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Abstract  

Severe equine asthma (SEA) is a common respiratory condition of horses, whose 

underlying immune mechanisms remain to be elucidated. In this thesis project, we took 

advantage of the recently developed single-cell mRNA (scRNA-seq) technology to investigate 

the immunological landscape of equine bronchoalveolar lavage fluid (BALF) cells in both 

health and disease. Initially, we conducted a pilot experiment involving three horses to 

demonstrate the feasibility of scRNA-seq on cryopreserved equine BALF samples. Although 

the experiment was successful, the proportion of reads aligning to the annotated equine 

reference transcriptome was suboptimal. To address this, we generated a custom equine BALF 

transcriptome using long-read sequencing, aiming to improve the quality of 3'-UTR annotation 

and document BALF-specific isoforms. While we identified several novel isoforms, the read 

mapping percentage did not improve when aligning our scRNA-seq transcripts to the custom 

transcriptome. By extending the 3'-UTRs of the existing reference annotation, we achieved a 

satisfactory read mapping percentage, enabling subsequent qualitative downstream analysis. 

Our scRNA-seq dataset encompassed six major cell populations: monocytes-macrophages, 

neutrophils, T cells, B cells and dendritic cells. Within the monocyte-macrophage and T cell 

groups, we identified previously uncharacterized cell subtypes. Encouraged by these findings, 

we applied our optimized experimental protocol and analysis pipeline to study SEA. ScRNA-

seq analysis of cryopreserved BALF cells from 6 asthmatic and 5 healthy controls revealed the 

same major cell populations as observed in the pilot study. In addition to T cells and monocytes-

macrophages, we characterized several cell subtypes within the B cell, dendritic cell and 

neutrophil populations. Differential gene expression analysis revealed a strong T helper (Th)17 

signature in SEA, primarily driven by monocytes-macrophages and T cells. Notably, BALF 

from SEA horses was enriched in B cells, with a lower proportion of activated plasma cells. 

Neutrophils in the SEA group displayed increased migratory capacity and a heightened 

propensity to form neutrophil extracellular traps (NETs). An intriguing finding in both scRNA-

seq experiments was the detection of a dual monocyte-lymphocyte population, potentially 

representing genuine cellular complexes engaged in an immunological synapse. In summary, 

this thesis project represents pioneering work employing scRNA-seq in the field of equine 

pulmonology. Our findings support a predominant Th17 immune pathway in SEA, 

necessitating further investigation to improve diagnostic tools and therapeutic management of 

severely asthmatic horses. 

 



   
 

Introduction 

Asthma is a chronic inflammatory airway disease affecting 5 – 10 % of the global human 

population (1). Only two domestic animal species are known to be affected by naturally-

occurring asthma: cats and horses. Equine asthma is common in Northern hemisphere countries 

with a temperate climate. Two main forms of the disease are described: mild-moderate (MEA) 

and severe equine asthma (SEA). Despite the high prevalence and clinical importance of asthma 

in humans and horses, its pathophysiological mechanisms are yet to be elucidated. Over the 

past decade, substantial advances in respiratory research have been made thanks to single-cell 

RNA sequencing (scRNA-seq). With this novel technique, genetic expression can be studied at 

the level of a single cell, offering unmatched resolution. ScRNA-seq studies remain scarce in 

asthma research, in part because human pulmonary cells are not readily accessible. The aim of 

this PhD thesis was to apply scRNA-seq to equine bronchoalveolar cells to characterize the 

immunological landscape of SEA. In the introduction, we first outline our current understanding 

of the pathophysiology of SEA in order to identify the knowledge gaps. We then provide an 

overview of the intricacies and advantages of the scRNA-seq technology, emphasizing its 

potential to uncover the underlying immune mechanisms of SEA. 

 

1.1 Severe equine asthma  

1.1.1 Importance of equine asthma 

a. Overview of equine asthma 

Asthma is a chronic, non-infectious, inflammatory disease of the lungs. In horses, two 

main disease categories are described: MEA (formerly inflammatory airway disease IAD) and 

SEA (formerly recurrent airway obstruction RAO or heaves), mostly observed in horses 7 years 

or older. Based on a survey in the United Kingdom, SEA is thought to affect 10 - 17% of the 

equine population in countries with temperate climate (2). Although MEA is widely recognized 

as a prevalent condition among horses, affecting as many as 80% of racehorses (3), there 

remains a lack of agreement regarding its exact prevalence (4). Both forms of the disease are 

characterized by chronic lower airway inflammation, bronchial hyperreactivity, partially 

reversible airway obstruction and increased tracheal mucus production. Clinical signs consist 

in a variable combination of cough, nasal discharge, exercise intolerance, and abnormal 



   
 

breathing effort. The distinction between MEA and SEA is clinical, with severely asthmatic 

horses displaying increased breathing effort at rest (5). This presents with nasal flare and 

increased abdominal effort at expiration, eventually resulting in abdominal muscle 

overdevelopment (known as “heave line”). It is still debated whether MEA and SEA represent 

two different pathological entities or whether they are part of a continuum. Indeed, some MEA-

affected horses never develop SEA (4). One argument in favor of two distinct 

pathophysiological entities was the presence of airway remodeling only in SEA. However, a 

recent study identified signs of bronchial remodeling in horses with MEA (6), fueling the 

hypothesis that MEA may represent an early stage of SEA. Since this thesis project specifically 

centers on the investigation of SEA, we will now shift our focus exclusively to this form of EA. 

Diagnosis 

In clinical practice, the diagnosis of SEA is typically based on the history, the clinical 

examination, and the response to therapy. The Horse Owner Assessed Respiratory Signs Index 

(HOARSI) questionnaire can be used to identify cases based on their respiratory sign history 

(7,8). Diagnosis confirmation is typically achieved through cytological examination of the 

bronchoalveolar lavage fluid (BALF). According to an expert consensus (4), SEA is 

characterized by a significant airway neutrophilia, with more than 25% neutrophils. However, 

the stringency of this cytological criterion has been called into question. For instance, 

paucigranulocytic SEA, where BALF cytology is normal, is occasionally encountered. This 

may reflect suboptimal sample quality due to bronchoconstriction and may not be representative 

of the lower airway compartment (9). Furthermore, it is now observed that some horses exhibit 

all the clinical features of SEA without the typical severe BALF neutrophilia, potentially due 

to improved husbandry practices and subsequent reduced dust exposure (10,11). Another 

characteristic of EA is an increased tracheal mucus score observed during endoscopy (12). 

Spirometry is paramount to the diagnosis of human asthma (1). However, it is not feasible to 

instruct a horse to forcefully exhale into an instrument. Several alternative methods exist to 

evaluate equine lung function, such as esophageal balloon catheterization, flow 

plethysmography, forced oscillatory mechanics or flow interruption techniques (9,13). 

However, lung function testing devices are not widely accessible and require expertise for both 

implementation and interpretation of results. Consequently, researchers in the field now 

advocate for a comprehensive approach that combines history, clinical and pathological 

findings, and/or lung function testing to classify horses as asthmatic or healthy (14–16).  

 



   
 

Treatment 

The mainstay of treatment is antigen avoidance through dust exposure reduction. 

Ideally, horses should be maintained in an environment that closely mimics their natural habitat, 

allowing them continuous pasture turnout. As this is rarely feasible, several measures must be 

implemented to reduce dust exposure in the stable, such as enhancing stall ventilation, avoiding 

storage of hay above the horses, or sprinkling the riding arena prior to use. A pivotal measure 

involves substituting dry hay with alternatives like soaked or steamed hay, haylage, or hay 

pellets. Moreover, straw bedding should be replaced by low dust alternatives (4). 

Pharmacological interventions are only palliative and involve the administration of 

corticosteroids and bronchodilators, either orally or via inhalation (4). Severe equine asthma is 

not a curable disease; nevertheless, allergen avoidance and corticosteroid therapy can partially 

reverse airway remodeling (17).  

b. Impact of equine asthma 

Severe equine asthma has a significant impact on horse welfare. It is a lifelong and often 

progressive condition. Alongside the persistent cough, horses may experience acute episodes 

of dyspnea. As the disease progresses, the increased effort required for breathing leads to 

heightened energy demands, exhaustion and subsequent weight loss (18). Unfortunately, 

disease management can sometimes negatively affect the overall well-being of the horse. When 

alternative hay options are limited, owners may resort to feeding hay pellets, which contradicts 

the natural feeding behavior of horses, which typically involves grazing for more than 12 hours 

a day. This can cause significant stress and lead to the development of stereotypies (19). 

Pharmacological treatment also carries certain risks. Although there is currently no conclusive 

evidence linking corticosteroid therapy to laminitis, anecdotal reports suggest a potential 

association (20). Furthermore, prolonged use of β2 agonists for bronchodilation may cause 

cardiovascular remodeling (21). The progressive nature of the clinical signs, coupled with the 

time and cost required for dust reduction measures, sometimes leads to early euthanasia. 

Studies from the 80s demonstrated that lower airway inflammation was a common 

source of wastage in the equine racing industry (22,23). More recently, MEA has been shown 

to significantly reduce racing speed (3). Equine asthma can also hinder the participation of sport 

horses in competitions, given that many pharmacological treatments are classified as controlled 

substances. The high prevalence of EA and its established effect on performance suggest a 



   
 

substantial impact on the equine industry, even though the exact economic burden has not been 

quantified.  

c. A model of human asthma 

In 2019, asthma affected an estimated 262 million people worldwide, with an alarming 

rate of 1,000 daily asthma-related deaths (1). While improving access to medical care and 

reducing exposure to risk factors are crucial for alleviating the disease burden, continuous 

research efforts are necessary to improve disease detection, characterization, and the 

development of more effective therapies.  

Available animal models to study human asthma include mice, rats, guinea pigs, cats, 

dogs, sheep, horses, and nonhuman primates. Among them, only cats and horses are capable of 

developing asthma naturally (24). Murine models are extensively employed in asthma research 

due to their accessibility, cost-effectiveness, high level of standardization and ease of gene 

manipulation. Murine-specific reagents are readily accessible, and existing research data using 

murine models facilitate comparisons and the building upon previous findings. However, the 

induction of lower airway inflammation in mice necessitates antigen sensitization protocols, 

raising concerns about its relevance to naturally occurring disease in humans. Additionally, 

mice and human lungs differ significantly in terms of anatomy and physiology, and the 

requirement for terminal studies to collect pulmonary samples raise ethical considerations (24).  

The translation of murine results to humans yielded disappointing outcomes so far (25). 

Therefore, it is advocated that findings from murine models should be initially investigated in 

naturally occurring disease models to assess treatment efficacy in real-life situations before 

application to humans (24). This approach allows for the study of asthma in all its heterogeneity 

and complexity. Among potential animal models, horses show promise due to their similarities 

to humans in terms of lung physiology and anatomy. Specifically, horses with SEA exhibit 

striking similarity to humans with severe neutrophilic asthma (24). Additionally, large volumes 

of biological samples can be collected from horses, and airway samples such as BALF or 

bronchial biopsies can be obtained from standing horses with light sedation, avoiding the need 

for general anesthesia or terminal studies. Furthermore, the long lifespan of horses, sometimes 

exceeding 25 years, enables the study of disease progression, including airway remodeling. 

Nonetheless, the use of horses as an experimental model is constrained by space requirements 

for housing and associated costs. Another potential limitation is the lack of standardization, as 

horses have diverse genetic backgrounds and are exposed to various aerosols. Equine-specific 



   
 

reagents are limited in availability, and there is a smaller body of equine studies, resulting in 

less extensive knowledge about this species compared to rodent models (24). 

In summary, SEA is a prevalent disease with a significant impact on animal welfare. 

The diagnosis of SEA is challenging, relying on the evaluation of multiple criteria. Treatment 

options are primarily palliative, often accompanied by side effects and the potential for positive 

doping tests. Therefore, the discovery of new biomarkers and therapeutic targets is of great 

importance. Furthermore, gaining a better understanding of the pathophysiology of SEA could 

provide valuable insights into the mechanisms of some forms of human asthma. 

 

1.1.2 Immunopathogenesis – current knowledge 

Equine asthma is triggered by an exaggerated immune response to respirable particulates 

found in the environment and particularly in hay dust. These entails organic and inorganic 

elements such as endotoxins, fungal elements, mites or ammonia (4). Equine asthma is a disease 

of domestication associated with hay feeding and stabling. A less common form of the disease, 

summer pasture EA, occurs when horses react to pollen. Equine asthma can be broadly 

classified as an allergy, adhering to the definition of a disease resulting from the immune 

system's reaction to an otherwise harmless antigen. However, it is uncertain whether EA 

represents an allergy sensu stricto, namely a type I hypersensitivity with Th2-mediated 

production of IgE.  

The convergence of the innate and adaptive immune responses gives rise to three major 

types of cell-mediated effector immunity, known as Th1, Th2 and Th17-mediated diseases. 

Because these immune pathways do not rely exclusively on T helper (Th) cells, it has been 

proposed to label them type 1, type 2, and type 3 responses instead (26). Unfortunately, this 

terminology has not been widely adopted, and the terms have been used interchangeably. Type 

1 immunity involves the activation of specific immune cells like immune lymphoid cells 1 

(ILC1s), natural killer (NK) cells, TC1 cytotoxic T cells, and CD4+ Th1 cells. These cells 

produce interferon γ (IFNγ) and work together to protect against intracellular microbes by 

activating mononuclear phagocytes. Type 2 immunity, on the other hand, relies on the 

activation of ILC2s, TC2 cells, and Th2 cells, which produce interleukin (IL) 4, IL5, and IL13. 

These substances trigger the activation of mast cells, basophils, eosinophils, and the production 

of IgE antibodies, providing defense against helminths and venoms. Type 3 immunity is 

mediated by ILC3s, TC17 cells, and Th17 cells, which produce IL17, IL22, or both. These 



   
 

substances activate mononuclear phagocytes, recruit neutrophils, and induce epithelial 

antimicrobial responses, offering protection against extracellular bacteria and fungi. 

Exacerbated type 1 and type 3 immunity can contribute to autoimmune diseases, while 

uncontrolled type 2 responses may lead to allergic diseases (sensu stricto) (26). To further 

elevate the level of complexity, it is important to acknowledge the high plasticity of T cells. 

Their phenotype is not fixed and can undergo changes. For instance, Th17 cells have the ability 

to transition into Th1 cells. As a result, overlapping inflammatory states may emerge, 

characterized by transient immunological signatures (27). 

 

 

FIGURE 1. The 3 major types of innate and adaptive cell-mediated effector immunity. Type 1 
immunity is composed of T-bet+ IFNγ–producing CD4+Th1 cells and ILC1s and T-
bet+Eomes+CD8+ TC1 and NK cells. Type 2 immunity is composed of GATA3+CD4+ Th2 cells, 
CD8+ TC2 cells, and ILC2s, which produce IL4, IL5, and IL13. Type 3 immunity is composed 
of RORγt (RORC)+CD4+Th17 cells, CD8+ TC17 cells, and ILC3s, producing IL17, IL22, or 
both. CILp, Common innate lymphoid precursor; CLp, common lymphoid precursor; LN, lymph 
node; LTi, lymphoid tissue inducer; PP, Peyer patch; Tp, T-cell progenitor. From Annunziato 
et al. 2015 (26)). 



   
 

Studies investigating the predominant immune pathway in equine asthma have yielded 

conflicting results. The disease has been attributed alternatively to a type 2, type 1, type 3, or 

mixed immune response based on mRNA or cytokine analysis of peripheral blood or BALF 

from affected horses (Table 1) (28). Traditionally, equine asthma has been considered a type 2 

disease, and this hypothesis is supported by the observation that affected horses may also suffer 

from other hypersensitivities such as insect bite hypersensitivity or urticaria (29,30). 

Recent studies have increasingly implicated the Th17 pathway in equine asthma. 

Elevated levels of IL17 mRNA have been detected in the BALF of horses with equine asthma 

following antigen exposure (11). Analyses of mediastinal lymph nodes have provided evidence 

of a predominant Th17 response in SEA (31). Dysregulation of miRNA in the serum of 

asthmatic horses has further supported the existence of a mixed Th2/Th17 response (32). 

Additionally, a comprehensive miRNA-mRNA study in equine lung tissues suggested a 

predominant Th17 pathway, along with some indications of a parallel Th2-type response (33). 

An increased expression of the Th17-associated CXCL13 chemokine has been found in 

stimulated peripheral blood mononuclear cells (PBMCs) from SEA horses. A recent flow 

cytometry study on equine BALF cells clearly identified a local type 3 response in SEA, with 

an increased frequency of CD4+IL17A+ lymphocytes. The IL17 family, particularly IL17A and 

IL17F, play a crucial role in the type 3 response, contributing to the recruitment and activation 

of neutrophils (26).  

TABLE 1. Cytokines reported in SEA-affected horses according to T helper subtype (32–41). 
From Simões et al. 2022 (28) 

 

Airway neutrophilia is a hallmark of SEA. Neutrophils play an important role in 

eliminating pathogens from the lungs through various mechanisms, including phagocytosis, 

production of cytokines, chemokines, proteases, reactive oxygen species (ROS), and neutrophil 

extracellular traps (NETs) formation. Their prompt elimination through apoptosis is essential 



   
 

to prevent excessive inflammation and tissue damage. NETs, a specific form of apoptosis, 

involves the release of cellular DNA along with antimicrobial peptides and proteases. While 

their primary function is pathogen elimination, they can also induce tissue damage and sustain 

chronic inflammation. NET formation is enhanced in the BALF from horses with SEA (42,43). 

Therefore, neutrophils could participate to lower airway inflammation in SEA through 

increased recruitment, altered function and/or persistence in the lungs. The precise role of 

neutrophils in the immunopathogenesis of equine asthma is currently unclear, and it remains to 

be determined if they are active participants or simply a consequence of the local inflammatory 

response. 

The reason for the development of SEA in some horses and not others, despite being 

exposed to the same environment, remains incompletely understood. Individual susceptibility 

appears to be influenced, at least in part, by genetic factors. Genetic predisposition has been 

observed in Swiss Warmblood horses with SEA, and the mode of inheritance may vary among 

families within the same breed (44). Equine PBMCs have shown genetic heterogeneity in their 

response to allergens, further supporting the role of genetic susceptibility in the disease (45). 

Despite several decades of research on EA, our comprehension of its 

immunopathogenesis remains limited. In the following section, we will explore the possible 

causes behind the knowledge gap to determine the optimal strategy for addressing and closing 

this gap. 

 

1.1.3 Origin of the knowledge gap 

The discrepant findings observed in EA studies conducted over the past decades reflect 

the intricate nature of the disease, influenced by variations in study design, study population, 

and limitations of experimental techniques. 

Disease heterogeneity 

Asthma is a highly complex disease encompassing various triggers, risk factors, clinical 

presentations, pathological characteristics and treatment responses. In humans, asthma has been 

classified into different phenotypes, based on clinical manifestation and response to therapy 

(27). Similarly, EA has been divided into two main forms: MEA and SEA. However, there is 

growing recognition of the need to consider the disease in terms of endotypes, which account 

better for the heterogeneity encountered in clinical practice. An endotype describes distinct 



   
 

pathophysiologic mechanisms at the cellular and molecular level (27), which may or may not 

align with the clinical phenotype. In human asthma, two broad categories have been identified: 

type 2 (or T2-high) and non-type 2 (or T2-low) asthma (27), with each category comprising 

several endotypes (27). Type 2 asthma, often referred to as allergic asthma, is characterized by 

airway eosinophilia. In contrast, non-type 2 asthma can be either neutrophilic or 

paucigranulocytic, similar to SEA. Some subsets of human non-type 2 asthma exhibit 

similarities to SEA (5), such as very late-onset asthma, which is associated with aging, and 

organic-dust induced asthma of agricultural workers exposed to high dust levels (46). The 

inclusion of different EA endotypes within the same study has likely contributed to the 

inconsistency of results observed thus far. To enhance result interpretation and improve clinical 

applicability, research efforts should focus on studying one endotype at a time. Currently, we 

propose using the existing categorization of MEA and SEA, further subclassifying them based 

on the predominant cell type in the BALF. These endotypes could include neutrophilic SEA, 

paucigranulocytic SEA, neutrophilic MEA, mastocytic MEA, eosinophilic MEA, or mixed-

cell-type MEA. As knowledge advances, additional endotypes or more refined subtypes may 

be identified. 

Study population design 

The diversity of the study population is a potential factor contributing to the challenges 

in establishing conclusive immunological pathways for SEA. There is considerable variation in 

the inclusion and exclusion criteria used to select asthmatic horses across different studies. 

Horses may be in different phases of the disease, ranging from acute exacerbation to remission. 

Moreover, the inclusion of horses from genetically diverse backgrounds, often from different 

breeds, adds complexity. Maintaining a herd of asthmatic horses for research purposes 

necessitates significant expenses and adequate space, often leading to the recruitment of 

privately-owned horses. This comes with limited control over various factors, such as aerosol 

exposure, feeding and bedding type, exercise or medications. Collecting BALF may not always 

be well-accepted, particularly by trainers, due to perceived invasiveness or concerns about its 

impact on performance (9). Obtaining BALF samples from control horses without respiratory 

symptoms is even more challenging. Additionally, a common limitation of equine studies is 

their small sample size, which limits statistical power and interpretation of results.  

The study design itself can significantly influence the outcomes. Equine asthma can be 

investigated without any intervention, or horses may undergo antigen challenges with different 

types or doses of antigens. The timing between sample collections may vary, and experiments 



   
 

can be performed ex vivo or in vitro, using stimulated or unstimulated cells. Again, the type 

and dose of stimulation may not be consistent across studies. 

The choice of materials and methods employed in the research also has a substantial 

impact on the findings. While blood is easily accessible in horses, it primarily reflects systemic 

inflammatory responses rather than the local pulmonary environment. Tracheal wash, BALF, 

bronchial biopsies, or lung biopsies each contain unique cell types and cannot be directly 

compared. Fluid samples like tracheal wash or BALF present particular challenges during the 

analysis due to the difficulty in accounting for dilution effects. Furthermore, the experimental 

techniques used to analyze these samples have inherent limitations. Cytological examination of 

BALF, although widely used, is inherently subjective and allows for the differentiation of only 

five distinct cell populations (macrophages, lymphocytes, neutrophils, mast cells, and 

eosinophils) (47). Antibody-based techniques like immunohistochemistry and flow cytometry 

can differentiate additional subpopulations within lymphocytes, but their applicability in horses 

is limited by the availability of validated antibodies (48,49). Investigating the regulation of 

specific genes can be done by analyzing individual messenger RNA transcripts in BALF 

(43,50–52), primarily through reverse transcription polymerase chain reaction (RT-PCR). 

However, this approach is hypothesis-driven, with limited throughput and potential investigator 

bias. In contrast, global transcriptomics is a high-throughput technique that provides an 

unbiased approach to studying gene expression. Recent application of transcriptomics to equine 

PBMCs revealed impaired cell cycle regulation in SEA and upregulation of the Th17-associated 

gene CXCL13, a potential therapeutic target (34). Nevertheless, when performing bulk RNA 

sequencing (RNA-seq) of mixed cell populations, critical differences between individual cells 

are obscured. This is an important consideration when performing RNA-seq of BALF, 

especially due to the substantial impact of EA on the cellular composition of the lower 

respiratory tract. 

In contrast, single-cell mRNA sequencing (scRNA-seq) provides the ability to analyze 

different cell populations in a sample and capture their individual transcriptomes 

simultaneously. This method eliminates the need for equine-specific reagents and reduces the 

reliance on prior knowledge of marker genes for cell type identification. In the subsequent 

sections, we will present an overview of this innovative technique, including its principles of 

operation, strengths, and limitations. 

 



   
 

1.2 Single-cell mRNA sequencing 

Since its introduction in 2009 (53), the application of scRNA-seq has gained widespread 

popularity owing to the greater accessibility of commercial platforms, the reduced sequencing 

cost, and the development of dedicated software tools that simplify data analysis. Presently, 

scRNA-seq has become a readily accessible technique for investigating physiology and diseases 

in both humans and animal models. 

1.2.1 A practical guide 

The methods developed for scRNA-seq are built upon a shared underlying principle, 

which involves tagging transcripts with a cellular identifier prior to sequencing. There are two 

main approaches: plate-based techniques and microfluidic-based techniques. In plate-based 

methods, cells are captured on multi-well plates or microfuge tubes before fluorescence-

activated cell sorting (FACS). However, plate-based methods suffer from a relatively low cell 

throughput compared to microfluidics. Microfluidic-based techniques involve capturing single 

cells within microfluidic droplets. These techniques can operate even with a low starting cell 

number, are cost-efficient, and enable simultaneous analysis of gene expression profiles in a 

highly parallel manner (54).  

In this research project (studies 1 and 3), we used the single-cell Chromium Controller 

from 10X Genomics, which is currently the most commonly used microfluidics-based platform. 

Our focus will therefore be on the protocol specific to the 10X Genomics Chromium Single 

Cell Solution, providing an illustrative example of a typical scRNA-seq experimental 

workflow. 

a. Experimental workflow overview 

Figure 2 gives an overview of the experimental workflow using the 10X Genomics 

Chromium Single Cell Gene Expression Solution. A single-cell suspension is prepared, either 

from a liquid biological sample or from tissue. The solution is loaded onto the Chromium chip, 

which is placed in the Chromium Controller for cDNA library creation. In this step, each cell 

is isolated in a droplet containing a specific barcode and the necessary reagents for cell 

membrane lysis, reverse transcription, and cDNA amplification. The resulting cell-specific 

cDNA library is then indexed to identify the source experiment. Multiple libraries can be pooled 

and sequenced simultaneously. After demultiplexing, data undergo quality control before being 

aligned to a reference genome. The cell-specific transcripts are further processed to improve 



   
 

signal-to-noise ratio before data visualization and interpretation. Each step will be subsequently 

detailed (55). 

 

 

FIGURE 2: Standard experimental workflow for single-cell mRNA sequencing using the 10X 
Genomics Chromium Single Cell Gene Expression Solution  

 

b. Sample preparation 

The objective of sample preparation is to generate a clean suspension of viable and 

healthy single cells. This can be achieved by processing liquid biological samples like blood or 

BALF, or by extracting cells from tissue. Pure cell lines or mixed-cell samples can be used. 

When isolating cells from tissue, mechanical or enzymatic dissociation methods are employed. 

In experiments focusing on a specific cell population, cell sorting techniques such as FACS-

sorting can be applied (55). 

Sterile handling and the use of nuclease-free reagents and consumables are 

recommended. Sufficient volumes should be used for cell washing and resuspension to prevent 

aggregation and clumping. Cell suspensions should be filtered using appropriately sized cell 

strainers, with pore sizes larger than the cell diameter, to remove clumps and debris. Gentle 

pipetting is essential to preserve cell viability. Centrifugation steps should also be kept to a 

minimum. To minimize cellular aggregates, dead cells, and contaminants such as reverse-

transcription (RT) inhibitors, protocol optimization may be necessary. This entails adjusting the 

number of wash steps, the composition of the resuspension media, or the centrifugation 

parameters. The final single-cell preparation should ideally have a viability greater than 90% 

and a concentration between 0.7-1.2 x 106 cells/mL to optimize cell encapsulation. Cell 



   
 

counting can be performed manually or with an automated counter. Some cell counters use 

electrical impedance to simultaneously assess cell membrane integrity. Alternatively, cells may 

be stained and visualized with microscopy or flow cytometry to determine their viability. 

Minimizing processing time is important to preserve cell viability and limit RNA degradation 

(56). 

ScRNA-seq can be performed on either fresh or preserved cells. Popular preservation 

methods are cryopreservation and methanol fixation. Preservation protocols are generally 

tailored to specific samples or cell types. Therefore, thorough testing and optimization of the 

protocol are necessary to ensure the preservation maintains the desired cellular composition and 

viability after storage. 

c. Construction of cell-specific cDNA libraries 

The 10X Genomics technology is based on microfluidic droplet chemistry with co-

encapsulation of a cell and a barcoding bead in a droplet. The sequence for cDNA library 

preparation is depicted in figure 3.  

 

FIGURE 3: Workflow overview for cDNA library preparation with 10X Genomics Chromium 
Single Cell Gene Expression Solution. GEM, Gel Beads-in-emulsion; RT, Reverse 
Transcription (adapted from © 10X Genomics, Inc. 2019) 

 



   
 

On the Chromium chip, one lane of wells is dedicated to the single-cell preparation. The 

two remaining lanes of wells contain the barcoded beads and an oil suspension, respectively. 

The barcoded beads consist of synthetic beads coated with oligonucleotides comprising the 

following regions (57): 

 A linker region connecting the oligonucleotide to the bead. 

 A primer region (TruSeq Read1) for subsequent cDNA amplification. 

 A cell barcode: a nucleotide sequence that is common to all oligonucleotides on a 

specific bead but unique to each bead. This barcode traces back the cellular origin of 

the transcript. 

 A unique molecular identifier (UMI): a nucleotide sequence that is unique to each 

oligonucleotide on the bead. The UMI informs about the amplification level, ensuring 

that amplicons of the same read are only counted once. 

 A poly-d(T) region, which captures the polyadenylated RNAs released within the 

droplet. This enables the capture of polyadenylated transcripts, including most 

eukaryotic mRNAs, as well as certain long noncoding RNAs and antisense transcripts.  

After being filled with the single-cell suspension, the Chromium chip is loaded onto the 

Chromium Controller, where cells are individually encapsulated into water-in-oil droplets 

containing a barcoded bead. The encapsulation efficiency, ranging from 50% to 65% according 

to the manufacturer, depends on the cellular concentration of the input solution. Low cell 

concentration results in a decreased number of encapsulated cells and lower final reads and cell 

counts for analysis, while higher concentrations correlate with an increased frequency of 

doublet or multiplet formation. Multiplets represent the co-encapsulation of multiple cells 

within a single droplet. The final cell concentration is optimized to maintain multiplet rate under 

5% (57). Following encapsulation, the cell membrane is lysed, and the poly(A) tail of the 

released mRNA is captured by the poly-d(T) region of the bead’s oligonucleotides. Reverse 

transcription generates the first strand of cDNA, followed by the synthesis of the second strand. 

Each droplet now virtually contains a cDNA library with a unique cell barcode. Because each 

cell contains a small amount of mRNA, cDNA must be amplified prior to sequencing. Droplets 

are broken down before cDNA amplification with PCR. The amplified cDNA then undergoes 

enzymatic fragmentation before the ligation of sample indexes and sequencing adapters in 



   
 

preparation for the sequencing step. The resulting cDNA library comprises the following 

elements, depicted in figure 4:  

 TruSeq Read 1 (28 nucleotides): sequence containing the cell barcode and the UMI. 

This read provides information about the cellular origin and amplification level of the 

read. 

 TruSeq Read 2 (91 nucleotides): read of interest, which will be aligned to a reference 

genome or transcriptome. 

 Sample index: random oligonucleotide sequence specific to the experiment, allowing 

for multiplexing of multiple cDNA libraries in a single sequencing run.  

 P5: forward primer for Illumina sequencing 

 P7: reverse primer for Illumina sequencing 

For our research project, we utilized the 3'-end short read sequencing approach, where only the 

3' extremity of the captured mRNA is subjected to RT. Alternative protocols enable sequencing 

of long reads or 5’-end short reads.  

 

 

FIGURE 4: Representative 10X Genomics Chromium Single Cell 3’ dual index library 
schematic (adapted from © 10X Genomics, Inc. 2019) 

 

 



   
 

d. Illumina sequencing 

The indexed cDNA library can be stored for later sequencing or immediately sequenced. 

In our research project, we used Illumina sequencing, a widely adopted technique. Illumina 

sequencing relies on the sequencing-by-synthesis approach, where the target strand is replicated 

using DNA polymerases and fluorescently-labeled nucleotides. Fluorescence signals are 

measured at each cycle to determine the incorporated nucleotide. The sequencing depth 

correlates with the number of reads per cell. To analyze a larger number of cells while 

minimizing sequencing costs, it is common to limit the number of cycles. However, it is 

important to ensure that the sequencing reaches a sufficient depth to accurately identify most 

of the transcripts present in the sample. For optimal results, 10X Genomics recommends using 

150 cycle kits (57). 

e. Data analysis 

The range of computational tools for scRNA-seq data analysis continues to expand. 

Some commercial scRNA-seq platforms provide integrated software, such as the Loupe 

Browser from 10X Genomics, to aid researchers without bioinformatics expertise. However, 

these tools often operate as black boxes with limited transparency regarding the underlying 

algorithms. The preferred approach for scRNA-seq data analysis is through programming, 

typically utilizing the R or Python language. Because scRNA-seq data analysis still is in its 

infancy, there are no standardized pipelines. Each tool has its own advantages and limitations, 

and the selection should be guided by expert knowledge based on the specific application and 

research question (55). In this thesis project, we developed a custom pipeline (Figure 5) using 

a curated set of R packages. 

Data preprocessing (54,58) 

The raw data is acquired through the sequencing of the pooled libraries. The reads are 

sorted into separate FASTQ files, based on their corresponding libraries. This sorting process 

generates three distinct types of FASTQ files for each library: one containing gene IDs 

(quantified genes), another containing cell barcode data (quantified cells), and a count matrix. 

 Mapping and alignment 

Reads are sorted based on their cell barcodes and aligned to a reference assembly with gene 

annotation. 



   
 

 Feature annotation and quantification 

A count matrix is generated, in which each column corresponds to a cell barcode and each row 

represents a gene. The entries in the matrix indicate the number of reads that contains the 

corresponding cell barcode and map to the specific gene. Reads carrying the same UMI are 

collapsed into a single read. 

 Quality control and filtering 

Cells are subjected to filtering based on their RNA count (feature count) and the proportion of 

mitochondrial reads. The determination of filtering thresholds usually involves visual 

examination of the data. Cells with an exceptionally high RNA count are likely to be doublets 

or multiplets, while a low RNA count may indicate lysed cells or the encapsulation of ambient 

RNA. A high fraction of mitochondrial reads is indicative of dead or damaged cells, in which 

the leakage of cytosolic RNA leaves only mitochondrial transcripts confined within intact 

double-membrane mitochondria. 

Downstream analysis (54,58) 

 Normalization 

Following the removal of dead cells and multiplets, the data undergoes normalization to address 

amplification and count depth biases. Due to variations introduced during the experimental 

workflow, such as differences in capture and reverse transcription efficiency, the RNA counts 

encompass both biological and technical variation. Normalization mitigates the technical 

variation while preserving biological variation. Following normalization, the gene expression 

levels should not correlate with the sequencing depth of the cell. 

 Data correction  

Data correction aims to address potential confounding factors such as batch effect, dropout or 

other biological effects (see “Challenges” section below). For example, genes associated with 

the cell cycle phase can be regressed out to account for the cell cycle effect. It is important to 

consider that not all factors need to be corrected, as doing so may eliminate important biological 

information. Instead, the decision of which factor to consider depends on the specific objectives 

of the downstream analysis. If a batch effect is suspected, linear methods can be applied for 

batch effect correction. Integration is typically performed when dealing with different 



   
 

conditions to ensure that the cell types of one condition align with the corresponding cell types 

in the other condition (e.g. control neutrophils align with asthmatic neutrophils). 

 Feature selection 

Highly variable genes, which contribute most to the data variability, are selected. These genes 

are considered biologically meaningful, and their selection helps increase the signal-to-noise 

ratio and reduce computational complexity. The number of highly variable genes retained for 

downstream analysis typically ranges between 1,000 and 5,000, depending on the dataset and 

objectives.  

 Dimensionality reduction 

ScRNA-seq data is characterized by a high-dimensional space defined by the number of cells 

and genes, often referred to as the ‘curse of dimensionality’. While high-dimensional data 

theoretically contains more information, in practice, most of the data is redundant and adds 

noise, obscuring the relevant signals. Dimensionality reduction techniques are employed to 

reduce noise, facilitate computational analysis, and aid data visualization. These algorithms aim 

to capture the underlying structure of the data in as few dimensions as possible. Principal 

component analysis is the most commonly used method for dimensionality reduction.  

 Clustering  

After dimensionality reduction, cells are clustered based on the similarity of their gene 

expression patterns. Various algorithms can be used for cell clustering, with popular choices 

being k-means and the Louvain algorithms. The number of clusters obtained depends on the 

chosen clustering resolution, which is a subjective decision based on the researcher's 

requirements. For example, in some cases, it may be desirable to isolate all T cell subtypes, 

while in others, it may be appropriate to keep them grouped together (59). 

 Visualization 

The clustered data is visualized using machine-learning algorithms such as t-distributed 

stochastic neighbour embedding (t-SNE) or uniform manifold approximation and projection 

(UMAP). While t-SNE was commonly used in the early stages of scRNA-seq, UMAP is now 

preferred due to its computational efficiency and ability to preserve the global structure of the 

clusters.  

 



   
 

 Annotation (60) 

Cell cluster annotation can be achieved through manual or automated approaches, both relying 

on external sources of information.  

Expert knowledge is paramount to manual annotation. One strategy involves visualizing 

expression values of canonical marker genes derived from the literature. Another strategy is to 

examine the marker genes extracted from the dataset. Marker genes are identified using 

differential expression testing between clusters. Common statistical tests such as the Wilcoxon 

rank-sum test or the t-test are used to rank genes by their difference in expression. The top-

ranked genes are considered marker genes. Interpretation of the marker genes usually focuses 

on upregulated genes in the cluster of interest, although downregulated genes may sometimes 

prove valuable. Marker genes can be compared to reference sets, originating either from cell 

type-specific mRNA expression from bulk RNA-seq of FACS-sorted populations, or from 

previous scRNA-seq experiments. 

Automated methods compare the expression pattern of the scRNA-seq dataset to a reference 

set. The general principle is to identify a gene expression pattern in a single cell or cell cluster 

that matches a characteristic gene expression signature of a known cell type or state. The cell 

or cluster is then assigned the corresponding label with an associated confidence score.  

 Differential Gene Expression (DGE) analysis 

Differential gene expression analysis aims to identify distinct expression profiles between two 

conditions, typically health and disease. Differential gene expression analysis estimates which 

genes are statistically more expressed in one group compared to the other within each cell type. 

Although the principle is similar to bulk DGE analysis, algorithms for single-cell data are 

specifically designed to handle artifacts inherent to scRNA-seq. Individual searches for the 

differentially expressed genes (DEGs) can be conducted in literature or databases that provide 

functional information, such as the Human Protein Atlas (61). Functional enrichment analysis 

can also be employed to identify the predominant pathways associated with the DEGs. 

 



   
 

 

FIGURE 5: Data analysis workflow for equine bronchoalveolar cells from asthmatic and 
control horses (Study 3), illustrating the standard scRNA-seq data analysis sequence.  

 

There are many additional approaches for exploring scRNA-seq data that cannot be 

exhaustively listed here. For example, trajectory inference, also known as pseudotime analysis, 

explores dynamic cellular processes such as cellular differentiation. Another captivating 

approach is the analysis of receptor-ligand interactions, which may identify potential 

therapeutic targets. The strengths of scRNA-seq analyses will be further discussed in the 

following section. 

 

1.2.2 Strengths 

a. A high-resolution analysis 

A new definition of cell identity (62) 

ScRNA-seq offers an unprecedented level of detail in analyzing biological samples. 

Unlike bulk transcriptomics, which averages signals from cells with unique phenotypes, 

scRNA-seq allows us to trace the cellular origin of each RNA molecule in a biological sample, 

redefining our understanding of what constitutes a cell. The definition of cell type relies on the 

combination of various characteristics, including lineage, differentiation stage, location in the 

body or organ, specific state (e.g., activation status), or current cell cycle phase. Originally, 

cells were characterized based on morphology, function, and expression of marker proteins, in 

particular cell surface proteins. Cells were perceived as distinct and well-defined entities due to 

their classification based on the presence or absence of specific cell surface markers (for 



   
 

example, Treg cells are defined as CD4+FOXP3+ cells). However, scRNA-seq experiments 

have revealed that cell types are not rigid entities; they are transient in both time and space. 

Cells can undergo different differentiation pathways, become activated, or migrate to different 

parts of the body where their functions change. Consequently, cells exist in various states 

influenced by factors such as the genome, environmental stimuli, or spatial context. By 

employing scRNA-seq, it becomes feasible to elucidate the intricate complexity of cell types, 

portraying them as constituents of a continuous spectrum rather than discrete entities. 

Preservation of the single-cell information (63) 

ScRNA-seq technologies enable the profiling of gene expression in each individual cell 

within a mixed cell sample. This allows for the identification and accurate description of 

different cell populations and their specific transcriptomes. This aspect is particularly 

significant when studying SEA, as the increase in inflammatory cells in BALF can introduce 

bias in global expression comparisons between groups. Having access to the single-cell 

transcriptome provides a deeper understanding and facilitates the interpretation of expression 

changes. Averaging transcriptomic information in mixed cell samples has been shown to blur 

information, potentially leading to false interpretations (known as Simpson's paradox, see figure 

6A). Studying the cytokine production capacity in specific FACS-sorted lymphocyte 

populations within BALF has proved to be superior to analyzing the overall mixed lymphocyte 

population when it comes to illustrating the impact of EA (16). Additionally, single-cell 

transcriptomics enable the differentiation between changes in cell composition and changes in 

gene expression. For instance, if IL17 mRNA levels are increased in a blood sample, bulk RNA 

analysis cannot determine whether it stems from upregulated IL17 gene expression or from an 

expansion of the IL17-expressing cell population (Figure 6B). Time series studies, commonly 

conducted to study disease progression or tissue development, yield a mixture of cells at 

different differentiation or activation states at each sampling point. Using bulk techniques, the 

time-averaged expression of a gene may mislead the interpretation of its regulation during 

development. In contrast, scRNA-seq provides a more accurate representation of the gene's 

dynamics (Figure 6C). 



   
 

 

FIGURE 6. Single-cell measurements preserve crucial information that is lost by bulk 
genomics assays. (A) Simpson’s Paradox describes the misleading effects that arise when 
averaging signals from multiple individuals. (B) Bulk measurements cannot distinguish 
changes due to gene regulation from those that arise due to shifts in the ratio of different cell 
types in a mixed sample. (C) Time series experiments are affected by averaging when cells 
proceed through a biological process in an unsynchronized manner. A single time point may 
contain cells from different stages in the process, obscuring the dynamics of relevant genes. 
Reordering the cells in “pseudotime” according to biological progress eliminates averaging and 
recovers the true signal in expression. From Trapnell et al. 2015 (63) 

 

b. An unbiased approach 

Before scRNA-seq became available, researchers could achieve single-cell resolution 

by sorting the cells they are interested in. Typically, cells are FACS-sorted based on their size 

and the expression of specific surface proteins. However, this approach is experimenter-biased 

and relies on preselected antibody panels. It hinders the discovery of new cell types or 

interesting cell states that may exhibit reduced or absent expression of typical surface proteins. 

In contrast, scRNA-seq offers a hypothesis-free approach that enables exploratory 

experiments and the generation of novel hypotheses. By bypassing the dependence on surface 

markers, scRNA-seq uncovers previously unknown cell types and states. Notably, scRNA-seq 

is not constrained by species specificity, relying solely on the detection of poly(A)-tailed RNA. 

This aspect is particularly relevant in equine research, where the range of validated antibodies 

is limited (49). 

 



   
 

c. Collaboration and data sharing 

Numerous journals now mandate researchers to make their data openly available. For 

scRNA-seq, this entails depositing raw data or gene-cell count matrices in dedicated online 

repositories, along with posting associated computational pipelines in public databases. This 

requirement is crucial for upholding scientific integrity in data science, as it ensures 

reproducibility of results through the utilization of provided raw data and code (64).  

Making scRNA-seq datasets freely accessible is of paramount importance due to the 

recognition that the value of a single dataset can be significantly enhanced when combined with 

other datasets (56). To facilitate data sharing, efforts are underway to consolidate scRNA-seq 

results and create species- and tissue-specific single-cell atlases. Noteworthy initiatives focused 

on compiling comprehensive data on organ and tissue structure and function include Tabula 

Muris and the Human Cell Atlas (HCA). Tabula Muris offers valuable insights into respiratory 

system cells for disease modeling studies, providing data from 100,000 cells across 20 mouse 

organs. The HCA project encompasses multiple organs and tissues from healthy humans, 

featuring a dedicated lung network that integrates various assay modalities to explore cellular 

function. During the COVID-19 pandemic, the HCA lung network swiftly analyzed combined 

datasets to investigate ACE2 expression and identify clinical factors associated with viral entry 

in different tissues, demonstrating its ability to generate high-quality data within a short 

timeframe (64). The development of a similar atlas specific to equine lung cells is highly 

desirable. Such an atlas could be constructed through scRNA-seq analysis of BALF, tracheal 

wash samples, bronchial biopsies, and lung tissue biopsies, providing a comprehensive 

molecular landscape of equine pulmonary cells. 

d. Recent advances attributed to scRNA-seq 

The diverse and expanding applications of scRNA-seq technology are revolutionizing 

our understanding of cellular heterogeneity and rare cell populations within complex samples. 

It has proven particularly effective in investigating unique cell types such as T cells with unique 

receptors (TCR), brain neurons, and cells from early-stage embryos (55). Moreover, scRNA-

seq has reshaped our knowledge of cell lineage, developmental processes, aging, and various 

diseases, including cancer (56). Notably, it has significantly contributed to oncology research 

by accurately identifying clones, detecting gene expression changes, and providing insights into 

the tumor microenvironment and inflammatory cell composition. Recent studies in lung 

adenocarcinoma and breast cancer have demonstrated its potential in predicting chemotherapy 



   
 

response, monitoring treatment progress, and detecting minimal residual disease, thus 

advancing precision medicine and personalized cancer treatment (65).  

In the field of respiratory research, scRNA-seq analysis of the human lung has 

successfully identified 41 out of 45 previously known cell types, while also revealing 14 

previously unidentified cell populations (66). Furthermore, scRNA-seq has led to the discovery 

of the pulmonary ionocyte and of a profibrotic macrophage population involved in pulmonary 

fibrosis. Such insights have significant implications for understanding disease mechanisms and 

may have practical implications for gene therapy approaches targeting cystic fibrosis, as 

ionocytes are a prominent source of the CFTR protein in the lungs (64).  

Although scRNA-seq has only recently been introduced in asthma research, it has 

already produced noteworthy results, which are listed in figure 7. For instance, an analysis of 

respiratory samples from asthmatic patients and healthy controls using scRNA-seq revealed 

altered differentiation of epithelial cells in asthma, along with increased numbers of goblet cells, 

mucous ciliated cells, and Th2 cells (67). This study also indicated heightened cellular 

interactions involving Th2 cells, suggesting that altered communication between immune and 

structural cells may underlie airway inflammation in asthma.  

By elucidating the unique expression patterns of inflammatory genes at the individual-

cell level, scRNA-seq provides a valuable framework for comprehending the specific roles of 

immune cells and structural cells, as well as the significance of their interactions in asthma 

development. Similarly, scRNA-seq holds promise for advancing our understanding of SEA. 

Nonetheless, it is important to acknowledge that this technique, due to the extensive volume of 

complex data it generates, also presents certain limitations, which will be addressed in the 

subsequent section. 

 



   
 

 

FIGURE 7 - Summary of the major findings resulting from scRNA-seq application in asthma 
research. (A) ScRNA-seq can be used to characterize the heterogeneity and function of immune 
cells, identify rare cells and new cell subsets, and explores immune cells differentiation 
mechanisms and pathways in asthma. (B) ScRNA-seq can be used to characterize the function 
of structural cells, identify rare cells, and explore the communication between immune and 
structural cells. From Tang et al. 2022 (68) 



   
 

1.2.3 Challenges 

As a recently developed technique, scRNA-seq represents pioneering work, 

necessitating resolution of unanswered questions that arise during experimental processes, data 

acquisition, and analysis. These unforeseen challenges demand additional optimization steps 

and process validation to overcome the inherent complexities. Firstly, accessibility to scRNA-

seq remains limited. Secondly, researchers must be cautious in population selection and study 

design to avoid introducing biases. The complexity of the data also brings computational 

challenges. Lastly, data interpretation is currently impeded by the relative scarcity of 

preexisting scRNA-seq data and limitations of software tools. 

a. Accessibility 

The accessibility of scRNA-seq is constrained due to its cost, the need for specific 

infrastructure, and the expertise necessary for data acquisition and analysis. The cost of scRNA-

seq encompasses expenses related to equipment, personnel, reagents, sequencing, and data 

analysis. Data analysis costs include expert bioinformatics work and access to high-

performance computing (HPC) facilities. Despite the continuous decrease in sequencing costs, 

scRNA-seq remains an expensive technique. 

ScRNA-seq requires specialized equipment and expertise in sample handling and 

sequencing-library preparation, necessitating trained personnel. HPC resources and substantial 

storage capacity are crucial for efficient data analysis. These resources demand regular 

maintenance and are predominantly available in major research centers and universities. Data 

analysis entails troubleshooting novel challenges, requiring significant expertise and surpassing 

basic programming skills. The involvement of informaticians with comprehensive knowledge 

of biological processes or close collaboration with biologists is essential for accurate data 

handling (65). 

Despite the demanding cost and expertise prerequisites, we anticipate that scRNA-seq 

will become a standard technique in the forthcoming years. The market is rapidly evolving, 

with companies now offering researchers with limited resources the option to perform the entire 

scRNA-seq analysis process, from sample processing to data analysis. The development of 

user-friendly software tools for data analysis is expected to decrease reliance on expert 

bioinformatics work, although cooperation with bioinformaticians will probably remain 

indispensable. 



   
 

b. Biological biases (55) 

The experimental protocol of scRNA-seq involves a greater number of steps compared 

to bulk RNA analysis, resulting in an increased likelihood of introducing bias. Biases can arise 

from both biological and technical factors. At the biological level, biases can occur at three 

different levels: the sample (individual) level, the cell level, and the molecular (RNA) level. 

Interindividual differences in the study population contribute to a major source of 

variability in the dataset. Fixed variables such as age, sex, and breed, as well as variable 

parameters like epigenetic changes, environmental stimuli, microbiome, and diseases, can 

introduce variability in the data. This becomes particularly relevant when studying non-

conventional models like horses, which comprise a certain genetic heterogeneity and for which 

no genetically homogenous lines exist. 

At the cell level, variability exists in terms of cell size, RNA content, cell cycle phase, 

and differentiation stage. Depending on the focus of the experiment, this variability can be 

considered either relevant biological variation or noise. 

Molecular variability arises from the phenomenon of transcriptional bursting, also 

known as transcriptional pulsing, which is inherent to gene expression. Transcription occurs in 

stochastic "pulses," leading to potential differences in the transcriptome of samples collected or 

processed at different times from the same individual. 

The presence of high biological variability can make it challenging to detect the 

biological signal of interest. To enhance the signal-to-noise ratio, efforts should be made to 

limit variability within the study population by selecting individuals with homogeneous 

characteristics. Additionally, the condition being studied should be well-defined within the 

population. This entails selecting individuals who exhibit strong characteristics associated with 

the respective condition.  

Biases at the cellular and molecular levels cannot be entirely eliminated, as they 

represent natural processes with potential biological relevance. However, if desired, their effect 

can be regressed out during the data analysis phase. 

 

 



   
 

c. Technical biases 

Technical biases can be introduced at many steps of the process: during sample 

collection, sample processing, sample storage, scRNA-seq library preparation and sequencing. 

Potential technical artifacts include cell bursting leading to RNA leakage, selective RNA 

degradation, formation of multiplets, and batch effects (54). 

Cell and RNA loss 

 During sample collection and processing, certain cell types may be more susceptible to 

alterations than others, leading to an enrichment of specific cell populations. For example, 

centrifugation steps may favor the recovery of larger, heavier cells over smaller, lighter cells. 

Tissue digestion methods may also selectively recover less delicate cell types, as cell rupture 

can lead to RNA degradation and lower RNA recovery (65). Additionally, cell types with high 

RNAse content, like granulocytes, pose challenges for RNA recovery and may be 

underrepresented in scRNA-seq datasets. Gentle processing techniques and automated tissue 

processing can help limit technical variability and minimize changes in cell composition (65). 

The addition of RNAse inhibitors in cell suspensions may improve RNA recovery from RNAse-

rich cells, although this has not been critically assessed. It is essential to thoroughly document 

sample handling methods in publications to facilitate comparisons between studies and enhance 

consistency (64). 

Although scRNA-seq methods were initially designed for freshly isolated cells, 

immediate sample processing can be challenging due to infrastructure limitations or the 

unavailability of specialized equipment. Preservation of samples offers a solution by 

disconnecting the sampling time and location from downstream processing steps (56). 

However, sample preservation may introduce technical biases, with up to 20% RNA loss per 

freeze-thaw cycle (69). Despite this, studies have shown that the impact of freezing on single-

cell transcriptomic profiles is generally minimal (70). Nevertheless, certain cell types, 

particularly T cells, may be more affected by freezing, leading to a decrease in their population 

and increased expression of stress-related genes over time (71,72).  

The bias introduced by preservation is considered minimal compared to the potential 

major biases associated with processing in multiple batches or delays between collection and 

analysis. When analyzing scRNA-seq data, direct comparisons between fresh and frozen 

samples should be avoided, as the effects of cryopreservation can overshadow the signal of 



   
 

interest. However, employing the same preservation method for all analyzed samples introduces 

a systematic bias that affects all samples equally, enabling valid comparative analysis (70). 

 Significant loss of cells and RNA occurs at each step of the process, including 

encapsulation, RT, sequencing, and data analysis. It is estimated that less than 20% of all 

transcripts from each cell are efficiently captured and sequenced (57). Consequently, scRNA-

seq may not be optimal for detecting lowly expressed genes, particularly at low sequencing 

depths. Transcription is a stochastic process, and the amount of transcript present within a single 

cell is minimal. Therefore, achieving comprehensive capture of the transcriptome in scRNA-

seq relies on sequencing multiple single cells from the same population. Consequently, the 

number of expressed genes detected in single cells is typically lower compared to bulk RNA 

measurements. However, the large number of cells analyzed in parallel partially compensates 

for the low RNA recovery per cell (73). Ongoing efforts aim to increase the overall efficiency 

of scRNA-seq methods. 

Formation of multiplets 

The formation of doublets or multiplets during cell encapsulation poses a significant 

challenge in scRNA-seq. The encapsulation of cells and barcoded beads into a water-in-oil 

emulsion droplet has been shown to follow a Poisson distribution of the following possibilities 

(57): 

a) No cell, no bead 

b) ≥ 1 cell(s), no bead 

c) No cell, ≥ 1 bead(s) 

d) ≥ 1 cell(s), ≥ 1 bead(s)  

The microfluidic platforms are optimized to minimize the occurrence of possibilities a and b. 

Computational methods can address the encapsulation of multiple beads by removing cells with 

dual barcodes (scenario c). However, encapsulating two or more cells with a unique barcode 

can lead to erroneous biological interpretations (62), such as the false identification of a hybrid 

cell type (74) or the inadvertent removal of bona fide cell-cell complexes through overzealous 

filtration (75). 

While computational methods are being developed to better identify doublets, such as 

those based on the detection of dual expression profiles (76), currently, technical doublets 



   
 

cannot be confidently distinguished from true dual lineage cells using scRNA-seq (74,75). 

Therefore, the experimental protocol should be optimized to limit the formation of multiplets. 

This involves preparing a true single-cell solution, avoiding cell clumps, and selecting an 

appropriate cell concentration, as the rate of multiplet formation increases with higher cell 

concentrations. The multiplet rate should be maintained below 5%, although it involves a trade-

off between cell-capture efficiency and the occurrence of multiplets (57). In the coming years, 

dedicated efforts should be directed towards limiting multiplet formation and enhancing their 

detection. This can be achieved through various approaches, such as optimizing microfluidics 

platforms, developing more robust computational tools, and employing complementary 

experimental methods. 

Batch effects 

ScRNA-seq platforms can only analyze a limited number of samples at a time (eight 

samples per Chromium chip for the 10X Genomics platform). When samples from the same 

condition are processed together, it results in a confounded experiment where technical 

variability masks biological variation, commonly known as batch effect (Figure 8). This can 

entirely hamper the ability to detect biological signals in scRNA-seq datasets. Although 

computational methods can partially address batch effect through integration techniques, none 

of these methods can reliably separate biological and technical variation. To mitigate batch 

effects, careful consideration must be given to designing a balanced study that evenly distributes 

technical biases across the conditions being investigated. As depicted in figure 8, if three 

different conditions are being investigated, each processing batch should include samples from 

all three conditions. Furthermore, attribution to each batch should be random (77). Adopting 

good practices such as having the same investigator process all samples, using a pre-planned, 

reproducible protocol, minimizing sample handling steps, and utilizing dedicated 

computational tools can further minimize batch effects.  



   
 

 

FIGURE 8. The problem of confounding biological variation and batch effects. The top section 
depicts a completely confounded study design of processing individual cells from three 
biological groups (represented by shapes) in three separate batches (represented by colors). In 
this case, we cannot determine if biology or batch effects drive the observed variation. The 
bottom section depicts a balanced study design consisting of multiple replicates (rep) split and 
processed across multiple batches. The use of multiple replicates allows observed variation be 
attributed to biology (cells cluster by shape) or batch effects (cells cluster by color). From Hicks 
et al. 2018 (78) 

 

d. Computational challenges 

Data sparsity 

ScRNA-seq datasets have a high proportion of zeros or drop-outs, known as sparsity. 

This occurs because individual cells often have no detectable RNA due to their low RNA 

content. It is common for over 50% of entries in the cell-gene count matrix to be zeros. These 

zeros can be categorized as biological or artificial. Biological zeros indicate the genuine absence 

of transcripts in cells, while artificial zeros arise from technical issues during library preparation 

or sequencing. During library preparation, transcripts may fail to be captured by the poly-d(T) 

tail or not amplify properly. Additionally, if the sequencing depth is insufficient, transcripts that 

are present in the library may go undetected. Artificial zeros can be either systematic, such as 

sequence-specific mRNA degradation during cell lysis, or random, as seen with lowly 



   
 

expressed transcripts that may or may not be detected due to sampling variation. The degree of 

sparsity depends on the scRNA-seq platform, sequencing depth, and gene expression level (79). 

The occurrence of drop-outs poses significant computational challenges. Most of the 

computational tools used for scRNA-seq data analysis are derived from bulk RNA data science 

and are ill-equipped to handle the negative binomial distribution observed in single-cell 

expression measurements (55). To address data sparsity, it is important to sample a sufficient 

number of cells, which can provide comparable sensitivity to bulk RNA sequencing (73). 

Ongoing efforts are dedicated to developing mathematical models that effectively address data 

sparsity in scRNA-seq (79). 

Standardization of scRNA-seq analysis pipelines 

The lack of standardization in processing pipelines for scRNA-seq analysis poses a 

significant challenge. This issue not only makes it difficult for novice researchers to select the 

appropriate tools but also hampers the comparability of study results. Choosing the right 

computational methods for analysis is nontrivial, as an appropriate analysis pipeline can have 

a large impact on detecting a biological signal, similar in magnitude to quadrupling the sample 

size (80). The lack of software standardization directly stems from the relative immaturity of 

the field; however, there is an anticipated shift toward standardization as the field advances. 

Open access to raw data and analysis code enables extensive benchmarking of these tools, 

which will facilitate the identification of the most efficient and reliable methods. However, one 

should bear in mind that there is no, and probably never will be, a gold standard scRNA-seq 

analysis pipeline. Indeed, the multi-dimensional nature of scRNA-seq data allows for various 

interrogation strategies, which requires flexibility and adaptability in the analysis pipeline. 

e. Challenges in data interpretation 

Interpreting scRNA-seq data presents significant difficulties due to its high 

dimensionality and complexity, surpassing the comprehension capacity of the human brain. 

Computational processing offers a means to capture certain aspects of the data and extract 

relevant information. However, the absence of established guidelines or a gold standard for data 

interpretation hinders progress in the field. 

Incomplete reference annotations 

A significant hurdle in data interpretation is the lag in available reference annotations 

compared to the advancements in scRNA-seq technology. Until recently (81), the genome 



   
 

assembly for the domestic horse, EquCab3.0, heavily relied on short-read RNA-seq, making 

the annotation of 5'- and 3'-UTR regions difficult. Mapping scRNA-seq data derived from 

transcript 3'-ends to a reference assembly with deficient or incorrect 3'-UTR annotation 

significantly hinders our ability to identify cell types and interpret gene expression changes. 

Manual extension of the 3'-ends of the reference annotation has been proposed as a means to 

enhance read mapping (82). Furthermore, tissue-specific transcript isoforms, particularly those 

specific to BALF, are likely not annotated, as the construction of EquCab3.0 relied on data 

generated from equine PBMCs. In horses, the isoform-to-gene ratio of the existing NCBI and 

Ensembl annotations of the EquCab3.0 genome assembly is 2.3 and 2.0, respectively, compared 

to 4 for the human genome (81).  

To address this, the Functional Annotation of Animal Genome (FAANG) initiative is 

undertaking the colossal task of constructing a comprehensive atlas of species-specific and 

tissue-specific functional annotations for large animals. A tissue bank comprising more than 80 

tissues from four healthy horses is being progressively sequenced through a large-scale 

collaborative effort (81). The FAANG project leverages long-read sequencing to enhance the 

reliability of transcriptome assembly. Notably, this approach can identify more than 50% of 

isoforms that are not covered by traditional short read sequencing datasets (83). 

  The two major platforms used to generate long-read transcripts are Nanopore 

sequencing from Oxford Nanopore Technologies and SMRT (single molecule real-time) 

sequencing from Pacific Bioscience (83). Nanopore sequencing employs oligo-nucleotide 

threading through a minuscule protein pore to analyze RNA. By applying voltage across the 

pore, an ion flow is induced, resulting in a detectable current. A motor protein unravels the 

RNA while regulating the speed of translocation. Sequential nucleotides entering the pore yield 

a discernible alteration in current, enabling translation into the corresponding nucleotide 

sequence (83). The SMRT method relies on a polymerase situated at the base of Zero-Mode 

Waveguides (ZMWs), where fluorescence-labeled nucleotides are incorporated, as depicted in 

figure 8. ZMWs are nanostructures that can guide light energy into a very small volume 

compared to the wavelength of the light. These structures are assembled on a flow cell, enabling 

the concurrent detection of fluorescence signals from a multitude of molecules. Furthermore, 

the duration of nucleotide incorporation provides insights into specific base modifications. To 

reduce the error rate, SMRT sequencing implements a high-precision protocol known as 

circular consensus sequencing. The circularized DNA templates undergo multiple readings by 

the polymerase, enhancing the accuracy from approximately 90% to 99.8% (83). 



   
 

 

FIGURE 9. Illustration of Pacific Bioscience (PacBio) sequence generation. Adaptors 
(SMRTbells) are first ligated to each amplicon, and after a sequencing primer is annealed to the 
SMRTbell template, DNA polymerase is bound to the complex. This polymerase-amplicon-
adaptor complex is then loaded into zero-mode waveguides (ZMWs) where replication occurs, 
producing nucleotide-specific fluorescence. Circular consensus sequencing (ccs) allows the 
polymerase to repeatedly replicate the circularized strand, producing one long read with 
randomly distributed errors. Post-run, the SMRTbell sequences are bioinformatically trimmed 
away, single-molecule fragments are aligned, and a consensus sequence is generated. The 
single-molecule coverage and accuracy of resulting ccs reads are amplicon- and read-length 
dependent, with smaller amplicons and longer reads giving higher single-molecule coverage 
and thus higher ccs read accuracy. From Fichot & Norman 2013 (84) 

Recent long-read sequencing of nine different equine tissues improved the current 

equine transcriptome with 39,625 novel transcripts (81). The integration of a BALF-specific 

dataset into this combined transcriptome may facilitate future transcriptomics investigations of 

equine respiratory diseases. 

Cell cluster annotation 

Automated and manual approaches for cell cluster annotation come with their own 

caveats. Automated annotation is rapid but lacks the ability to label poorly characterized cells 

or identify new cell types or states. Additionally, there may be a lack of suitable reference 

datasets for the specific tissue and species of interest. In the absence of a reference dataset, 

transferring a human or animal model reference through orthology is possible but may yield 

inconsistent results (85). Careful examination of the reference dataset is crucial as mistakes in 

the reference can propagate to the query dataset. Furthermore, similarities in experimental 

methods between datasets are essential to ensure optimal performance of cell annotation. 

Automated annotation is better suited for obtaining a general understanding of major cell types, 



   
 

but manual inspection of markers in the dataset is mandatory to validate the annotation and 

identify cell subtypes (60). 

The process of manual annotation is a time-consuming task that demands specialized 

expertise. Cell type markers are typically available only for well-characterized organisms and 

cell types. Consequently, markers from different species are frequently utilized with the 

assumption that they can be applied to other species. However, a single marker is generally 

insufficient to define a cell type, necessitating the curation of marker panels from the literature. 

Cell-surface proteins commonly used in cell classification methods like flow cytometry are 

often ineffective, likely due to weak correlations between mRNA and protein levels (86). 

Master transcription factors that drive cell fate often make better gene expression markers. 

Additionally, the interpretation of gene expression patterns is somewhat subjective, hindering 

cross-study comparisons where similar cell types may receive different labels. When cell 

clusters cannot be confidently annotated, caution should be exercised in labeling to avoid 

propagating erroneous annotations to future studies, particularly in challenging cell subtypes 

with transient expression gradients. One approach is to decrease clustering resolution, leading 

to less cluster fragmentation, and assign a more general label (60). The generalization of 

scRNA-seq studies and data sharing among researchers will contribute to the development of a 

comprehensive single-cell atlas for diverse biological specimens, detailing the most valuable 

mRNA markers for each cell population. This will enhance the reproducibility of annotation 

across studies. 

Some experts recommend validating cell annotation using alternative experimental 

techniques such as in vitro functional assays or imaging experiments (60). However, alternative 

techniques often fall short in resolution compared to scRNA-seq. Complementary single-cell 

genomic methods that combine multiple experimental techniques may offer a solution. For 

instance, CITE-seq from 10X Genomics enables simultaneous immunophenotyping of cell 

surface proteins and scRNA-seq (86). Although currently available only for humans and mice, 

this technique may become available for other species in the future. 

Despite its challenges, scRNA-seq proves to be a powerful technique that allows for the 

examination of sample heterogeneity, the discovery of novel cell populations, and the 

exploration of perturbation effects with remarkable precision. The field of biology research is 

currently vibrant with enthusiasm, and it is certain that many of these challenges will be 

effectively addressed in the coming years. Gradually, limitations will be surmounted through 

the development of new computational tools as scRNA-seq becomes increasingly prevalent in 



   
 

biological research. Considering that scRNA-seq experiments and analyses are still in their 

early stages, numerous parameters require adjustment and fine-tuning to enhance the quality of 

results. The learning curve for researchers interested in utilizing scRNA-seq is undeniably steep 

and likely endless, but the wealth of insights gained into cellular physiology justifies the effort 

invested. 

 

Hypotheses and Aims of Thesis  

The overall aim of the thesis was to characterize the cell-specific alterations in gene 

expression associated with SEA using scRNA-seq in equine bronchoalveolar cells. Our 

expectation was to uncover potential candidate genes that could be explored in the future as 

disease biomarker or therapeutic targets.  

Study 1 

Aim: To demonstrate the suitability of scRNA-seq for analyzing cryopreserved BALF cells of 

horses.  

Hypotheses: We hypothesized that scRNA-seq technology could effectively be applied to 

equine BALF cells, enabling the identification of the five major leukocyte populations that are 

typically observed on cytological examination (macrophages, lymphocytes, neutrophils, mast 

cells, and eosinophils). Additionally, we expected to detect specific cell subtypes, such as Th1, 

Th2, Th17, or Treg lymphocyte subpopulations. 

Study 2 

Aim: To generate a custom transcriptome annotation for equine BALF cells using long-read 

sequencing, with the purpose of enhancing the mapping accuracy of scRNA-seq transcripts 

obtained in Study 1.  

Hypotheses: We hypothesized that through long-read sequencing, we would be able to identify 

novel BALF-specific isoforms and improve the annotation of transcript 3'-ends. We anticipated 

that mapping our scRNA-seq transcripts to this custom BALF long-read transcriptome would 

yield higher alignment rates compared to the currently available reference annotation, leading 

to an overall improvement in the quality of our scRNA-seq data. 

 



   
 

Study 3 

Aim: To investigate the differences in the composition and transcriptional phenotypes of 

bronchoalveolar cells between severely asthmatic and healthy horses. 

Hypotheses: We hypothesized that the distribution of BALF cells and their gene expression 

profiles would be altered in horses with SEA. We anticipated that compared to control horses, 

those with SEA would exhibit a relative elevation in the proportion of Th2 and Th17 cells. 

Furthermore, we expected several changes in the BALF transcriptome, including impaired cell 

cycle regulation, upregulation of genes associated with the innate immune response, and 

downregulation of genes involved in inhibiting lung inflammation in resident alveolar 

macrophages. 
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The transcriptomic profile of a cell population can now be studied at the

cellular level using single-cell mRNA sequencing (scRNA-seq). This novel

technique provides the unprecedented opportunity to explore the cellular

composition of the bronchoalveolar lavage fluid (BALF) of the horse, a

species for which cell type markers are poorly described. Here, scRNA-seq

technology was applied to cryopreserved equine BALF cells. Analysis of 4,631

cells isolated from three asthmatic horses in remission identified 16 cell clusters

belonging to six major cell types: monocytes/macrophages, T cells, B/plasma

cells, dendritic cells, neutrophils and mast cells. Higher resolution analysis of

the constituents of the major immune cell populations allowed deep

annotation of monocytes/macrophages, T cells and B/plasma cells. A

significantly higher lymphocyte/macrophage ratio was detected with scRNA-

seq compared to conventional cytological differential cell count. For the first

time in horses, we detected a transcriptomic signature consistent with

monocyte-lymphocyte complexes. Our findings indicate that scRNA-seq

technology is applicable to cryopreserved equine BALF cells, allowing the

identification of its major (cytologically differentiated) populations as well as

previously unexplored T cell andmacrophage subpopulations. Single-cell gene

expression analysis has the potential to facilitate understanding of the

immunological mechanisms at play in respiratory disorders of the horse,

such as equine asthma.

KEYWORDS

single-cell mRNA sequencing, cell cryopreservation, equine respiratory system,
equine immunology, cell annotation
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1 Introduction

Single-cell sequencing technologies have brought a fresh

impetus to biological research. With single-cell mRNA

sequencing (scRNA-seq), it is now possible to study global

gene expression at the single cell level in many complex tissues

and heterogeneous cell populations. ScRNA-seq is a powerful

tool for the generation of novel hypotheses. The applications of

single-cell transcriptomics across the biomedical fields range

from the identification of new cell types to the exploration of

disease-specific pathological processes, unveiling novel

biomarkers and potential therapeutic targets (1). Recently,

scRNA-seq gave invaluable insights into the pathological

mechanisms leading to respiratory decompensation in SARS-

CoV-2 patients (2–4).

Lower airway diseases are common in horses and have a

major impact on the equine industry and animal welfare. The

processes at play in their pathogenesis are still ill defined due to

their complexity, but also due to technical limitations. For the

characterization of equine asthma, the most prevalent of these

disorders, cytological examination of bronchoalveolar lavage

fluid (BALF) is the most widely used technique in both clinical

and experimental settings. It is, however, inherently subjective

and only allows for the differentiation of five distinct leukocyte

populations: macrophages, lymphocytes, neutrophils, mast cells

and eosinophils (5). Antibody-based techniques such as

immunohistochemistry and flow cytometry permit

differentiation of further subpopulations (e.g. within

lymphocytes), but in the horse they are restricted to a few cell

types due to the limited pool of validated antibodies (6, 7).

Individual mRNA transcripts can be measured in BALF mainly

by RT-PCR to investigate the influence of various factors on the

regulation of specific genes (8–11). This hypothesis-driven

approach suffers from a low throughput and a significant

investigator bias. In contrast, global transcriptomics is an

unbiased, high throughput technique. However, critical

differences between individual cells are obscured when

performing bulk RNA sequencing of mixed cell populations.

This is an important limitation knowing that the cellular

composition of the lower respiratory tract, particularly when

assessed by BALF sampling, is substantially affected by health

status (12). ScRNA-seq enables the description of the different

cell populations present in a sample concurrently with their

individual transcriptome. Moreover, cell types can be identified

without a priori knowledge of marker genes.

Single-cell gene expression analysis of bronchoalveolar cells

has been successfully performed in humans (2–4), mice (13),

ferrets (14) and dogs (15), but not in horses. Before scRNA-seq

can be applied to the study of equine respiratory diseases, it is

crucial to demonstrate its feasibility on BALF and to build an

equine lung-specific reference database. Published scRNA-seq
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experiments on BALF use fresh samples to optimize cell viability

and to avoid the transcriptional changes that could be associated

with storage and processing. Being able to store equine BALF

cells before scRNA-seq would have several advantages including

reducing potential batch effects and facilitating large-scale

longitudinal studies.

Here, we applied scRNA-seq to cryopreserved equine BALF

cells as a proof of concept, with the aim to differentiate and

characterize cell populations based on their transcriptional

signatures. It should be noted that the potential effect of

cryopreservation on gene expression was not assessed in

this study.
2 Material and methods

2.1 Ethics statement

All animal experiments were performed according to the

local regulations. This study was approved by the Animal

Experimentation Committee of the Canton of Bern,

Switzerland (BE07/19).
2.2 Study population

The study was carried out in February 2020. Three horses

belonging to the university teaching herd were included.

Characteristics of the study population are listed in Table 1. A

standard physical examination was performed to assess systemic

health. These horses suffered from mild-to-moderate equine

asthma, but were in clinical remission at the time of the study.

No medication other than alpha-2 agonists (sedation for

teaching purposes) were administered for at least a month

before the experiment. Lower airway inflammation status was

assessed via clinical scoring (16), bronchoscopy and BALF

cytology. The experimental workflow is summarized in Figure 1.
2.3 Sample collection

A bronchoalveolar lavage was performed with endoscopic

guidance under light sedation. Briefly, a flexible endoscope

(VET-OR1200HD, Medical Solution GMBH, Wil, SG,

Switzerland) was inserted into the pharynx via the nasal

passages and passed down into the trachea. The endoscope

was then advanced into the lower airways via the right

mainstem bronchus until it wedged against a distal bronchus.

Sterile 0.9% NaCl (250 mL) was instilled through the endoscope

channel using 60-mL syringes. The fluid was then re-aspirated

and the endoscope pulled out. The syringes’ content was pooled
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in a cooled silicone-coated glass bottle. The BALF was then

filtered through a 40-µm cell strainer (BD Falcon™, Biosciences,

USA, cat.352340) and kept on ice until processing.
2.4 Cytology

Cytocentrifuge preparations of the BALF were prepared

within 30 minutes following collection. Briefly, BALF was

centrifuged at 600 rpm for 8 minutes in a cytocentrifuge

(Tharmac Cellspin® I), and slides were subsequently stained

with Wright-Giemsa stain (Hematek Stain Pak, Siemens

Healthineers, Erlangen, Germany) on an automated slide

stainer (Hematek 3000, Siemens Healthineers, Erlangen,

Germany). The cell suspensions later obtained after sample

thawing (sample used for scRNA-seq) were similarly

processed. A manual differential cell count (macrophages,

lymphocytes, neutrophils, eosinophils and mast cells) was

performed on the cytocentrifuge preparations of the stained

BALF and cell suspension using a minimum of 400 cells and 4

different microscopic fields at 1000x magnification with

oil immersion.
2.5 ScRNA-seq

2.5.1 Cryopreservation
The protocol used to freeze and subsequently thaw the BALF

cells was adapted from a 10X Genomics protocol (CG00039 Rev

D) intended for human peripheral blood mononuclear cells

(PBMCs). The detailed laboratory protocol can be found in the

Supplementary material. Samples were kept on ice throughout the

freezing protocol. Cell count and viability were determined with a

Moxi GO II™ cell counter (Witec AG, Sursee, LU, Switzerland)

using propidium iodide 5:1000. The BALF was initially

centrifuged at 300 rcf for 5 minutes at 4°C and the supernatant

was removed. Cells were resuspended in RPMI (Gibco™ RPMI

1640 cat. 11875093) containing 40% fetal bovine serum (Gibco™

FBS cat.16000044) and 1 U/µL RNAse inhibitor (Roche®

Protector RNase Inhibitor) to achieve a concentration of 20x106
Frontiers in Immunology 03
cells/mL. An equivalent volume of freezing medium was added to

achieve a concentration of 10x106 cells/mL. The freezing medium

consisted of RPMI (Gibco™ RPMI 1640 cat.11875093) with 30%

dimethylsulfoxid (MP Biomedicals DMSO ≥99% cat.0219141880)

and 40% fetal bovine serum (Gibco™ FBS cat.16000044) added.

Cell suspension aliquots were dispensed into cryovials. The

cryovials were placed into a pre-cooled cell freezing container

(Corning™ CoolCell™ cat. 432005) at -80°C for 4 hours, before
TABLE 1 Characteristics of the study population.

Horse 1 Horse 2 Horse 3

Sex Gelding Gelding Gelding

Age (years) 11 12 10

Breed Trotteur Français Franches-Montagnes Selle Français

HOARSI 3 3 3

Clinical score (/23) 0 0 0

Tracheal mucus score (/5) 1 0 2

BALF yield* (%) 11 8 16
fro
HOARSI, Horse Owner Assessed Respiratory Signs Index; BALF, Bronchoalveolar Lavage Fluid.
*BALF yield % = (Volume saline re-aspirated (mL)/Volume saline instilled (mL)) x 100.
FIGURE 1

Experimental workflow for the single-cell mRNA sequencing of
cryopreserved equine bronchoalveolar cells.
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being transferred into a cryobox for storage at -80°C. The

timespan between BALF collection and freezing was less than 2

hours for all samples.

2.5.2 Thawing and resuspension
Samples were stored at -80°C for 5 to 6 days before thawing

and further processing for scRNA-seq. Cryovials (one 1-mL

aliquot per horse) were rapidly thawed in a water bath at 37°C.

Cells were resuspended 5 times by incremental 1:1 volume

addition of complete growth medium, which consisted of

RPMI (Gibco™ RPMI 1640 cat.11875093) with 10% fetal

bovine serum (Gibco™ FBS cat.16000044). Cells were

centrifuged at 300 rcf for 5 min at room temperature. The

supernatant was removed except for 1 mL, in which the cells

were resuspended. Complete growth medium was added to

achieve a total volume of approximately 10 mL. The cell

concentration and viability were determined as previously

described. A volume of suspension containing 6x105 cells was

transferred into a new tube and centrifuged 5 min at 300 rcf at

room temperature. The supernatant was removed and the cells

were resuspended into 400 µL resuspension solution, which

consisted of phosphate-buffered saline (Gibco™ DPBS

cat.14190094) containing 0.04% bovine serum albumin

(Invitrogen™ UltraPure™ BSA cat.AM2616) and 0.8 U/µL

RNAse inhibitor (Roche® Protector RNase Inhibitor). The

centrifugation step was repeated and the supernatant

discarded. Resuspension solution was added with the goal of

achieving a cell concentration between 700 and 1,200 cells/µL.

Final cell concentration and viability were measured as described

above. Cells were kept on ice until loading into the Chromium™

Controller (10X Genomics, Pleasanton, CA, USA). About 200 µL

of the final cell suspension were used to prepare the cytospin

slides (see section 2.4).

2.5.3 Single-cell cDNA library preparation
and scRNA-seq

GEM generation & barcoding, reverse transcription, cDNA

amplification and 3’ gene expression library generation steps

were all performed according to the Chromium Next GEM

Single Cell 3’ Reagent Kits v3 User Guide (10x Genomics

CG000383 Rev C) with all stipulated 10x Genomics reagents.

Nuclease-free water was added to the cell suspensions to reach a

total volume of 46.6 µL each, for a targeted cell recovery of 5,000

cells (see details in Supplementary Table 1). GEM generation

was followed by a GEM-reverse transcription incubation, a

clean-up step and 12 cycles of cDNA amplification. The

resulting cDNA was evaluated for quantity and quality using a

Thermo Fisher Scientific Qubit 4.0 fluorometer with the Qubit

dsDNAHS Assay Kit (Thermo Fisher Scientific, Q32851) and an

Advanced Analytical Fragment Analyzer System using a
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Fragment Analyzer NGS Fragment Kit (Agilent, DNF-473),

respectively. Thereafter, 3ʹ gene expression libraries were

constructed using a sample index PCR step of 15 cycles. Later,

using the same double stranded cDNA, dual indexed libraries

were also constructed using a library preparation kit and dual

Index kit TT Set (10x Genomics part numbers 1000190 and

300041, respectively). These new libraries were constructed due

to the dual indexing upgrade and the upgrade in NovaSeq 6000

reagent kits from v1 to v1.5 and they were generated following

the relevant parts of 10 x Genomics User Guide CG000315. The

aim of this upgrade in library type was to ensure that this pilot

study is more compatible with future data. Any generated cDNA

libraries were tested for quantity and size using fluorometry and

capillary electrophoresis as described above. The cDNA libraries

were pooled and sequenced with a loading concentration of 300

pM, paired end and either single or dual indexed, on an Illumina

NovaSeq 6000 sequencer using a shared NovaSeq 6000 S1

Reagent Kit v1.0 (100 cycles; Illumina, 20012865) or a S4

Reagent Kit v1.5 (200 cycles; Illumina, 20028313). The quality

of the sequencing runs were assessed using Illumina Sequencing

Analysis Viewer (Illumina version 2.4.7) and all base call files

were demultiplexed and converted into FASTQ files using

Illumina bcl2fastq conversion software v2.20. At least 50,000

reads/cell were generated for each sample. All steps were

performed at the Next Generation Sequencing Platform,

University of Bern.
2.6 Computational analysis

The workflow followed for the computational analysis is

illustrated in Figure 2.

2.6.1 Pre-processing
Raw sequencing data (fastq files) were converted to a count

matrix of gene expression values using the Cell Ranger (v6.0)

standard workflow. The annotations for 3’-untranslated regions of

the genes in the reference genome (Equus caballus NCBI

annotation release 103) were extended by 2 kb using a custom

Python script and manual curation. All transcripts were extended

except when the extension overlapped a neighboring gene. The

summary metrics of the detected cells are provided in Table 2.

2.6.2 Quality control and data normalization
Quality control and downstream analysis were carried out

using the R software package Seurat (v4.0) (17). Based on visual

data inspection, cells that contained less than 200 genes or more

than 6,500 gene features and/or greater than 15% mitochondrial

genes were filtered (Supplementary Figure 1). The raw data were

normalized using global scale normalization.
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2.6.3 Principal component analysis (PCA)
and cell clustering

After variance stabilizing transformation, the 2,000 most

variable features were selected for dimension reduction and

clustering. Dimensionality reduction was conducted using

Principal Component Analysis (PCA). The number of

principal components (PCs) was chosen based on an elbow

plot. Clustering was performed on the first 16 PCs using the

default Louvain algorithm (“FindNeighbors” function in

Seurat). The optimal clustering resolution was chosen by

visualizing the granularity with the “clustree” R package.

The “FindClusters” function (Seurat) was used with a

clustering resolution of 1.0. The clusters were visualized

with the Uniform Manifold Approximation and Projection

method (UMAP). After data integration, cluster visualization

was only marginally improved. Cluster membership

remained the same, except for a very small proportion of

cells (0.5%) which were assigned to Mo/Ma instead of DC.

Hence we elected to perform the downstream analysis

without integration to avoid introduction of bias due to

non-linear data integration approaches (18).

In order to better distinguish cell subpopulations, we

independently reanalyzed three of the major cell populations

using the “subset” function in Seurat. All previous steps were

repeated. We selected 13 PCs with a 1.2 clustering resolution for

monocyte/macrophages, 11 PCs with a 0.5 clustering resolution for

T cells, and 8 PCs with a 0.7 clustering resolution for B/plasma cells.
a The Human Protein Atlas. https://www.proteinatlas.org/ [Accessed

May 23, 2022]
2.6.4 Cell cycle analysis
To investigate whether the cell cycle stage affected clustering,

we used the “CellCycleScoring” function (Seurat package).

Briefly, the lists of human markers for the G2M phase and the

S phase (“cc.genes.updated.2019” from Seurat) were converted to

their equine orthologs using the Biomart R package. Cells were
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divided into cycling (G2M phase) or resting (S phase) based on

the score obtained.

2.6.5 Cell cluster annotation
The cell clusters were annotated based on the expression of

canonical markers and subsequently merged into major cell types.

Cell cluster annotation was confirmed by subjective analysis of the

list of markers identified with the “FindAllMarkers” Seurat

function, using an adjusted P-value <0.05 and an average log2

fold change > 0.25. Expression of specific cell type markers was

visualized using the “DotPlot”, “VlnPlot” and “FeaturePlot”

functions. Cell type specificity of the markers was evaluated based

on the information provided on the Human Protein Atlas version

21.0 databasea. To facilitate cell cluster annotation, expression scores

for cell-specific group of genes were calculated using the Seurat

function “AddModuleScore”. Gene expression scores of Mo/Ma 2,

Mo/Ma 4 and T cells were compared using a Kruskall-Wallis test,

with P-value < 0.05 considered statistically significant. The

differentially expressed genes (DEGs) for each of the 16 clusters

can be found in Supplementary Table 2.
3 Results

Three university-owned horses known to be affected by mild-

to-moderate equine asthma were included. They were considered

systemically healthy based on a complete physical examination. The

diagnosis of mild-to-moderate equine asthma was confirmed based

on the following three criteria: a Horse Owner Assessed Respiratory

Signs Index (HOARSI) score of 3 (19, 20); BALF cytology values of
FIGURE 2

scRNA-seq data analysis workflow.
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>10% and <25% neutrophils, >5% mast cells or >5% eosinophils;

absence of increased breathing effort at rest (12). The low clinical

score and tracheal mucus score indicated that the horses were in

clinical remission at the time of inclusion (16, 21). Key

characteristics of the study population can be found in Tables 1, 3.

A total of 5,408 cells were sequenced, of which 777 were

filtered after quality control. Downstream analysis was thus

performed on 4,631 cells. Unsupervised graph-based clustering

produced 16 clusters, which were grouped into six major cell

populations based on the expression of canonical markers

(Figure 3). The differentially expressed genes (DEGs) for each

of the 16 clusters can be found in (Supplementary Figure 2),

Cells did not cluster based on the individual sample, therefore

data integration was not performed. Clusters 7, 8, 9 and 15

expressing CD163 and CD68 were identified as monocytes/

macrophages (Mo/Ma). Cluster 13 was annotated as dendritic

cells (DCs) based on CD83 and CCR7 expression (22). These

were most likely myeloid DCs, based on the upregulation of

FSCN1, a gene not expressed in plasmacytoid DCs (23). Clusters

0, 1, 2, 3, 4, 5, 12 and 14 were annotated as T cells based on CD2,

CD3D, CD3E and CD3G expression. Cluster 11 was annotated as

B/Plasma cells based onMS4A1, CD79A and CD79B expression.
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Cluster 6 was annotated as neutrophils based on TG, RGS2,

LILRA5 and CSF3R expression. Lastly, cluster 10 was identified

as mast cells based on LTC4S, HPGDS, GCSAML and MS4A2

expression. Ribosomal protein (RP) genes were highly expressed

in T cells and B/plasma cells (Supplementary Figure 2). After

merging the clusters into these six major cell populations, the

(DEGs) for each population were extracted (Supplementary

Table 3). Analysis of these markers supported our annotations.
3.1 Cell distribution

The distribution of the six major cell populations

identified with scRNA-seq was similar for the three horses,

except for an increased mast cell proportion in horse 1

(Figure 3E). Next, we inspected the distribution of the five

cytologically distinguishable leukocyte types (macrophages,

lymphocytes, neutrophils, eosinophils and mast cells). We

considered that under light microscopy, T cells and B/plasma

cells are counted as lymphocytes, while Mo/Ma and DCs are

counted as macrophages. To assess the effect of sample

processing and cryopreservation on differential cell counts
TABLE 2 Summary metrics of the detected cells for each sample.

Horse 1 Horse 2 Horse 3

Estimated number of cells 1,460 1,931 2,017

Fraction reads in cells 86.0% 91.1% 78.8%

Mean reads per cell 115,356 71,580 88,570

Median UMIs per cell 2,922 2,637 2,376

Median genes per cell 1,340 1,256 1,061

Total genes detected 18,287 18,910 18,893

Sequencing saturation 88.7% 81.1% 84.5%

Reads mapped confidently to genome 92.5% 92.6% 91.7%

Reads mapped confidently to exonic regions 57.4% 58.6% 57.0%

Reads mapped confidently to transcriptome 53.6% 55.0% 57.0%
fron
Data generated with CellRanger v6.0 using EqCab 3.0 NCBI annotation release 103 with 3’-UTR regions extended by 2 kb.
TABLE 3 Differential cell counts (DCC) obtained with conventional cytology and single-cell RNA sequencing (scRNA-seq).

Horse 1 Horse 2 Horse 3

BALF
cytology

Cell suspension
cytology

scRNA-
seq

BALF
cytology

Cell suspension
cytology

scRNA-
seq

BALF
cytology

Cell suspension
cytology

scRNA-
seq

Lymphocytes % 55.8 60.8 85.3 40.5 39.5 74.7 39.5 39.5 71.3

Macrophages % 25.8 22.8 7.4 44.0 48.0 13.7 46.0 48.5 16.9

Neutrophils % 5.8 4.0 3.4 14.5 12.0 10.5 14.0 10.0 11.0

Mast cells % 12.8 12.3 3.8 1.0 0.5 1.1 0.5 2.0 0.8

Eosinophils % 0 0 0 0 0 0 0 0 0

Lymphocytes/
Macrophages

2.2 2.7 11.5 0.9 0.8 5.5 0.9 0.8 4.2
t

BALF cytology was performed on a fresh BALF sample shortly after collection. Cell suspension cytology was performed on an aliquot of the thawed sample used for scRNA-seq. ScRNA-seq
DCC was calculated based on the number of cells present in each of the six major cell populations listed, with B and T cell clusters counted as lymphocytes and DCs counted as macrophages.
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(DCC), we first compared the cytological DCC performed on

fresh BALF to the cytological DCC performed on the final cell

suspension. The cell distribution was mostly unchanged,

suggesting cryopreservation did not significantly affect

DCC. Next, we compared the cytological DCC of the cell
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suspension to the DCC calculated with scRNA-seq. The

lymphocyte/macrophage ratio was found to be markedly

higher with scRNA-seq compared to cytology. The

proportions of the other cell populations were similar

(Figure 3D and Table 3).
A B

D

C

D E

FIGURE 3

scRNA-seq analysis of 4,631 cryopreserved equine bronchoalveolar cells isolated from 3 horses. Mo/Ma, monocytes/macrophages. (A) The 16
clusters identified (indicated by numbers) are grouped into 6 major cell populations (UMAP visualization). (B) Dot plot of the 5 most upregulated
genes in each major cell population. Dot size is proportional to the percentage of cells expressing the gene. Dot color intensity represents
average gene expression. *Gene ID LOC102147726 annotated as Immunoglobulin Lambda-1 Light Chain (IGLC1), LOC100060608 as
Immunoglobulin Lambda Constant 7 (IGLC7) and LOC102148710 as WAP four-disulfide core domain protein 2 (WFDC2) (NCBI EqCab3.0 v103).
(C) Gene expression patterns used for cell type assignment. (D) Distributions of the major bronchoalveolar cell populations obtained with
cytology on BALF, with cytology on the cell suspension (post cryopreservation) and with scRNA-seq on the cell suspension. T cells and B/
plasma cells are counted as lymphocytes, while Mo/Ma and DCs are counted as macrophages. (E) Distribution of the major bronchoalveolar cell
populations for each horse, based on scRNA-seq analysis.
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3.2 Composition of the monocytes-
macrophages population

The Mo/Ma subset was reanalyzed independently to better

resolve putative cell subtypes. Unsupervised graph-based

clustering identified seven distinct Mo/Ma clusters
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(Figure 4A). Some of the gene expression patterns used for cell

subtype assignment are displayed in (Figure 4C). The five most

upregulated genes in each cluster are shown in (Figure 4D). The

DEGs list for each cluster can be found in (Supplementary

Table 4). Mo/Ma 6 represented dead or dying cells, based on a

low RNA and feature count (Supplementary Figure 3).
A

B

D
C

FIGURE 4

Independent analysis of the monocytes-macrophages (Mo/Ma) population (n=529 cells) (A) UMAP visualization of the 7 Mo/Ma clusters
identified, with suggested cluster annotation. (B) Distribution of the Mo/Ma clusters for each horse, based on scRNA-seq analysis. (C) Gene
expression patterns used for cell subtype assignment. *LOC100051526 annotated as CD16 (NCBI EqCab3.0 v103). (D) Dot plot of the 5 most
upregulated genes in each cluster. Dot size is proportional to the percentage of cells expressing the gene. Dot color intensity represents
average gene expression. Mo/Ma 6 (dead cells) is excluded. *LOC100146489 annotated as H2A.Z variant histone 1 (H2AZ1), LOC100067916 as
NmrA like redox sensor 1 (NRMAL1), LOC100059533 as glutathione S-transferase pi 1 (GSTP1), LOC100069029 as ficolin 1 (FCN1),
LOC100050560 as interferon induced transmembrane protein 1 (IFITM1) and LOC100050100 as orosomucoid 2 (ORM2) (NCBI EqCab3.0 v103).
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3.2.1 Alveolar macrophages
Clusters Mo/Ma 0, Mo/Ma 1, Mo/Ma 3 and Mo/Ma 5

overexpressed the macrophage-specific markers MARCO,

APOE, MSR1 and CD163, indicating that these cells were

mature alveolar macrophages (AM). Mo/Ma 0 and Mo/Ma 1

had the highest expression levels for MARCO and APOE. These

cells also overexpressed complement genes (e.g. C1QB, C4BPA,

C1QC and C1QA), suggesting these were activated AMs (24).

Mo/Ma 0 overexpressed OLFM4, FAPB5 and ANXA2. This

cell cluster was annotated as FABP5high AMs, in reference to the

previously described FABP4high (25) or FABP4+ (4)

AM populations.

Mo/Ma 1 expressed high levels of FCN1 and ORM2

(LOC100050100). Transcripts coding for lipid mediators

(ALOX5AP, PLTP, LTA4H and APOE) were overrepresented.

This cell cluster was annotated as FCN1high AMs in line with a

previously published classification (4, 25).

Mo/Ma 3 had somewhat lower levels of AM specific markers

compared to Mo/Ma 0 and Mo/Ma 1, perhaps indicating that

this cell cluster was at an earlier differentiation stage. This cell

cluster was characterized by upregulation of CD5L. Numerous

anti-oxidant genes were also upregulated (e.g. FTH1/

LOC111767398, GSTP1/LOC100059533, TXN, SOD2 and

SRXN1). We detected upregulation of MARCKSL1, involved in

macrophage migration (26). This cell cluster was annotated as

CD5L+ AMs.

The expression profile of Mo/Ma 5 was dominated by

mitosis-associated genes (e.g. CENPF, MKI67, TOP2A and

TPX2). This cluster was therefore annotated as proliferating

AMs (Figure 4C).
3.2.2 Monocytes
Mo/Ma 2 and Mo/Ma 4 showed an overall low expression

of AM markers. In particular, APOE, MARCO, CD163 and

complement genes were downregulated compared to the

other Mo/Ma clusters. These cells were thus labeled as

monocytes. Both Mo/Ma 2 and Mo/Ma 4 expressed high

levels of MHCII-associated genes and downregulated

CD16 (Figure 4C).

Mo/Ma 2 overexpressed genes associated with macrophage

chemotaxis (SPP1 and CCL15) and cell migration (CD44,

MMP9) (27–29). We hypothesized that these cells were blood-

derived intermediate monocytes, analogous to the extravascular

CD14+CD16- HLA-DRhigh monocytes described by Evren and

colleagues (30). The human classical monocyte marker CD14

was not upregulated in Mo/Ma 2, but it was overall sparsely

expressed in our dataset. We annotated Mo/Ma 2 as

intermediate monocytes.

The monocytes Mo/Ma 4 upregulated PLAC8, considered a

signature gene for patrolling monocytes (31). Most importantly,

we detected a clear T cell signature in this cluster (CD2, CD3D,

CD3E, CD3G, CD5 and CD7 expression) (Figure 4C). Mo/Ma 4
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presented an expression profile “halfway” between Mo/Ma2

(intermediate monocytes) and T cells (Supplementary

Figure 5). Several genes responsible for lymphocyte activation

(e.g. CTSW, PTPRCAP and LTB) were also overexpressed. A

subpopulation of Mo/Ma 4 overexpressed LOC100630729. This

gene codes for the immunoglobulin kappa variable 2-30-like

protein (Figure 4C) expressed in plasma cells. Mo/Ma 4 was

annotated as double positive monocyte-lymphocyte cells.

After exclusion of the dead cells (Mo/Ma 6), monocytes

(Mo/Ma 2 and Mo/Ma 4), AMs (Mo/Ma 0, Mo/Ma 1, Mo/Ma 3)

and proliferating AMs (Mo/Ma 5) represented 30.9%, 64.4% and

4.7% of the Mo/Ma population. While the proportion of

monocytes and proliferating AMs was fairly similar among the

horses, the distribution of the three distinct AM populations

showed a high interindividual variability (Figure 4B).
3.3 Composition of the T cell population

Independent reanalysis of the T cell population identified

nine clusters (Figure 5A). Some of the gene expression patterns

used for cell subtype assignment are displayed in (Figure 5C).

The five most upregulated genes in each cluster are shown in

(Figure 5D). The DEGs list for each cluster can be found in

(Supplementary Table 5). T7 constituted dead or dying cells,

based on a low RNA count and upregulation of mitochondrial

genes (Supplementary Figure 3).

Clusters T1, T2 and T6 were CD4+ T cells (T helpers), as

shown by upregulation of the CD4 gene and downregulation of

the CD8a and CD8b genes. The remaining clusters T0, T3, T4

and T5 were CD8+ T cells (cytotoxic T cells) based on the

upregulation of the CD8a and/or CD8b genes and the

downregulation of the CD4 gene (Supplementary Figure 4).

The tissue resident marker ITGAE was upregulated in the T

cell clusters 0, 2, 3 and 6.

T1 represented naïve CD4+ T cells, based on the

overexpression of TCF7 (32, 33). Transcripts coding for

ribosomal proteins (RP) were overrepresented. Expression of

RP genes was not correlated with the cell cycle state. Increased

ribosome biogenesis could instead be explained by the high

requirement for protein synthesis during cell differentiation in a

naïve cell population as previously observed in stem cells (34).

T2 showed high levels of the tissue resident marker ITGAE

(33) and the T helper marker CD40LG. Upregulation of DUSP1

and ANXA1 were consistent with antigen-experienced, activated

T cells (35, 36). T2 was thus annotated as CD4+ tissue-resident

memory (TRM) cells. Interestingly, the top differentially

expressed gene was KLRF1, a cytotoxicity regulator whose

expression is associated with exhaustion of human memory

CD4+ T cells (37). RGS1, a marker of exhaustion in CD8+ T

cells (38), was also upregulated in this cluster.

Cluster T6 overexpressed Treg cells canonical markers

FOXP3, CTLA4 and IL2RA (33, 39) and key transcription
frontiersin.org

https://doi.org/10.3389/fimmu.2022.929922
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sage et al. 10.3389/fimmu.2022.929922
factors FOXO1 (40), MAF (41, 42) and FOXP1 (43), as well as

the Treg differentiation regulator CD27 (44). These cells were

annotated as Treg cells.

The expression profiles of the CD8+ clusters T0 and T3 were

very alike. Both overexpressed the tissue-resident marker ITGAE

(33), the cytotoxicity effectors PRF1 and CTSW, the granzyme

genes GZMA, GZMK and GZMH, and EOMES (45), suggesting

they were TRM CD8+ T cells. One substantial difference between

the two clusters was the upregulation of the IFN-stimulated

genes IFI6 and IRF7 and other genes involved in antiviral

response (PLAC8 and LY6E) in T0 (46, 47). These genes code

for proteins involved in response to viral infection and are

upregulated in activated T cells. The chemokines CCL4 and

CCL5, secreted by pathogen-specific effector T cells (48), were

also upregulated. We consequently annotated T0 as activated

CD8+ TRM. On the other hand, T3 was characterized by

overexpression of tissue-intrinsic genes participating in

cytoskeletal structure (VIM, TUBA1A) and modulation

(S100A4, ANXA2, EZR), cell-cell or cell-matrix interactions

(LGALS1, LGALS3), and membrane scaffolding (ITM2B) (33).

Additionally, RP genes were downregulated in this cluster,

suggesting it was composed of fully differentiated, tissue-

adapted cells (49). The DEGs for T3 included PRF1, NKG7,

HOPX, LAG3 and CCL4 (33), as well as MHCII-associated

genes, consistent with activated T cells. We suspected that T3

represented CD8+ terminally differentiated effector cells (TEMRA)

based on the upregulation of PTPRC (CD45). However, PTPRC

average expression was overall low in the cluster and, in absence

of PTRPC isoform data in horses, this annotation could not be

ascertained. T3 was therefore annotated as MHCIIhigh CD8+

TRM cells.

The ubiquitous expression of the T cell markers CD2, CD3

and NCAM1 indicated that our dataset did not contain true NK

cells. However, T4 still demonstrated NK-specific features. Top

upregulated genes included genes from the NKG2 family

(KLRC1, KLRK1) and the related KLRD1, CD160 and NKG7

genes, all associated with NK function (Figures 5C, D). TYROBP

was also overexpressed, in accordance with previous description

of human peripheral NKT cells (50). We thus annotated T4 as

NKT cells (CD1d-restricted invariant natural killer T cells).

Cluster T5 was annotated as gd T cells. The second most

strongly upregulated gene in this cluster was LOC100066851,

coding for a SCART1-like protein (Figures 5C, D). SCARTs are

surface receptors found primarily on gd T cells (51, 52). This

cluster shared many DEGs with the equine PBMC cluster

annotated as gd T cells by Patel and colleagues (53). Of note,

our BALF gd T cells also overexpressed genes associated with

cytotoxicity such as KLRB1, GNLY or KLRF1.

Cluster T8 was annotated as proliferating T cells based on

the high levels of mitosis marker (e.g. CENP, HMGB2, TOP2A)

and other markers of cell proliferation such as MKI67

(Figures 5C, D). This cluster comprised both CD4+CD8- and

CD4-CD8+ T cells.
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The distribution of the nine T cell clusters was comparable in

horses 1 and 3. Horse 2 presented a higher proportion of CD4+

TRM (T2), MHCIIhigh CD8+ TRM (T3, most markedly), and

proliferating T cells (T8) (Figure 5B).
3.4 Composition of the B/plasma
cell population

Independent analysis of the B/plasma cell population

revealed two distinct cell clusters: B/plasma cell 0 and B/

plasma cell 1 and B/plasma cell 1 (Figure 6A). Some of the

gene expression patterns used for cell subtype assignment are

displayed in (Figure 6C). The DEGs list for each cluster can be

found in (Supplementary Table 6). B/plasma 1 overexpressed

several genes associated with humoral response, some of which

being upregulated in equine blood antibody-secreting B cells

(DERL3, HSP90B1, PPIB and SSR3) (53). JCHAIN, coding for

the joining chain of multimeric IgA and IgM, was also

overexpressed. B/plasma 1 was thus annotated as plasma cells.

On the other hand, B/plasma 0 was characterized by high

expression of the canonical B lymphocyte markers CCR1,

CD74, BANK1, MS4A1 and CD79B. This cluster was annotated

as B cells. The two top upregulated genes for B cells were the

MHC class II components DRB (ortholog of humanHLA-DRB1)

and CD74. MHCII expression is lost during differentiation to

plasma cells, further supporting our annotation (54). The

relative distribution of B and plasma cells differed between

horses, with no plasma cells detected in horse 2 (Figure 6B).
4 Discussion

Our proof of concept single-cell analysis of equine

bronchoalveolar cells allowed the identification of the major

immune cell populations present in the BALF of adult horses

without the need for conventional microscopic cytology or

l abe l ed ant ibod ie s . We were ab l e to d i s t ingu i sh

transcriptionally distinct Mo/Ma and T cell subpopulations

relevant for the characterization of different types of immune

responses. An unexpected but important finding was the

presence of cells or cell pairs expressing both lymphocyte and

monocyte markers.

To the best of our knowledge, this is the first scRNA-seq

experiment on cryopreserved BALF cells, not only in horses but in

any species. We successfully demonstrated that equine

bronchoalveolar cells can undergo cryopreservation at -80°C

before scRNA-seq. We were able to detect most of the major

immune cell types present in equine BALF, with the exception of

eosinophils. This was most likely due to their absence or sparsity

in the samples, since they were not found on the cytological

preparations either. Of note, we found a significant proportion of

neutrophils, cells that are notoriously difficult to detect with
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scRNA-seq due to their high RNAse content. The addition of

RNAse inhibitor during sample processing may have prevented

RNA degradation. Detection and correct identification of

granulocyte types is important for the characterization of equine

asthma phenotypes, highlighting the potential of scRNA-seq to

investigate this disease.
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The major cell populations were identified with a high level of

confidence through the analysis of canonical markers and

inspection of the top DEGs for each cluster. The analysis of the

cell subtypes was more difficult, with their annotation being

subject to interpretation. Automated annotation using SingleR

with three different reference datasets [the Human Primary Cell
A

B

D
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FIGURE 5

Independent analysis of the T cell population (n=3,465 cells) (A) UMAP visualization of the 9 T cell clusters identified, with suggested cluster
annotation. TRM, tissue-resident memory. (B) Distribution of the T cell clusters for each horse, based on scRNA-seq analysis. (C) Gene expression
patterns used for cell subtype assignment. *LOC100062846 annotated as killer cell lectin like receptor C1 (KLRC1), LOC100066851 as scavenger
receptor family member expressed on T cells 1 (SCART1) (NCBI EqCab3.0 v103). (D) Dot plot of the 5 most upregulated genes in each cluster
(one ribosomal RNA gene and two ribosomal protein genes removed). Dot size is proportional to the percentage of cells expressing the gene.
Dot color intensity represents average gene expression. T7 (dead cells) is excluded. *LOC100066851 annotated as SCART1, LOC101910264 as
killer cell lectin like receptor D1 (KLRD1), both LOC100062823 and LOC100062846 as KLRC1, both LOC100051986 and LOC100147522 as
granzyme H (GZMH) (NCBI EqCab3.0 v103).
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Atlas, a human lung cell scRNA-seq dataset (55) and a ferret

BALF cell dataset (14)] did not improve the annotation of cell

subtypes (data not shown). ScRNA-seq experiments have

introduced unprecedented levels of complexity to the

classification of cells, challenging the traditional definition of a

cell type. Cell types can be defined with various criteria, including

their phenotypes, lineages and states (56). Microscopy can only

identify a few cell populations based on their morphologic

features. On the other hand, use of labeled antibody techniques

allow the exploration of cell types at a much higher resolution.

These methods, however, rely on the presence or absence of a cell

surface marker, shaping our definition of what is a cell type.

Additionally, the range of cell types that can be identified in horses

is hampered by the limited pool of available equine-specific

antibodies. With scRNA-seq, we can appreciate various degrees

of expression of a plethora of marker genes, blurring the lines

between transcriptionally similar cell populations. The different

layers formed by the lineage origin, the differentiation stage, or the

activation state can be difficult to untangle. The interesting
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concept of a cell periodic table was recently proposed (57). Such

a table could reconciliate the various strati detected with single-cell

analysis to redefine cell types and states. Our dataset could

contribute to the assembly of such a periodic cell type table for

horses. It will also aid in the construction of an equine lung atlas,

similar to the human lung atlas initiativeb.

We observed a marked discrepancy of the lymphocyte/

macrophage ratio between cytology and scRNA-seq. This resulted

from differences between the techniques used for counting, since the

cytological DCCs before and after sample cryopreservation were

comparable. We analyzed the data provided by Fastrès et al. and

noticed that the scRNA-seq analysis of healthy dogs’ BALF cells was

similarly biased toward a higher lymphocyte count compared to

cytology (15). The lymphocyte/macrophage ratio was five times

higher with scRNA-seq, akin to our findings. The droplet-based

sequencing method could theoretically bias the observed cell
frontiersin.org
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FIGURE 6

Independent analysis of the B/plasma cell population (n=62 cells) (A) UMAP visualization of the two B/plasma cell clusters identified, with
suggested cluster annotation. (B) Distribution of the B/plasma cell clusters for each horse, based on scRNA-seq analysis. (C) Gene expression
patterns used for cell subtype assignment. *LOC100147624 annotated as derlin 3 (DERL3) (NCBI EqCab3.0 v103).
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distribution through preferential selection of smaller cells. To our

knowledge, this has never been reported in immune cells. Another

potential explanation for the lower macrophage proportion is the

high production of RNAses by granulocytes, leading to greater

mRNA degradation and thus lower transcript recovery (58). In such

cases however, we would have expected no or low detection of

neutrophils and mast cells with scRNA-seq. An alternative and

more plausible hypothesis is that conventional cytological DCC

diverges stronger from the biological reality than the scRNA-seq

based classification. Studies comparing flow cytometry with manual

counting have revealed that conventional cytology led to

lymphocyte count underestimation (59) or macrophage count

overestimation (60). Explanations put forward were the limited

number of cells counted under light microscopy, inaccurate

classification due to apoptotic changes and uneven cellular

d i s t r ibut ion on cyto log ica l preparat ions . Indeed ,

cytocentrifugation tends to propel the lymphocytes to the

margins of cytological slides, leading to their underestimation

during manual counting (61). Furthermore, in our experience,

single epithelial cells can be mistaken for macrophages in light

microscopy, potentially leading to an overestimation of the latter in

the DCC. In summary, the lymphocyte/macrophage ratio in our cell

population was markedly higher with scRNA-seq compared to

cytology. Whether scRNA-seq or cytological cell distribution best

reflects the biological reality remains to be determined. Since

current guidelines to characterize lower airway inflammation in

horses are based on cytological DCC (12), we recommend that cell

distribution is concomitantly assessed via conventional cytology

when performing scRNA-seq on equine BALF cells.

Independent analysis of the Mo/Ma cluster enabled a clear

distinction between monocytes and AMs based on the

expression of a selection of macrophage-specific genes.

Previous scRNA-seq studies on BALF from other species (14,

55) and on equine peripheral blood (53) used CD14 to identify

monocytes. The expression of this canonical marker was barely

detectable in our dataset, similar to previous observations in dog

BALF (62). Yet, equine BALF monocytes have been described as

CD14+ cells based on flow cytometric data (63). We suspect that

CD14 expression was blunted by the higher expression of other

genes in our cell population. The major DEGs for the three

distinct quiescent AM clusters (Mo/Ma 0, 1 and 3) were mostly

associated with regulation of inflammation.Cluster Mo/Ma 0

(FABP5high AMs) overexpressed OLFM4, FAPB5 and ANXA2.

OLFM4, a marker of severe lung disease, may be involved in the

inflammatory response regulation (64, 65). FABP5 has anti-

inflammatory properties in allergic lung inflammation (66).

ANXA2 negatively regulates TLR4-triggered inflammatory

responses, thus preventing excessive inflammation (67).

Moreover, the myeloid cell-derived proteins S100A8 and

S100A9, involved in lung protective mechanisms (68), were

a l so upregula ted in th i s c lus ter . The concurrent

downregulation of MHCII-related genes in Mo/Ma 0 further

supports an anti-inflammatory phenotype (69). Cluster Mo/Ma
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1 (FCN1high AMs) was characterized by upregulation of the

FCN1 gene coding for ficolin 1, a pattern-recognition receptor

involved in innate immunity. This cluster also expressed high

levels of ORM2 (LOC100050100), an acute-phase protein

preventing inflammation in adipose and neural tissue (70, 71).

Mo/Ma 3 (CD5L+ AMs) had somewhat lower levels of AM

specific markers compared to Mo/Ma 0 and Mo/Ma 1, perhaps

indicating that this cell cluster was at an earlier differentiation

stage. We detected upregulation of MARCKSL1, which plays a

crucial role in macrophage migration (26). Mo/Ma 3 could thus

represent recently migrated AMs. This cell cluster also

overexpressed CD5L, which promotes M2 macrophage

polarization (72, 73). However, none of the clusters displayed

a clear M1 or M2 phenotype. AM phenotypes deviating from the

classic M1 or M2 phenotypes have already been identified with

flow cytometry (74) and RNA-sequencing (75). It has been

suggested that M1 and M2 actually represent extremes of a

polarization state continuum, rather than stable phenotypes (76,

77). Similar to our findings, previous BALF scRNA-seq studies

on ferrets (14) and dogs (15, 62) detected transcriptionally

distinct AM clusters. These may represent discrete cell

subtypes or different activation states of the same cell type.

We annotated Mo/Ma 2 as intermediate monocytes in

reference to a recently published developmental map of

human lung macrophages (30). In this study, HLA-DRhigh

CD14+CD16- monocytes egressing from peripheral blood were

shown to be AM precursors. Until recently, it was assumed that

the pool of AMs was mostly maintained through local self-

renewal, with minimal contribution of blood-derived monocytes

[reviewed in (78)]. While initial studies were performed in mice,

latter work in healthy humans suggests that human AMs are

mostly derived from circulating monocytes (78). This

discrepancy could stem from the constant exposure of humans

to inhaled antigens, in contrast to the germ-free environment of

laboratory mice (78). Our findings support the idea that equine

AMs mostly arise from the differentiation of peripherally-

derived monocytes, similar to what is described in humans.

This may reflect a constant renewal of AMs to adapt the lung

immune response to the dynamic antigenic load and to the non-

specific irritants horses are exposed to via the inhalation route in

their typical stable environments (12). Single-cell analysis of

lung cells collected at sequential developmental stages in the

horse may definitely elucidate the origin of equine AMs.

Cluster Mo/Ma 4 stood out by the co-expression of lymphocyte

and monocyte markers. Similar double positive cells were detected

in three other BALF scRNA-seq studies (4, 30, 62). This was

attributed to either ambient RNA contamination (30, 62) or to

doublet formation (4). We considered several different hypotheses

to explain this unusual expression pattern, including engulfing

macrophages, a novel dual lineage cell population, technical

multiplets (capture of several cells in a single droplet) and

immune cell complexes. The engulfing macrophages hypothesis

was not convincing. First, we assume these cells are monocytes
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based on downregulated macrophage-specific genes, including

those required for phagocytosis (e.g. CD163) (79). Second, we did

not detect markers specific for neutrophils, the cells that are most

likely to be phagocytosed by macrophages (80). While the presence

of a novel dual lineage cell population expressing both lymphocyte

and monocyte markers cannot be definitely dismissed, it seems

unlikely that several flow cytometry-based studies on equine BALF

(59, 63, 81, 82) would have failed to detect them. Lymphocytes and

monocytes originate from separate cell lineages, namely lymphoid

and myeloid. A new dual lineage cell type would thus call into

question our current understanding of cell ontology. Mo/Ma 4

could represent technical doublets and/or multiplets. However, this

does not explain why only lymphocytes and monocytes signatures

are combined, and not signatures for other cell types. Indeed,

encapsulation of two or more cells within a droplet during

libraries generation should be random. Therefore we propose that

the Mo/Ma 4 cluster represents mostly monocyte-T cell complexes,

as recently described in human peripheral blood (83, 84). We

hypothesize that the Mo/Ma 4 subset overexpressing the Igk-like
protein gene corresponds to monocyte-B cell complexes.

Immunological stimuli such as immunization or disease affect the

frequency and the phenotype of immune cell complexes (83).

Studying their formation and specificity may help unveil the

underlying mechanisms of specific equine respiratory conditions

such as equine asthma. To determine whether monocyte-

lymphocyte complexes are truly present in equine BALF, we

suggest combining scRNA-seq with imaging flow cytometry.

We found the annotation of T cell subsets challenging.

Similarly to Patel and colleagues working with equine PBMCs

(53), we could not identify the Th1, Th2 and Th17 phenotypes,

as their specific chemokines were only sparsely expressed in our

dataset. Assigning a cell identity to CD8+ clusters was also

difficult, probably because gene expression changes in a linear

fashion throughout differentiation (45, 85). Further single-cell

studies and replication experiments should help to better

delineate the transcriptional signatures of the different T cell

populations. We annotated one of the T cell cluster as NKT cells.

The existence of NKT cells in horses was already reported (86,

87). While NKT cells are well characterized in humans and mice,

their transcriptional signature and pattern of surface receptors

remain to be defined in horses. A cell cluster with an expression

profile similar to our NKT cell population was detected using

scRNA-seq on equine PBMCs, but was annotated as NK cells

despite being CD3+ (53).Genes coding for RP were

overexpressed in the two lymphocyte cell populations (T and

B/plasma cells), a common observation in scRNA-seq of

lymphocytes. This is likely a consequence of minimal

transcriptional activity of most other genes, resulting in an

apparent relative increase of abundantly expressed transcripts,

such as those encoding RP. This could also reflect the high

translational activity required for the cell types respective

function, such as cytokine or antibody production (88–90).

Even though the DEG list of some T cell clusters were
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dominated by RP genes, filtering them did not significantly

affect cell clustering (data not shown). Moreover, we found that

the differential expression of RP genes between T cell clusters

corroborated our cluster annotation, with upregulation at the

early differentiation stage (CD4+ naïve T cells) and

downregulation at the terminal differentiation stage

(MHCIIhigh CD8+ TRM) (34, 49).

Three horses from our teaching herd were included in this pilot

study out of convenience. These horses were affected with mild-to-

moderate equine asthma, but sampled in a phase of clinical

remission. Interestingly, horse 2 presented higher proportions of

FABP5high AMs, CD4+ TRM, MHCIIhigh CD8+ TRM and

proliferating T cells, and no plasma cells. This may reflect

intrinsic individual differences of the immune response and/or in

the environmental exposures encountered throughout lifetime.

A first pre-processing analysis found a low percentage of reads

mapping to transcriptome (mean 33.5%, data not shown). We

suspected that this resulted from the poor quality of the horse

genome annotation, especially at the untranslated 3’-ends of genes.

Therefore, we manually extended the annotations of the 3’-

untranslated regions for all transcripts listed in the reference

genome by 2 kb, as described elsewhere (91). The mapping to

transcriptome substantially improved (mean 53.4%), reaching levels

comparable with humane or murine studies. This highlights the

need for an improved annotation of the equine reference genome.

While a large amount of new information was gained from this

study, we acknowledge some limitations. Our study population was

small, due to the high cost of scRNA-seq. The number of cells

sequenced was, however, sufficient to gather meaningful initial data.

While our ability to detect rare cells (e.g. eosinophils) may have

been hindered, we could still demonstrate that equine BALF cells

can be successfully used for scRNA-seq after cryopreservation. For

the present proof-of-concept study, we sampled BALF from

asthmatic horses in remission available on site. The gene

expression profiles obtained may thus differ from those of horses

free of respiratory diseases. A larger-scale study using healthy horses

is required to define a single-cell atlas of equine BALF cells. Most

single-cell studies are conducted on fresh samples in order to

optimize cell viability and prevent transcriptional modifications

associated with sample handling. We wanted to demonstrate the

feasibility of cryopreservation before sequencing to facilitate the

design of larger, potentially multi-centric single-cell studies.

Cryopreservation will allow collection of BALF from different

horses on separate days for later batched library preparation and

sequencing. Analyzing several samples in one single run minimizes

batch effect and significantly reduces sequencing cost.

Cryopreservation of cells and tissues have a minimal effect on

transcriptional profiles obtained with scRNA-seq (92, 93). However,

T cells may be more affected by cold preservation, with populations

declining over time and an expression profile biased toward

cytotoxicity genes (92, 93). Potential confounding effects of

cryopreservation on the expression profiles of specific clusters

may have been missed in our dataset due to the currently limited
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knowledge of cell type-specific transcriptional signatures. The

present study was not designed to assess the effect of

cryopreservation on gene expression. This should be investigated

in future experiments comparing directly fresh and cryopreserved

equine BALF samples at the single-cell level. A major limitation of

scRNA-seq studies is the difficulty to validate the annotation of cell

clusters. Considerable efforts are put into the construction of

extensive standardized single-cell atlases (94). Unfortunately,

complementary methods that could corroborate the assigned cell

clusters (e.g. flow cytometry) fall short in resolution compared to

scRNA-seq. The development of new single-cell platforms

combining different experimental approaches, such as concurrent

gene expression and surface protein labeling, will help to fill

this gap.
5 Conclusion

Our findings indicate that scRNA-seq technology is applicable

to cryopreserved equine BALF cells, enabling the identification of its

major immune cell populations. The sample processing protocol

developed for this study may be applied to equine BALF cells and

thus allow large-scale single-cell sequencing experiments in horses.

Here we provide the single-cell gene expression profiles of the

bronchoalveolar cells collected from asthmatic horses in remission.

Our collection of signature genes will facilitate cell clustering in

forthcoming equine scRNA-seq investigations. We anticipate that

single-cell transcriptomic studies will generate novel paradigms in

equine respiratory research. Importantly, scRNA-seq will be a

powerful tool for the identification of equine asthma endotypes.
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Abstract: We used Pacific Biosciences long-read isoform sequencing to generate full-length transcript
sequences in equine bronchoalveolar lavage fluid (BALF) cells. Our dataset consisted of 313,563 HiFi
reads comprising 805 Mb of polished sequence information. The resulting equine BALF transcrip-
tome consisted of 14,234 full-length transcript isoforms originating from 7017 unique genes. These
genes consisted of 6880 previously annotated genes and 137 novel genes. We identified 3428 novel
transcripts in addition to 10,806 previously known transcripts. These included transcripts absent
from existing genome annotations, transcripts mapping to putative novel (unannotated) genes and
fusion transcripts incorporating exons from multiple genes. We provide transcript-level data for
equine BALF cells as a resource to the scientific community.
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1. Introduction

Equine asthma is a naturally occurring disease of the horse with many similarities to
human asthma. The etiology and pathophysiology of equine and human asthma are not
completely understood. Bronchoalveolar lavage fluid (BALF) cytology is typically used to
confirm the diagnosis in horses [1]. BALF cells are often used to study gene expression in
models of asthma. Compared to mice or humans, the collection of BALF in horses is less
invasive, as it can be performed in a standing animal with light sedation. This makes horses
a valuable animal model for the discovery of novel pathways implicated in asthmatic
inflammation [2–4]. To take full advantage of the comparative gene expression data
gained from the equine asthma model, it is critical to have an accurate and comprehensive
annotation of the genes expressed in equine BALF cells.

Short-read RNA sequencing (RNA-seq) is commonly used to study the changes in
gene expression associated with a disease (e.g., equine asthma) [5–7]. This method allows
for quantification of transcript abundance in a biological sample at the gene level, and
sometimes even at the isoform level. However, short-read data are not sufficient to infer ac-
curate full-length transcript structures, as transcripts with multiple alternative splicing sites
cannot be completely covered by the individual short reads. Complete cDNA molecules
can now be sequenced using long-read sequencing platforms such as Pacific Biosciences [8]
and Oxford Nanopore [9]. In contrast to short-read sequencing, long-read-based techniques
allow unambiguous mapping to a reference assembly, conservation of isoform information,
as well as discovery of novel genes, fusion transcripts and non-coding RNA. This has led
to significant improvement of the transcriptome annotation in a few domestic species such
as chicken [10], rabbits [11] or pigs [12]. The FAANG consortium, whose goal is to create
reference functional maps of livestock animal genomes [13] is already taking advantage
of long-read sequencing. Recently, Peng et al. [14] applied the PacBio Iso-Seq sequencing
technique to nine different horse tissues, including lung. They combined their Iso-Seq
transcriptome with the existing NCBI and Ensembl EquCab3.0 reference annotations. The
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resulting FAANG equine transcriptome comprises 36,239 protein-coding genes and 153,492
transcripts, a considerable improvement compared to the current NCBI annotation, which
contains only 21,129 protein-coding genes and 72,102 transcripts. The discovery of novel
genes and isoforms with potential biological relevance will benefit to all genomics studies.

Advanced transcriptomics are becoming increasingly popular to study the patho-
physiology of equine asthma. Our group recently performed the first single-cell mRNA
sequencing of equine BALF [15], a technique that is widely used to study the transcriptome
of individual cells and compare them. Peng et al. [14] have also showed that major isoform
(based on relative expression values) differs between tissue type, hence a BALF-specific
reference transcriptome is highly desirable.

In this study, we applied the Pacific Biosciences Iso-Seq method [8] to generate a
full-length transcriptome of BALF cells originating from a healthy and an asthmatic horse.
The dataset obtained is a valuable resource for future transcriptomic studies in horses,
including investigations of equine asthma.

2. Materials and Methods
2.1. Study Animals

Privately owned horses were prospectively enrolled for a study on equine asthma.
Suitable candidates were identified through a validated owner questionnaire (HOARSI) [16].
Requirements for study enrollment were an age ≥ 5 years old, a longer than two-month
history of being fed hay, no history of immunotherapy, no history of upper airway disease
(e.g., roarer), no evidence of current systemic disease and a rectal temperature ≤ 38.5 ◦C on
the day of the exam. Additionally, the horses should not have received any corticosteroids,
bronchodilators or anti-histaminic administration nor suffered from a respiratory infection
in the two weeks preceding the examination. Owners were asked to bring a healthy horse
(without respiratory signs) from the same barn along with their asthmatic horse to the
Bern ISME equine clinic. Horses underwent the following standard diagnostic procedures
to characterize their respiratory status: physical examination with clinical scoring [17],
lower airway endoscopy with tracheal mucus scoring [18], and bronchoalveolar lavage.
Selection of the samples for RNA extraction was based on the BALF quality (yield ≥ 30%,
foamy, normal CASY cell counter profile (OMNI Life Science, Bremen, Germany)) and
on the horses’ historical, clinical and laboratory features, with the goal of selecting the
most archetypal phenotypes for both control and severe equine asthma (sEA). RNA was
extracted from four BALF samples (two control and two sEA). One control and one SEA
sample were then selected for sequencing based on the quality of RNA (see paragraph 2.5).
The main characteristics of the sequenced horses are shown in Table 1. Detailed clinical
features of these horses can be found in Table S1.

Table 1. Characteristics of the horses used for the study.

Sample 1 2

Health status Asthmatic Control
Breed Selle Français Swiss Warmblood

Sex Mare Mare
Age (years) 21 12
HOARSI * 4 1

Weight (kg) 634 613
* The Horse Owner Respiratory Signs Index (HOARSI) was used assess the equine asthma severity. HOARSI 1
indicates a healthy, and HOARSI 4 a severely asthmatic horse.

2.2. Sample Collection

Horses were sedated with detomidine 0.01 mg/kg IV (Equisedan ®, Graeub, Bern,
Switzerland) and butorphanol 0.01–0.02 mg/kg IV (Morphasol-10 ®, Graeub, Bern, Switzer-
land). A sterile BALF tube (300 cm; 10 mm outer diameter; Bivona Medical Technologies,
Gary, Indiana, USA) was passed into the nose down to the trachea. Twenty ml of lidocaine
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2% were instilled and the tube was further inserted until wedged against a peripheral
bronchus. The cuff was insufflated with 5 mL of air and 0.9% NaCl (250 mL) was infused
using 60-mL syringes. The fluid was re-aspirated until no more was yielded, at which point
the cuff was deflated and the tube pulled out. The syringes content was pooled in a cooled
silicone-coated glass bottle. The BALF was filtered through a 40-µm Falcon cell strainer
and kept on ice until processing.

2.3. Sample Cryopreservation and Thawing

The protocol used to freeze and subsequently thaw the BALF cells has been described
in detail in a previous study from our group [15]. The four samples from which RNA was
extracted were stored at −80 ◦C for a median of 321 days (interquartile range [IQR] 50)
before thawing.

2.4. RNA extraction and cDNA Library Preparation

Total RNA was extracted with the RNeasy mini kit (Qiagen, Hilden, Germany) ac-
cording to the manufacturer’s instructions. The quantity and quality of the isolated RNA
was assessed using a Thermo Fisher Scientific Qubit 4.0 fluorometer with the Qubit RNA
BR Assay Kit (Q10211, Thermo Fisher Scientific, Reinach, Switzerland) and an Advanced
Analytical Fragment Analyzer System with a Fragment Analyzer RNA Kit (DNF-471, Agi-
lent, Basel, Switzerland). The RNA was also tested by spectrophotometry using a Denovix
DS-11 FX (M/F) spectrophotometer/fluorometer to assess the purity of the RNA (DeNovix,
Wilmington, DE, USA). The median RIN for the four samples was 9.85 (IQR 0.13). The two
highest quality samples (RIN ≥ 9.9), representing one asthmatic and one control horse,
were equally pooled based on their RNA concentration.

2.5. PacBio Iso-Seq Long-Read Sequencing

Once all quality control tests confirmed high quality of the pooled RNA sample, the
Procedure & Checklist—Iso-Seq Express Template Preparation for Sequel and Sequel II
Systems was followed (PN 101-763-800 Version 02 (October 2019)) using the standard
protocol (Pacific Biosciences, Menlo Park, CA, USA). In short, full-length cDNA from
300 ng of total RNA was prepared using the NEBNext Single Cell/Low Input cDNA
Synthesis & Amplification Module Kit. Thereafter, a SMRTbell express template prep kit
2.0 was used to prepare the library. The resulting library was Single Molecule Real-Time
(SMRT) sequenced using a Sequel binding plate 3.0, sequel sequencing plate 3.0 with a
20 h movie time on a PacBio Sequel system using a SMRT cell 1M v3 LR. The 2.3 kb library
was loaded at 4.5 pM and generated 28.6 Gb and 419,674 polymerase reads. Next, the
Circular Consensus Sequencing (CCS) application was run in SMRT Link v10.1 (Pacific
Bioscience, Menlo Park, CA, USA) using the continuous long reads sub-read dataset and
default parameters. This resulted in 313,563 HiFi reads and 805,344,539 bp of HiFi yield.
The HiFi mean read length was 2568 bp and 19 HiFi passes was recoded (mean). These HiFi
reads were used to run the Iso-Seq analysis pipeline in SMRT Link v10.1. This generated
317,797 Full-Length Non-Concatamer (FLNC) reads with 5’ and 3’ primers and poly-A
tails. The mean length of the FLNC reads was 2536 bp. Reads identified as full-length
non-chimeric (FLNC) were considered for de novo clustering to generate unique isoforms.
All steps, listed above, including RNA quality control assessments, were conducted at the
Next Generation Sequencing Platform, University of Bern.

2.6. Isoform Sequence Analysis

Unique high-quality isoforms (supported by at least two FLNC) were mapped to
the equine genome (version EquCab3.0) using minimap2 [19]. The following parameters
were used with minimap2: (-ax splice -t 30 -uf –secondary=no -C5). The mapped data
in SAM format were annotated using cDNA_Cupcake (https://github.com/Magdoll/
cDNA_Cupcake;accessed on 14 February 2022 ) and SQANTI3 [20] (https://github.com/
ConesaLab/SQANTI3; accessed on 14 February 2022) pipelines. The mapped data in SAM

https://github.com/Magdoll/cDNA_Cupcake;accessed
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format were input to Cupcake in order to collapse redundant isoforms into transcript loci.
5′-differences were not considered when collapsing the isoforms. 5′-degraded isoforms
were removed using the filter_away_subset function of cDNA_cupcake. The resulting
isoforms were annotated and compared with EquCab3.0 NCBI annotation release 103 using
SQANTI3 with default parameters. The known and novel isoforms were categorized by
SQANTI3 into nine different structural classes (see Table 2). A schematic overview of the
bioinformatics workflow is shown in Figure 1.

Table 2. Transcript structural classes provided by SQANTI3.

Full splice match (FSM) Isoforms matching perfectly to annotated transcripts

Incomplete splice match (ISM) Isoforms matching to a subsection of an annotated transcript

Novel in catalog (NIC) Isoforms with a new combination of annotated splice sites

Novel not in catalog (NNIC) Isoforms with at least one novel splice site along with
annotated splice sites

Intergenic Isoforms mapping to intergenic region

Genic intron Isoforms contained within an intron

Genic genomic Isoforms overlapping with exons and introns

Fusion Isoforms spanning two annotated loci

Antisense Isoforms mapping to the complementary strand of an
annotated transcript
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Template switching during reverse transcription of cDNA is a known source of false
non-canonical splice junctions [21,22]. Secondary structures in RNA template or direct
repeats can cause reverse transcriptase (RT) to switch from one template to the other,
creating gaps in the cDNA sequence. The gaps are interpreted as splicing-like events by
algorithms, thereby artificially inflating for non-canonical splice sites. To detect this RT
switching event, SQANTI3 looks for repeat sequences flanking the non-canonical splicing
exon-intron boundary. The output of SQANTI3 classification was filtered for transcripts
that had 1) a junction classified as a RT-template switching artifact and 2) 86% or higher
adenosine content in the 20 nucleotides immediately downstream of the aligned 3′-end of
the transcript, as well as a continuous run of eight or more A (i.e poly(A)), indicating a
possible oligo(dT) intra-priming artifact. These transcripts were filtered using SQANTI3
filtering script sqanti3_Rulesfilter.py.

Saturation-discovery or rarefaction curves were produced by subsampling full-length
reads at different depths. Full-length reads were randomly sampled and, for each subsam-
ple of reads, the number of unique genes or transcript isoforms detected was determined.
For each sampling depth, 100 sampling iterations were performed before computing the
average number of unique genes or isoforms observed. Only isoforms exactly matching
the NCBI annotation release 103 were retained. The saturation-discovery curve analysis
was produced with the ‘subsample.py‘ and ‘subsample_with_category.py‘ scripts available
in the cDNA_cupcake repository.

2.7. BUSCO Analysis

Benchmarking Universal Single-Copy Orthologs (BUSCO) [23] looks for near-universal
single-copy orthologs present in a whole transcriptome dataset. We used BUSCO to
determine the percentage of orthologs present in equine BALF. BUSCO v4.1 was run
with its default settings, using the BUSCO vertebrate database (https://busco.ezlab.org/;
accessed on 8 June 2022).

2.8. Blastp Analysis

SQANTI3 uses the GeneMarkS-T (GMST) algorithm to predict ORFs from the tran-
scripts. The predicted ORFs were mapped to the clustered nr protein database [24] using
blastp with the parameters -max_target_seqs 5 -evalue 0.0001 -outfmt “6 qseqid qaccver
qlen sseqid saccver slen length pident qcovs evalue bitscore stitle”. The ORFs were also
mapped to the PFAM database using the HMMER algorithm [25]. The predicted fusion
transcripts were searched against the ConjoinG database [26]

2.9. Gene ontology (GO) Analysis

EnrichR online tool [27]-based gene enrichment analysis was performed with the top
500 most abundantly expressed genes. Total number of full-length read counts associated
with genes was used as expression value. This value was obtained from the SQANTI3
classification file. The functional categories examined were: GO_Biological_Process 2021,
GO_Cellular_Component 2021, GO_Molecular_Function 2021, Jensen TISSUES and
PanglaoDB Augmented. Jensen tissues is a human database of gene–tissue associations. It
records the expression of mRNA or corresponding protein in several tissues collected from
multiple sources using various data types. PanglaoDB is a single cell RNA-seq database for
mouse and human.

3. Results
3.1. Full-Length Transcripts

PacBio Iso-Seq data were generated from pooled RNA isolated from BALF cells of
one healthy and one severely asthmatic horse (See Table 1 and S1 for details). We collected
12,487,670 subreads comprising ~ 51 Gb of raw sequencing data to generate consensus reads
with the circular consensus sequencing (CCS) technology (Figure 1A). The CCS dataset
consisted of 313,563 Hi-Fi reads with a mean length of 2568 bp (Figure 1B and Table 3)

https://busco.ezlab.org/
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and a median quality of Q37. Adapter and poly(A) tail removal resulted in 258,022 FLNC
sequences. Clustering and polishing of FLNC sequences produced 20,462 high quality (HQ)
sequences and 159 low quality consensus transcript sequences. The HQ sequences had an
accuracy > 99% and were supported by at least 2 FLNC reads. The HQ sequences had a
mean length of 2931 bp.

Table 3. Summary statistics of PacBio Sequel IIe transcript sequencing data.

Sequence Type Total
Number Min Length Average

Length Max Length N50

Polymerase read 419,674 - 68,058 - 126,248
Subread 12,487,670 500 2244 236,862 2427

CCS 313,563 500 2568 15,078 2759
FLNC 258,022 500 2536 15,000 2689

HQ transcripts 20,462 502 2931 10,513 2937

Rarefaction analysis with subsampled full-length reads showed that sequencing satu-
ration for transcript loci discovery was almost attained. Therefore, a higher sequencing
depth would have been unlikely to detect more transcripts (Figure S1A,B).

3.2. Annotation of HQ Isoforms

All HQ isoforms were mapped to the EquCab3.0 reference genome. The resulting SAM
file from the transcript mapping was used for collapsing redundant transcripts isoforms
based on genomic location. The collapsed data showed 17,538 isoforms mapping to unique
locations and 599 HQ transcripts that did not map, had low alignment length coverage
(<99%) or had low alignment identity (<95%). Each of the 17,538 unique isoforms was
supported by at least two full-length reads. Filtering of the 1484 isoforms with truncated
5’-ends left 16,054 isoforms for the next analysis steps.

3.3. Isoform Characterization

The Iso-Seq isoforms aligned to 58.5% (n = 1960) vertebrate orthologs, of which 36.1%
(n = 1210) matched single-copy orthologs.

Transcripts with unreliable 3′-ends (intra-priming) and/or with junctions labeled as
(i) RT-switch, (ii) without a minimum coverage of three reads were filtered (n = 1820). The
numbers of filtered transcripts from each structural category are shown in Figure S2.

The final filtered Iso-Seq dataset consisted of 14,234 transcript isoforms covering
6880 previously annotated and 137 novel genes (Table 4). Of those, 6309 (90.0%) were
protein-coding genes. Most of the transcripts identified were protein-coding (98.0%).

Table 4. Overview of the annotated long-read equine BALF cells transcriptome.

Characteristics Number (Percentage)

Isoforms 14,234
Unique genes 7017
Previously annotated genes 6880 (98.0%)
Novel genes 137 (2.0%)
Genes with >1 isoform 3400 (48.4%)
Genes with >6 isoforms 164 (2.3%)
Known coding transcripts 10,665 (75.0%)
Known non-coding transcripts 141 (1.0%)
Novel coding transcripts 3235 (22.7%)
Novel non-coding transcripts 193 (1.3%)

Majority of transcripts were FSM isoforms (66.5%), while ISM isoforms represented
9.4% of the transcripts. NIC and NNIC accounted for 13.2% and 9.4% of the transcripts,
respectively (Table 5). The 35 isoforms of the CD163 gene transcript are depicted in
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Figure 2A as an example. They consisted of four FSM, two ISM, 12 NIC and 17 NNC
isoforms. Of the NIC and NNC isoforms, 20 showed intron retention.

Table 5. Structural classes of the 14,234 transcripts identified.

Structural Class #Isoforms (Percentage)

All 14,234 (100%)
FSM 9473 (66.5%)
ISM 1333 (9.4%)
NIC 1886 (13.2%)
NNC 1341 (9.4%)
Genic genomic 6 (0.04%)
Antisense 38 (0.3%)
Fusion 48 (0.3%)
Intergenic 109 (0.8%)
Genic intron 0 (0%)
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Figure 2. (A). UCSC genome browser track of CD163 in equine BALF cells. (B). UCSC genome
browser track showing the transcripts of the fusion gene MPDU1_CD68 (green track). These tran-
scripts cover both the genes MPDU1 and CD68. Their biological significance is unknown at this time.

The full-length transcripts recovered had a length up to 10 kb (Figure 1B). The longest
transcript was 10,514 bp in length and mapped to the gene ABCA1, which encodes a protein
that exhibits ATPase-coupled transmembrane transporter activity. A total of 3372 (49%)
genes were multi-exonic and gave rise to more than one isoform. A total of 163 (2.4%) of
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the 6880 known genes identified had more than six isoforms. The length of the detected
isoforms correlated with the number of exons (r = 0.43).

A small number of transcripts was qualified as antisense [n = 38; 0.3%], intergenic
[n = 109; 0.8%] and genic genomic [n = 6; 0.04%]. All isoform categories were mostly
represented by coding transcripts (96–98%), except for the antisense and intergenic cate-
gories. Antisense and intergenic transcripts had 60% and 75% predicted ORFs, respectively.
Nonsense-mediated mRNA decay (NMD) prediction showed that novel transcripts (27% of
the NIC and 21% of the NNC) were more likely to be targeted by the NMD pathway than
known transcripts (3% of the FSM).

3.4. UTR Extensions

The 5′-end of 46% of the FSM transcripts overlapped completely or almost completely
the transcriptional start site (TSS) of the matched reference transcripts (Figure 3A). Similarly,
the 3′-end of 51% of the FSM transcripts overlapped completely or almost completely the
transcriptional termination site (TTS) of the matched reference transcripts (Figure 3B).
Seventeen percent of the FSM and 14% of the ISM transcripts extended beyond the known
TSS, while 20% of the FSM and 11% of the ISM transcripts extended beyond the known
TTS (Figure 3C,D). The 5′-end of the FSM transcripts were extended by an average of 72 bp
(max: 3115 bp). The 3′-end of the FSM transcripts were extended by an average of 505 bp
(max: 14,447 bp).
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3.5. Characterization of Splice Junctions

Novel genes were enriched for multi-exon transcripts, compared to known genes
(Figure S3A). Of these multi-exonic novel genes, 44.3% (4702) were non-coding. The
number of exons per isoform structural class was similar for both known and novel
transcripts (Figure S3B). Only 623 transcripts were classified as mono-exonic. Their length
was comparable to multi-exon transcripts (Figure S3C). Almost all splice junctions were
canonical (GT-AG, GC-AG or AT-AC dinucleotide pairs) (Table 6). The ten most frequent
splice junctions found in the Iso-Seq transcripts are shown in Figure 4A.

Table 6. Splice junction classification.

Splice Junction Category Number (Percentage)

Known canonical 67,607 (96.9%)
Known non-canonical 30 (0.04%)
Novel canonical 2171 (3.1%)
Novel non-canonical 0 (0.0%)
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isoforms. (B). Distribution of splice junction types across transcript structural classes.

Canonical splice junctions from previously annotated genes accounted for 96.89%
of all splice junctions (Table 6). New combinations of donor and acceptor splicing sites
accounted for 0.7% of the isoforms only. Many of those were found in the novel isoform
category, as illustrated in Figure 4B. The top ten splice junctions are shown in Figure 4A.

3.6. Novel Isoforms

Novel isoforms comprised 24% of all transcripts. While these 3428 transcripts were
classified as novel, 1886 (55%) could still be linked to previously annotated genes because
they shared splice junctions with known gene transcripts. These were classified as NIC.
The remaining novel transcripts, predominantly classified as NNC, had at least one novel
donor or acceptor site (1341 [40.8%] of all novel transcripts]). Intron retention was observed
in 34% of the novel isoforms.

The novel transcripts contained 3428 ORFs with a length ≥ 100 amino acids. A total of
105 protein-coding transcripts mapping to 147 novel genes were predicted. These protein-
coding ORFs from novel genes had an average length of 327 amino acids. Fifty-four of
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the predicted proteins matched proteins in the nr database with more than 85% identity
and 80% coverage (Table S2). Table S2 shows the similarity between the novel transcripts
identified and the orthologous gene transcripts. These transcripts are absent from the
EquCab3.0 NCBI annotation release 103.

3.7. Fusion Genes

Forty-eight fusion transcripts were associated with 30 previously annotated genes,
most of them originating from read-through transcription of two adjacent genes. The
fusion gene MPDU1_CD68 is displayed in Figure 4B as an example. The majority of fusion
transcripts encompassed only two genes. ORFs were predicted in 45 of them. Twenty-six
ORFs spanned the coding sequence of the two loci they overlapped. An NMD effect was
predicted in 12 fusion transcripts. We also identified 13 fusion transcripts as potential
“conjoined genes” based on their sequence matching with the ConjoinG database [20]
(Table S2). Conjoined genes give rise to transcripts combining exons from two or more
distinct genes lying on the same strand of a chromosome. The conjoined genes found in our
dataset were supported by at least one mRNA or expressed sequence tag (EST) sequence.

3.8. Gene Ontology Analysis

The 500 most expressed genes in our dataset were predominantly involved in neu-
trophil degranulation (GO:0043312), neutrophil activation (GO:0002283) and neutrophil-
mediated immunity (GO:0002446). Tissue ontology analysis (Jensen database [27]) showed
these genes were overexpressed in trachea, blood and monocytes. Gene ontology analysis
using the PanglaoDB database [27] suggested a high expression in macrophages, monocytes,
alveolar macrophages and dendritic cells. The enrichment table is detailed in Table S2.

4. Discussion

We used PacBio long-read Iso-Seq RNA-seq to characterize full-length cDNA se-
quences in equine BALF cells. We were able to identify and map 14,234 transcripts with
considerable isoform diversity, of which 4449 were not represented in the current equine
genome NCBI annotation release 103. This highlights the need for a more comprehensive
and tissue-specific transcriptome annotation in horses.

The coding transcripts identified in our Iso-Seq dataset covered 60% of the 21,129
coding transcripts from the EquCab3.0 NCBI annotation release 103. The levels of gene ex-
pression appear to be tissue dependent: using PacBio sequencing in chicken, Kuo et al. [10]
identified 211,292 transcripts from the brain but only 14,776 transcripts from the embryo.
Hence, our incomplete transcriptome representation most likely reflects a BALF cell-specific
gene expression. The results of the gene ontology analyses using tissue (Jensen database)
and cell type (PanglaoDB) databases also support this hypothesis.

Our dataset comprised 70% of FSM transcripts, indicating that RNA degradation was
minimal. Still, ISM isoforms comprised 9.4% of the Iso-Seq transcripts associated with
known genes, similar to the 8.7% reported in the equine FAANG transcriptome [14]. ISM
transcripts were supported by reference transcripts with missing 5′- or 3′-exons. These
ISM transcripts may represent technical artifacts, for example due to RNA degradation or
incorrect priming, or real additional isoforms. These transcripts all had CCS sequences with
a median ORF length of 450 bp, indicating they could encode proteins. To which extent
these transcripts contribute to the BALF proteome needs to be further explored. A high
content of adenosine nucleotides in the RNA strands can lead to mispriming during reverse
transcription. However, only 241 of the 1333 ISM reads had 80% or more A nucleotides
in the 20 bases flanking their mapped position. Almost all splice sites detected in the ISM
transcripts were canonical, making false splice site predictions unlikely. Indeed, splice sites
are easily predicted, since 98.7% of the canonical splice sites in mammalian genomes are
known to be GT-AG [28]. In summary, ISM transcripts identified with Iso-Seq RNA-seq
likely represented biologically true novel transcript isoforms.
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The isoform-to-gene ratio of our Iso-Seq dataset was 2.2 when considering protein-
coding genes only. This is comparable to the existing NCBI and Ensembl EquCab3.0
reference annotations with a ratio of 2.6 and 2.1, respectively. In contrast, the equine
FAANG transcriptome [14] achieved an isoform-to-gene ratio of 4.2 by combining the two
existing annotations with an Iso-Seq transcriptome. Peng et al. [14] used an interesting
approach where the transcripts only differing at their 5′-ends were collapsed into a single
transcript. They then used short-read and ATAC-seq data from the same tissues to assess
the completeness of the 5′-end of the isoforms. In the absence of other type of datasets to
compare to, we filtered out the transcripts with differing 5′-ends, which may have reduced
the number of isoforms recovered.

The GO analysis using the Enrichr database highlighted biological processes that are
closely related to the pathophysiology of equine asthma. One of the two horses sampled
for this experiment was affected with neutrophilic severe equine asthma. This most likely
explains the enrichment of genes associated with neutrophilic inflammation in our dataset.
Our Iso-Seq transcripts will thus be valuable when interpreting RNA-seq data originating
from asthmatic horses. In future experiments, it would be interesting to extend the panel
of transcripts by sampling horses with other forms of asthma, such as mild/moderate
mastocytic or eosinophilic equine asthma.

A small proportion (0.3%) of the transcripts were fusion transcripts, most of them due
to read-through transcription of two adjacent genes. Peng et al. [14] similarly found them
in small numbers (1.21% of all transcripts). The biological significance of fusion transcripts
remains unclear. Their hits to the conjoined genes database suggest a functional role, as
several of these conjoined genes are conserved among vertebrates [26].

While this study identified many equine BALF cell transcripts not referenced in the
current EquCab3.0 NCBI annotation release 103, it also had several limitations. First, the
Iso-Seq RNA-seq protocol entails poly(A) selection, resulting in a 3′-bias. Complementary
techniques would be required to capture non-polyadenylated RNA such as ribosomal RNA.
Consequently, our dataset contains mostly protein coding transcripts and polyadenylated
long non-coding RNA transcripts (lncRNAs).

Another potential limitation of our experiment is the sequencing depth. While the
sequencing saturation was appropriate for gene detection, it may not have been sufficient
to capture the full extent of isoform diversity (see Figure S3). We propose to integrate this
equine BALF-specific transcriptome to the recently built equine FAANG transcriptome [14].
In future studies, it will be beneficial to sequence RNA from additional tissues to cover a
wider range of cell types and/or developmental stages with potentially different expression
profiles [10,29].

Eventually, we acknowledge that the complexity of the different isoforms for some
genes is daunting. It is difficult to determine whether this reflects the complexity of equine
BALF cell biology, or if it arises from technical artifacts inherent to the Iso-Seq sequencing
technology. The replication of long-read sequencing experiments in horses will make it
possible to cross-check the data and to disentangle technical artifacts from biological reality.
The combination of long-read sequencing with single cell sequencing should enable the
generation of high-quality gene expression profiles at a superior resolution.

5. Conclusions

In summary, this study demonstrates the potential of long-read sequencing to improve
the annotation of the equine transcriptome by providing full-length transcripts at the
isoform level. Here, we provide a BALF cell-specific transcriptome that will be useful for
future equine bulk or single cell RNA-seq studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13101722/s1, Table S1: Clinical characteristics of horses
used in the study; Table S2 (Sheet 1) SQANTI3 classification of transcripts; Table S2 (Sheet2): nr protein
database results; Table S2 (Sheet 3): Alignment results of fusion genes again ConjoinG database;
Table S2 (Sheet 4, 5, 6, 7,8): Enrichment of GO categories top 100 gene sets, Jensen tissue database and
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Pangloa database; Figure S1. Saturation-discovery curve; Figure S2: Count of filtered isoforms from
different structural categories; Figure S3: A. Exon distribution in novel and known genes. B. Exon
counts in different structural category of transcripts. C. Length of mono- and multi-exonic transcripts.
D Length of transcripts classified by structural category; Figure S4: RT-Switching templates predicted
by SQANTI3 in the different isoform classes.
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 25 
Abstract 26 
Severe equine asthma (SEA) is a complex respiratory condition characterized by chronic airway 27 
inflammation. It shares many clinical and pathological features with human neutrophilic asthma, 28 
making it a valuable model for studying this condition. However, the immune mechanisms driving 29 
SEA have remained elusive. Although SEA has been primarily associated with a Th2 response, there 30 
have also been reports of Th1, Th17, or mixed mediated responses. To uncover the elusive immune 31 
mechanisms driving SEA, we performed single-cell mRNA sequencing (scRNA-seq) on cryopreserved 32 
bronchoalveolar cells from 11 Warmblood horses, five controls and six with SEA. We identified six 33 
major cell types, including B cells, T cells, monocytes-macrophages, dendritic cells, neutrophils, and 34 
mast cells. All cell types exhibited significant heterogeneity, with previously identified and novel cell 35 
subtypes. Notably, we observed monocyte-lymphocyte complexes and detected a robust Th17 36 
signature in SEA, with CXCL13 upregulation in intermediate monocytes. Asthmatic horses exhibited 37 
expansion of the B cell population, Th17 polarization of the T cell populations, and dysregulation of 38 
genes associated with T cell function. Neutrophils demonstrated enhanced migratory capacity and 39 
heightened aptitude for neutrophil extracellular trap formation. These findings provide compelling 40 
evidence for a predominant Th17 immune response in neutrophilic SEA, driven by dysregulation of 41 
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monocyte and T cell genes. The dysregulated genes identified through scRNA-seq have potential as 42 
biomarkers and therapeutic targets for SEA and provide insights into human neutrophilic asthma. 43 

1 Introduction 44 

Equine asthma is a common respiratory disease of the horse characterized by 45 
bronchoconstriction, mucus production and bronchospasm.1 Its severe form, severe equine asthma 46 
(SEA), presents with increased breathing effort at rest, airway remodeling and in most cases, airway 47 
neutrophilia.1 Equine asthma is an active field of research, in part because of its negative impact on 48 
animal welfare and the horse industry but also due to its similarities with human asthma, making it a 49 
unique natural animal model.2–4 In contrast to murine models with experimentally induced airway 50 
inflammation, horses develop asthma under natural conditions. Their longer lifespan enables the study 51 
of disease progression, particularly airway remodeling. Furthermore, their size facilitates collection of 52 
lower airway samples. For instance, collection of bronchoalveolar lavage fluid (BALF) is a routine 53 
procedure in horses, in contrast to humans and conventional laboratory animal models. Although 54 
promising asthma drugs have been identified based on murine studies, their limited clinical efficacy 55 
when applied to humans4 may be attributed to disparities in the underlying pathophysiological 56 
mechanisms between experimentally induced and naturally occurring diseases.  57 

In humans, asthma is considered an umbrella diagnosis encompassing a plethora of diseases 58 
with distinct pathophysiologic mechanisms (so-called endotypes). The advent of omics technologies 59 
has begun to unveil the diversity of human asthma endotypes.5,6 SEA shares clinical and pathological 60 
features with several human asthma endotypes, including allergic, non-allergic and late-onset asthma.2 61 
As horse are exposed to high levels of dust in stables, they represent an ideal model for organic dust-62 
induced asthma of agricultural workers.7 While SEA has been mainly attributed to a Th2 response, 63 
there have also been reports of predominant Th1 and mixed Th1/Th2 phenotypes.8 Furthermore, the 64 
Th17 pathway, typically associated with autoimmune diseases, has been implicated.9–12 The 65 
complexity of the disease and limitations of experimental techniques may have contributed to these 66 
inconsistent findings. To address this knowledge gap, we leveraged the emerging single-cell mRNA 67 
sequencing (scRNA-seq) technology to dissect the immune mechanisms of SEA at the single-cell level. 68 

In a previous experiment, we demonstrated that scRNA-seq can be successfully applied to fresh 69 
frozen equine BALF cells.13 Here, we employed the scRNA-seq technology to characterize BALF cells 70 
from six horses with SEA and five control horses. 71 

2 Materials and methods 72 

In this observational case-control study, we recruited SEA-affected horses and controls based on their 73 
medical history. We selected six asthmatic and six control horses, using BALF quality, history of 74 
respiratory signs and BALF neutrophilia as inclusion criteria. We performed 10X Genomics 3’-end 75 
scRNA-seq on ~6000 cryopreserved bronchoalveolar cells per horse. One control horse was excluded 76 
due to low cell number and quality, leaving 11 horses for the data analysis. Our objectives were to 77 
assess the effect of SEA on i) the distribution of cell types and cell subtypes in the BALF and ii) the 78 
differential gene expression (DGE) within each of the cell types/subtypes identified (refer to 79 
supplementary materials and methods for details). 80 

3 Results 81 

3.1 Single-cell landscape of bronchoalveolar lavage fluid from asthmatic and control horses 82 
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We analyzed the scRNA-seq data obtained from the BALF cells collected from six asthmatic and five 83 
control horses. Characteristics of the study population are listed in Table 1.  84 

Unsupervised clustering identified 19 distinct cell clusters (Fig. 1A). Through automated 85 
annotation using the top ten differentially expressed genes (DEGs) derived from major cell types 86 
identified in our pilot study,13 we successfully predicted the identity of 99.6% of the cells. Cell cluster 87 
identities were validated using the expression of known canonical markers and the top DEGs specific 88 
to each cell group (Figure 1B). Subsequently, the cell clusters were consolidated into six major cells 89 
groups: B cells, dendritic cells (DC), mast cells, monocytes-macrophages (Mo/Ma), neutrophils and T 90 
cells. To explore the diversity of each major cell type, we re-analyzed them independently. We 91 
identified three three distinct B cell clusters (Figure 2A), three neutrophil clusters (Figure 3A), seven 92 
T cell clusters (Figure 4A), six Mo/Ma clusters (Figure 5A) and four DC clusters (Figure 6A). The 93 
mast cell population remained homogenous, without convincing subclustering. Cell clusters were 94 
annotated based on the calculated marker genes (Tables S2 – S8) and the expression of cell type marker 95 
genes (Figures 1B, 2B, 3B, 4B, 4C, 5B and 6C). The supplementary results provide supporting 96 
evidence for the annotation.  97 

3.2 The BALF of asthmatic horses is enriched in B cells but specifically depleted in activated 98 
plasma cells  99 

As expected, asthmatic horses showed a significantly higher proportion of neutrophils compared to the 100 
control horses (Table 2, Figures 1D and 1E). A novel finding was the B cell enrichment in the BALF 101 
of asthmatic horses (Figures 1D and 1E). Asthmatic horses exhibited approximately three times fewer 102 
activated plasma cells (B2 cluster) than control horses (Table 2, Figures 2D and 2E). This suggests that 103 
expansion of the naïve B cells and non-switched plasma cells primarily contributed to the increased B 104 
cell proportion in asthmatic horses. No significant differences were observed between asthmatic and 105 
control groups for other major cell types or subtypes (Table 2 and Figures 1E, 2E, 4F, 5E and 6F).  106 
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Figure 1: Major cell types identified in the BALF of asthmatic and control horses using scRNA-107 
seq. (A) UMAP representation of the 19 clusters identified as six major cell types. Mo/Ma, monocyte-108 
macrophage. (B) Gene expression patterns of cell type canonical markers. DC, dendritic cell; FES, 109 
feature expression score. (C) Top five differentially expressed genes per major cell type (one non-110 
coding gene removed). *NCBI 103 annotations for LOC100146200: OR7A189P, LOC100069985: 111 
CD177, LOC102147726: IGLL1. (D) Distribution of the six major cell types in asthmatic and control 112 
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horses. (E) Number of cells from each major cell type in the asthmatic and control groups. SEA, severe 113 
equine asthma. ***, P-value < 0.001. 114 
 115 

 
 

 
 
Figure 2: B cell subtypes identified in the BALF of asthmatic and control horses using scRNA-116 
seq. (A) UMAP representation of the three clusters identified. (B) Gene expression patterns used for 117 
annotation. FES, feature expression score. (C) Top five differentially expressed genes per cluster. 118 
*NCBI 103 annotations for LOC111774805, LOC100060608 and LOC102147726: IGGL1, for 119 
LOC100061331: MS4A4A. (D) Distribution of the clusters among asthmatic and control horses. (E) 120 
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Number of cells from each B cell cluster in the asthmatic and control groups. SEA, severe equine 121 
asthma. *P-value < 0.05. 122 

3.3 Gene expression profile of neutrophils indicates altered NETosis and migratory function 123 
in SEA 124 

Using a mixed model approach, we compared gene expression between asthmatic and control horses 125 
within each cell type and subtype. Tables S9 – S13 provide the results of the DGE analysis, in which 126 
positive log fold changes indicate upregulation in the SEA group. 127 

Neutrophils exhibited an "asthma signature" characterized by upregulation of CHI3L1 and 128 
MAPK13, known markers of neutrophilic asthma in humans,14–16 and downregulation of SLC7A11, an 129 
indicator of ferroptosis reduced in neutrophilic mice asthma.17 Apoptotic neutrophils (Neu0) had 130 
upregulated S100A9 and RETN, both involved in NETosis function.18,19 Pro-inflammatory neutrophils 131 
(Neu1) had downregulated KLF2. Reduced KLF2 levels can promote neutrophil migration20 and 132 
exacerbate NET-induced transfusion-related acute lung injury.21 In the ISGhigh neutrophils (Neu2), we 133 
observed upregulation of ADGRE5, also known as CD97,  which may promote migration of ISGhigh 134 
neutrophils to the lungs.22 135 

Gene expression features with a potential protective effect on the lower airways were also 136 
identified. The antileukoproteinase gene SLPI was upregulated in asthmatic horses, which has an anti-137 
inflammatory role by inhibiting the NFκB pathway and preventing excess NET formation.23 NFKB1 138 
was indeed downregulated in neutrophils from asthmatic horses. Downregulation of IL17RC suggested 139 
a reduced capacity to respond to the Th17 cytokine IL17. The predominant contributor of protective 140 
features was the apoptotic neutrophil subtype, with upregulation of SLPI and downregulation of CCL20 141 
and NR4A3. The Th17-associated cytokine CCL20 is a potent chemotactic factor for lymphocytes and 142 
DCs. The downregulation of CCL20 could thus have an overall anti-inflammatory effect, with reduced 143 
chemotaxis of immune cells and reduced Th17-signalling. NR4A3 positively regulates neutrophil 144 
survival.24 Hence, its downregulation may mitigate neutrophil persistence in the lungs in SEA. 145 

In summary, neutrophils from asthmatic horses exhibited DGE patterns indicative of asthma, 146 
including known markers of human asthma. Moreover, these neutrophils displayed an expression 147 
profile consistent with increased migratory capacity and the potential for NET formation. The 148 
simultaneous expression of genes with a protective action suggests a dual pro- and anti-inflammatory 149 
role of neutrophils in SEA. 150 
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Figure 3: Neutrophils subtypes identified in the BALF of asthmatic and control horses using 151 
scRNA-seq. (A) UMAP representation of the three clusters identified. (B) Gene expression patterns 152 
used for annotation. FES, feature expression score. (C) Top five differentially expressed genes per 153 
cluster (one mitochondrial gene removed). NCBI 103 annotation for LOC100059068: IFIT5-like. 154 
*NCBI 103 annotation for LOC111774805: H2BC21, LOC100050797: IFITM1. (D) Distribution of 155 
clusters among asthmatic and control horses. (E) Number of cells from each neutrophil cluster in the 156 
asthmatic and control groups. SEA, severe equine asthma. 157 
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3.4 Gene expression patterns of T cells support a Th17-oriented immune response in SEA 158 

In the T cells of asthmatic horses, two known markers of human asthma, IL2625 and OLFM4,26 were 159 
upregulated. As in neutrophils, the acute asthma marker RETN27 was upregulated in cytotoxic T cells 160 
(T0). Moreover, T cells of asthmatic horses exhibited a robust Th17 signature, characterized by the 161 
upregulation of IL17A, IL17F, IL21 and CCL20. 162 

Naïve CD4+ T cells (T4) showed a simultaneous upregulation of Th17-associated genes (IL17A, 163 
IL1B, CCL20 and NFKBID) and FOXP3. This supported the hypothesis that naïve CD4+ T cells adopt 164 
a Th17 pathway during differentiation in SEA, as FOXP3 expression is transiently present during Th17 165 
cell development.28 166 

Furthermore, Treg cells (T1) displayed a Th17-oriented profile, with upregulation of IL21 and 167 
IL17A and downregulation of EOMES, a known suppressor of Th17 differentiation in human Treg 168 
cells29 (Figure S6).  169 

The γδ T (T3) cells conjointly upregulated IL17A and IL1R, consistent with a γδ17 phenotype.30 170 
In mice, γδ T cells possess an intrinsic capacity for IL17 production, which is directly induced by IL23 171 
and IL1.31 Notably, γδ17 T cells are implicated in various human inflammatory diseases,31 and 172 
increased IL1R expression has been associated with neutrophilic asthma and reduced pulmonary 173 
function in humans.30 174 

3.5 Genes associated with T cell function are dysregulated in SEA  175 

Several genes involved in T cell function were differentially expressed in asthmatic horses. 176 
Specifically, the marker of T cell exhaustion, TOX2,32 was upregulated, along with S1PR5, whose 177 
expression is induced by antigen exposure.33 Cytotoxic T cells (T0) downregulated GZMB, a gene 178 
associated with lymphocytic inflammation in the lungs.34 The downregulation of IL18R1 and XCL1 179 
supported Treg cell dysfunction. Indeed, downregulation of the IL18 receptor is associated with 180 
unresponsiveness of exhausted CD8+ T cells.35 Furthermore, dysfunctional Treg cells in individuals 181 
with allergic asthma have been shown to downregulate XCL1.36 Among the T cell subtypes, NKT cells 182 
(T2) upregulated NPY, a gene associated with reduced NK function.37  183 
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Figure 4: T cell subtypes identified in the BALF of asthmatic and control horses using scRNA-184 
seq. (A) UMAP representation of the seven clusters identified. NKT, Natural Killer T cell. (B) 185 
Expression levels of the cell surface markers CD4, CD8a and CD8b. (C) Gene expression patterns 186 
used for annotation (D) Top five differentially expressed genes per cluster (snRNA, non-coding genes 187 
and ribosomal protein genes removed). *NCBI 103 annotations for LOC100051986: GZMH, 188 
LOC100065392: MTAP, LOC100062823: KLRC1, LOC100053968: H2BC20, LOC100059091: 189 
TUBA1B. (E) Distribution of the clusters among asthmatic and control horses. (F) Number of cells 190 
from each T cell cluster in the asthmatic and control groups. SEA, severe equine asthma. 191 

3.6 Monocytes and alveolar macrophages display a Th17 signature in SEA 192 

Among the upregulated genes in Mo/Ma were OLFM4, associated with severe lung disease in 193 
humans,38,39 and CHI3L1, a marker of neutrophilic asthma.15 S100A8, known for its increased 194 
expression in individuals with steroid-resistant neutrophilic asthma,40 was upregulated, and so was 195 
TLR1, recently identified as a potential therapeutic target for asthma in humans.41 196 

In the FCN1high AMs (Mo/Ma0), upregulated genes included PGLYRP1, PTX3 and CCL20. In 197 
mice, Pglyrp1 promotes pro-asthmatic Th2 and Th17 responses,42 while PTX3 is a marker of non-198 
eosinophilic asthma in humans.43 In horses, BALF PTX3 expression increases in acute asthmatic crisis, 199 
particularly in dust-activated foamy macrophages.44 The simultaneous upregulation of the Th17-200 
associated cytokine CCL20 and downregulation of the Th1-cytokine CCL11 supported a Th17 201 
polarization of FCN1high AMs. Moreover, in the ISGhigh AMs (Mo/Ma2), genes encoding CCL20 and 202 
its receptor CCR6 were upregulated, further advocating for a Th17 phenotype.  203 

The B cell chemoattractant CXCL13 was upregulated in intermediate monocytes (Mo/Ma3), 204 
and putative monocyte-lymphocyte complexes (Mo/Ma5). Furthermore, intermediate monocytes 205 
demonstrated upregulation of S100A9, S100A12, CCL17 and S1PR5. S100A9 and S100A12 serve as 206 
biomarkers for neutrophilic asthma.45,46 CCL17 is associated with asthma and may contribute to airway 207 
remodeling through fibroblast activation via the CCR4-CCL17 axis.47,48 S1PR5 regulates monocyte 208 
trafficking,49 suggesting intermediate monocytes from asthmatic horses may possess a higher 209 
migratory capacity.  210 



11 
 

 



12 
 

Figure 5: Monocytes-macrophages (Mo/Ma) subtypes identified in the BALF of asthmatic and 211 
control horses using scRNA-seq. (A) UMAP representation of the six clusters identified. (B) Gene 212 
expression patterns used for annotation. FES, feature expression score. *NCBI 103 annotations for 213 
LOC100147522: GZMH. (C) Top five differentially expressed genes per cluster (non-coding, 214 
mitochondrial and ribosomal protein genes removed). NCBI 103 annotation for LOC111771854: 215 
oleosin-B6-like. *NCBI 103 annotations for LOC100066849: CD33, LOC100061154: MS4A6A, 216 
LOC100058587: H2AC20. (D) Distribution of the clusters among asthmatic and control horses. (E) 217 
Number of cells from each Mo/Ma cluster in the asthmatic and control groups. SEA, severe equine 218 
asthma. 219 

3.7 Th17 activation may result from a crosstalk between monocytes and lymphocytes  220 

The presence of multiple cell types within the Mo/Ma5 cluster was supported by the high number of 221 
DEGs identified. This cluster exhibited simultaneous upregulation of CXCL13 and IL17A, both 222 
associated with the Th17 pathway. Interestingly, while several T cell clusters in the dataset upregulated 223 
IL17A, none of the Mo/Ma clusters, except Mo/Ma5, showed this upregulation. Conversely, CXCL13 224 
upregulation was exclusive to Mo/Ma5 and not observed in any T cell clusters. This led us to conclude 225 
that the co-upregulation of IL17A and CXCL13 originated from the dual nature of Mo/Ma5 as 226 
monocyte-lymphocyte complexes. Downregulation of the Th1-associated gene CD27 and granzyme 227 
B-like genes further suggested a Th17 polarization within the cells composing the complexes.50 228 
Additionally, inflammasome-related genes (SIGLEC14, KCNK13 and PELI2)51 were upregulated.  229 

3.8 Gene expression patterns of DCs suggest enhanced migratory capacity and non-Th2 230 
response in SEA 231 

The gene MARCO was downregulated in asthmatic DCs. In a murine OVA-asthma model, Marco-232 
deficient mice showed increased eosinophilic airway inflammation and airway hyperresponsiveness, 233 
accompanied by enhanced migration of lung DCs to draining lymph nodes.52 Consequently, reduced 234 
MARCO expression in equine lung DCs may enhance their migration to lymph nodes, leading to an 235 
amplified immune response against aeroallergens.  236 

Further analysis of DC subtypes yielded significant results for DC0 (annotated as cDC2s), with 237 
the notable upregulation of GLRX2 and downregulation of CCL8. Administration of GLRX2 has been 238 
shown to reduce airway inflammation in an OVA-asthma model,53 indicating its potential protective 239 
function. CCL8 is responsible for the recruitment of basophils, eosinophils and mast cells in allergic 240 
processes and contributes to airway allergic inflammation by promoting a Th2 immune response.54 241 
Hence, CCL8 downregulation in cDC2s argues against a Th2 response in SEA.  242 



13 
 

 
 
Figure 6: Dendritic cell (DC) subtypes identified in the BALF of asthmatic and control horses 243 
using scRNA-seq. (A) UMAP representation of the four clusters identified. cDC, conventional 244 
dendritic cell. (B) RNA feature count for each DC cluster. (C) Gene expression patterns used for 245 
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annotation. FES, feature expression score. *NCBI 103 annotations for LOC100072936 and 246 
LOC100072933: CLEC10. (D) Top five differentially expressed genes per cluster (non-coding genes 247 
removed). NCBI 103 annotations for LOC100629840: bone marrow proteoglycan-like, 248 
LOC106783161: apolipoprotein R. (E) Distribution of the clusters among asthmatic and control horses. 249 
(F) Number of cells from each DC cluster in the asthmatic and control groups. SEA, severe equine 250 
asthma. 251 

3.9 Gene expression patterns of B cells and mast cells of asthmatic horses points to airway 252 
remodeling 253 

The B cells of asthmatic horses upregulated POU2AF1, whose elevated expression has been associated 254 
with interstitial pulmonary fibrosis55 and chronic obstructive pulmonary disease56 in humans. Its 255 
expression negatively correlates with lung function.56 Additionally, YBX3 was downregulated in mast 256 
cells of asthmatic horses. Reduced circulating YBX3 mRNA is a sensitive predictor of idiopathic 257 
pulmonary fibrosis in humans.57  258 

4 Discussion 259 

Severe equine asthma is characterized by neutrophilic inflammation in the lower airways, 260 
resembling a subset of non-Th2 human asthma. We utilized scRNA-seq to investigate the immune 261 
mechanisms underlying SEA. Among the six major cell types identified, B cells and neutrophils were 262 
more abundant in asthmatic horses. Notably, the fraction of activated (switched) plasma cells was 263 
decreased, indicating a non-Th2 response. Both T cells and Mo/Ma displayed a strong Th17 signature, 264 
including upregulation of CXCL13 by intermediate monocytes. Furthermore, a subset of cells exhibited 265 
an expression profile indicative of monocyte-lymphocyte complexes potentially contributing to Th17 266 
activation. Neutrophils showed an increase in NETosis function and reduced capacity to respond to 267 
Th17 signals. These findings support a primary Th17-mediated immune response in neutrophilic SEA, 268 
probably initiated through monocyte-T cell crosstalk (Figure 7). 269 

Similar Th17-associated responses have been observed in non-Th2 asthma in humans, 270 
including organic dust-induced asthma and a subset of non-Th2 asthma patients.7,58 Although SEA is 271 
traditionally considered a Th2-mediated disease, an increasing body of evidence suggests the 272 
involvement of Th17 inflammation in the pathological process. Increased levels of IL17 mRNA have 273 
been observed in the BALF of horses with SEA following antigen challenge.9 Dysregulation of miRNA 274 
in the serum of asthmatic horses supports the existence of a mixed Th2/Th17 response.10 Furthermore, 275 
a comprehensive miRNA-mRNA study in equine lung tissues suggests a predominant Th17 pathway, 276 
along with some indications of a parallel Th2-type response.11 Transcriptomics, proteomics, and tissue 277 
staining analyses of mediastinal lymph nodes in horses further support a predominant Th17 response 278 
in SEA.12 Recently, T cells isolated from the BALF of horses with SEA demonstrated a Th17 279 
polarization, as evidenced by an elevated frequency of IL17A-secreting lymphocytes following in vitro 280 
stimulation.59 281 
 282 

While studies on asthma have mainly focused on T cells,58 our study demonstrated the 283 
involvement of both T cells and Mo/Ma populations in driving Th17 inflammation in SEA. 284 
Importantly, this resulted from alterations in gene expression patterns rather than expansion of these 285 
cell populations. The upregulation of key Th17 cytokines such as IL17A, IL21, and CCL20 was 286 
observed in T cell clusters, suggesting their engagement in a Th17 differentiation pathway. Alveolar 287 
macrophages and intermediate monocytes also exhibited a strong Th17 signature, including CXCL13 288 
upregulation. CXCL13 cytokine levels are elevated in the serum and the BALF of asthmatic 289 
humans.60,61 An anti-CXCL13 antibody reduced inflammation in an asthma mouse model, highlighting 290 
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CXCL13 as a promising therapeutic target.60 This B cell chemoattractant predominantly produced by 291 
Mo/Ma and Th17-derived cells62 is also upregulated in hay dust extract-stimulated PBMCs of 292 
asthmatic horses.63 Because the latter study was performed on a cell mixture, the cellular origin of the 293 
increased CXCL13 expression could not be ascertained. Our single-cell data indicated activated 294 
monocytes as the main source of CXCL13, most likely induced by IL17 released from T cells.64 295 
Activated monocytes could in turn induce Th17 differentiation of T cells.65–67 Collectively, our results 296 
support a crosstalk between IL17A-producing T cells and CXCL13-producing monocytes in the context 297 
of a Th17-mediated immune response in SEA (Figure 7). 298 

 299 
Of particular interest was the cluster Mo/Ma5 expressing both lymphocytes and monocytes 300 

markers, a transcriptomic profile previously observed in other equine BALF scRNA-seq studies.13,68 301 
The presence of monocyte-T cell interactions has been reported in human blood, with the frequency 302 
and phenotype of these cell-cell complexes varying depending on the immune response polarization.69 303 
Considering that the crosstalk between monocytes and T cells plays a key role in the development of 304 
various human inflammatory diseases,65–67 the potential presence of bona fide monocyte-lymphocyte 305 
complexes in the lower airway compartment is particularly intriguing. The reciprocal activation of 306 
monocytes and lymphocytes may occur through direct cellular contact rather than solely through 307 
endocrine or paracrine mechanisms. 308 

 309 
In contrast to previous reports (reviewed in 2,3,8), we did not detect a Th2 or Th1 signature in 310 

the cells from asthmatic horses. Notably, we did not observe upregulation of characteristic Th2 and 311 
Th1 cytokines such as IL4, IL13 or IFNγ, which aligns with the results of an equine BALF flow 312 
cytometric study.59 Consistent with our findings, Th2 and Th17-associated gene expression seems to 313 
be regulated in opposite direction in the human airways.70 In SEA-affected horses, downregulation of 314 
IL4 correlates with increased IL17 staining intensity in the mediastinal lymph nodes.12 Moreover, Th1- 315 
and Th2-associated genes are downregulated in antigen-challenged PBMCs from asthmatic horses.63 316 
The reduced fraction of activated plasma cells in our study population further argued against a Th2 317 
response. Upon antigen stimulation, non-switched IgM-producing plasma cells become activated and 318 
produce immunoglobulins of other classes, a prerequisite for Th2 responses. While switched plasma 319 
cells were less frequent in asthmatic horses, the proportion of total B and plasma cells was significantly 320 
higher, likely due to CXCL13 signaling.64 Consequently, asthmatic horses have a larger pool of B cells, 321 
which can potentially differentiate into plasma cells and be activated. This could explain the increased 322 
susceptibility of asthmatic horses to certain Th2-associated diseases, such as insect bite 323 
hypersensitivity and urticaria.71 Overall, our findings indicate that SEA is driven primarily by a Th17-324 
mediated immune response characterized by an IL17-induced CXCL13-mediated recruitment of B cells 325 
into the lower airways (Figure 7), potentially predisposing asthmatic horses to secondary Th2-type 326 
responses.  327 
 328 

The transcriptomic profile of T cells suggested alterations in T cell function, including T cell 329 
exhaustion, unresponsiveness of Treg cells, and reduced cytotoxicity in NKT cells. It remains unclear 330 
whether these dysregulations are associated with the Th17 polarization of the T cell population, or if 331 
they represent independent mechanisms. Nevertheless, these alterations in T cell function may 332 
potentiate the abnormal immune response observed in SEA.  333 
 334 

Neutrophils are short-lived cells that persist in the lower airways of asthmatic horses due to IL17-335 
induced influx and reduced apoptosis.72 Neutrophil apoptosis is sometimes accompanied by the 336 
formation of NETs, which can trigger tissue damage and sustain chronic inflammation.72 The observed 337 
dysregulation of NETosis-associated genes conforms to the previous observations of excessive 338 
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NETosis in the lungs of severely asthmatic horses.73 Conversely, several DEGs indicated an anti-339 
inflammatory phenotype, particularly in the apoptotic neutrophil subtype, potentially representing a 340 
protective mechanism against excessive inflammation. In summary, our findings confirm that BALF 341 
neutrophils from SEA-affected horses have a significant pro-inflammatory effect through increased 342 
neutrophil persistence and facilitated NET formation in the lungs. The concomitant anti-Th17 343 
transcriptomic profile observed in apoptotic neutrophils suggests a parallel attempt to mitigate lung 344 
inflammation. Hence, neutrophils seem to act as effectors rather than primary instigators of asthmatic 345 
lung inflammation. Targeting treatment specifically towards the pro-inflammatory neutrophil subtype 346 
could disrupt the self-perpetuating inflammatory circle while preserving the antimicrobial functions of 347 
other neutrophil subtypes. 348 

 349 
Employing scRNA-seq on equine BALF cells elucidated important underlying immune 350 

mechanisms of SEA, yet this study had limitations. One significant challenge when studying horses is 351 
the inadequate quality of the current reference annotation, necessitating manual annotation of the cell 352 
clusters, particularly for poorly defined cell subtypes. Nonetheless, the detection of previously 353 
identified cell types and subtypes in equine BALF13,68 supports the reproducibility of our annotation. 354 
Some clusters, such as the "undetermined AMs" cluster, could not be confidently annotated. Further 355 
scRNA-seq studies and complementary techniques are required for conclusive insights. 356 

ScRNA-seq is a relatively new technology that comes with computational challenges. One such 357 
challenge is the ability to detect and filter technical multiplets without removing biologically 358 
significant signals representing cell-cell complexes or new cell types with a dual lineage signature. In 359 
this study, we hypothesized that cluster Mo/Ma5 represented bona fide monocyte-lymphocyte 360 
complexes, supported by the presence of a similar transcriptomic signature in equine BALF cells13,68 361 
and human PBMCs.69,74 Although the existence of cellular complexes was confirmed in human PBMCs 362 
using imaging flow cytometry,69,74 validation in horses has yet to be performed. Another potential 363 
limitation associated with the 10X Genomics droplet-based technique is its low sensitivity for genes 364 
with a low average expression, which could explain the discrepancies with previous bulk RNA or 365 
proteomics studies, such as the absence of upregulated Th1 and Th2-associated cytokines.  366 
 As this study focused on neutrophilic SEA, results may not apply to other asthma subtypes. 367 
This is exemplified by a previous scRNA-seq study on BALF cells from horses with mastocytic 368 
asthma,68 which exhibited a different transcriptomic signature. For example, FKBP5 was significantly 369 
upregulated in mast cells, a gene that we did not detect in our dataset. Moreover, a recent flow 370 
cytometric analysis of BALF with functional assays on T cells provided further evidence that distinct 371 
mechanisms exist among the various forms of equine asthma.59 Therefore, studying different endotypes 372 
separately is crucial to obtain meaningful results.  373 
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5 Conclusion 374 

The presented scRNA-seq analysis of equine bronchoalveolar cells provides insights into the 375 
major immune mechanisms underlying SEA. The use of scRNA-seq allowed us to overcome the 376 
influence of varying cell type distribution associated with the disease and to gain unprecedented 377 
resolution into the pathophysiology of SEA. This represents a significant breakthrough, challenging 378 
the prevailing perception of SEA as a Th2-associated disease. We identified the crucial role of 379 
monocytes in initiating the Th17 response in the lungs. The upregulation of CXCL13 in lung and blood 380 
monocytes suggests its potential as a SEA biomarker and therapeutic target. Our findings indicate that 381 
monocyte activation may occur through direct cell-cell contact, a hypothesis that should be tested using 382 
imaging flow cytometry. This could reshape our understanding of immunotherapy approaches. 383 
Therapies targeting Th17-associated cytokines have proven ineffective in reducing symptoms in 384 
human asthma.58 One possible approach could be to prevent monocyte activation by targeting 385 
monocyte-T cell synapses. Our results demonstrate several parallels with previous studies on non-Th2 386 
neutrophilic asthma in humans, further validating the horse as a valuable model for studying human 387 
asthma. 388 
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8 Tables 402 

Table 1: Study population characteristics 403 

Variable Control (N=5)1 Asthmatic (N=6)1 P-value2 
Sex   0.6 
Mare 3 (60%) 2 (33%)  
Gelding 2 (40%) 4 (67%)  
Age (years) 12 (11, 12) 12 (7, 19) > 0.9 
HOARSI* score 1 (1, 1) 4 (3, 4) < 0.01 
Weight (kg) 594 (582, 613) 578 (548, 609) > 0.9 
Clinical score (/23) 1 (0, 1) 6 (5, 7) < 0.01 
Tracheal mucous score (/5) 1 (1, 2) 3 (3, 4) < 0.05 
BALF yield (%) 48 (48, 48) 52 (45, 56) 0.7 
BALF macrophages (%) 51 (48, 56)  51 (38, 55) 0.5 
BALF lymphocytes (%) 40 (36, 47) 36 (22, 40) 0.4 
BALF neutrophils (%) 4 (2, 7) 18 (12, 25) < 0.01 
BALF mast cells (%) 1 (0, 1) 1 (1, 2) 0.5 
BALF eosinophils (%) 0 (0, 0) 0 (0, 0) > 0.9 
1Median (1st quartile, 3rd quartile) 
2Fisher's exact test; Wilcoxon rank sum test 
*HOARSI: Horse Owner Assessed Respiratory Signs 
 
 
Table 2: Proportions of the major cell types determined with scRNA-seq and compared between 404 
asthmatic (SEA) and control (CTL) groups 405 

Cell type Number* 
(N=11) 

Mean % 
(N=11) 

Mean % 
(CTL, N=5) 

Mean % 
(SEA, N=6) Ratio SEA/CTL P-value FDR 

B cells 756 1.3 0.3 1.9 5.9 < 0.001 < 0.001 
Neutrophils 5,145 8.5 2.4 13 5.3 < 0.001 < 0.001 
Mast cells 1,232 2.0 1.7 2.3 1.4 0.13 0.25 
Mo/Ma 22,370 37.1 44.6 32.0 0.7 0.18 0.27 
Dendritic cells 754 1.3 1.2 1.4 1.2 0.80 0.93 
T cells 30,005 50.0 50.0 49.4 1.0 0.93 0.93 

* Post quality filtering 406 
 
 
Table 3: Proportions of the B cell subtypes identified with scRNA-seq and compared between 407 
asthmatic (SEA) and control (CTL) groups 408 

B cell cluster Mean % 
(N=11) 

Mean % 
(CTL, N=5) 

Mean % 
(SEA, N=6) Ratio SEA/CTL P-value FDR 

B0 72.2 68.6 71.9 1.0 0.62 0.62 
B1 20.5 11.5 21.3 1.8 0.18 0.26 
B2 7.3 19.9 6.8 0.3 0.02 < 0.05 
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Discussion  

In this thesis, we successfully demonstrated the applicability of scRNA-seq on 

cryopreserved equine bronchoalveolar cells. As an attempt to improve the mapping to 

transcriptome of our scRNA-seq reads and improve the overall quality of data, we constructed 

a custom reference annotation using long-read sequencing of BALF cells. Although we detected 

novel isoforms, mapping of our scRNA-seq transcripts did not improve significantly. Using an 

alternative reference annotation, we obtained a satisfactory read mapping, resulting in high 

quality scRNA-seq data. As anticipated, we were able to detect the major leukocyte populations 

present in BALF using scRNA-seq. While we could not identify the classic Th1 and Th2 

subpopulations, we described novel monocyte-macrophages and T cell subtypes. We applied 

the knowledge gained in this first pilot scRNA-seq study to study the pathophysiology of SEA. 

Analysis of the single-cell transcriptomes identified a Th17 signature in SEA, several other 

interesting gene expression patterns as well as changes in B cell composition. 

1. Optimizing experimental workflow and data analysis in scRNA-seq 

The first scRNA-seq experiment was rich in lessons. It allowed us to identify potential 

challenges in the experimental workflow and data analysis, leading to optimizations in the wet 

lab protocol and pipeline analysis for future studies. For example, the target cell recovery in 

Study 1 was set at 5,000 cells per sample, but the scRNA-seq analysis yielded 2,000 or fewer 

cells per sample, indicating a cell capture efficiency of approximately 40%. Armed with this 

knowledge, we successfully adjusted the loading concentration of our cell suspension in Study 

3, resulting in the retrieval of more than 5,000 cells per sample. 

Another issue arose during the quality control analysis of our dataset, where we 

observed a low mapping rate to the transcriptome (mean of 33.5%). Several factors could 

contribute to this, such as read multimapping, incomplete 3’-UTR annotation, or inadequate 

transcriptome annotation. Read multimapping occurs when a transcript cannot be definitively 

mapped to a unique genomic region and is subsequently filtered out. This is often a consequence 

of poor annotation of the 3'-end of the transcript in the reference annotation. Similarly, if the 

3’-UTRs including their poly(A) sites are not well annotated in the reference annotation, 

transcripts may fail to align and are subsequently filtered out (87). Additionally, the absence of 

BALF-specific isoforms in the reference equine transcriptome could have led to the exclusion 

of such transcripts from our scRNA-seq dataset. 



   
 

Consequently, we decided to construct a custom BALF-specific transcriptome. We 

leveraged the long-read sequencing technique, resulting in the identification of 14,234 full-

length transcript isoforms from 7,017 unique genes, including 3,428 novel isoforms. These 

included transcripts absent from existing genome annotations, transcripts mapping to putative 

novel genes and fusion transcripts combining exons from multiple genes. However, when we 

used this custom BALF-specific transcriptome as a reference for scRNA-seq analysis, the 

improvement in read mapping was not significant. Instead, we manually extended the annotated 

3'-UTRs of the NCBI Equus caballus annotation release 103 by 2 kb, which increased the read 

mapping rate to 53.4%. This corresponds to the mapping rates found in other species and 

indicates that the initial low read mapping was primarily due to inadequate annotation of the 3'-

ends, rather than the absence of BALF-specific isoforms. However, because our custom 

annotation was based on long-read sequencing, it likely contains improved 3' end annotations, 

which should have enhanced read mapping. The absence of a significant improvement in read 

mapping is likely attributed to the fact that our custom transcriptome covered only 60% of the 

21,129 coding transcripts from the EquCab3.0 NCBI annotation release 103. Many of our 

scRNA-seq transcripts were not represented in our custom transcriptome. Given the stochastic 

nature of gene expression, performing long-read sequencing on a larger number of samples may 

have helped capture a more comprehensive picture of the BALF transcriptome. Although the 

use of a custom equine BALF long-read transcriptome as a reference did not improve the quality 

of scRNA-seq data analysis, our BALF-specific transcriptome holds promise for future equine 

bulk or single-cell RNA-seq studies that investigate isoform-level transcripts. We propose 

integrating it into the ongoing construction of the atlas of equine tissue-specific transcriptomes 

led by the FAANG consortium. 

2. Annotating cell clusters and interpreting scRNA-seq data: lessons learned and 

challenges ahead 

 The interpretation of scRNA-seq data begins with the annotation of cell clusters. In 

Study 1, we initially attempted automated annotation, expecting it to be a fast and reliable 

approach. To incorporate cell labels from lower airways, we used human lung cell and ferret 

BALF cell scRNA-seq datasets as references. However, the automated annotation did not yield 

meaningful results. Consequently, we resorted to manual annotation of the major cell groups 

and cell subtypes. When we used Study 1 as a reference dataset for automated annotation in 

Study 3, we achieved accurate labeling for almost all cells (99.6%). This suggests that gene 

markers for cell types in scRNA-seq analysis are specific to each species. 



   
 

However, automated annotation did not perform well for cell subtypes. This is partly 

because not all cell subtypes present in Study 3 had been detected in Study 1. The differences 

in horse phenotypes between the two studies, as well as the increased cell numbers per sample 

in Study 3, may have also contributed to this discrepancy. Notably, the presence of BALF 

neutrophilia, a characteristic of SEA, enabled the detection of several neutrophil subtypes in 

Study 3. To build a comprehensive panel of markers for all cell subtypes present in BALF, it 

will be necessary to perform scRNA-seq on BALF samples from horses with various types of 

diseases. 

Interestingly, we observed differences in gene expression patterns between Study 1 and 

Study 3. For instance, the expression levels of CD4 and CD8 markers clearly differentiated T 

helper cells from cytotoxic cells in Study 1, whereas this distinction was less evident in Study 

3. Similarly, the differentiation between monocytes and alveolar macrophages (AMs) based on 

the expression of AM canonical markers was more pronounced in Study 1 than in Study 3. We 

suspect that the higher biological variability in Study 3, resulting from the inclusion of both 

asthmatic and healthy horses, contributed to this observation. The disease-associated alterations 

in gene expression may have overshadowed the cell population-specific signals. 

Despite these differences, we were able to identify similar cell types and subtypes in 

both studies. Furthermore, our cell populations largely matched the clusters identified in another 

recent scRNA-seq study on equine BALF (88), indicating the reproducibility of our annotation. 

For example, we identified natural killer T (NKT) cells, γδ T cells, FCN1high AMs, and 

intermediate monocytes in both our scRNA-seq datasets. However, although these clusters 

exhibited a similar signature, the gene markers for each cluster were not identical. This 

underscores the fact that a single marker cannot define a cell population. It is crucial to utilize 

a curated list of markers, with their expression levels taken into consideration when deciphering 

the identity of a population. In the future, developing algorithms capable of recognizing specific 

patterns within a cell population could facilitate annotation.  

An important takeaway is that the cell type markers in scRNA-seq analysis differ 

significantly from those used in antibody-based techniques like flow cytometry. A striking 

example is the low expression of CD14 in our datasets, a surface marker commonly used to 

identify monocytes in horses. Additionally, we were unable to identify typical Th1 and Th2 

cells based on the expression of their associated cytokines. This discrepancy could be attributed 

to data sparsity, as cytokine genes may be expressed at lower levels compared to other genes, 

making them more challenging to capture with scRNA-seq. This highlights the need to establish 



   
 

scRNA-seq-specific marker sets for cell types. It is also worth considering that the 

categorization of Th1 and Th2 cells may not accurately reflect the biological reality, as T helper 

cells may exist as a continuum of cell states transitioning from one to the other. 

In our scRNA-seq studies, we could not always confidently identify the cell clusters. 

We exercised caution in labeling to avoid carrying uncertain annotations forward to future 

studies. For instance, one AM cell cluster was labeled as "undetermined AM" in Study 3. We 

also observed unexpected gene expression signals, such as immunoglobulins in T cells and 

monocyte-macrophages, which we could not definitively explain. Given their relatively low 

expression levels, these signals may be spurious events. However, without a clear 

understanding of what constitutes a normal level of gene expression in scRNA-seq data, 

definitive conclusions are difficult to draw. Through scRNA-seq, we may come to realize that 

some genes previously thought to be cell-specific, such as immunoglobulins in B cells, may be 

more widely expressed than initially believed. 

To validate our annotation, we considered employing the CITE-seq solution from 10X 

Genomics. CITE-seq combines classic scRNA-seq with the quantitative determination of 

surface epitopes, enabling direct linkage of genetic expression to cell surface markers. This 

would have allowed us to establish connections between our results and previous studies 

conducted using flow cytometry. However, the conjugation of DNA barcodes with equine-

specific antibodies, a prerequisite for CITE-seq, proved to be cost-prohibitive. In the future, 

collaborative efforts to create a horse-specific library of preconjugated DNA barcodes would 

be valuable, enabling the combined single-cell immunophenotyping and transcriptome 

sequencing of equine samples. 

3. Discrepancies in cell composition analysis: comparing scRNA-seq and cytology 

methods 

In Study 1, we observed a marked discrepancy in the lymphocyte/macrophage ratio 

depending on the method used for cell counting. The ratio was five times higher with scRNA-

seq compared to cytology. Due to the small size of our study population (three horses), we were 

unable to statistically analyze this difference. A similar difference in the 

lymphocyte/macrophage ratio between scRNA-seq and cytological analysis was also present in 

the BALF of four healthy dogs in a study conducted by Fastrès and colleagues (89). We 

suspected that this inconsistency arose from the underestimation of lymphocytes or 

overestimation of macrophages during manual cytological counting, as previous research has 



   
 

demonstrated when compared to flow cytometric counting (90,91). Another possible 

explanation could be the underestimation of macrophages using scRNA-seq due to their higher 

vulnerability to RNA degradation. 

However, in Study 3, the statistical analysis did not reveal a significant difference in the 

composition of the five major leukocyte types between cytology and scRNA-seq. Nonetheless, 

there was a clear tendency towards an increased lymphocyte/macrophage ratio with scRNA-

seq, except for two horses (one asthmatic and one control) that exhibited an inverse trend. The 

reason for this inverse pattern in the two horses remains unclear, but it may have limited the 

power of our analysis, resulting in a non-significant outcome. To reach a definitive conclusion, 

a larger sample population should be used to compare the differential cell count of the five 

major leukocyte types between cytology and scRNA-seq. 

4. Unraveling the Th17-polarized immune response in SEA 

The application of scRNA-seq analysis has provided unparalleled insights into the 

molecular pathways of SEA at the cellular level. In our thesis project, we focused on analyzing 

BALF rather than blood samples, as BALF was assumed to reflect more accurately the local 

immune response. It is worth noting that the impact of SEA, both in terms of cell populations 

and function, differs between BALF and blood (16), with blood likely to be more representative 

of the systemic inflammatory response and less specific for pulmonary immune mechanisms. 

  Apart from neutrophils, which were found to be elevated in SEA horses based on our 

inclusion criteria, only the proportion of B cells was affected by the disease, which is a novel 

finding in horses. This finding contradicts a recent flow cytometric study (16), where B cells 

were identified in BALF but were not found to be influenced by EA. However, in that study, B 

cells could not be confidently identified due to the overall low expression of the CD79A surface 

marker, highlighting the advantages of utilizing the scRNA-seq technique. 

We did not observe any significant differences in the distribution of cell subtypes 

between SEA and control horses, except for B cells. This suggests that gene dysregulation plays 

a more substantial role in the pathophysiology of SEA than the expansion of specific disease-

associated cell populations. Therefore, to accurately investigate a disease, it is recommended to 

supplement flow cytometry assays, which quantify cell populations in mixed samples, with 

transcriptomics experiments or functional in vitro assays. 



   
 

In Study 3, we observed evidence of a Th17 (or type 3) polarized immune response. 

Previous studies in horses had hinted at a potential Th17 response (11,31–33), sometimes 

accompanied by a Th2 response (33). However, in Study 3, we only identified upregulation of 

two Th2-related genes, PRB1 (92) and NMUR1 (93), in the monocyte-macrophage cell group. 

It is important to note that these genes are not widely accepted as definitive Th2 markers. Their 

association with a Th2 response is derived from only one study each, which involved asthmatic 

patients without distinguishing between different endotypes. Furthermore, the lower proportion 

of switched B cells, which are capable of producing IgG and IgE and initiating an effective Th2 

response, supports the notion of a non-Th2 response in SEA. A recent flow cytometric study in 

equine BALF similarly found no increase in Th1 or Th2-associated cytokines in relation to EA 

(16). 

The Th17-biased response observed in Study 3 was driven by T cells, monocytes and 

AMs. Among T cells, there was a notable Th17 signature in CD4+ naïve T cells, γδ T cells and 

Treg cells. Interestingly, when T cells sorted from the BALF of horses with SEA are stimulated 

in vitro, they exhibit a Th17 polarization characterized by an increased frequency of IL17A-

secreting lymphocytes (16). The Th17 bias and dysregulation of genes associated with T 

function in Treg cells is of particular interest. It has been previously demonstrated that the 

proportion of Treg cells increase in horses with SEA (94), especially following glucocorticoid 

therapy (95). Our findings provide additional support to the role of Treg cells in the 

pathophysiology of asthma, indicating that they may contribute by undergoing a transition to a 

Th17 phenotype.  

We detected a Th17 polarization in monocytes-macrophages, cells that are often 

overlooked in the study of SEA. These populations are not typically considered among the 

conventional inflammatory leukocyte types such as neutrophils, mast cells, and eosinophils. 

However, there is a growing recognition of their potential role in the development of EA 

(90,96–98). One particularly exciting finding was the upregulation of CXCL13 in intermediate 

monocytes, which aligns with a hypothesis put forth by our research group (32). CXCL13 is a 

chemokine that attracts B cells and is produced by Th17 cells and activated monocytes. In a 

previous study using RNA sequencing, our group demonstrated the upregulation of CXCL13 in 

PBMCs of asthmatic horses following in vitro stimulation (32). This upregulation was primarily 

attributed to activated monocytes, although other possibilities included upregulation in Th17 

cells or expansion of either of the CXCL13-producing cell populations. We were able to resolve 

this dilemma through the use of scRNA-seq. Since CXCL13 is upregulated in both blood and 



   
 

BALF, it emerges as a particularly interesting candidate gene for further investigation as a 

biomarker for SEA. 

In humans, scRNA-seq studies have predominantly focused on type-2 diseases, 

primarily utilizing murine models of allergic asthma (68). However, one study combined 

microarray and scRNA-seq to explore the association between combustion-derived particulate 

matter (PM) and neutrophilic asthma. Using a murine model, they demonstrated increased IL17 

signaling in respiratory epithelial cells, activating a pathway that leads to the induction of 

pathogenic Th17 cells formation and subsequent airway neutrophilia (99). It would be 

interesting to conduct a similar investigation on structural pulmonary cells of horses with SEA 

to determine whether the Th17-specific inflammatory response is initiated in epithelial cells, 

which are the first to encounter inhaled antigens. 

Prior investigations have demonstrated that SEA is linked to increased persistence and 

reduced apoptosis of neutrophils, as well as enhanced NET formation (42,43,100). Our scRNA-

seq analysis revealed similar characteristics, allowing us to further distinguish the unique 

features of each identified neutrophil subtype. Apoptotic neutrophils exhibited elevated 

NETosis activity but also exhibited increased expression of anti-inflammatory genes, 

diminished migratory capacity, and reduced survival potential. These findings suggest that this 

particular neutrophil population may play a protective role in asthma. On the other hand, the 

pro-inflammatory neutrophils and ISGhigh neutrophils displayed enhanced migratory capacity, 

indicating their potential involvement in airway neutrophilia. These findings have important 

implications for the development of novel therapies, as targeting solely the pro-inflammatory 

neutrophils could preserve the anti-inflammatory and anti-microbial functions of the other 

neutrophil populations. 

Based on the findings of this thesis project, we propose that SEA is primarily driven by 

a Th17 immune response. It is important to note that these findings specifically pertain to 

neutrophilic SEA, as a separate scRNA-seq study on horses with predominantly mastocytic EA 

revealed distinct cell populations and DEGs (88). Further support for distinct mechanisms in 

MEA and SEA comes from flow cytometric analysis of BALF and functional assays on T cells 

(16). Therefore, it is crucial to consider and investigate MEA and SEA as separate endotypes 

with their own unique characteristics. 

 

 



   
 

5. Identification and significance of monocyte-lymphocyte complexes in SEA 

An intriguing discovery in our scRNA-seq experiments was the identification of cells 

expressing markers from both T cell and monocyte lineages. In previous scRNA-seq studies, 

such cells were considered artifacts and disregarded (101–103). However, recent research in 

humans has shed light on the importance of these double positive cell populations. Burel et al. 

detected cells expressing conflicting lineage markers CD3 and CD14 in human blood using 

flow cytometry and scRNA-seq. Through imaging flow cytometry, they demonstrated that these 

cells were indeed monocyte-T cell complexes, exhibiting LFA-1/ICAM-1 polarization at their 

point of contact. These cell-cell complexes were consistently present in fresh PBMCs and whole 

blood, regardless of sample preservation or manipulation, suggesting they were not a result of 

ex vivo handling (104). 

We suspect that the identified monocyte-T cell and monocyte-B cell clusters in Study 1 

and Study 3 represent similar interacting cell populations and are not simply a random co-

encapsulation artifact from the scRNA-seq microfluidics platform. Several factors support this 

hypothesis. Firstly, these clusters were consistently identified in both studies and in another 

recent scRNA-seq study on equine BALF (88). Secondly, if co-encapsulation were random, the 

cell types found together in the droplets would vary, but we consistently observed monocytes 

paired with lymphocytes. The upregulation of genes associated with lymphocyte activation 

within these clusters further supports our hypothesis. However, to validate this hypothesis, 

complementary experimental techniques such as imaging flow cytometry or microscopy 

imaging following cell sorting should be used (75).  

The presence of monocyte-lymphocyte complexes in the BALF could have significant 

clinical implications. In humans, their frequency has been shown to change depending on the 

type of immune perturbations (104). The Th17 polarization and upregulation of inflammasome-

associated genes in the double positive monocyte-lymphocyte cluster in Study 3 similarly 

suggest these cell-cell complexes may have a role in the pathogenesis of SEA. They could 

represent a novel type of biomarker or prove to be relevant therapeutic targets.  

6. Limitations and considerations in scRNA-seq analysis of equine BALF: 

implications for study design and data interpretation 

Although this thesis project marked a significant advancement in the application of 

scRNA-seq to equine BALF and provided insights into the mechanisms of SEA at the single-

cell level, we must acknowledge several limitations. Firstly, the sample size across all three 



   
 

studies was small. The initial study served as a pilot to demonstrate the feasibility of scRNA-

seq in equine BALF and develop a methodology for subsequent investigations. While including 

only three horses may seem limited, it proved sufficient to identify the major immune cell types 

in equine BALF. Given the proof-of-concept nature of the study, it could have been more 

appropriate to utilize healthy horses without respiratory disease. We used the three horses 

available on-site, for which we had a permission for animal use. These horses exhibited 

HOARSI scores and BALF cytology consistent with MEA, and they were considered to be in 

remission, as indicated by their low clinical scores at the time of sample collection. Our 

preliminary data enabled us to obtain animal use permission for client-owned horses, which 

allowed us to incorporate horses with SEA and control subjects into the study (Study 3). 

Ultimately, this approach demonstrated that similar cell types and subtypes could be identified 

across three distinct populations with different phenotypes: MEA, SEA, and control groups. In 

study 2, the inclusion of only two horses was driven by the need to manage sequencing costs. 

By sequencing BALF samples from a healthy horse and a horse with SEA, we aimed to capture 

transcriptomes representing both phenotypes. However, expanding the sample size could have 

enhanced transcript coverage and improved the detection of alternate isoforms. In Study 3, we 

included 12 horses based on a power analysis. Unfortunately, the scRNA-seq experiment failed 

for one of the control samples. Nevertheless, we sampled more than ten times the number of 

cells/sample than originally planned in the power analysis (500 cells/sample), which increases 

the likelihood of detecting a biological signal. However, to ensure the robustness of our 

findings, it is imperative to validate the reproducibility of our results by conducting scRNA-seq 

on a larger and more diverse study population. 

The horses included in Study 1 were a convenience sample of teaching horses available 

on-site. For Study 2 and Study 3, a combination of criteria was utilized to classify the horses as 

either healthy or asthmatic. In previous studies, the focus had primarily been on BALF cytology 

to categorize horses with MEA and SEA, with SEA defined as BALF neutrophils exceeding 

25% (4). In line with other research groups, we employed the less strict criteria of 10% BALF 

neutrophilia (16) and incorporated historical and clinical parameters to characterize our case 

and control groups (15,16). This approach to case selection is being increasingly adopted in 

equine respiratory research, as it better reflects the diversity of clinical presentations observed. 

Consequently, findings obtained in a research setting may have greater relevance to clinical 

practice. Ideally, adequate phenotyping would have been confirmed using lung function testing. 

Esophageal balloon catheterization is considered the gold standard for accurately characterizing 



   
 

horses with SEA and those without respiratory disease (9). However, this approach was not 

feasible in client-owned horses due to perceived invasiveness. 

All experiments conducted in this project utilized fresh frozen equine BALF cells. 

However, we did not specifically investigate the impact of freezing on cell viability and gene 

expression. A significant portion of this project involved optimizing the protocol for cell 

cryopreservation. We took great care to minimize cell manipulation and employed gentle 

techniques to avoid cell bursting or stress-related changes in gene expression. Although small 

clusters of dead cells were observed in the scRNA-seq studies, these cells were easily 

identifiable and filtered out to ensure they did not affect the DGE analysis. Several studies have 

indicated that the impact of sample preservation is minimal in scRNA-seq (70), and 

cryopreservation is increasingly considered the standard approach. Nevertheless, it would be 

ideal to conduct a dedicated study to specifically examine the impact of cryopreservation on 

the transcriptome of equine BALF cells. 

 Our interpretation of the DEGs identified with scRNA-seq was based on human 

datasets, primarily the HPA (61). Due to the limited availability of transcriptomic and 

proteomic data in horses compared to humans and conventional animal models, there is a lack 

of equine-specific databases linking genes to their functionality. Therefore, we had to rely on 

the assumption that gene function is relatively conserved across species. Notably, in horses, 

certain genes that are typically associated with asthma exhibit higher homology to humans 

compared to mice (25), supporting the validity of our assumption. Nevertheless, it is highly 

desirable to have functional mapping of the equine genome, and efforts in this direction are 

gradually progressing, thanks to initiatives such as the FAANG consortium  (81). 

 

Outlook  
In this thesis project, we generated three major hypotheses: 

1) SEA is a Th17 driven disease 

2) CXCL13 produced by activated monocytes is a key signaling factor in SEA 

3) Monocyte-lymphocyte complexes are present in equine BALF  

We plan to challenge these hypotheses through the experiments described below.  



   
 

1. Bulk RNA-seq deconvolution of equine BALF cells’ bulk transcriptomes 

Deconvolution is a computational technique that enables the retrieval of single-cell 

transcriptome information from a bulk transcriptome when the different cell types present in 

the sample are known (105). Building upon the insights gained from Study 1 and Study 3, we 

aim to apply this methodology to bulk transcriptome data obtained from equine BALF. The 

application of deconvolution analysis has the potential to access the single-cell immunological 

landscape at a reduced cost. In the future, we envision a scenario where BALF collected during 

routine respiratory work-up in asthmatic horses could undergo RNA-seq, enabling the detection 

of the specific immune pathways involved. This approach would set the stage for precision 

medicine, where each horse could receive a treatment tailored to its asthma endotype. 

2. Potential of CXCL13 as a biomarker of SEA 

We propose to investigate the diagnostic potential of CXCL13 in SEA by measuring its 

expression levels in the blood and BALF of horses presented with respiratory disease. By 

studying its association with SEA, we aim to determine whether CXCL13 could serve as a 

biomarker for this condition. 

3. Imaging flow cytometry of equine BALF cells 

To challenge our hypothesis, we plan to utilize imaging flow cytometry or imaging microscopy 

following cell sorting on equine BALF samples. This approach will provide visual confirmation 

and detailed analysis of the identified monocyte-lymphocyte complexes in equine BALF, 

contributing to a better understanding of their role in the disease. 

In the years to come, researchers should leverage the potential of scRNA-seq to 

investigate the impact of specific antigen exposure in interventional studies, such as hay 

challenge or corticosteroid therapy. Furthermore, efforts should be expanded to explore other 

endotypes of equine asthma. Recent work by Riihimäki and colleagues (88) focused on scRNA-

seq analysis of horses with mastocytic asthma, which appears to be the predominant form of 

EA in Sweden. It is essential to investigate horse populations with diverse genetic backgrounds, 

varied environmental exposures, and distinct clinical presentations to gain a comprehensive 

understanding of all the endotypes of equine asthma.The advent of scRNA-seq has opened new 

avenues for studying disease mechanisms, which will significantly expedite the discovery of 

biomarkers and therapeutic targets. Ultimately, we hope that these advancements will lead to 

substantial improvements in diagnosing and managing equine asthma. 
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