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Chapter 1

Introduction

This thesis is situated at the intersection of knot theory, singularity theory
and surface topology. It contains most of the results obtained during my
PhD studies; part of them, mainly from Chapter 4, appeared in [37]. In this
introduction, we will recall the context from which this research originated and
shortly present the main results.

Singularity theory and topology have always been strongly related. If at
the beginning of the 20th century topological investigations of singularities of
complex curves and the development of knot theory proceeded in parallel, the
interactions between complex algebraic geometry and topology were further
explored in higher dimensions starting from the sixties, thanks to the work
of some of the masters of modern topology, such as Hirzebruch, Milnor and
Brieskorn, to name just a few.

The key concept to connect singularity theory and topology is the one
of links of singularities. If f : Cn → C is a polynomial in n variables and
X = f−1(0) ⊂ Cn the associated hypersurface, for a point p ∈ X the link of
p in X is Lp(f) = X ∩ S2n−1(p; r), where S2n−1(p; r) is a sphere centered at p
of sufficiently small radius r. If p is either a smooth point of X or an isolated
critical point, its link is a compact smooth manifold of real dimension 2n− 3.
In the following, we will assume that all critical points are isolated. While the
link of a smooth point is clearly a standard, unknotted sphere, links of iso-
lated singular points provide many examples of interesting topological spaces,
which are often amenable to study because of their rather concrete nature.
In fact, this is already the case for some of the simplest spaces: (homology)
spheres. For example, while for n ≥ 4 Milnor proved that no non-trivial ho-
mology sphere can arise as the link of a singularity [64], Brieskorn showed
that interesting knotted spheres can appear [20]. Famously, Hirzebruch first
realized that some of those spheres naturally carry an exotic smooth struc-
ture, and his student Brieskorn later proved that every odd dimensional exotic
sphere bounding a parallelizable manifold could be exhibited as the link of an
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CHAPTER 1. INTRODUCTION

isolated singularity [49],[18]. In dimension n = 3, the situation is radically
different. By a result of Mumford, no non-trivially knotted 3-sphere can be
the link of an isolated surface singularity [65]; on the other hand, homology
3-spheres are abundant among links of singularities, and the examples coming
from singularity theory for instance eventually led to a greater understanding
of the homology cobordism group of homology 3-spheres [39],[41],[38]. Ideas
obviously also traveled in the other direction, and topological methods were
successfully applied to solve problems of singularity theory. A first, fundamen-
tal result in this direction is the Cone Structure Theorem, saying that locally
around an isolated critical point p the hypersurface X = f−1(0) is homeo-
morphic to the cone over the link Lp(f), so that the embedded link type of
Lp(f) ⊂ S2n−1 completely determines the local topology of the singularity [64].
Moreover, in many cases even the intrinsic topology of the link itself is enough
to extract important information on the singularities. For example, Mumford
characterized smooth points of normal complex surfaces in terms of the funda-
mental group of their links [65], and Neumann vastly generalized it by showing
that the minimal resolution of a normal surface singularity is determined by
the topology of the link (and in fact in most cases simply by the fundamental
group of the link) [66].

In this thesis, we will only be interested in the classical case of isolated
complex curve singularities. In this context, the link of an isolated critical point
is a classical link L ⊂ S3. As we have already mentioned, links of plane curve
singularities were studied in great detail in the first few decades of the 20th
century, and both the classical field of singularity theory and the then rather
new field of knot theory took great profit from this interaction. We would like
to illustrate those exchanges with the following example, that we discovered
thanks to Durfee’s interesting historical survey [35]. It dates back to some
seminars given by Wirtinger in 1905, and was later written down by his student
Brauner in [17]. Wirtinger was interested in studying complex surfaces using
branched coverings over the plane C2, in analogy to the successful description of
complex curves as branched covers of the complex line C. To do so, he needed
to understand the branching set and what he called the branching group of a
branch point: in modern terminology, this is the local monodromy around a
branch point p, i.e. the action of the fundamental group of the complement of
the branching set in a neighbourhood of p as permutations of the sheets of the
covering. The case of complex curves is simple: the branching set is discrete,
and the local monodromy group is always cyclic. In the case of surfaces,
difficulties arise: the branching set is a potentially singular complex curve,
and the local monodromy can be complicated. Wirtinger explicitly considered
the surface defined by the equation

f(x, y, z) = z3 − 3xz + 2y = 0

2



CHAPTER 1. INTRODUCTION

and projected it on the xy-plane. This projection is a 3-sheeted cover branched
over the curve C = {(x, y) ∈ C2 | y2 = x3}. Smooth points of C have two
preimages, and by finding appropriate local coordinates Wirtinger proved that
the local monodromy group around such a point is always cyclic (of course,
from our modern viewpoint this follows immediately from the fact that the
local fondamental group around a smooth point of C is itself cyclic). On the
other hand, the branching around the critical point 0 of C is more complicated.
Wirtinger understood that the intersection of C with a small ball centered at
0 is a cone over the trefoil knot, discovered what we now call the Wirtinger
relation and used it to deduce that the local monodromy group around 0 is not
cyclic, but in fact the whole symmetric group on 3 elements. That is, by his
interest in complex geometry and singularities Wirtinger was led to discoveries
of fundamental importance in knot theory, which he then successfully applied
to solve problems in singularity theory.

Brauner subsequently systematically studied knots of irreducible plane curve
singularities, showed that they are iterated cables of torus knots and explained
how the cabling coefficients could be computed from the so-called characteristic
Puiseux pairs of the singularity. Shortly after, various authors considered the
case of reducible singularities, proving that their links are determined by the
knot type of each component and the pairwise linking numbers, and showing
that the linking number of two components is equal to the so-called intersection
multiplicity between the corresponding branches of the singularity. It follows
that the isotopy class of the link is completely determined by those classical
algebro-geometric invariants: the characteristic pairs of each branch and the
pairwise intersection multiplicities. Finally, Burau [25] used the recently intro-
duced Alexander polynomial to prove that knots obtained from singularities
with different characteristic pairs are indeed different, thus getting a complete
knot-theoretical characterization of those classical invariants (this result was
also obtained with different methods by Zariski [79]). From the cone struc-
ture theorem, it follows that both the link of the singularity and the classical
invariants are complete topological invariants.

Having such an explicit, complete topological classification of plane curve
singularities in terms of the associated links, the question remains of how to
extract topological information from the links and use it to understand topolog-
ical invariants intrinsic to singularity theory. In the most ideal case, one would
hope to express singularity invariants as specialization of link invariants. How-
ever, this is often very hard. For example, the discovery of the HOMFLY-PT
polynomial was needed to prove that the multiplicity of a singularity corre-
sponds to the braid index of the associated link [78], while the identifications of
the so-called Milnor number and δ-invariant of a singularity with, respectively,
the minimal first Betti number and the unknotting number of the link, both

3



CHAPTER 1. INTRODUCTION

conjectured by Milnor [64], were first obtained as a consequence of the famous
proof of the Thom conjecture by Kronheimer and Mrowka [54].

The present thesis fits in this general framework. Inspired by some con-
structions of singularity theory, our goal is to define analogue objects for posi-
tive braids and, by working in this wider context (any link of a singularity turns
out to be a positive braid closure), deduce results for the original singularities.

Summary of results:

The first object of consideration is the local fundamental group of the dis-
criminant complement, and a recently proposed, conjectural braid-theoretic
generalization of it. We will now introduce the minimum necessary to present
our results, and refer to Chapter 2 for a more detailed discussion. Basically,
to any plane curve singularity f : C2 → C one can associate a space Cµ, which
parametrizes deformations of the singularity; we will call it the versal defor-
mation space. Here, µ = µ(f) is the Milnor number that we mentioned earlier.
The original singularity f corresponds to 0 ∈ Cµ. Now, a generic deforma-
tion of f will in fact give a smooth curve; the points of the versal deformation
space corresponding to singular curves form an algebraic hypersurface ∆ ⊂ Cµ,
called the discriminant. Both the discriminant, a highly singular hypersurface
stratified according to the type of the corresponding deformation of f , and
the discriminant complement Cµ \∆ - parametrizing smooth deformations of
f - have drawn a lot of attention, but proved to be very intricate. Being
interested in small deformations, one would typically first consider the local
topology around the origin, i.e. inside a small ball Bε centered at 0. For ε
suitably small, this is in fact independent of ε. In particular, the local funda-
mental group π1(Bε \ ∆) has attracted a lot of research, as it appears to be
very rich, but is to date only understood in a handful of very specific cases;
even the question of its topological invariance, asked by Brieskorn 50 years ago
[23], is still unanswered.

Our investigations started from [13], in which Baader and Lönne defined
secondary braid groups. Those are groups associated to positive braids, defined
explicitly in terms of generators and relations. The presentation of a secondary
braid group is inspired by the presentation of the local fundamental group of
the discriminant complement of some known singularities, and indeed in those
cases the secondary braid group appears as a braid-theoretical generalization
of the local fundamental group. Baader and Lönne then took the first steps
towards proving that the secondary braid group is a topological invariant of
the braid closure, but, analogously to the case of local fundamental groups,
serious difficulties arise and a general proof of invariance is still out of reach.
The first result of this thesis is a proof of invariance in the special case of
positive braids on 3 strands.

4



CHAPTER 1. INTRODUCTION

Theorem 1.1. If two positive 3-braids have isotopic closures, their secondary
braid groups are isomorphic.

Going back to singularities, the (local) discriminant complement Bε \ ∆
is the base of a smooth fibre bundle, with fibre a smooth complex curve. In
particular, this induces a monodromy representation of π1(Bε \∆) in the map-
ping class group of the fibre, whose image is called the geometric monodromy
group of f . Again, we refer to Chapter 2 for the details of the definition.
The geometric monodromy group is known to be a topological invariant of
the singularity, generated by finitely many Dehn twists around some curves on
the fibre surface called vanishing cycles. As this fibration in fact determines
the topology of the singularity, various forms of monodromy have been inten-
sively studied, and important results were obtained in the homological setting
[5]. However, the geometric monodromy group has proved evasive: for a long
time, results were only known for so called simple singularities [68],[77], and
important, general results have only been obtained recently [70].

Inspired by this definition of the geometric monodromy group as a quotient
of the local fundamental group of the discriminant complement, in the second
part of this thesis we associate to every positive braid β a group MG(β) that
we call the monodromy group of the braid. It is defined as the group generated
by the Dehn twists around a certain family of curves on the unique minimal
genus Seifert surface of the braid closure, and it is naturally a quotient of
the secondary braid group. First, we prove that the monodromy group of a
positive braid is indeed a generalization of the geometric monodromy group of
a singularity.

Theorem 1.2. Let f : C2 → C define an isolated plane curve singularity and
L(f) be the link of f . Then there exists a positive braid β representing L(f)
such that the geometric monodromy group of f is equal to MG(β).

To study monodromy groups of positive braids, we use the theory of framed
mapping class groups. This theory belongs to a family of techniques that were
developed in recent years to study the action of the mapping class group of
a surface on various tangential structures - in the present case, framings -
and successfully applied to study monodromy groups appearing in a variety of
settings, including singularities [70]. We will carefully discuss framed mapping
class groups in Chapter 2; for the time being, it suffices to mention that to
every framing on a surface one can associate a framed mapping class group,
and that such framed mapping class groups turn out to be generated by finitely
many Dehn twists around curves with a prescribed intersection pattern [27].
Our first step is to construct an explicit framing on the minimal genus Seifert
surface of a positive braid, and prove that the monodromy group of the braid is
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contained in the associated framed mapping class group. The reverse inclusion
is harder, and we can prove it provided the surface has connected boundary.

Theorem 1.3. Let β be a prime positive braid not of type An and whose
closure is a knot. Up to finitely many exceptions, the monodromy group of β
is a framed mapping class group.

In fact, our proof of Theorem 1.3 also applies to many (but not all) positive
braids whose closure is a link, including links of singularities. In particular, we
obtain the following result, that was already proved by Cuadrado and Salter
in [70].

Theorem 1.4. Let f : C2 → C be an isolated plane curve singularity not
of type An or Dn. Up to finitely many exceptions, the geometric monodromy
group of f is a framed mapping class group.

It is important to mention that the two infinite families of braids of type An

and Dn that we exclude from Theorems 1.3 and 1.4 are in fact the only cases
where the monodromy group was already explicitly known: it is isomorphic
to the Artin group of the corresponding type [68]. Those groups are not
isomorphic to any framed mapping class group, so their exclusion is a necessity,
rather than a limitation of any sort. On the other hand, the remaining finitely
many exceptions are due to technical reasons, and we still expect the results
of Theorems 1.3 and 1.4 to hold in those cases.

Framed mapping class groups are determined by the value of the framing on
the boundary components of the surface and a certain Arf invariant associated
to the framing. In the case of a surface Σ with connected boundary, the value
of the framing on the boundary is always equal to the Euler characteristic of
Σ, so that the framed mapping class group is determined simply by the genus
of Σ and the Arf invariant of the framing. In our specific case, we are able
to identify the Arf invariant of the framing with the classical Arf invariant
of the boundary knot. We thus obtain the following corollaries, expressing
the geometric monodromy group of an irreducible singularity in terms of well
known invariants of its knot.

Corollary 1.1. Let β be a prime positive braid not of type An and whose
closure is a knot K. Up to finitely many exceptions, the monodromy group of
β is an invariant of K, determined by its genus and Arf invariant.

Corollary 1.2. Let f be an irreducible isolated plane curve singularity that is
not of type An and let K(f) be the knot of the singularity. For all but finitely
many such singularities, the geometric monodromy group of f is determined
by the genus and the Arf invariant of K(f).

6



CHAPTER 1. INTRODUCTION

In particular, it follows that the geometric monodromy group of a singular-
ity is in fact a very weak invariant, as most singularities with the same Milnor
number have isomorphic monodromy groups. Moreover, given two singularities
with the same Milnor number we now have a simple method for determining
whether their geometric monodromy groups are isomorphic.

Finally, we will shortly discuss how the techniques used to understand mon-
odromy groups of positive braids can be applied to the more general study of
groups generated by finitely many Dehn twists. Those methods work particu-
larly well for surfaces constructed by plumbing Hopf bands, where we look at
the group generated by the Dehn twists around the core curves of the Hopf
bands. Note that the monodromy group of a positive braid is indeed of that
form. It turns out that also in this more general setting it is possible to define
an explicit framing on the surface, whose framed mapping class group con-
tains all the Dehn twists we are interested in, and that, if the boundary of the
surface is connected, the Arf invariant of the framing coincides with the Arf
invariant of the boundary knot. We will study in detail the case of arborescent
Hopf plumbings.

Theorem 1.5. Let Σ be a surface constructed by plumbing Hopf bands accord-
ing to a tree T , and C = {c1, . . . , cl} be the core curves of the Hopf bands. If
Σ has connected boundary and l ≥ 10, the group

G(C) = ⟨Tc1 , . . . , Tcl⟩ ⩽ MCG(Σ)

is uniquely determined by T . For every fixed l, there are only three possible
groups: either T = Al and G(C) is the braid group Bl+1, or G(C) is one of
two framed mapping class groups, distinguished by the Arf invariant of the
boundary knot.

Structure of the thesis: In Chapter 2 we will collect the necessary pre-
liminaries concerning singularity theory, framed mapping class groups and
positive braids. In Chapter 3 we discuss secondary braid groups and prove
Theorem 1.1. Chapter 4 is the core of this thesis: we define the monodromy
group of a positive braid and prove Theorems 1.2, 1.3 and 1.4, together with
the related corollaries. Finally, in Chapter 5 we consider groups generated by
finitely many Dehn twists, discuss their relation to Artin groups and prove
Theorem 1.5.

7



Chapter 2

Preliminaries

The goal of this chapter is to concisely present the context in which this thesis
fits and introduce the main tools used in the following. We will assume famil-
iarity with classical knot theory, as presented for instance in [58] or [26], as
well as with the basics on mapping class groups [36].

1 Plane curve singularities
In this section, we will recall some classical notions from the theory of plane
curve singularities. Those serve mainly to provide context and as a motivation
for the following chapters. Our main references are the books [7, 8], [24] and
[64].

An isolated plane curve singularity, shortly singularity, is a germ of holo-
morphic function f : (C2, 0) → (C, 0) with an isolated critical point at the
origin. In what follows, we will mainly be interested in the topology of the
singular curve C(f) = f−1(0) around the critical point. More precisely:

Definition 2.1. Two singularities f and g are topologically equivalent if there
are neighbourhoods U and V of 0 in C2 and a homeomorphism

ϕ : (U, 0) → (V, 0)

such that ϕ(U ∩ C(f)) = V ∩ C(g).

Since the ring C{x, y} of convergent power series is factorial, f can be
uniquely decomposed (up to units) as a product of irreducible factors,

f = f1 . . . fn.

At the level of the singular curve, this corresponds to a decomposition into
irreducible components,

C(f) = C(f1) ∪ · · · ∪ C(fn).

8



CHAPTER 2. PRELIMINARIES

We call those irreducible components the branches of the singularity.

Remark 2.1. Even though a singularity f is defined to be an analytic func-
tion germ, for concrete examples it is always enough to consider polynomials.
Indeed, by a theorem of Levinson [57], there exist local coordinates around
0 ∈ C2 for which f is a polynomial.

1.1 The link of a singularity and Milnor’s fibration

Let f be a singularity. For a suitably small radius r > 0, the sphere S3
r ⊂ C2

centered at 0 intersects the singular curve C = f−1(0) transversally; the in-
tersection L(f) = C ∩ S3

r is therefore a link in the 3-sphere, called the link of
the singularity. The number of components of L(f) is equal to the number of
branches of f . Links of singularities are well understood: they are iterated ca-
bles of the unknot, and the cabling coefficients that can appear are completely
classified in terms of the so-called Puiseux inequalities. Moreover, it is well
known that the isotopy type of L(f) completely determines the topological
type of the singularity; in fact, for reducible singularities it is enough to know
the knot type of each component and all the linking numbers, see [24, §8.3].

Example 2.1 (Simple singularities). Important examples of singularities are
the so-called simple singularities, famously classified by Arnold [6]. We will
often refer to them as ADE singularities. Those consist of two infinite families
and three exceptional singularities, namely:

• An: f(x, y) = y2 − xn+1 for n ≥ 1;

• Dn: f(x, y) = xy2 + xn−1 for n ≥ 4;

• E6: f(x, y) = y3 − x4;

• E7: f(x, y) = x3 + xy3;

• E8: f(x, y) = y3 − x5

The link of the An singularity is L(An) = T2,n, the torus link on two strands.
Similarly, L(E6) = T3,4 and L(E8) = T3,5. Braids representing the links of the
remaining simple singularities are shown in Example 2.4.

In [64], Milnor proved that the map

f

|f |
: S3

r \ L(f) → S1

is a locally trivial fibration, called the Milnor fibration. Singularity links are
therefore fibred links, with fibre a surface Σ(f) called the Milnor fibre. The

9
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first Betti number µ = µ(f) of the Milnor fibre is called the Milnor number
of f . The fibration induces a monodromy diffeomorphism of the fibre, which
is only defined up to isotopy and hence gives a mapping class in MCG(Σ(f)),
called the geometric monodromy of the singularity. The geometric monodromy
is an important invariant, which determines the topology of the singularity and
has been intensively studied in the context of singularity theory.

Milnor’s fibration also has an alternative definition, which is originally due
to Brieskorn. Indeed, for small enough ε > 0 and |z| < ε (z ∈ C), the non-
singular level set f−1(z) also intersects the sphere S3

r ⊂ C2 transversally. It
now follows from the Ehresmann fibration theorem that the restriction of f to

f : B4
r ∩ f−1(Dε \ {0}) → Dε \ {0}

is a locally trivial fibration, where Dε ⊂ C denotes the disk of radius ϵ and
B4

r ⊂ C2 the ball of radius r. In particular, the restriction of this bundle to
the circle S1

ε = ∂(Dε) also gives a locally trivial fibration over the circle

f : B4
r ∩ f−1(S1

ε ) → S1
ε ,

which Milnor proved to be equivalent to the Milnor fibration [64]. Hence, the
Milnor fibre Σ(f) is diffeomorphic to the regular curve f−1(z) ∩ B4

r for any
z ∈ C \ {0} with |z| ≤ ε. From now on, we will mostly use this second version
of the Milnor fibration.

1.2 The geometric monodromy group

To study the topology of the Milnor fibration, it is convenient to consider
perturbations of f . In the following lines, we fix r and ε suitably small, as
before. We will use perturbations of the form f̃ = f + λg, with g : C2 → C
linear and λ ∈ C. For |λ| small enough, the level set f̃−1(z) is transverse to
the sphere S3

r for any |z| ≤ ε and all the critical points of f̃ in B4
r are mapped

to critical values in the interior of the disk Dε. Besides, one can prove that, for
any regular value z with |z| ≤ ε, the regular curve f̃−1(z)∩B4

r is diffeomorphic
to the corresponding regular curve of f , that is to the Milnor fibre. Moreover,
an easy application of Sard’s theorem gives the following:

Lemma 2.1. For almost all linear maps g : C2 → C, the perturbation f̃ =
f + λg is Morse, i.e. only has non-degenerate critical points with distinct
critical values.

Proof. We take f̃(x1, x2) = f(x1, x2) −
∑

vixi with (v1, v2) ∈ C2. One easily
notices that the critical points of f̃ are precisely the preimages of (v1, v2) for
the gradient ∇f , and that if such a critical point of f̃ is degenerate, then

10
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it is a critical point of ∇f , so that (v1, v2) is a critical value of ∇f . By
Sard’s theorem, almost all values (v1, v2) are non-critical for ∇f , which means
that almost all such perturbations f̃ only have non-degenerate critical points.
Moreover, the set of regular values of ∇f is open, so by an additional small
linear perturbation of f̃ we can ensure that all the critical values of f̃ are
pairwise distinct, i.e. f̃ is Morse.

Let us now assume that f̃ is Morse. There are finitely many critical points
of f̃ in B4

r , mapped to distinct critical values z1, . . . , zn ∈ Dε. Once again, by
the Ehresmann fibration theorem we have a fibration

f̃ : B4
r ∩ f̃−1(Dε \ {z1, . . . , zn}) → Dε \ {z1, . . . , zn}

with fibre Σ(f). Fixing a regular value z0 ∈ ∂(Dε) as base point, we therefore
get a monodromy representation ρf̃ : π1(Dε \ {z1, . . . , zn}, z0) → MCG(Σ(f)),
where MCG(Σ(f)) denotes the mapping class group of the Milnor fibre.

Definition 2.2. The geometric monodromy group Γf of a singularity f is the
image in MCG(Σf ) of the monodromy representation

ρ = ρf̃ : π1(Dε \ {z1, . . . , zn}, z0) → MCG(Σ(f))

for any Morse perturbation f̃ of f .

It is not difficult to show that the geometric monodromy group does not
depend on the choice of the Morse perturbation f̃ . It can also be proved
that the geometric monodromy group is in fact a topological invariant of the
singularity.

Having chosen f̃ to be Morse allows us to use Picard-Lefschetz theory (i.e.
complex Morse theory) to study the topology of the Milnor fibration. More
precisely, consider a path u : [0, 1] → Dε with u(0) = z0, u(1) = zi, i ̸= 0 and
not passing through any critical value of f̃ except at t = 1. To such a path we
can associate a loop γ ∈ π1(Dε \ {z1, . . . , zn}, z0) by following u from z0 to zi,
turning once anticlockwise around zi and going back to z0 along u. Using local
coordinates around the non-degenerate critical point pi corresponding to zi,
one can see that there exists a unique simple closed curve c on Σ(f) = f̃−1(z0)
that gets contracted to pi when Σ(f) is transported to the singular level-set
f̃−1(zi) along u. We call this curve the vanishing cycle corresponding to u.
The isotopy type of a vanishing cycle c (as a curve on the Milnor fibre) does
not depend on the choice of perturbation f̃ .

Theorem 2.1 (Picard-Lefschetz; see [8], §1&2).
Let u be a path as above, γ ∈ π1(Dε \ {z1, . . . , zn}, z0) the associated loop and

11



CHAPTER 2. PRELIMINARIES

c the vanishing cycle corresponding to u. The monodromy along γ is given by
the right Dehn twist around c, i.e.

ρ(γ) = Tc.

To end this discussion, consider now a family of paths ui for i = 1, . . . , n,
each joining the base point z0 to the corresponding zi. We assume that all
those paths are not self-intersecting and pairwise disjoint (except at the com-
mon starting point z0). Under those conditions, we say that the set of the
corresponding vanishing cycles {ci} is distinguished.

Theorem 2.2 (Milnor; see [8], Theorem 2.1, and [64], Theorem 6.5 ). A
distinguished set of vanishing cycles forms a basis of H1(Σ(f)). In particular,
the number of critical points of f̃ in B4

r ∩ f̃−1(Dε) equals the Milnor number
µ(f).

Of course, after perturbing f to f̃ , the monodromy around ∂(Dε), consid-
ered as a loop based at z0, is still equal to the geometric monodromy of f . A
choice of a distinguished set of vanishing cycles therefore induces a decompo-
sition of the geometric monodromy as a product of Dehn twists, where each
such Dehn twist appears exactly once in an appropriate order. To sum up, we
have the following:

Corollary 2.1. The geometric monodromy group of a singularity f is gener-
ated by µ(f) Dehn twists; the geometric monodromy decomposes as a product
of those generators and is therefore an element of the geometric monodromy
group.

Miniversal deformations and the discriminant

The geometric monodromy group admits an alternative definition, involving
the so-called versal deformations of a singularity. A deformation of a singu-
larity f is a germ of holomorphic function F : (C2 ⊕ Cl, 0) → (C, 0) such that
F (x, 0) = f(x). The space Cl is the base of the deformation. A deformation
F is called versal if every other deformation of f is equivalent, in a certain
natural sense, to a restriction of F . It can be proved that versal deformations
exist. In fact, there exists a unique (up to diffeomorphism of the base) versal
deformation with base of minimal dimension, that we call miniversal. The
dimension of the base of the miniversal deformation is equal to the Milnor
number µ(f). For a detailed discussion of those notions, we refer to [7].

So, let F (x, λ) be a miniversal deformation of a singularity f , where x ∈ C2

and λ ∈ Cµ. We will be interested in the level sets

Vλ = {x ∈ C2 | F (x, λ) = 0, ||x|| ≤ r},

12



CHAPTER 2. PRELIMINARIES

where r is chosen suitably small. For λ = 0, this is nothing else than the
singular curve C(f) ∩ B4

r . Recalling that, for any r small enough, the curve
C(f) is transverse to the sphere S3

r , it follows that there exists some δ > 0
such that for all ||λ|| ≤ δ the curve {x ∈ C2 | F (x, λ) = 0} is also transverse
to S3

r . In particular, if the level set Vλ is smooth, then it is diffeomorphic
to the Milnor fibre of f . We will now restrict our considerations to the ball
Bδ = {λ ∈ Cµ | ||λ|| ≤ δ} in the base of the deformation.

Definition 2.3. The discriminant of the singularity f is the space

∆ = ∆δ = {λ ∈ Cµ | ||λ|| ≤ δ, Vλ is not smooth}.

It can be shown that the topological type of the pair (Bδ,∆δ) does not de-
pend on δ (for δ sufficiently small) nor on the choice of miniversal deformation.
Moreover, the discriminant is a set of complex codimension 1 in Bδ. The space
Bδ \∆ is the base of a locally trivial fibration

{(x, λ) ∈ C2 ⊕ Cµ | x ∈ Vλ, ||λ|| ≤ δ, λ /∈ ∆} → Bδ \∆
(x, λ) 7→ λ

with fibre Vλ
∼= Σ(f). As usual, we get a monodromy representation

π1(Bδ \∆) → MCG(Σ(f)).

Theorem 2.3 (see [8], Theorem 3.1.). The image of the monodromy represen-
tation π1(Bδ \∆) → MCG(Σ(f)) in MCG(Σ(f)) coincides with the geometric
monodromy group of f .

In the proof of Theorem 2.3, one shows that the monodromy representation
ρ : π1(Dε \ {z1, . . . , zµ}, z0) → MCG(Σ(f)) used in the original definition of
the geometric monodromy group factors through

ρ : π1(Dε \ {z1, . . . , zµ}, z0)↠ π1(Bδ \∆) → MCG(Σ(f)).

In particular, this exposes a natural set of µ generators of π1(Bδ \∆), but this
latter group also has non-trivial relations.

Example 2.2. By results of Brieskorn and Arnold([19], [21] and [6], see also
[22]), for a simple singularity of type ADE the fundamental group of the
discriminant complement is isomorphic to the Artin group of the same type.

In [68], Perron and Vannier showed that the monodromy representation
is injective for simple singularities of type An and Dn, and conjectured the
same to be true for the other simple singularities. This was later disproved by
Wajnryb in [77]. In fact, Portilla Cuadrado and Salter recently proved that

13
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this representation is never injective if f is not of type An or Dn and the Milnor
fibre Σ(f) has genus g ≥ 7, see [70].

Here, it is important to point out that the topological type of the discrimi-
nant, that is of the pair (Bδ,∆), is not a topological invariant of the singularity,
as first showed by Pham [69]. The question of the invariance of π1(Bδ \ ∆)
was asked by Brieskorn in 1972 [23], but it is still unanswered. To the best of
our knowledge, the strongest result in this direction is by Lönne, who proved
invariance for singularities of multiplicity at most 3, see [62].

1.3 A’Campo’s divides

The various definitions of the geometric monodromy group that we have just
discussed are conceptually clear, but difficult to use for concrete computations.
However, there exists an easy combinatorial model to construct the Milnor fiber
of a singularity together with a distinguished basis of vanishing cycles. This
was obtained by A’Campo using the theory of divides.

Definition 2.4. A divide D is a generic relative immersion of finitely many
intervals in the unit disk (D2, ∂(D2)).

Here, generic means that the only singularities are double points and that
the intervals meet the boundary ∂(D2) transversally. Examples of divides can
be seen in Figure 2.1 and Figure 4.4.

Divides were first introduced by A’Campo ([2], [3]) and Gusein-Zade ([44],
[45]), who independently proved that they could be associated in a natural
way to singularities and used them for studying properties of the monodromy.
Roughly speaking, their construction goes as follows: first, up to topological
equivalence one can assume that the singularity f is in real form, i.e. the
defining equation of each branch has real coefficients. Using a resolution of
the singularity, one can then construct a special perturbation f̃ called a real
morsification. The divide of the singularity is now simply the real part of the
perturbed curve f̃−1(0) inside the Milnor ball; that is, we consider the disk
D2 = B4

r ∩R2 and D = f̃−1(0) ∩D2.

Example 2.3 (Geometric monodromy group of simple singularities). Using
this construction, A’Campo proved that a simple singularity has a basis of
distinguished vanishing cycles consisting of curves whose intersection pattern
is the corresponding ADE Dynkin diagram; that is, the geometric monodromy
group of an ADE singularity is generated by the Dehn twists around curves
with the corresponding intersection pattern [2].

Later on, in [4],[1] A’Campo associated to any divide D a link L(D), con-
structed as follows. Consider the tangent bundle of the unit disk,

TD2 = {(x, v) | x ∈ D2, v ∈ TxD
2}.

14
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The sphere S3 can be seen as the unit sphere in TD2,

S3 = {(x, v) ∈ TD2 | |x|2 + |v|2 = 1}.

Now let D ⊂ D2 be a divide, the link of D is defined as

L(D) = {(x, v) ∈ S3 | x ∈ D, v ∈ TxD} ⊂ S3.

This gives a link whose number of components is equal to the number of
intervals in the divide. In [1], A’Campo proved that if the divide is connected,
then the associated link is fibred. Moreover, by studying the monodromy of
those fibred links, in [4] he showed that if the divide was obtained from a
singularity, then the associated link L(D) is ambient isotopic to the link of the
singularity. In this latter case, he also provided an easy graphical algorithm
to construct a model of the Milnor fibre on which a distinguished system of
vanishing cycles is visible. We say that a face of a divide D is a connected
component of D2 \ D which does not intersect the boundary of D2. Let n be
the number of intervals in D, δ be the number of crossings and r the number
of faces. The Milnor fibre will be a surface with first Betti number µ = δ + r
and n boundary components. The distinguished vanishing cycles will be given
by one curve per crossing and one curve per face. The surface is constructed
as follows: first, replace every crossing of D with a small circle, to get a
trivalent graph. Now, realize every edge of this new graph by a half-twisted
band. This gives a surface composed of twisted cylinders, corresponding to the
crossings of D, connected by half-twisted bands corresponding to the edges of
D. The vanishing cycle associated to a crossing is given by the core curve of
the corresponding cylinder, the vanishing cycle of a face is given by the core
curves of the bands bounding the face. An example of this construction is
shown in Figure 2.1. To sum up, we then have the following theorem:

Theorem 2.4. Let f be an isolated plane curve singularity, D a divide associ-
ated to f and Σ(f) the surface constructed from D with the previous procedure.
Then Σ(f) is the Milnor fibre of f and the family of curves forms a basis of
distinguished vanishing cycles. In particular, the geometric monodromy group
Γf is the subgroup of MCG(Σ(f)) generated by the Dehn twists around those
vanishing cycles constructed on Σ(f). This does not depend on the choice of
the divide D.

Remark 2.2. A’Campo’s construction only leads to a combinatorial model of
the Milnor fibre which is not embedded. A graphical procedure to construct a
diagram of the link of a divide and the associated embedded fibre surface has
been given by Hirasawa in [48].
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Figure 2.1: A divide and the associated surface with some of the vanishing
cycles. This is a divide of the E6 singularity; one can check using A’Campo’s
definition (with the help of Hirasawa’s algorithm [48]) that the corresponding
link L(D) is indeed the torus knot T3,4.

2 Framed mapping class groups
In recent years, there has been an increasing interest in the study of tangential
structures on surfaces, such as framings or so-called r-spin structures, and of
the action of the mapping class group on such structures. This has led to
important advances in the understanding of monodromy groups arising in a
variety of settings, see for instance [74], [28], [46], [47] and [27]. Most im-
portantly for this thesis, in [70] Portilla Cuadrado and Salter proved that the
geometric monodromy group of any isolated plane curve singularity of genus at
least 5 and not of type An and Dn is a so-called framed mapping class group.
In this section we will briefly recall the basics of the theory of framed surfaces,
concentrating in particular on the action of the mapping class group on such
structures, as investigated in [27] and [71]. In what follows, we will adhere to
the notations and conventions of [27], but we will restrict only to the case of
surfaces with connected boundary.

Let Σ = Σg,1 be a connected, compact, oriented surface of genus g with
one boundary component. A framing ϕ on Σ is a trivialization of the tangent
bundle TΣ. With the fixed orientation (and a choice of a Riemannian metric),
a framing is determined by a nowhere-vanishing vector field ξϕ on Σ. Two
framings are isotopic if the associated vector fields are homotopic through
nowhere-vanishing vector fields.

To a framing one can associate a winding number function, computing the
holonomy of a simple closed curve. If c : S1 → Σ is a C1 embedding, one can
define

ϕ(c) =

∫
S1
d∠(ċ(t), ξϕ(c(t))) ∈ Z.

This defines a map from the set of simple closed curves on Σ to Z, which
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is clearly invariant under isotopy of ϕ and c. It is not hard to see that the
converse also holds: the isotopy class of a framing on Σ is determined by its
winding number function, and actually by the value on finitely many curves
(see [31], Theorem 5.6 and [71], Prop.2.4). Thanks to this, we will use the
term "framing" indifferently to refer to the isotopy class of the vector field ξϕ
or to the associated winding number function ϕ.

Remark 2.3. Since we are only considering surfaces with connected boundary,
it follows from the Poincaré-Hopf index theorem that for any framing ϕ on Σ,
if the boundary ∂Σ is oriented with the surface on its left, then ϕ(∂Σ) = χ(Σ).

Remark 2.4. The winding number function induced by a framing is nothing
else than a cohomology class on the unit tangent bundle of Σ which evaluates
to 1 on the oriented fibre S1; see [31, 32] and [51] for a detailed study of
generalized winding number functions.

The action of the mapping class group: The mapping class group of
Σ acts on the set of isotopy classes of framings by pullback, via f · ϕ(c) =
ϕ(f−1(c)), for f ∈ Mod(Σ) and c a simple closed curve.

Definition 2.5. Let (Σ, ϕ) be a framed surface. The framed mapping class
group

MCG(Σ, ϕ) = {f ∈ MCG(Σ) | f · ϕ = ϕ}

is the stabilizer of the isotopy class of ϕ.

Of particular interest is the action of Dehn twists.

Lemma 2.2 ([51]). Let (Σ, ϕ) be a framed surface and a, x oriented simple
closed curves on Σ, then

ϕ(Ta(x)) = ϕ(x) + ⟨x, a⟩ϕ(a),

where ⟨·, ·⟩ denotes the algebraic intersection number.

We say that a nonseparating simple closed curve a on (Σ, ϕ) is admissible
if ϕ(a) = 0. As a consequence of Lemma 2.2 we have that a nonseparating
simple closed curve a ⊂ Σ is admissible if and only if the corresponding Dehn
twist preserves ϕ. Calderon and Salter proved that, for big enough genus, the
framed mapping class group is generated by those admissible twists:

Proposition 2.1 ([27], Prop. 5.11). If (Σ, ϕ) is a framed surface of genus
g ≥ 5,

MCG(Σ, ϕ) = ⟨Ta | a admissible for ϕ⟩.
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But more is true. The framed mapping class group is generated by finitely
many admissible twists around curves with prescribed intersection pattern.
Again following [27]:

Definition 2.6. Let C = {c1, · · · , ck} be a collection of curves on a surface Σ,
pairwise in minimal position and intersecting at most once. We say that such
a configuration:

• spans the surface if Σ deformation retracts onto the union of curves in C;

• is arboreal if its intersection graph is a tree, and E-arboreal if moreover
it contains the Dynkin diagram E6 as a subtree.

Definition 2.7. Let C = {c1, · · · , ck, ck+1, · · · , cl} be a collection of curves on
a surface Σ. Let us denote by S1 a regular neighbourhood of c1 and by Sj a
regular neighbourhood of Sj−1∪cj, for j > 1. We say that C is an h-assemblage
of type E if:

• {c1, · · · , ck} is an E-arboreal spanning configuration on Sk ⊂ Σ, and Sk

has genus h;

• For j > k, cj ∩ Sj−1 is a single arc;

• Sl = Σ.

Proposition 2.2 ([27], Theorem B). Let (Σ, ϕ) be a framed surface and C =
{c1, · · · , cl} an h-assemblage of type E on Σ of genus h ≥ 5. If all the curves
in C are admissible for ϕ, then

MCG(Σ, ϕ) = ⟨Tc | c ∈ C⟩.

An h-assemblage C = {c1, · · · , ck, ck+1, · · · , cl} should be thought of as a
way of sequentially constructing the surface Σ. One starts from an E-arboreal
spanning configuration on a subsurface S ⊂ Σ and performs a sequence of
stabilisations to build up the whole surface Σ. In particular, we only have
conditions on the pairwise intersection numbers for the curves {c1, · · · , ck} of
the original E-arboreal spanning configuration, but for j > k no constraints
are imposed on the intersections of cj with any of the other curves.

As we already mentioned, Proposition 2.2 was applied by Portilla Cuadrado
and Salter to the context of singularity theory:

Theorem 2.5 ([70], Theorem A). Let f be an isolated plane curve singularity
whose Milnor fibre Σ(f) has genus g ≥ 5. If f is not of type An or Dn, then
the geometric monodromy group Γf is a framed mapping class group (for some
natural relative framing on Σ(f)).
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The orbit space of this action was studied by Randal-Williams in [71].
It is classified by the Arf invariant. More precisely, it follows from work of
Johnson [52] that the function (ϕ+ 1) mod 2 is a quadratic refinement of the
mod 2 intersection form on H1(Σ,Z/2Z). We can therefore define A(ϕ) to
be the Arf invariant of this quadratic refinement. Concretely, let us denote
by i(·, ·) the geometric intersection number and take a collection of oriented
simple closed curves {x1, y1, . . . , xg, yg} such that ⟨xi, xj⟩ = ⟨yi, yj⟩ = 0 and
⟨xi, yj⟩ = i(xi, yj) = δi,j. We then have

A(ϕ) =

g∑
i=1

(ϕ(xi) + 1)(ϕ(yi) + 1) mod 2.

This is independent of the choice of the curves {x1, y1, . . . , xg, yg}.

Proposition 2.3 ([71], Theorem 2.9). Let g ≥ 2. The action of the mapping
class group on the set of isotopy classes of framings on Σ = Σg,1 has exactly
two orbits, distinguished by the Arf invariant.

As a consequence, for a given surface Σ there are at most two conjugacy
classes of framed mapping class groups as subgroups of MCG(Σ), distinguished
by the Arf invariant.

Some properties: In spite of the important results that we just mentioned,
algebraic properties of framed mapping class groups are still largely unknown.
For instance, we do not know any presentation of such groups. A priori, given
two framings with different Arf invariant, it could even be possible that the
two corresponding framed mapping class groups are abstractly isomorphic (yet
without being conjugate in the ambient mapping class group). In [71] Randal-
Williams used his results on the orbits of the action of the mapping class group
on the space of framings to prove some form of homological stability for framed
mapping class groups. In particular, he obtained the following:

Proposition 2.4 ([71], Corollary 3.2). For every framed surface (Σ, ϕ) of
genus g ≥ 7, the abelianization of MCG(Σ, ϕ) is Z/24Z.

Another interesting property was shown by Calderon and Salter. As a step
in proving Proposition 2.2, they proved that, on a framed surface Σ = Σg,1 of
genus g ≥ 5 with one boundary component, all Dehn twists about separating
simple closed curves are contained in the framed mapping class group ([27],
Prop. 4.1). In particular, this is the case for the boundary twist, which is a
central element of the mapping class group. One immediately gets the following
corollary:
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Proposition 2.5. If g ≥ 5, the framed mapping class group MCG(Σg,1, ϕ) has
a non-trivial center.

Remark 2.5 (Caveat). In this section we only stated results for surfaces with
connected boundary, in terms of absolute framings. For general surfaces, the
whole theory is still valid, but needs to be formulated for relative framings, i.e.
only allowing isotopies that are trivial on the boundary. In this more general
context, the framed mapping class group is the stabilizer of the relative isotopy
class of a framing, and one needs to also take into account the action on arcs,
getting so-called relative winding number functions. The orbit space is now
classified by a generalized Arf invariant together with the values of the framing
on the different boundary components. However, if the boundary is connected
the absolute and relative theories are equivalent and we can use this slightly
simpler formulation.

3 Positive braids
We will now recall some important facts about the combinatorics and geometry
of positive braids. Let

BN = ⟨σ1, . . . , σN−1 | σiσj = σjσi if |i− j| ≥ 2, σiσi+1σi = σi+1σiσi+1⟩

denote the braid group on N strands.

Definition 2.8.

• A word w in the alphabet {σ1, . . . , σN−1} is positive if only positive
powers of the generators appear in w.

• A braid β ∈ BN is positive if it is represented by a positive word.

By a theorem of Garside [42], the monoid B+
N of positive braid words em-

beds in the braid group BN . That is, two positive words represent the same
braid if and only if they are related through a sequence of positive words ob-
tained by applying the defining relations, without ever introducing the inverse
of a generator. We can hence equivalently consider a positive braid as an el-
ement of the positive monoid B+

N . We will usually represent a positive braid
word on N strands with a brick diagram, a plane graph with N vertical lines
connected by horizontal segments corresponding to the crossings. Since all the
crossings are positive, one can reconstruct the braid from the brick diagram.
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Positive braid links: The closure of a positive braid is called a positive braid
link. Every link of an isolated plane curve singularity is in fact a positive braid
link. A classical result of Stallings says that non-split positive braid links are
fibred, thus generalizing Milnor’s fibration [75]. Notice that, if β is a positive
braid word, its closure β̂ is non-split if and only if every generator σi appears at
least once in β. Moreover, the fibre surface can easily be constructed directly
from the positive word, by taking a disk for each strand of β and, for each
generator σi in β, gluing a half-twisted band between the i-th and (i + 1)-th
disks. Being the fibre surface, this is in particular the unique genus minimizing
Seifert surface of β̂. The brick diagram of β naturally embeds in this surface
as a retract.

Example 2.4 (Links of ADE type). In what follows, we will say that a positive
braid link is:

• of type An if it isotopic to the closure of the braid σn+1
1

• of type Dn if it isotopic to the closure of the braid σn−2
1 σ2σ

2
1σ2

• of type E6, E7, or E8 if it isotopic to the closure of the braid σ3
1σ2σ

3
1σ2,

σ4
1σ2σ

3
1σ2, or σ5

1σ2σ
3
1σ2, respectively.

Those are precisely the links of the singularities of same type. Moreover, they
are the only prime positive braid links with maximal signature (that is, with
the absolute value of the signature equal to twice the 3-genus) [9].

Linking graphs: Let β be a positive braid word and denote the fibre surface
of β̂, constructed as above, by Σβ. Let g be its genus and n the number of
boundary components. On Σβ there is a standard family of 2g + n− 1 curves
γi, oriented counterclockwise, which are in one-to-one correspondence with
the bricks, i.e. the innermost rectangles, of the brick diagram of β and form
a basis of the first homology of Σβ. See Figure 2.2 for an example of Σβ with
the corresponding curves for β = σ3σ1σ2σ

2
1σ3σ2. The intersection pattern of

those standard curves can be read off directly from the brick diagram, in the
so called linking graph:

Definition 2.9. Let β be a positive braid word. Its linking graph is a planar
graph whose vertices are the bricks of the brick diagram of β; two vertices are
connected by an edge if and only if the corresponding bricks are arranged as
the two bricks of the braids σ3

i , σiσi+1σiσi+1 or σi+1σiσi+1σi.

Notice that two vertices of the linking graph are connected with an edge
if and only if the corresponding curves intersect each other. It is also worth
mentioning that since positive braid links are visually prime by [34], a positive
braid link is prime if and only if its linking graph is connected.
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γ3

γ4

γ2

γ1

Figure 2.2: The fibre surface of σ3σ1σ2σ
2
1σ3σ2, its brick diagram and the cor-

responding linking graph.

Example 2.5. The linking graphs of the positive braids words representing
the links of type ADE in Example 2.4 are the simply laced Dynkin diagrams
of the corresponding type.

Comparing Example 2.3 and Example 2.5, one immediately notices that,
at least in the case of simple singularities, there is a striking similarity between
the distinguished vanishing cycles on the Milnor fibre and the combinatorics
of the corresponding positive braids and their linking graphs . This analogy is
one of the main driving principles of this thesis, and will be further explored
in the following chapters.

Linking graphs also have an additional important property: they come
with a natural orientation of the edges, which induces an orientation of the
innermost cycles, i.e. the boundary cycles of bounded regions. Indeed, in a
linking graph there are two types of edges: vertical ones, corresponding to
pairs of bricks in the same column, and diagonal ones, corresponding to pairs
of bricks in adjacent columns. We will simply orient vertical edges downwards
and diagonal edges upwards. Now, every bounded region of the linking graph
has a triangular shape, bounded by a certain number of vertical edges, all
lying in the same column, and exactly two diagonal edges connecting to a
distinguished vertex to the right or to the left. It is easy to see that the
orientation of the edges induces a compatible orientation on the boundaries of
the regions; the boundary is oriented anticlockwise if the distinguished vertex
is on the right, and clockwise otherwise. Linking graphs of positive braids were
studied in great detail in [12], where it is shown that the embedded, oriented
linking graph of a prime positive braid word determines the link type of the
closure.
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Secondary braid groups of positive
3-braids

Secondary braid groups of positive braids were defined by Baader and Lönne
in [13] as a combinatorial analogue of the fundamental group of discriminant
complements of isolated plane curve singularities. Their main motivation came
from the similarities between the combinatorial structure of positive braids
and that of isolated plane curve singularities, as discussed in Chapter 2, to-
gether with the results of Lönne showing how to explicitly compute, in some
very specific cases, a presentation of the fundamental group of the discrimi-
nant complement from such combinatorial data [61], [60]. In particular, they
proved that for braids of type ADE and for braids of minimal braid index
whose closure is a torus link Tp,q the secondary braid group is isomorphic to
the fundamental group of the discriminant complement of the corresponding
singularities (simple singularities in the former case, Brieskorn-Pham singular-
ities f(x, y) = xp + yq in the latter).

Secondary braid groups are defined in terms of generators and relations
starting from any positive word in the standard generators of the braid group,
see Section 1. In [13], Baader and Lönne showed that the secondary braid
group is invariant under braid relation, i.e. is associated to the positive braid
itself rather than the positive word representing it, and elementary conjugation.
As a consequence, they deduce the conjugation invariance for positive braids
containing a power of the half-twist. However, general conjugation invariance
and link invariance is still out of reach. The goal of this chapter is to prove
invariance in the restricted class of positive braids on 3 strands. That is, we
have the following:

Theorem 3.1. If two positive 3-braids have isotopic closures, their secondary
braid groups are isomorphic.

It is interesting to notice that this theorem fits nicely with the results of [62],

23



CHAPTER 3. SECONDARY BRAID GROUPS OF POSITIVE 3-BRAIDS

where the topological invariance of the fundamental group of the discriminant
complement is proved for singularities of multiplicity at most 3. Indeed, the
multiplicity of a singularity is equal to the braid index of the associated link
[78].

The chapter is structured as follows. In Section 1 we will define the sec-
ondary braid group of a positive braid and state the required invariance prop-
erties. To prove Theorem 3.1, we will prove the conjugation invariance in B+

3

and use the classification of 3-braids by Birman and Menasco [15] to deduce
link invariance. This will be done in Section 2 and Section 3 respectively.

1 Secondary braid groups
The definition of secondary braid groups is based on linking graphs. Recall
from Chapter 2, Section 3 that linking graphs have a natural orientation of the
innermost cycles, i.e. the boundary cycles of bounded regions: every bounded
region of the linking graph has a triangular shape with a distinguished vertex;
the boundary is oriented anticlockwise if the distinguished vertex is on the
right, and clockwise otherwise. We can now proceed with the definition of
secondary braid groups, following [13].

Definition 3.1. Let β be a positive braid word and Γ its linking graph. Let
v1, . . . , vk be the vertices of Γ. The secondary braid group 2B(β) of β is the
group generated by the elements s1, . . . , sk, corresponding to the vertices of Γ,
with the following relations:

• Braid relation: if the vertices vi, vj are joined by an edge,

sisjsi = sjsisj;

• Commutation: if the vertices vi, vj are not joined by an edge,

sisj = sjsi;

• Cycle relation: If vin → · · · → vi1 → vin are the vertices around a
bounded region of Γ, taken in cyclic order following the orientation of
the boundary cycle, we have

sinsin−1 . . . si2si1sinsin−1 . . . si4si3 =

sin−1sin−2 . . . si2si1sinsin−1 . . . si3si2 .

If the linking graph Γ is empty, we will define the secondary braid group 2B(β)
to be the trivial group.
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It should not be surprising that the cycle relation is equivalent to any
shifted version of it, provided that the braid and commutation relations hold.
In other words, the point vin from which we start enumerating the vertices
vin → · · · → vi1 around a region does not matter, as long as we keep following
the orientation. This is explained in detail in [13].

Baader and Lönne then proved the following important invariance proper-
ties:

Proposition 3.1 ([13]).

I. Braid relation invariance: Let α and β be positive braid words related
by a braid relation σiσi+1σi → σi+1σiσi+1, then

2B(α) ∼= 2B(β).

II. Elementary conjugation invariance: Let ω be a positive braid word,
then

2B(ωσi) ∼= 2B(σiω).

2 Conjugation invariance
To prove the conjugation invariance of the secondary braid group for braids
on three strands we will heavily rely on the solution to the word and conju-
gation problems in the braid group found by Garside [42], together with some
useful improvements by Elrifai and Morton [72]. In what follows, BN denotes
the braid group on N strands, with generators σ1, . . . σN−1; for two braids
α, β ∈ BN , α ∼ β means that α and β are conjugate in BN .

Definition 3.2. Let B+
N be the monoid of positive braids on N strands.

• The positive half-twist is the positive braid

∆ = (σ1 · · ·σN−1)(σ1 · · ·σN−2) · · · (σ1σ2)σ1 ∈ B+
N ;

• A positive braid β1 ∈ B+
N contains the half-twist if there exists β2 ∈ B+

N

such that β1 = ∆β2.

In [42], Garside proved that every braid β ∈ BN has a normal form
β = ∆kβ β̃, where kβ ∈ Z is called the power of β and β̃ is a positive braid
that does not contain the half-twist. Notice that requiring β̃ to not contain
the half-twist is equivalent to requiring kβ to be the maximal integer for which
such a decomposition exists. In particular, a braid β is positive if and only
if kβ ≥ 0, and a positive braid contains the half-twist if and only if kβ ≥ 1.
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Since the positive braid β̃ is uniquely defined, this normal form solves the word
problem in the braid group.

As for the conjugacy problem, given a braid β ∈ BN Garside defines the
summit power

P(β) = max{kα | α ∈ BN , α ∼ β}

and the summit set

S (β) = {α ∈ BN | α ∼ β, kα = P(β)}.

He then shows that the summit set of a braid is finite and can be constructed
algorithmically in finite time, thus solving the conjugacy problem. Moreover,
he proves that any two braids in the summit set are related by a sequence of
conjugations by positive divisors of ∆ without ever leaving the summit set.

In [72], Elrifai and Morton improved Garside’s algorithm for the conjugacy
problem. Most importantly for this note, they prove that, starting from a
braid β, one can get to its summit set by so-called cycling, an operation which
can be realized by a sequence of elementary conjugations.

Proposition 3.2. Let β1, β2 ∈ B+
3 . If β1 ∼ β2, then 2B(β1) ∼= 2B(β2).

Proof. Take β1, β2 ∈ B+
3 , β1 ∼ β2. Since the secondary braid group is invariant

under elementary conjugation, up to cycling we can assume that β1 and β2 are
in the summit set. In particular, we can assume that β2 is obtained from β1

by conjugation by a positive divisor of ∆. If P(β1) ≥ 1, a conjugation by a
divisor of ∆ can be realized by elementary conjugations and the result follows.
Indeed, suppose that β2 = α−1β1α with α a positive divisor of the half-twist,
i.e. ∆ = αγ for some positive braid γ. Now, if P(β1) ≥ 1 we can write
β1 = ∆β̃1 = αγβ̃1, and we get β2 = α−1(αγβ̃1)α = γβ̃1α, which is indeed
realized by elementary conjugations.

Therefore, we can assume that P(β1) = 0. Up to the symmetry σ1 ↔ σ2

(which clearly leaves the secondary braid group invariant, as it induces an
isomorphism of linking graphs) we are left with three possibilities: either β1 =
σa1
1 σb1

2 · · ·σan
1 σbn

2 with ai, bi ≥ 2, β1 = σa1
1 σb1

2 · · · σan
1 σbn

2 σ
an+1

1 with a1, an+1 ≥
1, ai ≥ 2 for i /∈ {1, n+1} and bi ≥ 2, or β1 = σm

1 . We then have to prove that,
after conjugating such a β1 by a positive divisor of the half-twist, we either get
a non-positive braid or one with the same secondary braid group. Notice that
in B3 the only non-trivial positive divisors of ∆ are the following five braids:
σ1, σ2, σ1σ2, σ2σ1 and ∆.

We will now treat in detail the case β1 = σa1
1 σb1

2 · · ·σan
1 σbn

2 with ai, bi ≥ 2
and β2 = α−1β1α; the other cases follow from analogous computations.

• α = σ1: this is just an elementary conjugation.
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• α = σ2:

α−1βα = σ−1
2 σa1

1 σb1
2 · · ·σan

1 σbn+1
2

= ∆−1σ2σ
a1+1
1 σb1

2 · · ·σan
1 σbn+1

2 .

Now, σ2σ
a1+1
1 σb1

2 · · ·σan
1 σbn+1

2 is a positive braid that does not contain the
half-twist, so ∆−1σ2σ

a1+1
1 σb1

2 · · ·σan
1 σbn+1

2 is in Garside’s normal form and
the braid it represents is not positive.

• α = ∆: conjugating by the half-twist simply results in a reflection along
the vertical axis, which leaves the secondary braid group invariant.

• α = σ1σ2:

α−1βα = σ1∆
−1β∆σ−1

1

= σ1σ
a1
2 σb1

1 · · ·σan
2 σbn

1 σ−1
1 ,

is a composition of a reflection along the vertical axis and an elementary
conjugation, both of which leave the secondary braid group invariant.

• α = σ2σ1:

α−1βα = σ−1
1 σ−1

2 σa1
1 σb1

2 · · ·σan
1 σbn+1

2 σ1

= ∆−1σa1+1
1 σb1

2 · · ·σan
1 σbn+1

2 σ1.

The result is in normal form, hence it is not a positive braid.

3 Link invariance
At this point, one might be tempted to invoke Markov’s theorem and use
Proposition 3.2 to directly deduce the invariance of the secondary braid group,
as it is clearly invariant under Markov stabilization. However, there exist
positive 3-braids that are not conjugate in B3 but become conjugate after one
stabilization. To effectively be able to apply Markov’s theorem, we would
need conjugation invariance for braids with more strands. Instead, we will use
Birman-Menasco’s classification of links that are closures of 3-braids [15, 14].

Definition 3.3. We say that:

• a 3-braid β ∈ B3 admits a flype if β is conjugate to σu
1σ

v
2σ

w
1 σ

ϵ
2, where

u, v, w ∈ Z and ϵ = ±1.
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• a flype on a flype-admissible braid is the operation

σu
1σ

v
2σ

w
1 σ

ϵ
2 → σu

1σ
ϵ
2σ

w
1 σ

v
2 .

• a flype is non-degenerate if the braids σu
1σ

v
2σ

w
1 σ

ϵ
2 and σw

1 σ
v
2σ

u
1σ

ϵ
2 are not

conjugate in B3.

A flype on a flype-admissible braid is an operation that preserves the link
type of the braid closure, but might change the conjugacy class of the braid.
Non-degenerate flypes have been classified by Ko-Lee.

Lemma 3.1 ([53]). A flype is non-degenerate if and only if neither u nor w
is equal to 0,ϵ,2ϵ or v + ϵ, and u ̸= w, and |v| ≥ 2.

Moreover, it turns out that a flype is essentially the only move needed to
connect distinct conjugacy classes of 3-braids with isotopic closures.

Theorem 3.2 ([15], The Classification Theorem; see also [14]). A link L which
is the closure of a 3-braid is represented by exactly one conjugacy class in B3,
unless if:

• L is the unknot, which has three classes of representatives: σ1σ2, σ1σ
−1
2

and σ−1
1 σ−1

2 .

• L is a torus link T (2, k), k ̸= ±1, which has two classes of representa-
tives, namely σk

1σ2 and σk
1σ

−1
2 .

• L is represented by a braid that admits a non-degenerate flype. Such a
link has two classes of representatives, σu

1σ
v
2σ

w
1 σ

ϵ
2 and σw

1 σ
v
2σ

u
1σ

ϵ
2.

Remark 3.1. The statement of the Classification Theorem in [15] seems to
contain a minor mistake. A corrected version is presented in [14].

We now go back to positive braids. The representatives of conjugacy classes
appearing in Theorem 3.2 are in general not given by positive braid words. To
apply it to our setting, we then first have to identify which of those non-
positive braids are in fact conjugate to positive braids. This is the object of
the following lemma.

Lemma 3.2.

I. For any k ∈ Z, the braid σk
1σ

−1
2 is not conjugate to a positive braid.

II. Let β = σu
1σ

v
2σ

w
1 σ

ϵ
2 admit a non-degenerate flype. If any of the exponents

is negative, then β is not conjugate to a positive braid.
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To prove Lemma 3.2, we will again make use of Garside’s solution of the
conjugacy problem. Recall from Section 2 that a braid β is conjugate to a
positive braid if and only if its summit power P(β) satisfies P(β) ≥ 0. To
prove that a given braid is not conjugate to a positive braid one can hence
simply put it in normal form, repeatedly apply cycling to reach the summit
set and check that the summit power is strictly negative. We therefore now
need a more precise definition of the cycling operation, following [72]. Let
β = ∆kβ̃ be a braid in normal form, and factor β̃ = P1 . . . Pn as a product
of divisors of ∆. We then say that the braid c(β) = ∆kP2 . . . Pn(∆

kP1∆
−k)

is obtained by cycling β. Notice that, as mentioned before, c(β) is indeed
obtained from β by elementary conjugations. It is also useful to remark that
∆kP1∆

−k is either equal to P1 (if k is even) or obtained from P1 by a reflection
along the vertical axis (i.e. exchanging σ1 ↔ σ2). To check when we reach the
summit set, we will use the following easy lemma.

Lemma 3.3. If β = ∆kσa1
1 σa2

2 . . . σ
an−1

1 σan
2 or β = ∆kσa1

1 σa2
2 . . . σ

an−1

2 σan
1 with

ai ≥ 2 for all 1 ≤ i ≤ n, then β is in the summit set. The same holds if we
exchange σ1 ↔ σ2.

Proof of Lemma 3.3. First of all, it is clear that the braid β̃ = σa1
1 σa2

2 . . . σ
an−1

1 σan
2

does not contain the half-twist if ai ≥ 2 for all i, as no braid relation can be
applied, so this is the only positive word representing β̃. Moreover, this is still
the case even after performing elementary conjugations on β̃. In particular,
cycling of β = ∆kσa1

1 σa2
2 . . . σ

an−1

1 σan
2 cannot increase the power. The same

argument applies to the other cases.

Proof of Lemma 3.2.

I. It is clear that we only need to consider k > 0, since a negative braid
cannot be conjugate to a positive braid. Now,

β = σk
1σ

−1
2 = σk

1∆
−1σ2σ1 = ∆−1σk+1

2 σ1

is in normal form, and we see that repeated cycling does not increase the
power. Hence, β is already in the summit set and P(β) = −1.

II. We have β = σu
1σ

v
2σ

w
1 σ

ϵ
2, with |v| ≥ 2 and u, v + ϵ, w pairwise distinct

and u,w ̸= 0, ϵ, 2ϵ. Again, if all the exponents are negative β is a negative
braid, which cannot be conjugate to a positive braid. There are 14 = 16 − 2
cases left to be considered, according to the signs of the exponents. All of
those can be treated in the same way, as explained in the previous discussion;
we will study some in detail, to serve as an example, and sum up the results of
the analogous computations for the remaining cases in Tables 3.1 and 3.2. To
keep track of the signs, let us replace u, v, w by ±p,±q,±r, where p, q, r > 0.
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• β = σp
1σ

−q
2 σr

1σ2: Since the flype is non-degenerate, we know that q ≥ 2
and p, r ≥ 3, p ̸= r. To find the normal form of β we will use the identities

σ−n
2 =

{
∆−n(σ1σ

2
2σ1)

k, if n = 2k

∆−nσ2σ1(σ1σ
2
2σ1)

k, if n = 2k + 1.

If q = 2k is even we get

β = σp
1(∆

−q(σ1σ
2
2σ1)

k)σr
1σ2 = ∆−qσp+1

1 (σ2
2σ

2
1)

k−1σ2
2σ

r+1
1 σ2

∼ ∆−qσp
1(σ

2
2σ

2
1)

k−1σ2
2σ

r
1(σ1σ2σ1) = ∆−q+1σp

2(σ
2
1σ

2
2)

k−1σ2
1σ

r
2 = ∆−q+1β̃e.

Similarly, if q = 2k + 1 is odd we get

β = σp
1(∆

−qσ2σ1(σ1σ
2
2σ1)

k)σr
1σ2 = ∆−qσp+1

2 (σ2
1σ

2
2)

kσr+1
1 σ2

∼ ∆−qσp
2(σ

2
1σ

2
2)

kσr
1(σ1σ2σ1) = ∆−q+1σp

1(σ
2
2σ

2
1)

kσr
2 = ∆−q+1β̃o.

In both cases, applying Lemma 3.3 we see that the power cannot be further
increased by cycling, since all the generators in β̃e and β̃o have exponent at
least 2. Therefore, the summit set is reached and P(β) = −q + 1 < 0.

• β = σ−p
1 σq

2σ
−r
1 σ−1

2 : We know that q ≥ 2, p, r ≥ 3 and p ̸= r. To write β
in normal form we will now also need the equalities

σ−n
1 =

{
∆−n(σ2σ

2
1σ2)

k, if n = 2k

∆−nσ1σ2(σ2σ
2
1σ2)

k, if n = 2k + 1.

Let us assume that p = 2k and r = 2l are both even. We begin by putting β
in Garside normal form:

β = (∆−p(σ2σ
2
1σ2)

k)σq
2(∆

−r(σ2σ
2
1σ2)

l)∆−1σ2σ1

= ∆−p−r(σ2σ
2
1(σ

2
2σ

2
1)

k−1σ2)σ
q
2(σ2σ

2
1(σ

2
2σ

2
1)

l−1)∆−1σ1σ2σ1

= ∆−p−rσ2σ
2
1(σ

2
2σ

2
1)

k−1σq+2
2 σ2

1(σ
2
2σ

2
1)

l−1.

We can now start cycling to reach the summit set:

β = ∆−p−r(σ2σ
2
1)(σ

2
2σ

2
1)

k−1σq+2
2 σ2

1(σ
2
2σ

2
1)

l−1

∼ ∆−p−r(σ2
2σ

2
1)

k−1σq+2
2 σ2

1(σ
2
2σ

2
1)

l−1σ2σ
2
1

= ∆−p−r(σ2
2σ

2
1)

k−1σq+2
2 σ2

1(σ
2
2σ

2
1)

l−2σ2(σ2σ
2
1σ2σ

2
1)

= ∆−p−r(σ2
2σ

2
1)

k−1σq+2
2 σ2

1(σ
2
2σ

2
1)

l−2σ2∆
2

= ∆−p−r+2(σ2
2σ

2
1)

k−1σq+2
2 σ2

1(σ
2
2σ

2
1)

l−2σ2

∼ ∆−p−r+2σ3
2σ

2
1(σ

2
2σ

2
1)

k−2σq+2
2 σ2

1(σ
2
2σ

2
1)

l−2

Now, by Lemma 3.3 we know that the power cannot be further increased by
cycling, so the summit set is reached and P(β) = −p− r + 2 < 0.
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All the other braids can be analyzed in a similar manner, with computations
that are not harder than the ones we just carried out. The results are presented
in Tables 3.1 and 3.2, where we see the original braid and an element in its
summit set, from which it is evident that the summit power is always strictly
negative.

The proof of Theorem 3.1 is now straightforward.

Proof. Let β1 and β2 be positive 3-braids with isotopic closures, representing a
non-trivial link. By Theorem 3.2, we know that either β1 and β2 are conjugate,
or they represent a torus link on two strands, or they are in two different
conjugacy classes related by a non-degenerate flype. In fact, in the case of a
torus link on two strands, by Lemma 3.2 we know that there is a unique class
of representatives containing positive braids, so β1 and β2 are conjugate.

If β1 and β2 are conjugate, the isomorphism 2B(β1) ∼= 2B(β2) follows di-
rectly from Proposition 3.2. Otherwise, we can suppose that β1 = σu

1σ
v
2σ

w
1 σ2

and β2 = σw
1 σ

v
2σ

v
1σ2, where u, v, w > 0 by Lemma 3.2. We now conclude by

noticing that the linking graph of such a flype-admissible braid is a tree and
that a flype induces an automorphism of the tree. The secondary braid group
is clearly invariant under such a transformation.
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Braid Parities of (p, q, r) After cycling

σp
1σ

q
2σ

r
1σ

−1
2 (p, q, r) ∆−1σp+1

2 σq
1σ

r+1
2

σ−p
1 σq

2σ
r
1σ

−1
2

(2j, q, r) ∆−p(σ2
2σ

2
1)

j−1σq+1
2 σr+2

1

(2j + 1, q, r) ∆−p(σ2
1σ

2
2)

j−1σ2
1σ

q+1
2 σr+2

1

σp
1σ

q
2σ

−r
1 σ−1

2

(p, q, 2l) ∆−rσp+2
1 σq+1

2 (σ2
1σ

2
2)

l−1

(p, q, 2l + 1) ∆−rσp+2
1 σq+1

2 σ2
1(σ

2
2σ

2
1)

l−1

σp
1σ

−q
2 σr

1σ
−1
2

(p, 2k, r) ∆−q−1σp+2
2 (σ2

1σ
2
2)

k−1σ2
1σ

r+2
2

(p, 2k + 1, r) ∆−q−1σp+2
1 (σ2

2σ
2
1)

kσr+2
2

σ−p
1 σ−q

2 σr
1σ

−1
2

(2j, 2k, r) ∆−p−q+1(σ2
2σ

2
1)

j−1σ3
2(σ

2
1σ

2
2)

k−1σr+1
1

(2j, 2k + 1, r) ∆−p−q+1(σ2
1σ

2
2)

j−1σ3
1(σ

2
2σ

2
1)

k−1σ2
2σ

r+1
1

(2j + 1, 2k, r) ∆−p−q+1(σ2
1σ

2
2)

j−1σ2
1σ

3
2(σ

2
1σ

2
2)

k−1σr+1
1

(2j + 1, 2k + 1, r) ∆−p−q+1(σ2
2σ

2
1)

j−1σ2
2σ

3
1(σ

2
2σ

2
1)

k−1σ2
2σ

r+1
1

σp
1σ

−q
2 σ−r

1 σ−1
2

(p, 2k, 2l) ∆−q−r+1σp+1
1 (σ2

2σ
2
1)

k−1σ3
2(σ

2
1σ

2
2)

l−1

(p, 2k + 1, 2l) ∆−q−r+1σp+1
1 σ2

2(σ
2
1σ

2
2)

k−1σ3
1(σ

2
2σ

2
1)

l−1

(p, 2k, 2l + 1) ∆−q−r+1σp+1
1 (σ2

2σ
2
1)

k−1σ3
2σ

2
1(σ

2
2σ

2
1)

l−1

(p, 2k + 1, 2l + 1) ∆−q−r+1σp+1
1 σ2

2(σ
2
1σ

2
2)

k−1σ3
1σ

2
2(σ

2
1σ

2
2)

l−1

σ−p
1 σq

2σ
−r
1 σ−1

2

(2j, q, 2l) ∆−p−r+2σ3
2σ

2
1(σ

2
2σ

2
1)

j−2σq+2
2 σ2

1(σ
2
2σ

2
1)

l−2

(2j, q, 2l + 1) ∆−p−r+2σ3
1σ

2
2(σ

2
1σ

2
2)

j−2σq+2
1 (σ2

2σ
2
1)

l−1

(2j + 1, q, 2l) ∆−p−r+2σ3
1(σ

2
2σ

2
1)

j−1σq+2
2 (σ2

1σ
2
2)

l−2σ2
1

(2j + 1, q, 2l + 1) ∆−p−r+2σ3
2(σ

2
1σ

2
2)

j−1σq+2
1 (σ2

2σ
2
1)

l−1

Table 3.1: Braids with ϵ = −1
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Braid Parities of (p, q, r) After cycling

σ−p
1 σq

2σ
r
1σ2

(2j, q, r) ∆−pσ2
1(σ

2
2σ

2
1)

j−1σq+1
2 σr

1σ
2
2

(2j + 1, q, r) ∆−p(σ2
2σ

2
1)

jσq+1
2 σr

1σ
2
2

σp
1σ

q
2σ

−r
1 σ2

(p, q, 2l) ∆−rσ2
2σ

p
1σ

q+1
2 (σ2

1σ
2
2)

l−1σ2
1

(p, q, 2l + 1) ∆−rσ2
2σ

p
1σ

q+1
2 (σ2

1σ
2
2)

l

σp
1σ

−q
2 σr

1σ2

(p, 2k, r) ∆−q+1σp
2(σ

2
1σ

2
2)

k−1σ2
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Table 3.2: Braids with ϵ = 1
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Chapter 4

The monodromy group of a
positive braid

In this chapter we will introduce and study monodromy groups of positive
braids. Its content is mostly taken from [37].

Inspired by the construction of secondary braid groups and their fascinat-
ing, conjectural relationship with singularity theory, we will push the paral-
lelism between plane curve singularities and positive braids one step further
and consider a braid theoretical analogue of the geometric monodromy group
of a singularity. Recall that the generators of the secondary braid group of
a positive braid word are in correspondence with the vertices of the linking
graph, which in turn correspond to a natural family of curves on the fibre
surface. The fundamental observation is that the relations appearing in the
definition of secondary braid groups also arise as relations between the Dehn
twists around those curves. This is well known for the commutation and braid
relations, while the case of the cycle relation is explained in detail in [13]. Hav-
ing in mind Theorem 2.3, which expresses the geometric monodromy group of
a singularity as a quotient of the fundamental group of the discriminant com-
plement, it is therefore natural to associate to any positive braid β a group
MG(β), which we call the monodromy group of the positive braid, defined as
the subgroup of the mapping class group of the fibre surface generated by the
Dehn twists around this natural family of curves.

The first result of this chapter shows that the monodromy group of a posi-
tive braid is indeed a generalization of the geometric monodromy group of an
isolated plane curve singularity.

Theorem 4.1. Let f : C2 → C define an isolated plane curve singularity and
L(f) be the link of f . Then there exists a positive braid β representing L(f)
such that the geometric monodromy group of f is equal to MG(β).

As we have already mentioned in Chapter 2, in [70] Portilla Cuadrado
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and Salter proved that the geometric monodromy group of any singularity of
genus at least 5 and not of type An and Dn is a framed mapping class group.
Following their approach, the main result of this chapter is an identification
of the monodromy group of a positive braid β whose closure is a knot with a
framed mapping class group on the genus minimizing surface Σβ.

Theorem 4.2. Let β be a prime positive braid not of type An and whose closure
is a knot. For all but finitely many such braids, there exists a framing ϕβ on Σβ

such that the monodromy group MG(β) is equal to the framed mapping class
group MCG(Σβ, ϕβ).

In particular, it follows from the general theory of framed mapping class
groups that, at least for knots of big enough genus, the monodromy group of
a positive braid is a well defined knot invariant, which is actually determined
by the genus and the Arf invariant of the knot, see Section 3.

Of course, as a consequence of Theorem 4.1 and Theorem 4.2, in the re-
stricted context of singularities we immediately obtain that the geometric mon-
odromy group of an irreducible singularity is controlled by a framing. In fact,
as explained in Remark 4.4, one can see that our proof of Theorem 4.2 still
applies to links of singularities not of type An and Dn, thus recovering the re-
sults of [70] up to finitely many exceptions. On the other hand, there are some
infinite families of positive braid links for which our methods do not seem to
work, see Remark 4.5. Moreover, the monodromy group of a positive braid is
proved to be an invariant of the braid closure only if the latter is connected; for
braids whose closure is disconnected, the strongest invariance result is Corol-
lary 4.2. In spite of the increased combinatorial difficulty, working in the more
general setting of positive braids has some advantages, as we will now explain.

Since the topological type of a singularity is completely determined by its
link, a priori every topological invariant of a singularity should be somehow
readable from the link. For instance, the Milnor number corresponds to the
minimal first Betti number, while the multiplicity corresponds to the braid
index [78]. However, this translation is often far from straightforward. Notice
that, although not explicitly stated therein, a consequence of the results of
Cuadrado and Salter in [70] is that for irreducible singularities the geometric
monodromy group is determined by the genus of the Milnor fibre and some
Arf invariant associated to the framing, as discussed in Chapter 2. Working
with positive braids allows us for explicit calculations that lead to the following
corollary, expressing the geometric monodromy group entirely in terms of knot
invariants. More precisely, we are able to identify the Arf invariant associated
to the framing with the Arf invariant of the knot, see Proposition 4.3.

Corollary 4.1. Let f define an irreducible isolated plane curve singularity that
is not of type An and K(f) be the knot of the singularity. For all but finitely
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many such singularities, the geometric monodromy group of f is determined
by the genus and the Arf invariant of K(f).

From a purely knot theoretical viewpoint, Theorem 4.2 might seem disap-
pointing. It implies that, if the closure of a positive braid is a knot (up to
finitely many exceptions), its monodromy group is an invariant of the knot,
but a rather useless one: it is hard to compute, but determined by two classical
and much easier invariants, a natural number and a mod 2 class. Its inter-
est lies in negative results such as Corollary 4.1. The geometric monodromy
group, which was typically considered a rich yet hard to investigate invariant
of a plane curve singularity, turns out, in the case of irreducible singularities,
to be determined by two simple knot invariants, and the question whether
two irreducible singularities have the same geometric monodromy group can
be answered by a direct and easy computation, using existing formulas for
the Arf invariant of a knot. Of course, for each fixed genus there are many
different irreducible singularities, so there will be different singularities with
the same geometric monodromy group. We believe that for big enough genus
both values of the Arf invariant are realized, so that there would be exactly
two geometric monodromy groups.

Example 4.1. We consider the singularities f(x, y) = xp + yq for (p, q) =
(3, 46), (4, 31),(6, 19),(7, 16),(10, 11). The associated knots are the torus knots
Tp,q. They all have genus (p−1)(q−1)

2
= 45, and the results of Theorem 4.2

hold for each of them (see Proposition 4.6). The Arf invariant of a knot is
determined by the Alexander polynomial ∆K , via the equality (see [58])

A(K) =

{
0 if ∆K(−1) = ±1 mod 8

1 if ∆K(−1) = ±3 mod 8
.

Knowing that the Alexander polynomial of a torus knot K = Tp,q is

∆K(t) =
(t− 1)(tpq − 1)

(tp − 1)(tq − 1)
,

it is not hard to check that ∆Tp,q(−1) = 1 if p, q are odd and ∆Tp,q(−1) = q if
p is even and q is odd. We therefore get

A(Tp,q) =

{
0 if p, q are odd or q = ±1 mod 8

1 if p is even and q = ±3 mod 8
.

Applying Corollary 4.1 we immediately get that for (p, q) = (3, 46), (10, 11) or
(6, 19) those singularities have the same geometric monodromy group, while
for (4, 31) and (7, 16) the group is different.
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As a final remark, as we have seen the monodromy group of a positive
braid word is a quotient of the secondary braid group. It is natural to wonder
whether the two groups are isomorphic. This is true if the linking graph is a
Dynkin diagram of type An or Dn [68], but false for more complicated trees.
Indeed, if the linking graph is a tree, the secondary braid group is simply an
Artin group, and Labruère [55] and Wajnryb [77] proved that the only Artin
groups whose Dynkin diagram is a tree and that geometrically embed in the
mapping class group are precisely the ones of type An and Dn. Naively, one
could hope for the case of linking graphs with cycles to be different, since
now the secondary braid group is not an Artin group. However, this is still
not correct. For instance, for a positive braid of minimal braid index whose
closure is a torus link Tp,q, Baader and Lönne proved that the secondary braid
group is isomorphic to the fundamental group of the discriminant complement
of the singularity f(x, y) = xp + yq, while by Theorem 4.1 we know that
the monodromy group is the geometric monodromy group of f , and Portilla
Cuadrado and Salter proved that those two groups are never isomorphic as
soon as the genus is at least 7 [70]. In fact, the proof of Portilla Cuadrado and
Salter can be generalized to all positive braids whose monodromy group is a
framed mapping class group on a surface of genus g ≥ 7: by Proposition 2.4,
if g ≥ 7 the abelianization of a framed mapping class group is Z/24Z, while
every secondary braid group surjects onto Z, by mapping every generator to
1.

Structure of the chapter: In Section 1 we define the monodromy group
of a positive braid and prove some basic invariance properties. In Section 2
we discuss the connection to plane curve singularities and, using A’Campo’s
theory of divides, we prove Theorem 4.1. In Section 3 we construct the framing
appearing in Theorem 4.2 and study its Arf invariant. Finally, Section 4 is the
technical part of the chapter, in which we prove Theorem 4.2. This basically
consists of a lengthy case distinction that allows us to apply the general results
on framed mapping class groups discussed in Chapter 2.

1 The monodromy group of a positive braid
Let β be a positive braid word. In what follows we will always assume, mostly
without mentioning it, that its closure β̂ is a non-split link; this is equivalent
to ask that every generator appears at least once in the word β. Recall from
Chapter 2, Section 3 that in this case β̂ is a fibred link, and that one can easily
construct the fibre surface directly from the positive word β. Let us denote
this fibre surface by Σβ, and let g be its genus and r the number of boundary
components. On Σβ there is a standard family of 2g+r−1 curves γi, forming a
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basis of the first homology of Σβ, and which are in one-to-one correspondence
with the vertices of the linking graph of β. In fact, the linking graph precisely
records the intersection pattern of those curves.

Definition 4.1. Let β be a positive braid word whose closure is a non-split
link. The monodromy group MG(β) is the subgroup of the mapping class
group of Σβ generated by all the Dehn twists around the curves γi, where
i ∈ {1, · · · , 2g + r − 1}, i.e.

MG(β) = ⟨Tγ1 , · · · , Tγ2g+r−1⟩ ⩽ MCG(Σβ).

Example 4.2. As already mentioned, it follows from [68] that if β = σn+1
1

then MG(β) is isomorphic to the Artin group of type An. Similarly, for β =
σn−2
1 σ2σ

2
1σ2, MG(β) is isomorphic to the Artin group of type Dn

Remark 4.1. The fibre surface Σβ can be constructed by a sequence of plumb-
ings of positive Hopf bands, and the curves γi are precisely the core curves
of those Hopf bands. The monodromy group of β therefore somehow reflects
this plumbing structure. Moreover, the monodromy of the fibration is given
by a product of the Dehn twists around those curves, so it is an element of the
monodromy group.

A priori, the monodromy group MG(β) is associated to a positive braid
word β. We will now prove some elementary invariance properties, showing
in particular that it depends only on the positive braid represented by β.
First of all, from the definition, it is clear that MG(β) is invariant under far-
commutativity (i.e. σiσj = σjσi for |i− j| ≥ 2) and positive Markov move.

Proposition 4.1 (Elementary conjugation invariance). Let β be a positive
braid word on N strands. Then for all 1 ≤ i ≤ N − 1, MG(βσi) ∼= MG(σiβ).

Proof. Consider the fibre surfaces of βσi and σiβ. Those surfaces are isotopic,
by sliding the topmost band between the i-th and (i + 1)-th disks along the
back of the disks and bringing it in the lowermost position. Note that this
isotopy restricts to the identity outside of the ith-column. The surfaces Σβσi

and Σσiβ can hence be schematically represented as in Figure 4.1 , where we
drew the ith−column and the light grey boxes on the two sides represent the
remaining parts of the surface.

Let us number the standard curves of the ith column as in Figure 4.1.
The isotopy will send each γi, i = 1, · · · , n − 1 to the corresponding γ̃i, i =
1, · · · , n− 1 and transform γn into the red curve γ̃n+1. All we have to prove is
then that we can generate the Dehn twists around the curves γ̃1, · · · , γ̃n−1, γ̃n+1

using γ̃1, · · · , γ̃n−1, γ̃n, and vice-versa. But we note that

γ̃n+1 = T−1
γ̃n−1

· · ·T−1
γ̃2

T−1
γ̃1

(γ̃n),
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γ1

γ2

...

γn−1

γn

γ̃1

γ̃2

...

γ̃n−1

γ̃n

γ̃n+1

Figure 4.1: The isotopy between Σβσi
and Σσiβ

so that for h = T−1
γ̃n−1

· · ·T−1
γ̃2

T−1
γ̃1

we have

Tγ̃n+1 = hTγ̃nh
−1

and the result is proved.

Proposition 4.2 (Braid relation invariance). Let α and β be two positive braid
words related by a braid relation, then MG(α) ∼= MG(β).

Proof. Up to elementary conjugation, we can suppose that α = ωσiσi+1σi and
β = ωσi+1σiσi+1, where ω is a positive braid on N strands and 1 ≤ i ≤ N − 2.
At the level of surfaces Σα and Σβ the braid relation can be realized by an
isotopy as in Figure 4.2. It is clear that all the standard curves γi are fixed by
this isotopy but the ones (at most two) passing through the slidden band.

Σα Σβ

ω ω ω

Figure 4.2: The isotopy between Σα and Σβ
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Σα Σβ

γ1

γ2

γ̃1

γ̃2

Tγ̃1(γ̃2)

Figure 4.3: First case of braid relation invariance

• There is a generator σi in ω: in this case, there are two curves on Σα which
are modified by the isotopy. Let us call them γ1 and γ2, as in Figure 4.3.
We see that, after the isotopy, γ1 is transformed into the corresponding
γ̃1, while γ2 becomes Tγ̃1(γ̃2). All the other standard curves are fixed.
Therefore, we get that MG(α) ∼= MG(β).

• There is no σi in ω: in this case, the only curve modified by the isotopy
is γ1, which as before is transformed into γ̃1. Again, we directly have
that MG(α) ∼= MG(β).

To sum up, we have proved the invariance of the monodromy group of a
positive braid under braid relations and elementary conjugations. The follow-
ing corollary now follows directly by an observation of Orevkov about Garside’s
solution of the conjugacy problem in the braid group, saying that, in the pres-
ence of a positive half-twist, two conjugate positive braids can be related by
a sequence of braid relations and elementary conjugations, see the proof of
Proposition 3.2.

Corollary 4.2. Let α and β be positive braids such that the closures are braid
isotopic and contain a positive half-twist, then MG(α) ∼= MG(β).

2 Divides and monodromy of singularities
In this section we will study the relation between monodromy groups of positive
braids and geometric monodromy groups of isolated plane curve singularities
and prove Theorem 4.1.

Let f : C2 → C define an isolated plane curve singularity and Σ(f) be its
Milnor fibre. As we have seen in Chapter 2, the geometric monodromy group
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Figure 4.4: The divides on the left are ordered Morse, the divides on the right
are not.

of f is a subgroup of MCG(Σ(f)) generated by the Dehn twists around a dis-
tinguished family of vanishing cycles. Now, links of singularities are closures
of positive braids. Since fibre surfaces of fibred links are unique, the Milnor
fibre of a singularity f is ambient isotopic to the fibre surface Σβ of any pos-
itive braid β representing L(f). We therefore now have two a priori distinct
subgroups of MCG(Σβ) = MCG(Σ(f)), the geometric monodromy group of
f and the monodromy group of β. Theorem 4.1 says that those two groups
coincide for at least one choice of β.

The proof of Theorem 4.1 uses A’Campo’s divides and is constructive:
we will explicitly find an isotopy between the Milnor fibre, constructed from
a divide using Hirasawa’s algorithm [48], and the surface of an appropriate
positive braid and identify the vanishing cycles on this braid surface. In order
to do so, we need to find a divide from which the positive braid is somehow
visible.

Definition 4.2. A divide D ⊂ D2 is an ordered Morse divide if there is a
diameter of D2 such that the orthogonal projection on this diameter is Morse
when restricted to D, all the local maxima (resp. minima) have the same
critical value b (resp. a) with b > a and all the crossings are mapped in the
open interval (a, b).

Basically, a divide is ordered Morse (w.r.t. a given direction) if no local
maxima or minima lie in an interior face of the divide. Examples of such
divides are given in Figure 4.4.

Remark 4.2. In the literature, ordered Morse divides are sometimes called
scannable divides [40].
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Figure 4.5: Hirasawa’s construction of the embedded fibre surface of an ordered
Morse divide.

Ordered Morse divides were introduced by Couture and Perron [33], who
used a generalization of those to construct a representative braid for any di-
vide link. In particular, ordered Morse divides give positive braid links. Notice
that every singularity has an associated divide which is ordered Morse (in fact,
the divides originally constructed by A’Campo and Gusein-Zade are ordered
Morse, see [33]). The result of Couture and Perron can be obtained geomet-
rically: if we apply the algorithm of [48] to an ordered Morse divide, we get
exactly the fibre surface of a positive braid. This was done in [43] for Lissajous
divides and torus links, but the same procedure works for an arbitrary ordered
Morse divide. The construction of the fibre surface is shown in Figure 4.5: one
just has to replace the crossings and minima/maxima of the divide with the
corresponding pieces of surface and glue them together following the pattern
of the divide. Here we use that all the minima and maxima of the divide are
in the exterior face: for general divides the fibre surface is more complicated.

Remark 4.3. The diagrams in Figure 4.5 are the mirror image of those obtained
by Hirasawa in [48]. This is due to the different choice of orientation of S3:
Hirasawa uses the orientation induced by the trivialization

TR2 = {(x, v) | x ∈ R2, v ∈ TxR2} ∼= R2 × R2;

we use the identification TR2 ∼= C2, where the plane R2 is identified with the
real part of C2, since this allows to correctly identify the link of a singularity
with the link of a corresponding divide.

Proof of Theorem 4.1. Let f be an isolated plane singularity and D an as-
sociated ordered Morse divide. Let Σ be the embedded surface constructed
following [48], as explained above. It is an embedded fibre surface whose
boundary is the link L(D) = L(f). To see that this is indeed the fibre surface
of a positive braid, we just need to perform the isotopies shown in Figure 4.6
(1) and (2a), getting a collection of disks connected by half-twisted bands, and
slide all the bands to the front. Let us remark that an ordered Morse divide is
formed of N parallel lines (where N is the number of points in the preimage
of a regular value of the Morse projection) connected by the crossings and
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≃
(1)

≃
(2a)

≃
(2b)

Figure 4.6: A sequence of isotopies.

≃
(1)

≃
(2a)

≃
(2b)

Figure 4.7: An example of the isotopies of Theorem 4.1.

the minima/maxima. The braid obtained will have N strands, a crossing of D
gives a pair of generators while every maximum/minimum gives one generator.

By further performing the isotopies of Figure 4.6, (2b) around all the cross-
ings of D corresponding to generators σi for even i, we can now directly identify
Σ with an embedded version of A’Campo’s model of the Milnor fibre. A system
of vanishing cycles is therefore visible on the braid surface Σ. Those cycles are
not exactly the same as the generators of the monodromy group of the braid,
but the same arguments as in the proof of Proposition 4.1 show that the two
groups are indeed the same.

Example 4.3. In Figure 4.7, we see an example of the isotopies used in the
previous proof. On the left, we start with a divide D; we then construct
the Seifert surface following Hirasawa’s algorithm. After applying the iso-
topies of Figure 4.6 (2a), we obtain the surface Σβ of a positive braid, namely
β = (σ1σ2σ3)

3. On the right, we performed the isotopy of Figure 4.6 (2b)
around the central crossing of D. In that way, we clearly see that the surface
is composed of twisted cylinders corresponding to the crossings of D and con-
nected by half-twisted bands, as required by A’Campo’s construction (compare
with Figure 2.1). Notice that it is not relevant that this last step is performed
around all the crossings of D corresponding to generators σi for even i as op-
posed to odd i; what matters is that it alternates, in order the get the required
half-twisting of the bands become visible.
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Figure 4.8: The framing on Σβ for β = σ3σ1σ2σ
2
1σ3σ2. On the vertical disks it

is horizontal with alternating directions, on the twisted bands it is parallel to
the core.

3 A framing for positive braids
Let β be a non-split positive braid and Σβ its fibre surface. We can construct
a framing ϕβ on Σβ as in Figure 4.8. An explicit and straightforward com-
putation now shows that every standard curve γi on Σβ is admissible for ϕβ.
Therefore, the monodromy group of β is contained in the framed mapping
class group of ϕβ:

MG(β) ⩽ MCG(Σβ, ϕβ).

We will prove that, at least for positive braids whose closure is a knot
of big enough genus, the monodromy group is equal to this framed mapping
class group. Let us now recall the discussion in Chapter 2, Section 2, and
in particular Proposition 2.3: to each framing on a given surface, one can
associate a certain Arf invariant, which distinguishes the conjugacy classe of
the corresponding framed mapping class groups. We therefore now want to
compute the Arf invariant of ϕβ.

Proposition 4.3. Let β be a positive braid whose closure is a knot K. Then

A(ϕβ) = A(K),

where A(K) is the classical Arf invariant of K.
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To prove Proposition 4.3, we will need to discuss a bit more in detail the Arf
invariant. Let V be a finite dimensional vector space over Z2 equipped with
a non-singular, symmetric bilinear pairing ⟨·, ·⟩ : V × V → Z2. A quadratic
refinement of the bilinear pairing ⟨·, ·⟩ is a function q : V → Z2 such that for
all x, y ∈ V

q(x+ y) = q(x) + q(y) + ⟨x, y⟩.

To such a mod 2 quadratic form it is classically associated an invariant A(q) ∈
Z2, called the Arf invariant.

In our context, we will take V = H1(Σβ,Z2) and ⟨·, ·⟩ the mod 2 intersection
form. As we have already mentioned, the framing ϕβ induces a quadratic
refinement of the intersection form, whose Arf invariant is A(ϕβ). On the
other hand, if the closure of β is a knot K, it is known that the Seifert form
also induces such a quadratic refinement. More precisely, if

S : H1(Σβ)×H1(Σβ) → Z

denotes the Seifert form, we can define q : V → Z2 by q(x) = S (x, x) mod 2.
It is a classical result that the Arf invariant of this quadratic form is indeed
an invariant of K, that we denote by A(K) (see e.g. Chapter 10 of [58]).

Proof of Proposition 4.3. Let β be a positive braid whose closure is a knot K
and Σβ its fibre surface, equipped with the framing ϕβ. The family of curves γi
form a basis of V = H1(Σβ,Z2). Since by construction all the γi are admissible
for ϕβ, for every i we have the equality

ϕβ(γi) + 1 = 1 = S (γi, γi) mod 2.

Since {γi} is a basis, it now follows from the defining equation of a quadratic
refinement that for every x ∈ V

ϕβ(x) + 1 = q(x) mod 2.

Therefore the two quadratic forms (ϕβ +1) mod 2 and q coincide, so their Arf
invariants also do.

4 Proof of the main theorem
In this section we will give the proof of Theorem 4.2, stating that, up to
finitely many exceptions, the monodromy group of a positive braid not of type
An and whose closure is a knot is a framed mapping class group. In the
previous section we have constructed a framing ϕβ on the fibre surface Σβ and
seen that MG(β) ⩽ MCG(Σβ, ϕβ), so we only need to deal with the opposite
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Figure 4.9: Subtrees of σ2
1σ2σ

2
1σ2σ

2
1σ2σ

2
1σ2σ

2
1σ

2
2 and σ2

1σ2σ
2
1σ2σ

2
1σ2σ

3
1σ2σ

2
1σ2

inclusion. This will be done by applying Proposition 2.2. As a first step,
we have to find appropriate subsurfaces supporting an E-arboreal spanning
configuration. For this, we will separately consider the case of braids on 3-
strands (Proposition 4.4), on at least 11 strands (Proposition 4.5) and finally
with an intermediate number of strands (Proposition 4.6).

Proposition 4.4. Let β be a prime positive 3-braid of genus g ≥ 5 which is
not of type An or Dn. Then, excepted finitely many braids, up to positive braid
isotopy its linking graph contains an induced subtree which is an E-arboreal
spanning configuration on a subsurface of genus g ≥ 5.

Proof. Let β be a positive 3-braid which is not of type An. Up to elementary
conjugation and braid relation we can assume that β = σa1

1 σb1
2 · · · σam

1 σbm
2 , with

ai ≥ 2 and bi ≥ 1 for all i ∈ {1, · · · ,m}. First of all, notice that if we can
find a suitable subtree for a braid σa1

1 σb1
2 · · ·σam

1 σbm
2 , the result will also hold

for any braid σ
a′1
1 σ

b′1
2 · · ·σa′m

1 σ
b′m
2 for a′i ≥ ai and b′i ≥ bi. We will now prove the

result by case distinction over m.

• m ≥ 5 : Every braid with m ≥ 5 has genus g ≥ 5 so it is clearly
enough to prove the result for m = 5. If one of the bi is at least 2, we
can assume that β = σ2

1σ2σ
2
1σ2σ

2
1σ2σ

2
1σ2σ

2
1σ

2
2. In the left of Figure 4.9

we now see an induced subtree of the linking graph with the required
properties. Similarly if one of the ai is at least 3 we can assume that
β = σ2

1σ2σ
2
1σ2σ

2
1σ2σ

3
1σ2σ

2
1σ2, and we find the induced subtree of the right

of Figure 4.9.

We are now only left with the braid σ2
1σ2σ

2
1σ2σ

2
1σ2σ

2
1σ2σ

2
1σ2. Here we

do not directly find an appropriate subtree, but Figure 4.10 shows a
sequence of braid relations that makes it visible.

• m = 4 : We will treat several cases. Let us first assume that there is
an i such that bi ≥ 2. If there are i ̸= j such that bi, bj ≥ 2, then up
to cyclic ordering we only have to deal with the two cases depicted in
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≃ ≃

Figure 4.10: The braid σ2
1σ2σ

2
1σ2σ

2
1σ2σ

2
1σ2σ

2
1σ2

Figure 4.11: The cases when m = 4 and bi, bj ≥ 2 (left) or bi ≥ 2 and aj ≥ 3
(right)

the left of Figure 4.11, where we see the sought subtrees. Similarly, if
there is only one bi greater than 2 but there is one aj bigger than 3 we
will find one of the trees in the right of Figure 4.11. Finally, if all the
aj are equal to 2 and there is only one bi greater than 2, it is enough to
consider the braid σ2

1σ2σ
2
1σ2σ

2
1σ2σ

2
1σ

2
2, for which we can find the subtree

after applying some braid relations as in Figure 4.12.

We are now left with bi = 1 for all i. Notice that in that case there need
to be at least one ai ≥ 3, otherwise the braid has genus less than 5. If
there are two non-consecutive ai and aj greater than 3, it is enough to
consider the braid σ3

1σ2σ
2
1σ2σ

3
1σ2σ

2
1σ2, for which we find an appropriate

subtree in the left of Figure 4.13. If not, up to cyclic ordering there
must be two consecutive ai = ai+1 = 2, in which case we can apply a
sequence of braid relations as we did in the right of Figure 4.13 and find
our subtree.

≃ ≃ ≃ ≃

Figure 4.12: The braid σ2
1σ2σ

2
1σ2σ

2
1σ2σ

2
1σ

2
2
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≃ ≃ ≃

Figure 4.13: The cases m = 4 and bi = 1 for all i

Figure 4.14: When m = 3 and
∑

bi = 8

• m = 3 : This will be the lengthier case, since there are many low genus
braids that require special treatment. Let β = σa1

1 σb1
2 σa2

1 σb2
2 σa3

1 σb3
2 be a

braid of genus g ≥ 5, then a simple argument implies that
∑

ai+
∑

bi ≥
12. If

∑
bi ≥ 8, it is enough to consider the braids in Figure 4.14.

Similarly, when
∑

ai ≥ 11 it is enough to consider the case when all the
bi are equal to 1, and up to elementary conjugation we can assume that
a3 ≥ 3. In this case, by taking all the vertices in the left column and
only the topmost of the right column we will always end up finding a
tripod tree T (1, k, 9− k) for k ≥ 2, which all correspond to subsurfaces
of genus 5, see Figure 4.15 for some examples.

We are now left with the low genus cases.

–
∑

ai = 6 : If
∑

bi = 6 we always get a link with 3 components
and genus 4. If

∑
bi = 7 and there is at least one of the bi

equal to one, up to elementary conjugation we can assume that

T (1, k, 9− k) =
k 9− k

Figure 4.15: The tripod trees for m = 3 and
∑

ai = 11
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Figure 4.16: When
∑

ai = 7 and
∑

bi = 6, with b1 = 1

β = σ2
1σ2σ

2
1σ

b2
2 σ2

1σ
b3
2 with b2 + b3 = 6. Using that σ2

1σ2σ
2
1 commutes

with σ2 we get σb2
2 σ2

1σ2σ
4
1σ

b3
2 , which is conjugate to σ2

1σ2σ
4
1σ

6
2, whose

intersection graph is a tree with the required properties. We are now
left with bi = 2 for all i. Up to elementary conjugation there is only
one such braid, σ2

1σ
2
2σ

2
1σ

2
2σ

2
1σ

3
2. Here there are no possible braid re-

lations to apply and it is not possible to find a subtree of big enough
genus.

–
∑

ai = 7 : Let us first assume that
∑

bi = 6. If there is at least one
bi equal to one, we can directly find our subtrees. In Figure 4.16
we see some of the cases. The omitted ones are symmetric and will
give the same subtrees. Notice that this will also cover all the braids
with

∑
ai ≥ 7 and

∑
bi ≥ 7. If bi = 2 for all i, up to elementary

conjugation there is only the braid σ3
1σ

2
2σ

2
1σ

2
2σ

2
1σ

2
2, for which again

we cannot find any subtree of big enough genus.
If

∑
bi = 5, up to conjugation we have β = σ3

1σ
b1
2 σ2

1σ
b2
2 σ2

1σ
b3
2 . If

b2 = 1, using that σ2
1σ2σ

2
1 commutes with σ2 we get the braid

σ5
1σ2σ

2
1σ

4
2, whose intersection graph is a tree with the required prop-

erties. We are left with the three braids σ3
1σ2σ

2
1σ

2
2σ

2
1σ

2
2, σ3

1σ
2
2σ

2
1σ

2
2σ

2
1σ2

and σ3
1σ2σ

2
1σ

3
2σ

2
1σ2. For the first, up to elementary conjugation and

applying the commutativity relation as before we have

σ3
1σ2σ

2
1σ

2
2σ

2
1σ

2
2 ≃ σ2

1σ
2
2σ

3
1σ2σ

2
1σ

2
2 = σ2

1σ
2
2σ1σ

2
2σ

2
1σ2σ

2
1 =

= σ4
1σ

2
2σ1σ

3
2σ

2
1 ≃ σ6

1σ
2
2σ1σ

3
2

and we get a suitable tree. The second braid is symmetric and will
lead to the same intersection tree. For the last, we similarly get

σ3
1σ2σ

2
1σ

3
2σ

2
1σ2 = σ1σ

3
2σ

2
1σ2σ

4
1σ2 ≃ σ2σ1σ

3
2σ

2
1σ2σ

4
1 =

= σ3
1σ2σ

3
1σ2σ

4
1 ≃ σ7

1σ2σ
3
1σ2.

–
∑

ai = 8 : If
∑

bi ≥ 6, then either we are already done by the
case

∑
ai = 7 (if one of the bi is equal to one) or it is symmetric
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≃ ≃ ≃ ≃

≃ ≃ ≃ ≃

Figure 4.17: When
∑

ai = 8 and
∑

bi = 5

≃ ≃ ≃

Figure 4.18: The braid σ3
1σ2σ

3
1σ2σ

2
1σ

2
2

to the case
∑

bi ≥ 8. If
∑

bi = 5 after applying some positive
braid isotopy we can always find an appropriate subtree, with the
lone exception of β = σ3

1σ2σ
3
1σ

2
2σ

2
1σ

2
2, for which we couldn’t find any.

In Figure 4.17 we see some of the cases, the remaining ones being
braid isotopic to those. Finally, if

∑
bi = 4, we only get links of 3

components and genus 4 excepted for the braid β = σ3
1σ2σ

3
1σ2σ

2
1σ

2
2

(and the symmetric β = σ2
1σ2σ

3
1σ2σ

3
1σ

2
2), for which we see the tree

in Figure 4.18.

–
∑

ai = 9 : If
∑

bi ≥ 4, it is enough to consider β = σa1
1 σ2σ

a2
1 σ2σ

a3
1 σ2

2.
By taking all the vertices of the linking graph excepted the lower-
most of the right column, according to the value of a3 we will get
one of the tripod trees T (1, 2, 6), T (2, 2, 5) and T (3, 2, 4), which all
correspond to surfaces of genus 5. If

∑
bi = 3 and there is one

even ai, we only have to consider the three braids σ3
1σ2σ

2
1σ2σ

4
1σ2,

σ3
1σ2σ

4
1σ2σ

2
1σ2 and σ5

1σ2σ
2
1σ2σ

2
1σ2. The first two are symmetric,

and using that σ2
1σ2σ

2
1 commutes with σ2 we see that the first
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one is braid equivalent to the last, for which we furthermore have
σ5
1σ2σ

2
1σ2σ

2
1σ2 = σ7

1σ2σ
2
1σ

2
2, whose intersection graph is a tree. Fi-

nally, if all the ai are odd, we get a link of genus 4.

–
∑

ai = 10 : The only case left is when
∑

bi = 3. If one of the ai
is odd we can suppose that a3 is odd, in which case by taking all
the bricks excepted the lowermost of the right column we will get a
tripod tree T (1, 2, 6) or T (1, 4, 4), which both correspond to subsur-
faces of genus 5. If all the ai are even, up to elementary conjugation
we only have the braids σ4

1σ2σ
4
1σ2σ

2
1σ2 and σ6

1σ2σ
2
1σ2σ

2
1σ2. Those are

actually related by braid relations and elementary conjugations, and
the very same argument used for

∑
ai = 9 and

∑
bi = 3 will yield

the required tree.

• m = 2 : For a braid β = σa1
1 σb1

2 σa2
1 σb2

2 of genus at least 5 the intersection
graph is always a tree with at least 10 crossings. Furthermore, by direct
inspection we see that those trees will always contain E6 unless they are
of type Dn.

• m = 1 : In this case we only get non-prime braids.

To sum up, the result holds for all braids excepted σ2
1σ

2
2σ

2
1σ

2
2σ

2
1σ

3
2, its sym-

metric σ3
1σ

2
2σ

2
1σ

2
2σ

2
1σ

2
2 (which gives the same link with opposite orientation)

and σ3
1σ2σ

3
1σ

2
2σ

2
1σ

2
2 (which gives an invertible link).

We will now consider braids with big positive braid index.

Proposition 4.5. Let β be a prime positive braid on N ≥ 11 strands and
whose closure is a knot not of type An. Then, up to positive braid isotopy and
excepted finitely many braids, its linking graph contains an induced subtree
which is an E-arboreal spanning configuration on a subsurface of genus g ≥ 5.

The strategy to prove Proposition 4.5 is very simple: we will try to explicitly
construct the required subtree and see that, each time our construction fails,
either the closure is not a knot or we can reduce the number of strands. The
finitely many exceptions come from Proposition 4.4 and Proposition 4.6, in case
we can reduce our braid to one of the exceptions therein. We will therefore
heavily rely on the following two lemmas.

Lemma 4.1. Let β ∈ B+
N be a prime positive braid on N ≥ 3 strands. If for

some i the linking graph of the subword induced by all the generators σi and
σi+1 is a path, then there exists a positive braid β′ ∈ B+

N−1 such that β̂ = β̂′

and MG(β) = MG(β′).
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Figure 4.19: An isotopy that reduces the number of strands.

Proof. Up to elementary conjugation and symmetry, we can assume that the
subword induced by σi and σi+1 is of the form σa

i σi+1σiσ
b
i+1. Moreover, we can

suppose that all the generators σj for j < i appear before the last occurrence
of σi and all the generators σj for j > i + 1 appear after the first occurrence
of σi+1. In Figure 4.19 we see an isotopy between the fibre surface Σβ and
the fibre surface Σβ′ of a new braid β′ with one strand less: the portion of the
(i+1)-th disk lying between the first occurrence of σi+1 and the last occurrence
of σi (in red in the leftmost picture) is slid along the last σi, becoming a band
between the i-th and (i + 1)-th disk (central image); this band is then slid
along the back of the two disks to be brought in the lowermost position. A
direct computation now shows that MG(β) = MG(β′).

Lemma 4.2. Let

• A = {σa
1σ2σ

b
3σ2σ

c
1σ2σ

d
3σ2σ

e
1 | a, b, c, d, e ∈ N},

• B = {β1σ2σ3β2σ3σ2β3 | β1, β3 ∈ ⟨σ3, σ4⟩, β2 ∈ ⟨σ1, σ2⟩},

• C = {β1σ2β2σ2σ3β3σ3β4 | β1, β4 ∈ ⟨σ1, σ4⟩, β2 ∈ ⟨σ3, σ4⟩, β3 ∈ ⟨σ1σ2⟩}.

If β ∈ A ∪B ∪ C, then the closure of β has at least two components.

Proof. In Figure 4.20 we see some schematic drawings of the brick diagrams
of braids from the three families, in which one component of the closure is
highlighted.

Notice that, even though for sake of simplicity we only stated Lemma 4.2
for braids with few strands, the result clearly also applies in case some columns
of the brick diagram of a braid on more strands exactly look as in Figure 4.20
(or are symmetric to those).

To construct the trees required in Proposition 4.5, we will also need the
following lemma from [59].
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Figure 4.20: Some positive braids with disconnected closure.

Lemma 4.3 ([59], Lemma 7). Let β be a prime positive braid and v be a
vertex of its linking graph. Then there is an induced path in the linking graph
connecting v to any other column of the brick diagram.

We will briefly recall the algorithm for constructing such a path, since this
will be used in what follows. Let us say that we want to connect v to a column
to its right. Start at v and move up or down its column until reaching the
closest brick linked to the right (potentially, already v). Now, move to the
right and repeat the procedure. If at the moment of moving to the right there
are several possibilities, choose the brick which is the closest to a brick in the
same column linked again to its right. It is easy to see that those choices
prevent the creation of cycles, so that the result will be a path.

Proof of Proposition 4.5. Let β be a prime positive braid on N ≥ 11 strands.
By Lemma 4.1 we can assume that, for every pair of adjacent columns in
the brick diagram, the linking graph restricted to those columns is not a path.
Let us furthermore repeatedly apply all the possible braid relations of the form
σiσi+1σi ⇝ σi+1σiσi+1, until no subword σiσi+1σi is left in β. Our strategy goes
as follows: we will start considering an induced path connecting the leftmost
column to the rightmost, constructed with the previous algorithm, and try to
add to it one single vertex, in order to get a tripod tree containing E6. Since
b ≥ 11, the tripod tree will have at least 11 vertices and hence correspond to
a subsurface of genus at least 5. So, let us fix one such path and look at the
third column of the brick diagram. If we can add a brick of this column to
the path and get an (induced) tripod tree we are done. There are two reasons
why this might not be possible: either because there are no leftover bricks in
the third column or because every available brick is linked to more than one
brick of the path and adding it would generate a cycle. We will now analyse
those cases in detail. By symmetry, we can assume that in the third column
our path arrives from the left to a brick v3, potentially moves down to a brick
w3 and then continues to the right.

If there are no leftover bricks in the third column, then by the construction
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∅

∅
∅

w3

v4 v5

...

...

...

x

y

Figure 4.21: We only show the columns 3− 5. The path goes through w3, v4,
either x or y and v5.

rule of our paths we know that w3 is the only brick of column 3 linked to the
right. We can now apply elementary conjugations on the right-hand side of the
diagram in order to have all the generators σi for i ≥ 4 appear before the last
occurrence of σ3, and perform again all the possible braid moves σiσi+1σi ⇝
σi+1σiσi+1. Those transformations will not affect the first 3 columns and the
part of the path therein. We now get that the sub-braid generated by σ3 and
σ4 is σa

4σ3σ
b
4σ

c
3, with c ≥ 1 and a, b ≥ 2 by Lemma 4.1. Let us denote by v4

the only brick of column 4 linked to w3, and let us attach a path connecting
v4 to the rightmost column.

If at least one of the bricks immediately above or below v4 is not linked to
the portion of the path in the fifth column (in particular, if v4 is itself linked to
the right), it can safely be added to get a tripod tree. We directly see that we
are left with the case of Figure 4.21. Notice that, up to modifying the path in
the fourth and fifth columns, we can always choose whether it passes by x or
y. Now, if there is a brick x′ above x, either it is not linked to the path in the
fifth column, in what case we can directly connect it to x, or it is, in what case
we can change our path to w3 → v4 → x → x′ → {path in the fifth column}
(thus avoiding v5) and connect y to v4. Similarly, we can assume that there is
no brick below y.

Let us now consider the fifth column. Notice that there must be at least
one brick immediately above and one immediately below v5 that are not linked
to the fourth column, otherwise we could apply one of the forbidden braid
relations. By applying the same reasoning as before, we conclude that we can
always obtain a tripod tree, unless there are no other bricks in the column. In
the latter case, however, the closure of the braid is not a knot by Lemma 4.2
(compare with the leftmost diagram of Figure 4.20).

We can now suppose that there are some leftover bricks in the third column,
but adding any of them to our path creates a cycle. The idea is analogous
to what we just did: we will try to locally "reconstruct" the linking graph,
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v3

w3

w2

v4...

v3

w3

w2

v4

...

w′
3

v′3

Figure 4.22: In both cases the path arrives from w2, moves to v3, then goes
down to w3 and finally to v4.

successively exclude all the cases where we can find the required tripod and
see that in the end we are left with one of the links from Lemma 4.2. However,
the analysis gets much more delicate and will need lengthy case distinctions to
cover the various ways adjacent columns can be connected. First of all, in the
third column there could be bricks left both above and below the path, only
above or only below.

I. If there are bricks above v3 and below w3, we will be in one of the two
cases of Figure 4.22.

I.A. In the left-hand case of Figure 4.22, recalling that the path was
constructed with the algorithm of Lemma 4.3, we know that either
v3 and w3 are adjacent or they coincide. We will analyse those cases
in great detail, since they serve as example of the kind of reasoning
applied also to the rest of the proof.

I.A.a. If v3 and w3 are distinct and adjacent, again by the construction
rule of our paths we know that w′

3 is not linked to the right at
all and v′3 is not linked to the path to the left. Now, if v′3 is
linked to the path to the right above v4, we could change our
path to w2 → v3 → v′3 → {path in the fourth column}, thus
avoiding v4, and connect w3 to v3 to get a tripod. Otherwise,
we can instead consider w2 → w′

3 → w3 → v4 → {path} and
connect v′3 to v4.

I.A.b. If v3 = w3, then we know that w2 has to be linked to the first
column, otherwise we could perform one of the forbidden braid
relations. We will further distinguish according to how w2 is
linked to the first column.

I.A.b.1 Let us suppose first that w2 is linked to a brick v1 below it,
as in the left-hand side of Figure 4.23 . Notice that the brick

55



CHAPTER 4. THE MONODROMY GROUP OF A POSITIVE BRAID

denoted by w′
2 needs to exist because of the condition on

the possible braid relations. Hence, we can assume that in
the first column there are at most two bricks and no bricks
below v1, and that the brick immediately below w′

2 (if any)
is linked with v1, otherwise we could immediately find an
appropriate tripod. If there is a linking between the second
and third columns above v3, we could modify our path by
starting from v1 and w2, then moving upwards in the second
column until we reach the first connection with the third
column above v3 and finally going down on the third column
until the first connection to the original path in the fourth
column (which occurs at the latest at v′3). This will give us
a path avoiding v3. We can now safely connect w′

3 to w2 and
get a tripod. If not, up to elementary conjugations on the
first two columns, we can suppose that there are no bricks
in the second column above v3, as in the central picture
of Figure 4.23. In this case, we can assume that above w2

there is at most one brick. Now, if in the first column there
are two bricks, again by elementary conjugation we are back
to the case where there is a brick below v1 and we are done.
We are hence left with just one brick in the first column,
as in the right-hand side of Figure 4.23. Notice that in this
case the brick w′

3 is forced to be linked to w′
2, otherwise

the closure of the braid is not a knot by the second case
of Lemma 4.2. This in turn forces the existence of the
brick denoted by b below w′

3, otherwise we could apply a
forbidden braid relation. If there is a brick a below w′

2,
we can consider v1 → a → w′

2 → w′
3 → v3 → {path} and

connect b to w′
3. On the other hand, if there are no bricks

below w′
2 we see that either the closure of the braid is not a

knot, if there is a brick above w2 (third case of Lemma 4.2),
or we can reduce the number of strands with Lemma 4.1.

I.A.b.2 We can now suppose that w2 is linked to a brick v1 above it,
but is not linked with any brick of the first column below it,
as in the left image of Figure 4.24. If there are at least two
bricks below w2 we immediately find a tripod. If there is
exactly one brick below w2, we can furthermore assume that
v1 is the only brick in the first column. Let us now consider
how v1 is connected with the second column. If it is only
linked to w2, by applying an elementary conjugation we are
back to the previous case where v1 was below w2. Notice
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Figure 4.23: The dashed lines show where the following brick (if existing)
would be. In the third column, there is still a brick w′

3 as in Figure 4.22, which
is linked to w2 and may or may not be linked to w′

2.

that the existence of a brick below w2 ensures that the
condition about the possible braid relations is still satisfied
after the conjugation. If v1 is linked to another brick of the
second column above w2, called a, and a is in the region
denoted by X as in the central image of Figure 4.24, we
immediately see that either we find a suitable tripod or the
closure is not a knot, depending on how many bricks there
are in the second column between w2 and a (there is at
least one by the condition on braid relations; if it is unique,
we fall in the second case of Lemma 4.2). Finally, if a is
not in the region denoted by X , as in the right image of
Figure 4.24, we know that there is a brick between a and
w2 linked to v3 (potentially, this could be a). We can now
consider v1 → a → {second column} → v3 → {path} and
connect w′

3 to v3. The only case left now is when there are
no bricks below w2. Again, if v1 is linked to another brick
of the second column above w2 the exact same argument
applies. If v1 is linked only to w2, this time we cannot
simply apply an elementary conjugation to reduce it to a
previously treated case. However, if there are no bricks
above v1 (resp. below v1) we could apply Lemma 4.1, whilst
if there are bricks in the first column both above and below
v1 it is immediate to conclude that either we find a tripod or
the closure is not a knot, as in the first case of Lemma 4.2.

I.B. In the right-hand case of Figure 4.22, we know that w2 needs to be
linked to a brick v1 in the first column. Again, we will separately
consider whether v1 is above or below w2.

I.B.a. Suppose first that w2 is linked to a brick v1 above it. By ex-
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Figure 4.24: Below v1 there can be bricks only until the dashed line. In the
second column, there is at least one brick above w2 but below v1.

cluding all the cases where one can immediately find a tripod,
we are left with at most two bricks in the first column and we
can reduce the study to one of the cases in the left-hand side of
Figure 4.25. If there are two bricks in the first column, we either
have a brick above v2, in which case we can find a tripod by sim-
ply starting our path from v′1 and adding two bricks above w2,
or we can apply an elementary conjugation to the first column
to get a brick below v′1, which again immediately gives a tripod.
If in the first column there is just one brick, we know that v2
needs to be linked to the third column, otherwise the closure
is not a knot by Lemma 4.2 (second case). After removing all
the trivial cases, we are left with the diagram on the right-hand
side of Figure 4.25. Notice that now by Lemma 4.1 there needs
to be at least one brick below w2. If none of the bricks below
w2 are linked to v3, we see that according to the number of
those bricks we either get a tripod or the closure is not a knot
by (a symmetry of) the third case in Lemma 4.2. Hence we can
suppose that there is a brick w′

2 below w2 linked to v3. If w′
2 is

connected to the original path in the third column below v3, we
can instead consider v1 → w2 → · · · → w′

2 → {path} and get a
tripod by connecting to w2 the bricks v′3 and v′′3 . If not, we can
simply take our original path starting from v3 and connect to
it w′

2, v′3 and v′′3 .
I.B.b. Suppose now that w2 is only linked to a brick v1 below it. We

immediately see that there can be at most one brick above w2,
and if this brick exists then v1 is the only brick of the first
column. After excluding the trivial cases we are left with the
diagrams of Figure 4.26. First, if w′

2 is linked to the path in the
third column below v3, we can take v1 → w2 → · · · → w′

2 →
path and add to it a brick in the third column (which will be
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Figure 4.25: The brick v2 exists by braid relation. In the leftmost image, the
dashed lines show where the brick v3 could end.
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Figure 4.26: Between w2 and w′
2 there can be at most one brick. In the leftmost

diagram, the brick above w2 is not necessarily linked with v′3.

at most v′′3). Otherwise, if there is a brick w′′
2 below w′

2, we
can simply take our original path from v3 and add to it v′3, w′

2

and w′′
2 . Finally, let’s assume that there are no bricks below

w′
2. If there is a brick above w2 we can apply an elementary

conjugation to the first column and get back to the previous
case. If not, Lemma 4.1 forces the existence of bricks above and
below v1, in which case either we get a tripod or the closure is
not a knot, as in the first case of Lemma 4.2.

II. Let us now consider the case where there is at least one free brick v′3
above v3, but none below w3. First of all, if after w3 our path moves to
a brick v4 of the fourth column which is below it, we are basically in the
same situation as Item I.B., and the precise same arguments apply. We
can hence suppose that the path moves upwards in the fourth column.
We will now treat different cases according to how v′3 is linked to the
neighbouring columns.

II.A. If v′3 is not linked to the right, we know that it needs to be linked to
a brick w2 in the second column, which in turns needs to be linked
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Figure 4.27: Diagrams for Item II.A. and Item II.B..

to a brick v1 in the first column. Let us suppose first that v1 is
above w2, then by Item I.B.a., we are left with only one brick in the
first column, as in the central image of Figure 4.25. Furthermore,
if the brick immediately above v′3 is not linked to its right, all the
arguments from Item I.B. still apply. We are hence left with the
leftmost diagram of Figure 4.27. Now if v′′3 is not linked to the path
above v4 it can directly be added as additional vertex, otherwise we
can instead consider the path v1 → w2 → v′3 → v′′3 → {path} and
add a brick to this new path in the fourth column. Finally, if v1 is
below w2, we conclude directly as in Item I.B.b..

II.B. If v′3 is linked to the right (to v4) and to the left (to a brick w2),
by the construction rules of the path we know that either v3 and
and w3 are adjacent or they coincide, and by the assumption on the
braid relations w2 is linked to a brick v1 in the first column.

II.B.a. If v1 is above w2, after repeating the arguments of Item I.B.
we are left with the two diagrams at the right-hand side of
Figure 4.27.

II.B.a.1 Let us first consider the case where v3 and w3 are distinct
and adjacent. If v′3 is not linked to the path above v4, we
can simply consider v1 → w2 → v′3 → v4 → {path} and
add v′′3 (notice that this would also work if v3 and w3 did
coincide). If v′3 is linked to the path in the fourth column
above v4, take instead v2 → v′3 → {path} and add v3 and
w3.

II.B.a.2 Suppose now that v3 and w3 coincide. In this case, notice
that no brick below w2 can be linked to v3 (otherwise we
could perform a forbidden braid relation), and that there-
fore if there are at least two bricks below w2 we immedi-
ately get a tripod. It follows that there need to be a brick
v′2 above v2, otherwise either we can apply Lemma 4.1 or
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Figure 4.28: Diagrams for Item II.C.; v3 is linked to the second column, but
v′3 is not. On the right, we know that w2 needs to be linked to some brick v1
in the first column.

the closure is not a knot, as in the third case of Lemma 4.2.
Now, if v′3 is not linked to the path in the fourth column
above v4, we can find the same tripod as in the previous
case. If v′3 is linked to the path above v4, we can instead
consider v′2 → v2 → v′3 → {path} and add v3.

II.B.b. Finally, if v1 is below w2, we are left with one of the diagrams
of Figure 4.26 (where the brick v′′3 is now w3). The case where
v3 and w3 coincide is excluded by the condition on the braid
relations. Furthermore, by what was done in Item I.B.b., we
know that we can assume the existence of a brick w′′

2 below w′
2.

Hence, if v′3 is not connected to the path above v4 we can take
v1 → w2 → v′3 → v4 → {path} and add w3, if v′3 is connected to
the path above v4 we can instead take w′′

2 → w′
2 → v3 → v′3 →

{path} and add w3.

II.C. If v′3 is not linked to the left, either v3 and w3 are adjacent or they
coincide, as in the left hand side of Figure 4.28. In both cases, if v′3
is connected to the path above v4, we can simply let our path pass
by v′3 instead of w3 (thus skipping v4) and add a brick in the fourth
column (which will be at most v′4).
Suppose now that v′3 is not connected to the path above v4 and
v3,w3 are distinct. If w3 is linked to the left we are in the situation
at the right-hand side of Figure 4.28 and we directly find a tripod
by considering v1 → w2 → w3 → v4 → {path} and adding v′3. If
not, then we are in a situation analogous to Figure 4.21 and the
same arguments apply.
We are left with the case where v3 and w3 coincide and v′3 is not
connected to the path above v4. We will now consider how the third
and second column are connected.
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II.C.a. Let us suppose first that there is a brick v2 in the second column
below v3. We know that v2 needs to be linked to a brick in the
first column.

II.C.a.1 If there is a brick v1 in the first column above v2, we are in
one of the situations in the left of Figure 4.29. In the first
one, we directly see that either we find a tripod (if there is at
least another brick in the first column) or the closure is not a
knot by Lemma 4.2. In the second one, using Lemma 4.1 we
furthermore know that there must be a brick in the second
column above v1. By excluding the direct cases, we end
up with the diagram on the right-hand side of Figure 4.29.
Notice that we can assume that there is no brick below
v2, because otherwise by elementary conjugations we would
get two bricks above v′′2 and would find a tripod by taking
{second column} → · · · → v′2 → v3 → {path} and adding
v1. With similar arguments we can conclude there are no
bricks in the second column above v′′2 and v1 is the only
brick of the first column. We now see that there needs
to be a brick in the third column above v′′2 , otherwise the
closure is not a knot by Lemma 4.2. If there are at least
two bricks of the third column above v′2, we get a tripod
by taking {third column} → · · · → v′3 → v4 → {path} and
adding v′2 and v2. Otherwise, we can consider v1 → v′′2 →
· · · → v′2 → v3 → {path} and add the other brick in the
third column linked to v′2 (which now we know will not link
to any other brick of the second column.)

II.C.a.2 If there are no bricks in the first column above v2, but v2
is linked to a brick v1 below it, we can directly conclude
that, depending on the number of bricks in the first column,
either the closure is not a knot by Lemma 4.2 or we find an
appropriate tripod.

II.C.b. Suppose now that there are no bricks in the second column
below v3, which is therefore only linked to a brick v2 above it.

II.C.b.1 If in the second column there are bricks both above and
below v2, noticing that if there are at least four bricks in
the second column we are done, we are only left with the
cases of Figure 4.30. For the leftmost diagram, if there is
only one brick in the first column the result is not a knot by
the second case of Lemma 4.2, otherwise up to elementary
conjugation we get a tripod. In the two central diagrams
we directly find a tripod. In the rightmost diagram, if v′2
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Figure 4.29: More diagrams for Item II.C.a.1, when v3 and w3 coincide and
there is a brick v2 below v3.

is not linked to the third column the closure is not a knot
by the first case of Lemma 4.2, otherwise we directly get
a tripod (using that v′3 is not linked to the path above v4,
hence all the bricks of the third column above it also are
not).

II.C.b.2 If in the second column there are only bricks below v2, by
minimality of the number of strands there must be a brick
v′′3 in the third column above v2. If v2 is not linked to the
first column or if there are at least two bricks in the first
column we can simply take our original path and add to
it v′′3 (once more, we use that v′′3 is not connected to the
path in the fourth column, since by assumption v′3 is not
connected to the path above v4). If there is only one brick in
the first column and this brick is linked to v2, according to
the number of bricks of the second column below v2 we will
either get a tripod or a link with at least two components
by Lemma 4.2.

II.C.b.3 Finally, if in the second column there are only bricks above
v2, let us consider v′2 the first brick of the second column
linked to a brick v1 of the first column (starting from v2
upwards, potentially v′2 = v2). If there is still a brick v′′2
above it, up to elementary conjugation on the first column
we can assume that v1 is above v′2. We now directly see
that we are left with only one brick in the first column and
that according to whether v′′2 is linked to its right, we either
get a link with more than one component by Lemma 4.2 or
a tripod, as in the left of Figure 4.31. If there are no more
bricks above v′2, we are left with the diagram at the right-
hand side of Figure 4.31. By Lemma 4.1, we know that
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Figure 4.30: More diagrams for Item II.C.b.1, when v3 and w3 coincide and
there is no brick in the second column below v3.
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Figure 4.31: Diagrams for Item II.C.b.3: in the left, the case when there is a
brick above v′2 which is linked to the right. In the right, when there are no
bricks above v′2.

there must be bricks above and below v1 and we conclude
with an usual argument.

III. We finally have to treat the case where there is a free brick w′
3 below w3,

but no brick above v3. Once more, we distinguish according to how w′
3

is connected to the path.

III.A. Let us first suppose that w′
3 is linked to a brick w2 of the original

path in the second column (which, by construction, will also be
linked to v3). Then either v3 and w3 are adjacent or they coincide,
as in the left of Figure 4.32.

III.A.a. If v3 and w3 are distinct, by construction we furthermore know
that they are not linked to any brick of the fourth column. If
v3 is linked to a brick v2 of the second column above w2, we
know that v2 need to be linked to the first column. In this case,
we could simply connect the first column to v3 via v2 (thus
skipping w2), continue with our original path and add to it w′

3

to get a tripod. Similarly, suppose that w′
3 is linked to some
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Figure 4.32: In the left, the two main possibilities for Item III.A.. In the centre,
the diagram left after treating all the direct cases, for v3 and w3 distinct. In
the right, the last diagram for v3 = w3.

brick in the second column below w2. If there is a connection
between the first and second columns below w2, the previous
argument still apply. Otherwise, all the bricks in the second
column below w2 are "free" and can be added to our path. If
there are at least two bricks below w2 we are done; if there is
only one, according to the number of bricks in the first column
we see that we either find a tripod or the closure is not a knot by
Lemma 4.2. We are therefore only left with the diagram in the
centre of Figure 4.32. If in the second column there are bricks
both above and below w2, we are basically in the situation of
Figure 4.30 (with the appropriate changes in the third column)
and the same arguments apply. If there are only bricks above
w2, we end up with diagrams as the ones in Figure 4.31 and we
conclude similarly. The case where there are only bricks below
w2 is symmetric.

III.A.b. If v3 and w3 coincide, we know that w2 needs to be linked to a
brick v1 in the first column.

III.A.b.1 If v1 is above w2, after removing all the cases where one
can directly find a tripod, we are left with diagrams as in
the left-hand side of Figure 4.25, and the same arguments
apply (remembering that now there are no bricks in the
third column above v3).

III.A.b.2 If w2 is not linked to any brick in the first column from
above, we can reduce to a diagram as in the right-hand
side of Figure 4.23. Now, if b is not linked to the path
in the fourth column, the same argument as in the corre-
sponding part of Item I.A.b.1 works. If b is linked to the
path in the fourth column from below, one can consider
v1 → a → w′

2 → w′
3 → b → {path} and add v3 to get a
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tripod. Similarly if w′
3 is linked to the path in the fourth

column from below. Finally, if b is linked to the path in the
fourth column but w′

3 is not, we are in the case drawn in
the right-hand side of Figure 4.32. If in the third column
there are no bricks below a, one can simply perform an el-
ementary conjugation on the second column to get a brick
v2 above w2, take the original path starting from v3 and
add to it w′

3 → w′
2 and v2 to obtain a tripod. Finally, if in

the third column there is a brick below a, in particular w′
2

is linked to a brick b′ of the third column below b. One can
hence take v1 → a → w′

2 → b′ → · · · → b → v4 → {path}
(or potentially skipping w′

2 if b′ is also linked to a ) and
connect v3 to v4.

III.B. We now suppose that w′
3 is not linked to the original path in the

second column (and therefore has to be linked to the path in the
fourth column). By construction, we know that v3 is linked to some
brick in the second column.

III.B.a. Assume first that v3 is linked to a brick w2 above it. We know
that w2 will be linked to a brick of the first column. If it is
linked to a brick above it, we conclude as in Item I.B.a., so we
can assume that w2 is only linked to a brick v1 below it. By
Item I.B.b., we are only left with the diagrams of Figure 4.26 (in
this case, the brick denoted by v′3 does not exist), and we fur-
thermore can assume that the brick w′

2 is not linked to the orig-
inal path in the third column below v3 and that there is at least
one brick in the second column below v1. After removing all
the cases where one can directly find a tripod, we are left with
the leftmost diagram of Figure 4.33. Furthermore, if there are
at least two bricks in the first column, up to elementary conju-
gation we can assume the existence of a brick below w′′

2 and can
now obtain a tripod by taking w′′

2 → · · · → w′
2 → v3 → {path}

and connecting to w′′
2 a brick below it and v1 together with

another brick of the first column. We can hence reduce to the
central diagram of Figure 4.33. But now we observe that there
needs to be a brick in the third column below w′′

2 , otherwise the
closure is not a knot by Lemma 4.2. In particular, w′

2 is linked
to a brick w′′

3 of the third column below v3. If v3 is not linked
to the fourth column we can simply take v1 → w′′

2 → · · · →
w′

2 → w′′
3 → · · · → {path in the fourth column} and connect

v3 to v′2. If v3 is linked to the fourth column (so in particu-
lar v3 = w3), we have the rightmost diagram of Figure 4.33.
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Figure 4.33: The last possibilities for Item III.B.a..

If w′
3 is linked to the path in the fourth column under v4, we

can simply consider v1 → w2 → v3 → w′
3 → {path} and add

v′4. Finally, if w′
3 is not linked to the path in the fourth col-

umn below v4, then all the bricks in the third column under
w′

3 also are not, and can hence be freely used. If there is still
at least one brick in the third column under w′′

3 , we can take
w2 → w′

2 → w′′
3 → · · · → w′

3 → v4 → {path} and add a brick
below w′′

3 to get a tripod. If w′′
3 is the last brick of the third

column, in particular it is not linked to any of the bricks below
w′

2, so we can take v1 → w′′
2 → · · · → w′

2 → v3 → {path} and
connect w′′

3 to w′
2.

III.B.b. We can now suppose that v3 is only linked to a brick w2 of the
second column below it. In particular, our original path was
passing by w2, which is therefore not linked to w′

3. If v3 and w3

are distinct, we end up with a diagram similar to Figure 4.21
and the exact same arguments apply. If v3 and w3 coincide,
we are in a situation perfectly symmetric to Item II.C.b., in
particular as in Figure 4.30 and Figure 4.31, and again the
same arguments apply.

We still have to consider the braids of intermediate positive braid index.
One could probably study those by hands, in a similar way to Proposition 4.4
and Proposition 4.5, but the computations would quickly get too complicated.
Instead, we will treat them by directly applying Proposition 4.4, at the cost of
loosing some low genus cases.

Proposition 4.6. Let β be a prime positive braid on 4 ≤ N ≤ 10 strands whose
closure is a knot not of type An. Suppose that β has genus g(β) > 4(N − 1).
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Then there exists a family of curves on Σβ that is an E-arboreal spanning
configuration on a subsurface of genus at least 5.

The curves appearing in Proposition 4.6 will not necessarily be vertices
of the intersection graph, but we might need to do some "change of basis",
i.e. modify some of the curves by applying appropriate Dehn twists. This
will change the intersection pattern of the curves in question, but not the
subsurface they span nor the subgroup that the corresponding Dehn twists
generate in MCG(Σβ).

Proof. Let β be such a positive braid. Since g(β) > 4(N − 1), there exists
1 ≤ i ≤ N − 2 such that the subword induced by all the generators σi and
σi+1 has first Betti number at least 12, when seen as a 3-braid. Let us denote
this subword by βi,i+1. By Proposition 4.4, either βi,i+1 is positively isotopic
to a 3-braid β′

i,i+1 containing the required spanning configuration, or it is of
type An or Dn (the other finitely many exceptions have first Betti number 11).

In the first case, the required positive braid isotopy might not be realizable
when βi,i+1 is seen as a subword of β. However, since at the level of curves
the effect of braid relations and elementary conjugations is obtained by Dehn
twists, we can still find a family of curves in Σβi,i+1

⊂ Σβ whose intersection
pattern is equal to the linking graph of β′

i,i+1, and the result follows.
If βi,i+1 is of type An, since there are only three strands one can directly

verify that up to elementary conjugation its linking graph is a path. We can
therefore apply Lemma 4.1 to β and reduce it to a braid with less strands.

If βi,i+1 is of type Dn, up to elementary conjugation and symmetry it is
of one of three forms: σn−3

i σ2
i+1σiσ

2
i+1, σn−2

i σi+1σ
2
i σi+1 or σa

i σi+1σiσ
b
i+1σiσi+1

with, a + b = n − 2. This follows from a direct computation, or can be seen
by applying the classification of checkerboard graphs of type Dn contained in
Lucas Vilanova’s PhD thesis [76]. In all the cases one can see that, if the
closure is connected, we can always add a brick in a neighbouring column and
find the required subtree. We will do it for βi,i+1 = σn−3

i σ2
i+1σiσ

2
i+1, the others

are analogous. In this case, we know that i < N − 2, otherwise the closure is
not a knot by Lemma 4.2. Since β is prime, its intersection graph is connected,
so at least one of the three bricks in the i + 1-th column needs to be linked
to its right. After removing the cases where one directly finds an appropriate
subtree, we are left with one of the three cases of Figure 4.34. The first one
is excluded since the closure is not a knot; in the second one we can find a
subtree after braid relation, as shown in the Figure; for the third one, up to
elementary conjugation we can suppose that there are no generators σi+2 above
the last occurrence of σi+1. Now we see that if there are at least two bricks in
the i+ 2-th column we are done, otherwise either the closure is not a knot (if
i+2 = N − 1) or we can still add one brick further to the right and again find
the required subtree.
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∅

∅
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∅
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∅

≃
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≃

Figure 4.34: The columns i, i + 1 and i + 2 of a braid β such that βi,i+1 =
σn−3
i σ2

i+1σiσ
2
i+1.

Everything is now ready to prove our main Theorem.

Proof of Theorem 4.2. Let β be a prime positive braid not of type An and
whose closure is a knot. We want to prove that MG(β) = MCG(Σβ, ϕβ) by
using Proposition 2.2. Let V = {γ1, · · · , γ2g} be the family of standard curves
on Σβ corresponding to the vertices of the linking graph of β. In Proposi-
tion 4.4, Proposition 4.5 and Proposition 4.6 we have constructed the starting
E-arboreal spanning configuration of genus h ≥ 5 for all but finitely many
such prime positive braids. In general, this is obtained by taking a subfamily
of curves V ′

0 ⊂ V and potentially modifying some of them by applying Dehn
twists around other curves of V ′

0 , obtaining a family V0 of curves in Σβ. In
particular, the subsurface spanned by V0 is the same as the subsurface spanned
by V ′

0 . It is now clear that the remaining curves of V \ V ′
0 can be attached in

an order that respects the definition of h-assemblage, so that

MCG(Σβ, ϕβ) = ⟨Tc | c ∈ V0 ∪ (V \ V ′
0)⟩ = ⟨Tc | c ∈ V ⟩ = MG(β).

Remark 4.4. In fact, our proof of Theorem 4.2 also applies to many links.
Indeed, the requirement of the closure of β being a knot was uniquely used to
exclude links as in Lemma 4.2: all these have one unknotted component whose
total linking number with the other components is precisely 2. In particular,
the proof works without problems for links whose components are all knotted
or whose pairwise linking numbers are all big enough.

Interestingly, this is essentially always the case in the special class of links of
singularities, if we exclude the special families An and Dn. In what follows, the
reader can refer to [24] for the background material on plane curve singularities.
If f1 and f2 are irreducible singularities with associated knots K1 and K2, then
the link of f = f1f2 is L(f) = K1 ∪ K2, and the linking number lk(K1, K2)
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equals the intersection multiplicity of the two branches. It follows that in
the link of a singularity all linking numbers are strictly positive. Now, let
f be a singularity whose link has a component which is unknotted and has
total linking number with the other components equal to 2, as in Lemma 4.2.
By the previous discussion, f has at most three branches. Suppose first that
f = f1f2 has only two branches, and L(f) = K1 ∪K2. Since one component
is the unknot and the multiplicity of a singularity equals the braid index of
the associated link by [78], we can assume that f2 = y + xf̃(x, y). Let now
m be the multiplicity and y = g(x

1
m ) the Puiseux series of f1, we obtain

2 = lk(K1, K2) = ord(g(t) + tmf̃(tm, g(t))) ≥ m, from which we conclude that
K1 has braid index at most 2. Finally, since the link of a reducible singularity
is determined by the components and the pairwise linking numbers, and all the
possible pairs of a positive 2-braid and an unknot with linking number 2 are
realized by singularities of type An or Dn, it follows that f belongs to one of
those two families. Similarly, if f has three branches one can conclude that all
the components of L(f) are unknotted, so that the link is determined by the
triple of linking numbers (where two of the linking numbers are now equal to 1).
Since all such triples are realized by singularities of type Dn, f must belong to
this family. Therefore, up to finitely many low genus exceptions, we completely
recover the main result of [70], saying that the geometric monodromy group
of a singularity not of type An and Dn is a framed mapping class group.

Remark 4.5. In contrast to the case of singularities, it does not seem possible to
extend the proof to all positive braid links. Even excluding the two exceptional
families An and Dn, there are other infinite families, both with bounded and
unbounded braid index, that most likely do not contain an E6. For example,
we could not find such subtrees for the braids

βn = σ1σ
2
2σ1σ

n−4
2 σ3σ

2
2σ3 ∈ B+

4 ,

whose linking graph is the extended Dynkin diagram D̃n, nor for

βN = (σ1 · · ·σNσN · · ·σ1)
2 ∈ B+

N+1.

We do not know whether the corresponding monodromy groups are equal to
the whole framed mapping class group.
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Chapter 5

Framed mapping class groups and
Hopf plumbings

In this short chapter we will see how to extend the methods of Chapter 4
to the setting of surfaces constructed by Hopf plumbings and discuss some
applications of the theory of framed mapping class groups to the study of
groups generated by finitely many Dehn twists.

Let us first recall some known facts and fix our terminology. The starting
datum is a family of simple closed curves C = {c1, · · · , cl} on a surface Σ, taken
to be pairwise in minimal position. To such a family one can associate a graph
encoding the combinatorial properties of the curves, called the intersection
graph: each vertex corresponds to a curve of C, and there is an edge between
two given vertices for each intersection point between the corresponding curves.
In fact, it is sometimes convenient to also record the cyclic order of the edges
around each vertex, i.e. the order of the intersection points along each curve;
as this is equivalent to choosing an embedding of the graph into a surface
(such embedded graphs are sometimes called maps, see [56]), we will refer to
the intersection graph together with a cyclic order of the edges around each
vertex as the embedded intersection graph. The basic question is now what
group the Dehn twists around the curves of C generate, and to what extent it
depends on the combinatorics of the curves and on the ambient surface Σ.

The case of two curves is completely solved: if the curves are disjoint, they
generate Z2; if they intersect exactly once, they generate either SL2(Z) (if on
the torus) or the braid group B3 (on any other surface); if they intersect at least
twice, they generate the free group F2, see Chapter 3 of [36]. In particular,
we see that, apart from one low-genus exception, the answer uniquely depends
on the intersection number. In general, however, the question is completely
open, even in the case of three curves. Moreover, it is known that the answer
strongly depends on the ambient surface. For instance, in [50] Humphries
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proved that if each pair of curves of C = {c1, · · · , cl} intersects at least twice
and no component of Σ \ (

⋃
ci) is a disk, then ⟨Tc | c ∈ C⟩ is free of rank

l, independently of the intersection graph. However, if one allows disks in
the complement, it is not difficult to construct a family of curves with high
pairwise intersection numbers but which do not generate a free group; in fact,
in striking contrast to the result about groups generated by two Dehn twists,
the famous lantern relation induces such an example that requires only three
curves with pairwise intersection numbers all equal to two.

A possible strategy to understand those groups is to first look at the
curves in N(C) ⊂ Σ, a small regular neighbourhood of

⋃
ci, i.e. understand

⟨Tc | c ∈ C⟩ as a subgroup of MCG(N(C)), then study the image under the
homomorphism MCG(N(C)) → MCG(Σ) induced by the inclusion N(C) ↪→ Σ;
see for instance [73] for a detailed study in the case of curves with intersec-
tion graph a cycle. One could optimistically hope that, when working in the
neighbourhood N(C), the isomorphism type of ⟨Tc | c ∈ C⟩ should essentially
be controlled by the combinatorics of C (as suggested by the results of [50] and
[73]), while the original ambient surface Σ should only influence the additional
relations introduced when capping off boundary components of N(C). How-
ever, some care is needed, as the homeomorphism type of the neighbourhood
N(C) is in general not determined by the (embedded) intersection graph. In
the special case where the intersection graph is a tree, N(C) is uniquely deter-
mined by the graph, and the embedded intersection graph entirely determines
the group ⟨Tc | c ∈ C⟩ in MCG(N(C)). Nevertheless, notice that if we take
two different plane embeddings of the same abstract tree and realize them as
embedded intersection graphs of two families of curves C and C ′, while N(C)
and N(C ′) are homeomorphic, there is in general no homeomorphism mapping
C to C ′, so that a priori we cannot conclude that the corresponding groups are
isomorphic.

As we have already seen in Chapter 4, thanks to Proposition 2.2 the theory
of framed mapping class groups can sometimes be useful to understand groups
generated by finitely many Dehn twists. We will now discuss some additional
easy applications, focusing in particular on curves with arboreal intersection
graph. As a corollary, we show that if a family of curves C = {c1, · · · , cl} with
intersection graph a tree has a regular neighbourhood N(C) with connected
boundary and l ≥ 10, the subgroup of MCG(N(C)) generated by all the Dehn
twists around the curves of C only depends on the abstract intersection graph.
In fact, for each such fixed l, we will see that there are at most 3 different
isomorphism types of such groups, cf. Theorem 5.1.

Back to framings: In Chapter 4, we were interested in the Dehn twists
around a specific family of curves on the fibre surface of a positive braid. To
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study the group generated by those Dehn twists, we constructed an explicit
framing fixed by all the twists and used the theory of framed mapping class
groups. In fact, this is a special case of a more general construction. The start-
ing point is the following easy observation. Consider a surface with boundary
Σ′ equipped with a framing ϕ′. Let Σ be a surface obtained by attaching a
1-handle h to Σ′ and c an oriented simple closed curve on Σ that goes exactly
once through the 1-handle (that is, c is the union of an arc in Σ′ with the
core of h). Then, ϕ′ can be extended to a framing ϕ on Σ such that ϕ(c) = 0.
Indeed, consider the arc a = Σ′ ∩ c. Up to isotopy, we can assume that ϕ′ is
orthogonally inwards pointing at the boundary of a. To get the required fram-
ing on Σ, we now simply need to compute the winding number ϕ′(a) ∈ 1

2
Z and

construct a framing on the handle h that is orthogonally outwards pointing on
the attaching boundary components and turns −ϕ′(a) times.

In particular, whenever a surface Σ is given by a sequence of plumbings
of cylinders with core curves c1, . . . , cl, by iterating this construction one can
obtain a framing ϕ on Σ such that ϕ(ci) = 0 for all i. This of course applies to
h-assemblages, as defined in Chapter 2, Section 2. If we furthermore assume
that all the core curves c1, . . . , cl are non-separating (a condition needed for
the curves to be admissible) we can directly invoke Proposition 2.2.

Corollary 5.1. Let Σ be a surface and C = {c1, · · · , cl} an h-assemblage of
type E on Σ of genus h ≥ 5. If all the curves in C are non-separating, then
there exists a framing ϕ on Σ such that

⟨Tc | c ∈ C⟩ = MCG(Σ, ϕ).

This naturally leads to the following question.

Question 1. Let Σ be a surface constructed by a sequence of plumbings of
cylinders with non-separating core curves c1, . . . , cl and ϕ a framing on Σ such
that ϕ(ci) = 0 for all i. When do we have the equality

⟨Tc1 , . . . , Tcl⟩ = MCG(Σ, ϕ)?

It is clear that we cannot always hope for an equality. For instance, if
the curves c1, . . . , cl intersect in an Al pattern, they generate a braid group
Bl+1, which for l big enough is certainly not a framed mapping class group by
Proposition 2.4. This is of course still the case for any family of curves that
generates a braid group, even if they do not intersect in an Al pattern; some
examples of such curves are given in [11].
Remark 5.1. The surface Σ obtained by the plumbing construction just dis-
cussed is in general not the regular neighbourhood N(C) of the core curves.
While this is the case if the intersection graph of C is a tree, the presence
of cycles in the graph will typically be reflected in the presence of disks in
Σ \ (

⋃
ci).
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...a

{
...

}
b

︸ ︷︷ ︸
Figure 5.1: The double-star tree DS(n; a, b)

When the group in question happens to be a framed mapping class group,
the next step is to compute the Arf invariant of the framing. Once again, if the
boundary of Σ is connected, the results from Chapter 4 readily generalize to the
current setting, as we will now explain. Instead of seeing (Σ, ϕ) as an abstract
framed surface, let us represent it as an embedded surface in S3 constructed
by a sequence of plumbing of Hopf bands with core curves c1, . . . , cl. There
are of course many inequivalent ways of realizing such an embedding, which
can for instance result in different boundary links, but this will be irrelevant
in the following; let us just choose one. Now, if the boundary is a knot, the
same computations as in Chapter 4, Section 3 show that the Arf invariant of
the framing is equal to the Arf invariant of the knot. In particular, in this case
the framed mapping class group is an invariant of the knot.

Question 2. Let Σ ⊂ S3 be a surface obtained by plumbing Hopf bands with
core curves c1, . . . , cl and L = ∂Σ be the boundary link. When is the group

⟨Tc1 , . . . , Tcl⟩ ⩽ MCG(Σ)

an invariant of L?

Arborescent plumbings: We will now study the case of curves intersecting
in a tree pattern. In order to apply Corollary 5.1, we simply need to understand
which trees contain the Dynkin diagram E6 as a subtree.

Definition 5.1. Let n ≥ 1, a, b ≥ 0 be integers. The double-star tree
DS(n; a, b) is the tree obtained from an An tree by attaching a leaves to one
of the vertices of degree 1 and b leaves to the other; if n = 1, we simply attach
a+ b leaves to the unique vertex of A1 (c.f. Figure 5.1).

A double-star tree DS(n; a, b) has n+a+ b vertices. It is clear that the An

and Dn trees are double-star trees (and can be represented in multiple ways).

Lemma 5.1. A tree T is a double-star tree if and only if it does not contain
E6 as subtree.
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Proof. One implication is obvious: a double-star tree does not contain E6. As
for the other, we proceed with a simple induction. First, notice that all the
trees with up to 6 crossings except E6 are double-star trees. Now, suppose we
have a tree T with n+1 vertices, n ≥ 6, that does not contain E6. Remove any
leaf from T , obtaining a subtree T ′ with n vertices. By induction hypothesis,
T ′ is a double-star tree. It is easy to verify that adding a leaf to a double-star
tree with at least 6 vertices either results in another double-star tree or creates
an E6.

Now, let T be a plane tree and Σ be a surface constructed by plumbing
cylinders with core curves c1, . . . , cl according to T . Note that, in our previous
notation, Σ = N(C). As we have seen, there exists a framing ϕ on Σ such
that ϕ(ci) = 0 for all i, so, by Proposition 2.2 and Lemma 5.1, if T is not a
double-star tree and Σ has genus at least 5 the group ⟨Tc1 , . . . , Tcl⟩ ⩽ MCG(Σ)
is a framed mapping class group. If moreover Σ has a connected boundary, we
know that such a framed mapping class group is determined by the genus of Σ
(i.e. the number of vertices of T ) and the Arf invariant of the framing, which we
computed to be the Arf invariant of a knot obtained by plumbing Hopf bands
according to T . In particular, as this Arf invariant is clearly independent of
the plane embedding of T , the groups we obtain only depend on the abstract
intersection graph. Finally, notice that the only double-star trees that give a
surface with connected boundary are the An trees (for even n). To sum up,
we have proved the following.

Theorem 5.1. Let C = {c1, . . . , cl} be a family of curves with intersection
graph a tree T and such that the boundary of N(C) is connected. If l ≥ 10,
the group G(C) = ⟨Tc1 , . . . , Tcl⟩ ⩽ MCG(N(C)) is uniquely determined by T .
For every fixed l, there are only three possible groups: either T = Al and G(C)
is the braid group Bl+1, or G(C) is one of two framed mapping class groups,
distinguished by the Arf invariant.

Remark 5.2. The trees which give a surface with connected boundary can be
easily characterized: they are constructed starting from A2 by consecutively
attaching further copies of A2 (in a similar way as generic trees can be con-
structed starting from a single vertex by consecutively attaching leaves). At
the level of surfaces, this corresponds to so-called trefoil plumbing (cf. [10]).

Remark 5.3. The case of arborescent plumbings with disconnected boundary
is much more delicate. Even if one could compute the Arf invariant of the
framings, in general choosing a different plane embedding of the same tree will
change the value of the framing on the various boundary components, and
the theory of framed mapping class groups does not help in comparing the
corresponding groups.
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A comment on Artin groups: The results of Theorem 5.1 are particularly
striking when compared to the analogous situation for Artin groups. Recall
that an Artin group A is a group generated by a finite set S with generalized
braid relations of the form sts · · · = tst . . . for each pair of generators s, t ∈ S,
where on each side of the equality there are m(s, t) ∈ {2, 3, 4, . . . } ∪ {∞}
generators, and no other relation (having m(s, t) = ∞ simply means that there
is no relation between s and t). Such a group presentation can be encoded by
a finite, weighted graph Γ: the set of vertices is S, between two vertices s
and t there is no edge if m(s, t) = 2, a simple edge if m(s, t) = 3 and an
edge with weight m(s, t) if m(s, t) ≥ 4. Conversely, given such a weighted
graph Γ, we will denote by A(Γ) the Artin group presented by Γ. We say
that an Artin group A(Γ) is irreducible if Γ is connected. Clearly, a reducible
Artin group is simply the direct product of its irreducible components. An
Artin group is called of small type if all the weights are either 2 or 3. They
correspond to classical, unweighted, simple graphs. In spite of the simplicity
of their presentation, small-type Artin groups are very poorly understood, but
expected to be very rich; in fact, it is conjectured that every Artin group can
be realized as a subgroup of a small-type Artin group [63].

As we have already mentioned multiple times in previous chapters, small-
type Artin groups are easily related to groups generated by finitely many Dehn
twists. Given a simple graph Γ, if we realize it as the intersection graph of a
family of curves C, we directly get a group homomorphism

A(Γ) → G(C) ⩽ MCG(N(C))
by mapping a vertex of Γ to the Dehn twist around the corresponding curve.
Such a homomorphism is called a geometric homomorphism. Perron and Van-
nier [68] proved that the Artin groups of type An and Dn admit injective
geometric homomorphism, while Labruère [55] and Wajnryb [77] showed that
this is not the case for any other tree. Notice that, contrary to what Wajnryb
claimed, the question of what Artin groups have geometric embeddings is in
general still open, as explained in [73]; Wajnryb’s confusion seems related to
an ambiguity about the surface in which to look at the Dehn twists.

A basic question about Artin groups is their rigidity, that is, how much
does the isomorphism type of A determine its Artin presentations. In other
words, if A(Γ) and A(Γ′) are isomorphic, are then the graphs Γ and Γ′ also
isomorphic? While the answer is negative in full generality, Artin groups are
still expected to satisfy rather strong rigidity properties, and rigidity has been
proved for several interesting classes. In particular, in [16] the authors define an
operation on graphs, called twisting, which leaves the associated Artin groups
invariant and can sometimes give rise to examples of non-rigid Artin groups.
To the best of our knowledge, this is the only known way of constructing non-
rigid Artin groups, and it is an open question whether Artin groups are rigid up
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to twisting (see [30], Problem 28). In the case of irreducible small-type Artin
groups, a weaker form of rigidity (sometimes referred to as reflection rigidity)
can be easily deduced for so-called non-spherical groups from the analogous
result for Coxeter groups proved in [29] (see [16], Lemma 7.1). Notice that for
spherical Artin groups rigidity was proved in full generality in [67], and that
the only spherical, irreducible, small-type Artin groups are the well known
groups of type An, Dn, E6, E7 and E8. Moreover, irreducible small-type Artin
groups do not admit any non-trivial twists [16], which is a further hint of their
rigidity.

Now, consider trees satisfying the hypothesis of Theorem 5.1, with a fixed
number l of vertices. While we already know that, with the lone exception
of Al, the groups generated by Dehn twists are not geometrically isomorphic
to the corresponding Artin groups, if l ≥ 14 Theorem 5.1 immediately im-
plies that they are also not abstractly isomorphic: again, this follows from
Proposition 2.4, as the abelianization of an irreducible small-type Artin group
is infinite cyclic. More interestingly, we get a qualitative appreciation of this
difference: by the discussion on rigidity, the Artin groups are expected to be all
distinct, while the groups generated by the Dehn twists are essentially always
the same.
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