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Athénäıs Gautier

from France

Supervisor of the doctoral thesis:

Prof. Dr. David Ginsbourger

Institute of Mathematical Statistics and Actuarial Science
University of Bern

Switzerland

This work is licensed under a Creative Commons
Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/




Modelling and predicting
distribution-valued fields with
applications to inversion under

uncertainty

Inaugural dissertation

of the Faculty of Science,

University of Bern

presented by
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surtout quand on a besoin de lui à 4h du matin, Pablito dont la fulgurance aux
mots croisés n’a d’égale que sa propension à lancer des punchlines, et surtout
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cousine, oncle, tante, et plus je pense à vous tendrement.
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Abstract

Capturing the dependence between a random response and predictors is a fun-
damental task in statistics and stochastic modelling. The focus of this work is
on density regression, which entails estimating response distributions given pre-
dictor values. It enables the derivation of various statistical quantities, including
the conditional mean, threshold exceedance probabilities, and quantiles.

This thesis presents a flexible approach, based upon the class of so-called
Spatial Logistic Gaussian Processes (SLGPs). The SLGP framework utilizes
a well-behaved latent Gaussian Process that undergoes a non-linear transfor-
mation, resulting in a class of models suitable for capturing spatially-dependent
probability measures. SLGP models overcome limitations associated with strong
distributional assumptions (e.g. shapes constraints, log-concavity, Gaussianity,
etc.), varying sample sizes, and changes in target density shapes and modalities.

The first part of this work is dedicated to the development of SLGP models
and gaining a deep understanding of the associated mathematical concepts. We
introduce SLGPs from the perspective of random measures and their densities,
and investigate links between properties of SLGPs and underlying processes.
We show that SLGP models can be characterized by their log-increments and
leverage this characterization to establish theoretical results with a main focus
on spatial regularity.

We then focus on applicability of our approach, and propose an implementa-
tion relying on finite rank Gaussian Processes. We demonstrate it on synthetic
examples and on temperature distributions at meteorological stations.

Finally, we address the potential of SLGPs for statistical inference, focusing
on their potential in stochastic optimization and stochastic inverse problems.
Notably, for inverse problems, an Approximate Bayesian Computation (ABC)
framework is introduced, leveraging SLGP-surrogated likelihoods to accommo-
date situations with limited to moderate data. This methodology, inspired by
GP-ABC methods, harnesses the probabilistic nature of SLGPs to guide data
acquisition, thereby facilitating accelerated inference. We illustrate these ap-
proaches on synthetic examples as well as on a hydrogeological inverse problem
in which a contaminant source is sought under uncertain geological scenario.
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Chapter 1

Introduction

One of the central problems in statistics and stochastic modelling is to capture
and encode the dependence of a random response on predictors in a flexible
manner. Estimating some (conditional) response distributions given values of
predictors x = (x1, ..., xd) is sometimes referred to as density regression and has
received attention in many scientific application areas. However, this problem
becomes particularly challenging when this dependence does not only concern
the mean and/or the variance of the distribution, but also other features, for
instance their shape, their uni-modal versus multi-modal nature, etc.

Parameter space D
x1

500 observations
available

x3

No observations
available

x2

10 observations
available

Figure 1.1: One challenging setting: Estimating the underlying probability dis-
tributions (red curve) by integrating data heterogeneously scattered across space
(histogram).

The main focus of this thesis is to present a flexible and non-parametric ap-
proach for modelling spatially-dependent distributions. The approach is based
on the class of distribution-valued fields called Spatial Logistic Gaussian Pro-
cesses (SLGPs). The SLGP framework builds upon a well-behaved GP, which
can be interpreted as a field of random functions, and considers the stochas-
tic process obtained from applying spatial logistic density transformation to it,

3



4 Chapter 1 – Introduction

hence mapping it to a field of positive random functions that integrate to one
(i.e. a probability-density field).

SLGP models present a novel approach to density regression and provide a
flexible solution to modelling the dependence of a random response on predictors.
This non-parametric framework is designed to take advantage of the assumed
spatial regularity and overcome the challenges associated with traditional meth-
ods, such as the need for strong distributional hypotheses, heterogeneous sample
sizes, and changes in target density shapes and modalities.

The development of the SLGP models and a detailed understanding of the
mathematical objects involved are the focus of the first part of this thesis. The
second part of the thesis delves into the potential of SLGPs in statistical infer-
ence, particularly in the areas of Bayesian optimization and stochastic inverse
problems.

In the case of stochastic inverse problems, the ABC framework is advanced
through the use of the SLGP-surrogated likelihood. This leads to a methodology
that enables accurate inference in low to moderate data regimes and can be
guided by the probabilistic nature of SLGPs to drive data acquisition. The
result is a powerful tool for accelerating scientifical discovery.

The remainder of this thesis is organized into four chapters, each building
upon the previous one. The recommended reading order is as follows. Chapter 2
provides a background on the concepts and notions that will be used in the rest
of the manuscript. Although it does not contain any original contributions,
it is important to familiarize oneself with this chapter in order to fully grasp
the subsequent chapters. Chapter 3 introduces the Spatial Logistic Gaussian
Process (SLGP) model, and explains its construction and properties in detail.
The implementation of the SLGP model is discussed in Chapter 4. Finally, in
Chapter 5 the focus shifts to the application of the SLGP model in statistical
inference in natural sciences. In conclusion, the four chapters in this thesis
provide a comprehensive overview of the SLGP model, from its construction
and implementation to its practical applications in statistical inference.

A summary of the contribution within each chapter is summarized thereafter
and concludes this section.

• In Chapter 2, we introduce the essential elements of spatial statistics that
are relevant to the developments in this work. Our introduction starts
with definitions and properties pertaining to stochastic processes, paying
particular attention to Gaussian Processes. This foundation leads us to
delve into the subject of kernel methods and the related area of reproducing
kernel Hilbert spaces. In a second part, we make connections to Gaussian
Measure theory, which will prove useful later on as we are able to draw
on the wealth of knowledge in this field to inform our own work. Finally,

Modelling and predicting distribution-valued fields
with applications to inversion under uncertainty



Chapter 1 – Introduction 5

we touch upon the basics of random measures, highlighting key elements
from the construction outlined by Kallenberg (2017) that are applicable
to this thesis.

• The central focus of Chapter 3 is to introduce and establish the proposed
approach in this work. To begin, we first examine the current most com-
mon methods for estimating spatially dependent distributions, evaluating
their effectiveness in addressing the challenge at hand. In this review pro-
cess, we also delve into the literature on LGP models for density estima-
tion, which served as inspiration for our work. We propose a comprehen-
sive mathematical framework that builds upon the historical perspective
of LGP models while incorporating a sound mathematical construction.
After laying this foundation, we then introduce the main focus of this
chapter: the Spatial Logistic Gaussian Process (SLGP). Here, we provide
a detailed construction relying on random probability measure fields and
discuss the mathematical characterisation of SLGPs. In the second part of
the chapter, we turn our attention to the properties of SLGPs. One section
focuses on revisiting notions of spatial regularity from spatial statistics and
applying them to probability-distribution valued fields. The other section
explores the concept of posterior consistency of the considered prior class.
Throughout, we provide thorough explanations and mathematical proofs
to support our claims.

• In Chapter 4, we address the practicalities of implementing SLGP models
for the estimation of probability density fields. This includes a discussion
of the mathematical properties of the likelihood and posterior distribu-
tions, as well as strategies for efficient estimation. Our work in this chapter
is divided into three parts. Firstly, we propose models and formulations
suitable for likelihood computations, with a focus on computational ef-
ficiency. Secondly, we explore implementation choices for Maximum A
Posteriori (MAP) estimation and posterior inference via Markov Chain
Monte Carlo (MCMC). Finally, we demonstrate the validity of our claims
from the previous chapter, as well as the practical relevance of our ap-
proach through numerical illustrations. The data illustrations are partic-
ularly noteworthy as they allow us to reinforce the results presented in
Chapter 3. For example, we use unconditional simulations to showcase
the sharpness of the bounds derived from studying the spatial regularity
of SLGPs. Additionally, we use analytical test cases to demonstrate the
posterior consistency of our models in a controlled setting. Finally, we
demonstrate the applicability of our models to higher dimensions using a
3D meteorological dataset.

Modelling and predicting distribution-valued fields
with applications to inversion under uncertainty



6 Chapter 1 – Introduction

• Finally, in Chapter 5, we explore the main motivation behind this the-
sis, which is to use statistical modelling to accelerate scientific discovery
and guide experiments in the natural sciences. We examine the potential
of both GP and SLGP modelling in Bayesian Optimization and stochas-
tic inverse problems. For Bayesian Optimization, our focus is on defin-
ing criteria for exploring the parameter space and developing numerical
methods for computing these criteria. In the context of stochastic inverse
problems, we provide an overview of the framework and its key concepts,
with a strong emphasis on Approximate Bayesian Computation (ABC).
We review popular approaches for improving the numerical efficiency of
ABC algorithms and introduce the SLGP-ABC framework, which builds
upon the GP-ABC framework. Additionally, we present a suitable method
for probabilistic forecasting to assess the quality of our approaches. To
demonstrate the practicality of our methods, we present an illustration
and benchmarking of both Bayesian Optimization and stochastic inver-
sion on a hydrogeological application case.

Modelling and predicting distribution-valued fields
with applications to inversion under uncertainty



Chapter 2

Background properties and
methods

As discussed in the motivations, we are interested in statistical modelling of spa-
tially dependent probability measures. This topic naturally orients us towards
both the field of spatial statistics and that of random measures. We aim here at
covering fundamental concepts and standard results that are deemed relevant
for our work’s self-containedness, with a focus on (Gaussian) Random Fields
and Gaussian Measures in Sections 2.1, on kernels and native spaces thereof
in 2.2; and on Random Measures in Section 2.3. The reader is expected to have
a basic understanding of probability theory, and can refer to Billingsley (2008)
for definitions. Indeed, for the sake of conciseness, we will primarily provide
definitions and properties that are directly relevant to this work.

Also note that we introduce the concepts here in all generality. To avoid
confusion with notations in Chapter 3 and after, we insist on the fact that,
unless stated otherwise, our processes will be indexed by a generic set S.

2.1 Random Fields, Gaussian Random Fields

and Gaussian Measures.

2.1.1 Stochastic processes.

We will begin by introducing basic concepts from spatial statistics in Subsec-
tion 2.1.1, and gradually build towards the topic of Gaussian Processes and
Measures in Subsection 2.1.2.

7
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General definitions in Stochastic Processes.

Definition 2.1.1 (Stochastic Process). Let (B,Σ) be a measurable space. A B-
valued stochastic process on a set S is a collection of B-valued random variables
(Zs)s∈S defined on a common probability space (Ω,F , P ).

In the previous definition, the set S can be referred to as index set, whereas
B is the state space. Whenever the index-set is a subset of Rd, a stochastic
process is also called Random Field (RF), a term that is commonly encountered
in spatial statistics.

Remark. It is common to use the notation (Xs)s∈S for generic stochastic process.
However, to make this chapter consistent with the following ones and to ease
readability, we decided to borrow the notation (Zs)s∈S from spatial statistics.

There are two ways to look at a stochastic process:

• For fixed s ∈ S, ω ∈ Ω 7→ Zs(ω) is a B-valued random variable.

• For fixed ω ∈ Ω, s ∈ S 7→ Zs(ω) is an element of B called a sample path
or a realisation of Z.

While these two points of view are concomitant, it is important to note that
the measurability of ω ∈ Ω 7→ Zs(ω) for any s ∈ S is not sufficient to ensure
that the whole sample path s ∈ S 7→ Zs(ω) is itself a measurable element for
any ω ∈ Ω. This leads us to the following definition.

Definition 2.1.2 (Measurable Stochastic Process). Let (B,Σ) and (S,Σ′) be
two measurable spaces. A B-valued stochastic process indexed by S, denoted
(Zs)s∈S is called measurable if all its sample paths are measurable with respect
to the product σ-algebra Σ′ ⊗F .

Because of the duality between B-valued random processes and samples
paths, defining equality between (non-necessarily measurable) stochastic pro-
cesses is not straightforward, and there are several notions co-existing in the
literature.

Definition 2.1.3 (Equality of stochastic processes). Two stochastic processes

(Z
(1)
s )s∈S and (Z

(2)
s )s∈S defined on a common probability space (Ω,F , P ) are

equal if:

Z(1)
s (ω) = Z(2)

s (ω) for all (s, ω) ∈ S × Ω

The latter is the strongest notion of equality for stochastic processes, but
there exists relaxed versions of it.

Modelling and predicting distribution-valued fields
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Definition 2.1.4 (Indistinguishability of stochastic processes). Two stochas-

tic processes (Z
(1)
s )s∈S and (Z

(2)
s )s∈S defined on a common probability space

(Ω,F , P ) are indistinguishable if:

P
[
Z(1)

s = Z(2)
s for all s ∈ S

]
= 1

Definition 2.1.5 (Stochastic equivalence of stochastic processes). Two stochas-

tic processes (Z
(1)
s )s∈S and (Z

(2)
s )s∈S defined on a common probability space

(Ω,F , P ) are stochastically equivalent if:

P
[
Z(1)

s = Z(2)
s

]
= 1 for all s ∈ S

Z(1) and Z(2) are also called version (resp. modification ) of one another, equal
up to a version (resp. modification ), or equal in distribution.

It is straightforward to deduce that equality implies indistinguishability,
which in turns implies stochastic equivalence. The converse generally does not
hold, except under some restricting assumptions, some of which will be stated
later in this document.

As stated earlier, one of our focuses will be path properties of stochastic pro-
cesses. However, not all path properties considered lead to measurable events,
as pointed out in Scheuerer (2009):

Proposition 2.1.1. For any d ≥ 1 and an open subset S ∈ Rd, let C(S) ⊂ RS

denote the subset of all continuous functions f : S → R. Then, S /∈ B(R)S,
where B(R) denotes the Borel σ-algebra of R. In other word, the set of contin-
uous functions on S is not measurable.

In order to avoid this technical difficulty, it is advisable to restrict our interest
to so-called separable random fields.

Definition 2.1.6 (Separable Random Field as defined in (Gihman and Skoro-
hod, 1974)). A random field (Zs)s∈S defined on a probability space (Ω,F , P )
and indexed by a topological set S is separable if there exists a countable dense
subset D ⊂ S and a set N ∈ F of probability 0 so that for any open set I ⊂ S
and any closed set B ⊂ R, the two sets:

AB,I = {ω : Zs(ω) ∈ B, ∀y ∈ I}

AB,I∩D = {ω : Zs(ω) ∈ B, ∀y ∈ I ∩D}

differ from each other only on a subset of N.

Modelling and predicting distribution-valued fields
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Due to the countability of D, AB,I∩D is measurable even when AB,I is not.
Separability means that the behaviour of the process is essentially determined
by its values on a countable set. We will need this notion later to characterise
the continuity of separable random fields.

Remark. Note that in all definitions but the last one, S was assumed to be either
a generic set, or endowed with a σ-algebra Σ′). However, in the last definition
we also required it to be equipped with a topology, so as to select a dense subset.
In practice, we will often work with index sets that are subsets of Rd for some
d ≥ 1, and as such can be equipped with the topology and Borel σ-algebra
inherited from the natural topology of the ambient Euclidean space.

Real-valued random fields

A class of interest is that of real-valued stochastic processes (where R is typically
equipped with its Borel σ-algebra), as it allows for studying moments of the
process.

Definition 2.1.7 (Moments of stochastic processes). A real-valued stochastic
process (Zs)y∈S over the probability space (Ω,F , P ) is of first order if Zs ∈
L1(Ω,F , P ). Then, the mapping:

s 7→ E[Zs] for all s ∈ S

is called the mean function.

Similarly, Z is of second order if Zs ∈ L2(Ω,F , P ), and the mapping:

(s, s′) 7→ Cov(Zs, Zs′) for all s, s
′ ∈ S

is called the covariance function or covariance kernel on S × S.

Despite being introduced in the context of covariance functions, studying
kernels is not constrained to focusing on second order fields, and we shall explore
it in an upcoming section of this chapter. However, let us first introduce a class
of stochastic processes called Gaussian Processes (GPs).

2.1.2 Gaussian Processes.

Gaussian processes are a type of stochastic process characterised by their Gaus-
sian distribution and are widely used in various areas of machine learning and
statistics (Williams and Rasmussen, 2006).

Modelling and predicting distribution-valued fields
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General settings and important properties of Gaussian Processes

Definition 2.1.8 (Gaussian Process). A real-valued stochastic process (Zs)s∈S
over the probability space (Ω,F , P ) is a Gaussian Process (GP) if its finite-
dimensional distributions are Gaussian, meaning that for all n ≥ 1 s1, ..., sn ∈ S,
the random vector (Zs1 , . . . , Zsn) is multivariate-Gaussian distributed.

The distribution of a Gaussian process is fully characterised by its mean
function and its covariance function. The measurability structure considered
here being the cylindrical σ-algebra of RS.

The mean and covariance affect regularity properties of the associated GP,
particularly its sample path continuity. While the impact of the mean’s regu-
larity can easily be ruled out by subtracting it, the kernel’s influence is more
indirect. Necessary conditions on the kernel are available in the literature, with
one of the most well-known one being Dudley’s theorem (Dudley, 1967).

Definition 2.1.9 (Canonical semi-metric). For a generic set S and a GP (Zs)s∈S,
the canonical semi-metric associated to Z is:

d2Z(s, s
′) = V ar[Zs − Zs′ ] for all (s, s′) ∈ S2. (2.1)

Assuming that the covariance kernel of Z is denoted by k, we have:

d2Z(s, s
′) = k(s, s) + k(s′, s′)− 2k(s, s′) for all (s, s′) ∈ S2. (2.2)

The canonical-semi metric allows one to study sample-paths regularity.

Theorem 2.1.2 (Dudley’s integral). For a GP Z ∼ GP(0, k) over a domain S
and ϵ > 0:

E [∥Z∥∞] ≤ 24

∫ ∞

0

√
log(N(ϵ, S, dZ)) dϵ. (2.3)

where for ϵ > 0, N(ϵ, S, dZ) is the entropy number, i.e. the minimal number
of (open) dZ-balls of radius ϵ required to cover S.

If the entropy integral on the right-hand side converges, then Z has a version
with uniformly continuous paths on (S, dZ) almost-surely.

Remark. We note that, for any metric d on S, if Z admits a version with almost
all sample paths uniformly continuous on (S, dZ) and if dZ is continuous with
respect to d then Z also admits a version with almost all sample paths uniformly
continuous on (S, d).

Dudley’s theorem provides us with a sufficient condition to ensure existence
of an almost surely continuous version of a GP. However, whenever the process at
hand is separable, we obtain a stronger result, as noted in the following remark.

Modelling and predicting distribution-valued fields
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Remark. As pointed out in Lemma 5.2.8. of Scheuerer (2009), if a (not necessar-
ily Gaussian) process Z is separable and admits a version Z̃ which is continuous
almost surely, then Z and Z̃ are indistinguishable. As a consequence, Z itself is
continuous almost surely.

A consequence of Dudley’s theorem is the following:

Proposition 2.1.3. Let us consider a GP Z ∼ GP(0, k) defined on S, a convex
and compact subset of Rd. Assume that the following Hölder condition holds:

d2Z(s, s
′) ≤ K∥s− s′∥β∞ (2.4)

for some constant K > 0 and 0 > β. Then Z admits a version with almost
surely uniformly continuous sample paths.

The full proof and derivation of this classical result is available in Ap-
pendix A.2.

Remark. We considered a centred GP in the previous proposition, as the in-
fluence of the mean is easy to rule out. Indeed, for Z a centred GP and m a
function, the non-centred GP defined by m + Z is continuous almost surely if
m is continuous and Z is continuous almost surely.

Dudley’s theorem provides us with an upper bound for the expected sup-
norm of a Gaussian Process Z. However, it does not provide us with any in-
formation about the behaviour of more complex quantities like the expected
value of a non-linear function of the norm of Z (i.e. E [f(∥Z∥∞)]). To better
understand and control these types of quantities, we need to consider the frame-
work and powerful results of Gaussian measure theory and its connections to
Banach-valued Gaussian Processes.

Banach-valued Gaussian Processes, and Gaussian Measures

A class of Gaussian processes that is particularly interesting to study is that of
Banach-valued GPs. The framework of Gaussian measures on Banach spaces
provides a rich set of powerful tools and results for studying these processes. By
connecting the theory of Banach-valued Gaussian processes with the theory of
Gaussian measures on Banach spaces, we can gain a deeper understanding of
these processes and their properties.

To begin, we will focus on introducing the context that leads to Fernique’s
theorem. This theorem is a fundamental result in the theory of Gaussian mea-
sures on Banach spaces and is widely used in the study of Banach-valued Gaus-
sian processes. After that, we will ensure that we can establish an equivalence
between Gaussian processes and Gaussian measures on Banach spaces.

Modelling and predicting distribution-valued fields
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Elements from Gaussian Measure theory
The results listed in this first half of the section were adapted from (Hairer,
2009).

Definition 2.1.10 (Gaussian measure on a Banach space). A probability mea-
sure µ over a Banach space B is Gaussian if and only if for all ℓ ∈ B∗ (the
topological dual of B, i.e. the space of continuous linear forms on B), the
push-forward measure µ ◦ ℓ−1 (of µ through ℓ) is a Gaussian measure over R.

The notions of mean function and covariance kernel established in Defini-
tion 2.1.7 are respectively mirrored by mean element and covariance operator.
For simplicity, we restrict ourselves to the setting where the mean can be seen an
element of the Banach space itself. We will discuss two suitable set of hypotheses
for this construction to be sound shortly after the definition.

Definition 2.1.11. For a probability measure µ over a suitable Banach space
B, the mean of µ is the unique element mµ ∈ B such that:∫

B

ℓ(f) dµ(f) = ℓ(mµ) for all ℓ ∈ B∗ (2.5)

The covariance operator is the bilinear operator Cµ : B∗ ×B∗ → R defined by:

Cµ(ℓ, ℓ
′) =

∫
B

(ℓ(f)− ℓ(mµ))(ℓ
′(f)− ℓ′(mµ)) dµ(f) for all ℓ, ℓ

′ ∈ B∗ (2.6)

Remark. The mean of a Gaussian Measure is typically an element of B∗∗, not
of B. However, it is easier to work with Banach space that are reflexive (i.e.
B∗∗ = B). Another hypothesis that allows one to relax this assumption is
to consider separable Banach spaces. In this setting, the mean of a Gaussian
measure is always an element of B itself, as established by Bogachev (1998).

One result that is of importance for us is Fernique’s theorem.

Theorem 2.1.4 (Fernique 1970). Let µ be any probability measure on a sepa-
rable Banach space B and R : B2 → B2 be the rotation defined by:

∀f, f ′ ∈ B2, R(f, f ′) =

(
f + f ′
√
2
,
f − f ′
√
2

)
.

If µ satisfies the invariance condition:

R∗(µ⊗ µ) = µ⊗ µ.

Then, there exists α > 0 such that
∫
B
exp(α∥x∥2) dµ(x) <∞.

Modelling and predicting distribution-valued fields
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Remark. Here we used the notation R∗ for the push-forward of the measure µ⊗µ
through R.

This Theorem ensures the existence about one such α, but does not provide
control over its value. Thankfully, Theorem 4.1 in Ledoux (1996) does so, by
providing a sharp bound on acceptable values of α. This calls for an additional
definition that we state here before enunciating the proposition of interest.

Definition 2.1.12 (Dual norm). Let us consider a Banach space B and its dual
B∗. The dual norm of a linear functional ℓ ∈ B∗ is defined as:

∥ℓ∥ := sup
f∈B,∥f∥≤1

|ℓ(f)| (2.7)

Proposition 2.1.5. In Theorem 2.1.4, one can take any α such that

0 < α ≤ 1

2∥Cµ∥
(2.8)

where
∥Cµ∥ := sup {|Cµ(ℓ, ℓ

′)| ∀ ℓ, ℓ′ ∈ B∗ s.t. ∥ℓ∥ = ∥ℓ′∥ = 1} (2.9)

The theorem is stated for any probability measure, in particular it holds for
a Gaussian Measure, hence the following proposition also taken from (Hairer,
2009).

Proposition 2.1.6. There exist universal constants α, K > 0 with the following
properties. Let µ be a Gaussian measure on a separable Banach space B and
let f : R+ → R+ be any measurable function such that f(x) ≤ Cf exp(αx

2) for
every x ≥ 0. Then, with M =

∫
B
∥x∥µ( dx) denoting the first moment of µ, one

has the bound
∫
B
f(∥x∥/M)µ( dx) ≤ KCf

It follows from it that a Gaussian measure admits moments (in a Bochner
sense) of all orders.

Finally, another proposition will also prove handy to derive the almost sure
continuity results and is stated thereafter.

Proposition 2.1.7. Let B be a separable Banach space, S be a compact and
convex subset of Rd, and let (Zs)s∈S be a collection of B-valued Gaussian random
variables such that

E[∥Zs − Zs′∥] ≤ C∥s− s′∥α ∀s, s′ ∈ S (2.10)

for some C > 0 and some α ∈ (0, 1]. Then, there exists a unique Gaussian
measure µ on C(S,B) such that any (Z̃s)s∈S having law µ is a version of Z.
Furthermore, Z̃ is almost surely β-Hölder continuous for every β < α.

Modelling and predicting distribution-valued fields
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Can we equivalently work with Process and Measure ? In order to
make use of the powerful results from the theory of Gaussian measures, we want
to ensure that a Gaussian process Z with sample paths in a given Banach Space
induces a Gaussian measure on it. To simplify the analysis, we will consider
that Z is indexed by a compact subset of Rd, denoted by S. While results exist
in more general settings, we will not be discussing them here.

Given that our focus is on studying the spatial regularity and sup-norm of
the process, it is natural to consider two choices of B:

1. The space of continuous functions, equipped with the sup-norm

2. The space of bounded functions, equipped with the sup-norm

In order to determine whether they are suitable for further studies, we will
review the properties of the two aforementioned spaces. Fernique’s theorem,
stated in Theorem 2.1.4, requires the Banach space to be separable, however it
is not always the case of the latter.

1. The first functional space considered is separable. This is because it is
possible to approximate any continuous function on a compact subset of
Rd using d-variate polynomials with rational coefficients.

2. The second functional space is generally not separable. This is because, for
an uncountable set S, the family of indicator functions (δs(x))s∈S, which
indicate whether x = s, are bounded and form an uncountable set. The
metric open balls of radius 1/2 around each function are pairwise disjoint,
and constructing a dense subset would require picking at least one element
in each of these balls. As a result, there is no countable dense subset of
the space of bounded functions if S is uncountable.

Due to its better properties, we shall focus our efforts on the space of con-
tinuous functions on S.

From now on, we will consider (B, ∥ · ∥∞) to be the Banach space of con-
tinuous functions, equipped with the sup-norm. It is known that the Gaussian
process and Gaussian measure perspectives are equivalent in this setting, as
established in 1D by Rajput and Cambanis (1972), and extended to higher di-
mensions in Travelletti and Ginsbourger (2022). Furthermore, the relationships
between the mean and covariance functions of a process can be easily established
as special cases of the mean element and covariance operator of the correspond-
ing measure.

Lemma 1. The evaluation functionals defined for any s ∈ S by es : f ∈ B 7→
f(s) are in B∗.

Modelling and predicting distribution-valued fields
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Proof of Lemma 1. They are indeed linear, as for any f, f ′ ∈ B and λ ∈ R,
f + λf ′ ∈ B and es(f + λf ′) = f(y) + λf ′(y) = es(f) + λes(f

′).
Moreover, for any s ∈ S, |es(f) − es(f)| = |f(s) − f ′(s)| ≤ ∥f − f ′∥∞ by

definition, hence ensuring continuity of the functionals. We deduce from this
that es ∈ B∗ for all s ∈ S.

Proposition 2.1.8 (Relation between the covariance operator Cµ and the co-
variance kernel k). Consider a B-valued GP Z ∼ GP(m, k), and µ the corre-
sponding Gaussian Measure. Then:

m(s) = mµ(es) for any s ∈ S (2.11)

k(s, s′) = Cµ(es, es′) for any s, s′ ∈ S (2.12)

Where es are the evaluation functionals introduced in Lemma 1.

It follows that with the considered Banach space, not only Fernique’s the-
orem can be applied as stochastic process and measure point of view can be
interchanged, but that we can also reformulate the bound in Proposition 2.1.5
in terms of the kernel k.

Corollary 2.1.9. Consider a B-valued GP Z ∼ GP(m, k), and µ the corre-
sponding Gaussian Measure. Then:

∥Cµ∥ ≥ sup
s∈S

k(s, s) (2.13)

and it follows that α in Proposition 2.1.5 must satisfy:

0 < α ≤ 1

2∥Cµ∥
≤ 1

2 sup
s∈S

k(s, s)
(2.14)

Proof of Corollary 2.1.9. We already proved in Lemma 1 that the evaluation
functionals are in the continuous dual. We also note that for any s ∈ S :

∥es∥ := sup
f∈B

∥f∥∞=1

|es(f)| = sup
f∈B

∥f∥∞=1

|f(s)| = 1 (2.15)

the required result then follows from Equation 2.12 and ∥Cµ∥’s definition.

2.2 On kernels, Reproducing Kernel Hilbert Spaces

and Gaussian Processes

In Definition 2.1.7, we informally presented covariance kernels as being bivari-
ate functions interpretable as covariance functions of second order random fields.

Modelling and predicting distribution-valued fields
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Although it is an omnipresent aspect of kernels (Stein, 1999), it does not do jus-
tice to Kernel methods (Aronszajn, 1950; Kimeldorf and Wahba, 1970; Schölkopf
and Smola, 2018; Saitoh and Sawano, 2016) which is a versatile framework allow-
ing for probabilistic prediction (Williams and Rasmussen, 2006), classification
(Steinwart and Christmann, 2008) and function approximation based on scat-
tered data (Wendland, 2004). In this section, we explore other aspects of kernel
methods that will be relevant later in this thesis.

2.2.1 Kernels

On general kernels: definitions and important properties

First, let us define essential properties for kernels, namely the positive definite-
ness and conditional positive definiteness of functions.

Definition 2.2.1 (Positive definite function). For a generic space S, we call
positive definite (or p.d.) on S any function k : S × S such that:

n∑
i=1

n∑
j=1

aiajk(si, sj) ≥ 0 (2.16)

for any n ≥ 1, s1, ...sn ∈ S and any a1, ..., an ∈ R.

Definition 2.2.2 (Conditionally positive definite function). For a generic space
S, we call conditionally positive definite (or c.p.d.) on S any function k : S × S
such that:

n∑
i=1

n∑
j=1

aiajk(si, sj) ≥ 0 (2.17)

for any n ≥ 1, s1, ...sn ∈ S and any a1, ..., an ∈ R such that
∑n

i=1 ai = 0.

This allows us to define kernels. Some authors consider conditionally positive
kernels, or negative kernels (where the sum in (2) of Definition 2.2.1 has to be
non-negative). In this work, unless explicitly stated otherwise, we will consider
that a kernel has to be p.d., as stated in the following definition.

Definition 2.2.3 (Kernels). For a generic space S, we call kernel on S any
function k : S × S such that:

1. k is symmetric, i.e. k(s, s′) = k(s′, s) for all s, s′ ∈ S.

2. k is a p.d. function.

One easily checks that the covariance functions of second order fields are
indeed kernels as we just defined.
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Definition 2.2.4 (Stationarity). A function k : S2 → R is called stationary if
there exists a function k0 : S → R such that

∀(s, s′) ∈ S2, k(s, s′) = k0(s− s′)

Usually, the abuse of notation k(s− s′) is used to refer to a stationary function.

It is interesting to study stationary kernels, as we have a deeper understand-
ing of their structure than of that of general kernels. In particular, Bochner’s
theorem (Bochner, 1933) gives more insight on the Fourier transform of sta-
tionary kernels. We focus thereafter on kernels defined on Rd (and subspaces
thereof) and introduce a bold notation to emphasize the fact that inputs are
typically expected to be vectors rather than scalars.

Theorem 2.2.1 (Bochner). A continuous stationary function k(s, s′) = k0(x−
x′), (s, s′ ∈ Rd) is positive definite if and only if k0 is the Fourier transform of
a finite positive measure η:

k0(y) =
1

2π

∫
Rd

eiω
⊤y dη(ω) (y ∈ Rd) (2.18)

If η has a density with respect to Lebesgue measure, it is called the spectral
density and will be denoted thereafter by s(ω).

The so-called Fourier duality of spectral densities and covariance functions
derives from it, and is also known as the Wiener-Khinchin theorem (Khinchin,
1934).

k(s− s′) =
1

2π

∫
Rd

s(ω)eiω
⊤(s−s′) dω (2.19)

s(ω) =

∫
Rd

k(y)e−iω⊤y dy (2.20)

Introducing this more formal definition of kernels enables us to discuss a
family of kernel methods that will be of particular interest to us thereafter.

2.2.2 Reproducing Kernel Hilbert Spaces

Kernels are deeply linked to a class of Hilbert spaces called Reproducing Kernel
Hilbert Spaces that we define now.

Definition 2.2.5 (Reproducing kernel Hilbert space: RKHS). A (real) Hilbert
space (H, ⟨·, ·⟩) of functions from some set S to R is said to be a reproducing
kernel Hilbert space if there exists a function k : S × S → R such that:

Modelling and predicting distribution-valued fields
with applications to inversion under uncertainty



Chapter 2 – Background properties and methods 19

1. k(s, ·) ∈ H for all s ∈ S

2. f(s) = ⟨f, k(s, ·)⟩ for all f ∈ H and all s ∈ S

The aforementioned function k is called reproducing kernel, and the prop-
erty 2. is called reproducing property. Such a k is indeed a kernel as in Defini-
tion 2.2.3.

The relationship between RKHS and kernel is straightforward, indeed:

Theorem 2.2.2 (Moore-Aronszajn theorem (Aronszajn, 1950)). Let k be a ker-
nel on a generic set S, then there corresponds one and only one class of functions
on S forming a Hilbert space H and admitting k as a reproducing kernel.

Consider a continuous kernel k defined on a compact metric space S. It is
possible to write expansions of k in suitable families of basis function. One such
expansion relies on the spectral decomposition of the operator Tk : f ∈ L2(S) 7→∫
S
f(u)k(u, ·) du ∈ L2(S), where the integral is taken with respect to Lebesgue

measure. By classical spectral theory, it is known that this self-adjoint compact
operator possesses non-negative eigenvalues λ1, λ2, ... and respectively associated
normalised continuous eigenfunctions φ1, φ2, ... forming an orthonormal basis of
L2(S).

Theorem 2.2.3 (Mercer theorem). For a continuous kernel k defined on a
compact metric space S, and (λj)j≥1, (φj)j≥1 as above, we have:

k(s, s′) =
∑
j≥1

λjφj(s)φj(s
′) for all s, s′ ∈ S (2.21)

where the series converges absolutely and uniformly on S × S.

Remark. It is most common to work with continuous kernels on compact metric
spaces, but the reader can refer to Steinwart and Scovel (2012) for Mercer’s
theorem on more general domains.

By utilizing the framework of kernel methods, it is possible to map suitable
probability measures into a reproducing kernel Hilbert space, as demonstrated
by Berlinet and Thomas-Agnan (2004); Smola et al. (2007); Sriperumbudur et al.
(2010); Muandet et al. (2017).

Definition 2.2.6 (Kernel mean embedding). Let k be a kernel on a generic
space S and P be a probability measure on S such that EX∼P [k(X,X)] < ∞
The kernel mean embedding of P into k’s RKHS H is defined by the mapping:

P 7→ µP :=

∫
S

k(u, ·) dP (u) (2.22)

Then, µP ∈ H and EX∼P [f(X)] = ⟨f, µP ⟩.
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Remark. Whenever the considered kernel k is bounded, the kernel mean embed-
ding is defined for any probability measure as EX∼P [k(X,X)] ≤ sups∈S k(s, s)
for any P .

Note that in practice we rarely have access to the probability distribution P
but rather to realisations of i.i.d. random variables, that we denote (Y1, ..., Yn).
The most common estimator of the kernel mean embedding is simply the Monte-
Carlo one:

µ̂P =
1

n

n∑
i=y

k(Yi, ·) (2.23)

The framework of kernel mean embeddings can be used to define pseudo-
metrics on probability measures, which can be applied in various ways in machine
learning and statistics.

Definition 2.2.7 (Maximum Mean Discrepancy). Consider a kernel k on S and
its RKHS H. For two probability measures on S denoted P and Q that admit
a kernel mean embedding, the Maximum Mean Discrepancy (MMD) between P
and Q is defined by:

MMD(P,Q) := sup
f∈H
∥f∥≤1

{∫
S

f(u) dP (u)−
∫
S

f(v) dQ(v)

}
(2.24)

= sup
f∈H
∥f∥≤1

{⟨f, µP − µQ⟩} (2.25)

= ∥µP − µQ∥ (2.26)

In light of the linearity of the operator involved and of the reproducing
property, one can also formulate the MMD to emphasize its dependency on the
kernel k:

MMD2(P,Q) = EX,X′ [k(X,X ′)] + EY,Y ′ [k(Y, Y ′)]− 2EX,Y [k(X, Y )] (2.27)

where X,X ′ ∼ P and Y, Y ′ ∼ Q are independent.
Whenever the kernel mean embedding is an injective map, the kernel k is

called characteristic, This property ensures that MMD(P,Q) = 0 is equivalent to
P = Q. This is significant as it guarantees that MMD can effectively differentiate
between probability measures. It is crucial in various applications such kernel
two-sample tests (Gretton et al., 2012), independence test (Gretton et al., 2005)
or learning on distributional data (Sutherland, 2016; Szabó et al., 2016).

It is interesting to note that the MMD being a measure of dissimilarity can
be expressed in the kernel terminology:
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Proposition 2.2.4 (MMD as a Kernel). The function defined for any two prob-
ability measures (P,Q) by −MMD2(P,Q) is a conditionally positive kernel on
the space of probability measures on S.

Proof. For n ≥ 1, consider P1, ..., Pn n probability measures on S and a1, ..., an ∈
R such that

∑n
i=1 ai = 0.

⋆ := −
n∑

i=1

n∑
j=1

aiajMMD2(Pi, Pj) (2.28)

= −
n∑

i=1

n∑
j=1

aiaj
∥∥µPi

− µPj

∥∥2 (2.29)

= −2
n∑

i=1

ai ∥µPi
∥2

n∑
j=1

aj︸ ︷︷ ︸
=0

+2

∥∥∥∥∥
n∑

i=1

aiµPi

∥∥∥∥∥
2

≥ 0 (2.30)

The symmetry of MMD2 being an immediate consequence of the definition, we
conclude that it is indeed a conditionally positive kernel.

This property will be of significance later on, as it enables the comparison
of probability measures, which is a key focus of this thesis. However, before
delving into that, let us examine other aspects of RKHS in more detail.

2.2.3 Gaussian Processes in relation to kernels and RKHS

The small ball property of Gaussian Processes

There exist strong connections between Gaussian Processes and the RKHS that
are induced by their covariance kernels. One such connection is known as the
small-ball property of Gaussian Processes.

Proposition 2.2.5 (Small ball probabilities for a Gaussian process). If Z ∼
GP (0, k), is such that ∥Z∥∞ <∞ a.s, then for all ϵ > 0:

P [∥Z∥∞ < ε] > 0 (2.31)

Moreover if f is an element of the reproducing kernel Hilbert space of k, then
for all ϵ > 0:

P [∥Z − f∥∞ < ε] > 0 (2.32)

The proof, as well as rates are available in van der Vaart and van Zanten
(2008). This result allows one to relate properties of the process to the RKHS
spanned by its kernel.
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Transferring kernel expansions to Gaussian Processes

We also leverage connections between Gaussian Processes and the RKHS of their
kernel to derive expansions of the processes. We review two of them, the first
one gives raise to exact expansions of kernels and processes, whereas the other
one yields a stochastic approximation of them.

Mercer theorem and Karhunen-Loève expansion Among other, Bochner’s
theorem allows for approximating kernels (and subsequent Gaussian Processes),
which is useful for accelerating kernel methods and reducing dimensionality of
the problems at hand. In particular, the Karhunen-Loève expansion (Karhunen,
1946, 1947; Loeve, 1948) transfers the deterministic expansion provided by Mer-
cer’s theorem 2.2.3 to stochastic processes.

Proposition 2.2.6 (Karhunen-Loève expansion). Consider a kernel k on a
generic set S satisfying the assumptions of Theorem 2.2.3. For a mean function
m on S, and Z ∼ GP(m, k), we have:

Zs = m(s) +
∑
j≥1

√
λjφj(s)εj for all s ∈ S (2.33)

where (εj)j≥1 are i.i.d standard normal and (λj)j≥1, (φj)j≥1 are as described in
Theorem 2.2.3. The convergence is in L2 and uniform in s.

Bochner theorem and Fourier Features Another key framework that will
be considered in this thesis is that of Random Fourier Features (RFF). Random
Fourier Features is a method for approximating stationary kernels. The essential
element of the approach of Random Fourier Features (Rahimi and Recht, 2008,
2009) is the realisation that the Wiener-Khinchin integral (Equation 2.19) can be
approximated by a Monte Carlo sum. Indeed, recall that the Wiener-Khinchin
integral is given by:

k(s− s′) =
1

2π

∫
Rd

s(ω)eiω
⊤(x−x′) dω

Then, taking σ = k(0), and ωi’s to be draws of independent random variables
that have a density equal to the spectral density associated to k, we have the
Monte Carlo approximation:

k(s− s′) ≈ kRFF (s, s
′) :=

σ

p

p∑
i=1

cos(ω⊤
i (s− s′)) (2.34)
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A direct consequence of this approximation is that the approximate kernel has
a finite basis expansions as:

ϕ(s) :=
[
cos(ω⊤

1 s), ..., cos(ω
⊤
p s), sin(ω

⊤
1 s), ..., sin(ω

⊤
p s)
]

(2.35)

It is often possible to sample from the spectral densities of the most common
kernels. The Gaussian Process defined by setting:

ZRFF,s =
σ
√
p
ϕ(s)⊤ε (2.36)

where ε is a 2p-variate standard normal vector, is a Gaussian Process with mean
zero and covariance kernel kRFF (s, s

′).

2.2.4 The Matérn family of kernels

The Matérn family of kernels is a popular family of stationary covariance kernels
(Matérn, 1960; Stein, 1999), defined (in the isotropic setting) for any d ∈ N by:

kν(s, s
′) = σ2 2

1−ν

Γ(ν)

(
√
2ν
∥s− s′∥2

ℓ

)ν

Kν

(
√
2ν
∥s− s′∥2

ℓ

)
(s, s′ ∈ Rd)

where Γ is the gamma function, Kν is the modified Bessel function of the second
kind. The parameter σ2 > 0 denotes the variance of the kernel, ν is a positive
parameter and ℓ is the lengthscale. We use ∥ · ∥2 to denote the Euclidean norm.

These kernels admit a simpler expression for some values of ν, namely the
ones that write p+ 1/2, p ∈ N:

kν=p+1/2(s, s
′) = exp

(
−
√
2ν∥s− s′∥2

ℓ

)
Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8ν∥s− s′∥2

ℓ

)p−i

The most commonly encountered examples are given below:

• for ν = 1/2, the exponential covariance k1/2(s, s
′) = σ exp

(
−∥s−s′∥2

ℓ

)
,

• for ν = 3/2, k3/2(s, s
′) = σ

(
1 +

√
3∥s−s′∥2

ℓ

)
exp

(
−

√
3∥s−s′∥2

ℓ

)
• for ν = 5/2, k5/2(s, s

′) = σ
(
1 +

√
5∥y−y′∥2

ℓ
+

5∥s−s′∥22
3ℓ2

)
exp

(
−

√
5∥s−s′∥2

ℓ

)
The family is well studied, and in particular we know that the RKHS of a Matérn
kernel kν is norm-equivalent to the Sobolev space of order ν + d/2. The reader
can refer to Kanagawa et al. (2018) for proofs of the latter, and other properties.
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Remark. The spectral density of a Matérn kernel is known, and given by:

sν(w) =
Γ(ν + d

2
)

Γ(ν)
∏D

i=1 ℓ
2(2ν)D/2

(
1 + 4π2∥w∥22

)−(ν+ d
2) .

One recognizes here a multivariate student distribution with 2ν degrees of free-
dom, location 0 and scale matrix identity. Knowing the spectral density will be
instrumental for a RFF-type approach.

Additionally, one can prove that they are characteristic kernels, no matter
their parameters. Indeed, it was shown in Theorem 7 of Sriperumbudur et al.
(2008) that bounded continuous translation-invariant kernels on Rd are charac-
teristic if and only if their Fourier transform has support on all of Rd. Hence,
Matérn kernels being characteristic is a straightforward consequence of this re-
sult, and will come in handy later in Section 5.2.3.

2.3 A detour through Random Measures

We briefly state here some basic properties and definitions of (locally finite)
random measures. We rely on the definitions from (Kallenberg, 2017). In the
terminology of (Kallenberg, 2017), our sample space of interest is here a compact
space I ⊂ Rdt , equipped with the Euclidean metric (and hence Polish by the
compactness assumption) and the corresponding Borel σ-algebra is B(I).

Definition 2.3.1 (Considered sigma-algebra on probability measures on (I,B(I))).
We denoteM the collection of all probability measures on (I,B(I)), and take the
σ-algebraM onM to be the smallest σ-algebra that makes all mapsM 7→M(B)
from M to R measurable for B ∈ B(I).

Definition 2.3.2 (Random Measures). A random measure Ξ is a random el-
ement from (Ω,F , P ) to (M,M) such that for any ω ∈ Ω \ N , where N is a
P -null set, we have:

Ξ
(
B̃;ω

)
<∞ for all (bounded) measurable sets B̃ ∈ B(I) (2.37)

Note that here the term bounded is between parentheses as I is assumed
compact and so all elements of B(I) are bounded. Among the motivations
listed for the choice of this structure, we retain that the σ-fieldM is identical
to the Borel σ-field for the weak topology of M. This structure ensures that the
random elements Ξ considered are regular conditional distributions on (I,B(I)):

1. For any ω ∈ Ω, the mapping B 7→ Ξ (B;ω) is a measure on (I,B(I)).
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2. For any B ∈ B(I), ω 7→ Ξ (B;ω) is (Ω,F)-(R,B(R)) measurable.

Another strong advantage of this choice of measurability structure lies in the
fact that if the state space I is equipped with a localizing structure, then the
class of Probability Measures is a measurable subspace. The localizing structure
arises naturally in our setting, as we can simply equip I with the class of all
(bounded) Borel sets.

Finally, we also make a simple remark:

Remark (RMs seen as scalar random fields). We can see a RM Ξ as a particular
instance of a scalar-valued random field indexed by B(I), namely (Ξ (B))B∈B(I).
Therefore, it is natural to revisit the notions of equality in distribution and of
indistinguishability for RMs. In particular, we will call two random measures Ξ
and Ξ̃ indistinguishable from one another if and only if:

P
[
Ξ (B) = Ξ̃(B), ∀B ∈ B(I)

]
= 1 (2.38)
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Chapter 3

A new framework for probability
density field modelling: From
Logistic to Spatial Logistic
Gaussian Process models.

This chapter is based on elements presented in the preprint Gautier and Gins-
bourger (2021).

3.1 Modelling (conditional) probability distri-

butions

As already mentioned in the introduction, precise statistical inference in spatially-
dependent complex systems usually requires to either benefit from a high com-
putational budget which allows system evaluation at a dense network of inputs
variables x, or to rely on assumptions on the model output Tx. For practi-
cal reasons, the latter is generally preferred and widely used in Uncertainty
Quantification (UQ), with the resulting class of approaches being broadly called
Surrogate modelling.

However, the problem of learning Tx’s distribution becomes particularly chal-
lenging when this dependence does not only concern the mean and/or the vari-
ance of the distribution, but other features can evolve, including for instance
their shape, their uni-modal versus multi-modal nature, etc.

In addition, when dealing with real-world applications, it is often the case
that the data is heterogeneously scattered across space, or that there are no
replicates in the dataset, making the problem even more difficult. A schematic
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example of a typical application can be seen in Figure 1.1 of the introduction.
Given these challenges, it is important to find a flexible model that can accu-

rately capture the dependencies and changes in the data, while also being able
to handle the complexities that arise in real-world applications and datasets.
Furthermore, it would be ideal for the chosen model to not only provide pre-
dictions of the response distribution, but also an uncertainty estimate at each
predictor value.

From now-on and throughout the document, we consider a compact and
convex response space I ⊂ Rdt with dt ≥ 1 and D ⊂ Rdx a compact and convex
index space with dx ≥ 1. We will call probability field estimation problem
the task of learning the densities (px)x∈D of a collection of I-valued random
variables from observations of i.i.d. samples at various locations. To improve
readability, we will always denote by x ∈ D the predictors (also referred to as
index-variables), and t ∈ I (resp. T in random form) the responses of interest.

3.1.1 Literature review

We review here the most notable approaches typically used in a frequentist
framework to address the challenge of (spatially dependent) density estimation,
with a brief summary of the main idea behind each approach. Note that some
of these approaches slightly differ from our setting, as they aim at modelling
conditional density, hence assuming that the predictors x are themselves reali-
sations of a random variable.

Finite Mixture models This approach presented in Rojas et al. (2005) con-
sists in assuming that the conditional density can be written:

fT |X=x(t) =
K∑
i=1

wi(x)gi(y;θi(x)) (3.1)

where the gi(y;θi(x)) are densities with a set of parameters θi(x) that depend
on x and the wi’s are a set of mixing proportions that sum to one for each x.
The component densities gi(y;θi(x)) are typically assumed to be from a known
parametric family, such as the Gaussian or Poisson distribution. The most
popular algorithm to estimate the parameters is the Expectation-Maximisation
algorithm (Dempster et al., 1977), which gives the maximum-likelihood estima-
tor.

Kernel density estimation Kernel methods are typically applied in settings
where x is also considered as random (and will hence be denoted X thereafter).
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Such methods can be used to estimate the joint density of X and T (Fan et al.,
1996; Hall et al., 1999). The basic idea being that the joint density at a point
(x, t) is estimated by averaging the density of its local neighbourhood, where
the size of the neighbourhood is determined by a smoothing parameter, typically
referred to as the bandwidth. The choice of kernel function and bandwidth are
important for the performance of the method. The bandwidth determines the
smoothness of the density estimate and the kernel function determines the shape
of the density estimate. Estimating the bandwidth is commonly done with cross-
validation (Fan and Yim, 2004), bootstrap (Hall et al., 1999) or other methods.
Once the joint distribution is estimated, the conditional probabilities are a by-
product obtained by marginalizing over X.

Semi-parametric modelling with Generalized lambda distributions Gen-
eralized lambda distributions have recently been used in Zhu and Sudret (2020)
for flexible semi-parametric modelling of unimodal distributions depending on
covariables. Indeed, the generalized lambda family can yield good approxima-
tions of a wide class of unimodal distributions. Modelling the parameters as
spatially dependant (e.g. as a polynomial of x) allows for spatially dependant
probability density estimation.

Distributional Kriging Another branch of study pertaining to geostatistics
and that does not rely on Gaussian or specific distributional assumptions is the
so-called distributional Kriging (Aitchison, 1982; Egozcue et al., 2006; Talská
et al., 2018). However, such approaches are ill-suited in the case of moderate
sample size heterogeneously scattered across space, as they rely on interpolating
(partially) observed cumulative distribution functions using Aitchison geometry.

Shape restricted distributional regression Under the assumption of a
strong relationship between covariates and a response variable, such as mono-
tonicity or convexity, estimating conditional distributions is called Shape-constrained
regression. The reader can refer for instance to the survey by Guntuboyina
and Sen (2018). Due to the strong shape requirements, such problems yield a
shape-constrained non-parametric estimator, which does not involve any tuning
parameters.

Within a Bayesian context, it is natural to put a prior on probability density
functions and derive posterior distributions of such probability density functions
given observed data. We next list a couple of Bayesian approaches to spatial
density estimation.
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Infinite mixture models This approach differs from finite Mixture models
by allowing the number of mixture components to be infinite. The Bayesian
approach provides a natural way to incorporate uncertainty about the number
components into the density estimation process. Its popularity is partly due to
the wide literature on algorithms for posterior sampling within a Markov Chain
Monte Carlo framework (Jain and Neal, 2004; Walker, 2007; Papaspiliopoulos
and Roberts, 2008) or fast approximation (Minka, 2001).

Generalized stick breaking processes These Bayesian methods represent
a probability density function (pdf) as a mixture of simpler components, where
the mixture weights are generated via a sequence of random “stick breaking”
events. (Dunson and Park, 2008; Dunson et al., 2007; Chung and Dunson, 2009;
Griffin and Steel, 2006)

Multivariate transformation of a Beta distribution Multivariate trans-
formations of a Beta distribution can be useful in settings where the dependen-
cies between variables are important and need to be explicitly modelled. These
approaches involve transforming a univariate Beta distribution into a multi-
variate distribution, which can better capture the dependencies between the
variables (Trippa et al., 2011). Two popular examples of a multivariate trans-
formation of a Beta distribution are the Dirichlet distribution (commonly used
as a prior distribution in Bayesian models and can be used for density estimation
in a multivariate setting) and copulae-based approaches.

Conditional density estimation with neural network models A neural
network model can be used for conditional density estimation (Papamakarios
et al., 2017; Rothfuss et al., 2019; Papamakarios, 2019). One advantage of using
neural networks for conditional density estimation is their ability to handle non-
linear relationships between variables. Neural networks can also model high-
dimensional covariates, making them well-suited for complex data sets. Another
advantage of using neural networks for conditional density estimation is their
ability to handle multi-modality, where the density of the target variable has
multiple modes. This is achieved by using flexible activation functions, such
as the sigmoid function or the softplus function, which can capture multiple
modes in the density of the target variable. However, neural network models
for conditional density estimation can be computationally expensive and may
require large amounts of data to train effectively. They can also be sensitive to
the choice of network architecture and hyperparameters, which must be carefully
selected to ensure good performance. Finally, they are rarely interpretable and
performing UQ on it is not straightforward.

Modelling and predicting distribution-valued fields
with applications to inversion under uncertainty



Chapter 3 – Modelling probability density fields with SLGP models 31

Transformed Gaussian Process (GP) GP provide a flexible and powerful
tool for modelling continuous functions, and can be used to model the relation-
ship between the covariates and the target variable. In order to use a GP for
conditional density estimation, we first need to transform the GP into a form
that can be used for density estimation. This is typically done by nonlinear
transformation of the GP, (Jara and Hanson, 2011; Donner and Opper, 2018;
Tokdar et al., 2010; Gautier et al., 2021). We will explore in depth one approach
of this class of methods in the coming subsections.

All the aforementioned approaches come with their own specificities. How-
ever, to the extent of our understanding of the field, only a few of them address
the challenges we are facing.

Indeed, most approaches listed here struggle with the low to moderate data
regime, and even more so with heterogeneously scattered data. When combining
this observation with our need for uncertainty quantification and flexibility in
the model, we noted that GP-based methods were the most natural candidates
for our purposes.

A particular case of transformed GPs: (S)LGP models The Spatial
Logistic Gaussian Process (SLGP) model, related to Tokdar et al. (2010) and
being at the centre of the present contribution following up on (Gautier et al.,
2021; Gautier and Ginsbourger, 2021), is itself a spatial generalization of the
Logistic Gaussian Process (LGP) model.

The LGP for density estimation was established and studied in (Lenk, 1988,
1991; Leonard, 1978) and is commonly introduced as a random probability den-
sity function obtained by applying a non-linear transformation (or “mapping”)
ψ to a sufficiently well-behaved GP Z = (Zt)t∈I , resulting in

ψ[Z](t) =
eZt∫

I e
Zu dλ(u)

for all t ∈ I (3.2)

Here and throughout the document, we consider a compact and convex response
space I ⊂ Rdt with dt ≥ 1 and we denote by λ the Lebesgue measure on Rdt .
We further assume that λ(I) > 0.

For the Spatial Logistic Gaussian Process (SLGP), we will similarly build
upon a well-behaved GP (Zx,t)(x,t)∈D×I (now indexed by a product set) and
study the stochastic process obtained from applying the spatial logistic density
transformation to Z as follows:

Ψ[Z](x, t) =
eZx,t∫

I e
Zx,u dλ(u)

for all (x, t) ∈ D × I (3.3)

where D ⊂ Rdx is a compact and convex index space with dx ≥ 1.
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At any fixed x, Ψ[Z](x, ·) hence returns an LGP, so that an SLGP can be
seen as a field of LGPs. What the mathematical objects involved precisely are
(in terms of random measures or densities, and fields thereof) calls for some
careful analysis. In this section, we will start by giving an historical perspective
on the LGP models that inspired this work. We will then focus on our first
two questions: questioning the stochastic nature of (S)LGPs and characterising
their distributions.

Throughout the rest of this chapter, we will denote by (Ω,F , P ) the ambient
probability space. We will also denote by B(I) the Borel σ-algebra induced
by the Euclidean metric on I. For a set S (here I or D × I), we denote by
C0(S), A(S), A+(S) the sets of continuous real functions, Probability Density
Functions (PDFs) and positive PDFs on S, respectively.

A(S) := {p : p is a pdf on S} (3.4)

A+(S) := {p : p is a positive pdf on S} (3.5)

Finally, we denote by Ad(D; I) the set of fields of PDFs on I indexed by D,
and by A+

d (D; I) its counterpart featuring positive PDFs.

Ad(D; I) := {(p(x, ·))x∈D : p(x, ·) is a pdf on I for all x ∈ D} (3.6)

A+
d (D; I) := {(p(x, ·))x∈D : p(x, ·) is a positive pdf on I for all x ∈ D} (3.7)

It is also important to note that to alleviate technical difficulties, we will always
assume that the Random Fields (RF) considered are measurable, as well as
separable whenever almost sure continuity is mentioned.

3.1.2 A historical perspective: the LGP

Recall that we informally introduced the LGP in Equation 3.2 as being obtained
through exponentiation and normalisation of a well-behaved GP Z:

ψ[Z](t) =
eZt∫

I e
Zu dλ(u)

for all t ∈ I

These models intend to provide a flexible prior over positive density func-
tions, where the smoothness of the generated densities is directly inherited from
the GP’s smoothness.

In the literature, various assumptions and theoretical settings have been
proposed that (often, implicitly) specify what well-behaved refers to and in what
sense the colloquial definition above is meant. We present a concise review of a
few papers among the ones we deem to be most representative on the topic.
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What we find notable is that working assumptions fluctuate between different
contributions, and there is not yet a consensus on the most appropriate set of
hypotheses. In particular, the choice between having Z enjoy properties almost-
surely (continuity, being exponentially integrable) or surely (separability of the
process, or taking values in a suitable function space) is far from straightforward.

• In the seminal paper Leonard (1978), the LGP was studied in a uni-
dimensional setting, with I being a compact interval. The authors con-
sidered a.s. surely continuous GPs with exponential covariance kernel.

• Later, the authors of Lenk (1988) claimed that LGPs should be seen as
positive-valued random functions integrating to 1 but fail to provide an
explicit construction of the corresponding measure space. They extended
their construction to derive a generalized logistic Gaussian process (gLGP)
and elegant formulations of the posterior distribution of the gLGP condi-
tioned on observations were derived. Numerical approaches for calculating
the Bayes estimate were proposed, constituting the starting point of the
follow-up paper Lenk (1991).

• In Tokdar and Ghosh (2007), the LGP was introduced from a hierarchical
Bayesian modelling perspective, allowing in turn to handle the estimation
of GP hyper-parameters. This paper considered a separable GP Z that
is exponentially integrable almost surely, stating that the LGP thus takes
values in A(I). The main result in the paper is that the considered hierar-
chical model achieves weak and strong consistency for density estimation
at functions that are piece-wise continuous. It is completed by another
paper, Tokdar (2007), where the authors propose a tractable implemen-
tation of the density estimation with such a model. Let us note that the
GP’s separability alleviates some technicalities regarding the measurabil-
ity assumptions to consider, and having

∫
I e

Zu dλ(u) < ∞ a.s. allows to
state that LGP realisations are PDFs almost surely.

• Meanwhile, the authors of van der Vaart and van Zanten (2008) work with
a bounded-functions-valued GP, which allowed it to be viewed as a Borel
measurable map in the space of bounded functions of I equipped with
the sup-norm. This paper derived concentration rates for the posterior of
the LGP. With these assumptions, the LGP can be considered as a Borel
measurable map in the same space as Z and is guaranteed to have sample
paths that are bounded probability density functions.

This short review emphasizes the lack of consensus regarding the LGP’s
definition including underlying structures and assumptions. It is interesting to
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note that in van der Vaart and van Zanten (2008), the authors require Z to
be bounded surely, whereas the authors of the three other papers worked with
almost sure properties of Z (mostly, the almost surely continuity of the process).

We claim thereafter that working with sure properties allows us to draw
links between the LGP and the fertile framework of random measures. We
will revisit the definition of LGP in order to build up our subsequent analyses
and generalizations on transparent mathematical foundations. Note that this
section can be considered as a particular case of the following one, as we will
later introduce indexed versions of the LGP and transpose all the upcoming
properties to the spatialized version.

Here, rather than viewing LGPs as random functions satisfying constraints
(namely: non-negativity, and integrating to 1), we propose viewing them through
the scope of Random-Measures (RM). We rely on the definitions from Kallenberg
(2017), that are recalled in Section 2.3 and that allow us to work with Random
Probability Measures (RPM) (i.e. RM that are surely probability measures).
With this in mind, we can establish a connection between LGPs and RPMs,
and enjoy the measurability structure of the latter.

To lighten notations, here we call a random process (Zt)t∈I exponentially
integrable when, for any ω ∈ Ω, we have

∫
I e

Zu(ω) dλ(u) <∞.

Proposition 3.1.1 (RPM induced by a RF, or L-RPM). For Z = (Zt)t∈I an
exponentially integrable RF, then:

Ξ (B) :=

∫
B
eZu dλ(u)∫

I e
Zu dλ(u)

(B ∈ B(I)) (3.8)

defines a random probability measure that we call random probability measure
induced by Z. For notational conciseness, we will denote it L-RPM(Z).

Proof of proposition 3.1.1. Since Z is a measurable RF, eZ and its integrals are
measurable as well. Therefore, for any B ∈ B(I). the mapping ω 7→ Ξ (B;ω)
is measurable from (Ω,F) to (R,B(R)). Furthermore, for any ω ∈ Ω, B 7→
Ξ (B;ω) is a probability measure on (I,B(I)), so a fortiori locally finite.

Remark. We consider the condition of sure-exponential-integrability made in
Definition 3.1.1 not to be overly restrictive. Indeed, let us consider a RF Z
that is a.s. exponentially integrable (meaning that eZ(ω) is integrable for all
ω ∈ Ω except some P -null set noted N). Then, I being compact, we can always
construct a surely exponentially integrable RF Z̃ indistinguishable from Z via

Z̃(ω) =

{
Z(ω) if ω ∈ Ω \N
0 else

(3.9)
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Following this construction, we can formally define a class of processes slightly
more general than the LGP’s one.

Definition 3.1.1. For a RF Z that is exponentially integrable,

ψ[Z](t) =
eZt∫

I e
Zu dλ(u)

for all t ∈ I (3.10)

is a representer of the Radon–Nikodym derivative of L-RPM(Z), denoted ψ[Z].

While it is tempting to characterise a L-RPM by the underlying transformed
RF, it is insufficient as highlighted by the next remark.

Remark. Let us consider an exponentially integrable RF (Zt)t∈I and a random
variable R defined on the same probability space. Then, (Zt)t∈I and (Zt+R)t∈I
induce the same L-RPM, since:

∫
B
eZu(ω) dλ(u)∫

I e
Zu(ω) dλ(u)

=

∫
B
e[Zu+R](ω) dλ(u)∫

I e
[Zu+R](ω) dλ(u)

∀B ∈ B(I), ∀ω ∈ Ω (3.11)

Due to the normalisation constant in Equation 3.8, there is no one-to-one cor-
respondence between RFs and associated random measures.

To address this caveat, we derive and prove a characterisation of the L-RPM
in terms of its underlying increment field.

Proposition 3.1.2 (Condition for the indistinguishability of L-RPM). Let Z :=
(Zt)t∈I and Z̃ := (Z̃t)t∈I be two RFs that are exponentially integrable, and for
all (t, t′) ∈ I2, let ∆Zt,t′ := Zt−Zt′ (respectively ∆Z̃t,t′ := Z̃t− Z̃t′) be associated
increment processes. Then,

(1) (∆Zt,t′)(t,t′)∈I2 is indistinguishable from (∆Z̃t,t′)(t,t′)∈I2.

⇔ (2) ψ[Z] is indistinguishable from ψ[Z̃].

⇒ (3) L-RPM(Z) is indistinguishable from L-RPM(Z̃).

Additionally, if Z and Z̃ are almost surely continuous, (3)⇒ (2).

Proof of proposition 3.1.2. Let us consider two such RFs Z and Z̃. Assuming
the two increment fields are indistinguishable, for an arbitrary t0 ∈ I, both
∆Z·t0 and ∆Z̃·t0 are indistinguishable RFs that are exponentially integrable.
Note that ψ[∆Z̃·t0 ] = ψ[Z̃], and therefore:

1 = P
[
ψ[∆Z̃·t0 ](t) = ψ[∆Z·t0 ](t) ∀t ∈ I

]
= P

[
Ψ[Z̃](t) = Ψ[Z](t) ∀t ∈ I

]
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It follows that (1)⇒ (2). Moreover, it also follows that:

1 = P
[
ψ[Z̃](t) = ψ[Z](t) ∀t ∈ I

]
= P

[∫
B

ψ[Z̃](u) dλ(u) =

∫
B

Ψ[Z](u) dλ(u), ∀B ∈ B(I)
]

Which proves that (2)⇒ (3).
Conversely, for (2) ⇒ (1), let us assume that Y = ψ[Z] is indistinguish-

able from Ỹ = ψ[Z̃]. By SLP’s construction, we can consider log Yt = Zt −
log
∫
I e

Zu dλ(u) (resp. log Ỹt = Z̃t − log
∫
I e

Z̃u dλ(u)), and:

1 = P
[
log Yt = log Ỹt ∀t ∈ I

]
= P

[
log Yt − log Yt′ = log Ỹt − log Ỹt′ ∀t ∈ I

]
= P

[
Zt − Zt′ = Z̃t − Z̃t′ ∀(t, t′) ∈ I2

]
which is, indeed, proving (2)⇒ (1).

Finally, let us assume that (3) holds and that Ξ = L-RPM(Z) is indistin-
guishable from Ξ̃ = L-RPM(Z̃). By indistinguishability:

P
[
Ξ(B) = Ξ̃(B), ∀B ∈ B(I)

]
= 1

⇔ P
[
Yt = Ỹt, for λ-almost every t ∈ I

]
= 1

Under the general setting, this is not enough to prove that (3)⇒ (2).
However, assuming that both Z and Z̃ are a.s. continuous, we deduce that

so are Y and Ỹ . This allows for going from almost sure equality λ-almost
everywhere to almost sure equality everywhere, and therefore:

P
[
Yt = Ỹt, for all t ∈ I

]
= 1

Noticeably, we made no Gaussianity assumption on the transformed RF Z.
Indeed, this hypothesis is not required to properly define L-RPMs in a general
setting. Gaussianity is mostly instrumental, as it allows for parametrization of
GPs through their mean and covariance functions. Moreover, one can rely on
the flourishing literature on the topic to derive properties of the processes at
hand. We now turn to L-RPM induces by GPs, with a special focus on LGPs.
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Definition 3.1.2 (Logistic Gaussian Process). A LGP is a process (Yt)t∈I such
that there exists a measurable GP Z that is exponentially integrable and:

Yt = ψ[Z](t) =
eZt∫

I e
Zu dλ(u)

for all t ∈ I (3.12)

We call Y the LGP induced by Z.

We can connect previous work on LGPs with our RPM framework. As
we mentioned earlier, several authors worked under continuity assumptions to
alleviate technical difficulties. In our framework, working under almost-surely
continuity of the transformed GP allows us to link the LGPs as they are defined
in 3.1.2 and the L-RPMs in Proposition 3.1.1.

Proposition 3.1.3 (LGP induced by an a.s. continuous GP). Let us consider
a GP Z = (Zt)t∈I that is exponentially integrable and almost-surely continuous.

Then, ψ[Z] is a.s. the continuous representer of
dΞ

dλ
, where Ξ = L-RPM(Z).

With these basic ideas in mind, let us now introduce the SLGP with more
formalism. Note that all the properties we will prove in the coming section
applies to LGP as well.

3.2 The SLGP model and its characterisation

In this section, we build upon the work of (Pati et al., 2013) and present the
considered spatial extension of the Logistic Gaussian Process. We point out that
rather than focusing on the posterior consistency of the model as the authors of
the aforementioned paper did, we will study its spatial regularity.

From now-on, we will call a measurable RF (Zx,t)(x,t)∈D×I exponentially
integrable alongside I if

∫
I e

Zx,u(ω) dλ(u) <∞ for any (x, ω) ∈ D × Ω.
To introduce a spatial extension to L-RPMs, we first need to introduce a

spatial extension of the logistic density transformation:

Definition 3.2.1 (Spatial logistic density transformation). The spatial logistic
density transformation Ψ is defined over the set of measurable w : D × I → R
such that for all x ∈ D,

∫
I e

w(x,u) dλ(u) <∞:

Ψ[w](x, t) :=
ew(x,t)∫

I e
w(x,u) dλ(u)

for all (x, t) ∈ D × I (3.13)

hence being a mapping between functions that are exponentially integrable
alongside I and A+

d (D; I).
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Recall that we informally introduced the SLGP in Equation 3.3 as being an
indexed version of the LGP:

Ψ[Z](x, t) =
eZx,t∫

I e
Zx,u dλ(u)

for all (x, t) ∈ D × I

We start working with few assumptions on the transformed RF. This nat-
urally leads us to working with fields of random measures (i.e. collections of
RPMs defined on the same probability space). For notational conciseness, we
refer to such fields as RPMFs.

Random Probability Measure Fields induced by a RF: definition and
characterisation

It is natural to present a spatialised version of the L-RPMs introduced in Defi-
nition 3.1.1.

Definition 3.2.2 (L-RPMF). Let us consider (Zx,t)(x,t)∈D×I , a RF that is ex-
ponentially integrable alongside I, then:

Ξx (B) =

∫
B

Ψ[Z](x, u) dλ(u) =

∫
B
eZx,u dλ(u)∫

I e
Zx,u dλ(u)

(x ∈ D, B ∈ B(I)) (3.14)

defines a RPMF that we call Logistic Random Probability Measure Field in-
duced by Z. We also use the notation Ξ = L-RPMF(Z).

Definition 3.2.3. Let us consider (Zx,t)(x,t)∈D×I , a RF that is exponentially
integrable alongside I, then:

Ψ[Z](x, t) =
eZx,t∫

I e
Zx,u dλ(u)

for all (x, t) ∈ D × I (3.15)

defines a process such that, for any x ∈ D, Ψ[Z](x, ·) is a representer of
dΞx

dλ
,

the Radon–Nikodym derivative of Ξx, where Ξ = L-RPMF(Z).
We denote this process by Ψ[Z] and refer to it as Spatial Logistic Process (SLP).

While it is tempting to characterise a L-RPMF by its underlying RF, it is
hopeless. In fact, different RFs may yield the same L-RPMF.

Remark. Let us consider two RFs (Zx,t)(x,t)∈D×I and (Rx)x∈D defined on the
same probability space, and assume that Z is exponentially integrable alongside
I. Then, Ψ[Z] and Ψ[Z +R] are equal, indeed:

eZx,t(ω)∫
I e

Zx,u(ω) dλ(u)
=

e[Zx,t+Rx](ω)∫
I e

[Zx,u+Rx](ω) dλ(u)
(x, t, ω) ∈ D × I × Ω (3.16)

It follows that L-RPMF(Z) and L-RPMF(Z +R) are also equal.
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The arising questions that we will try to address through the rest of this
section is: how to characterise the random measure fields that can be obtained
through Equation 3.14, and can we give sufficient conditions on measurable and
exponentially integrable RFs for them to yield the same L-RPMF?

This calls for a proper definition of what “the same” encapsulates, as there
are several notions of coincidence between RFs (and a fortiori RPMFs). Here,
we will mostly focus on indistinguishability.

Remark. Let (Ξx)x∈D be a RPMF. It is a collection of probability measure-
valued random variables indexed by D. As such it is natural to call two RPMFs
Ξx and Ξ̃x indistinguishable if:

P
[
Ξx = Ξ̃x,∀x ∈ D

]
= 1 (3.17)

By definition of equality between measures, we can reformulate the latter as:

P
[
Ξx(B) = Ξ̃x(B), ∀x ∈ D, ∀B ∈ B(I)

]
= 1 (3.18)

Coincidentally, that last equation corresponds to the indistinguishability of the
scalar-valued RFs Ξx(B) and Ξ̃x(B), indexed by (x, B) ∈ D×B(I). This equiv-
alence results from the construction of RPMs in (Kallenberg, 2017) that ensures
that all RPMs are regular conditional distributions, as recalled in Section 2.3.

Proposition 3.2.1 (Condition for the indistinguishability of L-RPMF and
SLPs). Let Z := (Zx,t)(x,t)∈D×I and Z̃ := (Z̃x,t)(x,t)∈D×I be two RFs that are
exponentially integrable alongside I, and for all (x, t, t′) ∈ D×I2, let ∆Zx,t,t′ :=
Zx,t−Zx,t′ (respectively ∆Z̃x,t,t′ := Z̃x,t−Z̃x,t′) be associated increment processes.
Then,

(1) (∆Zx,t,t′)(x,t,t′)∈D×I2 is indistinguishable from (∆Z̃x,t,t′)(x,t,t′)∈D×I2.

⇔ (2) Ψ[Z] is indistinguishable from Ψ[Z̃].

⇒ (3) L-RPMF(Z) is indistinguishable from L-RPMF(Z̃).

Additionally, if Z and Z̃ are almost surely continuous, (3)⇒ (2).

Proof. Let us consider two such RFs Z and Z̃. Assuming the two increment
fields are indistinguishable, for an arbitrary t0 ∈ I, both ∆Z··t0 and ∆Z̃··t0 are
indistinguishable RFs that are exponentially integrable alongside I. Note that
Ψ[∆Z̃··t0 ] = Ψ[Z̃], and therefore:

1 = P
[
Ψ[∆Z̃··t0 ](x, t) = Ψ[∆Z··t0 ](x, t) ∀(x, t) ∈ D × I

]
= P

[
Ψ[Z̃](x, t) = Ψ[Z](x, t) ∀(x, t) ∈ D × I

]
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It follows that (1)⇒ (2). Moreover, it also follows that:

1 = P
[
Ψ[Z̃](x, t) = Ψ[Z](x, t) ∀(x, t) ∈ D × I

]
= P

[∫
B

Ψ[Z̃](x, u) dλ(u) =

∫
B

Ψ[Z](x, u) dλ(u), ∀(x, B) ∈ D × B(I)
]

Which proves that (2)⇒ (3).
Conversely, for (2) ⇒ (1), let us assume that Y = Ψ[Z] is indistinguishable

from Ỹ = Ψ[Z̃]. By SLP’s construction, we can consider log Yx,t = Zx,t −
log
∫
I e

Zx,u dλ(u) (resp. log Ỹx,t = Z̃x,t − log
∫
I e

Z̃x,u dλ(u)), and:

1 = P
[
log Yx,t = log Ỹx,t ∀(x, t) ∈ D × I

]
= P

[
log Yx,t − log Yx,t′ = log Ỹx,t − log Ỹx,t′ ∀(x, t, t′) ∈ D × I2

]
= P

[
Zx,t − Zx,t′ = Z̃x,t − Z̃x,t′ ∀(x, t, t′) ∈ D × I2

]
which is, indeed, proving (2)⇒ (1).

Finally, let us assume that (3) holds and that Ξx = L-RPMF(Z) is indistin-
guishable from Ξ̃x = L-RPMF(Z̃). By indistinguishability:

P
[
Ξx(B) = Ξ̃x(B), ∀x ∈ D, ∀B ∈ B(I)

]
= 1

⇔ P
[
Yx,t = Ỹx,t, for λ-almost every t ∈ I, for all x ∈ D

]
= 1

Under the general setting, this is not enough to prove that (3)⇒ (2).
However, assuming that both Z and Z̃ are a.s. continuous, we deduce that

so are Y and Ỹ . This allows for going from almost sure equality λ-almost
everywhere to almost sure equality everywhere, and therefore:

P
[
Yx,t = Ỹx,t, for all t ∈ I,x ∈ D

]
= 1

Remark (Indistinguishability compared to others notions of coincidence between
RPMF). In Proposition 3.2.1, we worked with the indistinguishability of random
measure fields, as defined in Equation 3.18. Although one could consider other
types of equality between RPMF, such as the equality up to a modification:

P
[
Ξx = Ξ̃x

]
= 1 ∀ x ∈ D (3.19)

we found out that indistinguishability seems to be the best fit, as it naturally re-
lates indistinguishability of L-RPMFs to that of underlying fields of increments.
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Remark (Working with increments). In the previous proposition and its proof,
we decided to work with increments of Z rather than with Z directly. This
makes it easier relate SLPs and the RF inducing it. Indeed, for Y = Ψ[Z], we
have log Yx,t = Zx,t − log

∫
I e

Zx,u dλ(u) and therefore:

log Yx,t − log Yx,t′ = Zx,t − Zx,t′ for all (x, t, t′) ∈ D × I2 (3.20)

From this characterisation, it appears that indistinguishability of SLPs or L-
RPMFs is driven by the increments of the transformed RF. It also appears that
almost sure continuity is a practical assumption to alleviate technical difficulties.
However, it also highlights how general our construction is, indeed:

Lemma 2. Let us consider a RPMF (Ξx)x∈D, if there exist a measurable process
(Yx,t)(x,t)∈D×I with:

P

[
Yx,· is a positive representer of

dΞx

dλ
for all x ∈ D

]
= 1 (3.21)

then there exist a RF Z exponentially integrable alongside I such that Y is
indistinguishable from Ψ[Z], and Ξ is indistinguishable from L-RPMF(Z).

Proof. Let us consider such a (Yx,t)(x,t)∈D×I and denote by N the P -null set
where Y is not the positive representer of the Radon-Nikodym derivative of Ξx

for all x ∈ D. We define (Zx,t)(x,t)∈D×I by:

Zx,t(ω) :=

{
log Yx,t(ω) if ω ∈ Ω \N
0 else

(3.22)

By construction, Z is RF that is exponentially integrable alongside I, and Ψ[Z]
is indistinguishable from Y . It follows from proposition 3.2.1 that L-RPMF(Z)
is indistinguishable from Ξ.

Therefore, L-RPMFs are quite a general object, and can model a wide class
of RPMFs. However, in practice we will generally construct our models by
specifying a Z, and transforming it to obtain the corresponding SLPs/L-RPMFs.
Next, we will focus on L-RPMFs induced by GPs.

Logistic Random Probability Measure Fields induced by a GP, and
their Radon-Nikodym derivative

We now characterise which SLPs are obtained by transforming a GP.

Proposition 3.2.2 (Characterizing SLPs obtained by transforming a GP).
For a measurable RF (Zx,t)(x,t)∈D×I that is exponentially integrable alongside I,
the following are equivalent:

Modelling and predicting distribution-valued fields
with applications to inversion under uncertainty



42 Chapter 3 – Modelling probability density fields with SLGP models

(1) There exist a measurable GP (Z̃x,t)(x,t)∈D×I that is exponentially integrable

such that Ψ[Z] = Ψ[Z̃]

(2) (Zx,t − Zx,t′)(x,t,t′)∈D×I2, is a GP.

Proof. If (1) holds, then Zx,t − Zx,t′ = Z̃x,t − Z̃x,t′ for all (x, t) ∈ D × I. Since
Z̃ is a GP, so is its increment field, and so is Z’s one.

Conversely, consider Z as in (2). For an arbitrary t0 ∈ I, let us define
Z̃ := Zx,t − Zx,t0 . The process Z̃ is a GP on D × I, and for any (x, t) ∈ D × I:

Ψ[Z̃](x, t) =
eZx,t−Zx,t0∫

I e
Zx,u−Zx,t0 dλ(u)

=
eZx,t∫

I e
Zx,u dλ(u)

= Ψ[Z](x, t)

From this, it appears that SLPs obtained by transforming a GP are not
characterised by a GP on D×I but rather by an increment (Gaussian) process
on D × I2 with sufficient measurability.

To shorten notations and connect our work to previous contributions from
other authors, from now-on we will refer to SLPs obtained by transforming a
GP as Spatial Logistic Gaussian Processes (SLGPs).

SLGPs benefit from continuity assumptions, as it allows for easier charac-
terisation and parametrisations, and highlighted in the following remark.

Remark. In practice, GPs are often defined up to stochastic equivalence, by spec-
ifying their mean and covariance kernel (and therefore their finite-dimensional
distributions). However, since the definition of the SLGPs induced by some Z
involves the sample path of Z over all I, having two GPs (Zx,t)(x,t)∈D×I and

(Z̃x,t)(x,t)∈D×I exponentially integrable alongside I with:

P
[
Z̃x,t = Z̃x,t

]
= 1 for all (x, t) ∈ D× I (i.e. Z and Z̃ are equivalent) (3.23)

is not sufficient to ensure that Ξ = L-RPMF(Z) and Ξ̃ = L-RPMF(Z̃) satisfy:

P
[
Ξx = Ξ̃x

]
= 1 for all x ∈ D (i.e. Ξ and Ξ̃ are equivalent) (3.24)

In other terms, two GPs with the same mean function and covariance function
do not necessarily yield L-RPMFs that are equivalent, nor indistinguishable.
One well-known exception to this arises when Z̃ is a.s. continuous and is a
version of Z. Then, both GPs are separable and indistinguishable, and so are
the L-RPMFs they induce. We refer to (Azäıs and Wschebor, 2009) Ch. 1, Sec.
4, Prop. 1.9 for a proof in dimension 1, and to (Scheuerer, 2009) Ch. 5 Sec. 2
Lemma 5.2.8. for a generalisation of it.
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This enables us to derive yet another characterisation of L-RPMFs obtained
by transforming continuous GPs.

Proposition 3.2.3 (Underlying increment mean and covariance). For every
L-RPMF (Ξx)x∈D (resp. SLGP (Yx,t)(x,t)∈D×I) induced by an almost surely con-
tinuous GP Z, there exist a unique mean function minc and a unique covariance
kernel kinc:

minc :D × I2 → R (3.25)

kinc :
(
(D × I2)× (D × I2)

)
→ R (3.26)

that characterise all the L-RPMFs indistinguishable from Ξ (resp. the SLPs in-
distinguishable from Y ).
We call them the mean and covariance underlying the L-RPMF (resp. the
SLGP).

Proof. Combining Propositions 3.2.1 and 3.2.2 emphasizes that the process that
drives Ξ and Y ’s behaviour is (Zx,t − Zx,t′)(x,t,t′)∈D×I2 . It is a continuous GP,
with minc and kinc being its mean function and covariance function. As noted in
remark 3.2, indistinguishability of continuous GPs is driven by these functions,
which ensures that minc and kinc characterise Ξ (resp. Y )

Proposition 3.2.4 (SLGP induced by an a.s. continuous GP). Let us consider a
GP Z = (Zx,t)(x,t)∈D×I that is exponentially integrable alongside I and almost-
surely continuous in t. Then, for any x ∈ D, Ψ[Z](x, ·) is almost surely the

continuous representer of
dΞx

dλ
, where Ξ = L-RPMF(Z).

A direct consequence of Proposition 3.2.4, is that whenever these assump-
tions on Z are fulfilled, we can refer to the corresponding SLGP as being almost
surely a probability density functions field.

As mentioned in Remark 3.2, combining Gaussianity assumptions and (a.s.)
continuity assumptions allows for simpler characterisation. Indeed, being equal
up to a version coincide with being indistinguishable. Therefore, it is possible
to characterise a.s. continuous GPs that yield indistinguishable SLGPs directly
through their kernels and means.

Proposition 3.2.5 (Increment mean and covariance of GPs underlying a SLGP).
Let (Zx,t)(x,t)∈D×I be a GP that is exponentially integrable alongside I, and gen-
erates a SLGP (resp. a L-RPMF) with underlying mean and covarianceminc and
kinc. Z’s meanm and covariance k satisfy for all (x,x′) ∈ D2, (t1, t2, t

′
1, t

′
2) ∈ I4:

minc(x, t1, t2) = m(x, t1)−m(x, t2) (3.27)

kinc([x, t1, t2], [x
′, t′1, t

′
2]) =

k([x, t1], [x
′, t′1]) + k([x, t2], [x

′, t′2])
−k([x, t1], [x′, t′2])− k([x, t2], [x′, t′1])

(3.28)

Modelling and predicting distribution-valued fields
with applications to inversion under uncertainty



44 Chapter 3 – Modelling probability density fields with SLGP models

This last property is central, as we already mentioned that in practice it is
easier to define a SLGP by specifying Z. This generally involves choosing a
suitable kernel k on D × I and then deducing the corresponding SLGPs and
L-RPMFs and their underlying means and kernel minc and kinc from Equations
3.27 and 3.28.

In the rest of the chapter, we will study the spatial regularity of the SLGP
in Section 3.3.1 and touch upon the posterior consistency of this model in Sec-
tion 3.3.2.

3.3 Properties of the SLGP

3.3.1 Continuity modes for (logistic Gaussian) random
measure fields

Our object of interest in this document is a random measure field. A natural
question, when working with spatial objects, is to quantify the impact of a prior
on the regularity of the delivered predictions. Quantifying the spatial regularity
of such an object boils down to quantifying how similar two conditional measures
Ξx, Ξx′ are when their respective predictors x,x′ become close.

This investigation requires distances (or dissimilarity measures) between
both measures and locations, and we will consider different ones. To compare
two measures, we will consider Hellinger distance, Kullback-Leibler divergence
and Total Variation distance. For locations, we will consider the sup norm over
D as well as the canonical distance associated to the covariance kernel of the
Gaussian random increment field.

In this particular case, we are focusing on a two notions of regularity. The
first one being the almost sure continuity of the SLGP, the second one being
inspired by the Mean-Squared continuity on the scalar valued case. We will prove
statements of the following form: for a given dissimilarity between measures ρ
and for a SLGP (Yx,t)(x,t)∈D×I , under sufficient regularity of the covariance kernel
kinc underlying Y :

lim
x′→x

E [ρ (Ξx,Ξx′)] = 0. (3.29)

We will also provide bounds on the convergence rate. In this work, we shall focus
on ρ being either dH the Hellinger distance, dTV the Total variation distance
or KL the Kullback-Leibler divergence. The choice of these three dissimilarity
measures is motivated by the following Lemma.

Lemma 3 (Bounds on distances between measures). There exists two constants
CKL, CTV > 0 such that for f1 and f2 two positive probability density functions
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on I:

dH(f1, f2) ≤ heh/2 (3.30)

KL(f1, f2) ≤ CKLh
2eh(1 + h) (3.31)

dTV (f1, f2) ≤ CTV h
2eh(1 + h)2 (3.32)

where h := ∥ log(f1)− log(f2)∥∞.

This is lemma 3.1 of (van der Vaart and van Zanten, 2008).
As is standard in spatial statistics, we shall derive the SLGP Y ’s regularity

through that of it underlying kernel and mean (or equivalently, through that of
the kernel and mean of a GP Z inducing Y ). More precisely, we will prove that
inherits its regularity from the canonical semi-distance associated to a kernel
(reminded in definition 2.1.9).

Condition 1 (Condition on kernels on kinc on D×I2). There exist C, α1, α2 > 0
such that for all (x,x′) ∈ D2, (t1, t

′
1, t2, t

′
2) ∈ I4:

d2kinc([x, t1, t2], [x
′, t′1, t

′
2]) ≤ C ·max(∥x− x′∥α1

∞ , ∥t1 − t′1∥α2
∞ , ∥t2 − t′2∥α2

∞ ) (3.33)

As we noted in Proposition 3.2.5, we are mostly interested in kernels kinc on
D×I2 that can be interpreted as increments of kernels k on D×I. Therefore,
we also introduce a natural counterpart to Condition 1 for kernels on D × I:

Condition 2 (Condition on kernels on D × I). There exist C, α1, α2 > 0 such
that for all x,x′ ∈ D, t, t′ ∈ I:

d2k([x, t], [x
′, t′]) ≤ C ·max(∥x− x′∥α1

∞ , ∥t− t′∥α2
∞ ) (3.34)

Remark. In our setting, D and I being compact, if a covariance kernel ku on
D×I2 satisfies Condition 1, it is also true that there exists C ′ such that for all
(y,y′) ∈ (D × I2)2:

d2kinc(y,y
′) ≤ C ′ · ∥y − y′∥min(α1,α2)

∞ (3.35)

An analogous result is true for a covariance kernel k satisfying Condition 2.
Hence, Conditions 1 and 2 can be referred to as Hölder-type conditions. Al-
though Equation 3.35 would allow for deriving most results in the coming sub-
section, when deriving rates in Section 3.3.1 it is interesting to distinguish the
regularity over D from the regularity over I as there is a strong asymmetry
between both spaces.

First, we claim that in our setting, it is equivalent to be working with Con-
dition 1 or Condition 2.
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Proposition 3.3.1. Let k be a kernel on D×I and kinc be a kernel on D×I2.
The two following statements stand:

1. If k satisfies Condition 2, and kinc derives from it through Equation 3.28,
then kinc satisfies Condition 1.

2. Conversely, if kinc is the underlying increment kernel of a SLGP Y and if
it satisfies Condition 1, then it is possible to choose a kernel k on D × I
such that k satisfies Condition 2 and through Equation 3.28 is satisfied.

Moreover, the constants α1, α2 will be the same in both conditions.

This proves to be practical in the upcoming sections, as it allows to slightly
shorten notations by using k rather than kinc. Moreover, as mentioned earlier,
it is often easier to define a SLGP by transforming a GP.

From here, we will conduct our analysis in the setting considered in Propo-
sition 3.2.5 and assume that the considered SLGPs are almost surely positive.
With this in mind, we are now ready to introduce one of the main contributions
of this chapter. We first show that Condition 2 is sufficient for the almost surely
continuity (in sup norm) of the SLGP as well as mean Hölder continuity of the
SLGP.

Almost sure continuity of the Spatial Logistic Gaussian Process

First, let us remark that if a covariance kernel k on D×I satisfies Condition 2,
then the associated centred GP admits a version that is almost surely continuous
and therefore almost surely bounded. Proposition 2.1.3 proven in appendix for
self-containedness constitutes a classical result in stochastic processes literature,
but is essential as it ensures the objects we will work with are well-defined. It
then allows us to derive a bound for the expected value of the sup-norm of our
increment field, and to leverage it for our main contribution for this section.

Proposition 3.3.2. If a covariance kernel k on D × I satisfies Condition 2,

then for any 0 < δ <
α1

2
, there exists a constant Kδ such that for Z ∼ GP(0, k):

M(x,x′) := E [∥Zx,· − Zx′,·∥∞] ≤ Kδ∥x− x′∥α1/2−δ
∞ , ∀(x,x′) ∈ D2 (3.36)

Despite its reliance on standard results for spatial statistics (namely Dudley’s
theorem), the full proof of Proposition 3.3.2 requires precision, to ensure that
the provided bounds are tight. As such, we decided to give the main idea here,
but to refer the reader to proofs in the Appendix A.2 for full derivation.
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Main elements for proving Proposition 3.3.2. For any (x,x′) ∈ D2, the process
Zx,· − Zx′,·, is a Gaussian Process whose covariance kernel can be expressed as
linear combination of k. As such, the canonical semi-distance associated to it
(here denoted d2x,x′) inherits its regularity from Condition 2, which yields:

d2x,x′(t, t′) ≤ 3C∥x− x′∥α1
∞∀(t, t′) ∈ I2 (3.37)

d2x,x′(t, t′) ≤ 4C∥t− t′∥α2
∞∀(t, t′) ∈ I2 (3.38)

combining these bounds with Dudley’s theorem and careful numerical develop-
ment yields the required result.

This bound on the expected value of the increments of a GP allows us to
make a much stronger statement than the one in proposition 2.1.3.

Corollary 3.3.3. If k satisfies Condition 2 and Z ∼ GP(0, k), then for any
(x,x′) ∈ D2, the process (Zx,t − Zx′,t)t∈I is almost surely β-Hölder continuous
for any β < α1

2

Proof. To prove this result, we just need to combine the bound provided by
Proposition 3.3.2 with Proposition 2.1.7 in Appendix. This induces the existence
of a version Z̃ almost surely β-Hölder continuous. Then, D×I being compact,
it follows that Z and Z̃ are indistinguishable.

From thereon, we will always work with assumptions ensuring the a.s. con-
tinuity of the GPs we work with. We will consider that our GPs of interest are
also B-valued. Indeed, as stated in Remark 3.1.2, given an a.s. continuous GP
Z it is always possible to construct a surely continuous GP Z̃ (and therefore
B-valued) indistinguishable from it.

Theorem 3.3.4. Let us consider a centred GP Z on D × I whose covariance
kernel k satisfies Condition 2. The SLGP induced by Z denoted here Y is almost
surely in A+

d (I;D) and it is almost surely β-Hölder continuous for ∥ · ∥∞ and
any β < α1

2
.

Proof. First, note that under Condition 2, Z is almost surely continuous (and
hence a.s. bounded). This standard result of spatial statistics is recalled in Ap-
pendix, Proposition 2.1.3. It follows from it that Y is almost surely inA+

d (I;D)
(and that we are in the setting of 3.2.4).
Now observe that we always have:

Zx,· − ∥Zx,· − Zx′,·∥∞ ≤ Zx′,· ≤ Zx,· + ∥Zx,· − Zx′,·∥∞ (3.39)
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with ∥Zx,· − Zx′,·∥∞ being possibly infinite on the null-set where Z is not con-
tinuous. As such:∣∣∣∣∣ eZx′,·∫

I e
Zx′,u dλ(u)

− eZx,·∫
I e

Zx,u dλ(u)

∣∣∣∣∣ ≤ eZx,·∫
I e

Zx,u dλ(u)

[
e2∥Zx,·−Zx′,·∥∞ − 1

]
(3.40)

By convexity of the exponential, we find that:

∥Yx,· − Yx′,·∥∞ ≤
e2∥Z∥∞

λ(I)
[
2∥Zx,· − Zx′,·∥∞ +O(∥Zx,· − Zx′,·∥2∞)

]
(3.41)

Combining the almost-sure boundedness of Z with Corollary 3.3.3 and the do-
main’s compactness concludes the proofs.

Remark. For simplicity of notation, we focused on the case where Z is a centred
GP, but all properties are easily extended to the case where the mean of Z is
β-Hölder continuous for any β < α1

2
.

From the Proposition 3.3.2, we are also able to derive an analogue to scalar’s
mean square continuity, presented in the following section.

Mean power continuity of the Spatial Logistic Gaussian Process

We also leverage the bound on the expected value of the sup-norm of our incre-
ment field in our second contribution: we show that the Hölder conditions on k
and kinc are sufficient conditions for the mean power continuity of the SLGP.

Theorem 3.3.5 (Sufficient condition for mean power continuity of the SLGP).
Consider the SLGP Y induced by a centred GP Z with covariance kernel k and
assume that k satisfies Condition 2.

Then, for all γ > 0 and 0 < δ < γα1/2 (for Equation 3.42, resp. 0 < δ < γα1

for Equations 3.43 and 3.44), there exists Kγ,δ > 0 such that for all x,x′ ∈ D2:

E [dH(Yx,·, Yx′,·)
γ] ≤ Kγ,δ∥x− x′∥γα1/2−δ

∞ (3.42)

E [KL(Yx,·, Yx′,·)
γ] ≤ Kγ,δ∥x− x′∥γα1−δ

∞ (3.43)

E [dTV (Yx,·, Yx′,·)
γ] ≤ Kγ,δ∥x− x′∥γα1−δ

∞ (3.44)

The main addition of this theorem, compared to the Proposition 3.3.4 is that
it provides some control on the modulus of continuity. In theorem 3.3.5, we add
to the almost-sure Hölder continuity by also providing rates on the dissimilarity
between SLGPs considered at different x’s. We give here the sketch of proof
and refer the reader to appendix A.2 for detailed derivations.
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Main elements for proving Theorem 3.3.5. The core idea of this proof is to lever-
age Lemma 3 and to apply Fernique’s theorem. Careful analysis and further
derivations enable us to prove that we have the following (tight) upper-bounds:

E [dH(Yx,·, Yx′,·)
γ] ≤ κγE [∥Zx,· − Zx′,·∥∞]γ

E [KL(Yx,·, Yx′,·)
γ] ≤ κγE [∥Zx,· − Zx′,·∥∞]2γ

E [dTV (Yx,·, Yx′,·)
γ] ≤ κγE [∥Zx,· − Zx′,·∥∞]2γ

(3.45)

We combine this inequality with Proposition 3.3.2 to conclude the proof.

Remark. The proof of this theorem consists in getting to the Inequalities in 3.45
and then leveraging Proposition 3.3.2. It is noteworthy to observe that the
exact same proof structure can be applied, for instance, to prove that for a
SLGP Y ′ = Ψ[Z ′] and a density field f obtained by spatial logistic density
transformation of a function g, f = Ψ[g], if E [∥Zx,· − g(x, ·)∥∞]γ → 0 then for
all x:

E [dH(f(x, ·), Yx,·)γ]→ 0
E [KL(f(x, ·), Yx,·)γ]→ 0
E [dTV (f(x, ·), Yx,·)γ]→ 0

(3.46)

Hence making these bounds applicable in the context of uniform approximation
by a GP.

3.3.2 Posterior consistency for (logistic Gaussian) ran-
dom measure fields

From now-on, we will consider that we have observations obtained by indepen-
dent sampling of a reference field p0 of pdfs on I indexed byD. By that, we mean
that our dataset consist in n couples of locations and observations {(xi, ti)}1≤i≤n,
where the xi are in D. Moreover, we assume the ti’s are obtained by inde-
pendent sampling of random variables Ti with density p0(xi, ·). The (random)
vectors of observations are denoted by T = (Ti)1≤i≤n and t = (ti)1≤i≤n respec-
tively, similarly the vector of concatenated sampled location will be denoted by
X = (xi)1≤i≤n.

In this section, we follow the approach applied in Pati et al. (2013) and
consider that the xi’s are i.i.d. realisations of some random variables Xi and we
note Q their distribution. We assume that Q admits a density q with respect to
the Lebesgue measure.

The distribution Q will be mostly instrumental, as it allows us to study
joint densities rather than conditional density, and therefore apply Schwartz’s
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theorem (Schwartz, 1965). This theorem gives a general method for establish-
ing consistency in non-parametric and semi-parametric problems, and is briefly
recalled in Appendix A.1.

Definition 3.3.1 (Mapping conditional densities to joint densities). We note
Λq the map defined for any f ∈ Ad(D; I) by the relationship:

∀x ∈ D, ∀t ∈ I, Λq[f ](x, t) = q(x)f(t|x) (3.47)

Whenever the linear map Λq is applied to a function f ∈ Ad(D; I) (i.e. a
density on I indexed by D), it returns an element of A(D × I) (i.e. a joint
density on D × I).

We establish weak posterior consistency of the priors induced by the SLGP
for a given class of function, meaning that this posterior consistency is achieved
for the weak topology. The definition of this topology is recalled in Appendix A.1.

Proposition 3.3.6 (Weak consistency of the joint-density). Let Y be a SLGP
on I indexed by D, and denote by Z one of the GPs inducing Y . Further
assume that Z ∼ GP(0, k) and that ∥Z∥∞ < ∞ a.s. For f0 an element of the
Reproducing Kernel Hilbert Space (RKHS) of k, the prior Π induced by Λq[Y ]
achieves weak posterior consistency at h0 = Λq ◦Ψ[f0].

In order to prove this result, we need an intermediate result about logistic
transforms, namely:

Lemma 4. For any two functions f1, f2 : (D×I)→ R exponentially integrable
alongside I and any ϵ > 0

∥f1 − f2∥∞ ≤ ϵ⇒
∣∣∣∣log(Λq ◦Ψ[f1]

Λq ◦Ψ[f2]

)∣∣∣∣ = ∣∣∣∣log(Ψ[f1]

Ψ[f2]

)∣∣∣∣ ≤ 2ϵ (3.48)

Proof of Lemma 4. By definitions of the spatial logistic density transform and
of Λ: ∣∣∣∣log(Λq ◦Ψ[f1]

Λq ◦Ψ[f2]

)∣∣∣∣ =
∣∣∣∣∣log

(
q(·)

∫
I e

f2(·,u)−f2(·,·) du

q(·)
∫
I e

f1(·,v)−f1(·,·) dv

)∣∣∣∣∣ (3.49)

≤

∣∣∣∣∣log
( ∫

I e
∥f1−f2∥∞ du∫

I e
−∥f1−f2∥∞ dv

)∣∣∣∣∣ (3.50)

≤ 2∥f1 − f2∥∞ ≤ 2ϵ (3.51)
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Proof of proposition 3.3.6. Since we endowed A(D × I) with the weak conver-
gence topology, we can apply Schwartz’s theorem, as long as we prove that for
all ϵ > 0:

Π [h ∈ A(D × I), KL(h0, h) < ϵ] > 0 (3.52)

In our case, it will be sufficient to only consider joint densities that are strictly
positive on D×I, as they can be written h = Λ ◦Ψ[f ] for some f : D×I → R.
Applying lemma 4 allows for rewriting the quantity of interest as:

P [∥Z − w0∥∞ < ϵ] > 0 (3.53)

This corresponds to the small ball probabilities for Gaussian processes and the
property holds, as recalled in Proposition 2.2.5.

Corollary 3.3.7 (Weak consistency of the probability density field). Let Y be a
SLGP on I indexed by D, and denote by Z one of the GPs inducing Y . Further
assume that Z ∼ GP(0, k) and that ∥Z∥∞ < ∞ a.s. For f0 an element of
the Reproducing Kernel Hilbert Space (RKHS) of k, the prior Πd induced by Y
achieves weak posterior consistency at Ψ[f0].

This ensures that asymptotically the SLGP models will be able to recover a
large class of probability density fields.
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Chapter 4

SLGP fitting under finite-rank
kernels: parametrization and
inference

In this Chapter, we discuss implementation choices and important properties
motivating them. Note that all the codes used for running experiments in
this Chapter and the next one are available on the GitHub repository Gautier,
Athénäıs (2023).

We will consider for simplicity that our SLGP is obtained by transforming
almost-surely continuous GPs on [0, 1]dx+dt . As such, we can relax the tone
adopted in Chapter 3 in favour of less mathematical yet sound phrasing. We
will see throughout this Section that our choices of GPs ensure that the a.s.
continuity assumption is satisfied.

4.1 General considerations

4.1.1 Data integration

From now on, we will consider that our observations are obtained by independent
sampling of a reference probability density field p0. By that, we mean that our
dataset consist in n couples of locations and observations {(xi, ti)}1≤i≤n, where
the xi are in [0, 1]dx . Moreover, we assume the ti’s are obtained by independent
sampling of random variables Ti with respective densities p0(xi, ·). The random
vector of observations is denoted by T = (Ti)1≤i≤n, while we use t = (ti)1≤i≤n

for a realisation of T.
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For a suitable covariance kernel k, consider the following hierarchical model:
Z ∼ GP(0, k)

π (Ti = t|Z) = eZ(xi,t)∫
[0,1]dt

eZ(xi,u) du
(t ∈ [0, 1]dt , 1 ≤ i ≤ n)

(4.1)

Assuming that the observations stem from the model, and leveraging their in-
dependence, we obtain density of observations knowing the underlying GP:

π (T = t|Z) =
n∏

i=1

eZxi,ti∫
[0,1]dt

eZxi,u du
(4.2)

Implementation of the density field estimation can be done through MCMC
sampling but causes two main issues that we will address now.

4.1.2 Hyperparameters estimation

The first problem posed is that in almost all realistic cases, GPs depend on
some unknown hyperparameters that need to be estimated. This issue can be
addressed in a Bayesian way, by specifying a prior on the hyperparameters.
Typically, k admits a variance parameter σ2 and other parameters, that we
will denote θ. To highlight this dependency, we use the notation k = σ2kθ.
We introduce an augmented Bayesian model that allows for hyperparameters
estimation. It requires practitioners to specify prior beliefs on both σ2 and θ
through prior distributions.

σ ∼ πσ and θ ∼ πθ
Z|σ,θ ∼ GP(0, σ2kθ)

π (Ti = t|Z) = eZ(xi,t)∫
[0,1]dt

eZ(xi,u) du
t ∈ [0, 1]dt , 1 ≤ i ≤ n

(4.3)

The conditional density of observations here has a similar expression to the
previous one:

π (T = t|Z, σ, θ) =
n∏

i=1

eZxi,ti∫
[0,1]dt

eZxi,u du
(4.4)

In the context of Gaussian Processes, suitable choices of prior distributions have
been previously discussed in the literature. Researchers have proposed vari-
ous methods for selecting priors, such as the principled approach outlined in
Berger et al. (2001) and more recent work on extending the Penalized Complex-
ity framework to 3D GPs as in Fuglstad et al. (2019). We discuss the choices
we made in Section 4.3.
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4.1.3 Dimensionality of the problem

The remaining issue with this hierarchical model lies on the fact that the in-
tegrals in Equations 4.2 and 4.4 involve values of Z over the whole response
domain. This infinite dimensional object makes likelihood-based computations
cumbersome.

We propose a way to reduce the dimensionality by considering only finite
rank Gaussian Processes.

Definition 4.1.1 (Finite-rank Gaussian Processes). A Gaussian Process Z on
a generic domain S is called a finite rank Gaussian Process if there exists p ∈ N,
and a family of functions (fi)1≤i≤p on S such that

Z(s) =

p∑
j=1

fj(s)εj, ∀s ∈ S (4.5)

where ε is a random vector of p i.i.d. N (0, σ2) random variables.

Remark. Note that from now on, we should use the notation ε (resp. ε ) to
denote the random variable (resp. random vector), and ϵ (resp. ϵ) for fixed
values and realisations thereof.

In particular, we will be interested on finite-rank GPs on D×I = [0, 1]dx+dt ,
and as such consider function (fi,θ)1≤i≤p on [0, 1]dx+dt . This yields finite-rank
GPs that we can write as follows:

Z(x, t) =

p∑
j=1

fj,θ(x, t)εj = ε⊤Fθ(x, t), ∀x ∈ D, t ∈ I, (4.6)

where Fθ(x, t) := (fj,θ(x, t))1≤j≤p is the vector of basis functions evaluated at

(x, t) and ε is a random vector of p i.i.d. N (0, σ2) random variables.
Note that we assumed that the GP’s dependency on the hyperparameters θ

is only expressed through the deterministic basis functions.

Remark. When the fi,θ are L2 orthonormal, this coincides with the Karhunen-
Loève expansion of the GP, as introduced in Proposition 2.2.6. However, for
most kernels, this expansion is not analytically known.

Lemma 5. A finite rank GP defined as in Equation 4.6 has the following co-
variance kernel:

Cov (Z(x, t), Z(x′, t′)) = σ2

p∑
j=1

fj,θ(x, t)fj,θ(x
′, t′) (4.7)
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The posterior distribution of ε, σ, θ, given data {(xi, ti)}ni=1 can be obtained
by replacing Z’s expression in Equation 4.4 and denoting by ϕp the pdf of the
p-variate standard normal distribution:

π[ϵ, σ,θ|T = t] ∝ πσ(σ)πθ(θ)ϕp

( ϵ
σ

) n∏
i=1

e
∑p

j=1 ϵjfj,θ(xi,ti)∫
I
e
∑p

j=1 ϵjfj,θ(xi,u) du

(4.8)

4.2 Basis functions considered

Although theoretically, any basis function could be used in the implementation,
practice is different. Indeed, due to the exponential transformation, practitioners
need to be careful with the numerical stability of their model. We identified some
families of functions that seem to display sufficiently nice behaviours and make
implementation less prone to numerical overflow. From here on, we review such
approaches.

4.2.1 Leveraging inducing points

In (Tokdar, 2007) a finite rank approach leveraging inducing points is used. A
moderate number of inducing points is introduced to reduce the dimensionality
of the problem for logistic Gaussian Processes (with no more than a hundred
points). We claim that this approach can be considered as a particular, adaptive
choice of equation 4.6. Indeed, let us consider a Gaussian Process Z ∼ GP(0, k)
over a general domain T . For arbitrary indices y1, ...yp ∈ T , we can introduce
Zp := (Zy1 , ..., Zyp)⊤ and informally say that Z can be approximated by W :=
E[Z|Zp].

The conditioning formula in the Gaussian setting are well known and give us
a closed-form formula forW : Wy = kp(y)

⊤K−1Zp with K = (k(yi, yj))1≤i,j≤p the
covariance matrix of the chosen design and kp(y) := (k(yi, y))1≤i≤p for y ∈ T . We

can rewrite this equation by introducing Xp = K−1/2Zp a multivariate standard
normal. In this case, we get Wy = kp(y)

⊤K−1/2Xp. Therefore, setting fi(y) to
be the i-th coordinate of the vector kp(y)

⊤K−1/2 yields that Wy =
∑p

i=1Xifi(y)
where the Xi’s are i.i.d. N (0, 1).

4.2.2 Fourier functions

We propose using Fourier-type basis, i.e. collections of: (cos(ω⊤[x, t]), sin(ω⊤[x, t])),
for varying ω’s in Rdx+1. We implement three different ways to select these an-
gular frequencies. The first one being inspired from the discrete Fourier basis,
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while the other two are variations within the Random Fourier Feature frame-
work. Finally, to simplify notations we will mostly focus on the setting where
I = [0, 1].

Multivariate adaptation of the discrete Fourier basis For this approach,
that is a multivariate extension of the unidimensional discrete Fourier basis, we
consider that the domain D is [0, 1]dx . We specify two parameters, noted px
and pt that determine the frequencies considered in x and t. Then, we consider

all the ω ∈
{
−2π(px−1)

px
, ..., 2π(px−1)

px

}dx
⊗
{
2π, ..., 2π(pt−1)

pt

}
. This approach yields

(2px− 1)d(pt− 1) frequencies and therefore twice as many basis functions. This
family of functions excludes non-positive frequencies in t for two reasons. First,
excluding negative values allows for avoiding redundancy by ensuring that one
can not have both ω and−ω as frequency. Second, we also avoid functions
independent of t, as they would be cancelled-out within the normalisation step.

When using a finite rank Gaussian Process relying on these basis functions,
we recommand to weight each function depending on its frequency, but to es-
timate only one hyperparameter: a common variance parameter. Indeed, one
could imagine having one variance parameter per function, but it would lead to
estimating (2px − 1)d(pt − 1) hyper-parameters, which would prove numerically
costly.

Random Fourier Features

As mentioned in Subsection 2.2.3, the framework of Random Fourier Features
yields one way to construct finite rank GPs that “resemble” GPs with a pre-
scribed covariance kernel. We propose constructing such a RFF inspired GP.
For a given kernel k, we denote ωi’s draws of independent random variables that
have a density equal to the spectral density of k. We consider the basis functions
given for any x ∈ D and t ∈ I by:

φ([x, t]) =
[
cos(ω⊤

1 [x, t]), ..., cos(ω
⊤
p [x, t]), sin(ω

⊤
1 [x, t]), ..., sin(ω

⊤
p [x, t])

]
(4.9)

Then, let us define the process:

ZRFF,x,t =
σ
√
p
φ([x, t])⊤ε (4.10)

where ε is a 2p-variate standard normal vector. ZRFF is a Gaussian Process
with mean zero and covariance kernel kRFF ([x, t], [x

′, t′]).
One can easily prove that:

kRFF ([x, t], [x
′, t′]) =

σ2

p

p∑
i=1

cos(ω⊤
i [x− x′, t− t′]) (4.11)
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This is a Monte-Carlo approximation of the Bochner integral of k, as recalled
in Equation 2.34 and in subsection 2.2.3 of Chapter 2

Space filling random Fourier Features

Rather than randomly sampling from the spectral density to get to Equa-
tion 2.34, one can instead aim at selecting a set of points as diverse as possible
that adequately reflect the (spectral) density at hand. One framework that tack-
les such challenges is that of Space-filling designs (with respect to a prescribed
measure). Most commonly, it is studied and implemented with the Lebesgue
measure (i.e. uniform distribution) being the target measure. However, we will
mostly be interested in Matérn kernel in this document, and as such need to
work with respect to multivariate Student distribution (as pointed out in Sec-
tion 2.2.4). Thankfully, we can fully leverage existing codes and adapt them to
our setting, thanks to the following observation:

Lemma 6. Let X := (X1, ..., Xp)
⊤ follow a d-variate Student distribution, with

2ν degrees of freedom, location 0 and scale matrix identity.

• Any marginal is a univariate Student distribution. In particular, X1 fol-
lows a univariate Student with 2ν degrees of freedom.

• The conditionals are multivariate Student distributions. In particular, for

i ≥ 2, the re-scaled variable
√

2ν+i−1

2ν+
∑i−1

j=1 X
2
j

Xi

∣∣∣∣X1, ..., Xi−1 follows a uni-

variate student distribution with 2ν + i− 1 degrees of freedom

Using our knowledge of the marginals and conditionals of the multivariate
Student distribution, and applying the Rosenblatt transformation (Rosenblatt,
1952) allows for transforming any Space-filling design with respect to the uni-
form distribution into one with respect to the multivariate Student. Differences
between frequencies obtained through random sampling and those with a space-
filling design is displayed in Figure 4.1. In this work, we use maximin-LHS
designs as implemented in the R package DiceDesign (Dupuy et al., 2015)
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Figure 4.1: Illustrating Random versus Space-filling Fourier Features with 20
sampled frequencies in a 2D Matérn 5/2 kernel. The coloured background cor-
responds to the spectral density at hand.

4.3 Implementation

4.3.1 Maximum a posteriori estimation

Here, we propose to find the values of σ2, θ and ε that maximize the (unnor-
malised) posterior density. It allows us to perform reasonably fast density field
estimation, or to initialize our MCMC with this value of ϵ rather than with an
arbitrary value.

Maximizing the (unnormalised) posterior density is equivalent to minimizing
its negative log. We will favour this approach, both because it yields simpler
computations, but also because it is more numerically stable. Note that the
right-hand term of Equation 4.4 can be split in two parts, one relative to the
prior, the other to the likelihood term. We will focus mostly on the likelihood
aspect, which is at the core of this contribution.

Negative log likelihood Under model 4.3 assumptions, the likelihood can
be written as:

L(ϵ, σ,θ; t) =
n∏

i=1

e
∑p

j=1 ϵjfj,θ(xi,ti)∫
I
e
∑p

j=1 ϵjfj,θ(xi,u) du

(4.12)
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As is standard in computational statistics, instead of studying the likeli-
hood as it is written in Equation 4.12, we will rather consider the negative
log-likelihood. We simplify notation by introducing Fθ(x, t), the vector with
coordinates fj,θ(x, t), and the average observed value of it: F̄θ =

(
F̄j,θ

)
1≤j≤p

:=

1
n

n∑
i=1

Fθ(xi, ti). Then, the negative log-likelihood can be written as:

ℓ(ϵ, σ,θ; t) = −ϵ⊤F̄θ +
n∑

i=1

log
(∫

I e
ϵ⊤Fθ(xi,u) du

)
(4.13)

Let us also consider that among x1, ...,xn there are only K distinct values
noted x̃1, ..., x̃K . Furthermore, consider that at x̃k, there are nk distinct obser-
vations. This allows us to rewrite equation 4.13 as:

ℓ(ϵ, σ,θ; t) = −ϵ⊤F̄θ +
K∑
k=1

nk log
(∫

I e
ϵTFθ(x̃k,u) du

)
(4.14)

This term does not display dependencies on σ2, but possesses a property
that will be crucial to ensure the good behaviour of our estimations.

Theorem 4.3.1. For fixed data t and hyperparameters σ and θ, the negative
log-likelihood function

ϵ 7→ ℓ(ϵ, σ,θ; t) (4.15)

is convex.
Equivalently, the likelihood negative log-likelihood function at fixed hyper-

parameters
ϵ 7→ L(ϵ, σ,θ; t) (4.16)

is log-concave.

Proof. To prove this statement, we compute the gradient and Hessian of the
negative log likelihood.

Its gradients write:

∂ℓ(ϵ, σ,θ; t)

∂ϵi
= −F̄i,θ +

K∑
k=1

nk

∫
I
fi,θ(x̃k, u)

eϵ
TFθ(x̃k,u)∫

I e
ϵTFθ(x̃k,v) dv

du (4.17)

The second order derivatives are:

∂2ℓ(ϵ, σ,θ; t)

∂ϵi∂ϵi′
=

K∑
k=1

nk

∫
I
fi,θ(x̃k, u)fi′,θ(x̃k, u)

eϵ
TFθ(x̃k,u)∫

I e
ϵTFθ(x̃k,v) dv

du

−
K∑
k=1

nk

(∫
I
fi,θ(x̃k, u)

eϵ
TFθ(x̃k,u)∫

I e
ϵTFθ(x̃k,v) dv

du

)(∫
I
fi′,θ(x̃k, u)

eϵ
TFθ(x̃k,u)∫

I e
ϵTFθ(x̃k,v) dv

du

)
(4.18)
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For a given ϵ, let us introduce Y1, ...Yk, k random variables with respective

probability density
eϵ

TFθ(x̃k,u)∫
I e

ϵTFθ(x̃k,v) dv
. Then:

∂2ℓ(ϵ, σ,θ; t)

∂ϵi∂ϵi′
=

K∑
k=1

nk (E [fi,θ(x̃k, Yi)fi′,θ(x̃k, Yi′)]− E [fi,θ(x̃k, Yi)]E [fi′,θ(x̃k, Yi′)])

=
K∑
k=1

nkCov (fi,θ(x̃k, Yi), fi′,θ(x̃k, Yi′))

(4.19)

Since the Hessian matrix is a (sum of) covariance matrices, it inherits their
symmetry and p.d-ness. This suffices to prove that the negative log-likelihood
is convex.

Remark. Other partial derivatives are not necessary to prove Theorem 4.3.1, but
still useful for implementation. We give them here.

∂ℓ(ϵ, σ,θ; t)

∂θi
= −ϵ⊤∂F̄θ

∂θi
+

K∑
k=1

nk

∫
I
ϵ⊤
∂Fθ(x̃k, u)

∂θi

eϵ
T f(x̃k,u)∫

I e
ϵT f(x̃k,v) dv

du (4.20)

where we use the informal notation
∂Fθ(x, t)

∂θi
to denote the vector with coordi-

nates
∂fj,θ(x, t)

∂θi

∂2ℓ(ϵ, σ,θ; t)

∂θi∂θi′
=

K∑
k=1

nk

∫
I

[
ϵ⊤
∂Fθ(x̃k, u)

∂θi
ϵ⊤
∂Fθ(x̃k, u)

∂θi′
+
∂2Fθ(x̃k, u)

∂θi∂θi′

]
eϵ

TFθ(x̃k,u)∫
I e

ϵTFθ(x̃k,v) dv
du

−
K∑
k=1

nk

(∫
I
ϵ⊤
∂Fθ(x̃k, u)

∂θi

eϵ
TFθ(x̃k,u)∫

I e
ϵTFθ(x̃k,v) dv

du

)(∫
I
ϵ⊤
∂Fθ(x̃k, u)

∂θi′

eϵ
TFθ(x̃k,u)∫

I e
ϵTFθ(x̃k,v) dv

du

)
−ϵ⊤ ∂2F̄θ

∂θi∂θi′
(4.21)

∂2ℓ(ϵ, σ,θ; t)

∂ϵi∂θi′
=

K∑
k=1

nk

∫
I

[
fi,θ(x̃k, u)ϵ

⊤∂Fθ(x̃k, u)

∂θi′
+
∂fi,θ(x̃k, u)

∂θi′

]
eϵ

TFθ(x̃k,u)∫
I e

ϵTFθ(x̃k,v) dv
du

−
K∑
k=1

nk

(∫
I
fi,θ(x̃k, u)

eϵ
TFθ(x̃k,u)∫

I e
ϵTFθ(x̃k,v) dv

du

)(∫
I
ϵ⊤
∂Fθ(x̃k, u)

∂θi′

eϵ
TFθ(x̃k,u)∫

I e
ϵTFθ(x̃k,v) dv

du

)
−∂F̄i,θ

∂θi′
(4.22)
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Knowing the partial derivatives allow us to perform Maximum a posteriori
estimation of the parameters. This gives us a point-estimate of the field.

Our implementation of the MAP estimation In our implementation, we
relied on results from van der Vaart and van Zanten (2009) showing that the
inference asymptotically behaves well when performing LGP-based density esti-
mation with an inverse gamma distribution on the lengthscale hyperparameter.
Additionally, we have experimented with different priors for the variance, in-
cluding those available in the R packages INLA (Lindgren and Rue, 2015) and
RSTAN (Stan Development Team, 2022). However, although the negative-log
likelihood is convex in ϵ, it is not in θ, making optimisation much slower when
considering the lengthscale. We also found that the numerical stability of the
SLGP was greatly impacted by the choice of the variance, due to the exponen-
tiation. Therefore, we have decided to fix the variance at a relatively low value
to ensure numerical stability, rather than performing Bayesian inference on it.
After performing preliminary experiences, it appears that selecting a variance

such that Median

[
max

x∈D,t∈I
ε⊤Fθ(x, t)− min

x∈D,t∈I
ε⊤Fθ(x, t)

]
≈ 5 already gives a

lot of flexibility to SLGPs models (recall that e5 ≈ 148) while preventing nu-
merical instability. This value seems like a reasonable heuristic in our current
setting, and severely alleviate technical issues when computing the normalising
term at the denominators of SLGPs.

Also note that this selection of the variance is not directly data-dependent,
and is mostly here to ensure the numerical stability of the prior. In our current
setting, σ2 depends only on the choice of basis functions and lengthscales.

Hence, our current optimisation relies on grid search and heuristics and can
be summarised as follows:
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Algorithm 1: SLGP-based maximum a posteriori estimation of the
underlying density, with grid search for θ and heuristic for σ2.

input : Grid Θ of values for θ, dataset {(xi, ti)}1≤i≤n, basis functions
(fi,θ)1≤i≤p

for θ ∈ Θ do
Draw nsim i.i.d. realisations of ε ∼ Np(0, 1).
Evaluate the basis function on a coarse grid covering the whole
domain D × I
Use the last two steps to estimate:

mθ := Median

[
max

x∈D,t∈I
ε⊤Fθ(x, t)− min

x∈D,t∈I
ε⊤Fθ(x, t)

]
.

Set σθ =
5
mθ
, to enforce numerical stability of the prior

Perform (gradient-based) optimisation to get ϵ∗θ at θ and σ2
θ

Store θ, σ2
θ , ϵ

∗
θ and the value π[ϵ∗θ, σθ, θ|T = t]

output: θ∗, σ2
θ∗ and ϵ∗θ∗ that give the highest value of

π[ϵ∗θ∗ , σθ∗ , θ
∗|T = t]

4.3.2 Markov Chain Monte Carlo

An alternative to MAP estimation is the so-called Markov Chain Monte Carlo
Sampling. Although computationally more expensive than a gradient-based
estimation, it yields a probabilistic prediction of the probability distribution
field.

A brief overview of Markov Chain Monte Carlo algorithms

Markov Chain Monte Carlo (MCMC) is a method for estimating probability
distributions by generating random samples from those distributions. It works
by constructing a Markov Chain, where each step in the chain is a random tran-
sition to a new state. The chain is then run for a sufficient number of iterations
to converge to a stationary distribution, which is an approximation of the target
probability distribution. This stationary distribution can be used to estimate
quantities of interest, such as means and variances. MCMC is widely used in
Bayesian statistical modelling and other fields where the direct calculation of a
probability distribution is intractable.

We identify several algorithms that could be relevant to our setting and
present various degrees of computational efficiency and computation cost.

Metropolis-Hastings The simplest algorithm for MCMC is the so-called
Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970). We
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present here the essence of MH for sampling some parameters ϵ based on data
D (here, we have D = {(xi, ti)}1≤i≤n. Note that we kept the notation relevant
to this thesis but that the algorithm is presented in the general setting, and is
not dependent on a particular form of the posterior.

Algorithm 2: Metropolis-Hastings algorithm

input : Unnormalised posterior π [ϵ|D], number of iterations T ,
proposal density q(ϵ|ϵ′), initial value ϵ(0)

for 1 ≤ i ≤ T do
Simulate ϵ′ ∼ q(·|ϵ(i−1)) and u ∼ U([0, 1])
if u ≤ π[ϵ′|D]q(ϵ(i−1)|ϵ′)

π[ϵ(i−1)|D]q(ϵ′|ϵ(i−1))
then

ϵ(i) ← ϵ′

else
ϵ(i) ← ϵ(i−1)

output: Samples ϵ(i) from the posterior

The performance of the MH algorithm is sensitive to the choice of the pro-
posal distribution q(ϵ|ϵ′). It is common to use q(ϵ|ϵ′) = N (ϵ′,Σ) with carefully
tuned Σ.

A class of algorithms called adaptive Metropolis algorithms (Haario et al.,
2001, 2006; Andrieu and Thoms, 2008) modify the proposal distribution dur-
ing the simulation in order to improve its efficiency. The idea behind adaptive
MCMC is to adjust the proposal distribution in a way that reduces the corre-
lation between consecutive samples, speeds up convergence, and increases the
acceptance rate of candidate states.

The MH’s efficiency can be improved upon whenever using specific priors or
posteriors. In particular, whenever the target posterior has density with respect
to a Gaussian process or Gaussian random field reference measure, one can use
algorithms that come with faster convergence.

Preconditioned Crank Nicholson The goal of preconditioned Crank Nichol-
son (pCN) for MCMC is to improve the convergence and efficiency of the MCMC
algorithm by transforming the target distribution in a way that makes it easier
to explore (Neal, 1998; Beskos et al., 2008; Cotter et al., 2013). The transformed
distribution leads to a more efficient exploration of the state space, which can
result in faster convergence and improved mixing of the Markov Chain.
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Algorithm 3: Preconditioned Crank Nicholson algorithm

input : Unnormalised posterior π [ϵ|D], number of iterations T ,
tuning-parameter β > 0, proposal covariance Σ, initial value
ϵ(0)

for 1 ≤ i ≤ T do

Simulate ϵ′ ∼ N (
√

1− β2ϵ(i−1), β2Σ) and u ∼ U([0, 1])
if u ≤ π[ϵ′|D] exp{ϵ(i−1)⊤Σϵ(i−1)/2}

π[ϵ(i−1)|D] exp{ϵ′⊤Σϵ′/2} then

ϵ(i) ← ϵ′

else
ϵ(i) ← ϵ(i−1)

output: Samples ϵ(i) from the posterior

The pCN differs only slightly from the MH algorithm, with the main differ-
ence being that the proposal is not centred anymore. Although one may still
have to tune the step size parameter β and design Σ to achieve a desired level
of statistical efficiency, the performance of the pCN method is robust to the di-
mension of the sampling problem being considered. As for MH, generalisations
(Rudolf and Sprungk, 2018) and adaptive versions (Chen et al., 2016) of the
algorithm have been proposed to improve efficiency.

Yet another way to leverage properties of the posterior is to used gradient-
informed methods

Metropolis Adjusted Langevin Algorithm The main idea behind MALA
(Roberts and Stramer, 2002) is to use the gradient information of the target
distribution to construct a proposal distribution that is closer to the target
distribution. This leads to a higher acceptance rate of candidate states and
faster convergence of the MCMC algorithm.

In MALA, a candidate state is generated by proposing a small step in the
direction of the gradient of the target distribution, followed by a random per-
turbation. The acceptance-rejection rule is based on the Metropolis algorithm,
and the candidate state is accepted with a probability proportional to the ratio
of the target distribution evaluated at the candidate state and the current state.

MALA has several advantages over traditional MCMC algorithms, such as
the Metropolis algorithm or the Gibbs sampler. It is especially effective for
problems with highly correlated variables, where traditional MCMC algorithms
can be slow and inefficient. However, MALA requires the gradient information
of the target distribution, which can be computationally expensive to calculate,
especially for high-dimensional problems.

Modelling and predicting distribution-valued fields
with applications to inversion under uncertainty



66 Chapter 4 – SLGP fitting: parametrization and inference

Algorithm 4: Metropolis Adjusted Langevin algorithm

input : Unnormalised posterior π [ϵ|D], gradient ∇π [ϵ|D], number of
iterations T , step-size β > 0, proposal covariance Σ, initial
value ϵ(0)

for 1 ≤ i ≤ T do
Compute the gradient Gi−1 := ∇π

[
ϵ(i−1)|D

]
Simulate ϵ′ ∼ N (ϵ(i−1) + βGi−1, 2βIp) and u ∼ U([0, 1])
if u ≤ π[ϵ′|D]

π[ϵ(i−1)|D]
then

ϵ(i) ← ϵ′

else
ϵ(i) ← ϵ(i−1)

output: Samples ϵ(i) from the posterior

While MALA uses a simple diffusion process as a proposal, there exist other,
more complex, gradient-informed methods that use the analogy between esti-
mation problem and a physical system to perform inference.

Hamiltonian Monte Carlo Hamiltonian Monte Carlo (HMC) (Duane et al.,
1987) is based on the idea of simulating the dynamics of a physical system,
called the Hamiltonian system, that has the target distribution as its equilibrium
distribution.

In HMC, the target distribution is transformed into a new distribution de-
fined by the energy of a physical system. The physical system is then simulated
using Hamilton’s equations of motion, which describe the evolution of the system
over time. The trajectory of the physical system is used to generate a candidate
state, which is accepted or rejected based on the acceptance-rejection rule of the
Metropolis algorithm.

The key advantage of HMC is that it can efficiently explore high-dimensional
target distributions that have complex covariance structures, where traditional
MCMC algorithms can be slow and inefficient. This is because HMC uses gradi-
ent information to construct a proposal distribution that is closer to the target
distribution, and it also uses a technique called momentum resampling to reduce
the correlation between successive samples.

However, as MALA, HMC relies on gradient information of the target distri-
bution, which can be computationally expensive to obtain. In addition, HMC
requires careful tuning of the simulation parameters, such as the step size ∆T
and the number of leapfrog steps L, to ensure that the samples are generated
efficiently and accurately.
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Algorithm 5: Hamiltonian Monte Carlo algorithm

input : Unnormalised posterior π [ϵ|D], gradient ∇π [ϵ|D], number of
iterations T , number of leapfrog steps L, time-step ∆t > 0,
proposal covariance Σ, initial value ϵ(0)

for 1 ≤ i ≤ T do
Initialize the momentum pi(0) ∼ Np(0, Ip)
Set ϵi(0) = ϵ(i−1)

for 1 ≤ j ≤ L do
Update the momentum:
pi((j − 1

2
)∆t)← pi((j − 1)∆t)− ∆t

2
∇π [ϵi((j − 1)∆t)|D]

Update the position: ϵi(j∆t)← ϵi((j − 1)∆t) + ∆tpi((j − 1
2
)∆t)

Update the momentum:
pi(j∆t)← pi((j − 1

2
)∆t)− ∆t

2
∇π [ϵi(j∆t)|D]

Set ϵ′ ← ϵi(L∆t) and simulate u ∼ U([0, 1])
if u ≤ π[ϵ′|D] exp{pi(0)

⊤pi(0)/2}
π[ϵ(i−1)|D] exp{pi(L∆t)⊤pi(L∆t)/2} then

ϵ(i) ← ϵ′

else
ϵ(i) ← ϵ(i−1)

output: Samples ϵ(i) from the posterior

MCMC implementation choices

We have to decide between the various algorithms available to us. First, we
summarise the main requirements of all presented algorithms in Table 4.1.

MH pCN MALA HMC

No normality requirements ✓ ✓ ✓
Efficient in higher dimension ✓ ✓ ✓
Requires gradient evaluations ✓ ✓

Table 4.1: Main requirements of the presented algorithms

The joint sampling of weights ϵ and hyperparameters using preconditioned
Crank-Nicholson is not feasible because the priors on the hyperparameters are
not suitable. The gradient evaluations are available, but they come at a high
computational cost, making the use of Metropolis-Hastings Adjusted Langevin
Algorithm and Hamiltonian Monte Carlo impractical.

Out of the algorithms presented, Metropolis-Hastings is the only suitable op-
tion for joint estimation, despite being inefficient in higher dimensions. However,
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if the hyperparameters are known and estimation is not necessary, pCN can be
utilized to accelerate the inference process. Based on these considerations, we
propose the following methodology.

Implementation used

1. Perform the MAP estimation using Algorithm 1. This yields the MAP
estimates θ, σ2

θ and ε∗θ.

2. Proceed to the MCMC sampling of ε at σ2
θ and θ fixed using a pCN

algorithm. To improve numerical efficiency and ensure we are starting in
an interesting region of the parameter space, we initialize the algorithm
with ε∗θ (or a slightly perturbed version of it when running parallel chains).

Performing the MCMC estimation with fixed hyperparameters allows for
theoretical guarantees on the convergence of the chain. Indeed, as noted earlier
in this chapter, the posterior is a log-concave function of ε which ensures a fast
convergence of the considered algorithm (Dwivedi et al., 2018).

4.4 Applications on analytical test cases and a

meteorological application

We shall evaluate and illustrate the methods considered in this thesis on various
datasets, either artificial test-cases, or datasets from natural sciences.

4.4.1 Assessing the expected power continuity with un-
conditional realisations

We consider some of the most popular covariance kernels, and visualize how
their continuity modulus affects their expected power continuity. For the sake
of simplicity in deriving the Hölder exponents α1 and α2 in Equation 3.34, we
focus on the setting where D = I = [0, 1]. For two commonly-used kernels, we
derived their Hölder exponents in x. The considered functions are summarised
in Table 4.2.

Kernel Associated α1 in Hölder condition

Exponential: k(y, y′) := e−∥y−y′∥2 0 ≤ α1 ≤ 1

Gaussian: k(y, y′) := e−∥y−y′∥22/2 0 ≤ α1 ≤ 2

Table 4.2: Kernels used and their Hölder exponents
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By drawing 1000 unconditional realisations of SLGPs induced by centred
GPs with the corresponding kernels, we can represent a re-scaled version of
E [∆ (Ξ0,Ξx′)γ] for the three dissimilarities ∆ considered in Section 3.3.1 and
varying γ. We also represent the corresponding theoretical rate. Re-scaling is
used solely to allow all curves to appear on the same plots.

The results, represented in Figure 4.2 support our claim that the bounds
obtained in previous derivations (Theorem 3.3.5) are sharp. We now continue
working on synthetic fields, and check that our SLGP models allow for learning
the underlying fields.

Figure 4.2: Visualising E [∆ (Ξ0,Ξx′)γ] (plain lines) and the theoretical bound
(dotted lines) for both kernels, all three dissimilarities and γ ∈ {0.5, 1, 2}.
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4.4.2 Illustrating the Posterior Consistency with an ar-
tificial dataset

We consider two density valued-fields, perfectly known, represented in Fig-
ure 4.3. We obtain them by applying the spatial logistic density transformation
to realisations of GPs with Matérn 5/2 kernels. The index spaces we consider
here are D = [0, 1] and I = [0, 1].

Figure 4.3: Representation of the two density fields used as reference: heat-map
of the probability density field f1(x, t) and f2(x, t) with main quantiles of the
field (top) and probability density functions over slices at x ∈ {0.1, 0.5, 0.9}
(bottom).

We run the density field estimation, without hyperparameters estimation.
Figures displaying the mean posterior field are available in Figure 4.4 for the
first reference field and in Figure 4.5 for the second. We observe that higher
sample size seems to yield a better estimation as the models manages to capture
the shape and modalities of the true density field.
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Figure 4.4: Results for the first reference field. [Top figures:] Heat-map of the
mean posterior probability density field with main quantiles and sample used.
[Bottom figures:] 100 realisations of the posterior pdf (thin blue lines), posterior
mean (blue dotted line) and true pdf (red) at x ∈ {0.1, 0.5, 0.9}.

Figure 4.5: Results for the second reference field. [Top figures:] Heat-map of the
mean posterior probability density field with main quantiles and sample used.
[Bottom figures:] 100 realisations of the posterior pdf (thin blue lines), posterior
mean (blue dotted line) and true pdf (red) at x ∈ {0.1, 0.5, 0.9}.

We expect the goodness of fit of our density estimation procedure to increase
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with the number of available observations. Since we only consider finite rank
GP, the order p (number of Fourier components used) may also determine how
precise our estimation can be. In order to quantify the prediction error for
different sample sizes and GP’s order, we define an Integrated Hellinger distance
to measure dissimilarity between two probability density valued fields f(x, ·) and
f ′(x, ·):

d2IH(f(x, ·), f ′(x, ·)) = 1

2

∫
D

∫
I

(√
f(v, u)−

√
f ′(v, u))

)2
du dv (4.23)

In Fig. 4.6, we display the distribution of dIH between true and estimated fields
for various sample sizes and SLGP orders, obtained by running 50 replication
of the experiment with varying seed. We see that the errors are comparable
for small sample sizes. The order becomes limiting when more observations are
available, as those of the considered SLGPs relying on the smallest numbers of
basis functions appear to struggle to capture small scale variations.

Figure 4.6: Integrated Hellinger distance distribution for different sample sizes
and process orders.

Although the goodness of fit are often comparable when few observations are
available, when numerous data points are used, the order becomes limiting. We
attribute this threshold phenomenon to the SLGP being unable to model small
scale variations.

4.4.3 Demonstrating applicability in higher dimensions
with a meteorological dataset

We present an application on a data-set of temperatures in Switzerland. This
application is by no mean a real forecasting application, and its only aim is to
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illustrate the applicability of the SLGP density estimation on real data. The
temperature data-set is provided by of Meteorology and MeteoSwiss (2019) and
the topographical data is provided by of Topography swisstopo (2019).

Our data consist in daily average temperatures in 2019, measured at 29
stations in Switzerland and marginalised over time. The stations considered are
represented in Figure 4.7.

Figure 4.7: Map of Switzerland showing the 29 Stations present in the data-set,
the stations located in the canton of Bern are in blue.

We consider that the distribution of these temperatures depends on the lat-
itude, longitude, and altitude of the stations, and we fit the SLGP model on
all the stations but three (for the purpose of this illustration, we arbitrarily
excluded the stations located in the Canton of Bern). Since we are not tak-
ing the measurement date into account, we are actually working with marginal
distributions. An example of the available data is displayed in Table 4.3, and
panels representing histograms and pointwise kernel density estimator of the
temperatures at each station are visible in Figure 4.9.

Station Date Daily avg. T. [°C] Altitude Longitude Latitude
Altdorf 2019-01-01 1.5 438 46.88707 8.621894
Altdorf 2019-01-02 0.0 438 46.88707 8.621894

...
St. Gallen 2019-12-31 -4.1 776 47.42547 9.398528

Table 4.3: First and last rows of the temperature data-set in Switzerland.
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We observe that this dataset presents changes of shape, by displaying both
uni and multi modality, various degrees of skewness, as well as shifts in temper-
atures. It appears, as one can expect, that stations located at a high altitude
tend to have colder temperatures than the ones located in the Swiss plateau.

Prior knowledge on the Swiss climate hints toward the altitude being the
most relevant coordinate, with latitude and longitude having far less impact
on predictions, in most application cases. We leverage this insight to slightly
simplify the model, by assuming that the rescaled latitude and longitude share
a common lengthscale.

We specify a finite-rank GP with 250 random Fourier features (i.e. 500
basis functions) drawn from the spectral density of a Matérn 5/2 kernel. We
follow the methodology from Section 4.3, by first performing MAP estimation,
with the hyperparameters being determined with a grid-search. One can refer
to Figure 4.8 for the negative-log-posterior profiles. With this approach, we
identify promising values of the lengthscale for latitude and longitude to be at
40% of the range, while it is at 15% for the altitude and 7.5% for the temperature
value.

Figure 4.8: Showing the values of the negative log-posterior when varying the
lengthscale parameters for Latitude/Longitude, Altitude and Temperature. The
panel achieving the minimum is highlighted in green, the panels whose smallest
values are less than 1% away from the minimum are in light blue.
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We noted during this step of our work that the lengthscale for the temper-
ature is generally highly identifiable, while the posterior is much flatter when
varying the other lengthscales. We experimented on the choice of prior for these
hyperparameters, but concluded that given the relatively large volume of data
available, prior parametrization had little impact on this behaviour.

Figure 4.9: Histograms and pointwise kernel density estimator of the data at
each of the 29 Stations present in the data-set, the stations located in the canton
of Bern are in blue.

Once the hyperparameters were estimated, we performed a MCMC-based
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estimation to draw 100 realisations from the SLGP’s posterior. We display the
estimation results on stations present in the training set in Figure 4.10, as well
as out of the training set in Figure 4.10. A collection of similar plots for all
stations in the dataset is also available in Appendix A.3.

Let us start with the model displayed in Figure 4.10. For all the station,
the MAP estimates follow the available histograms quite closely. However, it
appears that the MCMC draws have more variability and sometimes struggle
to reproduce all the modes. In particular, it still puts non negligible probability
mass on every region of the domain. In addition to this artefact, it appears that
at Col du grand St-Bernard, the model fails to reproduce the mode around 12 °C.
This motivated us to pay particular attention to study stations of interest close
to the Col du grand St-Bernard to see if we could partly explain this discrepancy
between data and model predictions. Namely, we considered Sion (the closest
station overall) and Jungfraujoch (closest station located at a mountain peak).
It appeared that the distribution of temperatures in Jungfraujoch is clearly
unimodal and that the SLGP model managed to capture this uni-modality. It
suggests that the absence of the second mode at Col du Grand St-Bernard might
be a simple consequence of the relative proximity of the two stations, both in
latitude/longitude and in altitude.

Figure 4.10: SLGP trained on 26 meteorological stations (365 observations
each). We display for 5 stations in the training set: the histogram of the avail-
able data and curves obtained from SLGP estimation. For each station, we also
specify its elevation above sea level and show its location.
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Let us also note that the Jungfraujoch and the Col du Grand St-Bernard
are on the north- respectively south-facing slope of their respective locations.
Incorporating this information in the model might prove useful to yield better
predictions, in particular at the considered stations.

We also note that for Jungfraujoch, the MAP estimate appears to follow
the histogram more closely than the MCMC draws. It is possible that due to
the flatness of the likelihood as represented in Figure 4.8, we misidentified the
lengthscales which hinders the model’s posterior expressivity.

We also make predictions at the three stations that we left out of the data
set, to see whether the SLGP model manages to extrapolate at new locations.
We observe, when comparing estimations performed at locations where data
were available (Fig. 4.10) or not (Fig. 4.11) that the resulting random densities
present a bit more variability at stations left out of the training set, a desirable
feature. Other than that, the estimation seems reasonable for all stations.

Figure 4.11: SLGP trained on 26 meteorological stations (365 observations
each). We display for the 3 stations left out of the training set: the histogram of
the available data and curves obtained from SLGP estimation. For each station,
we also specify its elevation above sea level and show its location on a map of
Switzerland.

So far, we displayed estimation results only at stations. However, SLGP
modelling is a powerful tool that allows for predicting the density field over the
whole domain (here, the whole of Switzerland). For plotting purposes, we can’t
display the full distributions, but we can easily represent moments or quantiles of
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it, and their respective uncertainties. To illustrate further the full capabilities of
our model, we display additional Figures. In Figure 4.12, we show the expected
mean temperature across Switzerland, and its standard deviation under SLGP
modelling. We make a similar plot in Figure 4.13 with the median temperature.

Figure 4.12: [Left] Expected mean temperature across Switzerland [Right] Stan-
dard deviation of mean temperature

Figure 4.13: [Left] Expected median temperature across Switzerland [Right]
Standard deviation of median temperature

We insist on the fact that the quantiles estimations are done simultaneously
as a by-product of the SLGP models. To illustrate this, we show the behaviour
of these quantiles of daily mean temperature across a slice of Switzerland in
Figure 4.14
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Figure 4.14: [Top] MAP of Switzerland and slice considered. [Bottom left]
Elevation alongside the slice and Stations location. [Bottom right] Simultaneous
quantile prediction (mean value and 10% quantile- 90% quantile bands) across
a slice of Switzerland.

This application yields promising results, yet we noticed the presence of some
artefacts in density field estimation. The specification of the topographical and
other variables to be incorporated in the spatial index as well as the chosen
families of covariance kernel appear to be of crucial importance regarding the
resulting model and predictions. Also, the incorporation of trends appears as a
meaningful avenue of research to be further explored to increase the realism of
SLGP models.
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Chapter 5

Accelerating inference with
GP-based Modelling

One of the main challenges in statistical inference is to define suitable sequen-
tial design strategies. Choosing where to add observations is indeed crucial
and a good design strategy must achieve a trade-off between exploration and
exploitation of the input space so as to discover regions of interest while avoid-
ing getting trapped in the vicinity of artefactual basins of attraction. Deriving
such strategies requires anticipating (probabilistically) the effect of adding new
observations.

Addressing this challenge generally boils down to studying the effect on a
response of interest of varying some decision or control variables x. Yet it is
typically unrealistic to assume a deterministic relationship between x and the
response, be it for instance because of uncertainty in other input variables or be-
cause the assumed response and/or observation generating processes themselves
involve some randomness.

Relying on GP-based methods to derive probabilistic metamodels of the com-
plex systems at hand is a common approach, as it allows for accounting for such
uncertainty. We briefly review such approaches and propose extending them to
SLGP-modelling, in Section 5.1 we address metamodel-powered Bayesian opti-
misation, while in Section 5.2 we do the same for stochastic inverse problems.
In both contexts, the modelling capabilities of GP and SLGP modelling are
examined and evaluated on a geophysical application.

Let us stress that benchmarking the performances of the approaches consid-
ered and obtaining representative results calls for numerous runs of numerical
experiments with multiple seeds. To accomplish this, computations in the com-
ing section were performed on UBELIX (http://www.id.unibe.ch/hpc), the
HPC cluster at the University of Bern.
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5.1 In Bayesian optimisation

This section is inspired and comprises elements presented in Gautier et al.
(2021).

5.1.1 SLGP modelling in Stochastic Optimisation

We will denote by p0(x) the response’s distribution at location x. As in the
previous Chapters, we will denote by t (and variations thereof) the response’s
values, and by x the index variables. We furthermore assume that an objective
function g(x) = ρ(p0(x)) depending on x through p0(x) is to be minimised,
where ρ returns for any considered probability distribution a real-valued quantity
such as a moment or a quantile with some given level.

The classical setting of Bayesian optimisation In Stochastic Optimisa-
tion (Ruszczynski and Shapiro, 2003; Birge and Louveaux, 2011; Prékopa, 2013),
one considers that the distribution p0(x) is either known or needs to be esti-
mated. Approximation procedures have been studied, including but not limited
to the Robbins Monro procedures and further developments in Bayesian Ap-
proximation (Robbins and Monro, 1951; Mandt et al., 2017) or the multi-armed
bandit paradigm (Thompson, 1933; Cesa-Bianchi and Lugosi, 2006; Bubeck and
Cesa-Bianchi, 2012).

The most natural choice for the functional ρ is to consider the expectation.
Yet, many other choices for ρ have been considered. These choices include
quantiles (Rostek, 2010; Torossian et al., 2020), the conditional value at risk
(Rockafellar and Uryasev, 2000) or the expectiles (Bellini and Di Bernardino,
2015). It is also possible to learn the unknown distribution p0(x), as in Hall
et al. (2004); Efromovich (2010); Moutoussamy et al. (2015) but the approaches
classically used require numerous replicates and struggle with sample heteroge-
neously scattered across space.

Bayesian Optimisation (BO) is often considered to be the most parsimonious
approach allowing to tackle such challenge. Indeed, it leverages the potential of
meta-modelling, especially Gaussian processes (GP) (Williams and Rasmussen,
2006), to keep a memory of explored points with the aim to explore decision
space while keeping a parsimonious evaluation budget. First introduced by
Mockus et al. (1978); Jones et al. (1998) in the noise free setting, it has latter
been extended to stochastic black box optimisation (Frazier et al., 2009; Frazier,
2018; Srinivas et al., 2009; Picheny et al., 2013a; Hernández-Lobato et al., 2014;
Jalali et al., 2017) and further sequential strategies have been studied (Risk and
Ludkovski, 2018; Binois et al., 2019). However, existing approaches typically
assume Gaussian response distributions p0(x).
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We propose surrogating the response density p0(x) with a SLGP, allowing us
to draw inspiration from the fertile literature of GP-based Bayesian Optimisation
while setting ourselves free of the strong Gaussianity assumption.

SLGP-based Bayesian Optimisation: the model We recall that we are
interested in minimising g(x) = ρ(p0(x)), while we do not know the field p0(x).
To achieve this goal, we leverage a dataset assumed to be obtained by indepen-
dent sampling of the reference p0 at some prescribed locations xi. By that, we
mean that as in Section 4.1.1 our dataset consists in n couples of locations and
observations {(xi, ti)}1≤i≤n, where the xi are in [0, 1]dx . Moreover, we assume
the ti’s are obtained by independent sampling of random variables Ti with re-
spective densities p0(xi). The (random) vectors of observations are denoted by
T = (Ti)1≤i≤n and t = (ti)1≤i≤n.

We call (p0(x))x∈D a density field, i.e. a collection of pdf on I indexed by
x ∈ D, and surrogate it with a SLGP denoted by (Yx,t)(x,t)∈D×I . We then
propose considering (Gx)x∈D := (ρ(Y )x,·)x∈D, the random field obtained by
applying ρ to the density valued field delivered by a SLGP model. Gx naturally
induces a surrogate model for g(x).

This model allows for more flexibility in the distributional assumptions on
p0(x), but we can also leverage its stochastic nature to derive subsequent designs
of experiments.

Indeed, conditioning Gx on observed data {(xi, ti)}1≤i≤n boils down to ap-
plying the functional ρ to the (random) density field obtained by conditioning
the SLGP (Yx,t)(x,t)∈D×I on these same data {(xi, ti)}1≤i≤n.

Therefore, we can directly apply the density field estimation presented in
Chapter 4 to obtain draws from the conditional distribution of SLGP, and
transform them by applying the functional of interest to obtain an draws of
the conditional distribution of Gx .

Remark. The process Gx remains uncertain knowing Tn = tn because of the
conditional variability of Y .

SLGP-based Bayesian Optimisation: a criterion for data acquisition
In the rest of this section, we will consider the particular case where ρ is the
median, but the presented approach is not restricted to this choice and can be
applied to arbitrary (measurable) mappings, potentially also mappings depend-
ing on x.

In the spirit of robust optimisation, we will consider the problem of minimis-
ing an α-quantile of the random function Gx. We note Qn(x) the α-quantile of
the conditional distribution of Gx knowing {(xi, Ti)}1≤i≤n. Note that Qn(x) is
a random function as the observations Tn are left in random form.
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Due to the computational cost of performing SLPG-based density field es-
timation, we focus on adding batches of observations at a candidate location.
Note that whenever the batch size is set to 1, we boil down to the classical
setting of step-wise adaptive design.

We denote Qn+K(x;xnew), the α-quantile of Gx conditioned on past obser-
vations Tn and on a batch of K i.i.d. observations to be made at xnew ∈ D.
Quantifying the impact the choice xnew has on Qn+K is the backbone of BO.
One typically seek to find values that is likely to yield the most “improve-
ment” when going from Qn to Qn+K . We propose a criterion quantifying the
change that occurs when adding observations at a given location. Denoting
En[·] = E[·|Tn = tn], we consider the following:

EQIn(xnew, K) = En

[(
min
x∈D

Qn(x)−min
x∈D

Qn+K(x;xnew)

)+
]
. (5.1)

Remark. This criterion was inspired by the Expected Quantile Improvement
presented in Picheny et al. (2013b), which would write here as:

En[(min
i≤n

Qn(xi)−Qn+1(xnew;xnew))
+] (5.2)

but is modified in the spirit of knowledge gradient approaches from Frazier et al.
(2009) to account for improvements on the whole domain.

Of course, SLGP-based adaptative learning is not restricted to using this cri-
terion, and one could apply any of the commonly encountered sampling scheme
in GP-based BO to SLGP-based BO. The main remaining challenge lies in the
evaluation of criteria such as the one in Equation 5.1, and we now propose a
simulation-based approximation of it.

5.1.2 Simulation-based computation of criteria

Classically, in Sequential Uncertainty Reduction (SUR) (Bect et al. (2019)) ap-
proaches, it is assumed that the function of interest is a realisation of a GP.
Under these assumptions, several criteria enjoy (semi-)analytical forms, favour-
ing criterion optimisation and the implementation of design strategies.

However, in our situation, it does not appear feasible to obtain a closed-
form formula for the considered EQI criterion and we therefore estimate it via
stochastic simulation.

In order to quantify the effect of adding an observation Tn+1 at a given
location xnew, one needs to study the probability density of a new observation
T at x conditioned on Tn = tn.
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We consider Y , the SLGP induced by a finite-rank GP such as those in
Definition 4.1.1. For each instance of ϵ corresponds a SLGP, to emphasize
this dependency we denote it, for some suitable family of basis functions F ,
Y ε
x,t := Ψ

(
ε⊤F (xi, ti)

)
. Note that if we keep the weights in random form, Y ε

x,t

is random through ε, while if we plug-in a realisation ε of the weights, Y ϵ
x,t is

itself a realisation of the SLGP.
In favour of the law of total probability, one finds that the posterior density

of a new observation at x conditioned on the observed data is given by:

π(t|Tn = tn) ∝
∫
π(t|ε = ϵ)π(ϵ|Tn = tn) dϵ (5.3)

∝
∫
Y ϵ
x,tϕp(ϵ)

n∏
i=1

Y ϵ
xi,ti

dϵ (5.4)

where ϕp is the pdf of the p-variate standard normal distribution.
This motivates the following approach, which can be considered as a basic

application of Sequential Monte Carlo (Doucet et al. (2001)), where we use a
simple simulation-based particle filter to approximate an unknown future quan-
tity:

1. The generative model given by the SLGP model is implemented as de-
scribed in Section 4.3 and yields N realisations of an approximation of
ε|Tn = tn, denoted thereafter by (ϵ(j))1≤j≤N .
The density of a new observation at x (See Equation 5.4) is approximated

by the mixture 1
N

N∑
j=1

Y
ε(j)
x,· .

2. The impact of adding K observations at a given location xnew is estimated
by doing M simulations:
For each simulation, K realisations of the random variable T̃new are in-

dependently drawn from the density 1
N

N∑
j=1

Y
ε(j)
xnew,· and the corresponding

batch of response values is denoted t̃
(i)
new =

(
t̃
(i),1
new , ..., t̃

(i),K
new

)
.

In light of Equation 5.4, the response density at x conditional on past data
and on the simulated batch is given by:

π(t|Tn = tn, T̃
(i)
new = t̃(i)new) ∝

∫
π(ϵ|Tn = tn)Y

ϵ
x,t

K∏
ℓ=1

Y ϵ

xnew,t̃
(i),ℓ
new

dϵ (5.5)

Leveraging the fact that the ϵj’s are drawn from π(ϵ|Tn = tn), we can ap-

proximate the integral in Equation 5.5 by the Monte Carlo sum
N∑
j=1

Y
ϵ(j)
x,· wi,j,
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with weights wi,j proportional to
K∏
ℓ=1

Y
ϵ(j)

xnew,t̃
(i),ℓ
new

and summing to one.

3. The density field distribution after adding K observations at xnew is ap-
proximated by:

1

M

M∑
i=1

K∑
j=1

Y
ϵ(j)
x,· wi,j (5.6)

In turn, this allows for computing a proxy to the future value of our
quantity of interest by simply applying the functional ρ to each of the M

plausible future fields
K∑
j=1

Y
ϵ(j)
x,· wi,j.

We use this simulation-based method to compute any sampling criterion that
we are interested in.

5.1.3 Benchmarking the SLGP for guiding stochastic op-
timisation

For all the coming applications, we leverage a zero mean GP Zx,t =
∑p

j=1

√
λjej(x, t)εj, p ∈

N, with t and x being uni-variate. To ensure consistency with the rest of the
document, we will keep the bold notation for x. Our basis function are bi-variate
Fourier functions of order q > 0: sine and cosine of 2π(ω1t+ω2x), where ω1 and
ω2 are integers satisfying −q ≤ ω1, ω2 ≤ q. Then, we remove redundant terms
as well as those irrelevant in the SLGP setting (i.e. functions independent of t,
that would be simplified with the normalisation of the process).

Some other analytical applications: presenting the test-case.

In the analytical applications, we have D = I = [0, 1] and consider four
known density fields. The median functions of these fields appear in Figure
5.1 and are defined as f1(x) = 0.25 sin(16x + 9) + 0.25 sin(4.8x + 2.7) + 0.625

(minimum at x∗ ≈ 0.5095) and f2(x) = 0.15+ 7
72

1.1(10x−5)2−5(10x−5)+6.1
(10x−5)2+1

(minimum

at x∗ ≈ 0.7414).
Our first class of probability density fields, that we will refer to as “trun-

cated Gaussian fields”, writes as hx

(
t−fi(x)
0.05

)
, i ∈ {1, 2}, with hx a symmetri-

cally truncated standard Gaussian with thresholds ±min (fi(x), 1− fi(x)). The
truncation ensures that the distribution remains symmetrical around its median
and mean fi. The second case - that we will refer to as “multi-modal field”- is
of the same form yet with hx median-0 but multi-modal such as represented in
Figure 5.1.
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Figure 5.1: The two multi-modal reference density fields, their median and its
global optimum.

We perform density field estimation as presented in Section 4.3 for such
reference fields for different sample sizes and order of the GP. In this section, we
are not yet in an adaptive setting: each time a new observation is added to the
model, its location is determined randomly, with uniform distribution over the
index set. Figure 5.2 displays the posterior mean field with two sample sizes for
the truncated Gaussian field with median f1.

Figure 5.2: Results the truncated Gaussian field with median f1, using 121 basis
functions. True field and samples used (top), posterior mean field (bottom) for
a respective sample size of 100 (left) and 10000 (right).

We observe in Figure 5.2 that a higher sample size seems to yield a better
estimation. In order to quantify the prediction error, we ran the same experiment
as in Section 4.4.2xcu for different sample sizes and GP’s order. In Figure 5.3,
we display the distribution of d2ISH between true and estimated fields for various
sample sizes and SLGP orders. As both functions yielded close results, we show
only the results for f1. We see once again that the errors are comparable for
small sample sizes. The order becomes limiting when more observations are
available as those of the considered SLGPs relying on the smallest numbers of
basis functions appear to struggle capturing small scale variations.
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Figure 5.3: Integrated squared Hellinger distance distribution for different sam-
ple sizes and process orders, when the reference field has f1 as its median.

Application in hydrogeology: presenting the dataset

We also consider a one dimensional contaminant problem.
In this application case, we want to localize the source of a contaminant

propagating into a saturated aquifer when the geological structure is unknown.
Indeed, characterisation of subsurface properties is very uncertain as soon the
distance to the scarce samples increase. So, hydrogeologist must rely on the
use of analogues and expert knowledge to generate an ensemble of plausible
geological realisations that can be used to quantify prediction uncertainty. To
keep the problem simple, the zone of interest of the aquifer is modelled as a
2D vertical section (10 meter deep and 5 meter wide) aligned with the main
flow direction. At the domain inlet, the depth of the released contaminant
(normalised location s in what follows) is the unknown of the problem. The
reference observations consist of concentration breakthrough curves at different
depths of the domain outlet.

The ensemble of plausible geological realisations and the geological references
are multiple-point statistics realisations generated with the Deesse algorithm
(Mariethoz et al. (2010)) that reproduce the complex features of braided-river
aquifer models (Pirot et al. (2015)). The contaminant flow and transport is
simulated under steady-state flow and fixed boundary conditions (constant hy-
draulic gradient) using the Maflot Matlab code (Künze and Lunati (2011)). The
misfit between simulated and reference concentration breakthrough curves are
normalised and denoted as the response t in what follows.

In Figure 5.5 we represent the data practitioners would obtain after running
numerous simulations: to make this figure, we select one breakthrough curve
as reference and run simulations for all the possible combinations between 200
plausible geological structures and 100 source depth, which gives us 10000 con-
centration breakthrough curves, and as many normalised misfits values. We
clearly identify in these figures the non-gaussianity of data as well as the vari-
ations in modalities and skewness across index space, hence justifying the need
to rely on flexible modelling such as the SLGP.
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Figure 5.4: Typical situation: the geological structure and the source depth are
unknown, and we only have access to the concentration breakthrough curves.

Figure 5.5: [Top] Misfits obtained when running simulations for 200 geological
structures and 50 source depths. [Bottom] Misfit empirical distributions (his-
tograms and kernel density estimators) at x ∈ {2.04m, 4.9m, 7.76m}

A few selected simulations results are available in Figure 5.6 and show the
simulation outputs and corresponding normalised misfits for various geological
realisation and source depths. It clearly illustrates the dependency of the con-
taminant concentration curves (and hence misfits) in the underlying (considered
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unknown) geological structure. This contributes to the changes in shape and
modalities of the misfit distributions that we just observed.

(a) x = 4.90m, misfit ≈ 0.035

(b) x = 4.90m, misfit ≈ 0.35

(c) x = 7.96m, misfit ≈ 0.63

Figure 5.6: Simulations results: varying the choice of geological structures and
source depth yields different simulated concentration breakthrough curves, and
as such different misfit values.
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Optimisation for hydrogeology

Throughout the section and as illustrated in Figure 5.7, we use two reference
fields of misfit distributions that are obtained by fitting SLGP models to misfit
data produced under two latent geologies.

Figure 5.7: Misfit data (top) and posterior mean field (bottom) for two latent
geological structures.

Using these two reference density fields to draw new samples, we follow the
methodology introduced in part 4.3 and represent in Figure 5.8 the posterior
mean field and its estimated median before and after running 25 steps of the
algorithm on the first geological structure.

Figure 5.8: Results at the beginning of the algorithm [left] and after the 25th
step [right].
Mean field estimated and samples available [top]; Estimated VS reference me-
dian [bottom].
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In this first setting, the global minimum (at 2,24m) is easily found and the
algorithm focuses on improving its estimation of the median. This corresponds
to an exploitation-oriented approach.

With the second latent geological structure, we found out, as reflected in
Figure 5.9 that our approach was also able to locate the minimum, this time by
focusing on exploring by adding observations at new locations of interest.

For our small benchmark, the starting design consists in n = 20 data points
(xi, ti) from the reference fields heterogeneously scattered across space. Their
location are independent uniformly distributed across parameter space. At each
step, observations are added in batches of 20 at the same location. We repeat
24 independent instances of the optimisation process for each strategy and each
application and compare the performances in term of optimality gap (difference
between real and estimated optimal medians). This approach is favoured due
to the relatively high cost of one evaluation of the EQI criterion for SLGP, but
we expect it to be detrimental to our GP-based competitors, as GPs would
benefit more from having scattered observations rather than batches scattered
over different points.

We compare different strategies for modelling the field and choosing the
next sampling location. The value of the minimiser is inferred by modelling the
function of interest with one of three models: the first one, that will be called
homoskedastic GP consists in a GP regression where the observation noise level
is assumed to be uniform throughout the domain. The second one, a GP regres-
sion with input dependent noise rates as in Kersting et al. (2007), Binois et al.
(2018) will be called heteroscedastic GP. The last one is the SLGP model.
For each of these three models, we compare a non-adaptive approach (at each
step, new observations are added at a location chosen uniformly at random) to
an adaptive approach. The criteria used are: Approximated Knowledge Gradi-
ent (AKG) as implemented in the R package DiceOptim version 2.0.1 (Picheny
et al., 2020) for the homoskedastic GP, the Expected improvement, as imple-
mented in the R package hetGP version 1.2.1 (Binois and Gramacy, 2019) for
the heteroscedastic GP, and the EQI criterion from Equation 5.1 for the SLGP.
The results of the benchmark are shown in Figure 5.9.

Hyperparameters of the two GP’s are estimated by maximum likelihood. For
the adaptive SLGP, we decided to display the results obtained when minimising
a 90% quantile of the random median, as our first experiments showed no strong
sensitivity to the chosen level α. On a personal laptop with 16Go RAM and a
simple R implementation, performing the SLGP density estimation took between
13 and 24 minutes depending on the sample size, and inferring the EQI with
150 simulations for 101 locations took 5 additional minutes.
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Figure 5.9: Median of the log optimality gap for the 6× 6 considered strategies
and test cases.

One notices that in the most complex situations, the sampling scheme based
on GP modelling of the functional performs worse than the approaches based on
SLGP modelling. We found out that GP based approaches tends to get trapped
in local optima.

5.2 GP-based surrogating for stochastic inverse

problems.

Inverse problems, as described in (Tarantola, 2005) involve finding an unknown
parameter or function from indirect, noisy, or incomplete observations. These
problems arise in a wide range of applications including machine learning, signal
processing, image analysis (Bertero et al., 2021), but here our main focus will be
inverse problems arising in natural sciences. The challenges of inverse problems
include the presence of noise, non-uniqueness of solutions, and the need for
regularization to prevent overfitting. Inverse problems can be broadly classified
into two categories: deterministic and Bayesian (as addressed in (Stuart, 2010)).
Deterministic inverse problems are solved by minimizing a criterion function
that measures the misfit between the data and the model predictions, while
Bayesian inverse problems are solved by updating a probability distribution
over the parameters based on the data.

In the Bayesian framework, the solution to an inverse problem requires the
computation of the posterior distribution of the parameters, given the observa-
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tions and a model that connects the parameters to the observations. However,
in many cases, the likelihood function is difficult or impossible to calculate,
either because it is (considered to be) mathematically intractable or computa-
tionally infeasible to evaluate. The framework of Likelihood Free Inference (LFI)
has been developed to address this issue. Approximate Bayesian Computation
(ABC) methods Beaumont et al. (2009); Marin et al. (2012) have arguably be-
come the most popular class of approaches to perform LFI. It draws it strength
from the availability of complex simulation models that allow accurate mod-
elling of complex phenomena (Herbel et al., 2017; Holden et al., 2018; McKinley
et al., 2018; Weyant et al., 2013). ABC aims at identifying parameters leading
to simulation results similar to observed data, by-passing in turn the need to
evaluate the likelihood function.

This chapter deals with Bayesian inference and give a brief overview of LFI,
with a focus on ABC methods. We provide a concise summary of commonly used
acceleration techniques, with particular attention given to GP-based methods.
We then propose two novel strategies within this framework. We then draw
inspiration from the field of probabilistic forecasting to present a systematic
approach for evaluating performance. We illustrate the applicability of the pro-
posed framework on a reduced benchmark from hydrogeology.

5.2.1 Approximate Bayesian computation

We assume that the reader has some degree of familiarity with the basics of
Bayesian inference, and can consult resources such as O’Hagan and Forster
(2004); Robert (2007); Gelman et al. (1995) for further information. Similarly,
for an overview of Likelihood Free Inference, the reader can refer to Marin et al.
(2012); Hartig et al. (2011); Turner and Van Zandt (2012); Sisson et al. (2018).
In this document, we will only provide the necessary information for it to be
self-sufficient.

The classical framework of Bayesian inference Let us consider a para-
metric statistical model Fx,x ∈ D and some observed data tobs assumed to stem
from this model, with a value of x that is unknown and to be estimated. In
Bayesian inference, the parameter x is treated as random, and a prior distribu-
tion is assumed for it. Assuming further that the prior distribution possesses a
density π[x] (with dominating measure being typically the Lebesgue measure in
finite-dimensional cases), the likelihood function can be written as x 7→ π[tobs|x],
and the posterior density of x knowing tobs can be expressed in virtue of Bayes
theorem as

π[x|tobs] =
π[tobs|x]π[x]∫

D
π[tobs|x′]π[x′] dx′ ∝ π[tobs|x]π[x] (5.7)
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It is common in practice to focus on the rightmost term called unnormalised
posterior. Depending on the application, one can seek to approximate the whole
posterior on x or instead focus on some summary statistics (most commonly the
mean or variance). For a suitable function ρ, it can be expressed as:

Ex|tobs [ρ(x)] =

∫
D

ρ(x)π[x|tobs] dx (5.8)

It is also frequent to use other summary statistics such as the Maximum A
Posterior (MAP), obtained as:

x∗ ∈ argmax
x∈D

π[x|tobs] (5.9)

No matter the end goal, be it computing the quantity in Equation 5.7, Equa-
tion 5.8 or Equation 5.9, the likelihood function is a crucial component in deter-
mining the probability of the data given the parameters and hence the posterior.
However, in many cases, it happens to be intractable or too costly to evaluate,
making it impossible to achieve exact Bayesian Inference. To overcome this
problem, Approximate Bayesian Computation (ABC) is a widely used frame-
work that provides an alternative approach for inferring the parameters of in-
terest.

Approximate Bayesian Computation: key idea. In the ABC framework,
we assume that, as often in physical systems, it is possible to simulate the re-
sponse associated to any given instance of x. These simulations, also called
pseudo-data are assumed to be drawn exactly from the data-generating process,
i.e. tx ∼ π[·|x]. It is also assumed that we have access to a measure of dissim-
ilarity ∆ between responses, allowing us to compare simulated versus observed
data.

Denoting by Tx the random response with input x and viewing x as random
with prior density π, the essence of ABC is to approximate the posterior as
follows:

π[x|tobs] ≈ π[x|∆(tobs, Tx) ≤ δ] =: πABC [x|tobs; δ], (5.10)

where δ > 0 is a prescribed “small enough” threshold. From now on, we
shall refer to π[x|tobs] as posterior or exact posterior and πABC [x|tobs; δ] as the
ABC-posterior. Note that Bayes theorem can be applied to the ABC posterior
and yields:

πABC [x|tobs; δ] ∝ π[∆(tobs, tx) ≤ δ|x]π[x], (5.11)

The term π[∆(tobs, tx) ≤ δ|x] will prove to be of particular interest in the upcom-
ing development, and we will refer to it as ABC-likelihood. Note that it depends
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on the distribution of the dissimilarities between observations and simulations
at parameter x, and as such we will also call it misfit cumulative distribution
function, or, when encountered in the form π[∆(tobs, tx) = δ|x] misfit density.

ABC in practice The most basic ABC algorithm, the ABC rejection sampler,
described in Pritchard et al. (1999); Tavaré et al. (1997), can be summarised by
the following pseudo code:

Algorithm 6: ABC rejection sampler

input : Prior distribution π[x], simulation model π[tx|x], threshold δ,
number of steps T

for i← 1 to T do
Draw xi from π[x]
Simulate yi from Fxi

Accept xi if ∆(tobs, yi) ≤ δ

output: Parameters xi that have been accepted

There are two main challenges in this formulation:

• The dissimilarity measure ∆ is crucial for the estimation, and it typically
requires expert knowledge to design it in a way that accurately reflects the
important features of the system. As pointed out in Marin et al. (2012),
comparing observations and simulations element by element can be ineffec-
tive, and it is often recommended to use distances between low-dimensional
summary statistics instead. However, finding sufficient summary statistics
is often not possible and leads to the frequent use of insufficient statistics,
which results in a loss of information and added error in ABC methods.
For a more in-depth review on summary statistics selection methods for
ABC, the reader can refer to Sisson et al. (2018). Note that in this thesis,
we decided to assume that suitable summary statistics (and hence dissimi-
larity measure) were provided, and we do not concern ourselves with these
choices.

• The threshold parameter δ plays a central role in balancing the trade-off
between numerical efficiency and precision in the posterior estimation. A
larger value of δ will result in accepting most if not all simulated data,
producing samples from the prior. On the other hand, decreasing δ to-
wards 0 increases the accuracy but at the cost of making the algorithm
less efficient, as more simulations are required to obtain enough accepted
parameters.

In practice, practitioners often use variations of Algorithm 6. One such vari-
ation is to run the algorithm until a fixed number of accepted simulations is
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reached. However, this approach can be impractical due to time or cost con-
straints. Another common approach is to run a fixed number of simulations,
store all discrepancies, and set δ to a small quantile of them after the fact (as
done in Beaumont et al. (2002)).

No matter the algorithm considered, the core of standard ABC methods lies
in the approximation of the ABC posterior in Equation 5.10 by a Monte-Carlo
sum of retained parameter values. This approximation results in three sources
of information loss: the use of (often) insufficient summary statistics, the error
introduced by non-zero δ and the Monte Carlo error.

In this thesis, we shall not concern ourselves with the first two sources of
uncertainty as one remains a problem with no satisfactory general solution and
the other is unavoidable, as it constitutes the “approximate” in ABC. Instead,
we will focus on other methods for approximating the ABC posterior as well as
improving sampling efficiency.

5.2.2 Accelerating inference in ABC

Common approaches in accelerating inference

As we briefly mentioned when discussing the choice of δ, computational efficiency
is a challenge of ABC. Poor choices of algorithm, small values of δ and a prior
that is substantially broader than the posterior are three causes of computational
inefficiency and cause most simulations to be rejected.

To address this problem, several approaches aiming at more efficient ABC
posterior sampling have been developed. We give here a brief review of the
principles behind the methods we found to be the most noteworthy.

Markov Chain Monte Carlo ABC. First proposed by Marjoram et al.
(2003), it uses a Markov chain to explore the parameter space, and employs the
acceptance/rejection step of ABC to control the chain’s stationary distribution
(whereas a Metropolis-Hastings implementation would require to evaluate the
intractable exact posterior). The convergence properties of MCMC-ABC have
been studied in Andrieu and Roberts (2009). However, in practice, MCMC-
ABC can suffer from poor mixing, where the algorithm can get stuck for a long
time after a point in a far-off region of the parameter space is accepted.

Sequential and population Monte Carlo ABC. These classes, that we
later denote SMC-ABC and PMC-ABC, group several methods, such as those
introduced in Beaumont et al. (2009); Bonassi and West (2015); Del Moral
et al. (2012); Drovandi and Pettitt (2011); Lenormand et al. (2013); Sisson et al.
(2007); Toni et al. (2009).These methods rely on replacing draws of x from the
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prior with draws from an adapted proposal density. These algorithms are widely
used and have been shown to be more efficient than standard ABC, but they
still require a large number of simulations to obtain accurate results.

Synthetic Likelihood In the synthetic likelihood methods, Price et al. (2018);
Wood (2010), the summary statistics distribution is assumed to stem from a
parametric family (usually Gaussian). It is a parametric approach that yields a
probabilistic prediction of the ABC-posterior and can be leveraged for sequential
design of experiments.

The approach we present in this thesis belongs to the synthetic likelihood
class. It leverages continuity assumption in the summary statistics/likelihood to
reduce the simulation cost of the inference and is called GP-ABC. We present
the main ideas of it in Section 5.2.2 before presenting our adaption dubbed
SLGP-ABC in Section 5.2.2.

GP-ABC, and guiding data acquisition

GP-ABC is an approach that was first introduced in Wilkinson (2014) and
models the summary statistics likelihood using a Gaussian Process. It utilizes
a sequential history matching process where the GP is used to eliminate re-
gions of the parameter space that are unlikely to yield interesting values. New
simulations are then selected in the remaining plausible regions. The final step
involves using a Metropolis Hastings algorithm to sample from the posterior and
perform the inference of the ABC-posterior. The approach has been shown to
be efficient in high-dimensional problems, where the number of parameters is
large and traditional ABC methods may struggle. However, it requires having
access to (estimates of) the log-likelihood, which are typically obtained through
Monte-Carlo sum based on numerous replicates.

To overcome this limitation, further developments in the field have been pro-
posed such as surrogating the summary statistics directly with a GP as presented
in works by Meeds and Welling (2014) or Jabot et al. (2014). Another related
framework is BOLFI (Bayesian optimisation for likelihood-free inference, Gut-
mann et al. (2016)) , which surrogates the misfit (or log-misfit) with a Gaussian
Process. We assume that a dataset D1:n := {xi,∆i}1≤i≤n, where ∆i := ∆(tobs, ti)
is available, and we use the notation ∆ for the concatenated vector of ∆i val-
ues. The ∆i’s are modelled as a (noisy) function of x with a (noisy) Gaussian
Process Regression (GPR). Assuming that the observation noise is denoted τ 2,
and the prior used was ∆i = Zxi

+ εi (1 ≤ i ≤ n) with Z ∼ GP(0, k) and the εis

i.i.d. N (0, τ 2), we have Z
(n)
x := Zx|D1:n ∼ GP(mn(x), kn(x,x

′)), with for any
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x,x′ ∈ D:

mn(x) := k(x,X)k(X,X)−1∆ (5.12)

kn(x,x
′) := k(x,x′)− k(x,X)

[
k(X,X) + Diag(τ 2)

]−1
k(x′,X)⊤ (5.13)

where k(x,X) denotes the vector (k(x,xi))1≤i≤n, k(X,X) is the matrix
(k(xi,xj))1≤i,j≤n and Diag(τ 2) is the diagonal matrix with elements τ 2 on the
diagonal.

This model yields a predictive distribution for new misfit values obtained
from the model. It is then used to obtain an estimation of the ABC likelihood:

π̂GP-BOLFI[∆(tobs, Tx) ≤ δ|x,D1:n] =

∫ δ

−∞ e
− (u−mn(x))2

2(kn(x,x)+τ2) du√
2π(kn(x,x) + τ 2)

(5.14)

Similarly, when modelling the log-misfit one uses a datasetD1:n := {xi, log∆i}1≤i≤n,
and the previous equation can easily be adapted. Since it does not yield any
significant difference (other than δ being replaced with log δ in the right-hand
term of the previous equation), we shall focus here on equations where the misfit
is modelled directly.

Guiding data acquisition: an insight from Bayesian Optimisation Lever-
aging this uncertainty if a key feature of the BO LFI framework as compared to
other GP-ABC methods. It fully considers the probabilistic nature of the GP-
ABC posterior and uses Bayesian Optimisation techniques to select new data
points. In particular, in Gutmann et al. (2016) the authors guide the selection of
new data points with the Lower Confidence Bound (LCB) acquisition function
defined as:

LSB(x) := mn(x)− β
√
kn(x,x) (5.15)

where β is a trade-off parameter, destined to balance between evaluating the GP
where the mean is small or where the uncertainty is large. Such exploration-
exploitation tradeoff is common in BO settings.

After gathering more data, the final step within the BOLFI setting consists
in using MCMC to sample from the resulting model-based ABC posterior.

These methods resulted in improvement of the computational efficiency by
several orders of magnitude and produced reasonable yet conservative ABC pos-
terior approximations. The use of BO acquisition functions in this setting was
motivated by the fact that regions with small discrepancy usually correspond
to those with non-negligible likelihood. However, the criterion used are not
explicitly designed for estimating the ABC posterior and do not always work
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as intended, as demonstrated in Järvenpää et al. (2019). In fact, these meth-
ods tended to stay stuck in unsuitable regions of space, and the need for more
appropriate approaches was noted by the authors.

Guiding data acquisition: ABC-specific framework The authors of Järvenpää
et al. (2019) instead proposed ABC-oriented framework that fully leverage the
probabilistic nature of GP regression. Indeed, after modelling the misfit with
a GP as in the previous subsection, rather than considering the estimation in
Equation 5.14, they instead focused on a predictive distribution of the ABC-
likelihood:

π̂GP[∆(tobs, Tx) ≤ δ|x,D1:n] =
1√
2πτ 2

∫ δ

−∞
e−

(u−Z
(n)
x )

2

2τ2 du (5.16)

First, note that one can easily consider the GP-ABC posterior, which retains
a probabilistic nature due to the residual uncertainty on Zx|D1:n:

π̂GP-ABC[x|D1:n] ∝ π[x]π̂GP[∆(tobs, Tx) ≤ δ|x,D1:n] (5.17)

Note that since we consider that the threshold δ is fixed, we decided to make
it implicit in the previous equation and all those who follow, so as to shorten
notations. It is possible to derive some summary statistics of this GP-ABC
posterior, as pointed out in Järvenpää et al. (2019):

EZ(n) [π̂GP[∆(tobs, Tx) ≤ δ|x,D1:n]] =

∫ an(x)

−∞
e−u2/2 du (5.18)

where an(x) :=
δ −mn(x)√
τ 2 + kn(x,x)

(5.19)

MedZ(n) [π̂GP[∆(tobs, Tx) ≤ δ|x,D1:n]] =
1√
2πτ 2

∫ δ

−∞
e−

(u−mn(x))2

2τ2 du (5.20)

where Med denotes the median. These formulae are useful, but they do not
capture uncertainty on the surrogated posterior.

Denoting by D∗ future data to be collected at a vector of locations X∗, and
shortening the notations by using π̂GP−ABC [x] instead of π̂GP-ABC[x|D1:n], we
have:

Expected Integrated Variance (EIV)

LEIV(x
∗) := Et∗|x∗

[∫
D

VarGP|D1:n∪D∗ (π̂GP−ABC [u]) du

]
(5.21)
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Expected Integrated Mean Absolute Deviation (EIMAD)

LEIMAD(X
∗) := Et∗|X∗

[∫
D

EGP|D1:n∪D∗ [MAD(π̂GP−ABC [u])] du

]
(5.22)

where MAD(π̂GP−ABC [x]) := |π̂GP−ABC [x]−Med(π̂GP−ABC [x])|.
Both these criteria focus on reducing the surrogated ABC posterior vari-

ability. At first glance, one could assume that the efforts are focused towards
reducing uncertainty without truly seeking to identify promising regions of pa-
rameter space. However, since it is targeted towards the ABC posterior rather
than the whole misfit distribution, it will naturally gather data that will be
beneficial for inversion.

Due to the specific form of the GP-ABC posterior and the fact that they
involve simple functionals thereof, one can show that they can be reformulated
to obtain analytical expressions. Indeed, by letting T be the Owen’s T function
(Owen, 1956), and integrating with respect to Lebesgue measure, we have:

LEIV(X
∗) = 2

∫
D

π[u]2

[
T

(
an(u),

√
τ 2 + kn(u,u)− cn(u,X∗)√
τ 2 + kn(u,u) + cn(u,X∗)

)

−T

(
an(u),

√
τ 2√

τ 2 + 2kn(u,u)

)]
du

(5.23)

LEIMAD(X
∗) = 2

∫
D

π[u]2

[
T

(
an(u),

√
kn(u,u)− cn(u,X∗)√
kn(u,u) + cn(u,X∗)

)]
du (5.24)

where cn(x,X
∗) := kn(x,X

∗)[kn(X
∗,X∗) + Diag(τ 2)]−1kn(X

∗,x).
We will draw inspiration from this setting to derive two novel approaches.

HetGP-ABC First, we propose applying the GP-ABC framework with Gaus-
sian Processes that do not necessarily have an homoskedastic variance. We use
a plug-in of the heteroskedastic GP models from Binois et al. (2018) as imple-
mented in the package Binois and Gramacy (2019), and use the same criteria
EIV and EIMAD for data acquisition.

SLGP-ABC as a synthetic likelihood method

The GP-ABC frameworks allows for a straightforward extension, by using SLGP-
modelling for the misfit distribution. Indeed, given a datasetD1:n := {xi,∆i}1≤i≤n,
where ∆i are realisations of ∆(tobs, Ti), a SLGP can be leveraged to learn the
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probability density of ∆i indexed by x. Let us consider a SLGP Y and denote
by Y (n) := Y |D1:n the SLGP conditioned on the available data. Then, we have:

π̂SLGP[∆(tobs, Tx) ≤ δ|x,D1:n] ∝
∫ δ

0

Y (n)
x,u du (5.25)

When modelling the log-misfit, one has a similar expression. Under this
model, we would have a SLGP Ỹ that once conditioned on data would be written
as Ỹ (n) := Y | {xi, log∆i}1≤i≤n and the SLGP-ABC posterior is easily obtained
as:

π̂SLGP−ABC [x|D1:n] ∝ π[x]

∫ log δ

0

Ỹ (n)
x,u du (5.26)

The criteria presented in the framework of GP-ABC are easily transposed to
this new framework.

Expected Integrated Variance (EIV)

LEIV(x
∗) := Et∗|x∗

[∫
D

VarSLGP|D1:n∪D∗ (π̂SLGP−ABC [u]) du

]
(5.27)

Expected Integrated Mean Absolute Deviation (EIMAD)

LEIMAD(X
∗) := Et∗|X∗

[∫
D

ESLGP|D1:n∪D∗ [MAD(π̂SLGP−ABC [u])] du

]
(5.28)

Within the SLGP modelling framework, we do not enjoy analytical expres-
sions for LEIV and LEIMAD, as opposed to the ones available for the GP-ABC
framework. We will rely on simulation-based estimations of the criteria, as al-
ready presented for Bayesian Optimisation in Section 5.1.2.

However, we hope that the improved flexibility of the SLGP models com-
pared to that of GP models will result in better modelling of some misfit distri-
butions on application cases. Quantifying this change calls for inquiries in the
field of probabilistic forecasting.

5.2.3 Evaluating the performances: scoring of distribu-
tions

Depending on the inference approach employed, one either obtains a sample
from the posterior (in standard ABC, MCMC-ABC, SMC-ABC or PMC-ABC)
or a probabilistic prediction of it (as in GP-ABC or SLGP-ABC). Evaluating
the predictive performance of an approach requires being able to compare sam-
ples drawn from a distribution (e.g. from the ABC-posterior), a deterministic
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distribution (either the ABC posterior or the true posterior) and a probabilistic
prediction of the ABC-posterior. As such, it naturally calls for investigations in
the field of scoring probabilistic forecasts of densities.

In probabilistic forecasting, the process of evaluating the accuracy of a fore-
cast is known as scoring. This is done by assigning a numerical value to each
probabilistic forecast distribution. It is common to use a proper scoring rule,
i.e. rules that give a lower score to forecasts that are more accurate. There are
different types of scoring rules, each one tailored to different types of forecast
distributions and applications.

General setting of scoring We start by giving formal definitions of the
framework that we informally described. We relay here definitions and proper-
ties stated in Steinwart and Ziegel (2021). Let us consider (X,F) a measurable
space andM∞(X) the class of all probability measures on X.

Definition 5.2.1 (Scoring rule). For P ⊂M∞(X), a scoring rule is a function
S : P × X → [−∞,∞] such that the integral

∫
S(P, x) dQ(x) exists for all

P,Q ∈ P

Definition 5.2.2 (Propriety of a scoring rule). A scoring rule S is called proper
if: ∫

S(P, x) dP (x) ≤
∫
S(Q, x) dP (x) for all P,Q ∈ P (5.29)

It is called strictly proper is equality in the previous equation implies P = Q.

We refer the reader to Gneiting and Raftery (2007) for more details on scoring
rules and their propriety, and shall now focus on a broad class of scoring rules
called kernel scores.

Definition 5.2.3 (Kernel scores). The kernel score Sk associated with a condi-
tionally positive definite measurable “kernel” k is the scoring rule defined by:

Sk(P, x) := −
∫
k(u, x) dP (u)+

1

2

∫ ∫
k(u,v) dP (u) dP (v)+

1

2
k(x, x) (5.30)

We present here the definition from Gneiting and Raftery (2007) where k is
only required to be conditionally p.d., but adapted in the flavour of Ziegel et al.
(2022) where the addition of the term 1

2
k(x, x) ensures the non-negativity of the

scoring rule without affecting any of its other properties.
The framework considered leverages the versatility of kernel methods. As

proved in Theorem 4 of Gneiting and Raftery (2007), the kernel score is a proper
rule relative to Borel probability measures on a Hausdorff space. Additionally,
a careful choice of the underlying kernel can directly induce the strict propriety
of the kernel score, as pointed out in Steinwart and Ziegel (2021).
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Scoring (probabilistic) probability distributions In the current work,
we want to design a scoring rule on the space of probability distributions on I.
Thankfully, we noted in Chapter 2, Proposition 2.2.4 that the negative squared
MMD induced by a kernel k on I × I, is itself a conditionally positive kernel.

This setting calls for additional notations, so as to avoid confusion between
the various quantities at hand. First, note that in definition 5.2.1, we considered
a space X, here chosen to be the space of probability distributions on I. As
noted when introducing Random (Probability) Measures in Section 2.3, the
space of probability distributions on I is a measurable space when equipped
with the σ-algebra from Definition 2.3.1. Elements of X were denoted with the
general notation x in the previous definitions, but we will from now-on prefer the
notations P or Q to emphasize that they are probability distributions. We will
also prefer the notation P to refer to a distribution on X (previously denoted
P ). The corresponding scoring rule is:

SMMD(P, Q) :=EP∼P
[
MMD2(P,Q)

]
− 1

2
MMD2(Q,Q)

− 1

2
EP,P ′∼P

[
MMD2(P, P ′)

] (5.31)

As noted when introducing kernel embedding earlier in this document, it is
possible to express the MMD induced by k as an explicit function of k. After re-
placingMMD2 with in Equation 5.31 with its expression given in Equation 2.27
and accounting for terms that cancel out, we obtain the reformulation:

SMMD(P, Q) =EY,Y ′∼Q [k(Y, Y ′)] + EP,P ′∼P [EX∼P,X′∼P ′ [k(X,X ′)]]

− 2EP∼P [EX∼P,Y∼Q [k(X, Y )]]
(5.32)

Using this reformulation, we can use the scoring rule on application cases.

Remark. Further theoretical inquiries are still required in order to establish such
scoring rules are proper. Furthermore, in upcoming developments, it might be
worth considering kernels and scoring rules inspired by those in Ziegel et al.
(2022).

Using the kernel scoring rule for scoring ABC posteriors In practice,
one does not have access to P, and practitioners want to compare K ≥ 1 (ap-
proximate) draws from it to a reference distribution πref.

We will focus on our current setting, and denote by
(
π
(i)
ABC

)
1≤i≤K

the reali-

sations of the ABC posterior under a probabilistic modelling.
Depending on the considered setting, we have different ways of approximat-

ing the scoring rule.
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• When the reference distribution πref is available, we have:

SMMD(P, πref) =
2

K(K − 1)

∑
1≤i<j≤K

∫ ∫
k(u,v) dπ

(i)
ABC(u) dπ

(j)
ABC(v)

− 2

K

∑
1≤i≤n

∫ ∫
k(u,v) dπref(u) dπ

(i)
ABC(v)

+

∫ ∫
k(u,v) dπref(u) dπref(v)

(5.33)
Such a setting is possible when considering either the true posterior π[x|tobs]
or the ABC-posterior πABC [x|tobs; δ] of an analytical test case or of a simple
problem. Note that we have K(K +1)/2+1 double integrals to compute.

• When the reference distribution πref is not available, but we have access
to a sample of i.i.d. samples from it that we denote by (x(i))1≤i≤m, we can
use the empirical distribution πemp := 1

m

∑
1≤i≤m δx(i) as a reference:

SMMD(P, πemp) =
2

K(K − 1)

∑
1≤i<j≤K

∫ ∫
k(u,v) dπ

(i)
ABC(u) dπ

(j)
ABC(v)

− 2

Km

∑
1≤i≤K

∑
1≤j≤m

∫
k(u,x(j)) dπ

(i)
ABC(u)

+
2

m(m− 1)

∑
1≤i<j≤m

k(x(i),x(j))

(5.34)
Such a setting is possible when comparing SLGP-ABC to the standard
rejection-sampling algorithm. Note that we have K(K − 1)/2 double in-
tegrals, and mK simple ones to compute.

Although one could define as many MMD-based scoring rules are there are
kernels, here we will solely focus on the ones relying on Matérn kernels. As it
was mentioned in Section 2.2.4, Matérn kernels are characteristic kernels on Rd

(d ≥ 1) and this ensures that the resulting MMDs are metrics.
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5.2.4 Benchmarking the GP-based approaches for accel-
erating inverse problems

Benchmark setup We go back to the unidimensional contaminant localiza-
tion problem presented in Section 5.1.3. In order to perform our experiments
in a controlled setting where the ABC posterior is perfectly known, we decided
to model the misfit distributions such as those presented in Figure 5.7 with a
SLGP. All further samples will be drawn from this field, and the ABC posterior
derived from it. We used MAP estimators of the fields, and performed the opti-
misation similarly to what we did in application 4.4.3. In particular, we followed
the methodology from Section 4.3 with hyperparameters being determined with
a grid-search. Also note that for simplicity, we re-normalised the index space
(for it to span over [0, 1] instead of [0m, 10m]).

We arbitrarily set the ABC-threshold to 0.15. We represent in Figure 5.10
the scatter plots of simulated misfits used to train the fields used for ABC, the
fields, and subsequent ABC-posteriors.
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Source depth ~2.04m. (0.2 renormalized)
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Figure 5.10: Scatter plots, fitted fields and ABC posterior for various reference
geological structures and release depth.

We ran the experiments on UBELIX (http://www.id.unibe.ch/hpc), the
HPC cluster at the University of Bern. For each ABC strategy considered
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(homoskedastic GP-ABC, heteroskedastic GP-ABC, SLGP-ABC), and various
sampling strategies (random according to the prior, EIMAD, EIV), we repeated
our the experiment 50 times while varying the random seed each time.

The scoring rule considered is a MMD-based scoring rule, with the MMD
kernel being an exponential kernel (i.e. Matérn 1/2) with lengthscale set to 0.1.
This hyper-parameter was selected based on our knowledge of the real ABC-
posteriors and is expected to accurately capture variations in the posteriors and
samples thereof.

We compared several modelling, all implemented in R:

• Homoskedastic GP-ABC relies on the GP regression as implemented in
the kergp package (Deville et al., 2021). We used a Matérn 5/2 kernel, and
hyperparameters are estimated by MLE.

• Heteroskedastic GP-ABC relies on the GP regression as implemented in
the hetGP package (Binois and Gramacy, 2019). We also used a Matérn
5/2 kernel, and hyperparameters are estimated by MLE.

• SLGP-ABC relies on our implementation of SLGP density field estimation
(Gautier, Athénäıs, 2023). We used a Random Fourier Features approach
based on the Matérn 5/2 kernel with 75 random frequencies sampled (i.e.
150 basis functions). Hyperparameters were given to the model with a
lengthscale selected to be equal to 0.15.

Benchmark results The reduced benchmark’s results are displayed in Fig-
ure 5.11. We recall that this score is negatively oriented and as such needs to be
minimized to reach better performances. We notice that for our hydrogeologi-
cal applications, the heteroskedastic GP-ABC consistently performs similarly or
better than the homoskedastic GP-ABC.

Interestingly enough, performances of the SLGP can directly be related to
the modality of the misfit distribution field in the area of interest. Indeed, for
geological structure 2 and a normalised value of the source of 0.2 (top left panel
in Figures 5.10 and 5.11), the misfit distribution was unimodal around x = 0.2.
This might explain the better performances of homGP-ABC and hetGP-ABC.
On the other hand, for geological structure 162 and a normalised value of the
source of 0.49 (bottom right panel), the distribution field presented multimodal-
ity in this region, and SLGP-ABC clearly outperforms homGP-ABC and per-
forms similarly to hetGP-ABC. Moreover, whereas the hetGP-ABC approach
benefits from adaptive design of experiment in all the other settings, it is not
the case in this later, suggesting that the adaptive strategies considered might
be ill-suited for misspecified hetGPs (especially in the event of multimodality),
and calling for further enquiries.
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Figure 5.11: Evolution of the median score value in the benchmark.

Overall, we conclude that the gain in flexibility obtained by plugging a het-
eroskedastic GP in the standard homoskedastic GP-ABC framework lead to
improved performances compared to the homGP-framework. It appears that
the SLGP-ABC only yields significant improvements when the underlying mis-
fit distribution is far from Gaussian in the regions of interest for ABC, but so
far it does not appear to out-perform a finely tuned heteroskedastic GP.

Possible areas of improvement for SLGP-ABC and upcoming work
The heavy computational machinery underlying the SLGP methods suggest
that a finer tuning is harder to reach than for GPR methods, and as such,
improvements on the implementation could yield performance gains.

Another interesting direction stems from an observation made while perform-
ing smaller scales experiments for preliminary results. Using the MAP estimate
of the misfit distribution field provided better estimation of the ABC posterior
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than using draws from the posterior. This naturally makes us consider the use
of Laplace approximation in our misfit distribution field estimation.

Moreover, it is worth noting that so far we only used one (proper) scoring
rule. Upcoming development will include extending the benchmark by including
more test functions and several scoring rules, to see how robust these current
results are.

5.2.5 Conclusion

In this section, we have provided an overview of the ABC framework, with a
specific focus on the GP-ABC methods. These methods consist in surrogating
the misfits with a GP, enabling practitioners to derive sequential design of exper-
iments and accelerate the process of scientific discovery. We have proposed two
adaptations of the GP-ABC framework, one involving the use of a heteroskedas-
tic GP to surrogate the misfit distribution, and the other involving the direct
use of the SLGP to surrogate the misfit distribution.

Furthermore, we have introduced a principled approach to evaluating the
performance of the ABC framework, which involves the use of kernel scoring
rules to quantify the quality of ABC posterior estimations.

Finally, we have presented a hydrogeological benchmark to demonstrate
the effectiveness of the proposed methods. Our experiments have shown that
the hetGP-ABC approach consistently outperformed the homGP-ABC base-
line, highlighting the potential of this model. We have also identified potential
avenues for future research, such as exploring adaptations of the SLGP-ABC
approach that could further improve performance.
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Chapter 6

Discussions and perspectives

We conclude this manuscript with a brief summary of the main contributions of
this thesis, a discussion on the advantages of the proposed framework compared
to other work in the field, and a few perspectives for upcoming developments.

This work provides a comprehensive overview of the SLGP model, show-
casing its potential for use in applications in statistical inference. Beginning
with a synthesis of the important background properties in Chapter 2, we then
delve into the intricacies of the model itself in Chapter 3. Here, we review the
kinds of stochastic processes that make up SLGP, we characterise them, quan-
tify their spatial regularity properties, and discussing the posterior consistency
of the induced prior.

This contribution to the theoretical aspects of the SLGP model was further
strengthened by the practical considerations and implementation guidelines out-
lined in Chapter 4. This chapter demonstrates that sample-based estimation of
SLGPs is both possible and has favourable properties. Using unconditional re-
alisations, we show the sharpness of the bounds derived from the study of the
spatial regularity of SLGPs, and through analytical test cases, we demonstrate
the posterior consistency of our models in a controlled setting. Finally, we show-
case the applicability of our models to higher dimensions through an analysis of
a 3D meteorological dataset.

The final chapter, Chapter 5, highlights the versatility of SLGP models by il-
lustrating their ease of adaptation to any setting where GPs are used as surrogate
models. Through a simulation-based approach to computing data-acquisition
criteria and the application of our approaches to reduced benchmarks inspired
by natural sciences, we demonstrate the broad applicability of SLGP models to
a range of real-world problems.

In sum, this work presents a valuable resource for those interested in explor-
ing the potential of SLGP models in statistical inference.

The main strength of our contribution to the flourishing field of statistical
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modelling for guiding discovery in the sciences lies in the combination of its high
flexibility, applicability in moderate data regimes, and probabilistic nature. This
makes it an attractive choice for many scientific applications.

Furthermore, we believe that due to their similarities and links to Gaussian
Process (GP) models, SLGP models can benefit from the theoretical results and
advancements made in the GP community.

However, the relatively high numerical complexity of SLGP models is a chal-
lenge that must be addressed in order to make the model more scalable and
accessible to a wider range of users. Recent efforts in using variational methods
for GP models hold promise for adapting these techniques to SLGP models,
which would be a possible direction in increasing the efficiency of SLGP models.

Although not presented in the current document, we identified a promising
direction for SLGP-powered metamodelling. Indeed, one can consider a Laplace
approximation of the SLGP posterior. Such an approximation only requires
performing the MAP estimation, but does not require MCMC runs; and can be
used to perform further inference. Not only it heavily reduces the computational
cost of SLGP fitting, but it also provides the advantage of yielding approxima-
tions of the posterior that are also SLGP-distributed and can rely on previous
results in the field. We intend to continue exploring this venue and discuss its
applicability for sequential designs in upcoming work.

In addition to these suggestions, further work towards evaluating the predic-
tive performance of our model is needed. So far, we mostly relied on a squared
integrated Hellinger distance for analytical settings where the reference field was
known, and on qualitative and visual validation for the meteorological applica-
tion. Comparing samples to predicted density fields calls for investigations in the
field of scoring probabilistic forecasts of (fields of) densities. Therefore, evaluat-
ing the performances of the SLGP under several kernel settings, and comparing
them to each other and to baseline methods is another main research direction.

Finally, this work is just the beginning of our exploration of the rich frame-
work of SLGPs. Further extensive benchmarking with various toy and real-world
simulation models will deepen our understanding of the practical limitations of
SLGP models and help to identify areas for improvement. So far, implementa-
tion choices and suggestions were done mostly thanks to expert knowledge or
trial and errors. We would greatly benefit from development in the methodol-
ogy, as this might reduce the occurrence of artefacts, thus improving the quality
of predictions. A more efficient implementation would also allow us to use the
SLGP model at higher scales (i.e. with more data points and higher dimensions).
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Iosif Il’ich Gihman and Anatolij Vladimirovič Skorohod. The theory of stochastic
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Appendix A

Appendices

A.1 Basics of posterior consistency in the Bayesian

literature

This Section aims at introducing the basic ideas and tools necessary to establish
posterior consistency of a prior distribution. Posterior consistency is a desir-
able property as it ensures that provided enough data, a well-specified Bayesian
model will recover the true data generating process.

We consider a parameter space Θ, which does not need to be euclidean.
Assuming that we have available observations, noted Y(n) = {Yi}ni=1. The
probability distribution of Y(n) is assumed to be controlled by a parameter θ
and is noted P

(n)
θ . Let Π be a prior over Θ.

Definition A.1.1 (Weak posterior consistency). It is said that the prior Π
achieves weak posterior consistency at θ0 ∈ Θ with respect to a given topology
if for any weak neighbourhood U of θ0:

Π
[
U |Y(n)

]
−−−→
n→∞

1 (A.1)

almost surely under P
(n)
θ0

Remark. It is common, but not necessary, to consider the observations Y(n) to
be independent, as it simplifies the expression of the distribution P

(n)
θ0

.

This definition is quite general, and it is often difficult to prove consistency in
a general setting. One really indispensable result for non-parametric and semi-
parametric problems is Schwartz’s theorem. It leverages the Kullback-Leibler
divergence. Schwartz’s method consists in a general method for establishing
consistency and writes as follows:
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Theorem A.1.1 (Schwartz, 1965). Let {fθ : θ ∈ Θ} be a class of densities
and let Y1,Y2, ... be i.i.d. with density fθ0, where θ0 ∈ Θ. Suppose for every
neighbourhood U of θ0, there is a test for θ = θ0 against θ ̸∈ U with power
strictly greater than the size. Let Π be a prior on Θ such that for every ϵ > 0:

Π [θ : KL(fθ0 , fθ) < ϵ] > 0 (A.2)

Then the posterior is consistent at θ0

Remark. Schwartz’s theorem gives a sufficient condition for weak posterior con-
sistency, however it is not a necessary condition.

Remark. If Θ is itself a class of densities with fθ = θ, then the condition on
existence of tests in Schwartz’s theorem is satisfied if Θ is endowed with the
topology of weak convergence.
More generally, existence of a uniformly consistent estimator implies the exis-
tence of such a test.

Finally, note that consistency is defined with respect to a given topology.
Here, we define some topologies that will be relevant in this thesis.

Definition A.1.2 (Weak neighbourhood of a conditional density). We define
the weak convergence neighbourhood of a density field p0 of pdfs on I indexed
by D through a sub-base. It is given for any bounded continuous function
g : D × I → R and any ϵ > 0 by:

Vϵ,g =

{
f ∈ Fd(D; I),

∣∣∣∣∫
D×I

gf −
∫
D×I

gf0

∣∣∣∣ < ϵ

}
(A.3)

A weak neighbourhood base is formed by finite intersections of neighbourhoods
of the above type.

Definition A.1.3 (Weak neighbourhood of a joint density). We define the weak
convergence neighbourhood of a joint density h0 on D × I through a sub-base.
It is given for any bounded continuous function g : D × I → R and any ϵ > 0
by:

Wϵ,g =

{
h ∈ F(D × I),

∣∣∣∣∫
D×I

gh−
∫
D×I

gh0

∣∣∣∣ < ϵ

}
(A.4)

A weak neighbourhood base is formed by finite intersections of neighbourhoods
of the above type.
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A.2 Complete proofs

For the proof of proposition 2.1.3, we will need to bound the entropy number
coming into play in Dudley’s theorem.

Lemma 7. For d ≥ 1, and I a convex, compact subset of Rd, we recall that
if ϵ ≥ diam(I), then N(ϵ, I, ∥ · ∥∞) = 1. Let Vol be the volume, and Bd

1 the
d-dimensional unit ball, we have:(

1

ϵ

)d
Vol(I)

Vol(Bd
1)
≤ N(ϵ, I, ∥ · ∥∞) (A.5)

Additionally, if ϵ < diam(Id):

N(ϵ, I, ∥ · ∥∞) ≤
(
4

ϵ

)d
Vol(I)

Vol(Bd
1)

(A.6)

Proof of proposition 2.1.3. We consider the canonical pseudo metric associated
to k, as defined in 2.1.9. Dudley’s integral theorem gives:

E [∥Z∥∞] ≤ 24

∫ ∞

0

√
log (N(ϵ, I, dZ)) dϵ (A.7)

We note that for ϵ ≥ sup
y,y′∈I

dZ(y,y
′), then N(ϵ, I, dZ) = 1.

It follows from the Hölder condition that N(ϵ, I, dZ) ≤ N
(
(ϵ/K)2/β , I, ∥ · ∥∞

)
.

E [∥Z∥∞] ≤ 24

∫ sup dZ(y,y′)

0

√
logN

(
(ϵ/K)2/β , I, ∥ · ∥∞

)
dϵ (A.8)

Applying Lemma 7 and using the fact that for all a > 0, x > 0, log(a/x) ≤ a/x,
we have:

E [∥Z∥∞] ≤ 24

∫ sup dZ(y,y′)

0

√
log

C

ϵ

2d/β

dϵ (A.9)

≤ 24

∫ sup dZ(y,y′)

0

√
2d

β
log

C

ϵ
dϵ (A.10)

≤ 24

√
2d

β

∫ sup dZ(y,y′)

0

√
C

ϵ
dϵ <∞ (A.11)

where C := K4β/2
Vol(I)

Vol(Bd
1)

> 0. The convergence of the integral induces that

Z admits a version with sample path almost surely bounded and uniformly
continuous on (O, dk).
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Then, as dZ is continuous with respect to ∥·∥∞, it also induces that Z admits
a version with sample path almost surely bounded and uniformly continuous on
(I, ∥ · ∥∞).

Proof of Proposition 3.3.2. For fixed (x,x′) ∈ D2 and Z ∼ GP(0, k), we note
dx,x′ the canonical semi-metric associated to Zx,· − Zx′,·, defined by:

d2x,x′(t, t′) = E
[
([Zx,t − Zx′,t]− [Zx,t′ − Zx′,t′ ])

2]∀(t, t′) ∈ I2 (A.12)

Using the Hölder condition on k we note that we have simultaneously:

d2x,x′(t, t′) ≤ 3C∥x− x′∥α1
∞∀(t, t′) ∈ I2 (A.13)

d2x,x′(t, t′) ≤ 4C∥t− t′∥α2
∞∀(t, t′) ∈ I2 (A.14)

By Dudley’s theorem, we can write :

M(x,x′) ≤ 24

∫ ∞

0

√
log(N(ϵ, I, dx,x′)) dϵ

≤ 24

∫ Dx,x′ (I)

0

√
log(N(ϵ, I, dx,x′)) dϵ

(A.15)

where Dx,x′(I) stands for the diameter of I with respect to the canonical semi-
metric associated to dx,x′ . As d2x,x′(t, t′) ≤ 4C∥t − t′∥α2

∞ , we can combine the
bounds stated in Lemma (7) with the inequality

N(ϵ, I, dx,x′) ≤ N

(( ϵ

4C

)2/α2

, I, ∥ · ∥∞
)

It follows that

M(x,x′) ≤ 24

√
2dt
α2

∫ Dx,x′ (I)

0

√
log

(
K

ϵ

)
dϵ (A.16)

where K := C41+α2/2

(
Vol(I)
Vol(Bdt

1 )

)α2/(2dt)

and Bdt
1 stands for the dt-dimensional

unit ball for ∥ · |∞. To further compute the right-hand term, we introduce the

error function, defined as erf(x) =
2√
π

∫ x

0
e−t2 dt.

∫ Dx,x′ (I)

0

√
log

(
K

ϵ

)
dϵ =

[
ϵ

√
log

K

ϵ
−
√
π

2
Kerf

(√
log

K

ϵ

)]Dx,x′ (I)

0

(A.17)

= Dx,x′(I)

√
log

K

Dx,x′(I)
+K

∫ ∞

√
log(K/Dx,x′ (I))

e−t2 dt (A.18)
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Since for y > 0, 2√
π

∫∞
y
e−t2 dt ≤ e−y2 , we also have:

M(x,x′) ≤ 24

√
2dt
α2

(
Dx,x′(I)

√
log

K

Dx,x′(I)
+

√
πDx,x′(I)
2K

)
(A.19)

Then, for any 0 < δ <
α1

2
, D being compact and considering that

y (log(K/y))1/2 =
y→0

o
(
y1−2δ/α1

)
we can conclude that there exists Kδ such that:

M(x,x′) ≤ Kδ
1

(3C)1/2−δ/α1

(
Dx,x′(I)1−2δ/α1

)
(A.20)

Finally, by Equation 3.37, we have Dx,x′(I) ≤
√
3C∥x−x′∥α1/2, and we can

conclude that:
M(x,x′) ≤ Kδ∥x− x′∥α1/2−δ (A.21)

Proof of Theorem 3.3.5. Let us consider (x,x′) ∈ D2 and γ > 0. By Lemma 3,
there exists two constants CKL, CTV > 0 such that:

E [dH((Yx,·),Yx′,·)
γ] ≤ E

[
∥Zx,· − Zx′,·∥γ∞e∥Zx,·−Zx′,·∥∞γ/2

]
E [KL(Yx,·, Yx′,·)

γ] ≤ CKLE[f1(∥Zx,· − Zx′,·∥∞)]
E [dTV (Yx,·, Yx′,·)

γ] ≤ CTVE[f2(∥Zx,· − Zx′,·∥∞)]
(A.22)

where f1(x) = x2γ (1 + x)γ eγx and f2(x) = x2γ (1 + x)2γ eγx.

We consider the three functions, defined for γ,M, y > 0:

fH,γ,M(y) = (My)γe
Mγ
2

y

fKL,γ,M(y) = (My)2γ(1 +My)γeMγy

fTV,γ,M(y) = (My)2γ(1 +My)2γeMγy

(A.23)

Then, if we consider M(x,x′) = E [∥Zx,· − Zx′,·∥∞], the previous inequalities
can be rewritten as:

E [dH(Yx,·, Yx′,·)
γ] ≤ E

[
fH,γ,M(x,x′)

(
∥Zx,· − Zx′,·∥∞

M(x,x′)

)]
E [KL(Yx,·, Yx′,·)

γ] ≤ CKL · E
[
fKL,γ,M(x,x′)

(
∥Zx,· − Zx′,·∥∞

M(x,x′)

)]
E [dTV (Yx,·, Yx′,·)

γ] ≤ CTV · E
[
fTV,γ,M(x,x′)

(
∥Zx,· − Zx′,·∥∞

M(x,x′)

)] (A.24)
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By Fernique theorem (cf proposition 2.1.6), there exists universal constant
α, K > 0, as well as CH,γ,M , CKL,γ,M and CTV,γ,M > 0 such that:

E [dH(Yx,·, Yx′,·)
γ] ≤ CH,γ,M(x,x′) ·K

E [KL(Yx,·, Yx′,·)
γ] ≤ CKL · CKL,γ,M(x,x′) ·K

E
[
dTV ((Yx,·),(Yx′,·)

γ
)

]
≤ CTV · CTV,γ,M(x,x′) ·K

(A.25)

Detailed expressions of CH,γ,M , CKL,γ,M and CTV,γ,M are given below this
proof, and were derived with the tightness of our bounds in mind. We note that
these coefficients seen as functions of M are continuous, strictly positive for any
M > 0 and that:

CH,γ,M ∼
M→0

Mγ
( γ
2α

)γ/2
exp

{
−γ
2

}
CKL,γ,M ∼

M→0
M2γ

(γ
α

)γ
exp {−γ}

CTV,γ,M ∼
M→0

M2γ
(γ
α

)γ
exp {−γ}

(A.26)

This equivalence allows us to state that for a given γ > 0, there exists a rank
M0 > 0 and a constant κγ,1 > 1 such that for any M < M0:

CH,γ,M ≤ κγ,1M
γ, CKL,γ,M ≤ κγ,1M

2γ, CTV,γ,M ≤ κγ,1M
2γ (A.27)

We also observe that if M is bounded, as CH,γ,M , CKL,γ,M and CTV,γ,M seen
as function of M are continuous and strictly positive, there exists a constant
κγ,2 > 0 such that for values of M ≥M0:

CH,γ,M ≤ κγ,2M
γ, CKL,γ,M ≤ κγ,2M

2γ, CTV,γ,M ≤ κγ,2M
2γ (A.28)

Combining these two observations, andM(x,x′) being bounded, we conclude
that for any γ > 0 there exist κγ such that:

E [dH(Yx,·, Yx′,·)
γ] ≤ κγM(x,x′)γ

E [KL(Yx,·, Yx′,·)
γ] ≤ κγM(x,x′)2γ

E [dTV (Yx,·, Yx′,·)
γ] ≤ κγM(x,x′)2γ

(A.29)

This argument relies on an equivalence at zero. Therefore, it ensures that the
convergence rates are not degraded when bounding CH,γ,M , CKL,γ,M and CTV,γ,M ,
and that our bounds are still tight.

Finally, using proposition 3.3.2, stating that for all δ > 0, there exists Kδ

such that:
M(x,x′) ≤ Kδ∥x− x′∥α1/2−δ

∞ (A.30)

We conclude that for all γ > 0, δ > 0, there exists a constant Kγ,δ such that:
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E [dH(Yx,·, Yx′,·)
γ] ≤ Kγ,δ∥x− x′∥γα1/2−δ

∞
E [KL(Yx,·, Yx′,·)

γ] ≤ Kγ,δ∥x− x′∥γα1−δ
∞

E [dTV (Yx,·, Yx′,·)
γ] ≤ Kγ,δ∥x− x′∥γα1−δ

∞

(A.31)

Finding the constants in Proof of Theorem 3.3.5. For fixed M , γ > 0, we con-
sider the following three functions, for x ≥ 0:

fH,γ,M(x) = (Mx)γe
Mγ
2

x

fKL,γ,M(x) = (Mx)2γ(1 +Mx)γeMγx

fTV,γ,M(x) = (Mx)2γ(1 +Mx)2γeMγx

(A.32)

For α > 0, we look for constants CH,γ,M , CKL,γ,M , CTV,γ,M , satisfying:

fH,γ,M(x) ≤ CH,γ,Me
αx2

fKL,γ,M(x) ≤ CKL,γ,Me
αx2

fTV,γ,M(x) ≤ CTV,γ,Me
αx2

(A.33)

such constants satisfy:

sup
x≥0

gH,γ,M(x) := fH,γ,M(x)e−αx2 ≤ CH,γ,M

sup
x≥0

gKL,γ,M(x) := fKL,γ,M(x)e−αx2 ≤ CKL,γ,M

sup
x≥0

gTV,γ,M(x) := fTV,γ,M(x)e−αx2 ≤ CTV,γ,M

(A.34)

Studying the variations of gH,γ,M(x) simply involves finding the roots of a
degree 2 polynomial and yields that this function attains its supremum at:

xH,γ,M =
Mγ + 2

√
M2γ2 + 8αγ

8α
(A.35)

Therefore a valid upper bound for :

CH,γ,M = (MxH,γ,M)γ exp
{
Mγ

xH,γ,M

2
− αx2H,γ,M

}
(A.36)

This constant is optimal in the sense that it is the smallest constant satisfying
inequality A.34.

However, studying the variations of gKL,γ,M(x) and gTV,γ,M(x) is longer as it
involves finding the roots of third degree polynomials. In order to simplify the
constant, we use the simple property 1 + x ≤ ex and introduce the bounds :

gKL,γ,M(x) ≤ (Mx)2γe2Mγx−αx2
=: hKL,γ,M(x)

gTV,γ,M(x) ≤ (Mx)2γe3Mγx−αx2
=: hTV,γ,M(x)

(A.37)
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These inequalities are tight at Mx = 0.
Studying the variations of hKL,γ,M(x) and hTV,γ,M(x) simply involves finding

the roots of a degree 2 polynomial and yields that this function attains their
supremum at:

xKL,γ,M =
Mγ +

√
M2γ2 + 4αγ

2α

xTV,γ,M =
3Mγ +

√
9M2γ2 + 16αγ

4α

(A.38)

Therefore, we can take the bounds:

CKL,γ,M = (MxKL,γ,M)2γ exp
{
2MγxKL,γ,M − αx2KL,γ,M

}
(A.39)

CTV,γ,M = (MxTV,γ,M)2γ exp
{
xTV,γ,M − αx2TV,γ,M

}
(A.40)

These bounds are tight around zero.
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A.3 Additional figures

Figure A.1: Histograms and SLGP-based estimation at each of the 29 Stations
present in the data-set, the stations located in the canton of Bern are in blue.
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