sea level as an additional parameter, Hebbeker and Timmermans (2002) 

proposed to model the altitude dependence as an exponential decay, which modifies Eq. (3.A2) into 

Φ(𝑝, 𝜃, ℎ) = Φ𝑅(𝑝, 𝜃) ∗  exp (−
ℎ

ℎ0
)  . (3.A3) 

The scaling height, ℎ0, is usually to be taken as ℎ0 = 4900𝑚 + 750 𝑚 𝑐 𝐺𝑒𝑉
−1 ∗  𝑝, where 𝑝, is the 

momentum of the incident muon in 𝐺𝑒𝑉 ∗ 𝑐−1. However, as this formula is only valid up to an altitude 

of 1000 m above sea level, Nishiyama et al. (2017) adapted it to ℎ0 = 3400 𝑚 + 1100 𝑚 ∗  𝑐 ∗

 𝐺𝑒𝑉−1 ∗ 𝑝 ∗ cos(𝜃). This was done in order to fit the energy spectrum up to 4000 m above sea level. 

This formula is now valid for momenta above 3 𝐺𝑒𝑉 ∗ 𝑐−1, zenith angles between 0° and 70° and an 

altitude below 4000 𝑚 above sea level. 

3.9 Appendix B – Rock model 

3.9.1 B1 – Density model 

The density distribution of a lithology can be determined through various methods. In our work, we 

constructed a density model by analysing various rock samples from our study area in the laboratory. 

Two experimental setups were employed to gain insight into the grain, skeletal as well as the bulk 

density of the rocks. Grain and skeletal density were measured by means of the AccuPyc 1340 He-

pycnometer, which is a standardised method that yields information on the volume. Bulk density values 

were then determined based on Archimedes’ principle, where suspension of paraffin coated samples 

were suspended into water (ASTM C914-09, 2015; Blake and Hartge, 1986).  

Every sample 𝑗 = 1,… ,𝑁 (usually the size of a normal hand sample) has been split up into smaller 

subsamples 𝑖 = 1,… , 𝑆𝑗, that were measured. The bulk density of the i-th subsample can be calculated 

by 
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𝜌𝑏𝑢𝑙𝑘,𝑖𝑗 =
𝜌𝐻2𝑂∗𝑚𝑠,𝑖𝑗

(𝑚𝑠,𝑖𝑗+𝑚𝑝,𝑖𝑗+𝑚𝑡,𝑖𝑗−𝑚𝑠𝑢𝑠,𝑖𝑗)−(
𝑚𝑝,𝑖𝑗∗𝜌𝐻2𝑂

𝜌𝑝
)−(

𝑚𝑡,𝑖𝑗∗𝜌𝐻2𝑂

𝜌𝑇
)
 , (3.B1) 

where 𝜌𝐻2𝑂 , 𝜌𝑝, 𝜌𝑇 denote the density of water, paraffin and the thread that was used to dip the sample 

into the liquid, respectively. 𝑚𝑠,𝑖𝑗 , 𝑚𝑝,𝑖𝑗 , 𝑚𝑡,𝑖𝑗, 𝑚𝑠𝑢𝑠,𝑖𝑗  describe the mass of the sample, the paraffin 

coating, the thread and the apparent mass of all three components suspended in water. 𝑚𝑝,𝑖𝑗 , 𝑚𝑡,𝑖𝑗 can 

then be simply obtained through 

𝑚𝑝,𝑖𝑗 = 𝑚𝑠,𝑡,𝑝,𝑖𝑗 −𝑚𝑠,𝑡,𝑖𝑗 , (3.B2) 

as 𝑚𝑠,𝑡,𝑝,𝑖𝑗 denote the mass of the sample including thread and paraffin coating on one hand and 𝑚𝑠,𝑡,𝑖𝑗 

only the mass of the sample and the thread on the other hand. Further, the mass of the thread is given by 

𝑚𝑡,𝑖𝑗 = 𝑚𝑠,𝑡,𝑖𝑗 −𝑚𝑠,𝑖𝑗. (3.B3) 

The maximal precision of the reading is estimated at ±5 ∗ 10−5𝑔, and the commonly ignored effects 

regarding buoyancy in air has been estimated to introduce an error on the order of ±2 ∗ 10−4𝑔. This 

error has been attributed to all direct mass measurements. Moreover, because small pieces of material 

may detach from the sample upon attaching the thread to the sample and during the paraffin coating, we 

set an error of ±2 ∗ 10−2𝑔 to all measurement results. The variables in Eq. (3.B1) are strictly positive 

values. Following Tarantola (2005) we model these “Jeffreys parameters” by lognormal distributions, 

as they inherently satisfy the positivity constraint. Because Eq. (3.B1) does not simply allow a standard 

uncertainty propagation, the script “subsample_analysis.py” performs a Monte Carlo simulation for each 

subsample and attributes a final lognormal probability density function to the resulting histogram. Figure 

3.B1 illustrates such an example, where the calculation has been performed for subsample JT-20-1. 

We have found 10’000 draws per subsample to be sufficient to retrieve a solid lognormal distribution. 

However, this parameter can easily be changed in the script, depending on the user’s preference of 

precision/speed. 



CHAPTER 3 3.9 APPENDIX B – ROCK MODEL 

  101 

 

Figure 3.B1: Example output of “subsample_analysis.py” for a bulk density measurement of subsample JT-20-1 (see 

supplementary information for data). Green bars represent the histogram of 10’000 monte carlo simulation draws. The 

orange curve indicates the fitted lognormal probability density function.  

The determination of the grain and skeletal densities is simpler than the bulk density measurements, 

because the corresponding method consists of a mass and a volume measurement, respectively. The 

density formula 

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙/𝑔𝑟𝑎𝑖𝑛,𝑖𝑗 =
𝑚𝑖𝑗

𝑉𝑖𝑗
  (3.B4) 

can be transformed by taking logarithms on both sides, which yields 

ln(𝜌skeletal/grain,ij) = ln(𝑚𝑖𝑗) − ln(𝑉𝑖𝑗) . (3.B5) 

As the logarithms of lognormally distributed parameters follow a normal distribution, the uncertainty 

propagation in Eq. (3.B5) can be treated by standard gaussian uncertainty propagation. An example 

output for this calculation can be found in Fig. 3.B2, for a grain density measurement of subsample SX-

03-1. 
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Figure 3.B2: Example output of “subsample_analysis.py” for a grain density measurement of subsample SX-03-1 (see 

supplementary information for data). The orange curve indicates the lognormal probability density function of 

𝝆𝒈𝒓𝒂𝒊𝒏,𝟏,𝑺𝑿−𝟎𝟑.  

Uncertainties on the primary parameters (such as 𝑉𝑖𝑗 in Eq. 3.B5 or 𝑚𝑠𝑢𝑠,𝑖𝑗 in Eq. 3.B1) can be translated 

to lognormal parameters. This is achieved by reinterpreting the expression 𝑉𝑖𝑗 ± 휀𝑉𝑖𝑗  as the first 

plus/minus the square root of the second statistical moment, i.e. the mean and the variance (var) of the 

lognormal distribution. A transformation to the location and scale parameters of the lognormal 

distribution (𝜇, 𝜎2) can then be achieved by the following formulae: 

𝜇 = ln(
𝑚𝑒𝑎𝑛

√1+
𝑣𝑎𝑟

𝑚𝑒𝑎𝑛2

),         𝜎2 = ln (1 +
𝑣𝑎𝑟

𝑚𝑒𝑎𝑛
)  . (3.B6) 

The script “sample_analysis.py” performs this conversion for each subsample measurement and 

combines the resulting pdfs to a sample pdf. This is done by a disjunction of the subsample pdfs 

(Tarantola, 2005), 

𝑝𝑗(𝜌) =
1

𝑆𝑗
∑ 𝑝𝑖𝑗(𝜌)
𝑆𝑗
𝑖=1

 , (3.B7) 

where 𝑝𝑖𝑗(𝜌)  is the lognormal probability density, that has been calculated during the subsample 

analysis (see Fig. 3.B1 and Fig. 3.B2). Fig. 3.B3 shows these disjunctions for all samples of dataset with 

bulk density values. As the number of subsamples per sample is small, the disjunction might not be 

representative of the sample distribution. We therefore implemented a fitted lognormal pdf to the 

disjunction to gain insight into this discrepancy.  
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Figure 3.B3: Disjunction of subsample to sample pdfs for bulk density measurements, according to Eq. (3.B7). The 

dashed green line in each subplot denotes a fitted lognormal pdf to the disjunction (solid blue line).  

As illustrated in Fig. 3.B3, the density of samples JT-21, JT-23 and SX-03 do not completely comply 

with a lognormal distribution. Severe discrepancies might hint at a problem during the sample 

preparation and/or measurements process, leading to samples being excluded from the analysis. 

However, as the difference between disjunction and fitted lognormal in these samples are still in an 

acceptable range, the data can be used for further analyses without problems. 

In a second step the script performs another disjunction of the sample pdfs (from Fig. 3.B3) to a lithology 

pdf according to 

𝑝𝑙𝑖𝑡ℎ𝑜(𝜌) =
1

N
∑ 𝑝𝑗(𝜌)
N
𝑖=1  . (3.B8) 

Fig. 3.B4 shows the result of Eq. (3.B7) together with a fitted lognormal pdf and their respective 25%, 

50% and 75%-quantiles. The user is free to use both pdfs in the main code as a constraint on material 

density, because the code produces a disjunction pdf and a fitted lognormal output file. 
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Figure 3.B4: Disjunction of sample pdfs to a lithology pdf for bulk density measurements, according to Eq. (3.B8).  

3.9.2 B2 – Composition model 

We have seen in Eq. (3.9) that the material density parameter enters the energy loss calculations rather 

directly. Contrariwise, the compositional model affects the energy loss equations much more subtly 

through average {𝑍 𝐴⁄ }𝑟𝑜𝑐𝑘  and {𝑍2 𝐴⁄ }𝑟𝑜𝑐𝑘  values and mean excitation energies that need to be 

calculated for the entire lithology. Likewise, information on the weight percentages of the main elements 

within the rock is required for the quantification of the radiation loss term. 

Although a modal mineral analysis (e.g. the quantitative determination of mineral volumes) is preferable 

and can be treated according to Lechmann et al. (2018), its execution is a rather time-consuming effort. 

This is the reason why compositional data in muon tomography experiments predominantly consist of 

XRF-data, which show the abundance of major oxides within the rock. We describe here a method to 

incorporate such type of information in a probabilistic way thereby following Aitchison (1986). 

Compositional data are usually available in the form of Table 3.B1, which presents an excerpt of four 

samples for illustration purposes. We refer to the supplementary material of this work for the full data.  
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Table 3.B1: Excerpt of XRF data for four samples. Data in column denote weight percentages of major oxides within 

the rock samples.  

Sample JT01 JT02 JT19 JT20 

Oxides     

SiO2 0.6131 0.5981 0.6997 0.6139 

TiO2 0.0123 0.0067 0.0076 0.0094 

Al2O3 0.1567 0.1873 0.1481 0.1921 

Fe2O3 0.087 0.0791 0.0496 0.0686 

MnO 0.001 0.0012 0.0009 0.0009 

MgO 0.0359 0.0285 0.0206 0.0288 

CaO 0.0202 0.0071 0.0201 0.0137 

Na2O 0.0228 0.0248 0.0404 0.0323 

K2O 0.0343 0.0465 0.0287 0.0469 

P2O5 0.0041 0.0029 0.0021 0.0027 

Sum 0.9874 0.9822 1.0178 1.0093 

 

There are several challenges to this kind of data. First, the parameters (i.e. the oxide percentages) can 

take a value between 0 and 1. This means that normal as well as lognormal distributions are not suitable 

to describe these parameters. Second, the requirement that the sum of all parameters has to ideally equal 

1 poses a constraint on this parameter space, which effectively reduces the number of independent 

parameters by one. Third, due to measurement uncertainties, this sum is never exactly one.  

Spaces, which have this unit sum condition can be viewed as a simplex, e.g. if we had three 

compositional parameters, the simplex would be a 2-dimensional surface (i.e. a subspace) in this 3-

dimensional parameter space. The last issue, of not summing up exactly to 1, can be remedied by 

projecting each sample dataset back to the simplex (Aitchison, 1986, p. 257-261). This works only if 

the measurement imprecisions are not too large, which works well for the examples in Table 3.B1. With 

respect to the energy loss calculation, it is preferable to decompose the oxides into elements, which can 

be done by following formula 

𝑤𝑡𝑒𝑙𝑒,𝑖 = ∑ 𝑤𝑡𝑗 ∗
𝑛𝑖𝑗𝑚𝑖

𝑚𝑗
𝑗 ∈{𝑜𝑥𝑖𝑑𝑒𝑠}  , (3.B8) 

where 𝑚𝑖 and 𝑚𝑗 denote the molar mass mass of the i-th element and the j-th oxide, 𝑤𝑡𝑗 is the j-th datum 

in the column and 𝑛𝑖𝑗  is the number of atoms of the i-th element within the j-th oxide. The two 

transformations are visualised in Table 3.B2. 
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Table 3.B2: Element weight percent data. Transformed from oxide weight percent data with use of Eq. (3.B8). All data 

has additionally been scaled to satisfy the unit sum constraint.  

Sample JT01 JT02 JT19 JT20 

Elements     

Si 0.2902 0.2846 0.3213 0.2843 

Ti 0.0075 0.0041 0.0045 0.0056 

Al 0.0840 0.1009 0.0770 0.1007 

Fe 0.0616 0.0563 0.0341 0.0475 

Mn 0.0008 0.0009 0.0007 0.0007 

Mg 0.0219 0.0175 0.0122 0.0172 

Ca 0.0146 0.0052 0.0141 0.0097 

Na 0.0171 0.0187 0.0294 0.0237 

K 0.0288 0.0393 0.0234 0.0386 

P 0.0018 0.0013 0.0009 0.0012 

O 0.4716 0.4711 0.4823 0.4707 

Sum 1 1 1 1 

 

In order for the data to be in a statistically convenient form, Aitchison (1986) suggests to further 

transform the data in Table 3.B2 by first forming a ratio with an arbitrary element (in the list) and then 

taking the logarithm. For the exemplary dataset this is shown in Table 3.B3. 

Table 3.B3: Log-ratio of element weight percentages, with respect to oxygen-wt%. 

Sample JT01 JT02 JT19 JT20 

Elements     

ln(Si/O) -0.48531565 -0.50379579 -0.40607778 -0.5042219 

ln(Ti/O) -4.14567399 -4.74687577 -4.68001075 -4.43477381 

ln(Al/O) -1.72531 -1.54064159 -1.83464118 -1.54183733 

ln(Fe/O) -2.03494223 -2.12384752 -2.64974526 -2.29276806 

ln(Mn/O) -6.39894857 -6.21033707 -6.55719484 -6.52451934 

ln(Mg/O) -3.06839321 -3.29293646 -3.67672517 -3.30896536 

ln(Ca/O) -3.47357746 -4.51287533 -3.53142599 -3.88207448 

ln(Na/O) -3.31519303 -3.22481996 -2.79600952 -2.98709658 

ln(K/O) -2.79436382 -2.48376691 -3.0254978 -2.50170175 

ln(P/O) -5.56150947 -5.90149576 -6.28344485 -5.99945492 

ln(O/O) 0 0 0 0 

     

 

The rationale behind this transformation is as follows. The division by an arbitrarily present element 

effectively transforms the space into an N-1-dimensional open space, where the parameters (i.e. ratios) 

may have values between 0 and ∞. The subsequent application of the logarithm further changes the 

space, such that the new parameters can have values between −∞ and ∞. This results in so-called log-

ratios, which should ideally be following a multivariate normal distribution. As a consequence, we can 

calculate the mean log-ratio vector across all samples as well as its corresponding covariance matrix, 

which completely describes the multivariate normal distribution. In addition to these statistical 

parameters, the script “compo_analysis.py” outputs a graph, that plots for all samples an order statistic, 
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𝑧𝑟, (see Aitchison, 1986). This enables us to visualise how different the data is from a multivariate 

normal distribution. If equal, they should fall on the red line, shown in Fig. 3.B5. 

 

Figure 3.B5: Visual test for multivariate normality of the log-ratio data from Table 3.B3 (This plot shows the full dataset, 

of which Table 3.B3 is only an excerpt). Each subplot checks for marginal normality. Oxygen is the denominator 

variable (arbitrarily chosen) and does thus not appear in the plot.  

With a graph like Fig. 3.B5 it is possible to check if the multivariate normal distribution is an appropriate 

model to describe the elemental composition data. For our example that we show in Fig. 3.B5 this looks 

acceptable, with only slight deviations for silicon, aluminium, manganese and sodium). Once the 

normality has been verified it is possible to generate random samples from this distribution. For every 

drawn sample it is then possible to calculate the weight percentages of the single elements by using the 

inverse formula to the log-ratio transformations 

𝑤𝑡𝑒𝑙𝑒,𝑖 =
exp(𝑟𝑖)

1−∑ exp(𝑟𝑗)
𝑁𝑒𝑙𝑒−1

𝑗=1

 , (3.B9) 

for all numerator elements and 

𝑤𝑡𝑒𝑙𝑒,𝑁𝑒𝑙𝑒 =
1

1−∑ exp(𝑟𝑗)
𝑁𝑒𝑙𝑒−1

𝑗=1

  (3.B10) 

for the denominator element (here oxygen). In Eqs. (3.B9) and (3.B10) the 𝑟𝑖 denote the log-ratios from 

Table 3.B3 and 𝑁𝑒𝑙𝑒 is the total number of elements (in Table 3.B2). 
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3.9.3 B3 – Energy loss equation for rocks 

As stated in Eq. (3.7) the energy loss equation for rocks needs parameters that differ from the ones for 

pure elements. First, the expression for density can directly be exchanged according to the density model 

(see Appendix B1). Second, it is possible to generate an expression for the average ionisation loss within 

a rock by exchanging three parameters. Density values that also enter within {𝑎}𝑟𝑜𝑐𝑘 , can again be 

directly changed. The average {𝑍 𝐴⁄ }𝑟𝑜𝑐𝑘 may be exchanged with the elemental 𝑍 𝐴⁄  by using 

{𝑍 𝐴⁄ }𝑟𝑜𝑐𝑘 = ∑ 𝑤𝑡𝑒𝑙𝑒,𝑖 ∗
𝑍𝑖

𝐴𝑖

𝑁𝑒𝑙𝑒
𝑖=1  . (3.B11) 

𝑤𝑡𝑒𝑙𝑒,𝑖 are the weight fractions from Eqs. (3.B9) & (3.B10). Lastly, the mean excitation energy for the 

rock can be computed by 

ln{𝐼}𝑟𝑜𝑐𝑘 =
∑ 𝑤𝑡𝑒𝑙𝑒,𝑖∗

𝑍𝑖
𝐴𝑖

𝑁𝑒𝑙𝑒
𝑖=1

∗ln 𝐼𝑖

{𝑍 𝐴⁄ }𝑟𝑜𝑐𝑘
 . (3.B12) 

The radiation loss term, however, must be calculated as a weighted radiation energy loss over all 

elements. This means that the average can be written in a rather concise form, 

{b}rock = ∑ 𝑤𝑡𝑒𝑙𝑒,𝑖 ∗ 𝑏𝑒𝑙𝑒,𝑖
𝑁𝑒𝑙𝑒
𝑖=1  . (3.B13) 
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3.10 Appendix C – Metropolis Hastings technicalities 

This appendix chapter is a short summary of Gelman (2014, p. 284 – 287) and we refer to these pages 

for a detailed discussion of the calculations. This work presents a concept of how to assess the quality 

of a MCMC run. In particular, the aforementioned author proposes to analyse two quantities, the 

potential scale reduction factor �̂�  and the effective number of simulation draws �̂�𝑒𝑓𝑓  for every 

parameter of interest. For every chain of a parameter the variance between different chains and within 

one chain is calculated. The posterior variance of the parameter is then estimated as a weighted average 

of these two types of variances. Finally, �̂� is the quadratic ration between the posterior variance and the 

variance within one chain. This quantity shows if the various chains have mixed or not, i.e. it explored 

the same region of the model space. If the posterior variance is much larger than the variances of the 

single chains, then the chains have not sufficiently explored the same region. Gelman (2014) propose to 

employ a threshold of 1.1 as a rule of thumb, below which the value of �̂� would lie. 

One problem that arises in MCMC algorithms is the inherent dependence of one simulation on the one 

before (this is the definition of a Markov chain). One considers that such a dependence does not 

introduce a bias if enough samples are drawn. However, this also means, that the effective, independent 

sample size is much smaller than the number of simulations. Therefore, Gelman (2014) proposes to 

calculate the effective number of simulation draws, �̂�𝑒𝑓𝑓  in order to assess if one has enough 

independent samples The underlying idea here is to evaluate the correlations within the chains. An 

accepted threshold value for this parameter is 5𝑚 , where 𝑚  is the number of sub-chains. For the 

calculation of �̂� and �̂�𝑒𝑓𝑓 the chains may be cut in half to generate more chains. Note, however, that 

�̂�𝑒𝑓𝑓 can also be larger, which only means that the simulation standard error decreases. In our example 

we performed the calculations with two chains and a subdivision of 2, which means that our target 

quantity is around 20 (= 5 ∗ 4). Most of our thickness parameters have, in fact, a �̂�𝑒𝑓𝑓 > 100, with 

only a few below. 
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3.11 Appendix D – Construction of the smoothing kernel 

As stated in the main text, the user specifies the number of neighbouring pixels s to smooth over. The 

main idea is to construct a roughly Gaussian smoothing kernel by approximating it with a binomial 

distribution. With help of the binomial coefficient we can construct a vector of weights with 𝐿 = (2 ∗

𝑠 + 1) entries. The weight vector is then given by 

𝑤𝑖 = 
1

22∗𝑠
(
𝐿 − 1
𝑖
) , (3.D1) 

with 𝑖 ∈ {0, . . , 𝐿 − 1}. It is now possible to create a matrix by forming the dyadic product of �⃗⃗�  with 

itself, i.e. 

𝐾 = �⃗⃗� ⊗ �⃗⃗�  , (3.D2) 

or in index notation, 

𝐾𝑖𝑗 = 𝑤𝑖 ∗ 𝑤𝑗 .  (3.D3) 

As an example, we show how a smoothing kernel that smooths over two neighbouring pixels (i.e. 𝑠 =

2) is constructed. This is incidentally also the smoothing kernel we used to construct our ice-bedrock 

interface. The weight vector in this case is given by 

�⃗⃗� =
1

16
∗ (1 4 6 4 1) .  (3.D4) 

The weight vectors are, in fact, only the odd rows from Pascal’s triangle, interpreted as vectors and 

normalised by a L1 norm. The smoothing matrix then takes the form  

𝐾 = 
1

256

(

 
 

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1)

 
 

 .  (3.D5) 
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3.12 Appendix E – Energy loss calculations for various materials 

 

 

Figure 3.E1: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) 

for aluminium in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV.  

 

Figure 3.E2: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) 

for calcium in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV.  
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Figure 3.E3: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) 

for iron in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV.  

 

Figure 3.E4: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) 

for oxygen in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV.  
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Figure 3.E5: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) 

for calcium carbonate (calcite) in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV.  
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Figure 3.E6: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) 

for silicon dioxide (quartz) in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV.  

 

Figure 3.E7: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) 

for ice in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV.  
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Figure 3.E8: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) 

for standard rock ( 𝐍𝐚𝟏𝟏
𝟐𝟑 ) in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV.  

 

Figure 3.E9: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) 

for standard rock ( 𝐍𝐚𝟏𝟏
𝟐𝟐 ) in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV.  

  



3.13 CODE AVAILABILITY CHAPTER 3 

116 

3.13 Code availability 

The source code of SMAUG 1.0 is publicly and freely available on 

https://github.com/ArcticSaru/SMAUG. 

3.14 Data availability 

The data for the density and XRF measurements is available on https://github.com/ArcticSaru/SMAUG. 

The raw data from the Nishiyama et al. (2017) paper is publicly and freely available from the publisher’s 

website (Open access). 
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4.1 Abstract  

In recent years, the use of radiographic inspection with cosmic-ray muons has spread into multiple 

research and industrial fields. This technique is based on the high-penetration power of cosmogenic 

muons. Specifically, it allows the resolution of internal density structures of large scale, geological 

objects through precise measurements of the muon absorption rate. So far, in many previous works, this 

muon absorption rate has been considered to depend solely on the density of traversed material (under 

the assumption of a standard rock) but the variation in chemical composition has not been taken seriously 

into account. However, from our experience with muon tomography in Alpine environments we find 

that this assumption causes a substantial bias on the muon flux calculation, particularly where the target 

consists of high {𝑍2 𝐴⁄ } rocks (like basalts and limestones) and where the material thickness exceeds 

300 metres. In this paper, we derive an energy loss equation for different minerals and we additionally 

derive a related equation for mineral assemblages that can be used for any rock type on which 

mineralogical data are available. Thus, for muon tomography experiments in which high {𝑍2 𝐴⁄ } rock 

thicknesses can be expected, it is advisable to plan an accompanying geological field campaign to 

determine a realistic rock model. 

4.2 Introduction 

The discovery of the muon (Neddermeyer and Anderson, 1937) entailed experiments to characterise its 

propagation through different materials. The fact that muons lose energy proportionally to the mass 

density of the traversed matter (see Olive et al., 2014) inspired the idea of using their attenuation to 

retrieve information on the traversed material. This was first done by George (1955) for the estimation 

of the overburden upon building of a tunnel, and then later by Alvarez et al. (1970) to search for hidden 

chambers in the pyramids at Giza (Egypt). In a related study, Fujii et al. (2013) employed this technology 

to locate the reactor of a nuclear power plant. Recently, Morishima et al. (2017) successfully 

accomplished quest of Alvarez’ team in the Egyptian Pyramids. 
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Besides these applications, which have mainly been designed for archaeological and civil engineering 

purposes, scientists have begun to deploy particle detectors to investigate and map geological structures. 

In recent years this has been done for various volcanoes in Japan (Nishiyama et al., 2014; Tanaka et al., 

2005, 2014), including Shinmoe-dake volcano (Kusagaya and Tanaka, 2015), the lava dome at Unzen 

(Tanaka, 2016) and most recently Sakurajima volcano (Oláh et al., 2018). Further experiments have 

been conducted in the Caribbean, in France (Ambrosino et al., 2015; Jourde et al., 2013, 2015; Lesparre 

et al., 2012; Marteau et al., 2015) and in Italy on Etna (Lo Presti et al., 2018) and Stromboli (Tioukov 

et al., 2017). Recently, Barnaföldi et al. (2012) used this technology to examine karstic caves in the 

Hungarian mountains. Our group is presently carrying out an experimental campaign in the Central 

Swiss Alps for the purpose of imagining glacier-bedrock interfaces (Nishiyama et al., 2017). 

Inferences about subsurface structures from observed muon flux (i.e. the number of recorded muons 

normalised by the exposure time and the detector acceptance) necessitate a comparison of the 

measurement data with muon flux simulations for structures with various densities. Such a simulation 

consists of a cosmic-ray muon energy spectrum model and a subsequent transportation of these muons 

through matter. The former describes the abundance of cosmic-ray muons for different energies and 

zenith angles at the surface of the earth. This has been well documented in literature (see for example 

Lesparre et al., 2010). The differences between models and experimental data, hence the systematic 

model uncertainty, can be as large as 15 % for vertical muons (Hebbeker and Timmermans, 2002). On 

the other hand, the attenuation of the muon flux is assumed to depend only on the density of the traversed 

material. In this context, however, potential effects of its chemical composition have not been taken into 

account specifically. Instead, previous works employ a certain representative rock, so-called “standard 

rock”, for which the rate of muon energy loss has been tabulated (e.g. Groom et al., 2001). 

The origin of this peculiar rock type can be traced back to Hayman et al. (1963), Miyake et al. (1964), 

Mandò and Ronchi (1952) and George (1952), who gave slightly different definitions of its physical 

parameters (mass density 𝜌, atomic weight 𝐴 and atomic number 𝑍). A comprehensive compilation 

thereof can be found in Table 1 of Higashi et al. (1966). Various corrections to the energy loss equation 

were then added in the framework of following-up studies, which particularly includes a density effect 

correction (see for example Sternheimer et al., 1984). Richard-Serre (1971) listed data relevant for muon 

attenuation for: (i) soil from the CERN (European Organization for Nuclear Research) premises near 

Geneva (Switzerland), (ii) Molasse-type material (e.g. Matter et al., 1980) and (iii) a “rock” that equals 

the one from Hayman et al. (1963). These latter authors assigned additional energy loss parameters to 

this particular rock type, which were similar to those of pure quartz. Lohmann et al. (1985) then adjusted 

these parameters to energy loss variables for calcium carbonate (i.e. calcite) and gave the standard rock 

its present shape. In summary, this fictitious material consists of a density of crystalline quartz (i.e. 

𝜌𝑞𝑡𝑧 = 2.65 𝑔 𝑐𝑚
−3), a Z and A of 11 and 22, respectively (which is almost sodium), and density effect 

parameters that have been measured on calcium carbonate.  
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However, when the material’s Z and A differ greatly from standard rock parameters as for carbonates, 

basalts or peridotites, a substantial bias would be introduced to the calculation of the muon flux. Such a 

situation is easily encountered in geological settings such as the European Alps where igneous intrusions, 

thrusted and folded sedimentary covers and recent Quaternary deposits are found in close vicinity (e.g. 

Schmid et al., 1996). Currently, our collaboration is performing a muon tomography experiment in the 

Jungfrau region, in the Central Swiss Alps aiming at imaging the glacier-bedrock interface (Ariga et al., 

2018; Nishiyama et al., 2017). There, we face a variety of lithologies ranging from gneissic to carbonatic 

rocks that have a thickness larger than 500 m (Mair et al., 2018). In this context, it turned out that the 

analyses based on the standard rock assumption might cause an over- or an underestimation of the 

bedrock position in the related experiment. Such an uncertainty arising from the chemical composition 

of the actual rock has to be reduced at least to the level of the statistical uncertainty inherent in the 

measurement as well as in the systematic uncertainty of the muon energy spectrum model. 

To achieve this, we investigate how different rock types potentially influence the results of a muon 

tomographic experiment. We particularly compare the lithologic effect on simulated data with standard 

rock data to estimate a systematic error that is solely induced by a too simplistic assumption on the 

composition of the bedrock. 

4.3 Methods 

4.3.1 Rock types 

In this study, we chose 10 different rock types that cover the largest range of natural lithologies, spanning 

the entire range from igneous to sedimentary rocks. The simplest rocks have a massive fabric in the 

sense that they do not exhibit any planar or porphyric texture. Typical lithologies with these 

characteristics are igneous rocks or massive limestones (not sandstones as they might have a planar 

fabric such as laminations and ripples). Exemplary thin sections of a granite and a limestone are shown 

in Fig. 4.1. Note that rocks featuring strong heterogenic, metamorphic textures are not treated in the 

framework of this study for simplicity purposes and will be subject of future research. Also, for 

simplicity purposes, we do not consider spatial variations in crystal sizes in our calculations (i.e. a 

porphyric texture). We justify this approach because a related inhomogeneity is likely to be averaged 

out if one considers a several metre-thick rock column. Additionally, the rock is considered to consist 

only of crystalline components, i.e. glassy materials such as obsidian have to be treated separately. 

Porous media can be approximated by assigning one of the constituents as air or (in the case of a pore 

fluid) water. This is explicitly done for the case of arkoses (10% air) and arenites (11% air). 
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Figure 4.1: Thin-sections of two representative types of rock in crossed polarised light: (a) Granite, (b) Limestone. The 

crystal sizes are generally below 4 mm - 5 mm and a few orders of magnitude smaller in the limestone.  

We compare the energy loss of muons in these rocks and hence the resultant muon flux attenuation 

depending on depth with those of the standard rock. The analysed lithologies, together with their relevant 

physical parameters, are listed in Table 4.1. Among these parameters, {𝑍/𝐴} and {𝑍2 𝐴⁄ }, i.e. the ratio 

of the atomic number (and its square) to the mass number averaged over the entire rock, are most relevant 

to the energy loss of muons (Groom et al., 2001). The former is almost proportional to the ionisation 

energy loss that occurs predominantly at low energies, whereas the latter is mostly proportional to the 

radiation energy loss, that becomes dominant for muons faster than their critical energy at around 

600 𝐺𝑒𝑉. The volumetric mineral fractions of these ten rocks can be found in Appendix A (Ch. 4.6).  

Table 4.1: Physical parameters of the ten studied rock types and of standard rock.  

Rock 
Density 
[𝑔 𝑐𝑚−3] 

{Z/A} {Z2/A} {Z2/A}/{Z/A} 
{I} 
[𝑒𝑉] 

Standard rock 2.650 0.5000 5.500 11.0 136.40 

Igneous rocks      

Granite/Rhyolite 2.650 0.4968 5.615 11.30 145.09 

Andesite/Diorite 2.812 0.4960 5.803 11.70 147.77 

Gabbro/Basalt 3.156 0.4945 6.258 12.66 154.91 

Peridotite 3.340 0.4955 5.788 11.68 149.98 

Sedimentary rocks      

Arkose 2.347 0.4980 5.563 11.17 143.73 

Arenite (Sandstone) 2.357 0.4993 5.392 10.80 141.04 

Shale 2.512 0.4993 5.384 10.78 139.09 

Limestone 2.711 0.4996 6.275 12.56 136.40 

Dolomite 2.859 0.4989 5.423 10.87 127.65 

Aragonite 2.939 0.4996 6.275 12.56 136.40 
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4.3.2 Cosmic ray flux model 

We perform our calculations with the muon energy spectrum model proposed by Reyna (2006), at sea 

level and for vertical incident muons. This model describes the kinetic energy distribution of the muons 

before they enter the rock. The calculation of the integrated muon flux after having crossed a certain 

amount of material is done in two steps. First, the minimum energy required for muons to penetrate a 

given thickness of rock is calculated considering the chemical composition effects (see Sect. 4.2.3). 

Afterwards, the energy spectrum model, 𝑑𝐹 𝑑𝐸⁄ , is integrated above the obtained minimum energy 

(which we call from here on “cut-off energy”, 𝐸𝑐𝑢𝑡) to infinity, i.e. 

𝐹𝑐𝑎𝑙𝑐 = ∫
𝑑𝐹(𝐸)

𝑑𝐸

∞

𝐸𝑐𝑢𝑡
 𝑑𝐸 . (4.1) 

The integration is necessary as most detectors, which have been used for muon tomography, record only 

the integrated muon flux. As already stated in the introduction, we attribute a systematic uncertainty of 

± 15 % to the integrand 𝑑𝐹 𝑑𝐸⁄ . All the calculations in this work have been verified with another flux 

model (Tang et al., 2006) and are presented in the supplementary material. 

4.3.3 Muon propagation in rocks 

As soon as muons penetrate a material, they start to interact with the material’s electrons and nuclei and 

lose part of their kinetic energy. The occurring processes can be categorised into an ionisation process, 

i.e. a continuous interaction with the material’s electrons, and radiative interactions with the material’s 

nuclei (i.e. bremsstrahlung, electron-positron pair production and photonuclear processes), which are of 

a stochastic nature. All these processes are governed by the material density 𝜌 and the atomic number Z 

and atomic weight A (see Groom et al., 2001 for details). Our general strategy for the calculation of the 

energy loss in a rock is to use its decomposition into energy losses for the corresponding minerals. 

Accordingly, the energy loss of muons travelling a unit length, 𝑑𝐸 𝑑𝑥⁄ , in a rock can be described by a 

volumetrically averaged energy loss through its mineral constituents 

{
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
} = ∑ 𝜑𝑗𝑗 〈

𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝑑𝑥
〉 , (4.2) 

where 𝜑𝑗 is the volumetric fraction of the j-th mineral within the rock. The derivation of Eq. (4.2) can 

be found in Appendix B (Ch. 4.7).  

In order to exploit this abstraction efficiently we have to assume a homogeneous mineral distribution 

within the rock. This is a strong simplification, considering for example effects related to a local 

intrusion, tectonic processes like folding and thrusting, or spatial differences in sedimentation patterns. 

These concerns can be addressed through averaging over a large enough volume. Figure 4.1 shows two 

typical thin-sections from rock samples of our experimental site that exhibit crystal sizes well below 4 

mm - 5 mm. As muon tomography for geological purposes generally operates at scales of 10 m - 1000 

m it is safe to assume that small-scale variations are averaged out. Thus, the term on the right-hand side 

of Eq. (4.2), i.e. the energy loss across each mineral, can be written as 
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− 〈
𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙

𝑑𝑥
〉 = 𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙 ∗ (〈𝑎〉 + 𝐸 ∗ 〈𝑏〉) , (4.3) 

where 〈𝑎〉 and 〈𝑏〉 are the ionisation and radiative energy losses across a given mineral, respectively. 

These two parameters are in turn calculated by averaging the contribution of each element (i.e. atom) 

constituting the mineral by their mass (see Eq. (4.B5) to Eq. (4.B15) in Appendix B (Ch. 4.7) for details). 

The density of the minerals, ρmineral, is estimated from its crystal structures (see Appendix A (Ch. 4.6) 

for more detailed instructions). Once the energy losses are obtained for all minerals, each contribution 

is summed up according to Eq. (4.2). The energy loss within the rock can then be expressed in a similar 

way, as in Eq. (4.3), (for a detailed discussion we refer to Appendix B, Ch. 4.7): 

−{
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
} = 𝜌𝑟𝑜𝑐𝑘 ∗ ({𝑎} + 𝐸 ∗ {𝑏}) . (4.4) 

Again, the values {𝑎} and {𝑏} indicate the averaged ionisation and radiative energy losses across the 

whole rock, respectively. Equation (4.4), an ordinary nonlinear differential equation, is usually given as 

a final value problem, i.e. we know that the muon, after having passed through the rock column, still 

needs some energy to penetrate the detector, 𝐸𝑑𝑒𝑡. This can be turned into an initial value problem, by 

reversing the sign of Eq. (4.4) and defining the detector energy threshold as initial condition. 

{
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
} = 𝜌𝑟𝑜𝑐𝑘 ∗ ({𝑎} + 𝐸 ∗ {𝑏}) (4.5) 

𝐸(𝑥 = 0) = 𝐸𝑑𝑒𝑡  

The problem has been transformed into the one of finding the final energy, the cut-off energy, 𝐸𝑐𝑢𝑡, after 

a predefined thickness of rock. This is a well investigated problem, for which a great variety of numerical 

solvers are available. In this work we employ a standard Runge-Kutta integration scheme (see for 

example Stoer and Bulirsh, 2002).  

The energy loss equations are subject to systematic uncertainties, mainly because the experimentally 

determined interaction cross sections have an attributed error. According to Groom et al., (2001), the 

error on ionisation losses is “mostly smaller than 1 % and hardly ever greater than 2 %”. These authors 

also state, that in the case of compounds the uncertainties might be thrice as large. Therefore, we 

considered an ionisation loss uncertainty of ± 6 % as appropriate for our calculations. The errors on the 

cross sections of bremsstrahlung, pair-production and photonuclear interactions are ± 1 %, ± 5 % and 

± 30 %, respectively. Appendix C (Ch. 4.8) shows in detail how we propagated these errors to the cut-

off energy, 𝐸𝑐𝑢𝑡. 

4.4 Results 

Figures 4.2 and 4.3 show the muon flux simulations as a function of rock thicknesses up to 2 km for 

igneous and sedimentary rocks, respectively. The depth-intensity relation is described by a power law, 

as it is the integration of the differential energy spectrum of muons, which also follows a power law.  
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Figure 4.2: Simulated muon intensity vs. thickness of the four igneous rocks from Table 4.1 and standard rock. The 

mean flux is indicated by a bold line and 1 σ bounds are indicated by the shaded area.  

 

 

Figure 4.3: Simulated muon intensity vs. thickness of the six sedimentary rocks from Table 4.1 and standard rock. The 

mean flux is indicated by a bold line and 1 σ bounds are indicated by the shaded area.  
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To better visualise the difference between the fluxes after having passed these ten rock types and the 

standard rock, we report the ratio between fluxes calculated after the different materials and that after 

the standard rock in Fig. 4.4: 

𝑓𝑟𝑟𝑜𝑐𝑘 =
𝐹𝑐𝑎𝑙𝑐,𝑟𝑜𝑐𝑘

𝐹𝑐𝑎𝑙𝑐,𝑆𝑅
 . (4.6) 

 

Figure 4.4: Ratio of the calculated rock fluxes to a standard rock (𝝆𝑺𝑹 = 𝟐. 𝟔𝟓𝟎 𝒈 𝒄𝒎
−𝟑) muon flux for the rocks 

reported in Table 4.1 as a function of rock thickness.  

in Figs. 4.2 to 4.4. Rocks exhibiting a high material density result in a larger muon flux attenuation than 

lithologies with a lower density. This however, only depicts the overall differences, including density 

and compositional variations, between real and standard rock. In this regard, Groom et al. (2001) apply 

an explicit treatment of density variations of known materials. Thus, the flux data can be simulated for 

a standard rock with the exact density as its real counterpart. Such a density normalisation enables us to 

isolate the compositional influence on the computed data. Figures 4.5 and 4.6 show the muon flux 

simulations for each rock compared to a density normalised standard rock and Fig. 4.7 summarises this 

information by representing the ratio between muon fluxes after passing through real rocks and the muon 

flux after passing through a density normalised standard rock. It is important to note that the standard 

rock muon flux in each flux ratio has been normalised with respect to the density of the original rock 

(i.e. the peridotite is compared to a standard rock of density ρ = 3.340 𝑔 𝑐𝑚−3 , the limestone is 

comparted to a standard rock of density ρ = 2.711 𝑔 𝑐𝑚−3, etc.).  
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Figure 4.5: Simulated muon intensity vs. thickness of the four igneous rocks from Table 4.1 and a density modified 

standard rock. The mean flux is indicated by a bold line and 1 σ bounds are indicated by the shaded area.  

 

 

 

Figure 4.6: Simulated muon intensity vs. thickness of the six sedimentary rocks from Table 4.1 and a density modified 

standard rock. The mean flux is indicated by a bold line and 1 σ bounds are indicated by the shaded area.  
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One notices that the flux ratios are rather close together, mainly within 2.5 % of the standard rock flux, 

before they start to diverge towards larger (dolomite, shale and arenite) and smaller (igneous rocks, 

arkose, limestone and aragonite) flux ratios beyond 300 m thickness of penetrated rock. Even though 

the errors on the fluxes are relatively large and sometimes even overlap with the standard rock fluxes, 

the propagated errors on the flux ratios remain well bounded near their means. This effect is due to the 

correlation of the errors in the numerator and the denominator in Eq. (4.6). A detailed discussion of how 

uncertainties have been propagated is presented in Appendix C (Ch. 4.8). 

 

Figure 4.7: Ratio of the simulated rock fluxes to a standard rock muon flux with the same density as the rock (𝝆𝑺𝑹 =
𝝆𝑹𝒐𝒄𝒌) for all the lithologies in Table 4.1 as a function of rock thickness.  

4.5 Discussion 

The differences in the calculated muon flux illustrated in Figs. 4.2 and 4.3 become even more 

pronounced in Fig. 4.4, where the fluxes are compared to the case where cosmic fluxes are attenuated 

by a standard rock. One notices a direct correlation with material density. This is reinforced by the fact 

that the granite (Fig. 4.2) has the same density as the standard rock, 2.650 𝑔 𝑐𝑚−3, and shows an overall 

similar flux magnitude as the standard rock, i.e. a flux ratio of 1. This can be explained by Eq. (4.4), as 

the energy loss is almost directly proportional to the density, while the presence of density in the 

ionisation loss term (i.e. {𝑎(𝐸, 𝜌, 𝐴, 𝑍)} ) is negligible compared to this factor. Thus, if the rock flux data 

are compared to a standard rock with equal density, this effect should be removed, and one is left with 

the composition difference only. 

A closer look at Fig. 4.7 reveals that the muon fluxes for every rock below 300 m do not depart more 

than 2.5 % from their respective density modified standard rock flux. The chemical composition effect 

can thus be considered negligible when compared to the systematic uncertainty originating from the 

muon flux model. We explain this through the dominance of the ionisation energy loss in this thickness 

region. Muons that penetrate down to 300 m of rock are still slow enough to predominantly lose their 

kinetic energy for the ionisation of the rock’s electrons. As the number of electrons per unit volume is 

given by the product: 𝜌𝑟𝑜𝑐𝑘 ∗ {𝑍 𝐴⁄ }, ionisation losses are proportional to this term. When comparing a 
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density normalised standard rock with a real rock, the only difference can emerge from the second part, 

i.e. {𝑍 𝐴⁄ }. According to Table 4.1, these values do not change more than 1 % with respect to each other. 

When the rock thicknesses become larger than 300 m, the flux ratios start to exceed  ± 2.5 % and the 

ratio patterns diverge. This corresponds to the point where radiative losses start to become the dominant 

energy loss processes. The latter are interactions of the muon with the nuclei of the atoms within the 

rock and its cross section is mainly proportional to the square of the nucleus’ charge (i.e. {𝑍2 𝐴⁄ }). Hence, 

rocks that exhibit a lower {𝑍2 𝐴⁄ }-value than a standard rock (e.g. dolomite, arenite and shale) attenuate 

the muon flux less (i.e. flux ratio > 1), while all igneous rocks as well as limestone, aragonite and arkose, 

that have a higher {𝑍2 𝐴⁄ }-value attenuate the muon flux more, which results in a lower flux ratio. 

The above results reflect only the most striking connections to the chemical composition of a rock. In 

reality however, the nature of muonic energy loss processes is much more complex than the shape of 

the flux ratios in Fig. 4.4 below 300 m suggests. The actual ionisation energy loss, Eq. (4.B27), is an 

interplay of the mean excitation energy {𝐼}, i.e. the mean energy needed to ionise a material’s electrons, 

the material density 𝜌𝑟𝑜𝑐𝑘 , {𝑍 𝐴⁄ } and various correction terms that depend on these parameters. These 

additional factors are also responsible for the non-linear behaviour of the flux ratios between 100 m and 

around 600 m, as effects from radiative losses start to become significant. However, as the resulting 

differences due to these processes remain smaller than 2.5%, a detailed discussion of these matters falls 

beyond the scope of this paper. 

As we see above, the muon flux calculation is significantly biased when one employs the standard rock 

assumption and thus neglects the effect of the chemical composition, especially when the thickness of 

the rock is beyond 300 m. This systematic error would then later turn into an over- or an underestimation 

in the assessment of density structures. We can roughly estimate the error on a thickness estimation of 

a certain structure, by employing the following formula 

휀𝑑(𝑥𝑟𝑜(𝐹)) =
𝑥𝑆𝑅(𝐹) − 𝑥𝑅𝑜(𝐹)

𝑥𝑅𝑜(𝐹)
 . (4.7) 

Here, 𝑥𝑆𝑅(𝐹) and 𝑥𝑅𝑜(𝐹) denote the thickness of standard rock and a real rock respectively, needed to 

attenuate the cosmic ray muon flux to 𝐹. This is possible because the flux, as a function of rock thickness, 

is a strictly decreasing function. The domain of this function ranges from zero to infinite thickness, 

where its image takes the values from the initial flux, 𝐹0, to zero. On these two sets the function is a 

bijection and therefore an inverse function, 𝑥(𝐹), exists. Although its functional form might be unknown, 

it is still possible to interpolate between the simulated points. For our rocks, this is shown in Fig. 4.8. 
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Figure 4.8: Relative error, which is made in the thickness estimation of a block of rock by assuming a density modified 

standard rock versus the actual rock thickness.  

As an example, in case where the target is 600 m thick and made of limestone (𝜌 = 2.711 𝑔 𝑐𝑚−3), the 

standard rock assumption underestimates the flux by 7 % – 8 % and thus overestimates the thickness by 

around 15 m or 2.5 %. The same is valid for basalt and aragonite. 

The above discussion concentrates on calculations of the mean values of model parameters. A full 

description encloses also the propagation of their uncertainties. The rather large error bounds on single 

flux calculations stems from the uncertainties in the flux model and in the interaction cross-sections. 

However, by taking a ratio, i.e. Eq. (4.6), of quantities with correlated errors, the resulting uncertainty 

on the ratio tends to cancel out. If the errors were propagated by linear operations, they would even 

cancel out perfectly. The small error-bars which are still present in Figs. 4.4, 4.7 and 4.8 can be seen as 

effects of the nonlinearity in the differential equation, Eq. (4.5). 

Because this is a pure sensitivity study, we cannot offer distinct measurements to verify our predictions. 

The reason for this is mainly because dedicated experimental campaigns have not yet been conducted 

and thus such data are not available. We suggest that future studies in this field will address the 

composition issue and try to experimentally constrain this theoretical model. Nevertheless, our 

inferences are based on the same conceptual framework that has already been used for other materials, 

including standard rock. As a result of this, we find significant differences if the rock parameters are 

changed, especially for rock thicknesses larger than 300 m. 
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4.6 Conclusions 

Our results suggest that it is safe to use the standard rock approximation for all rock types up to 

thicknesses of ~300 m, as the flux ratio will mainly remain within 2.5 % of the standard rock flux, which 

generally lies within the cosmic ray flux model error. However, we also find that beyond these 

thicknesses the use of the standard rock approximation and its density-modified version could lead to a 

serious bias. This mainly concerns basaltic and carbonate rocks. The flux error for these rock types 

increases with growing material thickness. It can be extrapolated, that the errors grow even further 

beyond 600 m of material thickness up to a point where any inference based upon this approximation 

becomes difficult. This is, however, a thickness range where muon tomography becomes increasingly 

hard to perform, as lower fluxes have to be counterbalanced by larger detectors and longer exposure 

times. 

In order to account for the composition of rock, it is advisable to undertake a geological study of the 

region alongside the muon tomography measurements, especially when faced with basaltic rocks or 

carbonates, which includes at the least the analysis of local rock samples. Auxiliary data could comprise 

rock density measurements (i.e. He-pycnometer or buoyancy experiments), chemical composition, and 

mineralogical information (i.e. X-Ray diffractometry/fluorescence measurements) as well as 

microfabric analyses (i.e. mineral and fabric identification on thin sections). This additional information 

may help to constrain solutions of a subsequent inversion to a potentially smaller set. The use of 

additional information, such as spatial information in the form of a geological map or a 3D model of the 

geologic architecture, is strongly encouraged, because it might greatly improve the state of knowledge 

about the physical parameters that are to be unravelled. 
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4.7 Appendix A – Rock compositions 

To estimate the mineral density, we assume that it can be calculated by dividing the mass of the atoms 

within the crystal unit cell by the volume of the latter (see for example Borchart-Ott, 2009): 

𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙 =
𝑄∗𝑀

𝑁𝐴∗𝑉𝑈𝑛𝑖𝑡 𝐶𝑒𝑙𝑙
 . (4.A1) 

In this equation, M is the total molar mass of one mineral “formula unit”, Q is the number of formula 

units per unit cell and VUnit Cell is the volume of the unit cell. The latter is calculated by the volume 

formula of a parallelepiped: 

𝑉𝑈𝑛𝑖𝑡 𝐶𝑒𝑙𝑙 = ‖𝑎  ∙  (�⃗� × 𝑐 )‖ . (4.A2) 

Eq. (4.A2) can be rewritten as 

𝑉𝑈𝑛𝑖𝑡 𝐶𝑒𝑙𝑙 = ‖𝑎 ‖‖�⃗� ‖‖𝑐 ‖√1 + 2 cos(𝛼) cos(𝛽) cos(𝛾) − cos
2(𝛼) − cos2(𝛽) − cos2(𝛾) . (4.A3) 

Here, 𝑎 , �⃗� , 𝑐  denote the unit cell vectors, their lengths, ‖ ∙ ‖ is measured in Ångströms, i.e. 10−10 𝑚, 

whereas 𝛼, 𝛽, 𝛾 are the internal angles between those vectors. These six parameters can be looked up for 

each mineral in the crystallographic literature (e.g. Strunz and Nickel, 2001). 

Table 4.A1: Volumetric percentages of the rock forming minerals within six sedimentary rocks. Qtz: Quartz, Or: 

Orthoclase, Ab: Albite, An: Anorthite, Cal: Calcite, Dol: Dolomite, Kln: Kaolonite, Mnt: Montmorillonite, Ill: Illite, 

Clc: Clinochlore 

Mineral Arkose Arenite Shale Limestone Dolomite Aragonite 

Qtz 56.0 89.0 17.0    

Or 34.0  2.5    

Ab   1.8    

An   0.7    

Cal    100.0  100.0 

Dol     100.0  

Kln   1.7    

Mnt   52.7    

Ill   22.2    

Clc   1.4    

Air 10.0 11.0     
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Table 4.A2: Volumetric percentages of the rock forming minerals within four igneous rocks. Qtz: Quartz, Or: 

Orthoclase, Ab: Albite, An: Anorthite, Phl: Phlogopite, Ann: Annite, Mg-Hbl: Magnesium hornblende, Fe-Hbl: Iron 

hornblende, Aug: Augite, En: Enstatite, Fs: Ferrosilite, Fo: Forsterite, Fa: Fayalite, Jd: Jadeite, Hd: Hedenbergite, Di: 

Diopside, Spl: Spinel, Hc: Hercynite  

Mineral Granite Andesite Basalt Peridotite 

Qtz 36.1 11.7   

Or 28.2    

Ab 27.3 37.7 17.7  

An  25.3 24.6  

Phl 2.95 4.5   

Ann 2.95 2.1   

Mg-Hbl 2.25 4.2   

Fe-Hbl 2.25 6.4   

Aug  8.1 33.8  

En   11.4 18.4 

Fs   11.1 2.0 

Fo   0.6 60.4 

Fa   0.8 7.9 

Jd    1.8 

Hd    0.3 

Di    8.0 

Spl    0.9 

Hc    0.3 

 

The volumetric percentages of the minerals that constitute the 10 investigated rock types are shown in 

Table 4.A1 and Table 4.A2. They were chosen as a reasonable compromise from literature values (e.g. 

Best, 2003; Tuttle and Bowen, 1958; Folk, 1980). 
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4.8 Appendix B – Energy loss in geological materials 

4.8.1 Energy loss in elements 

The average spatial differential energy loss can be written in a rather simple form (Barrett et al., 1952): 

−(
𝑑𝐸(𝜌,𝐴,𝑍)

𝑑𝑥
) = 𝜌 ∗ (𝑎(𝐸, 𝜌, 𝐴, 𝑍) + 𝐸 ∗ 𝑏(𝐸, 𝐴, 𝑍)) . (4.B1) 

Here,  𝜌, 𝐴, 𝑍 denote the mass density, atomic weight and atomic number of the penetrated material, 

while 𝐸 is the kinetic energy of the penetrating, charged particle and 𝑥 is the position coordinate. The 

function 𝑎(𝐸, 𝜌, 𝐴, 𝑍)  in Eq. (4.B1) is the differential ionisation energy loss that accounts for the 

ionisation of electrons of the penetrated material. In the case of incident muons (i.e. electric charge 𝑞𝜇 =

 −1 𝐶 and mass 𝑚𝜇 = 105.7 𝑀𝑒𝑉/𝑐
2), the relationship expressed in Eq. (4.B1) takes the form: 

𝑎(𝐸, 𝜌, 𝐴, 𝑍) = 𝐾
𝑍

𝐴

1

𝛽2
[
1

2
𝑙𝑛 (

2𝑚𝑒𝑐
2𝛽2𝛾2𝑄𝑚𝑎𝑥(𝐸)

𝐼(𝑍)2
) − 𝛽2 −

𝛿(𝜌,𝑍,𝐴)

2
+
1

8

𝑄𝑚𝑎𝑥
2 (𝐸)

(𝛾𝑚𝜇𝑐
2)
2] + Δ |

𝑑𝐸

𝑑𝑋
| (𝑍, 𝐴) . (4.B2) 

In this equation, 𝛽, 𝛾 are the relativistic factors and are, therefore, a function of the kinetic energy 𝐸. 

The constant 𝑚𝑒 denotes the mass of the electron and 𝑐 is the speed of light. 𝑄𝑚𝑎𝑥 is the highest possible 

kinetic recoil energy of scattered electrons in the medium, while 𝐾  is a constant incorporating 

information about the electron density. The function 𝛿(𝜌, 𝑍, 𝐴) is a correction factor, which considers 

the mechanisms where the material becomes polarised at higher muon energies, with the consequence 

that the energy loss is weaker (Sternheimer, 1952). The last term in Eq. (4.B2) is another correction 

factor, which considers bremsstrahlung from atomic electrons (not the incident muon, which would be 

the term in Eq. 4.3) that also appears at higher muon energies. A more detailed explanation of this 

equation and its parameters can for example be found in Olive et al., 2014. In contrast to Eq. (4.B2), the 

function 𝑏(𝐸, 𝐴, 𝑍) describes all the radiative processes that become dominant at higher velocities 

(above ~ 600 𝐺𝑒𝑉 𝑐−1 for muons). This term includes energy losses due to bremsstrahlung, electron-

positron pair production as well as photonuclear interactions. These different contributions can be 

written independently from each other: 

𝑏(𝐸, 𝐴, 𝑍) = 𝑏𝑏𝑟𝑒𝑚𝑠(𝐸, 𝐴, 𝑍) + 𝑏𝑝𝑎𝑖𝑟(𝐸, 𝐴, 𝑍) + 𝑏𝑝ℎ𝑜𝑡𝑜𝑛𝑢𝑐𝑙(𝐸, 𝐴, 𝑍) . (4.B3) 

Each process in Eq. (4.B3) is computed by integrating its differential cross-section with respect to every 

possible amount of transferred energy: 

𝑏𝑝𝑟𝑜𝑐𝑒𝑠𝑠 =
𝑁𝐴

𝐴
∫

𝑑𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑑𝜈

1

0
𝑑𝜈 . (4.B4) 

Here, 𝑁𝐴 is the Avogadro number and 𝜈 =  휀 𝐸⁄  the fractional energy loss (whereas 휀 is the absolute 

energy loss) for this process. Specific cross-sections for bremsstrahlung (Kelner et al., 1995, 1997), 

photonuclear (Bezrukov and Bugaev, 1981) and pair-production (Nikishov, 1978) energy losses are used 

by Groom et al. (2001) for the calculations of their tables. As this pair-production cross-section involves 

the calculation of many computationally extensive dilogarithms, an equivalent cross-section (Kelner, 
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1998; Kokoulin and Petrukhin, 1969, 1971), which is used in GEANT4 (Agostinelli et al., 2003) by 

default, is used in our study. 

4.8.2 Energy loss in minerals 

Since the above equations are valid for pure elements, adjustments are needed for compounds (e.g. 

minerals) and mixtures thereof (e.g. rocks). Generally, it is advised to use the physical parameters for 

materials that have already been measured (see Seltzer and Berger, 1982 for a compilation). However, 

except for calcium carbonate (i.e., calcite) and silicon dioxide (i.e. quartz), no other minerals have been 

investigated. This also means that there is no standard approach available for considering natural rocks. 

Fortunately, for such materials a theoretical framework has been proposed (see for example Appendix 

A of Groom et al., 2001). The basic idea is to consider the compound as a single “weighted average”-

material and the energy loss therein as a mass weighted average of its constituents’ energy loss: 

〈
𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙

𝑑𝜒
〉 = ∑ 𝑤𝑖 (

𝑑𝐸𝑒𝑙𝑒𝑚𝑒𝑛𝑡,𝑖

𝑑𝜒
)𝑖  . (4.B5) 

The weights 𝑤𝑖 are calculated according to the atomic weights 𝐴𝑖 of the elements 

𝑤𝑖 =
𝑛𝑖𝐴𝑖

∑ 𝑛𝑘𝐴𝑘𝑘
=
𝑚𝑒𝑙𝑒𝑚𝑒𝑛𝑡,𝑖

𝑚𝑚𝑖𝑛𝑒𝑟𝑎𝑙
 , (4.B6) 

and can then be used to calculate an average 〈𝑍 𝐴⁄ 〉 value 

〈
𝑍

𝐴
〉 = ∑ 𝑤𝑖

𝑍𝑖

𝐴𝑖
𝑖  . (4.B7) 

Equivalently, the average 〈𝑍2 𝐴⁄ 〉 value can be calculated according to  

〈
𝑍2

𝐴
〉 = ∑ 𝑤𝑖

𝑍𝑖
2

𝐴𝑖
𝑖  . (4.B8) 

One more change must be made to the ionisation loss Eq. (4.B2) in order to appropriately account for 

the change in the atomic structure that emerged due to chemical bonding of the elementary constituents. 

This is reflected in a modified mean excitation energy 〈𝐼〉, which can be calculated by taking the 

exponential of the function 

𝑙𝑛〈𝐼〉 =
∑ 𝑤𝑖

𝑍𝑖
𝐴𝑖
𝑙𝑛(𝐼𝑖)𝑖

∑ 𝑤𝑗
𝑍𝑗

𝐴𝑗
𝑗

 , (4.B9) 

which is basically a weighted geometric average of the elementary mean excitation energies 

〈𝐼〉 = √∏ 𝐼
𝑖

𝑤𝑖
𝑍𝑖
𝐴𝑖

𝑖

∑ 𝑤𝑗

𝑍𝑗
𝐴𝑗𝑗

 . (4.B10) 

One has to pay attention that the mean excitation energies for some elements, 𝐼𝑖 , can change quite 

significantly when they are part of a chemical bond. A guideline to address this issue can be found in 
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Seltzer and Berger (1982). Equations (4.B7) to (4.B10) are still a consequence of Eq. (4.B5). However, 

there is one term in the function 𝛿(𝜌, 𝑍 𝐴⁄ ) in Eq. (B2) that is calculated differently from Eq. (4.B5). 

This concerns the logarithm of the plasma energy of the compound, which for an element is given by 

(e.g. Olive et al., 2014): 

𝑙𝑛(ℏ𝜔𝑝) = 𝑙𝑛 (28.816 ∗ √𝜌
𝑍

𝐴
) . (4.B11) 

According to Eq. (4.B5) the plasma energy for a compound should be calculated the same way as the 

mean excitation energy in Eq. (4.B9). However, Sternheimer et al. (1982) and Fano (1963) explicitly 

advise us to use the arithmetic mean within the logarithm when dealing with an atomic mixture (i.e. a 

molecule), yielding 

𝑙𝑛〈ℏ𝜔𝑝〉 = 𝑙𝑛 (28.816√𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙 〈
𝑍

𝐴
〉) . (4.B12) 

This results in the modified ionisation energy loss: 

〈𝑎(𝐸, 𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙 , 𝐴, 𝑍)〉 = 𝐾 〈
𝑍

𝐴
〉
1

𝛽2
[
1

2
𝑙𝑛 (

2𝑚𝑒𝑐
2𝛽2𝛾2𝑄𝑚𝑎𝑥(𝐸)

〈𝐼(𝑍)〉2
) − 𝛽2 −

𝛿(𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,〈
𝑍

𝐴
〉)

2
+
1

8

𝑄𝑚𝑎𝑥
2 (𝐸)

(𝛾𝑚𝜇𝑐
2)
2] +

Δ |
𝑑𝐸

𝑑𝑋
| (〈

𝑍

𝐴
〉)  . (4.B13) 

The radiation loss for the compound, on the other hand, is only a linear combination of the radiation 

losses of its elementary constituents, Eq. (4.B3), yielding: 

〈𝑏〉 = ∑ 𝑤𝑖𝑏𝑖𝑖  . (4.B14) 

The resulting Eq. (4.B15) 

− 〈
𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙

𝑑𝑥
〉 = 𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙 ∗ (〈𝑎〉 + 𝐸 ∗ 〈𝑏〉) , (4.B15) 

has now the same form as the energy loss Eq. (4.B1) for elements and can be solved accordingly. 

4.8.3 Energy loss in rocks 

To obtain an energy loss equation for rocks, a similar procedure as for forming minerals through the 

assembly of elements can be applied. Starting from Eq. (4.B5) we consider the energy loss for a rock as 

mass weighted average of the energy losses of its mineral constituents 

{
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝜒
} = ∑ 𝑞𝑗 〈

𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝑑𝜒
〉𝑗  , (4.B16) 

where 𝑞𝑗 are the mass fractions of the j-th mineral within the rock, analogous to Eq. (4.B6), 

𝑞𝑗 = 
𝑛𝑗𝐴𝑗

∑ 𝑛𝑙𝐴𝑙𝑙
=
𝑚𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝑚𝑟𝑜𝑐𝑘
 . (4.B17) 

Using 𝑑𝜒 = 𝜌 ∗ 𝑑𝑥, Eq. (4.B16) then takes the following form: 
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1

𝜌𝑟𝑜𝑐𝑘
{
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
} = ∑

𝑞𝑗

𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗
𝑗 〈

𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝑑𝑥
〉 . (4.B18) 

By inserting Eq. (4.B17) into Eq. (4.B18), one obtains 

1

𝜌𝑟𝑜𝑐𝑘
{
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
} =

1

𝑚𝑟𝑜𝑐𝑘
∑

𝑚𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗
𝑗 〈

𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝑑𝑥
〉 . (4.B19) 

Multiplying both sides with 𝜌𝑟𝑜𝑐𝑘 and applying the definition of the density, 𝜌 = 𝑚 𝑣⁄ , that can also be 

written as 𝑣 = 𝑚 𝜌⁄ , Eq. (4.B19) becomes 

{
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
} =

1

𝑣𝑟𝑜𝑐𝑘
∑ 𝑣𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗 〈

𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝑑𝑥
〉𝑗  . (4.B20) 

If one sets 𝜑𝑗 = 𝑣𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗 𝑣𝑟𝑜𝑐𝑘⁄  , the volumetric fraction of the j-th mineral within the rock, Eq. 

(4.B20) transforms into the compound equation for rocks 

{
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
} = ∑ 𝜑𝑗 〈

𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝑑𝑥
〉𝑗  . (4.B21) 

Analogue to the mineral case we can now define new average energy loss parameters for the rock, 

beginning with its overall density 

𝜌𝑟𝑜𝑐𝑘 = ∑ 𝜑𝑗𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗𝑗  . (4.B22) 

The average {𝑍 𝐴⁄ } is given by 

{
𝑍

𝐴
} = ∑

𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝜌𝑟𝑜𝑐𝑘
𝑗 𝜑𝑗 〈

𝑍

𝐴
〉𝑗 (4.B23) 

and similarly, the average {𝑍2 𝐴⁄ } can be calculated according to 

{
𝑍2

𝐴
} = ∑

𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝜌𝑟𝑜𝑐𝑘
𝜑𝑗 〈

𝑍2

𝐴
〉𝑗𝑗  . (4.B24) 

 

The rock’s mean excitation energy is 

𝑙𝑛{𝐼} =
∑
𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝜌𝑟𝑜𝑐𝑘
𝜑𝑗〈

𝑍

𝐴
〉𝑗𝑙𝑛〈𝐼〉𝑗𝑗

∑
𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑙
𝜌𝑟𝑜𝑐𝑘

𝜑𝑙𝑙 〈
𝑍

𝐴
〉𝑙

 . (4.B25) 

The only difference between the rock calculation and the mineral calculation enters in the calculation of 

the plasma energy. While in the mineral case we were advised to use Eq. (4.B11) instead of what would 

naturally follow from the weighted average in Eq. (4.B5), we prefer to use the weighted average, Eq. 

(4.B21), 

𝑙𝑛{ℏ𝜔𝑝} =
∑
𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝜌𝑟𝑜𝑐𝑘
𝑗 𝜑𝑗〈

𝑍

𝐴
〉𝑗𝑙𝑛〈ℏ𝜔𝑝〉𝑗

∑
𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑙
𝜌𝑟𝑜𝑐𝑘

𝑙 𝜑𝑙〈
𝑍

𝐴
〉𝑙

 (4.B26) 
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for the case of rocks. The reason for this lies in the fact that the density effect operates on a nanometric 

scale, whereas minerals, have generally sizes between several micrometres and a few centimetres. In the 

case of a mineral compound, the molecular structure comprises also a nanometric scale. 

These parameters can then be rearranged into an ionisation loss term for a rock 

 {𝑎(𝐸, 𝜌𝑟𝑜𝑐𝑘 , 𝐴, 𝑍)} = 𝐾 {
𝑍

𝐴
}
1

𝛽2
[
1

2
𝑙𝑛 (

2𝑚𝑒𝑐
2𝛽2𝛾2𝑄𝑚𝑎𝑥(𝐸)

{𝐼(𝑍)}2
) − 𝛽2 −

𝛿(𝜌𝑟𝑜𝑐𝑘,{
𝑍

𝐴
})

2
+
1

8

𝑄𝑚𝑎𝑥
2 (𝐸)

(𝛾𝑚𝜇𝑐
2)
2] +

Δ |
𝑑𝐸

𝑑𝑋
| ({

𝑍

𝐴
}) . (4.B27) 

Like Eq. (4.B14) the radiative losses can be rewritten as a weighted average of the mineral radiative 

losses 

{𝑏} = ∑
𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝜌𝑟𝑜𝑐𝑘
𝜑𝑗〈𝑏〉𝑗𝑗  . (4.B28) 

Equations. (4.B27) and (4.B28) can then be joined together to form again a similar term to Eqs. (4.B1) 

and (4.B15), 

−{
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
} = 𝜌𝑟𝑜𝑐𝑘 ∗ ({𝑎} + 𝐸 ∗ {𝑏}) , (4.B29) 

the energy loss equation for rocks. 

We want to stress that the starting point of the derivation of the energy loss equation for rocks is a mass 

averaging of mineral energy losses. Therefore, the mass averaging approach is inherently included in 

this approach. In fact, mass averaging and volumetric averaging are two equivalent descriptions of the 

same problem. For the mass averaged formulae we refer to the supplementary material to this manuscript. 
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4.9 Appendix C – Uncertainty propagation 

The first step in our uncertainty treatment includes a propagation of the interaction cross section errors 

(𝜎𝑎 = ±6 %, 𝜎𝑏𝑏𝑟𝑒𝑚𝑠 = ±1 %, 𝜎𝑏𝑝𝑎𝑖𝑟 = ±5 %, 𝜎𝑏𝑝ℎ𝑜𝑡𝑜𝑛𝑢𝑐𝑙 = ±30 % ) to the cut-off energy, i.e. by 

solving the differential equation Eq. (4.5). Generally, a higher cross section yields a higher cut-off 

energy, as the muon needs more initial kinetic energy, which it then loses on the way and vice-versa. In 

order to estimate a lower and an upper error bound on the cut-off energy, 𝐸𝑐𝑢𝑡, we use a conservative 

approach. This means that the lower cut-off energy error bound is calculated by setting all cross sections 

to their lower 1 𝜎 bound and running the simulation with these modified values. The upper error bound 

is calculated accordingly. Of course, this overestimates the effective error, however if our calculations 

remain valid within this conservative error, then they can also be trusted with a conventional error. 

The second step is the estimation of the error regarding the integrated flux. Here we need to propagate 

the errors through Eq. (4.1) to the simulated flux. There are two different errors present at this stage. 

The first one includes the error on the lower integration boundary, i.e. 𝐸𝑐𝑢𝑡 , which has just been 

calculated above. The second error addresses the integrand, i.e. the flux model. Figure 4.C1 visualises 

the concept behind the propagation of these two errors. The simulated flux error is equivalent to the 

error, which is made by calculating the area under the graphs. We estimate the lower error bound on the 

simulated flux (i.e. smallest area), by taking the upper error bound on 𝐸𝑐𝑢𝑡 and the lower error bound 

on 𝑑𝐹 𝑑𝐸⁄ . Similarly, the upper error bound on the simulated flux (i.e. largest area) is calculated by 

setting 𝐸𝑐𝑢𝑡 to its lower error bound and 𝑑𝐹 𝑑𝐸⁄  to its upper error bound. Again, this is a conservative 

approach, which we justify with the same rationale as above. 

 

Figure 4.C1: Differential muon flux as a function of muon kinetic energy. Blue lines indicate the simulated cut-off energy 

for 300 m of Andesite and its respective propagated error bounds. Red lines show the flux model and its 1 𝝈 error 

bounds.  



4.10 ACKNOWLEDGEMENTS CHAPTER 4 

142 

The last step addresses the propagation of the simulated flux errors to the flux ratio in Eq. (4.6). Here 

we can make use of the fact that the errors in both simulations are perfectly correlated. In other words, 

if we knew the errors on all affected quantities in one simulation, we would instantaneously know the 

corresponding values for any other simulation. This allows us, for example, to calculate the upper error 

bound on the flux ratio by dividing the upper error bound of the simulated flux in the numerator by the 

upper error bound of the simulated flux in the denominator. The same is valid for any other constellation 

of errors, including the lower error bound and the mean. 
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Chapter 5  

Conclusion 

5.1 Research conclusions 

The studies that are presented in this thesis can be understood twofold. The first is as a contribution to 

render this technology more accessible to end-users such as geoscientists (Ch. 2). The second aspect 

concerns the exploration of new methods (the inversion; Ch. 3) and the exploitation of to date unused 

model parameters (rock composition; Ch. 4) in the framework of muon tomography. I briefly summarise 

the purpose and major conclusions of each study. 

Chapter 2 was designed to be a tutorial for muon tomography novices. It presents a short introduction 

to the most important physical equations and redirects the reader to the important sources of continuative 

literature if more detail is needed. Moreover, readers may find examples of muon tomography 

experiments that were applied to tackle a geoscientific research question. This is intended to provide the 

prospective users with an idea of how this technology could be applied. It may even serve as a source 

of inspiration for the development of a completely new application avenue. To round this tutorial off, 

this contribution provides the reader with a guide to best practice in the form of addressing central 

questions. These issues will guide the user while planning and undertaking a muon tomography 

experiment. 

In Ch. 3 an inversion framework was developed that allows for substantial geological information to be 

included. This information can be laboratory measurements of rock density and/or composition or even 

an assessment of these quantities from experience in the absence of any real data. This is always possible 

if they can be described by a probability density function. The Bayesian method that was used to 

construct this framework includes any type of a probabilistic statement on these parameters with ease. 

Furthermore, a systematic approach is presented that allows users to create their own Bayesian 

framework using a directed acyclic graph to visualise the joint probability density function. The resulting 

inversion has been proven to yield results that are consistent with literature values. 

The issue of how much changes in rock composition affect the muon tomography measurements has 

been addressed in Ch. 4. I investigated with a numerical model by how much the muon flux 

measurements change if a realistic rock model is employed instead of the “standard rock” which is 

predominantly used in the community. I showed that there is a noticeable bias when the rock is either 

limestone or basalt and over 300m thick. For peridotites the effect is slightly less visible and for granitic 

rocks the standard rock approximation is generally fine. This result implies two points. First, researchers 

should be aware of lithological boundary conditions of an experiment to appropriately account for this 

lithology-dependent chemical composition effect. The second aspect is much more intricate in the sense 
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that muon tomographic measurements are sensitive to the composition of the material to a measurable 

extent. This could be used for example to infer compositions in a dedicated experiment. 

These developments are not supposed to replace the conventional approaches that are widely applied in 

the community but serve to provide researchers with more tools to tackle their problems. It is my strong 

conviction that a technology can only thrive and evolve through a diverse methodological toolbox that 

is constantly expanded and improved. This is also true for the question of who drives the development 

of the technology. At a certain point in a technological development, end-users have to make requests 

to the developers as to what features should be included in the technology. I think the analogy to software 

design is well applicable, where the final product is often shaped by the users’ needs, even though in the 

early stages the developers shape the technology. 

5.2 Project conclusions 

This project has performed two distinct measurement campaigns on two glaciers in the Jungfrau region 

in the central Swiss Alps. As a team, we could show that it is feasible to apply this technology in high 

alpine regions (see Nishiyama et al., 2017, 2019; Ch. 6 & 7), that has hitherto been used to investigate 

mostly volcanoes. The inital goals for the subdisciplines have also been met. From the geological 

perspective, a structural-geological 3D-model was built (Mair et al., 2018), which shows the rather 

intricate lithological architecture of that region. In the laboratory, field samples were analysed and 

combined to yield a valid representation of the necessary physical parameters (density & composition) 

of the encountered lithology. The physics aspect of the project also achieved the goal of adapting the 

infrastructure that was indispensable for a reasonably productive chain for the production and analysis 

of emulsion films (Ariga et al., 2018). Finally, from a geophysical perspective, we were able to build an 

inversion code (Lechmann et al., in prep.; Ch. 3), that was able to reconstruct the ice-bedrock interface 

below these two glaciers. Based on these advancements, I conclude, that even though this technology is 

not suitable to detect real-time changes on glaciers to a significant degree, the time-integrated image is 

of particularly good quality and is suitable for the analyses of glacial structure or erosional processes. 

I critically refer to several aspects that should be addressed in future studies. First, the installation or 

upgrade of an emulsion film production and scanning facility is a massive undertaking that requires a 

lot of time, manpower and financial resources. Such an investment should only be made if further 

projects are planned. Second, the use of this technology for glaciers is mainly limited by the accessibility 

to a measurement location. This position must sit below the glacier and should not have too much 

material (> 1km) between the detector and the glacier. We were fortunate that we could access the train 

tunnel that runs below the glacier but in general, those spots are unfortunately quite rare.  
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5.3 Outlook 

In this final chapter I present some possible routes that muon tomography, including the application to 

glaciers, can take.  

A development, that has only just begun and is gaining quite some popularity, is the transition to 

industrially produced detectors. There are already a few companies that have specialised in constructing 

and vending such devices. Once such equipment becomes available to a wider geoscientific community, 

the application of muon tomography in a geophysical measurement array may become more visible.  

The detector and analysis technologies are basically improved in parallel. Physicists are constantly 

tinkering with better muon flux detectors for related experimental constraints. In a few years it is 

possible that some kind of “standard” detector design will be established for muon tomography 

measurements. This would also facilitate the commercial production of the detectors. Most probably, 

however, this development will not be solely advanced by either academia or industry but a back and 

forth between the two domains. Additionally, geophysicists will also continue to establish inversion 

methods for the most popular applications such as interface reconstruction or density estimation.  

A further development concerns borehole detectors. Such devices can be placed inside a borehole (hence 

the name) and allow to evaluate the overlying material in the vicinity. This has two particularly 

important implications. One, the borehole information, which is usually only a point information in 

space, can be coupled with a 3D measurement around the drill hole. This represents a qualitative 

improvement of the boreholes. Second and probably more important, this development erases the need 

of having a pre-existing measurement location that is situated below the target. One can now construct 

an own measurement location at points where they are most needed. In the context of glaciers this might 

be a tricky undertaking, as the borehole then should penetrate both an ice layer and a rock layer. The 

recuperation of the detector would probably be a difficult operation. Alternatively, one could think of 

drilling an oblique borehole from the side underneath the target. However, none of these approaches 

have been tried in practice for glaciers yet.  

As muon tomography strongly relies on physical models for energy losses and cosmic ray fluxes, another 

angle can be taken to improve the related knowledge and technology. This consists of improving the 

aforementioned physical models by making them more exact, i.e. reducing their error-bars. Alas, the 

energy loss models have not been updated since the great developments of the 80s and 90s, as they have 

been deemed exact enough for most practical purposes. This is true; however, it would be nice to see 

also new theoretical models for the related physical effects, as theoretical physics has advanced quite a 

bit compared to 30-40 years ago. The cosmic ray flux community on the other hand, is involved in 

several other research domains, such as cosmogenic nuclide dating in geology. This means that there is 

a constant push to improve their muon flux models. The muon tomography community can also profit 

from this wide-spread use and constant improvement of the cosmic ray flux models. This is because the 

dominating limiting factor in muon tomography studies is still the precision of the muon flux models. 
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Somewhat tied to the improvement of the cosmic ray flux models is a rather far-fetched possible 

development. This concerns the way of how muons are generated. Until now, we still use muons that 

are created from naturally occurring cosmic rays. If it were possible to create muons by ourselves, via a 

particle accelerator or any other suitable device, this would greatly improve our uncertainty on the input 

flux. This is similar to using controlled source seismology instead of naturally occurring earthquakes. 

Another, more practical, way to approach this issue could be based on the measurement results of pure 

absorption. Here a detector could be placed behind the target, recording the undisturbed muon flux. Of 

course, this has its own difficulties (mainly technical), but one could create a proper, local muon flux 

model. Either way the model uncertainties in the cosmic ray flux model would be replaced either by a 

known error from the hypothetical particle generator or by an error related to the measurement of the 

undisturbed flux. The user has then a better control on this important experimental parameter. 
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I.1 Abstract  

The shape of the bedrock underneath alpine glaciers bears vital information on the erosional mechanism 

related to the flow of ice. So far, several geophysical exploration methods have been proposed to map 

the bedrock topography though with limited accuracy. Here we illustrate the first results from a 

technology, called cosmic ray muon radiography, newly applied in glacial geology to investigate the 

bedrock geometry beneath the Aletsch Glacier situated in the Central Swiss Alps. For this purpose we 

installed new cosmic muon detectors made of emulsion films at three sites along the Jungfrau railway 

tunnel and measured the shape of the bedrock under the uppermost part of Aletsch Glacier (Jungfraufirn). 

Our results constrain the continuation of the bedrock‐ice interface up to a depth of 50 m below the 

surface, where the bedrock underneath the glacier strikes NE‐SW and dips at 45° ± 5°. This documents 

the first successful application of this technology to a glaciated environment. 

I.2 Introduction 

In mountainous landscapes such as the Central Alps of Europe the bedrock topography is one of the 

most prominent surfaces as it separates the geological substratum—the bedrock—from the overlying 

unconsolidated units, which are commonly assigned to the Quaternary (Preusser et al., 2010). In low‐

elevated regions this surface has been sculpted by glaciers during past glaciations (e.g., Horberg and 

Anderson, 1956). In the highly elevated regions of the European Alps, however, glacial processes are 

still actively modulating the bedrock topography mainly above the Equilibrium Line Altitude. 

Accordingly, the geometry of the bedrock topography sets tight constraints on the erosional mechanisms 

at work underneath a glacier (e.g., Cook and Swift, 2012). This is the major motivation why several 

efforts have been undertaken toward exploring the bedrock topography surrounding formerly and still 

actively glaciated areas using drilling (Dürst Stucki and Schlunegger, 2013) and several geophysical 
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techniques, including seismic surveys and multibeam bathymetry (Duchesne et al., 2010; Dürst Stucki 

et al., 2012), gravity measurements (Adams and Hinze, 1990; Barnaba et al., 2010), and radio‐echo 

soundings (Fisher et al., 1989; Shean and Marchant, 2010). Despite the progress achieved through the 

application of these geophysical surveys, the accuracy of bedrock maps varies greatly because of the 

assumption on which the reconstruction relies. For instance, bedrock surfaces with steep slopes and/or 

an overlying medium with a high fluid pressure ratio lower the resolution of seismic and radar surveys 

and set limits to the penetration depth of the related waves (Murray et al., 2007; Schrott and Sass, 2008). 

In addition, most of the previous investigations have been conducted either on landscapes where glaciers 

have disappeared after the termination of the last glacial epoch circa 20,000 years ago or on active 

glaciers where the surrounding landscape is flat. 

In this paper we introduce a technology referred to as emulsion film muon radiography to investigate 

the bedrock geometry beneath active glaciers in a steep alpine environment. This detector technique 

relies on the high‐penetration power of muon components in natural cosmic rays, where the attenuation 

rate of the intensity of muons mainly depends on the density of the crossed material. Accordingly, this 

method provides a suitable alternative to other approaches because of the large‐density contrasts 

between the bedrock and the overlying glacier. In addition, the passive nature of the detecting device, 

not requiring electric power, computing support or radio data transmission, is an added value to the 

currently available geophysical tools. We demonstrated the performance of muon radiography through 

an experiment in the Jungfrau region, Switzerland. We benefit from the railway tunnel of the 

Jungfraubahn situated in the Jungfrau region. This tunnel crosses the bedrock at typically 50 m depth 

from the uppermost part of Aletsch Glacier (Jungfraufirn). We installed emulsion films at three sites 

along this tunnel and mapped the shape of the bedrock under the glacier. We then used the patterns of 

detected muons to map the orientation of the bedrock underneath this glacier, thereby documenting the 

first successful application of muon radiography in a steep and glaciated environment. 

I.3 Muon radiography 

Muon radiography is a technology that has been developed to investigate the internal density structures 

of geological targets. It relies on the high‐penetration power of the muon particles, a component of the 

natural cosmic rays (Patrignani et al., 2016). The absorption rate of the muon flux can be used to derive 

the density length, i.e., the density integrated along the muon trajectories. This technique has been 

applied for noninvasive inspection purposes where the survey targets were volcanoes (Tanaka et al., 

2007; Lesparre et al., 2010; Carbone et al., 2014; Ambrosino et al., 2015; Jourde et al., 2016), nuclear 

reactors (Fujii et al., 2013), seismic faults (Tanaka et al., 2011), and caves (Oláh et al., 2013). One 

requirement is that muon detectors must be placed at altitudes lower than survey targets because of 

downward going nature of cosmic ray muons. At sites where the interface between a glacier and the 

bedrock is the survey target, the muon radiography technology bears the potential to return the related 

densities as a result. Accordingly, because of the anticipated large‐density contrasts in such an 
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environment, this technology provides information pertinent for mapping the shape of the bedrock at 

high resolution. 

There are several types of particle detectors suitable for muon radiography, such as scintillation trackers 

(e.g., Lesparre et al., 2010; Anastasio et al., 2013), gaseous chambers (e.g., Cârloganu et al., 2013; Oláh 

et al., 2013), and emulsion films (e.g., Tanaka et al., 2007; Nishiyama et al., 2017). We adopt emulsion 

films for the observations of glaciers. Emulsion films are special photographic films, which record 

trajectories of charged particles (Ereditato, 2013; De Lellis et al., 2011). The microscope analysis of 

these trajectories then allows to measure the position and direction of incident muons with the 

unbeatable resolutions. The spatial and angular resolutions are 1 μm and a few milliradians, respectively. 

Contrary to other types of particle detectors, emulsion films are suitable for exposure in remote and 

harsh environments because they do not require power supply or any electronic device for operation. 

I.4 Setting 

The Aletsch Glacier, situated in the Central Alps of Switzerland, is the largest glacier in the Central 

Swiss Alps. It has a length of 23 km, a volume of 15 km3, and covers an area of 81 km2 (Figure I.1). The 

glacier is fed by three tributary glaciers (Ewigschneefeld, Jungfraufirn, and Grosser Aletschfirn). The 

target region of our observation is the uppermost part of Jungfraufirn, which sits on the southeastern 

flank of Mount Jungfrau (4158 m above sea level (asl)) and Mount Moench (4107 m asl). It has a length 

of 4 km and a width of about 2 km. 

The Aletsch Glacier has shortened by about 5 km during the past 100 years in response to global 

warming (Hock et al., 1999; Huss et al., 2008). In the target region a rapid drop of the ice surface in the 

order of several meters per year has been reported by the local authorities, which is ultimately linked 

with the shrinkage of the Aletsch Glacier. As the Jungfraujoch, which represents the pass between the 

Mönch and the Jungfrau, hosts infrastructure buildings (train and research stations, communication, and 

tourist facilities) that were constructed on top of the bedrock above the Jungfraufirn (Figure I.1a), a 

shrinking of the ice volume and the related drop of the ice surface have large consequences on the 

mechanical stability of the bedrock underlying these constructions. Accordingly, attention has been paid 

by local authorities for predicting potential collapse failures of the bedrock, where the vanishing ice 

decreases the stability of the bedrock. A precise understanding of the shape of the bedrock beneath the 

glacier would thus help to predict future potential risks for the occurrence of those events. 
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Figure I.1. (a) The uppermost part of Aletsch Glacier (Jungfraufirn). The blue arrows indicate the direction of glacier 

flow. (b) View of the survey region. The detectors were installed along the Jungfrau railway (stars D1, D2, and D3). The 

solid black lines from the detector indicate the view range of each detector. Basemap: SWISSIMAGE (digital color 

orthophotomosaic, 0.25 m ground pixel size) draped with a semitransparent hillshade based on SwissAlti3D reproduced 

by permission of swisstopo (BA17061).  

I.5 Experimental design and methods 

The muon detectors were installed at three sites along the Jungfrau railway tunnel facing the Aletsch 

Glacier. Installation took place on 16 February 2016 and removal on 4 April 2016, thereby collecting 

data during 47 days. The sites (D1‐D3) are located ~100 m apart from each other (Figure I.1b) at altitudes 

of 3381 m asl for D1, 3401 m asl for D2, and 3414 m asl for D3. The individual detector (Figure I.2a) 

consists of a stack of eight layers of emulsion films with 1 mm thick lead plates between each one 

(Figure I.2b). The emulsion film is made of a 200 μm thick plastic base and a 50 μm thick sensitive gel 

poured on both sides. The gel production and assembling have been done at Nagoya University, Japan 

(Nishio et al., 2015), and at the University of Bern, respectively. This design yields to a total effective 

detection area of 250 cm2 for each site. 

After completion of the measurements, the films were chemically developed and automatically scanned 

at the University of Bern by means of optical microscopes. The microscope scanning facility consists of 

commercially available optics and stages (Arrabito et al., 2006) that are complemented with algorithms 

for image processing and track recognition that we developed for these purposes (Ariga and Ariga, 2014). 

Tracks that are straightly aligned in consecutive films are identified as muon trajectories, here defined 

by at least four tracks within the total of eight films. This selection assures a detection efficiency > 97% 

and a low contamination of low‐energy background particles (< ~1 GeV/c; see Nishiyama et al. (2016) 

for details). We scanned 13% of the total detection area (32 cm2 × eight consecutive layers for each 

detector site). The number of detected muons were then counted for each bin in a polar coordinate 
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histogram (Figure I.3a) and converted into the particle flux (cm−2 s−1 sr−1, Figure I.3b) by normalizing 

with respect to the scanned area (32 cm2), the exposure time (4.12 × 106 s), and the solid angle. 

 

 

Figure I.2. (a) The detector frame is fixed on the wall of the Jungfrau railway tunnel, inclined 45° with respect to the 

zenith. (b) The detector consists of eight emulsion films interleaved with 1 mm thick lead plates. It is covered by ~15 

mm thick stainless plates to shield environmental radioactive particles.  

The comparison of the observed muon flux 𝐹𝑜𝑏𝑠 and the simulated one for various densities 𝐹𝑠𝑖𝑚(𝜌) 

returns a density value that gives the best agreement. The simulated flux is calculated by using the muon 

energy spectrum and the digital elevation models (supporting information, Ch. I.10.2). The agreement 

between the observed and simulated flux is assessed with a chi‐square test: 

𝜒2(𝜌) ≡ ∑
|𝐹𝑖
𝑜𝑏𝑠−𝐹𝑖

𝑠𝑖𝑚(𝜌)|
2

𝜎𝑖
2

𝑏𝑖𝑛𝑠
𝑖 , (I.1) 

where the error 𝜎𝑖 is a combination of the statistical fluctuations and the systematic errors with flux 

simulation (15%; see supporting information, Ch. I.10.2). 
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Figure I.3. (a) Angular distribution of muons detected in 47 days at D1 (left), D2 (middle), and D3 (right). Each dot 

corresponds to a single muon event. (b) Muon flux converted for each polar bin by normalizing the number of muon 

events with respect to the detector size, solid angle, and exposure time. The regions enclosed by the black solid lines are 

not covered with ice and used for estimation of bedrock density. (c) Obstacle thicknesses (rock + ice), traversed by 

muons before reaching the detectors. The muon intensity is clearly anticorrelated with the thickness. The white contour 

curves in the middle plot indicate the zenith angle of incoming muons.  

Finally, we mapped the shape of the bedrock using all not empty bins of flux data. We determined the 

fraction of rock 𝑥  from the average density values < 𝜌 >  estimated for each bin (Figure I.4a). 

Considering the bulk density of bedrock component 𝜌𝑟𝑜𝑐𝑘 = 2.68 g/cm3 (see next section) and that of 

ice component 𝜌𝑖𝑐𝑒= 0.85 g/cm3 (Huss, 2013), 𝑥 is determined via a relationship: 

< 𝜌 > =  𝜌𝑟𝑜𝑐𝑘+𝜌𝑖𝑐𝑒 ∙ (1 − 𝑥). (I.2) 

Once 𝑥 is obtained for each bin, the boundary position can be plotted at a distance 𝐿𝑥 from the detector 

position (𝐿 is the total thickness of overlying material including bedrock and ice). We only considered 

those muons within a zenith angle between 0° and 70° because the systematic uncertainty affecting the 

flux simulation is larger than the statistical fluctuation for nearly horizontal muons (see supporting 

information, Ch. I.10.2). The bedrock shape estimated from muon flux analysis was displayed using the 
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Environmental Systems Research Institute ArcScene software licensed to the Institute of Geological 

Sciences of University of Bern. 

 

 

Figure I.4. (a) Schematic illustration of (i) bedrock density analysis and (ii) bedrock shape analysis. (b) The χ2 statistics 

test is performed to determine the rock density. A total of 74 bins covering the hillslope are used for the test, which are 

indicated by the black solid lines in Figure I.3b. The minimum value of the chi‐square is 41.68 (open red circles), giving 

the best bulk density of 2.68 ± 0.04 (g/cm3, 1σ, red boxes). It agrees with the bulk density measured for rock samples 

taken near the detectors along the Jungfrau railway tunnel (blue boxes).  

I.6 Results and discussion 

Figure I.3a shows the angular distribution of muon events reconstructed in a 32 cm2 area of the three 

detectors. Each dot in the plot corresponds to a detected muon. During 47 days of exposure we observed 

a total of 4655 (D1), 9348 (D2), and 10606 muons (D3) within the viewing range. The intensity of muon 

events is clearly anticorrelated with the thickness of the obstacles (rock + ice) along the muon trajectories 

(Figure I.3c). For instance, the shadows of muons where the dots are sparsely distributed coincide with 

the regions where the bedrock thicknesses are greater than 1 km. This indicates that most of the muons 

in these directions were absorbed in the thick bedrock edifices of the Jungfrau and the Mönch Mountains. 

Figure I.4b illustrates the resultant 𝜒2(𝜌) function for 74 bins covering the rock part (5 bins from D1, 

31 from D2, and 38 from D3, indicated by the black solid lines in Figure I.3b). The minimum 𝜒2 value 

of 41.68 yields the best density value of 2.68 ± 0.04 (g/cm3, 1σ). This estimation is in good agreement 

with the bulk density independently measured for rock samples taken near the detectors along the 

Jungfrau railway tunnel and on the surface (2.65 – 2.74 g/cm3, Figure I.4b; see also supporting 

information, Ch. I.10.3). We thus applied a uniform density 𝜌𝑟𝑜𝑐𝑘 = 2.68 g/cm3 for the calculation of 

the bedrock shape. Figure I.5a shows the position of the bedrock reconstructed from each bin of muon 

flux data. For visualization, we rasterized these point data using 2 m × 2 m grids (Figure I.5b). The 

reconstructed bedrock can be approximated as a plane with a strike angle of 225°N and a dip angle of 

45° up to 50 m depth below the glacier’s surface. The cross‐sectional view from the middle detector 

(D2) is represented in Figure I.5c. The bedrock shapes reconstructed for two extreme ice densities (0.50 

and 0.90 g/cm3) are also displayed. Taking into account the uncertainty on the bulk density of ice, the 
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dip angle has a systematic error of ± 5°. This uncertainty is mainly related to (i) the selection of the 

muon energy spectrum model, (ii) unknown density variations of ice, and (iii) seasonal variations of the 

ice surface. As a first major source of errors, the calculation of muon flux has a systematic uncertainty 

of 15%. This results in a density estimation error of ~5%. The second source of errors, related to the 

poorly constrained depth dependence of ice density, is addressed here through the use of two mentioned 

extreme ice density values, thereby considering these as systematic uncertainties and thus deviations 

from a mean ice density value of 0.85 g/cm3 that we applied as default for the calculation of the bedrock‐

ice interface illustrated in Figure I.5c. The implementation of a more realistic depth dependency of ice 

densities would significantly reduce the uncertainties of the inferred bedrock orientation. The third factor, 

i.e., the seasonal variation of the ice surface represented here through a digital elevation model (DEM), 

is not a problem for the present work because the DEM used in the analysis was recently taken and the 

annual snow accumulation at the research site is merely a few meters. 

I.7 Conclusions 

We demonstrated a successful application of muon radiography performed with emulsion film detectors. 

The results suggest that the uppermost part of Aletsch Glacier (Jungfraufirn) is underlain by a bedrock 

with a steep flank that dips at 45° ± 5° and strikes at 225°N. These values have been measured up to a 

depth of 50 m below the ice surface. The parallel orientation of the bedrock with respect to the glaciers’ 

flow direction implies that the ice has passively on the bedrock without sculpting it. Muon radiography 

can be a complementary method for determination of the bedrock topography in a steep glaciated 

environment if underneath tunnels or suitable detector sites are available. 
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Figure I.5. (a) The three‐dimensional reconstructed bedrock points under the surface, determined from muon flux 

attenua- tion analysis. (b) The point data are rasterized with 2 m × 2 m grids into the bedrock surface. The locations of 

rock sampling are also indicated with blue points along the railway tunnel. Basemap: SWISSIMAGE (digital color 

orthophotomosaic, 0.25 m ground pixel size) reproduced by permission of swisstopo (BA17061). (c) The cross‐sectional 

view from the middle detector site (D2) along the steepest direction of the bedrock. The blue and grey bands are the 

68% confidence level due to statistical fluctuations and the systematic uncertainty due ice density ambiguity.  
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I.10 Supporting information 

I.10.1 Introduction  

This document explains the details of the muon flux simulation (Ch. I.10.2) and the rock bulk density 

measurements (Ch. I.10.3 and Table I.SI.1). As supporting information, the angular distribution of muon 

data (Data Set S1) and the bedrock shape reconstructed from muon absorption analysis (Data Set S2) 

are online provided as separate files (https://doi.org/10.1002/2017GL073599).  

Data Set S1.  The direction data of all the muons observed at the three detectors (D1-3) are listed. The 

position of the detector is given in the Swiss coordinate system (CH1903). The detector orientation is 

described by an azimuth angle (measured clockwise from a north base line) and an inclination angle. 

The effective area and the exposure time are given for each detector. The direction of the each detected 

muon is described as “slope x” and “slope y”. These are original data used to produce Figure I.3a. 

Data Set S2. The positions of the bedrock-ice boundary reconstructed for each bin are given in the Swiss 

coordinate system (CH1903). The first three columns show the best fit position, the next three the lower 

limit of 1 sigma (68 %) confidence level and the last three the upper limit. 

I.10.2 Muon flux simulation  

The muon simulated flux Fsim, to be compared with the observed flux Fobs, is calculated following the 

methods summarized in Lesparre et al. (2010). Here the crucial and modified parts are described.  

To calculate the flux of penetrated muons, the energy spectrum Φ(p, θ, h) must be precisely evaluated 

at a given momentum p, arrival direction (zenith angle θ) and altitude h. We employ the model proposed 

by Reyna et al. (2006), which predicts the muon energy spectrum Φ(p, θ, h = 0 m) at the sea level. 

Since our observation is performed at a high altitude (~ 3500 m), the flux altitude dependence due to 

muon decay (muons are unstable particles with a lifetime of 2.2 s) must be properly taken into account. 

The altitude dependence can be described as Φ(p, θ, h) =  Φ(p, θ, 0) exp(ℎ/𝐿) where L = 4900 m +

750 m ∙  p (GeV/c) (Hebbeker & Timmermans, 2002). This formula is only valid up to 1000 m a.s.l. 

For our purposes, we adapted this formula to L = 3400 m + 1100 m ∙  p (GeV/c) ∙  cos 𝜃 to fit the 

energy spectra up to 4000 m a.s.l. in the Monte Carlo simulation by COSMOS simulator (see Nishiyama 

et al., 2016b for details). This new formula is valid for a wider momentum range (p > 3 GeV/c), a zenith 

angle range (0° ≤  θ ≤ 70°) and an altitude (h < 4000 m).  

If the density (ρ) is given, the amount of obstacles (often referred to as density-length or opacity in 

literature) is calculated by multiplying the length of the obstacle along the muon trajectory (L) as X =

ρL (unit: g cm-2). The minimum momentum (pmin) values of muons to penetrate the thickness X of 

standard rock were tabulated by Groom et al (2001). The standard rock (<A> = 22, <Z> = 11) is a virtual 

material commonly used to estimate the muon flux in undergrounds. Furthermore, we should consider 

the effect of glacial ice on muon energy loss, but, in this observation, its contribution is negligible 

because the minimum momentum for muons to pass through 100 m of rock is merely ~ 50 GeV/c. At 
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this momentum value, the continuous (ionizing) muon energy loss is still dominant compared to the 

stochastic loss such as Bremsstrahlung. The contribution of stochastic loss has only to be considered for 

a thickness > 1 km.  

The flux of muons after passing through material is calculated by integrating the energy spectrum 

Φ(p, θ, h) above pmin to infinity. Fsim is obtained as the average of the simulated flux in one hundred 

bins (10 x 10) to cope with the rough surface topography of the mountains and the glacier. The 

uncertainty on the simulated flux arises mainly from that of the spectrum model. Comparisons between 

our modified Reyna model and the observed energy spectra reported by several independent experiments 

(Kremer et al., 1999; Haino et al., 2004; Allkofer et al., 1985) suggest that the systematic uncertainty on 

the flux simulation is less than 15 % within a thickness of 150 m.w.e. (equivalent to 30 GeV/c) and a 

zenith angle range from 0° to 70°. 

I.10.3 Rock bulk density measurements 

The bedrock in our observation field consists of a migmatitic, granitic gneiss of the Innertkirchner-

Lauterbrunnen Complex (Abrecht, 1994; Schaltegger, 1993). In total 14 samples were taken both in the 

railway tunnel and along the surface (see Figure I.5c for sample locations). Sample sites were selected 

to cover the entire range of encountered bedrock types and to avoid sites with structural weaknesses 

(such as brittle fault zones, open joints) or secondary formed minerals (e.g. joint fillings) as the collected 

samples must be representative for the whole rock volume. The collected sample were heavier than 1.5 

kg, which yielded sufficient material to prepare spare samples, where we have split the original material 

into at least 3 sub-samples maintaining representativeness. Additionally, we explored the material for 

the grain size distributions and microstructures through thin section analyses, and we measured bulk 

mineral compositions on crushed and powdered samples using X-Ray Powder Diffraction (XRPD), 

thereby applying the Rietveld structural refinement method (Rietveld, 1969). 

The bulk density (𝜌𝑏𝑢𝑙𝑘) of rocks depends on (1) the mineral composition (densities and volume 

fractions), (2) the porosity (pores, fractures) and (3) the density of possible pore fillings. Bulk density is 

therefore given by  𝜌𝑏𝑢𝑙𝑘 = (1 − 𝜙) ∗ 𝜌𝑔𝑟𝑎𝑖𝑛 + 𝜙 ∗ 𝜌𝑓𝑖𝑙𝑙  with 𝜌𝑔𝑟𝑎𝑖𝑛 = ∑ 𝜌𝑖 ∗ 𝑉𝑖
𝑛
𝑖  where 𝜌𝑖  is the 

density, 𝑉𝑖 is the corresponding volume fraction and 𝜙 the total porosity, which is the sum of volumes 

related pores, fractures and their infill (Schön, 2015). Bulk densities were determined through volume 

measurements based on Archimedes’ principle by suspending samples coated with paraffin wax into 

water (Blake & Hartge, 1986; ASTM C914-09, 2015). Coating was necessary due to presence of 

connected porosity and the resulting degassing of the samples in different auxiliary liquids (e.g. different 

paraffin oils). The paraffin for coating was heated to 45-50°C to prevent degassing and exploiting the 

immediate solidification on the sample surface due to the cooling effect of the lower tempered sample 

(~22°C). Paraffin density was obtained by measuring the buoyancy of cubes that were cut from the 

separated wax, that we used for coating upon immersion in water. Additionally, the grain density was 

measured on the powdered sample using an AccuPyc 1340 He-pycnometer. Values given in table I.SI.1 
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are averages of at least 5 individual measurements (3 for bulk density) and given uncertainties (1 sigma) 

are propagated errors that account both for accuracy and precision. 

Table I.SI.1. Measured sample averages for the 14 rock samples taken along the tunnel and on the surface. 𝝆𝒈𝒓𝒂𝒊𝒏: grain 

density in g cm-3, 𝝆𝒃𝒖𝒍𝒌: bulk density in g cm-3, av. 𝝓: average porosity calculated under the assumption of air filled 

pores using the relation described in Section SI.2, sample coordinates were converted to WGS84 from Swiss Coordinate 

system (CH1903).  

Sample 𝝆𝒈𝒓𝒂𝒊𝒏 ± 1 σ 𝝆𝒃𝒖𝒍𝒌 ± 1 σ av. 𝝓 Sample Location (WGS84) 

JT-01 2.71 0.007 2.66 0.014 2.07% 7.98544E 46.54766N Elev. 3478 m 

JT-02 2.76 0.013 2.68 0.032 3.56% 7.98764E 46.54895N Elev. 3422 m 

JT-19 2.73 0.004 2.71 0.011 1.11% 7.98743E 46.54884N Elev. 3427 m 

JT-20 2.79 0.004 2.73 0.020 2.23% 7.98735E 46.54880N Elev. 3429 m 

JT-21 2.77 0.003 2.74 0.017 1.74% 7.98708E 46.54862N Elev. 3436 m 

JT-22 2.74 0.004 2.70 0.015 1.09% 7.98699E 46.54857N Elev. 3438 m 

JT-23 2.79 0.004 2.72 0.023 1.22% 7.98688E 46.54850N Elev. 3441 m 

JT-24 2.75 0.004 2.69 0.016 2.01% 7.98679E 46.54844N Elev. 3443 m 

JT-25 2.73 0.004 2.71 0.020 0.92% 7.98596E 46.54792N Elev. 3466 m 

JT-26 2.74 0.004 2.69 0.016 1.49% 7.98584E 46.54785N Elev. 3468 m 

JT-27 2.74 0.017 2.70 0.016 1.02% 7.98573E 46.54779N Elev. 3471 m 

JT-28 2.75 0.004 2.65 0.016 3.42% 7.98543E 46.54766N Elev. 3478 m 

SX-03 2.71 0.003 2.67 0.013 0.72% 7.98350E 46.54687N Elev. 3512 m 

SX-04 2.75 0.003 2.70 0.024 1.86% 7.98350E 46.54687N Elev. 3512 m 
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II.1 Abstract  

Mountain glaciers form landscapes with U-shaped valleys, roche moutonées and overdeepenings 

through bedrock erosion. However, little evidence for active glacial carving has been provided 

particularly for areas above the Equilibrium Line Altitude (ELA) where glaciers originate. This is mainly 

due to our lack of information about the shape of the bedrock underneath active glaciers in highly 

elevated areas. In the past years, the bedrock morphology underneath active glaciers has been studied 

by geophysical methods in order to infer the subglacial mechanisms of bedrock erosion. However, these 

comprise surveys on the glaciers’ surface, from where it has been difficult to investigate the lateral 

boundary between the ice and the bedrock with sufficient resolution. Here we perform a muon-

radiographic inspection of the Eiger glacier (Switzerland, European Alps) with the aid of cosmic-ray 

muon attenuation. We find a reach (600 × 300 m) within the accumulation area where strong lateral 

glacial erosion has cut nearly vertically into the underlying bedrock. This suggests that the Eiger glacier 

has profoundly sculpted its bedrock in its accumulation area. This also reveals that the cosmic-ray muon 

radiography is an ideal technology to reconstruct the shape of the bedrock underneath an active glacier. 

II.2 Introduction 

Glaciers play an important role in limiting the height of mountain ranges and in shaping alpine-type 

landscapes, which are commonly characterized by U-shaped valleys, cirques and steep-edged ridges 

along their thalwegs (Hallet, 1979, 1996; Brocklehurst and Whipple, 2002; Egholm et al., 2009). 

Glaciers deepen and widen pre-existing valleys through processes referred to as abrasion and 

quarrying/plucking (Hallet, 1979, 1996). Theory and observations predict that glacial erosion is 

proportional to the sliding velocity raised to some power (Pederson and Egholm, 2013; Herman, 2015). 
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In addition, the sliding velocity has been considered to depend on both the basal shear stresses and the 

fluid pressure ratio, where higher values result in either an increase (shear stress) or a decrease (fluid 

pressure) in the erosion rates (Bindschadler, 1983; Herman et al. 2011). Modern erosion rates under 

glaciers have been studied from sediment yields and provenance tracing of material in subglacial streams 

(Godon et al., 2013; Herman, 2015). The erosional efficiency of glaciers is known to vary greatly 

depending on location, climate, strength of the bedrock, energy gradient and ice thickness (Hallet, 1979, 

1996; Hallet et al., 1996; Brocklehurst and Whipple, 2002; Egholm et al., 2009; Herman et al., 2011; 

Pederson and Egholm, 2013; Herman, 2015). In this context, a major question arises about the potential 

of extrapolating short-term observations to the timescales over which glacial landscape with typical U-

shaped cross-sectional valleys and stepped longitudinal profiles form, which typically develop over 

multiple glacial cycles (i.e. tens to hundreds of thousand years; Valla et al., 2011; Pederson and Egholm, 

2013). Although various numerical models with a particular focus on subglacial erosion have been 

performed to reproduce glacial landscapes (Herman et al., 2011, 2018; Pederson and Egholm, 2013), 

these rely strongly both on our knowledge of the ice rheology and the ice-flow mechanisms, as well as 

on observational data of the glacial bedrock morphology. This potential lack of knowledge on the details 

of the erosional mechanisms and the underlying physical controls also concerns the questions of how 

glacial cirques are formed, and how subglacial processes actively sculpt the underlying bedrock (Hooke, 

1991; MacGregor et al., 2009; Sanders et al., 2010, 2012) in these high-elevation regions. 

A key information for improving our understanding of the landscape response to glacial erosion is 

offered by the bedrock topography from past-glaciated areas and beneath present-day active glaciers, 

mainly because the bedrock topography directly reflects the erosional patterns and mechanisms at work 

underneath a glacier (Brocklehurst and Whipple, 2002, 2004; Herman et al., 2011). This has been the 

major motivation for (1) exploring the bedrock topography using drilling information to map the 

landscape response to past glaciations (Dürst Stucki and Schlunegger, 2013); and (2) employing several 

geophysical techniques including seismic surveys and gravity measurements, ground penetrating radar 

surveys, and topographic modelling to reconstruct the bedrock topography of formerly glaciated areas 

or underneath active glaciers (Fisher, 1989; Adams and Hinze, 1990; Sharp, 1993; Annecchione et al., 

2001; Studinger et al., 2004; Barnaba et al., 2010; Huss and Farinotti, 2012; Mey et al., 2016). Despite 

the progress of such technologies, the bedrock morphology along the sides of a glacier, particularly in 

remote high-elevation alpine areas, has been hardly constrained, because these methods are mainly 

performed from above the glaciers’ surfaces. In addition, most of the alpine cirques are hardly accessible 

particularly in their accumulation areas where they originate. Where surveys were possible, the 

resolution of the data decreases rapidly towards the glaciers’ bases and lateral sides. This is related to 

(1) the presence of non-consolidated sediment deposits on the glacier margin and (2) the steep dip of the 

bedrock surface underlying most of the surveyed glaciers. In addition, in the case of temperate glaciers, 

high fluid pressure ratios lower the resolution of seismic and radar surveys (Murray et al., 2007; Schrott 
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and Sass, 2008), thereby thwarting a high-resolution reconstruction of the bedrock shape underneath 

modern glaciers. 

 

Figure II.1. Overview of the study site in the Central Swiss Alps. (a) Eiger glacier with distinct morphological domains 

(I to IV; see main text for discussion) and railway tunnel. Subsurface detector sites (ES: Eismeer station, TA: tunnel 

site A, TB: tunnel site B) are given with the corresponding view field. (b) Simplified geological map (Mair et al., 2018) 

illustrating the main rock types of the study area. The topographic data of both figures has been reproduced with 

permission by swisstopo (BA18111).  

In the present work we apply the cosmic-ray muon radiography technology to map the lateral margin of 

the Eiger glacier (Fig. II.1) situated in Switzerland (Central European Alps at 46°34′05″N latitude and 

7°59′56″E longitude). This method is based on the high penetration power of cosmic-ray muons that hit 

the Earth’s surface continuously (Patrignani et al., 2016), where the attenuation rate of the muon flux 

mainly depends on the density of the traversed material (Nishiyama et al., 2017). The idea dates back to 

1955 with the measurements of the thickness of rock above an underground tunnel (George, 1955), 

followed by the pyramid’s inspection by L. Alvarez in 1970’s (Alvarez et al., 1970), and it has spread 

to multiple fields such as volcanology (Tanaka et al., 2007; Carbone et al., 2014), geology (Guardincerri 

et al., 2017), and the non-destructive inspection of reactors (Fujii et al., 2013) in the past decade. In 

2015, Nishiyama et al. (2015) launched a pilot survey for the application of such a technology in an 

Alpine environment using emulsion films as muon detectors. These authors successfully mapped a small 

portion of the bedrock underneath the uppermost part of the Aletsch glacier (Central European Alps) 

over an area of c. 50 × 100 m2. Based on the success of this pilot work, the present study aims at imaging 
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of a much larger region where a glacier originates and where active erosion and bedrock sculpting are 

likely to occur. 

Muon radiography requires muon detectors to be placed at an elevation lower than the surveyed target 

because of the downward going path of cosmic rays. We benefited from the railway tunnel of the 

Jungfraubahn, which runs through the bedrock surrounding and beneath the headwall reaches of the 

Eiger glacier (Fig. II.1). In 2017, we installed muon detectors made of emulsion films at three sites along 

this tunnel (sites ES, TA and TB, Fig. II.1). Emulsion films, which have been applied in various 

experiments on fundamental physics (Ereditato, 2013; Ariga et al., 2018), record the trajectories of 

incoming muon particles, which can be observed with optical microscopes as sequences of tiny silver 

grains after chemical development (Ariga et al., 2018). The microscopic analysis of the films allowed 

the attenuation pattern of muon intensity to be measured (Ariga et al., 2018), which in turn gives the 

information on the density of overburden material (Nishiyama et al., 2017). The observed density 

information is then quantitatively converted to the location of the boundary separating the low-density 

ice from the high-density bedrock (Nishiyama et al., 2017), providing a unique and high-resolution 

reconstruction of the bedrock topography at the bottom and lateral margins of the Eiger glacier. 

II.3 Results 

II.3.1 Morphology of the Eiger glacier 

We explored the morphology of the Eiger glacier, which is the target of our survey (Fig. II.1). The nearly 

2.1 km2 large glacier originates on the western flank of Mt. Eiger at approximately 3600 m a.s.l., from 

where it flows and terminates at an elevation of approximately 2400 m a.s.l. over a length of c. 2 km 

(Fig. II.1). The bedrock geology of the study area comprises a suite of NW-dipping recrystallized 

micritic limestones that display a penetrative horizontal foliation and that overly polymetamorphic 

gneisses (inset Fig. II.1b; Mair et al., 2018). The bedrock has thus a constant fabric and comprises the 

same lithology within the entire glacial catchment (Mair et al., 2018). The mean value of the bulk density 

of the bedrock in this region is 2.68 g cm−3, determined from 16 bedrock samples (Nishiyama et al., 

2017), and its standard deviation is 0.02 g cm−3. The Eiger glacier consists of four morphologic domains 

I-IV (Fig. II.1): (I) a headwall reach forming a concave amphitheatre-shaped cirque with c. 50° steep 

flanks (including the headwalls), (II) a relatively flat domain, and (III) a middle segment where a 

prominent bedrock ridge forces the ice flow to diverge over c. 250 m distance before converging again 

farther downslope. There, the bedrock ridge, which most likely corresponds to a “roche moutonée” (i.e. 

a distinctive bump of 10–100-m scale typical of glacially-scoured landscapes with smooth abraded 

slopes facing upglacier, and abrupt slopes on its downglacier face), is exposed in the middle of the 

glacier, and the ice surface in segment (iii) is rugged and dissected by several transverse crevasses. 

Segment (III) also evidences a drastic change in ice-flow direction from South-West to West. The 

exposed bedrock ridge separates the Eiger glacier in two parts: a slip-off, steep margin situated on the 

inner northern-side of the glacier (referred hereafter to the “inner glacier”; Fig. II.1), and a cut-bank, 
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flatter glacier part on its southern outer margin (referred hereafter to the “outer glacier”; Fig. II.1). The 

down-slope end of segment III also lies within the altitudinal range of the modern ELA, which is situated 

at c. 3000 m a.s.l. (Huss and Fisher, 2016). Finally, segment IV is characterized by a terminal lobe with 

longitudinal crevasses and a till. 

A closer inspection of the glacier morphology discloses further details, particularly along segment II 

where the Eiger glacier starts to separate into two branches. Downslope of segment II where the ice-

flow bifurcation begins, the ice-surface strongly differs between the inner and outer glaciers. The inner 

glacier has a straight ice flow, with a relatively small ice surface, and the surface elevation rapidly drops 

from 3400 to 3100 m a.s.l. over a short distance of c. 650 m, yielding in an average surface slope of c. 

25°. Contrariwise, the outer glacier follows a large bend where the ice-flow orientation changes by 90° 

within a few hundred meters. Along this bend, the ice-surface elevation drops of about 300 m over a 

distance c. 1000 m. Interestingly, this glacier segment is also the location where cuts into its bedrock 

wall are visible, forming two secondary concave niches α and β with a shape that is similar to an incipient 

cirque (Fig. II.1). While the upper niche α is situated slightly upstream the bend and only weakly 

developed, the lower niche β is located within the bend and characterized by a distinct concavity. The 

ice surface maintains a constant dip of c. 10° above the 90°-direction bend, and then steepens to c. 22° 

farther downslope after the flow direction has changed to the West. At this point, transverse crevasses 

suggest that the ice is under extension, while the absence of any crevasses along the flatter segments 

implies that the glacier is under compression. Visual inspection shows that the outer glacier has a surface 

area of c. 300,000 m2 and is thus > 200 % larger than the inner glacier (Fig. II.1). 

II.3.2 Muon attenuation pattern 

Figure II.2 shows the direction of arriving muons at the three detector sites (ES = Eismeer Station, TA 

= Tunnel site A and TB = Tunnel site B; Fig. II.1). In these diagrams, the direction is represented as 

azimuth and elevation angles (θx, θy). The number of observed muons are 2.3, 5.3 and 7.9 × 103 for ES 

(exposure time: 106.8 days, effective area: 1512 cm2), TA (164.9 days, 1296 cm2) and TB (106.8 days, 

1080 cm2) sites, respectively. The population of the recorded muons is clearly anti-correlated with the 

thickness of the bedrock and the ice along the straight muon trajectories (Fig. II.2). Specifically, the 

shadows on each plot where the data density is low (sparsely distributed data points) coincide with the 

regions where the obstacle thickness is greater than 1 km. This indicates that most of the muons from 

these directions were absorbed in the thick mountain edifice. We binned these registered muons in a 

rectangular histogram (tanθx, tanθy) and converted the data into a normalized flux (cm−2 sr−1 sec−1). 
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Figure II.2. Distribution of recorded muons. Angular distribution of observed tracks at site ES (top), TA (middle) and 

TB (bottom) with muon trajectories displayed on the left and edifice thickness (ice and/or bedrock) corresponding to 

muon trajectories displayed on the right. The grey region (left panels) indicates the limit of the effective angular space 

of the microscope. The muon events in these regions are thus not used for the attenuation quantification.  

 

Figure II.3 illustrates how the muon flux data is used to infer the density of the traversed material. First, 

we focus on the flux data of muons, which passed purely inside the bedrock without crossing the glacier. 

Such data are available from the TA detector (Fig. II.3: open circles, and Fig. II.1 for location of detector). 

As seen in Fig. II.3, the flux decreases nearly exponentially with the increase of the bedrock thickness, 

and its attenuation depends also on the zenith angle of the muons (represented by the colours of the data 

points). These features of the muon flux attenuation in the bedrock are well reproduced by the simulation 

for different zenith angles (45°, 60° and 75°) under the assumption of a uniform bulk rock density of 

2.68 g cm−3 (Fig. II.3: solid curves; Nishiyama et al., 2017). This agreement assures that the variety of 

the bulk density inside the bedrock is small, as is observed with the standard deviation of the density 

sampling (0.02 g cm−3). On the other hand, trajectories where muons cross partially the glacial ice before 

arriving at the detectors yield flux values that are by a factor of up to 2 higher than these theoretical 

calculations (Fig. II.3: solid circles). This excess of the muon flux is due to the lower bulk density of ice 

compared to that of bedrock, thus allowing a higher muon transmission. We benefitted from these 

differences in muon attenuation between ice and rock: the magnitude of the muon flux attenuation 
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recorded at the different tunnel sites can be quantitatively interpreted in terms of the ice-bedrock 

proportion along the muons’ trajectories (Nishiyama et al., 2017), which is then converted into the 

position of the boundary between the basal ice and its underlying bedrock. The three detectors 

surrounding the glacier provided information about the bedrock shape from different perspectives. The 

bedrock positions were first estimated for individual detectors, and the results are combined and re-

sampled into a three-dimensional representation of the interface geometry (see Method section). 

 

 

Figure II.3. Muon fluxes. Attenuation of muon flux (vertical axis) as a function of the obstacle thickness (horizontal 

axis). The colours of the data point represent the zenith angle of muons arriving at the detector. The open circles denote 

muons, which passed only through the bedrock and were observed at the TA site detector. These data are used for 

calibration purposes (see Method section) by comparing them with the theoretical predictions of the flux attenuation in 

pure rock (density 2.68 g cm−3) reported as solid lines for different zenith angles (45°, 60° and 75°). The solid circles 

denote muons, which crossed both the ice and the underlying bedrock (displayed data are the ones from the TB site 

detector).  

II.3.3 Reconstruction of the bedrock shape 

We determined the bedrock shape underneath the Eiger glacier over a 600 m-long (NE-SW) and 300 m-

wide reach (NW-SE) (Fig. II.4). This corresponds to the segment where the glacier surface is relatively 

flat and where it dips at c. 10° (segment II on Fig. II.1) just below the >30°–50° steep headward reach 

(segment I on Fig. II.1). The elevation resolution of the inferred bedrock surface ranges from 10 m (1σ) 

in vertical dimension along the relatively flat segment (which is very close to the TB detector), to about 



II.3 RESULTS APPENDIX II 

174 

30 m (1σ) in the headward reach where statistics are deteriorated due to the thick mountain edifices. The 

inferred glacier thickness is typically around 50 m (down-slope segment II on Fig. II.1) to 100 m (up-

slope segment I on Fig. II.1). Along the thalweg axis, the bedrock surface continuously dips in the 

downslope direction, and neither an overdeepening nor transverse bedrock knobs could be observed 

(Figs 4 and 5). 

 

Figure II.4. Bedrock topography underneath the Eiger glacier. (a) Grid segments that were imaged by the muons at the 

three detector sites. (b) 3D representation of the reconstructed bedrock underneath the Eiger glacier, in which the 

colours indicate the altitude of the boundary between the glacial ice and the underlying bedrock. The topographic data 

has been reproduced with permission by swisstopo (BA18111) with a different view.  
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Figure II.5. Cross-sections illustrating the bedrock geometry underneath the Eiger glacier. Cross-sectional views of the 

reconstructed bedrock under the Eiger glacier, along five parallel locations (a) to (e) perpendicular to the flow direction, 

and one (f) parallel to the flow direction. Orange curves show the best-fitted bedrock positions and yellow bands show 

associated uncertainties (1σ) due to the statistical fluctuations of muon events. Grey and blue curves represent the 

hillslope topography and the ice surface. See general view (right) for location of cross- sections. The topographic data 

has been reproduced with permission by swisstopo (BA18111).  

The cross-sectional views (Fig. II.5) present quantitative information on the bedrock shape beneath the 

Eiger glacier, particularly on the southern outer side of the bedrock ridge. In the up-slope reach (segment 

II), represented by cross-section (a) on Fig. II.5, the bedrock steeply dips at a constant angle >50° from 

the lateral valley wall above the glacier down to 50 m beneath the ice surface. There, the transition to 

the flat glacier base is gradual without any distinct break-in-slope. The situation markedly changes 
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farther down-slope where the boundary between the aerial and subglacial lateral margin is characterized 

by a sharp break-in-slope (sections (b) and (c) on Fig. II.5). There, the dip angle of the bedrock surface 

changes from c. 50° above the glacier to sub-vertical at the ice contact. In addition, cross-section (c) 

suggests that some undercutting may occur along this segment (Fig. II.5c). At c. 50–60 m depth, the 

cross-sectional base of the subglacial bedrock is flat and nearly horizontal, resulting in a L-shaped cross-

sectional geometry of the bedrock surface underneath the ice. This is also the area where the ice surface 

starts to bend from a South-West to a West-oriented flow direction together with the development of a 

niche (α) similar to an incipient cirque (Figs 1 and 5). Farther downslope of cross-section (c), the cross-

sectional geometry changes again. Above the glacier, the bedrock surface dips at 40°−50° and steepens 

by a few degrees at the ice surface, thus forming a break-in-slope where the bedrock plunges beneath 

the glacier (sections (d) and (e) on Fig. II.5). Along these sections, the base of the glacier is flat to 

slightly tilted towards the glacier’s outer side, and the transition to the lateral margin is much more 

gradual than for the upslope reaches (sections (b) and (c) on Fig. II.5). 

While the outer glacier is covered by many muon trajectories (Figs 1 and 5), the inner glacier on the 

northern side of the bedrock ridge is out of the field views of the detectors. Therefore, the elevation of 

the bedrock underneath the inner glacier has to be constrained through indirect evidence. Here, we use 

information from the elevation of the bedrock ridge itself (Fig. II.5) to infer the elevation of the bedrock 

underneath the inner glacier. In particular, the bedrock depth along the outer glacier is situated at the 

same elevation, or even higher, than the ice surface of the straight inner glacier at least along cross-

sections ‘d’ and ‘e’ in Fig. II.5. This suggests that the underlying bedrock underneath the steep and 

straight inner glacier is likely to be at a lower elevation than the reconstructed bedrock below the outer 

glacier, at least along a section perpendicular to the ice flow. 

II.4 Discussion 

We verify our subglacial bedrock reconstruction within the Eiger headward region (segments I and II) 

following two pieces of evidence. First, the reconstructed bedrock positions agree with the mapped 

hillslope walls above the lateral glacier margin (Fig. II.5). Second, the reconstructed bedrock positions 

also match with the domain where the bedrock is partially exposed. This is mainly the case for the 

bedrock ridge that separates the inner from the outer glacier (cross-sections in Fig. II.5). These 

observations are supporting evidence for a reliable performance of the muon-flux attenuation analysis 

and the related calibration for our study site (see Methods). The muon radiography method thus yields 

quantitative information on the ice thicknesses (c. 10–30 m precision) of remote Alpine glaciers, if 

suitable detector sites such as natural bedrock galleries or tunnels are available underneath the target 

glacier. We thus propose that the technology of cosmic-ray muon radiography with emulsion detectors 

offers a quantitative tool that complements established geophysical methods (Horberg and Anderson, 

1956). In the case of the Eiger glacier, the steep bedrock slopes below the glacier even sharpen the 

density contrasts in the retrieved muon-derived images, while other methods (such as seismic or radio-
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echo soundings) often fail to yield information with acceptable resolution for similar bedrock geometries. 

Moreover, our present survey suggests that this novel technology works well in remote and harsh 

environments with the advantage of the emulsion films as muon detectors. The emulsion films showed 

an excellent performance in the remote and cold environment during the entire measurement period 

(spanning several months) without electricity or regular maintenance. This passive and robust feature of 

the measurement device cannot be attained by electronic detectors such as digital detectors including 

plastic scintillation and gaseous detectors, which have so far been applied to muon radiography in many 

prior works (Ambrosino et al., 2015; Jourde et al., 2016; Asorey et al., 2017; Saracino et al., 2017; Oláh 

et al., 2018). 

With respect to the Eiger glacier and its erosional mechanisms, the most prominent result of our work 

is the reconstructed shape of the lateral margin along the outer glacier. In the upper reach of our surveyed 

area (section (a) on Fig. II.5), the shape of the bedrock-ice interface is characterized by a generally 

smooth transition from the lateral margin to the base of the glacier. In the reach where the glacier begins 

to curve and where a bedrock niche points to the occurrence and possibly ongoing development of an 

incipient cirque, the bedrock underneath the lateral glacier margin appears much steeper than the 

exposed hillslope (sections (d) and (e) on Fig. II.5) and almost vertical-to-overhanging in some reaches 

(sections (b) and (c) in Fig. II.5). Such bedrock-slope variations over short distances (few tens to hundred 

meters) require a strong lateral and headward erosional component to shape the nearly vertically-

oriented margin of the subglacial bedrock. Interestingly, this is also the glacier segment where no 

crevasses are observed on the ice surface. This implies that the glacier is likely under compression along 

this reach, which provides a precondition for erosion on the lateral margin of a glacier to occur. Along 

the inner glacier reach, vertical glacial carving has been more efficient than along the outer curved 

glacier. We based this inference on the observation that the subglacial bedrock under the inner glacier 

is situated at lower elevations than along the outer curved reach. 

The erosional mechanisms of an alpine glacier, related efficiencies and controls thereof have been 

explored through both empirical observations and numerical investigations over the past decades. This 

resulted in the overall notion that the local erosional capacity of an Alpine glacier depends on its flow 

velocity raised to some power, modulated by different controlling factors such as subglacial hydrology, 

fracture spacing of the underlying bedrock and debris concentration in the basal ice (Braun et al., 1999; 

Egholm et al., 2009; Herman et al., 2011; Sternai et al., 2013; Herman, 2015; Ugelvig et al., 2016). It 

has also been proposed that the ice-flow velocity and the basal shear stresses are closely related, where 

shear increases with flow velocity raised to some power (Herman, 2015). This likewise suggests that 

subglacial erosion and thus the glacial impact on mountainous landscapes exponentially increase with 

the basal shear stress at the ice-bedrock interface. Under warm-based glaciers, shear stresses and erosion 

rates can also be modulated by the subglacial hydrology (Herman et al., 2011). In the case of the Eiger 

glacier, the curved geometry of the glacier reaches along the outer part of segments II and III may 

additionally result in a highly asymmetric pattern of shear stresses and flow velocities due to the 
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curvature. This is explained by the contrasts in the slopes between the inward and outward segments of 

a curved glacier. As a consequence, the flow velocity and stress centre line, commonly situated in the 

middle of a straight glacier, may be shifted toward the inner side of a bend, where the amount of this 

shift increases with the curvature of the ice flow51. We use these mechanisms to explain the lower depth 

at which the bedrock has been carved along the straight and steep inner reach of the Eiger glacier (Fig. 

II.5). 

While the larger bottom shear stresses along the straight inner glacier could be invoked to interpret the 

lower elevations of the bedrock topography (see cross-sections of Fig. II.5), these mechanisms alone are 

not capable of explaining the nearly vertical lateral dip of the ice-bedrock interface along the southern 

margin of the outer glacier. Such an erosional component, operating on the side of a glacier, requires 

substantial shear stresses on the lateral ice margin. This suggests that glacial erosion depends not only 

on the ice thickness and the slope, but also on the momentum of the flowing ice particularly where 

glaciers appear under compression (segment II, Fig. II.1). Ice flow thus shows similarities with a fluid 

when considering the erosional mechanisms: both apparently have a vertical and a lateral component 

where concave banks can experience stronger erosion. This L-shape sculpting acts to widen the glacial 

thalweg in the lateral direction with a strong over-steepening of the lateral margin. After the glacier 

retreats, such oversteepened cliffs would be exposed above the glacier and collapse due to the loss of 

mechanical support or activated hillslope/fluvial processes52. This could be a reason why we do not 

observe this morphology in deglaciated areas. Alternatively, the oversteepened bedrock could represent 

the headwall of an incipient cirque, which additionally feeds, or starts to feed, the Eiger glacier from the 

southwest. We base this inference on the plan-view shape of the ice margin, which is nearly straight 

along segment I (Fig. II.1) and then curves towards the headwall in the middle of segment II. 

Accordingly, the vertical to nearly over steepened glacier margin, which was imaged through the 

cosmic-ray muon radiography (sections (b) and (c) of Fig. II.5) better reflects the erosional work along 

the cirque headwall through backward erosion. 

The search for the controls on cirque wall retreat has received much attention in the past years 

(MacGregor et al., 2009; Sanders et al., 2010; Herman et al., 2018), yet with diverging conclusions, 

which range from bedrock shattering through freeze-thaw cycles (Scherler, 2014), to bedrock carving 

in response to rotational flow of ice, and to quarrying (MacGregor et al., 2009). In addition, using 

numerical simulations where glacial erosion has been treated as a function of basal sliding, McGregor 

et al. (2009) proposed that cirques are preferentially formed hundreds of meters below the ELA, and 

several studies suggested that the position of the cirque floor may reflect the averaged ELA position 

over multiple glacial-interglacial cycles (MacGregor et al., 2009; Anders et al., 2010; Mitchell and 

Humphries, 2014). Because our results highlight the occurrence of erosional carving at the inferred 

incipient cirque, and since the modern ELA (and thus also the long-term averaged ELA) is lower than 

the elevation of this incipient cirque, we suggest that glaciers are also capable of efficient headwall 

scouring above the ELA. In addition, the bedrock geometry underneath the cirque does correspond to 
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the shape that is expected if a rotational flow, paired with shear along the lateral margin, is responsible 

for the occurrence of cirque wall retreat, supporting current views on the erosional mechanisms of 

glaciers and cirque evolution. 

As a summary, we have illustrated a successful application of the cosmic-ray muon radiography, where 

we reconstructed the bedrock topography under an active glacier over an area of several hundreds of 

meters. Our results suggest that this technology is capable for mapping the interface between ice and 

bedrock at a resolution of 10–30 m, suitable for this study. It also allows the imaging of steep and nearly 

overhanging boundaries between ice and bedrock, which would not be depicted with other geophysical 

methodologies. From a geomorphological perspective, the results of our survey imply that active glacial 

backward erosion does occur in the accumulation area above the modern ELA (situated at c. 3000 m 

a.s.l., Huss and Fisher, 2016) and that this mechanism can be invoked to explain the formation and the 

long-term evolution of glacial cirques. Further high-resolution constrains on the bedrock topography for 

high-elevation glaciers will allow us to improve our understanding on the erosional mechanisms at work 

in cirque environments where glaciers originate. 

II.5 Methods 

II.5.1 Emulsion detectors and analysis 

Double-side coated emulsion films were used as muon detectors (Ariga et al., 2018). The thicknesses of 

the plastic base and emulsion layers were 180 μm and 60 μm, respectively. The emulsion gels, which 

were produced by the Nagoya University (Nishio et al., 2015), were poured onto the plastic base at the 

underground facility at the University of Bern. The produced films were transported to the experiment 

sites and installed in the detector frames mounted onto the wall of the railway tunnel. In the detector 

frames, five or six films were layered, and 2-mm-thick stainless steel plates were inserted between each 

adjacent film (Nishiyama et al., 2016). The location and size of the detectors, as well as the exposure 

time are reported in Table II.1. 

The films were chemically developed after extraction and scanned with the automated readout 

microscopes at the Laboratory for High Energy Physics, at the University of Bern. The microscope 

consists of a CMOS camera, a motorized microscope stage and illumination (Ariga et al., 2018). This 

allows to take tomographic profiles of silver grains in the emulsion layers and to measure the position 

and direction of incident charged particles (Ariga et al., 2018). The procedure is as follows: (i) a 

sequence of silver grains in each emulsion layer is selected as muon track candidates (micro-tracks); (ii) 

micro-tracks from two layers of a film, which penetrate the plastic base in a straight way, are selected 

(base-tracks); (iii) base-tracks aligned in consecutive films are identified as muon trajectories, here 

defined by at least three base-tracks out of the total of five (TB) or six films (ES and TA). The processes 

(i) and (ii) were performed by means of an in-house developed software (Ariga et al., 2014), while (iii) 

was performed with the FEDRA software (Tioukov et al., 2006). Figure II.2 shows the incident angle 

distribution for the reconstructed tracks, where the angular resolution of the tracks is 3–10 milliradian. 
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The number of detected muons was then determined in rectangular bins and converted into a muon flux 

(cm−2 s−1 sr−1) by normalizing with respect to the scanned area, the exposure time and the solid angle. 

The inefficiency of the films was estimated to ~10% at base-track level, which leads to the muon 

detection efficiency of 95–99%. We performed a correction of the measurement results taking the 

detection efficiency into consideration. 

Table II.1: Description of detector site.  

 Position (Lng/Lat/Alt) Facing (azimuth) Effective area (cm2) Exposure time 

ES (Eismeer Station) 8°0′37.72″E 

46°34′21.40″N 3159.9 m 

239.1°N 1512 9.227 × 106 sec (15 

Mar – 30 Jun, 2017) 

TA (Tunnel Site A) 8°0′28.37″E 

46°34′8.44″N 3186.4 m 

260.5°N 1296 1.4245 × 107 sec (30 

Jun – 12 Dec, 2017) 

TB (Tunnel Site B) 8°0′14.99″E 

46°33′56.07″N 3215.8 m 

305.1°N 1080 9.229 × 106 sec (15 

Mar – 30 Jun, 2017) 

 

II.5.2 Flux simulation and calibration 

Before reconstructing the bedrock shape, a calibration of the flux attenuation analysis was performed by 

comparing the observed flux of muons through pure rock with the corresponding simulated flux. TA 

site provides such data (18 bins from forward direction and 60 bins from backward). The simulation is 

performed assuming a rock density ρ_rock of 2.68 g cm−3, which is the average bulk density of the local 

limestone, determined from 16 samples (2.68 ± 0.02 g cm−3) collected inside the railway tunnel and at 

the surface (Nishiyama et al., 2017)1. The calculation of the muon flux is based on the energy spectrum 

model of cosmic-ray muons and the interaction of muons with matter. We employed the spectrum model 

proposed by Tang et al. (2006) and the muon range for standard rock tabulated by Groom et al. (2001). 

The topography of the mountain and the glacier surface is taken from a 2 m mesh digital elevation model 

(Swisstopo© with elevation uncertainty of < 3 m) to derive the length of the muon trajectories from the 

topographic surface to the tunnel sites (𝐿). Since this obstacle length varies within the bin due to the 

steep topography of the mountain, the bin is further divided into small hundred bins so that the roughness 

within the subdivided bin can be negligible. For each subdivided bin, the density-length traversed by 

muons is calculated by multiplying the rock density (𝜌𝑟𝑜𝑐𝑘) and the length of the muon trajectory (𝐿). 

The minimum energy of muons (𝐸𝑚𝑖𝑛) needed to penetrate this density-length can be looked up from 

the range table (Groom et al., 2001). The muon flux is obtained by integrating the energy spectrum from 

𝐸𝑚𝑖𝑛 to infinity. The muon flux values calculated for hundred subdivided bins are then averaged out 

and set to the representative value of the original rectangular bin. 
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Figure II.3 shows the observed flux as a function of rock thickness and zenith angle. The observed data 

at the TA site generally agrees with the theoretical curves. The ratio between the observed and simulated 

flux is found to be 0.94 ± 0.04 (stat), independent of the zenith angle and the rock thickness. A small 

deviation of this ratio (0.94) from one can be regarded as a bias of this observation due to the systematic 

uncertainties in the detector efficiency and the muon energy spectrum model. The statistical fluctuation 

(4%) is comparable to the effect of the intrinsic variability of the bedrock density (1% from rock sample 

measurements) on the resultant muon flux (3%). In a further analysis, therefore, this difference is 

calibrated when comparing the observed and simulated flux by multiplying the simulated flux by this 

factor (0.94). 

II.5.3 Bedrock shape reconstruction 

We followed the approach by Nishiyama et al. (2017) upon reconstructing the shape of the bedrock 

underneath the Eiger glacier. The observed muon flux for each bin yields the average bulk density <

𝜌 > of the material confined in the viewing range of the bin. Since the confined region is a mixture of 

bedrock and ice, the fraction of the bedrock (x) is related to the bulk density of a bedrock (𝜌𝑟𝑜𝑐𝑘) and 

that of an ice component 𝜌𝑖𝑐𝑒 = 0.85 g.cm-3 by Huss (2013) through the relationship: 

< 𝜌 > =  𝜌𝑟𝑜𝑐𝑘  ⋅  𝑥 +  𝜌𝑖𝑐𝑒  ⋅  (1 −  𝑥) 

Once x is obtained for each bin, the boundary position can be plotted at a distance Lx from the detector 

position. Here, a constant density is inferred for the ice because snow and firn exhibit a lower density in 

only the uppermost 10 m of the glacier (Huss, 2013), with significant density changes only occurring in 

the varying snow cover layer or in the presence of crevasses (Fischer, 2011), which are almost absent 

along the reconstructed glacier reach (Fig. II.1). The resulting uncertainty is in the order of the DEM 

error (Fischer, 2011) and thus negligible compared to the scale of our observation. The three-

dimensional representation and error estimation are performed as follows. First, the observed muon flux 

dataset is multiplied to hundred synthetic datasets by adding a statistical fluctuation for each bin. 

Specifically, a random variable following a Gaussian distribution with a standard deviation of N is added 

when the number of muons in the bin is N. Subsequently, the ice-rock boundary position is calculated 

for each flux data in every synthetic dataset and plotted in a 3D space. In the end the plotted point clouds 

are re-sampled in a cylindrical coordinate system with the axis parallel to the glacial flow direction 

(south-west) with a division of 𝛥𝑧 = 40 m along the axis and 𝛥𝜑 = 12° in azimuth. For each divided 

cylindrical bin (𝑧, 𝜑), the best position of the ice-bedrock boundary is given by taking the average of the 

radial coordinates of the points. The error of the boundary position is given by their standard deviation 

(yellow bands in Fig. II.5). A synthetic data reproduction was introduced so that the magnitude of the 

statistical fluctuations is properly taken into account after re-sampling. Cylindrical bins, which contain 

less than 10 points, were neglected as lack of statistics and resolving power. 
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