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Abstract 
This thesis contributes to the field of in-situ analytical chemistry by further ex-

panding the measurement capabilities of a miniature laser ablation/ionization mass 
spectrometer (LIMS). The current version of LIMS used in this thesis was developed 
for in-situ space applications and represents the space-ready prototype of original 
size and figures of merit. The thesis expands on analytical problems related to the 
accurate measurement, classification, and identification of mass spectra registered 
from early (primitive) life and various minerals of inorganic origin. The investigated 
subjects cover specific aspects of ion generation in time-of-flight mass spectrometry, 
signal processing, and machine learning, applied to the large mass spectrometric data. 
The thesis outlines effective solutions for unsupervised characterization of com-
pounds using graph theory and relational data analysis.  

The current state of space exploration places the identification of signatures of life 
on Mars among the biggest challenges of our time and represents the frontier of 
science. The challenge of unambiguous and deterministic identification of 
biogenicity of the given sample (of unknown origin) is an outstanding problem 
that requires identification of the range of biological signatures (biosignatures) on 
the micrometer scale and demands the presence of unique patterns and 
characteristics that as a whole indicate biological processing.  

This thesis explores the quality of chemical information that could be gathered 
from Precambrian microscopic fossils (microfossils) using three different wave-
lengths of the femtosecond laser radiation used as an ion source in the current 
LIMS system. The thesis discusses various aspects of mass spectrometric imaging 
and classification of spectra using the graph-theoretic approaches. Furthermore, 
the implementation of spectral similarity (proximity) networks will showcase the 
potential for the deterministic identification of bio-organic and inorganic 
chemistries. The current results provided in this thesis show high utility and 
perhaps, yet uncovered potential and importance of LIMS as an analytical method 
that can be used in future space exploration programs. 

Keywords 
Mass spectrometry / Mars / Space Instrumentation / Laser Ionization 
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  Introduction 
Precis 
In this chapter, I will introduce a miniature Laser Ionization Mass Spectrometer, a 

state-of-the-art instrument for characterization of chemical compositions of solids, 
and discuss its importance in the context of space exploration. Further, I will present 
principles of operation and technical characteristics of the instrument. I will also in-
troduce the Gunflint sample as a realistic testbed for space instrumentation.  Further-
more, I will present the outline of the thesis with research goals and objectives. 
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1.1  Prospect of finding signatures of life in a 
Solar system with laser-based mass spectrometry 

Identification of the extinct and/or extant forms of life on Mars is of the highest 
priority in current space research and remains the biggest challenge. Satellite imaging 
and in-situ research have shown that in the early days of Martian evolution, liquid 
water and clement conditions, suitable for microbial life, were present at the surface 
of the planet (Arvidson et al., 2014; Fassett & Head, 2011). Moreover, recent studies 
reveal radar evidence of modern subglacial liquid water on Mars (Orosei et al., 2018), 
providing a realistic habitat for microbes living in the subsurface (Onstott et al., 
2019). All these observations form a strong rationale for a search of biosignatures on 
the Red Planet.  

However, robotic exploration of Mars presents several technological challenges: 
the size, weight, and power consumption of a scientific payload have to be sufficiently 
small and at the same time capable of delivering highly accurate scientific infor-
mation. Traditionally used in space research techniques such as thermal volatilization 
(TV) – gas chromatography (GC) – mass spectrometry (MS), capable of detecting or-
ganic compounds, might not be sufficiently sensitive to detect weak signals from the 
micrometer-sized objects of a potentially biological origin. Moreover, such methods 
provide bulk sample analysis and alter the chemistry of the sample, which can make 
an interpretation of retrieved data ambiguous (Navarro-González et al., 2006). There-
fore, there is a growing consensus in the expert field that the design of future element 
and organic composition detection instruments for Mars and icy moons of Jupiter 
should include local and sensitive methods that are able to detect extinct and/or ex-
tant life (Arevalo Jr et al., 2020; Goesmann et al., 2017; Vago et al., 2017; Westall et al., 
2015).  

Laser-based mass spectrometry – is a technique that combines the capability to 
detect organic compounds (Laser Desorption Mass Spectrometry – LDMS) (Ligterink 
et al., 2020), provide element and isotope analysis (Laser Ablation/Ionization Mass 
spectrometry – LIMS)(Rohner et al., 2003; Tulej et al., 2020; Wurz et al., 2020), and a 
capability to operate on a microscopic level (diameter of the analytical spot is ~5-
10 µm), without the necessity for any sample preparation (Tulej et al., 2014). Intense 
monochromatic light (laser) and matter interaction constitute the core of the 
LIMS/LDMS methods. A single laser pulse is focused and shot at the surface of the 
sample: if the power density of laser pulse is sufficient, the analyzed material gets 
ablated (excavated) and reaches very high temperatures (to the point when matter 
gets atomized and partially ionized). Formed ions from the sample further experience 
separation and detection with a mass analyzer. This is a basic principle of LIMS anal-
ysis, where power densities of a single laser pulse reach TW/cm2 (Tera – 1012) levels, 
and a single laser shot provides an analysis of solids on a femtogram scale (Femto – 
10-15). However, if significantly lower laser power densities are applied (MW/cm2 -
GW/cm2) to the surface of the solid material, it is possible to desorb molecules and
molecular fragments and register them with a mass analyzer. These processes de-
scribe in a nutshell core working principles of the LDMS method.

So, what does it take to identify signatures of life on the surface of Mars? To answer 
this question, we have to look into the terrestrial fossil record, using the assumption 
that decay and preservation of organic compounds follow the same principles on 
Mars. Community of Precambrian (older than 541 Ma) microfossils from the Gunflint 
*This chapter is based on original contribution: https://boris.unibe.ch/152616/8/Vet_News_2_20_web_Lukmanov.pdf
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formation (1.88 Ga), Ontario, Canada, are considered among the best examples of 
early life. The morphological and chemical quality of the microfossils preserved in the 
Quartz (SiO2) matrix provides an unrivaled insight into the existence of microbial life 
almost 2 billion years ago. Gunflint Formation reveals a view into an abundant and 
widespread, already complex, and diversified community comprising 12 separate 
species (Barghoorn & Tyler, 1965; Cloud, 1965; Wacey et al., 2013). There is still an 
ongoing debate about the diversity and metabolism of some of the identified species. 
However, it is largely accepted that oxygenic photosynthetic bacteria (cyanobacteria) 
were a dominant part of the Gunflint microbiome (Barghoorn & Tyler, 1965; Lepot et 
al., 2017). By studying the fossilized microbial communities, like one from the Gun-
flint formation, we can infer an element, isotope, molecular and morphological char-
acteristics of truly biogenic organic remains, which altogether can indicate biological 
origin. Moreover, using the Gunflint microfossils as a benchmark, we can understand 
how well our instruments are performing relative to each other and recognize what 
needs to be improved.   

Therefore, if instrumentation developed for space exploration will be capable of 
measuring micro-sized inclusions of bio-organic remains and distinguish them from 
inorganic chemistries, we may come a little closer to the ultimate goal of finding sig-
natures of life on the Red Planet. While this goal can be formulated in a very short 
manner, the complexity of the task should not be misinterpreted, as bio-organic 
chemistry is comprised of the same elements as inorganic materials.  

Additionally, considering that only a small fraction of the organic material can be 
preserved due to the effects of heat, pressure, and time, all that remains is very fine 
inclusions that are often do not have any shapes due to morphological convergence. 
As a result of billions of years of sediment evolution, pristine chemistry can be 
replaced with secondary processes, and thus, we may have putative microstruc-
tures of undefined origin. Therefore, sensitive instruments are required to 
investigate the smallest pieces of evidence, which can directly or directly point 
towards the biogenicity of the given structures. This goal drives the instrument 
development teams around the world and pushes the envelope of progress further 
every year, increasing the sensitivity and spatial resolution of space-type 
instruments. If such faint signatures of life, like those from the Gunflint 
microfossils, can be routinely identifiable with space instrumentation, this will 
mean that we have the necessary tools for in-situ exploration of the Red Planet 
and beyond.  

During the course of the thesis, I will demonstrate that LIMS as an 
analytical method is among few space-qualified methods that can successfully 
identify the Gunflint microfossils, distinguish them from bio-organic surface 
contamination and inorganic chemistry of the host minerals. Moreover, using LIMS, 
chemically distinct individual microfossils can be identified, together with ppm-
level trace element compositions. As a robust and high-throughput method, LIMS 
allows a continuous record of large-scale mass spectrometric data, making mass 
spectrometric imaging (MSI) possible on the surfaces of planetary bodies. 
Although suitably flat samples are not yet possible to manufacture on the Martian 
surface, the capability for MSI is still valuable. In addition to the Martian exploration 
program, an integrated LIMS/LDMS approach will be demonstrated, which will 
showcase potential for the detection and structural characterization of bio-organic 
molecules such as amino acids. This is an important measurement capability that 
can be of high utility during in-situ investigations of icy moons of Jupiter and Saturn.   

11



1.2  LIMS – principles of operation and technical 
characteristics. 

The Laser ionization Time-of-Flight Mass Spectrometry (LI-TOF-MS or LIMS) is a 
direct solid sample characterization technique that provides a highly localized chem-
ical composition analysis with high sensitivity. Historically, the first experiments on 
laser mass spectrometry were published by (Honig & Woolston, 1963), where effec-
tive mass analysis was limited due to considerable space charge broadening and 
hence limited mass resolution. The early instruments also suffered from long pulse 
durations and power fluctuations; henceforth, the reproducibility of measurements 
was rather poor. The first ns laser-based microprobe was reported by (Fenner & Daly, 
1966), where they utilized a nanosecond laser focused to ~20 µm.  Further advances 
in laser-based mass spectrometry came from (Hillenkamp et al., 1975), where au-
thors reported focused beam diameter of 0.5 µm (on the border of the diffraction 
limit), in-line microscopic imaging, and detection limits as low as 10-19 g (~0.2 ppm), 
measured from the thin sample of epoxy resin. At the same publication, the author 
mentioned that laser-based mass spectrometer (LAMMA-500) has an impressive 
range of measurement capabilities: "In principle, it should enable not only high sen-
sitivity but also isotope analysis and the 'fingerprinting' of organic molecules, pro-
vided they do not decompose into fragments too small for recognition of the parent 
molecules". Not much later, mass spectrometric analysis of organic samples was re-
ported by (Nitsche et al., 1978), where they showed measurements of the organic 
standards and heart muscle cells with detection limits corresponding to 0.1-10 ppm. 
Characteristic mass spectra of different organic substances obtained with the laser 
microprobe have illustrated the utility of applying laser-based mass spectrometry in 
the characterization of solid samples.  

Although early instruments have shown impressive analytical capabilities, they 
were large laboratory-based instruments with limitations such as lack of computing 
power for quantification purposes, vacuum arrangement issues, isobaric interfer-
ences due to small resolving powers, long laser pulse durations, and lack of control 
over laser powers leading to large fluctuation in the ion yields. These limitations, 

Figure 1A – 3D render of the LIMS instrument. The main parts of the instrument 
are denoted on the render. Figure 1B – Schematic illustration of the main parts 
of the integrated LIMS system.  
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therefore, made laser-based mass spectrometry a less popular method for character-
ization of solid samples, making the inductively coupled plasma mass spectrometry 
(ICP-MS) an analytical technique of choice of many laboratories around the world for 
a number of years. However, advances in laser technologies (Akhmanov et al., 1988), 
electronics (Schaller, 1997), and the development of ion simulation software (Dahl, 
2000) made the LIMS technique reemerge in different scientific fields (Cui et al., 2012; 
Liang et al., 2017; Managadze et al., 2010; Wurz et al., 2012; Zavalin et al., 2015), fa-
cilitating the development of new laboratory-based and miniaturized instruments 
(Tulej et al., 2014; Wiesendanger et al., 2019).  

A number of authors proposed new versions of LIMS microprobes as a viable so-
lution for the needs of space exploration programs, utilizing various instrument de-
signs (Arevalo Jr et al., 2018; Brinckerhoff et al., 2000; Goesmann et al., 2017; Mana-
gadze et al., 2010; Rohner et al., 2003; Wurz et al., 2012). The compactness of devel-
oped instruments allowed them to be deployable on planetary landers or rovers (Are-
valo Jr et al., 2018; Li et al., 2017; Wurz et al., 2020; Wurz et al., 2009).  

The Mass Spectrometry group from the University of Bern developed the LIMS in-
strument called LMS (Laser Mass Spectrometer), which was used in this thesis. Ini-
tially, the LIMS microprobe was developed as part of the Mercurian exploration pro-
gram (Rohner et al., 2003). However, due to the changes in the mission design, the 
lander part of the mission was excluded from the final arrangement. Since 2003, the 
instrument has experienced continuous development and improvement, adding on 
measurement capabilities. In the current state, the LIMS instrument utilizes a UV-258 
nm femtosecond laser ion source that can be exchanged to IR-775, or UV 387 nm 
wavelength with a possibility to use a picosecond delayed post ionization double-
pulse scheme. It also encompasses an integrated microscopy system, sample intro-
duction, and 3D translation system. The state-of-the-art vacuum system supports the 
measurements conducted with LIMS. The laboratory setting provides computer-con-
trolled temperature and humidity, allowing for stable conditions in the laboratory. 
The high vacuum that reaches 10-8  mBar, is achieved by using the joint molecular 
turbo-pump and ion-getter pump. High vacuum conditions allow for direct transmis-
sion of all produced ions into the instrument.  

The LIMS system illustrated in Fig. 1 utilizes the time-of-flight principle first intro-
duced by (Wolff & Stephens, 1953). The pulsed laser (see the blue line in fig. 1B) 
passes through the instrument and ionizes material on the surface of the sample. The 
plume of ions radially expands and reaches the point where the extraction field of the 
instrument attracts only positively charged ions. The acceleration field gives an equal 
push to all ions, directing them into the field-free area (drift tube) where ions experi-
ence mass/charge separation. Further, ions enter a retarding field (ion reflectron), 
where they are reflected in the opposite direction and finally fall on the surface of the 
microchannel plate detector (MCP). The incoming time-separated flux of ions (see the 
parabolic ion paths in Fig.1b) launches an electron avalanche, which causes a meas-
urable current on the output anodes. The current is further digitized using the analog-
to-digital converter. Thus, the element and isotope composition of the sample will be 
directly proportional to the amount of current registered on the output anodes. The 
recorded time-of-flight spectrum will indicate the presence of elements with specific 
masses, allowing to decipher the chemical composition of the investigated materials. 
Although the diameter of the analytical spot is wavelength dependent, using the cur-
rent UV-258 nm fs laser, it is possible to characterize matter with spatial resolution 
around 5 µm. 
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1.2.1 Fundamentals of Time-of-Flight Mass Spectrometry

Suppose that singly charged ions are subjected to the pulsed extraction field 𝑈𝑈, 
which accelerates and transports ions to the entrance of the field-free region, which 
is called a “drift tube”. During the ion extraction stage, all ions receive an equal 
amount of acceleration:  

𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑞𝑞𝑈𝑈, (1) 

Where 𝑞𝑞 denotes the charge of the ion, and 𝑈𝑈 acceleration voltage. The accelera-
tion energy of each ion is converted into kinetic energy: 

𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 =
𝑚𝑚𝑘𝑘𝑣𝑣𝑘𝑘2

2
, (2) 

Where 𝑚𝑚𝑘𝑘 and 𝑣𝑣𝑘𝑘 Corresponds to the mass and velocity of ion 𝑖𝑖. From the equiva-
lence of equations 1 and 2, it is possible to derive velocity of the ion 𝑖𝑖: 

𝑣𝑣𝑘𝑘 =  �
2𝑞𝑞𝑈𝑈
𝑚𝑚𝑘𝑘

 , (3) 

Therefore, considering the dependence of velocity on the mass of the ion, we can 
observe that lighter ions reach the detector in a shorter time compared to heavier 
ions. The time that ions need to pass the field-free area of the mass analyzer and reach 
the detector can be calculated as: 

𝑡𝑡𝑘𝑘 =
𝑑𝑑
𝑣𝑣𝑘𝑘

= 𝑑𝑑 ∗  �
𝑚𝑚𝑘𝑘

2𝑞𝑞𝑈𝑈
⇒ 𝑡𝑡𝑘𝑘 ∝  �

𝑚𝑚𝑘𝑘

𝑞𝑞
, (4) 

The total time that ion needs to reach the detector, including the time 𝑡𝑡0, can be 
given as: 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑡𝑡0 + 𝑡𝑡𝑘𝑘 , (5) 

Therefore, from equation 4, it is clear that ion arrival time is proportional to the 
square root of its mass over charge ratio. However, it is assumed that ions have simi-
lar initial energy distributions, initial speeds, and similar directions. In reality, these 
parameters can significantly vary, limiting the mass resolution of the instrument. 

The resolving power of the time-of-flight instrument is directly proportional to 
the length of the ion flight and depends on the initial ion parameters. Therefore, im-
plementation of the retarding field, i.e., reflectron, can significantly improve the re-
solving power of the given TOF mass analyzer. The ions with a significant spread of 
the initial kinetic energies will penetrate the retarding field with varying depths until 
the retarding field will compensate their kinetic energies and reflect them back. Con-
sequently, the introduction of an ion mirror improves the mass resolving power by a 
factor of 2 without extending the length of the instrument. Also, the retarding field 
can compensate for the spread of initial kinetic energies (Boesl, 2017). 
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1.2.2 Technical Characteristics 
Although the LIMS system was developed in 2003 (Rohner et al., 2003), various 

instrument parts were significantly modified, improving the measurement capabili-
ties. Here I will outline some of the significant changes that instrument setup experi-
enced. For example, implementation of the high-speed detector system with a high 
dynamic range (Riedo et al., 2017) allowed improving the composite signal's dynamic 
range to the level of 8 orders of magnitude. The application of a high-voltage pulser 
system improved the detection sensitivity of the instrument (Wiesendanger et al., 
2017), allowing to identify ppm-level chemistries from lunar meteorite sample. Im-
provement of the ion source was reported by (Riedo et al., 2013b) from ns to a state-
of-the-art femtosecond laser system with ‰ level of energy stability. Implementation 
of the double-pulse ionization scheme (Riedo et al., 2021; Tulej et al., 2018) revealed 
that ionization characteristics of plasmas could be significantly improved. The intro-
duction of a fully automated data analysis platform was reported by (Meyer et al., 
2017), improving the speed of data analysis. A contribution by (Wiesendanger et al., 
2018) reported the implementation of a microscopy system that allowed precise tar-
geting of micrometer-sized features. Additionally, the knowledge and expertise col-
lected during years of work on small LIMS prototype lead to the construction of the 
new LIMS instrument with high mass resolution (Wiesendanger et al., 2019). Sum-
marizing all these developments, table 1 outlines the current LIMS properties and fig-
ures of merit1.  

LIMS properties 
Dimensions of mass analyzer 160mm * ø60 mm 
Laser wavelenght λ 775, 387, 258 nm 
Laser pulse length τ ~190 fs 
Laser pulse repetition rate 1 kHz, controllable 
Time of flight 20 µs, controllable 
Mass range 1-1000, controllable
Voltage on detector system ~2000 V 
Voltage on ion optics <2000 V 
Active channels for data acquisition 4, controllable 
ADC sampling rate 3.2 Gs/s 
ADC vertical resolution 12 bit 
ADC storage speed Up to 1000 spectra/s 

Figures of merit of LIMS 
Lateral resolution 5-15 µm
Vertical resolution nm-range 
Dynamic range 4 orders of magnitude 
Mass resolution ~800 m/Δm 
Detection sensitivity ~ppm range 
Isotope ratio accuracies ‰ to % range 

Table 1. LIMS properties and main figures of merit. 

1 The dynamic range can be imporved to the range of 108 by recording the 
composite spectrum from all 4 channels of the detector (see Riedo et.al., 2017) 
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1.3  Thesis overview 
The central goal of the thesis is to further advance measurement capabilities of 

the LIMS space- prototype in characterization of bio-organic and inorganic 
chemistries. This goal is addressed by a combination of hardware modifications 
and the application of computational approaches. The hardware modifications 
include improvement of the ion source - implementation of the far UV fs laser that 
allowed to increase ionization efficiencies of investigated materials. 
Implementing a double-pulse ionization setup allowed us to gain additional 
improvements on the stoichiometry of investigated mass spectrometric signals. 
And lastly, further work on the high voltage pulser regime allowed to increase the 
instrument's sensitivity, which resulted in a larger range of identified species. 
Once the hardware-based signal quality improvement was achieved, I focused on 
computational methods that can further increase the signal quality and allow to 
infer structural inhomogeneity present in the data, in an unsupervised fashion. 
Such structural diversity identified from large LIMS observations was used as a 
proxy to understand the mineralogical and chemical compositions of investigated 
samples.   

The thesis is organized in chapters: Introduction, Methods, Results, and 
Conclusions. Additional information for specific sections from scientific results is 
provided in the appendix. The methods section presents an overview of 
computational methods used in the thesis, describes main equations and provides 
a short description of algorithmic procedures.   

The results section of the thesis presents an extensive study of Precambrian 
Gunflint microfossils using the miniature laser ionization mass spectrometer 
(LIMS) developed for space applications and high-resolution laser ionization mass 
spectrometer developed for laboratory use. The Gunflint microfossils were 
considered as Martian analog material. During the course of the thesis, I will 
demonstrate that by consequently improving the mass spectrometric signal 
quality and recording large spectrometric data, it is possible to identify 
individual mass spectra that are indicative of bio-organic inclusions 
(microfossils). Using the spectral data reduction techniques, I will 
demonstrate structural characteristics and data patterns that are measured from 
individual microfossils. Further, I will classify an extensive collection of bio-
organic spectra from inorganic host material in a probabilistic manner, using 
various binary machine learning models. Furthermore, using the graph-
theoretic approaches, I will demonstrate that it is possible to classify bio-
organic and inorganic chemistry from the Gunflint chert in a deterministic way.  

Similarly, I’ll present the results of the mineralogical investigations of 
microscopic inclusions from the amygdaloidal pillow basalt, where complex 
mineralization patterns were deciphered using the LIMS instrument.  

In addition to the Gunflint studies, I will present the results of molecular 
desorption experiments conducted on a set of amino acids that will showcase the 
versatility and high value of integrated LIMS/LDMS technology in the structural 
characterization of complex bio-organic molecules.  Also, I’ll address specific aspects 
of ion generation in time-of-flight mass spectrometry, where a double-pulse 
ionization scheme will showcase that plasma stoichiometry can be significantly 
improved, allowing for more stoichiometric signals to be recorded.  
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Computational methods 
Precis 
Here I will provide technical notes on computational methods used in the results 

section of the thesis. First, I’ll introduce the spectral preprocessing routines to em-
phasize the importance of signal quality in characterization of microscopic inclusions. 
Further, I’ll present matrix factorization methods as a foundation of multivariate 
analysis. In the third section, I present graph-based data processing methods that will 
demonstrate that it is possible to extract mineralogical composition from LIMS 
observations using an unsupervised data-driven approach. Lastly, I present the 
machine learning frameworks that can be used to classify mass spectra from 
previously unseen samples. Although the essential information is provided, some 
algorithmic details are omitted from the thesis. Thus, for the full description of 
algorithms, I refer to original publications. 
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2.1  Spectral preprocessing routines and 
decomposition methods 

Recovering the intensities of the given mass lines from the raw time-of-flight mass 
spectra represents the first step of uncovering the chemical dependencies present in 
the acquired dataset. The mass spectra should be accurately preprocessed, removing 
the noise and artefactual signal change. However, this goal might seem simple; in 
practice, it requires a substantial effort in signal modeling and fine-tuning of prepro-
cessing parameters to retrieve high-quality signals from extensive mass spectromet-
ric data. Moreover, mass spectra from different campaigns and with different histo-
gramming numbers can require separate tunning procedures. In this chapter, I pro-
vide an overview of spectral preprocessing techniques utilized in this thesis. I also 
outline the importance of accurate signal retrieval as a foundation for multivariate 
analysis and pattern recognition. This chapter is based on functions and methods pro-
posed in (Gil & Marco, 2007) and (Meyer et al., 2017) and describes a complete set of 
preprocessing routines required to accurately analyze mass spectrometric data.  

2.1.1  Denoising
The experimental Mass Spectrometry begins with data acquisition, which can of-

ten be noisy and pertain to some degree artifacts that are not directly related to the 
sample's chemistry. Spectral preprocessing aims to achieve a high signal-to-noise ra-
tio (SNR), an important parameter measured from the mass spectra and identified for 
any given mass peak. Higher the SNR, better the sensitivity, and richer the infor-
mation that can be retrieved from the given measurement. Therefore, the first subset 
of preprocessing procedures is aimed to increase this parameter. However, the prob-
lems in the analytical signal can be found in the experiment design and sample pre-
processing. Therefore, the acquisition of high-quality mass spectra should be consid-
ered as a complex problem, addressing the ionization, sample preprocessing, and ex-
periment design in the first place, and computational methods improving the signal 
quality on the second. If experiment settings were set to the level that produced the 
optimal signal quality, i.e., the instrument provides the required signal without exces-
sive noise and distorted peak shapes, one could further continue with spectral pre-
processing techniques. The follow-up step aims to remove the remaining artefactual 
signal change and minimize the effects distorting the analytical signal.  

The mass spectra usually contain some level of noise intermixed with a signal of 
varying intensity. Therefore, an accurate assessment of the noise bandwidth should 
be done before the noise filtering. There are many ways to filter out the noise, and 
signal processing, in general, represents the separate research field itself. Here I will 
present the analytical pipeline that provides the conservative noise removal and pre-
serves most of the analytical signal. Need to mention that interventions such as noise 
removal always mean some loss of signal. 

The first step of the noise removal starts with subtracting the empty waveform 
from the mass spectra. This step removes the low-frequency noise present in the ac-
quisition line (from the detector all the way to the data acquisition), which in any la-
boratory setting represents an antenna that captures the artefactual signals emitted 
from other electronic devices (electromagnetic interference, i.e., EMI). The empty 
waveform should be recorded with the same settings and with the same histogram-
ming number (single-shot averages), capturing only the artefactual noise present on 
the acquisition line.  Further, the noise subtracted mass spectra are preprocessed 
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using the low-pass filter (LPF). The signal's frequency content reaches 200 MHz, but 
sampling is performed at 3.2 Gs/s, with an analog bandwidth of ~1.5 GHz, which al-
lows for the removal of high-frequency noise. Therefore, The LPF applied to the mass 
spectra removes the high-frequency component from the observation. 

Fig. 2 The exemplary mass spectrum preprocessed with LPF. The noise subtracted mass 
spectrum is shown with the blue line. The LPF preprocessed mass spectrum is shown 
with an orange line. The zoomed-in version of the spectra is shown in the right panel. 
Note that the intensity scale is logarithmic.  

The mass spectrum shown in Fig. 2 represents the effect of applying the LPF to the 
observations recorded with the LIMS instrument. As it could be seen from the figure, 
the LPF does not change too much the peak shapes and improves the SNR by a factor 
of 2-5. The overall improvement of the SNR depends on the particular character of 
the high-frequency component of the observation. The frequency cutoff value also can 
be used to attenuate the output result of the low-pass filtering. Typically the normal-
ized passband frequencies at 0.1 – 0.15 [ 𝜋𝜋𝜋𝜋𝑎𝑎𝜋𝜋

𝜋𝜋𝑎𝑎𝑡𝑡𝑎𝑎 𝑝𝑝𝑡𝑡𝑘𝑘𝑘𝑘𝑡𝑡
] are enough to remove the high-

frequencies from the signal.  The stopband attenuation can be chosen around 60 dB, 
and the steepness of LPF can be chosen at around 0.85 dB/oct, providing a relatively 
smooth cutoff of high frequencies. Thus, the signals buried in the high-frequency 
noise can be retrieved, and the overall quality of mass spectra can be improved using 
the LPF. However, the remaining noise components can still be significant, i.e., sharp 
spikes in the baseline (see Fig. 2, right panel), which are parts of the noise bandwidth 
that survives low-pass filtering. Although such signals are typically very small, they 
can introduce an additional uncertainty while working with trim signals.  

Overall, filters such as LPF are generally very helpful and better in retrieving more 
resolved data in comparison to conventional smoothing approaches (such as moving 
average). While within the single mass spectra, an improvement of the SNR can be 
not that significant, the more extensive data preprocessed with LPF can reveal 
a substantial improvement in the determination of the noise floor.  Moreover, 
a notch filters (cutoff of specific frequencies) can be of high value as well. 
Therefore, an accurate assessment of the frequency range is required to understand 
which part of the frequency spectrum can be preserved and which part 
represents the noise bandwidth. Similar to the LPF the steepness of the filter can 
play a big role in the overall signal preservation. Therefore, a signal modeling with 
synthetic spectra (and a real noise component) can be of high utility in the analysis 
of mass spectra.
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2.1.2  Parametric polynomial smoothing 
The preprocessed with noise subtraction and LPF spectra can still contain low-

frequency levels of noise that can further be flattened using parametric peak preserv-
ing smoothing. Polynomial filtering (smoothing) is an alternative to conventional 
noise reduction techniques and uses subsamples of data and tries to fit them into a 
predefined model. Thus, the sharp high-frequency peaks from mass spectra can be 
preserved, whereas the small noise contributions can be removed from the output 
spectrum. The Lowess filtering smooths the spectrum using the locally weighted lin-
ear regression in a given filter window. The method uses the user-defined evenly 
spaced windows of the mass spectra and fits the linear (Lowess) or quadratic function 
(Loess). Thus, by collecting the statistics on neighboring windows, it is possible to 
identify the data points that are outliers and data points that lie in the range of the 
actual signal. 

The generalization of the Lowess filtering represents the Svazitsky Golay filtering 
(SGF) (Press & Teukolsky, 1990). The SG filter smoothes the data using the least-
squares polynomial filter. The method derives the filter coefficients by performing 
the linear least-squares fit using a polynomial function of a given degree. The fit is 
iteratively repeated in small filter windows; thus,  the size of the filter function pro-
vides the critical constraint to the overall smoothing result. For typical LIMS observa-
tions with 64'000 digitized data points per spectrum, a filter function with 50 data 
points provides a relatively good fit to the signal. However, with an increased number 
of data points in the spectrum (i.e., 320'000 data points per spectrum in HR-LIMS-GT 
measurements), an appropriate adjustment should be made.  Another parameter that 
affects the smoothing result is the degree of a polynomial, where higher degrees can 
adapt to more complex shapes, and zero degree is an equivalent of the weighted mean 
estimator on a given window. 

Figure 3 shows the previously denoised mass spectrum (see Fig. 2) further 
smoothed with parametric SGF. The mass spectrum was regressed using the 50 sam-
ples wide sliding window and degree 4 of the polynomial. The output result is a 
smoothed mass spectrum that does not contain the jittery signal between masses. 
However, the output SNR of peaks is slightly reduced. Therefore, the SGF smoothing 
operator requires balancing between preserving shapes of the peaks and the smooth-
ness of the baseline. Therefore, the degree of smoothing is dependent on the scientific 
task and can be adjusted accordingly.  

Another drawback of the SGF is that polynomial fit forms artefactual negative 
spikes in the vicinity of intense peaks. Such spikes are generally not harmless in fur-
ther downstream peak data analysis; however, it is important to keep in mind that 
the negative spikes can be significant for some peaks. It is also important to note that 
the baseline regression on smoothed spectra can be complicated with artefactual sig-
nals like SGF-induced negative spikes; therefore, it is recommended to perform the 
baseline extraction prior to the smoothing.  

The overall strategy for smoothing and noise reduction is dependent on the scien-
tific tasks. For example, the calculation of isotope fractionation factors between given 
isotope pairs can be affected by noise contribution or overly smoothed data. For that 
reason, actual calculations on given isotope intensities are usually calculated on un-
processed raw mass spectra. In contrast to the isotopic studies, the LIMS spatial im-
aging of various elements is usually done on preprocessed spectra. Baseline corrected 
and cleaned from noise mass spectra better reflect the actual structure of elemental 
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intensities and provide overall improved mass spectrometric images. Concluding this 
section, it is important to mention that all spectral preprocessing procedures should 
be applied with care because some of the important features of mass spectra can 
be oversmoothed, and some new artifactual features introduced. 

Figure 3.  The exemplary mass spectrum smoothed using the Svazitsky-Golay polynomial 
filter. Note the jittery pulses between masses that are smoothed using the SGF.  

   The change of the signal shape after application of any smoothing operator is 
inevitable. Therefore, it is up to the user to define to which degree the change is 
acceptable. The extent of the distortion can be controlled by checking the SNR of the 
output signal. Since mass spectrometry deals with pulsed signal shapes, the moving 
average is a bad choice for smoothing due to the overly aggressive smoothing of 
peaks. Typically, combination of the SGF and LPF can retrieve relatively small signals 
and improve the output SNR up to two orders of magnitude, if applied properly. Also 
need to mention that the SGF can be applied to the data only with evenly spaced 
intervals, which is not the case with mass scale calibrated spectra. Therefore, the SGF 
filter needs to be applied in the preprocessing stage, while the mass scale assignment 
is not yet performed. 
    Other smoothing approaches exist i.e., the Gaussian filter which uses the Gaussian 
kernel to smooth the data (widely used in the image processing). In contrast to the 
SGF, the Gaussian kernel does not preserve the widths of peaks, thus, lowering the 
output mass resolution. A relatively new advancement in the signal processing is 
application of wavelets and neural networks in noise suppression. The deep neural 
networks can be used to learn the noise statistics from data, therefore allowing to 
tailor models to the lab-specific noise contributions. Such approaches can 
significantly improve the SNR with minimal changes in the shapes of the output 
waveforms. Although if data specific biases are introduced it might be more 
challenging to remove those from the analyzed spectra.
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2.1.3  Baseline correction 
In general, the varying baseline of any given mass spectrum is caused by the drift 

of DC voltage on the anodes and can be detected on every observation with slightly 
differing profiles. It can also reflect the ion overload or chemical noise in the matrix. 
These effects lead to the positioning of mass peaks in ascending or descending regions 
of the baseline, affecting the investigated peak areas. An example of a varying baseline 
registered from the composite mass spectrum (200 single laser shot spectra) is illus-
trated in Fig. 4, where the blue line indicates the original mass spectrum and the red 
line denotes the regressed baseline. The baseline subtracted mass spectra bring all 
baselines to the same level, thus, making them comparable.  

Figure 4. The varying baseline was estimated using the slider window with a step size of 
100 samples.  

The strategy for removal of low-frequency baseline follows the three-step algo-
rithm: 1) Estimate the baseline within the filter function window. 2) Regress the base-
line using spline interpolation. 3) Subtract the overall baseline from the mass spectra. 
As in many other smoothing algorithms, the baseline subtraction quality depends on 
the size of the filter function. If the window size is chosen too big, the approximate 
baseline will jump on the mass peaks, leading to the artefactual peak intensities. If too 
high, the baseline will follow the shape of the noisy baseline leading again to artefac-
tual intensities. Therefore, it is important to choose the baseline approximation func-
tion parameters to satisfy the baseline diversity of the entire dataset. Mass spectrom-
etry imaging of reasonable sizes usually contains tens of thousands of composite mass 
spectra, making the unsupervised baseline subtraction a vital part of spectral pro-
cessing. However, using chain-linked baseline subtracting functions with differing fil-
ter windows allows achieving a reasonable quality on large datasets.  

Figure 5 illustrates a composite mass spectrum (200 single laser shots) smoothed 
using the SG filter and removed baseline. The most prominent Si peak showcase the 
SNR around 104, and the noise band reduced to approximately half a decade. It is im-
portant to note that the mass spectra shown in Fig. 5 represent the single position 
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measurement (a single-pixel from the MSI). Therefore, additional signal improve-
ment can be achieved by further accumulating waveforms. In general, with accurate 
noise modeling, it is possible to reach the SNR around 105 for major (most abundant) 
peaks, with simultaneous improvement on the range of noise band. However, noise 
can reach the low-frequency floor, which is hard to distinguish from actual mass spec-
trometric signals and, therefore, it is challenging to improve the signal further. In 
principle, introducing hardware integrated active noise-canceling lines in the acqui-
sition system should further increase the achievable SNR's by few orders of magni-
tude. Although such developments are out of the scope of this thesis, the acquisition 
line can be further improved, at least theoretically.  

Figure 5. Baseline regressed and smoothed mass spectrum (an average of 200 single 
laser shot mass spectra).  

2.1.4  Spectral alignment and normalization techniques 

In general, spectral misalignment does not represent a big issue in the fs-LIMS 
characterization of solids. However, some minerals due to varying photon coupling 
and topography can be ionized with differences between ion yields, and the ion arri-
val times can slightly differ. The mismatch in the ion arrival times can lead to systemic 
misalignment of mass peaks, manifesting in the broadened and tailed peaks for histo-
grammed and later averaged in postprocessing mass spectra. For example, collecting 
significant numbers of mass spectra (>40k spectra for MSI) from heterogeneous sam-
ples can require correction procedures to be applied to the data. The change in the 
ion packet's arrival time can affect the averaged peak shapes, for example, transform-
ing them from purely Gaussians to the tailed and broadened Gaussians. The change 
in the peak shapes leads to a decrease in the mass resolution and overall intensities 
of the investigated peaks. Therefore, misalignment of the ion arrival times is an issue 
that worsens the quality of measurements. The spectral alignment procedures can 
account for the shifts in the time-of-flight spectra and bring the observations to the 
expected arrival times for selected masses, thus improving the output signal quality.  

The spectral alignment algorithm (Gil & Marco, 2007) constructs a synthetic spec-
trum with a user-defined number of peaks, represented by Gaussian kernels. The 
time-of-flight values of the synthetic peaks and actual observations are shifted and 
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scaled until the cross-correlation function cannot be further improved. When multi-
ple spectra are aligned, the algorithm repetitively optimizes the cross-correlation 
function for a given observation. The strength of the warping function described in 
(Gil & Marco, 2007) is that it can learn the warp function from the raw data, whereas 
other solutions do not provide such an option. Another advantage of the algorithm is 
in the fact that it allows multi-peak alignment. The user can define the master vector 
with time-of-flight positions of peak centers that are further used in the alignment 
procedure. Thus, if some masses are missing, the alignment can be done on the re-
maining peaks. The algorithm works best with 5-8 peaks representing the most 
prominent masses present in the mass spectrum. Practically speaking, the alignment 
is almost always done on major isotopes of carbon, oxygen, sodium, and potassium.  

Figure 6 illustrates result of the spectral alignment performed on the ran-
domly subsampled data (65 composite mass spectra) from the imaging data set 
(30'000 mass spectra) recorded from the Gunflint chert. As it can be seen from the 
figure, the carbon peak alignment is performed on the nominal level. All peak centers 
are aligned in the tolerance window of a few ns. Every count in Fig. 6 corresponds to 
the 0.3125 ns of the flight time. The electronic ringing (oscillation of the signal in the 
acquisition line) observed on the right side of the peak is not confused with the actual 
peak position. Another important observation is that the noise band showcases vary-
ing intensity regions that form a narrow confidence interval. The shape of the pre and 
post-peak is determined by the SG filter and represents an artifact of the spectral 
smoothing using the polynomial filter. 

Figure 6. Multi-peak spectral alignment (5 peaks) of spectra registered from the Gun-
flint chert.  

The broadened mass spectra can be seen on the left side of the central carbon 
peak. Typically, the peaks with the broad profile are shifted a few ns to fit the position 
of resolved carbon peaks. The results of the spectral alignment can improve the mass 
resolution of investigated peaks by 20-30 percent on the output histogrammed mass 
spectrum. This is of high importance for isotope ratio studies, where the resolution 
and the SNR of investigated isotopes are determinative of calculated ratios.  
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Repeated experiments or experiments with varying histogramming of laser shots 
will differ in the scale of ion yields, making the spectra incomparable. Various nor-
malization techniques have to be utilized to bring the mass spectra to the same scale. 
One possible way is normalization to the noise level, which will bring the baseline 
intensity values of all mass spectra to the level of the noise band of the master spec-
trum. Another normalization technique provides normalization to the maximal peak 
intensity within a given intensity range. The intensity range from 0-1 or 0-100 is 
among the standard choices. Normalization to the maximum peak intensity is useful, 
for example, in LIMS imaging, where a variable drift of ion yields are observed, with 
systematic (depth-dependent) and random (local absorption variations). By bringing 
the most intense peaks to the same level, it is possible to improve the resulting con-
trast. Spectral normalization is the last step of spectral preprocessing and represents 
the spectrum's final form. 

2.1.5  Single mass unit spectral decomposition. 

After spectral preprocessing procedures are finished, the mass spectra can be fur-
ther decomposed into vectors with single mass unit intensity values. Every mass 
spectrum contains 64000 digitized data points (which represents approximately 
20 𝜇𝜇𝜇𝜇 of the flight time and covers a mass range from 1 to 800 [a.m.u.]) and around 
100 points for a single mass peak. The single mass unit peak in its complete shape 
encodes information on how many electrons were detected; therefore, we can inte-
grate over the time-of-flight window of the mass peak to retrieve the mass peak area. 
The peak area integration is preferred relative to the measuring peak height (promi-
nence) because the peak area encodes more information.  

Figure 7. Exemplary composite mass spectra (200'000 single laser shot spectra each 
mass spectrum) after a full stack of spectral preprocessing procedures were applied. The 
preprocessing steps include denoising, smoothing, baseline correction, and spectral 
alignment. Grey bars illustrate the single unit masses (widths of the integration win-
dows) chosen for peak integration.   

The time-of-flight spectrum has to be linked with the corresponding mass scale to 
extract the peak intensities of the masses. The separation of the different masses oc-
curs in the field free part of the mass analyzer when all extracted ions were equalized 
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to the same kinetic energy by initial acceleration. Consequently, the mass scale to the 
time-of-flight spectrum can be linked using the equation: 

𝑚𝑚
𝑧𝑧

=  𝑘𝑘0 ∗ (𝑡𝑡 − 𝑡𝑡0)2, (6) 

Where the 𝑘𝑘0 and 𝑡𝑡0 are instrument-dependent constants. It is possible to assign 
a mass scale with accuracies better than 500 ppm using a set of isotopes that will 
cover a significant part of the mass range. If the isotopes used for mass calibration are 
all localized in the range of light masses, accuracies for heavier masses can experience 
loss of precision. Therefore, a wide stretch of isotope masses is required for accurate 
mass calibration. 

For example, Fig. 7 illustrates the time-of-flight mass spectra with the assigned 
mass scale. The spectra are preprocessed using the full chain of preprocessing rou-
tines and reveal the uniform baseline with a clean signal that reflects the chemical 
change in the analyte materials. The two spectra compared with each other represent 
the cumulative mass spectra registered from two types of microfossils, measured 
from the Gunflint chert. Every spectrum represents the composite of 200'000 single 
laser shot mass spectra.  As it could be seen from the figure, the quality of the spectral 
preprocessing is very high since no artifacts could be noted from the spectra.  

Quantitative analysis of mass spectra deals with the abundances of given mass 
units. Therefore, we can calculate the number of electrons registered within the mass 
unit of interest using the equation: 

𝐴𝐴𝑒𝑒
[𝑎𝑎,𝑏𝑏] = � 𝑁𝑁𝑒𝑒(𝑇𝑇𝑇𝑇𝑇𝑇)

𝑏𝑏

𝑎𝑎
𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇 − � 𝑇𝑇𝑏𝑏𝑏𝑏

𝑗𝑗

𝑘𝑘
(𝑇𝑇𝑇𝑇𝑇𝑇)𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇, (7) 

Where 𝐴𝐴𝑒𝑒
[𝑎𝑎,𝑏𝑏] is a number of electrons of a particular isotope, [𝑎𝑎, 𝑏𝑏] is the time-of-

flight interval where the mass peak is distributed, and 𝑁𝑁𝑒𝑒(𝑇𝑇𝑇𝑇𝑇𝑇) is the number of elec-
trons per time increment. 𝑇𝑇𝑏𝑏𝑏𝑏 denotes the number of electrons registered from the 
background in the time-of-flight range [𝑖𝑖, 𝑗𝑗], which corresponds to the same width as 
[𝑎𝑎, 𝑏𝑏].  

The peak list for integration can be derived from the peak detection algorithms. 
However, for multivariate analysis of the entire datasets, one can derive the peak area 
values for all single unit masses. Figure 7 denotes the widths of mass peaks that are 
chosen for the integration (shown with grey bars). In complete spectral decomposi-
tion, the widths of all single unit masses are considered. Practically speaking, convo-
lution of the full mass spectrum includes an integration of the masses in the range 
from 1 to 300 a.m.u., which covers all stable isotopes and small molecular compounds. 
Therefore, the output reduced dataset contains a vector for every mass spectrum with 
intensity values of single mass units. This step dramatically reduces the data size to 
handle and allows the use of reduced data matrix directly in a follow-up multivariate 
analysis.  

The data reduction using peak integration can be realized using different integra-
tion strategies. The peak integration using the Simpson 3/8 rule provides the best 
speed to quality ratio (Riedo et al., 2013a) and retrieves the integration accuracy es-
timate. However, other integration approaches can be used, such as Monte Carlo (MC) 
integration, which will yield an accurate peak area assessment, although MC requires 
significantly more time. As it was mentioned before, peak intensities can be retrieved 
as the maximal value of peak prominence. It is one of the fastest approaches; however, 
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it will result in the loss of information about isotope abundances because maximum 
peak intensity represents only a proxy to the full peak area and because peak widths 
are changing with mass. Another way to assess peak area can be calculated by fitting 
the Gaussian kernel to the investigated peak and retrieving the area of the fitted 
Gaussian, though such an approach is neither fast nor accurate. Overall, Simpson's 
integration was chosen as the best alternative to all described integration strategies 
as a compromise solution between the speed of data acquisition and quality of the 
peak area extraction.  

   Another viable strategy that can be applied is spectral down-sampling that can 
reduce the size of the original mass spectrum down to the requested number of 
sample points in the spectrum. Although spectral down-sampling does not represent 
a type of spectral decomposition, such spectral transformations can be useful as a 
fast data preprocessing step, making the spectral data bank readily available for the 
downstream analysis and low-dimensional convolution. A high degree of the spectral 
down-sampling tends to lose large portions of the signal, thus making it an 
artefactual spectrum with modified intensity values (spectra can contain a high 
degree of distortions of the original peak intensities). Therefore, the down-sampling 
if applied, should be applied with care. 

   Another point that needs attention is the broadened mass peaks (peaks with ion 
overload or peaks of metastable molecules) can have a negative impact on the 
integrated peak intensity values. The broadened peaks can intrude into neighboring 
mass peak areas, thus, modifying their intensity values. Therefore, a high 
mass resolution of the analyzed mass spectra is of high importance in the 
spectral decomposition process. The mass spectra prior to the application of 
preprocessing routines can be preselected using spectral scoring approaches. 
For example, it is possible to take into analysis only spectra that are nicely 
resolved, by fitting the Gaussian kernel to the peaks of interest and measuring 
the resolution of the fitted Gaussian kernel (see (Wiesendanger et al. 2019), for 
more details on the spectral scoring approach). However, spectral quality and 
characteristics of the mass peaks can be addressed through modification of the ion 
source. The implementation of the UV-258 nm laser in contrast to the IR-775 
nm laser will showcase that it was possible to improve the mass resolution 
almost by order of magnitude by using the more absorptive color of the fs laser 
radiation (see "Multiwavelength ablation/ionization and mass spectrometric 
analysis of 1.88 Ga Gunflint chert").    

    Overall, concluding this section, I can remind us that the mass spectrum prior to 
the decomposition needs to be accurately preprocessed using the LPF, SGF, 
denoising, normalization, baseline correction and spectral alignment, if necessary. 
Thus, mass peaks in the analyzed spectrum should be artifacts-free and represent 
only the chemical change in the analyte material. If dealt with large mass 
spectrometric observations, the randomly sampled mass spectra needs to be 
analyzed for the quality of the spectral preprocessing routines. Further, using the 
solution of the quadratic equation used for the mass scale assignment, one can  
recalculate the mass-time intervals for the peak integration procedures. 
Therefore, the required range of masses can be integrated, providing the 
discretized intensity values for investigated mass peaks. Although, the baseline 
(background) shapes can vary significantly for unprocessed spectra, the 
preprocessed data should reveal a significantly improved mass spectra.
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2.2 Matrix factorization methods 

2.2.1 Principal components analysis 

The Laser Ionization Mass Spectrometry as a high throughput solid samples char-
acterization technique provides very sensitive and spatially resolved data that are of-
ten difficult to interpret due to its size and complexity. A principal component analy-
sis (PCA), also called Karhunen-Loève transform, Singular Value Decomposition 
(SVD), or eigenvector projection, is a data dimensionality reduction technique devel-
oped in 1901 by Karl Pearson (Pearson 1901). The PCA reduces the initial data and 
minimizes the loss of information and increases the overall interpretability.  In its 
shortest description, the PCA does that by creating the uncorrelated new variables 
that successively maximize observed variance in the dataset. The PCA has been rein-
vented many times using different approaches; for example, the PCA solutions could 
be derived as eigenvectors of the covariance matrix or equivalently as the singular 
values of the centered data matrix. Furthermore, most recently, a contribution by 
(Gemp et al. 2020) provides a novel game-theoretic view on principal component 
analysis as a Nash equilibrium in a competitive game in which each eigenvector is 
approximated by a player, whose goal is to maximize their own utility function. 

Principal components analysis provides a foundation for multivariate analysis. 
PCA, essentially, as a matrix factorization method, gives an approximation of a data 
matrix 𝐗𝐗 as a set of new variables that capture essential patterns of original data in a 
linear fashion. The steps involved in the standard PCA algorithm could be summa-
rized as follows:  

1 Computation of the centered data matrix (normalization of the variables, so 
that the mean of any given variable is zero).  

2 Construction of the covariance matrix from the normalized data matrix.  
3 Finding the eigenvectors and eigenvalues of the covariance matrix.  
4 Formation of a new set of features, that successively maximize variance ob-

served in the original dataset (by multiplication of the eigenvectors with the 
original data matrix).  

Below, we will explore the standard derivations of the algorithm, showing that the 
PCA could be solved as an eigenvalue problem or as a singular value decomposition 
problem. The main equations will be provided to outline the computational logic and 
equivalence between the eigendecomposition of the covariance matrix with the sin-
gular value decomposition of the data matrix. All notations and derivations used here 
provided as in (Jolliffe and Cadima 2016), unless is stated otherwise. 

The standard representation of the method builds on a dataset with 𝑝𝑝 numerical 
variables and 𝑛𝑛 observations. Thus, data are defined as a set 𝑝𝑝 (number of spectra) of 
𝑛𝑛 − dimensional vectors 𝑥𝑥1, … , 𝑥𝑥𝑝𝑝  (intensities of given mass units) that form the ma-
trix 𝐗𝐗 of original mass spectrometric observations. The dimensionality reduction part 
of the algorithm stems from the fact that we want to find linear combinations of col-
umns (single unit masses) in the matrix 𝐗𝐗, that have maximal variance, thus, preserv-
ing the information about major chemical composition and omitting dimensions with 
small variance. These linear combinations are given by ∑ 𝑎𝑎𝑗𝑗𝑥𝑥𝑗𝑗 =𝑝𝑝

𝑗𝑗=1 𝐗𝐗𝒂𝒂, where 𝒂𝒂 is a 
vector of constants 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑝𝑝. The variance of such linear combinations is given by 
var(𝐗𝐗𝒂𝒂) = 𝒂𝒂′𝐒𝐒𝒂𝒂 , where S is the covariance matrix of the data matrix, and ‘ denotes 
transpose. 
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The identification of maximum variance can be formulated as obtaining a 𝑝𝑝 – di-
mensional vector 𝒂𝒂 which will maximize the 𝒂𝒂′𝑺𝑺𝒂𝒂. To have a straightforward solution, 
we can impose a requirement, that 𝒂𝒂′𝒂𝒂 = 1. Thus, the solution will be equivalent to 
maximizing 𝒂𝒂′𝐒𝐒𝒂𝒂 −  𝜆𝜆(𝒂𝒂′𝒂𝒂 − 1). Therefore, we can reformulate our equation as a ma-
trix factorization problem of given covariance matrix: 

𝐒𝐒𝒂𝒂 − 𝜆𝜆𝒂𝒂 = 0 ⇔ 𝐒𝐒𝒂𝒂 = 𝜆𝜆𝒂𝒂, (8) 

Thus, 𝒂𝒂 must be a (non-zero) eigenvector, and  𝜆𝜆 (𝜆𝜆𝑘𝑘  , (𝑘𝑘 = 1, … , 𝑝𝑝)), the corre-
sponding eigenvalues of the covariance matrix 𝐒𝐒.  

Any symmetric matrix (for example, our covariance matrix 𝐒𝐒), has 𝑝𝑝 real eigenval-
ues and together with its eigenvectors. one can define an orthonormal set of vectors. 
Hence, the complete set of eigenvectors of the covariance matrix  𝐒𝐒 are the solutions 
to the problem of obtaining up to 𝑝𝑝 new linear combinations 𝐗𝐗𝒂𝒂𝒌𝒌 = ∑ 𝑎𝑎𝑗𝑗𝑘𝑘𝑥𝑥𝑗𝑗

𝑝𝑝
𝑗𝑗=1 , which 

successively maximize variance and are uncorrelated with other pairs. Thus, these 
new linear combinations 𝐗𝐗𝒂𝒂𝒌𝒌 are called the principal components of the dataset, and 
it is important to note that they have a physical interpretation (change of the major 
chemical composition in case of analysis of first PCs for LIMS data). In the standard 
PCA terminology, the elements of the eigenvectors 𝒂𝒂𝒌𝒌 are called the PCA loadings, 
whereas the projections of linear combinations 𝐗𝐗𝒂𝒂𝒌𝒌 are called the PCA scores. Overall, 
the largest eigenvalue, 𝜆𝜆1 and its corresponding eigenvector 𝒂𝒂1 retains the infor-
mation about the first principal component, which represents the maximum variance 
in the dataset. Thus, the second principal component is computed in such a way that 
it reflects the second largest source of variation in the data.  

It is also possible to find PCs as the linear combinations of the normalized varia-
bles 𝑥𝑥𝑗𝑗∗, with an element 𝑥𝑥𝑘𝑘𝑗𝑗∗ = 𝑥𝑥𝑘𝑘𝑗𝑗 − �̅�𝑥𝑗𝑗 , where �̅�𝑥𝑗𝑗  denotes the mean values of the ob-
servation on variable 𝑗𝑗. The normalization does not change the solution other than 
just centering it around the mean, but normalized data matrix provides a connection 
to another approach of finding principal components using alternative matrix factor-
ization method – singular value decomposition.  

2.2.2 Singular value decomposition 

Building on previously outlined notation and denoting by 𝐗𝐗∗ the 𝑛𝑛 × 𝑝𝑝 matrix, 
where columns are represented by centered variables 𝑥𝑥𝑗𝑗∗, we can rewrite our equiva-
lence equation: 

(𝑛𝑛 − 1)𝐒𝐒 = 𝐗𝐗∗′𝐗𝐗∗, (9) 

The equation 9 connects the eigendecomposition of the covariance matrix 𝐒𝐒 with 
the singular value decomposition (SVD) of the centered data matrix 𝐗𝐗∗. In fact, any 
matrix 𝐘𝐘 of size 𝑛𝑛 × 𝑝𝑝 and rank 𝑟𝑟 (with some minor restrictions, see (Jolliffe and 
Cadima 2016)) can be written as: 

𝐘𝐘 = 𝐔𝐔𝐔𝐔𝐔𝐔′ , (10) 

Where U, A are 𝑛𝑛 × 𝑟𝑟 and 𝑝𝑝 × 𝑟𝑟 matrices with orthonormal columns (𝐔𝐔𝐔𝐔′ = 𝐈𝐈𝜋𝜋 =
𝐔𝐔′𝐔𝐔, were 𝐈𝐈𝜋𝜋  is an 𝑟𝑟 × 𝑟𝑟 identity matrix). Further, L is an 𝑟𝑟 × 𝑟𝑟 diagonal matrix. The 
columns of 𝐔𝐔, are the right singular vectors of 𝐘𝐘 and the eigenvectors of the 𝑝𝑝 × 𝑝𝑝 
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matrix 𝐘𝐘′𝐘𝐘. The columns of 𝐔𝐔 are the left singular vectors of 𝐘𝐘 and the eigenvectors 
of the 𝑛𝑛 × 𝑛𝑛 matrix 𝐘𝐘′𝐘𝐘. The diagonal elements of matrix 𝐔𝐔 are called the singular val-
ues of 𝐘𝐘 and are the non-negative square roots of the non-zero eigenvalues of both 
matrix 𝐘𝐘′𝐘𝐘 and matrix 𝐘𝐘𝐘𝐘′ (Jolliffe and Cadima 2016).  

Using the assumption that diagonal elements of L are in decreasing order, we can 
define order of the columns of U and A. Therefore, substituting matrix 𝐘𝐘 with 𝐗𝐗∗, the 
right singular vectors of the column-centered data matrix 𝐗𝐗∗ are the vectors 𝒂𝒂𝒌𝒌 of PC 
loadings. Equivalently: 

(n − 1)𝐒𝐒 = 𝐗𝐗∗′𝐗𝐗∗ = (𝐔𝐔𝐔𝐔𝐔𝐔′)′(𝐔𝐔𝐔𝐔𝐔𝐔′) = 𝐔𝐔𝐔𝐔𝐔𝐔′𝐔𝐔𝐔𝐔𝐔𝐔′ = 𝐔𝐔𝐔𝐔𝟐𝟐𝐔𝐔′, (11) 

Where 𝐔𝐔𝟐𝟐 is the diagonal matrix with squared singular values (i.e., the eigenvalues 
of (𝑛𝑛 − 1)𝐒𝐒). Thus, equation (11) provides the spectral decomposition or eigen-
decomposition of matrix (𝑛𝑛 − 1)𝐒𝐒, hence, the principal components can be obtained 
as SVD of the column-centered data matrix 𝐗𝐗∗.  

Here, we also have to outline that quality of the PCA or SVD reduction depends on 
the number of PCs retained for further analysis. Therefore, we have to define a cutoff 
threshold for the number of components. The standard measure of quality of the 
given principal component is a proportion of variance that it explains, thus, such 
measure can be recalculated as: 

𝜋𝜋𝑗𝑗 =
𝜆𝜆𝑗𝑗

∑ 𝜆𝜆𝑗𝑗
𝑝𝑝
𝑗𝑗=1

=
𝜆𝜆𝑗𝑗

𝑡𝑡𝑟𝑟(𝐒𝐒)′
, (12) 

Where ′ denotes the transposed trace of S. Accordingly, we can recalculate total 
percentage of the variance that we accounted for by using the defined set of PCs. It is 
a common practice in machine learning to account for 70% of the variance, assuming 
that the remaining part of the data variance is primarily represented by noise. How-
ever, in the analysis of PCA reduced LIMS data, the chemical composition of the trace 
elements often important; thus, the attention may be needed to the last few compo-
nents that typically preserve such information (dimensions with small variance). At 
the same time, first PCs represent composition of the major chemistry present in the 
dataset. Another common approach to define number of PCs to retain is based on 
slope analysis of the scree plot - line plot of the eigenvalues that displays them in the 
downward curve. The rapid change in slope of the line indicates location of the “el-
bow” or breaking point of the graph, where internal variance changes maximally; 
thus, the PCs can be retained as significant (such test also called the “Kaiser rule”). 
However, more complex datasets with nonlinear variances are prone to have multiple 
breaking points, and this approach is often criticized.  

Here, we also need to mention some of the limitations and assumptions of PCA: 

1 PCA assumes that underlying data have correlated features and that correlated 
features are linearly dependent on each other 

2 PCA is sensitive to the scale of the variance; therefore, it is not robust against 
outliers 

3 Nonlinear dependencies will manifest themselves with many significant PCs.    
4 Data loss is unavoidable, and the amount of approximated variance should be 

maximized. Thus, the analysis of only first PCs can be misleading.  
5 Covariance matrices can be large, so initial preprocessing can be of high utility. 
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Modern machine learning libraries such as scikit-learn (Pedregosa et al., 2011) 
provide high-level language access to the standard algorithms such as PCA using li-
brary-wide application programming interface (API).  

Overall, PCA in its standard form is widely used in various scientific areas; how-
ever, there are many different adaptations of the technique, such as Kernel PCA, 
Sparse PCA, Truncated SVD, Incremental PCA, etc., that are all might be of high 
utility for analysis of high-dimensional data.  

2.2.3  Laplacian Eigenmaps 

The Laplacian Eigenmaps (LE), also known as Spectral Embedding, is another ma-
trix factorization method and a dimensionality reduction algorithm developed by 
(Belkin & Niyogi, 2003). The algorithm provides a computationally efficient method 
for nonlinear dimensionality reduction that has locality-preserving properties and a 
natural connection to clustering. The LE builds on a previously presented eigen de-
composition, but in contrast to PCA, does that using affinity matrices (distance or sim-
ilarity matrix, see further section “generic similarity measures"). The output of the 
algorithm is a set of new dimensions called “maps” that consecutively approximate 
the intrinsic dimensionality of the data. Thus, the resulting transformation of the orig-
inal data points is given by the value of corresponding eigenvectors.  

Let 𝑝𝑝 × 𝑝𝑝, be  a symmetric matrix 𝐕𝐕 (where 𝑝𝑝 represents a number of 𝑛𝑛-dimen-
sional observations) of pairwise affinities defined using metric 𝑑𝑑(𝑥𝑥, 𝑦𝑦). Now, let diag-
onal matrix 𝐃𝐃 contain row sums of 𝐕𝐕,  or equivalently, Di j = ∑ Vij . Now, we can intro-
duce a new matrix  𝐔𝐔, so that 𝐔𝐔 = 𝐃𝐃 − 𝐕𝐕. Such matrix is known as graph Laplacian of 
the affinity matrix 𝐕𝐕. Thus, to find sets of observations that share a significant simi-
larity, we can formulate the problem as an eigen decomposition of the graph Lapla-
cian.  

𝐔𝐔𝐚𝐚 =  λ𝐃𝐃𝐚𝐚, (13) 

Further, by multiplying each side of this equation by 𝐃𝐃−𝟏𝟏, the decomposition can 
be reformulated as finding the set of eigenvectors of 𝐃𝐃−𝟏𝟏𝐕𝐕. 

𝐃𝐃−𝟏𝟏𝐕𝐕𝐚𝐚 = (1 −  λ)𝐚𝐚, (14) 

The matrix 𝐃𝐃−𝟏𝟏𝐕𝐕𝐚𝐚 is not symmetric and has rows normalized to 1. The physical 
interpretation of the matrix 𝐃𝐃−𝟏𝟏𝐕𝐕𝐚𝐚  could be viewed as a diffusion operator on the 
graph, making it equivalent to another nonlinear data reduction method called Diffu-
sion maps (Coifman & Lafon, 2006).  

Another way of solving the LE could be done by using the normalized graph La-
placian: 

𝐔𝐔norm =  𝐃𝐃−1
2𝐔𝐔𝐃𝐃−1

2, (15) 

And solve an eigenvector problem:  𝐔𝐔norm𝐛𝐛 = λ𝐛𝐛, (4), where b = 𝐃𝐃−1
2𝐚𝐚

Thus, the Laplacian eigenmaps, similar to PCA, can produce a set of “PC’s” that 
capture the structure of the local neighborhood.  However, as with many other mani-
fold learning methods, the quality of embeddings can heavily depend on the specific 
similarity or distance function. Therefore, if the similarity function applied to the da-
taset does not properly capture the structure of observations, resulting spectral em-
bedding will not be very informative either. See (Deza & Deza, 2009) for an extensive 
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description of various distances and similarity measures. Need to mention that cosine 
similarity typically better preserves the information of structural heterogeneity in 
LIMS data analysis in comparison with Euclidean distances. Therefore, it can be con-
sidered a default choice of similarity function in the LE decomposition of mass 
spectrometry data.  See further chapter "Generic similarity measures" for more in-
depth discussion of various distances and similarity measures.

   It is important to note that LE in comparison to other manifold learning methods, 
cannot embed into lower dimensional space the out-of-sample data points, thus, 
requiring a new LE decomposition as new points are acquired.  Another important 
point refers to the fact that LE decomposes the similarity graph; therefore, the graph 
construction poses a critical constraint on the algorithm. A neighborhood graph 
from the given data can be constructed using the k-NN approach (see further section 
"Graph-theoretic measures and centralities" for a more in-depth description of k-NN 
networks and different types of networks) or using the ϵ-nearest-neighbor (ϵ-NN) 
graphs. The ϵ-NN stands for recovering the ϵ-neighbors (neighbors in the given ϵ 
radius) within a given metric.  To produce the k-dimensional embedding, as it was 
mentioned before, LE allows doing that by using more eigenvectors of the 
normalized graph Laplacian. Although the LE deals with spectral graph theory and 
heavily relies on k-NN networks, it remains a matrix factorization method for 
dimensionality reduction. As it will be shown later in the section describing graph-
based dimensionality reduction methods (i.e., Uniform Manifold Approximation and 
Projection - UMAP), the LE decomposition will be important in providing the 
dimensionality parameter on the output embedding graphs. Here we have also need 
to mention that LE naturally connects to the clustering through the important 
application of the Laplacian - spectral clustering (SC) that corresponds to a 
computationally tractable solution to the graph partitioning problem. The spectrum 
of the normalized graph Laplacian also provides a unifying view into the grouping of 
nodes in the network. The complete range of all eigenvalues will fall in the range 
between 0 and 2, enabling the comparison of networks with different sizes. The 
presence of large eigenvalues can indicate that network has a strong modular 
structure. The similarities between spectra of the normalized graph Laplacians can 
be used to classify networks. Therefore, the LE as a useful dimensionality reduction 
method also provides insight into a set of related with data additional matrices that 
are of high utility in analyzing high-dimensional observations.

  Concluding, most of the dimensionality reduction (DR) methods require an 
injection of some degree of prior knowledge (by choosing k and number of the 
output dimensions). Thus, the unsupervised data characterization still requires 
careful assessment of the reduction results to achieve high classification and 
prediction accuracies. The interested reader can further explore other manifold 
learning methods such as Isomap, Diffusion maps, Locally-linear embedding. There 
is also a number of methods that use the neural networks to learn the latent 
embedding spaces, such as Kohonen's Self-organizing maps (SOM's) and 
Autoencoders. The autoencoder networks use the specific architecture that has a 
bottleneck in their structure, which forces a formation of compressed knowledge 
representation (by data pooling) of the original input, thus, representing another 
approach for dimensionality reduction. The autoencoders are a distinct type of 
rapidly developing DR methods, although they provide the least amount of 
interpretability.   
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2.3  Graph-based methods 

2.3.1  Graph-theoretic measures and centralities 

The first application of the network analysis can be traced back to Leonard Euler, 
who famously solved the Königsberg Bridge Problem using reduced network repre-
sentation of the city and its bridges. Since Euler, graphs are widely used almost in all 
aspects of science. They naturally encode information from social networks (Borgatti 
et al., 2009), computer networks in cybersecurity (Wu & Irwin, 2016), and visualize 
spatially resolved brain connectomes (Farahani et al., 2019), to name a few. In recent 
years specific graph-oriented data libraries were developed, making graph-based 
data processing more available to the general scientific audience (Kumar Kaliyar, 
2015; Pedregosa et al., 2011).  

In this subchapter, I will provide a summary of graph-theoretic measures com-
monly used in network science. I will also outline the importance of network-based 
statistics and network segregation methods in visualizing and classifying extensive 
mass spectrometric data. The relational data modeling provides the visualization of 
edge-node diagrams that encode the relationships between observations and reflect 
the structural changes, in which new, informative properties of investigated materials 
can emerge.  

In general, the graph (network) consists of a number of vertices (nodes) con-
nected with links (edges). As illustrated in Fig. 8, graphs can be drawn as a diagram 
of nodes connected with varying numbers of edges, where nodes and edges can en-
code domain-specific information. The networks can be binary (edge is encoded as 0 
– no connection, and 1 – there is a connection) or weighted. The weighted graph edge
encodes the strength of the connection. For example, in the normalized form, weights 
can be encoded in the range from 0 to 1, where 0 means no connection, and one de-
notes the strongest connection available.

Figure 8 illustrates the types of networks that can be utilized in mass spectrome-
try data analysis. The individual observations (mass spectra) can represent the indi-
vidual nodes in the network, and edges can encode similarities between spectra de-
fined on some metric space. If the similarity function is not symmetric (i.e., concave 
functions like logarithm) and does not qualify as a metric (i.e., the distance between 
spectrum 𝑎  and 𝑏  is not the same as a distance between 𝑏 and 𝑎), the network can 
be constructed as a directed weighted network (network in the right, Fig.8) 
visualizing either one direction: 𝑎𝑎  → 𝑏𝑏 , or an other: 𝑏𝑏  → 𝑎𝑎 .  Th er efore, the 
information on edges can be stored as directional weight that encodes the structure 
of spectral proximity (see (Deza & Deza, 2009) for the list of metric and non-metric 
distances).  

If every mass spectrum is connected to its k nearest neighbors, we can form a k-
neighborhood graph (k -nearest neighbors’ network or k -NN) or spectral similarity 
network. The k-NN graph can be constructed as an undirected binary network, 
where edges are encoded in a binary fashion, or as a weighted undirected network, 
where the edges can encode actual similarity measures on its edges. Although it is 
not very informative, it is possible to compile a farthest neighbor graph (FNG) 
where nodes can be connected to the k-farthest neighbors encoding the most 
dissimilar spectra in the network, though large distances in high 
dimensions can be meaningless or misleading.  As it was mentioned before it is 
also possible to construct ϵ-nearest-neighbor (ϵ-NN) graphs.
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Another available approach is that nodes can represent the single unit masses, and 
edges between pairs of masses can encode the correlation values. In this case, we will 
get mass correlation networks constructed similarly to functional magnetic reso-
nance imaging (fMRI) brain connectomes and gene co-expression networks (Horvath, 
2011).   

Figure 8. Types of networks that can be used in the analysis of mass spectrometry data. 
The figure is adapted from (Farahani et al., 2019). Note the thickness of edges 

The spectral similarity networks (𝑘𝑘-NN's) and correlation networks can be static 
or dynamic (static networks chained together). All previously described types of net-
works can be dynamic (i.e., changing with some increment value, defined on the da-
taset). Further in the thesis, some presented networks are dynamic (i.e., correlation 
networks from the depth profiles). However, they will be presented as a set of static 
networks. The directed binary networks can also be constructed, encoding the direc-
tion of causal effects.  

As illustrated in Fig. 9, the networks can have an intricate structure, where a mul-
titude of graph-theoretic measures can be applied. The figure demonstrates com-
monly used global graph measures. The figure on the left indicates the modularity 
structure of the network that can be uncovered using the greedy modularity optimi-
zation algorithm, i.e., Louvain (Blondel et al., 2008) or the recently proposed Leiden 
algorithm (Traag et al., 2019). Modularity score describes the density of links inside 
a community compared to the density of links outside communities. In fs-LIMS data 
analysis, the discovered modules correspond to the chemical entities present in the 
data set (i.e., minerals, organic remains of microfossils). The middle section of Fig. 9 
illustrates the measure called the shortest path, or geodesic path. The measure en-
codes the path between nodes in the network that consists of a minimal number of 
edges. If the network is weighted, the shortest path represents the minimal sum of 
edge weights. The geodesic path length represents the distance defined on the net-
work (it may not be a unique value). For example, the shortest path length can be used 
in measuring the distance from mass spectra registered from one mineral to the mass 
spectra registered from the microfossil. Thus, it represents the secondary metric that 
could be defined on the body of mass spectrometric observations registered from het-
erogeneous media. One can also define the diameter of the network, which 
characterizes the largest geodesic distance in the network. Geodesic distances can 
also be useful in characterization of the diameters of the subgraphs which are 
indicative of the cluster sizes. The consequence of application of graph-based 
distances is that it is always possible to define a central node which in mass 
spectrometric analysis represents the most representative spectrum from the given 
mineral or more generally it reveals a measure of the influence of a node in a 
network. 
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Figure 9. Illustration of graph-theoretic measures that emerge from the network struc-
ture. The figure is adapted from (Farahani et al., 2019). 

The typical path lengths in the "small world" networks are scaling as logN, where 
N is the number of nodes in the network. Thus, if the analyzed network is a k-NN 
graph of spectral similarities, with a number of observations ~40'000, the expected 
shortest path length will be only 4.6, indicating that expected distances on graphs 
tend to remain small. Several efficient algorithms are known for calculating geodesic 
distances on graphs, such as Dijkstra's algorithm, Bellman-Ford algorithm, and the A* 
search algorithm, which uses the heuristic approaches to speed the search times.  

The clustering coefficient represents the measure of the degree to which nodes in 
the network have a tendency to form a cluster of nodes. The coefficient can be used 
to color and segregate the network and potentially find the aggregations of nodes if 
they cannot be separated into communities right away.  The degree centrality illus-
trated in Fig. 10, also called just degree, identifies the node's centrality in the network 
calculated from the number of edges that the node contains (or simply a number of 
edges per node). For example, the degree of the central yellow node in the figure is 6, 
whereas the degree of smaller singular nodes (sometimes called "leaves") is one.  De-
gree centrality is directly linked to the average degree of the network and represents 
the easiest measure to compute. The betweenness centrality (BC) identified in fig. 10 
(middle illustration) represents the measure of centrality between communities. For 
example, the BC can be used to identify mass spectra that belong to the transition 
structure between classes of mass spectra. Suppose the module on the left represents 
hypothetical mass spectra registered from the host mineral and the module on the 
right - organic inclusions. In that case, the BC measure will identify mass spectra char-
acterized by an equal mixing ratio of host over organic material and outline the loca-
tion of transitional spectra.  

The final for this chapter centrality measure is shown on the right, in Fig. 10. The 
eigenvector centrality is a self-referential measure of centrality that takes into ac-
count the quality of the link. The measure does it in a way that if the node is connected 
to a more central node, it will increase its centrality (of a connected node) in return. 
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This effect is shown in the figure with the centrality of the yellow node, which is more 
central in comparison with the centrality of the node on the right, notwithstanding 
that degree of compared nodes is the same.   

Many more other centrality measures can be of high utility in analyzing the mass 
spectrometry data. For example, measures such as Katz centrality, Harmonic central-
ity, Percolation centrality can be defined on the topology of the produced networks 
(Bonacich, 2007; Borgatti et al., 2009; Farahani et al., 2019). The centrality measure 
called PageRank is a modification of the eigenvector centrality developed by Google 
Search and used to determine the reputation and importance of the web page in the 
network of websites.  

Figure 10. Basic concepts of network centralities. The most central node is identified 
with yellow color (except for eigenvector centrality, see the text). Sizes of nodes are 
scaled according to the nodal degree. The figure is adapted from (Farahani et al., 2019). 

    In general, the measures applied to the graph are divided into two categories - 
global and nodal. The global measures derive a single number for the graph, thus 
characterizing the network structure in its complete shape. The nodal characteristics 
derive specific values for the given node. In addition to the measures described 
above, we can mention the eccentricity, the measure that describes the maximal 
distance from the given node to all remaining nodes in the network. Global efficiency 
describes the average of the inverse shortest path length from a node to all other 
nodes. The efficiency of a network is a measure of how efficiently it exchanges 
information. In contrast to previously discussed measures, the efficiency can be 
applied as a global and local measure and represents another way of measuring the 
connectivity structure of the given graph. Although the efficiency is not directly 
utilized in the analysis of mass spectrometric networks in this thesis, it can 
represent an interesting measure describing the structure of the entire dataset. The 
measure called participation coefficient measures the distribution of a node's edges 
among the communities of a graph. A small-worldness (global) describes the 
measure of similarity of the given graph to the structure of the small-world graph. 
For example, the spectral similarity networks from the single mineral with low 
spectral dispersion of intensity values will grow as spheres (in 3D) and circles in 2D, 
thus, building the network that has a small-world organization. In other words, the 
small-world graph organization can be characterized by a high clustering coefficient 
and a short mean path between nodes. Another measure that can be defined on the 
given network is the assortativity coefficient which represents the Pearson 
correlation of the nodal degree between pairs of linked nodes. The positive 
correlation indicates that nodes tend to link to other nodes with a similar degree or 
strength.
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2.3.2  Generic similarity measures 

The exploration of large spectral datasets often requires understanding how one 
observation is different from another without looking into original spectra. This is an 
important issue in clustering, classification, outlier detection, and general explorative 
characterization of datasets. For example, spectra from the same mineral are ex-
pected to be similar to each other if laser powers and the output ion yields are held 
constant.   

This section provides information on common similarity and distance measures 
that can be computed for sets of observations. The notations and descriptions of dis-
tances are provided as in (Han et al., 2012) 

Here, we can define that similarities between mass spectrometric observations 
can be expressed as a measure of distance and vice versa: 

𝜇𝜇𝑖𝑖𝑚𝑚(𝑖𝑖, 𝑗𝑗) = 1 − 𝑑𝑑(𝑖𝑖, 𝑗𝑗), (16) 

Where 𝜇𝜇𝑖𝑖𝑚𝑚(𝑖𝑖, 𝑗𝑗) is the similarity between objects 𝑖𝑖 and 𝑗𝑗, and 𝑑𝑑(𝑖𝑖, 𝑗𝑗) is the distance 
between objects 𝑖𝑖 and 𝑗𝑗. Thus, the similarity is an inverse of the distance measured 
between two observations.  

The most straightforward and commonly used distance is Euclidean distance (or 
the straight line between two points in 2D). Let 𝑖𝑖 = (𝑥𝑥𝑘𝑘1, … , 𝑥𝑥𝑘𝑘𝑝𝑝) and 𝑗𝑗 = (𝑥𝑥𝑗𝑗1, … , 𝑥𝑥𝑗𝑗𝑝𝑝) 
be two observations with 𝑝𝑝 numeric attributes. The Euclidean distance between these 
observations could be defined as follows: 

𝑑𝑑(𝑖𝑖, 𝑗𝑗) = ��𝑥𝑥𝑘𝑘1 − 𝑥𝑥𝑗𝑗1�
2 + �𝑥𝑥𝑘𝑘2 − 𝑥𝑥𝑗𝑗2�

2 + ⋯ + �𝑥𝑥𝑘𝑘𝑝𝑝 − 𝑥𝑥𝑗𝑗𝑝𝑝�
2, (17) 

Another commonly used distance measure is Manhattan distance; it is defined as: 

𝑑𝑑(𝑖𝑖, 𝑗𝑗) = |𝑥𝑥𝑘𝑘1 − 𝑥𝑥𝑗𝑗1�+|𝑥𝑥𝑘𝑘2 − 𝑥𝑥𝑗𝑗2� + ⋯ + |𝑥𝑥𝑘𝑘𝑝𝑝 − 𝑥𝑥𝑗𝑗𝑝𝑝|, (18) 

Both distances provide the following properties – the distance between two ob-
jects cannot be negative, and distance to the same objects is zero (distance to itself). 
Also, the functions are symmetric, meaning that 𝑑𝑑(𝑖𝑖, 𝑗𝑗) = 𝑑𝑑(𝑗𝑗, 𝑖𝑖) and follow the trian-
gle inequality. The measures that satisfy these properties are known as a metric. 

The Minkowski distance is a generalization of the Euclidean and Manhattan dis-
tances: 

𝑑𝑑(𝑖𝑖, 𝑗𝑗) = �|𝑥𝑥𝑘𝑘1 − 𝑥𝑥𝑗𝑗1|ℎ + |𝑥𝑥𝑘𝑘2 − 𝑥𝑥𝑗𝑗2|ℎ + ⋯ + |𝑥𝑥𝑘𝑘𝑝𝑝 − 𝑥𝑥𝑗𝑗𝑝𝑝|ℎℎ , (19) 

Where ℎ is a real number such that ℎ ≥ 1, the Minkowski distance is equal to Eu-
clidean distance where ℎ=2 and equals to Manhattan distance when ℎ=1.  

Another very popular measure is cosine similarity. It measures the cosine of the 
angle between two vectors and determines whether they are pointing in the same 
direction.  It became a standard similarity measure in text mining, where text vectors 
produce sparse matrices. The cosine similarity function is defined as: 

𝜇𝜇𝑖𝑖𝑚𝑚(𝒙𝒙,𝒚𝒚) =  
𝒙𝒙𝒚𝒚

‖𝒙𝒙‖‖𝒚𝒚‖ , (20) 
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Where ‖𝒙𝒙‖ is the Euclidean norm of vector 𝒙𝒙 = �𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑖𝑖�, and defined as 

�𝑥𝑥12 + 𝑥𝑥22 + ⋯+ 𝑥𝑥𝑖𝑖2, and similarly ‖𝒚𝒚‖ is the Euclidean norm of vector 𝒚𝒚.  

The cosine similarity, thus, measures the cosine of the angle between two vectors. 
The value of the function close to 0, means that vectors are located at around 90 
degrees to each other (or orthogonal/dissimilar). In contrast, values close to 1, identify 
very close proximity between vectors, whereas a value of exactly 1 means that vectors 
are identical.  It is important to note that cosine similarity is not a proper metric 
because it does not obey the rules described above.  

During the course of this thesis, we will use the Euclidean distances and Cosine 
similarity to measure the closeness of mass spectra to each other. In general, cosine 
similarity better captures the differences between various minerals; however, it does 
not reflect the change in magnitude. Thus, various notions of distances need to be 
assessed prior to the full analysis because there is no largely accepted notion of 
distance that works for all datasets. It all depends on the spareness of vectors and their 
magnitudes.   

Overall, in this chapter, we covered only small portion of all available distances. A 
great variety of data-type dependent distances can be further explored. For example, 
distances on graphs (i.e., geodesic distances) or distances between distributions 
(Wasserstein distance) can be important for the characterization of different chemical 
entities measured with LIMS (Deza & Deza, 2009).   

 The mineral label assignment stabilities can also be assessed using the similarity 
score defined for clustering results. The Rand Index (RI) is a measure of similarity 
between two clustering results. The form of the Rand Index that is adjusted for the 
chance grouping of spectra (data points) is called the Adjusted Rand Index. The Rand 
index represents the frequency of occurrence of agreements over the total number of 
pairs. The RI score changes from 0 to 1, where 1 represents the complete overlap in 
the cluster assignment, and 0 indicates that there is no agreement between cluster 
assignments. Therefore, the RI can represent an analog to the p-value for the given 
clustering if robustness is estimated using the random subsamples.   

 With an increase in the data acquisition speeds, the output of the LIMS data analysis 
can represent multiple networks; therefore, it might be useful to compare the 
similarity of networks to each other. As it was mentioned before, the spectrum (set of 
the eigenvalues) of the normalized graph Laplacian can be used to compare networks 
with different sizes. Although it does not represent a proper distance measure, it 
reflects the structural similarity of investigated networks (see the spectral distances 
on graphs, i.e., Wasserstein distances between spectra of the graphs). The methods 
such as Euclidean, Jaccard, or DeltaCon can be applied to compare various networks 
with each other (Tantardini et al. 2019). If the analyzed networks are very complex 
and large, network coarsening approaches can be utilized. The Mapper-type 
algorithms can be applied to the node embeddings to further reduce graphs (see 
further section "Mapper" for more detailed characterization of the method). For 
example, the Mapper algorithm was initially developed with the purpose of comparing 
3D shapes, which are essentially complex networks (Singh et al. 2007).  Though 
networks can lose fine structural information, authors reported a high similarity score 
for analogous networks using the modification of the Gromov–Hausdorff distance; 
thus, the method is certainly applicable to shape comparison and matching tasks. 
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2.3.3  Louvain modularity 

The Louvain method developed by (Blondel et al., 2008) is a community detection 
algorithm used on networks. The algorithm represents the heuristic method of 
greedy modularity optimization. The Louvain modularity represents a fast and high-
quality community detection method widely used in various scientific fields.  Argua-
bly, the Louvain method is one of the most popular algorithms for uncovering the 
community structure of networks on par with the Leiden algorithm (Traag et al., 
2019), although the latter algorithm claims an improvement in the quality of commu-
nity detections.  

In fs-LIMS data analysis, correlation networks or the low dimensional embeddings 
can yield densely packed communities of similar spectra representing mineralogical 
entities, or for example, they can represent the groups of spectra measured from mi-
crofossils. However, the structure of these groups is not known, and depending on the 
topological structure of the network, recovering the community structure might not 
be easy or self-evident. Thus, the Lovain modularity optimization algorithm, given the 
connectivity structure of the network, can infer the mineralogical composition of the 
analyzed set.  

The best-known way to recover the modular structure of networks is so-called 
modularity (Newman & Girvan, 2004). The modularity score defined as a measure of 
the density of nodes inside the community compared to the density of nodes outside 
communities. However, optimization of the original modularity score was found to be 
computationally expensive (the algorithm estimates all possible iterations of the 
nodes into groups); thus, new methods of approximate calculation were needed.  

The Louvain method calculates the modularity score by finding modularity on all 
nodes, then it aggerates nodes in the networks into smaller communities and repeats 
the calculation of modularity on the reduced graph.  

Accordingly, the modularity of the weighted network is defined as: 

𝑄𝑄 =  
1

2𝑚𝑚
��𝐴𝐴𝑘𝑘𝑗𝑗 −

𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗
2𝑚𝑚

�
𝑘𝑘𝑗𝑗

𝛿𝛿�𝑐𝑐𝑘𝑘𝑐𝑐𝑗𝑗�, (21) 

Where, 𝐴𝐴𝑘𝑘𝑗𝑗 represents the edge weight between nodes 𝑖𝑖 and 𝑗𝑗. 𝑘𝑘𝑘𝑘 and 𝑘𝑘𝑗𝑗 are sums 
of the weights of the edges attached to nodes 𝑖𝑖 and 𝑗𝑗.𝑚𝑚 is the sum of all the edge 
weights in the graph. 𝑐𝑐𝑘𝑘 – is the community to which node 𝑖𝑖 is assigned, and 𝛿𝛿 − is the 
delta function, such that  𝛿𝛿(𝑢𝑢, 𝑣𝑣) is 1 if 𝑢𝑢 = 𝑣𝑣, and 0 otherwise  (Blondel et al., 2008).  

The Louvain algorithm is divided into two phases that are repeated iteratively. In 
the first phase of the Louvain method, every single node in the graph is assigned with 
its own community. Then, nodes are aggregated into smaller communities, and the 
whole process is repeated until no further improvement can be achieved (maximiza-
tion of the parameter 𝑄𝑄). The modularity is optimized by allowing only local changes 
of communities. Where the algorithm found communities, nodes are aggregated fur-
ther in order to build a new network of communities. 

The gain in modularity (∆𝑄𝑄) can be computed as follows: 

∆𝑄𝑄 =  
1

2𝑚𝑚
��

∑ +𝑘𝑘𝑘𝑘 2𝑘𝑘𝑘𝑘,𝑘𝑘𝑘𝑘
2𝑚𝑚

− �
∑ +𝑡𝑡𝑡𝑡𝑡𝑡 𝑘𝑘𝑘𝑘
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� , (22) 
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Where Σ𝑘𝑘𝑘𝑘 is the sum of all weights of the links the community 𝑖𝑖 is moving into. 
Σ𝑡𝑡𝑡𝑡𝑡𝑡 is the sum of all the weights of the links to nodes in the community 𝑖𝑖 is moving 
into.  𝑘𝑘𝑘𝑘 is the weighted degree of community 𝑖𝑖; 𝑘𝑘𝑘𝑘,𝑘𝑘𝑘𝑘 is the sum of the weights of the 
links between community 𝑖𝑖 and other nodes in the community that 𝑖𝑖 is moving into, 
and 𝑚𝑚 is the sum of the weights of links in the network.  

The Louvain clustering works well in junction with the Mapper algorithm (see 
further section - Mapper). The experimental results can yield a highly complex 
distribution of points that are not always easy to partition into clusters. Modern 
methods of clustering, for example, DBSCAN, rely on the density distributions of the 
data to find reliable clusters. However, it is often the case that data can present 
clusters with varying densities and complex internal structures. However, such 
groups of data points that can be easily identified by eye are typically hard to 
partition into clusters using numeric approaches. The Mapper algorithm provides 
the connectivity structure of the data on the given scale, producing the network as 
an output. Consequently, this network can be segregated into communities using the 
Louvain algorithm (see contribution "On topological analysis of fs-LIMS data" for 
examples of graph partitioning using the Louvain method). As in all clustering 
algorithms, a user has to define hyper-parameters to achieve a desirable outcome. In 
the case of Louvain, there is only one parameter that controls the granularity of the 
graph partitioning. The parameter called "resolution" can be defined above 1, to find 
large-scale communities and below 1, to further partition the graph into a smaller 
set of connected groups of nodes. 

In general, by using the junction of Mapper and Louvain, the user has to be less 
"lucky" to partition data into meaningful clusters in comparison with conventional 
methods, like, k-means, DBSCAN, spectral clustering or agglomerative clustering.  
During the course of this thesis, I will also present another clustering algorithm 
called HDBSCAN, which uses hierarchical representations of density distributions, 
thus allowing for clustering more complex data (Campello et al. 2013; McInnes et al. 
2017). Even though, HDBSCAN works very well with most of the datasets, the pair of 
Louvain with Mapper provides more stability (see supplementary information for 
"On topological analysis of fs-LIMS data" ) and provides better tolerance to the noise 
in data. Thus, the data points that can be assigned as noise in most of the clustering 
algorithms can be retrieved within a proper cluster using topological methods and 
community detection on graphs.

The Louvain algorithm works well for large and small networks - as tested in the 
original contribution, the method can be applied to uncover modular structure of the 
network with millions of nodes. The results of partitioning of small networks can be 
seen in the contribution "Towards empirical biosignatures using LIMS", where 
correlation networks were segregated into communities, revealing elements from 
minerals and microfossils. The exemplary Lovain partitioning of the correlation 
network is illustrated in Fig. 12 where the community detection algorithm found 
three clusters that belong to microfossils and two minerals. 

Overall, the Louvain method derives highly informative community structures 
from complex networks, therefore, allowing to uncover mineralogical and chemical 
entities from LIMS observations.  
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2.3.4  Weighted mass correlation networks 

The weighted mass correlation analysis (WMCA) (or just correlation networks) is 
an analytical method that naturally arises from PCA, and in some sense, represents 
the alternative solution for eigendecomposition of centered covariance matrices. 
Originally, the method was developed by (Horvath, 2011) and named Weighted Gene 
Co-expression Network Analysis (WGCNA). Initially, the method was applied to the 
analysis of gene expression profiles; thus, it entered other fields through genetics and 
systems biology. At its core, the WMCA is a data visualization technique and method 
for the interpretation of high-dimensional linear observations. The analyzed data in 
correlation networks are encoded as a set of nodes and edges and further visualized 
using graph spatialization methods.   

Here we will define the main computational parts of the algorithm and show an 
exemplary network, outlining the pros and cons of the method.  

In fs-LIMS analysis, minerals and chemical entities on a relatively small scale of 
observations tend to form linear ion yield profiles. The variance of ion yields can be 
caused by unequal ionization of portions of the mineral due to the inhomogeneities 
present on the grain boundaries and due to the crater shape evolution that changes 
during ablation. Thus, if we have a single mineral, all the masses defined by the stoi-
chiometric formula of mineral, in principle, should be linearly correlated.  However, 
it is not always the case – some minerals can be on a microscale more hydrogenated, 
weathered etc., others are less. Also, the trace elements with impurities present 
within minerals can be not abundant enough to register a high-quality correlation 
factor between them. Thus, we can map the full scale of all linear variances and lay 
them out in the form of the network. 

Let 𝐗𝐗 be the data matrix that consists of 𝑛𝑛 random variables (𝐗𝐗 = (X1, … , Xn )), 
then the correlation matrix of 𝑋𝑋, can be defined as follows: 

𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 (𝐗𝐗) =  𝐒𝐒 =

⎣
⎢
⎢
⎢
⎡ 1 ⋯

𝐸𝐸[(𝑋𝑋1 − 𝜇𝜇1)(𝑋𝑋𝑘𝑘 − 𝜇𝜇𝑘𝑘)]
𝜎𝜎(𝑋𝑋1)𝜎𝜎(𝑋𝑋𝑘𝑘)

⋮ ⋱ ⋮
𝐸𝐸[(𝑋𝑋𝑘𝑘 − 𝜇𝜇𝑘𝑘)(𝑋𝑋1 − 𝜇𝜇1)]

𝜎𝜎(𝑋𝑋𝑘𝑘)𝜎𝜎(𝑋𝑋1) ⋯ 1
⎦
⎥
⎥
⎥
⎤

, (23) 

Where, 𝐸𝐸�(𝑋𝑋𝑥𝑥 − 𝜇𝜇𝑋𝑋)�𝑋𝑋𝑦𝑦 − 𝜇𝜇𝑦𝑦�� denotes the covariance of the given mass pairs -  
𝑐𝑐𝑐𝑐𝑣𝑣(𝑥𝑥,𝑦𝑦) in 𝐗𝐗, 𝜇𝜇𝑦𝑦 denotes the expected value, and 𝜎𝜎 denotes standard deviation. 

Given the number of variables in the matrix 𝑋𝑋, we can define the number of unique 
correlation pairs: 

R =  �
𝑛𝑛2

2
�− 𝑛𝑛, (24) 

Using the correlation matrix 𝑆𝑆 = [𝜇𝜇𝑘𝑘𝑗𝑗], we can form an adjacency matrix 𝐴𝐴 = [𝑎𝑎𝑘𝑘𝑗𝑗], 
that can be used to define network 𝐺𝐺 = (𝑉𝑉,𝐸𝐸,𝑤𝑤), where 𝑉𝑉 are the vertexes in the 
graph, E  pairwise edges between vertexes, weighted as 𝜇𝜇𝑘𝑘𝑗𝑗 and 𝑤𝑤 denotes a vector of 
attributes (i.e., element and isotope abundances, centrality measures).  

The network has to be set to the specific threshold (hard threshold), to remove 
the clutter of insignificant correlation factors from the graph. Such threshold splits 
the network into separate parts, where insignificant correlation pairs are removed. 
In contrast to the hard threshold, a soft threshold uses powered (𝜇𝜇𝑘𝑘𝑗𝑗𝑏𝑏) correlation 
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matrix, thus preserving more of the fine structure of linear and near-linear depend-
encies. Additionally, the negative correlation factors cannot be used in the spatializa-
tion of the network; thus, they should be separated and visualized as a separate net-
work of negative correlation factors. 

Figure 11. An illustration of the weighted mass correlation analysis (WMCA) workflow. 
Left – distribution of Si isotope intensities measured from the Gunflint chert. Right – 
correlation network of Si isotopes. The varying circles around nodes encode isotope 
abundances. 

As shown in Fig. 11, correlation networks can encode a relatively large number of 
observations (4400 mass spectra are visualized in the figure) with linear structure 
into a concise and informative network that preserves the structure of co-dependen-
cies present in the original dataset. The parameter 𝑤𝑤, defined in the network, is visu-
alized as varying circles around every node. In principle, it can be any type of second-
ary metric associated with the network. For example, 𝑤𝑤 can encode node centrality 
in the network or averaged abundance of the given mass. The network, after construc-
tion, requires spatialization, which can be done with algorithms, like FA2(Jacomy et 
al., 2014), Kamada-Kawai (Kamada & Kawai, 1989), Fruchterman-Reingold 
(Fruchterman & Reingold, 1991), and many others.  

Another important feature is that the Pearson correlation function is not robust 
against outliers; therefore, logarithmic or square root transforms might be useful in 
the construction of correlation networks. However, if one is interested in the full 
structure of mass correlations, an alternative to the correlation networks could be 
used. For example, a hierarchical biclustering algorithm recovers groups of correlated 
entities as well as spatialization algorithms discussed above.  

Figure 12 shows a correlation network calculated from 500 fs-LIMS composite 
mass spectra (100’000 single laser shot mass spectra). The data was acquired from 
the depth profile, where a microfossil was detected. As one can see, the structure of 
the correlations clearly identifies chemical entities – quartz mineral, polymetallic in-
clusion, and a microfossil. The groups in the network were recovered using Louvain 
clustering (see chapter Louvain modularity). The topology of the subgraphs in the 
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network identifies specific elements that are central to the given cluster. For example, 
the 12C is among the central nodes in the subgraph of microfossils. Whereas 28Si and 
first SiO-44 amu, node are centrally located in the quartz cluster.   

Figure 12. An exemplary correlation network measured from the Gunflint chert. Nodes 
in the network encode single unit masses. Edges between masses indicate strong corre-
lations (higher than 0.5). The colors of nodes and edges are defined according to the 
Louvain modularity of the network (see further in the text). The length of edges indicates 
weights (correlation factors) defined on the given edge and optimized using the graph 
spatialization algorithm.  

In the lower part of the quartz mineral, the presence of the bio-relevant 
element (31P) in the cluster of quartz-related masses could be explained by the 
intrusion of neighboring mass 30Si into the integration window of 31P. Therefore, 
some of the masses can be placed in various clusters in an artefactual manner. 
Overall, mass correlation networks provide an exploratory tool that allows 
understanding the multi-dimensional relationships between many single unit 
masses. The method provides visually recognizable and meaningful clusters and 
makes the mineralogical inference less bothersome. Moreover, networks look 
visually very appealing and can be used as an interpretable guide of the collected 
data. The dynamic networks can be calculated on large datasets, where one 
network will be merging into another one. The time series calculated on secondary 
metrics on such data can be indicative of inclusions. For example, significant carbon 
centralities are appearing only within microfossils, whereas diluted inorganic 
carbon present in the host mineral will not be showing such metrics. The structure 
of the correlation networks also provides an insight into molecular clustering 
patterns, for example, the Si oxides are connected to the Si isotopes.
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2.3.5  ForceAtlas 2 

An original contribution by (Jacomy et al., 2014) introduced a continuous graph 
drawing algorithm called ForceAtlas2. As many other force-directed graph layout al-
gorithms, ForceAtlas2 was designed to visualize complex directed and undirected 
networks with weighted and unweighted edges. In general, ForceAtlas2 could be 
compared with other continuous network layouts such as Yifan Hu (Hu, 2005), 
Kamada-Kawai (Kamada & Kawai, 1989), and Fruchterman-Reingold algorithm 
(Fruchterman & Reingold, 1991). 

The ForceAtlas2 (FA2) recently has gained attention in single-cell transcriptomics 
as a preferred tool for high dimensional data visualizations. It was shown that FA2 
embeddings could capture the structure of gene expression profiles on par with t-SNE 
and UMAP (Tusi et al., 2018; Wagner et al., 2018; Weinreb et al., 2018). Arguably, the 
FA2 preserves more continuity of the manifolds and provides embeddings of the 𝑘𝑘-
NN graphs in an easily understandable way. However, the FA2 was designed as a gen-
eral-purpose graph spatialization technique and therefore was implemented in many 
commercial and open-source graph drawing platforms. Among available options, the 
python implementation of the FA2 provides a node embedding option that can be 
used in addition to the visualization engine implemented in Gephi (an open-source 
graph drawing software) (Bastian et al., 2009). Nevertheless, the node embedding 
option makes the FA2 also a data dimensionality reduction method so that FA2 scores 
can be used for classification, clustering, and predictive analytics.  

As in many other spatialization methods, the FA2 has attractive and repulsive 
forces that iteratively act on the network, optimizing the positioning of the nodes in 
a stepwise manner until global force-balance is achieved. The physical intuition be-
hind FA2 could be represented as an equilibration of freely floating electrical charges 
that converge to the balanced state after a number of pairwise interactions. There-
fore, the FA2 essentially is an 𝑛𝑛-body simulation algorithm with strictly defined 
forces.  

The attractive force 𝑇𝑇𝑎𝑎, utilized in the FA2, presents the linear attraction that con-
trolled by the distance 𝑑𝑑, defined between two nodes 𝑛𝑛1 and 𝑛𝑛2:  

𝑇𝑇𝑎𝑎(𝑛𝑛1,𝑛𝑛2) =  𝑑𝑑(𝑛𝑛1,𝑛𝑛2), (25) 

The repulsive force is defined as: 

𝑇𝑇𝜋𝜋(𝑛𝑛1,𝑛𝑛2) = 𝑘𝑘𝜋𝜋
(𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛1) + 1)(𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛2) + 1)

𝑑𝑑(𝑛𝑛1,𝑛𝑛2)  , (26) 

Where deg is a degree of the node, which is the number of connections that it has 
to other nodes and 𝑘𝑘𝜋𝜋 is a parameter that can be set by the user. The repulsive force 
is designed to have additional visibility of "leaves" – nodes with degree one that could 
clutter the structure of the network.  

The overall visualization quality could be improved with a number of additional 
settings. For example, the LinLog mode provides the logarithmic attraction force, of-
fers better placement of nodes, and better readability of the network's structure.  

Log𝑇𝑇𝑎𝑎(𝑛𝑛1,𝑛𝑛2) = log (1 +  𝑑𝑑(𝑛𝑛1,𝑛𝑛2)), (27) 
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Another parameter that could be controlled is gravity. The gravity presents an ad-
ditional force that can prevent weakly connected nodes from drifting too far away 
from the central part of the network. The gravity is defined as: 

𝑇𝑇𝑏𝑏(𝑛𝑛) =  𝑘𝑘𝑏𝑏(𝑑𝑑𝑑𝑑𝑑𝑑 (𝑛𝑛) + 1), (28) 

Where 𝑘𝑘𝑏𝑏 is a weighting factor.  

If the spatialized graph has weights defined on edges, which can be defined as any 
similarity measure between nodes, then the attraction force is computed in the fol-
lowing manner: 

𝑇𝑇𝑎𝑎 =  𝑤𝑤(𝑑𝑑)𝛿𝛿𝑑𝑑(𝑛𝑛1,𝑛𝑛2), (29) 

Where 𝑤𝑤(𝑑𝑑) is the weight of the edge 𝑑𝑑. 

The remaining  set of finer parameters, affecting the spatialization in a minor way, 
can be found in an original publication by (Jacomy et al., 2014). 

Among the advantages of FA2, one can note that it spatializes the graph in a real-
time drawing, which allows interactive exploration of structures of the given network 
by rapidly testing different scales, forces, and constraints. Thus, learning by trial and 
error can provide good intuition for the appropriate settings choices.     

Figure 13 illustrates the exemplary 𝑘𝑘-NN (𝑘𝑘=5) network spatialized using the FA2 
algorithm. The network represents the cosine similarity structure of the imaging da-
taset measured from the Gunflint chert. The 20'000 fs-LIMS mass spectra were pre-
processed using the single mass unit spectral decomposition (260 single mass units 
were extracted from the mass spectra), log-normalization, and SVD. The structure 
of the k-NN network indicates the presence of microfossils and the quartz mineral. 
The grey color shades assigned to different parts of the network are calculated 
from the network topology using the Louvain modularity. As it was mentioned 
before, the FA2 provides a more continuous layout in contrast to other 
dimensionality reduction methods. Among limitations of the FA2 is that node 
embeddings can be done only in 2D space.   

In general, the FA2 provides good spatialization quality that comes close to meth-
ods like UMAP and t-SNE. However, the continuous character of the graph drawing 
slows the layout computation time for large graphs because it requires graph render-
ing on every step of the optimization. Another drawback that is partially resolved is 
that FA2 does not provide a circular constraint on the attraction field. This leads to 
the excessive repulsion of the disjoint subgraphs and visualization scale issues. The 
gravity force, which provides an additional attraction to the center of the graph spa-
tialization, partially solves that; however, it can be challenging to properly visualize 
highly disconnected subgraphs using FA2.  

Overall, the FA2 showcases that high-quality graph drawing can be achieved using 
simple forces and relatively few constraints and settings. The strength of the method 
is provided by its interpretability and engaging visualizations that are competitive 
with all commonly-used graph drawing algorithms (Hu, 2005; Kamada & 
Kawai, 1989).   The FA2 provides the continuous layout which is a pro and con at 
the same time. Due to the complexity of the large graphs the FA2 can converge 
longer in comparison to the discrete layouts, however, the real-time drawing 
provides better understanding of the node positioning. If the node gets trapped in 
the local neighborhood, from drawing it will be cleat where that node belongs.
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Figure 13. The FA2 visualization of the exemplary k-NN network, constructed on 20'000 
fs-LIMS mass spectra measured from the Gunflint chert. The weights on edges are de-
fined as cosine similarity on SVD precompressed mass spectra. The topology of the net-
work illustrates smooth transition of the microfossil related spectra from the quartz, 
forming a loop-like topology.  

The FA2 embedding of 20'000 LIMS observations is illustrated in Fig. 13. The 
structure of the tightly organized cluster on the left represents the observations from 
the quartz mineral. The nodes of the network are not visualized. The density of edges 
gradually changing to the right cluster represents the group of observations 
registered from the Gunflint microfossils. The edges between pairs of mass spectra 
are made translucent. As it could be seen from the figure, the similarity structure of 
the Gunflint microfossils clearly captures the transition of spectra from the host 
material (quartz). The density of edges indicates an overall number of connections 
between different pairs of mass spectrometric observations. On the lower part of the 
figure, a small number of mass spectra can be noted that represent the inclusions 
that are different from the main clusters. Altogether, the classification accuracy and 
quality of the retrieval of mass spectrometric classes is very high, and an embedding 
preserves a small distance between different pairs of observations. 

In general, the quality of the FA2 embeddings is almost always very good, even in 
comparison to more complex methods, i.e., UMAP (see further in the text subsection 
UMAP). Although graph convergence times are different from those from UMAP, it 
takes significantly more time for large graphs to reach a force balance state than 
UMAP. However, the utility of the FA2 in analyzing complex LIMS data is high since it 
represents an easily interpretable graph spatialization method that can be used to 
visualize various k-NN graphs.
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2.3.6  UMAP – Uniform Manifold Approximation and Projec-
tion 

The UMAP (Uniform Manifold Approximation and Projection) is a novel manifold 
learning technique for dimensionality reduction developed by (McInnes et al., 2018). 
The UMAP, in contrast, to the previously described matrix factorization methods, 
could be associated with the family of neighbor embedding methods. Such methods 
are specifically designed to visualize high-dimensional complex data using k-nearest 
neighborhood graphs (k-NNs) and typically use PCA as an initial data preprocessing 
step. The UMAP embeddings are constructed from a theoretical framework based on 
Riemannian geometry and algebraic topology (McInnes et al., 2018). Although the 
mathematics behind the technique is complex, the UMAP represents a scalable and 
fast algorithm for generic data similarity search applicable to large and high-dimen-
sional LIMS data.  

The UMAP algorithm is competitive with t-distributed stochastic neighbors em-
bedding (t-SNE) (Van der Maaten & Hinton, 2008), which was considered to be a 
standard data reduction method in biology and genetics for some years. The UMAP 
provides high visualization quality, increases interpretability, and arguably preserves 
more of the global structure (structure between clusters) with superior run time per-
formance. The run time performance, recently, has been improved even more, with a 
CUDA accelerated GPU version of UMAP (Nolet et al., 2020) (with up to 100x reported 
speedup). Furthermore, utilizing the strength of the Laplacian Eigenmaps (Belkin & 
Niyogi, 2003), UMAP has no restrictions on the number of output embedding dimen-
sions, making it a convenient general-purpose dimension reduction technique for un-
supervised and semi-supervised machine learning. The semi-supervised approach 
with UMAP can be utilized by re-embedding of the mass spectrometric observations 
with previously discovered mineralogical and chemical group assignments. In recent 
years, the UMAP algorithm became a popular tool in single-cell transcriptomics (mass 
cytometry and single-cell RNA sequencing) (Becht et al., 2019), population genetics 
(Diaz-Papkovich et al., 2020), and many other fields (Sainburg et al., 2020).  

It is argued that UMAP provides balanced embeddings, preserving more of the lo-
cal and global structures, and provides an easier to interpret set of hyperparameters 
in comparison with other manifold learning techniques. For example, the 𝑡𝑡-SNE (Van 
der Maaten & Hinton, 2008), which is another dimensionality reduction algorithm, is 
an incredibly flexible method that can often find structure in the data, where other 
methods are failing. However, the same flexibility makes it harder to interpret 
(Wattenberg et al., 2016) and find a balanced set of hyperparameters in unknown 
data.  

The theoretical foundations for UMAP and associated with the algorithm mathe-
matical proofs are published in the original publication (McInnes et al., 2018). Here 
only the main equations will be provided to outline the mathematical logic and com-
putational view of the algorithm. In practical terms, the UMAP represents the 
weighted graph algorithm that could be described in two main phases: 1) A weighted 
𝑘𝑘-NN graph construction and 2) A low-dimensional graph layout optimization. In gen-
eral, all neighborhood graph algorithms follow the same structure; the difference is 
in specific details on how the graph is constructed and how the layout is optimized.  

The first part of the UMAP algorithm represents the construction of the weighted 
𝑘𝑘-NN graph: Let 𝑿𝑿 = {𝑥𝑥1, … , 𝑥𝑥𝑘𝑘} be the input dataset with a metric 𝑑𝑑. Now, let us find 
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the 𝑘𝑘-nearest neighbors of 𝑥𝑥𝑘𝑘 under the metric 𝑑𝑑. Given an input hyperparameter 𝑘𝑘 
(number of nearest neighbors) for each 𝑥𝑥𝑘𝑘 , we can form a set of connections – 
{𝑥𝑥𝑘𝑘1 , … , 𝑥𝑥𝑘𝑘𝑗𝑗}. In the original UMAP implementation, during the first stage of the graph 
construction, the search of nearest neighbors is accomplished using the approximate 
nearest neighbors descent algorithm (Dong et al., 2011), which is a stochastic model 
that provides ~80%-100% accuracy rates for true neighbors recall. However, exact 
NN-search implementations exist. For example, the GPU accelerated UMAP provides 
a full neighbors search (Nolet et al., 2020).  

For each 𝑥𝑥𝑘𝑘 we will define 𝜌𝜌𝑘𝑘 and 𝜎𝜎𝑘𝑘 as: 

𝜌𝜌𝑘𝑘 = min �𝑑𝑑 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘𝑗𝑗�  | 1 ≤ 𝑗𝑗 ≤ 𝑘𝑘,𝑑𝑑(𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘𝑗𝑗) > 0� , (30) 

And 𝜎𝜎𝑘𝑘 results from: 

� exp�
− max �0,𝑑𝑑 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘𝑗𝑗� − 𝜌𝜌𝑘𝑘�

𝜎𝜎𝑘𝑘
�

𝑘𝑘

𝑗𝑗=1

=  log2(𝑘𝑘), (31) 

The second stage of the graph construction, after finding closest neighbors, 
weights the network around each vertex in the 𝑘𝑘-nearest graph by using the adaptive 
exponential smoothing kernel (in a similar fashion to 𝑡𝑡-SNE). The kernel smooths the 
distances in each local neighborhood of the 𝑘𝑘-NN graph by finding the normalizer 𝜎𝜎𝑘𝑘, 
such that equation (31) is satisfied and defining the Riemannian (differentiable) met-
ric local to the point 𝑥𝑥𝑘𝑘 .  Accordingly, 𝜌𝜌𝑘𝑘 will contain the distances to the closest non-
zero neighbors and ensures that the vector 𝑥𝑥𝑘𝑘 will be connected to at least one other 
data point with an edge weight 1. By doing that, the algorithm ensures that global 
connectivity will be preserved.   

Now, we can define a weighted graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸,𝑤𝑤), where G is the graph, 𝑉𝑉 is the 
vertexes, and 𝐸𝐸 is the set of directed edges. 𝑤𝑤 denotes the weights on pairwise edges. 
The weight function can be defined as follows: 

𝑤𝑤 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘𝑗𝑗� = exp�
−𝑚𝑚𝑎𝑎𝑥𝑥 �0,𝑑𝑑 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘𝑗𝑗� − 𝜌𝜌𝑘𝑘�

𝜎𝜎𝑘𝑘
� , (32) 

  Now, for a given set of points 𝑥𝑥𝑘𝑘 , with a set of nearest neighbors 𝑥𝑥𝑘𝑘𝑗𝑗 , we have a set 
of weight values 𝑤𝑤. In the output graphs, observations are connected in a probabilistic 
manner, meaning that the edge between two data points represents the likelihood 
(𝑤𝑤) that two points are connected. Further, the graphs with the varying notion of dis-
tance (local metric is defined in terms of  𝜌𝜌𝑘𝑘 and 𝜎𝜎𝑘𝑘) are merged into a single graph 
using operators defined for fuzzy (i.e., probabilistic) sets  (McInnes et al., 2018). This 
step patches the incompatible metric spaces together to form a single unified graph. 

Let A be the weighted adjacency matrix of G, and consider the symmetric matrix 
B: 

𝐵𝐵 = (𝐴𝐴 + 𝐴𝐴′ ) + (𝐴𝐴 ∘ 𝐴𝐴′ ), (33) 

Where 𝐴𝐴′  denotes transpose of the adjacency matrix A, and ∘ is an element-wise 
(Hadamard) product. Thus, the values of 𝐴𝐴𝑘𝑘𝑗𝑗 represents the probabilities that directed 
edge from 𝑥𝑥𝑘𝑘 to 𝑥𝑥𝑗𝑗 exist, then 𝐵𝐵𝑘𝑘𝑗𝑗 is the probability that at least one of the two directed 
edges exists. The output UMAP graph 𝐺𝐺 is then an undirected weighted graph, whose 
adjacency matrix is given by 𝐵𝐵.  
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The second part of the algorithm uses a force-direct layout algorithm to visualize 
the weighted graph 𝐺𝐺. Initial coordinates of the vertexes, prior to the optimization, 
are provided by Laplacian Eigenmaps (spectral decomposition of the k-neighborhood 
matrix), which ensures faster layout convergence and better preservation of the 
global structure(Kobak & Linderman, 2019). Therefore, it is important to note that 
the number of extracted components is a hyperparameter of Laplacian Eigenmaps. A 
force-directed layout algorithm utilizes a set of attractive and repulsive forces on the 
edges and nodes of the weighted UMAP graph G, up until the point when a force bal-
ance is achieved.   

The UMAP exploits attractive force between vertices 𝑖𝑖 and 𝑗𝑗 at coordinates 𝒚𝒚𝒊𝒊 and 
𝒚𝒚𝒋𝒋 , determined by: 

𝑇𝑇𝑎𝑎𝑡𝑡𝑡𝑡 =
−2𝑎𝑎𝑏𝑏||𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒋𝒋||2

2(𝑏𝑏−1)

1 + ||𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒋𝒋||2
2 𝑤𝑤 ��𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑗𝑗�� � 𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒋𝒋�, (34) 

Where 𝑎𝑎 and 𝑏𝑏 are hyperparameters (in current UMAP implementation defaults 
are 𝑎𝑎=1.577 and 𝑏𝑏=0.895), the repulsive force is given by: 

Where 𝜖𝜖 is a heuristic number designed to prevent division by zero (and equals 
0.001). The attractive and repulsive forces described above are derived from the gra-
dients that optimize the cross-entropy function between weighted graph  𝐺𝐺 and an 
equivalent graph 𝐻𝐻, constructed from low-dimensional points 𝒚𝒚𝒊𝒊 , where 𝑖𝑖 =
{1, … ,𝑁𝑁}. The discussion on similarities of cross-entropy functions used by UMAP, t-
SNE, and FA2 can be found in (Böhm et al., 2020). 

Consequently, the output graph 𝐻𝐻 approximates the structure of the original data 
points 𝑿𝑿 and graph 𝐺𝐺 on a given metric space, and the difference is minimized as much 
as optimization allows that. In practical terms, optimization of the cross-entropy 
function leads to the preservation of the local neighbors. As it was shown in  (Becht 
et al., 2019), the UMAP embeddings can be characterized by a high correlation of low-
dimensional and high-dimensional distances (averages to ~0.7 across different 
model datasets).  

Figure 14 illustrates the exemplary graph 𝐻𝐻, calculated on 20’000 260-dimen-
sional fs-LIMS mass spectra. The mass spectra are measured from the Precambrian 
Gunflint chert sample. The left side of the graph indicates the location of mass spectra 
registered from the microfossils, and the right side indicates the positioning of mass 
spectra recorded from the inorganic host mineral. Additionally, the presence of vari-
ous small inclusions can be noted, which are aggregations of less connected parts of 
the graph in-between main bodies. Figure 14A illustrates the connectivity structure 
of the UMAP embedding with an additional bundling of the edges. The bundling algo-
rithm assigns an additional force between neighboring edges and forms groups of 
nearby connections, which helps make the structure at a particular scale clearer 
(Bednar et al., 2017).  Figure 14B illustrates the connectivity structure of the data 
points using linear edges.  

As it could be seen from the graphs provided in Fig. 14, the optimized location of 
the mass spectra in the low dimensional embedding is controlled by the forces ap-
plied to the pairwise edges. Thus, if an edge between two data points does not exist, 
there is no force defined in between, and co-occurrence in the close neighborhood of 
not connected data points can be artefactual.  

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟 =
2𝑏𝑏

2
2

2
2�𝜖𝜖 + ||𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒋𝒋|| ��1 + 𝑎𝑎||𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒋𝒋|| 𝑏𝑏�

�1 − 𝑤𝑤 ��𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗��� � 𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒋𝒋�, (6) 
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Figure 14. The exemplary UMAP embeddings of 20’000 fs-LIMS mass spectra (260-di-
mensional data) measured from the Gunflint chert. The edges between points represent 
the cosine similarity between individual mass spectra. Every mass spectrum is connected 
to 𝑘𝑘 of its nearest neighbors. The structure of the connectivity between mass spectra 
identifies chemical entities.  A – the UMAP embedding with pairwise edge bundling (with 
an additional attraction between edges). B – the UMAP embedding with linear connec-
tions between mass spectra.   

While UMAP provides very helpful reduced data representations, interpretations 
of UMAP embedding results require some care.  

It is worth noting that: 

1 The output embeddings are hyperparameter-dependent. For example, the 𝑘𝑘 in 
𝑘𝑘-NN graphs could be used as an approximation of the global (larger structure 
between clusters) or local neighborhood (a structure within clusters). Typi-
cally, 𝑘𝑘=5 provides better preservation of the local neighborhood, and 𝑘𝑘=20 
better approximates the global structure of the dataset.  

2 The size of the clusters relative to each other can be meaningless.  
3 The stochastic nature of the current UMAP implementation ensures that there 

will be differences between embeddings on different runs with the same 
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hyperparameter choices (a consequence of the stochastic gradient descent). 
Although, this problem was recently solved by implementing neural networks 
that learn the embedding space (Sainburg et al., 2020).  

For the review between mainstream algorithms such as 𝑡𝑡 -distributed S tochastic 
Neighbors Embedding (t-SNE)(Van der Maaten, 2008), UMAP(McInnes et al., 2018), 
ForceAtlas2 (Jacomy et al., 2014), and Laplacian Eigenmaps (Belkin & Niyogi, 2003) 
one may consult the recent review by (Böhm et al., 2020). It also provides an 
interesting perspective over potential equivalence between various nonlinear 
dimensionality reduction methods as a continuous attraction-repulsion spectrum, 
where methods with stronger attraction could be used to characterize continuous 
manifolds (i.e., Laplacian eigenmaps and ForceAtlas2) and stronger repulsion is 
more appropriate for characterization of manifolds with discrete, cluster-like stru-
tures (i.e., UMAP and t-SNE). 

Overall, UMAP is a powerful method that provides fast and meaningful embed-
dings of large datasets. Regarding the embeddings of fs-LIMS data, the method is ca-
pable of unsupervised retrieval of mineralogical and molecular groups present in the 
dataset. However, it is important to keep in mind inherent tradeoffs present within 
the algorithm for efficient interpretation of the data reduction results. 

To summarize, UMAP performs the construction of the neighborhood graph 
and provides a subsequent embedding that preserves the structure of distances 
in low dimensions. The UMAP learns an embedding by minimizing the 
cross-entropy function that iterates over high-dimensional and low-
dimensional distances. The positively weighted edges are attracted to each 
other, and randomly sampled points are repulsed by using the negative 
sampling. Thus, allowing minimization of the cross-entropy function 
through stochastic gradient descent. Altogether, this approach allows to 
recover similar data samples to be located in close proximity to each other, while 
dissimilar spectra are repulsed, thus being located farther in the embedding space. 
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2.3.7  The Mapper algorithm 

Recovering the unknown structure from complex and noisy nonlinear data is 
among the fundamental problems in machine learning and statistical inference. The 
Mapper algorithm, originally presented by (Singh et al., 2007) is a topological method 
developed for the analysis of high-dimensional datasets, recognition of 3D shapes, 
and analysis of large datasets using reduced topological representations that capture 
essential data patterns. The method transforms discrete point cloud data into simpli-
cial complexes that contain far fewer points compared to original data. However, the 
structure of the output network, build from simplicial complexes, preserves the in-
formation about geometric coordination and closeness at the specified resolution. In 
topological terms, the Mapper algorithm represents an approximation of the Reeb 
graph (mathematical object associated with shapes), defined on a real-valued mani-
fold (Biasotti et al., 2008; Mohamed & Hamza, 2012). The Mapper algorithm is a fast 
and flexible data-skeletonization method that is of high utility in mass spectrometry. 
The fs-LIMS, being a fast analytical method (it takes ~20 µs per recorded mass spec-
trum), can produce large datasets in relatively short periods that can contain some 
level of noise and high levels of nonlinearity that can obscure the identification of 
minerals and chemical entities. 

For a description of the algorithm, I’ll refer to the original contribution by (Singh 
et al., 2007). The illustrative explanation of the algorithm is provided in Fig. 15, where 
Mapper is applied to the fs-LIMS observations using two covering functions. The fig-
ure illustrates the distribution of 4400 28Si and 29Si isotope intensity measurements 
registered from the quartz mineral, where no interferences with other minerals are 
detected. In an ideal situation, the correlation of two isotopes will be exactly unity; 
however, we see that the scatter of 28Si and 29Si adds some uncertainty to the ratio of 
isotopes. This uncertainty is increased by additional isobaric input from CO molecule 
contributing to the mass intensity of 28Si. However, the essential data pattern that we 
see is that isotopes are linearly correlated, and this pattern needs to be preserved.  

The data shown in Fig.15 represent the single mineral measurement obtained 
from the single location depth profile. However, the spatially resolved measurements 
such as mass spectrometric imaging or just a set of measurements from different min-
erals in heterogeneous media will form more complex shapes that often can have 
highly nonlinear structures. When complex data structures are present, Mapper net-
works can capture these structures in a simplified manner, making the interpretation 
of large datasets more intuitive and convenient.   

To represent the Si isotope intensity distributions using Mapper, we have to de-
sign the filter functions that will overlap and cover the full space of isotope intensity 
variance. In the exemplary case, we can use the 28Si and 29Si intensity space as filter 
functions. The observations that appear in joint filter function windows (#1 and #2) 
will be aggregated into nodes, where an additional clustering of original observations 
will be applied. This is required to identify nonlinear and complex data shapes (i.e., 
clusters, flares etc.). The observations that appear in both overlapping filter function 
windows will be connected with edges, thus, preserving the locality and closeness 
notion present in the data. As simple it might seem, such an approach provides pow-
erful data visualization capabilities. The mapper networks can be constructed with a 
given resolution (that determined with the size of overlapping filter functions), which 
in turn provides clear insights about structural inhomogeneity present in the da-
tasets.     
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The clustering of data in the overlapping filter windows is designed to separate 
disjoint data points present within the given filter window. The clustering is not con-
strained to the specific algorithm. Any type of clustering can be applied, thus, chang-
ing the output topology of the network. Node colors and node sizes can also be used 
to encode additional information.  

Typically, the Mapper networks are used to coarsen embedding results (i.e., UMAP 
embedding scores); thus, they require dimensionality reduction as a step of data pre-
processing. However, the filter functions can represent any type of data transfor-
mation. Therefore, joint filter functions can be of high importance as well. For exam-
ple, KDE (see further section “Kernel density estimates)” values defined on the UMAP 
embeddings could be used as a coloring scale, providing crucial density information.  

As it might seem odd and unintuitive, the Mapper coverings can be defined on 
high-dimensional sets as well. For example, Fig. 16 illustrates the Mapper network 
calculated on 4 UMAP dimensions. The networks represent a low dimensional struc-
ture of 20’000 mass spectra (260 original dimensions) registered from the Gunflint 
chert using the HR-LIMS-GT instrument. The network was constructed using the 20 
filter functions overlapped by 10 percent.  The spatialization of the network was 
achieved using the FA2 algorithm. It can be noted that the connectivity structure of 
the quartz group is relatively sparse in comparison to the connectivity of the “arm” of 
microfossils. This can be attributed to the inhomogeneity of the similarity structure 
present in the quartz group. The physical explanation for that could be found in the 
original mass spectra, where we can see that spectra from quartz are less intense and 
have fewer mass lines; thus, the variance of noise can contribute to the similarity 
structure in the cluster of spectra registered from quartz. It is important to mention 
that visualization of 4D spaces using conventional methods is impossible. Therefore, 
these granular similarity structures present in the UMAP embedding can be missed 
using standard data visualization techniques.  

In a classical data visualization path, i.e., using scatter plots, description of the 
same amount of information would require assessment of 4 separate scatter plots. 
And what is interesting, higher dimensional covers can better preserve the 
distances among the neighbors due to the locality notion introduced by the size of 
the filter functions. The Mapper network does not distort distances present in the 
data. Instead, it aggregates data points into larger bins, allowing to compound high-
dimensional spaces into graphs with complex topologies.  

Overall, the technique provides a framework for constructing useful 
combinatorial representations of high-dimensional point-cloud data. It reasonably 
preserves the locality of the data and provides reduced networks that are of high 
utility in visualizing complex datasets. It allows an inference of chemical 
heterogeneity from the fs-LIMS observations and can be used in combination with 
the Louvain method in the creation of labels for identified compounds (i.e., 
minerals).  In general, the Mapper algorithm being a topological method, 
provides mapping of the data-points in the close neighborhood (determined by the 
size of the filter windows); however, the structure of the large distances 
can be significantly distorted since they are not captured, and considered to be 
irrelevant (though it is possible to create Mapper networks that can capture large 
distances as well). The noise tolerance of the method comes from the size of the 
overlapping filter windows, thus, providing additional connectivity information on 
point-cloud data. For example, with Mapper networks, it is possible to cluster very 
sparse data that is hard to cluster with other methods with the same accuracy.
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Figure 15. An illustration of the Mapper data skeletonization approach. Left – linearly 
distributed isotope intensities registered from the quartz (4400 measurements). Right 
– simplified data structure captured from Si isotope measurements.

Figure 16. An exemplary Mapper network calculated on four UMAP dimensions. The 
structure of the network encodes the similarities of 20’000 mass spectra (defined as co-
sine similarity) and indicates the presence of microfossils, quartz, and a small set of in-
clusions. The network is colored according to the degree of nodes (red color indicates 
small degree; blue color indicates high degree (range of node degrees spans from 1 to 
60)), illustrating the density of connections in the network.   
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2.4  Binary and multi-class classification models 
Identification of spectra that are registered from a given compound is a statistical 

problem widely addressed in machine learning (ML) and chemometrics (Manrique-
Martinez et al., 2020). In specific areas where standardized spectrometric libraries 
exist, rapid developments were observed in the recent decade. For example, 
mass spectrometry based methods were developed for rapid identification and 
classification of bacteria and other microorganisms (Sauer et al., 2008; Sauer & 
Kliem, 2010). With the development of deep learning models, significant progress 
was seen in the classification of tumors using imaging mass spectrometry data 
(Behrmann et al., 2018). And recently, deep neural networks were used to 
predict 2,497 metabolite classes using tandem mass spectrometry data. (Dührkop 
et al., 2021). Thus, in the field of supervised machine learning, necessary tools 
for the classification of highly complex mass spectrometric datasets already exist, 
and they are successfully applied across the board of different scientific 
disciplines. However, unsupervised learning places a harder problem as no labels 
(i.e., names of compounds) are known a priori; thus, every given observation from 
unknown samples contains some uncertainty and requires intense attention to 
interpret and assign labels correctly.  

Here, combining all previously presented methods, it will be demonstrated 
that by using unsupervised data reduction and characterization techniques, it is 
possible to recover groups of spectra that share a significant level of similarity. Thus, 
a spectral signature of the given compound can be retrieved and assigned with an 
appropriate label.  

Figure 17. Full data processing pipeline for the construction of predictive models on 
given spectral sets. The diagram identifies seven steps required to build a predictive bi-
nary or multi-class classification model. 

The data processing pipeline for unsupervised classification and identification 
of minerals and chemical entities using the fs-LIMS data is shown in Fig. 17. The 
diagram outlines seven analytical steps that are required to retrieve the structure 
of mineralogical and chemical diversity present in the acquired dataset. First, as 
shown in the diagram in fig. 17, the fs-LIMS being fast analytical method can 
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collect large-scale mass spectrometric information on any type of solids; thus, the 
method is not constrained by the sample types. Second, given the accurate spectral 
preprocessing steps are undertaken, the full spectral range can be decomposed into 
single unit mass intensities, and by that, finalizing the third step of the data reduction. 
Notwithstanding the fact that spectral intensity data in an original high-dimensional 
form already encode the necessary information about minerals and compounds of 
various origin, analysis of such data is not convenient and requires more time in com-
parison to the analysis of reduced representations. Therefore, the spectral sets can be 
further compressed using linear methods such as PCA and SVD. Typically, the level 
of PCA compression depends on the scientific task; however, 100 first PCs (or 75% 
of variance) are usually enough to represent the majority of the significant variance. 

Further, linearly reduced mass spectra can be analyzed using manifold learning 
methods (i.e., UMAP, 𝑡𝑡 -SNE, L E, FA2), w hich c an capture essential data patterns 
based on their similarity. And the last fifth step of data transformations provides 
further coarsening and reduction of data complexity to enhance the separability of 
compounds using the Mapper algorithm. If Mapper networks reveal compelling 
structures, one can use Louvain clustering to statistically infer groups of 
observations that represent observations with specific chemistry.  

Once numeric labels are acquired, an independent analysis of inclusions and 
main minerals is required (denoted as interpretation step in Fig. 17), using the raw 
spectrum analysis, spatialization of inclusions on chemical maps, and correlation net-
works. If from the given set of observations, it is clear that the chemical compound 
corresponds to a mineral and it could be identified with high fidelity from the 
bulk of measurements, the set of mass spectra could be assigned with a new label 
that will correspond to the mineral or chemical entity.  

Thus, the inferred mineral name represents only a starting point in the last, 
seventh stage -  construction of predictive models. Note that modern ML models can 
be directly deployed and run on exploratory rover missions and provide a real-time 
identification of the investigated materials. Therefore, such predictive models can 
be of high interest to future astrobiological missions and as well as to the field of 
Precambrian micropaleontology, where many examples of early life are problematic 
due to the chemical and morphological convergence of biosignatures. 

Although machine learning is a complex field full of tailored data-specific models, 
modern community-supported libraries (such as scikit-learn) are adapted to the 
point where state-of-the-art ML architectures are directly accessible, 
providing broad access to the users from various fields. Therefore, latest 
models with high performance can be scored without too much problems.  
Although, binary classification of the bio-organic and inorganic chemistries was 
a primary target in this thesis, a multi-class classification of the spectral datasets 
represents a very similar problem, which can be addressed using the same 
classification tools. As it was mentioned previously, inference of the number of 
spectral types is a key moment that was addressed using graph-theoretic 
approaches. By measuring a series of attributes from the given compound, it 
was demonstrated in previous chapters that it is possible to characterize 
diversity of compounds with high fidelity. However, mineralogical 
inferences, for example, by using PCA, can be probabilistic due to the low 
separability of classes in linearly reduced representations. An illustration 
of the inferred cluster borderlines can be found in Figs. 18, 19 and 20. 
Various ML classification methods reveal different types of borderlines; 
however, all of them depend on the initial separability of classes. 
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Figure 18. An illustration of the learned decision boundaries for various binary classifi-
cation ML models on synthetic data. The classification accuracy is denoted in the 
lower right part of the figures. Color gradient communicates the uncertainty of the 
class assignment. Courtesy of the scikit-learn. 

Figure 19. An illustration of the three-dimensional decision boundary identified for Pre-
cambrian Gunflint microfossils on PCA reduced fs-LIMS data. Red data points indicate 
the localization of spectra registered from microfossils. Blue data points (below the sur-
face) indicate the positioning of spectra registered from Quartz mineral. The highly non-
linear character of the separation boundary can be noted. The color gradient communi-
cates the uncertainty of the class assignment.  Localization of the boundary between 
classes can be noted on the picture (right panel).
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Figure 20. An illustration of the three-dimensional decision boundary identified for Pre-
cambrian Gunflint microfossils on PCA reduced fs-LIMS data. Blue data points indicate 
the positioning of spectra registered from Quartz mineral. Red data points indicate the 
localization of spectra registered from microfossils (below the surface). The highly non-
linear character of the separation boundary can be noted. The color gradient communi-
cates the uncertainty of the class assignment. High density kernels can be seen on the 
bottom panel.

Current open-source ML libraries such as scikit-learn (Pedregosa et al., 2011) or 
ML functionality provided with Matlab provide access to state-of-the-art models, and 
the accuracy of trained classifiers can be compared across the board of all 
available models. Such an approach rapidly increases the overall probability of 
training a good-performing ML classifier.  

Figure 18 presents the illustration of the learned decision boundaries on a 
two-dimensional toy dataset, visualized using ten different classifiers. Though, 
in this thesis, more than 25 models were tested. Among the best-performing 
ones, repeatedly was identified the ensemble method - Adaptive Boosting 
(Ada Boost, lower-middle classifier in Fig. 18), which yielded on average a 
99.7% separation rate between classes of the Gunflint dataset – bio-organic 
material (microfossils) and inorganic host material (silicified host - 
quartz), (see further contribution "Towards empirical biosignatures 
using LIMS" for detailed discussion of this figures).
Interestingly, within binary classification models, the transition line between 
classes represents lower boundary of the high-dimensional intensity space for 
microfossils (see fig.18 and 20). Thus, the spectra that are not seen before 
(i.e., microfossils with unseen ionization profiles) can be successfully 
identified due to the smooth transition borderline between classes and 
complete coverage of the intensity space. 
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Figures 19 and 20 illustrate the three-dimensional borderline surface between 
classes - life (microfossils, red points) and inorganic host mineral (quartz, blue 
points), calculated on the first three PCA dimensions of the reduced data. Even 
though PCA performs better on highly linear datasets, we can see that 
interpolated borderline nicely approximates true separation surface in 3-
dimensional PCA space. Despite the high accuracy of the tested models,  
deterministic assignment of the classes is still possible only to the high-intensity 
spectra (using linear data compression methods - PCA or SVD). However, the 
quality of the LIMS data allows to identify microfossils deterministically using 
nonlinear data reduction methods; thus, the labels presented in Figs. 19 and 20 
(i.e., red and blue colors assigned to data points) can be further improved. 
Although recovery of the groups of spectra that share a significant level of 
similarity is possible using the nonlinear methods, some level of the class 
assignment uncertainty can be present as well (see the contribution "LIMS 3D 
imaging and manifold learning" for detailed information on nonlinear data 
transformation and spectral classification). However, the level of uncertainty 
is significantly smaller in comparison to linear data reduction methods. 

The fs-LIMS being a precision analytics method (diameter of the analytical spot 
is ~5 µm for UV-258 nm laser and ~10 nm-level characterization on depth scale), 
can register fine chemical heterogeneity. Nonetheless, microfossils can be 
very finely distributed in the bulk of the sample. While it is not the case for 
surface imaging, in depth-profiling mode, it can be data-expensive to 
collect large-scale mass spectrometric observations from microfossils. On 
average, only 1 in 10 collected spectra can be attributed to the organic materials. 
Thus, the unequal sampling issue can be at play in analyzing such finely 
distributed entities. The kernel density estimates (KDE’s, see section - kernel 
density estimates in the methods chapter) can be of high utility in drawing 
new synthetic samples from approximated distributions. While the biases 
present in the KDE will persist in the output synthetic data, there are 
additional approaches that can be used to compliment sparsely sampled entities.  

In recent years, new approaches for data generation are gaining attention. For 
example, (Lindenbaum et al., 2018) proposed a method for drawing new samples 
from the latent space of low dimensional embeddings. The approach proposes 
learning the geometry of the approximated manifold and generating points along 
the embedding structure. Need to mention that with the recent implementation 
of the Parametric UMAP (Sainburg et al., 2020), the stochastic gradient descent was 
replaced with parametric optimization over neural network weights. Thus, 
allowing to learn stable UMAP embeddings and consequently generate new 
high-dimensional data points along any part of the approximated manifold. 
Although it is not fully explored in the thesis, the potential to generate new 
data points for sparsely sampled minerals (i.e., inclusions or rare fossils, or 
just fossils in general) is of high interest in fs-LIMS analysis, because it can 
help to generate statistics on sparse observations.  

Another direction that caused significant attention in this field is the 
development of generative adversarial networks (Goodfellow et al., 2014) and 
adversarial autoencoders (Makhzani et al., 2015) that were shown to successfully 
generate new meaningful observations (pictures) from few original observations. 
Thus, the future direction of the fs-LIMS classification of minerals and compounds 
could be based on the acquisition of relatively few original observations followed 
by generative augmentation and training of the classifiers on augmented datasets.  
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2.5  Kernel density estimation 
In statistics, kernel density estimation (KDE) is a non-parametric way to estimate 

the probability density function of a random variable. In experimental sciences, KDE 
reveals the fundamental property of data – it’s density function 𝑓𝑓, measured with 
some accuracy 𝛿𝛿. Regarding the LIMS analysis, KDE plots are of high utility in visual-
izing the 2 and 3-dimensional densities and can be used to estimate the probability 
distribution function of any given mineral or chemical entity in narrowly defined in-
tensity regions. Further in this thesis, I will show that KDE estimates of low dimen-
sional embeddings identify minerals and compounds of specific chemistry in an in-
terpretable and concise way. Moreover, since kernel densities approximate original 
density distribution 𝑓𝑓, it is possible to use KDE models for drawing new samples, 
which can be of high utility in machine learning for balancing the datasets with une-
qual sampling. 

Let a random variable 𝑋𝑋1, … ,𝑋𝑋𝑘𝑘 be samples drawn from some univariate distribu-
tion with an unknown density 𝑓𝑓. To estimate the shape of the density function 𝑓𝑓, we 
can use the kernel density estimator, given by: 
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Where 𝐾𝐾 is a kernel function, and ℎ is a smoothing parameter called bandwidth. 
There are many different kernel functions available and frequently used. However, 
only Gaussian kernels were utilized in the thesis.  

The Gaussian kernel is given by: 
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The construction of the kernel density estimates of univariate distributions re-
quires selection of the kernel’s bandwidth, which can be found using the rule-of-
thumb, given by: 
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where 𝜎𝜎� is the standard deviation and 𝑛𝑛 is the sample size. 

Overall, the appropriate KDE bandwidth selection will result in a better approxi-
mation of the original density function. In contrast, erroneously chosen ℎ could 
result in the formation of artefactual islands and cluster-like structures that are 
derived from the noise rather than the intrinsic density profile of the original 
variable. The KDE will also be of high importance in the clustering of observations, 
for example, using the HDBSCAN and DBSCAN algorithms (McInnes et al., 2017) as 
well as in the topological model constructions using Mapper (Carlsson, 2009; Singh 
et al., 2007). The 3-dimensional KDE estimates of the UMAP scores can be found in 
the contribution "On topological analysis of the fs-LIMS data". The 2D KDE's of 
single isotope intensity values are provided in "Chemical identification of 
microfossils from the 1.88 Ga Gunflint chert. Towards empirical biosignatures using 
LIMS" as well as in the last Gunflint contribution - "High-Resolution fs-LIMS 3D 
imaging and manifold learning reveal insight into chemical diversity of the Gunflint 
chert (1.88 Ga)". Thus, the KDE represent a density estimation tool that of high 
utility in fs-LIMS data analysis.

60





Results 
Precis 
Here, I will present the scientific results acquired during course of the PhD 

studies. The results chapter will present seven published (and submitted) 
contributions in peer-reviewed journals. Four contributions cover the work on 
Gunflint microfossils. Other contributions address specific aspects of ion-generation 
and accurate measurement of micro-inclusions with complex mineralogy. Lastly, I 
present the identification and characterization of amino acids with very low 
detection limits using the LDMS setup. Note, that figure numerations will be kept 
as in the publications. 
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Abstract 

The investigation of chemical composition on planetary bodies without signifi-
cant sample processing is of importance for nearly every mission aimed at robotic 
exploration. Moreover, it is a necessary tool to achieve the longstanding goal of find-
ing evidence of life outside the Earth, for example, possibly preserved microbial re-
mains within Martian sediments. The Laser Ablation Ionization Mass Spectrometer 
(LIMS) is a compact time-of-flight mass spectrometer intended to investigate the ele-
mental, isotopic, and molecular composition of a wide range of solid samples includ-
ing, e.g., low bulk density organic remains in microfossils. Here, we present an over-
view of the instrument and collected chemical spectrometric data at the micrometer 
level from a Precambrian chert sample (1.88 Ga Gunflint Formation, Ontario, Canada), 
which is considered to be a Martian analog. Data were collected from two distinct 
zones – a silicified host area and a carbon-bearing microfossil assemblage zone. We 
performed these measurements using an ultrafast pulsed laser system (pulse width 
of ~180 femtoseconds) with multiple wavelengths (IR-775 nm, UV-387 nm, UV-258 
nm) and using a pulsed high voltage on the mass spectrometer to reveal small organic 
signals. We investigated: a) the chemical composition of the sample, and b) the differ-
ent laser wavelengths' performance to provide chemical depth profiles in silicified 
media. Our key findings are 1) Microfossils from the Gunflint chert reveal a distinct 
chemical composition compared to the host mineralogy and we report the identifica-
tion of 24 elements in the microfossils. 2) Detection of the pristine composition of 
microfossils and co-occurring fine chemistry (rare-earth elements) requires utiliza-
tion of the depth profiling measurement protocol. 3) Our results show that for analy-
sis of heterogeneous material from siliciclastic deposits, siliceous sinters and cherts, 
the most suitable wavelength for laser ablation/Ionization is UV-258 nm. 

Keywords: LIMS, Laser Ablation/Ionization Mass spectrometry, Microfossils, 
Gunflint chert, Space instrumentation 
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Introduction 

In situ methods of chemical analysis on the surfaces of planetary bodies is of pri-
mary importance in current space research and promises to significantly increase the 
scientific return from these missions (Horneck et al., 2016; Knight et al., 2000; Wurz 
et al., 2012). From the current perspective, Mars is a cold desert with an intense flux 
of ionizing radiation at the surface (Hassler et al., 2014), high UV flux, chemical reac-
tivity of soils (Carrier & Kounaves, 2015), and considered to be largely uninhabitable 
(Fairén et al., 2010). However, scientific analysis and modeling suggest that life could 
survive in the subsurface and imply the possible existence of rock-hosted life in the 
deep subsurface (Stamenković et al., 2019), where liquid water may be present 
(Orosei et al., 2018). Considering impact cratering and early faulting, some of these 
formations may be accessible from the surface (Onstott et al., 2019). Additionally, 
multiple lines of evidence exist for abundant liquid water on the surface, during the 
early stages of evolution of the planet, particularly in the Noachian (Ehlmann et al., 
2011). These lines of evidence include, for example, fluvial landforms, paleo-lakes, 
river deltas, and mineralogy indicative of water alteration and weathering (Arvidson 
et al., 2014; Grotzinger et al., 2014). Evidence of clement conditions on early Mars 
raises questions about the extent of the planet's possible habitability, for example, the 
scale and duration of this habitability. To answer such questions an in-situ chemical 
and mineralogical investigation of rocks from the Martian surface is required, using 
set of complementary instruments capable of recording high-quality chemical infor-
mation. However, techniques that are traditionally used in space research, e.g., Pyrol-
ysis–gas chromatography-mass spectrometry (Pyr-GCMS) or remote methods, e.g., 
Laser-induced breakdown spectroscopy (LIBS), might not be sufficiently sensitive to 
detect faint signatures of life from micrometer-sized and below organic remains 
(Navarro-González et al., 2006).  

Laser Ablation/Ionization Mass Spectrometry (LIMS) is a promising analytical 
technique (Azov et al., 2020) capable of providing molecular (Ligterink et al., 2020), 
elemental (Riedo et al., 2020; Tulej et al., 2015), and isotope (Riedo et al., 2013; Tulej 
et al., 2020) characterization of solid materials. LIMS provides fast measurements (20
µs per spectrum for a single laser shot) (Riedo et al., 2019), spatially resolved (~10 
µm) analysis with high detection sensitivity (ppm level), and excellent depth resolu-
tion (nm scale) (Grimaudo et al., 2020). The laser ablation/ionization reflectron-type 
time-of-flight mass spectrometer used in this study is an instrument developed in the 
Space Research and Planetary Sciences division at the University of Bern and repre-
sents a real-sized prototype of a space instrument. The LIMS instrument incorporates 
a femtosecond laser ionization source, a miniature time-of-flight mass spectrometer 
(Ø 60 mm × 160 mm), making it suitable for space exploration, and an integrated mi-
croscopy system. However, the applicability of the LIMS systems to identify chemical
signatures of life from microfossils that are billions of years old haven’t been shown
so far.

Among others, Precambrian cherts from banded iron formations were suggested 
as an astrobiologically relevant Mars analog site (Allen et al., 2001) since iron oxides 
and silicates might precipitate as an aqueous mineral phase from a Fe and Si saturated 
water column, efficiently trapping any microbiota present. Moreover, terrestrial 
cherts offer an exceptional preservation level due to their capacity to encapsulate and 
preserve organic material (Alleon et al., 2016). Gunflint microstromatolites pre-
served within the banded iron formation (outcrop on the North Shore of Lake Supe-
rior, Ontario, Canada) are well studied and considered among the best-known 
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Precambrian Fossil Lagerstätten. They represent a diverse microbial community that 
thrived in a shallow marine environment ~1.9 billion years ago (Barghoorn & Tyler, 
1965). Moreover, Precambrian chert containing bona fide microfossils from the Gun-
flint formation represents an excellent and realistic testbed for in-situ space instru-
mentation.  

To clarify the current state of the LIMS performance on realistic samples, we test 
the LIMS ability to identify ~1.9 Ga microfossils and potential chemical biosignatures 
in the Gunflint chert as a function of different fs-ablation wavelengths. The chemical 
identification and characterization of microfossils from cherts using space instru-
mentation is challenging due to the low bulk densities and small size of the microfos-
sils, which are usually not larger than the first tens of micrometer in length, with the 
thickness of their organic cell walls in the order of hundreds of nm (Brasier et al., 
2014). The task is also complicated by the three-dimensional distribution of the mi-
crofossil bodies within the silicified matrix (only a fraction of microfossils might be 
exposed at the surface of the sample), which would require a layer-by-layer analysis. 
It is worth noting that the micrometer-scale investigation of putative structures can 
advance our ability to discriminate between the biotic and abiotic origin (pseudo-fos-
sils) of micrometer-sized inclusions. For example, commonly occurring manganese 
dendrites resembling branching structures of biological origin will not pass the test 
for the presence of major biorelevant elements (CHNOPS), whereas organic remains 
of microfossils will. 

In this contribution, we investigated the LIMS capabilities to detect faint element 
signatures of life by acquiring highly resolved spectrometric data from heterogene-
ous media present in the Gunflint chert. We will discuss the technical aspects of chem-
ical identification of micrometer-sized inclusions and compare the ablation and ioni-
zation performance and quality of the depth profiling from two distinct zones (micro-
fossil assemblage zone and clean host area) using femtosecond laser pulses at three 
different laser wavelengths. Lastly, we will present LIMS measurement results using 
a high-voltage (HV) pulse mode applied to the ion optical system of the mass spec-
trometer designed to enhance the detection sensitivity of species of interest. 

Materials 

All measurements were conducted on a doubly polished thin section (thickness 
~ 30 μm) of a Precambrian chert sample from the Gunflint Formation (see Fig.1). 
Samples were collected from the Schreiber beach locality (north shore of Lake Supe-
rior, Canada). The Gunflint chip was attached to the glass holder and cut to an L shape 
with dimensions of 1.09 cm in height and 0.8 cm in width. The microfossils are local-
ized within layered zones (laminae). For this study, material probing was mainly con-
ducted within the pure host mineral area (quartz) and within the microfossil-rich 
laminae. No prior surface conditioning was conducted. The sample was kept in vac-
uum storage to avoid any surface contamination and handled only with gloves in a 
cleanroom environment (ISO 5). The sample was mounted on a 25 mm round steel 
holder with pre-milled cavities where a vacuum compatible copper tape fixed it, and 
the holder was positioned below the instrument on the XYZ translation stage.  
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Fig. 1 – Panoramic image of the Gunflint chert thin section mounted on a steel holder 
(L-shaped sample, left bottom). 

Experimental setup and instrument overview 

Material ablation, ion production, and subsequent mass spectrometric analysis, 
as illustrated in Fig. 2, is achieved by generating and guiding a pulsed femtosecond 
laser beam through three optical sections and focusing the laser beam on the surface 
of the sample inside a vacuum chamber. Femtosecond laser pulses at IR-775 nm (red 
line in Fig. 2), UV-387 nm (white line), and UV-258 nm (blue line) wavelengths were 
applied to ablate and ionize material from the microfossils and the surrounding host 
mineral. In the first section, the fundamental wavelength from a Ti: Sapphire Chirped 
Pulse Amplified Clark-MXR laser (λ~775 nm, t ~180 fs, pulse repetition rate ≤ 1 kHz, 
maximum pulse energy: 1 mJ, and s-polarization) is directed to the remotely con-
trolled variable power attenuator (Newport VA-BB-2-CONEX). The attenuated beam 
is guided further into the second section to generate second and third harmonics on 
the nonlinear beta barium borate crystals (BaB2O4). Second and third harmonic emis-
sion (λ~387.5 nm and λ ~ 258.3 nm) generation is achieved by using the STORC har-
monic generator. After generating additional frequencies, the laser beam is expanded 
to 35 mm and directed into the periscope system, containing a set of UV enhanced 
aluminum-coated mirrors, which guides the beam into the vacuum chamber. Inside 
the chamber, the vacuum is maintained at a pressure of ~5*10-8 mbar by combining 
a molecular turbopump and an ion getter pump. A fused silica viewport with dedi-
cated broadband anti-reflection coating was installed to reduce the beam transmis-
sion losses, which provides an enhanced beam transmittance of ~99 % for the UV-
258 nm wavelength. The beam is focused by a doublet lens and forms an ablation spot 
with a diameter of ~12 μm for IR and ~10 μm for UV-258. The focal point of the inci-
dent beam is positioned about ~200–300 μm below the mass analyzer. The sample is 
positioned in the focal point of the laser beam by using a translation stage, which pro-
vides positioning accuracy ~1 μm in the x, y, and z dimensions. 

Calibration of the translation stage was achieved by using an internal microscopy 
system with a resolving power ~1 μm (Wiesendanger et al., 2018). Ions from the ab-
lated plume are confined, accelerated, and focused by the dedicated ion optical sys-
tem. Mass separation is achieved in the field-free area of the mass spectrometer. A 
chevron-type ring microchannel plate (MCP) detector is used for the measurements 
of arriving ions (Riedo et al., 2017). From the initial ion cloud, only positively charged 
species enter the mass analyzer, as shown in Fig. 2. The time-of-flight spectrum is rec-
orded by collection of the current from the atomic and molecular ions. The signal from 
the incoming ion flux is amplified by the MCP detector and recorded as a function of 
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the signal arrival time with a fast data acquisition system. The output current of the 
detector is measured as electrons*ns-1. The time-of-flight spectrum is converted into 
a mass spectrum using a quadratic equation m=a(t+b)2, where m is the mass/charge 
unit, t the arrival time of the charged species and a and b instrument dependent cali-
bration constants. Data acquisition occurs by the simultaneous recording of the signal 
from two anode rings on the MCP detector. High-resolution digitizers from Agilent 
technologies with 3.2 GS*s-1 are used for data acquisition, providing sampling rates 
up to ~ 0.3 ns. Control of the ion-optical voltages, as well as translation stage posi-
tioning, are achieved with in-house made software. All collected data from the control 
PC are saved on the storage PC for post-processing and data analysis.  

 Fig. 2 Schematics of femtosecond laser light transmission and subsequent mass spec-
trometric analysis of ablated positive ions using LIMS. IR-775, UV-387, and UV-258 nm 
ablation occur by guiding appropriate wavelength to beam guiding line and periscope 
system. See text for more details. 

Laser beam quality 

The applied laser radiation for all used wavelengths is determined to be tempo-
rally and spatially Gaussian-shaped (Fig. 3). The spatial pulse profiles have been 
measured with a CCD camera and widths with an interferometer. The laser beam di-
ameter and pulse width at FWHM were determined to be ~5 mm and 180 fs. The 
measurements of the laser pulse energy of our laser system (Clark-MXR, Inc.) at the 
maximum power output (1 mJ) were performed over 10'000 single laser shots and 
revealed a standard deviation of 0.28%, which corresponds to the nominal level of 
the laser power stability (Riedo et al., 2013).  

Due to the slight variations in the focal point position for different wavelengths, 
a set of mirror adjustments were applied to achieve the focal point positioning at ~0.3 
mm below the extraction electrode of the mass spectrometer. Furthermore, to 
achieve maximum power transmission through the optical setup, installation started 
from dielectric mirrors with 99% of transmission for IR-775 nm, and later they have 
been exchanged to the aluminum-coated UV-enhanced 3-inch mirrors (Ravg >90% for 
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250 – 450 nm), for better transmission of the UV-387 nm and UV-258 nm wave-
lengths. 

Fig. 3 - Fundamental IR-775 nm laser beam profile measured with the CCD camera. 

"HV-Pulser" mode 

Our time-of-flight LIMS instrument with an MCP detector provides a record of all 
charged species (e.g., element isotopes and molecular species) present in the ablated 
plume. However, detector sensitivity for heavy species arriving later in the mass spec-
trum might decrease, which eventually will affect the ability to quantify their abun-
dances, or they might not be registered at all. To avoid the detector saturation or de-
tector gain loss caused by lighter elements of high abundance, we performed meas-
urements with a short high-voltage pulse applied to the acceleration electrode of the 
ion-optical system. A short description will be given here, for more detailed infor-
mation with wiring schemes and performance estimations can be found in our earlier 
publication (Wiesendanger et al., 2017). The HV pulse used in this study was made 
with a high-speed switch (Behlke FSWP 51-02), with a rise and fall time of approxi-
mately ten nanoseconds. The HV pulse connects to the ion optics and forms a positive 
electric field, which repels positively charged ions from the optimal ion-optical path 
and switches back to the nominal voltage to allow the remaining ions reach the de-
tector. Appropriate timing to efficiently eject major ions from the confined cloud is 
achieved by using a set of delay generators (DG535 and DG645, Stanford Research 
Systems).  

Measurements 

To probe the chemical composition of the Precambrian chert sample and com-
pare abundances from different locations, we consecutively used three different laser 
wavelengths: IR-775 nm, UV-387 nm, and UV-258 nm. Also, a high voltage pulser with 
UV-258 nm laser was used to improve the detection of heavy ions (>150 amu). Each 
of these regimes was accompanied by applying a variable amount of laser shots. 
Depth profiles were recorded with a total laser shot count for IR-775 nm – 150,000 
within a single spot and histogramming each 100 single laser shots spectra, resulting 
in 1,500 consecutive spectra. For UV-387 nm, the total laser shot count resulted in 
300,000 laser shots from a single spot, histogramming mass spectra from every 200 
single laser shots spectra (1,500 consecutive spectra). For UV-258 nm, 500,000 single 
laser shots were applied, histogramming mass spectra from every 200 single laser 
shot spectra (2,500 consecutive spectra). The increased number of collected data 
with short UV wavelengths was motivated by the improved mass spectral resolution 
and high ion signal levels. All applied laser pulse energies were above the ablation 
threshold of the investigated material and were set to the maximal achievable 
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spectral resolution by conducting laser power scans beforehand outside of the zone 
of interest.  

Results 

IR-775 measurements 

The mass spectrometric studies with IR-775 nm radiation were conducted by ap-
plying ~10 TW cm-2 irradiances to the surface of the Gunflint sample. The depth pro-
files (150,000 applied laser shots binned into 1,500 spectra are referred to as "abla-
tion layers") were measured within two locations – the dense assemblage of micro-
fossils and the host mineral area (see Fig. 4A and 4B). Sample overview, acquired 
crater shapes, and locations are depicted in Figs. 4A, 5A-D. As can be seen in Fig. 5A, 
IR-775 radiation applied to the host area of the sample produced radial cracks and 
secondary craters (Fig. 5B) on the surface of the underlying steel holder. The high 
laser transmission rate through the quartz (SiO2) explains the formation of the sec-
ondary craters, which led to the ablation of the material from the underlying steel 
holder. The presence of a dark 'halo' around each produced crater could be noted (Fig. 
5A). This particular feature was identified as material ablated from the steel holder 
and deposited onto the bottom of the Gunflint thin section (see Fig.5D). 

Moreover, radial cracks on the thin section were observed in the host and micro-
fossil-rich area, as shown in Figs. 5A, and 5C. The formation of the cracks is likely 
caused by thermal stress occurring in the material during the ablation or by a ther-
modynamic expansion of the ablated plume originating from the steel holder.  

69



Fig. 4. Panoramic image of the Gunflint chert thin-section. A) Overview of the sample 
with the denoted location of the host area (white, meandering part in the middle of the 
sample), microfossil aggregation zone (dark patches), and panoramic view of the loca-
tion of IR craters. B) Microscopic image of the individual microfossils embedded in the 
quartz matrix. Various states of microfossil decomposition could be noted.  

Fig. 5. A) Craters with radial cracks on the surface of the chert sample acquired with IR-
775 nm laser within the host area (see Fig.4A). B) Secondary craters on the surface of 
the steel holder acquired from the same craters as in Fig. 4A. C) Craters with radial 
cracks produced within the microfossil-rich zone. D) Redeposited ablated material from 
the steel holder on the bottom of the thin-section.  

Typical mass spectra (histogrammed over 150,000 individual laser shots) regis-
tered from the microfossil-rich spot and host mineral location obtained during the 
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campaign are depicted in Fig. 6A in upper and bottom panels, respectively. While in-
vestigating the quartz phase from the host location, the laser ablation stability can be 
maintained, mainly due to the uniform material properties. This results in the accu-
mulation of mass spectra with high mass resolution. By applying the same conditions 
at the microfossil-rich locations, broadening of the mass peaks and decrease of the 
mass resolution were observed. The explosive appearance of the craters (presence of 
cracks and sharp edges) within the microfossil-rich zone depicted in Fig. 5C reveals 
preferential absorption of the laser energy by the dark features, e.g., the carbon-bear-
ing cell walls of the microfossils. Changes in the ablation conditions at these locations 
result in changes in the plasma plume characteristics with surface and space charging 
effects, which may not be easily accommodated by the ion-optical setting of our min-
iature mass analyzer. 

 The depth profiles shown in Fig. 6B consist of consecutive signal intensities of 
28Si, 12C, and 16O determined by the Simpson integration of the investigated peaks 
from each spectrum (Meyer et al., 2017). Element isotope intensities are plotted along 
with the background signal (BG), measured within a time range free of any ion signal. 
The carbon depth profiles from both locations, depicted in Fig. 6B (thicker curves rep-
resent a lowess smoothed version of the data), reveal a nonuniform signal distribu-
tion. A significant portion of the carbon signal from the chert is located close to the 
surface (first hundreds of laser shots), which indicates presence of the surface con-
tamination. Another question concerns the stability of the ion signal intensities from 
the depth profiles, as is shown in Fig. 6B, with fluctuations of raw silicon signal in the 
range of up to 103. The unstable ion yield is interpreted to be a result of the nonuni-
form laser ablation and ionization processes. Furthermore, re-deposition of the ab-
lated material, namely, silicon oxides and kerogen from the microfossils, in the form 
of nanometer- and micrometer-sized particles, can be observed frequently on the sur-
face of the sample (see further in the discussion). This redeposited material can fur-
ther inter-mix and contaminate surface chemistry within close proximity to the pre-
viously analyzed spots.  
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Fig. 6 - A) Mass spectra comparison of IR-775 nm laser ablation campaign in a micro-
fossil-rich assemblage zone (top) and clear chert area (bottom). The light grey line in 
the spectra represents a raw spectrum, and the black line represents a smoothed spec-
trum. Extensive spectral resolution decay could be observed in the spectra acquired 
from the microfossil-rich location (top). B) Chemical depth profiles from a microfossil-
containing spot (top) and chert spot (bottom) respectively (thick lines – smoothed data, 
BG – intensity of the background signal. Depth profiles of 28Si (red line), 12C (black line), 
and a background signal estimate (green) are shown. Dashed solid line represents a 
smoothed (lowess, span 0.1) ion yield line of 16O. 
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Analysis of the depth profiles reveals an increased abundance of carbon at certain 
depths within a microfossil-rich spot and the chert location (indicated by gray boxes 
above the depth profile). The total carbon content in the microfossil-rich positions is 
higher than in the matrix (see Fig. 6A and Table 1). However, carbon is also present 
in the host location; an explanation for this might be found in the location of the ma-
trix analysis spot. As shown in the panoramic picture of the Gunflint chert sample 
(Fig. 4A), there is a relatively clean matrix, which gradually turns into a dense assem-
blage of microfossils. Considering the relative proximity of the analyzed spot to the 
microfossil-rich zone, the presence of diluted organic and inorganic material within a 
matrix position is a possible explanation.  

Elements identified inside the matrix (host area) and the microfossil-rich zone 
are presented in Table 1. The chemical composition of the microfossil-rich location 
shows the presence of 11B,  10B, 32S, and 54Fe, which is consistent with the previously 
reported presence of pyrite within the cell walls of some of the microfossils (Wacey 
et al., 2013), as well as enhanced intensities of 12C and 1H and doubly charged 16O2+. 
The chemical composition of the matrix from the host location reveals the presence 
of Si and O with contribution of Si oxides, Na, K, Ca, C, H, and hydrocarbon clusters. 
An increased amount of carbon localized in the close vicinity to the surface likely rep-
resents the source of the hydrocarbon clusters. Chert is found to be relatively hydro-
gen-rich and contains elevated amounts of alkali metals compared to other quartz 
minerals. Considering the particular chemical composition, quartz from the host area 
is interpreted as a dehydrated diagenetic product of precipitated silica gel (with rel-
atively abundant species in the seawater - Na, K).  

UV-387 measurements 

The second set of measurements was performed with UV laser radiation (~387 
nm), where the photon energy increases from 1.6 eV (IR-775) to 3.2 eV (UV-387), 
thus, increasing ionization efficiency. The laser ablation craters formed in these stud-
ies are illustrated in Fig. 7A. Mass spectra obtained from the chert and microfossils 
are shown in Fig. 8A. In comparison to the IR campaign, double the amount of laser 
shots (300,000 shots) were applied with increased histogramming of 200 shots per 
accumulated spectrum. Accordingly, the same number of spectra were collected from 
each position (1,500 in total). The increased number of applied laser shots with the 
UV-387 laser was motivated by an increased signal resolution and stability of the ion 
yield. In comparison to the IR-775 nm data, the UV-387 nm laser provides better spec-
trally resolved signals, e.g., at the 28Si ion, and with reduced amplitude fluctuations in 
the depth profiles. 

The mass spectra shown in Fig. 8A represent averaged chemical composition ac-
cumulated from the shot number 100,000 up to 150,000 (i.e., 50,000 shots in total, 
corresponding to 250 ablation layers) from the matrix (bottom) and microfossils 
(top), respectively. Fig. 8B depicts the depth profiles obtained from a microfossil and 
chert location. Data acquired from the surface show an enhancement of carbon signal 
within both positions, as it was previously observed, which is most probably caused 
by surface contamination. To avoid contribution from the surface, we analyzed the 
dataset localized within the depth profile. The most noticeable difference is the in-
creased carbon and hydrogen content, as shown in Table 1 and Fig. 8A. 
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Moreover, small amounts of 51V, 54Fe, 55Mn, and other isotopes are observed. 
However, an increased presence of hydrocarbons in the mass spectra makes the un-
ambiguous assignment of elements challenging. On the other hand, an increased 
abundance of hydrocarbons indicates CH saturated inclusions within the investigated 
location, which points towards the presence of organic material in the depth profile. 
Other peaks present in the microfossil-rich location reveal the same SinOm oxides dis-
tribution pattern, which means that on the scale of 50,000 shots, matrix signatures 
dominate the mass spectrum of the fossil location.  

Fig. 7 - A) Ablation craters produced with different wavelengths. Red encircled area – 
IR-775 nm ablation craters, white encircled area – UV-387 nm ablation craters, and blue 
encircled area – UV-258 nm ablation craters. Black dashed lines indicate location of the 
lamination area and separation of the host area from the microfossil-rich zone B) Close 
up image of the UV-258 nm craters present in Fig. 6C. C) Panoramic view of Gunflint 
chert sample with marked positions of the UV 258 nm craters and location of the micro-
fossils-rich area and the host area (dashed black line). 

Additionally, the spectral resolution compared to the IR results substantially in-
creased (see section: Identification of rare earth elements (REE) and element compo-
sition of the analyzed spots), which allows the accurate analysis of the single mass 
spectra within the depth profiles. Investigation of the laser ablation craters produced 
with the UV-387 nm laser within the host area also shows an improvement in the 
crater formation processes. This observation could be attributed to the better absorp-
tion of applied laser radiation by the host mineral (Fig. 7A) and increased ionization 
efficiency. No secondary craters were observed on the backside of the sample, and no 
cracks formed in the thin section. Figure 9 depicts spectra registered from the micro-
fossil-rich spot and reveals an enhanced ionization of the microfossils. As shown in 
Fig. 9, the spectrum contains mass peaks of triply charged nitrogen, carbon, oxygen, 
and silicon. All species were identified within the microfossil-rich zone by averaging 
50 individual spectra with the most intense carbon signal, excluding surface data. 
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Since the main 14N peak is interfering with CH2 and with doubly charged 28Si, identi-
fication of nitrogen is challenging; however, multiply charged species have distinct 
mass-to-charge ratios, and the presence of triply charged species allowed unambigu-
ous identification of nitrogen 14N3+ at mass 4.67 in the microfossil-rich zone (Fig. 9) 
along with 12C3+,16O3+, and 28Si3+. 

Additionally, this observation shows that a high-power scan strategy (high laser 
irradiances) might be applied to identify elements with isobaric interferences, shift-
ing the identification of elements into the lighter mass-over-charge range. Compared 
to IR-775 nm, using the UV-387 nm laser wavelength resulted in a considerable im-
provement in mass resolution, crater shape, and sensitivity. 

Fig. 8 - A) Mass spectra comparison of UV-387 nm laser ablation campaign in the mi-
crofossil-rich zone (top) and clear chert area (bottom). The light grey line in the spectra 
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represents a raw spectrum, and the black line represents a smoothed spectrum. Red bars 
show the peak intensities of major biorelevant elements – CHNOPS. B) Chemical depth 
profiles from a microfossil-containing spot (top) and chert spot (bottom) respectively 
(smoothed data are shown with thick lines, BG is the intensity of the background signal). 
Depth profiles of 28Si (red line), 12C (black line) and background signal estimate (green) 
are shown. The dashed solid line represents a smoothed (lowess, span 0.1) line of 16O. 
The black dashed square represents the location in the depth profile in which spectra 
have been averaged.  

Fig. 9 - Mass spectrum registered from the microfossil-rich location using UV-387 nm 
laser. Red bars indicate the presence of triply charged nitrogen-14, carbon-12, oxygen-
16, and silicon-28 peaks. 

UV-258 measurements 

The third measurement campaign was performed with the UV-258 nm laser ra-
diation (photon energy reached 4.8 eV, further increasing the ionization efficiency). 
Single position analysis was performed by applying 500,000 laser shots and register-
ing signals on two digitizing cards. In total, we registered 2,500 spectra from each 
card, where each of the accumulated spectra consists of 200 single laser shot spectra, 
making it 5000 spectra from a single depth profile. The experiments were held using 
a constant repetition rate of 1 kHz between batches of 200 laser shots. After finishing 
the batch of 200 laser shots, a one-second delay was implemented to ensure the spec-
trum transfer to the SSD. The length of the data recording for a single depth profile 
amounted to 50 minutes. Unlike the mass spectrometric studies with UV-387 nm and 
IR-775 nm laser radiation, where the mass spectra were measured from only two 
channels of the detector, the measurements with UV-258 nm were recorded on three 
anode channels (to mitigate signal saturation and fluctuations effects). This approach 
allows recording the ion signal collected from the MCP detector with a reduced prob-
ability of saturation. However, it requires a different ion-optical configuration (for an 
even distribution of ions on the MCP detector) and the collection of two separate data 
sets.  

Figure 10 depicts mass spectra and depth profiles collected with the UV-258 nm 
laser radiation. In comparison to the studies with the IR-775 and UV-387 laser radia-
tion, the mass peak intensity of 28Si is observed to be less variable, allowing high-
quality depth profiling analysis, both within the host and the microfossil-rich loca-
tions. The spectral resolution remains on the nominal level, even during the transition 
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between carbon-containing cell walls of the microfossils and pure silica matrix. Fig-
ure 10A depicts a comparison of two mass spectra histogrammed over 200 shots 
each, in two distinct zones – within the body of a microfossil and inside a clean host 
matrix. Selective low-scale averaging (200 shots) was applied here to emphasize the 
importance of single spectrum accumulation. The 12C depth profile from the micro-
fossil-rich location reveals multiple carbon sources located at different depths (see 
gray boxes in Fig. 10B). The signal from the microfossil-rich location differs from the 
chert and could be characterized by the presence of biologically relevant elements 
(CHNOPS) (see red bars in Fig. 10A).  

Similar to the data obtained with the UV-387 nm laser, individual spectra along 
the depth profile reveal high-intensity mass peaks of 12C and 1H with the presence of 
mass peaks of carbon clusters but at much lower intensities. Another notable feature 
observed in the mass spectra of the microfossils is the presence of 31P, 32S, 34S, and 
elevated values of transition metals with biological relevance 48Ti, 51V, 54Fe, 55Mn, 58Ni, 
and 63Cu, which are considered to be essential for the operation of oxygenic photo-
synthesis (Shcolnick & Keren, 2006). Elevated values of these elements compared to 
the abundances of other elements, like C and Si, result from more efficient ionization 
of metallic species. The host mass spectrum, depicted on the lower part of Fig. 10A, 
shows the elements expected from the host (quartz) mineral - Si and O with typical Si 
clusters and oxides distribution pattern, and additional contributions of H, Na, Ca, and 
K.  

Moreover, the carbon mass peak intensities from the host location (quartz) are 
observed to be negligibly low with rare spikes in the depth profile, which may be in-
terpreted as a contribution from the surface, reflecting the growing diameter of the 
ablation crater with increased depth. The presence of carbon on the surface of the 
matrix location was identified as contamination. As shown in Fig. 10B (see gray 
boxes), using carbon as a tracer of microfossils, we identified multiple locations of 
microfossil bodies, which are distributed within the SiO2 matrix. Removal of several 
layers of the matrix is required to acquire a spectrum from the embedded microfossil. 
In this particular case, the microfossil spectrum was acquired at a depth of 70,000 
shots.  
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Fig. 10 - A) Mass spectra comparison of UV-258 nm laser ablation campaign in micro-
fossil-rich assemblage zone (top) and clear chert area (bottom). The light grey line in 
the spectra represents a raw spectrum, and the black line represents a smoothed spec-
trum. Red bars show the peak intensities of major biorelevant elements – CHNOPS. B) 
Chemical depth profiles from a microfossil-containing spot (top) and chert spot (bot-
tom) respectively (thick lines – smoothed data, BG – intensity of the background signal. 
Depth profiles of 28Si (red line), 12C (black line) and background signal estimate (green) 
are shown. The dashed solid line represents a smoothed (lowess, span 0.1) line of 16O. 
The black dashed vertical line represents location of the spectra in the depth profile 
shown in Fig. 10A.  
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Identification of rare earth elements (REE) and elemental composi-
tion of analyzed spots 

Figure 11A depicts a spectrum from a microfossil and reveals a similar element 
composition to previously described spectra but with the additional identification of 
La and Ce. The element composition of the analyzed locations is given in Table 1 (Col-
umn: Fossil-B). The distribution of La and Ce within the analyzed spot reveals a highly 
confined character, i.e., elements were identified in two distinct locations (see gray 
boxes, Fig. 11B). Each of these spectra shows the correlation with the elements pre-
viously identified in other microfossil-rich zones. The co-occurrence of P, O, La, and 
Ce can indicate the presence of an inclusion of a rare-earth phosphate mineral, i.e., 
monazite. The appearance of La and Ce together with carbon also raises questions 
about potential preservation of parts of the microfossils by monazite, which has been 
previously reported for microfossils from 1 billion-year-old Torridon phosphates 
(Wacey et al., 2019). Monazite was suggested as the first mineral precipitate to form 
after cell death in the Torridon samples, forming an insoluble, stable phase, thus pre-
serving fine structural information. However, a limited number of detections from the 
Gunflint microfossils do not allow us to infer a definitive correlation between mona-
zite preservation and microfossils.  

The abundance of REE from the Gunflint chert was reported previously (Shimizu 
& Masuda, 1977), with bulk values below one ppm: La – 0.0785 ppm, Ce – 0.1946 
ppm. Other REE concentrations were estimated to be significantly lower (measure-
ments were performed using a stable isotope dilution technique) (Shimizu & Masuda, 
1977). Our observation also shows that heavier REEs' abundances are below the de-
tection limit, which points towards the necessity of data acquisition with an even 
smaller number of laser shots to be binned (histogramming of 10–50 single laser shot 
mass spectra) to improve the detection limits. Enriched Ce and La points towards the 
presence of oxidizing conditions within Gunflint waters and supports a cyanobacte-
rial affinity of at least some microfossils, which might indicate microbially mediated 
oxygenation of the photic zone. Another piece of evidence comes from the identifica-
tion of Mn and Fe, two relatively abundant elements within the Gunflint sample. Mn 
has a similar redox profile as Ce (Mofett, 1994), and it is known that large numbers of 
microorganisms enzymatically oxidize Mn (Lozano & Rossi, 2012). Bulk rock geo-
chemistry from the Gunflint formation (Fralick et al., 2017) suggests that La and Ce 
concentrations vary within the formation in the range from single-digit ppms to hun-
dreds of ppms (including data from calcite stromatolites, conglomerates, ankerite, 
and calcite grainstones). These lithologies represent variations within the strati-
graphic column, reflecting changing input from different sources - detrital and fluvial 
to hydrothermal REE's and transition metals.   

The total atomic composition of the analyzed locations is given in Table 1. More 
elements can be identified due to the increased sensitivity and improved ionization 
efficiency using shorter UV wavelengths (see Table 1. Columns: Fossil-A and Fossil-
B). Figure 12 reveals histograms of 28Si peak mass resolutions (left) and 28Si signal 
intensities (right) measured in different depth profiles and using different wave-
lengths. The width of the distributions indicates the incidence of different mass reso-
lutions and peak intensities (width is normalized to the same height between laser 
wavelengths and samples). In comparison to the IR measurements, spectral 
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resolution within highly absorptive microfossil bodies remains at the nominal level, 
without any significant distortions of the spectral features (see Fig. 12). 

 Fig. 11 - A) Mass spectrum from UV-258 nm laser ablation campaign from a microfossil-
rich zone with detection of La and Ce oxides. Red bars show the peak intensities of major 
biorelevant elements – CHNOPS. B) Chemical depth profile in microfossil-rich zone out-
lining the scarce distribution of REE (thick lines –smoothed data). The black arrow in-
dicates the location of the spectra in the depth profile shown in Fig. 11A. The depth pro-
file of 12C is shown with the light grey line. The depth profile of LaO is shown with the 
blue line. The depth profile of CeO is shown with the red line. Gray boxes on top of the 
figure indicate the location of the layers enriched in La and Ce. A black horizontal line 
indicates location of the background signal. 

By collecting data in situ, within the microfossil bodies, a gradual increase of C 
and H with shorter laser wavelengths was detected (Table 1. Fossil-A). The atomic 
fraction of H increased from ~2% in the chert (host area) to ~24% within the micro-
fossil body. A similar increase was detected for C ranging from non-detection (n.d.) to 
~7%. A negative correlation was detected for the host elements on the same location: 
Si concentration decreases from ~77% to ~15% in the spectra acquired from the mi-
crofossil. A comparable decrease was observed for O as well: from ~ 15% to ~8%. 
We inferred the presence of pyrite microscopic-inclusions from the high values of Fe 
– an increase from n.d. in the host area to ~6% within a microfossil. Similarly, S in-
creased from ~0.2% to ~0.7%, which is in agreement with previously reported data
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(Wacey et al., 2013). An almost identical distribution of element composition was de-
tected in location B (see Table 1. Columns: Fossil-B), with the additional presence of 
REE elements (La and Ce). Application of the relative sensitivity coefficients (RSC's 
determined for matrix-matched quartz latite standard sample (USGS QLO-1)) 
(Neuland et al., 2016) reveals accurate stoichiometric ratios for Quartz matrix [Si/O] 
~1/2. 

Fig. 12. Left – The distribution of the 28Si spectral resolution in the depth profiles for 
each applied wavelength within two distinct zones. Distributions are calculated using 
kernel density estimates and have been normalized to the mode values. Mean value lo-
cation and 1SD variation indicated with a dot and a vertical line. Right – The distribu-
tion of the 28Si intensities in the depth profiles for each applied wavelength within two 
distinct locations (microfossil-rich zone and host mineral area) is shown as a scatter 
plot. The red thick horizontal line indicates location of the mean peak intensity regis-
tered from the depth profile. The red horizontal line indicates location of the back-
ground signal. The numbers at the top of the figures indicate the total laser count ap-
plied to the given locations. 
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Table 1 – Atomic fractions of elements measured with three wavelengths of the femtosecond laser in microfossils and chert. Measurements are from different locations 
and represent uncalibrated abundances measured from spectra shown in figs. 6,8,10,11. 
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UV-258 nm measurements with HV-pulser 

As mentioned previously, time-of-flight mass spectrometers can register posi-
tively charged species present in the ablation plume. However, highly abundant light 
ions, arriving early to the detector, with ion flux values exceeding 107 ions*s–1 might 
lead to the saturation of the detector (caused by the dead time of the triggered MCP 
pores) (Riedo et al., 2017; Wiesendanger et al., 2017), which will result in the reduced 
sensitivity of the detector for heavy elements and molecules. To suppress saturation 
effects, we applied two technical solutions: 1) Enlargement of the active area of the 
detector and implementation of the impedance matched multi-anode. 2) Implemen-
tation of a short high-voltage (HV) pulse applied to the ion optical system of the mass 
analyzer to repel the flux of the major light ions from the nominal ion-optical path. A 
mass spectrum measured with the HV pulser and UV-258 nm laser radiation is de-
picted in Fig. 13 and represents an average composition (200,000 laser shots) of the 
quartz mineral from the host location. In comparison to the conventional spectrum 
acquisition mode, the mass range of the detected species was substantially enlarged 
(by factor 4). The spectrum depicted in Fig. 13 illustrates the distribution of various 
silicon oxide clusters and reveals a good agreement with theoretical calculations of 
stability ranges of silicon oxides (Lepeshkin et al., 2019). The identified species span 
from relatively small oxides - Si3O3, Si3O4, with masses 132 and 148 amu, respectively, 
up to the largest identified silicon oxide - Si11O22 (660 amu). Measurements conducted 
within the microfossils revealed an identical cluster distribution profile (on the same 
averaging scale), which supports the conclusion that signal from the microfossils is 
very narrowly localized within specific depths and quickly decays to the matrix val-
ues and requires the depth profile analysis with an averaging scales between 50 to 
200 single laser shots.     

Fig. 13. Mass spectrum of Quartz mineral from chert in acquired in the HV pulse mode. 
Red bars on top of the spectrum indicate the location of the specific SixOy chains. The last 
identified molecules are shown with two dashed horizontal lines and represent large 
molecules of Si11O21 and Si11O22 (m/q = 644 and 660). The light grey line indicates the 
raw spectrum, and the black line represents denoised mass spectrum.  
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Discussion 

The main scope of this study was the investigation of the applicability of the in-
tegrated LIMS system (mass spectrometer and a microscope) for the detection and 
characterization of microscopic organic inclusions from astropaleontologically rele-
vant samples, such as cherts, siliceous sinters, and siliciclastic deposits (McMahon et 
al., 2018). One of the main advantages of the LIMS system is that it can provide local-
ized and spatially resolved in situ element analysis (Riedo et al., 2016) combined with 
molecular information (Ligterink et al., 2020; Moreno-García et al., 2016). However, 
performance of the mass analyzer coupled to a laser ionization source inherently de-
pends on the physical parameters of the ablation/ionization. The implementation of 
femtosecond lasers instead of nanosecond lasers was shown to reduce various frac-
tionation processes and matrix effects (Zhang et al., 2013), and the corresponding 
relative sensitivity coefficients (RSC) tended towards one for polymetallic samples 
(Riedo et al., 2013). Nevertheless, despite the LIMS applicability to an extensive range 
of samples, the quality of gathered data might vary. Optically transparent, dielectric 
samples with heterogeneous, highly absorptive inclusions, e.g., microfossils, are chal-
lenging targets for analysis, as shown in the results section for the longer wave-
lengths. For example, bandgap values reported for α-quartz are determined to be 
around 6 eV (Calabrese & Fowler, 1978) and 9 eV (Chelikowsky & Schlüter, 1977), 
which means that for an effective release of charge carriers from quartz, the absorp-
tion of a higher amount of photons is required, compared to the absorptive kerogen 
embedded in a silicate matrix. Within the experimental framework, analysis of such 
different materials with LIMS using an IR laser requires tuning the energy of the laser 
for each investigated material to achieve well-resolved spectral data (which is hard 
to accomplish within a single position). The issue of low spectral quality of data ob-
tained from geological samples with the IR laser was addressed by filtering acquired 
spectra (Wiesendanger et al., 2019). This method applies spectral quality scoring and 
selects only resolved peaks for the analysis, while discarding spectra affected by 
broadening. Method revealed significant improvement in the determination of iso-
tope ratios, however, a substantial amount of data might be discarded, and thus in-
formation about the chemical depth profile may be lost. Unequal ionization of differ-
ent minerals can also affect the mass spectrometric imaging quality, where poten-
tially more sets of minerals can be present, which consequently has a potential to in-
troduce artefactual imaging results.  

Some of the processes observed during the ablation of the thin section from the 
Gunflint chert are shown in the sketch in Fig. 14. Panel A describes the formation of 
the ablation crater after a number of applied IR laser shots. Since the sample and the 
glass holder are nearly transparent to the applied wavelength, part of the IR beam 
passes through the transparent media and ablates material on the surface of the metal 
holder, forming a secondary crater. This process can be accompanied by the for-
mation of radial cracks and possibly by contamination of the surface with the steel 
ablation products.  

Figure 14B depicts the ablation of embedded microfossils due to their higher ab-
sorptivity of the IR radiation and subsequent formation of the secondary craters. The 
figure illustrates the quick removal of the absorptive microfossils from the analyzed 
spot. In contrast, ablation and ionization with UV-258 nm radiation provide a uniform 
absorption of photons by the host mineral and the microfossil inclusions, as illus-
trated in Fig. 14C. This conclusion is verified by the absence of the secondary craters 
on the underlying steel holder. Moreover, the distribution of the spectral resolution 
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and intensity of 28Si, depicted in Fig. 12, indicates an improvement of the registered 
signal quality by using shorter laser wavelengths. Figures 15A and 15B show the 
close-up images of the obtained craters and demonstrate a gradual improvement of 
the crater morphologies by using shorter wavelengths. Figure 15C shows the AFM 
crater morphology measurement obtained from the host mineral area using a UV-258 
nm laser (see the location of the same crater in Fig. 15B (white arrow) and the depth 
profile registered from the same crater in Fig. 10B). The figure indicates that a 10 µm 
wide crater quickly decays to half of its diameter at depth ~ 4 µm and forms a conical 
crater with a sharp ending. The crater most likely goes as deep as ~ 25–28 µm; how-
ever, the AFM depth range was not sufficient to measure such deep craters. Therefore, 
an accurate estimation of ablation rates could not be achieved. However, the precise 
ablation rate for the same instrument was previously determined for NiCr standard 
material, where a mean ablation rate of ~3 nm/pulse (~72 nJ/pulse) was observed 
using the double-pulse UV-258 nm fs-laser radiation to produce the optimal mass-
spectrometric signal quality (Grimaudo et al., 2020). In our case, ~360 nJ/pulse for 
UV-258 nm was needed to produce the optimal mass-spectrometric signal quality. 
Accordingly, the more absorptive NiCr standard sample requires less energy for ab-
lation in contrast to the less absorptive quartz mineral. As a first-order approxima-
tion, we can assume that the mean ablation rate is in the same order as in (Grimaudo 
et al., 2020), which gradually decreases during the formation of craters and likely 
ends with thermal ionization from side walls with even lower ablation rates.  

Fig. 14 - Schematics of the femtosecond laser ablation of the Gunflint chert sample. A) 
Ablation of the host area with IR-775 nm laser and formation of the secondary craters 
by residual laser energy not absorbed by the quartz mineral (see Fig.5). B) Ablation of 
the microfossil-containing area with IR-775 nm laser with formation of the secondary 
craters, radial cracks, and preferential absorption of the laser energy by the microfossils 
(see Fig. 5). C) Ablation of the microfossil-containing area with UV-258 nm laser with 
more uniform ionization of microfossils and surrounding chert. The absence of second-
ary craters and cracks could be noted (see Fig.7). 
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Fig. 15 - A) Microscopic image of the IR-775 and UV-387 nm ablation craters from the 
host area. Black dashed line indicates separation boundary between two different wave-
length craters B) Microscopic image of the UV-258 nm craters from the host area. Scale 
of the image is equal to the scale of image in Fig. 13A. White encircled crater with an 
arrow indicates location of the crater shown in Fig. 15C. C) Result of the atomic force 
microscopy (Z-scan) of the UV-258 nm crater acquired from the host area (noted with 
white arrow in figure 15B).  Depth profile recoded from this location shown in Fig. 8B. 

Measurements of the mass resolution of the 28Si peaks obtained with the IR-775 
nm laser are shown in Fig. 12, left panel, with a distribution of m/∆m values ranging 
from 10 to 500, with the better resolution within the matrix than in the microfossil-
rich location. UV-387 nm and UV-258 nm laser depth profiles reveal distributions 
with a higher mean mass resolution. For the UV-387 nm laser, data reveal highly sta-
ble m/∆m values around 800 at both matrix and microfossil locations. However, the 
extended tailing of m/∆m distribution towards lower values (see Fig. 12, left panel) 
is a definite drawback. In contrast, the UV-258 nm data reveals highly stable m/∆m 
values around 800 in both matrix and microfossil locations, without any significant 
tailing. Considering that the total applied laser shot count is much higher, 500,000 
versus 300,000 and 150,000 for UV-258, UV-387, and IR-775, respectively, shorter 
UV wavelengths have a clear advantage in the depth profiling and large-scale spectral 
data collection (i.e., mass spectrometric imaging). Figure 12 (right panel) depicts the 
distribution of the 28Si peak intensities and again demonstrates an improvement of 
the signal stability when using shorter laser wavelengths. Distribution of the intensi-
ties could also be observed in the depth profiles; however, stacked representation 
helps to recognize that a UV-258 nm laser provides more stable measurements with 
an improved mean signal-to-noise ratio ~104.  

However, despite clearly improved ablation conditions, there are still some limi-
tations: the spot size and accessible depth of the analysis are limited. Craters deeper 
than tens of μm are prone to admixing of signal from the crater walls since the laser 
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beam is of Gaussian shape. Additionally, the decay of signal intensities could be ob-
served when the crater gets sufficiently deep (Cedeño López et al., 2018; Grimaudo et 
al., 2019). This aspect can be improved with an appropriate beam shaping (π-shape) 
and sample positioning so that the focal position of the incident laser beam tracks the 
surface of the analyzed material.  

Moreover, in-situ characterization of the molecular composition of the microfos-
sils would be considered beneficial. The analysis can be made with local direct laser 
desorption studies, as has been demonstrated before (Ligterink et al., 2020). Even 
though the desorption of molecules from the microfossils is out of the scope of this 
study, our preliminary results show that an IR wavelength might provide better per-
formance compared to UV wavelengths. More energetic photons from the deep UV 
laser are expected to increase the fragmentation of the molecules and therefore de-
crease the probability of detection of a parent peak within already substantially de-
composed organic matter. However, more detailed studies are required to under-
stand the performance of the different lasers in the direct desorption of kerogen mol-
ecules from the highly silicified media.  

Overall, the mass spectrometric analysis conducted on the 1.88 Ga Gunflint chert 
sample with LIMS instrument and integrated microscope system using three different 
laser wavelengths clearly demonstrated the advantage of the UV-258 nm laser wave-
length over longer wavelengths for elemental analysis and depth profiling of hetero-
geneous samples.   
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Conclusions 

In this article, we have investigated the capability of the LIMS microprobe system 
to provide chemical depth profiles from a heterogeneous Precambrian chert sample 
and collected information about the chemical composition of microfossils embedded 
in the quartz matrix. We have discussed the generation and performance of three dif-
ferent femtosecond laser wavelengths: IR-775 nm, UV-387 nm, and UV-258 nm, and 
their relative advantages and drawbacks in the analysis of silicified geologic samples. 
Additionally, analysis of the host media was performed with the HV pulser mode. By 
combined usage of optical microscopy, in-situ mass spectrometry, and depth profil-
ing, the chemical composition of microscopic inclusions within the chert could be 
characterized at precisely defined locations and depth positions. Chemical depth pro-
filing is aimed to enhance the scientific output from a single position measurement 
and provides a pathway to highly resolved three-dimensional mapping. By tracking 
the 28Si mass peak resolution, intensities, and crater shapes, we identified a signifi-
cant increase in the analytical performance by using shorter laser wavelengths. Abla-
tion with a UV-258 nm femtosecond laser revealed geometrically better-defined 
crater morphologies, higher and more stable spectrometric mass resolution (up to 
800), and almost uniform ionization of heterogeneous materials present in the depth 
profiles. Identification of the microfossils and the quartz matrix was performed by 
tracking the carbon, silicon, and oxygen ion yield in the depth profiles. Concentrations 
of different elements within two distinct zones and their relative change is summa-
rised for each wavelength as atomic fractions. The main elements identified within 
the silica matrix are Si, O, Na, K, H, and Ca. Analysis of the chemical composition of 
microfossils revealed the presence of the same elements as found in the matrix plus 
contributions from a suite of elements specific to the fossils, namely: Li, B, N, Mg, Cl, 
P, S, Ti, V, Mn, Fe, Cu, Ni, La, Ce, with strongly enhanced C and H. 
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We present chemical depth profiling studies on mineralogical inclusions embedded in amygdale calcium

carbonate by our Laser Ablation Ionisation Mass Spectrometer designed for in situ space research. An IR

femtosecond laser ablation is employed to generate ions that are recorded by a miniature time-of-flight

mass spectrometer. The mass spectra were measured at several locations on the sample surface and

yield chemical depth profiles along the depth length of about 30 mm. The presence of oxides and

sulphides within inclusion material allows us to derive elemental abundance calibration factors (relative

sensitivity coefficients, RSCs) for major and minor elements. These are obtained from the atomic

intensity correlations performed on the depth profiling data. With the RSCs corrections the quantitative

analysis of more complex mineralogical phases within the inclusion is conducted by correlating atomic

abundance fractions in ternary diagrams, typically used in geology. The spatial resolution of the depth

profiles was sufficient to study chemically distinct micrometre-sized objects, such as mineralogical

grains and thin layers of minerals including micrometre-sized filamentous structures. The method

presented here is well-suited for the quantitative chemical analyses of highly heterogeneous materials

where the ablation condition can vary locally with the material composition making the application of

standard reference materials less accurate. The presented method is developed to distinguish between

abiotic and biological material while searching for micrometre-sized extinct or extent life forms on the

surfaces of Solar System bodies.
Introduction

One of the major objectives of current space research and
planetology is the search for signatures of extant and extinct life
on other planetary bodies. With the assumption that life on
other planets should be based on the same physical and
chemical rules as life we know from Earth and evolved along
similar pathways, these searches should follow known terres-
trial practice. Ancient extinct life can be identied by nding
remains of organic material, stromatolitic layers, and individual
microfossils within planetary rocks and soils.1 Identication of
metabolic products together with the deciphering of
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fossilization mechanisms can be essential in such searches.
Among available analytical instrumentation, only those instru-
ments, which can deliver selective and sensitive chemical
measurements of microscopic structures can be employed for
this task.2,3

For conducting analyses on planetary bodies only small,
light, low-powered and sufficiently robust instrumentation can
be used. Several space-borne instruments including Laser-
Induced Breakdown Spectroscopy (LIBS), X-Ray Fluorescence
(XRF), and Laser Raman Spectroscopy have proved their capa-
bilities in delivering composition measurements of the sample
surface and important biosignatures in numerous performance
studies. However, their measurement sensitivity might not be
sufficient to investigate the chemical composition of micro-
scopic structures of sparse life.2,4 An example of the instrument
combining Raman, LIBS and IR techniques is the SuperCam
instrument designed on the NASA Mars2020 with the perfor-
mance gures of each of applied technique described in recent
publication and references therein.5,6 Compared to these tech-
niques, laser-based mass spectrometry adds complementary
information. With current LIMS spatial resolution (lateral and
vertical) and sensitivity, detailed analyses of grain-size objects
This journal is © The Royal Society of Chemistry 2021
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can be conducted with the determination of context mineralogy
and detection of micro-sized fossils.7–9

Laser ablation ionisation mass spectrometry (LIMS) based
on time-of-ight mass analysers is a well-known technique with
its origin in the mid-1970s. In the beginning, the technique
suffered from various drawbacks, which mostly were affecting
the quantication and the measurement procedure. With the
continuous advances in electronics, vacuum, and laser systems,
this technology has re-emerged for laboratory and eld appli-
cation for chemical analysis of solid-state samples.10–12 Over the
years, a high degree of miniaturisation of the LIMS instrument
has been achieved with the objective to become a space-borne
instrument.8,13–15 Robustness of the time-of-ight mass analy-
ser, exible operation of the laser ablation ion source, the
control over the ion optics settings and detector gain allow
direct and sensitive chemical analysis of raw samples providing
efficient ion production and nearly 100% ion transmission from
the measurement spot to ion detector.15,16 For the analysis of
micrometre-sized objects such as grains or microfossils, the
integration of a microscope camera system into the system
helps in an initial characterisation of micro-sized objects and
improving overlap of the laser spot with the object of interest.8,17

LIMS with an fs laser ablation ion source shows an increas-
ingly higher performance. It delivers improved quantitative
chemical composition information with considerably reduced
element fractionation.18–20 Several recent studies show that LIMS
can be considered as a standardless technique delivering semi-
quantitative results.18–22 Further improvements to the quantita-
tive analysis can be achieved by adding to atomic abundance
derived from the single-charged atomic mass peaks also multiple
ionised atomic mass peaks.23 An improved efficiency of the atomic
ion production and quantication of atomic ions can be achieved
applying a double pulse laser ablation/ionisation ion source.24 In
double pulse system, the rst pulse is ablating the sample surface
and the second, shortly delayed pulse interacts with freshly formed
plasma plume resulting in additional plasma heating, atomisation
and ionisation. These processes inuence also post-plasma
chemistry efficiency. The presence of isobaric multiple-charged
atomic ions and clusters in ion beam can introduce uncertainty
in the quantication of the atomic signal measurement; hence, by
applying double pulse laser ion source, the isobaric interferences
can beminimized. It has been demonstrating also that the isobaric
interferences due to clusters could be reduced by implementing
collisional cell which allows partial temporal separation of the
cluster and atomic ion distributions.25 High-resolution time-of-
ight mass spectrometric measurements of atomic ions
produced in laser ablation are typically difficult due to wide kinetic
energy distributions of produced ions. Only, recently a high-
resolution (M/DM �104) laboratory LIMS system with a double
reectron system was developed to resolve most of mass peaks of
cluster ions, hence, the isobaric interferences resulting from
polyatomic species can be avoided.26 In miniature LIMS systems
designed for in situ applications not all these implementations can
be made. Here, we propose alternative method of the abundance
calibration. The applied method uses depth-proling data and
requires presence of simple chemical compounds such as oxides
and sulphides within the sample material.
This journal is © The Royal Society of Chemistry 2021
In recent years, fs-LIMS proved its capabilities for chemical
analysis with high spatial (lateral, vertical) resolution. High
lateral resolution is achieved by focusing laser radiation onto
the surface to a spot size of a few micrometres and by tuning
over the pulse energy, ablation rate and thickness of the ablated
layer can be well controlled so that the measurements can be
conducted with the depth resolution down to a few nano-
metres.27–32 In our recent studies on the Ni/Cr NIST standard, we
have accomplished a depth resolution of about 30 nm applying
UV femtosecond laser radiation arranged in a double pulse
conguration.24,32 3D chemical mapping analysis with LIMS
were recently presented.33,34

There are other laboratory analytical techniques, which offer
high spatial resolution depth proling capabilities such as Glow
Discharge Mass Spectrometry (GD-MS), Laser Ablation Induc-
tively Coupled Mass Spectrometry (LA-ICP-MS) and Secondary
Ion Mass Spectrometry (SIMS).35–40 These instruments in
current state of development are less suitable for application to
space research but can be useful in applications in terrestrial
environments. Current LIMS systems full the requirements of
size, weight or power consumption necessary available aboard
a spacecra, either a rover or a lander.7

In the current contribution, we introduce a procedure for the
in situ atomic abundance calibration using micrometre-sized
inclusion embedded in a calcium carbonate host mineral. The
procedure uses the depth proling data e.g. the measurements
of atomic intensities in a function of ablation layer. By corre-
lating the intensities of atomic species measured at specic
ablation layers and observation of linear correlation, we can
deduce the presence of the molecular compounds and deter-
mine corrections to the measured atomic intensities. These
corrections are obtained by comparison of the measured slopes
of the correlations and the expected values from the actual
chemical formula. From the measurements of various oxides
and sulphides we obtain the correction coefficients for most of
major and minor elements. Determination of these corrections
on simple compounds allows for a more detailed analysis of
complex mineralogical phases present in the sample at micro-
scopic scales. Having the obtained corrected elemental abun-
dances, atomic abundance fractions are plotted in ternary
diagrams allowing the investigation of more complex mineral-
ogical phases. A similar procedure which is known as LRS-linear
regression slope method was applied in earlier MC-ICP-MS
studies to improve accuracy and precision of isotope
ratios.41–43 This data reduction protocol used the simultaneous
responses of all isotopes measured. In the current study, the
simultaneous response of elements is expected while ablating
specic molecular compound.

Similar materials to that studied here are found onMars and
can be considered as a distinct astropaleontological target. The
calcium carbonate phase in basalts can host veins and voids,
which are recognised as habitats for endolithic microorganisms
and form secondary inlling mineralisation in volcanic envi-
ronments.44–47 Thus, extended characterisation of these mate-
rials and understanding their heterogeneities are important to
account for their biological or abiotic origin.
J. Anal. At. Spectrom., 2021, 36, 80–91 | 81
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Experimental
Materials

The sample of an amygdaloidal pillow basalt from Kinghorn,
Fife, Scotland48 was processed to a 30 mm thick thin-section,
mounted on a stainless-steel sample holder and introduced
into the vacuum chamber for its mass spectrometric analysis
(Fig. 1). The le panel of Fig. 1 shows the thin-section of basalt
with an inclusion of calcium carbonate. The right panel shows
a close-up image of the dark inclusion, which contains
a number of needle-shaped microscopic structures. The enclo-
sure into the calcium carbonate host happened some 360–320
Ma ago.48
The LIMS instrument

The mass spectrometric investigations were conducted with our
miniature laser ablation ionisationmass spectrometer designed
for in situ space research applications. The instrument
combines a femtosecond-laser ablation ion source with a mini-
ature time-of-ight mass analyser.22 Current studies are con-
ducted with a NIR-fs-laser radiation (pulse width, Dt �190 fs, l
¼ 775 nm, laser pulse repetition rate of 1 kHz) focused to
a circular spot of about 10 mm in diameter. In all measurements,
a pulse energy of about 8 mJ on the sample surface was applied.
The resulting craters were inspected with an optical micro-
scope.17 The detailed crater morphology analyses can be found
in our previous publications.31 The measurements were
computer-controlled using our custom-designed operating
system.15 The sample was attached to the xyz-micro-translation
stages. The stage allows for about 2 mm positioning accuracy of
the location of interest on the sample by using prior measure-
ments size calibration with an in situ microscope camera
system.17
Mass spectrometric measurements

Mass spectra were collected at ten locations on the sample,
starting from the pure calcium carbonate mineral, across the
interface of the calcium carbonate host all the way into the dark
Fig. 1 (a) The sample prior to the introduction into the vacuum
chamber. The sample is placed within milled depression in the sample
holder made of stainless steel and is attached by a copper tape. (b)
Close up microscope image of the amygdale calcium carbonate
sample with a dark inclusion in the centre. A network of needle-like
structures spreading out from a denser, darker central part of the
inclusion can be readily identified. The ten black spots with numbers
indicate the location at which laser ablation mass spectrometric
analyses were conducted.

82 | J. Anal. At. Spectrom., 2021, 36, 80–91
inclusion, and on the inclusion's surface seen as a dark area in
the centre of Fig. 1b. The dark inclusion consists of needle-
shaped micrometre-sized structures that are embedded in
complex mineralogical phases other than calcium carbonate.
For each location 300 mass spectra were acquired correspond-
ing to 300 ablated layers. The individual layer spectrum is
measured by accumulation mass spectra of 200 laser shots on
board of the acquisition system. Additionally, mass spectra on
the calcium carbonate host were collected by drilling through
the 30 mm thin-section, which corresponds to about 366 layers.
The mass calibration of the spectra, mass peak integration and
principles of depth proling analysis were discussed in detail in
our previous publications.49,50
Relative sensitivity coefficients

The Relative Sensitivity Coefficient (RSC) for an element in the
sample is obtained by dividing measured element concentra-
tion, Xm by the expected concentration, X:

RSCX ¼ Xm

X
(1)

The LIMS instrument delivers measurement of atomic
intensities. These intensities are calculated by integrating mass
peaks of this element in the mass spectrum. Thus, the atomic
concentrations are presented as the atomic fractions. To derive
the RSC of an element, one compares the measured and ex-
pected atomic fractions:

RSCX ¼ AX=Atot

PX

(2)

where AX stands for the atomic ion intensity obtained from the
mass spectrum and Atot is the sum of all atomic intensities
measured in the sample. Hence, AX/Atot is the measured fraction
of given element in the sample. PX denotes the stated fraction of
the X atoms to all atoms in the sample. When the sample is
a pure mineralogical compound such as calcium carbonate,
CaCO3, the atomic fractions of PCa, PC, PO are 0.2, 0.2 and 0.6,
respectively.

Knowing concentration ratio between elements Xi and
reference element Y in the sample, we can derive another
formula for calculating RSCs:

RSCXi
¼ RSCY

Xmi

Ym

Y

Xi

(3)

where RSCY is the RSC of reference element Y, Xmi/Ym is the
ratio of the measured atomic concentrations (slope in the linear
atomic intensity correlation), Y/X is the stated ratio of element Y
to element Xi (see ESI, Section A for more details†).

Using depth proling data and the signal intensity correla-
tion, we can identify elements, which form simple chemical
compounds even they are distributed within sample volume
irregularly. In addition to their intensity relationship, the linear
intensity correlation of the measuring signals also yields the
location where the signals are measured in the sample i.e., where
these minerals are present in the sample. Hence, we can identify
these compounds at specic ablation layers. The determination
This journal is © The Royal Society of Chemistry 2021
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of RSCs from the signal intensity correlation between species in
a simple chemical compound can be made this way, e.g., two or
three-element compounds such as oxides or sulphides present in
the sample as layers or grains can be made this way. For the
correlation, we select the atomic signals of a compound, which
originate from various ablation layers. Atomic signals emerging
from the same compound will always create a linear correlation,
since the element ratio will be constant in all different layers,
independently of the amount of the compound. The slope of
a linearly correlated data set is then the effective abundance ratio
of the two correlating atomic species.
Results and discussion
Mass spectra of the calcium carbonate phase and the dark
inclusion

Fig. 2a shows the mass spectrummeasured on the pure calcium
carbonate with C, O, and Ca as the major elements that are
characteristic for the calcium carbonate mineral composition,
CaCO3. From purely mass spectrometric perspective, it is hard
to identify polymorphic modications. The calcium carbonate
could be calcite, aragonite, or vaterite, but earlier it was deter-
mined to be calcite.7 Additionally, we also observe mass peaks of
the elements Na and K. The dynamic range of the spectrum is
close to 104, which allowed for simultaneous detection of the
major elements and trace elements with a bulk concentration of
at least 100 ppm (atomic fractions). In addition to C, O and Ca
Fig. 2 (a) The mass spectrum recorded on a pure calcium carbonate m

This journal is © The Royal Society of Chemistry 2021
also Li, B, F, Mg, S, Cl, and Sr elements are identied in the
spectrum. These elements are known impurities in the calcium
carbonate minerals. Other mass peaks within the low atomic
mass range are double- and triple-charged ions of C, O, and Ca.
Non-equilibrium chemistry in the expanding and cooling
ablation plume leads to the formation of hydrocarbons, CxHy,
and oxides, CaxOy (where x ¼ 1–3 and y ¼ 1–4), which ions are
also observed in the mass spectrum. Similar mass spectra are
recorded at locations 1–4 (see also Fig. 1b), indicating chemical
homogeneity of the host mineral.

Themass spectrum displayed in Fig. 2b wasmeasured on the
inclusion at location 9 (see also Fig. 1). The major and minor
elements observed are O, Na, K, Fe and C, Mg, Al, Si, S, Ca, Ni,
Co, respectively, including also the trace elements, Li, N, P,
Ti, V, Cr, Cu, Zn and Sr. The dynamic range in the spectra is
larger than 104. In addition, multiple charged ions, hydrocar-
bons and oxides of the main constituents C, O, Ca, and Fe can
be identied in the mass spectra. The resemblance of the mass
spectra at location 9 and at locations 6, 7 and 8 is large, indi-
cating negligible chemical heterogeneity in the dark inclusion.
However, the depth proling analysis shows that the inclusion
material is heterogeneous.
Chemical depth proling on calcium carbonate mineral

Fig. 3a shows the chemical depth proles measured for the
elements C, O, Na, and Si along the 30 micrometre-thick
ineral on location 4, (b) and on the inclusion on location 8.
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Fig. 3 (a) Depth profile of C, O, Ca, Na, and Si as a function of the
ablation number. After 366 ablation layers we observe and increase of
the Si and Na atomic intensities indicating transition to soda lime silica
glass substrate material. (b) Correlation between C and Ca, and O and
Ca atomic intensities, respectively, derived from the depth profiling
data.
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calcium carbonate sample as a function of the ablation layer
number. The measured mass peak intensities are observed to
decrease fast for about rst 30 ablation layers and for the
remaining ablation layers – approximately monotonically with
the ablation layer number. Because of the mass peak shape
distortions and peak intensity uctuations in the spectra
recorded during an initial ablation phase (here for the rst 30
ablation layers) these spectra are removed from the analysis.
Above the ablation layer number 366 we observe a sudden signal
increase for all elements, including Na and Si. The Na and Si
signals show the transition to the soda lime glass substrate,
which indicates that the laser has drilled a crater through
approximately 30 mm thick thin-section sample. Approximately
circular craters with a diameter of about ø10 mm were produced
as observed with the internal optical microscope.17 More
advanced analyses of the crater characteristic were not con-
ducted in the current study.
Mass peak intensity correlation of C, O and Ca and RSC values

Calcium carbonate mineral. The mass spectrometric anal-
ysis of the composite spectrum (see Fig. 2a) recorded on pure
calcium carbonate yield C, O and Ca atomic intensities from
which we can calculate atomic fractions of each element and
compare these results to the expected atomic fraction in CaCO3

using formula (2). These calculation yields RSCs for C, O and Ca
of 0.55 � 0.03, 0.36 � 0.05, and 3.3, respectively (see also ESI,
section A, Table 1 for more details†). The intensity correlation
plots of C and Ca and O and Ca, derived from individual mass
spectra measured along the ablation depth are displayed in
Fig. 3b. The mass peak intensities correlated in plots are
calculated from the peak areas. We observe linear correlations
for these data and the slope coefficient as shown in Fig. 3b
together with the R2 correlation coefficient. The slope coeffi-
cients derived from the linear ts are 0.19 � 0.01 and 0.28 �
84 | J. Anal. At. Spectrom., 2021, 36, 80–91
0.02 for the correlation of C with Ca and of O with Ca, respec-
tively. Considering the expected atomic fractions of the
elements in the pure calcium carbonate mineral, we derive
relative sensitivity coefficients, RSCs from the formula (3) by
taking RSCCa determined using the rst method as reference.
The RSCs values obtained with this method are 0.63� 0.02, and
0.30 � 0.03 for C, O, respectively (see also ESI, Section A, Table
2†) indicating consistency of the RSCs values determined by the
two methods.
Inclusion material, heterogeneities

Fig. 4 compares the O depth proles in a function of ablation
layer number recorded at various locations on the inclusion
including also location at the interface between pure calcium
carbonate and inclusion material (Fig. 4, panel (a), see also
location 5 in Fig. 1b). Similar depth proles are observed for C
and Ca although some differences at specic ablation layers in
the prole shapes can be noticed. An increase of mass peak
intensities at specic ablation layer form characteristic peaks
on the depth-proling curve. A systematic shi of these peaks
towards lower ablation layer numbers is observed while the
measurement locations become closer to the centre of the
inclusion, as indicated by the arrows in Fig. 4(b–d). This shi is
likely due to measurement of the same assembly of dark nee-
dles embedded in the matrix with a certain angle to the surface
normal. The closer one gets to the centre of the dark inclusion,
the earlier one measures the needle assembly because the
darker area is closer to the surface and the needles were growing
in opposite direction, along the direction of depth of the thin
section. Fig. 4 (panels (e) to (h)) displays the mass peak intensity
correlations of C with Ca, and O with Ca, measured at locations
from 5 to 8. At location 5, the mass peak intensities correlate
linearly well and only a small group of data points lay outside
the correlation line. Contrary, at location 6, the linear correla-
tion is observed only for a small part of data points (Fig. 4, panel
(f)). At locations 7 and 8, no obvious linear correlation can be
observed; the data points form a diffuse distribution with
a large intensity spread. The data points in the depth proles
measured in locations 5 and 6 (Fig. 4, panels (a) and (b),
respectively), for which the calcium carbonate mineral was
identied via the linear correlations (red and black data points
on the linear regression in panels (e) and (f)) are indicated as
green circles in panels (a) and (b), respectively. These are found
at the ablation layer numbers between regions of increased
peak intensities on the depth-proling curve. These layers with
calcium carbonate, if present, are not easy to detect at locations
7–9. By tting the fraction of the data that correlates to the
calcium carbonate mineral at location 6, one obtains slope
coefficient values for O, which are larger compared to that
determined at the location of a pure calcium carbonate. The
slope coefficient values in correlation of C and Ca are observed
to be similar to each other at these locations with the slope
coefficient values of 0.41 � 0.06 and 0.31 � 0.02 at location 6
and 0.45 and 0.33 at location 7 for C/Ca and O/Ca correlations,
respectively (Fig. 4e and f). Considering data at locations 6 we
can repeat the procedure applied for pure calcium carbonate
This journal is © The Royal Society of Chemistry 2021
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Fig. 4 Depth profiles and mass peak correlations. Panels (a–d): Depth profiles obtained by measuring the O mass peak intensities at locations 6
panel (b), 7 panel (c), and 8 panel (d) on the dark inclusion. The green-coloured points in the left panels (a) an (b) are the data points that
correspond to the calcium carbonate mineral. Right panels: the correlations of the mass peak intensities of elements C and O (y-axis) with Ca (x-
axis) measured at corresponding locations. Only part of the data points correlates linearly (black and red full circles) in panels (e) and (f). Therewas
no clear correlation betweenO andCa in the data plotted in panel (g), although a C–Ca correlation can be noticed. Contrary, for a part of the data
points the correlation between O and Ca is readily observed but the correlation between C and Ca is less pronounced in panels (g) and (h).
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phase and derive RSC coefficients of C, O and Ca at the inclu-
sion location (see ESI Section A, Table 3†) using the composite
spectrum obtained by summing up only the contributing the
data points to linear correlations. These calculations yield RSCs
of C, O, and Ca of 0.91 � 0.05, 0.44 � 0.05 and 2.71 � 0.04,
respectively. Applying again eqn (3) with RSC of Ca equal 2.71 �
0.04 as reference and considering slope coefficients C/Ca and O/
Ca we can obtain the RSC of C and O equal to 0.97 � 0.09 and
0.38 � 0.05, respectively. The RSC of Ca is chosen as the refer-
ence (see Section A, Tables 3 and 4 in ESI for more details†).
Depth proles at location 9

Fig. 5 shows depth proles of several major andminor elements
recorded at location 9. Signicant mass peak intensity varia-
tions for all elements can be observed along the depth proles
at specic ablation layer numbers. Signal intensity variations
indicate either a decit or an increase of the element concen-
tration at these specic ablation layers. Some increase of the
ablation efficiency can occur because of the increased absorp-
tion of laser radiation at darker spots such as needles. In
agreement with the signal intensity correlation studies at loca-
tions 7 and 8, we also observe that the Ca, C, and O signals do
This journal is © The Royal Society of Chemistry 2021
not correlate linearly. Moreover, at certain depths, a depletion
of Ca is observed shown as shaded areas in Fig. 5a. At the
ablation layer ranges 53 : 58, 65 : 71, 128 : 132, 156 : 161, and
165 : 171, we can observe that the drop of the K intensity is
accompanied by an increase of the intensities of Na, C, and Ca
(Fig. 5a). Considering correlations of the minor elements, an
increase of the S, Ni, Co, Mg, Mn, Cu, and B at several locations
is typically accompanied by a decrease of the Fe and Ti mass
peak intensities (see shaded areas in Fig. 5b and c). Only at the
ablation, layer 110 all peaks intensities are observed to corre-
late. From the microscope images of the needle-like structures
we can estimate their size to be in the range of 0.8–2 mm
(Fig. 1b). The narrowest peaks in the depth prole involve 5
ablation layers (see Fig. 5). Thus, the thickness of the measured
individual ablation layers is estimated to be in a range 0.2–0.4
mm.
Determination of RSCs from the data collected at locations 6
to 9

If the atomic signals were measured stoichiometric, the slope in
the correlation would represent the abundance ratios of the
elements of the relevant chemical formula. So far, we have
J. Anal. At. Spectrom., 2021, 36, 80–91 | 85
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Fig. 5 Variation of the intensities as function of ablation layer number for several elements (isotopes) measured on the dark inclusion at location
8 (Fig. 1b). Panel (a) shows the intensity variations of the C, O, Ca, Na, and K intensities. Panel (b) shows variations of the Fe, S, Mg, Al, and Si
intensities. Panel (c) shows variations of Ti, Ni, Co, and Cu intensities. At ablation layers marked by (*) the intensities of Ni and Co correlate well
with S, and anticorrelate with Fe. Shaded area highlights layer with specific element correlation, respectively anticorrelations. The traces are
shifted to each other vertically for better visualisation of their shapes.
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determined RSCs for the elements C and O through their
abundance correlation with Ca. Based on our previous studies
we know that in the inclusion material other small chemical
compounds are present including oxides and sulphides.

By correlating the intensities of other elements with oxygen
and sulphur intensities, we can gain the information about the
RSCs for these elements providing that they form oxides and/or
sulphides. The details of RSCs calculations are given in ESI,
Section A Tables 5–7.† Here we briey discussed the results
obtained with the linear intensity correlation method.

In Fig. 6, the intensities of several elements are set in
correlation with S (le panel) and O (right panel) intensities,
respectively. For some parts of the data set, a linear correlation,
either with oxygen or sulphur is observed indicating that these
elements may have their origin in oxides and/or sulphides. This
agrees with the results of our earlier studies, where identica-
tion of oxides and sulphides with other analytical methods were
performed.7 Typically, the fs-LIMS measurements on Standard
Research Materials show that RSCs for almost all metallic
elements are, generally, close to one within about 15%. An
exception are Al, Ti, Cu and Mg. RSCs of non-metallic elements
such as C, S, O, Si and Ca various within broader range and
86 | J. Anal. At. Spectrom., 2021, 36, 80–91
depends sensitively on the ablation conditions and material
properties.19,22

Iron is an abundant element in the inclusion. Typically, iron
occurs ubiquitously in hydrothermal ore deposits in sulphides,
oxides, silicates, and in carbonate minerals. In the correlation
of the Fe with O intensities, we observe three different linear
slopes (Fig. 6d). The coefficient values for the red and blue slope
are 1.4 � 0.1 and 3.3 � 0.3, respectively. With RSC of O derived
in the analysis of calcium carbonate on the inclusion equal to
0.38 � 0.05, we derive RSC of Fe equal 1.25 � 0.04 considering
chemical formulas FeO for blue slope. From the slope coeffi-
cient of the red curve we can derive RSC of Fe equal to 1.05 �
0.05 assuming that FeO2 is present in the sample (Fig. 6 panel
(d)). From these data we obtain average RSC of Fe equal to 1.15
� 0.05. RSC value for Fe is typically close to 1 (within 15%
uncertainty) as it can be determined in the analyses of various
materials including metallic or rock samples.19,22,51 The latter
compound, FeO2, however, is unlikely to be present in our
sample. The most common oxidation states of Fe are +2 and +3.
With these valences Fe can be found in minerals such FeO
(ferric oxide), Fe2O3 (hematite) or Fe3O4 (magnetite). Most
viable candidate instead can be iron(II) hydroxide or ferrous
This journal is © The Royal Society of Chemistry 2021
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Fig. 6 The correlation of Fe, Ni, and Cowith S (panels (a–c)), and the correlation of Fe, Mg, and Si with O (panels (d–f)) based on all data measure
on locations 6 to 9 (see Fig. 1b). The y-axis represents the intensity of the indicated element in the legend. The slopes (blue) are given for each
correlation curve for the oxides and sulphides. RSCs are determined from the blue slopes. Lower slope values than expected for sulphides and
oxides indicates that the analysed element was within another compound or a more complex.
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hydroxide with the formula Fe(OH)2. Ferrous hydroxide is
produced when iron(II) salts, e.g., iron(II) sulphate is treated with
hydroxide ions. This process is likely to occur in aqueous
environments including hydrothermal systems.52 The slope
coefficient of the third correlation of Fe with O observed in
Fig. 6c is smaller than the one assigned to the oxides. This result
implies that those measured atomic signals may originate from
more complex mixture of relevant chemical compounds or
mineral phases. For a sample consisting of heterogeneities
within a volume smaller than the sampled volume, the deter-
mination of RSC from the mass spectrum at this location would
yield inaccurate results, because an unique element composi-
tion is assumed for the entire volume, thus entire data set.
Using depth proling, the mass peak intensity correlation
method can be applied for each individual layer and can yield
more accurate results. The specic chemical composition of
each layer is preserved and the spatial resolution with the
proling depth is expected to be in sub-micrometre range. In
this way an isolation between various compound can be ach-
ieved and the different mineralogical phases are recognised by
means of their unique elemental composition (abundance
ratio) within the various ablation layers. Hence, they can be
identied from the correlation studies. Nevertheless, the lateral
resolution of this study is at least order of magnitude lower and
This journal is © The Royal Society of Chemistry 2021
may affect an isolation of the signals if more than one unique
mineralogical grains will be ablated simultaneously.

In similar analysis conducted for the correlation of Fe with S, we
observe two linearly correlated populations (Fig. 6a). Taking the
RSC value of Fe as 1.15� 0.05, we can determine the RSC value of S.
The two correlation curves give the slope coefficients 2.10 � 0.03
(blue) and 1.01 0.01 (red), respectively. Assigning the blue and red
slopes as being due to the compounds FeS and FeS2, we can derive
RSC of S equal to 0.54� 0.06 and 0.57� 0.04, respectively. The FeS
and FeS2 are the most common forms of iron sulphides known in
natural environments, such as mackinawite (metastable form of
FeS), pyrrhotite (thermodynamicallymore stable formof FeS), cubic
FeS, (formed in presence of foreign ions e.g. chloride ions), and
pyrite (FeS2). These compounds are formed frequently also in
hydrothermal environments. In our previous study, no pyrite could
be identied in the inclusion though this compound is the most
important sulphide gangue mineral and occurs in virtually all
major hydrothermal base and precious metal mineral deposits.
Nevertheless, if the deposits are subjected to high-grade meta-
morphism, pyrrhotite (FeS) replaces pyrite. This occurs typically by
dissolution of pyrite from aqueous solutions and presence of
Fe(SH)2 instead FeS2 in inclusion material.52–54

Similar analyses of RSCs of other elements including Mg, Al,
Si, and Ca are conducting assuming that these elements can be
J. Anal. At. Spectrom., 2021, 36, 80–91 | 87
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present as sulphides and oxides. For the Mg and O intensity
correlation, we observe four slopes and with S one slope. The
slope with the coefficient 1.9 � 0.1 corresponds likely to MgO.
The correlation slope coefficient 0.91 � 0.06 indicates that
MgO2 could be present in the inclusion. Again, in this case
similarly to other above cases, it is more likely that Mg(OH)2 is
present instead. The slope value in correlation Mg and S is
consistent with the measurement on MgS. Three linear corre-
lations of Si with O are observed. Quartz (SiO2) is typically, the
gangue mineral, most commonly encountered in ore-forming
hydrothermal systems. Slope coefficient 0.74 in correlation
with O is taken to derive the RSC of this element. It is likely that
again Si(OH)2 instead of SiO2 is present in the sample. The
correlation curves with smaller slope coefficients can reect the
presence of other mineralogical phases with a lower Si fraction
in the compound. Similarly, for Al correlation with O, the
measured slope coefficient is consistent with presence Al(OH)3
rather than common compound Al2O3. The analysis of Mg and
Ca correlation curves with S yield RSCs similar to that obtained
for correlation with O or from the analysis of calcium carbonate.
The correlation of Ca with S with measured slope coefficient
indicates presence of Ca(SH)2 and the analysis of correlation Al
with S is consistent with Al2S3. The results of calculations of
RSCs are given in Table 7.†

The slope coefficients of the Ni S, and Co and S correlation
curves are 0.34� 0.07 and 0.4� 0.07, respectively, yield however
much lower values of RSCs as expected for these metals (Table
7†). These coefficients are somewhat too small to yield the ex-
pected chemical formula NiS and CoS, assuming that RSCs of
these elements are typically close to one.22,51 One of the reason
for these RSCs being lower than 1 can be that the compounds
NiS and CoS are well mixed and effectively a (Ni, Co)S
compound is sampled in our experiment. The determination of
RSC for S (from Fe-sulphides) also allows to conclude that the
size of the other Ni and Co sulphides inclusions are smaller
than the ablated layer thickness ((150 nm). The ablation layers
where NiS and CoS are measured cannot be resolved to see
separate compounds. The optical imaging of the inclusion area
shows large density of needles characteristic of millerite
mineral.7 In addition to Co, also Cu, Mn, and Fe are known
impurities, which are identied in millerite. Fig. 5 shows that at
the ablation layers at which an increase of the Ni, Co and S
signals is observed also signals of Mn, Cu or Mg increases. An
exception are Fe and Ti signals, which decrease for these
specic ablation layers.

A small part of data points of Ti are observed to linearly
correlate with the slope coefficient 0.22� 0.03 indicating that Ti
may be a part of more complex mineralogical phase(Fig. 5,
panel (c)). In the analysed locations on the inclusion there is
also no correlation of Ti with O observed. TiO2 (anatase mineral)
was identied, however, in the previous studies in other inclu-
sion locations. For the other trace elements including B, V, Cr,
Mn, Zn and Cu measured here the correlation curves are too
diffuse and the linear t is not applied. However, their RSCs are
expected to be close to one.18,20,51 The RSCs for non-metals such
as Si, C, O, S or P are typically smaller than one. RSCs of Na and
K are typically larger than 1, because it is relatively easy to ionise
88 | J. Anal. At. Spectrom., 2021, 36, 80–91
alkali elements comparing to other elements. RSCs of Na and K
could not be derived from the correlation of these elements with
O or S. For the minor and trace elements, the measurement
intensities have larger statistical uctuations resulting in less
accurate determination of the slope coefficients. There are
ablation layers in which the relevant atomic signals are weak or
not detectable. For too large signals, the mass peak intensities
can be under-measured due to the detector saturation effects.
For large differences in material properties from one ablation
layer to the other, the ablation process and efficiency of ion
production may change affecting linearity of the atomic inten-
sity correlation. The effects affecting the mass peak intensity
measurements are discussed in more detail in our recent
publication.55 The RSCs of investigated elements are summar-
ised in Table 1.†

For a sample consisting of heterogeneities within a volume
smaller than the sampled volume, the determination of RSC
from the mass spectrum at this location would yield inaccurate
results, because an unique element composition is assumed for
the entire volume, thus entire data set. Using depth proling,
the mass peak intensity correlation method can be applied for
each individual layer, which yields more accurate results.55 The
specic chemical composition of each layer is preserved and the
spatial resolution with the proling depth is expected to be in
sub-micrometre range. In this way an isolation between various
compounds can be achieved and the different mineralogical
phases are recognised by means of their unique elemental
composition (abundance ratio) within the various ablation
layers. Hence, they can be identied from the correlation
studies. Nevertheless, the lateral resolution of this study is at
least order of magnitude lower and may affect an isolation of
the signals if more than one unique mineralogical grains will be
ablated simultaneously.

Only, RSCs of major and some minor elements can be ob-
tained using present method (see also ESI†). The corrections
were applied to the atomic intensities of the major species Ca,
O, S, Mg and Si. Such corrections can be important when the
analysis of mineralogical phases are conducted as the rock
chemistry depends on the concentrations of these elements. In
ESI,† Section B, we show also the atomic intensities (back-
ground level value 107) and atomic fractions of all elements
identied in this study.
Mineralogical phases

Calcium carbonate. Ternary plots are frequently used in the
mineralogical analysis in geology. They can be helpful in iden-
tication of the mineralogical context of the analysed sample
just by applying a minimum number of chemical species, which
are necessary to describe the composition. In the conventional
analysis of carbonate phases, ternary diagram correlating
abundance fractions (ciderite–magnesite–calcite) is applied.
For pure calcium carbonate, the ternary plot of the C, O, and Ca
abundance fractions is shown in Fig. 7, panel (a). The experi-
mental data points are observed to be located close to each
other, with element abundance ratios (atomic fractions,
20 : 20 : 60) that agrees with the chemical formula CaCO3.
This journal is © The Royal Society of Chemistry 2021
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Fig. 7 Ternary diagram of the C, O, and Ca concentration fractions
with applied RSCs that were derived on a pure calcium carbonate
phase at location 1–4 (a) and on the dark inclusion (b) at locations from
6 to 9. Only a part of the data points in panel (b) can be assigned to
calcium carbonatemineral. On theO axes the 3 times O concentration
is applied thus the fractions of C, Ca and 3O are the same for
carbonate mineral and experimental points are in the middle area in
the triangle. The other remaining points indicate presence of other
mineralogical compounds.
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Contrary, the plot of the data representing the measurements
on locations 6 to 9 shows very diffuse distribution with large
spread from the area expected for the calcite mineral (Fig. 7,
panel (b)). This may indicate that the other minerals instead
a calcium carbonate are present at the inclusion location. This
goes along with our previous investigations with spectroscopic
methods, which identied the presence of mineralogical phases
such as clinochlore [(Mg5Al)(AlSi3)O10(OH)8], clinochlore-
transformed augite (Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O8 and plagio-
clase (feldspar group) [NaAlSi3O8–CaAl2Si2O8].

Clinochlore, pyroxene-augite, plagioclase. Clinochlore is
a member of chlorite group of phyllosilicate minerals and oen
contains considerable amounts of Fe2+, grading into chamosite.
Clinochlore is described by the chemical formula Mg5Al(AlSi3-
O10)(OH)8, and Fe, Mn, Zn, Ca, and Cr are common impurities.
Fig. 8a shows the ternary plot of the Mg, Al, and Fe element
abundances to illustrate their relative proportions measured in
the dark inclusion (Fig. 1b). These proportions indicate that the
clinochlore mineral is a major mineral in the dark inclusion with
the average Mg/(Mg + Fe) abundance ratio of �0.34 � 0.14.
Within ultramac rocks, metamorphism produces predomi-
nantly clinochlore chlorite, an Mg-rich end member, which
could be identied as the inclusion.
Fig. 8 Ternary plots of the elements relevant to chlorite and feldspar g
characteristic regions for various minerals of the chlorite group; (b) the c
presence of magnesium augite and pigeonite in the sample material; (c
presence of the plagioclase feldspars in the inclusion material.

This journal is © The Royal Society of Chemistry 2021
Clinochlore-transformed augite mineral is a member of
pyroxene group namely calcic clinopyroxenes (diopside,
hedenbergite, augite). Pure diopside of CaMgSi2O6 chemical
composition can undergo as a complete solid solution to
hedenbergite CaFeSi2O6 or augite (Ca,Mg,Fe2+,Fe3+,Al)2(Si,Al)2-
O6. In another chemical formula proposed for pyroxene group
(CaxMgyFez)(Mgy1Fez11)Si2O, for augite, the relative composition
of Ca can vary within the range 0.4# x# 0.9 where x + y + z ¼ 1
and y1 + z1 ¼ 1.56 The ternary plot of Mg, Fe, and Ca proportions
indicates presence of magnesian augite in the inclusion mate-
rial (Fig. 8b).

Fig. 8c shows the ternary diagram of the abundances of the
elements K, Na, and Ca, which is applied for the classication of
feldspar minerals. One can identify the distribution of data
along the base of the K coordinate, and the miscibility gap in
the centre. The sequence of minerals along the base of the
triangle indicate the presence of the plagioclase mineral or the
solid solution series of plagioclase being a mixture between
albite (sodium aluminosilicate: [Na(AlSi3O8)]) and anorthite
(calcium aluminosilicate: [Ca(Al2Si2O8)]) and the notable
absence of alkali feldspars.57 The red line denoting location of
the feldspars is schematic. The RSC values of K and Na are
chosen 1, which can be the reason that we observe the plagio-
clase on ternary diagram shied more in the alkali region. The
RSCs of K and Na are expected to be larger than 1 but they
cannot here be derived accurately using the abundance corre-
lation method applied to simple compounds.

In our previous studies the analyses conducted by various
analytical techniques showed that the dark inclusion investi-
gated here is highly weathered basalt with olivine, and pyroxene
(augite) phenocrysts with a dominating amygdales phase.7

Typically, amygdales in basaltic lavas are formed aer lava cools
down, and hydrothermal uids pass through the cavities. Their
precipitation in the bubbles form secondary minerals such as
calcium carbonate, zeolites, and quartz, depending on the uid
composition. The depth proles indicate also presence of layers
of various mineralogical phases around the millerite needles.
Oxides and sulphides of several metals are present as separate
entities and some of the metals ll the sites of complex
mineralogical compounds.52
roups. (a) The correlation of the Al, Mg, and Fe abundances showing
orrelation between the Mg, Fe, and Ca abundance ratios indicating the
) the correlation diagram of the Ca, K, and Na elements indicate the
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Summary

We describe the mass spectrometric measurements conducted
by fs-laser ablation/ionisation time-of-ight mass spectrometry
and introduce principles of data analysis, which yields to true
elemental abundances. The corrections to measured atomic
abundances are obtained by analysing atomic intensity corre-
lations using depth-proling data. In heterogeneous sample
such as analysed inclusion embedded in a calcium carbonate
mineral, chemical compounds are present at specic depths
and can be identied in specic ablation layers. By correlating
the measured atomic intensities, one can select the data points
for which atomic intensities, correlate linearly. With the slope
coefficients of these correlations, the relative abundances of the
correlated elements are derived. The method was tested
successfully on a pure calcium carbonate phase followed by
locations at the interface between inclusion and calcite mineral
and on the inclusion. RSCs for major and minor elements were
derived by correlating atomic intensity of these elements with
either oxygen or sulphur. Subsequently, with the corrected
elemental abundances more complex mineralogical phases
were analysed by applying the ternary atomic abundance frac-
tion correlations on specic elements typically chosen in
geological analysis of the mineralogical context.

The mass spectrometric results are consistent with the results
presented in our former studies of this sample conducted with
several other instruments. However, LIMS studies cannot differ-
entiate between minerals with the same chemical formula such as
calcium carbonatemineral, which can occur as aragonite, calcite or
vaterite. To conduct such analysis the Ramanmeasurements will be
necessary. Similarly, with the IR analysis one would approve our
ambiguous assignment of presence of hydroxides or hydro-
sulphides in the sample. The presented method can be important
in studies of highly heterogeneous materials, because matrix-
matched reference materials are oen not available for complex
natural samples. The in situ determined RSCs can overcome the
problems associated with the local heterogeneity, which can occur
in the micrometre range similar to the sample probing laser spot.
Thus, the in situ atomic abundance calibration introduced here can
allow quantitative chemical composition investigation of hetero-
geneous structures. With the detection of heterogeneity in the
micrometre scale, one can analyse grain-size objects such as
microsized minerals or microfossils in detail. The presented
method can be also of interest in searches for ancient fossilised life
forms on planetary surfaces because in addition to context miner-
alogy, high depth proling resolution provides means for isolation
and analyses of microfossils embedded in mineralogical phases.
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Abstract

In this contribution, we investigated the chemical composition of Precambrian

microfossils from the Gunflint chert (1.88 Ga) using a miniature laser ablation

ionization mass spectrometer (LIMS) developed for in situ space applications.

Spatially resolved mass spectrometric imaging (MSI) and depth profiling

resulted in the acquisition of 68,500 mass spectra. Using single mass unit spec-

tral decomposition and multivariate data analysis techniques, we identified the

location of aggregations of microfossils and surrounding inorganic host min-

eral. Our results show that microfossils have unique chemical compositions

that can be distinguished from the inorganic chert with high fidelity. Chemical

depth profiling results also show that with LIMS microprobe data, it is possible

to identify chemical differences between individual microfossils, thereby pro-

viding new insights about nature of early life. Analysis of LIMS spectra

acquired from the individual microfossils reveals complex mineralization,

which can reflect the metabolic diversity of the Gunflint microbiome. An

intensity-based machine learning model trained on LIMS Gunflint data might

be applied for the future investigations of putative microfossils from silicified

matrices, where morphological integrity of investigated structures is lost, and

potentially in the investigation of rocks acquired from the Martian surface.

KEYWORD S

Gunflint, Mars, mass spectrometry, microfossils, space instrumentation

1 | INTRODUCTION

In situ research and remote sensing have provided multiple lines of evidence that clement conditions were present on
the surface of early Mars.1–3 Moreover, recent radar studies reveal evidence of subglacial liquid water on Mars,4 which
supports the hypothesis that microbial life forms (extinct or extant) may be preserved within the Martian subsurface.4,5
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All these observations provide a strong rationale for the search of biosignatures on the Red Planet. The current state of
space exploration provides foundation for new measurement techniques and novel analytical approaches6 to identify
and characterize minerals and potential signatures of life, if any, on Mars. However, in situ investigation of rocks on
Mars faces multiple technological difficulties, ranging from constraints on instrumentation robustness, size, and power
consumption to the quality of the acquired data.7 Some authors proposed an implementation of multicriteria
approach3,8,9 to confirm or reject a biogenic origin of the given sample. Multicriteria approach, thus, requires several
instruments onboard of the rover providing a multiplex analysis of the same sample and identification of morphologi-
cal, molecular, elemental, and isotopic signatures of life. However, traditional methods used in space research, for
example, bulk analysis and remote sensing instrumentation, might not be sufficiently sensitive to detect faint features
from micrometer-sized (and below) organic material or microbial remains6,10 and, in some cases, can alter the chemis-
try of the sample. There is a growing demand for sensitive, in situ instruments with high spatial resolution and minimal
sample processing, providing elemental and organic composition detection, which will enhance the scientific return
from the missions to Mars and icy moons of Jupiter.6,10–12

In addition to the development of analytical methods, development of chemometric tools has also proven to be a
field of high importance to the current and future space exploration programs.13 For example, multivariate curve reso-
lution alternating least squares have been shown to successfully identify various minerals and compounds from Raman
hyperspectral images, overcoming the spectral overlap issues.14,15 The linear mixture model (LMM) was successfully
used to quantify the abundance of major elements using the laser-induced breakdown spectroscopy (LIBS) spectra.16

Furthermore, a data fusion approach was reported for complementary analytical techniques (Raman and LIBS) that
improved the classification limits of investigated binary compounds.17

Laser-based mass spectrometry is an emerging and sensitive technique that has shown to be capable of measuring
extremely low concentrations (fmol) of amino acids in desorption mode,18 elemental detection of single microbes in
Martian mudstone analog material,11 and provides chemical (element, isotope) analysis in ablation mode of any solid
material. The latter can be conducted with a depth resolution on the scale of tens of nm19,20 and with high element
detection sensitivity down to the ppb level.21,22 This makes laser-based mass spectrometry an attractive method in the
field of in situ chemical analysis on planetary surfaces.23 The upcoming ExoMars mission/Rosalind Franklin Rover con-
tains a Laser Desorption/Ionization (LDI)-Quadrupole Mass Spectrometer in its instrument suite,24,25 stimulating fur-
ther development of LDI instruments.26–30 However, laser ablation ionization mass spectrometer (LIMS) capability to
detect and identify billion-year-old microfossils has not been shown so far.

Since the discovery of Precambrian microbial communities in the 1.88-Ga Gunflint Formation (Ontario, Canada)
in the early 1960s,31–33 many more examples of Precambrian life have been found, but the Gunflint Formation
retains its place as a premier Precambrian Fossil-Lagerstätten, demonstrating that Paleoproterozoic life was wide-
spread, already complex, and diversified.12,34,35 The Gunflint chert sample in this study has been used as a Martian
analog, reflecting the iron-rich nature of the Martian sediments, as well as taking into account that siliceous sedi-
ments have high preservation capacity and are of interest to upcoming astrobiological missions.34,36–38 However,
despite being among the best example of Precambrian life, phylogenetic affinities and metabolic speciation of the
Gunflint microfossils remain largely unknown. Similarly, microfossils of unknown affinities dominate the majority
of the Precambrian record.39 Traditionally, the classification of types of microfossils has relied on morphological fea-
tures31,40 and later advanced to include isotope fractionation41 and multielement nano-characterization of individual
microfossils.35 However, within the space instrumentation domain, detection of individual microfossils remains a
technological challenge.10

In this contribution, we present results on mass spectrometric imaging (MSI) and chemical depth profiling from the
Gunflint chert using a miniature time-of-flight reflectron-type mass spectrometer developed for in situ space applica-
tions, equipped with a femtosecond (fs) UV-258-nm laser ablation ion source. Mass spectrometric studies conducted on
microfossils allowed their identification within the inorganic host material. Utilizing the depth profiling approach, we
removed the contaminated layer present on the rock surface and probed the original chemical composition of the
microfossils. The network-based approach used for the interpretation of hundreds of recorded mass spectra revealed a
new topological dimension, where separate mineralogical inclusions present within the same analytical spot (inclusions
smaller than the size of the ablation spot) can be readily separated.

The analysis of the mass spectra from the depth profiles revealed the presence of major biorelevant elements
(CHNOPS), microscopic inclusions of Cu, Cr sulfides, rare earth element (REE) minerals in addition to the majority of
Fe-dominated mineralization associated with the microfossils. These observations can indicate the presence of sulfur-
processing and iron-processing species42 but also can indicate the presence of intracellular biomineralization machinery
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(passive mineralization) within the Gunflint microbiome to withstand possible Cr and Cu toxicity within an already
highly ferruginous environment.39 H/C, O/C, Si/C ratios, and principal component analysis (PCA) scores calculated
from the depth profiling dataset show ratios and intensity regions in which microfossils can be identified. Large-scale
mass spectra sampling allowed the construction of binary classification machine learning (ML) models, which can be
used for the identification of microfossils from other Precambrian cherts and other rocks (once calibrated), where mor-
phological integrity of the putative microfossils is lost, thus providing a way to assess biogenicity, by comparing spectra
from other cherts to our truly biogenic model data.

Overall, the LIMS microprobe shows an ability to identify micro- and nano-mineralization associated with the
microfossils. LIMS imaging combined with accurate depth profiling has the potential to reveal new insights into the dis-
tribution, preservation, and elemental speciation of microfossils from Precambrian cherts and a potential to deliver
insights into the chemical composition of samples acquired from the Martian surface.

2 | MATERIALS AND METHODS

A standard double-polished thin section of the Gunflint chert (collected from the Schreiber beach locality, Ontario,
Canada) with a thickness of �30 μm was used in the current study. The sample was mounted on a metal sample holder
with vacuum-compatible copper tapes to fix the sample on the surface of the steel holder. No additional treatment of
the sample was performed. A miniature time-of-flight mass spectrometer (TOF-MS) developed at the University of Bern
has been used to study the Gunflint sample. The mass analyzer has small dimensions: Ø 60 mm � 160 mm, which
makes it suitable for space exploration programs as part of the lander or rover.7,23,30 The time-of-flight mass analyzer
works in the positive ion detection mode and provides a single unit mass resolution and a ppm-level sensitivity. For the
detailed characterization of the instrument and method in general, we refer the interested reader to the reviews43,44 and
technical reports describing figures of merit.21,23,45,46 In the current laboratory setup, a mass spectrometer is accompa-
nied by an integrated microscopy system12 and a fs UV-258-nm ionization source. The instrument is designed to have
spatial molecular,18,47 elemental, and isotopic22,29 mapping capabilities of solid samples. The microscopy system utilized
in the current laboratory environment is not space qualified; however, a separate space prototype was developed in our
group that combines the microscopy system, mass analyzer, and an ion source.23 High precision XYZ translation stage
is used for the accurate sample positioning under the instrument: 1-μm positioning accuracy is typically achieved
between the internal microscope and laser focal point positions.12 Laser power output stability, beam profile, and crater
shapes are checked prior to the measurement campaign.

The Gunflint sample studied in this work could be approximated as a dielectric glass with inclusions of dark absorp-
tive features (microfossils). To enhance the ionization efficiency of the quartz mineral, which constitutes most of the
sample, and shorten the gap between the ionization efficiency of microfossils and host mineral, we implemented a fre-
quency tripling system (STORC) into the beam delivery line, which allowed us to reach a stable fs UV-258-nm laser
radiation. Photon energy, at this point, reached 4.8 eV, which is well suited for the ablation and ionization of any solid
materials. Ti:sapphire fs Laser from Clark Inc. generates infrared (IR) 775-nm fundamental wavelength (180 fs), which
is guided into the frequency doubling and tripling system. ß-BBO crystals are used in the doubling and tripling parts of
the STORC system to achieve UV light generation.

In this contribution, we performed two separate data acquisition campaigns: (1) the MSI of the 1.5 � 2-mm area
with 10-μm gaps between ablation craters and (2) depth profiling campaign within specified areas—microfossil-rich
zone and a host mineral (quartz) area. The MSI campaign yielded 30,000 (150 � 200 pixels) mass spectra, where every
pixel represents a histogram of 200 single laser shot spectra. The output mass spectra were processed using a single
mass unit spectral decomposition (extraction of consecutive mass peak areas, following the footsteps of Meyer et al.,
2017). Overall, 182 single mass unit intensities, retrieved from every pixel, were used to form the isotope intensity maps.
Further, the Gaussian process (Kriging) interpolation was used to increase the resolution of the output maps by a factor
of 2. In total, 28Si, 16O, 12C, and 1H maps were calculated to visualize the distribution of microfossils and filling quartz
mineral on the surface of the sample. The second data acquisition campaign was performed to remove the organic con-
tamination layer present on the surface and probe the original chemical composition of the microfossils and subse-
quently build a binary classification model. The depth profiling campaign resulted in the acquisition of 38,500 spectra
from 15 depth profiles acquired from the microfossils-rich zone and a host mineral (see the supporting information for
detailed information about data processing and filtering). The output spectral intensity profiles from both locations
were log-transformed and z-score standardized.
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The PCA of the depth profiling dataset was conducted using the correlation matrix computed on centered data. The
first three principal components were extracted from the depth profiling dataset. The weighted correlation networks of
inclusions present in the depth profiles were calculated using the direct Pearson pairwise correlation scores of 182 single
unit mass intensities. The correlation scores retrieval resulted in the acquisition of 16,380 Pearson correlation pairs for
given inclusion. Further, extracted correlation pairs were used as weights defined on pairwise edges in the construction
of the undirected network. The force-directed layout (ForceAtlas2) provided with Gephi48,49 was used to visualize the
network structure. The edge weight threshold was implemented to remove the insignificant correlation values from
the network (see further down in the text). The pairwise kernel density estimates of biorelevant ratios and element
intensities were used to visualize the density distributions of investigated locations (silicified host mineral and microfos-
sils). Furthermore, 24 binary classification ML models (including classification trees, support vector machines, and
ensemble models) were scored using the Matlab ML presets (see supporting information for more details). The isotope
ratios and synthetic metrics (e.g., geometric mean values of light masses) were added to the ML dataset, making 196 var-
iables in total. The fivefold cross-validation was used to avoid overfitting of the dataset. Within best-performing models,
an additional 30-step Bayesian optimization (search through different learning hyperparameters) procedure was
implemented to test for potential improvements in the output performance. For a more detailed description of ML
models, information on PCA, and weighted correlation networks, we refer to the supporting information.

3 | RESULTS AND DISCUSSION

3.1 | LIMS imaging and depth profiling

All experimental measurement procedures—surface imaging and depth profiling—performed on the sample with a
miniature LIMS system are schematically illustrated in Figure 1. The drawing is out of scale and intended to give a bet-
ter understanding of the subject of this study. The distribution of microfossils embedded in a quartz matrix is shown
with gray lenticular structures. Most of the preserved species studied by nano-microscopy are hollow and represent par-
tially collapsed cell walls. An approximate estimate of the thickness of the cell walls mentioned in the figure is 500 nm;
however, actual thicknesses are varying. For detailed morphological studies of these microfossils, we refer to litera-
ture.35,39 The small layer on the surface represents surface contamination with recent organic material. A focused UV-
258-nm fs laser beam shown in Figure 1 was used to ablate and ionize material from the Gunflint chert. The produced
ions were transmitted into a miniature TOF-MS (LIMS) developed for the operation on planetary surfaces.

To acquire information on the chemical composition of the stromatolitic layering from the Gunflint chert sample,
we performed MSI of an area of a thin section containing two morphological features: (1) dense population of microfos-
sils and (2) clean host mineral area. We identified a rectangular area (1.5 mm � 2 mm) (Figure 2A,B) where these fea-
tures were present. To accurately sample the area under investigation, a 10-μm gap between the ablation craters was
chosen for the imaging, resulting in a grid with 30,000 ablation spots (with a single mass spectrum corresponding to
each spot—see Figures 5 and S3–S5). To avoid material displacement and crater-to-crater cross-contamination from the
ablation processes, a pulse train of 200 laser pulses was applied to each location, yielding a single mass spectrum.
Because imaging implies probing material from different parts of the sample with different light absorption properties,
suitable pulse energies were determined on preliminary craters from various locations prior to the imaging. Laser pulses
with an energy of 0.36 [μJ] per pulse (measured at the sample surface) were found to be appropriate for both the dense
microfossil assemblage and the clean host area. The diameter of the analytical spot was determined to be around 4–
5 μm for the imaging campaign within dominantly quartz locations and 7–8 μm within microfossils.

Figure 2D,E shows the distribution of 1H and 12C signal intensities on the surface of the Gunflint sample, extracted
from the mass spectra using Simpson integration (details about integration procedure can be found in literature50) and
defined as an output current registered from the detector per unit of time (log10 electrons * ns�1). As is clear from
Figure 2D,E, hydrogen and carbon are spatially correlated with the location of the microfossils identified by the optical
microscopy (see Figure 2B). Resolution of the imaging reached a single cell level (see Figures S4 and S5) and could be
improved by a factor of 2 in future campaigns without any analytical interference. Figure 2F,G displays the distribution
of 28Si and 16O intensities recorded on the surface of the sample. Both isotopes show a relatively homogeneous distribu-
tion, with a good correlation to each other. The host material in which the microfossils are embedded is diagenetic qua-
rtz with varying crystal sizes. It is also possible to observe an enhanced signal of 28Si and 16O within the microfossil's
lamination area due to the enhanced absorption of light by microfossils. Imaging of minor and trace elements was not
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possible due to isobaric contamination by hydrocarbon clusters in the mass spectra (see Figure S12). The separate depth
profiling campaign was performed to remove the contaminated layer on the surface and probe the original chemical
composition of the microfossils and host area.

3.2 | Depth profiling

Figure 3 shows the locations at which depth profiles were measured within the lamination area containing the popula-
tion of microfossils and the host quartz area. Depth profiling analysis was conducted on nine spots containing microfos-
sils and six spots of clean host quartz. Spots studied by depth profiling are independent of the grid that was used for
MSI. For seven spots from the microfossils and six spots from the host area, 2500 spectra were measured simultaneously
on two acquisition cards and summed together (forming a 5000-spectra dataset for a single depth profile before summa-
tion), where each spectrum consists of 200 single laser pulse spectra and corresponds to the single ablation layer. Two
additional spots on a microfossil-rich area were measured with reduced histogramming down to 64, and 32 single laser
shot spectra, in an attempt to obtain an even finer sampling of the microfossils. In total, 3000 spectra were collected
from each of these spots (6000 spectra before preprocessing). A data extraction procedure is performed, retrieving inten-
sities of the single mass units, utilizing direct Simpson integration50 of the time-of-flight windows determined for each
mass. In total, 182 single unit masses from each spectrum have been retrieved, including a background signal (noise
measurements), which were determined in the time-of-flight window, free of any ion signal.

Figure 3A,B displays location and morphology of exemplary craters acquired during the depth profiling campaign.
The dark patches in Figure 3B represent an aggregation of microfossils, where an arrow indicates location of the single
lenticular microfossil. Figure 3C shows variation of the 12C mass peak intensities measured at the selected location. As
is clear from Figure 3C, the 12C mass peak intensity measured within 32,500 spectra reveals clear intensity separation

FIGURE 1 Schematic representation of the sample with three-dimensional distribution of various microfossils within the chert. The

arrow represents focused fs laser light forming an ablation crater. The blue cylinder represents an ablation crater, formed during the depth

profiling (not to scale). On the left side of the arrow, smaller ablation craters from the surface imaging are present (ablation craters are at

different scales). On the bottom, the schematic composition of the hollow microfossils and approximate thickness of the cell walls are shown
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boundary between two locations (note that intensities are presented in the log scale). A limited amount of 12C signal,
registered from the host region, may originate from the surface of the sample due to the widening of the crater, while
ablation is progressing. Figure 3D shows the single depth profile from the microfossil-rich location and reveals
increased 12C intensities within specific depth regions, indicating that the measured carbon originates from the inclu-
sions (Figure 3D, bars with location X and Y). In contrast, the depth profiles registered from the host region (Figure 3C)
show the presence of a significantly reduced amount of carbon, in comparison with the depth profile acquired from the
microfossil-rich lamination area. Localized aggregation of intense peaks of carbon within the bulk of the quartz matrix

FIGURE 2 Optical images of the Gunflint thin section and results of the MSI. (A) Panoramic picture of the Gunflint thin section sample

with a designated location of the area chosen for the MSI. (B) Image of the area chosen for the MSI with a designated location of the close-

up picture (images are constructed by stacking of multiple focal points). The actual distribution of microfossils exposed to the surface is less

dense but follows the same structure. (C) Close-up image of the distribution of microfossils within a densely populated area at the edge of

the lamination. (D, E) Intensity maps of the 1H and 12C. Red areas correspond to the intense signal from the microfossils, and blue areas to

the lower intensities from the surrounding chert. Black dashed line outlines the edge of the lamination area. To compare with the optical

image of the same area, see Figure 2B. Lower panels (F) and (G): Intensity maps of 28Si and 16O, which constitutes inorganic silicified host of

the Gunflint sample
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is interpreted to be individual bodies of microfossils (see the sketch—Figure 1). Moreover, carbon-enriched inclusions
are associated with other biorelevant elements: CHNOPS (see further in the text and Figure 4B,C), which indicates that
these inclusions are indeed individual microfossils, located in the distinct depth regions. However, to prove that these
localized spectra are acquired from a single source (microfossil), we calculated the correlation networks, which will be
presented later in the text. Here, we need to mention that LIMS, being a destructive method, provides sensitive and
spatially resolved measurements that are hard to achieve using bulk characterization methods. For example, in the
low-biomass simulation of Martian sediments,10,11 the results have shown that LIMS can identify spatially constrained
biosignatures in Mars analog environments.

Figure 4 shows spectra measured from different mineralogical inclusions present within the Gunflint subsurface.
The spectrum measured at the host area (Figure 4A) reveals the chemical composition corresponding to the diagenetic
quartz. Intense peaks of Si and O are readily recognized. Additionally, peaks of H, C, Na, K, and chain of SiO clusters
can be identified in the spectrum (Figure 4A). The mass spectrum in Figure 4B was measured within location X
(Figure 3D) at depth position 250–500. The spectrum reveals the complex chemical composition of the microfossil body
intermixed with the host chemistry. The chemical composition measured within this spot represents a mixture of the

FIGURE 3 Location of the exemplary craters from the depth profiling campaign and registered ion yields from different locations.

(A) Exemplary depth profile craters from the host area. (B) Exemplary depth profile craters from the microfossil aggregation zone. Arrow

indicates location and relative size of the microfossil in comparison with the size of the analyzed crater. (C) Ion yield curves registered from

the depth profiles. Superimposed 12C depth profiles (integrated 12C peak intensity) from the seven microfossil locations (orange line) and six

host locations (blue line) (32,500 spectra in total) are shown. An intense carbon signal on the surface indicates the presence of surface

contamination. (D) Single depth profile registered from the microfossil-rich spot (see Figure 3B). The 28Si (orange line), 12C (gray line—raw

data, black—smoothed by moving average 12C ion yield curve) depth profile constructed by extracting peak areas from 2500 consecutive

spectra. Location of individual microfossils within the depth profile indicated by X and Y
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quartz mineral, kerogen from microfossil cell walls, and a polymetallic inclusion associated with the microfossil.
Intense mass peaks of transition metals, Ti, Mn, Fe, and Cu, can be identified in the spectrum with a major contribu-
tion from Cr and additional minor contribution from La and Ce monoxides. The presence of kerogen is identified from
the detection of C, H, N, O, P, and S. Additionally, multiple low-intensity CxHy compounds can be identified in the
spectrum.

Figure 4C shows the mass spectrum measured at depth locations 2350–2500 (location Y; see Figure 3D) and reveals
a different composition compared with the inclusion described above. In addition to the mass peaks registered from
quartz and CHNOPS, there are also peaks of Mg, Al, K, Ca, Cr, Mn, La, and Ce, and mass peaks of Cu and Ag could be
noted. The latter are rather unexpected to be found within microfossils because they are known to be elements with
high cytotoxicity (i.e., they are toxic to cells).

Although LIMS can yield sensitive measurements of elements and isotopes, it can be challenging to determine min-
eralogical composition of multiple microinclusions (smaller than the size of the probing laser spot). The pairwise corre-
lation factors between single mass unit intensities are calculated in an attempt to identify mineralogical composition of
investigated inclusions. Figure 5 shows two networks calculated from the individual microfossils (Figure 3D) and

FIGURE 4 Mass spectra from various parts of the sample. (A) Mass spectrum from the host area. (B) Mass spectra from the microfossil

(location X in the depth profile; see Figure 3D). (C) Mass spectrum from the microfossil (location Y in the depth profile; see Figure 3D). Note

the increased peak intensities of biorelevant elements (CHNOPS) and richer chemistry within microfossils in comparison with the host

mineral (quartz; see Figure 4A)
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visualized using an open-source graph drawing platform Gephi.49 The mass correlation network shown on the left side
was calculated from location X, which is located at the depth region: 250–500. Correlation factors (ρ) larger than 0.4
were used to visualize only strongly correlated masses (see full correlation matrices in the supporting information).
Node colors are chosen according to the modularity rank,51 calculated from the network topology (modularity Q is a
parameter that measures the density of links in the graph inside communities as compared with links between commu-
nities). Blue nodes correspond to the elements registered from the quartz mineral, whereas red nodes represent ele-
ments and isotopes registered from the microfossil body. Clear separation of the inclusion from the host chemistry
could be observed within this network—host mineral (quartz) colored with blue nodes and a microfossil (red nodes).

The mass correlation network shown on the right side of Figure 5 was calculated from the depth region 2350–2500,
at location Y (see Figure 3D), and represents the chemical composition of another microfossil. Due to the lower number
of spectra registered from this inclusion (size of the inclusion was considerably smaller than the inclusion described
above), the ρ cutoff value was set to 0.2. However, even with low correlation factors, it is possible to obtain the appropri-
ate modularity ranks and to increase the interpretability of the data. Within the analyzed microscopic inclusion, S is
interconnected with Cu, implying the presence of covellite within the body of the microfossil (see Figure 5, location Y,
top red nodes), or closely attached to it. P measured in the microfossil is more interconnected with the host (quartz) ele-
ments (left blue node in network Y). This observation can be attributed to the “shouldering” effect of the intense 30Si
peak, which affects the integration window of P, thus modifying its ρ value and positioning in the graph. One notable
feature of this correlation network is that by identifying the least and most interconnected nodes, it is possible to find
predictive masses that are unique for each of the given mineralogical classes. The topology of the correlation networks
also reveals a centrality measure, which indicates the importance of the element in a network. We can see that in
Figure 5 left, there are some elements that are present both within the quartz and a microfossil—H, Na, K, O—these
nodes could be characterized with high betweenness centrality. 56Fe is also among the central elements in a network,
due to the presence of the isobaric contribution of Si2. Analyzing the microfossil-related network separately (only red

FIGURE 5 Weighted mass correlation networks calculated from the inclusions registered at locations X and Y (see Figures 3D and 4B,

C). Left: Network from the location X (see Figures 3D and 4B) (ρ larger than 0.4). The network shows presence of two separate entities

within studied location—microfossil (red nodes) and quartz (blue nodes). Right: Network from the depth location Y (see Figures 3D and 4C)

(ρ larger than 0.2). The network shows two separate inclusions—microfossil (red nodes) and quartz (blue nodes). Chemical composition and

topology of network X are different from network Y, which could be attribute to the different size and chemical composition of microfossils.

The straight line between two nodes (single unit masses—m/z) represents a linear correlation factor measured within the microscopic

inclusions. The node colors are assigned according to the Louvain modularity score. Note the central elements within each subgroup—C, H

are among central elements within microfossils and silicon oxides within quartz
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nodes), one can see that 12C, 1H, 41K, 54Fe are among the central isotopes, which also reflects the importance of this iso-
tope in the chemical composition of the microfossil bodies. Any organic matter preserved within the bulk of the host
mineral requires the existence of such networks with measurable centrality of C and H and a separate modularity rank.
Depending on the chemical integrity (state of decay) of the inclusions, better preserved microfossils also have better
connectivity and higher covariance, whereas finely dispersed carbon incorporated into the body of the matrix will not
have such metrics and likely to be located within the outer nodes of the network.

The co-occurrence of P, Ce, and La (Figure 4B,C) within studied locations is indicative of the presence of the mona-
zite microscopic inclusion. There are two possible interpretations for the presence of REEs in association with the
microfossils: first is the intracellular incorporation and passive mineralization of La and Ce by living organisms and,
second, postmortem mineralization (secondary incorporation of these elements). However, because La and Ce have
been measured within our dataset only in association with microfossils, intracellular incorporation seems more plausi-
ble. The connection of Fe with S (Figure 5 left) indicates the presence of pyrite, which was described as a byproduct of
the metabolic activity of sulfate-reducing microbes.35 However, localization of metallic nodes in the lower part of the
network indicated presence of the third inclusion, which likely represents Cr-rich nodule with impurities of Fe, Mn,
Cu, and Ti (see bottom red nodes in Figure 5, location X). The complex chemical composition associated with some of
the microfossils might also be indicative of the development of tolerance to the polymetallic toxicity. For example, Cu,
registered at location Y, is an essential trace element for aerobic organisms; however, Cu might be lethal to microbes if
homeostasis is not maintained.52 Cr has also been reported as a highly toxic and mutagenic element for bacterial colo-
nies.53 The C and H bearing microfossils reveal close association with Na, K, Mg, Ca also with Fe and S. Overall, analy-
sis of the inclusions from the depth profiles reveals a complex chemical composition indicating presence of chemically
distinct microfossils with identifiable hydrothermal mineralization patterns (presence of typical hydrothermal elements
like Cu, Fe, and Ag).

3.3 | Identification of empirical biosignatures

As it was shown in Figures 2, 4, and 5, carbon and hydrogen peak intensities are correlated with the location of the
microfossils, and within our sample, carbon might be used as a tracer of the microfossils. The full depth profiling
dataset sampled from the microfossil-rich locations was divided into host and microfossil data by thresholding the car-
bon signal. Depth profiles from the microfossil locations were sorted using a threshold of 5.8 log10 el/ns (higher than
the noise level) to create a subset of data that represent only microfossil-related spectra, assuming that the C signal orig-
inates from the microfossils. The depth profiling dataset was additionally filtered to the depth region 500–2500 within
both locations (host mineral area or aggregation of microfossils), to avoid contribution from the surface data. In total,
after filtering, we formed a dataset with 12,000 spectra from the host location and 1454 spectra from the microfossil-rich
location. Figure 6 presents kernel density estimates (two-dimensional density maps) calculated for two specific regions
and represents a probability distribution function of element intensities for two groups: quartz and microfossils
(i.e., inorganic or bioorganic intensity regions). Figure 6A–D represents the variation of the signal from the
microfossils plotted against the same mass intensities measured from the host region—red kernels are calculated from
the microfossil-rich location, and blue kernels from the host area (see Figure 3A,B). Multiple non-overlapping intensity
regions associated with the microfossils could be observed. These intensity regions can serve as predictive borderlines
for the identification of the organic remnants from other Gunflint-like cherts. In contrast, Figure 6E–G represents the
variation of the elements associated with the inorganic host, shows mostly overlapping intensities, and indicates that
most of the spectra from the microfossils have a significant contribution from the quartz mineral. Figure 6F shows
that the Fe signal registered from the microfossils interferes with the Si2 molecule, and significant parts of it protrude
into the higher Fe content area, indicating increased Fe content within the microfossil bodies. Figure 6H displays a per-
fectly overlapping variation of the Gaussian background signal derived from the two locations.

Figure 7A shows partially overlapping clusters of 1H/12C and 16O/12C ratios measured from the host (blue kernels)
and the microfossils (red and orange kernels). Because most of the microfossils are hollow39 (see Figure 1) and smaller
than the LIMS analytical spot size, they will be sampled with the encapsulating host mineral. In addition to the chemi-
cal composition of the microfossils, compositional details of the host mineral are likely to be registered. Hence, intensity
values of 1H and 16O, formerly occurring within microfossils, are interfering with the same isotopes from the quartz
mineral; hence, they can be subtracted. The results of these corrections are shown in Figure 7A,B with orange kernels.
As can be seen from this figure, the locations of the kernels from the microfossils coincide with empirically determined
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regions of organic compounds (lipids, peptides, sugars, and condensed hydrocarbons [kerogen]). The identification of
ratio boundaries for different organic compounds was demonstrated in the literature using ultra-high-resolution mass
spectrometry.54,55 Black boxes shown in Figure 7A schematically represent the location of those boundaries. Empiri-
cally determined shapes of the complex organic compounds are derived at overlapping areas and typically have more
complex shapes to those presented on the plot.

Data collected from the densely populated microfossil area (Figure 7A red and orange kernels) hint at the presence
of lipid and peptide signatures, which aligns with the previously reported identification of amides from the Gunflint
microfossils and exceptional preservation capacity of cherts.34,37,56 However, they likely represent a mixing ratio
between the original kerogen and quartz ratios. A fraction of the data also intrudes into the area of kerogens, which
can be classified as a Kerogen Type I (Algal).57 However, there is a part of the red kernels that overlap with the host
mineral data as well. Data collected from the host area contain mostly quartz mineral, and most of the measured ratios
represent signal-to-noise ratios of 16O and 1H, due to the low concentration of 12C within analyzed depth profiles from
the host locations. The results presented in Figure 7A indicate that organic hydrocarbons measured at the Gunflint
sample are significantly reduced in 16O and relatively saturated in 1H (increased abundance of 1H). A shift of the
1H/12C values towards relative 1H saturation (mentioned in the plot as hydrogenation) can also be promoted by the dif-
ferent optical absorption of the laser energy. Different absorption rates might shift the total energy balance for ablation
and ionization of the microfossils, consecutively resulting in a more efficient release of 1H ions. Whereas a significant
part of the ablated and ionized material can also be expected to represent a mixture of the signal from the microfossils
and quartz mineral (due to the effective diameter of the focused laser), and it might be challenging to subtract the con-
tribution of the isobaric input from the quartz entirely. Figure 7B, similarly to the Van Krevelen plot (Figure 7A), repre-
sents bivariate distribution of 28Si/12C and 16O/12C values and indicates presence of the separate ratio space
characteristic of microfossils. The same correction procedure as in Figure 7A has been applied for 16O/12C distribution,
which is shown with orange kernels.

Figure 7C,D shows the distribution of PCA values obtained from the two distinct groups—measurements from the
host area in contrast to the measurements from the microfossil-rich zone (12,863 spectra in total). Spectra from the
microfossil location could be separated from the spectra collected within the host area, except for a small number,

FIGURE 6 Kernel density estimates (KDE) of m/z intensities for two groups: Red kernels are calculated from the measurements

performed within the microfossil-rich locations. A total of 13,454 spectra shown within each plot (1454 spectra measured from microfossils-

rich location). Blue kernels are calculated from the measurements acquired from the host locations (12,000 spectra). (A)–(D) represent the
total variation of C, H, O, Na, and K signal measured within microfossils and host locations. (E)–(G) represent the total variation of Si, O, Si2
(56Fe), Si2O, and Si2O2 signal intensities measured from the inorganic host (quartz) and microfossil-rich locations. (H) A total variation of

the noise signal; dashed line outlines conservative background margin
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which interferes with the host measurements. To increase the separability of the dataset, we further thresholded C
intensities to 6 log10 el/ns (see supporting information), which reduced the microfossils dataset from 1454 spectra to
863 spectra. We schematically identified the transition boundary with a light blue transparent line, which shows the
location of the estimated transition boundary between the inorganic host (quartz) spectra and spectra from the micro-
fossils. The transition of one class into another could be explained by the ablation of the small portions of the microfos-
sils (nm thick cell walls in the bulk of the host mineral). The thickness of the rims of the collapsed cell walls reported
from the Gunflint microfossils varies from the tens of nm39 to first micrometers,35 which might explain statistically

FIGURE 7 (A) Kernel density estimates (KDE) of 1H/12C and 16O/12C ratios (Van Krevelen plot). Blue kernels represent values

measured from the host area. Red kernels show the distribution of 1H/12C and 16O/12C values calculated from the area densely populated

with microfossils. Orange kernels represent the same data, as in red kernels, but corrected for 1H and 16O interfering signal, registered from

the co-occurring with microfossils quartz mineral (details about correction procedure described further in the text). Black bars: Schematic

representation of the boundaries of lipids, peptides, sugars, and kerogen within the Van Krevelen space (values are taken from the

literature45–47). (B) Kernel density estimates (KDE) of 28Si/12C and 16O/12C ratios. Blue kernels represent values measured from the host

area. Red kernels show the distribution of 28Si/12C and 16O/12C values measured from the area densely populated with microfossils. Orange

kernels represent the same data, as in red kernels, but corrected for 16O interfering signal, registered from the co-occurring with microfossils

quartz mineral. (C and D) 2D projections of the 196 features into the principal components space. Blue kernels represent data from the host

locations. Red kernels represent data collected from the microfossil-rich zone. Arrows schematically represent loading directions for

different single unit masses. The blue transparent line indicates the location of the transition boundary between two classes. Among

196 features, 179 are normalized intensities (z-scores) of single unit masses, 15 features are normalized (z-scores) element ratios, and two last

features are z-scores of averaged intensities of light masses (1–74 m/z) and geometrical mean values for light masses (1–74 m/z)
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more prevalent low-intensity regions in KDE plots (Figures 6 and 7). Figure 7C,D indicates that intermediate levels
between classes are sampled when spectra from one class gradually turn into the spectra from the other class. It is
worth noting that even with only the first two principal components, a clear separation between two main classes can
be seen. Additionally, as was demonstrated before (Figures 4B,C and 5), and noting the dispersion of the PCA loadings,
it is possible to identify that there are potentially more than one class of microfossils within the Gunflint dataset. A sig-
nificant part of the dataset is clustered within the dark red areas, representing the majority of simple kerogen con-
taining microfossils. However, we could see from Figure 7C that kernels protrude from the hydrocarbon saturated area
towards areas with notable metallic content, pointing towards the presence of uptake of Fe, Mn, and Cr. This observa-
tion agrees with the results reported previously on the diversity of the microbiome within Gunflint waters. Cyano-
bacteria were proposed to be a dominant part of the Gunflint stromatolites31,40,58; however, other interpretations are
possible. Presence of Mg in the spectra (Figures 4B,C and 5) can indicate the presence of degradation products of chlo-
rophyll, because all chlorophyll molecules share chlorin magnesium ligand in their structure, supporting the photosyn-
thetic hypothesis. A community of saprophytic heterotrophs was proposed as part of the microbiome,35 which are
assumed to have a different set of metallic catalysts and enzymes, hence, identifiable chemical fingerprints. Neverthe-
less, clear separation of the chemically distinct subclasses of microfossils requires even higher statistics and linkage to
the morphological features.

Overall, the broad set of mass spectrometric characteristics, measured from the Gunflint microfossils, can be identi-
fied using the full feature space, with the ML classification models (see Table S1). By applying an ensemble classifica-
tion algorithm (adaptive boosting), we achieved a 99.7% separation rate between classes: inorganic host (quartz) or
organic inclusions (microfossils). A small subset of misclassifications is attributed to the transition boundary line, where
spectra are protruding from the host region towards microfossils. By extracting the 196 features from the single mass
spectra, we created 19,110 unique sets of mass and ratio pairs, in which two classes might be separated (i.e., C vs. H,
and C vs. O). It is possible to achieve a full separation score of 100% by further limiting the C intensities; however, this
will affect the quality of the learned borderlines between classes. Such models, containing the empirical biosignatures
from the known terrestrial samples with a proven biogenic origin, might be used as a deployable solution onboard of
the Martian rovers, providing an additional line of evidence towards establishing the biogenicity of a given putative
sample by assessing the proximity of the data to the spectra acquired from the Gunflint and/or other model samples.
However, future work will be required to identify the capacity of LIMS system for distinguishing between true biologi-
cal organic material (life) as opposed to organic material that was produced non-biologically, for example, via Fischer-
Tropsch-Type (FTT) synthesis.

4 | CONCLUSION

In summary, the chemical composition of Precambrian microfossils from the 1.88-Ga Gunflint Formation was inves-
tigated using a laser-based miniature TOF-MS. Locations of microfossils were identified on the surface of the sample
utilizing MSI. The composition of individual microfossils embedded within the chert was identified using depth pro-
filing and single mass unit spectral decomposition. Utilizing MSI, weighted mass correlation networks, isotopic
ratios, and projection of intensities into the low dimension using PCA, it was demonstrated that the microfossils,
and associated with them mineralization, have a unique chemical composition that could be identified from the
LIMS microprobe data. High-throughput LIMS imaging combined with depth profiling has been shown to be capa-
ble of yielding new insights into the distribution, preservation, and elemental speciation of the microfossils in Pre-
cambrian cherts.
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In this contribution, we present results of non-linear dimensionality reduction and
classification of the fs laser ablation ionization mass spectrometry (LIMS) imaging
dataset acquired from the Precambrian Gunflint chert (1.88 Ga) using a miniature time-
of-flight mass spectrometer developed for in situ space applications. We discuss the data
generation, processing, and analysis pipeline for the classification of the recorded fs-LIMS
mass spectra. Further, we define topological biosignatures identified for Precambrian
Gunflint microfossils by projecting the recorded fs-LIMS intensity space into low
dimensions. Two distinct subtypes of microfossil-related spectra, a layer of organic
contamination and inorganic quartz matrix were identified using the fs-LIMS data. The
topological analysis applied to the fs-LIMS data allows to gain additional knowledge from
large datasets, formulate hypotheses and quickly generate insights from spectral data. Our
contribution illustrates the utility of applying spatially resolved mass spectrometry in
combination with topology-based analytics in detecting signatures of early (primitive)
life. Our results indicate that fs-LIMS, in combination with topological methods,
provides a powerful analytical framework and could be applied to the study of other
complex mineralogical samples.

Keywords: fs-LIMS, mass-spectrometry, UMAP (uniform manifold approximation and projection), mapper,
microfossils, mars, Gunflint

INTRODUCTION

The current state of space exploration is on the verge of new frontiers, holding promise for discoveries
on other planetary bodies through in-situ robotic exploration (Vago et al., 2015). For example, Mars
and the icy moons of Jupiter and Saturn, once thought to be lifeless, have gained more attention from
the scientific community in recent decades due to new data informing upon the potential habitability of
these bodies (Priscu andHand 2012; Garcia-Lopez and Cid 2017; McMahon et al., 2018). Thus, there is
an ongoing need for sensitive and high-throughput space instrumentation providing precise analytical
data on a microscale (Navarro-González et al., 2006; Goesmann et al., 2017). However, space-type
instruments are usually small and provide only a fraction of the sensitivity and overall capability of their
full-scale laboratory counterparts. Reduction in performance occurs due to the strict constraints on size,
power consumption, andweight of the scientific payload. Therefore, the development of newminiature
instruments and analytical methods with improved capabilities is a continuously pressing issue (Li
et al., 2017; Arevalo et al., 2018; Stevens et al., 2019; Wurz et al., 2020).
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Laser-basedmass spectrometry (Laser Ablation Ionization and
Desorption Mass Spectrometry–LIMS and LDMS) is a modern
and compact analytical method that promises to greatly enhance
the quality of chemical analysis on planetary bodies (Riedo et al.,
2013b; Arevalo et al., 2018). The first LIMS instrument selected
and built for a planetary lander was LASMA, developed for the
Phobos-Grunt mission (Managadze et al., 2010). Recently, the
second LIMS instrument was chosen for the upcoming ExoMars
mission/Rosalind Franklin Rover (Goesmann et al., 2017), further
facilitating developments in this field. Laser-based mass
spectrometry, developed for in-situ planetary exploration, as a
versatile method, can provide a description of molecular
composition and element, isotope characterization of solids
(Moreno-García et al., 2016; Arevalo et al., 2020; Tulej et al.,
2020). The time-of-flight version of LDMS has been shown to be
capable of measuring extremely low concentrations (fmole) of
amino acids in the desorption mode (Ligterink et al., 2020). LIMS
modification of this instrument has been reported to measure
ppbw level trace elements and routinely measure fine chemistry
from a variety of samples (Riedo et al., 2013a; Neuland et al., 2016;
Wiesendanger et al., 2017). Moreover, a number of reports have
indicated that LIMS, particularly fs-LIMS, might be applicable to
the detection of faint signatures of life from microscopic
inclusions (Tulej et al., 2015; Wiesendanger et al., 2018) and
low-biomass Martian analogs (Stevens et al., 2019; Riedo et al.,
2020). However, the field of study of early and primitive life
remains profoundly complex (Brasier and Wacey 2012; Westall
et al., 2015; Wacey et al., 2016) with no single chemical criterion
that can be assigned as definitive proof of biogenicity. A number
of authors have proposed a multi-criteria approach, where a
multitude of methods needs to be applied before any conclusions
can be drawn (Hofmann 2008; Brasier and Wacey 2012; Hand
et al., 2017; Vago et al., 2017; Neveu et al., 2018; Chan et al., 2019).
The multi-method approach enhances the size of parametric
space and reduces the probability of false-positive detection.
Therefore, any advancement within each of the applied
methods can increase the overall confidence of the correct
identification of signatures of life.

In this contribution, we hypothesize that on the basis of the full
feature scale (mass range) present in the fs-LIMS spectral
datasets, it is possible to identify minerals and compounds of
specific chemistry using an unsupervised data-driven approach.
We describe a topology-based analysis pipeline to define the
complexity of the fs-LIMS imaging data in low dimensions and
identify groups of spectra that share a significant degree of
similarity. We apply the aforementioned method to 18,000
composite spectra acquired from the Gunflint chert (1.88 Ga),
which contains populations of well-preserved Precambrian
microfossils of proven biological origin (Wacey et al., 2013).
The analysis of the data reveals four distinct populations of fs-
LIMS spectra, which correspond to two groups of microfossils,
the quartz matrix in which microfossils are entombed and
organic surface contamination spectra. Moreover, we describe
a fine transitional structure between classes and argue that low
dimensional representations are of high utility in in-situ mass-
spectrometry and space research. Further, we speculate that our
approach is scalable to non-space instruments and may,

therefore, prove useful in the field of Precambrian
micropaleontology and high-dimensional analytical chemistry
in general.

METHODS

In this study, we use laser ablation ionization mass spectrometry
for the characterization of the chemical composition of the
Gunflint sample and optical microscopy to identify
morphological features. A thorough review of LIMS operation
principles, current state-of-the-art, and application case studies
can be found in a number of previous reports (Tulej et al., 2014;
Wiesendanger et al., 2017; Grimaudo et al., 2020; Ligterink et al.,
2020) and reviews (Grimaudo et al., 2019; Azov et al., 2020), and
therefore, only a short description will be given here. In the
simplest case, LIMS instruments include two main parts–a pulsed
laser system to ablate and ionize materials and a mass analyzer to
separate and register ions produced during the ablation and
ionization process. The fs-LIMS is a successor of ns-LIMS,
with the only difference that the mass analyzer is coupled to
the fs laser system. Current commercial fs lasers can provide peak
power fluences up to terawatt/cm2, compressed to very short
pulses of femto-second duration. Such high powers can ionize
any material, thus, providing means for an isotope and element
characterization of any solid with very small detection limits and
reduced matrix effects (Riedo et al., 2013c). As an ion source, we
have installed a Ti:Sapphire laser with chirped pulse
amplification, which provides a stable IR-775 nm, ∼190 fs
laser radiation. Conversion of the fundamental wavelength
from IR-775 nm to UV-258 nm was made using a
commercially available third-harmonic generation module.

The fs-LIMS system used in this study consists of a miniature
time-of-flight (TOF) mass analyzer (⌀ 60 × 160 mm) (see
Figure 1) with an axially symmetric design and single unit
mass resolution. The instrument was developed for in-situ
space applications, and due to its miniature design it could be
placed on a rover, lander, or even used as a handheld instrument
(Wurz et al., 2020). In normal operation mode, fs-LIMS could
identify major chemical composition along with ppmw-level
concentrations of trace elements. As shown in Figure 1, the
TOFmass analyzer consists of entrance ion optics (where ions are
confined and accelerated), a drift tube (where ions experience
mass/charge separation), a reflectron (ion mirror which uses an
electric field), and a microchannel plate (MCP) detector system
(Riedo et al., 2017) to register ion flux. The schematic illustration
of the fs-LIMS sample analysis is shown in Figure 1B. The
focused blue light indicates the fs-UV-258 nm laser radiation
that passes through the instrument and ablates the small area of
the sample with a diameter of the ablation spot of about 5 µm.
The positioning of the ablation spots is determined by the internal
microscopy system. The objective of the microscope is located at a
fixed offset from the instrument. After ablation and ionization,
positively charged ions are guided by an electric field of the
instrument into a defined parabolic trajectory so that every ion
that enters the instrument will land on the surface of the detector.
Incoming time-separated ion flux launches an electron avalanche
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within the microchannels of the detector system and creates a
measurable current on the output anodes. Thus, time-of-flight
LIMS measures an output current per unit of time, which is

correlated with the element and isotope abundances of an
investigated spot. Note that the image of the fs-laser beam
passing through the instrument (Figure 1A) is exaggerated - in

FIGURE 1 | (A) 3D render of our miniature time-of-flight mass analyzer. Location of the reflectron, drift tube, entrance ion optics, MCP detector, and dimensions of
the instrument are denoted. The focusing fs-UV laser light shown on the top and the bottom and illustrates an axial design of the mass analyzer. Sample positioning is not
shown. However, in the laboratory setting, the investigated sample is positioned in close vicinity to the entrance plate of the ion optical system of the mass analyzer, right
in the position of the laser focus, to achieve ablation and subsequent ionization of target material. (B) Schematic illustration of the fs-LIMS. An fs-laser radiation (blue
line) ablates and ionizes material from the sample. The positively charged ions are separated and detected using the time-of-flight mass spectrometer. The ablation
position can be precisely located using an integrated microscopy system.

FIGURE 2 | Microscope images of the Gunflint chert before and after the fs-LIMS imaging campaign are shown. (A) Microscope image of the area (0.9*2 mm2)
chosen for the chemical imaging with our fs-LIMS system. The dark brown patches distributed through the sample and forming a diffuse layer in the middle of the picture
represent a bio-lamination surface. (B) Close-up microscope picture of individual microfossils from the bio-lamination surface. Filamentous (Gunflintia), star-shaped
(Eoastrion), and spherular microfossils (Huroniospora) can be seen. (C) Microscope picture of laser ablation craters (0.9*2 mm2 area covered with 90*200
pixels–18,000 ablation positions) formed after the fs-LIMS imaging campaign. Red lines denote the accuracy of sample positioning (the gap between ablation craters is
consistently 10 µm) and identify the ablation crater diameters. Individual craters range in diameter from 4 to 5 µm. Note, on the upper part of the image, the yellow arrow
indicates an individual microfossil body. The size of the microfossil can be compared with the diameter of the analytical spot.
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the laboratory setting, the laser focal point is located in close
proximity to the entrance electrode of the mass analyzer (see
Figure 1B).

The investigation of a 30 µm thick thin-section of Gunflint
chert has been conducted with our miniature fs-LIMS system.
The sample acquired from the Gunflint Formation (Schreiber
beach locality, Ontario, Canada; Wacey et al., 2012, 2013)
represents a finely polished thin slice of the original rock,
glued to the glass substrate and mounted on a steel holder.
Preliminary optical microscopy was performed on the sample
to identify specific areas of microfossil aggregation (see
Figure 2A). Matrix material in which microfossils are
preserved was identified to be microcrystalline quartz.
Chemical imaging of the rectangular area, containing a bio-
lamination surface (aggregation of microfossils within a
stromatolite) and a clear host area (quartz filled matrix) was
done with the LIMS system using the fs UV-258 nm laser, which
provides a flux of 4.8 eV UV photons, which is well suited for
ionization of glasses and other non-conductive materials with low
absorption coefficients.

Figure 1A. 3D rendering of our miniature time-of-flight mass
analyzer. Location of the reflectron, drift tube, entrance ion
optics, MCP detector, and dimensions of the instrument are
denoted. The focusing fs-UV laser light shown on the top and the
bottom and illustrates an axial design of the mass analyzer.
Sample positioning is not shown. However, in the laboratory
setting, the investigated sample is positioned in close vicinity to
the entrance plate of the ion optical system of the mass analyzer,
right in the position of the laser focus, to achieve ablation and
subsequent ionization of target material. Figure 1B. Schematic
illustration of the fs-LIMS. The fs-laser radiation (blue line)
ablates and ionizes material from the sample. The positively
charged ions are separated and detected using the time-of-
flight mass spectrometer. The ablation position can be
precisely located using the integrated microscopy system.

Data Acquisition
A rectangular area of 0.9 × 2 mm2 was investigated using the fs-
LIMS system (see Figure 2A). A relatively low number of laser
pulses were applied to each surface position – 200 laser shots, to
avoid material displacement and crater-to-crater cross-
contamination. The spatially resolved measurements
conducted on the Gunflint chert resulted in the collection of
18,000 composite spectra (collected from the grid - 90 by 200
position or ablation sites). A composite spectrum collected from
the given position (or ablation site) resulted in the accumulation
of 200 single-shot spectra, with 64,000 data points digitized per
spectrum. Thus, the total number of registered shots resulted in
3.6 ×·106 single-shot spectra. The laser energies applied to each
position amounted to ∼360 nJ/pulse (measured at the sample
surface) using UV-258 nm laser. This energy was appropriate to
produce the optimal quality for the mass-spectrometric signal,
both from the microfossils and the quartz-filled host area.
Analytical conditions were held constant during the data
collection. The diameter of the average ablation crater was
measured to be ∼5 μm, and gaps between ablation craters were
set to 10 µm (see Figure 2C). A custom-built software package

was used to control the translation stage and the laser firing
intervals. A fast data acquisition system from Keysight was used
for digitizing current from the anodes, providing a 3.2 GSa/s
sampling rate. An example of a single composite spectrum
(representing a histogram of 200 individual single-shot
spectra) registered from the Gunflint sample is shown in
Figure 3. A single mass spectrum consists of 64,000 individual
datapoints sampled with a digitizer, where each digitized data
point corresponds to ∼0.33 ns of a flight time. Thus, every
recorded spectrum contains information about ∼20 µs of a
flight time, which provides a mass/charge (m/z) coverage of
up to 800 m/z, providing a complete record of all stable
isotopes and simple molecular compounds. Overall, 18,000
composite spectra were collected from the Gunflint sample,
with a 10 µm gap between ablation craters. Additionally to the
mass spectra collection, noise measurements were recorded,
which allowed the enhancement of the recorded signal.

Figure 2. Microscope images of the Gunflint chert before and
after the fs-LIMS imaging campaign are shown. A) Microscope
image of the area (0.9*2 mm2) chosen for the chemical imaging
with our fs-LIMS system. A. The dark brown patches distributed
through the sample and forming a diffuse layer in the middle of
the picture represent a bio-lamination surface. B) Close-up
microscope picture of individual microfossils from the bio-
lamination surface. Filamentous (Gunflintia), star-shaped
(Eoastrion), and spherular microfossils (Huroniospora) can be
seen. C) Microscope picture of laser ablation craters (0.9*2 mm2

area covered with 90*200 positions – 18,000 ablation sites)
formed after the fs-LIMS imaging campaign. Red lines denote
the accuracy of sample positioning (the gap between ablation
craters is consistently 10 µm) and identify the ablation crater
diameters. Individual craters range in diameter from 4 to 5 µm.
Note, on the upper part of the image, the yellow arrow indicates
an individual microfossil body. The size of the microfossil can be
compared with the diameter of the analytical spot.

Data Preprocessing
The entire imaging dataset, which consists of ∼50 GB of recorded
composite mass spectra, was preprocessed before any analysis was
applied to the data. A mass spectrometry preprocessing routine
applied to the dataset consists of several typical steps that largely
follow methods described in (Gil and Marco 2007) and (Meyer
et al., 2017). The fs-LIMS preprocessing routine applied to the
imaging data consisted of:

1) Noise removal for an improvement of the signal-to-noise ratio
(SNR) of the signal. The noise signal (empty composite mass
spectra) was recorded after the imaging campaign was
completed. The recorded noise waveform was subtracted
from the imaging observations.

2) Baseline subtraction. A filter function was applied to the
noise-removed mass spectra to estimate varying baseline
within multiple windows and regressed using spline
approximation.

3) Jitter correction. Since materials within the analyzed sample
might be of better or worse ionization efficiency (mainly due
to topography), temporal variation of ion yields is expected to
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occur so that times-of-flight of given ion packets might slightly
vary. Typically, this effect is small and affects the peak shapes in
a minor way. However, since we collected a relatively large
dataset, a correction procedure has been applied. To correct for
mismatch of times-of-flight, we have used an autocorrelation
function described in (Gil and Marco 2007).

4) Low pass filtering. The low pass filter with normalized cutoff
frequency at 0.13 πrad/sample and stopband attenuation of
60 dB was applied to each composite mass spectrum. This step
removes the remaining high-frequency component from the
recorded signal. Typically, it improves the SNR by two to five
and does not alter the peak shapes.

5) Parametric peak preserving smoothing. The Savitzky–Golay
filter function (Press and Teukolsky 1990) was applied to
flatten the baseline further and increase the SNR.

6) Mass scale assignment. An average time-of-flight spectrum of
all 18,000 spectra was recalculated for mass calibration
purposes. A simple quadratic equation was used to
calibrate the mass scale with the time-of-flight spectrum
(Riedo et al., 2013a).

7) Single mass unit decomposition. An integration of
consecutive 260 single unit masses, starting from 1H, was
achieved by recalculating the time-of-flight windows from the
mass calibration equation and utilizing direct Simpson’s
integration (Meyer et al., 2017).

Figure 3 shows a typical raw spectrum (top panel) acquired
from the Gunflint sample before any data preprocessing has been

applied. The bottom panel shows a spectrum after preprocessing
and reveals significantly improved SNR (104) and a flat baseline.
After step number seven, multiple isotope maps were calculated
using Kriging interpolation (further information in the text and
see Figure 4) for an investigation of the distribution of major
abundant elements. The imaging dataset was z-score normalized
to remove the imbalanced scales. An assessment of the pairwise
correlation factors was made, showing that approximately half of
the dimensions (single unit masses) are empty or very weakly
expressed.

The principal component analysis (PCA) reduction down to
the first 60 principal components was applied to remove empty
dimensions dominated by noise from the original dataset. The
Uniform Manifold Approximation and Projection (UMAP)
algorithm (McInnes et al., 2018) was used to further
characterize non-linear dependencies present in the PCA
reduced data matrix. The overall classification of the UMAP
scores was made using a hierarchical density-based clustering
algorithm (HDBSCAN) (Campello et al., 2013; McInnes et al.,
2017). The specific spectra identified from the microfossils were
further visualized using theMapper algorithm (Singh et al., 2007).
The identification of the modules present in the Mapper network
was conducted using a greedy modularity optimization algorithm
(Louvain) (Blondel et al., 2008).

Figure 3. Comparison of fs-LIMS spectra (composite
spectrum - 200 laser shots, recorded from single pixel), before
and after data preprocessing, acquired from the Gunflint chert
sample. Each line in the spectrum represents a single unit mass.

FIGURE 3 |Comparison of fs-LIMS spectra (composite spectrum of 200 laser shots, recorded from single position), before and after data preprocessing, acquired
from the Gunflint chert sample. Each line in the spectrum represents a single unit mass. The increase of SNR to 104 and correction of the baseline can be noted. See the
text for the full description of preprocessing procedures. Exemplary atomic lines are denoted on top of the spectrum.
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The increase of SNR to 104 and correction of the baseline can be
noted. See the text for the full description of preprocessing
procedures. Exemplary atomic lines are denoted on top of the
spectrum.

RESULTS

We calculated the intensity maps of major (abundant) isotopes to
understand a basic representation of the data. In Figure 4, the
spatial distributions of 12C, 1H, and 39K are illustrated and the
chemical maps reveal specific areas where isotopes show elevated
intensities. In comparison with the optical image of the same area
(see Figure 2A), one can see that most of the dark brown patches
identified from optical microscopy as microfossils preserved in
the bio-lamination surface are spatially correlated with increased
values of 12C and 1H. This observation is consistent with the fact
that major elements within microfossil bodies are C and H.
However, the intensity map of 39K reveals different
distribution. A top-right corner of the sample, which was
previously identified as a clean matrix (milky quartz), reveals
elevated concentrations of 39K and relatively intense ion yields of
12C. In fact, after a closer investigation of the mass spectra
recorded from that region, we identified a full range of
biorelevant elements (CHNOPS).

Additionally, a full range of Si isotopes, various silicon oxides,
and small chains of hydrocarbon clusters were observed from that
region. Considering that a particular location from optical
microscopy does not show any distinct mineralogical
association with described elements, we concluded that the
identified area could belong to the organic contamination.
From our previous studies of the Gunflint sample
(Wiesendanger et al., 2018), particularly the chemical depth

profiling of the neighboring region, it was identified that
organic contamination is present as a thin surface layer and
organic spectral features quickly decay with increasing depth. The
organic contamination potentially comes from the sample
handling and preparation procedures and likely represents a
small layer of lipids finely distributed on the surface.

In general, the manually inspected mass spectra from various
regions appeared to be somewhat similar. They contain the same
elements with varying concentrations–Si, CHNOPS, and
polyatomic molecules of similar composition. This observation
makes it difficult to manually define compounds observed from
the Gunflint sample since they seem to represent continually
mixing variants. The borders between chemical classes are fused
into each other. Thus, the deterministic classification solely based
on isotope intensity maps cannot be made. However, we can
further explore the chemical variations within different parts of
the sample. For example, the spectral features from the top-right
corner also show very close proximity to the chemical
composition of the host mineral - Si, O, and various Si oxide
chains indicate that ablation craters were deep enough to pass
through the layer of organic contamination and probe the
chemical composition of the original underlying mineral.
Lower parts of the isotope maps, shown with black regions
(Figure 4-left) after a closer investigation of the mass spectra,
were proposed to be from quartz, showing previously described
simple chemistry–Si, O, and minor amounts of Na, K, Al. The
latter elements (Na, K, Al) could be found as impurities within the
chert since they are relatively common in the seawater and could
have precipitated together with Si during the time of the rock
formation, or they could be from phyllosilicates (clay minerals)
that can occasionally occur in the matrix of Gunflint Formation
stromatolites, e.g., (Lepot et al., 2017). Since the 12C and 1H maps
outline the structure of the bio-lamination surface, previously

FIGURE 4 | Left panel–Exemplary isotope intensity maps (warmer colors indicate high concentrations) retrieved from the fs-LIMSmass spectra. The bio-lamination
surface (aggregation of microfossils) could be identified from 12C and 1H maps (bright yellow to red areas), distribution of 39K indicates the presence of the surface
contamination (upper left corner, bright yellow to the red area). Dark areas on the isotope maps indicate low-intensity regions and correspond to the quartz matrix. To
compare with an optical image, see Figure 2A. Right panel–Low dimensional structure of the imaging data cube revealed by UMAP. Triangulated mesh represents
volumetric isodensity surface of UMAP scores calculated from the 18,000 fs-LIMS mass spectra. Three separate entities could be observed from the spectral
neighborhood, namely quartz, contamination, and microfossils. The point cloud data plotted along with the density surface.
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identified from the optical microscopy, we can investigate the
spectra from the lamination site. The spectra from that area can
be characterized by the presence of the bio-relevant
elements–with increased concentrations of CHNOPS and an
additional minor contribution from Fe, Mn, and Cr. Another
notable observation is that spectra from the lamination surface
reveal relatively strong polyatomic molecules formation patterns.
Various hydrocarbon molecules accompanied by Si oxide chains
populate the mass spectra up to 200 m/z.

A dimensionality reduction algorithm was applied over the full
mass range of the fs-LIMS imaging data (1–260 amu) to find similar
spectra in the dataset.We used theUMAP algorithm (McInnes et al.,
2018) to analyze our observations. The first six UMAP components
were retrieved from the dataset precompressed with PCA. The
UMAP scores were calculated using the Euclidean distance as a
metric; every 15 nearest neighbors were used in the construction of
the k-nearest neighborhood graph, with a small minimal distance
(0.1), and iterated over 400 epochs. This particular set of
hyperparameters were found to be appropriate for an
approximation of the global structure of the manifold. In the
right panel of Figure 4, a distribution of the first three UMAP
components is shown. The spectral neighborhood appears to be
relatively busy (see point cloud data). However, three main
protrusions can be observed from the equal density surface of the
UMAP scores. The composition of protruding clusters matches our
previous interpretation of the data. The lower part of the plot
represents a relatively large cluster of mass spectra acquired from
the Quartz-filled matrix. A smaller cluster observed in the vicinity of
the main body corresponds to the spectra measured from the area
with signatures of organic contamination. It is noteworthy that the
contamination cluster is more connected to the main quartz cluster
and that the structure of the density surface indicates a smooth
transition from pure quartz to the spectra from the surface
contamination. The transition structure forms a narrow neck
where the similarity of spectra gradually changes from one class
to another. From the point cloud data, we could see that the
contamination cluster is relatively fuzzy, and the fine structure of
the transition could be observed on the isodensity surface.

Through the same transition pathway, a cluster of spectra that
corresponds to the microfossils preserved within the bio-
lamination layer could be observed. In comparison to the
cluster of spectra with organic contamination, the density
surface of the microfossils cluster forms a separate transition
line. The cluster of microfossils forms a smooth identifiable
shape, which gradually rises further apart from the quartz and
contamination clusters. As one can see, the relative proximity of
the spectra located closer to the transition “neck” indicates the
ablation of small parts of microfossils. From the investigation of
the individual spectra (see Figure 3), we have noted that almost all
spectra frommicrofossils contain spectral features from the filling
quartz mineral. This observation could be explained by the fact
that bodies of microfossils represent partially collapsed and
degraded cell walls. The thicknesses of the partially decayed
cell walls vary from the first tens of nm to the first hundreds
of nm, and these walls are all entombed in the silica matrix. By
ablation of small portions of the microfossils and larger portions
of the silica matrix, we can explain the smooth transition

structure, where similarity of spectra transitions from the
clean silica matrix. Thus, the end members of the microfossil
cluster represent the best volumetric sampling of microfossils, as
well as the best chemical composition of the fossils.

Overall, the volumetric density estimate of the UMAP scores
provides a good overview of the spectral types and their transition
structures. Also, it is possible to identify outliers (e.g., microscopic
inclusions of other minerals) from this graph, for example, by
recalculating the isolation forest scores (or any other outlier
detection algorithm) – the data points that are weakly
connected to the main clusters will have high values, thus,
easily identifiable. In the fs-LIMS analysis, where fine
chemistry is often of great interest, such information might be
valuable because it allows the identification of detached spectra
from the bulk of very similar ones.

Figure 4. Left panel–Exemplary isotope intensity maps
(warmer colors indicate high concentrations) retrieved from
the fs-LIMS mass spectra. The bio-lamination surface
(aggregation of microfossils) could be identified from 12C and
1Hmaps (bright yellow to red areas), distribution of 39K indicates
the presence of the surface contamination (upper left corner,
bright yellow to the red area). Dark areas on the isotope maps
indicate low-intensity regions and correspond to the quartz
matrix. To compare with an optical image, see Figure 2A.
Right panel–Low dimensional structure of the imaging data
cube revealed by UMAP. Triangulated mesh represents
volumetric isodensity surface of UMAP scores calculated from
the 18,000 fs-LIMS mass spectra. Three separate entities could be
observed from the spectral neighborhood, namely quartz,
contamination, and microfossils. The point cloud data plotted
along with the density surface.

The UMAP isodensity estimate reveals the continuous
structure of spectral similarities, and therefore it is not clear
where to define a boundary between different classes. A density-
based clustering approach was used to define discreet classes from
the low dimensional UMAP scores. The six UMAP components
were used to discretize distributions using a Hierarchical Density-
Based Spatial Clustering (HDBSCAN) algorithm (Campello et al.,
2013; McInnes et al., 2017). An HDBSCAN provides relatively
conservative class assignments compared to other clustering
algorithms and potentially more accurate in its predictions. An
advantageous side of HDBSCAN over DBSCAN, for example, is
that it can find clusters with varying densities, which is precisely
the case with our data, where we have an oversampled data from
the silicified matrix and a relatively small number of spectra from
the microfossils. Moreover, it is possible to calculate the
confidence probabilities of the assignment of each spectrum to
the cluster, which makes troubleshooting of clustering results
more intuitive and less bothersome. However, the downside of
the conservative clustering is that some portions of the data might
be classified as noise if they do not tightly belong to the densely
packed cluster. In contrast to the previous interpretation of
UMAP scores, the clustering algorithm found two microfossil
populations, a cluster of surface contamination, and quartz from
the matrix. The additional cluster of microfossils was hidden on
the backside of the quartz-related spectra (see Figure 4). The
Mapper networks were applied to the spectra registered from the
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microfossils to visualize the proximity structure between these
two classes.

Figure 5A shows a spectral similarity network constructed
from the fs-LIMS spectra registered from the microfossils, using
the first three UMAP components as a lens. A python
implementation - Kepler Mapper (Van Veen et al., 2019) of
the Mapper algorithm (Singh et al., 2007) was used to calculate
the similarity network of LIMS spectra. However, other open-
source implementations exist - e.g., recently published Giotto-
TDA (Tauzin et al., 2020). The density-based clustering was
applied to identify clusters within overlapping filter function
windows. In total, twenty windows were applied to construct
the network with 40% overlap over three UMAP components,
forming 8,000 sampling windows and resulting in a complex
network with 417 nodes and 2,967 edges (from 1,964 composite
spectra registered from the microfossils). Note that the number of
filter dimensions is user-defined, and in principle, they might be
defined as an n-dimensional hypercube, though two-dimensional
filters provide the best interpretability. The nodes present in the
network indicate groups of fs-LIMS spectra with a high degree of
similarity. The nodes might contain one or hundreds of spectra,
depending on the size of the filter function window. The edge
between nodes is drawn if nodes share the same observations (it

might be one or many more spectra). The coloring of the network
is conducted according to the eigenvector centralities of the
nodes. Blue parts of the network indicate the central nodes,
and red parts indicate less connected network components.

The structure of the network identifies the presence of two
connected communities. Figure 5B shows the same spectral
similarity network as in Figure 5A but colored according to the
Louvain modularity, calculated from the network topology. The red
part of the network (nodes are not shown) categorizes the spectra
identified from the type-2 microfossils, and the blue network
indicates the type-1 microfossils. The type-2 microfossils can be
characterized by increased proximity to the cluster of spectra
registered from the quartz. In contrast to the spectra from type-2,
type-1 microfossils are almost completely detached from other
groups and form a community of highly connected nodes and
correspond to the spectra in a linear protrusion in Figure 4 (right
panel). Note that the HDBSCAN and Louvain clustering provides
mutually supportive clustering results, although the Mapper
networks provide better tolerance to noise, thus allowing for
improved clustering performance. In order to check that cluster
assignments are not artifactual, we performed a clustering robustness
analysis. The Rand Index (RI) metric was used to assess the
clustering similarity between 10 random subsamples of the data
registered from microfossils. In total, 75% of the data was used to
generate random subsamples. The output UMAP subsamples were
clustered using the Louvain community detection algorithm. The RI
similarity matrix for Louvain clustering of random samples could be
found in the supplementary information (see Supplementary Table
S1 and Supplementary Figure S3). Overall, 45 different clustering
pairs revealed an average RI score of 92.5%with a standard deviation
of 2%, which indicates that communities shown in Figure 5 are not
artefactual and that the cluster assignments are robust. Most of the
clustering uncertainty can be attributed to the transition zone
between two types of microfossils. The type-2 microfossils reveal
more inhomogeneity (see Supplementary Figures S1, S2) in
comparison to the type-1 microfossils and represent more
intermixed with the host mineral material.

The spectral similarity network calculated from the first three
UMAP components reveals a better visualization of internal
structure and detects outliers and irregularities. Moreover, the
force-directed layout (ForceAtlas2 (Jacomy et al., 2014)), applied
to the network, exaggerates the positioning of weakly connected
nodes, which makes them easier to detect. Moreover,
interpretation of the low-dimensional embedding of fs-LIMS
data can be easily achieved by coloring the network with
original isotope intensities and synthetic features such as
isotope ratios. Any other functions might be applied to the
data (e.g., Kernel Density Estimate (KDE), Singular Value
Decomposition (SVD), and Principal Component Analysis
(PCA)), which makes Mapper networks a versatile and
powerful tool for insight extraction and hypothesis generation.
Furthermore, by reducing the large fs-LIMS intensity space down
to a network, we can additionally define a multitude of secondary
statistics that could be calculated from the graph topology.
Metrics such as centrality, modularity (e.g., see Figures 5A,B),
average degree, path length (e.g., between the host mineral and
microfossils), and many more, can be applied to the specific

FIGURE 5 | (A) Spectral similarity network constructed from 1964 LIMS
imaging spectra registered from the microfossils. Each node represents a
single or a group of spectra with a significant similarity of intensity profiles. The
edges connected with nodes indicate that nodes have one or more
shared spectra. The network is colored according to the eigenvector centrality
of nodes. A density-based clustering and first three UMAP components were
used as a lens to project the data using the Mapper algorithm. The proximity of
nodes in the network identifies groups of microfossils and transition structure
between two classes. (B) The Louvain clustering of the spectral similarity
network. The blue part of the network identifies type-1 microfossils, and the
red part of the network illustrates spectra registered from the type-2
microfossils. See the text for more details.
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minerals and microfossils to define the multiparametric space
further and enhance the potential for definitive identification.

Figure 5A. Spectral similarity network constructed from 1,964
LIMS imaging spectra registered from the microfossils. Each node
represents a single or a group of spectra with a significant similarity
of intensity profiles. The edges connected with nodes indicate that
nodes have one or more shared spectra. The network is colored
according to the eigenvector centrality of nodes. A density-based
clustering and first three UMAP components were used as a lens to
project the data using the Mapper algorithm. The proximity of
nodes in the network identifies groups of microfossils and
transition structure between two classes. Figure 5B. The
Louvain clustering of the spectral similarity network. The blue
part of the network identifies type-1 microfossils, and the red part
of the network illustrates spectra registered from the type-2
microfossils. See the text for more details.

The overall results of the density-based clustering can be seen in
Figure 6. Clustering results reveal a very closematch with results of
optical microscopy (see Figure 6, right panel) and conclusions
from previous single isotope maps investigations. Moreover, we
have identified two types of microfossils and a contamination zone,
which were not acknowledged from the microscope image. The
type–1 microfossils represent spectra obtained from the
microfossils with the best microfossil over host (matrix mineral)
sampling ratio. Thus, spectra from type-1 can be counted as the
most representative of microfossils. On the other hand, type-2
represents the microfossils with an increased contribution from the
host mineral, which is also shown in Figure 6. The chemical
composition of type-1 microfossils can be characterized with
increased content of carbon and oxygen (12C, 12C2+, and 16O2+

peaks in the mass spectra), whereas type-2microfossils contain less
12C and more hydrocarbons, which indicates lower volumetric
ablation and colder plasma temperatures, thus, more prevalent
recombination processes. Higher plasma temperatures observed in
the type-1 microfossils can be attributed to the higher volumetric
contribution from absorptive kerogen. This observation also finds
confirmation from the spatial distribution of microfossils. In

Figure 6, the first type is mainly distributed in the densely
populated area (see Figure 6, right panel), in contrast to type-2,
which is largely distributed outside of the dense zone, and more
likely to be sampled with larger portions of the host mineral. The
identification of microfossils from the host mineral using fs-LIMS
and low dimensional analysis provides topological biosignatures.
As it was shown in Figures 4, 5, the structure of spectral similarities
identifies the positionings of spectra from different classes and
provides means for identification, classification of large datasets,
and has a potential for the prediction of spectral classes from
previously unseen spectra, given that a sufficiently rich spectral
library is provided.

Figure 6. Hierarchical density-based spatial clustering
(HDBSCAN) of six UMAP components of the imaging dataset
(left panel). The orange pixels represent spectra registered from the
type-1microfossils. The green pixels represent spectra registered from
the type-2 microfossils. The blue pixels represent spectra registered
from the surface contamination. Black and grey pixels–spectra
registered from the quartz matrix of the Gunflint chert. Right
panel–the optical microscopy image of the analyzed area. Note the
aligned distribution of classified spectra with the bio-lamination
surface crossing the image.

DISCUSSION

The identification and chemical characterization of minerals and
prospective biosignatures from large spectral databases generated
using fs-LIMS as well as other in-situ spectroscopic techniques is a
longstanding problem that can be generalized to other analytical
methods as well. For example, other importantmethods proposed for
in-situ space exploration, such as Laser-Induced Breakdown
Spectroscopy (LIBS) (e.g., ChemCam, currently operates on Mars
as part of the Mars Science Laboratory), Raman spectroscopy
(i.e., Raman Laser Spectrometer (RLS), one of the Pasteur Payload
instruments from ExoMars), and a large variety of other
techniques rely on harvesting large spectral information

FIGURE 6 | Hierarchical density-based spatial clustering (HDBSCAN) of six UMAP components of the imaging dataset (left panel). The orange pixels represent
spectra registered from the type-1 microfossils. The green pixels represent spectra registered from the type-2 microfossils. The blue pixels represent spectra registered
from the surface contamination. Black and grey pixels–spectra registered from the quartz matrix of the Gunflint chert. Right panel–the optical microscopy image of the
analyzed area. Note the aligned distribution of classified spectra with the bio-lamination surface crossing the image.
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from the analyte material. This spectral information is often
hard to interpret due to the large dimensionality, complexity,
and size of generated datasets. Outside of the context of space
exploration, in the field of analytical chemistry, similar data
analytical challenges are often encountered in the laboratory.
For example, Secondary Ions Mass Spectrometry (SIMS) or
Liquid Chromatography Mass Spectrometry (LC-MS), as
high-throughput techniques, provide hundreds of mass
lines per spectrum, and the output spectral dataset is not
always easy to interpret. As was shown in this contribution,
analysis of fs-LIMS data using topological methods reveals a
fast and accurate description of spectral classes and provides
a good understanding of transitional structures. In the low
dimensional domain, it might be easier to generate insights
and formulate a hypothesis, thus accelerating the extraction
of knowledge from the given sample.

The analysis of data generated by using our fs-LIMS system
might also be of use for future investigations of Precambrian rocks
containing signatures of putative microfossils. The Gunflint sample
is rare amongst Precambrian rocks as it exhibits an exceptional level
of morphological and chemical preservation, so there is little
argument over the biogenicity of the encased organic material
(Barghoorn and Tyler 1965; Lepot et al., 2017; Wacey et al.,
2012). However, traces of early life can be destroyed or heavily
altered by heat, pressure, and time (diagenetic alteration and later
metamorphism). As was briefly discussed before, the full mass range
spectral proximity analysis provides a means for the classification of
chemically similar entities. For example, organic contamination and
microfossils - similar compounds (both contain CHNOPS and Si
mass peaks), can be distinguished using topological methods (see
Figures 4–6). A big challenge in the field of Precambrian
micropaleontology surrounds the fact that altered and reduced
carbon found in ancient rocks could potentially be of biological
origin but could also have been created by abiotic processes. For
example, Fischer-Tropsch type synthesis might be responsible for
the presence of some abiotic hydrocarbons in Precambrian
formations (Brasier et al., 2002). However, we speculate that
synthetic products of Fischer-Tropsch-like reactions will have a
distinct spectral profile (e.g., polyatomic plasma chemistry
products might be different), and therefore corresponding
topological positioning is expected to be distinguishable from
bona fide microfossils. Thus, there is a hope that signs of life in
controversial samples might be successfully identified using sensitive
methods and full-feature-based topological representations.

The current state of space exploration also faces similar
challenges in the field of in-situ chemical analysis of solids on
planetary bodies. For example, the ns-LIMS instrument proposed
for Europa (Ligterink et al., 2020) reported the identification of
extremely low quantities of biological and abiotic amino acids
from well-defined extracts at the fmole level. However, more
complex molecules (e.g., proteins, polysaccharides, etc.)
combined with various undefined matrices will likely form
complex fragmentation patterns with hundreds of significant
mass lines, thus, making the identification challenging. The
topological representation, in this case, might provide a
number of compounds present in the measured mixture and
their similarity to the predefined classes.

The unsupervised identification of minerals from fs-LIMS
chemical imaging datasets might also be of use in the
determination of relative sensitivity coefficients (RSC’s). The
fs-LIMS is a quantitative method; however, it requires the
establishment of RSC’s, which are matrix dependent. With
an introduction of fs-LIMS, some matrices have been reduced
to unity (RSC � 1, no correction needed). However, non-
absorptive samples such as glasses typically still require the
determination of RSC’s for quantitative measurements. In the
case of exploratory analysis, where we do not know the
sample (i.e., field exploration of Martian samples), if one
would know the stoichiometry of the investigated mineral, it
is possible to recalculate correction factors for major
elements, and then through RSC’s dependence on atomic
orbital ionization energy recalculate concentrations of minor
and trace elements (Tulej et al., 2021). The key component
here is the identification of the mineral, and as we described
above, topological methods provide a means to do that.

Here we also need to point out several caveats regarding the
analysis of fs-LIMS data. First, at multiple stages, the data analysis
procedures require a set of hyperparameters to be chosen. For
example, in UMAP embedding andMapper network construction,
we used Euclidean and cosine distances, respectively, and defined
the number of neighbors, number of clusters, and filter functions.
However, a more rigorous study of the effect of hyperparameters
needs to be assessed in future studies regarding the analysis of fs-
LIMS data or data generated by other spectroscopic techniques.
Nevertheless, a recent contribution by (Belchı et al., 2020) provides
an insight into the numerical stability of Mapper-type algorithms.
It was shown that reliable Mapper output could be identified as a
local minimum of instability, regarded as a function of Mapper
input parameters. Other statistical solutions were proposed to
circumvent testing large parametric spaces and keep the most
representativeMapper settings (Carriere et al., 2018). Furthermore,
we have used UMAP scores as a lens in the construction of the
similarity network; however, a large variety of other functions
might be used, and their impact on visualizations needs to be
assessed. It would also be valuable to implement into the analysis
pipeline some domain-specific lenses for technical usage (i.e., mass
resolution, mass accuracy, etc.), which will improve the extraction
of quality metrics.

Overall, in addition to the account of topological descriptors of
early life, we hope that our analysis will facilitate, in time, a
predictive approach in the field of study of early life. The
approach described here might be expanded to more powerful,
state-of-the-art standalone laboratory instrumentation (e.g.,
high-resolution LIMS, SIMS, LA-ICP-MS), where data quality
might provide a whole new quantification perspective.

CONCLUSION

Our contribution offers several important conclusions for in-situ
space research. First, the miniature fs-LIMS system combined
with topology-based data analysis demonstrates the utility and
sensitivity to distinguish organically preserved microfossils from
organic contamination and inorganic host mineralogy. Second,
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the proposed approach might be extended to other complex
samples with multimineral compositions and used with other
high-resolution spectrometric or spectroscopic methods. Third,
our approach - full spectral mass range convolution down to a
similarity network for life detection stands out frommultielement
methods. It offers great flexibility and could be further expanded
to study the chemical discrepancies between individual
populations of microfossils. Furthermore, our analysis reveals
fine transition structures between classes and the detection of
outliers. Last, the fs-LIMS system, in combination with
topological methods, enables faster data analysis, accelerates
the formulation of hypotheses, and the generation of insights
for mineralogical compositions of investigated samples.
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Abstract 

We examine the capability of our newly developed high-resolution laser ioniza-
tion mass spectrometer (fs-LIMS-GT) for the identification of faint elemental signa-
tures of life from 1.88 billion-year-old microfossils (Gunflint chert, Ontario, Canada). 
We report novel results on: 1) Mass-spectrometric volumetric imaging of the Gunflint 
chert sample using a high-resolution fs-LIMS instrument, that has achieved spatial 
resolution on a single cell level together with ppm level sensitivity; 2) The analysis of 
spectral neighborhood using the Uniform Manifold Approximation and Projection 
(UMAP) method, revealing the presence of microscopic heterogeneous sulfide inclu-
sions and distinct cluster of spectra registered from the microfossils; 3) Large-scale 
mass-spectrometric sampling, allowing for the identification of unique chemical char-
acteristics of microfossils and mapping of the full variance of the intensity profiles, 
thus, providing a means for unsupervised data-driven deterministic identifications of 
microfossils embedded in the solid silicate matrix; 4) Partial Mg enrichment revealed 
by the investigated microfossils, which may indicate that some of the microfossils 
were photosynthetic organisms. Our results show the utility of high-resolution fs-
LIMS volumetric imaging in combination with manifold learning methods in studying 
chemically diverse samples. Our approach provides a powerful analytical framework 
that can be applied further to the study of early/primitive life. 

Introduction 

The investigation of early/primitive examples of life has a profound effect on our 
understanding of life’s origin and evolution and potentially has an impact on expand-
ing our capacity to identify previously unknown or unrecognized evidence of early 
life. Searches for evidence of early life have intensified since the mid-1960s, when the 
first reports of Precambrian Gunflint microfossils were published (Barghoorn & 
Tyler, 1965). However, despite the quality and capabilities of modern analytical tech-
niques which have significantly improved since the 1960s, debates about the meta-
bolic speciation of some bona fide microfossils and the biogenicity of other putative 
fossils remain highly active (Brasier et al., 2002; Schopf & Kudryavtsev, 2012). The 
inconclusiveness of investigations are largely caused by the poor preservation of 
morphological and chemical signatures of early life (Wacey et al., 2016a). Thus, new 
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approaches and modern analytical methods, that are sensitive and accurate, have to 
be explored in the field of early life sciences (Wacey et al., 2013).  

The populations of Gunflint microfossils (1.88 Ga) (Ontario, Canada) (Awramik & 
Barghoorn, 1977; Barghoorn & Tyler, 1965; Cloud, 1965; Wacey et al., 2012) repre-
sent one of the premier examples of Precambrian life (Alleon et al., 2017; Wacey et 
al., 2013). The Gunflint formation, providing high quality chemical and morphological 
preservation, affords a view into life in the Precambrian, which was evidently already 
complex and diversified (Wacey et al., 2013). However, many questions remain re-
garding the Gunflint microfossils. The metabolic association of various microfossils 
and phylogenetic affinities are mainly inferred by morphological comparison to mod-
ern examples and by carbon isotope fractionation factors (House et al., 2000) that are 
consistent with known metabolic pathways. It is thought that many of the Gunflint 
microfossils represent photosynthetic mat-building microbes (Awramik & 
Barghoorn, 1977; Barghoorn & Tyler, 1965; Lepot et al., 2017), however, other inter-
pretations exist (Planavsky et al., 2009; Schopf et al., 2015).  

More generally, many questions remain in the field of early life sciences, where 
many potential examples of life are problematic due to morphological convergence 
and loss of the original chemical composition (Brasier & Wacey, 2012). Various pro-
cesses can contribute to the formation of microscopic objects that morphologically 
resemble fossils but may not be of biological origin. For example, reduced abiotic car-
bon can migrate along grain boundaries forming lenticular structures of undefined 
origin, and the alteration of certain minerals can mimic microfossil morphology 
(Wacey et al., 2016a). However, major and trace elements present within bona fide 
microfossils can serve as a comparative landmark, they can hold a piece of infor-
mation about which chemistry is potentially expected to be preserved, and therefore 
provide an additional line of evidence about the biogenicity of a putative microfossil, 
even if parts of the morphology are lost. Moreover, modern machine learning frame-
works provide access to unsupervised data-driven models (McInnes et al., 2018; 
Nolet et al., 2020), that can be of high utility in identification of various compounds 
from spectral datasets.  

Laser ablation/ionization mass spectrometry (LIMS) is a promising surface char-
acterization method that has recently experienced a revival and a wave of moderni-
zation (Azov et al., 2020; Tulej et al., 2021a). Modern laser ablation/ionization time-
of-flight mass spectrometers (LIMS) are capable of providing an element and isotope 
characterization of the investigated spots in the ablation/ionization regime (Huang 
et al., 2011; Riedo et al., 2013b; Tulej et al., 2021b) and molecular characterizations 
in the desorption regime (Cui et al., 2013; Ligterink et al., 2020; Moreno-García et al., 
2016). Microscale spatial resolution (Wiesendanger et al., 2018) and nanometer 
depth resolution (Cui et al., 2012; Grimaudo et al., 2020) make such instruments of 
high utility in many scientific tasks (Liang et al., 2017). The fast mass separation and 
ion detection technology (Riedo et al., 2017) makes LIMS instruments applicable to 
the imaging tasks of various samples (Wurz et al., 2020) – ranging from biological 
tissue characterization (Cui et al., 2013)  to mineralogical and chemical investigations 
of rocks, up to identification of impurities in dielectrics and interconnects from the 
semiconductor industry (Grimaudo et al., 2019; Tulej et al., 2021b; Wiesendanger et 
al., 2018). 

The current study has three goals that were set prior to the experiments. First – 
to identify the chemical composition of Precambrian Gunflint chert and test the in-
strument’s (LIMS-GT) sensitivity to identify faint signatures of life from populations 
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of Precambrian Gunflint microfossils. Second – to test whether the majority of the 
microfossils found in stromatolitic layers within the Gunflint chert were photosyn-
thetic bacteria. This is done by looking for traces of Mg in association with the micro-
fossils, given that Mg can be a trace decomposition product of chlorophyll. Third – 
estimate the effectiveness of relational data analysis concerning large fs-LIMS spec-
tral data and determine challenges and potential pitfalls concerning the required data 
transformations and hyperparameter heuristics.  

The results of this study indicate that Gunflint microfossils have a distinct chemi-
cal composition that can be successfully identified using the LIMS-GT instrument. The 
low dimensional representations of the full spectral database (40’000 mass spectra) 
deliver a clear separation between main classes (bio-organic/inorganic spectra). 
Moreover, the fine structure of spectral similarity provides an insight into the com-
position of trace inclusions and the chemical diversity of the investigated microfos-
sils. 

Sample and methods 

In this contribution, we have used a newly developed high-resolution fs-LIMS in-
strument to chemically characterize the Gunflint chert sample. The detailed descrip-
tion of instrument figures of merit and performance estimations on NIST standard 
materials have been recently reported, thus, we refer the interested reader to the 
technical article from our group (Wiesendanger et al., 2019).  A 30 μm thick thin-sec-
tion of the Gunflint chert (1.88 Ga – Ontario, Canada) (Wacey et al., 2016b; 
Wiesendanger et al., 2018) containing populations of bona fide microfossils pre-
served in a silica matrix was used in this study (Alleon et al., 2017; Barghoorn & Tyler, 
1965; Cloud, 1965; Wacey et al., 2012). Prior to fs-LIMS characterization, optical mi-
croscopy was performed, to specify the area of interest for detailed chemical investi-
gations. Figure 1 shows a transmitted light microscope picture of the area (0.5 mm by 
1 mm) chosen for the 3D mass spectrometric imaging. Dark patches represent ag-
glomerations of individual microfossils. Within the area chosen for the mass-spectro-
metric investigation, we defined a grid (100 by 200 spots) with a 5 μm gap between 
ablation craters. An fs-Ti:Sapphire laser (775 nm, 180 fs, CPA Series, Clark-MXR Inc., 
Dexter, MI, USA) was used to ablate and ionize material from the Gunflint chert. The 
fs-laser was coupled to the mass spectrometer – a time-of-flight instrument with high 
mass resolution (m/Δm = 10,000) (Wiesendanger et al., 2019). Within each of the 
probed locations, a sequence of 5 single laser shot mass spectra was collected, form-
ing a 3D grid that consists of 100,000 mass spectra. Every single laser shot mass spec-
trum collected from the Gunflint chert sample was digitized using a high-speed ADC 
card (U5303A, Acqiris SA, Geneva, Switzerland) at 3.2 GS/s and resulted in the collec-
tion of 320’000 data points per spectrum. The data collection and imaging process 
has been optimized by directly saving the digitized mass spectra using a binary data 
format using an in-house developed software package. In order to increase the signal 
to noise ratio (SNR) of individual mass spectra from given pixels, two datasets were 
created from the original volumetric binary dataset – 1) Two consecutive mass spec-
tra were averaged for a given pixel (first and second spectra where averaged as a first 
layer, third and fourth spectra averaged as a second layer - forming two imaging lay-
ers (20,000 spots * 2 layers)), discarding the last single laser shot spectra. 2) An 
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average of 5 single laser shot mass spectra have been calculated, forming a single 
layer image (fully averaged) of the investigated area (20,000 spots * 1 layer).  

Fig. 1. Transmitted light microscope image of the area (0.5 mm by 1 mm) chosen for the 
volumetric imaging. Dark patches represent the agglomeration of individual microfos-
sils. Microfossils of various states of preservation can be seen. Note, that the picture rep-
resents a multi-focus stack image, thus, not all microfossils are exposed to the surface. 
Various individual filamentous and spheroidal microfossils can be seen. 

A spectral preprocessing routine was applied to every mass spectrum which in-
cludes baseline correction, denoising, and averaging (Meyer et al., 2017). The single 
mass unit decomposition has been performed on the preprocessed mass spectra us-
ing Simpson integration of the mass peaks (Meyer et al., 2017; Riedo et al., 2013a). 
Overall, 260 single mass unit intensities (1-260 m/q) have been retrieved from the 
averaged mass spectra and 6 additional mass pairs have been integrated, to resolve 
some isobaric interferences, namely - 24Mg/C2 (24 m/q), 52Cr/C4H4  (52 m/q), and 
13C/CH (13 m/q). After this step, mass spectra have been assigned with location in-
dexes, forming a reduced volumetric grid – 266 mass intensities*40,000 pixels; and 
for an averaged image – 266 mass intensities *20,000 pixels. The SNR within the pre-
processed mass spectra was identified to be ~103, which is limited by the noise floor 
and the dynamic range of the acquisition card. Further, the dataset has been log-
transformed and divided into subsets for imaging and low dimensional analysis. The 
data reserved for the low dimensional analysis (3D and 2D images) was z-score nor-
malized and reduced with principal components analysis (PCA) down to the first 100 
principal components.  

Further, to improve the image quality and the readability, a volumetric dataset 
was interpolated from the original size (100 pixels *200 pixels*2 layers) up to 250 
pixels *500 pixels*5 layers using inverse distance interpolation. Low-intensity zones 
of the imaged isotopes have been made translucent to improve the visibility of spatial 
heterogeneity. The inverse distance interpolation has been performed using the log-
transformed data, thus, color changes present in the pictures are logarithmic (base 
10). Overall, using the data preprocessing routine, we have calculated 8 volumetric 
maps of isotopes of interest. Each volumetric map is represented by 625’000 voxels, 
which provides enough resolution to see the small discrepancies within the analyzed 
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area. The depth of the formed craters has been estimated using optical microscopy, 
which has shown, that 5 single consecutive laser shots applied to a given ablation po-
sition created ablation pits that are below or close to the μm range in depth. Thus, 
volumetric maps characterize the uppermost layer (nm-scale) of the Gunflint sample. 
It has to be mentioned, however, that due to the sharp difference in the absorption 
properties of the investigated microfossils and the host material (quartz), differences 
can be observed in the amount of the ablated material.  

The dataset prepared for the low dimensional analysis (normalized and PCA re-
duced to the first 100 components) was further analyzed using the Uniform Manifold 
Approximation and Projection (UMAP) method. The UMAP provides dimensionality 
reduction and groups similar spectra together. Here we outline some of the sub-steps 
of the method, for the full and thorough description we refer to the original UMAP 
manuscript (McInnes et al., 2018).  

As in many other manifold learning methods, the UMAP algorithm tries to pre-
serve small distances, thus, recovering the local connectivity of data and it’s intrinsic 
dimensionality. In the first stage of the algorithm, similarity graph construction is per-
formed using the approximate nearest neighbor (NN) descent (Dong et al., 2011), im-
plemented within the UMAP (using small minimal distance of 0.1, 5 nearest neigh-
bors, and cosine distance as a metric). Although the recall rate of nearest neighbors 
is reported to be high, it is not exact. The approximate NN search makes the algorithm 
fast, but it also includes the possibility of small mistakes in the determination of near-
est neighbors. Even though exact solutions exist, for example, the GPU accelerated 
UMAP implementation provides such an option (Nolet et al., 2020), approximate NN-
search within the original UMAP-learn python implementation (McInnes et al., 2018) 
provides enough accuracy for the typical fs-LIMS tasks. Further, in the second stage, 
the algorithm weighs the nearest neighbors and forms the weighted NN-graph using 
smoothing kernels that adapt to the local neighborhood. In the third and last stage, 
UMAP performs a graph optimization by running a stochastic gradient descent for a 
determined number of epochs, decreasing the loss between low-dimensional and 
high-dimensional distances. The end stage (stochastic gradient descent) essentially 
represents the force-directed type optimization of weighted neighborhood graph. 
The starting positions of the nodes are defined by Laplacian eigenmaps (spectral em-
bedding) (Belkin & Niyogi, 2003). The usage of spectral embedding as an initialization 
step provides good means for an improved preservation of the global structure of the 
investigated manifold (Kobak & Linderman, 2019). The final step of the UMAP algo-
rithm performs the embedding of the graph into a new coordinate system, which bet-
ter reflects the similarity of n-dimensional vectors. Further, to define the classes from 
the low-dimensional embeddings, a density-based, hierarchical clustering method 
(HDBSCAN) (McInnes et al., 2017) was used, which provides a clustering hierarchy 
and derives clusters of spectra that share significant degree of similarity. And lastly, 
for the derivation of reduced topological representations (in the form of a network) 
of the UMAP embedding, a Mapper algorithm (Singh et al., 2007; Van Veen et al., 2019) 
was used, which covers the original data with overlapping filter functions, that are 
used to form the network and capture local connectivity of the data.  

Results 

The mass spectrometric investigation of the Gunflint microfossils using the high-
resolution fs-LIMS instrument yielded a large amount of data – 266 volumetric mass 
intensity maps. Since most of the known Gunflint microfossils are organically pre-
served, we have used 12C as an indicator of microfossils. Figure 2 (upper panel) shows 

140



the distribution of 12C signal acquired from the Gunflint sample. The 3D map reveals 
a high degree of co-occurrence between 12C intensities and the distribution of micro-
fossils identified using optical microscopy (see fig.1). The middle panel in Figure 2 
shows the distribution of 31P intensities, which also reveal a relatively high degree of 
co-occurrence with 12C and with the distribution of microfossils (from the optical pic-
ture of the Gunflint chert, see Figure 1 and lower panel in fig.2). However, 31P is mostly 
present only within the areas of high 12C concentrations, which indicates that for the 
most part, 31P remained below the limit of detection.  

The co-occurrence of these two elements (12C and 31P) indicates that the measured 
carbon is likely of biological origin. However, there is a large part of the sample where 
we have observed a noisy distribution of both elements, and therefore it is hard to 
definitively conclude where exactly areas with the organic carbon are located. More-
over, the host mineral and the microfossils seem to be fused, from the analysis of the 
3D maps. Similarly, the histogram of carbon intensities (not shown) could be charac-
terized as a skewed distribution, where the spectral 12C intensities are smoothly tran-
sitioning from the noise level to the intensities with 12C saturation. Similar distribu-
tion could be observed for the 31P and other elements, where we do not observe any 
clear distinction between two separate entities – host (quartz) and microfossils (or-
ganic carbon). Thus, deterministic identification of organic spectra solely on the basis 
of the presence of biorelevant elements is possible for the high-intensity end mem-
bers of the distributions, but localization of the exact boundary between two classes 
is very challenging.  

Fig.2. Volumetric isotope distribution maps from the Gunflint chert. Upper panel – Dis-
tribution of 12C (red color indicates higher concentrations). Middle panel – distribution 
of 31P (red color indicates higher concentration). To compare maps with the optical im-
age, see lower panel. Note that the distribution of microfossils and maps of 12C and 31P 
correlate with each other.  

To identify locations of metallic inclusions we calculated three additional maps. 
Figure 3 shows the distribution of 54Fe, 63Cu, and 48Ti volumetric intensities. The 
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distribution of 54Fe, largely coincides with the distribution of 12C (see fig.2), thus Fe 
can be associated with the microfossils. However, some of these locations can also be 
attributed to the siderite (FeCO3). In contrast, localization of high 63Cu and 48Ti areas 
differ from the 54Fe map and indicate the presence of chemical heterogeneity. One can 
see bright inclusion with high concentrations of 56Fe in the upper middle part of the 
sample. Similarly, high 63Cu micro-inclusions can be observed in the lower right part 
of the sample. The 48Ti localization reveal presence of the small grains, dispersed 
throughout the sample. Overall, the metallicity present in the Gunflint chert shows 
relatively fine-grained mineralization which is disseminated throughout the sample.  

Fig.3. Volumetric isotope distribution maps from the Gunflint chert. Upper panel – Dis-
tribution of 54Fe (red color indicates higher concentrations). Middle panel – distribution 
of 63Cu (red color indicates higher concentration). Lower panel – distribution of 48Ti (red 
color indicates higher concentration). To compare maps with the optical image, see fig. 
1.  

Figure 4 shows three panels with different volumetric isotope distribution maps. 
The upper panel shows the distribution of 32S isotope intensities. In the upper part of 
the volumetric map, we have identified a 32S saturated inclusion, which was inter-
preted to be a pyritic (FeS2) inclusion (see further in the text), intermixed with or-
ganic material from the microfossils (relatively bright spot in the 12C map as well, see 
Figure 2). However, this position can also represent a small pod of pyritized micro-
fossils previously reported in (Wacey et al., 2013). In addition to the pyritic inclusion, 
we have observed another inclusion saturated in 32S, which is located in the lower-
left part of the sample. One can compare the location of this inclusion with the volu-
metric map of 107Ag, shown in the middle panel (Figure 4). The exact spatial localiza-
tion of 32S and 107Ag, indicates the presence of typical low-temperature hydrothermal 
sulfide inclusion – acanthite (Ag2S), which again, seems to be sampled with organic 
remains of the microfossils. The third inclusion that could be observed from the 32S 
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map located in the lower right side of the map, is highly correlated with the 63Cu iso-
tope (see fig.3 middle panel), indicating the presence of another hydrothermal sulfide 
mineral – chalcopyrite (CuFeS2). In addition to the three sulfidic inclusions, one can 
observe a fine-grained distribution of S-containing material. In contrast to the locali-
zation of inclusions, the fine-grained lower intensity 32S signal largely follows the 
structure outlined by the 12C intensity map, so the observed S in that area is likely of 
organic origin. 

The middle panel of Figure 4 shows the distribution of 107Ag intensities. In con-
trast to the inclusions of S, silver mineralization appears to be relatively rare and lo-
calized in a few grains. For example, in addition to the main acanthite inclusion, one 
could observe a fine, enriched area in the lower-left part of the sample. However, 
since the intensities of 107Ag are relatively small in those areas, silver might be pre-
sent as an impurity in other sulfide inclusions. The third map shown in Figure 4 pre-
sents the distribution of 139La intensities. The brightest spots in the lower right part 
of the volumetric map indicate the localization of inclusions rich in rare earth ele-
ments (REE) - 139La and 141Pr. The mineralogical association of the inclusions can be 
attributed to the phosphate minerals due to the co-occurrence of P and La (see fig.2). 
However, main constituents of the analyzed spots are Na and K (see further in the 
results section).  

Fig. 4. Volumetric isotope distribution maps of 32S, 107Ag, and 139La from the Gunflint 
chert. The upper panel – distribution of the 32S indicates the presence of localized sulfide 
inclusions (red color indicates higher concentrations). Smaller intensities of 32S co-occur 
with 12C (see Figure 2). Middle panel – distribution of 107Ag indicates the presence of Ag 
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sulfide (Acanthite). Lower panel – distribution of 139La indicates the presence of REE 
mineral inclusions in the Gunflint chert. 

The transitional structure of all investigated maps represents the gradual change 
from the host material to the elemental and isotopic composition of the inclusions or 
microfossils. It is reasonable to conclude that this effect present within the volumetric 
maps is due to interpolation effects (upsampling to the higher resolution), however, 
we see that the same effects are present within original data as well. The same pat-
terns were observed to be present within other element maps – gradual skewed tran-
sitions. The analysis of the full volumetric dataset (to search for potentially missing 
inclusions) will result in a very high workload (260 maps for comparison) and likely 
will be counterproductive. Additionally, as mentioned before, it is not clear where to 
define the borderline within the intensity profiles which will outline the different 
minerals. However, the mass spectra can be considered as high-dimensional vectors, 
and latter can be compared in terms of distances. Assuming that similar minerals and 
compounds will yield a small pairwise distances, thus, the high similarity of ionization 
profiles. In order to find similar spectra within the dataset and approximate miner-
alogical composition, we performed the analysis of spectral neighborhood using the 
cosine metric and UMAP manifold learning method.  

Figure 5A shows 40’000 (2 layers) fs-LIMS spectra sampled from the original 260-
dimensional space and reduced down to three dimensions using UMAP. The colors 
assigned to the data points show the distribution of the 12C intensities on the low di-
mensional manifold. The structure of the similarity network revealed by UMAP indi-
cates the presence of three large groups – 1) The matrix mineralogy represented with 
quartz mineral. 2) The extended body of spectra that belong to the microfossils. 3) A 
smaller group of spectra with a more complicated similarity structure registered 
from various inclusions. The distribution of the 12C intensities in the microfossils clus-
ter indicate that microfossils are sampled with varying volume - some are highly en-
riched in 12C, some are highly depleted. The cluster of inclusions outlined in the figure 
reveals a high degree of 12C saturation (compared to quartz) and relatively high prox-
imity to the microfossils cluster, which indicates that spectra registered from these 
locations are a mixture between microfossils and some additional chemistry (see fur-
ther in the text).  

The panel on the right, Figure 5B, reveals the same embedding as in the left panel 
but colored using the 24Mg intensities. As was briefly presented in the introduction, it 
is hypothesized that if microfossils are indeed of photosynthetic origin, they might 
have preserved some traces of Mg within their bodies and collapsed cell walls (Mg is 
a crucial metal for the operation of the chlorophyll complexes and photosynthesis in 
general). Figure 5B indicates that 24Mg (being ~3 orders of magnitude lower abun-
dant than 12C) is present in the spectra that are identified to be from microfossils and 
represents a trace element. The spectra identified from the cluster of inclusions are 
also showing a relatively high degree of 24Mg ion yield. The full mass scale spectral 
convolution reveals that similarity diverges from the host mineralogy and inclusions. 
The so-called “transition line”, see fig. 5B, indicates a detached progression of spectral 
similarity between the host and the microfossils. Interesting to note is that the spec-
tral neighborhood shows a progression of the spectral similarity from poorly sampled 
microfossils (small parts of the microfossils are ablated and ionized) up to the point 
of 12C saturation and subsequent hydrocarbon chain formation (higher percentage of 
the ablated and ionized material is from microfossils), which is reflected in 12C inten-
sities. Thus, the low dimensional representation of the volumetric imaging dataset 
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reflects not only the chemical differences but also provides additional insights into 
processes within the evolving plasma and ionization. The higher 12C and 24Mg concen-
trations also reflect the progression of the SNR, which indicates that pixels that are 
sampled with a good volumetric ratio (host/microfossils) show higher Mg intensities. 

Fig. 5. The low dimensional proximity of fs-LIMS spectra revealed by UMAP. The individ-
ual data points represent a single mass spectrum. Full volumetric (40,000 mass spectra 
– 2 layers) data has been considered for the analysis. Note the presence of three large
clusters. Figure 5A – The proximity of fs-LIMS spectra colored according to the 12C in-
tensities. Clusters associated with the microfossils and inclusions reveal a high level of
12C saturation. Figure 5B – The proximity of fs-LIMS spectra colored according to the
24Mg intensities. Clusters associated with the microfossils and inclusions reveal a high
level of 24Mg saturation. Note, that the most enriched in 24Mg spectra are located in the
inclusions cluster.

Figure 6 shows the distribution of 32S (fig.6A) and 31P (fig.6B) intensities within 
the UMAP embedding. The elevated concentrations of S and P coincide with the loca-
tions of high C and Mg signal. Relatively low intensities of these elements in the mi-
crofossils cluster indicate that P and S are present as trace elements. For example, the 
sulfides cluster identified in fig.6A, reveal high S concentrations, and reflects the po-
sitioning of sulfides in the embedding. Thus, the elongated cluster of microfossils (see 
figs.5 and 6) reveal multielement enrichment of C, P, S, and Mg within the same spec-
tra and also shows a high degree of spectral similarity (calculated on the basis of full 
mass range) using the cosine metric. The cosine similarity represents the cosine of an 
angle between two compared mass spectra and determines whether two vectors are 
pointing in the same direction.  
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Fig.6. The low dimensional proximity of fs-LIMS spectra revealed by UMAP. Figure 6A – 
The proximity of fs-LIMS spectra colored according to the 32S intensities. Cluster associ-
ated with the microfossils reveal higher concentrations of 32S. Figure 6B – The proximity 
of fs-LIMS spectra colored according to the 31P intensities. Cluster associated with the 
microfossils reveal high level of 31P saturation. Note, that P and S enriched spectra also 
enriched in 24Mg (see fig. 5B). 

In general, the main clusters are easily separable. However, the smaller cluster of 
the inclusions shows a higher degree of complexity of the similarity structure. This 
complexity hints toward the presence of multiple inclusions of varying chemistry (see 
Figures 3 and 4). In order to define the boundaries between classes, a density-based, 
hierarchical clustering method (HDBSCAN) (Campello et al., 2013; McInnes et al., 
2017) was used, which provides a clustering hierarchy, from which a simplified tree 
of significant clusters can be derived. Figure 7A shows the result of clustering of all 
40’000 mass spectra registered from the Gunflint sample (2 layers). One can note that 
we have identified 4 clusters in the first iteration of clustering. These clusters corre-
spond to the large body of spectra registered from the microfossils (dark blue data 
points), from the matrix (quartz – purple points), from the inclusions (light blue 
points), and the REE inclusions (brown data points). The apparent similarities in the 
spectra that are transitioning from the microfossils to the inclusion cluster indicate 
volumetrically mixed sampling of microfossils and portions of the inclusions. In order 
to improve the quality of embedding for the inclusions cluster, the original mass spec-
tra were extracted and an additional UMAP embedding with a higher number of 
epochs (optimization iterations) using cosine metric and a small number of nearest 
neighbors (5-NN) was performed. The result of the embedding with interpretation is 
shown in Figure 7B. Since some of the clusters appeared to be fused into each other, 
but with distinguishable density profiles, kernel density estimates (KDE) for all iden-
tified clusters were calculated. The clusters identified in the upper part of the embed-
ding represent a group of various sulfides that have been briefly introduced before, 
namely, silver sulfides (acanthite), iron sulfides (pyrite), and copper sulfides (chalco-
pyrite). The blue kernel (upper part) represents the pyrite inclusion (see Figures 3 
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and 4, the upper panels), the purple kernel indicates the chalcopyrite inclusions, and 
lastly, the orange kernel – spectra identified from the acanthite minerals. Further 
down in the embedding, the largest cluster of Fe-rich microfossils (orange kernels) 
could be identified. The topology of the similarity network indicates that there is a 
transition of Fe-dominated spectra towards the Cu-sulfides (chalcopyrite), which in-
dicates the presence of Cu and Fe mixing line. On the right side of the cluster assigned 
to the Fe-rich microfossils a cluster of Ti-rich microfossils is located (blue kernels). 
The Ti-rich microfossils cluster also indicate the there is a gradual shift in similarity, 
which represents a mixing of Ti towards Fe. And lastly, a small cluster of Al-rich mi-
crofossils is located close to the cluster of Iron-rich microfossils. The presence of Al 
and Fe together can indicate the presence of Fe-Al-silicates (i.e. clay minerals) in as-
sociation with the microfossils. Adding the previously described REE inclusions with 
quartz and microfossils we have identified 9 groups of spectra that are present in the 
investigated part of the Gunflint sample (0.5 mm by 1 mm) which reveal a distinct 
similarity measures.  

Fig. 7. The clustering results of the UMAP scores. A) The clustering of the dominant com-
ponents. Data points are colored according to the assigned cluster. The individual data 
points represent a single mass spectrum. B) Additional sub clustering of spectra present 
in the group “Inclusions” as marked in Figure 7A. The clustering results reveal three 
groups of sulfide inclusions (Pyrite, Covellite, Acanthite) and three clusters of spectra 
with enhanced metallicity (Fe-rich, Al-rich, Ti-rich). 

The analysis of the spectral neighborhood provides a means for unsupervised 
data-driven classifications; however, the understanding of the chemical discrepan-
cies has to be done with the original spectra. For the accurate characterization of 
identified classes, the spectra of every given class were averaged into single mass 
spectra. Figure 8 reveals the averaged mass spectra from all identified classes. All 
spectra shown in the figure are normalized to the maximal peak intensity - from 0 to 
100 [a.u.]. With the aim to deliver more details, spectral intensity profiles have been 
truncated down to the range from 0 to 50 [a.u.]. For most cases, the most intense line 
was 23Na, followed by 39K, and 28Si as main constituents of the silica matrix. The large 
signals of Na and K can be attributed to the low ionization potential of the given ele-
ments. To deliver a better understanding of the spectral intensity profiles and results 
of our interpretation, the reader has to acknowledge that most of our spectra repre-
sent a volumetrically varying mixture of all components present in the ablated spot. 
Since the microfossils might contain nano mineralization, trace elements, and impu-
rities, and they likely are sampled with some parts of the silica matrix, spectral 
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profiles after averaging might be rather complicated and represent the intermixed 
chemistry from various sources.  

The first three spectra from the upper panel (fig. 8) reveal the chemical composi-
tions of previously identified sulfides. The first cluster of Cu sulfides shown in the 
upper left panel is dominated by Cu with the minor contribution of Fe and Cr. The 32S 
concentration is rather low, however, we have to consider the fact the mass spectrum 
presented in the figure is an average of ~100 pixels (200 laser shots), which provides 
means for the drift of original ratios. Additional to the peaks of sulfides, one can ob-
serve the presence of a relatively intense 12C peak and a significantly lower amount 
of Si, Al, and high K and Na. The presence of intense C, O, chains of hydrocarbons, and 
the proximity of spectra to the microfossil cluster within the main embedding (Fig-
ures 5, 6 and 7) provides a piece of evidence that the spectra are registered from the 
mixture of organic material, silica matrix and a chalcopyrite inclusion. The next spec-
trum shown in the middle part of the upper panel is an Acanthite inclusion. One may 
see that the Ag, C, Na, Al, Si, and K lines are well above the 50 [a.u.] threshold. Rela-
tively high concentrations of S, C, Cr, Fe, Ti, Cu, and Cl may be noted. On the right side 
of the upper panel the spectrum registered from the pyrite inclusion is shown. A high 
concentration of S and Fe with virtually no other significant metallic elements indi-
cate that the spectra are registered from the pyrite. Among the trace elements within 
the pyritic inclusion, one could note the presence of Pb.  

The second row of spectra in Figure 8 shows the classes that could be character-
ized as spectra from the microfossils with significant metallic content (see further in 
the discussion). First in the second row of spectra with significant metallic content is 
the spectra registered from the Fe-rich-microfossils – the largest group of all among 
the inclusions. Interesting to note that the spectrum shows relatively high concentra-
tions of Cr. Moreover, the spectrum presents the full range of aforementioned metallic 
elements like Ti, Cu, Zn in minor concentrations. Another group identified from the 
embedding shown in the middle part of the second row is Ti-rich microfossils. The 
averaged spectrum reveals a high concentration of Ti as a main metallic constituent, 
followed by Fe, Cr, and Zn. The Al-rich spectra shown on the right side of the middle 
panel reveals a high concentration of Al, followed by significantly reduced Fe and Cr.  

The last row in Figure 8, the left panel, outlines the composition of the REE inclu-
sions – spectra with a relatively high concentration of 139La and 141Pr. Among the main 
constituents of these inclusions only Na, K, Ca can be noted. The minor concentrations 
of C, Al, Si, Cr, and Fe are also present in the spectrum. The penultimate spectrum 
present in our interpretation model represents the Quartz mineral from the silicate 
matrix of the Gunflint chert. The main element observed within the Quartz mineral is 
Si which is followed by K and Na, C, Ca, and minor levels of Si oxides. The spectrum 
represents an average of 100 pixels randomly sampled from the host (quartz) cluster. 
This was done to compare the spectrum with the equal number of spectra from the 
microfossils. This brings us to the last big cluster of microfossils – the spectrum pre-
sented in the last row and the right panel. As one may notice, the spectrum in the 
linear scale reveals a very similar chemical composition to the spectra presented be-
fore with one notable difference – C is the most abundant element within this group. 
We have intentionally averaged the first hundred highest 12C intensity spectra since 

148



they represent the best volumetric sampling of the microfossils and result in the best 
SNR.  

Fig. 8. The spectral classes identified from the UMAP embeddings. The spectra are aver-
aged and normalized to the maximum peak intensity (0 to 100 [a.u.]). To enhance the 
visibility of the small peaks the intensity profiles are truncated to 50 [a.u.]. First row – 
spectral profiles of sulfide inclusions. Second row – spectral profiles of microfossils with 
enhanced metallicity. Third row – spectral profiles of REE inclusions, silicate matrix 
(quartz), and microfossils.  

The logarithmic scale visualization of the same spectra from the host and the mi-
crofossils is shown in Figure 9. The SNR of the averaged spectrum from quartz is sig-
nificantly lower in comparison to the spectrum registered from the microfossils (also 
visible in figure 8, bottom center panel). The SNR within quartz is only 102 in compar-
ison to the microfossils – 104 for 200 laser shots averaged within each location. Lower 
signal recorded from quartz can be attributed to the lower absorption of the laser 
energy by quartz. Moreover, the complexity of the chemical composition and total 
amount of detected peaks is significantly different. The spectrum from the microfos-
sils can be characterized as heavily dominated by hydrocarbon CxHx-type compounds 
and silicon oxide polyatomic species. The trace element composition reveals Mg, Cl, 
Ti, Cr, Cu, and Fe as being the most dominant ones. Among the more abundant ele-
ments, one can note the presence of elevated amounts of Ca, Na, K, and Si, whereas 
the latter (Si, K, Na) are signatures of the host mineralogy that is co-ablated with the 
organic inclusions. Due to the enhanced absorption of the fs-IR light by dark patches 
of microfossils, the ablation efficiency of the host mineral also increases. This phe-
nomenon leads to the greater intermix between the host and the chemistry of the mi-
crofossils. Overall, Figure 9 offers a visual assessment of the spectral dissimilarity and 
provides insight and intuition into the mechanics of the spectral proximity. The inter-
pretation of the UMAP embeddings, in short, follow the outlined logic - as soon as the 
laser hits the spot with the microfossils or spot with diluted organic remains, output 
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spectrum even with low volumetric sampling will form complex multipeak spectra, 
which in turn will yield a low similarity rank in comparison with the host spectra. 

Fig. 9. The fs-LIMS mass spectra (averaged from 200 laser shots) sampled from quartz 
and microfossils. The mass spectra are presented in the logarithmic scale. Note the dif-
ference in the ion yield and changes in chemical composition. 

Spatial interpretation of the volumetric maps. 

In previous sections, the description of low dimensional embeddings of the 3D im-
aging dataset (2 layers) was provided as well as a description of identified clusters. It 
was shown that by using cosine spectral similarity it is possible to advance to the de-
terministic identification of minerals and entities present in the mass spectrometric 
image. In contrast to the “classical” data analysis, where one can compare distribu-
tions of the various ion yields and try to solve the classification problem using prob-
abilistic approaches (i.e., using logistic regression), relational data analysis provides 
means to find more details and structure within complex datasets. For example, the 
popular ordination method - PCA does not provide any clear boundaries between dif-
ferent classes for the given dataset, contrary to the UMAP embedding results. How-
ever, the deterministic model and the interpretation that was built around it still lacks 
the spatial aspect. In order to understand how various clusters are spatially localized, 
the cluster map shown in Figure 10 can be utilized. The figure illustrates the distribu-
tion of the first three clusters. Laser ablation positions that are identified to be from 
the microfossils are colored with yellow nodes. The spectra clustered as inclusions 
with REE are colored orange. The grey nodes are sampled from the quartz matrix. To 
compare the distribution of the microfossils on the interpretation map and the optical 
image see Figure 1. As one may note, spatial localization of the microfossils largely 
follows the same structure captured in the optical image. The datapoints with 
dimmed colors represent the spatial difference in the class assignment. The 
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localization of the REE spots largely follows the initial interpretation made on the ba-
sis of the volumetric maps (see fig.4), with the addition of a few other pixels.  

Fig. 10. The interpretation of volumetric imaging results using cluster assignments cal-
culated from low dimensional embeddings. Yellow circles denote spectra registered 
from the organic remains of the Gunflint microbes. Grey circles denote spectra regis-
tered from the host mineral. Red circles denote locations of spectra registered from spec-
tra with REE. Note, that nodes are translucent and changes in the cluster assignment 
reflect the volumetric inhomogeneity of the sample.  

Figure 11 reveals the spatial localization of the six remaining clusters. The inter-
pretation map presented in this figure shows only the second layer, due to the fact, 
that data from the surface contains very few metallic spectra and therefore will only 
clutter the figure. The yellow nodes disseminated through the picture represent the 
spatial localization of the Fe-rich fossils (cluster with high Fe and Cr). The red nodes 
mainly localized in the upper part of the picture represent the spectra registered from 
the pyritic inclusions. The blue nodes localized in the lower left part of the sample are 
registered from the silver sulfides (acanthite). The orange nodes - spectra from the 
Cu-sulfides (Covellite). The green nodes – Ti-rich microfossils and the purple nodes 
represent the spectra from the Al-rich spots. Note, that all previously described sul-
fide inclusions are present in the final interpretation map. Another noteworthy fact 
is that the spectra located on the upper layer, in most cases, belong to the group of 
microfossils. In general, the spatial distribution of the iron minerals reflects the fact 
that iron input was the most dominant among other metals.  
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Fig. 11. The interpretation map of the bottom layer. Yellow circles denote spatial local-
ization of spectra registered from the Fe-rich microfossils. Red circles denote spectra 
registered from the pyrite inclusions. Grey circles denote locations of spectra registered 
from the silicate matrix (quartz). The blue circles denote locations of spectra from acan-
thite minerals. The orange circles denote locations of spectra from chalcopyrite miner-
als. The green circles denote locations of spectra from Ti-rich microfossils. The purple 
circles denote locations of spectra from Al-rich microfossils. Note, that the majority of 
spectra assigned with high metallicity from the bottom layer are clustered as microfos-
sils on the surface layer, thus, to declutter the interpretation map only the bottom layer 
is shown.  

Averaging dynamics and secondary features derived from the topol-
ogy of the spectral proximity networks.  

Additionally, to the three-dimensional UMAP embedding of the image, we have 
applied the Mapper algorithm (Singh et al., 2007) to capture the internal topology in 
the form of the network using the Python Kepler Mapper implementation (Van Veen 
et al., 2019). Here we will provide only a short description of the algorithm, for the 
full account of the inner workings of the algorithm we refer the reader to the original 
publication (Singh et al., 2007) and an introductory paper on topological data analysis 
(Carlsson, 2009). In general, construction of the Mapper networks often trails the fol-
lowing logic – first step, typically includes a calculation of low dimensional represen-
tation of original n-dimensional observations (by using neighborhood graphs or or-
dination methods). Further, reduced observations are often combined with other 
metrics that capture outliers, density and irregularities in the data (KDE etc.). The 
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objective variables (can be PCA or UMAP scores) are binned into a user-defined num-
ber of overlapping filter functions. The distribution of the data points within localized 
bins is further clustered using the clustering algorithm (specific choice is task-de-
pendent (Pedregosa et al., 2011)). The nodes that share same observations are con-
nected with an edge and the output network is typically visualized using force-di-
rected layouts. Further, the output network is colored according to the target varia-
ble, which provides the interpretation and hot-spot analysis. The transformation of 
the original UMAP scores to the network provides several additional benefits that can 
be useful in further downstream machine learning tasks. Depending on the chosen 
resolution, the Mapper networks are able to better capture the global topology and 
provide some degree of tolerance to the noise and flexibility to combine various met-
rics. Another beneficial side of the Mapper networks are in the fact that it is possible 
to visualize an arbitrary number of dimensions within the single complex network. 
Most useful applications are typically two to three dimensional, however, it is possi-
ble to visualize 4 to 5 dimensional datasets by using the 4 and 5-hypercubes as filter 
functions. Such networks can provide an additional level of detail or coarseness if 
needed. The challenge of using the high-dimensional filter functions is that they grow 
with power and typically form large graphs, which are not always convenient to work 
with.  

The fs-LIMS, being a point-to-point chemical characterization method, provides 
the capability to perform depth profiles and volumetric estimates of any solid mate-
rial. However, the ablation rate of investigated materials depending on the applied 
laser wavelength might vary, so that the characterization of very small inclusions (mi-
crofossils, micro- to nanograins) can be affected by the number of applied laser shots. 
For example, if a majority of the investigated material is ablated with the first laser 
shot, further averaging additional laser shots is counterproductive, because the target 
material is already removed from the sample. Using the assumption that some micro-
fossils (and the mineralization related with them) might be of nm size in depth, we 
decided to recalculate the new embeddings for the averaged dataset (one layer data) 
and compare how the structure of the proximity networks will change. Figure 12 
shows the spectral proximity network computed on the UMAP scores (using an in-
creased number of epochs, 5 NN, and a cosine metric) on the 2-layer dataset (40,000 
mass spectra, 260 single unit masses). The first three UMAP dimensions have been 
used as filter functions divided into 40 windows with 30 percent overlap and further 
clustered using the density-based clustering algorithm (DBSCAN) within the overlap-
ping voxels (Ester et al., 1996). The output undirected graph was further visualized 
in the open-source graph visualization platform Gephi (Bastian et al., 2009) using the 
ForceAtlas2 layout algorithm (Jacomy et al., 2014) and edges are colored according 
to degree of the nodes (blue – higher degree, yellow and red – smaller degree). The 
network in fig. 12 reveal structure of the cosine spectral proximities and indicate the 
complexity of that metric present in the dataset. The topology of the network shows 
disjoint clusters that consists of three main components: the quartz cluster shows a 
uniform radial structure, indicating that spectra from this cluster has less internal 
variability of intensity profiles. In contrast, the spectra from the cluster of microfos-
sils indicate gradual change of the spectral proximity and thus, form more complex 
shape, which reflects the change in the volumetric ablation and ionization of the mi-
crofossils. And lastly, the cluster from inclusions - also shows complex internal topol-
ogy, which indicates the complexity of the chemical compositions of these inclusions. 

As mentioned in the methods section, additionally to the original volumetric da-
taset an averaged mass spectrometric image was calculated, which contains the 5 
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single laser shots per pixel, averaged for every given pixel forming a dataset that con-
sists of 20’000 mass spectra (single layer). Figure 13 shows the spectral proximity 
network calculated from a single layer (fully averaged) mass spectrometric image, 
but visualized using the Yifan Hu graph layout algorithm (Hu, 2005) and calculated 
using the same hyperparameters. The change of the layout algorithm was motivated 
by artefactual visualization of microfossils cluster using the ForceAtlas2. Figure 13A 
shows the distribution of eigenvector centralities (Bonacich, 2007) calculated from 
the fully averaged mass spectrometric image. The network on the right (Figure 13B) 
shows the distribution of node degrees on the same network. As shown in fig. 13, the 
global structure of the similarity graphs remained very similar – two biggest compo-
nents are easily separable. However, one can see that the transition line between in-
organic and organic spectra (figs. 13A and 13B) appeared in the proximity structure 
after averaging more spectra (5 single laser shot spectra) and the fine structure of 
metallic inclusions was reduced to a single spike, which now shows the linkage to the 
transition line, and thus to the microfossils. An interpretation of this observation 
could be made in a following way - the pairwise spectral distances with an increased 
averaging are getting smaller, due to the volumetric domination of the silica matrix 
or microfossils (depending on the pixel location), thus, the spectra from different clas-
ses are becoming more fused into each other. It was also mentioned that the second-
ary metrics calculated from the spectral similarity networks might be of use in the 
downstream machine learning tasks (i.e., prediction of biogenicity of spectra from 
other Precambrian cherts). For example, Figure 13A shows three distinct clusters 
with easily identifiable eigenvector centrality measures, that can be further used as a 
predictive feature together with their UMAP scores. The eigenvector centralities have 
advantages over measures like degree (see Figure 12B), betweenness, and closeness 
centrality. The eigenvector centralities provide an easy visual assessment of data that 
are most representative of microfossils, or the host mineral. The topological structure 
of the graph itself also provides very important information, i.e., the eigenvalue spec-
trum of the normalized graph Laplacian describes the network's structure on a global 
level (de Lange et al., 2014) just by using one metric, without referring to individual 
nodes or connections. For example, the characteristic “neck” of the transition struc-
ture from the host (quartz matrix) towards the microfossils (Figure 10A and 10B) has 
been observed in our previous work from the Gunflint microfossils using the space-
type mass-spectrometer (Lukmanov et.al., 2021). Overall, the current datasets gener-
ated with the LMS-GT instrument can be used as a labeled library of spectral repre-
sentations of truly biogenic Precambrian fossils, which can be of high utility, for ex-
ample, in comparison with abiotic Fischer–Tropsch type process products or other 
carbonaceous matter of undefined origin commonly found in the Precambrian. 
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Fig.12. The spectral proximity network of the partially averaged mass spectrometric 
image (40’000 mass spectra – 260 single unit masses). The network colored according 
to the degree centrality of nodes in the network. Note, that the fine transition structure 
is not present and clusters are detached. 

Fig. 13. The spectral proximity network of the fully averaged mass spectrometric image 
(20’000 mass spectra – 260 single unit masses). A) – The proximity network structure 
colored according to the eigenvector centrality of nodes in the network. The yellow and 
blue colors indicate more central nodes in the network. Fig.10B – The proximity network 
structure is colored according to the degree of nodes in the network. The blue colors 
indicate nodes with a higher degree. Note, that the fine transition structure gets thicker 
with the higher number of averaged laser shots. The inclusions cluster also lost its fine 
structure, which reflects the importance of good volumetric sampling. 
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Discussion 

The chemical composition of the microfossils indicates that the majority of the mi-
crofossils were preserved as organic shells. The kerogenous matter which constitutes 
most of the organic remains was detected by measuring the abundant signal of 12C, 
with smaller concentrations of N, O, P, S. Thus, the full range of biorelevant elements 
is present within the bodies of microfossils. An additional cosine similarity measure 
revealed that the microfossils form a distinct type of mass spectra. However, there 
are some challenges related to the elemental identifications: first of all, using the spec-
tral decomposition and low dimensional embeddings, it was shown that metallic in-
clusions reveal a certain level of proximity to the microfossils. The most abundant 
group among inclusions identified as Fe-rich microfossils (see Figures 7 and 8) likely 
represent organically preserved cell walls with a set of intracellular Fe-rich minerals. 
The presence of greenalite nano-minerals recently was identified within specific mor-
phospecies (Lepot et al., 2017). However, Fe-mineralization could also be present by 
partially mineralized cell walls. Minerals such as greenalite can ‘stick’ to the exterior 
of cell walls. Our observations likely represent ionization of small portions of the mi-
crofossils, greenalite inclusions, and the surrounding silicate matrix. The abundant 
Fe, Si, and O signal observed in the spectrum (see Figure 8 – middle left panel) is sup-
portive of that conclusion. Interestingly, high Fe concentrations within this group 
were also accompanied by relatively high Cr content. However, our observations 
show that the metallicity associated with microfossils is broader and reveals Cu, Ti, 
Al, and Ag mineralization. The range of identified metallicity indicates that the Gun-
flint populations experienced rather broad metallic hydrothermal load, which can be 
manifested as an increased toxicity during the Palaeoproterozoic. The presence of 
REE inclusions, mainly present with La and Pr, whereas other REE elements remained 
below the detection limit and thus where not detected. The analysis of the full spectral 
profile revealed an association with phosphates, which can be present in the shallow 
marine photic zone. By rapid enclosure in the newly formed silica gel, such inclusions 
can survive the dehydration stage of the chert formation and consequently end up 
being trapped in the chert.  

The relatively widespread presence of Mg within the cluster of microfossils is sup-
portive of the proposed hypothesis that photosynthetic organisms from the Gunflint 
chert are likely to contain trace concentrations of this element. Despite the  absence 
of signatures of heavy alteration and secondary mineralization (this sample was col-
lected from the Schreiber beach locality), Mg can be present as a small inclusions of 
magnesite or dolomite within the chert, which can be of inorganic origin (Lepot et al., 
2017). In general, biologically processed Mg is expected to be fractionated, moreover, 
different types of chlorophyll are expected to have different fractionation factors 
(Moynier & Fujii, 2017). Therefore, if Mg is indeed of biological origin in addition to 
the association to the organic matter it should display the expected fractionation fac-
tors. Further work will be needed to confirm the biogenic origin of Mg using isotope 
fractionation, nano-characterization of grains and their association with microfossils. 

Here, we also have to report the caveats related to this work. The spectral profile 
of the quartz mineral shown in Figure 8 indicates that the total ion yield is a lot 
smaller in comparison to the spectra registered from the microfossils. This observa-
tion could be explained by the usage of the fs-IR laser. The clean quartz material is 
nearly transparent for the given wavelength and therefore more energy is required 
to be deposited on the surface of the sample. In contrast to quartz, microfossils are 
more absorptive of the given wavelength and can yield higher SNR even with smaller 
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energies. Unequal laser fluences required for the balanced ionization of both materi-
als can be solved by using nonlinear beta barium borate crystals, that can multiply 
the output frequencies of the laser. Another potential pitfall concerns the surface 
quality of the sample. The orthogonal to the sample laser focusing implemented in 
our current setup provides a fixed position of the laser focus, thus changes in the to-
pography of the sample can induce changes in the subsequent ionization. Such 
changes can affect the output image quality by forming an ion yield that is not related 
to the chemistry of the investigated sample.  

The spectral decomposition used in this work covers only single unit masses, ex-
cept for Mg and Cr lines that have been specifically chosen for the analysis. Thus, ad-
ditional scripts are required for future campaigns to extract finer spectral infor-
mation, resolving the majority of the isobaric interferences. The calculation of em-
beddings, as was mentioned before, was done by using the cosine metric, however, a 
great variety of other metrics are available and their impact on the aspects of spectral 
similarity needs to be assessed. Moreover, the number of neighbors (N) in the con-
struction of the neighborhood graph has a profound effect on the structure of the em-
bedding. By choosing a large N, one can approximate more of the global structure, or, 
alternatively, emphasize more of the local neighborhood by reducing N.  In general, 
choosing the right N requires some trial and error, however, the reader has to keep 
in mind that provided embeddings are parameter dependent. Additionally, the prox-
imity of nodes in the output embedding can have no physical meaning if there is no 
edge between them (e.g., if distances are not defined). Thus, the analytical assessment 
of the graph connectivity is helpful in the interpretation step of the UMAP embed-
dings. A similar situation affects the construction of the Mapper networks, where a 
variety of hyperparameters is present. For example – the number of filter function 
windows, percentage of overlap, hyperparameters of the clustering algorithms.  

Conclusions 

The conclusions of this work are summarized as follows. First, the chemical com-
position of Precambrian Gunflint chert identified with the LMS-GT instrument pro-
vides unambiguous identification of organically preserved microfossils. The volumet-
ric images calculated for specific masses provide a clear view of the chemical diversity 
and spatial heterogeneity of the investigated area. Second, the relational data analysis 
applied to the large spectral dataset captures the complex structural details of spec-
tral similarity. The low dimensional UMAP embeddings calculated from imaging cu-
bes yielded 9 distinct clusters and a strong separation between the organic and inor-
ganic spectra. The averaging dynamics of the imaging data provide an additional per-
spective on the preservation of the signal quality. Third, the co-occurrence of 12C, 31P, 
and 24Mg provides an additional line of evidence towards the photosynthetic nature 
of investigated microfossils. Lastly, fs-laser ionization mass spectrometry combined 
with manifold learning techniques provides a powerful analytical framework and is 
capable of accelerating knowledge extraction and yielding new insights into chemical 
diversity of investigated materials.  
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Rationale: Femtosecond (fs) laser ablation ion sources have allowed for improved

measurement capabilities and figures of merit of laser ablation based spectroscopic

and mass spectrometric measurement techniques. However, in comparison to longer

pulse laser systems, the ablation plume from fs lasers is observed to be colder, which

favors the formation of polyatomic species. Such species can limit the analytical

capabilities of a system due to isobaric interferences. In this contribution, a double-

pulse femtosecond (DP-fs) laser ablation ion source is coupled to our miniature Laser

Ablation Ionization Mass Spectrometry (LIMS) system and its impact on the recorded

stoichiometry of the generated plasma is analyzed in detail.

Methods: A DP-fs laser ablation ion source (temporal delays of +300 to – 300 ps

between pulses) is connected to our miniature LIMS system. The first pulse is used

for material removal from the sample surface and the second for post-ionization of

the ablation plume. To characterize the performance, parametric double- and single-

pulse studies (temporal delays, variation of the pulse energy, voltage applied on

detector system) were conducted on three different NIST SRM alloy samples (SRM

661, 664 and 665).

Results: At optimal instrument settings for both the double-pulse laser ablation ion

source and the detector voltage, relative sensitivity coefficients were observed to be

closer (factor of �2) to 1 compared with single-pulse measurements. Furthermore,

the optimized settings worked for all three samples, meaning no further optimization

was necessary when changing to another alloy sample material during this study.

Conclusions: The application of a double-pulse femtosecond laser ablation ion

source resulted in the recording of improved stoichiometry of the generated plasma

using our LIMS measurement technique. This is of great importance for the

quantitative chemical analysis of more complex solid materials, e.g., geological

samples or metal alloys, especially when aiming for standard-free quantification

procedures for the determination of the chemical composition.
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1 | INTRODUCTION

Sensitive measurement techniques using a pulsed laser to probe the

chemical composition of solids, e.g. Laser Ablation Inductively

Coupled Plasma Mass Spectrometry (LA-ICP-MS), Laser-Induced

Breakdown Spectroscopy (LIBS), or Laser Ablation Ionization Mass

Spectrometry (LIMS), are applied in various fields in academic and

industrial research to quantitatively investigate the chemical

composition of solid samples. Applications range from, e.g., chemical

imaging of highly heterogeneous geological and/or biological

samples,1–9 to the dating of solids and mineralogical analysis,10,11 and

to the chemical analysis of high-performance materials used in

industry.12–16 LA-ICP-MS is among the most widespread laser-based

analytical technique due to its accurate quantification, high

reproducibility, and low limits of detection. Today, various hybrid

systems commercially exist that integrate both LA-ICP-MS and LIBS

instrumentation to extend the measurement capabilities for the

chemical analysis of solids.17–20

The application of a pulsed laser system to probe the analyte of

interest has many advantages, as structures down to tens

of nanometers can be targeted, layered materials can be chemically

profiled by consecutive laser pulses, and sample contamination via

handling can be minimized as no mechanical or chemical contact is

required during preparation, among others.9,21,22 With the

replacement of, e.g., nanosecond or picosecond laser systems with

powerful and stable ultra-fast pulsed femtosecond laser systems, the

analytical capabilities and figures of merit of all laser-based

measurement techniques have improved significantly, including,

e.g., minimized matrix effects and element fractionation effects due to

the absence of laser plasma plume interaction, improvement of spatial

resolution due to reduced heat dissipation, increased reproducibility

of measurements, enhanced ionization and stoichiometry, among

others.23–27 The application of femtosecond laser systems, however,

shows drawbacks as well, at least for LIMS and LIBS systems. The

resulting ablation plasma produced by such systems is colder and

the lifetime is shorter than those induced by longer pulsed laser

systems.28 The colder plasma temperature favors the formation of

polyatomic species in the ablation plume28 and, depending on the

analytical tool used for chemical quantification, the analytical

capabilities may be limited if the mass resolving power is not high

enough to discriminate against these isobaric interferences. For LIBS,

the shorter lifetime of the plasma decreases the signal-to-noise ratio

of detected signals and therefore limits the detection sensitivity.29

In this contribution, we quantify the analytical performance of a

collinear double-pulse (DP) femtosecond (fs) laser ablation ion source

that is coupled with our LIMS system.30 The measurement will show

that, at optimal instrument settings, in particular of the DP laser

ablation/ionization source and the detector, the relative sensitivity

coefficients (RSC), required for quantification of the chemical

composition of solids, can be improved significantly; they scatter

closer to 1. The application of a DP-fs laser ion source was introduced

previously in LIBS and LA-ICP-MS instrumentation (see, e.g.,29,31–34).

In LIBS, post-heating of the plasma by a second laser pulse allows for,

e.g., a longer-lived plasma and, as a result, improved detection limits.

In LA-ICP-MS, the DP measurement scheme allowed, e.g., for the

generation of a more fine-grained aerosol, which is highly favorable

for the ICP. Recently, we demonstrated by studies on a Mg sample

that the application of the DP mode allowed an increase in ion yield

relative to the single-pulse (SP) mode by a factor of up to about 30.30

In the current study, we apply longer than typically applied delays

between the two laser pulses and analyze monoatomic ions produced

in such a configuration. To the best of our knowledge, this is the first

contribution reporting about the impact of a DP-fs system on the

quantitative performance of a LIMS system with the second pulse

used for post-ionization of atoms.

2 | EXPERIMENTAL

2.1 | Sample materials

For performance characterization, measurements on three different

National Institute of Standards and Technology (NIST) standard

reference material (SRM) alloys were conducted: SRM 661, 664, and

665. Prior to measurements, the top surface was removed

mechanically with a diamond file and cleaned using an argon ion

sputter gun (ion energy of about 3 keV, a 10 degree incident angle,

and sputtering time of about 20 min).23 The samples were selected

for this study because many previous studies were conducted on

these samples using our miniature LIMS system to which different

laser systems were connected, from nanosecond35,36 laser systems

(operated at IR and UV wavelengths) to femtosecond laser systems.23

2.2 | Laser ablation ionization mass spectrometer

The measurement capabilities and principles of operation of the mass

spectrometric system used for the performance characterization of

the DP ablation ion source are described in detail in various scientific

contributions.3,23,36–38 Therefore, only a brief description of the

measurement principles of the system, based on SP laser ablation, is

given in the following.

The system used for recording mass spectra is a miniature (mass

analyzer with 160 � Ø 60 mm) reflectron-type time-of-flight (TOF)

mass spectrometer that was originally designed for the in situ analysis

of the chemical composition of solids on planetary surfaces. The mass

spectrometer is located within a vacuum chamber and a beam guiding

system is used to guide the laser pulses towards the entrance window

of the chamber. The laser pulses are focused by an optical lens system

positioned directly above the mass analyzer, through the system, and

towards the sample surface, which is positioned roughly 1 mm below

the entrance ion optics of the mass spectrometer. In the current

design, only positively charged species can enter the ion optical

system. At the entrance of the system the ions are accelerated,

focused, and confined into the field-free drift path of the mass

analyzer. At the ion mirror, the ions are reflected towards the
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multichannel (MCP) detector system37 by passing the field-free drift

path for a second time. The ions are separated in the field-free drift

paths according to their mass-to-charge ratio, following the TOF

measurement principle. The quadratic equation m(t) = k0(t � t0)
2 is

used for the conversion of a TOF to a mass spectrum, where k0 and t0

are fitting constants. Note that the mass resolving power of this

miniature mass analyzer allows for discrimination of different

isotopes, but is not sufficient to resolve isobaric interferences,

e.g., doubly charged 56Fe cannot be distinguished from singly charged
28Si. In this study, only two out of four anodes of the MCP detector

system were used for the characterization of the DP ion source. A

high negative voltage at the front, and a less negative voltage at the

back of the MCP stack (chevron configuration), are applied to guide

the released electrons towards the anodes. The back voltage was kept

during the measurements at �300 V, while the front was varied in the

measurements. The applied detector voltage mentioned in

the following refers to the high negative one. Two high-speed ADC

cards (each with two channels, channels were combined on each card

resulting in a doubled sampling rate of 3.2 GS/s, 12-bit vertical

resolution, with onboard processing capabilities) were used for the

recording of TOF spectra. For characterization of the recorded mass

spectra, in-house written software is used, which allows for, e.g., TOF

to mass scale conversion, peak integration, and the calculation of RSC

values.39 In this study, we consider certified elements in the SRM

samples until Fe for calculation of RSC values. Iron is the most

abundant species in these samples and gain-loss was observed which

affects the derived RSC values. Similar to our earlier studies, the RSC

value of a certain element is calculated via measured abundance

divided by the NIST certified abundance. The samples are positioned

below the mass spectrometer using a three-dimensional (3D) micro-

translation stage with micrometer positioning accuracy. The complete

instrument setup, including laser system, acquisition card, sample

stage and delay stage (discussed in the following), are fully controlled

remotely by in-house written software.

The fs laser system used in this study is operated at a wavelength

of λ = 775 nm and a laser pulse repetition rate of 1 kHz, and

produces pulse widths of τ �190 fs. The mechanical realization of the

collinear DP system was described in detail in Tulej et al,30 and is

described only briefly in the following. The fundamental laser beam

(p-polarization) is first transformed to an s-polarized beam via a half-

wave plate (denoted as WP in Figure 1) installed directly at the output

of the laser system before being split into two beams. An

s-polarization sensitive 50/50 beam splitter (denoted as BS1) was

used for beam splitting. The pulses from one beam are guided to a

static beam guiding system (defined as P1) that is composed of a

static retroreflector system and a polarization-sensitive attenuator

(denoted as A). In comparison to the first realization of the DP system

described in Tulej et al,30 this static retroreflector was added to the

beam guiding system because it enables correction for small

deviations between the travelling paths between both laser beams.

Further, it allows the same beam characteristics, such as the

polarization of both beams. It is known that the integration of

retroreflector systems affects the polarization of the incoming beam;

see, e.g., the technical note from Thorlabs regarding the integration of

a prism retroreflector or theoretical calculations.40,41 Pulses from the

second beam are guided to a dynamic beam guiding system (denoted

as P2). The latter system is composed of a retroreflector that is

positioned on a remotely controlled linear stage with a traveling

distance of 300 mm. The dynamic guiding system is installed in such

way that delays relative to P1 of +300 to –300 ps can be realized

with time increments of �300 fs. The energy of both laser pulses can

be changed by either adjusting the output power of the main laser

system or using the attenuator installed in the static beam guiding

system. A second beam splitter (BS2) is used finally to recombine the

beams of both beam-guiding systems. From that position, both pulses

follow the same beam path towards the mass spectrometer.

2.3 | Measurement procedure

For the quantification of the effect of the DP ion source on the

analytical performance of the system, multi-parametric studies are

required (e.g., applied pulse energy, the delay between P1 and P2,

etc.). First, a laser irradiance campaign (16 different pulse energies in

the range of �400 nJ to 7.48 μJ were applied) in SP mode was

conducted on SRM 664. Each measurement of different pulse energy

was performed on a new and unused sample position. A total of

100,000 laser shots were applied on each sample position for each

pulse energy, resulting in 100,000 spectra, which were stored on the

host computer in packages of 1000 histogrammed spectra, resulting

in 100 saved TOF spectra. This campaign allowed to define, e.g., the

laser ablation threshold, the maximum pulse energy before observing

space charge effects, and, most importantly, the pulse energy

conditions where stable ablation can be observed. Note that SP

measurements were conducted using the static beam guiding system

(P1, see Figure 1) because of the integrated beam attenuator that

allows easy adjustments of the laser pulse energy. Subsequently,

F IGURE 1 Schematics of the collinear DP-fs laser ablation ion
source. The integrated retroreflector positioned on a remotely
controlled linear stage allows for variation of the delay between both
laser pulses with delay increments of �300 fs. Further information is
given in the text
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dense raster campaigns were applied on NIST 664 to investigate the

impact of the delay between P1 and P2 on the plasma stoichiometry.

The raster campaign consisted of 2000 sample positions with a pitch

of 30 μm and was repeated for three different pulse energies (1.8 μJ,

2.1 μJ, and 2.7 μJ) with both pulses set at the same energy. Each

sample position in the raster campaign involved a different delay

between P1 and P2 with a delay increment of �300 fs. For each

delay, four files of 4000 spectra were recorded and saved on the host

computer. These raster campaigns were required to define, e.g., the

zero delay between both pulses from P1 and P2, the delay where the

hottest plasma conditions can be observed (reduction of polyatomic

species), or the regime where mostly post-ionization of the generated

plasma occurs. With the knowledge of these regimes, measurement

campaigns conducted with the single- and double-pulse scheme

(where the total applied pulse energy in both campaigns was the

same) were conducted on fresh and unused sample positions. At

optimal measurement conditions (laser and detector settings), DP

measurements were finally extended to SRM 661 and 665 to assess

the broader applicability of the found measurement parameters.

3 | RESULTS AND DISCUSSION

Through the SP laser irradiance campaign, the laser ablation threshold

(close to 1 μJ), as well as the regime where a stable ablation is

obtained, was identified. Stable and continuous ablation occurred at

about 1.8 μJ, whereas at lower pulse energies, only major abundant

elements were identified in the recorded and histogrammed spectra

(data not shown). The information of, e.g., the ablation threshold is of

importance for the application of the DP ion source. DP studies near

but above the ablation threshold energy (considering first laser pulse

applied) have several advantages, including, e.g., reduced surface and

space charge effects. These effects impact the spectral quality; peak

distortion and spectral jitter are reduced, which in turn improves the

mass resolution. Moreover, for sufficiently low plasma densities, less

laser radiation shielding effects occur and the second laser pulse can

penetrate through the plasma plume more efficiently.

In Figure 2, the recorded signals (integrated peak intensity) of
56Fe+ (right panels) and 56Fe2

+ (left panels) of two delay campaigns

conducted at a total applied pulse energy of 2.1 μJ and 2.7 μJ are

presented (the detector was operated at voltages of �1850 V and

�1900 V for the 2.7 μJ and 2.1 μJ campaign, respectively). Note that

each data point corresponds to the mean of the recorded signal of the

four histogrammed TOF spectra (each file is a histogram of 4000

spectra). A moving average filter (window size of three data points)

was applied for better visualization of the recorded data. Iron is the

major abundant element of NIST 664 and, hence, the positively

charged dimer 56Fe2
+ can be formed and observed readily in the

plume. The delay campaigns show three different regimes; R1 where

a zero delay between both pules is achieved, R2 where conditions

with the hottest plasma are reached, and R3 where mostly post-

ionization takes place (see notations in the top left panel). A similar

signal trend was reported in an earlier publication where

measurements were conducted in DP mode on a Mg sample.30 At a

zero delay (indicated with a dashed line), which is virtually identical to

the situation where one single laser pulse with double energy is

applied (see discussion below for Figure 3), a small signal

enhancement can be identified (see insert in the bottom left panel).

Note that the raster campaigns were conducted with a delay accuracy

of �300 fs for the identification of the zero delay. A slight

imperfection at zero delay between both laser pulses may result in a

slightly reduced signal due to potential interference effects. Right and

left from this localized signal enhancement a smooth drop is

recognizable, which is then followed by a large increase in the signal,

F IGURE 2 Two pulse delay campaigns conducted at two different total pulse energies are shown (2.1 μJ and 2.7 μJ). The time shift between
both pulses was probed between –300 and +300 ps. In total, 2000 delays were investigated, with a delay increase of �300 fs between each
step. For both campaigns, the recorded signal of 56Fe2

+ (left panels) and of 56Fe+ (right panels) are plotted. Three regimes can be identified (see
top left panel), with R1 corresponding to the regime of zero delay, R2 to the hottest plasma condition, and R3 to the regime where mostly post-
ionization of the neutral atoms in the ablated plume takes place
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forming the regime of hottest plasma conditions at a delay of about

25 ps, comparable with our previous study conducted on a Mg

sample.30 At these conditions, neutral species that are produced

during the ablation process are efficiently post-ionized, resulting in a

significant increase in the overall recorded signal. Note that the

increase in recorded signal for atomic species is higher than

the production of, e.g., positively charged dimers at hottest plasma

conditions, leading to a net reduction in such species contribution, as

also determined by Tulej et al.30,42 For the measurement conducted at

a pulse energy of 2.7 μJ (see Figure 2), a net gain of positively charged
56Fe relative to the dimer 56Fe2 of �10% was observed. Note that the

effect of DP post-ionization is more efficient at lower applied pulse

energies. This effect is expected because the post-ionization is more

efficient having a lower density plasma produced.30 Note that, before

starting these delay campaigns, special attention was given to achieve

equal pulse energy and comparable ablation profiles for both pulses.

This explains why the signal evolution in Figure 2 is almost

symmetrical around zero delay. After passing the hot plasma

conditions, a steep drop in recorded signal is observed, which is

comparable with our earlier study conducted on a Mg sample (see

Tulej et al, fig. 4).30

For verification, i.e., if the DP mode with zero delay between the

two pulses produces a comparable signal to SP mode, three

measurements of both modes working at the same total energy of

3.5 μJ and detector voltage of �1850 V were conducted (see

Figure 3). Note that, for this study, as shown in Figure 3, the pulse

energy of 3.5 μJ was selected, because from SP measurements it is

known that a pulse energy of 3.5 μJ allowed for stable and continuous

material ablation (ablation threshold was observed at �1 μJ). The

shown measurements are an accumulation of 100,000 single mass

spectra (100 files, each corresponding to a histogrammed spectrum of

1000 single spectra). Note that the y-axis scaling is identical for both

panels and that the recorded signal is displayed in log-scale. In

comparison to the SP measurements, a slightly lower recorded signal

can be observed for the DP measurements at zero delay. This effect

can be attributed to the accuracy of �300 fs for the identification of

the zero delay between both laser pulses. As discussed in the

previous paragraph, a slightly imperfect overlap between both pulses

results immediately in a reduced signal. Interestingly, small differences

between the conducted SP and DP ablation measurements were

observed. In comparison to the SP measurements, in all three

measurements conducted in DP mode lower intensities for Ti and S

were observed. The SP measurements are in line with previous

measurements; typically, a much higher ion yield of Ti relative to

other monoatomic ions was observed. In the study of Neuland et al,43

measurements were conducted on four geological standard materials

and Ti showed consistently an elevated RSC value at the level of

about 10 (fig. 5 in Neuland et al43). In the DP measurement, the

measured signal of Ti is lower, which is closer to the actual

stoichiometry of the ablated material. Interference effects in close

vicinity of a perfect zero delay might be a possible source for this

observation – the electrons can be heated for a slightly longer time

which might improve the ionization of the ablated material. In

addition to this observation, a better resolved mass spectrum is

observed for the DP measurement, which may be accounted to,

e.g., reduced surface charge effects. This observation cannot be

generalized for all DP measurements. For instance the DP

measurement displayed and discussed in the following Figure 4 shows

a comparable mass resolution to the SP measurement (see mass-

to-charge region of the Fe isotopes). Note that the ion optical system

of the employed TOF mass spectrometer can typically handle low

intensity plasmas better than high intensity ones.

A similar observation of reduced ion yield of Ti was found in DP

measurements conducted at hottest plasma conditions (see regime R2

in Figure 2). The left panel of Figure 4 shows a section of the

simulated mass spectrum of NIST 664 around Ti, whereas, in

the middle and right panels, the actual SP and DP measurements are

shown. Again, both the SP and DP measurement campaigns were

conducted at almost identical measurement settings. The applied

pulse energy was �3.4 μJ and �3.5 μJ for the DP and SP

measurement campaign, respectively. Both measurements were

performed with the same detector voltage of �1850 V. The shown

parts of the SP and DP spectra correspond to histogrammed spectra

of 30,000 spectra each. All three spectra are normalized to 54Fe+. The

F IGURE 3 Mass spectra of NIST 664 recorded in SP mode (left) and DP mode (right), both recorded at the same total applied pulse energy of
3.5 μJ. The delay in the DP mode was zero (R1 regime in Figure 2). In comparison to the SP measurement, slightly lower intensities are observed
for the DP measurement. Note that the scaling of both panels is identical
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simulated spectrum (all elements have RSC = 1) was generated using

our in-house designed analysis software that provides the option to

simulate spectra with, e.g., user-defined noise, observed mass

resolution, or element/isotope abundances of a reference sample.39 It

can be clearly asserted that the Ti abundances recorded in the DP

measurements match much better the known composition as shown

in the simulated spectrum, while the relative recorded intensity of Ti

in SP mode is significantly too high. This indicates that post-heating

and post-ionization of the generated plasma with the second pulse

improves the quantitative measurement at these specific instrument

settings and pulse delay (hottest plasma condition).

Optimal measurement settings in view of element RSC could be

derived by tuning (i) the delay of the second pulse in DP mode,

(ii) total pulse energy, and (iii) applied detector voltage (an increase of

ion signal, e.g., 30 times, can lead to ion detector saturation effects).

Concerning the pulse delay, optimal measurement conditions were

identified for measurements conducted in regime R3 (delay of

�300 ps), with a total applied pulse energy of � 5.8 μJ. Furthermore,

the optimization included the reduction of the applied voltage at the

MCP stack detector. A higher total applied voltage results in higher

gain but also increases the probability to induce gain losses. Optimal

detector settings were found at moderate amplification conditions to

avoid such saturation effects and gain losses. A total potential

difference of about 1450 V was applied over the MCP stack, which

represents a compromise between signal amplification37 and detector

saturation and gain loss. Nevertheless, a sensitivity drop was

observed at the arrival of 54Fe ions, which is the second-highest

abundant isotope of Fe, with iron being the most abundant element in

all three investigated samples. To stay away from the detector

limitations, we limited the analysis of RSC values for certified

elements arriving earlier than 56Fe, more precisely until 55Mn.

In Figure 5, the RSC values of three different measurement

conditions are shown. Note that all the measurements were

conducted at the same detector voltage and applied total pulse

energy of �5.8 μJ. The left panel contains RSC values for NIST

664 derived from SP and DP measurements (R2, hottest plasma

conditions). The right-hand panel presents the RSC values derived

from the three NIST SRMs 661, 664, and 665 samples at the best

instrument settings (delay �300 ps, pulse energy of �5.8 μJ, and

applied detector voltage of � �1750 V). Note that the detector

voltage and the total applied pulse energy were kept the same for the

individual measurements inside the same panel.

The RSC values for SP measurements (Figure 5, left panel) scatter

around the trend line of 1 (dashed line), which is comparable to

previous measurements. Surprisingly, the RSC values for the DP

measurements conducted at the hottest plasma regime scatter slightly

more than the SP measurements. A possible explanation could be that

the produced number of ions cannot be accounted for correctly by

the ion optical and detector system of our miniature LIMS system.

The situation is very different for measurements conducted at optimal

conditions (pulse delay and energy, and detector voltage). As can be

observed in the right panel of Figure 5, the scatter of the RSC values

is much less, values are closer to 1. Note that Al was not considered

for calculation of RSC values because of potential isobaric

interferences with doubly charged 54Fe. Note that for measurements

conducted on SRM 665, the RSC values of N and O are shown as well

F IGURE 5 Left: RSC values
calculated for the case of DP
measurements at hottest plasma

conditions (R2) and SP measurements at
the same total pulse energy. Right: RSC
values derived for best instrument
settings in the DP mode, i.e., pulse
energy, pulse delay, and detector gain. In
comparison with the RSC values
displayed on the left side, the RSC factors
scatter much closer around 1 in a fully
optimized system operated in DP mode
at the optimal delay

F IGURE 4 Left: Simulated mass spectrum
of NIST 664 around Ti; middle: single-pulse
(SP) measurement; right: DP measurement at
hottest plasma conditions (R2, see Figure 2).
For comparison, the simulated and recorded
signals were normalized to 54Fe+. The total
applied pulse energy was almost identical in
the SP (�3.5 μJ) and DP (�3.4 μJ)
measurement mode
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and match very well with the trend line representing RSC = 1. These

are the only two elements shown for which NIST provides a non-

certified estimate abundance based on a single instrument technique,

rather than a certified abundance as for all other shown elements. In

addition to the graphical representation of the RSC values derived for

the measurements show in Figure 5, the improvement can be

quantified using the following two equations:

a¼1
n

Xn

i

log RSCið Þj j; and b¼ 1�að Þ�100;

where RSCi denotes the RSC value of element i and n the number of

RSC values available for the quantification. The absolute value of the

logarithmic value of the RSC is required because in this way both RSC

values of 0.1 and 10 have the same weight for the quantification of the

sum (both are a factor of 10 off). The closer a is to 0, and b is to 100, the

better the quantification of the elements by the applied instrument

setting. Note that for this calculation, only the RSC values derived for

SRM 664 are considered (SP measurement, DP measurement

conducted in hottest plasma conditions, and DP at optimal conditions,

see Figure 5). For the SP measurement, we derive for a = 0.31 and

b = 69, for the DP hottest plasma conditions a = 0.67, b = 33, and for

DP at optimal conditions a = 0.14 and b = 86. This quantification

shows that the DP measurements conducted at optimal conditions are

by a factor of about 2 closer to the optimal situation (14% off for DP

measurements at best settings, and 31% for the SP measurements). As

mentioned before from visual inspection of Figure 5, the quantification

shows as well that the DP measurements conducted at hottest plasma

conditions were less optimal than the SP measurements. Tulej et al30

showed that the post-ionization at hot plasma conditions is very

effective. However, in this study, such conditions might lead to a too

dense plasma of positively charged species, which may exceed the

capabilities of the ion optical system of our miniature TOF-MS system,

which in turn would lead to limited resolution in the TOF spectrum,

limiting the accuracy of, e.g., peak integration.

At the optimal conditions, lower signal intensity was typically

observed as well, which may reduce the detection sensitivity of the

applied instrument. However, such conditions may still be of high

importance when a matrix-matched standard is not available for the

analysis of an unknown sample. Important to note is that the larger

RSC scatter (e.g., left panel of Figure 5) is not a limiting factor for the

mass spectrometric quantification of solids using LIMS. In case a

matrix-matched standard is available, the RSC values derived from the

standard can be applied to an unknown sample, even if the applied

measurement conditions lead to a larger variation in RSC values

between different elements.

4 | CONCLUSIONS

Previous studies have shown that the coupling of femtosecond (fs) laser

systems to the LIMS technique allows for the improvement of various

figures of merits, ranging from clean and reliable chemical depth

profiling to improved stoichiometry of the generated plasma. In this

contribution, we demonstrate that the application of a DP-fs laser

ablation ion source leads to an improved stoichiometry of the generated

plasma. The second laser pulse supports the ionization of the atoms

generated during the ablation as a result of the first pulse, which overall

improves the stoichiometry of the recorded plasma. The optimization of

both laser settings (delay and pulse energy) and detector system

allowed the identification of the most suitable measurement conditions.

Calibration factors, RSC values, for the investigated NIST steel alloys

SRM 661, 664, and 665 are observed to be close to 1, which is of

interest to measurement campaigns on unknown samples where the

availability of matrix-matched reference samples is limited.
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oRiGin: a novel and compact 
Laser Desorption – Mass 
Spectrometry system for sensitive 
in situ detection of amino acids on 
extraterrestrial surfaces
niels f. W. Ligterink1 ✉, Valentine Grimaudo2, pavel Moreno-García3, Rustam Lukmanov2,
Marek tulej2, ingo Leya2, Robert Lindner4, peter Wurz2, charles S. cockell5, 
pascale ehrenfreund6,7 & Andreas Riedo6

for the last four decades space exploration missions have searched for molecular life on planetary 
surfaces beyond earth. often pyrolysis gas chromatography mass spectrometry has been used 
as payload on such space exploration missions. these instruments have relatively low detection 
sensitivity and their measurements are often undermined by the presence of chloride salts and 
minerals. currently, ocean worlds in the outer Solar System, such as the icy moons europa and 
enceladus, represent potentially habitable environments and are therefore prime targets for the search 
for biosignatures. for future space exploration missions, novel measurement concepts, capable of 
detecting low concentrations of biomolecules with significantly improved sensitivity and specificity 
are required. Here we report on a novel analytical technique for the detection of extremely low 
concentrations of amino acids using oRiGin, a compact and lightweight laser desorption ionization 
– mass spectrometer designed and developed for in situ space exploration missions. The identified 
unique mass fragmentation patterns of amino acids coupled to a multi-position laser scan, allows for 
a robust identification and quantification of amino acids. With a detection limit of a few fmol mm−2, 
and the possibility for sub-fmol detection sensitivity, this measurement technique excels current space 
exploration systems by three orders of magnitude. Moreover, our detection method is not affected by 
chemical alterations through surface minerals and/or salts, such as nacl that is expected to be present 
at the percent level on ocean worlds. our results demonstrate that oRiGin is a promising instrument for 
the detection of signatures of life and ready for upcoming space missions, such as the europa Lander.

The detection of signatures of life, past or present, on Solar System objects beyond Earth is of major importance 
for a better understanding on the presence of life in the universe and how it emerges. Habitability can be traced 
through several parameters1,2, but in particular the detection of biomolecules such as amino acids, lipids and 
nucleobases on the surfaces of planets and moons are promising indicators for the presence of life. However, their 
unambiguous detection is extremely challenging and depends on various parameters. Past space exploration mis-
sions have focused on detecting biomolecules on Mars and Saturn’s moon Titan3–5, albeit without success. Under 
the premise that life exists or has existed on extraterrestrial bodies, current instruments, such as pyrolysis gas 
chromatography–mass spectrometry (pyr GC-MS), struggle with the detection of the biosignatures, partly due to 
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the presence of (chloride) salts and minerals6–11. To continue the search for molecular biosignatures1,2, novel and 
robust life detection instruments and measurement techniques are important.

Two main candidates for the search of biosignatures in our Solar System are Europa and Enceladus, moons of 
Jupiter and Saturn, respectively. Previous studies found that these objects have mineral- and organic-rich subsur-
face oceans12–15. On their sea beds, hydrothermal vents could be present16. Similar to Earth, such environments 
represent promising habitats for life, since all ingredients exist for life to emerge17. Therefore, these so-called 
ocean-worlds are prime targets for future space exploration missions devoted to the search for extraterrestrial 
life18–20. Landers are the most promising spacecraft that are able to investigate their surfaces for the presence of 
biosignatures, in particular biomolecules20,21. Such molecules can be brought up from the subsurface oceans and 
survive within the icy surfaces for millions of years22.

Laser Desorption Ionization Mass Spectrometry (LDI-MS) is a powerful tool for the analysis of molecules 
and allows measurements in various ways23,24. In its simplest form, LDI-MS instruments desorb material directly 
from a surface and ionize it with a single laser pulse, followed by the detection of the ions using a mass analyzer. 
LDI-MS has a number of advantages over existing space instruments. Due to its high sensitivity, only very low 
concentrations of analyte are required for a successful detection. LDI-MS instruments can be more compact, 
requires no consumables, such as carrier gases, and can operate without an extraction furnace, which all affect 
the dimensions, weight, and power consumption of the instrument; all stringent requirements for space instru-
ments. Furthermore, we show that the detection of biomolecules is not affected by contaminants, such as chloride 
salts, which in contrast seriously limits the performance of current pyr GC-MS systems8. In recent years, vari-
ous groups started working on LDI detection methods for space instrumentation25–29 and a LDI- Quadrupole 
Mass Spectrometer (LDI-QMS) is part of the Mars Organic Molecule Analyzer (MOMA) suite on the upcoming 
ExoMars rover30,31.

In this paper we present a novel measurement protocol using a compact LDI-MS system, called ORIGIN 
(ORganics Information Gathering INstrument) for the sensitive detection, identification, and quantification of 
amino acids. The system consists of a miniature time-of-flight mass spectrometer, developed for in situ detection 
of biomolecules on Solar System bodies, and a nanosecond laser system that desorbs and ionizes surface material 
with a single laser pulse. Laser desorption studies conducted on pure amino acids allowed the identification of 
their unique fragmentation patterns under the applied laser desorption conditions. This not only enables the 
identification of amino acids in more complex mixtures, but also allows their quantification. By careful moni-
toring specific major and minor biomolecule fragments, surface concentrations as low as a few fmol mm−2 can 
be detected. The results presented here are discussed in light of the requirements for upcoming space missions 
from ESA and NASA for the investigation of ocean worlds, such as Jupiter’s moon Europa, planned to be realised 
beyond 2020.

Results
The ORIGIN system consists of a miniature reflectron time-of-flight mass spectrometer (RToF-MS, 160 mm × Ø 
60 mm, m/Δm ≈ 1’000)32 that has a nanosecond pulsed laser system as an ion source. The mass analyzer is axis 
symmetric with a central hole at the entrance and exit. The nanosecond laser pulses (τ ≈ 3 ns, λ = 266 nm) are 
guided through a beam expander and via various mirrors to the focusing lens. The laser pulses are guided through 
the mass analyzer to the sample surface, which is positioned below the mass analyzer. Importantly, the sample is 
positioned slightly out of focus, i.e., the focal point is about a millimeter below the exit. Below the exit, i.e., below 
the mass analyzer, a steel sample holder on a X,Z translation stage is placed, where the laser desorbs and ionizes 
the material. Only cations can enter the ion optical system of the mass analyzer and are guided to the micro chan-
nel plate (MCP) detector system33. For every laser pulse a full ToF spectrum is recorded, which is converted to a 
mass spectrum (see Sect. 4.1 for a full description of the system). The sample, i.e., organic films of amino acids, 
are prepared in polished cavities (Ø 3 mm) by dropcasting 1 µL amino acid solution with concentrations ranging 
from 100–1 µM, resulting in average surface concentrations of 14–0.14 pmol mm−2 (see Sect. 4.2 for the sample 
preparation procedure). Each of these produced cavities is sampled at 40 positions, linearly spaced by ~50 µm, 
with 100 laser shots at each position (see Sect. 4.3 for the measurement protocol). The resulting mass spectra are 
filtered based on peak signal-to-noise ratios (SNRs) to remove spectra without signal. For the data handling and 
data analysis we use in-house developed software (see Sect. 4.4 for the analysis protocol)34.

Amino acid detection and identification. The first objective of this study was to show that ORIGIN 
can detect and identify amino acids and salts placed on a steel surface. Therefore, twenty samples of pure pro-
teinogenic and abiotic amino acid solutions at a concentration of 14 pmol mm−2 and an equal parts NaCl/KCl 
mixture at 0.7 µg mm−2 were measured (the full list of amino acids is given in Sect. 4.2). The lowest pulse energy 
at which a signal was identified was used for the measurement and thus differs for each molecule. The resulting 
mass spectra are presented in Fig. 1 (top). Except for lysine, all amino acids are detected and display sparse mass 
fragmentation patterns. Importantly, for the majority of amino acids unique mass fragmentation patterns were 
observed, although isomers and enantiomers are in some cases difficult to differentiate (e.g. (iso)leucine and 
L/R-AABA). Figure 1 (bottom) shows the mass fragmentation contributions of the amino acids, divided into 
parent peak (green), amino acids without the carboxyl (−COOH, 45 amu, red) group, amino acid side chains 
(amino acid minus 74 amu, blue) and “other” (purple). In the first three groups also (de)protonated fragments 
are included. It can be seen that the fragmentation patterns are dominated by -COOH stripped and side chain 
masses. The signal of the NaCl/KCl mixture is dominated by Na+ and K+ ions and clusters of X+(YCl), where X 
and Y can be Na or K.

Multi-position scan and quantification of organic film material. In Fig. 2, measurements of the 
amino acids methionine and histidine are highlighted. In panel (A) the intensity of two fragment masses at each 
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of the forty analysed positions is shown, for an average surface concentration of 14 pmol mm−2. Signals that 
are below a SNR of six are excluded. Intensity variations up to an order of magnitude are seen from position to 
position, which is due to concentration gradients in, and non-uniformity of, the organic film. This clearly demon-
strates that the quantification of dried amino acid films using only one spot analysis is highly unreliable. The 
multi-position measurement protocol circumvents this problem by accumulating signal over the entire diameter 
of the sample cavity, covering low and high organic film concentrations and therefore effectively averaging the 
signal. In panel B) the ratios of the two amino acid fragments at each position are displayed and compared to the 
average ratio obtained from co-added data. Most of the individual ratios are within the 1σ standard deviation 
obtained from the accumulated data, showing that there is minimal deviation from spot to spot and demon-
strating that the fragmentation pattern is quite uniform. In panel C) the accumulated intensities of a single mass 
peak as a function of the average surface concentration, which ranged from 0.14–14 pmol mm−2, are displayed. 
The data show a fitted linear correlation between signal intensity and surface concentration. From the obtained 
linear correlation one can conclude that the accumulation of spectra from multiple positions represents a simple 
and robust procedure for the quantification of amino acid concentrations. The bottom panels depict simulated 
spectra using the established fragmentation patterns of methionine and histidine, which agree well with the meas-
ured data and reproduce the mass spectra well. Similar to spectroscopic measurements where e.g., molecules are 
identified through their corresponding unique spectroscopic patterns, such a software routine is of high interest 
to current experiments as amino acids may be identified and quantified in more complex mixtures, including 
additional contaminates.

Analysis of amino acid mixture. To test the performance of the system on complex samples, measure-
ments were performed using mixtures containing all twenty amino acids (0.7 pmol mm−2 each) with and with-
out added NaCl (~0.7 µg mm−2). NaCl is added to simulate measurement conditions on icy moons, which are 
known to have large amounts of salt embedded in the ice. Figure 3 shows the results for scans at two applied pulse 
energies (1.4 and 2.6 µJ). The signals are clearly visible and the signal size increases with increasing pulse energy. 
Except for lysine, mass fragments of all amino acids are clearly visible in the 2.6 µJ measurement. However, not 
all signals can be unequivocally assigned to a single amino acid, since some of the mass fragments overlap. For 
example, this hinders the unambiguous identification of alanine just based on the m/z = 44 signal. When NaCl is 
added, the amino acid can still be identified via the mass fragments, however the signal intensities are observed 
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Figure 1. Top: Mass spectra of various biotic (red) and abiotic (green) amino acids (14 pmol mm−2 average 
surface concentration), and of a mixture of NaCl/KCl salt (blue, ~0.7 µg mm−2 average surface concentration). 
See Sect. 4.2 for a list of the abbreviations used for the amino acids. The primary fragments are labelled 
according to their mass. Bottom: Fragmentation pattern of the measured amino acid spectra (lysine omitted), 
grouped by masses corresponding to the parent (i.e. intact) molecule (green), the amino acid without its 
−COOH group (red), the side chain of the amino acid (blue), and other contributions (purple). Signals from 
−COOH-stripped and side chain masses dominate the amino acid spectra.
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to be lower. Sodium chloride is mostly UV transparent and thus the laser pulse will interact with the amino acids. 
Therefore, it is likely that the salt crust reduces desorption and/or ionization of the amino acids and higher laser 
pulse energies may be required. The bottom panel of Fig. 3 shows for the amino acids detected in the 2.6 µJ pulse 
campaign the 3σ limit of detection (LOD3σ, see Sect. 4.5). The high SNR of the mass fragments makes it possible 
to detect many of the amino acids at surface concentrations below 100 fmol mm−2, and in the case of tryptophan 
even down to 1 fmol mm−2.

Discussion
In this work, we demonstrate that the compact and lightweight ORIGIN system has the measurement capabilities 
for the identification and quantification of amino acids. With a LOD3σ down to a few fmol mm−2 and limit of 
quantification (LOQ) in the order of 100 fmol mm−2, it excels the LDI-QMS instrument (LOD3σ ≤ 1 pmol mm−2), 
which is part of the MOMA suite30 on the ExoMars rover, by 1–3 orders of magnitude. Amino acid identification 
in mixtures is possible, although for some species a deconvolution procedure for studying the fragmentation 
pattern is needed to distinguish overlapping mass contributions. The need for a deconvolution step will be even 
more important for real samples, which may contain other organic molecules. It is important to note that the 

Figure 2. Results of measurements of the amino acids methionine (left) and histidine (right). (A) Measured 
signal intensities of mass 56 and 61 of methionine and 109 and 110 of histidine, at each of the forty positions per 
scan. Empty positions have signals below a signal-to-noise ratio of six, which are omitted. (B) Ratios between 
the corresponding mass fragments at each of the forty positions. The solid line indicates the mean ratio from 
the co-added data of all positions. The dashed lines give the 1σ standard deviation of the mean of the measured 
data. (C) Intensities measured as a function of average surface concentration for concentrations in the range of 
0.14–14 pmol mm−2 (1–100 µM solution concentration), including linear regression coefficients. (D) Synthetic 
mass spectra (blue) compared to the measured data (black).

https://doi.org/10.1038/s41598-020-66240-1


5Scientific RepoRtS |         (2020) 10:9641  | https://doi.org/10.1038/s41598-020-66240-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

detection sensitivity of our system is currently not set up to maximum sensitivity. For example, the sensitivity can 
still be increased by ramping the voltage potential over the MCP detector stack33,35. A voltage increase over the 
MCP stack allows the generation of more electrons per single incoming ion and therefore produces an increased 
recorded signal. In the current setup, the detector gain can be increased by a factor of 32. Furthermore, the 
multi-position scan method used for the quantification of the organic film material can also be used to increase 
overall sensitivity by studying more positions on the sample, similar to previous studies conducting ablation cam-
paigns of solids samples36. Scanning more positions allows for the direct increase of the SNR and consequently 
the detection sensitivity. With both methods, the detection sensitivity of the system can be significantly enhanced 
and is expected to reach sub-fmol mm−2 levels.

Besides its high detection sensitivity, ORIGIN has a number of advantages over existing systems for the detec-
tion of amino acids in space. For example, with ORIGIN we see no significant chemical reactions between amino 
acids and chloride-containing compounds, as reported in pyr GC-MS systems8. A decrease in amino acid signal 
intensities is seen, probably caused by NaCl reducing desorption and/or ionization, but in contrast to pyr GC-MS 
measurements, amino acids remain detectable with ORIGIN. In addition, the presence of NaCl or any other spe-
cies at high concentration does not saturate the detector thanks to its large dynamic range of up to eight orders of 
magnitude33. The close proximity (~1 mm) of the ToF-MS ion entrance to the sample holder results in a very effi-
cient ion coupling from the desorption plume to the mass spectrometer. Together with a high ion transmission of 
the time-of-flight analyzer system, low laser pulse energies of only a few µJ can be used in the LDI process, which 
minimizes molecule fragmentation, enabling a clear identification of biomolecules even in complex mixtures.

A future application of the ORIGIN system could be as payload on a Europa Lander mission, where it can 
serve as part of the Organic Compositional Analyzer (OCA) to investigate the biomolecular and amino acid 
content in the icy surface material of Europa. According to the Europa Lander Science Definition report20, the 
OCA needs to be able to detect species at 1 nM in a 1 gram (=1 ml) surface sample. Melting a 1-gram sample and 
producing an organic film on a surface area similar to the surface area of the cavities used in this work (7.1 mm2), 
results in an average surface concentration of 141 fmol mm−2; a concentration easily detectable by ORIGIN. A 
further requirement in the Europa Lander Science Definition report20 is the detection of eight of the following 
amino acids: Ala, Asp, Glu, His, Leu, Ser, Val, Iva, Gly, β-Ala, GABA, and AIB, ten of which have already been 
successfully measured by ORIGIN (β-Ala and Iva were not included in the sample). However, securely identi-
fying isomers and enantiomers is currently challenging. Finally, we have demonstrated that the ORIGIN system 
permits also detecting Na and K and the salts NaCl and KCl. It is very likely that other salts, silicates and metals 
can also be identified. The results demonstrate that ORIGIN is a promising instrument for the detection of life in 
upcoming space missions, specifically for the Europa Lander.
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Figure 3. Top: Measured spectra of a mixture of 20 amino acids (0.7 pmol mm−2 per amino acid, red) and the 
same mixture with added NaCl (~0.7 µg mm−2, blue). The mixtures were measured with pulse energies of 1.4 
(upper panel) and 2.6 µJ (middle panel). Out of the 20 amino acids, eleven can directly be identified from their 
unique mass features. Bottom panel: 3σ limits of detection (LOD3σ) calculated from the 2.6 µJ measurement. 
Lower limits are given for signals that are clearly detected but have contributions from multiple amino acids.
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Methods
Laser desorption mass spectrometry set-up. To facilitate the detection of biomolecules on surfaces of 
Solar System objects, a novel and compact Laser Desorption/Ionization – Mass Spectrometry (LDI-MS) instru-
ment has been designed and constructed (a schematic depiction is shown in Fig. 4), based on our experiences 
with existing systems and components32,37–43. This system is called ORIGIN (ORganics Information Gathering 
INstrument). The design is simple and robust, which establishes LDI-MS as a rugged instrument for in situ space 
exploration missions, while at the same time being lightweight and compact.

A Q-switched Nd:YAG laser (Quantel Brio, France) is used for desorption and ionization of sample material 
(pulse width τ ≈ 3 ns, wavelength λ = 266 nm, pulse repetition rate = 20 Hz). The laser system is equipped with 
a beam attenuator module for laser pulse energy adjustment. The system guiding the beam to the mass analyzer, 
the latter is located in a vacuum chamber, consists of a shutter system, attenuator filters, beam expander, high 
reflective silver mirrors, and a lens system. The shutter system (SH05, Thorlabs) is integrated directly after the 
laser system and controls the number of laser pulses for each measurement campaign. Following the shutter, an 
additional set of attenuation filters is placed in the path of the laser beam to (i) operate the laser system at best 
performance (the stability of the pulse energy is better at higher laser output) and to (ii) reflect laser light to an 
ultrafast Si-photodiode (Alphalas, Germany) that triggers the data acquisition system (see below). Laser pulses 
pass through a beam expander (TECHSPEC Vega, Edmund Optics), which expands the beam to about 15 mm 
in diameter. An iris installed after the expander system is used to cut out the homogenous inner part of the laser 
pulse (in terms of energy). Via high reflectivity silver mirrors the cleaned laser pulses are guided towards the 
focusing lens (f = 300 mm), which is mounted on a Z-stage and which allows, first, to keep the sample at an opti-
mal distance relative to the mass analyzer (around 1 mm) and, second, to adjust the position of the laser focus. 
Subsequently, the laser light passes through a vacuum entrance window into the vacuum chamber where the min-
iature mass analyzer is located. Typically, laser pulses with energies ranging from 1.4–3.0 µJ, in increasing steps of 
0.4 µJ, are applied in the course of our measuring campaigns. With an optical microscope the circular laser abla-
tion spot size was measured to be around 20 µm. For the desorption measurements the laser is slightly out of focus 
and based on a simplified geometry we calculate the desorption spot to be about 30 µm in diameter. This method 
likely underestimates the spot size. With a spot size of 30 µm, an energy density of 0.20–2.35 J cm−2 or laser irra-
diances of 66–142 MW cm−2 is achieved in the measurements. Just below the laser entrance window, a miniature 
(160 mm × Ø 60 mm) reflectron-type time-of-flight mass spectrometer (RToF-MS)32 is housed. This RToF-MS 
system is specifically designed for in situ space exploration and capable of achieving a mass resolution at deso-
rption conditions of m/Δm ≥ 1’000 with a dynamic range of up to eight orders of magnitude33. Voltages of the 
ion optical system and the detector system (multichannel plate system, chevron configuration) are set remotely 
using a high voltage power supply. The detector signal is read out by a high-speed analog-to-digital-converter 
card (U1084A, Agilent, up to 4 GS s−1). A high-speed Si-photodiode is used to trigger the data acquisition. The 
laser pulses pass along the central axis of the mass analyzer. Underneath the RToF-MS, a sample holder is placed 
on a X,Z-translation stage (Agilis, Newport). With this stage, samples can be moved relative to the laser spot and 
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distinct positions along the X-axis can be probed, in both cases at micrometer precision. The sample holders are 
introduced into the vacuum chamber and onto the stage via an entrance port. The entire set-up is operated using 
in-house written Python software, giving control over the laser system, shutter, and sample stage. Fully automated 
routines make it possible to scan samples at multiple positions, for a certain number of laser pulses and at various 
laser powers.

The vacuum chamber is evacuated by a small turbomolecular pump (Pfeiffer TMU 071 P, 80 L N2) that is 
backed by an oil free membrane pump, which results in a typical base pressure of about 5 × 10−8 mbar. The vac-
uum chamber is vented using high purity nitrogen (Alphagas 2, Garbagas) that avoids contaminations during 
sample exchange. Between the vacuum chamber and pumping system, an electronic shutter valve is placed (VAT), 
which is closed before changing the sample.

Sample preparation. To measure amino acids and salts at low concentrations and without contaminants, 
clean working conditions and materials are mandatory. All samples were prepared in a sterilized flow hood. A 
stainless steel (416 L) sample holder (Ø 27 mm), which has five equally spaced cavities (0.2 x Ø 3 mm), is used to 
prepare the samples on and introduce them into the LDI-MS setup. Before being used, the sample holder is care-
fully cleaned by washing it with isopropanol in an ultrasound bath for 15 minutes. Extensive rinsing with Milli-Q 
grade water (Milli-Q Gradient, TOC < 5 ppb) is followed by a one-hour bake-out at 80 °C to minimize the water 
content on the sample holder. Finally, the surface of the sample holder is flame sterilized by a propane/butane 
burning flame at T > 500 °C.

The following fifteen proteinogenic amino-acids were used in this work: Glycine (Gly), L-Alanine (Ala), 
L-Serine (Ser), L-Valine (Val), L-Threonine (Thr), L-Leucine (Leu), L-isoLeucine (iLeu), L-Aspartic acid (Asp),
L-Glutamine (Glu), L-Lysine (Lys), L-Methionine (Met), L-Histidine (His), L-Phenylalanine (Phe), L-Tyrosine
(Tyr) and L-Tryptophan (Trp). In addition, five abiotic amino acids were measured: γ-Aminobutyric acid
(GABA), L/R-α-Aminobutyric acid (L/R-AABA), α-aminoisobutyric acid (AIB) and L-β-Aminobutyric acid
(L-BABA). All amino acids were purchased from Sigma-Aldrich with a purity of >99%. As salts, NaCl (Roth,
>99.5% purity) and KCl (Hanseler, >99.5% purity) were used. For each amino acid, a stock solution of 100 µM
in Milli-Q grade water was prepared, which was further diluted to concentrations of 50, 30, 20, 10, 5, 3, 2, and
1 µM. The salt solutions were made at a concentration of 1%wt, matching current measurements of the surface of 
the icy moon Enceladus13 and assumed to be similar for Europa, where Na and K have been detected to originate 
from the surface44,45. During the preparation of the solutions, sterilized Eppendorf tubes (Eppendorf BIOPUR
Safe-lock tubes) and pipet tips were used (Eppendorf BIOPUR epT.I.P.S.). To prepare the samples on the sample 
holder, 1 µL of an amino acid or salt solution is dropcast into a cavity and left to dry, producing an organic film
and/or a salt crust. Assuming a uniform distribution, amino acid surface concentrations of 0.14–14 pmol mm−2

are achieved ([concentration mol L−1 × 1 × 10−6 L]/[π × 1.52 mm2]). Assuming an average amino acid size of 0.5 
by 0.5 nm, this converts to a uniform coverage of just 0.2–21 molecular layers of amino acids. However, in reality, 
the organic film and salt crust are not uniformly distributed and concentration gradients within the cavity are
possible.

Measurement protocol. After sample preparation, the sample holder is introduced into the set-up and the 
sample chamber is evacuated overnight to reach a pressure of ~5 × 10−8 mbar. Before measurements, the data 
acquisition system, ion optics including detector system, power supply, and laser are given about 45 minutes to 
warm up and stabilize. The sample holder is moved so that a sample cavity is just outside the laser focus, at ~1 mm 
distance relative to the RToF entrance electrode.

For each of the studied amino acids, scans with increasing laser power were made to find the lowest laser irra-
diance at which desorption and ionization of the molecule of interest takes place. This ensures limited fragmenta-
tion of the amino acids. The pulse energy used for the detection of each amino acid is given in Table 1.

The non-uniform distribution of sample material in the cavity can result in misleading data when just a single 
position is sampled. To minimize this effect, a linear scan that consists of 40 positions with a pitch of 50 µm is con-
ducted, which increase our measurement statistics. Subsequently the data are co-added, which effectively averages 

Amino acid

Laser 
pulse 
energy Amino acid

Laser 
pulse 
energy

Glycine 1.8 µJ Leucine 1.4 µJ

Alanine 1.8 µJ Isoleucine 1.4 µJ

γ-aminobutryic acid 1.8 µJ Aspartic acid 1.4 µJ

R-α-aminobutryic acid 1.8 µJ Glutamine 2.2 µJ

L-α-aminobutyric acid 1.8 µJ Lysine 3.4 µJ (not 
detected)

α-aminoisobutyric acid 1.8 µJ Methionine 1.4 µJ

L-β-aminobutanoic acid 1.8 µJ Histidine 1.8 µJ

Serine 1.4 µJ Phenylalanine 1.4 µJ

Valine 1.4 µJ Tyrosine 1.8 µJ

Threonine 1.8 µJ Tryptophan 1.4 µJ

Table 1. Applied laser pulse energies for the detection of various amino acids.
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out variations due to variable sample material concentrations. Doing so, the measured mass signal intensity cor-
responds linearly to a specific average surface concentration (see Fig. 2c). After having measured the five sam-
ple cavities, mass spectra of the clean sample holder (area between cavities) were taken at similar measurement 
conditions for the purpose of mass calibration and to identify contamination from the sample holder, if present.

Data analysis. All data are analysed with in-house developed Matlab software34. Time-of-flight spectra are 
selected for peaks with a specified SNR (usually ≥ 6) or for peaks within a certain time window (=m/z window). 
Subsequently, time-of-flight spectra of each single measurement position are co-added, where after spectra of the 
40 positions can be co-added to a single ToF spectrum. The software corrects for time-of-flight shifts caused by 
surface charging, which can occur when the organic film is thick enough to act as an insulator. The interaction 
of the laser with the film positively charges the latter, which repels the produced cations and makes them arrive 
slightly earlier at the detector system. The correction is performed by an autocorrelation correction by selecting a 
peak, which is present in all the acquired time-of-flight spectra. One spectrum is used as a reference spectrum and 
all the other spectra are shifted so the peak positions of the selected peaks align. Measurements of the steel sample 
holder are used for the time-of-flight to mass-to-charge conversion by identifying specific ions ablated from the 
steel holder. The software also generates various statistics from a mass spectrum, such as peak position, integrated 
peak area, peak full width at half maximum (FHWM), and peak SNR by dividing the peak area by the integrated 
noise in a region where no signal appears. Blank measurements of the steel sample holder are conducted in each 
measurement run and used to determine that masses assigned to an amino acid have no or negligible contribu-
tions from steel surface contaminants. Simulated, synthetic mass spectra of measured mass spectra are created 
with our in-house developed software34.

Limit of detection. The limit of detection (LOD) can be given in various ways. The simplest way is to use 
surface concentration, as we elaborate in Sect. 4.2 by giving Csurface = 0.14–14 pmol mm−2. This procedure is only 
applicable if a signal is seen for a particular surface concentration Csurface. If the SNR of a detected amino acid 
mass fragment is sufficiently high, the limit of detection can be lower. Taking a 3σ SNR as the limit for detection, 
the LOD for a surface concentration is given as LOD3σ = (3/[SNR]fragment) × Csurface, where [SNR]fragment is the frag-
ment signal-to-noise ratio and Csurface is the surface concentration of the measurement in question. For example, 
in the measurements of the mixture of 20 amino acids the Csurface = 0.7 pmol mm−2 per amino acid. For trypto-
phan, the [SNR]130 = 1731 for the m/z = 130 fragment in the 2.6 µJ scan (see Fig. 3), resulting in LOD3σ = 1.2 fmol 
mm−2.

For a meaningful comparison with the LOD requirements given in the Europa Lander Science definition 
report (1 nM material in a 1 g, or 1 ml, sample, which corresponds to 1 pmol of material), these numbers need to 
be converted to average surface coverage. Sublimating the water of this sample and distributing the remaining 
molecules over the same area as the sample holder cavities, i.e., 7.1 mm2, results in a surface concentration of 141 
fmol mm−2.

It remains important to stress that the sensitivity of the system can easily be improved. For example, sampling 
400 positions, instead of 40, of the same surface results in a tenfold increase in signal and would already push 
the LOD3σ of the system into the sub-fmol mm−2 regime. In addition, the gain of the MCP detector can still be 
increased by a factor of 32.
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3.5  The scoring board of biosignatures and scientific 
outlook 

Here, I summarize potential biosignatures that can be detected and 
characterized with an integrated LIMS/LDMS system (mass spectrometer 
combined with an ion source and a microscope). I will outline the broad 
applicability of the LIMS technology in identifying a wide range of biosignatures and 
speculate that LIMS has the potential to further improve its' measuring capabilities.  

Searches for signs of extinct or extant life on Mars require sensitive 
techniques and modern analytical approaches capable of delivering high-quality 
chemical information. More generally, the chemical analysis on the surfaces of 
planetary bodies is a challenging endeavor that requires a set of specific 
parameters to comply with for onboard instrumentation. This applies to the 
quality of information gathered from a wide range of samples, the size and power 
consumption of the instrument, and the ability to operate within harsh conditions. 
Therefore, only a small subset of analytical methods can qualify as space applicable.  

Figure 21. Applicability of the LIMS/LDMS combined with microscopy system in identi-
fication of potential biosignatures. The blue sections indicate the applicability of the 
LIMS instrument to a given set of biosignatures. The figure is adapted from (Mustard et 
al., 2013). 

The impact of the analytical technique can be scored on the generalized hexagon 
of potential biosignatures proposed by the Mars 2020 science definition team 
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(Mustard et al., 2013) (see Fig.21). The binary scoring board presents six types of po-
tential biosignatures and identifies the scale of applied methods. Broadly, the board 
can be divided into two big sections – morphological biosignatures and chemical bi-
osignatures. The first group deals with different types of imagers that are required 
for the identification of - 1) macroscopic-scale structures (such as stromatolites), and 
2) imaging of microscopic-scale structures (i.e., individual microfossils and bio-lami-
nation sites). Although the first group primarily addresses cameras working in the
visible range, it also includes methods like ground penetration radar and hyperspec-
tral imaging.

The second large group of potential biosignatures goes into the detailed charac-
terization of the chemistry of samples. Naturally, the first subgroup of the chemical 
biosignatures addresses the determination of mineralogical compositions. Consider-
ing the overall diversity of minerals, this subgroup places a hard constraint on ana-
lytical methods, meaning that method should be applicable to the wide range of min-
erals. The second subgroup of chemical biosignatures requires the determination of 
fine chemistries, i.e., rare earth element concentrations, which is also a very tough 
measure to deal with for most analytical methods. The third subgroup outlines the 
importance of measuring the isotopic fractionation factors. The systematic isotope 
fractionation on the microscale level, if measured correctly, can strongly indicate bi-
ological processing. However, among the available groups of potential biosignatures, 
identification of the isotopic ordering on the microscale places the harshest require-
ment for a measurement. And lastly, the fourth subgroup of chemical biosignatures 
presents the importance of molecular characterization of investigated materials.  

Imaging of microscopic morphology 

Interpretation of the geologic record, i.e., the origin of rocks found on planetary 
surfaces, is determined in the first place by the appearance of investigated rocks and 
formations. Therefore, it is important to image the sample, revealing its texture and 
morphology, which sometimes can be enough to identify minerals and major compo-
nents building the rock. However, in most cases, it is crucial to locate the sample 
within the area of interest so that it can be analyzed with dedicated instruments. The 
spatial correlation of chemical, textural and mineralogical data can be very informa-
tive in understanding sample's origin and history of its alteration.  

Accurately prepared samples (such as thin sections) are not likely to be part of 
upcoming space exploration programs due to the complexity of sample preparation 
procedures, at least in the nearest future. Nevertheless, there are developments in 
this field, e.g. (Dreyer et al., 2013) presented the rock cutter that was developed as 
part of a broader effort to develop an in situ automated thin section (IS-ARTS) prep-
aration instrument. However, until such instruments are in place, the investigated 
samples are expected to present rough surfaces. Typical investigation of the micro-
scopic features present in the sample with LIMS system requires precise sample po-
sitioning under the instrument so that the analyzed spot will be located within the 
focal plane of the laser. Hence, understanding of the sample's complex topography is 
crucial for precise targeting of microscopic features.  

The microscopes with sufficiently shallow depth of field can return resolved im-
ages only within the camera's focal plane. The images collected outside of the focus 
(in front of or behind the focal plane) can be significantly blurred. However, by col-
lecting the set of images with different sample positions with respect to the focal 
point, it is possible to utilize focal stacking approach. Focal staking is an image 
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processing method that selectively compounds images and preserves only parts that 
are in focus. Therefore, the resulting image can have a significantly larger depth of 
field than any individual image collected at different distances. Currently, Mars Sci-
ence Laboratory contains a Mars Hand Lens Imager (MAHLI) instrument (Edgett et 
al., 2012) designed to collect images that can be later focus stacked. The MAHLI in-
strument uses a 2-megapixel color camera with an adjustable focus macro lens, 
demonstrating the utility of the method. 

Figure 22. An exemplary 3D reconstruction using a focus stacking approach. The LIMS 
microscope pictures were used in the reconstruction of the sample's topography. The 
size of the step in the middle of the model is 50 µm, the scale bar is 10 µm.  

Aside from improving the depth of field of images, it is possible to derive a depth 
map from parts of images that are preserved in focus. If the increment of the focal 
shift is known for the set of images, it is possible to derive a depth value for a given 
pixel, which in combination with the focus stacked image provides the 3D reconstruc-
tion of the sample under the microscope. The output depth reconstruction can be 
slightly noisy. Yet, the Gaussian smoothing kernel can be applied to the depth map, 
fixing the artefactual appearance of noisy pixels.  

Figure 22 illustrates the 3D shape reconstruction using the focus stacking ap-
proach. The step-like sample topography is restored using the set of LIMS microscope 
pictures (16 images) collected at different focal positions. The sample represents a 
topographically challenging environment, which was successfully analyzed with 
LIMS system using the 3D elevation model (see the arrow in the lower right part of 
the figure). Currently used in the laboratory microscopy system, was developed to 
have a resolution of ~1 μm, which is desirable to resolve individual microbial cells. 
Detailed information on the microscopy system can be found in the publication by 
(Wiesendanger et al., 2018). Need to mention that the LIMS microscope utilized in 
this thesis does not represent a space-ready prototype. However, a separate LIMS 
prototype integrated with a microscope-camera system was proposed by (Tulej et al., 
2014), which represents a compact solution, that can be placed onboard the rover or 
lander and showcase similar technical characteristics to the microscope utilized in 
the laboratory.   
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Mineralogy and fine chemistry 

Identification and characterization of chemistries from heterogeneous samples 
with microscopic inclusions is the core competence of the LIMS technology. Accord-
ingly, a significant part of the results section describes potential application pathways 
and efficient data analysis approaches that can directly link the identified chemistries 
with mineralogical assignments. As it was previously described, the LIMS provides 
very sensitive measurements on the microscale and captures local inhomogeneities 
of investigated materials. This might lead to the acquisition of different "flavors" of 
the same minerals, representing the full complexity of composition change. Moreover, 
the investigation of solid materials can change in the scale – from tens of millimeters 
down to the range of single micrometers. Thus, the LIMS technology can operate in 
the bulk-like regime, or if needed, provide an analysis in the microscopic regime, col-
lecting data from a single position.  

The inherent quality of the acquired mass spectra depends on the quality of abla-
tion and ionization. If laser power fluences are not applied at the level of optimal ion-
ization, the output stoichiometry and sensitivity can be significantly reduced. There-
fore, laser power is an essential parameter to consider prior to the mass spectra ac-
quisition campaigns. Detection of ppm (weight) level trace elements depends on the 
laser conditions and precise targeting of enriched inclusions. For example, the Ce and 
La enriched concentrations can be identified in specific minerals, i.e., monazite or xe-
notime. In the context of space exploration, where gravitational separation of miner-
als is not feasible, large-scale data collection campaigns can be performed, improving 
the probability of finding informative inclusions. The complexity of the data pro-
cessing routines allows for automated data compressions to be made (see (Meyer et 
al., 2017)) on the rover before transmission to Earth. For example, the extraction of 
peak intensities allows compressing the imaging data set consisting of 40'000 mass 
spectra down to a matrix with a comfortable size of ~70 Mbyte. Considering low con-
nection bandwidth between Mars and the Earth, the data rate varies from about 500 
bits per second to 32,000 bits per second, such compressions can be made onboard 
of the rover, and if needed, specific data can be retrieved separately.  

As for data acquisition speeds, most of the current state delays come from the 
sample translation stage, which requires ~2-3 seconds to position the sample under 
the instrument accurately. The mass spectrum acquisition requires ~20 µs, and the 
speed of the histogramming of mass spectra is tied to the firing rate of the utilized 
laser (which is 1 kHz in the current ion source coupled to the mass spectrometer). 
Therefore, with simultaneous improvements in the speed of the stage positioning, la-
ser-firing intervals, and the speed of the mass spectra archiving, it should be possible 
to reach the imaging speeds of the current commercial matrix-assisted desorption/ 
ionization mass spectrometers (MALDI). For example, a contribution by (Zavalin et 
al., 2015) reports MALDI TOF MS imaging in the continuous raster mode (stage con-
tinuously moves during data acquisition) at a rate of 40 pixels/second using the 2000 
Hz laser repetition rate and 50 shots per pixel. With such speeds, imaging of the 2*2 
mm area covered with 200 by 200 pixels will result in the acquisition times ~ 16 
minutes. Of course, the imaging quality with such high acquisition rates will be signif-
icantly lower compared to step-wise imaging. However, the lower-quality images of 
the sample can be used to target interesting inclusions in a follow-up high-resolution 
imaging characterization campaign. Such discussion might seem premature due to 
the lack of in-situ sample preparation techniques (i.e., high-quality sample polishing). 
However, available improvements in the acquisition speed should not be discounted. 
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With the current rate of developments in electronics, engineering of precision stages, 
and laser technologies, it is reasonable to expect that in the 10-year horizon, such 
developments can be implemented for in-situ space instruments as well.  

Stable isotope fractionation factors 
Accurate determination of stable isotope patterns is of high interest in 

astrobiological missions since life fractionates a wide range of stable isotopes of 
elements involved in the metabolic pathways. For example, sulfur isotopes are 
known to significantly fractionate in a wide range of metabolic processes (Kaplan & 
Rittenberg, 1964). Carbon isotopes are also known to show significant isotopic 
heterogeneity (Blair et al., 1985), thought, biogenic isotopic signatures can 
overlap, sometimes quite significantly with those of abiotic origin. Additionally, 
stable magnesium isotopes were shown to fractionate between different 
chlorophyll types (Moynier & Fujii, 2017), although not significantly. Therefore, 
identification of the isotope fractionation consistent with known metabolic 
pathways may indicate biological processing. However, in LIMS characterization of 
microscopic inclusions, the limited amount of sample and the instrument's 
limitations can affect the quality of isotope measurements. For example, the small 
molecular compounds formed in the plume can lead to unresolved isobaric 
interferences, limiting the peak abundance quantification capabilities. Another 
possible complication can come in the form of the limited SNR of the investigated 
element isotopes.  

Although accurate isotope ratio calculations are generally hard, they are not 
out of the range of the instrument's capabilities. For instance, a contribution from 
(Tulej et al., 2020) report measurements that demonstrate with the present LIMS 
instrument that element isotope ratios can be measured with accuracy and 
precision at the permille level, exemplified by the analysis of B, Mg, and Ni 
isotopes measured from the trevorite sample. Another contribution from 
(Wiesendanger et al., 2019) reports the development of the spectral scoring 
approach for programmatic selection of highly resolved data. According to the 
quality criteria, the unsupervised selection of mass spectra recorded from the 
trevorite mineral illustrated that isotope ratios could be significantly improved. An 
alternative method improving the quality of mass spectra was proposed by (Tulej 
et al. 2018), addressing the spectral overlap of isobaric masses. The isobaric 
interferences that can commonly occur within specific mass ranges (mostly first 
oxides of abundant species) were reported to be significantly reduced by using the 
double-pulse ionization scheme. Overall, the accurate identification of isotope 
ratios is possible, however, the quality of the output data can differ. 

Characterization of organic compounds using direct laser 
desorption. 

The last group of remaining biosignatures in which LIMS/LDMS can operate 
represents the identification and characterization of pristine organic compounds 
without significant sample preprocessing and assistance of the matrix. As 
presented before, the Laser Desorption Mass Spectrometry operates in the 
significantly lower energy domain, compared to the Laser Ionization Mass 
Spectrometry. The direct desorption of molecules present on the sample's surface 
can be achieved by applying gentle laser irradiations. Hence, the fs-laser beams are 
not particularly suited for desorption studies since they provide more energetic 
radiation and may induce excessive fragmentation of parent molecules in 
comparison to the ns-laser radiations. 
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     As it was reported in (Tulej et al., 2014), a space-ready LIMS/LDMS prototype 
was found to be capable of measuring amino acids, recording the identifiable 
fragmentation patterns. The LDMS measurements require applied laser energies 
to be below the ionization threshold, leading to the regime where ion desorption 
can occur. The increase in the applied laser energies can lead to the increased 
fragmentation of investigated molecules. In general, depending on the laser 
energies, a continuum between ion desorption and complete ionization can be 
observed. The desorption with increased fragmentation smoothly transitions to 
the quasidesorption and finally reaches the ionization regime, where elements 
can experience recombination processes. Therefore an accurate assessment of the 
ionization threshold should be done prior to the desorption measurements. The 
contribution by (Moreno-García et al., 2016) reports the combination of the LIMS 
with LDMS in the characterization of organic constituents incorporated in the 
electrochemical Cu deposits upon growth. Moreover, several other groups report 
on the applicability of LDMS in the structural characterization of organic 
compounds. For example, contributions by (Selliez et al., 2019; Selliez et al., 2020) 
reveal the use of the Lab-CosmOrbitrap instrument in the identification of complex 
organic molecules (tholins). Additionally, a number of authors reported on the 
application of combined LDMS/LIMS systems for space applications (Arevalo Jr et 
al., 2018; Goesmann et al., 2017; Li et al., 2017).  

Concluding remarks 

As demonstrated in the previous chapters and in this section, the integrated 
LIMS/LDMS system provides powerful analytical capabilities that cover 5 out of 6 
groups of potential biosignatures (see Figure 21). Keeping in mind that it is possible 
to combine the LIMS/LDMS measurement results with complementary methods like 
Raman spectroscopy (Veneranda et al., 2020) and utilize data-fusion approaches 
(Manrique-Martinez et al., 2020), the output result can be synergetically strength-
ened. Bringing together scientific results from various scales (combining all 
available context knowledge) and various analytical methods (for example using the 
LIMS data together with Raman analysis (Rull et al., 2017 Astrobiology). can lead to 
descriptive and definitive scientific conclusions on the origin of investigated 
materials.  
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Conclusions 
In summary, this thesis presents the results of analytical work completed on a 

large body of mass spectrometric observations. Overall, more than 200'000 mass 
spectra were recorded and analyzed from the Gunflint chert sample. The data rec-
orded using the miniature time-of-flight mass spectrometer provides the crux of 
unambiguous identification of the bio-organic chemistries registered from the 
Gunflint chert sample. In this thesis, I argue that large-scale mass spectrometric 
observations allow covering the complete range of elemental variations, thus 
identifying bio-organic and inorganic chemistries of the Gunflint sample in a 
deterministic way, deriving the compositional structure solely from intensity values 
of mass peaks extracted from the mass spectra. 

The thesis describes ways of improving the signal quality, including hardware 
modifications and computational approaches, and summarizes future development 
directions. The multi-color fs laser investigations revealed a gradual improvement in 
the quality of mass spectrometric data. The application of the far fs-UV wavelength 
was found to be preferential for the characterization of non-absorptive samples such 
as glasses and cherts, resulting in an equalized ionization efficiencies for heterogene-
ous materials. I also outline the different types of measurements that can be com-
pleted using the LIMS/LDMS system. The varying laser intensities applied to the sam-
ple can lead to the dual characterization of matter, providing the element and isotope 
composition and the structural characterization of bio-organic or inorganic mole-
cules. In the context of space exploration, the broad applicability of the instrument 
makes it a favorable choice for future explorative missions, promising to enhance the 
scientific return. 

Consequently, I've shown computational approaches and methods that can be ap-
plied to other mineralogically complex samples, underpinning the essential data pat-
terns extraction process and improving the throughput of analysis. Application of 
graph-theoretic methods for the characterization of large mass spectrometric data 
uncovers natural clusters and groups of spectra. It also allows the formation of new 
secondary measures to be defined for specific compounds (i.e., carbon centralities for 
bio-organic inclusions) that arise from the structure of mass spectrometric networks. 
Proposed methods increase interpretability and speed of knowledge extraction, al-
lowing the accurate identification of minerals and compounds. By mapping the com-
plete shape of chemical compositions present in the Gunflint microfossils, it was 
shown that it is possible to build binary machine learning models that can be applied 
to identify bio-organic chemistries from other Precambrian cherts.  

Overall, I believe that LIMS as a solid samples characterization technology best 
accounts for the needs of planetary space exploration and offers a promising solution 
for investigating chemical compositions of extraterrestrial bodies, whether it be an 
investigation of the lunar surface or Martian exploration program.  
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PCA – Principal Components Analysis 
ppm – part per million 
Pyr-GC-MS – Pyrolysis-Gas Chromatography Mass Spectrometry 
REE – Rare Earth Elements 
RSC – Relative Sensitivity Coefficient 
SGF – Savitzky–Golay filter 
SIMS – Secondary Ion Mass Spectrometry 
SNR – Signal to Noise Ration 
SVD – Singular Value Decomposition 
TDA -Topological Data Analysis 
TOF – Time Of Flight 
 t-SNE – T-Distributed Stochastic Neighbors Embedding 
UMAP – Uniform Manifold Approximation and Projection 
UV – Ultraviolet 
WMCA – Weighed Mass Correlation Analysis 
𝑘𝑘-NN – 𝑘𝑘 Nearest Neighbor 
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Scope of the study 

The current state of in-situ space exploration requires new measurement techniques and novel 
analytical approaches to identify extinct or extant life on Mars. In this contribution, we demonstrate that 
laser (fs UV) ablation ionization time-of-flight mass spectrometry (UVLA-TOF-MS or LIMS) provides a 
highly sensitive (ppm level), high spatial resolution (4-10 µm), and high-speed analysis (10−3 s/ single 
laser shot spectrum) analysis of micrometer-sized objects, thus providing the necessary tool for in-situ 
exploration of the Red Planet and beyond. The LIMS measurements performed on the 1.88 Ga Gunflint 
sample reveals the capacity to identify the multielement composition of individual microfossils and to 
perform mass-spectrometric imaging, providing µm-spatially-resolved chemical analysis. Large-scale 
spectral sampling (>60k spectra) from the Gunflint microfossils and host mineral identified empirical 
biosignatures, defined for Gunflint-like microfossils embedded in silicified matrices. We also demonstrate 
that it is possible to create a machine learning solution that might aid in-situ analysis of samples on 
planetary surfaces. Additionally, we implemented a weighted mass correlation network analysis into the 
LIMS data processing routine to aid the identification of micro- to nano-scale mineralization present within 
the bodies of microfossils.  

LIMS microprobe 

A miniature time-of-flight mass 
spectrometer developed at the University of 
Bern has small dimensions: Ø 60 mm × 160 
mm, which makes it suitable for space 
exploration programs as part of the lander or 
rover (1-3). In the current laboratory 
setup, a mass spectrometer is 
accompanied by an integrated 
microscopy system (4) and a femtosecond 
UV-258 nm ionization source. The instrument 
is designed to have spatial molecular (5, 6), 
element, and isotope (7, 8) mapping 
capabilities of solid samples. A picture of 
the instrument located inside of the vacuum 
chamber is shown in fig. S1. Multicolor LED 
vacuum compatible illumination system could 
be seen above the XYZ translation stage. On the 
backside of the picture, a miniature LIMS mass 
analyzer could be noted.  

Fig.S1. Integrated LIMS system with microscope 
and XYZ translation stage inside of the vacuum 
chamber. 
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Fig. S2. Schematics of femtosecond laser light transmission and subsequent mass spectrometric 
analysis of ablated positive ions with LIMS. UV-258 nm ablation occurs by guiding the appropriate 
wavelength to the beam guiding line and periscope system. (Astrobiology, 2020, Lukmanov et al. – in 
review). 

Schematics of light generation and transmission to the sample surface illustrated in figure S2. The 
sample positioning and control of the laser system is achieved by using in-house made software. The 
vacuum inside of the chamber is maintained around 10-7 mBar, allowing a direct transfer of generated ions 
to the mass analyzer. A combination of the molecular turbo-pump and an ion getter pump is used to 
maintain the nominal pressure. The fs UV-258 nm beam is focused by a doublet lens, guided through the 
mass spectrometer, and projected on the surface of the sample. The entrance of the mass spectrometer is 
located in close proximity to the sample (100 ~ 200 µm), which allows direct coupling of ions with the mass 
spectrometer. The focused laser beam forms an ablation spot on the surface of the sample (with a diameter 
of about 4–10 μm for UV-258 nm, see fig. S3). Ions from the ablated plume are confined, focused, 
accelerated, and transferred to the field-free area of the mass spectrometer (drift tube), where ions 
experience mass per charge separation. After passing through an ion mirror, ions hit the chevron type ring-
MCP detector. From the initial ion cloud, only positively charged species enter the mass analyzer, as it is 
shown in fig. S2. The time-of-flight spectrum is obtained by collecting current from the atomic and 
molecular ion signals, amplified by the microchannel plate detector (MCP), and recorded with a digitizer 
as a function of signal arrival time. The output current is measured as electrons*ns-1. The time-of-flight 
spectrum is converted to a mass spectrum with a simple fit equation m=a(t+b)2, where m is the mass unit, 
t the arrival time, and a and b instrument dependent fit constants.   

In the current setup, our system utilizes a multi-anode MCP detector system coupled with a fast 
acquisition system (9). Such modification of the detector allows collecting twice as much data with a 
reduced probability of detector saturation, thus providing better detection limits and record more 
stoichiometric signal (current from different parts of the detector digitized separately). Data acquisition 
occurs by the simultaneous recording of the signal from two anode rings on the MCP detector. PXI3 and 
PXI5 high-resolution digitizers from Agilent technologies provide 3.2 GS*s-1 sampling rate resulting in a ~ 
0.3 ns sampling resolution. Control of ion-optical voltages, as well as translation stage positioning, are 
achieved with in-house made software. All collected data from the control PC are saved on the storage PC 
for post-processing and data analysis. All internal network connections are made with optic fiber cables to 
increase data transmission bandwidth. 
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LIMS data acquisition – MSI and depth profiling 

The details about our system and data acquisition routine are published in a number of previous 
publications - (1, 3, 10-13). Only a brief description will be given here. A broad overview of the LIMS as an 
analytical method recently has been published and could be found here - (14). Our instrument represents 
a time-of-flight variation of LIMS.  

Our LIMS instrument provides a point-analysis by recording a time-of-flight spectrum of positively 
charged species present in the ablation plume. By combining multiple points from the surface of the sample 
we could derive an image of the given mass by extracting peak intensities from specific time-of-flight 
windows.  

Fig S3. Optical images of the Gunflint chert thin section after imaging campaign. A) Panoramic picture 
of the Gunflint thin section sample with a designated location of the area chosen for the imaging. B) Image 
of the area after the imaging campaign. C) Close-up image of the single craters acquired during the mapping. 
D) Close up image of the corner of MSI area.

Fig. S3-A shows the Gunflint sample after the imaging campaign. The diameters of the craters are
shown in figure S3-C. Most of the craters, formed with a fs UV laser, have a diameter of 4-5 micrometers. As 
it could be seen from figures S3-C and S4, the chosen gap (10 µm) between craters could be doubled without 
any analytical interference (overlapping of the craters). With our current setup, it is possible to improve 
the gap between craters down to 1 micrometer by programmatically forcing the stage to move to the 
absolute positions, so it is possible to reach a LIMS resolution that comes close to the resolution of our 
internal microscope (4) (1 micrometer). However, high-resolution imaging will increase the output of the 
data by the same factor. An example of the craters acquired during the MSI campaign could be seen in figs. 
S4 and S5. As it could be seen from figs. S4 and S5, the diameter of individual craters are comparable with 
sizes of individual microfossils. The diameter of individual craters is roughly equated to 4 micrometers (see 
fig. S4), which is well suited for the characterization of individual microfossils. In fig S4, one could note the 
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presence of spherical microfossil, which is highlighted with a black arrow.  In figure S5, another type of 
lenticular microfossils is highlighted with the black arrow in comparison to the size of the individual 
craters. One could also note that most microfossils are embedded within the silicified matrix, as pictured 
in figure 1 in the main text.   

Fig S4. Close-up image of the single craters acquired from the Gunflint sample after the mapping 
campaign. The black arrow indicates location of the single microfossil embedded inside the host mineral. 
Red arrows indicate the diameter of ablation spots (4-5 µm). Scale bar 10 µm. 
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Fig S5. Close-up image of the single fs UV-258 nm craters and individual microfossils from the 
Gunflint chert sample. Note comparable sizes of LIMS ablation craters and lenticular microfossils 

highlighted with black arrows. Scale bar – 10 micrometers. 

Fig S6. AFM images of the craters acquired from the imaging campaign. Left - AFM measurements of 
the z-axis. Right – Phase modification scan over the same area as in the picture on the left. See fig.S4 to 
compare with images of the same craters acquired with an optical microscope. 
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The imaging campaign was performed as a sequence of two separate scans over the same area (figs. 
S3-A and S3-B, S4, S5). The imaging results presented in the main text in fig.2 are calculated from the first 
scan, which consists of 200 individual fs laser shots applied to the single location on the surface of the 
sample. After the first scan, we applied additional 2200 single shots to gain even more statistics over the 
same craters. Due to the failure of the power attenuators controlling the laser power output, this scan was 
discarded from the analysis. The final craters shown in figs. S3, S4, and S5 are made with 2400 single laser 
shots (sum of two campaigns) and indicate a very shallow ablation of material from the quartz matrix of 
the sample. For example, fig. S6 (left)  presents an AFM z-scan over the same area, where we could not 
measure any craters from the imaging campaign. Craters from the same area could be visualized only in 
the phase imaging mode (see fig. S6 - right), which indicates that 2400 applied laser shots only modified 
the surface roughness without actually creating any measurable craters. Laser pulses with an energy of 
0.36 µJ per pulse (transmission corrected) were applied to the surface to ablate and ionize material. As it 
could be seen from figs.S6,7,8,9, and 12, applied laser pulse energies were enough to register an intense 
signal from a very little amount of analyte material. Our previous studies show that LIMS measurements 
could provide a femto to picogram level analysis in a single laser shot mode (12), which makes it very 
sensitive to the local enrichments and surface chemistry. An example of a spectrum acquired from the 
surface could be found in fig S12, and an example of spectra from the Gunflint subsurface provided in fig 4 
in the main text.  

High sensitivity, combined with the high-throughput acquisition, makes LIMS an attractive analytical 
method for the analysis of solids on planetary surfaces. The LIMS delivers a capability to probe microscopic 
inclusions and even to resolve some isobaric interferences by utilizing depth profiling. For example, 
hydrocarbons present at the surface spectra are partially eliminated by the acquisition of spectra recorded 
from the subsurface of the sample, where diameter of the analytical spot is rapidly decreasing (see fig.S11), 
thus providing even finer analysis of embedded inclusions. However, even in the case of the presence of 
isobaric input, it is possible to extract a significant amount of information. Figures S7, S8, and S9 illustrate 
the distribution of 11B, 40Ca, 39K isotopes. Boron distribution pattern reflects the sedimentation pattern 
(from the upper-right corner to the lower-left corner) and shows a decrease of the boron supply after the 
appearance of the microfossils. Such dependencies might reflect the dynamics of the chemical system and 
represent a secondary biological phenomenon.  

Fig S7. MSI of 11B. The spatial 
distribution of B indicates a 
gradual decrease of B supply 
after the appearance of the 
microfossil community.  
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Individual crater from the depth profiling campaign 

We studied the morphology and topography of the fs-UV-258 nm craters from the depth profiling 
campaign using atomic force microscopy (AFM). Results of the AFM measurements of the crater acquired 
from the host area shown in fig S8. As it could be seen from the figure, crater is relatively shallow (4 
micrometers), and has a 10-micrometer wide diameter. 

Fig S8. AFM z-scan image of the single crater acquired from the depth profiling campaign. To compare 
AFM measurements with an optical image of the same crater, see fig. 3A in the main text.   

Fig S9. 3D AFM z-scan image of 
the single crater acquired from 
the depth profiling campaign. 
To compare AFM 
measurements with an optical 
image of the same crater, see fig. 
3A in the main text and fig S8 
(planar view).  

In total, 500'000 single laser shots have been applied to the same location to aquire a crater presented 
in these figures. The crater measured with an AFM probe reveals the presence of conical crater with a 10 
µm diameter. The depth of the craters most likly exceeds 4 µm and goes as deep as 20-28 µm. The estimated 
thickness of the thin-section is 30 µm, and according to the analysis of the LIMS depth profiles, the laser 
never went through the sample.  

Identification of the true depths of the craters with an AFM probe was not possible since tip of the AFM 
probe was found to be too thick to resolve the true depth of the craters. Laser interferometry 
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measurements performed on the same craters also have not provided a satisfying estimate of the crater's 
depths since the Gunflint samples surface is not reflective enough and often produces artefactual 
measurements (interferometers laser passes through the sample and measure the topography of the 
bottom of the sample) for a green and red lasers provided with an interferometer.  

Among the advantages of LIMS imaging is the possibility to image the distribution of virtually every 
element in the periodic table in a single run, since mass analyzer cover masses up to 1000 m/q and does 
not discriminate masses. However, as it was mentioned before, surface chemistry might affect MSI results. 
Fig. S10 depicts the spectra registered from the surface of the sample. Due to the isobaric input of CH chains, 
abundances of minor elements are masked. The spectrum depicted in fig.S10 reflects the chemical 
composition of the chert (quartz), microfossil (kerogen), metallic inclusion associated with the microfossil 
(intense Cr, Cu), and modern organic material present at the surface. From our observations, the 
composition of H/C to O/C ratios of the surface layers mostly corresponds to the lipidic profile. Thus, 
providing a piece of evidence that the contamination is registered from the fingerprint. However, other 
potential sources of contamination are possible, i.e., organic glue residue from the thin-section preparation 
process. Additionally, it is possible to improve the future imaging results by removing the uppermost layer 
of the surface by using the Ar+ ion gun implemented in our LIMS lab. 

Fig S10. The mass spectrum registered from the surface of the sample. Hydrocarbons and Si oxides 
could be observed within the mass range from 36 to 160 amu. 

Data processing and workflow 

Fig. S11 depicts the data processing workflow used in this contribution. As it was mentioned in the 
main text, a depth profiling campaign was performed with the intention to remove layers contaminated 
with modern organic material and assess the original chemical composition of the microfossils. Due to the 
size of the microfossils (5-10 micrometer in length and nm scale thickness) (see the sketch in the main text 
– fig.1), microfossils embedded within the quartz matrix will be sparsely sampled. In an attempt to
overcome this problem, we recorded more spots (nine depth profiles) from the microfossils-rich area and
six spots (depth profiles) from the host area. As mentioned earlier, due to the specifications of our detector
system, we can collect two spectra from the same laser shot on two high-speed digitizers - PXI3 and PXI5
(recording 64000 points per spectrum). The full amount of data recorded from the Gunflint sample resulted
in 77'000 spectra from the depth profiling and 30'000 for the imaging campaign, making it 107'000 spectra
in total.

Each of the presented peaks presented in fig. S10 has been integrated using corresponding time-of-
flight windows. Details of integration procedure and spectra processing could be found here - (10); 
information about our laser and detector system - (9, 15) and integrated microscopy system - (4). 

Using the in-house made software (10), we assigned mass scales to the acquired spectra and performed 
peak intensity extraction from 182 separate masses. Retrieved intensities from the same measurements 
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are summed and log-transformed. Each measured spectra assigned with an index of the depth location and 
class of the measurement, depending on which location depth profile was recorded (host/microfossils). 
Figure S11 presents a diagram of the data analysis pipeline. The first 500 spectra from the surface (data 
identified as surface contamination) were removed from the calculation of PCA scores, van Krevelen ratios, 
and classification models  

Since it was identified from the LIMS imaging campaign that carbon is the main tracer of the 
microfossils, the whole spectral dataset collected from the microfossil-rich location was filtered on carbon 
intensities. To remove all spectra that belong to the quartz within the microfossil dataset and leave only 
spectra from the microfossils, we used the carbon threshold on 5.8 log10 el/ns level (see further details in 
the machine learning section). PCA values shown in fig. 7 (main text) were calculated from the z-scores of 
the retrieved intensities using correlation matrix and unstandardized scores. Variance showed in the PCA-
2 (vertical axis) mainly reflects the carbon enrichment within the microfossils bodies, whereas PCA-1 
variance mainly reflects the total intensity of the spectrum. As shown in Figure 9 (main text), the host 
mineral could be characterized with less variance and more uniform spectral features. The microfossils, on 
the other hand, are more diverse in PCA terms and spread within a larger area, which was interpreted as a 
sign of the chemical diversity of the microfossils. A similar pattern could be observed within the van 
Krevelen ratios (fig.7, main text), where host mineral measurements reveal a uniform distribution, whereas 
the ratios calculated from the microfossils are more diverse and reflects different mixing ratios with the 
quartz mineral and largely overlap in the middle area of the plot.  

The 28Si/16O and 28Si/1H ratios were calculated from the host location dataset to subtract the isobaric 
interferences from the inorganic media present in the spectra measured from the microfossils. Statistical 
mode values within each of these distributions were chosen as representative ratios for the quartz mineral. 
Since the 28Si mass peak is free of any interferences, peak intensities for 16O and 1H in microfossils have 
been recalculated using mode values of quartz mineral by subtracting mass peak intensities measured at 
the host from the intensities of the same isotopes, measured at the microfossils. 
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Fig S11. Data processing workflow. 
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Weighted mass correlation network analysis 

Laser ionization mass spectrometry is a sensitive and quantitative method (3) that often produces 
spectra with complex chemical composition that might reflect the composition of the micrometer and even 
nanometer inclusions in a bulk of the sample. With an unknown sample, it might be challenging to assign 
specific masses to a given compound since it might represent a mixture of different minerals or a single 
complex mineralogical entity.  

The ion yield from any given mineral registered with LIMS is a function of the chemical composition of 
the analyzed mineral with additional contribution from the ablation and ionization processes and local 
inhomogeneity of the sample. These instabilities form slightly different yields; however, on a larger scale, 
they form a linear pairwise dependency (see fig. S12-A) with a slope that determines their mixing ratio. If 
analyzed material within the diameter of the laser spot contains a few mineralogical inclusions, they should 
form a separate set of covariances. Thus, distinct mineralogical inclusions can be identified by scoring the 
pairwise linear correlation factors.  

The relationship between measured LIMS mass/mass intensity values could be defined as the Pearson 
correlation coefficient: 

Where each variable (A, B) has N scalar observations (number of spectra), where  µ𝐴𝐴   and  𝜎𝜎𝐴𝐴   are the 
mean and standard deviation of A (mass A) and µ𝐵𝐵 and 𝜎𝜎𝐵𝐵 are the mean and standard deviation of B (mass 
B).  

A dataset of pairwise correlation factors could be used to form the graph: 

G [𝜌𝜌 > 0.4] = (𝑉𝑉, 𝐸𝐸); 
Where  𝐺𝐺  is a graph,  𝑉𝑉 are the vertexes in the graph, and E  pairwise edges between vertexes weighted 

as ρ(A, B), and ρ set to the specific threshold, to remove the clutter of insignificant correlation factors from 
the graph. In this study, we used the hard ρ threshold; however, soft (power) thresholds can be applied as 
well. The graph has a random initialization and should form mineral-specific topology as a 𝑓𝑓(ρ) after 
implementation of the force-directed layout. Opensource graph drawing platforms Gephi and Cytoscape 
have been used to draw graphs.  

There is a set of specific features that are needed to be checked before the correlation analysis. Firstly, 
we need to know that integrated masses correspond to the particular m/q assigned to the time-of-flight 
(TOF) window. For example, metastable molecules (molecules falling apart on the way to the detector) 
that form broad features might interfere with neighboring masses, creating artefactual detection. Secondly, 
a high mass resolution is required to integrate masses from strictly defined TOF windows. Furthermore, 
the signal registered from the background needs to be gaussian. Otherwise, all of the integrated masses will 
reveal relatively high covariance, determined by the oscillation modes of the baseline. The spectral 
resolution and ion yield stability, in our case, has been improved by using a fs UV-258 nm laser 
ablation/ionization and careful tunning of the ion-optical setup of the mass analyzer.  

ρ(𝐴𝐴, 𝐵𝐵) = 1
𝑁𝑁−1

∑ �𝐴𝐴𝑖𝑖−µ𝐴𝐴
𝜎𝜎𝐴𝐴

� ∗ �𝐵𝐵𝑖𝑖−µ𝐵𝐵
𝜎𝜎𝐵𝐵

�𝑁𝑁
𝑖𝑖=1
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Fig S12-A. Schematic illustration of Si 
isotope correlation factors used as 
weights in weighted mass correlation 
network analysis.  

The quality of the Si ion yield could be observed in fig. S12-A. A linear dependency registered from host 
location (quartz) for all Si isotopes, with enhanced scatter present in low-intensity spectra. These 
uncertainties could be mainly attributed to the contribution of noise. In principle, by histogramming more 
single-shot spectra, the quality of the ratios should grow proportionately. A second spectral feature that 
might affect the quality of the mass to mass ratios is an electronic ringing (unwanted oscillations of a 
voltage) caused by the impedance imperfections in the signal transmission line. The sketch provided in the 
lower part of fig. S12-A shows an embedding of Si isotope relationships, where nodes represent a single 
unit masses, and edges connecting each node are weighted according to the pairwise correlation factors.  

Fig S12-B. Correlation network of 
elements present at the host location. 
ρ>0.4 used for the construction of the 
network. Thicker lines represent a 
higher correlation factor. Left-top nodes 
represent weakly connected impurities. 

The useful feature of the Pearson 
correlation networks is that it is possible 
to use it for data mining purposes on 
large spectral datasets since Pearson ρ is 
sensitive to the outliers. Due to the 
gaussian character of the measured 
background intensities, covariance 
between two backgrounds (see the white 
area in fig. S15) reveal a correlation close 
to zero. However, if a few spectra among 

other thousands of measured spectra have an intense peak – the ρ value will reflect that change. The effect 
of that could be observed in fig. S13 (see the upper left nodes). Doubly charged O, Ca, and Mg could be 
observed within the host location. From the depth profile of this location, it is clear that these elements are 
weakly present in the depth profile (they appear only in a few spectra within specific depths) and represent 
an impurity within diagenetic quartz. In the case of simple averaging of the spectra, we would likely lose 
such fine information from the output spectra. To compare ρ values from the microfossil-containing spots, 
see fig. S14.  
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Modularity (Q) used in this contribution to separate clusters (communities) estimates the density of 
links inside communities compared to links between communities. Essentially it is just a measure of how 
many connections (edges) are between nodes within the group compared to other groups. In LIMS data, 
isotopes and molecules from the same minerals form a more tightly bounded group of nodes, representing 
a separate entity (Fig. S14). Micro- and nano- mineralization present within microfossil bodies embedded 
in a matrix form a complex time-of-flight spectrum, which is not always easy to decipher (i.e., figs. 4B, 4C 
in the main text). However, we know that they should form appropriate structure and density of links 
between nodes by using pairwise correlation factors. To divide the calculated networks into separate 
modules, we used a Louvain modularity score (16), which was developed for the analysis of large networks, 
though, it works well with small networks as well (>100 nodes).  

Fig S13. Visualization of the full feature space registered 
from the host location. Matrix represents hierarchically 
clustered values of mass-to-mass correlations (182 m/q in 
total) from the depth profile acquired from the host 
location. A single correlated entity could be observed, 
which corresponds to the diagenetic quartz. 

The same information as in figs. 4-A and S12-B, could be 
visualized as a symmetric matrix and clustered using a 
hierarchical biclustering algorithm. Fig. S13 shows full 
feature space recorded from the depth profile acquired 
from the host location (2250 individual mass spectra) and 
corresponds to the spectrum in Fig. 4-A. Note that masses 
are indexed in an ascending manner (#m/q) and do not 

represent their actual m/q values.  The data shown in fig S13 reveal a single correlated entity (quartz) with 
a gradual decrease of ρ values (from the heavy Si oxides due to their irregular formation pattern). The same 
results are acquired with the clustering of nodes using force-directed layouts (17) (see fig S12-B).   

Fig S14. Visualization of the full feature space 
registered from the microfossil. Hierarchically 
clustered matrix of mass-to-mass correlations (182 m/
q in total) from the depth profile acquired from the 
microfossil-rich location (Fig. 4 middle panel, location X, 
and Fig.5B). Two entities could be observed from the 
matrix, which are corresponds to the individual 
microfossil and quartz. 
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Machine learning results 

In-situ space research is usually constrained in the amount of data that could be sent back to the Earth. 
However, modern high-throughput instruments are capable of creating relatively large datasets in a short 
amount of time. One of the possible approaches to deal with that is the initial data preprocessing and 
classification onsite. With the recent progress in machine learning (ML) and automated classification, it is 
possible to create deployable solutions that might perform classification tasks in real-time. For example, 
LIMS spectra acquired from the surface of the sample might be checked for the presence of biosignatures 
by comparing to the spectral datasets acquired from the "model" terrestrial microfossils. As "model" 
terrestrial microfossils, we can use samples with proven biogenicity, thus providing a targeted analysis of 
spectra of interest. Another application of ML models might be used in the searches of early life on Earth, 
where often, morphological features can be destroyed, but chemical composition might be preserved 
within small inclusions. The chemical fingerprints might still be identifiable with sensitive instruments, 
providing an additional line of evidence towards establishing the biogenicity of the sample.  

We used MATLAB machine learning presets to score different classification models and identify the 
best-performing ones. Results of the scoring of ML models are illustrated in Table S1. The individual mass 
intensities retrieved from the mass spectra (from the depth profiling campaign) were combined with the 
ratios (1H/12C, 16O/12C, 39K/23Na, 40Ca/24Mg, 27Al/28Si, SiO(44 m/q)/28Si, 52Cr/55Mn, 32S/54Fe, 19F/12C, 
39K23Na/40Ca24Mg, 1H12C/16O12C, 28Si/12C, 28Si/23Na) and two synthetic features – geometrical and 
arithmetic mean values of the light masses (from 1 to 74 m/q), and in total, it allowed us to form a dataset 
with 196 variables. Spectra collected from the microfossils rich region were filtered on the carbon 
intensities to remove the data corresponding to the matrix (quartz). Additionally, observations from both 
regions (microfossils and host area) were filtered to the depth region 500-2500, to remove the contribution 
from the surface. The primary working dataset, dataset #1 (left column in table S1), were filtered on 5.8 
log10 el/ns intensity value (leaving only intense C signal from the spectra recorded from the microfossils 
region), which is slightly higher than the noise signal, and formed a spectral databank with 13454 spectra, 
where 1454 spectra are registered from the microfossils region and 12000 spectra are recorded from the 
host mineral. Dataset #2 was filtered on 6 log10 el/ns Carbon threshold (right column in table S1) and 
formed a spectral dataset with 12863 spectra, where 863 spectra are registered from the microfossils 
region (dataset #2 were used in PCA calculation (fig. 9), and ML scoring (table S1)). Further, all intensities 
and ratios have been log-transformed and z-score standardized.  

As it could be seen from table S1, both datasets are performed very well (around 99%), and most of 
the misclassifications of microfossils are attributed to the low carbon intensity spectra, which are 
overlapping with the measurements from the host area. Visual assessment of the dataset and complexity 
of the classification task could be done by examining the PCA score shown in fig. 9 in the main text and Fig. 
S15 and S16. The ML modeling of the slightly overlapping datasets allowed learning true separation 
boundaries between the intensity values within different classes. To ensure that models do not overfit the 
data, we implemented five-fold cross-validation. Additionally, a Bayesian optimization (scoring the same 
model with different learning parameters) has been implemented to search through the hyperparameter 
space. After the optimization, adaptive boosting revealed the best score within both datasets, successfully 
classifying 98.8% and 99.7% of spectra.  Overall, 19012 unique borderlines between different sets of mass 
and ratio pairs are used to create a multidimensional intensity-based classification model. To aid the 
interpretation of ML models, we calculated a volumetric binary PCA cube shown in Fig. S15 and S16.  
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Table S1. Performance of the classification models. 
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Fig S15. Visualization of 
the separation boundary 
between two classes – 
microfossils (red) and quartz 
matrix (blue) calculated on 

three principal components by using an inverse distance volumetric interpolation (view of the 
microfossils spectra). White areas under the curve represent the uncertainty of the class 
assignment. Blue area and blue nodes represent the PCA embedding of LIMS spectra acquired from 
the host area (quartz mineral). Red area and red nodes represent spectra measured from the 
microfossils.  

Fig S16. Visualization of 
the separation boundary 
between two classes – 
microfossils (red) and 
quartz matrix (blue) 

calculated on three principal components by using an inverse distance volumetric interpolation 
(view of the host spectra). White areas under the curve represent the uncertainty of the class 
assignment.  Blue area and blue nodes represent the LIMS spectra acquired from the host area 
(quartz mineral). Red area and red nodes represent spectra measured from the microfossils.  
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Fig S17. Minimum classification error change using the 30-step Bayesian optimization. 

Fig S18. The classification quality of the best performing ensemble model. ROC curve and corresponding 
AUC value are very close to the perfect classifier. Log scale ROC curve presented on the left 

panel indicates the small discrepancy from the perfect model. 
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Fig S19. Classification quality of the best-performing model using different metrics. Upper panel – 
True positive rates (TPR) and false-negative rates (FNR). Lower panel – Positive predictive values (PPV) 
and False discovery rates (FDR).  

Figure S17 shows the change of the classification error in different models using the Bayesian 
optimization procedure. The 30 step search was performed to find the optimal number of learners, 
predictors and number of splits. The hyperparameter search range included five ensemble methods – Bag, 
GentleBoost, LogitBoost, AdaBoost, and RusBoost. The search for the optimal number of learners was 
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conducted in the range from 10 to 500. The learning rate was probed in the range from 0,001 to 1. And 
lastly, the varying number of predictors was sampled from 1 to 196. The best-performing model revealed 
an average accuracy of 99.7% (see table S1). The search and optimization time on the personal laptop (i7 
CPU) using five parallel workers resulted in 16 minutes. The lowest error values in fig. S17 indicates the 
best performing set of hyperparameters. The blue line shown on the plot indicates the minimum 
classification error that was observed during the search campaign. The light blue line indicates the 
calculated error of classification, the spread between two values (dark and light blue) indicates divergence 
of the error from the optimal model. One can see that local minimum found by the optimizer in the 
beginning, is persistent and present in 9 models out of 30 and likely represent a global minimum of the 
classification error. Thus, the ML model indicated with the red square represents the best-performing one. 

The corresponding ROC curve and AUC values for the best-performing model are shown in fig. S18. The 
linear scale ROC curve indicates that overall performance is very close to the perfect classifier. However, 
the log scale ROC curve (right panel in fig. S18) suggests the presence of classification errors. Figure S19, 
the upper panel, shows accuracy of the model using true positive rate metric (TPR) - also referred as 
sensitivity or recall. This parameter is used to measure the percentage of actual positives, which are 
correctly identified. The overall performance of the model is over 99% for both classes – microfossils 
(99.8%) and host mineral (99.6%). The lower panel shows the PPV and FDR values. The FDR is the 
proportion of incorrectly classified observations per predicted class, whereas PPV is the proportion of 
correctly classified observations per predicted class. The results of the scoring indicate that false discovery 
rate for the fossils is larger than for the host mineral. The false discovery rate for fossils was found to be 
4.8%, whereas FDR for the host mineral is 0. The discrepancies in the FDR values can be attributed to the 
unequal sampling rate of the classes. Thus, the classification model performance in FDR terms can be 
improved by increasing the sample rate of the microfossils.     

Fig S20. ML model predictions visualized using the parallel coordinates for selected isotope 
intensities. 

Figure S20 shows the model predictions using the standardized isotope intensity distributions from 
two classes. The intensities from the microfossils are colored with blue lines. Intensity values from the host 
mineral are colored with the red line. The dashed line and crosses indicate the erroneous predictions of the 
model. As one can see, 12C mass line intensities show the best separability, followed by 28Si, 39K, 40Ca, and 
63Cu. The 1H line shows significant overlap between classes. The 196 predictors in total were used to train 
the classifier.  
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Outlook 

In this contribution, capability of the LIMS microprobe to detect and characterize two billion years old 
microfossils preserved in the silicified matrix were assessed. Further work will be required to collect an 
even higher statistic on the Gunflint microfossils to see if any pronounced chemically distinct types of 
microfossils are present within the Gunflint microbiome and with which particular morphology they are 
associated. Mass spectrometric imaging was found to be a handy tool in the visualization of the distribution 
of various microfossils on the surface of the sample. However, further work will be required to implement 
Ar+ sputtering or other methods of surface conditioning to ensure that modern organics will be removed 
from the surface and will not affect the imaging results. In general, the elemental composition of the 
microfossils from any silicified matrices should be located in the close neighborhood to the spectra 
acquired from the Gunflint microfossils. Nevertheless, the chemical composition of other Precambrian 
microfossils from silicified matrices needs to be assessed to understand how representative are the spectra 
acquired from the Gunflint microfossils in respect to other formations and which part of the chemical 
variance they cover. Future work will be required to assess the capability of LIMS in combination with the 
LD-MS (Laser Desorption Mass Spectrometry) in the identification and characterization of organic remains 
from complex matrices and their difference from the Fischer-Tropsch-Type (FTT) synthesis products.  
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    In order to check that cluster assignments are not artifactual (see Fig.5 in the main text), we performed a 
clustering robustness analysis. The Rand Index (RI) metric was used to assess the clustering similarity 
between 10 random subsamples of the data registered from microfossils. In total, 75% of the data was used to 
generate random subsamples. The output UMAP subsamples were clustered using the Louvain community 
detection algorithm. The RI similarity matrix for Louvain clustering of random samples could be found in the 
supplementary information (see Table S1 and Fig. S3). Overall, 45 different clustering pairs revealed an 
average RI score of 92.5% with a standard deviation of 2%, which indicates that communities shown in Fig. 5 
are not artefactual and that the cluster assignments are robust. Most of the clustering uncertainty can be 
attributed to the transition zone between two types of microfossils. The type-2 microfossils reveal more 
inhomogeneity (see Figs.S1 and S2) in comparison to the type-1 microfossils and represent more intermixed 
with the host mineral material.

220



Subsample-1

Subsample-2

Figure S1. The Mapper networks constructed from subsampled data, shaped 

(1473, 6) and using lens shaped (1473, 3) - 75% of original data

Number of filter cubes = 20, percent of overlap = 0.5

UMAP projection dimensions - 0, 1, 2

Clusterer - DBSCAN (epsilon = 25, minimal number of samples = 8, metric = 'cosine')

Subsample-3

Subsample-4

Subsample-5

Subsample-6

Subsample-7

Subsample-8

Subsample-9

Subsample-10
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Figure S2. Exemplary Louvain clustering of random subsamples. 

The type-1 microfossils (grey nodes) reveal stable clustering results. Whereas, 

type-2 microfossils (red nodes) show an increased level of inhomogeneity. 

Node sizes are scaled according to the nodal degree. 
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Samples Subsample1 Subsample2 Subsample3 Subsample4 Subsample5 Subsample6 Subsample7 Subsample8 Subsample9 Subsample10

Subsample1 1.000 0.941 0.920 0.957 0.909 0.956 0.934 0.942 0.938 0.955

Subsample2 0.941 1.000 0.902 0.934 0.918 0.943 0.933 0.906 0.920 0.919

Subsample3 0.920 0.902 1.000 0.926 0.871 0.923 0.892 0.929 0.913 0.926

Subsample4 0.957 0.934 0.926 1.000 0.901 0.932 0.937 0.959 0.935 0.972

Subsample5 0.909 0.918 0.871 0.901 1.000 0.913 0.910 0.875 0.907 0.907

Subsample6 0.956 0.943 0.923 0.932 0.913 1.000 0.920 0.912 0.939 0.925

Subsample7 0.934 0.933 0.892 0.937 0.910 0.920 1.000 0.924 0.920 0.926

Subsample8 0.942 0.906 0.929 0.959 0.875 0.912 0.924 1.000 0.913 0.966

Subsample9 0.938 0.920 0.913 0.935 0.907 0.939 0.920 0.913 1.000 0.926

Subsample10 0.955 0.919 0.926 0.972 0.907 0.925 0.926 0.966 0.926 1.000

Rand Index

0.86 0.88 0.90 0.92 0.94 0.96 0.98
0

2

4

6

8

10

12

14

C
o

u
n

t

Louvain Rand Score

Mean	RI	-	0.925

Table S1. Rand Index (RI) scores calculated for Louvain 
clustering of random subsamples (1473 mass spectra 
or 75% of original data). Minimal number of samples 
for DBSCAN clusterer were set to 1 to avoid unequal 
sampling. Majority of the RI values are above 0.9. 

Figure S3. Distribution of the RI scores. 
Mean value equals to 0.925 (derived from 45 
observations). Standard deviation - 0,02. Maximum 
value - 0.97; Minimum value - 0.87. Distribution 
indicates robust clustering results. 
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