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Preface

This thesis consists of two points of view to regard degree-(g′+1) tropical morphisms Φ : (Γ, w)→
∆ from a genus-(2g′) weighted metric graph (Γ, w) to a metric tree ∆, where g′ is a positive
integer. The first point of view, developed in Part I, is purely combinatorial and constructive. It
culminates with an application to bound the gonality of (Γ, w). The second point of view, developed
in Part II, incorporates category theory to construct a unified framework under which both Φ and
higher dimensional analogues can be understood. These higher dimensional analogues appear in
the construction of a moduli space Gtrop

g→0,d parametrizing the tropical morphisms Φ, and a moduli
spaceMtrop

g parametrizing the (Γ, w). There is a natural projection map Π : Gtrop
g→0,d →Mtrop

g that
sends Φ : (Γ, w)→ ∆ to (Γ, w). The strikingly beautiful result is that when g = 2g′ and d = g′+1,
the projection Π itself is an indexed branched cover, thus having the same nature as the maps Φ
that are being parametrized. Moreover, fibres of Π have Catalan-many points.

Each part has its own introduction that motivates and describes the problem from its own
perspective. Part I and its introduction are based on the articles [DV20] and [DV21], respectively,
which are joint work with Jan Draisma. Part II contains material intended to be published as two
articles. There is also a layman summary available after this preface.
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A summary for very general audience

This non-technical summary discusses with informal metaphors the intuitive ideas behind the
objects and the goals of this thesis.

Moduli spaces
Consider the phonebook of a city. Here are two reasons why this physical book is useful:

• Each person has exactly one entry in the phonebook (is a bijection).

• There is an order that makes searching for an entry easy (has a topology).

Consider the following two questions:

(A) Can we compare the population of two cities?

(B) Is the last name of a given person common?

Question (A) is a global question, concerning the totality of the object. Since the phonebook is
a bijection, the population of a city is proportional to the length of the phonebook. So one just
needs to visually inspect which phonebook is bigger. Question (B) is a local question, concerning
a part of the object close to a point of interest. Assuming alphabetical order, first we locate the
last name, and then check if the topological neighbourhood is big: count how many entries before,
and after, of the chosen person have the same last name.

A moduli space is a phonebook for geometrical objects, useful to solve both global and local
questions. Making a phonebook is quite a laborious process; so is constructing a moduli space. It
is also very rewarding, hence the study of moduli spaces has been at the forefront of mathematics
for the past 150 years.

Tropical geometry
Consider your favourite dinosaur. Our knowledge of it is indirect: we haven’t seen it in a natural
habitat, but instead have studied fossils. The deformation process that transformed the dinosaur
into its skeleton lost a great deal of information (e.g. colour, body weight, whether it had feathers).
Yet, enough is preserved to have paleontology as a field of science.

Tropical geometry is paleontology for mathematical dinosaurs called algebraic varieties. These
are geometric objects described by polynomial equations, e.g. a circle in the plane is described by
x2 + y2 = 1. The skeletons are polyhedral complexes. Here we can picture the shape of a quartz
crystal, something with straight edges, straight surfaces, etc. See Figure 1. Tropical geometry is
a new field at the intersection of algebraic geometry and combinatorics, with a great development
in the last 20 years. Its name honours one of its founding fathers, Brazilian mathematician Imre
Simon.

What do we gain from this? Think about how in paleontology skeletons are easier to manage
than living creatures. In tropical geometry it is easier to manage polyhedral complexes than
algebraic varieties, because the study is mostly combinatorial. Besides studying the skeletons,
tropical geometry studies the processes that deform an algebraic variety into a polyhedral complex.
The point is to establish correspondence theorems that tell us which information is retained, and
to develop efficient methods to compute polyhedral complexes.
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Figure 1: A tropical variety associated to the following optimization problem:
max(−5 + 2y,−1− x+ y,−5− 2x,−2− y,−2 + x,

−7 + 2x− 2y,−2 + y,−2− x,−3 + x− y, 0)
The maximum is attained at −5+2y in region 1○, the maximum is attained at −1−x+y in region
2○, and so on.

Figure 2: A degree-3 covering that folds the variety from Figure 1.

Coverings
Consider packing a suitcase. All clothes must cover the same space in the suitcase. Clearly, bigger
more sophisticated clothes have to be folded more times to fit. So the number of folds for a
particular dress encodes, roughly, how complicated this particular dress is. Suppose we are given
a folded dress and we are challenged to determine the number of folds without unfolding it. We
can take scissors to do a cross-section cut, then count the number of layers to get the answer. This
gives a rough idea of how complicated this dress used to be.

A covering is a list of three things: the dress, the suitcase, and the specific way the dress was
folded. The degree of a covering is the number of layers in a cross-section cut. Given a dress and a
suitcase, we ask the folding problem: What is the best way to fold the dress? In quasi-mathematical
terms we would say what is the minimum degree of a covering for a specific dress and suitcase.
This is a fairly difficult problem, driving ongoing research. The reason for this is that essentially we
are expressing a complicated geometrical object in terms of a simpler one, a process conceptually
akin to expressing a natural number as a product of prime numbers.
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Results
If both clothes and suitcase are polyhedral complexes, then we call the covering a tropical covering.
Do not panic, we still are folding things, just that now we fold the skeletons that tropical geometry
cares about. And we still care about finding the most efficient way of folding. Efficient means
low-degree tropical coverings.

This thesis constructs a moduli space, a phone book, for low-degree tropical coverings. Let us
name this phonebook Gtrop

g→0,d. We have shown, in a beautiful result, that Gtrop
g→0,d is a polyhedral

complex, and that it can be folded and used to cover another polyhedral complex Mtrop
g which is

an important moduli space. Please pause a moment and appreciate the self-referential nature of
the result: a moduli space for tropical coverings is itself a tropical covering. These meta qualities
are common in moduli spaces and make them, in my opinion, aesthetically appealing. Another
beautiful result is that we calculate the degree of the covering that folds Gtrop

g→0,d and get a Catalan
number. These numbers have profound combinatorial meanings, but this note is too narrow to
contain them.
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Part I

Gonality of metric graphs

1



Cuando Bergson habla de la creación literaria dice algo muy
justo. Afirma que se parte de una intuición muy oscura pero
global, que luego se la va desarrollando mediante el análisis y
el acercamiento, para llegar finalmente a una intuición última
que es infinitamente más rica.

Sabato dialogando con Borges

Cuando éramos niños
los viejos tenían como treinta
un charco era un océano
la muerte lisa y llana
no existía.
(...)
ahora veteranos
ya le dimos alcance a la verdad
el océano es por fin el océano
pero la muerte empieza a ser la
nuestra

Mario Benedetti



Chapter 1

Introduction for Part I

The material in this introduction for Part I is largely based on [DV21].

1.1 What is tropical geometry
Tropical geometry is the study of combinatorial objects which arise as skeletons of algebraic va-
rieties. Here, skeleton has a precise technical meaning; however, we illustrate the concept with a
metaphor borrowing on biology. Animals of the same species posses many physiological features
over which they display a lot of variation; yet, deep down, their skeletons (say arrangement of
bones), look largely the same. From the skeleton we may recover combinatorial information; for
example, number of limbs, metric properties like height, or the dimension of the ambient space
that the animal inhabits. The study of skeletons may be conducted as a self contained intellectual
pursuit, or with the aim of understanding the connection between the skeleton and other structures
of the physiology of the animal.

Tropical geometry accomplishes, roughly speaking, the two goals in the metaphor for algebraic
varieties, by embarking on the ambitious task of joining methods from many disparate branches
of mathematics. A list of them would include graph theory, polyhedral geometry, polytopes,
Berkovich spaces, non-archimedean geometry, moduli spaces, mirror symmetry, optimization, the-
ory of idempotent semirings, etc. Regarding that last item, a prominent example is the semiring
with additive monoid (R∪{∞},min) and multiplicative group (R∪{∞},+). It was first studied by
brazillian mathematician Imre Simon. Somehow, to honour him, this structure was later christened
the tropical semiring . A current line of research seeks to establish a “commutative algebra over the
tropical semiring”, with the end goal of grounding abstract tropical geometry on it. This might
be enough to justify the naming of this peculiar amalgamation of mathematics; plus, what one
can only guess are, the possibly paradisiacal images that the word tropical evokes on our collective
subconscious.

So on the one hand it is possible to engage in pure combinatorics, defining objects and studying
problems guided by intuition and motivation mostly coming from algebraic geometry. On the
other hand, sophisticated arguments employing whatever firepower is available strive to establish
correspondence theorems. Maps that relate a classical object with a combinatorial object are called
tropicalizations. Here the motivating hope is that the answer of a classical enumerative problem
coincides with its corresponding tropical enumerative problem. Completing the two goals for a
given problem gives, at the very least, a new proof for a classical result. With some luck, the
tropical approach sheds insight into yet uncharted territories. This thesis moves entirely in the
realm of the first goal, while the second one remains as an outstanding open question.

1.2 Brill-Noether theory
Recall that a Riemann surface is a connected, complex manifold of complex dimension 1. Arguably
the simplest compact Riemann surface is the projective line P1 = C ∪ {∞} over the complex

3
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numbers, which is topologically a sphere. An arbitrary compact Riemann surface X admits a
branched cover to P1, i.e., a holomorphic map that at every point, in local coordinates, looks like
the map z 7→ ze for some positive integer e, called the ramification index. The points where e > 1
are called the branch points.

For instance, if X is the quotient C/(Z1+Zτ) of C by the lattice Z1+Zτ , then the Weierstrass
℘-function defined as

℘(z) =
1

z2
+

∑
(m,n) ̸=(0,0)

(
1

(z +m+ nτ)2
+

1

(m+ nτ)2

)

is meromorphic on C and periodic with periods 1 and τ , so that it factors through a meromorphic
function X → C of degree 2 and a double pole at 0, which extends to a holomorphic map X → P1

with four index-two branch points: the points of order two in the group X.
The lowest degree of a nonconstant, hence surjective holomorphic map from a compact Riemann

surface X onto P1 is called the gonality of X. The gonality of P1 itself is 1, and that of any elliptic
curve (the previous example) is 2. Recall that linear series of degree d and dimension r on X are
in one-to-one correspondence to morphisms X → Pr. Thus, gonality may also be defined as the
lowest degree of a rank-1 linear series on X.

As a topological space, a compact Riemann surface is uniquely determined by its genus, its num-
ber of holes formally defined as g = 1− χ/2 where χ is the Euler characteristic. The fundamental
relation between gonality and genus is the following.

Theorem 1.1. The gonality of a compact Riemann surface X of genus g is at most 1+⌈g/2⌉, with
equality if X is sufficiently general. Moreover, if g is even and X is sufficiently general, then the
number of holomorphic maps to P1 of degree 1+g/2 from X to P1 (counted up to compositions with
elements of the automorphism group PGL2(C) of automorphisms of P1), equals Cg/2, the g/2-th
Catalan number.

The condition “sufficiently general” is understood as follows. The compact genus-g Riemann
surfaces (up to isomorphism) correspond to the points in a suitable (non-compact) complex alge-
braic variety of complex dimension 3g−3, the moduli spaceMg of genus-g Riemann surfaces, and
“sufficiently general” means that it holds for all X corresponding to the points in Mg outside a
Zariski-closed subset of positive codimension.

Recall that the Catalan numbers Cn = 1
n+1

(
2n
n

)
appear throughout mathematics, and count

objects that satisfy the recursion Cn+1 =
∑n
i=0 CiCn−i. One example are ballot sequences. Suppose

that in an election candidates A and B received the same number of votes n. A ballot sequence is
an order to count these votes such that candidate B always has at least as many votes as A. The
number of ballot sequences in an election where 2n votes were cast in total is Cn.

Theorem 1.1 is part of Brill-Noether theory, an area of algebraic geometry that has its roots in
the late 19th century and is still very active today. The existence of such morphisms was already
established by Riemann, and this was later generalised by Kempf [Kem71] and Kleiman-Laksov
[KL72]. The Catalan count was established, again in the more general setting of Brill-Noether
theory, by Griffiths-Harris [GH80]. Moreover, when g is even, the rank-1 case of the main theorem
in [EH87] implies that the Catalan-many maps of Theorem 1.1 can be arranged in a space.

Theorem 1.2. For even g there is an open set B ⊂Mg of sufficiently general Riemann surfaces
and a smooth irreducible family π : X→B whose fibre over a point X in B are Cg/2 points
corresponding to the holomorphic maps of X onto P1.

1.3 Tropical curves and tropical morphisms
The class of combinatorial objects that we study are called tropical morphisms. These are maps
between metric graphs with suitable balancing conditions, which make them behave similarly to
morphisms between curves; they also have a so-called Riemann-Hurwitz condition, which is a re-
quirement for the realizability of the combinatorial object as the tropicalization of a classical object
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Figure 1.1: Top: On the left a genus-2 metric graph. On the right a picture suggesting a tropical
morphism of degree 2 from that graph to a line segment. A choice for the slopes which yields
balancing is slope 1 at the loops and slope 2 at the bridge.

Figure 1.2: On the left a genus-4 metric graph Γ. On the right a tropical morphism of degree
3 from a modification of Γ to a tree whose shape is suggested by the figure. The colours of the
edges match, the slope is 1 everywhere, and the dangling edges in the modification are depicted in
transparent yellow.

(see [BN09; BBM11; Cha13; Cap14; Mik07]). A striking interplay between graphs and Riemann
surfaces/algebraic curves has been discovered over the last two decades. Specialization lemmas
and correspondence theorems between both settings are an active field of research at the interface
between tropical and non-archimedean geometry (see, e.g., [Bak08; ABBR15a; ABBR15b]).

A tropical morphism is a piecewise linear continuous map between connected metric graphs
that satisfies several combinatorial conditions. Roughly speaking, a metric graph Γ is a compact
metric space which arises from taking a combinatorial graph G (a model of the metric graph), and
“giving lengths” to the edges of G via a length function ℓ : E(G) → R>0. For every point x in Γ
there is an ε such that the open ball around x and radius ε is isometric to a k-star (a space that
arises by glueing at the origin k copies of the interval [0, ε)). This k is the valency of x.

A harmonic map Φ from Γ to another metric graph ∆ is a map that is continuous, piecewise
linear with nonzero positive integral slopes with respect to the metrics on Γ and ∆ (allowing slopes
equal to zero would have a meaning that we choose to ignore for simplicity of exposition), and
which satisfies the following balancing condition: for each x ∈ Γ and a direction d′ emanating from
Φ(x), the sum of the slopes of Φ along all directions d that emanate from x and map onto d′ is
independent of d′; that is, replacing d′ by a different direction from Φ(x) yields the same sum of
slopes. We denote this count by |x|Φ.

The consequences of the balancing condition are in parallel with the theory of Riemann surfaces.
Immediately we are able to define a “local degree”. By connectedness of ∆ and Γ we can extend
this to a global degree, namely for any point x in ∆ the count with multiplicities | · |Φ of the points
in Φ−1(x) is a constant degΦ of Φ which we call the degree of Φ. It also implies, given that the
slopes of Φ are nonzero positive integers, that Φ is surjective. See Figures 1.1 and 1.2 for examples.

To tighten the analogy with holomorphic maps even further, we introduce the Riemann-Hurwitz
inequality, which says that at each x ∈ Γ the harmonic map Φ satisfies the condition

valx− 2 ≥ |x|Φ · (val Φ(x)− 2).

Since only finitely many points of a metric graph have valency distinct from 2, outside of a finite
set of points of Γ both sides of the Riemann-Hurwitz inequality equal zero. The origin of this
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inequality is that the left-hand side minus the right-hand side plus one is the correct tropical
analogue of the ramification index of Φ at x, which should, of course, be positive. A harmonic map
Φ with non-zero slopes that satisfies the Riemann-Hurwitz inequality at every point x is called a
tropical morphism. The map in Figure 1.1 is a tropical morphism; for example, in the red vertex
the inequality reads 3− 1 ≥ 2 · (2− 2). So is the map in Figure 1.2.

One tropical ingredient, without a classical counterpart, is tropical modification. This consists
in iterating the following contruction or its inverse: pick a point x in Γ and a length r, and define
Γ̃ := (Γ⊔ [0, r])/ ∼, where ∼ is the equivalence relation whose only non-singleton equivalence class
is {0, x}. In short, Γ̃ arises from Γ by growing a new line segment of length r at x, and Γ arises
from Γ̃ by removing this dangling segment. A graph Γ̃′ that can be obtained from Γ by a sequence
of operations consisting of growing new line segments and/or removing dangling segments is called
a tropical modification of Γ.

Let Γ be a metric graph. By iteratively deleting line segments ending in monovalent points we
get a tropical modification Γ̃ of Γ, unique up to isometry, whose minimal valency is 2. Moreover,
Γ̃ has a model H, unique up to isomorphism, without 2-valent vertices. Thus, the minimal valency
of H is at least 3. We define the number g(H) = #(()E(H)) − #(()V (H)) + 1. Tropicalization
maps have the property that they send a genus-g curve to a (metric) graph H such that g and
g(H) coincide. Thus, we call g(H) the genusgenus!of a graph of H.

If H is trivalent, then E(H) has 3g − 3 elements; this number coincides with the dimension of
Mg. In fact, observe that by fixing a model H and varying the edge-lengths one obtains a cone CH
of metric graphs. By identifying points corresponding to isometric graphs one can glue together all
the cones CH , as H ranges over trivalent genus-g graphs, for a fixed g, and the result is an abstract
rational polyhedral cone complexMtrop

g which is called the moduli space of genus-g metric graphs.
The two spaces are related by a tropicalization map that realizes Mtrop

g as the tropicalization of
Mg [ACP15].

1.4 Tropicalization
We describe a tropicalization map to motivate our definition of tropical morphisms. Using this
tropicalization map one can prove from Theorem 1.1 that an analogous combinatorial version holds.
Instead of following the more algebro-geometric approaches in [Bak08; Cap14], we discuss the more
hyperbolic-geomeric approach taken in [Lan20].

Let Γ be a metric graph with a trivalent model. We first argue that such a Γ is a tropical limit
of a family of compact Riemann surfaces, using Fenchel-Nielsen coordinates. Given three positive
reals α, β, γ > 0, up to isometry there exists a unique geodesic hexagon H in the complex upper
half-plane, equipped with its hyperbolic metric of constant curvature −1, all of whose angles are
π/2 and of which the edge lengths, in counterclockwise order, are α, a, β, b, γ, c > 0.

In particular, a, b, c are determined by α, β, γ. We denote by qα (respectively, qβ , qγ) the vertices
of H where the sides of lengths α, a (resepctively, β, b and γ, c) meet. By basic hyperbolic geometry,
the area of H (a union of four hyperbolic triangles) is 4π − 6π/2 = π. So if we let α, β, γ tend to
zero, then a, b, c cannot all be bounded from above.

Take two copies H,H ′ of H and glue them together along the edges of lengths a, b, c; the result
is a pair of pants P2α,2β,2γ with geodesic boundary cycles of lengths 2α, 2β, 2γ. We orient P2α,2β,2γ

with the unique orientation agreeing with that of the first copy H, and this induces orientations
of the boundary cycles. We call the images of qα, qβ , qγ the special points on the boundary cycles
of P2α,2β,2γ .

Now let G be a graph with all vertices of valency 3 and even genus g ≥ 2 and let c(e) > 0
be a positive real number for each e ∈ E(G). Then we can construct a compact Riemann surface
as follows. For each v ∈ V (G), incident to e1, e2, e3 ∈ E(G), take a copy Pv of Pc(e1),c(e2),c(e3),
and glue all of these copies together along the boundary cycles in the manner prescribed by G:
if an edge e of G has v and w as ends, then Pv and Pw are glued along their boundary cycle of
circumference c(e) in such a manner that the orientations of the boundary cycles are opposite to
each other; if e is a loop, so v = w, we glue two legs of Pv to each other. There is one (real) degree
of freedom in each of these 3g − 3 glueings, corresponding to the angle made between the special
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Figure 1.3: A pair of pants from two geodesic hyperbolic hexagons.

points on these two cycles. There is a discrete choice, which we ignore in this exposition, of a
cyclic order on the three edges incident to any v in V (G). Together, these 3g − 3 angles and the
3g−3 lengths c(e) are the Fenchel-Nielsen coordinates on Teichmüller space. But for our purposes,
where we want to exhibit a tropical morphism to a tree from holomorphic maps to P1, it suffices
to take all 3g − 3 angles to be zero, i.e., to glue the special points onto each other. The resulting
structure Xc inherits the structure of a complex manifold from the hexagons, and it is compact,
hence a Riemann surface. We call Ce ⊆ Xc the image of the boundary cycle corresponding to e.

Next let ℓ ∈ RE(G)
>0 be an edge length function. Define

ct(e) :=
2π2

ℓ(e) log(t)
. (1.1)

Then, as we let t tend to ∞, the circumference of the boundary cycles tends to zero and the
Riemann surface Xt := Xct degenerates into a disjoint union of P1’s, one for each vertex v of G,
which is glued together at three distinct points to the P1s corresponding to the neighbours of v.
(Since PGL2 acts transitively on ordered triples of distinct points on P1, this is a unique complex
algebraic curve up to isomorphism.)

Now let ψt : Xt → P1 be a holomorphic map of degree 1 + g/2; this can be chosen to depend
continuously on t. In what follows, we take t ≫ 0 and eventually let t tend to ∞. Then the
boundary cycles Ce have disjoint images C̃e := ψt(Ce) in P1 for e in E(G). A priori, C̃e is only
an immersed circle in P1. But it can be shown that after a suitable deformation of the Ce, their
images C̃e are disjoint, closed circles on the sphere P1; we assume this from now on. Make a graph
T whose vertices are the connected components of P1 \

⋃
e∈E(G) C̃e and where two are connected

by an edge if they have a common C̃e in their boundary. The fact that P1 has genus 0 implies that
T is a tree. For each e, ψ−1

t (C̃e) is a disjoint union of circles in Xt, one of which is Ce. Cut up Xt

along these cycles and construct G′ from the connected components of Xt, like we constructed T
from the cut-up P1. Then G′ is a refinement of the graph G. Each edge e′ ∈ E(G′) corresponds
to a circle Ce′ in Xt mapping to some circle C̃e; let se′ be the topological degree of the restriction
ψt|Ce′ : Ce′ → C̃e.

The precise form of ct(e) in Equation (1.1) becomes important now: it guarantees that ψt
converges in a well-defined sense to a tropical morphism φ from a modification of the metric graph
(G, ℓ) to the metric tree (T, ℓT ) for a suitable edge length function ℓT [Lan20]. The “dangling
trees” in the modification are attached at vertices in V (G′) \ V (G), and the slopes are precisely
the numbers se′ above.

We conclude by explaining the balancing condition and the origin of the Riemann-Hurwitz
inequality: any vertex A ∈ V (G′) corresponds to a connected component U of Xt \

⋃
e′∈E(G′) Ce′ .

For simplicity, we assume that G′ has no loops at A, so that U is topologically a sphere with k disks
removed corresponding to the Ce′ that form the boundary of U . The map ψt is a branched cover
from U to O, where O is a connected component of P1 \

⋃
e∈E(G) C̃e with l cycles C̃e in its closure.

The map ψt sends each of the k circles Ce′ to one of the l circles C̃e. The sum of the se′ over all
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Ce′ mapping to one of the l circles C̃e in the boundary of O is independent of boundary circle C̃e,
namely, the degree of the branced cover U → O; this is what we called |A|Φ. Since removing a disc
from a surface reduces the Euler characteristic by 1, U has Euler characteristic 2 − k and O has
Euler characteristic 2− l. Now the celebrated Riemann-Hurwitz formula for branched covers says

2− k = χ(U) = |A|Φ χ(V )−
∑
x∈U

(ex − 1)

= |A|Φ(2− l)−
∑
x∈U

(ex − 1)

where ex is the ramification index of ψt at q. In particular, since ex ≥ 1, we find

k − 2 = |A|Φ · (l − 2) +
∑
x∈U

(ex − 1) ≥ |A|Φ(l − 2),

which was precisely our version of the Riemann-Hurwitz inequality for tropical morphisms.

1.5 Results: Gonality of metric graphs
In the first part of this thesis we investigate the tree gonality of metric graphs. This concept has
its roots in gonality of algebraic curves. It has a strong relation to the purely combinatorial graph
notion of tree width [dBG14], to spectral graph theory [Ami14], and distance functions defined on
lattices [Man19].

There are two definitions of gonality for (metric) graphs which are relevant to our story. A
chip-firing game on a (metric) graph yields a divisor theory (see [BN07; HKN13]). The divisorial
gonality of a (metric) graph is the minimum degree of a rank-1 divisor. The tree gonality of a
metric graph is the minimum degree of a tropical morphism from any tropical modification of the
metric graph to a metric tree.

Divisorial gonality mimics the definition of gonality of X via linear series, while tree gonality
mimics the one via non-constant morphisms. Unlike the algebro-geometric setting, in the tropical
world divisorial gonality and tree-gonality do not coincide. See Remark 13.8 for a dramatic exam-
ple. If Φ : Γ→ ∆ is a tropical morphism to a tree, then the divisor

∑
x′∈Φ−1(x) |x′|Φx′ has rank at

least 1 for any choice of x in ∆ (see Section 3.3 for notation). So tree gonality is an upper bound
of divisorial gonality.

At the time of writing, perhaps the most famous open question on divisorial gonality is the
following:

Conjecture 1.3 (Baker; Conjecture 3.10 in [Bak08]). The divisorial gonality of a finite connected
graph G is at most ⌈g/2⌉+ 1, where g is the first Betti number of G.

This conjecture has attracted a sizeable amount of attention from the community. If one re-
places G with a metric graph Γ, then the result is proven in [Bak08, Theorem 3.12]. The proof
requires a tropicalization map like the one we outlined in the Motivation section, and the corre-
sponding statement for algebraic curves. The algebro-geometric statement requires for its proof
the sophisticated machinery of special divisors. There is wide interest for a purely combinatorial
proof, as it is hoped it may yield methods better suited to tackle Conjecture 1.3. We give one such
purely combinatorial proof:

Theorem 1.4. The tree gonality of a genus-g metric graph Γ is at most ⌈g/2⌉+ 1.

In fact, we manage to construct tropical morphisms that witness the bound ⌈g/2⌉+ 1 on tree-
gonality, so beyond being combinatorial, the proof is also effective. There is some computer code
and visualizations available at [Dra]. For even genus, the tropical morphism which realizes the
bound belongs to a family of tropical morphisms of dimension 3g − 3 and that has a generically
finite-to-one map onto the moduli space of genus-g metric graphs. Our methods focus on the study
of such full-dimensional families.
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1.6 Proof sketch

1.6.1 Main idea
The main idea underpinning this thesis is short, and elegant: we first analyse a favourable case
and then continuously deform the result. We need an initial family of graphs Γ such that there
is a construction of a tropical morphism Φ : Γ → ∆ attaining the gonality bound; and we need a
procedure to deform Φ into Φ̄ : Γ̄→ ∆̄ for any given Γ̄ via a deformation path inMtrop

g , the moduli
space of metric graphs. We argue that for this strategy to work we need that Φ, and all but finitely
many of the points in the deformation path to Φ̄, belong to cones of tropical morphisms that we
call full-dimensional. Intuitively, these morphisms depend on the right number of parameters to
cover Mtrop

g .
To carry out this simple idea we introduce a technical framework which describes and studies

properties related to full-dimensional cones, sets up the deformation procedure, and supports the
case work required to prove the correctness of deformation. It would be interesting to understand
how our work relates to the tropicalization of the space of admissible covers from [CMR16], but
this is beyond the scope of our combinatorial methods.

1.6.2 Families of morphisms
Recall that a metric graph Γ has an underlying combinatorial graph G, a model; and that by
varying the edge lengths of G we obtain a whole family of metric graphs parametrised by a rational
polyhedral structure RE(G)

>0 . In a similar vein, a tropical morphism Φ : Γ → ∆ has an underlying
combinatorial type φ recording its combinatorial information. This consists of models G, T for Γ,
∆; a graph morphism φ : G→ T ; and an index map |·|φ : E(T )→ Z>0 recording the slopes of Φ. If
one prescribes edge-lengths ℓT for T , the information in φ gives edge-lengths ℓG(e) = ℓT ◦φ(e)/|e|φ
for G. This gives rise to a tropical morphism (φ, ℓT ) : (G, ℓG)→ (T, ℓT ). Importantly, we obtain a
family of metric graphs (G, ℓG), with ℓG in the image of the map ℓT → ℓG, that have gonality at
most degφ, as witnessed by (φ, ℓT ).

Since we care about graphs up to tropical modification, and we wish to cover the space of
genus-g metric graphs Mtrop

g , we iteratively delete valency-1 points, to get a unique modification
(H(φ), ℓH(φ)) of the graph (G, ℓG), where the minimum valency of H(φ) is 3 and H(φ) is indepen-
dent of ℓG. The composition of maps ℓT → ℓG → ℓH is linear, so it can be extended to a linear
map with matrix Aφ. For example, in Figures 1.1,1.2, the matrix Aφ equals

2 0 0
0 1/2 0
0 0 2

 ,



1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 2


,

respectively, relative to the labellings of the edges in Γ and ∆ indicated there. Note that in the
examples the entries of Aφ are rational. This is true in general, and is a consequence of φ having
integral slopes. Hence our family of graphs with gonality at most degφ has the structure of a
rational polyhedral cone Aφ(R>0), which we denote Cφ, living in RE(H).

As in metric graphs, there is a notion of tropical modification for tropical morphisms. The cone
Cφ is invariant under this operation. We show that there is a unique tropical modification φ′ of φ
such that φ′ : G′ → T ′ satisfies:

dimCφ ≤ |E(T ′)| ≤ 2g + 2d− 5, (1.2)

where g is the genus of G and d is the degree of φ. We show that equality is attained if and only
if the dimension of the column space of Aφ equals E(T ′) equals 2g + 2d− 5.
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Figure 1.4: The edge labelled 2 in the tree in Figure 1.2 has been contracted to obtain φ0.

The bound on the number of edges implies there are finitely many cones Cφ. Hence, to cover
Mtrop

g , which has dimension 3g−3, we need to have 2g+2dϕ−5 ≥ 3g−3, namely degφ ≥ g/2+1.
So when degφ = g/2 + 1 we have that equality in Equation (1.2) is attained if and only if Aφ
is an invertible (3g − 3) × (3g − 3)-matrix. In this case we call Cφ a full-dimensional family.
Theorem 1.4 is equivalent to saying that the union of full-dimensional families is dense in Mtrop

g .
These families had already appeared in an ad-hoc manner in [CD18]. The idea of a parameter count
was first mentioned by Mikhalkin in his talk at the Saarbrücken conference on tropical geometry
and computational biology.

1.6.3 Deformation and its limits
Our proof constructs enough full-dimensional families to cover Mtrop

g in two steps. First, we give
an explicit construction for a specific initial metric graph whose families Cφ have nice properties
(more on this later); second, we deform the initial families to cover Mtrop

g .
Suppose we have a full-dimensional tropical morphism ΦStart : ΓStart → ∆Start. The idea is

to deform it to a tropical morphism Γ → ∆ for a given Γ. Since AφStart is invertible, the naive
approach is to consider a continuous function σ : [0, 1]→Mtrop

g with σ(0) = ΓStart and σ(1) = Γ.
The hope is that A−1

φStart
◦ σ gives edge-length functions inducing a path of tropical morphisms

beginning at ΦStart and finishing at the desired tropical morphism. The problem is that this path
might hit one of the facets of the cone CφStart , rendering impossible to continue.

For instance, in Figure 1.2, one facet of the cone Cφ is given by the condition

ℓH(e2) + ℓH(e3)− ℓH(e1) > 0, (1.3)

expressing that for this combinatorial type the orange edge has length less than the sum of the
lengths of the yellow and green edges. So for any Γ where the orange length gets too long, the
deformation with σ gets stuck when A−1

ϕ ◦ ℓH contains a non-positive edge-length.
At the point where σ hits a facet of Cϕ we have that A−1

φStart
◦σ has some zero-lengths (these zero

entries become negative if we are to follow along σ). While we have no way to give sense to negative
lengths, we can realize zero-lengths as edge-contractions. In Figure 1.2, if ℓH(e2)+ℓH(e3)−ℓH(e1) =
0, then the length of the edge of T labelled by 2 becomes zero. In Figure 1.4 this edge is contracted
to obtain φ0. It is straightforward to check that φ0 satisfies the axioms of a tropical morphism.

We call a combinatorial type of tropical morphisms arising from contracting an edge a limit,
since it is both a limit that the deformation σ hits and must overcome, and also an object that
informally can be regarded as resulting from an edge length tending to zero. Passing to a limit
forgets the information of φ contained above the edge being contracted. So different φ might share
the same limit φ0; we call this set of φ the neighbourhood of φ0, denoted neigh(φ0). Another way
to regard neigh(φ0) is as the cones Cφ which share the facet Cφ0

. The key question is whether
deformation can continue by passing to another combinatorial type in neigh(φ0); namely we are
coming from Cφ, when we hit Cφ0

, we prove there is Cφ′ in neigh(φ0) at the other side.
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Figure 1.5: Top: a caterpillar of genus 6. Bottom: one of its C3 = 5 tropical morphisms to a
metric tree.

We use our framework for full-dimensional families, and an extensive casework, to construct
a set of candidates which contains neigh(φ0). Given a candidate φ′, the hard problem to answer
in general is whether φ′ is full-dimensional, and moreover if Cφ and Cφ′ lie at opposite sides
with respect to Cφ0

, that is, cover different parts of Mtrop
g . The former amounts to showing that

detAφ′ ̸= 0. Some manipulations with linear algebra reduce the latter also to a condition on
determinants.

Here the story bifurcates. In the first possibility, contracting one edge of T also contracts one
edge of H(φ). In other words, the limit φ0 signifies a change in H(φ), and also a change of cone of
Mtrop

g . This is reflected in Aφ by having a row with a single non-zero entry, the one corresponding
to the contracted edge. An important observation is that Aφ and Aφ′ agree in all but one column
(the column corresponding to the contracted edge). So by a cofactor expansion, detAφ′ = q detAφ
for some positive rational number q; in particular, detAφ′ ̸= 0 always.

1.6.4 Balancing
In the second possibility, H(φ0) is trivalent, so the limit σ must overcome happens inside a cone
of Mtrop

g ; this is the case in Equation 1.3. Here Cφ, Cφ′ cover distinct parts of Mtrop
g if and only

if sgn detAφ ̸= sgn detAφ′ . Again, this is a consequence of detAφ, detAφ′ agreeing in all but
one columns. Now, the exceptional insight which allows to “break through the limit” is proving a
formula of the form ∑

φ∈neigh(φ0)

qφ detAφ = 0,

where the qφ are integers which depend on φ. This way we kill two birds with one stone. At once
we prove the existence of another full-dimensional tropical morphism φ′, and (crucially!) detAφ′

has the opposite sign to detAφ. The inspiration for this equation stems from a common trope in
the world of tropical geometry, a balancing condition, like the ones satisfied by embedded tropical
varieties.

The upshot is that, mimicking the construction of Mtrop
g , we can glue together the cones Cφ

for all genus-g full-dimensional families and get a space of tropical morphisms together with a
projection Π down toMtrop

g .

1.6.5 Walking through the space of tropical morphisms
Coming back to the initial family, the graph ΓStart is a “caterpillar of g loops”: a metric graph
whose underlying graph GCL is obtained by taking a path v0, e1, v1, . . . , eg−1, vg−1 of g − 1 edges
and attaching loops to v0 and vg−1; and lollipops (bridges leading to a loop) to the remaining vi.
See Figure 1.5.

Given a tropical morphism φ : ΓStart → ∆, the underlying graph morphism γ of the restriction
φ|ΓStart is independent of φ. The slopes at ei encode a ballot sequence. Conversely, a ballot
sequence corresponds to a choice for these slopes. We can extend γ to a tropical morphism by
prescribing the slopes and adding trees via tropical modification to satisfy the balancing condition.
This gives the bijection with ballot sequences, so there are Catalan-many Cg/2 such morphisms.
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Now we have the ingredients to follow σ. We start with Cg/2 paths of tropical morphisms by
modifying ΓStart. As they trace Cg/2 paths, when σ hits a limit it might happen that some paths
merge. Once some paths have merged, hitting a limit gives the opportunity for these paths to
split. We introduce a multiplicity based in the number qφ detAφ of the balancing condition to
reflect this phenomenon of merging and splitting. Then the number of tropical morphisms to trees
remains Cg/2 throughout the walk.



Chapter 2

Background

2.1 Graphs
A graph G is a pair (V (G), E(G)) of disjoint sets, the vertex and edge sets respectively, and a
map ιG defined on E(G) encoding incidences, whose values are multisets of two elements of V (G).
Given an edge e with ιG(e) = {A,B} we call A,B the ends of e, and say that A and e are incident .
A loop is an edge e such that its two ends are equal. A subgraph of G is a graph G′ such that
V (G′) ⊂ V (G), E(G′) ⊂ E(G), and ιG′ equals the restriction ιG|E(G′). A subset S of V (G) induces
a subgraph by taking for edge set all the edges of G with both ends in S. Likewise, a subset S
of E(G) induces a subgraph by taking for vertex set the ends of all the edges in S. A graph G is
finite if both V (G) and E(G) are finite sets; and loopless if it has no loops.

A path of G is a sequence ⟨A0, e1, A1, . . . , eµ, Aµ⟩ of alternately vertices and edges, where no
element is repeated, such that consecutive elements are incident and µ ≥ 1. The ends of a path
are the vertices A0, Aµ. The remaining vertices A1, . . . , Aµ−1 are interior . We call µ the length
of P . We write x ∈ P to mean that x is an element in the sequence P . If P is a path with ends
A, B, and e is an edge that also has ends A, B, then we call the subgraph consisting of e together
with the edges in P a cycle. Given a vertex A, its connected!component is the subgraph induced
by the set of ends of all paths with A ∈ P . The vertex set V (G) is partitioned into connected
components. A graph is connected if it has a single connected component.

Let G be a finite, connected graph. Set g(G) = |E(G)| − |V (G)| + 1. Following a convention
due to [BN07], we call this number the genus of G. If G has genus 0, then we call G a tree. Write
x ∈ G for x ∈ V (G) ∪ E(G). Let A be a vertex. Write EG(A) for the subset of E(G) incident
to A. The valency valGA of A is the number of edges in EG(A), with loops counting twice. The
minimum valency of G is the number minA∈V (G) valGA. We write E(A) and valA when G is clear
from the context. A vertex is monovalent, divalent, trivalent, or n-valent if its valency equals 1, 2,
3, or n, respectively. We call a monovalent vertex of a tree a leaf.

Let e be in E(G), and A, B its ends. Deleting e induces the graph with edge set E(G) \ {e}.
Contracting e yields the graph (V (G)/ ∼, E(G) \ {e}), where ∼ identifies A and B. Subdividing e
yields the graph (V (G) ∪ {C}, (E(G) \ {e}) ∪ {e1, e2}), where the ends of e1 are A,C, and of e2
are C,B.

Let G, G′ be two graphs. A graph morphism is a map γ : V (G) ∪ E(G) → V (G′) ∪ E(G′)
such that: γ(V (G)) ⊆ V (G′); if γ(e) ∈ V (G′) for an edge e in E(G) with ends A and B, then
γ(e) = γ(A) = γ(B); if γ(e) ∈ E(G′) for an edge e in E(G) with ends A and B, then the ends
of γ(e) are γ(A) and γ(B). In essence, a morphism is an incidence preserving map which can
contract edges. If γ(E(G)) ⊆ E(G′), then we call γ a homomorphism. An isomorphism is a
bijective homomorphism; its inverse is then a homomorphism as well.

An edge (resp. vertex) labelling is an injective map λ from E(G) (resp. V (G)) to a set S. A
total order ≤S on S induces a total order on E(G) by letting e ≤E(G) e

′ when λ(e) ≤S λ(e′). We
use Z>0 as labelling set, with its natural order. In the next section we consider elements from the
vector space RE(G) (real valued functions on E(G)). By choosing an edge labelling λ this space is

13
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identified with Rn, where n equals #(()E(G)). The identification is as follows, we write ej ∈ E(G)
for λ−1(j) (we use this notation whenever a λ has been chosen); we take as ordered basis of RE(G)

the functions ℓi which map ej to 1 if i = j, and zero otherwise.

2.2 Metric graphs
Succinctly, metric graphs are graphs whose edges have lengths. A length function for G is a map
ℓ : E(G) → R>0. The pair (G, ℓ) gives rise to a one-dimensional CW-complex Γ by identifying
the endpoints of the intervals in

⊔
e∈E(G)[0, ℓ(e)] in the manner prescribed by G. We call the first

Betti number of the CW-complex Γ the genus of Γ, denoted by g(Γ). It coincides with g(G). This
CW-complex is equipped with the shortest-path metric in which the intervals Γe have lengths ℓ(e).
This metric space is called a metric graph. We call G a model, and the pair (G, ℓ) a realization of
Γ.

Let Γ be a metric graph. There are infinitely many realizations of Γ. Indeed, given a realization
(G, ℓG) of Γ, the set S of points of Γ corresponding to vertices of G has the property that Γ \ S is
a disjoint union of open intervals. We call any finite set S with that property a vertex set, since it
induces a realization (GS , ℓS) whose vertices are the points of S, the edges are the disjoint intervals
of Γ\S, and the lengths are the lengths of the connected components of Γ\S. Let S be the family
of all vertex sets of Γ. If E =

⋂
S∈S S is non-empty, then E is a vertex set. We call GE and (GE , ℓE),

induced by E , the essential model and the essential realization, respectively. It always exists for
the metric graphs of our interest:

Lemma 2.1. Let Γ be a metric graph, and S0 the set of points x in Γ such that for all ε > 0 the
open ball B(x, ε) with centre x and radius ε is not isometric to the interval (−ε, ε). If S0 is non
empty, then any finite S ⊂ Γ is a vertex set if and only if S0 ⊂ S.

We call the elements of S0 the essential vertices. The only family without essential vertices are
metric loops; metric loops they have for model the graph with one vertex and one loop edge. We
assume that our metric graphs are never metric loops. Lemma 3.13 shows that E equals S0, and
that E is minimal in the sense that all models arise from a sequence of edge subdivisions of GE . So
it is well defined to define the valency of a point x in Γ as the valency of x in GS for S any vertex
set containing x.

2.3 Tropical modification
We consider graphs and metric graphs to be equivalent under tropical modification, which is an op-
eration that iteratively attaches or removes monovalent points. For this we introduce the important
notion of dangling elements:

Definition 2.2. Let G be a graph, and Γ = (G, ℓ) be a metric graph.

• An edge e of G is dangling if deleting e produces two connected components and at least one
of those is a tree. A vertex A of G is dangling if all e in E(A) are dangling.

• A point x in Γ that corresponds to a vertex v in G is dangling if v is dangling. A point x in
Γ in the interior of an edge Γe is dangling if e is dangling.

Definition 2.3. Let A be a vertex of G. We denote by nd-E(A) the subset of non-dangling edges
in E(A).

It is straighforward to see that the definition of dangling for Γ is independent of the chosen
realization. Let Γ̃ be the metric graph obtained from Γ by deleting all dangling points. Let H
be the essential model of Γ̃, as in Lemma 3.13. Tropical modification is the equivalence relation
on metric graphs generated by identifying Γ with Γ̃, and on graphs by identifying G with H. It
follows from construction and by Lemma 3.13 that:
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Lemma 2.4. Let Γ be a metric graph of genus at least 2, and Γ′ a tropical modification of Γ, such
that Γ′ has a model G′ with minimum valency at least three. Then Γ′ is isometric to Γ̃ and G′ is
isomorphic to H.

So Γ̃ and H are canonical representatives. We call a graph with minimum valency at least 3,
or equal to 3, a combinatorial type, or a trivalent combinatorial type, respectively. We say that H
is the combinatorial type of Γ and of G. We call Γ̃ the deletion of dangling trees of Γ. The naming
is due the fact that g(Γ) = g(Γ̃).

2.4 Moduli space of metric graphs
We give a barebones account of the moduli space of genus-g metric graphsMtrop

g . If all the vertices
of a graph are trivalent, we call it a trivalent combinatorial type, or simply trivalent. We denote
by Gg the family of genus-g trivalent combinatorial types. For the construction of Mtrop

g we use
the following straightforward lemma:

Lemma 2.5. Let g ≥ 2 and H0 be a genus-g combinatorial type. There exists H in Gg such that
there is a sequence of edge contractions of H yielding a graph isomorphic to H0.

Given a graph G, we denote by CG the set of length functions defined on G. This set has a
cone structure, as it equals the positive orthant RE(G)

>0 . We identify each point ℓ of CG with the
metric graph (G, ℓ) to obtain the (rational polyhedral) cone CG of metric graphs with model G.

Motivated by Lemma 2.5 we add some of the boundary points of CG with the following con-
vention: given a map ℓ : E(G) → R≥0, contract all the edges of G for which ℓ(e) = 0, to get G′;
the pair (G, ℓ) then stands for to the metric graph (G′, ℓ|G′). Let CG ⊂ R≥0

E(G) be the set of
maps ℓ for which the metric graph (G, ℓ) has genus g, that is, all cycles of G have positive length.
Glueing together these completed cones gives rise to a space where points bijectively correspond
to classes under tropical modification of genus-g metric graphs:

Definition 2.6. The moduli space of genus-g metric graphs is the space

Mtrop
g =

 ⊔
H∈Gg

CH

/ ∼=,
where ∼= identifies points ℓH and ℓH′ for which (H, ℓH) and (H ′, ℓH′) are isometric.

Given a metric graph Γ, by Lemma 2.4 and 2.5 there is a point in Mtrop
g corresponding to a

graph Γ̃ which is equivalent to Γ under tropical modification. By construction this point is unique.

Remark 2.7. The reader might find in the literature a different use for the symbolMtrop
g , albeit

for constructions related to ours. They differ by imposing additional structure on the metric graph:
marked points, legs of infinite length, weights on the vertices, and more. These are not required
for our purposes, as they typically arise to encode more algebro-geometric information in a graph.
See [Koz09] and [ACP15]. △

Remark 2.8. Identifying isometric points complicates the geometry ofMtrop
g . We do not obtain

a polyhedral cone complex, as one might expect. This issue is addressed in [ACP15] with the
introduction of abstract polyhedral cone complexes. See their Section 4.3 for a proof thatMtrop

g is
an abstract polyhedral cone complex. △

Remark 2.9 (topology ofMtrop
g ). We consider CH with the topology induced from the Euclidean

space RE(H). We consider
⊔
H∈Gg

CH with the product topology induced from each CH . Finally,
we considerMtrop

g with the quotient topology. △

To close this section, we say a few words about howMtrop
g is connected through codimension-

1. Let H be a combinatorial type. It is a straightforward exercise to show that #(()E(H)) ≤
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3g(H) − 3, with equality if and only if H is trivalent. Thus, the dimension of Mtrop
g is 3g − 3,

since each point is specified by at most 3g− 3 parameters. The codimension of the cone CH is the
difference

codimCH = (3g(H)− 3)−#(()E(H)).

We claim that Mtrop
g is connected through codimension-1, that is the locus in Mtrop

g of points
coming from cones of codimension at most-1 is connected. Specifically, there is a canonical map
CH → Mtrop

g for any combinatorial type H. We claim that the image of the following map is
connected: ⊔

codimH≤1

CH →Mtrop
g .

Lemma 2.10. The space Mtrop
g is connected through codimension one.

Proof. At a combinatorial level this result states that given two trivalent graphs H and H ′, there
exists a sequence H0 = H, H1, . . . ,H2n = H ′ where the graphs with even indices are trivalent,
and consecutive graphs are related by contraction of a single edge. An early proof of this result
can be found in [HT80]. A study of this property, and other graph linkage properties, and their
relation to the connectedness of moduli spaces of metric graphs is done in [Cap12]; in particular,
see Proposition 3.3.3 of the cited work.

2.5 Symmetry in Mtrop
g

Let H be a combinatorial type. We can describe explicitly the points in CH which encode isometric
metric graphs by observing the following. Let Ψ : Γ(1) → Γ(2) be an isometry. It preserves the
valency of a point. Thus, by Lemma 3.13, if S is a vertex set of Γ(1), then Ψ(S) is a vertex set of
Γ(2). So let Γ(1) = (G(1), ℓ(1)) be induced by S, and Γ(2) = (G(2), ℓ(2)) by Ψ(S). The connected
components of Γ(1) \ S are mapped one-to-one and isometrically to the connected components of
Γ(2) \Ψ(S). This means that there is an induced map γΨ : G(1) → G(2) which is an isomorphism;
moreover, ℓ(2) = ℓ(1) ◦ γ−1

Ψ . It is straightforward to verify that this necessary conditions are also
enough to specify an isometry.

Lemma 2.11. Let Γ(1), Γ(2) be metric graphs, S a vertex set of Γ(1), and Ψ : Γ(1) → Γ(2) be a
continuous map. Then Ψ is an isometry if and only if Ψ(S) is a vertex set of Γ(2), the induced
map γΨ is an isomorphism, and the length pulls back, so ℓ(2) = ℓ(1) ◦ γ−1

Ψ .

Crucially, we get an AutH-action on CH by sending ℓ in CH to ℓ ◦ γ̃−1 for γ̃ in AutH.
Applying Lemma 2.11, with S equal to the set of essential vertices, gives that two points of CH
encode isometric graphs if and only if they lie in the same AutH-orbit. By the Orbit-Stabilizer
theorem, this means that the number of times that a given Γ̃ = (H, y) is realized in CH equals
#AutH/#StabAutH y; here #StabAutH y is the stabilizer of y, that is the subgroup of AutH
such that y = y ◦ γ̃−1.

We say that y in CH is a general length function if all the lengths encoded by y are distinct. In
this case the stabilizer is trivial, and we have that (H, y) is realized #AutH times by CH . Note
that the set of general length functions is dense in CH , in the Euclidean topology.

2.6 Notation
In the remainder of this thesis we use the following letters, and small variations thereof, are used
to denote specific objects. Metric graphs: Γ for metric graphs with g(Γ) ≥ 2; ∆ for metric trees
(due to tree being δέντρο in Greek), that is genus 0 metric graphs; and Γ̃ for the deletion of the
dangling elements of Γ. Finite graphs: G for a finite connected graph with g(G) ≥ 2, A for its
vertices and e for its edges; T for a finite tree, v for its vertices and t for its edges; and H for the
combinatorial type of G. Morphisms: φ for maps between finite graphs; and Φ for maps between
metric graphs. We write [d] for the set {1, 2, . . . , d}, and x ∈ G for x ∈ V (G) ∪ E(G).
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Tropical morphisms

3.1 DT-morphisms
We begin with a map encapsulating the combinatorial information of tropical morphisms. These
are a special class of graph morphisms, augmented with an index map.

Definition 3.1 (discrete tropical morphism). Let φ :G → G′ be a morphism of finite connected
graphs, and | · |φ : G→ Z≥0 be a map.

(a) | · |φ is an index-map for φ if for every e in E(G) we have that φ(e) ∈ V (G′) if and only if
|e|φ = 0.

(b) φ is harmonic with index-map | · |φ if for every A in V (G) and e′ incident to φ(A) following
balancing condition is satisfied:

|A|φ =
∑

e∈E(A)
φ(e)=e′

|e|φ.

Note that this makes the sum independent of the choice of e′.

(c) φ is non-degenerate if |x|φ ≥ 1 for all x in G.

(d) φ satisfies the Riemann-Hurwitz condition (RH-condition) if for every A in V (G):

rφ(A) = (valA− 2)− |A|φ(valφ(A)− 2) ≥ 0.

(e) A discrete tropical morphism is a pair (φ, | · |φ) consisting of a non-degenerate harmonic
morphism φ with index-map | · |φ that satisfies the RH-condition. We write DT-morphismto
shorten. We write | · | for | · |φ when it causes no confusion. We call G the source and G′ the
target of φ.

Remark 3.2. The non-degeneracy condition ensures that no edge is collapsed. △

Remark 3.3. Definition 3.1 is similar to Definition 2.1 of [Cap14], with the following differences:
condition (c) of Definition 2.1 in the cited work is required only for vertices of G (see discussion in
Section 1.3 of [CD18]); an alternative formula for rφ is given on Equation (10) of the cited work
(see Lemma 3.5); and we do not have a vertex labelling representing extra genus. △

Let (φ :G → G′, | · |) be a DT-morphism. A prevailing philosophy in the field is to regard a
graph as a discrete analogue of a Riemann surface. In that context φ would be the analogue of a
ramified covering map. Here is one justification for this view:

Lemma 3.4 (degree of φ). Let φ :G → G′ be a DT-morphism. Then the count of elements x in
a fibre of φ is constant, where each x is counted with multiplicity |x|. Namely, the number

degφ =
∑

x∈φ−1(x′)

|x|

17
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is independent of the choice of x′ ∈ G′. We call degφ the degree of φ.

Proof. Let v′ be in V (G′). By the balancing condition we have that for all e in E(v):∑
A∈φ−1(v′)

|A| =
∑

e∈φ−1(e′)

|e|.

Thus, over a path of G′ the preimage count is constant. Since G′ is connected we get the result.

Lemma 3.5 (formula for rφ). Let φ :G→ G′ be a DT-morphism. Then

rφ(A) = 2(|A| − 1)−
∑

e∈E(A)

(|e| − 1).

Proof. By the balancing condition |A| · valφ(A) =
∑
e∈E(A) |e|. Thus,

rφ(A) = valA− 2− |A| · (valφ(A)− 2)

= 2(|A| − 1) + valA−
∑

e∈E(A)

|e|

= 2(|A| − 1)−
∑

e∈E(A)

(|e| − 1).

Lemma 3.6 (Riemann-Hurwitz formula). Let φ :G→ G′ be a DT-morphism. Then

2g(G)− 2 = degφ · (2g(G′)− 2) +
∑

A∈V (G)

rφ(A).

Proof. Recall that in a graph the sum of all the valencies is twice the number of edges:∑
A∈V (G)

rφ(A) =
∑

A∈V (G)

(valA− 2−mφ(A) · (valφ(A)− 2))

= 2|E(G)| − 2|V (G)| − degφ · (2|E(G′)| − 2|V (G′)|)
= 2g(G)− 2− degφ · (2 · g(G′)− 2).

Rearrange terms to obtain the result.

Remark 3.7. Equations (14) and (15) of [Cap14] calculate a ramification divisor for φ. The
divisor

Rφ =
∑

A∈V (G)

2|A| − 2−
∑

e∈E(A)

(|e| − 1)


satisfies thatKG = φ∗KG′+Rφ, whereKG, KG′ are the canonical divisors ofG andG′, respectively,
and φ∗KG′ is the pull-back. We observe two things: the RH-conditions is equivalent to Rφ being
effective, and taking degrees on both sides of KG = φ∗KG′ +Rφ implies Lemma 3.6. △

Remark 3.8. By the RH-condition, Lemma 3.6 implies that g(G) ≥ g(G′), as in the classical
setting. △

The index map can be understood as a local degree: for A in V (G) restricting φ to the subgraph
GA induced by E(A) gives a DT-morphismonto the subgraph induced by φ(E(A)); any fibre of
φ|GA

has |A| elements, each element counted with multiplicity | · |φ.

Example 3.9. The next figures illustrate two DT-morphismsφA, φB of degrees 3 and 4, respec-
tively. The targets are drawn below, the sources above, and the fibres with dotted lines. Unless
noted otherwise, with a number above the edge, the edges have index 1.
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2 2 2

φA φB ⋆

3.2 Metric graphs
We give a definition for tropical morphism. This definition differs slightly from the ones in the
literature (e.g. the one in [CD18]), because highlighting the combinatorial structure of the maps,
via DT-morphisms, makes our exposition more transparent. A tropical morphism arises by choosing
a length function for the target G′, in a process analogous to how we obtain a metric graph from
a graph G.

Definition 3.10 (tropical morphism). Let φ :G → G′ be a DT-morphismand ℓG′ in CG′ . The
corresponding tropical morphism is the unique map Φ from the source metric graph Γ = (G, e 7→
ℓG′(φ(e)) / |e| ) to the target Γ′ = (G′, ℓG′), whose restriction to Γe is a bijective linear function to
Γ′
φ(e), and that agrees with φ on vertex points.

Let Φ be a tropical morphism arising from (φ, ℓG′). We call φ a model and (φ, ℓG′) a realization
of Φ. From the connectedness of G and G′ we get that Φ is continuous. The length function for
the source is constructed so the linear map Φ|Γe has integral slope |e|. The count of points in a
fibre Φ−1(x′) is done with a multiplicity. If x in Φ−1(x′) is in the interior of an edge, then the
multipicity is the slope of Φ at this edge. Otherwise x corresponds to a vertex, so the multiplicity
is calculated using the balancing condition. By Lemma 3.4 this count is constant, independent of
x′, and equals degφ. All of this means that Φ is a tropical morphism in the sense of [CD18].

Given Φ : Γ → Γ′ there are infinitely many possible models and realizations, as in the case of
metric graphs. One has to be careful though, it is not enough to just choose vertex sets for the
source and the target; they must be compatible; Indeed, let S and S′ be vertex sets for Γ and Γ′,
respectively; note that the image of every vertex of Γ under Φ must be a vertex of Γ′, and that the
preimage of every vertex of Γ′ must be a vertex of Γ. A subset S′ ⊂ Γ′ is a vertex set for Φ if h

Definition 3.11. The models of Φ are in bijective correspondence with

Let Γ be a metric graph. There are infinitely many realizations of Γ. Indeed, given a realization
(G, ℓG) of Γ, the set S of points of Γ corresponding to vertices of G has the property that Γ \ S is
a disjoint union of open intervals. We call any finite set S with that property a vertex set, since it
induces a realization (GS , ℓS) whose vertices are the points of S, the edges are the disjoint intervals
of Γ\S, and the lengths are the lengths of the connected components of Γ\S. Let S be the family
of all vertex sets of Γ. If E =

⋂
S∈S S is non-empty, then E is a vertex set. We call GE and (GE , ℓE),

induced by E , the essential model and the essential realization, respectively. It always exists for
the metric graphs of our interest:

Lemma 3.12. Let Φ : Γ→ Γ′ be a tropical morphism, and S0 = Φ(E)∪ E ′, with E and E ′ the sets
of essential vertices of Γ and Γ′, respectively. Any finite set S′ ⊂ Γ′ is a vertex set of Φ if and only
if S0 ⊂ S.

Lemma 3.13. Let Γ be a metric graph, and S0 the set of points x in Γ such that for all ε > 0 the
open ball B(x, ε) with centre x and radius ε is not isometric to the interval (−ε, ε). If S0 is non
empty, then any finite S ⊂ Γ is a vertex set if and only if S0 ⊂ S.

We call the elements of S0 the essential vertices. The only family without essential vertices
are metric loops; they have for model the graph with one vertex and one loop edge. We assume
that our metric graphs are never metric loops. Lemma 3.13 shows that E equals S0, and that E
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is minimal in the sense that all models arise from a sequence of edge subdivisions of GE . So it is
well defined to define the valency of a point x in Γ as the valency of x in GS for S any vertex set
containing x.

3.3 Tropical morphisms
We give a definition for tropical morphism that differs slightly from the ones in the literature
(e.g. the one in [CD18]), because highlighting the combinatorial structure of the maps, via DT-
morphisms, makes our exposition more transparent. A tropical morphism arises by choosing a
length function for the target G′, in a construction analogous to how we obtain a metric graph
from a graph G.

Definition 3.14 (tropical morphism). Let φ :G → G′ be a DT-morphismand ℓG′ in CG′ . The
corresponding tropical morphism is the unique map Φ from the source metric graph Γ = (G, e 7→
ℓG′(φ(e)) / |e|φ ) to the target Γ′ = (G′, ℓG′), whose restriction to Γe is a bijective linear function
to Γ′

φ(e), and that agrees with φ on vertex points.

We call φ and (φ, ℓG′) a model and a realization of Φ, respectively. From the connectedness
of G and G′ we get that Φ is continuous. The length function for the source is constructed so
the linear map Φ|Γe

has integral slope |e|φ. The count of points in a fibre Φ−1(x′) is done with a
multiplicity: if x is in the interior of an edge, then the multipicity is the slope of Φ at this edge;
else x corresponds to a vertex and the multiplicity is calculated using the balancing condition. By
Lemma 3.4 this count is independent of x′, and equals degφ. All of this means that Φ = (φ, ℓG′)
is a tropical morphism in the sense of [CD18].

Now, given a tropical morphism Φ : Γ→ ∆ we characterize all its models with a result analogous
to Lemma 3.13. The model is given by choosing vertex sets S, S ′ for Γ, Γ′, respectively. The key
observation is that a model of Φ : Γ → Γ′ maps vertices of Γ to vertices of Γ′; and that by the
non-degeneracy condition all the points in the fibre of a vertex of Γ′ are vertices of Γ. Succinctly,
S = Φ−1(S ′). Moreover, S must contain the essential vertices E of Γ, and S ′ must contain the
essential vertices E ′ of Γ′. This implies that Φ(E) ∪ E ′ is a subset of S ′. We argue that any subset
S ′ ⊂ Γ′ that satisfies this condition induces vertex sets for Φ.

Construction 3.15. Let Φ : Γ → Γ′ be a tropical morphism, and S ′ ⊂ Γ′ be a subset such that
Φ(EΓ) ∪ EΓ′ ⊂ S ′. Then by Lemma 3.13 the sets S = Φ−1(S ′) and S ′ are vertex sets which induce
realizations Γ = (GS , ℓS) and Γ′ = (GS′ , ℓS′). Define a map φS′ : GS → GS′ by sending a vertex x
of Γ to the vertex Φ(x) of Γ′, and for an edge e in E(GS) we choose a point x in Γe, and map e to
the edge e′ of E(GS′) such that x′ is in Γe′ . As index map we take | · |φS′ = ℓS′(φS′(e))/ℓS(e). If
S ′ = Φ(EΓ)∪EΓ′ then we denote the induced map from GS to GS′ by φess and call it the essential
model.

Lemma 3.16. In Construction 3.15, the map φS′ is a DT-morphism, the pair (φS′ , ℓS′) realizes
Φ, and the essential model φess is minimal in the sense that φS′ arises as an edge subdivision of
φess.

Proof. It is clear that φS′ is well defined because by properties of Φ and the fact that S = Φ−1(S ′)
we have that each connected component of Γ \ S maps linearly and bijectively to a connected
component of Γ′ \ S ′. Moreover the index map | · |φS′ records the slope of this linear map, so for
free we get non-degeneracy, balancing condition, and Riemann-Hurwitz.

That the essential model is minimal, and that every other model arises as an edge subdivision
of the essential model is clear from the fact that for any model we must have Φ(EΓ)∪EΓ′ ⊂ S ′.

To summarize, any model of Φ is determined by the vertex set on the target; and any vertex
set on the target that contains Φ(EΓ)∪ EΓ′ induces vertex sets on the source and the target which
give rise to a DT-morphism.
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3.4 Isomorphisms and tropical modification
Recall that in the space Mtrop

g we consider metric graphs as an equivalence class under isometry
and tropical modification. This setup extends naturally to tropical morphisms.

Definition 3.17 (isomorphism of graph morphisms). Let φ1 : G1 → G′
1 and φ2 : G2 → G′

2

be graph morphisms. An isomorphism from φ1 to φ2 is given by graph isomorphisms (γ, γ′) for
which Diagram 3.18.a commutes. If additionally φ1 and φ2 are DT-morphisms, then (γ, γ′) is an
isomorphism of DT-morphismsif the index map | · |φ2 pulls back to | · |φ1 , namely Diagram 3.18.b
commutes. Let Φ1 and Φ2 be tropical morphisms. An isomorphism from Φ1 to Φ2 is given by
isometries Ψ and Ψ′ for which Diagram 3.18.c commutes.

G1 G′
1

G2 G′
2

φ1

γ γ′

φ2

(a)

G1

G2 Z≥0

γ
|·|φ1

|·|φ2

(b)

Γ1 Γ′
1

Γ2 Γ′
2

Φ1

Ψ Ψ′

Φ2

(c)
Diagram 3.18

We now define equivalence under tropical modification for a DT-morphism φ :G→ G′. We say
that the fibre φ−1(x′), for x′ in G′, is dangling if all its elements are dangling in G. Let D ⊂ E(G′)
be the set of edges with dangling fibres. Consider the subgraph Ĝ′ of G′ induced by E(G′) \ D.
The preimage φ−1(Ĝ′) is not necessarily a connected graph (see Example 3.22), but the definition
of dangling implies that there is only one connected component with non-zero genus. Call it Ĝ.
Restricting φ to Ĝ gives a DT-morphismφ̂ : Ĝ→ Ĝ′ that we call the deletion of dangling fibres of
φ. See the Section Modifications in [CD18] for some examples. Tropical modification identifies φ
with φ̂.

The same definitions and constructions can be carried out on the metric side for a tropical
morphism Φ = (φ, ℓ). A fibre Φ−1(x) is dangling if all its points are dangling, and the deletion of
dangling fibres Φ̂ is the restriction of Φ to the connected component with non-zero genus which
remains after deleting all points belonging to dangling fibres. One can check that (φ̂, ℓ|Ĝ′) is a
realization of Φ̂. Tropical modification identifies Φ with Φ̂. It is straightforward to see that if Φ1

and Φ2 are equivalent under tropical modification, then Φ̂1 and Φ̂2 are isomorphic, thus Φ̂ is a
canonical representative for the equivalence class of Φ under isomorphism and tropical modification.
Thus, it is natural to use a model of Φ̂ as the combinatorial type of the class of Φ:

Definition 3.19. Let Φ be a tropical morphism and Φ̂ its deletion of dangling fibres. The combi-
natorial type of Φ is the model φ̂ess of Φ̂ constructed using Construction 3.15.

Alternatively, one can use Construction 3.15 on Φ to get (φess, ℓess) and delete all dangling
fibres to get φ̂ess. It is straightforward to see that φ̂ess is isomorphic to φ̂ess. So (φ̂ess, ℓess|Ĝ′

ess
)

realizes Φ̂. We call the values of ℓess|Ĝ′
ess

the parameters of Φ. Thus, we say that Φ moves in the
cone Cφ with dimension dimCφ and depends on |E(Ĝ′

ess)| many parameters.

3.5 Cone of sources
Given a DT-morphismφ : G → G′, let Cφ be the set of sources, modulo tropical modification,
of all tropical morphisms with model φ (this set is invariant under isomorphism and tropical
modification). If Γ̃ ∈ Cφ, we say that φ realizes Γ̃. In this Section we give to Cφ the structure of
a rational polyhedral cone. To this end, we realize the combinatorial type of G with the following
graph:

Construction 3.20. Let H(φ) be the graph whose vertices are the elements A in V (G) such that
nd-valA ≥ 3; its edges are the paths of G whose ends are in V (H(φ)) and whose interior vertices
have non-dangling valency equal to 2.
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Given a length function ℓG′ for the target G′ we consider the following length function for
H(φ):

y(h) =
∑
e∈h

ℓG′(φ(e))/|e|.

The map CG′ → CH(φ) given by ℓG′ 7→ y extends to a linear map Aφ : RE(G′) → RE(H(φ)) which
we call the edge-length map. Using the standard bases on RE(G′), RE(H(φ)) we write Aφ as a
matrix, the edge-length matrix, whose rows are indexed by E(H(φ)) and columns by E(G′). An
entry aht of this matrix is a rational number given by:

aht =
∑
e∈h

φ(e)=t

ℓG′(e)/|e|,

where the sum is zero if the index set is empty.
By construction (H(φ), Aφ(ℓG′)) is isomorphic to the deletion of dangling trees of the source of

(φ, ℓG′). Since H(φ) has minimum valency at least 3, by Lemma 2.4 the combinatorial type H of
G is isomorphic to H(φ). So the punchline is that Cφ is parametrized by the rational polyhedral
cone Aφ(RE(G′)

>0 ). By abuse of notation we identify Cφ with Aφ(RE(G′)
>0 ).

We have a particularly nice situation when the edge-length matrix Aφ is injective. In this case
a point ℓH in Cφ not only corresponds to a metric graph (H, ℓH) appearing as a source, but also
to the tropical morphism (φ,A−1

φ (ℓH)). We say that Cφ, or simply φ, is full-rank when Aφ is
injective. For a general DT-morphismthe dimension of the fibre A−1

φ (ℓH) equals the dimension of
kerAφ. Thus, if we expect a finite count for the number of nice enough tropical morphisms which
realize a given Γ, then we must work with full rank DT-morphisms.

3.6 Combinatorial types
Let φ :G → G′ be a DT-morphism, and Φ a tropical morphism with model φ. Recall that the
combinatorial type of Φ is the essential model φ̂ess of the deletion of dangling points Φ̂. We give
an analogue of Lemma 2.4 for tropical morphisms; namely we give combinatorial conditions that
characterize the DT-morphismsthat show up as combinatorial types.

Definition 3.21. A combinatorial type of DT-morphisms is a DT-morphism φ : G→ G′ without
dangling fibres and such that

∑
A∈φ−1(v) rφ(A) ≥ 1 for every divalent v in V (G′).

Example 3.22. The next figures illustrate two DT-morphismsφA, φB . They are equivalent under
tropical modification, and φB is a combinatorial type of DT-morphisms. Note that the degree is
not invariant.

φA φB ⋆

Lemma 3.23. Let Φ be a tropical morphism, and Φ̄ : Γ̄ → Γ̄′ be a tropical modification of Φ,
such that Φ̄ has a model φ̄ : Ḡ → Ḡ′ that is a combinatorial type of DT-morphisms. Then Φ̄ is
isomorphic to Φ̂ and φ̄ is isomorphic to φ̂ess.

Proof. By definition φ̄ has no dangling fibres. So we only need to show that the points of Γ̄′

corresponding to vertices of Ḡ′ are in the set T , with T as in Construction 3.15 (the union of the
set of essential vertices of Γ̄′ with the image of the set of essential vertices of Γ̄). This means proving
that for every divalent v in V (Ḡ′) there is a vertex A in φ̄−1(v) such that valA ≥ 3. Note that for
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A in φ̄−1(v) we have rφ̄(A) = valA− 2− |A|φ̄(val v − 2) = valA− 2. By the balancing condition
there are no monovalent vertices in φ̄−1(v). Thus,

∑
A∈φ̄−1(v) rφ̄(A) =

∑
A∈φ̄−1(v) valA− 2 ≥ 1 if

and only if there is at least one vertex A in φ̄−1(v) with valA ≥ 3.

Combinatorial types of DT-morphismsare canonical representatives in the equivalence class
under tropical modification: the discussion after Definition 3.19 tells us how to construct them,
and Lemma 3.23 ensures their uniqueness.

We call the sum
∑
A∈φ−1(v) rφ(A) the change at v, and denote it by ch v. We have seen in

the proof of Lemma 3.23 that divalent v with ch v = 0 arise as edge-subdivisions of the essential
model. Thus, for divalent v if t, t′ are the edges incident to v, then morally the fibres of t, t′ are
equal (each A in φ−1(v) has valency 2, and the two edges have the same index | · |φ). This implies
the following result:

Lemma 3.24. Let v in V (G′) be divalent, and E(A) = {t, t′}. If ch v = 0, then the columns of
Aφ corresponding to t, t′ are equal.

DT-morphismsthat are full-rank satisfy the combinatorial type conditions.

Lemma 3.25. If φ : G→ G′ has full-rank, then φ is a combinatorial type of DT-morphisms.

Proof. LetH be the combinatorial type ofG, and Aφ : CG′ → CH be the edge-length map. Suppose
t in E(G′) has a dangling fibre. Then varying ℓG′(t) does not affect Aφ(ℓG′), contradicting that
Aφ has full-rank. So φ has no dangling fibres. Moreover, by Lemma 3.24 we have that φ has no
divalent vertices with ch v = 0.

Finally, we prove a combinatorial property that puts the condition ch v ≥ 1, for divalent vertices,
in a wider context.

Lemma 3.26. If φ is a combinatorial type, then ch v + val v ≥ 3 for all v in V (G′).

Proof. We only need to show that ch v ≥ 2 for monovalent vertices v of G′. Let v be monovalent.
Note that a monovalent vertex of G is dangling. Since G does not have dangling fibres, pick A in
φ−1(v) with valA ≥ 2. For such A we have that rφ(A) = valA−2−|A|(val v−2) = valA−2+ |A|.
Since v is monovalent we have that |A| ≥ valA, thus rφ(A) ≥ 2 and by the RH-condition this
implies that ch v ≥ 2.

3.7 Dimension Formula
Let φ : G → G′ be a DT-morphism. We prove a formula relating the number |E(G′)|, the degree
d = degφ, and the genera of the source and the target of φ. Note that |E(G′)| is an upper bound
for dimCφ. Hence, we call this result the dimension formula.

Lemma 3.27 (total change). Let φ :G→ G′ be a DT-morphism. Then∑
v∈V (G′)

ch v = 2g(G)− 2g(G′) · d+ 2d− 2.

Proof. This is a consequence of Lemma 3.6 (Riemann-Hurwitz formula).

Proposition 3.28 (dimension formula). Let φ :G→ G′ be a DT-morphism. Then

|E(G′)|+
∑

v∈V (G′)

(ch v + val v − 3) = 2g(G)− g(G′) · (2d− 3) + 2d− 5.

Proof. The ingredients are the fact that the sum of valencies gives twice the number of edges, and
Lemma 3.27 (total change). We compute:

|E(G′)|+
∑

v∈V (G′)

(ch v + val v − 3) = 3|E(G′)| − 3|V (G′)|+
∑

v∈V (G′)

ch v

= 2g(G)− g(G′) · (2d− 3) + 2d− 5.
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We regard the second term on the left hand side in Proposition 3.28 as a correction term.
Lemma 3.26 gives us a choice in the equivalence class under tropical modification of φ for which
the correction term is non-negative. With this we get an upper bound:

Corollary 3.29. Let φ :G→ G′ be a DT-morphism. Then

dimCφ ≤ 2g(G)− g(G′) · (2d− 3) + 2d− 5.

Proof. Let φ̂ : Ĝ → Ĝ′ be a combinatorial type of DT-morphismsthat is equivalent under tropical
modification to φ. By Lemma 3.26 and the dimension formula we get

dimCφ̂ ≤ |E(Ĝ′)| ≤ 2g(Ĝ)− g(Ĝ′) · (2d− 3) + 2d− 5.

By the properties of tropical modification we have that dimCφ̂ = dimCφ, g(Ĝ) = g(G), and
g(Ĝ′) = g(G′), proving the desired bound.

3.8 Tree gonality
To close this chapter we use the bound given by the dimension formula to reprove a result on tree
gonality that appeared in [CD18].

Definition 3.30. The tree gonality of a metric graph Γ is the minimum degree of a tropical
morphism from some tropical modification of Γ to some metric tree.

Let φ :G → T be a DT-morphismto a tree. Every metric graph Γ in Cφ has tree gonality at
most degφ. From now on we only work with DT-morphismsφ : G → T to trees. For such maps
Corollary 3.29 gives that dimCφ ≤ 2g + 2d− 5. Thus:

Corollary 3.31. Let g, d be positive integers. The locus of metric graphs in Mtrop
g with tree

gonality at most d has dimension at most min(2g + 2d− 5, 3g − 3).

Proof. Let Γ̃ be in Mtrop
g , Γ a tropical modification of Γ̃, and Φ : Γ → ∆ a tropical morphism to

a tree with degΦ ≤ d. Then Γ̃ ∈ Cφ, where φ : G → T is the combinatorial type of Φ. By the
preceding discussion and since dimMtrop

g = 3g−3 we get dimCφ ≤ min(2g+2d−5, 3g−3). Note
also that |E(T )| ≤ min(2g+2d− 5, 3g− 3), and that |E(G)| ≤ degφ · |E(T )| ≤ d · |E(T )|, so there
are finitely many possibilities for G, T , and consequently also for φ. This gives the result.

Since 3g− 3 ≤ 2g+2d− 5 implies that ⌈g/2+1⌉ ≤ d, we get that most metric graphs inMtrop
g

have tree gonality at least ⌈g/2+ 1⌉. This is one of the two inequalities that comprises Theorem 1
in [CD18]. The other inequality, namely that metric graphs have gonality at most ⌈g/2 + 1⌉, was
shown constructively for certain families of graphs, one family for each combinatorial type:

Theorem 3.32. Let H be a trivalent combinatorial type and g = g(H). Then there exists a
DT-morphismφ such that degφ = ⌈g/2 + 1⌉, H(φ) = H and dimCφ = 3g − 3.

Theorem 3.32 is proven constructively in Section 4 of [CD18]. When g is even, these families
have the following property:

Definition 3.33. A DT-morphismφ, with g = g(H(φ)), is full dimensional if

dimCφ = 3g − 3 = 2g + 2d− 5.

The pairwise equalities in the definition of full-dimensional have the following consequences:

• dimCφ = 3g − 3 implies that H(φ) is trivalent and the tropical morphism moves in a space
of the right dimension, a necessary condition to hope to realize all sources in CH(φ).

• dimCφ = 2g + 2d − 5, dimCφ = 3g − 3, and the dimension formula together imply that
|E(T )| = 3g − 3, that φ has full-rank, and val v + ch v = 3 for all v in V (T ).
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• 3g − 3 = 2g + 2d− 5 implies that g is even and d = g/2 + 1.

These observations give a practical criteria to check whether φ is full-dimensional:

Lemma 3.34. A DT-morphismφ is full-dimensional if and only if Aφ is a nonsingular (3g− 3)×
(3g − 3) matrix.

Example 3.35. Lemma 3.34 and the calculation done in the fifth case of Example 5.1 shows that
the map φA in Example 3.9 is full-dimensional. ⋆

Let H be a trivalent combinatorial type with even genus, and φ the full-dimensional DT-
morphismgiven by Theorem 3.32. Our aim here in Part I is to introduce a deformation procedure
that when applied to a full-dimensional φ produces full-dimensional DT-morphismswhose cones
cover CH(φ), showing that all metric graphs with combinatorial type H(φ) have gonality at most
g/2+1. For the remaining we direct our efforts to the construction of this deformation procedure.



Chapter 4

Glueing datums

Let φ :G → T be a DT-morphismto a tree. We regard G as arising from taking degφ copies of
T and identifying together certain vertices and edges between copies. In this view the index map
records how many copies of T were glued together in a particular place. We make this notion
precise with the combinatorial gadget of a glueing datum.

4.1 The glueing datum
Glueing datums are a tool to ease the visualization of DT-morphisms; to do book-keeping on edges
of G in the process of deformation of DT-morphisms (see Chapters 6 and 7); and to write computer
programs handling DT-morphisms. See [Dra] for computer code.

Definition 4.1 (glueing datum). Let T be a finite tree, d be a positive integer, and ∼ be an
equivalence relation on W = T × [d], where [d] = {1, . . . , d}. Write (x, k) for the classes of W/ ∼,
where x ∈ V (T ) ∪E(T ). The triple (T, d,∼) is a glueing datum when ∼ satisfies these properties:

1. Verticality: If (x, i) ∼ (x′, i′), then x = x′. Each x in T defines a relation ∼x on [d] with
i ∼x j if (x, i) ∼ (x, j). We say that ∼x is the glueing relation above x. By verticality these
relations determine ∼.

2. Refinement: If v is in V (T ), and t is incident to v, then ∼t is a refinement of ∼v.

3. Connectedness: For any two classes (x, k) and (x′, k′) there is a sequence

(x0, i0) = (x, k), (x1, i1), . . . , (xr, ir) = (x′, k′)

such that for each q the elements xq, xq+1 are incident (so one of them is a vertex and the other
an edge), and there is at least one j such that (xq, j) ∈ (xq, iq) and (xq+1, j) ∈ (xq+1, iq+1).

4. Riemann-Hurwitz condition: For v in V (T ) and i in [d] let A ⊂ [d] be the class of i under the
relation ∼v. Let l = val v and E(v) = {t1, . . . , tl}. By the refinement property the relation
∼tq above tq partitions A into kq sets. Then

(k1 + k2 + · · ·+ kl)− 2 ≥ |A| · (l − 2).

Let M = (T, d,∼) be a glueing datum. Write |(x, k)| for the cardinality of the equivalence class
(x, k). We abuse notation and say i in (x, k) to mean (x, i) in (x, k). By verticality this causes
no confusion. A consequence is to regard (x, k) as a subset of [d], for the purpose of comparing
classes. We do, but to avoid confusion it is pointed out in every such instance of this use that
(x, k) is momentarily being regarded as a subset of [d], instead of a class of W/ ∼.

We call T the base tree of M . We visualize glueing datums by drawing d copies of T on top of
each other, and imagining all of them above T . Curved lines and shaded regions indicate where

26
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Figure 4.1: On the left, a glueing datum giving rise to the theta graph. In the centre, an allowed
set of glueing relations. On the right, a set of glueing relations not allowed because of the RH-
condition.

vertices or edges are identified. A class (x, k) is said to be above x. By the verticality condition,
one can only glue elements of W that are above the same element of the base tree, see Figure 4.1.

The quotient G = W/ ∼ has the following natural structure of a loopless graph: the classes
(x, k) in W/ ∼ with x in V (T ) are the vertices of G; those with x in E(T ) are the edges of G; an
edge (t, i) in E(G) is incident to a vertex (v, k) in V (G) if and only if t and v are incident in T
and i ∈ (v, k). This is a well defined graph, by the verticality and the refinement properties. It is
connected, by the connectedness property. It has no loops by the verticality property and the fact
that T is a tree. Consider the natural map φM : G → T given by φM (x, k) = x, and the index
map |(x, k)|φM

= #((), x)k.

Lemma 4.2 (Prop. 5, [CD18]). For a glueing datum M = (T, d,∼), the map φM (x, k) = x with
index map |(x, k)|φM

= #((), x)k is a DT-morphismof degree d.

Proof. We prove that φ is a DT-morphismby showing the balancing condition; the other require-
ments are immediate. Let A be a vertex of G. Set v = φ(A). Fix t in E(v). Recall that by the
refinement property the relation ∼t above t partitions A. Thus, if e1, . . . , er are the classes in E(A)
above t, then #(A) = #(e)1|+ · · ·+#(e)r. Since |e|φM

= #(e) we get that

|A|φM
= #(A) =

∑
e∈E(A)
φ(e)=t

|e|φM
.

We illustrate the previous concepts in the following example.

Example 4.3. Let M = (T, 3,∼) be a glueing datum with T and ∼ as follows:

v1

v2

v3

v4

v5 v6 v7

v8

v9

e

∼v1=∼v2= {{1, 2}, {3}}
∼v4=∼e= {{1}, {2, 3}},
∼v1=∼v2= {{1, 3}, {2}},
else ∼x is {{1}, {2}, {3}}.
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EF

T ∼ A visualization of M
In the visualization we have rendered dangling edges with dotted lines and lighter colour. The

copies of T are numbered from top to bottom. We also have labelled with A,B, . . . , F the vertices of
G that have non-dangling valency equal to 3. The other non-dangling vertices have non-dangling
valency equal to 2. Note that the map φM is isomorphic as a DT-morphismto the map φA of
Example 3.9 (see also Example 4.9). ⋆

We denote by nd-E(A) the set of non-dangling edges of G incident to a vertex A and define
the non-dangling valency nd-valA as |nd-E(A)|. Observe that nd-valA = 0 if and only if A is
dangling, otherwise nd-valA ≥ 2. In the visualization of M in Example 4.3 the darker coloured
edges make up the following graph:

Construction 4.4. Let H(M) be the following graph: V (H(M)) is the set of vertices A of G
such that nd-valA ≥ 3; and E(H(M)) is the set of paths of G whose ends are in V (H(M)) and
interior vertices have non-dangling valency equal to 2.
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Recall from Construction 3.20 that H(φM ) is the combinatorial type of the source of the DT-
morphismφM associated to M . It is straightforward to see that H(M) and H(φM ) are isomorphic.
Observe also that the edge e of G is either dangling, or there is a unique h(e) in E(H(M)) such
that e ∈ h(e). We say that h in E(H(M)) passes through a class (x, k) of G if (x, k) ∈ h and (x, k)
is not and end of h. If h passes through (x, k), then we say that h passes above x. This gives a
natural way to also visualize H(M) above T , as in Example 4.3.

Example 4.5. The figures below illustrate G and H(M) for the glueing datum M of Example 4.3.
In the visualization of M in Example 4.3 we have introduced a labelling for the vertices of G with
non-dangling valency greater than 2. We have used that same labelling in the figures below to
facilitate comparing the visualization of M with G.

A

B

CD

E

F A

B

CD

E

F

G H ⋆

Remark 4.6. Unlike our approach here where a glueing datum gives rise to a DT-morphismφ,
the definition of glueing datum in [CD18] gives rise to a tropical morphism Φ : Γ→ ∆. To go from
a glueing datum as in [CD18] to one as in our setting we need to remove the metric information
by taking a model T of ∆ where for every edge t of T the relation above each interior point x in
∆t equals some fixed relation ∼t. In the terminology of the Definition 4 of [CD18] a possibility for
such a model is the set of points from the essential model of ∆ together with the image under Φ
of the set of monovalent points in the metric forest

{u ∈ Γ | ∃x ∈ ∆ with ψi(x) ∼ ψj(x) for distinct i, j; and u = ψi(x)/ ∼},

where the map ψi sents ∆ to its i-th copy. △

Construction 4.7. Given a degree-d DT-morphismφ : G → T we construct a glueing datum M
with base tree T such that φ is isomorphic to φM . We use four steps:

(1) Choose a leaf v of T and a map χv : φ−1(v) → P([d]), where P([d]) is the power set of
{1, . . . , d}, such that #(χ)v(A) = |A|φ for A ∈ φ−1(v) and im(χv) is a partition of [d].

(2) Choose incident x, x′ in T such that a map χx has been chosen for x and no map has been
chosen for x′ yet.

(3) Choose a map χx′ : φ−1(x′) → P([d]) such that #(χ)x′(X ′) = |X ′|φ for X ′ ∈ φ−1(x′),
im(χx′) is a partition of [d]; and for every pair of incident elements (X ′, X) in φ−1(x′)×φ−1(x)
we have that χx′(X ′) ⊂ χx(X) if x′ is an edge, or χx′(X ′) ⊃ χx(X) otherwise.

(4) Repeat step 2 and 3 until every x in T has a χx.

Take M = (T, d,∼), where ∼x is defined by the partition im(χx).

In Step (3) of Construction 4.7 the choice is possible since φ satisfies the balancing condition.
It is straightforward to check that the glueing datum (T, d,∼) has the properties we desire. This
construction is essentially the one given in Proposition 6 of [CD18].
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4.2 Isomorphism classes of DT-morphismsand glueing datums
The crucial choices in Construction 4.7 happen at Steps (1) and (3). We identify all the possibilities
using a notion of isomorphism of glueing datums. It turns out that with the right notion of
isomorphism there is a bijection between isomorphism classes of DT-morphismsand isomorphism
classes of glueing datums. This completes the setup to study DT-morphismsvia glueing datums.

Observe that applying a fixed permutation π of [d] on all relations ∼x gives a different glueing
datum, but does not change the isomorphism type of G, nor the index map for the edges of G, nor
which edges of G lie above a particular edge of T . We call this operation a tree-swap. It enables
us to relate two distinct choices done at Step (1) of Construction 4.7.

Choose a vertex v of T , and let S be the vertex set of one of the connected components of
T \{v}. Let Tbr be the graph induced by the vertex set S∪{v}. We call it a branch of T . Choose i
and j such that i ∼v j and swap i with j in all relations above Tbr. We call this a branch-swap. A
series of branch-swaps enables us to relate two distinct choices done at Step (3) of Construction 4.7.
This motivates the notion of isomorphism of glueing datums. In the following definition we write
(x, i)M for a class of M , to avoid confusions, and in general we regard (x, i)M as a subset of [d].

Definition 4.8 (glueing datum isomorphism). An isomorphism from M = (T, d,∼) to M ′ =
(T ′, d,∼′) consists of a graph isomorphism τ : T → T ′, and for each x in T a permutation πx of
[d] satisfying two properties:

1. class-preserving: πx
(
(x, i)M

)
and (τ(x), πx(i))M ′ are equal for all x in T , i in [d].

2. incidence-preserving: for all v in V (T ), t in E(v), and i in [d] we have that (t, j)M ⊂ (v, i)M
if and only if (τ(t), πt(j))M ′ ⊂ (τ(v), πv(i))M ′ .

Example 4.9. We present three isomorphic glueing datums. On the left, M from Example 4.3.
Next, in M ′ we swapped the middle and the bottom tree. Finally, in M ′′ we also swapped the
middle and the bottom tree, but only above the branch that is right to the vertex C. They all give
rise to isomorphic DT-morphisms.
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Lemma 4.10. The isomorphism classes of glueing datums are in bijection with the isomorphism
classes of DT-morphismsfrom a graph to a tree.

Proof. Let M , M ′ be glueing datums giving rise to graphs G, G′ respectively, and φ = φM ,
φ′ = φM ′ . First suppose that τ , {πx}x∈T is an isomorphism from M to M ′. Consider the natural
map γ :G → G′ given by γ((x, k)M ) = (τ(x), πx(k))M ′ . By the class-preserving property we have
that γ is bijective. By the incidence-preserving property we have that both γ, γ−1 are graph
homomorphisms. We claim that (γ, τ) is an isomorphism from φ to φ′. Diagram 3.18.a commutes
because

φ′ ◦ γ
(
(x, k)M

)
= φ′

(
(τ(x), πx(k))M ′

)
= τ(x),

τ ◦ φ(x, k) = τ(x).

Diagram 3.18.b commutes because by class-preserving we get that∣∣∣(x, k)M ∣∣∣
φ
= #((), x)kM = #((), τ(x))πx(k)M ′ ,∣∣∣γ ((x, k)M)∣∣∣

φ′
=
∣∣∣(τ(x), πx(k))M ′

∣∣∣
φ′

= #((), τ(x))πx(k)M ′ .
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Now suppose that γ, τ is an isomorphism from φ to φ′. Since | · |φ = | · |φ′ ◦ γ, we get that
|(x, k)M | = |γ((x, k)M )|. Thus, for each x in T we can choose a permutation πx of [d] such that
πx((x, k)M ) = γ((x, k)M ). We claim that τ , {πx}x∈T is an isomorphism from M to M ′. We
have the class-preserving property by construction. Since γ, γ−1 are graph homomorphisms, we
have that (t, j)M , (v, i)M are incident if and only if γ((t, j)M ), γ((v, i)M ) are incident. Since
φ′ ◦ γ = τ ◦ φ, we get that γ((x, i)) = (τ(x), πx(i)). The previous two facts and the construction
of G and G′ together imply that (t, j)M ⊂ (v, i)M if and only if (τ(t), πt(j))M ′ ⊂ (τ(v), πv(i))M ′ .

Thus, we have shown that the map that sends the isomorphism class of M to the isomorphism
class of φM is well defined and injective. Construction 4.7 shows that the map is also surjective.

Now that the correspondence between DT-morphismsand glueing datums is set up, we use the
following notation for convenience:

• CM = CφM
, the cone of sources.

• AM = AφM
, the edge-length map.

• (M, ℓT ) = (φM , ℓT ), a tropical morphism.

• We say that M has full-rank, or is full-dimensional, or is a combinatorial type if φM has
full-rank, or is full-dimensional, or is a combinatorial type, respectively.

We also define the genus of a glueing datum to be g(H(M)). Likewise, the genus of a DT-
morphismis the genus of its source.

4.3 Local properties
Let M = (T, d,∼) be a genus-g glueing datum and φ be φM : G → T . Ideally, a deformation
procedure would modify a local part of M , namely the glueing relations above a particular edge
of T and its endpoints. The resulting M ′ should be full-dimensional if we began with a full-
dimensional M . The obstruction to this idea is that a local change in M leads to a change in AM
that may make the rank drop. Controlling the rank of AM is a global condition, which is harder
to check than local conditions.

We defer the hard problem of constructing full-dimensional glueing datums to Chapter 7, and
explore a different question here: what conditions are necessary for a glueing datum to be full-
dimensional. It turns out that full-dimensional glueing datums have some remarkable combinatorial
properties, which are easier to check than the rank. This allows us to easily discard many potential
constructions as not full-dimensional. We present these combinatorial properties in Definition 4.12,
after giving some auxiliary definitions.

Definition 4.11. Let M = (T, d,∼) be a glueing datum.

• A vertex v of T is change-minimal if ch v + val v = 3.

• A vertex A of G satisfies the no-return condition if there are at least two non-dangling edges
in E(A) above different edges of T ; in other words |φ(nd-E(A))| is at least 2.

• Let h = ⟨A0, e1, . . . , eµ, Aµ⟩ be an edge of H(M) (recall that this means that h is a path
in G, both ends of h have nd-val value at least 3, and the inner vertices of h have nd-val
value equal to 2). We say that h satisfies the pass-once condition if φ restricted to the set
{ei ∈ h |φ(ei) is not incident to a leaf} is injective.

Definition 4.12. Let M = (T, d,∼) be a glueing datum.

• M is change-minimal if all vertices of T are change-minimal.

• M satisfies the dangling-no-glue condition if |(x, k)| = 1 for all dangling |(x, k)|.
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• M satisfies the no-return condition if all non-dangling vertices A of G such that φ(A) is not
monovalent satisfy the no-return condition.

• M satisfies the pass-once condition if all edges of H(M) satisfy the pass-once condition.

We proceed to describe informally the intuition behind each property and give an example
before beginning with proofs. Being change-minimal is equivalent to saying that the correction
term in the dimension formula equals zero, namely that |E(T )| = 2g + 2d − 5. By the discussion
after Definition 3.33 we have that full-dimensional implies change-minimal. Dangling-no-glue says
that no identification is used in parts of G that do not affect ℓH(M). This is a sort of “efficiency”
condition. No-return forbids edges of H(M) to change copies of T in any place except above a leaf
of T . Pass-once eases the calculation of Aφ (see Proposition 4.25).

Example 4.13. The glueing datum of Example 4.3 is full-dimensional (see the calculation at 5.a
of Example 5.1). It can be checked that this glueing datum is change-minimal, satisfies dangling-
no-glue, no-return, and pass-once; this agrees with our claim. Now we point out instances in the
examples that do not fullfill some of the items in Definition 4.12.

• Consider the map φB from Example 3.9. The second vertex from left to right in the target
is the only change-minimal vertex, and above it the no-return condition is violated. The
pass-once condition is violated by the edge passing above the middle edge of the target. The
dangling-no-glue condition is violated by all of the dangling elements.

• Consider the map φA from Example 3.22. It does not satisfy dangling-no-glue because of the
leftmost vertex in the target, and is not change-minimal. It satisfies no-return and pass-once.

⋆

Instead of showing that full-dimensional implies dangling-no-glue, no-return and pass-once, we
derive these conditions from being change-minimal and having full-rank. This opens the possibility
of using these results in future work for studying those special graphs that have gonality less than
⌈g/2⌉+ 1. We begin with a generalization of Lemma 3.24.

Lemma 4.14 (zero change). Let v be in V (T ), h an edge of H(M) such that φ(h)∩E(v) contains
two edges t1 and t2, and A1, . . . , Ar the vertices in h∩φ−1(v). If the following conditions are true:

(a) rφ(Aq) = 0 for all 1 ≤ q ≤ r,

(b) the ends of h are not above v,

(c) |e| = 1 for dangling e in E(Aq) for all 1 ≤ q ≤ r,

then in the edge-length matrix we have aht1 = aht2 .

Before proceeding to the proof, note that the coefficient aht, for h in E(H(M)) and t in E(T ),
can be calculated as follows:

ℓH(M)(h) =
∑

e∈E(G): e∈h

ℓG(e) =
∑

t∈E(T )

 ∑
e∈h:φ(e)=t

1

|e|

 ℓT (t) =
∑

t∈E(T )

ahtℓT (t),

where the sum in the parenthesis equals zero if the index set is empty.

Proof. Since Aq is not an end of h we have that nd-valAq = 2. Let Aq = (v, kq), and e,e′ be the
two edges in nd-E(Aq). Lemma 3.5 and conditions (a) and (c) imply that 2|Aq| = |e| + |e′|, and
since |Aq| ≥ |e|, |e| we get that |Aq| = |e| = |e′|, which makes the classes (t1, kq), Aq, (t2, kq) equal
as subsets of [d]. Thus, aht1 = 1/(t1, k1)+ · · ·+1/(t1, kr) = 1/(t2, k1)+ · · ·+1/(t2, kr) = aht2 .

Note that Condition (c) of Lemma 4.15 is implied by dangling-no-glue. Recall that if val v = 2,
then rφ(Aq) = 0 gives that valAq = 2. Hence, Aq is not an end of h, and there are no dangling
edges incident to Aq, fulfilling Conditions (b) and (c). Now we prove dangling-no-glue.
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Remark 4.15 (change-minimal leaves). Let v in V (T ) be a leaf that is change-minimal, A in
φ−1(v) non-dangling, and t the edge incident to v. Since A is non-dangling valA ≥ 2, and as
val v = 1 we get that |A| ≥ valA. Thus, rφ(A) = valA− 2− |A|(val v − 2) ≥ 2. Since ch v = 2 we
get rφ(A) = 2, valA = 2, and |A| = 2. Thus, there is a unique non-dangling vertex above v, ∼t is
trivial, and exactly one edge of H(M) passes above v and t.

This implies that in the edge-length matrix AM the column corresponding to t has only one
non-zero entry; it is a 2 in the row corresponding to the edge of H(M) passing above v. Thus, if
M is change-minimal and has full-rank, then each edge of H(M) passes above at most one leaf;
for otherwise AM would have two equal columns, a contradiction. △

Lemma 4.16. Let M be change-minimal and full-rank, and A in V (G) dangling. Then rφ(A) = 0.

Proof. Let v = φ(A). By change-minimal rφ(A) equals 0, 1, or 2. If rφ(A) = 1, then Remark 4.15
(change-minimal leaves) implies that val v = 2, and so ch v = 1. Thus, if h in E(H(M)) passes
through A′ above w0, then rφ(A′) = 0, because A′ is non-dangling, so A′ ̸= A and rφ(A′)+rφ(A) ≤
ch v = 1. Hence, Lemma 4.14 (zero change) implies that the columns of AM corresponding to t1,
t2 incident to v are equal, contradicting that M has full-rank. If rφ(A) = 2, Remark 4.15 implies
that A is non-dangling, a contradiction.

Lemma 4.17. A change-minimal and full-rank M satisfies the dangling-no-glue condition.

Proof. Observation I: Let A be a vertex such that rφ(A) = 0 and all elements of E(A) have
cardinality 1, except possibly one element e. Then by Lemma 3.5 (formula for rφ) we get that
rφ(A) = 2(|A| − 1) − (|e| − 1). As rφ(A) = 0 we get |e| + 1 = 2|A|. Hence, |A| = |e| = 1 since
|A| ≥ |e|.

Now suppose that e0 is dangling and |e0| > 1. Choose an end A0 of e0. If A0 is dangling
then Lemma 4.16 allows us to apply Observation I to choose e1 in E(A0), distinct from e0, such
that |e1| > 1. Repeat the previous step with e1, and continue to construct a sequence of vertices
A0, A1, and so on; since G is finite, either we arrive to a non-dangling Ar, or a vertex repeats in
the sequence. Either way this means that after deleting e0 the connected component of A0 has a
cycle. This argument can be applied to the other end of e0 as well, giving a contradiction that e0
is dangling. Thus, if e is dangling, then |e| = 1. If A is dangling, all edges in E(A) are dangling,
so they have cardinality 1, and the result follows from another application of Lemma 4.16 and
Observation I.

Now we prove the no-return condition.

Lemma 4.18 (nd. rφ formula). Let M satisfy dangling-no-glue, and A be in V (G). If e1, e2, . . . , er
in E(G) are the non-dangling edges incident to A, then

rφ(A) = nd-valA− 2 + 2|A| − (|e1|+ . . .+ |er|).

Proof. This is a consequence of Lemma 3.5 and the dangling-no-glue condition.

Lemma 4.19 (r1 implies no-return). Let M satisfy dangling-no-glue, and A in V (G) be non-
dangling with valφ(A) ≥ 2. If rφ(A) ≤ 1, then A satisfies no-return.

Proof. If |A| = 1 the result is clear. Assume that |A| ≥ 2. Let e1, . . . , er be the edges in nd-E(A).
Note that r ≥ 2, since A is non-dangling. Assume that all eq are above the same edge t, so
|e1| + . . . + |er| ≤ |A|. Lemma 4.18 (nd. rφ formula) implies that rφ(A) = r − 2 + 2|A| − (|e1| +
. . .+ |er|) ≥ r − 2 + |A| ≥ 2, a contradiction.

Corollary 4.20. A change-minimal M that satisfies the dangling-no-glue condition also satisfies
the no-return condition.

Proof. Since M is change-minimal by Remark 4.15 if rφ(A) ≥ 2, then φ(A) is a leaf. The corollary
follows then from Lemma 4.19.
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By dangling-no-glue, G looks like T locally around dangling vertices. We now give a local
description for non-dangling vertices, assuming a change-minimal M . To make coming references
to this result easier, we state all the possible cases, though several are straightforward corollaries
of previous results.

Proposition 4.21 (local properties). Let M be change-minimal and satisfying dangling-no-glue,
A in V (G) with nd-valA either 2 or 3, v = φ(A), r = nd-valA, and {e1, . . . , er} = nd-E(A). Then
exactly one of the following cases happens:

• (r0-nd3): rφ(A) = 0 and nd-valA = 3. Then φ restricted to nd-E(A) is injective; val v is 3; and
|e1|+ |e2|+ |e3| = 2|A|+ 1.

• (r0-nd2): rφ(A) = 0 and nd-valA = 2. Then φ restricted to nd-E(A) is injective; val v is 2 or
3; and |e1| = |A| = |e2|.

• (r1-nd3): rφ(A) = 1 and nd-valA = 3. Then there is a labelling of the ei where φ(e1) = φ(e2) ̸=
φ(e3); val v is 2; and |e1|+ |e2| = |A| = |e3|.

• (r1-nd2): rφ(A) = 1 and nd-valA = 2. Then φ restricted to nd-E(A) is injective; val v is 2; and
there is a labelling of the ei where |e1| = |A| and |e2| = |A| − 1.

• (r2-nd2): rφ(A) = 2. Then φ(e1) = φ(e2); val v is 1; |e1| = |e2| = 1; and |A| = 2.

Proof. Change-minimal implies that rφ(A) equals 0, 1, or 2, and that val v equals 1, 2, 3 for v in
V (T ). By Remark 4.15 (change-minimal leaves) rφ(A) = 2 and nd-valA = 3 cannot be. So the
described cases are all the possibilities. The same remark proves (r2-nd2). Note that M satisfies
the no-return condition by Corollary 4.20.

For the case (r0-nd3), no-return implies that either the three non-dangling edges are above
different edges of T , or (up to labelling) e2 and e3 are above the same edge and e1 is above another.
In the latter case Lemma 4.18 and |e1| ≤ |A| imply 0 = 1+2|A|−|e1|−|e2|−|e3| ≥ 1+|A|−|e2|−|e3|,
but |e2|+ |e3| ≤ |A|, a contradiction. Hence e1, e2, e3 are above distinct edges of T , so val v = 3.
Lemma 4.18 implies the last formula.

The remaining follows from change-minimal, dangling-no-glue, Lemma 4.18, and the glueing
datum axioms.

Corollary 4.22 (image of a path). Let M be change-minimal and satisfy dangling-no-glue. Let
P = ⟨A0, e1, . . . , eµ, Aµ⟩ be a path of G such that Ai is non-dangling and valφ(Ai) ≥ 2 for each i.
Then ⟨φ(A0), φ(e1), . . . , φ(eµ), φ(Aµ)⟩ is a path of T .

Proof. Since φ is a graph morphism, and by the local properties of Proposition 4.21 , we get that
consecutive elements of φ(P ) := ⟨φ(A0), φ(e1), . . . , φ(eµ), φ(Aµ)⟩ are incident, and distinct. Since
consecutive elements of φ(P ) are distinct, if φ(P ) repeats an element, then we get a cycle. As T
is a tree we conclude that φ(P ) is a path.

Now we move on to the pass-once condition.

Lemma 4.23. Let M be change-minimal and have full-rank, u and v be divalent and monovalent
vertices of T , respectively, with E(u) = {t′, t}, E(v) = {t}. Then there is exactly one edge of H
above t and one above t′; they are a loop and a bridge, respectively.

Proof. Swap trees so that 1 ∼v 2. Remark 4.15 (change-minimal leaves) yields that e1 = (t, 1)
and e2 = (t, 2) are two distinct edges of G, with |e1| = |e2| = 1, and are the only non-dangling
edges above t. This implies, by the no-return condition, that (u, 1) and (u, 2) are the only non-
dangling classes above u (it is possible that (u, 1) = (u, 2)). Let h be the edge of H containing
e1, e2. If both (u, 1) and (u, 2) have non-dangling valency equal to 2, then the only edge of H
passing above t, and t′ is h. Thus, aht and aht′ are the only non-zero entries in the columns of
AM corresponding to t and t′, respectively, a contradiction. Therefore, assume without loss of
generality that nd-val (u, 1) = 3. As valu = 2 and |e1| = 1, by Case (r1-nd3) of the local properties
we must have that nd-E((u, 1)) has two edges above t; namely e1, e2, that make the loop; and one
edge above t′, the bridge.
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Lemma 4.24. A change-minimal and full-rank M satisfies the pass-once condition

Proof. Let h = ⟨A0, e1, . . . , eµ, Aµ⟩ be an edge of H(M). If h does not pass above a leaf, then
we are done by Corollary 4.22. Assume h passes above a leaf. By Remark 4.15 (change-minimal
leaves) there is a single vertex Ai ∈ h such that v := φ(Ai) is a leaf. Thus, h passes at most twice
above any edge of T by Corollary 4.22. We also get that φ(ei) = φ(ei+1) from Remark 4.15. Let
t1 = φ(ei). Suppose that h violates the pass-once condition. That is, for some j, k ̸∈ {i, i + 1}
we have φ(ej) = φ(ek). We get that φ(ei−1) = φ(ei+2), because otherwise φ(⟨A0, . . . Ai⟩) and
φ(⟨Ai, . . . Aµ⟩) would intersect only at t1 by Corollary 4.22 and the fact that T is a tree, which
contradicts that φ(ej) = φ(ek). Let t2 = φ(ei−1).

Label the copies of T such that 1 ∼v 2. Label h with 1. Lemma 4.23 implies that valw = 3.
Let w be the other end of t1, and t3 be the other edge incident to w. We investigate the classes
above t1, t2 and t3. Observe that (t3, 1) and (t3, 2) are dangling. Change-minimal and Remark 4.15
imply that |(t1, 1)| = |(t1, 2)| = 1. All the vertices of G above w have rφ-value zero. Thus, case
(r0-nd2) of the local properties on (w, 1) and (w, 2) implies that |(t2, 1)| = |(t2, 2)| = 1. Hence,
a1,1 = 2, a1,2 = 2, a1,3 = 0. As (t1, k) is dangling for k ≥ 3, the other non-dangling vertices above
w have nd-val equal to 2. Lemma 4.14 (zero change) implies that ai,2 = ai,3 for i ≥ 2. See the
figure below, dangling edges shown dotted.

v

w

t1

t2 t3

e
a1,1 = 2 a1,2 = 2 a1,3 = 0

ai,1 = 0, ai,2 = ai,3,

for i ≥ 2.

Let a1,a2, and a3 be the first three columns of AM . Note that a2 = a1+a3, contradicting that
M has full-rank.

Proposition 4.25 (edge-length map is local). Let M = (T, d,∼) satisfy that the leaves of T are
change-minimal. Then M satisfies the pass-once condition if and only if for all h in E(H), and t
in E(T ) the entry aht is:

(a) 2 if h passes above a leaf v in V (T ), and t is incident to v.

(b) 1/|(t, k)| if h passes through some edge (t, k) of G, t not incident to a leaf.

(c) 0 otherwise.

Proof. Part (a) follows from Remark 4.15. Part (b) is true if and only if pass-once is.
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Example of deformation

5.1 A movie
We now give the motivating example of the deformation process. Most cases involved in deforma-
tion can be observed in this example.

Example 5.1 (3 loops on a loop). Let Γ̃ = (H, ℓH) be a loop of 3 loops (as in [LPP12]), with H,
vertex and edge labellings shown below. Set yi = ℓH(hi), zi = ℓT (ti).

y1

y2

y3

y4

y5

y6

y7

y8

y9
A

B

CD

E

F

H

Assume without loss of generality that y3 = max(y1, y2, y3), y4 ≤ y5, y6 ≤ y7, and y8 ≤ y9.
We show 9 cases that depend on how large the length y3 is compared to several other linear
combinations of lengths. Each case depicts: the base tree T with an edge labelling; a glueing
datum with combinatorial type H; and its edge-length matrix. The odd cases are full-dimensional,
the even cases are not. In two consecutive odd cases the edge-length matrices differ only by one
column. We compute detAM to show these are indeed full-dimensional.

• First case: y3 < y1 + y2.

z1

z2z3

z4z5

z6

z7

z8

z9 A

B

C

D

EF 
1 0 1
1 1 0
0 1 1

2
2
2

2
2
2



T1 M1 A1

detA1 = 128

• Second case: y3 = y1 + y2. The edge t1 gets shrunk.

35
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z2z3

z4z5 z6

z7

z8

z9 A B

C D

EF


0 1
1 0
1 1

2
2
2

2
2
2


T2 M2 A2

• Third case: y1 + y2 < y3 < y1 + y2 + y4.

Case 3.a

z1 z2z3

z4z5 z6

z7

z8

z9 A B

C D

EF


0 0 1
0 1 0
1 1 1
1 2
1 2

2
2
2
2


T

(a)
3 M3 A3

detA3 = −64
Case 3.b

z1 z2z3

z5z4 z6

z7

z8

z9 A B

C D

EF


0 0 1
0 1 0
1 1 1
1 2
1 2

2
2
2
2


T

(b)
3 M3 A3

Here Γ̃ is realized by two tropical morphisms (distinct ones in general, see the next paragraph),
yet at the combinatorial level the glueing datum is the same. We drew M3 twice to emphasize
where is the longer edge and show the labelling of the base tree. The two length functions z(a),
z(b) are related by swapping z4 and z5.

We claim that Φ(a) = (φ3, z
(a)) and Φ(b) = (φ3, z

(b)) are distinct tropical morphisms if and
only if z4, z5 are distinct lengths. Set v = φ(B). Since z4, z5 are distinct, one of the two edges
between B, C is longer than the other, and there is a preimage of v under Φ(a) in this longer
edge. This is not true for Φ(b). Conversely, it is clear that if z4, z5 are equal then swapping the
lengths has no effect.

This situation persists for the remaining glueing datums in this example.

• Fourth case: y3 = y1 + y2 + y4. The edge t4 gets shrunk. The drawing shows two different
glueing datums (which reflects a bifurcation in the shrinking and regrowing sequence so far), but
by swapping some branches one can see them to be isomorphic, so we label both by M4. Same
with the rest of the cases.

Case 4.a

z1 z2z3

z6

z7

z8

z9

z5

A
B

C D

EF


0 0 1
0 1 0
1 1 1
1
1 2

2
2
2
2


T

(a)
4 M4 A4

Case 4.b
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z1 z2z3

z6

z7

z8

z9

z5

A B

C D

EF


0 0 1
0 1 0
1 1 1
1
1 2

2
2
2
2


T

(b)
4 M4 A4

• Fifth case:
Case 5.a: y1 + y2 + y4 < y3 < y1 + 2y2 + y4.

z1 z2z3 z4

z6

z7

z8

z9

z5

A
B

C D

EF


0 0 1 0
0 1 0 1/2
1 1 1 1
1
1 2

2
2
2
2


T

(a)
5 M5 A5

detA5 = 16

Case 5.b: y1 + y2 + y4 < y3 < 2y1 + y2 + y4.

z1 z2z3 z4

z5 z6

z7

z8

z9 A B

C D

EF


0 0 1 1/2
0 1 0 0
1 1 1 1
1
1 2

2
2
2
2


T

(b)
5 M5 A5

• Sixth case:
Case 6.a: y3 = y1 + 2y2 + y4. The edge t2 gets shrunk.

z1z3 z4

z5 z6

z7

z8

z9 A
B

C D

EF


0 1 0
0 0 1/2
1 1 1
1
1 2

2
2
2
2


T

(a)
6 M6 A6

Case 6.b: y3 = 2y1 + y2 + y4. The edge t3 gets shrunk.

z1 z2z4

z5 z6

z7

z8

z9 A B

C D

EF


0 0 1/2
0 1 0
1 1 1
1
1 2

2
2
2
2


T

(b)
6 M6 A6

• Seventh case:
Case 7.a: y1 + 2y2 + y4 < y3 < y1 + 2y2 + y4 + y6. In 6.a swap 2 and 3 in the branch above t6.
Regrow t2 in the same place to obtain 7.a.

z1 z2z3 z4

z6

z7

z8

z9

z5

A
B

C D

EF


0 0 1 0
0 0 0 1/2
1 1 1 1
1
1 2
1 2
1 2

2
2
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T
(a)
7 M7 A7

detA7 = −16
Case 7.b: 2y1 + y2 + y4 < y3 < 2y1 + y2 + y4 + y8. In 6.b swap 2 and 3 in the branch above t9.
Regrow t2 in the same place to obtain 7.b.

z1 z2z3 z4

z5 z6

z7

z8

z9 A B

C D

EF


0 0 0 1/2
0 1 0 0
1 1 1 1
1
1 2

2
2

1 2
1 2


T

(b)
7 M7 A7

• Eighth case:

Case 8.a: y3 = y1 + 2y2 + y4 + y6. The edge t6 gets shrunk.

z1 z2z3 z4
z7

z8

z9

z5

A
B

C D

EF


0 0 1 0
0 0 0 1/2
1 1 1 1
1
1 2
1
1 2

2
2


T

(a)
8 M8 A8

Case 8.b: y3 = 2y1 + y2 + y4 + y8. The edge t8 gets shrunk.

z1 z2z3 z4

z5 z6

z7z9 A B

C D

EF


0 0 0 1/2
0 1 0 0
1 1 1 1
1
1 2

2
2

1
1 2


T

(b)
8 M8 A8

• Ninth case:

Case 9.a: y1 + 2y2 + y4 + y6 < y3.

z1 z2z3 z4

z6

z7

z8

z9

z5

A
B

C D

E

F


0 0 1 0
0 0 0 1/2
1 1 1 1 2
1
1 2
1
1 2

2
2


T

(a)
9 M9 A9

detA9 = 16

Case 9.b: 2y1 + y2 + y4 + y8 < y3.

z1 z2z3 z4

z5 z6

z7

z8

z9 A B

C D

E

F


0 0 0 1/2
0 1 0 0
1 1 1 1 2
1
1 2

2
2

1
1 2


T

(b)
9 M9 A9

⋆



Chapter 6

Deformation

We visualize Example 5.1 as a movie featuring a continuous deformation of the length function ℓH
(for an actual movie go here1). The deformation path grows the length y3 while leaving fixed the
remaining lengths. The path moves in and through nine different cones CM . We use the full-rank
property of AM to calculate ℓT = A−1

M ℓH , which defines the tropical morphism (M, ℓT ). As we
grow the length y3, some lengths of ℓT shrink down to zero. We call the cases where a length of ℓT
is zero a limit in the deformation. Since we do not allow zero lengths in an edge-length function,
we contract an edge of T instead.

If we were to walk further past a limit while using the same glueing datum we would get
negative entries in A−1

M ℓH , which is not allowed in a length function. In order to go beyond, we
pass to a different glueing datum. In Example 5.1 the even cases are limit glueing datums, as an
edge is contracted. Around these limits there is a change in the glueing relations. In this chapter
we show that understanding this change of glueing relations sets up a deformation procedure and
gives a proof of Theorem 1.4.

6.1 Limits
We set up a framework to study limits. Let M = (T, d,∼) be a glueing datum, and t an edge of T .

Definition 6.1 (Limit glueing datum). The limit of M by contracting t, in short the limit at t, is
the glueing datum M0 = (T0, d,∼0) given by the following data:

• T0 is obtained by contracting t in T . The ends u and v of t get identified with a vertex w0 of
T0. Edges and vertices of T different from u, v, and t correspond in a natural manner with
edges and vertices of T0.

• ∼0,w0
equals the finest common coarsening of ∼u and ∼v; and ∼0,x equals ∼x for x ̸= w0.

For the remainder of this chapter, let M0 = (T0, d,∼0) be the limit at t of M , giving rise to G0,
and u, v be the ends of t that contract to w0 in V (T0). Fix an edge t of T . Let φ0 :G0 → T0 be
the DT-morphismthat arises from φM :G→ T by contracting t in T to obtain T0, and contracting
all the edges in φ−1(t) to obtain G0. It is straightforward to see that φ0 is canonically isomorphic
to φM0

, where M0 is the limit of M at t. Namely, the classes representing vertices and edges of G
contract to the classes representing vertices and edges of G0. Note that a class (x, i) of G contracts
to (x0, j) of G0 if and only if (x, i) ⊆ (x0, j) and x contracts to x0.

To prove thatM0 is indeed a glueing datum, we observe that verticality, refinement and connect-
edness are inherited. We write r0 for rφ0 . The RH-condition amounts to proving that r0(A0) ≥ 0
for all A0 in V (G0). This is true because r0 is additive under contraction:

1https://mathsites.unibe.ch/jdraisma/MovieGenus4.mp4
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Proposition 6.2 (rφ under contraction). Let A0 be in φ−1
0 (w0), and A1, . . . , Ar be the vertices of

G that contract to A0. If g(H(M)) = g(H(M0)), then:

r0(A0) = rφ(A1) + · · ·+ rφ(Ar),

chM0
w0 = chM u+ chM v.

Proof. Let GA be the subgraph defined by the vertices and edges of G that contract to A0. Namely,
V (GA) = {A1, . . . , Ar}. It is a forest; otherwise we would have g(H(M0)) < g(H(M)); and also
connected, hence a tree. Restrict φ to GA to get a map φA onto the graph on {u, v}, joined by
the single edge t. This map is a DT-morphismof degree |A0|. By Lemma 3.27 the total change of
φA is

∑
B∈V (GA) rφA

(B) = 2|A0| − 2. Using Lemma 3.5 we calculate:

r∑
i=1

rφ(Ai) =

r∑
i=1

(2|Ai| − 2)−
r∑
i=1

∑
e∈E(Ai)
φ(e)̸=t

(|e| − 1)− 2 ·
∑

e∈E(GA)

(|e| − 1)

=
∑

B∈V (GA)

rφA
(B)−

r∑
i=1

∑
e∈E(Ai)
φ(e)̸=t

(|e| − 1)

= 2|A0| − 2−
∑

e∈E(A0)

(|e| − 1) = r0(A).

Apply this formula over all vertices above w0 to get the second result.

6.2 Labelling limits
Note that the glueing relations of M0 agree with those of M outside of w0. We exploit this fact
to compare the edge-length matrices. Recall that a labelling on M is a pair of injective functions
λT : E(T ) → Z>0 and λH : E(H(M)) → Z>0; we use them to induce total orders on E(T ) and
E(H(M)); to get ordered bases on RE(T ) and RE(H(M)); and to write down the edge-length matrix
AM . We give a canonical way to induce a labelling on M0 from a labelling on M , which allows the
comparison of AM and AM0

.
Since G0 arises from contracting the edges φ−1(t) in G, consider the edges h of H(M) such that

h ⊂ φ−1(u)∪φ−1(t)∪φ−1(v) and contract them. The resulting graph H0 is canonically isomorphic
to H(M0) (for h0 in E(H0), choose e ∈ h0 and map h0 to the edge of H(M0) that contains the
edge corresponding to e). Let ρH be the morphism H(M) → H0 → H(M0), where the first map
is the contraction morphism and the second map is the isomorphism we just described.

This gives the canonical embedding RH(M0) ↪→ RH(M) as the injective linear map that sends
y ∈ CH(M0) to y◦ρH ∈ CH(M) (for this to work, we extend ℓ ∈ CG to be a function on V (G)∪E(G),
with the convention that ℓ(v) = 0 for all v in V (G)). Likewise we construct the contraction
morphism ρT : T → T0 for the base trees, fulfilling similar properties. Since the glueing relations
of M0 agree with those of M outside of w0, the following diagram commutes.

RE(T0) RE(T )

RE(H(M0)) RE(H(M))

AM0 AM

Diagram 6.3

Lemma 6.4. The canonical embedding RH(M0) ↪→ RH(M)

Thus, if M0 is the limit of M at tk

Definition 6.5. Let M be a glueing datum and (λT , λH) be a labelling on M . The induced
labelling on a limit M0 is the labelling (λT ◦ ρ−1

T , λH ◦ ρ−1
H ).
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Lemma 6.6 (limit matrix). Let M be a glueing datum with labelling (λT , λH), and M0 be the
limit at t with the labelling induced from M . Then AM0

is equal to the deletion of the k-th column
of AM .

Proof. Restrict the edge-length map of M to the subspace {xk = 0} to get the edge-length map of
M0. By the choice of order on the bases, this amounts to deleting the k-th column of AM .

Lemma 6.6 immediately implies that the following properties, which depend on AM , are inher-
ited by limits.

Lemma 6.7. If M has full-rank, then every limit of M has full-rank.

Lemma 6.8. If M satisfies pass-once, then every limit of M satisfies pass-once.

Proof. This is a consequence of Lemma 6.6 and Proposition 4.25.

6.3 Star of M0

We also wish to compare AM(a) and AM(b) if M (a) and M (b) have limits isomorphic to M0; namely,
if M (a) and M (b) belong to the following set:

Definition 6.9 (star of M0). Let M0 be a full-rank glueing datum. Denote by Star(M0) the set of
isomorphism classes of full-rank glueing datums that contract to a limit in the isomorphism class
of M0.

Now consider M (a) and M (b) glueing datums such that the limits M (a)
0 and M

(b)
0 at t(a) and

t(b), respectively, are isomorphic. Let (γ0, τ0) be an isomorphism from M
(a)
0 to M (b)

0 . Note that
γ0 descends to an isomorphism γ̃0 : H(M

(a)
0 )→ H(M

(b)
0 ). If each of ρT , ρH contracts at most one

edge, then there are unique isomorphisms τ and γ̃, which we call canonical isomorphisms, such
that the following diagrams commute:

T (a) T
(a)
0

T (b) T
(b)
0

ρ
(a)
T

τ τ0

ρ
(b)
T

(a)

H(a) H
(a)
0

H(b) H
(b)
0

ρ
(a)
H

γ̃ γ̃0

ρ
(b)
H

(b)
Diagram 6.10

Note that if the edge h of H(M) is contracted in the limit, then the h-row of AM has only one
non-zero entry; namely the entry in the t-column. Two such rows would be linearly dependent.
Thus,

Lemma 6.11. If M is full-rank, then at most one edge is contracted by ρH .

So we have canonical isomorphisms τ , γ̃ between any two elements of Star(M0). Hence, a
labelling (λ

(a)
T , λ

(a)
H ) on M (a) induces the labelling (λ

(a)
T ◦ τ−1, λ

(a)
H ◦ γ̃−1) on M (b). Note that if

the k-th edge is contracted in M (a) to obtain M (a)
0 , then in the induced labelling on M (b) also the

k-th edge is contracted.

Definition 6.12. We say that some labellings on M (a), M (b) are compatible at tk if one is induced
by the other upon choosing an isomorphism from the limit M (a)

0 of M (a) at tk to the limit M (b)
0 of

M (b) at tk.

Lemma 6.13 (matrices in star). Let M (a), M (b) be glueing datums with labellings compatible at
tk, and edge-length matrices (aij), (bij), respectively. Then aij = bij for j ̸= k.
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Proof. On the one hand, by Lemma 6.6, the edge-length matrices of M (a)
0 , M (b)

0 coincide with the
deletion of the k-th column of (aij), (bij). On the other hand, since Diagram 6.10 commutes, we

can calculate λ(b)0,H = λ
(b)
H ◦(ρ

(b)
H )

−1
= λ

(a)
H ◦γ̃−1◦(ρ(b)H )

−1
= λ

(a)
H ◦(ρ

(b)
H ◦ γ̃)

−1
= λ

(a)
H ◦(γ̃0 ◦ ρ

(a)
H )

−1
=

λ
(a)
H ◦ (ρ

(a)
H )

−1
◦ γ̃−1

0 = λ
(a)
0,H ◦ γ̃

−1
0 . Similarly, λ(b)0,T = λ

(a)
0,T ◦ τ

−1
0 . In short, the labellings induced on

the limits coincide. So the matrices M (a)
0 , M (b)

0 are equal.

6.4 Inherited properties
Now we study which other properties of Definition 4.12 are inherited by limits. Let M0, G0, u, v,
w0, φ0 and r0 be as in Section 6.1.

Lemma 6.14 (dangling in the limit). If g(H(M)) = g(H(M0)), then a vertex A0 in φ−1
0 (w0) is

dangling if and only if all the A1, . . . , Ar in V (G) that contract to A0 are dangling.

Proof. Since g(H(M)) = g(H(M0)), no cycle of G is contracted in G0. This implies that A0 is not
contained in a cycle of G0 if and only if none of A1, . . . , Ar are contained in a cycle of G.

Lemma 6.15. If g(H(M)) = g(H(M0)) and M satisfies the dangling-no-glue condition, then M0

satisfies the dangling-no-glue condition.

Proof. We only need to check that a dangling vertex A0 above w0 satisfies |A0| = 1. Since ∼w0

is the finest common coarsening of ∼u and ∼v, we have |A0| > 1 only if for some A in V (G)
contracting to A0 we have |A| > 1. By Lemma 6.14 there is no such A.

Lemma 6.16 (non-dangling union). Assume that g(H(M)) = g(H(M0)). Let M satisfy the
dangling-no-glue condition, let A0 in φ−1

0 (w0) be non-dangling, and let A1, . . . , Ar in V (G) be the
non-dangling vertices that contract to A. Then A0 = A1 ∪ · · · ∪Ar, as subsets of [d].

Proof. This is equivalent to proving that for every k in A0 at least one of Bu = (u, k), Bv = (v, k)
in V (G) is non-dangling. Assume not, so by dangling-no-glue |Bu| = |Bv| = 1, thus Bu, Bv are
not incident to other vertices above u or v. Hence these two dangling classes are the only ones
that contract to A0. By Lemma 6.14 A0 is dangling, a contradiction.

Lemma 6.17. If M satisfies no-return and pass-once, then a limit M0 satisfies no-return if either
w0 is a leaf or chw0 ≤ 2.

Proof. Suppose that A0 in V (G0), with r = nd-valA ≥ 2, violates no-return. Since M satisfies
no-return, then A0 is above w0. If valw0 = 1 there is nothing to check, so assume w0 is not
a leaf. If r0(A0) ≤ 1, we get a contradiction with Lemma 4.19 (r1 implies no-return). Since
chw0 ≤ 2, we have that r0(A0) = 2. As A0 violates no-return, all the non-dangling edges e1, . . . , er
incident to A0 are above a single edge of T , thus |e1| + · · · + |er| ≤ |A|, so |A| ≥ 2. Hence,
r0(A) = 2 = r − 2 + 2|A| − (|e1|+ · · ·+ |er|) ≥ r − 2 + |A| gives |A| = 2 and r = 2. So there is an
edge of H0 passing above w0 by going through A0, and twice above t. Since w0 is not a leaf, M0

does not satisfy pass-once. On the other hand, Lemma 6.8 implies that M0 satisfies pass-once, a
contradiction.

The condition of having chw0 ≤ 2 when w0 is not a leaf is satisfied when M is change-minimal
and has full-rank; in particular it is satisfied by full-dimensional M . Indeed, Proposition 6.2 and
the equality valw0 = valu+ val v − 2 together imply that

chw0 + valw0 − 3 = (chu+ valu− 3) + (ch v + val v − 3) + 1 = 1. (C)

This means that chw0 is 0,1,2 or 3. The last value implies that w0 is a leaf. Thus:

Lemma 6.18. Let M be change-minimal with full-rank, and M0 be a limit of M with g(H(M)) =
g(H(M0)). Then M0 has full-rank and satisfies dangling-no-glue, no-return, and pass-once.

Proof. This is a consequence of Lemmas 6.15, 6.7, 6.8, 6.17 and Equation (C).
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6.5 Deformation
We develop the first iteration of the deformation procedure. Let H be a trivalent combinatorial
type and σ a path in CH . A path in a topological space is a continuous function with the closed
interval [0, 1] as domain; here CH has the topology induced from RE(H), as per Remark 2.9. We
deform a tropical morphism Φ by following σ, and show that upon encountering a limit, as in
Example 5.1, it is possible to continue further by changing the combinatorial structure of Φ. This
means passing to another glueing datum.

The heavy lifting required to prove this deformation process is deferred to Chapter 7. Here
we use Lemma 6.13 to reduce the proof to the problem of constructing full-dimensional glueing
datums with a given limit.

Recall that CM0
embeds canonically in CH Since σ is contained in a cone CH , namely our walk

does not change the combinatorial type of the source, in the following lemma we may assume that
H(M0) and H(M) are isomorphic. This is equivalent to saying that H(M0) is trivalent. Thus,
CM0

is a subset of CH(M). Denote by d(ℓ1, ℓ2) the euclidean distance in RE(H). We wish to prove:

Proposition 6.19 (deformation I). Let M0 be the limit at t1 of some M in FDg such that H(M0)
is trivalent. Let y0 ∈ CM0 ⊂ CH(M0). There exists a constant ε(M0, y0) > 0 such that if ŷ is an
element of CH(M0) \ CM0

with d(y0, ŷ) < ε(M0, y0), then there is M̂ in Star(M0) with ŷ ∈ CM̂ .

The constant ε(M0, y0) is chosen to have the property that if y ∈ RE(H(M)) is in a ball B
centered at y0 with radius ε(M0, y0) and the labellings of the elements of Star(M0) are compatible
at t1, then given M̂ = (T̂ , d, ∼̂) in Star(M0) the only obstruction for a ŷ in B to also be in CM̂
is whether ŷ(t1) is positive. For M̂ in Star(M0) write Â for AM̂ , and let ẑ0 = Â−1(y0) ∈ RE(T̂ ).
Denote by min+ y the smallest positive entry of y. Every element of the open ball B(ẑ0,min+ ẑ0) ⊂
RE(T̂ ) has positive entries, except possibly the one corresponding to t1. By continuity of Â−1 we
can choose a number ε(M̂,M0, y0) > 0 such that the image under Â−1 of the open ball with centre
y0 and radius ε(M̂,M0, y0) > 0 lies in B(ẑ0,min+ ẑ0). We define

ε(M0, y0) = min
M̂∈Star(M0)

ε(M̂,M0, y0). (ε)

This is well defined and positive since FDg is finite. By construction:

Lemma 6.20. Let M̂ be in Star(M0) and ŷ in CH . Set ẑ = Â−1(ŷ). If d(y0, ŷ) < ε(M0, ℓ0), then
ŷ ∈ CM̂ if and only if ẑ(t1) > 0.

Now we compute a formula for ẑ(t1), showing that its sign depends only on M0, ŷ, and crucially
only on det Â. Let Â = (âij). Append a column of zeroes at the beginning of the edge-length
matrix of M0 to obtain A0 = (aij). From Lemma 6.13 (limit matrix) it follows that âij = aij
for all i and j ≥ 2. Hence, the first row of the adjugate matrix adj(Â) depends only on M0. Let
(c1, c2, . . . , c3g−3) be that first row. Recall that the adjugate matrix satisfies:

adj(Â) · Â = det(Â) · I = ĉ · I,

where ĉ = det(Â). This formula holds in general for glueing datums with square edge-length
matrices. This gives that:

ĉ =

3g−3∑
i=1

ciâi1, (∗)

0 =

3g−3∑
i=1

ciâij =

3g−3∑
i=1

ciaij , for j ≥ 2. (∗∗)

Moreover, since M̂ is full-dimensional we have ĉ ̸= 0, so Â−1 = 1
ĉ adj(Â). Thus,

ẑ(t1) =
1

ĉ

3g−3∑
i=1

ci ŷ(hi). (L1)



CHAPTER 6. DEFORMATION 44

Hence, the sum depends only on ĉ, ŷ and on the ci (which depend on M0). Write c = detAM as
well. Applying Equation (L1) to z(t1) = (A−1

M ŷ)(t1) we get that

z(t1) =
1

c

3g−3∑
i=1

ci ŷ(hi).

Using Lemma 6.20 and comparing signs we obtain:

Lemma 6.21. Assume that |y0 − ŷ| < ε(M0, ℓ0) and ŷ ̸∈ CM0 . If sgn ĉ = sgn c, then ŷ ∈ CM̂ if
and only if ŷ ∈ CM . If sgn ĉ ̸= sgn c, then ŷ ∈ CM̂ if and only if ŷ ̸∈ CM .

So we would like to construct full-dimensional glueing datums with prescribed limit at t1 and
a prescribed sign for detAM .

Lemma 6.22. If M is in Star(M0), the edge labelling on Star(M0) is compatible at t1, and H(M0)
is isomorphic to H(M), then there is M̂ in Star(M0) with sgn detAM ̸= sgn detAM̂ .

Our constructive proof of Lemma 6.22 is the main achievement of this article. This is carried
out in Chapter 7. Proposition 6.19 (deformation I) follows easily from Lemma 6.22:

Proof of Proposition 6.19 (deformation I). If ŷ ∈ CM , then we are done, just take M̂ = M . Oth-
erwise ŷ ̸∈ CM . By Lemma 6.22 there is a glueing datum M̂ in Star(M0) with sgn ĉ ̸= sgn c. By
Lemma 6.21 we have that ŷ ∈ CM̂ .

6.6 Proof of main result
To close this chapter, we put together the deformation procedure of Proposition 6.19 and the
initial families of Theorem 3.32 to derive a proof of Theorem 1.4. Our deformation machinery is
designed to work with full-dimensional glueing datums, which implies even genus. The odd genus
case follows from the usual trick of attaching a loop. For executing that trick we need a converse
to Lemma 4.23.

Lemma 6.23. (loop and bridge) Let M be change-minimal and full-rank. Let A in V (H(M)) be
trivalent, incident to a bridge hb and a loop hl. Then hb and hl are above a path of T of length 2
that leads to a leaf. Moreover, they are the only edges of H above this path.

Proof. Regard A as a vertex of G. Let v = φ(A). Suppose that rφ(A) = 0. By Lemma 4.17 we
can apply Proposition 4.21 (local properties). By the case (r0-nd3) the three non-dangling edges
incident to A are above three distinct edges of T . Since two of the edges of G incident to A are
in hl, we have that hl passes above at least two leaves of T , contradicting Remark 4.15 (change-
minimal leaves). The possibility rφ(A) = 2 is ruled out since nd-valA = 3. Thus, rφ(A) = 1. The
case (r1-nd3) implies that v is divalent and there is an edge t in E(T ) incident to v such that there
are non-dangling edges e1 and e2 in E(A) above t. Both e1, e2 are in hl, for otherwise there is a
contradiction again. Hence, hl passes twice above t, so by pass-once t leads to a leaf. The path
is made by t and the other edge incident to v, and now we can apply Lemma 4.23 to conclude
uniqueness.

Let M = (T, d,∼) be a genus-g glueing datum. We add some boundary points to CM , in a
process akin to that in Section 2.4 where some boundary points are added to CH to obtain CH .
For a given ℓT in R≥0

E(T ) contract all the edges of T for which ℓT (e) = 0 to get M0 (this is
independent of contraction order); the pair (M, ℓT ) refers to the tropical morphism (M0, ℓ|T0).
Denote by CM the image under AM of the points ℓT in R≥0

E(T ) such that the source of (M, ℓT )
has genus g; namely points where the genus does not drop.

We now present the proof of Theorem 1.4. The main idea is that to realize a point y1 in CH ,
we choose an initial point y in CH , which exists by Theorem 3.32, and draw a straight line between
y1 and y. We then walk along this line, applying Proposition 6.19 as needed. To ensure the
hypotheses of Proposition 6.19 are met, it might be necessary to wiggle y a bit, replace it with a
nearby point using the following standard argument:
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Lemma 6.24. Let S =
⋃
L∈F L ⊂ Rn be a countable union of linear spaces L of codimension at

least 2, and y1, y be in Rn. For every ε > 0 there is a point y∗ in the radius-ε ball centered at y
such that the interior of the segment between y1 and y∗ does not intersect S.

Proof. Let S̄ =
⋃
L∈F span(y, L) ⊂ Rn. If y ̸∈ S̄ we are done, otherwise note that span(y, L) has

codimension at least 1; as F is countable, this implies that the ball B(y, ϵ) is not contained in S̄.
Take y∗ in B(y1, ε) \ S̄.

Proof of Theorem 1.4. Assume that g = 2g′. Delete the dangling trees of Γ to obtain the metric
graph Γ̃ = (H, y1), with H a combinatorial type. Choose M = (T, g′ + 1,∼) in FDg such that
H(M) is isomorphic to H. This is possible by Theorem 3.32. Denote by L2M the set of affine
spaces in CH associated to limits of M where at least two edges have been contracted. This means,
images under AM of sets in CT defined by fixing two coordinates to be null; so they are sets of
codimension at least 2. Set M (0) to M , S(0) to L2M and r to 0. By Lemma 6.24 we can choose
y(0) in CM(0) ⊂ CH such that the interior of the path σ(0) between y1 and y(0) does not intersect
S(0).

Walk along the segment σ(r) between y1 and y(r) by iterating the following procedure. If y1
is in CM(r) we are done. If not, assume that the interior of the segment σ(r) between y1 and y(r)

does not intersect S(r). In particular, this means that the point y0 of intersection between σ and
CM(r) is in the interior of a facet of CM(r) . That means that y0 is in CM0

with M0 the limit of
M (r) at a single edge t1. So we can apply Proposition 6.19 to obtain M̂ such that σ goes through
the interior CM̂ . Set M (r+1) to M̂ and S(r+1) to S(r) ∪ L2M̂ .

We now choose a new point y(r+1) so the assumption at the beginning of the previous paragraph
is satisfied. Note that for q = 0, . . . , r we have that σ(r) intersects each C̄M(q) at its interior or the
interior of a facet. Hence, there is an εq > 0 such that the ball B(y(r), εq) is a subset of CM(0) and
for any y ∈ B(y(r), εr) we still have the property that the interior of the segment between y1 and
y intersects CM(q) at either its interior, or the interior of a facet. Take ε to be the mininum of the
εq, and apply Lemma 6.24 to get a point y(r+1) which satisfies the assumption. Set r to r+1 and
iterate again.

Since σ(r) is a line and CM(q) is a convex set, the intersection σ(r)∩CM(q) has only one connected
component for all q. So the number of cones of FDg that σ(r) intersects equals r. Since FDg is
finite, this procedure stops, which means we have realized y1.

Now assume that g is odd. Choose a point x in Γ and attach to it a loop via a bridge. The
lengths of the bridge and loop are not important, hence the construction depends on one parameter
(the placement of x). The resulting graph Γb = (Gb, ℓb) has even genus g+1. As g is odd, ⌈g/2⌉+1
equals ⌈(g + 1)/2⌉ + 1. So there is a tropical morphism Φ: Γb → (T, ℓT ) of degree ⌈g/2⌉ + 1. By
Lemma 6.23, the bridge and loop added to Γ are above two edges of T , and no other point of Γb
is above them. Make the desired morphism by deleting these two edges and everything above.



Chapter 7

Constructions

We carry out the constructions necessary to prove deformation. This chapter is motivated by the
following paramount observation. The glueing datum M2 of Example 5.1 is the limit at t1 of M1,
M

(a)
3 , and M

(b)
3 with edge labellings λ1, λ

(a)
3 and λ

(b)
3 . There is an isomorphism from M

(a)
3 to

M
(b)
3 , but λ(a)3 does not induce λ(b)3 ; moreover M (a)

3 and M (b)
3 produce in total two non-isomorphic

tropical morphisms realizing the same source Γ̃. Let A1, A
(a)
2 , A(b)

3 be the edge-length matrices of
these glueing datums. They satisfy:

detA1 + detA
(a)
3 + detA

(b)
3 = 0.

We view this equation as a balancing condition, something ubiquitous in tropical geometry. We
generalize this relation with Equation (⋆) in Section 7.2.

We construct several candidates to be in Star(M0), for M0 the limit at t1 of some M in FDg.
We use Equation (⋆) to prove that at least in one of these candidates the determinant of the
edge-length matrix has the sign opposite to that of detAM ; as needed in Lemma 6.22.

7.1 Candidates to being full-dimensional
Let M be in FDg and M0 be the limit at t1. Recall that giving a construction for Star(M0) is hard
because having a full-rank edge-length matrix is a global condition. Instead, we pass to a larger
class of glueing datums that contains Star(M0). In return we get conditions that can be checked
locally, namely they only depend on the glueing relations above t1 and its ends u, v.

Definition 7.1. Let g = 2g′ and M be a genus-g glueing datum. We say that M is possibly
full-dimensional if M is change-minimal, satisfies dangling-no-glue, no-return, and AM is a (3g −
3)× (3g − 3)-matrix.

We denote by PStar(M0) the set of isomorphism classes of possibly full-dimensional glueing
datums that contract to a limit isomorphic to M0. By Lemma 6.18 we have that PStar(M0)
contains Star(M0). We index the elements of PStar(M0) by denoting them M (q), with q = 1, 2,
and so on. We write T (q) for the base tree of M (q), G(q) for the graph that arises from M (q), φ(q)

for φM(q) , r(q) for rφ(q) , m(q) for mφ(q) , and A(q) = (a
(q)
ij ) for AM(q) . We also write T0 for the

base tree of M0, G0 for the graph that arises from M0, φ0 for φM0 , r0 for rφ0 , m0 for mφ0 , and
A0 = (aij) for the matrix we get by inserting the zero column at the beginning of AM0

.
Recall that by Equation (C) on Page 42 we have that w0 is not change-minimal; more precisely,

chw0 + valw0 = 4. Our strategy to construct the elements of PStar(M0) is to regrow w0 back to
an edge in such a way that the resulting glueing datum is change-minimal and satisfies dangling-
no-glue and no-return. This is possible because, as advertised, these conditions depend solely on
the glueing relations above t1 and its ends, u and v.

46
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7.2 A balancing condition
On the other direction, note that since A(q) is a (3g − 3)× (3g − 3)-matrix we have that M (q) in
PStar(M0) is full-dimensional if only if detA(q) ̸= 0. So we need a relation for the determinants.
This is where the balancing condition suggested by Example 5.1 comes in:

Lemma 7.2 (balancing condition). If M is in Star(M0) and H(M0) is isomorphic to H(M),
then there exists a finite sequence of triples (M (q), λ(q),Kq), indexed by q, where the M (q) are in
PStar(M0) with edge labellings λ(q) compatible at t1 and the Kq are positive integers, such that
every isomorphism class in PStar(M0) has a representative in the M (q), and the following equality
holds:

r∑
q=1

Kq det(A
(q)) = 0. (⋆)

It is straightforward to see that the balancing condition of Lemma 7.2 implies Lemma 6.22.

Proof of Lemma 6.22. Since M is in Star(M0), we have that M is in PStar(M0). Then by the
balancing condition we have some M̂ in PStar(M0) with sgn detAM̂ ̸= sgn detAM and detAM̂ ̸=
0. The latter equation implies that M̂ is in Star(M0), as desired.

We prove the balancing condition and construct PStar(M0), simultaneously, with a case-by-
case analysis. For verifying Equation (⋆) we rely on formulas that follow from Equations (∗) and
(∗∗) on Page 43. To shorten, we write c(q) for detA(q). Consider the adjugate matrix adjA(q),
with columns indexed by edges of H(M (q)) and rows indexed by edges of T (q). Let c1, . . . , c3g−3

be the first row of adjA(q). Recall that the ci depend only on M0. For an edge h in H(M (q)) or
H(M0) we write ch for c

λ
(q)
H (h)

or cλ0,H(h), respectively. Recall that given a non-dangling e in G(q)

or G0 we denote by h(e) the unique edge of H(M (q)) or H(M0), respectively, that contains e. If e
is dangling, we let ch(e) be zero. Fix a j in [3g − 3]. We define:

σ0(J, j) =
∑
e∈J

ch(e)

|e|
, for J ⊆ φM0

−1(tj),

σ(q)(J, j) =
∑
e∈J

ch(e)

|e|
, for J ⊆ φM(q)

−1(tj).

For convenience we write σ0(j) for σ0(φM0
−1(tj), j) and σ(q)(j) for σ(q)(φM(q)

−1(tj), j).

Lemma 7.3. The following equalities hold:

σ(q)(j) = c(q) if j = 1, otherwise σ(q)(j) = 0,

σ0(J, j) = σ(q)(J, j) for j ̸= 1 and any J.

Proof. The first equality follows from Equations (∗) and (∗∗), and the fact that:

σ(q)(J, j) =
∑

e∈φ
M(q)

−1(tj)

ch(e)

|e|
=

3g−3∑
i=1

cia
(q)
ij .

Note that if j ̸= 1 the edges in φM0
−1(tj) correspond to those in φM(q)

−1(tj), which together with
the facts that the ci depend only on M0 and a(q)ij = aij for j ̸= 1, gives the second equality.

Additionally, note that if J1, J2 are disjoint, then σ0(J1, j) + σ0(J2, j) = σ0(J1 ∪ J2, j).
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w4

w3

w2

r0

r1

r1

r2

nd3

nd3

nd2

t2

M

M

{w4-r0-nd2}

{w4-r0-nd3}

{w3-r0}

{w3-r1-nd2}

{w3-r1-nd3-t3}

{w3-r1-nd3-t2-(a=k4)}

{w3-r1-nd3-t2-(a>k4)}

{w2-r1-nd2}

{w2-r1-nd3}

{w2-r2-nd3-M-11}

{w2-r2-nd3-M-1k}

{w2-r2-nd3-M-kk}

{w2-r2-nd3-P}

{w2-r2-nd2-M}

{w2-r2-nd2-P}

Figure 7.1: Logical flow of cases to regrow w0.

7.3 Cases for constructing PStar(M0)

The plan of action to construct PStar(M0) has three steps:

(1) Finding the possible base trees that contract to T0.

(2) Restricting the possibilities for the glueing relations ∼(q)
u , ∼(q)

v , ∼(q)
t1 .

(3) Giving a construction of a glueing datum together with edge labellings compatible at t1 for
each of the possibilities found in Step (2).

We deal with Step (1) on Section 7.4. Step (2) is the most delicate one, as it proves that
indeed we have representatives for all the elements of PStar(M0). We are able to say some useful
generalities in Sections 7.5 and 7.6, but the definitive arguments come from assuming certain
features of the glueing relations of M0 above w0 and edges in E(w0). Hence, we split the proof in
cases. For Step (3) we refer the reader to the illustrations that accompany each case.

We have, by Equation (C) on Page 42, that chw0 + valw0 = 4. Thus, valw0 is 1, 2, 3 or
4. In our setting the first option is not possible, because if valw0 were 1, then we would have
valu = 1 and val v = 2 for all glueing datums in PStar(M0), including the full-dimensional M . So
Lemma 4.23 applied to M would imply that there is a loop above t1, so the genus of H(M0) would
drop upon contraction of t1, a contradiction.

Let A0 be a vertex above w0. If H(M0) is isomorphic to H(M), then H(M0) is trivalent.
Hence, nd-valA0 is 0, 2, or 3. Also, since chw0 ≤ 2 we have that r0(A0) is 0, 1 or 2.

Our philosophy of division of cases is similar to the one for proving the local properties: the
different cases for calculating PStar(M0) are mainly determined by the values of valw0, r0(A0),
and nd-valA0. There are other minor case specific factors that come into play. This gives a total of
17 cases. See Figure 7.1 for a map that eases navigating through the 15 main cases. The diagram
does not show 2 auxiliary cases contained in Case {aux-r0}, which we treat in Subsection 7.7.1.
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7.4 Trees contracting to T0

We describe the possibilities for T (q). Assume that the edges of T0 incident to w0 are labelled
with 2, . . . ,degw0 + 1. To construct a tree that contracts to T0 choose disjoint sets S, S′ whose
union is {2, . . . ,degw0+1}. At most one of S, S′ may be empty. Replace w0 with an edge t1 with
ends u, v; the edges indexed by S are incident to u, and those indexed by S′ are incident to v. We
denote the resulting tree by TS . For ease of notation we omit braces; for example we write T2,3 for
T{2,3}, and T∅ for the tree corresponding to empty S. Without loss of generality we assume that
|S| ≤ |S′|, and in case of equality that 2 ∈ S. This gives a one-to-one correspondence between
unordered partitions of {2, . . . ,degw0 + 1} into two parts and trees contracting to T0. Since M (q)

is change-minimal, valu ≤ 3 and val v ≤ 3, that is |S|, |S′| ≤ 2.

7.5 The graph nd-G
(q)
A0

Let nd-G(q)
A0

be the subgraph of non-dangling elements ofG(q) that contract toA0. Since g(H(M)) =

g(H(M0)), the graph nd-G
(q)
A0

is a forest; moreover, by Lemma 6.16 it is a tree. By dangling-no-
glue, determining the glueing relations ∼(q)

u , ∼(q)
v , ∼(q)

t1 is equivalent to determining E(A) for each
A in V (nd-G

(q)
A0

) and the index m(q)(x) of each element x in nd-G
(q)
A0

.

Lemma 7.4. Let M be a glueing datum, M0 the limit at t1, and A0 above w0. If g(H(M)) =
g(H(M0)), then:

nd-valA0 =
∑

A∈V (nd-G
(q)
A0

)

(nd-valA− 2) + 2.

Proof. Since nd-G
(q)
A0

is a tree, |E(nd-G
(q)
A0

)| = |V (nd-G
(q)
A0

)| − 1. So we have that:

nd-valA0 =
∑

A∈V (nd-G
(q)
A0

)

nd-valA− 2|E(nd-G
(q)
A0

)|

=
∑

A∈V (nd-G
(q)
A0

)

nd-valA− 2(|V (nd-G
(q)
A0

)| − 1)

=
∑

A∈V (nd-G
(q)
A0

)

(nd-valA− 2) + 2.

Let A be in V (nd-G
(q)
A0

). By Lemma 7.4 if nd-valA0 = 2, then nd-valA = 2. If nd-valA0 = 3,
then either nd-valA = 2 or nd-valA = 3; moreover, the latter case occurs exactly once. So when
nd-valA is 3 we denote by A(q) the unique vertex of G(q) with non-dangling valency 3 that contracts
to A0. We make two further observations, one on the edge set and one on the vertex set of nd-G(q)

A0
:

Lemma 7.5. Let r be the number of vertices of G(q) that contract to A0 and belong either to
Case (r1-nd3) or Case (r2-nd2) of Proposition 4.21 (local properties). Then |E(nd-G

(q)
A0

)| ≤ r+1 ≤
r0(A0) + 1.

Proof. Let A be in V (nd-G
(q)
A0

). By the local properties and the fact that all the edges of nd-G(q)
A0

are above t1, we have that val
nd-G

(q)
A0

A is either 1 or 2. Thus, nd-G(q)
A0

is in fact a path, so the

inner vertices have valency 2. Note that valency 2 implies that A belongs either to Case (r1-nd3)
or Case (r2-nd2), so the result follows.

Lemma 7.6. If r0(A0) ≤ 1, then the vertices of nd-G(q)
A0

are the ends above u, v of the edges e(q),
where e(q) corresponds to e in nd-E(A0).
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Proof. Let A be in V (nd-G
(q)
A0

). Since r0(A0) ≤ 1, we have that r(q)(A) ≤ 1. Thus, by the local
properties A is not above a leaf. So A satisfies the no-return condition, which means that not all
of the edges in nd-E(A) are above t1, so at least one of them corresponds to one of the edges in
nd-E(A0).

7.6 Combinatorial type
We can obtain H(M0) from H(M) by contracting a set of edges. If the number of edges contracted
is zero, then H(M0) and H(M) are isomorphic. This is equivalent to having a trivalent H(M0).
This is the setting of Lemma 7.2 (balancing condition). Thus, we assume for the rest of this chapter
that H(M0) and H(M) are isomorphic. Since the edge labelling on PStar(M0) is compatible at
t1, the identification is canonical.

The case where H(M0) and H(M) are not isomorphic is of interest as well, and we deal with it
in Part II. It is by studying the PStar(M0) of M0 with non-trivalent H(M0) that we show how it
is possibly to walk between cones CH with different combinatorial types H. We use this to prove
that the space Gtrop

g→0,d is connected.

7.7 Case-work
Let A0 be above w0. Let e in G(q) contract to A0. Let Au, Av be the ends of e, above u, v
respectively. If e is dangling, then it does not contribute to σ(q)(1). So, by Lemma 6.14 (dangling
in the limit) we can assume that A0 is non-dangling. We denote by Jr the set of those e contracting
to A0 such that r(q)(Au)+ r(q)(Av) = r. By the discussion in Section 7.3 we have that r0(A0) ≤ 2,
hence:

detA(q) = σ(q)(1) = σ(q)(J0, 1) + σ(q)(J1, 1) + σ(q)(J2, 1).

In each of the following cases we calculate σ(q)(J0, 1), σ(q)(J1, 1), and σ(q)(J2, 1) separately. To
avoid having several levels of subindices, we write c(e) for ch(e).

7.7.1 Case {aux-r0}

We begin by showing that T (q) = TS(q) determines nd-G
(q)
A0

when r0(A0) is 0. This is an auxiliary
case for calculating σ(q)(J0, 1). Since valw0 ≥ 2, by Lemma 4.19 (r1 implies no-return) we have
that A0 satisfies the no-return condition. Thus, if nd-valA0 = 2, then φ0 is injective on nd-E(A0).
If nd-valA0 = 3, suppose that φ0 is not injective on nd-E(A0), so

∑
e∈nd-E(A0)

|e| ≤ 2|A0|. Hence,
r0(A0) = nd-valA0 − 2 + 2|A0| −

∑
e∈nd-E(A0)

|e| ≥ 1, a contradiction.

• Case {aux-r0-nd2}: Assume that nd-valA0 is 2. Let eα, eβ be the edges in nd-E(A0), above tα
and tβ respectively. By Lemma 7.6 the vertices of nd-G(q)

A0
are the ends of e(q)α and e(q)β above u

or v. If {α, β} ⊂ S(q), the ends of e(q)α , e(q)β are above u; since G(q)
A0

is connected, they equal one
vertex A in G(q), which equals A0 as subsets of [d] by Lemma 6.16. Similarly if {α, β} ⊂ S′(q).
Otherwise, one end Au is above u, the other end Av above v, so they are distinct. By connectivity
of nd-G(q)

A0
there is one edge e′ joining Au, Av. By Lemma 7.4 and since r0(A0) = 0, the vertices

Au and Av belong to Case (r0-nd2) of the local properties. So, as subsets of [d], the classes e(q)α ,
Au, e′, Av, e

(q)
β are equal; and h(e(q)α ) = h(e′) = h(e

(q)
β ).

• Case {aux-r0-nd3}: Assume that nd-valA0 is 3. Let eα, eβ , eγ be the edges in nd-E(A0), above
tα, tβ , tγ , respectively. Since |φ0(nd-E(A0))| = 3 and max(|S(q)|, |S′(q)|) ≤ 2, both intersections
S(q) ∩ φ0(nd-E(A0)) and S′(q) ∩ φ0(nd-E(A0)) are non-empty. One of these intersections is a
singleton. Assume without loss of generality that the singleton is {α}. By Lemma 7.5 there is at
most one edge in nd-G

(q)
A0

, therefore at most two vertices. By Lemma 7.6 the vertices of nd-G(q)
A0

are the end A2 of e(q)α above u, and the vertex A3 that is the end of both e(q)β and e(q)γ above v.
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So A2 and A3 are distinct, joined by a non-dangling edge e′, and nd-valA2 = 2, nd-valA3 = 3.
By the Case (r0-nd2) of the local properties, as subsets of [d], we get that e(q)α , A2, and e′ are
equal, and h(e(q)α ) = h(e′). Note that they are also a subset of A3. Finally Lemma 6.16 implies
that A0 = A3 ∪A2 = A3.

7.7.2 Case {w4}
Assume that valw0 is 4. Then chw0 = 0 by Equation (C) on Page 42, so r0(A0) = 0. Thus,
the two Cases {aux-r0-nd2} and {aux-r0-nd3} settle entirely this case. Namely, the elements of
PStar(M0) are M (1), M (2) and M (3), determined by T2,3, T2,4, and T2,5, respectively.

• Case {w4-r0-nd2}: Let nd-E(A0) = {eα, eβ} with φ0(eα) = tα, φ0(eβ) = tβ . Applying
Case {aux-r0-nd2} we get the following diagrams, and a formula.

w0

tα

tβ tγ

tδ

M0

t1u v

tα

tβ tγ

tδ

Tα,β

t1u v

tα

tγ tβ

tδ

Tα,γ

t1u v

tα

tδ tβ

tγ

Tα,δ

3∑
q=1

∑
e∈E(nd-G

(q)
A0

)

c(e)

|e|
=
c(eα)

|eα|
+
c(eβ)

|eβ |
. (w4-nd2)

• Case {w4-r0-nd3}: Let nd-E(A0) = {eα, eβ , eγ} with φ0(eα) = tα, φ0(eβ) = tβ , φ0(eγ) = tγ .
Applying Case {aux-r0-nd3} we get the following diagrams, and a formula.

w0

tα

tβ tγ

tδ

M0

t1u v

tα

tβ tγ

tδ

Tα,β

t1u v

tα

tγ tβ

tδ

Tα,γ

t1u v

tα

tδ tβ

tδ

Tα,δ

3∑
q=1

∑
e∈E(nd-G

(q)
A0

)

c(e)

|e|
=
c(eα)

|eα|
+
c(eβ)

|eβ |
+
c(eγ)

|eγ |
. (w4-nd3)

• We verify Equation (⋆) for Case {w4} by putting together Lemma 7.3 and Equations (w4-nd2),
(w4-nd3):

c(1) + c(2) + c(3) =

3∑
q=1

σ(q)(1) =

3∑
q=1

∑
A0∈φ−1

0 (A)

∑
e∈E(nd-G

(q)
A0

)

c(e)

|e|
(7.1)

=

5∑
j=2

σ(q)(j) = 0.
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7.7.3 Case {w3}
Assume that valw0 is 3. Then chw0 = 1 by Equation (C). There is exactly one vertex of G0 with
r0-value 1 above w0, the others have r0-value 0. By Section 7.4, the possible base trees contracting
to T0 are T2, T3 and T4; all with valu = 2, val v = 3. Let {α} = S(q). We analyse the cases where
r0(A0) is either 0 or 1.

• Case {w3-r0}: Assume that r0(A0) = 0, and let Au in G
(q)
A0

be non-dangling above u. Then
r(q)(Au) = 0. Since valu = 2, only Case (r0-nd2) of the local properties is possible, so nd-valA =
2 and as a subset of [d] the class Au is equal to both of the elements in nd-E(Au). Since any
non-dangling edge in (φ(q))

−1
(tα) has a non-dangling end above u, we conclude that:

σ(q)(J0, 1) = σ(q)(J0, α) = σ0(J0, α).

• Case {w3-r1}: Since H0 is trivalent either nd-valA0 is 3 or 2.

• Case {w3-r1-nd3}: Assume that nd-valA0 is 3. By the no-return condition φ0(nd-E(A0)) has
at least two elements. So let e2, e3, e4 be the edges in nd-E(A0), labelled such that |e4| =
max(|e2|, |e3|, |e4|), φ0(e3) = t3 and φ0(e4) = t4. Let ki = |ei|. Lemma 4.18 (nd. rφ formula)
gives r0(A0) = 1 = 3+2|A0| − 2− (k2+ k3+ k4). That is, 2|A0| = k2+ k3+ k4. If e2 were above
t4, then k2 + k4 ≤ |A0|. Substituting in k3 = 2|A0| − (k2 + k4) gives k3 ≥ |A0| ≥ k2 + k4 > k4, a
contradiction. So e2 is either above t2 or above t3.

• Case {w3-r1-nd3-t2}: Assume that e2 is above t2. Let {α, β, γ} = {2, 3, 4}. Recall from Sec-
tion 7.5 that A(q) is the unique vertex of G(q) with nd-valA(q) = 3 that contracts to A0. We say
that M (q) is in Position I or II if A(q) is above u or v, respectively. We prove that T (q) and the
position of A(q) determine M (q).

Position I: Assume that A(q) is above u. Since valu = 2 and nd-valA(q) = 3 we have that
A(q) belongs to Case (r1-nd3) of the local properties (assuming Case (r0-nd3) contradicts that
valu = 2). So there are exactly two edges e′, e′′ of nd-E(A(q)) above t1; moreover |eα| = |A(q)| =
|e′|+ |e′′|. By Lemma 7.5 these are the two edges of nd-G(q)

A0
. Hence, nd-G(q)

A0
has three vertices.

By Lemma 7.6 these are: A(q) incident to e
(q)
α ; and the two ends of e(q)β , e(q)γ above v, with

non-dangling valency 2 and r(q)-value equal to 0. By the Case (r0-nd2) of the local properties
we conclude that as subsets of [d], the edges e′, e(q)β and their common end are equal, and

h(e′) = h(e
(q)
β ); similarly with e′′ and e

(q)
γ . Thus, |eα| = |eβ | + |eγ | and |A(q)| = |A0|, so this

construction is possible only when α = 4 and k4 = |A0|.
Position II: Assume that A(q) is above v. Since val v = 3 and nd-valA(q) = 3 we have that
A(q) belongs to Case (r0-nd3) of the local properties (assuming Case (r1-nd3) contradicts that
val v = 3). So there is exactly one edge e′ of nd-E(A(q)) above t1. Let A′ be the other end of
e′, which by Lemma 7.4 has non-dangling valency 2. Lemma 7.5 implies that the two vertices of
nd-G

(q)
A0

are A(q) and A′. Hence, by Lemma 7.6 A′ is incident to e(q)α ; and h(e(q)α ) = h(e′). Since
r0(A0) = 1, we have that A′ belongs to Case (r1-nd2) of the local properties and this gives two
possible cases for the values of |A′|, |e′| and |A(q)|:

Position II.a: |A′| = |e′| and |A′| = |e(q)α |+1. In this case, as subsets of [d], we get that e(q)α ⊂ A′,
that A′ and e′ are equal, that e′ ⊂ A(q), and therefore, by Lemma 6.16, that A0 = A(q) ∪ A′ =
A(q). We also get that |A0| ≥ |A′| > kα.

Position II.b: |A′| = |e′| + 1 and |A′| = |e(q)α |. As subsets of [d] we have that e′ ⊂ A′ ∩ A(q), so
A′ \A(q) is either empty or a singleton. The former would imply that for i ∈ A′ \ e′, the classes
e′ and (t1, i)M(q) are distinct edges of G(q) above t1 with equal ends, which gives a cycle over t1,
a contradiction. So |A0| = |A(q)|+ |A′| − |A(q) ∩ A′| = |A(q)|+ 1. The ends of e(q)β and e

(q)
γ are

above v, so |A(q)| ≥ kβ , kγ . Hence, |A0| > max(kβ , kγ), so kα ≥ 2.

Since Position I implies |A0| = k4, we treat two cases: |A0| = k4 and |A0| > k4.
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• Case {w3-r1-nd3-t2-(a=k4)}: Assume that |A0| = k4. Then k2 + k3 = |A0|, so k4 > k2, k3.
Let α = 4, so |A0| = k4, which precludes Position II.a. Position I and Position II.b give
M (1) and M (2), respectively. Let α = 2, which precludes Position I. Then it is not true that
|A0| > max(kβ , kγ) = k4, which precludes Position II.b as well. Position II.a gives M (3). An
analogous argument with α = 3 gives M (4). See figures and calculations below.

A0

t4

t2

t3

w0

e2

e3

e4

M0

c(e4)

k2 + k3
+ σ0(J0, 4) = 0

c(e2)

k2
+ σ0(J0, 2) = 0

c(e3)

k3
+ σ0(J0, 3) = 0

v ut1

A(1)

M (1)

|e′| = k2 |e′′| = k3

σ(q)(J0, 1) = σ0(J0, 4)

c(1) =
c(e2)

k2
+

c(e3)

k3
+ σ(q)(J0, 1)

v ut1

A(2)

e2

e3

e4

M (2)

|e′| = k4 − 1 = k2 + k3 − 1

σ(2)(J0, 1) = σ0(J0, 4)

c(2) =
c(e4)

k2 + k3 − 1
+ σ(2)(J0, 1)

u

v
t1

A(3)

M (3)

|e′| = k2 + 1

σ(3)(J0, 1) = σ0(J0, 2)

c(3) =
c(e2)

k2 + 1
+ σ(3)(J0, 1)

u
v
t1

A(4)

M (4)

|e′| = k3 + 1

σ(4)(J0, 1) = σ0(J0, 3)

c(4) =
c(e3)

k3 + 1
+ σ(4)(J0, 1)

To verify Equation (⋆) we compute:

c(1) + (k2 + k3 − 1)c(2) + (k2 + 1)c(3) + (k3 + 1)c(4) (7.2)

=
(

(k2+1)
k2

c(e2) + (k2 + 1)σ0(J0, 2)
)
+
(

(k3+1)
k3

c(e3) + (k3 + 1)σ0(J0, 3)
)

+ (c(e4) + (k2 + k3)σ0(J0, 4)) = 0 + 0 + 0 = 0.

• Case {w3-r1-nd3-t2-(a>k4)}: Assume that |A0| > k4, which precludes Position I. If min(k2, k3, k4)
were 1, then k2 + k3 + k4 ≤ 2|A0| − 1, contradicting 0 = 2|A| − k2 − k3 − k4. Hence,
min(k2, k3, k4) ≥ 2, so both cases of Position II are possible. It turns out that they balance
each other for each possible α. See figures and calculations below for α = 4.

t4

t2

t3

w0

A0

e2

e3

e4

M0

t1 uv

A(1)

M (1)

t1 uv

A(2)

M (2)
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c(e4)

k4
+ σ0(J0, 4) = 0

|e′| = k4 − 1

σ(1)(J0, 1) = σ0(J0, 4)

c(1) =
c(e4)

k4 − 1
+ σ(1)(J0, 1)

|e′| = k4 + 1

σ(2)(J0, 1) = σ0(J0, 4)

c(2) =
c(e4)

k4 + 1
+ σ(2)(J0, 1)

We conclude that:

(k4 − 1)c(1) + (k4 + 1)c(2) = 2c(e4) + 2k4σ0(J0, 4) = 0.

Analogous constructions exist for α = 2, which gives M (3), M (4); and α = 3, which gives M (5),
M (6). We verify Equation (⋆):(

(k4 − 1)c(1) + (k4 + 1)c(2)
)
+
(
(k2 − 1)c(3) + (k2 + 1)c(4)

)
+ (7.3)(

(k3 − 1)c(5) + (k3 + 1)c(6)
)
= 0 + 0 + 0 = 0.

• Case {w3-r1-nd3-t3}: Assume that e2 is above t3. Then k2 + k3 ≤ |A0|. Recall that 2|A0| =
k2 + k3 + k4 and |A0| ≥ ki, so k4 = |A0|, k2 + k3 = |A0| and |A0| > k2, k3. We argue that
T (q) determines nd-G

(q)
A0

. If α were 2, then by Lemma 7.6 all the vertices of nd-G(q)
A0

would be
above v, so nd-G

(q)
A0

would have a single vertex with r(q)-value 1 above trivalent v, contradicting
that M (q) is change-minimal. For α = 3, 4, we get that nd-G

(q)
A0

has vertices above u and v.
The vertices above v belong to the Case (r0-nd2) of the local properties, since Case (r0-nd3)
would produce a non-dangling element above t2. So if α = 3, we get M (1) where e(q)2 , e(q)3 have
ends above v, and by Case (r0-nd2) these determine the two edges e′, e′′ of nd-G(q)

A0
; similarly,

if α = 4 we get M (2) where e(q)4 has an end above v and this determines the edge e′ of nd-G(q)
A0

.
So the vertex of nd-G(q)

A0
above u is A(q), and it belongs to Case (r1-nd3). So A(q) equals e4,

equals A0 as subsets of [d]. This gives M (1) and M (2) for α = 3, 4, respectively. See figures and
calculations below.

t3 t4w0

e2

e3

e4

A0

M0

c(e2)

k2
+

c(e3)

k3
+ σ0(J0, 3) = 0

c(e4)

k2 + k3
+ σ0(J0, 4) = 0

t1u v

A(1)

M (1)

|e′| = k4 = k2 + k3

σ(1)(J0, 1) = σ0(J0, 3)

c(1) =
c(e4)

k2 + k3
+ σ(1)(J0, 1)

t1v u

A(2)

M (2)

|e′| = k2 |e′′| = k3

σ(2)(J0, 1) = σ0(J0, 4)

c(2) =
c(e2)

k2
+

c(e3)

k3

+ σ(2)(J0, 1)

We verify Equation (⋆):

c(1) + c(2) = (7.4)(
1

k2+k3
c(e4) + σ0(J0, 4)

)
+
(

1
k2
c(e2) +

1
k3
c(e3) + σ0(J0, 3)

)
= 0 + 0 = 0.

• Case {w3-r1-nd2}: Assume that nd-valA0 is 2. Let e, e′ be in nd-E(A0). They are in the same
edge h of H0. Assume that |e| ≤ |e′|. By no-return we may assume that e and e′ are above t3
and t4 respectively. Lemma 4.18 (nd. rφ formula) gives rφ(A0) = 1 = 2|A0| − |e′| − |e|. Thus, if
k = |e|, then |A0| = |e′| = k + 1. From here, follow a reasoning analogous to case {w3-nd3-t2}
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to show that T (q) determines M (q), and that the vertices of nd-G(q)
A0

above v belong to Case (r0-
nd2) of the local properties, and the ones above u to Case (r1-nd2). See figures and calculations
below.

t3 t4w0

e
e′

A0

M0

ch
k

+ σ0(J0, 3) = 0

ch
k + 1

+ σ0(J0, 4) = 0

t1u v

M (1)

σ(1)(J0, 1) = σ0(J0, 3)

c(1) =
ch

k + 1
+ σ(1)(J0, 1)

t1v u

M (2)

σ(2)(J0, 1) = σ0(J0, 4)

c(2) =
ch
k

+ σ(2)(J0, 1)

We verify Equation (⋆):

c(1) + c(2) =
(
1
k ch + σ0(J0, 3)

)
+
(

1
k+1ch + σ0(J0, 4)

)
= 0 + 0 = 0. (7.5)

7.7.4 Case {w2}
Assume that valw0 is 2. Then r0(A0) = valA0 − 2. So if r0(A0) = 0, then valA0 = 2. Hence,
σ0(J0, 2) = σ0(J0, 3), and we denote this quantity by s. Also, chw0 = 2 by Equation (C). The
trees contracting to T0 are T∅ with valu = 1, val v = 3; and T2 with valu = val v = 2. If T (q) = T∅,
then Remark 4.15 implies that σ(q)(J0, 1) = σ(q)(J1, 1) = 0, so detA(q) = σ(q)(J2, 1). If T (q) = T2,
then a reasoning analogous to Case {w3-r0} gives

σ(q)(J0, 1) = σ(q)(J0, 2) = s,

σ(q)(J0, 1) = σ(q)(J0, 3) = s.

So we are left with the cases r0(A0) = 2 and r0(A0) = 1.

• Case {w2-r2}: Assume that r0(A0) = 2. Then valA0 = 4. Since A0 satisfies no-return, let e2,
e3 be non-dangling edges in E(A0), above t2, t3, respectively. Let e1, e4 be the remaining two
edges of E(A0). We may assume without loss of generality that e1 is above t2. By the refinement
property: ∑

e∈E(A0)
φ0(e)=t2

|e| =
∑

e∈E(A0)
φ0(e)=t3

|e| = |A0|.

So in particular
∑4
i=1 ki = 2|A0|. We explore how T (q) affects nd-G

(q)
A0

:

Base I: assume that T (q) is T∅. Then, by Remark 4.15 (change-minimal leaves) we have that
nd-G

(q)
A0

has a vertex Au above u with |Au| = 2, r(q)(Au) = 2, and two incident edges e′, e′′ with
|e′| = |e′′| = 1. These are all the edges of nd-G(q)

A0
by Lemma 7.5 and the fact that r0(A0) = 2.

Thus, Au and the ends A′, A′′ of e′, e′′, respectively, are the vertices of nd-G(q)
A0

. We may assume
that e(q)2 and A′ are incident. There are two possibilities for E(A′) and E(A′′). Either e(q)3 is
incident to A′ or A′′. We call the first case Base I.a. Since r(q)(A′) = r(q)(A′′) = 0, we have that
k2 = |A′| = k3, k1 = |A′′| = k4. We call the second case Base I.b; it implies that k2 equals the
cardinality of the edge above t3 incident to A′. So either k2 = k4 and k3 = k1; or k2 = k1 and
k3 = k4. In particular, here the two edges of E(A0) are above t2, and the other two above t3.
See Case {w2-r2-nd3-M-11} for figures of both possibilities.

Base II: assume that T (q) is T2. Then the vertices of nd-G(q)
A0

belong to Cases (r0-nd2), (r1-nd2),
or (r1-nd3) of the local properties. By Lemma 7.4 at most one vertex of nd-G

(q)
A0

belongs to
Case (r1-nd3). So by Lemma 7.5 we get that nd-G

(q)
A0

has either one edge e′; or two edges e′,
e′′. We call them Base II.1, Base II.2, respectively.
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• Case {w2-r2-nd3}: Assume that nd-valA0 is 3. We may assume without loss of generality that
e4 is dangling. So k4 = 1 and 2|A0|−1 =

∑3
i=1 ki. If e4 is above t3, then k3+1 = |A0| = k1+k2.

If e4 is above t2, then k3 = |A0| = k1 + k2 +1. We call these two possibilities Cardinality M and
Cardinality P.

For Base II we have that exactly one vertex of nd-G(q)
A0

belongs to Case (r1-nd3), so the other
vertex of nd-G(q)

A0
with r(q)-value 1 belongs to Case (r1-nd2).

In Base II.1, Lemma 7.6 implies that the ends of e(q)1 , e(q)2 above u are the same vertex of nd-G(q)
A0

;
by no-return this vertex has non-dangling valency 3, so it is A(q). By Case (r1-nd3) we have
that e1 ∪ e2, A(q), and e′ are equal as subsets of [d]; therefore, |e′| = |A(q)| = k1 + k2. Hence,
the other end A′ of e′ (which is above v, incident to e

(q)
3 ) belongs to Case (r1-nd2). Either

|e′| = |A′| = k3 + 1, or |e′| = |A′| − 1 = k3 − 1. The first possibility implies k1 + k2 = k3 + 1,
namely Cardinality M; the second possibility implies k1 + k2 = k3 − 1, namely Cardinality P.
We call these possibilities Base II.1.M and Base II.1.P, respectively.

In Base II.2, nd-G(q)
A0

has three vertices. By Lemma 7.6 these are the ends A′, A′′ of e(q)1 , e(q)2 ,
respectively, above u, and the end B of e(q)3 above v. By no-return we may assume that e′,
e′′ are incident to A′, A′′, respectively. Since these are all the edges of nd-G

(q)
A0

, nd-valA′ =

nd-valA′′ = 2, and nd-valB = 3. So B is A(q) and h(e(q)1 ) = h(e′), h(e(q)2 ) = h(e′′). So Case (r1-
nd3) gives that k3 = |A(q)| = |e′|+ |e′′|. One of A′, A′′ belongs to Case (r1-nd2) and the other to
Case (r0-nd2). If A′ belongs to Case (r1-nd2) then either |e′| = |A′| − 1 = k1 − 1, so k1 > 1 and
(k1−1)+k2 = k3, that is Cardinality M; or |e′| = |A′|+1 = k1+1, which gives (k1+1)+k2 = k3,
that is Cardinality P. We call these possibilities Base II.2.1.M and Base II.2.1.P, respectively.
Analogously, if A′′ belongs to Case (r1-nd2) we get Base II.2.2.M and Base II.2.2.P, where the
former gives k2 > 1.

• Case {w2-r2-nd3-M}: Assume that e4 is above t3, namely Cardinality M. The possibilities are
Base I.a, Base I.b, Base II.1.M, Base II.2.1.M, and Base II.2.2.M.

• Case {w2-r2-nd3-M-11}: Assume that k1 = 1 and k2 = 1. Base II.2.1.M, Base II.2.2.M are
precluded since k1 ̸> 1, k2 ̸> 1, respectively. Base I.a, Base I.b, Base II.1.M determine M (1),
M (2) and M (3), respectively. See figures and calculations below.

A0

t2 t3w0

e1

e2 e3

M0

c(e1) + c(e2) + s = 0

c(e1) + s = 0

t1

A(1)

u

v

e1

e2 e3

M (1)

σ(1)(J0, 1) = σ(1)(J1, 1) = 0

c(1) = 2c(e1)

t1

A(2)

u

v

M (2)

σ(2)(J0, 1) = σ(2)(J1, 1) = 0

c(2) = 2c(e2)

t1u v

A(3)

M (3)

|e| = 2

σ(3)(J0, 1) = s

c(3) =
c(e3)

2
+ s

We verify Equation (⋆):

c(1) + c(2) + 4c(3) = 2(c(e1) + c(e2) + s) + 2(c(e3) + s) = 2 · 0 + 2 · 0 = 0. (7.6)
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• Case {w2-r2-nd3-M-1k}: Assume that k1 = 1 and k2 ≥ 2. Let k = k2, so |A0| = k + 1 and
|e3| = k. Base I.b and Base II.2.1.M are precluded since |e2| ≠ |e4| and k1 ̸> 1, respectively.
Base I.a, Base II.2.2.M, Base II.1.M determine M (1), M (2) and M (3), respectively. See figures
and calculations below.

t2 t3w0

e1

e2 e3

A0

M0

c(e1) +
c(e2)

k
+ s = 0

c(e3)

k
+ s = 0

t1

A(1)

u

v

e1

e2 e3

M (1)

σ(1)(J0, 1) = σ(1)(J1, 1) = 0

c(1) = 2c(e1)

t1u v

A(2)

M (2)

|e′| = 1 |e′′| = k − 1

σ(2)(J0, 1) = s

c(2) = c(e1) +
c(e2)

k − 1
+ s

t1u v

A(3)

M (3)

|e′| = k + 1

σ(3)(J0, 1) = s

c(3) =
c(e3)

k + 1
+ s

We verify Equation (⋆):

c(1) + 2(k − 1)c(2) + 2(k + 1)c(3) = (7.7)
2(kc(e1) + c(e2) + ks) + (c(e3) + ks) = 2 · 0 + 0 = 0.

• Case {w2-r2-nd3-M-kk}: Assume that k1 ≥ 2 and k2 ≥ 2. Then k3 > k1, k2, so Base I is
precluded since |e2| ≠ |e3| nor |e2| ≠ |e4|. Base II.2.1.M, Base II.2.2.M, and Base II.1.M
determine M (1), M (2) and M (3), respectively. See figures and calculations below.

t2 t3w0

e1

e2

e3

A0

M0

c(e1)

k1
+
c(e2)

k2
+ s = 0

c(e3)

k1 + k2 − 1
+ s = 0
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t1u v

A(1)
e1

e2

e3

M (1)

|e′| = k1 − 1 |e′′| = k2

σ(1)(J0, 1) = s

c(1) =
c(e1)

k1 − 1
+

c(e2)

k2
+ s

t1u v

A(2)

M (2)

|e′| = k1 |e′′| = k2 − 1

σ(2)(J0, 1) = s

c(2) =
c(e1)

k1
+

c(e2)

k2 − 1
+ s

t1u v

A(3)

M (3)

|e′| = k1 + k2

σ(3)(J0, 1) = s

c(3) =
c(e3)

k1 + k2
+ s

We verify Equation (⋆):

(k1 − 1)c(1) + (k2 − 1)c(2) + (k1 + k2)c
(3) = (7.8)(

k1+k2−1
k1

c(e1) +
k1+k2−1

k2
c(e2) + (k1 + k2 − 1)s

)
+ (c(e3) + (k1 + k2 − 1)s) = 0.

• Case {w2-r2-nd3-P}: Assume that e4 is above t2, namely Cardinality P. Base I is precluded.
Base II.2.1.P, Base II.2.2.P, Base II.1.P determine M (1), M (2) and M (3), respectively. See figures
and calculations below.

t2 t3w0

e1

e2

e3

A0

M0

c(e1)

k1
+
c(e2)

k2
+ s = 0

c(e3)

k1 + k2 + 1
+ s = 0

t1u v

A(1)

e1

e2

e3

M (1)

|e′| = k1 + 1 |e′′| = k2

σ(q)(J0, 1) = s

c(1) =
c(e1)

k1 + 1
+

c(e2)

k2
+ s

t1u v

A(2)

M (2)

|e′| = k1 |e′′| = k2 + 1

σ(2)(J0, 1) = s

c(2) =
c(e1)

k1
+

c(e2)

k2 + 1
+ s

t1u v

A(3)

M (3)

|e′| = k1 + k2

σ(3)(J0, 1) = s

c(3) =
c(e3)

k1 + k2
+ s

We verify Equation (⋆):

(k1 + 1)c(1) + (k2 + 1)c(2) + (k1 + k2)c
(3) = (7.9)

(k1 + k2 + 1)( 1
k1
c(e1) +

1
k2
c(e2) + s) + (k1 + k2 + 1)( 1

k1+k2+1c(e3) + s) = 0 + 0 = 0.

• Case {w2-r2-nd2}: Assume that nd-valA0 is 2. Then both e1, e4 are dangling. Let h be equal
to h(e2) equal to h(e3).
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• Case {w2-r2-nd2-M}: Recall that e1 is above t2. Assume that e4 is above t3. Then k2 + 1 =
|A0| = k3 + 1. Since |e2| = |e3|, the columns corresponding to t2 and t3 in A0 are equal. So M0

is not full-rank, contradicting Lemma 6.7.

• Case {w2-r2-nd2-P}: Assume that e4 is above t2. Then k3 = |A0| = k2 + 2, and Base I is
precluded. In Base II all vertices of nd-G(q)

A0
belong to Case (r1-nd2). Thus, nd-G(q)

A0
has a single

edge |e′|.
The Case (r1-nd2) on the end of e3 above v implies that |e′| = k3 − 1 = k2 + 1. This is the only
possibility, see diagram below.

A0

t2 t3w0

e2

e3

M0

s = σ0(J0, 2) = σ0(J0, 3)
ch
k2

+ s = 0,
ch

k2 + 2
+ s = 0

t1u v

M (1)

|e′| = k2 + 1

σ(1)(J0, 1) = s

c(1) =
ch

k2 + 1
+ s

From ch + k2s = 0 and ch + (k2 + 2)s = 0 it follows that c(1) = ch + (k2 + 1)s = 0, hence M (1)

is not full-dimensional.

• Case {w2-r1}: Assume that r0(A0) = 1. Then valA0 = 3. Since A0 satisfies no-return, let e2,
e3 be non-dangling edges in E(A0), above t2, t3, respectively. Let e1 be the remaining edge
of E(A0). We may assume without loss of generality that e1 is above t2. By the refinement
property k1 + k2 = |A0| = k3. Let Ã be the unique vertex of nd-G(q)

A0
with r(q)(Ã) = 1. If Ã is

above u (resp. v), then the vertices of nd-G(q)
A0

above v (resp. u) belong to the Case (r0-nd2) of
the local properties (Case (r0-nd3) would contradict that v (resp. u) is divalent). These facts
and Lemma 7.6 determine the classes.

• Case {w2-r1-nd3}: Assume that nd-valA0 is 3.

t2 t3w0

e1

e2

e3

A0

local part around A0

σ0(JA0 , 2) =
c(e1)

k1
+
c(e2)

k2

σ0(JA0
, 3) =

c(e3)

k1 + k2

t1u v

A(q)

φ(1)(Ã) = u

|e′| = k3

σ(1)(JA0 , 1) =
c(e3)

k1 + k2

t1u v

A(q)

φ(2)(Ã) = v

|e′| = k1 |e′′| = k2

σ(2)(JA0 , 1) =
c(e1)

k1
+
c(e2)

k2

Thus,
σ(1)(JA0

, 1) + σ(2)(JA0
, 1) = σ0(JA0

, 2) + σ0(JA0
, 3).

• Case {w2-r1-nd2}: Assume that nd-valA0 is 2. We may assume that e1 is dangling. So k3 =
k2 + 1. Let h = h(e2) = h(e3).
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t2 t3w0

e2
e3

A0

local part around A0

σ0(JA0 , 2) =
ch
k1

σ0(JA0
, 3) =

ch
k1 + 1

t1u v

A(q)

φ(1)(Ã) = u

|e′| = k2 + 1

σ(1)(JA0 , 1) =
ch

k2 + 1

t1u v

A(q)

φ(2)(Ã) = v

|e′| = k2

σ(2)(JA0 , 1) =
ch
k2

Thus,
σ(1)(JA0 , 1) + σ(2)(JA0 , 1) = σ0(JA0 , 2) + σ0(JA0 , 3).

• Proof of (⋆) for case {w2-r1}: There is another vertexB0 above w0 with r0(B0) = 1. The previous
analysis holds for B0, with notation entirely analogous. Note that in M (q), φ(q)(Ã) ̸= φ(q)(B̃)
because chu = ch v = 1. So φ(q)(Ã) determines the glueing datum, and it still holds that

σ(1)(JB0 , 1) + σ(2)(JB0 , 1) = σ0(JB0 , 2) + σ0(JB0 , 3).

This gives the following calculation, which verifies Equation (⋆):

c(1) = σ(1)(JA0
, 1) + σ(1)(JB0

, 1) + s, c(2) = σ(2)(JA0
, 1) + σ(2)(JB0

, 1) + s,

c(1) + c(2) = σ0(2) + σ0(3) = 0 + 0 = 0. (7.10)

7.8 Conclusion
It is remarkable how diverse the arguments of Chapter 7 are. By no means do we stand in
front of a construction that has been repeated with subtle variations. The richness and diversity
of the behaviour of possibly full-dimensional glueing datums defied many attempts of further
consolidation into fewer cases. The end result is exhaustive, so Lemma 7.2 is verified. This finishes
the proof of Theorem 1.4. The method is effective as well; see [Dra] for code.
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Qué era el hombre? En qué parte de su conversación abierta
entre los almacenes y los silbidos, en cuál de sus movimientos

metálicos
vivía lo indestructible, lo imperecedero, la vida?

Alturas del Macchu Picchu
Pablo Neruda

No, tú no lo negarás
Ahora vamos en el tren
En el tren, en el tren
En el tren a Paysandú
Se va el tren, toma el tren

Hoy me llama aquel rumor
Y a mi corazón le advierte
De cantar con emoción
La canción de Paysandú

Ay, añorado Paysandú
Qué es lo que habremos soñado
O más bien imaginado
Para haber tanto olvidado
Al lejano Paysandú

Los Jaivas



Chapter 8

Introduction to Part II

Our aim is to give a fully combinatorial solution to a combinatorial problem that is inspired by an
algebro-geometric result in Brill-Noether theory. In this introduction we first sketch the classical
problem; then we motivate how combinatorial methods enter the picture; and finally we outline
our results, methods and future directions.

8.1 Representing the abstract
One important class of problems is to consider a category of abstract objects, to choose an ambient
space, and to study the structure preserving maps from the abstract objects into the ambient
space. These maps represent the abstract object by a concrete one; e.g. representation theory
studies homomorphisms from abstract groups to groups of matrices. We describe a major theorem
of “representation theory for algebraic curves” and the idea behind its proof.

8.1.1 Brill-Noether theory of algebraic curves
An algebraic curve is a 1-dimensional algebraic variety. What we understand with algebraic variety
can be: abstract, without an embedding, i.e. a nice topological space that locally looks like the
spectrum of a commutative ring with the Zariski topology; or can be concrete, embedded in a
complex projective space Pr, i.e. the set of solutions to a system of homogeneous polynomials.
Given an abstract curve X, Brill-Noether theory studies morphisms

ϕ : X → Pr.

A fruitful idea in algebraic geometry is to study families rather than single objects. A natural
family containing X is the moduli space Mg, a geometric object whose points are in bijection with
genus-g smooth curves. A natural family for ϕ relates these maps to line bundles. In a favourable
setting, e.g. when X is smooth, we get a correspondence between a map ϕ : X → Pr and a pair
of a line bundle L of degree d on X and an (r + 1)-dimensional basepoint-free vector space of
sections V ⊂ H0(X,L). Such a pair is called a linear series on X, a grd for short. The set of
triples (X,L, V ) of a smooth genus-g curve X and a linear series (L, V ) on X admits a scheme
structure Grd . This scheme comes with the natural projection π onto Mg sending (X,L, V ) 7→ X.
The fibre Grd(X) = π−1(X) turns out to be a projective variety, i.e. there is a map from Grd(X) to
a projective space that is an isomorphism onto its image.

In [BN74] Alexander von Brill and Max Noether argue heuristically that the expected dimension
of Grd(X) is

ρ(g, r, d) = g − (r + 1)(g − d+ r). (8.1)

With the advent of scheme theory it was proven independently in [Kem71] and [KL72; Kle76] that
if ρ ≥ 0, then Grd(X) is non-empty, of dimension at least ρ. The celebrated Brill-Noether theorem,
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due to Griffiths and Harris [GH80], establishes that the expected dimension count is correct for
almost all curves.

Theorem 8.1. There is a dense open subset BN ⊂ Mg called the Brill-Noether general locus,
such that for every X ∈ BN we have:

• (existence part) If ρ ≥ 0, then dimGrd(X) = ρ.

• (non-existence part) If ρ < 0, then Grd(X) is empty.

The curve X is Brill-Noether general if X is in BN ; in this case, other facts are known about
the geometry of Grd(X). If ρ > 0, then Grd(X) is an irreducible smooth scheme [Gie82; FL81]. If
ρ = 0, then by [Kem71; KL72] the number of points in Grd(X) is

#Grd(X) = g!

r∏
0

i!

(g − d+ r + i)!
. (8.2)

Moreover, the monodromy action on these points is transitive [EH87]. Thus, there is a unique
irreducible component of Grd that dominates Mg. See [ACGH13, Chapter VII] for the theory and
proofs behind these results.

8.1.2 An argument by deformation
Regarding Theorem 8.1 and its proof, Subsection 0.(c) of [GH80] summarizes the heuristic argument
by Brill-Noether. It is straightforward to show that if BN is non-empty, then it is open and dense,
see [Eis83] for an exposition. Thus, the Brill-Noether theorem would be proven if for every genus g
we could write down an explicit curve X in BN . But this is remarkably difficult, and has not been
achieved for curves of high genus.

The currently known proofs of the BN-theorem, for example [GH80] and [EH86], use a de-
formation argument. Castelnuovo and Severi observed that for certain genus-g curves X̃ with
generic nodal singularities and reducible components isomorphic to P1, the dimension of Grd(X̃)
is the expected ρ. They suggested to use a one-parameter deformation, i.e. certain morphism to
the affine line A1 with fibre over 0 equal to X̃ and remaining fibres smooth curves; and to show
that a linear series on X = f−1(ε) induces a linear series on X̃ = f−1(0). This proves that
dimGrd(X) ≤ dimGrd(X̃), implying the non-existence part and the upper bound for the existence
part. See the intro of [GH80] and [HM06, Chapter 5] for details, including more on the history.

8.1.3 Gonality of a curve
Now we look at an invariant called gonality [Amo93], to explain the difficulty of writing down a
general curve. The classical motivation is to give a rough measure of how close a curve is to being
rational. Recall that a curve is rational if it is isomorphic to P1. For later purposes we define
gonality in two distinct ways. First,

gon(X) = min
ϕ:X→P1

deg ϕ, (8.3)

where the minimum is over all non-constant morphisms ϕ : X → P1, and deg ϕ is the degree of ϕ,
equal to the count with multiplicity of points in any fibre ϕ−1(y). We have that X is rational if
and only if gon(X) = 1.

For the second definition, recall that a linear series (L, V ) corresponds to a divisor D on
X; i.e. an element D =

∑
P∈X aP (P ) of the free abelian group Div(X) on the points of X.

The degree degD is the image of D under the homomorphism deg : Div(X) → Z given by∑
P∈X aP (P ) 7→

∑
P∈X aP . The rank r(D) equals the rank of (L, V ), namely dimV − 1. The

divisorial gonality is

div-gon(X) = min
r(D)≥1

degD, (8.4)
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where the minimum is over all divisors D ∈ Div(X) with rank at least 1.
The numbers div-gon(X) and gon(X) coincide when X is smooth. The curves X for which we

understand Grd(X) come from constructions that have a map to P1 of a fixed degree. For example,
hyperelliptic or trigonal curves, have gonality equal to 2 or 3, respectively. On the other hand,
substituting r = 1 in Equation (8.1) gives that a curve in BN has gonality ⌈g/2⌉+1. So the curves
we can write down are close to rational curves, but general curves move away from being rational
as g increases. Thus, gon(X) is also a rough measure on the failure of X to be Brill-Noether
general; i.e. the smaller gon(X) is, the further X is from being Brill-Noether general.

8.2 A voyage to the tropics
We now describe another deformation theory, where instead of nodal curves the targets are certain
piecewise-linear objects called tropical varieties. This simplifies the geometrical features of the
target, and brings combinatorics to the forefront. Thus, problems neatly split into an algebro-
geometric half of understanding deformation processes called tropicalizations, and a combinatorial
half of understanding tropical varieties themselves. We say a few words about tropical varieties
in the embedded setting, and then outline how abstract algebraic curves are deformed to tropical
curves.

8.2.1 Embedded tropical varieties
We begin with the embedded picture. Chapter 9 of [Stu02] heralded the rise of a “tropical algebraic
geometry” for investigating systems of polynomial equations. This field combines long established
methods in commutative algebra, deformation theory, polyhedral geometry, graph theory, etc.
The motto is algebraic geometry over the tropical semiring (R∪{∞} ,min,+); named so to honour
Brazilian computer scientist Imre Simon, see [Sim88; Pin98]. One early triumph is [Mik05], where
the count of genus-g degree-d irreducible curves passing through 3d − 1 + g points is shown to
correspond to the count that uses tropical curves instead; this tropical count is then established
by counting certain lattice paths. So the problem is split in two halves following the goals: (I) to
establish correspondence theorems in tropicalization maps; and (II) to solve combinatorial problems
inspired by algebraic geometry.

For example, to tropicalize an n-dimensional hypersurface Y = V (f) ⊂ (C∗)m, one applies in a
coordinate-wise manner certain maps called valuations, which generalize non-archimedean absolute
values. This idea originates from a map A studied in [Ber71], that applies a logarithm coordinate-
wise. The image of A is called an amoeba (a name best understood by looking at the image of A
for n = 1, m = 2); see [IMS09, Chapter 1] for amoebas in the context of tropical geometry. The
amoeba is deformed by varying the base of the logarithm. When the base tends to infinity, the
limit object tropY is a rational polyhedral fan of pure dimension n [GB84]. On the other hand,
one can apply the valuation map to the coefficients of f to get an equation trop f in the tropical
semi-ring, and associate a geometrical object V trop(trop f). A major result, commonly referred to
as the fundamental theorem of tropical geometry, is that the tropical variety V trop(trop f) coincides
with tropY ; see [Kap00; EKL06].

One may ask which polyhedral complexes show up as tropicalizations; i.e. which objects are
realizable. We seek characterizations in the form of combinatorial realizability conditions. One
example of such a condition is the above-stated fact that Σ = tropY is of pure dimension n.
For another one, consider an (n − 1)-dimensional polyhedron τ ∈ Σ and the primitive integral
vectors σ/τ encoding the directions that start at τ and point to a neighbouring polyhedron σ. The
balancing condition at τ states that the sum of these vectors, each multiplied with a certain weight
of σ, is 0; see [RST05; Mik07]. Also, Σ is codimension-1 connected when Y is irreducible; i.e. the
set Σ \ Σ(n−2) is connected; see [BJSST07; CP12]. Here Σ(n−2) is the (n− 2)-skeleton, the union
of all polyhedra σ of Σ with dimσ ≤ n− 2. See [MS15, Chapter 3] for proofs of all these facts.
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8.2.2 Abstract tropical varieties
Tropicalizations in the non-embedded setting transform algebraic varieties into a basic combinato-
rial object, e.g. a graph or a polyhedral space, that is enriched with extra structure. For example,
consider the dual graph GX̃ of a nodal abstract curve X̃. The vertices of GX̃ correspond to the
irreducible components of X̃, and the edges to their intersections at nodes; see Remark 13.15. Con-
sider as well a map w : V (GX̃) → Z≥0 such that w(A) is the genus of the irreducible component
corresponding to A. The basic combinatorial object is GX̃ , the extra information is w, and the
pair (GX̃ , w) is called a weighted graph. The first Betti number g(GX̃) = #E(GX̃)−#V (GX̃)+1
of GX̃ behaves as a tropical analogue of the genus; e.g. the following identity holds:

g(X̃) = g(GX̃) +
∑

A∈V (GX̃)

w(A) =: g(GX̃ , w). (8.5)

The number g(GX̃ , w) also plays the role of genus in a Riemann-Roch formula for weighted graphs
[BN07; AC13].

Some further enrichment of GX̃ is found in the tropicalization considered in [Bak08]. It captures
information from a one-parameter deformation f : X → B that takes X to X̃. Since GX̃ only
encodes information from X̃, the insight is to consider a map ℓ : E(G) → R>0 where each value
ℓ(e) is a deformation parameter of the singularity corresponding to e. Combinatorially, the map ℓ
is interpreted as lengths for the edges of (GX̃ , w). By glueing intervals of length ℓ(e) we obtain a
metric space ΓX̃ called a weighted metric graph. Note that this interpretation makes sense from the
embedded point of view of Subsection 8.2.1. There an algebraic curve, say in the plane, tropicalizes
to a 1-dimensional piece-wise linear subset of R2; this looks like a metric graph.

8.2.3 Tropicalizing gonality
There are several notions of tropical gonality. This plurality arises because given an algebro-
geometric notion, the first guess for a tropical analogue is the original definition verbatim, with
the adjective “tropical” inserted at appropriate places. For example, a divisor on an algebraic curve
can be regarded as a map D : X → Z with finite support, yielding a group Div(X) with pointwise
addition. This definition still works if one replaces X by a graph G or a metric graph Γ. Typically
this first guess is good after fixing minor issues, but when there are several equivalent algebraic
definitions, as in the case with gonality, tropically maybe only one gives rise to a meaningful notion,
or perhaps they give rise to distinct notions.

For tropical Brill-Noether theory, the first ingredient is a theory of divisors on graphs and
metric graphs, initiated in [BLN97; BN07; MZ08; GK08]. This theory is closely linked to chip-
firing [BLS91; Kli18], a combinatorial game played on graphs that has connections with arithmetic
geometry, dynamical systems, and tropical geometry. The theory has analogues of many classical
results, such as an Abel-Jacobi and a Riemann-Roch theorem. In the latter, the definition of rank
of a divisor emulates a combinatorial characterization of the classical rank. One would hope for a
tropical rank rtrop to arise from a tropical analogue of the space of rational functions associated
to a divisor. There is such a space, but it turns out to be a polyhedral complex that is not of pure
dimension. Despite being well studied [HMY12], it is not clear how to read off the rank from it;
this exemplifies how the obvious candidate for a tropical definition might not work.

With that in mind, the divisorial gonality of a metric graph Γ is verbatim given by Equa-
tion (8.4), namely the minimum degree of a rank-at-least-one divisor. In the abstract setting of
Subsection 8.2.2, let DX be a divisor on an algebraic curve X. The idea of [Bak08] is to define
a map trop : Div(X) → Div(ΓX̃) by first sending DX to DX̃ in Div(X̃) using the deformation,
and then DX̃ to D in Div(ΓX̃) via a straightforward procedure. The main result, called the
specialization lemma, shows that

r(DX) ≤ rtrop(trop(DX)). (8.6)

So divisorial gonality can only go up under tropicalization. There are examples with strict inequal-
ity.
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Equation (8.6) has deep implications, both algebro-geometric and combinatorial. In [CDPR12]
a family of genus-g metric graphs Γ is constructed such that if ρ(g, r, d) < 0, then all degree-d
divisors have rank less than r; combined with Equation (8.6) this yields a new proof of non-existence
in Theorem 8.1. On the other hand, Equation (8.6) proves a tropical analogue of Theorem 8.1
(existence part) for metric graphs. This depends on the fact that the tropicalization X 7→ ΓX̃ is
surjective, namely the realizability locus consists of all the combinatorial objects, a quite remarkable
situation; see [Bak08, Appendix B]. As a corollary, we have:

Theorem 8.2. Let Γ be a genus-g metric graph. We have that div-gon(Γ) ≤ ⌈g(Γ)/2⌉+ 1.

This is a purely combinatorial statement, for which the proof via the specialization lemma
means a long detour through deep algebro-geometric results of limit series, and also solving a
realizability problem. In contrast to X 7→ ΓX̃ , the related map X 7→ GX̃ is not surjective. Thus,
these ideas have been ineffective to tackle a similarly flavoured question, which at the time of
writing remains open:

Question 8.3. Is it true that div-gon(G) ≤ ⌈g(G)/2⌉+ 1 for a graph G?

8.2.4 Tropical morphisms of weighted metric graphs
Defining a tropical gonality via maps involves two subtle issues. First, the natural candidate for
tropical morphisms is the class of maps that preserve the structure of polyhedral spaces. But this
class is too large, since not all maps come with the properties that their algebraic counterparts
have. Namely, let ϕ : X → Y be an algebraic morphism of curves. Recall that the ramification
index is a map mϕ : X → Z≥1 given by an algebraic formula and with the geometrical property
that the pair (ϕ,mϕ) is an indexed branched cover. That is, ϕ is locally a homeomorphism over a
dense set of Y , whose fibres have (deg ϕ)-many points when counted with multiplicity mϕ. This
fact is not automatic in a morphism of polyhedral spaces.

Moreover, for ϕ : X → Y the expression Rϕ =
∑
P∈X(mϕ(P )−1)P is an effective divisor called

the ramification divisor . The Riemann-Hurwitz formula states that

KX ∼ ϕ∗KY +Rϕ, (8.7)

where KX and KY are the canonical divisor classes of X and Y respectively, and ∼ is linear
equivalence of divisors. Taking degrees gives the familiar formula 2g(X)− 2 = (2g(Y )− 2) deg ϕ+
degRϕ relating the genera of the source and target curve. Tropically, there are canonical divisors
for weighted metric graphs Γ and ∆ [AC13]. An indexed branched cover Φ : Γ → ∆ pulls back
equivalent divisors in Div(∆) to equivalent divisors in Div(Γ). So there is a tropical Equation (8.7),
but KΓ − Φ∗K∆ might not be effective.

A tropical morphism is an indexed branched cover of weighted metric graphs with index map
given by a certain algebraic expression, such that the ramification divisor is effective. For practical
reasons, instead of the latter we require an equivalent inequality called the Riemann-Hurwitz
inequality; see Equation (RH). The extra structures imposed on morphisms of metric graphs can
be regarded as realizability conditions. This definition is equivalent to the maps studied in [Mik07;
BN09; BBM11; Cha13; Cap14; CMR16; CD18; DV20]. These maps appear when tropicalizing
algebraic morphisms [Cap14; Lan20], and the realizability locus has been studied [ABBR15a;
ABBR15b].

The next question is what should be the target space of the maps. Since P1 has genus 0, the
natural candidates are genus-0 graphs, called metric trees because they have no cycles. The second
subtle issue is that there are Γ that admit no maps to any metric tree ∆. A rough intuition to
explain this phenomenon is that Γ could be singular. Singularities of algebraic curves are resolved
by a sequence of operations called blow-ups and blow-downs, which yield birational equivalence.
The tropical analogue to blow-ups and blow-downs is tropical modification, an operation that
retracts or attaches edges ending in a monovalent vertex. Tropical modification makes all metric
trees equivalent. So, as in the classical setting, the target space is the unique tropical space with
the simplest geometry. See [Kal15] for a detailed survey on tropical modifications.
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With those two subtle issues in mind, for a weighted metric graph Γ̃ we define

gon(Γ̃) = min degΦ : Γ→ ∆,

where the minimum ranges over tropical morphisms Φ, metric trees ∆, and weighted metric graphs
Γ which are a tropical modification of Γ̃. Recall that an indexed branched cover Φ induces a pull
back of divisors that preserves linear equivalence, and a degree-1 divisor on ∆ has rank-1. This
implies

div-gon(Γ̃) ≤ gon(Γ̃),

an inequality that can be strict, see Remark 13.8, so these tropical gonalities are distinct.

8.3 A combinatorial solution to a combinatorial problem
We now discuss our methods, results and future directions. We give a brief summary of the Part I,
proceed to describe the sections in this Part II, and close with outstanding questions.

8.3.1 Constructing tropical morphisms witnessing the gonality bound

In Part I we take a metric graph Γ̃ and a metric tree ∆, and construct tropical morphisms Φ : Γ→ ∆
with degree ⌈g(Γ̃)/2⌉+1, where Γ is a tropical modification of Γ̃. This gives a combinatorial proof
of Theorem 8.2, and the motivation for this undertaking is the hope that the methods involved
can help tackle Question 8.3.

We studied metric graphs Γ as pairs (G, y) of a graph G and a length function y : E(G)→ R≥0.
The idea is to separate combinatorial from metric information. This, applied to tropical morphisms,
lead us to work with the conept of discrete tropical morphism, DT-morphism to shorten, which is
a graph morphism φ and an index map mφ such that (φ,mφ) is an indexed branched cover and
mφ satisfies the Riemann-Hurwitz inequality; see Equation (RH). Therefore, we defined tropical
morphisms Φ as pairs (φ, z) of a discrete tropical morphism φ : G → T and a length function
z : T → R≥0. Taking y′ : G → R≥0 given by e 7→ z(φ(e))/mφ(e), the data of φ gives rise to a
tropical morphism (G, y′)→ (T, z).

Fix G and φ : G→ T . The families CG and CT of length functions for G and T , respectively,
can be identified with rational polyhedral cones: the positive orthants of RE(G) and RE(T ), seen
as R-vector spaces. The collection of cones Mtrop

g (3g − 3) = {CH}H indexed by trivalent H with
genus g constitutes the top-dimensional cones of a tropical moduli spaceMtrop

g of dimension 3g−3,
analogous toMg. The family Cφ of graphs inMtrop

g that appear as the domain of some map (φ, z)
is a rational polyhedral cone as well, since there is a linear map Aφ : CT → Cφ, called the edge-
length map, whose coefficients as a matrix are rational. There is a notion of tropical modification
also for φ, leaving the cone Cφ invariant, and yielding a representative such that

dimCφ ≤ #(E(T )) ≤ min(2g + 2d− 5, 3g − 3), (8.8)

with equality in the first relation if and only if Aφ has full rank. In that case, Aφ is invertible
and a point y in Cφ corresponds to the tropical morphism (φ,A−1

φ y). The collection of cones
Gtrop
g→0,d(2g + 2d − 5) = {Cφ}φ indexed by degree-d genus-g full-rank DT-morphisms to trees,

i.e. φ : G → T such that G has genus g, the graph T is a tree, degφ equals d, and Aφ has full
rank, constitutes the top-dimensional cones of a tropical moduli space Gtrop

g→0,d analogous to G1r . See
Sections 11 and 12 for constructions of these spaces.

We showed that the cones in Gtrop
2g′→0,g′+1(6g

′ − 3) cover Mtrop
2g′ , hence proving Theorem 8.2

for even genus; odd genus follows from a trick of attaching a loop to the graph, see for example
[DV20, Subsection 5.4]. We built upon an earlier construction from [CD18] that for each CH in
Mtrop

g (3(2g′) − 3) gives a cone Cφ in Gtrop
2g′→0,g′+1(6g

′ − 3) such that Cφ ⊆ CH . We developed
a deformation argument that from this initial Cφ produces enough cones to cover CH . Here,
deforming φ : G→ T means to choose an edge t1 of T , contract it, and contract all the edges of G
that map to t1. This gives rise to a DT-morphism φ0 with the property that its edge-length map A0

is equal to deleting from Aφ the column corresponding to t1. This fact is useful in computations.
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Given a full-rank DT-morphism φ that contracts to φ0, it is relatively straightforward to list
all other φ(q) that contract to φ0. For this we have used a one-to-one correspondence between
DT-morphisms and a combinatorial gadget introduced in [CD18] called a glueing datum. What is
not so straightforward is to prove that among the φ(q) that contract to φ0, there is at least one
that covers a part of CH not yet covered by Cφ.

By Equation (8.8), for Cφ in Gtrop
2g′→0,g′+1(6g

′− 3) we get dimCφ = 3g− 3 and dimC0 = 3g− 4,
where g = 2g′ and C0 is the cone of φ0. When the span of C0 cuts CH in two halves, we have
Cφ in one half, and we need a φ(q) whose cone C(q) is in the other half. This follows from the
existence of positive integers Kφ/φ0

such that∑
Kφ/φ0

vφ/φ0
≡ 0 mod spanC0, (8.9)

where vφ/φ0
is the column of A(q) corresponding to the contracted edge t1, and the sum runs over

a multiset that contains all φ(q) that contract to φ0. This is reminiscent to a kind of equation
known as wall-relation in the context of toric varieties.

The proof of Equation (8.9) is rather involved, resting on two main components. First, among
all the φ(q) that contract to φ0, if φ(q) does not have full rank, then vφ/φ0

is in spanC0, thus not
counting in Equation (8.9). With some effort we characterized the combinatorial behaviour of full-
rank DT-morphisms in order to exclude many φ(q). So we circumvent the calculation of rkA(q), a
global property, and study instead the local combinatorics above the edge t1 that gets contracted.
We reproduce several of these results in Sections 11, 12 and 13. Second, we did a case analysis
for possibilities of φ0, and on each case proved Equation (8.9). The cases are summarized in
Appendix 14.4, and Figure 14.1 illustrates the logical flow. We are working on an implementation
of our deformation method1. See also [DV21] for an expository paper.

8.3.2 Abstract spaces of polyhedra and their indexed branched covers
The first sections of this Part II are foundational. The aim is to take the above-described ma-
chinery which combinatorially studies metric graphs and tropical morphisms using graphs and
DT-morphisms, and generalize it to higher dimensions to study abstract spaces of polyhedra and
their covers using partially ordered sets and combinatorial morphisms.

In Section 9, we introduce a category PolySpace which contains both metric graphs and spaces
that arise by glueing together cones, likeMtrop

g or Gtrop
g→0,d. In general, the objects of PolySpace can

be thought as topological spaces that locally have an integral polyhedral structure; the morphisms
are piece-wise linear continuous maps preserving this structure. Our main result is that indexed
branched covers in PolySpace can be studied combinatorially. Moreover, we show that under a
connectivity assumption, a map Φ in PolySpace is an indexed branched cover if and only if it
satisfies a balancing condition on the codimension-1 cones of the domain.

To make these notions precise, observe that metric graphs may be regarded as collections of
one-dimensional bounded polyhedra, glued at faces in a manner prescribed by a graph G. Going
to higher dimensions, we wish to glue polyhedra. Instead of using a graph, we keep track of the
to-be-glued polyhedra with a functor σ from a finite category Σ to a category of polyhedra PolyZ.
The objects of PolyZ record both the polyhedron and its ambient space, so there is no globally
defined ambient space; the morphisms are certain affine maps.

We require the functor σ to satisfy several lifting conditions that make Σ capture all the
combinatorial information we need; see Definition 9.4 and Remark 9.6. The objects of PolySpace
are these functors, and the morphisms are natural transformations. Given σ : Σ → PolyZ in
PolySpace, taking a colimit yields a topological realization |Σ| in the category Top of topological
spaces with continuous maps. To go back from topology to the category, we define a map polyΣ :
|Σ| → Σ that takes a point x in the topological realization to the unique cone of Σ containing x in
its topological interior. Several results of this section are summarized by:

1Project page: https://github.com/AV-2/Tropical
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Theorem A. Let Φ : Σ→ ∆ be a morphism of polyhedral spaces. Under mild conditions we have
that the square

|Σ| Σ

|∆| ∆

polyΣ

|Φ| φ

poly∆

is a fibre product in Top; and if one of the pairs (φ,mφ) or (|Φ|,polyΣ ◦mφ) is an indexed branched
cover, then so is the other pair.

In Theorem A we have that φ is the map of underlying categories, and the topology on Σ is
that a set V is open if α ∈ V and Hom(α, γ) ̸= ∅ imply that γ ∈ V . The mild conditions alluded
to are that both Σ and ∆ are posets, and that the map |Φ| restricts to an homeomorphism for
each cone of Σ. When the former condition is satisfied, we call Σ and ∆ polyhedral complexes; and
when the latter is satisfied we call Φ a combinatorial morphism. These conditions are mild because
we show at the end of the section that by using barycentric subdivisions and certain subdivisions
induced by Φ, we can always attain them:

Theorem B. Let Φ : Σ → ∆ be a morphism of polyhedral spaces. There are morphisms of
polyhedral spaces rΣ, r∆, such that their topological realizations are homeomorphisms, the following
diagram commutes

Σ ∆

Σ′′ ∆′′,

Φ

rΣ r∆

Φ′′

.

and Φ′′ is a combinatorial morphism of polyhedral complexes.

We close the section by studying how combinatorial morphisms allows to bridge indexed
branched covers with the balancing condition, and exploring ways that an index map can be
extended in a map of posets.

The idea to use the poset topology, combinatorial morphisms, and to relate |Φ| with φ via a
fibre product square is due [Pay09, Section 2]. The lifting conditions of σ are closely modelled
after [CCUW20, Section 2], who go a step further and consider categories fibred in groupoids. It
is noted in [ACP15, Section 2] that a barycentric subdivision refines Σ into a poset. In toric and
toroidal geometry it is enough to consider categories of cones. But our desire to produce a theory
that can also handle tropical morphisms pushes us to generalize. We believe that putting together
all these foundational results can be of interest to the tropical community, to combinatorially study
other maps between tropical moduli spaces, or general tropical varieties that have both bounded
and unbounded parts.

On a historical note, the development of abstract polyhedral spaces of cones as combinatorial
gadgets that reflect the properties of an algebraic variety, begins with polyhedral cone complexes
introduced in Chapter 2 of [MKKS73]. These spaces and slight generalizations have a long his-
tory in toric geometry; see [Pay09] for an account. They are now a staple of tropical geometry;
e.g. [BMV11; Cha12; ACP15; CMR16; CCUW20] in the study of moduli spaces.

8.3.3 Parametrizing metric graphs with a space of cones Mtrop
g

Section 11 and 12 construct Mtrop
g and Gtrop

g→0,d as polyhedral spaces of cones, i.e. a functor to the
subcategory ConefZ of cones in PolyfZ, where g ≥ 2 and d ≤ ⌈g/2⌉+1. We begin withMtrop

g . To
get a feeling of the category and the functor to ConefZ, observe that for a given graph G and length
function y in CG the metric graph (G, y) is isometric to (G/S, y0), where S is the subset of e in
E(G) such that y(e) = 0, the map ρ : G→ G/S is a contraction of edges, and y0 = ρ∗(y) = y ◦ ρ is
the pull-back of the length map. The genus of G may drop under edge contractions, so we work in
the category WGg of genus-g connected weighted graphs and specialization morphisms, which are
edge-contractions that keep track of contracted cycles using the vertex weight, as in Equation (8.5).



CHAPTER 8. INTRODUCTION TO PART II 71

The correspondence G 7→ CG and [ρ : G → G/S] 7→ [ρ∗ : CG/S → CG] is a contravariant functor
C. The polyhedral space of cones Mtrop

g is the restriction of C to the subcategory of WGg
op

generated by Mtrop
g (3g − 3). The points of the topological realization |Mtrop

g | are in one-to-one
correspondence with equivalence classes under tropical modification of genus-g weighted metric
graphs.

8.3.4 Parametrizing tropical morphisms with a space of cones Gtrop
g→0,d

Similarly, for a given DT-morphism φ : G → T and a length function z in CT , the tropical
morphism (φ, z) is isometric to (φ0, z0), where we have a specialization ρ : φ → φ0 given by
specializations ρG, ρT that satisfy the commutative square

G G0

T T0,

ρG

φ φ0

ρT

and z0 = z ◦ ρT . This is nothing more than contracting a subset ST of E(T ), and all the edges
of G that map to ST . So we let DTMd

g→0 be the category with objects the degree-d genus-g
DT-morphisms, and morphisms the specialization morphisms. The correspondence φ 7→ Cφ and
[ρ : φ → φ0] 7→ [ρ∗ : Cφ0

→ Cφ] is a contravariant functor. The polyhedral space of cones Gtrop
g→0,d

is the restriction of C to the subcategory of (DTMd
g→0)

op
generated by Gtrop

g→0,d(2g + 2d− 5). The
points of the topological realization |Gtrop

g→0,d| are in one-to-one correspondence with equivalence
classes under tropical modification of degree-d genus-g tropical morphisms which move in cones
whose dimension achieve the upper bound #(E(T )).

There is a projection morphism Π : Gtrop
g→0,d → Mtrop

g given by a functor π that sends φ :
G→ T to the combinatorial type H(φ) of G, and the family {Πφ}φ of inclusions of Cφ in CH(φ).
Topologically, |Π| sends a tropical morphism Φ : Γ→ ∆ in Gtrop

g→0,d to the equivalence class of Γ in
Mtrop

g .

8.3.5 Properties of the projection Π : Gtrop
g→0,d →Mtrop

g

Now we fix g = 2g′ and d = g′ + 1 in order to study the gonality bound for metric graphs. The
main goals in Section 13 are to introduce an index map mπ for the cones of Gtrop

g→0,d, show that
(π,mπ) is an indexed branched cover, hence so is (|Π|,mπ ◦ poly), and calculate its degree.

Recall from toric geometry, that the multiplicity of a rational polyhedral cone (N, σ), with
primitive generators θ1, . . . , θs for its rays, is equal to the index

mult(σ) = [Nσ : (Zθ1 + · · ·+ Zθs)], (8.10)

where Nσ = N∩spanσ. While it would be natural to set mπ(φ) = mult(Cφ), for a top-dimensional
φ in Gtrop

g→0,d, what turns out to work in our setting is the multiplicity of the cone associated to the
transpose matrix A⊤

φ ; i.e. mπ(φ) = mult(spanR≥0
A⊤
φ ) on top dimensional cones. This hints at a

dualization process ocurring under the hood, which would be worthy to investigate further. We
arrive then to a beautiful outcome, that we envision as a rank-1 tropical version of Theorem 1 in
[EH87].

Theorem C. Let g′ be a positive integer, and g = 2g′ and d = g′+1. The projection Π : Gtrop
g→0,d →

Mtrop
g given by [Φ : Γ → ∆] 7→ Γ, with index map mπ(φ) = mult(Â⊤

φ ) as above, is a surjective
indexed branched cover of cone spaces, and degΠ equals the g′-th Catalan number.

The theory from Section 10 reduces Theorem C to showing that mπ satisfies the balancing
condition in codimension-1 for certain refinements of Mtrop

g and Gtrop
g→0,d. This uses the fact that

Mtrop
g is codimension-1 connected [HT80; Cap12]. We reduce the balancing condition to studying

the coefficients of the wall-relation Equation (8.9), and of a similar expression for when H(φ0) is
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not trivalent. The proof of the latter is deferred to Section 14. To accomplish this, we recall several
combinatorial conditions that can be checked locally and are satisfied by the elements of Gtrop

g→0,d.
These are necessary, but not sufficient, and lead to the notion of quasi full-rank DT-morphisms.
We also need to explore several local structures that can ocurr in quasi full-rank DT-morphisms,
but not in full-rank ones.

It remains to calculate degΠ. Using the combinatorial conditions on quasi full-rank DT-
morphisms we calculate the fibre Π−1(Γ) for a particular family of Γ. This family consists of
a path and loops attached to it via bridges, see Figure 13.1. In Section 10 we also prove that if
Φ : Σ → ∆ is an indexed branched cover, and ∆ is codimension-1 connected, then Σ is as well,
which gives:

Theorem D. The cone space Gtrop
2g′→0,g′+1 is codimension-1 connected.

Currently, we do not know if Gtrop
g→0,d is codimension-1 connected for general g and d. The case

of Gtrop
g→0,2 is straightforward. Note that Π(Gtrop

g→0,2) gives a locus of hyperelliptic graphs inMtrop
g .

8.3.6 Constructions of tropical morphisms specializing to a given φ0

Section 14 proves, with the same notation as in Equation (8.9), that in the case where H(φ0) is
non-trivalent we have integers Kφ/φ0

such that:∑
Kφ/φ0

vφ/φ0
≡ 0 mod spanCH0

. (8.11)

The ambient space of Equation (8.11) is not obvious, since generically there are three maximal
cones C1, C2, C3 of Mtrop

g with CH(φ0) as a face, and each vφ/φ0
lives in exactly one of these

cones. Following foundational work from [Gro18] on tropical cycles in polyhedral space of cones,
Equation (8.11) is calculated inside

⟨CH(φ0), h
(1)
1 , h

(2)
1 , h

(3)
1 ⟩/⟨h

(1)
1 + h

(2)
1 + h

(3)
1 ⟩,

where h(i)1 is the primitive generator of the ray of Ci not in CH(φ0).
The methods in this section are the closest in spirit to the Part I of this series. Given a

top-dimensional φ : G → T in Gtrop
g→0,d, we complete the combinatorial classification, initiated in

Section 7 of Part I, of the maps φ0 : G0 → T0 that arise by contracting one edge t1 of E(T ) with a
specialization morphism ρ : φ→ φ0. Case-by-case we construct the set star-quasi(φ0) of quasi full-
rank DT-morphisms φ(q) such that there is a specialization morphism ρq : φ(q) → φ0. The cases
depend on the valency of ρq(t1) in V (T0) and the combinatorics of the local part around the non-
trivalent vertex A0. We show that all φ(q) in star-quasi(φ0) have the same multiplicity mπ(φ

(q)),
and that having the same combinatorial type H(φ(q)) partitions the elements of star-quasi(φ0) in
sets of equal size.

8.3.7 Future directions
In conclusion, our combinatorial study of Π : Gtrop

g→0,d → Mtrop
g has uncovered the behaviour of a

tropical object. This is one face of the coin, it remains to relate Π to an algebro-geometric object.
One possibility is to find a toroidal variety X associated to Gtrop

g→0,d, generalizing the toric setup;
i.e. with an open dense set U ⊂ X that locally analytically looks like a torus, and the cones of
Gtrop
g→0,d describe the boundary strata of X \ U ; see [MKKS73, Chapter 2]. Equations (8.9) and

(8.11) bear resemblance to expressions in intersection theory of toric varieties; see e.g. [CLS11,
Equation (6.4.4)]. We wonder if there is a short geometric argument for them, circumventing our
lengthy case work, and extending to Gtrop

g→0,d for general g ≥ 2 and d ≤ ⌈g/2⌉ + 1. While our
case work applies to these Gtrop

g→0,d, additional cases would be needed to completely describe the
wall-relations, since for Gtrop

2g′→0,g′+1 we use the fact that H(φ) is trivalent for top-dimensional φ.
The latter is not true in general, in Example 12.46 we exhibit a top-dimensional cone Cφ of the
space of genus-3 hyperelliptic graphs Gtrop

3→0,2 such that H(φ) is non-trivalent. We foresee that for
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such argument one would explore whether the wall-relations correspond to tropical cycles, per the
theory of [Gro18].

We would like a better understanding of the index map mπ, both from the combinatorial
and the geometrical side. Given a tropical morphism Φ : Γ → ∆ in Gtrop

2g′→0,g′+1 with underlying
DT-morphism φ, there are three natural multiplicities:

1. The multiplicity mπ(φ) defined on the top-dimensional cones, satisfying the balancing con-
dition.

2. The multiplicity mult(spanR≥0
A⊤
φ ).

3. The number of maps ϕ : X → P1 that tropicalize to Φ, for a fixed curve X such that its
tropicalization ΓX is equivalent to Γ in Mtrop

g .

We have shown that (1) satisfies a balancing condition, while (2) is easier to calculate, and (3)
provides a connection with tropicalizations and could be applied to enumerative problems. Also, (2)
and (3) generalize immediately to Gtrop

g→0,d for general g ≥ 2 and d ≤ ⌈g/2⌉+1, whereas generalizing
(1) is asking whether Π : Gtrop

g→0,d → Mtrop
g is an indexed branched cover as well. By definition

(1) and (2) coincide when φ is top-dimensional. Ideally all three would coincide for all cones of
φ of Gtrop

g→0,d. Also, Example 13.27 suggests that DT-morphisms with high multiplicity produce
graphs that are interesting for probing Question 8.3. Currently we do not know if mπ(φ) can be
arbitrarily big, the biggest we have found is mπ(φ) = 4 via a computer search.

Heading towards more speculative territory, inspired by the work of [Thu07; ACP15; CMR16]
we wonder if there is a toroidal variety U ↪→ X, a retraction pX : Xan → Xan from the Berkovich
analytification of X to the skeleton Σ(X), a morphism of polyhedral spaces of cones trop : Σ(X)→
Gtrop
g→0,d, such that U corresponds to a moduli problem and X to a nice compactification; e.g. maps

to P1 and a compactification via admissible covers. We would hope this to render tropicalization
as a functorial relation, potentially improving the understanding between classical Brill-Noether
and the combinatorial spaces Gtrop

g→0,d and loci Π(Gtrop
g→0,d) of d-gonal metric graphs. There is also

much work left to do on the higher rank case; i.e. to introduce and study maps φ : Γ→ Σ from a
metric graph Γ to a tropical analogue Σ of Pr such that the pullback φ∗(x) of a point x ∈ Σ is a
divisor of rank r and degree degφ.



Chapter 9

Polyhedral spaces

We embark into a journey foundational results. In Subsection 9.1 we begin with a reminder of
polyhedral geometry done in real vector spaces with a choice of a lattice to act as an integral
structure, and introduce the abstract notion of polyhedral spaces to generalize to a non-embedded
setting.

9.1 Polyhedral spaces
These first subsections describe a category-theoretical framework for glueing together rational
polyhedra. We draw much inspiration from [ACP15] and [CCUW20], who glue together rational
cones. The aim of our generalization is to produce a framework that unifies the treatment of metric
graphs Γ, tropical morphisms φ : Γ → ∆, the tropical moduli spaces Gtrop

g→0,d and Mtrop
g , and the

projection Π : Gtrop
g→0,d →Mtrop

g .
We begin with a quick tour through the embedded version of the story. Let V be a real vector

space of finite dimension, with the Euclidean topology. Given a functional u in the dual space
V ∗ = Hom(V,R) and a constant c ∈ R we consider three spaces: the closed upper half-space
H+(u, c) = {x ∈ V : u(x) ≥ c}, the closed lower half-space H−(u, c) = {x ∈ V : u(x) ≤ c}, and
the hyperplane H(u, c) = H+(u, c) ∩H−(u, c). A polyhedron in V is a non-empty intersection of
finitely-many closed upper half-spaces. Note that a polyhedron is a convex set, and closed in the
Euclidean topology of V .

An integral structure on V is a choice of a full-rank lattice N , i.e. a subgroup of V such that N is
a discrete subset and V = spanRN . In tropical geometry, finite dimensional real vector spaces with
integral structures arise naturally from field valuations. In toric geometry, one usually begins with
a free abelian group N of finite rank, and takes as vector space the tensor product NR := N ⊗Z R.
The elements of N are the integral points, and the elements of N∗ = Hom(N,Z) are the integral
functionals. Given u ∈ N∗, we linearly extend the domain from N to spanRN = V to get a
functional on V . A half-space is rational if u is in N∗ and c is in Z, and a polyhedron is rational if
its defining half-spaces are rational. An integrally affine map f : (V,N)→ (V ′, N ′) is an affine map
f : V → V ′ such that f(N) ⊂ N ′; i.e. f(x) = y+L(x) with y ∈ N ′ and L ∈ Hom(N,N ′) extended
to a map from V to V ′. Integrally affine maps send rational polyhedra to rational polyhedra.

Definition 9.1. Let Poly be the category of pairs (N, σ) of a finite-rank free abelian group N
and a polyhedron σ in NR, with morphisms f : (N, σ) → (N ′, σ′) given by integrally affine maps
such that f(σ) ⊂ σ′.

Example 9.2. A non-empty subset C of a real vector space V is a cone if it is closed under
multiplication by a non-negative real number. Let σ =

⋂
H(ui, ci). The polyhedron σ is a cone if

and only if ci = 0 for all indices i. In this case we call σ a polyhedral cone. ⋆

Given a polyhedron σ in NR, a hyperplane H(u, c) is supporting if σ∩H(u, c) is non-empty and
σ ⊂ H+(u, c). A face of σ is a polyhedron τ of the form σ ∩ H(u, c), with H(u, c) a supporting

74
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hyperplane of σ. The dimension dimσ of σ is the dimension of its affine span aff-spanσ, i.e. the
smallest set that contains σ and is a translate of a linear subspace of V . A k-face of σ is a face of
dimension k. The 0-faces are called vertices. If σ is rational with vertices in N , then for all faces
τ of σ we have aff-span τ = aff-span(N ∩ aff-span τ). We let Nτ = N ∩ aff-span τ . A translation
taking a point of Nτ to 0 makes this set a lattice, so (Nτ , τ) is a polyhedron as well. Thus, the
following category is closed under taking faces:

Definition 9.3. Let PolyZ be the subcategory of Poly induced by the pairs (N, σ) such that σ
is rational, all the vertices of σ are in N , and N = Nσ.

A face morphism f : (N, σ) → (N ′, σ′) is a morphism of polyhedra such that f(σ) = σ′ and
f maps N bijectively to (aff-span f(N)) ∩ N ′. In particular, the inclusion (Nτ , τ) → (Nσ, σ) is
a face morphism. We say that f is proper if f(σ) is a proper face of σ′. We denote by PolyfZ
the subcategory of PolyZ restricted to face morphisms. The non-proper face morphisms are
precisely the isomorphisms in PolyfZ. A polyhedral space is a collection of polyhedra glued by face
morphisms.

Definition 9.4. Let Σ be a finite category, and σ : Σ → PolyfZ a functor α 7→ (Nα, σα). We
slightly abuse notation and shorten (Nα, σα) to just σα. We say that σ is a polyhedral space if the
following lifting conditions are satisfied:

(a) For each α in Σ, and each proper face inclusion fτσα
: (N, τ)→ (Nα, σα) in PolyfZ, there is

a morphism f in Σ such that σ(f) = fτσα .

(b) For any two morphisms g : γ → α and h : β → α in Σ that give proper face morphisms σ(g)
and σ(h), there is a bijection of diagrams in Σ and in PolyfZ as shown in Diagram 9.5.

β

α γ

h

g

f

σβ

σα σγ

σ(h)

σ(g)

fσασβ

Diagram 9.5

In other words, for every face morphism fσασβ
: σα → σβ for which the diagram on the right

commutes, there is exactly one face morphism f such that the diagram on the left commutes
and σ(f) = fσασβ

.

(c) The only isomorphisms in Σ are self-maps.

Remark 9.6. Definition 9.4 follows closely Definition 2.15 of [CCUW20], but we do not pursue
2-categorical aspects. Condition (a) implies that Σ captures information on all the faces in the
polyhedral space. Condition (b) is only used to prove unicity at the crucial Lemma 9.16. Condi-
tion (c) is for the convenience of working with a skeleton category, as done in [ACP15], and plays
a role in endowing Σ with the structure of a partially ordered set later on. △

Definition 9.7. A morphism Φ : [σ : Σ → PolyfZ] → [δ : ∆ → PolyfZ] is a pair (φ, {Φα}α∈Σ)

of a functor φ : Σ→ ∆ and a natural transformation
{
Φα : σα → δφ(α)

}
α∈Σ

from σ to δ ◦ φ such
that the image of Φα is not contained in a proper face of δφ(α). That is, for every f : α→ β in Σ

we have that Diagram 9.8 in PolyfZ commutes.

σα σβ

δφ(α) δφ(β)

σ(f)

Φα Φβ

δ(φ(f))

Diagram 9.8
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θ1

θ2

θ3

{θ1, θ2, θ3}

{θ1, θ2} {θ1, θ3} {θ2, θ3}

{θ1} {θ2} {θ3}

∅

Figure 9.1: On the left, a simplicial cone σ of dimension 3. On the right, the face diagram of σ
when embedded in PolySpace.

We denote by PolySpace the category of polyhedral spaces with morphisms given by Defini-
tion 9.7. When it causes no confusion we write Σ for σ : Σ→ PolyfZ. There is a faithful embedding
PolyZ → PolySpace by associating to a polyhedron σ the polyhedral space of all proper and
non-proper faces of σ.

Example 9.9. We say that an n-dimensional polyhedral cone (N, σ) is simplicial if its set of
1-faces is linearly independent. This is equivalent to requiring that σ has n-many 1-faces. In this
case, any subset of 1-faces generates a face. Thus, the face diagram of σ is isomorphic to the power
set of [n], with morphisms given by the containment relation. See Figure 9.1 for an example. ⋆

Let σ : Σ → PolyfZ be a polyhedral space. A polyhedron σα is top-dimensional if there is no
morphism α→ β in Σ such that dimσα < dimσβ . By Condition (c) of Definition 9.4 we have that
σα is top-dimensional if and only if all the morphisms in Σ with domain α are self-maps. If all the
top-dimensional polyhedra have the same dimension n then we say that Σ is of pure dimension n.

9.2 Topological realization
Now we glue the polyhedra {σα}α∈Σ to obtain a topological space |Σ|. Let Top be the category
with objects the topological spaces and morphisms the continuous functions. Recall that all finite
colimits exist in Top. There is a faithful topological realization functor |·| : Poly→ Top mapping
(N, σ) to |σ|, the topological space with underlying set σ and topology induced from NR; and
mapping a morphism f : (N ′, σ′) → (N, σ) to the map f : |σ′| → |σ|, which is continuous since f
is affine. As noted in Remark 2.2.1 of [ACP15], this extends to a faithful topological realization
functor for PolySpace, which sends Σ to the colimit

|Σ| = colim
α∈Σ
|σα|

in Top. The universal maps of this colimit are pα : |σα| → |Σ|, which satisfy pα = pβ ◦ σ(f) for
any f : α → β in Σ. Recall that |Σ| carries the final topology, namely the finest topology such
that pα is continuous for all α.

Remark 9.10. Let Φ : Σ → ∆ be a morphism of polyhedral spaces. The topological realization
of Φ is a continuous function |Φ| : |Σ| → |∆| obtained by glueing all the |Φα|, such that for all
α ∈ Σ we have that Diagram 9.11 commutes. △

|σα| |Σ|

|δφ(α)| |∆|

pα

|Φα| |Φ|
pφ(α)

Diagram 9.11

Remark 9.12. We have not used any of the lifting conditions from Definition 9.4. In fact, any
functor σ : Σ→ PolyfZ and any morphism (φ, {Φα}α∈Σ) of functors has a topological realization.
This fact is relevant in Subsection 11.2. △
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9.3 Relative interior
Let σ be a polyhedron in V , with aff-spanσ not necessarily equal to V . Recall that a point x in σ is
interior if for any supporting hyperplane H(u, c) of σ such that u(x) = c we have that σ ⊂ H(u, c).
The relative interior σ◦ of σ is the set of interior points of σ. It equals the complement in |σ| of the
union of all the proper faces of σ. It is also the topological interior of |σ| as a subspace of aff-spanσ,
which motivates the naming. It commutes with affine maps, namely f(σ◦) = f(σ)◦. Given x in σ,
there is a unique face τ of σ such that x is in τ◦. See [Zie12, Section 2.3] for proofs of these facts.
We explore how the relative interior interacts with affine maps and with face morphisms.

Lemma 9.13. Let f : (Nσ, σ)→ (Nδ, δ) be an affine map in Poly. If f(σ) is not contained in a
proper face of δ, then f(σ◦) ⊆ δ◦.

Proof. Since f is an affine map, f(σ) is a polyhedron in aff-spanNδ. Suppose there is a point
x ∈ f(σ)◦ contained in a proper face τ of δ. Let H(u, c) be a supporting hyperplane of δ such
that τ = H(u, c) ∩ δ. So x is in H(u, c) and since f(σ) ⊂ δ ⊂ H+(u, c), we have that H+(u, c)
is a supporting hyperplane of f(σ). Since x is in f(σ)◦, the definition of interior point gives that
f(σ) ⊂ H(u, c), thus f(σ) ⊂ τ , a contradiction. Hence, f(σ)◦ is disjoint from all proper faces,
which means that f(σ)◦ ⊂ δ◦. We are done since f(σ◦) = f(σ)◦.

Let (φ, {Φα}α∈Σ) be a morphism of polyhedral spaces. Recall from Definition 9.7 that imΦα
is not contained in a proper face of δφ(α), so the conditions of Lemma 9.13 are satisfied. If we deal
with a face morphism, more can be said:

Lemma 9.14. Let Σ be a polyhedral space, α and β elements in Σ, and pα : |σα| → |Σ| and
pβ : |σβ | → |Σ| the universal maps. There is a morphism α→ β if and only if pα(σ◦

α)∩ im pβ ̸= ∅.

Proof. For notational convenience, in this proof we write σf instead of σ(f). If there is a morphism
fαβ : α → β, then by the universal property of |Σ| we have pα = pβ ◦ σfαβ . So not only is the
intersection pα(σ◦

α) ∩ im pβ non-empty, in fact it equals pα(σ◦
α).

Now suppose there is z ∈ pα(σ◦
α)∩im pβ . Let x ∈ σ◦

α and y ∈ σβ be such that pα(x) = pβ(y) = z,
and τ the unique face of σβ such that y ∈ τ◦. By Condition (a) of Definition 9.4 there is a morphism
ι : α′ → β in Σ that maps σα′ isomorphically to τ in σβ . Let x′ in σα′ be the preimage of y under
σι.

Note that x′ is in σ◦
α′ and pα′(x′) = z. This means that x and x′ are connected by a sequence of

face morphisms; e.g. α f1−→ α1
f2←− α2

f3←− . . . fn−−→ α′ with x′ = σfn(. . . σf
−1
3 (σf−1

2 (σf1(x)))). The
strategy is to replace the first two morphisms in such a sequence by a single morphism. Iterating
this step gives a length-1 sequence, which we argue is an isomorphism, so α = α′ by Condition (c)
of Definition 9.4, which makes ι : α′ → β fulfill the conditions.

There are 4 cases for the first 2 morphisms; namely, α f1−→ α1
f2−→ α2, α

f1←− α1
f2←− α2,

α
f1←− α1

f2−→ α2, and α
f1−→ α1

f2←− α2. In the first two we compose the morphisms. In the third
case, we have that σf1(σα1

) ⊂ σα, so dimα1 ≤ dimα. Note that x is in σf1(σα1
), so the inequality

cannot be strict because if it were then σf1(σα1) would be a proper face of σα, contradicting that
x is in σ◦

α. Thus, dimα1 = dimα, so f1 is an isomorphism and we can reverse the arrow to fall
into the first case.

The fourth case gives Diagram 9.15. There are points x2 ∈ σα2
and x1 ∈ σα1

, and face
morphisms f1 : Nα → Nα1 and f2 : Nα2 → Nα1 , such that x1 = σf1(x) = σf2(x2). Observe that
imσf1 and imσf2 are faces of σα1

, and that the latter contains an interior point of the former,
namely x1 = σf1(x). Thus, imσf2 contains imσf1. Since both maps are face morphisms, they
are injective and affine, so (σf2)

−1 ◦ σf1 restricts to a face morphism σα → σα2 . By Condition (b)
of Definition 9.4, there exists a unique lift f̃ : α → α2. Note that x2 = σf̃(x), so we replace

α
f1−→ α1

f2←− α2 with α f̃−→ α2.
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α2

α α1

f2

f1

f̃

σα2

σα σα1

σf2

σf1

Diagram 9.15

Iterating, we get a length-1 sequence f : α→ α′ with σf(x) = x′. If α ̸= α′, then Condition (c)
of Definition 9.4 implies that dimα ̸= dimα′, but then σf(x) is contained in a proper face of σα′ ,
contradicting that x′ = σf(x) is in σ◦

α′ .

Lemma 9.14 implies a dichotomy, namely pα(σ
◦
α) ∩ im pβ is either empty, or equal to pα(σ◦

α),
for all α and β in Σ.

9.4 Decomposing the topological realization
The structure of Σ induces a stratification that decomposes the topological space |Σ| as a disjoint
union of the relative interiors of the polyhedra σα, modulo automorphisms. This is a straightfor-
ward generalization of Proposition 2.6.2 from [ACP15].

Lemma 9.16. Let σ : Σ→ PolyfZ be in PolySpace. We have that

|Σ| =
⊔
α∈Σ

pα(σ
◦
α).

Proof. Recall that the underlying set of |Σ| = colimα∈Σ|σα| is the disjoint union
⊔
α∈Σ|σα| modulo

the equivalence relation x ∼ x′ identifying those x ∈ |σα| and x′ ∈ |σα′ | for which there is a
morphism f : α → α′ with σf(x) = x′. The universal map pα equals the composition |σα| ↪→⊔
α∈Σ|σα| 7→

⊔
α∈Σ|σα|/ ∼. Given x in |Σ|, there is γ in Σ with Choose x̂ in the fibre p−1

γ (x), and
τ a face of σγ with x̂ in τ◦. By Property (a) of Definition 9.4 there is a morphism f : α → γ
in Σ such that σf maps σα to τ . Thus, x̂ is in τ◦ = σf(σα)

◦ = σf(σ◦
α), and x = pγ(x̂) is in

(pγ ◦ σf)(σ◦
α) = pα(σ

◦
α), so indeed |Σ| =

⋃
pα(α

◦
α). By Lemma 9.14 this union is disjoint: if there

were a point x in pα(σ
◦
α) and pα′(σ◦

α′), we would have morphisms α → α′ and α′ → α, so α and
α′ would be isomorphic, hence equal by Property (c) of Definition 9.4.

Putting Lemmas 9.14 and 9.16 together, we can describe intersections im pα ∩ im pβ .

Lemma 9.17. Let σ : Σ→ PolyfZ be in PolySpace, and α, β in Σ. We have that

im pα ∩ im pβ =
⋃
η

im pη,

where η ranges over the domains of morphisms in Hom(−, α) ∩Hom(−, β).

Proof. If x is in im pα ∩ im pβ , then Lemma 9.16 gives an η ∈ Σ with x ∈ pη(σ◦
η), so Lemma 9.14

gives morphisms η → α and η → β. Conversely, if there are morphisms f : η → α and g : η → β,
we have pη = pα ◦ σf and pη = pβ ◦ σg, so im pη ⊂ im pα ∩ im pβ .

Since all the self-maps are isomorphisms, we denote HomΣ(α, α) by Autα. Note that Autα
acts on |σα| and that pα factors through the projection to the quotient space |σα|/Autα that
identifies points in the same orbit. We get a map pα that is an homeomorphism onto its image; see
Diagram 9.18. Thus, by Lemma 9.16, |Σ| decomposes as a disjoint union of interiors of polyhedra
modulo automorphisms.
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|σα|

|Σ|

|σα|/Autα

pα

pα

Diagram 9.18

9.5 Polyhedral complexes
If Autα is trivial for all α ∈ Σ, then the pα in Diagram 9.18 are injective, hence |Σ| is locally
polyhedral in a straightforward manner. This happens, for example, if HomΣ(α, β) has at most
one element for all α, β ∈ Σ.

Definition 9.19. A rational polyhedral complex, or polyhedral complex for short, is a polyhedral
space σ : Σ → PolyfZ such that #(HomΣ(α, β)) ≤ 1. We write fαβ for the unique element in
HomΣ(α, β), if there is one, and PolyComplex for the full subcategory of PolySpace induced
by the polyhedral complexes.

While non-trivial groups of automorphisms frequently arise in the construction of moduli spaces,
we work first in the more favourable subcategory PolyComplex; later, in Subsection 9.8 we
develop tools to study Π : Gtrop

g→0,d →Mtrop
g inside this subcategory.

Example 9.20. Let (V,N) be a vector space with an integral structure, and Σ a finite family
of integral polyhedra in (V,N). We call Σ an embedded polyhedral complex if the following two
conditions are satisfied:

(a) If σ is in Σ and τ is a face of σ, then τ is in Σ.

(b) If σ1, σ2 are in Σ and σ1 ∩ σ2 ̸= ∅, then σ1 ∩ σ2 is a face of σ1 and a face of σ2.

If we consider Σ as a category by regarding set inclusions as morphisms, and take σ to be the
identity functor, we get a polyhedral complex per Definition 9.4. We have

|Σ| ∼
⋃
σ∈Σ

σ, (9.1)

the topological realization generalizes the support of the embedded polyhedral complex. ⋆

Since an embedded polyhedral complex is a family of subsets of a vector space V , the contain-
ment relation ⊆ induces a natural poset structure. That is, a set with a partial order, namely a
relation which is reflexive, transitive and antisymmetric. This poset is an important combinatorial
invariant, so we argue that there is also a natural poset structure for a polyhedral space.

Remark 9.21. Given objects α, β in an arbitrary category Σ, we write α ⪯ β if there is an
arrow α → β. This relation is reflexive because idα : α → α is in HomΣ(α, α), and transitive
because arrows compose. A reflexive transitive relation is called a preorder. We get symmetry,
hence that ⪯ is a partial order, if for example Σ is a skeleton category and we prove that α ⪯ β
together with β ⪯ α implies that α and β are isomorphic. △

Lemma 9.22. If σ : Σ→ PolyfZ is a polyhedral space, then (Σ,⪯) is a poset.

Proof. If α ⪯ β and β ⪯ α, we have face morphisms f : α → β and g : β → α. Hence dimσα ≤
dimσβ and dimσβ ≤ dimσα. So dimσα = dimσβ , which means that the face morphism f is an
isomorphism. We are done since Σ is a skeleton category by Condition (c) of Definition 9.4.

We call (Σ,⪯) the face poset. When Σ is a polyhedral complex, the poset structure on Σ fully
captures the structure of Σ as a category since #(HomΣ(α, β)) ≤ 1. In general, the face poset
forgets how many morphisms there are between objects of Σ.
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9.6 Partially ordered sets
Before proceeding, we pause for an intermission on posets, which mostly follows [Sta11, Chapter 3].
Let (C,≤) be a finite partially ordered set, or poset for short. The relation ≤ induces a partial
order on any subset of C by restriction. Given x in C, the up-set and down-set generated by x are
the posets

↑Cx = {y ∈ C : x ≤ y} , ↓Cx = {y ∈ C : y ≤ x} .

If the context allows, we simply write ↑x and ↓x. A subset S of C is a down-set if x ∈ S implies
that ↓x ⊆ S. One defines an up-set likewise.

Arbitrary unions and intersections of up-sets produce an up-set. Thus, they can be taken as
the open sets of a topology, which we call the poset topology on C. The complement of an up-set is
a down-set. A map f : C → D is order preserving if x ≤ y implies f(x) ≤ f(y) for all x, y ∈ C. The
posets, with order preserving maps as morphisms, make a category Poset. Moreover, endowing C
with the poset topology gives a fully faithful functor from Poset to Top, because a map f : C → D
is continuous in the poset topology if and only if f is order preserving.

Remark 9.23. The topology where the up-sets of a preorder, not necessarily finite, are the open
sets is also known as Alexandrov topology, Alexandrov-discrete space or finitely generated space.
This topology satisfies the separation axiom T0, i.e. all points are topologically distinguishable, if
and only if the preorder that induces it is a partial order. This topology satisfies T1 if and only if
the space is discrete. Hence, all interesting examples happen to be non-metrizable. △

If C is a poset, we say that y in C is minimal if x ≤ y implies that x = y, and maximal if x ≥ y
implies that x = y. We denote by min C the set of minimal elements of C, and max C the set of
maximal elements. An element y covers x if y is minimal in (↑x) \ {x}. Two elements x and y are
comparable if either x ≤ y or y ≤ x. An order is total if all pairs of elements are comparable. A
chain L is a subset of C where all elements are pairwise comparable. A chain is maximal if it is
inclusion-wise maximal in the set of chains of C. The length length(L) of a chain L is #(L) − 1.
The length of C is the maximum length of a chain of C. If all maximal chains have equal length
then we say that C is graded. A rank function r : C → Z is a map such that y covers x if and only
if r(y) = r(x) + 1. Whenever we work with a rank function r, we assume it is zero on minimal
elements, clearly this determines r. An example of a class of posets that admit a rank function are
graded posets.

Remark 9.24. For Σ in PolyComplex we have that dimσα = length(↓α). Thus, Σ is pure-
dimensional if and only if (Σ,⪯) is a graded poset; in this case the rank function is the dimension
function. △

It is straightforward to define products in Poset. Quotients are slightly more subtle.

Example 9.25. Let Σ and Σ′ be posets, and ∼ an equivalence relation on Σ.

• The product of posets is just the set theoretical product Σ×Σ′ with the relation (α1, β1) ⪯Σ×Σ′

(α2, β2) if and only ifα1 ⪯Σ α2 and β1 ⪯Σ′ β2.

• The quotient Σ/ ∼ is a preorder with the relation α ⪯∼ β if and only if there are α ∈ α and
β ∈ β such that α ⪯ β.

The quotient is not always a poset, for example Σ = [3] with 1 ⪯ 2 ⪯ 3 and ∼ equals {{1, 3} , {2}},
gives Σ/ ∼ which is a preorder but not a poset. Under some conditions Σ/ ∼ is straightaway
a poset, like for example if Σ admits a rank function r and ∼ only identifies elements of equal
rank. ⋆
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9.7 Relating the poset and the final topology
The poset topology on (Σ,⪯) and the final topology on |Σ| are related by considering the set
{γ ∈ Σ: x ∈ im pγ} for a point x ∈ |Σ|. By Lemmas 9.14 and 9.16 this set is an up-set generated
by the element α in Σ such that x ∈ pα(σ◦

α). So the following map is well defined:

Definition 9.26. Let Σ be in PolySpace. We define polyΣ : |Σ| → Σ as the map sending a point
x ∈ |Σ| to the minimal polyhedron in Σ that contains x:

polyΣ(x) = min {γ ∈ (Σ,⪯) : x ∈ im pγ} .

Now we assume that Σ is a polyhedral complex, so the universal maps pα : σα → |Σ| have
inverses.

Lemma 9.27. Let σ : Σ→ PolyfZ be in PolyComplex. The map polyΣ : |Σ| → Σ is surjective,
open, and continuous.

Proof. Since polyΣ(x) equals α for any x ∈ pα(σ◦
α), we have surjectivity.

Recall that V ⊆ |Σ| is open in the final topology if and only if p−1
α (V ) is open in |σα| for all

α ∈ Σ. To see that polyΣ is an open map, let V ⊂ |Σ| be an open set, α ∈ polyΣ(V ), and β in Σ
such that α ⪯ β. There is x in V such that x ∈ pα(σ◦

α). Since α ⪯ β, there is fαβ : α → β. By
the definition of colimit pα = pβ ◦ σ(fαβ). Thus, x ∈ im pβ , so p−1

β (V ) is an open neighbourhood
of p−1

β (x) in |σβ |. There is a point y in p−1
β (V ) ∩ σ◦

β , because any neighbourhood of a point in
|σβ | intersects σ◦

β . This gives that pβ(y) ∈ V and polyΣ(pβ(y)) = β. Hence polyΣ(V ) is an up-set,
namely open in the poset topology.

Finally, since {↑α : α ∈ Σ} generates the poset topology, polyΣ is continuous if

polyΣ
−1(↑α) =

⋃
α⪯γ

pγ(σ
◦
γ) (9.2)

is open for all α ∈ Σ. So we must show that p−1
β (polyΣ

−1(↑α)) is open for all β in Σ. By
Lemma 9.14 we have that pβ(σβ) intersects pγ(σ◦

γ) if and only if then γ ⪯ β. Moreover, if pβ(σβ)
intersects pγ(σ◦

γ), then the intersection equals pγ(σ◦
γ) and pγ = pβ ◦ σ(fγβ). This implies:

polyΣ
−1(↑α) ∩ pβ(σβ) =

⋃
α⪯γ

pγ(σ
◦
γ) ∩ pβ(σβ) =

⋃
α⪯γ⪯β

pγ(σ
◦
γ)

=
⋃

α⪯γ⪯β

pβ ◦ σ(fγβ)(σ◦
γ) = pβ(

⋃
α⪯γ⪯β

σ(fγβ)(σ
◦
γ)).

Applying p−1
β on both sides we are left with showing that

p−1
β (polyΣ

−1(↑α)) =
⋃

α⪯γ⪯β

σ(fγβ)(σ
◦
γ)

is open for all α, β ∈ Σ with α ⪯ β. We claim that

|σβ | =
⋃

α⪯γ⪯β

σ(fγβ)(σ
◦
γ) ⊔

⋃
η⪯β
α ̸⪯η

σ(fηβ)(ση) (9.3)

is a partition. Indeed, for x ∈ |σβ | we let σµ be the face of σβ such that x is in σ◦
µ. Note that either

α ⪯ µ, so x is in the union on the left, or α ̸⪯ µ, so x is in the union on the right of Equation (9.3).
The two unions are disjoint, since if x is in some σ(fγβ)(σ◦

γ) on the left, then by Lemma 9.14 we
have γ ⪯ µ, so by transitivity α ⪯ µ and so µ is not in the union on the right. Since the union on
the right is a finite union of faces of σβ , and each face is a closed set, the complement in |σβ | is an
open set, so we are done.
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Lemma 9.28. Let Φ : Σ→ ∆ be a morphism in PolyComplex, and |Φ| : |Σ| → |∆| the induced
map on the topological realizations. We have that Diagram 9.29 commutes.

|Σ| Σ

|∆| ∆

polyΣ

|Φ| φ

poly∆

Diagram 9.29

Proof. We write (φ, {Φα}α∈Σ) for the pair defining Φ. Let x be in |Σ| and α = polyΣ(x). On
the one hand, φ ◦ polyΣ(x) = φ(α). On the other hand, by Lemma 9.13, and the discussion
succeeding it, we have that Φα(σ

◦
α) ⊆ δ◦φ(α). Thus, Φα(p

−1
α (x)) is in δ◦φ(α). This means that

poly∆ ◦pφ(α) ◦ Φα ◦ p−1
α (x) = φ(α). By Remark 9.10 we have pφ(α) ◦ Φα ◦ p−1

α (x) = |Φ|(x), so we
are done.

Remark 9.30. Note that φ is an order preserving map, because α ⪯ β implies the existence of
fαβ in Σ. So φ(fαβ) : φ(α) → φ(β) is in ∆, namely φ(α) ⪯ φ(β). Thus, Diagram 9.29 is a
commutative square in the Top category. △

From Diagram 9.29 we get, for every x ∈ |∆|, a containment of fibres

polyΣ(|Φ|
−1

(x)) ⊂ φ−1(poly∆(x)). (9.4)

This is an intermediate result as we work towards reducing the count of points of the fibre |Π|−1
(Γ̃)

in Theorem C to a combinatorial question. i

9.8 Refinements
Now we go back to the general setting of objects σ : Σ→ PolyfZ and morphisms Φ in PolySpace.
We study refinements, a tool that modifies the polyhedral structure of a space, while keeping the
topological and the integral structure unchanged. Our first goal is to obtain polyhedral complexes
out of polyhedral spaces of cones.

Definition 9.31. A refinement of a polyhedral space Σ ∈ PolySpace is a morphism Φ : Σ̃ →
Σ ∈ PolySpace such that the topological realization |Φ| : |Σ′| → |Σ| is a homeomorphism and
induces a bijection on integral points, i.e. |Φ|(N ′) = N .

9.9 Stellar subdivisions
We first look at refinements produced by stellar subdivisions. We treat only the case of polyhedral
cones and polyhedral spaces of cones. This simplifies the exposition, and is enough for our intended
application.

Example 9.32. Let σ be a rational polyhedral cone in (V,N) and x a point in σ. Let starσ(x)
be the set of faces of σ that contain x. The stellar subdivision

sdσ(x) =
{
spanR≥0

(τ, x) : τ face of σ, τ ̸∈ starσ(x)
}

is an embedded polyhedral complex and the morphism sdσ(x) → σ given by inclusion is a refine-
ment. See Figure 9.2 for a subdivision of a 4-dimensional simplicial cone. ⋆
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Figure 9.2: On the left, the intersection of the positive orthant of R4 with the hyperplane
∑
xi =

1, and p = (1/3, 1/3, 1/3, 0). On the right, the stellar subdivision by p, which adds 1 cone of
dimension 1, 4 cones of dimension 2, 6 cones of dimension 3 and 3 cones of dimension 4.

Example 9.33. Consider an embedded cone complex Σ in (V,N), and a point x ∈ |Σ|. We get a
refinement sdΣ(x)→ Σ by performing a stellar subdivision on each cone containing x. Concretely,
if we let δ ∈ Σ be the unique cone with x ∈ δ◦, the cones that are refined are precisely those in
the set starΣ(δ) = {σ ∈ Σ: δ ⊂ σ}. The refinement deletes the cones in starΣ(δ), and adds the
cones spanR≥0

(x, τ) with τ ranging over cones that do not contain x and are a face of a cone σ in
starΣ(δ). That is,

sdΣ(x) = (Σ \ starΣ(δ)) ∪
{
spanR≥0

(τ, x) : τ ̸∈ starΣ(δ) and τ ⊂ σ for some σ ∈ starΣ(δ)
}
.

See [Ewa12, Definition 2.1] for more information, including the generalization to the cell complex
case. See [Koz07, Definition 2.22] for the abstract simplicial complex case. ⋆

Now the goal is to define the stellar subdivision in our setting. As there is no ambient space,
we deal with the morphisms between the polyhedra in Σ.

Definition 9.34. Let Σ be the face poset of a polyhedral space and α ∈ Σ. We define the star
and the closed star of α as

starΣ(α) = CatΣ(↑Σα),
starΣ(α) = CatΣ(↓Σ(↑Σα));

where CatΣ(−) denotes the full subcategory of Σ induced by a set of objects.

In our setting, to read off the faces of σα we look at the images of the morphisms in HomΣ(−, α).
This means that the objects of the finite category indexing the stellar subdivision are both objects
and morphisms of Σ. We first construct this category and then construct the functor to ConefZ
that corresponds to the stellar subdivision.

Construction 9.35 (Combinatorial stellar subdivision). Given a finite category Σ and α in
Obj(Σ), the combinatorial stellar subdivision sdΣ(α)combinatorial stellar subdivision is a category
whose objects are

{a ∈ Obj(Σ): a ̸∈ starΣ(α)} ⊔
{
a : µ→ ν ∈ Mor(Σ): µ ∈ starΣ(α), ν ∈ starΣ(α)

}
,

and whose morphisms are of the following four types:

(I) if a, b ∈ Obj(Σ), then HomsdΣ(α)(a, b) = HomΣ(a, b).

(II) if a ∈ Obj(Σ) and b : µ → ν ∈ Mor(Σ), then HomsdΣ(α)(a, b) = HomΣ(a, µ), i.e. those

morphisms f that give a sequence a f−→ µ
b−→ ν.

(III) if a ∈ Mor(Σ) and b ∈ Obj(Σ), then HomsdΣ(α)(a, b) = ∅.

(IV) if a : µ1 → ν1, b : µ2 → ν2 ∈ Mor(Σ), then HomsdΣ(α)(a, b) equals the set of pairs (f : µ1 →
µ2, g : ν1 → ν2) such that Diagram 9.36 commutes.
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µ1 ν1

µ2 ν2

a

f g

b

Diagram 9.36

Construction 9.37 (Stellar subdivision of a polyhedral space). Let σ : Σ→ ConefZ be a polyhe-
dral space of cones, x ∈ |Σ| such that #(p−1

γ (x)) ≤ 1 for all γ ∈ Σ, and α = polyΣ(x). The stellar
subdivision of σ by x is a functor sdσ(x) : sdΣ(α)→ ConefZ defined as follows:

1. If a ∈ Obj(sdΣ(α)) is an object of Σ, then a is mapped to σ(a).

2. If a ∈ Obj(sdΣ(α)) is a morphism a : µ→ ν of Σ, then σ(a) is a face morphism (Nµ, σµ)→
(Nν , σν) and spanR≥0

(pν
−1(x), imσ(a)) ⊂ σν is a cone because ν is in ↑Σα, so pν−1(x) is one

point. We set
(sdσ(x))(a) = (Nν , spanR≥0

(pν
−1(x), imσ(a))).

3. If f ∈ Mor(sdΣ(α)) is a type (I) morphism, namely f is in Mor(Σ), then it is mapped to
σ(f).

4. If f ∈ Mor(sdΣ(α)) is a type (II) morphism corresponding to f : a → µ ∈ Mor(Σ) sending
a ∈ Obj(Σ) to b : µ→ ν ∈ Mor(Σ), then it is mapped to the composition

σα
σ(f)−−−→ σµ

σ(b)−−→ spanR≥0
(pν

−1(x), imσ(b)) = (sdσ(x))(b).

The image equals spanR≥0
(pν

−1(x), imσ(b ◦ f)), which is a face of (sdσ(x))(b) by Exam-
ple 9.32, because imσ(b ◦ f) is a face of σν that does not contain pν

−1(x) since the domain
of f is not in ↑Σα.

5. Finally, assume (f : µ1 → µ2, g : ν1 → ν2) ∈ Mor(sdΣ(α)) is a type (IV) morphism, namely
sending a : µ1 → ν1 ∈ Mor(Σ) to b : µ2 → ν2 ∈ Mor(Σ) and verifying g ◦ a = b ◦ f . We set

(sdσ(x))((f, g)) = σ(g)|(sdσ(x))(a).

This is a face morphism because σ(g) is an affine map so

σ(g)((sdσ(x))(a)) = σ(g)(spanR≥0
(pν1

−1(x), imσ(a)))

= spanR≥0
(σ(g)(pν1

−1(x)), σ(g)(imσ(a)))

= spanR≥0
(pν2

−1(x), imσ(g ◦ a))

= spanR≥0
(pν2

−1(x), imσ(b ◦ f)).

The last line is a face of spanR≥0
(pν2

−1(x), imσ(b)) = (sdσ(x))(b) for reasons similar to
Item 4.

Lemma 9.38. Let σ : Σ → ConefZ be a polyhedral space of cones, and x be a point in |Σ| such
that #(p−1

γ (x)) ≤ 1 for all γ ∈ Σ. The skeleton of sdσ(x) is a polyhedral space of cones, and the
following map Φ is a morphism of polyhedral spaces

φ : sdΣ(α)→ Σ

a ∈ Obj(Σ) 7→ a Φa : (sdσ(x))(a) = σa ↪→ σφ(a) = σa

b : µ→ ν ∈ Mor(Σ) 7→ ν Φb : (sdσ(x))(b) = spanR≥0
(pν

−1(x), imσ(b)) ↪→ σφ(b) = σν .

Moreover, |Φ| : |sdσ(x)| → |Σ| is a homeomorphism.

Remark 9.39. In general, stellar subdivisions are not commutative. See Figure 9.3 for an example.
If x1, x2 are points in |Σ| such that ↑Σ polyΣ(x1)∩↑Σ polyΣ(x1) ̸= ∅, then the operations commute.

△
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x1

x2

Figure 9.3: On the left, the intersection of a simplicial cone of dimension 3, with the hyperplane∑
xi = 1. On the middle, first a stellar subdivision by x1 and then by x2; on the right first by x2

and then x1.

9.10 Barycentric subdivision
The condition #(p−1

γ (x)) ≤ 1 for all γ ∈ Σ is equivalent to saying that pγ−1(x) is a fixed point of
{σ(f) : f ∈ Aut γ} for all γ ∈ ↑Σ polyΣ(x). The barycentre of σγ is a fixed point, regardless of the
structure of Aut γ. Also repeated subdivision by barycentres resolves away the automorphisms of
Σ.

Let σ ⊂ (V,N) be a rational cone; for a moment we do not assume that spanσ = V . Consider
a ray θ of σ, i.e. a 1-face. As σ is rational, the set θ ∩ N is a monoid generated by one element
vθ called the primitive vector of θ. An automorphism f ∈ Autσ restricts to an isomorphism
from the ray (Nθ, θ) to the ray (Nf(θ), f(θ)), so f(vθ) = vf(θ). Hence, f maps the set of rays
{θ ⪯ σ : dim θ = 1} of σ bijectively onto itself. Thus, the barycentre β̄(σ) given by

β̄(σ) =
∑

0⋖θ⪯σ
vθ

is a fixed point of σ for all f ∈ Autσ. In general, we get that if f : σ → δ is a face morphism, then
f(β̄(σ)) = β̄(f(σ)); i.e. the barycentre of σ is mapped to the barycentre of the face f(σ) of δ.

Definition 9.40 (Barycentric subdivision). Let σ : Σ → ConefZ be a polyhedral space of cones,
L a total order extending ⪯ on Σ, α1, α2, . . . , α#(Σ) the cones of Σ in ⪯L-decreasing order. Write
si for the stellar subdivision by the barycentre bi of the cone αi. The following iterated stellar
subdivision, if it exists, is called the barycentric subdivision of Σ .

bcs(σ : Σ→ ConefZ, L) = s#(Σ) ◦ · · · ◦ s2 ◦ s1(σ : Σ→ ConefZ).

Example 9.41. Let Σ be an embedded polyhedral cone complex, as in Example 9.20. Recall that
a chain of a poset is a subset whose elements are all pairwise comparable. The set L(Σ) of all
chains of (Σ,⊆) is a poset with the set inclusion relation, and L(Σ) indexes the cones of bcs(Σ).
That is, given a chain L : σ1 ⊊ σ2 ⊊ · · · ⊊ σl we have

σL = spanR≥0
(β̄(σ1), β̄(σ2), . . . , β̄(σl))

bcs(Σ) = {σL : L is a chain of Σ} .

If L is a subchain of a chain M , then σL is a face of σM . ⋆

The following construction and lemma generalizes a claim made in the proof of [Koz07, Propo-
sition 2.23]. From it follows that the barycentric subdivision is always defined and is independent
of the chosen L extending ⪯.

Construction 9.42. Let σ : Σ→ ConefZ be a polyhedral space of cones, L a total order extending
⪯ on Σ, and η ∈ Σ. The category Ση,L has as objects the sequences of morphisms

S : α0
f01−−→ α1

f12−−→ . . .
f(l−1)l−−−−→ αl

of Σ such that α0 ≺L η ⪯L α1, and the dimension of the cones is strictly increasing, i.e. dimαi <

dimαi+1. A morphism from the length-l sequence S to the length-m sequence T : γ0
g01−−→

. . .
g(m−1)m−−−−−→ γm is a tuple of morphisms

(ĥ : α0 → γ0, h1 : α1 → γι(1), . . . , hl : αl → γι(l))
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such that the hi are isomorphisms and Diagram 9.43 commutes.

α0 α1 α2 . . . αl

γ0 . . . γι(1) . . . γι(2) . . . γι(l) . . . γm

g h1 h2 hl

Diagram 9.43
Given a sequence S ∈ Ση,L, we write fij for the composition f(j−1)j ◦ · · · ◦ fi(i+1). The functor
ση,L : Ση,L → ConefZ is given by

ση,L(S) = (Nαl , spanR≥0

{
σ(f0l)(σ(α0)), σ(f1l)(β̄(α1)), . . . , σ(f(l−1)l)(β̄(αl−1)), β̄(αl)

}
)

= (Nαl , spanR≥0

{
σ(f0l)(σ(α0)), β̄(σ(f1l)(α1)), . . . , β̄(σ(f(l−1)l)(αl−1)), β̄(αl)

}
)

ση,L(S → T ) = σ(hl)

We see that ση,L(S → T ) is a face morphism by calculating

σ(hl)(ση,L(S)) =

σ(hl)(spanR≥0

{
σ(f0l)(σ(α0)), σ(f1l)(β̄(α1)), . . . , σ(f(l−1)l)(β̄(αl−1)), β̄(αl)

}
) =

spanR≥0

{
σ(hl) ◦ σ(f0l)(σ(α0)), . . . , σ(hl) ◦ σ(f(l−1)l)(β̄(αl−1)), σ(hl) ◦ β̄(αl)

}
) =

spanR≥0

{
σ(hl ◦ f0l)(σ(α0)), . . . , β̄(σ(hl ◦ f(l−1)l)(αl−1)), β̄(σ(hl)(αl))

}
) =

spanR≥0

{
σ(g0m ◦ h0)(σ(α0)), . . . , β̄(σ(gι(l−1)m ◦ hl−1)(αl−1)), β̄(σ(hl)(αl))

}
).

By Example 9.41, the last line is a face of

ση,L(T ) = (Nγm , spanR≥0

{
σ(g0m)(σ(γ0)), . . . , β̄(σ(g(m−1)m)(γm−1)), β̄(γl)

}
).

Lemma 9.44. Let σ : Σ → ConefZ be a polyhedral space of cones, and η in Σ be the q-th
cone in ⪯L-decreasing order. The functor ση,L : Ση,L → ConefZ is isomorphic to the functor
sq ◦ · · · ◦ s2 ◦ s1(σ : Σ→ ConefZ).

Proof. Straightforward generalization of the proof of [Koz07, Proposition 2.23].

Remark 9.45. The ⪯L-minimal element of Σ is the apex ({0} , {0}) of Σ. Let θ be the element
that covers ({0} , {0}). Observe that σθ,L : Σθ,L → ConefZ is independent of L; i.e. the objects
are sequences of Σ that begin with ({0} , {0}). Moreover, Lemma 9.44 implies that bcs(σ : Σ →
ConefZ, L) is isomorphic to σθ,L : Σθ,L → ConefZ. Thus, we simply write bcs(σ : Σ→ ConefZ). △

Conjecture 9.46. Let σ : Σ→ ConefZ be a polyhedral space of cones. The barycentric subdivision
bcs(σ) is a polyhedral complex of simplicial cones.



Chapter 10

Indexed branched covers

10.1 Indexed branched covers
Let F : X → Y be a continuous map. We call the cardinality of the fibre F−1(y) the degree of F
at y ∈ Y . We now study certain maps F for which the degree is a constant degF independent of
the chosen y ∈ Y , leading up to the notion of indexed branched cover. We begin with:

Definition 10.1. A continuous map F : X → Y is a cover if for every y ∈ Y there exists an open
neighbourhood U of y such that F−1(U) is a union of disjoint open sets Vi ⊂ X, and F maps each
Vi homeomorphically to U .

See Figure 10.1 (a) for an example. If F : X → Y is a cover, then the degree at y ∈ Y is
constant over each connected component of Y , i.e. over each subset of Y that is inclusion-wise
maximal among connected sets. Recall that a set S ⊂ Y is connected if there is no pair U1, U2 of
open sets such that (U1 ∩S)∪ (U2 ∩S) = S and (U1 ∩S)∩ (U2 ∩S) = ∅. Thus, if Y is connected,
all fibres have the same cardinality.

Remark 10.2. Note that in Definition 10.1 we do not require F : X → Y to be surjective. In
practice we get it from F being a cover plus some other mild condition. For example, when X is
non-empty and Y is connected, surjectivity follows from the above observation that all fibres are
equipotent. △

In algebraic geometry it is usual to deal with maps that are almost a cover, except that some
U ⊂ Y have copies Vi in F−1(U) that glue together at a roughly small set, like in Example 10.8.

Definition 10.3. A pair (F,B) of a continuous map F : X → Y and a closed subset B ⊂ Y is a
branched cover if Y \B is open and dense, and F restricted to F−1(Y \B) is a cover.

Remark 10.4. Many times we omit writing the pair and say that F is a branched cover with
branch locus B ⊂ Y . We also say that F is a branched cover unramified over U = Y \B. There is

↓
X

Y

A1 B1 C1 C2

t1 t2s1 s2

A B C

ts

Γ

↓

∆

↓
|Γ|

|∆|

Figure 10.1: On the left, a degree-2 cover of a circle, where the vertical grey line indicates
identification of two points. In the centre, a branched covering of posets. On the right, a branched
covering of a segment subdivided in two pieces. Both branched coverings admit an index map that
makes them a degree-3 indexed branched covering.
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no widespread agreement on what a general branched cover should be, so Definition 10.3 simply
expresses some of the bare minimums typically imposed. In our setting we are concerned with
branched covers of polyhedral complexes and of posets. △

Example 10.5. Let φ : Σ→ ∆ be a morphism of posets. The closure of a set U ⊂ ∆ is ↓∆U , so a
subset of ∆ is dense if and only if it contains max∆. An element β ∈ ∆ is maximal if and only if
the singleton {β} is an open set. So, the fibre φ−1({β}) of an open {β} is a disjoint union of open
sets homeomorphic to {β} if and only if every α in φ−1(β) is maximal. Thus, if φ is a branched
cover unramified over U ⊂ ∆, then

1. If β is in max∆, then φ−1(β) ⊂ maxΣ.

2. We have that max∆ ⊂ U .

Moreover, if φ fulfills (1), then φ is a branched cover unramified over max∆. ⋆

If U = Y \B is not connected, we may have different values for the degree at different connected
components of Y \ B. And even if all values happen to coincide, it is dissatisfying to not have a
count for fibres above B. When all the fibres of F are finite, we remedy this situation by introducing
a map that indicates a positive integral multiplicity for counting the points: an index map for X is
a map from X to Z≥1. The freedom provided by this relaxation of the problem is counterbalanced
by a stronger requirement, a local preimage count that must be constant:

Definition 10.6 (local degree). Let F : X → Y be a map such that for all y ∈ Y the set F−1(y)
is finite, mX : X → Z≥1 be an index map, and V ⊂ X. We define the local degree function
deg(F,mX , V ) : Y → Z≥0 as

deg(F,mX , V )(y) =
∑

x∈F−1(y)
x∈V

mX(x). (10.1)

From now on we assume that F has finite fibres and Y is connected. The convention for
empty sums in Equation (10.1) is that they evaluate to 0. The reason for having the domain of
deg(F,mX , V ) be Y , and not just U = F (V ), is to make the following observation: for any pair of
sets V1, V2 ⊂ X we have that

deg(F,mX , V1) + deg(F,mX , V2) = deg(F,mX , V1 ∪ V2) + deg(F,mX , V1 ∩ V2). (10.2)

Moreover, if F−1(y) ∩ V1 = F−1(y) ∩ V2, we have the transition equality

deg(F,mX , V1)(y) = deg(F,mX , V2)(y). (10.3)

Finally, we say that deg(F,mX , V ) is constant if it is constant over F (V ). We now come to the
main definition of this subsection:

Definition 10.7. A pair (F,mX) of a branched covering F : X → Y , and an index map mX :
X → Z≥1, is an indexed branched cover if for every connected open set U ⊂ Y and connected
component V of F−1(U) the local degree deg(F,mX , V ) is constant.

In particular, since Y is open and connected, this means that the count with multiplicity mX

of the points in the fibre F−1(y) is a constant deg(F,mX) over Y .

Example 10.8. Let f : X → Y be a non-constant holomorphic map of compact Riemann surfaces,
and x be a point in X. Recall that there are charts for X and Y that express f in a neighbourhood
U of x simply as f = zk. The integer k is independent of how the charts are chosen, so the map
mX : X → Z≥1 sending x 7→ k is well defined. This is called the ramification index of x. A central
fact in the theory of Riemann surfaces is that the pair (f,mX) is an indexed branched cover, with
a branch locus that consists of finitely-many points of Y . See [CM16, Section 4] for an accessible
and streamlined exposition. ⋆
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Example 10.9. Consider the map Γ→ ∆ from Figure 10.1 (b). The following table specifies an
index map mΓ which makes (Γ → ∆,mΓ) a degree-3 indexed branched cover with branch locus
equal to {A,B}.

x mΓ(x) x mΓ(x)
A1 3 s1 2
B1 3 s2 1
C1 1 t1 1
C2 2 t2 2

Note that {s, t} ⊂ {s, t, C} indeed is a dense set, since its closure is ↓s ∪ ↓t = ∆. ⋆

Remark 10.10. Definition 10.7 is inspired by, and synthesizes together, Definitions 2.17 and 2.23
from [Pay09]. △

10.2 Morphisms of branched covers
We now make a few considerations on what properties should a morphism of branched covers
preserve, and propose a definition.

Let F : X → Y and F : X → Y be branched covers with branch loci B and B. Consider a
pair (g, h) of continuous maps as in Diagram 10.15, which we want to be structure preserving. The
question is, which structure. On the one hand, the topology of X \F−1(B) is locally homeomorphic
to that of Y \ B. So f should be a local homeomorphism from X \ F−1(B) to X \ F−1

(B), and
likewise g a local homeomorphism from Y \B to Y \B.

On the other hand, we have not imposed conditions on the branch locus, besides being closed
with dense complement. Thus, we cannot say much about how F−1(B) relates to B. It would
be too rigid to preserve all properties of F−1(B) → B when mapping to F

−1
(B) → B, hence we

focus on the most relevant to us, namely connectivity. First, recall some topological definitions
and facts; see e.g. [Mun00].

Definition 10.11. Let f : X → Y be a map of topological spaces.

• A subset U ⊂ X is saturated if f−1(y) ∩ U ̸= ∅ implies that f−1(y) ⊂ U , for all y ∈ Y ;
i.e. for some V ⊂ Y we have that U = f−1(V ).

• The map f is a quotient map if f is continuous, surjective, and every saturated open set is
mapped to an open set.

Remark 10.12. If f : X → Y is a quotient map, then Y is homeomorphic to X/ ∼f with the
quotient topology, where ∼f is the equivalence relation on X given by x ∼f x′ if f(x) = f(x′) △

Example 10.13. Any continuous map that is surjective and open is a quotient map. Thus, given
a polyhedral space σ : Σ → PolyfZ, Lemma 9.27 implies that the map poly from Definition 9.26
is a quotient map. The associated equivalence relation identifies two points if they belong to the
same relative interior. ⋆

Definition 10.14. Let (F : X → Y,B) and (F : X → Y ,B) be branched covers. A pair of
quotient maps (g : X → X,h : Y → Y ) such that h ◦ F = F ◦ g, i.e. such that Diagram 10.15
commutes, is a morphism of branched covers if h(B) ⊂ B and for every connected U ⊂ Y and
every V ∈ π0(F

−1
(U)) we have that π0(g−1(V )) ⊂ π0(F−1(h−1(U))).

X X

Y Y

g

F F

h

Diagram 10.15
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In Theorem 10.46 and in Definition 12.16 we deal with quotient maps g : X → X that have
connected fibres, i.e. f−1(y) is connected for all y ∈ Y . We explore some consequences of this
condition.

Lemma 10.16. Let g : X → X be a quotient map. If g has connected fibres, X is locally path
connected, and X is connected, then X is connected.

Proof. That g is surjective with connected fibres, implies that the set P given by {g(V ) : V ∈ π0(X)}
is a partition of X. It also implies that each V ∈ π0(X) is saturated. Moreover, each V ∈ π0(X)
is open because X is locally path connected. Since g is a quotient map, P is a partition of X into
open connected sets. Hence, P has only one element, because X is connected. Note that the map
π0(X0)→ P induced by g is injective, so we are done.

10.3 Morphisms of indexed branched covers
We now propose a particular kind of branched covers that interacts well with index maps.

Definition 10.17. Let (F : X → Y,mX) and (F : X → Y ,m) be two indexed branched covers,
and (g, h) a morphism from F to F as branched covers. We say that (g, h) is a morphism of
indexed branched covers if for any connected open set U ⊂ Y and every V ∈ π0(F

−1
(U)) we have

deg(F,mX , g
−1(V )) = deg(F ,m, V ).

Lemma 10.18. Let the pair (g, h) be a morphism of indexed branched covers (F : X → Y,m)→
(F : X → Y ,m). If for any y in Y the induced topology on F

−1
(y) ⊂ X is discrete, then

m(x) = deg(F, g−1(x),m) =
∑

x∈g−1(x)

m(x).

We have a converse of sorts, which enables us to induce an indexed branched cover structure
on F given an indexed branched cover F and a morphism (g, h) : F → F of branched covers.

Lemma 10.19. Let the pair (g, h) be a morphism of branched covers (F : X → Y,B)→ (F : X →
Y ,B). If m : X → Z>0 is an index map that makes (F,m) and indexed branched cover, then

m(x) = deg(F, g−1(x),m) =
∑

x∈g−1(x)

m(x)

makes (F ,m) and indexed branched cover.

Remark 10.20. If F : X → Y has finite fibres, and X satisfies the T1 separation axiom, then any
fibre F

−1
(y) has the discrete topology, so the condition on fibres from Lemma 10.18 is satisfied.

Recall that posets with the poset topology are not T1, unless the partial order is trivial. In
Lemma 10.40 we prove this condition for the posets that interest us. △
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10.4 A criterion for being an indexed branched cover
Having constant local degrees is a desirable realizability condition, but proving it is a difficult task.
Thus, we derive equivalent conditions that are easier to prove. As a first result, we show that it is
enough to consider a basis with good properties for the topology of Y . We let π0(X) denote the
set of connected components of X.

Remark 10.21. Typically in the literature π0(X) denotes the set of path-connected components;
i.e. inclusion-wise maximal elements in the family of path-connected subsets S of X. A path
connecting y, z ∈ X is a continuous map f : [0, 1] → X with f(0) = y and f(1) = z. A subset
S ⊂ X is path-connected if every pair of points in S is connected by a path. All the spaces
that we consider are locally path-connected, i.e. there is a basis consisting of path-connected sets,
see Propositions 10.24 and 10.29. In this case the connected components and the path-connected
components coincide [Mun00, Theorem 25.5]. △

Lemma 10.22. Let F :X → Y be a branched cover, mX : X → Z≥1, and U (1), U (2) connected
open sets in Y with deg(F,mX , V

(q)) constant for V (q) ∈ π0(F−1(U (q))), for q = 1 and 2. The
degree deg(F,mX , V ) is constant for V ∈ π0(F−1(U (1) ∪ U (2))).

Proof. We are done if U (1) and U (2) are disjoint, so assume that U (1) ∩ U (2) ̸= ∅. Let V be
in π0(F

−1(U (1) ∪ U (2))). If
{
V

(q)
j

}
j∈J

is the family of connected components of F−1(U (q)) that

intersect V , for q = 1 and 2, we claim that

V =
⋃
j∈J

V
(1)
j ∪

⋃
k∈K

V
(2)
k .

Indeed, it is clear that the set on the right contains the set on the left, and the other containment
follows from the observation that if S is a connected set with S ∩ V ̸= ∅, then S ∪ V is connected,
so S ⊂ V . Let y0 ∈ U (1) ∩U (2), y1 ∈ U (1), and y2 ∈ U (2). By Equations (10.2) and (10.3) we have

deg

F,mX ,
⋃
j∈J

V
(1)
j

 (y1) =
∑
j∈J

deg
(
F,mX , V

(1)
j

)
(y1) (10.4)

=
∑
j∈J

deg
(
F,mX , V

(1)
j

)
(y0)

= deg

F,mX ,
⋃
j∈J

V
(1)
j

 (y0).

Likewise, we derive

deg

(
F,mX ,

⋃
k∈K

V
(2)
k

)
(y2) = deg

(
F,mX ,

⋃
k∈K

V
(2)
k

)
(y0). (10.5)

Since y0 is in U (1) and
{
V

(1)
j

}
j∈J

is the family of connected components of F−1(U (1)) that

intersects V , we have that
F−1(y0) ∩

⋃
j∈J

V
(1)
j = F−1(y0) ∩ V.

Likewise, we obtain a similar expression in relation to F−1(U (2)), and conclude

F−1(y0) ∩
⋃
j∈J

V
(1)
j = F−1(y0) ∩ V = F−1(y0) ∩

⋃
k∈K

V
(2)
k .

This implies, by Equation (10.3), that the right hand sides of Equations (10.4) and (10.5) are
equal. Thus, so are the left hand sides, as desired.
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Under mild conditions for the topological spaces X and Y , we get a countable version of
Lemma 10.22.

Lemma 10.23. Let F :X → Y be a branched cover and mX : X → Z≥1. If X is locally path-
connected, Y has a countable basis U of connected sets, and deg(F,mX , V ) is constant for all
V ∈ π0(F−1(U)) and U ∈ U , then (F,mX) is an indexed branched cover.

Proof. Let U be a connected open in Y . By asumption, we can write U as a countable union
U =

⋃∞
q=0 Uq with Uq ∈ U . Suppose there is V ∈ π0(F

−1(U)) such that deg(F,mX , V ) is not
constant; i.e. there are y and z in Y such that deg(F,mX , V )(y) ̸= deg(F,mX , V )(z). Let {yi}i∈I
and {zj}j∈J be F−1(y) ∩ V and F−1(z) ∩ V , respectively, so we get

deg(F,mX , V )(y) =
∑
i∈I

mX(yi) ̸=
∑
j∈J

mX(zj) = deg(F,mX , V )(z). (10.6)

Since U is open and F continuous, we have that F−1(U) is an open subspace of X. Being locally
path-connected is inherited to open subspaces, so we have that F−1(U) is locally path-connected.
Thus, the connected components and the path-connected components of F−1(U) coincide, so V ∈
π0(F

−1(U)) is path-connected. So for each pair i ∈ I, j ∈ J we can choose a path Pij : [0, 1]→ X
connecting yi with zj . As F ◦ Pij is a continuous map, the image imF ◦ Pij is a compact set in
Y . Since {Uq} is a cover of imF ◦ Pij , we can choose a finite subcover and let rij be the highest
index of the Uq in this finite subcover.

Let r = max rij and Ur =
⋃r
q=1 Uq. Note that imPij ⊂ F−1(Ur) for all pairs i, j. So the

connected component Ṽ of F−1(Ur) that contains y1, also contains all yi, zj since Ṽ is a path-
connected component as well. Thus, by applying finitely-many times Lemma 10.22, we get that
deg(F,mX , Ṽ )(y) = deg(F,mX , Ṽ )(z), which in particular implies∑

i∈I
mX(yi) =

∑
j∈J

mX(zj),

contradicting Equation (10.6). Thus, deg(F,mX , V ) is constant, as desired.

10.5 Bases of path-connected sets for Σ and |Σ|
Given a polyhedral complex we describe bases for its poset and topological realization that satisfy
the conditions of Lemmas 10.22 and 10.23. First, recall that a principal open set in the poset
topology is a set of the form ↑Σα. We have:

Proposition 10.24. Let Σ be a finite poset. The family of principal open sets of Σ is a finite
basis of path-connected sets for the poset topology on Σ.

Proof. The family {↑α}α∈Σ is a finite basis for the poset topology. To see that ↑α is path-connected,
note that given γ1, γ2 in ↑Σα the following map f : [0, 1] → Σ with f(0) = γ1 and f(1) = γ2 is
continuous:

f(t) =


γ1 for 0 ≤ t < 1

3 ,

α for 1
3 ≤ t ≤

2
3 ,

γ2 for 2
3 < t ≤ 1.

(10.7)

Thus, ↑Σα is path-connected, as desired.

Second, let N be a finite-rank free abelian group, and S a choice of a basis. We take S to be
an orthonormal basis for NR = N ⊗Z R; this gives rise to the Euclidean norm d : NR ×NR → R.
We denote by B(NR, x, ε) = {y ∈ NR : d(x, y) < ε} the open ball in NR centred at x with radius
ε. When x is in NQ = N ⊗ Q and ε is in Q we say that B(NR, x, ε) is rational. Since Q is dense
in R, the family of rational balls is a countable basis for the Euclidean topology of NR; moreover
each ball is connected.
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The goal now is, given a polyhedral complex Σ, to glue balls in severalNα
R to obtain a topological

basis of connected sets for |Σ|. We say that a family {Sα}α∈Σ of generating sets for {Nα}α∈Σ is a
family of compatible bases if

σ(fαβ)(Sα)− σ(fαβ)(0) ⊂ Sβ
for all α→ β in Σ, i.e. the linear part of the integrally affine map σ(fαβ) sends the set Sα into Sβ .
This implies that the map σ(fαβ) : Nα

R → Nβ
R is an isometric embedding, so the Euclidean norms

dα and dβ induced by Sα and Sβ satisfy that dα = dβ ◦ σ(fαβ). For a point x in |Σ| we define the
principal ball centred at x with radius ε as

↑B(x, ε) =
⋃

β⪰polyΣ(x)

pβ(B(Nβ
R , p

−1
β (x), ε) ∩ σβ). (10.8)

For an open set U ⊂ |Σ| with x ∈ U , we show that for small enough ε the set ↑B(x, ε) is an
open neighbourhood. This follows from two lemmas. First, a consequence of the fact that the
morphisms f in Σ are isometries when a family of compatible bases is chosen.

Lemma 10.25. Let Σ be a polyhedral complex with a chosen family of compatible bases, x a point
in |Σ|, and γ in ↑Σ polyΣ x. We have that

p−1
γ (↑B(x, ε)) = B(Nγ

R , p
−1
γ (x), ε) ∩ σγ . (10.9)

Proof. The set on the left contains the right one because of the assumption that γ ⪰ polyΣ(x).
For the other containment, let ŷ be in p−1

γ (↑B(x, ε)), namely for some β in Σ with β ⪰ polyΣ(x)
we have that

pγ(ŷ) ∈ pβ(B(Nβ
R , p

−1
β (x), ε) ∩ σβ).

Let y equal pγ(ŷ), and note that this point is in im pγ ∩ pβ , so by Lemma 9.17 there exists η in Σ
with morphisms f : η → β and g : η → γ, such that y is in im pη. Recall that f, g are isometries,
and that f = p−1

β ◦ pη, g = p−1
γ ◦ pη, so we calculate

dγ(ŷ, p
−1
γ (x)) = dγ(p

−1
γ (y), p−1

γ (x)) = dγ(p
−1
γ ◦ pη ◦ p−1

η (y), p−1
γ ◦ pη ◦ p−1

η (x))

= dγ(g ◦ p−1
η (y), g ◦ p−1

η (x)) = dη(p
−1
η (y), p−1

η (x))

= dβ(p
−1
β (y), p−1

β (x)) ≤ ε,

and conclude that ŷ is in B(Nγ
R , p

−1
γ (x), ε), as desired.

Second, we express containment in terms of the universal maps pα. Denote by cl(−) the closure
of a set.

Lemma 10.26. Let Σ be a polyhedral complex, U and V subsets of |Σ|, and U ⊂ Σ such that
polyΣ U ⊂ cl(U). If p−1

β (U) ⊂ p−1
β (V ) for all β in U , then U ⊂ V .

Proof. Let x be in U , set α = polyΣ x, and x̂ = p−1
α (x). Since polyΣ U ⊂ cl(U), there is a β in U

and a morphism f : α → β in Σ. Hence, x = pα(x̂) = pβ ◦ f(x̂) gives that f(x̂) ∈ p−1
β (U), so by

assumption also in p−1
β (V ), hence x is in V as desired.

Putting both ingredients together, we get:

Lemma 10.27. Let Σ be a polyhedral complex with a chosen family of compatible bases, V ⊂ |Σ|
an open set, and x in V . There is a constant K such that if ε < K we have

↑B(x, ε) ⊂ V.

Proof. Let α = polyΣ x, set U = ↑B(x, ε) and U = ↑Σα. By Equation 10.8 we have that polyΣ U ⊂
cl(U). Since V is open, for every β ∈ U we have that p−1

β (V ) is open. Moreover, note that
p−1
β (x) ∈ p−1

β (V ). Thus, we can choose εβ such that

B(Nβ
R , p

−1
β (x), εβ) ∩ σβ ⊂ p−1

β (V ).

By Lemma 10.25 the left hand side equals p−1
β (↑B(x, εβ)). Hence, if we take K = minβ∈U εβ , we

are done by Lemma 10.26.
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Lemma 10.28. Let Σ be a polyhedral complex with a chosen family of compatible bases, and x
in |Σ|. There is a constant K such that if ε < K we have that ↑B(x, ε) is open.

Proof. Let α = polyΣ. Applying Lemma 10.27 to poly−1
Σ (↑Σα), which is open because polyΣ is

continuous, we get a K such that if ε < K, then ↑B(x, ε) ⊂ poly−1
Σ (↑Σα). So polyΣ(↑B(x, ε)) =

↑Σα, and we are done by Lemma 10.25.

Note that any point y in ↑B(x, ε) is connected by a path to x. Also, the set of rational points
ΣQ =

⋃
α∈Σ pα(N

α ⊗Z Q ∩ σα) of Σ is countable and dense. So we arrive to:

Proposition 10.29. Let Σ be a polyhedral complex with a chosen family of compatible bases. The
family of principal balls of Σ that are rational and open, i.e. ↑B(x, ϵ) with x ∈ ΣQ and rational ε
small enough, is a countable basis of path-connected sets for |Σ|.

Example 10.30. If Γ is a polyhedral complex of dimension 1, i.e. a metric graph, then the
requirement of a family of compatible bases is immediate. In higher dimensions, the constructions
of the moduli spaces Mtrop

g and Gtrop
g→0,d come with obvious choices for a family of compatible

bases. ⋆

10.6 Combinatorial morphisms

Let Φ : [σ : Σ→ PolyfZ]→ [δ : ∆→ PolyfZ] be a morphism in PolyComplex, and |Φ| : |Σ| → |∆|
its topological realization. We give a condition which implies that |Σ| arises as several copies of
|∆| glued together in a manner prescribed solely by φ : Σ → ∆. This strengthens Equation (9.4)
to a bijection, which is crucial to relate the count of points in the fibres of |Φ| and φ.

Definition 10.31. We say that Φ = (φ, {Φα}α∈Σ) is combinatorial if for all α ∈ Σ we have that
Φα(σα) = δφ(α) and dimσα = dim δφ(α).

The condition Φα(σα) = δφ(α) implies that Φα : Nα
R → N

φ(α)
R is a surjective linear map.

Combined with the dimension condition, we get that the linear map Φα is bijective, hence a
homeomorphism. In fact, it is straightforward to see that Φ is combinatorial if and only if Φα is
injective and Φα(σα) = δφ(α) for all α in Σ.

Remark 10.32. In [Pay06] a combinatorial morphism of cone complexes satisfies that Φα maps
(Nα, σα) isomorphically to (Nφ(α), δφ(α)). This is equivalent to Φα : Nα

R → N
φ(α)
R being injective,

Φα(σα) = δφ(α), and Φα(N
α) = Nφ(α). We have omitted the last condition, since in our setting

the index [Nφ(α) : Φα(Nα)] is relevant. △

We give another characterization in terms of the map φ.

Lemma 10.33 (a combinatorial characterization). A morphism (φ : Σ → ∆, {Φα}α∈Σ) of poly-
hedral complexes is combinatorial if and only if φ maps ↓Σα isomorphically to ↓∆φ(α) for all
α ∈ Σ.

Proof. Suppose that (φ, {Φα}α∈Σ) is combinatorial, so Φα : Nα
R → N

φ(α)
R is bijective. As Φα is a

bijective linear map, we have that the polyhedral structure of σα is isomorphic to that of Φα(σα).
By supposition Φα(σα) = δφ(α), so their polyhedral structure is also isomorphic.

For the converse, suppose that φ maps ↓Σα isomorphically to ↓∆φ(α) for all α ∈ Σ. On the
one hand, by Remark 9.24 we have that dimσα = length(↓Σα) = length(↓∆φ(α)) = dim δφ(α). On
the other hand, since φ(↓Σα) = ↓∆φ(α), we have that all the 1-faces of δφ(α) are in Φα(σα). Since
δφ(α) is the convex hull of its 1-faces, we have that δφ(α) ⊂ Φα(σα). Thus, δφ(α) = Φα(σα), so we
are done.

Thus, we define:

Definition 10.34. We call a morphism of posets φ : Σ → ∆ combinatorial if and only if Σ and
∆ are finite and φ maps ↓Σα isomorphically to ↓∆φ(α) for all α ∈ Σ.
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So Lemma 10.33 says that a morphism Φ = (φ : Σ → ∆, {Φα}α∈Σ) in PolyComplex is
combinatorial if and only if the underlying morphism of categories φ : Σ→ ∆ is combinatorial.

Now we set our sights into proving that |Σ| is homeomorphic to the fibre product |∆| ×∆ Σ
under the maps poly∆ and φ. Recall that given f : X → Z and g : Y → Z in Top, the fibre
product X ×Z Y is the limit of the diagram X → Z ← Y . This is homeomorphic to the subspace

X ×Z Y = {(x, y) : f(x) = g(y)}

of the product topology X×Y . The universal property states that for any W with maps p : W → X
and q : W → Y , there is a unique map ϕ : W → X ×Z Y that gives factorizations p = πX ◦ ϕ and
q = πY ◦ϕ, with πX and πY the canonical projections. Componentwise the map ϕ :W → X ×Z Y
is x 7→ (p(x), q(x)). The following generalizes [Pay06, Proposition 3.23] to the setting of polyhedral
complexes.

Lemma 10.35. If Φ : Σ→ ∆ in PolyComplex is combinatorial, then the following map

ϕ : |Σ| → |∆| × Σ

x 7→ (|Φ|(x), polyΣ(x))

is a bijection onto |∆| ×∆ Σ.

Proof. That the image of ϕ is contained in |∆| ×∆ Σ follows from Lemma 9.28. Let (y, γ) be
such that poly∆(y) = φ(γ), so y ∈ pφ(γ)(δ

◦
φ(γ)). Since (φ, {Φα}α∈Σ) is combinatorial, the map

Φγ : |σγ | → |δφ(γ)| is a homeomorphism. Thus, there is exactly one x in pγ(σ◦
γ) = poly−1

Σ (γ) such
that |Φ|(x) = y. This shows that ϕ is bijective.

For a point y in |∆| the fibre π|∆|
−1(y) is equal to {(y, α) : φ(α) = poly∆(y)}. Thus, Lemma 10.35

strengthens Equation (9.4) to an equality:

Lemma 10.36. If (φ, {Φα}α∈Σ) : Σ → ∆ in PolyComplex is combinatorial, then for any y in
|∆| the map polyΣ induces a bijection

|Φ|−1
(y)→ φ−1(poly∆(y)).

Lemma 10.35 implies that ϕ restricts to a bijective continuous map from |Σ| to |∆| ×∆ Σ. It is
left to prove that ϕ is an open map. Given an open set V of |Σ|, we give an open set U of |∆| ×Σ
such that ϕ(V ) = U ∩ (|∆|×∆Σ). Since polyΣ is open, polyΣ(V ) is open. Also, the maps {Φα}α∈Σ

which glue together to form |Φ| are open. Thus, a natural candidate for U is |Φ|(V )× polyΣ(V ),
which is explored in the following example.

Example 10.37. Let (φ, {Φα}α∈Σ) be a combinatorial morphism in PolyComplex mapping a
complex with three cones down to a complex with two cones. Figure 10.2 displays the topological
realization |Φ| and the order preserving map φ. We consider the open subset U as shown in
the figure, and V one of the connected components of |Φ|−1

(U) in the cone β2. Observe that
polyΣ(V ) = {B2, β2}. Hence, the set poly∆(Φ(V )) = φ(polyΣ(V )) = {B, β} is not open, since
↑∆B = {B,α, β}. As poly∆ is open, we get that neither |Φ|(V ) nor |Φ|(V )× polyΣ(V ) are open.
As polyΣ(V ) is open, we get that φ is not an open map. ⋆

So the proof that ϕ is open, which implies that ϕ is a homeomorphism, is slightly more involved.

Lemma 10.38. Let Φ : Σ→ ∆ in PolyComplex be combinatorial. Assume that Σ and ∆ have
chosen families of compatible bases. The map ϕ given by x 7→ (|Φ|(x),polyΣ(x)) is an open map.

Proof. Let V be an open subset of |Σ|, choose any point x in V , set y = |Φ|(x), α = polyΣ(x)
and β = φ(α) = poly∆(y). We are done if we exhibit an open neighbourhood of ϕ(x) = (y, α)
contained in ϕ(V ). Note that by Lemma 10.35 we have

ϕ(V ) = (|Φ|(V )× polyΣ(V )) ∩ (|∆| ×∆ Σ). (10.10)
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βα
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Σ

↓

∆

Figure 10.2: On the left, the topological realization |Φ| of a combinatorial morphism in
PolyComplex, an open subset U of the codomain |∆|, and the fibre |Φ|−1

(U) above U . On
the right the map φ : Σ→ ∆ of face posets.

We claim that for small enough ε, the neighbourhood of (y, α) given by

Uε = (↑B(y, ε)× ↑Σα) ∩ (|∆| ×∆ Σ),

is an open and contained in ϕ(V ).
By Proposition 10.29 there is εx > 0 such that ↑B(x, εx) is open and contained in V ; there is

also Kx such that if 0 < ε < Kx the set ↑B(y, ε) is open. Let (z, η) be in Uε. Since (z, η) is in
|∆| ×∆ Σ, we have that γ = φ(η) equals poly∆(z). We also have that η is in ↑Σα, so Lemma 10.25
gives

p−1
η (↑B(x, εx)) = B(Nη

R , p
−1
η (x), εx) ∩ ση.

Since Φ is combinatorial, Φη maps ση homeomorphically to δγ . As B(Nη
R , p

−1
η (x), εx) ∩ ση is open

in ση, the set Φη(B(Nη
R , p

−1
η (x), εx) ∩ ση) is open in δγ , so there is εη such that

B(Nγ
R ,Φη ◦ p

−1
η (x), εη) ∩ δγ ⊂ Φη(B(Nη

R , p
−1
η (x), ε) ∩ ση) ⊂ p−1

γ (|Φ|(↑B(x, εx))).

The second containment above follows from Diagram 9.8; from the same diagram we also get that
Φη ◦ p−1

η (x) = p−1
γ (y). So if ε < εη, we get

z ∈ pγ(B(Nγ
R , p

−1
γ (y), ε) ∩ δγ) ⊂ |Φ|(↑B(x, εx)). (10.11)

If we choose an εη for each η in ↑Σα as above, and set ε to be the minimum of the εη and Kx,
we have by Equation (10.11) that

(↑B(y, ε)× ↑Σα) ∩ (|∆| ×∆ Σ) ⊂ (|Φ|(↑B(x, εx))× ↑Σα) ∩ (|∆| ×∆ Σ).

Note that |Φ|(↑B(x, εx)) is contained in |Φ|(V ). Also, since V is open, polyΣ(V ) is an up-set, so
↑Σα is contained in it. Comparing with Equation (10.10) we see that Uε ⊂ ϕ(V ); and as both
↑B(y, ε) and ↑Σα are open, we are done.

Remark 10.39. In Subsection 10.11 we show that if Φα is injective and dimσα = dim δφ(α)
for all α in Σ, then it is possible to construct ∆′ in PolyComplex as a subdivision of ∆ such
that the topological realizations |∆| and |∆′| are homeomorphic, and which gives an induced map
(φ′, {Φ′

α}α∈Σ) : Σ→ ∆′ that is combinatorial. △

10.7 Relating indexed branched covers
Let Σ and ∆ be polyhedral complexes, Φ : Σ→ ∆ a combinatorial morphism and |Φ| its topological
realization. This subsection studies the connected components of the fibres in Σ over principal open
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sets ↑∆β in ∆, and of fibres in |Σ| over principal balls in |∆| that are open. Using Lemma 10.23
this study culminates the proof of Theorem A.

Lemma 10.40. Let φ : Σ → ∆ be a combinatorial morphism of posets, and β be in ∆. We have
that

π0(φ
−1(↑∆β)) = {↑Σα}α∈φ−1(β) .

Proof. First observe that for any γ ∈ φ−1(↑∆β) we have that β ∈ ↓∆φ(γ). Since φ is a combina-
torial morphism, it maps ↓Σγ bijectively to ↓∆φ(γ). Thus, there is an α ∈ Σ such that α ⪯ γ and
φ(α) = β, which gives

φ−1(↑∆β) =
⋃

α∈φ−1(β)

↑Σα. (10.12)

This union is disjoint, because if there were α, α′ in φ−1(β) such that ↑Σα ∩ ↑Σα′ contained
an element γ, then φ would map ↓Σγ isomorphically to ↓∆φ(γ). Since α, α′ ∈ ↓Σγ, this gives
φ(α) ̸= φ(α′), a contradiction. Finally, any open set that contains α must contain ↑Σα, so each
↑Σα in Equation (10.12) is connected.

The following is a version of Lemma 10.36 for connected components.

Proposition 10.41. Let U ⊂ |∆| be a principal ball that is open, and U = poly∆ U . If Φ
is combinatorial and Σ and ∆ have chosen families of compatible bases, then polyΣ induces a
bijection of connected components of the fibres

π0(|Φ|−1
(U))→ π0(φ

−1(U)).

Proof. Let V be a component in π0(|Φ|−1
(U)). We first show that polyΣ(V ) is a component in

π0(φ
−1(U)). Let y ∈ |∆| and ε > 0 be such that U = ↑B(y, ε). Set β = poly∆ y; since U is open

we have that U = poly∆ U = ↑∆β. Assume there is a point x in V such that |Φ|(x) = y and
set α = polyΣ(x). Since polyΣ is a continuous open map, we have that polyΣ(V ) is a connected
open set containing ↑Σα. Lemma 10.40 then implies that polyΣ(V ) is a connected component of
π0(φ

−1(U)) = π0(φ
−1(↑∆β)), since α is in φ−1(β).

To prove there is a point x in V such that |Φ|(x) = y, choose any z in V and set γ = polyΣ(z).
We claim that β ⪯ φ(γ). Indeed, from |Φ|(V ) ⊂ U we get poly∆ ◦|Φ|(V ) ⊂ poly∆(U) = U ;
and from poly∆ ◦|Φ|(V ) = φ ◦ polyΣ(V ) we get φ(γ) ∈ U = ↑∆β. So there is a morphism
fβφ(γ) : δβ → δφ(γ), and we have pβ = pφ(γ) ◦ fβφ(γ). Since y is in im pβ , we have y in im pφ(γ),
and we may set ŷ = p−1

φ(γ)(y).
As Φ is combinatorial, the affine map Φγ sends σγ homeomorphically to δφ(γ). So ŷ is in

imΦγ , and we may set x̂ = Φ−1
γ (ŷ). By Diagram 9.11, we have that |Φ| ◦ pγ(x̂) = pφ(γ) ◦ Φγ(x̂) =

pφ(γ)(ŷ) = y. Set x = pγ(x̂), so |Φ|(x) = y. Note that x is in pγ(Φ
−1
γ (p−1

φ(γ)(U))). We claim the
latter set is contained in V .

Since poly∆ y = β ⪯ φ(γ), we may apply Lemma 10.25 to get that

p−1
φ(γ)(U) = B(N

φ(γ)
R , p−1

φ(γ)(y), ε) ∩ δφ(γ),

which in particular means that p−1
φ(γ)(U) is a convex set, hence connected. As Φγ is a homeomor-

phism, Φ−1
γ (p−1

φ(γ)(U)) is connected as well, and so is pγ(Φγ(p−1
φ(γ)(U))). Finally, recall we have

chosen a point z in V and set γ = polyΣ(z). Since |Φ|(z) ∈ |Φ|(V ) ⊂ U and polyΣ(z) = γ,
by Diagram 9.11 we have that z is in pγ(Φ

−1
γ (p−1

φ(γ)(U))). So pγ(Φ
−1
γ (p−1

φ(γ)(U))) ⊂ |Φ|−1
(U) is

connected, and intersects the connected component V , so we conclude the desired inclusion.
To conclude, we have proven that each component of |Φ|−1

(U) intersects |Φ|−1
(y), for y the

centre of the ball U . Moreover, we have proven that for x in |Φ|−1
(y) and V the component

containing x, we get polyΣ(V ) = ↑Σ(polyΣ(x)). These two facts, together with Lemma 10.36 and
Lemma 10.40 imply surjectivity and injectivity.
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Remark 10.42. In Figure 10.2 the set U is connected, and the set U = poly∆ U is principal,
yet π0(|Φ|−1

(U)) has three elements, while π0(φ−1(U)) has only two. This highlights the need to
impose restrictions on U in Proposition 10.41. △

Now, we show that if one of the vertical maps in Diagram 9.29 is an indexed branched cover,
then so is the other. Consider an index map mΦ : |Σ| → Z≥1, a connected open U ⊂ |∆|, a
connected component V in π0(|Φ|−1

(U)), and a point y in U . We have that

deg(|Φ|,mΦ, V )(y) =
∑

x∈|Φ|−1(y)
x∈V

mΦ(x).

Likewise, for an index map mφ : Σ→ Z≥1, a connected open ↑∆β ⊂ ∆, a connected component V
in π0(|Φ|−1

(↑∆β)), and a point γ in ↑∆β. We have that

deg(φ,mφ,V)(γ) =
∑

α∈φ−1(γ)
α∈V

mφ(α).

Our aim is to relate both degrees. The first step compares the index sets |Φ|−1
(y)∩V and φ−1(γ)∩V

by putting Lemmas 10.36 and Proposition 10.41 together.

Lemma 10.43. Let U ⊂ |∆| be a principal ball that is open, V in π0(|Φ|−1
(U)), and y in U . If

Φ is combinatorial and Σ and ∆ have chosen families of compatible bases, then polyΣ induces a
bijection

V ∩ |Φ|−1
(y)→ polyΣ(V ) ∩ φ−1(poly∆(y)). (10.13)

Proof. Since Φ is combinatorial, by Lemma 10.36 the map from Equation (10.13) is injective; and
for α in polyΣ(V )∩φ−1(poly∆(y)), there is x in |Φ|−1

(y) such that polyΣ(x) = α. Suppose that x
is not in V . Let V ′ be the connected component of x in |Φ|−1

(U). By Proposition 10.41, we have
that polyΣ(V

′) is a connected component distinct from polyΣ(V ). But α is both in polyΣ(V ) and
polyΣ(V

′), a contradiction. Hence, x is in V , as desired.

Having related both index sets, it is straightforward to prove the following:

Proposition 10.44. Assume that Φ is combinatorial and that Σ and ∆ have chosen families of
compatible bases. Let mφ : Σ→ Z≥1 be an index map. We have that:

1. If (φ, mφ) is an indexed branched cover unramified over W ⊂ ∆, then (|Φ|, mφ ◦ polyΣ) is
an indexed branched cover unramified over poly−1

∆ W.

2. If (|Φ|, mφ ◦ polyΣ) is an indexed branched cover unramified over W ⊂ |∆|, then (φ, mφ) is
an indexed branched cover unramified over poly∆(W ).

Proof. We first make two observations, and then proceed to prove each item.
Observation I: Let y ∈ |∆| and β ∈ ∆ be such that poly∆(y) = β. By Lemma 10.28, if

ε is small enough, then Uε = ↑B(y, ε) is open, hence poly∆(Uε) = ↑∆β. Let V be a con-
nected component in π0(|Φ|−1

(Uε))). By Proposition 10.41 we have that polyΣ(V ) equals ↑Σα
for some α in φ−1(β), and is a connected component of φ−1(↑∆β). So Diagram 9.29 restricts to

V ↑Σα

Uε ↑∆β.

polyΣ

|Φ| φ

poly∆

Diagram 10.45
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Both vertical maps are continuous. Since polyΣ and poly∆ are open maps, if one of the vertical
maps is an open map, so is the other one. Finally, Lemma 10.43 impies that if one of the vertical
maps is bijective, so is the other one. Hence, if one of the vertical maps is a homeomorphism, so
is the other one.

Observation II: Let U ⊂ |∆| be a principal ball that is open, V in π0(|Φ|−1
(U)), and y a point

in U . Set U = polyΣ(U). Lemma 10.43 then gives

deg(|Φ|,mφ ◦ polyΣ, V )(y) =
∑

x∈|Φ|−1(y)
x∈V

mφ ◦ polyΣ(x) (10.14)

=
∑

γ∈φ−1(poly∆(y))
γ∈polyΣ(V )

mφ(γ)

= deg(φ,mφ,polyΣ(V ))(poly∆(y)).

Proof of Item (1): Assume that (φ, mφ) is an indexed branched cover that is unramified over
W ⊂ ∆. Since poly∆ is open and continouous, the set W = poly−1

∆ (W) is open and dense. To
see that |Φ| is a branched cover that is unramified over W , let y be in W , so β = poly∆ y is in
W. Consider a principal ball Uε = ↑B(y, ε) ⊂ |∆| that is open, so poly∆ Uε = ↑∆β. Since φ
is a branched cover that is unramified over W and ↑∆β is the smallest open neighbourhood that
contains β, we have that φ−1(↑∆β) comprises several disjoint sets, each mapped to ↑∆β homeo-
morphically by φ. Since ↑∆β is connected, these disjoint sets are the elements of π0(φ−1(↑∆β)).
By Observation I and Proposition 10.41 this means that each element in π0(|Φ|−1

(Uε)) is mapped
homeomorphically to Uε by |Φ|, as desired.

Since |Φ| is a branched cover, to see that (|Φ|,mφ ◦ polyΣ) is an indexed branched cover, by
Lemma 10.23 and Proposition 10.29, it is enough to consider a principal ball U = ↑B(y, ε) ⊂
|∆| that is open. Let V be in π0(|Φ|−1

(U)). By Proposition 10.41 the open set polyΣ(V ) is a
connected component of φ−1(U). Since (φ,mφ) is an indexed branched cover, deg(φ,mφ,polyΣ(V ))
is constant over ↑∆β, so Equation (10.14) implies that deg(|Φ|,mφ◦polyΣ, V )(y) is constant over U .

Proof of Item (2): Assume that (|Φ|, mφ ◦polyΣ) is an indexed branched cover unramified over
W ⊂ |∆|. Since poly∆ is open and surjective, the setW = poly∆W is open and dense. To see that
φ is a branched cover that is unramified over W, let β be in W. Since W is open, it is an up-set,
we have ↑∆β ⊂ W, so the set U = poly−1

∆ (↑∆β) is non-empty and contained in W . So once again,
we observe that U is connected, so each element in π0(|Φ|−1

(U)) gets mapped homeomorphically
to U by |Φ|. We conclude again by Observation I and Proposition 10.41.

Since φ is a branched cover, to see that (φ,mφ) is an indexed branched cover, by Lemma 10.22
it is enough to consider an upset ↑∆β. Let V be in π0(φ

−1(↑∆β)). Since poly∆ is surjective, we
can choose y ∈ |∆| such that poly∆(y) = β, and by Proposition 10.29 we can choose ε such that
U = ↑B(y, ε) is open. So poly∆(U) = ↑∆β. By Proposition 10.41 there is V in π0(|Φ|−1

(U)) such
that polyΣ(V ) = V. Since (|Φ|,mφ◦polyΣ) is an indexed branched cover, deg(|Φ|,mφ◦polyΣ, V )(y)
is constant over U . so Equation (10.14) implies that deg(φ,mφ,polyΣ(V )) is constant over ↑∆β.

Putting everything together we get Theorem A.

Theorem 10.46. Let Φ : Σ → ∆ in PolyComplex be a combinatorial morphism such that Σ
and ∆ have chosen families of compatible bases. The diagram

|Σ| Σ

|∆| ∆

polyΣ

|Φ| φ

poly∆

is a fibre product in Top, and if one of the pairs (φ,mφ) or (|Φ|,polyΣ ◦mφ) is an indexed branched
cover, then so is the other pair.
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Proof. The square commutes by Lemma 9.28. It is a fibre product by Lemmas 10.35 and 10.38.
Finally Proposition 10.44 gives that if one of the vertical maps is an indexed branched cover, so is
the other.

Remark 10.47. By Theorem A, if Φ : Σ → ∆ is a morphism in PolyComplex, and we have
an indexed branched cover pair (|Φ| : |Σ| → |∆|,m : |Σ| → Z≥1) such that m is constant on the
interiors of cones of |Σ|, i.e. on each subset of the disjoint union from Lemma 9.16 then we get an
indexed branched cover (φ : Σ→ ∆,m◦poly−1

Σ ) reflecting many properties of |Φ|. So we reduce our
study to a combinatorial object. That is, φ is a higher dimensional analogue of DT-morphismsas
studied in Part I. △

10.8 The balancing condition
In the case of posets, asking deg(φ : Σ→ ∆,mφ,V) to be constant imposes relations on the values
of mφ. We explore one such relation and show that it is equivalent to Φ being an indexed branched
cover of polyhedral complexes. This gives, together with the results of the next subsection, a
criteria to simplify the work of showing that a morphism φ is an indexed branched cover.

As motivation, we recall the 1-dimensional case. Let Γ and ∆ be polyhedral complexes of
dimension 1, i.e. dimσα ≤ 1 for all α in Σ. Consider an indexed branched cover Φ : Γ → ∆ with
index map mφ and topological realization |Φ| : |Γ| → |∆|. If Γ and ∆ are connected, and Φ satisfies
that for every non-maximal element A of Γ the inequality

rφ(A) = 2(mφ(A)− 1)−
∑
A⋖e

(mφ(e)− 1) ≥ 0. (RH)

is true, then we say that Φ is a tropical morphism. Recall that A ⋖ e means that e covers A,
i.e. that e is in min(↑A \ {A}). The inequality from Equation (RH) is called the Riemann-Hurwitz
inequality.

One intuition behind Equation (RH) is that the value rφ(A) + 1 is a tropical analogue of
the ramification index, so it should be non-negative. This is seen in a tropical analogue of the
Riemann-Hurwitz formula, see Lemma 12.2 on Page 122. Another way to look at Equation (RH)
is as a realizability condition; see [DV21] for an exposition. This definition of tropical morphism
differs from the usual one that includes a balancing condition, e.g. the one from Part I. These two
definitions are in fact equivalent by the results of this section, i.e. that being an indexed branched
cover of posets is equivalent to satisfying the balancing condition, defined as:

Definition 10.48. Let φ : Σ → ∆ be a morphism of finite posets, V ⊂ Σ an up-set, and mV :
V → Z≥1 a map. We say that (φ,mV) is balanced, if for any α in V and any choice of β in ∆ such
that φ(α)⋖ β the following equation, called the balancing condition, holds:

mV(α) =
∑

γ∈φ−1(β)
α⋖γ

mV(γ). (10.15)

Example 10.49 (discrete tropical morphisms). Recall that using the index map from Exam-
ple 10.9, the map Γ→ ∆ of posets from Figure 10.1 (b) becomes an indexed branched cover. One
can verify the balancing condition, and moreover the RH-inequality, thus this map is an example
of a tropical morphism.

By Theorem A, the topological realization |Φ| : |Γ| → |∆| is an indexed branched cover of
metric graphs. Moreover, Γ can be regarded as several copies of |∆| that have been glued at
certain regions. This is pictured in Figure 10.1 (c), where the dashed lines represent identification
of points, as done in Part I. ⋆

If φ is clear from context, we simply say that mV is a balanced map. Given a morphism of finite
posets φ : Σ→ ∆ and an index map mV , the balancing condition is automatically verified for those
α ∈ Σ for which there is no β in ∆ such that φ(α)⋖ β. Note that if mV(α) is balanced, and α is
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in maxV, then the fact that mV(α) ≥ 1 implies that φ(α) is maximal in ∆, for otherwise the sum
on the right of Equation (10.15) would be an empty sum, and this evaluates to zero. Moreover, if
φ is combinatorial we get:

Lemma 10.50. Let φ : Σ → ∆ be a combinatorial morphism of posets, V ⊂ Σ an up-set, and
mV : V → Z≥1 a balanced map. The restriction φ|V : V → ∆ is a branched cover unramified over
max∆.

Proof. We check the two conditions from Example 10.5. To check the first condition, let β be
in maxφ(V). Suppose there is α ∈ φ−1(β) such that α is not maximal, i.e. there is γ in Σ such
that α < γ. Since φ is combinatorial, it maps ↓Σγ isomorphically to ↓∆φ(γ), thus φ(γ) is strictly
greater than β, contradicting that β is maximal. Hence, φ−1(β) ⊂ maxΣ. The second condition
is true by definition.

The main technical idea behind the proofs of this subsection is to traverse sequences β0 ⋖ β1 ⋖
· · ·⋖βn in ∆ and to use the balancing condition to show that the local degrees are constant. Thus,
given two elements µ⋖ ν, we investigate the fibres above them.

Lemma 10.51. Let φ : Σ→ ∆ be a combinatorial morphism of posets. For any α in Σ, and µ, ν
in ↑∆φ(α) such that µ⋖ ν, we have the following partition:

φ−1(ν) ∩ ↑Σα = φ−1(ν) ∩
⊔

γ∈φ−1(µ)
γ∈↑Σα

{η ∈ Σ: γ ⋖ η} . (10.16)

Proof. Consider the family {↑Σγ} indexed by γ ∈ φ−1(µ)∩↑Σα. Each member of {↑Σγ} is a subset
of ↑Σα, and by Lemma 10.40 they are pairwise disjoint. Since {η ∈ Σ: γ ⋖ η} ⊆ ↑Σγ, we are done
if we show that the right hand side of Equation (10.16) contains the left hand side. Namely, for
η in φ−1(ν) ∩ ↑Σα, show there is γ ∈ φ−1(µ) ∩ ↑Σα such that γ ⋖ η. Since φ is combinatorial, it
maps ↓Ση isomorphically to ↓∆φ(η), so there is a unique γ such that γ is in ↓Ση and φ(γ) = µ.
Since φ(η) = ν and µ⋖ ν, we have that γ ⋖ η. Moreover, ↑Σγ is a connected set that intersects at
η the set ↑Σα. The latter is a connected component of the space φ−1(↑∆φ(α)), thus ↑Σγ ⊂ ↑Σα,
so γ ∈ ↑Σα as desired.

As a corollary of Lemma 10.51 we get two crucial formulas that bridge together the situations
where (φ,mφ) is balanced and where (φ,mφ) has constant local degrees.

Lemma 10.52. Let φ : Σ → ∆ be a combinatorial morphism of posets, V an up-set, and mV :
V → Z≥1 a balanced map. For any α in Σ, and µ, ν in ↑∆φ(α) such that µ⋖ ν and φ−1(µ) ∩ ↑Σα
is contained in V, we have:∑

γ∈φ−1(µ)
γ∈↑Σα

mV(γ) =
∑

γ∈φ−1(µ)
γ∈↑Σα

∑
η∈φ−1(ν)
γ⋖η

mV(η) =
∑

η∈φ−1(ν)
η∈↑Σα

mV(η) (10.17)

In particular, if β ∈ ∆ is such that φ(α)⋖ β, we have:∑
η∈φ−1(β)
η∈↑Σα

mV(η) =
∑

η∈φ−1(β)
α⋖η

mV(η). (10.18)

Proof. The first equality in Equation (10.17) is implied by the balancing condition. By Lemma 10.51
the index sets of the sums in the middle constitute a partition of the index sets of the sums on the
right hand side, so the second equality folows. We obtain Equation (10.18) from Equation (10.17)
by setting µ = φ(α), ν = β and noting that the index set for the sum on the left becomes
φ−1(α) ∩ ↑Σ(α) = {α} a singleton, because φ is combinatorial.

Remark 10.53. Note that by Equation (10.1), the left hand side in Equation (10.17) equals
deg(φ,mφ, ↑Σα)(µ) and the right hand side equals deg(φ,mφ, ↑Σα)(ν). △



CHAPTER 10. INDEXED BRANCHED COVERS 102

(A1, 1) (A2, 1)

(B1, 1)

A

B

φ1 : Σ1 → ∆1

(A1, 2) (A2, 2)

(B1, 1) (B2, 2) (B3, 1)

A

B

φ2 : Σ2 → ∆2

Figure 10.3: Two morphisms of posets φ1, φ2 and maps m1 : Σ1 → Z≥1,m2 : Σ2 → Z≥1 given by
the second numbers in the pairs in the diagrams; (φ1,m1) is balanced but not an indexed branched
cover, (φ2,m2) is an indexed branched cover but not balanced.

Applying the previous formulas, we arrive to a characterization of indexed branched covers of
posets.

Proposition 10.54. Let φ : Σ → ∆ be a combinatorial morphism of posets, and mφ : Σ → Z≥1

an index map. The pair (φ,mφ) is an indexed branched cover unramified over max∆ if and only
if (φ,mφ) is balanced.

Proof. Let α be in Σ, β in ∆ with φ(α) ⋖ β, and U = ↑∆φ(α). By Lemma 10.40 the connected
component V of φ−1(U) that contains α is the upper-set ↑Σα. So if (φ,mφ) is an indexed branched
cover, by Equation (10.18) we have

mφ(α) =
∑

η∈φ−1(β)
η∈↑Σα

mφ(η) =
∑

η∈φ−1(β)
α⋖η

mφ(η).

Now assume that (φ,mφ) is balanced. By Lemma 10.50 the map φ is a branched cover un-
ramified over max∆. By Lemmas 10.22 and 10.40, we show that deg(φ,mφ, ↑Σα) is constant over
↑∆φ(α). This is clear from Equation (10.17) since the left hand side is deg(φ,mφ, ↑Σα)(µ) and the
right hand side is deg(φ,mφ, ↑Σα)(ν). So we are done by applying over a sequence that goes from
φ(α) up to any desired ν in ↑∆φ(α), such that each element covers the previous one.

Remark 10.55. In Proposition 10.54, the condition on φ being combinatorial is crucial. Fig-
ure 10.3 shows two possible failures when this condition is absent. On the left we have that
(φ1,m1) is balanced but is not an indexed branched cover, since the count of points in φ1

−1(A) is
2 and in φ1

−1(B) is 1. On the right, the preimage count is right, but neither A1 nor A2 satisfy
the balancing condition, e.g. the value of m2(A1) would need to be 3. △

10.9 Connectivity of posets
Given a morphism of posets φ : Σ→ ∆, we study how to lift paths from ∆ to Σ. This is a common
question in the theory of topological covers, that allows to transport connectivity properties from ∆
to Σ. Our main result here is that if (φ,mV) is balanced, φ|V is combinatorial, φ(V) is connected,
and there is at least one fibre φ−1(β) such that the elements of φ−1(β)∩V are pairwise connected
by paths in V, then V is connected. Towards the end we introduce two versions of connectivity for
posets, which play a role in proving Theorem C. We begin by associating a graph to Σ.

Definition 10.56. Given a poset Σ, its comparability graph GΣ has as vertices the elements of Σ,
and two vertices are joined by an edge if and only if they are comparable.

Another way to get GΣ is to regard Σ as a category and forget the direction of the arrows of its
diagram. Note that GΣ is a simple graph, so a path in GΣ is a sequence ⟨γ0, γ1, . . . , γq⟩ of elements
in Σ such that consecutive elements are comparable, i.e. γi−1 ≤ γi or γi−1 ≥ γi for 1 ≤ i ≤ q. A
graph is connected if its vertices are pairwise connected by a path.

Lemma 10.57. Let Σ be a finite poset with the poset topology. The poset Σ is connected as a
topological space if and only if the comparability graph GΣ is connected as a graph.
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Proof. Assume that Σ is connected. Let α1, . . . , αk be the minimal elements of Σ. Consider any
non-empty I ⊊ {1, . . . , k}, and the open sets U =

⋃
i∈I ↑αi and V =

⋃
j ̸∈I ↑αj . If U and V were

disjoint, this would contradict that Σ is connected. Thus, they intersect at an element γ, so there
are q ∈ I and r ̸∈ I connected by a sequence ⟨αq, γ, αr⟩. Iterating this argument, starting with I
a singleton and adding one element at a time, shows that minΣ is connected in GΣ. To conclude,
every element of Σ is comparable to some α ∈ minΣ.

For the converse, observe that a path P = ⟨γ0, γ1, . . . , γq⟩ gives rise to a topological path, via
a concatenation of functions of the form given in Equation (10.7). So if GΣ is connected, Σ is
path-connected, hence connected.

Remark 10.58. If V ⊂ Σ is connected, we can consider the induced poset on V and apply
Lemma 10.57 to conclude the existence of a sequence inside of V with consecutive elements that
are comparable, between any two elements of V. △

We now use the balancing condition to lift paths. Given a path P = ⟨β0, β1, . . . , βq⟩ in ∆, a lift
is a path P̃ = ⟨γ0, γ1, . . . , γq⟩ in Σ such that φ(γi) = βi for i ∈ {0, . . . , q}.

Lemma 10.59. Let φ : Σ → ∆ be a morphism of posets, V ⊂ Σ an up-set, and α in V. Assume
there is a balanced map mV . Any upwards path β0 < β1 < · · · < βk in ↑∆φ(V) with β0 = φ(α) lifts
to a path P̃ = ⟨γ0, γ1, . . . , γq⟩ in V with γ0 = α.

Proof. Proceeding by induction, suppose that βi lifts to γi in V. We search a lift γi+1 ∈ V of βi+1,
that is comparable to γi. Since βi ≤ βi+1 and ∆ is finite, we can choose a sequence µ0⋖µ1⋖· · ·⋖µk
in ∆ with µ0 = βi and µk = βi+1. Note that γi is a lift of µ0 = βi, and that γi is in V so mV(γi) ≥ 1,
Hence, succesive applications of the balancing condition give lifts η0 ⋖ η1 ⋖ · · ·⋖ ηk = βi+1 of the
µj , and we set γi+1 = µk. Since γi ≤ γi+1 and V is an up-set, we have γi+1 ∈ V.

As a corollary of Lemma 10.59 we get that φ(V) = ↑∆φ(V), i.e. φ(V) is open. Indeed, if β is
in ↑∆φ(V), then there is µ = φ(α) in φ(V) such that µ ≤ β. If µ = β we are done, otherwise we
can lift the upwards path µ < β to a path α < γ with γ in V and β = φ(γ), showing that β is in
φ(V). In particular, we get the following corollary:

Lemma 10.60. Let φ : Σ→ ∆ be a morphism of posets. If there exists a balanced map mΣ : Σ→
Z≥1, then φ is an open map.

Proof. Let V be an up-set. The restriction mV = mΣ|V is a balanced map, because for any element
α ∈ V the elements that cover α are also in V. By Lemma 10.59 and the discussion after it, φ(V)
is an upset. Hence φ is an open map.

Remark 10.61. Combining Lemma 10.60 and Proposition 10.54 we get that if φ : Σ → ∆ is
a combinatorial morphism of posets, then φ being an open map is a necessary condition for the
existence of an index map mφ such that (φ,mφ) is an indexed branched cover. This criterion rules
out the existence of an index map making the morphism from Example 10.37 an indexed branched
cover. △

To go beyond upward paths we add an additional condition:

Lemma 10.62. Let φ : Σ → ∆ be a morphism, V ⊂ Σ an up-set, mV a balanced map, α in V
an element, and P = ⟨β0, β1, . . . , βk⟩ ⊂ φ(V) a path with β0 = φ(α). If ψ : V → φ(V) given by
γ 7→ φ(γ) is combinatorial, there is a lift P̃ = ⟨γ0, γ1, . . . , γq⟩ in V with γ0 = α.

Proof. Proceeding by induction, suppose that βi lifts to γi in V. We find a lift γi+1 ∈ V of βi+1,
that is comparable to γi. First assume that βi ≤ βi+1. In that case, Lemma 10.59 gives a lift. Now
assume that βi ≥ βi+1. Since ψ is combinatorial, the down-set ↓Vγi is mapped isomorphically to
↓φ(V)φ(γi) = ↓φ(V)βi. As βi+1 is in ↓∆βi and in φ(V), it is in ↓φ(V)βi as well, so there is γi+1 in
↓Vγi ⊂ V such that φ(γi+1) = βi+1.
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A1 A2 B1 (B2, 1) (C1, 2)

O1

(β2, 1)(β1, 1)α1 (α2, 1)

A B C

βα

O

Σ → ∆

Figure 10.4: A combinatorial morphism φ : Σ → ∆, and a balanced map mV : V → Z≥1 with
V = ↑Σ {B2, C1} such that φ restricted to V is not an indexed branched cover.

Example 10.63. We wonder if in Lemma 10.62, and also in the upcoming Lemma 10.70, one
can ommit the condition of having a combinatorial ψ. It could, for example, follow from a weaker
condition such as requiring φ to be combinatorial. This is not the case, e.g. in Figure 10.4 let V =
↑Σ {B2, C1} = {B2, C1, β1, β2, α2}. We have that β1 ∈ V, and ↓Vβ1 = {β1, C1}, but ↓φVψ(β1) =
{β,C,B}, so ψ is not combinatorial, despite φ being. Moreover, this example has a path that
cannot be lifted. Indeed, consider the path ⟨β,B⟩ ⊂ φ(V), there is no lift in V starting with β1. ⋆

We now use the results on lifting paths to give a criterion for the connectedness of V.

Lemma 10.64. Let φ : Σ → ∆ be a morphism, V ⊂ Σ an up-set such that ψ : V → φ(V) is
combinatorial, and mV : V → Z≥1 a balanced map. If φ(V) is connected and there is β in φ(V)
such that φ−1(β) is connected in V, then V is connected.

Proof. Consider α ∈ V. There is a path P = ⟨φ(α), β1, . . . , β⟩ connecting φ(α) and β, since both
are in φ(V). By Lemma 10.57, there is a lift P̃ = ⟨α, ν1, . . . , νk−1, νk⟩ connecting α with fibre
φ−1(β). Since the fibre φ−1(β) is connected, we are done.

Finally, we give an up-set V such that the restriction ψ : V → φ(V) of any combinatorial φ is
combinatorial as well. Recall that a poset is graded if all the maximal chains have the same length.
A graded poset has a rank function, i.e. the rank of x ∈ Σ is the length of any maximal chain in
↓Σx. The set of all the rank-k elements of Σ is denoted Σ(k).

Lemma 10.65. Let Σ and ∆ be graded posets and V = ↑ΣΣ(k) the up-set of elements of rank at
least k. If φ : Σ → ∆ is a combinatorial morphism, then the restriction ψ : V → φ(V) given by
γ 7→ φ(γ) is combinatorial as well.

Proof. Since φ is a combinatorial morphism, we have that ↓Vα = ↓Σα∩V is mapped by ψ isomorphi-
cally to ψ(↓Σα∩V), and we must show this equals ↓φ(V)ψ(α) = ↓∆ψ(α)∩φ(V). Note that the rank
is preserved by a combinatorial morphism, i.e. rkΣ α = rk∆ φ(α). Let β be in ↓∆ψ(α)∩φ(V). Since
β is in φ(V), there is γ1 ∈ V such that φ(γ1) = β, and so rk∆ β = rkΣ γ1 ≥ k. On the other hand, β
is in ↓∆ψ(α) = ↓∆φ(α), so there is γ2 in ↓Σα such that φ(γ2) = β. Note that rkΣ γ2 = rk∆ β ≥ k,
so γ2 is in V, which implies ψ(↓Σα∩V) ⊃ ↓∆ψ(α)∩φ(V). Since ψ(↓Σα∩V) ⊂ ↓∆ψ(α)∩φ(V), we
are done.

To conclude our study of connectivity for posets, we look at some stronger notions.

Definition 10.66. Let Σ be a graded poset of dimension d. We say that Σ is

• connected in codimension-k if the up-set ↑ΣΣ(d− k) is connected, where k is in {0, . . . , d}.

• strongly connected if Σ is connected and for every α ∈ Σ \ ↑ΣΣ(d− 1) the up-set (↑Σα) \ {α}
is connected.

Let k, l ∈ {0, . . . , d}. Observe that if k ≤ l and Σ is connected in codimension-k, then Σ
is connected in codimension-l. Moreover, Σ is connected in codimension-d if and only if Σ is
connected. So being connected in codimension-k is stronger than being connected, and in the
following we see that being strongly connected is even stronger.
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Lemma 10.67. Let Σ be a graded poset of dimension d. If Σ is strongly connected, then Σ is
connected in codimension-1.

Proof. Let α and β be elements in ↑ΣΣ(d − 1). Since Σ is strongly connected, we have that Σ
is connected, so there is a sequence P0 = ⟨γ0, . . . , γq⟩ whose consecutive elements are comparable
and with γ0 = α and γq = β. Now, let k = minγ∈P0

rk γ. If k ≥ d − 1, then α and β are already
connected in codimension-1. So assume that k < d − 1, and let γi ∈ P0 be an element with
rk γi = k. We have that either γi−1 ≥ γi or γi−1 ≤ γi, but the latter would imply rk γi−1 = k − 1,
so it is excluded. The same holds for γi+1, so γi−1 and γi+1 are in ↑Σγi \ {γi}, and since Σ is
strongly connected we connect γi−1 with γi+1 via a path Q whose minimal rank is k + 1. Thus,
we replace γi in P0 with the path Q to obtain P1. Iterating this procedure elliminates all elements
in P0 with rank k, rank k + 1, and so on until all have either rank d− 1 or d, as desired.

Remark 10.68. The poset Σ shown in Figure 10.5 is connected in codimension-1, but is not
strongly connected. △

Refinement preserves connectivity properties. Also, later, we see it also preserves balancing
condition.

Lemma 10.69. Let Φ : Σ̃→ Σ ∈ PolySpace be a refinement. If Σ is strongly connected, then so
is Σ̃.

10.10 Extending balanced maps
As the index map in Proposition 10.54 is defined over the whole domain, this raises the question
of what can be said when dealing with a balanced map mV defined over a proper subset V ⊊ Σ.
Specifically, whether mV induces an indexed branched cover by restriction, whether the domain of
the function can be extended.

Lemma 10.70. Let φ : Σ → ∆ be a combinatorial morphism of posets, V ⊂ Σ an open set,
mV : V → Z≥1 a balanced map, and ψ : V → φ(V) given by γ 7→ φ(γ). If ψ is combinatorial, then
(ψ,mV) is an indexed branched cover.

Proof. Since φ is a combinatorial morphism, by Lemma 10.50 the restriction φ|V is a branched
cover, which remains true if we restrict the codomain to φ(V), giving rise to ψ. Since ψ is combi-
natorial and mV is defined over all the domain of ψ, we apply Proposition 10.54 to conclude that
(ψ,mV) is an indexed branched cover.

Example 10.71. Figure 10.4 again exemplifies what can go wrong when ψ is not combinatorial.
Setting mV(C1) = 2 and mV -value 1 for the remaining elements in V, we get a balanced map mV ,
yet (ψ,mV) is not an indexed branched cover, since the count for the fibre over C is 2, and for the
fibre over B is 1. ⋆

Thus, the answer to the question of whether a balanced map restricts to an indexed branched
cover is negative in general by Example 10.71, and by Lemma 10.70 it is possible when a technical
condition is fulfilled. We now see this is also the case for the question of whether mV can be
extended to the whole domain Σ.

Example 10.72. It is straightforward to construct balanced maps mV that cannot be extended
when V is disconnected; e.g. consider the poset α← A← O → B → β, the combinatorial morphism
φ = id, the set V = ↑ {A,B}, the balanced map mV(α) = mV(A) = 2 and mV(β) = mV(B) = 1.
It is not possible to extend mV to O.

Moreover, we give an example where V is connected, yet extension is not possible. Figure 10.5
shows a combinatorial morphism φ : Σ → ∆ given by φ(Ai) = A, φ(βi) = β, etc. and a map
mV : V → ∆ with V = Σ \

{
O1, Õ1, Õ2

}
and whose values are given by the second numbers of the
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(A1, 3) (B1, 2) (B2, 1) (C1, 1) (C2, 2)

(β1, 2) (β2, 1) (γ1, 1)
(γ2, 2)

O1 Õ1 Õ2

A B C

β γ

O Õ

φ : Σ→ ∆

Figure 10.5: On the left, a poset Σ and a map m1 : V → Z≥1 with V = Σ \
{
O1, Õ1, Õ2

}
; right,

a poset ∆; together, a combinatorial morphism of posets φ such that m1 can be extended to O1

but not to Õ1 nor Õ2.

pairs in the diagram. If we consider Õ1, we have φ(Õ1) = Õ, and both B and C cover Õ. Note
that ∑

η∈φ−1(B)

Õ1⋖η

mV(η) = 2 ̸= 1 =
∑

η∈φ−1(C)

Õ1⋖η

mV(η).

Thus, there is no possible value for Õ1 to fulfill the balancing condition. Same with Õ2. On the
other hand, O1 can be given the value 3, and this satisfies the balancing condition. ⋆

The following result sheds light on why in Example 10.72 it was possible to extend mV to O1

but not to Õ1 nor Õ2.

Proposition 10.73. Let φ : Σ → ∆ be a combinatorial morphism and V ⊂ W ⊂ Σ open sets. If
Uα = (↑∆φ(α)) \ {φ(α)} is connected and φ−1(Uα) ⊂ V for all α in W \V, then any balanced map
mV : V → Z≥1 extends to a balanced map mW :W → Z≥1 by setting

mW(α) =
∑

γ∈φ−1(β)
α⋖γ

mV(γ) (10.19)

for α ∈ W \ V and β covering φ(α). The value is independent of the choice of β.

Proof. We show that the value in Equation (10.19) is independent of the choice of β; this also shows
the balancing condition. Let β1, β2 be elements that cover φ(α), so they are in (↑∆φ(α))\{φ(α)} =
Uα. Since Uα is connected, there is a path from β1 to β2, which can be completed to a path
P = ⟨µ0, µ1, . . . , µk−1, µk⟩ ⊂ (↑∆φ(α))\{φ(α)} such that µ0 = β1, µk = β2 and either µi−1⋖µi or
µi−1 ⋗ µi. Since φ−1(Uα) ⊂ V, we have that φ−1(µi) ⊂ V. Moreover, µi−1 and µi are in ↑∆φ(α),
so we can apply Lemma 10.52 to consecutive elements of P to obtain the result.

Finally, we discuss a situation where the technical conditions of Proposition 10.73 are met.
This situation is relevant when proving Theorem C.

Lemma 10.74. Let Σ and ∆ be graded posets, φ : Σ → ∆ a combinatorial morphism, V =
↑ΣΣ(k + 1) and W = ↑ΣΣ(k), where k is in {0, . . . , rkΣ− 2}. For all α ∈ W \ V we have that
φ−1((↑∆φ(α)) \ {φ(α)}) ⊂ V

Proof. Note that rkα = k, because α is in W \ V, and that φ preserves rank because φ is com-
binatorial. Hence, rkφ(α) = k, all elements of (↑∆φ(α)) \ {φ(α)} have rank at least k + 1, and
so do all elements of φ−1((↑∆φ(α)) \ {φ(α)}). Therefore, the latter set is in V = ↑ΣΣ(k + 1), as
desired.

Remark 10.75. Let Σ and ∆ be graded posets, and φ : Σ→ ∆ a combinatorial morphism. If ∆
is strongly connected, then by Lemma 10.74 any balanced map mU defined on codimension-q of Σ
extends to a balanced map mW defined on codimension-(q + 1). △
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10.11 Refinement induced by a morphism
Now we refine polyhedral complexes. Our aim is to take a morphism Φ : Σ → ∆ of polyhe-
dral complexes and simultaneously refine the domain and codomain to obtain a combinatorial
morphism. We use this construction in two different situations, In the first, we have a map
Φ : Γ → ∆ of 1-dimensional polyhedral complexes, and the construction gives a combinatorial
morphism, which encodes a graph morphism φ : G→ T . In the second situation, we take the map
Π : Gtrop

g→0,d → Mtrop
g , first we subdivide domain and codomain with the barycentric subdivision,

and once we have graph complexes we subdivide again to obtain Π̃ : G̃trop
g→0,d → M̃trop

g , a combina-
torial morphism to which Theorem 10.46 can be applied. The following sketches some properties
we want from this subdivision, and how we would go around doing it.

Example 10.76. Let σ be a rational polyhedron in (V,N), again we assume for a moment that
spanσ is not necessarily the whole V . Given a rational functional u ∈ N∗ we get a subdivision of
σ by considering the two polyhedra σ+ = σ∩H+(u, c) and σ− = σ∩H−(u, c), where H+ and H−

are the half-spaces introduced in Subsection 9.1.
It is relevant for us to describe the face poset Σ̃ of {σ+, σ−}. Let Σ be the face poset of σ. The

subdivision partitions Σ into four sets:

• Σ0 the set of those β that are not contained in either H+(u, c) or in H−(u, c).

• Σ± the set of those γ that are contained in H(u, c).

• Σ+ the set of those µ not in Σ± and contained in H+(u, c).

• Σ− the set of those ν not in Σ± and contained in H−(u, c).

The elements of Σ̃ consist of one copy of Σ+, Σ−, and Σ±, plus three copies of Σ0. The three
copies are because if τ is in Σ0, then we obtain three polyhedra out of it: first τ+ = τ ∩H+(u, c)
which we put in Σ+

0 , second τ± = τ ∩H(u, c) which we put in Σ±
0 , and third τ− = τ ∩H−(u, c)

which we put in Σ−
0 . These three polyhedra are new and were not present originally in Σ.

Likewise, the morphisms in Σ̃ can be described in terms of those in Σ. Let f : η → τ be a
morphism in Σ. If neither η nor τ are contained in Σ0, then we put f in Σ̃. If η is in Σ0, then τ
is in Σ0 as well, and we put three copies of f in Σ̃, namely f : η+ → τ+ and f : η− → τ− and
f± : η± → τ±. Finally, if τ is in Σ0 and η is not, we have three options: if η is in Σ+ then we put
a morphism f : η → τ+; if η is in Σ− then we put a morphism f : η → τ−; if η is in Σ± then we
put three morphisms: f : η → τ±, and f : η → τ+, and lastly f : η → τ−.

In a more succint manner, consider polyΣ : |σ| → Σ from Definition 9.26. We have that

Σ0 = polyΣ(|σ| \H(u, c)) ∩ polyΣ(H(u, c)).

We have argued that Σ0 is an up-set. Consider the categories induced by Σ on Σ \Σ0 and on Σ0.
WWe have argued that Σ̃ is the sum of the categories Σ \ Σ0, Σ+

0 , Σ−
0 , Σ±

0 to which we add mor-
phisms in the sets Hom(polyΣ(H

+(u, c)),Σ+
0 ), Hom(polyΣ(H

−(u, c)),Σ−
0 ), and Hom(polyΣ(H

±(u, c)),Σ±
0 ).

⋆

So let Φ : [σ : Σ → PolyfZ] → [δ : ∆ → PolyfZ] be a morphism of polyhedral complexes given
by the pair (φ, {Φα}α∈Σ). Recall that face posets of polyhedral spaces are ranked by rkα = dimσα.
Fix α ∈ Σ such that rkα = rkφ(α). Recall that Φα : σα → δφ(α) is not necessarily a face morphism,
in fact it needs not even be injective! So suppose that Φα is injective, hence σα and its face poset
is mapped isomorphically onto Φα(σα) ⊂ δφ(α). Since dimσα = dim δφ(α), we have that if τ is a
facet of σα then Φα(τ) spans a hyperplane in Nα

R . The idea is to consider all such hyperplanes
{spanR Φα(τ) : τ ⋖ α} and refine δφ(α) with respect to them. It is straightforward to show that
the result is independent of the order of how each succesive refinement is done.

Now the problem is that such subdivision of δφ(α) also might subdivide a cone δγ with γ ⪯ φ(α).
Now such δγ is contained in δη with γ ⪯ η, and δη might not be subdvided yet, and it needs to
be, to accomodate for the subdivision of δγ . But a codimension-1 space in δγ is not codimension-1
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in δη. So the fix would be to consider faces of δη which do not contain δγ , in a move similar to
constructing the star subdivision.

That is, a subdivision of δφ(α) by a hyperplane requires to throw away everything in ↑σ↓Σφ(α)
and replace it by subdivided polyhedra. Moreover, then these subdivisions performed on ∆ have
to be pulled back to Σ.

The challenges are to argue that this process of subdivision eventually stops, that at each step
we get a polyhedral space and a morphism of polyhedral spaces, and that at the end the resulting
morphism is combinatorial.

Conjecture 10.77. Let Φ : σ → δ be a morphism of polyhedral spaces. Assume there are refine-
ments σ′ and δ′ of σ and δ, respectively, which are either polyhedral complexes of simplicial cones or
polyhedral complexes of simplices. There exists refinements σ̃ : Σ̃→ PolyfZ and δ̃ : ∆̃→ PolyfZ of
σ and δ respectively, such that Π induces a morphism Π̃ : σ̃ → δ̃ that is a combinatorial morphism
of polyhedral complexes.

10.12 Gluing datums
In Part I gluing datums are introduced as a tool to ease the visualization of DT-morphisms, to
ease the book-keeping in the process of deformation of a DT-morphism, and to write computer
programs. We sketch how this tool can be brought to our now more general setting.

Definition 10.78 (gluing datum). Let ∆ be a finite poset admitting a rank function, d a positive
integer, and ∼ an equivalence relation on ∆ × [d], where [d] = {1, . . . , d}. We write (α, k) for the
classes of (∆× [d])/ ∼. The triple (∆, d,∼) is a gluing datum if ∼ satisfies these properties:

1. Verticality: If (α, i) ∼ (β, j), then α = β. So each α in ∆ defines a relation ∼α on [d] with
i ∼α j if (x, i) ∼ (x, j).

2. Refinement: For any α and γ in ∆ such that γ ∈ ↓∆α, the relation ∼γ is a coarsening of ∼α.

Let M = (∆, d,∼) be a glueing datum. We call ∆ the base poset, d the degree, and ∼ the
gluing relations. We consider [d] with the trivial partial order, i.e. x ≤ y if and only if x = y. Now
recall Example 9.25. We get that the product ∆× [d] has a poset structure, and rM : ∆× [d]→ Z
given by rM ((α, i)) = r(α) is a rank function. Also by the verticality property, we are identifying
together elements of the same rank, thus ΣM = (∆× [d])/ ∼ is a poset that admits a rank function.
The map φM : ΣM → ∆ is a morphism of posets, and the refinement property of M implies that
in fact φ is combinatorial. Finally, if we set mφM

((α, i)) = #((α, i)) it is straightforward to prove
that (φM ,mφM

) is an indexed branched cover. Moreover, we conjecture this correspondonce to be
one-to-one

Conjecture 10.79. Fix a poset ∆ that admits a rank function, and d ∈ Z≥1. The set of degree-d
indexed branched covers (φ : Σ→ ∆,mφ) such that φ is combinatorial is in one-to-one correspon-
dence to gluing datums (∆, d,∼).

Sketch of proof. It is quite likely that a constructive proof can be derived by modifying Construc-
tion 4.7 from Part I accordingly. Yet, it feels that a conceptual proof can be achieved by fleshing
out better the concept of morphisms of indexed of branched covers. So given a degree-d combina-
torial indexed branched cover φ : Σ → ∆ of posets, the point would be to factor the projection
p : ∆× [d]→ ∆ through φ, giving us a diagram

Σ

∆× [d] ∆

φ

p

g

Diagram 10.80

And so we can say something to the efect that Σ = ∆× [d]/ ker g.
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Remark 10.81. Whenever we represent graphically a DT-morphism, this representation follows
the philosophy of gluing datums, as done in Part I as well. Namely, for the graph case φ : G→ T ,
we regard G as the graph resulting from taking degφ copies of T , and identifying together certain
vertices and edges between copies. In this view the index map mφ records how many copies of T
were glued together in a particular place. Such places of gluing are represented with dashed lines.
See for example the figure in Example 12.68. △



Chapter 11

Parametrizing metric graphs

This section describes a polyhedral space of cones Mtrop
g → PolyfZ such that the points of the

topological realization |Mtrop
g | are in one-to-one correspondence with equivalence classes under

isometry of genus-g connected weighted metric graphs. While several sources in the literature do
a similar account, e.g see [Koz09; Cha12; ACP15], we undertake working through all the details to
have a template for the description of Gtrop

g→0,d.
Metric graphs are introduced as topological realizations of 1-dimensional polyhedral spaces

with bounded polyhedra. For this end, we outline how to frame graphs and graph morphisms in
category theoretical terms.

11.1 Weighted graphs
This subsection recalls some basics of graph theory, framed in category-theoretical concepts. This
is a non-conventional approach, but it suits well our aim of studying a polyhedral space Γ : Gop →
PolyfZ, where G is a graph, using the theory developed in Section 10.

Definition 11.1 (finite graph). Let (G,V (G), E(G)) be a triple with G a finite category, and
{V (G), E(G)} a partition of Obj(G). These partition sets are called the vertex set and the edge
set. This triple is a graph if it satisfies the following two conditions:

(G1) For every A in V (G) we have Hom(A,−) = {idA}.

(G2) For every e in E(G) we have Hom(e,−) = {ide, i1 : e→ A, i2 : e→ B}, where A and B are
in V (G), and not necessarily distinct.

Two distinct elements x1, x2 of G are incident if there is a morphism between them. We write
E(A) for the set of edges incident to a vertex A. The ends of e are i1(e) and i2(e). Two vertices
are adjacent if they are the ends of some edge. If i1(e) = i2(e), we call e a loop. The valency valA
of a vertex A is the cardinality of the set Hom(−, A) \ {idA}. The min-valency and max-valency
of G are min-val(G) = minA∈V (G) val(A) and max-val(G) = maxA∈V (G) val(A), respectively. A
monovalent, divalent, trivalent, n-valent vertex is a vertex of valency 1, 2, 3 and n, respectively.

A subgraph of G is a subcategory H and a partition V (H) ⊂ V (G), E(H) ⊂ E(G) of H,
satisfying properties (G1) and (G2). A subset V (H) ⊂ V (G) induces a subgraph H, with E(H)
equal to the edges of G with both ends in V (H). Likewise, a subset E(H) ⊂ E(G) induces a
subgraph H, with V (H) equal to those vertices that appear as an end of some edge in E(H).

A graph morphism γ : G→ G0 is an incidence preserving map. Formally,

Definition 11.2 (morphism of graphs). A graph morphism is a functor γ : G→ G0 such that the
restriction of γ to Hom(x,−) is surjective onto Hom(γ(x),−) for all x in Obj(G).

The condition that a morphism of graphs γ : G → G0 maps Hom(x,−) surjectively onto
Hom(γ(x),−) ensures that for every subgraph H of G the image γ(H) is a subgraph of G0. The

110
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map γ indeed preserves incidences; given e in E(G) if γ(e) is in E(G0), then the ends of e map
to the ends of γ(e); otherwise, e and the ends of e map to the same vertex γ(e) in V (G). Also,
γ(V (G)) ⊂ V (G0). We denote by contr(γ) the set of edges of G that map to a vertex of G0, that
is contr(γ) = γ−1(V (G0)) ∩ E(G) = E(G) \ γ−1(E(G0)).

We consider graphs with the topology generated by the sets {e} and {A}∪E(A), for e in E(G)
and A in V (G). This coincides with the preorder topology of the opposite category Gop. A subset
H ⊆ G is closed if and only if H is a subgraph. Hence, a graph morphism is continuous and a
closed map. A subgraph P of G that is connected under the graph topology and has max-valency
at most 2 is a path. The 2-valent vertices of P are the interior vertices, and the 1-valent vertices
are the endpoints. If P has no endpoints then we call P a cycle. By Lemma 10.57, the graph G is
connected in the graph topology if and only if for every pair of vertices A and B there is a path P
with endpoints A and B, that is if and only if there is a sequence beginning in A and ending in B
of elements of G such that consecutive elements are incident.

Remark 11.3. We phrase some properties in the language of Section 9. A graph G is loopless if
and only if G is a poset, i.e. #(Hom(x1, x2)) ≤ 1 for all x1, x2 ∈ G. Given graphs G1 and G2, a
map of objects γ : Obj(G1) → Obj(G2) extends to a functor if and only if γ is order preserving
with the order from Lemma 9.22, if and only if γ is continuous. If the graphs are loopless, this
extension to a functor is unique. Not all order preserving maps induce graph morphisms, e.g the
constant map that sends everything to an edge of G2 is not a graph morphism. An order preserving
map γ induces a graph morphism if and only if γ(V (G1)) ⊂ V (G2). A graph morphism γ satisfies
that contr(γ) = ∅ if and only if γ is a combinatorial morphism. If G is connected and E(G) ̸= ∅,
then maxGop ⊂ E(G). △

Now we give two important constructions. Fix a subset S ⊂ E(G). The deletion G \ S of
S is the subcategory of G restricted to the objects V (G) ⊔ (E(G) \ S). Moreover, let Ĝ be the
category generated by G\S plus the family of isomorphisms {ψe : i1(e)→ i2(e) : e ∈ S}; note that
ψe identifies together the vertices that are ends of e, thereby contracting e. The contraction G/S
of S is the skeleton category of Ĝ. That is, its objects are equivalence classes of isomorphic objects
of Ĝ. There are graph morphisms G→ G \ S and G→ G/S.

Finally, per Subsection 8.2.2 we are interested in studying graphs that have weights on the
vertices. A weighted graph is a pair of a graph G and a weight map w : V (G)→ Z≥0. A subgraph
H ⊂ G induces a weighted subgraph (H,w|H), where w|H equals the restriction of w : V (G)→ Z≥0

to V (H). A morphism of weighted graphs is just a morphism of the underlying graphs, without
restrictions on the weights. Recall from Equation (8.5) that the weight map encodes extra genus
on the graph, i.e. we define:

g(G,w) = g(G) +
∑

A∈V (G)

w(A). (11.1)

Intuitively, the weight w(A) records loops that were contracted to A; so one could picture them as
infinitely small loops. This leads to define a weighted valency as

wtvalA = valA+ 2w(A). (11.2)

This notation streamlines the exposition at several points. We denote by min-wtval(G,w) the
minimum weighted valency of (G,w), that is minA∈V (G,w) wtvalA.

11.2 Weighted metric graphs
This subsection looks at weighted metric graphs, gives a recipe to construct them from combinato-
rial and metric data, and characterizes metric spaces that can be given a metric graph structure.

Definition 11.4. A metric graph with polyhedral structure is a polyhedral space

Γ : Gop → PolyfZ,

where G is a graph, and the 1-dimensional polyhedra are bounded with ambient space R.
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Let Γ be a metric graph with polyhedral structure. We make some observations on the edges of
Γ. Let (N, σ) in PolyfZ be a 1-dimensional bounded polyhedra with σ ⊂ R. From the boundedness,
we get that σ is a closed interval [x1, x2]. We denote by length(σ) = x2−x1 the length of σ. Since
polyhedra in PolyfZ have integral vertices, x1 and x2 are in N , so there is nσ ∈ Z≥1 such that
N = (c/nσ)Z. We call nσ the integral-length of σ.

We write |Γ| for the topological realization of Γ. This deviates from the convention of Section 9,
because later we consider families CG of those Γ with a fixed underlying graph G. Each polyhedron
of Γ inherits the metric from R. This metric extends globally to a shortest-path metric, making |Γ|
a metric space. A weight map wG on V (G) extends to a map |w| : |Γ| → Z≥0 with finite support.
Thus, the pair (|Γ|, wG) is an example of the following kind of spaces:

Definition 11.5. A weighted metric space is a pair (X,w) of a metric space X and a weight map
w : X → Z≥0 with finite support.

Two weighted metric spaces (X,w : X → Z≥0), (X ′, w′ : X ′ → Z≥0) are isometric if there is
an isometry Ψ : X ′ → X such that w′ = w ◦ Ψ. We denote this by (X,w) ≡ (X ′, w′). The genus
of the graph G, without weights, coincides with the first Betti number of |Γ|. Thus, we define the
genus of (Γ, wG) to be g(G,wG). Note that the genus is invariant under isometry.

Definition 11.6. A weighted metric graph is a weighted metric space isometric to some (|Γ|, w),
with (Γ, wG) a weighted metric graph with polyhedral structure. We call (Γ : G→ PolyfZ, wG) a
model of (|Γ|, w).

Now, given a weighted graph (G,wG), we construct a family of weighted metric graphs with
polyhedral structure. Consider the following functions, which specify metric information:

Definition 11.7. A length function is a map ℓ in RG≥0 such that ℓ(A) = 0 for all A in V (G).

In other words, vertices have zero length, the support of ℓ is contained in E(G). In Part I the
domain of a length function was restricted to E(G). We have enlarged the domain for the sake of
a cleaner exposition. The family CG of length functions of a fixed graph G is naturally identified
with a polyhedral cone:

CG =
{
ℓ ∈ RG≥0 : ℓ(A) = 0 for all A ∈ V (G)

}
. (11.3)

For a weighted graph (G,w) we set C(G,w) = CG. Each point ℓ in C(G,w) corresponds to a weighted
metric graph with polyhedral structure via the following construction:

Construction 11.8. To the quadruple (G,w, ℓ, n) of a graph G, a weight map w : V (G)→ Z≥0, a
length function ℓ : G→ Z≥0, and an integral-length function n : G→ Z≥1, we associate a functor
Γ : Gop → PolyfZ that sends:

• The object x ∈ G to (Nx, [0, ℓ(x)]) and Nx = (ℓ(x)/n(x))Z.

• The morphism i1 : e→ A ∈ Hom(e,−) to Γ(A)→ Γ(e) given by 0 7→ 0.

• The morphism i2 : e→ B ∈ Hom(e,−) to Γ(B)→ Γ(e) given by 0 7→ ℓ(e).

Let 1G : G → Z≥1 be the map given by x 7→ 1. Per Subsection 9.2 there is a topological
realization |Γ| with a metric structure and w : G→ Z≥0 extends to it, so we write |(G,w, ℓ, n)| =
(|Γ|, w). We also write (G,w, ℓ) for (G,w, ℓ,1G) in Construction 11.8, and associate |(G,w, ℓ)| to
ℓ ∈ C(G,w).

The aim is to give a polyhedral structure to |Γ|, which is not immediate because the Γ from
Construction 11.8 might not be a polyhedral space. Indeed, consider e ∈ E(G) and i1 : A→ e ∈ G
such that ℓ(e) = 0. Both ΓA and Γe are isomorphic to the point ({0} , {0}) in PolyfZ, giving
raise to the first triangle in Diagram 11.9. If Γ were a polyhedral space, by the second triangle
and Condition (b) from Definition 9.4 we would have a morphism e→ A in Gop, i.e. a morphism
A→ e in G, a contradiction.
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Γe

ΓA Γe

e

A e

id

i1
op

f

Diagram 11.9

The solution is to consider the set S = {e ∈ E(G) : ℓ(e) = 0} of edges of length 0, and the
contraction G/S. The realization |(G/S,w|S , ℓS)| is isometric to the realization |(G,w, ℓ)|; this is
a key fact used in Part I. Moreover, it is straightforward to prove that if supp ℓ = E(G), then Γ
is a polyhedral space. Thus, (G/S,w|S , ℓ|S) gives the desired polyhedral structure, showing that
C(G,w) is a family of metric graphs.

Now, given a weighted metric space (X,w), we look closer to the question of when it can be
endowed with a metric graph structure. A vertex set is a finite subset S ⊂ X such that suppw ⊂ S
and each element in π0(X \ S) is isometric to a bounded open interval of R. The existence of a
vertex set gives rise to a weighted metric graph: let GS be the graph with vertices V (GS) = S,
edges E(GS) = {cl(U) : U ∈ π0(X \ S)}, and incidence relations given by inclusion; ℓS be the
length function recording the length of the closure cl(U); and w|S as weight function. We have
that |(GS , w|S , ℓS)| is isometric to (X,w).

Adding a finite number of points to a vertex set S produces yet another vertex set. So the set of
|(GS , w|S , ℓS)| isometric to (X,w) is infinite. We characterize vertex sets and describe a canonical
representative. Let S be the family of all vertex sets of (X,w). If both S and E =

⋂
S∈S S are

non-empty, then E is a vertex set. We call E and (GE , wE , ℓE) the set of essential vertices and the
essential model, respectively.

Lemma 11.10. Let (X,w) be a weighted metric space, and S0 the set of x ∈ X such that either
w(x) ≥ 1 or for all ε > 0 the open ball B(x, ε) is not isometric to (−ε, ε) ⊂ R. If S0 is non-empty
and finite, any finite S ⊂ X is a vertex set if and only if S0 ⊂ S.

The family of metric loops is the set of weighted metric graphs homeomorphic to a circle
and with weight function identically zero. If (Γ, w) is a weighted metric graph, then the set S0

from Lemma 11.10 is empty if and only if (Γ, w) is a metric loop. For every other metric graph,
Lemma 11.10 shows that the set of essential vertices E equals S0, and that E is minimal in the
sense that all models arise from a sequence of edge subdivisions of GE . Thus, we can define the
valency of a point x in Γ as the valency of x in GS for S any vertex set containing x. Similarly for
the weighted valency.

Remark 11.11. In terms of the weighted valency, the set of essential vertices of (|Γ|, w) equals
the points x such that wtvalx ̸= 2. △

11.3 Contraction and specialization of graphs
The discussion after Construction 11.8 motivates us to do a closer study on contraction of edges
in a weighted graph. This is an important step in making the correspondence (G,w) → C(G,w)

functorial.

Definition 11.12. A contraction is a graph morphism ρ : G → G0 such that the restriction
ρ−1(E(G0))

ρ−→ E(G0) is a bijection, and ρ−1(A0) is a connected subgraph of G for all A0 in
V (G0). A contraction of weighted graphs is a contraction of the underlying graphs.

Remark 11.13. Since ρ is continuous, if P is a path in G, then ρ(P ) is a path in G0; and because
the fibres of ρ are connected, any path P0 in G0 has a lift, i.e. a path P̃ with ρ(P̃ ) = P0. Thus, if
ρ : G→ G0 is a contraction morphism and at least one of G or G0 is connected, then both G and
G0 are connected. △

Recall that contr(ρ) are the edges of G that the morphism ρ maps to vertices. If ρ : G→ G0 is
a contraction morphism, there is a well defined inverse map ρ−1 : E(G0)→ E(G). Thus, we have
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that

#(contr(ρ)) = #(E(G))−#(E(G0)). (11.4)

Given x0 in G0, we say that the subgraph ρ−1(x0) of G gets contracted to x0. The genus of G and
of G0 are related:

Lemma 11.14. Let ρ : G→ G0 be a contraction morphism of graphs. We have that

g(G) = g(G0) +
∑

A0∈V (G0)

g(ρ−1(A0)).

Proof. The result follows from the fact that ρ−1(A0) is connected, and two counts:

#(E(G)) = #(ρ−1(E(G0))) + #(ρ−1(V (G0)) ∩ E(G))

= #(E(G0)) +
∑

A0∈V (G0)

#(E(ρ−1(A0))),

#(V (G)) = #(ρ−1(V (G0)) ∩ V (G))

=
∑

A0∈V (G0)

#(V (ρ−1(A0)))

= #(V (G0)) +
∑

A0∈V (G0)

(#(V (ρ−1(A0)))− 1).

Consider the set WGg of genus-g connected weighted graphs. If ρ : G → G0 is a contraction
morphism, then g(G) ≥ g(G0). When the inequality is strict, we say that ρ contracts cycles of G.
To remain inside WGg, we consider a kind of contraction morphisms that keep track of contracted
cycles using the vertex weight.

Definition 11.15. A specialization morphism is a contraction morphism ρ : (G,w)→ (G0, w0) of
weighted graphs such that the weight of A0 in V (G0) equals the genus of the weighted graph that
contracts to A0, namely

w0(A0) = g(ρ−1(A0)) +
∑

A∈V (ρ−1(A0))

w(A) = g(ρ−1(A0), w|ρ−1(A0)). (11.5)

Remark 11.16. If a specialization morphism ρ : G → G0 contracts zero edges, then E(G) is
mapped one-to-one to E(G0), and the condition that ρ−1(A0) is connected gives #(V (G)) =
#(V (G0)). Thus, ρ is an isomorphism △

By setting H = G and H0 = G0 in the following result, we obtain that specialization morphisms
preserve the genus.

Lemma 11.17. Let ρ : (G,w)→ (G0, w0) be a specialization morphism, (H0, w0|H0) ⊂ (G0, w0) a
weighted subgraph, and (H,w|H) ⊂ (G,w) a weighted subgraph such that H = ρ−1(H0). The map
ρ|H : (H,w|H)→ (H0, w0|H0

) is a specialization morphism and

g(H,w|H) = g(ρ(H), w0|ρ(H)) = g(H0, w0|H0
).

Proof. Since ρ is a contraction, ρ−1(E(G0))
ρ−→ E(G0) is a bijection, so ρ|H−1

(E(H0))
ρ|H−−→ E(H0)

is a bijection as well; also ρ−1(A0) is connected, and since H = ρ−1(H0) we have that ρ|H−1
(A0) =

ρ−1(A0). Moreover, it is straightforward to verify Equation (11.5) for ρ|H from the fact that ρ is a
specialization morphism. Thus, ρ|H is a specialization morphism. The result on the genera follows
from calculating:

g(ρ(H), w0|ρ(H)) = g(ρ(H)) +
∑

A0∈V (ρ(H))

w0(A0)

= g(ρ(H)) +
∑

A0∈V (ρ(H))

g(ρ−1(A0)) +
∑

A0∈V (ρ(H))

∑
A∈V (ρ−1(A0))

w(A)

= g(H) +
∑

A∈V (H)

w(A) = g(H,w|H).



CHAPTER 11. PARAMETRIZING METRIC GRAPHS 115

We applied Lemma 11.14 in the second line because ρ|H is a specialization morphism, and in the
last line we used the fact that H = ρ−1(H0).

Another consequence of Lemma 11.14 is that composition of specialization morphisms is well
behaved.

Lemma 11.18. Let ρ1 : (G1, w1) → (G0, w0) and ρ2 : (G2, w2) → (G1, w1) be specialization
morphisms. The composition ρ = ρ1 ◦ ρ2 is a specialization morphism as well.

Proof. Note that ρ−1(E(G0))
ρ−→ E(G0) equals

ρ2
−1 ◦ ρ1−1(E(G0))

ρ2−→ ρ1
−1(E(G0))

ρ1−→ E(G0),

and that both of these arrows are bijections since ρ1 and ρ2 are specialization morphisms. Moreover,
since ρ1−1(A0) is connected, so is ρ−1(A0) = ρ2

−1(ρ1
−1(A0)). Finally, let H2 = ρ−1(A0) and H1 =

ρ1
−1(A0). Note that ρ1−1(H1) = ρ1

−1 ◦ ρ2−1(A0) = ρ−1(A0) = H2. So applying Lemma 11.17 we
get that Equation (11.5) is fulfilled:

w0(A0) = g(ρ1
−1(A0), w1|ρ1−1(A0)) = g(H1, w1|H1

)

= g(H2, w2|H2) = g(ρ−1(A0), w2|ρ−1(A0)).

Thus, by Remark 11.13 and Lemmas 11.17 and 11.17 we obtain a category:

Definition 11.19. The category WGg has as objects genus-g connected weighted graphs, and as
morphisms the specialization morphisms.

Now we focus in some constructive aspects, in order to contract a subset S ⊂ E(G).

Construction 11.20 (weighted contraction). Let (G,w) be a weighted graph and S a subset of
E(G). The contraction morphism G → G/S becomes a specialization morphism ρS : (G,w) →
(G/S,wS) by setting

wS(A0) = g(ρ−1(A0)) +
∑

A∈V (ρ−1(A0))

w(A) = g(ρ−1(A0), w|ρ−1(A0)).

It turns out that all specialization morphisms arise from Construction 11.20. We prove this
with the following two lemmas.

Lemma 11.21. Let γ : (G, w̄) → (G,w) be a graph morphism, and ρ̄ : (G, w̄) → (G0, w̄0),
ρ : (G,w) → (G0, w0) specialization morphisms. If contr(ρ̄) is in γ−1(contr(ρ)), then there exists
a unique γ0 : (G0, w̄0)→ (G0, w0) such that Diagram 11.22 commutes.

(G, w̄) (G,w)

(G0, w̄0) (G0, w0).

ρ̄

γ

ρ

∃!γ0

Diagram 11.22

Proof. Let A0 be in V (G0). Note that ρ is a contraction and contr(ρ̄) ⊂ γ−1(contr(ρ)). So, if
e ∈ E(ρ̄−1(A0)), then ρ(γ(e)) equals a vertex A0 of G0. Moreover, by connectedness of ρ̄−1(A0),
this vertex A0 is independent of e; i.e. ρ(γ(ρS−1(A0))) = {A0}. So the only possibility is the map
γ0 : (G0, w̄0) → (G0, w0) given by A0 7→ A0 for a vertex A0, and ē 7→ ρ(γ(ρ̄−1(ē))) for an edge ē.
We have argued that the map γ0 is well defined and satisfies Diagram 11.22.

Note that γ0 is a graph morphism, because if ē is incident to A0 in G0, then ρ̄−1(ē) is incident to
some vertex in ρ̄−1(A0), hence γ0(ē) = ρ(γ(ρ̄−1(ē))) and γ(A0) = ρ(γ(ρ̄−1(A0))) are incident.

Remark 11.23. In general, given graph morphisms γ, γ0, ρ̄ and ρ that commute, say γ0 ◦ ρ̄ = ρ◦γ
as in Diagram 11.22, in the set E(G) we have that

contr(ρ̄) ⊔ ρ̄−1(contr(γ0)) = contr(γ) ⊔ γ−1(contr(ρ)). △
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Lemma 11.24. Let ρ : (G,w) → (G0, w0) be a specialization morphism. Choose any subset S ⊂
contr(ρ). There exists a unique contraction morphism ρ̃ such that Diagram 11.25 commutes.

(G,w) (G0, w0)

(G/S,wS).

ρS

ρ

∃!ρ̃

Diagram 11.25
Moreover, contr(ρ) = contr(ρS) ⊔ ρS−1(contr(ρ̃)) and contr(ρ̃) = ρS(contr(ρ) \ contr(ρS)).

Proof. Lemma 11.21 with γ = id(G,w) and (G0, w̄0) = (G/S,ws) gives the only possible candidate
morphism ρ̃, and it remains to show that ρ̃ is a specialization morphism. We first show that ρ̃ is
a contraction. Note that the restriction ρ̃−1(E(G0))

ρ̃−→ E(G0) is bijective. This because it equals
(ρ ◦ ρS−1)

−1
= ρS ◦ ρ−1; and since ρ and ρS are contractions, ρ−1 is injective into E(G), and ρS is

injective on E(G). Moreover, let A0 be a vertex of G0. The fibre ρ−1(A0) is connected, and since
ρS is continuous in the graph topology, we get that ρS(ρ−1(A0)) = ρ̃−1(A0) is connected as well.
To prove Equation (11.5), let A0 ∈ V (G0), and set H = ρ−1(A0) and H̃ = ρS(H). We calculate:

ρ̃−1(A0) = (ρ ◦ ρS−1)
−1

(A0) = ρS ◦ ρ−1(A0) = ρS(H) = H̃,

H = ρ−1(A0) = (ρ̃ ◦ ρS)−1
(A0) = ρS

−1 ◦ ρ̃−1(A0) = ρS
−1(H̃).

As H = ρS
−1(H̃) and ρ and ρS are specialization morphisms, we apply Lemma 11.17 on H̃:

w(A0) = g(ρ−1(A0), w|ρ−1(A0)) = g(H,w|H)

= g(ρS(H), wS |ρS(H)) = g(H̃, wS |H̃) = g(ρ̃−1(A0), wS |ρ̃−1(A0)).

Finally, ẽ is in contr(ρ̃) if and only if ρ̃(ẽ) = ρ ◦ ρS−1(ẽ) is a vertex of G0, if and only if ρS−1(ẽ) is
in contr(ρ). Clearly ρS−1(ẽ) is not in contr(ρS), so we obtain the claim on contr(ρ̃).

Remark 11.26. In the setting of Lemma 11.24, if we have that S = contr(ρ), then contr(ρ̃) = ∅,
which by Remark 11.16 means that ρ̃ is an isomorphism. Thus, all specialization morphisms ρ are
isomorphic to ρS with S = contr(ρ), as claimed. △

Example 11.27 (Final object in WGg). For any graph G, if we consider the specialization
morphism ρE(G) contracting all edges, we get a map to the graph Gf ∈WGg that has one vertex
A of weight g and no edges. This is the final object in WGg. ⋆

Remark 11.28. Note that the opposite of Diagram 11.25 is

(G0, w0) (G,w)

(G/S,wS) .

∃!ρ̃op

ρop

ρS
op

Diagram 11.29

Later we use this fact to prove that a functor C : WGg
op 7→ PolyfZ via (G,w) 7→ C(G,w)

satisfies Condition (b) from Definition 9.4. △

11.4 Tropical modification for graphs
Recall that Subsection 8.2.4 describes tropical modification as an operation that iteratively attaches
or removes monovalent points; such elements we call dangling. We study how this operation
interacts with specialization morphisms.

Definition 11.30. Let (G,w) be a weighted graph, e ∈ E(G) and A ∈ V (G). We have that
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• e is dangling if deleting e gives two connected components (G1, w1),(G2, w2) and at least one
of those is a tree, i.e. min(g(G1, w1), g(G2, w2)) is 0.

• A is dangling if w(A) = 0 and all e in E(A) are dangling.

An important fact is that being dangling commutes with specialization morphisms.

Lemma 11.31. Let ρ : (G,w) → (G0, w0) be a specialization morphism, and x0 in G0. The
element x0 is dangling if and only if all elements of ρ−1(x0) are dangling in G.

Proof. Observation I: For any S0 ⊂ E(G0), we have that ρ induces a genus preserving bijection
π0(G \ ρ−1(S0))→ π0(G0 \ S0). This follows from the fact that the fibres of ρ are connected, thus
a path in G0 \ S0 lifts to a path in G \ ρ−1(S0).

Observation II: Let T be a subgraph of G such that (T,w|T ) is a tree, and S be the subset
of E(G) \ E(T ) of edges with at least one end in V (T ). We claim that all the elements of T are
dangling if and only if all the edges in S are dangling. For one direction, note that if all vertices of
T are dangling then so are all the edges incident to them; this includes S as a subset. Conversely,
suppose there is a non-dangling x0 in G0. So there is another non-dangling element x′0 incident to
x0. Iterating, we get a sequence y0 = x0, y1 = x′0, and so on, until one element repeats, giving us
a cycle. Since T is a tree, the sequence cannot be contained in E(T ), so it has an edge of S. So
one edge of S is contained in a cycle, thus it is non-dangling, a contradiction.

Now, if x0 from the statement of the lemma is an edge, then the result follows from Observation
I applied to S = {x0}; if it is a vertex then apply first Observation II and then Observation I.

Thus, we come naturally to the following definition.

Definition 11.32. An elementary tropical modification ρ : (G,w) → (G0, w0) is a specialization
morphism that contracts only non-dangling edges.

We write ∼=trop for the equivalence relation on WGg generated by declaring (G,w) and (G̃, w̃)

equivalent if there is an elementary tropical modification ρ : (G,w) → (G̃, w̃). We denote by
nd(G,w) the weighted subgraph of (G,w) induced by the non-dangling elements.

Lemma 11.33. Let (G,w) be a connected weighted graph, and ρ : (G,w) → (G̃, w̃) an elemen-
tary tropical modification. We have that ρ maps nd(G,w) isomorphically to nd(G̃, w̃). Moreover,
nd(G,w) is connected.

Proof. Lemma 11.31 implies that ρ(nd(G,w)) is a subgraph of nd(G̃, w̃). On the other hand, if
Ã is a vertex of nd(G̃, w̃), by Lemma 11.31 all the edges of ρ−1(Ã) are non-dangling, but ρ is an
elementary tropical modification, it cannot contract non-dangling edges, so ρ−1(Ã) is a single vertex
that is in nd(G,w). Since ρ−1(ẽ) is a single edge that is in nd(G,w), for all ẽ in E(nd(G̃, w̃)), we
get the first claim. The second claim follows from considering the elementary tropical modification
ρ̃ that contracts all dangling edges. Since (G,w) is connected, the image of ρ̃, which is isomorphic
to nd(G,w), is connected as well.

Hence, nd(G,w) is a canonical representative for the class [(G,w)]∼=trop . It is straightforward
to see that min-wtval(nd(G,w)) ≥ 2 and that nd(G,w) is the unique graph in [(G,w)]∼=trop with
this property. Next, we extend the previous definitions to metric graphs and use the previous
observation to give a canonical representative for [Γ]∼=trop .

Definition 11.34. Let (|Γ|, w) be a weighted metric graph. A point x in |Γ| is dangling if for
some model G→ PolyfZ we have that polyG x is dangling

Observe that whether a point x in (|Γ|, w) is dangling or non-dangling is independent of the
chosen model. Let (|Γ̃|, w̃) be the weighted metric graph obtained from (|Γ|, w) by deleting all
dangling points. By our previous observation, min-wtval(Γ̃, w̃) ≥ 2. Moreover, by Remark 11.11
the essential model (H,wH , ℓH) of (Γ̃, w) given in Lemma 11.10 satisfies

wtvalA = valA+ 2w(A) ≥ 3 for all A ∈ V (H). (11.6)

By Lemmas 11.10 and 11.31 we have the following.
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Lemma 11.35. Let (|Γ|, w) be a weighted metric graph of genus at least 2, and (|Γ′|, w′) a tropical
modification that has a model G′ → PolyfZ with min-wtval(G′) at least three. The metric graph
(|Γ′|, w′) is isometric to the deletion of all dangling points (|Γ̃|, w) and G′ is isomorphic to the
essential model H.

So (Γ̃, w̃) and (H,wH) are canonical representatives of the equivalence classes under tropical
modification of (Γ, w) and (G,w). We call a weighted graph that satisfies Equation (11.6) a
combinatorial type. If the weight map is identically zero and all valencies are equal to 3, we have a
trivalent combinatorial type. We say that the weighted graph (H,wH) is the combinatorial type of
both (Γ, w) and of (G,w). Being a combinatorial type is preserved by specialization morphisms.

Lemma 11.36. Let ρ : (G,w)→ (G0, w0) be a specialization morphism. For any A0 in V (G0) we
have that

wtvalA0 = 2 +
∑

A∈ρ−1(A0)

(wtvalA− 2).

Proof. Let B0 ∈ V (G0), and consider an incidence i0 : e0 → B0. Since ρ is a graph morphism and
a contraction, there is a unique [i : ρ−1(e0) → B] ∈ Hom(ρ−1(e0),−) such that ρ(i) = i0. Note
that ρ(B) = B0 and ρ(E(B)) ⊂ E(B0) ∪ {B0}. Thus,

valG0
B0 =

∑
B∈ρ−1(B0)

valGB − valρ−1(B0)B. (11.7)

So let H = ρ−1(A0) and calculate

wtvalA0 = valA0 + 2w(A0)

=
∑

A∈V (H)

(valGA− valH A) + 2g(H,wH)

=
∑

A∈V (H)

valGA+ 2w(A)− 2#(E(H)))

+ 2(#(E(H))−#(V (H)) + 1)

= 2 +
∑

A∈V (H))

(wtvalA− 2).

Lemma 11.37. Let ρ : (H,w) → (H0, w0) be a specialization morphism. If (H,w) is a combi-
natirial type, then so is (H0, w0).

Proof. For any vertex A0 of G0 we have that

wtvalA0 =
∑

A∈ρ−1(A0)

wtvalA− 2(#(V (ρ−1(A0)))− 1)

≥ 3#(V (ρ−1(A0)))− 2(#(V (ρ−1(A0)))− 1) = #(V (ρ−1(A0))) + 2 ≥ 3.

11.5 A polyhedral space Mtrop
g parametrizing weighted met-

ric graphs

We finish the description of the functor C− : WGg
op → ConefZ, and define a polyhedral space

parametrizing weighted metric graphs by restricting C− to a subcategoryMtrop
g of trivalent graphs.

We argue that Mtrop
g → ConefZ is a polyhedral space.

Definition 11.38. Given a specialization morphism ρ : (G,w)→ (G0, w0), the pullback map ρ∗ :
spanR C(G0,w0) → spanR C(G,w) sends y0 7→ y0 ◦ ρ; and the push-forward map ρ∗ : spanR C(G,w) →
spanR C(G0,w0) sends y 7→ y ◦ ρ−1.
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Definition 11.39. Given a weighted graph (G,w) we define N (G,w) ⊂ spanR C(G,w) to be the set
of functions with integral values. It is a lattice, and N (G,w) ∩C(G,w) corresponds to metric graphs
with integral lengths.

First, we show that ρ∗ is a face morphism, which implies that the assignment

(G,w) ∈ Obj(WGg)→ (N (G,w), C(G,w)) (11.8)

ρ ∈ Hom((G,w), (G0, w0))→ [ρ∗ : (N (G0,w0), C(G0,w0))→ (N (G,w), C(G,w))]

is a contravariant functor C : WGg
op → ConefZ.

Lemma 11.40. For ρ ∈ Hom((G,w), (G0, w0)) the pullback ρ∗ is a face morphism.

Proof. We have that ρ∗◦ρ∗ is the identity on spanR C(G0,w0). Also, ρ∗◦ρ∗ is the canonical projection
that sencs a vector in spanR C(G,w) to the codimension-k linear space ρ∗(spanR C(G0,w0)) of those
maps y that are zero on contr(ρ), where k = #(contr(ρ)). In particular, ρ∗ ◦ ρ∗ is the identity
on ρ∗(spanR C(G0,w0)). Thus, ρ∗ restricts to a face morphism ρ∗|C(G0,w0)

: C(G0,w0) → C(G,w).

By Lemma 11.37 the subsetMtrop
g of combinatorial types in WGg is a subcategory. The results

of Subsection 11.4 suggest that the following space parametrizes equivalence classes of weighted
metric graphs under tropical modification:

Definition 11.41. Let Mtrop
g be the subcategory of WGg of combinatorial types. The tropical

moduli space of genus-g connected weighted metric graphs is the restriction of the functor C to
(Mtrop

g )
op → ConefZ.

Lemma 11.42. The tropical moduli space of genus-g connected weighted metric graphs C :
Mtrop

g → PolyfZ is a polyhedral space of cones.

Proof. We check the three conditions from Definition 9.4. Let (H,w) be in Mtrop
g , and τ be a

face of C(H,w). Condition (a) is true because all the faces of C(H,w) arise by prescribing a subset
S ⊂ E(H) to have zero lengths, thus ρS : (H,w)→ (H/S,wS) provides the desired face inclusion.
Condition (b) follows from Lemma 11.24 and Remark 11.28. Condition (c) is true because WGg

is already a skeleton category.

Remark 11.43 (dimension of Mtrop
g ). Recall that dimC(H,w) = #(E(H)). The maximum value

of #(E(H)) under the constrain that min-wtval(H) ≥ 3 is 3g−3, and is attained at trivalent com-
binatorial types. It is straightforward to prove that for every (H0, w0) there exists a specialization
morphism ρ : (H,w) → (H0, w0) with #(E(H)) = 3g − 3. Thus, Mtrop

g is pure-dimensional of
dimension 3g − 3. △

Remark 11.44. The rays of Mtrop
g correspond to genus-g connected weighted graphs H with

#(E)(H) = 1. There are ⌈g/2⌉ such graphs that are loopless, and 1 with a loop. Thus, Mtrop
g

has ⌈g/2⌉+ 1 rays. The number of trivalent graphs grows exponentially with respect to g [Bol82].
See OEIS A002851 for the first few terms. This gives a feeling of how far Mtrop

g is from being a
poset, as the number of maximal cones of a cone complex with pure dimension is polynomial on
the number of rays. △

11.6 Specialization with a given target
Now we say a few words about the inverse problem of fixing a combinatorial type H0 and con-
structing specializations with target H0. As an application, we get that the posetMtrop

g is strongly
connected, per Definition 10.66. For this we need some notions on marked graphs.

Definition 11.45 (marked weighted graphs). Let (G,w) be a weighted graph.

• An n-marking is a map m : [n]→ V (G).
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• An n-marked weighted graph is stable if for all A ∈ V (G) we have that

wtvalA+#(ρ−1(A)) ≥ 3.

• A specialization of n-marked weighted graphs (G1, w1,m1) and (G2, w2,m2) is a specializa-
tion ρ : (G1, w1)→ (G2, w2) of weighted graphs such that m1

−1(A) ⊂ m2
−1(ρ(A)).

• We denote byMtrop
g,n the skeleton of the category whose objects are n-marked weighted graphs

and whose morphisms are specializations.

In the literature, marked weighted graphs are intuitively regarded as weighted graphs with legs.
Having said that, now we have:

Lemma 11.46. Let (H0, w0) be a combinatorial type, and A1, . . . , Aq an enumeration of the set
{A ∈ E(H0) : wtvalA > 3}. The isomorphism classes of specializations ρ : H → H0 are in bijec-
tion with the product

H =

q∏
i=1

Mtrop
w0(Ai),val(Ai)

.

Proof. Fix a labelling λi : {1, . . . , valAi} → Hom(−, Ai), for each i. We construct a graph Hh

from a given element h = ((H1, w1,m1), . . . , (Hk, wk,mk)) ∈ H, by taking the category associ-
ated to H0 and for each i ∈ [q] we replace Ai with Hi, and for each k in {1, . . . , valAi} we let
ei,k = domain(λi

−1(k)) and Bi,k = mi
−1(k), and insert a morphism ei,k → Bi,k. It is clear

how to construct the specialization ρh : Hh → H0. Going the other direction, given a spe-
cialization ρ : H → H0, we get an element h of H by considering ((ρ−1(A1), codomain(ρ−1 ◦
λ1)), . . . , (ρ

−1(Aq), codomain(ρ−1 ◦ λq)) ∈ H. We leave to the reader the verification that these
two operations are inverses to each other, proving that we have a bijection.

11.7 Connectivity of Mtrop
g

We prove that Mtrop
g is strongly connected, setting up the stage for using Proposition 10.73 on

a nice enough map with target Mtrop
g , e.g. the map Π : Gtrop

g→0,d → Mtrop
g . We first check that

(Mtrop
g ,⪯), with the relation ⪯ from Remark 9.21 is a poset, and that boils down to proving:

Lemma 11.47. Let H and H0 be two graphs in Mtrop
g . If there are specializations ρ1 : H → H0

and ρ2 : H0 → H, then H and H0 are isomorphic.

Proof. Let ρ : H → H be the specialization ρ = ρ2 ◦ ρ1. On the one hand, #(contr(ρ)) =
#(E(H)) − #(E(H)) = 0 by Equation (11.4) on Page 114. On the other hand, #(contr(ρ)) =
#(contr(ρ)1) + #(contr(ρ)2) by Lemma 11.24. Thus, #(contr(ρ)1) = #(contr(ρ)2) = 0, which by
Remark 11.16 implies that ρ1 and ρ2 are isomorphisms.

In [Cap12, Proposition 3.3.3] it is proven that a so-called space of pointed tropical curves is
connected in codimension-1. It is a fun exercise to get, out of this fact, thatMtrop

g,n is connected in
codimension-1. Anyway, this leads us to:

Lemma 11.48. The poset (Mtrop
g ,⪯) is codimension-1 connected.

Proof. By Lemma 10.57 we need to prove that if H, H ′ have 3g−3 edges, then there is a sequence
H0, H̃1, H1, H̃2, . . . ,Hr with H̃i arising from both Hi−1 and Hi by contracting one edge, and
H0 = H, Hr = H ′. For a topological proof see [HT80]. For one in the context of tropical geometry
see [Cap12].

Proposition 11.49. The poset (Mtrop
g ,⪯) is strongly connected.

Proof. A high level proof: Let H0 ∈ Mtrop
g . We have to prove that (↑H0) \ {H0} is connected.

The idea is to use Lemma 11.46. So we would see that ↑H0, as a poset, is isomorphic to a product
of Mtrop

gi,ni
. Each of the terms of this product is connected through codimension-1, and then some

general result on products of posets that are connected in codimension-1 giving a strongly connected
poset should suffice.
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11.8 The points of |Mtrop
g |

We now show that points in |Mtrop
g | are in bijection with isomorphism classes of genus-g weighted

metric graphs without points that have weighted valency equal to 1, i.e. equivalence classes under
tropical modification of genus-g weighted metric graphs. This is a baby example of the steps for
showing a similar result for Gtrop

g→0,d.
Let Ψ : (Γ(1), w(1)) → (Γ(2), w(2)) be an isometry. It preserves the valency and weight of a

point. Thus, by Lemma 11.10, if S is a vertex set of (Γ(1), w(1)), then Ψ(S) is a vertex set of
(Γ(2), w(2)). So let Γ(1) = (G(1), w(1), ℓ(1)) be induced by S, and Γ(2) = (G(2), w(2), ℓ(2)) by Ψ(S).
The connected components of Γ(1) \ S are mapped one-to-one and isometrically to the connected
components of Γ(2) \Ψ(S). So there is an induced map γΨ : G(1) → G(2) which is an isomorphism;
moreover, w(1) = w(2) ◦ γΨ and ℓ(1) = ℓ(2) ◦ γΨ. It is straightforward to verify that these necessary
conditions are also enough to specify an isometry.

Lemma 11.50. Let (Γ(1), w(1)), (Γ(2), w(2)) be weighted metric graphs, S a vertex set of (Γ(1), w(1)),
and Ψ : Γ(1) → Γ(2) be a continuous map. The map Ψ is an isomorphism if and only if Ψ(S) is a
vertex set of Γ(2), the induced map γΨ is an isomorphism, and w(1) = w(2) ◦ γΨ, ℓ(1) = ℓ(2) ◦ γΨ.

Thus, isomorphisms (Γ(1), w(1)) → (Γ(2), w(2)) are in one-to-one correspondence with isomor-
phisms (G(1), w(1)) → (G(2), w(2)), hence with isomorphisms of the cone C(G(1),w(1)) to the cone
C(G(2),w(2)). So by construction ofMtrop

g , each point corresponds to one of the desired isomorphism
classes.



Chapter 12

Parametrizing tropical morphisms

In this section we study tropical morphisms, how to parametrize them, and a special class of
tropical morphisms that maximize the dimension of the space parametrizing them and minimize
their degree as an indexed branched cover of topological spaces. Subsection 12.1 studies the
combinatorial structure of tropical morphisms. We include results from Part I, slightly generalized
to accomodate weights at vertices.

12.1 The combinatorial structure behind a tropical morphism
We begin by looking at the underlying combinatorial structure behind tropical morphisms: a
category of graph morphisms that we call discrete tropical morphisms, or DT-morphisms for short.

Definition 12.1. Let φ : (G,wG) → (T,wT ) be a morphism of weighted graphs, and mφ : G →
Z≥1 an index map. The weighted RH-number rφ(A) of A ∈ V (G) equals

= 2(mφ(A) + wG(A)− 1)−

[
2mφ(A) · wT (φ(A)) +

∑
A⋖e

(mφ(e)− 1)

]
. (12.1)

Note that Equation (12.1) reduces to Equation (RH) in the case of zero weights. In Lemma 3.5
of Part I the following formula is proven when both wG and wT are identically zero, and the proof
extends in a straightforward manner to consider non-trivial weights.

rφ(A) = (wtvalGA− 2)−mφ(A)(wtvalT φ(A)− 2). (12.2)

The right hand side of Equation (12.2) is the coefficient of A in the tropical ramification divisor

Rφ = K(G,wG) − φ∗(K(T,wT )), (12.3)

where K(G,wG) and K(T,wT ) are the canonical divisors of (G,wG) and (T,wT ), as defined in [AC13],
and φ∗ : Div(T,wT )→ Div(G,wG) is the pullback under φ. Namely,

K(G,wG) =
∑

A∈V (G)

(wtvalA− 2)A,

φ∗(D) =
∑

A∈V (G)

(mφ(A) ·D(φ(A)))A.

We have degK(G,w) = 2g(G,w) − 2, and degφ∗(D) = degφ · degD because φ is an indexed
branched cover. So taking degrees on both sides of Equation (12.3) yields:

Lemma 12.2 (tropical Riemann-Hurwitz). Let φ : (G,wG) → (T,wT ) be an indexed branched
cover of weighted graphs with index map mφ. We have that

2g(G,wG)− 2 = degφ · (2g(T,wT )− 2) +
∑

A∈V (G)

rφ(A).

122
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If rφ(A) ≥ 0 for all A ∈ V (G), then Lemma 12.2 implies that g(G,wG) ≥ g(T,wT ). This
fact parallels the algebro-geometric setting. Other consequences of Lemma 12.2 are Lemma 12.26,
about the behaviour of rφ under edge contractions, and Proposition 12.15, about the dimension
of the family of tropical morphisms with underlying combinatorial structure φ. The condition
rφ(A) ≥ 0 for all A ∈ V (G) is central in our work.

Definition 12.3. A DT-morphism is an indexed branched cover φ of loopless connected weighted
graphs such that contr(φ) = ∅ and the weighted RH-number is non-negative for all vertices A ∈
V (G).

Remark 12.4. By the observations of Remark 11.3, a DT-morphism is an indexed branched cover
(φ,mφ) of connected weighted graphs, such that φ is a combinatorial morphism of posets and has
non-negative weighted RH-number for all A ∈ V (G). △

Lemma 12.5. If the pair (φ,mφ) is a DT-morphism, then the map φ is a graph morphism.

Proof. By Remark 11.3, since φ is order preserving, φ is a graph morphism if and only if φ(V (G)) ⊂
V (T ). Note that G is connected and φ is combinatorial, so E(G) = ∅ if and only if E(T ) = ∅.
If E(T ) = ∅, we are done. Otherwise, since T is connected we have that maxT op = E(T ). By
Example 10.5 we get φ−1(maxT op) ⊂ maxGop. Since E(T ) ̸= ∅ implies that E(G) ̸= ∅, and
G is connected, we have maxGop = E(G). Thus, φ−1(E(T )) ⊂ E(G), which gives φ(V (G)) ⊂
V (T ).

12.2 Tropical morphisms
For a fixed DT-morphism (φ,mφ) we describe a construction that takes metric data on the target
of φ and gives rise to a tropical morphism. The space of all possible metric data is the family of
tropical morphisms associated φ.

Definition 12.6. A tropical morphism with polyhedral structure is a pair (Φ,mφ) of a morphism
Φ = (φ, {Φx}x∈G) of weighted metric graphs with polyhedral structure Γ : Gop → PolyfZ and
∆ : T op → PolyfZ, and an index map mφ : G → Z≥1, such that (φ,mφ) is a DT-morphism and
for all e ∈ E(G) we have that

mφ(e) = [Φe(Ne) : Nφ(e)] = length(∆φ(e))/ length(Γe) for all e ∈ E(G). (12.4)

Remark 12.7. By Remark 12.4 we can apply Theorem 10.46 to get that (Φ,mφ ◦ polyG) is an
indexed branched cover. △

Remark 12.8. A tropical morphism is a pair isometric to some (|Φ|,mφ ◦ polyG), with (Φ,mφ) a
tropical morphism with polyhedral structure. △

Remark 12.9. The first equality in Equation (12.4) indicates a multiplicity given by a determi-
nant, as in Equation (8.10) on Page 71. The second equality gives that the map Φe is linear with
slope mφ(e) for every e in E(G). Hence, the topological realization |Φ| satisfies the usual definition
of tropical morphism; e.g. the one in Part I. That is, a tropical morphism is a piecewise-linear
continuous map between weighted metric graphs, with integral positive slopes that satisfy the bal-
ancing condition and the Riemann-Hurwitz inequality. For the other direction, Construction 12.11
shows how to give a polyhedral structure to a topological realization |Φ|. △

Let φ : (G,wG) → (T,wT ) be a DT-morphism with index map mφ. Equation (12.4) suggests
that choosing a length function and an integral-length function for (T,wT ) uniquely determines
length and integral-length functions for (G,wG) such that the resulting morphism of polyhedral
complexes is a tropical morphism. Indeed, it is straightforward to verify that the following con-
struction gives a tropical morphism with polyhedral structure.
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Construction 12.10. Given a triple (φ,mφ, z) of a DT-morphism φ : (G,wG) → (T,wT ) with
index map mφ and a length function z ∈ C(T,wT ), we consider the weighted metric graphs with
polyhedral structure Γ = (G,wG, z ◦ φ/mφ, (degφ · 1)/mφ) and ∆ = (T,wT , z, degφ · 1) by
Construction 11.8. To (φ,mφ, z) we associate the morphism of polyhedral complexes given by
the pair (φ, {Φx}x∈G) and with index map mφ, where Φe is a linear map with slope mφ(e) for
e ∈ E(G), and ΦA is the unique map from NA

R to Nφ(A)
R .

We write |(φ,mφ, z)| for the topological realization of (φ,mφ, z).
Next, following a line of thought similar to Lemma 11.10, given a tropical morphism Φ :

(Γ, wG)→ (∆, wT ) we characterize the choices of vertex sets G and T for |Γ| and |∆|, respectively,
that give rise to a polyhedral structure for |Φ|. We show that any polyhedral structure for |Φ| is
determined by a choice of a vertex set of |∆| satisfying certain properties.

Construction 12.11. Fix a tropical morphism |Φ| : (|Γ|, wG) → (|∆|, wT ). Let E(|∆|,wT ) and
E(|Γ|,wG) be the essential vertices of (|∆|, wT ) and (|Γ|, wG), respectively. Choose a subset T ⊂ |∆|
that contains E(|∆|,wT ) ∪ |Φ|(E(|Γ|,wG)). We construct the following:

• The set G = |Φ|−1
(T ) ⊂ |Γ|.

• The graphs TT and GG induced by T and G, respectively, via Construction 11.8.

• The function zT recording the lengths of E(TT ) = {cl(U) : U ∈ π0(|∆| \ T )}.

• The map φT : GG → TT that sends A ∈ V (GG) = G to Φ(A) ∈ V (TT ) = T , and e ∈ E(GG)
to Φ(e) ∈ E(TT ).

• The index map mφT (e) = length(φT (e))/ length(e) for edges, and for vertices the value is
given by the balancing condition.

Remark 12.12. If in Construction 12.11 we take T = E(|∆|,wT ) ∪Φ(E(|Γ|,wG)) then we denote the
triple (φT ,mφT , zT ) by (φess,mφess , zess) and we call it the essential model . △

Lemma 12.13. For any choice of T in Construction 12.11, the pair (φT ,mφT ) is a DT-morphism,
|Φ| is isometric to |(φT ,mφT , zT )|, and the essential model is minimal in the sense that φT arises
from an edge subdivision of φess.

Proof. Note that T contains E(|∆|,wT ) and G contains E(|Γ|,wG), thus by Lemma 11.10 they are vertex
sets. One can prove that the property E(|∆|,wT ) ∪ |Φ|(E(|Γ|,wG)) ⊂ T and that taking G = |Φ|−1

(T )
are necessary and sufficient conditions for getting that Φ(V (GG)) = Φ(G) = T = Φ(V (TT )) and
that each connected component of |Γ|\G maps linearly and bijectively to a connected component of
|∆|\T . In turn, this is necessary and sufficient to get that φT is well defined and is a DT-morphism
with index map mφT . It is straightforward to see that |Φ| is isomorphic to |(φT ,mφT , zT )|.

The essential model is minimal, and every other model arises as an edge subdivision of φess,
because we always have E(|∆|,wT ) ∪ Φ(E(|Γ|,wG)) ⊂ T .

12.3 Dimension of families of tropical morphisms
Given a DT-morphism φ : (G,wG)→ (T,wT ) with index map mφ, we denote by Ctm

φ the family of
tropical morphisms isomorphic to some |(φ,mφ, z)|, and by Csrc

φ the family of equivalence classes
under tropical modification of weighted metric graphs that appear as source of some map in Ctm

φ .
In other words, Csrc

φ = Π(Ctm
φ ), where Π is the map introduced in Subsection 8.3.3. We identify

Ctm
φ with C(T,wT ), so it has a polyhedral structure, and endow Csrc

φ with a polyhedral structure as
well. Also, we discuss how to regard Csrc

φ as a locus in Mtrop
g , where g = g(G,wG), and give an

upper bound for the dimension of Csrc
φ .

First, observe that Csrc
φ can be regarded as a subset of CG. In general this inclusion is proper;

e.g. see the families in Section 3 of Part I. To relate Csrc
φ with Mtrop

g , the following construction
gives the combinatorial type of G, as defined in Subsection 11.4.
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Construction 12.14. Let (H(G), wH(G)) be a weighted graph whose vertex set is the subset of
those A in nd-V (G) satisfying Equation (11.6), i.e. nd-valA+ 2w(A) ≥ 3; the edge set is given by
the paths of G with ends in V (H(G)) and interior vertices in V (G) \ V (H(G)); and the weight
function wH(G) is induced by wG.

Given a length function z ∈ CT , we consider the following length function for H(φ):

y(h) =
∑
e∈h

z(φ(e))/mφ(e). (12.5)

The map CT → CH(φ) sending z 7→ y extends to a linear map Aφ : spanR CT → spanR CH(φ)

called the edge-length map. The weighted metric graph |(H(φ), wH(φ), Aφ(z))| is isomorphic to the
deletion of dangling trees |(H,wH , ℓ)| of the source Γ of (φ,mφ, z). Since min-wtval(H(φ)) ≥ 3,
by Lemma 11.35 the combinatorial type H of G is isomorphic to H(φ). The punchline is that Csrc

φ

is parametrized by the rational polyhedral cone Aφ(C(T,wT )).
Now we bound the dimension of Csrc

φ by using the fact that dimCsrc
φ ≤ #(E(T )). The following

is a consequence of the Riemann-Hurwitz formula.

Proposition 12.15 (dimension formula). Let φ : (G,wG)→ (T,wT ) be a degree-d DT-morphism
with index map mφ. Set g = g(G,wG) and h = g(T,wT ). We have that

#(E(T )) +
∑

v∈V (T )

(φ∗Rφ(v) + val v + 3w(v)− 3) = 2g − h · (2d− 3) + 2d− 5, (12.6)

where φ∗Rφ(v) =
∑
A∈φ−1(v) rφ(A) is the push-forward of the ramification divisor Rφ.

Proof. The degree of a divisor is preserved under push-forward, so degφ∗Rφ equals degRφ. The
latter is given by the tropical Riemann-Hurwitz. Thus,

#(E(T )) +
∑

v∈V (T )

(val v + 3w(v)− 3) + degφ∗Rφ =

3#(E(T ))− 3#(V (T )) +
∑

v∈V (T )

3w(v) + degRφ =

3g(T,wT )− 3 + 2g(G,wG)− 2− degφ · (2g(T,wT )− 2) =

2g(G,wG)− g(T,wT )(2 degφ− 3) + 2 degφ− 5.

From now on, we focus on DT-morphisms whose target is a tree, which we denote by φ :
(G,w)→ T . To shorten, and for backwards compatibility with Part I, we write ch v for φ∗Rφ(v).
The intuition is that ch v detects change above v; e.g. if v is divalent, ch v says whether above v
there are vertices A with nd-valA ≥ 3, or a vertex where the slope of |Φ| changes. Therefore,
Equation (12.6) reduces to:

#(E(T )) +
∑

v∈V (T )

(ch(v) + val v − 3) = 2g + 2d− 5. (12.7)

In Subsection 12.5 we introduce an equivalence∼=trop by tropical modifications for DT-morphisms,
argue that the cone Csrc

φ is invariant under ∼=trop, and give a canonical representative of [φ]∼=trop

such that ch v + val v − 3 ≥ 0. This implies the following important bound:

dimCsrc
φ ≤ #(E(T )) ≤ 2g + 2d− 5. (12.8)

12.4 Specialization of tropical morphisms
Now we introduce morphisms that give us a category whose objects are DT-morphisms.

Definition 12.16. Let (φ : (G,w) → T,mφ) and (φ0 : (G0, w0) → T0,m0) be DT-morphisms.
A specialization of DT-morphisms is a pair ρ = (ρG, ρT ) of specialization morphisms that give a
morphism of indexed branched covers.
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Lemma 12.17. If (ρG, ρT ) : φ → φ0 is a specialization of DT-morphisms, then contr(ρG) =
φ−1(contr(ρT )).

Proof. By Remark 11.23, we have

contr(φ) ⊔ φ−1(contr(ρT )) = contr(ρG) ⊔ ρ−1
G (contr(φ0)).

We are done, since by definition of DT-morphism contr(φ) and contr(φ0) are empty.

Lemma 12.18. Let (φ : G → T,mφ) and (φ0 : G0 → T0,m0) be DT-morphisms, and (ρG, ρT ) a
pair of specialization morphisms such that Diagram 12.19 (a) commutes. The pair (ρG, ρT ) is a
specialization of DT-morphisms if and only if Diagram 12.19 (b) commutes.

G G0

T T0

ρG

φ φ0

ρT

(a)

E(G0)

Z≥0

E(G)

ρ−1
G

m0

mφ

(b)
Diagram 12.19

Remark 12.20. By Remark 11.16, if both ρG and ρT contract zero edges, then Definition 12.16
reduces to φ being isomorphic to φ0. By Lemma 12.17 we have that contr(ρG) = φ−1(contr(ρT )),
so if contr(ρT ) = ∅ then contr(ρG) = ∅. Also, since φ is surjective, φ−1(contr(ρT )) is empty only
if ρT is empty, hence it is enough that either ρG or ρT contracts zero edges to conclude that we
have an isomorphism. △

Lemma 12.21. A composition of specializations of DT-morphisms is a specialization of DT-
morphisms as well.

Proof. This follows from two facts. First, by Lemma 11.18 a composition of specialization mor-
phisms is a specialization morphism. Second, Diagram 12.19 (a) and (b) behave well under com-
position.

Definition 12.22. The category DTMd
g→0→0 has as objects degree-d DT-morphisms from genus-g

connected weighted graphs to trees, and as morphisms the specializations of DT-morphisms.

Now, given φ : (G,w)→ T in DTMd
g→0→0 we choose a subset of edges of T to contract.

Construction 12.23. Given a DT-morphism φ : (G,w) → T with index map mφ and a subset
S of E(T ), the contraction φ/S : (G/φ−1(S), wφ−1(S))→ T/S is the unique graph morphism such
that Diagram 11.22 commutes. Such morphism exists by Lemma 11.21. To φ/S we associate the
index map m0 = mφ ◦ ρ−1

G . Thus, m0 satisfies Diagram 12.19 (b). So by Lemma 12.18 the pair
(φ/S,m0) is an indexed branched cover.

(G,w) T

(G/φ−1(S), wφ−1(S)) T/S.

ρφ−1(S)

φ

ρS

φ/S

Diagram 12.24

Remark 12.25. In Part I the indexed branched cover φ/S was called limit of φ at S, based on
the geometrical picture of the deformation result proved there. △

It remains to show that the RH-inequality is satisfied to conclude that (φ/S,m0) is a DT-
morphism. This is implied by the following result.
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Lemma 12.26. Let (ρG, ρT ) : [φ : (G,w) → T ] → [φ0 : (G0, w0) → T0] be a specialization of
DT-morphisms. For every A0 in V (G0) we have that

rφ0
(A0) =

∑
A∈V (ρ−1

G (A0))

rφ(A).

Proof. Let A1, A2, . . . , Aq be the vertices of ρ−1
G (A0), and set w0 = φ0(A0). Restrict φ to ρ−1

S̃
(A0)

to get an indexed branched cover ψ : ρ−1

S̃
(A0)→ ρ−1

S (w0). By (the proof of the previous lemma?)
degψ = m0(A0). By Lemma 12.2 we have

r∑
q=1

rψ(Ai) = 2(degψ + g(ρ−1
G (A0))− 1− deg(ψ) · g(ρ−1

T (A0)))

= 2(m0(A0) + wG(A0)− 1−m0(A0) · wT (φ(A0))).

We calculate:
r∑
i=1

rφ(Ai) =

r∑
i=1

2(mφ(Ai) + wG(Ai)− 1−mφ(Ai) · wT (φ(Ai)))

−
r∑
i=1

∑
Ai⋖e

e∈ρ−1
G (A0)

(mφ(e)− 1)−
r∑
i=1

∑
Ai⋖e

e ̸∈ρ−1
G (A0)

(mφ(e)− 1)

=

r∑
q=1

rψ(Ai)−
r∑
i=1

∑
Ai⋖e

e ̸∈ρ−1
G (A0)

(mφ(e)− 1)

= 2(m0(A0) + wG(A0)− 1−m0(A0) · wT (φ(A0)))

−
∑
A0⋖e0

(mφ(e0)− 1)

= r0(A).

Once again, as in Subsection 11.3, Construction 12.23 gives all the morphisms in DTMd
g→0→0.

This follows from an analogue to Lemma 11.24.

Lemma 12.27. Let (ρG, ρT ) : φ → φ0 be a specialization of DT-morphisms. Choose any S ⊂
contr(ρT ), and set Q = φ−1(ST ). There exists specializations ρ̃G, ρ̃T such that Diagram 12.28
(a) and (b) commute.

G G0

G/Q

T/S

T T0

ρG

ρQ

φ φ0φ/S

ρ̃G

ρ̃T

ρT

ρS

(a)

E(G0)

E(G/Q) Z≥1

E(G)

ρ−1
G

m0

ρ−1
Q

ρ̃−1
G

mφ/S

mφ

(b)
Diagram 12.28

Proof. That ρ̃G and ρ̃T exist and are unique follows from Lemma 11.24. The map φ/S is given by
Construction 12.23. Thus, we know that the outer square, the top and bottom triangle, and the left
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trapezoid in Diagram 12.28 (a) commute. A standard diagram chase gives that ρ̃T ◦ φ/S ◦ ρQ =
φ0 ◦ ρ̃G ◦ ρQ. Since ρQ is surjective, we get that ρ̃T ◦ φ/S = φ0 ◦ ρ̃G, so Diagram 12.28 (a)
commutes. Similarly in Diagram 12.28 (b), we know by construction that the outer, the top, and
the left triangles commute. This gives, via a diagram chase, that mφ/S ◦ ρ−1

Q = mφ ◦ ρ̃−1
G ◦ ρ

−1
Q ,

hence mφ/S = mφ ◦ ρ̃−1
G and the diagram commutes.

If we set S = contr(ρT ), then Lemma 12.27 implies that a specialization of DT-morphisms
ρ : φ→ φ0 is isomorphic to φ/ contr(ρT ).

Example 12.29 (Final object in DTMd
g→0→0). Consider d ∈ Z≥1 and the final objects Gf and

Tf of WGg and WG0, respectively; see Example 11.27. The pair of maps (φf,mf) sending A 7→ v

and A 7→ d, respectively, is a degree-d DT-morphism that is the final object of DTMd
g→0→0. For

any φ : G→ T the pair (ρE(G), ρE(T )) is a morphism to φf. ⋆
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12.5 Tropical modification for tropical morphisms
Now we consider tropical modification of a DT-morphism φ : (G,w)→ T .

Definition 12.30. Let (φ,mφ) be a DT-morphism. A fibre φ−1(x) is dangling if all its elements
are dangling.

We delete the dangling fibres by considering the subset S ⊂ E(T ) of those e such that φ−1(e)
is dangling.

given by the e′ ∈ E(G′) such that φ−1(e′) is not a dangling fibre. Let Ĝ′ be the subgraph of G′

induced by Ê. Let Ĝ be the unique connected component of φ−1(Ĝ′) that has non-zero genus. The
deletion of dangling fibres φ̂ of φ is the restriction φ|Ĝ : Ĝ → Ĝ′. We identify φ with φ̂ess under
tropical modification. This means that tropical modification allows to attach or delete dangling
fibres to φ, and subdivide the model; or undo a subdivision. For Φ = (φ, ℓ) the deletion of dangling
fibres is Φ̂ = (φ̂, ℓ|Ĝ′). Now we give an analogue of Lemma 11.35 for tropical morphisms

We delete the dangling fibres by considering the subset S ⊂ E(T ) given by the e′ ∈ E(G′) such
that φ−1(e′) is not a dangling fibre. Let Ĝ′ be the subgraph of G′ induced by Ê. Let Ĝ be the
unique connected component of φ−1(Ĝ′) that has non-zero genus. The deletion of dangling fibres
φ̂ of φ is the restriction φ|Ĝ : Ĝ→ Ĝ′. We identify φ with φ̂ess under tropical modification. This
means that tropical modification allows to attach or delete dangling fibres to φ, and subdivide the
model; or undo a subdivision. For Φ = (φ, ℓ) the deletion of dangling fibres is Φ̂ = (φ̂, ℓ|Ĝ′). Now
we give an analogue of Lemma 11.35 for tropical morphisms.

Definition 12.31. Let Φ be a tropical morphism and Φ̂ its deletion of dangling fibres. The
combinatorial type of Φ is the model φ̂ess of Φ̂ constructed using Construction 12.10.

Definition 12.32. A combinatorial type of DT-morphisms is a DT-morphism φ : G→ G′ without
dangling fibres and such that

∑
A∈φ−1(v) rφ(A) ≥ 1 for every divalent v in V (G′).

Lemma 12.33 (Lemma 3.23 in Part I). Let Φ be a tropical morphism, and Φ̄ : Γ̄ → Γ̄′ be a
tropical modification of Φ, such that Φ̄ has a model φ̄ : Ḡ → Ḡ′ which is a combinatorial type of
DT-morphisms. The map Φ̄ is isomorphic to Φ̂ and φ̄ is isomorphic to φ̂ess.

Combinatorial types of DT-morphismsare canonical representatives in the equivalence class
under tropical modification: the discussion before Definition 12.31 tells us how to construct them,
and Lemma 12.33 ensures their uniqueness.
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12.6 The edge-length matrix
We associate a matrix to the edge-length map Aφ, and study how it changes under specialization
morphisms. These observations enable the calculations in Section 14.

Definition 12.34. Let (G,w) be a weighted graph. The standard basis for spanR C(G,w) is the
set {ye : e ∈ E(G)}, where ye : G → R≥0 is a map with ye(x) = 1 when x = e, and ye(x) = 0
otherwise.

Using the standard bases on spanR CT and spanR CH(φ) we write Aφ as a matrix whose rows
are indexed by E(H(φ)) and columns by E(T ). An entry aht of this matrix is a rational number
given by:

aht =
∑
e∈h

φ(e)=t

1/mφ(e), (12.9)

where the sum is zero if the index set is empty. So we have

y(h) =
∑

t∈E(T )

ahtz(t). (12.10)

For writing down the edge-length matrix we need an ordering on the rows and columns. We are
quite careful when choosing these orders, because we need to keep compatibility between distinct
DT-morphisms, as later on we take a determinant of the matrix.

Definition 12.35. Let φ : (G,w) → T be a DT-morphism, and H(φ) the combinatorial type
from Construction 12.14. A labelling λφ of φ is a pair of injective maps λφT : E(T ) → N and
λφH : H(φ)→ N.

Remark 12.36. In Definition 12.35 the key property we wish for the codomain of a labelling is
to have a total order, with this we induce a total order on the domains via pullback, i.e. e ≤ e′ if
λ(e) ≤ λ(e′). We have chosen N for simplicity of exposition. △

Definition 12.37. Let U be a set of DT-morphisms. We say that U is compatibly labelled by
(λφT : E(T )→ N, λφH : E(H(φ))→ N) : φ ∈ if the following two conditions are satisfied:

(a) Given a specialization morphism ρ : φ→ φ0 we have that λφ0 = λφ ◦ ρ.

(b) Given two specializations ρ1 : ρ1 → ρ0 and ρ2 : ρ2 → ρ0, such that H(φ1) has the same
number of edges as H(φ2), and T1 has the same number of edges as T2, we have that the
orders of ρ1 are isomorphic to those of ρ2.

Lemma 12.38. Let U be a graded poset of DT-morphisms. If U is strongly connected and φ is
maximal in U , then a choice of labelling for φ induces a family that compatibly labells U .

Lemma 12.39. Let U be a set of DT-morphisms that is compatibly labelled. If ρ : φ → φ0 is
a specialization, then A0 is obtained from Aφ by deleting the rows indexed by contr(ρH), and the
columns indexed by contr(ρT ).
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12.7 Full rank and change-minimal DT-morphisms
Recall that given a combinatorial type H, our goal is to find, and eventually enumerate, DT-
morphisms φ : (G,w) → T such that H(φ) is isomorphic to H, while simultaneously minimizing
degφ and maximizing dimCsrc

φ . Equation (12.8) says that dimCsrc
φ is bounded above by a linear

polynomial in degφ and g(φ). We study those φ that attain the bound.

Definition 12.40. Let φ : (G,w) → T be a map in DTMd
g→0→0, and set d = degφ and g =

g(G,w). We say that φ is top-dimensional if

dimCsrc
φ = #(E(T )) = 2g + 2d− 5. (12.11)

To study Equation (12.11) we split it into two conditions. The first equality is equivalent to
saying that φ has full rank, the second that φ is change-minimal, defined as follows:

Definition 12.41. Let φ : (G,w)→ T be a map in DTMd
g→0→0.

• We say that φ has full rank if the edge-length map Aφ has full-rank.

• A vertex v of T is change-minimal if ch v+val v = 3; and φ is change-minimal if all vertices
of T are change-minimal.

The study of the above defined properties is the focus of [DV20, Section 4]. We summarize
several of those results, since they are used again extensively in Section 14.

Remark 12.42 (full rank). When Aφ has full rank a point y ∈ Csrc
φ not only corresponds to the

metric graph ((H(φ), wH), y), but also to the tropical morphism (φ,A−1
φ (y)). Since the dimension

of the fibre A−1
φ (y) equals dimkerAφ, if we expect a finite count for the number of nice enough

tropical morphisms which realize a given [(Γ, w)]∼=trop , then we must work with full-rank DT-
morphisms. △

On the other hand, being change-minimal also is a natural condition, and implies several
properties for φ.

Lemma 12.43. Let (ρG, ρT ) : [φ : (G,w) → T ] → [φ0 : (G0, w0) → T0] be a specialization of
DT-morphisms. For w0 in V (T0) we have that

chw0 + valw0 − 3 = (#(V (ρ−1
T (w0)))− 1) +

∑
v∈V (ρ−1

T (w0))

(ch v + val v − 3) (12.12)

Proof. By Lemmas 11.36 and 12.26 we have that

chw0 + valw0 − 3 =
∑

v∈V (ρ−1
T (w0))

ch v +
∑

v∈V (ρ−1
T (w0))

val v − 2(#(V (ρ−1
T (w0)))− 1)− 3

=
∑

v∈V (ρ−1
T (w0))

(ch v + val v − 3) + (#(V (ρ−1
T (w0)))− 1).

By Equation (12.12) if t is in contr(ρT ), then ch ρT (t) + val ρT (t)− 3 ≥ 1. Therefore, change-
minimal DT-morphisms cannot be the target of non-trivial specialization morphisms, meaning they
are maximal elements in (DTMd

g→0→0)
op

. We also have:

Lemma 12.44. Let (ρG, ρT ) : [φ : (G,w) → T ] → [φ0 : (G0, w0) → T0] be a specialization of
DT-morphisms. If φ is top-dimensional and T is a tree, then we have that∑

w0∈V (T0)

(chw0 + valw0 − 3) = #(contr(ρT )). (12.13)

Proof. Consider Equation (12.12). Since φ is top-dimensional, we have that (ch v + val v − 3)
equals 0. Since T is a tree, #(V (ρ−1

T (w0))) − 1 = #(E(ρ−1
T (w0))). The result follows now from

summing over all w0 ∈ V (T0).
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Lemma 12.45. Let φ : (G,w)→ T be in DTMd
g→0→0. If φ is change-minimal, then

max-val(T ) ≤ 3.

Example 12.46. One might wonder whether max-val(H)(φ) ≤ 3 for a change-minimal φ. For
g′ ≥ 2, a top-dimensional φ in Gtrop

2g′→0,g′+1 satisfies that

dimCsrc
φ = 2g + 2d− 5 = 3g − 3. (12.14)

Equation (12.14) implies that the combinatorial type H(φ) is indeed trivalent. This conclusion is
not necessarily true when 2g + 2d − 5 ̸= 3g − 3. Figure 12.1 shows a DT-morphism that has full
rank, is change-minimal, hence is a top-dimensional cone of Gtrop

3→0,2, but its combinatorial type is
not trivalent. Thus, φ being maximal in (DTMd

g→0→0)
op

does not necessarily imply that H(φ) is
maximal in (Mtrop

g )
op. ⋆

Figure 12.1: A top-dimensional DT-morphism in Gtrop
3→0,2 with non-trivalent combinatorial type.

Remark 12.47 (deformation procedure). The introduction of [DV20, Section 6] regards the main
example of Part I as a movie that starts with a metric graph Γ̃ and a tropical morphism Φ =
((φ,mφ), A

−1
φ (y)) whose source is in [Γ̃]∼=trop . The movie features how Φ is deformed when one

edge length of y is increased and how the combinatorial structure captured by φ : G→ T changes
nine times. The changes are local, they happen at a small subgraph U of T and at the fibres of φ
above U . A new DT-morphism φ′ is produced via this process and the main technical difficulty
is to check that φ′ has full rank. This is resolved with an argument that relies on a balancing
condition and a lengthy case analysis. The case analysis itself would be too big if we didn’t have
conditions that can be checked locally, such as being change minimal, that help to construct the
candidates for having full rank. △

The combination of being change-minimal and having full rank implies the following combina-
torial conditions, which can be checked locally.

Definition 12.48. Let φ : (G,w)→ T be in DTMd
g→0→0.

• A vertex A of G satisfies the no-return condition if there are at least two non-dangling
edges in E(A) above different edges of T , i.e. #(φ(nd-E(A))) ≥ 2. The map φ satisfies the
no-return condition if all A ∈ {B ∈ nd-V (G) : valφ(B) ̸= 1} satisfy no-return.

• An edge h = ⟨A0, e1, . . . , eµ, Aµ⟩ of H(φ) satisfies the pass-once condition if φ restricted to
the set {ei ∈ h : φ(ei) not incident to a leaf} is injective. The map φ satisfies the pass-once
condition if all edges of H(φ) satisfy pass-once.

• The map φ satisfies the dangling-no-glue condition if mφ(x) = 1 for all dangling x in G.

Lemma 12.49. Let φ be a DT-morphism. If φ has full rank and is change-minimal, then φ
satisfies the dangling-no-glue, no-return, and pass-once conditions.

Proof. The proof follows closely the lines of those for Lemmas 4.17, 4.20, 4.24 in Part I. A few
extra considerations must be made now that vertex weights are allowed.

We have a combinatorial description of the fibres of a change-minimal φ that satisfies dangling-
no-glue.
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Lemma 12.50 (nd. rφ formula). Let φ be a DT-morphism that satisfies dangling-no-glue. We
have that

rφ(A) = nd-wtvalA− 2 + 2mφ(A)−
∑

e∈nd-E(A)

mφ(e).

Proof. Similar proof to [DV20, Lemma 4.18]

Proposition 12.51 (local properties). Let φ : (G,w)→ T be a change-minimal DT-morphism that
satisfies the dangling-no-glue condition. For A in nd-V (G) such that nd-valA ≤ 3 and w(A) = 0
exactly one of the following cases happens:

(r0) If rφ(A) = 0, then φ|nd-E(A) is injective and nd-valA ≤ valφ(A).

(r1) If rφ(A) = 1, then φ(A) is divalent, valA = 3, and nd-valA is 2 or 3. Moreover, if we write
E(A) = {e, e′, e′′} with mφ(e) ≥ mφ(e

′) ≥ mφ(e
′′), then mφ(e) = mφ(A) = mφ(e

′)+mφ(e
′′).

(r2) If rφ(A) = 2, then φ(A) is monovalent, nd-valA = 2, and valA = 2. Moreover, if we write
E(A) = {e, e′}, then mφ(e) = mφ(e

′) = 1.

Moreover, if Gdan is a connected subgraph of G such that all edges are dangling in G, then φ
restricted to Gdan is injective.

Proof. Since w(A) = 0 the setting reduces to that of Proposition 4.21 in Part I.

Moreover, for DT-morphisms satisfying some extra conditions we can characterize the edge-
length matrix from Subsection 12.6.

Lemma 12.52. Let φ : (G,w) → T be a DT-morphism such that if v is a leaf then v is change-
minimal and any vertex in the fibre φ−1(v) has weight 0. The map φ satisfies the pass-once
condition if and only if for all h in E(H(φ)) and t in φ(h) the entry aht is

(a) 2 if φ(h) contains a leaf of T .

(b) 1/mφ(e) for e ∈ h ∩ φ−1(t) otherwise.

Proof. See Proposition 4.25 in Part I.

Finally, specialization morphisms preserve the properties of having full rank, and satisfying the
pass-once and the dangling-no-glue conditions.

Lemma 12.53. Specialization morphisms preserve having full rank, and satisfying dangling-no-
glue and pass-once.

Therefore, we define the following category. All its objects have full rank, and satisfy pass-once
and dangling-no-glue. Moreover the maximal elements of its opposite category are change-minimal
and satisfy no-return.

Definition 12.54. Let Gtrop
g→0,d denote the subcategory of DTMd

g→0→0 that is the closure of the
set of top-dimensional DT-morphisms, i.e. all DT-morphisms that arise as a specialization of some
degree-d top-dimensional DT-morphisms with genus-g connected source and target a tree.
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12.8 A space parametrizing tropical morphisms

We now describe a contravariant functor Csrc
− : (DTMd

g→0)
op → PolyfZ, define our main tropical

moduli space as a restriction of Csrc
− to Gtrop

g→0,d, and argue that Gtrop
g→0,d → PolyfZ is a polyhedral

space.
As a first step, given a specialization (ρG, ρT ) : φ→ φ0 we need a face morphism Csrc

φ0
→ Csrc

φ ,
so we construct a specialization morphism ρH : H(φ)→ H(φ0).

Construction 12.55. Let ρ : (G,w)→ (G0, w0) be a specialization morphism. We construct the
map ρH : (H(G,w), wH)→ (H(G0, w0), w0) given on vertices by A 7→ ρG(A) and on edges by

⟨B0, e1, B1, . . . , eµ, Bµ⟩ 7→

{
ρG(B0) if ρ(Bi) = ρ(ej) for all i, j,
⟨ρG(B0), . . . , ρG(Bµ)⟩ otherwise.

The following two results show that the map ρH has good properties.

Lemma 12.56. Let ρ : (G,w)→ (G0, w0) be a specialization morphism. For any A0 in V (G0) we
have

nd-wtvalA0 = 2 +
∑

A∈ρ−1(A0)

(nd-wtvalA− 2). (12.15)

Proof. By Lemma 11.31 an edge e0 in E(G0) is dangling if and only if ρ−1(e0) in E(G) is dangling.
Using this fact, and following the first lines of the proof of Lemma 11.36, we get a non-dangling
version of Equation (11.7), namely

nd-valG0 B0 =
∑

B∈ρ−1(B0)

nd-valGB − nd-valρ−1(B0)B. (12.16)

The remaining of the proof proceeds as for Lemma 11.36, and using the fact that tropical modifi-
cation preserves genus.

Lemma 12.57. Let ρ : (G,w) → (G0, w0) be a specialization morphism. The map ρH from
Construction 12.55 is well defined and is a specialization morphism.

Proof. If A is a vertex of H(G,w), then by Lemma 12.56 we have that

nd-wtvalG0
ρ(A) = 2 +

∑
B∈ρ−1(ρ(A))

(nd-wtvalB − 2) ≥ 2 + nd-wtvalA− 2 ≥ 3,

so ρ(A) is a vertex of H(G0, w0) and the map ρH is well defined. Moreover, ρH restricted to
ρ−1
H (E(H(G0, w0))) is injective and surjective because for an edge h0 of H(G0, w0), and an edge
e0 in h0, there is exactly one edge h of H(G,w) such that ρ−1(e0) ∈ h. This h is independent of
the choice of e0 in h0, that is it is the unique edge in H(G,w) such that ρH(h) = h0. Also, we
have that ρH(A0) is connected since ρ(A0) is connected. Hence ρH is a contraction. Finally, we
note that nd(ρ−1(A0)) is an edge subdivision of ρ−1

H (A0). Since ρ is a specialization morphism we
have that

w0(A0) = g(ρ−1(A0), w|V (ρ−1(A0)))

= g(nd(ρ−1(A0)), w|V (nd(ρ−1
H (A0)))

)

= g(ρ−1
H (A0), w|V (ρ−1

H (A0))
).

Therefore ρH is a specialization.

Remark 12.58. Lemma 12.57 implies that an isomorphism γ : (G,w)→ (G0, w0) descends to an
isomorphism γ̃ : H(G,w) → H(G0, w0). On the other hand, the examples in Section 4 of Part
I show there are specializations (ρG, ρT ) : φ → φ0 that contract edges, yet the specialization ρH
associated to ρG is still an isomorphism. △
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Next, we relate the edge-length maps of φ and φ0 via their entries of the edge-length matrix.

Lemma 12.59. Let (ρG, ρT ) : (φ,mφ)→ (φ0,m0) be a specialization of DT-morphisms. For any
pair (h0, t0), whre h0 ∈ E(H(φ0)) and t0 ∈ E(T0), we have that

ah0t0 = aρ−1
H (h0)ρ

−1
T (t0)

,

where ah0t0 is given by Equation (12.9) on Page 130.

Proof. Set h = ρ−1
H (h0) and t = ρ−1

T (t0). By Equation (12.9) we calculate:

aht =
∑
e∈h

φ(e)=t

1

mφ(e)
=

∑
ρ−1
G (e0)∈h

φ(ρ−1
G (e0))=t

1

mφ ◦ ρ−1
G (e0)

=
∑

ρ−1
G (e0)∈ρ−1

H (h0)

ρ−1
T (φ0(e0))=ρ

−1
T (t0)

1

m0(e0)
=

∑
e0∈h0

φ0(e0)=t0

1

m0(e0)
= ah0t0 .

We have used that, if e ∈ h is such that φ(e) = ρ−1
T (t0), then there is a unique e0 in E(G0) such

that e = ρ−1
G (e0). This is true because φ(e) = ρ−1

T (t0) implies t0 = ρT (φ(e)) = φ0(ρG(e)), so
e0 = ρG(e) is in φ−1

0 (t0), hence e0 is an edge because φ−1
0 (t0) ⊂ E(G0).

Recall that in Definition 11.38 we introduced the pullback ρ∗ and the push-forward ρ∗ associated
to a specialization morphism ρ. From Lemma 12.59 we get commutative diagrams that relate the
pullback and the push-forward of ρT and ρH .

Lemma 12.60. Let (ρG, ρT ) : φ → φ0 be a specialization of DT-morphisms. Both squares in
Diagram 12.61 commute.

ρ∗T (spanR CT ) spanR CT0

spanR C(H(φ),wH) spanR C(H(φ0),w0)

Aφ

ρT∗

Aφ0

ρH∗

(a)

spanR CT spanR CT0

spanR C(H(φ),wH) spanR C(H(φ0),w0)

Aφ

ρ∗T

Aφ0

ρ∗H

(b)
Diagram 12.61

Proof. Let z ∈ spanR CT and h0 ∈ E(H(φ0)). By definition of the push-forward and Equa-
tion (12.10) on Page 130 we have that

(ρH∗(Aφ(z)))(h0) = (Aφ(z) ◦ ρ−1
H )(h0)

=
∑

t∈E(T )

aρ−1
H (h0)t

z(t)

=
∑

t∈ρ−1
T (E(T0))

aρ−1
H (h0)t

z(t) +
∑

t∈ρ−1
T (V (T0))
t∈E(T )

aρ−1
H (h0)t

z(t).

If z is in ρ∗T (spanR CT0
) ⊂ spanR CT , then we get 0 for the second sum in the last line of the

previous calculation. By Lemma 12.59 we have:

(Aφ0
(ρT∗(z)))(h0) =

∑
t0∈E(T0)

ah0t0z ◦ (ρ−1
T (t0))

=
∑

t0∈E(T0)

aρ−1
H (h0)ρ

−1
T (t0)

z(ρ−1
T (t0)) =

∑
t∈ρ−1

T (E(T0))

aρ−1
H (h0)t

z(t).
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Hence, Diagram 12.61 (a) commutes. Namely, Aφ ◦ ρT∗ = ρH∗ ◦ Aφ0
. Now, recall from the

proof of Lemma 11.40 that ρT∗ ◦ ρ∗T is the identity on spanR CT , and ρ∗H ◦ ρH∗ is the identity
on ρ∗H(spanR C(H(φ),wH)) ⊃ Aφ0(spanR CT0). Thus, composing on the right by ρ∗T and on the left
by ρ∗H gives that ρ∗H ◦Aφ = Aφ0 ◦ ρ∗T , as desired.

As a consequence, we get that ρ∗H induces a face morphism. We consider Csrc
φ with the following

integral structure.

Definition 12.62. Given a DT-morphism φ we define Nφ ⊂ spanR C
src
φ to be the set of functions

with integral values. It is a lattice, and Nφ ∩ Csrc
φ corresponds to DT-morphisms whose source

have a deletion of dangling elements ((H(φ),mH), Aφ(z)) with integral lengths.

Lemma 12.63. The map ρ∗H induces a face morphism from Csrc
φ0

to Csrc
φ .

Proof. We have that ρ∗H(Csrc
φ0

) = ρ∗H(Aφ0
(CT0

)) = Aφ(ρ
∗
T (CT0

)). Since ρ∗T is a face morphism,
ρ∗T (CT0) is a face of CT . Since Aφ is a linear map, Aφ(ρ∗T (CT0)) = ρ∗H(Csrc

φ0
) is a face of Aφ(CT ) =

Csrc
φ .

Definition 12.64. The tropical moduli space of top-dimensional DT-morphisms and their special-
izations is the functor (Gtrop

g→0,d)
op → PolyfZ obtained by restricting Csrc

− .

Lemma 12.65. The functor Csrc
− : (Gtrop

g→0,d)
op → PolyfZ is a polyhedral space of cones.

Proof. We check the three conditions from Definition 9.4. Let φ be in Gtrop
g→0,d. Condition (a) is true

because all the faces of Csrc
φ prescribe a subset S ⊂ E(T ) to have zero lengths. This gives rise to the

specialization (ρG, ρT ) : φ → φ/S. The specialization ρH : H(φ) → H(φ0) associated to ρG gives
the desired face inclusion. Condition (b) follows from Lemma 12.27 and an observation similar to
Remark 11.28. Condition (c) is true because DTMd

g→0→0 is already a skeleton category.

By Equation (12.11) we have that Csrc
− : (Gtrop

g→0,d)
op → PolyfZ has pure dimension 2g + 2d− 5.

Let ρ : φ → φ0 be in Gtrop
g→0,d such that φ is top-dimensional. The dimension of Csrc

φ0
equals

#(T0) = 2g+2d− 5−#(contr(ρT )). Hence, the codimension of φ0 equals #(contr(ρT )), which by
Lemma 12.44 equals the sum of (chw0 + valw0 − 3) over all w0 ∈ V (T0).

12.9 The points of |Gtrop
g→0,d|

Following similar steps to those taken in Subsection 11.8, we show that distinct points of Gtrop
g→0,d

correspond to distinct isomorphism classes of weighted tropical morphisms.
Let φ : (G,w)→ T be a DT-morphism that is full-rank. We can describe explicitly the points in

Cφ which encode isometric DT-morphisms by observing the following. Let Φ(1) to Φ(2) be weighted
tropical morphisms. Recall that an isomorphism from Φ(1) to Φ(2) is a pair of isometries Ψ,Υ such
that Φ(2) ◦Ψ = Υ ◦ Φ(1) and w(1) = w(2) ◦Ψ. We have that (Ψ,Υ) is compatible with any choice
of vertex set structure for Φ:

Lemma 12.66. Let Φ(q) : (Γ(q), w(q)) → ∆(q), with q = 1, 2, be tropical morphisms, (Ψ,Υ) an
isomorphism, and T (q) = Φ(q)(EΓ(q)) ∪ E∆(q) , with EΓ(q) , E∆(q) the set of essential vertices of Γ(q)

and ∆(q), respectively. We have that:

1. T (2) = Υ(T (1)).

2. (Φ(2))
−1

(Υ(S ′)) = Ψ((Φ(1))
−1

(S ′)) for any S ′ ⊂ ∆(1).

Proof. Since Ψ, Υ are isometries we have that EΓ(2) = Ψ(EΓ(1)) and E∆(2) = Υ(E∆(1)). We calculate
Υ(T (1)) = Υ(Φ(1)(EΓ(1))) ∪Υ(E∆(1)) = Φ(2)(Ψ(EΓ(1))) ∪ E∆(2) = T (2).

Next, note that Φ(2)(Ψ((Φ(1))
−1

(S ′))) = Υ(Φ(1)((Φ(1))
−1

(S))) = Υ(S ′). We conclude that
Ψ((Φ(1))

−1
(S ′)) ⊆ (Φ(2))

−1
(Υ(S ′)). The same calculation using (Ψ−1,Υ−1) as an isomorphism

gives Ψ−1((Φ(2))
−1

(Υ(S ′))) ⊆ (Φ(1))
−1

(S ′), so we are done by applying Ψ on both sides.
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Thus, let S ′ ⊂ ∆(1) be such that T (1) ⊂ S ′. Lemma 12.13 gives that S ′ is a vertex set for ∆(1),
and S = (Φ(1))

−1
(S ′) is one for Γ(1); they give rise to a realization Φ(1) = (φS′ : GS → TS′ , zS′).

By Lemma 12.66 we have that T (2) ⊂ Υ(S ′), and Ψ(S) = (Φ(2))
−1

(Υ(S ′)). Thus, again by
Lemma 12.13, we have that Υ(S ′) is a vertex set for ∆(2), and Ψ(S) is one for Γ(2); they give rise
to a realization Φ(2) = (φΥ(S′) : GΨ(S) → TΥ(S′), zΥ(S′)).

By Lemma 11.50 we get graph isomorphisms γΨ : GS → GΨ(S) and τΥ : TS′ → TΥ(S′). With
them we get an isomorphism at the level of the models that pulls back index maps. That is,
φΥ(S′) ◦ γΨ = τΥ ◦ φS′ and mφΥ(S′) = mφS′ ◦ γ−1

Ψ . It is straightforward to verify that these
necessary conditions are also enough to specify an isometry of tropical morphisms.

By Lemma 12.67, two distinct points of Gtrop
g→0,d encode non isometric tropical morphisms.

Lemma 12.67. Let Φ(1), Φ(2) be tropical morphisms, S ′ ⊂ ∆(1) induce vertex sets for Φ(1), and
Ψ : Γ(1) → Γ(2), Υ : ∆(1) → ∆(2) be isometries. We have that Φ(2) ◦ Ψ = Υ ◦ Φ(1) if and only if
Υ(S ′) ⊂ ∆(2) induces vertex sets for Φ(2), and the induced maps γΨ, τΥ, φS′ and φΥ(S′) satisfy
that φΥ(S′) ◦ γΨ = τΥ ◦ φS′ , that the index maps pull back mφΥ(S′) = mφS′ ◦ γ−1

Ψ , and that the
lengths pull back, namely zΥ(S′) = zS′ ◦ τΥ.
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Example 12.68 (Genus 2). We calculate the top-dimensional cones of Gtrop
2→0,2. Note that #(E(T )) =

2d + 2g − 5 = 3, which in this case coincides with 3g − 3 = 3. There are two trees with 3 edges:
T (1) with a vertex adjacent to three leaves; and T (2) a path of length 3. Being change-minimal
determines the fibre above a leaf and an edge leading to a leaf, so we are done if φ(1) has base tree
T (1). If φ(2) has base tree T (2), then there are additionally trivalent vertices above the endpoints
of the middle segment, which means an edge e with mφ(e) = 2 above the middle segment. Com-
puting Aφ gives diagonal matrices, so these maps are indeed full-rank and moreover implies that
the structure of Gtrop

2→0,2 is isomorphic to that of Mtrop
2 . In particular Π is bijective.

φ(1) H(1) φ(2) H(2)

A(1) =
(

2 0 0
0 2 0
0 0 2

)
A(2) =

(
2 0 0
0 1/2 0
0 0 2

)
⋆

Note that AutH(1) ∼= S3, the symmetric group on three elements, and that all the automor-
phisms are induced by automorphisms of φ(1) via Lemma 12.57. A similar observation applies to
AutH(1) ∼= S2. The diagram for the category Gtrop

2→0,2 is shown in Figure 12.2. See Figure 3 in
[Cha12] for a cone representation ofMtrop

2 , which as noted coincides with Gtrop
2→0,2.

S3 S2

S3

Figure 12.2: Diagram for the category Gtrop
2→0,2.



Chapter 13

Properties of the projection |Π|

Now consider the projection map |Π| : |Gtrop
g→0,d| → |Mtrop

g | that sends a tropical morphism |Φ| :
(|Γ|, wG) → |∆| to its source, the weighted metric graph (|Γ|, wG). We describe a combinatorial
morphism Π̃ of polyhedral complexes such that |Π̃| is isomorphic to |Π|, we calculate a specific
fibre that has catalan many points, and introduce an index map mπ based on a multiplicity used
in toric geometry. The proof that mπ is balanced is a lengthy one and spans the remaining of this
Part II. This section takes the first steps, outlining the proof, splitting it into two major cases, and
doing the first case.

13.1 The projection |Π| as a morphism (π, {Πφ}) of polyhedral
spaces

We begin by introducing a morphism of polyhedral spaces

Π : [Csrc
− : Gtrop

g→0,d → PolyfZ]→ [C− :Mtrop
g → PolyfZ],

and refine it to obtain a combinatorial morphism of polyhedral complexes.

Lemma 13.1. Let d and g be positive integers. Consider the map π : Gtrop
g→0,d →Mtrop

g that sends
a DT-morphism φ to the combinatorial type H(φ), and a specialization ρ : φ → φ0 to the map
ρH : H(φ)→ H(φ0) given by Construction 12.55. The map π is a functor.

Proof. By Remark 12.58 we have that π(idφ) = idH(φ). Also π(ρ1 ◦ ρ2) = π(ρ1) ◦ π(ρ2) since
composition of specializations is a specialization.

Lemma 13.2. Let d and g be positive integers. Consider the pair Π = (π, {Πφ}φ∈Gtrop
g→0,d

) given by
π from Lemma 13.1 and the inclusions Πφ : Csrc

φ → CH(φ). The pair Π is a natural transformation,
in fact it is a morphism of polyhedral space of cones.

Proof. This follows from the fact that Diagram 12.61 can be composed, since composition of
specializations is a specialization.

Now assume that for some positive integer g′ we have g = 2g′ and d = g′ + 1. Our aim is
to show that the topological realization |Π| : |Gtrop

g→0,d| → |Mtrop
g | admits an index map which

makes it an indexed branched cover. We give the index map in Subsection 13.3, it is of the form
mπ ◦ polyGtrop

g→0,d
, with mπ : Gtrop

g→0,d → Z≥1 an index map. It has the property that if Csrc
φ is the

positive orthant, then mπ equals one. In Subsection 13.2 we calculate the fibre for a specific point
and show the count is a catalan number.

By Conjecture 9.46 we have refinements bcs(Csrc
− : Gtrop

g→0,d → PolyfZ) and bcs(C− :Mtrop
g →

PolyfZ) that are polyhedral complexes of simplicial cones. Moreover, by Conjecture 10.77 there
is a refinement ζdg : [C̃src

− : G̃trop
g→0,d → PolyfZ] → [Csrc

− : Gtrop
g→0,d → PolyfZ] and a refinement

139
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. . .B2 B3 Bg−2 Bg−1A1

A2 A3 Ag−2 Ag−1

Ag

h1 h2 hg−2 hg−1

Figure 13.1: A caterpillar of loops

ξg : [C̃− : M̃trop
g → PolyfZ] → [C− : Mtrop

g → PolyfZ] such that Π induces a map Π̃ : [C̃src
− :

G̃trop
g→0,d → PolyfZ] → [C̃− : M̃trop

g → PolyfZ] which is a combinatorial morphism of polyhedral
spaces. Thus, by Theorem 10.46 we have:

Lemma 13.3. Let mπ̃ : G̃trop
g→0,d → Z≥1 be an index map. If π̃ : G̃trop

g→0,d → M̃trop
g is an indexed

branched cover with index map mπ̃, then |Π̃| : |G̃trop
g→0,d| → |M̃trop

g | is an indexed branched cover
with index map mπ̃ ◦ polyG̃trop

g→0,d
.

We have that Diagram 13.4 commutes, and the horizontal maps are homeomorphisms.

|G̃trop
g→0,d| |Gtrop

g→0,d|

|M̃trop
g | |Mtrop

g |

|ζdg |

|Π̃| |Π|

|ξg|

Diagram 13.4

So if the vertical map on the left is an indexed branched cover, so is the one on the right, which
is what we want. Lemma 13.3 proves so, that the map on the left is an indexed branched cover,
and we initiate the proof on Subsection 13.3.

13.2 A fibre |Π|−1(Γ) with Catalan-many points
Meanwhile, we establish Theorem C for one class of metric graphs.

Definition 13.5 (caterpillar of loops). The genus-g caterpillar of loops HCL
g is obtained by taking

a length-(g − 1) path ⟨A1, h1, B2, h2, . . . , Bg−2, hg−2, Bg−1, hg−1, Ag⟩ and attaching loops to its
ends and lollipops to its interior vertices; namely, for i = 2, . . . , g − 1 add a vertex Ai with a loop,
and join Ai to Bi via a bridge. See Figure 13.1.

Remark 13.6. Note that HCL
g is trivalent, therefore a maximal element of (Mtrop

g )
op. △

We study π−1(HCL
g ), i.e. the subset of those φ in Gtrop

g→0,d for which H(φ) is isomorphic to
HCL
g . We show that the properties of those φ in π−1(HCL

g ) are the best we can hope for: Csrc
φ is

the positive orthant; there is a constructive bijection between these φ and certain combinatorial
sequences counted by Catalan numbers; and the subposet ↓π−1(HCL

g ) ⊂ Gtrop
g→0,d is connected in

codimension-1. Putting these facts together proves Theorem C for the case of caterpillars of loops.

Example 13.7. See the figures below for two DT-morphisms such that the combinatorial type of
the source is the genus-4 caterpillar of loops. By Proposition 13.14 these are all such maps.
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M1 M2

⋆

Remark 13.8 (values for other versions of gonality). The divisorial gonality of any caterpillar
of loops is 2, since the divisor D = 2(A1) has rank-1. The harmonic-maps-to-trees gonality from
[Cha13] is also 2. That is, for every HCL

g there is a degree-2 indexed branched cover Φ to a tree;
see Figure 13.2. This Φ does not typically satisfy the Riemann-Hurwitz inequality. Therefore, that
tree gonality is generically g′ + 1 is a consequence of the Riemann-Hurwitz inequality. Moreover,
this example shows that the difference between tree gonality and divisorial gonality cannot be
bounded. △

The main reason behind the favourable combinatorial properties of caterpillars of loops is that,
by a result from Part I, a lollipop in H(φ) is above a length-2 path in T leading to a leaf, and the
fibre above this path is uniquely determined. Since a caterpillar of loops is a bunch of lollipops
strung together, this is enough to determine φ on the non-dangling elements of G.

Lemma 13.9. Let (φ,mφ) be a DT-morphism that is change-minimal and has full rank. If
A ∈ V (H(φ)) is trivalent and incident to a bridge hb and a loop hl, then hb = ⟨A, eb, B⟩,
hl = ⟨A, e1, C, e2, A⟩, φ(C) is a leaf, φ(A) is divalent, rφ(A) = 1, mφ(eb) = 2; and eb, A, e1,
e2, C are the only non-dangling elements in the fibres of φ(eb), φ(A), φ(e1) and φ(C).

Proof. See Lemma 6.23 in Part I.

Lemma 13.10. Let φ : G → T be a degree-(g′ + 1) DT-morphism in π−1(HCL
2g′ ) and G̃ the

deletion of dangling elements of G. The cone Csrc
φ equals RG≥0∩{y(A) = 0 for A ∈ V (G)}, and the

restriction γCL2g′ = φ|G̃ depends only on 2g′. See Figure 13.2.

Proof. Fix an isomorphism L : HCL
g → H(φ), and let g = 2g′. By Lemma 13.9 the image

φ(E(L(Ai))) is a length-2 path with interior vertex ui and one of its ends is a leaf vi. These paths
account for 2g distinct edges of T and their fibres are determined. Since φ is change-minimal,
chui = 1 and ch vi = 2, and by Lemma 12.2 this accounts for the total change 3g of φ. So any
vertex of T distinct from ui, vi has ch-value equal to 0.

Consider the unique path P in G whose ends are L(B2) and L(Bg−1). The length of P is
at least g − 3 since it contains at least g − 4 inner vertices (the Bi for i = 3, . . . , g − 2). The
image φ(P ) is disjoint from φ(E(L(Ai))), for all i; since T has 3g − 3 edges, φ(P ) contains at
most (3g − 3) − 2g = g − 3 edges. Since none of the interior vertices of P are above ui, vi, they
have rφ-value 0; applying Case-(r0) of Proposition 12.51 to them gives that consecutive edges in
P have distinct images. Since T is a tree, this implies that φ is injective on P . We conclude that
φ(P ) is a length-(g− 3) path in T ; that hi contains a single edge of G for i = 1, . . . , g− 1, so each
row of Aφ has a single non-zero entry; and that each φ(E(L(Ai))) attaches to φ(P ) giving rise to
γCLg : GCLg → TCLg of Figure 13.2.

Now let Γ̃ be the metric graph (HCL
g , y). Lemma 13.10 reduces the construction of a top-

dimensional tropical morphism Φ in Π−1(Γ̃) to choosing the slopes of Φ at the edges hi
; a priori it appears we can choose how to place the dangling elements needed to fullfill the

balancing condition. However, the slopes have to satisfy a strong combinatorial condition; and by
the dangling-no-glue property and Case-(d) of the local properties the dangling trees are determined
by the choice of slopes.

Lemma 13.11. Let Φ : Γ → ∆ be a tropical morphism and Γ̃ = (H, ℓH) its deletion of dangling
trees, such that there is an isomorphism L : HCL

g → H. If si is the slope at the edge L(hi), then
si − si−1 = ±1 for i ∈ {1, . . . , g − 1}.
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Figure 13.2: The graph morphism γCLg : GCLg → TCLg .

Proof. Let φ be the combinatorial type of Φ. By Lemma 13.9 the index at the bridges leading
to a loop is 2. Since nd-valL(Bi) = 3 and valφ(L(Bi)) = 3, Proposition 12.51 implies that
rφ(L(Bi)) = 0. Lemma 12.50 gives that rφ(L(Bi)) = 2mφ(L(Bi)) + 3 − 2 − (si + si−1 + 2), so
si−1 + si = 2mφ(L(Bi))− 1. We are done since mφ(L(Bi)) ≥ max(si, si−1).

Lemma 13.12. Let Γ̃ = (HCL
g , y), and s a sequence (si)

g−1
i=1 ⊂ Z≥1 such that s1 = sg−1 = 2 and

si − si−1 = ±1 for all i. There is exactly one tropical morphism Φs : Γ → (TCLg , z) such that
Γ∼=tropΓ̃, the slope at hi equals si, and its combinatorial type is in π−1(HCL

g ).

Proof. Lemma 13.10 gives that to get Φs we have to extend γCLg to a DT-morphism φs by pre-
scribing the values of mφ and attaching dangling trees. The index map mφ is determined at
loops and at their bridges by Lemma 13.9, at the remaining bridges by the si, at dangling ele-
ments by the dangling-no-glue condition, and at Bi by si−1 + si = 2mφ(Bi) − 1, which implies
that mφ(Bi) = max(si, si−1). Note that only at Bi balancing is not satisfied yet. So we attach
mφ(Bi) − 2 paths of length-2 to Bi, and map them down to the image of the lollipop incident
to Bi. If si − si−1 = 1, then we attach a copy of the portion of TCLg left of the vertex γCLg (Bi) in
Figure 13.2, mapping it down to the aforementioned left portion. If si − si−1 = −1, we attach a
copy of, and map down to, the right portion of TCLg . By Case-(d) of the local properties this is
the only way to go. Therefore, we get a change-minimal DT-morphism φs with index map mφ,
and with an edge-length matrix Aφs

that in each row and in each column has exactly one non-zero
element, hence φs has full rank as desired.

So there are as many tropical morphisms as choices of sequences s. To count these, define the
sequence b with b1 = 1, bg = −1, and (bi = si − si−1)

g−1
i=2 . We get three properties: each entry bi

is either 1 or −1, all partial sums are non-negative since the i-th partial sum equals si − 1, and
1 appears as many times as -1 since s2 = sg−1. A sequence with those three properties is called
a length-g ballot sequence. It is a classical combinatorial passtime to prove these are counted by
catalan numbers C(g′) = 1

g′+1

(
2g′

g′

)
.

Lemma 13.13. Let g′ be a positive integer. The number of length-(2g′) ballot sequences equals
the g′-th Catalan number C(g′).

Proof. See e.g. [Sta15][Theorem 1.5.1].

Putting everything together, we get a special case of Theorem C:

Proposition 13.14. Let g′ be a positive integer, y ∈ CHCL
2g′

, and Γ̃ = (HCL
2g′ , y). If all the lengths

encoded by y are distinct, then the fibre Π−1(Γ̃) has C(2g′) points in Gtrop
g→0,d, and these points are

pairwise connected by paths going through codimension 1 in Gtrop
2g′→0,g′+1.

Proof. Let Φ(1) : Γ(1) → ∆(1) and Φ(2) : Γ(2) → ∆(2) be tropical morphisms, Γ̃(1) and Γ̃(2) the
deletion of dangling trees of Γ(1) and Γ(2), respectively, such that there are isometries L(1) : Γ̃ →
Γ̃(1) and L(2) : Γ̃ → Γ̃(2). Let b(1) and b(2) be the ballot sequences obtained from Φ(1) and Φ(2),
respectively, using Lemma 13.12.
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From the construction in Lemma 13.12 we have that if b(1) and b(2) are equal, then Φ(1) and
Φ(2) are isomorphic. We prove the converse to conclude from Lemma 13.13 that Π−1(Γ̃) has C(2g′)
points. If Φ(1) and Φ(2) are isomorphic, then there are isometries Ψ,Υ such that Φ(2)◦Ψ = Υ◦Φ(1).
The isometry Ψ descends to an isometry Ψ̃ : Γ̃(1) → Γ̃(2). So (L(2))

−1 ◦Ψ̃◦L(1) is an automorphism
of Γ̃. Since all the lengths encoded by y are distinct, the automorphism group of Γ̃ is trivial, so
L(2) = Ψ̃ ◦ L(1). We get that

s
(2)
i =

ℓ(L(2)(hi))

ℓ(Φ(2) ◦ L(2)(hi))
=

ℓ(Ψ̃ ◦ L(1)(hi))

ℓ(Φ(2) ◦ Ψ̃ ◦ L(1)(hi))
=

ℓ(L(1)(hi))

ℓ(Υ ◦ Φ(1) ◦ L(1)(hi))
= s(1),

where we denote by ℓ(·) the length of a real interval, and we have used the fact that Ψ and Υ are
isometries.

To prove connectivity suppose that for some i we have b(1)i = 1, b(1)i+1 = −1 and b
(2)
i = −1,

b
(2)
i+1 = 1, and at the remaining entries the sequences coincide. In short, b(2) arises from b(1) by

swapping b(1)i = 1 with b(1)i+1 = −1. We get that m(1)(L(1)(hj)) = m(2)(L(2)(hj)) for all j ̸= i (here
we use L(1) and L(2) to refer to the underlying graph morphisms). Thus, contracting L(1)(hi)

in Γ̃(1) ⊂ Γ(1), and L(2)(hi) in Γ̃(2) ⊂ Γ(2), yields isomorphic specializations. The set of ballot
sequences is connected by this swapping operation since from any ballot sequence it is possible
to reach the sequence where the first half of elements are 1’s, and the second half are -1’s, using
swaps. Thus, all the cones are connected in codimension 1.

Remark 13.15. Theorem 1 of [EH87] follows from studying a particular family of curves C∞ with
genus g, depicted in Figure 2 of the cited work. The dual graph of C∞ is:

E1
Y1 Y2

E2

Y3 . . .

E3

Yg−1

Eg−1

Yg

Eg

Yg+1

G∞
The labelling reflects the irreducible components of C∞, where Yq are genus-0 curves, and

Eq are genus-1 curves. Strikingly, if one imagines infinitesimal loops at Eq, then the resulting
graph is tropically equivalent to a caterpillar of loops. Amusingly, we stumbled upon the family
of caterpillars of loops not through this observation, but rather by initially trying to work with
chains of loops as in [CDPR12]. △

13.3 An index map mπ for π

Now we introduce an index map for π̃ : G̃trop
g→0,d → M̃trop

g , and sketch how to prove that π̃ is an
indexed branched cover when we have g = 2g′ and d = g′ + 1 for some positive integer g′. The
index map is based on a multiplicity used in the context of toric geometry. Despite verifying that
such index map works with constructions and calculations, at the moment a deeper philosophical
reason escapes us and we believe it to be related to a tropicalization result that warrants further
investigations, as outlined in Subsection 8.3.7.

Definition 13.16. Let σ = (C,N) ∈ ConeZ be a cone generated by the rays θ1, . . . , θd. We denote
by vi the primitive generator of θi, i.e. the generator for the semigroup θi ∩ N . The multiplicity
mult(σ) of σ equals the index

[N : (Z1v1 + . . .Zdvd)].

Definition 13.17. Consider a DT-morphism φ : (G,w) → T in Gtrop
g→0,d. By Lemma 12.52 the

columns of the edge-length matrix that correspond to leaves of T have a single non-zero entry, and
it equals 1/2. The reduced edge-length matrix Âφ is the result of multiplying said columns by 2.
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Definition 13.18. Let φ be a DT-morphism in Gtrop
g→0,d, and Âφ its reduced edge-length matrix.

Let mπ : Gtrop
g→0→0,d be an index map given by

mπ(φ) = mult(col-span(Â⊤
φ )).

We get an index map on G̃trop
g→0,d by pulling back mπ via ζdg : G̃trop

g→0,d → G
trop
g→0,d, that is we set

mπ̃ to be mπ ◦ ζdg . Our main aim for the remainder is to prove the following result.

Proposition 13.19. Let g = 2g′ and d = g′ + 1, where g′ is a positive integer. Consider the map
π̃ : G̃trop

g→0,d → M̃trop
g from Subsection 13.1, and mπ̃ = mπ ◦ ζdg . The pair (π̃,mπ̃) is balanced in

codimension-1.

Proof. Let α ∈ G̃trop
2g′→0,g′+1 be a codimension-1 element. Consider φ0 = ζdg (α).

We distinguish three cases:
(1) φ0 = ζdg (α) is top-dimensional in Gtrop

2g′→0,g′+1,
(2) φ0 = ζdg (α) has codimension-1 and a trivalent H(φ0); otherwise
(3) φ0 = ζdg (α) has codimension-1 and a non-trivalent H(φ0).

The first case can be shown to follow from general considerations about subdivisions. That is,
this is the interior of some top-dimensional cone Csrc

φ that was subdivided in the process of making
Π a combinatorial morphism of polyhedral complexes, hence balancing is straightfowrard.

The second case we defer to Proposition 13.25. There the point is to take the work done in Part
I and reformulate it to prove Equation (8.9). After such equation is proven, some remaining work
is needed to argue that each one of the constructions count, that we do not have isomorphisms.
This is indeed relevant because, for example in Subsection 13.2, at the combinatorial level we are
not constructing catalan many DT-morphisms. Some of them are isomorphic, by a symmetry
argument, but those symmetric have two distinct points realizing a given metric graph. See 13.26
for the result.

The third case we defer to Section 14. Here it is enough to make the constructions, count them,
and show that no matter how H(φ0) regrows the missing edge, the number of DT-morphisms is
the same. See 14.1 for the result.

Observe that such result implies Theorem C, which we reformulate as follows:

Theorem 13.20. Let g′ be a positive integer, and g = 2g′ and d = g′ + 1. The projection
|Π| : |Gtrop

g→0,d| → |Mtrop
g | given by [Φ : Γ→ ∆] 7→ Γ, with index map mπ(φ) = mult(Â⊤

φ ) composed
with polyGtrop

g→0,d
, is a surjective indexed branched cover of cone spaces. The degree degΠ equals the

g′-th Catalan number. The space |Gtrop
g→0,d| is connected through codimension-1.

Proof. By Proposition 13.19, the pair (π̃ : G̃trop
g→0,d → M̃trop

g ,mπ ◦ ζdg ) is a map of posets that is
balanced in codimension 1. By Proposition 11.49, the poset ((Mtrop

g )
op
,⪯) is strongly connected.

By Lemma 10.69 every refinement of a strongly connected poset is strongly connected, so in
particular (M̃trop

g )
op

is strongly connected. Therefore, we can iterate Proposition 10.73 to extend
mπ̃ = mπ ◦ ζdg to a balanced map m̂ defined on G̃trop

g→0,d: first extend from codimension-1 to
codimension-2, then to codimension-3, and so on. This is possible thanks to Lemma 10.74. Since
π̃ is combinatorial, by Proposition 10.54 we get that (π̃, m̂) is an indexed branched cover. By
Lemma 13.3 and the discussion afterwards, we are done in getting that (|Π|, m̂◦poly) is an indexed
branched cover. This uses Proposition 10.44 that reduced our metric problem to a combinatorial
problem.

Moreover, from Lemma 10.64 and the fact from Proposition 13.14 that the fibre above caterpillar
of loops is connected we get that Gtrop

g→0,d is connected through codimension-1. This is possible
thanks to Lemma 10.65. Finally, the count of the fibre was achieved in Proposition 13.14. All
the points calculated in said proposition have multiplicity 1. Thus deg|Π| is the g′-th Catalan
number.
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13.4 The map mπ is balanced on ↑φ0 when H(φ0) is trivalent
We introduce a signed multiplicity, and use it to prove Equation (8.9) from Page 69. In turn, this
implies balancing in the second case stated in the proof of Theorem C in Subsection 13.3.

Definition 13.21. Let φ : (G,w) → T be a DT-morphism such that Âφ is a square matrix. Let
di be the minimum positive integer such that the i-th row of Âφ multiplied by di is an integral
vector, and Dφ be the product of all the di. The signed multiplicity of φ is

Mult±(φ) = Dφ det Âφ.

Remark 13.22. The sign of Mult±(φ) depends on the ordering of the rows and columns of
Âφ, namely on the ordering of E(H(φ)) and E(T ). The balancing condition is not affected by
this, as once the choice is done for a DT-morphism φ, it induces the order on its codimension-1
specializations, this in turn carries to DT-morphisms that share codimension-1 specializations with
φ, and so on. Ultimately, the choice of order has to be done once for each connected component
of Gtrop

g→0,d, thus just once by Theorem C. △

Lemma 13.23. Let φ be a DT-morphism in Gtrop
g→0,d. We have that

mπ(φ) = |Mult±(φ)|.

Proof. This is a standard fact about free abelian groups, see e.g. (!!insert ref).

We characterize the numbers di when φ is top-dimensional.

Lemma 13.24. Let φ be a top-dimensional DT-morphism, Âφ its reduced edge-length matrix, hi
in E(H), and di as in Definition 13.21. We have that

(a) if hi passes above a leaf, then di = 1;

(b) if rφ(A) = 0 for all A ∈ h ∩ V (G), then mφ(hi ∩ E(G)) = {di};

(c) otherwise hi decomposes into two paths P and P ′ such that mφ(P ∩ E(G)) = {k} and
mφ(P

′ ∩ E(G)) = {k + 1}, thus di = k(k + 1).

Proof. Observation I: By the cases (r0) and (r1) of Proposition 12.51 (local properties) if e and e′
in h are adjacent, then |mφ(e)−mφ(e

′)| ≤ 1.
Proof of (a): Choose ẽ ∈ h such that φ(ẽ) is incident to a leaf. Assume there is ê ∈ h with

mφ(ê) ̸= 1. Let t = φ(ẽ). Remark 4.15 implies that mφ(ẽ) = 1. Thus, when going from ê to ẽ in
h, by Observation I the cardinalities of the edges change at each step by a difference of at most 1.
Hence, there are two adjacent edges e, e′ with |e| = 2 and |e′| = 1. Let A in V (G) be the vertex
incident to these two edges. Since M is full-dimensional, if rφ(A) were 0, it would contradict the
case (r0-nd2) of the local properties. Thus, rφ(A) = 1 and the other vertices above φ(A) have
rφ-value equal to zero. Grow and shrink the lengths ℓT (φ(e)) and ℓT (φ(e

′)), respectively, by the
same length z. The case (r0-nd2) implies that only the length of ℓG(h) changes. It shrinks by
z/2. Grow ℓT (t) by z/4, so ℓG(h) grows z/2. As t leads to a leaf and M is full-dimensional, this
change only affects h. Thus all the lengths are the same as the starting ones, contradicting that
M is full-dimensional.

Item II and III: Restating the claim: if h is partitioned into a sequence P1, . . . , Pq of adjacent
paths, where for each Pi all its edges are equipotent, and these cardinalities are different for
adjacent paths, then q ≤ 2. Assume q ≥ 3. Recall that the deformation case {v2-r1} has two
glueing datums, if one of them is full-dimensional then the other is as well. Successively apply
this case to the edges in P2, to obtain a sequence of full-dimensional glueing datums. In each
step, the number of edges in P2 decreases by one, and in P3 increases by one. Let M ′ be the
last glueing datum of this sequence, where P2 has a single edge. By Observation I, the local part
around P2 is forbidden by the deformation cases in {v2-r2-nd2}. Hence M ′ is not full-dimensional,
a contradiction.
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Using Lemma 13.24 we transform Equation (⋆) into relations for the multiplicity.

Proposition 13.25 (balancing condition). Let g′ be a positive integer, and α an element of
G̃trop
2g′→0,g′+1 such that φ0 = ιG(α) has codimension-1 in Gtrop

2g′→0,g′+1.

1. If H(φ0) is trivalent, then ∑
γ∈↑α

Mult±(ιG(γ)) = 0.

2. Otherwise, Mult±(ιG(γ)) = Mult±(ιG(γ
′)) for every pair γ, γ′ in ↑α.

Proof. For the first statement, we apply Lemma 13.24 to transform Equations (14.4), (14.5), (14.7),
(14.8), (14.9), (14.10), (14.11), (14.12), (14.13), and (14.14) in Section 14.4. We illustrate one case,
Equation (7.7) from the deformation case {v2-r2-nd3-M-1k}. Let M (1), M (2), M (3) be the elements
of ↑M0. We use the notation of Section 14.4. In particular, c(q) = detA(q).

Note that l(T (2)) = l(T (3)) = l(T0), and l(T (1)) = l(T0) + 1. Write down the rows h1, h2, h3
and columns t1, t2, t3 of A(q).

2 1 0
0 1

k 0 . . .
0 0 1

k

0 a
(1)
i2 . . .
...

. . .


A(1)


1 1 0
1

k−1
1
k 0 . . .

0 0 1
k

a
(2)
i1 a

(2)
i2 . . .
...

. . .


A(2)

a
(2)
i1 = a

(2)
i2 for i ≥ 4.


0 1 0
0 1

k 0 . . .
1
k+1 0 1

k

a
(3)
i1 a

(3)
i2 . . .
...

. . .


A(3)

a
(3)
i1 = a

(3)
i2 for i ≥ 4.

Let d0,i be the minimum integer such that multiplying the i-th row of A0 by d0,i gives an
integral vector, and let D0 = d0,1 . . . d0,3g−3. Observe that d(q)i = d0,i for i ≥ 4. Thus,

Mult±(M
(1)) +Mult±(M

(2)) +Mult±(M
(3)) =

D0

2l(T0)

(
d
(1)
1 d

(1)
2 d

(1)
3

2d1d2d3
c(1) +

d
(2)
1 d

(2)
2 d

(2)
3

d1d2d3
c(2) +

d
(3)
1 d

(3)
2 d

(3)
3

d1d2d3
c(3)

)
.

We claim that the term in the parenthesis is zero. Let b(1) = 1, b(2) = (k − 1) and b(3) =
(k + 1). Equation (7.7) says that (1/2)b(1)c(1) + b(2)c(2) + b(3)c(3) = 0. So we are done if either
d
(q)
1 d

(q)
2 d

(q)
3 /d1d2d3 equals b(q), or c(q) equals zero.

Consider A(1) and suppose c(1) ̸= 0. As h1 passes above a leaf, Lemma 13.24 item (a) implies
that d(1)1 = 1. We also have that d(1)2 = d0,2, d

(1)
3 = d0,3, proving the claim. Consider A(2) and

assume c(2) ̸= 0. Clearly d
(2)
1 = d0,1 and d

(2)
3 = d0,3. Observe that h2 does not pass above a

leaf. Thus, the pass-once condition allows us to assume that (t1, 2) and (t2, 2) are in h2, with
|(t1, 2)| = k−1 and |(t2, 2)| = k. Lemma 13.24 item (c) implies that the only class with cardinality
k − 1 in h2 is (t1, 2), all the others have cardinality k. So d(2)2 = k(k − 1) and d0,2 = k. The claim
follows. A similar reasoning applies to M (3).

In essence: consider M (q) and suppose c(q) ̸= 0, so the conditions for Proposition 4.25 and
Lemma 13.24 are fulfilled. If a(q)i1 = 2, then hi passes above a leaf and Lemma 13.24 item (a) applies
to give d(q)i = 1. If a(q)i1 ̸= a

(q)
i2 , then Lemma 13.24 item (c) applies to give that d(q)i /d0,i = |a(q)i1 |.

Otherwise, d(q)i /d0,i = 1. This proves the first statement.
The second statement follows from the definition of multiplicity.

From the previous lemma we can conclude that:

Proposition 13.26. Let g = 2g′ and d = g′ + 1, where g′ is a positive integer. Consider the
map π̃ : G̃trop

g→0,d → M̃trop
g from Subsection 13.1, and mπ̃ = mπ ◦ ζdg . Choose α ∈ G̃trop

g→0,d. If α has
codimension-1 and H(ζdg (α)) is trivalent, then the pair (π̃,mπ̃) is balanced on ↑α.



CHAPTER 13. PROPERTIES OF THE PROJECTION |Π| 147

13.5 Graphs with integral edges
We conclude with a further insight on the connection between the divisor theory of a finite graph
H and of the metric graph Γ̃ = (H,1). Given a divisor D in Div(Γ̃), with the desired degree and
rank, one may hope to deform D into a divisor supported on integral points, keeping the same rank
and degree. A simple way for carrying out this deformation is to move the chips not supported on
integral points towards the endpoints of their respective edges. The following example witnesses
that this construction fails. It is referenced as private communication in Remark 17 of [CDJP17],
where this approximation idea is also reproduced. The example itself was found with a program
that randomly sampled the space of genus 6 graphs under certain constraints. The program is
available as an appendix of [Var16], and its internal functioning explained in page 62.

Example 13.27 (Integral edges, non-integral divisor). Let H be the genus 6 finite graph shown
below, on the left. It has three rank 1 and degree 4 divisors: D1 = 2A + I + J , and D2, D3 the
two other symmetrical divisors. Consider Γ̃ = (H,1). There is another divisor of interest, besides
the already listed ones: D4 = A + mEI + mFG + mJH , where mEI is the midpoint of EI, and
so on. It can be verified by testing the 8 cases, that all possible ways to approximate the chip on
mEI to either E or I, and likewise for the two other chips on non integral points, produces a rank
0 divisor.

Interestingly, D4 comes from a multiplicity 2 tropical morphism to a tree. It is shown on the
right. It would be quite enlightening to find a metric graph Γ̃0 = (H0, ℓ0) such that all the points
in the fibre Π−1(Γ̃0) have multiplicities greater than 1, in order to check if the induced divisors
share the non-approximation property that D4 exhibits; and study the divisors that H0 has not
coming from tropical morphisms, if any.
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Chapter 14

Constructing φ that specialize to φ0

This section deals with constructions. In particular, the missing ones necessary to prove the
balancing condition for π̃ when φ0 has codimension 1 and H(φ0) is non-trivalent. Our approach
is shaped by two opposing drives. Let φ : G→ T be a DT-morphism to a tree. On the one hand,
a deformation procedure on φ should act locally. On the other hand, since we wish to construct
elements in Gtrop

g→0,d, the resulting objects should have full rank, a global condition condition on
Aφ. We reconcile these opposing ends by using local conditions to filter out candidates in the
constructions, and ending with a manageable case-work.

Proposition 14.1. Let g′ be a positive integer. Consider the map π̃ : G̃trop
2g′→0,g′+1 → M̃

trop
2g′ from

Subsection 13.1, sand mπ̃ = mπ ◦ ιG. Choose α ∈ G̃trop
g→0,2g′ . If α has codimension-1 and H(ιG(α))

is not trivalent, then the pair (π̃,mπ̃) is balanced on ↑α.

By Proposition 13.25 Item 2, we just have to construct the DT-morphisms, and show that the
number for each combinatorial type in ↑H0 is the same. These constructions pick up the thread
started in the Section 7 of Part I.

14.1 Preliminaries: making constructions manageable
Let φ : G→ T be a DT-morphism. Consider the following proxy for having full rank.

Definition 14.2. A DT-morphism is

• quasi full-rank if it satisfies the dangling-no-glue and the no-return conditions.

• quasi top-dimensional if it is change-minimal and quasi full-rank.

If φ has full rank, then it is quasi full-rank, as expected. Moreover, the advantage of the quasi
full-rank condition is that it can be checked locally. Also, as we are about to see in this subsection,
being quasi full-rank already implies several of the consequences that being full-rank implies.

Remark 14.3. Let g and d be integers with d ≤ g/2+ 1. The property of being quasi full-rank is
closed under taking specializations. Per the discussion preceding Lemma 12.44, if we consider the
subset of DT-morphisms in DTMd

g→0 that are quasi full-rank, then the maximal elements of this
subset are the quasi top-dimensional DT-morphisms. △

Definition 14.4. Given a DT-morphism φ0, we denote by star-quasi(φ0) the set of φ in DTMd
g→0

that have quasi full-rank and for which there is a specialization φ→ φ0.

Note that star-quasi(φ0) is a subset of ↑φ0 in (DTMd
g→0)

op
. We index the elements of

star-quasi(φ0) as φ(q) : G(q) → T (q), and their specializations as ρ(q) : (φ(q),m(q)) → (φ0,m0).
In Section 7 of Part I we computed star-quasi(φ0) for codimension-1 φ0 in Gtrop

2g′→0,g′+1 such that
H(φ0) is trivalent.

148
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14.1.1 Contracting one edge t1 of the target T down to v0

Let (G0, w0) be a weighted graph and A0 a fixed vertex with w0(A0) = 0. We construct all the
specializations ρ : (G,w) → (G0, w0) such that contr(ρ) = {e}, with e ∈ E(G), and ρ(e) = A0.
Since w0(A0) = 0, the edge e is not a loop, so its ends B and C are distinct. Assume that
valB ≤ valC, and label the edges incident to A0 as e2, e3, . . . , evalA0+1. By Subsection 11.6, the
graph G is determined by which subset of

{
ρ−1(e2), ρ

−1(e3), . . . , ρ
−1(evalA0+1)

}
is incident to B

and which one to C. This gives a one-to-one correspondence between unordered partitions of
{2, . . . ,degA0 + 1} into two parts S and {2, . . . ,degA0 + 1} \S and graphs GS contracting to G0.

Now suppose we have a DT-morphism φ0 : G0 → T0. The following results are useful to
construct φ that specialize to φ0 by contracting one edge of the target of φ.

Lemma 14.5. Let φ be a quasi full-rank DT-morphism, u and v vertices and t and t′ edges of T
such that E(u) = {t′, t} and E(v) = {t}. If H(φ) has trivial weights, then there is exactly one edge
of H(φ) above t and one above t′, and these are a loop and a bridge.

Proof. This proof uses the glueing datum notation from Part I. Swap trees so that 1 ∼v 2. Re-
mark 4.15 (change-minimal leaves) yields that e1 = (t, 1) and e2 = (t, 2) are two distinct edges
of G, with |e1| = |e2| = 1, and are the only non-dangling edges above t. This implies, by the
no-return condition, that (u, 1) and (u, 2) are the only non-dangling classes above u (it is possible
that (u, 1) = (u, 2)). Let h be the edge of H containing e1, e2. If both (u, 1) and (u, 2) have
non-dangling valency equal to 2, then the only edge of H passing above t, and t′ is h. Thus, aht
and aht′ are the only non-zero entries in the columns of AM corresponding to t and t′, respectively,
a contradiction. Therefore, assume without loss of generality that nd-val (u, 1) = 3. As valu = 2
and |e1| = 1, by Case (r1-nd3) of the local properties we must have that nd-E((u, 1)) has two edges
above t; namely e1, e2, that make the loop; and one edge above t′, the bridge.

Lemma 14.5 is used to handle the case where val v0 = 1. The following Lemma is used in the
other cases.

Lemma 14.6. Let (ρG, ρT ) : [φ : G→ T ]→ [φ0 : G0 → T0] be a specialization such that φ is quasi
top-dimensional with trivalent H(φ) and contr(ρT ) = {t} with t ∈ E(T ). If A0 ∈ φ0

−1(ρT (t))
satisfies that r0(A0) = 0 and w0(A0) = 0, then

#(nd-E(ρG
−1(A0))) ≤ r0(A0) + 1. (14.1)

Proof. Since w0(A0) equals 0, the graph ρG
−1(A0) is a tree. Let A be in nd(ρG

−1(A0)). The
non-dangling valency of A is at most 3, because H(φ) is trivalent. We claim that at most 2 of
these edges are in φ−1(t). This follows from the no-return condition, which φ satisfies because
it is quasi top-dimensional, when t is not adjacent to a leaf. If t is adjacent to a leaf, the claim
follows from Proposition 12.51. Hence, nd(ρG−1(A0)) is a path. Moreover, if A is not an end of
the path nd(ρG

−1(A0)), then Proposition 12.51 gives that rφ(A) ≥ 1. Therefore, Equation (14.1)
follows from the fact that the number of edges in a path is one more than the number of interior
vertices.

14.1.2 Vertices in the fibre φ−1(v0)

We say a few words about the vertices in φ−1
0 (v0).

Lemma 14.7. With the notation of Remark 14.9 we have that r0(A0) = ch v0.

Proof. If val v0 = 4, then ch v0 = 0 and the claim is clear. If val v0 = 3, then ch v0 = 1, valu = 2,
and Proposition 12.51 (local properties) on A(q)

1 implies that rφ(q)(A
(q)
1 ) = 1, giving that r0(A0) =

1. Assume that val v0 is 2. If valu = 1 and val v = 3, then the edge going from A
(q)
1 to A(q)

2 passes
above u, so there is a vertex with rφ(q) -value equal to 2 contracting to A0. If valu, val v are both 2,
then the local properties imply that rφ(q)(A

(q)
1 ) and rφ(q)(A

(q)
2 ) are both 1, proving the claim.
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By Lemma 14.7, any other vertex B above v0 has r0(B) = 0 and case {aux-r0} applies to it.
In particular, the edges G(q), and their indices, that contract to B are determined by the target
tree T (q). Hence, we would only need to look at the local part of G(q) contracting to A0, namely
(ρ(q))

−1
(↑A0).

14.1.3 The elements of star-quasi(φ0) and balancing on them
Again, as in Subsection 7.7 of Part I, we list all the possibilities for the local structure of φ0 above
v0, and the elements in star-quasi(φ0). We show that the counts of Type I, Type II, and Type III
DT-morphisms in ↑φ0 gives the same number. Again, we look at whether val v0 is 4, 3 or 2. By
Subsection 14.1.2, we focus on the local part around A0. The relations for the determinants are
easier here, as the entry corresponding to h(q)1 and t

(q)
1 is the only non-null entry in its row and

column:

Lemma 14.8 (equal multiplicity). Let φ0 be in Gtrop
2g′→0,g′+1 with codimension 1, and φ(q) and φ(q′)

in star-quasi(φ0). If H(φ0) is non-trivalent, then

mπ(φ
(q)) = mπ(φ

(q′)).

Proof. We show that
k(q) det(Aφ(q)) = k(q

′) det(AM(q′)),

where k(q) is 1
2 if t1 leads to a leaf, else it is the cardinality of the class e(q)1 through which the

contracted edge h(q)1 of H(q) passes. Similarly for k(q
′).

This calculation follows from Proposition 4.25 (edge-length map is local), a cofactor expansion
of the row of AM(q) corresponding to the contracted edge of H(q), and the fact that the only
non-zero entry of that row is 1/k(q), with k(q) as in the theorem statement. Similarly for q′.

Hence, det(AM(q)) ̸= 0 for all q, because we assumed that at least one of the gluing datums
around M0 is full-dimensional.

14.1.4 What happens with A0 ∈ φ−1(v0) such that rφ(A) = 0

Let (ρG, ρT ) be a specialization from φ : G → T to φ0 : G0 → T0 such that contr(ρT ) is a
singleton {t}, and A0 ∈ G0 a vertex such that r0(A0) = 0 and φ0(A0) = ρT (t). We continue
studying the graph ρ−1

G (A0).
We begin by showing that T (q) = TS(q) determines nd(ρ−1

G (A0)) when r0(A0) is 0. Since
val v0 ≥ 2, by Lemma 4.19 (r1 implies no-return) we have that A0 satisfies the no-return condition.
Thus, if nd-valA0 = 2, then φ0 is injective on nd-E(A0). If nd-valA0 = 3, suppose that φ0 is not
injective on nd-E(A0), so

∑
e∈nd-E(A0)

m0(e) ≤ 2m0(A0). Hence, r0(A0) = nd-valA0−2+2(A0|−∑
e∈nd-E(A0)

|e| ≥ 1, a contradiction.

• Case {aux-r0-nd2}: Assume that nd-valA0 is 2. Let eα, eβ be the edges in nd-E(A0), above
tα and tβ respectively. By Lemma 7.6 the vertices of nd(ρ−1

G (A0)) are the ends of e(q)α and e
(q)
β

above u or v. If {α, β} ⊂ S(q), the ends of e(q)α , e(q)β are above u; since ρ−1
G (A0) is connected,

they equal one vertex A in G(q), which equals A0 as subsets of [d] by Lemma 6.16. Similarly
if {α, β} ⊂ S′(q). Otherwise, one end Au is above u, the other end Av above v, so they are
distinct. By connectivity of nd(ρ−1

G (A0)) there is one edge e′ joining Au, Av. By Lemma 7.4
and since r0(A0) = 0, the vertices Au and Av belong to Case (r0-nd2) of the local properties.
So, as subsets of [d], the classes e(q)α , Au, e′, Av, e

(q)
β are equal; and h(e(q)α ) = h(e′) = h(e

(q)
β ).

• Case {aux-r0-nd3}: Assume that nd-valA0 is 3. Let eα, eβ , eγ be the edges in nd-E(A0), above
tα, tβ , tγ , respectively. Since |φ0(nd-E(A0))| = 3 and max(|S(q)|, |S′(q)|) ≤ 2, both intersections
S(q) ∩ φ0(nd-E(A0)) and S′(q) ∩ φ0(nd-E(A0)) are non-empty. One of these intersections is a
singleton. Assume without loss of generality that the singleton is {α}. By Lemma 7.5 there is
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at most one edge in nd(ρ−1
G (A0)), therefore at most two vertices. By Lemma 7.6 the vertices of

nd(ρ−1
G (A0)) are the end A2 of e(q)α above u, and the vertex A3 that is the end of both e(q)β and

e
(q)
γ above v. So A2 and A3 are distinct, joined by a non-dangling edge e′, and nd-valA2 = 2,
nd-valA3 = 3. By the Case (r0-nd2) of the local properties, as subsets of [d], we get that e(q)α ,
A2, and e′ are equal, and h(e

(q)
α ) = h(e′). Note that they are also a subset of A3. Finally

Lemma 6.16 implies that A0 = A3 ∪A2 = A3.
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14.1.5 A list of cases
In Figure 14.1 we show the hierarchy of all the cases

w4

w3

w2

r0

r1

r1

r2

nd4

nd3

nd4

nd3

nd2

nd4

t2

a1

a1

a1

{v4-r0-nd2}

{v4-r0-nd3}

{v4-r0-nd4-(k2+k5)<=a}

{v4-r0-nd4-(k2+k5)>a}

{v3-r0}

{v3-r1-nd2}

{v3-r1-nd3-t3}

{v3-r1-nd3-t2-(a=k4)}

{v3-r1-nd3-t2-k<a}

{v3-r1-nd4-(k4+k2)<=a}

{v3-r1-nd4-(k4+k2)>a}

{v2-r0}

{v2-r1-nd2}

{v2-r1-nd3}

{v2-r2-nd3-a1-11}

{v2-r2-nd3-a1-1k}

{v2-r2-nd3-a1-kk}

{v2-r2-nd3-a}

{v2-r2-nd2-a1-1}

{v2-r2-nd2-a1-k}

{v2-r2-nd2-a}

{v2-r2-nd4-a1-11}

{v2-r2-nd4-a1-1k}

{v2-r2-nd4-a1-kk}

{v2-r2-nd4-a}

Figure 14.1: Logical flow of cases to regrow v0. Cases with non-trivalent combinatorial types are
shown dotted.
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14.1.6 The case when H(φ0) is not trivalent
We investigate star-quasi(φ0) in the case when H(φ0) is not trivalent. We have that dimCsrc

φ =
#(E(T0)) = 3g − 4, which implies that #(E(H(φ0))) = 3g − 4, so there is a unique vertex A0 of
H(dtmor0) that is not trivalent. Moreover, valA0 = 4 since H(φ0) arises by specializing one edge
E(ρ−1

H (A0)) from H(φ), which is trivalent.
We denote by A(q)

1 and A(q)
2 the endpoints of h(q), and u and v the endpoints of t.

14.1.7 Graphs contracting to H(φ0)

Label the edges of H(φ0) incident to A0 with 2, 3, 4, and 5. Construction a specialization ρ(q) :
ρ(q) → ρ0 implies a specialization ρ : H(φ(q)) → H(φ0). By Remark 12.46, we desire H(φ(q)) to
be trivalent. Moreover, by our previous discussion we want contr(H(φ(q)) → H(φ0)) = {e1} and
this e1 is not a loop. So let q(1) and q(2) be the ends of e1. By Subsection 11.6, to construct a
trivalent graph which contracts to H0, choose distinct indices α, β, γ, and δ in {2, .., 5}, to have
h
(q)
α , h(q)β incident to A(q)

1 , and h(q)γ , h(q)δ incident to A(q)
2 . Denote this combinatorial type by Hα,β ,

or HS with S = {α, β}. Furthermore, assume without loss of generality that h(q)2 is incident to
A

(q)
1 , that is 2 ∈ S. We call a DT-morphism in star-quasi(φ0) type I, II, or III if its combinatorial

type is H2,3, H2,4, or H2,5, respectively. See Figure 14.2 below.
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14.2 The case when H(φ0) is not trivalent
To summarize Subsection 14.1, the setup of our case-work is as follows:

Remark 14.9. We adopt the following notation.

1. g′ is a positive integer

2. φ0 : G0 → T0, with index map m0, is in Gtrop
g→0,g′+1 and has codimension-1

3. v0 ∈ V (T0) is the unique vertex such that ch v0 + val v0 − 3 > 0

4. In fact, ch v0 + val v0 − 3 = 1

5. The possible values for v0 are 2, 3 and 4

6. A0 ∈ V (H(φ0)) the unique vertex such that valA0 > 3

7. In fact, valA0 = 4

8. a0 = m0(A0)

9. ρ(q) : (φ(q) : G(q) → T (q),m(q)) → (φ0,m0) the specializations from quasi top-dimensional
DT-morphisms to φ0, indexed by q

10. For every ρ(q) we have that contr(ρ(q)) is a singleton {t1}.

11. We have that ρ(q)(t1) = v0

12. r(q) encodes the Riemann-Hurwitz inequalities of φ(q), or alternatively gives the coefficients
of the ramification divisor of φ(q), see Equation (12.3) on Page 122

13. h(q)1 ∈ E((ρ
(q)
H )

−1
(A0)) the unique edge of H(φ(q)) contracted by ρ(q)

14. A(q)
1 and A(q)

2 the ends of h(q)1

15. e(q)1 the unique edge in h(q)1 in the cases val v0 = 4 and val v0 = 3

16. u, v the vertices of a given T (q) that contract to v0

17. h1, h2, h3 and h4 the edges of H(φ0) incident to A0.

18. e2, e3, e4 and e5 the non-dangling edges of G0 incident to A0

19. ki = mφ0
(ei)

20. e(q)i the only edge such that ρ(q)(e(q)i ) = ei

21. k(q)1 = mφ0
(e

(q)
1 )

22. Goal: the construct all the possible ρ(q).

Throughout this subsection we refer to these facts, e.g. by Item 4 we have ch v = 4− val v0. △
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14.2.1 The case where val v0 = 4 and nd-valH0 = 4

Assume that val v0 = 4. By Item 4, we have that ch v0 = 1 − (4 − 3) = 0, so r0(A0) = 0 since
A0 ∈ φ−1

0 (v0). Thus, r(q)(A(q)
1 ) = r(q)(A

(q)
2 ) = 0, because r(q)(A(q)

i ) ≤ r0(A0). In this case u, v
have to be trivalent to yield val v0 = 4. So case (r0) of the local properties applied on A

(q)
1 , A(q)

2

implies that the non-dangling edges of G0 incident to A0 are above distinct edges of T0. Also that
e
(q)
1 is the unique edge of G(q) above t1 which contracts to A0.

Label the edges of G0 and T0 such that ei is above ti and m0(ei) ≤ m0(ej) when i < j. There
are three trees that contract to T0, these are T2,3, T2,4, and T2,5. Fix S and let T (q) = TS , so
the combinatorial type is HS . Label the edges of H0 so hi passes above ti by going through ei.
Lemma 12.50 (nd. rφ formula) applied to A implies that:

k2 + k3 + k4 + k5 = 2a0 + 2. (14.2)

Observe (ρ(q))
−1

(A0) is determined by the indices of A(q)
1 , A(q)

2 , k(q)1 and the target tree. It
turns out to be convenient, for each φ(q), to introduce indices α, β, γ, δ and relabel A(q)

1 and A(q)
2 ,

with A(q)
+ , A(q)

− , such that the following conditions are fulfilled:

(a) e(q)α and e(q)β are incident to A(q)
− , and e(q)γ and e(q)δ are incident to A(q)

+ ;

(b) kα ≤ kβ , and kγ ≤ kδ;

(c) kα + kβ ≤ kγ + kδ, and if kα + kβ = kγ + kδ, then α = 2;

(d) if 2 ∈ {α, β}, then α = 2,

(e) if 5 ∈ {γ, δ} then δ = 5.

These conditions can always be met, and the way is unique. The motivation for this notation
is that, since both A

(q)
− and A

(q)
+ are incident to e(q)1 , Lemma 12.50 (nd. rφ formula) implies that

m(q)(A
(q)
− ) ≤ m(q)(A

(q)
+ ).

Observe that max(kγ , kδ) = kδ ≤ m(q)(A
(q)
+ ) ≤ a0, and that fixing a value for m(q)(A

(q)
+ )

determines the values of k(q)1 and m(q)(A
(q)
− ). So let m(q)(A

(q)
+ ) = a0 −K, for some non-negative

K. By Lemma 12.50 we have that:

m(q)(A
(q)
+ ) = a0 −K,

k
(q)
1 = kα + kβ − 1− 2K,

m(q)(A
(q)
− ) = kα + kβ − 1−K.

With K = 0 we get m(q)(A
(q)
+ ) = a0 and it is always possible to construct a quasi top-dimensional

DT-morphism, independently of the choice of target tree. See constructions below. From there,
the value of K increases, thus decreasing the value of m(q)(A

(q)
+ ) until either m(q)(A

(q)
+ ) equals

kδ = max(kγ , kδ) or m(q)(A
(q)
− ) equals kβ = max(kα, kβ).

Now we give a numeric interval such that K is in this interval if and only if the necessary
upper bounds a0 ≥ m(q)(A

(q)
+ ),m(q)(A

(q)
− ), k

(q)
1 , and the necessary lower bounds m(q)(A

(q)
+ ) ≥ kδ,

m(q)(A
(q)
− ) ≥ kβ , k

(q)
1 ≥ 1, are satisfied. The key point is that this interval only depends on the

values ki, not on the specific target tree. Moreover, we show how to construct φ(q) when these
bounds are satisfied. Thus, for each choice of target tree, and hence of combinatorial type, there
is the same number of quasi top-dimensional

The upper bounds follow from substituting the inequality a0 + 1 ≥ kα + kβ in the expressions
depending on K. This inequality follows from Equation (14.2) and the fact that kα+kβ ≤ kγ+kδ.
Establishing the lower bounds requires two cases. The interval to which K belongs depends on
these cases as well. The main question is whether kδ = k5 or kα = k2. This is dictated by whether
k5 + k2 ≤ a0 + 1 or k5 + k2 > a0 + 1.
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• Case {v4-nd4-1}: Assume that k5+k2 ≤ a0+1. We get k2+k∗ ≤ k∗+k∗ for all possible choices
to fill the ∗, with strict inequality if k5 + k2 < a0 +1. The strict inequality implies kα = k2, and
for equality we have chosen already kα = k2. It follows that m(q)(A

(q)
− ) = k2 + kβ − 1−K ≥ kβ

if and only if K ≤ k2 − 1. Now suppose that K ≤ k2 − 1, so the second lower bound is satisfied.
Also, it gives m(q)(A

(q)
+ ) = a0 − K ≥ a0 − k2 + 1. Observe that a0 − k2 + 1 ≥ kδ if and

only if k2 + kδ ≤ a0 + 1, so the first lower bound is satisfied. For the remaining one, writing
k
(q)
1 = m(q)(A

(q)
− )−K gives k(q)1 ≥ 1, because m(q)(A

(q)
− )−K ≥ kα − (kα − 1) ≥ 1.

There are k2 DT-morphisms for each target tree. See figures below, where K = 1.

v0

A

e2

e3

e4

e5

φ0

A
(1)
+

A
(1)
−

φ(1)

Type I

A
(2)
+

A
(2)
−

φ(2)

Type II

A
(3)
−

A
(3)
+

φ(3)

Type III

• Case {v4-nd4-2}: Assume that k5+k2 > a0+1. We get k5+k∗ > k∗+k∗ for all possible choices.
Thus kδ = k5. It follows that m(q)(A

(q)
+ ) = a0−K ≥ k5 if and only if K ≤ a0−k5. Now suppose

K ≤ a0 − k5, so the first lower bound is satisfied. It also gives m(q)(A
(q)
− ) = kα + kβ − 1−K ≥

kα + kβ + k5 − 1 − a0. Replacing with Equation (14.2) gives m(q)(A
(q)
− ) ≥ a0 − kγ . Observe

that a0 − kγ ≥ kβ if and only if kβ + kγ ≤ a0, true because otherwise by Equation (14.2) it
would happen that kα + k5 ≤ a0 + 1, a contradiction. This gives the second lower bound. For
the remaining one, writing k

(q)
1 = m(q)(A

(q)
− ) − K gives k(q)1 ≥ 1, because m(q)(A

(q)
− ) − K ≥

k5 − (a0 − k5) > 1, since 2k5 ≥ k5 + k2 > a0 + 1.

There are a0 − k5 DT-morphisms for each target tree. See figures below, where K = 0.

v0

A

e2

e3

e4

e5

φ0

A
(1)
+A

(1)
−

φ(1)

Type I

A
(2)
+A

(2)
−

φ(2)

Type II

A
(3)
+

A
(3)
−

φ(3)

Type III

If k5+k2 ≤ a0+1, then k2−1 = min(k2−1, a0−k5). Otherwise, min(k2−1, a0−k5) is a0−k5, so
0 ≤ K ≤ min(k2 − 1, a0 − k5) and each possible value in the range gives a different DT-morphism
with target tree TS . As different trees give different combinatorial types HS , we obtain the three
possible types.

14.2.2 The case where val v0 = 3 and nd-valH0 = 4

Assume that val v0 = 3. Thus, valu is 2 and val v is 3, so A
(q)
1 and A

(q)
2 are above u and v,

respectively. For convenience relabel A(q)
1 , A(q)

2 , with A(q)
v , A(q)

u , respectively.
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So we have that r0(A) = 1, rφ(q)(A
(q)
u ) = 1 and rφ(q)(A

(q)
v ) = 0. Lemma 12.50 (nd. rφ formula)

gives that r0(A) = 2a0 + 4− 2− (k2 + k3 + k4 + k5). By the no-return condition, the ei are above
at least two edges of T0. If they were above exactly two edges of T0, then the last parenthesis in
the expression for r0(A) would be at most 2a0, contradicting that r0(A) = 1. Thus, in G0 exactly
two of the edges incident to A are above the same edge of T0, and the other two are each above
distinct edges of T0. Hence label the edges of T0 and G0 such that:

(a) e2 and e5 are above t2

(b) e3 is above t3

(c) e4 is above t4

(d) k2 ≤ k5 and k3 ≤ k4

As r0(A0) = 1, Lemma 12.50 (nd. rφ formula) gives:

k2 + k3 + k4 + k5 = 2a0 + 1. (14.3)

This implies an important observation: that k4 + k5 ≥ a0 +1, since k5 ≥ k2 and k4 ≥ k3. Another
one is that a0 ≥ k2 + k5, because e2 and e5 are above the same edge of T0.

There are three options for the singleton S(q), which determine the target tree. We show that
the target tree and the values ki determine m(q)(A

(q)
v ), k(q)1 , and m(q)(A

(q)
u ). First let T (q) be T2.

The case (r1-nd3) applied to A
(q)
u implies that m(q)(A

(q)
u ) = k

(q)
1 = k2 + k5. The case (r0-nd3)

applied to A(q)
v implies that 2m(q)(A

(q)
v ) + 1 = k2 + k3 + k

(q)
1 , and it follows from Equation (14.3)

that m(q)(A
(q)
v ) = a0. This gluing datum has type III. See the figures below.

Second, let T (q) be Tα with α equal to 3 or 4. The case (r1-nd3) applied to A(q)
u implies that

there are two non-dangling edges of G(q) above t1 incident to A(q)
u , namely e(q)1 and some other e′

in G(q). Also that kα = k
(q)
1 +m(q)(e′). So e′ is incident to A(q)

u and some A′ above v. Note that
nd-valA′ is 2, so either A′ is incident to e(q)2 or e(q)5 .

To explore the two options, let e(q)δ be the edge incident to A′. So eα is above tα and eδ is
above t2. Let β be such that eβ is above t3 or t4, γ such that eγ is above t2, and {α, β, γ, δ} equals
{2, 3, 4, 5}. The pair (α, δ) implies some inequalities. The case (r0-nd2) applied to A′ gives that
m(q)(e′) = m(q)(e

(q)
δ ) = kδ, so k(q)1 = kα − kδ. In particular:

kα > kδ.

The case (r0-nd3) applied to A(q)
v gives 2m(q)(A

(q)
v ) + 1 = kβ + kγ + k

(q)
1 . Equation (14.3) gives

2m(q)(A
(q)
v ) + 1 = 2a0 + 1− 2kδ, so m(q)(A

(q)
v ) = a0 − kδ.

As m(q)(A
(q)
v ) = a0 − kδ is greater than e

(q)
1 = kα − kδ, kγ , kβ , we get three inequalities: first

a0 ≥ kα; second a0 ≥ kγ + kδ = k2 + k5; and third a0 ≥ kβ + kδ. The first two are always true.
It follows that we can get a DT-morphism with an associated pair (α, δ) and with target tree Tα
if and only if kα > kδ and a0 ≥ kβ + kδ. Moreover, observe that a0 ≥ kβ + kδ is equivalent to
a0 +1 ≤ kα+ kγ by Equation (14.3). If a0 +1 ≤ kα+ kγ , then a0 ≥ kγ + kδ = k2 + k5 implies that
kα ≥ a0 + 1− kγ ≥ kδ + 1 > kδ. Thus, only

a0 ≥ kβ + kδ, or equivalently, a0 + 1 ≤ kα + kγ ,

is needed as a condition. The resulting combinatorial type is Hαδ if δ = 2, or Hβγ if δ ̸= 2.
The four cases for (α, δ) are (4, 2), (3, 5), (3, 2), and (4, 5). The first two cases have combinatorial

type II, and the last two cases combinatorial type I. To the first case corresponds the inequality
a0+1 ≤ k4+k5, which has been proven to be always true. The second reverses the inequalities, so
this case never happens. The third case needs k4+ k2 ≤ a0, and the fourth needs a0+1 ≤ k4+ k2,
so they are mutually exclusive. Hence there is exactly one gluing datum of each type.
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• Case {v3-nd4-1}: Assume that k4 + k2 ≤ a0. Type I is realised by the pair (3, 2). See figures
below.

v0

A

e4

e3

e5

e2

φ0

A
(1)
v

A
(1)
u

φ(1)

Type I

A
(2)
u

A
(2)
v

φ(2)

Type II

A
(3)
u

A
(3)
v

φ(3)

Type III

• Case {v3-nd4-2}: Assume that k4+ k2 ≥ a0+1. Type I is realised by the pair (4, 5). See figures
below.

v0

A

e4

e3

e5

e2

φ0

A
(1)
u

A
(1)
v

φ(1)

Type I

A
(2)
u

A
(2)
v

φ(2)

Type II

A
(3)
u

A
(3)
v

φ(3)

Type III

14.2.3 The case where val v0 = 2 and nd-valH0 = 4

Assume that val v0 = 2. We say that φ(q) has target I or II when its target tree is T∅ or T2,
respectively. By a similar reasoning as done in Subsection 7.7.4 we have that target I gives a
quadruple [eα, eβ ; eγ , eδ] of the edges incident to A where kα = kβ and kγ = kδ. Target II can be
regarded as a transition of the relations above t2 to those above t3 via two changes. A change is
either splitting a class, or merging two classes. In both targets we have r0(A0) = 2.

By the no-return condition there are two cases: two of the non-dangling edges incident to A0

are above the same edge of T0, and the other two are above a different edge of T0; or there are three
above one and one above the other. Label the edges ofG0 and T0 such that: min(k2, k3, k4, k5) = k2;
e3, e4 are above t2 with k3 ≤ k4; e5 is above t3.

• Case {v2-nd4-t3}: Assume that φ(e2) = t3. Lemma 12.50 (nd. rφ formula) applied to A0 gives

rφ(A0) = 2 = 2 + 2a0 − (k2 + k3 + k4 + k5).

As k2 + k5 ≤ a0 and k3 + k4 ≤ a0, there is in fact equality. This gives k2 ≤ k3 ≤ k4 = a0 − k3 ≤
a0 − k2 = k5. These inequalities are relevant for the φ(q) with target II, because if a class eα
splits above u then it must produce one class eδ that is above t3, namely kα > kδ, for some α
equal to 2 or 5, and δ equal to 3 or 4. On the other hand, φ(q) can have target I if k2 is equal
to both k3 and k4, or to one of them. This divides into the following cases.

• Case {v2-nd4-t3-k2=k4}: Assume that k2 = k4. The indices k2, k3, k4, and k5 are equal, since
k2 ≤ k3 ≤ k4 ≤ k5 = a0−k2 and a0 = k3+k4. There are two φ(q) with target I, corresponding to
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[e3, e2; e4, e5] and [e3, e5; e4, e2]. These are φ(1) and φ(2) respectively. There is just one possibility
for target II: two classes merge above v. This is φ(3). See figures below.

t2 t3v0

e3

e4

e2

e5

A

φ0

t1
u

v

A
(2)
1

A
(2)
2

e2

e5

φ(1)

Type I

t1
u

v

A
(2)
2

A
(2)
1

e5

e2

φ(2)

Type II

t1u v

A
(3)
2 A

(3)
1

e2

e5

φ(3)

Type III

• Case {v2-nd4-t3-k2=k3}: Assume that k2 = k3 ̸= k4. We have that k2 = k3 < k4 = k5. There
is one φ(q) with target I, corresponding to [e3, e2; e4, e5]. It is φ(1). There are two possibilities
for target II: the class e4 splits above u because k4 > k2; or two classes merge above u. They
are φ(2) and φ(3) respectively. See figures below.

t2 t3v0

e3

e4

e2

e5

A

φ0

t1
u

v

A
(1)
2

A
(1)
1

φ(1)

Type I

t1u v

A
(2)
1

A
(2)
2

e5

e2

φ(2)

Type II

t1u v

A
(3)
2 A

(3)
1

φ(3)

Type III

• Case {v2-nd4-t3-k2<k3}: Assume that k2 is distinct from k3 or k4. We have that k2 < k3 <
k4 < k5. There are no φ(q) with target I. There are three possibilities for target II: one is a class
split above u because k4 > k2; the second is similar because k3 > k2; and last, two classes merge
above u. These are φ(1), φ(2) and φ(3) respectively. See figures below.

t2 t3v0

e2

e5

e3

e4

A

φ0

t1u v

A
(1)
2

A
(1)
1

φ(1)

Type I

t1u v

A
(2)
2

A
(2)
1

φ(2)

Type II

t1u v

A
(3)
2 A

(3)
1

φ(3)

Type III

• Case {v2-nd4-t2}: Assume that φ(e2) = t2. Note that a0 = k5, so in fact k2 ≤ k3 ≤ k4 < k5.
Lemma 12.50 (nd. rφ formula) applied to A0 implies that a0 = k5 = k2 + k3 + k4. There is no
φ(q) with target I. There are three with target II. Observe that above u two classes merge, and
there are three possibilities: e2 and e3 merge; e2 and e4 merge; and e3 and e4 merge. Above v
another merge happens, to produce e5. These are φ(1), φ(2) and φ(3), respectively. See figures
below.
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t2 t3v0

e2

e3

e4

e5

A

φ0

t1u v

A
(3)
1 A

(3)
2

φ(1)

Type I

t1u v

A
(2)
1

A
(2)
2

φ(2)

Type II

t1u v

A
(1)
2

A
(1)
1

φ(3)

Type III

14.3 Forbidden local parts
Many results in graph theory concern forbidden minors, that is, given a graph theoretic property, a
description of local structures that cannot appear in a graph with said property. In this subsection
we derive several results in such style regarding the property of being full rank, and we use them
to prove Proposition 14.10. This proposition was used in the proof of several formulas for mπ̃.

We group them together in function of common limits. These limits appeared already in
Subsection 7.7 of Part I, where it was argued that they cannot arise as a limit of a quasi top-
dimensional DT-morphism. We keep the same naming for these limits as in Part I and reproduce
the arguments that make them a forbidden part. Let vi be the column of Aφ corresponding to the
edge ti.

• Case {v2-r2-nd2-ka-1}: Let φ(1) and φ(2) be gluing datums with local parts as shown below, and
let φ0 arise from contracting t1.

A

t2 t3v0

e

e′

φ0

t1
u

v

φ(1)

t1u v

φ(2)

v2 v3 v
(1)
1 v

(2)
1

1 1 2 1
2

ai ai 0 ai

Since the columns v2 and v3 are equal, these local parts imply that φ(q) is not full-rank.

• Case {v2-r2-nd2-ka-2}: Let φ(1) and φ(2) be gluing datums with local parts as shown below, and
let φ0 arise from contracting t.

A

t2 t3v0

e1 e2

φ0

t1u v

φ(1)

t1u v

φ(2)

v2 v3 v
(1)
1 v

(2)
1

1
k

1
k

1
k−1

1
k+1

ai ai ai ai

Since the columns v2 and v3 are equal, these local parts imply that φ(q) is not full-rank.

• Case {v2-r2-nd2-kb}: Let φ(1) be the gluing datum with a local part as shown below, and let
φ0 arise from contracting t.

A

t2 t3v0

e1

e2

φ0

t1u v

φ(1)

v2 v3 v
(1)
1

1
k

1
k+2

1
k+1

ai ai ai

Since 2(k + 1)v
(1)
1 = kv

(1)
1 + (k + 2)v

(1)
1 , this local part implies that φ(q) is not full-rank.
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Now we are ready to show:

Proposition 14.10. Let d and g be integers, φ in DTMd
g→0, and h be in H(φ). If we write

h = ⟨A0, e1, A1, . . . , Aν−1, eν , Aν⟩, we have that

• If h passes above a leaf, then ki = 1 and either φ(A1) or φ(Aν−1) lead to a leaf.

• Otherwise, there are constants k and µ such that 1 ≤ µ ≤ ν and ki = k for i ≤ µ, and
kj = k + 1 for µ < k.

Proof. It is enough to prove the proposition for full-rank change-minimal φ. Let e, e′ be adjacent
edges in h. By Cases (r0), (r1) and (r2) of Proposition 4.21 (local properties) we have that mφ(e),
mφ(e

′) differ by at most 1.
Assume that h passes above a leaf. Let e1 in h be above t1 with ends u, v such that v is a

leaf. If valu = 2 we are done by Lemma 13.9, so assume that valu = 3 and suppose there is e2
in h such that mφ(e2) > 1. Since mφ(e1) = 1, we may assume that e2 is adjacent to e3 with
mφ(e2) ̸= mφ(e3). By the local properties this implies that, if A is the common end of e2, e3,
then valφ(A) = 2, so t1 = φ(e1), t2 = φ(e2), and t3 = φ(e3) are three distinct edges. Let v1, v2,
v3 be the columns in Aφ corresponding to t1, t2, t3, respectively. Since φ is change-minimal and
by the local properties, we have that v1 has a single non-zero entry corresponding to the edge h,
and that the entries of v2, v3 coincide outside of the entry corresponding to h. Thus v2 − v3 is a
scalar multiple of v1, contradicting that φ is full-rank. Also, if neither φ(e1) nor φ(eν) lead to a
leaf, then we would have a local part like in Case {v2-r2-nd2-M-1}, which also contraditcs that φ
is full-rank.

Assume that h does not pass above a leaf. Suppose that there are indices α < β < γ such
that mφ(eα) ̸= mφ(eβ) and mφ(eβ) ̸= mφ(eγ). We may assume that β = α + 1, and that
mφ(ei) = mφ(eβ) for β < i < γ. By contracting φ(eγ−1) and applying either Case w3-r1-nd2 or
Case w2-r1-nd2 of the deformation to regrow it (see Appendix 14.4 for a Summary), we construct
φ1 such that mφ(eγ−1) = mφ(eγ) and φ1 is top-dimensional in DTMd

g→0, because φ is. Iterating,
contracting φ(eγ−i) and regrowing to a different DT-morphism, we obtain φi in maxDTMd

g→0

(because φi−1 is), with mφ(eγ−i) = mφ(eγ). Finally in φγ−β−1 we have that mφ(eα) ̸= mφ(eα+1)
and mφ(eα+1) ̸= mφ(eα+2). But this implies a forbidden local part, contradicting that φi is in
maxDTMd

g→0.

14.4 Trivalent deformation
We review the constructions necessary to prove the balancing condition for Π when φ0 is codimension-
1 and H(φ0) is trivalent. We present the diagrams, the local part above v0, the relevant columns
of A0 and A(q), the wall-relation and say a few remarks. For the proof that these cases are ex-
haustive see Section 7 of Part I. Let A0 in G0 be a vertex above v0. Set ki = mφ0

(ei). From
Case {v3-r1-nd3-t2-(a=k4)} onwards, A0 is the unique vertex with r0-value greater or equal than
1.

• Case {v4-r0}: The wall-relation in this case is:

v
(1)
1 + v

(2)
1 + v

(3)
1 = v2 + v3 + v4 + v5. (14.4)

It is obtainted by applying Cases {v4-r0-nd2} and {v4-r0-nd3}, detailed below, to the vertices
above v0.

• Case {v4-r0-nd2}: Assume that nd-E(A0) = {eα, eβ} with φ0(eα) = tα, φ0(eβ) = tβ .
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v0

tα

tβ tγ

tδ

φ0

t1u v

tα

tβ tγ

tδ

Tα,β

t1u v

tα

tγ tβ

tδ

Tα,γ

t1u v

tα

tδ tβ

tγ

Tα,δ

Figure 14.3

The local parts of A0, first four columns, and of A(q), last three columns, are:

vα vβ vγ vδ v
(1)
1 v

(2)
1 v

(3)
1

1
k

1
k 0 0 0 1

k
1
k

• Case {v4-r0-nd3}:

v0

tα

tβ tγ

tδ

φ0

t1u v

tα

tβ tγ

tδ

Tα,β

t1u v

tα

tγ tβ

tδ

Tα,γ

t1u v

tα

tδ tβ

tδ

Tα,δ

Figure 14.4

The local parts of A0, first four columns, and of A(q), last three columns, are:

vα vβ vγ vδ v
(1)
1 v

(2)
1 v

(3)
1

1
kα

0 0 0 0 0 1
kα

0 1
kβ

0 0 0 1
kβ

0

0 0 1
kγ

0 1
kγ

0 0

• Case {v3-r1-nd3-t2-(a=k4)}: Here A0 is the unique vertex in φ−1
0 (v0) such that r0(A0) = 1, we

have that φ is injective on nd-E(A0), and m0(A0) = m0(e4).
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A0

t4

t2

t3

v0

e2

e3

e4

φ0

v ut1

A(1)

φ(1)

v ut1

A(2)

e2

e3

e4

φ(2)

u

v
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A(3)

φ(3)
u

v
t1

A(4)

φ(4)

Figure 14.5

The local parts of A0, first three columns, and of A(q), last four columns, are:

v2 v3 v4 v
(1)
1 v

(2)
1 v

(3)
1 v

(4)
1

1
k2

0 0 1
k2

0 1
k2+1 0

0 1
k3

0 1
k3

0 0 1
k3+1

0 0 1
k2+k3

0 1
k2+k3−1 0 0

ai bi ci ci ci ai bi

The wall-relation is:

v
(1)
1 + (k1 + k2 − 1)v

(2)
1 + (k2 + 1)v

(3)
1 + (k3 + 1)v

(4)
1 (14.5)

= (k2 + 1)v2 + (k3 + 1)v3 + (k2 + k3)v4. (14.6)

• Case {v3-r1-nd3-t2-(a>k4)}: Here m0(A0) > m0(e4).

t4

t2

t3

v0

A0

e2

e3

e4

φ0

t1 uv

A(1)

φ(1)

t1 uv

A(2)

φ(2)

Figure 14.6

The local parts of A0, first column, and of A(q), last two columns, are:

v4 v
(1)
1 v

(2)
1

0 0 0
0 0 0
1
k4

1
k4−1

1
k4+1

ai ai ai
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The wall-relation is:

(k4 − 1)v
(1)
1 + (k4 + 1)v

(2)
1 = 2k4v4. (14.7)

• Case {v3-r1-nd3-t3}: Here A0 is the unique vertex in φ−1
0 (v0) such that r0(A0) = 1, we have

that φ is not injective on nd-E(A0), and nd-valA0 = 3.

t3 t4v0

e2

e3

e4

A0

φ0

t1u v

A(1)

φ(1)

t1v u

A(2)

φ(2)

Figure 14.7

The local parts of A0, first two columns, and of A(q), last two columns, are:

v3 v4 v
(1)
1 v

(2)
1

1
k2

0 0 1
k2

1
k3

0 0 1
k2

0 1
k2+k3

1
k2+k3

0

ai bi ai bi

The wall-relation is:

v
(1)
1 + v

(2)
1 = v3 + v4. (14.8)

• Case {v3-r1-nd2}: Here nd-valA0 = 2.

t3 t4v0

e
e′

A0

φ0

t1u v

φ(1)

t1v u

φ(2)

Figure 14.8

The local parts of A0, first two columns, and of A(q), last two columns, are:

v3 v4 v
(1)
1 v

(2)
1

1
k

1
k+1

1
k+1

1
k

ai bi ai bi

The wall-relation is:

v
(1)
1 + v

(2)
1 = v3 + v4. (14.9)

• Case {v2-r2-nd3-M-11}: Here there are 2 edges in E(A0) mapping to t3, and m0 equals 1 for all
edges in nd-E(A0).

t2 t3v0

e1
e2 e3

φ0

t1

A(1)

u

v

φ(1)

t1

A(2)

u

v

φ(2)

t1u v

A(3)

φ(3)

Figure 14.9
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The local parts of A0, first two columns, and of A(q), last three columns, are:

v2 v3 v
(1)
1 v

(2)
1 v

(3)
1

1 0 1 0 0
1 0 0 1 0
0 1 0 0 1

2
ai ai 0 0 ai

The wall-relation is:

v
(1)
1 + v

(2)
1 + 2v

(3)
1 = v2 + v3. (14.10)

• Case {v2-r2-nd3-M-1k}: Here m0 equals 1 for exactly one edge in nd-E(A0).

v0

e1

e2 e3

φ0

t1

A(1)

u

v

φ(1)

t1u v

A(2)

φ(2)

t1u v

A(3)

φ(3)

Figure 14.10

The local parts of A0, first two columns, and of A(q), last three columns, are:

v2 v3 v
(1)
1 v

(2)
1 v

(3)
1

1 0 1 1 0
1
k 0 0 1

k−1 0

0 1
k 0 0 1

k+1

ai ai 0 ai ai

The wall-relation is:

v
(1)
1 + (k − 1)v

(2)
1 + (k + 1)v

(3)
1 = kv2 + kv3. (14.11)

• Case {v2-r2-nd3-M-kk}: Here m0 is strictly greater than 1 for all elements in nd-E(A0).

t2 t3v0

e1

e2
e3

A0

φ0

t1u v

A(1)

φ(1)

t1u v

A(2)

φ(2)

t1u v

A(3)

φ(3)

Figure 14.11

The local parts of A0, first two columns, and of A(q), last three columns, are:

v2 v3 v
(1)
1 v

(2)
1 v

(3)
1

1
k1

0 1
k1−1

1
k1

0
1
k2

0 1
k2

1
k2−1 0

0 1
k1+k2−1 0 0 1

k1+k2
ai ai ai ai ai

The wall-relation is:

(k1 − 1)v
(1)
1 + (k2 − 1)v

(2)
1 + (k1 + k2)v

(3)
1 = (k1 + k2 − 1)v2 + (k1 + k2 − 1)v3. (14.12)
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• Case {v2-r2-nd3-P}: Here there is exactly one edge in E(A0) mapping to t3.

t2 t3v0

e1

e2

e3

A0

φ0

t1u v

A(1)

φ(1)

t1u v

A(2)

φ(2)

t1u v

A(3)

φ(3)

Figure 14.12

The local parts of A0, first two columns, and of A(q), last three columns, are:

v2 v3 v
(1)
1 v

(2)
1 v

(3)
1

1
k1

0 1
k1+1

1
k1

0
1
k2

0 1
k2

1
k2+1 0

0 1
k1+k2+1 0 0 1

k1+k2
ai ai ai ai ai

The wall-relation is:

(k1 + 1)v
(1)
1 + (k2 + 1)v

(2)
1 + (k1 + k2)v

(3)
1 = (k1 + k2 + 1)v2 + (k1 + k2 + 1)v3. (14.13)

• Case {v2-r1}: Here r0(A0) = 1 and valA0 = 3. There is at least one edge of nd-E(A0) above t2
and above t3, and there are two further cases, either nd-valA0 = 3 or nd-valA0 = 2. These two
cases give the wall-relation:

v
(1)
1 + v

(2)
1 = v1 + v2. (14.14)

• Case {v2-r1-nd3}: Here nd-valA0 is 3.

t2 t3v0

e1

e2

e3

A0

local part around A0

t1u v

A(1)

φ(1)

t1u v

A(2)

φ(2)

Figure 14.13

The local parts of A0, first two columns, and of A(q), last three columns, are:

v2 v3 v
(1)
1 v

(2)
1

1
k1

0 0 1
k1

1
k2

0 0 1
k2

0 1
k1+k2

1
k1+k2

0

• Case {v2-r1-nd2}: Here nd-valA0 is 2.

t2 t3v0

e2
e3

A0

local part around A0

t1u v

A(q)

φ(1)

t1u v

A(q)

φ(2)

Figure 14.14
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The local parts of A0, first two columns, and of A(q), last three columns, are:

v2 v3 v
(1)
1 v

(2)
1

1
k

1
k+1

1
k+1

1
k
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Index

n-valent, 13

balancing condition, 11, 17
ballot sequence, 142
branch locus, 87
branched cover, 87

caterpillar of loops, 140
change above a vertex, 23, 125
change-minimal, 30
closed star of a polyhedral space, 83
combinatorial type, 9, 15, 21

of DT-morphisms, 22
component

graph, 13
cone, 74
connected

component, 87
fibres, 90
graph, 13
through codimension-1, 16

contraction of edge, 13
covering map, 87
cycle, 13

dangling, 14, 21, 129
dangling elements, 14
dangling-no-glue condition, 30
deformation limit, 39
degree

of a cover, 87
deletion

of dangling fibres, 21
of dangling trees, 15
of edge, 13

deletion of dangling fibres, 129
dimension formula, 23
discrete tropical morphism, 17
divalent, 13

edge-length map, 22, 125
edge-length matrix, 22
ends

of a path, 13
of an edge, 13

essential
model, 19
realization, 19
vertices, 19

essential model, 14, 20, 124
essential realization, 14
essential vertices, 14

face morphism, 75
full dimensional DT-morphism, 24
full-dimensional family, 10

general length function, 16
genus

glueing datum, 30
of metric graph, 14

glueing datum, 26
base tree, 26
branch-swap, 29
relations, 26

gonality
divisorial, 8
tree, 8, 24

graph isomorphism, 13
graph morphism, 13

half-space, 74
homomorphism, 13

incident, 13
index map, 88
index-map, 17
indexed branched cover, 88
integral

points, 74
structure, 74

integral functionals, 74
interior vertices, 13

leaf, 13
length function, 14
length of a path, 13
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limit, 10
limit of a DT-morphism, 126
local degree, 88
loop, 13
loopless, 13

map
edge-length, 22
harmonic, 17
source, 17
target, 17

metric graph, 14
metric loops, 19
model, 14

of a DT-morphism, 19
moduli space

genus-g metric graphs, 6
monovalent, 13
morphism of

branched covers, 89
multiplicity of a cone, 143

no-return condition, 30
non-dangling

valency, 27
non-degenerate, 17

pass-once condition, 30
path, 13
polyhedral

cone, 74
face, 74

polyhedron
embedded, 74

quasi
full-rank, 148
top-dimensional, 148

quotient map, 89

ramification divisor
tropical, 122

ramification index, 67, 88
realization, 14

of a DT-morphism, 19
refinement of polyhedral spaces, 82
RH-condition, 17
Riemann-Hurwitz formula, 67

saturated subset, 89
signed multiplicity, 145
skeleton, 3
specialization of DT-morphisms, 125
star of a polyhedral space, 83
stellar subdivision, 82
subdivision of edge, 13
subgraph, 13
supporting hyperplane, 74

tree, 13
tree gonality, 8
tree-swap, 29
trivalent, 13, 15
trivalent combinatorial type, 15
tropical modification, 8, 14, 129
tropical morphism, 19, 20

topological realization, 123
with polyhedral structure, 123

tropical morphisms, 4
tropical semiring, 3

unramified, 87

valency, 13
vertex set, 14, 19
vertices, 75
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