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Summary 

Soils, often overlooked and underestimated, are intricate ecosystems that support a diverse array of 

organisms, contribute to global biogeochemical cycles, and play a pivotal role in food production. In 

addition to being the largest reservoir of terrestrial carbon (C) and a vital regulator of the global climate, 

soils provide a multitude of ecological services that are essential for the functioning of natural 

environments and fundamental for human well-being. The ability of arable soils to act as long-term C 

sinks through the process of C sequestration, directly influences the extent to which human-induced 

increases in atmospheric carbon dioxide (CO2) can be offset and thus the extent to which climate change 

can be mitigated. However, the intensive and unsustainable use of arable soils has led to significant 

losses of soil organic matter (SOM), the storage medium of C in soil, which was accompanied by the loss 

of soil fertility. This prompted efforts to restore and increase SOM contents in soils through sustainable 

management, including economically incentivized C farming practices. The overall objective of this 

thesis was to improve our understanding of how various farming systems influence the dynamics of 

SOM within the soil. Particular emphasis was given to acquiring detailed insights into the mechanisms 

that govern SOM stability within different soil fractions. This would consequently allow the evaluation of 

different soil management strategies in terms of their effectiveness to contribute to climate change 

mitigation. 

To achieve this objective, the DOK long-term farming system comparison trial in Switzerland served 

as an experimental platform for the observation of SOM dynamics. The focus was on four farming 

systems with different fertilizer types and quantities. A purely minerally fertilized system (CONMIN), a 

mixed-fertilized system receiving mineral and organic fertilizer as stacked farmyard manure (CONFYM) 

and a purely organically fertilized system receiving composted manure (BIODYN) were compared with 

an unfertilized control (NOFERT), over a period of 36 years (1982-2017). 

In the first study, physical fractionation was used to separate functionally distinct SOM fractions from 

archived soil samples. The findings revealed that no additional soil organic carbon (SOC) was 

sequestered in the finest separated soil fraction (<6.3 µm) under any of the farming systems over the 

whole observation period. The focus on this specific fraction is driven by its significance for long-term C 

sequestration, as the association of SOM with fine minerals (referred to as MAOM, mineral-associated 

organic matter) ensures the highest level of stability. The increase of bulk SOC in BIODYN (+13%) and 

CONFYM (+5%) (CONMIN: -8%; NOFERT: -20%), indicates that additional C accumulation was only 

recorded in the form of highly labile particulate organic matter (POM), more specifically, occluded 

particulate organic matter (oPOM), which undergoes initial stabilization via incorporation into 

aggregates. Interestingly, BIODYN showed the highest oPOM-C, although OM inputs via organic 
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fertilizers were 20% lower compared to CONFYM. This indicates that the qualitative differences of the 

organic manures are vital for C sequestration and thus for increasing soil fertility. However, this 

labile fraction was prone to rapid losses within a few days. Considering that POM serves as a precursor 

to the highly stabilized MAOM, POM losses should be urgently avoided, as this impedes the potential 

for subsequent long-term C sequestration. Overall, these findings highlight the substantial dependence 

of soil fertility on the consistent application of organic fertilizers. Furthermore, in the context of climate 

change mitigation, it is very concerning that even under sustainable management practices over 

several decades, additional long-term C sequestration was insufficient. This finding was particularly 

surprising, especially considering that the saturation of the MAOM fraction could be ruled out as a 

contributing factor. In an effort to fully comprehend this observation, the second study was dedicated 

exclusively to the detailed examination of the MAOM fraction. 

Consequently, the second study focused around the elucidation of the turnover dynamics within the 

MAOM fraction. MAOM samples from 1982 and 2017 were subjected to specific surface area (SSA) 

measurements before and after removal of OM with sodium hypochlorite (NaOCl). SSA results indicated 

best conditions for MAOM-C stabilization under organic fertilization and different sorption 

mechanisms in MAOM between farming systems with and without organic fertilization. In addition, 14C 

radiocarbon analysis of the MAOM fraction and subsequent estimation of its mean residence times (MRT 

= measure for SOM permanence in the soil) were performed, using a model that takes into account 

‘bomb 14C’ and radioactive decay. Based on the findings of the first study, which indicated unchanged 

MAOM-C contents in BIODYN and CONFYM, we expected that long-term organic fertilization would 

enhance MAOM stability, resulting in longer MRTs. However, the findings demonstrated that continuous 

organic fertilization led to substantially higher MAOM-C turnover rates and significantly shorter MRTs 

(BIODYN: 140 ± 19 yrs, CONFYM: 138 ± 18 yrs) in comparison to non-organic fertilization (CONMIN: 

195 ± 27 yrs, NOFERT: 238 ± 40 yrs). This indicated that MAOM is much more active under organic 

fertilization. This apparent contradiction, where increased MAOM-C turnover appeared to contribute 

to constant MAOM-C contents, could however be explained with the concept of ‘dynamic stability’. A 

detailed visualization of this rather complex concept is given in Figure 4.1 of this thesis. 

The results of this thesis provide compelling evidence that the targeted efforts towards increased long-

term C sequestration under agricultural management are insufficient. This dampens the high 

expectations for soil as a potent solution to bring about mitigated climate change. However, these 

findings fully align with the gradual and increasingly pronounced shift within the scientific community 

towards prioritizing soil management practices that promote soil fertility, rather than solely focusing on 

soil management for C sequestration as a means to address climate change. This thesis demonstrated 

that sustainable organic soil management, accompanied by consistent organic fertilizer inputs, emerges 
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as the most favorable approach in this regard. Specifically, in the case of BIODYN, despite solely 

increasing C contents in the labile SOM fractions, this can have a beneficial impact on climate, as long 

as this management approach is sustained. 
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This introductory Chapter 1 is intended to familiarize the reader with the central role of soils in the 

global climate system, particularly under the influence of agricultural management. This serves to 

understand and contextualize the research findings presented in the following chapters of this thesis. 

First, I outline the status quo of the Earth's climatic situation and provide a broad overview of the 

large-scale processes that interact in the global carbon (C) cycle, with particular emphasis on the role 

of soils as a regulator of global climate. I then describe in more detail the small-scale mechanisms 

operating in the soil, which are central to stabilizing organic matter (OM) and thus climate change 

mitigation. Afterwards, I explain the analytical tools accountable for our current knowledge of these 

processes, followed by the description of the historical role of agriculture in soil degradation. Finally, 

I outline policy and practical measures to address this pressing issue, with long-term experiments 

playing an important role as a scientific platform. 

 
Figure 1.1: Thesis word cloud. It offers a succinct visual summary of the thesis topics, displaying the relative frequency 

of key words used throughout the text. It becomes evident that this thesis centers on exploring the connections between 

soil and climate within diverse farming systems, with particular attention given to the significance of various fractions 

of soil organic matter (SOM). Created with wordclouds.com.  
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1.1. Hot topic: Climate change and the role of soils in the global C 

cycle 

Over the last six decades, the world’s population has increased by an average of 80 million per year, 

from about 3.0 billion in 1960 to 7.9 billion in 2021, representing a total increase of 163% (UN, 2022). 

The increase in population came with a corresponding increase in food and energy demand, land 

consumption and degradation, subjecting agroecosystems to mounting pressures. Consequently, 

emissions of greenhouse gases (GHG), such as carbon dioxide (CO2), the main anthropogenic contributor 

to climate change (Myrhe et al., 2013), have significantly increased during that period. As a result, 

atmospheric CO2 concentrations continuously increased and reached a new temporary record high in 

2021 (414.7 ppm), accompanied by increasing global temperatures (Figure 1.2) (Friedlingstein et al., 

2022). 

 
Figure 1.2: Development of global atmospheric CO2 concentration and surface temperature anomalies from 1960 to 

2021. Mean annual atmospheric CO2 concentrations are given in parts per million [ppm] (black line), constructed from 

monthly mean values (yellow dots), recorded at Mauna Loa Observatory (Hawaii). Columns show surface temperature 

anomalies compared to the mean for the period 1901-2000. Blue columns indicate cooler-than-average and red 

columns warmer-than-average years. Own illustration, data originates from Tans and Keeling (2023). 

According to estimates of the Food and Agriculture Organization of the United Nations (FAO), 

approximately 30% of the global population (2.3 billion people) experienced moderate or severe food 

insecurity in 2021, and about 760 million people even suffered from hunger (FAO et al., 2022). According 

to the United Nations (UN, 2022), the projected growth in global population to 9.7 billion by 2050 will 

lead to even greater demands for food and fuel (Fargione et al., 2008). Consequently, this surge in 

demand will further increase GHG emissions and intensify global warming (Chiari and Zecca, 2011; Peters 
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et al., 2012). Alarmingly, forecasts of record-breaking increases in global temperatures for the upcoming 

five years (UN, 2023), have raised concerns about the potential for "phenomenal human suffering" 

(Carrington, 2023). 

Given the urgent need to prevent a potential humanitarian and climate crisis, finding solutions becomes 

paramount for humanity. However, the current situation on Earth poses a challenging dilemma: how can 

we simultaneously feed a growing population and mitigate climate change? Addressing this problem 

first requires a profound understanding of the drivers of climate change and the identification of 

potential strategies for climate mitigation (Falkowski et al., 2000; Grace, 2004). 

The regulation of our climate is intricately linked to the transfer of C (referred to as C fluxes) between 

various reservoirs in the global C cycle (Post et al., 2000) (Figure 1.3). The C reservoirs differ in size, 

biogeochemical activity and sensitivity to anthropogenic impacts. Once, there existed a finely balanced 

global climate system, in which C cycled between the atmosphere, oceans, and terrestrial reservoirs 

through natural processes (dashed arrows in Figure 1.3). However, human activities, such as the burning 

of fossil fuels, deforestation, and land use change, have disrupted the previously existing equilibrium 

(Foley et al., 2005). These activities have caused substantial emissions of CO2 into the atmosphere, 

exceeding the natural capacity of the C cycle to effectively absorb and regulate these emissions (Olofsson 

and Hickler, 2008). In total, an estimated 465 ± 25 petagrams (Pg) C (1 Pg C = 1015 g C = 1.000.000.000 

t C) of cumulative fossil CO2 was emitted over the historical period from 1850 to 2021. During the 1960s, 

fossil CO2 emissions were 3.0 ± 0.2 Pg C yr-1, increasing each decade up to 9.6 ± 0.5 Pg C yr-1 over the 

2012-2021 period (Figure 1.3) (Friedlingstein et al., 2022). 

 
Figure 1.3: Simplified illustration of the main C reservoirs and C fluxes within the global C cycle for the period 2012-

2021. Boxes represent the different C reservoirs with stocks given in Pg C. Arrows represent C fluxes and are given in 

Pg C yr-1 (1 Pg C = 1015 g C = 1.000.000.000 t C). The dashed arrows represent the natural fluxes and solid arrows 

represent anthropogenically caused fluxes. The numbers are taken from Friedlingstein et al. (2022), except for the soil 

C reservoir (Batjes, 2014; Scharlemann et al., 2014). 
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The associated increasing global temperatures trigger feedback mechanisms that further enhance the 

pressure on terrestrial C reservoirs (Hicks Pries et al., 2017; Melillo et al., 2017). For instance, increased 

global temperatures raise the risks of massive species extinctions, i.e., biodiversity loss (Foley et al., 2005; 

Thomas et al., 2004), which in turn will also affect humans due to changes in ecosystem functioning 

(Cardinale et al., 2012). In addition, climate-induced shifts in planting and harvest dates, and alternating 

weather extremes (Li and Fang, 2016; Nearing et al., 2004), can lead to severe soil erosion (Borrelli et al., 

2020). Furthermore, elevated temperatures increase the mineralization of soil organic matter (SOM) (van 

Groenigen et al., 2014) - the storage medium of C in soil - that is already being depleted by poor 

agricultural management (see Chapter 1.4.). 

With an estimated total of 2416 Pg C in the upper 2 m (1505 Pg C in the upper 1 m and 704 Pg C in the 

upper 30 cm), soils represent the largest terrestrial C reservoir (Batjes, 2014; Scharlemann et al., 2014), 

storing more C than the vegetation and the atmosphere combined. C is stored in soils in the form of 

SOM. It refers to all plant- and animal-derived organic components present in the soil and occurs in a 

wide spectrum of decomposition stages, i.e., from fresh, undecomposed plant litter to highly 

decomposed microbial degradation products (Kögel-Knabner, 2002). It enters the soil through the 

transfer of atmospheric CO2 via organic matter (OM), where it can be subsequently stabilized over 

extensive periods of time (see Chapter 1.2). This process, known as C sequestration, plays a crucial role 

in climate change mitigation through C withdrawal from the atmosphere (Sierra et al., 2021; Smith, 2016). 

It is estimated that the potential climate-mitigating contribution of natural climate solutions, including 

the restoration and conservation of forests, wetlands, grasslands and agricultural lands, amounts to 23.8 

Pg CO2 equivalent yr-1 (Griscom et al., 2017). About a quarter of this potential is attributed to soil C, of 

which 60% is accounted for by C restoration within degraded soils (Bossio et al., 2020). In addition, there 

is a high degree of C undersaturation, estimated globally at 58% within topsoils (Georgiou et al., 2022). 

Thus, increasing SOM stocks in soils creates biological C sinks, making soil C sequestration a negative 

emission strategy for climate change mitigation (Paustian et al., 2019). In practice, this can be achieved 

through targeted soil management, so-called climate-smart practices (Paustian et al., 2016) (see Chapter 

1.5). Therefore, it is our responsibility to proactively optimize the role of soil as a crucial regulator of the 

global climate.  
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1.2. The SOM life cycle - from assimilation to mineralization or long-

term storage 

Besides their important role in C storage, the crucial factor for climate mitigation, soils offer a range of 

various ecological services that are vital for the functioning of ecosystems and essential for human well-

being. These services, as categorized by the Millennium Ecosystem Assessment (MEA, 2005), include 

cultural services, the provision of food and fiber, support of nutrient cycling, biomass production, soil 

formation, habitat for biological activity, and water filtration. The soils’ C content, i.e. amount of SOM, is 

a decisive factor for soil fertility, soil quality and soil health as a whole (Bünemann et al., 2018; Lal, 2016; 

Lehmann et al., 2020a), enabling the provision of the majority of ecosystem services (Adhikari and 

Hartemink, 2016). 

SOM is a highly dynamic component of soil that is continuously being formed and decomposed (Kleber 

et al., 2015; Lehmann and Kleber, 2015; Schmidt et al., 2011). This results in a complex and diverse array 

of chemical compounds within different SOM fractions that vary in their stability, persistence, and 

reactivity (Christensen, 2001; Kögel-Knabner, 2002; Kögel-Knabner et al., 2008a; Lavallee et al., 2020). 

Knowledge about the distribution of SOM between these distinct fractions (Cotrufo et al., 2019) is 

steadily implemented in widely used ecosystem and climate models, which significantly contributes to 

the prediction of C fluxes within our global system (Dynarski et al., 2020; Wieder et al., 2013). 

Under consistent climatic conditions, the long-term C flow equilibrium between constant OM inputs and 

losses establishes a distinct, site-specific SOM content (Sümmerer and Wiesmeier, 2023). OM is 

introduced into the soil after photosynthesis of atmospheric CO2 via plants in the form of litter, crop 

residues, organic fertilizers (i.e. above-ground inputs), or root inputs (i.e. below-ground inputs) (Figure 

1.4). OM loss as CO2 from the soil to the atmosphere occurs primarily through mineralization (i.e., 

microbial respiration). In addition, SOM can be redistributed by processes such as soil erosion, resulting 

in losses via lateral redistribution (Chappell et al., 2015) and leaching to aquatic systems (Nakhavali et 

al., 2020) (not included in Figure 1.4). 

Following its input into the soil, freshly added OM is present primarily in an unprocessed, unaltered, and 

particulate form referred to as free particulate organic matter (fPOM). It is characterized by high C/N 

ratios and its composition is dominated by chemically complex plant-derived compounds (e.g. lignin, 

cellulose, hemicellulose) (Lavallee et al., 2020). Depending on its intrinsic chemical recalcitrance (von 

Lützow et al., 2006), heterotrophic microorganisms such as bacteria and fungi, break down the readily 

available (i.e. labile) OM through enzymatic reactions and utilize it as a source of energy for their own 

growth and metabolic activities (i.e. maintenance), in a process called decomposition. The rate of 
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decomposition is influenced by factors such as temperature, moisture, and pH, with warmer, moister 

soils generally exhibiting faster rates of decomposition (Walker et al., 2018; Wang et al., 2016). OM 

decomposition results in the release of nutrients ready for plant take-up (Figure 1.4), and the secretion 

of microbial substances, which enhance the interaction between mineral and organic particles by serving 

as major cementing agents (Costa et al., 2018; Wagai et al., 2018). This enhances the formation and 

stability of mineral-organic clusters, called aggregates (Abiven et al., 2009; Kong et al., 2005), which 

facilitate soil structure formation (Chenu and Cosentino, 2011). 

 

Figure 1.4: Schematic illustration of SOM formation pathways and stabilization mechanisms. The blue colored arrows 

show the fluxes/inputs of CO2 or C from the atmosphere or biomass into the soil and the red colored arrow shows the 

loss of SOM via mineralization back into the atmosphere as CO2. The black arrows represent the processes and 

mechanisms in the soil involved in SOM (de)stabilization described in the flow text. Own illustration, adapted from 

Dynarski et al. (2020), Liang et al. (2019), Meng et al. (2022) and Totsche et al. (2018). 



 CHAPTER 1: GENERAL INTRODUCTION 

8 

 

Soil aggregates follow a hierarchical structure (Oades, 1984; Tisdall and Oades, 1982) (Figure 1.4). This 

encompasses the formation of microaggregates (<250 µm) within macroaggregates (>250 µm) 

(Balabane and Plante, 2004; Oades and Waters, 1991; Six et al., 2000). The OM within macroaggregates 

aggregates is referred to as occluded particulate organic matter (oPOM). It is in an advanced stage 

of decomposition, but its incorporation into aggregates ensures a spatial separation from decomposers 

and enzymes, and thus leads to increased physical protection (Kögel-Knabner et al., 2008a). This is 

manifested in an increased stability and permanence, highly dependent on aggregate turnover, and 

therefore agricultural management practices (Poeplau and Don, 2013; Six et al., 2000). Aggregates can 

also further be stabilized via e.g. enmeshment of roots and fungal hyphae (Oades, 1984). 

Continued POM decomposition involves the breakdown of complex organic compounds into simpler 

molecules (e.g. polysaccharides, proteins, lipids) via depolymerization (Kleber et al., 2021; Lavallee et al., 

2020). Eventually, highly degraded SOM consists of a high proportion of microbial residue, so-called 

necromass and transformation products enriched in polar functional groups (Angst et al., 2021; Liang et 

al., 2019; Miltner et al., 2012; Sae-Tun et al., 2022; Zhou et al., 2023). Their increased aqueous solubility, 

chemical reactivity and smaller molecular size promote their stabilization as mineral-associated organic 

matter (MAOM) via adsorption onto fine mineral particle surfaces (fine silt and clay, <6.3 µm) and 

entrapment in micro-aggregated organo-mineral structures (Kleber et al., 2021; Totsche et al., 2018). 

These stabilization processes increase the turnover times of MAOM up to hundreds to thousands of 

years (Cotrufo et al., 2015; Kleber et al., 2015; Lavallee et al., 2020; Six et al., 2002; von Lützow et al., 

2006), giving it the notion of a stable C pool. As a result, the prevailing concept emerged, that soils 

containing high amounts of fine-sized minerals with large surface areas (e.g. phyllosilicates) have a 

higher capacity for long-term storage of SOM (Feng et al., 2013; Hassink, 1997; Stewart et al., 2007). 

However, only recently has the reversibility of these mechanisms been observed by priming via root 

exudates (Jilling et al., 2021; Keiluweit et al., 2015). This ensures the re-introduction of MAOM into the 

active SOM cycle, where it is subject to quick microbial assimilation or re-stabilization, adding another 

dynamic aspect to the system (Figure 1.4). 

Separation of these operationally defined POM and MAOM fractions via density and particle size 

differences (physical fractionation, see Chapter 2.2.3.) (Just et al., 2021; Leuthold et al., 2022; Poeplau et 

al., 2018; von Lützow et al., 2007), allows us to illuminate management-induced effects on long-term 

and short-term C sinks in soil. Furthermore, employing specialized analytical tools (as described in 

Chapter 1.3), allows for a more profound understanding of the highly complex and dynamic microbially 

fueled mechanisms involved in the stabilization and destabilization of SOM. This process-based 

understanding will ultimately help improve biogeochemical and climate models to make predictions 

about C cycling under future climate.  
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1.3. Analytical tools as a driving force in elucidating SOM stabilization 

mechanisms 

The present state of knowledge about the functionality and dynamics of different SOM fractions and the 

underlying stabilization mechanisms has been fueled by the steady development and improvement of 

analytical approaches over the last decades. The following sections describe the state-of-the-art 

analytical tools, their underlying principles, and their relevance to SOM research that have been used in 

this work and are relevant to future research (see Figure 1.5). 

The BET method for measuring the specific surface area (SSA) of solid materials was developed by 

chemists Stephen Brunauer, Paul Hugh Emmett and Edward Teller in 1938 (Brunauer et al., 1938). SSA 

refers to the total surface area of a solid material per unit of mass (m² g-1). This measure is important 

since the dominant mechanism responsible for the formation of stable organo-mineral associations in 

soil is adsorption of plant- and microbial-derived organic compounds on clay and fine-silt surfaces 

(Abramoff et al., 2021) (e.g. via ligand exchange, cation bridging or van der Waals forces (Gu et al., 1994; 

Heister, 2014; Yeasmin et al., 2014)). 

The BET method uses the principle that surfaces of solid materials offer numerous reactive sites, enabling 

the take-up of certain volumes of gas via physisorption (Totsche et al., 2010). For analysis, nitrogen gas 

(N2), used as the adsorbate, is gradually introduced into the sample cell and relative gas pressures are 

changed until saturation. The amount of N2 adsorbed as a monolayer to the surface of the solid under 

various pressures (i.e. gas adsorption isotherm) (Sing, 1995) at constant temperatures (77 K) can be 

quantified and the SSA of the sample determined. This provides information on C loading, a useful 

measure for the degree of C saturation, stability and potential C sequestration of the analyzed fine 

mineral soil fraction (Feng et al., 2014; Schweizer et al., 2021). 

Radiocarbon dating is a method based on the principle of radioactive C isotope decay that helps 

scientists determine the age of organic materials. It was developed in the late 1940s by a team of 

scientists led by the chemist Willard Libby, inspired by the work of physicist Serge Alexander Korff, who 

discovered the formation of 14C. On Earth, 12C makes up the vast majority (98.93%) of all C found, 

followed by 13C (1.07%) (Hoefs, 2009). These two C isotopes are stable, which means they are not subject 

to decay. 14C has two additional neutrons in its nucleus, making it unstable and thus subject to 

radioactive decay with a half-life of approximately 5730 years (Trumbore et al., 2016). It is a cosmogenic 

radionuclide, which occurs only in trace amounts in the environment and is constantly being formed 

naturally in the upper stratosphere by the interaction of cosmic rays with N atoms. After oxidation to 

14CO2, it mixes into the global C cycle to establish an equilibrium. 
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Figure 1.5: Overview of some key technologies and analytical approaches used in this thesis that have greatly benefited 

understanding of the processes involved in SOM cycling. The dashed "NanoSIMS" technology was not used in this 

thesis, but is important for further insight into mechanisms that occur at the sub-micron scale. 

However, the massive number of nuclear bomb tests conducted primarily by the United States and the 

Soviet Union between 1945 and 1963, resulted in the substantial emission of ‘bomb 14C’ and a 

characteristic increase in its atmospheric concentration (‘14C bomb peak’). Plants take up the atmospheric 

14C during photosynthesis and incorporate it into their biomass, where it slowly decreases according to 

the radioactive decay law. Consequently, the 14C concentration within dead plants and their 

decomposition products in the soil reflects the atmospheric 14C concentration at the time of their death, 

making ‘bomb 14C’ an ideal biological tracer (Stenhouse and Baxter, 1977). Using accelerator mass 

spectrometry (AMS), the ratio of radioactive 14C to the stable 12C and 13C within a sample can be 

measured and compared to the known atmospheric ratio at a particular time (usually defined as the year 

1950). The result is reported as F14C (‘Fraction Modern’) and expresses the 14C activity within the analyzed 

sample (Trumbore et al., 2016). For soil scientists, these data are particularly useful for C modelling 

because they provide valuable information about the intrinsic time scales specific SOM fractions cycle, 

from which SOM mean residence times (MRT) and C turnover can be derived (Sierra et al., 2017; Wang 

et al., 1996) (see Chapter 3.3.3 & 3.3.4). 

Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy is a technique used in organic 

geochemistry to investigate the molecular composition of solid samples, such as the highly 

heterogeneous structural components of SOM (Kögel-Knabner, 1997). This technique was developed 

and refined between the 1960s and 1980s and was first used to characterize the structural composition 

of humic substances (Barton and Schnitzer, 1963). Later, analysis of bulk soils was accomplished (Wilson 

et al., 1981), which paved the way for the characterization and quantification of different OM inputs 
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(Kögel-Knabner, 2002). This technique also provides valuable information about the chemical bonding 

and functional groups present in the analyzed solid samples (e.g. ground POM, MAOM) (see Chapter 

2.3.2.3.). 13C NMR spectroscopy takes advantage of the fact that certain atomic nuclei respond with a 

nuclear spin upon the application of an external magnetic field. Because of its odd number of nucleons 

(6 protons + 7 neutrons), 13C has a nuclear spin. The magnetic field is generated by an NMR 

spectrometer, which applies a series of radio-frequency pulses to the sample that correspond to the 

resonance frequency of the 13C nuclei. The cross-polarization magic angle spinning (CPMAS) technique 

allows the magnetic polarization to be transferred from a strongly polarized atom to an adjacent atom. 

Magic-angle spinning is used to rotate the sample at a specific angle (54.74°) to the magnetic field axis, 

which homogenizes the signal and improves spectral resolution (Polenova et al., 2015). The NMR 

spectrometer measures the amount of energy absorbed to resonate the nucleus of an atom, which allows 

for the differentiation between nuclei on the basis of characteristic resonance frequencies (Knicker, 

2011). The resonance frequency of each 13C nucleus is compared to a reference molecule 

(tetramethylsilane) in an NMR spectrum (i.e. chemical shift) (see Figure S2.1). 

Overall, NMR spectroscopy provides a qualitative assessment of SOM, allowing the analysis of the 

chemical composition and structural characteristics of organic compounds present in soils. The 

application of NMR spectroscopy has greatly contributed to our understanding of SOM dynamics, 

nutrient cycling, and the effects of different management practices on soil functioning. 

Secondary ion mass spectrometry (SIMS) is a technique used for surface analysis of solid samples. 

NanoSIMS, short for nanoscale secondary ion mass spectrometry, is a high-resolution imaging 

technique, optimized for SIMS imaging. It enables the study of isotope ratios and elemental composition 

of solid materials at the sub-micron scale, i.e. the soil process scale (Mueller et al., 2022; Mueller et al., 

2013), which has significantly expanded the horizons of the observable domain of soil science (Heister 

et al., 2012; Herrmann et al., 2007). The technique was developed in the 1990s, and with nowadays 

around 50 instruments in use worldwide, the NanoSIMS 50 (or 50L) (CAMECA, France), conceived by the 

French physicist Georges Slodzian (Slodzian et al., 1992) and designed by Bernard Daigne, François 

Girard and François Hillion (Hillion et al., 1993), is the leading instrument for the conduction of NanoSIMS 

measurements. Briefly, NanoSIMS analysis is a destructive process, where the surface of the solid material 

to be analyzed is bombarded with a high-energy ion beam of Cs+ or O- primary ions, focused by a coaxial 

lens (Herrmann et al., 2007; Mueller et al., 2013). This results in the ejection of secondary ions (Cs+ = 

negative ions, O- = positive ions) of the upper sample surface in a process called sputtering. This 

secondary ion beam is then focused and directed into the detection system of the instrument, consisting 

of an electrostatic and magnetic sector (i.e. double-focusing design) (Nunez et al., 2017). Here, ejected 

ions are separated in a mass spectrometer with a high mass resolution, according to their mass-to-

charge ratios (Cs+: e.g. 12C-, 13C-, 12C14N-, 12C15N-, 28Si-, 27Al16O-, 56Fe16O-; and O-: e.g. 23Na, 39K, 44Ca, 56Fe). 
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The application of NanoSIMS in soil science provided detailed insights into SOM sorption mechanisms 

(Vogel et al., 2014) and the microscale arrangement of MAOM (Keiluweit et al., 2012; Schweizer et al., 

2021). It also enabled the visualization of SOM formation pathways (Vidal et al., 2021) and the 

identification of functional microdomains as the smallest building blocks of soils controlling SOM 

sequestration and stabilization (Steffens et al., 2017). NanoSIMS analysis was not included in this thesis, 

but its importance for process understanding of SOM dynamics is undisputed.  
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1.4. Agriculture - a history of intensification and degradation 

For millions of years, our early ancestors relied solely on the resources provided by the natural 

environment for foraging. However, favored by the end of the Younger Dryas cold period about 10’000 

to 12’000 years ago (Montgomery, 2007), the cultivation of crops and domestication of animals led to 

the first forms of agriculture (Zeder, 2011). This so-called Neolithic Revolution, enabled a more reliable 

source of food and induced a shift from the people’s nomadic hunter-gatherer to sedentary lifestyles, 

i.e. “from foraging to farming” (Weisdorf, 2005). Based on local knowledge, traditional but resource-

limited farming practices gradually developed. This form of agriculture was largely sustainable because 

it focused on maintaining soil fertility and adapting to natural rhythms. Over thousands of years, 

advancements in farming equipment and practices were made, including the invention of the hand-held 

plow (Pryor, 1985) and first irrigation systems (Gulhati and Smith, 1967), which increased agricultural 

productivity. This led to a significant transformation of natural ecosystems into expansive agriculturally 

used territories, and triggered the emergence of complex societies, cultures and ultimately fostered the 

rise of modern civilizations (Olsson and Paik, 2016; Weisdorf, 2005). 

After millennia of farming, accompanied by the first real cropland expansion (Figure 1.6), the Second 

Agricultural Revolution took place between the mid-17th and late 19th century as a response to the 

increasing food demand of the growing population. It started in Britain and later expanded to other 

Western European countries, and eventually spread into the rest of the world. This period was marked 

by a rise in agricultural productivity, efficiency (Allen, 1999) and massive expansion (Figure 1.6), sparked 

by the implementation of agricultural practices (e.g. crop rotations), and tools (e.g. mechanical seed drill 

and steel plow), and the privatization of cropland (Sullivan, 1985). The increased agricultural productivity 

massively contributed to economic growth and is therefore believed to have played a significant role in 

the emergence of the Industrial Revolution that followed (Patriquin, 2004). This in turn marked the start 

of the so-called Anthropocene (Crutzen, 2002), i.e. the age of fossil fuel exploitation, GHG emissions, 

deforestation and environmental pollution (Steffen et al., 2011). 

The Third Agricultural Revolution, also known as the Green Revolution, was a period between the 1960s 

and 1980s, characterized by high rates of investment, research and technological innovations in 

agriculture (Evenson and Gollin, 2003). Mainly motivated by the need for increased food production in 

developing countries, especially in Asia and sub-Saharan Africa, great success was achieved in the 

breeding of robust and high-yielding wheat and maize varieties (Evenson and Gollin, 2003; Khush, 2001). 

In addition to the positive effects of increased food production and reduced famine, particularly in Asia 

(Eliazer Nelson et al., 2019), this industrialization of agriculture also brought about negative effects on 

the environment. Most notably, cropland expansion and the introduction of policies to promote rapid 
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agricultural intensification (Pingali, 2012) led to a massive increase in the use of chemical fertilizers, 

synthetic herbicides and pesticides (Dethier and Effenberger, 2012), which resulted in environmental 

pollution by runoff (Pingali, 2012). In addition, the increased focus on high-yielding crop varieties led to 

a reduction in crop diversity. This resulted in the neglect of organic inputs in favor of synthetic fertilizers 

to provide crops with essential nutrients for rapid growth, and ultimately losses of soil fertility. 

Furthermore, increased tillage led to increased soil degradation via erosion (Singh, 2000). 

 
Figure 1.6: Historical development of global cropland area expansion (i.e. arable land and permanent crops) from the 

beginnings of agriculture (ca. 10000 BC) until present. The numbers are given in billion ha, and the crucial periods in 

agricultural development are indicated with brackets. At the top left, the development of the total area used, divided 

into arable and pasture land, is shown as a rough overview from 1300 until present. This figure was redrawn and 

modified based on data from Ritchie and Roser (2013). 

In response to the severe environmental pollution caused by the intensified agriculture, the 1970s saw 

a worldwide upsurge in the organic farming movement to combat soil degradation, restore soil fertility 

and ensure ecosystem services (Reganold and Wachter, 2016). Organic agriculture sets itself apart from 

conventional agriculture primarily through the ban of agrochemicals (i.e. synthetic fertilizers, herbicides, 

and pesticides). This reduces the pollution of soils, groundwater and the surrounding environment 

(Pimentel et al., 2005; Tilman, 1998). In addition, the enhanced application of organic fertilizers, as well 

as the increased input of crop residues, promote soil fertility through increased SOM contents (Gattinger 

et al., 2012), which helps developing a good soil structure (Shepherd et al., 2002). Furthermore, organic 

soil management promotes biodiversity (Bengtsson et al., 2005), biological activity (Lori et al., 2017; 

Mäder et al., 2002), increases the water retention (Lal, 2020), and improves nutrient availability for plants, 

all of which can lead to improved soil quality and soil health in the long term (Lal, 2015; Lehmann and 

Kleber, 2015). 
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Today, agricultural production (land use change excluded) contributes 10-12% (5.0-5.8 Pg CO2 eq yr-1) 

of global annual GHG emissions (mainly methane (CH4) and nitrous oxide (N2O)) (Smith et al., 2014) and 

the global land area used for agricultural purposes (i.e. cropland and grazing) (see top left in Figure 1.6) 

accounts for approximately 4.7 billion ha (FAO, 2021). It is estimated that between 1960 and 2019 alone, 

approximately one third of the global land area has been impacted by land use change (FAO, 2021; 

Winkler et al., 2021). This land use change has caused depletion of SOM (Poeplau and Dechow, 2023), 

with a total loss of 133 Pg C from soils since 1850 (Sanderman et al., 2017), thus contributing to climate 

change. If we continue to manage our soils in this unsustainable way, it could take as little as 60 years 

to lose all global topsoil (Arsenault, 2014). 

The most radical, yet effective solution to restore soil C stocks and guarantee ecosystem services, would 

involve the total cessation of agricultural activities (Bell et al., 2023). However, this is not an option, as 

today globally 98.8 % of the daily calorie consumption is provided by agricultural systems that heavily 

rely on soil (Kopittke et al., 2019). Therefore, to repay our soil C “debts” (Sanderman et al., 2017), we 

need to find climate-smart solutions (Paustian et al., 2016) that prioritize sustainable management 

practices, contributing to climate mitigation via C sequestration. In this context, it is of utmost 

importance to understand how different management practices and fertilization schemes affect the 

formation and stabilization of SOM for long-term storage in managed cropland soils. A description of 

available practical measures, as well as political and financial initiatives ready to address this problem 

can be found in the following Chapter 1.5.  
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1.5. Taking action - incentives and measures for SOC build-up 

In the wake of the human-induced and dramatically changing climatic situation of the past decades, it 

is of high importance and urgency to implement ways to reduce GHG emissions and identify sinks for 

atmospheric CO2. In 2015, the United Nations Framework Convention on Climate Change (UNFCCC) 

Paris Agreement was adopted at the 21st UN Climate Change Conference (COP21) and has the goal of 

limiting global warming to +1.5 to +2°C above pre-industrial levels (UNFCCC, 2015), to prevent 

severe and irreversible impacts on the planet. In total, 196 nations voluntarily committed to pursuing 

this goal, which marks a milestone in international efforts to combat climate change and adapt to its 

effects. 

Despite the slowdown in global fossil CO2 emission growth rates over the past decade (Friedlingstein et 

al., 2022), this is still far from the emission reductions needed to meet the temperature targets set in the 

Paris Agreement. To intensify the efforts of limiting global warming, the European Union (EU) adopted 

the European Green Deal. It is a new growth strategy with the goal of transforming the EU into a 

resource-efficient society with net zero GHG emissions by 2050 (EC, 2019), which would make Europe 

the first climate-neutral continent. A key point to consider in pursuit of climate mitigation is the inclusion 

of emissions from the agricultural sector. Failing to do so would impede the achievement of the desired 

2°C target and lead to increased mitigation costs in other sectors (Reisinger et al., 2013; Wollenberg et 

al., 2016). 

In the course of the 21st Conference of the Parties (COP21), the French government launched the 

voluntary action plan “4 per 1000: Soils for Food Security and Climate” (‘4p1000’), which promotes 

soil C accrual to offset global anthropogenic CO2 emissions (Chabbi et al., 2017; Minasny et al., 2017; 

Soussana et al., 2019). This initiative is based on the assumption that a 4‰ or 0.4% annual increase in 

global SOC stocks in the upper 30-40 cm (excluding permafrost) through improved climate-smart soil 

management (Paustian et al., 2016), would help largely counterbalancing human-induced CO2 emissions. 

This initiative also promotes the collaboration among scientists, policy makers, practitioners and 

stakeholders (Rumpel et al., 2020). In addition, it emphasizes the key role of sustainable agricultural 

measures that contribute to SOM maintenance and accumulation, putting soils as C sinks at the center 

for combating climate change and ensuring food security. However, the feasibility of this aspirational 

initiative is intensively debated and repeatedly questioned in the scientific community (e.g. Baveye et al. 

(2018); Bruni et al. (2021); de Vries (2018); Martin et al. (2021); Poulton et al. (2018)), mainly due to 

discrepancies between theoretical and technically feasible C sequestration potentials. 

Despite the growing knowledge within the scientific community and recognition of the central role of 

agriculture in climate change mitigation through SOC management on the political level and the public, 
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incentives for farmers are needed in order to achieve widespread practical implementation. These 

incentives are provided in the form of CO2 certificates, also known as C credits. They refer to a private 

market-based funding mechanism that provides economic incentives for farmers to engage in C 

farming, i.e. in the implementation of agricultural practices that target SOC stock increases (Paul et al., 

2023; Tang et al., 2019). The basic principle is as follows: A farmer voluntarily commits to building up 

SOC through C farming practices. The certifying initiatives approach the farmers and conduct an initial 

analysis of their soil. After a few years, a resampling is conducted and C credits are awarded to the farmer 

in case of increased SOC stocks. Eventually, CO2 emitters (e.g. companies) can purchase C credits to 

offset their own emissions with SOC built up by farmers, thereby funding C reduction projects, rewarding 

farmers, and supporting C farming practices. There is a variety of available C farming practices that 

have been shown to re-store, maintain and increase C sequestration in agricultural soils (Table 1.1). 

Table 1.1: Selection of C farming practices and their effects on SOC storage. 

Practice Effects on SOC storage References 

Organic fertilization 

(manures, composts) 

 Higher SOC stocks in organically managed soils 

compared to conventionally managed soils 

Gattinger et al. 

(2012) 

   Higher SOC (9 t ha-1) with compared to without FYM 

addition in soils of European field trials 

Körschens et al. 

(2013) 

  
Crop residue 

management 

 Increased residue incorporation may increase SOC of 

European croplands by 19-23% over 50-100 years, under 

different climate scenarios 

Haas et al. (2022) 

   Residue restitution led to an increase in stable SOC 

compared to residue export over 42 years 

Trigalet et al. 

(2014) 

  
Improved crop 

rotations (cultivation 

of perennial forage 

crops, cover crops, 

intercropping) 

 Higher C sequestration rate (184 ± 86 kg C ha-1 yr-1) in 

intercropping compared to sole crop systems (0-20 cm) 

Cong et al. (2015) 

     Mean increase of SOC by 2.8 t ha-1 yr-1 under perennial 

forage legumes   

Guan et al. (2016) 

   Significantly higher SOC stocks under cover crops 

compared to reference croplands (C sequestration rate 

of 0.32 t ha-1 yr-1 over 54 years) 

Poeplau and Don 

(2015) 

   Cover crops would lead to C sequestration rates of 0.28-

0.33 t ha-1 yr-1 over a span of 50 years  

Seitz et al. (2022) 

  
LUC from cropland to 

grassland 

 C sequestration rate of 1.01 t ha-1 yr-1 after LUC from 

cropland to grassland 

Conant et al. 

(2001) 

  
Reduced tillage (RT) 

or no tillage (NT)* 

 RT increased SOC stocks by 3.8 t ha-1 (0-15 cm) 

compared to plowing 

Krauss et al. 

(2022) 

Increased C sequestration (62-186 kg ha-1 yr-1) under reduced and 

minimum tillage compared to conventional tillage (0-20 cm) 

Prasad et al. 

(2016) 
 NT increased SOC stocks by 4.6 t ha-1 (0-30 cm) 

compared to conventional tillage 

Haddaway et al. 

(2017) 

  
Agroforestry systems  C sequestration potential of 0.21 ± 0.79 t ha-1 yr-1 in the 

temperate zone 

Mayer et al. 

(2022b) 

   *note: RT and NT only lead to increased SOC in the uppermost soil layers, compared to conventional tillage. Due to the lack of 

plowing, the input of OM into deeper soil layers is lower. Overall, RT and NT provide increased erosion protection and thus reduced 

SOC losses. 
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Strict criteria have to be met to receive C credits for engaging in SOC build-up via C farming practices 

(Leifeld et al., 2019; Paul et al., 2023; Smith et al., 2020; Thamo and Pannell, 2016; Wiesmeier et al., 2020). 

The first priority is the need for quantification and verification of SOC stock changes caused by C 

farming practices. This requires an initial baseline sampling and a resampling after 3-5 years, since 

measurable SOC changes occur very slowly (Figure 1.7). In addition, a control must always be sampled 

as a reference to ensure that SOC changes are management-induced. Furthermore, the requirement of 

additionality must be met, meaning that SOC build-up should result exclusively from activities 

motivated by C credits (Figure 1.7). Measures that are carried out anyway as part of good professional 

practice, are not rewarded. Another criterion is the avoidance of shifting effects, so-called leakage. This 

would be the case if SOC build-up through C farming practices at one site, e.g. via compost application, 

comes at the expense of SOC losses at another site, such as biomass export for compost production 

from outside the land unit boundaries (Olson, 2013). 

 
Figure 1.7: Schematic representation of the influence of increased C input through C farming practices on SOC stocks. 

The values shown on the y-axis and SOC stock trajectories are fictional, but represent realistic scenarios. The solid black 

and blue lines show SOC stock trends "business-as-usual" and affected by the C farming practice, respectively. The 

green solid straight line shows the cumulative C input (e.g. compost application). The dashed black and red lines 

represent the SOC stock before the start of the practice and the new equilibrium, respectively. The blue dotted line 

shows the potential SOC loss after termination of the practice. This figure was adapted from Wiesmeier et al. (2020) 

and Axel Don, Thünen Institut of Climate-Smart Agriculture. 

Probably the most important and difficult criterion to meet for climate change mitigation is the 

permanence of the created soil C sink. SOC build-up is only effective if CO2 is permanently removed 

from the atmosphere and stored in the soil as SOM. In this context, it is important to note, that the build-

up of SOC is finite. Following an initially strong and efficient SOC increase after the start of the C farming 

practice, build-up efficiency decreases after a certain period (typically a few decades), since increased 

SOC stocks entail increased SOC turnover. Consequently, a new C flow equilibrium is established in the 

soil (Figure 1.7). In order to avoid the loss and ensure the permanent positive climate mitigating impact 

of this created C sink, a permanent commitment of the farmer to the continuation of the farming 

practice, even after reaching the new equilibrium, is indispensable.  
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1.6. Long-term experiments as scientific platform - the DOK trial 

Many impacts and changes caused by certain management practices are simply not detectable over 

short time periods. Therefore, the validity of short-term experiments for a holistic view of farming 

systems and their impact on the environment is inadequate (Riar and Bhullar, 2020). Accurate assessment 

of the effects of management practices, such as changes in SOC, therefore requires consistent and well-

documented long-term monitoring that typically spans decades (as depicted in Figure 1.7). 

Long-term experiments (LTEs), with its periodically sampled permanent plots play a critical role as a 

platform where scientists and practitioners can interact, share information, test scientific ideas and 

practical implementation approaches (Richter et al., 2007). They are used for the assessment of farming 

practice impacts, on soil quality (Bai et al., 2018), nutrient management (Miao et al., 2011), crop 

production (Johnston and Poulton, 2018), and the environment as a whole (Rasmussen et al., 1998). In 

addition, they are used for teaching and demonstration, i.e. dissemination. Ultimately, LTEs serve as a 

valuable platform for collaboration and knowledge exchange and their results serve the evidence-based 

decision-making to establish sustainable agricultural practices for climate mitigation. 

Particular challenges of LTEs are mainly the extensive and coordinated planning and evaluation, as well 

as the long duration until usable, meaningful data are available and the subsequent, which poses the 

risk of neglecting the experiment (Richter et al., 2007). The number of LTEs conducted worldwide is 

possibly in the hundreds, if not thousands, with around 600 running for more than 20 years (Grosse et 

al., 2020; Körschens, 2006). They have produced a vast output of scientific publications, significantly 

contributing to our understanding of farming practices and their impacts on soil and the surrounding 

environment. A few selected well-known representatives are listed in Table 1.2. 

Table 1.2: Selection of famous worldwide long-term experiments. 

Field trial Location References 

LTEs at Rothamstead 

Research 

Harpenden (Hertfordshire, UK), initiated in 1843 Macdonald et al. (2020) 

   
Farming systems trial at 

Rodale Institute 

Kutztown (Pennsylvania, USA), initiated in 1981 Pimentel et al. (2005) 

   
Continuous field trial 

Eternal Rye 

Halle (Saxony-Anhalt, D), initiated in 1878 Merbach and Deubel 

(2007) 

   
Askov fertilization trial Askov (Jutland, DK), initiated in 1894 Christensen et al. (2022) 

   
Static fertilization 

experiment 

Bad Lauchstädt (Saxony-Anhalt, D), initiated in 1908 Körschens et al. (1994) 

   
The DOK system 

comparison trial 

Therwil (Basel-Landschaft, CH), initiated in 1978 Mäder et al. (2002) 
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For this thesis, the DOK system comparison trial is the focus of research. It is a long-term field 

experiment, initiated in 1978, that compares bioDynamic, bioOrganic and Konventionell (German for 

conventional) farming systems (Mäder et al., 2002). It is jointly managed by the Research Institute of 

Organic Agriculture, FiBL (Frick, canton of Aargau) and the Federal Swiss Institute for Agricultural 

Research, Agroscope (Reckenholz, canton of Zurich). 

The DOK is situated 300 m above sea level, about 10 km south of the city of Basel, between the villages 

Therwil and Biel-Benken in the Canton of Basel-Landschaft, Switzerland (7°32′ E, 47°30′ N) (Figure 1.8). 

It is located at the end of the Faltenjura, the folded part of the Jura, a subalpine mountain range north 

of the Western Alps. This region marks the southwesternmost end of the Upper Rhine Valley, which 

formed in the early Cenozoic, late Eocene (56-34 Ma before present). The hills surrounding the DOK trial 

consist of limestone in the south and molasses freshwater sediments in the north slope. The small valley 

(= Leimental) is formed by two small streams cutting into Pleistocene loess sediments. During the 

Pleistocene, periglacial processes led to a colluvial accumulation of eroded material (limestone block in 

profile) and windblown loess material. Soil formation has taken place over the past 10,000 years, with 

possible intermittent periods of erosion or accumulation processes. The region is characterized by its 

mild climate, with mean annual temperature of 10.5°C and mean annual precipitation of 842 mm. This, 

allows an effective vegetation period of 210-215 days per year (Krause et al., 2020). 

 
Figure 1.8: Location of the DOK long-term trial in northwestern Switzerland, in the canton of Basel-Landschaft, near 

the city of Basel. Adapted from Preisig et al. (2023). Photo: Tibor Fuchs. 
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The soil type is a Haplic Luvisol of loess material with a silty texture of 3% sand, 76% silt and 21% clay. 

It is characterized by an Ap horizon rich in OM, followed by a clay depleted illluvial horizon and a typical 

clay-enriched Bt horizon (Figure S1.14). This sequence typically occurs when clay is flushed downward 

by water and accumulates at greater depths in the soil (i.e. lessivage) (Quénard et al., 2011). The soil 

profile is free of carbonates; however, limestone as well as red brick fragments appear in the profile. In 

addition, up to pea-sized iron-manganese concretions (Childs, 1975) are present in the soil (Figure S1.13 

& S1.14), but no distinct pattern of reduced conditions. Therefore, waterlogged conditions do not 

appear to be prevalent. 

A special feature of the DOK system comparison trial is its extensive soil sample archive at the Federal 

Swiss Institute for Agricultural Research, Agroscope in Reckenholz. Here, the soil samples taken since 

the beginning of the experiment are stored and their allocation to scientists for research purposes is 

managed. Access to these decades-old samples from soil under well-documented and contrasting 

agricultural management, is an important cornerstone for the detailed observation and precise 

assessment of farming system impacts on the dynamics of SOC. Of particular importance is the duration 

of this field trial, which now covers a period of 44 years. This allows not only the investigation of short-

term, i.e. seasonal, but also of long-term management-induced impacts on a large spectrum of soil 

parameters. 

For an overview of the experimental design and the analyzed farming systems in focus of this theses see 

Figure S3.1 and Table 2.1, respectively. They are introduced and described in the Materials and Methods 

sections of Chapter 2 & 3. 
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1.7. Thesis outline and objectives 

The overarching objective of this thesis is to improve our understanding of how various farming systems 

impact SOM and, in turn, the soil's capacity to contribute to climate change mitigation. Using the 

analytical tools described in Chapter 1.3, I aimed to shed light on the mechanisms and dynamic aspects 

of C sequestration involved and underlying this process. 

Despite the large number of studies conducted within the DOK trial, no study to date has conducted the 

long-term observation of farming system impacts on distinct fractions of SOM with different 

functionalities. Therefore, the objective of Chapter 2 was to examine the impacts of farming systems 

with varying types and quantities of added fertilizers on these SOM fractions, over a 36-year period. By 

employing physical fractionation on archived soil samples from four different farming systems, I was 

able to separate SOM fractions with different stabilities. The fractionated samples were taken from 1982-

2017, allowing for a quantitative analysis of the temporal dynamics of SOM, within and between these 

fractions. In addition, I used solid-state 13C NMR-CPMAS spectroscopy to elucidate potential 

management-induced impacts on SOM quality in separated fractions across the farming systems. 

Furthermore, this study aimed to determine whether recommendations for soil management practices, 

that are beneficial for climate mitigation, could be derived from this long-term experiment. 

In Chapter 3, the focus was on the finest physically fractionated, stable SOM fraction (<6.3 µm), which 

is associated with long-term C storage. Through 14C radiocarbon analysis via AMS and subsequent 

modeling, I aimed to gain important information about the permanence of SOM within this fraction and 

if fertilization-induced (qualitative and quantitative differences) impacts can be identified. Furthermore, 

BET specific surface area measurements provided detailed insights into possible stabilization 

mechanisms of SOM with fine mineral surfaces in this fraction. 

Finally, Chapter 4 serves to jointly discuss the main results presented in Chapters 2 and 3, and to put 

them into a broader context. Based on this, the contribution of agricultural soils to climate change 

mitigation is evaluated and its possible implications for political action and soil management strategies 

are discussed in the light of future climate. Furthermore, limitations of this thesis are pointed out and 

possible focal points for future research are identified. 

Overall, I aimed at generating outcomes that would not only improve our understanding of the C 

sequestration potential of agricultural soils, but also play a central role in evaluating the impact of 

agricultural practices on climate change mitigation. As a result, these findings can have significant 

implications for decision-making in policy and practice, as well as contribute to the development of 

optimized climate-smart soil management practices, ultimately leading to direct practical benefits. 
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This thesis was conducted within the framework of the research project DynaCarb - Dynamics of carbon 

sequestration and stabilization in an agricultural long-term trial. This project ran from January 2019 until 

June 2023 and received continuous funding by the Swiss National Science Foundation SNF (grant 

number: 182018). 
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Abstract 

Agricultural management of soils has led to severe losses of soil organic matter (SOM), accompanied by 

an increased release of CO2 into the atmosphere and a reduction of soil fertility. Especially under the 

aspect of global warming and the increasing demand for food, there is a need for sustainable 

management options increasing soil organic carbon (SOC) storage in agricultural soils, but knowledge 

gaps exist regarding C persistence in, and its transfer between functional SOC pools, within different 

farming systems. Here we report on impacts of different farming systems on the temporal dynamics of 

SOM fractions within the DOK long-term trial (Switzerland), from 1982 to 2017. A purely minerally 

(CONMIN), a minerally and organically (CONFYM), and a purely organically fertilized farming system 

(BIODYN) were compared with an unfertilized control (NOFERT). We separated archived soils from the 

Haplic Luvisol (0-20 cm depth) into particulate (POM) and mineral-associated OM (MAOM) fractions, via 

physical fractionation, and analyzed the chemical composition of selected fractions via solid-state 13C 

CPMAS-NMR spectroscopy. We demonstrate that under none of the analyzed farming systems, 

additional SOC was sequestered in the clay-sized MAOM fraction (<6.3 µm) over a period of 36 years. 

In all fertilized systems, the amount of SOC in this pool did not change, but strongly decreased in 

NOFERT (-27%). Bulk SOC increased in BIODYN (+13%) and CONFYM (+5%), but decreased in CONMIN 

(-8%) and NOFERT (-20%). As no additional SOC accumulated in the clay-sized MAOM fraction, this 

implies that bulk SOC increases were solely stored within labile POM fractions. NMR spectra showed 

comparable POM chemical compositions between different systems. Differences in fertilizer quality 

(BIODYN = composted farmyard manure vs CONFYM = stacked farmyard manure + mineral fertilizer) 

and the omission of pesticides resulted in better conditions for POM stabilization and consequently 

significantly higher C contents of occluded POM (oPOM) within aggregates, in BIODYN. However, this 

labile fraction is at high risk of being lost within a few days, as illustrated by the strong annual oPOM-C 

content fluctuations depending on the timing of soil sampling after harvest. The highest post-harvest 

oPOM-C losses in BIODYN indicate the higher dynamics compared to CONFYM. It is anticipated that 

only sustainable fertilization methods with continuous application of solely organic fertilizers in the long-

run can maintain SOC in the labile POM fractions at elevated levels, thereby ensuring soil fertility. It also 

illustrates the need for prevention of major losses by careful management of the labile POM fractions, 

as this OM could associate with fine mineral particles at a later stage and thus contribute to OC 

sequestration in the stable SOC pool. Overall, the potential of arable soils to accumulate stable OC for 

long-term sequestration is questioned. 

Keywords: physical fractionation, carbon dynamics, fertilization, manure, farming system comparison, 

organic farming 
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2.1. Introduction 

The potential of agricultural soils to serve as a long-term carbon (C) sink is currently subject of intense 

debate at political and economic levels (Minasny et al., 2017; Rumpel et al., 2020) as a measure to take 

action against climate change and counteract soil degradation. However, land use change to and 

intensive use of arable land has led to considerable depletion of soil organic matter (SOM), which plays 

a key role in soil structure formation, plant nutrition and soil fertility (Bünemann et al., 2018; Dignac et 

al., 2017). 

Soils act as C sink when organic C inputs are bigger than the losses by decomposition. Sequestration of 

such added C is achieved when it is stabilized and thus stored in the soil for a long time. “Climate-smart” 

agricultural management not only offers the opportunity to sequester atmospheric CO2, it helps 

fostering key soil functions and therefore improving soil health (Lehmann et al., 2020a; Paustian et al., 

2016; Smith, 2012; Smith, 2016). A variety of management options has been established aiming to 

enhance C inputs to agricultural soils. Organic matter (OM) input via manure (Gross and Glaser, 2021), 

improved crop rotations with legumes (Kumar et al., 2018), cover crops (McDaniel et al., 2014; Poeplau 

and Don, 2015), biochar application (Smith, 2016), agroforestry (De Stefano and Jacobson, 2018) and 

organic farming with grass-clover in the rotation (Jarvis et al., 2017) are prominent examples. In the soil, 

any OM is subject to decomposition and subsequent mineralization, stabilization through physical 

protection in aggregates or association with mineral soil particles (Kleber et al., 2015; Schmidt et al., 

2011; Wiesmeier et al., 2019). During decomposition, its chemical composition is altered. Therefore SOM 

quality spans all levels of decomposition from fresh, undecomposed and structurally complex plant litter 

to highly processed organic molecules (Kögel-Knabner, 2002). These forms are characterized by variable 

turnover rates (Christensen, 2001; Kölbl and Kögel-Knabner, 2004). 

Particulate OM (POM) and mineral-associated OM (MAOM) are generally accepted as important 

functional SOM fractions, that enable the prediction of SOM dynamics (Lavallee et al., 2020). POM is 

mainly of plant origin, with wide C to N ratios (Gregorich et al., 2006) and predominantly consists of OM 

in early stages of decomposition. It can be further divided into free POM (fPOM) outside of aggregates 

(i.e. unprotected) and occluded POM (oPOM), the latter being physically protected from decomposition 

in aggregates (Six et al., 2002). C inputs, e.g. via organic fertilizers, are essential for the accumulation of 

OM, which positively influences soil aggregation and aggregate stability (Karami et al., 2012; Kong et al., 

2005), with POM and microbially secreted substances serving as major binding agents (Costa et al., 2018; 

Golchin et al., 1994; Oades and Waters, 1991). All POM forms represent a dynamic, labile SOM pool that 

is distinctly affected by agricultural management practices (Poeplau and Don, 2013). The stability of 

oPOM varies widely with turnover times from years to decades depending on aggregate turnover 
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(Lavallee et al., 2020; Liao et al., 2006). Large aggregates have a shorter turnover time, contain younger 

and less decomposed SOM (Puget et al., 2000), whereas smaller aggregates are more stable and contain 

older and more processed SOM (Six et al., 2000; Steffens et al., 2011). 

In contrast, MAOM is further decomposed, microbially transformed and stabilized through sorption onto 

surfaces of fine-sized mineral particles (Basile-Doelsch et al., 2015; Cotrufo et al., 2019; Kleber et al., 2015; 

Newcomb et al., 2017). This stabilization mechanism increases SOM turnover rates to ranges of decades 

up to centuries (Kleber et al., 2015; Kögel-Knabner et al., 2008b). Thus, MAOM represents a stable SOM 

pool, enriched with chemical components of microbial origin and low C to N ratios (Courtier-Murias et 

al., 2013). The extent of microbially transformed SOM from OM inputs is largely constrained by 

stoichiometric imbalances between OM inputs and microbial communities, i.e. elemental plant resource 

composition and nutrient requirements of microbial biomass (Mooshammer et al., 2014). The input of 

supplementary nutrients (e.g. via mineral fertilizers) might alleviate these constraints and increase the 

rate to which OM inputs are transferred into the stable SOM pool (Kirkby et al., 2016; Kirkby et al., 2014). 

However, Steffens et al. (2009) claimed that this fraction, which is considered stable, can be mobilized 

and mineralized when land management and climatic conditions are changing. With advancing global 

warming, substantial losses of SOM from agricultural soils are projected (Wiesmeier et al., 2016), posing 

a challenge to efforts to increase or even maintain current soil C stocks through C inputs (Riggers et al., 

2021). Given these premises, it is essential to understand how long it takes until C inputs to arable land 

are transferred to different functional SOM pools and for how long the sequestered C is stabilized 

(Schmidt et al., 2011; Smith, 2005). 

The objective of this study was to investigate the temporal dynamics of quantity and quality of SOM 

fractions in different farming systems in the DOK long-term experiment (Therwil, CH) (Mäder et al., 2002). 

Our research focused on four farming systems: two conventional systems, one with the exclusive use of 

mineral fertilizer (CONMIN), and another with the use of mineral fertilizer and farmyard manure 

(CONFYM), an organic farming system with only organic manure (BIODYN) and an unfertilized control 

(NOFERT). 

There is an extensive body of literature covering different perspectives of farming system impacts on 

soil properties in the DOK experiment. However, only two studies analyzed C dynamics (Fließbach et al., 

2007; Leifeld et al., 2009), none of which considered the stable clay-sized MAOM fraction for testing of 

climate-friendly soil management. We hypothesized, that the POM fractions would reflect the 

continuous OM inputs, and thus farming systems receiving organic fertilizers (CONFYM and BIODYN) 

would accumulate significantly more labile POM than systems without organic fertilization (NOFERT and 

CONMIN). For the MAOM fraction, we hypothesized a steady decline towards a new steady-state 
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equilibrium at a lower level, where we expected the dynamics of C incorporation into this fraction to 

differ between the analyzed systems and to be most efficient in BIODYN and in CONFYM due to the 

higher microbial activity in these plots. We aimed to answer, if farming systems differing in form and 

amount of added fertilizers have measurable effects on functional SOM fractions, and if 

recommendations for climate-friendly soil management can be drawn from long-term experiments. 
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2.2. Materials and Methods 

2.2.1. Experimental setup and sampling 

The DOK field experiment is a long-term farming system comparison trial, located in Therwil, Canton of 

Basel Landschaft, Switzerland (7°32′ E, 47°30′ N), which started in 1978. The soil type is a Haplic Luvisol 

(WRB, 2015), developed on deep deposits of alluvial loess. The mean annual temperature is 10.5 °C (1.5 

°C increase since 1978) with a mean annual precipitation of 840 mm (Krause et al., 2020). In the DOK 

trial, two organic and two conventional farming systems are compared with an unfertilized control 

(Mäder et al., 2002). They have the same crop rotation within seven-year crop rotation periods (CRP) 

with two years of grass-clover ley (Table S2.1), but receive different types of fertilizers. Each farming 

system is replicated four times (columns), and the crop rotation is running temporally shifted in three 

subplots. This sums up to 96 parcels (5 × 20 m each), arranged in a randomized spilt-plot design. All 

farming systems have the same type and frequency of tillage but receive different types of plant 

protection (Table 2.1). 

The focus of this study was on four systems, which represent an input gradient of fertilizers in terms of 

quantity and quality of OM input (Table 2.1). NOFERT (NO FERTilization) is a control treatment that has 

received no fertilizers since 1978. CONMIN (CONventionally managed and MINeral fertilizer) receives 

only mineral fertilizer and was left unfertilized during the first CRP (1978-1984). CONFYM 

(CONventionally managed, mineral fertilizer and FarmYard Manure) is an integrated conventional 

system, that combines the use of mineral and organic fertilizers, and BIODYN (BIODYNamically 

managed) receives only organic fertilizers (Table 2.1), and is managed according to principles of 

biodynamic farming. Straw biomass was removed from the plots after harvesting. In CONFYM and 

BIODYN, manure amendment corresponds to 1.4 livestock units per hectare and year (Table 2.1). The 

amount of raw manure prior to farming system-specific processing, defines the amount of OM inputs 

via organic fertilizers in CONFYM and BIODYN. Aerobic composting of BIODYN manure results in higher 

C losses via microbial decomposition, compared to manure stacking in CONFYM, manifested by 20% 

lower OM inputs in BIODYN (Table 2.1). Qualitatively, BIODYN compost is relatively enriched with more 

recalcitrant OM due to the higher losses of labile C compounds (Fließbach and Mäder, 2000). Slurry is 

added to supply nutrients according to plant needs, mainly N, of the given crop. Mineral nutrient inputs 

in CONMIN and CONFYM are given up to the limits of Swiss fertilization recommendations (Richner and 

Sinaj, 2017). Mineral fertilizers were added on top of manure in CONFYM to reach the recommended N 

level, and as N inputs from farmyard manure are not fully accounted for as readily bioavailable, CONFYM 

received higher N inputs than CONMIN (Table 2.1 & Table S2.2). 
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Overall, we analyzed archived soil samples from 16 plots (four farming systems with four replicates each) 

taken every fifth year (1982, 1989, 1996, 2003, 2010 and 2017) within each of the six completed seven-

year CRP (CRP 1 = 1978-1984, CRP 2 = 1985-1991, CRP 3 = 1992-1998, CRP 4 = 1999-2005, CRP 5 = 

2006-2012, CRP 6 = 2013-2019) (Table S2.1). This resulted in 96 bulk soil samples in total, each 

representing a composite of 15-20 randomly distributed samples, taken after harvest with a soil corer 

(0-20 cm depth, 3 cm diameter) in the inner part of the plots, leaving out border zones. Samples were 

transported to the lab, air-dried at 40 °C, until no further moisture loss was observed and subsequently 

sieved to 2 mm. 

2.2.2. Soil characterization 

We analyzed all 16 plots for their basic soil characteristics, to provide an assessment of the current state 

of the studied soils. Therefore, bulk SOC and total N were measured on the most recent archived samples 

from 2017, while texture and mineralogy were analyzed using the most recent soil samples from the 

latest DOK sampling campaign in 2019 (Table 2.2). 

2.2.2.1. Bulk SOC and total N 

Bulk SOC and total N content were determined in duplicate via dry combustion on a Vario EL cube 

elemental analyzer (Elementar Analysensysteme, Hanau, Germany). All bulk samples were free of 

carbonates so that the total C concentration equals the organic C (OC) concentration. 

2.2.2.2. Texture 

The texture of bulk soil samples was determined with the PARIO Plus Soil Particle Analyzer (METER 

Group, Germany/USA). Prior to measurement, H2O2 (30%) was added to 25-30 g of soil sample and 

heated in a water bath for OM oxidation (12 h). H2O2 was removed from the sample through subsequent 

repeated addition of distilled water, centrifuging and decanting. We repeatedly washed the samples 

until an electrical conductivity of <400 μS m-1 was reached, to ensure the absence of soluble salts. 

Sodium hexametaphosphate (Na6O18P6) was used for sample dispersion. 

2.2.2.3. Mineralogy 

Mineralogy of the bulk soil and the clay fraction (<2 μm and <6.3 μm) was determined using powder X-

ray diffraction (P-XRD, Cubix3, Malvern Panalytical, Almelo, Netherlands). Prior to P-XRD analyses, the 

samples were treated with hydrogen chloride (HCl) to remove OM. P-XRD was performed on random 

powder samples and on oriented samples after saturation with Ca2+ and ethylene glycol (room 

temperature) and K+ (room temperature and stepwise heated to 550 °C). 
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2.2.3. Physical fractionation 

Following a modified fractionation scheme of Kölbl and Kögel-Knabner (2004) and Steffens et al. (2009), 

we separated POM and MAOM fractions from all 96 bulk soil samples (Figure 2.1) (for the detailed 

laboratory method see S1.1). Briefly, 250 ml of Na-polytungstate solution (ρ = 1.8 g cm-3; TC-Tungsten 

Compounds, Grub am Forst, Germany) was added to 30 g of air-dried bulk soil (<2 mm) for capillary 

saturation and left settling overnight. The floating fPOM was aspirated with a vacuum pump. Using 

ultrasound for aggregate disruption, subsequent centrifugation and aspiration, the further decomposed 

POM, receiving physical protection through occlusion (oPOM) within macro-aggregates of the heavy 

fraction (>1.8 g cm-3) was separated. 

 
 

Figure 2.1: Physical fractionation scheme and conducted measurements. Modified from Kölbl and Kögel-Knabner 

(2004) and Steffens et al. (2009). The coarse silt (63-20 μm) and medium silt fraction (20-6.3 μm) were put together 

and referred to as silt-sized OM (63-6.3 μm), and the fine silt + clay fraction is referred to as clay-sized MAOM fraction 

(<6.3 μm). 

Prior, we tested a range of ultrasonic energies (50-450 J ml-1) (Figure S1.1.) for optimal aggregate 

disruption, adjusted to the texture and C content of the samples (Griepentrog and Schmidt, 2013). 

200 J ml-1 released the most oPOM-C and therefore disrupted macro-aggregates most efficiently, 

minimizing redistribution of POM into finer particle-size fractions (Oorts et al., 2005). The ultrasonic 

homogenizer (Sonopuls HD 2200.2, Bandelin, Berlin, Germany) operated at a constant output of 75 W. 

A calorimetric calibration (North, 1976) of the ultrasonic device was regularly conducted, due to 

considerable deviations between nominal and actual energy outputs of ultrasonifiers (Schmidt et al., 

1999), caused by deterioration of the probe tip (Amelung and Zech, 1999; Mentler et al., 2017). The 

probe tip of the sonotrode (VS 70 T, 13 mm diameter, Bandelin, Berlin, Germany) was immersed 25 mm 

into the solution for complete turbation of the sample. We regulated the temperature of the solution 

(<30 °C) to prevent alteration of SOM quality. The obtained POM fractions were washed (<10 μS cm-1) 
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over a 20 μm sieve, freeze-dried, weighed and ground for further analyses. The remaining heavy fraction 

(>1.8 g cm-3) was washed (<50 μS cm-1) via centrifugation (15 min, 7000 rpm) and wet-sieved to separate 

the sand (2000-63 μm) and the coarse silt fraction (63-20 μm). 

Prior to further fractionation by sedimentation in Atterberg-cylinders, we conducted tests to choose 

between a particle size cut-off at <2 μm or <6.3 μm. Both fractions were separated from four replicates 

of one NOFERT and of one BIODYN plot, and 14C age was determined (Mini Carbon Dating System, 

MICADAS, ETH Zürich, Switzerland). We found no significant differences between 14C ages of the two 

fractions in neither of the two farming systems (data not shown). Thus we used a particle size cut-off at 

<6.3 μm, because of the considerable increase in material and the reduction of sedimentation time. This 

fraction is denominated as clay-sized MAOM fraction (<6.3 μm). 

Eventually, fPOM (>20 μm), oPOM (>20 μm), sand-sized OM (2000-63 μm), silt-sized OM (63-6.3 μm) 

and clay-sized MAOM (<6.3 μm) were separated. OM in the sand- and silt-sized fractions is probably 

not adsorbed to surfaces of these mineral particles, but rather originates as methodological artifact from 

fractionation procedures (e.g. wet-sieving) and still intact micro-aggregates (after ultrasonication). This 

is why only the clay-sized fraction (<6.3 μm) was assigned the term ‘MAOM’. All obtained fractions were 

air-dried at 60 °C, weighed and ground for further analyses. 

2.2.4. OC, total N, and calculation of mass and C recovery 

We analyzed all archived bulk soil samples (n = 16 plots × 6 years = 96) and obtained SOM fractions 

from physical fractionation (n = 96 bulk soil samples × 5 fractions = 480) in duplicate for total C and N 

concentrations by dry combustion on a Vario EL cube elemental analyzer (Elementar Analysensysteme, 

Hanau, Germany). All bulk samples were free of carbonates so that the total C concentration equals the 

organic C (OC) concentration. The sum of the weights of all separated and air-dried fractions (n = 5) per 

bulk soil sample (30 g) gave the corresponding mass recovery. Measured OC concentration of each 

fraction was applied against the respective fraction weights, and the sum of all five fractions compared 

to the measured OC concentration of the bulk soil gave the C recovery. 

In addition, we calculated the maximum potential C saturation of mineral particles <20 μm according to 

the empirical formula of Hassink (1997) and its adjustments made by Wiesmeier et al. (2015) to consider 

texture differences between the analyzed plots: 

𝐶𝑝𝑜𝑡 = 𝑎 +  𝑏 ∗  𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠<20µ𝑚 

Cpot is the maximum potential C saturation of mineral particles <20 μm [mg g-1], a and b are empirically 

determined constants (aHassink = 4.09 and bHassink = 0.37; aWiesmeier = -0.23 and bWiesmeier = 0.36). 
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particles<20μm is the concentration of mineral particles <20 μm [%], determined by texture analysis. 

Further, we calculated the current C contents (Ccur) [mg g-1] of this fraction for 1982 and 2017, using its 

measured OC concentrations and fraction mass proportions determined by texture analysis. C saturation 

(Csat) is the percentage of Ccur from Cpot, and the C saturation deficit (Cdef) is calculated as Cpot - Ccur. 

2.2.5. Solid-state 13C CPMAS-NMR spectroscopy 

Selected fPOM (n = 2-3 plot replicates per farming system), oPOM (n = 2-4 plot replicates per farming 

system) and clay-sized MAOM fractions (n = 4 NOFERT and 4 BIODYN plot replicates) from 1982 and 

2017 were analyzed by solid-state 13C cross-polarization magic-angle spinning nuclear magnetic 

resonance (CPMAS-NMR) spectroscopy (Bruker DSX 200 NMR spectrometer, Bruker, Karlsruhe, 

Germany), to determine the OM chemical compositions. Clay-sized MAOM fractions were treated with 

hydrofluoric acid (HF) prior to measurement, to reduce mineral particle contents and enrich 13C. We 

conducted measurements in 7 mm zirconium dioxide rotors at a spinning speed of 6800 Hz and a pulse 

delay time of 0.4 s. A ramped 1H pulse was applied during a contact time of 1 ms, to avoid Hartmann-

Hahn mismatches. Depending on the C contents and available sample material, the number of obtained 

scans ranged between 3’600 and 205’000, and a line broadening between 0 and 100 Hz was applied for 

the spectra. The 13C chemical shifts were referenced to tetramethylsilane (0 ppm). We used the following 

chemical shift regions for integration: -10 to 45 ppm (alkyl C), 45 to 110 ppm (O/N alkyl C), 110 to 

160 ppm (aromatic C) and 160 to 220 ppm (carbonyl/carboxyl C). The ratio of alkyl C to O/N alkyl C 

(A/O-A ratio) was used as sensitive indicator for the degree of OM decomposition (Baldock et al., 1997). 

2.2.6. Statistical analyses 

We applied a linear mixed effects model with repeated measurements to determine the impact of 

farming systems on SOM fractions as a function of sampling year, using R version 4.1.2 and RStudio 

(RStudio Team, 2021). In short, the lme function of the nlme package was used (Pinheiro et al., 2020) 

with farming system nested in subplot and column as repeated random factors to account for spatial 

heterogeneity within the experimental design of the DOK trial. A two-way ANOVA was then employed 

to determine the impact of farming system, sampling year and their interaction on SOC contents. 

Subsequently, a Tukey HSD test was applied to test for differences between the faming systems, in case 

of model significance. Differences in bulk soil characteristics and chemical shift regions of obtained 

13C CPMAS-NMR spectra between the farming systems were tested for statistical significance by a one-

way ANOVA. Residuals were tested for normal distribution using visual inspection of QQ-plots and the 

Shapiro-Wilk test, and homogeneity of variances was tested using Levene’s test. Subsequently, a post-

hoc Tukey HSD test was performed using a significance level of α = 0.05, for all tests.  
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2.3. Results 

2.3.1. Bulk soil characteristics 

All analyzed plots had a silty texture with 2.8 ± 0.6% sand, 75.8 ± 2.8% silt and 21.4 ± 3.2% clay 

(Table 2.2). Mean sand (NOFERT: 2.7 ± 0.6%, CONMIN: 2.8 ± 0.4%, CONFYM: 2.9 ± 0.5% and BIODYN: 

2.7 ± 1.1%), silt (NOFERT: 77.1 ± 3.4%, CONMIN: 75.6 ± 1.7%, CONFYM: 76.8 ± 2.4% and BIODYN: 

73.8 ± 3.1%) and clay contents (NOFERT: 20.2 ± 3.9%, CONMIN: 21.7 ± 1.9%, CONFYM: 20.4 ± 2.6% and 

BIODYN: 23.5 ± 3.9%) showed comparable values between the plots of the farming systems after harvest 

in 2019. All 16 plots showed similar mineralogies, with phyllosilicate contents around 20%, dominated 

by illite, which was lowest under NOFERT (10.6 ± 1.4%) and highest under BIODYN (14.0 ± 4.7%) 

(Table 2.2). Mean SOC contents in 2017 were lowest in NOFERT (11.3 ± 1.4 mg g-1), higher in CONMIN 

(13.6 ± 1.6 mg g-1) and CONFYM (14.6 ± 1.2 mg g-1), and highest in BIODYN (17.9 ± 2.5 mg g-1) 

(Table 2.2), with significant differences to CONMIN and NOFERT (Figure 2.2). 

 
Figure 2.2: Development of bulk SOC contents in the DOK trial (0-20 cm depth) under each farming system over a 

36-year period (1982-2017). Data shows plot means (n = 4) per farming system and year. Error bars represent standard 

deviations between the four replicated plots per farming system. Results of a repeated two-way ANOVA (sys = farming 

system, yr = year) are depicted, using a linear mixed effect model that accounts for the spatial arrangement of plots 

within the experimental design. Post-hoc Tukey letters give significant differences at p <0.05.  
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2.3.2. Physical fractionation 

2.3.2.1. Bulk SOC development 

Bulk SOC contents in the four different farming systems developed as follows from 1982 to 2017: in 

NOFERT, it decreased by 2.8 mg g-1 (-20%) and in CONMIN by 1.1 mg g-1 (-8%). In CONFYM, it slightly 

increased by 0.7 mg g-1 (+5%) and in BIODYN by 2.7 mg g-1 (+13%) (Figure 2.2). 

2.3.2.2. Distribution and development of C in POM and MAOM fractions 

The averaged mass recovery over all farming systems and years after physical fractionation was 94 ± 1%, 

and SOC recovery averaged 73 ± 4%. Both recovery rates showed similar values between farming 

systems and years. Based on these recovery rates, on average 8.0% of SOC was stored in POM fractions 

(>20 μm) (3.3% fPOM, 4.7% oPOM), 1.8% in the sand-sized OM fraction (2000-63 μm), 20.8% in the silt-

sized OM fraction (63-6.3 μm) and 69.4% in the clay-sized MAOM fraction (<6.3 μm). The absolute values 

of fraction-C contents per farming system for each analyzed year are presented in Table S2.3. 

C contents in the fPOM fraction were relatively stable over the whole period with minor increases in all 

treatments (Figure 2.3a). Depending on farming system, oPOM-C contents showed major fluctuations. 

In NOFERT and CONMIN, they were relatively stable from 1982 to 2010. In 2017, oPOM-C increased in 

these systems by +161% and +87%, respectively, compared to 2010. In CONFYM and BIODYN, the 

development of oPOM-C contents was characterized by strong fluctuations between the analyzed years 

(Figure 2.3b). From 1982 to 1989, oPOM-C in CONFYM and BIODYN increased by 106% and 145%, 

followed by a decrease of 66% and 50% from 1989 to 1996, respectively. The same but attenuated 

pattern was observed from 1996 to 2003, with oPOM-C increases of 56% and 70% and decreases of 58% 

and 48% from 2003 to 2010, respectively. In 2017, oPOM-C contents recorded their biggest increases of 

289% in CONFYM and 184% in BIODYN. We found these oPOM-C fluctuations to strongly correlate with 

the elapsed time between harvest and sampling (R2; BIODYN: 0.87; CONFYM: 0.96) each analyzed year, 

which ranged from 1 to 35 days (Figure 2.4). 

The sand-sized OM (2000-63 μm) fraction contributed the least to the total SOC content and slight 

fluctuations between the sampled years are assumed to be artefacts of methodical issues during 

fractionation, specifically wet-sieving. Therefore, the share of SOC in this fraction is rather negligible. In 

the silt-sized OM (63-6.3 μm) fraction, SOC contents decreased in all treatments from 1982 to 2017. In 

NOFERT 24%, in CONMIN 9%, in CONFYM 5% and in BIODYN 5% of SOC were lost (Figure 2.5a). 

From 1982 to 2017, SOC contents in the clay-sized MAOM (<6.3 μm) fraction decreased in NOFERT 

(- 27%) and CONMIN (-14%), while in CONFYM (-3%) and in BIODYN (±0%) they remained stable (Figure 

2.5b). Between BIODYN and NOFERT, significant differences in clay-sized MAOM-C contents were 
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detected from 2003 until 2017. CONFYM and CONMIN had similar SOC contents in the clay-sized MAOM 

fraction throughout the whole observation period and showed no significant differences to either 

NOFERT or BIODYN. 

 

 

Figure 2.3: Development of mean SOC contents in a) the fPOM (>20 μm) and b) the oPOM (>20 μm) fraction from 

1982 to 2017 in all farming systems. Error bars represent standard deviations between the replicated plots (n = 4) per 

farming system. Results of a repeated two-way ANOVA (sys = farming system, yr = year) are depicted, using a linear 

mixed effect model that accounts for the spatial arrangement of plots within the experimental design. Post-hoc Tukey 

letters give significant differences at p <0.05. 

 

 

 
Figure 2.4: Correlation of oPOM-C changes and days between harvest and sampling under a) organically fertilized 

management (BIODYN and CONFYM) and b) under exclusion of organic fertilizers (CONMIN and NOFERT). Error bars 

represent standard deviations between the replicated plots (n = 4) per farming system. 
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Figure 2.5: Development of SOC contents in a) the silt-sized OM fraction (63-6.3 μm) and b) in the clay-sized MAOM 

fraction (<6.3 μm) from 1982 to 2017. Error bars represent standard deviations between the replicated plots (n = 4) 

per farming system. Results of a repeated two-way ANOVA (sys = farming system, yr = year) are depicted, using a 

linear mixed effect model that accounts for the spatial arrangement of plots within the experimental design. Post-hoc 

Tukey letters give significant differences at p <0.05. 

The potential C saturation (Cpot) of the fine fraction (<20 μm), across all analyzed systems averaged 25.0 

and 20.1 mg g-1, according to the empirical formulas of Hassink (1997) and Wiesmeier et al. (2015) 

(Table S2.4). C saturation (Csat) of the fine fraction across all systems averaged 52.1% and 64.7% in 1982, 

and was lowest in NOFERT (Hassink: 49.4%, Wiesmeier: 61.5%) and highest in BIODYN (Hassink: 55.0%, 

Wiesmeier: 67.8%) (Figure 2.6a). In 2017, Csat decreased in all systems, but remained the same in BIODYN 

(Hassink: 53.9%, Wiesmeier: 66.6%) (Figure 2.6b). Concomitantly, C saturation deficits (Cdef) increased in 

all systems from 1982 to 2017, but stayed the same in BIODYN. 

In addition, the SOC to clay (SOC:clay) ratio, as an indicator for soil structural quality (Johannes et al., 

2017), was <1:10 for all studied plots over the observed period from 1982 to 2017 (Figure 2.6c & 2.6d). 

Averaged over all systems, we observed a linear correlation between 2:1 phyllosilicates (i.e. illite and 

smectite) and C contents in the clay-sized MAOM fraction (<6.3 μm) in all analyzed plots 

(1982: R2 = 0.6493, 2017: R2 = 0.5002) (Figure 2.7). 
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Figure 2.6: Correlations of fine fraction (<20 μm) OC concentration with its mass proportion (i.e. C saturation, Csat) 

compared to linear regressions according to Hassink (1997) and Wiesmeier et al. (2015) (Cpot) (upper two graphs). 

Correlations of clay content (<2 μm; %) with SOC (%) according to Johannes et al. (2017) (lower two graphs). The 

dashed, solid and dotted lines depict a SOC:clay ratio of 1:8, 1:10 and 1:13, respectively. A SOC:clay ratio of 1:10 is 

seen as reasonable goal for soil management, as its decrease leads to a lower soil structural quality. Overall, values 

are calculated with PARIO texture (2019) and C concentrations from elemental analysis for a) and c) each analyzed 

plot averaged over the observation period, and b) and d) “zoomed in” to follow the development per plot from the first 

(1982) to the last year of analysis (2017). 

 
Figure 2.7: Linear correlation between 2:1 phyllosilicates (i.e. illite and smectite) (%) as measured with XRD analysis 

on soil samples from 2019, and C contents in the clay-sized MAOM fraction (<6.3 μm) (mg g-1 soil) in all 16 analyzed 

plots. Circles depict values from 1982 and triangles from 2017. The dashed and solid lines represent the linear trends 

in 1982 and 2017, respectively. 
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2.3.2.3. Chemical composition of POM and MAOM fractions 

Across all analyzed fractions, systems and years, NMR spectra were dominated by alkyl C and O/N-alkyl 

C (67.7 ± 2.4%) (Figure S2.1 & Table 2.3). POM fractions showed lower shares of carboxyl C 

(8.86 ± 0.9%) and alkyl C (15.2 ± 1.9%) and higher shares of O/N-alkyl C (52.5 ± 2.8%) compared to the 

clay-sized MAOM fractions (carboxyl C: 13.26 ± 0.6%; alkyl C: 25.8 ± 1.0%; O/N-alkyl C: 42.0 ± 2.2%). 

This was reflected in the alkyl C to O/N-alkyl C ratios (A/O-A ratio; Baldock et al. (1997)), which increased 

in the order fPOM (0.27) < oPOM (0.31) < clay-sized MAOM (0.61). Within the four different systems, 

fPOM A/O-A ratios were highest in BIODYN (0.28) compared to the other systems (0.23) in 2017. Other 

than that, no considerable differences regarding chemical composition of POM fractions were found 

between the systems. A/O-A ratios of NOFERT and BIODYN clay-sized MAOM fractions were the same 

in 1982 (0.65). In 2017 however, it strongly decreased to 0.55 in NOFERT, but remained constant in 

BIODYN (0.62). 
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2.4. Discussion 

2.4.1. Fertilizer input quality rather than quantity is a prerequisite for POM 

accumulation 

Despite different OM input quantities, all systems showed moderate increases in the fPOM (>20 μm) 

fraction between 1982 and 2017 (NOFERT: +0.17 mg g-1; CONMIN: +0.14 mg g-1; CONFYM: +0.16 mg g- 1 

and BIODYN: +0.16 mg g-1) (Figure 2.3a). Significant differences for fPOM-C were only found between 

NOFERT and BIODYN in 1982, 1989 and 2003. This implies that the higher OM inputs from organic 

manures had no beneficial effect on the accumulation of fPOM, compared to CONMIN. Qualitatively, 

BIODYN compost was relatively enriched with more recalcitrant OM due to the higher losses of labile C 

compounds (Fließbach and Mäder, 2000). NMR data confirmed the higher maturity of composted 

manure, as fPOM A/O-A ratios in soil were highest in BIODYN (0.28), indicating a higher degree of 

decomposition (Baldock et al., 1997) compared to the other systems (0.23) in 2017 (Figure S2.1 & Table 

2.3). Nevertheless, these qualitative differences did not affect the fPOM accumulation in the DOK trial. 

We assume that the additional input of organic fertilizers enhanced microbial activity and soil 

aggregation, ensuring rapid incorporation of highly labile fPOM into aggregates. Consequently, a 

decisive factor for the amount of fPOM at the time of soil sampling is the elapsed time since the last 

fertilizer application, which was at least several months in the DOK trial. As soil aggregation and thus the 

conversion from fPOM to oPOM can take place within a month (Bucka et al., 2019), most of the POM is 

expected to be mineralized or occluded within aggregates at the time of sampling, and the measured 

fPOM represents only the biomass input from the crop. 

In contrast to the fPOM, different OM input quantities (Table S2.2) were manifested in the recovered 

oPOM-C contents. We can clearly separate systems with and without organic fertilization, as oPOM-C 

contents in BIODYN and CONYM were on average 46% higher than in CONMIN and NOFERT 

(Figure 2.3b & Table S2.3). OM inputs are incorporated as labile SOM fractions (Li et al., 2020; Yang et 

al., 2012; Zhang et al., 2021). These particles are proven to be hotspots of microbial activity (Francioli et 

al., 2016; Lazcano et al., 2012; Witzgall et al., 2021; Yan et al., 2007). Consequently, aggregate formation 

is enhanced (Cotrufo et al., 2013) e.g. through the production of extracellular polymeric substances 

during microbial decomposition (Costa et al., 2018), enhancing oPOM accumulation in BIODYN and 

CONFYM. If we compare systems without organic fertilization, we can attribute the higher oPOM-C 

contents in CONMIN compared to NOFERT to the mineral fertilization with the beginning of CRP 2, 

leading to higher biomass production and increased OM inputs from litter and crop residues. This input 

explains the 24% higher oPOM-C contents in CONMIN compared to NOFERT. Overall, higher A/O-A 

ratios of oPOM (0.31 ± 0.03) compared to fPOM (0.27 ± 0.05) (Table 2.3) confirm its higher degree of 
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decomposition (Baldock et al., 1997). 

Interestingly, the 20% higher OM inputs via stacked manure in CONFYM compared to BIODYN (Table 

2.1) were not reflected in higher oPOM-C contents. On average, oPOM was even 45% higher in BIODYN, 

with significant differences from 1996 onwards (Figure 2.3b). We assume that composted manure, also 

introduced considerable amounts of composting-borne microbial biomass and microbial decomposition 

products to the soil. Evidence can be drawn from Mäder et al. (2002) and Hartmann et al. (2015), who 

reported the highest microbial diversity in BIODYN plots, and Oehl et al. (2004), who found significantly 

higher arbuscular mycorrhizal fungi species diversity in the organic compared to the conventional 

farming systems of the DOK trial. In addition, Fließbach et al. (2007) reported a 25% higher microbial 

biomass in BIODYN compared to CONFYM plots. 

Besides qualitative differences in organic manure inputs, two additional factors can contribute to the 

differences in oPOM-C contents between CONFYM and BIODYN: 1.) the use of pesticides in CONFYM 

can constrain microbial decomposition; and 2.) the additional application of mineral fertilizers in 

CONFYM (Table S2.2) may have induced positive priming through accelerated initial microbial 

respiration of labile C compounds (Kuzyakov et al., 2000; Moran et al., 2005; Zhou et al., 2021), that were 

relatively enriched in the stacked manure, compared to the composted manure. This probably 

contributed to the inhibiting conditions for aggregate formation and accumulation of oPOM-C in 

CONFYM, compared to BIODYN. 

Contrary to their previous trends from 1982 to 2010, there was a strong increase in oPOM-C contents in 

NOFERT (62%) and CONMIN (47%), in 2017 (Figure 2.3b). At this time, soybean was present on the 

analyzed plots and green manure was incorporated into the soil in spring that year (Table S2.1). We 

assume that the implementation of soybean into the crop rotation increases N availability in the soil 

through biological nitrogen fixation (Stagnari et al., 2017). Therefore, crop residues can be more 

efficiently transformed, and in turn enhance aggregate formation (Zhou et al., 2020) and oPOM 

accumulation. In addition, green manure plowed in during spring before soybean cultivation represents 

additional OM that can be stabilized in aggregates. The trends of oPOM-C in BIODYN and CONFYM 

showed a highly dynamic temporal behavior with high fluctuations in each year of analysis (Figure 2.3b). 

We observed strong correlations between the extent of these fluctuations and the elapsed time between 

harvest and soil sampling, independent of the crop (Figure 2.4b). Soil sampling shortly after harvest (i.e. 

<14 days) led to higher oPOM-C contents, while pronounced oPOM-C losses occurred when more time 

elapsed between harvest and soil sampling (21 to 35 days). Harvesting interrupts biomass production 

(above- and belowground), abruptly reducing the supply of fresh OM to the soil. In addition, soil 

disturbance induces the decomposition of labile SOM fractions (Bongiorno et al., 2019). Especially the 

harvest of root crops affects the soil structure through mechanical stress (Panagos et al., 2019). This leads 
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to more atmosphere-connected soil pores (Kravchenko et al., 2015), accelerating the decomposition of 

previously occluded and protected SOM (Six et al., 2000). Lower OM inputs in NOFERT and CONMIN via 

crop residues only, led to reduced aggregate formation and thus less oPOM, and sampling timing after 

harvest influenced oPOM-C contents to lower degrees (Figure 2.4a). 

To summarize, neither quantity nor quality of organic fertilizer input affected the fPOM fraction over the 

36 years of observation, which rejects our hypothesized accumulation of fPOM in the systems receiving 

organic fertilizers. This hypothesis applies for the oPOM fraction, where, however, large annual 

fluctuations of oPOM-C contents in BIODYN and CONFYM clearly demonstrate its high lability, and 

emphasize the importance of standardized sampling dates. We assume, the quality of OM inputs rather 

than the quantity applied is critical here. In contrast to stacked farmyard manure (CONFYM) did 

composted manure (BIODYN) increase microbial activity, promote aggregate formation and oPOM 

accumulation. However, the potential negative impacts of mineral fertilizer and pesticide application on 

labile SOM fractions in CONFYM should not be neglected. 

2.4.2. No additional SOC accumulation in mineral-associated fractions - 

regardless of fertilizer inputs 

The clay-sized MAOM-C fraction (<6.3 μm) accounted for by far the largest proportion (69.4%) of the 

SOC across all systems, which is generally in line with observations in temperate arable soils (Christensen, 

2001). NOFERT and CONMIN showed severe SOC losses of 27% and 14% respectively, while it remained 

stable in CONFYM (-3%) and BIODYN (±0%) from 1982 to 2017 (Figure 2.5b & Table S2.3). In CONMIN, 

all SOC losses from the clay-sized MAOM fraction were recorded in CRP 1, when it served as an 

unfertilized control system. The insufficient supply with OM inputs from crop residues during that period 

led to SOC losses of 15% in CONMIN. Given the high standard deviations of the individual plot replicates 

(n = 4) (Table S2.3), the SOC contents of the clay-sized MAOM fraction in all fertilized farming systems 

can be considered stable. The same holds true for the silt-sized OM fraction (63-6.3 μm), which 

accounted for 20.8% of total SOC averaged over all systems. Here, NOFERT showed severe SOC losses 

of 24%, while CONMIN, CONFYM and BIODYN remained relatively stable from 1982 to 2017 (Figure 

2.5a & Table S2.3). Overall, the trends of all fertilized systems were uniform and SOC contents in the 

silt-sized OM and clay-sized MAOM fraction remained stable. Only with omission of fertilizers in NOFERT, 

large amounts of SOC from the mineral-associated SOC pool were lost, due to insufficient supplies with 

OM. 

The unchanged SOC contents of the clay-sized MAOM fraction in all systems suggest that: 

1.) the SOC storage capacity has reached saturation and/or that 

2.) the observation period of 36 years was too short for new MAOM to form. 
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According to the empirical formula of Hassink (1997) and its adjustments made by Wiesmeier et al. 

(2015), Csat of the fine fraction (<20 μm), across all analyzed DOK systems and years averaged 47.9% and 

59.5%, respectively (Figure 2.6a). This suggests that the fine mineral fraction of the studied plots still 

has high C sequestration potentials (Table S2.4), and C sequestration deficits even increased from 1982 

to 2017 in all but two BIODYN plots (Figure 2.6b). This contradicts assumption 1.) that clay-sized MAOM-

C did not increase due to a saturation of this fraction. However, the empirical formula relies on field 

observations and gives only rough estimates on C saturation levels of the <20 μm mineral fraction of 

DOK plots. Therefore, more detailed information on the C loading of the clay-sized MAOM fraction in 

the DOK trial is required, to better assess the status of C saturation. In addition, Johannes et al. (2017) 

observed that a decrease of SOC associated with fine mineral particles (i.e. a decrease in SOC:clay ratio), 

would lead to a decrease in soil structural quality, and concluded that a SOC:clay ratio of 1:10 would be 

a reasonable goal for soil management. As all of the studied plots had a SOC:clay ratio <1:10 (Figure 

2.6c & 2.6d) which is in line with recent findings in arable soils (Prout et al., 2022), this confirms the high 

C sequestration potentials within the studied DOK plots. The differences in texture compared to other 

studies in the DOK trial are owed to sample preparation and the chosen particle size class limits (FAO) 

(e.g. Leifeld et al. (2009); USDA). 

Confirmation for the fast incorporation of fresh OM in the MAOM fraction can be drawn from Vidal et 

al. (2021), who illustrated the formation of stabilized microbial-derived MAOM in micro-aggregates only 

14 days after its addition to the soil. This is contradictory to assumption 2.) that OM inputs from fertilizers 

did not yet reach the clay-sized MAOM fraction. In addition, NMR spectra of the clay-sized MAOM-C 

fraction show decreasing A/O-A ratios in NOFERT from 1982 (0.65) to 2017 (0.55) (Table 2.3), expressing 

a lower degree of OM decomposition (Baldock et al., 1997). This is supported by the concomitant 

decrease of carboxyl C from 1982 (13.8 ± 0.1%) to 2017 (12.6 ± 1.1%), which has been observed to 

accumulate and stabilize in fine mineral fractions after decomposition of labile POM (Yu et al., 2015). We 

assume that younger (i.e. less decomposed) OM was incorporated in this fraction, accompanied by losses 

of older (i.e. more decomposed) OM. In BIODYN, the A/O-A ratio (0.65 to 0.62), as well as carboxyl C 

remained similar between 1982 (13.1 ± 1.2%) and 2017 (13.6 ± 0.8%). This means that the degree of 

decomposition stayed the same in BIODYN, suggesting an adequate supply of decomposed OM into 

the clay-sized MAOM fraction. 

Root-derived C inputs represent a large share of total C inputs to arable soils and can contribute more 

to stable SOC fractions than aboveground crop-derived C inputs (Ghafoor et al., 2017; Kätterer et al., 

2011). However, MAOM-C may be susceptible to destabilization e.g. through priming via root exudation 

(Jilling et al., 2021; Keiluweit et al., 2015). In the DOK trial, Hirte et al. (2018a) & Hirte et al. (2018b) 

showed yield-independent belowground C inputs and found similar total root biomass and 



 CHAPTER 2 

47 

 

rhizodeposition between organic and conventional farming systems, under wheat, but significantly 

higher rhizodeposition in the organic system, under maize. This illustrates the complexity and system- 

and crop-dependency of root C dynamics and makes it difficult to draw accurate conclusions about the 

impact of belowground C inputs, especially since soil was sampled in two additional crops in this study 

(Table S2.1). In NOFERT, however, the low aboveground C inputs mean a lack of OM replenishment, 

which cannot compensate for potential SOC losses from the clay-sized MAOM fraction, resulting in 

severe losses (Figure 2.5b). 

SOC contents of the clay-sized MAOM fraction ran on three different levels (Figure 2.5b). BIODYN 

showed the highest, CONMIN and CONFYM a medium and NOFERT the lowest level of MAOM-C 

contents, with significant differences recorded only between BIODYN and NOFERT from 2003 onwards 

(Figure 2.5b). We assume the different levels of SOC storage between the systems resulting from 

differences in clay mineralogy, which may quantitatively affect SOM stabilization. Soils of the DOK plots 

are dominated by 2:1 clay minerals (i.e. illite and smectite) (Table 2.2), that can store larger amounts of 

MAOM-C than 1:1 clay minerals (Barré et al., 2014; Feng et al., 2013; Six et al., 2002). The linear correlation 

between the proportion of illite and smectite and the amount of clay-sized MAOM-C within the studied 

plots emphasizes the importance of clay mineralogy for stabilization of OM inputs (Figure 2.7). 

The fact that bulk SOC increased in BIODYN (+13.1%) and CONFYM (+4.7%) from 1982 to 2017 (Figure 

2.2), but no additional SOC was sequestered within the clay-sized MAOM-C fraction, means that these 

increases were solely stored within the labile POM fractions. This result is in line with observations in 

fractionated topsoils from other temperate agricultural sites (Chung et al., 2008; Gulde et al., 2008) and 

grazed semi-arid steppe ecosystems (Steffens et al., 2011), where increased OM inputs solely led to 

increased SOC contents in POM fractions and macroaggregates, while fine-sized mineral fractions 

showed no increase. We therefore suggest that the continuous application of composted manure in 

BIODYN creates best conditions for enhanced microbial activity and aggregate formation and can 

thereby maintain SOC in the oPOM fraction at elevated levels in the long run, ensuring soil fertility. This 

makes oPOM a highly labile precursor for SOC storage in fine mineral fractions, dependent on OM input 

quality, which is in line with recent findings (Cyle et al., 2016). It also emphasizes the need for protective 

measures of the labile POM fractions and questions the potential of agriculturally used soils, to serve as 

a stable long-term C sink. Overall, our hypothesis of a steadily declining clay-sized MAOM fraction 

towards a new steady-state equilibrium at a lower level is only true for NOFERT, whereas the highest 

efficiency of C incorporation into this fraction holds true for systems receiving organic fertilizers. 

 



 CHAPTER 2 

48 

 

2.4.3. Implications and recommendations for SOC monitoring and management 

The application of organic fertilizers in the DOK trial between 1982 and 2017 resulted in a net increase 

of bulk SOC in BIODYN and CONFYM. However, this bulk SOC increase was exclusively measured in the 

labile POM fractions. Especially the highly dynamic oPOM fraction is subject to severe SOM depletion 

within a few days after C input halt, and sampling timing after harvest is critical for the proper 

measurement of the retained oPOM-C (Figure 2.4). Based on this observation, we recommend 

standardizing sampling dates to a specific narrow interval after harvest every year. This would improve 

the validity of C model predictions, as information on precise C observations from field trials constitute 

a basis for estimations on SOC dynamics, and soil management strategies are often recommended based 

on such models. Inconsistencies in sampling timing after harvest cause losses of information and farming 

system significance, regarding climate friendly soil management. 

CO2 certificates are a promotional tool in the private industry sector for the build-up of SOC stocks, 

setting incentives for climate mitigation (Wiesmeier et al., 2020). The increased bulk SOC concentrations 

in this study under organic fertilization (Figure 2.2) would have financially rewarded farmers in form of 

such certificates. However, dynamics of labile and stable SOC pools are not considered for its allocation, 

but only the development of bulk SOC. Based on the results of this study, a distinction between 

differently stable SOC pools is highly recommended, as none of the observed farming systems was 

sufficient to promote SOC build-up in the clay-sized MAOM-C pool. Counteracting this issue with more 

time-, labor- and consequently more cost-intensive laboratory analyses that account for SOM storage 

in differently stable SOC pools does not seem to be an adequate option. 

With regards to global warming, severe SOC losses in temperate agricultural soils are projected 

(Wiesmeier et al., 2016), and unrealistically high amounts of additional future OM inputs and drastic 

management changes are needed as countermeasures (Riggers et al., 2021). POM stabilized within 

aggregates is the precursor for MAOM-C (Six and Paustian, 2014). Regarding the unchanged SOC 

contents of clay-sized MAOM fractions observed in this study (Figure 2.5b), we propose that the 

reduction of high oPOM losses (Figure 2.3b & Figure 2.4a) would increase the amount of OM for 

possible long-term storage. Therefore, the focus should be on introducing management practices, 

preserving this highly labile SOM pool, as a guiding paradigm for farmers to make their soils more 

resilient to climate change (Berthelin et al., 2022). An important lever here is to create good living 

conditions for soil microbes under which the transformation of the OM inputs and aggregate formation 

is stimulated (Witzgall et al., 2021). The application of composted manure in the BIODYN farming system 

was most effective in this regard. In addition, management practices that reduce aggregate turnover 

(e.g. reduced or no-tillage (Six and Paustian, 2014)) and enhance aggregate stability (e.g. promotion of 
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fungal activity (Hannula and Morriën, 2022; Six et al., 2006)) seem to be viable management options that 

would increase SOM persistence within agricultural soils. 

2.5. Conclusions 

Within this study, unfertilized and exclusively minerally fertilized farming systems showed substantial 

losses in bulk SOC, while the application of organic manure led to the build-up of bulk SOC, over a 36-

year period. However, this build-up was solely recorded within the readily decomposable oPOM fraction 

and was mainly dependent on the quality of organic fertilizers (composted manure vs stacked manure). 

The use of composted manure without mineral fertilizer and pesticide application was most efficient. 

However, the oPOM fraction underlies heavy dynamics, and can be lost within a short time, consequently 

impeding its potential for long-term C sequestration. The fact, that no additional SOC was sequestered 

as MAOM from 1982 to 2017, raises concerns regarding the ability of soils to serve as a stable long-term 

C sink and the feasibility of climate-mitigating soil management strategies. It also emphasizes the need 

of continuous OM inputs to keep labile POM fractions at elevated levels, thereby maintaining soil fertility, 

crop performance and food security. With respect to global warming, it is likely that OM inputs would 

have to increase immensely to maintain current SOC stocks. In this context, it is of high importance to 

gain further information on the sorptive capacity and the current state of C-loading and stability of 

MAOM fractions, as well as turnover rates of OM inputs, which would contribute to improve SOM 

models. This study shows that the potential of soils to mitigate climate change has to be carefully 

assessed and expectations of the effect of fertilization should be low. 
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Abstract 

Soil organic matter (SOM) plays a vital role for soil quality, sustainable food production and climate 

change mitigation. It is common knowledge that SOM consists of different pools with varying qualities, 

quantities, and turnover times. However, it is still poorly understood how mineral and organic fertilization 

affects the formation and stabilization of mineral-associated organic matter (MAOM) and how long it 

can remain there. Here, we report on the long-term effects of different farming systems on the stability 

and turnover of the fine silt and clay-sized MAOM fraction (<6.3 μm) of a Haplic Luvisol (0-20 cm) in the 

DOK long-term trial (Switzerland). We compared three farming systems with contrasting fertilization 

(CONMIN = pure mineral, CONFYM = mineral + organic, BIODYN = pure organic) with an unfertilized 

control (NOFERT) between 1982 and 2017. We performed specific surface area (SSA) measurements on 

fractionated MAOM samples (<6.3 μm) from 1982 and 2017, before and after removal of OM, measured 

the 14C activity of all samples during the entire period and estimated the mean residence time (MRT) 

with a model taking into account ‘bomb 14C’ and radioactive decay. We found constant MAOM-C 

contents under organic fertilization. Results of SSA analysis indicate best conditions for MAOM-C 

stabilization under organic fertilization and different sorption mechanisms in MAOM between farming 

systems with and without organic fertilization. Modelled MRTs were significantly higher in NOFERT (238 

± 40 yrs) and CONMIN (195 ± 27 yrs), compared to CONFYM (138 ± 18 yrs) and BIODYN (140 ± 19 yrs), 

implying a high C turnover (i.e. more active MAOM) at high C contents under organic fertilization. Our 

findings show that MAOM is not dead OM but corroborates the concept of ‘dynamic stability’. 

Continuous OM inputs from organic fertilizers and their rapid and constant turnover are needed to 

stabilize the “stable” MAOM-C fraction. 

Keywords: mean residence time, specific surface area, mineral-associated organic matter, long-term 

trial, farming system comparison, fertilization 
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3.1. Introduction 

Arable soils have a large potential to sequester carbon (C) as soil organic matter (SOM) (Amelung et al., 

2020; Lal et al., 2018), making this process and the associated measures an attractive negative emission 

strategy (Paustian et al., 2019). This has prompted scientists and policy makers worldwide to promote it 

as a strategy for mitigating climate change (de Vries, 2018; Minasny et al., 2017). 

SOM has positive effects on many physical, chemical and biological soil properties. Increasing SOM 

contents in arable soils enhances water holding capacity, soil structure, nutrient cycling and microbial 

diversity (Lal, 2020; Rabot et al., 2018; Weil and Magdoff, 2004), improving soil fertility and soil health 

(Bünemann et al., 2018), and consequently contributing to sustainable crop production and food security 

(Lal, 2010). By improving soil structure, SOM promotes infiltration and retention of water, thus ensuring 

soil functions in the face of increasing weather extremes (e.g. droughts) (Kundel et al., 2020). 

Anthropogenic climate change is predicted to accelerate the already severe SOM losses (Riggers et al., 

2021; Wiesmeier et al., 2016) brought on by land use change and agricultural management (Paustian et 

al., 2016; Sanderman et al., 2017). Accordingly, it is essential to implement agricultural practices that 

increase the transfer of atmospheric C to the soil and prevent its rapid release, i.e. promote long-term C 

storage in the soil as SOM. The application of organic fertilizers is known to enhance SOM contents 

compared to mineral fertilization (Gattinger et al., 2012; Krause et al., 2022). While fertilizer type (i.e. 

mineral vs. organic) and qualitative differences between organic fertilizers have shown to be decisive for 

the accumulation of labile OM (Mayer et al., 2022a), their effects on the stable OM fractions remain 

poorly understood. Therefore, estimating the duration of C storage and understanding the underlying 

soil processes under contrasting fertilization, especially over long-term periods, is of great interest for 

the design of the respective measures. 

The persistence of SOM, i.e. SOM longevity as a result of the interactions with its chemical, physical and 

biological environment (Schmidt et al., 2011), can be expressed as mean residence time (MRT). The 

estimation of MRT is often based on isotopic approaches. Among these, radiocarbon analysis is a unique 

technique that enables the determination of C dynamics in soils on decadal to millennial timescales (Paul 

et al., 1997; Trumbore, 2009; Wang and Hsieh, 2002). In mineral soils, MRT of SOM largely depends on 

organo-mineral interactions, which are driven by specific stabilization mechanisms. Sorption of SOM 

onto surfaces of fine-sized mineral particles following microbial transformation is considered a dominant 

mechanism responsible for the formation of a stable mineral-associated OM (MAOM) fraction (Cotrufo 

et al., 2013; Newcomb et al., 2017; Schmidt et al., 2011). Over time, the gradual formation of organo-

mineral complexes and microaggregates (Totsche et al., 2018) spatially separates SOM from microbes 

and enzymes. This limits its further decay through reduced accessibility and oxygen supply, ultimately 
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increasing the MRT to time-scales of centuries to millennia (Kleber et al., 2015; Kögel-Knabner et al., 

2008b; Six et al., 2002; von Lützow et al., 2006). 

Reactive surfaces of fine mineral particles stabilize the majority of organic C in many mineral soils 

(Kramer and Chadwick, 2018), but the size of these surfaces varies for different phyllosilicates (Kleber et 

al., 2021). Therefore, soil mineralogy has a major influence on the SOM stabilization potential (Barré et 

al., 2014; Feng et al., 2013). However, the dynamic nature and reversibility of this binding mechanism 

has been described (Kleber et al., 2021; Kuzyakov et al., 2000; Steffens et al., 2009), defying the long-

held belief that adsorption to fine mineral surfaces would put a stop to the cycling of affected SOM. In 

addition, studies dealing with OM storage in differently stable SOM fractions even indicate that this 

stable MAOM is not increased but only kept stable under specific agricultural practices (Chung et al., 

2008; Gulde et al., 2008; Steffens et al., 2011). An improved knowledge of the involved mechanisms will 

thus allow to better evaluate farming systems in terms of their effectiveness for the long-term storage 

of atmospheric CO2 as SOM, thereby maintaining soil quality and contributing to climate mitigation via 

climate-smart agricultural practices (Paustian et al., 2016). 

The objective of this study was to assess the long-term effect of different farming systems on the stability 

of fine silt and clay-sized MAOM (<6.3 µm; 0-20 cm depth), in the DOK long-term experiment (Therwil, 

CH) (Mäder et al., 2002). Our study focused on four farming systems: an organic system using only 

organic manure (BIODYN), two conventional systems, one using only mineral fertilizer (CONMIN) and 

the other combining the use of mineral fertilizer and farmyard manure (CONFYM), and an unfertilized 

control (NOFERT). Recent results on the long-term development of bulk SOC (<2 mm) show an increase 

in BIODYN, no change in CONFYM and decreases in CONMIN and NOFERT (Krause et al., 2022). However, 

no quantitative changes of MAOM were measured over a 36-year period, regardless of fertilizer quality 

within the farming systems (Mayer et al., 2022a). 

We hypothesize, that (i) long-term organic fertilizer application (CONFYM and BIODYN) initiates higher 

stability of MAOM through enhanced microbial activity and diversity, and as a result (ii) this would 

translate to longer MRTs than in farming systems with pure mineral (CONMIN) or without any fertilizer 

application (NOFERT). To test this hypothesis, we measured changes in SSA via N2 adsorption and took 

advantage of 14C radiocarbon analyses to elucidate the turnover dynamics within MAOM by means of 

MRT estimation. 
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3.2. Materials and Methods 

3.2.1. Experimental setup and sample selection 

The DOK farming system comparison trial is located in Therwil (canton of Basel Landschaft, Switzerland, 

47°30’ N, 7°32’ E) and was initiated in 1978 (Mäder et al., 2002). Here, organic and conventional farming 

systems are compared under temperate climatic conditions (10.5°C mean annual temperature; 840 mm 

mean annual precipitation; (Krause et al., 2020)). The soil is a Haplic Luvisol (WRB, 2015), developed on 

deposits of alluvial loess, with 3% sand, 76% silt and 21% clay (Mayer et al., 2022a). 

The experiment has a split-plot design, each farming system is replicated in four columns, and subject 

to the same seven-year crop rotation (crop rotation period = CRP) with two years of grass-clover ley 

(see Table S2.1), temporally shifted in three subplots. All farming systems have the same type of tillage 

(moldboard plowing, 0-20 cm), but receive different types of plant protection (see Table 2.1). We 

focused on four farming systems with different fertilizer types and quantities within the six completed 

CRP (CRP 1 = 1978-1984, CRP 2 = 1985-1991, CRP 3 = 1992-1998, CRP 4 = 1999-2005, CRP 5 = 2006-

2012 and CRP 6 = 2013-2019). NOFERT is the unfertilized control. CONMIN is conventionally managed, 

and receives mineral fertilizer only (unfertilized in CRP 1). CONFYM is an integrated conventional system, 

with combined mineral and organic fertilizer application. BIODYN is an organic, biodynamically managed 

farming system that receives only organic fertilizer. 

In CONFYM (stacked farmyard manure and slurry) and BIODYN (composted manure and slurry), the 

addition of organic fertilizer is equivalent to the manure and slurry produced by 1.4 livestock units ha-1 

yr-1. Farming system-specific preparation of raw manures (CONFYM = manure stacking, BIODYN = 

aerobic composting) led to quantitative and qualitative differences at the time of its application. In 

addition, slurry is added to meet the nutrient requirements of the respective crop (mainly N). In CONMIN 

and CONFYM, mineral fertilizers are added up to the limits of Swiss fertilization recommendations 

(Richner and Sinaj, 2017). Because farmyard manure N inputs are not fully accounted for as readily 

bioavailable, N inputs are higher in CONFYM than in CONMIN (see Table S2.2). After harvest, straw 

biomass was removed from the plots. Over the observational period from 1982 to 2017, annual OM 

inputs via manure and slurry to the analyzed plots in subplot B (Figure S3.1) averaged 2508 (CONFYM) 

and 2000 kg dry matter ha-1 yr-1 (BIODYN). Organic and conventional farming systems of the DOK trial 

have yield-independent belowground C inputs, as well as similar total root biomass and rhizodeposition 

for the crops present on the analyzed plots in this study (Hirte et al., 2018a; Hirte et al., 2018b). After 

harvest, straw biomass was removed from the plots. 
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We used air-dried (40°C) and sieved (<2 mm) bulk soil samples from the DOK soil sample archive at 

Agroscope Reckenholz. These were taken from 16 plots (subplot B, Figure S3.1) in the same year within 

each completed CRP (1982, 1989, 1996, 2003, 2010 and 2017) (see Table S2.1) after harvest with a soil 

corer (0-20 cm depth). This totaled 96 soil samples (four farming systems x four replicates x six CRPs). 

3.2.2. Clay content and clay mineralogy 

Texture of bulk soil samples (<2 mm) was measured with the PARIO Plus Soil Particle Analyzer (METER 

Group, Germany/USA). Prior to measurement, OM was removed from 25-30 g of soil via oxidation (12 h) 

with hydrogen peroxide (H2O2, 30%). Subsequently, H2O2 was removed from the sample by rinsing with 

deionized water, centrifuging and decanting until an electrical conductivity of <400 μS m-1. Sodium 

hexametaphosphate (Na6O18P6) was used for sample dispersion. 

Mineralogy of the clay fraction (<2 μm) was determined using powder X-ray diffraction (P-XRD, Cubix3, 

Malvern Panalytical, Almelo, Netherlands). Prior to analysis, samples were treated with hydrochloric acid 

(HCl) to remove OM. P-XRD was performed on random powder samples and on oriented samples after 

saturation with Ca2+ and ethylene glycol (room temperature) and K+ (room temperature and stepwise 

heated to 550 °C). 

3.2.3. Physical fractionation 

We followed a modified density and particle size fractionation scheme of Kölbl and Kögel-Knabner 

(2004) and Steffens et al. (2009) to separate POM and MAOM fractions from bulk soils. A detailed 

description of the fractionation procedure can be found in Mayer et al. (2022a). Briefly, POM fractions 

(>20 µm), i.e. free particulate OM (fPOM) and occluded particulate OM (oPOM), were separated via 

density fractionation in a Na-polytungstate solution (ρ = 1.8 g cm-3) before and after aggregate 

disruption through ultrasonication (200 J ml-1), from 30 g of air-dried bulk soil (<2 mm). The remaining 

mineral fraction was rinsed salt-free and separated by wet sieving and sedimentation in Atterberg 

cylinders to yield the fine silt and clay-sized MAOM fraction (<6.3 µm) (Mueller et al., 2014). 

All separated SOM fractions were air-dried at 60°C, ground and analyzed in duplicate for total C 

concentrations via dry combustion on a Vario EL cube elemental analyzer (Elementar Analysensysteme, 

Hanau, Germany). As bulk samples were free of carbonates, the total C concentration equals the organic 

C concentration. 
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3.2.4. Specific surface area analysis 

We measured the specific surface area (SSA) of the MAOM fraction from 1982 and 2017 by multiple-

point BET (Brunauer et al., 1938) adsorption of N2 at 77 K, using the BELSORP®-miniX surface area and 

pore size distribution analyzer (Microtrac MRB, USA/Japan/Germany), each before (SSAuntreated) and after 

removal of OM (SSANaOCl). Prior to measurement, samples were outgassed for 6-12 h under vacuum at 

75°C. After SSAuntreated measurement, OM was removed from the same samples following a modified 

method of Kaiser et al. (2002) and Zimmermann et al. (2007). Briefly, 0.7-1 g of sample was oxidized 

during 18 h at room temperature (25°C) with 6% sodium hypochlorite (NaOCl). We adjusted the solution 

to pH 8 with concentrated hydrochloric acid (HCl), at a soil-to-solution ratio of 1:50 (wt/wt). The samples 

were then centrifuged at 2000 g for 30 min and rinsed with deionized water until <50 µS cm-1. OM 

oxidation and rinsing was repeated three times. Afterwards the SSA was determined again for the treated 

samples (SSANaOCl). 

3.2.5. Radiocarbon analysis 

The 14C activity of OC in the separated MAOM fraction (<6.3 µm) of all plots and sampled years (n = 16 

x 6 = 96) was measured with accelerator mass spectrometry (AMS) at the Laboratory for the Analysis of 

Radiocarbon with AMS (LARA) at the University of Bern (Szidat et al., 2014). Without any further chemical 

treatment, roughly 30 mg of ground and homogenized sample material (≅ 1 mg C) was combusted in 

an elemental analyzer (Vario Micro Cube, Elementar Analysensysteme, Hanau, Germany), transformed 

into solid targets using an automated graphitization equipment (AGE), and measured with the MIni 

CArbon DAting System MICADAS (Synal et al., 2007). Each AMS measurement included multiple OxII 

radiocarbon standards (NIST, SRM 4990 C) and fossil sodium acetate samples for normalization and 

correction of blanks as well as isotopic fractionations. 

3.2.5.1. Mean residence time (MRT) of MAOM 

The mean residence time (MRT) of MAOM was calculated using a 14C model that takes into account 

‘bomb 14C’ and radioactive decay (Conen et al., 2008; Mueller et al., 2014). First, we determined the 14C 

activity (Fraction Modern; F14C) of OC, following the approach of Harkness et al. (1986): 

                               𝐴𝑡 =  𝐴(𝑡−1) ∗  𝑒−𝑘 + (1 −  𝑒−𝑘) ∗  𝐴𝑖 −  𝐴(𝑡−1) ∗  𝜆                          (1) 

where 𝐴𝑡 is the measured 14C activity in MAOM at time t, i.e. the respective year of soil sampling, 

corrected for radioactive decay until the year of 14C measurement (2021). 𝐴(𝑡−1) is the 14C activity of SOM 

in the year preceding sampling, k the exchange rate of OC in MAOM (i.e. 1/MRT), and λ the 14C decay 

constant (1/8268 yr-1). 𝐴𝑖 is the 14C activity within the atmosphere and is composed of data from Reimer 
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et al. (2020) (1511-1950) and Hua et al. (2022) (1950-2017). 

A fundamental requirement of the model is the steady-state condition of the investigated fraction, i.e. 

balanced C inputs and outputs. In BIODYN and CONFYM, the MAOM-C content was in steady-state from 

1982 to 2017, and in CONMIN and NOFERT from 1989 to 2017 and from 2003 to 2017, respectively 

(Table S3.1). This meant that MRTs had to be estimated based on 14C activities of different periods 

within the farming systems. Therefore, we additionally used the period from 2003 to 2017, during which 

MAOM-C contents of all farming systems were in steady-state. 

We calculated the MRT of OM in MAOM according to equation (1) by repeatedly adjusting the MRT until 

the root-mean-square error (RMSE) between the calculated 𝐴𝑖 at the chosen MRT and the measured 14C 

activity at the corresponding sampled years reached the minimum. However, there is an unknown time 

difference between C assimilation by the crop and OM incorporation into MAOM (i.e. time lag). 

Therefore, we tested different time lags (0, 5 and 10 years), to account for the change in 14C signal of the 

incoming OM caused by radioactive decay during this period, which affects the estimation of the MRT. 

3.2.5.2. Carbon turnover rates within MAOM 

We calculated the annual C turnover rate in MAOM (mg g-1 yr-1) for each plot by dividing the mean 

MAOM-C content (mg g-1) during steady-state periods (NOFERT: 2003-2017, CONMIN: 1989-2017, 

CONFYM and BIODYN: 1982-2017) by the estimated MRT. In addition, we multiplied the annual 

MAOM- C turnover rate of each plot with its soil volume per hectare (0-20 cm depth) (using bulk 

densities of CRP 1, assuming its consistency over time (Leifeld et al., 2009)) to obtain values in a physical 

unit relevant to practice (kg C ha-1 yr-1). 

3.2.6. Statistical analyses 

We used a one-way ANOVA in RStudio (R version 4.1.2.; RStudio Team (2021)) to identify statistically 

significant differences between farming systems for SSA, estimated MRTs and turnover rates. Prior to 

the ANOVA, residuals were tested for normal distribution using the Shapiro-Wilk test and visual 

inspection of QQ-plots, and homogeneity of variances was tested using Levene’s test. Subsequently, a 

post-hoc Tukey HSD test was performed using a significance level of α = 0.05, for all tests. 

We applied a linear mixed effects model with repeated measurements to determine the impact of 

farming systems on 14C activities and OC removal (i.e. oxidation-resistant and removable OC) as a 

function of sampling year. In short, the lme function of the nlme package was used (Pinheiro et al., 2020) 

with farming system nested in subplot and column as repeated random factors to account for spatial 

heterogeneity within the experimental design of the DOK trial. A two-way ANOVA was then employed 
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to determine the impact of farming system, sampling year and their interaction on 14C activities. 

Residuals were tested for normal distribution using the Shapiro-Wilk test and visual inspection of QQ-

plots, and homogeneity of variances was tested using Levene’s test. Subsequently, a post-hoc Tukey 

HSD test was performed using a significance level of α = 0.05, to test for differences between the farming 

systems.  
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3.3. Results 

3.3.1. Clay content, mineralogy and development of MAOM-C contents 

Clay content (<2 µm) was similar between all farming systems and averaged 21.5 ± 3.2%. Clay 

mineralogy was dominated by 2:1 phyllosilicates, i.e. Illite (12.6 ± 3.1%) and Smectite (3.7 ± 1.7%) (Table 

3.1). Within NOFERT, CONMIN and BIODYN there was one plot each (plot 93, 94 and 88) that had higher 

clay contents and Illite and/or Smectite contents compared to the other three plot replicates within the 

farming system. 

Table 3.1: Overview of clay characteristics of all 16 observed plots, measured on bulk soil samples from 2019. Values 

in bold indicate mean values and standard deviations of the 4 plots per farming system. A one-way ANOVA revealed 

no significant differences between any of the farming systems for any parameter. 
 

      2:1   1:1 

 clay (<2 µm) phyllosilicates Illite Smectite Chlorite  Kaolinite 

farming 

system 
plot  [%] [%] [%] [%] [%]   [%] 

         
NOFERT 3 19.5 21.6 11.7 4.6 4.3  1.0 

37 15.5 18.0 10.9 2.7 3.5  0.9 

59 21.1 18.6 11.3 2.7 4.5  0.1 

93 24.8 21.7 8.6 7.3 2.7  3.0 
 20.2±3.4 20.0±2.0 10.6±1.4 4.3±2.2 3.8±0.8  1.3±1.2 

         CONMIN 4 21.9 20.8 12.9 3.1 2.9  1.9 

38 20.7 19.4 10.9 4.2 2.0  2.3 

60 19.9 15.7 8.0 4.1 1.8  1.9 

94 24.3 26.3 16.9 3.9 4.3  1.3 
 21.7±1.9 20.6±4.4 12.2±3.7 3.8±0.5 2.8±1.1  1.9±0.4 

         CONFYM 22 21.4 17.5 11.4 2.5 3.2  0.4 

32 16.5 21.0 14.7 2.6 3.1  0.6 

66 22.4 20.4 14.1 2.4 3.7  0.3 

76 21.2 21.5 14.4 2.6 3.4  1.1 
 20.4±2.6 20.1±1.8 13.7±1.5 2.5±0.1 3.4±0.3  0.6±0.4 

         BIODYN 10 21.7 24.7 12.1 7.6 2.4  2.6 

44 21.7 17.5 11.5 2.1 2.0  1.9 

54 21.3 16.9 11.5 1.8 2.2  1.4 

88 29.3 31.5 21.0 4.2 2.6  3.7 
 23.5±3.9 22.7±6.9 14.0±4.7 3.9±2.7 2.3±0.3  2.4±1.0 

                

Detailed results on the distribution of C between the separated fractions and their temporal 

development can be found in Mayer et al. (2022a). In BIODYN and CONFYM, MAOM-C contents 

remained stable over the whole observation period (Table S3.1). In CONMIN, MAOM-C contents 

decreased by 14% from 1982 to 1989, but remained stable thereafter. In NOFERT, MAOM-C contents 

decreased by 27% from 1982 to 2003, but remained stable thereafter. Throughout the whole observation 

period, CONFYM and CONMIN had similar MAOM-C levels. The only significant differences in MAOM-

C contents were measured between BIODYN and NOFERT from 2003 onwards. 
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3.3.2. Specific surface area analysis 

In 1982, SSAuntreated of MAOM was similar in all farming systems, averaging 17.1 ± 1.8 m2 g-1 (Figure 3.1 

and Table 3.2). SSAuntreated remained constant in 2017 in all farming systems except NOFERT, where it 

increased significantly. This increase occurred only when excluding an extreme outlier (plot 93, marked 

with asterisk in Figure 3.1), which showed a strong decrease of -6.2 m² g-1 from 1982 to 2017 and had 

by far the highest clay content (24.8%) compared to the other NOFERT plots (Table 3.1). 

 
 

Figure 3.1: Specific surface area (SSA) of MAOM determined by multiple-point BET adsorption of N2. Symbols show 

single plot replicates (n = 4) for each farming system from the first year (1982, circles) and last year of sampling (2017, 

triangles). Dark and light shades show untreated samples and samples after OC removal with NaOCl, respectively, 

color-coded according to each farming system. Black bars represent the mean of 4 plot replicates and post-hoc Tukey 

letters give significant differences at p <0.05. Single plot replicates with asterisks are outliers within the farming 

systems. Post-hoc Tukey letters in brackets give the significant differences when excluding outliers. 

Across all plots and years, the efficiency of OC removal as the relative proportion of initial OC in MAOM 

ranged from 62 to 82% which is consistent with results of other studies that also used NaOCl (Helfrich 

et al., 2007; Mikutta and Kaiser, 2011; Mikutta et al., 2005). In 1982, the average OC removal via NaOCl 

was 5.4 ± 0.8 mg g-1 (= 69.5 ± 2.8% of total MAOM-C) with no significant differences between the 

farming systems (Figure 3.2 and Table 3.2). The amount of oxidation-resistant OC was also similar 

across farming systems. The removal of OC significantly increased the measured SSA (SSANaOCl) by 22.99 

m2 g-1 on average to a mean of 40.1 ± 3.2 m2 g-1, with no significant differences among farming systems. 

In 2017, oxidation-resistant OC significantly decreased in NOFERT and slightly decreased in CONMIN, 

compared to 1982. In CONFYM and BIODYN, the amount of oxidation-resistant OC remained unchanged 

from 1982 to 2017 (Figure 3.2 and Table 3.2). SSANaOCl increased significantly more than after NaOCl 
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treatment in 1982 (+30.8 m2 g-1) to an average of 48.9 ± 7.4 m2 g-1 across all systems (Figure 3.1 and 

Table 3.2). 

Per milligram OC removed by NaOCl, an average of 4.4 ± 0.9 m² of SSA was exposed in 1982, with no 

significant differences between farming systems (Table 3.2). In 2017, the SSA exposed per milligram of 

removed OC increased to a mean of 6.5 ± 2.0 m² (NOFERT: +3.9, CONMIN: +2.0, CONFYM: +1.2 and 

BIODYN: +1.1 m² mg-1) with significant increases in NOFERT. 

 
 

Figure 3.2: Efficiency of C removal in MAOM in all farming systems via treatment with NaOCl for the first (1982) and 

last year (2017) of observation. Filled columns show the C proportion that was not removed by NaOCl, i.e. resistant to 

oxidation, and shaded columns show the C proportion that was removed by NaOCl. Error bars show the standard 

deviation of the individual plots (n = 4) per farming system. Results of a repeated two-way ANOVA (sys = farming 

system, yr = year) are depicted, using a linear mixed effect model that accounts for the spatial arrangement of plots 

within the experimental design. Post-hoc Tukey letters give significant differences between 1982 and 2017 at p <0.05. 
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3.3.3. Carbon mean residence times 

In all farming systems, the average 14C activity of MAOM (Fraction Modern, F14C) significantly decreased 

from 1.0589 in 1982 to 1.0205 in 2017, and was significantly affected by sampling year and farming 

system (Figure 3.3). It is noticeable that systems without organic fertilizer (NOFERT and CONMIN) and 

systems with organic fertilizer application (CONFYM and BIODYN) show significantly different 14C 

activities from 1996 onwards. On average, 14C activity was 0.0214 F14C higher in CONFYM and BIODYN 

compared to CONMIN and NOFERT. 

 
Figure 3.3: 14C activity, given in Fraction Modern (F14C) measured within MAOM for all farming systems and sampled 

years. Circles show farming system means and the error bars show the standard deviation of single plot replicates (n 

= 4) per farming system. Results of a repeated two-way ANOVA (sys = farming system, yr = year) are depicted, using 

a linear mixed effect model that accounts for the spatial arrangement of plots within the experimental design. Post-

hoc Tukey letters give significant differences at p <0.05. 

The basic model requirement for the MRT estimation was the steady-state condition of MAOM. We had 

to choose a time lag (between C assimilation by the crop until incorporation in MAOM) and a period for 

the estimation of MRT (steady-state period for each individual farming system, or due to better 

comparability, the steady-state period of NOFERT (2003-2017) for all farming systems). Estimated MRT 

were found to be robust in a sensitivity analysis, regarding the order of farming systems for all tested 

time lags and periods (Figure S3.2 and Table S3.2). The 10-yr time lag was excluded due to high RMSE 

(steady-state: 0.0194, 2003-2017: 0.0242). The 0-yr time lag had relatively low RMSE (steady-state: 

0.0133, 2003-2017: 0.0098), but would imply that there was no temporal offset between C assimilation 

by the crop and incorporation of OM into MAOM, which is unlikely and would affect the MRT estimation. 

Finally, we chose a 5-yr time lag and the individual steady-state periods of the farming systems (Table 
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S3.2) to account for higher amounts of observations (steady-state: n = 80, 2003-2017: n = 48) instead 

of minimal improvements in model accuracy (RMSE; steady-state: 0.0107, 2003-2017: 0.0102). The 

estimated MRTs of MAOM averaged 178 ± 49 yrs across all farming systems and were significantly 

higher in NOFERT (238 ± 40 yrs) and CONMIN (195 ± 27 yrs), compared to CONFYM (138 ± 18 yrs) and 

BIODYN (140 ± 19 yrs) (Figure 3.4a). 

We identified one outlier plot in both, NOFERT and CONMIN (marked with an asterisk in Figure 4a). The 

NOFERT outlier (plot 37) had a significantly lower clay content (15.5%), as well as the lowest calculated 

MRT compared to the other NOFERT plots. In contrast, the CONMIN outlier (plot 94) had the highest 

clay content (24.3%), as well as the highest calculated MRT, compared to the other CONMIN plots. In 

addition, we observed a positive correlation between the calculated MRT and clay content, especially for 

farming systems not receiving organic fertilizers (R²: NOFERT = 0.85, CONMIN = 0.83) (Figure 5a). We 

also found a strong positive correlation between the estimated MRT and smectite contents (Figure 5b). 

3.3.4. Carbon turnover rates within MAOM 

The amount of MAOM-C that passes annually through this fraction during steady-state periods averaged 

0.043 mg C g-1 yr-1. It was lowest in NOFERT (0.024 ± 0.003 mg C g-1 yr-1), followed by CONMIN (0.034 

± 0.003 mg C g-1 yr-1), CONFYM (0.051 ± 0.009 mg C g-1 yr-1) and highest in BIODYN (0.059 ± 0.004 mg 

C g-1 yr-1) (Figure 3.4b, bottom right). We found no significant differences between CONFYM and 

BIODYN, but their C turnover was significantly higher than in CONMIN and NOFERT, and significantly 

higher in CONMIN than in NOFERT. This corresponded to an average annual C mass flow rate in MAOM 

of 111 kg ha-1 yr-1 (0-20 cm) across farming systems (NOFERT: 62 ± 8 < CONMIN: 91 ± 6 < CONFYM: 

137 ± 22 < BIODYN: 155 ± 11 kg C ha-1 yr-1) (Figure 3.4b). 

 



 CHAPTER 3 

65 

 

 

Figure 3.4: a) Estimated mean residence times (MRT, yrs) of MAOM for each farming system (5-yr time lag) and b) 

annual C mass flow rate (kg C ha-1 yr-1 ) during steady-state periods within each farming system (NOFERT: 2003-2017, 

CONMIN: 1989-2017, CONFYM and BIODYN: 1982-2017). The black bars represent the mean values per farming 

system of n = 4 individual plot replicates, depicted as colored circles. Post-hoc Tukey letters give significant differences 

at p <0.05 between farming systems after one-way ANOVA. Single plot replicates marked with an asterisk show 

outliers. 

 

Figure 3.5: Correlation of estimated MRT (yrs) of MAOM with a) clay content (<2 µm) and b) smectite content. Circles 

show the single plot replicates and dotted lines show the linear trends of the circles colored according to the respective 

farming system. In b), the linear trend over all plots is shown, excluding the outlier marked with an asterisk. 
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3.4. Discussion 

3.4.1. Best preconditions for MAOM-C stabilization under pure organic 

fertilization 

In 1982, oxidation of OM with NaOCl resulted in an equal increase of SSANaOCl (Figure 3.1) and similar 

amounts of oxidation-resistant C (Figure 3.2) in all farming systems. In 2017, SSANaOCl significantly 

increased in NOFERT and CONMIN (Figure 3.1), and oxidation-resistant C significantly decreased in 

NOFERT, compared to treated samples from 1982 (Table 3.2 and Figure 3.2). This suggests that 36 

years of arable farming negatively affected the stability of OM in MAOM in these systems. 

Oxidation-resistant C is typically found in organo-mineral associations (Eusterhues et al., 2003; Mikutta 

et al., 2006), i.e. building units of microaggregates (Totsche et al., 2018). Microaggregates are formed 

within macroaggregates (Oades and Waters, 1991). Therefore, macroaggregate formation and turnover 

is a major determinant of MAOM stability (Six et al., 2000), but is negatively influenced by tillage and 

harvesting practices (Mayer et al., 2022a). Organic fertilization in BIODYN and CONFYM significantly 

increased the microbial activity (Krause et al., 2022), which led to increased aggregate formation, relative 

to NOFERT and CONMIN (Mayer et al., 2022a). In BIODYN and CONFYM, this resulted in unchanged 

amounts of oxidation-resistant MAOM-C at higher levels than in CONMIN and NOFERT, where oxidation 

resistant MAOM-C was reduced from 1982 to 2017 (Figure 3.2). 

NaOCl treatment increased the exposure of mineral surface area per mg of destroyed OC in 2017, 

compared to treated samples in 1982 (Table 3.2). In BIODYN (5.42 ± 2.18 m2 g-1) and CONFYM (5.61 ± 

1.00 m2 g-1), less SSA was exposed compared to CONMIN (6.71 ± 2.20 m2 g-1) and the significant increase 

in NOFERT (8.11 ± 1.93 m2 g-1) (Table 3.2). These results indicate a reduced aggregate stability, especially 

under low OM inputs (i.e. NOFERT and CONMIN), which allowed NaOCl to increasingly enter and break 

up previously more stable aggregates, exposing surface areas that were not accessible in 1982. In 

addition, this could indicate a shift of C sorption from organo-organic associations (i.e. C patches) to 

organo-mineral associations (i.e. directly on the mineral surface) (Kleber et al., 2015; Vogel et al., 2014) 

in CONMIN and NOFERT. In BIODYN and CONFYM however, new OM from fertilizers might preferentially 

form patchy organo-organic assemblages, where OM is already present (Possinger et al., 2020; Vogel et 

al., 2014). Therefore, we assume that in systems with regular OM supply via organic fertilization, its 

stabilization in MAOM is largely decoupled from the availability of free binding sites on fine mineral 

particle surfaces (Schweizer et al., 2018). 

It is noteworthy, that the qualitative differences between the applied organic fertilizers (BIODYN = 

composted manure; CONFYM = stacked manure) did not affect OM stabilization in MAOM (Figure 3.1, 
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Figure 3.2 and Table S3.1). This was despite the relative enrichment of BIODYN compost with more 

recalcitrant plant-derived OM and microbial degradation products due to the higher losses of labile C 

compounds during aerobic composting (Fließbach and Mäder, 2000), compared to stacked manure in 

CONFYM. Previous fractionation results with the same samples showed significant differences in 

aggregate formation and oPOM quantity between these two farming systems as a consequence of 

different fertilizer qualities (Mayer et al., 2022a). So, this would have been expected to affect MAOM-

forming processes via more direct contacts between organic fertilizers and mineral surfaces. However, 

we assume that 1.) the qualitative differences were too subtle (C/N 17 in BIODYN vs. 23 in CONFYM) 

(Table S2.2); and 2.) the differences were neutralized during the transition, i.e. continuous degradation 

from the POM to the MAOM fraction. 

In addition, avoiding the use of mineral fertilizers and pesticides in BIODYN, which affect soil microbial 

community structure (Hartmann et al., 2015), also had no positive effect on OM stabilization in MAOM, 

compared to CONFYM. 

Overall, the constant supply of OM through organic fertilizers in BIODYN and CONFYM initiates an 

improved aggregate stability and different sorption mechanisms of OM to fine mineral surfaces, 

compared to CONMIN and NOFERT. Therefore, our hypothesis that organic fertilization would lead to 

increased stabilization of MAOM, is true. 

3.4.2. Dynamic stability of MAOM-C - highest contents despite highest turnover 

under organic fertilization 

We expected higher MRTs and lower turnover of MAOM under organic fertilization, because of the 

supposedly higher stability of MAOM-C in BIODYN and CONFYM (i.e. enhanced aggregation, higher 

oxidation resistance (Figure 3.2)) compared to CONMIN and NOFERT. However, MRTs of MAOM were 

significantly higher in NOFERT (238 ± 40 yrs) and CONMIN (195 ± 27 yrs), compared to CONFYM (138 

± 18 yrs) and BIODYN (140 ± 19 yrs) (Figure 3.4a). These results were surprising given the fact that 

chemical oxidation with NaOCl has been shown to leave C with significantly higher ages and MRTs 

(Jagadamma et al., 2010; Kleber et al., 2005; Kögel-Knabner et al., 2008b). This shows that chemical 

methods are of limited use in differentiating the stability of OM to biodegradation (Mikutta and Kaiser, 

2011). 

In BIODYN and CONFYM, the increased microbial activity (Krause et al., 2022) ensured a faster processing 

of the steady high supply of young OM from organic fertilizers. This led to an increased accumulation 

of young microbial degradation products in MAOM, significantly shorter MRTs (-78 yrs) (Figure 3.4a) 

and significantly higher annual C mass flow rates in MAOM (+70 kg C ha-1 yr-1) (Figure 3.4b), compared 

to NOFERT and CONMIN. The amount of MAOM-C in BIODYN and CONFYM remained constant over 
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the 36-year period from 1982 to 2017 (Figure 3.2 and Table S3.4). This implies that the faster turnover 

of MAOM-C in BIODYN and CONFYM (factor 1.7) is compensated by the even greater OM input rates 

(factor 2.3), resulting in higher MAOM-C contents, relative to NOFERT and CONMIN. 

The omission of additional OM inputs via fertilization in NOFERT and CONMIN resulted in a high spatial 

substrate heterogeneity (Lehmann et al., 2020b; Shi et al., 2021), reducing the likeliness for the spatial 

co-occurrence of MAOM and decomposers (Don et al., 2013). The unchanged 14C activity in MAOM 

during the steady-state period in NOFERT (2003-2017) (Figure 3.3) illustrates these low OM inputs of 

which very little was incorporated into MAOM over this period. As a result, a small, old OM fraction was 

isolated and preserved that turned over much slower, resulting in longer MRTs compared to CONFYM 

and BIODYN (Figure 3.4a). The fact that the older MAOM in NOFERT had significantly lower aromatic C 

than younger MAOM in BIODYN (Mayer et al., 2022a), supports the assumption that its reduced turnover 

and longer MRT resulted from the spatial isolation from its decomposers and not due to its recalcitrance 

to microbial degradation. This is in line with findings of Kleber et al. (2011), who showed that OM with 

the highest 14C age (i.e. highest MRTs) had an easily metabolizable chemical composition. 

We found no quantitative increase in MAOM-C of BIODYN and CONFYM over the 36-year period despite 

high OM inputs (Table S3.1). This underlines that direct management of MAOM-C is not possible. Using 

the empirical formulas of Hassink (1997) and Wiesmeier et al. (2015), Mayer et al. (2022a) showed high 

C saturation deficits of the fine fraction (<20 µm) for all farming systems. Thus, C saturation is not an 

explanation for the lack of MAOM-C enrichment. Furthermore, the 14C data of this study show the 

continuous rejuvenation of MAOM with new OM across all farming systems (Figure 3.3), contradicting 

that the 36-year period was too short for the incorporation of new OM in MAOM. Imaging techniques 

could provide further insight into the mechanistic processes that control and/or limit the accumulation 

of OM within MAOM at the submicron scale and improve our knowledge of how different fertilizer types 

might affect these processes (Steffens et al., 2017; Vogel et al., 2014). 

Overall, we found MAOM-C to be more active in farming systems receiving organic fertilizers than in 

purely mineral and unfertilized systems, which was contrary to our hypothesis of longer MRTs in BIODYN 

and CONFYM. Just recently, attention has been drawn to the need for continuous turnover and microbial 

utilization of OM inputs to agricultural soils in order to maintain OM storage, aptly termed ‘dynamic 

stability’ by Dynarski et al. (2020). In our study, the ‘dynamic stability’ is manifested by the rapid and 

constant turnover of continuous OM inputs from composted (BIODYN) and stacked manure (CONFYM), 

and the subsequent stabilization of its degradation products in MAOM. This highlights the importance 

of maintaining continuous organic inputs in general, as a stop is anticipated to result in the fastest OM 

degradation in farming systems with high C turnover and short MRTs. 
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3.4.3. Clay content and clay mineralogy are crucial for OM stabilization - in the 

absence of organic fertilizers 

We observed a strong positive correlation between clay content and the estimated MRT, especially in 

farming systems without organic fertilization (Figure 3.5a). This suggests that at low MAOM-C contents, 

clay content has greater influence on the stabilization (or ‘retention’) of OM than at higher MAOM-C 

contents. In the latter, OM sorption is less limited by vacant binding sites on mineral surfaces due to the 

preferable formation of organo-organo compounds (Possinger et al., 2020). Thus, the amount of clay 

particles is less critical for the stabilization of OM in CONFYM and BIODYN. In NOFERT and CONMIN, 

where MAOM-C contents are low, increased clay contents enhance the high spatial substrate 

heterogeneity (Lehmann et al., 2020b; Shi et al., 2021) (see Chapter 3.4.2.) via stabilization and physical 

isolation of OM in aggregates, further reducing substrate availability to microbes and, as a result increase 

MAOM MRT. 

Furthermore, we observed a positive correlation between smectite content and estimated MRT (Figure 

3.5b). Wattel-Koekkoek et al. (2003) identified clay mineralogy as the main factor explaining differences 

in MRT of OM, with the slowest turnover times in smectite-dominated soils. Smectite is an expendable 

2:1 phyllosilicate with a high sorptive capacity due to its large SSA (Kleber et al., 2021; Saidy et al., 2013). 

The effect of smectite properties on MRT was stronger in NOFERT and CONMIN compared to CONFYM 

and BIODYN. 

Notably, the outlier plots 88, 93, and 94 with the highest clay contents per farming system (Table 3.1), 

are directly adjacent in the DOK experimental design (Figure S3.1). This illustrates that at low SOM 

contents and in the absence of organic fertilization, even small clay content gradients at the field or plot 

level (NOFERT: 15-25%, CONMIN: 20-24%) (Table 3.1) can result in significant differences in MRT. For 

practice, this should raise awareness towards the fact that SOM turnover is also controlled by the 

heterogeneity of soil properties, particularly when OM inputs from fertilizers are missing. Consequently, 

exact knowledge about the heterogeneity of soil properties, e.g., through replicated and geolocated 

samplings, helps to minimize uncertainties in estimates of SOM persistence. 
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3.5. Conclusions 

Using 14C analysis and MRT estimation of the physically separated MAOM fraction (<6.3 µm), we 

demonstrated that constant organic fertilization resulted in significantly higher MAOM-C turnover and 

significantly shorter MRTs compared to non-organic fertilization over a 36-year period. Despite the 

highest MAOM-C turnover, MAOM-C contents were kept constant under organic fertilization, implying 

that the faster turnover is compensated by the high OM input rates. The results of this study illustrate 

that a constant supply and turnover of OM in mineral-associated fractions is vital to ensure the long-

term stability of MAOM-C contents. However, we lack understanding on the sub-micron scale 

mechanisms that control C sequestration in MAOM explaining the limited accumulation of additional 

MAOM-C. This will improve the evaluation of the ability of agricultural soils to act as long-term C sinks. 

Overall, this study highlights the importance of the dynamic nature of organo-mineral interactions for 

SOM stabilization, especially in the context of advancing climate change. Supporting this dynamic nature 

of SOM via continuous organic fertilization and improving biological soil quality should therefore 

become the focus of sustainable and climate-friendly agriculture. This corroborates the theory of 

managing SOM rather than locking it away, which mixed farming systems that integrate livestock and 

arable farming are best suited for. 
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As a basis for the following discussion, Figure 4.1 provides a comprehensive summary of the key findings 

from Chapters 2 and 3, focusing on the schematic representation of the farming system-driven 

mechanisms involved in SOM cycling. 

Over the 36-year observation span in the DOK trial, the farming systems without fertilization (NOFERT) 

and solely mineral fertilization (CONMIN) exhibited significant losses of bulk SOC, whereas the 

application of organic manure resulted in the accumulation of bulk SOC (CONFYM and BIODYN). 

However, the observed increase in bulk SOC was limited to the highly labile and easily degradable oPOM 

fraction. Organic fertilization in CONFYM and BIODYN resulted in an increased microbial activity (Krause 

et al., 2022; Lori et al., 2023), facilitating the rapid turnover of the consistently high input of young POM 

(illustrated by the green gears in Figure 4.1). This increased the formation of aggregates and as a 

consequence oPOM accumulation (see also Figure 2.3b). In BIODYN, the farming system-specific 

composting of manure (i.e. qualitative manure differences) and the absence of pesticides led to the 

highest microbial activity, aggregate formation and oPOM-C contents (represented by the higher 

abundance of aggregates and microbial biomass compared to CONFYM in POM Figure 4.1). The 

increased POM-C turnover in CONFYM and BIODYN also led to an increased accumulation of young 

microbial transformation products and necromass in MAOM (illustrated by the thick green arrows in 

Figure 4.1), which is also expressed by the higher MAOM 14C activity compared to NOFERT and CONMIN 

(see Figure 3.3). This led to a significantly higher MAOM-C turnover (see Figure 3.4b, illustrated by the 

grey gears in Figure 4.1) and shorter MRTs (see Figure 3.4a) compared to NOFERT and CONMIN. 

It may sound paradoxical at first, but a constant supply of OM inputs and the subsequent rapid turnover 

of OM within the MAOM fraction is necessary to maintain its C content in the soil (i.e. concept of 

‘dynamic stability’, see Chapter 3). In a broader sense, this principle can be visualized as an engine and 

a fuel tank. The application of organic fertilizers in CONFYM and BIODYN can be seen as fuel that is 

introduced into the soil, which is the fuel tank. The introduced OM undergoes rapid utilization by soil 

microbes, promoting increased microbial activity (i.e. combustion). Consequently, this microbial activity 

triggers the "activation" of the previously passive/less dynamic MAOM fraction (i.e. fuel reserve). The 

increased MAOM turnover rates and accompanied MAOM-C losses (i.e. fuel reserve consumption) 

(represented by the thick red arrows in Figure 4.1) are only offset by the high OM inputs, resulting in 

consistent MAOM-C contents from 1982 to 2017, but without any additional accumulation of MAOM-

C. In other words, fuel replenishment and fuel reserve consumption balance each other out in CONFYM 

and BIODYN. 

In NOFERT and CONMIN, OM input via fertilization is absent (i.e. no additional fuel input), and only OM 

through crop residues and root inputs is introduced into the soil. The consequently reduced microbial 

activity (represented by the green gears with fewer teeth in Figure 4.1), introduces a smaller amount of 
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young microbially processed OM into the MAOM (see Figure 3.3, illustrated by the small green arrows 

in Figure 4.1). This however stimulates turnover of MAOM-C, albeit less strongly than in CONFYM and 

BIODYN (represented by the smaller grey gears in Figure 4.1), resulting in significant MAOM-C losses 

(i.e. fuel reserve consumption) over the 36-year observation period (represented by the red arrows in 

NOFERT and CONMIN in Figure 4.1), due to insufficient fuel replenishment via organic fertilizer inputs. 

In summary, the intricate interaction between POM and MAOM fractions, as depicted in Figure 4.1, 

demonstrates that soil C cannot be viewed as a singular entity. Consequently, its management requires 

a comprehensive systems-based approach, as just very recently advocated by Angst et al. (2023). 
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4.1. Dampening the optimism - soil C sequestration under future 

climate 

The lack of any additional C accumulation in the MAOM fraction (<6.3 µm) between 1982 and 2017, 

despite the low levels of C saturation (see Figure 2.6), calls into question the ability of agricultural soils 

to act as stable long-term C sinks and the effectiveness of soil management strategies to contribute to 

climate change mitigation. MAOM-C contents are only maintained by the constant supply and 

processing of organic fertilizers in CONFYM and BIODYN, dampening expectations for the highly touted 

C sequestration potential of agricultural soils. This highlights the fact, that direct targeted management 

of MAOM-C is insufficient, and underscores the significance of POM fractions as direct precursors of 

MAOM, with microorganisms acting as a pivotal regulatory factor. 

The significance of these findings cannot be emphasized enough, especially in the light of the projected 

increase in global temperatures to 2.7°C by the end of the century (Lenton et al., 2023), which will 

profoundly affect SOC contents due to increased rates of OM decomposition (Conant et al., 2011; Smith 

et al., 2008). Extensive research on this issue, starting decades ago (e.g. Kirschbaum (1995), Schimel et 

al. (1990)) has contributed to a prevailing agreement within the scientific community regarding the 

adverse effects of increasing temperatures on the storage of C in soil. This consensus has been supported 

by the growing body of data-based evidence from modeling studies in recent years (e.g. Riggers et al. 

(2021), Wiesmeier et al. (2016), Meersmans et al. (2016)). 

By analyzing more than 9000 globally distributed soil profiles, Hartley et al. (2021) showed substantial 

climate change induced C losses, especially in coarse-textured soils, leading to the assumption that 

unprotected C pools, such as the labile POM fractions are most affected by increasing temperatures 

(Knorr et al., 2005). This should be particularly critically viewed, as these fractions serve as precursors for 

stabilized MAOM and are the only additional C that accumulated over the long-term in the (partly) 

organically fertilized farming systems of the DOK trial (see Figure 2.3b & 4.1). However, such losses 

could be offset by a corresponding increase of plant inputs to soil (Lugato et al., 2021). Recent findings 

from SOC stock models under different climate scenarios (RCP2.6, 4.5, 8.5) until 2099 for German 

croplands projected that excessively high amounts of organic inputs would be required (increases of 

51% to 93% compared to current inputs), solely to compensate for previous SOC losses (Riggers et al., 

2021). These excessive amounts would entail drastic changes in agricultural management, often 

rendering them uneconomic for farmers (Poulton et al., 2018), especially impractical for integrated and 

mixed farming systems that combine livestock and arable farming, such as CONFYM and BIODYN. 

In addition it was shown that soil C responses to increasing temperatures are mainly a function of the 

intrinsic microbial temperature sensitivity within the soil (Walker et al., 2018). In a recent study, Chen et 
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al. (2023) demonstrated that increasing temperatures lead to the suppression of the microbial pathway 

responsible for the formation of stabilized soil C, i.e. the reduced production of microbial transformation 

products and necromass. This was suggested to be a major cause of stabilized C loss in surface soil, as 

increasing temperatures would at the same time stimulate the microbial utilization of MAOM-C (Chen 

et al., 2023). The extent of these losses of MAOM-C are possibly a function of the microbial C use 

efficiency (Allison et al., 2010). In the DOK trial, Fließbach et al. (2007) showed that microorganisms in 

BIODYN need less energy to maintain their biomass (i.e. reduced basal respiration in relation to microbial 

biomass), compared to microorganisms within CONFYM and CONMIN (20% and 52% more energy, 

respectively). Based on these findings, it can be inferred that the MAOM-C in BIODYN may be less 

susceptible to temperature-induced losses caused by climate change compared to the other analyzed 

farming systems. Consequently, despite overall low expectations, BIODYN emerges as the favorable 

management option for future considerations regarding long-term C sequestration. 

Given the massive climate change-induced limitations on C sequestration in agricultural soils that have 

emerged from extensive research, it is necessary to review the feasibility of what is arguably the most 

prominent initiative (‘4p1000’ Minasny et al. (2017), see Chapter 1.5) to build SOC stocks for climate 

mitigation. As a reminder, this action plan aims at an annual increase of 4‰ or 0.4% in global SOC stocks 

(upper 30-40 cm) via sustainable management practices, which would largely offset anthropogenic CO2 

emissions and achieve food security. However, this initiative has recently come under some heavy 

criticism in the scientific community (e.g. "An idea that is politically brilliant does not necessarily make 

scientific or practical sense" (Baveye et al., 2018)). This criticism stems mainly from the discrepancy 

between the theoretically and technically achievable C storage potential and the extensive body of 

evidence from studies that supports it. In a recent study by Rodrigues et al. (2021), an assessment was 

conducted to determine the country-specific potential for C sequestration in croplands across 24 

European countries. The result was rather sobering, as none of the evaluated countries' C sequestration 

potentials met the ambitious target set by the 4p1000 initiative. In another study, the projected C 

sequestration potential for Bavaria, Germany, through various C storage measures accounted for merely 

30% of the intended objective (Wiesmeier et al., 2017). Additionally, in the case of France, achieving the 

target would require a 30-40% increase in C inputs to the soil over a 30-year period (Martin et al., 2021). 

Taking climate change into account, Bruni et al. (2021) projected, based on 14 long-term agricultural 

trials in Europe, that an increase of 54-120% in C inputs would be necessary. 

In pursuit of what appears to be a rather elusive goal, how do the observed bulk SOC changes among 

the four analyzed DOK-farming systems, as depicted in Figure 2.2, perform with respect to achieving it? 

C stock changes from 1982 to 2017 were in the order NOFERT < CONMIN < CONFYM < BIODYN (Table 

4.1). The 4p1000 Initiative's requirements for C sequestration were only met in the BIODYN system under 
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pure organic fertilizer application as composted manure. Here, over the 36-year period, C stocks 

increased at an annual rate of 0.41 ± 0.40% yr-1, which was equal to 0.20 ± 0.18 t C ha-1 yr-1. This, however, 

with high fluctuations between the plot replicates (high standard deviation) (Table 4.1) and only as labile 

oPOM, which is subject to loss within days to weeks (see Figure 2.4a). 

Table 4.1: Calculated C stocks, C stock changes and corresponding CO2 equivalents in the four analyzed DOK farming 

systems over the period from 1982 to 2017. C stocks were calculated using mean bulk densities from CRP1 for each 

plot, assuming that they remained stable (Leifeld et al., 2009). 

 

In light of the findings from the DOK trial and the aforementioned studies on the limited potential of C 

sequestration in agricultural soils, it is even more questionable why soils are still being publicly and 

media-effectively attributed a huge C storage potential. Just recently, the Synthesis Report of the 

Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) on climate change 

(IPCC, 2023) was finalized during the IPCC’s 58th Panel Session in Switzerland. In it, agricultural soils are 

given a high potential in terms of C sequestration to mitigate climate change, with only solar and wind 

energy and the reduced conversion of natural ecosystems being attributed higher potentials. Especially 

given the expected climate-related impacts on soil C, this enthusiasm for soil C sequestration as a 

significant solution for climate change mitigation should be critically viewed. 

Overall, the soil under BIODYN appears to have a supposedly measurable climate effect, compared to 

the other farming systems analyzed. However, there are considerable uncertainties surrounding this 

impact. Moreover, utilizing pure organic fertilization in the form of composted manure seems to better 

prepare the soil to handle future climate-related challenges. This could encourage a shift in mindset, 

moving away from soil management strategies for climate change mitigation towards management that 

enhances the soil's resilience against future climate impacts. These discussions are elaborated upon in 

Chapter 4.2. In general however, it is crucial to have realistic expectations for C sequestration in 

agriculture (Schlesinger and Amundson, 2018), and effectively communicate these to both the general 

public and practitioners. This enhances the credibility of the scientific community and, in turn, the trust 

that farmers have in it.  

farming system 1982 2017 [t ha
-1

] [t ha
-1 

yr
-1

] [% yr
-1

] [t ha
-1

] [t ha
-1 

yr
-1

]

NOFERT 37.41 ± 4.08 29.96 ± 2.91 -7.46 ± 1.58 -0.21 ± 0.04 -0.69 ± 0.12 -27.34 ± 5.79 -0.76 ± 0.16

CONMIN 38.55 ± 4.59 35.67 ± 3.68 -2.88 ± 1.57 -0.08 ± 0.04 -0.22 ± 0.12 -10.56 ± 5.75 -0.29 ± 0.16 

CONFYM 37.28 ± 3.26 39.13 ± 2.35 1.85 ± 2.57 0.05 ± 0.07 0.13 ± 0.19 6.80 ± 9.44 0.19 ± 0.26

BIODYN 39.29 ± 4.65 46.52 ± 5.83 7.23 ± 6.54 0.20 ± 0.18 0.41 ± 0.40 26.51 ± 23.99 0.74 ± 0.67

C stock change CO2 equivalentsC stock [t ha
-1

]
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4.2. Implications for policy and future directions of soil management 

strategies 

The attractiveness of offsetting one's own (e.g. companies) emissions (at least in part) through the 

climate-friendly measures of others has triggered a veritable boom in voluntary C markets in recent 

years, creating a lucrative business. However, to be eligible for C credits in recognition of farming 

practices aimed at C sequestration, specific criteria must be met (see Chapter 1.5). As C markets have 

experienced a surge in popularity, so have the number of soil C certification standards. This has led to 

the landscape of private C certificates being commonly described as a "jungle," owing to the intricate 

and diverse range of options and regulations (Demenois et al., 2022). Unfortunately, these private 

certificates often fail to meet expectations for climate change mitigation because they cannot guarantee 

the permanence of the created C sinks, one of the major criteria that has to be met (Paul et al., 2023). 

Moreover, achieving permanence in soil C sinks poses a significant challenge, particularly when targeted 

management of the MAOM-C fraction (i.e. stabilized C) is insufficient, even over extended periods (see 

Figure 2.5b & 4.1). 

As shown in Chapter 4.1. (see Table 4.1), the increased bulk C stocks in BIODYN would have financially 

rewarded farmers in form of C credits. Considering that the observed increase in C stocks occurred solely 

in the highly labile oPOM fraction, which can be lost within a few days to weeks after harvest (see Figure 

2.4a), the timing of soil sampling becomes a crucial factor for the allocation of C credits. If a farmer 

practices sustainable soil management, such as in the case of BIODYN, but is unable to sample the soil 

until several weeks after harvest due to various reasons, it is likely that C credits would not be awarded 

for that specific period. Conversely, if sampling is conducted in a timely manner the following year, the 

increase in C stocks would be measurable, and C credits could be allocated without any changes in 

management. Furthermore, it should be noted that if timely soil sampling had been conducted, it would 

not have been revealed that the observed increase in C was solely in labile form. This is because the 

current practice of assigning C credits does not differentiate between labile and stable C storage. This 

example is indicative of the current state of C certification, which appears to be more confusing than 

convincing for interested practitioners. Therefore, there are clear demands for uniformity of regulations 

and transparency (Oldfield et al., 2022). This would ensure integrity and bring clarity to practitioners, 

navigating through the complex landscape of certification standards. 

Nonetheless, the accounting of temporary C sinks is currently an important point of scientific discussion 

in the field of C farming, as it was only recently shown that even short-term, i.e. non-permanent soil C 

sinks would have a quantifiable beneficial effect on climate mitigation (Leifeld, 2023; Leifeld and Keel, 
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2022). This perspective is gaining traction within the scientific community (Angst et al., 2023) and shows 

that the labile C stock increase in BIODYN does have a mitigation effect.  

While economic and structural factors primarily emerge as the predominant factors influencing farmers’ 

decision-making regarding the implementation of management practices (Bartkowski and Bartke, 2018), 

there is a tendency to overlook the influence of other factors, particularly social factors, on this process. 

This has the potential to hamper the effectiveness of environmental payment systems (Brown et al., 

2021). Whether the implementation of sustainable agricultural management practices is driven by 

economic incentives is, however irrelevant for climate mitigation in the first place. Any measure aimed 

at preserving and building up SOM is to be considered laudable. However, it is essential to emphasize 

the need for ongoing and sustained efforts, as the cessation of C farming practices will result in the loss 

of C from the soil (see Figure 1.7), potentially even at faster rates than its initial buildup (Smith, 2005). 

If we look specifically at the development of SOC contents under the analyzed farming systems in the 

DOK trial, it is helpful to consider the previously introduced visualization of SOM dynamics as a running 

engine (Figure 4.1). Thus, it can be assumed that in BIODYN and CONFYM, where microbial activity is 

increased, i.e. all the gears are in motion (Figure 4.1), the cessation of management practices will not 

result in an abrupt halt, i.e. "brake at full speed". The engine will probably continue to run for a while 

even without the addition of organic fertilizers (i.e. fuel replenishment) (see Chapter 3.4.2). This, in turn, 

will possibly lead to the loss of MAOM-C (i.e. consumption of fuel reserves) due to lack of alternatives 

available to microbial degradation (Chen et al., 2023). 

Furthermore, it was also observed, that the accrual of C is way more efficient in soils with low initial C 

saturation (Georgiou et al., 2022; Stewart et al., 2007), and is dominated by site-specific factors, such as 

soil texture (Rosinger et al., 2023). This can result in scenarios where a farmer, who may not have 

practiced sustainable soil management in the past, is rewarded C credits for achieving a rapid increase 

in soil C content after implementing a C farming measure. Conversely, a farmer who has consistently 

maintained the C content of his/her soil through sustainable practices, may not receive recognition due 

to the establishment of a new C flow equilibrium after a certain period of time (see Figure 1.7). The lack 

of fairness in this regard can lead to feelings of resentment among farmers. 

In addition to financially rewarding C farming practices, it has been proposed to monetize the provision 

of essential soil functions (i.e. “natural capital”) that are supported by continued sustainable 

management practices (Baveye et al., 2016). These functions include improved soil fertility, water 

retention capacity, enhanced soil structure, reduced risks of erosion and ultimately increased agricultural 

productivity for food security. Hence, it is reasonable to contemplate the establishment of, what I refer 

to as "soil quality credits" to recognize and incentivize sustainable management practices, 

independent of their direct climate benefits. Such an approach could prevent dedicated sustainable 
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farmers from being discouraged or demotivated. In this context, the issue of measuring or quantifying 

soil quality would undoubtedly gain significant attention (Bünemann et al., 2018; Dominati et al., 2010), 

presenting a distinct challenge in comparison to the measurement of C contents when allocating C 

credits. 

Overall, the view that soil management should focus on maintaining soil quality and fertility, with C 

sequestration considered an additional or outcome, is gaining momentum in the scientific community 

(Moinet et al., 2023; Poulton et al., 2018; Powlson and Galdos, 2023), indicating a paradigm shift. Moinet 

et al. (2023) aptly put it in a nutshell: “Away from climate-smart soils, we need a shift towards soil-smart 

agriculture, adaptative and adapted to each local context”. This aligns with the perspective of Berthelin 

et al. (2022), who emphasizes that farmers should prioritize enhancing soil C contents as a means of 

building resilience to climate change, rather than solely pursuing climate mitigation strategies. 

Nevertheless, it is crucial to recognize that any C sequestration, regardless of the scale, plays an 

important role in contributing to climate change mitigation, but should be viewed as a beneficial 

secondary outcome (Moinet et al., 2023).  
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4.3. Limitations 

Examining the dynamics of SOM in LTEs presents a substantial scientific challenge, given the numerous 

factors that can potentially influence the outcomes over the course of the observation period. Moreover, 

the processing of samples during laboratory work can introduce additional methodological challenges. 

While this thesis primarily focused on the effects of fertilizer inputs on SOM dynamics, it is important to 

acknowledge that there are external variables that could have influenced the observed SOM dynamics 

in the DOK trial, which were not within the scope of our examination. Consequently, in this chapter, the 

potential impacts of these factors are elucidated, accompanied by a discussion on their potential 

influence on the outcomes obtained in this thesis. By considering these factors and reflecting on the 

observations made, we will address the possible limitations and provide recommendations for future 

research. 

4.3.1. C loss during physical fractionation 

The choice of fractionation method and its careful execution determine the accuracy of the C contents 

in the separated, functionally distinct fractions and thus the significance of the results in terms of SOM 

dynamics in the soil. When evaluating the performance of a fractionation method, it is crucial to take 

into account the C recovery and reproducibility (Poeplau et al., 2018). The mean C recovery rate after 

physical fractionation procedures was 72.7 ± 4.4% across all 96 samples analyzed in this thesis. This 

means that on average, approximately a quarter of the initial bulk SOC was lost during the physical 

fractionation process. This C loss poses a major issue since the exact source SOM fractions of these 

losses cannot be precisely determined. However, the recovery rates were very similar and showed no 

significant differences between farming systems (NOFERT: 71.3 ± 4.0%; CONMIN: 72.4 ± 4.8%; CONFYM: 

72.8 ± 3.4%; BIODYN: 74.2 ± 4.9%) (Figure 4.2a) and analyzed years (1982: 74.3 ± 4.9%; 1989: 74.1 ± 

5.1%; 1996: 74.1 ± 5.1%; 2003: 70.2 ± 3.3%; 2010: 71.1 ± 3.3%; 2017: 72.3 ± 4.7%) (Figure 4.2b). The 

consistency of C recoveries demonstrates the high reproducibility of the fractionation method, with 

methodologically caused C losses that were unaffected by the duration of the DOK trial and farming 

systems. 

Since soil mass recovery after fractionation averaged approximately 95%, we assume that most of the C 

was lost as soluble C (Helbling et al., 2021), which is due to the use of the heavy liquid Na-polytungstate. 

In particular, the repeated and thorough rinsing of the fraction <20 µm to remove Na-polytungstate 

prior to particle size fractionation (see Figure S1.10) likely resulted in the mobilization and subsequent 

loss of C (Plaza et al., 2019). Similar findings regarding the magnitude and source of C loss have been 

reported in other studies (Crow et al., 2007; Helbling et al., 2021; Just et al., 2021). Thus, assuming that 
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all of these constant C losses originate from the fine fractions <20 µm and therefore adding them to the 

recovered C amounts, the development of these fraction C contents within the farming systems does 

not change over the years, as well as when comparing between different farming systems. Nevertheless, 

it is important to note that the loss of C during fractionation always entails a loss of information. 

Therefore, we strongly recommend including the recovery rates alongside the results in publications to 

ensure transparency and to inform readers about potential limitations regarding the interpretation and 

significance of the findings. Unfortunately, numerous studies fail to do so, which underscores the 

importance of critically evaluating their validity. 

 

Figure 4.2: Comparison of C recovery rates after physical fractionation procedures a) between the analyzed farming 

systems and b) between the analyzed years. The black bars represent the mean of plot replicates and the circles show 

the single plot replicates, colored according to each farming system. 

In addition, the use of Na-polytungstate represented by far the highest running costs and the rinsing 

process was very time consuming. We therefore recommend the use of fractionation schemes that avoid 

the use of heavy liquids, such as Na-polytungstate. Recently, it has been shown that the use of simplified 

fractionation approaches without the use of heavy liquids (i.e. no density fractionation) (Fuchs et al., 

2023; Just et al., 2021) was sufficient with regards to the separation of fast (>20 µm) and slow cycling 

(<20 µm) SOM fractions. They also found a very high reproducibility, as well as mass and C recovery 

rates. However, the lack of a density fractionation step due to the omission of heavy liquids makes it 

impossible to distinguish between different POM fractions (i.e. fPOM and oPOM). If there is a desire to 

separate the POM and obtain insights into the impact of different fertilizers on the labile C protected 

within aggregates, I recommend to carry out the density fractionation step independently using Na-

polytungstate. In this case, refer to steps 1-5 in S1.1 for detailed instructions on how to perform this 

process. 

  



  CHAPTER 4: GENERAL DISCUSSION AND CONCLUSIONS 

83 

 

4.3.2. The role of mineral fertilizers in nutrient supply and SOM formation 

The emphasis of this thesis primarily revolved around examining the impact of farming systems on soil 

C contents. However, in light of the dilemma outlined in Chapter 1.1, concerning the challenge of 

simultaneously mitigating climate change AND ensuring food security, the discussion regarding plant 

nutrition and its role in supporting crop productivity under the farming systems in the DOK trial was 

not sufficiently dealt with in Chapters 2 and 3. Furthermore, the potential impacts of mineral 

fertilization on soil C contents were not explicitly addressed. These aspects will be briefly discussed in 

the following section. 

In a global meta-analysis, Knapp and van der Heijden (2018) discovered that organically managed soils 

exhibited a notably lower temporal yield stability, which refers to the reliability of crop production over 

successive years, compared to conventionally managed soils. This difference was primarily attributed to 

the intensified utilization of mineral fertilizers and consequently higher availability of nutrients for crops 

in conventional farming practices. It is crucial to critically assess this aspect, particularly within the context 

of food security amidst the anticipated impacts of climate change and rising global temperatures. 

In the DOK trial, the total nutrient input during CRP2-6 was 26% and 35% lower in BIODYN, compared 

to CONMIN and CONFYM, respectively (Table S2.2). This resulted in significantly more plant-available 

nutrients for direct crop uptake in CONMIN and CONFYM due to the input of mineral fertilizers. 

Accordingly, crop yields are on average about 15-20% higher in CONMIN and CONFYM, compared to 

BIODYN (Mäder et al., 2002; Mayer et al., submitted). 

To facilitate plant growth, it is essential for the nutrients contained in OM inputs to be released through 

microbial transformation, especially when relying on purely organic fertilizers, as in BIODYN. However, a 

challenge in this process arises from the stoichiometric imbalance between the microbial requirements 

and the elemental composition of OM from organic fertilizers. By introducing additional nutrients into 

the soil via mineral fertilization, stoichiometric imbalances between microbial needs and OM elemental 

composition may be alleviated (Manzoni et al., 2012), which may have further improved plant nutrition 

in CONFYM, compared to BIODYN. However, compost application has been observed to increase 

nutrient supply to crops (Reimer et al., 2023). Furthermore, pure organic fertilization with composted 

manure, significantly increased microbial activity in BIODYN, which led to the “activation” of the MAOM-

C fraction (i.e. significantly higher turnover and shorter MRTs, see Figure 4.1 & Figure 3.4). This led to 

a higher availability of MAOM-C, which could be utilized by microorganisms, resulting in the release of 

nutrients that were then accessible for plant uptake. This mechanism, involving the often overlooked 

role of MAOM as an important source for bioavailable N (Jilling et al., 2018), could to some extent 

compensate for the absence of mineral fertilizers, when compared to CONMIN and CONFYM. These 
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processes may have contributed to a slight narrowing of the yield gap between BIODYN and 

conventional systems. 

In CONMIN, mineral fertilization provided increased plant input to the soil through increased primary 

production (Xu et al., 2021), which resulted in higher oPOM-C and MAOM-C contents compared to 

NOFERT (Figure 2.3b & 2.5b). However, this was far from compensating for the lack of OM input via 

organic fertilizers compared to CONFYM and BIODYN. Microbial growth and respiration and therefore 

the transformation of OM inputs through microbial activity and subsequent incorporation into stabilized 

SOM pools, are also strongly influenced by the availability of nutrients in the soil (Kirkby et al., 2013; 

Kirkby et al., 2014; Mooshammer et al., 2014; Richardson et al., 2014). However, in CONFYM, the higher 

OM inputs combined with mineral fertilization did not result in increased C levels compared to BIODYN, 

likely due to the higher levels of labile C in CONFYM stacked manure compared to BIODYN compost. 

Furthermore, the long-term application of mineral fertilizers has been observed to decrease the 

contribution of microbial residues in POM and MAOM fractions (Zou et al., 2023). In addition, numerous 

studies have documented that the application of inorganic P to soil results in an increase of C loss via 

priming mechanisms (e.g. Fisk et al. (2015), Spohn and Schleuss (2019), Mehnaz et al. (2019)). 

Finally, in the context of crop production and food security, it is important to consider the often 

overlooked aspect of energy expenditure associated with plant nutrition. With increased C contents, 

such as in BIODYN, the soil itself is likely to supply more nutrients to crops via microbial activities, which 

in turn reduces the reliance on mineral fertilizer inputs and energy consumption as well as GHG 

emissions associated with mineral fertilizer production (Powlson and Galdos, 2023). In the DOK trial, this 

was expressed as 40-50% lower energy expenditure in BIODYN, and considering the only 20% lower 

crop yields, crop production in BIODYN is more energy-efficient and sustainable compared to CONFYM 

and CONMIN (Mäder et al., 2002). 

4.3.3. Soil depth and root C inputs 

The majority of studies examining soil C dynamics tend to focus solely on topsoil layers (Yost and 

Hartemink, 2020). This is attributed to the higher SOM contents found in these layers, which are directly 

influenced by soil management practices (i.e. plow horizon). However, more than half of the global soil 

C is located in soil layers deeper than 30 cm (Balesdent et al., 2018; Jobbagy and Jackson, 2000), but C 

dynamics within these layers remains poorly understood (Rumpel and Kögel-Knabner, 2011). 

Just recently, Skadell et al. (2023) showed that approximately 20% of soil management effects on soil C 

occur in a depth of 30-50 cm. The input of OM into deeper soil layers is mainly facilitated via root 

biomass and dissolved OM (Rumpel and Kögel-Knabner, 2011) and poses the primary source of C inputs 
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into the soil (Sokol et al., 2019). The literature presents divergent outcomes regarding the impact of 

these inputs on different SOM fractions. Rhizodeposition has been associated with a high MAOM 

formation efficiency (Villarino et al., 2021), and root exudates have been linked to a greater potential for 

destabilizing highly stabilized MAOM through priming effects (Bernal et al., 2016). In addition, root C 

inputs have been found as a way to actively control MRTs of SOM (Poeplau et al., 2021). To date there 

have been limited investigations into root biomass within the DOK trial (Hirte et al., 2018a; Hirte et al., 

2018b). However, these studies have revealed yield-independent belowground C inputs and have shown 

comparable total root biomass and rhizodeposition between organic and conventional farming systems 

under wheat cultivation. Notably, when maize was grown, the organic system demonstrated elevated 

levels of rhizodeposition in comparison to the conventional system. This finding provides compelling 

grounds to further explore this direction in future investigations. 

Only limited research exists on the effects of different fertilizer inputs on C in deep soil layers, and the 

findings of existing studies often yield inconsistent results. This emphasizes the need to “dig deeper” 

(Gross and Harrison, 2019) and follow the suggestion of Skadell et al. (2023), ensuring that soil samples 

are taken up to a depth of 50 cm, to fully capture the impacts of management practices on soil C. In the 

DOK trial, this would expand the understanding of SOM dynamics and might shed light onto how and 

to what extent the fertilizer inputs in different farming systems impact C in deeper soil layers. 

4.3.4. N2O emissions 

Another significant factor to consider, particularly regarding the climate impact of farming systems, is 

the emission of N2O, a main contributor of total agricultural greenhouse gas GHG emissions (Reay et al., 

2012; Tubiello et al., 2015). However, this issue was not covered in this thesis. The main sources of 

agricultural N2O emissions come from mineral N fertilizers and organic manures, which accounts for the 

major part of the agricultural share of approximately 65% of global N2O emissions (Tian et al., 2019). 

Considering the growing global food demand, a subsequent increase in N2O emissions can be 

anticipated in the future. Just recently, Guenet et al. (2021) and Lugato et al. (2018) showed that 

disregarding N2O emissions undermines the validity of statements regarding the climate impact of soil 

C management measures. This is because the potential climate mitigation effect of additional C storage 

is often offset by N2O emissions and might even increase with additional C. In the light of these findings, 

it seems questionable, if the soil C increase in BIODYN has any positive climate effect, as claimed earlier 

(see Chapter 4.1 & 4.2). This adds another discouraging setback to the notion of combatting climate 

change through increased C inputs to soils and underscores the need to shift away from this strategy 

(see Chapter 4.2). 
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4.4. Conclusions and outlook 

In summary, the findings of this study emphasize the need to reassessing soil management strategies 

with regards to C storage, as revealed through a comprehensive analysis of SOM dynamics in the DOK 

system comparison trial. Even after adopting sustainable organic soil management practices for 36 years, 

there was no measurable additional accumulation of MAOM-C, which is the SOM fraction responsible 

for long-term C sequestration and climate mitigation. Furthermore, this thesis has shown that the 

MAOM, believed to be passive, is much more active than previously thought, which is facilitated by the 

application of organic fertilizers. Therefore, the long-standing "carbon dilemma" already raised by 

Janzen (2006), regarding whether we should utilize or preserve soil C, can now be answered in favor of 

utilization. This represents a paradigm shift that has already gained recognition in the scientific 

community in recent years (Moinet et al., 2023; Poulton et al., 2018; Powlson and Galdos, 2023). 

Nonetheless, any effort to increase the amount of SOM is commendable because of the resulting 

increase in soil fertility and the ability of soils to provide ecosystem services. In doing so, the results of 

this thesis break a lance for organic farming and join the multitude of studies showing the effectiveness 

of sustainable organic soil management in maintaining and accumulating additional SOM. Overall, the 

findings of this thesis showed that BIODYN, in addition to maintaining soil fertility, appears to have a 

measurable climate effect, compared to the other farming systems analyzed. However, there are 

considerable uncertainties surrounding this impact. Moreover, utilizing pure organic fertilization in the 

form of composted manure seems to better prepare the soil to handle future climate-related challenges. 

The next crucial step is to collaborate with policymakers and, ultimately, the farmers who play a pivotal 

role in implementing these changes. As the final link in the implementation chain, their participation is 

essential. In this regard, it is important to remain credible as scientific community, provide clarity, and 

communicate realistic and achievable goals based on comprehensive research. Furthermore, moving 

forward from the results of this thesis, the use of the NanoSIMS technology, which was already 

introduced in Chapter 1.3, could provide help in deciphering stabilization mechanisms at the sub-

micrometer level and therefore provide further important insights into SOM cycling. 

Through this thesis, I aimed to contribute to the resolution of uncertainties surrounding the sustainable 

utilization of the invaluable resource of soil, particularly under the aspect of future climate-related 

impacts. In closing, I echo the fitting words of Davies (2017), which encapsulate the significance of this 

endeavor: “Soil is a common good and an essential resource. With the support of science, governments, 

civil society and businesses must ensure that it is not treated like dirt.” 
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Figure S1.1. Determination of ultrasonic dispersion energy for maximum oPOM yield as a measure of optimal 

aggregate disruption. A range of seven different energies were tested (50, 100, 150, 200, 250, 350 and 450 J ml-1) were 

tested. For this purpose, samples from 2017 were used from the farming systems with the lowest (grey circles = 

NOFERT) and highest (green circles = BIODYN) SOM content. 
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S1.1: Physical fractionation laboratory method developed at the FiBL 

soil physics laboratory 

 

Note: the quantities/volumes of lab equipment and material given in this method description refer to the 

preparation and completion of the density fractionation procedure of six soil samples per day at full 

workload. 

 
 

1.) Preparation of the density solution (Na-polytungstate) 

Safety precautions: safety goggles, rubber gloves, protective clothing, under fume hood 

Material: large spoon, Na-polytungstate (powder, low C and N content), 1 l plastic beaker with handle, 

tall measuring beaker, bar magnet, magnetic stirrer, hydrometer, 2 l Schott bottle 

 
Figure S1.2: Laboratory equipment required for the preparation of the density solution. 

 

Steps: (990 g Na-polytungstate = 1 l density solution) (2x) 
 

It is important to choose Na-polytungstate powders with low C and N contents, otherwise this might 

lead to contamination of the samples (Kramer et al., 2009) 
 

          - dissolve 990 g Na-polytungstate in approx. 500 ml distilled water and stir well with a large  

            spoon until the salt is completely dissolved 
 

          - pour the solution into the tall measuring beaker and add a bar magnet 
 

          - place the measuring beaker on a magnetic stirrer and let it run until the entire water column is  

            mixed from top to bottom (help with spoon) 
 

          - let the hydrometer sink into the solution and gradually add distilled water until a density of 

            1.8 g cm-3 (yields 1 l of solution, i.e. enough for four samples) 
 

          - pour the solution into the Schott bottle 
 

          - repeat these processes until the volume of density solution is sufficient to fractionate  six (or  

            eight) samples in a "batch" 
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2.) Adding density solution to the soil sample 

Safety precautions: safety goggles, rubber gloves 

Material: soil samples (6), crystallizing glass dishes (6), Na-polytungstate solution (6 x 250 ml), 20 ml 

scintillation bottles (12), spoon, scale, tweezers, aluminum foil, measuring beaker, pasteur pipette 

 
Figure S1.3: Laboratory equipment required for adding density solution to soil samples. 

Steps: (6x) 
 

          - for each of the six randomly picked bulk soil samples (air-dried, <2 mm), label one crystallizing  

             dish ("sample name - bulk soil") and 2 scintillation flasks ("sample name - fPOM", "sample name  

            - oPOM”) 
 

          - per sample, weigh in 30 g (representative) of soil into the crystallizing dish and distribute the  

            sample over the entire bottom of the dish by gentle shaking 
 

          - remove with tweezers all larger fPOM fragments and put them into the scintillation bottles  

            labeled "fPOM” 
 

          - pour 250 ml of density solution into the measuring beaker. Then carefully add the solution over  

            the side wall of the dish to the sample with the pasteur pipette until saturation (Figure S1.4) 
 

          - pour the remaining solution slowly over the edge of the dish (cause as little turbulence as  

            possible to avoid bursting of aggregates and oPOM release 
 

          - gently shake the dish to expose covered fPOM 
 

          - cover the dishes with aluminum foil and leave overnight 

 
Figure S1.4: Fractionation steps for adding density solution to the soil sample 
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3.) Separation of free particulate organic matter (fPOM) 

Safety precautions: safety goggles, rubber gloves 

Material: vacuum pump + hose, suction flask + plug, 20 µm sieve (100 mm Ø), 1l glass beakers (2), 

conductivity meter, scintillation bottle, pasteur pipette, crystallizing dishes 

 
Figure S1.5: Laboratory equipment required for aspiration and rinsing of fPOM from bulk soil. 

Steps: (6x) 
 

          - gently shake the dish to remove fragments stuck to the side walls 
 

          - aspirate all fPOM with the vacuum pump into the suction flask (and as much solution as  

            possible)  do not aspirate mineral particles! 
 

          - check the hose for stuck fPOM 
 

          - place the sieve on glass beaker and pour the suction flask content onto the sieve        

            (set aside the glass beaker with the solution that passed the sieve) 
 

          - place the sieve on the other glass beaker and rinse remaining fPOM from the suction flask with  

            distilled water onto it 
 

          - rinse fPOM on the sieve with distilled water until a conductivity of <10 µS cm-1 
 

          - rinse fPOM with distilled water from the sieve into the scintillation bottle labelled "sample  

            name - fPOM” 
 

          - put it in the freezer and set aside the glass beaker with the aspirated solution 
 

          - freeze-dry all fPOM samples 

 
Figure S1.6: Fractionation steps for aspiration and rinsing of fPOM from bulk soil. 
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4.) Ultrasonication 

Safety precautions: safety goggles, earplugs if necessary 

Material: ultrasonic homogenizer, 600 ml glass beaker, lab scissor jack, crystallizing dish, ice, scraper, 1l 

glass beaker with aspirated solution, pasteur pipette, thermometer 

 
Figure S1.7: Laboratory equipment required for ultrasonication of the mineral soil. 

Steps: (6x) 
 

          - attach new crystallizing dish to the scissor jack with adhesive tape 
 

          - transfer the mineral soil fraction from the initial crystallizing dish with a scraper into a 600 ml  

            glass beaker (rinse with aspirated solution from set aside 1l beaker) 
 

          - pour the remaining solution into the 600 ml beaker 
 

          - place the beaker in the new dish and fill the dish with water, then with ice 
 

          - place all in the ultrasound box and immerse the sonotrode 2.5 cm (for complete turbation) 
 

          - set the sonication duration and amplitude (60%) as determined during pre-tests (see Figure  

            S.1.1) according to Griepentrog and Schmidt (2013) and start sonication 
 

          - during sonication, keep track of the temperature of the solution (<30 °C) to prevent alteration  

            of SOM quality and align the beaker so that the sonotrode is always centered 

 

4.1.) Calibration and maintenance of the ultrasonic homogenizer 

          - due to deterioration of the sonotrode tip (see right side in Figure S1.8), regular calorimetric  

            calibrations of the ultrasonic homogenizer should performed 

 
 

Figure S1.8: Calorimetric calibration of the ultrasonic homogenizer. Black circles show mean values of temperature 

change within the solution that resulted in a constant energy output of 75 W during all the conducted fractionation 

runs in this study.  
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5.) Separation of occluded particulate organic matter (oPOM) 

Safety precautions: safety goggles, rubber gloves 

Material: 250 ml centrifuge bottles (12x), funnel, spray bottle, vacuum pump, hose, suction flask + plug, 

20 µm sieve (100 mm Ø), 1l glass beaker 

Steps: (6x) 
 

          - evenly transfer the sonicated solution and mineral soil into two 250 ml centrifuge bottles with  

            a funnel (accurate to 1 g), label lid and bottle 
 

          - centrifuge: place the bottles of the same sample opposite each other. Set timer to 15 min and  

            speed to 7000 rpm. Start the centrifuge 
 

          - aspirate the floating oPOM and as much of the solution as possible into the suction flask 

             do not aspirate mineral particles! 
 

          - set aside the centrifuge bottles with the remaining mineral soil 
 

          - place the sieve on the 1 l lass beaker and pour the aspirated oPOM and solution onto the sieve 
 

          - rinse oPOM on the sieve with distilled water until a conductivity of <10 µS cm 
 

          - rinse oPOM with distilled water from the sieve into the scintillation bottle labelled  

            "sample name - oPOM” and put it in the freezer 
 

          - freeze-dry all oPOM samples 

 
Figure S1.9: Fractionation steps for aspiration and rinsing of oPOM from bulk soil. 
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6.) Rinsing of the remaining mineral fraction 

Safety precautions: safety goggles 

Material: scale, wide-neck bottles (6), vacuum pump, hose, suction flask + plug, centrifuge beakers, 

spray bottle 

Steps: (6x) 

          - take the set aside centrifuge bottles with the remaining mineral soil and fill them with distilled  

            water (accurate to 1 g) 
 

          - place the bottles in the centrifuge (opposite to each other) and start centrifuging (15 min, 7000  

            rpm) 
 

          - aspirate the water with the vacuum pump, measure conductivity, refill the bottles with distilled  

            water and thoroughly shake the bottles 
 

          - repeat until a conductivity of <50 µS cm-1 (takes up to eight runs, see Figure S1.10) 
 

          - transfer the rinsed mineral fraction into a labelled wide-neck bottle and refrigerate 

 
Figure S1.10: Development of electrical conductivity of the remaining mineral fraction after repeated centrifugation 

and rinsing. The black circles show mean values of 30 fractionated bulk samples with standard deviations. The dotted 

red line is the threshold of 50 µS cm-1, after which centrifugation was stopped. 
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7.) Fractionation of the remaining mineral soil 

Safety precautions: - 

Material: vibrating sieve tower (630, 63 and 20 µm sieves, 200 mm Ø), wide-neck bottles, spray bottle, 

funnels, 5 l beaker with handle, hose and water supply, tweezers 

Steps: (6x) 

          - place the outlet tray with the hose discharging into the 5 l beaker at the bottom of the sieve  

            tower, followed by the 20, 63, 630 µm sieves (the 630 µm sieve was additionally used to avoid  

            clogging of the sieves) 
 

          - pour the rinsed mineral fraction from the wide-neck bottle onto the 630 µm sieve 
 

          - mount the dome with the water nozzles on top. Start and gently adjust the flow of water and  

            the vibration setting of the tower 
 

          - try to keep the water volume as low as possible (important for further particle size fractionation  

            of the fraction <20 µm) 
 

          - as soon as the water discharge from the outlet tray is clear, stop sieving 
 

          - clean the sieves (tweezers) and rinse the material on the 630 and 63 µm sieves, and on the 20  

            µm sieve into a labelled beakers ("sample name - 2000-63 µm", "sample name - 63-20 µm") 
 

          - fill the discharge from the 5 l beaker into labelled wide-neck bottles (“sample name - <20 µm”) 

 
Figure S1.11: Wet-sieving of the mineral fraction after separation of POM fractions. 

          - the remaining particle size fractionation included the separation via sedimentation in  

            Atterberg-cylinders into the fractions 20-6.3 and<6.3 µm at the Institute of Geological Sciences,  

            University of Bern. 

 
Figure S1.12: Particle size fractionation of the mineral fraction <20 µm via sedimentation. 

          - all separated mineral fractions were dried at 60°C, grinded and measured for C and N 
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Figure S1.13: a) During grinding of the bulk samples for elemental analysis (C and N measurements), blackish-brown 

streaks repeatedly occurred which were strongly distinguishable in color from the rest of the sample. b) During density 

fractionation, small black, rounded beads were found that caused the dark coloration during grinding. c) By observation 

under the microscope, these were identified as manganese concretions. 
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Figure S1.14: Soil profile of the Haplic Luvisol in the DOK experiment. The blackish-brown smears, which are the result 

of working the profile with a spade, show iron-manganese concretions. See also Figure S1.13. Photo: Markus Steffens.  
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Supplementary Material - CHAPTER 2 

Table S2.1: Composition of the first six completed crop rotation periods (CRP) corresponding to the temporal shift for 

subplot B in the DOK trial (adapted from Krause et al. (2022)). Crops present on the plots during years of analysis (5th 

year each CRP) are highlighted in bold. 
 

  CRP 1 CRP 2 CRP 3 CRP 4 CRP 5 CRP 6 

  (1978-1984) 

1982 

(1985-1991) 

1989 

(1992-1998) 

1996 

(1999-2005) 

2003 

(2006-2012) 

2010 

(2013-2019) 

2017 

1st Winter wheat 2 Winter wheat 2 Winter wheat 2 Winter wheat 2 Winter wheat 2 Winter wheat 2 

2nd Barley Barley Grass-clover 1 Grass-clover 1 Grass-clover 1 Grass-clover 1 

3rd Grass-clover 1  Grass-clover 1 Grass-clover 2 Grass-clover 2 Grass-clover 2 Grass-clover 2 

4th Grass-clover 2 Grass-clover 2 Grass-clover 3 Potato Silage corn 
Silage corn        

Green manure 

5th 
Potato                   

Green manure 

Potato           

Green manure 

Potato 

 

Winter wheat 1  

Green manure 

Winter wheat 1 

Green manure 

Soybean 

 

6th 
Winter wheat 1  

Intercropping 

Winter wheat 1  

Intercropping 

Winter wheat 1  

Intercropping 

Soybean               

Green manure 

Soybean                         

Green manure 

Winter wheat 1    

Intercropping 

7th White cabbage Beetroot Beetroot Silage corn Potato Potato 
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Table S2.3: Recovered SOC (mg g-1 soil) after physical fractionation in POM and MAOM fractions for each treatment 

and year of analysis. Arithmetic means are highlighted in bold with standard deviations of n = 4 replicates. Post-hoc 

Tukey letters give significant differences at p <0.05. 
 

  year & crop rotation period (CRP)  

  

1982                   

(CRP 1) 
  

1989             

(CRP 2) 
  

1996                            

(CRP 3) 
  

2003                    

(CRP 4) 
  

2010                     

(CRP 5) 
  

2017                       

(CRP 6) 
  

 
fPOM-C (>20 µm) [mg g

-1
] 

 

NOFERT 0.16 ± 0.04 a 0.23 ± 0.06 a 0.33 ± 0.11 a 0.31 ± 0.06 a 0.26 ± 0.05 a 0.33 ± 0.07 a 

CONMIN 0.21 ± 0.04 ab 0.28 ± 0.10 ab 0.39 ± 0.14 a 0.43 ± 0.11 a 0.26 ± 0.08 a 0.35 ± 0.05 a 

CONFYM 0.28 ± 0.09 b 0.29 ± 0.10 ab 0.38 ± 0.07 a 0.33 ± 0.05 a 0.27 ± 0.07 a 0.44 ± 0.07 a 

BIODYN 0.31 ± 0.05 b 0.36 ± 0.07 b 0.31 ± 0.06 a 0.61 ± 0.06 b 0.40 ± 0.16 a 0.47 ± 0.26 a 

 
oPOM-C (>20 µm) [mg g

-1
] 

 

NOFERT 0.33 ± 0.05 a 0.35 ± 0.32 a 0.29 ± 0.04 a 0.19 ± 0.05 a 0.18 ± 0.04 a 0.47 ± 0.11 a 

CONMIN 0.33 ± 0.06 a 0.49 ± 0.12 a 0.34 ± 0.06 a 0.34 ± 0.25 a 0.31 ± 0.07 a 0.58 ± 0.07 a 

CONFYM 0.39 ± 0.03 ab 0.80 ± 0.23 ab 0.27 ± 0.06 a 0.43 ± 0.15 a 0.18 ± 0.05 a 0.70 ± 0.08 a 

BIODYN 0.46 ± 0.09 b 1.13 ± 0.10 b 0.56 ± 0.08 b 0.96 ± 0.28 b 0.50 ± 0.12 b 1.42 ± 0.16 b 

 
sand-sized (2000-63 µm) OM-C [mg g

-1
] 

 

NOFERT 0.14 ± 0.04 a 0.25 ± 0.11 a 0.11 ± 0.03 a 0.18 ± 0.05 a 0.13 ± 0.04 ab 0.24  ± 0.06 a 

CONMIN 0.14 ± 0.03 a 0.18 ± 0.08 a 0.21 ± 0.19 a 0.16 ± 0.10 a 0.09 ± 0.04 a 0.19 ± 0.05 a 

CONFYM 0.19 ± 0.06 a 0.16 ± 0.04 a 0.13 ± 0.04 a 0.12 ± 0.02 a 0.16 ± 0.02 b 0.24 ± 0.04 a 

BIODYN 0.17 ± 0.06 a 0.28 ± 0.16 a 0.14 ± 0.03 a 0.32 ± 0.22 a 0.16 ± 0.05 b 0.22 ± 0.06 a 

 
silt-sized (63-6.3 µm) OM-C [mg g

-1
] 

 

NOFERT 2.03 ± 0.46 a 1.91 ± 0.07 a 2.04 ± 0.64 a 1.65 ± 0.19 a 1.45  ± 0.21 a 1.55 ± 0.20 a 

CONMIN 2.12 ± 0.43 a 1.84 ± 0.34 a 2.32 ± 1.06 a 2.06 ± 0.11 ab 1.93 ± 0.19 ab 1.92 ± 0.23 ab 

CONFYM 2.26 ± 0.30 a 1.82 ± 0.34 a 2.16 ± 0.44 a 2.08 ± 0.21 ab 2.22 ± 0.34 b 2.15 ± 0.07 ab 

BIODYN 2.66 ± 0.72 a 2.07 ± 0.68 a 2.60 ± 0.50 a 2.68 ± 0.73 b 2.81 ± 0.26 c 2.53 ± 0.61 b 

 
clay-sized (<6.3 µm) MAOM-C [mg g

-1
] 

 

NOFERT 7.57 ± 1.15 a 6.78 ± 1.11 a 6.50 ± 1.43 a 5.45 ± 0.46 a 5.58 ± 0.71 a 5.55 ± 0.58 a 

CONMIN 7.86 ± 1.34 a 6.69 ± 1.06 a 7.27 ± 1.73 a 6.37 ± 1.30 ab 6.55 ± 0.92 a 6.75 ± 0.81 ab 

CONFYM 7.07 ± 0.83 a 6.88 ± 0.50 a 7.35 ± 0.76 a 6.45 ± 0.50 ab 6.92 ± 0.45 ab 6.88 ± 0.44 ab 

BIODYN 8.34 ± 1.69 a 7.88 ± 1.38 a 8.86 ± 1.20 a 7.83 ± 1.10 b 8.42 ± 0.91 b 8.32 ± 1.26 b 
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Figure S2.1: Solid-state 13C CPMAS-NMR spectra of selected POM and MAOM fractions. Dotted lines represent spectra 

from 1982 and solid lines from 2017. Segments highlighted in color represent the different corresponding integrated 

chemical shift area. 
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Figure S3.1: Field map of the DOK long-term experiment. The analyzed subplot B is framed in bold and the analyzed 

plots are color-coded according to the respective farming system. 

 

 

Table S3.1: Recovered MAOM-C [mg g-1] (<6.3 µm; 0-20 cm) after physical fractionation for each farming system and 

year of analysis. Values are arithmetic means with standard deviations of n = 4 replicates. Post-hoc Tukey letters give 

significant differences at p <0.05. For a detailed overview including all separated fractions, see Table S2.3. 

  MAOM-C [mg g
-1

] 
 

 
1982                      1989                1996                               2003                       2010                        2017                          

   

NOFERT 7.57 ± 1.15 a 6.78 ± 1.11 a 6.50 ± 1.43 a 5.45 ± 0.46 a 5.58 ± 0.71 a 5.55 ± 0.58 a 

CONMIN 7.86 ± 1.34 a 6.69 ± 1.06 a 7.27 ± 1.73 a 6.37 ± 1.30 ab 6.55 ± 0.92 a 6.75 ± 0.81 ab 

CONFYM 7.07 ± 0.83 a 6.88 ± 0.50 a 7.35 ± 0.76 a 6.45 ± 0.50 ab 6.92 ± 0.45 ab 6.88 ± 0.44 ab 

BIODYN 8.34 ± 1.69 a 7.88 ± 1.38 a 8.86 ± 1.20 a 7.83 ± 1.10 b 8.42 ± 0.91 b 8.32 ± 1.26 b 
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Table S3.2: Comparison of measured and simulated 14C activity (in Fraction Modern, F14C) in MAOM during the 

steady-state period of each farming system (NOFERT: 2003-2017, CONMIN: 1989-2017, CONFYM: 1982-2017, 

BIODYN: 1982-2017) using the approach of Harkness et al. (1986). The measured 14C activity was corrected for 

radioactive decay between sampling and measurement year. For each analyzed plot at each tested time lag (0, 5 and 

10 years between C assimilation of the crop and its incorporation in MAOM), the root-mean-square error (RMSE) and 

mean residence time (MRT) is shown. Values in bold represent the mean RMSE per farming system for each time lag. 

Values for CONFYM and BIODYN are shown on the next page. 
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