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Abstract
Shallow landslides are the cause of considerable direct and indirect losses to individuals, en-
terprises and society as a whole. An increase in shallow landslide occurrence is often related
to the loss of the protective effect of trees by deforestation. Methods of targeted reforestation,
such as silvopastoralism, can in turn reduce the risk associated with shallow landslides con-
siderably. The effective implementation of such systems can benefit from guidance in terms of
tree placement, planting density, planting pattern, tree species selection and tree size develop-
ment prediction. For this guidance, computational models can help greatly, in addition to expert
knowledge, especially on a regional scale. In this work a quantitative, physically-based, tool to
assess the influence of vegetation on shallow landslide occurrence is presented. The focus is
specifically on rainfall-induced translational shallow landslides on a regional scale. The results
of this tool are ideally incorporated into holistic analyses of site-specific tree benefits and co-
benefits.

The tool as developed in this thesis is called SlideforMAP. It incorporates a probabilistic ap-
proach since the regional scale often poses challenges regarding heterogeneity in a range of
parameters. Explicitly including this as uncertainty in the model can improve the model per-
formance. Slope stability is computed by the limit equilibrium approach for a large number
of randomly placed hypothetical landslide. The fraction of these hypothetical slides that are
unstable, corresponds to local shallow landslide probability. The hydrological module is based
on a topographic index and assumes a steady state sub-surface flux. All mechanical influences
of vegetation are included with basal and lateral root reinforcement, being incorporated using
the Root Bundle Model weibull approach on a single-tree basis. The model is calibrated and
applied to three study areas (0.5 - 7.5 km2) in Switzerland. Tree density is 33 to 73 trees/ha on
average, but all study areas consist of distinct forested and non-forested sections. Soil thickness,
soil cohesion, and the ratio between precipitation intensity and hydraulic saturated conductivity
are found to be the most sensitive model parameters. Performance is measured against a 2005
landslide inventory and the Receiver Operator Curve analysis. Area Under the Curve values
are between 0.64 and 0.93. It is proven that the single-tree based inclusion of mechanical effects
significantly improves model performance, as compared to a forest stand approach.

To assess generalizability, SlideforMAP is applied in New Zealand silvopastoral systems in two
small study areas (1.4 and 3.5 km2). Over these areas a full calibration and validation of Slide-
forMAP and an improved version of SlideforMAP is performed. The improved version includes
interception, passive earth pressure, root compression, a non-steady state approach to the lateral
flux and a runoff coefficient. The runoff coefficient is dependent on cumulative precipitation and
relates tree presence to increased macropore presence and subsequently to an increased runoff
coefficient. The availability of RADAR-based precipitation data enables a more realistic precipi-
tation input by finding a representative rainfall intensity. The non-steady state approach, runoff
coefficients, representative rainfall intensity and novelties. The inclusion of such novelties did
not improve model performance, which could be due to flaws in its methodology, the perfor-
mance measure or site-specific reasons.

To place the application of SlideforMAP in context, it is compared to a statistical approach using
binary logistical regression to shallow landslide susceptibility in New Zealand silvopastoral sys-
tems. For this a 2010 landslide inventory and a 2005 rainfall event are used. The model outputs
are in agreement in approximately 70% of the study areas. Accountable for the remaining 30%
are methodological differences, the heterogeneous input data in SlideforMAP and the difference
in tree influence. SlideforMAP includes mechanical effects, where the statistical method implic-
itly includes all tree effects, but averaged over all trees. Practitioners are advised to prioritize
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tree planting on areas where both models are in agreement and predict high shallow landslide
susceptiblity.

SlideforMAP stands among other state of the art models focussed on vegetation effects on shal-
low landslide activity. This is due to the inclusion of single tree based lateral and basal root re-
inforcement and the tailoring to specific rainfall events. Further developments in SlideforMAP
have enabled the application on large scales and for the analyses of specific components. All
in all, land managers can benefit greatly by applying SlideforMAP to find the ideal targeted
planting sites and stabilize the soil, as efficient as possible from a cost-benefit standpoint.

keywords: shallow landslides, probabilistic modelling, single-tree, root reinfrocement, hillslope
hydrology
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g Gravitational acceleration L/T2 m s−2

Hsoil Soil thickness L m
Htree Tree height L m
I Precipitation intensity L/T mm s−1

Ksat Saturated hydraulic conductivity L3/T m3 s−1

L Length L m
m Mass M kg
P Total precipitation L mm
Pls Shallow landslide probability − %
Pwater Water pressure M/(L · T2) kPa
Q Lateral flux L3/T m3 s−1

RR Root reinforcement M/(L · T2) kPa
r resolution L m
s Slope angle − ◦

SF Safety factor − -
T Soil transmissivity L2/T m2 s−1

t Time T s
Vmac Macropore flow velocity L/T m s−1

ρ Density M/L3 kg m−3

θ Topographic wetness index L -
ψ Runoff coefficient − -

*sets of symbols are included as one, without subscripts
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1 Introduction

1.1 Ratio for this work

This work was funded by the STEC (Smarter Targeting of Erosion Control) project. The STEC
project is a multi-disciplinary project funded by the New Zealand Ministry of Business, Inno-
vation and Employment (MBIE) that aims at developing strategies to reduce erosion in New
Zealand pasture lands. The contribution of this thesis, within the project, is to provide a model
to quantify the influence of trees on the reduction of rainfall-induced shallow landslide initia-
tion. This contribution aligns with two of the five primary project goals. These project goals are
i) finding an understanding of the spatial and temporal patterns of erosion and ii) quantifying
sediment mitigation performance. This thesis addresses some of the key knowledge gaps in
shallow landslide modelling. These knowledge gaps are primarily related to the computation of
spatial variability of tree effects, the upscaling of tree effects and the complex influences of trees
on hillslope hydrology and subsequently on slope stability.

1.2 Background

The support for research in erosion mitigation measures (such as by the STEC project) in New
Zealand, is related to challenges the country faces. The development of the landscape in New
Zealand has been exceptional due to its abruptness, as compared to other parts of the world
(Fuller & Rutherfurd, 2022). Up until human settlement, median erosion rates were low due to
intensive vegetation cover. This is despite 70% of the country consisting of steep to very steep
terrain with high erosive potential (van Kraayenoord, 1968). Spikes in erosion rate and land-
scape evolution occurred only periodically due to extreme events, such as volcanic eruptions
(Fuller & Rutherfurd, 2022). Initial Maori settlements, estimated to have started around 1280
AD, caused modest disturbance and later European settlements, with large-scale permanent de-
forestation for cattle farming, instigated extensive disturbance (Fuller & Rutherfurd, 2022). A
total of 57% of original forests have been cleared (van Kraayenoord, 1968). Many parts of New
Zealand now suffer from high rates of erosion since losing the protective effect of vegetation,
with the remaining patches of native forest having significantly lower erosion rates (Fuller &
Rutherfurd, 2022). Small-sized (50-500 m2) shallow landslides are one of the primary contrib-
utors to this high erosion rate (Betts et al., 2017; De Rose, 2013; Dymond et al., 2016). The
landscape is still adjusting to this wide-spread disturbance of deforestation by landslide activity
(Crozier et al., 1980), leading to a decrease in average soil depth through time (De Rose, 2013).
An extreme example of erosion is a 1977 event in the Wairarapa region of New Zealand, in which
40% of the region was directly affected by shallow landslides (Crozier et al., 1980). All this makes
the New Zealand pasture lands an excellent study area for shallow landslide mapping and the
testing of shallow landslide susceptibility models.

The occurrence of shallow landslides is observed throughout the world and their effects have
a global impact (Glade et al., 2005). Shallow landslides and shallow landslide induced erosion
cause considerable damage to landowners and others that are directly involved, but also to the
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landscape and society as a whole. Shallow landslides can themselves be the instigators of debris
flows (Kuriakose et al., 2009) and large wood mobilization (Cislaghi et al., 2018). An analysis of
casualties due to natural hazards from 1946-2015 in Switzerland (Badoux et al., 2016) shows 74
landslide related casualties, with six percent of the country susceptible to landsliding (Lateltin et
al., 2005). No distinction here is made between deep-seated and shallow landslides. Worldwide,
66 million people live in areas with a high landslide-risk and the annual monetary damages
from landslides are in the billions of US dollars (Kjekstad & Highland, 2009a).

The protective effect of vegetation in reducing risk, related to many types of gravitational haz-
ards, has been known for a long time. Strategies have developed around the world, to effectively
apply this protective effect (de Jesús Arce-Mojica et al., 2019; Moos, 2018). In Switzerland, the
NaiS (Nachhaltigkeit und Erfolgskontrolle im Schutzwald) (Frehner et al., 2005) handbook pro-
vides guidelines to managers to achieve a sustainable protective effect from forests, tailored to
the protective forest location and the type of natural hazards to be expected. As an alternative
to the clear-cuts as sometimes seen in production forests, some specific planting and manage-
ment techniques have been developed. A venerable and effective technique is the management
of forests by coppicing (Dazio et al., 2018a), where instead of entirely removing mature trees,
they are cut down in regular intervals and sprouts from the stumps rejuvenate the tree and,
in case of certain tree species, the root system (Vergani et al., 2017). This manages to signifi-
cantly decrease the post-disturbance period of minimal protection (Masi et al., 2021; Sakals &
Sidle, 2004; Schmidt et al., 2001; Steinacher et al., 2009). Throughout the world, different varia-
tions of silvopastoral land use are applied (Spiekermann, 2022). This land use consists of trees
planted at low density with the land between trees used for grazing of cattle. New Zealand
has a unique silvopastoral system with year-round cattle grazing (McIvor et al., 2011), relying
heavily on non-native poplar and willow trees (van Kraayenoord, 1968). In New Zealand the
development of large scale Silvopastoral systems can prevent long-term soil erosion, preferably
with poplars and willows as they grow fast, withstand wet conditions and have high transpira-
tion rates (Wilkinson, 1999). On landslide-prone locations the standard spacing of 15 m between
trees is not sufficient for significant hazard reduction. Closer spacing of trees, however, tends to
lead to canopy closure and loss of pasture productivity, leaving farmers with a dilemma (McIvor
et al., 2011).

The risk associated with shallow landslides and the opportunities for prevention, established a
desire to predict hazard patterns and effectiveness of mitigation measures (Debele et al., 2019).
To increase understanding, a classification of risk is required. Many countries or regions have
specific guidelines for this classification. In Figure 1.1 an example of risk classification as a func-
tion of event magnitude and probability, as used in Switzerland, is given. This can be applied
specifically to aid zoning of shallow landslide hazard.
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FIGURE 1.1: Hazard categories, as defined by the Swiss Federal Office of the En-
vironment, based on probability and magnitude of an event. Figure adopted from

Loat and Petrascheck (1997).

As seen in Figure 1.1, risk analyses generally agree that a residual hazard remains despite miti-
gation measures (Loat, 2003). Alongside hazard reduction, reducing exposure and vulnerability
is an essential part of risk reduction (Loat, 2003). Expert knowledge and extrapolation from past
events can effectively classify risk, but it has its shortcoming, especially on larger scales. These
include limited resources and unconscious biases (Spiekermann et al., 2015). This is where re-
gional scale models can aid with classifying risk. In this thesis, regional scale is defined as an
area between 1 to 1000 km2. An additional strength of many models is the ability to run sce-
narios. In the case of shallow landslide modelling, these scenarios can be related to modelling
risk under design rainfall events. Rainfall induced shallow landslides may increase in frequency
due to the increased frequency of extreme precipitation events. Scherrer et al. (2016) analyzed
precipitation from 1901-2014 throughout Switzerland and found an average 10.4 % increase in
annual maximum daily precipitation. Models can help translating this precipitation increase to
an increase in risk. Another interesting feature is the modelling of the potential reduction in
risk from implementing mitigation measures. Often used measures of mitigation are convert-
ing unforested areas to forest, increasing density of current forests, improved management in
forests or non-nature based measures (often referred to as geotechnical interventions) (de Jesús
Arce-Mojica et al., 2019). Comparing model outputs of mitigation measures helps in reliable
cost-benefit analyses that aid decision-makers to effectively use available resources.

1.3 Research objective

The overall goal of this research is to provide a model to quantify the effectiveness of vegeta-
tion in reducing shallow landslide occurrence. This will be a probabilistic model and focussed
on rainfall-induced shallow landslides on a regional scale. Ideally this model will benefit a
wide variety of stakeholders including farmers, practitioners, policy makers, landowners and
research institutes. Applying the model should require as little information on topography, soil
and climate as possible. In order to make this model accurate and reliable, it should be well
tested, embedded in current knowledge and find appropriate solutions for current knowledge
gaps. In order to achieve a reliable and accurate assessment of vegetation influence, the follow-
ing objectives are defined to include in or assess by the model:

• Include mechanical tree influence on slope stability at a single-tree scale and both in the
horizontal and vertical dimensions, based on the Root-Bundle Model weibull (RBMw) as
developed by Schwarz et al. (2013).
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• Develop a methodology to include and analyze different vegetation scenarios in the mod-
elling of shallow landslide susceptibility to enable model users to optimize vegetation
planting and/or management.

• Calibrate and validate the model under realistic rainfall conditions, tree location, tree di-
mension and triggered shallow landslides to assess its real-world performance and value.

• Develop a dynamic methodology to sub-surface water and compare it to a steady-state
assumption to assess whether a dynamic approach to hydrology can increase the perfor-
mance of the model. This is because on the regional scale in natural environments, rainfall
and the runoff response are rarely if ever, steady-state processes.

• Develop a methodology to include the influence of vegetation on lateral groundwater flow.

• Assess the ability of the model to accurately predict shallow landslide susceptibility and
vegetation influence on shallow landslide susceptibility. Compare the model with its prob-
abilistic strategy to a comparable model with a statistical modelling strategy.

1.4 Thesis structure

This thesis is based on papers as published during the PhD. The papers are formatted as chap-
ters with each a preface summarizing the goal of the paper and its submission details. Following
this introduction, chapter 2 presents the literature review and scientific background to this the-
sis’s topics. For readers knowledgeable in any of the respective fields, the review of some topics
may feel quite basic. This is deliberate, as it is the author’s conviction that well-establishing
and defining common knowledge paves the way for a deeper understanding of shallow land-
slide probability estimation and mitigation effectiveness. The literature review is followed by
chapter 3, where the seven study areas that have been used in this thesis and to which our shal-
low landslide susceptibility model has been applied, are presented systematically. Chapter 4
is the first paper of the thesis. It’s published in the Copernicus journal Natural Hazards and
Earth sciences (date of acceptance 26-06-2022). The first paper presents the shallow landslide
susceptibility model, named and henceforth referred to as SlideforMAP. Chapter 5 is the second
paper, submitted to Ecological Engineering (date of submission 27-01-2023). In it, SlideforMAP
is validated and it presents improvements in the hydrological module of the model. Chapter
6 is the third paper submitted to Geomorphology (date of submission 16-01-2023). The perfor-
mance of SlideforMAP (uncalibrated) is compared to a statistical approach to shallow landsldie
probability. An overarching objective of this thesis is the applicability of the SlideforMAP tool
by stakeholders. For this, chapter 7 gives guidelines on application, tree distribution scenarios
and tree influence parameter acquisition as well as documentation on thought-provoking mod-
elling approaches. In chapter 8, a synthesis of the work is provided, followed by the overall
conclusions and outlook in chapter 9. Finally, chapter 10, is a combination of the supplementary
materials of the published papers.

The modelling of shallow landslide initiation in this thesis includes concepts from distinct dis-
ciplines. The disciplines are: i) geotechnics; for the forces controlling shallow landslide oc-
currence. ii) Hydrology; for the temporal and spatial distribution of soil and groundwater as-
sumed responsible for initiation. iii) Forestry; for vegetation development and its influence on
the geotechnical and hydrological modules of the model. Background to information from all
three disciplines is given in the literature review (chapter 2).
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2 Literature review

2.1 Shallow landslides

Landslides are a distinct type of slope failure and subsequent movement, defined by displace-
ment along a clear shearing surface (Varnes, 1978). The landslide movement is considered rota-
tional (along a curved shear plane) or translational (along a slope-parallel shear plane) (Varnes,
1978). Landslides are commonly triggered by rainfall events (De Vita et al., 1998, e.g) or by
earthquakes (Croissant et al., 2019). Sub-types of landslides are shallow and deep-seated land-
slides. No universally accepted distinction between these two exists, but shallow landslides are
generally considered relatively small, above regolith and one time events (Shou & Chen, 2021).
In Switzerland all landslides with a shear plane depth < 2 m, are classified as shallow landslides
(Lateltin, 1997). In this thesis the focus is specifically on rainfall-triggered translational shallow
landslides.

Shallow landslide initiation is dependent on hydrology, root strength, soil conditions, topog-
raphy and precipitation (Wu & Sidle, 1995). The hydrological influence is less pronounced for
landslides triggered by short but extreme rainfall events (Sidle & Bogaard, 2016). Wet conditions
(Geertsema et al., 2009) and land use change (Gorsevski et al., 2006) correlate directly to an in-
crease in landslide activity. On short time scales (< 103 years), vegetation is the most effective
stabilizing measure (Debele et al., 2019; Phillips et al., 2021).

The distribution in shallow landslide size is independent of its triggering event (Malamud et
al., 2004) and does not correlate well to topography, lithology and vegetation presence (Bellugi
et al., 2021). The minimum size is controlled by forces along the boundary, such as passive
earth pressure, and correlates mainly to soil depth (Milledge et al., 2014). The maximum size is
hypothesized to be dependent on heterogeneity in local conditions (Milledge et al., 2014). Mala-
mud et al. (2004) performed a meta analysis on shallow landslide size distribution from studies
all over the world and developed an inverse gamma based equation, to fit the distribution. The
distribution is site specific and requires calibration.

2.2 Shallow landslide modelling

In the sections below an overview of the fundamentals in shallow landslide modelling is given.
This starts with general modelling principles and subsequently narrows its focus specifically to
shallow landslide stability modelling.

2.2.1 Modelling principles

Computational modelling to predict future shallow landslide occurrence is essential for preven-
tion of damage (Zieher et al., 2017) and assessing the effectiveness of mitigation measures (de
Jesús Arce-Mojica et al., 2019). It could be suggested that reducing processes to their physical
basis comes closest to reality. However, this is generally not the case (Beven, 2000; Sivapalan et
al., 2003). Computational models are, generally, attuned in their methodology to answer specific
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questions. Several factors, as listed below, have been found throughout literature to challenge
reductionist and complex approaches.

• Physical processes become near-infinitely complex on smaller scales, meaning we will
never be able to reproduce them, not being in the possession of such computational power
(Dooge, 2005).

We cannot reliably model every raindrop in a rainfall event.

• A landscape inherently has a developmental history that influences events happening to-
day and in the future (e.g. Iida, 1999). This history is shaped by events like landslides,
rainfall, earthquakes, volcanic eruptions and past land use. Even if we can perfectly model
processes, we have no reliable point in time to define as initial state of a system to model
from. For this we have to make measurements and/or assumptions.

A major rainfall event >50 years ago and subsequent landsliding still has an effect on current soil
thickness. This effect in turn can be influenced by extreme rainfall events even further back, creating
a constant ’background’ heterogeneity.

• Reductionism and complexity may lead to good representation of individual processes
but fails to model feedback mechanisms and emerging properties of a system as a whole
(Beven, 2000; Spiekermann, 2022).

Trees provide shade for cattle changing their behaviour and limiting nutrient distribution, leading
to reduced tree growth elsewhere.

• Even if model complexity leads to better results in the temporal and spatial domain, the
computational power may be so high or parametrization so complex that practitioners
resort to simpler methods for answering specific question (e.g Beven et al., 2020; Phillips
et al., 2021).

Someone wanting to know the best management strategy for protection forest, may want a specific
answer to that question and is not interested in the exact shape, location and timing of shallow
landslides.

The arguments mentioned above indicate, that all developers include a certain degree of sim-
plifications in their models (Beven & Kirkby, 1979). Savenije (2009) even goes so far as stating
a model can better best be described as a hypothesis. Describing the degree to which simplifi-
cations are made, the degree of uncertainty and the verification of the model procedure, is good
practice (Pechlivanidis et al., 2011; SafeLand, 2011). The level of model complexity should be
related to the goal(s) of the model in terms of expected user and desired output accuracy, relia-
bility and flexibility. Attuned to these needs different model types can be selected (Beven, 2012),
of which the commonest are listed below (SafeLand, 2011).

• Physically based models: These models try to approximate the complexity of processes in
reality as close as possible. The more physical a model is, the less calibration is required
(Pechlivanidis et al., 2011).

• Conceptual models: These models represent physical processes, but an independent mea-
surement of variables is mostly not possible and dependent on calibration (Pechlivanidis
et al., 2011).

• Statistical models: Also known as black-box models. These models find empirical relation-
ships between input and response variables, without the explicit inclusion of the processes
involved (SafeLand, 2011).
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In practice though, many models are hybrids that use different approaches for distinct modules
in the model (Pechlivanidis et al., 2011). Conceptual and physically based models can either be
deterministic or probabilistic. In deterministic models, the input parameters are single values
and a unique output is given. Deterministic models are considered the most objective (SafeLand,
2011). SHALSTAB (Dietrich & Montgomery, 1998) and TRIGRS (Baum et al., 2002a) are exam-
ples of deterministic models in the context of shallow landslide occurrence. Probabilistic models
take samples from a distribution as input, rather than single values. The output accordingly is
not exact, but expressed in probabilities. Examples of probabilistic shallow landslide models are
SINMAP (Pack et al., 1998), HIRESS (Rossi et al., 2013) and PG_TRIGRS (Salciarini et al., 2017).
For most applications the probabilistic output needs to be converted in distinct classes (Zhang,
Zhao, et al., 2018). Dependent on the situation, probabilistic models can perform better (Park
et al., 2013) and are better tools for establishing safety criteria (Ang & Tang, 1975).

Calibration of shallow landslide models improves the model performance (e.g. Zieher et al.,
2017). Calibration is never perfect though, and errors arise from various sources (Binley et al.,
1991; Liu et al., 2018). One of the best performing calibration procedures is GLUE (Beven &
Binley, 1992; Ratto et al., 2001; Xue et al., 2018). It calibrates to observed data, with optional
constraints of a priori knowledge. In the procedure, calibration error due to poor boundary
conditions, poor measurements or in the model structure are distinguished and quantified. As
little parameters as possible should be calibrated for best results (Refsgaard, 1997) and calibra-
tion to multiple ground truths can improve calibration quality (Franks et al., 1998). Subsequent
model validation is essential to independently show the accuracy and reliability of a model
(SafeLand, 2011) and enable interpretation of results (Chung & Fabbri, 2003). Validation should
be performed on a distinct spatial and/or temporal dataset, different from the calibration dataset
(Chung & Fabbri, 2008; Guzzetti, Reichenbach, et al., 2006; Klemeš, 1986).

2.2.2 Slope stability

The limit equilibrium approach is most commonly used to assess the stability of a slope (Murgia
et al., 2022; Phillips et al., 2021). This approach expresses the stability in a safety factor, which is
the fraction of resisting force (numerator) and the sum of driving force (denominator), as given
in Equation 2.1. A Safety Factor < 1.0 indicates a slope is unstable.

SF =
Fres

Fpar
(2.1)

In two dimensions the safety factor of a block of soil can be computed with as little as two
terms, being the shear strength as resistance force and the tangential force as driving force. This
does however overlook important components, such as soil cohesion, lateral and basal root re-
inforcement (see section 2.4.2), suction stress and pore water pressure (see section 2.3). Rainfall
induced shallow landslides are commonly triggered by an increase in pore water pressure in the
saturated part of the soil column. Increasing pore pressure is correlated directly to a decrease
in shear strength via Bishop’s approach (Bishop, 1955). This is the trigger mechanism that is
included in the Safety Factor computation of the SlideforMAP model. The safety factor compu-
tation with all components for SlideforMAP, adopted from chapter 4, is given in equation 2.2
below.

SF =
Csoil + RRlat, tens + RRbas + RRlat, comp + EP + (g · mtot · cos(s)− Pwater) · tan(ϕ)

g · mtot · sin(s)
(2.2)
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The driving force is the weight of a soil block (g · mtot · sin(s)), consisting of the gravitational
acceleration, the moving mass and the sine of the slope angle. The resisting force is composed
of the soil cohesion (Csoil), the lateral root reinforcement (RRlat, tens), the basal root reinforce-
ment (RRbas), the root compression (Rlat, comp), the passive earth pressure (EP) and the soil shear
strength (g · mtot · cos(s)− Pwater) · tan(ϕ)). The shear strength consists of the gravitational ac-
celeration, the moving mass, the cosine of the slope angle, the water pressure and the tangent of
the friction angle. Many models use a version of the force balance, with specific choices on what
components to include, how to include components and which components to neglect. Suction
stress (ignored in SlideforMAP) is often included in models using the analytical approach of Lu
et al. (2010). Many models ignore the passive earth pressure, but this can be relevant, especially
in deep soils (Murgia et al., 2022).

Pore water pressure is dependent on the depth to groundwater, i.e. the water table. Ignoring the
velocity component in Bernoulli’s energy balance equation, irrelevant under any realistic soil
water flux velocities, the water table equals the hydraulic head (Hendriks, 2010). The hydraulic
head, expressed in m, is given in equation 2.3 below.

h = z +
Pwater

ρwater · g
(2.3)

In this equation h is the hydraulic head [m], z is the elevation head [m], Pwater is the pressure
[N/m2], ρwater is the water density [kg/m3], g is the gravitational acceleration [N/m2]. In prac-
tical application, a reference value for elevation head is used. This is usually an impervious
layer or impervious bedrock interface (Hendriks, 2010). In the unsaturated zone, both air and
water is in the pores, so the mechanical energy can’t be determined as easily as in the saturated
zone. It is usually expressed as matric potential and is expressed with a minus sign since it’s a
stabilizing force. The absolute value of the matric potential is known as suction. An example of
the pressure head, gravitational head and matric potential in a soil column is given in Figure 2.1
below.
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FIGURE 2.1: Displaying water pressure in a soil column under hydrostatic condi-
tions for the saturated and the unsaturated zone. Figure adopted from Hendriks

(2010, p. 144).

Converting hydraulic head [m] to pressure [Pa] and assuming the bedrock interface as reference,
the pore water pressure is expressed by rewriting equation 2.3 as: Pwater = ρwater · g · h. Despite
the forces related to pore water pressure development being small in comparison to other forces
in the force balance (equation 2.2), it is their short timescale of variability that makes pore water
pressure a common trigger of shallow landslides. This timescale is hours to days for heavy
rainfall events (e.g. Askarinejad et al., 2012).

2.3 Hydrological concepts and groundwater table development

As stated in section 2.2.2, shallow landslides are initiated by groundwater table rise, whose
development is in the hydrological domain. Hydrology is the flow of water through bedrock,
soil or surface (Dingman, 2015). Especially on large spatial scales (basin and catchment scales)
the water balance takes a central role in hydrological modelling (Hendriks, 2010; Luo et al.,
2015). A simplified version of this balance in given in equation 2.4 below.

Q = P − ET +
∆S
∆t

(2.4)

In this equation, P is the precipitation, Q is the outflow (discharge or runoff are also often used as
terms, depending on scale and process), ET is the evapotranspiration and ∆S/∆t is the change
in storage. ET includes interception that subsequently evaporates. In this version no distinc-
tion is made between overland and sub-surface runoff. Forest presence reduces total runoff
considerably thanks to increased transpiration (Dingman, 2015). In wet forests, the evaporation
resulting from interception can be more important than transpiration (Dingman, 2015). When
potential evaporation exceeds available rainfall, we speak of a water limited system, the other
way around is an energy limited system.
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The transfer of surface water to subsurface water takes place though infiltration (Green & Ampt,
1911). Infiltration in the upper soil decreases matric potential, meaning the total pressure head
increases, leading to downward flow where the water first spreads to the unsaturated and pos-
sibly to the saturated zone afterward. On the other hand, evaporation may increase matric
potential in the upper soil, facilitating upward flow. The incompressible nature of water and
landscape inclination affect infiltration, leading to a lateral flux in groundwater. This flux is a
notable part of the water cycle in most climatic zones in the world and most active in unconfined
aquifers (Dingman, 2015). Lateral redistribution by means of soil and vegetation heterogeneity
is highly significant on small and large scales (Bierkens, 2008). The lateral groundwater flux
between two points can be expressed by the Darcy equation (Darcy, 1856). In three dimensions,
this is expressed as follows:

Q = ksat · Across ·
∆h
∆x

(2.5)

In this equation, ∆h is the difference in hydraulic head between two points. ∆x is the horizontal
distance between said points. Across is the cross-sectional area of the flow. ksat is the saturated hy-
draulic conductivity, which is dependent on soil type. For the unsaturated zone, ksat is replaced
with the unsaturated hydraulic conductivity, which is additionally dependent on matric poten-
tial. Matric potential does not linearly increase with Volumetric Water Content (VMC) leading
to the definition of soil type specific Soil Water retention curves (e.g van Genuchten, 1980).

A robust numerical method for solving (ground) water flow both in the vertical and horizontal
domain is the Richards equation (Richards, 1931). Using this is computationally very intensive,
which has led to the development of simplifications. One such is TOPMODEL (Beven & Kirkby,
1979). It is a simplification, that does not target to quantify local water fluxes (Ambroise et al.,
1996), but aims to find a spatially explicit regional prediction of the groundwater table from to-
pographic attributes (Beven, 1997). It does this by assuming a topographic index, composed of
contributing area and slope angle and is predictive of relative wetness. The available water from
infiltrated rainfall is scaled according to this topographic index, to compute an absolute water
table. Despite the simplifications, TOPMODEL serves its purpose for many applications (Beven
et al., 2020; Bouilloud et al., 2010). The key assumption in TOPMODEL is that of equilibrium
runoff (i.e. steady-state runoff) parallel to the slope. Equilibrium runoff is very rare in natural
watersheds (Dingman, 2015; Kutílek & Nielsen, 1994). The same simplification is applied in
TOPOG (Montgomery & Dietrich, 1994) that computes the spatially explicit groundwater table
directly from the topographic index, rainfall intensity and transmissivity. Another simplification
assuming no temporal variability (Ponce & Hawkins, 1996) is the Curve Number (CN) method
(Division, 1986), where the water table is derived from topographic and land use attributes.

Overcoming the steady-state simplification, but maintaining the practicability of models like
TOPMODEL remains a challenge to this day (Buytaert et al., 2008). Many attempts have been
made though (Ducharne, 2009). An intuitive approach is to consider TOPMODEL as the base-
flow and add linear resevoir outflow (Gascoin et al., 2009) or artificial wetting in the root zone
(Koster et al., 2000). Other improvements are allowing multiple flow directions (Wolock & Mc-
Cabe, 1995), calibrating the topographic index (Lamb et al., 1997), allowing different transmissiv-
ity profiles (Ambroise et al., 1996), flux propagation by a wave equation (Beven & Freer, 2001)
or time-dependent contributing area (Blazkova et al., 2002). Others point out that, despite its
simplifications, TOPMODEL performs surprisingly well (Takeuchi et al., 2008; Yang et al., 2000),
even in forested environments (Moore & Thompson, 1996). This could be due to the extent of
topographic control in groundwater flux (Ducharne et al., 2000). It could also be that another
factor significantly influences the groundwater table that neither TOPMODEL, nor any of its
improvements, account for. A good candidate could be rainfall heterogeneity (Sivapalan et al.,
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1997; Tsai, 2008).

2.3.1 Preferential flow

One common aspect in the complexity of both vertical and lateral water fluxes is heterogeneity
in soil and groundwater transmissivity (Mooney & Morris, 2008; Wiekenkamp et al., 2016). This
is observed in virtually all soil types (Koestel & Jorda, 2014; Mooney & Morris, 2008) and is espe-
cially profound in forested hillslopes with mature trees (Bodner et al., 2014; Hu et al., 2020; Sidle
et al., 2001). This heterogeneity is referred to as preferential flow and consists of distinct pro-
cesses such as fingered flow, funnel flow (flow blockage) and macropore flow (Lin et al., 2005).
Macropore flow occurs due to small pores having a higher suction force than larger pores lead-
ing to them storing water with bypass flow occurring in interconnected larger pores, referred
to as macropores (Beven & Germann, 2013). Interconnected vertical and horizontal macropores
are created by tree roots, erosion, bedrock fractures, organic enrichment and animal burrows
(Sidle et al., 2001). This theoretical background is the basis of the dual porosity, also referred to
as two water worlds, modelling approach (Gerke & van Genuchten, 1993; Rinderer & Seibert,
2012; Shao et al., 2015) with the larger pores participating in throughflow and the smaller pores
storing immovable water (McDonnell, 2014) or allowing limited mixing (Sternagel et al., 2019).
There is still no universal definition of macropores (Beven & Germann, 1982) and therefore no
unambiguous approach incorporating macropore flow in hydrological approaches, despite its
importance on hillslope and catchment scale (Beven & Germann, 2013). This could be related
to the complexity of preferential flow paths as shown in tracer experiments (Flury et al., 1994;
van Schaik, 2009). In the vertical domain, preferential flow increases infiltration rates and sub-
sequently decreases overland flow (Weiler & Naef, 2003). Preferential flow can significantly
increase the reaction time of the water table on hillslope scale to a rainfall event (Askarinejad
et al., 2012; Germann & Beven, 1981; Torres et al., 1998). Especially in forests and under intense
rainfall, macropore infiltration and lateral flux regulates the water table, with vertical matrix in-
filtration playing a very limited role (Amatya, 2016). When macropores are numerous and large,
macropore flow velocity can be in the same order of magnitude as overland flow (Beven & Ger-
mann, 1982; Gao et al., 2018). Throughflow in macropores with the mobilization old water by
wave-like effects, confirmed to occur by isotope analysis (Weiler & McDonnell, 2007), increases
reaction time even further (Beven & Germann, 1982; Torres et al., 1998; Weiler & McDonnell,
2007). This has led to the choice for wave equations to model lateral flux propagation in certain
approaches (e.g. Beven & Freer, 2001; Germann & Beven, 1985).

2.3.2 Runoff coefficient

Discharge can be separated in a baseflow component of a semi-steady state deeper groundwater
flux and a quickflow component (Amatya, 2016; Edwards et al., 2015). The quickflow compo-
nent is highly variable (Post & Jakeman, 1996) and complex in its dependence on rainfall and
catchment characteristics (Beven, 2000) such as potential for preferential flow. This complexity
can be conceptualized into a runoff coefficient, a fraction between 0 and 1, correcting discharge
(Baiamonte, 2020). One of the first inclusions of a runoff coefficient to estimate discharge, is in
the rational method (Mulvaney, 1851) shown below:

Q = Acat · I · Ψ (2.6)

In this function Q is the quickflow. It is a function of the catchment area (Acat), the rainfall inten-
sity (I) and the runoff coefficient (Ψ). A correct estimation of the quickflow helps in prediction of
flood intensity and the effect of mitigation measures. In these cases, the relative contribution of
surface and sub-surface flow is poorly understood, as the runoff coefficient does not make this
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distinction (Naef et al., 1994; Scherrer, 1996). From local to catchment scale, the sub-surface con-
tribution is considered significant (Ahuja & El-Swaify, 1979; Markart et al., 2015). In the spatial
domain, land use in the contributing area is arguably the most important predictor of the runoff
coefficient (Markart et al., 2006; Markart et al., 2017; Scherrer, 1996; Uhlenbrook & Leibundgut,
2002; Zhang et al., 2013). This land use predictability is recognized and incorporated in many
rainfall-runoff schemes such as ZEMOKOST (Markart et al., 2015), the curve number method
(Division, 1986) and the HBV model (Bergström, 1976; Seibert, 1996). Considering the temporal
domain, the runoff coefficient generally increases the longer a rainfall event takes (Antonetti,
2017; Antonetti et al., 2017). This is due to the cumulative precipitation filling up available stor-
age and delayed runoff reaching the outlet at which the runoff coefficient is examined. This
is supported by Naef et al. (1994), who found that estimations from travel time alone and not
including storage, overestimate discharge.

2.4 Vegetation influence

Of all vegetation types, trees have by far the most significant influence on landslides (Arnone
et al., 2016; Greenway, 1987). This influence can be subdivided into hydrological and mechan-
ical mechanisms (Greenway, 1987). The hydrological mechanisms consist of increased infiltra-
tion, evapotranspiration, interception and an increase in preferential flow paths (Stokes et al.,
2014). These mechanisms can decrease landslide initiation by preventing soils from reaching
critical saturation level (Masi et al., 2021). Mechanical mechanisms of vegetation influence are:
root reinforcement (section 2.4.2), surcharge, buttressing (roots, stems, branches braiding in each
other), deep anchoring, bedrock fracturing, particle binding and increasing wind shear (Green-
way, 1987; Masi et al., 2021). These mechanical mechanisms affect the forces along a hillslope
directly (Giadrossich et al., 2017, e.g). Deep-seated landslides are not significantly affected by
the mechanical effects of trees (Van Beek et al., 2007). The hydrological regulatory effects can
be relevant though (Moos, 2018). Root reinforcement specifically, is an important mechanism
by which shallow landslides as large as 1000 m2 can be stabilized (Schwarz, Preti, et al., 2010).
The degree of protection is dependent on the slope angle, soil cohesion, friction angle (Schwarz
et al., 2016) and soil depth (Steinacher et al., 2009).

2.4.1 Tree co-benefits

Trees not only serve as protection against shallow landslides, but against other natural hazards
as well. Rockfall is reduced by 10% to 90% as a result of forests (Moos, 2018). Bank erosion
can be effectively reduced by root reinforcement from riverbank trees (Docker & Hubble, 2008;
Gasser et al., 2019). Trees in the proximity of rivers can however, be mobilized as large wood
and increase flooding and other hazards downstream (Gasser et al., 2019). Co-benefits, other
than natural hazard prevention, are found as well. For example, the use of acacia (Power et al.,
2003) and kanuka (Mackay-Smith et al., 2021) trees in silovpastoral systems, increases nitrogen
concentration in the soil, benefiting pasture productivity. Other co-benefits are: shade for cattle,
carbon sequestering, timber production, as well as cultural and recreational value (Mackay-
Smith et al., 2021).

2.4.2 Root reinforcement

Roots of any type of vegetation offer a resistance when stretched, i.e. stress is applied. This
resistance is known as root reinforcement. Root reinforcement in the context of slope stability
is the force resisting movement of a soil block stemming from the stretching of roots. This root
reinforcement can be subdivided in lateral and basal root reinforcement. Basal root reinforce-
ment acts along the shear plane of a shallow landslide and lateral root reinforcement acts on the
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sides of a shallow landslide (Cohen & Schwarz, 2017b). The ability of a root to resist stretching
is dependent on multiple factors. Root tensile strength [Pa] increases exponentially with de-
creasing root diameter (Cohen & Schwarz, 2017b). Overall however, due to their larger surface
area, coarse roots are more significant for root reinforcement than small roots (Cohen & Schwarz,
2017b). Root tensile strength is also highly dependent on tree species (Watson & Marden, 2004),
by means of variability in root stiffness (Fan et al., 2021).

2.4.2.1 Root reinforcement measurements

There are several methods for measuring the maximum tensile strength of single roots. Direct
measurements can be obtained in a laboratory environment, by mechanically stretching the root
till breakage. Several weaknesses of the laboratory environment have been pointed out, related
to the fact that it is not a realistic representation of actual root reaction in the soil to movement-
induced stretch. In nature, roots can i) be dead as opposed to alive, where the drying of the root
influences tensile strength (Vergani et al., 2016). ii) In-situ interact with the soil matrix, which
adds friction resistance and soil bonding (Fan et al., 2021; Watson & Marden, 2004). iii) Be pulled
out of the soil rather than break (Watson & Marden, 2004). To combat these shortcomings, in-situ
root tensile strength measurement techniques were developed. A drawback is that when roots
are close together, mechanical interactions with neighbouring roots affect measurement quality
(Giadrossich et al., 2013). Another drawback is the fact that soil conditions at time of the pullout
test affect the measurement. Roots under drier conditions generally give more resistance than
under wet conditions (Fan et al., 2021).

Upscaling of these measurements requires knowledge on root architecture. For this the Root
Area Ratio (RAR) is an often used method. RAR is the fraction of root surface to total sur-
face area looking perpendicularly at a vertical slice of soil. This method does not distinguish
between thin and thick roots (Docker & Hubble, 2008). For poplar trees, RAR decreases expo-
nentially with depth, with few large sinker roots growing deep (Douglas et al., 2010; McIvor et
al., 2009). Excavation of a root system, counting single roots per depth class and measuring root
diameter is the most complete method, to analyze root architecture (e.g. Giadrossich et al., 2020;
Ngo et al., 2023). Root development through time has conflicting results that are likely highly
dependent on site conditions (Vine, 1980) and planting technique (Douglas et al., 2016). McIvor
et al. (2007) found structural root growth in Veronese poplars to be negligible for the first 5 years
after planting, but Phillips et al. (2014) found in a poplar and willow trial that root length grows
to 2.5-5.5 m within a year. McIvor et al. (2009) showed that root mass increases exponentially
with tree DBH. These measurement could lay the basis for calibrated allometric relationships.

2.4.2.2 Root reinforcement modelling

A challenge in root reinforcement modelling is the scaling of measured tensile strength to es-
timate root reinforcement over a larger scale, to be applied in slope stability models. A first
attempt at this has been made by Wu et al. (1979), who developed the Wu model. It assumes
root force is dependent on root density and root diameter. This is upscaled to an additional soil
cohesion and, by including landslide dimensions, added to the shear strength (Fres in equation
2.1). Assuming the breaking of roots all at once overestimates root reinforcement (Schwarz, Preti,
et al., 2010). Therefore, as a reaction to the ’all breakage at once’ method of the Wu Model, the
Fibre Bundle Model (FBM) was developed (Pollen & Simon, 2005). This model includes progres-
sive failure of roots under increasing tensile strength, as a function of root diameter. A further
development on this method is the Root Bundle Model weibull (RBWw) (Schwarz et al., 2013).
It approximates the progressive tensile stress and breakage of roots in a moving soil block, by a
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weibull function. All roots are assumed to break as it is the most frequent reaction to stress, es-
pecially for larger roots (Cohen & Schwarz, 2017b). This function is calibrated to measurements
on root architecture and single root tensile strength. It performs well under natural conditions
with roots of various diameter (Schwarz et al., 2013) and can be applied conveniently in slope
stability models. A comparison of the root reinforcement as function of displacement from the
RBMw vs. the Wu model is given in Figure 2.2 below.

FIGURE 2.2: Example of the application of RBMw with root tensile force (root
reinforcement) as a function of soil block displacement. In grey is the measured
tensile force of a root bundle with roots of variable diameter. In light and dark
green is the RBMw fit with different exponents of the weibull distribution. The
red, black and blue dots are single root pull-out tests. The red line represents the
Wu model, where tensile force is not a function of displacement. Figure adopted

from Schwarz et al. (2013).

2.5 State of the art

2.5.1 Slope stability models with vegetation effects

Capturing the influence of spatial and temporal variability of vegetation in shallow landslide
modelling remains challenging, especially on the regional scale where only few attempts have
been made (Masi et al., 2021). One example of this is tRIBS-VEGGIE. This was designed as a
hydrological model with a dynamic vegetation module (Ivanov et al., 2008; Lepore et al., 2013).
Arnone et al. (2016) coupled this model with the RBM (Schwarz, Lehmann, et al., 2010) ap-
proach to basal root reinforcement and a slope stability computation. RBM parametrization is
based on laboratory tests on tensile strength. Land use is classified in distinct vegetation groups,
where trees are assumed homogeneous. The authors underscore the difference between species
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in protective effect (Arnone et al., 2016). Shortcomings are neglecting lateral root reinforcement,
laboratory-based tensile strength estimates and assumptions on root topology.

Scheidl et al. (2022) coupled ZEMOKOST (section 2.3.2) and a slope stability model with the
iLand model that simulates forest stands and disturbances. Interestingly their application found
no negative effect of disturbances and considers them a net positive as they accelerate landscape
adaptability. Schmaltz et al. (2019) developed the LAIM model with raster-based temporal de-
velopment of forest cover. It contains four forest classes and forest development is expressed by
a change in Leaf Area Index (LAI). Vegetation influence on slope stability is linked to the LAI.
Slope stability under various developmental stages was assessed by Coupling LAIM with STAR-
WARS as hydrological and PROBSTAB as slope stability module (Beek, 2002). A probabilistic
approach to shallow landslide susceptibility with vegetation inclusion is PRIMULA (Cislaghi
et al., 2017; Cislaghi et al., 2018). It includes both lateral and basal root reinforcement on the
forest stand scale, with averaged DBH and an average distance between trees.

Including single tree distribution, development and heterogeneity explicitly in shallow landslide
susceptibility models is a recent development. This could be related to challenges in upscaling
tree-scale measurements or assumptions to local, regional or catchment scale (Williams & Scott,
2009). Among the first to explicitly model single trees are Schmidt et al. (2001) and Roering et al.
(2003), who identified an effective root reinforcement dependent on distance from trees in Ore-
gon forests with the Wu root reinforcement model. This approach confirmed the observation
that shallow landslide occur disproportionately in forest gaps. The model of Huang et al. (2021)
includes root reinforcement from single tree with four distinct root types. Lateral root reinforce-
ment is related to RAR empirically. The hydrological module consists of a lateral flux dominated
system computed with an analytical solution to the Richards equation. The soil layer is split in
a root and non-root layer with a distinctive hydrological conductivity. Schmaltz and Mergili
(2018) developed a single-tree based stability approach, using a paraboloid root system architec-
ture approximation. Root reinforcement influence on shallow landslide initiation is computed
on a raster cell basis. On the hillslope scale, SOSlope is the first model to include both single tree
root tension and compression forces, for the initiation and progression of shallow landslides
(Cohen & Schwarz, 2017a).

A statistical approach that goes beyond forest/non-forest classification is that by Schmaltz et
al. (2017), which uses forest classes as predictions in a statistical analysis of shallow landslide
occurrence. Spiekermann et al. (2021) went down to the single-tree level in a statistical approach
specifically for the application in New Zealand silvopastoral lands.

2.5.2 Data and extrapolation techniques

The application of single-tree based vegetation effects with existing trees, requires reliable data
on the location of single-trees. Additionaly tree dimension (height and/or DBH) and species
classification can be desired. Canopy height model (CHM) based single tree detection is an ef-
fective technique with the added benefit of having a measure for tree height (e.g. Menk et al.,
2017). A CHM is generated by subtracting a Digital Terrain Model (DTM) from a Digital Surface
Model (DSM). LiDAR (Light Detection And Ranging of Laser Imaging Detection And Ranging)
can help to construct a detailed CHM or single-tree detection can occur directly from LiDAR
derived point clouds (Korpela et al., 2007). Inaccuracies occur mostly from small trees being ob-
scured by large trees (Korpela, 2004). Single tree detection and species classification is possible
by combining Sentinel 2 optical imagery and Aerial Laser Scanning (airborne LiDAR) (Plakman
et al., 2020). Conifer tree detection is highly accurate, deciduous trees are more challenging
(Plakman et al., 2020). Species classification, in general, is still a challenging topic (Plakman et
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al., 2020). For the parts of trees below the surface, Ground-penetrating RADAR (GPR) is a novel
technique. It can non-intrusively identify large roots (Barton & Montagu, 2004) and additionally
preferential flow paths (Guo et al., 2014).

In areas with quick runoff, temporal and spatial variabiliy of a rainfall event is an essential
input for the accurate lateral flux computation (Cristiano et al., 2019; Keijsers et al., 2011). This
is why the availability of high spatial and temporal resolution RADAR data improves shallow
landslide susceptibility modelling (Crosta & Frattini, 2003). When no data is available but high
spatial and temporal variability is desired, synthetic rainfall generators can be a solution (Benoit
& Mariethoz, 2017).

2.5.3 Process understanding and uncertainty

Advancement in knowledge of processes and uncertainty sources has not always resulted in
better models (Buytaert et al., 2008). Certain sources of uncertainty are rarely addressed, even
in state of the art shallow landslide susceptibility models. This may be a conscious choice (see
chapter 2.2) as exact predictions on shallow landslide timing, location and subsequent ideal
mitigation procedure are considered unrealistic. This is too strongly dependent on localized
heterogeneity (von Ruette et al., 2013). In addition to the often cited "local inhomogeneities and
heterogeneity", possible sources of uncertainty in most, if not all, shallow landslide models are
listed below.

• Drainage basins do not necessarily constitute isolated hydrological units (Hendriks, 2010).
Infiltration in tilted high-permeability layers or faults and subsequent exfiltration can ef-
fectively transport water from the surface of one drainage basin to the other.

• Local pore water pressure can be influenced by leakage and artesian flow through frac-
tured bedrock layers (Montgomery et al., 2002), which most models assume impermeable.
The significance of this effect, however, is not supported in other studies with other study
areas (e.g D’Amato Avanzi et al., 2004; McGuire et al., 2016).

• The inclusion of negative effects of vegetation, such as increased infiltration (Greenway,
1987) on shallow landslide triggering is rarely included (de Jesús Arce-Mojica et al., 2019).

• Depth to regolith, i.e. soil depth, is still poorly understood, though highly important in
the modelling slope stability (Phillips et al., 2021). This is currently most often based on
extrapolations of in-situ measurements, but could benefit from taking landscape charac-
teristics and development into account (McDonnell et al., 2007).

2.6 Summary

Shallow landslide disposition is controlled by topography and shallow landslide initiation (of-
ten) is a hydrological process. The degree of simplification in shallow landslide susceptibility
models, should be related to the question the models aims to answer. Shallow landslide sus-
ceptibility models are subdivided in physically-based, conceptual and statistical models. These
models, in turn, can either adopt a deterministic or a probabilistic approach. Calibration im-
proves the performance of most models and validation is essential to interpret model results.
Shallow landslide occurrence is usually assessed with the Safety factor in the limit equilibrium
approach, where all forces acting along a potential failure plane are included. In this approach,
landslide initiation is related to an increase in pore water pressure. Pore water pressure in turn
relates to the local groundwater table. Simplifications to estimate the groundwater table from
topographic metrics are the TOPMODEL and TOPOG approach. The presence of macropores,
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which in turn is influenced by vegetation, is influential in the local groundwater table and sub-
sequent shallow landslide initiation. These macropores, among other effects, can be included in
hydrological approaches using runoff coefficient curves.

The most effective nature-based shallow landslide mitigation measure is the planting and man-
agement of tree stands. The strongest stabilizing effect of trees is through the tensile strength of
roots, i.e. root reinforcement, both on the horizontal and vertical plane of a moving soil block.
The RBMw model is the most detailed model for the inclusion of root reinforcement, as it in-
cludes a propagating failure mechanism. This model is calibrated by field measurements in
which root diameter, distance from tree and tree species is important. Current models, espe-
cially those focussed on nature-based mitigation measures, see the added benefit of including
vegetation effects on a forest stand or single tree basis. Currently the most advanced models
in this regard are tRIBS-VEGGIE, PRIMULA, LAIM and SOSlope. The recent development of
remote sensing techniques, most importantly LiDAR, has facilitated this. Challenges remain,
not only due to the detailed inclusion of vegetation effects, but also in terms of soil depth and
groundwater table estimation at a regional scale.



18

3 Study areas

3.1 Description

In this chapter, the study areas of this thesis to which SlideforMAP has been applied, are pre-
sented in a uniform way. These are, three study areas in Switzerland and four in New Zealand.
Provenance of the input data is given in additionally. More details to the study areas are given
in their respective chapters. Study areas in Switzerland were selected on the availability of de-
tailed spatial data and overlap with a complete and accessible shallow landslide inventory by
Rickli and Graf (2009). Study areas in New Zealand were adopted in context of the STEC project.
The study areas were selected for their availability of LiDAR data, previous research at the sites
and high shallow landslide occurrence (Spiekermann et al., 2021). On average, the geographical
locations of the study area have an energy-limited water balance (Dingman, 2015), indicating a
permanent groundwater system. An overview of the study area locations is given in below.

FIGURE 3.1: Location of the study areas in Switzerland and on New Zealand’s
north island. The New Zealand study areas overlap and are presented as two
rather than four for clarity. TW is an abbreviation for Te Whanga. WA is an abbre-

viation for Waikoukou. All coordinates are in WGS84.

A table with a overview of the study areas, with names and chapters as used in this thesis, is
given in Table 3.1 below.



Chapter 3. Study areas 19

TABLE 3.1: General overview of all the study areas as used in this thesis. The
chapter, in which the study area is applied, is indicated.

Name Short name Country Size (km2) Chapter
Eriz Eriz Switzerland 7.48 4
Trub Trub Switzerland 1.00 4
St. Antönien StA Switzerland 0.55 4
Te Whanga portion TW portion New Zealand 3.51 5
Waikoukou portion WA portion New Zealand 1.43 5
Te Whanga farm TW farm New Zealand 17.21 6
Waikoukou farm WA farm New Zealand 4.62 6

The study areas in New Zealand overlap, with a smaller portion of the Te Whanga and Waik-
oukou farm presented in chapter 5. This was decided because the calibration procedure, which is
computationally intensive, requires a smaller study area. Orthophotos, with shallow landslides
that have been recorded in the study areas, are presented in Figure 3.2 and 3.3 . Background to
the shallow landslide inventories is given in section 3.1.5.

FIGURE 3.2: Orthographic overview of Swiss study areas as used in this Thesis. a)
Eriz, b) Trub, c) StA. Coordinate system for study areas in Switzerland is "Swiss
CH1903/LV03" (EPSG:21781). Inventoried shallow landslides are indicated as red

dots, scaled to average landslide size.
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FIGURE 3.3: Orthographic overview of New Zealand study areas as used in this
Thesis. d) TW portion, e) WA portion, f) TW farm, g) WA farm. Coordinate system
for study areas in New Zealand is "NZGD2000 / New Zealand Transverse Mer-
cator 2000" (EPSG:2193). Inventoried shallow landslides are indicated as red dots,

scaled to average landslide size.

3.1.1 Elevation data

A DTM for the Swiss study areas is freely available at 2 m resolution (Swisstopo, 2018). For
the New Zealand study areas, a 1 m resolution LiDAR derived DTM is used (Spiekermann et
al., 2021). This raster was resampled (bi-linear technique) to a 2 m resolution. The decision to
apply 2 m resolution DEM (and DEM derivatives) for both study areas, despite higher resolution
availability was a combination of computational reasons, comparability and the indication that
increasing DTM resolution does not necessarily improve model performance (chapter 4).

3.1.2 Precipitation data

Gridded hourly precipitation totals for New Zealand are available through the MOANA dataset
(Moana Project Team, 2021). This interpolated grid is based on RADAR data. It has a spatial res-
olution of 4 km and covers the years of 2000 to 2020. No gridded precipitation data is available
for our sites in Switzerland. Weather station data is available, but for sites outside of the study
areas with questionable representativeness. It was chosen, not to use this data.
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3.1.3 Vegetation data

A DTM and DSM of 0.5 m resolution are available for the Swiss study areas. The DTM and the
DSM were both acquired from the SwissAlti3D database (Swisstopo, 2018), where aerial laser-
scanning is applied. the absolute difference between these raster produces a CHM. Single trees
are detected from the CHM using using a local maxima detection method as described in the
work of Eysn et al. (2015) and Menk et al. (2017). Since the results of this detection method
are influenced by the resolution and smoothness of the input data (Eysn et al., 2015), a pre-
processing methodology is applied. This methodology is described in chapter 4, section 4.3.2.
No species classification is performed.

In New Zealand, trees for the study areas have been mapped using available LiDAR data from
2013/14 in the Wellington region (Spiekermann et al., 2021). Processing has been performed
using the PyCrown model (Zörner et al., 2018) and species classification by a Support Vector
Machine (SVM) as described in Spiekermann et al. (2021). The data includes the X and Y coor-
dinate of the tree, the tree crown height and the predicted species (Either Eucalyptus, Kanuka,
Poplar/Willow, Pine or undefined).

Characteristics of the vegetation for the study areas, based on the data and methods as described
above, are given in Figure 3.2. Tree height is converted to DBH using the relationship: DBHtree =
(Htree)1.25 · 0.01, where DBHtree [m] is the Diameter at Breast Height of a given tree and Htree [m]
its height. This equation and its background, is presented in chapter 4 (equation 4.16). A novel
approach to single-tree detection using only orthophotos is presented and applied in chapter
6. However, for comparison and consistency, the results presented here are from the original
methods as described above.

TABLE 3.2: Study area number of trees, average tree size and tree density. * These
are different from the numbers as presented in chapter 4, since it measured stem
density in the forested parts of the study area, not an average over the entire study
area. ** These numbers are different from the total number as presented in chapter

6, due to not including a 1 km buffer around the farm here.

Name Number of trees Average tree density Average DBH
trees/ha m

Eriz 38923 52 * 0.51
Trub 7267 73 * 0.55
StA 1796 33 * 0.31
TW portion 3747 11 0.21
WA portion 2304 16 0.34
TW farm 15394 ** 9 0.22
WA farm 10725 ** 23 0.32

The density of trees is higher in our study areas in Switzerland, as compared to New Zealand.
This reflects a difference in land use, which can be well observed in Figure 3.2 and 3.3. In the
Swiss study areas, a significant portion of the area is forest covered, whereas the New Zealand
study areas are dominated by a silvopastoral system with space planted trees. Tree size, ex-
pressed in DBH, is generally higher in the Swiss trees, indicating a mature well managed forest.
Comparing the average DBH and tree density for the New Zealand study areas gives an indi-
cation that the trees in the Waikoukou farm are larger and denser planted. This corresponds to
the earlier and more far reaching adoption of the silvopastoral system in the Waikoukou farm as
expressed during personal communication with the farm manager.
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3.1.4 Soil data

Soil data is directly used in chapter 6. In this chapter, soil thickness and soil texture class are
derived from S-map soil mapping for New Zealand (Manaaki Whenua - Landcare Research,
2019). These are polygons, based on land use classification and field validation. For Switzerland
no soil data has been used, as the relating parameters have been calibrated.

3.1.5 Shallow landslide inventory

An inventory with a total of 668 shallow landslides that occurred between 1997 and 2012 in
Switzerland, has been compiled by the Swiss Federal Office for the Environment (Rickli & Graf,
2009). The inventory contains a total of 203 fields, with various data, resulting from extensive
field observations. The majority of the slides were triggered by a major precipitation event
in August 2005. For the New Zealand areas, a manually corrected automated landslide scar
identification algorithm is used (Spiekermann et al., 2021). The total number of landslides in
the dataset is 43069. This inventory is based on aerial imagery from 2010 and the majority of
the slides were triggered by precipitation events in 2005 and 2006. From both inventories, the X-
coordinate, Y-coordinate and scar surface area are taken into account. Additionaly, the estimated
soil thickness from the Swiss inventory is used to correlate soil thickness to slope angle (see
chapter 4, Appendix). An overview of the inventoried number of landslides in the study area
and their properties is given in Table 3.3 below.

TABLE 3.3: Study area inventory characteristics. The triggered area is given as
percentage of the total study area. *These numbers are different from the total
number as presented in chapter 6, due to not including a 1 km buffer around the

farm here.

Name Number slides Mean landslide size Scarred area
m2 % of total

Eriz 37 126.0 0.06
Trub 8 310.4 0.25
StA 33 240.9 1.44
TW portion 500 45.0 0.97
WA portion 78 68.0 0.42
TW farm 1663 * 69.3 0.67
WA farm 250 * 73.4 0.40

The Swiss areas have a higher average shallow landslide size compared to the ones in New
Zealand. The difference could be rooted in the fact that the Swiss inventory is manually assem-
bled by experts, whereas in New Zealand an algorithm and orthophotos are used. It could also
be related to differences in landscape heterogeneity and soil parameters. The proportion of the
study areas triggered varies slightly, with New Zealand generally having a higher proportion of
the landscape scarred. The notable exception is the St. Antönien study area, which shows the
highest scar density of all the study areas.
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Abstract

Shallow landslides pose a risk to infrastructure and residential areas. Therefore, we developed
SlideforMAP, a probabilistic model that allows for a regional assessment of shallow landslide
probability while considering the effect of different scenarios of forest cover, forest management
and rainfall intensity. SlideforMAP uses a probabilistic approach by distributing hypothetical
landslides to uniformly randomized coordinates in a 2D space. The surface areas for these hy-
pothetical landslides are derived from a distribution function calibrated on observed events. For
each generated landslide, SlideforMAP calculates a factor of safety using the limit equilibrium
approach. Relevant soil parameters are assigned to the generated landslides from log-normal
distributions based on mean and standard deviation values representative for the study area.
The computation of the degree of soil saturation is implemented using a stationary flow ap-
proach and the topographic wetness index. The root reinforcement is computed by root prox-
imity and root strength derived from single tree detection data. The ratio of unstable landslides
to the number of generated landslides, per raster cell, is calculated and used as an index for
landslide probability. We performed a calibration of SlideforMAP for three test areas in Switzer-
land with a reliable landslide inventory, by randomly generating 1000 combinations of model
parameters and then maximising the Area Under the Curve (AUC) of the Receiver Operation
Curve. The test areas are located in mountainous areas ranging from 0.5 – 7.5 km2 with mean
slope gradients from 18 - 28◦. The density of inventoried historical landslides varies from 5 –
59 slides/km2. AUC values between 0.64 and 0.93 with the implementation of single-tree de-
tection indicated a good model performance. A qualitative sensitivity analysis indicated that
the most relevant parameters for accurate modeling of shallow landslide probability are the soil
thickness, soil cohesion and the precipitation intensity/transmissivity ratio. Furthermore, we
show that the inclusion of single tree detection improves overall model performance compared
to assumptions of uniform vegetation. In conclusion, our study shows that the approach used
in SlideforMAP can reproduce observed shallow landslide occurrence at a catchment scale.

keywords: mountain forest, shallow landslide probability, probabilistic modelling, single tree
detection, root reinforcement

4.1 Introduction

Landslides pose serious threats to inhabited areas world-wide. They are the cause of 17% of the
fatalities due to natural hazards in the period of 1994–2013 (Kjekstad & Highland, 2009b). Aver-
age annual monetary losses over the period of 2010–2019 are approximately 25 billion US dollars
(Munich RE, 2018). In addition, Swiss Re Institute (2019) notes a significant increase in dam-
ages by hydrologically related natural hazards over the past 5 years, including hydrologically-
triggered shallow landslides. This has been attributed to increased urbanization in risk-prone
areas and to an increase in heavy rainfall events. Furthermore, Swiss Re Institute (2019) notes
that the modelling of shallow landslides is underdeveloped compared to the severity of the dan-
ger they pose. In mountainous regions, landsliding is a prominent natural hazard. For instance,
in the Alpine parts of Switzerland, 74 people have died as a result of landslide events between
1946 and 2015 (Badoux et al., 2016). The annual cost of landslide protective measures alone is
approximately 15 million CHF each year (Dorren et al., 2009). No distinction is made between
deep-seated and shallow landslides in these numbers. Rain induced shallow landslides are one
of the most important and dangerous types of mass movement in mountainous regions (Varnes,
1978). Shallow landslides are defined as translational mass movement with a maximum soil
thickness of 2 m and are the main focus in this paper. Fortunately, improvements in hazard
assessment have significantly decreased the number of shallow landslide related deaths over
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the past decades (Badoux et al., 2016). This general trend is also supported by long-term data
(Munich RE, 2018). The fatality decrease is related to better organizational measures regarding
hazards, such as warning based evacuations and road closures. Biological measures, such as
management of protection forests, also play a role in mitigation of natural hazards. The latter
role is especially important for (shallow) landslides, rockfall, snow avalanches and debris flows
(Corominas et al., 2014).

Modelling of shallow landslide triggering has been an ongoing process. Shallow landslide prob-
ability has been modelled mostly using a deterministic approach (Corominas et al., 2014). The
deterministic approach is defined by using average values of risk components and resulting in a
univariate result (Corominas et al., 2014). An example of a deterministic approach in this sense
is the SHALSTAB model of (Baum et al., 2002b) and SLIP (Montrasio et al., 2011), the latter
showing good results in assessing soil saturation in a spatially heterogeneous way. In a compar-
ative research it was noted that the SHALSTAB approach was not representative for the spatial
variability of the parameters at a small scale (Cervi et al., 2010). In recent decades, the devel-
opment of probabilistic models and statistical methods has improved model performance for
quantifying landslide probability and the interpretation of their results (Corominas et al., 2014).
In statistical methods e.g. Baeza and Corominas, 2001, there is no explicit accounting of physical
processes. Probabilistic methods could take physical processes into account and additionally
quantify the reliability of the results considering the probability distribution of values of one or
more input parameters (Salvatici et al., 2018). The output is a probability rather than a univari-
ate result. A prime example of a probabilistic model in SINMAP (Pack et al., 1998). Generally,
these models perform better than deterministic ones (Park et al., 2013; Zhang, Wu, et al., 2018),
likely due to natural landslides having a mode of movement significantly controlled by inter-
nal inhomogeneities and discontinuities in the soil (Varnes, 1978). These control mechanisms
are unpredictable at small-scales, making it hard for deterministic models to identify exact lo-
cations of instabilities and adjust the heterogeneous parametrization accordingly. Below we go
into more detail on the initiation of shallow landslides.

Initiation of instability is a process that combines mechanical and hydrological processes on dif-
ferent spatial and temporal scales and can thereby be very localized, with successive movement
increasing the magnitude of the event (Varnes, 1978). In alpine environments, instabilities are
typically triggered by rainfall, leading to soil wetting and ensuing increase of pore pressure,
which destabilizes the soil and can then initiate soil movement. An increase in pore pressure
can build up in minutes to months following a rainfall event (Bordoni et al., 2015; Lehmann
et al., 2013), where rapid pore pressure changes are attributed to macropore flow and slow pore
pressure changes to the matrix water flow. The higher the horizontal hydraulic conductivity
of the soil, the faster pore pressure changes can develop (Iverson, 2000). The reaction of pore
pressure to rainfall is variable and highly dependent on soil type. A key experimental study
is the work of Bordoni et al. (2015) in which in-situ measurements were taken on a slope with
clayey–sandy silt and clayey–silty sand soils that experienced a shallow landslide. It showed
that intense rainfall and a rapid increase of pore pressure were the triggering factors of the land-
slide. Over the duration of the measurements, comparable saturation degrees have been reached
both during prolonged and intense rainfall events. Prolonged rainfall did not result in the pore
pressure required to trigger a shallow landslide. Similar behaviour has been observed in an
artificially triggered landslide in Switzerland (Askarinejad et al., 2018; Askarinejad et al., 2012;
Lehmann et al., 2013). In the first wetting phase (year 2008), homogeneously induced rainfall
with a duration of 3 days, an accumulated rainfall of 1700 mm and an intensity of 35 mm/hr,
induced a maximum pore water pressure of 2 kPa at 1.2 m soil depth, resulting in no landslide.
In the second phase of the experiment (year 2009), the rainfall was heterogeneous, with a maxi-
mum intensity of 50 mm/hr in the upper part of the slope that induced an increase of pore water
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pressure up to 5 kPa at 1.2 m soil depth, resulting in the triggering of a shallow landslide. The
triggering was reached after 15 hours with a cumulative rainfall of 150 mm. In addition, a com-
putational study by Li et al. (2013) showed that at a high rainfall intensity (80 mm/hr), the pore
water pressure at a depth of 1 m reached a constant value within 1 hour. For a lower intensity of
20 mm/hr, this took approximately 3 hours. This shows that landslide triggering is related to a
fast build up of pore water pressure proportional to rainfall intensity. The work of Wiekenkamp
et al. (2016) suggests that preferential flow dominates the runoff in a heterogeneous catchment
during extreme precipitation events. Water can move downslope very rapidly through macro-
pores (in experimental conditions) under both saturated and unsaturated conditions (Mosley,
1982). The role of macropores can be important in a closed soil structure or in the presence of
a shallow impermeable bedrock, where they control the soil hydrological behavior. Further ex-
amples of the influence of macropores on hillslope hydrology in various soil types are presented
in the work of Weiler and Naef (2003) and Bodner et al. (2014). Additionally, Torres et al. (1998)
demonstrates the strong role of macropore in preferential flow paths for landslide triggering in
an artificial rain experiment in a loamy sandy soil. Montgomery et al. (2002) and Montgomery
and Dietrich (2004) also underline the importance of macropore flow, but state that the vertical
flow governs response time and build up of pore pressure rather than the lateral flow in their
study areas.

The mechanical aspect of shallow landslide initiation usually results from local instabilities that
could extend indefinitely in a infinite constant slope if the shear resistance is low (Varnes, 1978).
In complex topography, however, the passive earth pressure at the bottom of the triggering zone
reacts with a resisting force, contributing thereby to landslide stabilisation (Cislaghi et al., 2018;
Schwarz et al., 2015). It is important to note here that the passive earth pressure is activated in a
later phase of the triggering of a shallow landslide and should not be added to active earth pres-
sure or tensile forces acting along the upper half of the shallow landslide (Cohen & Schwarz,
2017b).

Besides hydrology, slope and soil characteristics, vegetation plays a key role in landslide trig-
gering (Corominas et al., 2014; González-Ollauri & Mickovski, 2014; Greenway, 1987; Salvatici
et al., 2018). The role of vegetation can be subdivided in hydrological and mechanical effects.
Vegetation influences the effective soil moisture by interception, increased evapotranspiration
and increased infiltration (Greenway, 1987; Masi et al., 2021). Over the short timescale with in-
tense rainfall these hydrological effects are negligible, but do play an important role in pre-event
disposition of slope instability (Feng et al., 2020). Among the mechanical effects, root reinforce-
ment, mobilized during soil movement, is an essential component (Greenway, 1987; Schwarz,
Preti, et al., 2010). It is a leading factor in the failure criterion for many vegetated slopes (Dazio
et al., 2018b). In modelling studies, the influence of root reinforcement on slope stability is often
quantified as an apparent added cohesion (Borga et al., 2002; Wu et al., 1979). This apparent
cohesion in turn can be added in the limit equilibrium computation of a Safety Factor (SF). Us-
ing a Monte Carlo approach of this method (Zhu et al., 2017), it was found that the SF can gain
up to 37% stability when including vegetation root reinforcement. In another study in New
Zealand, trees showed an effect on soil stability up to 11 meter away from their position and
had the ability to prevent 70% of instability events (Hawley & Dymond, 1988). Computational
research furthermore shows that root reinforcement by the larger roots is dominant over the
smaller roots, even though they are far less numerous (Vergani et al., 2014). The planting pat-
tern and management of the vegetation can have a profound effect on root reinforcement and
thus on slope stability (Sidle, 1992). Therefore a detailed approach to calculate the spatial dis-
tribution of root reinforcement is important for slope stability calculations. Root reinforcement
can be subdivided into two major components: Basal root reinforcement and lateral root rein-
forcement. Basal root reinforcement is the anchoring of tree roots through the sliding plane into
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the deeper soil. Lateral root reinforcement is the reinforcement from roots on the edges of the
potential slide that stick into the soil outside of the potential slide (Schwarz, Preti, et al., 2010).
In contrast, the mechanical influence of vegetation weight on slope stability is often considered
negligible (Steinacher et al., 2009). In current shallow landslide probability modelling, whether
deterministic or probabilistic, root reinforcement is generally modelled in a simplified way, for
example by including homogeneous root reinforcement (Montgomery et al., 2000). These meth-
ods limit the evaluation of the effects of different forest spatial properties such as forest structure,
and the contribution of different root reinforcement mechanisms to slope stabilisation (Schwarz
et al., 2012). In order to overcome this limitation, we develop a shallow landslide probability
model, named SlideforMAP. To ensure a wide applicability, SlideforMAP is designed for a re-
gional scale. In concrete terms this means SlideforMAP should be applied to study areas of 1 -
1000 km2. The main objectives of this work are to:

• Present the SlideforMAP model as a tool for shallow landslide probability assessment

• Show a calibration of SlideforMAP through a performance indicator over three study areas
with 78 field recorded shallow landslide events in Switzerland

• Analyze the expected improvement in the performance of SlideforMAP with a detailed
inclusion of vegetation

• Provide a qualitative sensitivity analysis and identify the parameters that are of greatest
influence on the slope stability

Strong emphasis within the SlideforMAP framework and this paper is put on the quantification
of root reinforcement on a regional scale. We will show the effect of accurate, quantitative, repre-
sentation of root reinforcement has on slope stability over three study areas. Simplifications, lack
of a temporal component and calibration constraints make it impossible to use SlideforMAP as
an exact forecast tool. The main application for SlideforMAP is as a tool to quantify the effects
of vegetation planting, growth and/or management for land managers in relation to shallow
landslides.

4.2 Methods: SlideforMAP

4.2.1 Probabilistic modelling concept

SlideforMAP is a probabilistic model that generates a 2D raster of shallow landslide probability
(Pls). It is an extension of the approach of Schwarz, Preti, et al. (2010) and Schwarz et al. (2015).
It generates a large number of hypothetical landslides (HLs, singular: HL) within the limits
of a pre-defined region of interest. These HLs are assumed to have an elliptic shape and are
characterized by a mix of deterministic and probabilistic parameters, from which the landslide
stability is computed following the limit equilibrium approach (section 4.2.2). The probabilis-
tic parameters are the HL location, its surface area and its soil cohesion, internal friction angle
and soil thickness parameters (drawn from appropriate random distributions). The location and
surface area are approached in a probabilistic way to compute a spatial probability distribution.
The soil parameters are probabilistic because we assume their variation is high and important
in mountainous environments. The deterministic parameters include several vegetation param-
eters and hydrological soil parameters. A key originality of the approach stems from the fact
that the vegetation parameters can be derived from single-tree scale information (section 4.2.5).
The number of generated landslides is high enough such that each point in a region of interest
is overlain by multiple HLs from which a relative Pls can be estimated by considering the ratio
of unstable HLs. A general flow chart of SlideforMAP is given in Figure 4.1. More details on the
modules follow in the subsequent sections.
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FIGURE 4.1: Flowchart of the computational steps in SlideforMAP. Separate sec-
tions are outlined in colors. The central workflow is highlighted.

4.2.2 Stability estimation

The estimate of the stability of each HL is calculated following the limit equilibrium approach
(described well in the work of Day (1997)). In this method, a landslide is assumed to be stable if
its safety factor (SF) is greater than 1.0. The SF is computed as the ratio of the parallel to slope
stabilizing forces and the destabilizing ones:

SF =
Fres

Fpar
, (4.1)

where Fpar [N] is the force parallel to the slope, Fres [N] is the maximum mobilized resistance
force. The assumed forces that act upon a hypothetical landslide are schematically shown in
Figure 4.2.
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FIGURE 4.2: Schematic overview of the forces acting upon a hypothetical land-
slide, as assumed in SlideforMAP. The blue arrow, Fres, indicates the stabilizing
forces and the red arrow, Fpar, indicates the destabilizing forces. Lateral root re-
inforcement only acts upon the green part of the hypothetical landslide, where
tension takes place. In purple is the compression zone in the shallow landslide.
Basal root reinforcement and soil shear strength act on the whole potential failure

surface.

As seen in Figure 4.2, all landslides are assumed to be elliptical (Rickli & Graf, 2009) with a ratio
between length and width, lwr = 2. The forces assumed in SlideforMAP are typical for the second
stage of the activation phase: the displacement at which lateral root reinforcement is maximized
under tension along the tension crack and at which passive earth pressure and lateral root com-
pression are assumed to not be fully mobilized (Cohen & Schwarz, 2017b). The magnitude of
the stabilisation’s effects under compression considerably change depending on the stiffness of
the landslide material and the dimension of the landslide. The quantification of those effects are
still a challenge for slope stability calculation at large scales. In order to develop a conservative
approach, we neglect those effects in the stability calculations of SlideforMAP. The tension crack
is assumed to span the entire upper half of the circumference of the HL and has an assumed
length in the range of 0.01 - 0.1 m (Schwarz et al., 2015) depending on the root distribution.
This behaviour of progressive shallow landslide failure with a tension crack opening up in the
upper half of a shallow landslides is described in detail in Cohen et al. (2009) and Askarinejad
et al. (2012). This is different from the assumptions taken in most landslide models involving
root reinforcement e.g. Montgomery et al., 2000; Schmidt et al., 2001, that assume lateral root
reinforcement to be activated at the same time along the entire landslide perimeter. Quantifica-
tion of the forces in the safety factor calculation follows the limit equilibrium assumptions. This
method is outlined in equations 4.2 to 4.5 below:

Fpar = g(msoil + mw + mveg) · sin(s), (4.2)
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Fres =
cls

2
· Rlat + Fres,bas, (4.3)

Fres,bas = Als · Csoil + Als · Rbas + Fper,eff · tan(ϕ), (4.4)

Fper,eff = g · (msoil + mw + mveg) · cos(s)− Pwater, (4.5)

In these equations, msoil is the soil mass [kg], mw is the mass of the water [kg], mveg is the
vegetation mass [kg], g is the gravitational acceleration assumed at 9.81 [m/s2], s is the slope [◦],
cls is the circumference of the landslide [m], Rlat is the lateral root reinforcement [N/m], Fres,bas
is the basal resisting force, Als [m2] is the area of the landslide, Csoil [Pa] is the soil cohesion [Pa],
Rbas is the basal root reinforcement [Pa], Fper,eff is the effective perpendicular resisting forces [N],
ϕ is the angle of internal friction [◦] and Pwater is the water pressure [Pa].

4.2.3 Placement and extent

The location of the center of mass of the HLs is generated from two uniform distributions cov-
ering the latitudinal and longitudinal extent of the study area. HLs on the edge of the study
area are taken into account as well, though cut to the extent of the study area in the later spatial
processes of SlideforMAP. The total number of HLs is determined by multiplying the landslide
density parameter (ρls) with the total surface area of the study area. This number is then uni-
formly sampled with replacements from the latitudinal and longitudinal distribution. The value
of ρls should be high enough such that each raster cell of the study domain is covered by several
HLs. The HL surface area is sampled from an inverse gamma distribution following the work of
Malamud et al. (2004), which showed that the probability distribution of shallow landslide sur-
face areas follows an inverse gamma distribution (Johnson & Kotz, 1970). The parameterization
of a three parameter inverse gamma distribution is shown in equation 4.6 below.

PAls =
1

a · Γ(ρ)

(
a

Als − s

)(ρ+1)

e
(

−a
Als−s

)
, (4.6)

where Als is the area of the landslide, PAls is the probability of Als, Γ is the gamma function, a, ρ
and s are parameters. These distributional parameters are estimated using the landslide surface
area data of the inventory (section 4.3). The estimation is based on minimizing the Root Mean
Square Error (RMSE) between the histogram counts (size of histogram bins = 10) of the surface
areas from the inventory and the distribution of equation 4.6. Users can follow this approach
with an inventory or use a custom parametrization. The maximum HL surface area is set for
all case studies based on the maximum surface area observed in the landslide inventory. This
maximum is set to 3000 m2, based on the rounded up maximum value of a well-distributed
landslide inventory in Switzerland (section 4.3.3), but users can vary this parameter.

4.2.4 Soil parameters

Steep-sloped mountainous areas are prone to extreme and unpredictable heterogeneity in soil
parameters (Cohen et al., 2009). This makes a heterogeneous deterministic parameterization in-
accurate, even if based on observations. To overcome this limitation, a probabilistic approach
in the parameterization of soil parameters of the model is applied. Values of soil cohesion and
internal friction angle of each HL are randomly generated from independent probability dis-
tributions. This is an approach similar to the one taken in Griffiths et al. (2009), who use the
log-normal distribution for soil cohesion only and Pack et al. (1998) who use a uniform dis-
tribution for soil cohesion and friction angle. We choose the log-normal distributions in our
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parametrization because it has shown to give a good fit (Figure 4.11 with a comparison to a
normal distribution in the Appendix; Corresponding code in the supplementary material), it en-
sures generating positive values only and its accuracy has been shown in Griffiths et al. (2009).
The distribution is parametrized by the mean and the standard deviation of observed samples.
The mean and the standard deviation are based on different information such as field soil classi-
fication or a geotechnical analysis. The soil cohesion in our computations is assumed to be rep-
resentative for saturated, drained and unconsolidated conditions. Soil thickness is parametrized
following a different approach to account for the shallow soils found on steep slopes. An initial
soil thickness (hsoil) is derived from a log-normal distribution. This is then multiplied by a cor-
rection factor which is a function of slope inclination as shown in equation 4.7. Soil thickness is
defined here perpendicular to the slope as opposed to soil depth, that is measured in the vertical
direction.

Hsoil = hsoil
(
1 − PN (S ≤ s|µ1, σ1)

)
, (4.7)

where Hsoil [m] is the soil thickness and s is the observed slope, extracted for the HL. PN (S ≤
s|µ1, σ1)] is the cumulative normal distribution of the slope S with µ1 = a · mh and σ1 = b · σh.
mh and σh are the mean and standard deviation of the slope angle of shallow landslides from
an inventory or a best guess. a and b are estimated by fitting data from a landslide inventory
containing slope angle and soil thickness. Other relations than used by SlideforMAP to correct
the soil thickness to the slope e.g. Prancevic et al., 2020 are possible as well.

4.2.5 Mechanical effects of vegetation

Three properties of vegetation are included in the model. These are vegetation weight, lateral
root reinforcement and basal root reinforcement. SlideforMAP only incorporates trees and ig-
nores possible effects by shrubs, grasses and other vegetation. This choice is due to the fact that
trees are predominant in influencing slope stability (Greenway, 1987). Single tree detection (Ko-
rpela et al., 2007; Menk et al., 2017) serves as a basis to estimate these properties. Single tree
position and dimensions are derived from a Canopy Height Model (CHM), which is the differ-
ence between the Digital Surface Model (DSM) and the Digital Elevation Model (DEM), using
a local maxima detection method (LMD) described in the work of Eysn et al. (2015) and Menk
et al. (2017). First, the trees are rasterized. The resolution of this raster has to exceed the effective
radial dimension of the trees, in order to calculate representative vegetation parameter values
at stand scale. The weight of the tree is calculated by using the tree height and the Diameter
at Breast Height (DBH), assuming that the trees are cone shaped. The tree mass, mveg, used in
equation 4.2 and 4.5, is calculated assuming a mean tree density (ρtree) of 850 kg/m3. Root re-
inforcement is added in the model using the method proposed by Schwarz et al. (2012), which
relates the root reinforcement to the distance to a tree, the size of the tree and the tree species.
Two rasters are computed. A raster with the nearest distance to a tree (Dtrees) and a raster with
the average DBH of all trees within an assumed maximum distance of root influence (Dtrees,max),
set at 15 m. We compute actual lateral root reinforcement for a given grid cell as a function of
maximum lateral root reinforcement and soil thickness, which reduces maximum lateral root re-
inforcement. The maximum lateral root reinforcement, RRmax [N/m], is computed as a function
of Dtrees and DBH (Gehring et al., 2019; Moos et al., 2016) according to equation 4.8 below:

RRmax = (c · DBH) · ΓPDF

(
Dtrees

DBH · 18.5

∣∣∣∣α1, β1

)
, (4.8)

In equation 4.8, c is a fitting parameter in N/m2 based on the work of Schwarz, Preti, et al. (2010).
DBH is in [m]. The ΓPDF(x|α1, β1) is the gamma probability density function (ΓPDF) evaluated as
function of x with shape parameter α1 and rate parameter β1. Both α1 and β1 are dimensionless.
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The parameters should ideally reflect any knowledge about how root reinforcement decreases
with distance for specific tree species. The general ΓPDF is written as:

ΓPDF(x|α, σ) =
xα−1e−x/σ

σαΓ(α)
, (x, α, σ > 0), (4.9)

In this equation α and σ are the shape and scale parameter. The rate parameter, β, as used in this
research, is defined as 1/scale. Soil thickness reduces the effects of lateral root reinforcement
that contributes to stabilize a shallow landslide. This decrease of lateral root reinforcement with
soil thickness is obtained as follows:

Rlat = RRmax ·
∫ Hsoil

0
ΓPDF

(
H
∣∣∣∣α2, β2

)
dH, (4.10)

In this equation ΓPDF(H|α2, β2) is the ΓPDF for the normalized root distribution over the soil
thickness with shape parameter α2 and rate parameter β2. In this equation β2 has the unit [m]
in order to make the integral of the ΓPDF dimensionless. SlideforMAP computes this integral by
numerical approximation. This method computes the root reinforcement where only one tree
can influence a cell. A spatially representative minimum root reinforcement value is calculated
in a stand assuming a triangular lattice (Giadrossich et al., 2020). Under this assumption, three
root systems interact additively. Basal root reinforcement, Rbas is assumed to be proportional to
lateral root reinforcement and dependent on soil thickness according to the relation shown in
equation 4.11:

Rbas = RRmax · ΓPDF (Hsoil|α2, β2) , (4.11)

where ΓPDF (Hsoil|α2, β2) is the normalized root distribution in the vertical direction. The ΓPDF in
this application the unit [m-1] which leads to a unit of [Pa] for the term Rbas, under the assump-
tion of isotropic conditions.

4.2.6 Hydrology

The hydrological module in SlideforMAP is based on the TOPOG model (O’Loughlin, 1986),
which includes a specific topographic index as inspired by Kirkby (1975). In this framework
we specifically assume macropore flow dominates hillslope hydrology. The identical model is
used in the SHALSTAB stability model (Montgomery & Dietrich, 1994) and SINMAP (Pack et
al., 1998). It is assumed that the saturated soil fraction of each cell holds a relation to its spe-
cific catchment area, its slope angle, a constant precipitation intensity and the soil transmissivity
(equation 4.12). This is in close correspondence to the parameterization used in the widely used
TOPMODEL (Beven & Kirkby, 1979). Limitations of this approach is the assumption of uniform
soil transmissivity, no inclusion of initial conditions, steady-state flow and lateral flow govern-
ing of soil moisture pattern. These limitations and generalizations make the model insufficient in
capturing detailed hydrological pattern, especially in mountainous regions modelled by Slide-
forMAP. Despite this, we assume the approach to be suitable for a general pattern of saturated
fraction and subsequent pore pressure. In addition to this shortcoming we ignore the apparent
hydrological cohesion (Chae et al., 2017) prominent in unsaturated fine and clayey soils, but of
little prominence in other conditions (Montrasio & Valentino, 2008). The saturated soil fraction,
h∗sat [-], of a soil column is defined in equation 4.12 below:

h∗sat =
I · CA

T · b · sin(s)
, (4.12)

I [m/s] is the constant precipitation intensity, T [m2/s] is the transmissivity, CA is the contribut-
ing catchment area [m2], s is the slope inclination [◦], and b is the contour length [m] that in our
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model corresponds to the cell size (see section 4.3.2 for details on its computation). We assume
dominant macropore flow, which has the ability to quickly drain a catchment and potentially
reach a state of stationary flow. Using this estimated h∗sat, pore water pressure is computed as:

Pwater = Hsoil · cos(s) · h∗sat · g · ρwater, (4.13)

where Pwater [Pa] is the pore water pressure (used in equation 4.5), Hsoil [m] is the soil thickness,
s is the slope angle, g=9.81 m/s2 is the gravitational acceleration, ρwater is the density of water
assumed equal to 998 kg/m3. The same value for water density is used in the computation of
the water mass in the HL.

4.2.7 Model initialisation

The model has a total of 3 probabilistic parameters and 15 deterministic parameters (Table 4.1).
The deterministic parameters as well as the distributional parameters for the probabilistic pa-
rameters are determined from in-situ data or from literature (section 4.3). In a first step of the
workflow for the application of SlideforMAP, after assigning the deterministic parameter val-
ues and sampling a value for each probabilistic parameter, a minimum value of soil cohesion
is computed for each HL to obtain stable conditions (safety factor, SF >= 1.0) under uniform a
precipitation intensity of 28.3 mm/day or 1.2 mm/hr. This threshold of precipitation intensity is
chosen according to Leonarduzzi et al. (2017), who statistically analyzed over 2000 landslides in
Switzerland over the period 1972–2012 and found this as a triggering threshold. The minimum
value of soil cohesion is obtained by equating Fpar (equation 4.2) and Fres (equation 4.3). If the
minimum value of soil cohesion is larger than the sampled soil cohesion, the soil cohesion is
updated to the minimum value. This procedure can be altered by users when another threshold
or no threshold at all applies.

TABLE 4.1: An overview of all variable model parameters of SlideforMAP. The
second to last column indicates the source of the default value. The last column
indicates whether the default is global or specific for this research in Switzerland

(CH).

Parameter Description Default value Unit Source Extent
md Soil thickness mean 1 m Estimate Global
σd Soil thickness standard deviation 0.25 m Estimate Global
mC Soil cohesion mean 2 kPa Estimate Global
σC Soil cohesion standard deviation 0.5 kPa Estimate Global
mϕ Angle of internal friction mean 30 ◦ Estimate Global
σϕ Angle of internal friction standard deviation 4 ◦ Estimate Global
ρls Density of the random generated landslides 0.1 HL/m2 Estimate Global
ρsoil Dry soil density 1500 kg/m3 Estimate Global
T Soil transmissivity 0.1 m2/s Estimate Global
I The precipitation event that is tested 10 mm/hr Estimate Global
Imin Precipitation intensity threshold for instability 1.2 mm/hr Leonarduzzi et al. (2017) CH
rxy Raster resolution of the SlideforMAP run 2 m Estimate Global
lwr Ratio between length and width of the landslides 2 - Estimate Global
c Fitting parameter for the lateral root reinforcement 25068.54 - Gehring et al. (2019) CH
α1 Shape of root distribution in horizontal direction 0.862 - Gehring et al. (2019) CH
β1 Rate of root distribution in horizontal direction 3.225 - Gehring et al. (2019) CH
α2 Shape of root distribution in vertical direction 1.284 - Gehring et al. (2019) CH
β2 Rate of root distribution in vertical direction 3.688 m Gehring et al. (2019) CH
Dtrees,max maximum distance for influence of tree roots 15 m Estimate Global
ρtree Density of a tree 850 kg/m3 Estimate CH
ρwater Density of water 998 kg/m3 Estimate Global
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4.2.8 Landslide probability computation

After model initialisation, SF (equation 4.1) is computed for each of the generated HLs. Based
on the SF for all generated HLs, landslide probability per raster cell (with the resolution of the
original DEM), Pls, is computed as:

Pls =
nus

nHL
, (4.14)

where nus is the number of unstable HLs, i.e. of HLs with SF<1.0 and nHL is the total number of
generated HLs (the HLs are overlapping). Both per raster cell. Finally, this results in a raster of
shallow landslide probability on a resolution of the input DEM.

4.3 Data

4.3.1 Study areas

Three study areas were chosen to test SlideforMAP based on the availability of elevation data
and detailed records of historical shallow landslide events (Figure 4.3), each varying in size and
location to test the robustness and the general applicability of the model.

FIGURE 4.3: Locations of the study areas in Switzerland with observed Shallow
landslide occurrence over the period 1997 - 2012 (blue dots); the case study names
are given according to nearby villages: Trub, St. Antönien and Eriz. Forest covered
area is presented in green. Source of forest cover: Federal Office of Topography
Swisstopo (Swisstopo, 2020). Source of hillshade: Federal Office of Topography

Swisstopo (Swisstopo, 2018).

The geological formations in the Eriz study area vary from Oligocene freshwater Molasse in
the lower northern part, morainic material in the central part and Cretaceous Limestone in the
highest parts. Forests are dominated by spruce (Picea abies), except for the lower regions where
broad-leaved trees are dominant. In the Trub study area, the dominant geological formation is
Miocene Marine Molasse and forests are dominated by spruce. In the St. Antönien (from here
forward abbreviated to ’StA’) study area, the dominant geological formation is Flysch (Prätti-
gauer Flysch), partially covered by till (Moos et al., 2016). The forest in this study area is also
dominated by spruce (Moos et al., 2016). Further characteristics of the study areas are given in
Table 4.2.
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TABLE 4.2: Study area characteristics. Meteorological data is from the HADES
yearly average precipitation for the time period 1981 - 2010 (Frei et al., 2020). Shal-

low landslide number and density from the inventory in section 4.3.3.

Name Centre coordinate Surface area Mean prec. Elevation Number of slides Slide density Mean slope
lat;lon (WGS84) km2 mm/year m.a.s.l. Slides/km2 ◦

Eriz 7.81; 46.78 7.54 1700 960 - 1750 37 4.9 20.4
Trub 7.90; 46.96 1.00 1620 820 - 1020 8 8.0 18.3
StA 9.80; 46.98 0.56 1310 1540 - 2010 33 58.9 27.5

4.3.2 Input data

To accurately measure Pls for each study area, the following data are required.

• Digital Surface Model (DSM) and Digital Elevation Model (DEM)

• Average and standard deviation values for soil cohesion, thickness and friction angle

• A representative landslide inventory containing at least:

• Average landslide soil thickness

• Landslide surface area

In addition to the DEM, the DSM is applied in the vegetation module of SlideforMAP. The DEM
and the DSM are both acquired from the SwissAlti3D database (Swisstopo, 2018), which makes
use of aerial laserscanning (ALS). Both the DSM and DEM are available at a resolution of 0.5 m.
As an alternative to the use of a landslide inventory and the DSM for single tree identification,
users can also use synthesized values for the parameters derived from this data. After pit filling,
the DEM is used to compute a slope map following the method of Zevenbergen and Thorne
(1987). The topographic wetness index θ for Figure 4.4 is computed on a raster cell basis based
on the 2 m DEM using equation 4.15.

θ =
CA

b · sin(s)
, (4.15)

where CA is the specific upslope catchment area, b is the contour length and s is the slope
angle. To avoid numerical problems for elongated catchments, θ is computed using a 2 km
buffer around the catchment. The large buffer size is chosen arbitrarily, but can be reduced by
other users. The standard D8 method is applied for the computation of the upslope catchment
area from the DEM (O’Callaghan & Mark, 1984). For single tree detection, the FINT algorithm
(Menk et al., 2017) is used. Since the results of such detection methods are strongly influenced by
the resolution and smoothness of the input data (Eysn et al., 2015), we applied the LMD method
to the canopy height model (CHM). This canopy height model is computed by subtracting the
DEM from the DSM and is resampled to a resolution of 1, 1.5 and 2 m. In addition, three different
Gaussian filters were applied on the 1 m resolution CHM. These three filters have a radius of
3, 5 and 7 cells and a standard deviation of 2 m. To identify the input data that leads to LMD
results with the highest accuracy, we evaluated the identified trees in three randomly selected
forest inventory plots with an area of 20 m x 20 m for each study site. In these plots, we visually
identified all recognisable tree crowns, on the basis of aerial photos (Swisstopo, 2017) and the
CHM. The identified trees were then compared to the LMD result, using the difference in the
number of detected trees. The input data leading to the most accurate results in all three study
sites was the 1 m resolution CHM with a Gaussian filter of a 3 cells radius and with the fixed
standard deviation of 2 m. This combination has been applied to the entire area of the three study
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sites. To estimate the DBH from the tree heights of all detected trees, the following empirical
equation (Dorren, 2017) was used:

DBHtree =
(Htree)1.25

100
, (4.16)

where DBHtree [m] is the diameter at breast height of a given tree and Htree [m] its height. Details
resulting from the LMD method for the three study areas are shown in Table 4.3.

TABLE 4.3: Vegetation parameters in the study areas. Source of forest cover: Fed-
eral Office of Topography Swisstopo (Swisstopo, 2020). Source of hillshade: Fed-

eral Office of Topography Swisstopo (Swisstopo, 2018).

Study area Trees identified Forest cover Mean stem density Mean DBH Std. deviation DBH
% Stems/ha m m

Eriz 38923 32 165 0.51 0.27
Trub 7267 26 270 0.55 0.30
StA 1796 27 120 0.31 0.18

The lateral and the basal root reinforcement (equations 4.10 and 4.11) are parameterized using
the values from Gehring et al. (2019) (α1 = 0.862, β1 = 3.225, c = 25068.54, α2 = 1.284, β2 = 3.688).
In their work, the calibration was performed on beech (Fagus Sylvatica) stands over varying
elevations. Our study areas, however, are predominantly vegetated by spruce trees. Therefore a
discrepancy in the estimated root reinforcement will likely arise. Unfortunately, this is the only
published set of calibrated values.

4.3.3 Landslide inventory

A landslide inventory is required to quantify a distribution for slope, surface area and soil thick-
ness for the HLs. This inventory does not necessarily have to be well distributed in the study
area, or even be present in the area. However, it should be representative of the conditions in the
area of interest as much as possible. A dataset of 668 shallow landslides that occurred between
1997 and 2012 in Switzerland has been created by the Swiss Federal Office for the Environment
(Rickli et al., 2019). Statistical information on the landslides can be seen in Figure 4.4. We assume
the properties in this inventory to be representative for shallow landslides in Switzerland. All
landslides are triggered by rainfall and the majority of the landslides are shallower than 1.5 m
(Figure 4.4). The landslides in the StA and Trub area took place in 2005 during or shortly after
heavy rainfall in August. The landslides in the Eriz area from 2012 are related to heavy rainfall
in July. Exact precipitation amounts and intensities are unknown. The data is formatted with
centre points and surface area of the shallow landslide initiation area. In our analysis we assume
they have an elliptical shape.
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FIGURE 4.4: Overview of landslide properties for the studied regions. Top row:
mean soil thickness (left) and the surface area (right) of the shallow landslide (SL)
for the test areas and the total inventory; bottom row: mean slope (left) and mean
TWI (right). The box plots show the 25, 50 and 75 percentiles, the whiskers extend
to 1.5 times the length between the 25 and 75 percentile. Outliers are marked as
circles. The TWI was extracted from the TWI raster cells that lie inside the landslide

inventory polygons.

The inventory is used to estimate the parameters for the surface area distribution used in Slide-
forMAP (equation 4.6), via minimization of the RMSE between observed frequencies and theo-
retical frequencies. The estimated values of the parameters are: a = 1.40, ρ = 1.5-4 m2, s = 4.28-8

m2. In addition, the inventory is used to calibrate the a and b parameters for the soil thickness
correction factor as used in equation 4.7. For the fitting (Appendix, Figure 4.12) of the correction
factor we use classes of inclination of 2.5 degrees and the soil thickness values corresponding to
95th percentile. This best fit for equation 4.7 was obtained with the values of a = 1.47 and b =
0.50.

4.3.4 Model calibration and sensitivity analysis

The model has a total of 21 parameters that are derived from observed data, from literature or
that are set to default values; their values, given in Table 4.1, are not further varied in the model
behavior analysis due to their assumed low variance. The remaining parameters can potentially
influence the landslide probability, mostly given their variation as observed in nature. These
parameters are: Imin, lwr, c, α1, β1, α2, β2, Dtrees,max, ρtree, ρwater. The remaining 12 parameters are
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then calibrated by Monte Carlo simulation, drawing a high number of parameter samples for all
calibration parameters and evaluating the corresponding model performance based on the Area
Under the Curve (AUC) method (Fawcett, 2006; Metz, 1978). We hereafter first present the used
performance evaluation method, followed by the parameter sampling method used for the cali-
bration as well as for the sensitivity analysis. In addition, we present four vegetation parameter
scenarios that are developed to test the potential influence of vegetation. Due to the limited size
of the landslide inventory, we do not include an independent validation of SlideforMAP.

4.3.4.1 Model performance evaluation

The basis of the application of the AUC method is a spatial representation of the landslide in-
ventory in a boolean raster (0 = no past landslide present, 1 = past landslide present). For each
randomly generated parameter set, the simulated Pls (section 4.2.8) is also converted to a boolean
raster, by selecting a threshold to assign 0 or 1. Overlaying the inventory raster on the modelled
raster, results in a confusion matrix with four possible combinations, as shown in Table 4.4.

TABLE 4.4: The confusion matrix, resulting from the comparison of a reference
boolean raster and a raster corresponding to a simulation.

Model
True False

Inventory
True True positive (TP) False negative (FN)
False False positive (FP) True negative (TN)

A so-called Receiver Operator Curve (ROC) can be obtained by computing the values of the
confusion matrix for all unique values in the simulated raster as threshold values and for each
plotting the sensivitiy, TP/(TP+FN), against the specificity , TN/(TN+FP). The area under the
ROC curve is the AUC and defines the accuracy of the model on a scale of 0.5 - 1.0, where 0.5 is
being no better than a random guess and 1.0 is a perfect prediction.

4.3.4.2 Parameter sampling and qualitative sensitivity

The parameter samples for the Monte Carlo-based model calibration and the subsequent sen-
sitivity analysis are generated using the Latin Hypercube Sampling (LHS) technique (McKay
et al., 1979). This makes use of semi-random samples of variables over pre-defined ranges. The
outcome of a Monte Carlo-based calibration is highly influenced by the ranges chosen for the pa-
rameters. For this reason, parameter ranges were chosen as realistically as possible. To estimate
the parameter ranges for soil properties, soil types in USCS classes are taken from the shallow
landslide inventory (a total of 377 had their soil type listed). Soil types present more than ten
times are taken into account and aggregated into a hybrid table of soil cohesion and angle of
internal friction values per soil type based on the values given in the work of Dysli and Ry-
bisar (1992) and VSS-Kommission (1998) (see Appendix, Table 4.10). In order to obtain a realistic
range for the soil cohesion, first the mean soil cohesion (weighted on USCS soil type occurrence)
is computed and then the weighted standard deviation is subtracted and added twice to the
weighted mean. This is to account for 95% of the variation in the observed soil cohesion (assum-
ing a normal distribution). The same procedure is performed for the angle of internal friction.
The range of transmissivity values is obtained by taking the saturated hydraulic conductivity
from the work of Freeze and Cherry (1979) for the respective soil classes and by multiplying
these saturated hydraulic conductivities with the minimum and maximum soil thickness of the
soil class. From the resulting list of possible transmissivity values per soil class, the minimum
and maximum are taken for the LHS range. For the precipitation intensity, four depth duration
values are defined. These correspond to a duration of 1 hour and 24 hours with subsequent
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return periods of 10 and 100 years. The duration of 1 to 24 hours is in line with the Slide-
forMAP assumption of quick macropore-flow dominated lateral groundwater flow. The return
periods of 10 and 100 years were chosen arbitrarily in line with forest management timescales.
Precipitation intensities are computed using data from the work of Jensen et al. (1997) and the
methodology as described in the work of HADES (2020). An overview of the intensity - return
period rainfall values is given in Table 4.5.

TABLE 4.5: Rainfall intensity [mm/h] for specific duration and return periods,
used to define the boundaries in the sensitivity analysis D = duration, T = return

period.

D = 1 h D = 1 h D = 24 h D = 24 h
T = 10 y T = 100 y T = 10 y T = 100 y

Eriz 32 48 4 5
Trub 30 42 4 5
StA 30 43 4 4

The R-script implementing the sampling methodology and a description is included in the sup-
plementary material. The minimum and maximum value from Table 4.5 are used as the range
in the sensitivity analysis (Table 4.6). The maximum value for vegetation weight is taken from
a biomass study in Switzerland by Price et al. (2017). For the other parameters, realistic ranges
have been assumed. In Table 4.6 an overview is given of the tested parameters and the ranges
used to generate the parameter samples. The precipitation intensity and transmissivity together
determine the saturation degree of the soil (equation 4.12) and are therefore prone to equifinality.
We grouped them as an additional parameter, the I/T ratio.

TABLE 4.6: Parameters used in the SlideforMAP qualitative sensitivity analysis
and corresponding ranges for parameter sampling via LHS. RRmax and Wveg are
given as spatially uniform parameters and not computed by the methodology in
section 4.2.5. This is to create scenarios that are comparable with and without

single-tree detection.

Parameter Unit Description LHS Range
ρls m-2 Density of the randomly generated landslides 0.02 - 0.10
ρsoil kg/m3 Dry soil density 1.00 - 1.50
md m Mean soil thickness 0.20 - 1.80
σd m Standard deviation of the soil thickness, as a fraction of md 0.00 - 0.50
mC kPa Mean saturated soil cohesion 0.00 - 12.5
σC kPa Standard deviation of the soil cohesion, as a fraction of mC 0.00 - 0.50
mϕ

◦ Mean angle of internal friction 24.00 - 41.50
σϕ

◦ Standard deviation of the angle of internal friction 0.00 - 5.00
T m2/s Soil transmissivity 10-8 - 10-3

I mm/h The precipitation event that is tested 4.0 - 48.0
I/T m-1 Ratio between precipitation and transmissivity 8.9-3 - 1390
RRmax N/m Maximum lateral root reinforcement 0.00 - 15.0
Wveg tonne/m2 The weight of the vegetation 0.00 - 0.10

For the model calibration and qualitative sensitivity analysis, 1000 LHS parameter sets were
generated per study area by drawing samples from the ranges in Table 4.6. The number 1000
was chosen arbitrarily for computational constraints. The vegetation is set to a global uniform
vegetation, which results in constant root reinforcement and vegetation weight in space. This is
necessary because the same runs are used for model calibration and for model sensitivity anal-
ysis, where we need such uniform vegetation to ensure that the sensitivity of the (hypothetical)
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vegetation has an effect on all raster cells of the whole study area (and not only on the actually
vegetated cells). The parameter set with the highest AUC value is retained for model calibration.
In addition, all 1000 parameter sets are used for a qualitative sensitivity analysis. The response
variables are the AUC as a measure for accuracy and the ratio of unstable landslides as a mea-
sure for instability. The AUC is chosen for the sensitivity analysis as the main response variable
since it expresses the performance relative to the independent landslide inventory. We then con-
sider AUC as a generalized measure of parameter likelihood (Beven & Binley, 1992) and assess
how selected best parameter sets (e.g. the best 10 % out of the 1000 sampled sets) are distributed
(parameter subsampling).

4.3.4.3 Vegetation parameter scenario analysis

SlideforMAP has potential in testing the effect of different vegetation scenarios on the landslide
probability. For this research, besides the reference scenario for model calibration and sensitivity
analysis (global uniform vegetation), three additional scenarios are tested: i) without vegetation,
ii) with uniform vegetation in forested areas and iii) with a fully diverse vegetation based on
single-tree detection. The single-tree version uses the input data as mentioned in section 4.3.2.
The forested areas are defined as areas where the single tree detection method leads to a lateral
root reinforcement (Figure 4.9) which is not equal to zero.

4.4 Results

4.4.1 Sensitivity analysis

We use the 1000 model simulations corresponding to the 1000 generated parameter sets per
study area for a sensitivity analysis of the model. The objective of this analysis is to quantify
how the distribution of AUC values and of the landslide probability vary as a function of the
parameters. Applying the parameter subsampling technique (see section 4.3.4.2), we see that for
some parameters, the histogram shape (i.e. their marginal distribution) does not significantly
deviate from the initial uniform distribution (from which we sampled), even if we retain only
the best 10% (in terms of AUC) of all parameter sets (Figure 4.5). This apparent lack of sensi-
tivity does not necessarily mean that the model is not sensitive to this parameter; in fact, the
sensitivity could be hidden by strong parameter correlation (see Bárdossy, 2007, for a discus-
sion of how uniform marginal distributions can result from strong parameter correlation). Our
addition of the I/T ratio gives a hint at such behaviour. From Figure 4.5 it appears that the sen-
sitivity to AUC of the I/T ratio is slightly stronger than either the precipitation or transmissivity
independently. Some parameters, in exchange, show very strong sensitivity of their marginal
distributions if only the best (in terms of AUC) parameter sets are retained. For the Trub case
study (Figure 4.5), we see that the mean thickness md, the mean cohesion mC, the I/T ratio
and the transmissivity show a well defined maximum around the parameter values retained
for calibration (the best performing ones). This suggests a good sensitivity of the model to these
parameters in terms of model performance. Two of these three parameters also show a clear sen-
sitivity if we retain subsamples that lead to successively higher unstable landslide ratio (Figure
4.6): high unstable ratios are obtained for high md values or for low mC. Also for RRmax, highest
ratios are clearly obtained for low lateral root reinforcement values (for all three case studies,
Figure 4.6, Supplementary Material 10.2, 10.4). For transmissivity, while it shows a clear effect
on model performance, the relation between its marginal distribution and the ratio of unstable
landslides is less visible.
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FIGURE 4.5: Histograms of different subsamples of the LHS parameter sets for
the Trub study area. The shading (from light to dark) corresponds to subsamples
retaining only the x% highest parameter sets in terms of AUC; the shown fractions

are: 1, 0.7, 0.4, 0.1.

FIGURE 4.6: Histograms of different subsamples of the LHS parameter sets for
the Trub study area. The shading (from light to dark) corresponds to subsamples
retaining only the x% highest parameter sets in terms of Unstable ratio; the shown

fractions are: 1, 0.7, 0.4, 0.1.

4.4.2 Model calibration

Based on the generated 1000 parameter sets, we identified the parameter set that resulted in the
highest AUC value and assumed this to be an optimal calibration of the model. These calibrated
parameter sets for each study area and their AUC values are shown in Table 4.7 together with
the ratio of generated HLs that are unstable.
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TABLE 4.7: Outcome of the Monte Carlo-based calibration: the parameter sets per
study area resulting in the highest AUC value. The last row shows the ratio of

unstable HL resulting from these parameter sets.

Parameter Eriz Trub StA
ρls 0.095 0.041 0.093
ρsoil 1.40 1.20 1.49
md 1.62 1.02 1.78
σd 0.32 0.13 0.31
mC 4.29 1.75 2.51
σC 0.43 0.32 0.30
mϕ 34.0 29.3 26.0
σϕ 0.37 1.39 0.92
T 0.000148 0.000473 0.000582
I 40.3 24.2 14.0
I/T 0.077 0.014 0.007
RRmax 12.3 4.7 10.3
Wveg 0.05 0.02 0.03

AUC 0.924 0.940 0.693
Unstable ratio 0.197 0.308 0.387

Parameter consistency between the study areas appears to be visible in ρsoil, md, mC, σC, mϕ, σϕ,
T and Wveg. Other parameters show stronger variation, relative to their LHS range, between
case studies. A realization of the shallow landslide probability computed with SlideforMAP for
the three areas with their calibrated parameter set is given in Figure 4.7.

FIGURE 4.7: Overview of the landslide probability of the study areas simulated
with the calibrated parameter sets of Table 4.7. Added as blue points are the ob-

served landslides from the inventory.
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In general, the model represents well the spatial distribution of the shallow landslides from the
inventory. A cumulative plot of the shallow landslide probability for the study areas based on
Figure 4.7 is given in Figure 4.8

FIGURE 4.8: Cumulative plots for shallow landslide probability in the study areas,
derived from the results in Figure 4.7.

4.4.3 Mechanical effects of vegetation

To test the impact of vegetation on the model behavior, we compare the different vegetation sce-
narios. The spatial distribution of lateral root reinforcement, resulting from single tree detection
and SlideforMAP, is given in Figure 4.9.

FIGURE 4.9: The spatial distribution of maximum root reinforcement (equation
4.8) in the study areas as used in SlideforMAP. Source of hillshade: Federal Office

of Topography Swisstopo (Swisstopo, 2018)
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The selected vegetation scenarios (no vegetation, global uniform vegetation, forest area uniform
vegetation, single tree detection) affect the computation of the vegetation weight, the lateral root
reinforcement and the basal root reinforcement. The latter is due to its dependence on lateral root
reinforcement (equation 4.11). Accordingly, the vegetation scenario has a direct impact on SF
(equation 4.1, 4.3, 4.4) and on Pls (equation 4.14). For the analysis, we use the optimal parameter
set from Table 4.7, obtained for a global uniform vegetation cover. The model runs are repeated
10 times to produce an average result and to show the variation from the probabilistic approach.
Due to sampling from distributions, every realization produces a (slightly) different result. The
resulting influence of the selected vegetation scenarios on AUC and on the ratio of unstable
landslides is given in Table 4.8. The results from Table 4.8 and Table 4.9 display that the model
is sensitive to the vegetation scenarios and that it predicts lower ratios of unstable ratios for
vegetated scenarios as compared to the unvegetated scenario. This underlines the value of the
model for future scenario analyses.

TABLE 4.8: AUC and unstable ratio under different vegetation scenarios with the
optimal parameter sets of Table 4.7 and averaged over 10 runs. The "Overall" is
composed of the mean value of all three study areas. In the global uniform vege-

tation scenario, the reference scenario is used during parameter optimisation.

AUC Unstable ratio
Overall Eriz Trub StA Overall Eriz Trub StA

mean

Global uniform vegetation 0.808 0.910 0.844 0.669 0.299 0.197 0.311 0.388
Forest area uniform vegetation 0.801 0.901 0.861 0.641 0.400 0.250 0.371 0.580
Single tree detection 0.831 0.925 0.925 0.644 0.336 0.199 0.217 0.593
No vegetation 0.785 0.880 0.854 0.622 0.475 0.309 0.413 0.704

Std. dev.

Global uniform vegetation 0.017 0.007 0.029 0.016 0.001 0.000 0.001 0.002
Forest area uniform vegetation 0.021 0.008 0.039 0.016 0.001 0.000 0.001 0.002
Single tree detection 0.012 0.005 0.011 0.021 0.001 0.001 0.001 0.001
No vegetation 0.025 0.013 0.044 0.019 0.002 0.001 0.002 0.002

ROC curves corresponding to the scenarios with repetitions as presented in Table 4.8 are given
in Figure 4.10. Significance of the differences between vegetation scenarios from Table 4.8 as
given in Table 4.9.

FIGURE 4.10: ROC curves of the 10 runs per vegetation scenarios from Table 4.8.
Orange: Global uniform vegetation, light green: Forest area uniform vegetation,
Dark green: Single tree detection, Brown: no vegetation. Corresponding study

areas from left to right are: Eriz, Trub and StA.
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TABLE 4.9: Significance of the difference in distribution between results of vege-
tation scenarios at a 90 and 99 % confidence level. Scenario names are shortened.
Significance measured by Welch’s t test (Welch, 1947). T (True) indicates a signif-
icant difference, F (False) indicates no significant difference. Three indicator per

cell are related to the three study area, ordered as: Eriz, Trub, StA.

99%
Global Forest Single No

90%

Global - T,F,T T,T,T T,F,T
Forest T,F,T - F,T,F T,F,F
Single T,T,T T,T,F - T,T,F
No T,F,T T,F,T T,T,T -

4.5 Discussion

It is important to point out that the inventory to which the model performance is calibrated plays
a key role in all the results discussed below. The inventory was obtained after triggering rainfall
events, for which the precipitation intensity, duration and the spatial distribution are not known
precisely. Despite this shortcoming, the inventory represents a unique source of information and
the spatial localisation of the landslides can be assumed to be of high quality. Below, we discuss
the model behavior as a function of the different model parameter groups and the performance
of the model and give directions for future research.

4.5.1 Soil parameters

The best performing parameter sets show high values for the soil thickness for all study areas (by
comparing the values of Table 4.7 and Table 4.6). The qualitative sensitivity analysis (Figure 4.6)
also shows that the highest unstable ratios are obtained for highest soil thicknesses; this indicates
that a certain minimum soil thickness is required for landslide triggering, which is in line with
previous findings by D’Odorico and Fagherazzi (2003) and by Iida (1999). In these studies,
soil thickness is noted as the conditional factor for landslide triggering along with precipitation
intensity and duration. The best performing parameter sets display cohesion values with a clear
tendency to low values for all three study areas (Figure 4.6, Supplementary Material 10.4, 10.2),
which suggests that the observed landslides can only be reproduced with low soil cohesion
for all case studies. The mean angle of internal friction appears to show consistency for a low
value (Table 4.7). The sensitivity of the AUC and unstable ratio on the angle of internal friction,
however, appears to be small (Figure 4.6 and Figure 4.5).

4.5.2 Hydrological parameters

Soil transmissivity showed considerable sensitivity to the AUC (Figure 4.5) and the values are
consistently high for all three case studies for the parameter range (Figure 4.7), which is a hint
that a correct estimation of soil transmissivity is paramount for a reliable estimate of shallow
landslide occurrence. Regarding precipitation intensity, we see variability between the best val-
ues for the three case studies and minor univariate sensitivity of the model performance or the
model output (ratio of unstable landslides). The application of the TOPOG approach has the ma-
jor shortcoming that it assumes a groundwater gradient parallel to the surface gradient. It has
been shown in the past that this assumption decreases the accuracy of water content simulations
as compared to distributed dynamic hydrological models (Grabs et al., 2009). However, as dis-
cussed earlier, it has also been shown in the past that macropore flow is omnipresent in landslide
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triggering and SlideforMAP has been parameterized assuming an important role of macropore
flow. In macropore-driven systems, steady-state groundwater flow can be reached (see Intro-
duction), which implies that the TOPOG assumption holds well in this case. Due to the lack of
detailed meteorological data, the precipitation intensity and duration is unknown. This makes
computation on the exact pore pressure during the landslide event impossible. The precipita-
tion intensity / transmissivity ratio (I/T) is assumed to include both precipitation intensity and
transmissivity sensitivity. This is reflected in Figure 4.5 and Figure 4.6. The calibrated values
for I/T ratio and subsequent pore pressure computation should be regarded as a measure for
landslide propensity. In the landslide inventory underlying the study here, the dominant soil
types are GM (silty gravel), GC (clayey gravel) and CL (low plasticity clayey silt); accordingly.
Due to large pore size, we can assume that the TOPOG assumptions are valid for a wide range
of the domain (for GM and GC soil type), even if it probably holds less well for the CL soil types.

4.5.3 Vegetation

A key aspect of the model is the use of single tree detection to parameterize vegetation, a method
that was previously found by Menk et al. (2017) to be reliable to detect single trees and derive
their DBH’s from the detected tree heights for sloped forests. As mentioned in section 4.3.2, we
found for the selected case studies that single tree detection provides the best results in terms of
correct number of trees counted if applied on a 1 m resolution DSM with a 3 cell kernel Gaussian
filter. This is in line with the results of Menk et al. (2017) who found in a similar scenario-testing
approach that a 1 m resolution DSM with no Gaussian correction provided the most accurate
results, noting, however, that the difference in performance between these two methods (with
and without Gaussian filter) is small. In SlideforMAP, we do not only consider basal but also
lateral root reinforcement. This is unique for shallow landslide probability models. As shown in
the sensitivity analysis (Figure 4.6), RRmax has a clear effect on the ratio of unstable landslides,
with low values leading to high ratios. In the SlideforMAP workflow and calibration, a fixed
relationship between the lateral and the basal root reinforcement is assumed, accordingly, the
model sensitivity cannot be attributed to Rlat or Rbas. Mobilization of the lateral root reinforce-
ment in the SlideforMAP workflow is independent of time and not countered by passive earth
pressure. A shortcoming in this parameterization of the effect of vegetation is the assumption
of uniform forest structure and a uniform tree species (beech) within a landslide area. The field
recordings in the StA area of Moos et al. (2016) show that the forest consists mainly of Norway
spruce. For the Trub and Eriz area, visual interpretation of aerial photos allowed us to identify
mixed forests with Norway spruce and beech. The latter are known for having a high root re-
inforcement and therefore the beech assumption will overestimate both the lateral and the basal
root reinforcement (Gehring et al., 2019). Vegetation weight shows no clear relation to both the
AUC and the unstable ratio (Figure 4.5, Figure 4.6). However, this does not mean that vegeta-
tion weight does not influence the response variables. The relationship could depend on other
parameters and therefore obscured (Bárdossy, 2007). In contrast to the soil and hydrological pa-
rameters, vegetation configures both the magnitude and the spatial pattern of the probability.
Vegetation can be modified by land management practices with relative ease (Amishev et al.,
2014) and is therefore of ultimate importance in shallow landslide mitigation.

4.5.4 Implementation of the mechanical effects of vegetation

In Table 4.8 it can be seen that the vegetation scenario has a considerable impact on the modelled
unstable ratio for all study areas. Unstable ratio is lowest in the single tree detection scenario for
the Trub study area. In the StA and Eriz study area, it is the lowest for the uniform vegetation.
We assume this is caused by the low calibrated uniform root reinforcement in Trub and a higher
value in the other study areas (Table 4.7). Both single-tree detection and uniform vegetation are
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determined to have the ability to decrease instability. From a practical perspective vegetating
parts of a study area is more realistic than uniformly vegetating the whole area. Influence of
the vegetation scenario on the AUC is present, with an absolute mean increase of 0.023 AUC
points between single tree detection and uniform vegetation and to forest uniform vegetation
and unvegetated of 0.030 and 0.046 AUC points respectively (Table 4.8). Additionally the per-
formance improvement can be described relatively in terms of percentage of extra AUC gained
(AUC range from 0.5 - 1.0) between two vegetation scenarios. For the overall single tree detec-
tion compared to uniform vegetation, forest uniform vegetation and no vegetation this is 8%,
10% and 16% respectively. Results in Table 4.9 show that the differences are relevant for the
uniform scenario in all study areas at both a 90% and 99% confidence level. The difference be-
tween single tree detection and no vegetation is relevant for all confidence levels and study areas
except for the StA study area at 99% confidence. The difference between single tree detection
and forest uniform is more ambiguous, with notably a significant difference at a 90% confidence
level in the Trub and Eriz study area. This is likely related to the forest uniform scenario being
most close to single tree detection in the distribution of root reinforcement of all scenarios.

In both Eriz and Trub, the single tree detection is the best performing scenario. Our overall find-
ing that the model output is sensitive to the vegetation scenario and gives second lowest values
in unstable ratio and highest values in AUC for single-tree detection. We argue that even though
the model is calibrated on a global uniform vegetation scenario (Table 4.7) and the single-tree de-
tection gives a significantly better overall performance, single tree detection is more accurate in
assessing shallow landslide susceptibility (Table 4.8 and Table 4.9). Adding to this explanation is
that in these study areas, where slope angle is a highly predictive factor, even marginal gains in
AUC due to vegetation are important and the result of extensive parameterization. Our analysis
is in line with the findings of Roering et al. (2003), who state that single tree based modelling,
including the tree dimensions, has the highest accuracy in the prediction of shallow landslides.
Moreover, Vergani et al. (2014) state that a site specific estimation of vegetation and root extent
is essential in the correct estimation of root reinforcement.

4.5.5 Model performance

As pointed out by Corominas et al. (2014), the absolute values of AUC are dependent on the
characteristics of the study area. In larger areas, with low overall landslide activity, the AUC
will overestimate the predictive performance. This most likely explains why the StA study area
has a low overall AUC compared to Eriz and Trub (Table 4.8). In particular, StA study area
shows a higher prevalence of steep slopes. The Trub and the Eriz study area show both rel-
atively high AUC values, indicating high model performance, with very similar AUC values;
this is in agreement with a similar occurrence of steep and gradual slopes in these areas. An-
other explanation for the discrepancy in model performance between the study areas could be
the assumption that all trees are beech trees. This does not hold equally well for all three study
areas. Based on visual inspection and on elevation, the mismatch between actual vegetation and
this assumption is probably most pronounced in the StA area, where the dominant tree species
appears to be Spruce. Though no published data is available, it can be estimated from the work
of Moos et al. (2016) that the root reinforcement of a spruce forest is lower than that of a beech
forest, but this cannot confirmed by our parameter analysis at this stage.

A comparison between the shallow landslide density (Table 4.2) and the calibrated unstable ratio
(Table 4.7) shows moderate consistency. The Eriz and Trub study areas have a low unstable area
corresponding to a low shallow landslide density. StA both has a higher landslide density and
higher unstable ratio. From the consistency in Table 4.7 and the sensitivity analysis results of Fig-
ure 4.5, it can be concluded that the main configuration of the model lies in the parametrization
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of the mean soil thickness, the mean cohesion and the I/T ratio. In addition, the vegetation sce-
nario strongly influences the model performance and is of high influence on calculated shallow
landslide probability (Table 4.8). Equifinality between the parameters in the qualitative sensitiv-
ity analysis is likely as it is very common in similar multi-parameter modelling (Beven & Binley,
1992). However, we believe, the sensitivity as observed in Figure 4.5 is valid and a qualitative
indicator for important parameters in SlideforMAP. The calibrated optimal parameter set (Table
4.7) is still within realistic bounds as is the ranges for the sensitivity analysis. In addition, the
calibrated combination of mean friction angle (26 - 34 ◦) and mean soil cohesion (1.75 - 4.29 kPa)
are possible, according to Appendix Table 4.10. Finally, we would like to add here that the case
study dependence of the used model performance measure is a limitation that typically occurs
for all model performance measures that compare the model behavior to some reference model
(Schaefli & Gupta, 2007) (the reference model for AUC is a random process). Accordingly, we
cannot compare the performance of SlideforMAP to other published AUC values despite of the
fact that values above 0.8 are considered as indicating good performance (e.g. Xu et al., 2012).

4.5.6 Comparison to other slope stability models

The main advantage of SlideforMAP to other models is the more realistic approach to imple-
ment root reinforcement. It includes a spatial distribution in both the basal and lateral root
reinforcement and the focus on second stage of the activation phase in accordance with the Root
Bundle Model as described in Gehring et al. (2019). Compared to previous slope stability models
that include the effect of root reinforcement, SlideforMAP uses a more realistic implementation
of root reinforcement based on recent knowledge of shallow landslides triggering mechanisms
and root reinforcement activation (Cohen & Schwarz, 2017b; Schwarz et al., 2012; Schwarz et al.,
2013). In particular, only part of the lateral root reinforcement under tension is considered for
the force balance calculation. Moreover, the spatial distribution of root reinforcement as func-
tion of forest structure is included. The assumptions made in SlideforMAP allow a probabilistic
calculation at regional scale that are not possible with more complex models such as SOSlope
(Cohen & Schwarz, 2017a). In comparison to more simple models based on infinite slope cal-
culations such as SINMAP and SHALSTAB (Montgomery & Dietrich, 1994; Pack et al., 1998),
SlideforMAP considers the effect of lateral root reinforcement on landslide of different sizes.
SINMAP with a homogeneous root reinforcement is comparable to our global uniform vegeta-
tion scenario (Table 4.8). A version of SINMAP with no root strength is comparable to our no
vegetation scenario. When no vegetation data is available or complexity is not desired, these are
valid option to assess shallow landslide susceptibility in a probabilistic way.

A hydrological and slope stability model identical to SlideforMAP is applied in Montgomery
et al. (2000), which is used to estimate sediment yield resulting from forest clearing. This is
comparable to our global uniform vegetation scenario as well. Their result of a high significance
of root reinforcement is in line with our findings. Other differences in the model approach are
the assumption of fixed landslide dimensions, including soil thickness. In addition, the root
reinforcement is assumed to act around the full perimeter of the landslide. In its approach,
SlideforMAP shares many similarities with PRIMULA, as developed by Cislaghi et al. (2018),
which applies a probabilistic approach and a spatially distributed root reinforcement as well.
the PRIMULA root reinforcement is based on a stand scale approach rather than single-tree de-
tection though. The AUC values in this paper are higher, but that could be the result of different
characteristics of the study areas and our parameter optimization by the qualitative sensitiv-
ity analysis. Other differences as compared to PRIMULA are their assumption of lateral root
reinforcement along the entire landslide perimeter, the inclusion of lateral soil cohesion simulta-
neously with lateral root cohesion, the assumption of rectangular shaped landslides rather than
elliptical ones and a different landslide surface area distribution. 3DTLE (Hess et al., 2017) is a
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deterministic landslide susceptibility model with a similar detailed spatially heterogeneous in-
clusion of root reinforcement. Differences are their deterministic approach and the assumption
of a simultaneous maximum of tension and compression forces.

4.5.7 Future research

SlideforMAP uses a relatively simple hydrological module to estimate soil saturation. The used
TOPOG approach could be improved and multiple papers have presented simple to more ad-
vanced rewriting of formulas (e.g. Beven & Freer, 2001; Blazkova et al., 2002). Common de-
nominator is the inclusion of time dependency, since the stationary flow assumption rarely, if
ever, holds in nature. This time dependency is a solution to simulate a different response to a
precipitation event at different locations within a study area. Future work could also focus on
improving the vegetation module by including different tree species (those that are often used
in protection forest) in the parametrization of lateral root reinforcement (equation 4.10). For
practical application of SlideforMAP we have not found a specific lower boundary in landslide
density, to still generate reliable results. More specific testing on this would be useful for fu-
ture application of SlideforMAP. A comparison between SlideforMAP and SHALSTAB and/or
SINMAP would be interesting. It can validate whether the uniform vegetation scenario in Slide-
forMAP produces similar results to these models in terms of shallow landslide probability. Fi-
nally doing a validation over study areas with a larger shallow landslide inventory would be a
vital procedure to further analyze the SlideforMAP model.

4.6 Conclusions

In this paper, we present a probabilistic model to assess shallow landslide (landslides with a scar
thickness < 2 m) probability. The main motivation to develop yet another model is to provide
a detailed inclusion of the influence of root reinforcement. Its application is illustrated based
on three mid-elevation case studies from Switzerland, for which a detail landslide inventory is
available. The model has a total of 21 parameters, of which 12 are calibrated using the AUC of
the Receiver Operator Curve as performance measure to identify the best parameter set among
a large set generated using Latin hyper cube sampling. The AUC maximum values for the three
study areas vary between 0.64 and 0.93 under a single tree detection vegetation scenario, which
reflects an overall good model performance. Our model parameter analysis has shown that soil
thickness, precipitation intensity to transmissivity ratio and soil cohesion, are the key parame-
ters to predict slope stability in the studied mountainous regions. A major focus of the presented
work was the assessment of the model’s ability to study scenarios of vegetation distribution.
Comparison of different scenarios ranging from uniform to single-tree detection-based vegeta-
tion clearly showed that the model output, in terms of shallow landslide probability, is sensitive
to the spatial distribution of vegetation. Additionally, in two of our three study areas, the single-
tree detection scenario provides significantly (Welch’s t test confidence > 99 %) higher AUC
values. Accordingly, the model is fit for future scenario analysis, including e.g. different protec-
tion forest management scenarios. In fact, a single-tree scale model parameterization provides
the opportunity to run hypothetical vegetation scenarios reflecting on small scale managements
strategies or disturbances. Future improvements in the hydrological approach, concerning a
more catchment based approach to compute saturation degree, could likely further improve the
performance of SlideforMAP.
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Appendix

FIGURE 4.11: Plot of the probability density of the soil thickness data from the
BAFU dataset as used in this paper. The best fit is given of a normal and a log-
normal distribution. The mean square errors are 0.096 and 0.053 for the normal

and log-normal fit respectively.

FIGURE 4.12: Shallow landslide Slope soil thickness relationship as used in this
research. Boxplots are classes with a width of 2.5 Slope units. The red dots are the
95th percentile per class. The red line is the fit of equation 4.7 to the 95th percentiles.
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TABLE 4.10: The hybrid table for the soil cohesion and angle of internal friction for
the relevant set of USCS soil classes. Derived from laboratory experiments (Dysli
& Rybisar, 1992; VSS-Kommission, 1998) and combined in this research to exclude

values that seemed unrealistic.

USCS soil class Mean soil cohesion Std. dev. soil cohesion Mean friction angle Std. dev. friction angle
SM 0 0 34.5 5.0
CL-ML 0.4 1.3 32.7 4.8
GM 0.0 0.0 35.0 5.0
GC-GM 5.0 5.0 33.0 3.0
CL 6.2 11.3 27.1 5.2
OL 2.5 5.0 32.8 2.2
GC 20.0 52.9 31.4 3.6
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Abstract

Shallow landslides are an important erosion process in New Zealand hill country. To mitigate
this, silvopastoral land use is often adopted. In such an environment, the correct placement
of trees can improve slope stability. In this paper, we demonstrate the application of a shal-
low landslide model to identify optimal patterns of tree location. The model, SlideforMAP, is
specifically designed to assess single tree location. We use an extended version of SlideforMAP
with a dynamic computation of the soil saturation by a macropore flow rainfall-runoff compu-
tation and a runoff rate coefficient for subsurface flow. The model is calibrated and validated for
two New Zealand locations using observed data from a total of 578 shallow landslides identi-
fied in a 2010 inventory, partly related to an extreme precipitation event that occurred in March
2005. Single tree data containing tree location, height and species is included. The calibrated
model parameters resulted in deep soils with low soil cohesion, low friction angle and high sat-
urated conductivity. This indicates silt dominated soils, which is in agreement with available
soil maps. Slight but inconsistent improvements in the accuracy are gained from the improved
hydrological approach. Differences between the improvement and the original SlideforMAP
are attributed to the non-steady-state approximation of sub-subsurface flow, rather than to the
vegetation-influenced runoff rate coefficient. The optimized tree location pattern suggests that
effective shallow landslide prevention in our study areas obtained by trees on slopes between
20◦ and 30◦ and under a lateral flux greater than 0.001 m2/s, i.e. mid-slope areas. SlideforMAP
can help to visualize these areas more precisely and considering local soil conditions. This is
a support tool for landowners and practitioners to optimally reduce erosion while maintaining
productivity.

keywords: shallow landslide probability, probabilistic modelling, catchment-scale, silvopastoral
systems, runoff coefficient

5.1 Introduction

Shallow landslides are a direct hazard for humans and infrastructures. Additionally, they cause
indirect effects on ecosystem services due to the loss of fertile soil and the mobilisation of sed-
iments (Douglas et al., 2013). This is a concern in New Zealand, where past deforestation has
caused a noticeable increase in shallow landslide activity that increased the volume of mobilised
sediments at catchment scale and induced surface sheet and rill erosion (McIvor et al., 2011). A
study in New Zealand hill country, an area with steep sloped pastoral farming, showed that
approximately 15% of sediment is mobilised and recruited from rainfall-triggered shallow land-
slides (Reid & Page, 2003). This erosion causes unwanted effects ranging from land degradation
to water quality reduction (McIvor et al., 2011; Reid & Page, 2003). An often applied measure
to prevent shallow landsliding in New Zealand is the space-planting of trees, also known as sil-
vopastoralism. This method enables erosion mitigation while maintaining pasture production
(Mackay-Smith et al., 2021). Although this approach is applied in practice, research gaps remain
concerning the effectiveness of silvopastoral systems (Mackay-Smith et al., 2021; Spiekermann
et al., 2021). Shallow landslide probability can be modelled with different types of approaches
and models, ranging from local to global models and with a probabilistic, deterministic or sta-
tistical approach (Murgia et al., 2022). Such models are essential for a holistic evaluation of land
uses in the context of shallow landslide risk assessment (Mackay-Smith et al., 2021) and for the
prioritisation of bio-engineering measures at regional scale.

A key challenge for shallow landslide modelling is the quantification of hydrological processes
and involved vegetation processes, which are fundamental to quantify the spatial distribution
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of shallow landslide probability at hillslope to catchment scale. On the local scale, root reinforce-
ment dominates this spatial distribution (Cohen & Schwarz, 2017b; Schwarz, Lehmann, et al.,
2010; Schwarz, Preti, et al., 2010; Vergani et al., 2017). A number of challenges, related to data
availability, scale and representation of vegetation management exist in modelling vegetation
influence on shallow landsliding (Phillips et al., 2021) and accordingly, stakeholders often resort
to simple models.

The influence of trees on shallow landslide probability has been discussed in several studies (e.g.
Masi et al., 2021; Murgia et al., 2022). These studies generally consider trees as slope stabilizing
actors (Schmaltz et al., 2017; Stokes et al., 2014; van Zadelhoff et al., 2022). However, differences
in root reinforcement between tree species, tree age and tree location are often poorly understood
and insufficiently included in slope stability models (Masi et al., 2021; Stokes et al., 2014). The
inclusion of these local differences was shown to improve the reliability of slope stability mod-
els (Rickli & Graf, 2009). This improvement resulted from the inclusion of a spatio-temporal
dynamic forest as compared to spatially uniform values of vegetation effect (Schmaltz et al.,
2019). In addition, the work of van Zadelhoff et al. (2022) concluded that applying a spatially
heterogeneous root reinforcement model consistently improved shallow landslide probability
prediction. They used a state-of-the-art probabilistic landslide model, SlideforMAP, which was
specifically developed to consider in detail the effect of tree root reinforcement over large re-
gions (1-100 km2), based on the detection of single trees.

One of the most challenging issues in the application of such event-based probabilistic mod-
els is the implementation of hydrological processes. Most of the coupled hydrological-shallow
landslides models (e.g. TOPOG (O’Loughlin, 1986)) use a topographic-index approach (Beven
& Kirkby, 1979) to model lateral subsurface flow. In this approach, the assumption is made
that catchment-scale water storage is spatially "configured as if it was at steady state" (Beven
et al., 2020). Such topographic-index approaches can relate average catchment-scale moisture
conditions to a spatial, topography-based pattern of likely saturated areas, without necessar-
ily providing correct local moisture conditions (Beven, 1997; Moore & Thompson, 1996). Apart
from the often incorrect assumption that instantaneous catchment-scale moisture patterns are
configured as for steady-state storage conditions, preferential flow, bedrock fractures, piping
etc. (Blazkova et al., 2002) provide limitations. Shallow landslide susceptibility models using
the topographic-index approach in their hydrological module generally mention the limitations
of the approach, but argue that the benefits of the simplification (lower data and/or assumption
requirements, faster computation enabling focus on larger areas) outweigh the shortcomings
(Buytaert et al., 2008).

Besides the TOPOG approach, the rainfall-runoff modelling literature offers a few alternative
methods to parsimoniously relate runoff generation to rainfall input and catchment physio-
graphic conditions, i.e., to obtain estimates of runoff-available water without going through
a full input-output streamflow model. One family of methods uses so-called runoff curves (Sit-
terson et al., 2018) to directly estimate the fraction of rainfall that becomes runoff from land use
and rainfall properties. The empirical SCS curve number (CN) is the most well known of these
methods (Rallison, 1980): it relates runoff coefficients to land use and soil type. A storage param-
eter provides temporal variability in the CN runoff coefficient. This method has however been
developed for extreme events, namely for annual floods. We adopt here another runoff curve
method, developed originally for Switzerland by Scherrer and Naef (2003) and Antonetti et al.
(2017). These curves relate runoff coefficients to rainfall amounts and dominant runoff processes
that are derived from land use and soil depth. There are only few other studies available that
attempt a similar classification of dominant runoff processes (such as Hortonian overland flow
or lateral subsurface flow) as a function of landscape characteristics, e.g. the work of Savenije
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(2010), which uses the Height Above Nearest Drainage, HAND, as classifier.

In this paper, we analyze the performance of different hydrological assumptions in SlideforMAP.
We choose SlideforMAP due to its assumed compatibility for silvopastoral systems, where mod-
elling the influence on the single trees is paramount. We compare three different versions of the
model. Firstly, the original version, referred to as SfM original. Secondly, the new improved
version that includes a runoff coefficient, referred here as SfM (without extension of the name).
Additionally this version overcomes the topographic-index approach by enabling a dynamic
lateral groundwater flux approach. Thirdly, we also test a hybrid version with dynamical lat-
eral groundwater flux but no runoff coefficient, which is called SfM hybrid. This hybrid version
is tested to isolate the influence of the runoff coefficient for comparison. The main aim of this
research is to analyze the change in model performance of the improved version. We test the
improvements by independent calibration and validation of generated shallow landslide prob-
ability maps. The selected study areas are two shallow landslide-prone study areas in New
Zealand hill country, dominated by silvopastoral land use.

5.2 Methods

5.2.1 SlideforMAP

The shallow landslide probability model SlideforMAP (van Zadelhoff et al., 2022) is based on
the calculation of the Safety Factor (SF) for a high number (in the order of 105 − 107, depending
on study area size) of randomly located landslides (RLs, singular: RL) within a gridded study
area domain and then assessing the landslide probability by taking the fraction of the amount
of RLs with a SF < 1 to the total of the generated RLs overlapping a raster cell. Each RL has a
random location and a surface area drawn from a calibrated inverse gamma distribution, with
an assumed horizontally projected circular shape. For each RL, soil parameters are drawn from
normal distributions and spatially variable parameters (slope angle, contributing area and root
reinforcement) are obtained by averaging corresponding properties over the RL area. The SF for
each RL is calculated based on a three dimensional force balance. The probabilistic approach
has the advantage to explicitly incorporate the uncertainty in parameters values used for the
SF calculations. Each single RL is indexed in the following equations with l, and the grids cells
located within each RL are indexed with i.

5.2.2 General principle of the new hydrological module

The original version of SlideforMAP (van Zadelhoff et al., 2022), uses a steady-state assumption
of runoff given a constant precipitation input for the calculation of the pore water pressure. To
investigate the effect of temporal rainfall input variation and of related moisture conditions, we
implemented a new hydrological module. The new approach is based on runoff coefficients that
depend on cumulative precipitation and furthermore assumes that lateral runoff has spatially
uniform mean velocity depending only on rainfall intensity. No distinction is made between sur-
face runoff and subsurface runoff. Figure 5.1 shows an overview of the improved hydrological
module and further details are given in the corresponding sections below.
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FIGURE 5.1: Flowchart of the new hydrological module; the outcome is computed
pore pressure, which as outcome that is used for the slope stability computation.
*Optional. The computation of Irep is only relevant in case of on-steady rainfall

input.

5.2.3 From rainfall to lateral sub-surface flow

5.2.3.1 Computation of maximum runoff-contributing area

The spatial extent of the contributing area for each RL is computed by the D8 - flow raster
algorithm (Callaway et al., 2003) using Pysheds (Bartos, 2020) on a raster resolution of 5 m.
Within a RL of index l, the raster cell with the highest value of contributing area (CAmax,l) is
selected for the computation of the maximum lateral runoff contributing to the build up of the
pore water pressure. This raster cell is indexed imax. The CAmax,l is used as a mask to extract
properties such as mean slope inclination and mean root reinforcement within the contributing
area. Based on the D8 - flow raster, the distance of each raster cell within the contributing area j
to imax is computed. The concept of the CAmax,l is illustrated in Figure 5.2.
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FIGURE 5.2: Schematic display of a RL with its hydrologically contributing area
to its centre point in red and the maximum contributing area, CAmax,l , in orange.
Grid resolution in the RL (2 m), with cells i and the contributing area (5 m), with
cells j, is presented conceptually. The orange shaded area within the maximum
contributing area of the RL highlights the effective contributing area, CAeff,l , which

is a function of precipitation intensity and duration (see section 5.2.3.6)

5.2.3.2 Interception

Tree interception is subtracted from the cumulative rainfall for each rainfall event, for each raster
cell. A grid cell is assumed covered by foliage when RRmax > 0. For raster cells with foliage
cover, cumulative interception is computed using Equation 5.1 (Aston, 1979).

Cint = Cmax(1 − exp(−kP/Cmax)), (5.1)

where Cint [mm] is the interception storage and Cmax the maximum interception storage capacity.
P [mm] is the total rainfall and k is a shape parameter [-], which moderates the degree of water
detention. Cmax and k are arbitrarily assumed to be 4 mm (well within the 2.2 to 8.3 mm range
for Cmax measured on tree basis by Herwitz (1985).) and 0.03 respectively. All intercepted water
is assumed to re-evaporate immediately after the rainfall event and to be lost from the system.

5.2.3.3 Runoff coefficient

After correction for interception, we estimate for each rainfall event a runoff coefficient at the
scale of the larger hydrological contributing area, CAmax,l of the RL l. This runoff coefficient is
the fraction of rainfall that results in lateral water mobilization during a rainfall event (surface
runoff and lateral subsurface flow). The rest of the rainfall-event water is stored in the soil or
percolates to deeper layers. Accordingly, the runoff coefficient is linked to the degree of satura-
tion of the soil, which is important in the computation of slope stability.
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The runoff coefficient depends on rainfall event structure (intensity, duration) and on soil prop-
erties. Here we use the method suggested by Antonetti et al. (2017) to relate hillslope-scale
runoff coefficients to cumulative rainfall of single rainfall events and to soil properties. The
runoff coefficient is calculated for each raster cell RL l from the land use and rainfall properties
in its CAmax,l . Their method uses rainfall-runoff curves (RRCs) that relate runoff coefficients to
cumulative rainfall for five different runoff types that regroup one or several dominant hydro-
logical runoff processes (Table 5.1). The method was developed based on sprinkler experiments
and expert knowledge. It does not include antecedent soil moisture.

TABLE 5.1: Runoff types approach of Antonetti et al. (2017); HOF = Hortonian
overland flow, SOF = Saturation-excess overland flow, SSF = sub-surface flow, DP

= Deep percolation. Runoff Types are sub-classified by numbers.

Runoff Type Dominant process Response time Soil depth
1 HOF1, HOF2, SOF1 Immediate Very shallow soils/exposed bedrocks
2 SOF2, SSF1 Slightly delayed Shallow soils
3 SSF2 Delayed Moderately deep soils
4 SOF3, SSF3 Strongly delayed Deep soil
5 DP Not contributing Very deep soils, wetlands

The RRCs used here (Antonetti et al., 2017) are based on previous research in Switzerland (VAW,
1993) (Figure 5.3). We approximate their shape by fitting the general function:

ψ(P) = a + b · log10(P − S), P > 0; S < P, (5.2)

where ψ is the runoff coefficient, P [mm] is the total precipitation, S [mm] is critical rainfall
amount before runoff starts , a and b are shape and scale parameters. Both the cumulative and
the derived instantaneous version (runoff rate coefficient) of the RRCs are described with Equa-
tion 5.2. For the computation of the maximum pore water pressure, the instantaneous version is
used. The use of these RRCs requires the determination of the runoff types. For Switzerland, a
decision scheme to assign a runoff type to an area was proposed by (Scherrer & Naef, 2003). This
decision scheme is based on soil type, slope angle, presence of macropores, soil depth, matrix
permeability and soil water content before the rainfall event. This decision scheme and resulting
classification has been developed for meadows and is not directly applicable to forested areas.
However, it does consider the effects due to the presence of macropores and lateral preferential
flow paths, which can be assumed to be influenced by the presence of tree roots. The presence
of macropores can be assumed to increase the effective hydraulic conductivity in the subsurface
and thus favour lateral flow, thereby reducing saturation-excess overland flow. An extensive
adaptation of this decision scheme for forest types exists (Markart et al., 2011), but requires es-
timates for many input parameters. Based on previous research, we develop our own concise
version for runoff type determination, including the effect due to roots. Firstly, a slope threshold
is used to define areas with exposed bedrock, automatically classifying them as Runoff Type 1.
We set this threshold to 50◦. We assume all meadow and pasture areas have a slightly delayed
runoff type (Runoff Type 2), which we call hereafter RTbase. Soil thickness is assumed to influ-
ence RTbase, as thicker soils can store more rainfall. The original method distinguishes deep and
shallow soils and the limit between them is set to 1 m (Scherrer & Naef, 2003)), which we also
adopt.



Chapter 5. Application and validation of SlideforMAP 59

5.2.3.4 Accounting for macropores

The presence of vegetation in the contributing area is first of all taken into account via intercep-
tion (section 5.2.3.2), but additionally also via the effect of roots on preferential flows in macro-
pores. We introduce the notation of RTmin, which is the runoff type yielding the lowest possible
runoff amount for a given soil thickness. For shallow soil, RTmin is the delayed runoff (Runoff
Type 3), for deep soils, RTmin is the strongly delayed flow (Runoff Type 4). We assume that the
minimum runoff rate coefficient is affected by the presence of vegetation due to an increase in
macropore flow. We model this effect of macropores by scaling the runoff rate coefficient as a
function of lateral root reinforcement (as proxy variable), which is a parameter that is used in
the calculation of the Safety Factor, SF (see section 5.2.1).

For this runoff rate coefficient scaling, we define a fractional root reinforcement factor, called
FRR,l . FRR,l obtained as a fraction of the mean value of root reinforcement within the CAmax,l
and an assumed reference value of maximum lateral root reinforcement RRmax, which is set to
5 kN/m FRR,l . The scaling of the runoff rate coefficient ψl,p for a landslide RL and a cumulative
precipitation P is then obtained as follows:

ψl,p = ψRTmin,p + (ψRTbase,p − ψRTmin,p) · FRR,l , 0 < ψl < 1 (5.3)

where ψRTbase,p is the runoff rate coefficient corresponding to the base runoff type for landslide
RL and cumulative precipitation P and ψRTmin,p is the corresponding minimum runoff rate co-
efficient. An example of the results of the possible runoff rate coefficients, assuming various
FRR,l values, calculated with Equation 5.3 are shown in Figure 5.3. We assume that any Horto-
nian overland runoff contributes to the RL-scale runoff generation, re-infiltrates or connect to
the macropores network within the RL and contributes to lateral subsurface flow and thus to
pore water pressure.
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FIGURE 5.3: Rainfall-runoff curves according to the Runoff Types of Table 5.1. Top
row shows the cumulative version of Antonetti et al. (2017) (left) and the corre-
sponding derived instantaneous version (right). Bottom row shows our cumula-
tive curves for shallow soils (thickness < 1 m), left, and for deep soils (thickness >
1 m), right. For this the Scherrer and Naef (2003) soil thickness threshold was used.
The blue curves in the bottom row show RRCs for 20 evenly distributed fractions

of maximum root reinforcement.

The RRCs represent a simple tool to link rainfall and runoff. They have a solid theoretical ba-
sis as discussed in the work of Antonetti et al. (2017). Conceptually, the presence of macro-
pores enhances the infiltration. In the first period of a rainfall event, this leads to a vertical
preferential flow, which may saturate the lower horizons of the soil profile along a potential
interface between the high permeability soil (with macropores) and a deeper low permeability
horizons/bedrock. Once macropores are hydrologically connected, runoff is dominated by lat-
eral surface or subsurface flow. These distinct phases of the runoff formation are the theoretical
background for the RRCs in Figure 5.3.

5.2.3.5 Representative mean rainfall intensity

Applying the mean rainfall intensity from a rainfall event could lead to an underestimation of
the maximum pore water pressure that in reality is more related to the peak intensity of a rainfall
event. An example of such an underestimation is given in the Supplementary Material (Supp.
material, Figure 10.6) where we applied a lateral flux example with an observed rainfall event
using the hydrological module of SfM. To overcome this issue, we correct the mean precipitation
intensity of an event by a correction factor (Icorr) to obtain a representative peak rainfall intensity
(Irep). This correction factor is the difference between the maximum soil water flux based on a
dynamic precipitation intensity and the one based on a constant mean precipitation intensity.
Icorr is assumed to be dependent on the following factors: contributing area extent, contributing
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area elongation, macropore flow velocity, precipitation event duration and precipitation inten-
sity variability in time.

We compute Icorr for a random 5% subset (for computational reasons) of the contributing areas
in both of our study areas, with the inclusion of our runoff rate coefficient methodology. The
results are plotted versus the contributing area size, which we expect to be the best and most
practical predictor of this ratio (see Results section, Figure 5.8). The resulting relationship of Icorr
to CAmax,l is then used to connect Icorr and CAmax,l for all contributing areas. This method is
applied to all model versions.

5.2.3.6 Effective contributing area

To compute the effective contributing area CAeff,l from the maximum contributing area CAmax,l ,
an estimation of lateral flow velocity is essential. We assume that this lateral flow velocity is
dominated by the contribution of preferential macropore flow. Typical macropore flow velocity
varies between 10−1 and 10−5 (Gao et al., 2018), with a geometric mean of 1.08 ∗ 10−3 m/s. This
can be 2-3 orders of magnitude higher than soil matrix mean flow velocity. Findings similar to
this are reported in the work of Beven and Germann (2013).

Gao et al. (2018) reviewed and analyzed the relationship between precipitation intensity and
macropore flow velocity in 76 global studies over different soils and land cover. We use the re-
sulting linear relationship for all data points to define macropore velocity (Vmac) as a function of
macropore diameter and rainfall intensity (Gao et al., 2018, Equation 2). It is assumed that the
effective contributing area CAeff,l [m2] is a function of time (t), of lateral flow velocity and of total
contributing area (CAmax,l). We define the contributing fraction of the total contributing area by
the fraction of cells that satisfy the condition: Lc < tVmac, where Lc is the distance of a contribut-
ing area cell, c, to its outlet (cell within RL l with CAmax,l). The effective contributing area CAeff,l
is then obtained by multiplying the contributing fraction with CAmax,l . The lateral flux, Qmax,l
[m3/s], is calculated as a function of time, using Equation 5.4 (Montgomery & Dietrich, 1994):

Qmax,l(t) = Irep · CAeff,l(t) · ψ(P). (5.4)

In this equation, ψ [-] is the runoff rate coefficient, which is a function of the cumulative pre-
cipitation P. Irep [m/s] is the representative precipitation intensity, obtained by multiplying the
mean intensity I [m/s] with a multiplication factor Icorr [-]. This enables us to estimate the de-
gree of saturation of each cell, i, in the RL as a function of time at the outlet using a modified
TOPOG approach as below:

h∗sat,i(t) =
Qmax,l(t) ·

(
CAi

CAmax,l

)
Ksat · Hsoil · sin(si) · b

. (5.5)

In this equation, CAi is the specific contributing area for an individual cell i in the RL. Ksat
[m/s] is the saturated hydraulic conductivity parallel to slope, averaged over the soil thickness.
Hsoil [m] is the soil thickness. si is the slope angle in degrees per cell i. b [m] is the raster cell
resolution. Averaging h∗sat,i [-] over all cells gives the RL h∗sat. Subsequent pore water pressure is
computed as:

Pwater = Hsoil · cos(s) · h∗sat · g · ρw, (5.6)

where Pwater [Pa] is the pore water pressure, s is the average slope angle of the RL, g [9.81 m/s2]
is the gravitational acceleration, ρwater [998 kg/m3] is the density of water.



Chapter 5. Application and validation of SlideforMAP 62

5.2.4 Passive earth pressure

Passive earth pressure acting as resistance force at the bottom of the RL is included applying
the results of Cislaghi et al. (2019), in accord with the framework proposed by Schwarz et al.
(2015). Root compressing forces in this calculation are included and estimated to be 10% of the
lateral root reinforcement under tension (Cohen & Schwarz, 2017b; Schwarz et al., 2015). The
contribution of passive earth pressure forces to RL stability are implemented by adding them to
the other stabilizing forces (shearing forces and maximum tensile lateral root forces).

5.2.5 Model calibration and validation

The improved model has a total of 20 parameters. Three of these are probabilistic. An overview
of the parameters is given in Table 5.2. We only retain four sensitive parameters (van Zadelhoff et
al., 2022) for calibration and assign default values, estimates or literature values, to the remaining
parameters (Table 5.2).

TABLE 5.2: An overview of all SfM parameters. Table is adapted from van Zadel-
hoff et al. (2022). The only difference is the substitution of the transmissivity by the
saturated hydraulic conductivity Ksat. Transmissivity is the product of the Ksat and
the soil thickness. The last column in the table indicates whether the parameter is

to be calibrated.

Parameter Description Default value Unit Calibration
md Soil thickness mean 1 m Yes
σd Soil thickness standard deviation 0.25 m No
mC Soil cohesion mean 2 kPa Yes
σC Soil cohesion standard deviation 0.5 kPa No
mϕ Angle of internal friction mean 30 ◦ Yes
σϕ Angle of internal friction standard deviation 4 ◦ No
ρls Density of the random generated landslides 0.2 RLs/m2 No
ρsoil Dry soil density 1500 kg/m3 No
Ksat Saturated hydraulic conductivity 0.1 m/s Yes
I The precipitation event that is tested 10 mm/hr No
Imin Precipitation intensity threshold for instability 1.2 mm/hr No
rxy Raster resolution 2 m No
lwr Ratio between length and width of the landslides 2 - No
Cmax Maximum interception storage capacity 4 mm No
k Interception curve shape parameter 0.03 - No
c Fitting parameter for the lateral root reinforcement 25068.54 - No
α1 Shape of root distribution in horizontal direction 0.862 - No
β1 Rate of root distribution in horizontal direction 3.225 - No
α2 Shape of root distribution in vertical direction 1.284 - No
β2 Rate of root distribution in vertical direction 3.688 m No
Dtrees,max maximum distance for influence of tree roots 15 m No
ρtree Density of a tree 850 kg/m3 No
ρwater Density of water 998 kg/m3 No

The calibration parameters and their corresponding ranges are given in Table 5.3. Contrary to
our previous work, we do not include precipitation intensity because detailed rainfall data from
RADAR imagery is available. Accordingly, saturated hydraulic conductivity (transmissivity
in van Zadelhoff et al. (2022)) and mean soil thickness are the only calibration parameters in
the computation of pore water pressure. Furthermore, parameters related to the vegetation are
also not included in the calibrated parameter set; we use here single tree detected trees (section
5.3) and assign the parameters related to root reinforcement (c,α1,β1,α2,β2) directly based on the
identified tree species (see section 5.3). This has proven to be the best performing method of
including vegetation effects in SlideforMAP (van Zadelhoff et al., 2022). For calibration and
validation, we use a split sample test, splitting the available observations into spatial subsets.



Chapter 5. Application and validation of SlideforMAP 63

We divide the study area into 10,000 small subsets i.e. terrain units and subsequently classify
the terrain units for either validation or calibration. Throughout the calibration and validation
process, the classification is immutable.

TABLE 5.3: Parameters for the calibration with initial value ranges.

Calibration parameter Unit Description Initial value range
md m Mean soil thickness 0.20 - 1.80
mC kPa Mean saturated soil cohesion 0.00 - 12.5
mϕ

◦ Mean angle of internal friction 24.00 - 41.50
Ksat m/s Saturated hydraulic conductivity 10-8 - 10-2

For the split sampling, we arrange the terrain units by slope angle and then take a random 85%
/ 15% sample in a method similar to the performance evaluation in the work of Frattini et al.
(2010), where it is suggested that a terrain unit based on slope angle, comprised of multiple grid
cells, is a better terrain unit than single grid cells. The 85% / 15% ratio is a recommendation by
Guzzetti, Reichenbach, et al. (2006).

We calibrate the model based on an iterative parameter sampling technique, which will not nec-
essarily yield the best possible parameter set (which in any case would be spuriously influenced
by observational uncertainties), but has the advantage of yielding additional insights into the
parameter ranges that perform well (van Zadelhoff et al., 2022). The method uses a total of
three parameter sampling cycles. For the first cycle, we sample 150 unique calibration param-
eter sets from the prior parameter ranges of Table 5.3 with Latin Hypercube Sampling (McKay
et al., 1979). Each of these parameter sets is used to run the model twice (to account for the in-
herent probabilistic variation) and the corresponding model performance is evaluated with the
Area Under the Curve (AUC) from the Receiver Operator Curve method (Metz, 1978). The AUC
value is computed for each model run for all terrain units that were retained for calibration. For
a given sampled parameter set, the mean AUC of the two runs is taken as performance evalu-
ator. Subsequently, the 150 values sampled per calibration parameter are ordered and grouped
into 0.1 percentile fractions, for which the mean AUC is computed.

The 5 fractions with the highest mean AUC value (i.e. 50% of the total fractions) are retained as
prior range for the next sampling cycle. After the third sampling cycle, the single parameter set
with the highest AUC values is retained as calibration parameter set and used in the subsequent
validation. With the new model formulation for groundwater table and pore water pressure
computation, a challenge is the fraction of RLs that are fully saturated, which can become un-
reasonably high. We remove calibration parameter sets that lead to saturated fractions higher
than 0.5, which is a heuristic choice.

5.3 Data

For the application of SfM, we use two study areas in New Zealand that are dominated by
silvopastoral farming. Location and overview of the areas is given in Figure 5.4. Digital terrain
models (DTM) for the study areas were provided by Spiekermann et al. (2021). The DTM is
resampled using bi-linear resampling to a resolution of 2 m. This corresponds to a resolution
proven to give good results in SlideforMAP (van Zadelhoff et al., 2022).
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FIGURE 5.4: Location of the study areas in the Wellington region on New
Zealand’s North Island. Upper right is Te Whanga (short: TW), lower right is
Waikoukou (short: WA). In green are given single tree locations, in red shallow

landslides from the inventory. All coordinates are in WGS84.

A manually corrected automated landslide scar identification algorithm produced a dataset of
43069 shallow landslides (Spiekermann et al., 2021), which overlaps our study areas. We use
500 scars for Te Whanga and 78 for Waikoukou. 14 shallow landslides were excluded based
on fieldwork that identified them as cattle trampling rather than shallow landslides. The aerial
imagery is from 2010 and the identified shallow landslides are considered largely to be related
to events in March 2005 and July 2006 (Spiekermann et al., 2021). An overview is given in Table
5.4.

TABLE 5.4: Study area characteristics. * Indicates the study area as used in Spiek-
ermann et al. (2021). The size reduction of the study areas in this paper is for

computational efficiency purposes.

Name Surface area Inventory
km2 n landslides

Te Whanga 3.5 500
Te Whanga farm* 17.2 3271
Waikoukou 1.4 78
Waikoukou farm* 4.6 755

Gridded hourly precipitation totals are available through the MOANA dataset (Moana Project
Team, 2021). This interpolated grid is based on RADAR data. To confirm internal consistency
of the precipitation data in our study areas, double mass curves for all RADAR grid cells that
overlap our study areas are given in Figure 5.5.
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FIGURE 5.5: Double mass plot validation of precipitation data consistency. Shown
is the cumulative precipitation of one raster cell over the entire RADAR data pe-
riod (x-axis) plotted against mean cumulative precipitation of all raster cells (y-
axis). Red: raster cells in the Waikoukou study area. Blue; raster cells in the Te

Whanga study area.

This data is used to identify probable events that initiated shallow landslides and to give an idea
of the corresponding precipitation intensity and return period. A plot of most extreme events
and the computation of return periods in the study areas prior to the landslide inventory is
shown in the Supp. Material (Figure 10.5). For model validation in both study areas, we focus
on the March 2005 event. We retain this event because it has the highest return period for the
RADAR observational period but we know that not all landslides were triggered by this single
event. Details of the event are presented in Table 5.5 and in Figure 5.6. The event had a high
variability of precipitation intensity and was more extreme (in terms of amounts) in Waikoukou
than in Te Whanga, indicating significant spatial precipitation variation.

TABLE 5.5: The most ex-
treme event from the two
study areas over the period
of 2000 - 2010. I is the pre-
cipitation intensity (mm/hr)
and T is the return period

(years).

Te Whanga Waikoukou
Event start 29-3-2005 05:00 29-3-2005 05:00
Duration 33 hours 33 hours
I 4.3 mm/hr 7.1 mm/hr
T 10 years 173 years

FIGURE 5.6: Hourly precip-
itation graph of the March
29-30 2005 precipitation
event in the two study areas.

Trees in the study area have been mapped using available LiDAR data from 2013/14 in the
Wellington region of New Zealand (Spiekermann et al., 2021), which was processed with the
PyCrown model (Zörner et al., 2018) to delineate tree crowns. The center point X and Y of the
tree crown is assumed to be the tree location. Properties of the inventoried shallow landslides
as compared to the properties of the total study area are given in Table 5.6. We assume that no
changes have taken places on trees between 2005 (time of the larger landslides events) and the
LiDAR data collection.
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TABLE 5.6: Properties of the inventoried shallow landslide scars as compared to
the properties of the total study area. The average distance to the nearest tree,
obtained as average over all raster cells, is computed after removing all distances

> 15 m, beyond trees are assumed to exert no effect.

Waikoukou Te Whanga
Total study area Shallow landslide scars Total study area Shallow landslide scars

Total surface area [ha] 142.6 0.6 351.7 3.4
Mean elevation [m.a.s.l.] 218.0 210.5 197.6 189.0
Mean slope angle [◦] 19.9 26.4 21.5 28.6
Mean contributing area [m2] 8432.3 100.3 4158.9 13089.1
Mean distance to nearest tree [m] 11.7 14.0 12.9 12.9

Species classification was conducted with a Support Vector Machine (SVM) and based on or-
thophotos (2010 - 2017) and the tree crown (Spiekermann et al., 2021). The resulting data in-
cludes the X and Y coordinate of the tree, the tree crown height and the classified species (euca-
lyptus, kanuka, poplar/willow, pine, undefined). Characteristics of the vegetation based on this
data and of soil data in the two study areas is given in Table. 5.7.

TABLE 5.7: Study area characteristics. Soil depth and soil texture class are taken
from S-map soil mapping for New Zealand (Manaaki Whenua - Landcare Re-

search, 2019).

Waikoukou Te Whanga
Number of trees 2304 3747
Dominant tree species Kanuka (52%) Kanuka (50%)
Sub-dominant tree species Poplar/Willow (32%) Poplar/Willow (45%)
Tree density [Trees/ha] 16 11
Average tree height [m] 16.8 11.5
Dominant soil depth class Shallow (41%) Moderate deep (83%)
Sub-dominant soil depth class Deep (30%) Deep (16%)
Dominant soil texture class Silt (100%) Silt (91%)
Sub-dominant soil texture class - Loam (8%)

Parameterization of the maximum lateral root reinforcement as a function of tree distance is
available for poplar (Ngo et al., 2023) and pine (Pinus Radiata) (Giadrossich et al., 2020). In the
work of Spiekermann et al. (2021), a normalized tree influence with distance from the stem is
given, based on a statistical analysis in the same study areas. We use their equations (shown in
Figure 5.7) to extend our reclassification of the tree species for which we have no root reinforce-
ment parametrization.
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FIGURE 5.7: Normalized tree root influence as a function of distance from the stem.
Parameterization based on Spiekermann et al. (2021, Figure 10).

Due to the incompatibility of the statistical method, which implicitly includes all vegetation
effects, with our probabilistic physical method, we cannot relate the tree influence equations di-
rectly to root reinforcement, but have to use it is an indication. We choose to apply poplar root
reinforcement parameterization for kanuka, eucalyptus and undefined trees. This is because,
within the most effective distance (up to approximately 7 m), poplars exert a comparable vege-
tation influence (Figure 5.7) to the other tree species. A comparison between pine and kanuka
trees shows that a standard kanuka stand provides a higher reinforcement for the first 8 years
of growth, but lower reinforcement thereafter (Ekanayake et al., 1997). Root tensile strength of
kanuka, before felling, is almost two times higher than that of pine (32.45 vs. 17.62 MPa) (Watson
et al., 1999).

5.4 Results

We first present the analysis of the multiplication factors Icorr to obtain the representative rainfall
intensity Irep based on observed mean precipitation intensity per event, I. Figure 5.8 shows
the simulation results for a single precipitation event, the one of March 2005 as a function of
catchment area, for the full model. Corresponding results for a fixed runoff rate coefficient and
no runoff rate coefficient scenario are given in the Supp. material (Figure 10.7 and Figure 10.8).
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FIGURE 5.8: Ratio between the maximum lateral flow rate computed with an ac-
tual precipitation event and with a constant mean precipitation with a runoff rate
coefficient dependent on lateral root reinforcement for the March 2005 event (with
33 h duration). Each point in the plot represents one RL. Soil thickness classifica-
tion between deep and shallow soils is derived from random sampling. The shown
regression lines are: The Waikoukou, intercept 5.7 and slope -0.98; The Te Whanga,
intercept 6.3 and slope-1.08. To add context, for some outliers the contributing area

outlines are given, with their outlet in black.

The identified relation between the flow ratios and contributing areas of Figure 5.8 matches
our expectations, with large areas having a lower ratios. These ratios can be directly related to
Icorr because of the assumed linear relationship between throughfall and interception (equation
5.4). In small catchments, the infiltrated rainfall travels a small distance to the outlet and has a
more instantaneous reaction. This means that the peak lateral flux is more directly related to
the peak rainfall intensity, resulting in a large Icorr. For larger contributing areas, the flux at
the outlet is a mixture of different precipitation intensities occurring at different locations in the
contributing area at different moments in time, meaning the lateral flux corresponds better to
the mean precipitation intensity of the event. This behaviour is visible for certain elongated
contributing areas in Figure 5.8 for Te Whanga and for the example contributing area in Figure
10.6 with the inclusion of the runoff rate coefficient. Due to the dependency of the flow ratio
on many factors and on the precipitation event, we are forced to make a generalization. We
therefore use the identified relations between the flow ratio and the contributing area size in
Figure 5.8.

5.4.1 Calibration and validation

The iterative parameter sampling leads to a consistent narrowing of the parameter ranges for
the three model versions tested here (Table 5.8, corresponding dotty-plots are given in the Supp.
Material, section 10). The calibration procedure is run at a shallow landslide density (ρls) of
0.20 RLs/m2. After calibrated parameter values are determined, these are input for a final split-
sample run. This run and all subsequent results are computed with ρls = 0.75 RLs/m2 to make
full use of computational efficiency.
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TABLE 5.8: Overview of the calibration and validation results for the model ver-
sions of this study. Per study area, the first subgroup gives the calibrated param-
eter values and the narrowed parameter range from the last calibration cycle. The
second subgroup gives metrics of performance. These are the AUC, The unstable
fraction (UF), which is the fraction of random landslides that has a safety factor
< 1.0 and the Saturated Fraction (SAF) which the fraction of Random landslides
that has a relative saturation (h∗sat,i) of 1.0 for the part (85% of the study area) of the
study area used in the calibration. The last subgroup gives the same metrics for the
part (15% of the study area) used for validation. Between brackets for SfM origi-
nal and SfM hybrid (no Ψ) are the metrics when they are ran with the calibrated

parameters from SfM.

SfM SfM original SfM hybrid

Waikoukou

md [m] 1.32 (0.64-1.52) 0.98 (0.64-1.42) 1.41 (0.52-1.52)
mC [kPa] 2.06 (0.06-2.04) 2.15 (0.09-2.05) 0.32 (0.06-2.03)
mϕ [◦] 25.5 (24.0-29.6) 26.6 (24.1, 28.4) 25.7 (24.0-27.5)
Ksat [m/s] 0.0075 (0.0004-0.0075) 0.0006 (0.0005-0.0065) 0.0080 (0.0004-0.0081)

Calibration AUC 0.899 0.864 (0.910) 0.902 (0.899)
Calibration UF 0.124 0.357 (0.112) 0.251 (0.125)
Calibration SAF 0.0159 0.3446 (0.0152) 0.0143 (0.0162)

Validation AUC 0.863 0.814 (0.879) 0.878 (0.864)
Validation UF 0.128 0.357 (0.116) 0.255 (0.129)
Validation SAF 0.0172 0.3433 (0.0168) 0.0155 (0.0179)

Te Whanga

md [m] 1.29 (1.09, 1.48) 1.44 (1.06-1.53) 1.48 (1.25-1.56)
mC [kPa] 0.33 (0.03, 2.51) 1.56 (0.05-2.03) 0.64 (0.14-2.10)
mϕ [◦] 27.4 (24.1-28.2) 28.2 (24.1-29.3) 28.0 (24.1-29.2))
Ksat [m/s] 0.0068 (0.0021-0.0074) 0.0056 (0.0004-0.0057) 0.0060 (0.0002-0.0063)

Calibration AUC 0.866 0.854 (0.848) 0.867 (0.865)
Calibration UF 0.232 0.129 (0.211) 0.201 (0.229)
Calibration SAF 0.0128 0.0153 (0.0126) 0.0131 (0.0117)

Validation AUC 0.896 0.888 (0.887) 0.896 (0.897)
Validation UF 0.224 0.125 (0.205) 0.194 (0.222)
Validation SAF 0.0169 0.0201 (0.0173) 0.0176 (0.0159)

Calibrated parameter values are largely consistent for the two case studies and the tested model
versions, especially when compared to the initial parameter ranges. It is however important
to note that the calibration parameter ranges and the values for different versions can only be
compared qualitatively, since the exact value is dependent on model process uncertainties. Most
notable is the low mean soil cohesion for SfM and SfM hybrid in both study areas and the low
Ksat for SfM original for Waikoukou. This low Ksat, directly results in a high Saturated Area
Fraction, SAF, of RLs. Calibration and validation metrics (AUC, SAF and UF) for the three com-
pared model versions are largely consistent for the two case studies. Minor differences between
the calibration and the validation metrics, is to be expected due to observational and modelling
uncertainties (Arsenault et al., 2018; Beven & Binley, 1992). The random split sampling of the
modelling domain into 85% for calibration and 15% for validation probably also plays a certain
role.

Overall, we see that SfM performs marginally better than SfM original for both case studies,
despite of their considerable difference in size (142.6 h versus 351.7 ha). The performance of SfM
hybrid is closer to the one of the new version than to the one of SfM original for both study areas.
One notable exception occurs in SfM original in the Waikoukou study area, here the calibrated
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performance is worse than the performance using a different calibration set (SfM parameters).
This can only indicate an inadequacy in our calibration procedure. A further indication for this
is the deviancy in the calibrated Ksat and elevated degree of (34% of total RLs) complete soil
saturation.

5.4.2 Hydrological module

The average pore water pressure resulting from the calibrated parameter values of Table 5.8 for
SfM is shown in Figure 5.9 for Te Whanga. Corresponding results for Waikoukou are available
in the Supp. Material Figure 10.14. The average pressure and difference to SfM original under
SfM calibration, SfM original with unique calibration and the hybrid version are also listed. The
spatial patterns of pore water pressure resulting from the retained parameter sets for each model,
show small differences on the hillslope tops but strong differences close to the stream network.
This difference reflects the distribution of contributing area and to a minor extend the location
of single trees. Significant influence of the calibration can be seen as well related to values of Ksat
and md, which do not so much influence the pattern, but the overall ’background’ value of pore
pressure.

FIGURE 5.9: Calibrated pore water pressure in Te Whanga. Upper row, mean
pore water pressure [kPa] from SfM, SfM original with SfM parametrization, SfM
original, with unique calibration and SfM no hybrid; Lower row list the absolute

difference in pore water pressure of the versions as compared to SfM.

5.4.3 Landslide probability

A key check that the model behaves well is the assessment of computed shallow landslide sus-
ceptibility on areas that have experienced landslides according to the inventory. Here we focus
on SfM as it is the main result we want to present in this paper. SfM computed landslide prob-
ability maps resulting from the calibration parameters (Table 5.8) for the two study areas are
given in Figure 5.10 and 5.11. The lower probability values in Waikoukou are noticeable. This
correlates to the unstable fraction of surface area in Table 5.6, where it is shown that Te Whanga
has a higher relative and absolute unstable area. This is also reflected in the calibration and
validation results (Table 5.8), with Te Whanga having a higher unstable fraction resulting in the
calibrated runs.
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FIGURE 5.10: SfM Landslide probability results in Waikoukou

FIGURE 5.11: SfM Landslide probability results in Te Whanga

The computed distribution of susceptibility clearly shows that in both study areas SfM is gener-
ally capable of reproducing the shallow landslides from the inventory. This pattern appears to be
dominated by slope angle. The similarity in validation AUC values, despite a significantly lower
UF indicates that the pattern in landslide probability is important and the absolute probability
values are arbitrary. Performance can be better visualized by making a cumulative graph of the
probability values for both study areas and the inventoried landslide scars. This is displayed in
Figure 5.12.
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FIGURE 5.12: Left: Empirical cumulative distribution functions of the shallow
landslide probability for the entire study area (orange) and the surface area from
the landslides in the inventory (blue). In addition, the boxplot of the distribution
of probability values for the landslide scars is shown. Figure Left: Waikoukou,

Figure right: Te Whanga.

Here we see the same pattern as seen in Table 5.8 and in Figure 5.11 and 5.10, with Te Whanga
having overall higher landslide probability values. Both study areas appear to have a well dis-
tinguishable curves for inventory probability values and overall probability values. In addition,
we check if the hydrological model indicators are distributed similarly on the landslide area
as compared to the total area. We present these as boxplots in Figure 5.13. We see a stronger
discrepancy in all indicators for Waikoukou. For both study areas, the median and mean contri-
bution coefficient (CAeff,l/CAmax,l) and median runoff rate coefficient is higher for the landslide
scars. Lateral root reinforcement is lower for the shallow landslide scars. There seems to be no
significant difference in distribution in the shallow landslide size for all unstable RLs and the
shallow landslide scars.

FIGURE 5.13: Boxplots of some key model indicators, of the entire study area (or-
ange) and cells in the landslide inventory (blue). Key indicators are the contri-
bution coefficient (CAeff,l/CAmax,l), runoff rate coefficient (Ψ) and the lateral root
reinforcement. Additionally, we added a boxplot of observed landslide size (size
of landslides in the inventory in blue and the distribution of size of RLs that have a
stability factor, SF<1 in orange; Figure Left: Waikoukou, Figure right: Te Whanga.

We also check the relationship of lateral flux with slope angle for the SfM results and the in-
ventoried landslides in accordance with the methodology of Prancevic et al. (2020) in Figure
5.14. All RLs with a computed SF < 1.0 are plotted. Setting aside spatial variation in root rein-
forcement and soil parameters, these are the only indicators influencing the shallow landslide
susceptibility pattern.
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FIGURE 5.14: Computed lateral flux for the inventoried shallow landslide scars
and the unstable random landslides from the calibrated SfM (random sample of
10% for better visibility), plotted versus the slope angle. Linear regressions (none

significant) for the points are given.

It can be seen that the RLs mapped as unstable match the properties of the majority of the inven-
toried landslides, with a sweet spot on a slope angle between 20 to 30 ◦ and a specific discharge
of 0.001 to 0.01 m2/s. For both study areas, it appears the model classifies a wide range of slope
angles and contributing areas (Figure 5.14) as unstable, decreasing the accuracy. The model
tends to overestimate slope instabilities in steep slopes (> 35 ◦). Especially since the inventory
in Figure 5.14 displays quite a narrow slope range. The trendlines of the shallow landslide scars
and the RLs do not match up well. It appears the inventory trendlines are influenced heavily
by outliers with high lateral flux or from another perspective: the model overestimates instabil-
ity in shallow landslides with a low computed lateral flux. We also see a subset of inventoried
shallow landslides displaying a very high lateral flux, indicating they overlap with the bottom
of hollows. SfM appears capable of classifying these areas as unstable.

5.5 Discussion

5.5.1 Limitations

The objective of the model improvements presented here was to improve the representation of
the conditions of shallow landslides initiation, i) in hydrological terms, by pore water pressure
and vegetation characteristics by root reinforcement and ii) in mechanical terms by means of
passive earth pressure. However, uncertainties arise from model shortcomings, local inhomo-
geneities or from parts of the inventory not being related to our modelled event.

The large variation and magnitude in unstable fraction (UF, Table 5.8) through the study areas
and model versions is remarkable. It is an order of magnitude higher than the actual fraction of
the study areas that suffered shallow landsliding (Table 5.6). We believe the variation is partly
related to variation in the calibrated mean soil cohesion. The overall large values of UF can
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be due to the use of AUC as performance measure. The AUC may not be the best measure in
validating physical models as it is a relative measure where the absolute probability values are
ambiguous. For practitioners, we recommend relating shallow landslide probability values to
said values in known landslide scars, akin to what is shown in Figure 5.12 as presented in this
manuscript. Practitioners can decide how much of instability they want to capture and how
much uncertainty they take into account by taking a certain fraction of actual landslide scars
and extrapolating this to a threshold on the probability values.

5.5.2 SlideforMAP improvements

A key challenge in the use of observed precipitation events is how to account for effects related
to precipitation falling on different parts of the contributing area and to subsequent different
(unknown) surface or subsurface flow paths, which lead to a temporal dispersion of flow con-
tributions at a point of interest (which is commonly addressed in rainfall-runoff modelling lit-
erature, (e.g. Rinaldo et al., 2006; Robinson et al., 1995)). This makes it challenging to relate
properties of the precipitation event to the maximum lateral flux, which in turn relates to the
highest pore water pressure. We tackle this here by converting precipitation to subsurface lat-
eral flow by i) a runoff rate coefficient and ii) by correcting the reference precipitation for the
size of the contributing area. Both improvements are, to the best of our knowledge, novel for
comparable landslide models.

However, the difference in performance of between the model versions is negligible (Table 5.8).
For Waikoukou, SfM original even performs better. For Te Whanga, where the majority of the
inventoried landslides lie (500 vs 78), SfM (and SfM hybrid) perform slightly better than SfM
original. The change in pore water pressure due to the hydrological improvements is visible
5.9. Comparing the pore water pressure of SfM to SfM original under similar calibration shows
a higher modelled pressure on the ridges for SfM than for SfM original and a lower modelled
pore water pressure in the valleys. The lower value in the valleys corresponds to a smaller CAeff,l
and the higher value on the ridges likely stems from the use of CAmax,l for scaling (rather than
taking the mean contributing area of a RL as in SfM original, Equation 5.4 and 5.5).

Influence of the vegetation on the pore water pressure appears minor, as visible from the low
difference in performance metrics between SfM and SfM hybrid. A multitude of reasons, or a
combinations thereof, can be invoked: i) None of our improvements significantly distinguished
unstable areas from stable areas and therefore the AUC measured performance does not im-
prove. ii) The use of an area-relationship to find a representative rainfall intensity Irep, as applied
in both the original and in the new version is very effective and overrules performance gains re-
lated to any other improvement. A hint of this might be that near identical performance of SfM
hybrid shows that at least the runoff rate coefficient is of little effect. iii) Our improvements in
SfM do not capture the unique conditions of outliers in the inventory, especially in terms of con-
tributing area. This is best seen in Figure 5.14. iiii) The AUC performance measure is not a good
metric for capturing marginal gains in accuracy and therefore cannot highlight performance im-
provements.

Accordingly, from a landslide susceptibility perspective, we cannot definitively say if SfM or
SfM original should be preferred for practical applications. We do however believe that our new
hydrological module is closer to reality since stationary lateral flow conditions (as assumed in
SfM original) are very rare in nature (Beven & Kirkby, 1979). Future work, and in particular
additional case studies, will certainly yield additional evidence.
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5.5.3 Vegetation

In SfM original, vegetation acts in a mechanical sense, by lateral/basal root reinforcement and
vegetation weight. In SfM version, two additional hydrological effects are included, namely:
reduction in the runoff rate coefficient near vegetation and a reduction in precipitation amount
by interception. However, lateral root reinforcement can be assumed to be the vegetation pa-
rameter with the highest impact on slope stability computation in SfM: it was shown to be the
most sensitive parameter in original SfM original (van Zadelhoff et al., 2022). In the Waikoukou
study area, the difference in mean distance to trees between the whole study area and the inven-
toried landslides (Table 5.4) suggests a general propensity of shallow landsliding further away
from the trees. This is also shown in Figure 5.13, where root reinforcement correlates with more
stable areas. This effect is strongest in Waikoukou and less strong in Te Whanga. Regardless
of the model version, of the calibrated parameter combinations or of the study area used, our
validation AUC is above 0.8, indicating good predictive performance (El Khouli et al., 2009). We
have assumed our trees to be either poplar or pine trees. This meant a reclassification of a large
number of kanuka trees to poplar trees. Using statistical relationships on the relative effects of
both tree species (Spiekermann et al., 2021), we argue the effects of this differences is small.

One main vegetation-dependent effects is not included in SfM: the effect of evapotranspiration
(beyond evaporation of intercepted water) and the effect of heterogeneous infiltration in veg-
etated soils. Evapotranspiration can be assumed to be of minor importance during extreme
precipitation events relevant for landslide triggering (Feng et al., 2020). However, evapotranspi-
ration over longer time periods, possible coupled with an increased macropore presence, could
reduce antecedent moisture in vegetated areas. This effect is partially addressed here with the
estimated runoff rate coefficients. However, the calibration and validation results show that the
way we implemented this effect did not lead to significantly different results, indicating either
the antecedent moisture itself was not significant for this specific event or our implementation
with the runoff curves was ineffective.

5.5.4 Research outlook

The availability of hourly rainfall data by the MOANA project helped in this research. This data
avoids using precipitation intensity as a calibration parameter or making broad assumptions.
This contributed to a more realistic validity test of our improvements with less uncertainty com-
pensated by the calibrated parameters. We think this type of data creates opportunities for new
concepts in rain-induced shallow landslide modelling as illustrated here. As discussed earlier in
this paper, this is not the first attempt to overcome the stationary-flow assumption in landslide
probability modelling. The presented method to overcome the stationarity assumption requires
only a low number of parameters but was shown here to lead to only small improvements in
terms of model performance. This might potentially be due to the fact that rainfall uncertainty
largely dominates total modelling uncertainty, which is a well-known fact in hydrological mod-
elling (e.g. McMillan et al., 2011; Sivapalan et al., 1997). Passive earth pressure is often neglected
in shallow landslide models (Murgia et al., 2022). Here we implemented this pressure as its
maximum mobilized amount. Cohen and Schwarz (2017b) numerically estimates that only a
portion of this pressure is mobilized at any given moment of shallow landslide displacement.
Definitive research and implementation of this portion could improve current models.

Finally, we would like to emphasize that plotting contributing area vs. slope angle from the
inventoried shallow landslides (Figure 5.14) displays outlier landslides in terms of the combina-
tions of lateral flux and slope angle, which still remains a mystery as these outliers are distant
from the SfM sweet spot of slope angles between 20 - 30 ◦ and a lateral flux between 0.001 to 0.01
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m2/s. One reason for these outliers might be the absence of antecedent moisture assumptions
in the model, which could be improved in the future. In combination with more reliable spatial
rainfall data, this might show more clearly if dynamic hydrology can perform better than the
stationarity assumption under a variety of conditions.

5.6 Conclusion

In this study we calibrated, validated and compared the performance of the original version of
SlideforMAP, an improved version and a hybrid version in two shallow landslide-prone study
areas in New Zealand hill country. The improved model version includes the following new
features: it computes an event-based effective contributing area per random landslide, a runoff
rate coefficient based on root reinforcement in the contributing area and it includes passive earth
pressure forces in the stability calculations. The calibrated and validated model parameters dis-
plays a tendency to deep soils, low soil cohesion a low friction angle and high saturated hy-
draulic conductivity, influenced by macropore flow. The improved version of SlideforMAP per-
forms marginally better than the original model version in Te Whanga study area; in the Waik-
oukou study area performance is slightly worse, with a calibration imprecision in the results.
The hybrid version, without runoff rate coefficient, performs near similar to the new version.
This suggests that the inclusion of non-stationary flow, by means of an effective contributing
catchment (CAeff,l), is the main model improvement. The runoff rate coefficient is either of little
influence or to be inefficiently incorporated in our model.

In terms of case-study specific results, the obtained landslide probability maps for the two case
studies show that shallow landslide occurrence in our study areas is concentrated on slopes
between 20◦ and 30◦ and under a lateral flux higher than 0.001 m2/s. This mostly corresponds
to mid-slope regions, where enough contributing area is present and which could greatly benefit
from space-planted trees. Overall, SlideforMAP has been shown to perform satisfactorily for the
two case studies in New Zealand. Compared to the original three case studies in Switzerland
(van Zadelhoff et al., 2022), the new test areas vary in soil composition, soil heterogeneity and
precipitation regime. Accordingly, we consider the methodology of the model applicable in
similar steeps-sloped environments, which opens interesting perspectives for practitioners to
plan future vegetation-based landslide management measures.
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Abstract

Physically or statistically based approaches are widely used to quantify shallow landslide sus-
ceptibility. Despite the underlying data, methods, and assumptions being significantly different,
there has been little quantitative work to evaluate the differences in model outcomes. Therefore,
we compare previously developed physical and statistical shallow landslide susceptibility mod-
els for a study area in New Zealand’s silvopastoral hill country. Both models include individual
tree effects on slope stability. We use convolutional neural networks to delineate individual
tree crowns and classify species at the scale of individual trees with regional aerial photogra-
phy. SlideforMAP, a physically based probabilistic model that includes both lateral and basal
root reinforcement, is adapted for application in silvopastoral landscapes. Root reinforcement
models for physical modelling are subsequently developed for the most abundant tree classes
based on allometric relationships to remotely sensed, above-ground metrics. In contrast, the
statistical landslide susceptibility model uses binary logistic regression, including empirically
derived tree influence models alongside topographic and lithological explanatory variables. Bi-
nary Logistic regression displays a better performance for our study area, resulting from the
model being trained and tested on an inventory of past shallow landslide observations, whereas
SlideforMAP makes predictions largely independent of past slope failures. SlideforMAP has the
advantage of computing shallow landslide susceptibility for different rainfall scenarios coupled
with specific return periods. The two predictions of landslide susceptibility within the study
area were >70% in agreement. In terms of implications for land management, we recommend
the advantages and limitations of both approaches should be considered by land managers in
relation to their erosion control objectives. However, to increase performance of erosion and
sediment mitigation, we suggest land managers prioritize tree planting in areas where the sta-
tistical and physical approach agree within the “high” susceptibility classification (8% of the
study area). Comparing shallow landslide susceptibility scenarios based on potential trees and
a treeless baseline can further improve targeted planting.

keywords: Landslide susceptibility, SlideforMAP, CNN: U-Net; MaskRCNN, individual trees,
bioengineering

6.1 Introduction

Within the numerous examples of slope stability modelling studies that range from tree stand
to national scale (e.g. Guzzetti, Galli, et al., 2006; Murgia et al., 2022; Reichenbach et al., 2018;
Van Den Eeckhaut et al., 2006; van Westen et al., 2008), there are generally two data-driven ap-
proaches: i) physically based, and ii) statistical modelling. Physically based models quantify
the balance of forces acting on slopes, commonly using a safety factor to determine local (in-
)stability. They are used to simulate a range of soil hydrological conditions to investigate the
effects of rainfall scenarios on slope stability (Wu & Sidle, 1995). However, due to data require-
ments relating to the soil physical parameters (cohesion, internal angle of friction, hydrological
parameters) and to knowledge of failure mechanisms and of mass movement processes (e.g.
depth of failure plane), physical, process-based models are best suited to the hillslope scale and
are more challenging to implement at regional scales (Holcombe et al., 2012; Masi et al., 2021).
For larger areas, simplifying assumptions must be made (Salvatici et al., 2018), which can re-
sult in poorer performance of physical models compared to statistical methods (e.g. Cervi et
al., 2010). These limitations were partly overcome by the implementation of probabilistic ap-
proaches (e.g. van Zadelhoff et al., 2022). In physical models, the rainfall-induced landslide
triggering susceptibility is the probability of landslide occurring conditional to a specific rainfall
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scenario (Corominas et al., 2014).

Statistical landslide susceptibility modelling is an alternative approach to physical slope stability
modelling. Statistical models differ from physically based, deterministic models by not attempt-
ing to directly represent the processes that control slope stability. Rather, and in the absence of
soil geotechnical data, statistical models use readily available surrogate data (e.g. lithology, to-
pographic data) to train models based on sites of previous landslide occurrence to predict where
future landslides are likely to occur. In statistical terms, landslide susceptibility is the probabil-
ity of future landslide occurrence for a specific areal unit given local environmental conditions
(Brabb, 1984). Therefore, the data requirements are less limiting than for physical models. How-
ever, statistical models are based on the assumption that locations with physical characteristics
similar to those where past failures have occurred, are also likely to fail in the future, given sim-
ilar rainfall triggering event characteristics. Indeed, past observations provide “the key to the
future” (van Westen et al., 2008) for statistically based models.

Few studies have compared the benefits, challenges, and assumptions underpinning statistical
and physical landslide susceptibility models. In one of the few examples, the predictive per-
formance of two statistical models (Weight of Evidence; Fuzzy Logic) were compared with a
physical model (SHALSTAB), showing a significantly higher model performance of statistical
over physical models. However, the utility of these different approaches to slope stability quan-
tification in terms of knowledge gain (e.g., geomorphic plausibility; Steger et al. (2016)) has not
been adequately investigated, nor have the implications for land management of model selec-
tion been explored. In this study, we provide a comprehensive comparison of two different
models, using the most advanced developments at the individual tree scale – both in proba-
bilistic, physically based modelling (SlideforMap; van Zadelhoff et al. (2022)) and in statistical
modelling (Spiekermann et al., 2022b) of shallow landslide susceptibility. Both models include
individual tree effects at landscape to regional scales; we compare their performance and utility
for land managers in New Zealand’s silvopastoral hill country.

While both models quantify slope stability and produce probabilities of future landslide oc-
currence (0–1), the required interpretation is very different and must be made with knowledge
of the objectives and assumptions of the underlying methods. In this study, we therefore com-
pare the underpinning theoretical frameworks, their assumptions, and implications for decision-
making. Specifically, this study has the following objectives: i) to develop spatially distributed
root reinforcement models for the most abundant tree species in the study area for inclusion in
SlideforMap, and to contrast these estimates with empirically based tree influence models on
slope stability (TIMSS; Spiekermann et al. (2021)); ii) To compare the spatial predictions of the
two physical and statistical models and evaluate potential differences – both in terms of model
performance and spatial variation of predictions. Moreover, we discuss the assumptions and
sources of uncertainty of both models and explore the potential complementarity of statistical
and physical modelling and potential implications for land management decisions.

Following a short review of methods used to capture tree effects in both physical and statistical
slope stability models in section 6.2.2, landslide susceptibility models are implemented for two
case studies in the Wairarapa, New Zealand (section 6.2.3 and 6.2.4). The reduction in landslide
erosion due to existing vegetation is subsequently quantified with respect to a treeless baseline
scenario (section 6.2.5). Additionally, we explore an additional rainfall scenario (5-year return
period) with the physical approach to see how landslide susceptibility develops under more fre-
quent rainfall conditions. Based on this, we consider whether tree planting to mitigate shallow
landsliding would need to be significantly different using the assumed rainfall scenario as a trig-
gering event compared to a rainfall event of higher magnitude and lower frequency (>100-year
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return period).

Supported by the scenario modelling, we i) assess whether the recommended spatial patterns of
mitigation measures differ for both modelling approaches and ii) determine the degree to which
estimates of mitigation performance derived from the two different models are similar. Our
findings are subsequently used to formulate recommendations for scientists, policy makers, and
land managers regarding the use of physical and statistical models for the planning and imple-
mentation of vegetation-based mitigation measures of shallow landslides at local to catchment
scales.

6.2 Methods

6.2.1 Study area

The study area comprises two farms (Sites 1 and 2) in the Wairarapa in the south-east of the
North Island of New Zealand. These farms have a history of landslide and soil erosion research
(Basher et al., 2018; De Rose, 2013; Douglas et al., 2013; Lambert et al., 1984; Spiekermann et al.,
2021; Spiekermann et al., 2022b; Spiekermann, 2022). For the purposes of the modelling under-
taken here, the study area was defined using a 1-km wide buffer zone added to the bounding
box of the two farms (Figure 6.1; Site 1: 70.6 km2; Site 2: 24.3 km2). Both farms are underlain by
predominantly Neogene-aged massive, poorly bedded mudstone and alternating sandstone and
mudstone (Lee & Begg, 2002). Soils commonly have a dense subsoil zone of low permeability
formed in loess that is the failure plane for many landslides (De Rose, 2013). Both sites also have
small areas of coquina limestone outcrops. The terrain has low to moderate relief (<150 m) that is
intensely dissected, with narrow ridge and spur crests, steep hillslopes mostly between 15°and
35°, and narrow valley floors. This topography is locally referred to as “hill country”. Signif-
icant areas of colluvium (landslide debris) have accumulated along the bases of many slopes,
and in mid- and upper-slope hollows. Mean annual rainfall is 1100 mm, characterised by winter
maxima and summer droughts. However, this typical pattern can change during episodes of
La Niña, which increases rainfall during summer months. Long duration, low intensity rainfall
with low daily rainfall totals is typical (De Rose, 2013). Most landslide-generating storms do not
have particularly high storm total or daily rainfall totals but occur when antecedent moisture
conditions are high (Basher et al., 2018; De Rose, 2013).

Site 1 is a 1700-ha sheep and beef farm located east of Masterton in a region of steep pastoral
hill country. The original native vegetation was cleared between 1860 and 1890 (Lambert et al.,
1984). A major rainfall storm event led to widespread landsliding in 1977 (Crozier et al., 1980; De
Rose, 2013; Glade, 2003). Soil conservation works in the form of space-planted poplar, willow,
and eucalyptus trees began in the 1980s (Spiekermann et al., 2022b). Before the implementation
of erosion mitigation measures, a woody vegetation cover was largely lacking. While planting
has since been sustained, the density of trees on hillslopes differs greatly across the farm, with
some hillslopes devoid of tree cover. Site 1 is thus representative of a “moderate” level of tree
cover for New Zealand’s pastoral hill country farms.

Site 2 is a 462-ha sheep and beef, mixed-species silvopastoral farm located at the upper catch-
ment of the Waikoukou Stream and has had extensive soil and water conservation measures
implemented since 1956. The main objectives of these conservation works were to intensively
revegetate slopes and gullies prone to severe erosion, using poplars, willows, and protected
seedlings of other species (e.g., Eucalyptus varieties). According to farm plan documents (Wairarapa
Catchment Board, 1956), the early European land cover likely consisted of light bush, kānuka,
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and fern, with heavier podocarp species in the wider valleys. Several remnants of kānuka re-
main distributed across the farm. Overall, there is a higher tree density across the farm of Site
2 compared with Site 1 (Spiekermann et al., 2022b), and therefore Site 2 more closely represents
an “ideal” silvopastoral hill country farm.

FIGURE 6.1: a) Study area location. b) Site 1. c) Site 2.

6.2.2 Integrating individual tree effects for slope stability modelling

6.2.2.1 Quantifying tree effects on slope stability in physical models

There are two direct effects by which vegetation influences slope stability: hydrological and
mechanical. Vegetation modifies water infiltration and soil moisture content – most impor-
tantly through interception, increase of soil permeability, and evapotranspiration (Greenway,
1987; Phillips & Marden, 2005; Sidle & Ochiai, 2006). These functions gain in importance when
modifying soil moisture within the contributing area upstream of a potential landslide location.
Hydrological mechanisms that reduce pore-water pressures in the soil are beneficial, whereas
processes that increase pore pressure are adverse. The mechanical effect through lateral root re-
inforcement, basal root reinforcement, and soil stiffening increases soil shear strength and thus
promotes slope stability in shallow soils (Cohen & Schwarz, 2017b; Schmidt et al., 2001; Schwarz
et al., 2015). This is achieved through increased strength of the composite rooted soil material
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produced by the integrated interaction of roots and soil under different types of solicitations
(tension, compression, shearing) (Reubens et al., 2007; Roering et al., 2003; Schmidt et al., 2001;
Schwarz et al., 2011; Schwarz et al., 2013; Schwarz et al., 2015; Sidle & Ochiai, 2006; Styczen
& Morgan, 2003). Moreover, the topology and morphology of root systems are important fac-
tors that determine the spatial arrangement and contribution of roots to soil reinforcement. The
most effective mechanism relevant to shallow land sliding is through basal root reinforcement,
which is achieved when roots penetrate the shear plane, thus increasing the basal shear strength
(Schwarz, Lehmann, et al., 2010). Lateral root reinforcement governs the onset and size of shal-
low landslides (Roering et al., 2003; Schmidt et al., 2001; Schwarz, Lehmann, et al., 2010). The
influence of root reinforcement on soil shear strength is usually expressed as an additional co-
hesion term (root cohesion cr) (Wu, 1984) in the Coulomb failure criteria

Ssr = c′s + cr + (σ − µ)tan(ϕ′) (6.1)

where c′s is the effective cohesion of the soil, σ is the normal stress due to the weight of the soil
and water of the sliding mass, u is the soil pore-water pressure, and ϕ′ is the effective inter-
nal friction angle of the soil that is assumed unaltered by the presence of roots. Some studies
have shown that roots, in combination with other agents (e.g. fungi and bacteria), can change
the structure of the soil and the stability of its aggregates, which results in an apparent shift of
the grain size distribution, implying an apparent increase of the friction angle for low confining
pressures (Bast et al., 2014; Graf et al., 2009). This effect is particularly relevant for the shallow
organic horizons of the soils (0–40 cm depth) becoming much less important with increasing soil
depth (e.g. within B or C horizons).

Root reinforcement models can be classified according to assumptions about root failure dy-
namics (Giadrossich et al., 2017). The ‘all-at-once’ breakage method or ‘Wu/Waldron model’
(Waldron, 1977; Wu et al., 1979) assumes simultaneous breakage of the roots. These models con-
sider the root force independent of displacement and fully available at all displacement, that is,
the maximum tensile strength is fully mobilised. Moreover, it is assumed that breakage of the
root occurs at the shear plane. These are invalid assumptions, however, since breakage often
occurs below the shear surface where the root diameter is smaller than at the shear plane (Gi-
adrossich et al., 2017; Giadrossich et al., 2013; Hubble et al., 2010; Vergani et al., 2016). These
limitations led to the development of field pull-out or shear tests and of root bundle models,
which consider the dynamic stress-step (Pollen & Simon, 2005) or strain-step loading of a root
system (Cohen et al., 2011; Schwarz et al., 2013; Schwarz, Lehmann, et al., 2010). The advantage
of these models is that they consider root strength as a function of displacement.

6.2.2.2 Statistical approaches to quantifying tree effects

Previous statistical landslide susceptibility models were limited by their spatial representation
of trees as predictor variables. Most models include land use or land cover data available at
coarse scales (Knevels et al., 2021; Knevels et al., 2020; Reichenbach et al., 2014; Smith et al.,
2021), for example, the Land Cover Data Base (LCDB) of New Zealand, which has been used
for regional-scaled modelling of landslide susceptibility (Smith et al., 2021). At this scale, differ-
ent types of vegetation cover (e.g., grasslands, deciduous hardwoods and mānuka/kānuka) are
mapped at a minimum areal unit of 1 ha. However, these regional-scaled data are inadequate
for capturing individual tree effects in silvopastoral systems (Figure 6.2).
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Other authors include higher resolution variables derived from remotely sensed (satellite) im-
agery to represent physical vegetation characteristics (Wang et al., 2022), for example, the Nor-
malized Difference Vegetation Index (NDVI), which is based on spectral reflectance measure-
ments acquired in the red (visible) and near-infrared regions of the electromagnetic spectrum
(Arabameri & Pourghasemi, 2019). High values of NDVI (close to 1) represent areas of dense
green vegetation, and negative values indicate either an absence of vegetation or moisture-
stressed vegetation (Gessesse & Melesse, 2019). Inclusion of NDVI-based variables, however,
can be problematic due to the lack of a clear relationship between the index and the physical
properties of vegetation that affect slope stability (Reichenbach et al., 2018), for example, decid-
uous trees outside the growing season can have NDVI values less than green pasture. Thus,
the rationale for including higher resolution vegetation variables such as NDVI in a landslide
susceptibility model is not adequately justified.

Of particular relevance for silvopastoral systems is the failure of such metrics that reflect proper-
ties of tree canopies (NDVI) to account for the spatial variation in the distribution and strength
of roots and the hydrological interactions between trees and soil at the scale of the individual
tree. Characteristics of individual tree canopies can reflect differences in vegetation composition,
which can be useful for tree species classifications (Fassnacht et al., 2016) or relating canopy di-
mensions to above-ground biomass (Lau et al., 2019). Yet, the relationship between tree canopy
and slope stability is more complex – primarily due to the nature of root system architecture
and differences in root strength across vegetation species, which is not reflected by greenness in
the canopy. Thus, tree effects on slope stability are spatially more heterogeneous than the more
uniform tree canopy might suggest. While simple above ground measures of vegetation can im-
prove on coarse-scaled land cover data, the significance of above-ground measures of vegetation
with respect to slope stability needs to be carefully established (Reichenbach et al., 2018).
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FIGURE 6.2: Implications of land cover data available at different scales: a) Region-
ally scaled land cover data are useful for regional landslide susceptibility mod-
elling, but inadequate for capturing individual tree effects; b) High resolution re-
mote sensing data enable individual trees to be identified and tree canopies classi-

fied.

Given these limitations, a novel approach for statistical landslide susceptibility modelling in-
cluding individual tree effects was proposed by Spiekermann et al. (2022b) through use of Tree
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Influence Models on Slope Stability (TIMSS; (Spiekermann et al., 2021)). The TIMSS represent
the average influence of an individual tree on slope stability for the four most abundant tree
types in the study area, fulfilling the following four criteria:

• Individual tree effects from different vegetation types (e.g., coniferous, poplar/willow) are
captured;

• Local hydrological and mechanical effects are implicitly accounted for;

• Values are spatially distributed as a function of distance from tree (trunk);

• Contributions of neighbouring trees to slope stability are considered additive.

The method used to generate the TIMSS builds on that developed by Hawley and Dymond
(1988), generating a two-dimensional spatial representation of individual tree influence nor-
malised to a scale of 0–1. While the TIMSS fulfil the criteria for inclusion in a statistical model,
since measurement units are largely irrelevant to statistical models, they do not quantify and
model tree effects using physical measurements of force (N/m), which is a requirement for
physical models. The outputs of these two different models for representing individual tree
effects (root reinforcement and TIMSS) are included in the physical and statistical landslide sus-
ceptibility models in section 6.2.3 and 6.2.4.

6.2.2.3 Overcoming vegetation data limitations for silvopastoral systems with deep learning

Two proposed methods for estimating individual tree effects for inclusion in landslide suscep-
tibility models were introduced: root reinforcement modelling (section 6.2.2.1) and through use
of TIMSS (section 6.2.2.2). These approaches are adopted for landslide susceptibility modelling
using physical and statistical modelling, respectively. Both methods rely on the identification
of single trees. In this study we draw on most recent advances in remote sensing to delineate
and classify individual trees for the study area. A convolutional neural network was trained us-
ing high resolution regional 4-band orthophotography. The advantage of this method over the
previously published tree crown classifications in New Zealand’s rural landscapes (e.g. Spiek-
ermann et al., 2021) is that tree crowns are delineated and classified in the high resolution or-
thophotos without the need of a canopy height model (CHM). This enables temporal dynamics
in tree cover to be captured through automated mapping and classification of trees in successive
regional photography datasets.

Training data

Hand-annotated tree crowns mapped in 30-cm 4-band orthophotos (RGBI; Greater Wellington
Regional Council, 2021) were labelled by tree species using field-based mapping undertaken
by Spiekermann et al. (2021) in the study area. In total, 28,297 tree crowns across 22 different
species were digitized on-screen and formed the basis for training convolutional neural net-
works. All varieties of coniferous species (e.g., radiata, spruce, cedar, Douglas fir) were grouped
as conifers (4339 crowns). Similarly, all mapped poplar (Populus spp.) and willow (Salix spp.)
were grouped into a second tree class (5645 crowns); the third class consists of eucalyptus (Eu-
calyptus spp., e.g. Eucalyptus globulus; 1414 crowns), the fourth includes kānuka (Kunzea spp.;
13661 crowns); the fifth class includes acacias (Acacia dealbata; 857 crowns); and the sixth class
consists of indigenous species (2381 crowns) such as totara, (Podocarpus totara) and cabbage
trees (Cordyline australis).

Convolutional neural networks for instance and species detection (MaskRCNN and UNet64)
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First, all areas not mapped in the field, i.e., areas with no hand-annotated crown polgyons or
species information, were masked out in the imagery to avoid model confusion. The tree-crown-
level tree class information was subsequently burned into a label raster and used to train two
CNNs; (i) an instance segmentation model (Mask Region-based Convolutional Neural Network
(MaskRCNN; He et al. (2017)) as implemented in the Pytorch-based Detectron2 framework (Wu
et al., 2019)) to identify and delineate individual tree crowns from RGB colour photography and
(ii) a semantic segmentation model (UNet64 PyTorch implementation; Ronneberger et al. (2015))
for image-based species recognition at the pixel level. The first model is able to create detailed
tree crown objects (without species information) outside the initial training areas. The second
model was then used to produce a semantic segmentation map of tree species. Cross-validation
using hold-out data not used during training was undertaken to quantify classification statistics
of the raster predictions. The tree crown layer was then intersected with the raster map to cal-
culate the mode of predicted class values for each tree crown, which was the method adopted
to determine the most likely tree class. Finally, the classification statistics (precision, recall and
F-measure) of the final tree level data were calculated using all available data.

6.2.3 Physical landslide susceptibility modelling with SlideforMAP

6.2.3.1 Model description

SlideforMap is a model developed to quantify landslide susceptibility on a regional scale with
a direct inclusion of mechanical influence of vegetation. SlideforMAP applies the Root Bundle
Model as presented in Schwarz, Lehmann, et al. (2010) and Schwarz et al. (2013). This makes
for a spatially explicit, single-tree-based inclusion of both lateral and basal root reinforcement.
Parametrizations of the model for three tree species are publicly available. These are Euro-
pean Beech (Gehring et al., 2019), Radiata Pine (Giadrossich et al., 2020), and Poplar (Ngo et al.,
2023). SlideforMAP is a physically based probabilistic model that considers a force balance in
3-Dimensional volume of a large number (106+) of randomly generated landslides. To account
for uncertainty on a local scale, certain parameters are sampled from distributions rather than
using fixed values. This determines geotechnical soil parameters and random landslide surface
area. To estimate the geotechnical parameter distribution, determination of a representative soil
type is important. Like many physically based models, SlideforMap is conditioned to a constant
precipitation rate. This precipitation rate is used to approximate actual rainfall events or for
design rainfall scenarios usually associated with certain return periods. The output consists of
a relative landslide probability map, conditional to the modelled precipitation event. A more
detailed description of SlideforMap is given in van Zadelhoff et al. (2022).

6.2.3.2 Model parameterization

A 1-m resolution LiDAR-derived digital elevation model (DEM), as used in Spiekermann et al.
(2022b), forms the basis of the spatial input. For computation reasons, this is bilinearly resam-
pled to a resolution of 2 m. Slope angle and D8 flow accumulation (O’Callaghan & Mark, 1984)
are computed from the 2-m DEM. Ideally, further parametrization of SlideforMap reflects avail-
able soil data and meteorological data. For the study area in this research, we access soil data
from S-Map (Manaaki Whenua - Landcare Research, 2019). Soil depth and soil texture for our
study sites are given in Table 6.1 and Table 6.2.
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TABLE 6.1: Study site characteristics of S-map soil depth to hard rock. The Slide-
forMAP reference value is the mean of the class boundaries in S-map.

S-map soil depth class Site 1 Site 2 SlideforMAP reference value
Deep 35 % 30 % 1.25 m
Moderately deep 60 % 30 % 0.73 m
Shallow 5 % 40 % 0.33 m
Very shallow 0 % 0 % 0.10 m

TABLE 6.2: Study area characteristics of S-map soil texture. SlideforMAP refer-
ence derived from mean class value in a geotechnical conversion table in VSS-

Kommission and Engineers (2011)

S-map soil
texture class

Site 1 Site 2 USCS soil
type con-
version

SlideforMAP ref-
erence mean soil
cohesion

SlideforMAP ref-
erence mean fric-
tion angle

SlideforMAP ref-
erence Transmis-
sivity

Clayey 7 % 0 % CM 5.0 kPa 24.0 ◦ 10−8 m/s
Loamy 18 % 2 % SW-SC 2.5 kPa 31.5 ◦ 10−5 m/s
Silty 75 % 98 % ML 2.5 kPa 30.0 ◦ 10−4 m/s
Sandy 0 % 0 % SW 0.0 kPa 38.0 ◦ 5−4 m/s

Our precipitation event intensity is that of the highest hourly intensity in the March 2005 event
that is a likely trigger for many shallow landslides inventoried from the 2010 imagery (Spiek-
ermann et al., 2021). Hourly gridded 4-km resolution RADAR data for the period 2000–2020
(Moana Project Team, 2021) enables us to estimate the hourly maximum intensity during this
event. This corresponds to 24 and 32 mm/hr for Site 1 and Site 2, respectively, occurring on
March 30th 04:00 – 05:00 and March 30th 10:00 – 11:00 respectively. Such a rainfall event was
described as a likely trigger for shallow landslides at the study sites (Spiekermann et al., 2021).
To compare this event to a less extreme design event, we also model SlideforMAP with a 5-
year return period, 12-hour duration for Site 2. This corresponds to a precipitation intensity of 4
mm/hr, based on the publicly available rainfall intensity return period grid HIRDs (Carey-Smith
et al., 2018). An overview of miscellaneous SlideforMAP parameters is given in Table 6.3.

TABLE 6.3: An overview of all variable model parameters of SlideforMAP.

Parameter Description Value Unit Source
σd Soil thickness, standard deviation 0.2 m Estimate
σC Soil cohesion, standard deviation 2.0 kPa Estimate
σϕ Angle of internal friction, standard deviation 4.0 ◦ Estimate
ρls Density of the random generated landslides 0.3 HL/m2 Computational limitation
ρsoil Dry soil density 1450 kg/m3 Estimate
Pmin Precipitation intensity threshold for instability 1.2 mm/hr Default value

Input for the shallow landslide surface area distribution are the areas of all inventoried 2010
slides in the extent the study area, bringing the total to 6947 shallow landslides. Further details
on the landslide inventory are provided in section 6.2.4.1.

6.2.3.3 Allometric relationship between above and below-ground tree characteristics

Locations of single trees are determined based on the classification of individual tree crowns
with UNet64. Tree height (Htree) [m] is derived from the maximum value of a CHM, which is the
difference between the digital terrain model and surface models within the crown’s polygon, as
used in Spiekermann et al. (2021). Tree height is related to tree DBH (DBHtree) [m] via a general
allometric relationship (given below), also used in van Zadelhoff et al. (2022). Tree DBH forms
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the link between aboveground approximated tree size and the belowground assumptions on
root density and root reinforcement:

DBHtree =
(Htree)1.25

100
, (6.2)

Tree location, species, and DBH, from UNet64 (section 6.2.2.3), are applied in SlideforMAP di-
rectly. The first step in SlideforMAP is to compute the maximum lateral root reinforcement
(RRmax) as a 2d raster, which is the lateral root reinforcement under infinite soil thickness. RRmax
is a function of tree size and distance to said tree. Root reinforcement from multiple trees can
overlap. RRmax is computed to the equation below (Gehring et al., 2019):

RRmax = (c · DBH) · ΓPDF

(
Dtrees

DBH · 18.5

∣∣∣∣α1, β1

)
, (6.3)

where c is a fitting parameter in N/m2; DBH is in m; and ΓPDF is the gamma probability density
function evaluated as function of the first term with shape parameter α1 and scale parameter β1.
The shape and scale parameter are species specific to model the decrease in root reinforcement
with increasing distance from the tree. Both α1 and β1 are dimensionless.

Due to lack of published calibration all species root reinforcement is related to Veronese Poplar
(parametrized by Ngo et al. (2023)) via a multiplication factor and literature on root tensile
strength measurements. The overview is given in Table 6.4. We recognise this approach has
its shortcomings. It does not include species specific root architecture or compare in situ me-
chanical root reinforcement as would have been the case in root pull-out tests.

TABLE 6.4: Comparison of root tensile strength results from various sources for
tree species in UNet64. Due to lack of data on root reinforcement, the sixth Unet64
class with indigenous species are classified as Kanuka. *only 2 – 3 mm roots mea-

sured.

UNet64
Species

Assumed species Tensile Strength
(MPa), 1-4 mm
roots

Multiplication
factor of
Veronese Poplar

Source

PW Veronese Poplar 40.10* 1.00 Watson et al. (2008)
Conifer Pinus Radiata 17.52 0.44 Watson and Marden (2004)
Kanuka Kanuka 34.11 0.85 Watson and Marden (2004)
Eucalyptus Eucalyptus 55.39 1.38 Docker and Hubble (2008)
Acacia Acacia 85.14 2.12 Docker and Hubble (2008)

A visualization of the development of RRmax with distance from a tree is given in Figure 6.3.
Lateral root reinforcement and basal root reinforcement are derived from the maximum lateral
root reinforcement (RRmax), as a function of soil thickness. This is outlined in van Zadelhoff
et al. (2022).
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FIGURE 6.3: Maximum lateral root reinforcement as a function of distance to stem
for a 0.4 m DBH for tree species as used in this study.

6.2.4 Statistical landslide susceptibility model

6.2.4.1 Model description

The landslide susceptibility model was developed according to the method described in (Spiek-
ermann et al., 2021; Spiekermann et al., 2022b), using an inventory of 43,000 shallow landslides
mapped in high resolution orthophotography from 2010 following landslide-triggering rainfall
events between 2005 and 2010. Of these 43,000 shallow landslides, only those that intersect the
study area (section 6.2.1) were selected to train a binary logistic regression (BLR) model. This
reduced the number of landslides to 6,947 shallow landslides, with 4,751 from Site 1 and 2,196
from Site 2. For further information on the landslide inventory, we refer to Spiekermann et al.
(2021) and Spiekermann et al. (2022b).

BLR is frequently used for statistical landslide susceptibility modelling since it models the prob-
ability of a binary response variable (Y=0|1), which corresponds to the absence (0) and presence
(1) of landslides. We used a 1:1 balanced sample design, with an equal number of landslide
presence and randomly generated landslide absence points. To increase the independence of
landslide absence and presence points, a mask was created before the generation of absence
points by buffering landslide polygons by 8.3 m (the 95th percentile of the radius r of the land-
slide scar inventory, assuming a circular shape).

BLR caters for both numerical and categorical independent variables, whereby the variability of
Y is explained in terms of covariates x1, . . . , xi. In BLR, the linear function takes on the form:

logit = log
p

1 − p
= (β0) + β1x1 + . . . + βixi) (6.4)

where Y is the binary dependent variable of landslide occurrence; x1 is the i-th explanatory
variable; β0 is a constant; βi is the i-th regression coefficient; and logit is the link function used
to convert log-odds (±∞) to probability, which is sigmoidal in shape and always yields values
between 0 and 1. The probability of landslide occurrence can thus be formulated as:
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p(Y = 1) =
1

(1 + exp(−(β0)+β1x1+...+βixi)))
(6.5)

In the context of landslide susceptibility, the probabilities from logistic regression correspond to
the predisposition of a given mapping unit to landsliding and are thus often referred to as spa-
tial probabilities, as the probability makes no reference to time other than estimating the degree
to which a given area is likely to be the site of a future landslide occurrence. BLR modelling
was performed using the caret package (Kuhn, 2008) and the terra package (Hijmans, 2022) was
used for model predictions, both within the open-source statistical software R (Team, 2021).

Logistic regression assumes independence of the independent variables. Therefore, the car pack-
age (Fox et al., 2012) was used to test for multicollinearity by quantifying the variance inflation
factor (VIF) for all continuous variables. A predetermined VIF threshold of 2 was used to select
variables for removal from the model ((Heckmann et al., 2014; O’brien, 2007; Smith et al., 2021;
Van Den Eeckhaut et al., 2006). Moreover, all independent variables were removed with a test-
statistic for the Wald test (z-statistic) of less than 2, which means the effect size is not significantly
different from 0 (95% confidence level) and removal will not significantly affect model fit.

6.2.4.2 Independent predictor variables

The topographic predictor variables were derived from a 1-m LiDAR DEM and are the same
as those used by Spiekermann et al. (2022b), including slope gradient (°), northernness (cosine
transformation of slope aspect), and easternness (sine transformation of slope aspect). Refer to
Spiekermann et al. (2022b) for further information on these variables and their physical process
relevance for slope stability. One additional topographic variable was included here: the Topo-
graphic Wetness Index (TWI). The TWI is a measure of water accumulation or soil saturation
(Moore et al., 1988) that may influence the propensity for landslide generation. For each tree
class j (section 6.2.2.3), the TIMMS (Mj) were computed using the tree classification with the
following logistical function (Spiekermann et al., 2022b):

Mj = 1 − 1

(1 + e( (xmid−r)
scal ))

, (6.6)

where xmid is a parameter representing the r value at the inflection point of the curve; and scal
a scale parameter on the input axis. Table 5 provides the values used for parameterising the
TIMSS. As with the lateral root reinforcement model, the TIMSS assume the influence of trees
contributing to slope stability at a given pixel to be additive. It does not account for variation in
tree dimensions.

TABLE 6.5: Parameterisation of TIMSS for different tree classes

Tree class xmid scal max r (m)
Conifer 6.98 3.12 17
Kanuka/Other native 7.51 2.71 17
Poplar/Willow/Acacia 8.58 3.44 20
Eucalyptus 6.86 1.93 13

Finally, lithological data (near-surface rock type) from the NZ Land Resource Inventory (New-
some et al., 2008) was included as a categorical variable, since the material type directly influ-
ences soil properties such as hydraulic conductivity and texture (Smith et al., 2021). Lithology
was converted from vector format available at a scale of 1:50,000 to a grid at 1-m GSD. It is
unavoidable that boundary and material type errors will result from using lithological data of
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much lower resolution than for topographic variables. To ensure sufficient samples were gath-
ered across all material types to safely infer the relationship, we remove lithology classes that are
represented in less than 1% of combined presence and absence points (minimum 137 samples
of balanced dataset). This led to the removal of two material types: “Gravels” (37 samples) and
“Mudstone or fine siltstone — jointed” (82 samples), which reduced the landslide inventory to
6889 landslide scars and an equal number of landslide absence points.

6.2.5 Physical and statistical model performance measure

K-fold (k = 10) cross validation (CV) was used to test model predictive performance in the BLR
model. The data were randomly partitioned into k folds, whereby k-1 folds are used to train the
model, and the remaining fold used to test the predictive ability of the model. This is repeated
until each of the ten folds has been used for model testing. To ensure the performance measures
are not influenced by a particular data partitioning, this process is repeated 10 times, yielding
a total of 100 performance metrics. The area under the receiver operator curve (AUROC) was
used to estimate the model’s predictive performance by plotting the true positive rate (sensitiv-
ity) against false positive rate (1 – specificity) across all potential cut-offs. The AUROC is well
suited for balanced samples as it does not depend on the cut-off used to calculate classification
accuracy (Hosmer, 2000). An AUROC score of 1 would mean the model can perfectly discrimi-
nate between the presence and absence of landslides in its predictions; a value of 0.5 corresponds
to no discriminatory power. A good AUC score is between 0.8 and 0.9; an excellent score is > 0.9
(El Khouli et al., 2009).

Moreover, to enable a direct comparison of model performance using a standardised metric,
AUROC with respect to the 2010 inventory is quantified using all data extracted from the raster
predictions of the whole study area. Probability values coinciding with the rasterized land-
slide polygons (1-m resolution for BLR; 2-m resolution for SlideforMAP) were extracted and all
other cells within the farm boundaries represented landslide absence cells. For SlideforMAP the
AUROC is a near-independent measure of performance – the exception being that the shallow
landslide surface area distribution used in SlideforMAP is based on the inventory surface area
distribution.

6.2.6 Quantifying effectiveness of trees on slope stability at farm scale

Spatial predictions of landslide susceptibility were made for the two case study sites using both
SlideforMAP and BLR models. We classified these spatial probabilities of landslide occurrence
into three susceptibility classes of low, medium, and high (Lombardo & Mai, 2018; Petschko
et al., 2014). This was done by extracting predicted probability values at each of the inventoried
landslide points, ranking these in descending order and determining the probability thresholds
of the 80th and 95th percentiles of landslide counts (Figure 6.4). This results in three landslide
susceptibility classes of low, medium, and high. Thus, the high susceptibility class can be in-
terpreted as the zones in which 80% of mapped landslides were triggered, the medium class
where an additional 15% of landslides occurred, and the low class where the remaining 5% of
past landslides were triggered.

The effect of the actual tree cover (S1) was quantified by developing a treeless, pasture-only base-
line scenario (S0) and generating spatial predictions without any trees present. The same prob-
ability thresholds corresponding to the 80th and 95th percentiles of ranked landslides (based on
predictions with the actual tree cover) were used to classify each of the predictions into the three
classes of low to high. Reductions in landslide erosion at farm-scale are based on changes (CC,
%) to the distribution of the three landslide susceptibility classes i for each farm:
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CCi =
S1i − S0i

S0i
∗ 100, (6.7)

where S1 and S0 are the proportions (0-1) of the three susceptibility classes of scenarios S1 (actual
trees) and S0 (the baseline), respectively. We assume that future landsliding will follow the same
pattern as in the past, such that the majority (80%) of landslides will occur in the high suscepti-
bility zone, and so forth. Therefore, a reduction in the area occupied by the high susceptibility
zone equates to a reduction in the number of future landslide erosion; the same is true for the
medium susceptibility zone. This reduction in landsliding (LSred) considers the rate (based on
counts) of landsliding LRi in each of the classes i = 0.8,0.15,0.05:

LSred = Σ(i=3)(CCi · LRi), (6.8)

To mitigate future landslide erosion, land managers require decision support on where to plant
trees cost-effectively (Spiekermann et al., 2022b). To determine the potential implications of us-
ing a particular landslide susceptibility model, a spatial overlay between SlideforMAP and the
BLR classifications was undertaken to quantify the level of agreement – both for the treeless
baseline scenario (S0) and with the actual tree cover (S1) (Table 6.10). In this way, a spatially ex-
plicit comparison provides further insight beyond the difference in overall performance metrics
and proportion of sites classified in the three landslide susceptibility classes (Table 6.9).

6.3 Results

6.3.1 Tree classification with CNN

The results of the tree classification are given in Table 6.6 and Table 6.7. Overall accuracy is 0.69,
with average increasing to 0.79 when weighting by class size. Precision scores are overall signifi-
cantly higher than recall scores, which means the model avoids large numbers of false positives.
The poplar/willow class, with an f1 score of 0.93, has the highest overall classification accuracy.
The lower recall scores indicate that false negatives are the most common source of error, as
shown in the “Background” column of Table 6.7. This means the model struggled to detect and
classify a reasonably large number of tree crowns. Yet, certain tree classes are more affected
than others. The classes “Conifer”, “Kānuka”, and “Other Natives” were impacted most, as
shown by their lower recall scores. For example, of the 13,661 samples, 5247 tree crowns of the
Kānuka class (38.4%) were not detected and therefore classified as “Background”. In terms of
implications for the landslide susceptibility models, the low detection rate among these classes
will result in an underestimation of mitigation effectiveness. Therefore, the results presented in
the following sections can be interpreted as a conservative estimate of mitigation performance.

TABLE 6.6: Tree classification results, including precision, recall, f1-score statistics

Tree class Precision Recall f1-score Support
Background 0.01 1.00 0.02 69
Conifer 0.99 0.74 0.84 4339
Kānuka 0.95 0.61 0.74 13661
Poplar/Willow 0.98 0.88 0.93 5645
Eucalyptus 0.89 0.85 0.87 1414
Acacia 0.98 0.60 0.74 857
Other natives 0.96 0.51 0.67 2381

Accuracy 0.69 28366
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TABLE 6.7: Confusion matrix

Tree class Background Conifer Kānuka Poplar/Willow Eucalyptus Acacia Other natives Total
Background 69 0 0 0 0 0 0 69
Conifer 1012 3194 13 23 67 8 22 4339
Kānuka 5247 7 8349 26 20 0 12 13661
Poplar/Willow 500 19 61 4983 63 4 15 5645
Eucalyptus 176 0 24 13 1200 0 1 1414
Acacia 266 10 15 44 4 512 6 857
Other natives 830 1 322 5 0 0 1223 2381
Accuracy 1.00 0.74 0.61 0.88 0.85 0.60 0.51 0.69

6.3.2 Landslide susceptibility modelling

Multicollinearity tests showed all continuous variables to have a VIF <2. Therefore, all contin-
uous variables were retained in the model. Slope gradient was the most important variable in
determining shallow landslide occurrence, followed by TWI (Table 6.8). Landslides occurred
disproportionately on north- and east-facing slopes. As expected, the TIMSS had a significant
stabilising effect. Except for “Limestone”, all lithologies were removed from the BLR model
as the coefficients were not significantly different from 0 and thus did not contribute to an im-
proved model fit. Since most landslide presence and absence points are located in areas of ei-
ther “Mudstone or fine siltstone – massive” (36.7%), “Loess” (30.1%), or “Sandstone or coarse
siltstone — massive” (23.2%), these lithologies are effectively the reference category. The lack
of significance of all lithologies besides Limestone (6.4% of data points) suggests that lithology
plays a minor role in determining landslide occurrence in the study area, i.e., all other rock types
are similarly susceptible to shallow landsliding.

TABLE 6.8: Standardized coefficients with associated standard errors and z-
statistics for predictor variables of the BLR model (p-value of Wald’s test and like-

lihood ratio test < 0.001 for all these variables)

Variable Coefficient SE z statistic
(Intercept) -0.41 0.03 -12.97
Slope 3.68 0.07 54.26
North 0.36 0.03 13.19
East 0.13 0.03 4.75
TWI 0.65 0.04 15.34
TIMSS -0.43 0.03 -15.02
Li1 -1.34 0.13 -10.42

The AUROC of the final model was 0.94, which equates to an accuracy of 88.1% using an optimal
cut-off of 0.50, and demonstrates an excellent model fit of the BLR. 10-fold cross-validation using
10 repeats was used to quantify the model’s predictive performance (Figure 6.4). Median AU-
ROC of the 100 train-test cycles was 0.94, with an IQR of 0.008, reflecting a stable performance
in predicting the test data as either landslide presence or absence points.
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FIGURE 6.4: k-fold cross-validation results of BLR model.

The cumulative histograms show consistently higher class cut-offs for BLR, indicating the sta-
tistical model was slightly better at associating landslide scars with high probability values. The
cut-offs from Figure 6.5 spatially divide the shallow landslide susceptibility predictions into
three distinct classes, as displayed in Figure 6.7.

FIGURE 6.5: Decreasing rank order plot of SlideforMAP (black line) and binary
logistic regression (grey line) susceptibility predictions for inventoried landslide
scars for both farms combined. Predicted scar susceptibility is ranked in descend-
ing order with the percentage of scars with an equal or higher susceptibility given
on the x-axis. The 80 % and 95 % percentage susceptibility cut-offs are at 0.65 and
0.31 for SlideforMAP respectively. For BLR the cut-offs are 0.69 and 0.34. These
cut-offs determine the probability values used to classify predictions into three

susceptibility classes of low, medium, and high.



Chapter 6. Contrasting physical and statistical landslide susceptibility 96

The extent to which vegetation influences slope stability is dependent on the method used as
shown in Figure 6.6. The maximum effective radius from the tree stem in SlideforMAP is 5 to
6 meters, corresponding to the most mature trees. The effective range for TIMMS is > 10 m,
independent of tree dimension. This results in more overlap in the tree influence using TIMMS,
and probably an overestimation of the effect of single trees of small dimensions (see single trees
in the upper right corner of Figure 6.6).

FIGURE 6.6: Spatial representation of individual tree (blue dots) effects for a se-
lected area at Site 2. Insert a: maximum lateral root reinforcement in SlideforMAP.
Insert b: Tree influence models on slope stability (TIMSS) as used in Binary logistic

regression.

As can be seen from Figure 6.7, SlideforMAP appears to have a higher proportion of surface area
classified as highly susceptible, both with and without vegetation. Instability is concentrated
in the south-west of Site 2, coinciding with deeper soils. Binary logistic regression shows a
more even distribution of susceptibility through the study area. Vegetation has a considerable
influence on the shallow landslide susceptibility classification for both methods. In the little
window we can see a reduction in landslide susceptibility in the vicinity of single trees, with
larger trees giving a larger reduction in susceptibility for SlideforMAP. These patterns are, at
least partly, responsible for the difference in susceptibility as shown in Figure 6.7.



Chapter 6. Contrasting physical and statistical landslide susceptibility 97

FIGURE 6.7: Comparison of landslide susceptibility at Site 2 between SlideforMAP
(left column) and BLR (right column) based on three classes “low” to “high. Inserts
a) and c) represent the treeless baseline scenario S0; Inserts b) and d) the actual tree
cover S1. Inserts e) and f) show SlideforMAP landslide susceptibility classification
without and with trees (blue dots); Inserts g) and h) do the same for the BLR clas-

sification, respectively.

The landslide susceptibility classifications of SlideforMAP and BLR are shown in Table 6.9 and
includes both class distribution and the respective performance measure. As expected, the class
distribution changes to a higher proportion in the low susceptibility class for both models under
the actual tree cover. Despite adjusting the class cut-offs to landslide scar values (Figure 6.5),
SlideforMAP has higher proportions of the study area in both the high and medium suscepti-
bility classes – consistently for the baseline (S0) and when including the actual tree cover (S1).
There is also less change in the distribution of susceptibility classes resulting from the tree cover
compared with the BLR, which results in a lower estimate of mitigation performance. Based
on equations 7 and 8, future landsliding (counts) is estimated to have been reduced by 3.2% at
Site 1 and 16.4% at Site 2. This compares with estimates by the BLR model of 11.4% and 35.1%,
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respectively.

Values of the AUROC performance measure based on the raster predictions for the study area ex-
tents (farm boundaries) are overall higher for BLR, with the best performance of 0.936 achieved
at Site 2. SlideforMAP, in contrast, has its best performance at Site 1.

TABLE 6.9: Performance measurement and distribution of shallow landslide sus-
ceptibility classes (%) at Sites 1 and 2. Percentages are rounded and therefore do

not always end up to 100% exactly

SlideforMAP Binary logistic regression
Site 1 Site 2 Site 1 Site 2

Treeless baseline S0
High 22.7 16.0 14.4 12.2
Medium 22.1 24.8 14.4 19.1
Low 55.2 59.2 71.2 68.7
Actual tree cover S1
High 21.8 13.0 12.4 7.3
Medium 22.0 21.6 13.6 15.1
Low 56.2 65.3 73.9 77.7
LSred (%) - 3.2 - 16.4 - 11.4 - 35.1
AUROC 0.871 0.826 0.911 0.936

Table 6.9 provides an overview of the level of agreement between SlideforMAP and the BLR
landslide susceptibility classifications for the two study sites. In total, >70% of the spatial pre-
dictions are in agreement. In particular, the “Low” class of both models are almost in complete
agreement. Interestingly, the greatest difference between the models is found in the medium
class, with approximately 14% of the sites classified as “Medium” landslide susceptibility by
SlideforMAP and “Low” landslide susceptibility by the BLR model. In general, SlideforMAP
has a larger proportion of the sites classified as either “Medium” or “High” compared with
the BLR model. Since the statistical approach fits a BLR model to the landslide inventory, the
ability of the model to predict future sites of landslide occurrence is likely to be less than that
quantified using cross-validation in this study. Therefore, the comparatively lower performance
and less spatially refined predictions of SlideforMAP may not necessarily translate into a poorer
predictive capability in terms of future landslide events. Considering the current tree cover,
both models agreeing on “high” makes up approximately 8.2% of the study area. An additional
13.4% of the study area is classified as highly susceptible in either the SlideforMAP or BLR clas-
sification and should be considered for prioritising over the remaining 78.4% of the study area
classified as either low or medium landslide susceptibility.

TABLE 6.10: Comparison of distribution of landslide susceptibility classes across
the study area as predicted by SlideforMAP and the BLR model

BLR Class SlideforMAP Class Treeless S0 (%) Actual trees S1 (%)
Low Low 55.0 56.8
Medium Low 2.1 2.0
High Low 0.8 0.8
Low Medium 13.9 14.5
Medium Medium 5.8 5.2
High Medium 1.8 1.5
Low High 3.7 4.4
Medium High 7.1 6.7
High High 9.7 8.2
Total agreement 70.5 70.1
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An added benefit of the physically based approach is the ability to compute the landslide suscep-
tibility under different precipitation conditions. The comparison with BLR is performed under
the extreme 2005 precipitation event that most likely left soils close to saturation. To contrast
these results, the susceptibility classes in Table 6.11 are shown for the 5 yr. return period pre-
cipitation intensity (as defined in section 6.2.3.2). As can be seen using a lower precipitation
intensity, there is only a slight decrease in the high-class proportions for both the vegetation and
the non-vegetation scenario.

TABLE 6.11: Distribution of susceptibility proportion for SlideforMAP for a 5 yr.
return period and 12-hour duration rainfall event. Thresholds from Figure 5 have
been used to enable comparison to SlideforMAP class distribution under the ex-

treme March 2005 event.

SlideforMAP 5 yr. return period design event
Site 2

Treeless baseline S0
Proportion High 15.6
Proportion Medium 24.8
Proportion Low 59.6

Actual tree cover S1
Proportion High 12.5
Proportion Medium 21.5
Proportion Low 65.9

6.4 Discussion

6.4.1 Evaluation of physical and statistical model predictions

The instability pattern in Site 2 appears to be driven by multiple factors in SlideforMAP, most no-
tably slope angle and soil thickness. This can be well explained, as the soil thickness is noted as a
highly sensitive parameter in the qualitative sensitivity analysis on SlideforMAP (van Zadelhoff
et al., 2022). In Figure 6.7, the upper right of site 2 has shallow soils and the lower left deeper
soils, directly mirroring the pattern in the instability with deep soils corresponding to higher
landslide susceptibility.

In SlideforMAP only the mechanical effects of single trees are modelled, which have an effective
distance of approximately 5-6 m, before the effect becomes negligible (Figures 6.3 and 6.6). This
can also be seen in Figure 6.7f, with only large trees affecting the shallow landslide susceptibility
class. This tree-size effect is an advantage as it enables modelling of the effects of tree develop-
ment through time, either for existing trees or for proposed planting. Data related to tree growth
rates (e.g. Matsushita et al., 2015) are required for estimating tree effects through time, as are al-
lometric relationships between above and below ground tree biomass.

As mentioned in the introduction, the strength of the physically based approach is the evalua-
tion of different rainfall scenarios, which can be actual events (SlideforMAP results in Table 6.9)
or design events (results in Table 6.11). In this case, the March 2005 event corresponds to a return
period greater than 100 years. Contrasting this to the design event, we see a larger proportion of
high landslide susceptibility for both the vegetated and non-vegetated scenario. This scenario
modelling can help to incorporate more frequent and more intense occurrence of landslide in-
ducing rainfall events due to climate change. Scenario based calculations of benefits (in this case
related to the mitigation of erosion) are fundamental for the application of cost-benefit analyses
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for prioritizing nature-based mitigation measures.

The pattern of landslide susceptibility classes in BLR is more evenly distributed, with slope
angle being the main driver for landslide susceptibility (Table 6.8). The sphere of influence of
individual trees extends further that the lateral root reinforcement model (Table 6.5, Figures 6.3
and 6.6) and has a significant influence in determining landslide occurrence. The distribution
of landslide susceptibility classes at Sites 1 and 2, and the estimation of mitigation performance
(Table 6.9), are slightly different compared with that quantified by Spiekermann et al. (2022b)
and overall are less susceptible. For example, at Site 1, the “High” class now occupies 14.3%
instead of 15%, the “Medium” class 14.4% instead of 17.7% without trees. Besides being based
on a subset of the landslide inventory used by Spiekermann et al. (2022b), these differences can
also be attributed to the inclusion of the hydrological variable of TWI in the model, which has
the effect of reducing landslide susceptibility in upper slopes where the upstream contributing
area is reduced and thereby affecting soil moisture conditions.

The AUROC value for SlideforMAP indicates good performance (AUC > 0.8), indicating Slide-
forMAP can well identify regions susceptible to landsliding, without prior knowledge of the
landslide events. The performance of BLR is excellent (AUC > 0.9). Although this is with tree
influence calibrated to the landslide inventory, it shows that BLR is an effective method for dis-
criminating landslide susceptible areas from stable areas.

6.4.2 Contrasting physical and statistical landslide susceptibility approaches

Assumptions and limitations of physically-based landslide susceptibility modelling

Since many abiotic (e.g., light, temperature, rainfall) and biotic (e.g., other trees, organisms in
soil) factors influence the development of both tree crown and root system architecture (Iwasa
et al., 1985; Lindh et al., 2018; Pierret et al., 2007), the hydrological and mechanical processes
of a tree can vary considerably between and within tree species (Hales et al., 2009; Masi et al.,
2021; Schmidt et al., 2001). This is particularly true when tree densities are such that competition
for limited available resources (nutrients, water, light) is increased (Danjon et al., 2013). In their
review of root systems of mixed-tree systems, Kumar and Jose (2018) found evidence that two
or more tree species located in close proximity can cause reduced lateral spread of roots and/or
increase root penetration at greater soil depths. Trees with similar root growth habit are more
likely to have interlocking root systems that increase competitive interactions, whereas mixing
tree species with different growth habits can result in temporal or spatial complementarity in use
of above- and belowground resource (Kumar & Jose, 2018). This is due to phenotypic plasticity,
which enables roots to respond to effects arising from i) variation in the abiotic environment
(soil nutrients, water, light; Perona et al. (2022)), ii) the presence of neighbouring trees, and/or
iii) herbivory (Callaway et al., 2003).

There is currently a paucity of species-specific data on root system architecture from widely
spaced trees such as those found in agroforestry systems (Kumar & Jose, 2018; Schwarz et al.,
2016). Most root extraction work aimed at characterising root system architecture of trees has
been undertaken in forest stands (Hales, 2018), which means there is less data available to in-
form the development of root reinforcement models in silvopastoral systems or to calibrate root
growth models (Schlüter et al., 2018). Knowledge of root systems in silvopastoral settings is
limited to individual species of certain age classes (Marden et al., 2018; Phillips et al., 2014;
Stone & Kalisz, 1991). This lack of data has direct implications for estimating the magnitude
of lateral root reinforcement in fully mature adult trees, since the quantitative estimates rely on
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knowledge of the spatial distribution of the roots (Cohen & Schwarz, 2017b). Moreover, the data
requirements for developing estimates for species-specific, spatially distributed root reinforce-
ment are not insignificant (Schwarz, Lehmann, et al., 2010). In fact, due to variability within root
systems, it was found a minimum of four trees must be excavated to obtain sufficient root in-
formation to reduce the error associated with root reinforcement estimates to a level acceptable
by geotechnical guidelines (Giadrossich et al., 2020). However, these requirements may change
according to species and site specifics.

Therefore, the limiting factor to further develop root reinforcement models in silvopastoral sys-
tems is the lack of species-specific root data, which includes:

• Data pertaining to the strength and behaviour of different root diameter classes within the
root-soil matrix (Schwarz, Lehmann, et al., 2010);

• Morphological data pertaining to the root system architecture, including the number of
roots in different diameter classes with increasing distance from tree trunk and soil thick-
ness;

• Root data of trees that grow in different environmental settings (e.g., substrate character-
istics), spacings, and mixed-species vs. monoculture silvopastoral systems.

Given the current lack of observational data, the development of a root reinforcement model for
a mixed-tree silvopastoral system requires assumptions during model parameterisation, par-
ticularly related to total and maximum root lengths and/or biomass (Stone & Kalisz, 1991).
Moreover, the reductionist approach employed by root-reinforcement modelling is an inherent
limitation (Masi et al., 2021). Reducing a tree to observations of the behaviour of its components
(e.g., foliage, root system) cannot reveal the full extent of its properties – let alone a tree interact-
ing within its environment composed of biotic and abiotic components. These properties that
most natural systems have in addition to the sum of properties of the components are referred
to as emergent properties of irreducible systems (Jorgensen, 2016). This concept of emergent
properties promoted by Systems Ecology Science poses a challenge to physically-based models
that follow an inherently reductionist approach to studying tree effects on slope stability.

Root reinforcement modelling versus TIMSS

While these limitations mean root reinforcement modelling in silvopastoral landscapes remains
a challenge, there are advantages of a physical approach to quantifying individual tree effects
on slope stability that include the ability to differentiate and weight the contribution of different
mechanisms and processes allowing for their better understanding, quantification and for spe-
cific formulations of engineering solutions quantify both the mechanical reinforcement provided
by root systems and the hydrological effects of trees on regulating soil moisture. The result is
an estimate of the added contribution to soil strength as a measure of force (N/m) and can be
used to consider how the margin of stability will change under any given hydrological scenario
or change in land cover (Schwarz et al., 2016). This enables land managers and policy makers
to design effective measures in relations to the occurrence probability (return periods as seen in
Table 6.11) and the magnitude of triggering rainfall events and disposition factors with standard-
ized return periods. A further key advantage of probabilistic-physically approaches is the use of
allometric relationships between above and below-ground biomass. Thus, as advances in tech-
nology increase the ability to characterise above-ground properties of trees (Gunawardena et al.,
2015), the main barrier to improved estimates of mechanical reinforcement stabilising effects of
slopes by silvopastoral trees is the cost associated with empirical data collection. Nevertheless,
a meaningful balance between the amount of data needed and the detail of model precision and
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accuracy for solve a specific practical problem need to be discussed and found.

A limitation of the TIMSS method is the lack of a clear physical basis, as the TIMSS rely solely on
patterns observed at landscape scale to infer what the physical parameters must be that render
the relationships between the objects of interest, namely trees and landslide scars. This raises the
question of plausibility, to which there are two helpful responses: The first is by way of a prac-
tical justification. Given the data scarcity with respect to root system architecture of adult trees,
which have been established in an environment with negligible competition from neighbours,
a validation of the TIMSS is only possible with reference to the limited root data available from
widely spaced trees (see section 6.3). Both extracted root systems of younger trees (e.g. McIvor
et al., 2009) and equivalent spatially distributed root reinforcement models (e.g. Schwarz et al.,
2016) were similar to the TIMSS in terms of the sigmoidal shape of the curves despite the unit of
measurement not being the same.

Secondly, the method of inquiry used follows a logical form guided by material induction the-
ory (Norton, 2021). Based on a set of warranting facts, material inductive inference allows con-
clusions to be drawn that amplify pre-existing knowledge of the system (Norton, 2021). The
warranting facts in this case can be summarised in the following statement: “Trees modify slope
stability due to mechanical and hydrological mechanisms”. Based on the assumption that these
effects must manifest in such a way that can be observed at landscape scale, the TIMSS were de-
veloped using geospatial methods by testing whether landslide scars occur preferentially close
to or remote from trees. The resulting TIMSS therefore infer the extent to which individual trees
increase slope stability. The TIMSS raise some interesting questions, particularly related to the
average maximum effective distance of an individual tree (e.g., 20 m for poplar/willow).

Lateral extent of effective root reinforcement is far less than the empirically-derived TIMSS (Fig-
ure 6.6). By definition, TIMMS reflect all single vegetation effects and possible synergies between
these effects for the trees, landslides, and landslide absence areas to which it is calibrated. The
compounding vegetation effects are attributed to the nearest trees from any given point in the
landscape. SlideforMAP incorporates only the mechanical effects (lateral root reinforcement,
basal root reinforcement and vegetation weight) and no synergies. Not having incorporated the
hydrological effects of trees in SlideforMAP could be an important factor of difference. Local
tree interception and reduction in antecedent moisture are unlikely to have a large influence
under extreme precipitation conditions (Greenway, 1987) such as with the event we modelled
here. However, a reduction in antecedent moisture, an increase in macropore lateral flow within
a potential landslide and increase in storage capacity in a potential landslide contributing area
is a more likely cumulative effect. An additional possibility is the limitation of landslides to
occur between trees due to confinement between reinforced areas (Casadei et al., 2003; Cohen &
Schwarz, 2017b). Where root reinforcement from neighbouring trees does not interconnect, tree
roots likely decrease non-reinforced areas to such an extent that passive earth pressure prevents
the potential landslides from initiating. If the tree confinement and contributing area are indeed
a relevant effect, tree influence is not a primary tree-specific effect, rather it is a secondary site-
specific effect as a function of tree dimensions, planting density and pattern. Further research is
required to test the veracity of this hypothesis.

Assumptions and limitations of statistical landslide susceptibility modelling

The central assumption made in statistical landslide susceptibility models is that “the past is the
key to the future” (van Westen et al., 2008). This assumption related to empirical inference is
one made across the sciences, where past observations are used to establish causation and to
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predict both what is likely to happen elsewhere under similar situations and the outcomes of fu-
ture events. The limitation arising from this underlying assumption is that statistical landslide
susceptibility models can only be used to predict future locations of landslide occurrences with
similar causal mechanisms to the landslides used to train the model. However, slope stability
is temporally dynamic due to changes in regolith depth, slope angle, land cover, etc. Indeed,
the conceptual Terrain Event Resistance Model was proposed by Crozier and Preston (1999)
and refers to the observations by Trustrum et al. (1984) that catchment landslide susceptibility
changes are due to the progressive removal of susceptible regolith from parts of the catchment,
reduction of lateral support, and related scar formation, etc. The combination of an evolving
landscape with variable triggering mechanisms challenges the legitimacy of cross-validation us-
ing subsets of the same landslide inventory in testing the prediction skill of future events.

In the present study, a landslide inventory mapped on imagery from 2010 comprises a range of
events from the period 2005–2009 – both summer and winter events of differing rainfall magni-
tudes (Spiekermann et al., 2021). While it remains unknown which event caused which landslide
in the inventory, the model was trained using landslides that were triggered under a range of
hydrological conditions, which – although not quantified – may increase the predictive skill for
future events. If the study area is currently in an advanced stage of the Terrain Resistance Model
due to multiple previous landslide events (De Rose, 2013; Spiekermann et al., 2022a) and re-
quires increased triggering thresholds relative to historic events, then models trained with more
recent landslide events are likely to outperform in future compared to models trained with his-
toric events.

There are studies that have tested this assumption using multi-temporal landslide inventories.
It is generally the case that multi-temporal landslide inventories are considered the preferred
source of landslide information for susceptibility modelling (Reichenbach et al., 2018). Jones
et al. (2021) used a 30-year inventory of monsoon-triggered landslides from Nepal to assess
how well statistical models hindcast landslide occurrence in other years. They found models
trained on extreme years unable to consistently hindcast landslide occurrence in other years.
Landslide distributions were found to vary through time, which was due to different trigger-
ing mechanisms (storms, earthquakes, floods). However, developing models using increasingly
long historical inventories showed that susceptibility models developed using >6–8 years of
landslide data provide consistently reliable hindcasting accuracy. This affirms findings from
similar studies (Guzzetti, Galli, et al., 2006; Smith et al., 2021; Spiekermann et al., 2022b), which
demonstrate a dependency on sample size. A further example undertook a study to assess
landslide susceptibility models based on event versus multi-temporal landslide inventories to
better understand how inventory type affects model performance (Smith et al., 2021). The au-
thors used three event-scale and three smaller multi-temporal study areas to fit models using the
event-based data and test predictive performance with the multi-temporal data and vice versa.
Multi-temporal records are generally restricted to smaller study areas, resulting in a less diverse
range of lithologies and landforms. This was shown to reduce the transferability of the model to
other areas. While the event-based models performed slightly better, the authors found no con-
sistent improvement in model predictive performance when using the multi-temporal versus
the event inventories. This lack of distinct improvement in model performance may reflect the
event-scale landslide densities, which, if sufficiently high, could reduce the relative benefit of
using a multi-temporal inventory for landslide susceptibility modelling. A similar assessment
was undertaken by Spiekermann et al. (2022b) using a model developed by Spiekermann et al.
(2022b) and tested with a landslide inventory from a 1977 storm event. Historic landslides were
found more frequently on what is considered “moderately susceptible terrain” by a present-day
susceptibility model, which was explained by differences in the triggering mechanism (long-
duration rainfall with high antecedent moisture conditions in 1977 versus high intensity rainfall
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events of 2005–2009). However, it was noted by the authors that the difference may also be an
indication of terrain resistance.

While the Terrain Event Resistance Model (Crozier, 2005; Crozier & Preston, 1999) is conceptu-
ally plausible, the empirical evidence to support it remains inconclusive. It has been suggested
that processes governing both failure location and associated off-slope sediment delivery are a
more complex set of relationships relating to both slope properties and triggering conditions
than the conceptual model supposes (Jones & Preston, 2012). A multi-temporal record of land-
slide events from 1943 to 2004 in the Waipaoa Catchment attempted to test the hypothesis that
the relationship between landslide location and regolith exhaustion can be empirically observed
as the soil mantle on lower slopes becomes increasingly below the critical depth for mass move-
ment failure (Jones & Preston, 2012). However, the authors were unable to detect consistent
upslope progression of the scars in relation to the channel in subsequent storm events in any of
the five catchments and concluded that there was no predictable pattern in landslide locations
over time. It is evident that further research is required to test the conceptual model of terrain
resistance further to increase understanding of temporal dynamics in slope stability – both in
terms of changes to terrain and triggering thresholds (D’Odorico & Fagherazzi, 2003). The de-
velopment of future landslide susceptibility models should control not only for terrain and land
cover effects but also for the triggering mechanism, e.g., through incorporation of rainfall data
of adequate spatial and temporal resolution (e.g. Steger et al., 2022). Controlling for the trigger-
ing mechanism would allow model development for different rainfall events, which may render
spatially variable predictions.

Implications for land management decisions

The shallow landslide susceptibility from either a statistical or physically based model can be
interpreted as a measure of general landslide propensity or a specific propensity if estimated
for a specific event. When done to a specific event with a corresponding inventory, the ero-
sion volume and mass (depending on the assumption of soil density) can also be estimated.
Physically-based scenario modelling is arguably better suited for estimating erosion for specific
scenarios. We demonstrated this with SlideforMAP by estimating future landslide susceptibility
for a specific design rainfall event with a given return period (Table 6.11). Statistical landslide
susceptibility models, or hazard models, can also inform on the magnitude of the landslide
response when data on the triggering mechanism (e.g., rainfall magnitude through use of inter-
polated precipitation or RADAR data) is available (e.g. Steger et al., 2022). While this research
is limited to the current vegetation in our study area, the models can also be applied to analyse
the effects of hypothetical tree planting Spiekermann et al. (2022b). This can help land managers
and practitioners to effectively plan and better target the planting of new trees.

In terms of the utility of both approaches presented here, BLR can be used as a validation from
the past to compensate for methodological uncertainty and/or inaccuracy in SlideforMAP. We
therefore recommend decision makers prioritize areas for mitigation where SlideforMAP and
BLR are in agreement within the high susceptibility class to achieve optimal outcomes. This
will enable practitioners to reap the benefits from both the physical and statistical approaches,
increasing the reliability of estimates for the future, while incorporating evidence from the past.
However, it must also be recognised that in some areas of high slope instability, the effect of
trees does not always increase stability sufficiently to avoid landsliding and establishment can
be a significant challenge. Therefore, we recommend using the differences in unclassified prob-
ability maps as a supplemental source of information to guide decision-making with respect to
planning tree planting. These maps of difference would show where the implementation of bio-
engineering measures would be most beneficial.
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6.5 Conclusion

In the present study, we have shown how physical and statistical approaches to landslide sus-
ceptibility modelling are complementary in informing understanding of slope stability. It is
uncommon to see process-based modelling alongside statistical modelling based on empirical
data. A direct comparison of both models showed the strengths and limitations of the underly-
ing assumptions. Both a statistically and physically based modelling approach to shallow land-
slide susceptibility for bio-engineering purposes has merit. Erosion can be mitigated by strategic
planting of trees and both models can help in this regard. The main advantage in statistically
based modelling is in the implicit inclusion of total tree effect, while the advantage of physically
based models is the ability of precipitation event scenario modelling. Outputs from both models
show an agreement of >70% for susceptibility class, with 8.2% of this agreement being in areas
classified as highly susceptible. The <30% of the area where the models disagree in susceptibility
classification can be attributed to differences in assumptions between the models and the better
performance of the statistical approach since it fits the model using past observations of shal-
low landslides, resulting in improved spatial refinement of landslide susceptibility predictions.
Land-managers aiming to optimize the targeted planting of trees are recommended to compare
shallow landslide susceptibility under scenarios with potential trees and a treeless baseline (dif-
ference maps). This will help identify locations where new trees have the greatest protective
effect excluding unstable areas that cannot be adequately stabilized by tree planting. Physically
based models and non-linear statistical models (e.g., generalized additive mixed models) are
best suited for such a comparison. Moreover, we recommend incorporating advantages of both
approaches in this research and prioritizing areas for erosion mitigation where physical and
statistical shallow landslide models agree within the highly susceptible class.
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7 SlideforMAP application

Certain methodologies in the application of SlideforMAP or acquiring and assessing input pa-
rameters, are too detailed to have been included in any of the previous paper-based chapters.
Nonetheless, these methodologies have been developed and/or analyzed during my PhD and
therefore deserve mentioning. The sections below are dedicated to this purpose. Firstly, in sec-
tion 7.1, fieldwork in New Zealand that was performed for calibrating root density and root
reinforcement in poplar trees. Section 7.2 shows the application of SlideforMAP in assessing
vegetation efficiency of current and hypothetical vegetation. Lastly, section 7.3 details a tiling
approach to apply SlideforMAP to large study areas.

7.1 Fieldwork on poplar root architecture and root strength

As mentioned in chapter 5, poplar trees are often planted in New Zealand as a bio-engineering
measure in slope stability. As part of my PhD, I conducted seven weeks of fieldwork in New
Zealand, with the specific goal of obtaining field data to quantify lateral and basal root rein-
forcement of poplar trees. For this, a plantation at Ballantrae farm (near Woodville, Manawatu-
Whanganui region) was chosen where four trees have had their root system excavated. The
location of the study site and the four trees are displayed in Figure 7.1 below.

FIGURE 7.1: Left: location of the Ballantrae study site on the New Zealand north
island. right: Aerial photo of the study site. Trees (1 to 4) are indicated of which

the root system was excavated. The 11 transect holes are indicated as well

Trenches were dug around the four selected poplar trees, roots on the trench faces were counted
and root diameter measured and arranged to distance and depth classes. The same method
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was conducted to eleven 1 by 1 m transect holes on the plantation for validation purposes. A
total of 64 in-situ pullout tests (section 2.4.2.1) on excavated roots on additional trees within the
plantation were conducted. The calibration of the RBMw for poplar, as applied in this thesis for
SlideforMAP, and further details of the fieldwork are presented in Ngo et al. (2023).

7.2 Vegetation mitigation scenarios

SlideforMAP can compute slope stability under hypothetical vegetation scenarios. For this, the
input (either text or vector file) containing single tree detection results, is replaced with a data
file of hypothetical trees. This data file is created from user input. Hypothetical forest can be
generated under four dimensions of variation.

FIGURE 7.2: The four dimensions of variation in hypothetical forest genera-
tion. planting pattern (triangular, square or random), planting density (stems per
hectare), planting tree species (provided RBMw calibration availability) and plant-

ing tree size (expressed in DBH).

For the locations of trees, tree density is given as well as desired pattern. Pattern can be cubic,
triangular or random (with a user defined minimum distance between trees). Additional con-
straints, based on elevation, slope or topographic wetness index can be given as well to correct
for tree suitability. Tree size [DBH] can be allocated uniformly or as samples from a normal dis-
tribution. Tree species can be defined uniformly, randomly from a distribution or conditionally
to elevation, slope or TWI. Tree age and development through time, which is relevant in forest
planning, is not explicitly accounted for in this method. This can be approximated by an in-
crease in DBH. An example of two hypothetical vegetation scenarios in the St. Antönien study
area (chapter 3) are given in Figure 7.3. These scenarios with lateral root reinforcement, shallow
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landslide probability and relative reduction of probability are compared to the actual vegetation
and a scenario without vegetation is used as reference.

FIGURE 7.3: SlideforMAP modelled lateral root reinforcement and shallow land-
slide probability in the St. Antönien study area in Switzerland under four vege-
tation scenarios. first column: No vegetation used as a reference scenario. second
column: Actual vegetation with single tree detection derived DBH. All trees as-
sumed to be Beech. Third column: 150 stems per hectare, 20 cm DBH triangular
pattern European beech plantation. Fourth column: 150 stems per hectare, 40 cm
DBH triangular pattern European beech plantation. The first row displays loca-
tion of the trees. The second row the spatial distribution of the maximum lateral
root reinforcement. The third row displays the SlideforMAP computed shallow
landslide susceptibility under default parametrization (chapter 4). The fourth row
gives the reduction in shallow landslide reduction as compared to the no vegeta-

tion scenario.

It is important to note that the influence of vegetation on slope stability is controlled by geotech-
nical factors. For example, the basal root reinforcement contributing to shear resistance is a
function of soil thickness, with the highest protective effect from basal root reinforcement in
shallow soils (see chapter 4 for the physical relationship). The effectiveness of the vegetation
scenarios, defined as the reduction in shallow landslide probability per 1000 trees is given in
Table 7.1.

TABLE 7.1: Effectiveness in shallow landslide (SL) probability reduction of the
vegetation scenarios from Figure 7.3.

No vegetation Current vegetation Plantation,
20 cm DBH

Plantation,
40 cm DBH

Number of trees 0 1795 8701 8701
Mean SL probability [%] 54.4 34.6 32.9 1.9
Reduction per 1000 trees - 11.03 2.47 6.04
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Table 7.1 displays a high effectiveness of the current trees in reducing shallow landslide activity.
This likely results from their function as protection forest, indicating they are target planted to
prevent natural hazards. This is in contrast to the plantation, where no targeting is applied.

7.3 Tiling for regional application

At the time of writing, applying SlideforMAP over large scales (> 100 km2) under low resolu-
tions (< 5 m), the tiling of the study area is a computationally effective way to run SlideforMAP.
A methodology using 25 km2 tiles is developed. The flow accumulation and slope angle is com-
puted from the DEM beforehand for the whole study area or per tile using an additional 2 km
buffer. Figure 7.4 visualizes the process for a theoretical large catchment.

FIGURE 7.4: Visualized methodology of tiling for the application of SlideforMAP
to a catchment study area (dotted line). In this example the total study area size
is 140 km2. The combined size of all tiles in the computation is 375 km2. Despite
the larger surface area, the computation is more effective within in the tiles and it

prevents memory limit errors.

After running individual tiles with the SlideforMAP approach (chapter 4 or 5), the resulting
shallow landslides probability rasters of the tiles are stitched together. Where the tiles do not
overlap, the single probability value is taken. In areas where tiles overlap, the average value of
shallow landslide probability is computed.
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8 Synthesis

8.1 Introduction

This research aims to quantify the degree in which vegetation decreases shallow landslide ini-
tiation. Model development and the inclusion of novelties, as presented in this thesis, are a
contribution to science. Simultaneously, the tool that has been developed, aims to be an aid for
practitioners. It does this by limiting the number of input parameters and providing a robust
framework, where using estimates of input parameters still provide good results. Simplifica-
tions in SlideforMAP are consciously chosen and attuned to the main goal of the model. Ad-
ditionaly, the thesis includes: two calibrations of the model, a validation and an uncalibrated
application of SlideforMAP.

8.2 Contribution to science

SlideforMAP is a physically based model, according to the definition as posed in section 2.2. The
core safety factor computation and most parameters have a physical meaning. With its distinct
modules (Figure 4.1), it follows a reductionist approach. Within the modules however, concep-
tual methods are included such as the TOPOG approach to hydrology and the runoff coefficient.
The same holds for the RBMw approach to root reinforcement, which is essentially a calibration
and conceptualization of physical measurements.

In the paper presented in chapter 4, the application of SlideforMAP with the RBMw model
proved a significant gain in accuracy by including a single-tree based three-dimensional ap-
proach to root reinforcement, compared to a uniform value of root reinforcement. The cali-
bration of the RBMw was adopted from Gehring et al. (2019) and is based on fieldwork. Our
fieldwork (section 7.1) has laid the foundation for the poplar tree calibration of the RBMw.

The research presented in chapter 5 confirms results from other authors. Many approaches at-
tempt to improve upon steady-state models (e.g Gascoin et al., 2009; Takeuchi et al., 2008), but
found that the steady-state approach to predict water tables performs surprisingly well, despite
its simplification (Moore & Thompson, 1996). Gains in accuracy by a dynamic approach are
therefore often small. In addition to these main findings, specifically addressing model short-
comings, analyzing specific components and identifying model novelties, in the sections below
aims to identify and place the contribution to science of SlideforMAP in context.

8.2.1 Model shortcomings

A direct and uncalibrated comparison to a statistical approach to shallow landslide susceptibil-
ity in New Zealand hill country (chapter 6) reveals several shortcomings in the SlideforMAP
approach. This is in addition to the shortcomings as identified in the initial introduction to the
model (chapter 4). A comprehensive overview is given below.

• No inclusion of evapotranspiration as well as other more minor hydrological effects (Green-
way, 1987) simplifies the hydrological module. An indication of this simplification is in the
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comparison of tree influence. A clear higher radius of influence of the statistical approach
is given versus the extent of the lateral root reinforcement 6.6. It appears that hydrologi-
cal influence of a tree extends further than the extent of its roots, although an explanation
could also lie in the size confinement effect (see section 6.4.2).

• Antecedent moisture influences shallow landslide initiation (Baum & Godt, 2010; Guo et
al., 2014; Jakob et al., 2012; Uchida et al., 2005). A fact that is even observed in our study ar-
eas (De Rose, 2013). Not having included this in SlideforMAP is a shortcoming. A counter
argument could be that SlideforMAP focuses on extreme precipitation events, where an-
tecedent moisture is of less influence (Feng et al., 2020). This does however, limit the
applicability of SlideforMAP.

• The unexpectedly minor difference between the actual rainfall scenario and a design rain-
fall scenario (Table 6.9 and 6.11), illuminates the difficulty of using uncalibrated Ksat values.
Calibrated values from chapter 5, a subsection of the same study area, show Ksat values
in the order of 10−3 m/s, corresponding to macropore dominated lateral flux. Values in
chapter 6 were orders of magnitude smaller, corresponding to matrix flow. Not calibrating
leads to near total saturation as per the saturation degree equation, equation 4.12.

• The focus on water table development by sub-surface lateral flow rather than infiltration
is a conscious choice. Whether this is a shortcoming is site-specific. Oftentimes lateral
flux controls a local groundwater table, but in other cases it has been reported to be from
vertical infiltration (e.g. Bordoni et al., 2015; Iverson, 2000).

8.2.2 Model components

Certain procedures of the model are not considered shortcomings, nor novelties, but their in-
clusion in the model is interesting and has potential for further development. Soil thickness
proved to be a highly sensitive parameter in chapter 4. This is in line with findings in many
other similar models (e.g. Liang & Chan, 2017). Deep soils have a significantly higher propen-
sity for landslides than shallow ones, as seen in the calibration in chapter 4 and 5 and the spatial
distribution of high risk in chapter 6, Figure 6.7. In the temporal sense it goes even further than
sensitivity. Soil thickness and shallow landslide initiation constitute a mutual feedback mecha-
nism (De Rose, 2013; Iida, 1999), being the basis of landscape evolution in certain environments,
such as New Zealand hill country.

Shallow landslide surface area distribution is calibrated using the methodology by Malamud
et al. (2004). In figure 5.13, we compare the distribution of the inventory to the unstable slides
from SlideforMAP. The distributions are nearly identical, indicating good prediction of shallow
landslide size. This could be related to the inclusion of passive earth pressure in the adapted
version of SlideforMAP (chapter 5), which is the main controlling factor for shallow landslide
size (Milledge et al., 2014).

8.2.3 Model novelties

Applying the single-tree based RBMw in a shallow landslide susceptibility is a novelty. It ex-
plicitly defines basal and lateral root reinforcement. Lateral root reinforcement is described by
a propagation in root failure. It is quantified by adjusting for soil thickness and having it apply
to half the circumference of an (assumed) oval shaped shallow landslide. Single-tree detection
from new techniques such as the neural network, as presented in chapter 6, enables the wider
application of the SlideforMAP procedure to mechanical vegetation effects. As far as we are
aware, we are the first to compare a statistical model to a physically-based model, not only by
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including the RBMw approach, but any single-tree based approach to shallow landslide suscep-
tibility. An additional ability of our approach is to model tree development through time, by
making assumptions on DBH increase.

The methodology from chapter 5 has multiple novelties in its hydrological module. These are
i) Runoff coefficients, ii) Effective contributing area, iii) Representative rainfall intensity. These
methods are generally applied to surface water and/or large scale hydrology, specifically pre-
dicting discharge at a defined outlet. The inclusion in, and adaption of, these concepts in small-
scale sub-surface fluxes is novel. Representative rainfall intensity is particularly novel, as rainfall
event characteristics and rainfall heterogeneity are important (e.g Cristiano et al., 2019), but only
recent availability of RADAR data enables a reliable inclusion. Early warning systems based on
intensity duration curves, consistently show this to be a shortcoming Tsai, 2008. For surface wa-
ter relating rainfall to discharge is still extremely challenging. We adopted a surface hydrology
inspired travel time/travel distance strategy and applied it to sub-surface water. This is still chal-
lenging, as many factors are of influence (see section 5.2.3.5). As far as we know, our strategy has
not been applied with analytical equations on a regional scale. The effective contributing area
defines the degree, to which the systems comes to steady-state and is quite the simplification of
rainfall-runoff approaches, but still a novel inclusion. Land use dependent runoff coefficients
are developed and applied as a means for runoff prediction on catchment scale (e.g. Markart
et al., 2017; Scherrer & Naef, 2003). The use of these techniques explicitly for sub-surface lateral
runoff on a smaller hillslope scale is, as far as we are aware, unique.

Passive earth pressure and root compression are often ignored in shallow landslide models
(Murgia et al., 2022) . Including these in SlideforMAP makes for a model more close to reality
and helps in correctly predicting shallow landslide size (Milledge et al., 2014). The SlideforMAP
approach is not perfect though, as it is suggested passive earth pressure is at no stage fully
mobilized in progressive failure (Cohen & Schwarz, 2017b).

8.3 Shallow landslide probability modelling

Having applied the model in both Switzerland and New Zealand, to a total of seven study areas,
is a good indication of generalizability of the model. The study areas are both in energy-limited
systems, indicating a permanent and relatively shallow groundwater system (Dingman, 2015).
Land use is different though, with a silvopastoral system in the New Zealand study areas and
sharply contrasting forests and meadows in the Switzerland study areas. Performance AUC val-
ues in chapter 4 (Eriz: 0.93, Trub: 0.93, StA: 0.64) and validation AUC values in chapter 5 (WA
portion: 0.86, TW portion: 0.90) show that with adequate calibration, good AUC values can be
achieved. The application in chapter 6 (WA farm: 0.83, TW farm 0.87), found good AUC values
for an uncalibrated example as well.

The model is not designed to be an exact forecasting tool, despite the reasonable, good and very
good AUC values (El Khouli et al., 2009). This is because the translation of shallow landslide
probability as generated by SlideforMAP to actual hazard zones remains a challenge. Chung
and Fabbri (2003) concisely describe that probabilities and subsequent classifications only have
added value when a temporal component and magnitude is included. SlideforMAP does have
a specific temporal component, as the modelled rainfall event has a associated statistical return
period. It can therefore provide the highest shallow landslide probability in X years under the
statistically likely highest precipitation intensity or lateral flux, when using the adapted, chap-
ter 5, methodology. An estimate of magnitude can be made by relating SlideforMAP output to
one or more past events and perform an interpolation or conversion. In this sense SlideforMAP
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resembles other models, often statistical large scale models (Reichenbach et al., 2018), aiming
to predict shallow landslide initiation by a relative susceptibility. In chapter 6, Figure 6.5, an
empirical scheme is presented under this assumption. We define relative susceptibility classes,
based on model output and shallow landslide locations in the past. As a relative measure, this is
an acceptable procedure, assuming the past has predictive capacity for the future. Performing a
deterministic run of SlideforMAP, replacing distributions with fixed values, could theoretically
also provide a magnitude estimate. This is however untested and would remove benefits from
the probabilistic approach, such as an estimation of shallow landslide size and other parameters.

The intended application of SlideforMAP, as defined before, is quantifying the influence of veg-
etation. This thesis poses that this can be achieved by comparing a relative rather than absolute
reduction in shallow landslide probability, as seen in the example in section 7.3. Results from
both chapter 4 and 6, compare current vegetation to a no vegetation reference scenario. In chap-
ter 4 the average fraction of unstable hypothetical shallow landslides decreases from 0.475 to
0.336, corresponding to a 29% decrease due to vegetation. In chapter 6, SlideforMAP displays
an average of 9.8% decrease in shallow landslide occurrence over both study areas. A potential
explanation for the difference is methodological, as in chapter 4 it is measure of a model inner
workings, i.e. the proportion of probabilistically generated landslides. In chapter 6 the reduc-
tion is correlated to a change in classification, which in turn is based on a shallow landslide
inventory. Both have their inaccuracies, as both the inventory and the probabilistic modelling
may not be representative of actual shallow landslide occurrence. The most likely reason for the
difference though is study area heterogeneity. The study areas in Switzerland, as used in chapter
4, have a significantly larger averaged tree density (53 vs. 16 trees/ha) and averaged tree DBH
(0.46 vs 0.27 m) than the New Zealand study areas. A visualization of the reduction in shallow
landslide probability from chapter 4 and 6 per study area is given in Figure 8.1 below.

FIGURE 8.1: Reduction of shallow landslide probability by combining the results
of chapter 4 and chapter 6. Study areas located in New Zealand given as circles,
study areas in Switzerland as triangles. No trendline is inserted, as the data points

are little and respective methodologies are incomparable.



Chapter 8. Synthesis 114

The points in Figure 8.1 are generated from a different methodology, different rainfall assump-
tions and different tree size. They do however give an indication of the main point of this re-
search, namely that trees have the potential to significantly decrease shallow landslide activity.

8.4 SlideforMAP application

Two distinct ways in the application for SlideforMAP can be identified. Firstly, method 1, for
the identification of areas susceptible to shallow landslides and secondly, method 2, for the as-
sessment of mitigation measures effectiveness. The outline of both methods is given in Figure
8.2 and 8.3 below.

FIGURE 8.2: SlideforMAP application, method 1. Looking for areas where shallow
landslide probability is high. These areas can likely, but not guaranteed, benefit

from mitigation by tree planting.

FIGURE 8.3: SlideforMAP application, method 2. Assessing the effectiveness of
planned tree planting mitigation by comparing a scenario with and without said

mitigation.

For efficient use of SlideforMAP, the application should be more of an iterative process. Con-
sisting of method 1 for the calculation for possible sites under various (design) rainfall events
and validating efficiency of potential scenarios with available resources with method 2. Tree de-
velopment though time can be modelled by increasing tree size. Ideally, applying SlideforMAP
is only a step in the mitigation process. The process is recommended to include a previous as-
sessment of the problem and subsequent implementation and evaluation of mitigation measures
(Spiekermann, 2022). In the assessment phase a holistic approach to tree placement and choice
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should be undertaken (Mackay-Smith et al., 2021).

A special case for models such as SlideforMAP is the ability of back-calculation (e.g Papa et
al., 2013; Salciarini et al., 2012). When provided with a representative and complete landslide
inventory and knowledge on all but one (independent) parameter, this parameter can be back-
calculated for each probabilistic landslide in the model. Spatially projecting all probabilistic
landslides can subsequently compute the spatial field of the parameter of interest. Good appli-
cations for this approach is the analysis of rainfall and soil thickness heterogeneity.

8.5 Summary

In its methodology, SlideforMAP is among other state of the art models in predicting rainfall-
event induced translational shallow landslide initiation, probabilistically. The core focus of
SlideforMAP though is assessing the relative reduction in probability from specific targeted
planting mitigation measures. For this root reinforcement is included in three dimension with
the RBMw approach (section 4.2.5). The effectiveness of tree mitigation depends on tree plant-
ing density, pattern, species and size. A summary of results throughout this thesis with relative
reduction versus tree density is presented in Figure 8.1. In order to correctly assess shallow
landslide probability, the geotechnical and hydrological module of the model should realisti-
cally reflects processes happening in the soil. For this reason we introduced multiple novelties,
specifically for the regional scale, which are: a representative rainfall intensity (section 5.2.3.5),
an effective contributing area (section 5.2.3.6), runoff coefficient (section 5.2.3.3) and passive
earth pressure (section 5.2.4). A methodology using SlideforMAP is presented in Figure 8.2,
which is akin to most statistical susceptibility models, as it does not have a physical conversion
to magnitude. This is used for identifying areas that could benefit from mitigation measures. A
second methodology (Figure 8.3), specifically displays how to assess effectiveness of mitigation
measures.
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9 Conclusions and outlook

9.1 Conclusions

The main goal of this thesis, developing a state of the art model to quantify mitigation potential
of trees on shallow landslide susceptibility, has been addressed throughout the previous five
chapters. The model, named SlideforMAP, as presented in this thesis, has gone through the
developmental and validation process in chapters 4, 5 and 7. It coupled the well known limit
equilibrium and TOPOG approach to water table and slope stability computation, conditional on
a precipitation intensity. The analytical functions provide the ability for a probabilistic approach,
namely computing over a large number of hypothetical landslides, and the application on the
regional scale. The local fraction of unstable hypothetical landslides, gives a relative shallow
landslide probability that performs well (see summary in section 8.3). In chapter 6, we compare
and benchmark SlideforMAP to a statistical approach. Finally, the synthesis (chapter 8) places
the model in a broader context and seals its contribution to advance science. In the introduction,
specific objectives were defined, subject to the main goal. These are addressed sequentially
below:

• Root reinforcement of vegetation is included in three dimensions, using the state of the
art RBMw approach and applied to single trees (as seen in Figures 4.9, 6.6 and 7.3). It
distinguishes lateral and basal root reinforcement explicitly in the force balance. Total lat-
eral root reinforcement is a calibrated function of tree species, tree DBH, lateral distance,
and thickness to failure plane. Basal root reinforcement is a calibrated function of lateral
root reinforcement, tree species, tree DBH and thickness to failure plane. Tree weight is
included in the computation as well, leading to the representation of all potentially signif-
icant mechanical vegetation effects in SlideforMAP.

• Comparing the current single-tree approach to general approaches (uniform vegetation,
forest stand uniform vegetation), shows a significant (> 99% confidence) increase in accu-
racy of the single-tree approach in two of three study areas in Switzerland. This obser-
vation and the physical basis of the model, indicate that SlideforMAP is a reliable tool to
quantify the effect of potential trees on shallow landslide occurrence.

• In chapter 4, a calibration and subsequent performance measure is presented. Chapter
5, takes it a step further and gives a calibration and validation of SlideforMAP for two
study areas in New Zealand (1.4 and 3.5 km2). It includes RADAR-based hourly rainfall
data, LiDAR-based single tree location and dimension and orthophoto-based tree species
classification, providing excellent groundwork for shallow landslide modelling. A split-
sample calibration and validation is performed on the model and an orthophoto-based
shallow landslide inventory (total slides = 578). Validation AUC ranges between 0.814 and
0.896 (Table 5.8), depending on assumptions and version used (see chapter 5). As expected,
the validation results are generally slightly lower than calibration results, but validation
performance is still good.

• A non-steady state development is included in SlideforMAP (see chapter 5). It assumes a
macropore-dominated lateral flux travel time. Travel times are computed for cells in the
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contributing areas and a contributing fraction during a rainstorm event is included. The
availability of RADAR-based rainfall data leads to a more informed assumption on repre-
sentative rainfall intensity, which is the rainfall intensity representative for the modelled
peak in lateral flux. Isolating the effect of the non-steady state from other model improve-
ments is challenging. The non-steady state development has a significant influence on pore
water pressure compared to a steady-state assumption with lower pressure in valleys, i.e.
areas with a large contributing area (Figure 5.9).

• Vegetation-induced preferential flow is incorporated in SlideforMAP by the inclusion of
a runoff coefficient, whose value is dependent on cumulative rainfall, soil thickness and
lateral root reinforcement (as a proxy of root density). Comparing a hybrid version of
SlideforMAP enables us to isolate the difference in performance for two study areas in
New Zealand. This difference is negligible.

• Comparing the physically based SlideforMAP to a statistical logistical regression method,
showed an approximately 70% agreement in classification between the models. Non-
agreement is related to the difference in methodology and input data. Performance for
the statistical method is excellent and very good for SlideforMAP. This is related to the
calibration of the statistical method. An advantage of SlideforMAP is the ability to include
susceptibility related to tree dimensions and specific rainfall events. In case of limited re-
sources, practitioners are advised to focus on areas where both models are in agreement
on high shallow landslide susceptibility.

All in all, the research presented in this thesis presents a model that can effectively quantify the
effect of current and potential trees on the probability of shallow landslides.

The tool and concepts presented in this thesis can be of great value to practitioners, land man-
agers and scientists. The well-considered application of SlideforMAP can optimize the planting
and management of new trees and management of existing trees in areas where there is some
minimal information on soil, topography and climate. The physical basis allows for the anal-
ysis of potential rainfall events that can be related to specific, preferably standardized, return
periods. When recommendations, generated by SlideforMAP, are implemented on a large scale,
shallow landslide probability can decrease substantially, with a minimized effect on land pro-
ductivity. Properly considering vegetation co-benefits can further enhance the positive effects of
trees.

9.2 Outlook

The increase in accuracy and availability of methods to detect single-trees locations and metrics,
such as DBH and species, likely increases the applicability of single-tree based methods such as
SlideforMAP. These methods can be of aid in the monitoring phase to check whether planted
trees have developed as planned and, using SlideforMAP, whether the mitigation effect has de-
veloped as planned.

SlideforMAP presents a novel application of the RBMw model which distinguishes lateral and
basal root reinforcement. Additionally it includes the novelty of relating groundwater flux to
temporally heterogeneous rainfall and a runoff coefficient controlled by macropore presence,
correlated to root reinforcement. Our hydrological improvements are still very much concep-
tual and have not definitively proven their merit. Simplifications in our application include a
fixed macropore width, a macropore velocity dependent solely on precipitation intensity and
a conceptual rainfall-runoff curve calibrated in Switzerland and previously applied on larger
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scales. More research, improvements and test cases could advance the accuracy of shallow land-
slide models adopting a similar approach to lateral flux dominance.

In the RBMw approach, more tree species, such as native New Zealand trees like kanuka, can
be parametrized. The RBMw assumes a constant species-specific root distribution as function of
tree DBH. However numerous factors can potentially influence root distribution, such as slope
angle, prevailing wind, water availability and competition from other roots (McIvor et al., 2009;
Zhu et al., 2017). Root reinforcement is also assumed to be independent of environmental fac-
tors, but research suggests that soil moisture has a considerable influence (Masi et al., 2021).
Further quantitative research on these factors and implementation in root distribution models
can result in better predictions of root reinforcement.

The accuracy in quantifying tree effects by SlideforMAP is conditional to the accurate implemen-
tation of controlling factors for shallow landslide initiation. Methods that incorporate landscape
evolution for estimating the spatial heterogeneity of soil depth are promising, such as those
developed by D’Odorico and Fagherazzi (2003) and Marston (2010). These models are more re-
liable than extrapolations from limited measurements and the inclusion of the temporal domain
opens the possibility of including soil development and shallow landslide activity as a feedback
mechanism.

A holistic approach to tree placement is essential. The analysis for preventing shallow landslide
occurrence, or any other type of natural hazard, by such trees is only part of the puzzle. A
multitude of biological, economical and cultural considerations should be taken into account.
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Chapter 4; Introducing SlideforMAP; a probabilistic finite slope ap-
proach for modelling shallow landslide probability in forested situa-
tions

FIGURE 10.1: Histograms of different subsamples of the LHS parameter sets for
the Eriz study area. The shading (from light to dark) corresponds to subsamples
retaining only the x% best parameter sets in terms of AUC; the shown fractions

are: 1, 0.7, 0.4, 0.1.

FIGURE 10.2: Histograms of different subsamples of the LHS parameter sets for
the Eriz study area. The shading (from light to dark) corresponds to subsamples
retaining only the x% best parameter sets in terms of Unstable ratio; the shown

fractions are: 1, 0.7, 0.4, 0.1.

FIGURE 10.3: Histograms of different subsamples of the LHS parameter sets for
the StA study area. The shading (from light to dark) corresponds to subsamples
retaining only the x% best parameter sets in terms of AUC; the shown fractions

are: 1, 0.7, 0.4, 0.1.
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FIGURE 10.4: Histograms of different subsamples of the LHS parameter sets for
the StA study area. The shading (from light to dark) corresponds to subsamples
retaining only the x% best parameter sets in terms of Unstable ratio; the shown

fractions are: 1, 0.7, 0.4, 0.1.

R-code constructing the precipitation intensity boundaries in the sensitivity analysis:

## Computation of the DDF curves ##
## Input intensities manually read from https://hydromaps.ch ->
Wasser in der Atmosphaere ->
B04 Extreme Punktniederschlaege
## method according to: https://hydrologischeratlas.ch/downloads/01/content/Text_Tafel24.de.pdf

#StAntonien rainfall intensity
#i_1h_100J<-42 #mm/h, 1 hour time period intensity, 100 year return period
#i_24h_100J<-115/24 #mm/h, 24 hour time period, 100 year return period
#i_1h_2p33J<- 21 #mm/h
#i_24h_2p33J<-57/24 #mm/h

#Bern_mittelland (Trub and Eriz study area) rainfall intensity
i_1h_100J<-47 #mm/h
i_24h_100J<-115/24 #mm/h
i_1h_2p33J<- 21 #mm/h
i_24h_2p33J<-62/24 #mm/h

T<-100 # Return period
d<- 1 # Duration
a<-0.315*log(i_24h_100J*24/i_1h_100J) # parameter 1
b<-0.315*log(i_24h_2p33J*24/i_1h_2p33J) # parameter 1

y<- -log(-log(1-1/T))
i_d_T_1<- i_1h_2p33J*(d^b) + 0.248*(i_1h_100J*(d^a) - i_1h_2p33J*(d^b))*(y-0.577)
print(i_d_T_1)

Python-code making and validating a log-normal distribution from a mean and a standard de-
viation:

import numpy as np
import scipy.special as sps
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from scipy.stats import norm
import pandas as pd

######### NORMAL TO LOGNORMAL DISTRIBUTION #########
LSFile = ’LS_data.csv’
LSinv_base = pd.read_csv(LSFile)
soil_depth_obs = LSinv_base[’depth’].dropna().tolist() # get the list of the

#https://blogs.sas.com/content/iml/2014/06/04/simulate-lognormal-data-with-specified-mean-and-variance.html
m = np.mean(soil_depth_obs) # mean
v = np.std(soil_depth_obs)**2 # variance
phi = np.sqrt(v + m**2)
mu = np.log(m**2/phi) # lognormal par 1
sigma = np.sqrt(np.log(phi**2/m**2)) # lognormal par 2
n = 1000000

normalVals = np.random.normal(m,np.sqrt(v),n) # draw soil depths from the distribution
LognormalVals = np.exp(np.random.normal(mu,sigma,n)) # draw soil depths from the distribution

plt.hist([normalVals, LognormalVals],bins = 500, histtype= ’step’)
plt.xlabel(’soil_depth’)
plt.ylabel(’n’)

print(len(normalVals))
print(len(LognormalVals))
print(np.mean(normalVals))
print(np.mean(LognormalVals))
print(np.min(normalVals))
print(np.min(LognormalVals))
print(np.max(normalVals))
print(np.max(LognormalVals))
print(np.std(normalVals))
print(np.std(LognormalVals))
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######## SOIL DEPTH OUR DISTRIBUTIONS VS. DATA #############
x = np.linspace(-1, 4, 5000)
pdf_log = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) / (x * sigma * np.sqrt(2 * np.pi)))

points = plt.hist(soil_depth_obs, bins=int((max(soil_depth_obs)-min(soil_depth_obs))/0.2)\
, density = True, label = ’normalized data (n = 607)’)
plt.plot(x, norm.pdf(x, m, np.sqrt(v)), label = ’fit normal distribution’)
plt.plot(x, pdf_log, linewidth=2, color=’r’, label = ’fit lognormal distribution’)
plt.axis(’tight’)
plt.xlabel(’soil thickness (m)’)
plt.ylabel(’probability density’)
plt.legend()
plt.savefig(r’C:\Users\vof1\Documents\Papers\paper_1\reviews\review_2\response\normallognormal.png’,bbox_inches=’tight’\
, dpi=200)
plt.show()

######## COMPUTE MEAN SQUARE ROOT ERRORS #############
LS_x = np.linspace(0.1, 2.9, 15)
LS_lognormals = np.nan_to_num((np.exp(-(np.log(LS_x) - mu)**2 / (2 * sigma**2)) / (LS_x * sigma * np.sqrt(2 * np.pi))))
LS_normals = norm.pdf(LS_x, m, np.sqrt(v))

# Mean Squared Error
MSE_normal = np.square(np.subtract(points[0],LS_normals)).mean()
MSE_lognormal = np.square(np.subtract(points[0],LS_lognormals)).mean()

print(’The normal distribution MSE is ’, np.round(MSE_normal,4))
print(’The lognormal distribution MSE is ’, np.round(MSE_lognormal,4))

R-code computing and plotting RRmax, Lateral root reinforcement and Basal root reinforcement:
#Data from Gehring et al. 2019. (https://doi.org/10.1038/s41598-019-45073-7) and applied SlideforMap
Distance <- seq(0.1,15,0.1) # Range of horizontal distance [m]
depth<- seq(0,2,0.02) # Range of soil depth [m]
DBH <-0.3 # Diameter at Breast height of a tree [m]

# Horizontal root density Gamma function parameters
alpha_1 <- 0.862
beta_1 <- 3.225
c <- 25068.54

# Vertical root density Gamma function parameters
alpha_2 <- 1.284
beta_2 <- 3.688

# Check the maximum root reinforcement with alpha_1 and beta_1
root_max <- ifelse(Distance <18.5, ((c*DBH)*dgamma(Distance/(DBH*18.5), alpha_1, beta_1)),0) #[N/m],
plot(Distance,root_max/1000, type = "b", pch = 16, col = ’#FF8C00’,\
main = ’RRmax, DBH = 0.3 m.’, xlab = ’Distance from stem [m]’, ylab = "Root reinforcement [kN/m]")
grid()

# lateral root reinforcement and basal root reinforcement with alpha_2 and beta_2
k <- 1 # [m^(-1)]
root_max_fix <- 1 # [kN/m]
degamma <- dgamma(depth,alpha_2,beta_2)
RRlat <- root_max_fix*pgamma(depth,alpha_2,beta_2) # [kN/m]
RRbas <- k * dgamma(depth,alpha_2,beta_2)*root_max_fix # [kN/m^2]

plot(depth,degamma, type = "b", pch = 16, col = ’#838B83’, xlab = ’Soil thickness [m]’, ylab = "Root reinforcement")
lines(depth, RRlat, type = "b", pch = 16, col = ’#FF8C00’)
lines(depth, RRbas, type = "b", pch = 16, col = ’#1E90FF’)
grid()
legend("topright",legend = c("Lateral [kN/m]", "Basal [kN/m2]"), col = c("#FF8C00", "#1E90FF"),pch = c(16, 16))

# Plot for an actual Random landslide
Surface_area = 50 # [m^2]
length_width_ratio <- 2 # [-]
ls_width = sqrt((Surface_area*4)/(pi*length_width_ratio)) # [m]
ls_length = ls_width*length_width_ratio # [m]
Circumference = pi*(3*((ls_length/2)+(ls_width/2))-sqrt((3*(ls_length/2)+\
(ls_width/2))*((ls_length/2)+(3*(ls_width/2))))) # [m]

RRlat_l <- root_max_fix * pgamma(depth,alpha_2,beta_2) * Circumference * 0.5 # kN
RRbas_l <- root_max_fix * dgamma(depth,alpha_2,beta_2) * Surface_area # kN

plot(depth,RRbas_l, type = "b", pch = 16, col = ’#1E90FF’,\
main = ’Random Landslide, area = 50 m2’, xlab = ’Soil thickness [m]’, ylab = "Root Force [kN]")
lines(depth, RRlat_l, type = "b", pch = 16, col = ’#FF8C00’)
grid()
legend("topright",legend = c("Lateral", "Basal"), col = c("#FF8C00", "#1E90FF"),pch = c(16, 16))

Chapter 5; Application and validation of SlideforMAP for assessing
shallow landslide probability in New Zealand hill country

Precipitation event

RADAR-based precipitation data is used to compute the precipitation event with the highest
return period for the time period of 2000-2010. The year 2000 is the first year of the data avail-
ability and 2010 is the year of the landslide inventory. A plot with the highest mean precipitation
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intensity for events of a duration from 1 hour to 24 hours, with their start time and date are given
in Figure 10.5.

FIGURE 10.5: Intensity duration curves constructed from NIWA-HIRDS4 dataset
(Carey-Smith et al., 2018) with return periods of 100, 50, 20 and 10 years. The
return period is computed by minimal MSE fit of the NIWA-HIRDS4 dataset with
a general function of I = a ∗ Tb. Highest hourly interval intensity events over
the years 2000-2010, preceding the landslide inventory, are plotted. The legend
displays the date and time of their onset. Figure on the left for the Te Whanga
area and Figure on the right for Waikoukou. Plotted lines are for the mean of the
precipitation. Numbers above indicate the computed return periods of the event.

Relationship of precipitation intensity and maximum lateral flow

Our theoretical rainfall-runoff example for a contributing area in the Waikoukou study area.
The example gives both an actual event and a constant mean precipitation of said event. This is
shown in Figure 10.6.
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FIGURE 10.6: A rainfall-runoff example of lateral macropore flow as a response to
the March 2005 rainfall event for an example contributing area in the Waikoukou
study area. In the lower left and lower middle are the hydrograph and macrop-
ore velocity for the actual rainfall event and a constant mean precipitation event
respectively. Both a scenario with and without a runoff coefficient is included. For
the runoff coefficient we choose RT2, corresponding to slightly delayed runoff in
shallow soils. Upper right is a visualization of the contributing area with distance
to the outlet [m]. Lower left and middle left is the macropore flow rate at the out-
let as a function of time for the actual event and the constant mean precipitation

scenario.

In our example, the peak discharge under the constant mean precipitation (Figure 10.6 [lower
middle]) with a runoff coefficient is higher than that under no runoff conditions. This seems
contradictory, but is the resultant of our computation. We assume groundwater holds a constant
velocity after infiltration, that is dependent on the infiltration intensity and a constant assumed
macropore diameter. This approach enables the concentration of groundwater under different
velocities at the outlet.

We applied the same methodology to a subset of the contributing areas in both the Waikoukou
and Te Whanga study area and computed the ratio of macropore flow from a mean and an event
precipitation. The results are plotted versus the contributing area size, which we expect to be
the best and most practical predictor of this ratio in Figure 10.7, 10.8. These figures are for a
scenario with no runoff coefficient and a fixed runoff coefficient. The version with a variable
runoff coefficient is published in and applied in the main paper. The resolution of the digital
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elevation model from which the D8 contributing areas are computed is 2 m.

FIGURE 10.7: Ratio between the maximum lateral flow rate derived from an ac-
tual event and a constant mean precipitation with no runoff coefficient. The event
is the March 2005 rainfall event and contributing areas are from both the Waik-
oukou and Te Whanga study area. A linear regression is performed to compute
the relationship between this ratio and the contributing area size. The Waikoukou
intercept and slope are 6.4 and -1.02 respectively. The Te Whanga intercept and

slope are 7.0 and -1.05 respectively.

FIGURE 10.8: Ratio between the maximum lateral flow rate derived from an actual
event and a constant mean precipitation with a runoff coefficient of Runoff Type
2. The event is the March 2005 rainfall event and contributing areas are from both
the Waikoukou and Te Whanga study area. A linear regression is performed to
compute the relationship between this ratio and the contributing area size. The
Waikoukou intercept and slope are 5.7 and -0.83 respectively. The Te Whanga in-

tercept and slope are 6.3 and -0.97 respectively.

Calibration and validation

The robustness of the calibration and validation method was tested by repeating the method
5 times for the Waikoukou study area with the original version of SlideforMAP as presented
in this paper. This is limited for computational reasons. The resulting parameter values and
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output metrics are given in Figure 10.9. Dotty plots displaying parameter narrowing for the best
performing of the 5 calibration test runs are given in Figure 10.10 to 10.13.

FIGURE 10.9: Development of the calibration and validation process. The upper
four graphs show the resulting value of one of the calibration values. The lower
three graphs give result variables with a blue dot for the calibration value and a

red dot for validation values.
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FIGURE 10.10: Dotty plots for the repeated calibration and validation process.The
plot gives the parameter values of the mean soil thickness versus the resulting

AUC for the three calibration rounds.

FIGURE 10.11: Dotty plots for the repeated calibration and validation process.The
plot gives the parameter values of the mean saturated soil cohesion versus the

resulting AUC for the three calibration rounds.
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FIGURE 10.12: Dotty plots for the repeated calibration and validation process. The
plot gives the parameter values of the mean friction angle versus the resulting

AUC for the three calibration rounds.

FIGURE 10.13: Dotty plots for the repeated calibration and validation process. The
plot gives the parameter values of the saturated hydraulic conductivity versus the

resulting AUC for the three calibration rounds.
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Pore water pressure

FIGURE 10.14: Calibrated pore water pressure in Waikoukou. Upper row, mean
pore water pressure [kPa] from SfM, SfM org. with SfM parametrization, SfM org.,
with unique calibration and SfM no hybrid; Lower row list the absolute difference

in pore water pressure of the versions as compared to SfM.
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