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Abstract
A study of Bosonic and Fermionic Theories at Large Charge

by Ioannis Kalogerakis

The aim of this thesis is to systematically and consistently study strongly coupled bosonic and
fermionic conformal field theories using the large quantum number expansion. The idea behind it is to
study sectors of conformal field theories that are characterised by large quantum numbers under global
symmetries. In this limit, the conformal field theories, even if they initially were strongly coupled and
interacting, can now be written in terms of an effective field theory that is weakly coupled. Some
common effective field theories that appear in the literature are the bosonic conformal superfluid and
the Fermi sphere, condensed matter systems characterised by a high particle density, making the study
of such systems a cross-disciplinary matter.

In the first part of the thesis, we start by reviewing concepts of quantum field theories, conformal
field theories and of the large charge expansion that are essential for the subsequent chapters.

The second part of the thesis is devoted to the analysis of the O(2) vector model in the large charge
expansion, where we start by reviewing the classical treatment of the model, and we continue by ex-
amining its quantum behaviour. Following that, we compute three and four-point correlation functions
of large charge primaries with insertions of the conserved current J µ and/or the energy momentum
tensor Tµν and in the final part of the chapter, we compute three and four-point correlation functions of
spinning charged primary operators OQℓm with the insertion of light charged spinning primary operators
Oq with q≪ Q in the middle.

In the third part of the thesis, we use the resurgence methodology to study the asymptotics of the
O(N) vector model. We start by introducing the O(N)model at large charge and large-N and we study
its asymptotics on the torus T2 and the sphere S2 using the resurgence framework. Then, we derive
a worldline interpretation of the heat-kernel trace that replicates the previously computed results, and
we deduce that its geometric nature is robust enough to allow us to extrapolate the results to finite
N. Finally, we compare the resurgent results with the small-charge regime which is accessible at the
doubling-scaling limit, while we theorise that our conjunctions hold for finite values of N, and we find
the value of optimal truncation.

In the last part of the thesis, we study various fermionic models with a four-fermion interaction at
large charge and large-N. We start by presenting the models that we will examine in the subsequent
sections and afterwards, we discuss the symmetry breaking pattern of the models, and we investigate
the appearance of a condensate. We continue by studying the spectrum of the fluctuations for the
models, and we compute the scaling dimension of the Gross-Neveu model at large charge and of the
Nambu–Jona–Lasinio model both at large and small-charge regime.
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1

Introduction

“I am just a child who has never grown up. I still keep asking these ’how’ and ’why’
questions. Occasionally, I find an answer.”

Stephen Hawking

Quantum Field Theory (QFT) is the theoretical framework that unifies classical field theory, special
relativity, and, of course, quantum mechanics and is suitable for describing a wide-ranging collection
of physical systems, extending from condensed matter theory up to high-energy physics. The study
of Quantum Field Theories has strong implications in a variety of related subjects like mathematics,
cosmology, black holes, quantum gravity and its best realisation which is string theory. One of the most
prominent methods of studying the properties of QFTs is examining the Wilsonian renormalisation
group (RG) flow [1–3]. There is strong evidence that the end points of the RG flow of local, unitary and
relativistic Quantum Field Theories are described by fixed points so that the RG flow ranges between
the Ultraviolet (UV) limit found at small distances and/or high energies and the Infrared (IR) limit
that is found at long distances and/or low energies. At the fixed points live Conformal Field Theories
(CFTs), which are a sub-branch of QFTs that exhibit symmetry under rescaling of physical lengths, and
they are like beacons of light in the uncharted territory of Quantum Field Theories. On that account,
in accordance with the Wilsonian universality principle, every QFT can be categorised using CFTs and
their relevant deformations.

CFTs play an important role in theoretical physics, and a short but in-exhaustive list of uses consists
of the following: they represent critical points in statistical mechanics, they describe the world-sheet of
string theory, and they are connected to quantum gravity through the AdS/CFT correspondence. Their
fairly constrained structure permits us to express all observables in terms of a set of two numbers,
the scaling dimension ∆ of every primary operator of the theory, and the operator product expansion
(OPE) coefficients, collectively known as the CFT data. Alas, most CFTs are strongly coupled, and the
related data is very hard to collect without any further simplifying assumptions that would permit
any form of semiclassical approximation. The means at our disposal are very limited, and they consist
mainly of numerical approaches like the Monte Carlo method [4, 5], non-perturbative approaches like
the conformal bootstrap [6–12] and a few perturbative approaches like large-N expansion [13, 14] and
the small-ε approximation [15]. Therefore, we should examine in depth any new technique that aims to
deal with this issue.

The approach we are examining in this thesis is the large quantum number expansion. It has been
observed that the conformal data of operators related to CFT sectors of large quantum numbers, like
large spin J [16–18] exhibit considerable simplifications. Very recently, it was realised that similar
simplifications arise in sectors of large global charge [19–21] and this new methodology is called the
Large Charge Expansion (LCE). The idea behind it is to study sectors of Conformal Field Theories that
are characterised by large quantum numbers under global symmetries. In this limit, the CFTs, even
if they initially were strongly coupled and interacting, can now be written in terms of an Effective
Field Theory (EFT) that is weakly coupled. Some common EFTs that appear are the bosonic conformal
superfluid and the Fermi sphere, condensed matter systems characterised by a high particle density,
making the study of such systems a cross-disciplinary matter.

Generally, the LCE was applied with great success to the case of the O(N)model and similar bosonic
models as a means of analytically accessing these strongly coupled CFTs. In the large-charge sector,
we are allowed to write an EFT, known as bosonic conformal superfluid, as an expansion in inverse
powers of the large charge Q and calculate the relevant CFT data encoding all the information about
the testable predictions of the theory [20, 22–39]. Therefore, the idea of fixing the charge and restricting
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the system to the large-charge Hilbert space sector, results in a ground state that spontaneously breaks
boost invariance, and the combination of simultaneously breaking boost and charge invariance gives
rise to a condensate and a number of Goldstone modes in terms of which we can now express the EFT.

For the class of bosonic superfluids in d = 3 spacetime dimensions, the scaling dimension of the
lowest charged primary operator OQ reads [19, 20]

∆Q = d3/2Q3/2 + d1/2Q1/2 − 0.0937+O(Q−1/2), (1.1)

where with di we denote the Wilsonian parameters that are inaccessible within the validity of the EFT
but can be computed if another controlling parameter is added to the system, like large-N [31]. The
first two terms in the above expression are originating from the large-charge ground state, but the
Q0 contribution is the Casimir energy of the fluctuations around the classical saddle, and it gets no
other corrections from any terms of the theory; hence, it is a universal prediction and a feature of all
conformal superfluid EFTs.

For the case of the O(N) model, the massless spectrum on top of the fixed ground state can be
computed [30] and is made up by one conformal or type I Goldstone mode and N − 1 Goldstone modes
of type II that exhibit a quadratic dispersion relation

ωI =
1√
2

p + . . . , ωII =
p2

2µ
+ . . . , (1.2)

and every one of them comes along with a massive mode of mass µ ∼
√
Q.

So far in the literature, the scaling dimension ∆Q of the lowest primary large-charge operators
OQ have been computed [19–22, 31, 33–37], with the results being separately verified through lattice
computations [26–28, 40], and only few n-point functions have dispersedly turned up that compute the
OPE coefficients [20, 23–25, 38, 39] so that we can have complete knowledge of the CFT data. Therefore,
there has been a dire need to systematically collect and study in a unified language all possible three
and four-point correlation functions with current insertions for a general CFT in d spacetime dimensions
that exhibits a global O(2) phase symmetry as a subgroup of a larger symmetry group like O(N) and
that has a low-energy description as a superfluid EFT. This is the subject of Chapter 3 following closely
[29].

The aim is not only to review known results, but to go beyond the state of the art by computing
for the first time correlation functions between spinning phonon states, which are excitations over the
homogeneous scalar ground state. The existence of these spinning states which are known as superfluid
phonon states was already predicted by the very first paper [19], and correspond to spinning primaries
OQℓm labelled by different quantum numbers, e.g. spin ℓ, but same charge Q as the scalar primary OQ.
From a technical perspective, we use the fact the superfluid EFT is a weakly coupled system, which at
leading order can be perceived as a free theory, and we can apply the usual prescriptions, like canonical
quantisation to compute correlators using the standard operator algebra. The form of the superfluid
EFT is constrained by conformal invariance and the symmetry breaking pattern with the leading term
scaling as Qd/(d−1), and there are in total ⌈(d + 1)/2⌉ terms that scale positively in Q that originate
from curvature terms in the action, with the last one scaling as Q1/(d−1) while the Casimir energy of
the fluctuations scales as Q0. Hence, we can express correlation functions as a series of semiclassical
terms with positive Q scaling and a one-loop quantum contribution of order Q0, while neglecting all
the terms that have negative scaling in the charge Q. Moreover, since the saddle point of the theory
corresponds to a classically homogeneous ground state, the only position dependence in the form of
the correlation functions has to come from quantum fluctuations. In our computations, we consider
only non-supersymmetric theories, while theories with supersymmetry have to be studied separately
due to their characteristics and have been examined in [19, 41–50].

One of the most impressive results in the large-charge analysis of the O(N) vector model in d = 3
spacetime dimensions at the conformal point, is that the LCE seems to work even for relatively small
charges, a feature that is quite remarkable and surprising at the same time, since we presumed that
the semiclassical expansion would only function in systems with a considerable number of degrees of
freedom (DOF). This characteristic of the superfluid EFT was first discovered in a series of papers by
Banerjee et al. [26, 27] when comparing the conformal dimension of the lowest charged operator OQ

with lattice computations for the cases of the O(2) and the O(4)model. Moreover, it was discovered that
only a few terms in the effective action were enough to replicate the results of the lattice computations
with high precision.



3

From the standpoint of the superfluid EFT, it is not clear why the predictions made in the large-
charge regime can be extrapolated to the small-charge limit. However, with the inclusion of an addi-
tional controlling parameter to the system, it is possible to move past the EFT and try to understand this
phenomenon. For instance, this is possible if we examine the large-N limit of the O(N) vector model at
large charge and large N [31, 33]. In the newly derived double-scaling limit, defined as the limit where
Q →∞, N →∞, with their ratio Q/(2N) = Q being constant, it is feasible to make exact predictions at
leading order in N for every value of the charge Q.

Inspired by that, in Chapter 4 we take up where Álvarez-Gaumé et al. [31] left off, and we demon-
strate that the LCE in the double-scaling limit is actually asymptotic and this can be attributed to the
asymptotic character of the Seeley–DeWitt expansion [51, 52] of the heat-kernel trace and the associ-
ated zeta function on the two-sphere S2 [53, 54]. Dyson [55] was the first to assert that the existence
of asymptotic series is a common characteristic of perturbative solutions of quantum mechanical prob-
lems. However, this asymptotic nature of the solutions indicates the existence of non-perturbative
phenomena in the corresponding theory, a fact that was initially examined in a quantitative manner in
the framework of anharmonic oscillators in a succession of papers by Bender and Wu with the initial
being [56]. Translated to modern-day language, the topic has been renamed to resurgent asymptotics, or
for simplicity resurgence, and was originally developed by Écalle [57].

Therefore, in the present work, we will utilise the resurgence methodology to demonstrate which
non-perturbative corrections appear in the double-scaling limit of the LCE and in what way non-
perturbative ambiguities are lifted. In the case of the sphere S2 resurgence analysis alone fails to
provide an unambiguous result for the non-perturbative corrections. This ambiguity can be resolved
in two ways, either by utilising the resurgence methodology for the Dawson’s function, or using a
geometric interpretation in terms of worldline instantons.

The second procedure does not a priori depend on large N given the fact that the final result is
a finite-volume effect that is connected to the geometric structure of the compactification manifold.
Therefore, we obtain a nice geometric understanding of both the non-perturbative contributions and
of the Borel ambiguities and the picture is robust enough to let us go beyond the double-scaling limit
and suggest a precise form for the grand potential ω that holds true for all values of the charge Q. We
are able to verify our computation numerically with excellent precision, and we are in a position to
conjecture that the LCE is always asymptotic, even in finite N, with an optimal truncation N∗ = O(

√
Q)

and an error of order ϵ(Q) = O(e−
√
Q) which is in agreement with the lattice simulations [26, 27].

The non-perturbative corrections that we compute can be seen as “classical” and originate from the
fact that the EFT is an asymptotic expansion on its own with a (2n)! factorial growth. Their scaling of
O(e−

√
Q) has to be compared with the usual instantons that originate in the proliferation of Feynman

diagrams, which scale as O(e−Q3/2) and are therefore subleading. This (2n)! factorial growth is also
present in calculations of the effective action of the Euler–Heisenberg type of theories [58, 59]. In those
cases, it has been demonstrated [60, 61] that this (2n)! growth is actuated by worldline instantons,
which is precisely what happens in our problem.

Meanwhile, while the majority of the LCE literature is concentrated around bosonic systems, there
have been some attempts to study relativistic fermionic systems at large charge [25, 62, 63] 1. Interest-
ingly, in [25] the authors showed that the superfluid pattern is inapplicable for the free fermion case,
where the fixed charge ground state is described by a Fermi surface.

Therefore, in Chapter 5 we aim to fill this gap in the literature and consistently investigate various
fermionic models with a four-fermion interaction term in d = 3 spacetime dimensions, like the Gross-
Neveu (GN) model [71], the chiral GN or Nambu–Jona–Lasinio (NJL) model [72, 73], and finally, its
SU(2) × SU(2) generalisation. Since we want to have extra control over our system, we will use an
additional controlling parameter, which is the large-N limit [31] of fermion flavours.

We discover that two types of qualitative behaviour are possible according to our findings:

1. For Gross-Neveu types of models we see that there is no Spontaneous Symmetry Breaking (SSB)
taking place in sectors of large baryon number, and the large-N physics is described in terms of an
approximate Fermi surface strictly in the N →∞ limit. It is not yet clear if the Fermi surface remains
when subleading corrections in N are considered. The same Fermi surface behaviour has been found
for the case of the free fermion [25, 74]. The ground state is related to the scalar primary OQFS that

1The case of the unitary Fermi gas, which is described in terms of a non-relativistic CFT, has been examined in [64–70] using
the large charge approach.
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first appeared in [25] and the scaling dimension ∆FS reads

∆FS(Q)
N

= 2
3
( Q

2N
)

3/2
+ 1

12
( Q

2N
)

1/2
− 1

192
( Q

2N
)
−1/2
+O
⎛
⎝
( Q

2N
)
−3/2⎞
⎠

. (1.3)

We notice that this large-charge sector has noQ0 universal contribution corresponding to the Casimir
energy of fluctuations, since there are no Goldstone modes.

2. For Nambu–Jona–Lasinio (NJL) types of models, the “chiral” four-fermion interaction term permits
SSB to take place and the large-N physics is described by a conformal superfluid EFT in a differ-
ent universality class than the bosonic case [19–21]. The ground state corresponds to the primary
operator OQSF and in the limit that Q/N ≫ 1 the conformal dimension reads

∆SF(Q)
2N

= 2
3
( Q

2Nκ0
)

3/2
+ 1

6
( Q

2Nκ0
)

1/2
− 0.0937+ . . . , (1.4)

where the constant parameter κ0 is given by κ0 tanh κ0 = 1. The result is similar to the one derived
in the case of the bosonic superfluid EFT of the O(N) model [31] but the Wilsonian coefficients are
different, indicating that the fermionic CFT is in a different universality class. Moreover, working in
the large-N limit we have access to the small-charge regime Q/N ≪ 1, where the scaling dimension
reads

∆(Q)
2N

= 1
2
( Q

2N
)+ 2

π2 (
Q

2N
)

2
+ . . . , (1.5)

which is in accordance with the usual perturbative result for the free bosonic scalar operator of mass
dimension one and charge two. These results also hold true for generalisations of the NJL model.

As a final note, for every fermionic model that supports a large charge superfluid ground state,
there is a physically intuitive way to comprehend the existence of a bosonic condensate. For instance,
for the NJL model we can carry out a Pauli–Gürsey (PG) transformation [75, 76], defined as

Ψ ↦ 1
2
[(1− Γ5)Ψ + (1+ Γ5)C4Ψ̄T] , Ψ̄ ↦ 1

2
[Ψ̄(1+ Γ5)−ΨTC4(1− Γ5)] , (1.6)

to derive a model that exhibits a Cooper-type interaction [77, 78]. Every computation can be redupli-
cated in the context of the Cooper model, with the same results as before. In the Cooper-pair context, it
is evident that the nature of the condensate is that of Cooper pairs that describe a superconductor. The
attractive interaction results in a Cooper instability, and we now have a system described by condensing
bosons at large charge, and that is why the results are so similar to the O(N) vector model.

The plan of the thesis is as follows: in Chapter 2 we start by briefly reviewing concepts of QFTs
in section 2.1, CFTs in section 2.2 and the LCE in section 2.3 that are important for the subsequent
chapters. In Chapter 3 we examine the O(2) model at large charge as a working example. In section 3.1
we review the classical treatment of the model, while in section 3.2 we now examine its quantum
behaviour. Following that, in section 3.3 we compute three and four-point correlation functions of large
charge primaries with insertions of the conserved current J µ and/or the energy momentum tensor
Tµν and in the final part of the chapter, in section 3.4 we compute three and four-point correlation
functions of spinning charged primary operators OQℓm with the insertion of light charged spinning
primary operators Oq with q ≪ Q in the middle. In Chapter 4 we use the resurgence methodology to
study the asymptotics of the O(N) vector model. In section 4.1.1 we introduce the O(N) model at large
charge and large-N and we study its asymptotics on the torus T2 and the sphere S2 using the resurgence
framework. In section 4.2 we derive a worldline interpretation of the heat-kernel trace that replicates
the previously computed results, and we deduce that its geometric nature is robust enough to allow us
to extrapolate the results to finite N. In section 4.3 we compare the resurgent results with the small-
charge regime which is accessible at the doubling-scaling limit, while in section 4.4 we theorise that
our conjunctions hold for finite N, and we find the value of optimal truncation. In Chapter 5 we study
various fermionic models with a four-fermion interaction at large charge and large-N. In section 5.1
we start by presenting the models that we will examine in the subsequent sections. Afterwards, in
section 5.2 we discuss the symmetry breaking pattern of the models, and we investigate the appearance
of a condensate. In section 5.3 we study the spectrum of the fluctuations for the models, while in
section 5.4 we compute the scaling dimension of the GN model at large charge and of the NJL model
both at the large and at the small-charge regime.
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Quantum, Conformal Field Theories and
the Large-Charge Expansion

“As far as laws of mathematics refer to reality, they are not certain; and as far as they are
certain, they do not refer to reality.”

Albert Einstein

The aim of this chapter is to give a pedagogical introduction to Quantum Field Theories, Conformal
Field Theories and to the Large Charge Expansion to make the reading of the present thesis as self-
contained as possible for the interested reader.

Therefore, the first part of this chapter is a brief introduction to Quantum Field Theories, starting
from classical field theory and conserved charges and moving to quantisation, regularisation, and the
renormalisation group flow. Since these are all well-known results for anyone with basic knowledge
of QFT, this section will be kept short and used as a motivation for CFTs. There are many excellent
and thorough books and lectures notes on the subject, some of the most exhaustive are the ones from
Weinberg [79–81] while others include [14, 82, 83].

The second part of the chapter is a basic introduction to Conformal Field Theories and is accompa-
nied by extensive derivations of the results presented in detail in Appendix A. The structure and the
derivations are based on the CFT graduate course given at the University of Bern where the author was
a tutor to the homonymous course. This section is mainly inspired by the lectures of Qualls [84], the
book of Ammon and Erdmenger [85] and the notes of Gillioz [86].

The third and last part of the chapter is a terse introduction to the Large Charge Expansion. On
general grounds, a systematic methodology is well-defined for the case that the system at hand has a
description in terms of a conformal superfluid EFT with an O(2) Abelian symmetry subgroup. Thus,
the point of this section is to concisely review the most essential tools required to understand the LCE,
like Spontaneous Symmetry Breaking and the Goldstone theorem. Any supplementary material will be
presented on the spot in the relevant chapter.

2.1 Quantum Field Theory

Quantum Field Theory is the theoretical framework that unifies classical field theory, special relativity,
and of course quantum mechanics. A full analytical and in depth development of QFT is far beyond
the scope of this chapter and of this thesis for that matter. Nevertheless, we will try to introduce crucial
ingredients that will be used in the following sections. Therefore, by restricting to scalar fields ϕ, and
working solely in flat space — a great classical curved space QFT textbook is by Birrell and Davies
[87] while an explanatory recent paper is by Witten [88] — we are able to tackle the most important
issues. Starting with classical field theory, symmetries and charge conservation, we will move on to the
quantisation of the fields, introducing the notation for both canonical and path integral quantisation.
We will then briefly comment on the notion of Wick rotation and the connection of the path integral
to statistical mechanics, and finish this review by addressing regularisation, renormalisation and the
Wilsonian renormalisation group.

https://www.unibe.ch/index_eng.html
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2.1.1 Classical field theory and symmetries
In all our analysis from this point on we always assume the existence of a globally hyperbolic spacetime,
in other words a pseudo-Riemannian manifold (M, gµν) 1 along with a complete Cauchy hyper-surface Σ
2 where initial conditions of the fields can be properly formulated in order to solve the initial value
problem 3. As this chapter is purely introductory, for a thorough analysis of classical field theory, see
[90].

We start by defining a scalar field ϕ(x) ∈ Rd−1,1, which is the d-dimensional Minkowski space with
one temporal and d− 1 spatial directions. In the usual field theory language, we assume that x indicates
points in Minkowski space and consists of vector components xµ, where µ = 0, . . . , d − 1, with x0 = ct 4

while xi = 1, . . . , d − 1.
The infinitesimal line element for Minkowski space is specified, as

ds2 ≡ − (dx0)2 +
d−1

∑

i=1
(dxi)

2
≡ ηµνdxµdxν. (2.1)

It is obvious from the above expression (2.1) that the Minkowski metric is a diagonal matrix

ηµν = diag(−1, 1, . . . , 1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
(d−1) times

), (2.2)

that satisfies ηµνηνσ = δ
µ
σ and can be used to lower and raise indices in a d-vector as Vµ = ηµνVν.

The most elementary principle in physics is that the fundamental physical laws are independent of
the reference system. In other words, observers doing experiments in different reference frames may
have different outlooks, but the underlying physical laws are identical. In mathematical terms, this can
be interpreted in the following manner. Having a map 5, there is a set of transformations that leaves
the infinitesimal line element invariant

ηµνdxµdxν = ηµνdx′µdx′ν. (2.3)

The above principle is true for all maps that are invertible — isomorphisms — and differentiable —
smooth transformations — so it is known as diffeomorphism invariance.

Equation (2.3) is satisfied by a set of transformations, namely translations by a constant vector

xµ → x′µ = xµ + aµ, (2.4)

and Lorentz transformations

xµ ΛÐ→ x′µ = Λµ
νxν, (2.5)

where the matrix Λ satisfies
Λµ

ρΛν
σηµν = ηρσ. (2.6)

Lorentz transformations Λ consist of rotations in spatial directions and boosts. Altogether, they form
the Lorentz group SO(d − 1, 1).

The combination of Lorentz transformations Λ and translations by a composes the Poincaré group
ISO(d − 1, 1). These transformations can be gathered in a set (Λ, a) and their impact on x is

xµ (Λ, a)
ÐÐÐ→ x′µ = Λµ

νxν + aµ. (2.7)

1For a mathematically rigorous definition of manifolds see Appendix A.1
2A hyper-surface is a (d − 1)-dimensional submanifold Σ of a d-dimensional manifold (M, gµν). For a proper definition and

discussion [see 89].
3For a globally hyperbolic spacetime, knowing a set of past or future initial conditions, allows us to determine the whole set

of events in that spacetime.
4For the rest of the thesis and unless specified otherwise, we will set the speed of light to one so that we can use the same

units for all spacetime components.
5In physical language a map is translated to coordinate system.
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Two consecutive Poincaré transformations (Λ1, a1) and (Λ2, a2) act as

(Λ1, a1) ○ (Λ2, a2) = (Λ1Λ2, a1 +Λ1a2) ∈ ISO(d − 1, 1), (2.8)

or in component form

xµ (Λ1Λ2, a1+Λ1a2)ÐÐÐÐÐÐÐÐÐ→ x′µ = Λµ
σΛσ

ρxρ +Λµ
ρaρ + aµ. (2.9)

This is the underlying symmetry of space-time, manifest to all relativistic Quantum Field Theories and
it and the most accurate interpretation of the physical world, at least up to energy levels where quantum
gravity comes into play.

From now on, we will concentrate on the case of a real scalar field ϕ defined in d-dimensional
spacetime. This field is a map that acts on spacetimes points x and appoints them a real value ϕ(x) and
the change of the system can be described by an action S[ϕ]. In a more precise mathematical language
we can express this as follows : assuming M to be a differentiable manifold, Tp(M) 6 is the tangent
space at a point p and L ∶ Tp(M) → R is a differentiable functional, then ϕ ∶ R → M is known as
motion of the Lagrangian system with configuration manifold M and Lagrangian density L 7 as long as ϕ is
an extremum of

S[ϕ] = ∫ ddx L (ϕ, ∂µϕ) . (2.10)

Both L and consequently S depend on the field ϕ(x) and the derivative of it ∂µϕ, where ∂µ= ∂/∂xµ and
in the usual field theory prescription only first derivatives of the fields are contained in the action and
only local terms.

For a scalar theory to exhibit Poincaré invariance the Lagrangian can only be expressed regarding
the field ϕ in some power and on

− (∂tϕ(t, x))2 + (∇ϕ(t, x))2 ≡ ηµν ∂µϕ(x) ∂νϕ(x). (2.11)

Thus from dimensional analysis 8 and equation (2.11), we can deduce that the simplest form that a
Lagrangian of a scalar field ϕ can take is

Lfree(ϕ, ∂µϕ) = −1
2

ηµν ∂µϕ(x) ∂νϕ(x)− 1
2

m2ϕ(x)2, (2.12)

where m is the mass of the field and there are no interaction terms present. Hence, using equations (2.10)
and (2.12) the free action of a scalar field ϕ(x) is

S[ϕ] = −1
2∫

ddx (ηµν ∂µϕ(x) ∂νϕ(x)+m2ϕ(x)2) . (2.13)

The Euler-Lagrange equation or equation of motion (eom) is derived by taking the derivative of the
functional S[ϕ] and demanding that ϕ(x) is an extremum of it, i.e. δS/δϕ = 0 so that

δS
δϕ
= ∂L

∂ϕ
− ∂µ
⎛
⎝

∂L

∂(∂µϕ)
⎞
⎠

, (2.14)

δS
δϕ
= 0 Ô⇒ ∂µ

⎛
⎝

∂L

∂(∂µϕ)
⎞
⎠
= ∂L

∂ϕ
. (2.15)

If now we use equation (2.12) the free scalar eom takes the form

(−◻+m2)ϕ(x) = 0, (2.16)

6See Appendix A.1
7In a shorthand notation it is usually just called Lagrangian.
8Remember — [see 91, 92] — that the mass dimensions

[S] = 0, [∂µ] = +1, [ddx] = −d,

so that

[ϕ] = d − 2
2

.
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where ◻ ≡ ∂µ∂µ= −∂t
2 + ∇2 is known as D’Alembertian or D’ Alembert operator and equation (2.16) is

known in the literature as Klein-Gordon equation. It can be shown that the field ϕ(x) that satisfies
equation (2.16) can be decomposed into positive and negative frequency modes as

ϕ(x) = 1

(2π)d−1∫
dd−1k⃗
2ωk

[a(k⃗)eikx + a∗(k⃗)e−ikx] ∣
k0=ωk

, (2.17)

where ωk =
√

k⃗2 +m2 and also kx = −k0x0 + kixi.
Besides the free theory, we can also include interaction terms, which will be denoted as Lint. Fre-

quently, the interaction term is realized as a polynomial of the form

Lint(ϕ) = −
gp

p!
ϕ(x)p, (2.18)

where normally p ≥ 3, n ∈ N and gp ∈ R is known as the coupling constant and dictates the strength of
the interaction.

Finally, a side comment that will prove useful for later discussions. If we imagine that we have a
system that consists of two real fields ϕ1 and ϕ2 that do not interact with each other — this system
exhibits an internal O(2) symmetry — and share the same mass m, then it is possible to write the
combined Lagrangian of the system

L (ϕi, ∂µϕi) = −
1
2

∂µϕi ∂µϕi −
1
2

m2ϕi
2, (2.19)

where i = 1, 2, in terms of one field by defining

φ = 1√
2
(ϕ1 + iϕ2) , φ∗ = 1√

2
(ϕ1 − iϕ2) , (2.20)

where φ is a complex scalar and φ∗ is its complex conjugate. Then the Lagrangian takes the form

L (φ, ∂µ φ) = − ∂µ φ∗ ∂µ φ −m2 φ∗φ. (2.21)

This analysis can be extended beyond the free theory to include also interaction terms and to systems
that have more than two fields, so they exhibit a larger internal symmetry than O(2).

A crucial element of theoretical physics and variational calculus is the relationship between continu-
ous symmetries and conservation laws. In fact, one of the most important theorems is called after Noether
[93] and in accordance with it, continuous symmetries generate conserved currents and charges.

The starting point is to consider the transformation

ϕ(x)→ ϕ′(x) = ϕ(x)+ δαδϕ(x), (2.22)

where δα is a random infinitesimal variable that is related to the deformation δϕ(x). We assume that
the action remains invariant under equation (2.22) in the sense that

S[ϕ] = S[ϕ′], (2.23)

which holds true as long as the Lagrangian is invariant under δϕ(x) too, up to a total derivative term
expressed regarding an arbitrary vector Xµ as

L (ϕ′, ∂µϕ′) =L (ϕ, ∂µϕ)+ δα ∂νXν. (2.24)
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Actually equation (2.24) indicates that

δα ∂νXν !=L (ϕ′, ∂µϕ′)−L (ϕ, ∂µϕ) =L (ϕ + δαδϕ, ∂µϕ + δα ∂µδϕ)−L (ϕ, ∂µϕ)

= δα

⎧⎪⎪⎨⎪⎪⎩

∂L

∂ϕ
δϕ + ∂L

∂(∂µϕ)
∂µδϕ

⎫⎪⎪⎬⎪⎪⎭
+O(α2) (2.25)

= δα

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

∂L

∂ϕ
− ∂µ
⎛
⎝

∂L

∂(∂µϕ)
⎞
⎠
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 0 due to equation (2.15)

δϕ + ∂µ
⎛
⎝

∂L

∂(∂µϕ)
δϕ
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
+O(α2),

or to put it in another way

δα ∂µ
⎛
⎝

∂L

∂(∂µϕ)
δϕ −Xµ⎞

⎠
= 0. (2.26)

This quantity is precisely the conserved current J µ that corresponds to the symmetry δϕ of ϕ as

J µ = ∂L

∂(∂µϕ)
δϕ

δα
− Xµ

δα
, ∂µJ µ = 0. (2.27)

With this in mind we can define a conserved charge Q for the current J µ by integrating the temporal
unit J t in spatial hypersurfaces Rd−1 of constant time t as

Q = ∫
Rd−1

dd−1x J t. (2.28)

The Noether charge Q is time independent and using Gauss’s law this can be proven as follows. By
current conservation (2.27) we see that

∂tJ t = − ∂iJ i, (2.29)

where i = 1, . . . , d − 1. Differentiating the charge regarding time and applying equation (2.29) gives us

d
dt
Q = ∫

Rd−1

dd−1x ∂tJ t = −∫
Rd−1

dd−1x ∂iJ i = ∫
∂Rd−1

dd−2x ηiJ i = 0 , (2.30)

where ηi is an outward-pointing normal vector. It is obvious written like this that the last term is a
boundary term and by Stoke’s theorem it is assumed to vanish 9.

At this point, it would be fruitful and advantageous for future reference to specifically examine
the Noether currents and charges related to the Poincaré symmetries and particularly translations and
Lorentz transformations.

1. Translations

The first thing we want to investigate are translations given by equation (2.4). This kind of trans-
formations acts on the field as

ϕ(x) P→ ϕ′(x′) = ϕ(x − a) = ϕ(x)− aµ ∂µϕ(x)+O(a2). (2.31)

Given this transformation of the field, the Lagrangian is also affected

L
P→L ′ =L − aν ∂µ(δµ

νL )+O(a2). (2.32)

Hence, using equations (2.22) and (2.24) we can read off the values of δϕ and Xµ to be

δϕ

δaν
= − ∂νϕ,

Xµ

δaν
= −δ

µ
νL . (2.33)

9All reasonable functions in physics have compact support.
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Thus, by applying the Noether’s theorem, and equation (2.27) we find the conserved current to be

Θµν = − ∂L

∂(∂µϕ)
∂νϕ + ηµνL . (2.34)

Now, we can find the conserved charges. There are two kinds, one associated with time transla-
tions and the other is related to space translations.

i. Time Translations

H ≡ ∫
Rd−1

dd−1x H = ∫
Rd−1

dd−1x Θtt

= ∫
Rd−1

dd−1x (Π ∂tϕ −L ) = ∫
Rd−1

dd−1x (1
2

Π2 + 1
2
(∇ϕ)2 + 1

2
m2ϕ2) . (2.35)

ii. Space Translations

Pi = ∫
Rd−1

dd−1x Θti = −∫
Rd−1

dd−1x Π ∂iϕ, (2.36)

where as usual H stands for the Hamiltonian, H is the Hamiltonian density, Pi is the physical momen-
tum and finally Π is the conjugate momentum of the field ϕ defined as

Π = ∂L

∂(∂tϕ)
= −ηµ0 ∂µϕ. (2.37)

2. Lorentz Transformations

Next in order we want to examine Lorentz transformations derived in equation (2.5). The in-
finitesimal form of such a transformation is well known in the literature — [see 79] — and it
is

Λµ
ν ≡ δ

µ
ν +ω

µ
ν, ωµν = −ωνµ. (2.38)

Under equation (2.38) the field ϕ changes as

ϕ(xµ) Λ→ ϕ′(x′µ) = ϕ (xµ −ω
µ
ρxρ) = ϕ(x)−ω

µ
ρxρ ∂µϕ(x), (2.39)

where now aµ = ω
µ
ρxρ. Repeating the same procedure as in the translations, we find that the

conserved current is

Nµνρ = xνΘµρ − xρΘµν, ∂µNµνρ = 0. (2.40)

The Noether charge related to the Lorentz transformations is

Mνρ = ∫
Rd−1

dd−1x Ntνρ. (2.41)

We see that Θµν appears in the conserved current for both translations and Lorentz transforma-
tions. We can deduce that this is the familiar energy-momentum tensor and in the above derivation
it is not a priori symmetric. Nevertheless, it can be shown — see [84] §2 for details of the compu-
tation and [94] for a broader discussion, and an alternative derivation more in the spirit of General
Relativity — that if the system features Poincaré invariance the energy-momentum tensor can be
made symmetric and this is called the Belinfante energy-momentum tensor defined as

Tµν = Θµν + ∂ρBρµν, (2.42)

where Bρµν is the tensor that is antisymmetric in the exchange of the two first indices.
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Noether’s theorem is also applicable to continuous symmetries that go beyond the usual spacetime
ones. For example, if we consider the Lagrangian of equation (2.21)

L (φ, ∂µ φ) = − ∂µ φ∗ ∂µ φ −m2 φ∗φ,

it possesses a U(1) symmetry that is a subset of the original O(2) ⊇ U(1) symmetry. The system is
invariant under the transformation

φ(x)→ φ′(x) = eia φ(x), φ∗(x)→ φ∗
′(x) = e−ia φ∗(x), (2.43)

with a being an arbitrary, not space dependent parameter of the symmetry. The conserved current
and charge are well known in the literature — for example [see 95] — and J µ can be found using
equation (2.27) and

δφ = iφ δa, δφ∗ = −iφ∗ δa, Xµ = 0. (2.44)

to be

J µ = ∂L

∂(∂µ φ)
δφ

δα
+ ∂L

∂(∂µ φ∗)
δφ∗

δα

= −i (φ ∂µ φ∗ − φ∗ ∂µ φ) . (2.45)

Then employing equation (2.28) the charge Q is determined to be

Q = ∫
Rd−1

dd−1x J t = −i∫
Rd−1

dd−1x (φ ∂t φ∗ − φ∗ ∂t φ)

= i∫
Rd−1

dd−1x (φφ̇∗ − φ∗ φ̇) . (2.46)

The above transformation is known as a global transformation, and the symmetry at hand is a perfect
example of an internal symmetry that we will utilize in the following chapters and are crucial in the
context of the Large Charge Expansion.

2.1.2 Quantisation
At this point, we want to quantise our scalar field ϕ and to do so we will utilise two distinct but formally
equivalent methods: the canonical quantisation procedure and the path integral formulation of QFTs.

The first approach to examine is the canonical quantisation. The word canonical originates from the
Hamiltonian formulation of classical field theory. In general, the idea behind canonical quantisation is
to promote the classical fields to quantum operators and at the same time try to maintain the under-
lying formal structure like the symmetries of the classical system to the maximum possible amount.
It is known that in the Hamiltonian interpretation of classical field theory, the dynamics of a system
are encoded in the Poisson brackets. The canonical quantisation replaces the Poisson brackets with
commutation relations between the new quantum operators, a procedure which moderately conserves
the overall structure of the theory.

The second quantisation methodology that we will examine is the Feynman’s path integral ap-
proach, which utilises the action principle of the classical field theory by replacing the classical unique
trajectory by a functional integral with integration measure Dϕ over all possible field configurations ϕ
to calculate a quantum transition amplitude. The original idea of using path integrals to solve issues
in diffusion and Brownian motion was proposed by Norbert Wiener — see [96] for further references—
who introduced the Wiener integral. The notion of path integrals was furthered expanded by Dirac [97]
while the modern approach to the subject was developed by Feynman in his doctoral thesis [98] and
completed in [99].

On the whole, there are many advantages to the use of the path integral approach. Foremost,
Lorentz covariance is clearer than in the operator language of the canonical formalism. Moreover, it is
far less complicated to make a coordinate change in the path integral system than in the operators.
Furthermore, path integrals exhibit a very close relation to stochastic processes and thermodynamics,
a feat that is further examined in section 2.1.3. Finally, a priori, it is more straightforward to find the
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right form of a system in the Lagrangian than in the Hamiltonian language. On the other hand, a
disadvantage of the path integral approach is that unitarity is not immediately apparent. In any case,
the equivalence between the formalisms has been proven, e.g. see [79], hence any underlying downsides
of one procedure can be solved in the other.

Canonical quantisation
We start our analysis by examining a field ϕ satisfying equation (2.16) which can be expanded in the
usual mode decomposition of positive and negative frequencies like in equation (2.17) 10. Our task is to
turn the previously classical field and its conjugate momentum into operators 11 . Using equation (2.37)
we get

Π(x) = ∂tϕ(x). (2.47)

At which point we promote the field ϕ(x) and its conjugate field Π(x) to operators

ϕ(x)→ ϕ̂(x), Π(x)→ Π̂(x). (2.48)

Thereupon, following the classical notion of Poisson brackets

{ϕ(x), Π(y)} = δd−1(x − y), (2.49)

we impose canonical commutation relations such that

[ϕ̂(x), Π̂(y)] = iδd−1(x − y),
[ϕ̂(x), ϕ̂(y)] = [Π̂(x), Π̂(y)] = 0. (2.50)

Accordingly, the same thing can be done for the previously classical modes a(k⃗) and a∗(k⃗) which now
become quantum operators in momentum space

a(k⃗)→ â(k⃗), a∗(k⃗)→ â†(k⃗). (2.51)

Therefore, the field ϕ̂(x) is written as

ϕ̂(x) = 1

(2π)d−1∫
dd−1k⃗
2ωk

[â(k⃗)eikx + â†(k⃗)e−ikx] ∣
k0=ωk

, (2.52)

whereas before ωk⃗ =
√

k⃗2 +m2 and again kx = −k0x0 + kixi = −ωkt + k⃗xi. Consequently, from equa-
tion (2.52) we can express the Fourier coefficient â(k⃗) as

â(k) = ∫ dd−1x e−ikx [ωkϕ̂(x)+ iΠ̂(x)] . (2.53)

From equations (2.50) and (2.53) we can see that the Fourier modes â(k⃗) and â†(k⃗) satisfy the subsequent
commutation relations

[â(k⃗), â†(k⃗′)] = 2ωk(2π)d−1δd−1(k⃗ − k⃗′), (2.54)

[â(k⃗), â(k⃗′)] = [â†(k⃗), â†(k⃗′)] = 0. (2.55)

But now we observe that these are precisely the commutation relations of a quantum harmonic oscilla-
tor. Thus, we can understand â(k⃗) and â†(k⃗) as ladder operators that create or annihilate particles of
momentum k⃗.

It is also possible to define the vacuum state of the theory ∣0⟩ to be the one that is eradicated by all
the annihilation operators

â(k⃗) ∣0⟩ = 0. (2.56)

10For an analysis for a general curved spacetime see Appendix A.2
11To emphasize the difference between classical fields and quantum operators, in these sections only we will use the hat

notation for the operators.
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We also assert that the vacuum state is properly normalised in the sense that

⟨0∣0⟩ = 1. (2.57)

For this vacuum state we can construct a Fock space by repeated action of creation operators. With a
single excitation, we can construct a single-particle state ⃗∣k⟩ as

⃗∣k⟩ ∶= â†(k⃗) ∣0⟩ . (2.58)

In the same spirit, multiple harmonic oscillators can be excited at the same time to produce a multi-
particle state as

∣k⃗1, k⃗2, . . . , k⃗n⟩ ∶= â†(k⃗1)a†(k⃗2) . . . a†(k⃗n) ∣0⟩ . (2.59)

As we can see from equation (2.59) for a Quantum Field Theory, a generic state is defined upon acting
on the vacuum ∣0⟩ and is a linear combination of multiple identical particle states each of which has its
Hilbert space H . This generic vector space is named after [100].

Casually, the Fock space is described as the combination of a series of Hilbert spaces H made up
of the vacuum state C , a single-particle state H , a two-particle state, et cetera. In a more mathematical
language, the Fock space is defined as the Hilbert space realization of the direct sum of the symmetrical
or anti-symmetrical tensor in a tensorial power of a single-particle Hilbert space H

Fν(H ) =
∞

⊕
n=0

SνH ⊕ n, (2.60)

where Sν is characterised as the operator that either symmetrises or anti-symmetrises a tensor, contin-
gent on the nature of the Hilbert space H that either denotes particles obeying Bose-Einstein (ν = +)
or Fermi-Dirac (ν = −) statistics.

Path Integral quantisation
We now turn our attention to the path integral quantisation. Beyond the advantages that were refer-
enced in section 2.1.2, this methodology is better suited when we study changes in the spectrum due to
interactions, since we can utilise standard loop expansions methods. Thus, in this section, we can move
beyond the free Lagrangian and add interaction terms.

As mentioned before in section 2.1.2, the idea of the path integral is to sum over all possible field
configurations ϕ between an initial state ∣ϕi⟩ at a time ti and a final state ∣ϕ f ⟩ at a time t f denoted as

ϕ̂(ti, x) ∣ϕi, ti⟩ = ϕi(x) ∣ϕi, ti⟩ , ϕ̂(t f , x) ∣ϕ f , t f ⟩ = ϕ f (x) ∣ϕ f , t f ⟩ , (2.61)

with an integration measure Dϕ that formally takes the form

Dϕ ∝ ∏
ti≤t≤t f

∏

x∈Rd−1

dϕ(t, x) . (2.62)

Therefore the transition amplitude becomes

⟨ϕ f , t f ∣ϕi, ti⟩ = N∫ Dϕ exp [i∫
t f

ti
dt∫

Rd−1
dd−1x Lfree(ϕ, ∂ϕ)], (2.63)

where N is a normalisation parameter. Normally, when we examine a QFT we are interested in the
vacuum to vacuum amplitude. To compute this, we send

ti → −∞, t f → +∞, (2.64)

and at the same time we assume that
ϕi(x) = ϕ f (x) = 0. (2.65)

Given the above suppositions, the vacuum-to-vacuum transition becomes

⟨0,+∞∣0,−∞⟩ ≡ ⟨0∣0⟩ = N∫ Dϕ exp [i∫ ddx Lfree(ϕ, ∂ϕ)] , (2.66)
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where N is chosen in such a way that equation (2.57) is satisfied.
Beyond the transition amplitude, we also want to compute correlation functions

⟨0∣T ϕ̂(x1)ϕ̂(x2) . . . ϕ̂(xn)∣0⟩ ≡ ⟨ϕ(x1)ϕ(x2) . . . ϕ(xn)⟩ ≡ G(n)(x1, . . . , xn) (2.67)

= N∫ Dϕ ϕ(x1) . . . ϕ(xn) exp [i∫ ddx Lfree (ϕ, ∂ϕ)] ,

where in the first line T expresses the time ordering prescription so that operators that enter the path
integral at a later time appear on the left of these operators that entered at an earlier stage 12.

It is not always easy to compute correlation functions of the form of equation (2.67). For our conve-
nience it is easier to define the generating functional Z0[J] which is formally expressed as

Z0[J] ≡ ⟨exp [i∫ ddx J(x)ϕ(x)]⟩ . (2.69)

where J(x) is the classical source 13. Now the correlation function can be computed regarding the
generating functional Z0[J] as

⟨ϕ(x1)ϕ(x2) . . . ϕ(xn)⟩ = (−i)n δnZ0[J]
δJ(x1) . . . δJ(xn)

∣
J=0

, (2.70)

and the actual form of the generating functional that reproduces equation (2.67) via equation (2.70) is

Z0[J] = N∫ Dϕ exp [i∫ ddx (Lfree(ϕ, ∂ϕ)+ J(x)ϕ(x))] . (2.71)

For the case of the free Lagrangian of equation (2.12) the generating functional takes the form

Z0[J] = N∫ Dϕ exp [i∫ ddx (−1
2

ϕ (−◻+m2)ϕ + Jϕ)]

≃ lim
ϵ→0

N∫ Dϕ exp [i∫ ddx (−1
2

ϕ (−◻+m2 − iϵ)ϕ + Jϕ)]. (2.72)

In the first line we have integrated by parts and in the usual field theory approach we assumed that
the boundary term is vanishing. In the second line we introduced the small ϵ trick called the Feynman
prescription, e.g. see [101], to avoid the poles that appear in the real line of the integrand and ensure the
convergence properties of the path integral.

Looking closely at equation (2.72) we observe that by integrating by parts, the integrand is Gaussian
in the fields ϕ, thus we can perform the Gaussian integration to obtain

Z0[J] = exp [ i
2∫ ddx ddy J(x)∆F(x − y)J(y)], (2.73)

where the quantity ∆F is known as the Feynman propagator and for the case of a real scalar field it reads

∆F(x − y) = ∫
ddk
(2π)d

eik(x−y)

k2 +m2 − iϵ
. (2.74)

It can be shown that equation (2.74) satisfies the equation

(−◻+m2)∆F(x − y) = δd(x − y), (2.75)

and thus we can deduce that the Feynman propagator of equation (2.74) is nothing less than the Green’s
function of Klein-Gordon equation (2.16).

12Mathematically this is denoted as

T ϕ̂(x)ϕ̂(y) ≡ Θ(x0 − y0)ϕ̂(x)ϕ̂(y)+Θ(y0 − x0)ϕ̂(y)ϕ̂(x), (2.68)

where Θ is the Heaviside step function.
13We denote Z0[J] the generating functional of the free theory contrary to the interacting theory where the generating function

is without subscript.
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Finally, using equations (2.67), (2.70) and (2.73) we find that

G(2)(x1, x2) ≡ ⟨ϕ(x1)ϕ(x2)⟩ = −i∆F(x1 − x2). (2.76)

Things get more complicated for a Quantum Field Theory when interactions are included. For the
purpose of this section, the interaction terms that we will consider are in the same spirit as these of
equation (2.18). Given such a term, the generating functional now takes the more general form

Z[J] = N∫ Dϕ exp [i∫ ddx (Lfree +Lint + Jϕ)], (2.77)

which is not Gaussian any more, so the integral cannot be exactly computed. Nevertheless, there is a
way out of this predicament. If the coupling constant gn of equation (2.18) is small so that the theory
is weakly coupled, then we are in an ideal place to take advantage of the strongest tool in theoretical
physics, which is perturbation theory — for a review see [102, 103]. Then it is possible to manipulate
equation (2.77) in the following manner

Z[J] = N exp [i∫ ddx Lint (
1
i

δ

δJ(x))]∫ Dϕ exp [i∫ ddx (Lfree + Jϕ)]

= exp [i∫ ddx Lint (
1
i

δ

δJ(x))] Z0[J]. (2.78)

It is now clear that knowing the generating functional of the free theory along with the interacting
Lagrangian is enough to work out the more general generating functional Z[J].

Actually, this approach has laid the groundwork to use Feynman diagrams. In this graphical ap-
proach, propagators are depicted as lines going from one point to the other, while interactions terms
are portrayed as vertices. For example, in this notation, the generating functional Z0[J] encodes the
propagator of the free field theory.

At this point, we will formulate the Feynman rules for the ϕ4 theory, which is the simplest possible
case and more complicated cases will be examined in the subsequent chapters. Using equation (2.18),
the interaction Lagrangian for the ϕ4 is

Lint = −
g
4!

ϕ4, (2.79)

and the Lagrangian of the system becomes

L = −1
2

∂µϕ ∂µϕ − 1
2

m2ϕ2 − g
4!

ϕ4. (2.80)

Therefore, given the above Lagrangian the propagator −i∆F(xi − yi) is pictured as

xi yi

Additionally, the interaction term is delineated as a vertex with several legs equal to the power of the
field in equation (2.18) and the whole term is weighted by a factor of ig. For ϕ4 this has four legs as

yi

After connecting all the legs appropriately, the last step is to integrate over all the yi coordinates of
every vertex in the position space, and also contemplate and evaluate the symmetry factors.

This can be generalized for any power of the field ϕ in the interaction term. In the same spirit as
above, the Feynman rules for calculating G(n)(x1, . . . , xn) to order n in g for Lint = − g

p! ϕ
p in x-space are

R.1 Draw the basic elements :

• The external points x1, . . . , xn.

●
x1

, ●
x2

, . . . . . . . . . . . . . . . . . . . . . . . . , ●
xn
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• n vertices of order p.

. . . . . . . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−2

R.2 Connect the basic elements in all possible ways, remembering that legs are different for symmetry
reasons.

R.3 Each different drawing corresponds to a particular diagram ID weighted by its symmetry factor,
and each line corresponds to −i∆F. Evaluate every distinct diagram ID

ID = (
ig
p!
)

n

∫ ddy1 . . .∫ ddyn ∏(−i)∆F(a − b), (2.81)

where a, b ∈ [x1, . . . , xn, y1, . . . , yn].

R.4 Compute the correlation function G(n)(x1, . . . , xn) as

G(n)(x1, . . . , xn) =
1
n!
∑

D
ID.

Ordinarily, it is more useful to compute the Feynman diagrams in momentum instead of coordinate
space. This comes with the clear advantage that due to translation invariance, the overall momentum
in a vertex shall be zero. Thus, the goal is to transform the Green functions from the real space to
momentum space as

G(n)(p1, . . . , pn) = ∫ ddx1 . . .∫ ddxn G(n)(x1, . . . , xn)e−i(p1x1+⋅⋅⋅+pnxn), (2.82)

G(n)(x1, . . . , xn) = ∫
dd p1

(2π)d
. . .∫

dd pn

(2π)d
G(n)(p1, . . . , pn)ei(p1x1+⋅⋅⋅+pnxn), (2.83)

and we assume that all the momenta are incoming. Then the Feynman rules in p-space are as following.
Rules R.1, R.2 and R.4 remain unchanged, while R.3 changes in the following manner. Now every
external line is characterised by its momentum p and is depicted as

p

and also comes with a component (p2 +m2)−1
. Moreover, every internal line of momentum k is drawn

as

k

and comes with a component (k2 +m2 − iϵ)−1
.

Now for every vertex we shall add an element ig(2π)dδd⎛
⎝∑i

pi
⎞
⎠

while the presence of the delta function

secures that the momentum is conserved in every vertex

p2

p1

p4

p3
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Finally the integration is performed over all remaining independent momenta with a integration pa-

rameter ∫ ddk
(2π)d and all symmetry factors shall be accounted for.

Besides the usual generating functional Z[J], it is possible and useful for us to define two additional
ones, W[J] and Γ[φ]. A priori these new generating functional contain the same amount of physical
data, but it is easier to compute them. The first one, W[J], is the generating functional of connected
diagrams and is defined as

Z[J] ≡ eiW[J]. (2.84)

These are the Feynman diagrams that do not have any disconnected lines. A connected n-point function
is expressed as

⟨ϕ(x1)ϕ(x2) . . . ϕ(xn)⟩c = (−i)n−1 δnW[J]
δJ(x1) . . . δJ(xn)

∣
J=0

. (2.85)

There is a noteworthy subgroup for the connected diagrams. These are the one-particle irreducible
(1PI) diagrams which are defined as the ones that cannot become two non-trivial separate diagrams by
cutting a singular inner line. Every diagram that is not 1PI possess such a line and is called reducible.
As a matter of fact, the generator of the 1PI correlation functions is the quantum effective action Γ[φ],
first defined in [104] using perturbative methods and then in [105] and separately in [106] using non-
perturbative methodology. Since the effective action is an important physical tool, it calls for a more
thorough examination.

From the QFT scope Γ[φ] stands as the adjusted definition of the classical action S[ϕ] that also
considers quantum corrections and at the same time ensures that the stationary-action principle holds
true. In other words, extremising Γ[φ] produces the eom but instead of the classical fields, now it
considers the vacuum expectation value of the aforementioned quantum fields. Γ[φ] is determined by
making use of the Legendre transformation of W[J] as

Γ[ϕ] ≡W[J]−∫ ddx J(x)φ(x), (2.86)

where J(x) is the non-zero source that ensures that the classical scalar field has the expectation value
φ(x) expressed as the solution of

φ(x) = ⟨ϕ̂(x)⟩J =
δW[J]
δJ(x) . (2.87)

In other words, being an expectation value the classical field ϕ(x) can be seen as the weighted mean
over quantum fluctuations in the presence of the sources J(x). Applying the functional derivative with
respect to φ(x) to Γ[φ] and using equation (2.86) generates the quantum eom

J(x) = δΓ[φ]
δφ(x) . (2.88)

Hence, lacking a source, i.e. J(x) = 0, equation (2.88) indicates that the vacuum expectation value of the
fields ϕ actually extremise the quantum effective action Γ[φ] instead of the classical action S[ϕ]. This is
precisely the principle of least action, but in the full quantum theory. This alteration from the classical
theory originates in the path integral approach, where every possible field configuration is accounted
for in the path integral, in contrast to the classical field theory where solely the classical configurations
play a part.

As mentioned before, Γ[φ] is also the generating functional for the 1PI correlation functions. Con-
sequently, the one-particle irreducible n-point functions are

⟨ϕ̂(x1) . . . ϕ̂(xn)⟩1PI = Γ(n)(x1, . . . , xn)∣
J=0

,

= δnΓ[φ]
δφ(x1) . . . δφ(xn)

∣
J=0

. (2.89)

In equation (2.89) Γ[φ] is the sum of all one-particle irreducible Feynman graphs. The relationship
between W[J] and Γ[φ] also indicates that there should be some beneficial correlations between their
Green’s functions. As a matter of fact, by applying the chain rule in the above equations we can show



18

that
δ

δJ(x) = ∫ ddy
δ2 W[J]

δJ(x)δJ(y)
δ

δφ(y) , (2.90)

and, moreover, this leads to

Γ(2)(x, y) = ( δ2 W[J]
δJ(x)δJ(y))

−1

. (2.91)

Thus Γ(2)∣J=0 is nothing less than the inverse of the exact propagator.

Finally, it is useful to have an expression for Γ(n)(x1, . . . , xn) in momentum space. To achieve that
we should Fourier transform Γ(n)(x1, . . . , xn) to obtain the vertex functions Γ(n)(p1, . . . , pn) as

(2π)dδd
⎛
⎜
⎝

n

∑

i=1
pi

⎞
⎟
⎠

Γ(n)(p1, . . . , pn) =
n

∏

k=1
∫ ddxk e−ixk pk Γ(n)(x1, . . . , xn), (2.92)

where all the momenta are incoming. With that in mind equation (2.86) may be expressed as

Γ[φ] = 1
2∫

dd p

(2π)d
φ(−p)(p2 +m2 −Π(p2))φ(p) (2.93)

+
∞

∑

n=3

1
n!∫

dd p1

(2π)d
. . .∫

dd pn

(2π)d
(2π)dδd

⎛
⎜
⎝

n

∑

i=1
pi

⎞
⎟
⎠

Γ(n)(p1, . . . , pn)φ(p1) . . . φ(pn),

whereas in a matter of fact by equation (2.91) the exact propagator is nothing but

G(2)(p,−p) = (Γ(2)(p,−p))
−1
= 1
(p2 +m2 −Π(p2)) , (2.94)

and furthermore Π(p2) is the self-energy of the system which consists of all the 1PI corrections to the
two point function.

2.1.3 Wick rotation and thermal QFT
At this point and having introduced canonical and path integral quantisation, what we want to do is
to introduce a mathematical technique to simplify the computation of path integrals and also lay down
the groundwork for thermal QFT 14. Thus, this section is mainly inspired by Hartman [107] and follows
closely [108].

A priori path integrals in Lorentzian signature, similar to the ones in equation (2.67) and after, are
hard to compute, and this is because the exponential factor eiS ⊁ 0 and thus it describes fast oscillation.
The remedy out of this is to perform a trick introduced by Wick [109], which is by then known as
Wick rotation. What we actually do is that we analytically continue in the temporal direction from real
Lorentzian to imaginary Euclidean time as

t → −iτ. (2.95)

Doing so, the generating functional of equation (2.77) becomes

Z[J] = ∫ Dϕ e−SE+∫ ddxJ(x)ϕ(x), (2.96)

where 15

SE = ∫ dd−1x dτ LE, (2.97)

LE =
1
2

∂µϕ ∂µϕ + 1
2

m2ϕ2 −Lint[ϕ]. (2.98)

14For thermal operators and the KMS condition see Appendix A.3
15Obviously, equation (2.98) is only valid for the case of the scalar field ϕ(x) that we are examining thus far.
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From the above definition of the generating functional and the path integral, it is understandable that
the convergence properties in the Euclidean formulation 16 are more apparent since the exponential
e−SE ≻ 0 hence it is heavily damped. A more rigorous proof of this connection has been given in [110,
111] 17.

But there is more to the story. There is a connection between Euclidean path integrals and ther-
modynamics. By construction, path integrals characterise transition amplitudes and for instance, for
Euclidean time τ and given two fields ϕ1 and ϕ2, the transition under the evolution e−βH can be de-
scribed by the subsequent path integral

⟨ϕ2∣e−βH ∣ϕ1⟩ =
ϕ(τ=β)=ϕ2

∫

ϕ(τ=0)=ϕ1

Dϕ e−SE[ϕ], (2.99)

where ϕ1 and ϕ2 are the boundaries of integration and the path integral assumes a foliation in spatial
and temporal spacetime dimensions.

The exact form of the path integral is obviously dependent on the topology of spacetime, so for
instance if the manifold is R× Sd−1 it can be depicted as

⟨ϕ2∣e−βH ∣ϕ1⟩⟩ =

ϕ2

ϕ1

Õ×××××
β
×××××Ö

(2.100)

where the integration is performed over all the field configurations ϕ.
Based on the above logic, we can define a cut to be a Cauchy slice for a fixed value of τ that is a

codimension-1 surface Σ. Therefore, the transition amplitude of equation (2.100) admits two cuts, one
for τ = 0 and the other for τ = β, where β is just a time value for the moment. Thus, it is also possible
to define a path integral with a single fixed boundary along with an open cut. This configuration
resembles a quantum state

∣ψ⟩ = e−βH ∣ϕ1⟩ , (2.101)

and looks like

∣ψ⟩ =

ϕ1

Õ×××××
β
×××××Ö

(2.102)

Consequently, we can deduce that a general quantum state on Σ is the path integral that admits any
open cut Σ. Path integrals with open cuts can be sewed together to construct a transition amplitude, so

16Going from Lorentzian to Euclidean signature the metric ηµν for raising and lowering indices is replaced by the Kronecker

delta δµν. Furthermore, Einstein summation in the indices is always presumed so that ∂µϕ ∂µϕ = ( ∂ϕ
∂τ
)

2
+ (∇ϕ)2 .

17The Osterwalder–Schrader theorem states that under a number of axioms, it is possible to analytically continue Euclidean
Schwinger functions to Lorentzian Wightman distributions that fulfil Wightman axioms, and therefore they properly define a QFT.
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for example, for a theory defined on a line, the vacuum to vacuum amplitude is

⟨0∣0⟩ =∑
ϕ1

⟨0∣ϕ1⟩ ⟨ϕ1∣0⟩

= ∫ Dϕe−SE[ϕ] =

∞

−∞

(2.103)

where two path integrals have been glued together. We can see that the first one is ∣0⟩ ∈ (−∞ < τ ≤ 0],
while ⟨0∣ ∈ [0 ≤ τ < ∞). The summation runs over all the intermediate states at τ = 0 and the path
integral should be smooth and connected.

This methodology can be easily extended to include a local operator O(x), by inserting them in the
path integral, as

⟨ϕi∣O1(x1)O2(x2)∣ϕj⟩ = ∫
C(ϕ)

Dϕ O1(x1)O2(x2) e−SE[ϕ], (2.104)

where C(ϕ) are the fields that have to be integrated over.
Hence, we can extend this discussion to also include density matrices, which are just operators

where both ends admit open cuts. For example

ρ = e−βH , (2.105)

is the density matrix in thermal equilibrium with a temperature T = 1/β and corresponds to the transi-
tion

ρ =

Õ×××××
β
×××××Ö

(2.106)

Thus, ρ can be thought of as a time evolution operator in the Heisenberg picture. This definition of the
density matrix can be very insightful in the sense that the thermal partition function, Z(β) is defined
as

Z(β) ≡ Tr [e−βH] (2.107)

=∑
ϕi

⟨ϕi∣e−βH ∣ϕi⟩ =∑
ϕi

ϕi

ϕi

Õ××××
β
××××Ö

where due to the definition of the trace the summation is over the same initial and final field configu-
ration. The path integral is constrained to have field configurations with periodic boundary conditions
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on the temporal coordinate

Z(β) =
ϕ(τ+β,x)

∫

ϕ(τ,x)

Dϕ e−SE[ϕ]

=

β

(2.108)

What happened is that the path integral of a QFT in Euclidean metric that was defined in a d-
dimensional space with cylindrical topology of circumference β can be interpreted as a thermal average
living in d− 1 spatial dimensions of a quantum statistical system. 18 Actually, the generating functional
(2.96) of the original Euclidean d-dimensional QFT coincides with the partition function (2.107) of the
quantised statistical system

Z[J = 0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R×Sd−1

= Z(β)
´¹¹¸¹¹¶

S1×Sd−1

. (2.109)

Consequently, using standard thermodynamical arguments we can use the partition function of equa-
tion (2.108) to compute

The free energy F = − 1
β

logZ , (2.110)

The energy ⟨E⟩ = ∂(βF)
∂β

, (2.111)

The entropy S = (β
∂

∂β
− 1)(βF). (2.112)

As a matter of fact equation (2.84) also has an interesting interpretation in Euclidean signature as it
takes the form

e−W[J] = Z[J]. (2.113)

We can see that this is nothing short of the free energy of the statistical mechanical system. Similarly,
Γ[φ] as a Legendre transform of W[J] is associated with the Gibbs free energy.

2.1.4 Regularisation, renormalisation and fixed points
Generally, local QFTs are intrinsically encumbered by divergences that impinge on the perturbation
theory. The most prominent of these divergences are infinities that occur at very short distances and/or
very high momenta, a region that is known as theUV limit in contrast to the region of long distances
and/or low momenta which is known as the IR limit.

The independent mathematical techniques that are employed to resolve and regulate these diver-
gences are called regularisation and renormalisation.

• Regularisation

This method consists of removing the divergences by an appropriate regularisation scheme. Since
a priori no physical quantity depends on the specific choice of scheme, all that we have to decide
is which procedure is more appropriate for the problem at hand. Specifically, regularisations that
preserve the symmetries of a system are often preferred to non-preserving ones, but nevertheless
any choice properly executed leads to the same physical predictions. In most of the introductory
books to QFT, e.g. see [82, 83], the techniques that are employed are either cut-off regularization or

18This result can be generalized. We can formally state, that if the initial spatial coordinates that the QFT was formulated were
Rd−1, then Z(β) would be the path integral evaluated on Rd−1 × S1.
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dimensional regularisation developed by ’t Hooft and Veltman [112]. In cut-off regularisation a —
most of the time smooth — cut-off regulator Λ is introduced in momentum space to regularise
a divergent integral and then the limit Λ → ∞ is taken at the end of the computation. The
problem with this technique is that it is not Lorentz invariant. On the other hand, in dimensional
regularisation any systematic divergences are turning up in the form of poles in the physical
value of the spacetime dimension d. For example, in four spacetime dimensions writing d =
4 − ε, divergences appear when the regulator ε → 0. These are usually cancelled by applying
renormalisation techniques to gain meaningful physical results. In the subsequent chapters, the
scheme most used is the zeta function regularisation, for which details will be given later, but for a
more thorough definition see [113, 114] and references therein.

• Renormalisation

In the renormalisation scheme, all infinities lie in the bare parameters while the new renormalised
parameters are finite but depend on the energy scale. This inevitably leads to the famous running
of the coupling since renormalised observable parameters run when the energy scale is changed.
How they change is the subject of the renormalisation group equation which we will study in the
upcoming sections.

Regularisation and the renormalisation group
We will review regularisation and renormalisation in the context of ϕ4 theory to one loop in perturbation
theory in d = 4 spacetime dimensions. The Lagrangian of the system is defined in equation (2.80) and
by making use of Feynman graphs we want to compute the one-particle irreducible vertex functions
Γ(2)1−loop and Γ(4)1−loop defined in equation (2.92).

Hence, let us examine Γ(2)1−loop(p,−p) in detail. Following the Feynman rules of section 2.1.2 and

ignoring factors of (p2 +m2)−1
that arise from external legs, the Γ(2)1−loop(p,−p) diagram is

Γ(2)1−loop(p,−p) =
p p

k

= ig
2 ∫

ddk

(2π)d
1

k2 +m2 − iϵ
.

Using the Wick rotation technique of section 2.1.3, we send k0 → ik0 and now it is possible to send ϵ → 0.
The above integral can be computed using standard techniques, and it gives

Γ(2)1−loop(p,−p) = − g
2

Γ(1− d
2)

(4π)d/2
m(d−2)/2, (2.114)

where Γ(1− d
2) is the Gamma function defined for positive integers as

Γ(n) = (n − 1)!. (2.115)

Looking at the properties of the Gamma function, it is not hard to find that Γ(−1) is ill-defined, thus
for d = 4 equation (2.114) is divergent. At this point, we have to choose a regularisation scheme, and we
pick the dimensional regularisation by going to a non-integer number of spacetime dimensions d = 4− ε.
Furthermore, we are going to use the analytic expansion of the Gamma function

Γ(−n + δ) = (−1)n

n!
{1

δ
+ψ(n + 1)+O(δ)}, (2.116)
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where ψ(n + 1) is the digamma function 19 that has an expansion in terms of Harmonic numbers as

ψ(n + 1) =
n

∑

k=1

1
k
− γ, (2.117)

where γ is the Euler–Mascheroni constant.
For d = 4 − ε we see that we have to set n = 1 and δ = ε/2 in equations (2.116) and (2.117) and now it is
possible to isolate the divergence of the vertex function Γ(2)1−loop in equation (2.114) and evaluate it as

Γ(2)1−loop(p,−p) ∼ 1
2

g
16π2 m2(2

ε
+ 1− ln m2)(e−γ4π)ε/2. (2.118)

Thus the divergent part of Γ(2)1−loop is

Γ(2)1−loop,div(p,−p) = gm2

16π2ε
. (2.119)

Similarly it is possible to compute the divergent part of the vertex function Γ(4)1−loop which is

Γ(4)1−loop,div(p1, p2, p3, p4) =
3g2

16π2ε
. (2.120)

As a side comment it is useful to note that while using a cut-off regularisation scheme the 1/ε regulator
would be replaced by an ln Λ regulator where Λ is the value of the cut-off.

Now the goal is to find a way to systematically absorb divergences like the ones encountered in
equations (2.119) and (2.120). To do so, we take advantage of the fact that the theory at hand is
renormalisable 20. In renormalisable Quantum Field Theories, it is possible to remove divergences
by including additional terms in the initial Lagrangian that have a form that is similar to the already
existing terms, but their coefficients are now divergent and are known as counterterms. For the specific
example of equation (2.80) these terms are

Lct = −
A
2

∂µϕ ∂µϕ − B
2

ϕ2 − C
4!

ϕ4, (2.121)

where A, B, C are the now unknown coefficients that are included to cancel the divergences. The pres-
ence of the above terms generates new extra vertices that impact the vertex functions at leading order
as

Γ(2)ct,tree(p,−p) = −Ap2 − B,

Γ(4)ct,tree = −C. (2.122)

Thus, to cancel the divergences in the vertex functions the coefficients A, B, C get their values fixed

A = 0, B = gm2

16π2ε
, C = 3g2

16π2ε
, (2.123)

and this selection leads to
lim
ε→0
{Γ(n)1−loop + Γ(n)ct,tree} = finite. (2.124)

Hence there are no poles any more in the vanishing limit of the regulator and setting ε = 0 is an
appropriate action. As this was only a one-loop order result, the coefficient A was trivially zero, but
including higher-loop corrections in the original perturbative expansion would lead to new divergences,
thus non-vanishing values of A would be necessary to absorb these.

One of the key elements of renormalisable QFTs is that all divergences can be cancelled by a finite
number of counterterms and a limited number of vertex functions contain infinitely many divergences
that can be absorbed into a limited number of masses and couplings. Therefore, in order for this to
happen, the counterterm Lagrangian has to be of a form similar to the initial Lagrangian. On that

19For more details see [115].
20The criteria for renormalisability of QFTs can be found in Appendix A.4.
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account, we can introduce the renormalised perturbation theory and, as a consequence, A, B, C do not
need to be single numbers like in equation (2.123) but can be generic to all order coefficients that are
expressed in a power series form in terms of the coupling g and the chosen regulator.

Along these lines, we can combine equations (2.80) and (2.121) and define the bare Lagrangian as

Lbare =L +Lct

= −1
2

∂µϕ ∂µϕ(1+ A)− 1
2

m2ϕ2(1+ B)− 1
4!

gϕ4(1+C) (2.125)

= −1
2

∂µϕ0 ∂µϕ0 −
1
2

m2
0ϕ2

0 −
1
4!

g0ϕ4
0,

where

Zϕ = 1+ A, ϕ0 = Z1/2
ϕ ϕ, (2.126)

Zm2 = 1+ B, m2
0 = m2 (1+ B)

(1+ A) ≡ m2 Zm2

Zϕ
, (2.127)

Zg = 1+C, g0 =
g +C

(1+ A)2
≡

gZg

Z2
ϕ

. (2.128)

In this notation ϕ0, m0, g0 are the bare quantities while ϕ, m, g are the renormalised ones. The relation
between them is expressed by the multiplicative renormalisation terms like the field renormalisation
Zϕ. In this fashion, Zg/Z2

ϕ denotes the coupling renormalisation and Zm2 the mass renormalisation. It is
the bare parameters ϕ0, m0, g0 that can be described in a power series form in g with ever-higher poles
in the regulator ε.

In retrospect, the values of A, B, C in equation (2.123) are not uniquely defined, as they can be chosen
in such a way that they also include finite terms. The choice to pick such values that only subtract the
divergences is known as minimal subtraction (MS) scheme and for which we get

m2
0 = m2(1+ g

16π2ε
), g0 = g(1+ 3

16π2ε
), Zϕ = 1+O(g2). (2.129)

Now, looking at equations (2.127) and (2.128) it is clear that as ε → 0 then A, B →∞. Nevertheless, this
is not a problem since these are not physical observables.

Moreover, an important issue is the following : for the ϕ4 theory, the initial coupling constant g had
a zero mass-dimension, i.e. [g] = 0, which, as we can see in Appendix A.4 is an important criterion for
the theory to be renormalisable. But when we choose the dimensional regularisation scheme, and we
go away from d = 4, then g is no longer dimensionless and using equation (A.38) we see that it has a
mass dimension of

[g] = ε. (2.130)

To keep it dimensionless we have to introduce a mass parameter µ upon which physical quantities shall
not depend and this alters g as

g → gµε. (2.131)

This alteration also affects the value of C in equation (2.123) which now is

C → Cµε, (2.132)

and as a result equation (2.128) becomes

g0 = µε gZg

Z2
ϕ

. (2.133)

The bare Lagrangian of equation (2.125) gives by construction finite, µ-independent results for physical
observables. So, as a general rule, bare parameters shall not depend on µ since this is not a variable of
the initial theory.

To summarise, the bare parameters and the bare fields are µ independent, but they are infinite in
the limit that the regulator vanishes, hence they diverge. On the other hand, the renormalised fields
and parameters are finite but now depend on the arbitrary mass parameter µ which unavoidably leads
to the running of couplings as we will see in a bit.
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But first through equation (2.125) we can work out the one-particle irreducible renormalised ver-
tex functions Γ(n)(p1, . . . , pn; m, g) regarding the bare one-particle irreducible proper vertex function
Γ(n)0 (p1, . . . , pn; m0, g0) as

Γ(n)0 (p1, . . . , pn) = Γ(n)(p1, . . . , pn)+ Γ(n)ct (p1, . . . , pn). (2.134)

As an outcome, we get a well-defined result for the vertex function Γ(n)(p1, . . . , pn; m, g), independent
of the regulator.

Now, going back to our previous point, the connected n-point function is defined in equation (2.85).
We want to Fourier transform it to momentum space and look at the bare version of it as expressed by
the bare field ϕ0 and the bare couplings m0, g0

G(n)0;c (p1, . . . , pn) = ⟨ϕ0(p1) . . . ϕ0(pn)⟩c . (2.135)

By applying equation (2.126) the expression becomes

G(n)0;c (p1, . . . , pn) = Zn/2
ϕ ⟨ϕ(p1) . . . ϕ(pn)⟩c

= Zn/2
ϕ G(n)c (p1, . . . , pn), n ≥ 1, (2.136)

where now G(n)c stands for the renormalised n-point correlation function, written with respect to the
renormalised parameters ϕ, m, g.

We can express the proper, bare vertex functions Γ(n)0 (p1, . . . , pn; m0, g0), which are derived from the
one-particle irreducible elements of the bare connected n-point correlation functions of equation (2.135)
by cutting off the external legs, and the renormalised quantities by using equations (2.94) and (2.136) as

Γ(n)(p1, . . . , pn) = Zn/2
ϕ Γ(n)0 (p1, . . . , pn), n ≥ 1. (2.137)

Now we observe that equations (2.126) to (2.128) do not solely depend on the bare parameters but also
on the arbitrary mass scale µ as

ϕ2 = Z−1
ϕ (g(µ))ϕ2

0, (2.138)

m2(µ) =
Zϕ(g(µ))
Zm2(g(µ))

m2
0, (2.139)

g(µ) = µ−ε
Z2

ϕ(g(µ))
Zg(g(µ))

g0. (2.140)

As a consequence, the renormalised vertex functions Γ(n)(p1, . . . , pn; m, g, µ) depend on the mass scale
µ in two separate ways: both directly from factors of µε that are produced by replacing g with gµε in
equation (2.131) and indirectly through equations (2.139) and (2.140). On the contrary, the bare vertex
functions Γ(n)0 (p1, . . . , pn; m0, g0) are independent of µ. Hence, we see that at the right-hand side of
equation (2.137) the only dependence on µ comes from Zϕ via equation (2.138).

As stated before, any bare quantity is unquestionably independent of the arbitrarily imported mass
scale µ thus rewriting equation (2.137) as

Γ(n)0 (p1, . . . , pn) = Z−n/2
ϕ Γ(n)(p1, . . . , pn), n ≥ 1, (2.141)

indicates a non-trivial behaviour of the renormalised vertex Γ(n)(p1, . . . , pn; m, g, µ) under alterations of
µ. To put it another way, the combined alterations of both Γ(n)(p1, . . . , pn; m, g, µ) and of the rest of the
renormalised functions have to be related in such a way to ensure that the physical data contained in
the renormalized functions is unchanged under alterations of µ.

We can compute these alterations by applying the — by construction dimensionless — operator µ ∂
∂µ

to equation (2.141) presuming that the bare parameters remain fixed and remembering that the bare
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vertex function does not depend on µ

0 = µ
∂

∂µ
Γ(n)0 (p1, . . . , pn) = µ

∂

∂µ
(Z−n/2

ϕ Γ(n)(p1, . . . , pn)). (2.142)

At this point we can apply the chain rule for which equation (2.142) for n ≥ 1 becomes

[−nµ
∂

∂µ
log Z1/2

ϕ ∣
0
+ µ

∂g
∂µ
∣
0

∂

∂g
+ µ

∂m
∂µ
∣
0

∂

∂µ
+ µ

∂

∂µ
]Γ(n)(p1, . . . , pn; m, g, µ) = 0, (2.143)

where the notation ∣0 is used as a reminder that the bare variables m0, g0 are fixed. Thus, equa-
tion (2.143) signifies the invariance of Γ(n)(p1, . . . , pn; m, g, µ) under a change from {µ, m(µ), g(g)} →
{µ′, m(µ′), g(µ′)}. The physical observables of the system are unchanged under a transformation of
the arbitrary mass parameter µ → µ′ as long as the coupling g(µ) and the mass m(µ) are transformed
accordingly. It is important to note that the mass parameter µ is not an independent factor.

Thus, we can define three equations, the renormalisation group functions (RG functions) that encapsu-
late the relationship of g, m, Zϕ with the mass scale µ

The anomalous field dimension : γ(m, g, µ) ≡ µ
∂

∂µ
log Z1/2

ϕ ∣
0

, (2.144)

The anomalous mass dimension : γm(m, g, µ) ≡ µ

m
∂m
∂µ
∣
0

, (2.145)

The beta function : β(m, g, µ) ≡ µ
∂g
∂µ
∣
0

. (2.146)

Using equations (2.144) to (2.146) we can express equation (2.143) as

[µ ∂

∂µ
+ β(m, g, µ) ∂

∂g
− nγ(m, g, µ)+mγm(m, g, µ) ∂

∂m
]Γ(n)(p1, . . . , pn; m, g, µ) = 0, (2.147)

which is the renormalisation group equation (RGE) 21.
Now, solving a PDE similar to equation (2.147) is a priori challenging, given that equations (2.144)

to (2.146) can depend on m, g and µ simultaneously. Thankfully there is a remedy and this has been
given by ’t Hooft [116] and Collins and Macfarlane [117] and that is that in the MS scheme any coun-
terterms are mass independent, and they solely depend on the coupling g, apart from the regulator.
Therefore, the RG equations (2.144) to (2.146) are independent of the mass m and arbitrary mass scale
µ, and depend uniquely upon g

γ(g) MS= µ
∂

∂µ
log Z1/2

ϕ ∣
0

, (2.148)

γm(g) MS= µ

m
∂m
∂µ
∣
0

, (2.149)

β(g) MS= µ
∂g
∂µ
∣
0

. (2.150)

Applying equations (2.148) to (2.150) on equation (2.147), the expression of RGE becomes

[µ ∂

∂µ
+ β(g) ∂

∂g
− nγ(g)+mγm(g)

∂

∂m
]Γ(n)(p1, . . . , pn; m, g, µ) = 0, (2.151)

and now the solution of this partial differential equation is considerably easier than equation (2.147).
Let us now try to compute the RG functions using the fact that via the MS scheme the renormali-

sation functions revolve around µ only through the renormalised coupling g(µ). First we will examine

21There is an alternative way to see the running of the mass, see appendix A.4.
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the beta function, and we will insert equation (2.140) into equation (2.150) for which we find

β(g) = −ε[ d
dg

log (gZgZ−2
ϕ )]

−1

. (2.152)

We can further relate the beta function with the anomalous field dimension γ(g). To do so, we use
chain rule in equation (2.148) to write it in the form

γ(g) = µ
∂g
∂µ
∣
0

d
dg

log Z1/2
ϕ = β(g) d

dg
log Z1/2

ϕ , (2.153)

where in the last expression we used the definition of the beta function (2.150). Substituting this back
to equation (2.152) it becomes

β(g) = −ε + 4γ(g)
d log [gZg(g)] /dg

. (2.154)

Similarly, using equation (2.139) and using the chain rule as before, we can derive the following relation
for the anomalous mass dimension γm(g)

γm(g) = −
β(g)

2
[ d

dg
log Zm2 −

d
dg

log Zϕ] = −
β(g)

2
d

dg
log Zm2 + γ(g), (2.155)

and in the last expression we used the definition of equation (2.153).
Theoretically, all three equations (2.153) to (2.155) depend on the regulator ε so in principle the

renormalisation group functions should be denoted as

β = β(g, ε), γ = γ(g, ε), γm = γm(g, ε). (2.156)

Nevertheless, the dependence on the regulator is constrained by the fact that the theory is renormalis-
able and hence the RG functions are finite when the regulator vanishes, e.g. ε → 0, so there should be
no poles in ε. Actually, it can be shown that in a direct computation of the right-hand part of equa-
tions (2.153) to (2.155) all poles in the regulator ε cancel out. Therefore, we can write the RG functions
in a power series form in ε that contains non-negative powers of the regulator εn, for example, for the
beta function we have

β(g, ε) = β0(g)+ εβ1(g)+ ε2β2(g)+O(ε3). (2.157)

Furthermore, things get even simpler, since of all the non-negative factors εn, only the beta function
from above contains such a term, and this is the very first order in ε which is β1(g).

This can be shown in the following way: using equations (2.123) and (2.126) to (2.128) it is easy to
deduce the most general form of the expansion in inverse powers of the regulator ε for the multiplicative
renormalisation terms in the MS scheme, and these are

Zϕ(g, ε) = 1+
∞

∑

n=1
Zϕ,n(g)

1
εn , (2.158)

Zm2(g, ε) = 1+
∞

∑

n=1
Zm2,n(g)

1
εn , (2.159)

Zg(g, ε) = 1+
∞

∑

n=1
Zg,n(g)

1
εn . (2.160)
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Then we can insert the general form of the multiplicative renormalisation constants as written in equa-
tions (2.158) to (2.160) into equations (2.153) to (2.155) to obtain after some formal manipulations

γ(g, ε)
⎡⎢⎢⎢⎢⎣
1+
∞

∑

n=1
Zϕ,n(g)

1
εn

⎤⎥⎥⎥⎥⎦
= 1

2
β(g, ε)

∞

∑

n=1
Z′ϕ,n(g)ε−n, (2.161)

β(g, ε)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1+
∞

∑

n=1
[gZg,n(g)]

′ 1
εn

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= [−ε + 4γ(g, ε)]g

⎡⎢⎢⎢⎢⎣
1+
∞

∑

n=1
Zg,n(g)ε−n

⎤⎥⎥⎥⎥⎦
, (2.162)

[−γm(g, ε)+ γ(g, ε)]
⎛
⎜
⎝

1+
∞

∑

n=1
Zm2,n(g)

1
εn

⎞
⎟
⎠
= β(g, ε)

2

∞

∑

n=1
Z′m2,n(g)

1
εn . (2.163)

At this time we can straightforwardly insert equation (2.161) in equation (2.162) eliminating the anoma-
lous field dimension γ(g, ε) and then expand in powers of the regulator. By doing so, we see that the
beta function’s expansion in powers of ε given in equation (2.157) cannot contain any term in ε beyond
order one

β(g, ε) = β0(g)+ εβ1(g). (2.164)

Thus, we can use the result of equation (2.164) to remove the beta function from equations (2.161)
and (2.163) and have an expression for the functions of the anomalous mass dimension γm(g, ε) and the
anomalous field dimension γ(g, ε) in terms of ε. Currently, we have a system of three equations that we
can equate the finite terms of the same order to find

β0 + εβ1 + β1(Zg,1 + gZ′g,1) = (−ε + 4γ)g − gZg,1, (2.165)

γ = 1
2

β1Z′ϕ,1, (2.166)

γm − γ = −1
2

β1Z′m2,1, (2.167)

where the ′ denotes differentiation regarding g and the system at hand can be easily solved to generate
the following solutions

β1(g) = −g, (2.168)

β0(g) = g2Z′g,1(g)+ 4gγ(g), (2.169)

γ(g) = −1
2

gZ′ϕ,1(g), (2.170)

γm(g) = γ(g)+ 1
2

gZ′m2,1(g). (2.171)

In this way, all the renormalisation group functions are written in terms of the first derivatives of the
three multiplicative renormalisation terms and more concretely as the derivatives of residues of a simple
pole. Moreover, as promised, the regulator ε only appears at the beta function

β(g) = −εg + g2Z′g,1 + 4gγ(g). (2.172)

In order for the RG functions to be finite physical observables at the point when the regulator ε vanishes,
i.e. ε → 0, it is required that no higher pole from equations (2.161) to (2.163) contributes. This can be
verified — see [118] for details — and the residues can be computed from the one-loop 1PI diagrams
so that at the end

β(g) = −ϵg + 3g2

(4π)2
− 17

3
g3

(4π)4
, (2.173)

γ(g) = 1
12

g2

(4π)4
, (2.174)

γm(g) =
1
2

g

(4π)2
− 5

12
g2

(4π)4
. (2.175)
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The Wilsonian renormalisation group and fixed points
A different interpretation to the renormalisation group came from Wilson [1, 2, 119] and Wilson and
Fisher [120]. As stated at the beginning of section 2.1.4, there are plenty of methods to regularise a
divergent system. One of the most prominent is the cut-off regularisation and in this approach, the
cut-off Λ is but a mere tool of the system without any physical consequence that has to go away at
the end of the computation. But in the Wilsonian approach to renormalisation, the cut-off Λ is not
just a regulator, but now it is an important physical scale that affects the behaviour of the system.
Wilson’s idea was motivated and inspired by statistical and condensed matter physics and the work of
Kadanoff [121].

In the Wilsonian approach we start again by considering the generating functional in Euclidean
signature of equation (2.96) which is

Z[J] = ∫ Dϕ e−SE+∫ ddxJ(x)ϕ(x).

Nevertheless, now we introduce a UV cut-off Λ that limits the integration units in the sense that now
the path integral is performed merely over field configurations ϕ(k) where ∣k∣ < Λ as

Z[J] = ∫ Dϕ∣k∣<Λ e−Seff
E [ϕ;Λ]+∫ ddxJ(x)ϕ(x), (2.176)

and we demand that J(k) = 0 for k > Λ. Seff
E is the Wilsonian effective Euclidean action and the integration

measure Dϕ∣k∣<Λ takes the form
Dϕ∣k∣<Λ = ∏

∣k∣<Λ
dϕ(k) . (2.177)

The effective action depends on the large-k modes that were integrated out and is given by

Seff
E [ϕ; Λ] = ∫ Dϕ∣k∣>Λe−SE[ϕ]. (2.178)

As a matter of fact, the effective action is non-local for scales of xµ ∼ 1/Λ and that happens since
high-frequency modes are eliminated from the system. Nonetheless, it is possible to rewrite Seff

E as
an expansion of local operators made of light fields. This particular procedure is known as Wilsonian
operator product expansion (OPE). Then the Wilsonian effective action can be expressed in terms of an
object, known as the effective Lagrangian, see [122] for details. This item now is an infinite sum that in
principle contains all possible local operators that are permitted by the symmetries of the system, and
these operators are multiplied by some coupling coefficients that are finite functions of the cut-off scale
Λ and are known as Wilsonian coefficients.

In the specific case of the ϕ4 theory, the effective Lagrangian in coordinate space is given by

L eff
E = Z(Λ)

2
∂µϕ ∂µϕ + m2(Λ)

ϕ2 + g(Λ)
4!

ϕ4 +O( 1
Λ2 ), (2.179)

and Z(Λ), m2(Λ) and g(Λ) are precisely the finite functions of the cut-off scale Λ that we mentioned
before. Furthermore, the term O( 1

Λ2 ) in the effective Lagrangian is there to denote higher-order terms
like ϕ6 and so on, or terms that also include derivatives. It is these terms that are created from one
loop quantum corrections, and they compensate for the absence of the large frequency Fourier modes
in equation (2.176) by generating additional interactions amid the leftover modes ϕ(k), that were con-
trolled before by the quantum fluctuations of the high-frequency k modes.

The question at hand now is what will happen if we decrease the cut-off Λ even lower to a value
bΛ, where b < 1. This is actually addressed by the Wilsonian approach and the answer is that field
configurations with momenta spanning in the range Λ and bΛ are being integrated out in the sense
that

Z[J] = ∫ Dϕ∣k∣<bΛe−Seff
E [ϕ;bΛ]+∫ ddxJ(x)ϕ(x), (2.180)

and the new effective action contains only field configurations ϕ(k) where ∣k∣ < bΛ.
We observe that Fourier components ϕ(k) with momenta between bΛ < ∣k∣ < Λ do not any more

appear in equation (2.180) and they are also no longer present in the effective Lagrangian that describes
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the system at the current lower energy scale 22. Notwithstanding, their physical data is still encrypted in
changes of the Wilsonian physical variables — like Z and g — at the latest energy scale. This course of
action that integrates out high-frequency modes results in coarse-graining and reduces the total number
of degrees of freedom of the system.

Through this procedure, the running coupling constant g(Λ) satisfies the following differential equa-
tion

β(g(Λ)) = Λ
dg(Λ)

dΛ
= dg(Λ)

d log Λ
. (2.181)

Principally, the Wilsonian approach to renormalisation group provides us with a new meaning for the
beta function. What the beta function truly assesses is how the coupling g(Λ) changes by integrating
out high-frequency modes.

Back to equation (2.181), the solution to this differential equation is easy to derive and is

log Λ = ∫
g(Λ)

g

dg′

β(g′) . (2.182)

There is an important observation to be made. Any point in the configuration space created by the
coupling constants where the beta function β(g(Λ)) disappears, i.e. β(g∗) = 0, is known as a fixed point
g∗. Fixed points have the property that the running coupling g(Λ) turns out to be independent of Λ
and satisfy

[dg(Λ)
dΛ

]
g=g∗

= 0. (2.183)

We want to examine how a fixed point that satisfies equation (2.183) is obtained from equation (2.182).
We know from equation (2.173) that the beta function at leading order in perturbation theory has the
form

β(g) = −εg + 3g2

16π2 +O(g
3),

= −εg + bg2 +O(g3). (2.184)

We notice that the beta function begins with a negative slope and vanishes at the values

g∗UV = 0, g∗IR =
ε

b
. (2.185)

The above analysis holds true whether we know the value of the beta function at best to O(g2) in our
perturbative expansion as long as we consider small enough values for ε. The points g∗ are the fixed
points in the RG flow. In general, there are two scenarios

I.1 If β(g(Λ)) < 0 for small g(Λ) , but ∃ g∗ for which β(g∗) = 0 then g∗ is an IR fixed point.

I.2 If β(g(Λ)) > 0 for small g(Λ) , but ∃ g∗ for which β(g∗) = 0 then g∗ is an UV fixed point.

From the arguments above, it is clear that we are in the case I.1, but we can further strengthen our
analysis in the following way. We can add equation (2.184) into equation (2.182) to derive

log Λ = ∫
g(Λ)

g

dg′

−εg′ + bg′2
. (2.186)

From equation (2.186) we see that when g′ = g∗ then Λ → 0. This is the low-energy limit of the theory,
and hence we speak of an Infrared fixed point.

At this point, we can even examine the stability of the fixed point. We start by Taylor expanding the
beta function β(g) around the non-trivial zero g∗IR

23

β(g) ∼ β′(g∗)(g − g∗)+ ⋅ ⋅ ⋅ ≡ ω(g − g∗)+ . . . , (2.187)

22Actually, the method of integrating out high-frequency field configurations is associative, so in reality it does not really
matter if we integrate out modes with momenta in the range Λ > ∣k∣ > bΛ and then additional modes with momenta between
bΛ > ∣k∣ > b′Λ with b > b′ or we integrate out all modes with momenta Λ > ∣k∣ > b′Λ from the start. In any case, integrating out
high-frequency Fourier modes is an irreversible procedure, and it is impossible to go back up.

23From now on and unless specified otherwise, to lighten the notation g∗ denotes the IR fixed point.
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where again ′ signifies differentiation regarding g. Omega is the slope of the beta function evaluated at
the fixed point g∗

ω ≡ β′(g∗), (2.188)

and it controls the primary corrections of the scaling laws. By construction, the sign of omega de-
termines whether the fixed point is stable or not. For an IR fixed point to be stable, omega must be
positive. Hence, going back to equation (2.184) and inserting g∗ from equation (2.185) we compute the
omega to be

ω = ε. (2.189)

Thus g∗ is a stable IR fixed point. As a general rule, the behaviour of the beta function may vary for
bigger coupling. For example, it is possible that more zeros of the beta function exist on the right of
g∗. In the present case, we notice from equation (2.186) that for positive values of the beta function, the
coupling g(Λ) always heads toward zero from the right side. On the other hand, for negative values of
the beta function, it goes away from zero towards the right side.

We also want to examine what happens for g∗UV and to do so we go back to equation (2.186) and we
make a variable change from g → x = 1/g, for which the equation takes the form

log Λ = −1
ε∫

1/g(Λ)

1/g

dx
1/g∗ − x

, (2.190)

which can be straightforwardly integrated to

Λ = ∣1/g
∗ − 1/g(Λ)∣1/ε

∣1/g∗ − 1/g∣1/ε
, (2.191)

and this in turn yields

g(Λ) = g∗

1+Λε(g∗/g − 1) . (2.192)

If we study equation (2.192), we observe that in the limit that Λ → ∞, the coupling constant g(Λ) → 0
and this is but the trivial zero of the beta function (2.184). This limit corresponds to the high-energy limit
of the theory, and is known as an Ultraviolet (UV) fixed point. For g = 0 it is obvious that correlation
functions act as those that belong to a free theory that, as we have seen in section 2.1.2, the relation
between the fields is Gaussian. In consequence, this zero of the beta function is known as Gaussian or
trivial fixed point. For the case of the ϕ4 the trivial fixed point is UV stable. All of this analysis can be
depicted in the following figure:

β(g)

g∗UV g∗IR

g/g∗

The flow of the coupling g(Λ) when Λ→0 is delineated by arrows.

At the end, we can see that in the case of d = 4 which is for ε = 0, the beta function admits a single fixed
point, which is the trivial Gaussian fixed point.

On the other hand, for d = 3 where ε = 1 the beta function acquires two fixed points. One is still the
trivial Gaussian one in the UV, but there is also an IR stable fixed point, the famous Wilson-Fisher (WF)
fixed point.

The reason that we were so interested in fixed points is the following: obviously, if the beta function
is zero, then the coupling g is a constant, there is no running of the coupling, it exhibits scale invariance,
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and it is unchanged under different energy scales. Therefore, any fixed point g∗ of the renormalisation
group flow corresponds to a scale invariant — and as we will see a conformal invariant — Quantum
Field Theory, which is the subject of section 2.2. In fact, the whole RG flow can be expressed in the
following manner: we start from the UV fixed point g∗UV, where a Conformal Field Theory lives, and
we add a relevant deformation. This operator breaks conformal invariance, so we obtain a QFT that is not
scale invariant. Then, if the theory exhibits a second attractive fixed point at the renormalisation group
flow, the system runs until it hits the IR fixed point g∗IR, where again a CFT lies. Looking at QFTs from
this perspective, known as the principle of Wilsonian universality, every known Quantum Field Theory is
classified by a Conformal Field Theory and its relevant deformations.

2.2 Conformal Field Theory

A CFT is a QFT which possesses extra symmetry under conformal transformations. Therefore, besides the
usual symmetries under translations, rotations and boosts, d + 1 additional symmetries appear. More
specifically, invariance under dilatations and under special conformal transformation (SCT). Combined,
these symmetries generate the conformal group.

As we have seen in section 2.1.4, CFTs exist in fixed points of the RG flow, where the beta function
vanishes. Actually, CFTs play an important role in theoretical physics and a short but in-exhaustive list
of uses consists of the following:

• They are used to describing critical points in statistical mechanics. These are the points where
a continuous phase transition takes place. A phase transition is a point in the configuration space
where equation (2.110) becomes a nonanalytic function of at least one of its parameters in the macro-
scopic limit. As a matter of fact, one phenomenon that is described by an interacting CFT is the
ferromagnetic-paramagnetic second-order phase transition that takes place in magnetic materials.
Such a system is commonly represented as a 3-dimensional lattice, and every unit of the lattice is
characterised by a spin variable. The nearest neighbour spins interact in such a manner that the
energy of the lattice system is lowest in the case that the spins are aligned. So, when the system is at
a very low temperature, all the spins are parallel to each other facing the same spatial direction, the
system exhibits a net magnetic moment and is in its ferromagnetic phase. Contrarily, at high tempera-
ture there is no organized alignment of the spins due to thermal fluctuations, and hence the system
does not exhibit a net magnetic moment and this phase is called a paramagnetic phase. So obviously,
there is a temperature between these two phases, called the Curie temperature TC, where the system
changes phase and this is the critical point of this statistical system. If now we restrict the original
system a bit more, and we demand that the spins in every unit can only acquire an up or down
orientation, the CFT that portrays the critical point is the 3-dimensional Ising model [123]. Capti-
vatingly, it is the same CFT model that describes the liquid to gas phase transition in water. This
is a pure manifestation of the Wilsonian Universality principle that we discussed in section 2.1.4,
that indistinguishable Conformal Field Theories describe phase transitions of completely dissimilar
macroscopical physical systems. These systems are described by a different QFT but the fixed point
where the phase transition occurs is characterised by a similar CFT.

• They describe the world-sheet of string theory. Although no more information about that will be given
in this thesis, there is an abundance of books that the interested reader may refer to. A classical
masterpiece that is somewhat obsolete in certain areas but ever useful is by Green, Schwarz, and
Witten [124, 125] while distinguished modern approaches consist of [126–128].

• They are connected to quantum gravity through the AdS/CFT correspondence. The gauge/gravity duality
was initially formulated by Maldacena [129] and then by Witten [130] and Gubser et al. [131], and is
the finest fulfilment of the idea of holography of ’t Hooft [132] and Susskind [133] up to now. For an
enlightening introduction, see Aharony et al. [134].

CFTs are a vast subject, hence in this thesis, we will focus on properties of CFTs in d > 3 spacetime
dimensions.

2.2.1 Conformal transformation and conformal algebra
We start by considering the metric tensor gµν of the Pseudo-Riemannian manifold M with line element
ds2 = gµνdxµdxν. A conformal transformation is the differentiable map ϕα that preserves the angles and
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re-scales the lengths by a spacetime dependent scale factor Ω(x) > 0 as

gµν
ϕαÐ→ g′µν(x′) = Ω(x)gµν(x). (2.193)

Moreover, given the transformation xµ → x′µ, the relevant metric transformation is

gρσ(x)→ g′ρσ(x′) = ∂ρx′µ ∂σx′νgµν(x).24 (2.194)

For the case of the d-dimensional space Rd−1,1 with flat metric ηµν we can write the scale factor Ω(x)
using the definition of the conformal transformation (2.193) and the transformation of the metric (2.194)
as

ηρσ ∂µx′ρ ∂νx′σ = Ω(x)ηµν. (2.195)

It is well known that for Ω(x) = 1 we gain the Poincaré group that was discussed briefly in section 2.1.1.
Additionally, one can clearly see that in the case that Ω ≠ 1 but still a constant, this is a global rescaling
transformation.

To work out the most general form of the conformal transformations, we start by taking an infinites-
imal coordinate transformation of xµ up to first order in ϵ(x)≪ 1 as

xµ → x′µ = xµ + ϵµ(x)+O(ϵ2), (2.196)

where we used the fact that being a differentiable transformation, we can always Taylor-expand it about
an infinitesimal vector ϵµ and be able to ignore all terms of quadratic order, i.e. O(ϵ2) and beyond. We
can use the above result to deduce how the metric tensor transforms as:

ηρσ ∂µx′ρ ∂νx′σ = ηρσ(δρ
µ + ∂µϵρ +O(ϵ2))(δσ

ν + ∂νϵσ +O(ϵ2))
= ηµν + ∂νϵµ + ∂µϵν +O(ϵ2). (2.197)

By plugging back the result of equation (2.197) in to the definition of the conformal transformation,
i.e. equation (2.193), we observe that the conformality condition is only satisfied if and only if

∂µϵν + ∂νϵµ = f (x)ηµν, (2.198)

where f (x) is an arbitrary function that we have to determine. To do that, we multiply both sides
of equation (2.198) by the inverse of the metric tensor ηµν and then we perform the necessary index
contractions 25

2 ∂µϵµ = d ⋅ f (x) Ô⇒ f (x) = 2
d

∂µϵµ = 2
d

∂ ⋅ ϵ. (2.199)

At this point, using the result for f (x) we can rewrite equation (2.198) as

∂µϵν + ∂νϵµ =
2
d
(∂ ⋅ ϵ)ηµν. (2.200)

Meanwhile, we can also reason out the scale factor Ω(x) using all the above results as

Ω(x) = 1+ 2
d
(∂ ⋅ ϵ)+O(ϵ2). (2.201)

Our final goal is to deduce the conformal Killing equation. To achieve that, we start by multiply-
ing equation (2.200) with ∂ν, which leads to

∂µ(∂ ⋅ ϵ)+◻ϵµ =
2
d

∂µ(∂ ⋅ ϵ). (2.202)

Then we act again in equation (2.202) with ∂ν, which in turn gives

∂µ∂ν(∂ ⋅ ϵ)+◻ ∂νϵµ =
2
d

∂µ∂ν(∂ ⋅ ϵ). (2.203)

24It is clear from the transformation of the line element ds2 that at least locally the angles remain invariant and furthermore
the causal structure is preserved.

25Remember ηµνηµν = d.
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Finally, if we swap µ↔ ν in equation (2.203) then add the result back into equation (2.203) and we use
the result of equation (2.200), we finally arrive to the desired result

(ηµν ◻+(d − 2) ∂µ∂ν)(∂ ⋅ ϵ) = 0, (2.204)

which is the conformal Killing equation.
It is obvious that for d = 2, the whole expression simplifies significantly. For the purpose of this

thesis, we only care about the d > 2 case. As a side-note, also d = 1 is a special case, since all manifolds
for d = 1 are trivially conformally flat. This can be seen by multiplying equation (2.204) by ηµν, in which
case the outcome is

(d − 1)◻ (∂ ⋅ ϵ) = 0, (2.205)

which is trivially realized for d = 1.
Getting back to the conformal Killing equation (2.204), it is obvious by looking at the derivatives

that ϵ has at best a quadratic dependence in xµ. Hence, it can be written in the following manner

ϵµ(x) = aµ + bµνxν + cµνρxνxρ, (2.206)

where aµ, bµν, cµνρ are infinitesimal constant parameters. Furthermore, by exchanging xν ↔ xρ in the
quadratic coefficient, it is obvious that cµνρ should be symmetric in the relative indices; otherwise the
expression would be zero.

At this point, it is obvious how to proceed. Since every component of the expression (2.206) should
be satisfied individually and independently of the position xµ, we can analyse them separately to find
the corresponding generators 26.

• The easiest term we can start with is the constant aµ. This is well known from any introduction to
QFT — e.g. see [79, 82] — to be related to the following infinitesimal transformation

xµ → x′µ = xµ + aµ, (2.207)

which corresponds to the translation of equation (2.4) that we have examined in section 2.1.1. Us-
ing equation (A.49) and assuming that the last term is zero 27 then it is easy to see that the generator
of this infinitesimal translation is the momentum operator

Pµ = −i ∂µ. (2.208)

• The next term we are interested in is the bµν term, which is linear in xν in the expression (2.206). By
using equation (2.200) we can work the following relation for this coefficient

bµν + bνµ =
2
d
(ηρσbρσ) ηµν. (2.209)

Assuming that bµν is a generic function that can be decomposed into a symmetric and an antisym-
metric part, then it is obvious from equation (2.209) that the symmetric part should be analogous to
the metric ηµν times a constant α for the above expression to hold. Thus, bµν can be broken down as

bµν = αηµν +ωµν, (2.210)

where ωµν is antisymmetric under the exchange of µ↔ ν.

1. First, we examine the antisymmetric term ωµν. Using equation (2.196) this corresponds to the
subsequent infinitesimal transformation

xµ → x′µ = Λµ
νxν ≡ (δµ

ν +ω
µ
ν) xν. (2.211)

This form is already known and corresponds to equations (2.5) and (2.38) of section 2.1.1. Again,
using the condition for the generators (A.49) we can associate the infinitesimal Lorentz rotations
to the angular momentum operator Jµν as

Jµν = i (xµ ∂ν−xν ∂µ) . (2.212)
26see appendix A for the relation of generator and infinitesimal transformations.
27This is to assume that a field Φ is not affected by the transformation, which is not entirely true as we have seen in section 2.1.1,

and we will come back to this later.
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2. On the other hand, the symmetric part of equation (2.210) is new, in the sense that this is not a
standard part of the Poincaré algebra and is special to CFTs. The infinitesimal transformation
corresponds to

xµ → x′µ = xµ + αxµ. (2.213)

The transformation at hand is easy to be seen to be a scale transformation, also called a di-
latation. Obviously, scale symmetry cannot be a fundamental symmetry of the world, since it
implies the absence of an underlying energy scale that is the same for any observer in a refer-
ence frame. Nonetheless, in certain systems it can be an almost accurate symmetry, and thus it
is worth reviewing. This transformation is now associated with a new operator D that is defined
as

D = −ixµ ∂µ, (2.214)

and it is known in the literature as the dilatation operator.

• The last term to examine is cµνρ. This term takes the form [84]

cµνρ = ηµρbν + ηµνbρ − ηνρbµ, bµ =
1
d

cν
νµ. (2.215)

Plugging this solution into equation (2.196), the infinitesimal transformation at hand is

xµ → x′µ = xµ + 2 (x ⋅ b) xµ − x2bµ, (2.216)

where (x ⋅ b) = bµxµ and x2 = xµxµ. In the literature, this expression is also called special conformal
transformation. The basic logic is that in a scale invariant world, where no underlying fundamental
scale exists, observers may even be inclined to alter their definition of scale as they move around. To
find the generator, all we have to do is use equation (A.49) and obtain

Kµ = −i (2xµxν ∂ν−x2 ∂µ) . (2.217)

At this point we can collect the generators of the infinitesimal transformations that we derived

Pµ = −i ∂µ

Jµν = i (xµ ∂ν−xν ∂µ) , (2.218)

D = −ixµ ∂µ,

Kµ = −i (2xµxν ∂ν−x2 ∂µ) .

Besides the usual ones — remember that combining translation and Lorentz transformations generates
the Poincaré group — we have two extra that we have not seen before.

It can be proven that the total of the conformal transformations generates a group, in the sense
that the combination of conformal transformations remains a conformal transformation. It is a well-
known fact from Quantum Field Theory, that any group is defined by its generators and their associated
commutation relations, AKA the algebra. Using the above generators (2.218) — for a detailed derivation
of the commutation relations concerning the “new” generators D and Kµ see Appendix A — we can
write down the conformal algebra

[D, Pµ] = iPµ,

[D, Kµ] = −iKµ,

[Kµ, Pν] = 2i (ηµνD − Jµν) , (2.219)

[Kρ, Jµν] = i (ηρµKν − ηρνKµ) ,

[Pρ, Jµ,ν] = i (ηρµPν − ηρνPµ) ,

[Jµν, Jρσ] = i (ηνρ Jµσ + ηµσ Jνρ − ηµρ Jνσ − ηνσ Jµρ) .

More about the conformal group, its representations and the algebra will be discussed in the following
section. Now, we will briefly discuss the finite form of the new transformations.
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In general, any finite transformation has to follow from a series of infinitesimal ones 28. The finite
transformation of translation and Lorentz rotations is well known. However, the finite transformation
of the dilatation and the SCT is new. We start with the dilatation, which is easier both conceptually and
mathematically.

The finite form of the scale transformation is,

xµ → x′µ = αxµ. (2.220)

We can parameterize α = ea, a ∈ R, so that

xµ → x′µ = eaxµ. (2.221)

Written like that it is easy to see the infinitesimal form of equation (2.213) by Taylor expanding to first
order O(a2).

On the other hand, special conformal transformations do not exponentiate so easily. Actually, the
simplest way to derive them needs some sidetracking. So, we will first state here the finite form and
then try to interpret it. Without further ado, the finite form of SCT is

xµ → x′µ = xµ − bµx2

1− 2 (b ⋅ x)+ b2x2 . (2.222)

And the related scale factor is
Ω(x) = (1− 2bx + b2x2)2 . (2.223)

A detailed computation of how to obtain the infinitesimal form, the scale factor Ω(x) and the generator
Kµ of SCT from the finite form of equation (2.222) can be found in Appendix A.

To comprehend SCT instinctively, we start by defining an inversion, which is a discrete transforma-
tion

xµ → x′µ = xµ

x2 . (2.224)

Although this particular transformation does not possess an infinitesimal form, it nonetheless shares the
vital features of conformal transformations. Then, we can check, i.e. see Appendix A, that infinitesimal
SCT are derived by performing an inversion then a translation, followed by a final inversion

x′µ

x′2
= xµ

x2 − bµ. (2.225)

Now considering that this procedure contains two inversions, and given that the inversion is the inverse
of itself, it makes no difference if the inversion is a real symmetry of the examined system or not. The
benefit of this description is that it can be smoothly exponentiated since the combination of many
infinitesimal SCT can be expressed as in equation (2.225), which holds true for finite bµ.

We have to point out some global characteristics of SCT and inversions. Obviously, concerning the
inversion, any point that satisfies x2 = 0 is mapped to ∞. This is no part of either flat Euclidean or
Minkowski space. Something similar happens for SCT. Concentrating solely on flat Euclidean space we
can see that there are some points of interest

• The point x = 0 which coincides with the origin is clearly mapped to itself.

• Considering the vector bµ, points that satisfy

1− 2 (b ⋅ x)+ b2x2 = 0,

in other words, any point xµ = bµ

b2 can be seen to be mapped to ∞.

• On the other hand, the opposite is true for x →∞ that is actually mapped to the vector − bµ

b2 .

These can all be explained by considering that SCT and translations are linked by inversion. From the
above we can see that SCT do not affect the origin but move any other point, ∞ as well ∞. Contrary to
that, translations are well known to move all points, but ∞. As for dilatations and Lorentz rotations, it
is clear that they affect neither the origin nor ∞. All of these traits are essential when we will consider

28Notwithstanding, one has to remember that the order of applying conformal transformations is not commutative, a rotation
and then a special conformal transformation will not correspond to the same outcome if performed in the opposite order.
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correlation functions, as the form of two and three point functions is much more constrained in a CFT
due to these properties and actually, it is independent of position in space and depends solely on the
form of operators, e.g. scalar, spinning, etc.

2.2.2 Conformal group and field transformations
We now turn our attention back to the conformal group and its representations. To study the conformal
group, we examine the related Lie algebra, which is called the conformal algebra.

The first step is to count the number of generators. We can do that directly to find

1 dilatation+ d translations+ d SCT

+ d (d − 1)
2

Lorentz = (d + 2) (d + 1)
2

generators,

which matches exactly the number of generators of a so(d + 2) kind of algebra. We can see that in a
more clear way if we write different generators

J̃µ,ν ≡ Jµν,

J̃−1,ν ≡
1
2
(Pµ −Kµ) ,

J̃0,ν ≡
1
2
(Pµ +Kµ) , (2.226)

J̃−1,0 ≡ D.

Using the alternate generators, we can show that they satisfy the following commutation relation

[ J̃mn, J̃qp] = i (ηmq J̃np + ηnp J̃mq − ηmp J̃nq − ηnq J̃mp) . (2.227)

To analyse the system more we have to specify the underlying metric.

• In Euclidean signature, the metric at hand is η = diag (−1, 1, . . . , 1). Then the algebra is so (d + 1, 1)
while the Lie group is the SO (d + 1, 1).

• In the Minkowski signature, the metric at hand is replaced by η̃ = diag (−1, 1, . . . , 1,−1). Then the
algebra is so (d, 2) while the Lie group is the SO (d, 2).

In section 2.2.1 we assumed that an arbitrary local field Φ 29 that from now on, we assume that
exists in an irreducible representation of the conformal group, in other words a field Φ in a CFT that
has to transform in an irreducible representation of the conformal algebra, was not affected at all by
the infinitesimal conformal transformations. That statement is not true, since classical fields are indeed
impacted by the generators 30 and our goal is to deduce the form of these generators. To do so we
are going to use the method of induced representations, and we demand that given an infinitesimal
conformal transformation ϵa, a field Φ transforms as

Φ(x)→ Φ′(x′) = (1− iϵaTa)Φ(x), (2.228)

where Ta is a matrix representation.
Now, we observe that there is a subgroup within the conformal group for which the point x = 0

remains invariant 31. We can then express the action of infinitesimal conformal transformations on the
field Φ as

JµνΦ(0) = SµνΦ(0), (2.229)

DΦ(0) = ∆̃Φ(0), (2.230)
KµΦ(0) = κµΦ(0), (2.231)

29In this section, we will be using big Φ for arbitrary fields that may or may not have spin, while the small ϕ of section 2.1.1
will be used for spinless scalar fields as usual.

30As usual, invariance at the classical level does not necessarily mean invariance at the quantum level, and this is true as well
for conformal invariance. Nevertheless, this is an entirely other subject.

31Remember that in section 2.2.1 we discussed that only translation affect the origin.
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where Sµν, ∆̃, κµ are the values of the generators Jµν, D, Kµ at the point x = 0. We can check -—- see
Appendix A for details –— that these values constitute a matrix representation, and hence we can sum
up the algebra as

[∆̃, Sµν] = 0,

[∆̃, κµ] = −iκµ,

[κν, κµ] = 0,

[κµ, Sνρ] = i(ηµνκρ − ηµρκν),

[Sµν, Sρσ] = i(ηνρSµσ + ηµσSνρ − ηµρSνσ − ηνσSµρ).

(2.232)

At this point, we can make use of Schur’s lemma. In layman’s terms, it states that a matrix commuting
with the generator Sµν should be proportional to the identity. Thus, from equation (2.232) we can
deduce that

P.1 ∆̃ should be a number that is proportionate to the identity.

P.2 The matrix κµ shall vanish due to P.1.

We will come back to this later. Now, we want to extend our result to any arbitrary spacetime point,
and to do so we will make use of the Hausdorff formula

e−ABeA = B + [B, A]+ 1
2!
[[B, A], A]+ . . . , (2.233)

by which we can act with the operator T (x) = e−ixλPλ on the rest of the conformal generators — see
Appendix A for a analytical derivation — as

T (x)−1 JµνT (x) = Jµν − xµPν + xνPµ, (2.234)

T (x)−1DT (x) = D + xνPν, (2.235)

T (x)−1KµT (x) = Kµ + 2xµD − 2xν Jµν + 2xµ (xνPν)− x2Pµ. (2.236)

Using these results, we are halfway to inferring the commutation relations of the field Φ

[Pµ, Φ(x)] = −i ∂µΦ(x), (2.237)

[D, Φ(x)] = (−ixν ∂ν+∆̃)Φ(x), (2.238)

[Jµν, Φ(x)] = SµνΦ(x)+ i (xµ ∂ν−xν ∂µ)Φ(x), (2.239)

[Kµ, Φ(x)] = (κµ + 2xµ∆̃ − 2xνSµν − 2ixµ (xν ∂ν)+ ix2 ∂µ)Φ(x). (2.240)

Let’s examine more closely equation (2.238). At the origin, x = 0 this takes the form

[D, Φ(0)] = ∆̃Φ(0), (2.241)

and from postulate P.1 we know that ∆̃ is a number, and also that ∆̃ is non-Hermitian generator 32.
Hence, ∆̃ = −i∆, where the number ∆ is called the scaling dimension of the field 33. Under a dilatation,

xµ DÐ→ x′µ = λxµ the field transforms as

Φ(x) DÐ→ Φ′(x′) = λ−∆Φ(x). (2.242)

Thus, we derive that the field Φ(x) — that we assumed to transform in an irreducible representation
of the conformal algebra — exhibits a fixed scaling dimension and for that reason, it is an eigenstate of
the dilatation D.

32One can see that representations of the dilatation are non-unitary.
33The factor of i is there to make sure that the scaling dimension ∆ is a real number when the field Φ is a real.
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Finally, using postulate P.2, we see that κµ = 0 and the commutation relations of the field Φ(x) are

[Pµ, Φ(x)] = −i ∂µΦ(x) ≡ PµΦ(x), (2.243)

[D, Φ(x)] = −i (xν ∂ν+∆)Φ(x) ≡ DΦ(x), (2.244)

[Jµν, Φ(x)] = SµνΦ(x)+ i (xµ ∂ν−xν ∂µ)Φ(x) ≡ Jµν, (2.245)

[Kµ, Φ(x)] = (−2ixµ∆ − 2xνSµν − 2ixµ (xν ∂ν)+ ix2 ∂µ)Φ(x) ≡ Kµ. (2.246)

2.2.3 Primary and descendants fields
All the analysis of section 2.2.2 can be utilized to derive the transformation rules of a field Φ(x) under
conformal transformations. From this point on, we will be assuming that the examined field is scalar
and will be denoted as ϕ(x) as in section 2.1.1 and thereafter.

Before examining how the transformation properties of the field ϕ constrain the form of correlation
functions in a CFT we want to discuss some details about the spectrum and the nature of the fields.

Given a generic state ∣∆⟩ that is an eigenstate of the dilatation in the sense that

D ∣∆⟩ = i∆ ∣∆⟩ , (2.247)

we want to examine how it changes when acted upon by Kµ and Pµ. To do so, we use some standard
group theory techniques, for example see Tung [135], § 7.

Acting with the special conformal generator Kµ we see that

DKµ ∣∆⟩ = [[D, Kµ]+KµD] ∣∆⟩ = (−iKµ + i∆Kµ) ∣∆⟩ = i (∆ − 1)Kµ ∣∆⟩ , (2.248)

where equation (2.219) was used. Now we can see that Kµ ∣∆⟩ is either an eigenstate of D with a new
eigenvalue ∆ − 1 or otherwise it should be the null vector. Thus, this demonstrates that Kµ decreases
the scaling dimension, and hence it is a lowering operator.

An analogous derivation can be made for Pµ

DPµ ∣∆⟩ = [[D, Pµ]+ PµD] ∣∆⟩ = (iPµ + i∆Pµ) ∣∆⟩ = i (∆ + 1)Pµ ∣∆⟩ , (2.249)

where again equation (2.219) was used, and similarly as before, we can conclude that the vector Pµ ∣∆⟩
is either the null vector or an eigenstate of D. This outcome is in accordance with the known result that
the mass dimension of the derivative is

[∂µ] = +1.

Assuming that in a unitary CFT conformal dimensions have to be bounded from below, the fact that Kµ

lowers the scaling indefinitely seems to contradict this. The way out of this puzzle is to simply accept
that for some general state, when acted upon by Kµ it will hit zero and will go no further down. It is
equivalent to imagining that there are some local fields ϕ that vanish when acted upon by Kµ. These
fields exhibit the lowest possible scaling dimension in a specified irreducible multiplet of the algebra,
and this non-zero, positive scaling is fixed by unitarity bounds [85] § 3.2.2.

These fields are known as primary fields, and they have to obey the following conditions

[D, ϕ(0)] = −i∆ϕ(0), (2.250)

[Kµ, ϕ(0)] = 0. (2.251)

Actually, in the literature one can find two different definitions for the primary field but it has been
shown in [136] that these two are equivalent.

Now acting on a local conformal primary field with Pµ increases the scaling dimension by +1. Thus,
Pµ is a raising operator and the fields constructed by the action of Pµ are called descendants. Acting on
a primary field with Pµ repeatedly can produce infinite descendants, and a primary field and all the
descendants produced by it are called a conformal family.

2.2.4 Constraints on correlation functions of primary operators
Going back to the transformation rules of the local primary field ϕ, we first need to derive the transfor-
mation rules for x → x′ for a conformal transformation with scale factor Ω(x). The relevant Jacobian
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is

∣∂x′

∂x
∣ = 1√

detg′µν

= Ω(x)−d/2. (2.252)

Under this transformation, the scalar field ϕ(x) changes as

ϕ(x)→ ϕ′(x′) = ∣∂x′

∂x
∣
−∆/d

ϕ(x). (2.253)

This is precisely the transformation rule that has to be satisfied by a local primary scalar field.
We are interested to seeing if and how conformal invariance constrains the form of the correlation

functions of primary fields. It turns out that not only it imposes great constraints on the form of
the Green’s functions, but actually the two point function is uniquely defined up to the value of the
scaling dimension, which is a result of the extra constraints coming from scaling invariance and special
coordinate transformation.

We will use the transformation rules of a n-point function

⟨ϕ1(x1)ϕ2(x2) . . . ϕn(xn)⟩ = ∣
∂x′

∂x
∣
∆1/d

x=x1

∣∂x′

∂x
∣
∆2/d

x=x2

. . . ∣∂x′

∂x
∣
∆n/d

x=xn

⟨ϕ1(x′1)ϕ2(x′2) . . . ϕn(x′n)⟩. (2.254)

We are interested in two, three and four-point functions. The full analytic derivation can be found in
Appendix A and this chapter contains the most important results.

Two-point functions
From QFT it is well known that the two-point function can only depend on a quantity that is the
difference between two points, and it is also Lorentz invariant. The only such known quantity is the
absolute value of the interval between two different spacetime points, i.e.

∣x1 − x2∣ ≡
√

ηµν(xµ
1 − xµ

2 )(xν
1 − xν

2). (2.255)

Using this expression, we can write that the most general form of the two-point function that is invariant
under Poincaré transformations as

⟨ϕ1(x1)ϕ2(x2)⟩ = c12∣x1 − x2∣α. (2.256)

Now we should apply the new symmetries that are manifest in the conformal algebra.
From dilatation invariance we have that

⟨ϕ1(x1)ϕ2(x2)⟩ = λ∆1+∆2⟨ϕ1(λx1)ϕ2(λx2)⟩. (2.257)

And combining these, we can write the two-point function as

⟨ϕ1(x1)ϕ2(x2)⟩ =
c12

∣x1 − x2∣∆1+∆2
. (2.258)

Using the SCT we can show that it if ∆1 ≠ ∆2, the two-point function vanishes hence

⟨ϕ1(x1)ϕ2(x2)⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c12

∣x1 − x2∣2∆1
if ∆1 = ∆2,

0 if ∆1 ≠ ∆2.
(2.259)

There is one more possible simplification that can be done. The constant c12 is real, and it is also
symmetric under ϕ1 ↔ ϕ2 so that c12 = c21. Using this fact, we can pick a basis of diagonal scalar
primary operator O such that c12 = δ12.

So finally, the two-point function takes the form

⟨O1(x1)O2(x2)⟩ =
1

∣x1 − x2∣2∆ , (2.260)
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where the only unknown is the scaling dimension ∆ of the fields. We can see that this is a forceful
constraint, which is the immense power of CFTs.

Three-point functions
In the same spirit as before, we start with the general form of equation (2.256), with three fields, and
follow the same methodology 34

1. Translations and Lorentz rotations apply the same to all n-point functions, so they constrain the
three-point function to be determined by the absolute value of the interval between the three
points in some power,

⟨O1(x1)O2(x2)O3(x3)⟩ = CO1O2O3
∣x1 − x2∣α∣x2 − x3∣b∣x1 − x3∣c, (2.261)

2. From dilatation we obtain the constraint

∆1 +∆2 +∆3 + α + b + c = 0. (2.262)

3. From SCT we find the following three constraints

2∆1 + α + c = 0, (2.263)
2∆2 + α + b = 0, (2.264)
2∆3 + b + c = 0, (2.265)

that we can solve for α, b, c to get

α = ∆3 −∆1 −∆2, (2.266)
b = ∆1 −∆2 −∆3, (2.267)
c = ∆2 −∆1 −∆3. (2.268)

Using the above conditions the final form of the three-point function is

⟨O1(x1)O2(x2)O3(x3)⟩ =
CO1O2O3

∣x12∣∆1+∆2−∆3 ∣x23∣∆2+∆3−∆1 ∣x31∣∆3+∆1−∆2
, (2.269)

where xij ≡ xi − xj for shortness.
The constant CO1O2O3

cannot be normalized to unity, since the operators are already redefined and
thus this number, which is known as operator product expansion coefficient, is a characteristic of the
theory, and along with the scaling dimension ∆ they constitute the CFT data that has to be computed
to classify the CFT.

In general, a generic CFT is described only by the conformal scaling dimensions and the OPE coef-
ficients, since higher-point functions can be calculated in principle by connecting three-point functions
appropriately.

Four-point functions
Again, for four-point functions the starting point and the logic is similar as before. But for the four-
point function there is a difference, since by having four points and more it is possible to create certain
dimensionless invariant coefficients that preserve the CFT symmetries. These cross ratios, are

χ1 = (
∣x12∣∣x34∣
∣x13∣∣x24∣

)
2

, χ2 = (
∣x12∣∣x34∣
∣x23∣∣x14∣

)
2

. (2.270)

34From this point on we always assume that we are in the diagonal basis of scalar primary operator O that are already redefined
for the two-point function
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The four-point function can be written in its most general form as a product of two such cross ratios in
terms of conformal blocks, as

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ = F (
x12x34

x13x24
,

x12x34

x23x14
)

4

∏

i<j
xij

∆/3−∆i−∆j , (2.271)

where ∆ =
4

∑

i=1
∆i and F (χ1, χ2) is a function of all possible cross ratios. It is important to note that if we

manage to write the four-point function in the form of equation (2.271) then we can read off the scaling
dimensions of the scalar operators and the OPE coefficients.

2.2.5 The energy-momentum tensor
Going back to section 2.1.1 we remind ourselves that according to Noether’s theorem, continuous sym-
metries generate conserved currents and charges. The conserved current for spacetime translations is
given by equation (2.34) and is the energy-momentum tensor, while the conserved charges are given in
equations (2.35) and (2.36) and in a shorthand notation they can be written as

Pν = ∫ dd−1x T0
ν . (2.272)

Meanwhile, for Lorentz transformations the current is specified in equation (2.40) and the conserved
charge is stated in equation (2.41) as

Mνρ = ∫ dd−1x (xνT0
ρ − xρT0

ν), (2.273)

where Tµν is the Belinfante energy-momentum tensor of equation (2.42)

Tµν = Θµν + ∂ρBρµν.

In the same spirit, we can deduce the conserved currents and charges for the rest of the conformal
transformations.

For example, dilatation of equation (2.213) associated with the infinitesimal transformation

xµ → x′µ = xµ + αxµ,

generates the current J(D)µ which is computed to be

J(D)µ = xνTµν, (2.274)

and the relevant charge is

D = ∫ dd−1x xρT0
ρ. (2.275)

For special conformal transformations, the conserved current and charge are

J(K)µν = x2Tµν − 2xνxρTµρ, (2.276)

Kν = ∫ dd−1x (x2T0
ν − 2xνxρT0

ρ). (2.277)

In a similar vein as the Poincaré invariance imposed constraints on the stress-energy tensor and
more specifically symmetrisation in its indices, conformal invariance inflicts new restrictions on it.
From conservation of equation (2.274) 35 we observe that

0 = ∂νJ(D)ν = ∂ν(xρTνρ)
= (∂νxρ)Tνρ + xρ ∂νTνρ (2.278)

= Tρ
ρ.

35For details, see Appendix A.5.2.
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It is obvious now that the conformal energy-momentum tensor is traceless. Since the dilatation charge
gives rise to scale transformations, tracelessness of the stress-energy tensor signifies scale invariance
of the theory, or conversely, if the classical theory is scale invariant the stress-energy tensor should be
traceless.

This property is an important criterion to examine to verify that a field theory truly is a Conformal
Field Theory.

2.2.6 State-operator correspondence and radial quantisation
If we want to solve equations of motion to describe the time evolution of a system, we need to impose
an initial condition at one point in time, and then under certain assumptions the whole evolution of
the system both forward and backwards can be determined. So, it is a usual practise while studying
Quantum Field Theories to foliate the spacetime in a specific way to facilitate such computations, with
every foliated leaf carrying its exclusive Hilbert space. The manner of the foliation varies and actually
is connected to the symmetries of the theory.

Figure 2.1: The d-dimensional
spacetime is foliated in (d − 1)- di-

mensional leafs.

In the most common manner, when we examine a Quantum Field
Theory that exhibits Poincaré invariance, we usually divide the d-
dimensional spacetime manifold (M, gµν) into (d − 1) - dimensional
hypersurfaces of equal time like in Figure 2.1. Since in section 2.1.1
we made the assumption that our manifold is globally hyperbolic, the
conditions at any spatial slice at any point in time determine the sys-
tem everywhere. Therefore, we express the spacetime as a series of
spatial slices that evolve in time, and now we have a problem which
amounts to finding a way of describing how those spatial slices evolve.
Given the Poincaré symmetry, we already know of an operator that al-
lows us to time translate between spatial slices, and this is the Hamil-
tonian given in equation (2.35). On top of these spatial slices live states
that can be uniquely characterised by their momenta as

Pµ ∣k⟩ = kµ ∣k⟩ . (2.279)

Then, using the Hamiltonian operator, we can define a unitary evolution operator

U = eiHt, (2.280)

that connects these states.
Although this is a perfectly fine foliation for Poincaré invariant theories, in the case of Conformal

Field Theories there is a more convenient way to foliate the system.

Figure 2.2: Spheres centred at the origin of
Euclidean spacetime.

For CFTs we can use the enhanced symmetry to find a
different way to foliate our manifold. So, instead of time
translations, we are going to use dilatations. We will split
the spacetime manifold in Sd−1 spheres of differing radii
that are centred around the origin of the d-dimensional Eu-
clidean space as in Figure 2.2, with a metric element

ds2 = dr2 + r2 dΩ , (2.281)

where dΩ is the volume element of the unit sphere. To pass
from one sphere to another, we use the generator of the di-
latation D. In a manner similar as before, we want to distin-
guish states based on their eigenvalues, but instead of their
momenta, now we are going to use the scaling dimension

denoted in equation (2.247) as
D ∣∆⟩ = i∆ ∣∆⟩ ,

and their spin ℓ
Jµν ∣∆, ℓ⟩ = Sµν ∣∆, ℓ⟩ ,

since as we can see from the algebra 2.219, only Sµν commutes with the dilatation.
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At this point, to denote the evolution operator, we make the following coordinate change

τ ≡ R0 log (r/R0), (2.282)

where r is the radial direction and R0 is the radius of the sphere which we normally set R0 = 1 but we
reinstated here for dimensional reasons. Then the metric of equation (2.281) becomes

ds2
flat = dr2 + r2 dΩ = r2

R0
2 (

R2
0

r2 dr2 + R2
0 dΩ)

= e2τ/R0(dτ2 + R2
0 dΩ) (2.283)

= e2τ/R0 ds2
cyl . (2.284)

It is now obvious that the flat metric Rd expressed in spherical coordinates in equation (2.281) is confor-
mally equivalent to the cylinder R×Sd−1 through a Weyl transformation 36. In other words, we found a
metric that best encapsulates the physics of the system since the Sd−1 are the spheres of before, and now
τ is the proper time coordinate to express the evolution of the states. Hence, the evolution operator is
now

U = eiDτ , (2.285)

and acting with it on an eigenstate of the dilatation ∣∆⟩ using equation (2.247) it gives

U ∣∆⟩ = e−∆τ ∣∆⟩ = r−∆ ∣∆⟩ . (2.286)

This whole procedure is called radial quantisation and can be depicted as

←→

∞
Õ××××
∣

τ

∣

∣

−∞

We can analyse the situation even more. We observe that the limit r → 0 in the flat case corresponds to
the limit τ → −∞ in the cylinder case and also for r →∞ after the Weyl transformation we get τ →∞.

In radial quantisation, the way to generate a state at a given time living on the sphere, is by inserting
an operator in the sphere. We have the following cases

1. The first case is that we do not make any operator insertion anywhere. Thus, this system coincides
with the vacuum state ∣0⟩. This is a unique ground state that has the property that is invariant under
conformal transformations. For this state, the dilatation eigenvalue which coincides with its radial
quantization energy is 0.

2. The second case is to insert an operator O with scaling dimension ∆ at x = 0. The associated state is

∣∆⟩ ≡ O∆(0) ∣0⟩ , (2.287)

where we used the subscript to denote the scaling dimension of the operator. The energy of the state
is equal to the scaling dimension of the operator.

3. Finally, we can insert an operator at a point different from the origin 0. The state produced is

∣χ⟩ ≡ O∆(x) ∣0⟩ . (2.288)

36From now on we set R0 = 1
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Actually this state is not an eigenstate of the dilatation operator, since the dilatation moves the point
of insertion. We can use the same trick as in section 2.2.2 and move the point of insertion by using

T (x) = e−ixλPλ in which case we find that

∣χ⟩ = T −1(x)O∆(0)T (x) ∣0⟩ =∑
n

xn

n!
(iP)n ∣∆⟩ . (2.289)

Using the analysis of section 2.2.3 we see that this state is actually a superposition of states, each of
them having its eigenvalue since via equation (2.249) we notice that every time that we act with P on
the state ∣∆⟩, it raises the conformal dimension of the state by one.

Then the statement is that if one picks a generic state ∣∆⟩ at τ = −∞ on the cylinder R × Sd−1, by just
making a conformal transformation, one can relate this state to a local operator O∆(0) with scaling
dimension ∆ on the origin of Rd. As a matter of fact, we can always map operators to states, by just
acting with the operator on the vacuum. In other words, placing a primary operator at x = 0, we produce
a state with a scaling ∆ that due to equation (2.251) is annihilated by the operator Kµ. But, the other way
around, that starting from a state with scaling ∆ that is annihilated by applying Kµ, we can construct
a related local primary operator is a unique characteristic of Conformal Field Theories. This property
is the state-operator correspondence, where states on the cylinder are in a one-to-one correspondence with
local operators in the plane.

As we saw earlier, the flat metric and the cylinder metric are related by a scale transformation,
hence for a conformally invariant theory, correlation functions computed on flat space and correlation
functions computed on the cylinder are related through a Weyl transformation. In short, correlation
functions on the cylinder are simply computed in another geometry than the ones of flat space. Using
radial quantization we can compute the two-point functions of two diagonal scalar primary operators
O(τ) as

⟨0∣O1(τout)O2(τin) ∣0⟩cyl = ⟨O1(τout)O2(τin)⟩cyl

= ⟨O1(xout)O2(xin)⟩flat (
∣xout∣

R0
)

∆

( ∣xin∣
R0
)

∆

= ∣xout − xin∣−2∆( ∣xout∣
R0
)

∆

( ∣xin∣
R0
)

∆

, (2.290)

where in the last line we used the result of equation (2.260). By working in polar coordinates, we
identify

xout = rout, xin = rin, (2.291)

and also
∣xout − xin∣ = [r2

out + r2
in − 2routrinnoutnin]

1/2
, (2.292)

where n is the unit directional vector. Then combining equations (2.291) and (2.292), the two-point
function of equation (2.290) becomes

⟨O1(τout)O2(τin)⟩cyl = ∣r
2
out + r2

in − 2rout rin nout nin∣
−∆

r∆
out r∆

in

= ( rin

rout
)(1+ ( rin

rout
)

2
− 2

rin

rout
nout nin)

−∆

. (2.293)

Finally, using equation (2.282) we find that

⟨O1(τout)O2(τin)⟩cyl = R−2∆
0 e−∆(τout−τin)/R0(1+ e−2∆(τout−τin)/R0 − 2e−∆(τout−τin)/R0 nout nin)

−∆

≃
(τout−τin)→∞

R−2∆
0 exp{−∆(τout − τin)/R0}

= A (τin, τout) . (2.294)

and we introduced the symbol A (τin, τout) for future benefit.
Hence, we see that in the limit of infinite separation in cylinder time, solely the leading term in
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the expansion counts. Thus, the ground state energy in the cylindrical frame can be straightforwardly
identified with the scaling dimension

∆ = R0E. (2.295)

It is important to point out that when we mention the energy of the ground state, this discussion only
holds true for the cylindrical geometry. In contrast with flat space, the cylinder frame provides an
intrinsic scale to the Conformal Field Theory — denoted as the radius of the sphere R0 — thus the
theory has a discrete spectrum. In the flat space geometry, a Conformal Field Theory has a continuous
spectrum and does not acquire a mass gap.

A discussion similar to the one for the two-point function can be repeated, but now for three scalar
primaries. Setting R0 = 1 for ease of notation, a three-point function of a CFT on the cylinder is related
to the one on flat space as

⟨O1(τout)O2(τ)O3(τin)⟩cyl = ⟨O1(xout)O2(x)O3(xin)⟩flat ∣xout∣∆1 ∣x∣∆2 ∣xin∣∆3 . (2.296)

From equation (2.269) we know that

⟨O1(xout)O2(x)O3(xin)⟩flat =
CO1O2O3

∣x12∣∆1+∆2−∆3 ∣x23∣∆2+∆3−∆1 ∣x13∣∆1+∆3−∆2
,

where xij ≡ xi − xj and

x1 ≡ xout, x2 ≡ x, x3 ≡ xin. (2.297)

Hence combining equations (2.269), (2.296) and (2.297) we get

⟨O1(τout)O2(τ)O3(τin)⟩cyl (2.298)

= CO1O2O3
∣xout − x∣−(∆1+∆2−∆3)∣x − xin∣−(∆2+∆3−∆1)∣xout − xin∣−(∆1+∆3−∆2)∣xout∣∆1 ∣x∣∆2 ∣xin∣∆3 .

Again working in polar coordinates we recognize

xout = rout, x = r, xin = rin, (2.299)

so that

∣xout − x∣ = [r2
out + r2 − 2 rout r nout n]1/2, (2.300)

∣xin − x∣ = [r2
in + r2 − 2 rin r nin n]1/2, (2.301)

∣xout − xin∣ = [r2
out + r2

in − 2 rout rin nout nin]
1/2

. (2.302)

In the limit

xout →∞, xin → 0, Ð→ rout →∞, rin → 0, (2.303)

we get the following simplifications

[r2
out + r2 − 2 rout r nout n]1/2 ≅ rout, (2.304)

[r2
in + r2 − 2 rin r nin n]1/2 ≅ r, (2.305)

[r2
out + r2

in − 2 rout rin nout nin]
1/2 ≅ rout. (2.306)

Then equation (2.298) takes the form

⟨O1(τout)O2(τ)O3(τin)⟩cyl = CO1O2O3
r−(∆1+∆2−∆3)

out r−(∆2+∆3−∆1)r−(∆1+∆3−∆2)
out r∆1

outr
∆2 r∆3

in

= CO1O2O3
( r

rout
)

∆1
( rin

r
)

∆3
. (2.307)
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Finally, using equation (2.282) we get

⟨O1(τout)O2(τ)O3(τin)⟩cyl = CO1O2O3
e∆1(τ−τout)/R0 e∆3(τin−τ)/R0

= CO1O2O3
eτ(∆1−∆3)/R0 eτin∆3/R0 e−τout∆1/R0 eτout∆3/R0 e−τout∆3/R0

= CO1O2O3
e−∆3(τout−τin)/R0 e(∆1−∆3)(τ−τout)/R0 . (2.308)

It is obvious that in the infinite separation limit the scaling of the middle O2 operator in equation (2.308)
does not affect the outcome of the computation.

Furthermore, a special case is for ∆3 = ∆1 = ∆ since in this case, the dependence on τ drops com-
pletely and

⟨O∆
1 (τout)O2(τ)O∆

3 (τin)⟩cyl
= CO1O2O3

e−∆(τout−τin)/R0 . (2.309)

A generalisation to spinning correlators can be found in [137] and in Appendix A.6.
The derivations at hand will prove useful in chapter 3, when we compute the three-point functions

of scalar primary operators of large charge, and we want to study the CFT data.

2.3 Large Charge

Having studied important aspects of Conformal Field Theories in section 2.2, we saw in detail that
the constraints that conformal symmetry imposes on the system restrict all the information that we
need to know thoroughly to determine every prediction it can make down to two sets of numbers,
known as the CFT data: the scaling dimension ∆ of every primary operator of the theory, and the
operator product expansion coefficient CO1O2O3

. Knowledge of this data can help us compute theoretical
quantities that are physical observables, and hence we can compare their values with the ones coming
from experiments. Moreover, we can use the CFT data to categorize QFT systems upon having or not
critical phases that belong to the same universality class, as in the examples of section 2.2.

Sadly, computing the CFT data is generally demanding and usually additional simplifying assump-
tions have to be imposed. The problem lies in the fact that not all Conformal Field Theories are weakly
coupled, but in most cases they are interacting and also not easily accessible by exact methodologies
similar to the 3-dimensional Ising model. Furthermore, innately CFTs lack an intrinsic scale and usual
perturbative approaches are not applicable but non-perturbative methods are necessary. This is the
reason we should examine in depth any technique that aims to deal with this issue. Some of the most
prevalent methods are

i Monte Carlo methods

This classical method is a general class of numerical algorithms that depends on recurring random
sampling to attain numeric results. In the case of CFTs, it is more suitable for spin lattice systems
similar to the Ising model and similar.

ii Conformal bootstrap

The method is a non-perturbative approach with the aim of constraining and numerically solving
CFTs. Dissimilar to more conventional approaches of QFTs, this procedure does not make use of
the system’s Lagrangian, and it rather works with the generic axiomatic variables like the scaling
dimension of the local operators and their OPE coefficients. Then it tries to solve a group of self-
consistent restrictions of these variables to gain numerical restraints, with the final goal to increase
the accuracy of these restraints. The modern manifestation of this approach emerged after the paper
by Rattazzi et al. [11]. Tested to the Ising model CFT, it gave the most accurate predictions [138,
139].

iii Perturbative approaches

There is more than one perturbative approach, so it is not exactly a unique methodology. The idea is
that an additional controlling parameter exists, like N in the large-N expansion [13] or ε in the small
ε approximation [15]. Then the conformal data of any interacting CFT can be calculated in terms
of the conformal data of the free CFT as an asymptotic expansion in the controlling parameter.

iv Large quantum number
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It has been observed that the conformal data of operators related to CFT sectors of large quantum
numbers like large spin J [17, 18] exhibit considerable simplifications. Very recently, it was appre-
ciated that similar simplifications arise in sectors of large global charge. This new methodology is
the Large Charge Expansion that we will study in detail.

The idea behind it is to study sectors of Conformal Field Theories that are characterised by large
quantum numbers under the global symmetries. In this limit, CFTs, even if they initially were in a strong
coupling regime, can now be written in terms of an Effective Field Theory in the spirit of section 2.1.4.
This gives rise to a new class within the CFTs as now we are interested in finding global properties that
are true for entire families of CFTs that exhibit an identical symmetry structure. For example, some
common EFTs that appear are the bosonic conformal superfluid and the Fermi sphere, condensed matter
systems characterised by a high particle density, making the study of such systems a cross-disciplinary
matter.

The first paper concerning LCE came out on 2015 by Hellerman et al. [19] and it concentrated on
3-dimensional Conformal Field Theories with an underlying O(2) global symmetry. There, the authors
demonstrated that under certain conditions, it is possible to write an effective action in terms of the
Goldstone modes only. Moreover, they showed that it is possible to compute the scaling dimension of
the lowest scalar primary operator of large charge OQ using radial quantization and equation (2.295)
and the outcome is a universal scaling law which goes like

∆Q ∼ Q3/2 + . . . , (2.310)

where ∆Q is the scaling dimension of OQ. Furthermore, there are subleading terms that come in an
expansion of inverse powers of the charge Q. Most importantly, the only term that scales as Q0 is
the Casimir energy of the quantum fluctuations, since there is no classical term with such scaling. This
number is thus a clear prediction of the theory 37. The same EFT, known as conformal superfluid,
has been separately shown to be consistently derived by the application of the Coleman-Callan-Wess-
Zumino (CCWZ) construction in [20].

In a very interesting turn of events, the predictions of [19] have been confirmed independently using
Monte Carlo simulations in [26], employing small-ε approximation in [22] and via large-N expansion
in [31].

In the original paper of Hellerman et al. [19] there have been worth mentioning predictions about
the spectrum of large-charge operators that also carry a small spin J. In the validity of the Effective
Field Theory, these operators are related to superfluid phonons, Goldstone bosons that arise from the
superfluid’s Spontaneous Symmetry Breaking pattern 38. An overview of the story thus far with an
extensive analysis of the global properties of three and four-point correlation functions of large-charge
phonon primaries can be found in [29] which is also the subject of Chapter 3. This work completes a
gap in the literature of earlier works that aimed to compute the relevant CFT data [20, 23–25, 38, 140].

We anticipate that the superfluid phonon EFT is going to cease working by the time that the spin
J becomes commensurate with the charge Q, and a new EFT will likely rise. The limitations of the
semiclassical methodology and the validity of the phonon primary description have been investigated
by Badel et al. [141] using the small-ε expansion. A first endeavour to classify the phases of the system
based on the spin J and the charge Q was made by Cuomo et al. [142]. From then on, there have been
many developments [143–145] and it has been shown that the phase diagram for the system is richer
than originally anticipated and is depicted in Figure 2.3. There are two extremal limits, the one of large
charge Q and small spin J in which the ground state is in the conformal superfluid phase and where
the scaling dimension of the lowest operator goes like equation (2.310), and the one of large spin J
and relatively small charge Q, which is the large spin EFT of [16–18], and where we find a Regge like
behaviour [146] with scaling dimension

∆J = J + . . . , (2.311)

Already from Cuomo et al. [142] it has been theorised that when J ≫ Q1/2 the system is expressed
by one single vortex anti-vortex pair and as the spin continues to increase we pass to the next phases.
A new giant vortex phase can be found in [145] along with an overall nice analysis of the phases.
Moreover, it should be noted that the small charge Q and small spin J regime is reachable through the
numerical bootstrap technique that was discussed in (ii). As a side note, the vortex phases have also
been studied for parity-violating CFTs in [144].

37More details on that will be given in Chapter 3.
38A brief analysis on Goldstone bosons and SSB is given in section 2.3.1.
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Figure 2.3: Phases for the ground state on the cylinder.
Figure adopted from [145].

The story gets more complicated when we try to study a large-charge sector with a global non-
Abelian symmetry group. The spectrum of the Effective Field Theory is much richer than before as
it has been shown in [30] and in addition to the superfluid phonons of the Abelian O(2) sector there
are also new non-relativistic Goldstone bosons of type II 39. These type II Goldstones are likely to
characterise new primaries operators of large charge that live in several representations of the global
symmetry group, but concrete examples are still lacking in the literature. Nonetheless, what is expected
is that an analogous situation to the case of the vortices will take place, i.e. when a critical number of
type II Goldstones appears in the system, new phases will emerge. Up to now, there are no explicit
suggestions on how these phases will look like except that they have to be in accordance with ground
states that are spatially inhomogeneous as shown in [147, 148]. It is clear that in the light of a recent
work [28] that applies Monte Carlo methods to compute the scaling dimensions of local large charge
primaries at the O(4)WF fixed point, more work is needed in this direction.

The whole story may differ when we want to examine fermionic CFTs, since it is not a priori clear
if they can be described by a superfluid EFT in the spirit of [19, 20]. Although this is the main sub-
ject of Chapter 5 it can be said that there are models like the free fermion found in [25] or the GN
model of [74] that the large-charge ground state is that of a Fermi sphere, while others exhibit what is
known as Bardeen-Cooper-Schrieffer (BCS) superconductivity [149, 150] and can still be expressed by
a superfluid EFT. Hence, it is easy to imagine that for interacting systems possessing a large charge
Fermi sphere ground state, there should exist a Landau Fermi liquid EFT in the spirit of Polchinski [151]
and Shankar [152] that may introduce fresh universal properties like the ones that appeared in the su-
perfluid case. Any proposed Fermi liquid Effective Field Theory should be simultaneously compatible
with conformal symmetries and at the same time exhibit a BCS instability to account for these fermionic
models that acquire a superfluid ground state. It has also been theorised that an entirely new large-
charge class may emerge, which is the non-Fermi liquid phase. Although this behaviour is familiar in
condensed matter theory — e.g. see [153, 154] — it is not presently clear if it can exist in a CFT sector
of large global charge.

As a last note, just a while ago it has been found by Dondi et al. [155] that LCE are, in fact, asymptotic
series and not convergent ones. Even though this is the topic of Chapter 4 the punchline is that the LCE
of the O(N) vector model examined in the above paper exhibits a double factorial growth, which is
stronger than the one of classical QFT. Hence, non-perturbative corrections play an important role
when we try to sum up the series to extrapolate the large-charge result to the small-charge limit. The
appropriate mathematical framework that describes the relation between asymptotic series and the non
perturbative contributions is Resurgence [57].

So, to recapitulate, there are three known large-charge types of behaviour for CFTs in d ≥ 3 spacetime
dimensions 40 where only large charge is assumed, particularly:

C.i Moduli class: This is the class least examined in this thesis, except for the free scalar CFT. In this
class, the charged operator does not correspond to a meaningful state on the cylinder and the
scaling dimension of the lowest charged operator goes like ∆ ∼ Q instead of the scaling law of
equation (2.310). There is no EFT description and other methods are required. Notable examples
are N = 2 SYM models like [43–46, 156].

39The difference between the usual type I Goldstones and the newly found type II will be briefly discussed in section 2.3.1.
40The d = 2 case is special, and a brief note can be found at the end of the section.
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C.ii Superfluid class: In this class the large charge ground state on the cylinder corresponds to the
one about the homogeneous conformal superfluid. These are systems that have an O(2) internal
symmetry that may be a subgroup of a bigger global symmetry group like the O(N). Several
confirmations of this statement using the small-ε expansion can be found in [34, 157, 158]. This
class also contains these fermionic models that exhibit BCS superconductivity, like the models
examined in [159–161]. In the large charge literature there are only two known examples of
fermionic models in the conformal superfluid phase, Gross-Neveu-Yukawa models examined by
Antipin et al. [63] using the small-ε expansion, and pure fermionic models that were studied by
Dondi et al. [74] using the large-N approximation. Finally, some monopole models with large
magnetic charge enjoy some properties of conformal superfluids [144, 162].

C.iii Fermi sphere class: The last class is the one that the large charge ground state on the cylinder is
that of a fully filled Fermi sphere. This class is apparent in certain fermionic models, and thus far
the only known examples are the free fermion of Komargodski et al. [25] and GN type theories
that do not support a BCS superconducting phase [74].

A special case is d = 2, where the Large Charge Expansion has been studied only in [25, 163]. In the
work of Komargodski et al. [25], it was demonstrated that the U(1) large charge sector decouples from
the rest of the system, and thus it cannot control the low-energy dynamics. This is the reason it is not
possible to write a low energy EFT as in the case of d ≥ 3 and the approach fails. Nonetheless, in [163]
it was shown that even if the LCE on its own is not enough, it is fruitful when used in parallel with
another controlling parameter and examined in the double scaling limit of the theory.

In this thesis, the phases that appear are the conformal superfluid of item C.ii and the Fermi sphere
of item C.iii. So for the rest of the chapter, key ingredients to better understand them, like Spontaneous
Symmetry Breaking and the Goldstone theorem, are laid down.

2.3.1 SSB and Goldstone theorem
As stated in section 2.3 the Large Charge Expansion is restricted to systems with global symmetries,
but through them, it systematically permits to examine theories that would be inaccessible otherwise.
The idea of fixing the charge and restricting the system to the large-charge Hilbert space sector results
in a ground state that breaks boost invariance, and the combination of simultaneously breaking boost
and charge invariance gives rise to a condensate and a number of Goldstone mode.

Actually, in [30] it was established that the large-charge domain of the non-Abelian theory con-
tains at the same time a combination of the relativistic and of the non-relativistic configuration of the
Goldstone’s theorem. The authors show that the spectrum contains one type I or relativistic Goldstone
boson which has a dispersion relation that goes like ω ∼ k√

d−1
and also N − 1 type II or non-relativistic

Goldstones that have a quadratic dispersion ω ∼ k2. This counting of Goldstones is a verification of the
analysis of Nielsen and Chadha [164].

Hence, we see that the breaking of Lorentz invariance by fixing the charge gives rise to a pro-
fuse phenomenology, that includes EFTs formulated in the non-relativistic limit, a work initiated by
Leutwyler [165] back in 1994 and fully solved only a few years ago by Watanabe and Murayama [166].

The subject of how to correctly count and characterise Goldstone bosons both in the relativistic and
the non-relativistic limit is a vast and complicated one, as many results have appeared scattered in the
literature. The best attempt to gather them up and present them in a clear and comprehensible way is
in [21].

Hence, before we move to the more specialised parts of the thesis, we will briefly review the Gold-
stone theorem and the SSB using the simplest possible derivation, that of the complex scalar field that
we first came upon in equation (2.21), but with a non-trivial ground state.

Spontaneous Symmetry Breaking and Gapless States
As we saw in section 2.1.1, for a system expressed by the Lagrangian L (ϕ, ∂ϕ) Noether’s theorem
dictates that to every continuous symmetry corresponds the conserved current J µ of equation (2.27).
From equation (2.30) this implies that the charge Q of equation (2.28) is time independent

d
dt
Q = 0,
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assuming of course that no sources are present at the boundaries at infinity.
Hence, given some continuous symmetry, a quantum state of the theory has to transform appropri-

ately under the aforesaid symmetry as
∣ψ⟩Ð→ eiaQ ∣ψ⟩ , (2.312)

with a being a real, continuous, arbitrary, not space—dependent parameter of the symmetry. Specifi-
cally, in the case that the ground state ∣0⟩ of the theory is invariant under the aforementioned symmetry,
using equation (2.312) corresponds to

∣0⟩Ð→ eiaQ ∣0⟩ = ∣0⟩ , (2.313)

which entails that
Q ∣0⟩ = 0. (2.314)

Put differently, if acting with the charge operator Q on the ground state, the latter is annihilated then
there exists a continuous symmetry related to the said charge that the ground state is invariant under.
This is the traditional definition of symmetries in quantum mechanics.

However, if by any chance the charge does not annihilate the ground state of the theory, i.e.

Q ∣0⟩ ≠ 0, (2.315)

it signifies that
∣0⟩Ð→ eiaQ ∣0⟩ ≡ ∣a⟩ ≠ ∣0⟩ , (2.316)

where the states ∣a⟩ are described using the real continuous parameter a of the initial symmetry trans-
formation and are related to the ground state by it. This is the definition of a broken symmetry.

The most interesting case arises though when the following equations

d
dt
Q = 0, Q ∣0⟩ ≠ 0, (2.317)

are concurrently satisfied. This situation represents the forenamed Spontaneous Symmetry Breaking
(SSB). This is the circumstance that the charge is still time independent and conserved, yet the ground
state of the theory is no longer symmetry invariant. To recapitulate

( d
dt
Q = 0, Q ∣0⟩ ≠ 0) Ô⇒ SSB. (2.318)

Considering that we retain current conservation, it can be shown using the results of [167] that the
conserved charge commutes with the Hamiltonian H of the theory

[H, Q] = 0. (2.319)

At this point we want to see how the Hamiltonian acts on the states ∣a⟩ given in equation (2.316). We
get that

H ∣a⟩ = HeiaQ ∣0⟩ = eiaQH ∣0⟩
= E0eiaQ ∣0⟩
= E0 ∣a⟩ , (2.320)

where E0 is the energy of the ground state, and in the first line we used the fact that the Hamiltonian
commutes with the charge. Therefore, we perceive that the concurrent satisfaction of equation (2.317)
ensues the existence of a continuous family of states ∣a⟩ that are degenerate since they have the same
energy E0 as the ground state of the theory and traversing between them extracts no additional toll.

In the case of a relativistic QFT, as we will see in section 2.3.1 the Goldstone modes are related to
massless particles. But before seeing an explicit example, let us briefly turn to the general theory. In
d ≥ 3 spacetime dimensions 41, there are two possible modes that a continuous symmetry can appear,
the Wigner-Weyl phase where the symmetries are unbroken and the Nambu-Goldstone phase:

41The case of d = 2 is peculiar since there can be no SSB of continuous symmetries. This statement has been proved in [168, 169]
in the statistical mechanical context, while in the context of QFTs it has been proven in [170]. Also, the case of d = 3 is atypical,
since in such systems in most cases SSB is possible at zero temperature but not in finite one.
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• Wigner-Weyl phase

In this phase, the ground state of the theory ∣0⟩ is invariant under the symmetries of the system. This
is the case that the conserved charge operators commute with the Hamiltonian and also annihilate
the state ∣0⟩ as in equation (2.314) so that

[H, Q] = 0, Q ∣0⟩ = 0. (2.321)

Furthermore, the conserved current operators J µ also annihilate the above-mentioned state so that

J µ ∣0⟩ = 0. (2.322)

Any excited states are generated as in equation (2.59) by adding multiple particles to the ground
state

∣k1, k2, . . . , kn⟩ ∶= a†(k1)a†(k2) . . . a†(kn) ∣0⟩ .
Hence, in the case of a relativistic system and for a symmetry that exists in the Wigner phase, the
particles develop multiplets of the said symmetry and every particle belonging to the same multiplet
has the same mass m42.

• Nambu-Goldstone mode

On the other hand, in this mode, as we saw, the ground state ∣0⟩ is not symmetry invariant and
alternatively, there exists a continuous group of degenerate ground states related by the symmetry
in question. On this account, the charge or the current operators do not annihilate the ground state
of the theory

Q ∣0⟩ ≠ 0, J µ ∣0⟩ ≠ 0, (2.323)

and in this spirit the particles do not form multiplets of the said symmetry. In lieu, the Goldstone
theorem dictates other exciting consequences for this mode:

1. In a relativistic system, every spontaneously broken generator of the system is related to a
massless scalar field, the relativistic Goldstone boson.
For non-relativistic systems, the counting is trickier, since there is not a one-to-one correspon-
dence between broken generators and the non-relativistic Goldstone bosons. This is the work of
Nielsen and Chadha [164], with the counting rule appearing in [171] and fully proven in [166,
172]. Therefore, assuming that we have a system with m spontaneously broken generators, nI
relativistic or type I Goldstones modes and nI I non-relativistic or type II modes, the correct
counting law is

nI + 2nI I ≥ m. (2.324)

2. The currents J µ
a of species a of the spontaneously broken symmetries generate Goldstone bosons

when acting on the ground state
J µ

a (x) ∣0⟩∝ ∣a(x)⟩ , (2.325)

as we also saw in equation (2.316).

It is interesting to note that given a continuous group of symmetries G, it is possible to partially
break it down to a subgroup H ⊂ G. Now assuming that the action S of the theory and the Hamiltonian
H are invariant under every symmetry ∈ G but on the other hand, the ground state ∣0⟩ is invariant
only under the symmetries that belong ∈ H, then symmetries in the proper subgroup H exist in the
Wigner-Weyl phase, even though the rest of the symmetries ∈ G/H appear in the Nambu-Goldstone
phase.

So having reviewed the Wigner-Weyl phase and the Nambu-Goldstone phase, it is important to
note that the Large Charge Expansion lies between the two phases, in the sense that the entire theory
is still invariant under a family of global symmetries and so it belongs to the Wigner phase, but in the
large-charge sector the ground state satisfies the Nambu-Goldstone condition

Q ∣0⟩ ≠ 0,

and can thus be expressed by a mixture of the relativistic and non-relativistic modes of the SSB.

42In the non-relativistic case, instead of the mass, particles share a similar dispersion relation ω.
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An example: U(1) Spontaneous Symmetry Breaking
To illustrate the SSB process of a global symmetry and the appearance of massless modes, we will
examine the easiest possible example, that of a complex scalar field of equation (2.21). The Lagrangian
of the system at hand comes with a quartic interaction term as

L = T −V

= − ∂µ φ∗ ∂µ φ − µ2 φ∗φ − g
2
(φ∗φ)2, (2.326)

where T is the kinetic term and V is the classical potential.
As we have seen in section 2.1.1, the Lagrangian possesses a U(1) symmetry

φ(x)→ φ′(x) = eia φ(x), φ∗(x)→ φ∗
′(x) = e−ia φ∗(x),

as in equation (2.43) which holds true even in the presence of the interaction term. As shown in
section 2.1.1 the aforesaid symmetry is isomorphic to complex plane rotations given by equation (2.20)
as

φ = 1√
2
(ϕ1 + iϕ2) , φ∗ = 1√

2
(ϕ1 − iϕ2) ,

so that U(1) ≃ O(2).
The classical potential V of the theory is

V = µ2 φ∗φ + g
2
(φ∗φ)2, (2.327)

and has to be bounded from below, and hence the coupling constant g has to be positive definite. But
the parameter µ2 has no such restriction and can acquire either sign. The theory has an entirely different
behaviour depending on the sign of µ hence it would be beneficial to examine both regimes.
● For µ2 > 0 we are in the usual case where there exists a unique ground state ∣0⟩ and the field φ has

a zero vacuum expectation value (VEV)

⟨0∣φ∣0⟩ = ⟨φ⟩ = 0, (2.328)

and the potential V is minimized at
(φ∗φ)0 = 0. (2.329)

The system is invariant under the U(1) phase symmetry and the excited states of the system are made-
up from a family of particles and/or antiparticles that are characterised by the same mass m2 = µ2.
● On the other hand, for µ2 < 0 things change considerably. The minimum of the potential V now

lies in

(φ∗φ)0 = −
µ2

g
≡ v2 > 0, (2.330)

where v2 is the vacuum expectation value of the operator φ∗φ, i.e.

⟨0∣φ∗φ∣0⟩ = v2. (2.331)

Thus we have that
µ2 = −gv2, (2.332)

and using equations (2.327) and (2.332) we can rewrite the classical potential V as

V = −gv2 φ∗φ + g
2
(φ∗φ)2

= g
2
(φ∗φ − v2)2 + const. (2.333)

Now we can analyse the behaviour of V and we see that instead of a local minimum, the system
displays a local maximum at φ = 0 which is the U(1) symmetric point. On the other hand, the system
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Figure 2.4: The potential V of the system exhibits a local maximum at ϕ = 0 and a circle
of degenerate local minima at (φ∗φ)0 = v2.

exhibits a circle of degenerate minima that can be found for

φ = v × eiθ , (2.334)

where θ is a 2π-periodic phase, and we assume that there is no conical singularity present. We can see
that none of the minima is invariant under the global U(1) symmetry, but they are rather connected by
it.

Therefore, in a semiclassical approximation in perturbation theory the system does not display a
unique ground state, but instead a whole family of degenerate ground states that are continuously
interconnected by the phase as in Figure 2.4.

Instead of the above analysis, we can use equation (2.20) and project the system into the complex
(ϕ1, ϕ2) plane. The locus points of the system’s minima form a circle with a fixed real radius v that
using equation (2.330) is found to be

ϕ2
1 + ϕ2

2
2

= v2, (2.335)

and an undetermined phase θ as in Figure 2.5 that needs to be fixed arbitrarily for a ground state to be
chosen. There is therefore a choice to be made for the phase and some explicit possibilities are

Figure 2.5: The minima of V for µ2 < 0 as seen in the complex (ϕ1, ϕ2) plane. The blue
line corresponds to the fixed radius v.

⟨ϕ1⟩ =
√

2v, ⟨ϕ2⟩ = 0, (2.336)
⟨ϕ1⟩ = v, ⟨ϕ2⟩ = v, (2.337)
⋮ ⋮

⟨ϕ1⟩ = 0, ⟨ϕ2⟩ =
√

2v. (2.338)

It is clear that any choice of the phase is possible, and it is exactly this choice that embodies the SSB.
All we have to do now is to choose a vacuum state and examine the spectrum of the system at

a semiclassical level. One of the most convenient but nonetheless equivalent choices is to pick equa-
tion (2.336) and from equation (2.20) this corresponds to a complex field φ having a real and positive
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VEV
⟨φ⟩ = +v. (2.339)

At this point, we shift φ by its VEV and expand it into real and imaginary parts around the chosen
vacuum state as

φ(x) = v + σ(x)+ iπ(x)√
2

, (2.340)

where in the above equation σ(x) and π(x) are real scalar fields that satisfy

⟨0∣σ(x)∣0⟩ = 0, ⟨0∣π(x)∣0⟩ = 0. (2.341)

The whole choice coincides with

ϕ1 = v + σ(x)√
2

, ϕ2 =
π(x)√

2
. (2.342)

Now we can use equation (2.340) to compute the potential V and the kinetic terms T regarding σ and
π. First we need to compute the quantity φ∗φ − v2 as

φ∗φ − v2 = v2 +
√

2vσ + 1
2

σ2 + 1
2

π2 − v2

=
√

2vσ + 1
2

σ2 + 1
2

π2, (2.343)

so that V is

V = g
2
(φ∗φ − v2)2

= gv2σ2 + gv√
2
(σ3 + σπ2)+ g

8
(σ2 +π2)2. (2.344)

Meanwhile, the kinetic terms can be directly computed using equation (2.340) by bearing in mind that
v is a real number and σ and π are real fields as

∂µ φ∗ ∂µ φ = 1
2
(∂µσ)2 + 1

2
(∂µπ)2. (2.345)

Therefore now we can express the Lagrangian of equation (2.326) in terms of σ and π

L = −1
2
(∂µσ)2 − 1

2
(∂µπ)2 − gv2σ2 +O((σ, π)3), (2.346)

where we neglected the cubic and the quartic order of the Lagrangian.
From equation (2.346) we observe that when we expand around equation (2.340) we end up with a

theory where the σ field has acquired a mass mσ while the other field π remains massless. That is

m2
σ = 2gv2, mπ = 0. (2.347)

A useful note is that σ and π are independent since the phase symmetry does not link them.
Beyond the semiclassical approximation, in the full quantum analysis to every order in perturbation

theory, the field π remains precisely massless. This is the gapless Goldstone boson promised by the
Goldstone theorem of section 2.3.1. In this case, we started with a continuous global U(1) phase
symmetry that has one generator, and it has been spontaneously broken resulting in one massless
Goldstone state.

A final remark is in order: observe that the outcome of the above analysis would be identical for
any angle θ = θ0 and it does not work solely for the choice of equation (2.336) where θ = 0. The way
to see this is to pick a different parametrisation of the complex field φ from the beginning. Instead of
equation (2.340) we express it as

φ(x) ≡ [v + h(x)√
2
]eiχ(x), (2.348)

where again h and χ are real scalars. Then, if we look at equation (2.348) closely, we perceive that the
field π does not contribute to the potential term and hence it does not acquire a mass term. We can
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insert equation (2.348) into equation (2.326) and get an expression for the Lagrangian in terms of the h
and χ fields as

L = −1
2

∂µh ∂µh − 1
2

∂µχ ∂µχ − gv2h2 + . . . , (2.349)

where again we neglect cubic powers and above.
The Lagrangian of equation (2.349) completely matches the one of equation (2.326), where again

there is a massive and a massless field with masses

m2
h = 2gv2, mχ = 0. (2.350)
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O(2) model as a working example

“Those who are not shocked when they first come across quantum theory cannot possibly have
understood it.”

Niels Bohr, Essays on Atomic Physics and Human Knowledge

In Chapter 2 we came upon the importance of Conformal Field Theories in physics and how they
are uniquely determined by the CFT data, i.e. the scaling dimension ∆ of primary operators and the
operator product expansion coefficients CO1O2O3 . Afterwards, in section 2.3 we explained why the LCE
leads to significant diminutions in the computations of these quantities.

Thus far in the literature, the primary concern has been to compute the conformal dimension of large
charge-operators, a work mainly carried out in [19, 20, 22, 30, 33–37] and autonomously confirmed
via lattice computations in [26–28, 40]. Only a few three and four-point correlation functions have
dispersedly turned up to this point in [20, 23, 25, 38, 39]. Thus, in this chapter that follows closely
[29] we intend to fill in the previously mentioned gap by systematically gathering and studying these
three and four-point correlation functions with current insertions for a general CFT in d-spacetime
dimensions that exhibits a global O(2) internal symmetry. Hence, we try to assemble and exhibit
known results in a self-sufficient and autonomous manner and in a common language, but we even
surpass the latest results by calculating for the first time correlators computed not in the large-charge
scalar ground state but between spinning phonon states, which are excitations over the said scalar
ground state. The results that we present are compatible with the form of correlators with conformal
invariance and are in agreement to the ones presented in section 2.2.6 and Appendix A.6.

The plan of this chapter goes as following: in section 3.1, we start by reviewing the primary ele-
ments of the O(2) sector, starting from the UV Lagrangian and briefly revising the linear sigma model
(LSM) and the non-linear sigma model (NLSM). Then in section 3.2 we examine both the canonical
and the path integral quantisation of the system, and we compute the elementary two point correlation
function both in the large charge scalar ground state ⟨Q∣Q⟩ and in the single phonon state ⟨ Qℓ2m2

∣ Qℓ1m1
⟩.

Afterwards, in section 3.3 we display the state-of-the-art results of this chapter, which are correlation
functions with insertions of the conserved current J µ and/or the energy momentum tensor Tµν sand-
wiched between single phonon states. Finally, in section 3.4 we review correlation functions where a
light-charge operator is inserted in an ensemble created by heavy states.

3.1 Overview of the O(2) model at large charge

So at this point, we want again to study the O(2) vector model of equation (2.12) but at fixed charge in
d spacetime dimensions. The original work can be found in [19] and a more detailed version is in [21].
Here we will present a brief recap of their analysis to derive the NLSM EFT.

We start from the UV fixed point where the theory is free, and we add a relevant deformation that
drives the theory away from it. The relevant UV Lagrangian written in terms of a complex scalar field
similar to equation (2.21) is

LUV = − ∂µ φ∗UV ∂µ φUV − rφ∗UV φUV − 4u(φ∗UV φUV)
2, (3.1)

where in the above expression r is chosen in such a fine-tuned manner that the system flows to an
IR fixed point, which for d ≤ 3 is a Wilson-Fisher fixed point studied. It has been shown in [173]
that an analogous argumentation can be made for d > 3 but now rather than to an IR fixed point, the



58

system flows to a UV fixed point. A priori, we want to work on the cylinder R× Sd−1 with a radius R0
which is conformally equivalent to flat space to make use of the state-operator correspondence that we
discussed in section 2.2.6. But only for now, to keep things a little more general, we can consider any
pseudo-Riemannian manifold (M, gµν) that can be foliated as R×Σ, where Σ is a Cauchy hypersurface.

We start by introducing a UV cut-off ΛUV that limits the integration units, and then we lower the
cut-off by integrating out high-frequency modes. When we reach the IR, the system is still described by
a complex scalar field φIR which is related to the UV field φUV by an elaborate conversion.

The field φIR can be expressed in terms of an angular and a radial mode as

φIR =
a√
2

eibχ, (3.2)

where the field a ∈ R+, while the field χ denotes the phase and is 2π periodic. On the other hand, b is
just a parameter that is there to encapsulate the possibility of a conical singularity. Actually, from this
particular parametrisation of the field φIR we can see how the model took its name since the internal
U(1) phase symmetry shifts the χ field as

χ
U(1)
Ð→ χ′ = χ + const. (3.3)

The goal is to examine the system at the IR conformal WF fixed point but in a domain of large fixed
global charge Q. By fixing the charge and studying the system in the fixed charge sector, the ground
state of the said sector is not the same as the ground state of the full theory and this fixing will introduce
a SSB to the system which by virtue of the Goldstone theorem should give rise to a massless Goldstone
boson. Assuming that there are no other light degrees of freedom (DOF) we should be able to express
the effective Lagrangian of the system in terms of these lightest DOF, which are the Goldstone modes.

In a spirit similar to section 2.3.1 we can write the effective theory in terms of the fields a and χ.
Since we are in the IR fixed point, the corresponding Lagrangian which is known as linear sigma model
has to be scale invariant and can be denoted as

LLSM = −
1
2

∂µa ∂µa − 1
2

b2a2 ∂µχ ∂µχ − ξR
2

a2 − d − 2
2d

ga2d/(d−2), (3.4)

where there are also higher-derivative and higher-curvature terms that are consistent with conformal
invariance. In equation (3.4) the term ξ is the conformal coupling which is equal to

ξ = (d − 2)
4(d − 1) , (3.5)

the terms b and g are dimensionless Wilsonian coefficients that encrypt the physical data of the modes
that were integrated out and R is the curvature scalar of Σ. From dimensional analysis and scale
invariance, we can compute the mass dimension of the fields a and χ. Since the derivative terms
have a mass dimension [∂µ] = +1 it is not hard to find the corresponding mass dimensions for the
aforementioned fields, bearing in mind that χ is a pure phase hence dimensionless, thus

[a] = d − 2
2

, [χ] = 0. (3.6)

In accordance with equation (3.6) a kinetic term of the field χ has to come with a term that scales as
d − 2 hence the a2 choice. Similarly, the Ricci coupling that has a mass dimension [R] = 2 has to be
coupled with an equivalent term. Finally, the only choice for a potential term that does not contain any
dimensionful coupling is to scale as a2d/(d−2). Doing the full RG analysis — see [21] — it can be shown
that the validity of the EFT of equation (3.4) with cut-off scale Λ lies between

1
L
≪ Λ≪ Q

1/(d−1)

L
, (3.7)

where L is the length scale of Σ and for the cylinder Sd−1 is its radius R0.
At this point, we want to compute the Euler-Lagrange equation (2.15) for the LSM Lagrangian given

in equation (3.4). We assume that the ground state maintains rotational symmetry, and thus it should
exhibit a homogeneous behaviour ∇φ = 0.
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Then, the equation of motion for the two fields are

∂LLSM

∂χ
− ∂t(

∂LLSM

∂(∂tχ)
) = ∂t(b2a2χ̇) = 0, (3.8)

∂LLSM

∂a
− ∂t(

∂LLSM

∂(∂ta)
) = b2aχ̇2 − ξRa − ga(

2d
d−2)−1 − ä = 0. (3.9)

We notice that equation (3.8) is nothing else but the charge conservation ∂tJ t = 0 of equation (2.27) for
a homogeneous solution. We can use equation (2.28) to compute the conserved charge Q or the charge
density ρ defined as

ρ ≡ Q
Vol(Σ) = b2a2χ̇. (3.10)

From the homogeneity of the ground state, consistency of the Euler-Lagrange equations and from fixing
the charge, the minimum solution for the field a corresponds to a constant fixed value v giving rise to
a VEV

⟨a⟩ = v. (3.11)

Using equations (3.8), (3.10) and (3.11) leads to

χ = µt, µ = ρ

b2v2 . (3.12)

We can plug equations (3.11) and (3.12) back into equation (3.9) and multiply by v. Then we derive an
expression for the VEV v(ρ) in terms of the charge density

ρ2

b2v2 − ξRv2 − gv2d/(d−2) = 0. (3.13)

The last equation (3.13) is reminiscent of the classical potential V which has now acquired a centrifugal
term proportional to ∝ v−2 and through that the minimum of the potential is moved away from the
origin. For R = 0 the equilibrium value of v sits at

v ∼ Q1/4

(Vol(Σ)b√g)1/4
. (3.14)

In accordance with section 2.3.1, from equation (3.4) we see that the field a is gapped and taking the
charge Q large, it is clear from equation (3.14) that it gains a large VEV. Hence, it should be removed
from low energy effective action.

To achieve that, we should integrate out a from the LSM Lagrangian of equation (3.4) which would
generate the non-linear sigma model (NLSM) Lagrangian LNLSM(χ). But realistically, this cannot hap-
pen and the closest we can get is to utilize the saddle-point approximation and remove the field a using
its eom and the equilibrium value of equation (3.14). To determine tree level contributions beyond lead-
ing order, we will make use of the symmetries of the system, and write every possible term compatible
with conformal invariance and with the correct dimensionality. Hence, we have a Wilsonian effective
action in the spirit of section 2.1.4 that includes every term consistent with the symmetries of the theory.
But working on a sector of large charge leads to significant simplifications. By utilising how terms in
the effective action scale regarding the charge Q we only keep terms that have a positive Q scaling.

The leading term in the NLSM EFT is generated by using the eom of the field a so the Lagrangian
reads:

LNLSM = c1(− ∂µχ ∂µχ)d/2 + . . . , (3.15)

and c1 is an unknown Wilsonian coefficient. This is precisely the action that we will use to compute the
CFT data of phonon states.

At this point, it would be interesting to discuss the symmetry breaking pattern of the system. We
see that we start with a CFT with the conformal Lie group SO(d, 2) and a global O(2) or U(1) sym-
metry. Then by fixing the charge and having a ground state solution that depends on time, e.g. the χ
field of equation (3.12), we spontaneously break boost invariance and time translation invariance and
the ground state is no longer invariant under the global symmetry. The breaking of conformal invari-
ance leads to the massive radial mode or gapped Goldstone, and the breaking of the phase symmetry
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generates the gapless Goldstone boson. Thus, the breaking pattern is

SO(d, 2)×O(2)Q → SO(d)×D ×O(2)Q ↝ SO(d)×D′.

where D is the dilatation generator on flat space 1 and D′ = D + µQ is the ground state’s emerging
helical symmetry where Q is the generator of the global phase symmetry. In the above symmetry
breaking pattern, the first step produces the gapped Goldstone mode, while the second one generates
the gapless mode.

3.1.1 Effective field theory
Although section 3.1 followed closely [19, 21], in [20] an alternative but equivalent approach was pre-
sented, using the path integral formulation. Considering a CFT in d-dimensional flat space which is
conformally equivalent to the cylinder, R×Sd−1 we want to study scalar primary operators OQ of large
global O(2) charge that generate the state ∣Q⟩.

In the cylinder frame, the correlation function of these primary operators OQ in the large separation
limit τout − τin ≡ β →∞ is denoted as

⟨Q,∞∣Q,−∞⟩ = lim
βÐ→∞

⟨Q∣e−βHcyl ∣Q⟩ . (3.16)

Using the CCWZ construction Monin et al. [20] have demonstrated that correlation functions of the form
of equation (3.16) are described by a weakly couple EFT based on the coset model with the following
breaking pattern 2

SO(d + 1, 1)×U(1)Q Ð→ SO(d)×U(1)D+µQ.

We observe that the symmetry breaking pattern is exactly the same as the one that we encounter in
section 3.1 which is thereafter known as the conformal superfluid 3.

The Lagrangian is given by equation (3.15) and in Euclidean signature using equation (2.95) the bulk
effective action written in terms of the Goldstone field χ of equation (3.12) is

S[χ] = −c1 ∫
R×Sd−1

dτ dS (− ∂µχ ∂µχ)d/2 + curvature couplings, (3.17)

where c1 is a Wilsonian parameter related to the UV theory, dS = R0
d−1 dΩ and

χ = χ +π(τ, n)
= −iµτ +π(τ, n), (3.18)

where π(τ, n) are the quantum fluctuations on top of the ground state. For fixed and largeQ a hierarchy
of states is produced,

1
R0
≪ E≪ µ ∼ Q

1/(d−1)

R0
,

where R0 is of course the radius of the cylinder and — from equations (3.12) and (3.14) — µ(Q) ∼
Q1/(d−1) is understood as the chemical potential, which is now a function of Q. Hence, the action of
equation (3.17) is valid up to the cut-off Λ ∼ µ and (R0µ)≫ 1 is the relevant dimensionless ratio which
controls the validity of the EFT.

Now, the power of the LCE is that consecutive terms in the above action are constructed from a
combination of ∥dχ∥2 = (gρσ ∂ρχ ∂σχ) and higher-curvature invariant terms and every physical observ-
able is written in terms of a power series in inverse powers of µ. For example, the overall ground state
action, which consists of the bulk action plus the fixed boundary terms evaluated at the saddle point,

1And of time translations on the cylinder.
2We chose to present the breaking pattern in Euclidean signature as the rest of the chapter will be in this notation.
3In the above analysis the state ∣Q⟩ is an eigenstate of the charge Q ∣Q⟩ = Q ∣Q⟩, hence it is not a superfluid state. The correct

assumption is that the saddle point that dominates the correlation function of equation (3.16) is that of a superfluid state.
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reads

S = (τout − τin

R0
)
∞

∑

n=0
αn(R0µ)d−2n, (3.19)

where αn depends on the Wilsonian parameter c1 and all the other Wilsonian coefficients that accom-
pany the subsequent terms in the above expansion. Nevertheless, it is possible having an additional
controlling parameter like large-N to compute them directly, e.g. see [30, 162].

3.1.2 Classical treatment
At this point, we want to review the classical treatment of the NLSM Lagrangian. Inserting equa-
tion (3.18) into the Euclidean version of equation (3.15) and expanding up to quadratic order in the
fluctuations π(τ, n) while neglecting higher-order terms of the action, the Lagrangian takes the form

L = −c1µd − ic1dµd−1π̇ + c1µd−2 d(d − 1)
2

(π̇2 + 1
d − 1

(∂iπ)2)+O(µd−3). (3.20)

We can compute the conjugate momentum of the field π using the Euclidean version of equation (2.37)
truncated up to linear order in the field as

Π = i
δL

δπ̇
∣
lin
= c1dµd−1 + ic1d(d − 1)µd−2π̇. (3.21)

At leading order and neglecting interactions, this choice will provide the canonical Poisson brackets of
the free theory as in section 2.1.2.

It has been shown in [30] that it is possible to expand the fields π and Π into the usual normal mode
decomposition in cylindrical coordinates as

π(τ, n) = π0 −
iΠ0τ

c1ΩdRd−1
0 d(d − 1)µd−2

(3.22)

+ 1√
c1Rd−1

0 d(d − 1)µd−2
∑

ℓ≥1,m
( aℓm√

2ωℓ
e−ωℓτYℓm(n)+

a∗ℓm√
2ωℓ

eωℓτY∗ℓm(n)),

Π(τ, n) = c1dµd−1 + Π0

ΩdRd−1
0

(3.23)

+i

¿
ÁÁÀ c1d(d − 1)µd−2

Rd−1
0

∑

ℓ,m
(−aℓm

√
ωℓ

2
e−ωℓτYℓm(n)+ a∗ℓm

√
ωℓ

2
eωℓτY∗ℓm(n)),

and in equation (3.22) the sum in ℓ starts from 1 as we have already pulled out the constant zero modes

of the fields π0 and Π0, Ωd = 2πd/2

Γ(d/2) denotes the volume of Sd−1 and the Yℓm are the hyperspherical
harmonics defined in Appendix B.1. The dispersion relation for the frequencies ωℓ is computed from
the eigenvalues of the angular momentum operator on the Sd−1 sphere, and it is

ωℓ =
1

R0

¿
ÁÁÀ ℓ(ℓ + d − 2)

(d − 1) . (3.24)

Similarly to section 2.1.2 the Fourier coefficients aℓm can be expressed using equations (3.22) and (3.23)
as

aℓm =
¿
ÁÁÀ c1d(d − 1)µd−2

2ωℓ Rd−1
0

∫
Sd−1

dS[π(τ, n) ∂τ(Y∗ℓm(n)e
ωℓτ)− ∂τπ(τ, n)Y∗ℓm(n)e

ωℓτ]. (3.25)

Using equation (3.25) and the Poisson bracket of π and Π, i.e. {π, Π} = 1 generates the relation between
the Fourier modes

{aℓm, a∗ℓ′m′} = δℓℓ′δmm′ . (3.26)
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Using equations (2.27) and (2.28) the Euclidean charge is found to be

Q = ∫
Sd−1

dSJ τ = ∫
Sd−1

dS Π = c1dΩd(µR0)d−1 +Π0. (3.27)

We can see that the charge, at leading order, depends on the zero mode Π0 corresponding to the ground
state. Thus, the scale µ can be related to the ground state charge Q0 — at Π0 = 0 — as

µ =
⎡⎢⎢⎢⎣

Q0

c1dRd−1
0 Ωd

⎤⎥⎥⎥⎦

1/(d−1)

. (3.28)

This verifies our claim from section 3.1.1 that the dimensionless ratio µR0 ∼ Q1/(d−1)
0 controls the va-

lidity of the EFT. Moreover, from equation (3.27) we see that the generic charge Q, at leading order in
fluctuations, depends on the homogeneous zero mode term Π0 cumulatively

Q = Q0 +Π0. (3.29)

Via the state-operator correspondence of section 2.2.6, the scaling dimension of the charged operator
OQ is related to the cylinder Hamiltonian and can be computed for a generic solution as

∆ = R0Ecyl

= R0 ∫
Sd−1

dS [iΠχ̇ +L ]

= R0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

Sd−1

dS [iΠπ̇ +L ]+ µ∫
Sd−1

dS Π
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= c1(d − 1)(µR0)dΩd + µR0Π0 + c1R0µd−2 d(d − 1)
2 ∫

Sd−1

dS (π̇2 + 1
d − 1

(∂iπ)2)

= ∆0 +
∂∆0

∂Q0
Π0 +

1
2

∂2∆0

∂Q0∂Q0
Π2

0 + R0 ∑
ℓ≥1,m

ωℓa∗ℓ,maℓm , (3.30)

where in the first line we employed equation (2.295), in the second line we applied the Euclidean
version of equation (2.35) 4 and the Lagrangian is given by equation (3.20), in the third line we utilized
equation (3.18) and finally, we have defined

∆0 = c1(d − 1)Ωd(µR0)d +O((R0µ)d−2) , (3.31)

∂∆0

∂Q0
= R0µ , (3.32)

∂2∆0

∂Q0 ∂Q0
= 1

c1d(d − 1)Ωd(R0µ)d−2 . (3.33)

In our definitions ∆0 agrees with the classical leading-order contribution to equation (3.19).
Moreover, notice from the third line of equation (3.30) that the Hamiltonian Hχ can be written w.r.t

to the Hamiltonian Hπ as
Hχ = Hπ + µQ, (3.34)

and it is shifted by a factor of µQ which means that the generator of the effective time evolution for the
field π is given by equation (3.34), a fact consistent with a superfluid Goldstone fluctuation.

3.2 Canonical and path integral quantisation

Having looked into the classical behaviour of the O(2)model at large charge in section 3.1, we now want
to examine its quantum behaviour. Similarly to section 2.1.2, we will start our analysis with the familiar

4Remember from equation (2.95) that t → −iτ thus ∂t= i ∂τ . Hence, for the Hamiltonian of equation (2.35) we have H =
Π ∂tϕ −LM

t→−iτÐ→ iΠ ∂τϕ +LE.
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canonical approach in the operator language and then move on to the path integral formulation.

3.2.1 Canonical quantization
As we explored in section 2.1.2 the idea behind canonical quantisation is to promote the classical fields
to quantum operators. Furthermore, as we reviewed in section 2.2.6, on the cylinder R×Sd−1 the proper
time coordinate is τ, hence in order to employ canonical quantisation on the cylinder we foliate our
manifold by τ-slicing, and to each slice of fixed τ we relate the suitable Hilbert space HQ.

The fields π and Π of equations (3.22) and (3.23) are promoted to operators, and we impose equal-
time commutation relations similar to equation (2.50) so that

[π(τ, n), Π(τ, n′)] = iδSd−1(n, n′), (3.35)

where with δSd−1(n, n′) we denote the delta function on Sd−1. Therefore, similarly to equation (2.54), we
can use equations (3.22), (3.23) and (3.35) to find the following non-zero commutation relations for the
Fourier modes aℓm and a†

ℓ′m′ and the zero modes π0 and Π0 as

[π0, Π0] = i, [aℓm, a†
ℓ′m′] = δℓℓ′δmm′ . (3.36)

All the rest of the commutators are zero.
Since equation (3.36) exhibits ladder commutators, we demand that the vacuum state ∣Q⟩ of the

theory to be eliminated by the annihilation operators, and thus it has to satisfy

aℓm ∣Q⟩ = Π0 ∣Q⟩ = 0. (3.37)

Being in finite volume, the charge operator Q acting on HQ is well-defined and is given in terms of the
zero modes only as

Q = ∫
Sd−1

dS Π(τ, n) = Q01+Π0 , Q ∣Q⟩ = Q0 ∣Q⟩ . (3.38)

Consequently, the only mode that carries charge is π0 and thus acting with it on the charged vacuum
state ∣Q⟩ can increase its value. This is more evident by utilizing equation (3.36) and computing the
subsequent commutators

[π0, Q] = i , [Q, aℓm] = [Q, a†
ℓm] = 0. (3.39)

Therefore, given the vacuum state ∣Q⟩ we can apply π0 to create a new state

∣Q+ q⟩ = eiπ0q ∣Q⟩ = exp

⎡⎢⎢⎢⎢⎢⎣

iq
ΩdRd−1

0
∫

Sd−1

dS π(τ, n)
⎤⎥⎥⎥⎥⎥⎦
∣Q⟩ , (3.40)

that has a charge Q0 + q and scaling dimension ∆0(Q0 + q) 5. Given that

[aℓm, π0] = 0, (3.41)

states like this are annihilated by the ladders aℓm, but they are not annihilated by Π0 due to equa-
tion (3.36), and as a consequence they are not zero modes of Π0, they do not represent degenerate
vacua and lead to no degeneracy in the spectrum, but instead they are gapped

∆0(Q0 + q)−∆0(Q0) ∼ q(R0µ) . (3.42)

Considering the fact that the charge operator Q acts in a non-trivial manner only on the π0 operator,
we can conclude that π0 has to be compact

π0 ∼ π0 + 2π1 , (3.43)

which would imply that q ∈Z. Having a mass gap signifies that these states live at the EFT cut-off.

5∆0 = ∆0(Q) is defined via equations (3.28) and (3.31).
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The quantised Hamiltonian D that is related to the classical quantity of equation (3.30) can be
expressed in the usual manner as a normal-ordered operator ∶H ∶ where in this case the normal ordering
is defined for the vacuum state ∣Q⟩ as

⟨Q∣∶H ∶∣Q⟩ = ∆0/R0, (3.44)

and a Casimir contribution of the fluctuations of the vacuum as

D = R0 ∶H ∶ +∆11, where ∆1 ∶=
1
2

∞

∑

ℓ=1

ℓ

∑

m=−ℓ
(R0ωℓ). (3.45)

The Casimir energy contribution needs to be regulated — see Appendix B for details — and it has
physical significance. Given that the one-loop Casimir contribution is of order O(Q0), it is necessary to
keep an eye on every tree-level computation up to this order. For a CFT in d = 3 spacetime dimensions,
it has been shown in [19] that

∆0 = d3/2Q3/2 + d1/2Q1/2 +O(Q−1/2), (3.46)

where d3/2 and d1/2 depend on the unknown Wilsonian coefficients. For a general spacetime manifold,
there are ⌈(d + 1)/2⌉ terms that scale positively in Q.

At this point, we can go on and compute the commutators between D 6 and the rest of the operators.
Doing so, we find

[D, aℓm] = −R0ωℓaℓm, [D, a†
ℓm] = R0ωℓa†

ℓm, (3.47)

[D, π0] = −i
∞

∑

k=1

∆(k)0
(k − 1)! Πk−1

0 , [D, Π0] = 0. (3.48)

Thus from the above commutators, in the usual manner, we can see the ones that give rise to excited
states.

As in section 2.1.2 the Fock space is constructed by repeated action of the creation operators as

a†
ℓ1m1

. . . a†
ℓkmk
∣Q⟩ . (3.49)

Since according to equation (3.39) acting on the vacuum ∣Q⟩ with creation operators a†
ℓm does not raise

the charge, these states have charge Q0 and given equation (3.47), each subsequent application of a†
ℓm

raises the scaling dimension by R0ωℓ so that

∆ = ∆0 +∆1 +
k

∑

i=1
(R0ωℓi

). (3.50)

These are the superfluid phonon states which correspond to spinning primaries OQℓm labelled by different
quantum numbers, e.g. spin ℓ, but same charge Q as OQ.

The only descendant state is the one that that has ℓ = 1 so it contains at least one creation operator
a†

1m. Using equation (3.24) we observe that for ℓ = 1 the dispersion is ω1 = 1/R0 so that the scaling
dimension for the operator a†

1m ∣Q⟩ is
∆ = ∆0 +∆1 + 1 . (3.51)

Applying multiple times a†
1m on the ground state only increases its scaling dimension by one in each

consecutive application, therefore according to section 2.2.3 this is like acting with a derivative ∂µ on
the ground state hence the raising operator Pµ in this frame is but the Goldstone mode for ℓ = 1.

Before, we claimed that the new primaries are spinning operators and the reason is the following:
there exists a unitary operator U(R) with R ∈ SO(d) on HQ that represents the R rotations — see

6For the computations we use that D takes the form:

D/R0 = ∫
Sd−1

dS ∶Tττ ∶ ∝ µΠ0 +∑
m,ℓ

ωℓ aℓma†
ℓm +

Π2
0

2c1ΩdRd−1
0 dµd−2

+O(ε/µ3).
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Tung [135] § 7 for details — and looking at the transformation properties of the Fourier modes and
their decomposition in equations (3.22) and (3.23), they transform under U(R) as

U(R)a†
ℓmU†(R) =∑

m′
Dℓ

mm′(R−1) a†
ℓm′ , R ∈ SO(d), (3.52)

where the quantity Dℓ
mm′ is the Wigner’s D-matrix in d = 3-dimensions or equivalently in d > 3 it is a

generalised finite dimensional irreducible representation of SO(d). Given that SO(d) is the group of
Euclidean rotations, states defined in equation (3.49) correspond to spinning primaries.

Finally, already in section 2.3 we mentioned that the validity of the superfluid EFT depends on the
overall spin J and that it is not possible to describe every phonon state within it. From our analysis
above, it is evident from equation (3.50) that when ℓ gets too big, the last term of the equation R0ωℓ
becomes comparable with the leading tree-level contribution ∆0 which ends the validity of the Large
Charge Expansion. Although the leading term in ∆0 scales as Qd/(d−1), there are in total ⌈(d + 1)/2⌉
terms that scale positively in Q that originate from higher-curvature terms in the Lagrangian, with the
last one scaling as Q1/(d−1). Therefore, this sets a cut-off for ℓ since the EFT cannot contain phonon
states with

ℓcutoff ∼ Q1/(d−1). (3.53)

On that account, such systems have a new EFT description — see [145] and references therein.

3.2.2 Path integral methods
Although the canonical quantisation is the easiest framework to discuss the spectrum of the theory and
the existence of the charged spinning primary operators OQℓm which is in accordance with the superfluid
hypothesis for a CFT with a global O(2) phase symmetry, one can show that an equivalent framework is
the path integral approach, that has the advantage that it may also incorporate sub-leading corrections
originating in interaction terms in equation (3.20). In this section, we will review the basic elements of
the path integral method and compute the one-loop scaling ∆1.

Instead of the π and Π basis for the Hilbert space HQ that we explored in section 3.2.1 we can
instead use the alternative basis

χ(n) ∣χ⟩ = χ(n) ∣χ⟩ , Π(n) ∣Π⟩ = Π(n) ∣Π⟩ , (3.54)

written in terms of eigenstates of the field χ and the conjugate momentum Π. Following the common
prescription, their eigenstates satisfy the usual relation

⟨χ∣Π⟩ = exp
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i ∫
Sd−1

dS (χΠ)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

. (3.55)

From equation (3.38) and equations thereafter, it is evident that we can, in general, express the vacuum
∣Q⟩ as a superposition of momentum eigenstates that do not contain the non-trivial zero mode Π0 as

∣Q⟩ =NQ ∫ DΠ δ(Π0)ΨQ(Π) ∣Π⟩ , (3.56)

where NQ is the usual normalisation parameter at fixed charge Q and ΨQ is the vacuum wave function.
In the infinite separation limit, where τ → ∞, correlation functions do not depend on the specifics of
ΨQ and hence it only has an impact on the overall normalisation, therefore without loss of generality
we set its value to ΨQ = 1. We can combine equations (3.55) and (3.56) to explore the relation between
charge eigenstates ∣Q⟩ and field eigenstates, ∣χ⟩ which is given by

⟨χ∣Q⟩ =NQ∫ DΠ δ(Π0) exp
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i ∫
Sd−1

dS (χΠ)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

NQ exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

iQ
ΩdRd−1

0
∫

Sd−1

dS χ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
if χ is constant,

0 otherwise.

(3.57)
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As a matter of fact, on a slice of fixed τ on the cylinder, integrating over the spherical part allows us to
separate the zero modes of the fields as

χ0 = ∫
Sd−1

dS χ. (3.58)

The bracket of equation (3.57) defines the proper boundary conditions for correlation functions of the
form ⟨Q∣. . .∣Q⟩, and generalises the quantum mechanical case of d = 1 where these boundary conditions
are equivalent to open boundary conditions on the segment. Typically, we care about correlation func-
tions, where the vacuum states ∣Q⟩ are inserted on the cylinder in the limit of infinite separation — i.e.
τ = ±∞— therefore their effect on the boundary conditions is inconsequential.

Two-point functions
Now, we are ready to formulate the path integral for the states presented in equation (3.49). We will
review the amplitude for scalar and spinning primaries, where their insertions on the cylinder are done
at infinite time separation.

⟨Q∣Q⟩ correlator
The vacuum correlation function of two scalar primaries OQ inserted at τout > τin takes the form

⟨O−Q(τout)OQ(τin)⟩ = ⟨Q∣e
−
(τout−τin)

R0
D ∣Q⟩

= ∫ DχinDχout ⟨Q∣χout⟩ ⟨χin∣Q⟩
χ(τout)=χout

∫
χ(τin)=χin

Dχ e−S[χ]

= ∣NQ∣
2
∫ Dχ exp

⎡⎢⎢⎢⎢⎢⎣
−

τout

∫
τin

dτ ∫
Sd−1

dS
⎧⎪⎪⎨⎪⎪⎩
L + iQ

ΩdRd−1
0

χ̇

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦
∶= A (τin, τout) , (3.59)

where in the second line we used equation (3.57) and the Lagrangian is given in equation (3.20). The
path integral above should be seen as the working definition of the correlation function with starting
point the bulk action given in equation (3.17), without any need to reference the canonically quantized
framework any more.

At this point, we want to compute the path integral of equation (3.59). As we have seen in sec-
tion 2.1.2, generically, the path integral is dominated by the classical contribution of a quantum field.
Therefore, we expand our field χ into a classical part plus quantum fluctuations as

χ(τ, n) = χ (τ, n)+π(τ, n), (3.60)

where χ (τ, n) is the classical saddle-point solution to the action’s minimisation problem

δS[χ] =
τout

∫
τin

dτ dS(− ∂µ
∂L

∂(∂µχ)) δχ + ∫ dS
⎛
⎝

∂L

∂(∂τχ) +
iQ

ΩdRd−1
0

⎞
⎠

δχ∣
τout

τin

. (3.61)

It is clear from the variation of the action in equation (3.61) that the first term that corresponds to the
bulk contribution has to be smooth for the equation of motion to be valid. Therefore, the quantity

∂L

∂(∂µχ) = c1d(− ∂µχ ∂µχ)d/2−1 ∂µχ, (3.62)

is required to be free of any divergences.
In the semiclassical approximation, the classical trajectory that satisfies the boundary conditions and

minimises the action is
χ̇ = −iµ, (3.63)
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which corresponds to the homogeneous saddle point of [19] and reads

χ (τ, n) = −iµτ +π0, (3.64)

where π0 is a constant parameter. Moreover, the boundary condition in the exponent of equation (3.59)
fixes the value of µ in terms of the conserved current J τ as

Q
ΩdRd−1

0
= i

∂L

∂(∂τχ) ∣χ̇ =−iµ
= c1dµd−1, (3.65)

and we have already found this relation in the classical treatment of section 3.1.2 in equation (3.28).
As a result, the overall action S[χ] up to quadratic order, written in terms of the bulk action and the
boundary term in an expansion around the field configuration of equation (3.60), is

S[χ]∣
χ=χ +π

= ∫ dτ dS
⎡⎢⎢⎢⎣
L + iQ

ΩdRd−1
0

χ̇
⎤⎥⎥⎥⎦
∣

χ=χ +π

(3.66)

= ∆0
τout − τin

R0
+ c1µd−2 d(d − 1)

2

τout

∫
τin

dτ ∫
Sd−1

dS(π̇2 + 1
(d − 1)(∂iπ)2).

We observe that the boundary term above and the linear term in equation (3.20) cancel each other out,
therefore the zero mode terms of equation (3.30) are gone.

We can choose the normalisation parameter NQ of equation (3.59) in such a way that the correlation
function becomes

A (τin, τout) = R−2(∆0+∆1+... )
0 exp{−(τout − τin)

R0
[∆0 +∆1 + . . .]}, (3.67)

which is exactly the result of equation (2.294). Furthermore, ∆1 is the Casimir energy contribution
related to the fluctuations π on top of the homogeneous saddle point χ that we first came upon in
equation (3.45).

As a final note, as we have seen in section 2.2.6, the action of scalar primary operators inserted at
τ = ±∞ 7 on the cylinder R× Sd−1 projects on the reference states ∣Q⟩ and ⟨Q∣ as

lim
τin→−∞

OQ(τ, n) ∣0⟩ ∶= ∣Q⟩ , lim
τout→∞

⟨0∣OQ(τ, n)† ∶= ⟨Q∣ , (3.68)

where the hermitian conjugation on the cylinder is performed as

OQ(τ, n)† = O−Q(−τ, n). (3.69)

Lastly, the Weyl map to Rd has been laid down in equation (2.290).

⟨
Q

ℓ2m2
∣
Q

ℓ1m1
⟩ correlators

Following our analysis of the two-point function of scalar primaries OQ at large charge, now we want
to examine correlation functions of spinning primaries OQℓm.

The reference states that we are interested in are the single-phonon states ∣ Qℓm ⟩which are the simplest

version of equation (3.49), with only one ladder operator a†
ℓm acting on the charged vacuum ∣Q⟩ as

∣ Qℓm ⟩ = a†
ℓm ∣Q⟩ , where ∣Q00⟩ = ∣Q⟩ . (3.70)

By virtue of the Wigner–Eckart theorem [174, 175] which implies that

⟨Q∣aℓ2m2 a†
ℓ1m1
∣Q⟩ ∼ δℓ1ℓ2 δm1m2 , (3.71)

7This is an insertion at xin = 0, xout =∞ on Rd.
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and restricts the form of the correlator, we can compute the two-point correlation function in the canon-
ical quantisation framework, by applying the commutation relations of the ladder operators aℓm and
a†
ℓm of equations (3.36) and (3.47) as

⟨ Qℓ2m2
∣ Qℓ1m1

⟩ = ⟨Q∣aℓ2m2 e−
(τout−τin)

R0
Da†

ℓ1m1
∣Q⟩ (3.72)

= A (τin, τout) e−(τout−τin)ωℓδℓ1ℓ2 δm1m2 . (3.73)

Using the form of equation (3.67) we observe that

exp{−(τout − τin)
R0

[∆0 +∆1 + . . .]}× exp{−(τout − τin)ωℓ} = exp{−(τout − τin)
R0

∆}, (3.74)

with ∆ being the conformal dimension of equation (3.50) for a single-phonon state. As expected, the
conformal dimension of the phonon state increased by R0ωℓ and the form of the correlator is consistent
with the structure of the spinning two-point correlation function in Appendix A.6.

Although the aforementioned result holds true up to quadratic order in the Hamiltonian, it cannot
enclose any impact from loop corrections, therefore a path integral formulation is necessary.

The starting point is equation (3.25) in order to write the ladder operators in terms of the fields and
insert them in equation (3.72). Following the same logic as in equation (3.59), we find that

⟨ Qℓ2m2
∣ Qℓ1m1

⟩ = c1d(d − 1)µd−2

2Rd−1
0
√

ωℓ2 ωℓ1

∫ dS(nout)∫ dS(nin)Y∗ℓ2m2
(nout)Yℓ1m1

(nin)

×A (τin, τout) lim
τ→τin

τ′→τout

(ωℓ2 − ∂τ′)(ωℓ1
+ ∂τ) ⟨π(τ′, nout)π(τ, nin)⟩ , (3.75)

where we have introduced the two-point function of the fluctuations π,

⟨π(τ′, nout)π(τ, nin)⟩ =
1

⟨Q, τ′∣Q, τ⟩ ∫ Dπ π(τ′, nout)π(τ, nin) e−S[π], (3.76)

and the action S[π] is given in equation (3.66).
All the information of the spectrum of the theory is included in the full version of the two-point

function. Nevertheless, to replicate the outcome of equation (3.73) we can use only the tree-level result
— see Appendix B.2 for details of the computation — which was originally derived in [25] and reads

⟨π(τ′, nout)π(τ, nin)⟩ =
1

c1d(d − 1)(µR0)d−2

⎛
⎜
⎝

∞

∑

ℓ=1
∑

m
e−ωℓ∣τ

′
−τ∣Y

∗
ℓm(nout)Yℓm(nin)

2R0ωℓ
− ∣τ

′ − τ∣
2R0Ωd

⎞
⎟
⎠

. (3.77)

Via the state operator correspondence, the phonon state ∣ Qℓm ⟩ is projected by the action of the symmetric
spinning operator inserted at τ = −∞ as

lim
τin→−∞

OQℓm(τ, n) ∣0⟩ ∶= ∣ Qℓm ⟩ . (3.78)

Finally, it is easy to generalise the computation of the two-point function of spinning primaries to
systems with more phonon states using the canonical quantisation framework. As a matter of fact, for
the two-phonon state ∣ Q

(ℓm)⊗(ℓ′m′)⟩ we have the following result

⟨ Q

(ℓ2m2)⊗(ℓ
′

2m′2)
∣ Q

(ℓ1m1)⊗(ℓ
′

1m′1)
⟩ = Q∣ aℓ2m2 aℓ′2m′2

e−(τout−τin)D/R0 a†
ℓ′1m′1

a†
ℓ1m1
Q

= A (τin, τout) e
−(τout−τin)(ωℓ2

+ωℓ′2
)(δℓ1ℓ2 δm1m2 δℓ′1ℓ

′

2
δm′1m′2

+ δℓ1ℓ
′

2
δm1m′2

δℓ′1ℓ2
δm′1m2

). (3.79)

For every consecutive phonon excitation that is added to the system, the energy of the relative state
increases by ωR0 in accordance with equation (3.49) and also, there appears a summation over all
permutations of the Kronecker deltas. As long as no state contains an ℓ = 1 quantum number, they
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correspond to spinning primaries in some reducible representation. For instance, in d = 3 we have

ℓ⊗ ℓ′ = (ℓ + ℓ′)⊕ (ℓ + ℓ′ − 2)⊕ ⋅ ⋅ ⋅ ⊕ ∣ℓ − ℓ′∣. (3.80)

3.2.3 One-loop scaling dimension and regularization
In the spirit of section 2.1.3 it is possible to set up our system on the thermal circle S1

β × Sd−1 where we
have compactified the temporal dimension in a circle of circumference β. Then taking the limit β →∞
which is the zero temperature limit, we recover the initial predictions of our theory.

We want to compute the one-loop scaling dimension ∆1. On the thermal circle S1
β × Sd−1 this corre-

sponds to

∆1 = − lim
β→∞

∂

∂β
logZ0, (3.81)

where Z0(β) is the free partition function related to the generating functional of equation (2.69). This
computation amounts to the evaluation of the functional determinant

1
2β

ln det [− ∂2
τ−△2

Sd−1] =
1
2∑
ℓ>0

Mℓ(Rωℓ), (3.82)

where ωℓ are the eigenvalues of the Laplacian with degeneracy Mℓ and ωn = 2πn/β are the Matsubara
frequencies that we have already summed over — [see 20, Appendix B] for details. The above result
matches the expression that we have found in equation (3.45). This sum is divergent and has to be
regularised.

So for now, we will work explicitly in d = 3 and we will use a heat kernel regularisation, e.g. see
Monin [176]. A more general approach using a smooth cut-off regulator is found in Appendix B.3.

For now, we start with the expression

I =
∞

∑

ℓ=1
(2ℓ + 1)

√
ℓ(ℓ + 1), (3.83)

which matches exactly equation (3.82) in three dimensions, and we extract a 1
2
√

2
prefactor that we will

reinstate later. We rewrite it as

I = 2
∞

∑

ℓ=1
(ℓ + 1

2
)

¿
ÁÁÀ(ℓ + 1

2
)

2
− 1

4
. (3.84)

The above result is the energy for a boson that is conformally coupled plus a mass term m2 = − 1
4 . We

can now split this into a convergent and a divergent part as

I = 2
∞

∑

ℓ=1

⎡⎢⎢⎢⎢⎢⎣
(ℓ + 1

2
)

¿
ÁÁÀ(ℓ + 1

2
)

2
− 1

4
− ((ℓ + 1

2
)

2
− 1

8
)
⎤⎥⎥⎥⎥⎥⎦

+ 2
∞

∑

ℓ=1
[(ℓ + 1

2
)

2
− 1

8
(ℓ + 1

2
)

0
] (3.85)

= Iconv + Idiv.

We can use the Hurwitz zeta function

ζ(s, a) =
∞

∑

n=0

1
(n + a)s

, (3.86)

to compute the divergent part as

Idiv = 2ζ(2,
1
2
)− 1

4
ζ(0,

1
2
)− 1

4
= −1

4
. (3.87)
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The convergent part can be evaluated numerically as Iconv = −0.01509. Now if we multiply our combined
results by the prefactor 1

2
√

2
we have the one-loop scaling dimension

∆1 = −0.0937256. (3.88)

As stated before, since this contribution comes at order O(Q0) and it gets no other corrections, it is a
universal prediction of the theory and a feature of all superfluid EFTs.

3.3 Correlators with current insertions

As we saw in section 3.2 there is a complete agreement in the predictions of the canonical and the path
integral quantisation as long as we use the tree-level result for the two-point correlation function of the
fluctuations π. Any higher-loop corrections are suppressed by powers of Q, therefore working at large
charge has the advantage that physical data at the fixed point can be encapsulated by a free theory.
Hence, this permits the computation of n-point functions of the strongly coupled CFT with the use of
the operator algebra (3.36) only.

On that account, in this section, we compute three and four-point correlation functions of large
charge primaries with insertions of the conserved current J µ and/or the energy-momentum tensor
Tµν. Although some of these correlation functions have already been computed in [20, 24, 25, 38] for
the case where ℓ = 0 which corresponds to scalar primaries OQ, we go beyond the state-of-the-art, and
we compute them for spinning primary operators OQℓm.

In our analysis, the results that we present have to be seen as an expansion in the charge Qwith only
the classical contribution and the leading-order quantum correction present. Furthermore, the form of
our correlators is in agreement with the ones that are presented in section 2.2.6 and Appendix A.6.

3.3.1 Conserved currents and Ward identities in the EFT
The classical currents of the NLSM EFT of equation (3.17) are computed using the Euclidean version of
equations (2.27) and (2.34) and are found to be

Jµ = c1d(− ∂µχ ∂µχ)d/2−1 ∂µχ, (3.89)

Tµν = c1{d(− ∂µχ ∂µχ)d/2−1 ∂µχ ∂νχ + gµν(− ∂µχ ∂µχ)d/2}. (3.90)

We can write them as an expansion in χ = χ +π(τ, n) up to O(π2) as

Jτ = −i
Q

ΩdRd−1
0
{1+ i

µ
(d − 1)π̇ − (d − 2)(d − 1)

2µ2 [π̇2 + (∂iπ)2

R2
0(d − 1)

]+O(µ−3)}, (3.91a)

Ji =
Q

ΩdRd−1
0
{ 1

µR0
∂iπ +

i
µ

(d − 2)
µR0

π̇ ∂iπ +O(µ−3)}, (3.91b)

Tττ = −
∆0

ΩdRd
0
{1+ i

d
µ

π̇ − d(d − 1)
2µ2 [π̇2 + (d − 3) (∂iπ)2

R2
0(d − 1)2

]+O(µ−3)}, (3.91c)

Tτi = −i
∆0

ΩdRd
0
{ 1

µR0

d
d − 1

∂iπ +
i
µ

d
µR0

π̇∂iπ +O(µ−3)}, (3.91d)

Tij =
∆0

ΩdRd

hij

(d − 1){1+ i
d
µ

π̇ − d(d − 1)
2µ2 [π̇2 + (∂iπ)2

R2
0(d − 1)

]+O(µ−3)}

+ ∆0

ΩdRd
1

(µR0)2
d

(d − 1)
{∂iπ ∂jπ +O(µ−3)},

(3.91e)

where we denote hij the metric of the d− 1-sphere. Since the saddle point χ is homogeneous, it is clear
from equations (3.89) and (3.90) that at leading order Ji = Tτi = 0.

As already stated, we will study correlation functions of the above currents in the canonical quan-
tisation framework of section 3.2.1 which is adequate for leading-order results. From equations (2.28)
and (2.35) we know that by integrating the temporal components Jτ or Tττ over the spatial hypersurface
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Sd−1 generates the operators

Q = ∫
Sd−1

dSJτ , D = R0∫

Sd−1

dS Tττ . (3.92)

By inserting these operators at any time τ on the cylinder, it is possible to measure the charge or the
scaling dimension of an operator Oi inserted at τi ≠ τ. This is a direct consequence of the Ward identities

⟨Q(τ)∏
i

Oi(τi, ni)⟩ =∑
τi<τ

Qi ⟨∏
i

Oi(τi, ni)⟩ , (3.93)

⟨D(τ)∏
i

Oi(τi, ni)⟩ =∑
τi<τ

∆i ⟨∏
i

Oi(τi, ni)⟩ , (3.94)

which are a generalisation of the Noether’s theorem of current conservation for quantum operators.
Since these identities are true at every order in a loop expansion, they can be employed to constrain the
form of correlation functions with the current insertions of equation (3.91).

3.3.2 ⟨
Q

ℓ2m2
∣J ∣

Q
ℓ1m1
⟩ correlators

We start by computing the three-point correlation functions between two spinning primary 8 operators
OQℓm ∣0⟩ = a†

ℓm ∣Q⟩ inserted at τin, τout and the current Jµ(τ, x), inserted at a time τin < τ < τout. These are
found to be

⟨O−Qℓ2m2
Jτ(τ, n)OQℓ1m1

⟩ = −i
Q

ΩdRd−1
0

⎧⎪⎪⎨⎪⎪⎩
A ∆Q+R0ωℓ2

(τin, τout) δℓ1ℓ2 δm1m2

+A
∆Q+R0ωℓ2
∆Q+R0ωℓ1

(τin, τout ∣ τ) (d − 1)(d − 2)Ωd
R0
√

ωℓ2 ωℓ1

2d∆0

⎡⎢⎢⎢⎣
Y∗ℓ2m2

(n)Yℓ1m1
(n)−

∂iY∗ℓ2m2
(n) ∂iYℓ1m1

(n)
R2

0(d − 1)ωℓ2 ωℓ1

⎤⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
,

(3.95)

⟨O−Qℓ2m2
Ji(τ, n)OQℓ1m1

⟩ = i
Q(d − 2)

2∆0Rd−1
0 d

A
∆Q+R0ωℓ2
∆Q+R0ωℓ1

(τin, τout ∣ τ) [
√

ωℓ2

ωℓ1

Y∗ℓ2m2
(n) ∂iYℓ1m1

(n)− (1↔ 2)∗],

(3.96)

and we introduced two new notations

A ∆Q+R0ωℓ2
(τin, τout) ∶= A (τin, τout) e−(τout−τin)ωℓ2 , (3.97)

A ∆2
∆1
(τin, τout ∣ τ) ∶= e−∆2(τout−τ)/R0 e−∆1(τ−τin)/R0 , (3.98)

that generalise the quantity A (τin, τout) = A ∆(τin, τout) that we originally defined in equation (2.294).
We also have to mention that the case of ℓi = 0 in equation (3.95) was originally computed in [20].

By integrating Jτ over the spatial hypersurface Sd−1 we derive the charge, and therefore we can use
the integral version of the Ward identity of equation (3.93), where we integrate the three-point function
of equation (3.95) over the d − 1-sphere to derive

∫

Sd−1

dS(n) ⟨O−Qℓ2m2
Jτ(τ, n)OQℓ1m1

⟩ = −iQA ∆Q+R0ωℓ2
(τin, τout) δℓ1ℓ2 δm1m2 , (3.99)

which is precisely what was predicted by the Ward identity, giving us a nice consistency check.
At this point, we want to analyse the structure of the correlation function with the Jτ insertion.

From equation (3.91a) it is easy to notice that the current is a combination of a homogeneous classical
part that is also time independent and quantum fluctuations.

8For ℓ = 1 these are not primaries but descendants, so we do not consider this special case.



72

From the first line of equation (3.91a) which corresponds to the classical contribution, we observe
that it is actually proportional to the two point function of two spinning primaries

⟨ Qℓ2m2
∣ Qℓ1m1

⟩ = A ∆Q+R0ωℓ2
(τin, τout) δℓ1ℓ2 δm1m2 ,

that we have seen in equation (3.73).
On the other hand, the quantum part is not homogeneous and being on the sphere it can be written

in terms of spherical harmonics, but should have the same tensor structure as the left-hand side of
equation (3.91a). Furthermore, since the Ward identities hold at all orders, the integral of this part over
the sphere should vanish, which was independently confirmed in equation (3.99).

In general, any physical observable can be split into a classical part and quantum fluctuations.
Therefore, in this spirit, if we analyse the correlation function with the Ji insertion, we see that due
to equation (3.91b), there is no classical contribution and the only thing that remains is the piece of
the inhomogeneous quantum fluctuations. For ℓi = 0 the ground state is ∣Q⟩ and the Ward identities
demand that to every order

⟨Q∣Ji∣Q⟩ = 0. (3.100)

From equation (3.95) we can also read off the OPE coefficient

CO−Q
ℓm JτOQ

ℓm
=
⟨O−Qℓm Jτ(τ, n)OQℓm⟩
⟨O−Qℓm OQℓm⟩

= −i
Q

ΩdRd−1
0

. (3.101)

We can generalise our computation to higher-phonon states, e.g. for two phonons we get

⟨ Q

(ℓ2m2)⊗(ℓ
′

2m′2)
∣Jτ(τ, n)∣ Q

(ℓ1m1)⊗(ℓ
′

1m′1)
⟩ = −i

Q
ΩdRd−1

0
A ∆Q+R0ωℓ2

+R0ωℓ′2
(τin, τout)

×
⎧⎪⎪⎨⎪⎪⎩
(δℓ1ℓ2 δm1m2 δℓ′1ℓ

′

2
δm′1m′2

+ δℓ1ℓ
′

2
δm1m′2

δℓ′1ℓ2
δm′1m2

)

+Ωd
(d − 2)(d − 1)

2d ∆0

⎡⎢⎢⎢⎢⎣

R0
√

ωℓ′2
ωℓ′1

e
(τ−τin)(ωℓ′1

−ωℓ′2
)

⎡⎢⎢⎢⎢⎣
Yℓ′1m′1

(n)Y∗ℓ′2m′2
(n)−

∂iYℓ′1m′1
(n)∂iY∗ℓ′2m′2

(n)

R2
0(d − 1)ωℓ′2

ωℓ′1

⎤⎥⎥⎥⎥⎦
δℓ2ℓ1

δm2m1

+
R0
√

ωℓ′2
ωℓ1

e
(τ−τin)(ωℓ1

−ωℓ′2
)

⎡⎢⎢⎢⎢⎣
Yℓ1m1

(n)Y∗ℓ′2m′2
(n)−

∂iYℓ1m1
(n)∂iY∗ℓ′2m′2

(n)

R2
0(d − 1)ωℓ′2

ωℓ1

⎤⎥⎥⎥⎥⎦
δℓ2ℓ

′

1
δm2m′1

+
R0
√

ωℓ2 ωℓ′1

e
(τ−τin)(ωℓ′1

−ωℓ2
)

⎡⎢⎢⎢⎢⎣
Yℓ′1m′1

(n)Y∗ℓ2m2
(n)−

∂iYℓ′1m′1
(n)∂iY∗ℓ2m2

(n)
R2

0(d − 1)ωℓ2 ωℓ′1

⎤⎥⎥⎥⎥⎦
δℓ′2ℓ1

δm′2m1

+
R0
√

ωℓ2 ωℓ1

e(τ−τin)(ωℓ1
−ωℓ2

)

⎡⎢⎢⎢⎣
Yℓ1m1

(n)Y∗ℓ2m2
(n)−

∂iYℓ1m1
(n)∂iY∗ℓ2m2

(n)
R2

0(d − 1)ωℓ2 ωℓ1

⎤⎥⎥⎥⎦
δℓ′2ℓ

′

1
δm′2m′1

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
. (3.102)

In all our computations thus far we neglected any linear terms of π that appear in equation (3.91).
Although this poses no problem for our computations, in the special case that we want to compute
correlation functions where the two spinning primaries have a different number of phonons this term
cannot be omitted as can be seen in the following example of correlation functions with an insertion of
the current sandwiched between a scalar and a one-phonon primary operators

⟨O−Q∣Jτ(τ, n)∣ Qℓm ⟩ = −
Q(d − 1)
ΩdRd−1

0

√
Ωd
2d

R0ωℓ

∆0
A

∆Q
∆Q+R0ωℓ

(τin, τout ∣ τ)Yℓm(n), (3.103)

⟨O−Q∣Ji(τ, n)∣ Qℓm ⟩ =
Q

ΩdRd−1
0

√
R0 Ωd

2d ∆0R0ωℓ
A

∆Q
∆Q+R0ωℓ

(τin, τout ∣ τ) ∂iYℓm(n). (3.104)

Similar relations hold true for every correlation function with a J or T insertion. From this point on,
we will not reference this special case again.
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3.3.3 ⟨
Q

ℓ2m2
∣JJ ∣

Q
ℓ1m1
⟩ correlators

The next correlation functions that we will examine are four-point functions between two spinning
primary operators OQℓm that are inserted at τin and τout and two currents Jµ inserted at times τ > τ′ so
that τout > τ > τ′ > τin.
We start by inserting two Jτ as

⟨O−Qℓ2m2
Jτ(τ, n)Jτ(τ′, n′)OQℓ1m1

⟩ = −A ∆Q+R0ωℓ2
(τin, τout)

Q2

Ω2
dR2d−2

0
δℓ1ℓ2 δm1m2

×
⎧⎪⎪⎨⎪⎪⎩

1+ (d − 1)2
2d ∆1

∑
ℓ

e−∣τ−τ′∣ωℓR0ωℓ
(d + 2ℓ − 2)
(d − 2) C

d
2−1
ℓ (n ⋅ n′)

⎫⎪⎪⎬⎪⎪⎭

+
⎧⎪⎪⎨⎪⎪⎩

A
∆Q+R0ωℓ2
∆Q+R0ωℓ1

(τin, τout ∣ τ)
Q2(d − 1)2

2ΩdR2d−2
0 d

R0
√

ωℓ1
ωℓ2

∆0

⎛
⎝
−

Y∗ℓ2m2
(n)Yℓ1m1

(n′)

e−(τ−τ′)ωℓ1

+ (d − 2)
(d − 1)

⎡⎢⎢⎢⎣

∂iYℓ1m1
(n) ∂iY∗ℓ2m2

(n)
(d − 1)R2

0ωℓ1
ωℓ2

−Yℓ1m1
(n)Y∗ℓ2m2

(n)
⎤⎥⎥⎥⎦
⎞
⎠
+ ((τ, n)↔ (τ′, n′))

⎫⎪⎪⎬⎪⎪⎭
, (3.105)

and in the above expression, we have introduced the Gegenbauer polynomials Cd/2−1
ℓ , which are defined

as

Cd/2−1
ℓ (n ⋅ n′) = (d − 2)Ωd

d + 2ℓ − 2
∑
m

Y∗ℓm(n)Yℓm(n′). (3.106)

The case of ℓi = 0 was initially computed in [24].
Again, a nice consistency check can be provided employing the Ward identity of equation (3.93).

If we integrate the four-point function over the spatial hypersurface at the fixed temporal slice (τ, n)
we should recover the charge Q times an expression that does not depend on τ. Indeed, doing the
computation, we find that

∫

Sd−1

dS(n) ⟨O−Qℓ2m2
Jτ(τ, n)Jτ(τ′, n′)OQℓ1m1

⟩ = −iQ ⟨O−Qℓ2m2
Jτ(τ′, n′)OQℓ1m1

⟩ , (3.107)

where we recover the expression of equation (3.95).
The rest of the components of the ⟨ Qℓ2m2

∣JJ ∣ Qℓ1m1
⟩ four-point function are

⟨O−Qℓ2m2
Jτ(τ, n)Ji(τ′, n′)OQℓ1m1

⟩ = 0, (3.108)

⟨O−Qℓ2m2
Ji(τ, n)Jj(τ′, n′)OQℓ1m1

⟩ = A
∆Q+R0ωℓ2
∆Q+R0ωℓ1

(τin, τout ∣ τ)
Q2

2dΩdR2d−2
0 ∆0

×
⎡⎢⎢⎢⎢⎣

∂i∂
′
j∑

ℓ

e−∣τ−τ′∣ωℓ

R0ωℓ

(d + 2ℓ − 2)
(d − 2)Ωd

C
d
2−1
ℓ (n ⋅ n′) δℓ2ℓ1

δm2m1

+
∂jY∗ℓ2m2

(n′) ∂iYℓ1m1
(n)

e(τ−τ′)ωℓ2 R0
√

ωℓ1
ωℓ2

+
∂iY∗ℓ2m2

(n) ∂jYℓ1m1
(n′)

e−(τ−τ′)ωℓ1 R0
√

ωℓ1
ωℓ2

⎤⎥⎥⎥⎥⎦
.

(3.109)

We notice that for the four-point function with two insertions of the spatial current Ji the leading order
classical contribution vanishes, but since this correlation function is not protected by the symmetries,
there are sub-leading terms that appear.
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For ℓi = 0 the aforementioned correlation functions simplify significantly,

⟨O−QJτ(τ, n)Jτ(τ′, n′)OQ⟩ = −A (τin, τout)
Q

(ΩdRd−1
0 )2

× [Q+ (d − 1)
2µ
∑

ℓ

ωℓe
−∣τ−τ′∣ωℓ

(d + 2ℓ − 2)
(d − 2) C

d
2−1
ℓ (n ⋅ n′)],

(3.110)

⟨O−QJi(τ, n)Jj(τ′, n′)OQ⟩ = QA (τin, τout)
2µΩd(d − 1)R2d−1

0
∂i∂
′
j∑

ℓ

(d + 2ℓ − 2)C
d
2−1
ℓ (n ⋅ n′)

(d − 2)Ωdωℓe∣τ−τ′∣ωℓ
, (3.111)

⟨O−QJτ(τ, n)Ji(τ′, n′)OQ⟩ = 0. (3.112)

Homogeneity of the ground state of two scalar primaries OQ ensures that the ⟨Q∣JiJj∣Q⟩ correlator
vanishes exactly due to rotational invariance. Moreover, these correlators satisfy equation (3.93) as
expected.

3.3.4 ⟨
Q

ℓ2m2
∣T∣ Qℓ1m1

⟩ correlators

Finally, we compute the three-point correlation functions between two spinning primary operators OQℓm
inserted at τin, τout and the stress-energy tensor T, inserted at a time τin < τ < τout.

We start by examining the Tττ component

⟨O−Qℓ2m2
Tττ(τ, n)OQℓ1m1

⟩ = −A
∆Q+R0ωℓ2
∆Q+R0ωℓ1

(τin, τout ∣ τ)
1

ΩdRd
0

⎧⎪⎪⎨⎪⎪⎩
(∆0 +∆1)δℓ2ℓ1

δm2m1

+ Ωd
2

R0
√

ωℓ1
ωℓ2 [(d − 1)Y∗ℓ2m2

(n)Yℓ1m1
(n)− (d − 3)

(d − 1)
∂iY∗ℓ2m2

(n) ∂iYℓ1m1
(n)

R2
0ωℓ1

ωℓ2

]
⎫⎪⎪⎬⎪⎪⎭

. (3.113)

It is useful to note that at the limit of infinite separation, i.e. τout, τin → ±∞ and when ℓ1 = ℓ2 so that
the scaling dimension of the two spinning primaries is the same, the correlation function is completely
independent of τ as in equation (2.309).

Moreover, integrating equation (3.113) over the spatial hypersurface Sd−1 should satisfy the Ward
identity of equation (3.94) and be τ independent

∫

Sd−1

dS(n) ⟨O−Qℓ2m2
Tττ(τ, n)OQℓ1m1

⟩ = −A ∆Q+R0ωℓ
(τin, τout)

1
R0
(∆0 +∆1 + R0ωℓ2

) δℓ1ℓ2 δm1m2 . (3.114)

The rest of the components of the correlation function ⟨ Qℓ2m2
∣T∣ Qℓ1m1

⟩ are

⟨O−Qℓ2m2
Tτi(τ, n)OQℓ1m1

⟩ = A
∆Q+R0ωℓ2
∆Q+R0ωℓ1

(τin, τout ∣ τ)
1

2Rd
0
[
√

ωℓ2

ωℓ1

Y∗ℓ2m2
(n) ∂iYℓ1m1

(n)− (1↔ 2)∗], (3.115)

⟨O−Qℓ2m2
Tij(τ, n)OQℓ1m1

⟩ = A
∆Q+R0ωℓ2
∆Q+R0ωℓ1

(τin, τout ∣ τ)
1

(d − 1)ΩdRd
0

×
⎧⎪⎪⎨⎪⎪⎩

hij

⎡⎢⎢⎢⎢⎣
(∆0 +∆1)δℓ2ℓ1

δm2m1 +
ΩdR0

√
ωℓ1

ωℓ2

2
×
⎛
⎝
(d − 1)Y∗ℓ2m2

(n)Yℓ1m1
(n)−

∂iY∗ℓ2m2
(n) ∂iYℓ1m1

(n)
R2

0ωℓ1
ωℓ2

⎞
⎠

⎤⎥⎥⎥⎥⎦

+ R0
√

ωℓ1
ωℓ2 Ωd

∂(iY∗ℓ2m2
(n) ∂j)Yℓ1m1

(n)
R2

0ωℓ1
ωℓ2

⎫⎪⎪⎬⎪⎪⎭
.

(3.116)

An important observation and a consistency check to our results is the following: from equation (2.278)
we know that the trace of the energy-momentum tensor is zero for a theory with conformal invariance.
Therefore, computing the three-point correlation function with an insertion of the trace of T = Tττ +hijTij
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should be zero independent of the boundary states. That being the case

⟨O−Qℓ2m2
(Tττ(τ, n)+ hijTij(τ, n))OQℓ1m1

⟩ = ⟨O−Qℓ2m2
Tττ(τ, n)OQℓ1m1

⟩+ ⟨O−Qℓ2m2
hijTij(τ, n)OQℓ1m1

⟩ . (3.117)

Since we have already computed ⟨O−Qℓ2m2
Tττ(τ, n)OQℓ1m1

⟩ we just have to compute the correlator

⟨O−Qℓ2m2
hijTij(τ, n)OQℓ1m1

⟩ = A
∆Q+R0ωℓ2
∆Q+R0ωℓ1

(τin, τout ∣ τ)
1

(d − 1)ΩdRd
0

⎧⎪⎪⎨⎪⎪⎩
(d − 1) (∆0 +∆1) δℓ2ℓ1

δm2m1

+
ΩdR0

√
ωℓ1

ωℓ2

2
((d − 1)2 Y∗ℓ2m2

(n)Yℓ1m1
(n)− (d − 3)

∂iY∗ℓ2m2
(n) ∂iYℓ1m1

(n)
R2

0ωℓ1
ωℓ2

)
⎫⎪⎪⎬⎪⎪⎭

, (3.118)

therefore, adding together the results of equations (3.113) and (3.118) we see that they cancel each other
out as predicted.
In the case that ℓi = 0 the above correlators simplify as

⟨O−QTττ(τ, n)OQ⟩ = −A (τin, τout)
∆0 +∆1

ΩdRd
0

, (3.119)

⟨O−QTτi(τ, n)OQ⟩ = 0, (3.120)

⟨O−QTij(τ, n)OQ⟩ = A (τin, τout)
(d − 1)

∆0 +∆1

ΩdRd
0

hij. (3.121)

The correlation function with an insertion of Tτi has to be zero due to the rotational symmetry of the
scalar ground state, which was already obvious from the fact that equation (3.115) did not contain a
leading-order contribution. Furthermore, due to the homogeneity of the ground state, the three-point
function with a single insertion of Tij has to be analogous to the metric hij of the spatial hypersurface,
which in this case is the Sd−1 sphere.

Finally, the four-point correlation function ⟨ Qℓ2m2
∣TT∣ Qℓ1m1

⟩ has in total six components that corre-

spond to insertions of the energy-momentum tensors at τ > τ′ between spinning primaries OQℓm at
τout, τin such that τout > τ > τ′ > τin. Moreover, there are six components that belong to the correlation
function ⟨ Qℓ2m2

∣TJ ∣ Qℓ1m1
⟩ with a single insertion of the conserved current Jµ and one insertion of the

energy-momentum tensor T at times τ > τ′.
Since these results are very lengthy and disrupt the flow of the thesis and at the same time they do

not pose any additional computational challenge, they are moved to Appendix B.4.

3.4 Heavy–light–heavy correlators

In this final part of the chapter, we are interested in computing three and four-point correlation func-
tions of spinning charged primary operators OQℓm with the insertion of “light” charged spinning primary
operators Oq with q≪ Q in the middle. As long as the inserted operators have q≪ Q, they do not affect
the validity of the large-charge saddle point that we examined in section 3.2 but rather act as probes
around it.
Therefore, to complete our study of large-charge spinning correlators, we will shortly review the pro-
cedure of their computation that has originally appeared in [20, 24, 38].

Laying down the groundwork, we start by noticing that in the validity of the EFT every operator
should be constructed with regard to the Goldstone field χ [20] by matching their quantum numbers.
Therefore, assuming that the operator at hand has a small charge q, a scaling dimension δ and trans-
forms in some representation of spin ℓ it takes the form

O
q;δ
ℓm = c(1)

δ,ℓ,q Uν1 ...νℓ
ℓm ∂ν1 χ . . . ∂νℓχ(∂χ)δ−ℓeiqχ + . . . , (3.122)

where with c(1)
δ,ℓ,q we denote a Wilsonian coefficient that does not depend on the charge, and cannot

be determined in the scope of the EFT. Moreover, Uν1 ...νℓ
ℓm represents the change from Cartesian to

spherical basis and is properly defined in equation (A.154).
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For the case that ℓ = 0 we get
Oq;δ = c(1)δ,q (∂χ)δeiqχ + . . . , (3.123)

where we use the shorthand notation

Oq;δ = O
q;δ
00 , c(1)δ,q = c(1)δ,0,q, (3.124)

3.4.1 The ⟨O−Q−q
ℓ2m2

Oq;δOQℓ1m1
⟩ correlator

We start by computing the three-point function

⟨O−Q−q
ℓ2m2

(τout)Oq;δ(τc, nc)OQℓ1m1
(τin)⟩ , (3.125)

with a light scalar primary inserted at τc. The hermitian conjugation on the cylinder is similar to
equation (3.69) and reads

[Oq;δ(τ, n)]
†
= O−q;δ(−τ, n). (3.126)

From the general form of the three-point functions and the symmetries of the system the classical
contribution should look like

⟨O−Q−q
ℓ2m2

(τout)Oq;δ(τc, nc)OQℓ1m1
(τin)⟩ = Cδ

Q+q,q,Qδℓ1ℓ2 δm1m2 e−ωℓ2
(τout−τin)e−∆Q+q

(τout−τc)
R0 e−∆Q

(τc−τout)
R0 ,

(3.127)
which is in accord with the form of equation (A.161). Using dimensional analysis, we see that a factor
of Rδ

0 has to be extracted from the OPE coefficient, since it is originating in the insertion of Oq;δ so that

R−δ
0 C̃δ

Q+q,q,Q = Cδ
Q+q,q,Q. (3.128)

Our goal is to replicate the result of equation (3.127) in the semiclassical path-integral framework.
Inserting the small charge q operator in the system is similar to adding a source term in the action

which may affect the saddle-point solution and changes the equation of motion to

∇µJ µ = ∇µ
∂S

∂(∂µχ)
= iqδ(τ − τc)δ(n − nc)√g

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

J µ(τin = −∞, n1) =
δ

µ
0Q

Rd−1
0 Ωd

J µ(τout = +∞, n2) =
δ

µ
0 (Q+ q)
Rd−1

0 Ωd

. (3.129)

In the usual manner, when we have an inhomogeneous partial differential equation (PDE) with a source,
we can write the solution as a combination of the homogeneous solution of the PDE where the source
is zero and a particular solution which is identical to the Green’s function.

The new boundary conditions change the form of the l = 0 term but for small enough q to leading
order the solution remains the same as for the homogeneous case, up to the additional particular
solution to account for the inhomogeneity,

χ(τ, n) = −iµτ +π0 +π(τ, n)+ qp(τ, n). (3.130)

The particular solution p has to satisfy the inhomogeneous equation

−c1µd−2d(d − 1)(∂2
τ+

1
(d − 1) △Sd−1)p(τ, n) = iqδ(τ − τc)δ(n − nc)√g

. (3.131)

and has the solution

p(τ, n) = − i q
c1d(d − 1)(µR0)d−2

⎛
⎜
⎝
− ∣τ − τc∣

2R0Ωd
θ(τ − τc)+

∞

∑

ℓ=1
∑

m
e−ωℓ ∣τ−τc ∣Yℓm(nc)∗Yℓm(n)

2R0ωℓ

⎞
⎟
⎠

, (3.132)
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where θ(τ − τc) is required to satisfy the different boundaries at τin,out = ∓∞ and also

µ ∝ Q
1

(d−1) . (3.133)

This is indeed identical to the propagator in equation (3.77).
At τin → −∞ and τout → ∞ the source only affects the overall normalisation of the fields, so they

retain the form of the unperturbed case in equations (3.22) and (3.23). Thus, the reference states are

lim
τout→∞

⟨0∣O−Q−q
ℓ2m2

(τ, n) ∶= ⟨Q+q
ℓ2m2
∣ = ⟨Q+ q∣ aℓ2m2 , (3.134)

lim
τin→−∞

OQℓ1m1
(τ, n) ∣0⟩ ∶= ∣ Qℓ1m1

⟩ = a†
ℓ1m1
∣Q⟩ . (3.135)

Using the above results we can compute the correlation function to leading order as

⟨O−Q−q
ℓ2m2

Oq;δ(τc, nc)OQℓ1m1
⟩ = ⟨Q+ q∣aℓ2m2O

q;δ(τc, nc)a†
ℓ1m1
∣Q⟩

= c(1)δ,q ⟨Q+ q∣aℓ2m2(∂χ)δeiqχ(τc ,nc)a†
ℓ1m1
∣Q⟩

= c(1)δ,q µδ ⟨Q+ q∣aℓ2m2 eiqχ(τc ,nc)a†
ℓ1m1
∣Q⟩+ . . .

= c(1)δ,q µδeµqτc ⟨Q+ q∣aℓ2m2 eiqπ(τc ,nc)+iq2 p(τc ,nc)a†
ℓ1m1
∣Q⟩+ . . . ,

(3.136)

where in the first line we used equation (3.134), in the second line we used the form of the light scalar
primary of equation (3.123) and in the last line we used equation (3.130). The leading term can further
be expanded in powers of q≪ 1 so that

⟨O−Q−q
ℓ2m2

Oq;δ(τc, nc)OQℓ1m1
⟩ =

c(1)δ,q µδ

eµq(τout−τc)
{ ⟨Q∣aℓ2m2 a†

ℓ1m2
∣Q⟩+O(q)}

= (R0µ)δ
c(1)δ,q

Rδ
0

δℓ2ℓ1
δm2m1 e−∆Q+q

(τout−τc)
R0

−∆Q
(τc−τin)

R0 e−(τout−τin)ωℓ2

=
c(1)δ,q (R0µ)δ

Rδ
0

δℓ2ℓ1
δm2m1 A

∆Q+q +ωℓ

∆Q +ωℓ
(τin, τout ∣ τc)+ . . . . (3.137)

The above result can be generalised if we instead insert a light spinning operator in some representation
of spin ℓ as

⟨Q+ q∣aℓ2m2O
q;δ
ℓm(τc, nc)a†

ℓ1m1
∣Q⟩ =

c(1)
δ,ℓ,q(R0µ)δ

Rδ
0

⟨ℓ2m2; ℓ, m∣ℓ1m1⟩A
∆Q+q+ωℓ2
∆Q+ωℓ1

(τin, τout ∣ τc)+ . . . , (3.138)

and we denote with ⟨ℓ2m2; ℓ, m∣ℓ1m1⟩ the relevant Clebsch-Gordan coefficient. Quantum corrections to
equations (3.137) and (3.138) have been computed in [38].

Taking the special case that ℓi = 0, the light operator O
q;∆
ℓm is sandwiched between two large-charge

scalar primaries and since the overall charge should be conserved, we deduce that one of the scalar
operators has charge −Q− q. Moreover, due to rotational invariance of the homogeneous ground state,
the only light operators that we can insert with no-trivial results are for ℓ = 0 as

⟨Q+ q∣Oq;δ
ℓm(τc, nc)∣Q⟩∝ δℓ,0 µδe−∆Q

(τout−τin)
R0 eµq(τc−τout) = µδ A

∆Q+q
∆Q
(τin, τout ∣ τc) δℓ0 . (3.139)

The above correlation function was initially derived in [20, 23]. The OPE coefficient has also been
computed to be

C̃δ
Q+q,q,Q = c(1)δ,q (R0µ)δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−

q2

2 ∑
ℓ,m

Y∗ℓm(nc)Yℓm(nc)

R0ωℓ

c1d(d − 1)(R0µ)d−2 + . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ . . . . (3.140)
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In the case of d = 3 the dominant correction is the first one, since it is solely suppressed by µ ∼
√
Q and

it can be computed via zeta function regularization utilising that

∑

ℓ,m

Y∗ℓm(nc)Yℓm(nc)
ωℓ

= 1
Ωd
∑

ℓ

Mℓ

ωℓ
=
√

d − 1R0ζSd−1(1/2)
Ωd

, (3.141)

where Mℓ is the degeneracy of ωℓ and we used the results of Appendix B.1. So, at d = 3 the OPE
coefficient of equation (3.140) are found to be [23]

C̃δ
Q+q,q,Q ∝ (Q)

δ
2 [1+ 0.0164523× q2

√
12π√

c1Q
+ . . .]+ . . . . (3.142)

3.4.2 The ⟨O−Qℓ2m2
O−q;δOq;δOQℓ1m1

⟩ correlator

Finally, we generalise the result of section 3.4.1 by computing the four-point function

⟨O−Q−qd−qc
ℓ2m2

(τ2)Oqd ;δd(τd, nd)Oqc ;δc(τc, nc)OQℓ1m1
(τ1)⟩ , (3.143)

where qd ∼ qc ≪ Q. These form of operators were initially presented in [38].
The new eom with the double scalar insertions are rather similar to the equation of motion of the

three-point correlation function with just one light scalar insertion

∇µJ µ = iqdδ(τ − τd)δ(n − nd)√g
+ iqcδ(τ − τc)δ(n − nc)√g

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

J µ(∞, n) = δ
µ
0 (Q+qd+qc)

Rd−1
0 Ω

,

J µ(−∞, n) = δ
µ
0Q

Rd−1
0 Ω

.
(3.144)

At leading order the four-point function reads

⟨O−Q−qd−qc
ℓ2m2

Oqd ;δd Oqc ;δc OQℓ1m1
⟩ =

c(1)δd ,qd
c(1)δc ,qc

µ−δd−δc eµ(qd+qc)τout
⟨Q∣aℓ2m2 eiqdχeiqcχa†

ℓ2m2
∣Q⟩+ . . .

=
c(1)δd ,qd

c(1)δc ,qc

µ−δd−δc
e−µqd(τout−τd)−µqc(τout−τc) ⟨Q∣aℓ2m2 e−

(τout−τin)
R0

Da†
ℓ2m2
∣Q⟩+ . . .

= (R0µ)δd+δc
c(1)δd ,qd

c(1)δc ,qc

Rδd+δc
0

δℓ2ℓ1
δm2m1 e−(τout−τin)ωℓ2

× e−∆Q+qd+qc
(τout−τc)

R0
−∆Q+qc

(τd−τc)
R0

−∆Q
(τc−τin)

R0 + . . .

(3.145)

For the special case that q = qc = −qd the correlation function becomes

⟨O−Qℓ2m2
O−q;δ Oq;δ OQℓ1m1

⟩ = (R0µ)2δ
∣c(1)δ,q ∣

2

R2δ
0

e−∆Q
(τout−τin)

R0
−q

∂∆
Q

∂Q

(τd−τc)
R0

−(τout−τin)ωℓ2 δℓ2ℓ1
δm2m1 + . . . (3.146)

Also, next-to-leading order corrections of the above correlation function have appeared in [38].

As a final remark for this chapter, the analysis that we performed holds true for the case of the
O(2) model in d spacetime dimensions at large fixed charge, or more generally for a CFT that has the
homogeneous O(2) sector as a part of a larger symmetry group like the O(N). But once we want to
move away from the homogeneous solution and study the full non-Abelian sector, things get more
involved. The first thing that we notice is that the fixing parameter should not be just a set of charges,
but a whole representation. For example, studying the homogeneous sector [30] of O(2) corresponds
to studying the completely symmetric representation. But other representations beyond the completely
symmetric can be reached in one of the following ways:

1. Exciting the type II Goldstones [164, 177, 178] that we mentioned in section 2.3.1 and are charged
under the global symmetry.
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2. Start from the beginning from an inhomogeneous ground state, that corresponds to a separate
saddle point.

It has been theorised that both approaches should produce the same results in the correct limit, but
each of them has its own technical challenges. To start with, the type II Goldstones come in at order
1/µ [30], which also explains why they played no part in the computations of this chapter, therefore
to capture their contribution, there is the requirement that more sub-leading terms shall be added
to the EFT [21]. On the other hand, besides the relatively easy case of the O(4) model, there is no
other known inhomogeneous saddle in the literature, and even there an analytic expression is only
accessible in a very special limit [27]. Finally, inhomogeneous ground states break the SO(d) rotational
invariance that has proven so crucial in our analysis, therefore the computation of correlators around
the inhomogeneous saddle for both tree-level and quantum fluctuations will be much more technically
involved.
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Resurgence and the O(N) vector model

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it
doesn’t agree with experiment, it’s wrong.”

Richard P. Feynman

One of the most impressive results of the early days work in the large-charge expansion is that it
seems to work for small charges too, a result that is quite astounding as it is. Generally, we expect
that the semiclassical expansion should work only for systems that exhibit numerous DOF. This detail
was initially discovered during the comparison of the results for the conformal dimension ∆Q of the
lowest charged operator OQ in the large charge expansion and the lattice simulations for the cases of
the O(2) model [26] and then again for the O(4) model [27]. It was pointed out that considering only a
minimal number of terms in the effective action was enough to replicate the results of the lattice with
high precision.

From the viewpoint of the EFT, it cannot be explained why the results in the large-charge limit can
be extrapolated to the small charge regime. Nevertheless, by adding another controlling parameter, e.g.
large N, to the theory beyond the large charge Q, we can move beyond the validity of the large-charge
EFT and try to explain this behaviour. A neat example is the O(2N) vector model at large charge and
large N [31, 33]. When we find ourselves in the double-scaling limit defined as Q → ∞, N → ∞, with
their ratio Q/(2N) = Q being constant, we are in a position to make exact predictions at leading order
in N for every value of the charge Q.

Therefore, based on the work of Alvarez-Gaume et al. [31], in this chapter we go a step further
and demonstrate that the LCE studied in the double-scaling regime is, in fact, asymptotic, and this
characteristic is connected to the asymptotic nature of the Seeley–DeWitt expansion [52, 179] of the heat-
kernel trace and the associated zeta function on the two-sphere S2 [53, 54]. Generically, it was asserted
by Dyson [55] that asymptotic series are usually encountered in perturbative solutions of quantum
mechanical problems. This characteristic implies the existence of non-perturbative phenomena in the
underlying theory, and the contemporary approach to the topic is called resurgence asymptotics or,
for simplicity, resurgence. Present day reviews include [180, 181] and the interested reader is referred
there for a list of applications both in physics and in mathematics, and also for further references.

The plan of this chapter is as follows: in section 4.1, we start by reviewing the O(2N) vector model
in d = 3 spacetime dimensions at the WF fixed point, and then we move on to study its asymptotic
behaviour. To do so, we employ the resurgent methodology, and we illustrate which non-perturbative
corrections appear when we go to the double-scaling limit of the LCE. More specifically, in section 4.1.2
we study the system on the torus T2 and in section 4.1.3 we repeat our analysis for the sphere S2, writing
our results in terms of both the usual perturbative series and the newly found exponentially suppressed
non-perturbative contributions. Then in section 4.2, we start in section 4.2.1 by reformulating our
analysis and developing a geometrical picture where we reforge the heat-kernel in the form of a path
integral of a quantum mechanical particle moving along closed geodesics. In section 4.2.2 we study
again the case of the torus, while in section 4.2.3 we discuss the sphere and interpret the previously
found exponential contributions in the form of worldline instantons of a particle that has a mass which
is equal to the chemical potential µ and is moving along the aforementioned geodesics. Therefore, in
section 4.3, we put together the outcome of the two prior sections, and we derive the precise form
of the grand potential that is suitable for every charge value Q. Then we can extrapolate our large
charge results to the small charge regime, to find out that they match with great accuracy, a fact that is
also numerically substantiated. Finally, in section 4.4, we conjecture that the geometrical interpretation
of the wordline geodesics is robust enough to work for the generic case of finite N, which is beyond



82

the double-scaling limit. This fact lends credibility towards the general validity of our analysis. By
making the assumption that the qualitative characteristics of the geometrical interpretation also carry
on to finite N, we can utilise our knowledge of the effects that originate from the leading exponential
terms to obtain some constraints on the form of the perturbative expansion, although in finite N the
Wilsonian coefficients are not reachable within the validity of the EFT. In the end, we find out that only
a few number of terms are more than enough to fully describe the theory and match the small charge
analysis with an excellent precision as estimated by the lattice computations.

4.1 Asymptotics at large charge

Our goal is to apply the resurgence methodology to study the asymptotics of the O(2N) vector model
in the limit that both the charge Q and N are large, which we call the double-scaling limit.

More specifically, after a brief introduction to the model in an abstract compact pseudo-Riemannian
manifold, we examine the system for the case of the torus, S1 ×T2 and the sphere, S1 × S2 writing our
results in terms of both the usual perturbation series but also the non-perturbative corrections which
are exponentially suppressed.

4.1.1 O(2N) model
We start our analysis by considering the Landau–Ginzburg O(2N) model with real scalar fields in
d = 3 spacetime dimensions on the Euclidean manifold (M = R×Σ), where Σ is a compact pseudo-
Riemannian two-dimensional surface of volume V. The generating functional 1 Z at J = 0 is

Z[J = 0] ∶= Z = ∫ Dϕi exp (−S[ϕi]), (4.1)

where the action of the model up to [m] = 3 is given by

S[ϕi] =
2N

∑

i=1
∫ dτ dΣ [1

2
gµν ∂µϕi ∂νϕi +

r
2

ϕiϕi +
u
4
(ϕiϕi)2 +

v
8
(ϕiϕi)3]. (4.2)

The coupling r contains the conformal coupling ξ, hence the action is Weyl invariant at the limit that
u = v = 0. In the spirit of equation (2.20) we pair the fields in complex scalars as

φi =
1√
2
(ϕi + iϕN+i) , φ∗i =

1√
2
(ϕi − iϕN+i) . (4.3)

We note that the O(2N) symmetry is not evident any more, while a U(N) ⊂ O(2N) symmetry emerges.
In terms of the complex scalar fields, the above action reads

S[φi] =
N

∑

i=1
∫ dτ dΣ [gµν ∂µ φ∗i ∂ν φi + rφ∗i φi +

u
2
(φ∗i φi)

2 + v
4
(φ∗i φi)

3]. (4.4)

At this point we introduce two new fields [14], a Lagrange multiplier λ and an auxiliary field ρ and we
impose the constraint

ρ = φ∗i φi, (4.5)

by the following integral over the Lagrange multiplier λ using the identity

1 = ∫ dρ δ(φ∗i φi − ρ) = 1
2πi ∫ dρ dλ exp (λ(φ∗i φi − ρ)), (4.6)

where we note that in the complex plane of λ the above contour integral runs parallel to the imagi-
nary axis. This transformation corresponds to a different representation [182, 183] of the generating

1Remember from equation (2.109) that the generating functional Z[J = 0] at R × Σ and the partition function Z(β) at S1 × Σ
are the same.
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functional

Z = ∫ DφiDρDλ exp (−S[φi, ρ, λ]), (4.7)

where the action is

S[φi, ρ, λ] =
N

∑

i=1
∫ dτ dΣ [gµν ∂µ φ∗i ∂ν φi + (r + λ)φ∗i φi − ρλ + uρ2

2
+ vρ

4
(φ∗i φi)

2]. (4.8)

The above-stated integral is Gaussian in ρ and we can integrate it out from the action. This leads to a
new effective 2 action

Z = ∫ DφiDλ exp (−S[φi, λ]), (4.9)

S[φi, λ] =
N

∑

i=1
∫ dτ dΣ [gµν ∂µ φ∗i ∂ν φi + (r + λ)φ∗i φi −

λ2

2u
+ v

4u
λ(φ∗φ)2]. (4.10)

The former Lagrange multiplier λ is now promoted to a real field via the above Hubbard–Stratonovich
transformation [184, 185].

If we fine-tune r to the value of the conformal coupling [32, 186], and we set v/u → 0, when u →∞
the theory flows from a free UV fixed point at u = v = 0 to a strongly coupled IR conformal point, the
Wilson-Fisher fixed point.

Large charge at large N
So at this point, we want to shortly review the results of [31] — where the interested reader is referred
to for a much more extended discussion. We start with equation (4.10) and by fine-tuning the relevant
parameters we reach the WF fixed point, where the action reads

S[φi, λ] =
N

∑

i=1
∫ dt dΣ [∂µ φ∗i ∂µ φi + (ξR + λ)φ∗i φi], (4.11)

and R is Ricci curvature scalar of Σ while ξ = 1/8 is the conformal coupling. Note that the N fields have
the same coupling to the field λ, therefore they are not independent and the symmetry of the system is
U(N) instead of U(1)N .

The Noether charges of equation (2.28) associated to the subgroup U(1)N ⊂ U(N) ⊂ O(2N) are

Q̂i = ∫ dΣJ τ
i = i∫ dΣ [φ̇∗i φi − φ∗i φ̇i], (4.12)

and act as rotations on the complex fields. Moreover, recall that our manifold Σ is compact, and
therefore the surface terms are zero.

We compactify our temporal dimension on a circle S1
β of circumference β and when β → ∞ we

recover the usual R. We want to compute the fixed-charge partition function on S1
β ×Σ which is formally

defined as

Zc(β,Qi) = Tr
⎡⎢⎢⎢⎢⎣

e−βH
N

∏

i=1
δ(Q̂i −Qi)

⎤⎥⎥⎥⎥⎦
(4.13)

=
π

∫

−π

N

∏

i=1

dθi

2π

N

∏

i=1
eiθiQi Tr

⎡⎢⎢⎢⎢⎣
e−βH

N

∏

i=1
e−iθiQ̂i

⎤⎥⎥⎥⎥⎦
. (4.14)

To get from the first to the second line, when we exponentiated the delta function we utilised the
fact that the charges commute, i.e. [Qi,Qj] = 0, ∀ i, j since they are all Abelian. Moreover, charge

2A (φ∗φ)4 term is dropped as irrelevant in the IR.
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quantisation indicates that the eigenvalues of Q̂i are integers, and hence we used a Fourier transform
on the fundamental domain θi ∈ [−π, π].

Equation (4.13) is the partition function of the canonical ensemble, while

Zgc(β, µi) = Tr
⎡⎢⎢⎢⎢⎣

e−βH
N

∏

i=1
e(µiQ̂i)β

⎤⎥⎥⎥⎥⎦µi=−iθi/β

, (4.15)

is the grand-canonical partition function with imaginary chemical potentials µi = −iθi/β.
In our case, it suffices to fix the charge that corresponds to the Cartan generator that rotates the field

φN which means that we confine ourselves to the completely symmetric representation of rank Q— for
details about the fixing of the charge for the O(2N) model the interested reader is referred to [34] and
also Section 4.1 in [21]. Therefore, we have

Zc(Q, β) = Tr [e−βHδ(Q̂−Q)]

=
π

∫

−π

dθ

2π
eiθQ Tr [e−βH−iθQ̂]. (4.16)

Given the fact that the trace above contains the current J τ that depends on the momenta, summing
over the momenta is not that trivial. To remedy that, we introduce a constant background field along
the temporal direction for the now gauged U(1) symmetry so that the trace can be written as

Tr [e−βH−iθQ̂] = ∫
PBC

DφDλ e−Sθ[φ,λ] , (4.17)

where PBC means periodic boundary conditions, i.e. φN(β, n) = φN(0, n).
The modified action Sθ reads

Sθ[φ, λ] = ∫ dτ dΣ

⎡⎢⎢⎢⎢⎢⎣

N−1

∑

i=1
∂µ φ∗i ∂µ φi +Dµ φ∗N Dµ φN + (ξR + λ)

N

∑

i=1
φ∗i φi

⎤⎥⎥⎥⎥⎥⎦
, (4.18)

with the covariant derivative Dµ, defined as

Dµ φN =
⎧⎪⎪⎨⎪⎪⎩

(∂τ+i θ
β)φN if µ = 0,

∂i φN otherwise.
(4.19)

We observe that equation (4.18) is quadratic in the N −1 fields φi and we can integrate them out to yield
an effective action for the Lagrange multiplier λ and the field φN as

Zc(Q, β) =
π

∫

−π

dθ

2π
eiθQDφNDλ e−Sθ[φN ,λ], (4.20)

where the action reads

Sθ[φN , λ] = (N − 1)Tr [log (− ∂2
τ−△+ ξR + λ)]+∫ dτ dΣ [Dµ φ∗N Dµ φN + (ξR + λ)φ∗N φN]. (4.21)

At this point it is useful to take a look at the inverse propagator for the field φN . In the usual manner
of section 2.1.2, we integrate the action by part, and we pass to Fourier space where we find that

∆−1
F =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (ω − θ
β)

2
+ p2 + (ξR + λ)

(ω − θ
β)

2
+ p2 + (ξR + λ) 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (4.22)
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The zeros of the inverse propagator det (∆−1
F ) = 0 lie at

ω2 + (
√

ξR + λ ± µ)
2
+
⎛
⎝

1± µ√
ξR + λ

⎞
⎠

p2 ∓ µ

4(ξR + λ)3/2
p4 + ⋅ ⋅ ⋅ = 0, (4.23)

where we used that the chemical potential is µ = −iθ/β. The matrix of equation (4.22) is invertible,
except for µ2 = ξR + λ where it becomes singular, and the field φN will exhibit a non-trivial zero mode.
What we see here is a manifestation of the Goldstone theorem of section 2.3.1, in the sense that a non-
zero VEV which is the zero mode indicates a SSB of the global symmetry and the existence of massless
modes in the spectrum.

Going back to equation (4.20), the path integral in the partition function localises at the saddle point
that minimises the action SQ = −iθQ+ Sθ[φN , λ] with respect to θ and the zero modes of the two fields.
Therefore, knowing that there can be zero modes, we decompose the fields into VEVs plus fluctuations

φN =
A√

2
+ u, ⟨u⟩ = 0, (4.24)

λ = µ2 − ξR + λ̂ = m2 + λ̂, ⟨λ̂⟩ = 0. (4.25)

In equation (4.25) we introduced the parameter m, which is the mass relative to the conformal Laplacian
△− ξR, while µ can be interpreted as the mass related to the Laplace–Beltrami operator △ = ∇ ⋅∇.

Adding equations (4.24) and (4.25) into equation (4.21) the action reads

Sθ = (N − 1)Tr [log (− ∂2
τ −△+ µ2 + λ̂)]+∫ dt dΣ

⎡⎢⎢⎢⎢⎣
Dµu∗Dµu + A2θ2

2β2 + (µ
2 + λ̂) ∣ A√

2
+ u∣

2⎤⎥⎥⎥⎥⎦
, (4.26)

We can perform the quadratic path integral — for which see [31] for details — in order to get an effective
action written in terms of non-local terms for the fluctuations λ̂.

Nonetheless, the saddle point equations are derived by minimising SQ = −iθQ+ Sθ at the zero of the
fluctuations λ̂ = 0. Then the action of the saddle point reads

SQ = −iθQ + (N − 1)Tr [log (− ∂2
τ −△+ µ2)]+ VβA2

2
( θ2

β2 + µ2). (4.27)

We minimise the action SQ with respect to µ, A and θ as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S
Q

∂θ = −iQ + θ
β VA2 = 0,

∂S
Q

∂µ = (N − 1) ∂
∂µ Tr [log (− ∂2

τ −△+ µ2)]+ βVA2µ = 0,

∂S
Q

∂A = Vβ( θ2

β2 + µ2)A = 0.

(4.28)

The first equation relates the charge Q with the VEV A while the second equation connects µ with
the quantum effects that appear in the functional determinant. At large charge, µ is the controlling
parameter that we will use in our asymptotic expansion. Finally, the third equation reveals that a
non-zero VEV is attainable only if θ2 = −µ2β2. We can rewrite equation (4.28) as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

µ = −iθ/β ⇐⇒ θ = iµβ,
iQ = VA2 θ

β ⇐⇒ Q = µVA2,

VAµ2 = − (N−1)
β

∂
∂µ Tr [log (− ∂2

τ −△+ µ2)] ⇐⇒ Q = − (N−1)
β

∂
∂µ Tr [log (− ∂2

τ −△+ µ2)].
(4.29)

By taking the double-scaling limit

Q→∞, N →∞,
Q

2N
= Q fixed, (4.30)
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only the first two terms of equation (4.27) dominate, and the canonical free energy of equation (2.110),
at the saddle, becomes

Fc (Q) = −
1
β

log (Z(Q)) = − 1
β

log [exp{−(−iθQ+N log [det (− ∂2
τ −△+ µ2)])}]+O(N0)

= − iθQ
β
+ N

β
log [det (− ∂2

τ −△+ µ2)]+O(N0)

= µQ+ N
β

log [det (− ∂2
τ −△+ µ2)]+O(N0), (4.31)

where we used equation (4.29) and also the fact that Tr(log M) = log(det M). We can express the free
energy in terms of the modified charge Q as

Fc (Q) = 2N[µQ+ 1
2β

log [det (− ∂2
τ −△+ µ2)]]+O(N0). (4.32)

From equations (4.29) and (4.30) we can see that µ is related to Q via

Q
Q=Q/2N=== − 1

2β

∂

∂µ
log [det (− ∂2

τ −△+ µ2)]. (4.33)

We recognise the grand potential in the form of the functional determinant [13, 14, 187], as

ω(µ) = − 1
2β

log [det (− ∂2
τ −△+ µ2)], Q = ∂

∂µ
ω(µ), (4.34)

and we can identify the canonical free energy as the Legendre transformation of the grand potential 3

which reads

f (Q) ∶= F (Q)
2N

= sup
µ
(µQ−ω(µ)). (4.35)

The functional determinant can be computed in ζ-function regularisation [113, 188, 189], which is also
convenient when we consider different manifolds 4 . Therefore, we have

log [det (− ∂2
τ −△+ µ2)] = − d

ds
ζ(s∣S1 ×Σ, µ)∣

s=0
, (4.38)

and ζ(s∣S1 ×Σ, µ) is the spectral zeta function. In our work, we are going to utilise the Mellin represen-
tation, which is defined via the integral form

ζ(s∣M, µ) = 1
Γ(s)

∞

∫

0

dt
t

ts Tr [e(∂
2
τ+△−µ2

)t]. (4.39)

3To simplify the notation we are using the form of the grand potential and the canonical free energy per degree of freedom, a
fact that is possible since we are only keeping results at leading order in N. Instead, we could have used the standard quantities
F (Q) = supµ(µQ−Ω(µ)).

4In general, if we consider a differential operator O +m2 that has eigenvalues λn +m2 with λn > 0 on a manifoldM, the zeta
function for the aforementioned operator on that manifold is defined as

ζO(s∣M, m) =∑
n

(λn +m2)−s ≡ Tr [O +m2]−s
, (4.36)

which is a generalisation of the Hurwitz zeta function. Furthermore, using the identity log x = − dx−s

ds ∣s=0
we get

Tr [log (O +m2)] = − d
ds

Tr [(O +m2)−s]∣
s=0
= − d

ds
ζO(s∣M, m)∣

s=0
. (4.37)
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If we integrate the zeta function of equation (4.39) we get

d
ds

ζ(s∣M, µ) = d
ds

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
Γ(s)

∞

∫

0

dt
t

ts Tr [e(∂
2
τ+△−µ2

)t]
⎫⎪⎪⎪⎬⎪⎪⎪⎭

=
∞

∫

0

dt
t

Tr [e(∂
2
τ+△−µ2

)t]. (4.40)

Hence, if we insert equation (4.40) into equation (4.38) the functional determinant reads

log [det (− ∂2
τ −△+ µ2)] = −

∞

∫

0

dt
t

Tr [e(∂
2
τ+△−µ2

)t]. (4.41)

In our analysis, we focus on product manifolds (M = S1 ×Σ) and therefore, we can separate the tem-
poral part S1 5. The result for the heat-kernel trace is

Tr [e(∂
2
τ t)] =∑

n∈Z
e
− 4π2n2

β2 t = θ3(0, e−t(2π/β)2)

= β√
4πt
∑

k∈Z
e−

k2β2

4t = β√
4πt

⎛
⎜⎜
⎝

1+ ∑
′

k ∈{Z∖{0}}
e−

k2β2

4t

⎞
⎟⎟
⎠

, (4.42)

and we have already pulled out the contribution of the zero mode out of the above summation. In the
first line of equation (4.42) we used that the trace of the operator is a summation upon the Matsubara
frequencies ωn = 2πn/β and then that the sum is precisely the Jacobi theta function

θ3(z, q) ∶=
∞

∑

n=−∞
qn2

e2niz. (4.43)

To get to the second line, we made use of the following special form of the Poisson resummation that
we will often use in the following sections:

∑

n∈Z
exp [−a(Mn2 + bn + c)] =

√
π

Ma∑
k∈Z

exp [−( π2

aM
)k2 − i(πb

M
)k − a(c − b2

4M
)]. (4.44)

For the zero temperature limit β → ∞ that coincides with S1 → R the sum is dominated by the zero
mode, therefore

Tr [e(∂
2
τ t)] = β√

4πt

⎛
⎜⎜
⎝

1+ ∑
′

k ∈{Z∖{0}}
e−

k2β2

4t

⎞
⎟⎟
⎠
Ð→
β→∞

β√
4πt

. (4.45)

At this point, the functional determinant can be written as

log [det (− ∂2
τ −△+ µ2)] = −

∞

∫

0

dt
t

e−µ2t Tr [e(∂
2
τ t)]Tr [e(△t)]

β→∞=== − β√
4π

∞

∫

0

dt
t

t−1/2e−µ2t Tr [e(△t)]

βζ(− 1
2 ∣Σ, µ) . (4.46)

5For the case of the fermions in chapter 5 this is not that trivial and a more careful approach in the spirit of [187] has to be
followed.
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and we remember that Γ(−1/2) = −2
√

π and the definition of equation (4.39). From equation (4.34) and
using the previous results, the grand potential and the charge can be written as

ω(µ) = −1
2

ζ(− 1
2 ∣Σ, µ), Q = ∂

∂µ
ω(µ) = −µ

2
ζ( 1

2 ∣Σ, µ), (4.47)

where we used that

∂

∂µ
ω(µ) = ∂

∂µ
(−1

2
ζ(− 1

2 ∣Σ, µ)) = −1
2

∂

∂µ

⎡⎢⎢⎢⎢⎢⎣
− 1√

4π

∞

∫

0

dt
t

t−1/2e−µ2t Tr [e(△t)]
⎤⎥⎥⎥⎥⎥⎦

= − µ

2
√

π

∞

∫

0

dt
t

t1/2e−µ2t Tr [e(△t)] = −µ

2
ζ( 1

2 ∣Σ, µ), (4.48)

and Γ(1/2) =
√

π. This equation also relates the charge Q with µ. Finally, using equation (4.35), the
canonical free energy at the saddle reads

F (Q) = 2N[µQ+ 1
2

ζ(− 1
2 ∣Σ, µ)]

f (Q)= F (Q)

2NÔ⇒ f (Q) = µQ+ 1
2

ζ(− 1
2 ∣Σ, µ). (4.49)

In the limit that N → ∞, the above-mentioned expressions are completely exact ∀ Q = Q/N, and
therefore we can interpret them as the semiclassical resummation of an infinite series of 1/N corrections.

The localisation of the integral in equation (4.46) around t = 0 is attainable for large enough values
of µ and as a consequence, the large-charge problem that we face is reduced to a classical problem,
which is the heat-kernel’s Weyl asymptotic expansion. It has been shown [52, 179] that the expansion
can be expressed in terms of Seeley–DeWitt coefficients, as

Tr [e(△t)] ∼ V
4πt
(1+ R

12
t + . . .). (4.50)

In the next sections, we will study the cases of the torus Σ = T2 and the two-sphere Σ = S2. The case of
the torus T2 is chosen as a probe, since being flat the results simplify a lot and the asymptotic expansion
includes only the leading order term, since every other term is related to the curvature R and so vanish.
On the other hand, the case of the sphere S2 is chosen to make use of the state-operator correspondence
of section 2.2.6 and be able to compute the scaling dimension of the lowest charged operator OQ. In the
sphere, the Weyl expansion is indeed asymptotic and for that reason, it can be studied in the framework
of resurgence analysis.

4.1.2 The torus
We start our analysis by studying the case of the torus Σ = T2, which is relatively straightforward as the
canonical free energy is exact, but nonetheless it demonstrates a couple of qualitative properties that
are universal and useful for the subsequent sections.

For the square torus with sides of length L, the Ricci curvature is zero, i.e. R = 0, and so via
equation (4.50) only the first Seeley–DeWitt coefficient remains. On that account, the heat trace becomes

Tr [e(△T2 t)] ∼ L2

4πt
+O(e−1/t), (4.51)

while the zeta function of equation (4.39) on the torus reads

ζ(s∣T2, µ) = L2µ2(1−s)

4π(s − 1) +O
(e−µ). (4.52)
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Ergo, we can compute the grand potential ω(µ), the charge Q, and the canonical free energy f (Q) of
equations (4.47) and (4.49) as

ω(µ) = −1
2

ζ(− 1
2 ∣T

2, µ) = L2µ3

12π
, (4.53)

Q = −µ

2
ζ( 1

2 ∣T
2, µ) = L2µ2

4π
, (4.54)

f (Q) = µQ+ 1
2

ζ(− 1
2 ∣T

2, µ) = 4
√

π

3L
Q3/2. (4.55)

We see that solving µ in terms of the charge Q agrees with the form of equation (3.65), with the exception
that being in the double-scaling limit we have the power to compute the Wilsonian coefficients [31].

Although the above solutions are exact in perturbation theory at leading order in the charge Q, we
can enhance our analysis in the following manner: the O(e−1/t) corrections of equation (4.51) are known
and can be expressed in a closed form, using that the spectrum of the Laplacian on the torus T2 is

spec(△
T2) = {−4π2

L2 (k
2
1 + k2

2)∣k1, k2 ∈Z} . (4.56)

Then, using equation (4.56) the trace of the heat-kernel reads

Tr [e(△T2 t)] = ∑
k1∈Z
∑

k2∈Z
e−

4π2
(k2

1+k2
2)

L2 t (4.57)

= [θ3(0, e−t(2π/L)2)]
2
, (4.58)

where to get to the second line we used the definition of the Jacobi theta function in equation (4.43) and
we sum over each momentum eigenvalue ki separately. We observe that the heat-kernel on the torus is
exactly a square of the theta function, which verifies our claim that the final result can be written in an
exact form.

Since for µ large the integral localises at t → 0+, we can apply the Poisson summation formula of
equation (4.44) in equation (4.57) and in the appropriate limit, the heat-kernel reads

Tr [e(△T2 t)] = L2

4πt

⎛
⎜⎜
⎝

1+ ∑
′

k∈{Z2
∖{0}}

e−
∥k∥2 L2

4t

⎞
⎟⎟
⎠

, (4.59)

where we denote ∥k∥2 = k2
1 + k2

2, and as before, we have already pulled out the contribution of the zero
mode in the summation.

Besides equation (4.59) being exact, moreover, it is valid for finite t as well, and as a consequence,
we can use it to compute the sub-leading terms in equation (4.39) in the limit of large charge, i.e. µ →∞
as

ζ(s∣T2, µ) = L2µ2(1−s)

4π(s − 1) +
L2

2π
∑
′

k

22−s

Γ(s)(
∥k∥L

µ
)

s−1

K1−s(∥k∥µL), (4.60)

where Kn(z) denotes the modified Bessel function of the second kind [190, 191] given in integral formula
as

Kn(z) =
Γ(n + 1

2)(2z)n
√

π

∞

∫

0

dt
cos t

(t2 + z2)n+1/2
. (4.61)
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We can use equation (4.60) to compute the sub-leading corrections to the grand potential and the
canonical free energy in a closed form as

ω(µ) = −1
2

ζ(− 1
2 ∣T

2, µ) = L2µ3

12π

⎛
⎜
⎝

1+∑
′

k

e−∥k∥µL

∥k∥2µ2L2
(1+ 1

∥k∥µL
)
⎞
⎟
⎠

, (4.62)

f (Q) = sup
µ
(µQ−ω(µ)) = 4

√
π

3L
Q3/2
⎛
⎜
⎝

1−∑
′

k

e−∥k∥
√

4πQ

8∥k∥2πQ
+ . . .
⎞
⎟
⎠

. (4.63)

The charge Q is computed via the grand potential ω(µ) in terms of µ and the corresponding relation
of the two conjugate variables is recursive, therefore, even though the expressions for ω(µ) and Q are
exact, there are more terms present in the expression of the free energy that are related to the fact that
Q is a recursive function of µ. Nevertheless, extrapolating this result to the small-charge regime up to
charge Q = 1, the contribution to the free energy stemming from these farther exponentially suppressed
terms is O(10−3).

To complete our analysis, we also want to compute the small-charge regime of the grand potential,
which corresponds to small-µ. In order to do so, we will apply the binomial theorem for µ < 2π/L and
express ω(µ) in terms of µ in a series expansion

ω(µ) = −1
2

ζ(− 1
2 ∣T

2, µ) = −1
2∑

k∈Z2

(4π2

L2 ∥k∥+ µ2)
−sRRRRRRRRRRRRRRRs=−1/2

= −1
2

⎡⎢⎢⎢⎢⎢⎣
µ + 2π

L ∑
′

k∈Z2

∞

∑

n=0
(1/2

n
)( Lµ

2π
)

2n
∥k∥1/2−n

⎤⎥⎥⎥⎥⎥⎦

= −1
2

⎡⎢⎢⎢⎢⎣
µ + 2π

L

∞

∑

n=0
(1/2

n
)( Lµ

2π
)

2n
ζ(− 1

2 + n∣T2, 0)
⎤⎥⎥⎥⎥⎦
,

(4.64)

and in the first line we used the definition of the zeta function of equation (4.36) and then the binomial
expansion. The zeta function defined on the torus is expressed by the Chowla–Selberg formula [192]

ζ(s∣T2, 0) = 2ζ(2s)+ 22s√π

Γ(s) Γ(s − 1
2)ζ(2s − 1)+ 2s+5/2πs

Γ(s)

∞

∑

n=1
ns−1/2σ1−2s(n)K1/2−s(nπ), (4.65)

where with σ we denote the divisor function

σk(n) =∑
d∣n

dk. (4.66)

Thereby, we get a convergent sum, and the first few terms read

ω(µ) = 0.64443 . . .
L

− 1
2

µ + 0.20064 . . . µ2L + 0.00816 . . . µ4L3 + . . . . (4.67)

Finally, we can analyse the form of the grand potential in equation (4.62) to point out some universal
properties. In general, it will exhibit the following form: it will be a perturbative expansion in µ 6 and
then there is a series of exponentially suppressed terms which are regulated by the parameter µL that
is dimensionless, and L would be the scale of the manifold Σ. Similarly, from equation (4.63) we see
that the canonical free energy is expressed as a double expansion based on two parameters: 1/Q and
e−
√

4πQ.
These structures are called trans-series and their appearance in perturbative problems comes natu-

rally. Generically, considering a problem that exhibits some small parameter z, a trans-series solution

6Although in the case of the torus, this expansion ends after a single term.
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to that problem in the limit that z → 0 acquires the general form [193]:

Φ(σk, z) =∑
k

σke−Ak/z
1/βk z−bk/βk Φ(k)(z)

= Φ(0)(z)+∑
k≠0

σke−Ak/z
1/βk z−bk/βk Φ(k>0)(z), (4.68)

where we pulled the zero-mode out of the sum and all Φ(k)(z) in equation (4.68) are asymptotic series.
Specifically, Φ(0) is the formal solution to the problem. Since these are formal solutions, these expres-
sions are coherent only when an appropriate prescription is provided for the proper summation of the
series, as we will see in the case of the sphere S2.

We have to emphasise that resurgent trans-series are specified by a particular set of relations between
the parameters Ak, βk, bk of equation (4.68) and the asymptotic series Φ(k). Due to this set of relations,
it is feasible to specify the value of σk ∈ C which is known as the trans-series parameter in such a way that
a suitable summation of the aforementioned trans-series will generate an unambiguous function and
Φ(0) will be its leading perturbative asymptotic expansion. This sort of function is called a resurgent
function and for details the interested reader is referred to [180, 194].

To summarise, the form of the heat trace on the torus T2 is of the form of equation (4.68) but
in a trivial manner, all the Φ(k) are precisely one-loop exact. Therefore, there is in no emergence
of ambiguities for the asymptotic series and the resurgent function solution matches the trans-series
representation, that is the Jacobi theta function θ3. In this case, of the sphere Σ = S2, this is not true any
more, as we will see in section 4.1.3.

4.1.3 The sphere
Having studied the torus T2, now we move to the sphere S2 of radius R0. Similarly to the case of
the torus, the heat-kernel in the small-t regime can be expressed as an asymptotic series written in
terms of the Seeley–DeWitt coefficients for the two-sphere and can be reassembled into a trans-series,
but contrary to the torus, this is not trivial, and it is not Borel resumable, so we need to complement
the leading-order perturbative expansion with non-perturbative exponentially suppressed corrections
to give it meaning.

As we will see in section 4.2.1, these exponentials have a nice geometrical interpretation in the
form of worldline (WL) instantons, and the non-perturbative ambiguities that arise are associated with
tachyonic instabilities.

Seeley–DeWitt coefficients.
As in the case of the torus, we want to compute the grand potential ω(µ), the charge Q and the canonical
free energy f (Q) using equations (4.47) and (4.49). To do so, we need to know the heat-kernel trace
for the case of sphere S2, in order to calculate the zeta function ζ(− 1

2 ∣S
2, µ).

So, the first thing that we need is the spectrum of the Laplacian on S2, which reads

spec (△
S2) = {− ℓ(ℓ + 1)

R2
0
∣ℓ ∈N} , (4.69)

and each eigenvalue is Mℓ = (2ℓ + 1) degenerate. It would be more convenient to use the trace of the
conformal Laplacian△

S2 − ξR 7 that we saw in section 4.1.1 which is related to the mass parameter m.
Similarly with the torus, we can apply the Poisson summation formula to rewrite the trace[195] as

Tr [e
(△

S2− 1
4R2

0
)t
] =

∞

∑

ℓ=0
(2ℓ + 1)e−t(ℓ+ 1

2 )
2
/R2

0 =
∞

∑

ℓ=−∞
∣ℓ + 1

2
∣e−t(ℓ+ 1

2 )
2
/R2

0

=∑
k∈Z
(−1)k∫

R

dρ ∣ρ∣e−ρ2t/R2
0+2πikρ,

(4.70)

7Remember that for the manifoldM = S1 × S2 we get that ξ = (d−2)
4(d−1) and R = 2/R2

0
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where to get from the first to the second line we used that ρ = ℓ+ 1/2 and the Poisson summation using
the relevant Fourier transform. Now we extract the zero mode and then expand the exponential

Tr [e
(△

S2− 1
4R2

0
)t
] = ∫

R

dρ ∣ρ∣e−ρ2t/R2
0 + ∑

′

k∈{Z−∖{0}}

(−1)k∫
R

dρ ∣ρ∣e−ρ2t/R2
0+2πikρ

= ∫
R

dρ ∣ρ∣e−ρ2t/R2
0 + ∑

′

k∈{Z−∖{0}}

(−1)k∫
R

dρ ∣ρ∣e−ρ2t/R2
0 cos (2πkρ)

=
R2

0
t
+ 2 ∑

′

k∈{Z−∖{0}}

(−1)k
∞

∫

0

dρ ∣ρ∣e−ρ2t/R2
0 cos (2πkρ)

=
R2

0
t
+ ∑

′

k∈{Z−∖{0}}

(−1)k[
R2

0
t
−

2∣k∣πR3
0

t3/2
F (πR0∣k∣√

t
)], (4.71)

where in the last line of our calculation we introduced the Dawson’s function F(z) which is correlated
to the imaginary error function erfi(z) as

F(z) = e−z2

∫
z

0
dt e−t2

=
√

π

2
e−z2

erfi(z). (4.72)

In the case that the values of the argument of the Dawson function are small enough, we are able
to utilise its asymptotic expansion. Since we are interested in the small-t limit, we take the large-z
expansion which is

F(z) ∼
∞

∑

n=0

(2n − 1)!!
2n+1 (1

z
)

2n+1
, (4.73)

and for our case we get

F (πR0∣k∣√
t
) =

∞

∑

n=0

(2n − 1)!!
2n+1 ( t1/2

πR0∣k∣
)

2n+1

= t1/2

πR0∣k∣

∞

∑

n=0

(2n − 1)!!
2n+1(πR0∣k∣)2n tn. (4.74)

Using equations (4.71) and (4.74) and after formally manipulating the expression, we obtain the leading
asymptotic form of the heat-kernel trace on the two-sphere

Tr [e
(△

S2− 1
4R2

0
)t
] ∼

R2
0

t
−
∞

∑

n=1

(−1)n(1− 21−2n)
n!R2n−2

0
B2ntn−1

≡
R2

0
t

∞

∑

n=0
an(

t
R2

0
)

n

, (4.75)

where an = [(−1)n+1(1− 21−2n)B2n] /(n!), we have inserted the zero mode again in the summation, and
also we introduced the Bernoulli numbers B2n which can be written with respect to the Riemann zeta
function [191] as

B2n = (−1)n+1 2(2n)!
(2π)2n ζ(2n). (4.76)

The expression of equation (4.75) was already mentioned in [196], and it was based on the previous
work of Mulholland in [197]. It is not hard to see that the above series is asymptotic given the fact that
at large n the Seeley–DeWitt coefficients an are n! divergent

an =
(−1)n+1(1− 21−2n)

n!
B2n

Eq.(4.76)
Ô⇒ an ∼

2√
π

n−1/2

π2n n!. (4.77)
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The divergence of the Seeley–DeWitt coefficients could have been predicted based on the fact that the
expansion of the Dawson’s function in equation (4.73) is also asymptotic.

The expansion in equation (4.75) is just a formal solution and, as we discussed in section 4.1.2 an
appropriate prescription needs to be provided for the summation. Therefore, we assume that if we can
complete this series into a resurgent function, a suitable summation of the aforementioned trans-series
will generate an unambiguous result. Hence, the starting point is to correctly identify the structure of
the non-perturbative terms in the general form of equation (4.68), and the result of equation (4.75) is the
perturbative part that can be identified with Φ(0). Following [193], the general form of the resurgent
trans-series is taken to be

Φ(σk, z) =Φ(0)(z)+∑
k≠0

σke−Ak/z
1/βk z−bk/βk Φ(k>0)(z), Φ(k>0)(z) ∼

∞

∑

ℓ=0
a(k)ℓ zℓ/βk , (4.78)

and we denoted z = t/R2
0.

As we noted, there is a particular set of relations between the parameters Ak, βk, bk and the asymp-
totic series Φk and more specifically, the coefficients a(k)ℓ ∈ Φ(k>0) and the above-mentioned parameters
are encrypted in the large-order form of the perturbative part

an ∼∑
k

Sk
2πi

βk

Anβk+bk
k

∞

∑

ℓ=0
a(k)ℓ Aℓ

k Γ(βkn + bk − ℓ), (4.79)

and Sk stands for the Stokes constants.8 The formula of equation (4.79) is one of the biggest accom-
plishments in the framework of the resurgence analysis concerning resurgent functions [180].

In the problem at hand, we have complete knowledge of the an in the sense that we can use the
following identities

∑

k≠0

(−1)k

k2n = 2
∞

∑

k=1

(−1)k

k2n = 2ζ(2n)(21−2n − 1), (4.80)

ζ(2n) = (−1)n+1 (2π)2nB2n

2(2n)! , (4.81)

which we can combine to derive

∑

k≠0

(−1)k
k2n = (−1)n+1(2π)2n

(2n)!
(21−2n − 1)B2n, (4.82)

to rewrite an in a suggestive form that we can compare with the generic form of equation (4.79) as

an = −∑
k≠0
(−1)k (2n)!

n! 22n (πk)2n =
1√
π
∑

k≠0
(−1)k+1 Γ(n + 1

2)
(πk)2n , (4.83)

where we used that

Γ(n + 1
2) =

(2n)!
√

π

n! 22n . (4.84)

Comparing equations (4.79) and (4.83) we get the following values for the parameters

βk = 1, bk =
1
2

, Ak = (πk)2,
Sk

2πi
a(k)0 = (−1)k+1∣k∣

√
π, a(k)

>0 = 0. (4.85)

We observe that a(k)
>0 = 0, and as a consequence, we deduce that the series are truncated to a single term

around every exponential. Hence, using equation (4.75) along with equations (4.68) and (4.85) indicates

8For the torus T2 the large-order form is trivially realized.
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that a trans-series representation of the heat-kernel trace has to include the terms

Tr [e
(△

S2− 1
4R2

0
)t
] ⊃ 2i(

πR2
0

t
)

3
2

∑

k≠0
σk (−1)k+1 ∣k∣ e−(kπR0)

2
/t. (4.86)

We need to point out that equation (4.86) is unambiguously defined up to a k-dependent complex term
σk which is the trans-series parameter that we came upon in equation (4.68). The large-order analysis
of Φ(0) cannot specify the value of σk, and this is because no matter the choice of the parameter, Φ(0)

will always be the perturbative asymptotic solution of the above trans-series.

Grand potential and free energy.
Having analysed the asymptotic behaviour of the heat-kernel trace, now we move our attention to the
grand potential ω(µ) and the canonical free energy f (Q) which are also asymptotic series.

Since they are associated to the heat-kernel trace through the Mellin transform of the zeta function,
they are both higher factorial divergent quantities. This appears to be a characteristic of the model at
hand in the double-scaling limit of equation (4.30), and given that the canonical free energy is related to
the scaling dimension via the state-operator correspondence, we can assert that the LCE of the conformal
dimension of the lowest charged operator is itself asymptotic and the relevant coefficients in the asymptotic series
diverge like (2n)!. In section 4.4 we will theorise that this feature is a generic characteristic of Large
Charge Expansion.

We can carry out an analogous large-order analysis for the case of the large-µ expansion of the
operator −△

S2 + µ2 on the two-sphere with the Mellin zeta function,

ζ(s∣S2, µ) = 1
Γ(s)

∞

∫

0

dt ts−1e−µ2t Tr [e△S2 t]. (4.87)

As in section 4.1.3 , it would be more convenient to utilise the conformal Laplacian △ − ξR instead,
which corresponds to a shift in the mass µ2 → µ2′ = µ2 − 1/(4R2

0) ≡ m2. By doing so, and using the
Weyl’s asymptotic formula 9 [198–200] which reads

Tr [e△Σt] =
∞

∑

n=0
Kn t

n
2−1, (4.88)

for the case of the two-sphere S2, we derive [31] the following relation

ζ(s∣S2, m) = R2
0m2(1−s)

∞

∑

n=0
an

Γ(n + s − 1)
Γ(s)

1
(mR0)2n , (4.89)

which, as we anticipated, is an expansion in the limit m ∼ µ → ∞ and where an are the Seeley–DeWitt
coefficients of the two-sphere S2 that we have already computed in equation (4.77). Furthermore, the
additional gamma function generates a farther n! increase in the large-order divergence. By setting
s = −1/2 we reclaim the expression for the grand potential

ω(m) = −1
2

ζ(−1
2
∣S2, m2) = R2

0m3
∞

∑

n=0

ωn

(mR0)2n

= 1
3

R2
0m3 − 1

24
m + 7

1920
1

mR2
0
+ . . . , (4.90)

and where

ωn = −
anΓ(n − 3

2)
2Γ(−1/2) =

anΓ(n − 3
2)

4
√

π
, (4.91)

9Equation (4.50) is but the very few terms of this generic expansion.
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are the grand potential’s coefficients, which we can also express in a closed form using equation (4.83),
as

ωn =
1

4π
∑

k≠0

(−1)k+1

(πk)2n Γ (n + 1
2
) Γ (n − 3

2
) . (4.92)

The appearance of the double gamma function in equation (4.92) makes the comparison with the generic
large-order behaviour of the trans-series coefficients of equation (4.79) a bit more complicated. Never-
theless, by using the following identity

22nΓ(n + 1
2)Γ(n −

3
2) =
√

π

2

∞

∑

k=0
γkΓ (2n − 3

2
− k)

=
√

π

2
[8Γ(2n − 3

2)+ 15Γ(2n − 5
2)+

105
16

Γ(2n − 7
2)+ . . . ] ,

(4.93)

where we can compute the γk coefficients recursively, we are now able to compare the two expressions
and match the corresponding parameters, remembering that z = 1/(mR0)2, to obtain

β = 2, bk = −
3
2

, Ak = 2πk,
Sk

2πi
a(k)0 = (−1)k+1

4
√

2π

γ0

(2π∣k∣) 3
2

, a(k)ℓ>0 =
γℓ

γ0

1
(2π∣k∣)ℓγ0

, (4.94)

in which case the non-perturbative corrections to ω(m) read

ω(m) ⊃
√

R0m3 (−1)k

(2π∣k∣) 3
2

e−(2π∣k∣)R0m
∞

∑

ℓ=0
(γℓ

γ0
) 1
(2π∣k∣mR0)ℓ

. (4.95)

Observe that the structure of the non-perturbative terms is similar to the torus T2, in the sense that
there are a series of exponentially suppressed terms which are regulated by the parameter 2πR0m that
is dimensionless, where 2πR0 would be the length of the manifold.

Finally, we note that the γℓ coefficients are factorially growing, and they alter in sign. They appear
in the Henkel’s expansion of the modified Bessel function of the second kind

K2(z) ∼
√

π

2z
ea−z

∞

∑

ℓ=0
(γℓ

γ0
) 1

zℓ
, as z →∞, (4.96)

and this fact will play in important role in our discussion of the Borel resummation in the next section.
Having understood the non-perturbative asymptotic behaviour of ω(m), we now want to study the

canonical free energy. The relevant Legendre transform has to be computed order by order in the charge
Q initiating the computation from the perturbative contribution

Q = d
dµ

ω(µ) Ô⇒ R0m(Q) = Q1/2 − 1
24

Q−1/2 + 43
5760

Q−3/2 + . . . (4.97)

f (Q) = µQ−ω(µ) Ô⇒ f (Q) = 2
3R0

Q3/2 + 1
6R0

Q1/2 − 7
720R0

Q−1/2 + . . . (4.98)

The result is an asymptotic series and within the scope of this analysis it suffices to examine solely
the first non-perturbative terms that appear in the free energy f (Q) and therefore in the suppressed
critical exponents. These are derived through the leading-order approximation of equation (4.97) and
they offer a very high level of precision when compared with the small-charge result. Doing so, the
non-perturbative corrections read

f (Q) ⊃ Q3/4

R0

(−1)k

(2π∣k∣) 3
2

e−(2π∣k∣)
√

Q + . . . , (4.99)

which stand for a 2n! factorial divergence of the perturbative terms of the free energy, or in equal
grounds a 2n! factorial divergence of the critical exponents, as is depicted in Figure 4.1.

As a final note, from the EFT perspective, the corresponding (2n)! divergence in the free energy is
a tree-level and not a quantum effect. By identifying ω(µ) with a Seff — as we will do in section 4.4 —
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Figure 4.1: Ratio rn = n−2 fn+1/ fn for the coefficients in the expansion of f (Q), along with
the initial three Shank transforms [201] written in terms of n. The overall convergence at
the limit of large n towards a constant value of order O(1) signifies a double-factorial be-
haviour fn ∼ (n!)2, as anticipated from the outcome of the non-perturbative contributions.

the Wilsonian coefficients create a divergent series which is to be set side by side with the n! divergence
that we commonly anticipate in QFT that originates in the proliferation of the Feynman diagrams in a
perturbative expansion. Therefore, in the limit under consideration, the classically derived divergence
is more dominant than the one originating in quantum effects.

By having the precise expressions for every term in the perturbative series, it is feasible to extrapolate
the computed result to an arbitrarily small charge if we accomplish to resume the related trans-series
into a resurgent trans-series function. To fulfil this goal, in the next section we will employ the Borel
resummation technique.

4.1.4 Borel resummation
In the previous section, we have deduced the generic form of the non-perturbative corrections that are
related to the factorially divergent series that we have conjectured as the asymptotics of a resurgent
trans-series function. Nonetheless, we still have to give a meaning to the series that we started with,
and the Borel resummation 10 is a method that attains exactly this goal, by systematically including the
non-perturbative corrections that we have computed.

We will start our analysis by examining the Borel transformation of the heat-kernel trace expression
that we found in equation (4.75), namely

Tr [e
(△

S2− 1
4R2

0
)t
] =

R2
0

t

∞

∑

n=0
an (

t
R2

0
)

n

an =
(−1)n+1(1− 21−2n)

n!
B2n.

In general, the Borel transform acts as follows

Φ(z) ∼
∞

∑

n=0
anzn Ð→ B {Φ} (ζ) =

∞

∑

n=0

an

Γ(βn + b)ζn, (4.100)

For the two-sphere Σ = S2, we know from section 4.1.3 the values of β = 1 and b = 1/2, and thus by
setting z = t/R2

0 and neglecting the prefactor R2
0/t which we will reintroduce at the end of our analysis

to avoid working with a series with negative powers, and mapping ζ → ζ2 to get a Borel transform
without any branch cuts we get a closed-form expression for the Borel transformation that reads

B{Φ(0)}(ζ) =
∞

∑

n=0

an

Γ(n + 1/2)ζ2n = 1√
π

ζ

sin ζ
, (4.101)

10In Appendix C.1 there is a short review of the Borel transform methodology.
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and to get the above result we used equation (4.84) the Taylor expansion of

1
sin(z) = 2

∞

∑

n=0
B2n
(−1)n(1− 22n−1)

(2n)! z2n−1. (4.102)

We appropriately Borel resum our expression — see Appendix C.1 for details — and we get

S{Φ(0)}(z) = 2√
z

∞

∫

0

dζ e−ζ2
/zB{Φ(0)}(ζ)

= 2√
πz

∞

∫

0

dζ
ζ e−ζ2

/z

sin ζ
. (4.103)

The last expression is exactly the integral representation of the heat-kernel trace in the two-sphere S2

that was initially computed in [202] and was retrieved here in the form of a Borel integral.
Nonetheless, the Borel integral of equation (4.103) is ill-defined since the integrand exhibits simple

π−π 2π−2π 3π−3π

C+

C−

ζ

Figure 4.2: The structure of the poles and the choices of the integration contours C±
for S±{Φ(0)}(t) on S2. The corresponding choices dissent by the residues at ζ = kπ,

k = 1, 2, . . ..

poles along the integration path for the values of ζ = kπ, k ∈Z+, which signifies that the above series is
not Borel summable and the integration ray θ = 0 is a Stokes line.

Therefore, we define two lateral Borel transforms S±{Φ(0)}(t), the integration contours of which
pass over the poles or under the poles respectively, as in Figure 4.2. The above action introduces the
subsequent ambiguity to the sum

[S+ −S−]{Φ(0)}(z) = −(2πi)
∞

∑

k=1
Resζ=kπ

⎛
⎝

2√
πz

ζ e−ζ2
/z

sin ζ

⎞
⎠

= 2iz(π

z
)

3/2 ∞

∑

k≠0
(−)k+1∣k∣ e−k2π2

/z,

(4.104)

which by reinstating the prefactor R2
0/t agrees completely with the expression found in equation (4.86).

Every single term matches with a pole on the Borel plane along the positive real axis. But, no matter
how we orient the contour, the integration path deviates from the real axis and thus the integral obtains
an imaginary contribution. Hence, the still ambiguous trans-series that is associated to the heat-kernel
trace reads

Tr [e
(△

S2− 1
4R2

0
)t
] =

2R3
0√

πt3/2∫

C±

dζ
ζ e−ζ2R2

0/t

sin ζ
+ 2i(

πR2
0

t
)

3
2

∑

k≠0
σ±k (−1)k+1∣k∣e−(kπR0)

2
/t. (4.105)

A similar analysis can be performed for the grand potential, again starting by examining the perturba-
tive coefficients ωn in equation (4.92). Having said that, an elegant closed form is not possible for the
Borel transformed coefficient ω(0). Therefore, rather of doing that, we implement the Mellin transform
to the Borel resumed quantity of equation (4.103) that corresponds to the integral representation of the
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heat-kernel trace, and we find

ζ±(s∣S2, m2) =
R2s

0
Γ(s)

∞

∫

0

dz zs−2e−m2R2
0z [S±{Φ(0)}(z)− 1− z

12
]+

R2
0m2−2s

s − 1
+ m−2s

12
. (4.106)

Given that the Mellin integral above has already been analytically continued in order to convergent for
s = −1/2, allows us to swap the order of integration and therefore obtain

ω±(m) = −
1
2

ζ (−1
2
∣S2, m2)

= 1
3

R2
0m3 − m

24
+ m2R0

π ∫

C
±

dζ

ζ2 (
ζ

sin ζ
− 1− ζ2

6
)K2(2mR0ζ).

(4.107)

From the expression of equation (4.107) we are now able to identify the Borel resummation of the
leading series ω(0) with the subsequent integral

S±{ω(0)} = ∫
C
±

dζ

ζ2 (
ζ

sin ζ
− 1− ζ2

6
)K2(2mR0ζ), (4.108)

and for ζ = kπ exhibits a discontinuity at,

[S+ −S−]{ω(0)} =
∞

∑

k=1

(−1)k
k2π2 K2(2πkmR0), (4.109)

which agrees completely with the previous results that we had computed in equation (4.95). During our
analysis of the heat-kernel trace, we deduced that the non-perturbative corrections are semiclassically
exact, in the sense that they only consist of a single term. The same logic also applies to the case of
the grand potential, as we still possess a single term, yet the non-perturbative contributions include a
Bessel function rather than of the ordinary instanton-like exponentials that are common in problems in
QFT.

The non-perturbative ambiguities stemming from the Borel summation in both the case of the grand
potential and for the free energy are connected to the ambiguities that appear in the heat-kernel trace
in equation (4.105). Nevertheless, they can be lifted in several ways:

• The first way, is to impose the reality condition of the heat-kernel trace in equation (4.105) for t ∈ R+.
A priori, this methodology does not guarantee to determine completely the coefficients σk, yet for
our problem it happens to be enough — see Appendix C.2 for details — and thus we find σ±k = ±1/2,
which hints that Sk = 1, ∀ k. The heat-kernel trace then becomes

Tr [e
(△

S2− 1
4R2

0
)t
] = 2√

π
(

R2
0

t
)

3
2

∫

C±

dζ
ζ e−ζ2R2

0/t

sin ζ
± i(

πR2
0

t
)

3
2

∑

k≠0
(−1)k+1∣k∣e−(kπR0)

2
/t

= 2√
π
(

R2
0

t
)

3
2

P.V.

⎡⎢⎢⎢⎢⎢⎣
∫

C±

dζ
ζ e−ζ2R2

0/t

sin ζ

⎤⎥⎥⎥⎥⎥⎦
,

(4.110)

and the above result is both unambiguous and real, although that it does not look so. This is usually
true for many systems that involve ordinary differential equation (ODE) [203]. Considering that the
heat-kernel trace solves the non-linear partial differential heat equation at coincident points, it is still
intriguing to examine how its trans-series structure can be understood from a linear Dawson’s ODE.

• The second way that we will further explore in the next section, is to deduce a path integral expres-
sion of the heat-kernel trace, where the trans-series form emerges naturally from the semiclassical
expansion around the non-trivial saddles. For the usual integrals — see [204] for details — such
a prescription is enough because it yields the Lefschetz thimble decomposition of the correspond-
ing integral. The same authors demonstrated that for path integrals, unstable saddles also play a
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part in the cancellation of foresaid ambiguities. Therefore, in section 4.2 we will move to this direc-
tion and display that an analogous phenomenon is true also in the heat-kernel’s trace path integral
formulation.

4.2 Worldline interpretation

As we saw in section 2.1.2 propagators of elliptic operators can be represented as quantum mechanical
path integrals. Actually, in his early days, Feynman initially developed the path integral methodology
for non-relativistic systems and after two years he started publishing his well-known set of papers that
established relativistic QFT and Feynman diagrams came into being. Nevertheless, he simultaneously
established a representation of the quantum electrodynamics S-matrix written as a relativistic particle
path integral in the Appendix of [205, 206]. This is the particle path integral formalism or in other
words the worldline formalism — see [207] and relevant references within — where we construct a
suitable quantum mechanical particle path integral, to compute the determinant of the aforementioned
elliptic operator.

The methodology has been applied successfully to QFT amplitudes and also to computing effective
actions around classical field backgrounds. On that base, heat-kernel traces can be expressed as world-
line integrals that consist of a free particle that moves on the curved manifold at hand. Nonetheless, the
definition of quantum mechanics on a curved space is not that trivial a matter, and it is known from the
time of DeWitt [51] that it is actually plagued with several ambiguities that are associated to the issue
of properly defining the path integration measure on a curved space. Many of these complications have
been worked out recently and there is now a perturbative definition of the previously mentioned path
integrals — see [208] — that matches the leading Seeley–DeWitt coefficients for generic manifolds [209].

In the following sections, we will apply the worldline methodology to demonstrate that the trans-
series function of equation (4.110) can be produced as a saddle-point approximation in the limit that
t → 0+ of a properly defined quantum mechanical path integral representing the heat-kernel trace.
This corresponds to a completely geometrical representation of the non-perturbative corrections and
ambiguities that appeared in the previous resurgent analysis. Since the asymptotic character and the
relevant ambiguities of the grand potential ω and the free energy f (Q) — therefore of the scaling
dimension ∆Q — originate from the similar nature of the heat-kernel trace, the geometrical structure of
the latter will carry over to them.

4.2.1 The heat-kernel as a path integral
Although in field theory we are mostly used that path integrals are integrals over fields and not integrals
over particles, this does not have to always be the case. Therefore, the first step towards a proper
representation of the functional determinant of the operator − ∂2

τ −△+ µ2 as a particle path integral is
Schwinger’s representation of equation (4.41) which reads

log [det (− ∂2
τ −△+ µ2)] = −

∞

∫

0

dt
t

Tr [e(∂
2
τ+△−µ2

)t],

and its relation to the grand potential ω(µ) is given by equation (4.34).
As explained in detail in section 4.1.1, on the manifold S1

β × Σ 11 the trace factorises reducing the
whole problem to the study of the heat-kernel trace on Σ

log [det (− ∂2
τ −△+ µ2)] = −

∞

∫

0

dt
t

1√
4πt

e−µ2t Tr [e△t]. (4.111)

The main idea is to match the heat-kernel trace Tr [e△t] to the partition function Z(β) = Tr [e−βH].
Making the comparison, this corresponds to a particle that has an inverse temperature β = t and whose
Hamiltonian is given by H = −△, that is a free quantum particle moving on the manifold Σ [209–211].

11Taking the limit β →∞ corresponds to R×Σ.
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By choosing a map xµ on Σ the classical action of the aforementioned free particle is

S[x] = 1
4∫

t

0
dτ gµν(x)ẋµ(τ)ẋν(τ), (4.112)

where gµν stands for the metric on Σ and xµ ∶ (0, t) → Σ is the worldline defined by the motion of the
particle. The heat-kernel trace is therefore associated with a path integral over closed loops which reads

Tr [e−βH] H=−△===
β=t

Tr [e△t] ≡ ⟨x∣e△t∣x⟩ =
x(t)=x̄

∫

x(0)=x̄

Dxµ e−S[x]. (4.113)

From this point on, we will consider equation (4.113) as the working definition of the heat-kernel trace
in the particle path integral representation. This representation of the heat-kernel is derived by apply-
ing the Feynman–Kac formula, which is however rather involved due to the intrinsic diffeomorphism
invariance and also the emerging ordering ambiguities that are generated by the curvature terms when
we quantise the Hamiltonian of the system. Nonetheless, these problems have been worked out for the
case of the semiclassical expansion around the loop xµ

cl(τ) = 0 in equation (4.113).
In the current analysis, we exploit the fact that all of these alterations are subleading in the expansion

in the limit that t → 0+, hence it is indeed a semiclassical expansion and by rescaling the worldline time
as τ → τ′ = tτ, the action of equation (4.112) can be recast as

S[x] = 1
4t∫

1

0
dτ gµν(x)ẋµ ẋν, (4.114)

and the usual h̄ expansion of quantum mechanics equals the small-t expansion of the above heat-kernel
where the path integral localises around the saddle points of the action, and we may express it as a
perturbative expansion in powers of t.

The eom of equation (2.15) can be found by varying the above action and therefore the Euler–
Lagrange equations in our case are the geodesics

ẍµ
cl + Γµ

νρ(x)ẋν
cl ẋ

ρ
cl = 0, (4.115)

where Γµ
νρ are the Christoffel symbols [212]. We observe that the localisation of the heat-kernel trace

path integral takes place as a sum over every closed geodesic γ on the manifold Σ and that these
non-trivial geodesics are the exact equivalent of the worldline instantons that appear in [60, 61] which
regulate the non-perturbative corrections of Euler–Heisenberg-type Lagrangians [59].

From general calculus arguments we expect that every one of these saddles will exhibit its individual
perturbative series in t, weighted by a factor of e−ℓ(γ)

2
/(4t), where ℓ(γ) is the length of the closed

geodesics, and therefore the semi-classical expansion reads

Tr [e△t] = t−b0

∞

∑

n=0
a(0)n tn + ∑

′

γ ∈ closed geodesics

e−
ℓ(γ)2

4t t−bγ

∞

∑

n=0
a(γ)n tn, (4.116)

and the second summation is over the non-trivial geodesics, and also the coefficient bγ is geometrically
dependent. The series a(γ)n are, in general, anticipated to be factorially growing, due to the usual
arguments about the proliferation of Feynman graphs.

The resemblance of the structure of equation (4.116) to the corresponding one of the general trans-
series in equation (4.68) is not an accident, as the latter were introduced to agree with semiclassical
expansions, where they naturally appear. Even so, there is a conceptual disagreement regarding the
resurgent analysis that was carried out in section 4.1 as resurgence is independent of the existence of
a non-perturbative definition of the observable that we want to study. That is why there is no generic
geometric interpretation for the trans-series structure, and there exist ambiguities that can’t be fixed
immediately. For the problem at hand, we have already demonstrated that the relevant ambiguities can
be lifted by imposing the reality condition of the heat-kernel. In the next sections, we will show that
using the above path integral, we can reproduce the outcome of equation (4.110) without any further
physical input.
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4.2.2 The torus
As in section 4.1.2 we begin our analysis by examining the case of the torus T2 that acts as a probe
before moving on to the sphere S2, where we will attempt to replicate the result of equation (4.59) using
the worldline framework.

We start by considering a square torus with sides of length L, where the corresponding metric reads

ds2 = gij dxi dxj = (dx1)2 + (dx2)2. (4.117)

Given that the torus is flat, there are no subtleties arising from the curvature of the manifold that would
affect our definition in equation (4.113) and the corresponding heat-kernel trace is expressed by the
path integral

Tr [e△t] = ∫

x(t)=x(0)

Dx e
− 1

4t

1

∫
0

dτ((ẋ1
)

2
+(ẋ2

)
2
)

, (4.118)

that localises for t → 0+ and thus it is possible to calculate it semiclassically using the usual saddle-point
approximation methods.

We express the torus as R2 and we identify xi ≃ xi + L. This way, by fixing any point, for example
the origin, we end up with a lattice Z2 of identical points and the corresponding closed geodesics that
pass through these points are straight lines that connect the point in the origin to any other point that
exists in the lattice as in Figure 4.3. This indicates that the closed geodesics can be expressed by pairs
of integer numbers (k1, k2) that also include the trivial zero length geodesic. The corresponding length
ℓ of the closed geodesics can be computed by a simple trigonometric identity and it reads

ℓ(k1, k2) = L
√

k2
1 + k2

2. (4.119)

In the usual manner, the field x can be split into two parts, the first part is the classical solution Xi
cl and

Figure 4.3: Non-trivial closed geodesics depicted on the torus and labelled by the inte-
gers (1, 3) for the blue line and (5, 2) for the red line as sections in R2 and on a three-

dimensional representation.

the second part are the quantum fluctuations hi(τ),

xi(τ) = Xi
cl(τ)+ hi(τ) = kiLτ + hi(τ). (4.120)

Given that the torus T2 is flat, the corresponding action will be quadratic, and therefore we are able to
separate the two parts

S[x] = S[Xcl]+ S[h] =
L2(k2

1 + k2
2)

4t
+ 1

4t

1

∫

0

dτ [(ḣ1)2 + (ḣ2)2] . (4.121)
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And then, using equation (4.118) we can express the path integral as

Tr [e△t] = ∫
T2

dx ∫

x(1)=x(0)=x

Dx eS[x]

= L2
∑

k∈Z2

e−
L2
(k2

1+k2
2)

4t
∫

h(t)=h(0)=0

Dh e−S[h], (4.122)

and in the first line we have included the integral over the fixed point x that every geodesic passes
through because due to translation invariance, the specific point is not relevant as any choice would
be equivalent, and therefore it needs to be integrated over. The fluctuation part of the path integral is
Gaussian and can be evaluated up to a normalisation parameter N . We will choose the usual worldline

normalisation N = (4πt)−
d
2 , where d are the components of the path integral — see [213, 214] and

Appendix C.2.1 for details of the calculation — to get

∫

h(t)=h(0)=0

Dh e−
1
4t ∫

1
0 dτḣ2

= 1√
4πt

. (4.123)

The final result is produced by combining equations (4.122) and (4.123) and reads

Tr [e△t] = L2

4πt∑
k∈Z2

e−
L2
∥k∥2

4t , (4.124)

where again we denote ∥k∥2 = k2
1 + k2

2 and it is in perfect agreement with equation (4.59) that was
computed using the Poisson resummation.

In the literature, this correspondence is referred to as spectrum-geodesic duality for compact man-
ifolds. For every eigenvalue of the Laplace operator there exists a corresponding closed geodesic, and
the interested reader is referred to [211, 215] for a discussion.

4.2.3 The sphere
We now move on to the case of the sphere S2 where, a priori, generic ambiguities generated by the
curvature of the manifold are involved. Nevertheless, since these are subleading, they will not affect
our semiclassical analysis. We start by employing a generalisation of equation (4.113) which reads

⟨y∣e△t∣x⟩ =
x(t)=y

∫

x(0)=x

Dxµ exp
⎛
⎜⎜
⎝
− 1

4t

1

∫

0

dτ gµν(x)ẋµ ẋν
⎞
⎟⎟
⎠

. (4.125)

We want to go to polar coordinates, where xµ = (θ, ϕ) and θ ∈ [0, π] is the polar angle while ϕ ∈ [0, 2π]
is the azimuthal angle and the volume element is expressed as

Dxµ = sin(θ)DθDϕ . (4.126)

From now on, θ and ϕ will be our worldline fields, and on the two-sphere S2 the action and the eom
are given by

S[θ, ϕ] =
R2

0
4t ∫

1

0
dτ [θ̇2 + sin2 θϕ̇2] , (4.127)

⎧⎪⎪⎨⎪⎪⎩

ϕ̈ + 2 cot(θ)θ̇ϕ̇ = 0,
θ̈ − ϕ̇2 sin(2θ) = 0.

(4.128)

We are looking for the classical solution of equation (4.128) and as we want to compute a heat-kernel
trace we know from both section 2.1.3 and equation (4.113) that we have to look at coincident endpoints
x = y = x̄. It is rather straightforward to solve the above eom for both fields that satisfy our boundary
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conditions 12, and although that the polar field has a unique classical solution which is the equator,
for the azimuthal field we can easily think of a situation that for two points xin, xf, the final point xf

coincides with xin after k wrappings around the equator.
Therefore, we deduce that there exists an infinite number of winding geodesics solving the eom and

the classical trajectory between the two points is parametrised as

θcl(τ) = π/2, ϕcl(τ) = 2πkτ, k ∈Z. (4.129)

We can split the worldline fields into classical solutions and fluctuations, and we introduce the fluctu-
ations hθ , hϕ around the above classical solutions, that satisfy Dirichlet boundary conditions. We can
then express the heat-kernel trace at coincident points as

⟨x∣e△t∣x⟩ = e−
(2πkR0)

2

4t
∫

hi(t)=hi(0)=0

DhθDhϕ exp
⎛
⎜⎜
⎝
−

R2
0

4t

1

∫

0

dτ [ḣ2
θ − (2πk)2h2

θ + ḣ2
ϕ +O(h3)]

⎞
⎟⎟
⎠

, (4.130)

where we have learnt in section 2.3.1 that this is the quadratic action of two free fields, one massless
and one massive. The higher-order terms, i.e. O(h3), which correspond to interactions, contribute to
higher order in the parameter t and therefore they are ignored.

The first integral over the massless field hϕ can be easily computed and actually reproduces our
normalization of equation (4.123) with the succeeding substitution t → t/R2

0.
On the contrary, the integral over the massive field hθ contains both a zero-mode and also multiple

negative modes. This can be seen in the following manner: by expanding the fluctuations in a complete
orthonormal basis in the usual mode decomposition of the eigenfunctions that satisfies the following
differential equation

hθ(τ) =∑
n=1

cnhn
θ (τ), −

R2
0

2t
[∂2

τ + (2πk)2] hn
θ (τ) = λnhn

θ (τ), (4.131)

where the eigenbasis for the above eigenfunctions and eigenvalues is explicitly

hn
θ =
√

2 sin(πnτ), λn =
π2R2

0
2t
(n2 − 4k2). (4.132)

Similarly, we can express the measure of integration on the space of the fluctuations hθ regarding the
Fourier modes as

∫ Dhθ ≡
∞

∏

n=1
∫

dcn√
2π

. (4.133)

From equation (4.132) we observe that the zero mode lies at n = 2k and we need to treat it separately,
while at the same time for n < 2k there are 2k − 1 modes which we will denote hn<2k

θ that are tachyonic.
Unlike the torus case of before, where we found that winding geodesics were topologically stable
saddles, these winding geodesics are clearly not topologically stable since, as we can see in Figure 4.4
they can be contracted to a point.

The aforementioned zero mode stands for a rigid rotation of the sphere as seen in Figure 4.4, that
happens to be a symmetry of the action. Actually, we can easily observe that

⎧⎪⎪⎨⎪⎪⎩

θα
cl =

π
2 + α sin(2πkτ),

ϕcl = 2πkτ,
(4.134)

corresponds to a set of solutions of the equation of motion (4.128) at leading order in the coefficient
α ∈ (0, π). That is precisely the fluctuation h2k

θ , and applying the rules of instanton calculus we can
exchange the integral from over the Fourier mode amplitude c2k with an integral over the coefficient α,

12The action of equation (4.125) written in those coordinates is clearly not rotationally invariant for θ since there exists two
singular points which are the poles. Nevertheless, this problem comes out only at a higher order in t, therefore the leading order
result in the limit t → 0+ is all right.
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Figure 4.4: For k = 1 which corresponds to a single winding around the equator (red line),
the unstable mode n = 1 is depicted on the left with blue, the zero mode n = 2 is in the

middle and a massive mode n = 8 is on the right.

which changes the integration measure as

∫

dc2k√
2π
=
√

1
2∫

dα√
2π
=
√

π

2
. (4.135)

The following functional determinant is obtained by the integral over the rest of the modes

det′ (−
R2

0
2t
(∂2

τ + (2πk)2))
− 1

2

=
√

2π∣k∣R0√
t

det(−
R2

0
2t

∂2
τ)
− 1

2

det′ (Id+ 4π2k2

∂2
τ

)
− 1

2

, (4.136)

where we have to mention that no multiplicative anomaly is generated by the splitting of the determi-
nant [176]. What we did was to simultaneously divide and multiply the above equation with the n = 2k
eigenvalue of ∂2

τ since the first determinant on the right corresponds to our previous normalisation.
The leftover determinant does not require regularisation and is evaluated to be

det′ (Id+ 4π2k2

∂2
τ

)
− 1

2

= e
iπνq

2

⎛
⎜⎜⎜
⎝

∞

∏

n=0
n≠2k

∣1− 4k2

n2 ∣
⎞
⎟⎟⎟
⎠

− 1
2

=
√

2 e
iπνq

2 , (4.137)

where for k > 0 we evaluated the infinite product in the following manner

∏

n≠2k
∣1− 4k2

n2 ∣ =
2k−1

∏

n=1
(4k2

n2 − 1)
∞

∏

n=2k+1
(1− 4k2

n2 ) =
Γ(4k)

2kΓ(2k)2
Γ(2k + 1)2
Γ(4k + 1) =

1
2

. (4.138)

In equation (4.137) the Morse index νq was introduced, whose existence is natural in the context of
functional determinants that have q negative modes [216]. It can be understood as an analogue of the
intersection numbers that arise in the Lefschetz thimble decomposition in the case of ordinary integrals.

In the context of our analysis, it is because the analytic continuation of Gaussian integrals with
negative modes features a two-fold ambiguity

∫

dcn√
2π

e
1
2 λnc2

n = e±i π
2

1√
λn

. (4.139)

In the previous computation of the determinant in equation (4.138) we chose to factor out the q = 2k − 1
individual phases so that every term in the above infinite product is positive definite. Each phase
is independently chosen for each negative mode and the same continuation procedure is selected for
every one of them, to get

e
iπνq

2 = (±i)2k−1 = ∓i(−1)k. (4.140)
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We can gather and put all of the above results together, so that at the end we get the semiclassical
saddle-point approximation of the heat-kernel trace that reads

Tr[e△t] =
R2

0
t
(1+O(t))± i(

πR2
0

t
)

3
2

∑

′

k∈{Z−∖{0}}

(−1)k+1∣k∣e−
k2π2R2

0
t (1+O(t)). (4.141)

We observe that this results is in perfect agreement with the unambiguous result of equation (4.110).
This methodology does not let us calculate subleading order corrections in every sector. Neverthe-

less, there exists a methodology that calculates the Seeley–DeWitt coefficients only in the perturbative
sector using a diagrammatic expansion, and the interested reader is referred to [217]. As far as we
know, up to this point there was no attempt of reproducing any fluctuations of the non-trivial sectors.

Although this goes beyond the current analysis, the equivalence between the formalisms that we
computed allows us to come to the following intriguing conclusions

• The structure of the trans-series concerning the heat-kernel trace on the two-sphere S2, and there-
fore the trans-series structure of the scaling dimension ∆Q of charged operators in the LCE for the
case of the O(2N) model, is completely specified by geometrical arguments.

• Moreover, the saddle points that drive the factorial growth in the LCE do not have to be stable.
The non-perturbative structure of the model is commonly guided by topological considerations,
but resurgent asymptotics can also be driven by saddles that are in the same topological class,
like the example of the equator on S2. This fact was already explored for two-dimensional field
theories in [204].

• The existence of negative modes and the relevant choice of the proper continuation in equa-
tion (4.139) that give rise to the non-trivial Morse index corresponds to a geometric understand-
ing of the Borel ambiguity computed in the framework of resurgence analysis in equation (4.110).
Selecting different phases is like choosing different paths to avoid the pole singularities in the
Borel plane in every way possible. At the very end, this is associated with the Lefschetz thimble
integral decomposition [218].

4.3 Comparison with the small charge expansion

Up to now, we have explored the large-charge limit of the O(2N) vector model and its asymptotics
using the resurgence methodology. But, as we stated before, being in the double-scaling limit of the
theory, we are in a position to make exact predictions at leading order in N for every value of the charge
Q, therefore the small-charge regime is within reach, and we can express the grand potential ω as a
convergent expansion in terms of the chemical potential µ.

To do so, we start from the expression of the grand potential in equation (4.47) written in terms of
the zeta-function on the sphere S2 but in the limit µ → 0 we use a binomial expansion instead of an
asymptotic — for details see [31] § 3.3 and Appendix B — which now reads

ω(µ) = −1
2

ζ(− 1
2 ∣S

2, µ) = −1
2

∞

∑

l=0
(2l + 1)( l(l + 1)

R2
0
+ µ2)

−s RRRRRRRRRRRRRs=−1/2

= −R−2s
0

∞

∑

k=0
(−s

k
)ζ(2s + 2k − 1, 1

2)(µ
2R2

0 −
1
4
)

kRRRRRRRRRRRRRs=−1/2

, (4.142)

where with ζ(s, a) we denote the Hurwitz zeta function

ζ(s, a) =
∞

∑

n=0
(n + a)−s, (4.143)

and we also observe that it would have been more convenient if in the previous expansion we had used
the conformal mass m2 = µ2 − 1/4R2

0 instead. By using the following expression of the zeta function

ζ(2n,
1
2
) = (22n − 1)ζ(2n) = (−1)n+1(22n − 1)B2n(2π)2n

2(2n)! , (4.144)
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we can rewrite equation (4.142) in terms of m and the Bernoulli numbers as

ω(m) = R0m2
∞

∑

k=0
(−1)k( 1/2

k + 1
)(2π)2k(22k − 1)B2k

2(2k)! (R0m)2k. (4.145)

The above expression is a convergent expansion and not an asymptotic, and its radius of convergence
is ∣R0m∣ < 1/2. From the relation between the conformal mass m and the mass µ we see that the
previous mentioned radius of convergence corresponds to µ2 = 0. In this special case, the mode ℓ = 0 in
equation (4.142) becomes a zero mode and should be treated separately

ζ(s∣S2, 0) = 2
∞

∑

k=0

∞

∑

ℓ=1
(−s

k
)(ℓ + 1

2
)
−2s−2k+1

(−1
4
)

k

=
∞

∑

k=0
(−1)k(−s

k
)21−2kζ(2s + 2k − 1,

3
2
), (4.146)

which was first derived in [219]. The expression converges rapidly, and it is possible to numerically
evaluate it so that

1
2
√

2
ζ(−1

2
∣S2, 0) = −0.09372546 . . . (4.147)

which is precisely the contribution to the conformal dimension related to the Casimir energy of the
Goldstone modes that we also found in equation (3.88) in section 3.2.3.

But most importantly, from the aforementioned radius of convergence, we deduce that the singular-
ity that determines it, lies at the value m2 = −1/(4R2

0) which is negative. This is why the expansions in
the two distinguished limits m2 → 0+ and m2 →∞ can be smoothly interpolated for all values of m2 > 0.
It is therefore possible to express the Legendre relation between µ and the charge Q order by order and
the very first few are

R0 f (Q) = Q

2
+ 4Q2

π2 +
16 (π2 − 12)Q3

3π4 +
16 (384− 48π2 +π4)Q4

3π6 . . . (4.148)

R0µ = 1
2
+ 8Q

π2 +
16 (π2 − 12)Q2

π4 +
64 (384− 48π2 +π4)Q3

3π6 + . . . , (4.149)

We note that the canonical free energy in the small-charge limit is a convergent expansion as well, and
we can estimate its radius of convergence to ∣Q∣ ⪅ 0.28 . . .. Once more, the leading singularity exists at
negative values of the charge, which allows the small-charge regime and the large-charge regime to be
related without obstruction.

Now, we are in a position to compare the small-charge regime result of equation (4.145) with the
expression we derived for the grand potential ω of equation (4.107) in the large-charge asymptotic
regime that we can express as

ω(m) = P.V. [R0m2

π ∫

∞

0
dζ

K2(2mR0ζ)
ζ sin(ζ) ] . (4.150)

For that matter, we tried to compare both the real and the imaginary parts of the lateral Borel sum-
mation of ω with the values that we get from the small-charge expansion which is convergent and the
exponential contributions of the worldline computation. The results are depicted in figure 4.5 and we
observe that the aforementioned approaches are in perfect agreement with each other at the point of
validity of our numerical simulation. For instance, if we pick the value mR0 = 0.4 which for the charge
is Q ≃ 0.187 . . . we compute that the small-charge expansion and the asymptotic resurgent expression
agree up to eight digits

R0ω(mR0 = 0.4)∣
small charge

= 0.012 777 296 63 . . . (4.151)

R0ω(mR0 = 0.4)∣
resurgence

= 0.012 777 297 69 . . . (4.152)
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As a final note, the factor that limits the computation for the resurgence analysis is computer time,

Figure 4.5: We present the real and the imaginary component of the lateral Borel summa-
tion for the case of the grand potential depicted by dots and compared to the small-charge
limit and the exponential corrections coming from worldline instantons, which are the
continuous line, as function of mR0. The two methodologies agree completely at the level

of resolution of our numerical calculation.

since for every additional digit the computer needs ten times more than what it took for the previous
one. The relative error between the two computations if of order 8 × 10−8, that is smaller by six orders
of magnitude than the exponential contribution e−2π×0.4 ≈ 8× 10−2. This outcome is a forceful indication
that we have considered every non-perturbative correction in our analysis.

4.4 Lessons from large N

In this final section, our goal is to use the precise results that we derived while working in the double
scaling limit [31] to extract some generic properties of the LCE.

When not in the double scaling limit, we have to use the EFT prescription that is explained in detail
in Chapter 3 and especially in section 3.1. For this section, the important result is that the bulk effective
action can be written as an expansion in terms of the Goldstone field χ as in equation (3.17)

S[χ] = −c1 ∫
R×Sd−1

dτ dS (− ∂µχ ∂µχ)d/2 + curvature couplings,

while at the same time physical observables are expressed as a series in inverse powers of the charge
Q. For example, the overall ground state action evaluated at the saddle point reads

S = (τout − τin

R0
)
∞

∑

n=0
αn(R0µ)d−2n, where µ ∼ Q

1/(d−1)

R0
. (4.153)

Therefore, the energy of the ground state on the two sphere S2, which is related to the scaling dimension
∆Q of the lowest charged primary operator via the state-operator correspondence of equation (2.295),
is

E = − 1
β

logZ ≃ − 1
β

log(e−S )

= 1
R0

∞

∑

r=0
αnQ

d−2n
d−1 = 1

R0
(α0Q3/2 + α1Q1/2 + . . .), (4.154)

where we used that τout − τin = β and we specialised to d = 3 spacetime dimensions. The coefficients
αr are inaccessible within the EFT since they are related to the Wilsonian parameters that connect the
IR EFT with the initial UV theory, and they have to be inserted in the EFT as an external input. They
can be computed either in a double-scaling limit [22, 23, 34–37, 39, 220–225] or via lattice simulations
[26, 27]. In the double-scaling limit analysis that we performed, the grand potential corresponds to the
effective action evaluated at the saddle point while the canonical free energy corresponds to the energy
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of the ground state

Ω(µ) = − 1
β

S[χ]∣
χ=−iµτ

, Fc (Q) = E. (4.155)

Therefore, combining the results of equations (4.30), (4.35), (4.98) and (4.154) we can deduce that the
coefficients αr of the O(N) vector model at large N and large charge in the WF fixed point are

α0 =
2

3(2N)1/2
, α1 =

(2N)1/2
6

, α2 = −
7(2N)3/2

720 ,
(4.156)

and so forth.
Even though the above coefficients cannot be calculated within the validity of the EFT, we can still

apply our previous non-perturbative analysis to make some statements about their general large-order
behaviour. In order to do so, we will make the subsequent assumptions that are valid for any N:

1. the large-charge expansion is a priori asymptotic;

2. there is a first non-trivial saddle of a worldline path integral for a particle with a mass µ that can
be derived as the leading singularity in the Borel plane.

The later assumption is because we are examining a CFT with no intrinsic scales, and therefore the sole
dimensionful parameter in our system is related to the density of the fixed charge.13

This indicates that we should expect that the conformal dimension takes the general form of a
double expansion in inverse powers of the charge 1/Q and in e−2πϖR0µas

∆Q = Q3/2
∑

n
αn

1
Qn +C1Qκ1 e−3πϖα0

√
Q
∑

n
α
(1)
n

1
Qn/2

+ . . . , (4.157)

and in the above we denote by C1, κ1 and ϖ some constant parameters of the underlying theory, while
we utilised the fact that the chemical potential µ and the charge Q are Legendre dual variables

µ = 1
R0

δ∆Q
δQ = 3

2R0
α0Q1/2 + . . . (4.158)

In equation (4.157) the subsequent series is an expansion in 1/Q1/2, which is in total agreement with
the exact expression that we have found in equation (4.95).14

From equation (4.157) we observe that parameters that appear in the non-perturbative part of the
expansion are related to the large-order behaviour of the preceding perturbative series in 1/Q. There-
fore, we can improve our conjecture about the structure of the exponential term to a general prediction
about the large-order character of the αn.

As a general rule, in the case that at large n, the parameters αn, are divergent

αn ∼
(βn)!

An , (4.159)

then we acquire an optimal truncation of the above perturbative series at a value that we denote N∗

which corresponds to a minimum of αnQ−n, which for the case at hand reads

N∗ ≈ 1
β
∣AQ∣1/β, (4.160)

and the relevant error order is
ϵ(Q) ∼ e−(AQ)

1/β
. (4.161)

In our case, we flip this logic. Assuming that the structure of the leading non-perturbative terms
remain exactly the same for any value of N, we can use equations (4.157) and (4.161) to read the value

13The above proportionality factor is determined by the mass of the lightest DOF in the spectrum. In the case that N > 1 we
can farther conjecture that this is a gapped Goldstone mode [226] and its mass µ is set by the symmetries of the system, and it is
not possible to be renormalized by any loop effects [227, 228]. Then we would have got ϖ = 1 which matches with the result of
the double-scaling limit.

14This above trans-series structure, that has an expansion in Q1/2 in the non-perturbative limit, is also observed in the case of
Large-N asymptotics of matrix models [229, 230].
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of A and β as

β = 2, A = 9π2ϖ2α2
0, (4.162)

which verifies that the asymptotic growth is (2n)!:

αn ∼
(2n)!

(3πϖα0)n
, (4.163)

and this is optimally truncated to the value

N∗ ≈ 3πϖα0

2
Q1/2. (4.164)

The non-perturbative effects of the theory obtain their leading contribution through the aforementioned
(2n)! semiclassical divergence. From instanton calculus — see [155] for details — we know that the

usual quantum corrections have a n! growth and their effect is of order e−Q
3/2

. Also note that there is an
interplay between the small-n and large-n parameters. In fact, the non-perturbative expansion is related
to the large-n character of αn via the resurgence analysis and is connected to the small-n constants via
the equation of motion in equation (4.158). This is precisely the reason we can express the optimal
truncation in terms of the lowest parameter α0.

The above analysis tries to illuminate the lattice results for the O(2) and the O(4) model [26, 27]. It
was observed in these two papers that the LCE stays perfect for small values of the charge Q as well,
and also that only a small number of terms are adequate to calculate the conformal dimensions of the
lowest charged operators. On general grounds, we expect α0 to be of O(1) and lattice results for the
O(2) and O(4) model yield α0 ∼ 0.337(3) and α0 ∼ 0.301(3) respectively.

With the above generic assumptions about the large-order behaviour, our analysis predicts that
the generic optimal truncation value is for N∗ = O(

√
Q) which comes with an error that is of order

O(e−π
√
Q), and these predictions are in perfect agreement with the numerical outcome. In [26, 27] it

has been found that only the first two to three terms in the relevant expansion are enough to replicate
the lattice results with excellent precision for charges up to Q = O(10). For a charge Q = 1, the relevant
error is of order O(10−2) and for a charge Q = 11, the error becomes of order O(10−5), which have to

be compared to e−π ≈ 4× 10−2 and e−π
√

11 ≈ 3× 10−5.

As a final remark for this chapter, we have applied the resurgence methodology for the purpose
of analysing and expanding previously derived results of the LCE for the case of the O(N) model in
d = 3 spacetime dimensions at the WF conformal fixed point [31], utilising results that were obtained
in the double-scaling limit of the theory, defined as Q → ∞, N → ∞, with their ratio Q/(2N) = Q

being kept constant. We have investigated two distinct cases for the system defined on the manifold
R × Σ : either Σ = T2 is the two-torus, or Σ = S2 is the two-sphere. In the latter case, we can apply
the state-operator correspondence (§ 2.2.6) to compute the scaling dimension ∆Q of the lowest charged
primary operator OQ from the ground-state energy, which corresponds to the canonical free energy
in the double-scaling limit. We calculated the usual perturbative series as well as the exponentially
suppressed non-perturbative contributions for both cases, while for the sphere S2, resurgence analysis
alone fails to provide an unambiguous result for the non-perturbative corrections. This ambiguity can
be resolved in two ways, either by utilising the resurgence methodology for the Dawson’s function, or
using a geometric interpretation in terms of the worldline instantons.

The second procedure does not a priori depend on large N given the fact that the final result is
a finite-volume effect that is connected to the geometric structure of the compactification manifold.
Therefore, we obtain a nice geometric understanding of both the non-perturbative contributions and of
the Borel ambiguities and also the picture is robust enough to let us go beyond the double-scaling limit
and suggest a precise form for the grand potential ω that holds true for all values of the charge Q. We
were able to verify our proposition numerically with excellent precision, and we were in a position to
conjecture that the LCE is always asymptotic, even in finite N, with an optimal truncation N∗ = O(

√
Q)

and an error of order ϵ(Q) = O(e−
√
Q) which is in agreement with the lattice simulations [26, 27]. The

non-perturbative corrections that we compute originate from the fact that the EFT is an asymptotic
expansion on its own.
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Fermionic Models at large N

“The art of doing mathematics consists in finding that special case which contains all the
germs of generality.”

David Hilbert

Although most of the work in the LCE is centred around bosonic theories, a few attempts con-
fronting the topic of relativistic fermionic theories at large charge have been made [25, 62, 63] 1. As
an interesting turn of events, it was discovered in [25] that the free fermion at large-charge does not
fall within the conformal superfluid class, but the conformal dimension of the lowest operator of large-
charge scales as Q3/2 and the ground state is identified with a Fermi surface.

In this chapter, following closely Dondi et al. [74], we try to bridge this gap, and we consistently anal-
yse various fermionic models in d = 3 spacetime dimensions in Euclidean signature at large charge Q
and large N [31]. These models all exhibit a four-fermion interaction term, and we will utilise the stan-
dard large-N methodology that we also employed in section 4.1.1 to perform a Hubbard–Stratonovich
transformation via which we rewrite the four-fermion interaction term as a Yukawa-type term, by in-
troducing a complex scalar Stratonovich field. If the field remains auxiliary, the conformal phase of
the theory lies in the UV, and is accessible only through the large-N expansion. On the other hand,
by introducing kinetic terms for the Stratonovich field in d = 3 dimensions, we get the UV comple-
tion of the model, and the conformal phase of the theory lies in the IR [13]. No matter if we make the
Stratonovich field dynamical or not, the large-charge primary operator OQ is contained in the spectrum
of the CFT and depending on the nature of the initial interaction, we have found two distinct qualitative
behaviours :

1. First there is the Gross-Neveu-type of behaviour and the free fermion falls into this category. In
the GN case at large charge, we observed that there is no SSB for the U(1)B Baryon symmetry
and strictly in the N → ∞ limit the large-N physics is described in terms of an approximate
Fermi sphere. It is not yet clear if the Fermi surface remains when subleading corrections in
N are considered, but we note that this large-charge sector has no Q0 universal contribution
corresponding to the Casimir energy of fluctuations, since there are no Goldstone modes.

2. The second is the Nambu–Jona–Lasinio-type of behaviour. The NJL model and its generalisations
exhibit simultaneously a U(1)B baryon symmetry and a U(1)A axial symmetry, and in specific
large-charge sectors the U(1)A can be spontaneously broken. In that case, the large-charge ground
state coincides with the conformal superfluid paradigm, but the scaling dimension of the low-
est charged primary operator of the theory has different numerical coefficients than the bosonic
case [31], indicating that the fermionic CFT lies in a different universality class. Meanwhile, we
specifically verified that the spectrum of fluctuations over the large-charge ground state contains
the anticipated conformal Goldstone mode and therefore, the conformal dimension exhibits the
universal Q0 term corresponding to the Casimir energy of the fluctuations that we found and
computed in Chapters 3 and 4. Finally, working in large-N, we can access the small-charge limit
of the theory where the conformal dimension of the lowest charge scalar operator is in accordance
with the usual perturbative result for the free bosonic scalar operator of mass dimension one and
charge two whose energy we computed in equation (4.148).

We note that both the Gross-Neveu model and Nambu–Jona–Lasinio model are anticipated to exhibit
interacting fixed points for any spacetime dimension 2 < d < 4. Even though we will not use the

1Meanwhile, the non-relativistc CFT describing the case of the unitary Fermi gas has been examined at large charge in [64–70]
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small-ε expansion in the current chapter, nor we will examine the characteristics of the models in any
spacetime dimension apart from d = 3, many features of the Lagrangians of the GN and NJL models
can be realised if we dimensionally reduce them from d = 4.

As a final note, for every fermionic model that supports a large-charge superfluid ground state,
there is a physically intuitive way to comprehend the existence of a bosonic condensate. For instance,
for the NJL model we can carry out a Pauli–Gürsey (PG) transformation [75, 76], defined as

Ψ ↦ 1
2
[(1− Γ5)Ψ + (1+ Γ5)C4Ψ̄T] , Ψ̄ ↦ 1

2
[Ψ̄(1+ Γ5)−ΨTC4(1− Γ5)] , (5.1)

to derive a model that exhibits a Cooper-type interaction [77, 78]. Every computation can be executed
in the context of the Cooper model, with the same results as before. In the Cooper-pair context, it is
evident that the nature of the condensate is that of Cooper pairs that describe a superconductor. The
attractive interaction of the system results in a Cooper instability, and we now have a system described
by condensing bosons at large charge, and that is why the results are so similar to the O(N) vector
model.

The plan of the chapter is as follows: in section 5.1 we present all the fermionic models that we
want to examine and their UV completions. In section 5.2 we work on S1

β ×T2 which taken at β → ∞
and simultaneously, at large volume coincides with the flat space, and we examine the existence or not
of a bosonic condensate in the large-charge sector for the different models. Meanwhile, in section 5.3
we explicitly compute the spectrum of the fluctuations of the GN and the NJL model by examining
the one-loop propagator. Finally, in section 5.4, working on S1

β × S2, we can use the state-operator

correspondence, and we compute the scaling dimension of the lowest charged scalar operator OQ for
the different models, in the large-charge and the small-charge limit.

5.1 The Models

We study fermionic models in d = 3 spacetime dimensions with Euclidean metric that exhibit a second-
order phase transition. In our analysis, we will use the large-N approximation to take advantage of the
simplifications that appear in this limit, and we will concentrate our attention on a few specific cases
with a small symmetry group on top of the SO(2N) symmetry.

All the models that we examine are derived by deforming the CFT of the free fermion by adding
a four-fermion interaction term with an irrelevant coupling g. Assuming that the models feature a
fundamental scale Λ at the UV limit, then in the case that the temperature and the density of the
system are zero the coupling g acquires a critical value g−1

c ∼ Λ and there is a CFT representing the
critical point between the two phases in which certain symmetries exhibit SSB. We aim to examine a
critical limit like that, but for finite charge density. Based on the analysis of Appendix A.4, the presence
of the irrelevant coupling g renders these kinds of models non-renormalisable in the usual power-
counting sense, therefore taking the limit Λ → ∞ is not well-defined. Nevertheless, it was shown [71,
231] that they can be renormalised using the large-N expansion [13] and the RG flow connects the
conformal phase at the critical point gc in the UV limit with the free fermion CFT found in the IR
limit. There is strong evidence that the aforementioned conformal phases hold out in the finite-N
limit; however, an appropriate RG analysis demands some sort of UV completion, which is commonly
achieved by introducing additional scalar DOF that interact with the fermions through some Yukawa
interaction [232], with the corresponding Yukawa coupling being relevant in d < 4. Therefore, these
completed models are free in the UV limit while they are strongly interacting in the IR limit, with
the CFT living there being the same as the four-fermion models. The corresponding CFT gets weakly
coupled in d = 4− ε, permitting perturbative calculations of the conformal data, and such a computation
at large charge can be found in [63]. In the strict large-N limit, it is enough to look at the minimal
models containing just fermionic matter, and therefore we shall only shortly mention the complete
version in the UV.

The explicit models that we will study are the Gross-Neveu (GN) and the chiral Gross-Neveu or
Nambu–Jona–Lasinio (NJL) model along with its SU(2) × SU(2) generalisation. Normally, they are
studied either for finite N in d = 4 − ε and d = 2 + ε spacetime dimensions, or for 2 < d < 4 using the
1/N expansion. Obviously, in d = 3 there is no natural notion of chirality, and the usual solution to
that is to dimensionally reduce the 4d-model utilising four-component fermions. In d = 3 spacetime
dimensions, a four-component fermion exists in some reducible representation, so in reality we double
the number of flavours in the flavour group, of which the “chiral” symmetry is a part. A system that
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contains N free and massless Dirac fermions in d = 3+ 1 exhibits a O(2N) global symmetry, since every
Dirac particle is decomposable to two Majorana fermions. By reducing to d = 3, every 4d-Majorana
fermion is decomposed into two irreducible Majorana particles, and the emerging symmetry group is
O(4N). This is precisely the symmetry of the kinetic part in the action of the models that we examine,
which is, in general, broken by the four-fermion interaction terms. Nevertheless, by using the previous
mentioned four-dimensional reducible representation in d = 3 we can introduce a notion of chirality
and properly define a Γ5 matrix as in appendix D.1.3. In this spirit, throughout the chapter we mention
axial and chiral symmetries, despite the fact that in d = 3 they are dimensionally reduced to standard
global symmetries.

The equivalence between the results obtained at fixed N in the 4 − ε and 2 + ε expansions and the
large-N expansion for generic spacetime dimensions has been shown, and this also admits the case of
d = 3 [233]. Finally, the conformal phases found in large-N are strongly believed [234] to exist in d = 3
and finite N as well.

5.1.1 Gross-Neveu model
For three-dimensional fermionic theories with an even number 2N of fermion fields ψi=1...2N it is con-
venient to introduce a reducible representation of the Clifford algebra in the following way:

Γµ = σ3 ⊗ γµ = (
γµ 0
0 −γµ

) , Ψi ≡ (
ψi

ψi+N
) , Ψ̄i = Ψ†

i Γ3, i = 1, ..., N. (5.2)

Therefore, the Lagrangian of the Gross-Neveu model [71] written in terms of the above reducible rep-
resentation reads

L =
N

∑

i=1
Ψ̄iΓ

µ ∂µΨi −
g
N

⎛
⎜⎜
⎝

N

∑

i=1
Ψ̄iΨi

⎞
⎟⎟
⎠

2

, (5.3)

and the global symmetry of the model is explicitly O(2N)×O(2N). Furthermore, we note that there is
an Abelian U(1)B diagonal subgroup that is related to the transformation

U(1)B ∶ Ψi → eiαΨi. (5.4)

Following the large-N Hubbard–Stratonovich methodology of section 4.1.1, we introduce an auxiliary
field and a Lagrange multiplier σ, and after integrating out the auxiliary field we are left with an action
where the multiplier has been promoted to a Stratonovich field which replaces the fermionic bilinear
Ψ̄Ψ. The corresponding Lagrangian reads

L =
N

∑

i=1
Ψ̄i (Γµ ∂µ+σ)Ψi +

N
4g

σ2. (5.5)

In the limit that g →∞ we can reach the critical point of the theory, where we neglect the σ2 term. This
is a second-order phase transition that separates broken and unbroken phases of Z2 chiral symmetry
which is realised as

Z2 ∶ Ψ → −ΓµΨ. (5.6)

The proper UV completion of the GN model at finite N is the Gross-Neveu-Yukawa (GNY) model [13]
derived by promoting the auxiliary Stratonovich field σ to a dynamical field resulting in the Lagrangian

L =
N

∑

i=1
Ψ̄i (Γµ ∂µ+σ)Ψi +

1
2gY

∂µσ∂µσ. (5.7)

It is easy to see that the coupling gY is relevant and in the IR limit it grows large, so that the critical
action of the GN model and of the GNY model at the critical point are the same.
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5.1.2 Nambu–Jona–Lasinio – type models
The chiral Gross-Neveu or Nambu–Jona–Lasinio model [72, 73] is a classic four-fermion interaction
model that exhibits a continuous chiral symmetry in d = 4 spacetime dimensions with Lagrangian

L =
N

∑

i=1
Ψ̄iΓ

µ ∂µΨi −
g
N

⎡⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜
⎝

N

∑

i=1
Ψ̄iΨi

⎞
⎟⎟
⎠

2

−
⎛
⎜⎜
⎝

N

∑

i=1
Ψ̄iΓ5Ψi

⎞
⎟⎟
⎠

2⎤⎥⎥⎥⎥⎥⎥⎦

, (5.8)

and we note that the Ψ̄Γ5Ψ fermionic bilinear has a Sp(2N)-invariance, and thus the symmetry group
of the system is decreased regarding the Gross-Neveu model of equation (5.3) to

[O(2N)×O(2N)]∩ Sp(2N) = U(N).

In addition to the U(1)B baryon symmetry of the GN model, an additional U(1)A axial symmetry
manifests from the combination of the different quartic interactions as in equation (5.8):

Ψi → eiαΓ5 Ψi. (5.9)

Therefore, the total internal symmetry of the model 2 reads

U(N)×U(1)A ≃ SU(N)×U(1)B ×U(1)A. (5.10)

At the critical point, the conformal version of the NJL model sits between two phases in which the
U(1)A axial is either spontaneously broken or not. In the first phase, a Goldstone mode appears, in
contrast to the GN case where the chiral symmetry is discrete.

The generalisation of the NJL model was studied [72, 73] by examining a system with two-flavour
fermions Ψi, f , f = 1, 2 and the corresponding Lagrangian is

L =
N

∑

i=1

2

∑

f=1
Ψ̄i, f Γµ ∂µΨi, f −

g
N

⎡⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜
⎝

N

∑

i=1

2

∑

f=1
Ψ̄i, f Ψi, f

⎞
⎟⎟
⎠

2

−
3

∑

a=1

⎛
⎜⎜
⎝

N

∑

i=1

2

∑

f=1
Ψ̄i, f Γ5σa

f gΨi,g

⎞
⎟⎟
⎠

2⎤⎥⎥⎥⎥⎥⎥⎦

, (5.11)

and σa denote the Pauli matrices. The symmetry group of the previous NJL model got enhanced into
U(1)B × SU(2)L × SU(2)R, while the total internal symmetry of the system is U(N)× SU(2)L × SU(2)R
and we note that the U(1)A axial symmetry is no longer present and is replaced by the SU(2)L ×SU(2)R
symmetry group which acts on the fermions as

Ψi, f → ei 1+Γ5
2 ωL

a σa
f g Ψi,g, and Ψi, f → ei 1−Γ5

2 ωR
a σa

f g Ψi,g. (5.12)

The above symmetry exists due to the pseudo-real nature of SU(2), for which there is no completely
symmetric symbol dabc.

In our analysis, we will investigate the U(1)B ×U(1)A and U(1)B × SU(2)L × SU(2)R NJL models —
which in a shorthand notation we refer to as U(1)-NJL and SU(2)-NJL — using the large-N expansion,
utilising the unbroken SU(N) symmetry that exists in both cases.

In the case of finite N, these models are well-defined through their UV completions 3 and accessible
using perturbation theory in d = 2+ ε and d = 4− ε. The UV completed version of the U(1)-NJL reads

L = Ψ̄[Γµ ∂µ+Φ(1+ Γ5

2
)+Φ∗(1− Γ5

2
)]Ψ + 1

gY
∂µΦ∗ ∂µΦ, (5.13)

where the U(1)A symmetry manifests as

Ψ → eiαΓ5 Ψ, Φ → e−2iαΦ. (5.14)

2We neglect the Poincaré or the conformal symmetries of the model, and we only examine the internal symmetry. Furthermore,
we can always use that U(N) ≃ SU(N)×U(1). A brief sketch goes as follows: for A ∈ U(N) : A = det A × A

det A . For det A = eiχ ∈
U(1), χ ∈ R, then M = (A/det A) has det M = 1, hence M ∈ SU(N).

3For simplicity, we suppress all global symmetry indices from this point on.
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Similarly to the GN case, the completed version of the U(1)-NJL model has an IR fixed point in the
limit gY → ∞, which formally generates the critical action that we also employ in the strict large-N
limit. Then, the dynamical field Φ of equation (5.13) is identified as the initially auxiliary Stratonovich
field that replaced the complex fermionic bilinear Ψ̄Ψ + Ψ̄Γ5Ψ.

For the case of the SU(2)-NJL model, there exists a similar completion if we introduce a group of
real fields σ, πa=1,2,3, in terms of which the UV Lagrangian reads

L = Ψ̄(Γµ ∂µ+σ + iπaσaΓ5)Ψ +
1

2gY
(∂µσ ∂µσ + ∂µπa ∂µπa), (5.15)

and in this instance, the SU(2)L × SU(2)R symmetry is infinitesimally realised as

δL,RΨ = i (1± Γ5

2
)ωaσaΨ,

⎧⎪⎪⎨⎪⎪⎩

δL,Rσ = ±ωaπa,
δL,Rπa = ∓ωaσ + ϵabcπbωc.

(5.16)

In a similar manner, the symmetry manifests in terms of the field Φ = σ +πaσa, as

⎧⎪⎪⎨⎪⎪⎩
Ψ → ei 1+Γ5

2 ωaσa
Ψ,

Φ → Φe−iωaσa
,

⎧⎪⎪⎨⎪⎪⎩

Ψ → ei 1−Γ5
2 ω′aσa

Ψ,
Φ → eiω′aσa

Φ.
(5.17)

This model is known as isoNJL.

5.1.3 Cooper model
We have observed that all the models that we have examined thus far contain a fermion-antifermion
interaction term. But, in condensed matter physics, to study superconductivity which is occurring
through Cooper pairs we need to look at difermion interaction terms. Therefore, fermionic models at
large-N that are aimed at studying superconductivity at finite U(1)B-charge density, additionally to GN
or NJL-types of interactions [78, 235], should also contain the following interaction term

(4 f )Cp =
g
N

Ψ̄CΨ̄T ΨTCΨ. (5.18)

For our purposes, we care about the model that contains only the Cooper pair term

L = Ψ̄Γµ ∂µΨ + g
N

Ψ̄C4Ψ̄T ΨTC4Ψ, (5.19)

where C4 is the charge-conjugation matrix defined in equation (D.25) in Appendix D.1.3.
At the critical point — antithetically to what occurs in the GN model — the Cooper model at zero

temperature and finite density admits a non-trivial solution to the gap equation, bringing about a
superconducting phase.

It can be shown — see appendix D.2 for details — that the Cooper model is dual to the NJL
model [78] and this becomes apparent by employing the Pauli–Gürsey transformation [75–77],

Ψ ↦ 1
2
[(1− Γ5)Ψ + (1+ Γ5)C4Ψ̄T] , Ψ̄ ↦ 1

2
[Ψ̄(1+ Γ5)−ΨTC4(1− Γ5)] . (5.20)

Therefore, before we move to the next sections, some comments on the Cooper model:

• The Pauli–Gürsey transformation is a linear involution and hence it only impacts the path integral
measure up to a trivial rescaling.

• The Cooper and the NJL model, both enjoy a U(1)A ×U(1)B symmetry. Their duality maps the
U(1)B-chemical potential of the Cooper model to the U(1)A-chemical potential of the NJL model,
and the other way around. Therefore, any results found using the NJL model at finite U(1)A hold
true for the Cooper model at finite U(1)B.

• At the critical point, any quantities found in the Cooper model have to agree with the same quantities
computed in the NJL model up to a PG transformation, which we specifically checked in the large-N
limit in leading-N for the case of the ground state energy at both models.
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5.2 Symmetry breaking at large N

As it will be obvious in the next sections, whether the LCE results in simplifications in the computation
of the CFT data in the large-charge sector depends strongly on the occurrence or not of a condensate.
On that account, we shall first examine the symmetry breaking of the GN and the NJL-type of models.

In any case, irrespective of the presence of Spontaneous Symmetry Breaking in the underlying
theory, it is possible to compute the conformal dimension of specific primary operators from finite-
density ground states on the cylinder, using the state-operator correspondence of section 2.2.6. In short,
a charged primary operator OQ with a conformal dimension ∆Q is related to a state ∣Q⟩ with charge Q
on the cylinder of radius R0 as in equation (3.68). The energy of the charged state is computed using
equation (2.295) as

E(Q) = ∆Q/R0. (5.21)

As we discussed in section 4.4, the energy of the charged ground state corresponds to the canonical free
energy at the saddle point as Fc (Q) = E(Q). Therefore, we start by considering the thermal CFT on
S1

β ×Σ and we study the canonical partition function

Zc(Q, µ) = e−µβQ Tr [e−βH−µQ̂] , (5.22)

where we notice the grand-canonical partition function of equation (4.15) which reads

Zgc(β, µ) = Tr [e−βH−µQ̂] , (5.23)

where µ is the chemical potential. We can follow the analysis of section 4.1.1 and the bottom line is
that for the models that we will examine, in the large-N limit, the grand-canonical partition function
Zgc(β, µ) acquires a path integral representation that can be calculated precisely order-by-order and
reads

Zgc(β, µ)
β→∞
ÐÐÐ→
N→∞

eβΩ(µ), (5.24)

where Ω is the thermodynamical grand potential, which reads

Ω(µ) = − 1
β

Seff, (0) , (5.25)

in accordance with equation (4.155). For fermionic theories in the critical point g → ∞ this coincides
with

Ω(µ) = N
β

Tr [log (Gµ)−1] , (5.26)

where Gµ is the fermionic Green’s function at fixed chemical potential. This is similar to the expres-
sion of the grand potential of equation (4.34) but since we are dealing with Grassmann variables the
functional determinant has the opposite sign than in the bosonic case 4.

Using this expression, we can compute the charge Q and the canonical free energy at the saddle
point as

Q = ∂Ω
∂µ

, Fc (Q) = −
1
β

logZc = sup
µ
(µQ−Ω(µ)). (5.27)

In this section we work on the manifold S1
β ×T2, therefore we will perform our analysis on the torus T2

which produces the leading-order result of S1
β × S2 in the macroscopic limit R0 → ∞. We are going to

utilise the same expressions to represent energy and charge density, and we shall normalise our results
by the volume V of the torus. In the following section, we will not differentiate between flat space and
torus.

4An additional difference is that in the above definition, the grand potential is not defined per degree of freedom.
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5.2.1 Gross–Neveu model
We start by studying the Gross-Neveu model for 2N Dirac fermions in d = 3 spacetime dimensions in
Euclidean signature at a finite temperature 1/β and a finite U(1)B-chemical potential µ. Utilising the
reducible representation presented in Appendix D.1.3 and expressing the Lagrangian in terms of the
Stratonovich field σ of equation (5.5), the corresponding action reads

S [σ, Ψ] = ∫
S1

β×T2

dτ d2x [Ψ̄(Γµ∂µ − µΓ3 + σ)Ψ + N
4g

σ2] . (5.28)

The above model features a fundamental cut-off scale Λ and for general values of the coefficients
(g, β, µ) the Stratonovich field gets a VEV and the discrete parity symmetry Ψ → −Γ5Ψ is spontaneously
broken. Given some general postulates, the aforementioned VEV is homogeneous ⟨σ⟩ = σ0 and the
Stratonovich field can be expanded in the classical VEV plus quantum fluctuations around it as σ =
σ0 + σ̂/

√
N. Then we can perform the integral over the Grassmann variables and write an effective

action for the field σ around the above saddle point as

Seff = N {βV
σ2

0
4g
−Tr [log (G(µ))−1]}+ 1

2

⎡⎢⎢⎢⎢⎣
Tr [G(µ)σ̂G(µ)σ̂]+ 1

4g∫S1
β×R2

dτ d2x σ̂2
⎤⎥⎥⎥⎥⎦
+O(N−1), (5.29)

and with G(µ) we denote the fermionic Green’s function at finite chemical potential5

G(µ)(X, Y) = ⟨X∣(Γµ∂µ − µΓ3 + σ0)−1∣Y⟩ . (5.30)

Leading-order action and gap equation
We can write the expression of the grand potential Ω(µ) of equation (5.25) in momentum-space from
the leading-order part of the effective action of equation (5.29), using the form of the Fourier transforms
and the fermionic Matsubara sums given in Appendix D.3 as 6

Ω(µ)
N
∶= −

σ2
0

4g
+ 2

Λ

∫

d2 p
(2π)2{ωp +

1
β

log (1+ e−β(ωp+µ))+ (µ↔ −µ)}, (5.31)

where we assume that σ0, µ≪ Λ and, moreover, we have introduced the notation ω2
p = p2 + σ2

0 .
To compute the condensate σ0 we have to solve the gap equation

δSeff, (0)

δσ0
= 0, (5.32)

and to properly read off the symmetry phases [13] we introduce the coupling at criticality g−1
c = Λ/π.

For non-zero values of the condensate σ0 the gap equation becomes

0 = (1
g
− 1

gc
)− 1

π
(σ0 −

1
β

log(1+ eβ(σ0+µ))− 1
β

log(1+ eβ(σ0−µ))) . (5.33)

Therefore, solving for σ0 we get the closed form expression

eβσ0 = 1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
eβπ( 1

gc −
1
g ) − 2 cosh βµ +

¿
ÁÁÀ(eβπ( 1

gc −
1
g ) − 2 cosh βµ)

2
− 4
⎫⎪⎪⎪⎬⎪⎪⎪⎭

. (5.34)

To find the exact value of σ0 we separate the expression (5.34) to the following phases

1. For g > gc

5We will utilise the notation X = (τ, x⃗) for points on S1
β ×R2.

6See [187] for details of the computation. Also, the expression is normalised by the volume V.
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The only non-trivial solution is found at the limit of zero temperature and chemical potential, i.e.
β →∞, µ = 0 and reads

σ0∣
µ,β−1=0

= π ( 1
gc
− 1

g
) . (5.35)

The above solution survives also at the limit of zero temperature and finite chemical potential if only
µ < µc = σ0∣µ,β−1=0. For the case of µ > µc we observe parity restoration.

2. For g = gc

The value g = gc is the quantum critical point of the GN model at large-N and signifies a second-
order phase transition between the two phases of the theory: the one with parity and the one where
parity is broken. At the critical point, there is no non-trivial solution for the condensate σ0 for any
value of the chemical potential µ.

Therefore, at the critical point for finite chemical potential µ, we have that σ0 = 0 and the ground
state of the corresponding CFT at the zero temperature limit β → ∞ is that of a filled Fermi sphere
where the fermions are massless. The grand potential for the above configuration is computed using
equation (5.31) and reads

Ω(µ)
N
= 2 ∫

µ<∣p∣<Λ

d2 p
(2π)2 ∣p∣+ 2µ∫

∣p∣<µ

d2 p
(2π)2

= Λ3

3π
+ µ3

6π
. (5.36)

We can use the result of the grand potential and equation (5.27) to compute the normalised U(1)B
charge Q and the normalised canonical energy of the Fermi-sphere ground state as

Q
N
= µ2

2π
,

Fc (Q)
N

= 1
3π
(2π
Q
N
)

3/2
. (5.37)

As we saw in chapter 4, the computation on the torus T2 provides the leading order result in Q for the
ground state energy of the Fermi-sphere in the large-charge expansion on the sphere S2, and therefore
for the conformal dimension ∆FS of the Fermi sphere operator OQFS [25] which is the lightest charged
primary in the theory. As a matter of fact, we have checked that at leading order, the result for the GN
CFT is precisely the same as the free fermion CFT.

We should point out that the absence of Spontaneous Symmetry Breaking at leading order in the
large-N limit in the Gross-Neveu model at large charge has two possible explanations:

1. We have an interacting theory that at large-N, the large-charge ground state is not that of a
superfluid but of an exact Fermi surface, that would make this theory to be the first non-free
example with such a behaviour. If this is the case, there should be a transition between Fermi
sphere physics at large-N and superfluid physics at small-N at some value N∗ to accommodate
the emergent supersymmetry at N = 1/2 [19, 63, 233]7.

2. The Fermi surface at finite values of N is never precisely free, and differently to the superfluid
EFTs examined in [19, 30], any interactions taking place in the Fermi surface at low energies are
not automatically suppressed. If that is the case, the SSB is an exponentially suppressed effect
and simply inaccessible in 1/N perturbation theory. This possibility would not require a finite-N
transition, and it would be in accordance with the emergent supersymmetry [233] and the massive
Goldstino [see 19, § 4] at N = 1/2.

Since we have not yet analysed the four-fermion interaction about the Fermi surface ground state, we
cannot say for sure which is the correct possibility.

5.2.2 Nambu–Jona–Lasinio model
The next model we will study is the U(1)-NJL model with a finite U(1)A-chemical potential µ, written
in terms of the auxiliary Stratonovich field Φ replacing the complex fermionic bilinear Ψ̄Ψ+ Ψ̄Γ5Ψ with

7As we label N, the Gross-Neveu model is correctly defined for half-integer values of N in d = 3.



5.2. Symmetry breaking at large N 119

action

S[Φ, Ψ] = ∫
S1

β×T2

dτ d2x [Ψ̄(Γµ∂µ − µΓ3Γ5 +ΦP+ + Φ̄P−)Ψ +
N
4g
∣Φ∣2], (5.38)

where in the preceding expression we introduced the chiral projectors

P± =
1± Γ5

2
. (5.39)

The above chemical potential µ is sourcing a finite charge density for the U(1)A axial symmetry

Ψ → eiαΓ5 Ψ, Φ → e−2iαΦ. (5.40)

We will proceed as in the GN case of section 5.2.1, and therefore we can assume that the Stratonovich
field Φ will acquire a VEV that will spontaneously break the U(1)A symmetry, and moreover that the
aforementioned VEV is homogeneous ⟨Φ⟩ = Φ0. Then the normalised thermodynamic grand potential
(5.25) is computed from the leading-N term of the effective action and reads

Ω(µ)
N
= − ∣Φ0∣2

4g
+

Λ

∫

d2 p
(2π)2 {Ω+ +Ω− +

2
β

log (1+ e−βΩ+)+ 2
β

log (1+ e−βΩ−)} , (5.41)

and with Ω± we denote the one-particle on-shell energies defined as

Ω2
± ∶= ∣Φ0∣2 + (∣p∣± µ)2. (5.42)

The difference with the Gross-Neveu model analysed in section 5.2.1 is that it is not possible to get a
Fermi sphere configuration if Φ0 ≠ 0, given that the one particle on-shell energies are always positive
definite Ω± ≥ 0. Therefore, for zero temperature, i.e. β →∞, we can drop the thermal logarithm terms,
in which case the grand potential reads

lim
β→∞

Ω(µ)
N
= − ∣Φ0∣2

4g
+

Λ

∫

d2 p
(2π)2 [

√
(∣p∣+ µ)2 + ∣Φ0∣2 +

√
(∣p∣− µ)2 + ∣Φ0∣2]. (5.43)

To explicitly calculate the values of the condensate Φ0 we have to solve the gap equation and as before
we also include the critical coupling g−1

c = Λ/π. Thus, the gap equation in the zero temperature limit is

0 = 1
2
(1

g
− 1

gc
)+ 1

2π2

⎡⎢⎢⎢⎢⎢⎣

√
∣Φ0∣2 + µ2 − µ arctanh

⎛
⎜
⎝

µ√
∣Φ0∣2 + µ2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
, (5.44)

and given that it depends solely on ∣Φ0∣, we infer that the VEV is real and positive, i.e. ⟨Φ⟩ = Φ0 > 0.
In contrast to the GN case, at the critical point g = gc the gap equation always features a non-trivial
solution for finite values of the chemical potential µ, which is

Φ0 = µ
√

κ2
0 − 1, where κ0 tanh κ0 = 1, (5.45)

and we can numerically evaluate it as Φ0/µ = 0.6627 . . ..
The above solution verifies our postulate the that the finite chemical potential ground state will

spontaneously break the U(1)A axial symmetry by providing a VEV to the Stratonovich field Φ, which
in turn will play the part of the large order parameter. We also note that symmetry cannot be restored in
any value apart from zero chemical potential, i.e. µ = 0, since conformal symmetry forbids the existence
of any new scale that would separate the broken and the unbroken phase.

We can make the situation more clear by computing the renormalized potential Ω explicitly for some
generic constant configuration of the auxiliary field Φ. We will use the minimal subtraction scheme,
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given that the divergent part of the grand potential is independent of the chemical potential µ,

Ω(µ)
N
− Ω(0)

N
= ∫

d2 p
(2π)2 [Ω+ +Ω− − 2

√
p2 + ∣Φ∣2]

= 1
6π

⎡⎢⎢⎢⎢⎢⎣
3∣Φ∣2µ arctanh

⎛
⎜
⎝

µ√
∣Φ∣2 + µ2

⎞
⎟
⎠
+ (µ2 − 2∣Φ∣2)

√
∣Φ∣2 + µ2 + 2∣Φ∣3

⎤⎥⎥⎥⎥⎥⎦
,

(5.46)

and then add once more the renormalized value Ω. For µ = 0 the one-particle on-shell energy reads
Ω2
± = ∣Φ∣

2 + p2 which is precisely the same expression as ωp in the GN model, and the regularised
integral expression reads

Ω(0) = −N∣Φ∣3

3π
. (5.47)

Thus, the renormalised potential is

Ω(µ)
N
= 1

6π

⎡⎢⎢⎢⎢⎢⎣
3∣Φ∣2µ arctanh

⎛
⎜
⎝

µ√
∣Φ∣2 + µ2

⎞
⎟
⎠
+ (µ2 − 2∣Φ∣2)

√
∣Φ∣2 + µ2

⎤⎥⎥⎥⎥⎥⎦
, (5.48)

and we observe that it is U(1)A-invariant as anticipated, and at the same time it features a S1-worth of

vacua for the value of ∣Φ∣ = µ
√

κ2
0 − 1 as is depicted in Figure 5.1. The ground state of this model is that
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Figure 5.1: Plot of leading order in N of the canonical potential for the NJL model with
Im(Φ) = 0 for different values of µ. For µ > 0 the minima at Φ ≠ 0 signals SSB.

of the conformal superfluid and using equation (5.27) we can again compute the U(1)A-charge and the
canonical free energy as

Q
N
=

κ3
0µ2

2π
,

Fc (Q)
N

= 1

3πκ
3/2
0

(2π
Q
N
)

3/2
. (5.49)

Again, we note that this computation on the torus T2 gives the leading order result in Q for the
ground state energy of the conformal superfluid at large charge on the sphere S2, and therefore for
the conformal dimension ∆SF of the superfluid large charge operator OQSF. This configuration cannot
support a Fermi sphere solution, and hence the whole charge is held in the superfluid.

As a final note, we might try to repeat the above computation for a finite U(1)B-charge instead,
however the eigenvalues of equation (5.42) are replaced by

Ω± =
√

p2 + ∣Φ0∣2 ± µ, (5.50)
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which are precisely the same eigenvalues that appear in the GN model. Therefore, we conclude that
for this choice of chemical potential there is no superfluid sector, and instead the ground state at large
charge is described by a Fermi sphere with the same charge and energy as in equation (5.37).

5.2.3 SU(2)-NJL model
The final model that we will examine is the SU(2)-NJL model. Now, we can choose from multiple
charge densities to decide which we will source. We will study the model for finite values of the
chemical potential for the σ3 and Γ5σ3 generators. The corresponding critical action reads

S[σ, πa, Ψ] = ∫
S1

β×T2

dτ d2x
⎡⎢⎢⎢⎢⎣

Ψ̄
⎛
⎝

Γµ∂µ + σ + iπaσaΓ5 −
⎧⎪⎪⎨⎪⎪⎩

µVΓ3σ3

µAΓ3Γ5σ3

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠

Ψ
⎤⎥⎥⎥⎥⎦

. (5.51)

The grand potential is once more computed from the leading term of the effective action and now reads

ΩV,A

N
= 2

Λ

∫

d2 p
(2π)2 {ΩV,A

+ +ΩV,A
− + 2

β
log(1+ e−βΩV,A

+ )+ 2
β

log(1+ e−βΩV,A
+ )} , (5.52)

where in a similar manner as in section 5.2.2 we introduce the one-particle on-shell energies

ΩV
± =
√
∣Φ2∣2 + (

√
(∣p∣+ ∣Φ1∣± µV)

2
, ΩA

± =
√
∣Φ1∣2 + (

√
(∣p∣+ ∣Φ2∣± µA)

2
, (5.53)

where in terms of real fields σ, πa we have ∣Φ1∣2 = σ2 +π2
3, ∣Φ2∣2 = π2

1 +π2
2. Independently of the choice

of the sourcing, there is no configuration for the gap equation at zero temperature for which the field
combinations Φ1, Φ2 acquire a VEV simultaneously. It turns out that when µV is switched on, the only
solution that can be found is

∣Φ1,0∣ = 0, ∣Φ2,0∣ = µV,A

√
κ2

0 − 1, (5.54)

where κ0 is the same as in equation (5.45) .
The same analysis holds true when µA is switched on instead, with the only difference being that

the VEVs for Φ1, Φ2 are exchanged.
Given that the one-particle on-shell energies are always positive, i.e. ΩV,A

± ≥ 0, we conclude that no
Fermi sphere can arise in the β →∞ limit, and the large charge ground state configuration is that of the
conformal superfluid, similar to the U(1)-NJL model. The only difference with the previous result is
an overall factor of two, that appears in the grand potential and the canonical free energy.

5.3 Spectrum of fluctuations

In section 5.2 we determined the large-charge ground state in flat space for the GN and the U(1)-NJL
and SU(2)-NJL models. In this section, we aim to analyse the fluctuations’ spectrum on top of the
aforesaid ground state.

As a preliminary assessment, we expect that the models that exhibit SSB and the ground state is
that of a conformal superfluid, follow the pattern of the large charge O(N) vector model so that the
spectrum contains one type I Goldstone mode with the following dispersion relation

ωI =
p√
2
+ . . . (5.55)

and a massive particle of order µ [19].
On the contrary, in the case of the Gross-Neveu model, where the large charge ground state is that of
a Fermi sphere and there is no SSB, the conformal superfluid paradigm does not apply, and we do not
expect the appearance of a conformal Goldstone mode.
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5.3.1 Gross-Neveu model
First, we examine the GN model, and we anticipate the quantum fluctuations on top of the Fermi
sphere ground state to be both of bosonic and of fermionic nature. The former are generated from
the Stratonovich field σ, while the latter are particle hole excitations present in the free fermionic
theory [151].

To understand the impact of the fluctuations, we should go to the next-to-leading-order (NLO) term
in the effective action Seff, (2) (5.29) at the critical point where σ0 = 0. Then the whole analysis is reduced

to the computation of Tr [G(µ)σG(µ)σ], which is simpler to perform in momentum space 8, where it
reads

Tr [G(µ)σG(µ)σ] = −∑∫ d2 p σ(−P)σ(P)∑∫
d2k
(2π)2β

Tr [G(µ)(K)G(−µ)(P −K)], (5.56)

where we used that G(µ)(X, Y) = −G(−µ)(Y, X) and the fermionic propagator (5.30) at the critical point
in momentum space for finite charge density which reads

G(µ)(P) =
iΓµ P̃µ

P̃2
, P̃ = (ωn − iµ, p⃗). (5.57)

The one-loop integral of equation (5.56) can be depicted in the following Feynman diagram

K,µ

P − K,−µ

I I = 2P2 I2 − 4I1, (5.58)

and sums up to the computation of two master integrals I1, I2, where details of the computation can be
found in Appendix D.3. At the limit that β →∞ this reads

∑∫
d2k
(2π)2β

Tr [G(µ)(K)G(−µ)(P −K)] = i2
⎡⎢⎢⎢⎣

√
P2

4
+ µ

π

⎤⎥⎥⎥⎦
. (5.59)

Therefore using equation (5.29) we obtain the quadratic action of fluctuations, which is

Seff, (2) =
1
2

Tr [G(µ)σG(µ)σ] = 1
2∑∫

d2 p σ(−P)σ(P)
⎡⎢⎢⎢⎣

√
P2

4
+ µ

π

⎤⎥⎥⎥⎦
. (5.60)

This action is non-local and does not actually correspond to stable bosonic excitations on top of the
fermionic ground state. As a matter of fact, the µ/π is a decay constant term of O(µ) rather than a mass
term, and a similar case has been found in [236].

5.3.2 Nambu–Jona–Lasinio model
In section 5.2.2 we observed that fixing the U(1)A-charge generates a VEV for the Stratonovich field Φ
and from the determinant of the grand potential in the zero temperature limit in equation (5.43), we
note that every fermion gets a mass that is equal to

m2
F = µ2 +Φ2

0 = κ2
0µ2, (5.61)

where we used the explicit value of the VEV for Φ0 from equation (5.45). This fact indicates that the
U(1)B symmetry remains unbroken, while the axial symmetry is broken.

Therefore, the U(1)-NJL is a suitable candidate to verify the predictions of the superfluid EFT by
explicitly computing the NLO corrections in the functional determinant, which are subleading in N.

8Our notation is P = (ωn, p⃗) for momenta on S1
β ×R2, where ωn = (2n+1)π

β
are the Matsubara frequency for fermions.
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Following section 2.3.1, as in equation (2.340) we can shift the Φ field by its VEV and expand the
fluctuation into real and imaginary parts Φ̂ = σ̂ + iπ̂ around the chosen vacuum state ⟨Φ⟩ = Φ0 as

Φ = Φ0 +
Φ̂√
N
= Φ0 +

σ̂ + iπ̂√
N

, (5.62)

and then express the Lagrangian of equation (5.38) in the critical limit in terms of the vacuum state plus
the quantum fluctuations on top

LΦ0 = Ψ̄Γµ∂µΨ +Φ0Ψ̄Ψ − µΨ̄Γ3Γ5Ψ + 1√
N
(σ̂Ψ̄Ψ + iπ̂Ψ̄Γ5Ψ). (5.63)

To determine the fluctuations’ spectrum over the ground state, we have to compute the inverse propa-
gator G−1(P) of Φ̂ at one fermion loop.

We can read the fermion propagator from equation (5.63) and we can write it in momentum space
using the notation of Appendix D.3 where it explicitly reads

∆(µ,Φ0)(P) = (−i /P +Φ0 − µΓ3Γ5)−1

=
(ω2 + k2 +Φ2

0 − µ2 + 2µ(iωΓ3 +Φ0)Γ3Γ5)
(ω2 +Φ2

0 + (µ + k)2) (ω2 +Φ2
0 + (µ − k)2)

(i /P +Φ0 − µΓ3Γ5) , (5.64)

and we use the notation P = (ω, p⃗) for momenta on S1
β ×R2, and /P = ΓµPµ. We note that due to the

absence of a Fermi surface ground state, we can work straight away in the zero temperature limit β →∞,

therefore ω are the continuous Matsubara frequencies, i.e. ωn
β→∞
Ð→ ω.

From the explicit form of equation (5.64) we observe that the fermionic propagator is antisymmetric
∆(µ,Φ0)(−P) = −∆(−µ,−Φ0)(P) and utilising it we can compute the following Feynman graphs in momen-
tum space which will provide the inverse propagator for the scalar fluctuations

K,µ,Φ0

P − K,−µ,−Φ0

I I = G−1
σσ(P) = −∫

d3k
(2π)3 Tr [∆(µ,Φ0)(K)∆(−µ,−Φ0)(P −K)] , (5.65)

K,µ,Φ0

P − K,−µ,−Φ0

I iΓ5 = G−1
σπ(P) = −i∫

d3k
(2π)3 Tr [∆(µ,Φ0)(K)Γ5∆(−µ,−Φ0)(P −K)] , (5.66)

K,µ,Φ0

P − K,−µ,−Φ0

iΓ5 I = G−1
πσ(P) = −i∫

d3k
(2π)3 Tr [Γ5∆(µ,Φ0)(K)∆(−µ,−Φ0)(P −K)] , (5.67)

K,µ,Φ0

P − K,−µ,−Φ0

iΓ5 iΓ5 = G−1
ππ(P) = ∫

d3k
(2π)3 Tr [Γ5∆(µ,Φ0)(K)Γ5∆(−µ,−Φ0)(P −K)] . (5.68)

Every integral above can be expanded in the regime of interest which is (P/µ)≪ 1.
The zero order of the expansion equals the value of P = 0 and needs regularisation. We choose to

regularise it by subtracting the µ = 0 result, since the divergence is independent of µ. The analytical
computation can be found in appendix D.3.2 and the final result reads

G−1(P)∣
O(0)

= (G−1
σσ(0) G−1

σπ(0)
G−1

πσ(0) G−1
ππ(0)

) = κ0µ

π
(1 0

0 0) , (5.69)
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where κ0 is given in equation (5.45) and the result is consistent with the existence of a massive and of a
massless mode.

Higher orders in the expansion have no need for regularisation, and we can straightforwardly com-
pute them. The linear order in P reads

G−1(P)∣
O(P/µ)

= κ0ω

2π
(0 −1

1 0 ) , (5.70)

while the quadratic order is

G−1(P)∣
O(P2/µ2)

=
⎛
⎜⎜
⎝

(2κ2
0−1)ω2

12πκ0(κ
2
0−1)µ

+ (3κ6
0−2κ4

0−2κ2
0+2)p2

24πκ3
0(κ

2−1)µ
0

0 κ0ω2

4π(κ2
0−1)µ

+ κ3
0 p2

8π(κ2
0−1)µ

⎞
⎟⎟
⎠

. (5.71)

As usual, we can compute the dispersion relations from the zeros of the inverse propagator

G−1(P) =
⎛
⎜⎜⎜
⎝

κ0µ
π +

2κ2
0(2κ2

0−1)ω2
+(3κ6

0−2κ4
0−2κ2

0+2)p2

24πκ3
0(κ

2
0−1)µ

− κ0
2π ω

κ0
2π ω

2κ0ω2
+κ3

0 p2

8π(κ2
0−1)µ

⎞
⎟⎟⎟
⎠
+O(P3/µ3), (5.72)

therefore for the two modes they read

ω2
1 = −

1
2

p2 + . . . , (5.73)

ω2
2 = −12

(κ2
0 − 1) κ4

0

(2κ2
0 − 1)

µ2 −
(5κ6

0 − 5κ4
0 − κ2

0 + 2)
2κ2

0(2κ2
0 − 1)

p2 + . . . , (5.74)

From equation (5.73), we can identify the conformal Goldstone ωI = ω1 and we also observe the ra-
dial massive mode of mass order O(µ). This result confirms our analysis and demonstrates that the
conformal superfluid EFT is applicable in this case.

Finally, we have repeated this same analysis for the case of the SU(2)-NJL model for finite values of
the chemical potentials µA,V . We discovered precisely the same spectrum as in equation (5.73) with the
addition of two additional degenerate gapped modes, with the following dispersion relation

ω2 = −4κ2
0µ2 −

(κ2
0 − 1) p2

κ2
0

+ . . . (5.75)

We conclude that the conformal superfluid EFT describes both the U(1)-NJL and the SU(2)-NJL model,
and the spectrum of their quantum fluctuations agrees completely with the expectant predictions con-
sidering their symmetry breaking pattern, as we will discuss in section 5.3.3.

5.3.3 Symmetry breaking patterns and Goldstones
The analysis of section 5.3.2 indicates that the ground state of both the U(1)-NJL and the SU(2)-NJL
models is described by the conformal superfluid EFT and the spectrum of neither of the theories con-
tains a Goldstone mode of type II with a quadratic dispersion relation. This may come as a surprise,
given that naively we might think that the SU(2)-NJL is a suitable candidate in which the inhomoge-
neous sectors of the O(4) model can be further studied [27, 28, 147, 148]. Nevertheless, the obtained
result is totally consistent with the known counting rules of Goldstone modes.

The actions of equations (5.38) and (5.51) at the conformal point and for zero chemical potential µ
feature the following total symmetry

SO(4, 1)× SU(N)×U(1)B ×
⎧⎪⎪⎨⎪⎪⎩

U(1)A (U(1)-NJL),
SU(2)L × SU(2)R (SU(2)-NJL).

(5.76)
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By fixing the charge and introducing the axial chemical potentials µA, the symmetry is reduced to

D × SO(3)× SU(N)×U(1)B ×
⎧⎪⎪⎨⎪⎪⎩

U(1)A (U(1)-NJL),

U(1)(3)A ×U(1)(3)B (SU(2)-NJL),
(5.77)

where D is the dilatation generator on flat space and of time translations on the cylinder, and U(1)(3)A,B
are the global phase symmetries generated by Γ5σ3 and σ3 respectively which are the Cartans of
SU(2)L × SU(2)R. So, we observe that by introducing the axial chemical potentials, we have explic-
itly broken the SU(2)L × SU(2)R symmetry down to U(1)(3)A ×U(1)(3)B .

Seeing the breaking as a two-step procedure [21], at this point the ground state solution at large-N
spontaneously breaks a linear combination of D and of the global phase symmetry U(1)A for both
models. This is the same symmetry breaking pattern that we discussed in section 3.1 and agrees with
the typical process of symmetry breaking for a non-Lorentz invariant theory [164, 171, 172, 177] that we
discussed in section 2.3.1. Assuming that we have a system with m spontaneously broken generators,
nI relativistic Goldstones modes with linear dispersion relations and nI I non-relativistic modes with
quadratic dispersion relations, the correct counting law [178] is

nI + 2nI I = m. (5.78)

Given that the U(1)-NJL and SU(2)-NJL models have exactly m = 1 only one type I Goldstone mode
with linear dispersion relation can exist which is the conformal superfluid phonon. As we saw at the
end of section 5.3.2, the difference is that the SU(2)-NJL contains two additional gapped modes that can
be merged into a complex scalar field that is charged under the remaining unbroken U(1)(3)B symmetry.

5.4 Conformal dimensions and local CFT spectrum

In this final section, we want to compute the scaling dimension of the lowest primary operator of large
charge Q for the Gross-Neveu and the U(1)-NJL model.

In our analysis thus far, we have examined the aforementioned models on the torus T2 of volume
V, but to be able to compute conformal dimensions of charged operators, we should be able to use the
state-operator correspondence (2.295) and study the systems of interest on the cylinder R×S2. This can
be accomplished by using a Weyl transformation — see Appendix D.1.2 for details — so that the action
for the free fermion at fixed charge on R× S2 reads

S = ∫
R×S2

[Ψ̄( /D − µΓτ + σ)Ψ], with Q = ∫
S2

Ψ̄ΓτΨ, (5.79)

where with /D we denote the Dirac operator 9 on the manifold R× S2 .

5.4.1 Gross-Neveu model
We start with the GN model at large-N, and the grand potential Ω(µ) evaluated on S1

β × S2 reads

Ω(µ)
N
= −

σ2
0

4g
+ 2
(4πR2

0)
∑

j= 1
2

(2j + 1)[
√

ω2
j + σ2

0 + thermal contributions], (5.80)

and ωj = (j+ 1/2)/R0 denote the eigenvalues of the Dirac operator on the two-sphere S2 and the expres-
sion is analogous to equation (5.31) on the torus T2.

Solving the gap equation for the condensate σ0, we can easily deduce that there is no non-trivial
solution where σ0 ≠ 0 at zero temperature β → ∞ and at the critical point g = gc for any value of µ,

9The form of the Dirac operator along with the notations used can be found on Appendix D.1 and Γτ = Γ3 in our notation.
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precisely like the torus 10. Therefore, at the limit β →∞ the grand potential reads

Ω(µ)
N
= 1

2πR2
0

⎡⎢⎢⎢⎢⎢⎣
∑

ωj>µ

(2j + 1)ωj + µ∑
ωj<µ

(2j + 1)
⎤⎥⎥⎥⎥⎥⎦
, (5.81)

describing a Fermi-sphere ground state where the fermions are massless. Using equation (5.27), we
compute the charge and the canonical free energy that corresponds to the energy of the Fermi’s sphere
ground state as

Q
N
= 1

2πR2
0
⌊µR0⌋(⌊µR0⌋+ 1), Fc (Q)

N
= 1

6πR3
0
⌊µR0⌋(⌊µR0⌋+ 1)(2⌊µR0⌋+ 1), (5.82)

and we use the floor function to point out that the energy levels on the cylinder are discrete. The limit
R0 →∞ replicates the torus result in section 5.2.1.

The above Fermi sphere ground state corresponds to the charged scalar primary OQFS that was first
discussed in [25] in relation to the free fermionic CFT, and it is parity-even. Actually, it turns out that
OQFS is the lowest charged primary operator even for the interacting CFT of the Gross-Neveu model
because the Stratonovich field σ does not condense. The same result is true also for the U(1)-NJL
model when we fix the U(1)B charge. The charge Q and the conformal dimension ∆FS(Q) of OQFS are

Q
2N
= ⌊µR0⌋(⌊µR0⌋+ 1), ∆FS(Q)

2N
= 1

3
⌊µR0⌋(⌊µR0⌋+ 1)(2⌊µR0⌋+ 1) = Q

6N

√
2Q
N
+ 1, (5.83)

where we normalized Q, and ∆FS(Q) by 2N, which is the total number of 3d Dirac fermions and the
conformal dimension ∆FS(Q) is depicted in figure 5.2 in terms of Q.

The asymptotics of the scaling dimension at the limit Q/2N → ∞ can be consistently computed so
that the first orders read

∆FS(Q)
N

= 2
3
( Q

2N
)

3/2
+ 1

12
( Q

2N
)

1/2
− 1

192
( Q

2N
)
−1/2
+O
⎛
⎝
( Q

2N
)
−3/2⎞
⎠

, (5.84)

As we discussed before, this large-charge sector does not contain Goldstone excitations that describe
new primary operators with ∼ O(1) gap. As we saw in section 5.3.1, fluctuations of the Stratonovich
field σ cannot systematically be used for describing new primaries with gap of order ∼ O(1) from the
Fermi-surface ground state. It rather contains particle-hole type excitations that create new — in general
fermionic and with spin — primaries with the same charge Q and gap δ∆ ∼ O(1). Given the fact that
this is a strictly large-N analysis, it is not clear if this effect persists as well for finite values of N.

5.4.2 Nambu–Jona–Lasinio model
Next, we want to compute the conformal dimension of the lowest charged operator for the U(1)-NJL
model. The ground state of the model at fixed U(1)A charge corresponds to a conformal superfluid, and
therefore studying the CFT on S1

β ×S2 via the state-operator correspondence we compute the conformal

dimension ∆SF(Q) of the scalar primary OQSF. In our analysis, we focus explicitly on the U(1)-NJL
model, but we note that the result holds true for the SU(2)-NJL of section 5.2.3 at leading order in N,
by replacing N by 2N.

At the critical point, and at the limit β →∞, the grand potential reads

Ω(µ)
N
= 1
(4πR2

0)

∞

∑

j= 1
2

(2j + 1) {Ω+ +Ω−} , Ω2
± = ∣Φ∣

2 + (ωj ± µ)2, (5.85)

where ωj = (j + 1/2)/R0 denote the eigenvalues of the Dirac operator on the two-sphere S2. As in
section 5.4.1, we use equation (5.27) to compute the charge and the canonical free energy, and using

10The sums need to be regulated using a smooth cut-off, e.g. e−ωj/Λ, to preserve diffeomorphism- invariance.
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equation (2.295) the latter corresponds to the conformal dimension of the scalar operator OQSF as

Q
2N
= 1

2

∞

∑

j= 1
2

(2j + 1){
ωj + µ

Ω+
−

ωj − µ

Ω−
} , (5.86)

∆SF(Q)
2N

= −R0

2

∞

∑

j= 1
2

(2j + 1) {Ω+ +Ω−}+ (µR0)
Q

2N
. (5.87)

Furthermore, we need to evaluate the Stratonovich field Φ on the solution Φ0 of the gap equation,

G ∶= 1
2R0

∞

∑

j= 1
2

(2j + 1){ 1
Ω+
+ 1

Ω−
}

RRRRRRRRRRRRRRRRRΦ=Φ0

= 0. (5.88)

In the above equations, the expression of the charge is finite, but on the other hand, the expressions
for the gap equation and the conformal dimension need to be regularised. One way to accomplish
that, is to remove the leading divergence in the sums and then add them back using a zeta-function
regularisation. This way, we obtain the following regulated forms

Greg = 1
2

∞

∑

j= 1
2

{(2j + 1) 1
R0
[ 1

Ω+
+ 1

Ω−
]− 4}+ 2ζ(0), (5.89)

∆reg

2N
= −1

2

∞

∑

j= 1
2

{(2j + 1)R0 [Ω+ +Ω−]− 4R2
0ω2

j − 2R2
0Φ2}− R2

0Φ2ζ(0)+ (µR0)
Q

2N
. (5.90)

Given that the infinite sum is convergent now, we can numerically compute the preceding regulated
expressions for different values of Q and the result is depicted in Figure 5.2 along with the conformal
dimension ∆̂FS(Q) = ∆FS(Q)/2N for the primary operator OQFS that appears in the Gross-Neveu and the
U(1)-NJL models with fixed U(1)B charge.

� �� �� �� ��
�

��

���

���

Figure 5.2: Conformal dimension ∆FS of the primary operator OQFS in the GN model and
the U(1)-NJL with fixed U(1)B charge compared to the conformal dimension ∆SF of the

charged superfluid primary operator OQSF in the NJL model at finite U(1)A-charge.

We can also analytically compute the first terms in the asymptotic expansion of the conformal
dimension ∆SF in the limits of large charge, i.e. QN ≫ 1 and small charge, i.e. QN ≪ 1. This will be done
in the final two sections.
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Large-Q limit
For finite U(1)A charge, we can deduce that there are three dimensionful quantities in our problem, µ,
Φ0 and R0 respectively, nevertheless in the equations of section 5.4.2 the only two dimensionless ratios
that appear are R0µ, R0Φ0. Since in this section we care about the large-Q limit, the dominant scale is
the chemical potential µ, satisfying R0µ≫ 1.

Therefore, we can write an expansion in inverse powers of µ for equation (5.45), that is the solution
of the gap equation, which reads

R0Φ0 =
√

κ2
0 − 1(µR0 +

κ1

µR0
+ κ2

(µR0)3
+ . . .) . (5.91)

To determine the parameters κi we have to solve the gap equation (5.88), which we split into regular
and divergent contribution as

G = Gr +Gd = 0, (5.92)

Gr =∑
ℓ=1

ℓ
⎡⎢⎢⎢⎣

1√
(ℓ + µR0)2 + (Φ0R0)2

+ 1√
(ℓ − µR0)2 + (Φ0R0)2

− 2
1√

ℓ2 + (Φ0R0)2
⎤⎥⎥⎥⎦

, (5.93)

Gd = 2∑
ℓ=1

ℓ
1√

ℓ2 + (Φ0R0)2
, (5.94)

and we changed the sum in equation (5.88) as j = ℓ − 1/2.
We can compute the regular part using the Euler-Maclaurin formula, and we write it as an expansion

in µR0 ≫ 1 which then reads

Gr = 2µR0 [−κ0 +
√

κ2
0 − 1+ arccoth(κ0)]+

1
6µR0

⎡⎢⎢⎢⎢⎢⎣
− 1

κ0
− 12κ0κ1 +

1+ 12(κ2
0 − 1)κ1√

κ2
0 − 1

⎤⎥⎥⎥⎥⎥⎦
+ . . . (5.95)

On the other hand, the divergent contribution can be computed using zeta-function regularisation 11 as

Gd = 2
∞

∑

ℓ=1
ℓ(ℓ2 + R2

0Φ2
0)−s∣

s=1/2
= 2

Γ(s)

∞

∫

0

dt
t

ts
∞

∑

ℓ=1
ℓe−(ℓ

2
+R2

0Φ2
0)t∣

s=1/2
. (5.96)

From equation (5.45) we can easily deduce that for µR0 ≫ 1, we also have Φ0R0 ≫ 1. Then it is
clear how to proceed, since we have performed a similar computation in section 4.1.1. The integral in
equation (5.96) localises at t = 0 for long enough values of Φ0R0 and using the following expansion for
the sum

∞

∑

ℓ=1
ℓ e−ℓ

2t = e−t

12
(2t + 5+ 6

t
+ . . . ) , (5.97)

the problem reduces to the following expression

Gd = −2Φ0R0 −
1

6Φ0R0
− 1

120(Φ0R0)3
+ . . . . (5.98)

Inserting the ansatz of equation (5.91) in the divergent expression, it is possible to solve equation (5.92)
order-by-order in R0µ and then solve for the parameters κi. Then, we observe that the solution for κ0 is
given by equation (5.45) and, in fact, appears in every subsequent coefficient κi>0

κ0 tanh κ0 = 1, κ1 = −
1

12κ2
0

, κ2 =
33− 16κ2

0

1440κ6
0

, . . . (5.99)

11We explicitly checked that the derived expansion agrees with the cutoff-independent contribution in smooth cut-off regulari-
sation.
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We repeat the same procedure to calculate the divergent sum appearing in the conformal dimension of
equation (5.87), therefore we divide it into regular and divergent part as

∆r = −2N∑
ℓ=1

ℓ [
√
(ℓ + µR0)2 +Φ2

0R2
0 +
√
(ℓ − µR0)2 +Φ2

0R2
0 − 2
√
ℓ2 +Φ2

0R2
0] , (5.100)

∆d = −4N
∞

∑

ℓ=1
ℓ
√
ℓ2 +Φ2

0R2
0. (5.101)

Again, the regular part can be computed by applying the Euler-Maclaurin formula

∆r = −
2N
3
(R0µ)3(3(κ2

0 − 1)arccoth κ0 + 3κ0 − 2κ3
0 + 2(κ2

0 − 1) 3
2 )+ . . . , (5.102)

while the divergent part is computed again using the Mellin representation of zeta-function, and reads

∆d = N(4(Φ0R0)3
3

+ Φ0R0

3
− 1

60Φ0R0
+ . . .). (5.103)

Finally, if we invert order-by-order the charge equation (5.86) we can acquire a relation for the chemical
potential as a function of the charge, i.e. µ = µ(Q) and since the summation is convergent we just use
the Euler–Maclaurin formula.

Eventually, by combining the results of equations (5.91) and (5.99) along with the relation µ = µ(Q),
we deduce the asymptotic expansion for the conformal dimension ∆SF(Q as:

∆SF(Q)
2N

= 2
3
( Q

2Nκ0
)

3/2
+ 1

6
( Q

2Nκ0
)

1/2
+

11− 6κ2
0

720κ2
0
( Q

2Nκ0
)
−1/2
+ . . . (5.104)

Observe that the leading term in the expansion matches the expression that we had computed in the
torus for the energy of the ground state (5.49). So, we come to the same conclusion as in chapter 4, that
the subleading terms in the computation in the large-charge expansion in S2 are due to an expansion
in the curvature and the leading term relies solely on the manifold’s volume, which for S2 is V = 4πr2

0.
On a relevant note, the conformal Goldstone mode that we computed in section 5.3 is independent of

N and contributes with a universal term to the conformal dimension at order N0, Q0. We can compute
it numerically and its value agrees completely with the result in the O(2) and O(N) models that we
saw in chapters 3 and 4 respectively and is given in equation (1.1).

Small-Q limit
Finally, we want to examine the small charge limit, Q/N ≪ 1. For zero values of the charge, it is
apparent that the free energy vanishes due to conformal invariance, given the fact that it corresponds
to the scaling dimension of the identity operator. In our representation with regard to the scalar field
Φ, we have to consider its conformal coupling ξ to the curved background. For the cylinder R× S2 this
corresponds to a mass term m = 1/(2R0) 12 that for us arises from the chemical potential [31].

By computing the free energy and the charge for µ = 1/(2R0), they both vanish and also the gap
equation on S2 is satisfied with a zero VEV, Φ0 = 0. Therefore, the value of µ = 1/(2R0) is the correct one
to perform the small-charge expansion around, and for convenience, we write the chemical potential as
this critical value plus a small deviation, i.e. µ = 1/(2R0) + µ̂, and then we expand every expression in
equation (5.87) around the small µ̂. When µ̂ = 0 we have symmetry restoration, Φ0 does not get a VEV
and using this we can write an ansatz for Φ0 as

µ̂ = µ2Φ2
0R0 + µ4Φ4

0R3
0 + . . . (5.105)

We can compute the charge by expanding in the limit Φ0R0 ≪ 1, and we find

Q
2N
= π2

4
(Φ0R0)2 −

π2

16
(π2 − 16µ2)(Φ0R0)4 +

π2

48
(π4 + 12π2(µ2

2 − 2µ2)+ 48µ4) (Φ0R0)6 + . . . , (5.106)

12A similar term we have found in chapter 4 regarding the conformal Laplacian, which was shifted by a mass term m2 = 1/4R2
0.
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which obviously vanishes for Φ0 = 0. To determine the coefficients µi in the ansatz of equation (5.105)
we have to solve order-by-order in small µ̂ the gap equation (5.88). Thus, we separate it again into a
divergent and a convergent contribution — by first removing the expression for µ̂ = 0 and then adding
it again — with each of them having a proper expansion in the limit Φ0R0 ≪ 1. The convergent part
reads

Gr =
π2

2
µ2(Φ0R0)2 −

π2

4
(π2µ2 − 4µ2

2 − 2µ4)(Φ0R0)4 + . . . , (5.107)

while for the divergent part we use the zeta-function regularisation to get

Gd =
∞

∑

ℓ=0
(2ℓ + 1) 1√

(ℓ + 1
2)2 + (Φ0R0)2

= 2∑
ℓ=0
(ℓ + 1

2
)∑

k=0
(−

1/2
k
)(Φ0R0)2k(ℓ + 1

2
)2(−1/2−k)

= 2∑
k=0
(−

1/2
k
)(Φ0R0)2kζ(2k;

1
2
) = −π2(Φ0R0)2

2
+ π4(Φ0R0)4

8
+ . . . . (5.108)

To determine all the parameters µi, we solve the gap equation (5.92) order-by-order and we find

µ2 = 1, µ4 =
π2 − 8

4
, . . . (5.109)

Similarly to the large-Q expansion, we use the same methodology to evaluate the divergent part that
appears in the conformal dimension (5.87) by dividing it into convergent and divergent parts

∆r = −2N∑
ℓ=1

ℓ

⎡⎢⎢⎢⎢⎢⎣

¿
ÁÁÀ(ℓ + 1

2
+ µ̂R0)

2
+ (Φ0R0)2 +

¿
ÁÁÀ(ℓ − 1

2
− µ̂R0)

2
+ (Φ0R0)2

−

¿
ÁÁÀ(ℓ + 1

2
)

2
+ (Φ0R0)2 +

¿
ÁÁÀ(ℓ − 1

2
)

2
+ (Φ0R0)2

⎤⎥⎥⎥⎥⎥⎦
,

(5.110)

∆d = −4N
∞

∑

ℓ=1
(ℓ + 1

2
)

¿
ÁÁÀ(ℓ + 1

2
)

2
+ (Φ0R0)2. (5.111)

The regular part is expanded for Φ0R0 ≪ 1 and reads

∆r = N(π2

2
µ2(Φ0R0)4 + . . .) , (5.112)

while for the divergent part we use zeta-function regularisation to obtain

∆d = −4N
∞

∑

ℓ=0
(ℓ + 1

2
)∑

k=0
(

1/2
k
)(Φ0R0)2k(ℓ + 1

2
)

2(1/2−k)
= −4N∑

k=0
(

1/2
k
)(Φ0R0)2kζ(2k − 2;

1
2
)

= N
π2

4
(R0Φ0)4 + . . . (5.113)

Finally, by simply inverting Q = Q(Φ0):

R0Φ0 =
2
π
( Q

2N
)

1/2
+ π2 − 16

π3 ( Q
2N
)

3/2
+ . . . , (5.114)

we can compute the scaling dimension in the small-Q limit as

∆(Q)
2N

= 1
2
( Q

2N
)+ 2

π2 (
Q

2N
)

2
+ . . . (5.115)

Given that Φ has charge two, the leading-order contribution ∆(Q) = Q/2 comes to no surprise, as it is
the anticipated result for the charged operator ΦQ/2 in the free-field limit. Moreover, at leading order,
the result is N independent, so we conclude that the leading order solution will apply to the SU(2)-NJL
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case as well.

As a final remark, in this chapter we examined various fermionic models with four-fermion interac-
tion terms in d = 3 spacetime dimensions at large charge and large N, and specifically, we studied the
Gross-Neveu model, the Nambu–Jona–Lasinio model and its SU(2)L × SU(2)R generalisation.

As a result of the fermionic nature of our models, we observe that the ground state at large-charge
exhibits two distinct physical descriptions, contingent upon whether the examined model possesses a
symmetry that is raised to an axial symmetry in d = 4 or not. If this does not happen, which is the case
of the Gross-Neveu model, then the sector of fixed large charge is described in terms of a Fermi surface.
On the contrary, if such a symmetry exists, fixing the axial charge leads to a conformal superfluid
description of the ground state similar to the bosonic cases studied in detail in the literature [19–
21, 31]. The Nambu–Jona–Lasinio-type of models exhibit such a behaviour and there is a physically
intuitive way that explains it. For the case of the U(1)-NJL model, we can perform a Pauli–Gürsey
transformation and map it to the Cooper model. The existence of an attractive interaction gives rise to
a Cooper instability, and the formation of Cooper pairs produces a bosonic condensate, leading to the
Fermi’s sphere breakdown.

Finally, in the models that the large-charge ground state coincides with the conformal superfluid
paradigm, the scaling dimension of the lowest charged primary operator of the theory has different
numerical coefficients than the bosonic case [31], indicating that the fermionic CFT lies in a differ-
ent universality class. Meanwhile, we specifically verified that the spectrum of fluctuations over the
large-charge ground state contains the anticipated conformal Goldstone mode and therefore, the con-
formal dimension exhibits the universal Q0 contribution corresponding to the Casimir energy of the
fluctuations.
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Preliminaries for QFTs, CFTs and LCE

A.1 Elements of Differential Geometry

This section follows closely [237]. One of the first things we want to define in a precise mathematical
formulation is the concept of manifolds. Vaguely speaking, a manifold is a space that looks locally like
Rn but may be curved and have different global properties. The physical reason to define a manifold as
explained in [212] is our inability to define a global reference frame throughout the whole spacetime. A
precise definition of manifolds is useful because, through that, we can define tangent vectors as directional
derivatives acting on some arbitrary functions defined on that manifold.

Definition(Manifold): An C∞ d-dimensional real Manifold M is simply a set along with a
collection of subsets {Uα} that should satisfy certain properties:

1. Each point p ∈M belongs to at least one subset Uα , while the collection of subsets {Uα} coversM
;M = ⋃α Uα.

2. For each α, exists a one-to-one, onto, map ϕα ∶ Uα → ϕα(Uα) where ϕα(Uα) is an open subset of Rd.

3. Finally, the sets should be smoothly sewn together. If any two sets Uα and Uβ overlap in such a way
that Uα⋂Uβ ≠ ∅ then, there should be a map ϕα ○ ϕβ

−1 that should take points from ϕβ[Uα ∩Uβ] ⊂
ϕβ(Uβ) ⊂ Rd to certain points in ϕα[Uα ∩ Uβ] ⊂ ϕα(Uα) ⊂ Rd. Moreover, there is the requirement
that these subsets of Rd are open, and that the map is infinitely continuously differentiable.

The most usual word used by physicists for maps ϕα is coordinate system.
By having a definition of manifolds, we want to move on to vectors. We are mostly used from

Euclidean Geometry to add vectors together. But when someone takes under consideration curved
geometries, such concepts are no longer valid because at this point we lose the ability to move vectors
uniquely around a manifold while leaving them “unchanged”. Fortunately, there is a limit where
the vector-space structure notion can be recovered. It’s the limit of tangent vectors or “infinitesimal
displacements” about a point. We note that for certain manifolds, for example the sphere, that can
be conceived as objects embedded in Rd, it is not hard to imagine the tangent vector at a point p by
drawing the tangent plane in which this vector belongs to. This can be generalized to every manifold
embedded into a d-dimensional Euclidean space, but since not always a manifold can be embedded in
a higher dimensional space, we want to avoid defining our tangent vectors in a way that refers to the
embedding of our manifold in Rd, and we want to give a definition that is independent of coordinates.

In Rd exists a one-to-one correspondence between vectors and directional derivatives. In such a way
we define the tangent vector, by considering only the intrinsic structure of the manifold without thinking
about the embeddings, as a directional derivative. The main concept is that directional derivatives are
characterized by their linearity and “Leibniz rule” behaviour.
Let f ∶M→ R be a smooth function onM. Then we define F to be the collection of all smooth functions
onM (C∞(M)→ R).
Definition(Tangent vector): We define a tangent vector V at a point p ∈M to be a map V ∶ F → R

which satisfies the following properties

• Linearity : V(a f + bg) = aV( f )+ bV(g), ∀ f , g ∈ F , a, b ∈ R,

• Leibniz rule : V( f g) = f (p)V(g)+ g(p)V( f ).

Furthermore, the set of all maps from C∞(M) → R to a point p ∈M defines the tangent space Tp(M)
which is a d-dimensional vector space, isomorphic to Rd. We can define a set of basis vectors for any
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tangent space to be given by ∂µ(p) = ∂
∂xµ (p) ∈ Tp(M) , where xµ is the local coordinate system, so any

vector V ∈ Tp(M) can be written as :
V = Vµ∂µ. (A.1)

For completeness, we can define a vector field as a set of vectors with exactly one at each point in
spacetime.

A.2 Curved space QFT

In principle, it is easy to generalize theories from flat to curved space. The only thing we should do
is write them in a coordinate-invariant way, and make sure they stay valid when spacetime is curved.
This section is inspired by Gibbons [238] §13 and [239].

A general quantum field theory on an arbitrary fixed background consists of the following :

1. A Hilbert space H

2. A classical spacetime manifold (M, gµν)

3. Field operators {ϕ} that act on H and are defined onM as tensorial (bosonic) distributions. (We
can, of course, include fermions).

4. The fields {ϕ} satisfy wave equations which, in the case of no mutual or self interactions, are
linear between the particles.

5. The fields satisfy a “field algebra”. (commutation relations for the operators).

6. There exist rules on how Fock bases on H or physical observables can be constructed.

7. “Renormalisation” or “regularisation” procedures.

So first thing first, we assume that every physical quantity corresponds to a self adjoint linear map act-
ing on the Hilbert space (observable). Then physical systems can either be pure states or mixed states
that are defined through density matrices (ρ). Density matrices are embedded with an extra degree of
uncertainty beyond that of quantum mechanics. Then our manifold should be able to pose a Cauchy
problem so (M, gµν) should be globally hyperbolic and in general time orientable. Space orientability
is useful but not necessary. The action on a curved space for a scalar field is given by :

S = −1
2 ∫ dd(x)√−g(gµν∇µϕ∇νϕ +m2ϕ + ξRϕ2) (A.2)

The equation of motion for this scalar field is :

◻ϕ −m2ϕ − ξRϕ = 0 (A.3)

ξ is a direct coupling between the field and the curvature scalar R. For simplicity, from this point on
we assume that we have minimal coupling so we take :

ξ = 0. (A.4)

Another popular choice would be to adopt the conformal coupling so in that case we would have that :

ξ = (d − 2)
4(d − 1) . (A.5)

If we assume that we have a manifold (M, gµν) which is globally hyperbolic it can be proved that it can
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be foliated into a set of Cauchy hypersurfaces Σ in such a way that :

M = R×Σ, (A.6)

where R is the time direction and Σ is a d− 1 Riemannian manifold. In that case we proceed like in flat
space. Denoting that xµ = (x0, x⃗) we can now write the action as follows :

S = ∫ ddxL . (A.7)

Where L is the Lagrangian density. The conjugate momentum is as usual :

π(x⃗) = ∂L

∂(∇0ϕ) = −
√−ggµ0∇µϕ = −

√
hηµ∇µϕ(x⃗). (A.8)

Where hij is the induced metric on Σ and ηµ is the vector normal to Σ. The quantization procedure
continues by the imposition of canonical commutation relations such that :

[ϕ(x⃗), π(x⃗)] = ih̄δd−1(x⃗, y⃗),

[ϕ(x⃗), ϕ(y⃗)] = 0,

[π(x⃗), π(y⃗)] = 0.

(A.9)

And we define δd−1(x⃗, y⃗) as :

∫
Σ

dd−1 x⃗ f (y⃗)δd−1(x⃗, y⃗) = f (x⃗). (A.10)

Up to this step, we assumed we were on a local system, so the global spacetime structure was irrele-
vant for the commutators. By the time that we wish to represent these commutators utilizing operators
acting on a Hilbert space, the structure of the background spacetime metric enters the definition of the
inner product and becomes important. The inner product is then expressed as :

( f , g) = ∫
Σ

dΣµJ µ( f , g). (A.11)

Where :

J µ( f , g) = −i
√−ggµν( f ∗∇νg − (∇ν f ∗)g). (A.12)

Implying the EOM ∇µJ µ = 0 so the current is conserved and the inner product ( f , g) is independent of
the choice of the spacelike slice Σ. Using eqs. A.11 and eqs. A.12 we can clearly see that :

( f , g)∗ = −( f ∗, g∗) = (g, f ). (A.13)

Because :

(jµ( f , g))∗ = i
√−ggµν( f∇νg∗ − (∇ν f )g∗) = −i

√−ggµν(g∗∇ν f − f∇νg∗) = jµ(g, f ) (A.14)

Furthermore from A.13 we got that for g = f ∗,−( f ∗, f ) = ( f ∗, f ). So clearly ( f , f ∗) = 0 so the inner
product is not positive definite. At this point in the flat space we would introduce a set of positive and
negative frequency modes and then expand the field operator ϕ in terms of these modes. But since in
general there is no timelike killing vector, for an abstract spacetime, there is no natural a priori notion
of positive frequency. In order to overcome this problem we decompose the space of solutions into a
positive part and its conjugate

S = Sp ⊕ S∗p (A.15)
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And we demand that

( f , f ) > 0 ∀ f ∈ Sp, ( f , g∗) = 0 ∀ f , g ∈ Sp (A.16)

Now we can define a set of creation and annihilation operators for f as

a( f ) = ( f , ϕ), a†( f ) = −a( f ∗) = −( f ∗, ϕ). (A.17)

Using the canonical commutation relations we can find that these operators satisfy the following algebra

[a( f ), a†(g)] = ( f , g), [a( f ), a(g)] = [a†( f ), a†(g)] = 0. (A.18)

So we can find a vacuum state annihilated by the annihilation operators:

a( f )∣0⟩ = 0 ∀ f ∈ Sp (A.19)

And for this vacuum state we can construct a Fock space by repeated action of creation operators of the
form :

a†( fi1)...a
†( fiκ)∣0 ⟩, (A.20)

for all n and all fiκ ∈ Sp
From this point on, given a positive norm subspace we can construct an orthonormal basis fn ∈ Sp.
Using that we rewrite the creation and annihilation operators in that base as :

an = ( fn, ϕ), a†
n = (− f ∗n , ϕ), ana†

m − a†
man = δnm (A.21)

With that in mind we can expand our field operator in the usual mode decomposition :

ϕ =∑
n
(an fn + a†

n f ∗n ) (A.22)

In this basis we can write the vacuum state as ∣0 f ⟩ and we demand :

an∣0 f ⟩ = 0, ∀n (A.23)

The usual n-particle basis of states is :

a†
n1

...a†
nκ
∣0 f ⟩. (A.24)

And so a state with ωn excitations can be written as :

∣ωn⟩ =
1√
ωn!
(an)ωn ∣0 f ⟩ (A.25)

We can even define a number counting operator as :

N fn = a†
nan (A.26)

We should note that we are careful, and we should remember that these are defined regarding the
orthonormal basis fn. For later use for a stationary spacetime, we resolve ϕ into normal modes as:

ϕ(t, x⃗) =∑
n

⎛
⎝

an f n(x⃗)√
2ωn

e−iωnt +
a†

n f
∗

n(x⃗)√
2ωn

eiωnt⎞
⎠

(A.27)

where fn obeys:
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∇2
f f n + ∂µg00hµν∂ν f n +m2√g00 f n =L f n = −ω2

n f n (A.28)

Where the first term is the Laplace-Beltrami operator.

A.3 KMS

The expectation value for any operator O in thermal equilibrium at a temperature T = 1/β is

⟨O⟩β =
1
Z

tr(e−βHO). (A.29)

In some cases, this definition cannot be defined properly, for example in most QFTs the average of a
single operator is normalized to zero. Yet, a generalization is possible by considering the expectation
value of a couple of time dependant operators, Õ(t) and O(0) as

⟨Õ(t)O(0)⟩ = ⟨eitHÕe−itHO⟩. (A.30)

Using equation (2.95)and applying equation (A.29) we get

⟨Õ−iβO⟩
β
= 1

Z
tr (e−βH (eβHÕe−βH)O)

= 1
Z

tr (Õe−βHO) = 1
Z

tr (e−βHOÕ) (A.31)

= ⟨OÕ⟩β,

where the cyclicity of the trace has been used and also Õ and O are taken to be bounded. Hence, we
have at an expression that only contains finite quantities, and it is known as the KMS condition

⟨Õ−iβO⟩
β
= ⟨OÕ⟩

β
. (A.32)

Thermal states have to obey the KMS condition, which is a nice measure to check if a system is thermal
or not.

A.4 Classification of renormalisability and running of the mass.

To classify theories, we need to know the mass dimension of their coupling constants. We will briefly
show how this works in the case of the ϕ4 theory with the Lagrangian of equation (2.80)

L = −1
2

∂µϕ ∂µϕ − 1
2

m2ϕ2 − g
4!

ϕ4.

We start with the following mass dimensions: [E] = 1 = [t−1] = [x−1]. Then, given the form of the
Lagrangian, we can compute

0 = [S], S = ∫ ddx L , (A.33)

d = [L ], (A.34)

1 = [ ∂

∂xµ
], (A.35)

d − 2
2
= 1

2
([L ]− 2[ ∂

∂xµ
]) = [ϕ], (A.36)

2 = d − (d − 2) = [L ]− 2[ϕ] = [m2], (A.37)

d − p(d − 2
2
) = [L ]− p[ϕ] = [gp]. (A.38)
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Therefore, theories are classified as follows

1. Non-renormalisable.
At least one gp in the theory has [gp] < 0. Any n-point function contains ∞ many divergences.

2. Super-renormalisable
All [gp] > 0, finite number of divergent diagrams.

3. Renormalisable
No gp in the theory has [gp] < 0 and there is at least one gp that satisfies [gp] = 0. Then there is a
finite number of n-point functions that contain ∞ many divergencies.

A.4.1 Running of the mass
From Källén–Lehmann spectral representation — [see 240, 241] — the exact propagator has an isolated
pole at p2 = −m2

phys, e.g.

(G(2)(p,−p))
−1
∣
p2=−m2

phys

= Γ(2)(p,−p)∣
p2=−m2

phys

= 0. (A.39)

From equation (2.94) this means that

0 = −m2
phys +m2 − ΠMS(p2)∣

p2=−m2
phys

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O(g2)

⇒

m2
phys = m2 − ΠMS(p2)∣

p2=−m2
phys

+O(g4) (A.40)

The physical mass cannot depend on µ thus

0 =
∂ log mphys

∂ log µ
. (A.41)

But the ΠMS(p2)∣p2=−m2
phys

is given by equation (2.118) and it depends both on m2 and on µ, hence

using equations (A.40) and (A.41) we can derive the anomalous mass dimension µ
m

∂m
∂µ =

∂ log m
∂ log µ of equa-

tion (2.149).

A.5 CFT

A.5.1 Infinitesimal generators
Form of special conformal transformation We show how special conformal transformation can be
seen as inversion-translation-inversion. We start with an inversion,

x′µ = xµ

x2 . (A.42)

Then we perform a translation
x′′µ = x′µ − aµ. (A.43)

Finally we perform another inversion, such that

x∗µ = (x
′′)µ

(x′′)2 . (A.44)
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Combining the above equations we get

x∗µ = x′µ − aµ

(x′′)2
=

xµ

x2 − aµ

(x′′)2
= xµ − aµx2

x2(x′′)2

= xµ − aµx2

x2( xµ

x2 − aµ)( xµ

x2 − aµ)
= xµ − aµx2

x2( xµxµ

x4 −
xµaµ

x2 −
xµaµ

x2 + aµaµ)

= xµ − aµx2

1− 2ax + a2x2 , (A.45)

where we used that x2 = xµxµ, and also that aµxµ = aµxµ = ax and that aµaµ = a2.

Infinitesimal generators

1. We work out the infinitesimal generator starting from the finite form of the scale transformation,

x′µ = αxµ. (A.46)

We start by parameterizing α = ea, a ∈R, so that

x′µ = eaxµ. (A.47)

Then we Taylor expand to first order, i.e. O(a2), to obtain the infinitesimal transformation

x′µ = xµ + axµ. (A.48)

Then we find the generator as

Ga = −i(δxµ

δϵa
∂µ)+ i

δΦ
δϵa

(A.49)

In which case we get δxµ

δa = xµ, so that

Ga = −ixµ∂µ ≡ D (A.50)

which is the generator of dilatation/scale transformations.

2. We work out the infinitesimal generator starting from the finite form of the SCT,

x′µ = xµ − bµ x⃗2

1− 2b⃗ ⋅ x⃗ + b2 x⃗2
. (A.51)

We start by writing this as

x′µ = (xµ − bµx2) 1

1− (2bx − b2x2)
. (A.52)

This allows us to utilise the identity 1
1−c = 1+ c, ∣c∣≪ 1 to get

x′µ = (xµ − bµx2)(1+ 2bx − b2x2)+O(b3)

= (xµ − bµx2)(1+ 2bx)+O(b2)

= xµ + 2(bx)xµ − bµx2 +O(b2). (A.53)

This is the infinitesimal transformation of the SCT. The same result can be obtained by Taylor
expansion. Then, we can use again equation (A.49), and δxµ

δbν = 2xµδ
µ
νxµ , δxµ

δbν = −x2δ
µ
ν to get

Ga = −i(2xµδ
µ
νxµ∂µ − x2δ

µ
ν∂µ)

= −i(2xνxµ∂µ − x2∂ν). (A.54)
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Since these are dummy indices, we can exchange ν ⇐⇒ µ to get

Kµ = −i(2xµxν∂ν − x2∂µ). (A.55)

Scale factor of the SCT We work out explicitly the scale factor Ω(x) of the SCT given in equation (A.51).
We have that

Ω(x)ηµν = ηρσ
∂xρ

∂x′µ
∂xσ

∂x′ν
(A.56)

and the desired transformation is

x′µ = xµ − bµx2

1− 2bx + b2x2 , (A.57)

which can be rewritten as
xµ = x′µ(1− 2bx + b2x2)+ bµx2. (A.58)

Then, it is easy to derive that
∂xρ

∂x′µ
= δ

ρ
µ(1− 2bx + b2x2). (A.59)

And similarly for sigma
∂xσ

∂x′ν
= δσ

ν(1− 2bx + b2x2). (A.60)

Then combining equations (A.56), (A.59) and (A.60) we get

Ω(x)ηµν = ηρσδ
ρ
µδσ

ν(1− 2bx + b2x2)(1− 2bx + b2x2)

= ηµν(1− 2bx + b2x2)
2
. (A.61)

And hence, the scale factor for the SCT is

Ω(x) = (1− 2bx + b2x2)
2
. (A.62)

Commutation rules of the conformal algebra. We explicitly verify the commutation rules of the generators
of the conformal algebra involving the new generators D and Kµ.

1.

[D, Pµ] = [−ixν ∂ν,−i∂µ] = i2xν∂ν∂µ − i2∂µxν∂ν

= −i2δ ν
µ ∂ν = −i2∂µ

= i(− i∂µ) = iPµ (A.63)

2.

[D, Kµ] = [−ixρ∂ρ,−2ixµxν∂ν + ix2∂µ]
= [−ixρ∂ρ,−2ixµxν∂ν]+ [−ixρ∂ρ, ix2∂µ]

= (2i2xρ∂ρ(xµxν)∂ν − 2i2xµxν∂νxρ∂ρ)+ (− i2xρ∂ρ(xσxσ)∂µ − (−i2)x2∂µxρ∂ρ)

= (− 2xρηρµxν∂ν − 2xρxµδ ν
ρ ∂ν + 2xµxνδ

ρ
ν ∂ρ)

+ (xρηρσxσ∂µ + xρxσδ σ
ρ ∂µ − x2δ

ρ
µ ∂ρ)

= (− 2xµxν∂ν − 2xµxν∂ν + 2xµxν∂ν)+ (xσxσ∂µ + xρxρ∂µ − x2∂µ)

= −2xµxν∂ν + x2∂µ = −iKµ. (A.64)

Since
−iKµ = −i(−i)(2xµxν∂ν − x2∂µ) = −2xµxν∂ν + x2∂µ. (A.65)
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3.

[Kµ, Pν] = [−2ixµxσ∂σ + ix2∂µ,−i∂ν]
= [−2ixµxσ∂σ,−i∂ν]+ [ix2∂µ,−i∂ν]

= (2i2xµxσ∂σ∂ν − (−2i)(−i)∂ν(xµxσ)∂σ)+ (− i2x2∂µ∂ν − (−i2)∂ν(x2)∂µ)

= −2i2δνµxσ∂σ − 2i2xµδ σ
ν ∂σ + i2∂ν(xρxρ)∂µ

= 2δνµxσ∂σ + 2xµ∂ν + i2δνρxρ∂µ + i2xρδ
ρ

ν ∂µ

= 2δνµxσ∂σ + 2xµ∂ν − xν∂µ − xν∂µ

= 2δνµxσ∂σ + 2xµ∂ν − 2xν∂µ

= 2(δµνxσ∂σ + xµ∂ν − xν∂µ) = 2i(ηµνD − Jµν). (A.66)

Since

2i(ηµνD − Jµν) = 2iηµνD − 2i Jµν

= 2iηµν(−ixµ∂µ)− 2i(i)(xµ∂ν − xν∂µ) (A.67)

= 2ηµνxµ∂µ + 2xµ∂ν − 2xν∂µ. (A.68)

4.

[Kµ, Jνρ] = [−2ixµxσ∂σ + ix2∂µ, ixν∂ρ − ixρ∂ν]
= [−2ixµxσ∂σ, ixν∂ρ]+ [−2ixµxσ∂σ,−ixρ∂ν]+ [ix2∂µ, ixν∂ρ]+ [ix2∂µ,−ixρ∂ν]

= (− 2i(i)xµxσ∂σxν∂ρ − (−2i)(i)xν∂ρ(xµxσ)∂σ)

+ (− 2i(−i)xµxσ∂σxρ∂ν − (−2i)(−i)xρ∂ν(xµxσ)∂σ)

+ (i2x2∂µxν∂ρ − i2xν∂ρ(x2)∂µ)

+ (− i2x2∂µxρ∂ν − (−i)(i)xρ∂ν(x2)∂µ)

= −2i2xµxσδσν∂ρ + 2i2xνδρµxσ∂σ + 2i2xνxµδ σ
ρ ∂σ

+ 2i2xµxσδσρ∂ν − 2i2xρδνµxσ∂σ − 2i2xρxµδ σ
ν ∂σ

+ i2x2δµν∂ρ − i2xνδρσxσ∂µ − i2xνxσδ σ
ρ ∂µ

− i2x2δµρ∂ν + i2xρδνσxσ∂µ + i2xρxσδ σ
ν ∂µ

= 2i2xνδρµxσ∂σ − 2i2xρδνµxσ∂σ + i2x2δµν∂ρ − i2x2δµρ∂ν

= i(2iδρµxνxσ∂σ − iδρµx2∂ν − 2iδµνxρxσ∂σ + iδµνx2∂ρ)

= i(− iδµν(2xρxσ∂σ − x2∂ρ)+ iδρµ(2xνxσ∂σ − x2∂ν))

= i(δµνKρ − δµρKν). (A.69)

Representations of the conformal group

1. We verify the commutation relations of equation (2.232)

To do so, we will use the following

∆̃ = −ixµ∂µ, (A.70)

κµ = −i(2xµxν∂ν − x2∂µ), (A.71)

Sµν = i(xµ∂ν − xν∂µ). (A.72)

Using these, we get:



142

(a)

[∆̃, Sµν] = [−ixρ∂ρ, ixµ∂ν − ixν∂µ]
= [−ixρ∂ρ, ixµ∂ν]+ [−ixρ∂ρ,−ixν∂µ]

= (− i2xρ∂ρ(xµ∂ν)+ i2xµ∂ν(xρ∂ρ))+ (i2xρ∂ρ(xν∂µ)− i2xν∂µ(xρ∂ρ))

= −i2xρδρµ∂ν + i2xµδ
ρ

ν ∂ρ + i2xρδρν∂µ − i2xνδ
ρ

µ ∂ρ

= −i2xµ∂ν + i2xµ∂ν + i2xν∂µ − i2xν∂µ

= 0.

(A.73)

(b)

[∆̃, κµ] = [−ixρ∂ρ,−2ixµxν∂ν + ix2∂µ]
= [−ixρ∂ρ,−2ixµxν∂ν]+ [−ixρ∂ρ, ix2∂µ]
= (2i2xρ∂ρ(xµxν)∂ν − 2i2xµxν∂νxρ∂ρ)+ (− i2xρ∂ρ(xσxσ)∂µ − (−i2)x2∂µxρ∂ρ)
= (− 2xρδρµxν∂ν − 2xρxµδ ν

ρ ∂ν + 2xµxνδ
ρ

ν ∂ρ)

+ (xρδρσxσ∂µ + xρxσδ σ
ρ ∂µ − x2δ

ρ
µ ∂ρ)

= (− 2xµxν∂ν − 2xµxν∂ν + 2xµxν∂ν)+ (xσxσ∂µ + xρxρ∂µ − x2∂µ)
= −2xµxν∂ν + x2∂µ

= −iκµ.

(A.74)

(c)

[κν, κµ] = [−2ixνxρ∂ρ + ix2∂ν,−2ixµxσ∂σ + ix2∂µ]
= [−2ixνxρ∂ρ,−2ixµxσ∂σ]+ [−2ixνxρ∂ρ, ix2∂µ]
+ [ix2∂ν,−2ixµxσ∂σ]+ [ix2∂ν, ix2∂µ]

= (4i2xνxρ∂ρ(xµxσ)∂σ − 4i2xµxσ∂σ(xνxρ)∂ρ)

+ (− 2i2xνxρ∂ρ(xωxω)∂µ + 2i2x2∂µ(xνxρ)∂ρ)

+ (− 2i2x2∂ν(xµxσ)∂σ + 2i2xµxσ∂σ(xζ xζ)∂ν)

+ (i2x2∂ν(xξ xξ)∂µ − i2x2∂µ(xγxγ)∂ν)

= (4i2xνxρδρµxσ∂σ + 4i2xνxρxµδ σ
ρ ∂σ − 4i2xµxσδσνxρ∂ρ − 4i2xµxσxνδ

ρ
σ ∂ρ)

+ (− 2i2xνxρδρωxω∂µ − 2i2xνxρxωδ ω
ρ ∂µ + 2i2x2δµνxρ∂ρ + 2i2x2xνδ

ρ
µ ∂ρ)

+ (− 2i2x2δνµxσ∂σ − 2i2x2xµδ σ
ν ∂σ + 2i2xµxσδσζ xζ ∂ν + 2i2xµxσxζδ

ζ
σ ∂ν)

+ (i2x2xξ δ
ξ

ν ∂µ + i2x2xξ δξν∂µ − i2x2δµγxγ∂ν − i2x2xγδ
γ

µ ∂ν)

= −4xνxµxσ∂σ − 4xνxσxµ∂σ + 4xµxνxρ∂ρ + 4xµxσxν∂σ + 2xνx2∂µ

+ 2xνxωxω∂µ − 2x2δµνxρ∂ρ − 2x2xν∂µ + 2x2δνµxσ∂σ + 2x2xµ∂ν

− 2xµxσxσ∂ν − 2xµxσxσ∂ν − x2xν∂µ − x2xν∂µ + x2xµ∂ν + x2xµ∂ν

= 0.

(A.75)
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(d)

[κµ, Sνρ] = [−2ixµxσ∂σ + ix2∂µ, ixν∂ρ − ixρ∂ν]
= [−2ixµxσ∂σ, ixν∂ρ]+ [−2ixµxσ∂σ,−ixρ∂ν]+ [ix2∂µ, ixν∂ρ]+ [ix2∂µ,−ixρ∂ν]

= (− 2i(i)xµxσ∂σxν∂ρ − (−2i)(i)xν∂ρ(xµxσ)∂σ)

+ (− 2i(−i)xµxσ∂σxρ∂ν − (−2i)(−i)xρ∂ν(xµxσ)∂σ)

+ (i2x2∂µxν∂ρ − i2xν∂ρ(x2)∂µ)

+ (− i2x2∂µxρ∂ν − (−i)(i)xρ∂ν(x2)∂µ)

= −2i2xµxσδσν∂ρ + 2i2xνδρµxσ∂σ + 2i2xνxµδ σ
ρ ∂σ

+ 2i2xµxσδσρ∂ν − 2i2xρδνµxσ∂σ − 2i2xρxµδ σ
ν ∂σ

+ i2x2δµν∂ρ − i2xνδρσxσ∂µ − i2xνxσδ σ
ρ ∂µ

− i2x2δµρ∂ν + i2xρδνσxσ∂µ + i2xρxσδ σ
ν ∂µ

= 2i2xνδρµxσ∂σ − 2i2xρδνµxσ∂σ + i2x2δµν∂ρ − i2x2δµρ∂ν

= i(2iδρµxνxσ∂σ − iδρµx2∂ν − 2iδµνxρxσ∂σ + iδµνx2∂ρ)

= i(− iδµν(2xρxσ∂σ − x2∂ρ)+ iδρµ(2xνxσ∂σ − x2∂ν))

= i(δµνκρ − δµρκν)

= i(ηµνκρ − ηµρκν).

(A.76)

(e)

[Sµν, Sρσ] = [ixµ∂ν − ixν∂µ, ixρ∂σ − ixσ∂ρ]
= [ixµ∂ν, ixρ∂σ]+ [ixµ∂ν,−ixσ∂ρ]+ [−ixν∂µ, ixρ∂σ]+ [−ixν∂µ,−ixσ∂ρ]

= (i2xµ∂ν(xρ)∂σ − i2xρ∂σ(xµ)∂ν)+ (− i2xµ∂ν(xσ)∂ρ + i2xσ∂ρ(xµ)∂ν)

+ (− i2xν∂µ(xρ)∂σ + i2xρ∂σ(xν)∂µ)+ (i2xν∂µ(xσ)∂ρ − i2xσ∂ρ(xν)∂µ)

= −xµδνρ∂σ + xρδσµ∂ν + xµδνσ∂ρ − xσδρµ∂ν

+ xνδµρ∂σ − xρδσν∂µ − xνδµσ∂ρ + xσδρν∂µ

= ηνρ(xσ∂µ − xµ∂σ)+ ησµ(xρ∂ν − xν∂ρ)
+ ηνσ(xµ∂ρ − xρ∂µ)+ ηµρ(xν∂σ − xσ∂ν)
= iηνρi(xµ∂σ − xσ∂µ)+ . . .

= i(ηνρSµσ + ηµσSνρ − ηµρSνσ − ηνσSµρ).

(A.77)

So we can sum up the algebra as:

[∆̃, Sµν] = 0,

[∆̃, κµ] = −iκµ,

[κν, κµ] = 0,

[κµ, Sνρ] = i(ηµνκρ − ηµρκν),

[Sµν, Sρσ] = i(ηνρSµσ + ηµσSνρ − ηµρSνσ − ηνσSµρ).

(A.78)

2. We want to verify equation (2.234)
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We will use the Hausdorff formula

e−ABeA = B + [B, A]+ 1
2!
[[B, A], A]+ . . . (A.79)

(a) We will start with the dilatation
eixρPρ De−ixρPρ , (A.80)

where A = −ixρPρ and B = D. Then, using equation (2.233) we get

eixρPρ De−ixρPρ = D + [D,−ixρPρ]+
1
2
[[D,−ixρPρ],−xσPσ]

= D − ixρ[D, Pρ]−
1
2

ixρ[[D, Pρ],−ixσPσ]

= D − ixρiPρ +
1
2

i2xρxσ[[D, Pρ], Pσ]

= D − ixρiPρ −
1
2

ixρxσ[Pρ, Pσ]

= D + xρPρ = D + xνPν.

(A.81)

And we used that [D, Pρ] = iPρ and also that [Pµ, Pν] = 0.

(b) For the SCT we have the following

eixρPρ Kµe−ixρPρ , (A.82)

where A = −ixρPρ and B = Kµ. Then, equation (2.233) we derive

eixρPρ Kµe−ixρPρ = Kµ + [Kµ,−ixρPρ]+
1
2
[[Kµ, ixρPρ],−ixσPσ]

= Kµ − ixρ[Kµ, Pρ]+
1
2

i2xρxσ[Kµ, Pρ], Pσ]

= Kµ − ixρ(2iηµρD − 2i Jµρ)−
1
2

xρxσ[2iηµρD − 2i Jµρ, Pσ]

= Kµ + 2xρηµρD − 2xρ Jµρ −
1
2

xρxσ[2iηµρD, Pσ]−
1
2

xρxσ[−2i Jµρ, Pσ]

= Kµ + 2xµD − 2xρ Jµρ − ixρxσ[D, Pσ]+ ixρxσ[Jµρ, Pσ]
= Kµ + 2xµD − 2xρ JµρixρxσηµρiPσ − ixρxσ[Pσ, Jµρ]

= Kµ + 2xµD − 2xρ Jµρ + xµxσPσ − ixρxσ(iησµPρ − iησρPµ)

= Kµ + 2xµD − 2xρ Jµρ + xµxσPσ + xρxσησµPρ − xρxσησρPµ

= Kµ + 2xµD − 2xρ Jµρ + 2xµxνPν − x2Pµ

= Kµ + 2xµD − 2xν Jµν + 2xµxνPν − x2Pµ.

(A.83)

Here we used that [D, Pρ] = iPρ and that [Pρ, Jµν] = i(ηρµPν − ηρνPµ), and we also renamed
certain dummy indices.

3. We write down the full transformation rules of the fields under D and Kµ. To derive the full transforma-
tion rules, we use the above results, but we replace D = ∆̃, Jµν = Sµν and finally Kµ = κµ. Then we
get the following

•
DΦ(x) = ∆̃Φ(x)− ixν∂νΦ(x) = (− ixν∂ν + ∆̃)Φ(x), (A.84)

•
KµΦ(x) = {κµ + 2xµ∆̃ − 2xνSµν +−2ixµxν∂ν + ix2∂µ}Φ(x). (A.85)

A.5.2 The energy-momentum tensor
1. We want to verify that ∂µ∂λ∂ρXλρµν = 0 for Xλρµν.
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where

Xλρµν = 2
d − 2

⎛
⎝

ηλρσ
µν
+ − ηλµσ

ρν
+ − ηλνσ

µρ
+ + ηµνσ

λρ
+ −

1
d − 1

(ηλρηµν − ηλµηρν)σa
+a
⎞
⎠

. (A.86)

We have to calculate the following

(a) ∂µ∂λ∂ρηλρσ
µν
+ = ∂µ∂λ∂λσ

µν
+ = ◻∂µσ

µν
+ = ◻σ

µν
+, µ.

(b) ∂µ∂λ∂ρηλµσ
ρν
+ = ∂λ∂λ∂ρσ

ρν
+ = ◻∂ρσ

ρν
+ = ◻σ

ρν
+, ρ = ◻σ

µν
+, µ.

(c) ∂µ∂λ∂ρηλνσ
µρ
+ = ∂µ∂ν∂ρσ

µρ
+ = ∂νσ

µρ
+, µρ.

(d) ∂µ∂λ∂ρηµνσ
λρ
+ = ∂ρ∂ν∂λσ

λρ
+ = ∂νσ

λρ
+, λρ = .∂νσ

µρ
+, µρ.

We observe that all the indices are summed over with only ν being a free index, so the rest are
dummy indices that we have the freedom to rename. Furthermore, we have to calculate the
following

(a) ∂µ∂λ∂ρηλρηµνσa
+a = ∂ν∂ρ∂ρσa

+a = ∂ν ◻ σa
+a.

(b) ∂µ∂λ∂ρηλµηρνσa
+a = ∂λ∂ν∂λσa

+a = ∂ν ◻ σa
+a.

So it if we plug these into ∂µ∂λ∂ρXλρµν we get

∂µ∂λ∂ρXλρµν = 2
d − 2

⎛
⎝
◻ σ

µν
+, µ −◻σ

µν
+, µ − ∂νσ

µρ
+, µρ + ∂νσ

µρ
+, µρ −

1
d − 1

(∂ν ◻−∂ν ◻ )σa
+a
⎞
⎠

= 0.

(A.87)

Which is the requested result.

2. We want to show that the term 1
2 ∂λ∂ρXλρµν is symmetric under µ↔ ν.

To show that it is symmetric under µ ↔ ν, it is enough to show that ∂λ∂ρXλρµν − ∂λ∂ρXλρνµ = 0.
The starting point is the following equation [242]

Xλρµν −Xλρνµ = 2
(d − 2)(d − 1)σa

+a(ηλµηρν − ηλνηρµ). (A.88)

Then, it is not hard to show that

∂λ∂ρ(Xλρµν −Xλρνµ) ≃ ∂λ∂ρηλµηρνσa
+a − ∂λ∂ρηλνηρµσa

+a

= ∂µ∂νσa
+a − ∂ν∂µσa

+a

= 0.

(A.89)

This proves the desired result.

3. We want to show that Tµν is indeed traceless.
We want to show that the modified energy-momentum tensor

Tµν = Tµν
c + ∂ρBρµν + 1

2
∂λ∂ρXλρµν, (A.90)

is traceless, in other words that
Tµ

µ = 0. (A.91)

We start by multiplying equation (A.90) by ηµν, in which case we obtain

ηµνTµν = ηµν(Tµν
c + ∂ρBρµν + 1

2
∂λ∂ρXλρµν)

= Tµ
c µ + ∂ρBρµ

µ +
1
2

∂λ∂ρXλρµ
µ.

(A.92)

We need to calculate ∂ρBρµ
µ and also 1

2 ∂λ∂ρXλρµ
µ.
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• We start with ∂ρBρµ
µ. By definition, we know that

Bρµν = i
2
⎛
⎝

∂L

∂(∂ρΦ)SνµΦ + ∂L

∂(∂µΦ)SρνΦ + ∂L

∂(∂νΦ)SρµΦ
⎞
⎠

. (A.93)

We multiply with ηµν to get

Bρµ
µ = ηµνBρµν = i

2
⎛
⎝

∂L

∂(∂ρΦ)Sµ
µΦ + ∂L

∂(∂νΦ)SρνΦ + ∂L

∂(∂µΦ)SρµΦ
⎞
⎠

= i
2
⎛
⎝

∂L

∂(∂νΦ)SρνΦ + ∂L

∂(∂µΦ)SρµΦ
⎞
⎠

= i
2
⎛
⎝

∂L

∂(∂µΦ)SρµΦ + ∂L

∂(∂µΦ)SρµΦ
⎞
⎠

= −i
⎛
⎝

∂L

∂(∂µΦ)SµρΦ
⎞
⎠

,

(A.94)

where in the second line we used that Sµν is traceless, in the third line the fact that the only
free index is ρ so we have the freedom to rename the dummy indices, and finally in the forth
line we used that by definition Sµν = −Sνµ. So, it is easy to compute that

∂ρBρµ
µ = −i∂ρ

⎛
⎝

∂L

∂(∂µΦ)SµρΦ
⎞
⎠

. (A.95)

• The case of 1
2 ∂λ∂ρXλρµ

µ is more lengthy. By definition we know that

Xλρµν = 2
d − 2

⎛
⎝

ηλρσ
µν
+ − ηλµσ

ρν
+ − ηλνσ

µρ
+ + ηµνσ

λρ
+ −

1
d − 1

(ηλρηµν − ηλµηρν)σa
+a
⎞
⎠

. (A.96)

So we need to compute the following

– ∂λ∂ρ(ηλρσ
µν
+ ) = ∂λ∂λσ

µν
+ = ◻σ

µν
+ .

– ∂λ∂ρ(−ηλµσ
ρν
+ ) = −∂µ∂ρσ

ρν
+ = −∂µ∂λσλν

+ .

– ∂λ∂ρ(−ηλνσ
ρµ
+ ) = −∂ρ∂νσ

ρµ
+ = −∂ν∂λσ

λµ
+ .

– ∂λ∂ρ(ηµνσ
λρ
+ ) = ηµν∂λ∂ρσ

λρ
+ .

And we renamed some dummy indices for future convenience. Now we should contract
with ηµν, to derive

– ηµν∂λ∂ρ(ηλρσ
µν
+ ) = ηµν ◻ σ

µν
+ = ◻σ

µ
+ µ.

– ηµν(−ηλµσ
ρν
+ (−ηλνσ

ρµ
+ ) = −ηµν∂µ∂λσλν

+ −ηµν∂ν∂λσ
λµ
+ = −2∂λ∂ρσ

λρ
+ , where we renamed the

dummy indices.

– ηµν∂λ∂ρ(ηµνσ
λρ
+ ) = ηµνηµν∂λ∂ρσ

λρ
+ = d∂λ∂ρσ

λρ
+ .

Hence,

2
d − 2

ηµν∂λ∂ρ(ηλρσ
µν
+ − ηλµσ

ρν
+ − ηλνσ

µρ
+ + ηµνσ

λρ
+ )

= 2
d − 2

(◻ σ
µ
+ µ − 2∂λ∂ρσ

λρ
+ + d∂λ∂ρσ

λρ
+ )

= 2∂λ∂ρσ
λρ
+ +

2
d − 2

◻ σ
µ
+ µ.

(A.97)

Now we need to compute the following

– ηµν∂λ∂ρ(ηλρηµνσ
µ
+ µ) = dηλρ∂λ∂ρσ

µ
+ µ = d∂λ∂λσ

µ
+ µ = d◻ σ

µ
+ µ.

– ηµν∂λ∂ρ(ηλµηρνσ
µ
+ µ) = ηµνηλµηρν∂λ∂ρσ

µ
+ µ = δλ

νηρν∂λ∂ρσ
µ
+ µ = ηλρ∂λ∂ρσ

µ
+ µ = ◻σ

µ
+ µ.
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Therefore,

− 2
(d − 1)(d − 2)ηµν∂λ∂ρ

⎛
⎝
(ηλρηµν − ηλµηρν)σµ

+ µ

⎞
⎠
= − 2

d − 2
◻ σ

µ
+ µ, (A.98)

So finally,

ηµν∂λ∂ρXλρµν = 2∂λ∂ρσ
λρ
+ = ∂λ∂ρ(σλρ + σρλ)

= 2∂λ∂ρσλρ = 2∂ρ(∂λσλρ)

= 2∂ρVρ.

(A.99)

In the first line we used the definition of σ
λρ
+ , and to go from the first line to the second, we

used that fact that due to the symmetry of ∂λ∂ρ, the antisymmetric part of σρλ is zero and
only the symmetric part remains. This gives us the desired result

ηµν
1
2

∂λ∂ρXλρµν = ∂µVµ. (A.100)

The Vµ is known as the virial and by definition, it is given by

Vµ = ∂L

∂(∂ρΦ)
(ηµρ∆ + iSµρ)Φ

= ∂L

∂(∂µΦ)
∆Φ + i

∂L

∂(∂ρΦ)
SµρΦ.

(A.101)

Then,

∂µVµ = ∆∂µ(
∂L

∂(∂µΦ)
Φ)+ i∂µ(

∂L

∂(∂ρΦ)
SµρΦ). (A.102)

The final requirement comes from the hypothesis that the current is conserved, i.e. ∂µ jµ
D = 0, which

gives

ηµνTµν
c = −∆∂µ(

∂L

∂(∂µΦ)
Φ). (A.103)

If we plug equations (A.95), (A.102) and (A.103) into equation (A.92), we get

ηµνTµν = Tµ
c µ + ∂ρBρµ

µ +
1
2

∂λ∂ρXλρµ
µ

= −∆∂µ
⎛
⎝

∂L

∂(∂µΦ)
Φ
⎞
⎠
− i∂ρ

⎛
⎝

∂L

∂(∂µΦ)SµρΦ
⎞
⎠

+∆∂µ
⎛
⎝

∂L

∂(∂µΦ)
Φ
⎞
⎠
+ i∂µ

⎛
⎝

∂L

∂(∂ρΦ)
SµρΦ

⎞
⎠

= −i∂ρ
⎛
⎝

∂L

∂(∂µΦ)SµρΦ
⎞
⎠
+ i∂ρδ

ρ
µ
⎛
⎝

∂L

∂(∂ρΦ)
SµρΦ

⎞
⎠

= −i∂ρ
⎛
⎝

∂L

∂(∂µΦ)SµρΦ
⎞
⎠
+ i∂ρ

⎛
⎝

∂L

∂(∂µΦ)SµρΦ
⎞
⎠
= 0

(A.104)

And we showed that the modified energy-momentum tensor is indeed traceless, as long as we
have current conservation.

A.5.3 Correlation functions of primary operators
We will start with the two-point function to show explicitly what happens, so that afterwards we can
expand our techniques to the three- and four-point functions. The starting point is how an n-point
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function transforms

⟨ϕ1(x1)ϕ2(x2) . . . ϕn(xn)⟩ = ∣
∂x′

∂x
∣
∆1/d

x=x1

∣∂x′

∂x
∣
∆2/d

x=x2

. . . ∣∂x′

∂x
∣
∆n/d

x=xn

⟨ϕ1(x′1)ϕ2(x′2) . . . ϕn(x′n)⟩. (A.105)

We want to check this for the four possible symmetries of CFT : translations, i.e. x′ = x + a, Lorentz

transformations, i.e x′ = Λx, dilatations, i.e. x′ = λx and SCTs, i.e. x′ = x−bx2

1−2bx+b2x2 .

1. We start with translations. From equation (A.105) we derive that

⟨ϕ1(x
µ
1 )ϕ2(xν

2)⟩ = δ
µ
ρδν

σ⟨ϕ1(x
ρ
1 + aρ)ϕ2(xσ

2 + aσ)⟩
= ⟨ϕ1(x

µ
1 + aµ)ϕ2(xν

2 + aν)⟩.
(A.106)

From translation invariance we deduce that if we define our two-point function as the kernel
G(x1, x2) ≡ ⟨ϕ1(x1)ϕ2(x2)⟩, then

G(x1, x2) = G(x1 + a, x2 + a)
= G(x1 + a − x2 − a, x2 + a − x2 − a)
= G(x1 − x2, 0).

(A.107)

Thus the propagator depends on wholly in the difference between x1 & x2.

2. From the Lorentz transformations we get that

⟨ϕ1(x
µ
1 )ϕ2(xν

2)⟩ = ∣Λ
µ
ρ∣

∆1 ∣Λν
σ∣

∆2⟨ϕ1(Λ
µ
ρxρ

1)ϕ2(Λν
σxσ

2)⟩

= (det{Λµ
ρ})

∆1(det{Λν
σ})

∆2⟨ϕ1(Λ
µ
ρxρ

1)ϕ2(Λν
σxσ

2)⟩
= ⟨ϕ1(Λ

µ
ρxρ

1)ϕ2(Λν
σxσ

2)⟩,

(A.108)

since det Λ = 1. Combining the first two transformations, we know of one quantity that depends
on the difference between two points, and it is also Lorentz invariant. This is the absolute value

of the interval between two different spacetime points, i.e. ∣x1 − x2∣ ≡
√

ηµν(xµ
1 − xµ

2 )(xν
1 − xν

2).
It is obvious that this quantity depends on the difference between x1 & x2. It is not hard to see
that if we pick a different frame, let’s say x′ = Λx we have,

∣x′1 − x′2∣ =
√

ηµν(x
′µ
1 − x

′µ
2 )(x

′ν
1 − x′ν2 )

=
√

ηµνΛµ
ρΛν

σ(x
ρ
1 − xρ

2)(xσ
1 − xσ

2)

=
√

ηρσ(xρ
1 − xρ

2)(xσ
1 − xσ

2)
= ∣x1 − x2∣.

(A.109)

From here we can write that the most general form of the two-point function up to this point and
up to trivial coefficients is

⟨ϕ1(x1)ϕ2(x2)⟩ = C12∣x1 − x2∣α, (A.110)

An important note that has to be made here, is that the result for the first two symmetries is the
same, independently of the order of the function, i.e. the result holds for two-point functions and
for n-point functions. This has to do with the fact that the Jacobian equals one. As we will see,
this is not the case for dilatations and SCTs as these behave differently for two-point functions,
three-point functions, etc, and it is these two transformations that put such firm constraints in the
form of the two and three point functions.

3. From the dilatation invariance we have that:

⟨ϕ1(x1)ϕ2(x2))⟩ = λ∆1 λ∆2⟨ϕ1(λx1)ϕ2(λx2)⟩
= λ∆1+∆2⟨ϕ1(λx1)ϕ2(λx2)⟩.

(A.111)
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But, we can use explicitly equation (A.110) to find that for x′ = λx

⟨ϕ1(λx1)ϕ2(λx2)⟩ = C12∣λx1 − λx2∣α

= C12

√
ηµν(λxµ

1 − λxµ
2 )(λxν

1 − λxν
2)

α

= λαC12

√
ηµν(xµ

1 − xµ
2 )(xν

1 − xν
2)

= λαC12∣x1 − x2∣α

= λα⟨ϕ1(x1)ϕ2(x2)⟩.

(A.112)

But now, using equations (A.111) and (A.112), for the equality to stand, we see that the following
condition must hold

α = −(∆1 +∆2). (A.113)

And so, we can write the two-point function as:

⟨ϕ1(x1)ϕ2(x2)⟩ =
C12

∣x1 − x2∣∆1+∆2
. (A.114)

4. Applying the SCT and using that ∣ ∂x′
∂x ∣ =

1
(1−2bx+b2x2)

d = 1
γi

d , we get the following

⟨ϕ1(x1)ϕ2(x2)⟩ = (
1

(1− 2bx + b2x2)d
)

∆1/d

x=x1

( 1

(1− 2bx + b2x2)d
)

∆2/d

x=x2

⟨ϕ1(x
′

1)ϕ2(x
′

2)⟩

= 1
γ1

∆1

1
γ2∆2

C12

∣x′1 − x′2∣
∆1+∆2

.

(A.115)

At this point, we should calculate how the absolute value of the interval between the two points
changes under SCT.

∣x
′

1 − x
′

2∣ =
√

ηµν(x
′µ
1 − x

′µ
2 )(x

′ν
1 − x′ν2 )

=
√

x
′µ
1 x′1 µ − x

′µ
1 x′2 µ − x

′µ
2 x′1 µ + x

′µ
2 x′2 µ

=

¿
ÁÁÀ(x

µ
1 − bµx 2

1 )
γ1

(x1µ − bµx 2
1 )

γ1
+
(xµ

2 − bµx 2
2 )

γ2

(x2µ − bµx 2
2 )

γ2
− ω

γ1γ2

=
¿
ÁÁÀx 2

1 (1− 2bx1 + b2x 2
1 )

γ1(1− 2bx1 + b2x 2
1 )
+

x 2
2 (1− 2bx2 + b2x 2

2 )
γ2(1− 2bx2 + b2x 2

2 )
− ω

γ1γ2

=

¿
ÁÁÀx 2

1
γ1
+

x 2
2

γ2
− ω

γ1γ2

=

¿
ÁÁÀx 2

1 γ2 + x 2
2 γ1 −ω

γ1γ2

=

¿
ÁÁÀx 2

1 + x 2
2 − 2x1x2

γ1γ2

= ∣x1 − x2∣√
γ1γ2

,

(A.116)

where we set that ω = 2(xµ
1 − bµx 2

1 )(x2µ − bµx 2
2 ). Hence, we can find that 5

1

∣x′1 − x′2∣
∆1+∆2

= 1

∣x1 − x2∣∆1+∆2
γ

∆1+∆2
2

1 γ
∆1+∆2

2
2 (A.117)
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Hence, plugging equation (A.117) into equation (A.115) we find that

⟨ϕ1(x1)ϕ2(x2)⟩ =
C12

∣x1 − x2∣∆1+∆2
γ

∆1+∆2
2

1 γ
∆1+∆2

2
2

1
γ1

∆1

1
γ2∆2

. (A.118)

Thus, we have the following matching conditions

• ∆1+∆2
2 −∆1 = 0,

• ∆1+∆2
2 −∆2 = 0,

which have the unique solution that
∆1 = ∆2 = ∆. (A.119)

The reason that we underwent so much trouble, is that by doing the full analysis in the simplest case,
it is much easier to proceed for the three- and afterwards the four-point functions.

So, in the same spirit as before, we should start with equation (A.105), but with three fields now,
and repeat all the steps. But, we have observed that the translation and Lorentz invariance apply the
same to all n point functions, and thus we can deduce that the three point function is determined by
the absolute value of the interval between the three points, in some power, in other words

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)⟩ = C123∣x1 − x2∣α∣x2 − x3∣b∣x1 − x3∣c, (A.120)

where from now on we will use ∣x12∣ = ∣x1 − x2∣ for shortness. Let’s see now what happens under
dilatations and SCTs.

1. From dilatation, we have

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)⟩ = λ∆1+∆2+∆3⟨ϕ1(λx1)ϕ2(λx2)ϕ3(λx3)⟩

= λ∆1+∆2+∆3 C123∣λx12∣α∣λx23∣b∣λx13∣c

= λ∆1+∆2+∆3+α+b+cC123∣x12∣α∣x23∣b∣x13∣c

= λ∆1+∆2+∆3+α+b+c⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)⟩.

(A.121)

Thus, we obtain the constraint that

∆1 +∆2 +∆3 + α + b + c = 0⇔ ∆1 +∆2 +∆3 = −α − b − c. (A.122)

2. Under SCT, and following equation (A.115), we have that

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)⟩ =
1

γ1
∆1

1
γ2∆2

1
γ3∆3

C123∣x
′

12∣
α
∣x
′

23∣
b
∣x
′

13∣
c

= C123

γ1
∆1 γ2∆2 γ3∆3

∣x12∣α

(γ1γ2)α/2
∣x23∣b

(γ2γ3)b/2
∣x13∣c

(γ1γ3)c/2
.

(A.123)

and to go from the second to the third line, we used equation (A.116). From this, we find the
following three constraints

∆1 + α/2+ c/2 = 0, (A.124)
∆2 + α/2+ b/2 = 0, (A.125)
∆3 + b/2+ c/2 = 0. (A.126)

We can solve for α, b, c to get

α = ∆3 −∆1 −∆2, (A.127)
b = ∆1 −∆2 −∆3, (A.128)
c = ∆2 −∆1 −∆3. (A.129)
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We can check explicitly that this unique set of solutions satisfies equation (A.122). Using these, the final
form of the three-point function is

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)⟩ =
C123

∣x12∣∆1+∆2−∆3 ∣x23∣∆2+∆3−∆1 ∣x13∣∆1+∆3−∆2
. (A.130)

Since we have normalized the fields for the two-point function, we cannot normalize them again, hence
C123 is an important part of the CFT. So, we can see that if we know the scaling dimension of the
fields (which can be calculated through the two-point function), the only unknown part of the three-
point function are the OPE coefficients. So, once more, we observe that the conformal transformation
imposes some strong constraints on the form of the three-point function.

For the four-point function, again we can use the same logic as for the three-point function, and by
using translation and Lorentz invariance, we can write it in the form

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩ = C1234∣x12∣α∣x13∣b∣x14∣c∣x23∣d∣x24∣ϵ∣x34∣z. (A.131)

As we will soon see, the coefficients in front are not as innocent as the ones of the two and three-point
functions. For now, we can concentrate on the dilatation invariance, which is the same as the three
point function but with more coefficients. Thus,

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩ = λ∆1+∆2+∆3+∆4+α+b+c+d+ϵ+z⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩, (A.132)

which gives the constraint
∆1 +∆2 +∆3 +∆4 = −(α + b + c + d + ϵ + z). (A.133)

From the SCT invariance, and using equation (A.116) we have

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩ =

C1234

γ1
∆1 γ2∆2 γ3∆3 γ4

∆4

∣x12∣α

(γ1γ2)α/2
∣x13∣b

(γ1γ3)b/2
∣x14∣c

(γ1γ4)c/2
∣x23∣d

(γ2γ3)d/2
∣x24∣d

(γ2γ4)ϵ/2
∣x34∣d

(γ3γ4)z/2
. (A.134)

By matching the gamma, we derive the following conditions

α + b + c = −2∆1, (A.135)
α + d + ϵ = −2∆2, (A.136)
b + d + z = −2∆3, (A.137)
c + ϵ + z = −2∆4. (A.138)

But this set of equations is impossible to be solved as we have six unknowns for four equations. But
for the four-point function, there is a catch. When having four points and more, it is possible to create
certain coefficients that preserve the CFT symmetries. The trick is to use the absolute value of the
interval of two points, which is a priori Lorentz and translation invariant. Thus, the catch is to find the
correct combination that will preserve dilatation and SCT invariance. It is clear that this is not the case
for two and three point functions. The two-point function is too simple, as it contains only one interval.
For the three-point function it is impossible to create any coefficient that is invariant under dilatation,
e.g. for χ = ∣x12∣∣x23∣

∣x13∣
scales like λ under dilatations, ζ = ∣x12∣

∣x13∣
is invariant under dilatations but it is not

invariant under SCT, etc. But for the four point function we can create some cross ratios, which are

χ1 =
∣x12∣∣x34∣
∣x13∣∣x24∣

, χ2 =
∣x12∣∣x34∣
∣x23∣∣x14∣

. (A.139)

The dilatation invariance is obvious. What is interesting is that in order for χ1 & χ2 to be SCT invariant,
we gain two more equations or, more precisely, constraints (remember from our analysis above, we had
more unknowns than equations, which meant that we had some freedom in the scaling). Thus, from
χ1 & χ2 if we SCT transform them as usual, we derive that

b + ϵ = α + z, (A.140)
d + c = α + z. (A.141)
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These two, combined with equations equations (A.135) and (A.138) lead to

2α + z − ϵ + c = −2∆1 (A.142)
2α + z − c + ϵ = −2∆2 (A.143)

2α + 3z − c − ϵ = −2∆3 (A.144)
c + ϵ + z = −2∆4 (A.145)

Now it is obvious that we have the correct number of unknowns and equations, thus by solving the
system we get the following results

α = −2∆1

3
− 2∆2

3
+ ∆3

3
+ ∆4

3
(A.146)

b = −2∆1

3
− 2∆3

3
+ ∆4

3
+ ∆2

3
(A.147)

c = −2∆1

3
− 2∆4

3
+ ∆2

3
+ ∆3

3
(A.148)

d = −2∆2

3
− 2∆3

3
+ ∆4

3
+ ∆1

3
(A.149)

ϵ = −2∆2

3
− 2∆4

3
+ ∆1

3
+ ∆3

3
(A.150)

z = −2∆3

3
− 2∆4

3
+ ∆1

3
+ ∆2

3
. (A.151)

In short notation, these can be written as

∆/3−∆i −∆j, ∆ =
4

∑

i=1
∆i. (A.152)

Hence, the four-point function can be written in terms of conformal blocks

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩ = F(χ1, χ2)
4

∏

i<j
x

∆/3−∆i−∆j
ij , (A.153)

where F(χ1, χ2) is a function of all possible cross ratios.

A.6 Constraints from conformal symmetry

To use the state-operator correspondence, we worked in the cylinder frame in the limit of infinite
separation, and the two of the insertions are taken to be at τ = ±∞. For operators with spin, it is more
convenient to work in the spherical tensor basis.

An object that transforms into an irreducible representation of SO(d) is in the usual Cartesian basis
expressed by a completely symmetric and traceless tensor Tν1 ...νℓ . But in the spherical basis, the pair
ℓ, m labels the same object. To pass over we apply the operator U ν1 ...νℓ

ℓm , that we can write as an integral
on the sphere as

U ν1 ...νℓ
ℓm = kd,ℓ∫ dΩ nν1 . . . nνℓY∗ℓm(n) , (A.154)

where kd,ℓ is a normalisation factor that arises by requiring that U squares to one,

∣Uℓm ∣2 = δµ1ν1 . . . δµℓνℓ(U
ν1 ...νℓ
ℓm )∗U µ1 ...µℓ

ℓm = 1, (A.155)

which reads

kd,ℓ =

¿
ÁÁÁÀ 2ℓ

Ωd

Γ ( d
2 + ℓ)

ℓ! Γ ( d
2)

. (A.156)



A.6. Constraints from conformal symmetry 153

The simplest non-trivial example is for the vector Vµ in d = 3, that is mapped to V1m with components

⎛
⎜
⎝

V1,−1
V1,0
V1,1

⎞
⎟
⎠
=
⎛
⎜⎜
⎝

− 1√
2
(V1 + iV2)

V3
1√
2
(V1 − iV2)

⎞
⎟⎟
⎠

. (A.157)

We know that the two-point correlation function of two primary operators is non-zero only when they
feature the same scaling dimension ∆, and also they transform in conjugate representations. On the
cylinder frame, in the limit τout − τin ≫ 1 we get, up to a normalization

⟨O−q;∆
ℓm̄ (τout, n2)O

q;∆
ℓm (τin, n1)⟩ = e−(τout−τin)∆/R0 Iℓmm̄(n2) ∶= A (τin, τout) Iℓmm̄(n2), (A.158)

and we used that in the infinite-separation limit the unit vector evaluated at the direction of the sepa-
ration is

n = x − y
∣x − y∣ =

eτout/R0 n2 − eτin/R0 n1

∣eτout/R0 n2 − eτin/R0 n1∣
τout,in→±∞Ð→ n2. (A.159)

Where Iℓmm̄ is the intertwiner between the two representations

Iℓmm̄(n) = δmm̄ −
2Ωd
Mℓ

Y∗ℓm̄(n)Yℓm(n). (A.160)

For three point functions, in the limit of large separation τin,out → ∓∞ on the cylinder the result does
not depend on the scaling dimension of the middle operator ∆c

⟨O2;∆2Oc;∆O1;∆1⟩Ð→ CO1cO2
e−∆2(τout−τ)e−∆1(τ−τin) = A ∆2

∆1
(τin, τout ∣ τ)CO1cO2

. (A.161)

For correlators including operators with spin, the scalar part does not change and is the same as in
equations (2.269) and (2.308) but it is supplemented by an appropriate tensor structure [243, 244]. For
instance, in the scalar–scalar–spin-ℓ correlation function we need to multiply by (V(ijk) ⋅ t)ℓ, where

V(ijk) =
∣xki∣∣xkj∣
∣xij∣

⎛
⎜
⎝

xki

∣xki∣2
−

xkj

∣xkj∣
2

⎞
⎟
⎠

, (A.162)

and t is a supplementary vector which squares to zero, t2 = 0, to guarantee the tracelessness of V(ijk).
This item has an especially simple expression as a spherical tensor. Observing that U ν1 ...νℓ

ℓm is antisym-
metric and also traceless by construction, we do not need to deduct any traces, and we just need to
calculate one integral

V(ijk)ℓm = U µ1 ...µℓ
ℓm V(ijk)µ1 . . . V(ijk)µℓ

= kℓ,d ∫ dΩ Y∗ℓm(n)(n ⋅V
(ijk))

ℓ

= 1
kℓ,d

∣∣xkj∣
2
xki − ∣xki∣2xkj∣

ℓ

∣xij∣
ℓ∣xki∣ℓ∣xkj∣

ℓ
Y∗ℓm

⎛
⎜
⎝

∣xkj∣
2
xki − ∣xki∣2xkj

∣∣xkj∣
2
xki − ∣xki∣2xkj∣

⎞
⎟
⎠

. (A.163)

In the infinite separation limit, writing xi = R0eτout/R0 n2, xj = R0eτin/R0 n1, xk = R0eτ/R0 n, we deduce that

V(ijk)ℓm = 1
kℓ,d

Y∗ℓm(n)(1+O(e
−(τout−τ)/R0)) , (A.164)

as expected.





155

Preliminaries for the O(2) model

B.1 Hyperspherical harmonics and their properties

We collect useful formulas related to spherical harmonics in d dimensions [245].
The hyperspherical harmonic Yℓm is the eigenfunction of the Laplacian on Sd−1

−△Sd−1 Yℓm(n) = ℓ(ℓ + d − 2)Yℓm(n), (B.1)

where ℓ = 0, 1, . . . and m is a d − 2 components vector that satisfies

l ≥ m1 ≥ m2 ≥ ⋅ ⋅ ⋅ ≥ md−3 ≥ ∣md−2∣. (B.2)

We note that the lowest component md−2 is related to the usual SO(3) quantum number and this is the
sole component that can feature a negative sign. We denote m∗ the vector which has the sign of md−2
flipped. This is present in the conjugation property

Y∗ℓm = (−1)md−2Yℓm∗ . (B.3)

The above eigenvalue is independent of m, and has the multiplicity

Mℓ =
(d + 2ℓ − 2)Γ(d + ℓ − 2)

Γ(ℓ + 1)Γ(d − 1) . (B.4)

Given that the Laplacian is self-adjoint, the Yℓm form an orthonormal basis for L2(Sd−1)

(Yℓm, Yℓ′m′) = ∫
Sd−1

dΩ Yℓm(n)Y∗ℓ′m′(n) = δℓℓ′δmm′ . (B.5)

We define the resized versions of the volume element and of the eigenvalues of the Laplacian as

dS = Rd−1
0 dΩ , ω2

ℓ =
ℓ(ℓ + d − 2)
(d − 1)R2

0
. (B.6)

Some helpful identities that are obtained summing over the indices m read

∑

m
Yℓm(n)Y∗ℓm(n) =

Mℓ

Ωd
, (B.7)

∑

m
Yℓm(n) ∂iY

∗
ℓm(n) = 0 , (B.8)

∑

m
∂iYℓm(n) ∂jY

∗
ℓm(n) =

Mℓ

Ωd
(R0ωℓ)2hij(n) , (B.9)

where with Ωd = 2πd/2

Γ(d/2) we denote the volume of the d − 1 sphere.
Sums involving the eigenvalues ωℓ can be written as

∑

ℓ,m
ωs
ℓYℓm(n)Y∗ℓm(n) =

Σ(s)
ΩdRs

0
= ζ(−s/2 ∣ Sd−1)
(d − 1)s/2Rs

0Ωd
, (B.10)
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and the Λ-independent part of Σ(s) is associated to the zeta-function on the sphere [20].

ζ(s ∣ Sd−1) = Tr[(−△Sd−1 )s] . (B.11)

For the special case of s = 1 we retrieve the Casimir energy of a free scalar

∑

ℓ,m
ωℓYℓm(n)Y∗ℓm(n) =

Σ(1)
ΩDR0

= 2∆1

ΩdR0
. (B.12)

In a similar manner, sums having open derivative indexes can be calculated as

∑

ℓ,m
ωs
ℓ ∂iYℓm(n) ∂jY

∗
ℓm(n) =

Σ(s + 2)
ΩdRs

0
hij =

ζ(−s/2− 1 ∣ Sd−1)
(d − 1)s/2+1Rs

0Ωd
hij , (B.13)

and, for s = −1

∑

ℓ,m

1
ωℓ

∂iYℓm(n) ∂jY
∗
ℓm(n) =

R0Σ(1)
Ωd

hij =
2R0∆1

Ωd
hij . (B.14)

Finally, monomials can be expressed in terms of Gegenbauer polynomials

(n ⋅ n′)ℓ = ℓ!
2ℓ

⌊ ℓ2 ⌋

∑

s=0

( d
2 − 1+ ℓ − 2s)Γ ( d

2 − 1)
s! Γ ( d

2 + ℓ − s)
Cd/2−1
ℓ−2s (n ⋅ n

′). (B.15)

Additionally, the Gegenbauer polynomials exhibit an addition property of the form

Cd/2−1
ℓa

(n ⋅ n′)Cd/2−1
ℓb

(n ⋅ n′) =
min(ℓa,ℓb)

∑

k=0
⟨k∣ℓaℓb⟩C

d/2−1
ℓa+ℓb−2k(n ⋅ n

′), (B.16)

and the coefficients ⟨k∣ℓaℓb⟩ read

⟨k∣ℓaℓb⟩ = (
d
2
− 1− 2k + ℓa + ℓb)

Γ(ℓa + ℓb + 1− 2k)
Γ ( d

2 − 1)2 Γ(ℓa + ℓb − 2k + d − 2)

×
Γ ( d

2 + k − 1)Γ(ℓa + ℓb − k + d − 2)Γ (ℓa − k + d
2 − 1)Γ (ℓb − k + d

2 − 1)
Γ(k + 1)Γ (ℓa + ℓb − k + d

2)Γ(ℓa − k + 1).Γ(ℓb − k + 1)
. (B.17)

The above is a SO(d) generalisation of angular momentum addition in d = 3 spacetime dimensions.

B.2 The Goldstone propagator

We consider the eigenvalue problem

(−∂2
τ −

1
(d − 1)R2

0
∆Sd−1)ϕn(τ, x) = λnϕn(τ, x) (B.18)

The solutions read

{e±iατYm
ℓ (x) ∣ (α

2 +ω2
ℓ) ; ℓ ∈N, α ∈ R+} , ωℓ =

1
R0

√
ℓ(ℓ + d − 2)

d − 1
(B.19)
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The eigenset can be formally expressed on the cylinder where we can impose Dirichlet or Neumann
boundary conditions

D ∶
⎧⎪⎪⎨⎪⎪⎩

¿
ÁÁÀ 2

βRd−1
0

sin [nπ

β
(τ + β

2
)]Ym

ℓ (x) ∣ (
n2π2

β2 +ω2
ℓ) ; ℓ ∈N, α ∈ R+

⎫⎪⎪⎬⎪⎪⎭
(B.20)

N ∶
⎧⎪⎪⎨⎪⎪⎩

¿
ÁÁÀ 2

βRd−1
0

cos [nπ

β
(τ + β

2
)]Ym

ℓ (x) ∣ (
n2π2

β2 +ω2
ℓ) ; ℓ ∈N, α ∈ R+

⎫⎪⎪⎬⎪⎪⎭
(B.21)

We have chosen such a normalisation such that both in both the boundary conditions we get

Rd−1
0

β/2

∫

−β/2

dτ∫ dΩd ϕ∗n ϕm = δnm, ∑

n
ϕ∗n(τ1, x1)ϕn(τ2, x2) = δI×Sd−1 (B.22)

We use the spectrum to compute the Green’s function as usual

G(τin, x1∣τout, x2) =∑
n

′ ϕn(τin, x1)∗ϕn(τout, x2)
λn

, (B.23)

(−∂2
τ −

1
(d − 1)R2

0
∆Sd−1)G = δI×Sd−1 − ∑

n ∈ z.m.
ϕ∗n ϕn (B.24)

There are two zero modes

1√
β

Y0
0 , τ

¿
ÁÁÀ12

β3 Y0
0 (B.25)

which do not satisfy Dirichlet boundary conditions, while the first one satisfies Neumann boundary
conditions. Excluding this zero modes produces the same double summation range for both boundary
condition which can be split as

∑

(ℓ,m),n≠0
⋯ = ∑

(ℓ,m)≠0
∑

n>0
⋯

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
G(D,N)

I

+ ∣Y0
0 ∣2∑

n≥1
⋯

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
G(D,N)

I I

. (B.26)

Starting from

G(D) = 2
β
∑

ℓ,m
∑

n∈Z
n=m=n≠0

sin (πn
β (τin + β

2 )) sin (πn
β (τout + β

2 ))

(π2n2

β2 +ω2
ℓ)

Ym
ℓ (x1)∗Ym

ℓ (x2) (B.27)

G(N) = 2
β
∑

ℓ,m
∑

n∈Z
n=m=n≠0

cos (πn
β (τin + β

2 )) cos (πn
β (τout + β

2 ))−
1
2 δn0

(π2n2

β2 +ω2
ℓ)

Ym
ℓ (x1)∗Ym

ℓ (x2) (B.28)

(B.29)

The propagator on the I part can be computed separately as

G(D,N)
I = 1

ΩdRd−1
0

2β

π2∑

n≥1

1
n2 [cos(nπ

β
(τout − τin))∓ cos(nπ

β
(τin + τout + β))] (B.30)

= 1
ΩdRd−1

0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

β
2 [1−

2∣τout−τin∣
β − 4τoutτin

β2 ]
β
6 [1−

6∣τout−τin∣
β + 6(τ2

out+τ2
in)

β2 ]
(B.31)
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where we utilised that

∑

k≥1

cos(kx)
k2 = π2

6
− π∣x∣

2
+ x2

4
, − 2π ≤ x ≤ 2π. (B.32)

The double sum part reads

G(D,N)
I I = 1

Rd−1
0

2β

π2 ∑

(ℓ,m)≠0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

n≥1

cos (πn
β (τout − τin))

(n2 + β2

π2 ω2
ℓ)

∓∑
n≥1

cos (πn
β (τin + τout + β))

(n2 + β2

π2 ω2
ℓ)

+
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0
π2

β2ω2
ℓ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Ym
ℓ (x1)∗Ym

ℓ (x2)

(B.33)

= 1
Rd−1

0
∑

ℓ≥1,m

Ym
ℓ (x1)∗Ym

ℓ (x2)
ω2
ℓ

{ωℓ cosh [ωℓ(β − ∣τout − τin∣)]∓ωℓ cosh [ωℓ(τin + τout)]
sinh (βωℓ)

} (B.34)

where we utilised

∑

k≥1

cos(kx)
k2 + a2 =

π

2a
cosh (a(π − ∣x∣))

sinh(aπ) − 1
2a2 , − 2π ≤ x ≤ 2π. (B.35)

We can also consider the S1 propagator, for which only the constant zero mode has to be removed, as
in the Neumann case of the segment. This reads

GS1
=
⎛
⎝ ∑ℓ≥1,m,n

+ ∑
ℓ=0,m,n≠0

⎞
⎠

ei nπ
β (τout−τin) 1

βRd−1
0

Ym
ℓ (x1)∗Ym

ℓ (x2)
n2π2

β2 +ω2
ℓ

(B.36)

= ∑
ℓ≥1,m,n≥0

{cos(nπ

β
(τout − τin))−

1
2

δn0}
2

βRd−1
0

Ym
ℓ (x1)∗Ym

ℓ (x2)
n2π2

β2 +ω2
ℓ

+ 2β

π2Rd−1
0 Ωd
∑

n≥1

1
n2 cos(nπ

β
(τout − τin))

(B.37)

= 1
2
(G(D) +G(N)) (B.38)

= 1
Rd−1

0
∑

ℓ≥1,m

Ym
ℓ (x1)∗Ym

ℓ (x2)
ω2
ℓ

{ωℓ cosh [ωℓ(β − ∣τout − τin∣)]
sinh (βωℓ)

}+ 2β

ΩdRd−1
0
[1

6
− 1

2β
∣τout − τin∣+

1
4β2 (τout − τin)2]

(B.39)

By taking the limit β →∞ and neglecting the constant contribution ∼ β we get

GR = 1
Rd−1

0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

Ωd ∣τout − τin∣+ ∑
ℓ=1,m

Ym
ℓ (x1)∗Ym

ℓ (x2)
ωℓ

e−∣τout−τin∣ωℓ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(B.40)

= 1
ΩdRd−1

0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∣τout − τin∣+∑

ℓ=1

d + 2ℓ − 2
(d − 2)

e−∣τout−τin∣ωℓ

ωℓ
Cd/2−1
ℓ (x̂1 ⋅ x̂2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(B.41)

The result is fine up to an overall normalisation, and on R eigenfunctions are normalised as follows

∫ dΩdYm
ℓ (x̂1)∗Ym′

ℓ′ (x̂2)∫
dω

2π
eiω(τout−τin) = δ(τout − τin)δmm′δℓℓ′ , λℓ,ω = ω2 +ω2

ℓ (B.42)

There is no need to remove the zero modes any more, thus

GR = 1
Rd−1

0
∫

dω

2π
eiω∣τout−τin∣∑

ℓ=0

Ym
ℓ (x̂1)∗Ym

ℓ (x̂2)
ω2 +ω2

ℓ

(B.43)

= 1
Rd−1

0
∑

ℓ=1
e−ωℓ ∣τout−τin∣

Ym
ℓ (x̂1)∗Ym

ℓ (x̂2)
2ωℓ

− 1
2Rd−1

0 Ωd
∣τout − τin∣ (B.44)
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The π fluctuation correlation function reads in our normalisation

⟨π(τout, y)π(τin, x)⟩ = 1
c1d(d − 1)(µR0)d−2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

ℓ=1
e−ωℓ ∣τout−τin∣

Ym
ℓ (x)Y

m
ℓ (y)

∗

2R0ωℓ
− 1

2ΩdR0
∣τout − τin∣

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(B.45)

B.3 Regularisation

For future convenience, we introduce the regularization

Σ(s) = lim
Λ→∞
∑

ℓ>0
Mℓ(R0ωℓ)se−ω2

ℓ/Λ
2
. (B.46)

The one-loop scaling dimension reads ∆1 = 1
2 Σ(1). for various spacetime dimensions. The use of a

momentum-dependent regulator is natural.

B.4 Correlation insertions

B.4.1 ⟨
Q

ℓ2m2
∣TT∣ Qℓ1m1

⟩ correlators.

We compute the correlators with two insertions of the stress-energy tensor [29] at τ > τ′ between
spinning operators OQ

ℓm at τin, τout such that τout > τ > τ′ > τin. There are a total of six correlators which
read

⟨O−Qℓ2m2
Tττ(τ, n)Tττ(τ′, n′)OQℓ1m1

⟩ = A
∆Q+R0ωℓ2
∆Q+R0ωℓ1

(τin, τout ∣ τ)
∆0

Ω2
dR2d

0
⎧⎪⎪⎨⎪⎪⎩
[∆0 + 2∆1 +

d
2∑

ℓ

e−∣τ−τ′∣ωℓR0ωℓ
(d + 2ℓ − 2)

d − 2
C

d
2−1
ℓ (n ⋅ n′)]δℓ1ℓ2 δm1m2

+ dΩd
2

R0
√

ωℓ1
ωℓ2[Y

∗
ℓ2m2
(n)Yℓ1m1

(n′) e(τ−τ′)ωℓ1 +Y∗ℓ2m2
(n′)Yℓ1m1

(n) e−(τ−τ′)ωℓ2 ]
⎫⎪⎪⎬⎪⎪⎭

+
⎧⎪⎪⎨⎪⎪⎩

A
∆Q+R0ωℓ2
∆Q+R0ωℓ1

(τin, τout ∣ τ)
Ωd∆0R0

√
ωℓ1

ωℓ2

2Ω2
dR2d

0
((d − 1)Yℓ1m1

(n)Y∗ℓ2m2
(n)

− (d − 3)
(d − 1)

∂iYℓ1m1
(n) ∂iY∗ℓ2m2

(n)
R2

0ωℓ1
ωℓ2

) + ((τ, n)↔ (τ′, n′))
⎫⎪⎪⎬⎪⎪⎭

. (B.47)

This correlator is symmetric under (τ, n)↔ (τ′, n′) and the ℓ = 0 case has already appeared in [25].

⟨O−Qℓ2m2
Tij(τ, n)Tkn(τ′, n′)OQℓ1m1

⟩ = A
∆Q+R0ωℓ2
∆Q+R0ωℓ1

(τin, τout ∣ τ)
∆0

(d − 1)2Ω2
dR2d

0
⎧⎪⎪⎨⎪⎪⎩
[∆0 + 2∆1 +

d
2
∑
ℓ

e−∣τ−τ′∣ωℓR0ωℓ
(d + 2ℓ − 2)

d − 2
C

d
2−1
ℓ (n ⋅ n′)]hijhknδℓ2ℓ1

δm2m1

+ d Ωd
2

R0
√

ωℓ2 ωℓ1
(Y∗ℓ2m2

(n)Yℓ1m1
(n′) e(τ−τ′)ωℓ1 +Y∗ℓ2m2

(n′)Yℓ1m1
(n) e−(τ−τ′)ωℓ2 ) hijhkn

⎫⎪⎪⎬⎪⎪⎭

+
⎧⎪⎪⎨⎪⎪⎩

A
∆Q+R0ωℓ2
∆Q+R0ωℓ1

(τin, τout ∣ τ)
Ωd∆0R0

√
ωℓ1

ωℓ2

2(d − 1)Ω2
dR2d

0
[2

∂(iY∗ℓ2m2
(n) ∂j)Yℓ1m1

(n)
R2

0(d − 1)ωℓ1
ωℓ2

+Y∗ℓ2m2
(n)Yℓ1m1

(n)hij

−
∂iY∗ℓ2m2

(n) ∂iYℓ1m1
(n)

R2
0(d − 1)ωℓ1

ωℓ2

hij] hkn + ((τ, n, ij)↔ (τ′, n′, kn))
⎫⎪⎪⎬⎪⎪⎭

. (B.48)
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This correlator is symmetric under (τ, n, ij)↔ (τ′, n′, kn).

⟨O−Qℓ2m2
Tτi(τ, n)Tτ j(τ′, n′)OQℓ1m1

⟩ = −A
∆Q+R0ωℓ2
∆Q+R0ωℓ1

(τin, τout ∣ τ)
∆0d

2(d − 1)2ΩdR2d
0

⎧⎪⎪⎨⎪⎪⎩
∂i∂
′
j∑

ℓ

e−∣τ−τ′∣ωℓ

R0ωℓ

(d + 2ℓ − 2)
(d − 2)Ωd

C
d
2−1
ℓ (n ⋅ n′) δℓ2ℓ1

δm2m1 +
∂iY∗ℓ2m2

(n) ∂′jYℓ1m1
(n′)

R0
√

ωℓ2 ωℓ1
e−(τ−τ′)ωℓ1

+
∂′jY
∗
ℓ2m2
(n′) ∂iYℓ1m1

(n)

R0
√

ωℓ2 ωℓ1
e(τ−τ′)ωℓ2

⎫⎪⎪⎬⎪⎪⎭
. (B.49)

This correlator is symmetric under (τ, n, i)↔ (τ′, n′, j).

⟨O−Qℓ2m2
Tτi(τ, n)Tττ(τ′, n′)OQℓ1m1

⟩ = −A
∆Q+R0ωℓ2
∆Q+R0ωℓ1

(τin, τout ∣ τ)
∆0d

2ΩdR2d
0

1
(d − 1)

⎧⎪⎪⎨⎪⎪⎩
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. (B.50)

Since Tτi vanishes on the homogeneous ground-state, this correlator only receives a second-order con-
tribution from the linear parts and the quadratic term of Tτi.

Moving to TτiTjk we find

⟨O−Qℓ2m2
Tτi(τ, n)Tjk(τ′, n′)OQℓ1m1

⟩ = A
∆Q+R0ωℓ2
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(τin, τout ∣ τ)
∆0d

2ΩdR2d
0
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(d − 1)2
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. (B.51)

Again, besides the linear terms, only the quadratic term of Tτi contribute at second order. In addition,
the correlator ⟨O−Qℓ2m2

Tτi(τ, n) hjk(n′)Tjk(τ′, n′)OQℓ1m1
⟩ differs only by a minus sign from the former result

with an insertion of Tττ(τ′, n′), as enforced by conformal invariance.

⟨O−Qℓ2m2
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⟩ = −A
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. (B.52)

The above correlator is not symmetric in (τ, n)↔ (τ′, n′), however, by conformal invariance, the corre-
lator ⟨O−Qℓ2m2

Tττ(τ, n)hij(n)Tij(τ′, n′)OQℓ1m1
⟩ is symmetric in (τ, n)↔ (τ′, n′).
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For the special case ℓ = 0, the above correlators read

⟨O−QTττ(τ, n)Tττ(τ′, n′)OQ⟩ = A (τin, τout)
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(B.53)

⟨O−QTij(τ, n)Tkn(τ′, n′)OQ⟩ = A (τin, τout)
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(B.54)

⟨O−QTτi(τ, n)Tτ j(τ′, n′)OQ⟩ = −A (τin, τout)∆0d
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⟨O−QTτi(τ, n)Tττ(τ′, n′)OQ⟩ = −A (τin, τout)∆0d
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⟨O−QTτi(τ, n)Tjk(τ′, n′)OQ⟩ =
A (τin, τout)∆0d hjk
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⟨O−QTττ(τ, n)Tij(τ′, n′)OQ⟩ = −A (τin, τout)
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(B.58)

The ℓ1 = ℓ2 = 0 correlator with insertions of TτiTττ was computed in the macroscopic limit R → ∞
in [25].

B.4.2 ⟨
Q

ℓ2m2
∣TJ ∣ Qℓ1m1

⟩ correlators.

We consider correlation functions with one insertion of the stress-energy tensor and one insertion of the
O(2)-current at times τ > τ′ between spinning operators OQℓm at τin, τout so that we have the ordering
τout > τ > τ′ > τin. There are in total six correlators involving which read
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Tτi vanishes on the homogeneous ground state and thus only receives quadratic contributions from the
linear terms and the quadratic term of Tτi.

⟨O−Qℓ2m2
Ji(τ, n)Tττ(τ′, n′)OQℓ1m1

⟩ = −i A
∆Q+R0ωℓ2
∆Q+R0ωℓ1

(τin, τout ∣ τ)
Q

2ΩdR2d−1
0

⎡⎢⎢⎢⎢⎣
δℓ2ℓ1

δm2m1 ∂i∑

ℓ

e−∣τ−τ′∣ωℓ
(d + 2ℓ − 2)
(d − 2)Ωd

C
d
2−1
ℓ (n ⋅ n′)+

√
ωℓ2

ωℓ1

Y∗ℓ2m2
(n′) ∂iYℓ1m1

(n)

e(τ−τ′)ωℓ2

−
√

ωℓ1

ωℓ2

∂iY∗ℓ2m2
(n)Yℓ1m1

(n′)

e−(τ−τ′)ωℓ1
+ (d − 2)

D
(
√

ωℓ2

ωℓ1

Y∗ℓ2m2
(n) ∂iYℓ1m1

(n)− (1↔ 2)∗)
⎤⎥⎥⎥⎥⎦
.

(B.60)
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This correlator is related to the previous one which is clear from the expansions in equation (3.91).
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(B.61)

Here, the quadratic term from Jτ vanishes after integration over n′, whereas the quadratic term from
Tττ remains finite after integration over n. This is so because it has to correct the energy by R0ωℓ2 [29].
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(B.62)

Both Tτi and Ji vanish on the homogeneous ground state and therefore the sole quadratic contribution
originates from the two linear terms.
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(B.63)

The above correlator is associated to the TJ correlator in equation (B.61) because hijTij = −Tττ , due to
conformal invariance.
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(B.64)

The above correlator is analogous to hjk since the quadratic term in the expansion of Tjk only appears
at cubic order, but this is no longer true once we include higher-order corrections.
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Preliminaries for the O(N) model and
Resurgence

Most of the sections of the Appendix are based on [155] and on an unpublished set of notes by Nicola
Dondi.

C.1 The Borel transform

The Borel transform is an operation acting in the space of power series in the following manner

Φ(z) ∼
∞

∑

n=0
anzn Ð→ B {Φ} (ζ) =

∞

∑

n=0

an

Γ(βn + b)ζn, (C.1)

where we presume a generic large order behaviour of ak as in equation (4.79) with b ≡ max{bk}, β ≡
max{βk}. This assumption guarantees that the series defined by B {Φ} is convergent in a disc displaced
at the beginning of the ζ-plane, also referred as Borel plane.

The analytic properties of the Borel transforms can be straightaway deduced from equation (4.79)
and for example

an

Γ(βn + b) ∼
1

Aβn+b then B{Φ}(ζ) ζ→Aβ

ÐÐÐ→ A−b

1− ζ /Aβ
+ regular. (C.2)

Then we can define the Borel resummation of Φ as

S{Φ}(z) = 1
β

∞

∫

0

dζ

ζ
(ζ

z
)

b
β

e−(ζ/z)
1/β
B{Φ}(ζ). (C.3)

Utilising the definition of the Gamma function, it is clear that S {Φ} (z) ∼ Φ(z) as z → 0+. Nevertheless,
if the integral is well-defined, it specifies a function calculable for all values of z, which stands for the
“sum” of the divergent series Φ. This function is without ambiguities unless B{Φ} exhibits singularities
along the integration line. In this case, we need to define a directional summation Sθ by integrating
along the ray with angle θ in the Borel plane: the expression in equation (C.3) matches to the case θ = 0.

A ray θ along which B{Φ} features singularities is a Stokes ray and there are ambiguities in the Borel
resummation. We then define lateral Borel summations Sθ± by deforming the contour of integration to
avoid the poles. This represents the existence of a branch cut for Arg(z) = θ for the Borel resummation,
with the discontinuity calculated as

[Sθ+ −Sθ−]{Φ} = −[Sθ− ○Discθ]{Φ}. (C.4)

The above discontinuity is strictly non-perturbative, as we can see from the example in equation (C.2)
where θ = 0

[S0+ −S0−]{Φ} = −
2πi

β
z−b/βe−A/z1/β

= −Disc0{Φ}. (C.5)

For a non-Borel summable perturbative series Φ(0), the expression Disc{Φ(0)} supplies the structure of
the non-perturbative terms that we have to add to the trans-series expression in equation (4.68), and the
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large-order behaviour in equation (4.79) results applying Cauchy’s integral representation. The lateral
Borel summation of the general trans-series is determined, as

Sθ±{Φ}(σk, z) = Sθ±{Φ(0)}(z)+∑
k

σ±k e−Ak/z
1/βk z−bk/βk Sθ±{Φ(k)}(z). (C.6)

This will not determine a unique resurgent function for Arg(z) = θ unless we fix some way the ambi-
guity associated with the integration path. This can be achieved by the imposition of extra conditions
on the lateral Borel summation, that picks out the trans-series parameters σ±k in such a manner that the
ambiguity is lifted. When this is accomplishable, we achieved “semiclassical decoding” in the language
of [246].

C.2 Trans-series representation of the Dawson’s function

We construct the trans-series representation of the Dawson’s mathematical function that we found in
section 4.1.3. We will exhibit that no non-perturbative ambiguities remain by the time that we enforce
the reality condition for the heat-kernel trace of S2. The methodology is standard and follows the one
used in Euler’s and Riccati’s ODE [180]. The Dawson’s function constitutes the unique solution to the
Cauchy problem

dF
dz
+ 2zF(z) = 1, F(0) = 0. (C.7)

It is apparent that z = ∞ is a critical point of the ODE. We may try to seek a solution regarding an
asymptotic series around this point, that turns out to be

F(z) ∼
∞

∑

k=0
an

1
z2k+1 =

∞

∑

k=0

(2k − 1)!!
2k+1

1
z2k+1 for z →∞. (C.8)

The above solution has two problems: first is that it is an asymptotic series, so it is only formally
defined; and second that there is no constant of integration that we can fix using the initial condition.

Both of these issues have a common resolution. We define a Borel transform as follows

B{Φ}(ζ) =
∞

∑

k=0

an

Γ (k + 1
2)

ζk+1 = 1
2
√

π

ζ

1− ζ
. (C.9)

The above series is not Borel summable due to the singularity at ζ = 1, and thus we have to compute
the proper lateral Borel summations as

S±{Φ}(z) = ∫
±

dζ ζ−
3
2 e−z2ζB{Φ}(ζ). (C.10)

We can compute the difference between the lateral Borel summation, which is

[S+ −S−] {Φ}(z) = −Disc{Φ}(z) = − 2πi
2
√

π
e−z2

. (C.11)

But this quantity solves to the homogeneous ODE. Therefore, we can then express the general solution
to the ODE as a trans-series placed at z = ∞ with a single trans-series parameter σ in the following
manner

Ξ(z, σ) =
∞

∑

k=0

(2k + 1)!!
2k+1

1
z2k+1 + σe−z2

. (C.12)

Its lateral Borel summation are

S± {Ξ} (z, σ±) =
1

2
√

π∫
±

dζ√
ζ

e−z2ζ

1− ζ
+ σ±e−z2

, (C.13)
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that can be shown to solve the inhomogeneous ODE.
To specify the trans-series parameter, we can enforce the outcome to be real for real z, which fixes

Iσ± = ±
π

2
√

π
, (C.14)

in which case the coefficients of the non-perturbative exponentials are strictly imaginary. The real part
of σ± remains unfixed and equals the integration constant that had disappeared when we had tried a
power series ansatz for the solution. A generic boundary condition fixes its value as

F(0) = c, Ô⇒ Rσ∓ =
√

π

2
e−c2

erfi(c). (C.15)

For F(0) = 0 we receive Rσ± = 0, thus the reality condition is adequate to determine the whole non-
perturbative ambiguity. Also observe that this fixed representation of the trans-series resummation
matches with the definition of the Dawson’s function:

S± {Ξ} (z, σ±) =
1

2
√

π
P. V.

∞

∫

0

dζ
e−z2ζ

√
ζ(1− ζ)

=
√

π

2
e−z2

erfi(z) ≡ F(z), z > 0. (C.16)

Given that the factorial growth of the Dawson’s function drives the ones we found in the heat-kernel
trace, the grand potential and the canonical free energy, we can reason that a reality condition is ade-
quate to fix all of the above non-perturbative ambiguities.

C.2.1 Path integral normalisation
We are interested in the following path integral

I = ∫
DBC
Dx e−

m
2 ∫

t
0 dτẋ2

, (C.17)

which can be evaluated as

I = lim
N→∞,ϵ→0

Nϵ=t

( m
2πϵ
)

Nd
2

∫

N−1

∏

i=1
ddxi exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−m

2ϵ

N−1

∑

i=0
(xi+1 − xi)2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (C.18)

and we define

K(ϵ, xi+1, xi) = (
m

2πϵ
)

d
2

e−
m
2ϵ (xi+1−xi)

2
. (C.19)

Then for i = 1 we find the following relation

∫ ddx1 e−
m
2ϵ [(x2−x1)

2
+(x1−x0)

2
] = ∫ ddx1 e−

m
2ϵ [x

2
2+x2

0+2x2
1−2x1(x2+x0)]

= (πϵ

m
)

d
2

e−
m
2ϵ [x

2
2+x2

0−
1
2 (x2+x0)

2
]

= (πϵ

m
)

d
2

e−
m
4ϵ (x2−x0)

2
, (C.20)

and in terms of the K we get

∫ ddx1K(ϵ, x2, x1)K(ϵ, x1, x0) = (
m

4πϵ
)

d
2

e−
m
4ϵ (x2−x0)

2
≡ K(2ϵ, x2, x0). (C.21)
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Now we can repeat the same computation but for i = 2 using the prior results

∫ ddx2 e−
m
4ϵ [2(x3−x2)

2
+(x2−x0)

2
] = ∫ ddx2 e−

m
4ϵ [2x2

3+x2
0+3x2

2−2x2(2x3+x0)] (C.22)

= (4πϵ

3m
)

d
2

e−
m
4ϵ [2x2

3+x2
0−

1
3 (2x3+x0)

2
] (C.23)

= (4πϵ

3m
)

d
2

e−
m
6ϵ (x3−x0)

2
. (C.24)

And we can repeat the same thing for K as

∫ ddx2K(ϵ, x3, x2)K(2ϵ, x2, x0) = (
m

6πϵ
)

d
2

e−
m
6ϵ (x2−x0)

2
≡ K(3ϵ, x3, x0) (C.25)

By repeating the same procedure indefinitely and taking the appropriate limits we get

I = lim
N→∞,ϵ→0

Nϵ=t

∫

⎡⎢⎢⎢⎢⎣

N−1

∏

i=1
ddxi

⎤⎥⎥⎥⎥⎦
K(ϵ, xN , xN−1)

N−1

∏

i=1
K(ϵ, xi, xi−1)

= lim
N→∞,ϵ→0

Nϵ=t

K(Nϵ, xN , x0) (C.26)

= ( m
2πt
)

d
2

e−
m
2t (y−x)2 (C.27)

To compare with the mode decomposition, with ζ-function regularisation we change variable in the
discretised version as xk = x + kϵ

t (y − x) + hk from which we see that h0 = hN = 0. The Jacobian is unity
ddxk = ddhk and xk+1 − xk = hk+1 − hk + ϵ

t (y − x) so that we get

I = lim
N→∞,ϵ→0

Nϵ=t

( m
2πϵ
)

Nd
2

∫

N−1

∏

i=1
ddxi exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−m

2ϵ

N−1

∑

i=0
[ϵ2

t2 (y − x)2 + (hk+1 − hk)2 +
2ϵ

t
(hk+1 − hk)(y − x)]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(C.28)

= e−
m
2t (y−x)2 lim

N→∞,ϵ→0
Nϵ=t

( m
2πϵ
)

Nd
2

∫

N−1

∏

i=1
ddhk exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−m

2ϵ

N−1

∑

i=0
[(hk+1 − hk)2]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(C.29)

The linear term in hk+1 − hk telescopes to 0 as h0 = hN = 0. We then divide out such terms defining the
normalisation

I = e−
m
2t (y−x)2N , N = ∫

DBC
Dh e

−m
2

t

∫
0

dτḣ2

(C.30)

We have observed that in time slicing we have that

N = ( m
2πt
)

d
2

(C.31)

C.3 Optimal truncation in the double-scaling limit

In the double-scaling limit, we know every series coefficients of ω, thus we can calculate the Borel
transform and evaluate the canonical free energy to any given precision. This is not doable in the
generic EFT arising at finite values of N, where we need to use numerical computations on the lattice
to get the first few coefficients. Here we present what sort of results we should expect for the opti-
mal truncation utilising the results in the double-scaling limit. More sophisticated investigation such
as Borel-Padé and conformal mappings [247] can produce significant improvements on the optimal
truncation approximations.
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Figure C.1: Left: Grand potential ω as function of m in the small charge expansion and for
different numbers of terms. The small-charge expansion breaks down in the red-shaded

region. Right: Error in the truncation w.r.t. the exact small-charge expansion.

We consider the grand potential ω(m) in equation (4.90)

ω(m) = R2
0m3

∞

∑

n=0

(−1)n(1− 21−2n)B2nΓ( 3
2 − n)

2
√

πΓ(n + 1)
1

(R0m)2n = R2
0m3

∞

∑

n=0
ωn

1
(R0m)2n . (C.32)

In the thesis and in [155] we exhibit that if for large values of n the constants ωn grow like

ωn ∼ (βn)!A−n, (C.33)

then the series has an optimal truncation given by the value of n for which ωn(R0m)−2n has a saddle:

N∗ ≈ 1
β
∣A(R0m)2∣1/β, (C.34)

and the relevant error in the truncation is of order

ϵ(m) ∼ e−(AR2
0m2
)

1/β
. (C.35)

Here, for large n we have

ωn ∼
(2n)!(4π2)−n
√

πn5/2
, (C.36)

so we match A = 4π2, β = 2 and therefore the optimal truncation is for the value

N∗ ≈ πR0m. (C.37)

Utilising that for large values of Q, the coefficient m scales as R0m ∼
√

Q , we discover that in the
expansion of the grand potential, and of the canonical free energy, the optimal truncation is found at
the value

N∗ ≈ π
√

Q. (C.38)

In Figure C.1 we compare the asymptotic expansion truncated at the N-th term with the convergent
small-charge expansion. Empirically, we note that the optimal truncation for m < 0.5 is at N = 3 terms
until we hit the limit where the convergent expansion cannot be trusted any longer. This is quite close
to the asymptotic estimate above that would give N∗ ⪅ 3 in this regime.
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Preliminaries for Fermionic models

D.1 3d Fermions

In this appendix following [74], we gather some background material for fermionic theories in d = 2+ 1
and d = 3 spacetime dimensions to make the present work as self-contained as possible.

D.1.1 Gamma matrices in the Dirac convention in 3d
The gamma matrices in d = 2+ 1 and d = 3 dimensions are built out of the Pauli matrices

σ1 = (
0 1
1 0) , σ2 = (

0 −i
i 0 ) , σ3 = (

1 0
0 −1) , (D.1)

in the following manner

d = 2+ 1 ∶ γ0 = iσ3, γ1,2 = σ1,2 (D.2)
d = 3 ∶ γµ = σµ, µ = 1, 2, 3. (D.3)

And the Clifford algebra in our convention reads

{γµ, γν} = 2ηµν. (D.4)

We work in the signature ηµν = (−1, 1, 1) for 2+ 1 dimensional Minkowski spacetime and in this signa-
ture γ0 is anti-Hermitian, while spatial γs are Hermitian.
Furthermore, the gamma matrices satisfy

(γi)2 = −(γ0)2 = 1, γ0γµγ0 = (γµ)†. (D.5)

Complex (Dirac) spinors ψ transform in the usual representation of SO(1, 2), SO(3) generated by these
gamma matrices.
The Dirac conjugate in our notation is

d = 2+ 1 ∶ ψ̄ = ψ†γ0, (D.6)

d = 3 ∶ ψ̄ = ψ†γ3. (D.7)

The continuation from Minkowski to Euclidean spacetime is achieved as follows

t → −iτ, ∂t → i∂τ , γ0 → iγ3, γi → γi. (D.8)

Given the above transformation rules, the massive Dirac action is continued in the following manner:

i∫ dtd2x [ψ̄(iγµ ∂µ+im)ψ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

SM

→ −∫ d3x [ψ̄(γµ ∂µ+m)ψ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

SE

. (D.9)
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D.1.2 Spinors on S1
β × S2

Spinors in spherical coordinates.
We follow closely the treatment sketched in [248].
The Hermitian Dirac operator on R3 is

iγµ ∂µ= −σ⃗ ⋅ p⃗ (D.10)

with momentum operator pµ = −i∂µ and σ⃗ = σi the Pauli matrices of equation (D.1).
We define the generalized angular momentum and total angular momentum as

L⃗ = r⃗ × p⃗, J⃗ = L⃗ + σ⃗

2
, [L⃗, r⃗] = [ J⃗, r⃗] = 0. (D.11)

These are both Hermitian operators. The eigenfunctions of L⃗2 are ordinary spherical harmonics:

L⃗2Yℓm = ℓ(ℓ + 1)Yℓm, LzYℓm = mYℓm, ℓ = 0, 1, 2... m = −ℓ, ...ℓ. (D.12)

Using these, we can build simultaneous eigenfunctions of { J⃗2, Jz, L⃗2, S⃗2}. These are spinor spherical
harmonics:

ϕ+jmj
=
⎛
⎜
⎝

√
ℓ+m+1
2ℓ+1 Yℓm√
ℓ−m
2ℓ+1 Yℓm+1

⎞
⎟
⎠

, ϕ−jmj
=
⎛
⎜
⎝
−
√

ℓ−m
2ℓ+1 Yℓm√

ℓ+m+1
2ℓ+1 Yℓm+1

⎞
⎟
⎠

. (D.13)

The wave functions ϕ± correspond respectively to the cases j = ℓ ± 1/2 and mj = m ± 1/2. These have the
following quantum numbers:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L⃗2ϕ±jmj
= ℓ(ℓ + 1)ϕ±jmj

J⃗2ϕ±jmj
= j(j + 1)ϕ±jmj

Jzϕ±jmj
= mjϕ

±
jmj

⎧⎪⎪⎨⎪⎪⎩

j = 1
2 , 3

2 , 5
2 ...

mj = −j...j
(D.14)

and are (2j + 1)-degenerate. Any spinor in R3 can be decomposed in this orthonormal basis. It is
convenient to introduce the radial γ matrix γr = γ⃗ ⋅ r̂. The Dirac operator can then be written as

iγµ ∂µ= iσr {
∂

∂r
− 1

r
[ J⃗2 − L⃗2 − 3

4
]} , (D.15)

and is diagonal in the ϕ± basis.

Weyl map to the cylinder.
We perform a Weyl transformation to the cylinder by letting

r = eτ , ηµν = R0e2τ gµν, ψR3 = e−τψR×S2 . (D.16)

If we foliate R3 radially we can define the Dirac conjugate as ψ† = ψ̄σr. Then the free Dirac action on
R3 reads

S = ∫
R3

ψ̄/∂ψ = ∫
R×S2

ψ̄ /Dψ, /D = γr {
∂

∂τ
− 1

R0
[ Ĵ2 − L̂2 + 1

4
]} . (D.17)

The eigenfunctions on the cylinder are

Ψ±njmj
(τ, x̂) = e−iωnτϕ±jmj

(x̂), (D.18)
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where x̂ is a point on S2. We will make use of the following relations when computing functional
determinant on S1

β × S2:

∫

R×S2

(Ψ±jmj
)†Ψ±j′m′j

= δjj′δmjm′j
(1 0

0 1) , (D.19)

∫
R×S2

(Ψ±jmj
)†γrΨ±j′m′j

= δjj′δmjm′j
( 0 −1
−1 0 ) , (D.20)

∫
R×S2

(Ψ±jmj
)†(i /D)Ψ±j′m′j = δjj′δmjm′j

( 0 ωn − iωj
ωn + iωj 0 ) , (D.21)

where we introduced

ωn =
(2n + 1)π

β
, ωj =

1
R0
(j + 1

2
) , (D.22)

which are the Matsubara frequencies and the eigenvalues of the Dirac operator on the sphere, respec-
tively.

D.1.3 Reducible Representation
For 3d fermionic theories with an even number 2N of fermion fields ψa=1...2N it is convenient to introduce
a reducible representation of the Clifford algebra as follows:

Γµ = σ3 ⊗ γµ = (
γµ 0
0 −γµ

) , Ψa ≡ (
ψa

ψa+N
) , a = 1, ..., N. (D.23)

then we can pick

Γ5 = σ1 ⊗1 = (
1

1
) . (D.24)

The charge conjugation matrix is

C4 = Γ2 = σ3 ⊗C = (σ2
−σ2
) , (D.25)

and satisfies

C4 = C−1
4 = C†

4 = −CT
4 = −C∗4 , C4ΓµC4 = −(Γµ)T . (D.26)

In addition, it holds that

{Γ5, C4} = 0. (D.27)

In terms of spinors the reducible four-dimensional representation consists of two two-dimensional irre-
ducible spinors,

Ψ = (ψ1, ψ2)
T

, Ψ̄ = Ψ†Γ3 = (ψ†
1γ3,−ψ†

2γ3) = (ψ̄1,−ψ̄2), (D.28)

for a = 1, . . . , N.
As a concrete example, the action of the U(1)-NJL model in terms of this reducible representation can
be written as

S = ∫ d3x (Ψ̄Γµ ∂µΨ − g
N
((Ψ̄Ψ)2 − (Ψ̄Γ5Ψ)2)) . (D.29)
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D.2 U(1) Pauli–Gürsey transformation

We consider the following transformation

Ψ ↦ 1
2
[(1− Γ5)Ψ + (1+ Γ5)C4Ψ̄T] ,

Ψ̄ ↦ 1
2
[Ψ̄(1+ Γ5)−ΨTC4(1− Γ5)] .

(D.30)

Note that the explicit expression of the transformation relies upon the chosen convention for the gamma
matrices. This transformation is an involution, as it maps Ψa to Ψa after applying it twice. Under the
PG transformation, the kinetic term remains invariant,

∫ d3x Ψ̄Γµ∂µ∂Ψ ↦ ∫ d3x Ψ̄Γµ∂µ∂Ψ, (D.31)

while the Cooper BCS interaction term is related to the U(1)-NJL interaction term,

−Ψ̄C4Ψ̄T ΨTC4Ψ ↦ Ψ̄(1+ Γ5)Ψ Ψ̄(1− Γ5)Ψ. (D.32)

The converse statement also applies, given that the PG transformation is an involution.
Eventually, the PG transformation maps the fermion number chemical potential into the axial chem-

ical potential and vice versa,

Ψ̄Γ3µΨ ↦ Ψ̄(−Γ3Γ5µ)Ψ, Ψ̄Γ3Γ5µΨ ↦ Ψ̄(−Γ3µ)Ψ. (D.33)

In total, we get the following map for the chiral GN model:

S = ∫ d3x (Ψ̄(Γµ ∂µ−µΓ3Γ5)Ψ −
g
N
((Ψ̄Ψ)2 − (Ψ̄Γ5Ψ)2))

= ∫ d3x (Ψ̄(Γµ ∂µ−µΓ3Γ5)Ψ −
g
N

Ψ̄(1+ Γ5)Ψ Ψ̄(1− Γ5)Ψ)

↦ ∫ d3x (Ψ̄(Γµ ∂µ+µΓ3)Ψ +
g
N

Ψ̄C4Ψ̄T ΨTC4Ψ) .

(D.34)

For wholeness, the Cooper model written with regard to the Stratonovich fields reads

L = Ψ̄Γµ ∂µΨ + i
Φ
2

Ψ̄C4Ψ̄T + i
Φ∗

2
ΨTC4Ψ + N

4g
Φ∗Φ. (D.35)

D.3 Finite-density loop integrals and Matsubara sums

Fourier transforms on S1
β ×R2

We designate a point on S1
β ×R2 as X = (τ, x) and momenta as P = (ωn, p⃗) where ωn = π(2n + 1)/β are

fermionic Matsubara frequencies. The Fourier transforms in our normalisation conventions read

δ(X −X′) =∑∫
dd p

β(2π)d
e−iP⋅(X−X′) δnn′δ(p − p′) = ∫

dτddx
β(2π)d

e−iX⋅(P−P′) (D.36)

f (X) =∑∫
dd p√

β(2π)d
e−iP⋅X f (P), f (P) = ∫

dτddx√
β(2π)d

eiP⋅X f (X). (D.37)

Matsubara sums
The master formula for fermionic Matsubara sums that we encounter in the computation of the Dirac
determinant is

∑

n∈Z
log [(2n + 1)2π2 + A2

(2n + 1)2π2 + 1
] = A + 2 log (1+ e−A) . (D.38)
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D.3.1 GN scalar integrals at finite µ, β

We collect the scalar integral utilized to obtain the results in section 5.3.1. Following [249], one-loop
integrals at finite temperature and chemical potential can all be derived from the massive scalar integral

∫

ddk
(2π)d

1
[k2 +m2]α =

1

(4π) d
2

Γ(α − d/2)
Γ(α) (m2)−α+ d

2 . (D.39)

Recalling that K̃ = (ωn − Iµ, k⃗) the first scalar integral we used can be computed as

I1 =∑∫
ddk

β(2π)d
1

K̃2

= Γ(1− d/2)
(4π) d

2
∑

n∈Z

1

[(ωn − iµ)2]1− d
2

= Γ(1− d/2)
(4π) d

2
(2π

β
)
−2+d

∑

n∈Z

1

[(n + 1
2 − iµ̄)2]

1− d
2

= Γ(1− d/2)
(4π) d

2
(2π

β
)
−2+d

{ζ (2− d,
1
2
− iµ̄)+ ζ (2− d,

1
2
+ iµ̄)} , (D.40)

where we normalise bare quantities as µ̄ = βµ/(2π) etc. At β →∞ this becomes

lim
β→∞

I1 = −
µ

4π
. (D.41)

The I2 integral has three scales: β, µ, P where P is an external momentum. It can be computed similarly
to I1 where we use a Feynman parametrization to merge the propagators

I2 =∑∫
d2kd2q
β(2π)2

δ(K +Q − P)
K̃2(Q̃†)2

= ∫
1

0
dx∑∫

d2k
β(2π)2

1

[k2 + {x(1− x)p2 + (1− x)(ωn − iµ)2 + x(ωm −ωn + iµ)2}]2

= Γ(2− d/2)
β(4π) d

2
(2π

β
)

d−4 1

∫

0

dx∑
n∈Z

1

[(n + 1
2 − iµ̄ − xω̄m)2 + x(1− x)(p̄2 + ω̄2)]2−

d
2

= Γ(2− d/2)
β(4π) d

2
(2π

β
)

d−4 1

∫

0

dx∑
n∈Z

1

[(n + A)2 + B]2−
d
2

= Γ(2− d/2)
β(4π) d

2
(2π

β
)

d−4 1

∫

0

dx
⎧⎪⎪⎨⎪⎪⎩

1

[A2 + B]2− d
2
+ F(2− d/2; A, B)+ F(2− d/2;−A, B)

⎫⎪⎪⎬⎪⎪⎭
, (D.42)

where we introduced
A = 1

2
− iµ − xωm, B = x(1− x)[p̄2 + ω̄2

m]. (D.43)

The functions F are special ζ-functions found in [188]. At β →∞ we find

lim
β→∞

I2 =
1

8
√

ω2
m + p2

= 1

8
√

P2
. (D.44)
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D.3.2 NJL loop integrals
We want to compute the following integrals:

G−1
σσ(P) = −∫

d3k
(2π)3 Tr [∆(µ,σ)(K)∆(−µ,−σ)(P −K)] , (D.45)

G−1
σπ(P) = −i∫

d3k
(2π)3 Tr [∆(µ,σ)(K)Γ5∆(−µ,−σ)(P −K)] , (D.46)

G−1
πσ(P) = −i∫

d3k
(2π)3 Tr [Γ5∆(µ,σ)(K)∆(−µ,−σ)(P −K)] , (D.47)

G−1
ππ(P) = ∫

d3k
(2π)3 Tr [Γ5∆(µ,σ)(K)Γ5∆(−µ,−σ)(P −K)] , (D.48)

where the fermion propagator is given by

∆(µ,σ)(P) = (−i /P +Φ0 − µΓ3Γ5)−1

=
(ω2 + k2 +Φ2

0 − µ2 + 2µ(iωΓ3 +Φ0)Γ3Γ5)
(ω2 +Φ2

0 + (µ + k)2) (ω2 +Φ2
0 + (µ − k)2)

(i /P +Φ0 − µΓ3Γ5) .
(D.49)

Zeroth order in P/µ
At zeroth order in P/µ these integrals are now

G−1
σσ(P)∣O(0) = ∫

d2kdk0

(2π)3
⎡⎢⎢⎢⎢⎣

4Φ2
0

⎛
⎜
⎝

1

((k + µ)2 + k2
0 +Φ2

0)
2 +

1

((k − µ)2 + k2
0 +Φ2

0)
2

⎞
⎟
⎠
− 2
(k − µ)2 + k2

0 +Φ2
0

− 2
(k + µ)2 + k2

0 +Φ2

⎤⎥⎥⎥⎥⎦
, (D.50)

G−1
σπ(P)∣O(0) = 0, (D.51)

G−1
πσ(P)∣O(0) = 0, (D.52)

G−1
ππ(P)∣O(0) = −∫

d2kdk0

(2π)3
⎡⎢⎢⎢⎣

2
(k + µ)2 + k2

0 +Φ2
0

+ 2
(k − µ)2 + k2

0 +Φ2
0

⎤⎥⎥⎥⎦
. (D.53)

We then perform the residue integral over k0,

G−1
σσ(P)∣O(0) = −∫

d2k
(2π)3

⎡⎢⎢⎢⎢⎢⎣

2π(k − µ)2

((k − µ)2 +Φ2
0)

3/2
+ 2π(k + µ)2

((k + µ)2 +Φ2
0)

3/2

⎤⎥⎥⎥⎥⎥⎦
, (D.54)

G−1
ππ(P)∣O(0) = ∫

d2k
(2π)3

⎡⎢⎢⎢⎢⎢⎣
2π
⎛
⎜
⎝

1√
(k + µ)2 +Φ2

0

+ 1√
(k − µ)2 +Φ2

0

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
. (D.55)

The remaining integrals are divergent. The divergence is however independent of µ, so we can simply
subtract the expression for µ = 0 to regularize them:

G−1
σσ(P)∣O(0) = ∫

d2k
(2π)3

⎡⎢⎢⎢⎣
4πk2

(k2 +Φ2
0) 3/2

− 2π(k − µ)2

((k − µ)2 +Φ2
0) 3/2

− 2π(k + µ)2

((k + µ)2 +Φ2
0) 3/2

⎤⎥⎥⎥⎦

−∫
d2k
(2π)3

4πk2

(k2 +Φ2
0) 3/2

(D.56)

G−1
ππ(P)∣O(0) = ∫

d2k
(2π)3

⎡⎢⎢⎢⎢⎢⎣
− 4π√

k2 +Φ2
0

+ 2π√
(k − µ)2 +Φ2

0

+ 2π√
(k + µ)2 +Φ2

0

⎤⎥⎥⎥⎥⎥⎦

+ 4π∫
d2k
(2π)3

1√
k2 +Φ2

0

. (D.57)
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The divergent integrals after regulation give

∫

d2k
(2π)3

4πk2

(k2 +Φ2
0) 3/2

= 8
(2π)3 π2

∫ dk k
k2

(k2 +Φ2
0) 3/2

≡ − 16
(2π)3 π2Φ0, (D.58)

∫

d2k
(2π)3

4π√
k2 +Φ2

0

≡ − 8
(2π)3 π2Φ0. (D.59)

We can then perform the spatial integral over the momentum k. We get

G−1
σσ(P)∣O(0) =

8π2

(2π)3 (2
√

µ2 +Φ2
0 − µ arctanh( µ

√
µ2+Φ2

0

)) , (D.60)

G−1
ππ(P)∣O(0) =

8π2

(2π)3 (
√

µ2 +Φ2
0 − µ arctanh( µ

√
µ2+Φ2

0

)) . (D.61)

Finally we can use the eom,

Φ0 =
√

κ2
0 − 1µ, arctanh∗( 1

κ0
) = κ0 (D.62)

to find the final result

G−1
σσ(P)∣O(0) =

κ0π

µ
, G−1

ππ(P)∣O(0) = 0. (D.63)

First order in P/µ
At order 1 in P/µ the following two integrals are an odd function of k0 and k1, k2, hence under integra-
tion it follows that

F−1
σσ (P)∣O(P/µ) = 0, (D.64)

G−1
ππ(P)∣O(P/µ) = 0. (D.65)

The remaining two are computed as follows:

G−1
σπ(P)∣O(P/µ) = ∫

d2kdk0

(2π)3
4µ2 ω

µ (−3k4 + 2k2 (−k2
0 + µ2 −Φ2

0)+ (k2
0 + µ2 +Φ2

0)
2)

((k − µ)2 + k2
0 +Φ2

0)
2 ((k + µ)2 + k2

0 +Φ2
0)

2 , (D.66)

G−1
πσ(P)∣O(P/µ) = −∫

d2kdk0

(2π)3
4µ2 ω

µ (−3k4 + 2k2 (−k2
0 + µ2 −Φ2

0)+ (k2
0 + µ2 +Φ2

0)
2)

((k − µ)2 + k2
0 +Φ2

0)
2 ((k + µ)2 + k2

0 +Φ2
0)

2 . (D.67)

We perform the integral over k0 to obtain

G−1
σπ(P)∣O(P/µ) = π∫

d2k
(2π)3

⎛
⎜
⎝

µ(µ − k)
((k − µ)2 +Φ2
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3/2
+ µ(k + µ)
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3/2

⎞
⎟
⎠

ω

µ
, (D.68)

G−1
πσ(P)∣O(P/µ) = π∫

d2k
(2π)3

⎛
⎜
⎝

µ(k − µ)
((k − µ)2 +Φ2

0)
3/2
− µ(k + µ)
((k + µ)2 +Φ2

0)
3/2

⎞
⎟
⎠

ω

µ
. (D.69)

We can then perform the spatial integral over the momentum k1 and k2

G−1
σπ(P)∣O(P/µ) =

2π2

(2π)3 µ
ω

µ
log
⎛
⎜
⎝

2µ(µ−
√

µ2+Φ2
0)

Φ2
0

+ 1
⎞
⎟
⎠

, (D.70)

G−1
πσ(P)∣O(P/µ) =

2π2

(2π)3 µ
ω

µ
log
⎛
⎜
⎝

2µ(
√

µ2+Φ2
0+µ)

Φ2
0

+ 1
⎞
⎟
⎠

. (D.71)
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Finally using the eom and simplifying we end up with

G−1
σπ(P)∣O(P/µ) = −

κ0ω

2π
, G−1

πσ(P)∣O(P/µ) =
κ0ω

2π
. (D.72)

Second order in P2
/µ2

Next we consider the quadratic part in P. By rotational invariance, at second order in O(P2/µ2), the
integrand must have the form

A(k)ω2 + B(k)ω(P ⋅ k)+C(k)P2 +D(k)(k ⋅ P)2. (D.73)

The B(k) piece does not contribute as it is an odd function of k1, k2. Similarly, the cross-term in (k ⋅ P)2
will not contribute. The part of the integrand that contributes is thus

A(k)ω2 +C(k)P2 +D(k)(k2
1 p2

1 + k2
2 p2

2). (D.74)

Given the symmetry under the exchange 1↔ 2, this is a function of p2
1 + p2

2.
We will split the computation into two parts, one with ω and the other with P.
We start with the ω part. After performing the k0 residue integral the two remaining integrals are

Iω
σσ =

1
2∫

d2k
(2π)3 πµ2 (ω

µ
)

2 ⎛
⎜
⎝

(k − µ)2

((k − µ)2 +Φ2
0)

5/2
+ (k + µ)2

((k + µ)2 +Φ2
0)

5/2

⎞
⎟
⎠

, (D.75)

Iω
ππ = ∫

d2k
(2π)3

1
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πµ2 (ω

µ
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2 ⎛
⎜
⎝

1

((k + µ)2 +Φ2
0)

3/2
+ 1

((k − µ)2 +Φ2
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3/2

⎞
⎟
⎠

. (D.76)

We can then perform the integrals over k1 and k2 to get

Iω
σσ =

1
(2π)3 (

ω

µ
)

2 2π2µ2 (µ2 + 2Φ2
0)

3Φ2
0

√
µ2 +Φ2

0

, Iω
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1
(2π)3 (

ω

µ
)

2 2π2µ2
√

µ2 +Φ2
0

Φ2
0

. (D.77)

By using the eom and simplifying we finally get

Iω
σσ =

ω2 − 2κ2
0ω2

12πκ0µ − 12πκ3
0µ

, Iω
ππ = −

κ0ω2

4πµ − 4πκ2
0µ

. (D.78)

Similarly we can repeat the same procedure for the parts that depend on P, p1, p2. First we perform
the residue integral over k0 and then the integrals over k1, k2. The result is

IP
σσ =

1
2

π2µ

(2π)3 (
p
µ
)

2 ⎛
⎜
⎝

2 arctanh( µ
√

µ2+Φ2
0

)+
2µ (µ4 +Φ4

0)

3Φ2
0 (µ2 +Φ2

0)
3/2

⎞
⎟
⎠

, (D.79)

IP
ππ =

π2µ

(2π)3 (
p
µ
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2 ⎛
⎝

µ
√

µ2 + σ2

Φ2
0

+ arctanh( µ
√

µ2+Φ2
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)
⎞
⎠

. (D.80)

Again, by using the eom and simplifying we finally get

IP
σσ =

(3κ6
0 − 2κ4

0 − 2κ2
0 + 2) p2

24πκ3
0 (κ2

0 − 1)µ
, IP

ππ = −
κ3

0 p2

8πµ − 8πκ2
0µ

. (D.81)
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So finally we can put it all together to get

G−1
σσ(P)∣O(P2/µ2) =

ω2 − 2κ2
0ω2

12πκ0µ − 12πκ3
0µ
+
(3κ6

0 − 2κ4
0 − 2κ2

0 + 2) p2

24πκ3
0 (κ2

0 − 1)µ
, (D.82)

G−1
ππ(P)∣O(P2/µ2) = −

κ0ω2

4πµ − 4πκ2
0µ
−

κ3
0 p2

8πµ − 8πκ2
0µ

. (D.83)
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