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Abstract

As a discretized representation of the volumetric domain, hexahedral meshes
have been a popular choice in computational engineering science and serve as
one of the main mesh types in leading industrial software of relevance. The gen-
eration of high quality hexahedral meshes is extremely challenging because it is
essentially an optimization problem involving multiple (conflicting) objectives,
such as fidelity, element quality, and structural regularity. Various hexahe-
dral meshing methods have been proposed in past decades, attempting to solve
the problem from different perspectives. Unfortunately, algorithmic hexahedral
meshing with guarantees of robustness and quality remains unsolved.

The frame field based hexahedral meshing method is the most promising
approach that is capable of automatically generating hexahedral meshes of high
quality, but unfortunately, it suffers from several robustness issues. Field based
hexahedral meshing follows the idea of integer-grid maps, which pull back the
Cartesian hexahedral grid formed by integer isoplanes from a parametric domain
to a surface-conforming hexahedral mesh of the input object. Since directly
optimizing for a high quality integer-grid map is mathematically challenging, the
construction is usually split into two steps: (1) generation of a feature-aligned
frame field and (2) generation of an integer-grid map that best aligns with the
frame field. The main robustness issue stems from the fact that smooth frame
fields frequently exhibit singularity graphs that are inappropriate for hexahedral
meshing and induce heavily degenerate integer-grid maps. The thesis aims at
analyzing the gap between the topologies of frame fields and hexahedral meshes
and developing algorithms to realize a more robust field based hexahedral mesh
generation.

The first contribution of this work is an enumeration of all local configura-
tions that exist in hexahedral meshes with bounded edge valence and a general-
ization of the Hopf-Poincaré formula to octahedral (orthonormal frame) fields,
leading to necessary local and global conditions for the hex-meshability of an
octahedral field in terms of its singularity graph. The second contribution is a
novel algorithm to generate octahedral fields with prescribed hex-meshable sin-
gularity graphs, which requires the solution of a large non-linear mixed-integer
algebraic system. This algorithm is an important step toward robust automatic
hexahedral meshing since it enables the generation of a hex-meshable octahedral
field.

In the collaboration work with colleagues [BRK+22], the dataset HexMe con-
sisting of practically relevant models with feature tags is set up, allowing a fair
evaluation for practical hexahedral mesh generation algorithms. The extend-
able and mutable dataset remains valuable as hexahedral meshing algorithms
develop. The results of the standard field based hexahedral meshing algorithms
on the HexMesh dataset expose the fragility of the automatic pipeline.

The major contribution of this thesis improves the robustness of the au-
tomatic field based hexahedral meshing by guaranteeing local meshability of
general feature aligned smooth frame fields. We derive conditions on the me-
shability of frame fields when feature constraints are considered, and describe
an algorithm to automatically turn a given non-meshable frame field into a sim-
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ilar but locally meshable one. Despite the fact that local meshability is only a
necessary but not sufficient condition for the stronger requirement of meshabil-
ity, our algorithm increases the 2% success rate of generating valid integer-grid
maps with state-of-the-art methods to 57%, when compared on the challenging
HexMe dataset.
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Chapter 1

Introduction

In computational engineering science (CES), engineers and scientists build com-
putational models and run simulations on computers to solve the relevant ques-
tions that emerge from intricate physical problems in engineering analysis and
design, as well as natural phenomena in scientific research. With this technology,
engineers and scientists can work in areas where either traditional experiments
are unrealistic to conduct, or an unbearable amount of resources need to be
invested. Hence, CES has a wide range of applications, to name just a few,
aerospace engineering, biology and medicine, civil engineering, and physics. For
example, structural design and material compositions can be examined in com-
putational engineering before manufacturing by simulating the car crash test.
It significantly shortens the development process, which usually takes several
iterations until a satisfactory solution is obtained.

In many CES techniques, a key component is to faithfully discretize 3D ge-
ometric objects into volumetric meshes which carry physical properties, such
as mechanical properties of materials. A volumetric mesh is a network of in-
terconnected polyhedral elements that fit together seamlessly to represent the
surface and interior of the object. Volumetric meshes can be classified on the
type of polyhedral elements, e.g., hexahedral mesh composed of hexahedral el-
ements. Element type often strongly impacts the accuracy and efficiency of
the computation. Hexahedral (hex) and tetrahedral (tet) elements are the most
prominent elements used for discretizing volumes, as depicted in Fig.1.1. Which
element type is better (tet vs. hex) has been a longstanding controversy, and
the debate is still ongoing [SHG+22]. Researchers have done many experiments
to compare the performance of these two element types in different scenar-
ios. While the conclusions are problem dependent, it is commonly believed
that the linear hexahedral element outperforms the linear tetrahedral elements,
making it preferable in applications that use linear elements [GP21]. Partic-
ularly when working with basis functions of high polynomial degree, e.g. in
Spectral Element Methods [Kop09], or when requiring higher-order continuity
between cells like in Isogemetric Analysis [CRBH06], the tensor-product nature
of hexahedral meshes offers advantages, for instance, a better performance-to-
accuracy tradeoff. Both academia and industry show high interest in hexahe-
dral meshes. The number of scientific articles on hexahedral meshes has been
increasing over the years [BRK+22]. Users of the mainstream CAD/CAE soft-
ware, e.g., [Alt22, ANS22, Cor22, CUB22], demand high quality hexahedral
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meshes for their computational tasks.

Figure 1.1: A tetrahedral mesh (left) and a hexahedral mesh (right) of an in-
dustry model.

Unlike tetrahedral meshing, for which multiple automatic and robust al-
gorithms are available [HSW+20, ST06, FP09], so far there is no automatic
algorithm capable of robustly generating high quality hexahedral meshes for
general geometric shapes [PCS+22]. The challenge of hexahedral meshing lies
in the robustness and automation of the generation algorithm, as well as multiple
objectives determining a ”high quality” hexahedral mesh which are sometimes
conflicting, as we will see in Chapter 2. Although various algorithms have been
proposed in the last decades, automatically and robustly generating high quality
hexahedral meshes remains an open problem. Most techniques used in indus-
try can produce high quality hexahedral meshes, but with substantial manual
effort. Some algorithms, like grid-based methods, can robustly generate hex-
ahedral meshes, while the mesh quality is usually not satisfactory, especially
near the boundary of the object. A more thorough comparison of different al-
gorithms will be discussed in Chapter 3. Among all categories of hexahedral
meshing algorithms, frame field based hexahedral meshing shows the potential
to automatically produce all-hex meshes of high quality. Therefore, this thesis
mainly focuses on automatic hexahedral meshing algorithms based on frame
fields.

Figure 1.2: 2D frame field (left) and the resulting quadrilateral mesh (right) of
the BEETLE model. [JFH+15]

As a 2D counterpart, algorithms of quadrilateral (quad) meshing for surface
objects with 2D frame fields have demonstrated great success recently (refer to
Fig.1.2). Frame field based hexahedral meshing naturally extends the idea to
3D volumes, sharing the common core concept: taking a 2D/3D frame field as
guidance for computing an integer-grid map f from the geometric domain to
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the parametric domain: f : R3 → Ω. The standard pipeline of frame field based
hexahedral meshing consists of the following steps, see Fig.1.3 for an illustration:

1. Specification of frame field alignment constraints.

2. Feature aligned smooth frame-field generation. [RSL16]

3. Integer-grid map (IGM) generation guided by the frame field. [NRP11]

4. Hexahedral mesh extraction from the IGM paramterization. [LBK16]

(a) (b)

(c) (d)
Figure 1.3: Standard frame field based hexahedral meshing pipeline: (a) align-
ment constraints: frame field tangent to the feature arcs (red) and the surface
normals of the tetrahedral mesh, (b) frame field visualized as streamlines, (c)
IGM paramterization, (d) the final hexahedral mesh extracted from the param-
eterization.

Often frame field based hexahedral meshing delivers hexahedral elements of low
geometric distortion in the majority of the volume owing to the smoothness of
frame fields. Moreover, smoothly deformed frame fields under alignment con-
straints yield naturally arising singularity graphs that enable hexahedral meshes



4

with good block structure. Importantly, frame field based hexahedral meshing
supports alignment constraints for boundaries as well as interior features of the
geometric domain, enabling feature-aligned hexahedral meshes. In many ap-
plications, simulations significantly benefit from meshes aligned to directions
[MUF21].

Despite many advantages, frame field based hexahedral meshing suffers from
robustness issues, which are rooted in two aspects: (i) a 3D frame field with a
topology that is not hex-meshable, or meshable for short, and (ii) the inability
to guarantee local injectivity for volumetric maps. The 2D frame fields, where
singularities are isolated points around which the field can circulate in the do-
main, are already well-understood. The seminal work of Myles et al. [MPZ14]
presents an algorithm that is capable of converting an input 2D frame field
on a triangular mesh into a (globally) meshable one. Additional theoretical
guarantees have been identified in [VO19]. Much less is known about the 3D
frame fields, where singularities form a graph consisting of singular arcs and
nodes that determine their topological structure. The set of frame field singular
graphs is a significantly larger superset of singular graphs of hexahedral meshes.
The gap in between is the central issue that causes failure in downstream steps
of the hexahedral meshing pipeline, especially collapses in the integer-grid map,
consequently the most crucial challenge is to understand the discrepancy and
to transform smooth frame fields into meshable frame fields. In addition, given
a topologically meshable frame field, there is no guarantee that a valid seamless
paramterization can be found due to (i) the non-convexity of the optimization
problem and (ii) lacking degrees of freedom during the piecewise linear deforma-
tion. Although various techniques [GKK+21, RPPSH17] have been proposed in
the past years, seeking degenerate-free maps remains unsolved for challenging
cases.

With these issues in mind, the main topic of this thesis is to improve the
robustness of the frame field based hexahedral meshing pipeline. It first studies
the fundamental questions on the compatibility between the hexahedral mesh
topology and the frame field topology in terms of singularity graphs. A detailed
analysis of local hexahedral mesh topology is presented in Chapter 2, which
implies local conditions for frame fields to be locally meshable. However, find-
ing sufficient conditions of the global meshability of frame fields is theoretically
much more challenging, and thus transforming an arbitrary frame field into a
meshable frame field is beyond the scope of this work. Alternatively, provided a
user-designed singularity graph, an efficient algorithm to reconstruct the corre-
sponding frame field is described in Chapter 5. Although it requires the user’s
expertise on globally meshable singularity graphs, it also provides flexibility to
users to control the hexahedral mesh structure. Secondly, targeting for a con-
sistent evaluation of automatic hexahedral meshing algorithms, the tetrahedral
mesh dataset - HexMe, with feature tags, is presented in Chapter 7. Note that
this is a collaboration work with colleagues. The evaluation results of the stan-
dard field based hex meshing pipeline reveals severe robustness issues. Most
importantly, aiming for a fully automatic hexahedral meshing pipeline, a suit-
able approach is to start from automatically generated feature-aligned smooth
frame fields and repair the incompatibilities towards meshable frame fields. This
thesis further explores the direction of non-meshable 3D frame field topology
with feature constraints considered. Previous correction algorithms focus solely
on the meshability of singular arcs [LLX+12, JHW+14] but ignore issues that
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occur at singular nodes, and certain feature configurations. In Chapter 7, we
explain why a certain class of non-meshable singular nodes, called zipper nodes,
frequently exist in smoothness-optimized frame fields. This accounts for the
low success rate of state-of-the-art algorithms, specifically for models with non-
trivial feature constraints. We propose repair operations for local defects in
piecewise constant 3D frame fields and design a practical algorithm to realize
the local meshability of frame fields. With locally meshable frame fields, the
field based hexahedral meshing pipeline achieves a significantly higher success
rate on HexMe the previous state-of-the-art methods.

Specifically, the contributions of this thesis are as follows:

• Singularity-Constrained Octahedral Fields for Hexahedral Meshing. [LZC+18]
This work enumerates all possible local configurations w.r.t. the topology
of hexahedral meshes, given that the edge valence is restricted to a spe-
cific range. Based on this observation, we further generalize the Hopf-
Poincaré formula to octahedral fields, showing necessary local and global
conditions for a hexahedral meshable octahedral field w.r.t. its singularity
graph. Secondly, this thesis proposes an efficient algorithm to produce
smooth octahedral fields that match the prescribed hexahedral meshable
singularity graphs, which can then be fed to subsequent steps of the hex-
ahedral meshing pipeline. While manual effort is required for the input
singularity graph, it allows users to control the topology of the output
hexahedral meshes.

• Hex Me If You Can [BRK+22] This collaboration with colleagues intends
to collect meshes with varying complexity, enabling consistent and practi-
cally meaningful evaluation of hexahedral meshing algorithms and related
techniques, specifically regarding the correct meshing of specified feature
points, curves, and surfaces. HexMe is an extendable dataset comprising
189 tetrahedral meshes with tagged features and a workflow to generate
them. 63 computer-aided design (CAD) models from various databases,
classified into three categories (simple, nasty, and industrial), are tetra-
hedralized with Gmsh into three kinds: uniform, curvature-adapted, and
box-embedded. The mesh generation pipeline is defined with the help
of Snakemake, a modern workflow management system that allows us
to specify a fully automated, extensible, and sustainable workflow. The
HexMe dataset is built with evolution in mind and prepared for future
developments.

• Locally Meshable Frame Fields

This work aims at locally meshable frame fields which align with feature
edges and normals of feature faces. We show possible sectors in 2D frame
fields and that only quad-sectors exists in quadrilateral mesh induced 2D
frame fields. For 2D frame fields, we discuss strategies to repair other
invalid sectors to meshable ones locally and to ensure global meshabil-
ity. For 3D frame fields, we first analyze local meshable conditions of
singular arcs and nodes where multiple singular arcs interact. Once the
meshability of singular arcs is ensured with techniques similar to those of
2D singularities, singular nodes can be algorithmically decomposed into
fundamental components with the arc zipping operation. We propose a
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series of local repair operations for piecewise constant frame fields em-
bedded in tet meshes. We also design a practical algorithm to convert
feature-aligned smooth frame fields to similar but locally meshable ones.
Despite, the algorithm can only guarantee local meshability, which is nec-
essary but not sufficient for meshability, the evaluation on the basis of the
challenging HexMe dataset [BRK+22] shows that our algorithm is able to
construct valid integer-grid maps for 57% of the domains and therefore is
significantly more robust than state-of-the-art frame field based methods,
which only succeed for 2% of the inputs. An additional contribution is
a novel algorithm to optimize seamless maps and integer-grid maps for a
given frame field, which is more robust than the available state-of-the-art
techniques. The content regarding this part is summarized in our ”Locally
Meshable Frame Fields” paper and has been conditionally accepted as a
Journal Paper to SIGGRAPH 2023.

This thesis is in the context of the ERC (European Research Council) Start-
ing Grant project AlgoHex (Grant agreement No. 853343), short for Algorithmic
Hexahedral Mesh Generation. The ultimate goal of the AlgoHex project is to
develop hexahedral meshing algorithms for general geometric shapes which are
robust, scalable, and controllable w.r.t. mesh quality requirements. This work
makes a theoretical breakthrough on the fundamental scientific challenges re-
garding frame field topology alongside an open source c++ library libAlgoHex
(http://www.algohex.eu), which implements our advanced frame field based
hexahedral meshing pipeline.

http://www.algohex.eu


Chapter 2

Hexahedral Meshes

A hexahedral mesh is a representation of a geometric domain with conform-
ing topological cubes. Both topology and geometry of hex meshes are highly
relevant in either hex mesh generation and processing algorithms or various
practical applications in CES. We begin by introducing basic concepts about
hex mesh topology from the singularity point of view since it uniquely charac-
terizes the topology of a hex mesh. As one of this thesis’s contributions, we
prove that only a finite number of one-ring structures exist in hex meshes as-
suming restricted edge valence, and enumerate all local configurations at hex
mesh vertices. Understanding local hex mesh topology helps identify the fun-
damental problems in frame field based hex meshing and tackle the underlying
difficulties. From a higher-level perspective than the local topology, we next
discuss the regularity of the hex mesh structure, followed by a short description
of the geometric quality of hex meshes.

2.1 Hexahedral Mesh Topology

A hex mesh H = (V,E,Q,H) is a CW-complex [HPM02], which decomposes
a volumetric region M ⊂ R

3 into hexahedral cells H, formed by quadrilaterals
Q, edges E, and vertices V . The boundary ∂H ⊂ (V,E,Q) consists of all
quadrilaterals ∂Q incident to only one hexahedron, and includes all vertices ∂V
and edges ∂E of ∂Q. All remaining mesh elements are referred to as interior
elements. A hex mesh example is shown in Fig. 2.1.

2.1.1 Local Topology of Edges

An interior edge is called regular if it is incident to exactly four hexahedra;
otherwise it is singular. Similarly, a boundary edge is regular if incident to
exactly two hexahedra, and otherwise it is singular. The hexahedral valence
valh(σ) ∈ N≥1 of a mesh element σ ∈ V ∪ E ∪ Q is the number of its incident
hexahedra. Based on this, the index idx(e) precisely specifies the topological
type of an edge e by measuring its deviation from regularity:

idx(e) =

{

(4− valh(e)) /4 for interior e
(2− valh(e)) /4 for boundary e.

(2.1)
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Figure 2.1: Hex mesh example. Green and blue edges indicate valence 3 and
5 singularities (valence 1 on boundary). Red vertices indicate singular vertices
(interior and boundary). The dark blue and red face indicate two faces of a
hexahedron, blue on the boundary, red inside.

For interior edges, this is equivalent to the fractional index of the extruded
quad mesh singularity, present in the Hopf-Poincaré formula for 2D frame fields
[RVLL08].

In principle, there are infinitely many topological configurations since the
valence valh(e) ∈ N≥1. Considering the quality of the geometric embedding,
however, only a very small subset is practically relevant for hex meshing, as
depicted in Fig. 2.2. For interior edges, only those with hexahedral valence 3,
4 and 5 corresponding to indices from Iinterior = {1/4, 0,−1/4} are typically
desirable since other cases induce lower-quality scaled Jacobians. Moreover,
all such low-quality cases could be easily split by sheet insertion [MESB08]
into multiple edges of the three good quality cases (cf. Fig. 2.3). The same
argument holds for boundary edges, where the practically important set is given
by hexahedral valences of 1, 2, 3 and 4 corresponding to indices Iboundary =
{1/4, 0,−1/4,−1/2} (cf. Fig. 2.2). A simply-connected mesh with all interior
edges being regular is the pullback of the Cartesian grid under a continuous
locally-injective (on the interior) map of the volume into R

3 (cf. Fig. 4.2). If
this map is also globally injective, then the mesh is homeomorphic to a subset
of the Cartesian grid and is often referred to as a polycube mesh [GSZ11].

2.1.2 Singularity Graph

The subset of singular edges ES ⊂ E forms a graph, which can be conformingly
partitioned into segments of singular edges with identical index, referred to as
singular arcs. Singular arcs are either closed or bounded by singular nodes,
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(1/4) (0) (−1/4)

(1/4) (0) (−1/4) (−1/2)
Figure 2.2: Practically relevant hex mesh edges, highlighted in red. The top
row illustrates interior edges of valence 3, 4, and 5. The bottom row illustrates
boundary edges of valence 1, 2, 3, and 4.

(−1/2) twice (−1/4)
Figure 2.3: (Left) Interior singular edge of valence 6 in red. Dark blue faces
indicate the location of dual sheet insertion. (Right) Hex mesh after dual sheet
insertion. The single valence 6 edge is split into two valence 5 edges.

where they split into multiple singular arcs or terminate at the boundary. To-
gether, the singular arcs and singular nodes VS ⊂ V form the singularity graph
S = (VS , ES) of the hex mesh (cf. Fig. 2.1). Tracing sheets from all edges of
the singularity graph results in the base complex of the hex mesh, which is the
coarsest partitioning of the mesh into regular blocks [GDC15].

A proposed embedded singularity graph S = (VS , ES) for an input region
M ⊂ R

3 is globally meshable if there is a hex mesh of M with singularity graph
matching S. Similarly, we say that S is locally meshable if there is a hex mesh of
the neighborhood of S, with singularity graph containing S as a subgraph. This
is equivalent to having local type assignments for elements of VS , ES . For arcs,
this is an index, as described above, and for nodes, valid types are described
below. A more general definition on local meshability of frame fields will be
discussed in Chapter 7.

2.1.3 Local Topology of Vertices

A critical theoretical consideration for design of hex meshing algorithms is de-
termining which topological types of vertices exist in a hex mesh. Compared
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to the simple quarter-integer index for edges the answer is more complicated.
Following Nieser et al. [NRP11], interior vertices of hex meshes topologically
correspond to triangulations of the sphere. The idea is to intersect the neigh-
borhood of a hex mesh vertex with a sphere, providing the correspondence of
hex mesh edges, faces, and cells with vertices, arcs, and triangular patches on
the sphere (see Fig. 2.4). Consequently, from a topological point of view, hex
meshes admit infinitely many different vertex topologies. However, restricting
the incident edges to the practically relevant set of hexahedral valences 3, 4
and 5 results in only 11 topologically different interior vertex types. These are
illustrated in Fig. 2.5, and a detailed topological analysis is provided below.

Proof. A triangulation of the sphere with vertices V , edges E, and faces F nec-
essarily obeys Euler’s formula: |V |− |E|+ |F | = 2. As all faces are triangles, we
have 3 |F | = 2 |E|; and also that

∑

v∈V deg v = 2 |E|, resulting in the following
form:

1

6

∑

v∈V

(6− deg v) = 2 ⇔ 3i+ 2j + k = 12, (2.2)

where i, j, k denote the number of valence 3, 4, 5 vertices in the triangulation.
Let the signature of a triangulation denote the triplet (i, j, k). As i, j, k are all
nonzero integers, there are a finite number of solutions, or possible signatures
for such a triangulation, listed below, organized by the total number of vertices
|V | = i+ j + k:

|V | = 4: (4,0,0)
|V | = 5: (3,1,1) (2,3,0)
|V | = 6: (3,0,3) (2,2,2) (1,4,1) (0,6,0)
|V | = 7: (0,5,2) (1,3,3) (2,1,4)
|V | = 8: (0,4,4) (1,2,5) (2,0,6)
|V | = 9: (0,3,6) (1,1,7)
|V | = 10: (0,2,8) (1,0,9)
|V | = 11: (0,1,10)
|V | = 12: (0,0,12)

The signatures that have been struck out, correspond to signatures with no
valid corresponding triangulation of the sphere. This is a consequence of pre-
vious work [SH77, MSCR07] which characterizes the possible vertex degrees of
planar (and hence sphere) triangulations. The remaining signatures are unique
corresponding local singularities, see Fig. 2.5.

Similarly, boundary vertices can be classified by intersecting the neigh-
borhood of a hex mesh vertex with a hemisphere, providing the topological
equivalence of boundary hexahedral vertices with triangulations of the disc (see
Fig. 2.6). Again, there are infinitely many such triangulations, but we restrict
to a practically relevant subset of those with incoming boundary edges of hex
valence 1, 2, 3, and 4; incoming interior edges of hex valence 3, 4, and 5; and
fewer than 9 incident hexahedra. This results in 237 topologically different
singular boundary vertices, which can be found using an exhaustive enumera-
tion algorithm that is describe in [LZC+18]. We use HV to denote this set of
practically relevant interior and boundary vertex singularity types. A locally
meshable valence-{3, 4, 5} singularity graph must have all nodes be within this
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(a) (b)

Figure 2.4: (a) Interior singular vertex intersected with a yellow sphere. The
intersection of the sphere with hex mesh faces is shown in red. (b) Planar
representation of the triangulation of the sphere depicted on the left. Vertices
correspond to intersections of the sphere with hex mesh edges.

set. This chosen subset of hexahedral vertex topologies coincides with the re-
quirements of many applications but might be inappropriate for others. Unless
otherwise noted, our discussions and algorithms are in general not restricted
to this choice and could be easily extended to other finite subsets specified by
bounds on edge valence and number of incident hexahedra. It is clear that for
any application caring about the shape of hexahedra there is an upper bound
on the number of hexahedra incident at a vertex, since packing an increasing
number of hexahedra into the 4π solid angle of R3 necessarily deteriorates the
worst scaled Jacobian.

2.1.4 A Global Necessary Condition

The above classifications define local hexability for a singularity graph. Ad-
ditionally, we have a global necessary condition for global hexability which is
simple to state and check:

∑

v∈∂VS

1

2

(

1− valh(v)

4

)

−
∑

e∈∂E−

S

idx(e)

+
∑

v∈
◦

VS

(

1− valh(v)

8

)

−
∑

e∈
◦

E−

S

idx(e) = 0, (2.3)

where ∂VS ,
◦

VS denote the boundary and interior nodes of the singularity graph,

and ∂E−
S ,

◦

E−
S denote the non-closed boundary and non-closed interior singular

arcs. This condition is the analogue of the discrete Hopf-Poincaré formula for
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(4, 0, 0) (2,3,0) (2, 2, 2) (0,5,2)

(1, 3, 3) (0, 4, 4) (2,0,6)

(0, 3, 6) (0,2,8) (0, 0, 12)

Figure 2.5: Singular Node Types. Signatures of the nodes are shown below.
Green and blue edges are of valence 3 and 5 respectively.

quad meshes:
∑

v∈∂V

idx(v) +
∑

v∈V \∂V

idx(v) = χ(S), (2.4)

where idx(v) is defined as in Eq. (2.1) (with substitution of quad valence for
hex valence), and S is the quad-meshed surface. Condition (2.3) can be de-
rived with a simple combinatorial counting argument, given in the appendix of
[LZC+18]. This condition holds for global hex meshes with arbitrary edge va-
lence, as well as for boundary-aligned locally meshable frame fields—even those
not globally meshable. The second generalization is analogous to the fact that
Eq. (2.4) holds for 2D frame fields on surfaces, even if they are not globally
quad-meshable. These hex-meshability definitions for fields are discussed in fur-
ther detail in §4.3 and a proof for the generalization to locally meshable frame
fields can be found in the supplementary material of [LZC+18].
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(a) (b)

Figure 2.6: (a) Boundary singular vertex intersected with a yellow hemisphere.
The green boundary of the hemisphere corresponds to intersection with the hex
mesh boundary. (b) Triangulation of the hemisphere, with Vertices correspond
to intersections between hex mesh edges and the hemisphere.

2.1.5 Structure Regularity

As in quad meshes, the regularity is introduced as a measurement of the topo-
logical quality of hex meshes [BLP+13, PCS+22]. We can classify hex meshes
into four categories based on the regularity of their topological structure. The
mesh regularity is strongly related to the singularity graph and the base com-
plex constructed from it. The base complex we refer to here is the coarsest
block decomposition. It can be obtained by tracing the facets at singular arcs
until it terminates at the boundary or other singular arcs. Similar to the quad
mesh case, the classification is according to the ratio rV between the number of
singular vertices ns and the amount of all vertices nv, and the ratio rB between
the number of blocks nb and the number of all cells nc.

1. Regular hex meshes are essentially voxelized cubes deformed to approxi-
mate geometric shapes. All mesh vertices are regular except for those on
the 12 edges of the abstract cube. In practical applications, the simple
structure of regular meshes is favorable as the data storing and connec-
tivity querying are straightforward. However, the highly limited topology
often results in geometrically poor hex meshes on complex objects and
thus are barely usable.

2. Semi-regular hex meshes can be seen as a few regular blocks conformally
stitched. Only boundary arcs of blocks can be singular arcs of the hex
mesh. The value of rV and rB are typically low in this class. Ow-
ing to singularities, much more complex shapes can be represented as
semi-regular hex meshes with lower geometric distortion. This category
is preferred in many industrial applications since a few blocks allow for
designing customized data structures for efficient storage and fast query.
However, manual effort is required to generate semi-regular hex meshes
with semi-automatic hex meshing tools, e.g., part of many industrial soft-
ware products.
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3. Valence semi-regular hex meshes have a similar number of singularities
but a more intricate base complex structure than semi-regular hex meshes.
For a fixed singularity graph, the length of singular arcs w.r.t. the number
of hexes determines the structure of the base complex. Improper length
results in a more complex block decomposition. Thus, the value in rV is
comparable, but rB is higher than semi-regular hex meshes. This class of
hex meshes can often be generated by automatic hex meshing algorithms,
such as field based and polycube based algorithms.

4. Irregular hex meshes contain a large number of singularities. rV and rB
are much higher than the other three classes of meshes. Therefore, it is
not well-suited for applications that would benefit from the coarse block
structure of hex meshes. Such meshes are often produced by grid-based
hex meshing algorithms when the domain boundary is not aligned with
canonical axes, thus creating singularities.

Figure 2.7: Left: the block decomposition of a hex mesh generated with frame
field based method. Middle: the block decomposition of a hex mesh generated
with polycube based method. Right: the result with octree based method.
Frame field and polycube based methods often produce valence semi-regular
hex meshes, which might contain fewer blocks depending on the quantization
[CLS16, BBC22]. Octree based method generates an irregular hex mesh.

Note that it is a loose classification w.r.t. the topological complexity of
hex meshes. There is no exact boundary among the semi-regular, valence
semi-regular, and irregular hex meshes. Importantly, this measurement is only
meaningful with fixed target complexity. Otherwise, refinement of irregular hex
meshes can easily convert them to semi-regular. Moreover, structure regularity
is coupled with a geometric quality. It is not necessarily true that a mesh with
coarser block decomposition has a better geometric quality. An extreme exam-
ple is that a large distortion of mesh elements is inevitable in mapping regular
grids to an airplane. Therefore, hex meshing is a multi-objective problem, and
there is no simple answer to what a good hex mesh is. Nevertheless, frame
field based algorithm tends to produce singularity graphs that naturally arise,
resulting in hex meshes with a good combination of topological and geometric
quality. Figure 2.7 shows different hex meshing results of the joint model with
frame field based method, polycube based method [GLYL20] and octree based
method [GSP19] respectively.
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2.2 Hexahedral Mesh Geometry

The geometric quality of hex meshes significantly impacts simulations in terms of
the efficiency of the computation and accuracy of the results. Although measures
of the geometric quality of hex meshes depend on applications, element quality,
fidelity, and feature preservation are aspects often considered.

Element quality refers to the quality of each cell in hex meshes. Geo-
metrically, a hexahedron is a trilinear hexahedral element specified by a map
f : [0, 1]3 → R

3. The measurement of the element quality depends on specific
applications. Elements with a perfect cube shape are preferred in many finite
element problems. In contrast, in fluid simulations, anisotropic elements (com-
pressed in one direction) are desired at the boundary layers to capture the flow
features. Different metrics have been proposed for hex meshes, such as scaled
Jacobian, edge ratio, and skew. We refer to [SEK+07] for a detailed summary.
As pointed out, depending on the specific application, one or another might
be of major concern. [GHX+17] develops a frame work to analyze the correla-
tions of various quality metrics. One frequently used metric in practice is the
Jacobian determinant of the map det(Jf ) [Knu01]. The minimum Jacobian of
every point in the element is of particular interest because inverted elements
with negative minimum Jacobian can lead to inaccurate results or failure to
converge in computation. Fig. 2.8 shows the cube with the Scaled Jacobian
of negative, positive value and 1.0, respectively. In practice, post-processing is
often applied after mesh generation to untangle invalid elements and improve
the geometric quality. Various post-processing algorithms are developed for this
purpose which we will review in Chapter 3.

(a) (b) (c)

Figure 2.8: Scaled Jacobian measured at corners of hexahedra. (a) Negative
Scaled Jacobian. (b) Positive Scaled Jacobian. (c) Scaled Jacobian is 1.

Fidelity describes whether the mesh faithfully represents an input geometric
shape. Accurate representation is essential in simulation to achieve a realis-
tic result, especially when physical behavior at small details and key features
are of concern. A commonly used metric is the so-called Hausdorff distance
[KYKK19], which measures the distance between the surface of the input ge-
ometry and the surface of the output hex mesh.

Feature preservation is another crucial point that should be taken into ac-
count by practical hex meshing algorithms. In practice, feature points, arcs
and patches often come along with the input geometry, and the output hex
mesh should preserve them. There are both geometric and topological mean-
ings in feature preservation. Geometrically, feature entities of the output hex
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Figure 2.9: Hex meshing results of a cross-cylinder. Left: the hex mesh result,
which respects the embedded features. Right: the hex mesh without considering
features. No simple post-processing is capable of recovering the features.

mesh should be located at features of the input geometry. Topologically, feature
nodes should be represented as hex mesh vertices; input feature arcs must be
meshed as chains of hex mesh edges; feature surfaces should appear as patches
of hex mesh faces. Feature preservation is essential in some applications because
imprecision at features where boundary conditions are applied would strongly
influence the solution of the PDE, such as in the aerodynamic simulation. In
applications, for instance, multi-material optimization, interior feature preserva-
tion is also required when features exist inside the geometric volume. While the
quality in other geometric metrics can be improved by post-processing, feature
preservation must be considered in the mesh generation step. Simply project-
ing mesh vertices to features without changing the connectivity could result in
degenerate or inverted elements (c.f. Fig. 2.9).

A hex meshing algorithm that can provide good quality in both topology
and geometry is the ultimate goal. However, it is challenging because of its
multi-objective nature. Topological simplicity and geometric quality are some-
times contradictory, e.g., over-simplified topology may result in highly distorted
elements. A reasonable compromise must depend on the specific application.
Besides, different element quality metrics may have distinct requirements for
generated meshes. In this thesis, we mainly focus on the frame field based hex
meshing algorithm where the hex mesh topology in terms of the singularity
graph is of our primary concern, and feature preservation is also taken into
consideration. Other geometric quality metrics are left to the post-processing
procedure.

Before presenting the fundamentals regarding frame field based hex meshing
methods, we review the general hex mesh generation and processing algorithms
to have an overview of the state-of-the-art methods in this community. With
the prerequisite knowledge on hex meshes, we can proceed to Chapter 3.



Chapter 3

Hex Meshing and
Post-processing Methods

Research on hex mesh generation and processing have been ongoing for decades.
Significant theoretical and practical progress has been made, and in particular,
the computer graphics community has contributed substantially in recent years.
Extensively reviewing all developed techniques is out of the scope of this thesis.
It will shortly summarize related methods and briefly compare them in this chap-
ter. For readers interested in more details, we refer them to the corresponding
publications or surveys [AFTR15, YZL15]. Especially the recent comprehensive
report [PCS+22] covers the most important approaches and provides a broad
perspective on hex meshing and processing.

Generating satisfactory hex meshes is a difficult task. Approaches attempt
to tackle this problem from different perspectives, e.g., automatic or semi-
automatic ways, directly decomposing volume into grids or mapping-based meth-
ods, and primal or dual approaches. Post-processing techniques have been de-
veloped to obtain hex meshes with better geometric quality and topological
structure, such as untangling inverted elements [LSVT15, XGC18], structural
enhancements [CAS+19, GDC15]. A combined framework that generates hex
meshes and then applies post-processing is sometimes necessary to achieve prac-
tically acceptable hex meshes.

3.1 Advancing/Receding front

One classical approach that targets an automatic generation of hex meshes is
the advancing front method. It starts from the boundary of a shape and creates
a layer of hex elements, advancing towards the interior of the domain layer by
layer until the collision is detected. The last layer of elements either fills the
volume or an interior void remains. Two variants of advancing front methods
exist depending on whether the propagation starts with a prescribed quad mesh
of the boundary or not, the constrained and the unconstrained. Fig. 3.1 (a)-
(c)shows the general idea of a constrained approach in 2D. Iteratively inserting
layers of hex elements to the fronts is straightforward, while the remaining small
inner void can be tricky to mesh. The geometrical quality of hexes can be pretty
low, especially if the domain is complex. More importantly, [Mit96] proposed
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the necessary topological condition of the existence of a hexahedralization: any
hex mesh of genus zero exhibits an even number of quadrilaterals on its bound-
ary. Therefore, it is impossible to fill the inner void with hex elements if an
odd number of quads surround a vacancy. In addition, [Eri13] generalizes the
condition to arbitrary genus that the number of quad is even and there is no
odd cycle in the quad mesh bounding the surface of the hex mesh.

The 2D illustration of unconstrained methods [SOB05, SKOB06, SKO+10]
is in Fig. 3.1 (d)-(f). Instead of explicitly generating layers of hex elements, it
starts from the boundary surface of the geometry and progressively decomposes
the domain into layers before the fronts collide. The inner void is usually meshed
with simplicial elements, e.g., tetrahedra, and then split into hex elements. Since
the boundary of the domain is not constrained by any quad mesh, it is possible
to create hex elements from the boundary of the inner void and propagate them
to the boundary through the generated layers. However, the mesh quality of
the inner void can be rather low, and it determines the quality of the boundary
meshes. The referred receding front methods [RRGS10, RGRS12] attempt to

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.1: Constrained: (a) the first front, (b) the last front and contours of
the previous fronts and (c) unmeshed void; Unconstrained: (d) fronts and final
void, (e) simplicial mesh of the void, and (f) splitting simplicial mesh; Receding
front: (g) Combined level sets and the first front, (h) intermediate layers and
(i) final layer. Image from [RGRS12].

combine the advancing front methods, which usually produce high-quality hex
meshes near the boundary, and the grid-based methods that generate high-
quality meshes in the interior. They pre-compute two level sets : one from the
domain’s boundary and the other from the inner seed, which is templated. Then
they blend the level sets and generate hex meshes from the inner layers to the
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outer layers. The receding front can generate hex meshes with better quality
than previous works. However, it can only be applied to models with ball
topology. It is also not as reliable as the others to generate high quality meshes
for general shapes, specifically when models vary dramatically in thickness.

3.2 Volume Decomposition

Another category for hex meshing is volume decomposition. Generally, a domain
is subdivided into components with simple topological structures that can be
easily meshed. Different strategies have been proposed in this direction, such
as sweeping, block decomposition, and medial-axis based decomposition.

Because the extrusion operation is extensively involved in generating CAD
models, ”sweeping” methods are a natural choice for hex meshing. Early ver-
sions [SS96, Knu98, LG97] are applied to volumes in which one source and one
target surface are identified, classified as one-to-one methods. Quad meshes are
generated on the source surface and swept through the volume to the target
surface for structure hex meshes. Unfortunately, most CAD models have more
than one source and one target in reality. Algorithms that automatically break
down extrusion geometry into these simpler components have been developed.
Extrusion geometries with several source surfaces but only one target surface
can be handled by many-to-one algorithms [SBO06]. These algorithms discretize
each sub-volume separately after decomposing the initial volume into one-to-one
sub-volumes. A step forward, several algorithms [LBW00, RGRS11, WGWC18]
for meshing many-to-many extrusion geometries with multiple sources and tar-
get surfaces were proposed (see Fig.3.2). These methods are relatively ma-
ture and used as workhorse algorithms in many commercial software products
[ANS22, Alt22, CUB22]. Generally, manual decompositions of CAD models into
sweepable sub-domain with user effort is required in the first step, and then the
automatic sweeping is performed subsequently.

Figure 3.2: Sweeping: (a) Mechanical piece decomposition into two sub-volumes.
(b) Mesh generated using the multi-sweeping method. Image from [RGRS11].

Some approaches investigate in the direction of automatically decomposing
volumetric domain into blocks. The authors of [KLSO12] proposed an algorithm
that adopts the notion of the fundamental sheet introduced in [LS10]. A CAD
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model is first tetrahedralized and converted to a hex mesh via THex template
[Car02]. Then fundamental sheets are inserted into the mesh. By carefully
extracting non-fundamental sheets in an iterative manner, they can generate
hex meshes having only 3- or 4-valent vertices. [WSC+17] introduces curve-
related sheets to capture the boundary entities, and the validity of topology
and geometry is claimed. [KLF14] proposes a volume decomposition approach
by exploiting the singularity structure of frame fields. A few successful exam-
ples are shown in the paper. However, the issue of this method is strongly
related to the fundamental problem that we will discuss in detail in Chapter 4:
the singularity structure of a frame field does not necessarily exhibit a mesh-
able structure. Given a surface mesh and 2D frame field, [LPP+20] automati-
cally generates field-aware cutting loops for a block decomposition. It delivers
feature-preserved pure hex meshes on many models upon success; otherwise,
hex-dominant meshes. However, it is not suitable for models with interior fea-
tures.

The medial axis has shown the capability of guiding volume decomposition
and generating high quality hex meshes for specific shapes. [ZBG+07] designs
an algorithm for vascular shapes. A curve skeleton is used to approximate
the vessel structure. The tubular sub-domain is easy to mesh via sweeping
methods, and the junctions of the skeleton are handled with a set of templates.
Inspired by the work of [ULP+15] where a curve-skeleton is adopted to derive
a quadrilateral base complex of a triangulated surface, [LMPS16] extends it for
hex meshing (refer to Fig.3.3). A volumetric subdivision scheme is provided to
adapt the topology of the mesh to the local thickness of the tubes. For more
general shapes, [PAS95, PA97] use the medial surface to subdivide the volume to
simple primitives, and then the sub-domains can be hex meshed with a midpoint
subdivision scheme [LMA95]. However, it has trouble handling objects with N-
valent vertices (object vertices that have more than three incident edges), and
the geometric quality of the hex meshes is often poor.

Figure 3.3: Derive from the curve-skeleton of a triangle mesh (left) a volumet-
ric decomposition in tubes (white), branching cubes (red), and terminal cubes
(green). Each element in the tubular structure is a hexahedron. Image from
[LMPS16].



3.3. GRID BASED METHODS 21

3.3 Grid based methods

Grid-based approaches follow the intuition that any geometric domain can be
approximated with Cartesian grids. The basic idea is to create an initial voxel
mesh, and then different strategies are employed to deal with the mismatch be-
tween the initial mesh’s boundary and the shape’s boundary. It is the only class
of hex meshing methods that can automatically and reliably generate all-hex
meshes for arbitrary input geometry. Implementations of grid-based methods
are available in professional software [Cor22, CUB22]. Although grid-based ap-
proaches outperform others in terms of robustness, the generated meshes are
not competitive because of several intrinsic issues of the methods. Firstly, since
the grid is fixed, the results are orientation-dependent. Rotating a shape will
lead to a mesh with a different global structure. Additionally, adaptive grids are
essential for the geometric fidelity w.r.t. small features while having a reason-
able mesh size. The transition from a denser to a coarser region can create an
over-complicated singularity structure. Moreover, an adaptation of the meshes
to conform to the surface of the domain also increases the irregularity. Hence,
the meshes are highly unstructured and far from a coarse block decomposi-
tion. Although, a computationally expensive structure simplification algorithm
[GPW+17] might be helpful.

[Sch96] is one of the first works which introduced the grid-based approach.
A regular lattice is used to create the initial mesh, and the boundary region
is meshed by constructing an isomorphic layer to the initial mesh’s surface.
[ZZM07] uses the density maps, which are constructed according to the surface
curvature and local feature thickness to guide the adaptivity. An inside-out
strategy is used to project the boundary vertices of the core mesh to the surface
boundary. Inserting and collapsing techniques are employed to improve the
geometric quality. To support the multi-domain, [SLK04] uses an outside-in
and inside-in hybrid of the grid-based method.

Figure 3.4: 2D illustration of the feature preserving octree-based hex-meshing.
Top row: adaptive quadtree constructed from the input, dual of the quadtree,
quad mesh, and scaffold mesh after splitting all cells. Bottom row: topological
matching of features, padding of both the target mesh and the scaffold, mesh
deformation to fit the input, and the pure output quad mesh. Image from
[GSP19].

Other variants are the octree-based approaches [ZB06, ISS09, Mar09, EPOM11,
ZLX13, EE14, OSE17] which highly reduce the size of the mesh. Due to the
non-conformity between octants, hanging vertices are left in the final meshes,
and different templates are proposed for conforming transitions. [Mar09, Mar16]
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design an approach that can robustly produce pure, conformal, and valid meshes
while preserving the sharp angles (≥ 30 ◦). [GSP19] proposes a new pipeline that
behaves well in terms of element validity and geometry fidelity: small geometric
features and sharp features in CAD models can be preserved; a user-specified
distance deviation from the input surface is ensured; avoidance of global in-
tersections is guaranteed. The specific steps of this algorithm are described in
3.4. However, this method is highly demanding regarding computation time
and memory use, making it exorbitant for practical applications. [LPC21] enu-
merates all possible configurations of the transitions from a dual perspective
and devises an optimal scheme that yields hex meshes with the simplest sin-
gularity structure and a considerable reduction in the element size count. The
authors of [PLC+21] generalize the pairing criterion and solve a sequence of
linear problems to reduce both grid and mesh size.

3.4 Polycube Methods

Polycube methods, which have been introduced by [THCM04] for texture map-
ping, have also been used to generate hex meshes [HXH10]. A polycube is a
volumetric object whose surface normal is aligned to one of the principle axes
(±x,±y,±z). The tetrahedral mesh of a shape is volumetrically mapped to a
polycube, called the polycube map (a formal definition is in Chapter 4.3). Then
the map can be subdivided into hexahedra with a regular lattice. Finally, an
inverse map is used to compute the position of the hex mesh vertices in the
original domain. Fig. 3.5 shows the polycube map of an elephant model and
the hex mesh result. A polycube is often generated with a specially designed
energy involving two terms. One term iteratively deforms the surface triangles
until their normals align to the global axes, and the other term penalizes large
distortion and inverted elements.

Figure 3.5: Left: the volumetric polycube map. Right: the hex mesh result.
Image from [FBL16].

Various methods have been developed to deform volumetric objects into
polycubes. [GSZ11] uses a rotation-driven deformation to softly align most
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surfaces of the object to the principal axes. Then, a position-driven deforma-
tion with hard constraints is followed for a strictly aligned polycube. [LVS+13]
formulates the segmentation as a multi-label graph cut problem to reduce the
deformation distortion while reducing the number of singularities. The results
of the two methods are sensitive to the orientation of the input mesh. Instead
of a pre-computed polycube segmentation, [HJS+14] minimizes the l1 norm of
the surface normals to obtain a naturally arisen polycube structure. A user-
guided control of the polycube shape is also supported. In the follow-up work
[FXBH16], the frame field is used as guidance in the previous l1 approach, and
cuts are considered to support the polycube construction of higher genus ob-
jects. However, the computation is expensive due to the nonlinear optimization
of the l1 norm. A more efficient approach proposed by [FBL16] interleaves the
normal smoothing and the normal alignment deformation, and the reference
labels are updated after each iteration. Although an evaluation on a medium
sized dataset is reported in [FBL16], there is no guarantee that a globally con-
sistent polycube can be automatically achieved. User-involved post-processing
is necessary to remove artifacts, such as faces with less than four edges. [SR15]
observes some challenging cases where the slight normal deviation from the
principle axes may lead to the wrong alignment of the polycube surface, as
shown in Fig. 3.6. Interactive approaches for polycube construction are also
developed.[YWL+20, LZS+21]

Figure 3.6: Top: no solution can be found with all normal constraints satisfied.
Bottom: fixing normal constraints by adding steps. Image from [SR15].

The quality of the polycube map has a high impact on the hex meshing
results. A polycube that is invert-element free and of low distortion is often
desired for hex meshing purposes. In [GSZ11], deformation gradients computed
according to the minimal rotation from surface normals to the closest global axes
are used for minimizing the distortion in deformation. An as-rigid-as-possible
deformation is employed in [HJS+14] to reduce the distortion. Note that these
energies do not penalize the inversion sufficiently such that locally non-injective
mapping can be produced, especially in concave regions. [FBL16] includes the
AMIPS energy in the formulation, which goes to infinity with the presence
of degenerate or flipped elements. Similar techniques [RPPSH17, DAZ+20,
GKK+21] can be adopted in this setting. Although local injectivity is ensured,
the deformation space is also reduced such that no solution which satisfies all
axis-aligning constraints might be found [FSZ+21].

Unlike frame field based hex meshing, polycube methods restrict all singu-
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larities to the boundary. This implicit property can induce significant distortion
on the map. A naive way that most approaches employ is to add a buffer layer of
hex elements globally. [CAS+19] designs a selective padding scheme by solving
a binary problem that considers the quality improvement, increase of complex-
ity, and the number of singularities. To further improve the distortion of the
polycube map, [GLYL20] iteratively inserts interior singularities by diagonally
cutting the polycube open through selected polycube edges where the distor-
tion is high (see Fig.3.7). However, it only introduces limited types of interior
singularities.

Figure 3.7: The algorithm pipeline of the CE-PolyCubeMap method. Image
from [GLYL20].

Since it is highly practically relevant, feature preservation is one of the main
challenges that polycube methods need to face. The only work that explicitly
considers feature alignment is [GLYL20]. They develop a polyline deformation
algorithm to cast out the feature edges which can not be kept in the polycube
maps. Then they deform the input shape to a polycube with the guidance of the
remaining feature edges. Input feature edges can only be partially preserved and
represented as hex mesh edges in this heuristic approach. It is because feature
edges must align to the isolines in polycube space. Because of the structural
limitation inherited to polycube methods, only a subset of feature configurations
can be preserved, which is far from sufficient in practice, e.g., more than three
incident feature edges at a convex region. Moreover, to our knowledge, no
method so far can preserve features that exist in the interior of the input shape.
On the contrary, the novel frame field based approach developed in Chapter 7
ensures that all vertices are locally meshable. Upon success, all feature edges
can be correctly represented as hex mesh edges, including the interior features.

3.5 Post-processing

After hex mesh generation, post-processing can improve the quality of a hex
mesh, including both the topological and geometric quality.

Base complexes can be used to progressively simplify hex mesh topology
through a series of operations [GDC15, GPW+17]. The key idea is to reduce
the complexity of structure with simplification operations of collapsing sheets
and chords of the base complex in the input hex meshes (refer to Fig.3.8).
[XLZ+21] designs an improved ranking scheme of the simplification operations
and achieves better results in complex hex meshes. These algorithms claime to
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automatically and robustly produce coarse hex meshes when paired with octree
methods. However, time efficiency is often limited and the simplification tends
to get stuck in the local minimal.

Figure 3.8: Collapsing a base complex sheet or removing a chord on the
global structure of a hex mesh can reduce the number of blocks. Image from
[GPW+17].

The immediate output of hex meshing methods often contain poorly-shaped
elements or even inverted elements with negative determinants of the Jacobian
matrix. Post-processing through geometric optimization improves the shape of
element, mainly to obtain inversion-free hex meshes. Most optimization meth-
ods [Knu03, WSRRR+12, RGRS14] focus on the quality improvement of the
Jacobian determinants at the eight corners of each hex element. The work of
Livesu et al. [LSVT15] performs iterative local improvements on the corners
of the hex elements, improving the scaled Jacobians. With similar concepts,
[XGC18] first untangles the inverted region by improving corners with a relax-
ation of the surface preservation and then deforms the volume to approximate
the surface while keeping the validity of elements. The widely used library
Mesquite [BDK+03] implements many quality metrics and optimization algo-
rithms. The suggested usage is to untangle hex meshes first with [Knu01] and
then improve the element shape. However, there is no guarantee that the output
hex meshes are inversion-free. [JWR17, MPZS20] take the Jacobian determi-
nant of every point in the hex element into account, which provides a sufficient
condition for the validity of a hex element.

Above are brief reviews of general hex meshing and processing algorithms.Frame
field based hex meshing techniques and all related works will be discussed in
Chapter 4.



Chapter 4

Frame Field Based Hex
Meshing

A frame field can be viewed as a relaxation of the differential of integer-grid maps
from the tet mesh to the parametric domain. Similar to hex mesh topology, the
topology of a frame field is also characterized by its singularity graph. The
set of frame field singularity graphs is a superset of the hex mesh singularity
graphs, meaning a corresponding frame field exists for any given hex mesh. In
other words, a valid integer-grid map is possible if the singularity graph of the
frame field is in the set of hex mesh singularity graphs. This relation motivates
the frame field based hex meshing methods that use the frame field as guidance
in seeking valid IGMs. Unlike other hex meshing methods, imposing various
constraints on the hex mesh topology (e.g. the singularity graphs via polycube
methods are restricted to the boundary), frame field based hex meshing exhibits
high flexibility in producing hex meshes of arbitrary topology. Therefore, it is
one of the most promising approaches toward the ”holy grail” of an automatic
hex meshing algorithm for general shapes.

In this chapter, we cover the fundamentals of frame field based hex meshing
techniques. We begin by reviewing state-of-the-art related methods for quad
meshing of surfaces before moving on to related approaches for hex meshing of
volumes. Along the way, we highlight some subtle challenges in this generaliza-
tion to the volumetric setting.

4.1 Surface Approaches and Quad Meshing

Field based parametrization approaches to quad remeshing have been extremely
successful in producing high quality quad meshes. In these approaches, a 2D
frame field is used to guide a parametrization of the surface in question to a
quantized cone manifold. This allows for a quad mesh to be pulled back onto the
surface. We cover some relevant works below and refer to surveys on directional
field design [VCD+16] and quad remeshing [BLP+13] for further details.

One of the major contributions in this thesis, which reconstructs 3D frame
fields with prescribed singularity graphs, is heavily influenced by the work of
Ray et al. [RVLL08], who produced N-symmetry direction fields with input in-
dices satisfying the Hopf-Poincaré formula. This was achieved by “zippering”,
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or specification of topological matchings in a smart sequential order, which guar-
antees correct vertex indices. The “chart-zippering” portion of the algorithm
described in Chapter 5 can be understood as a volumetric extension of this strat-
egy with the additional challenge of connecting singularities correctly. Related
work by Crane et al. [CDS10] achieved a similar goal by directly optimizing the
smoothest (continuous) connection rather than initially constructing (discrete)
topological matchings. The globally optimal smooth fields of [KCPS13] inspire
our method for generating the frame field with fixed topological matchings, de-
scribed in Chapter 5. In 2019, the authors of [CC19] generalize the idea of
[CDS10] to 3D and reconstruct the frame field of a given singularity graph by
optimizing the Darboux derivative. The advantage of this formulation is that no
discrete matchings are required for the optimization. However, as nicely-shaped
tube geometry is required as the input, they only show a few results on simple
models.

Full pipelines for quad meshing based on 2D frame fields are proposed, e.g.,
in [BZK09, BCE+13] and form the basis of modern quad meshing software. 2D
frame field topology is fundamental for field-based quad meshing. In the 2D
setting, [MPZ14] states that for a locally injective parameterization, the 2D
frame field is required to align to feature curves, and additionally, there are no
parabolic or elliptic sectors. This is enforced by adding constraints to sectors
in their angle-based field representation. Moreover, they robustly construct
a global parameterization by partitioning the surface into rectangular patches
with field streamlines and then repairing zero loops via singularity insertion.
Beyond field design, locally injective quantized parametrization [CBK15] and
robust mesh extraction [EBCK13] techniques are required.

4.2 3D Frame Fields

A 3D frame field is a generalization to 3-dimensions, which represents the
smoothly changing linear transformation in space. Locally a frame can be
viewed as a parallelepiped, i.e., a linearly deformed (rotation, shearing, and
scaling) unit cube. This parallelepiped can be explicitly defined as a set of six
vectors f = (±u,±v,±w), u, v, w ∈ R

3, which form the edge vectors of the par-
allelepiped. Note that three vectors u, v, w are linearly independent. In some
literature, a subset of three vectors is used to denote a frame f = (u, v, w).

Given the reference frame, f̂ , which corresponds to a unit cube, a frame f is
the reference frame linearly transformed by a 3× 3 matrix M : f = Mf̂ . When
only the rotation information is of interest, a unit cube can be used to represent
a frame, and in this case, u, v, w are unit vectors that are orthogonal to each
other. As a unit cube is dual to an octahedron, it is also termed an octahedral
field [SVB17, LZC+18]. In field based hex meshing, a frame field, as the guid-
ance of the integer grid map, is the inverse of the Jacobian matrix of the map
(further discussed in Sec. 4.3).

3D Frame Representation Many different ways have been used to express
a frame in computation and visualization. A straightforward representation is
a 3× 3 matrix composed of the three linearly independent vectors u, v, w. The
matrix f = (u, v, w) ∈ R

3×3 encodes not only the rotation but also the scaling
and shearing, which supports the generation of adaptive and anisotropic hex
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meshes [FHTB21]. Considering only the rotation, a common choice to express
a unit orthogonal frame are Euler angles [HTWB11, RSL16, PBS20]. Unit
quaternion [GPW+17, LZC+18] is a more compact representation that avoids
gimbal locks. In this thesis, unit quaternions are used to represent octahedral
frames. 3D matrices are adopted in the steps where shearing and scaling are
necessary, for example, the parameterization and the optimization for integrable
frame fields.

The representations mentioned above alone are not adequate for measur-
ing the difference between frames because of the octahedral symmetry. In the
matrix representation of the frame, there are 3! permutations of the axes and
23 sign combinations for 48 different configurations, forming the full binary oc-
tahedral group. 24 out of 48 combinations have positive determinants, called
the chiral octahedral group O. Multiple rotations can represent the same octa-
hedral frame. For instance, the frame fa = (u, v, w) rotated along the axis w
by 90◦ results in fb = (−v, u, w). fa and fb are related by a chiral octahedral
group transformation and thus represent the same frame, as permutation and
sign of individual axis are irrelevant. With these explicit representations, the
matching matrices [NRP11] are required for the smoothness measure between
frames. Each matching matrix R is a permutation matrix that determines how
two frames are combinatorially matched, and R is an element of O. These
discrete variables in the frame field optimization significantly complicate the
problem.

To overcome the non-uniqueness issue, the pioneering work [HTWB11] in-
troduces a representation of frame fields using spherical harmonic coefficients,
which is invariant to octahedral symmetries and thus enables the optimization
of smooth boundary-aligned fields. A unique descriptor with octahedral sym-
metry f[R](s) = h(RT s) is designed to express the rotation of the frame via the
rotation of the sphere, where h(t) = t2xt

2
y + t2yt

2
z + t2zt

2
x is a fourth order polyno-

mial restricted to the unit sphere S2 = {s ∈ R
3|‖s‖ = 1}. Thus, the smoothness

between two frames R[a] and R[b] is formulated as an integration over the unit
sphere,

∫

S2

(f[Ra](s)− f[Rb](s))
2.

Projecting the descriptor onto a 4th-order spherical harmonics basis gives the
representation of frames as R9 spherical harmonics coefficients. [CHRS18, GMS21]
use 4th order symmetric tensor to represent the frame. [PBS20] further gen-
eralizes the representation to 15-dimension to enable scaling orthogonal frames
along principle axes.

3D Frame Field Design Several methods aim at automatically generating
feature-aligned smooth frame fields. The seminal work of [HTWB11] minimizes
the Dirichlet energy of spherical harmonic coefficients in R

9 and projects the
coefficients back to the closest octahedral frame. [RSL16] formulates it as a least-
square problem and directly enforces boundary alignments in the initialization.
By applying the boundary element method, [SVB17] achieves frame fields of
infinite resolution inside the volume while only a boundary triangulation is re-
quired. The work of [PBS20] proposes differential and algebraic descriptions of
octahedral frames and applies manifold-based optimization (MBO) to obtain
smooth frame fields. Singularity structure of better structure can be achieved
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with the modified MBO scheme where the diffusion time is progressively de-
creased during the optimization. All the above methods take smoothness as
the objective while the frame field topology is not considered, often leading to
non-meshable frame fields.

3D Frame Field Singularities As analogous to N-symmetry vector fields
on surfaces, the singularities of 3D frame fields can be measured by transporting
the frame in an arbitrary chart at a point p along a closed loop in its vicinity. For
the N-symmetry fields, the singular point type is described by the index, which
is the angle difference between the frame and the transported frame divided by
2π. However, it does not naturally generalize to 3D frame fields[NRP11]. The
singularity type is characterized by 24 elements of the chiral octahedral group.
Instead of discrete singular points on surfaces, singularities of 3D frame fields
exist as singular arcs that connect at nodes or end at the domain’s boundary.
Like hex meshes described in Chapter 2.1, frame field singularities also form
singularity graphs.

Given a tetrahedralized domain, a typical sampling of frames is per cell,
meaning each tet exhibits a unit quaternion q as the frame. Each tet is a chart c
with a local coordinate system. The matching Rij that specifies the connection
between chart ci and cj is assigned to the halfface (dual halfedge) and the
opposite halfface stores the inverse matching, as shown in Fig.4.1. The frame qi
from chart ci expressed in chart cj is thus Rijqi. The edge type of singularity
can be derived from the matching. Note that the frame field matching here
differs from the transition function defined for integer grid maps discussed in
detail in Section 4.3.

Consider one-ring cells at an interior edge e, starting from the tet t0 with
frame q0, and the dual cycle passes all incident tets (t0, t1, t2, ..., tk, t0) in counter-
clockwise order. The edge type of e with respect to tet t0 can be checked via
the concatenation of matching defined per halfface [NRP11, JHW+14]:

type(e) = Rk0...R12R01.

This rotation product type(e) ∈ O measures how the frame in t0 is transformed
along the dual cycle when it returns to the original tet t0. There are three
categories of type(e) based on the conjugacy classes of the octahedral group
[JHW+14]. The edge e is regular if type(e) = Id. 9 different rotations around
principle axes (±u,±v,±w) by 90◦ or 180◦ results in admissible singular edges.
The image of admissible singular edges in parametric space aligns to isolines
and correspond to hex mesh edges. The other 14 rotation types are either along
the face diagonal or cube diagonal, inducing the degeneracy of edges to points
in parametric space. They are called compound or complex singular edges. Note
that the edge type e is independent of the reference tet t0 up to a local coordinate
transformation. For the boundary edge type, similarly, we measure the rotation
of the surface normals in parametric space. The surface normal n0 corresponds
to one of the axes An0

in the local coordinate system of tet t0 and is transformed
along an open dual path to the other boundary tet tk via matching product Re:
ReAn0

. The rotation between ReAn0
and the corresponding surface normal axis

Ank
in tet tk shows the type of the boundary edge. A more detailed description

is in Chapter 5.1
Singular edges of frame fields measured via type can only classify rotations

modulo 2π. As for higher valence, the ambiguity of multiple 2π rotations makes
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q1

q0

R01

Figure 4.1: (Left) Frames in tet t0 and t1, and the matching R01. (Right) Frame
fields in the one-ring tets of a singular edge. Matched axes of two frames are
changed after the circulation around the singular edge.

it impossible to distinguish. More precisely, we can check only valence three and
valence five singular edges via matching concatenation. There is an ambiguity
between valence two and valence six since rotations around u by 180◦ and −180◦
result in the same frame. In organic shapes, singular edges of high valence
rarely appear in an automatically generated smooth frame field. As discussed
in Chapter 2.1, high valence hex mesh edges can be decomposed into valence
three and valence five edges. However, in many practical applications, features
explicitly encoded in CAD models can have feature vertices where multiple
feature edges are joined. Higher valence types are necessary in this case since the
features introduce hard constraints on the resulting hex meshes. To detect edge
types of high valence, we accumulate the rotational angle difference αij between
neighboring frames qi and qj in counter clockwise order. Assuming qj and q′i =
Rijqi are aligned to the axis u in chart cj , the rotation is thus R(u, αij) = qjq

′−1
i .

Subtracting the sum of angles
∑

fij∈F (e) αij with the dihedral angle αd(e) at

the edge e results in the angle defect α(e). The valence of the edge e is thus
α(e)
2π + 4. When type(e) = Id, meaning the rotation is n · 2π, and there is no
obvious rotation axis, a voting strategy needs to be employed to determine a
consistent rotation axis in each local coordinate system.

Singular arcs meet at vertices, called singular nodes. Unlike singular nodes
in hex meshes (refer to Chapter 2) with only a finite number of different configu-
rations given restricted valences, the structure of singular nodes in frame fields is
much more complicated. Even with bounded valence, there are infinitely many
other arrangements of edges simply because one can attach arbitrarily many
singular arcs to the singular node. Fig. 4.5 shows a typical invalid singular node
type of frame field.

Frame field correction Of particular relevance to our work, two previous
methods aim at automatically correcting the defects in frame fields [LLX+12,
JHW+14]. The key idea of [LLX+12] is to remove the compound singular edges,
which do not admit valid hex mesh edges by edge collapsing. An alternative
approach [JHW+14] splits the compound singular edges into admissible singular
edges. Both methods ignore the meshability at singular nodes, and consequently,
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Figure 4.2: (a) Polycube map of volume M such that the mapped
boundary aligns with the integer grid G and pulled back hexahedra tes-
sellate M . (b) Integer-grid map with three boundary aligned charts
{(M1, f1), (M2, f2), (M3, f3)} that induce a singular vertex (blue). Transition
functions τ define the parametric matching of grid directions.

only limited defects in frame fields can be repaired. Additionally, authors of
[VSL16] discuss two reasons for non-meshability, singular edges deviating from
the frame field directions and the existence of limit cycles. They reveal that it
is ineffective to add constraints to frames to align to existing singularity graphs
and then re-optimize frame fields. Furthermore, [RCR19] observes the typical
non-meshable case of 3-5 singular curves, often seen in frame fields of CAD
models with concave feature regions. They propose four ways to correct it,
while only a heuristic that snaps singular arcs to the boundary is considered a
feasible solution. Our novel algorithm described in Chapter 7 addresses all the
local issues and achieves locally meshable frame fields.

4.3 Integer-Grid Maps

Polycube Maps One way to obtain a boundary-aligned hexahedral mesh is
to deform the input region M ⊂ R

3 with a map f that aligns the boundary ∂M
with the grid of Cartesian integer isoplanes

G = {(u, v, w)T ∈ R
3|u ∈ Z or v ∈ Z or w ∈ Z}.

The decomposition of M into hexahedral cells is then obtained by f−1(Ω ∩G),
which pulls back those hexahedra from G which are covered by the image Ω =
f(M), as illustrated in Fig. 4.2a. To guarantee a topologically valid hexahedral
decomposition, not only boundary alignment but moreover, local injectivity of
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f is required [BCE+13]:

(Boundary Alignment) f(p) ∈ G ∀p ∈ ∂M (4.1)

(Local Injectivity) det Jf > 0 ∀p ∈M (4.2)

with Jf = [∂f/∂x, ∂f/∂y, ∂f/∂z] ∈ R
3×3 being the Jacobian matrix of f . Maps

from this class are called polycube maps [THCM04]. Unfortunately, only hex-
ahedral meshes without interior singularities can be generated. To achieve the
class of all hexahedral meshes, polycube maps must be generalized to integer-
grid maps.

Integer-Grid Maps Integer-grid maps similarly generalize polycube maps as
manifolds generalize simple parametric representations. Imagine that the input
region is equipped with an atlas of coordinate charts A = {(Mi, fi)}, i.e. a
partitioning M = M1 ∪M2 ∪ . . .∪Mk into k parts, each providing its own map
fi : Mi → Ωi. To obtain a seamless hexahedral mesh, the piecewise polycube
maps f−1

i (Ωi∩G) need to be stitched at all points p ∈Mi∩Mj contained in the
intersection of charts. This can be done by restricting the transition functions
τi�j = fj ◦ f−1

i between charts i and j to preserve the grid of integer isoplanes,
i.e. τ(G) = G. In [KNP07a, NRP11] it is shown that τ(a) = Ra + t where
R ∈ Oct is one of 24 orientation-preserving octahedral permutations [SVB17]
and t ∈ Z

3 is an integer translation.
As illustrated in Fig. 4.2b, the use of charts and grid-conforming transition

functions enable the stitching of hexahedral cells in a topologically irregular
manner and in particular, provides the flexibility to create all types of singular-
ities discussed in Chapter 2.1. Whether a point p ∈ M is a singularity of the
map can be measured by the holonomy of the connection induced by the tran-
sition functions. More precisely, if there is any cycle around p with a nonzero
holonomy, p belongs to the singularities induced by the map f , denoted by
p ∈ Sf . Alternatively, Sf is given by the locus of points where the differential is
not well-defined. To guarantee that the conformingly stitched grid consists only
of hexahedral cells, it is additionally required that all singularities p ∈ Sf are
mapped to the integer grid, leading to the following two additional conditions:

(Conformity) τi�j(a) = Ri�ja+ ti�j ∀a ∈ f−1
i (Mi ∩Mj) (4.3)

(Singularities) f(p) ∈ G ∀p ∈ Sf (4.4)

An atlas of charts A = {(Mi, fi)} where all fi and τi�j satisfy (boundary align-
ment), (local injectivity), (conformity), and (singularities) is called an integer-
grid map (IGM). Every IGM is guaranteed to induce a boundary-aligned and
topology-preserving hexahedral decomposition of M . The reverse also holds:
for each hexahedral decomposition, there exists a corresponding IGM.

Seamless Maps Without constraining ti�j ∈ Z
3, the IGM is relaxed to the

seamless map with ti�j ∈ R
3. First, one solves the easier problem by dropping

part of the constraints and then assigning integer constraints back. An early
approach is to round ti�j to the nearest integer and then resolve the problem
with the fixed ti�j . Ideally, it can find a valid IGM with infinite resolution.
However, it is rather fragile in practice and often has conflicts, leading to in-
valid IGMs. [BGMC22] (Volume Parametrization Quantization for Hexahedral
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Meshing) extend the 2D quantization [CBK15] to 3D volume by introducing
the 3D motorcycle complex. Given a valid seamless map (det Jf > 0), it can
robustly produce a valid IGM.

IGM Induced Frame Fields Consider one chart (M0, f0) of an IGM. Map-
ping the coordinate frame [û, v̂, ŵ] from the parametric domain Ω0 to M0 by
means of the inverse differential results in a frame field F = J−1

f ∈ R
3×3, which

we abbreviate by F = [du, dv, dw] ∈ R
3×3. Geometrically, the frame field repre-

sents the local orientation of mapped hexahedral elements and is smooth within
a single coordinate chart but potentially discontinuous across different charts
due to the transition functions. The transformation rule for frames between
neighboring charts Mi and Mj is induced by the transition function between Ωi

and Ωj . It follows from the identity df−1
j (v) = df−1

i (dτj�i(v)), meaning that
mapping a vector v from Ωj to M is identical to first transitioning v to Ωi and
then mapping to M (cf. Fig. 4.2). Considering that dτj�i = Rj�i, the resulting
rule for transforming a frame Fi from chart i into representation Fj w.r.t. chart
Mj consequently is

Fj = FiRj�i (4.5)

Note the inverse behavior compared to the transformation of a vector vi ∈ TΩi

in the parametric domain following from Eq. (4.3):

vj = Ri�jvi (4.6)

with Ri�j being the inverse of Rj�i.

Octahedral Fields By means of the octahedral group Oct, a frame F extends
to its axis set A(F ) = {±du,±dv,±dw}, which is a smooth field at all non-
singular p ∈ M \ Sf , specifically across chart boundaries. This IGM-induced
octahedral field is orthonormal in the metric of the parametrization. Conversely,
a given octahedral field on M can be converted into a frame field by arbitrarily
choosing a right-handed subset from the axis set for each chart (from here on
frame/octahedral fields are used interchangeably). While every IGM induces
an octahedral field, the converse is not true: not every field can be integrated
into an IGM. If this is the case, we say the field is globally hex-meshable, or
globally meshable for short, as the hex mesh given by the integrated IGM has
the topology dictated by the field. In particular, any globally meshable field
must have a singularity graph that satisfies the necessary conditions of Chapter
2.1.

IGMs for Hexahedral Meshing A straightforward hexahedral meshing ap-
proach optimizes for a low-distortion map in the class of integer-grid maps. Un-
fortunately, the resulting optimization problem is extremely challenging due to
its high dimensionality, the strong non-convexity due to (4.2), and especially
the huge number of discrete degrees of freedom due to (4.1), (4.3) and (4.4).
Consequently, all known IGM-based hexahedral meshing algorithms perform
a splitting approach [LLX+12, JHW+14], illustrated in Fig. 4.3. In the first
step, a smooth and boundary-aligned octahedral field is generated, e.g. through
[HTWB11, RSL16, SVB17], which is then used as a guidance field to find the
most similar IGM [NRP11].
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(a) Successful on the hanger model.

(b) Failed on the rockerarm model.

Figure 4.3: (a): splitting approach, an octahedral field (yellow) is generated to
guide the IGM parametrization (red). (b): an invalid singularity graph induces
constraints leading to a highly degenerate parametrization. Consequently, only
very few hexahedra can be extracted [LBK16]

A fundamental problem with this approach is that the singularity graph of
the smooth octahedral field is often topologically invalid [VSL16]. As a result, it
is common that for seemingly high quality octahedral fields the IGM still heavily
degenerates by violating condition (4.2), such that in most areas no consistent
hexahedral cells can be extracted (cf. Fig. 4.3, bottom). Typical defects of the
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singularity graph include local defects, which are singular nodes or arcs of invalid
type or global defects.

Figure 4.4: Typical singularity graph defects of smooth octahedral fields. Green
and blue arcs are singularities of index 1

4 and − 1
4 respectively. Black spheres

indicate invalid node topology, including cases where singular arcs touch the
boundary tangentially. Red spheres denote the turning points.

Common invalid singular nodes that we observed are of type (3, 0, 1) or
(1, 0, 1), which are turning points where a singular arc changes, e.g., from va-
lence 3 to valence 5, and returns to its source. An example extracted from a
smooth octahedral field is depicted in Fig. 4.5. Invalid arcs are often created
when several arcs in the vicinity of a singular node snap on a common edge, cre-
ating a complex type. Such cases are often of local nature and can be resolved
by methods like [LLX+12, JHW+14]. If an octahedral field has a singularity
graph that is locally meshable, then we say the field itself is locally hex-meshable,
or locally meshable for short.

Even if we have local meshability, the field may still fail to be globally
meshable. For example, our global necessary condition stated in Chapter 2.1.4
might be violated. As another example, there might be no global meshing due to
limit cycles (cf. [VSL16, SR15]). The analog of this problem occurs even in the
surface case, for quad meshing [CZ17]. The example of a cross-field on a torus
with two singularities of index ±1/4 is shown in this reference. An analogous
octahedral field on a thickened torus will also lack global meshability. Another
typical global defect that leads to non-meshable issues is the twist, as shown
in Fig. 4.5. Although everywhere in the bone mesh is locally meshable, the
twist of singular arcs causes a severe collapse in the parameterization. There
is no known characterization of globally meshable fields or method to generate
them. Automatically generating globally meshable fields is the ultimate puzzle
in frame field based hex meshing and is left for future work.

Instead, this thesis first provides an alternative solution to the fully auto-
matic approach. Assuming a globally meshable singularity graph, the algorithm
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Figure 4.5: One twist of the singular arcs exists on each side of the bone mesh.

can generate the corresponding meshable frame field. Replacing the frame field
in the splitting approach with this meshable frame field would result in a valid
hex mesh with the same singularity structure. The algorithm is presented in
Chapter 5. It then focuses on the automatic frame field based hex meshing
pipeline, targeting improving the robustness. In collaboration with colleagues
[BRK+22], we set up the HexMe dataset designed to test the robustness of
hex meshing algorithms, particularly regarding the correct preservation of fea-
tures. In Chapter 6, we introduce the HexMe dataset and evaluate the standard
frame field based hex meshing pipeline, showing its poor behavior in terms of
robustness on this dataset. As the major contribution, this thesis presents a
novel algorithm that automatically repairs all locally non-meshable defects in
Chapter 7. This novel hex meshing pipeline produces locally meshable frame
fields, achieving significantly more valid IGMs on the HexMe dataset than the
state-of-the-art methods [JHW+14, LLX+12].



Chapter 5

Singularity-Constrained
Octahedral Fields

Given a tet mesh, the standard hex meshing procedure which often leads to
invalid hex meshes is shown in the top row of Fig.6.1. This chapter advocates
a modified splitting approach, including two additional steps: (i) repairing the
singularity graph and (ii) generating a new octahedral field, where the corrected
singularity graph is preserved. The bottom row of Fig.6.1 demonstrates the
modified approach. The input singularity graph of a globally meshable field
can be totally user-designed or manually repaired with the hint of a smooth
frame field. The main contribution in this chapter is an algorithm for step (ii),
which generates a smooth and boundary-aligned locally meshable octahedral
field under the constraint of a prescribed singularity graph. Developing a general
solution for step (i) is left for future work. Still, nevertheless, the set of necessary
conditions in Chapter 2.1 is helpful on its own to support the correction of
singularity graphs. In this regard, our algorithm can be used for the detection of
invalid topology and provides information on where inconsistencies are located.

5.1 From Singularity Graph to Octahedral Field

Given a tet mesh T = (V,E, T, C) with vertices V , edges E, triangles T and
cells C, and a singularity graph S embedded in the 1-skeleton V ∪E, our goal is
to find a discrete octahedral field O that is boundary-aligned and matches the
singularity graph S.

Edges and dual edges of T are equipped with an arbitrary but fixed orienta-
tion. Given the end hex-meshing goal, we assume our input S satisfies the local
necessary conditions from Chapter 2.1 and the global necessary condition (2.3).
In particular, S assigns hexahedral singularity types S(ei) ∈ {−1/4, 0, 1/4} to
each (oriented) edge ei ∈ E, and S(vi) ∈ HV to each vertex vi ∈ V . The
singular node type S(vi) defines the entire local topology of incident singular
edges including ordered triplets of singular edges that locally form the corner
of a hexahedron. An example of an input singularity graph including singular
node topology is shown in Fig. 5.2.
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octahedral field singularity graph hex mesh (standard)

corrected singularity graph singularity-constrained
octahedral field

hex mesh (ours)

Figure 5.1: Overview. Octahedral fields often exhibit singularities that are in-
valid for hex meshing, inducing non-hex elements and poor quality (top row).
Our algorithm (bottom row) starts from a corrected singularity graph and gen-
erates a meshable oct. field, resulting in a valid and less distorted hex mesh.

e⋆ij

cjci

We assume the octahedral field to be induced by
an (unknown) IGM, where each tetrahedron defines
its own chart, as discussed in Section 4.3. Conse-
quently, the octahedral field O = (R,F) can be en-
coded as a set R of matchings dτi�j = Ri�j ∈ Oct
for (oriented) dual edges e⋆ij ∈ E⋆ from cell i to cell

j, and a set of frames F with Fi ∈ R
3×3 belonging to

cell ci ∈ C.

Splitting the Input Mesh We require that none of the tetrahedra in T is
adjacent to multiple singular edges or multiple boundary faces. Furthermore,
we require that interior singular edges cannot be incident to tetrahedra with
a boundary face, that a singular edge cannot be incident to two nodes of the
singularity graph, and that a regular edge cannot be adjacent to two singular
edges at both vertices. All these requirements can be easily satisfied by a series
of edge splits in T . A key property of the resulting mesh is that each singular
edge has an independent fan of surrounding incident tetrahedra.

5.1.1 Singularity Graph Constraints

The problem of finding an octahedral field O that exhibits a given singularity
graph S can be formulated as a (nonlinear) algebraic system of constraints for
the unknown frames F and matchings R. The first set of constraints is an
immediate consequence of IGMs and ensures alignment of the octahedral field
to boundary normals and singular arcs:

(C1) Boundary alignment At the boundary, the octahedral field aligns to
the surface normal, i.e. for each boundary tetrahedron ci with surface normal
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Figure 5.2: Visualization of a singularity graph S, used as input for our algo-
rithm. Green and blue curves are singular arcs of index 1

4 and − 1
4 respectively.

Red spheres are singular nodes and their topological type S(vi) ∈ HV is visu-
alized as the corresponding hex-mesh. Note that except for singular edges, S
does not constrain the geometric embedding at nodes.

ni and frame Fi we require ni ∈ A(Fi).

(C2) Singular arc alignment At singular arcs, the octahedral field is tan-
gential, i.e. for each tetrahedron ti adjacent to a singular edge ej we require
ej ∈ A(Fi).

The second set of constraints, which incorporate matchings R, ensures that
for each point in space the octahedral field topology agrees with the topology of
the prescribed singularity graph. The topology of the discrete octahedral field
is measured in the one-ring tetrahedra incident to an edge or a vertex.

e

C

(C3) Edge type The hexahedral edge type S(e)
specifies the holonomy of each dual parametric cycle
C, which circles the edge e counter-clockwise in its
one-ring neighborhood. Assuming that the dual cycle
C starts and ends in tet t with frame F and traverses
matchings of dual edges in the order R0 � R1 � . . . �

Rk, the holonomy is given as the product of these
matchings, leading to the condition

Rk . . . R1R0 = rot(F−1e, 2πS(e)) (5.1)



5.1. FROM SINGULARITY GRAPH TO OCTAHEDRAL FIELD 40

where rot(a, α) is a rotation around axis a by angle α. This condition depends on
the frame F , which is inevitable since we need to know the parametric coordinate
axis to which e aligns to specify the correct holonomy. More precisely, while
the angle 2πS(e) is independent of the specific IGM, the rotation axis F−1e is
not, since the IGM could map e to 6 different coordinate axes, each inducing a
different constraint.

e

D n0

n1

For edges at the boundary we similarly measure
the rotation of the surface normals in the parametric
domain by means of an open dual path D traversing
matchings R0 � R1 � . . . � Rk between start frame
F0 and end frame F1. Since the dual path is open,
the surface normals of start and end tetrahedra might
correspond to different axes of the coordinate frame,
leading to a slightly modified equation

Rk . . . R1R0F
−1
0 [n0, e] = rot(F−1

1 e, 2πS(e)) · F−1
1 [n1, e] (5.2)

Eq. (5.2) is valid for both interior and boundary edges of any index, since
for interior edges F0 = F1 and n0 = n1 is an arbitrary vector orthogonal to e.
Regular edges with S(e) = 0 do not align to coordinate axes but are nevertheless
handled correctly since rot(a, 0) = I3×3, independently of a.

(C4) Vertex type While in the one-ring neighborhood of edges there is only
a single rotation degree of freedom, the situation gets more complicated at
vertices. The singularity graph defines constraints on the angles in which indi-
vidual singular edges meet at vertices as well as their precise spatial orientation
(e.g. three singular edges form a right-handed corner in frame space). For ver-
tices of the singularity graph an additional set of constraints is required to
ensure that all pairwise relations between adjacent singular edges agree with
the singularity graph topology. The set of such singular vertex constraints can
be decomposed into three different subtypes, the first relating tuples of collinear
singular edges, which we call tangent continuity constraints, the second relating
triples that form a corner in frame space, referred to as corner constraints, and
the third called sector constraints which are the analogue of corners but on the
boundary surface.

(C4a) Tangent continuity constraint Along an interior singular arc a
consistent axis of the octahedral field is tangential, i.e. no corners or turn-
ing points are allowed, where the parametric alignment axis would change.
Given a dual path D connecting two singular edges e0 = p1 − p0 and e1 =
p2 − p1 which are adjacent at a common vertex p1, tangent continuity means

p0

p1

p2

D

that

RDF
−1
0 e0 = F−1

1 e1 (5.3)

where RD is the product of matchings along the dual
path D as before and F0, F1 are the frames at start
and end of D.

The idea is to express the frame axes correspond-
ing to e0 and e1 both in the chart of F1, where they
can be compared. Eq. (5.3) must be satisfied for all
dual paths D that do not enclose other singular arcs.
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(C4b) Corner constraint The neighborhood of a singular node can be de-
composed into (ordered) triplets of singular edges that form the right-handed
corner of a hexahedron, e.g. four such corners for the (4, 0, 0) node type. Each
corner corresponds to a triangle in the sphere representation of Fig. 2.4.

Expressing the parametric representation of all three outgoing singular edges

e0

D0 e1D1

e2

D2

Ω

frame in a common chart, results in a right-handed
inducing the constraint

[

RD0
F−1
0 e0|RD1

F−1
1 e1|RD2

F−1
2 e2

]

∈ Oct (5.4)

where edge ei adjacent to frame Fi is transformed
along (red) curve Di to the (green) common chart Ω
for comparison. The constraint should be satisfied
for all combinations of curves Di inside the region of
the corner and not surrounding any singularity. It is
enough to satisfy the constraint for a specific set of
curves in the region in addition to having zero holonomy on regular edges.

(C4c) Boundary sector constraint At a boundary singular node,

e0e1

n1 n0
Ds

the one-ring neighborhood of surface triangles is par-
titioned into sectors formed by the incident singular
boundary edges. A sector can be convex, flat, concave
or a turning point, corresponding to interior angles of
k · π

2 with k ∈ 1, 2, 3, 4 in parametric space respec-
tively. Assuming that a sector is spanned counter-clockwise w.r.t. the surface
normal from edge e0 to edge e1, which are connected by a dual surface path Ds,
a sector constraint is expressed through

RDs
F−1
0 [e0,n0] = rot

(

F−1
1 n1, k ·

π

2

)

F−1
1 [e1,n1]. (5.5)

D

Ds
The upper inset figure shows three boundary sec-

tors, adjacent to the central red vertex. Two sectors
have an interior angle of π

2 (green) and one has an
interior angle of 3π

2 (blue). Eq. (5.5) is applied along
the yellow path Ds to match the pairs of normal and
edge vectors with the 3π

2 sector angle. This uniquely
specifies the rotation RD. In terms of matchings, each dual surface edge of
Ds represents a chain of interior dual path D as shown in the second inset,
i.e. RDs

= RD.

In summary, octahedral node topology at a tet mesh vertex is fully defined
by an overlapping set of corner, sector, and tangent continuity constraints that
are induced by the corresponding hex mesh vertex type.

Algebraic system A singularity graph S induces the following set of con-
straints: For each boundary triangle of T one (C1) constraint, for each edge of
T one constraint of type (C3), if singular additionally one of type (C2), and a
set of node constraints (C4) for each vertex of T which is adjacent to at least
one singular edge. The number of (C4) constraints at a vertex depends on the
node type described in Chapter 2.1. While some of these constraints may be
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globally redundant with each other, they are necessary and sufficient for correct
local topology.

Finding solutions to the algebraic system is difficult since the number of
constraints is large (≥ 2 · |E|), the constraints are nonlinear (products in the
group of rotations), and the problem involves continuous as well as discrete
variables (frames are continuous, matchings and choice of alignment axes are
discrete). In the following, we describe a novel algorithm for this task, which
based on a careful analysis leverages several structural properties of the algebraic
system.

5.1.2 Decomposition approach

One difficulty of the algebraic system results from the diversity of involved vari-
ables (frames and matchings). However, the problem is highly underdetermined,
providing flexibility to a priori fix alignment of singular edges where required
for the solution, leading to a reduced, purely discrete algebraic system only in-
volving the matchings. Once all matchings are determined, the complete set
of frames can be found in an independent subsequent step described in Section
5.1.4. Our decomposition approach is based on the following observation:

Observation 1 There are 24|C| topologically identical representations of a
discrete octahedral field with different matchings and frames at faces and cells
of a tetrahedral mesh T . This becomes obvious when considering that there
are 24 different frames representing one element of an octahedral field and that
inversely transforming a frame and its matchings to neighbors does not alter
field topology. Such a topology preserving transformation is simply a change of
a local coordinate system.

As an immediate consequence, for every octahedral field there is a choice
of coordinate systems, where each singular edge ei aligns in all charts of its
incident tets tj to the u-direction, and at the same time each boundary normal
nj aligns in the chart of its boundary tetrahedron to the v-direction, i.e. the
parametric images of singular edges and normal vectors simplify to F−1

j (ei) = û

and F−1
j (nj) = v̂. This is possible since as mentioned before, our tetrahedral

mesh is always split such that no tetrahedron is incident to more than one
singular edge, and no boundary tetrahedron is incident to an interior singular
edge. Our specific choice of coordinate systems greatly simplifies the algebraic
system. Conditions (C1) and (C2) are satisfied by construction, and for (C3)
all edge holonomies He = rot(û, 2πS(e)) are fully determined, simplifying Eq.
(5.2) to

Rk . . . R1R0 = He (5.6)

with known righthand side and independent of the frames F . In the same way,
Eqs. (5.3), (5.4) and (5.5) are simplified to

RDû = ±û, (5.7)

[RD0
û|RD1

û|RD2
û] ∈ Oct, (5.8)

and
RD = rot

(

v̂,±k ·
(

−π

2

))

, (5.9)
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where we exploit the additional convention that the canonical orientation of
singular edges is always outward-pointing from nodes of the singularity graph.
Choice of the sign in Eqs. (5.7) and (5.9) is fully determined by the canonical
orientation of singular edges: it is positive if at the common vertex one edge is
incoming and the other outgoing, otherwise negative.

In summary, the advantage of our specific choice of coordinate systems is
the simplified algebraic system consisting of Eqs. (5.6), (5.7), (5.8), and (5.9),
which solely depends on the matchings R.

5.1.3 Determining matchings

To find a set of matchings that satisfy the simplified algebraic system, we design
a chart-merging algorithm. It is based on two principles. (1) In the beginning
all matchings are unknown which means that each tetrahedron forms a separate
chart. (2) Whenever a matching of a dual edge is determined, we interpret
this as merging the charts of both neighboring tetrahedra. The mathematical
challenge lies in locally determining matchings that are globally consistent.

Constrained chart-merging A frequent operation in our algorithm is to
merge two charts while satisfying a constraint on how specific coordinate axes
a ∈ {±û,±v̂,±ŵ} match along a dual path. The operation is illustrated in Fig.
5.4. More precisely, assume two separate charts A and B are connected by a
dual path D with combined matching RD = Rk . . . R0. Some of these matchings
might already be fixed but since the charts are separate there is at least one Rj

that is not yet determined. First, all undetermined matchings on D other
than Rj are set to identity. Then the constrained chart-merging is performed
by choosing Rj such that the constraint is satisfied. If the matching of two
coordinate axes is specified the combined matching is unique RD = R and Rj

is obtained through

Rj = (Rk . . . Rj+1)
−1R(Rj−1 . . . R0)

−1 (5.10)

If matching of only one coordinate axis is specified, i.e. RDa = b, we obtain Rj

from
Rj [(Rj−1 . . . R0)a] = (Rk . . . Rj+1)

−1b (5.11)

We arbitrarily choose one of the four Rj ∈ Oct which maps (Rj−1 . . . R0)a to
(Rk . . . Rj+1)

−1b. Finally, if no matching of coordinate axes is constrained, each
Rj ∈ Oct is a valid solution and we always pick the identity.

Chart-zippering The second central operation besides chart-merging is
chart-zippering. Given an edge e with all but one matching of incident tri-
angles known, the unknown matching Rj can be uniquely determined based on
the edge holonomy Eq. (5.6):

Rj = (Rk . . . Rj+1)
−1He(Rj−1 . . . R0)

−1 (5.12)

The operation is called zippering in analogy to the zippering algorithm of
[RVLL08] for N -symmetry fields on surfaces with prescribed singularities. In
our terms, the algorithm of [RVLL08] creates one initial connected chart through
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(a) (b)

(c) (d)

Figure 5.3: Algorithm Overview: (a) A separate initial region is created for each
singular edge. (b) Regions are merged into tubes corresponding to singular arcs
and tube networks belonging to boundary components of the singularity graph.
(c) Interior tubes touching the boundary are connected to the boundary com-
ponents by chart-zippering on the boundary shell. (d) the algorithm terminates
after all charts are merged and all matchings are determined.

a dual spanning tree of surface triangles and then iteratively performs chart-
zippering until all matchings are determined. In contrast to the simpler surface
case we need to cope with (C4) node constraints which render a simple spanning
tree construction infeasible and require a carefully designed chart-merging.
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merge(A,B)

A

B

D

Figure 5.4: Chart merging: two individual charts A and B are merged through
a dual path D.

Algorithm The algorithm performs chart-merging in three major steps out-
lined in Algorithm 1, to determine the set of matchings X. The idea is to
proceed from singular arcs and boundary surfaces, where most information in
the form of constraints is available, to the interior of the volume. First charts
incident to singular edges are merged along singular arcs, leading to a set of
singular tubes illustrated in Fig. 5.3b. In the second step the charts of bound-
ary tets are merged, Fig. 5.3c. Finally, the algorithm extends the information
to the interior until all matchings are determined, Fig. 5.3d.

Algorithm 1 DetermineMatchings

Input: Tet mesh with singular topology constraints (5.6)-(5.9)

Output: matchings X ∈ Oct|T | satisfying (5.6)-(5.9) or INFEASIBLE
1: X ← flag all matchings as uninitialized
2: X ← MergeSingularArcCharts(X) ⊲ Singular tube charts
3: X ← MergeBoundaryCharts(X) ⊲ Boundary shell charts
4: return MergeVolumeChart(X) ⊲ Solve remaining matchings

Step 1: Merging charts of singular arcs We begin with generating one
combined chart for each singular edge. For one singular edge, the set of inci-
dent matchings R0 . . . Rk needs to satisfy the holonomy constraint Eq. (5.6).
Since singular edges are consistently oriented in all incident charts, it is suffi-
cient to set R1 . . . Rk to identity and determine R0 through chart-zippering Eq.
(5.12). An example of the resulting singular edge charts is depicted in Fig. 5.3a.
Next we connect charts along singular arcs. For interior singular arcs, each
pair of neighboring singular edges is equipped with a tangent continuity con-
straint of Eq. (5.7), allowing a series of constrained chart-merging operations
to obtain one tubular chart per interior singular arc. Similarly, we perform
constrained chart-merging for all boundary sector constraints (5.9), leading to
a closed tubular network for each connected component of the boundary singu-
larities. Pseudocode of these steps is provided in Algorithm 2 and an example
visualization of resulting charts is depicted in Fig. 5.3b.



5.1. FROM SINGULARITY GRAPH TO OCTAHEDRAL FIELD 46

Step 2: Merging charts at boundary surfaces In this step we reduce
the number of independent charts on the boundary. The key observation is
that away from singular edges a consistent frame axis is aligned to the sur-
face normal, reducing the octahedral field topology to the 2D cross-field case.
Consequently, we can adapt the 2D zippering ap-
proach of [RVLL08] to consistently merge boundary
charts. We process each connected boundary surface
independently. First, the boundary triangles of charts
containing singularities are used as the root set of
a dual spanning forest of all boundary triangles, as
shown on the right. For boundary surfaces without
singular edges, we choose one arbitrary triangle as
the root. Next, for each dual boundary edge d of the
spanning tree we merge the charts of both incident
triangles by constrained chart-merging for the corre-
sponding interior dual path D.

Algorithm 2 MergeSingularArcCharts(X)

1: for all singular edges e do
2: X ← MergeAndZipChart(e) ⊲ Singular edge charts
3: end for
4: for all tangent continuity constraints T do
5: if T relates two different charts then ⊲ Prevent cycles
6: X ← ConstrainedChartMerging(T ) ⊲ Int. sing. tubes
7: end if
8: end for
9: for all boundary sector constraints B do

10: X ← ConstrainedChartMerging(B) ⊲ Bnd. sing. tubes
11: end for
12: return X ⊲ Return determined matchings

Since spanning forest edges are never singular, both normals

C0

C1

C2

C3 C4

agree in a common chart and we constrain RD =
I3×3. In the final step, we iteratively apply 2D chart-
zippering, where the boundary vertex index needs to
be taken into account when closing dual cycles. As-
sume a counter-clockwise (ccw) cycle of dual (non-
singular) boundary edges d0 . . . dk, which surround
vertex p and where the matchings on Di are known
for all i except one. The holonomy of the cycle
must be a rotation around the coordinate axis of
the normal vector with angle given by the index of the boundary vertex,
i.e. RDk...D0

= rot(v̂, 2π · idx(p)), leading to one step of constrained chart-
merging. The ccw index idx(p) of a boundary vertex p is equal to the index
of an incident interior singular edge or zero if there is none. In each boundary
component without singular edges all boundary tetrahedra will be merged into
a single chart. If a boundary surface has k connected sets of singular boundary
edges, 2D chart-zippering will terminate with k independent charts, which will
only be merged in a subsequent step. Pseudocode of the boundary chart merg-
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ing is provided in Algorithm 3 and Fig. 5.3c shows an example resulting in two
boundary charts that are separated by the red boundary curve.

Algorithm 3 MergeBoundaryCharts(X)

1: for all boundary components B do
2: Construct dual spanning forest DSF on boundary
3: for each dual edge d ∈ DSF do
4: X ← ConstrainedChartMerging(D, I3×3)
5: end for
6: while ∃ zippable ccw-cycle C enclosing vertex p do
7: X ← ConstrainedChartMerging(C, rot(v̂, 2π · idx(p)))
8: end while
9: end for

10: return X ⊲ Return determined matchings

Step 3: Merging charts in the volume In this step we merge

e

n

D

interior singular tubes to the boundary charts, includ-
ing those indirectly linked through corners of the sin-
gularity graph. First, for each boundary surface chart
we merge all interior singular tubes that already touch
the boundary through a vertex. This can be easily
done with a constrained chart-merging that matches
the v̂ coordinate axis of the outward-pointing surface
normal n of the boundary chart with the negative
of the inward-pointing coordinate axis û of the singular edge e, i.e. with the
matching rot(ŵ,−π/2). Singular tubes that touch the boundary at both ends
are only merged on one side, since we cannot decide the twist of global cycles
at this point.

Next, we grow a dual spanning forest rooted at boundary chart tetrahedra
to all tetrahedra not part of a boundary or tube chart yet. Unconstrained chart-
merging is performed for all dual edges of the spanning forest, i.e. matchings
are set to identity. Additionally, iterative chart-zippering is used to resolve all
locally decidable matchings. After these two steps, all remaining charts are
either boundary charts or isolated singular tube charts that do not touch the
boundary.

Further singular tubes can be merged to the boundary charts by considering
corner constraints (5.8). A corner constraint is formed by three dual paths
D0, D1 and D2 that express the axis orientation of the three singular edges e0,
e1 and e2 of a corner in a common chart. We say that a corner constraint is
decidable1 if (i) two singular edges are part of a common boundary chart and
all matchings on their Di are determined and (ii) the third singular edge is not
part of a boundary chart. Assuming w.l.o.g. that e2 is the non-boundary chart
edge, we connect it to the boundary by constrained chart-merging along D2

with matching constraint

RD2
û = RD0

û×RD1
û (5.13)

1Another special case of decidable corner arises, if one singular edge belongs to a boundary
chart not containing boundary singular edges and the other two belong to isolated int. singular
tubes. Any locally valid matchings for Di are then globally valid.
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Algorithm 4 MergeVolumeChart(X)

1: for all interior singular tubes T do
2: if T incident to boundary then
3: X ← ConstrainedChartMerging(T ) ⊲ Connect to bnd.
4: end if
5: end for
6: Grow dual spanning forest DSF from boundary chart tetrahedra
7: for all dual edges d ∈ DSF do
8: X ← UnconstrainedChartMerging(d)
9: end for

10: X ← Chart-Zippering(X) ⊲ Solve locally decidable match.
11: B ← ∅ ⊲ Set of unfinished branches
12: loop
13: if ∃ decidable corner C then
14: X ← ConstrainedChartMerging(C) ⊲ Eq. (5.13)
15: else
16: if ∃ decidable patch P then
17: X ← ConstrainedChartMerging(P)
18: else
19: (i, {m1 . . .mk})← FindBestPatch(X) ⊲ k ∈ {4, 24}
20: for j = 2 . . . k do
21: Xi ← mj

22: B ← B ∪ {X} ⊲ Store candidate for later
23: end for
24: Xi ← m1 ⊲ Proceed with first candidate
25: end if
26: end if
27: X ← Chart-Zippering(X) ⊲ Solve locally decidable match.
28: if #charts= 1 then
29: X ← HandleUnsolvedMatchingsByBranching(X)
30: if X satisfies all constraints (5.6)-(5.9) then
31: return X ⊲ Valid solution found
32: else
33: if B 6= ∅ then
34: X ← get next branch of B ⊲ Continue search
35: else
36: return INFEASIBLE
37: end if
38: end if
39: end if
40: end loop
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directly following from (5.8). After merging a corner, we perform iterative
chart-zippering, which frequently has the positive effect of resolving matchings
that render other singular corners decidable. Often, iteratively performing the
combination of merging at a locally decidable corner with subsequent chart-
zippering is sufficient to resolve all matchings.

If no decidable corner constraint exists, non-local considerations are required
to proceed. To bundle spatially distributed constraints, we first partition the
triangles of unsolved matchings TU ⊂ T into subsets that represent identical
degrees of freedom. These are exactly the 2-manifold patches embedded in TU

since fixing the matching of one triangle in such a patch is sufficient to resolve
all others by chart-zippering. A patch is decidable if it is supported by two
independent matching constraints, which uniquely specify the single matching
degree of freedom and enable constrained chart-merging.

If neither decidable corners nor patches are available, we explore all poten-
tial solutions until a valid one is found. The idea is to search a maximally
constrained patch with minimal potential solutions, which are either 4 if it is
supported by a matching constraint or 24 otherwise. We randomly pick one
candidate solution and continue the algorithm. All other candidates are stored
as unfinished branches for later investigation. If the current candidate turns out
to be infeasible, we backtrack and search other branches. The same branching
strategy is used if the final chart-zippering cannot resolve all matchings. This
exhaustive search ensures that whenever a solution exists, it is found. Complete
pseudocode of the volumetric chart merging is provided in Algorithm 4.

Algorithm Properties The input to the algorithm is a locally meshable sin-
gularity graph that also satisfies the global necessary condition. The output is a
set of matchings of a locally meshable octahedral field if it exists, otherwise the
message “INFEASIBLE” is returned. The driving principle of the algorithm
is to in each step identify a constraint that can be used to resolve a matching
while maintaining feasibility regarding all other constraints. In this sense, it
shares similarity with triangular solvers for linear systems of equations, which
analogously in each step solve for one variable or choose underdetermined de-
grees of freedom. Since we cannot guarantee that in each step we can solve for
a unique matching, the algorithm additionally includes fallback to exhaustive
search of a set of candidate matchings. In this way, termination with a valid
solution is guaranteed if one exists. While theoretically necessary, in none of our
experiments were multiple branches explored, leading to very fast runtimes in
practice. Analyzing the underlying theoretical reason is an interesting direction
for future work.

We observed that the singularity graph does not always uniquely specify the
octahedral field topology. In particular for higher genus handlebodies, closed
singular arcs inside the volume, or cavities, additional constraints are often
necessary to uniquely specify field topology. This is not a problem for our
algorithm, since by construction it is able to handle underdetermined cases.
However, to obtain more control, one could either provide additional constraints
or postpone the decision of additional degrees of freedom to the frame generation



5.1. FROM SINGULARITY GRAPH TO OCTAHEDRAL FIELD 50

to, e.g. exploit the degrees of freedom to obtain the smoothest solution.

Relation to Global Necessary Condition
While the global necessary condition Eq. (2.3) is ap-
plied as a filter on the input singular graphs, and helps
to detect global inconsistencies, it is not sufficient to
guarantee existence of a compatible locally meshable
field. Consider the inset example. While the input
singularity graph (green lines) satisfies Eq. (2.3), our
algorithm is able to detect that no corresponding lo-
cally meshable field exists. Our algorithm produces
matchings with extra singularities (red lines) that do
not agree with the input singularity graph. While this
hints at a method for correcting the singular graph,
it is outside the scope of this paper to correct singularity graphs.

5.1.4 Octahedral Fields with Fixed Matchings and Align-
ment

After determining the topological matchings and partial alignment information,
we still need to construct the frames geometrically to obtain the octahedral
field. Regardless of the geometric frame field output, the topology of the frame
field is already specified by the topological matchings. However, for hexahedral
meshing applications, we aim for the smoothest frame field with prescribed
topology. Accordingly, we minimize the Dirichlet energy of a quaternion field q
subject to alignment constraints for q ∈ B resulting from normals and singular
edge alignment

minimize
q

∫

Ω

|∇q|2dV

subject to Aiqi = 0, qi ∈ B

|qi| = 1, i = 1 . . . n

with Ai ∈ R
2×4 are linear alignment conditions derived below. The |qi| = 1

constraint may be ill-posed in the continuum, an issue addressed using the
relaxation below.

Relaxation to eigenvalue problem The Dirichlet energy is expressed w.r.t.
the connection specified by the matchings. Thus, if two orthogonal frames are
related through Fj = FiRj�i, the same relation can be expressed in quaternion

form qj = qiR̂j�i. While more sophisticated variants are possible, a uniformly
weighted discretization of the Dirichlet energy summing squared differences for
all dual edges e⋆ij is sufficient for our purposes:

∫

Ω

|∇q|2dV ≈
∑

e⋆
ij

|qiR̂j�i − qj |2. (5.14)

In the spirit of the globally optimal direction fields of [KCPS13] we relax the
unit-norm constraints |qi| = 1 to

∑

i |qi|2 = n, turning the optimality conditions
of our optimization problem into an eigenvalue problem. We add penalty terms
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ωa|Aiqi|2 to enforce the alignment conditions in the objective function; ωa = 10
already produces solutions that obey the constraints well.

Axis alignment conditions The alignment conditions are homogenous lin-
ear expressions resulting from the following observation. Assume that we want
to align the u-axis of our frame represented by qi to the direction v. In this case
qi is parametrized by qi = qû→v · qû(α), where qû→v is an arbitrary rotation
that maps û to v and

qû(α) =
(

cos
α

2
, sin

α

2
, 0, 0

)T

(5.15)

is a rotation around the first coordinate axis. Since quaternion multiplication
is linear in each quaternion we can express the product as qi = Qqû(α), with
Q ∈ R

4×4 expressing multiplication from the left by qû→v. Hence for normal
alignment we end up with the following four constraints on qi:

Q−1 qi =
(

cos
α

2
, sin

α

2
, 0, 0

)T

It suffices to impose the latter two homogenous constraints because any unit
quaternion fulfilling the latter two conditions, i.e. of the form (qw, qx, 0, 0), is
automatically of the required form (5.15) for some α. The projection of a given
quaternion q to the closest one satisfying a partial alignment condition qa is
done by

qa = Q diag(1, 1, 0, 0)Q−1q

with subsequent normalization. We use projection to eliminate small constraint
violations resulting from relaxation to penalty terms.

Coping with the double-covering Since quaternions double-cover SO(3),
meaning that q and −q represent the same rotation, there is one additional
degree of freedom that we need to address. When specifying the transition
functions ±R̂j�i in quaternion form, the sign is undefined; hence, we need to
ensure that we get the right connection on dual cycles in our mesh respecting
the double-covering. To this end, we check and correct all dual edge cycles using
an algorithm similar to the chart-zippering of Chapter 5.1.3. We first randomly
initialize the signs of ±R̂j�i and then whenever a dual cycle is closed, we check
whether the first component of the quaternion product along the cycle is posi-
tive. If it is not, we invert the sign of the matching quaternion that closes the
cycle. A negative sign in the first quaternion component indicates that the en-
coded holonomy identifies two different representations in the quaternion double
cover. Luckily, the alignment conditions are homogenous and therefore simul-
taneously valid for ±qi; this makes them invulnerable to double-cover issues.

5.2 Results

We evaluate our algorithm by means of several example models of various com-
plexity shown in Figs. 6.1, 2.1, 5.5 and 5.6. For all examples of Fig. 5.5 we
obtained an initial singularity graph through an octahedral field generated with
[RSL16]. Based on the necessary local and global conditions of Chapter 2.1 we
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manually repaired the singularity graph and used the result as input for our
algorithm. The resulting matchings and frames then serve as input for [NRP11]
to obtain an integer-grid map, which is hex meshed with [LBK16].

The manual correction of a singularity graph was done by iteratively adding,
removing and smoothing singular arcs until the singularity graph became locally
meshable and satisfied the global necessary condition. If our algorithm reported
that the singularity graph was still not globally meshable, we performed further
modifications, inspired by the constraints that could not be satisfied. Algorith-
mic correction is out of the scope of this work but will be an important topic
for the future. For the joint model in Fig. 5.5 we perturbed the input singular
graph to demonstrate a result on messy input. Our algorithm only cares about
the topology of the input singular graph such that geometrically messy input
does not impact the extracted matchings.

The complex examples of Fig. 5.6 were generated in a similar manner,
however, the singularity graphs were imported from hexahedral meshes provided
in the supplemental material of [FXBH16, LLX+12, FBL16, HJS+14]. For all
models that we tried, our algorithm generated a valid octahedral field with
correct singularity graph as verified by checking the algebraic system for the
output field; this empirically verifies correctness of our algorithm. The input
complexity ranges from 5k up to 300k tetrahedra for the elephant model. Even
for the largest models, generating the matchings only requires a few seconds,
while the optimization problem to obtain the frames takes significantly longer,
e.g. 40 seconds for the bunny model.

Comparison to previous work Since our method is the first one for gen-
erating octahedral fields with prescribed topology, a direct comparison to pre-
vious work is impossible. Closest to our method are the singularity correction
techniques of [LLX+12] and [JHW+14]. While they are automatic, they only
perform a small set of local corrections through splitting or collapsing singu-
larities that is not sufficient to obtain meshable singularity graphs for most of
our examples. For example, in Fig. 6.1, global changes and the addition of new
singular arcs are necessary. Both previous methods cannot handle such global
changes, which require a re-computation of the octahedral field.

The geometric quality of the hexahedral meshes, typically measured using
scaled Jacobians, mostly depends on the pre-processing (design of singularity
graph) and post-processing (optimization e.g. via [LSVT15]). Consequently,
measuring scaled Jacobians is not a meaningful way to evaluate success of our
algorithm, since we would mostly measure how much time we spent on tuning
the input singularity graph. Our scaled Jacobians are typically on par with the
state of the art.
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Figure 5.5: Several models with manually corrected singularity graph. From
left to right: singularity graph, octahedral field and hexahedral mesh.
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Figure 5.6: Complex examples obtained from supplemental material of:
[FXBH16] kitten and knot, [LLX+12] rockerarm, [FBL16] bunny and armadillo,
and [HJS+14] elephant.

5.3 Discussion

Many confounding factors make automatic hexahedral meshing extremely diffi-
cult; somehow, the elegant structure of two-dimensional quad meshing problems
does not admit an obvious lifting to the volumetric case. While octahedral field-
based meshing appears to be a strong contender for the design of practical and
efficient algorithms, many questions remain in establishing the fundamentals of
this approach. We consider our work to be a serious step toward theoretically-
justified, robust field-based hex meshing. By returning to the basics, we clarify
the fundamental unknowns in the problem by defining the relevant algebraic
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system. Along the way we derive new necessary local and global conditions
for hex meshability of singular graphs, including a complete enumeration of
the practically-relevant vertex singularities. Furthermore, our chart-merging
algorithm robustly recovers topology-constrained octahedral fields that can be
provided to existing field-guided meshing techniques.

Several open mathematical and algorithmic challenges remain in the do-
main of field-guided hex meshing. The holy grail in this domain is a complete
(necessary and sufficient) characterization of meshable singular octahedral field
topologies, ideally accompanied by an algorithm that can project a singular
graph to its closest meshable counterpart. A continuum theory of octahedral
fields posed using differential geometry/topology language rather than rely-
ing on an underlying discrete structure may also provide insight. In parallel
with these theoretical considerations, other topics for future research are more
human-oriented. In particular, while singular topology is critical for under-
standing the set of hex meshes that can be embedded in a particular volume, it
may be the case that a natural user interface for hex meshing should incorporate
guidance in a different form, inferring the singular topology automatically be-
hind the scenes. One intriguing direction might be to learn a map from volumes
to singular graphs informed by a collection of hand-designed hex meshes.

These future improvements aside, we anticipate that our algorithm and the-
oretical framework will broadly inform the theory and practice of field-based
hexahedral meshing. By working in the space of globally meshable singular
graphs and correcting octahedral fields to conform to this restricted set, we can
circumvent debilitating degeneracies later in the meshing pipeline.



Chapter 6

Hex Me If You Can

Figure 6.1: Three example models of HexMe (https://hexme.algohex.eu): The
tetrahedral meshes faithfully represent feature points, curves (depicted in blue),
and surfaces of the underlying CAD primitives.

Most of the hex meshing algorithms tackling the challenge use tetrahedral
meshes as input or during some intermediate steps. However, there is no suit-
able tetrahedral dataset for objective analysis and meaningful comparison of
hexahedral mesh generators. Our goal is to provide such a dataset to reveal
common robustness issues and guide future research toward practical relevance.

The result of our endeavour is the HexMe dataset, a collection of tetrahe-
dral meshes with tagged feature entities. The feature entities are special points,
curves and/or surfaces, which need to be accurately captured by a hexahe-
dral mesh, c.f. Fig.6.3. Please note that such feature points/curves/surfaces
are common in all mesh generation scenarios, where they impose corresponding
constraints on the local structure of the desired mesh. All meshes have been gen-
erated from computer-aided design (CAD) models, following a workflow defined
with Snakemake[MJL+21], using the Gmsh[GR09] API with custom parameters
defined in yaml metadata files. CAD models are classified into three categories
(simple, nasty, industrial), in order to grade their difficulty and consistency. For
each model, three meshes are provided: two resolutions (curvature-adapted, uni-
form) to analyze the mesh dependency of algorithms, and an embedding of the
object into a box resulting in interior feature structures. The meshes including
the feature tags are exported as .vtk datafiles (version 2, ASCII mode), a mesh
format which is broadly used and easily accessible.

HexMe and HexaLab share the goal of guiding future research on hexahe-

https://hexme.algohex.eu
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Figure 6.2: Yearly number of publications related to hexahedral meshing.
Source: app.dimension.ai (criteria: hexahedral mesh, in title and abstract)

dral meshing algorithms – HexMe through a suitable dataset of input models,
HexaLab through the analysis and comparison of output hexahedral meshes.

The HexMe dataset has been designed to meet the following goals:

(G0) Unambiguous & Ready-to-use – The dataset offers volumetric tetra-
hedral meshes, ready to be used by any method relying on a tet mesh.
Different methods can be compared without any bias introduced by am-
biguous conversion procedures as for instance from surface or CAD repre-
sentations.

(G1) Challenging – The dataset specifically includes nasty geometric config-
urations that are often avoided, as well as real-world industrial models
containing an assembly of such difficulties.

(G2) Discriminative – The dataset allows to diagnose and grade the limita-
tions of hexahedral algorithms. There are simple models enabling a sanity
check, whereas each nasty model is designed to reveal robustness w.r.t.
a specific type of difficulty. The tessellation dependence of a method is
evaluated by including two different tetrahedral meshes for each model.

(G3) Realistic – The dataset mimics the workflow of a numerical practitioner,
where all feature entities have to be preserved through all stages of the
mesh generation pipeline. Explicitly defining such constraints is essential
for comparison of methods since often it is possible to significantly im-
prove the mesh quality or simplify the meshing task by violating some
feature constraints. Consequently, output statistics are only comparable
and meaningful if identical constraints have been enforced in the mesh
generation.

(G4) General – So far, most hex meshing methods have been evaluated only
on individual objects with a single boundary. This is only a special case of

https://app.dimensions.ai
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the more challenging general volumetric meshing problem with arbitrary
interior structures that arise for instance when simulating multi-material
scenarios like fluid-structure interaction. Consequently, we include general
test cases with interior feature constraints by embedding CAD models in
a bounding box.

(G5) Sustainable – We intentionally limit the number of models to restrict
the evaluation to challenging and meaningful geometries. This is impor-
tant since hex meshing algorithm often include costly mixed-integer opti-
mization and evaluating with thousands or millions of complex inputs is
computationally infeasible. Moreover, the workflow has been designed in
a sustainable manner, such that changes of the workflow require solely the
regeneration of the affected models (Snakemake cache).

(G6) Mutable – Simultaneously to the algorithms, the set of challenging and
meaningful geometries will change over time. HexMe is designed in a way
that new models and even meshing definitions can be added conveniently
(Snakemake workflow available on a public GitHub). We envision that
the entire mesh generation community will actively contribute to future
versions of HexMe.

In the following, we first describe in Section 6.1 datasets related to HexMe
and discuss their differences. Afterwards, Section 6.2 introduces the pipeline to
produce the tetrahedral meshes from CAD models, and Section 6.3 summarizes
the content of HexMe. Finally, in Section 7.6, a state-of-the-art frame-field-
based hexahedral meshing pipeline is applied to the dataset to verify that HexMe
is suitable to benchmark robustness of hex meshing algorithms.

Dataset Database Mesher
Mesh

Tri / Tet
Format

Features
0D—1D—2D—3D

Interface

Thingi10k Thingiverse - Tri .stl ×—×— X—× query engine

TetWild Thingi10k TetWild Tet .msh2 ×—×—×—× Google drive

ABC Onshape Gmsh Tri .obj ×—X—X—× chunks

SimJEB GrabCAD HyperMesh© Tet .vtk ×—×—×—× webpage

[GSP19]
[FBL16]

Drexel cad
repository

- Tri .obj X— X— X— × .zip

HexMe

ABC
GrabCAD
MAMBO
(crafted)

Gmsh Tet .vtk X—X—X—X web catalog

Table 6.1: Summary of datasets related to HexMe.

6.1 Related Datatsets

There is a shift among the scientific community. Open science that is readily re-
producible and shared is becoming popular. Among other things, this is mainly
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possible thanks to the free access to datasets supporting this open research. Con-
sequently, an increased number of datasets has been published recently, where in
the area of computer graphics ShapeNet [CFG+15], ModelNet[WSK+15], and
Fusion360 [WPL+21] are popular resources. In the following, we present the
five datasets in more detail that are most related to HexMe and discuss their
similarities and differences.

Tetwild Even though Tetwild[HZG+18b] is a tetrahedral meshing technique,
it is also a tetrahedral dataset, since the authors provide the output of their
algorithm applied to Thingi10k[ZJ16], a triangular dataset. This tetrahedral
dataset is the tetrahedrization of ten thousand models from Thingi10k. The
tetrahedral meshes are msh2 binary files, with a scalar per tetrahedron exposing
the minimal dihedral angle. The 10k meshes are stored on Google Drive, within
an archive tar.gz (∼9.5GB).

ABC The ABC[KMJ+19] dataset is a collection of one million computer-aided
design models for geometric deep learning. All CAD files are from Onshape, and
the original information related to those models is recorded within a metadata
file meta.yml. Some processing tasks are done in order to filter the duplicate
and broken models. The filtered models para.zip are afterwards converted
into step.step and stl2.stl files using Parasolid. Gmsh[GR09] is then used
to provide higher quality triangular meshes (either uniform, or adapted to the
curvature), which are exported as obj.obj meshes from the .step files. Differ-
ential quantities are stored in those obj files, while the vertices and triangles of
the mesh are respectively matched to the feature curves and patches, through
another metadata file feat.yml. Further files may be provided, depending on
the success of the processing. The dataset is downloadable by chunks containing
7z archives of above files.

Thingi10k Historically, Thingi10k[ZJ16] is the first dataset providing ten
thousand diverse, complex and quality .stl triangulations of 3D (printing)
models. All models come from Thingiverse, and have been selected only if they
were tagged featured by the Thingiverse staff. An online query interface is pro-
vided, which returns all the contextual and original information related to a
.stl triangulation. It is also possible to download the whole dataset as an
archive tar.gz from Google Drive (∼9GB).

SimJEB The recent SimJEB[WBM21] dataset provides 381 tetrahedral meshes
from CAD models, by following a semi-automated pipeline. The CAD mod-
els come from a challenge organized by GrabCAD. Those former 700 models
have been filtered (mostly based on the filename), manually repaired, and then
meshed using the commercial software HyperMesh. A structural simulation
was performed using the commercial software OptiStruct. The 381 .vtk tetra-
hedral meshes surviving this pipeline are hosted through the Harvard Dataverse
(∼1.6GB), along with the corresponding clean CAD .stp file, triangular surface
.obj meshes, finite element .fem models, and simulation .csv results. The final
models are identified by an integer, specified by readme files. A web page allows
to browse the designs, and to explore the data.

https://drive.google.com/file/d/17AZwaQaj_nxdCIUpiGFCQ7_khNQxfG4Y/view?usp=sharing
https://ten-thousand-models.appspot.com/
https://deep-geometry.github.io/abc-dataset/
https://www.onshape.com/en/
https://www.plm.automation.siemens.com/global/en/products/plm-components/parasolid.html
https://ten-thousand-models.appspot.com/
https://www.thingiverse.com/
https://drive.google.com/file/d/0B4_KyPW4T9oGRHdMTGZnVDFHLUU/edit?resourcekey=0-lZ_HowEYQzes6x9ylcYSkg
https://simjeb.github.io/
https://grabcad.com/challenges/ge-jet-engine-bracket-challenge
https://www.altair.com/hypermesh/
https://www.altair.com/optistruct/
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[GSP19] Recent grid-based hexahedral meshing papers [GLYL20, PLC+21,
LPC21] have benchmarked their method on a common dataset gathered by
[GSP19]. This dataset consists of 202 .obj triangular meshes from [FBL16] and
Drexel CAD repository (2018), 109 of them are equipped with feature curves.
The feature curves have been extracted using a dihedral angle of 140 degrees
in combination with manual adjustment. A .fgraph file specifies the set of
feature edges but without grouping them semantically into feature curves. The
202 triangular meshes with the 109 feature annotations are available as a sup-
plementary .zip file (∼1.4GB).

The available datasets differ by (i) their selection of models, (ii) whether
triangular or tetrahedral meshes are supplied, (iii) potential specification of fea-
ture entities (0D/1D/2D/3D), and (iv) their infrastucture to access models and
to potentially contribute new models. Table 6.1 summarizes the comparison
between HexMe and the related datasets. Please note that for datasets solely
providing triangular surface meshes, we interpret these as a 2D feature specifi-
cation, even if no explicit tags are available.

SimJEB is by-design the closest dataset to HexMe: small number of tetrahe-
dral meshes from CAD models, semi-automated meshing pipeline, web catalog
and .vtk mesh format. However, all SimJEB geometries describe a jet engine
bracket, while HexMe supplies more diverse and challenging types of geometries.
ABC is the only related dataset providing meshes with feature tags correspond-
ing to the CAD geometry. However, the ABC dataset consists only of triangular
surface meshes and does not define any volumetric discretization. The dataset
of [GSP19] supplies 109 triangular surface meshes with annotated feature points
and curves. But neither tetrahedral meshes, nor tags relating feature entities
to the corresponding CAD primitives, or a sustainable and extensible workflow
are available. The Thingi10k and Tetwild meshes have not been generated from
CAD files and thus do not specify feature entities.

Simple Nasty Industrial

Figure 6.3: HexMe uses three categories of CAD models: simple, nasty and
industrial.

https://cims.nyu.edu/gcl/papers/2019-OctreeMeshing.zip
http://edge.cs.drexel.edu/repository/
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6.2 From CAD to Tets

All the tetrahedral meshes provided by HexMe have been produced from three
categories of CAD models, Figure 6.3:

• simple models: basic shapes that are assumed to be easily meshable, i.e.
the target hexahedral topology is fair, e.g., a cube (s01o cube.geo), or a
cut hemisphere on a cylinder (s10o cyl cutsphere.stp).

• nasty models: academic shapes that are challenging to hex-mesh, e.g., a
pyramid[VPR19] (n09o pyramid.geo), or a ski jump (n02o skijump anti

box cyl.geo).

• industrial models: lifelike shapes, which hexahedrization is highly valu-
able for numerical simulation, e.g., a truck tire (i28o gc tire 1218.step

from GrabCAD), or an aircraft for CFD (i31o dlr f6.brep [VTM+08,
BERF08]).

The 63 CAD models have been selected to cover known configurations that
are challenging for current hexahedral meshing algorithms. In the future, the
dataset will evolve together with the algorithms with the goal of providing a
minimal set of test cases, which is maximally meaningful.

In contrast to the comparable datasets (Section 6.1), the CAD models come
from several databases: ABC dataset (originally from Onshape), GrabCAD and
MAMBO. Some of the CAD models were created specifically for HexMe, using
Gmsh and Siemens NX software. Those latter models are released to the public
domain, while the other ones are regulated by licenses, which are respectively:
Onshape Terms 1(g)(i), GrabCAD Terms (c.f. related FAQ) and Apache 2.0.
The above information is reported within a metadata file (with the following
nomenclature (s|n|i)(\d{2})o {extra}.yaml) per CAD model with a short
description of the shape, e.g. i28o gc tire 1218.yaml:

author: Milos Suvakov, grabcad.com/milos.suvakov

description: tire of a truck

license: GrabCAD Terms

name: i28o_gc_tire_1218

original: original/i28o_gc_tire_1218.step

references: https://grabcad.com/library/tire-12-00-18-1

For each CAD model, three tetrahedral meshes are provided, c.f. Figure 6.4:

• curvature-adapted: the mesh element size is adapted to the curvature,
and upper bounded such that the CAD geometry is sufficiently preserved
(e.g. i05c m5.vtk).

• uniform: the mesh element size is constant, even in the neighborhood of
the tiniest geometrical features (e.g. i05u m5.vtk).

• box-embedded: the initial model is embedded in a box that is twice as
large as the original bounding box, and the corresponding mesh is gen-
erated such that the smallest gap between the box limits and the initial
model is meshed by one layer of tetrahedra (e.g. i05b m5.vtk).

https://grabcad.com/library/tire-12-00-18-1
https://deep-geometry.github.io/abc-dataset/
https://www.onshape.com/en/
https://grabcad.com/
https://gitlab.com/franck.ledoux/mambo
https://gmsh.info/
https://www.plm.automation.siemens.com/global/en/products/nx/
https://www.onshape.com/en/legal/terms-of-use#your_content
https://grabcad.com/terms
https://help.grabcad.com/article/246-how-can-models-be-used-and-shared
https://www.apache.org/licenses/LICENSE-2.0.html
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Curvature-adapted:
i05c m5.vtk

Uniform: i05u m5.vtk
Box-embedded: i05b m5.vtk

Figure 6.4: There are three tetrahedral meshes per CAD model, e.g.
i05o m5.step from MAMBO.

The pipeline for the mesh generation is orchestrated by Snakemake[MJL+21],
a popular (currently ∼ 7 citations per week) scalable workflow management sys-
tem. In a few words, Snakemake is a modern version of GNU Make, whose
syntax is close to Python. The workflow Snakemesh consists of two rules.
The first rule meshes defines which meshes should be produced. The sec-
ond rule cad2vtk generates a mesh from a CAD model and a metadata file
(s|n|i)(\d{2})(c|u|b) {extra}.yaml containing the custom mesh options
(for curvature-adapted, uniform, or box-embedded). To do so, this second rule
runs a python script using Gmsh API, with a maximum of 8 threads. For each
mesh, a log file (s|n|i)(\d{2})(c|b|u) {extra}.txt is written with the cor-
responding console output, in order to record the history of the meshing task.

Snakemake scans the workflow in a backward fashion, meaning that the in-
put files are determined from the output ones. In other words, the purpose
of the first rule is to state all meshes that should be produced. Afterwards,
the second rule provides those meshes by identifying the corresponding input
files accordingly, which are the CAD model and the metadata file. This back-
ward identification is the key of the workflow definition, since the rules are
mostly written with wildcards. The use of Snakemake easily yields a sustain-
able dataset, since a rule is applied only if an output is either missing or older
than the corresponding input.

Gmsh[GR09] does not only mesh the volume, but also the feature entities as
defined by the CAD model. In addition to the tetrahedral elements, there are
triangle, edge and vertex elements (lower dimensional elements are conforming
to the higher ones) to respectively discretize feature surfaces, feature curves
and feature points. Those features are identified by the CAD with a tag (i.e.
a positive integer), which corresponds to a physical group within Gmsh. Doing
so, the corresponding mesh elements are created accordingly with the inherited

https://snakemake.github.io/
https://badge.dimensions.ai/details/id/pub.1018944052
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CAD tag. Meshes are exported as vtk Datafile Version 2.0, in ASCII mode.
The used Gmsh git-version is written within the file header. A mesh is defined
as an UNSTRUCTURED GRID, with the four following sections:

1. POINTS: coordinates of every node

2. CELLS: number of nodes and nodal definition of every element (vertices,
edges, triangles and tetrahedra); the second number on the cell section is
the total number of integer values

3. CELL TYPES: integer corresponding to the element type {1:vertex, 3:edge,
5:triangle, 10:tetrahedron}

4. CELL DATA: integer corresponding to the element tag that belongs to the
CAD feature.

# vtk DataFile Version 2.0

s01o_cube, Created by Gmsh 4.9.3-git-ac3fcda9f

ASCII

DATASET UNSTRUCTURED_GRID

POINTS 273 double

-0.9559524353885869 0.9350753925146784 1.325609826087499

[...]

CELLS 1425 6569

1 0

[...]

CELL_TYPES 1425

1

[...]

CELL_DATA 1425

SCALARS CellEntityIds int 1

LOOKUP_TABLE default

1

[...]

Overall, there are 189 meshes, whose filenames follow the nomenclature
(s|n|i)(\d{2})(c|u|b) {extra}.vtk, which summarizes the corresponding
model (s|n|i)(\d{2}) and mesh (c|u|b) types.

6.3 HexMe Anatomy

The HexMe tetrahedral dataset is downloadable in a single file: hexme.zip
(∼1.5GB). Alternatively, it is possible to download meshes one-by-one from
the catalog (the catalog is mostly generated by Snakemake, using the report
feature) The catalog is split into three categories (i, n, s), that correspond to
the model categories (respectively: industrial, nasty, simple). Within each cat-
egory, there are three subcategories (b, c, u), that correspond to the mesh types
(respectively: box-embedded, curvature-adapted, uniform).

An entry of the catalog is described by two pictures (a cut view and a quality
histogram), a .pdf file, a .vtk mesh, the corresponding log file (s|n|i)(\d{2})
(c|u|b) {extra}.txt and the metadata file (s|n|i)(\d{2})o {extra}.yaml
related to the CAD model. A summary of the mesh is also available in a .pdf

https://kitware.github.io/vtk-examples/site/VTKFileFormats/
https://hexme.algohex.eu/hexme.zip
https://hexme.algohex.eu/catalog
https://snakemake.readthedocs.io/en/stable/snakefiles/reporting.html
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sheet, Figure 6.5. The summary provides topological information about the
CAD model (number of points, curves and surfaces) and the mesh (number
of vertices, edges, triangles, tetrahedra and nodes). Moreover, two histograms
related to the inverse condition number (ICN)[JGTR16, §2.1] of triangles and
tetrahedra are plotted. Finally, four screenshots (xy-, yz-, zx- and 3D-views)
of the cut mesh are displayed.

On top of HexMe catalog, there is a GitHub page hosting all the necessary
input files to run the workflow. The tetrahedral meshes are not hosted on this
git repository (the git history would be too heavy otherwise). The main purpose
of this git repository is to expose the workflow that has been used for the mesh
generation. Through this repository, it is possible to report an issue if a mesh
does not meet user expectations. The meshing community is invited to actively
contribute to the HexMe dataset, by creating pull-requests for proposing new
models and/or filtering of existing ones. There will be releases with appropriate
git-tag, whenever the dataset has been significantly updated.

How to contribute. The workflow supports CAD models with extensions
.geo, .step, .stp, or .brep. For each CAD model, four metadata files need to
be defined. The first one specifies general information about the model

# meta/(i|n|s){\d{2}}o_{extra}.yaml

description: ...

license: ...

name: (i|n|s){\d{2}}o_{extra}

original: original/(i|n|s){\d{2}}o_{extra}.(geo|stp|brep|step)

references: ...

The other three files define the desired meshing parameters for each mesh
type (c|u|b), respectively:

# meta/(i|n|s){\d{2}}c_{extra}.yaml

gmsh.option.setNumber:

- Mesh.Algorithm: ...

- Mesh.Algorithm3D: ...

- General.NumThreads: ...

- Mesh.CharacteristicLengthMax: ...

- Mesh.MeshSizeFromCurvature: ...

info: meta/(i|n|s){\d{2}}o_{extra}.yaml

# meta/(i|n|s){\d{2}}u_{extra}.yaml

gmsh.option.setNumber:

- Mesh.Algorithm: ...

- Mesh.Algorithm3D: ...

- General.NumThreads: ...

- Mesh.CharacteristicLengthMin: ...

- Mesh.CharacteristicLengthMax: ...

info: meta/(i|n|s){\d{2}}o_{extra}.yaml

# meta/(i|n|s){\d{2}}b_{extra}.yaml

gmsh.model.mesh.setSize:

- ipts: ...

gmsh.option.setNumber:

- Mesh.Algorithm: ...

- Mesh.Algorithm3D: ...

https://github.com/cgg-bern/hex-me-if-you-can
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- General.NumThreads: ...

- Mesh.MeshSizeExtendFromBoundary: ...

- Mesh.MeshSizeFromPoints: ...

- Mesh.MeshSizeFromCurvature: ...

info: meta/(i|n|s){\d{2}}o_{extra}.yaml

The items of the section gmsh.option.setNumber correspond to the options
that Gmsh provides. The items Mesh.CharacteristicLength* constrain the
mesh element size range. In the case of a uniform mesh, those values are chosen
identically. For further details about Gmsh options, we refer the reader to the
corresponding documentation. The info entry links the mesh metadata to the
metadata of the CAD model. Finally, observe that the box-embedded metadata
has a section related to gmsh.model.mesh.setSize. The value of ipts is the
mesh element size used for the interior of the CAD model (we recommend to
use the element size of the uniform meshing case by default). For such box-
embedded meshes, the outer part of the model is meshed with one layer of
tetrahedra in the smallest gap between the model boundary and the limits of
the box.

6.4 Example Evaluation

To demonstrate the value of HexMe, we challenge the state-of-the-art pipeline of
frame-field based hexahedral meshing described in Chapter 1 with our dataset
and evaluate its robustness. Robustness issues regularly stem from hard con-
straints induced by feature points, curves and surfaces. Consequently, our pri-
mary concern here is to quantify how faithful the tagged input features are
reproduced in the generated hexahedral meshes. Note that this is a novel way
to assess robustness, which is more fine-grained than simply counting passed or
failed per model. It is also more meaningful in our setting than other straight-
forward choices (percentage of hexahedral elements, or distortion of the integer-
grid map for instance) where excellent numbers could be reported despite some
feature constraints are violated.

For the same reason, typical quality metrics (such as the scaled Jacobian)
have been omitted since they are meaningless for state-of-the-art algorithms,
where most of the generated hexahedral meshes are incomplete. Obtaining
a high quality hexahedral mesh of a subregion is often significantly easier if
features are not preserved. However, there is no doubt that quality metrics
will be important in the future of HexMe as soon as the robustness of available
algorithms reaches a sufficient level.

The evaluation of the standard frame-field based hex-meshing pipeline con-
sists of the following steps:

1. Determination of the target edge length h

2. Specification of frame-field alignment constraints.

3. Feature-aligned smooth frame-field generation. [RSL16]

4. Integer-Grid map generation guided by the frame-field. [NRP11]

5. Hexahedral mesh extraction from the IG map. [LBK16]

https://gmsh.info/doc/texinfo/gmsh.html#General-options-list
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Figure 6.5: Sheet summarizing i08c m8.

6. Verification of feature points, curves, and surfaces.

While upon success the above algorithm delivers promising hexmesh qual-
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ity, it can neither guarantee a valid integer-grid map, nor a valid hexahedral
mesh. Failures are caused by (i) non-meshable frame-field topologies or (ii) the
inability to guarantee local injectivity for volumetric maps, see [PCS+22] for
more details. Since all of the above defects are frequently triggered by feature
constraints, HexMe is well-suited to quantify the lack of robustness of the can-
didate pipeline. Please note that we did not include singularity repair strategies
based on collapses [LLX+12] or splits [JHW+14], since their repair capabilites
are comparable to what HexEx [LBK16] is able to handle throughout the ex-
traction step. The above hex-meshing pipeline is released as an open-source
C++ library to enable reproduction and ease comparison for future research.

(a) (b) (c) (d)

Figure 6.6: Feature matching process: feature points (a), feature curves (b),
feature patches (c), and the final result (d).

Before presenting and discussing the results of our evaluation, we describe
in more detail the choice of the target edge length (Step 1), frame-field align-
ment constraints (Step 2), and the verification of feature entities (Step 6). The
verification of represented features requires special attention since the integer-
grid map might contain degeneracies that are repaired by HexEx but prevent a
trivial transfer of feature tags from the tetrahedral to the hexahedral mesh.

Target Edge Length. We determine the target edge length h of the hexahe-
dral mesh such that n hexahedra are generated. Considering that the volume

of the unit cube is one, we obtain h =
(

V
n

)1/3
, with V being the volume of the

input tetrahedral mesh. For all our experiments we choose n = 50k.

Frame-Field Alignment Constraints. Frame-fields can be seen as a con-
tinuous relaxation of an integer-grid map, cf.[PCS+22]. A frame exhibits the
same symmetries as a cube and therefore represents the local rotation of a cube.
Consequently, we require that the frames align tangentially to all feature curves
and feature surfaces. In a HexMe tet mesh, a feature curve is represented by a
1-manifold chain of edges. For each of the interior vertices along such a chain,
we estimate a tangent vector by averaging the two incident edges and then use
it as an alignment constraint for the frame-field. Similarly, a feature surface is
represented by a 2-manifold subset of triangles and we compute (area-weighted)
vertex normals that are also used as alignment constraints.

Verification of Feature Points. For each feature point of the input tet mesh,
we search the closest vertex in the hex mesh. If the distance is below τ = h,
the feature point is counted as correctly reproduced, otherwise as invalid, as
illustrated in Fig. 6.6 (a). Please note that we do not require higher-accuracy
geometric re-produciton of features but merely want to assess whether the con-
nectivity of the hex mesh is able to represent the feature.

https://hexme.algohex.eu
https://hexme.algohex.eu
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Verification of Feature Curves. In HexMe, a feature curve always contains
a feature point. Consequently, we can verify feature curves by a greedy path
search from a source feature vertex to a target feature vertex in the hexahedral
mesh. At the source vertex we begin with the edge most parallel to the feature
curve tangent at the corresponding point in the tetrahedral mesh. Then we
extend the path through subsequent vertices by always following the next edge,
which is most parallel to the previous one, as illustrated in Fig. 6.6 (b). This
simple geometric heuristic is motivated by the fact that feature curves represent
smooth 1-manifolds, and turned out to be reliable in our experiments. A feature
curve is successfully verified if the path reaches the target vertex, while all
intermediate points have a distance below τ . In all other cases, we classify the
feature curve as not being reproduced correctly. Please note that whenever the
source or target feature point are not verified in the previous stage, the feature
curve verification will automatically fail.

Verification of Feature Surfaces. For verification of feature surfaces we use
a geometrically guided strategy similar to the one for feature curves. Starting
from a seed quadrilateral, we grow the surface in a breadth-first manner to
neighboring elements based on normal similarity, as illustrated in Fig. 6.6 (c).
We ensure 2-manifoldness by disallowing growth that would result in more than
2 incident quadrilaterals at one edges. The growth procedure terminates when
newly added elements reach a distance above τ to the input feature surface, or
when it encounters edges belonging to feature curves. The resulting surface is
correctly reproduced if its boundary feature curves coincide with those specified
in the input tetrahedral mesh. Again, a feature surface can only be correctly
reproduced, if all its incident feature curves are already correctly reproduced.

Results and Discussion. We run the hexahedral mesh generation pipeline
on all HexMe models and count the percentages of correctly reproduced feature
points, curves, and surfaces. A table of full statistics can be found in the
supplement. Only for 19 out of 189 models all feature entities are reproduced
correctly, while the average success rates are 70.9% / 48.5% / 34.6% for feature
points/curves/surfaces.

Figure 6.7 (a) shows the cumulative percentage of simple/nasty/industrial
models where at least a certain percentage of feature points/curves/surfaces in
the tetrahedral mesh (of any type, box-embedded/curvature-adapted/uniform)
are present in the corresponding hexahedral mesh. As expected, the hexahedral
pipeline is performing the best on the category of simple models. Around 50%
of the hexahedral meshes preserve at least 100% / 86% / 63% of the feature
points/curves/surfaces of the input tetrahedral meshes. For the meshes of the
nasty models, those figures drop to 100% / 34% / 1%, while for the meshes of
the industrial models they are only 78% / 32% / 8%.

Figure 6.7 (b) provides similar information, but for the curvature-adapted,
uniform and box-embedded meshes of all models. In the case of the box-
embedded meshes, the feature verification does not count the features corre-
sponding to the box (8 points, 12 curves, 6 surfaces), since those features are
trivially recovered. The hexahedral pipeline performs better for uniform meshes
than for curvature-adapted. While integer-grid map based approaches do not
necessarily require a dense tetrahedral mesh in their domain, they explicitly
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(a)

Simple models Nasty models Industrial models

(b)

Curvature-adapted meshes Uniform meshes Box-embedded meshes

Figure 6.7: Cumulative histograms of the percentage of (a) models and (b)
meshes, in respect to the percentage of tetrahedral features that are recovered
in the hexahedral meshes. Observe that in the case of the box-embedded mesh
type, the features of the embedding box (8 points, 12 curves and 6 surfaces) are
discarded.

require mesh vertices and edges to represent singularities. Locally inadequately
coarse meshes can therefore lead to collapses in the singularity structure that
induce global non-meshability and consequently worsen feature reproduction.
The inner features of the box-embedded meshes are clearly more challenging to
preserve compared to the uniform and curvature-adapted meshes.

Figure 6.8 visualizes five representative examples of HexMe tet meshes and
their corresponding generated hex meshes. Feature points, curves and surfaces
are color-coded in the tet meshes. The corresponding feature entities in the
hexahedral mesh are only color-coded if reproduced correctly. Here we solely
provide general statistics and some qualitative examples. A complete enumer-
ation and categorization of defects are out of the scope of this evaluation but
will be an important task for future work.

6.5 Conclusion

The contributions of HexMe are twofold. On the one hand, it is a tetrahedral
dataset with tagged feature entities and on the other hand, it is a transparent
workflow. The main objective of HexMe is to provide tetrahedral meshes for
the meaningful assessment of hexahedral meshers and associated auxiliary tools
such as 3D frame-fields. In the future, the choice of meshes will evolve together
with the progress of hexahedral meshing techniques. Therefore, we publish the
full workflow to ensure that the HexMe dataset can be updated easily and does
not become outdated in the future.

The selected 63 CAD models come from several databases. Their origin
and license are recorded within a metadata file. There are three categories of
CAD models, and three types of meshes per CAD model. The 189 meshes
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(a) s09u bridge:
14/14, 21/21, 9/9

(b) n10c qtorus cyl:
3/6, 3/9, 1/4

(c) n03u skijump box cyl:
12/12, 15/18, 4/8

(d) i03u m3: 89/111, 89/169, 13/60 (e) i06u m6: 52/68, 59/105, 7/39

Figure 6.8: Example input tet meshes (left) and output hex meshes (right).
The numbers indicate ratios of correctly reproduced feature points, curves and
surfaces, as additionally depicted visually.
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are produced thanks to a workflow that is defined with Snakemake. The CAD
features are reproduced by Gmsh as lower dimensional elements (vertices, edges,
triangles), with corresponding tags. The meshes are expressed as .vtk Datafile
Version 2.0 in ASCII mode.

There are two ways to access the HexMe tetrahedral meshes – either by
downloading all of them in a 1.5GB .zip file, or by picking individual ones
from the catalog. In addition to the meshes and log files, the catalog yields
the metadata related to the CAD model, a summary about the mesh, and
information related to the workflow. The files that are involved in the workflow,
are available on a GitHub repository. From this git repository, it is possible to
raise issues and/or pull requests to improve the dataset or the workflow.

The commit corresponding to the version used for this paper has been tagged
HexMe-1.0. The dataset has been uploaded to Zenodo, and can be referenced
with the following doi 10.5281/zenodo.6642020. Whenever a new release occurs,
those version tags will be updated accordingly. Those taggings are crucial in
order to keep track of the assessment of hexahedral methods.

https://hexme.algohex.eu/hexme.zip
https://hexme.algohex.eu/catalog
https://github.com/cgg-bern/hex-me-if-you-can
https://zenodo.org/
https://doi.org/10.5281/zenodo.6642020


Chapter 7

Locally Meshable Frame
Fields

This chapter mainly targets the robustness issue of the automatic field based
hex meshing pipeline, particularly non-meshable topological configurations that
exist in volumetric frame fields and are frequently generated by state-of-the-art
algorithms [RCR19]. In Sec. 7.1.2, we carefully analyze the difference between
topological structures that exist in general 2D frame fields but are not possible
in quad mesh-induced frame fields. Necessary and sufficient conditions for the
meshability of a frame field are identified, and we discuss an algorithm to turn
a given frame field into a locally meshable, as well as further processing into
a (globally) meshable one. Sec. 7.2 is devoted to the meshability of 3D frame
fields. We carefully analyze conditions for the local meshability of singular arcs
and singular nodes and study their decomposability into fundamental pieces
that can be handled algorithmically. With the help of arc zipping, we design
an algorithm that converts an input frame field into a locally meshable one. In
Sec. 7.3 and 7.4, we extend the conceptual ideas to a concrete implementation
based on piecewise constant frame fields on tetrahedral domains. In Sec. 7.6,
we evaluate our novel algorithm on the challenging HexMe dataset [BRK+22].
The results show that locally meshable frame fields achieve significantly higher
success rates in terms of valid integer-grid maps than state-of-the-art frame
field based methods. We also present a novel algorithm in Sec. 7.4 to optimize
seamless maps and integer-grid maps for a given frame field, further improving
the robustness. An overview of the novel hex meshing pipeline is demonstrated
in Fig.7.1.

7.1 Meshability in 2D

7.1.1 2D Frame Field Topology

The topology of a 2D frame field is fully characterized by the behavior of stream-
lines of its corresponding vector field on a 4-sheeted branched cover of the
2D domain, as introduced in [KNP07b]. Consequently, we will briefly revisit
vector field topology before proceeding with frame field topology. For a de-
tailed and complete discussion of vector field topology, we refer the reader to
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input tet mesh with feature tags

input frame field locally meshable frame field

locally meshable singularity graph input singularity graph

output hex mesh [Beaufort et al. 2022] output hex mesh (ours)

Figure 7.1: Overview. Non-meshable topological configurations in frame fields,
e.g., invalid singularities or feature structures, induce degenerate integer-grid
maps and broken and incomplete hex meshes (top row). Our algorithm (bottom
row) automatically turns a given frame field into a locally meshable one, where
a valid integer-grid map enables a hex mesh that preserves all input features.
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[Asi93, GBR21].
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Figure 7.2: (a) Local vector field topology of an isolated singularity (orange)
with five sectors, formed by streamlines of parabolic(green), hyperbolic (blue),
and elliptic(red) flow behavior. Separatrices (yellow) are either parabolic or
elliptic streamlines that divide space into sectors of different flow behavior. (b)
Global vector field topology: The topological skeleton consists of all separatri-
ces (yellow), dividing space into regions of identical flow behavior, potentially
including closed orbits. A limit cycle (green) is a streamline that converges to
a closed orbit.

Local Vector Field Topology An important topological feature of a vector
field v(x) : Ω → R

2 are its singularities, i.e. points, curves or regions where
||v(x)||2 = 0. In our setting, only isolated point singularities are of importance,
where the vector field does not vanish in an ǫ-disk neighborhood Dǫ of the sin-
gularity with circular boundary ∂Dǫ = Cǫ. In such a local neighborhood of a
singularity, there are only four different types of streamlines that can be distin-
guished based on their limit behavior in forward and reverse flow directions, as
illustrated in Fig. 7.2. A streamline is called a closed orbit if it cycles on a closed
path around the singularity, which in this case is called a center. Otherwise,
the flow in a forward/reverse direction can either converge to the singularity or
diverge away from it. A parabolic streamline converges in one and diverges in
the other direction. It is called inflow if the forward direction is converging;
otherwise, it is called outflow. A hyperbolic streamline diverges in both direc-
tions, and an elliptic streamline converges in both directions. Partitioning all
streamlines passing through the local neighborhood circle Cǫ according to their
type results in a cyclic sequence of parabolic, hyperbolic, and elliptic sectors.
This cyclic sequence fully specifies the topological type of a point singularity. A
separatrix is a parabolic or elliptic streamline separating the space between two
sectors of different flow behavior. An example of the local vector field topology
at an isolated singularity is shown in Fig. 7.2a. The index of a singularity quan-
tifies how many full rotations the vector field undergoes when traversing Cǫ in
the counter-clockwise sense. Considering that parabolic sectors are bounded by
separatrices of identical type, i.e., either both inflow or both outflow, while
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hyperbolic and elliptic sectors are bounded by separatrices of different flow direc-
tion, the integer-valued index of a singularity with np parabolic, nh hyperbolic,
and ne elliptic sectors can be computed by index = 1 − 1

2nh + 1
2ne. The signs

reflect the fact that in hyperbolic sectors, the transition from inflow to outflow
is a clockwise rotation, while in elliptic sectors, it is counter-clockwise. Due to
the transitional in↔ out flow behavior of hyperbolic and elliptic sectors in com-
bination with the continuity of the vector field, nh+ne is even at non-boundary
points, ensuring that the index is an integer as expected.

Global Vector Field Topology The topological skeleton encodes the global
topology of a vector field by partitioning the domain into regions of identical
asymptotic flow behavior. It consists of the union of all singularities and sep-
aratrices in the entire domain, including those induced by singularities and,
moreover, closed orbits at the interface between different flow behavior. On the
global scale, there is one additional type of asymptotic streamline behavior that
cannot be observed near isolated singularities. A streamline is called a limit cy-
cle if it asymptotically converges to a closed orbit. Fig. 7.2b depicts an example
of a topological skeleton including a limit cycle (green).
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Figure 7.3: (a) Local frame field topology at an isolated singularity (orange) with
three different sectors. Frame field sectors can be of quad, polar, or anti-quad
type. Only quad sectors are meshable since the other two generate triangular
patterns and even a digon in the anti-quad case. (b) Mesh-induced frame field.

Local Frame Field Topology A frame consists of four R2 vectors {u, v,−u,−v},
which are pairwise anti-parallel and often specified by a matrix F = [u, v] ∈
R

2×2. A frame field corresponds to a vector field on a 4-sheeted branched
cover, where pointwise each branch corresponds to one of {u, v,−u,−v}, and
the connection is induced by the covering space. For non-singular points with
||F ||2 6= 0, we require detF > 0 such that u-streamlines can never be parallel
to v-streamlines when projected onto the domain, and a u-vector on one branch
cannot vanish independently of the v-vector on the other branch.

It would be possible to solely discuss the topology of a frame field in terms
of the topology of the vector field on the 4-sheeted branched cover. However,
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topological sectors will overlap when projected to the original domain, and sev-
eral topological configurations that would exist for entirely independent vector
fields are excluded by the detF > 0 condition. This motivates the definition
of new types of frame field sectors, which are meaningful to the domain itself
and fully characterize the frame field behavior. Similarly to the vector field
case, topological sectors at a singular point are defined by subsequent sepa-
ratrices and the rotational behavior of the field in between them. However,
in the case of a frame field, subsequent separatrices might belong to differ-
ent branches, e.g., an outflow-u-separatrix might be followed by an outflow-v-
separatrix.

u

v

-u

-v

quadpolar anti-quad

Due to the continuity of the frame field, when ex-
pressed in a common coordinate chart, two subse-
quent separatrices can only be on (i) the same branch,
(ii) the next branch, or (iii) the previous branch,
e.g. an outflow-u separatrix can only be followed by
an outflow-u, an outflow-v, or an inflow-v separatrix.
We call the corresponding three types of sectors polar,
quad, and anti-quad, and show examples in Fig. 7.3a.
The index of a frame field singularity with nq quad,
np polar, and na anti-quad sectors can be computed
by index = 1− 1

4nq +
1
4na, which is a quarter-integer

from 1
4Z.

Global Frame Field Topology In analogy to the vector field case, the topo-
logical skeleton consists of the union of all singularities and separatrices, which
partition the domain into flow-aligned regions. In contrast to the vector field
case, additional nodes of the topological skeleton are induced by the intersection
of separatrices on different branches.

7.1.2 2D Frame Field Meshability

We call a 2D frame field meshable if a quadrilateral mesh of identical topology
exists. Comparing the topology of a frame field with the topology of a mesh is
possible through the notion of the mesh-induced frame field topology introduced
next.

Mesh-induced Frame Field Topology The edges of a quadrilateral mesh
in 2D can be interpreted as a discrete representation of the streamlines of an un-
derlying frame field, as illustrated in Fig. 7.3b. A discrete streamline following a
mesh edge continues through a regular vertex, and either forms a closed cycle or
terminates at a boundary point or a singular vertex. The topology of all remain-
ing streamlines through the domain is uniquely determined by the flow along
edges of the dual mesh in the following way: All streamlines in-between two
opposite edges of a quadrilateral are topologically identical to the correspond-
ing dual streamline, i.e. the channel formed by a strip of subsequent quads, as
illustrated in Fig. 7.3b. Please note that we have fully defined the topology
of the mesh-induced frame field without explicitly constructing or defining the
geometry of the field.
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Meshability Conditions Comparing the topological structures that exist in
general frame fields with those induced by a mesh, we deduce the following
necessary and sufficient conditions for meshability of a frame field in 2D:

(C1) Feature Alignment – The frame field aligns to all feature curves on the
domain to ensure their correct re-production in the quad mesh.

(C2) Isolated Singularities – All singularities with ||F ||2 = 0 are isolated points,
and there are no curve or patch singularities, which might cause mesh
degeneracies.

(C3) Quad sectors only – The frame field does not contain any polar or anti-
quad sectors, which would induce non-quad cells in the mesh.

(C4) No limit cycles – A meshable frame field cannot contain limit cycles since
all streamlines of the mesh-induced frame field topology are either closed
orbits or end at a singularity or the boundary.

The sufficiency of the conditions can be verified in a constructive way. If
(C1)-(C4) are satisfied, all cells of the topological skeleton are either equivalent
to a quadrilateral or an annulus. Enriching the topological skeleton with all
streamlines that are tangential to feature curves and one streamline for each
annulus to cut it into a quadrilateral is sufficient to obtain a valid quad mesh.
The necessity of the conditions is also straightforward since violation of (C1)
prevents meshing of feature curves, violation of (C2) implies singularities that
do not exist in mesh-induced frame field topologies, violation of (C3) generates
triangles in the topological skeleton, and violation of (C4) induces a topological
skeleton, which is not even a cell-complex anymore. Please note that sufficiency
of (C1)-(C4) is only true for 2D domains, while for surfaces embedded in R

3,
additional degeneracies exist, e.g. Fig. 5 of [MPZ14].

Local Meshability We call a frame field locally meshable if, at each point
of the domain, there is an arbitrarily small ǫ-neighborhood that is meshable.
Local meshability requires that conditions (C1)-(C3) are fulfilled but omits (C4),
which is only relevant on a global scale.

(a) (b) (c) (d)

Figure 7.4: The polar sector in (a) is modified into the quad sector in (b) by
adding an index 1

4 singularity. Only a local sector neighborhood is altered,
depicted with magenta streamlines. Similarly, the anti-quad sector in (c) is
modified into a quad sector by adding two singularities of index 1

4 .

Ensuring Local Meshability Given a frame field that satisfies (C1) and
(C2), it is possible to turn it into a locally meshable field satisfying (C3), solely
by modifying an ǫ-neighborhood of its singularities. As illustrated in Fig. 4ab, a
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polar sector at a singularity can be converted into a quad sector by compensating
the added rotation with an index = 1 singularity. The modification is restricted
to an ǫ-neighborhood of the polar sector, and does not alter the field outside. In
an analog way, an anti-quad sector can be turned into a quad sector at the cost
of locally adding two index = 1

4 singularities, as depicted in Fig. 7.4cd. While
a conceptual understanding of local meshability and modifications to ensure
it is sufficient in our context, a concrete algorithm to ensure local meshability
in a specific discrete setting by adding sector constraints to the angle-based
formulation of [BZK09] can be found in the supplemental material of [MPZ14].

Sector Modifications A generalization of the polar/anti-quad sector removal
results in a class of potential sector modifications. A modification of a flow-
aligned local neighborhood N can be performed if and only if it respects the
index theorem, i.e. ∆na = ∆nq, with ∆na, ∆nq quantifying the differences of
the total number of anti-quad and quad sectors of all singularities in N . In
the example of Fig. 7.4ab, ∆na = ∆nq = 0 since we add one quad sector at
the original singularity but remove one at a regular point, which becomes a
singularity of index 1

4 , while the index of the original singularity reduces by
1
4 . For the example of Fig. 7.4cd, ∆na = ∆nq = −1 since we add one quad
sector and remove one anti-quad at the original singularity and remove one
quad sector at two previously regular points. Please note that the addition or
removal of polar sectors does not require modification of other singularities in
the neighborhood, and the same is true for the addition or removal of pairs of
quad and anti-quad sectors.

Ensuring Meshability Given a frame field that is locally meshable, it can
be turned into a (globally) meshable one with the motorcycle graph based algo-
rithm proposed by Myles et al. in [MPZ14]. The zero loop elimination strategy
effectively removes limit cycles, typically at the cost of adding pairs of singu-
larities. We leave the discussion of directly converting the topological skeleton
into a meshable one for future work and instead continue with the main topic
of this article, frame field meshability in 3D.

7.2 Meshability in 3D

Similarly to the 2D case, a hexahedral mesh in 3D can be seen as a discrete
representation of streamlines of a 3D frame field, as illustrated in Fig. 7.5a.
The singularities form a graph consisting of nodes and flow-aligned arcs, referred
to as the singularity graph [LZC+18]. In contrast to 2D, there are two major
differences that complicate the meshabillity of 3D frame fields, i.e., (i) non-
uniqueness of streamsurfaces and (ii) singular arcs. Both will be investigated in
more detail next.

7.2.1 Streamsurfaces

While under mild continuity conditions, the streamlines of an arbitrary vector
field u(x) : R3 → R

3 are uniquely defined by integration, this is no longer true
for the streamsurfaces formed by u(x) in combination with a second vector field
v(x) : R3 → R

3, as illustrated in Fig. 7.5b. Assume that su and sv are two
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u

su

sv

svu suv

p0

(a) (b)

Figure 7.5: (a) a hexahedral mesh induces a frame field with streamlines aligned
to all edges and faces of the hexahedral mesh, flowing through (green) channels
created by dual chords (dark green) everywhere else with separatrices and sep-
arating surfaces in orange. (b) A pair of vector fields u and v is not necessarily
integrable. Consequently, the red streamsurface suv formed by streamlines of
v and seeded by su passing through p0 is different from the blue streamsurface
svu generated by exchanging the order of vector fields.

streamlines of u respectively v that intersect at a point p0. Then su serves
as a seed curve for a well-defined stream surface suv, which is formed by all
streamlines of v that pass through su. However, since the surface resulting from
streamlines along v is not necessarily tangential to u, the shape of the surface
depends on the order of vector fields in this process. The streamsurface svu
seeded by sv and formed by streamlines of u, in general, has a different shape,
except for the seeds su and sv which by construction are part of both surfaces.
Only if the pair of vector fields is integrable, meaning that the necessary and
sufficient conditions of the Frobenius theorem are satisfied, the streamsurfaces
are well defined in the sense that suv = svu for any seed point of the domain.

Consequently, unless we can guarantee integrability, e.g., for a hexmesh-
induced frame field, there are no well-defined streamsurfaces that partition space
into hexahedral cells, preventing a direct extension of the meshability results
building on on the topological skeleton in 2D.

7.2.2 Singular Arcs

A local neighborhood of a 2D frame field, called footprint, can be extruded along
an additional transversal line field to a tubular swept volume equipped with a
3D frame field, as depicted in Fig. 7.6a. If the footprint contains one isolated
singularity, a sweep results in a flow-aligned singular arc. Such singular arcs
are special in the sense that only two vectors of a frame F = [u, v, w] ∈ R

3×3

vanish, inducing a rank(F ) = 1 property. The index of a flow-aligned singular
arc is identical to the index of its footprint. If the footprint contains only
quad sectors – a necessary condition for meshability – we call the sweep a
(locally) meshable singular arc. While hexmesh-induced frame fields contain
only meshable singular arcs, general frame fields allow additional non-meshable
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Zipping

Unzipping

(a) (b)

Figure 7.6: (a) A footprint of a 2D singularity is extruded along the blue line field
to the orange flow-aligned singular arc. (b) Two orange flow-aligned singular
arcs of index −1/4 are partially zipped to the red singular arc of index −1/2,
creating two red zipper nodes.

singular arc types, exhibiting one or several of the following defects:

(D1) Compound Monodromy – In contrast to flow-aligned arcs, where the frame
field rotates around one axis of the frame, other non-meshable monodromies
from the Octahedral group are possible, as explained in more detail below.

(D2) Not Flow Aligned – The singular arc is not tangential to the frame field,
which prevents meshability and inevitably violates the rank(F ) = 1 prop-
erty.

(D3) Non-constant Footprint – While the index of a flow-aligned arc is constant,
the sectors can still continuously change along the arc (cf. sector modifi-
cations of Sec. 7.1.2), e.g. polar sectors opening or closing at separatrices
of the footprint.

(D4) Non-meshable Footprint – Meshability requires a footprint equipped only
with quad sectors, according to (C3).

The monodromy of a singular arc specifies the rotation a frame undergoes when
traveling along a cycle enclosing the singular arc but no other singularities.
When expressed in the coordinate system of the frame itself, the monodromy is
an element of the octahedral group O, as explained in [CC19]. Only 10 out of 24
octahedral elements correspond to rotations around one axis of the frame and
admit meshable singular arcs. According to [JHW+14], we denote the remaining
14 elements as being of compound type, which always implies non-meshability
of a singular arc, as well as violation of the rank(F ) = 1 condition, both proven
in [NRP11]. Next, we will describe an approach to convert a general frame field
into one containing only meshable singular arcs, which is a necessary condition
for meshability of a frame field.

Arc Zipping A fundamental operation for modifying singular arcs and sin-
gular nodes are zipping and unzipping, both depicted in Fig. 7.6b. Given two
parallel flow-aligned singular arcs A1 and A2 with index I1 and I2 respectively,
the process of letting the arcs approach each other until they partially merge
at novel flow-aligned arc Az is called zipping. The index of Az is Iz = I1 + I2.
The inverse process is called unzipping, and the resulting indices can be any
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I1 and I2 satisfying I1 + I2 = Iz. Like a zipper that can open and close con-
tinuously, both operations can be restricted to sub-segments of arcs, in which
case singular nodes, called zipper nodes, are created at the end points of the
(un)zipping operation, or entirely merge two arcs. These operations are the 3D
analog of the sector modifications of Sec. 7.1.2, acting inside the swept volume
of a flow-aligned singular arc. A regular streamline, i.e. a flow aligned arc of
zero index, can be unzipped into arcs of opposite sign I1 = −I2. Such a pair of
index ± 1

4 arcs serve as generators for all other meshable arcs under the zipping
operation since they correspond to the addition and removal of one quad sector
in the footprint, respectively. Please note that arc zipping operations might be
restricted by feature constraints, where streamlines are not allowed to deform
continuously in arbitrary directions. One frequent special case is a zipper node
that reaches the boundary and belongs to a transversal flow direction, in which
case the zipper node can be dissolved by disconnecting the two arcs.

Ensuring Meshable Singular Arcs A general frame field can be converted
into one with solely meshable singular arcs by successively removing defects
of types (D1)-(D4). As observed in [JHW+14], all non-meshable monodromies
are the product of two meshable monodromies. Consequently, a singular arc of
compound type can always be unzipped into two parallel arcs of non-compound
type, which either form two parallel closed orbits or connect at common singular
nodes. Modification of the frame field is only required in an arbitrarily small
local neighborhood of the compound arc.

Defects of type (D2) of a non-compound arc can be resolved by a continuous
transformation of the frame field in an epsilon neighborhood such that the field
becomes tangential to the arc. The goal is to align the frame field while mini-
mizing the required change, e.g., a Dirichlet type energy subject to alignment
constraints deduced from the angles of the non-aligned field. Please note that
the monodromy of a non-aligned arc specifies the tangential axis, as well as the
index, only up to its sign. If the choice of alignment axis changes along the arc,
singular nodes need to be introduced, which split the arc into several segments
of index with alternating signs.

Defects of type (D3) are resolved by splitting an arc into sub-arcs of constant
footprint by introducing singular nodes at the transition points.

All defects of type (D4) can be repaired by zipping. For instance, the repair
of a polar sector in a footprint is done by unzipping an index 1

4 singular arc
from the polar sector, similarly to Fig. 7.4ab.

After ensuring that all singular arcs are of meshable type, all remaining
defects preventing local meshability can only be located at singular nodes, which
will be discussed next.

7.2.3 Singular Nodes

In a hexmesh-induced frame field all singular nodes – branching points where
several singular arcs meet – are isolated point singularities with ||F ||2 = 0, a
condition identical to (C2) in 2D. All singular node types existing in hexmesh-
induced frame fields are called meshable [LZC+18]. First, we will clarify that
singular nodes always result from the interaction of singular arcs and that me-
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shable arcs of index ± 1
4 not only serve as generators for all meshable arcs but

also as generators for all meshable nodes.

Theorem 1. All types of meshable singular nodes can be constructed by itera-
tively zipping meshable singular arcs of index ± 1

4 .

Proof. The intersection of the one-ring hex mesh of a meshable singular node
with the surrounding 2-sphere induces a triangulation of the 2-sphere, as ob-
served in [NRP11]. Each edge of the triangulation corresponds to one quad
sector, belonging to the two flow-aligned arcs represented by vertices opposite
to the edge. From this perspective, zipping a meshable singular arc of index 1

4
corresponds to an edge collapse (removing a quad sector), while zipping one of
index − 1

4 is equivalent to an edge split (adding a quad sector). All potential
triangle meshes of genus zero can be generated starting from an octahedron
(regular node) by a sequence of edge collapsing and splitting. Consequently,
all meshable singular nodes can be generated by iteratively zipping meshable
singular arcs of index ± 1

4 .

Zipper Nodes Not all singular nodes resulting from the interaction of me-
shable singular arcs are meshable. While meshability of arcs ensures that their
footprint is intact, it is still possible that the two of them converge in a parallel
fashion to a singular node, creating a (non-meshable) parabolic sector in the
vector field on the branched cover. Since such a singular node, where two arcs
meet in a non-meshable fashion, always results from an incomplete zipping of
two singular arcs, we call them zipper nodes. Unfortunately, zipper nodes are
not rare and can frequently be observed in frame fields that are optimized for
smoothness, for instance, for the notch model shown in Fig. 7.7a. The feature
constraints on top require two singular arcs of index ± 1

4 . However, the quadri-
lateral base favors a constant frame field. Consequently, the smoothest frame
field generates a zipper node, where the two singular arcs of opposite index meet
in a parabolic sector and then continue as a regular arc.

Repairing Fundamental Zipper Nodes There are three different strategies
to get rid of fundamental zipper nodes that are formed by a pair of singular arcs
with opposite index, illustrated in Fig. 7.7bcd.

(S1) Zipping – Strategy I consists of getting rid of both singular arcs by entirely
zipping them together to a regular streamline..

(S2) Unzipping – Strategy II consists in unzipping along the regular arc that is
the continuation of the two singular arcs terminating at the zipper node.

(S3) Polar Sector Repair – Strategy III consists in leaving the arcs meeting at
the zipper node untouched but instead unzipping the regular streamline
that passes through the tip of the parabolic sector, generating a pair of ± 1

4
singular arcs. The − 1

4 arc turns the parabolic sector into a quad sector,
as depicted in Fig. 7.7d.

Strategies S1 and S2 can be impossible due to constraints of feature curves or
feature surfaces that prevent the operation. However, S3 is always valid. Please
note that for strategies S2 and S3, the frame field could be slightly modified
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(a)

(b)

(c)

(d)

Figure 7.7: (a) the smoothest frame field on the notch model contains a zipper
node since the features on top require singularities, while the base favors a con-
stant frame field without singularities. (b) resolving a zipper node by zipping,
(c) resolving a zipper node by unzipping, (d) resolving a zipper node by unzip-
ping a regular streamline and attaching the − 1

4 arc to the parabolic sector at
the zipper node, turning it into a quad sector.
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before unzipping along the regular streamline to ensure that the boundary of
the domain is reached without getting caught in potential limit cycles. Identical
strategies have been discussed in [RCR19], where fundamental zipper nodes are
called non-meshable 3-5 arcs.

Repairing Non-Meshable Nodes Fundamental Zipper nodes are only one
particular type of non-meshable nodes, and we need a general strategy to repair
other types of non-meshable nodes. Assuming that all singular arcs are of
meshable type, it is possible to fully decompose singular nodes such that only
valid singular arcs and fundamental zipper nodes remain.

Theorem 2. Every singular node of a frame field that is only incident to me-
shable singular arcs can be decomposed into a finite set of isolated meshable
singular arcs and isolated fundamental zipper nodes by only modifying an arbi-
trarily small local neighborhood.

Proof. It suffices to observe that each quad sector of a singular arc A1 continues
along at least one other singular arc or regular streamline A2 incident at a
shared singular node. If A1 and A2 are both singular, unzipping an arc with
index Id = max(I1, I2) will detach a singularity with index Id from the node.
The corresponding arc will become a regular streamline, or even both, if I1 = I2.
This process can be repeated until either all singular arcs have been detached
from the node, or a set of pairs of singular arcs forming parabolic sectors remains.
In the latter case, the pairs can be iteratively detached by zipping, i.e. generating
an isolated fundamental zipper node that connects to the original singular node
with a regular streamline.

Theorem 2 is a generalization of the decomposition of singularities of a hexa-
hedral mesh of the concurrent work [PJHHXCK22] to the setting of frame fields
with meshable singular arcs but potentially non-meshable singular nodes.

After the decomposition of all non-meshable singular nodes, the only remain-
ing non-meshable configurations are fundamental zipper nodes. After resolving
all of them by (S1), (S2), or (S3), all singular arcs and nodes are meshable.
Consequently, the result is guaranteed to be a locally meshable frame field.

Next, we will refine the conceptual algorithm presented in this section to a
practical one for piecewise constant frame fields on tetrahedral domains.

7.3 Local Non-meshabilities and Repairs

Given an input tet mesh T = (V,E, T, C) with vertices V , edges E, triangles
T , cells C, and a smooth frame field F from which the singularity graph S
embedded in the 1-skeleton V ∪ E is extracted, the goal is to ensure that F in
one-ring vicinity of vi ∈ V is locally meshable. We consider octahedral frames
in this section and represent them with unit quaternions q. Each tetrahedron
defines a chart and holds a local coordinate system. The connection between
charts ci and cj is established by matching Ri�j ∈ Oct : qj = Ri�jqi, where Oct
is the octahedral group. The discretized octahedral frame field O = (R,Q) can
be expressed as a set of matchings R belonging to oriented dual edges e⋆, and
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a set of unit quaternions Q. The tet mesh explicitly encodes feature properties,
including feature vertices VF , edges EF , and faces FF , on the boundary or in the
interior of the domain, which imposes alignment constraints to the frame field.
This section identifies local non-meshable defects in tet meshes with feature tags
and proposes repair operations for the practical scenario which are analogous to
the conceptual algorithm discussed in Sec.7.2. We begin with the core operations
arc zipping and unzipping, which locally modify frame field topology.

7.3.1 Arc Zipping

Assume a disk D which consists of a series of triangles that is bounded by
oriented singular arcs A1 and A2, as shown in Fig.7.8, and is free of other singu-
larities. Zipping the arc A2 to A1 would change the index I1 of A1 to I1+I2 and
I2 of A2 to identity. Modifying the index of an arc requires the adjustment of
topological matchings on D. Consider the one-ring tet mesh of an oriented edge
e. The rotation specified by the edge monodromy Me is measured via the con-
catenation of matchings between neighboring frames: Re = Rk→0...R1→2R0→1

w.r.t. to the local coordinate system in chart c0. Re is denoted as rot(u, α),
where u ∈ (±x,±y,±z) is the one of the frame axes in c0, and α corresponds to
the index of e with α = 2πIe. The matching Ri→i+1 to modify on the incident
half-face of e on D is thus determined via:

Ri→i+1 = (Rk→0...Ri+1→i+2)
−1rot(u, α)(Ri−1→i...R0→1)

−1.

Knowing the target indices of A1 and A2 after zipping and their rotation axes
w.r.t. chart c0, we can determine matchings on half-faces incident to A1 and A2

on D. The rest matchings on D can be solved by iteratively applying the chart
zippering [LZC+18]. Note that since the matching is invariant to rotations of
multiple 2π, zipping an arc A2 of a higher index to A1 is not possible via directly
modifying the matching on D. However, with the matching modification, zip-
ping the singular arcs of index ± 1

4 is unique. Provided enough DOFs, singular
arcs of an arbitrary index can be generated by successively zipping singular arcs
of index ± 1

4 through different D. As the inverse process of zipping, unzipping
can be realized similarly via modifying the matchings on D such that the target
indices of A1 and A2 are fulfilled.

Zipping and unzipping singular arcs of index ± 1
4 are the fundamental opera-

tions upon which all repair operations are build. They differ in the construction
of the disk D and the determination of rot(u, α) such that corresponding local
defects are fixed. Next, we will classify different types of non-meshable local
cases in tet meshes considering that feature constraints are involved, and intro-
duce corresponding operations to ensure local meshability.

7.3.2 Ensuring Meshable Edges

Repair Compound Singular Edge The monodromy Me1 = rot(u, α) of
a compound singular edge e1 specifies a 3D rotation, resulting in rotational
symmetry of the cube, whose rotational axis is not from the center of a face to
the center of the opposite face. Such rotations are guaranteed to be decomposed
into two rotations along principle axes. We take an incident triangle of e1 as the
disk D which contains no other singular edges and then search for a meshable
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Figure 7.8: Zipping and unzipping a pair of arcs A1 and A2. Green/blue indi-
cates index 1

4/− 1
4 .

monodromy Me2 of a regular edge e2 on the triangle such that Me1 is converted
to a meshable monodromy after unzipping. This is similar to the splitting
approach in [JHW+14]. Another way to repair compound singular edges is by
removing them with the edge collapsing [LLX+12] operation.

Repair Polar Sector Wedge The polar sector wedge corresponds to lo-
cal defects of types (D4) with feature faces (in purple/orange) incident at

D

A1

A2

feature arc (in orange) A1 forming a wedge of po-
lar sectors. Each polar sector wedge is repaired via
unzipping a singular arc of index 1

4 from it into the
wedge. Splitting guarantees the construction of a disk
D inside the wedge such that it does not enclose any
singularity. When expressed in the same chart, the
axis u of arc A2 is identical to the aligned frame axis
of A1, and the angle α is π

2 . The rotation of the target
monodromy of A2 for the unzipping is thus rot(u, π

2 ).
Note that when all polar sector wedges are converted
to quad sectors, the defects of type (D3) will be au-
tomatically fixed since the footprint cannot change
along singular arcs.

Locally Aligning and Smoothing Field According to the condition (C1)
and defect (D2), a meshable frame field has to fulfill alignment constraints,
categorized as face Cf and edge alignment constraints Ce. Precisely, one of the
principle axes (±x,±y± z) of the frame qi in a cell ci ∈ C should be aligned to
the normal direction of the incident feature triangle, and the singular/feature
edge direction. If multiple constraints of the same type exist in a single cell,
either face split or edge split is necessary to ensure constraints free of conflicts.
Frame field optimization with fixed matchings and alignment constraints can be
formulated as in [LZC+18]. Instead of relaxing it to an eigenvalue problem, we
iteratively optimize each quaternion qi by averaging its neighboring quaternions
qj and then project it to the constrained axis. Consider a set of connected tets
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T with intial octahedral field O = (R,F) and alignment constraints C. The
optimization procedure is described in Algo. 5.

Algorithm 5 LocallyAlignedSmoothField

Input: Tet mesh T , initial field O = (R,Q) and constraints C
Output: Optimized field Ô = (R, Q̂)
1: while i ≤ NumIters do ⊲
2: for ci in T do
3: for cj in N(ci) do ⊲ N(ci): neighbouring tets of ci
4: qi ← qi +Rj�iqj ⊲
5: end for
6: project(qi) ⊲
7: normalize(qi) ⊲
8: end for
9: end while

Projection. The optimization strategy decouples smoothing and aligning
steps by applying a projection after averaging neighboring quaternions. Owing
to splitting, qi in a cell can have at most one constraint of type Cf and Ce each.
When their aligned axes in chart ci are linearly independent, the constraints
fully determine the frame. Otherwise, one constraint only specifies one axis
that a frame q needs to align. Assuming the partially aligned axis x and the
direction d ∈ R

3, the rotation R brings q to the coordinate system where d
is the direction of x axis: q̂ = Rq. The projected quaternion is thus q̂p =
(q.w(), q.x(), 0, 0). Normalizing it and then expressing it back in the original
coordinate gives qp = R−1q̂p [GJTP17].

Double Covering. Since quaternions q and −q represent the same rotation,
the sign of matchings in the quaternion form should be determined during the
averaging. We measure the dot product of qi and Rj�iqj and revert the sign of
Rj�iqj if the dot product is negative.

7.3.3 Ensuring Meshable Vertices

Provided meshable edges at a vertex, Sec.7.2.3 presents a conceptual algorithm
to decompose a general singular node into meshable singular arcs and zipper
nodes. Then three strategies are proposed to repair the remaining zipper nodes.
However, the existence of features in tet meshes complicates the repairing prob-
lem as features impose topological constraints on frame fields. Besides polar sec-
tors formed by two singular edges (singular-singular), they can also be formed
between a feature edge and a feature edge/face (feature-feature), and a singular
edge and a feature edge/face (singular-feature). For repairing a non-meshable
vertex on the feature, we propose first repairing all incident feature-feature po-
lar sectors and then applying the decomposition algorithm while maintaining
the meshability of feature-feature sectors. Cases directly detaching singular
arcs from the vertex induce feature-feature or feature-singular polar sectors are
classified as constrained polar sectors. We describe in more detail below the
necessary steps for ensuring meshable vertices, including: (i) feature-feature
polar sector repair, (ii) singular node decomposition, (iii) constrained polar sec-
tor repair, and (iv) zipper node repair through a series of basic operations of
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zipping/unzipping. While repairing non-meshable vertices, the meshability of
edges is preserved due to splitting.

Feature-feature Polar Sector Repair We assume that each feature edge
is incident to at least one feature face as in [BRK+22]. Due to alignment con-
straints, the frame field in the one-ring mesh of the feature vertex is partitioned
into sectors in the supporting plane by incident feature edges. The defect of the
feature-feature polar sector corresponds to the type of non-meshable footprint,
which can be repaired by unzipping a singular arc of index 1

4 into the sector.
Consider the polar sector (yellow) with bounding feature edges e0, e1 and a regu-
lar edge e in the sector. In the unzipping operation, we specify the disk D (blue)
as the non-feature triangle incident to e, with its third vertex not on any feature

e

A1

A2

e0 e1

patch. In determining the target monodromy of
arc A1, the rotation axis u is the aligned frame
axis to the normal direction of the polar sector
and α is −π

2 since the target index of A1 is − 1
4 .

The unzipping opens the polar sector to a quad
sector at the cost of introducing a zipper node.
Note that the repair operation should be applied
twice for interior feature-feature sectors since e0
and e1 bound two oriented sectors with opposite
normals.

The feature-feature polar sector repair can be
generalized to the case where isolated feature curves exist. The extra effort is
to construct a supporting plane between two feature edges, or a feature edge
and a feature face, and approximate the aligned frame axis to the normal of the
plane.

In the smooth frame field, the other type of non-meshable footprint, the
elliptic sector, is not observed. Nevertheless, repairing such sectors is possible
via the approach described in 7.1.2.

Singular Node Decomposition Consider a non-meshable singular node v
with all incident edges meshable. Following the conceptual algorithm in The-
orem 2, we repair the invalid singular node by iteratively detaching meshable
singular arcs of index ± 1

4 via arc unzipping and zipper nodes via zipping from
it until it becomes locally meshable or a zipper node.

Detaching singular arcs. In the one-ring mesh at v, given a start singular
edge e0 with Me0 = rot(u0, α) in the incident chart c0, we search for the other
parallel singular edge e1 which forms the singular arc A1 with e0 and then
perform the standard unzipping such that A1 becomes regular. e1 is parallel
in the sense that the rotation axis of e1 expressed in c0 through a dual path
P is identical to u0. As the monodromy is known, the missing piece for the
unzipping is the disk D (blue), which is simultaneously constructed while seeking
e1. Specifically, we perform a breadth-first search for the path P of dual edges
with matching product RP = Rk−1→k...R1→2R0→1, which reaches a cell ck at
a singular edge e1 with monodromy RProt(u0, α). The search starts from c0
in the direction of ûe0 which is the edge axis of e0 in chart c0: ûe0 = u0 if
e0 · F0(u0) ≥ 0, otherwise −u0. We confine the search space in each chart to a
cone region to avoid rotations of multiple 2π, i.e. while propagating from chart
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Figure 7.9: An example of repairing a singular node. (a) Two parallel singular
arcs touch, resulting in an invalid singular node (black). (b) Detaching the
blue arc from v repairs the non-meshable singular node. (c) The other way to
decompose v by detaching a zipper node, with v turned into a zipper node. In
this section, singular edges of indices 1

4/− 1
4 are in green/blue, regular edges in

white, and feature edges in other colors.

ci to ci+1, the angle β defining the cone between the normal ni of the face fi→j

and the search direction Fi(ûi) is less than 100◦. Edges e0 and e1 separate the
bounding surface of P that is in the interior of the one-ring mesh into two disks,
either of which can be used as the disk D for the unzipping. Fig.7.9b depicts
the detaching process of a singular arc A1 of index − 1

4 .
Detaching zipper nodes. A zipper node is detached via zipping a given sin-

gular edge (arc) e1 (A1) with Me1 = rot(u1, α) and the other target singular
edge (arc) e2 (A2) with Me2 = rot(−u1,−α) w.r.t. a common chart c1. Here,
e1 and e2 are both outgoing edges at v. The searching for e2 and the construc-
tion of the disk D are similar to the process in detaching singular arcs except
that the searching angle β ≥ 45◦. Often detaching a zipper node reduces the
number of polar sectors at v but introduces a new zipper node in the vicinity
(c.f. Fig.7.9c). To minimize the number of zipper nodes, detaching singular arcs
takes priority over detaching zipper nodes in the decomposition.

v

e v

e0

e1

(a) (b) (c) (d)

Figure 7.10: Feature-singular polar sector repair with singular node decompo-
sition. Feature surfaces are colored in purple and yellow with transparency. (a)
The edge e ends at a boundary vertex v and it is orthogonal/tangential to the
yellow/purple surface, respectively. (b) Detaching e from v repairs the polar
sector. (c) Parallel edges e0 and e1 tangentially touches the feature surface at
v. (d) Detaching the singular arc from v makes it meshable.

Besides the singular-singular polar sectors, the singular node decomposition
can also be used to repair feature-singular polar sectors, i.e., a singular edge
e0 off feature surface tangentially touching the feature, e.g., Fig.7.10(c). Such
cases can be repaired by detaching the singular arc/zipper node if the other
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corresponding singular edge e1 can be found, as shown in Fig.7.10(d). A special
case is that e0 orthogonally ends on the boundary surface, e.g., Fig.7.10(a), and
the other counterpart e1 does not exist. The disk path D is constructed via a
dual path P which connects e0 and a boundary face whose normal is parallel to
the edge axis of e0, see Fig.7.10(b).

There are two conditions for detaching singular arcs/zipper nodes at a vertex
on feature: (i) the dual path P should orthogonally cross the feature surface or
end on the boundary, ensuring that no new feature-singular polar sectors will
be generated, and (ii) the operation should not induce any feature-feature polar
sector. Consequently, the singularity decomposition cannot be applied in the
category which we refer to as the constrained polar sector. A different zipping
strategy for repairing constrained polar sectors will be discussed in the next
section.

Constrained Polar Sector Repair A constrained polar sector is a feature-
singular or singular-singular polar sector formed by an oriented singular edge e0
of with its from vertex v on feature edges and the other entity (feature edge/face
or singular edge). Depending on the local configuration, there are three basic
types of constrained polar sectors:

1. A singular arc crosses the interior feature surface at a feature edge vertex v
and the edge axis ûe0 is tangential to all feature patches (c.f. Fig.7.11(a)).
e0 forms a polar sector with the feature edge e1.

2. A singular edge e0 of index − 1
4 forms a polar sector with a feature edge/-

face at the vertex v, where all feature-feature sectors whose normals are
parallel to the edge axis ûe0 are quad sectors. Fig.7.11(b) shows a special
case where a feature edge e1 forms a polar sector with e0.

3. A singular edge e0 of index − 1
4 forms a polar sector with another parallel

singular edge e1 with the same index, and all orthogonal feature-feature
sectors are quad sectors as in (2), c.f. Fig.7.11(c).

v

e0

e1
e1

e1
v v

e0e0

(a) (b) (c)

Figure 7.11: Three types of constrained polar sectors. (a) The singular arc
tangentially passes through the feature surfaces at v. (b) The singular edge e0
of index − 1

4 is parallel to the feature edge e1 and the orthogonal feature-feature
sector (yellow) in the same region is a quad sector. (c) Two singular edge e0, e1
of index − 1

4 are parallel and all orthogonal feature-feature sectors are quad
sectors.
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In case (1), directly detaching the singular arc would result in a new feature-
singular polar sector, as there is no disk path that orthogonally crosses the
feature surface. For types (2) and (3), we may detach e0 from v by unzipping
a singular arc of index − 1

4 into a feature-feature sector, however, at the cost of
shrinking it to a feature-feature polar sector which is illegal. An intuitive repair
would be to zip the singular arc A0 (containing e0) to the singular/feature arc
A1 (containing e1). But there is no guarantee of constructing a disk D bounded
by A0, A1 with no other singular arcs passing through.

One way to repair the constrained polar sector is by unzipping the arc A1 of
index I1 into the arc A1 of index I1− 1

4 and a new arc A2 of index 1
4 . Owing to

splitting, the unzipping is ensured in the one-ring vicinity of the arc A1, and a
disk D free of other singularities is guaranteed. Afterwards, A2 of index 1

4 and
e0 of index I1 − 1

4 form a zipper node at v which can be repaired by detaching
zipper node. In the process, we require that the repair operation would not
introduce new constrained polar sectors. The key is about searching for the
guiding arc A1.

For types (2) and (3), the search for A1 is in the same direction as the edge
axis ûe0 , expressed in an incident chart of e0. During the marching, A1 follows
the feature or singular edge, if any, which is parallel to the marching direction.
Otherwise, we continue the propagation in the search direction either on the
feature surface for type (2) or inside the volume for type (3). A1 either stops at
an orthogonal feature patch in the interior of the mesh or ends orthogonally at
the boundary of the mesh. In the former case, unzipping A1 results in a zipper
node at the end vertex ve (c.f. Fig.7.12) while in the latter case, ve is meshable.

(a) (b)
Figure 7.12: (a) A1 ends at an orthogonal feature surface (green) and introduce
a zipper node at ve. (b) A1 orthogonally ends at the boundary surface (green).

For type (1), the marching direction can be either along e1 or the opposite
feature edge. The dihedral angle between feature faces in frame space at one of
the two feature edges at v must be π but not the other. We pick the feature edge
with the sector angle unequal to π to begin for consistency. Depending on the
search direction, the index of A2 after unzipping is either − 1

4 or 1
4 . Therefore,

in the former case, it may result in another constrained polar sector of type (2)
at the end vertex ve, which can be fixed subsequently. The stopping condition
for searching A1 is the same as type (2) and (3). Furthermore, the marching
can terminate when it reaches a singular edge es with the same rotation axis
as e0, expressed in the same chart. es should locate in the same region as A2

so that a singular arc detaching operation can be executed between A2 and es.
Overall, constrained polar sector repair operation does not produce any other
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type of defect except for the zipper node.

Zipper Node Repair The above repair operations would make a vertex lo-
cally meshable or convert it to a zipper node. Sec.7.2 conceptually proposes
three strategies for repairing zipper nodes. We discuss equivalent strategies of
repairing the zipper node of frame fields embedded in tet meshes, i.e., handling
a zipper node p with outgoing singular edges e0 and e1 by means of zipping,
unzipping and polar sector repair.

Zipping. Strategy I zips the outgoing singular arcs A1 and A2 at the zipper
node p such that the two arcs cancel out each other. Particularly, knowing the
target monodromies of A1 and A2, a disk D spanned by the singular arcs, not
enclosing any other singularities, is required for the zipping. Constructing such a
disk for general singular arc pairs is challenging, sometimes even impossible, but
is trivial in the one-ring neighborhood. For example, when e0 and e1 touch the
boundary, as shown in Fig.7.13(a), we choose the zipping operation to remove
the zipper node.

Unzipping. Strategy II unzips a regular streamline into a pair of singular
arcs of opposite indices ± 1

4 . Exactly tracing the streamline from p is non-trivial
since the frame field is often not integrable and thus might get stuck in a limit
cycle. Instead, an approximation is feasible since rotational axes of e0 and e1
are well defined in the parametric domain, indicating the search direction of
the regular arc. It either ends at the boundary surface with the normal axis
agreed to the search axis û or at another zipper node p′ where its searching axis
û′ is in the opposite direction. An illustration of unzipping is in Fig.7.16(c)-
(d). Specifically, taking an incident chart c0 of e0 as a reference coordinate
system and p as the origin, we search for a dual path P where the regular arc
is embedded. The propagation starts from c0 in the direction of û0 = −ûe0 and
stays inside the cone defined as d = u2 + s(v2 + w2), u > 0, where u, v, w are
the coordinates in parametric space and s controls the shape of the cone. P is
closer to the iso-line (u, vp, wp) with a larger s. Instead of asking for a strictly
increasing P in the u coordinate, we forbid P to proceed if the angle between
the outward face normal nij and the search direction ûi in chart ci is below
100◦.

The dual path P, which is a strip of face-connected tets, ends at the boundary
or another zipper node p′. We search for two non-intersected arcs A1 and A2 on
the surface of P starting from the endpoints of e0 to the boundary or another
zipper node p′. The first edge path A1 is grown w.r.t. a difference vector dv in
chart c0, attempting to maximize the projection of the edge path on dv, which
is the edge difference e0−e1 expressed in chart c0 and projected on (v, w) plane.
The second edge path A2 can be found via Dijkstra without touching A1. They
separate the surface of P into two disks, either of which can be the disk D for
unzipping. Unzipping would turn e0 into a regular edge and A1, A2 into a pair
of meshable singular arcs of opposite indices.

Polar sector repair. Strategy III is implemented similarly to the repair of
feature-feature polar sectors. The difference is that the sector spanned by e0
and e1 is not well-defined in parametric space since it degenerates into a seg-
ment. However, in smooth frame fields that are not singularity-aligned during
the repairing stage, the sector normal can be approximated in a larger neigh-
borhood by integrating along the outgoing singular arcs of p. The normal of the
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Figure 7.13: Zipper node repair. (a) Zipping the singular edge pair which
touches the boundary surface (yellow). (b) A disk (blue) intersected with the
sector formed by e0 and e1. (c) Opening the sector by polar sector repair con-
verts the zipper node to a meshable singular node of signature (1,3,3) [LZC+18].

approximated plane indicates the rotational axis u for unzipping. Fig.7.13(b)-
(c) show that a zipper node is converted to a valid singular node of signature
(1, 3, 3)[LZC+18] by unzipping into singular arcs A1 and A2. It creates two
additional zipper nodes in the one-ring vicinity. In practice, if a regular edge
connects p to another arc of index − 1

4 , which orthogonally passes through the
sector at p, we simply collapse the regular edge to open the polar sector.

Unzipping is the primary operation for repairing zipper nodes since zipping
requires a challenging construction of disk D without enclosing any other sin-
gularities, and polar sector repair introduces two additional zipper nodes that
need further treatment. In the rare case when singular arcs of a zipper node
end at the boundary patch of a limit cycle [VSL16], unzipping would fail to find
a valid dual path. We can remove it by an iterative zipping or applying the
polar sector repair which transforms it into two zipper nodes of the type that
unzipping can repair. Practically, unzipping and zipping are sufficient to repair
zipper nodes, while polar sector repair serves as a complementary option.

Algorithm. With the above operations, an intuitive pipeline to repair a gen-
eral frame field follows the steps: (1) ensuring meshable edges; (2) ensuring
meshable vertices; (3) aligning the frame field to singular or feature edges. Ide-
ally, this approach would ensure that every tet mesh vertex is locally meshable.
However, in practice, the algorithm often either does not produce locally mesh-
able frame fields or it does generate locally meshabe frame fields, but with high
distortions that are not practically valuable. The singularity graphs of input
frame fields are geometrically noisy, containing many redundant zipper nodes, as
shown in Fig.7.14a. Simply re-labeling the index of singular arcs and re-aligning
the frame field to remove redundant zipper nodes would induce significant dis-
tortion. Moreover, the repair operations in tet meshes of finite resolution often
result in zigzag singular arcs, bringing in additional zipper nodes (c.f. Fig.7.14b).
As a result, a large number of zipper nodes may need to be repaired, leading to
over-complex singularity structures. In section 7.4, we propose a practical algo-
rithm that combines continuous frame field optimization, singularity relocation,
and singularity repairing to produce locally meshable frame fields.
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(a) (b)

Figure 7.14: (a) Singularity graph of the input frame field of i01c contains
many redundant zipper nodes (red). (b) In s11c cube cyl, unzipping a zipper
node induces two redundant zipper nodes on the pair of singular arcs due to
geometric noise.

7.4 Practical Algorithm

Given a feature-aligned smooth frame field, we aim to generate locally meshable
frame fields with reasonable singularity complexity. With this in mind, we devise
a practical algorithm that interleaves the topological repair and the geometric
improvement of singularity graphs. In each iteration, the topological repair
resolves locally non-meshable defects as depicted in Sec.7.3, and the subsequent
geometric improvement smoothes the singularity graphs and removes redundant
zipper nodes while aligning singularity graphs to frame fields. We begin with
the topological correction of frame fields.

7.4.1 Frame Field Correction

With the toolbox of local repair operations described in Sec.7.3, the complete
frame field correction follows the steps: (1) ensuring meshable edges; (2) re-
pairing feature-feature polar sectors; (3) decomposing non-meshable singular
vertices; (4) repairing constrained polar sectors; (5) fixing zipper nodes. The
rationale behind this strategy is that all defects of the same type in the tet
mesh are resolved in the current step. It may create new types of defects in the
one-ring vicinity but can be fixed in the subsequent steps. We describe each
step in detail below.

(1) Ensuring meshable edges. This step is to eliminate non-meshable edges
due to compound monodromy and polar sector wedges in the tet mesh. For
compound singular edges, two repair options are available: collapsing [LLX+12]
and splitting [JHW+14]. Although the collapsing of an edge is not always pos-
sible due to edge collapsing conditions, the advantage is that the invalid vertex
number will be decreased by one upon success. On the contrary, while the split-
ting approach ensures the elimination of a complex edge, the end vertices remain
non-meshable. Therefore, in our practical algorithm, we encourage the complex



7.4. PRACTICAL ALGORITHM 96

singular edges to be collapsed, except that edges touching the boundary are split
instead of collapsing to the boundary. For polar sector wedges, we simply col-
lect all involved edges and then apply the corresponding repair operation. After
the step of ensuring meshable edges, adjacent singular vertices might become
non-meshable and will be processed in step (3). Note that we also eliminate
singular edges of high valence for better scaled Jacobian [LZC+18] unless they
are unavoidable due to feature constraints.

(2) Repair feature-feature polar sectors. Feature-feature polar sectors are
detected and repaired as in Sec.7.3.3. As a result, all sector angles are opened
up by π

2 , and additional zipper node (s) are created in the one-ring vicinity,
which will be handled in step (5). Depending on the local feature configuration,
it might also generate constrained polar sectors of type (2) or (3), as shown in
Fig.7.11(b-c), which will be repaired in step (4).

(3) Repair invalid singular vertices. For invalid singular nodes incident to
more than two singular edges which are not on the feature surface, we simply fix
them in random order since the characterization of global meshability is not yet
understood. It results in valid singular vertices or zipper nodes in the one-ring
neighborhood. For invalid singular vertices on the feature surface, we maintain
a processing queue to iteratively perform repair operations. Adjacent singular
vertices might be invalidated afterward, as shown in Fig.7.15, and thus should
be pushed into the queue for further processing. Since the solution to repairing
singular vertices on arcs is unique but not for singular nodes, we first process
singular vertices with fewer incident singular edges. Each repair reduces the
number of the singular vertex on the feature surface by one, and the process
terminates when the operation can fix no more. At the end of the step, the
remaining non-meshable vertices are zipper nodes and the center vertices of
constrained polar sectors.

v0 v1

Figure 7.15: Repairing v0 makes the adjacent singular vertex v1 non-meshable.

(4) Fix constrained polar sectors. Constrained polar sectors only appear
where feature edges are present in tet meshes. The detection of this class of
defect only involves singular vertices on feature edges. As discussed in Sec.7.3.3,
since the repair of constrained polar sectors of type (1) might introduce new ones
of type (2), all ones of type (1) are processed first. We then check for constrained
polar sectors of types (2) and (3) and repair them via the provided operations
in Sec.7.3.3. The possibly created zipper node at the end vertex of the guiding
arc will be fixed by the zipper node repair in step (5).

(5) Fix zipper nodes. Of all zipper nodes in frame fields, some are often
unnecessary to fix due to geometric noise. Only inevitable zipper nodes are
selected and fixed by unzipping. We iterate all singular arcs and take the furthest
zipper node from the start vertex of the arc if the number of zipper nodes on the
arc is odd. Besides, we fix zipper nodes with sufficiently long incident singular
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segments. Unzipping results in pairs of singular arcs that end orthogonally on
the boundary or connect to another inevitable zipper node that matches the
direction. Although it likely brings in new zipper nodes because of zigzags, they
can be resolved by singularity relocation and mesh improvement discussed in
the next section.

7.4.2 Frame Field Aligned Singular Graph

One major issue in general frame field generators for hex meshing is that singular
edges deviate from the frame field directions, corresponding to the defect (D1).
Directly aligning frame fields to singular edges can induce high distortion due
to noisy singularity graphs: (1) zigzag in input tet meshes, and (2) introduced
by local repair operations. On the contrary, since the streamlines of frame
fields exhibit a smoother structure, aligning singularity graphs to frame field
directions is more natural. While improving the geometry of singularity graphs,
it simultaneously reduces the singularity complexity by eliminating redundant
zipper nodes.

In the generation of the new frame field O and its embedding tet mesh T ,
several objectives are desired :

1. Meshable singular edge e aligns to the direction of the rotation axis u.

2. The tet mesh T contains no degenerate/flipped tetrahedra.

3. Features are preserved: vertex vi ∈ VV is fixed, vi ∈ VE moves along
the feature arc and vi ∈ VF stays on the feature surface. VF , VFE, VFF
are sets of feature vertices, feature edge vertice and feature face vertices,
respectively.

4. Shrink compound singular edges and singular edges at zipper nodes.

Optimizing positions of tet mesh vertices alone is insufficient to achieve all
objectives. Keeping all tets valid is not guaranteed when the tet mesh lacks
degrees of freedom in the vertex movement. Therefore, we alternate the tet
mesh improvement and the singular vertex relocation in our algorithm.

Mesh Improving

The quality of tetrahedra incident to singularities can be rather poor after mesh
modifications. A tet mesh improvement is required for two reasons: firstly, it
creates necessary space for the singular vertex relocation in the next alterna-
tion; secondly, better tet mesh quality is beneficial for finding a valid seamless
parameterization in the subsequent hex meshing pipeline. We adopt a similar
strategy as in [HZG+18a], which in our case, consists of three passes: edge split-
ting, edge collapsing, and edge swapping. In our experiment, only the edges of
the 2-ring tets of the singularity graph are involved in the remeshing.

Edge splitting. We assign the target edge length to each vertex and initialize
it as the average length of its incident edges. In each splitting pass, edges of
length leij > 5

3 (tli + tlj) are maintained in a priority queue and are split from
the longest first.

Edge collapsing. Each half-edge he = (vf , vt) with length longer than 3
5 (tli+

tlj) is a candidate for collapsing. The order of edge collapsing pass is the
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shortest the first. Aiming for mesh improvement, we check the quality of each
tet t w.r.t. tr(JT

t Jt)/det(Jt)
2

3 , where Jt denotes the Jacobian which deforms t
to a regular tet. We validate the collapsing if the worst element quality in the
neighborhood will be improved. Besides, there are topological conditions when
collapsing he is forbidden: (1) violating the link condition [LLX+12]; (2) he

is not feature/singular but vf is a feature/singular edge vertex; (3) it is not a
feature face edge, but vf is feature face vertex; (4) vf is a feature vertex; (5)
conflicting alignment constraints exist in the same chart after collapsing.

Edge swapping. In this pass, we perform 3-2, 4-4, and 5-6 edge swapping on
regular edges in the 2-ring of singularities. Among all configurations of each edge
swapping type, we find the best one w.r.t. the quality of the worst element. An
edge swapping is accepted when the worst quality is improved. To maintain the
matchings in the edge swapping, we need to locally transform the coordinate
system in the charts incident to the edge e. This operation ensures that the
matching on every incident face of e is Identity.

After every single mesh operation, all associated properties, including frame
field properties, singularity properties, and feature properties, should be up-
dated accordingly. In particular, we smooth frames without aligning to singu-
larities in the involved chart after edge collapsing and swapping.

Singular Vertex Relocation

Let xi, pi ∈ R
3 be the new/current position of the singular vertex vi. The

relocation of vi ∈ VS can be posed as an optimization problem with linear
constraints:

minimize
x

Ea + Es + Ec + Ed + Er

subject to xi − pi = 0, ∀vi ∈ VV

(xi − pi)× ti = 0, ∀vi ∈ VFE

(xi − pi) · ni = 0, ∀vi ∈ VFF ,

where ti ∈ R
3 is the unit tangent vector of vi on the feature arc and ni is its unit

normal on the feature surface. The details of each energy term are explained
below.

Alignment energy Ea orients every meshable singular edge eij ∈ Eh to the
frame field direction dij . It is formulated as:

Ea =
wa

s

∑

eij∈Eh

|(xi − xj)× dij |2
leij

with dij ∈ R
3 being the average direction of rotation axes in the incident charts

of eij and leij being the edge length. It reaches the minimum when dij and
(xi − xj) are colinear.

Shrink energy serves for the objective (4) and is termed as:

Es =
ws

s

∑

eij∈EC

|xi − xj |2
leij

The contracted compound singular edges will be collapsed in the mesh improve-
ment afterward. EC is the set of all compound singular edges and singular edges
incident to zipper nodes.
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Curvature energy Ec =
wc

s

∑

eij ,ejk∈ES
|xi + xk − 2xj |2 /(leij + lejk), acts as

a regularizer of the alignment term, avoiding the undesired minimum where the
singular edge aligns to the opposite direction of the desired. ES is the set of
meshable singular edges.

Deformation energy Ed maintains the validity of the tet mesh, preventing
degenerate/flipped tets and guarding the surface normal against flipping. It is
expressed as:

Ed = wd

∑

vi∈VS

∑

t∈Tvi

log
tr(JT

t Jt)

det(Jt)
2

3

+ ws

∑

vi∈VF

∑

f∈Fvi

log
tr(JT

f Jf )

|det(Jf )|

In the first term, VS is the set of singular vertices, and Tvi
is the set of incident

tets to the vertex vi. When vi is at the boundary, we consider a fan of virtual
tets which takes the adjacent boundary faces as the base and v′i = vi + tli ∗ ni

as the tip vertex, tli being the target edge length at vi and ni being the vertex
normal. The second term is the surface analog, where Jf denotes the Jacobian
deforming f to a regular triangle. VF contains singular vertices on the feature
surface and Fvi represents the set of feature triangles that are adjacent to vi.
The shape metrics are scale-invariant, and wd, ws are set to 0.001 and 0.05 in
our experiment.

Repulsion energy Er = 0.1wr

s

∑

vi∈Vr
Eri helps to prevent new singular arcs

from getting too close after splitting zipper nodes. Vr contains vertices on the
those singular arcs and Eri is expressed as:

Eri =

{

1
2di
|xi − p̂i|2 if di ≤ tlmin

0 otherwise

Let p′i be the closest point on other singular arcs to vi, and di is the distance.
p̂i is the target point where vi is pushed away to and is calculated as p̂i =
pi+p′

i

2 +tlmin∗ pi−p′

i

|pi−p′

i| , where tlmin is the minimum target edge length of singular

vertices on the same arc of vi.
wa, ws, wc, wr are user-specified parameters set to 1 by default in our ex-

periment. s = 0.1 ∗ 3
√
V olC is a constant for scale invariant, where V olC is the

tet mesh volume. At the end of the singular vertex relocation, we smooth the
frame field of 2-ring cells with alignment constraints of features except for sin-
gular edges. In the implementation, we use TinyAD [SBB+22] for automatic
differentiation and CoMISo [BZK12] to solve the optimization problem.

7.4.3 Two-stage scheme

In this section, we describe the strategy that combines frame field correction,
tet mesh improvement, and singularity relocation in our practical algorithm.
Observing that all local repair operations in Sec.7.3 fix each type of defect
might at the cost of bringing in zipper nodes, we advocate a two-stage scheme
for the complete pipeline.

In the first stage, outlined in 6, we correct the frame field following the steps
in Sec.7.4.1 except for zipper node repair, defined as FrameFieldCorrectionEx-
ceptZipperNodes, and then align the singularity graph to the frame field in each
iteration with the method in Sec.7.4.2, called AlignSingularGraphToFrameField.
We apply a local smoothing with feature alignment constraints of the frame field
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in the 2-ring tets around singularities after the singularity relocation. Such an
alternation is performed N1 times in the first stage, where N1 is a user-specified
parameter (e.g., 8). Local defects other than zipper nodes can often be fixed in
the first iteration. However, as our field is not aligned to the singularity at this
point, the edge valence might flip the sign in a rather non-smooth field after the
singular vertex relocation. Consequently, the signature of a singular node may
become an invalid type due to the valence flipping of incident singular edges.
It often takes a few iterations until the singularity graph reaches a relatively
steady status. In addition, there might be compound singular edges that are
not successfully collapsed in the first stage in rare cases. Splitting is employed
to ensure the meshability of all edges.

Algorithm 6 FixNonMeshableFirstStage

Input: Tet mesh and frame field
Output: Tet mesh and frame field
1: for i = 1 to N1 do ⊲
2: FrameFieldCorrectionExceptZipperNodes() ⊲
3: AlignSingularGraphToFrameField() ⊲
4: end for

We follow a similar concept in the second stage but include the repair of
zipper nodes in the frame field correction, named FrameFieldCorrection, sum-
marized in Algo.7. As new singular arcs after unzipping are often zigzag, Ninner

iterations of AlignSingularGraphToFrameField are applied afterward for singu-
larity graph relocation, by default Ninner = 6. N2 is the parameter of the itera-
tion number of the second stage, which can optionally be stopped early once we
detect that all feature and singular vertices are locally meshable. Fig.7.16 shows
the status of the singularity graph of n03c in different stages. Note that smooth-
ing out redundant zipper nodes might not always be possible in regions where
several singular arcs intertwine after repairing zipper nodes. Alternatively, we
can re-label the different valence of short segments and re-align relevant frames,
called UniformSingularArcValence. Ultimately, we optimize the frame field with
feature/singularity alignment constraints (FrameFieldOptimization).

Algorithm 7 FixNonMeshableSecondStage

Input: Tet mesh and frame field
Output: Tet mesh and frame field
1: for i = 1 to N2 do ⊲
2: FrameFieldCorrection() ⊲
3: for j = 1 to Ninner do
4: AlignSingularGraphToFrameField() ⊲
5: if isLocallyMeshable() then ⊲
6: Stop ⊲
7: end if
8: end for
9: end for

10: UniformSingularArcValence() ⊲
11: FrameFieldOptimization() ⊲
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(a) (b)

(c) (d)

Figure 7.16: Algorithm Overview: (a) The initial frame field and its singularity
graph. (b) Various local defects are repaired after the first iteration. (c) At the
end of the first stage, only two zipper nodes are locally non-meshable. (d) The
final singularity graph of the locally meshable frame field.

For the local meshability check, described in Sec. 7.6.1, we split the mesh
if additional DOFs are required for compatible alignment constraints. As the
input to parameterization, the final tet mesh needs further refinement to lower
the frame field distortion since the field is piece-wise constant. We scale the
target edge length according to the frame field distortion and then apply mesh
improving to the whole tet mesh. Differently, we perform a compound edge
splitting and collapsing, meaning the middle vertex in edge splitting and the to
vertex in edge collapsing are allowed to move to the optimum position w.r.t. the
tet quality.
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7.5 Parameterization

7.5.1 Seamless Map

Given a locally meshable frame field F on tetrahedral cells and corresponding
matchings M on half-faces, the next step in our hexahedral meshing framework
consists in generating a locally injective seamless map f : R3 → R

3, which is
needed for integer-quantization. A seamless map can be obtained by solving a
Poisson problem in the spirit of [NRP11], including all feature alignment and
cut constraints but ignoring integer constraints. Frequently, the result is a de-
generate map with inverted elements, and improved robustness can be achieved
by adding a post-process that targets local injectivity [GKK+21]. In our exper-
iments, we often observed that [GKK+21] succeeds in finding a locally injective
map but not being able to correctly reproduce the frame field topology. The is-
sue is that the branched covering only dictates singular indices up to additional
integers inside the domain and half-integers on the boundary, allowing e.g. a
singular arc of index −1 1

4 to change into one of index 3
4 , cf. Fig.13 of [GKK+22].

Integrable Frame Field Optimization To prevent such failure cases, we
propose a novel seamless map optimization based on integrable frame fields
and a smoothness regularizer. The main difference compared to the approach
above is that we do not allow any inverted element throughout the optimiza-
tion and, therefore, effectively prevent index changes that are typically caused
by untangling inverted elements of the initial map. Hence, instead of starting
the optimization from a conforming but potentially degenerate map, we do the
opposite and start from a locally injective but non-conforming map. Dropping
conformity is equivalent to giving up the integrability of the frame field. Hence
we can simply initialize with any target frame field satisfying detF > 0.

More precisely, for each tetrahedron ti, we optimize a Jacobian matrix
Ji ∈ R

3×3. Observing that we are targeting a map, which sends the tangent
vectors of a frame onto coordinate axes, i.e., JiFi = I, the per-element initial-
ization is simply Ji = F−1

i . This initial map is locally injective since detFi > 0
and det Ji = 1/ detFi. Then we optimize a deformation objective with barrier
behavior, tending to∞ for degenerating elements. In all our experiment we use
the symmetric Dirichlet energy ESD =

∫

Ω
SD(J)dV with

SD(J) =

{

||J ||22 + ||J−1||22 det J > 0
∞ det J ≤ 0

(7.1)

Integrability in the sense of a piecewise linear map requires that the (matched)
gradients of two neighboring tetrahedra ti and tj are identical when projected
onto their common face fij , leading to linear constraints

Pij(J
T
i −M−T

ij JT
j ) = 0̄ (7.2)

with Pij ∈ R
2×3 projecting gradients onto a basis of the plane of fij , Mij ∈ O

is a matching matrix from the octahedral group sending Fi to its representation
FiMij in the chart of tj , and 0̄ ∈ R

2×3 a matrix of zeros.
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Optimizing ESD subject to linear integrability constraints and feature align-
ment constraints, often results in a locally injective seamless map. However,
there is neither a guarantee on obtaining a locally injective map, nor on cor-
rectly re-producing the frame field topology. Due to the non-convex objective
function, the optimization might converge to an infeasible point, never reaching
an integrable frame field that would be equivalent to a conforming seamless
map. Index changes, as discussed above, can also happen in this formulation.
Therefore, to further improve correct re-production of the frame field topology,
we add (1) a smoothness regularizer ES =

∫

Ω
||∇J ||22dV , and (2) ensure in the

line search of the optimizer that we never pass through an inverted state – which
is necessary to change the index assuming conformity. A candidate step x+t∆x
is truncated to a step length t such that J + s∆J > 0 for s ∈ [0, t] is valid for
all tetrahedra.

Implementation Details The integrable frame field is optimized with a
Truncated Newton Method [WN+99] using a projected PCG linear solver to
enable scalability to large tetrahedral meshes and accurate constraint satis-
faction. All constraints feasible at the start are handled by the projected
PCG, while integrability constraints, which are infeasible at the start, are in-
cluded with quadratic penalty terms EI , leading to the overall objective E =
ESD +wSES +wIEI . As a final heuristic, which proved valuable in our experi-
ments, we optimize a sequence of optimization problems, where we successively
increase wI and decrease wS . All derivatives are computed algorithmically with
[SBB+22], using Eigen [GJ+10].

7.5.2 Integer-Grid Map

Given a valid seamless map, we first obtain a valid quantization with the ro-
bust algorithm of [BBC22] using the motorcycle complex. The quantization
constraints are then added to the optimization of the seamless map to compute
a valid integer-grid map. Since the seamless map of the previous step serves
as a locally injective initialization, we can immediately optimize a conforming
piecewise linear map with the barrier energy ESD. The linearly constrained
non-convex problem is optimized with IPOPT [WB06]. In our experiments,
the integer-grid map construction succeeded in all cases, where a valid seamless
map was obtained. However, for extremely coarse quantizations, which require
large geometric distortions, failures can be observed since the tetrahedral mesh
might not even have sufficient degrees of freedom to admit a locally injective
map subject to the quantization constraints.

7.6 Evaluation

We challenge our hex meshing framework with the HexMe dataset [BRK+22],
which contains 189 tetrahedral meshes with feature tags carried over from CAD
models and is specifically designed for consistent and practically meaningful
evaluations of hex meshing algorithms. Our method generates valid Integer-Grid
Maps for 109 models, demonstrating significant improvement in the robustness
of the frame field-based hex meshing. We first compare with the state-of-the-art
field-based hex meshing methods [LLX+12] and [JHW+14] in particular, on the
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HexMe dataset. Then we analyze the results of our approach and make a more
detailed discussion.

7.6.1 Comparisons

Since our method is the first that aims for locally meshable 3D frame fields,
direct comparisons with other techniques are impossible. Two previous works
on frame field singularity correction for hex meshing, [LLX+12] and [JHW+14],
target for local meshability of edges via automatic edge collapsing and splitting,
respectively. We compare our method with these two approaches regarding four
aspects: local meshability of edges, local meshability of vertices, seamless map,
and Integer-Grid map validity. Fig. 7.17 shows for all three approaches the
percentage of models that are locally meshable at edges, locally meshable at
vertices, reached a valid seamless map, or reached a valid integer-grid map.

Meshable Edge Meshable Vertex Valid Seamless Map Valid IGM
0

0.25

0.5

0.75

1

Hexable Edge Hexable Vertex Valid Seamless Map Valid IGM 

57.1%57.7%

99.5%100.0%

2.1%2.1%

11.1%

58.2%

2.1%2.1%
7.4%

57.7%

[Li et al . 2012] 
[Jiang et al. 2014]
Ours

Edge Meshability Vertex Meshability

Figure 7.17: Comparison with [LLX+12] and [JHW+14] on HexMe dataset.
From left to right, it shows the success rate of three methods w.r.t. edge me-
shability, vertex meshability, valid seamless map, and valid IGM.

For fairness of the comparison, all three methods are run with identical octa-
hedral fields, generated by [RSL16], with field alignment constraints to feature
edges/faces. In the evaluation of local meshability, since all three methods in-
volve mesh modification, counting the number of models that entirely pass each
test is more meaningful than the number of non-meshable edges or vertices.

Edge Meshability Meshability of singular or feature edges is checked by
measuring their index and requiring index < 1, i.e., at least one quad sector.
For edges incident to feature surfaces, we also check that there is at least one
quad sector in each feature sector.

The leftmost chart in Fig. 7.17 shows the numbers of models which pass the
edge meshability test with three different methods. [LLX+12] and [JHW+14]
succeed on 109 and 110 models respectively. Although all compound singular
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arcs are repaired with these two methods, some feature edges with polar sec-
tors remain non-meshable. Another typical defect is that singular arcs touch
the boundary tangentially, inevitably leading to non-meshable polar sectors.
Our method achieves local edge meshability for all 189 models. Fig.7.18(a)/(b)
shows the singularity graphs of n04b transition prism after the correction with
other/our methods.

Vertex Meshability The local meshability of frame fields is examined by
testing whether the one-ring charts incident to each vertex of the tet mesh con-
tains no invalid sectors. We employ the seamless map construction of Sec. 7.5.1
restricted to the one-ring neighborhood of a vertex in order to explicitly verify
meshability. While [LLX+12] and [JHW+14] obtain 14 and 21 successful results,
respectively, 188 out of 189 models pass the vertex meshability test with our
approach. The behavior of the other two methods is expected since they lack
the correction of invalid singular and polar sector wedges. In our test, the sole
missing case is the tire model i28b gc tire 1218, which exceeded our time limit
of 48h due to a huge number of zipper points in the frame field.

(a) (b)

Figure 7.18: Local meshability. (a) Singularity graph after correction with
[LLX+12] and [JHW+14]. (b) Our singularity graph. Red edges on the interior
feature surface, and black edges are not locally meshable. Green and blue edges
represent singular edges of index − 1

4 and 1
4 , and zipper nodes are colored in red.

Other colored edges are features.

Seamless Map Besides only ensuring local meshability, our novel pipeline
significantly improves hex meshing results. We first measure the number of
valid locally injective seamless maps with correctly re-produced frame field sec-
tors. In the experiment, we parameterize the output frame fields of [LLX+12]
and [JHW+14] with the standard method described in [NRP11]. In compari-
son, ours uses the advanced parameterization technique, which effectively avoids
degenerated and flipped tetrahedra. As shown in Fig. 7.17, our method success-
fully generates 109 valid seamless maps, while the other two approaches only
succeed in four cases. The construction of valid seamless maps verifies that
many of our locally meshable fields are also globally meshable.
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Integer-Grid Map We then compare the number of valid integer-grid maps
generated by the three methods. The three bars on the right side in Fig. 7.17
demonstrate the number of valid IGMs that each method achieves. The two
competing techniques achieve four valid IGMs, respectively, while ours generate
109 valid IGMs. The final hex meshes are extracted from IGMs with HexEx
[LBK16]. Note that since HexEx can fix some local defects in the parameter-
ization, the other methods may produce a few more valid hex meshes despite
invalid IGMs.

7.6.2 Results and Discussion

Local Meshability We refer to local meshability as vertex meshability since
a locally meshable vertex implies that all incident edges are meshable. As stated
in the comparisons on the HexMe dataset, nearly all output frame fields of the
189 meshes are locally meshable except for i28b gc tire 1218.

As a stress test, we run our pipeline on the tet mesh of a sphere with a
random initial field instead of a smooth frame field [RSL16], and it successfully
outputs a locally meshable frame field. The initial field is created in the exper-
iment by sampling randomized unit quaternions to tet mesh vertices. Fig. 7.19
depicts the singularity graphs and streamlines of the random field and the lo-
cally meshable octahedral field. Note that for singular nodes colored other than
red and black in Fig. 7.19(a), although hex mesh nodes with the same signa-
tures exist [LZC+18], they are not necessarily locally meshable. Our method
can correct all local defects in the random field and deliver a locally meshable
field, see Fig. 7.19(b).

Global Meshability The global meshability is measured in terms of valid
seamless parameterization. Our method successfully achieved 109 valid seam-
less maps out of 189 meshes. Fig. 7.20 reveals the performance on each category
of the HexMe dataset. The top three bars of Fig. 7.20 show the number of valid
(olive) vs.invalid (orange) seamless maps of the curvature-adapted/uniform/box-
embedded meshes. As our local repair operations involve splitting, the mesh
resolution does not influence the hex meshing re-
sults much. It delivers 68.3%/66.7% success rate
for curvature-adapted/uniform meshes, respectively.
However, in a few cases, different discretization leads
to different singularity graphs of the input frame
fields, which can be globally non-meshable. For ex-
ample, the initial singularity graph of s16u torus has
twists that are not repairable with local operations
while s16c torus is meshable. The box-embedded category, which has interior
features, is the most challenging for the pipeline since the global structure of
singularity graphs is topologically more complex. The number drops to 38.1%
in this class.

The three bars at the bottom indicate the performance of the hex meshing
pipeline on the industrial/nasty/simple models. It obtains 36.6% valid seamless
maps for industrial meshes, and the number increases to 60.0% for the meshes
in the nasty category. As expected, the pipeline performs the best on the simple
models, achieving 94.1% success rate. Note that excluding the box-embedded
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(a) (b)

Figure 7.19: Stress test. (a) A random field and its singularity graph. (b) The
output field and its singularity graph. Black edges are complex singular edges,
and black vertices are invalid singular nodes.

meshes, the success rate of the three categories goes up to 48.4% / 73.3% /
97.1%, and the numbers are shown in the middle three bars in Fig. 7.20.

Fig. 7.21 exhibits a subset of the output hex meshes, and the complete hex
meshes are attached in the supplemental material. We parameterize the tet
meshes for seamless maps and then re-parameterize it with integer constraints
via a robust quantization [BBC22] for IGMs. We finally extract hex meshes
with HexEx [LBK16]. The input feature entities in the tet meshes are preserved
in the output hex meshes shown in different colors. Fig. 7.21(g-k) demonstrates
the capability of our method in hex meshing models with interior features. In
the post-processing, we improve the geometric quality of hex meshes using stan-
dard wrappers provided in [BDK+03]. Statistics on minimum/average scaled
Jacobian of the shown hex meshes can be found in table 7.1.

Timing In our practical algorithm, the generation of locally meshable frame
fields (frame field repair) is time-efficient. The procedures of repairing local
defects of frame fields involve only local operations. The singularity relocation
step optimizes only the position of singular vertices and improves the 2−ring
tet meshes of singularity graphs. However, the downstream steps in the hex
meshing pipeline, the integrability optimization of frame fields, and the param-
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Figure 7.20: Number of valid vs.invalid seamless maps obtained in each category.

Mesh #Tet Scaled Jacobian Frame Field Repair Frame Field Opt. Param. (s)

i06u m6 189547 0.218/0.977 73 1992 5716
i12u s5 107154 0.038/0.963 52 974 1085
i14b s7 70968 0.133/0.954 327 1440 4097
i15b s8 132749 0.268/0.973 278 779 5785
i18b s22 295584 0.132/0.969 451 3373 41475
i25c s40 24305 0.126/0.958 16 195 434

n08c pentapyr 6144 0.269/0.926 31 166 101
n09c pyramid 7015 0.264/0.948 10 39 30
n10u qtorus cyl 67154 0.307/0.974 279 829 536
s04b tetrahedron 36329 0.123/0.973 23 93 1059
s08c cross cyls dr 19747 0.231/0.982 36 91 84

Table 7.1: Statistics and Timings.

eterization are much more expensive. Table 7.1 summarizes the time cost on
example meshes with complexity from 6k to 300k tetrahedra. The experiment
is done with a single thread of a cluster with CPU AMD EPYC 7742. The
time costs of the frame field repair range from 10 to 451 seconds, while it takes
up to 3373 seconds in the frame field optimization. The parameterization, in
most cases, dominates the time cost. Since we do not aim for singularity graphs
with optimum geometry regarding the integrability energy, they may induce
frame fields with large distortion which are challenging for optimization. Sim-
ilarly, the final tet mesh may contain tets of poor quality due to constraints
imposed by sharp features and singularity graphs, and is thus challenging for
the parameterization.
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(a) s08c cross cyls dr (b) n10u qtorus cyl

(c) n09c pyramid (d) n08c pentapyr

(e) i12u s5 (f) i25c s40

(h) i14b s7 (g) s04b tetrahedron
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(i) i15b s8 (k) i18b s22

Figure 7.21: Several hex meshes automatically generated by our method. Fea-
ture nodes/arcs/surfaces are colored and preserved as in the input tet meshes.

Discussion For the local meshability test, we use default parameters for all
meshes. For hex meshing tasks, the pipeline outputs globally meshable frame
fields for most tested meshes with the same parameters, while it needs parameter
tuning for a few meshes. The main issue comes from the zipper node repair.
The dual path might end at an undesirable boundary or zipper node, leading
to non-meshable singularity graph. Additionally, the singular arc pair might
be severely twisted, which causes failures in finding a feasible solution in the
downstream parameterization. We can adjust the zipper nodes’ positions with
the field alignment weight and the number of iterations of the first stage. For a
few models, we allow merging zipper nodes to orthogonal singular arcs instead
of unzipping.

Although our primary focus is on the local meshability of frame fields, the
hex meshing pipeline performs well on global meshability, outputting 57.7%
valid IGMs. Since our algorithm only involves local repair operations, global
defects remain invalid, e.g., the twist of singular arcs in the initial frame fields.
Starting from better frame fields such as [PBS20] can help to generate more
valid hex meshes. Another aspect is that we might end up in globally non-
meshable configurations in repairing invalid singular nodes. Multiple choices
for determining parallel singular arcs could be locally feasible but not globally.
Exploring sufficient conditions for the global meshability of frame fields will be
left for future work.



Chapter 8

Conclusion

Of all major parts of the frame field base hex meshing: (i) generation of a
feature-aligned frame field, (ii) generation of a seamless map, (iii) integer quanti-
zation, (iv) generation of the integer-grid map, and (v) extraction of (potentially
higher-order) hexahedral mesh, provably robust algorithms exist only for the in-
teger quantization (iii) [BBC22], and the (linear) mesh extraction (v)[LBK16],
while steps (i),(ii), and (iv) remain fragile. This thesis focuses on understanding
fundamental problems in frame fields regarding meshability and development of
practical algorithms to enhance the robustness of the field based hex mesh gen-
eration pipeline. We will first summarize the main contributions of this thesis
and then discuss the limitations and potential directions for future work.

8.1 Summary

The most fundamental question is why a feature-aligned smooth frame field of-
ten does not induce a valid hex mesh. From the singularity point of view, we
show that only 11 configurations exist at hex mesh vertices if the edge valence
of hex meshes is bounded, while many more invalid configurations can happen
in smooth frame fields. This leads to the local and global necessary conditions
of meshability w.r.t. singularity graphs of frame fields. With a locally meshable
singularity graph as input, we present an algorithm that reconstructs the corre-
sponding smooth frame field. It allows users to provide as input a self-designed
singularity graph and (assuming global meshability) obtain a hex mesh with the
same topology as output.

Towards practical applications, feature preservation must be considered in
the automatic field based hex meshing pipeline. Together with colleagues, we
generated the HexMe dataset consisting of representative meshes with feature
tags which enable a comprehensive evaluation of field based hex meshing algo-
rithms. Evaluating the standard field based hex meshing pipeline reveals that
the current automatic approach is too fragile for practical applications.

Most importantly, we extend local meshability conditions to frame fields with
feature constraints. In this part, we first analyze the topological structures that
exist in general 2D frame fields but not in quad mesh-induced frame fields and
identify the necessary and sufficient conditions for meshability of frame fields in
2D. We then study the meshability of singularity arcs and singular nodes in 3D
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frame fields. In particular, singular nodes in 3D frame fields are decomposable
into fundamental pieces. A series of repair operations of local defects are pro-
posed with the help of arc zipping. Finally, we present a novel algorithm that
converts a given frame field into a locally meshable one, significantly improving
the robustness of field based hex mesh generation algorithms. Besides, a more
robust algorithm than available state-of-the-art techniques is designed to opti-
mize seamless maps and integer-grid maps for a given locally meshable frame
field.

8.2 Limitations and Future Work

Automation For the singularity-constrained octahedral frame fields, a glob-
ally meshable singularity graph embedded in a tet mesh is required to get a
valid hex mesh. However, there is no complete characterization of the global
meshability requirements of singularity graphs. It relies on users’ expertise to
design a meshable singularity graph which is sometimes challenging on com-
plex models. Future work in this direction is to automatize the generation of a
globally meshable singularity graph suitable to the model. One way might be
to automatically decompose models into more straightforward templates whose
singularity structures are known and then glue individual pieces together. An-
other potential direction might be to learn the maps from singularity graphs to
shapes.

Robustness Although our locally meshable frame fields significantly improve
the robustness of the field based hex meshing pipeline, a valid output hex mesh
is still far from being guaranteed due to the missing conditions of global mesha-
bility. A local repair operation, e.g., decomposing singular nodes, might end up
with a non-meshable frame field if a wrong choice is made despite being locally
correct, as shown in Fig. 8.1. In repairing zipper nodes, the two edge paths
might be twisted as in in Fig. 8.1(c), which can be too difficult to find a locally
injective map. Incorporating the tangent point energy as in [YSC21] could be
effective in untangling the twists. Another intriguing direction is to relocate
singularities by energy which reflects the distortion of the integer grid maps.
This will not only untangle the twists but also move the singularities to better
location.

Since local meshability is necessary but not sufficient for global meshability,
the obvious next step will be to target full meshability. A direct generalization of
[MPZ14] is impossible due to the non-integrability of 3D frame fields’ surfaces.
However, developing a method to generate the motorcycle complex [BGMC22]
directly from a frame field is nevertheless a promising research direction. Such a
method would inevitably require additional repair mechanisms since, in contrast
to the 2D setting, singularity constraints and feature constraints can prevent
the existence of a valid motorcycle complex, even for a locally meshable frame
field.

Future work is also required to obtain stronger guarantees in the construction
of locally injective maps. Even if a meshable frame field is available, none of the
existing techniques can guarantee finding a seamless map of identical topology.
Simply relocating the vertex position is not sufficient in cases where it requires
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(a) (b) (c)

Figure 8.1: When decomposing an invalid singular node (a), detaching the cor-
rect singular arc results in a globally meshable frame field (b). At the same
time, the other choice might have an impact on global meshability (c).

more degrees of freedom to avoid degeneracies/foldovers. Mesh splitting might
be necessary when such scenarios are detected.

Quality Our locally meshable frame fields are not necessarily optimum in
terms of the quality of output hex meshes since the distortion is not considered
in the formulation. For example, the locations of the interior singular arc of
the prism are equally good as long as it is aligned to the field direction in our
locally meshable frame field, while the optimum location is expected to be the
center of the volume for the best geometric quality of the hex mesh. In fu-
ture work, we can devise such a distortion-driven energy to relocate singularity
graphs of locally meshable frame fields. Besides geometric relocation, topolog-
ical optimization might be another direction worth exploring. With the fixed
singularity graph, simply adjusting its position may not be sufficient to achieve
the best quality. We can further reduce the distortion by applying singular arc
zipping and unzipping at areas of high distortion. This approach is more flexi-
ble and effective than [CAS+19, GLYL20] since it is not restricted to polycube
maps.

Control A key requirement of practical hex meshing algorithms is to offer
control of hex mesh properties, such as size, orientation, and anisotropy. An
early approach [XGDC17] achieves adaptivity by magnifying small-scale areas
with a scale factor, hex meshing the deformed region, and finally mapping it
back to the original domain. The promising approach [FHTB21] provides more
flexible controls over sizing, shear, and orientation with metric-driven frame
fields. However, it suffers from the issues of non-meshable frame fields as most
field based hex meshing approaches do. Incorporating our local repair operations
might significantly improve the success rate.

Towards practical applications, frame field based hex meshing algorithms
should also support hard constraints, e.g., pre-meshed sub-regions of the volu-
metric domain. Future work needs to consider these constraints in the frame
field generation and quantization of parametrization such that individual pieces
conformally stitch together.
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Scalability The ultimate goal of the field based hex meshing pipeline is to
mesh general shapes of varying complexity in a reasonable amount of time.
Developing parallelization strategies for our pipeline is crucial to achieving scal-
ability. This requires designing a challenging synchronization scheme among in-
dividual components, which depends on previous steps in the entire hex meshing
pipeline. Parallelizing each step, however, is more reachable in the near future.
For example, the tet mesh improvement which dominates the time cost of our
locally meshable frame field generation can be parallelized straightforwardly
[HSW+20].
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