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Thesis overview and summary

The global carbon cycle is essential for many aspects of the climate system and life in general.
Within this carbon cycle, the natural terrestrial carbon sink plays an important role removing
CO2 from the atmosphere. Many factors influence this terrestrial cycle, particularly climate
variability, both natural and human-made. Especially in the face of global warming, the evolution
of the natural carbon sink is quite uncertain. In particular, the effects of extreme weather and
climate events, which are expected to become more frequent and more severe in the future, on
the carbon cycle are hard to quantify, since the extremes themselves are also associated with
uncertainties. To contribute to the ever-growing scientific field of carbon cycle and extreme event
research, this thesis is concerned with analysing the effects of differing drought-heat signatures
on terrestrial carbon dynamics using dynamic vegetation modelling.

We built six hypothetical 100-year long climate scenarios which differ in their occurrence
frequency of hot and dry extremes. They are based on a large ensemble simulation generated by
the climate model EC-Earth. This data has several advantages. Firstly, it represents present-day
climate without any trends. Secondly, it is available on a global grid, and thirdly, it offers a very
long time series, which is needed to study extreme events in order to have a large enough sample
size. The scenarios only differ in their extreme occurrence, but are similar in their global means.
However, the data does present some regional biases which have a potentially large impact on
modelled impacts. The scenarios are described and characterized in Chapter 2.

The six hypothetical scenarios were used to run the dynamic global vegetation model
LPX-Bern v1.4, as well as five additional dynamic global vegetation models. The models were run
using constant CO2 concentrations and not allowing any land-atmosphere feedbacks which might
change our initially sampled scenarios. They also only consider natural vegetation, meaning no
crops or other land uses. The LPX-Bern results, described in detail in Chapter 3, show clear
differences between scenarios as well as between climate zones. While trees thrive under climate
scenarios with few extremes or only hot extremes, especially in higher latitudes, they show a
clear reduction in coverage for dry extremes and especially compound hot and dry extremes. The
relatively large increase in tree coverage in high latitudes under more hot extremes is associated
with an increased growing season length in these regions which are generally energy-limited.
Grasses tend to compensate the changes in tree coverage to some extent. Changes in tree
coverage are also associated with changes in plant productivity and carbon stored in vegetation.
Most of these results are shown as global means with regional differences being potentially large.

Chapter 4 discusses the comparison of different vegetation models all run with the same
input scenarios. The carbon variables are comparable between the models in the global mean,
but we see quite large differences in vegetation coverage, most likely due to biases in the input
data. Regionally, these differences may be even larger. There is still overall agreement between
the models that a compound hot and dry climate leads to a reduction in tree coverage with an
associated reduction in carbon stored in vegetation. The scenario with frequent dry extremes
suggests similar results, with slightly less agreement between the models. The effects of a climate
with hot extremes and those of a climate with no compound extremes are generally small. Large
differences can be seen in a climate with no extreme events at all, where some models simulate
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an increase in vegetation and others a decrease. However, it is clear that compound hot and dry
events are associated with a reduction of carbon stored on land.

Our results suggest a possible reduction in the natural land carbon sink under future climate
change. The coupling of temperature and precipitation can vary substantially between models
and biases can exist in the input data. Therefore, results can differ when studying compound
events. This thesis contributes to the understanding of feedbacks and processes concerning
variable interaction, which is crucial to improve models. The field of compound event research is
still emerging and ever-growing and there is still a lot to investigate when it comes to the effects
of extremes on the terrestrial carbon cycle. Future work could focus on other types of compound
events, such as temporally compounding or preconditioning, or different impact models could be
used, for example, crop or fire models.
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Chapter 1

Introduction

1.1 About the carbon cycle

1.1.1 The global carbon cycle

The global carbon cycle refers to the exchange of CO2 between four major reservoirs, which are
important on time scales from seconds to centuries: the atmosphere, oceans, land, and fossil
fuels (Houghton, 2007; Archer et al., 2009). The slowest to affect the atmospheric CO2, on
timescales of millennia, are processes such as weathering, vulcanism, and ocean sedimentation,
but since the annual amount of carbon exchanged via these mechanisms is very small, they
are generally ignored in budgets of a century (Houghton, 2007). Of the three, relatively fast
exchanging, pools the ocean is the largest with about 40000 PgC and a turnover time of about
500 years. The terrestrial biosphere pool is considerably smaller (2000-3000 PgC) but with
a much faster turnover time of about 20 years (Ciais et al., 2013). Other land pools include
permafrost (1100-1500 PgC, Lindgren et al., 2018) and peat- or wetlands (400-600 PgC, Yu,
2012).

The main processes controlling the uptake of carbon by the oceans are the ocean’s carbon
chemistry, the air-sea exchange, the mixing between surface and deep waters, and ocean biology
(Houghton, 2007). Anthropogenic CO2 perturbations in the atmosphere lead to an increased
uptake of carbon by the ocean due to an increased sea-air gas exchange. To a lesser extent, the
marine carbon sink may also be changed through alterations of the natural carbon cycle, for
example, by warming, which affects CO2 solubility, and by changes in the circulation, which
changes the marine biological cycles. Between 1991 and 2002, the ocean CO2 sink has grown, but
uncertainties in the estimates are large. Between 2011 and 2020, the ocean was a sink for 26 %
of total CO2 emissions (Friedlingstein et al., 2022).

The exchange between the atmosphere and terrestrial ecosystems is mainly the result of
biological processes, namely photosynthesis and respiration (Houghton, 2007). However, the land
ecosystems have been changed profoundly by human land use and land-use change, which affects
not only vegetation distribution but is also associated with carbon emissions. Some aspects of it,
like the increased CO2 concentration in the atmosphere and additional nitrogen availability
through deposition and fertilization as well as climate change, have led to an uptake of carbon by
the biosphere. Between 2011 and 2020, the biosphere has taken up about 30 % of anthropogenic
CO2. The terrestrial carbon cycle is explained in more detail in the following section.

In comparison to the ocean and land pool, the atmosphere contains little carbon with about
600 PgC pre-industrial. However, the redistribution of fossil carbon (in the form of coal, oil,
and natural gas which are residuals of organic matter formed millions of years ago by green
plants, the reservoir estimated to be 5000-10000 PgC) to the atmosphere dominates the global
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carbon budget (Houghton, 2007). CO2 in the atmosphere is the largest contributor to the
anthropogenically enhanced greenhouse effect. CO2 concentrations in the atmosphere have
reached 414.7 ppm in 2021, which is 50 % above pre-industrial levels (Friedlingstein et al., 2022).
Since the atmosphere couples the land and the ocean, it plays an important role in the global
carbon cycle despite its size for carbon storage. Feedbacks between the carbon cycle and the
climate system are critical for predicting changes in climate (Houghton, 2007). Warming of the
climate system can lead, for example, to increased decay of organic matter in soils or a decrease
in oceanic carbon uptake. Both of this would directly affect the atmospheric CO2 concentration,
which would rise more quickly than without these positive feedbacks, which in turn also increases
the rate of warming (Houghton, 2007). On the other hand, higher CO2 concentrations in the
atmosphere may enhance photosynthesis and the storage of carbon in vegetation and soils, which
is a negative feedback that leads to a less rapid rise of atmospheric CO2 levels.

1.1.2 The terrestrial carbon cycle

The terrestrial biosphere exchanges carbon with the atmosphere via plant activity. Plants
transform energy via photosynthesis from short-wave radiation into chemical energy, as water
and CO2 from the atmosphere are synthesized to form carbohydrates and oxygen, which is
released as a byproduct. Environmental conditions such as light and temperature or water and
nutrient availability are important factors for photosynthesis. Gross primary production (GPP)
is the amount of carbon absorbed by photosynthesis on land. About 50 % of this is released back
into the atmosphere via plant respiration (autotrophic respiration). The carbon remaining fixed
in the plants is called net primary production (NPP). The assimilation of carbon is opposed
by the decomposition of dead organic material, called heterotrophic respiration (HR). The
difference between NPP and HR is called net ecosystem production (NEP) and describes how
much carbon is stored in an ecosystem without disturbances (Lienert, 2018). Net ecosystem
exchange (NEE) describes the term of carbon that is stored long term after disturbances. A
schematic of these fluxes is shown in Figure 1.1. An imbalance between photosynthesis and
respiration will cause an ecosystem to be either a source or a sink of carbon. If everything
is in equilibrium, an increase in productivity also means an increase in carbon storage until
the carbon lost from the detritus pool comes into a new equilibrium with the higher input of
productivity (Houghton, 2007). Various measurements suggest that respiration is more sensitive
to variations in climate than photosynthesis (Valentini et al., 2000; Saleska et al., 2003; Myneni
et al., 1995; Hicke et al., 2002).

Figure 1.1: Schematic of the terrestrial carbon fluxes. GPP = Gross Primary Production; NPP = Net Primary
Production; NEP = Net Ecosystem Production; NEE = Net Ecosystem Exchange. Heterotrophic respiration is the
release of carbon through the decomposition of dead organic material. Disturbances include, for example, fire or
human-made deforestation. Credits to Nicolas Gruber.
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Historical patterns suggest that the terrestrial ecosystems were a net source before the 1930s
(Joos et al., 1999; Houghton, 2007) and then became a net sink. The current terrestrial carbon
sink has kept the airborne fraction of total CO2 emissions at about 47 % for the period of
2011-2020, having taken up about 1.9 ± 0.9 PgC yr−1 between 2011 and 2020 or about 30 % of
total anthropogenic emissions (Friedlingstein et al., 2022). As a result of anthropogenic activity
and changing climate, the carbon balance has begun to shift. There is concern that the present
terrestrial carbon sink may not persist (Canadell et al., 2007). A diminished terrestrial sink or
even a source would lead to higher concentrations of CO2 in the atmosphere than predicted.
This turns the management of fossil fuel emissions into an even greater challenge (Houghton,
2007). It would clearly help in managing the carbon cycle if the airborne fraction were to remain
the same or even get smaller in the future (Houghton, 2007). Observations show that the total
northern hemisphere carbon sink has diminished since 1992. Since the uptake by the oceans
seems to have increased (Manning & Keeling, 2006), it is suggested that the diminished sink is
terrestrial (Houghton, 2007), although Friedlingstein et al. (2022) show a continued increase of
the land CO2 sink between 2011 and 2020, primarily due to increased atmospheric CO2. Some
studies estimate the net terrestrial carbon uptake to have declined from 1.2 ± 0.8 PgC yr−1 to
0.5 ± 0.7 PgC yr−1 between 1990 and 2000 (Manning & Keeling, 2006). During 2002 and 2003,
the releases of CO2 from land was anomalously high (Allison et al., 2005). In 2002, they were
from the tropics and in 2003 from Eurasia. The 2003 summer drought and heatwave in Europe is
estimated to have reduced primary productivity there by 30 %, resulting in an anomalous net
source (Ciais et al., 2005). If climate change is weakening the natural carbon sink, the rate
of CO2 increase in the atmosphere may be expected to accelerate (Jones et al., 2005). Other
estimates, however, show an increase of the terrestrial CO2 sink from 1.2 ± 0.5 PgC yr−1 in the
1960s to 3.1 ± 0.6 PgC yr−1 during 2010-2019, indicating only a decreased land sink during El
Niño events (Friedlingstein et al., 2022). This general increase of the land sink is believed to
occur mainly due to CO2 fertilization which increases photosynthesis as well as plant water use
in water-limited systems (Friedlingstein et al., 2022). Overall, it is unclear how the terrestrial
sink will develop in the future (Friedlingstein et al., 2022).

Two aspects are considered to be responsible for the carbon sink on land, human-made
factors and natural processes. Human-made changes include actions such as regrowth from past
disturbances and changes in land use or management (Houghton, 2007). Land use and land-use
change have altered the terrestrial carbon stocks significantly, but cumulative CO2 estimates for
land-use change are uncertain (Friedlingstein et al., 2022). The change depends on the area of
land affected, the carbon stocks before and after the change, and the rates of decay and recovery
after the change (Houghton, 2007). Over the past 300 years, forests have been replaced by
agricultural lands (Houghton, 2003), especially in tropical regions where croplands expanded
substantially (Friedlingstein et al., 2022). This leads to a decrease of carbon stored on land,
since trees hold much more carbon per unit area than other types of vegetation (Houghton,
2007). Thus, land-use change caused a global emission of CO2 from land of about 0.9 ± 0.7
PgC yr−1 for the year 2020, having decreased slightly over the last two decades mostly due to
lower emissions from cropland expansions in tropical regions (Friedlingstein et al., 2022). This
would indicate a net source of carbon from the land. However, this estimate only considers
human-made changes and does not include other sources or sinks, unrelated to land-use change.
Of course, there are mechanisms considered responsible for the carbon sink on land without
considering anthropogenic change. These natural processes concern the rates of photosynthesis,
respiration, growth, and decay. Changes in climate variables, such as warmer temperatures and
changes in soil moisture, often favour the growth of trees and, on longer terms, the spread
of trees into tundra, savanna, and grasslands. In colder ecosystems (e.g. in high latitudes),
warmer temperatures increase productivity and therefore carbon storage. One reason for this
are longer growing seasons, especially over boreal zones and temperate Europe (Myneni et al.,
1997; Friedlingstein et al., 2022). Experiments have shown that most C3 plants (plants which
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fix CO2 into a compound containing three carbon atoms before entering the Calvin-Benson
cycle of photosynthesis as opposed to C4 plants, which fix CO2 into a molecule containing four
carbon atoms), which include all trees and vegetation from cold regions, respond to elevated
concentrations of CO2 with increased rates of photosynthesis, increased productivity, and
increased biomass (Norby et al., 2005). Litter and soil carbon pools also increase under elevated
CO2 (Jastrow et al., 2005; Luo et al., 2006). However, these factors often interact non-additively
to influence carbon storage (Houghton, 2007). For example, under higher CO2 concentrations,
plants can acquire the same amount of carbon with a smaller loss of water through their stomata,
which reduces the effects of droughts. Negative interactions are also possible. Shah & Paulsen
(2003) observed increased net primary production in a Californian grassland with separate
increased temperature, precipitation, nitrogen deposition, and atmospheric CO2. For combined
treatments, however, elevated CO2 decreased the positive effects of the other treatments, most
likely because some soil nutrients became limited (Shah & Paulsen, 2003). Climate change and
variability can counterbalance CO2 effects, so that climate change reduced the land sink by 15 %
for the period of 2011-2020, mainly in South and Central America, Southwest USA and Central
Europe (Friedlingstein et al., 2022). Even though CO2 fertilization is an important factor in the
current terrestrial carbon sink, its persistence in the future is uncertain (Houghton, 2007).

Terrestrial carbon sources and sinks vary depending on the region. The separation of
atmosphere-land fluxes between the northern hemisphere land and the tropical land is of
importance because each region has its own history of land-use change, climate drivers, and
impact of increasing atmospheric CO2 and nitrogen deposition (Friedlingstein et al., 2022).
While the overall (ocean and land) carbon fluxes in the northern extratropics were shown to be a
sink (Houghton, 2007; Friedlingstein et al., 2022), there are large uncertainties in quantifying the
drivers, especially for the global net land CO2 flux (Arneth et al., 2017; Huntzinger et al., 2017).
The distribution between the tropics and high northern latitudes for the atmosphere-to-land
fluxes are also uncertain (Baccini et al., 2017; Ciais et al., 2019; Gaubert et al., 2019).

The discrepancies of the net land-atmosphere exchange are large, especially over the northern
extratropics. This highlights the difficulty of quantifying complex processes such as CO2

fertilization and climate change, to name but a few, that determine the net land CO2 flux
(Friedlingstein et al., 2022). In the southern extratropics, the net land flux (consisting of natural
as well as land-use components) is approximately neutral, meaning that all carbon uptake in
these regions occurs due to the ocean sink. This ocean dominance also means that interannual
variability is low (Friedlingstein et al., 2022).

In northern regions, a net land source during the 1980s changed to a net sink during the
1990s (Houghton, 2003). The regrowth of forests after deforestation for wood production led to
an accumulation of carbon (Houghton, 2007). It is possible that non-forest ecosystems in these
regions also accumulate carbon, although the extent of this is unclear, since an above-ground
increase of carbon stocks through woody encroachments can be offset by losses in below-ground
carbon stocks (Jackson et al., 2002; Houghton, 2007). Arctic and boreal lands are of considerable
interest because of their large reserves of soil carbon and the greater warming expected for high
latitudes (Houghton, 2007). The initial greening of these regions was interpreted as increased
productivity, which is plausible due to the warming (Myneni et al., 1997). More recent studies,
however, show a trend of reduced productivity in some forests after 1990 (Angert et al., 2005;
Goetz et al., 2005; Bunn & Goetz, 2006), probably due to more summer droughts (Barber et al.,
2000; Lloyd & Fastie, 2002). The deciding factor is whether higher temperatures or, maybe
even more importantly, less soil moisture enhance photosynthesis and growth (carbon sink) or
whether they lead to more respiration (carbon source). In addition, higher temperatures (and
more droughts) go hand in hand with fires, in boreal regions (Kasischke & Turetsky, 2006) as
well as in the tropics (Nepstad et al., 1999; Page et al., 2002).

The net fluxes in the tropics are associated with large uncertainties as well (Friedlingstein
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et al., 2022). While most estimates indicate an approximately neutral tropical ocean flux,
estimates on the net land flux vary, some indicating a net land sink (mainly estimates from
dynamic global vegetation models (DGVMs)) to a possible land source. In the tropics, interannual
variability is generally highest out of all regions, especially in terms of the land flux (Houghton,
2007; Friedlingstein et al., 2022). The tropics were calculated to be a net source of carbon
between 1992 and 1996 (Gurney et al., 2002). The uncertainties in the tropics are high due to
a lack of CO2 sampling stations and the more complex atmospheric circulation (Houghton,
2007). Land-use changes in the tropics are a clear source of carbon to the atmosphere, but the
estimates are vague due to uncertainties in deforestation estimates (Fearnside, 2000; DeFries
et al., 2002; Houghton, 2003) as well as biomass estimates (Houghton, 2005, 2007).

1.2 About extreme events

1.2.1 Extreme weather and climate events

Weather and climate extremes are episodes of rare weather conditions. They are commonly
defined as the “occurrence of a value of a weather or climate variable above (or below) a
threshold value near the upper (or lower) ends of a range of observed values of the variable”
(Seneviratne et al., 2012). The occurrence likelihood and magnitude of climate extremes can
alter substantially with climate change. This might happen due to a shift in mean conditions,
increased variability, a changed shape of occurrence probability or a combination of the above
mentioned factors. The disaster risk that arises from extreme events consists of three factors:
the weather and climate event, the vulnerability, and the exposure of the society or ecosystem.
Unlike the anthropogenic climate change, the natural variability cannot be influenced by humans.
However, vulnerability and exposure can be managed through adaptation and mitigation.

1.2.2 Compound extreme weather and climate events

Extreme weather and climate events usually happen due to multiple drivers interacting on different
spatial and temporal scales which may overwhelm natural or human systems and thus lead to
ecological or societal impacts (Zscheischler et al., 2020). Often, impacts from multiple drivers
or hazards are amplified in comparison to the simple addition of single impacts (Zscheischler
et al., 2018). The concept of compound events was first introduced by the Intergovernmental
Panel on Climate Change (IPCC) Special Report on Climate Extremes (SREX, IPCC, 2012)
and research on the matter has evolved from there. Since the SREX report, the definition
of compound events has also developed and is now generally defined as “a combination of
multiple drivers and/or hazards that contributes to societal or environmental risk” (Zscheischler
et al., 2018). The goal of compound-event research is to improve predictability and assessment
of environmental and societal risks and impacts arising from weather and climate related
hazards as well as to develop methods for detection and attribution (Moftakhari et al., 2017;
Hendry et al., 2019). It aims at increasing the understanding of key physical processes that
contribute to an event, assess associated risks, quantify projected changes, and explore suitable
adaptation strategies (Zscheischler et al., 2020). A compound event is typically constituted by
four characteristics: modulators, drivers, hazards, and impacts (Zscheischler et al., 2020). The
hazard is the climate-related phenomenon that precedes a potential impact, for example, droughts
or heatwaves leading to a loss in vegetation productivity. The hazard does not necessarily need
to be extreme in the statistical sense, provided that it triggers an impact. The hazards are
triggered by one or several climatic drivers, for example, tropical cyclones or cold fronts. Drivers
are affected by modulators, for example, low-frequency modes of climate variability like the El
Niño-Southern Oscillation. Climate change has the potential to alter all elements of compound
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events (Zscheischler et al., 2020). Once the key variables relevant for a specific impact have been
identified, it is important to determine the strength of relationships between different causal
components (modulators, preconditions, drivers and hazards) to estimate the likelihood of an
event (Hao et al., 2018; Tilloy et al., 2019).

Figure 1.2: Schematic for multivariate compound events as classified by Zscheischler et al. (2020). For the events
discussed in this thesis, the modulator could be La Niña, the drivers are high temperatures and low precipitation,
the hazards are heatwaves and droughts and the impacts are vegetation shifts and changes in carbon uptake. The
figure is adapted from Zscheischler et al. (2020), where similar schematics for the other types of compound events
can be seen.

In order to provide a coherent framework for compound-event analysis, Zscheischler et al.
(2020) presented a typology of compound weather and climate events. The events are grouped
into four categories: multivariate (of which a schematic can be seen in Fig. 1.2), preconditioned,
temporally compounding, and spatially compounding. A multivariate event refers to the
co-occurrence of multiple climate drivers and/or hazards in the same location which lead to an
impact. Multiple drivers can cause one or more hazards or a single driver can cause multiple
correlated hazards. One example for such an event are co-occurring low precipitation and
high temperature extremes, namely concurrent droughts and heatwaves. This is the type of
compound event focused on in this thesis. A preconditioned event describes an event where
one or more hazards only cause an impact because of a pre-existing condition. An example
for a preconditioned event is a false spring, where ecosystems have a high activity due to
higher temperatures (the precondition) at the end of winter and thus the impact is larger when
it is followed by a frost event (the hazard) in spring (Zscheischler et al., 2020). Temporally
compounding events refer to a succession of hazards that affect a given geographical region,
leading to, or amplifying, an impact when compared to a single hazard. The hazards are promoted
by one or more drivers. A much studied example of a temporally compounding event is the
temporal clustering of extratropical and tropical cyclones. Spatially compounding events occur
when multiple connected locations are affected by the same or different hazards within a limited
time window, thereby causing an impact (Zscheischler et al., 2020). The hazards and hazard
drivers are often caused by a modulator (Steptoe et al., 2018), which creates a physical link
between the different locations. An example for such an event is the global food system, wherein
synchronous crop failure due to spatially co-occurring hazards poses a potential threat to food
security (Singh et al., 2018; Mehrabi & Ramankutty, 2019). The impact of multiple simultaneous
hazards can also be increased due to societies’ inability to respond to them, as can be the case,
for example, with many co-occurring wildfires. The above classifications are comprehensive, but
of course not all events fit perfectly into one category. Some might fit into multiple categories,
like the hot and dry summer in Texas in 2011, which fits into the multivariate event, but also
into the preconditioned category, since an earlier precipitation deficit amplified the magnitude of
the heatwave and drought via land-atmosphere feedbacks (Berg et al., 2015; Quesada et al.,
2012). Determining the boundaries between preconditioning and temporally compounding events
is also often challenging.
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Anthropogenic climate change is expected to alter the distribution of practically all climate
variables as well as some of their dependencies (Zscheischler & Seneviratne, 2017). This can
happen in different ways as schematically shown in Figure 1.3. It is therefore expected that
trends can be seen in the likelihood of compound events on timescales of multiple decades.
Compound event research is necessary to disentangle the effects of climate change on the different
elements of a compound event, as well as the spatial and temporal scales of events and their
spatio-temporal dependencies. This is a challenging task, especially due to the small sample size,
since compound extremes are by definition rare and have a low signal-to-noise ratio (Zscheischler
et al., 2020). With rising temperatures due to climate warming, the frequency of compound hot
and dry conditions is also expected to increase, even in regions where precipitation trends are
negligible (Sarhadi et al., 2018) or even positive (Coffel et al., 2019).

Figure 1.3: Potential effects of climate change on drivers of compound events. These changes (shifts in mean,
increased variance, and increased dependence) can affect one or multiple drivers. The dashed line indicates a
threshold with moderate impact, the dotted line indicates a threshold that is only exceeded under climate change
conditions. These patterns can occur in combination and have an effect on both frequency and magnitude of the
compound event. Taken from Zscheischler et al. (2020).

1.3 Hot-dry extremes and the carbon cycle

Exploring the effects of hot-dry extremes on the carbon cycle is still challenging (Sippel et al.,
2018). Firstly, there is the unclear issue of definition. Secondly, the sample size of observed
extremes is by definition small. Thirdly, many different approaches are being applied, from
local experiments to global remote sensing and modelling. Impacts on the carbon cycle depend
not only on the intensity of the extreme but also on the initial ecosystem state when the
extreme happens (e.g. soil moisture or snow anomalies before a drought, Buermann et al.,
2013; Papagiannopoulou et al., 2017), the timing, and duration (Denton et al., 2017; De Boeck
et al., 2011). This includes sequences of events (Jentsch et al., 2011), drought-heat interactions
(Seneviratne et al., 2010), and other interactions with climatic trends (Beierkuhnlein et al.,
2011), which are all types of compound events. Depending on the initial state, a climatological
extreme might not lead to an impact in an ecosystem while vice versa an impact might occur
following statistically non-extreme climate conditions (Galvagno et al., 2013; Zscheischler et al.,
2016; Sippel et al., 2018; Vogel et al., 2021). Spring water savings due to elevated CO2, for
example, might reduce transpiration and thus alleviate summer drought impacts to some extent
(Lemordant et al., 2016). The timing of the onset of an extreme is crucial for the severity of the
impact. For example, the impacts of droughts and heatwaves on grasslands seem to be largest at
very early development stages and in summer (Denton et al., 2017; Darenova et al., 2017). The
duration also plays a role. However, these different sensitivities to timing and duration might
also lead to antagonistic mechanisms, as shown by von Buttlar et al. (2018). Different types of
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carbon cycle impacts can be distinguished, as, for example, Frank et al. (2015) have done by
differentiating “concurrent” vs. “lagged” and “direct” vs. “indirect” impacts (Fig. 1.4). Indirect
impacts might include fire following a drought or insect outbreaks (Williams & Abatzoglou, 2016;
Jactel et al., 2012). Impacts of drought-heat events on plants can occur all over the world since
plants are adapted to their environments’ specific thermal and water availability characteristics
(Choat et al., 2012; O’sullivan et al., 2017). Although the overall effect of drought and heat on
the carbon cycle is rather negative (Reichstein et al., 2007; Schwalm et al., 2010; von Buttlar
et al., 2018), the relative role of drought vs. heat can vary.

Figure 1.4: Overview of how carbon fluxes may be triggered or altered by extreme events. A concurrent change
means that the carbon signal can be detected in the atmosphere while the extreme occurs. A delayed change
means that the signal is only detectable after the event has happened. Taken from Reichstein et al. (2013).

Carbon cycle effects might remain in plant phenology or carbon pools even beyond the
duration of the extreme event (De Boeck et al., 2018; Yu et al., 2022). In grasses and shrubs,
legacy effects can span one to two years while in trees they can span up to four and more years
(Wu et al., 2016, 2018; Anderegg et al., 2013b). Recovery times also depend on the biomes, with
tropical and boreal biomes needing longer to recover from a drought (Schwalm et al., 2017).
Processes such as belowground carbon allocation (Hagedorn et al., 2016), eco-hydrological
properties (Wu et al., 2018), and water use strategies (Peltier et al., 2016) are thought to be
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important for post-drought recovery. When drought or heat stress exceeds a threshold, mortality
can occur. This is especially important for forests (Allen et al., 2010) due to their high carbon
storage and long recovery time. Under such conditions, the plants have to choose between
carbon starvation and the disruption of their water transport system (McDowell et al., 2011)
and it seems that carbon starvation occurs rather rarely (Hartmann et al., 2013). To account for
the importance of timing, the focus of this thesis lies on the months when vegetation is most
productive for the onset of extremes. However, the importance of antecedent conditions as well
as legacy effects are not taken into consideration if they go beyond a calendar year, since the
sampling procedure does not consider years which are climatologically consecutive.

Different vegetation types react differently to extremes, having individual growth patterns
and thus distinct C allocation responses to extreme conditions (Larcher, 2003). For example,
forests do not show a significant change in canopy characteristics during a heatwave, although
GPP is reduced, while grasslands respond fast through canopy changes (Zhang et al., 2016;
Teuling et al., 2010). Grasses generally react faster to drought conditions, because trees have
deeper roots with which they can reach deep soil water for a longer period of time (Zhang et al.,
2016). In remote sensing based studies, the question arises whether they simply do not detect
the drought stress in forests because forests do not change their canopy characteristics as fast as
grasslands (Zhang et al., 2016). Even between different grasses exists a different resilience to
extremes. C4 grasses are usually better adapted to higher temperatures and are thus more
drought resistant than C3 grasses (Taylor et al., 2014). Differences also exist among different
tree species. Since the work presented in this thesis only distinguishes between trees and grasses,
the differences between species will not be discussed further.

Extreme impacts on vegetation carbon depend on the interplay between photosynthesis
and carbon release processes (Ahlström et al., 2015; Zeng et al., 2005). The largest effects on
GPP occur in semi-arid regions (Zscheischler et al., 2014c). Generally, regions can be separated
into “energy-limited” and “water-limited” evapotranspiration regimes. The highest vulnerability
to extremes and thus GPP loss occur in regions that are transitional between water-limited
and energy-limited regimes, mainly semi-arid regions. The main drivers of GPP loss in such
regions have been associated with water scarcity, fire, or heat and thus show the importance of
drought-heat events in these regions (Seneviratne et al., 2010; Zscheischler et al., 2014a).

Plants may adapt carbon allocation strategies to overcome resource limitations (Bloom
et al., 1985; Denton et al., 2017; Sevanto & Dickman, 2015). Higher CO2 levels, also known as
CO2 fertilization, have a positive effect on plant photosynthesis and leaf area in the absence of
extreme conditions (Zhu et al., 2016; Obermeier et al., 2017), but they also have an indirect effect
during droughts because they reduce stomatal opening and therefore transpiration, which saves
water (Roy et al., 2016). However, it is unclear whether this phenomenon increases or decreases
temperatures (Lemordant et al., 2016). It is difficult to completely understand these different
effects, in an experimental setup as well as in the modelling world, because each setup has its
limitations (experiments ignore the coupling with the boundary layer and models have certain
assumptions on stomatal behaviour). Despite these considerations, the benefits of elevated
CO2 might be limited under high temperatures or very dry conditions (Obermeier et al., 2017).
Additionally, as mentioned above, the combined effects of two drivers are not simply additive
(Dieleman et al., 2012) and thus pose a challenge for model development and evaluation.

1.4 The challenges of disentangling compound drivers

The dependence between two variables, for example, temperature and precipitation, as is the
case in this study, can be represented statistically using multivariate probability distribution
functions, the most common of which is the correlation coefficient (Zscheischler et al., 2020).
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However, choosing the appropriate temporal and spatial scales for an event is challenging. A
good start to understand the potential impacts of compound events are process-based model
experiments with which it is possible to test a wide range of hazard scenarios. Once the drivers
are modelled and understood, they need to be mapped to potential impacts (Zscheischler et al.,
2020). This is usually done using predefined hazard scenarios, which represent combinations of
events that are of interest. Choosing these hazards is somewhat subjective and depends on the
event, expert judgement, and available data. In this case, we use the so-called “and” hazard
scenario for the compound event which corresponds to concurrent exceedance of two variables
above a predefined threshold for the compound scenario (Salvadori et al., 2016; Zscheischler &
Seneviratne, 2017; Zscheischler et al., 2014d). For the single event scenarios, we use the “or”
approach, where either one or the other variable is exceeding its threshold.

Since compound events are typically rare by design, assessing their occurrence probability is
difficult (Zscheischler et al., 2020). A robust analysis requires many samples. Usually, observations
do not include enough data points, either in time or in space, for a robust analysis. In addition,
field experiments are difficult to set up and it is hard to control all variables, especially in a
compound setup. In contrast, the modelling setup allows for an easily controlled environment,
where it is possible to change variables independently or combined and rerun the model to get
different but comparable time series of sufficient length. The modelling approach also offers
different strategies with advantages and disadvantages. Adding artificial extremes to an existing
reanalysis time series, for example, leads to physically inconsistent time series. Large ensembles
or reanalysis data are often pre-industrial or transient, meaning they change over time, which
makes the analysis of the influence of single drivers complicated. A good approach to generate
long, physically consistent and temporally stable time series is through large-ensemble model
experiments (Poschlod et al., 2020).

1.5 Dynamic global vegetation modelling using large ensemble
simulations

First attempts at modelling vegetation have been made in the 1970s (Botkin et al., 1972).
Two basic approaches have been developed to model vegetation responses to a changing
climate: static (time-independent) and dynamic (time-dependent, Prentice & Leemans, 1990).
These are biogeographical and biogeochemical models, because the potential distribution of
vegetation depends not only on climatic variables such as temperature, moisture or atmospheric
CO2 and available nutrients, but also on environmental gradients such as topography and
geology (Woodward & Woodward, 1987; Stephenson, 1990; Prentice et al., 1992). The dynamic
biogeographical model incorporates explicit representation of key ecological processes such as
establishment, tree growth, competition, death and nutrient cycling (Peng, 2000). This type of
model was designed to capture the transient response of vegetation to a changing environment
(Shugart Jr & West, 1980; Shugart, 1984). Over the years, the simple model from the 1970s has
been developed and adapted for a range of different biomes (Peng, 2000).

The vegetation models in this thesis were driven by climate data from EC-Earth’s large
ensemble simulation. Large ensemble climate model simulations are valuable tools that can be
used to quantify and separate the internal variability of the climate system and its response
to external forcing (Maher et al., 2021). They typically consist of a set of simulations from a
single model, forced with identical external forcings but starting from different initial conditions
(Maher et al., 2021). Large ensemble simulations can be used to investigate internal variability
and dependencies (Maher et al., 2021), but they can also be used as forcings for impact modelling.
They provide the possibility to generate a lot of data, which deals with the problem of data
scarcity in observations, providing coherent and standardised data. This allows to identify and
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robustly sample by definition rare extreme events, which have potentially large impacts on
society and the environment (Haugen et al., 2018; Suarez-Gutierrez et al., 2018). Extremes and
also compound extremes are dynamically altered under climate change, which poses a major
challenge. Large ensemble simulations can be used to analyse the non-linear response to multiple
meteorological drivers and land surface responses (Zscheischler et al., 2018) by means of spatially
explicit and process-based models.

1.6 Motivation and Goal of this thesis

It is clear that the terrestrial carbon sink plays an important role in the global carbon cycle, but
its development in the future is uncertain (Friedlingstein et al., 2022). Especially under extreme
events, vegetation which currently acts as a sink may be turned into a reduced sink or even
a source of CO2. While many studies have investigated the effects of single extreme events,
compound event studies are fairly new (they only emerged about ten years ago). Despite the
increased complexity when analyzing compound events compared to univariate events, their
importance in extreme event research is evident (Zscheischler et al., 2018, 2020).

This study aims at investigating the development of the natural terrestrial carbon cycle as
well as vegetation distribution under extreme events. The focus lies on compound hot and dry
extremes, which are amongst the most harmful extreme events for ecosystems (Sippel et al.,
2018). To reach this goal, dynamic global vegetation models were forced with hypothetical
scenarios sampled from a large ensemble climate model simulation.

Chapter 2 focuses on the input data used throughout this thesis, explains the sampling
method, and quantifies the sampled scenarios. Chapter 3 details the results obtained by running
the dynamic global vegetation model LPX-Bern and focuses on the effects on different biomes.
Finally, Chapter 4 presents a comparison between six dynamic vegetation models and focuses on
their agreements and differences.
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Abstract

Extreme climate events such as droughts and heatwaves can have large impacts on the environment.
Disentangling their individual and combined effects is a difficult task due to the challenges
associated with generating controlled environments to study differences in their impacts. One
approach to this problem is creating artificial climate forcings with varying magnitude of
univariate and compound extremes, which can be applied to process-based impact models. Here,
we propose and describe a set of six 100-year long climate scenarios with varying drought-heat
signatures that are derived from climate model simulations whose mean climate is comparable to
present-day climate conditions. The changes in extremes are most notable in the three months
in which vegetation activity is highest and where arguably hot and dry extremes may have
the largest impacts. Besides a control scenario representing natural variability (Control), one
scenario has neither heat nor drought extremes (Noextremes), one has univariate extremes but
no compound extremes (Nocompound), one has only heat extremes but few droughts (Hot), one
has only droughts but few heatwaves (Dry), and one has many compound heat and drought
extremes (Hotdry). These scenarios differ only moderately in their global mean climate (about
0.3 ◦C in temperature and 6 % in precipitation) and do not contain any long-term trends. The
data are provided on a daily timescale over land (except Antarctica and parts of Greenland) on
a regular 1◦ × 1 ◦ grid. These scenarios were constructed primarily to investigate the impact
of varying drought-heat signatures on vegetation and the terrestrial carbon cycle. However,
we believe that they may also prove useful to study the differential impacts of droughts and
heatwaves in other areas such as the occurrence of wildfires or crop failure. The data described
here can be found on zenodo (https://doi.org/10.5281/zenodo.4385445, Tschumi et al. (2020)).

This work is distributed under the Creative Commons Attribution 4.0 License.
Please visit https://creativecommons.org/licenses/by/4.0/ to see the licence.
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2.1 Introduction

Climate extremes such as droughts, heatwaves, storms and floods are important stressors to the natural
environment. They can lead to large and devastating impacts on ecosystems and society (IPCC, 2012;
Reichstein et al., 2013; Frank et al., 2015; Tschumi & Zscheischler, 2020). Extreme impacts in turn
may also be caused by meteorological conditions that are not necessarily extreme in a statistical sense
(Zscheischler et al., 2016; Vogel et al., 2020; van der Wiel et al., 2020). In many cases, impacts are caused
by multiple extremes or a combination of anomalous meteorological drivers (Flach et al., 2017), also
referred to as compound events (Zscheischler et al., 2018, 2020). The multiple drivers behind compound
events are often correlated (Leonard et al., 2014; Zscheischler & Seneviratne, 2017). Furthermore, the
combined impact of compound extremes can be more severe than a simple linear combination of univariate
extremes, for instance, the effect of drought and heat on terrestrial carbon uptake (Zscheischler et al.,
2014b) or crop yields (Cohen et al., 2020; Ribeiro et al., 2020). Hence, quantifying the differential impact
of compound versus univariate extremes and the relevance of driver dependence is important for a better
understanding of climate risks.

The land biosphere plays an important role in the global carbon cycle, taking up between a quarter
and a third of anthropogenic CO2 emissions (31% in the last decade according to the most recent estimate
of the Global Carbon Project, Friedlingstein et al. 2020). Different factors enhance this land sink such as
increased atmospheric CO2 concentrations and warmer temperatures in the high latitudes, which increase
the growing season length in the high latitudes (Zhu et al., 2016). However, at the local scale, vegetation
productivity can be limited by factors such as water availability, temperature conditions, light conditions,
availability of nutrients, and CO2 concentrations (Schlesinger & Bernhard, 2013). These factors can vary
greatly, especially during extreme climate conditions.

The effect of climate extremes on vegetation and the terrestrial carbon cycle can be studied from
different perspectives, for instance based on (i) lab or field experiments (De Boeck et al., 2011; Beier et al.,
2012; Song et al., 2019), (ii) observational data such as long-term forest observations (Anderegg et al.,
2013a) and local measurements of carbon exchange (Ciais et al., 2005; von Buttlar et al., 2018; Pastorello
et al., 2020), (iii) indirect estimates from satellite observations (Ciais et al., 2005; Zhao & Running, 2010;
Zscheischler et al., 2013; Stocker et al., 2019) and (iv) dynamical vegetation models (Ciais et al., 2005;
Zscheischler et al., 2014a,b,c,d; Rammig et al., 2015; Xu et al., 2019; Bastos et al., 2020a; Pan et al., 2020).
Hereby, process-based vegetation models allow for the development and testing of novel hypotheses
in a controlled environment and at the global scale. Arguably, drought and heat are among the most
damaging hazards to terrestrial vegetation (Allen et al., 2010; Reichstein et al., 2013; Zscheischler et al.,
2014b; Frank et al., 2015; Sippel et al., 2018). However, differentiating impacts between drought and heat
alone and compound drought and heat remains a challenging task. Despite large model uncertainties,
it is widely acknowledged that drought and heat extremes will increase in frequency and severity in
many land regions in the future (Seneviratne et al., 2012). Though it is still uncertain exactly how these
increases will affect the terrestrial biosphere, there are concerns they might substantially reduce the
current terrestrial carbon sink (Reichstein et al., 2013).

Temperature and precipitation are strongly correlated in most land regions in the warm season
(Madden & Williams, 1978; Trenberth & Shea, 2005) and this dependence controls the occurrence of
compound drought and heatwave events (Zscheischler & Seneviratne, 2017). Similar to regional biases in
mean temperature and precipitation, climate models can have biases in the temperature-precipitation
dependence, i.e. in the correlation between temperature and precipitation. Given the relevance of drought
and heat for carbon dynamics and in particular the disproportional impacts of compound drought and
heat (Allen et al., 2010; Zscheischler et al., 2014d; von Buttlar et al., 2018), differences in the dependence
between temperature and precipitation in the climate forcing might affect estimates of carbon dynamics
and uptake. In particular, Earth system models collected in the coupled model intercomparison projects
(e.g. CMIP5 Taylor et al. (2012)) show a substantially stronger dependence than the forcing that is used
in the regular carbon budget estimates provided by the Global Carbon Project (Friedlingstein et al., 2020)
in the Southern Hemisphere (Zscheischler & Seneviratne, 2017). It is unclear whether these differences
originate from an overestimation of the dependence in climate models or a lack of observational constraint
in observation-based gridded climate data sets. However, independent of a potential bias with respect to
observations, differences in this dependence across climate models may contribute to uncertainties in
carbon-cycle climate feedbacks with ongoing climate change (Friedlingstein et al., 2014).

Disentangling the effects of varying temperature-precipitation dependence and the associated occurrence
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of compound drought and heat on terrestrial carbon dynamics is challenging, as non-stationarity and the
use of different vegetation models in different Earth system models confound the assessment. Here, we
present a range of climate scenarios that have been developed specifically to study the differential effects
of single or compound drought and heat events and their impacts on vegetation and the terrestrial carbon
cycle with dynamical vegetation models. The scenarios span a period of 100 years and all have a similar
mean climate but differ in their occurrence frequency and intensity of droughts, heatwaves and compound
drought and heatwave events during the peak of the growing season. Although the scenarios are somewhat
tailored to study carbon dynamics, they may also be used to explore the effects of drought and heat on
other climate impacts, for example, wildfires or crop failure.

2.2 Data description

This section describes the climate model simulations from which the scenarios were sampled. We further
provide an assessment of biases in precipitation and temperature and show that our climate simulations
with approximately constant forcing result in a stationary vegetation composition over time. Finally, we
describe how we sampled scenarios with different drought-heat signatures.

2.2.1 EC-Earth climate simulations

The data for the drought-heat scenarios were sampled from a large ensemble climate modelling experiment.
This experiment consisted of 2000 years of simulated present-day climate data, which were created with
the fully-coupled global climate model EC-Earth (v2.3, Hazeleger et al., 2012). The large ensemble was
built out of 400 short five-year runs, which were unique in initial condition and/or stochastic physics seed.
EC-Earth combines atmospheric, oceanic, land, and sea-ice model components and simulates the global
climate including feedbacks between, for example, land and atmosphere. The horizontal resolution in the
atmosphere for the simulations was T159 (approximately 1.1◦). For creating the scenarios, the climate
model output has been bilinearly interpolated to a regular 1◦ × 1 ◦ grid. All analysis was based on daily
data.

In the large ensemble experiment, we defined the ‘present-day climate’ by means of the observed
global mean surface temperature over the years 2011-2015. We selected the five year EC-Earth model
period (2035-2039) that minimized the difference between simulations and observation of the global mean
surface temperature from sixteen transient climate runs (1861-2100, RCP8.5). Each of these sixteen runs
were then used, at the start of the selected period, as an initial condition for an ensemble of 25 members
of five years each. By choosing different seeds for the atmospheric stochastic perturbations (Buizza et al.,
1999) each of these members developed unique weather. Together this resulted in 16× 25× 5 = 2000 years
of simulated present-day climate data. More details on the large ensemble climate model experiment setup
are provided in Van der Wiel et al. (2019c). Note that, within the ensemble, the influence of forced climate
change is small. We therefore assume that all variability in the data set is due to natural variability in the
climate system.

2.2.2 Regional biases in annual temperature and precipitation

Despite the annual mean surface temperature being unbiased at the global scale by experimental design
(Section 2.2.1), model biases may exist at the regional and seasonal scale. We therefore compare a random
100 year sample from the EC-Earth data to a 30-year climatology of the climate data from the Climate
Research Unit (CRU TS3.26) (Harris et al., 2014). We compared against the time period 1988-2017,
though using a shorter time period of 2011-2015 (the same time period as represented by EC-Earth)
results in very similar biases. Generally, averaged over land (excluding Antarctica and most of Greenland),
temperature differs by -0.5 ◦C and precipitation by 7 % compared to CRU. However, biases can be
relatively large at the regional scale. In the tropics (between 23.5 ◦ S and 23.5 ◦ N), EC-Earth has a cold
bias of -1.8 ◦C compared to CRU (Fig. 2.1a). In the extratropics, EC-Earth has a small warm bias of
about 0.2 ◦C on average, with most of this bias being concentrated in the very high latitudes and nearly
no bias in the mid-latitudes (Fig. 2.1a). With respect to annual precipitation, many land regions have a
wet bias in EC-Earth compared to CRU (Fig. 2.1b). The extratropics have a wet bias of about 43.5 %. In
the tropics, some regions are drier (e.g., the Amazon and Indonesia) while others have very little bias in
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EC-Earth compared to CRU (tropical Africa). Note, however, that observation-based estimates differ
strongly in their absolute precipitation amounts (Sun et al., 2018).
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Figure 2.1: Biases in EC-Earth simulations with respect to observation-based data from CRU. (a) Difference in
annual mean temperature between EC-Earth and CRU in ◦C. (b) Relative difference in annual precipitation
between EC-Earth and CRU in %. The time period 1988-2017 was used for CRU and randomly sampled 100 years
(representing 2011-2015) for EC-Earth. The land regions depicted in grey in (b) are desert regions with a mean
annual precipitation of less than 250 mm in the CRU data set and were excluded in the maps to avoid dividing by
very small numbers.

2.2.3 LPX-Bern stability

LPX-Bern v1.4 (Lienert & Joos, 2018) is a Dynamic Global Vegetation Model (DGVM) based on
Lund-Potsdam-Jena (LPJ) model (Sitch et al., 2008). The model features coupled water, nitrogen,
and carbon cycles and represents different types of vegetation using Plant Functional Types (PFTs).
Here, only natural vegetation is considered, which is internally represented by eight tree PFTs and
two herbaceous PFTs competing for resources and adhering to bioclimatic limits. In this study, daily
temperature, precipitation, and short-wave radiation are provided to the model. Additionally, the model
uses information on the soil type (Wieder et al., 2014), CO2 concentration in the atmosphere at 1901-level
(296.8 ppm), and nitrogen deposition (NMIP, Tian et al. (2018)). A spin-up of 1500 years (recycling the
first 30 years of the climate forcing) was performed to make sure all carbon pools are in equilibrium.

To make sure that the climate forcing is appropriate for climate impact modelling, we assessed
whether LPX-Bern simulations are stable over the course of the entire 2000 years of EC-Earth data.
Except for a slight decreasing trend in tropical broadleaved evergreen trees (TrBE), the global fraction of
each of the ten PFTs present in LPX-Bern shows no apparent trends over the 2000 years (Fig. 2.8).
Hence, despite relatively large biases at the regional scale (Section 2.2.2), LPX-Bern seems to be stable
using input from this global climate model. This gives us confidence to use this control simulation as a
baseline to estimate the effect of climate scenarios with different drought-heat signatures. We can assume
that any trends and non-stationarities in the LPX-Bern output will be due to the scenarios. In addition,
this test run was used for the sampling described in Section 4.2.1.

2.2.4 Scenario sampling

This section describes the steps taken to create climate scenarios with varying drought-heat signatures.
We sampled 100-year long scenarios from the original 2000 years of EC-Earth data. The selection of the
different scenarios was based on temperature and precipitation values during the time of the year where
the vegetation is most active. Arguably, the vegetation is most vulnerable to climate extremes during the
growing season (Orth et al., 2016; Zscheischler et al., 2017). Therefore, for the scenario creation we
focused on the three months around the most productive month in the climatology. We first identified the
most productive month at each pixel, that is, the month with the highest net primary production (NPP)
in the mean seasonal cycle of NPP, as simulated by LPX-Bern (Section 2.2.3). The month of maximum
NPP differs from pixel to pixel, depending on the geographical location (Fig. 2.9). For instance, in the
northern mid and high latitudes, July is typically the most productive month whereas it is January or
February in most of the southern mid and high latitudes. In contrast, in the tropics and subtropics, the
most productive month varies quite strongly across locations, depending on the dominant rainy season
(Wang & Ding, 2008).

We selected the six different scenarios for each pixel separately based on mean temperature and
precipitation over the three months around the month of highest vegetation productivity: Control,
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Noextremes, Nocompound, Hot, Dry, and Hotdry. Years contributing to the scenarios were sampled based
on quantiles of the three month temperature and precipitation averages as indicated in Figure 2.2, where
the quantiles were computed based on the full 2000-year EC-Earth simulation. If more than the required
number of years fall into the quantiles in question, a random selection was performed. If less years than
necessary were available, some randomly chosen years were selected multiple times.

• For Control, 100 years were sampled randomly out of the 2000 years (Fig. 2.2a).

• For Noextremes, 100 years were sampled for which temperature and precipitation are both within
the 40th to 60th percentile (Fig. 2.2b).

• For Nocompound, 100 years were sampled for which temperature and precipitation do not exceed
the 85th percentile in any direction at the same time (Fig. 2.2c).

• For Hot, 50 years were sampled for which temperature exceeds the 85th percentile and precipitation
is within the 40th to 60th percentile and 50 years were sampled randomly from the rest (Fig. 2.2d).

• For Dry, 50 years were sampled for which precipitation lies below the 15th percentile and temperature
is within the 40th to 60th percentile and 50 years were sampled randomly from the rest (Fig. 2.2e).

• For Hotdry, 50 years were sampled for which temperature lies above the 85th percentile and
precipitation lies below the 15th percentile at the same time and 50 years were sampled randomly
from the rest (Fig. 2.2f).

The reason for only selecting 50 years from the extreme quantile for the Hot, Dry and Hotdry
scenarios is twofold. Firstly, for many pixels, not a huge amount of years fall into the extreme quantiles.
Sampling only 50 years from there reduces the numbers of times a year is re-sampled. Secondly, the mean
climatology is kept more similar to the other scenarios if only half the years were sampled with extreme
conditions and the other half from the rest.

This method of scenario creation, for each pixel separately, destroys any spatial coherence, so that the
climate in a pixel is not correlated to the climate in nearby pixels. Furthermore, due to the sampling of
individual years, there are always slight discontinuities between 31 December and 1 January in the
climate forcing. The same is true for leap years, since all leap days (29 February) were removed.

2.2.5 Available variables

To allow for impact modelling for a wide range of sectors we provide temperature variables (mean,
minimum, maximum), precipitation, radiation (short- and longwave downward radiation and shortwave
net radiation) and wind (zonal (eastward, u) and meridional (northward, v), see Table 2.1) at daily
timescales. For this study, we only analyzed mean temperature and precipitation to quantify differences in
the occurrence of droughts and heatwaves between the scenarios. All variables are available at a regular
1◦ × 1 ◦ grid over land, except Antarctica and large parts of Greenland. Leap days were removed, so there
are 365 × 100 time steps for each scenario. Whenever global means are given, they are area-weighted
means over all land cells except Antarctica and Greenland. The data can be accessed via zenodo
(https://doi.org/10.5281/zenodo.4385445, Tschumi et al. (2020)).

2.3 Scenario characterization

A key goal of the design of the different scenarios is that they vary in their characteristics of climate
extremes, in particular droughts and heatwaves, while differing only little in their mean climate conditions.
The scenarios differ moderately in their global land mean temperature and annual precipitation sums and
all scatter closely around global CRU averages (Fig. 2.3). Temperature differences are in the order of
0.3 ◦C and precipitation differences are up to 6 %, which corresponds to about one and two standard
deviations of the inter-annual variability in CRU, respectively. The precipitation differences between
scenarios and with respect to CRU are thus noticeably smaller than the difference across different
precipitation data sets (Sun et al., 2018). Spatially explicit differences illustrate that the difference in
annual mean temperature is mostly below 1 ◦C for the Hot and Hotdry scenario at the regional scale, and
much smaller for the other scenarios (Fig. 2.10). Similarly, the difference in annual precipitation at the
regional scale is mostly below 20 % for the Hot, Dry and Hotdry scenario and much smaller for the others
(Fig. 2.11).
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Figure 2.2: Sampling of scenarios from their respective quantiles, details provided in the main text. Two
colouring shades (for Hot, Dry, and Hotdry) means 50 years were sampled from each shade. The quantiles were
calculated based on the full 2000 years EC-Earth data.

2.3.1 Heatwaves

Temperature extremes were quantified based on cooling degree days (CDD). Being aware of the multitude
of heatwave indices (Perkins, 2015) we chose this index because it is an integrative measure for cumulative
magnitude, frequency and duration of the heatwaves (Laufkötter et al., 2020). Choosing another index
would result in different numbers but likely not affect the ranking between the different scenarios. Heating
and cooling degree days are generally used in the energy sector to determine the energy needed to heat or
cool a building, which is directly proportional to the number of heating or cooling degree days. Here, we
calculated CDD as the sum of all temperature exceedances over a high threshold, in this case, the 90th

percentile of the control scenario at each pixel, using daily temperature data:

CDD =

N∑
i=1

(Ti − T90)ITi>T90 (2.1)

Here, i indicates daily time steps, N is the total number of time steps (100× 365 = 36500 days), T90

denotes the 90th percentile of the local temperature time series and I denotes the indicator function,
which is 1 if Ti > T90 and 0 otherwise.

In the Control scenario, CDD varies between close to zero and about 100 ◦C per year, with higher
numbers for regions further away from the equator, which can be explained by the higher temperature
variability in extratropical regions compared to the tropics (Fig. 2.4a). The Noextremes (global area-
weighted mean relative difference between Noextremes and Control: 0.06 %), Nocompound (global mean
difference 6.9 %) and Dry (global mean difference 4.7 %) scenarios are very close to the Control in terms
of CDD (Fig. 2.4b, c, e). In contrast, in the Hot (global mean difference 42.7 %) and Hotdry (global mean
difference 47.9 %) scenarios the CDDs increase by up to 160 %, with the increases being slightly larger in
the Hotdry scenario.
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Table 2.1: Available variables with a daily time step over land (except Antarctica and large parts of Greenland)
on a 1◦ × 1 ◦ grid.

Variable Variable name Unit Description

Mean temperature tas ◦C Mean daily near-surface (2 m)
temperature

Minimum temperature tasmin ◦C Minimum daily near-surface
(2 m) temperature

Maximum temperature tasmax ◦C Maximum daily near-surface
(2 m) temperature

Precipitation pr mm d−1 Daily precipitation
Shortwave net radiation sw J d−1 m−2 Shortwave net radiation
Shortwave downward radiation swd J d−1 m−2 Shortwave downward radiation
Longwave downward radiation lwd J d−1 m−2 Longwave downward radiation
Zonal wind uas m s−1 Near-surface (10 m) eastward

wind
Meridional wind vas m s−1 Near-surface (10 m) northward

wind

2.3.2 Droughts

For the quantification of droughts we rely on the Standardized Precipitation Index (SPI) (McKee
et al., 1993), one of the most widely used drought indicators. We use a three-month timescale based
on monthly precipitation values and calculate SPI with the R package SPEI (Vicente-Serrano et al.,
2010). The SPI is computed by fitting the three-month running mean monthly precipitation data to a
Gamma distribution for each calendar month. The fitted Gamma distribution is then transformed to
a standard normal distribution (McKee et al., 1993). We investigate how the scenarios differ in their
occurrence likelihood of severe droughts, defined as SPI < −1.5. Given that SPI is standard normally
distributed, the occurrence probability of severe droughts is about 6.7 %, which is captured well by
most locations in the Control, except in the Sahara desert (Fig. 2.5a). There is a slight reduction in
number of severe droughts for the Noextremes scenario of -22.5 % in the global mean (Fig. 2.5b), whereas
the Nocompound (-4.7 %) and the Hot (3.4 %) scenario are fairly similar to the control (Fig. 2.5c, d).
The Dry (54.1 %) and Hotdry (89.2 %) scenario show large and very large increases in severe drought
occurrence, up to 200 % with respect to the control (Fig. 2.5e, f). We repeated the drought analysis using
the Standardized Precipitation-Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010) instead of
SPI. The SPEI also takes the effects of evapotranspiration into account and thus requires precipitation as
well as temperature for its calculation (calculated here with the Hargreaves function based on monthly
minimum/maximum temperature and precipitation (Vicente-Serrano et al., 2010)). The spatial patterns
are similar overall, though the changes are larger in particular for the Hotdry scenario (Fig. 2.12).

2.3.3 Compound extremes

Temperature and precipitation are negatively correlated during the most productive months in most
regions of the world with a global mean Pearson correlation coefficient of -0.47 in the control scenario
(Fig. 2.6). This inter-annual correlation was calculated using the vegetation periods most productive
three-month mean value per year for temperature and precipitation (the same three months that were
used for the sampling). In contrast, in the Noextremes scenario, temperature and precipitation are hardly
correlated at all (global mean -0.02). The Nocompound (-0.31), Hot (-0.37), and Dry (-0.34) scenarios all
show a negative correlation between temperature and precipitation, but slightly less so compared to the
control. The Hotdry scenario is the only scenario that features a strongly increased negative correlation
between temperature and precipitation, with a global average of -0.72.

To measure the occurrence of compound hot and dry conditions, we assess the occurrence of compound



32
2. A CLIMATE DATABASE WITH VARYING DROUGHT-HEAT SIGNATURES FOR CLIMATE

IMPACT MODELLING

13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4 14.6
Temperature [°C]

740

760

780

800

820

840

Pr
ec

ip
ita

tio
n 

[m
m

/y
ea

r]

Noextremes
Nocompound
Hot
Dry
Hotdry
Control
CRU

Figure 2.3: Global annual average temperature and precipitation over land (excluding Antarctica and much of
Greenland) for all scenarios and CRU (1988-2017). The bars on CRU indicate one standard deviation of annual
means over the entire time period.

hot and dry years. To this end, we calculate the frequency F of years for which the three-month
temperature lies above the 90th percentile and the three-month precipitation lies below the 10th percentile
of the control scenario.

F =

100∑
i=1

ITi>T90IPi<P10/100. (2.2)

In this equation (unlike equation 2.1) i denotes a yearly time steps, ranging from 1 to the total number of
years, i.e., 100. If temperature and precipitation were completely independent, we would expect one out
of 100 years to be a compound extreme year (F = 10%× 10% = 1). However, since they are strongly
correlated over most land regions (Fig. 2.6a) the global mean of compound hot and dry years for the
control scenario is 3.6 years (Fig. 2.7a). We further investigate probability ratios of compound extreme
occurrence between scenarios and Control. Numbers smaller than one mean fewer years with compound
extremes than in the Control and vice versa. The Noextremes scenario contains no years with compound
extremes (Fig. 2.7b) and there are very few in the Nocompound scenario (probability ratio of 0.03,
Fig. 2.7c). In the global mean, Hot (0.65, Fig. 2.7d) and Dry (0.66, Fig. 2.7e) have a slight reduction of
the number of years with compound extremes compared to Control. The Hotdry scenario shows a large
increase in the occurrence of compound hot and dry years, with a probability ratio of 11.23 in the global
average (Fig. 2.7f). This shows that our scenario selection method, aimed to either remove or increase
compound event occurrence, has been successful.

2.4 Discussion and conclusions

Disentangling the effects of single and compound drivers of climate impacts is challenging due to the
difficulty to create a controlled environment, the representativity of local climate change experiments and
many confounding factors related to non-stationarities in the climate system. One approach that allows
to overcome most of these challenges is the use of climate models in combination with process-based
impact models. Climate models allow for generating climate conditions without long-term trends that are
representative of the present-day climate as well as scenarios with varying intensity and frequency of
single and compound drivers. Process-based impact models can then be used to estimate the effects of
such varying climate conditions on different types of impacts for different regions.

Here we present a data set of daily climate forcing with varying drought-heat signatures for modelling
climate impacts. Six 100-year long scenarios cover different conditions, varying from very few extremes
overall, over many single drought or heat extremes, to many compound drought and heat events. The
scenarios were sampled from a 2000-year climate data set representing present-day climate simulated with
a global circulation model at 1◦ × 1◦ spatial resolution. Despite differences in the occurrence of droughts
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Figure 2.4: Cooling Degree Days (CDD, normalized per year) as a metric for temperature extremes. (a) CDD
in the Control scenario in ◦C. (b) - (f): relative difference in CDD with respect to the Control scenarios in %
(Noextremes (b), Nocompound (c), Hot (d), Dry (e) and Hotdry (f)). Note the different colour scales.

and heatwaves between scenarios, their mean climate is comparable and representative of the observed
climate of 2011-2015.

The climate forcing was generated with EC-Earth, a fully coupled global climate model (Hazeleger
et al., 2012). The 2000-year climate data set and its companions with +2 and +3 ◦C global climate
change has already been used to identify drivers of crop failure (Vogel et al., 2020), study extreme river
discharge in a warmer world (Van der Wiel et al., 2019c), evaluate extremes in the renewable energy sector
(Van der Wiel et al., 2019b,a), assess changes in heatwaves in India (Nanditha et al., 2020) and detect
changes in mountain-specific climate indicators in a warmer world in High Mountain Asia (Bonekamp
et al., 2020), highlighting its applicability for assessing climate impacts.

In addition to temperature and precipitation, we provide a range of variables that are common inputs
to climate impact models, including radiation and wind speed (Table 2.1). Despite a good alignment of
global mean temperatures with present-day conditions, EC-Earth is not free of biases at the local to
regional scale (Section 2.2.2). In particular, there is a cold and dry bias in the tropics and a warm and wet
bias in the high latitudes (Fig. 2.1). Depending on the application, these biases need to be accounted and
potentially be adjusted for when modelling impacts (Vogel et al., 2020). For global vegetation models, a
spin-up to equilibrate carbon pools is probably required. Furthermore, given the method presented for
the creation of the scenarios, there is no spatial coherence in the data set, and hence no correlation in
weather conditions between neighbouring locations or around the world. Again, this needs to be taken
into account when modelling impacts and precludes modelling impacts for which spatial interactions
matter (e.g. many hydrological applications).

The presented scenarios are primarily designed to study the effect of varying drought and heat
conditions on terrestrial carbon dynamics. The scenario design, therefore, focuses on creating different
likelihoods of dry and/or hot conditions during the peak of the growing season, when plants are most
vulnerable (Section 2.2). In this context, the scenarios could form the basis for model intercomparison
projects (MIPs) using a suite of global vegetation models (e.g. Zscheischler et al., 2014b; Friedlingstein
et al., 2019; Bastos et al., 2020a; Pan et al., 2020). Despite the focus on the carbon cycle during the design
of the scenarios, we believe they also could be well suited for studying the differential effects of droughts
and heatwaves on other impact types, for instance with the impact models used in the Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP, https://www.isimip.org, Warszawski et al., 2014). Two
impact types we deem of particular relevance here are wildfire occurrence and agriculture. Outside hot
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Figure 2.5: Severe droughts. (a) Occurrence probability of severe droughts (SPI < −1.5) in the Control scenario.
(b) - (f): relative difference in the percentage of severe droughts with respect to the Control scenario in %
(Noextremes (b), Nocompound (c), Hot (d), Dry (e) and Hotdry (f)). Note the different colour scales.

and dry conditions, factors such as wind speed, lightning occurrence and land use change govern wildfire
risk. Our scenarios could be used to investigate how wildfire regimes change under different drought-heat
regimes and may help pin down reasons behind the large differences in modelled fire characteristics across
models (Forkel et al., 2019; Teckentrup et al., 2019). Common protocols for modelling wildfire occurrence
have already been set up in the FireMIP (Rabin et al., 2017). Note, however, that the effect of spatial
interactions cannot be simulated with our scenarios, as there is no spatial coherence. Another possible
area of application of the scenarios are crop models, as for instance collected in the Agricultural Model
Intercomparison and Improvement Project (AgMIP, https://agmip.org, Rosenzweig et al., 2013). AgMIP
focuses specifically on agricultural impacts and is designed to study and improve world food security.
Crops are highly sensitive to hot and dry conditions (Shah & Paulsen, 2003; Cohen et al., 2020) and
crop models differ strongly in their response to climate extremes and climate change (Rosenzweig et al.,
2014) though uncertainties have been reduced recently (Toreti et al., 2020). Our scenarios might help to
disentangle how different crop models respond to different types of droughts, heatwaves and compound
drought and heatwave events.
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Figure 2.6: Inter-annual correlation between temperature and precipitation during the three months when
vegetation is most active. (a) - (f) show the correlations between temperature and precipitation for Control (a),
Noextremes (b), Nocompound (c), Hot (d), Dry (e) and Hotdry (f).
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Figure 2.7: Occurrence of compound extremes. (a) Number of years where temperature exceeds the 90th

percentile and precipitation lies below the 10th percentile in the Control scenario. Temperature and precipitation
are averaged over the three months where vegetation is most active. (b) - (f): Probability ratio (scenario/control)
for the compound hot and dry years (Noextremes (b), Nocompound (c), Hot (d), Dry (e) and Hotdry (f)).
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Figure 2.8: Annual global-average foliar projective cover by each PFT in LPX-Bern for the 2000-year simulation
with the entire climate data set (TrBE: tropical broad evergreen, TrBR: tropical broad raingreen, TeNE: temperate
needle evergreen, TeBE: temperate broad evergreen, TeBS: temperate broad summergreen, BoNE: boreal needle
evergreen, BoNS: boreal needle summergreen, BoS: boreal broad summergreen, TeH: herbaceous, TrH: herbaceous).
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Figure 2.9: Map showing the month with highest net primary production (NPP) determined from the seasonal
mean over 2000 years.
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Figure 2.10: Regional annual differences in air temperature at two meters. (a) shows the mean temperature for
the Control scenario. (b) - (f): relative difference in ◦C with respect to the Control scenario (Noextremes (b),
Nocompound (c), Hot (d), Dry (e) and Hotdry (f)). Global mean temperature over land (excluding Antarctica and
most of Greenland) of Control: 13.8 ◦C. Differences of global means with respect to Control for Noextremes:

-0.04 ◦C; Nocompound: -0.04 ◦C; Hot: 1.7 ◦C; Dry: -0.2 ◦C; Hotdry: 1.7 ◦C. Desert regions were excluded in these
maps and are shown in grey.
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Figure 2.11: Regional annual differences in precipitation. (a) shows the mean precipitation for the Control
scenario. (b) - (f): relative difference in % with respect to the Control scenario (Noextremes (b), Nocompound
(c), Hot (d), Dry (e) and Hotdry (f)). Global precipitation sum over land (excluding Antarctica and most of
Greenland) of Control: 810 mm/yr. Relative differences of global sums relative to Control for Noextremes: -0.5 %;
Nocompound: 0.01 %; Hot: -0.9 %; Dry: -4.8 %; Hotdry: -6.2 %. Desert regions were excluded in these maps and
are shown in grey.
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Figure 2.12: Standardized Precipitation Evapotranspiration Index (SPEI) for severe droughts (SPEI < −1.5). (a)
Percentage of severe droughts in the Control scenario. (b) - (f): relative difference in the percentage of severe
droughts with respect to the Control scenario in % (Noextremes (b), Nocompound (c), Hot (d), Dry (e) and
Hotdry (f)). Global mean of Control: 6.4 %. Global mean of relative change with respect to the Control for
Noextremes: -23.6 %; Nocompound: -6.5 %; Hot: 11.1 %; Dry: 37.0 %; Hotdry: 105.8 %.
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Abstract

The frequency and severity of droughts and heat waves are projected to increase under global warming.
However, the differential impacts of climate extremes on the terrestrial biosphere and anthropogenic CO2

sink remain poorly understood. In this study, we analyse the effects of six hypothetical climate scenarios
with differing drought-heat signatures, sampled from a long stationary climate model simulation, on
vegetation distribution and land carbon dynamics, as modelled by a dynamic global vegetation model
(LPX-Bern v1.4). The six forcing scenarios consist of a Control scenario representing a natural climate,
a Noextremes scenario featuring few droughts and heatwaves, a Nocompound scenario which allows
univariate hot or dry extremes but no co-occurring extremes, a Hot scenario with frequent heatwaves, a
Dry scenario with frequent droughts, and a Hotdry scenario featuring frequent concurrent hot and dry
extremes. We find that a climate with no extreme events increases tree coverage by up to 10 % compared
to the Control and also increases ecosystem productivity as well as the terrestrial carbon pools. A climate
with many heatwaves leads to an overall increase in tree coverage primarily in higher latitudes, while the
ecosystem productivity remains similar to the Control. In the Dry and even more so in the Hotdry
scenario, tree cover and ecosystem productivity are reduced by up to -4 % compared to the Control.
Regionally, this value can be much larger, for example, up to -80 % in mid-western U.S. or up to -50 % in
mid-Eurasia for Hotdry tree ecosystem productivity. Depending on the vegetation type, the effects from
the Hotdry scenario are stronger than the effects from the Hot and Dry scenario combined, illustrating
the importance of correctly simulating compound extremes for future impact assessment. Overall, our
study illustrates how factorial model experiments can be employed to disentangle the effects from single
and compound extremes.

This work is distributed under the Creative Commons Attribution 4.0 License.
Please visit https://creativecommons.org/licenses/by/4.0/ to see the licence.
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3.1 Introduction

The terrestrial biosphere sequesters about 30 % of the anthropogenic CO2 emissions (Friedlingstein et al.,
2020). Different factors such as increasing atmospheric CO2 concentrations, higher temperatures, or,
on a more regional scale, water or nutrient availability, can increase or decrease the terrestrial carbon
sink. Different biomes may also react differently. While warmer temperatures are likely to increase
productivity in high latitudes and altitudes due to an increase in the growing season length, productivity
may be reduced in warmer regions because of higher evaporation and stomatal closure (Friend et al.,
2014). Overall, there is evidence that the vulnerability of trees to hotter droughts may increase but this
may also be compensated by higher CO2 concentrations and associated increased water use efficiency
(De Kauwe et al., 2013). However, future projections of the terrestrial carbon sink remain highly uncertain
(Friedlingstein et al., 2014).

A potentially large contribution to the uncertainty in carbon cycle response to climate change may
stem from the impacts of climate extremes. Climate extremes can cause devastating impacts on the
natural environment (IPCC, 2012; Reichstein et al., 2013; Frank et al., 2015; von Buttlar et al., 2018; Senf
et al., 2020). At the same time, extreme impacts are often not linked to single climate extremes but
to a combination of anomalous drivers (Zscheischler et al., 2016; Flach et al., 2017; Pan et al., 2020;
Tschumi & Zscheischler, 2020; van der Wiel et al., 2020; Vogel et al., 2021), also called compound events
(Zscheischler et al., 2018, 2020).

Arguably, drought and heat are among the most damaging hazards to terrestrial vegetation (Allen
et al., 2010; Reichstein et al., 2013; Zscheischler et al., 2014b; Frank et al., 2015; Sippel et al., 2018;
von Buttlar et al., 2018; Senf et al., 2020). In many cases, drought and heat predispose or interact
with other hazards and disturbances such as forest fires and insect outbreaks (Seidl et al., 2017). In
particular, an increasing occurrence of warm droughts has already lead to increased vegetation impacts on
northern hemispheric ecosystems over the observational period (1982-2016, Gampe et al., 2021). However,
differentiating impacts between drought and heat alone and compound drought and heat remains a
challenging task. Disentangling these impacts is important, as co-occurring droughts and heatwaves
tend to have larger impacts compared to the sum of impacts from droughts and heatwaves separately
(Zscheischler et al., 2014b; Ribeiro et al., 2020), for example, because a drought exacerbates the impacts of
a heatwave through reduced evaporative cooling (Yuan et al., 2016). Furthermore, projections of droughts
and heatwaves can differ strongly across different climate models (Herrera-Estrada & Sheffield, 2017;
Zscheischler & Seneviratne, 2017).

The impacts of climate extremes on vegetation and the terrestrial carbon cycle can be studied using
different approaches including (i) lab or field experiments (De Boeck et al., 2011; Beier et al., 2012; Song
et al., 2019); (ii) observational data such as long-term forest observations (Anderegg et al., 2013a) and
local measurements of carbon exchange (Ciais et al., 2005; von Buttlar et al., 2018; Pastorello et al., 2020);
(iii) indirect estimates from satellite observations (Ciais et al., 2005; Zhao & Running, 2010; Zscheischler
et al., 2013; Stocker et al., 2019); and (iv) dynamical vegetation models (Ciais et al., 2005; Zscheischler
et al., 2014a,b,c,d; Rammig et al., 2015; Xu et al., 2019; Bastos et al., 2020a; Pan et al., 2020). Vegetation
models offer the benefit of being able to analyse new hypotheses in a strictly controlled environment at
global scale.

Despite considerable uncertainties in climate models, it is widely acknowledged that drought and
heat extremes will increase in frequency and severity in many land regions in the future (Seneviratne
et al., 2012). Though it is still uncertain exactly how these increases will affect the terrestrial biosphere,
there are concerns they might substantially reduce the current terrestrial carbon sink (Reichstein et al.,
2013). While coupled models of the land and atmosphere allow for a more complete representation of the
feedback processes (Humphrey et al., 2021) than stand-alone land biosphere models, the analysis of
results is more complicated for coupled models, since the coupling is different for different models and
uncertainties depend not only on the land but also on the atmosphere module.

In this study, we aim to disentangle the differential effects of different frequencies of hot conditions,
dry conditions, and compound hot-dry events on vegetation composition, carbon pools, and carbon
dynamics. Our main motivation is to test the sensitivity of a commonly used vegetation model to
differences in the climatology of the occurrence of hot and dry extremes and how these changes in drought
and heat occurrence affect vegetation distribution and carbon dynamics. To this end, we force a dynamic
global vegetation model, LPX-Bern v1.4, with six 100-year long climate scenarios featuring varying
drought-heat signatures, i.e. different occurrence probabilities of dry events, hot events, and concurrent
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dry and hot events. These scenarios were sampled from 2000 years of present-day climate data from the
EC-Earth climate model, as described in Sect. 3.2.1. They have a constant CO2 concentration and do not
contain long-term trends. The controlled environment of a model setup allows us to attribute changes in
vegetation composition and carbon dynamics to differences in drought-heat occurrence.

3.2 Data and Methods

3.2.1 Forcing scenarios

Six forcing scenarios featuring different dry and hot signatures were used to run the vegetation model
LPX-Bern. These scenarios, each 100 years long, were constructed from a large ensemble climate modelling
experiment (Tschumi et al., 2022a). 2000 years of simulated present-day climate data were created with
the fully-coupled global climate model EC-Earth (v2.3, Hazeleger et al., 2012). The large ensemble was
built out of 400 short five-year runs, which were unique in initial conditions and/or stochastic physics
seed. EC-Earth combines atmospheric, oceanic, land, and sea-ice model components, and simulates the
global climate including feedbacks between land and atmosphere. Within the ensemble the influence of
forced climate change is small. We, therefore, assume all variability in the data set is due to natural
variability in the climate system. While the global mean surface temperature in EC-Earth shows no
significant bias, there can be biases at the regional and seasonal scale. In particular, there is a mean
temperature difference of -0.5◦C and a precipitation difference of 7 % over land, with regional biases
being relatively large (up to -1.8◦C in the tropics and 0.2◦C in the extratropics, mostly in the very high
latitudes). Many land regions show a wet bias in EC-Earth compared to CRU (43.5 % in the extratropics).
A more detailed description of the biases can be found in Tschumi et al. (2022a). The biases in the
climate forcing compared to observational datasets implies that simulated vegetation cover based on this
forcing may differ from observed vegetation cover.

The selection of the different scenarios from this data set was based on temperature and precipitation
values during the time of the year where the vegetation is most active. Arguably, the vegetation is most
vulnerable to climate extremes during the growing season. Therefore, for the scenario creation, we focused
on the three months around the most productive month in the climatology. We identified the most
productive month at each pixel, that is, the month with the highest climatological-mean net primary
production (NPP) as simulated by LPX-Bern.

We selected the six different scenarios for each pixel separately based on mean temperature and
precipitation over the three months around the month of highest NPP: Control, Noextremes, Nocompound,
Hot, Dry and Hotdry. Years contributing to the scenarios were sampled based on quantiles of the
three-month temperature and precipitation averages, where the quantiles were computed based on the full
2000-year EC-Earth output. If more than the required number of years fall into the quantiles in question,
a random selection was performed. If fewer years than necessary were available, some randomly chosen
years were selected multiple times. For each of the Hot, Dry, and Hotdry scenarios, 50 years were sampled
from the extreme quantiles and 50 years were randomly sampled from the rest. The reason for this is
twofold. Firstly, for many pixels, not many years fall into the extreme quantiles. Sampling only 50 years
from there reduces the number of times a year is re-sampled. Secondly, the mean climatology is kept more
similar to the other scenarios if only half the years were sampled with extreme conditions and the other
half from the rest.

This method of scenario creation, for each pixel separately, destroys any spatial coherence, so that the
climate in a pixel is not correlated to the climate in nearby pixels. Furthermore, due to the sampling of
individual years, there are always slight discontinuities between 31 December and 1 January in the
climate forcing. The same is true for leap years since all leap days (29 February) were removed. We
assume that these small discontinuities in the atmospheric forcing do not significantly affect our findings.
The scenarios have a daily temporal and a 1◦ × 1◦ spatial resolution. The scenarios were sampled from
the percentiles of the EC-Earth data at each location separately as described in Tschumi et al. (2022a)
and summarized in Table 3.1.

The scenarios differ little in their mean climatic conditions but strongly in the occurrence of dry
events, hot events, and concurrent dry and hot events. More specifically, the difference in global mean
temperature and precipitation between the scenarios is about 0.3 ◦C and 6 %, respectively. The Hot and
Hotdry scenarios show an increase in heatwaves (based on cooling degree days, which is the sum of all
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Table 3.1: Sampling design for the six climate scenarios (see Tschumi et al., 2022a)

Scenario name Sampling procedure

Control 100 randomly selected years representing present-day climate
Noextremes only years where temperature and precipitation lie between the 40th and

60th percentile
Nocompound no years where both temperature and precipitation lie above the 85th

percentile or below the 15th percentile
Hot years where temperature exceeds the 85th percentile and precipitation lies

between the 40th and 60th percentiles
Dry years where precipitation lies below the 15th percentile and temperature

lies between the 40th and 60th percentile
Hotdry years where temperature lies above the 85th percentile and precipitation

lies below the 15th percentile

exceedances over the 90th percentile of the Control at each pixel) by up to 160 % compared to the Control.
Dry event occurrences (based on the standardized precipitation index (SPI), which is used to identify
severe meteorological droughts, defined as SPI > -1.5) are strongly increased for the Dry and Hotdry
scenario, by up to 200 % compared to the Control. In the Noextremes and Nocompound scenarios, there is
an overall decrease in dry events of up to -80 % and heatwaves up to -50 %. The pattern of concurrent dry
and hot events is even more pronounced. There are no or very few concurrent dry and hot events in the
Noextremes and the Nocompound scenario. Compound extremes are possible for the Hot and Dry scenario,
but occur overall less often than in the Control. In the Hotdry scenario, however, concurrent dry and hot
events occur up to 50 times more often than in the Control. A more in-depth description and analysis of
these scenarios including the definition of dry and hot events are given in Tschumi et al. (2022a).

3.2.2 LPX-Bern

LPX-Bern v1.4 (Lienert & Joos, 2018) is a Dynamic Global Vegetation Model based on the Lund-Potsdam-
Jena (LPJ) model (Sitch et al., 2008). The model features coupled water, nitrogen, and carbon cycles
and represents different types of vegetation using Plant Functional Types (PFTs). Here, only natural
vegetation is considered, which is internally represented by eight tree PFTs and two herbaceous PFTs
competing for resources and adhering to bioclimatic limits, which are listed in Table 3.2 as well as other
process parameterizations (e.g. temperature dependence of photosynthesis or water balance). These
bioclimatic limits and other parameters as well as process representation can differ from model to model,
leading to a different response of the vegetation to extreme climatic events. In LPX-Bern, tree coverage
is restricted to 95% of the grid cell. If the total fraction summed over all PFTs exceeds 1, the plants
that were the least productive are killed, representing self-thinning. Mortality can also occur if a PFT’s
bioclimatic limits are reached due to heat stress, negative NPP, or depressed growth efficiency (Sitch
et al., 2003). As an example, the bioclimatic parameter governing the upper limit of temperature is
implemented in LPX-Bern by inducing mortality proportional to the number of days in the year where
this threshold is exceeded. Other models may not only use different values for the threshold and a different
relationship between mortality and exceedance, but an altogether different parameterization. This will in
turn influence the response to the heat stress in the model.

In this study, daily temperature, precipitation, and incoming short-wave radiation are provided
to the model. Additionally, the model uses information on the soil type (Wieder et al., 2014), CO2

concentration in the atmosphere at 2011-level (389.78 ppm), and nitrogen deposition, also at 2011-level
(Tian et al., 2018). Each scenario simulation was preceded by a 1500 year long spin-up, which was forced
with climate data of the same scenario (‘individual spin-up’). To test how fast vegetation composition and
net ecosystem exchange reach a new equilibrium under an altered frequency of dry and hot events, we
also performed simulations in which the spin-up was based on climate from the Control (‘shared spin-up’).
By running the model with two different spin-ups per scenario, we explore the model equilibrium and how
fast the model reacts after a step change in the frequency of extreme events.
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LPX-Bern represents natural vegetation with ten PFTs, as described above. For the following analysis,
we aggregate them into four broader classes, namely Tropical trees (including tropical broad-leafed
evergreen and tropical broad-leafed raingreen trees), Temperate trees (including temperate needle-leafed
evergreen, temperate broad-leafed evergreen and temperate broad-leafed summergreen trees), Boreal trees
(including boreal needle-leafed evergreen, boreal needle-leafed summergreen and boreal broad-leafed
summergreen trees), and Grasses (including temperate and tropical herbaceous). The dominant vegetation
class in the control simulation for each pixel, including its fractional cover (the fraction of a grid cell
covered with a certain vegetation class), is shown in Fig. 3.1. Pixels where the total fractional coverage is
smaller than 0.1, corresponding to desert regions, are masked white.

Figure 3.1: Dominant vegetation class (mean over time) in the Control simulation. The intensity (color bars)
shows the fractional coverage of each dominant class.

3.3 Results

We report how different stationary climate conditions (i.e. without long-term trends) with varying
intensities of dry events, hot events and compound dry-hot events affect vegetation coverage (Sect. 3.3.1)
as well as carbon pools and carbon fluxes (Sect. 3.3.2). These results are based on the simulations using
the individual spin-up. In Section 3.3.3 we report how quickly LPX-Bern reaches a new equilibrium by
running simulations for each scenario that use the climate of the Control scenario during spin-up (shared
spin-up).

3.3.1 Changes in vegetation coverage and associated NPP changes

The different dry and hot scenarios lead to a change in fractional vegetation coverage (Fig. 3.2a). Trees
generally benefit from a climate with no dry and hot events. The increase in tree cover is stronger for
higher latitudes. While the relative difference in global mean Tropical tree cover is 1.2 %, it is 9.4 % for
Boreal trees for the Noextremes scenario (green bars in Fig. 3.2a). Regionally, this increase can be much
larger. Total tree cover for the mid-west of the U.S., for example, is increased by up to 400 % and there is
a similarly large increase in South Africa (results not shown). These are regions with nearly no trees in
the Control scenario (Fig. 3.1). A smaller, but still large increase of up to 100 % is observed in South
America, southern Africa and large parts of Eurasia. Grass coverage in turn decreases to make room for
the trees. To a lesser extent, the same pattern also holds for a climate with no compound extremes, which
however does feature univariate extremes (blue bars in Fig. 3.2a). The increase of tree coverage towards
higher latitudes is also evident for the Hot scenario, while for this scenario grass cover does not change
compared to the Control (red bars in Fig. 3.2a). The Dry and, even more strongly, the Hotdry scenarios
lead to an overall decrease of tree coverage (orange and purple bars in Fig. 3.2a, respectively). The
decrease is particularly strong for Temperate tree coverage in the Hotdry scenario (-5.6 %), while there is
little change in Boreal tree cover. At the regional scale, the decrease is largest in the mid-west of the U.S.
with up to -80 % as well as up to -50 % in mid-Eurasia. For the Hotdry scenario, the overall decrease in
tree cover is compensated by an increase in grass cover, mainly in the U.S., Europe, mid-Eurasia and
southern South America, in contrast to the Dry scenario, in which grass cover also decreases. While it is
generally true that grasses seem to compensate for declining tree coverage, the compensation is not
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necessarily complete. As an effect, the total sum of fractional plant cover may change as well. However, at
the global scale, there is hardly any change in fractional coverage between the scenarios (not shown).
Overall, the differences in vegetation cover between the scenarios are smallest for Tropical trees and tend
to be similarly ordered, but larger in magnitude, for the other vegetation classes.

The above-described relative differences in coverage directly translate into changes in annual NPP
(Fig. 3.2b). In particular, if tree or grass coverage increases, so does NPP and if coverage decreases, we
find an associated decrease in NPP. Overall, at the global scale, the variability in the relative differences
in NPP is larger than the variability in the relative differences in vegetation cover (compare lengths of
bars in Fig. 3.2a to Fig. 3.2b).

Tropical trees Temperate trees Boreal trees Grasses
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Figure 3.2: Relative difference of the scenarios to the Control for (a) coverage and (b) annual NPP. The bars
show the minimum to maximum range over the 100-year long simulations.

We compare the spatial patterns of the differences of tree (all tree types aggregated) and grass
cover between the two scenarios with the strongest effect and the Control, i.e. Noextremes-Control and
Hotdry-Control, in Fig. 3.3. In the Noextremes scenario, tree cover increases on all land pixels compared
to the Control, especially in western North America and Mid-Eurasia (Fig. 3.3a). In contrast, grass cover
decreases everywhere except in very dry regions such as the Sahara, the Arabian Peninsula, and Australia,
where a constant climate without extremes leads to a slight increase in grass cover (Fig. 3.3b). For Hotdry,
tree cover decreases in most regions except the very high latitudes, compared to the Control (Fig. 3.3c),
while grass coverage increases except for very dry regions (Fig. 3.3d).

3.3.2 Changes in carbon dynamics

The effects of the scenarios on vegetation coverage (Sect. 3.3.1) are reflected by the globally aggregated
carbon fluxes and pools (Fig. 3.4). The response of NPP to the replacement of trees with grasses and vice
versa is varied, as it strongly depends on environmental conditions and vegetation composition. Generally,
NPP is greater for trees than for grasses, which implies that global NPP is larger in a world with more
trees and smaller if more forest area is replaced by grassland. Consequently, Noextremes, Nocompound,
and Hot generally show higher or similar flux magnitudes compared to the Control, whereas fluxes are
strongly decreased for Dry and Hotdry, by up to more than -4 % for global gross primary production
(GPP) in Hotdry (Fig. 3.4a). Interestingly, although grass cover is increased in the Hot scenario (Fig. 3.2a),
NPP in grasslands is reduced (Fig. 3.2b), explaining the lack of change in global NPP for the Hot scenario
(Fig. 3.4a). Relative carbon flux reductions can be very large for some regions, for example, up to -80 % in
the mid-west of the U.S., mirroring the decrease in tree cover. Similar patterns are evident for changes in
global vegetation carbon (Fig. 3.4b). Overall, relative differences are much smaller for global soil carbon.

We further explore the spatial patterns in the differences of NPP separately for trees (all tree
types aggregated) and grasses between the two scenarios with the strongest effect, i.e. by looking
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Figure 3.3: Difference in fractional coverage of (a) Noextremes trees, (b) Noextremes grasses, (c) Hotdry trees
and (d) Hotdry grasses compared to the Control.

at Noextremes-Control and Hotdry-Control (Fig. 3.5). NPP of trees increases nearly everywhere in
Noextremes compared to the Control, by up to 200 gC m2 yr−1 in some regions in the mid-west of the
U.S. (Fig. 3.5a). NPP of grasses shows slight increases in the lower latitudes but strong decreases in the
higher latitudes, which are of similar magnitude as the increases in tree NPP (Fig. 3.5b). The pattern is
more diverse for Hotdry, where NPP of trees generally decreases in the low-to-mid latitudes by up to
-150 gC m2 yr−1 but increases in the very high latitudes (Fig. 3.5c). NPP of grasses tends to increase in
most regions except some very dry regions in the Sahara and Middle East, Australia, Namibia, and the
Southwest of the U.S. (Fig. 3.5d).

Finally we investigate whether the interannual variability in NPP for four vegetation classes changes
between the Control and the different scenarios. Overall, interannual variability in NPP is smallest in
Tropical and Temperate trees and largest in Boreal trees (Fig. 3.6). Most scenarios tend to decrease
variability in particular for trees, with Noextremes leading to significant decreases in all vegetation classes.
In contrast, Hotdry tends to increase variability, though the difference to the Control is only significant
for Boreal trees and Grasses. For Grasses, also the Hot and the Dry scenario lead to a significant increase
in NPP variability.

3.3.3 Path to model equilibrium

We explore how fast vegetation composition and net ecosystem production adjust towards a new
equilibrium after a step-like change in extreme statistics, in this case a change in the frequency of hot
and/or dry extremes. To this end, we analyse the 100-yr scenario simulations that started from the shared
model spin-up forced by the Control climate. At the start of each scenario simulation, frequencies of dry
and hot events suddenly change from those in the Control climate to those in the scenario.

Using the simulations based on the shared spin-up, we explore whether LPX-Bern reaches a new
equilibrium (measured in terms of stable vegetation composition and neutral net ecosystem production)
within the 100-year simulations after frequencies of dry and hot events suddenly change from Control to
the different scenarios. Overall, the Noextremes and the Hotdry scenarios cause the largest disturbance in
vegetation cover (Fig. 3.7). For most vegetation classes and most scenarios, the scenario simulations
starting from the shared spin-up are within the range of variability of the scenario simulation starting from
an individual spin-up at the end of the simulation. Exceptions are Tropical trees in the Noextremes and
the Hot scenarios, Temperate trees in the Hot and the Hotdry scenarios and Grasses in the Hotdry scenario.
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Figure 3.4: Relative difference of the scenarios to the Control for (a) the global annual GPP, NPP, and
heterotrophic respiration (rhet) as well as (b) vegetation carbon and soil carbon. The bars in (a) show the
minimum to maximum range of the 100 year-long simulations. Because the interannual range for carbon pools in
(b) is very small we only show the mean over the 100 years.

The strongest response in vegetation cover occurs in the first 20 years. Grasses show a particularly fast
response in the Hotdry scenario, where there is an initial decrease in coverage followed by a rapid increase.
The reason for this seems to be that (predominantly temperate) grasses that are adapted to the climate in
the control quickly die due to the frequent hot and dry conditions but then a regrowth of (predominantly
tropical) grasses that can tolerate such conditions occurs. Overall, the above results suggests that, for the
more extreme scenarios, 100 years may not be enough to fully reach equilibrium after a sudden change in
dry and hot event occurrences.

The findings based on vegetation cover are confirmed when investigating the temporal evolution of
global annual net ecosystem production (NEP) in the simulations with shared spin-up (Fig. 3.8). Again,
the disturbance is largest for the Noextremes (about 1 PgC yr−1 more uptake at the beginning of the
simulation) and the Hotdry scenario (about 3 PgC yr−1 less uptake at the beginning). In all scenarios,
global annual NEP converges towards 0 at the end of the 100-year simulations and varies within the range
of interannual variability of the individual spin-up simulations. Nevertheless, NEP is slightly larger than 0
in the Noextremes scenario and slightly smaller than 0 in the Hotdry scenario even at the end of the
simulation, indicating that not all carbon pools are in full equilibrium after 100 years.

3.4 Discussion

Using stationary climate scenarios with varying drought-heat signatures and a dynamic vegetation
model we show that different occurrence frequencies of dry, hot, and compound dry-hot events lead to
differences in vegetation coverage and related differences in global NPP (Fig. 3.2). The fraction of land
area covered with vegetation is similar in all scenarios. However, there are shifts in coverage and NPP
between vegetation classes. A key finding is that the climate, as represented by the Noextremes scenario,
which features no extreme droughts or heatwaves and relatively little interannual variability, favours tree
coverage (Fig. 3.2). This is evident in the tropical biomes to some extent but even more evident at higher
latitudes. For trees to grow well, typically more stable environmental conditions are needed as compared
to grasses (Sitch et al., 2003). For example, the biomass of grasses, with their fast biomass turnover and
short life cycle, recovers much faster after an increase in mortality, e.g., due to a drought-heat event, than
tree biomass.

Hence, overall, a more stable climate with few extremes is very beneficial for trees. In models such as
LPX-Bern, trees are favoured over grasses. In particular, they get priority for foliar coverage if conditions
are suitable for tree growth. This explains why, in a more stable (i.e., less variable) climate, tree cover
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Figure 3.5: Difference in NPP for (a) Noextremes trees, (b) Noextremes grasses, (c) Hotdry trees and (d) Hotdry
grasses compared to the Control.

increases and grass cover decreases, and vice versa.

While a climate with more heatwaves has little influence on tree coverage in the tropics, it tends to
increase coverage in higher latitudes (Fig. 3.2). Trees in higher latitudes are typically temperature limited
(Way & Oren, 2010). So a climate with more heatwaves alleviates some of these temperature constraints.
While overall more heatwaves increase tree coverage globally, there are strong regional variations, meaning
that not everywhere higher temperatures lead to more growth (Ruiz-Pérez & Vico, 2020). In higher
latitudes, more frequent heatwaves mean overall warmer temperatures during the growing season without
necessarily exceeding the temperature limit of boreal trees, while in other regions such a limit might be
reached more quickly, leading to a decrease in tree cover. Grass coverage does not significantly change for
the Hot scenario compared to the Control.

If water is restricted, as it is for the Dry scenario, tree coverage is slightly reduced overall. However,
unlike in the other scenarios, grasses in a dry climate do not compensate for changes in tree coverage.
Rather, grass coverage is decreased as well. This likely happens because grasses tend to grow in already
dry regions, where tree coverage is unlikely. If these regions get drier, it might even get too dry for grasses
to grow. When comparing the Hot and Dry scenarios, we see that the effects on global NPP as well as the
vegetation carbon pool are more negative for the Dry than Hot scenario (Fig. 3.4). A drought event,
therefore, does not have to be as extreme as a heat event to have a comparable impact, which is also
supported by findings of Ribeiro et al. (2020).

The scenario with frequent compound hot and dry extremes clearly causes the strongest response and
leads to a reduction in tree coverage across all climate zones. Hence, here even the warmer conditions in
the northern latitudes that generally promote tree growth are superseded by the negative impacts of
droughts (Belyazid & Giuliana, 2019; Ruiz-Pérez & Vico, 2020), though the effect is less pronounced for
Boreal trees than for Temperate trees. Grass coverage, on the other hand, increases because it can fill the
areas that were previously covered by trees. In dry regions, however, grass coverage is reduced for the
Hotdry scenario as well, likely because here likely dryness thresholds under which vegetation cannot grow
anymore are frequently exceeded. Global NPP as well as vegetation coverage is overall reduced for this
scenario compared to the Control (Fig. 3.4).

Generally, trees grow nearly everywhere if the climate is favourable and features few extremes, leading
to a reduction in grass cover. Only in dry regions do we observe an increase in grass coverage. There,
conditions might still be unfavourable for trees to grow, but grasses benefit from the stable climate. In
contrast, in a climate with frequent droughts and heatwaves, tree coverage is generally reduced, leaving
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Figure 3.6: Variability of NPP (calculated as interannual standard deviation across years for the four vegetation
classes with the mean taken over all grid cells). The stars show the scenarios that are significantly different from
the Control at a 5 % significance level (based on a t-test).

room for grasses to grow, except in already dry regions, which become too dry even for grasses.

Globally, the effects of extremes are larger in the extratropics than they are in the tropics. The
effects on Tropical trees are small for all scenarios compared to the Control, including the Hot and Dry
extremes scenarios. One reason for this might be that strong evaporative cooling is maintained in tropical
forests, even in a drier climate (Bonan, 2008) since the tropics (in particular tropical forest) are not so
much water-limited but rather energy limited. However, case studies on recent droughts in the Amazon
forest show how tropical forests can be negatively affected by drought conditions (Doughty et al., 2015;
Feldpausch et al., 2016; Machado-Silva et al., 2021). The variability between the scenarios is small for
Tropical trees and larger for Temperate and Boreal trees. The latter biomes are more water- and/or
temperature-limited than the tropics and therefore react more strongly to variations in these variables.
Grasses also show quite a large variability between scenarios owing to the fact that grasses react quicker
to climate variations, meaning they die and regrow faster than trees (Ahlström et al., 2015).

While vegetation carbon displays a pattern that correlates with the changes in coverage, the same is
not true for soil carbon. Rather, the changes in soil carbon (Fig. 3.9) resemble the changes in grasses
(Fig. 3.3).

Choosing an appropriate spin-up when modelling vegetation and the carbon cycle is important to
make sure the model is in equilibrium. In our case, 1500 years seems appropriate, since the constant runs
are stable over the 100 years. Starting with the same spin-up (based on the Control scenario) and a step
change in extreme event occurrence, most but not all scenarios converge to the equilibrium that is reached
when doing the spin-up with the scenario forcing within 100 years (Fig. 3.7). Given the trajectories, we do
not expect the runs with shared spin-up to reach the same end point as the runs with individual spin-up,
even if the simulations were prolonged. Other vegetation models might have other response times to such
a step change in extreme event characteristics. For the main analysis, we used the ’individual spin-up’
runs, since these are the runs where the model had time to reach full equilibrium.

Scenarios, where the occurrence of heatwaves, droughts, and drought-heat events is changed in a
step-like manner, reveal the characteristic time scales and magnitudes of the adjustment of a system, here
the land biosphere, to the change. Our simulations reveal that plant coverage and NPP adjust on decadal
time scales (Fig. 3.7) to altered extreme event statistics, while, in addition, multi-decadal-to-century
response time scales are evident for global NEP (Fig. 3.8). The response time scales and magnitudes
of change are likely model specific to some extent. It would be illustrative to probe the response to
step changes using other models. Though the setup of the step change in the occurrence of droughts
and heatwaves is somewhat unrealistic, long-term trends in the dependence between temperature and
precipitation have been detected in climate model projections (Zscheischler & Seneviratne, 2017). Such
changes in the dependence structure can be quite relevant, for instance they may exacerbate climate
change impacts on crops (Lesk et al., 2021).

We run the vegetation model offline, that is, there is no feedback from the land surface to the climate,
and keeping the atmospheric CO2 level constant. Processes in the real world might be more complex.
Especially CO2 fertilization, where higher CO2 concentrations lead to a more efficient uptake of CO2 by
the plants and thus less chance to lose water through open stomata, may modulate how hot and dry
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Figure 3.7: Time series of the fractional coverage (foliar projective cover) from the simulations that use the
shared spin-up (black line). Scenarios are shown in colored dashed lines for (a) Tropical trees, (b) Temperate trees,
(c) Boreal trees, and (d) Grasses. The first 20 years (-20 to 0) represent the last 20 years of the shared spin-up.
The variability (minimum to maximum) in vegetation cover in the individual spin-up simulation (spin-up uses
data from the respective scenarios) is indicated by the bars on the right-hand side. Note the different ranges of the
y-axes.

conditions affect vegetation and carbon dynamics in the future (Domec et al., 2017; De Kauwe et al.,
2021).

All results, such as the exact changes in vegetation distribution and carbon uptake, are somewhat
sensitive to the choice of the dynamic global vegetation model and the employed climate model. Every
model has biases and limitations which could be discussed at length, but for argument’s sake we will
only discuss some of them briefly. One important component in LPX are the bioclimatic limits, as
already mentioned in Sect. 3.2.2. Mortality induced by maximum temperature only affects tropical
trees. One could imagine a different extreme response if this parameter also applied for grasses. As it
is, C4 grasses are very water-efficient in LPX, which leads to Australia being a bit too green in our
simulations compared to observations, as an example. This could also explain why grasses thrive in the
Hotdry scenario. A potential increase in atmospheric CO2 conditions as it is predicted by socio-economic
scenarios would further alleviate drought stress and thus benefit C4 grasses. The parameterization of the
water balance is another possible factor that greatly influences the response to dry conditions. LPX
has a relatively simple supply and demand driven water limitation and for instance does not consider
effects of Xylem damage (Arend et al., 2021). Overall, models may differ strongly depending on model
parameterizations and process representations (Paschalis et al., 2020). Furthermore, some uncertainties
also arise from the model setup. For example, land-atmosphere feedbacks may play an important role
(Humphrey et al., 2021), which are not considered in such an offline model setup as we have conducted in
this study. Considering the number of uncertainties that may govern vegetation and carbon cycle response
to varying drought-heat signatures, a model intercomparison project using our scenarios as forcings for
different vegetation models has already been set up and may reveal insights on how model differences
affect the results.

3.5 Conclusion

It is widely acknowledged that extreme climate events can have large impacts on ecosystems and society.
This study investigates the effects of different drought-heat occurrences in six hypothetical climate
scenarios on vegetation distribution and terrestrial carbon dynamics, as simulated by the LPX-Bern
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Figure 3.8: Time series of global annual NEP from the simulations that use the shared spin-up (black line).
Scenarios are shown in colored dashed lines. The first 20 years (-20 to 0) represent the last 20 years of the shared
spin-up. The variability (minimum to maximum) in global NEP in the individual spin-up simulation (spin-up uses
data from the respective scenarios) is indicated by the bars on the right hand side. A 5-year moving average was
applied to smooth the time series.

Figure 3.9: Difference in soil carbon for (a) Noextremes vegetation (b) and Hotdry vegetation to the Control.

dynamic global vegetation model. Generally, effects of changes in extreme event frequency are more
pronounced in the extratropics than in the tropics. We found that global carbon cycle variability is
most stable in a climate without any extreme events, which favours more tree cover and a higher global
terrestrial carbon stock. The effects on vegetation cover and carbon stocks and fluxes of a climate with
many heatwaves are generally smaller than the effects of a climate with many droughts. The largest effect,
however, has a climate with frequent concurrent droughts and heatwaves. Here, forest cover and global
vegetation carbon is strongly reduced. Grasses, in contrast, are more abundant. These effects surpass the
simple linear combination of the effects of single droughts and single heatwaves.

Overall, our results highlight the importance of considering compound events when analysing impacts
of climate extremes. Impacts may potentially be underestimated when only looking at single event
extremes instead of compounding extremes. Furthermore, the results suggest that uncertainties in
projections of vegetation distribution and carbon dynamics in Earth system models may stem from
different drought-heat signatures in the atmospheric module (Zscheischler & Seneviratne, 2017), in
addition to structural model differences in the vegetation component. It is important to investigate and
understand these issues in order to improve models as well as our knowledge about extreme events and
their processes, which may lead to significant impacts on society and ecosystems.
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3.6 Supporting information

Table 3.2: Bioclimatic limits of the ten available plant functional types in LPX-Bern.

Min. coldest
monthly mean
temperature

Max. coldest
monthly mean
temperature

Min. growing
degree days (at
or above 5◦C)

Upper
limit of

temperature

Tropical
Broadleaf
Evergreen

15.5 no limit 0 no limit

Tropical
Broadleaf
Raingreen

15.5 no limit 0 no limit

Temperate
Needleleaf
Evergreen

-2 22 900 no limit

Temperate
Broadleaf
Evergreen

3 18.8 1200 no limit

Temperate
Broadleaf

Summergreen
-17 15.5 1200 no limit

Boreal
Needleleaf
Evergreen

-32 -2 550 30

Boreal
Needleleaf

Summergreen
no limit -2 350 30

Boreal
Broadleaf

Summergreen
no limit -2 550 30

Temperate
Herbaceous

no limit no limit 0 no limit

Tropical
Herbaceous

no limit no limit 100 no limit
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Abstract

Heatwaves and droughts are expected to become more frequent and severe with climate change. How
these changes in extremes and differences in the simulation of droughts and heatwaves affect vegetation
distribution and the terrestrial carbon cycle as well as the uncertainties in its projections are not well
understood. In previous work, six hypothetical climate scenarios featuring different drought-heat signatures
have been developed to investigate how single vs. compound extremes affect vegetation distribution
and carbon dynamics. To specifically investigate vegetation and carbon cycle dynamics under extreme
conditions, these scenarios are used to force six dynamic global vegetation models. We find that global
responses to different drought-heat signatures vary greatly between dynamic global vegetation models,
especially for the scenarios with no or only few extremes, for which the models sometimes show opposite
responses in vegetation changes. In climate scenarios with frequent droughts or frequent compound
drought-heatwave events, models agree on reduced tree cover, which is in most cases replaced by grasses
and leads to a decrease in vegetation carbon stocks. We further find that the frequency of concurrent hot
and dry conditions is strongly related to the total carbon pools in most land areas, suggesting that this
compound extreme occurrence leads to a reduction of the natural land carbon sink.
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4.1 Introduction

Over the last six decades the terrestrial biosphere has sequestered on average about 28 % of the
anthropogenic CO2 emissions each year (Friedlingstein et al., 2022). While large part of this net carbon
sink is likely driven by elevated CO2 concentrations (Fernández-Mart́ınez et al., 2019), many other factors
influence the uptake capacity of the land, including variations in temperature and water availability,
which are expected to change with global warming. Many of these effects and their implications for
carbon dynamics and vegetation distribution are not well quantified. The effects of higher temperatures
and higher CO2 concentrations, for example, may counteract each other (Peñuelas et al., 2017). Reduced
productivity due to higher evaporative demand and stomatal closure (Friend et al., 2014) as a consequence
of higher temperatures may be compensated by increased water use efficiency (De Kauwe et al., 2013;
Keller et al., 2017; Walker et al., 2021) due to elevated CO2. Biomes in higher latitudes may benefit
from an increased growing season length but may be limited by nutrient availability (Zaehle et al.,
2010; Du et al., 2020). Overall, future projections of the terrestrial carbon sink are highly uncertain
and in particular models disagree whether the terrestrial biosphere will continue to act as a carbon
sink or become a carbon source under strong climate change (Friedlingstein et al., 2014). While these
uncertainties may be largely related to different implementations and parameterizations in vegetation
models, they may also be related to differences in climate models regarding their simulation of the
occurrence rates of droughts, heatwaves, and their co-occurrence (Herrera-Estrada & Sheffield, 2017;
Zscheischler & Seneviratne, 2017; Bevacqua et al., 2022).

Extreme weather and climate events can strongly influence carbon dynamics and may even lead to
shifts in vegetation composition (Reichstein et al., 2013; Felton & Smith, 2017). In particular, droughts
and heatwaves are among the most damaging hazards for terrestrial vegetation (Allen et al., 2010;
Zscheischler et al., 2014b; Frank et al., 2015; Sippel et al., 2018; von Buttlar et al., 2018; Buras et al.,
2020; Senf et al., 2020; Arend et al., 2021), and often co-occur as compound events (Bastos et al., 2014;
Zscheischler et al., 2018, 2020). Nevertheless, the impacts of droughts and heatwaves can vary substantially,
depending on the vegetation type, location, and phenology of the vegetation (Sippel et al., 2016; Bastos
et al., 2020b; Flach et al., 2021). Furthermore, in some instances, their individual effects can cancel each
other out while in other cases they compound each other, again depending on the location and the
underlying vegetation type and state (Li et al., 2022).

In most cases, impacts from compound events are not simply a linear combination of the univariate
impacts (Zscheischler et al., 2014b; Ribeiro et al., 2020; Bastos et al., 2021). Furthermore, since droughts
and heatwaves often co-occur (Zscheischler & Seneviratne, 2017), it is difficult to disentangle their
individual effects from long-term observations. To understand the effects of extreme events on vegetation,
we need to know which factors influence the distribution of vegetation. These factors might be climate
conditions such as temperature, precipitation, and light availability as well as other environmental
conditions such as atmospheric CO2 concentrations, nutrient availability, or topography (Peng, 2000).
Controlling all of these confounding factors in experiments in the real world is expensive and therefore,
field experiments typically focus on individual species, often different types of grasslands (Hoover et al.,
2014).

Here, we follow a modelling approach that allows generating controlled environments to simulate
vegetation responses, where different input variables can be tightly controlled and modified to simulate
single and compound extremes and thus estimate and compare their different impacts. To cover different
biomes and climate regions, large-scale biogeographical and biogeochemical models are required. Dynamic
global vegetation models (DGVMs) incorporate key ecological processes such as tree growth, nutrient
cycling, competition, and mortality and simulate the distribution of vegetation types and their response
to climate variability. DGVMs are able to predict vegetation structure, carbon pools, and fluxes over time
and space. Despite being developed to answer similar questions, DGVMs can differ significantly in their
temporal resolution, selection of processes, and parameterizations.

When suitable dynamic vegetation models have been selected, one challenge is how to create suitable
forcing data. Adding artificial extremes to an existing time-series may lead to physically inconsistent
weather patterns. In contrast, sampling from very long stationary climate simulations offers the opportunity
to generate scenarios that are similar in their climatology but differ in the occurrence rate of extremes
and compound extremes. For example, Tschumi et al. (2022a) generated six 100-year long scenarios that
differ in the occurrence rates of droughts, heatwaves, and compound drought-heatwave events, based on
the large ensemble simulation from the climate model EC-Earth.
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In previous work Tschumi et al. (2022b) forced the DGVM LPX-Bern with different climate scenarios
of Tschumi et al. (2022a) and found that LPX-Bern simulated a much higher forest cover in scenarios with
few or no hot and dry extremes and more grasses when frequent compound drought-heatwave events occur
(Tschumi et al., 2022b). Here, we extend this analysis to a model intercomparison containing six DGVMs.
In particular, we evaluate the agreement in their vegetation and carbon cycle response to scenarios that
have varying drought-heat signatures but similar present-day mean climate. We further explore whether
the frequency of compound event occurrence affects the magnitude of carbon pools at a regional level.

4.2 Data and Setup

4.2.1 Climate forcing

We use the forcing scenarios generated by Tschumi et al. (2022a). They consist of a set of six 100-year
long climate scenarios with similar climatologies but varying drought-heat signatures, originally derived
from long stationary climate model simulations whose global mean temperature is approximately at
the level of observed 2011-2015 temperatures. The scenarios differ in the occurrence of droughts and
heatwaves during the three months with maximum net primary production (NPP), based on simulations
conducted with the DGVM LPX-Bern. In those three months the effects of hot and dry extremes are
likely to cause the largest effects.

Besides a control scenario representing natural variability (Control), one scenario has neither heat
nor drought extremes (Noextremes), one has univariate extremes (heat or drought) but no compound
extremes (Nocompound), one has only heat extremes but few droughts (Hot), one has only droughts but
few heatwaves (Dry), and one has many compound heat and drought extremes (Hotdry). See Table 4.1 for
an overview of the sampling design.

Table 4.1: Sampling design for the six climate scenarios (Tschumi et al., 2022a). Sampling is based on average
temperature and precipitation during the three months in which vegetation is most productive in terms of NPP.
The table is taken from Tschumi et al. (2022b).

Scenario name Sampling procedure

Control 100 randomly selected years representing present-day climate
Noextremes only years where temperature and precipitation lie between

the 40th and 60th percentile
Nocompound no years where both temperature and precipitation lie above

the 85th percentile or below the 15th percentile
Hot years where temperature exceeds the 85th percentile and

precipitation lies between the 40th and 60th percentiles
Dry years where precipitation lies below the 15th percentile and

temperature lies between the 40th and 60th percentile
Hotdry years where temperature lies above the 85th percentile and

precipitation lies below the 15th percentile

The scenarios differ only moderately in their annual global mean climate (about 0.3 °C in temperature
and 6 % in precipitation across all scenarios) and do not contain any long-term trends. Furthermore, at
the local level, climatologies are similar among scenarios, which differ primarily in the occurrence of
droughts and heatwaves (Tschumi et al., 2022a). The data are provided on a daily time step over land
(except Antarctica and parts of Greenland) on a regular 1◦ × 1 ◦ grid. Due to the sampling design, there
is no spatial coherence in the climate fields, that is, the climate in one pixel is independent of the climate
in the neighbouring pixel. A complete description of the scenarios, including a quantification in how they
differ in terms of droughts and heatwaves as well as access to the forcing data can be found in Tschumi
et al. (2022a).
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4.2.2 Modelling setup

This model intercomparison project (MIP) aims at comparing the response of different vegetation models
to varying likelihoods of droughts, heatwaves, and compound drought-heatwave events, while keeping
everything else approximately equal, in an idealised world. The goal is to better understand uncertainties
in the simulation of vegetation composition and carbon dynamics stemming from those climate extremes
and compound events. The following models were used in this analysis: CABLE-POP (Haverd et al.,
2018), JULES (Best et al., 2011; Clark et al., 2011), LPJ-GUESS (Smith et al., 2014), LPX-Bern (Lienert
& Joos, 2018), OCN (Zaehle & Friend, 2010), and ORCHIDEE-MICT (Guimberteau et al., 2018). A short
description of each model is provided in Section 4.2.3.

For all models, six simulations are run with the input variables sampled as described in Section 4.2.1.
All models are run with dynamic vegetation, except for CABLE-POP, where vegetation distribution is
constant over time but differs between the scenarios as its vegetation distribution is calculated from mean
climate conditions at the beginning of the runs. The models only simulate natural vegetation, based
on the corresponding plant functional types (PFTs) that are represented by each model. CO2 is kept
constant at 389.78 ppm (level of 2011). An input file for nitrogen deposition is provided (from NMIP,
Tian et al. (2018)). The nitrogen deposition is also given for the year 2011 and is kept constant. Each
model uses its own approach to distribute nitrogen deposition over the year. No nitrogen fertilization is
included. The input data is provided on a 1◦ × 1 ◦ grid. It is important that all models use the spatial
resolution of the forcing data, since there is no spatial coherence in the climate forcing due to the nature
of the sampling (Section 4.2.1). The spin-up for the scenarios consists of the 100 years of data for each
scenario, recycling it as often as needed to ensure that vegetation and carbon pools are in equilibrium
during each of the 100-year simulations.

4.2.3 Model descriptions

In the following we provide a short description of each vegetation model that participated in the MIP.

CABLE-POP

CABLE-POP (Haverd et al., 2018) has been developed around a biogeophysics core module (Wang
& Leuning, 1998) and a biogeochemistry module including nitrogen cycling (Wang et al., 2010). The

’POP’ module (Haverd et al., 2013) simulates woody demography, which represents forest population
dynamics such as establishment and mortality, but not competition among vegetation types. The model
distinguishes eight plant functional types which can co-occur in a grid cell. The model disaggregates daily
meteorological forcing into 3-hourly time steps using a weather generator.

JULES

The Joint UK Land Environment Simulator (JULES) model (Best et al., 2011; Clark et al., 2011) is a
community model and is used in coupled or stand-alone mode forced by meteorological variables. Since
JULES runs on sub-daily timesteps, we made use of the JULES disaggregator (Williams & Clark, 2014),
which is based on the IMOGEN method (Huntingford et al., 2010). The model parameters (science
settings i.e. excluding driving data, 1◦ × 1 ◦ grid, simulation dates, ancillary data, prescribed data and
spin-up method that were specified for this model intercomparison) are described in Mathison et al.
(2022). However, we only represent the natural plant function types in this study. We also do not use the
fire module.

LPJ-GUESS

The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) (Smith et al., 2001; Sitch et al.,
2003; Buras et al., 2020) is a DGVM simulating processes such as establishment, growth, mortality,
and competition of PFTs of various age cohorts. For this study, a spin-up time of 1000 years was used.
Disturbances were modeled as patch-destroying disturbances with an average return time of 300 years
(Pugh et al., 2019). In addition, fire was modeled via the GLOBFIRM fire model (Thonicke et al., 2001).
To model the vegetation, global PFT parameterizations were used. As forcing, the surface air temperature,
precipitation, and downward shortwave radiation from this MIP were used, together with LPJ soil codes,
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a world soil file for global climate modelling (Zobler, 1986). The nitrogen cycle (Smith et al., 2014; Buras
et al., 2020) was turned on and we used 25 replicate patches to simulate a distribution of vegetation
stands of different stages after disturbance.

LPX-Bern

The Land surface Processes and eXchanges (LPX-Bern v1.4) model (Lienert & Joos, 2018) is a Dynamic
Global Vegetation Model based on the Lund-Potsdam-Jena (LPJ) model (Sitch et al., 2003). It needs as
input daily or monthly data of temperature, precipitation and radiation, as well as information on soil
type (Wieder et al., 2014), CO2, and nitrogen deposition to model water, carbon, and nitrogen cycling in
each grid cell. The model represents ten different natural vegetation types (eight tree PFTs and two grass
PFTs) on mineral soils. PFTs grow within their bioclimatic limits and compete for resources. Land-use
classes for cropland, pastures, and urban area, and for wetlands and peat lands are not enabled in this
study. The fire disturbance module and the nitrogen module were activated during the runs.

OCN

The terrestrial biogeochemical model O-CN (referred to as OCN here) is originally based on the
ORCHIDEE model (Krinner et al., 2005) but was extended through the addition of dynamic nitrogen
cycle processes coupled to the carbon cycle as described in Zaehle et al. (2010) and Zaehle et al. (2011).
Biological nitrogen fixation was dynamically simulated with the OPT scheme described by Meyerholt
et al. (2016). The model represents 13 PFTs (eight tree types, natural C3 and C4 grasses, C3 and C4
crops and bare-soil). The version of OCN used in this study simulates dynamic vegetation processes
(mortality, competition, establishment) based on the LPJ model (Sitch et al., 2003) and includes fire
disturbance dynamics based on Thonicke et al. (2001). Only natural vegetation types were included, i.e. 11
PFTS, excluding the two crop types. A spin-up simulation was performed by recycling the 100-year
climate forcing with random sampling until vegetation and soil carbon pools were in equilibrium. Fire
disturbances and nitrogen dynamics were activated during the spin-up and runs.

ORCHIDEE-MICT

ORCHIDEE-MICT (Organising Carbon and Hydrology in Dynamic Ecosystems- aMeliorated Interactions
between Carbon and Temperature) has been developed from ORCHIDEE, a land surface component of
the French Institut Pierre Simon Laplace (IPSL) Earth system model (ESM) that simulates water, energy,
and carbon processes (Krinner et al., 2005). The ORCHIDEE-MICT incorporates a new vertical soil
parameterization scheme, snow processes, and a fire module, improving the representation of high-latitude
processes such as permafrost physics and hydrology (Guimberteau et al., 2018). A spin-up simulation
following Guimberteau et al. (2018) was performed to reach the equilibria for soil conditions and carbon
pools. The model discretizes the vegetation into 13 PFTs (eight for trees, two for natural C3 and C4
grasses, two for crops, and one for bare-soil type). Daily forcings provided by the MIP were used for the
simulations. Only the natural PFTs (trees and natural grasses) were represented and the anthropogenic
processes such as grass grazing and crop harvesting were disabled.

4.3 Results

4.3.1 Features of the input scenarios stemming from the sampling method

The scenarios differ in the occurrence of droughts and heatwaves during the three months of highest
vegetation productivity in terms of NPP, which were identified at the pixel level based on the control
simulations from LPX-Bern (Section 4.2.1) (Tschumi et al., 2022b). The seasonal cycle of vegetation
activity differs between models, so that for each individual model, the months of highest vegetation
activity do not necessarily correspond to those estimated by LPX-Bern, used to derive the forcing
scenarios (Fig. 4.8). This may induce uncertainties when analysing the results. In regions with pronounced
seasonal cycle in vegetation activity, particularly the mid-to-high latitudes, the models show strong
agreement. In contrast, rather large differences are found in the tropics and subtropics. These regions do
not have a strongly pronounced seasonal cycle in vegetation activity and we thus assume that the effect
is likely not very important for the overall results. Creating the scenarios is a major effort (Tschumi
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et al., 2022a), hence, deriving scenarios that are based on different months for each model is beyond
the scope of this work. Another important point which needs to be kept in mind when interpreting
the simulations is the regional bias of the EC-Earth model when compared to observation-based data.
Globally, temperatures differ by -0.5 °C from CRU and precipitation differs by 7 %. Regionally, however,
these biases can be much larger (Fig. 4.9). In tropical and subtropical regions, EC-Earth has a cold bias
of up to -1.8 °C while in the extratropics it has a small warm bias of +0.2 °C. The largest precipitation
bias can be found in the extratropics where EC-Earth displays a wet bias of about 43.5 % in some regions.
In the tropics, some regions show very little bias while others show a dry bias compared to observations.

4.3.2 Vegetation cover, carbon pools and fluxes in the Control

Total mean global vegetation coverage, based on the foliar projective cover, which is the percentage of
ground area occupied by the vertical projection of foliage, ranges from 43 % to 89 % in the Control
scenario, depending on the model. For this scenario, most models simulate larger total tree coverage
than total grass coverage (Fig. 4.1). Overall vegetation coverage is the lowest for LPJ-GUESS (43 %),
OCN shows mainly tree coverage (70 %, with 78 % of vegetated area), whereas ORCHIDEE-MICT
simulates the highest grass cover (46 %, with 89 % of vegetated area), with CABLE-POP, LPX-Bern, and
JULES being somewhere in-between. Mirroring the variability in global vegetation cover, the models also
differ strongly in their spatial patterns of vegetation distribution (Fig. 4.2). White areas in the maps
represent land areas with bare soil. Most models agree on grass coverage in Australia, western USA, and
central Asia, with some dominantly grass-covered regions in South Africa and southern South America.
Some models (particularly ORCHIDEE-MICT) simulate grass cover in the Sahara desert. Tropical
regions as well as most temperate to higher latitudes are mainly covered in trees. OCN simulates that
nearly all land regions are dominated by tree cover, which is likely a consequence of the wet bias in
the extratropics in the forcing data. Please note that the prescribed control climate has strong biases
compared to observational data with strong impacts on simulated baseline vegetation distribution.

Figure 4.1: Tree and grass coverage, represented by foliar projective cover as % of total land grid cells, averaged
across all grid cells and over the 100 years of the Control simulation. White spaces represents coverage types other
than trees and grasses, mainly bare soil and ice.

Global gross primary production (GPP), net primary production (NPP), and heterotrophic respiration
(RH) show some variation across models in the Control simulation, with GPP ranging from 134 to
195 PgC per year, NPP ranging from 68 to 96 PgC per year and RH ranging from 57 to 84 PgC per year
(Fig. 4.3a). For most models, soil carbon pools (ranging between 1540 and 2078 PgC, ORCHIDEE-MICT
being an exception with 3827 PgC) are generally about twice as large as the vegetation carbon pools (674
to 1876 PgC) (Fig. 4.3b). ORCHIDEE-MICT simulates a soil carbon pool about five times larger than
the vegetation carbon pool (3827 PgC in soils compared to 674 PgC in vegetation). The sizes of the
vegetation and soil carbon pools correlate with the vegetation distribution, where models with a high tree
coverage also simulate a large vegetation carbon pool. The high soil carbon value in ORCHIDEE-MICT is
probably related to the fact that it includes permafrost carbon in the soil carbon variable.
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Figure 4.2: Fraction of the dominant vegetation class based on foliar projective cover, either trees or grasses, at
each pixel. Shown is the mean over the 100 years of the control simulation for each vegetation model. White area
represents regions with no tree or grass coverage, which mostly correspond to bare soil and ice.

4.3.3 The effect of varying drought-heat signatures

The responses in vegetation coverage to the different scenarios vary strongly between models (Fig. 4.4).
The strongest agreement between models is found for the Hotdry scenario, for which all models agree on
an increase in grass cover and nearly all models agree on a decrease in tree cover. In the Dry scenario, all
models simulate a reduction in tree cover but models disagree as to whether grasses increase or decrease.
In contrast, nearly all models simulate an increased tree cover in the Hot scenario. Again, model results
vary in the grassland response to this scenario.

Models show relatively weak and inconsistent response to the Nocompound scenario. Finally, the
responses to the Noextremes scenario, which represents a climate with both temperature and precipitation
always between the 40th and 60th percentile during the three months of highest growth, are rather large
but vary strongly across models: whereas LPX-Bern (red) and ORCHIDEE-MICT (pink) simulate a
strong increase in tree coverage, the other models generally show a slight decrease or no change at all (in
the case of CABLE-POP, purple). Overall, CABLE-POP generally shows a relatively weak response for
most scenarios, possibly related to the fact that it does not simulate vegetation dynamically but uses
fixed vegetation determined by the climate in the spin-up (Section 4.2.3).

In absolute terms, the largest relative differences are simulated by the OCN (blue) grass response to
the Noextremes (+10.5 %), Dry (+8.9 %) and Hotdry (+7.7 %) scenarios, which is due to the fact that
the overall grass fraction is very low in the Control (Fig. 4.1). LPJ-GUESS (green) also simulates an
increase in grass cover of +9.5 % for Hotdry whereas LPX-Bern (red) and ORCHIDEE-MICT (pink)
both simulate a decrease by about -7 % in grass cover for Noextremes. Regarding changes in tree cover,
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Figure 4.3: Global sums of the (a) terrestrial carbon fluxes GPP (blue), NPP (orange) and RH (green) in PgC
per year as well as (b) vegetation (cVeg, green) and soil (orange) carbon pools PgC. Shown is the mean over the
100 years of the control simulation.

JULES (orange) simulates the strongest decrease (over -7 %) for Hotdry extremes whereas LPX-Bern and
ORCHIDEE-MICT simulate a more than +5 % increase for Noextremes.

Figure 4.4: Relative differences in % of global mean tree (saturated colours) and grass coverage (light colours)
based on foliar projective cover for all scenarios compared to the Control. Shown is the mean over the 100 years.
The scenarios are indicated on the x-axis while the models are differentiated by colour.

Similar to the response in vegetation cover, the vegetation models show diverse responses in total
vegetation and soil carbon pools relative to the Control (Fig. 4.5). For the Noextremes and the Nocompound
scenario, most models agree on an increase in both vegetation and soil carbon, with LPX-Bern generally
showing the strongest increase followed by ORCHIDEE-MICT. For the Hot scenario the responses across
models are more mixed, with LPX-Bern showing an increase in both vegetation and soil carbon pools,
JULES showing a slight decrease in both pools, and the remaining models showing both increases and
decreases in the carbon pools. The Dry and the Hotdry scenarios overall lead to stronger carbon losses,
especially in the vegetation pool, for which nearly all models agree on a loss. For soil carbon in these two
scenarios, CABLE-POP, JULES, and ORCHIDEE-MICT show a decrease while the other models show an
increase. The amount of decrease or increase is generally largest for the Hotdry scenario, followed by the
Dry scenario. An exception is the change in the vegetation carbon pool in LPX-Bern and also to a lesser
extent ORCHIDEE-MICT for the Noextremes and Nocompound scenario, which is relatively large and
mirrors the increase in forest cover (Fig. 4.4). For most models, the effect of the Hotdry scenario on
carbon pools exceeds the combined effect from both the Hot and Dry scenario. The effect from the Hotdry
scenario on carbon pools is generally larger than the effect from the Dry scenario, and the effect from the
Hot scenario shows an opposite response compared to the effect from the Dry scenario for many models,
meaning that it would be difficult to predict the effect of the Hotdry scenario from the individual effects
of the Hot and the Dry scenario.

In the previous sections we found an indication that the occurrence of more frequent compound hot
and dry conditions may lead to a reduction in the overall carbon pools (vegetation and soil carbon
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Figure 4.5: Relative differences in % of global mean vegetation (saturated colours) and soil carbon (light colours)
for all scenarios compared to the Control. Shown is the mean over the 100 years. The scenarios are indicated on
the x-axis while the models are differentiated by colour.

combined). The occurrence rate of concurrent hot and dry extremes can be approximated by the seasonal
correlation between temperature and precipitation, with a stronger negative correlation indicating more
frequent compound hot and dry conditions (Zscheischler & Seneviratne, 2017). We therefore test whether
the correlation between temperature and precipitation in the months with highest productivity can serve
as an indicator of total carbon accumulation. We find that for many models and most land regions, this is
indeed the case (Fig. 4.6). In most regions and most models, we see a rather strong positive relationship.
Since temperature and precipitation are generally negatively correlated over land (Fig. 4.10), this means
that the stronger negatively correlated temperature and precipitation are, the smaller is the total carbon
pool in that region. In other words, in those regions climatologically more frequent concurrent hot and dry
conditions reduce the carbon pools at equilibrium in the dynamic vegetation models used in this study.

In some high-latitude regions, mountainous regions such as the Himalayas or the Alps and dry regions
such as the Sahara desert, the correlation in Fig. 4.6 is slightly or even strongly negative in most models.
In these regions, more frequent compound hot and dry conditions lead to higher carbon pools. Generally,
this effect seems to hold for regions that are cold and/or regions that have little vegetation coverage to
begin with. The magnitude of the correlation can be interpreted as a sensitivity of the dynamic vegetation
and in particular the carbon pools to the occurrence of compound hot and dry events.

So far we have focused on the average and large-scale responses of the models to the different
scenarios. However, local analyses might provide additional insights on model differences. Fig. 4.7 shows
the variability in tree cover (first row), grass cover (second row), and GPP (third row) across years for all
models and all scenarios for a location in the western USA (42.5 °N -110.5 °E). The Control simulation
has a bias of +0.2 °C in annual mean temperature and +60 % in annual mean precipitation compared to
observations in this location. The plot on the top left shows the cooling degree days (CDD) against the
standardized precipitation index (SPI) as indicators for heatwave and drought intensity, respectively, for
the different scenarios, as defined in Tschumi et al. (2022a).

Models strongly vary in a number of characteristics: the distribution between tree and grass cover,
the interannual variability in vegetation cover and GPP, and their response magnitude to the different
scenarios. While JULES, LPJ-GUESS, OCN, and ORCHIDEE-MICT generally simulate a higher tree
cover than grass cover, the opposite is true for LPX-Bern and CABLE-POP. However, tree versus grass
covers does not seem to affect the difference in GPP much between the models. Some models, in particular
LPX-Bern and to some extent also LPJ-GUESS, OCN, and ORCHIDEE-MICT, show a large interannual
variability in vegetation coverage (as shown by the length of the boxes), indicating a high sensitivity or
fast response to year-to-year variations in weather conditions. This high interannual variability is to
some extent also visible in GPP, though much more attenuated. Regarding the response to the different
scenarios, LPX-Bern, OCN, and JULES agree on less tree coverage for the scenarios Dry and Hotdry.
Also LPJ-GUESS shows a slight reduction in tree coverage for the Dry scenario but similar coverage in
the Control and the Hotdry scenario. Consistent with the earlier large-scale analysis, LPX-Bern simulates
a much higher tree cover in the Noextremes scenarios. OCN and JULES simulate a much weaker response
in the same direction. CABLE-POP simulates no difference between scenarios for this location.
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Figure 4.6: Correlation between the correlation of temperature and precipitation averaged over the three months
with highest vegetation activity and total carbon pools (vegetation carbon + soil carbon). In white are the areas
where the correlation is not significant on a 5 % level.

Pixel-based simulations for other locations are shown in Figures 4.11, 4.12, and 4.13 with their
corresponding locations indicated in Figure 4.14. The pixel in South Africa has a temperature bias of
-3.2 °C and a precipitation bias of +78.6 % in the Control scenario compared to observations. JULES,
LPJ-GUESS and OCN simulate a dominant tree cover for all scenarios (> 50 %), whereas CABLE-POP,
LPX-Bern and ORCHIDEE-MICT simulates mainly grass (> 60 %). JULES simulates a pronounced
reduction of tree cover for the Hotdry scenario and a corresponding increase in grass cover. Overall,
LPX-Bern shows the strongest response to the different scenarios in vegetation cover, though GPP is
rather similar in all scenarios. Despite the differences between the models and scenarios in tree or grass
coverage, GPP is comparable for all models and most scenarios, with small declines for Hotdry.

The pixel in Siberia has a +3.3 °C temperature bias and a +28.7 % precipitation bias. Here, LPX-Bern
simulates mainly trees, with large variations between the scenarios, resulting in moderate tree (50 %) cover
in the Control and the Nocompound scenario and very high tree cover in the others (80 %). OCN also
simulates a similar tree cover (50 %), with increasing cover in the Hot and Hotdry scenario. CABLE-POP
simulates relatively low tree cover in the Control and Nocompound but strong increases in all other
scenarios. Grass cover shows the opposite response. JULES, LPJ-GUESS, and ORCHIDEE-MICT
simulate a dominance of grasses in this location, with JULES showing a strong increase in tree cover for
Hot. Again, interannual variability is largest in LPX-Bern followed by LPJ-GUESS and OCN.

The pixel in Australia has a -0.4 °C temperature bias and a -2.3 % precipitation bias. All models
except OCN agree on mainly grass coverage, with LPJ-GUESS and LPX-Bern showing high interannual
variations.
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Figure 4.7: Pixel analysis for USA (42.5 °N -110.5 °E). The top left panel shows the Standardized Precipitation
Index (SPI) as a drought indicator and the Cooling Degree Days (CDD) as a heatwave indicator for all scenarios.
The other panels show tree coverage in the top row, grass coverage in the middle row and GPP in the bottom row
for all models. The boxplots depict the variation over the years. The temperature bias for the Control scenario is

+0.2 °C and the precipitation bias is +60 % compared to CRU climate data (Harris et al., 2014).

4.4 Discussion

Vegetation distribution and terrestrial carbon dynamics are strongly affected by the occurrence rate and
intensity of extreme climate events. In this study we investigate how state-of-the-art global vegetation
models simulate changes in vegetation distribution and carbon dynamics to differences in the occurrence
rate of heatwaves, droughts and compound drought-heatwave events during the three months of largest
vegetation activity, keeping annual mean temperature and precipitation approximately equal across
scenarios (variation of about 0.3 °C in mean global temperature and about 6 % in mean global precipitation).
We find that overall, there is large variability across models regarding the response of vegetation distribution
and carbon uptake in response to changes in the frequency of extreme events. The differences in responses
across models are typically more pronounced than the differences in responses across the six selected
scenarios for a given model.

We observe the largest effect in the Dry and Hotdry scenarios (see Table 4.1), where models agree
that more frequent droughts/more frequent compound drought-heatwave events lead to a reduction in
tree cover and increase in grass cover (Fig. 4.4). Likewise, most models simulate a reduction in the
vegetation carbon pool by up to -7.5 % for those scenarios (Fig. 4.5). This indicates that globally, more
frequent droughts lead to the terrestrial biosphere being a smaller carbon sink. The results indicate
that in a climate with frequent droughts and compound drought-heatwave events, trees cannot thrive
and are outcompeted by grasses, which are less dependent on a stable climate and can adapt easier to
strong variations in water availability. Large-scale tree mortality has been linked to extreme droughts
in observations (Senf et al., 2020), compound hot-dry conditions (Hammond et al., 2022; Hartmann
et al., 2022) and sequences of hot and dry years (Bastos et al., 2021). Although the current set of global
vegetation models lacks many processes that are important for vegetation mortality (Meir et al., 2015;
Bugmann et al., 2019; McDowell et al., 2018) our results indicate that the models are able to simulate
reduced forest cover when droughts and heatwaves are very frequent in the climatology.

The responses to a climate with more frequent heatwaves are much less pronounced at the global
scale and are likely an effect of increased forest cover and vegetation productivity in energy-limited
regions such as the high latitudes and reduced tree cover in regions that already reach temperature limits
in the control climate. For the Nocompound scenario, responses are generally weak. In contrast, for the
Noextremes scenario, model responses are strong but in high disagreement. For both scenarios models tend
to simulate more vegetation carbon. The variations in the responses to the Noextremes scenario could be
an indication to differences in how models deal with the effect of extremes on vegetation and carbon
dynamics. Trees in LPX-Bern and ORCHIDEE-MICT seem to thrive under stable conditions with few
extremes (Tschumi et al., 2022b) whereas all other models simulate reduced tree cover. This could be due



64
4. LARGE VARIABILITY IN SIMULATED RESPONSE OF VEGETATION COMPOSITION AND

CARBON DYNAMICS TO VARIATIONS IN DROUGHT-HEAT OCCURRENCE

to the fact that the Noextremes scenario excludes some warm temperature which are actually beneficial
for C3 photosynthesis. Excluding these leads to lower foliar projective cover of trees in many models.

In most models, total carbon stocks are strongly correlated with the likelihood of experiencing
compound drought-heatwave events (Fig. 4.6). In most tropical and mid-latitude regions and most models,
more frequent compound drought-heatwave events lead to lower carbon stocks in vegetation and soils,
whereas the opposite is true for the high latitudes in four out of six models. The temperature-precipitation
correlation – which determines the likelihood of experiencing compound drought-heatwave events
(Zscheischler & Seneviratne, 2017) – can vary substantially across climate models (Bevacqua et al., 2022)
due to differences in how atmospheric and land surface processes are simulated (Berg et al., 2015).
Climate models can have substantial biases in the temperature-precipitation coupling compared to
observations (Vrac et al., 2021). Furthermore, varying long-term trends in the temperature-precipitation
coupling have been identified in climate models (Zscheischler & Seneviratne, 2017), which may add to
reductions in future crop yields caused by warming temperatures (Lesk et al., 2021). Through the link
between total carbon stocks and precipitation-temperature coupling in vegetation models illustrated in
our study, we demonstrate how uncertainties in the representation of the temperature-precipitation
coupling and changes therein can contribute to uncertainties in the projection of terrestrial carbon stocks
(Friedlingstein et al., 2014).

Our model intercomparison shows very high variability in model responses, which is not uncommon in
vegetation model intercomparison studies (Paschalis et al., 2020). All models were run with the same
forcing, reducing uncertainties related to the choice of forcing data (Wang et al., 2021). Nevertheless,
strong differences between models in the Control simulations (Fig. 4.2) could be related to the fact that
we used raw model output from a climate model as forcing, which – despite matching the observed global
mean temperature of 2011-2015 – is characterized by regional biases in temperature and precipitation.
Vegetation models are often calibrated to represent observed vegetation well when forced with observed
climate (e.g. when used to estimate the land carbon sink, Friedlingstein et al., 2022) so regional climate
biases can lead to very different simulations of vegetation distribution and carbon dynamics for the
different models. For instance, Teckentrup et al. (2022) found large differences in the simulation of carbon
fluxes and stocks for raw climate model forcing compared to a bias-corrected forcing in water-limited
regions of Australia. Not all variables were equally sensitive to the bias, and not all PFTs responded in a
similar way, indicating that the bias could have an influence on vegetation composition. To test whether a
bias in forcing could affect our conclusions, we restricted the analysis to regions with small biases. The
general response patterns look very similar (Fig. 4.15) which leads us to conclude that the bias on the
forcing data does not strongly affect our findings.

Uncertainties in the model responses may also be related to the fact that we based the sampling of the
scenarios on the three most productive months as simulated by LPX-Bern (Tschumi et al., 2022a). Other
models might have strong shifts in the most productive months and thus be sensitive to climate extremes
in different seasons. We find that in most of the extratropics the time shift between the most productive
months is small. The largest differences occur in the tropics and subtropics, which are regions where the
seasonal cycle is not very pronounced and therefore differences in the months does not necessarily mean
large differences in productivity.

4.5 Conclusion

This model comparison aims at investigating how different vegetation models simulate vegetation
distribution and carbon dynamics to climates with few or no droughts and heatwave, only univariate
extremes, and frequent compound extremes. Even though all models are run with exactly the same input
data, the results tend to vary greatly. Despite large differences, the models generally agree that a climate
with more frequent compound hot-dry events would lead to a reduction in forest cover and carbon stocks.
Furthermore, in all models, carbon pools are strongly related to the likelihood of experiencing compound
hot-dry events. Overall our study highlights how uncertainties in the simulation of compound hot-dry
events can propagate to uncertainties in total carbon uptake and pools.
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4.6 Supporting information

Figure 4.8: Most productive months (maximum consecutive 3-month mean of NPP) for all models and compared
to LPX-Bern, which was used to sample the input data.
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Figure 4.9: Biases in EC-Earth simulations with respect to observation-based data from CRU (Harris et al.,
2014). (a) Difference in annual mean temperature between EC-Earth and CRU in °C. (b) Relative difference in
annual precipitation between EC-Earth and CRU in %. The time period 1988–2017 was used for CRU and
randomly sampled 100 years (representing 2011–2015) for EC-Earth. The land regions depicted in grey in (b) are
desert regions with a mean annual precipitation of less than 250 mm in the CRU dataset and were excluded in the
maps to avoid dividing by very small numbers. Taken from Tschumi et al. (2022a).

Figure 4.10: Correlation maps between temperature and precipitation of the Control scenario input over the
three most productive months.
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Figure 4.11: Pixel analysis for South Africa (-20.5°N 18.5°E). The top left panel shows the Standardized
Precipitation Index (SPI) as a drought indicator and the Cooling Degree Days (CDD) as a heat indicator for all
scenarios. The other panels show tree coverage in the top row, grass coverage in the middle row and GPP in the
bottom row for all models. The boxes depict the variation over the years. The temperature bias for the Control
scenario is -3.2°C and the precipitation bias is +78.6% compared to CRU.

Figure 4.12: Pixel analysis for Siberia (70.5°N 120.5°E). The top left panel shows the Standardized Precipitation
Index (SPI) as a drought indicator and the Cooling Degree Days (CDD) as a heat indicator for all scenarios. The
other panels show tree coverage in the top row, grass coverage in the middle row and GPP in the bottom row for
all models. The boxes depict the variation over the years. The temperature bias for the Control scenario is +3.3°C
and the precipitation bias is +28.7% compared to CRU.



68
4. LARGE VARIABILITY IN SIMULATED RESPONSE OF VEGETATION COMPOSITION AND

CARBON DYNAMICS TO VARIATIONS IN DROUGHT-HEAT OCCURRENCE

Figure 4.13: Pixel analysis for Australia (-20.5°N 130.5°E). The top left panel shows the Standardized Precipitation
Index (SPI) as a drought indicator and the Cooling Degree Days (CDD) as a heat indicator for all scenarios. The
other panels show tree coverage in the top row, grass coverage in the middle row and GPP in the bottom row for
all models. The boxes depict the variation over the years. The temperature bias for the Control scenario is -0.4°C
and the precipitation bias is -2.3% compared to CRU.

Figure 4.14: Map showing the locations of the pixel analyses shown in Figures 4.12, 4.11, 4.7, and 4.13.



4.6. SUPPORTING INFORMATION 69

Figure 4.15: Relative change in tree and grass coverage as a function of temperature and precipitation bias. The
maps show the pixels that were considered for the bar plots. Pixels were excluded based on the magnitude of their
temperature and precipitation biases (control compared to CRU).





Chapter 5

Conclusions and Outlook

5.1 Summary of results

5.1.1 The input data

This thesis investigates the effects of six hypothetical climate scenarios with differing occurrence rates of
hot and dry extremes, sampled from a large ensemble simulation, on vegetation distribution and carbon
dynamics as modelled by dynamic global vegetation models. Chapter 2 deals with building extreme event
input scenarios suitable for vegetation impact modelling. The modelling approach was chosen because
process-based impact models in combination with climate models provide the opportunity of a controlled
environment to disentangle the effects of single and compound drivers of extreme events. The scenarios
are based on a large ensemble simulation generated by the climate model EC-Earth, which offers a
long time series without long-term trends covering the whole globe’s land area. These are all important
advantages which are often missing in observational or reanalysis data. Especially when one is interested
in extreme events, a long data series is essential because such events are rare by definition. Thanks
to the large ensemble simulation, it was possible to sample 100-year long scenarios. The drought-heat
scenarios presented in this thesis differ in their occurrence frequency of droughts and heatwaves but are
comparable in their mean climate, representative of the observed 2011-2015 climate. Sampled from
EC-Earth, these scenarios are not free of biases in temperature and precipitation at the local to regional
scale. A cold-dry bias in the tropics is offset by a warm-wet bias in high latitudes. The biases need to be
taken into consideration when using these scenarios for impact modelling, since many models are tuned to
a specific climate and biases in the input data can have a large effect (Teckentrup et al., 2019). The
sampling of the scenarios is also done in such a way that spatial coherence is destroyed, which means that
climate variables have no correlation between neighbouring grid points. This was done intentionally and
does not diminish the validity of the results. It is, however, something to keep in mind when using this
data for other studies. The sampling of the hot and dry extremes is based on vegetation productivity, i.e.
during the time when vegetation is most productive and arguably also most vulnerable to extreme
conditions. This makes these scenarios an ideal tool to study drought-heat impacts on vegetation. They
can additionally be used to study other impacts, potential other applications being, for example, wildfire
occurrence or impacts on agriculture.

5.1.2 The effects of hot and dry extremes

Chapters 3 and 4 discuss the effects of the scenarios described in Chapter 2 on the dynamic global
vegetation model (DGVM) LPX-Bern (Chapter 3) specifically and on five additional DGVMs in a model
intercomparison study (Chapter 4). Different occurrence frequencies of hot, dry, and compound hot-dry
events lead to differences in natural vegetation coverage and related differences in global carbon stocks.
We see that vegetation distribution and carbon stocks are strongly affected by the frequency and intensity
of extreme climate events. Although variability across the models is overall large, they agree on a clear
reduction in tree coverage and an associated reduction in carbon stored in plants of up to -7.5 % as well
as an increase in grass coverage for the most extreme scenario featuring compound hot and dry extremes.
Tree coverage and vegetation carbon storage are also reduced in a climate with more dry extremes, but to
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a lesser extent than for a compound hot and dry climate. Especially in already water-limited regions,
the bioclimatic limits of trees and, in very dry regions such as the Sahara desert, also those of grasses
are reached quickly under a climate with more dry extremes, leading to a reduction of vegetation and
also carbon stored in vegetation. Models mostly agree on this, although it is less pronounced than the
more extreme hot and dry scenario. The results indicate that in a climate with frequent droughts and
compound drought-heatwave events trees cannot thrive and are outcompeted by grasses, which are less
dependent on a stable climate and can adapt easier to strong variations in water availability. Even smaller
changes and less agreement between models can be observed for the scenario with only hot extremes. This
means that a heatwave event has to be more extreme than a drought event to have a comparable impact.
This is most likely due to large regional differences. Higher latitudes are generally energy-limited (Way &
Oren, 2010). Tree coverage tends to increase in a warmer climate due to an increased growing season
length without necessarily exceeding the temperature limit of boreal trees (Myneni et al., 1997), although
these regions might still be limited by nutrient availability (Zaehle et al., 2010; Du et al., 2020). These
temperature limits might be reached more quickly in other regions, leading to a reduction in tree coverage
due to temperature-induced mortality.

Globally, the extratropics show larger effects of extremes than the tropics. LPX-Bern shows that the
effects of hot and dry extremes are smallest on tropical and largest on boreal trees. This is probably due
to the fact that evaporative cooling is maintained in tropical forests, even in a drier climate (Bonan, 2008),
since tropical forests are generally more energy- instead of water-limited. More frequent hot extremes, in
turn, are most beneficial in high latitudes and not so much in the tropics. This is because boreal regions
are generally energy-limited and a warmer climate often leads to an increased growing season length and
does not necessarily lead to the reaching of the bioclimatic limits for these regions. Semi-arid regions, or,
more generally, regions which are transitional between water-limited and energy-limited, show the largest
effects on GPP (Zscheischler et al., 2014b).

There are not only regional differences, but also differences between biomes. In our case, we looked at
differences between trees and grasses. Tree coverage is generally more reduced under extreme conditions,
especially under droughts. While a prolonged growing season length in high latitudes may promote tree
growth, the positive effects of a warmer climate are superseded by the negative impacts of droughts
(Belyazid & Giuliana, 2019; Ruiz-Pérez & Vico, 2020). While tree roots may reach water reservoirs in
deeper soil layers (Bréda et al., 2006) for a longer period of time than grasses under drought conditions,
once their limits are reached, they need much longer to recover. Grasses react faster to changes in climate,
but they are generally better adapted to already dry regions than trees and they have a much faster
recovery time (Teuling et al., 2010; Sippel et al., 2018). In our modelled case, grass coverage often
increases when tree coverage is reduced, because it can grow in areas that were previously covered by trees.
This also depends on the way vegetation growth is parameterized in a model.

Our results show clearly that a high likelihood of compound hot and dry events, here represented as a
strong correlation between temperature and precipitation (also Zscheischler & Seneviratne, 2017), is
strongly correlated with a reduction in total carbon stock. This is especially true for most tropical and
mid-latitude regions, whereas the opposite is sometimes true for the high latitudes. Since the compound
hot and dry scenario shows the strongest response, stronger than even the combination of the hot and the
dry scenarios together, the importance of considering multiple drivers together as compound events is
evident (Zscheischler et al., 2018, 2020). Impacts may potentially be underestimated when only considering
single driver extremes. While it is possible that regions react differently to extremes and some regions
might even benefit (like the high latitudes from a prolonged growing season length under a warmer
climate), the interactions between drivers might have negative feedbacks on each other, worsening the
overall effects of a compound event (Shah & Paulsen, 2003).

5.2 Modelling implications

High variability in vegetation model intercomparison studies is common (Paschalis et al., 2020). Our
results show how tree mortality is linked to extreme droughts and compound drought-heatwave conditions,
which can also be seen in observations (Senf et al., 2020; Hammond et al., 2022; Hartmann et al., 2022).
Even though current global vegetation models may lack important processes for vegetation mortality
(Meir et al., 2015; Bugmann et al., 2019; McDowell et al., 2018), our results indicate that they are able to
simulate reduced forest cover when droughts and heatwaves are very frequent. By running all models with
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the same forcing data, we reduce the uncertainties related to the choice of forcing data (Wang et al., 2021).
However, the use of raw model output from a climate model which contains some regional biases might
partly explain the strong differences between the models. Not all variables are equally sensitive to the bias
and not all PFTs respond in a similar way. These variations can lead to very different simulations of
vegetation distribution and carbon dynamics because vegetation models are often calibrated to the
observed climate.

Especially in a climate without extremes, model agreement on vegetation distribution and carbon
stocks is low. Since such a climate is unlikely to challenge the bioclimatic limits, the exact processes with
which models simulate these variables is important for the overall results. In LPX-Bern, for example, trees
are favoured over grasses. In particular, they receive priority for foliar coverage if conditions are suitable
for tree growth. This would explain the increase in tree cover and the decrease in grass cover in a more
stable climate.

It is also known that the temperature-precipitation correlation, which determines the occurrence
likelihood of compound drought-heatwave events, may vary across climate models due to differences in
how atmospheric and land surface processes are simulated (Berg et al., 2015; Zscheischler & Seneviratne,
2017; Bevacqua et al., 2022). This may lead to substantial biases in the temperature-precipitation coupling
compared to observations (Vrac et al., 2021) and further to uncertainties in projections of vegetation
distribution and carbon dynamics in models. This is due to misrepresented drought-heat signatures in
addition to structural model differences in the vegetation component (Zscheischler et al., 2018). By
demonstrating the link between total carbon stocks and temperature-precipitation correlation in this
thesis, it is clear how the uncertainties of the representation of this coupling in models can contribute to
uncertainties in the projection of the terrestrial carbon sink.

While vegetation models are generally a helpful tool to analyse many different hypotheses, they do
lack some refined processes, especially when it comes to variable interactions and feedbacks, which are
especially important when looking at compound events. Understanding these issues and improving models
is crucial for further studies on climate extremes and their effects on vegetation.

5.3 Outlook

Our results suggest a reduction in the natural carbon sink under extreme conditions. While human-made
changes are, of course, also very important and cannot be ignored when considering the actual total
terrestrial carbon sink, it is something that is more directly manageable and therefore easier to control.
The change of the natural terrestrial carbon sink is indirectly caused by human activity through the
release of fossil fuels, which also alters the occurrence of extremes (Friedlingstein et al., 2022). It is
therefore essential to understand how the natural carbon sink will change under future conditions in order
to understand the total terrestrial carbon sink. This study addresses one aspect of this process, namely
how it evolves under different extreme conditions. Some additional factors would need to be considered for
a whole picture, for example, changing CO2 levels.

Moreover, our modelling setup is designed to study the effects of differing drought-heat signatures in
different models. This inevitably means that we cannot allow land-atmosphere feedbacks. Indeed such
feedbacks would alter our scenarios over time and they would also likely vary for different models, making
it harder to compare them. In a more realistic setup, we would need to use a changing climate, meaning
climate input with a time trend, as well as changing CO2 concentrations, and allow for land-climate
feedbacks. A further step to represent reality more accurately is to allow for teleconnections. Our sampling
process prevents any teleconnections. In the Hot scenario, for example, we increased the occurrence of hot
extremes everywhere. This was done to demonstrate the effect of hot extremes on all different biomes and
climate zones. However, in a more realistic setup, not all regions experience the same increase in extremes.

Having said that, the setup as used in this thesis is ideal to understand the effects of single vs.
compound drivers and test different hypotheses. Future work along the lines of this thesis could include
runs also considering crop and other land uses as well as runs with different concentrations of CO2, in
order to assess the effect of CO2 fertilization. Our sampling method can further be used to study other
types of compound events and their impacts. One could, for instance, sample temporally compounding or
preconditioned events and study their implications on vegetation.
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Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao, S., & Thornton, P.,
2013. Carbon and other biogeochemical cycles. climate change 2013: the physical science basis.
contribution of working group i to the fifth assessment report of the intergovernmental panel
on climate change, Comput. Geom, 18, 95–123.

Ciais, P., Tan, J., Wang, X., Roedenbeck, C., Chevallier, F., Piao, S.-L., Moriarty, R., Broquet,
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Ruiz-Pérez, G. & Vico, G., 2020. Effects of temperature and water availability on northern
european boreal forests, Frontiers in Forests and Global Change, 3, 34.

Saleska, S. R., Miller, S. D., Matross, D. M., Goulden, M. L., Wofsy, S. C., Da Rocha, H. R.,
De Camargo, P. B., Crill, P., Daube, B. C., De Freitas, H. C., Hutyra, L., Keller, M., Kirchhoff,
V., Menton, M., Munger, J. W., Hammond Pyle, E., Rice, A. H., & Silva, H., 2003. Carbon in
amazon forests: unexpected seasonal fluxes and disturbance-induced losses, Science, 302(5650),
1554–1557.



90 BIBLIOGRAPHY

Salvadori, G., Durante, F., De Michele, C., Bernardi, M., & Petrella, L., 2016. A multivariate
copula-based framework for dealing with hazard scenarios and failure probabilities, Water
Resources Research, 52(5), 3701–3721.
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