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Abstract
Emergent descriptions at large charge

by Rafael Moser

Conformal Field Theories (CFT)s play a central role in the study of Quantum Field Theory (QFT). They represent

the fixed point of the Wilsonian Renormalization Group (RG) flow and any QFT is in principle describable as a

relevant deformation of the associated nearby Conformal Field Theory (CFT). This thesis aims to explore the

structure of CFTs with global internal symmetries and beyond via the Large-Charge Expansion (LCE), a semi-

classical expansion applicable for states with large global quantum numbers.

In the first part of this thesis we study CFT and Spontaneous Symmetry Breaking (SSB). We discuss the symmetry-

constraints imposed by conformal invariance on the quantum theory, introduce the concept of CFT data and

the Operator–Product Expansion (OPE). Concerning SSB, we discuss the existence of Nambu–Goldstone (NG)

modes, the general counting rule for the number of NG modes under the spontaneous breaking of global internal

symmetries and a generalization of the Goldstone theorem at finite density.

In the second part of this thesis we discuss the current state-of-the-art understanding of the LCE and systematically

study CFTs with a global O(2) symmetry in the context of the LCE. We present the LCE in the broader context of the

different methods available for accessing CFT data. Particularly, we discuss its relation to large-spin expansions in

CFTs and the description of operators with both large spin and large charge. We discuss the emergence of effective

condensed-matter descriptions, in particular superfluids, in correlators involving states with large global quantum

numbers. Finally, we use the superfluid Effective Field Theory (EFT) description to systematically study two-,

three- and four-point functions for CFTs with a global O(2) symmetry. Using the EFT approach we derive universal

results for the spectrum of scaling dimensions and three-point coefficients at large charge.

In the last part of this thesis we study CFTs in the double-scaling limit of large charge and large N . We discuss the

D = 3 Wilson–Fisher (WF) fixed point at large N and derive the leading order asymptotics at large charge Q in the

double scaling limit Q/N fixed, where scaling dimensions can be studied analytically in the limit Q/2N ≫ 1, where

we recover the superfluid EFT structure, and Q/2N ≪ 1, where we recover the free mean-field limit. These limits

can be connected by resurgent analysis. We also study the spectrum of fluctuations to confirm EFT predictions.

Next, we use a fixed-charge approach to gain access to the leading order effective potential for theϕ4 theory, which

we then study for spacetime dimensions 2 < D < 6. In D = 3, we reproduce and extend old results originally found

by re-summing Feynman diagrams. In D = 5, under the assumption of unitarity the ϕ4-model does not appear to

be Ultra–Violet (UV) complete. Finally, we discuss the interacting fixed points of three-dimensional fermionic CFTs

in the double-scaling limit of large charge and large N . While the Gross–Neveu (GN) model exhibits a Fermi-sphere

description at large charge, whose fate at finite N is yet to be determined, for the Nambu–Jona–Lasinio (NJL)-type

models we find a Bose–Einstein Condensate (BEC). The large-charge sector of these models is therefore captured

by the superfluid EFT approach.
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Foreword
The bulk of this thesis is based on the following three publications by the author:

[1] R. Moser et al., “Convexity, large charge and the large-n phase diagram of the ϕ4 theory”, Journal of

High Energy Physics 02, arXiv: 2110.07617 [hep-th], 10.1007/JHEP02(2022)152 (2022)

[2] N. Dondi et al., “Spinning correlators in large-charge cfts”, Nuclear Physics B 983, arXiv: 2203.12624

[hep-th], 10.1016/j.nuclphysb.2022.115928 (2022)

[3] N. Dondi et al., “Fermionic cfts at large charge and large n”, Journal of High Energy Physics 08, arXiv:

2211.15318 [hep-th], 10.1007/JHEP08(2023)180 (2023)

The material presented in this thesis is schematically organized as follows:

• Chapter 1 serves as a short introduction into the main subjects of relevance. It is an original

presentation of textbook materials and existing results on Conformal Field Theories and Spontaneous

Symmetry Breaking. It serves to make this thesis more self-contained and embeds the later

chapters in a broader context within theoretical physics.

• Chapter 2 is separated in two sections. Section 2.1 is a review of the existing literature on the

Large-Charge Expansion in generic Conformal Field Theories. Section 2.2 is based on [2].

• Chapter 3 is separated into three sections. Section 3.1 is a review of the literature on the Large-

Charge expansion in the O(2N ) Wilson–Fisher fixed point at large N . Section 3.2 is based on [1].

Section 3.3 is based on [3].

Appendices contain details and further material not included in the main text.
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Introduction

At the beginning of the 20th century — now a hundred years ago — two of the potentially most

significant discoveries in modern physics were made. First came the development of the Theory of

Relativity starting in 1905, which was followed by the advent of Quantum Mechanics (QM) in the 1920s.

Almost immediately, while attempting to quantize the electromagnetic field, in the late 1920s physicists

realized that in order to have a consistent description of nature they would need to incorporate special

relativity, which was born out of classical electromagnetism, into the framework of quantum mechanics.

The resulting theory — Quantum Electrodynamics (QED) — still is one of the most precise theories

of nature. The advent of QED marked the birth of QFT as a subject, which after a few decades of

maturing found its place as the single most successful concept in theoretical physics of the 20th and the

early 21st century. Today, QFT permeates many areas of theoretical physics. High-energy and particle

physics are probably the first and most obvious ones, with the success of the Standard Model of particle

physics as a fundamental theory of nature, but it is also commonly used in condensed-matter physics,

cosmology and inflation, quantum gravity, string theory and of course statistical mechanics. It also has

applications outside of physics, in fields like mathematics, computer science and even finance.

From the modern point-of-view, the emergence of QFT is seen as the single logical consequence of the

union between the principles of special relativity and and quantum mechanics. It naturally introduces

the concept of the anti-particle and describes the phenomena of particle creation and annihilation,

while QM always preserves the number of particles. However, its modern inception is unthinkable

without the development of Feynman’s path integral in 1948 [4]. First introduced in QM, this ”sum over

infinitely many paths” highlights both the fascinating similarities and the crucial differences between

classical and quantum theory.

Let us consider QM for a moment. The path integral fundamentally encapsulates the relationship

between classical mechanics and QM. Just as in the classical system, the path integral frames the

corresponding quantum problem in terms of the principle of least action, with the action S[q] being

given by the same functional in both cases. However, while the principle of least action determines the

physical evolution of a classical systems from points q1 to q2 purely in terms of the classical trajectory

qcl(t ) found by minimizing the action S[q], the quantum amplitude instead is given by a weighted sum

over all possible paths q(t ) connecting q1 and q2,

〈q2|e−i H(t2−t1) |q1〉 =
q2∫
q1

Dq e i S[q] . (1)
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The initial and final states in the path integral specify the boundary conditions of the integration

over the different paths q(t). The quantum propagation of a particle and its classical trajectory are

connected by the observation that different paths q(t ) within the path integral are weighted by their

classical action S[q]. This means that the classical solution qcl(t) along with the paths close to it

contribute the most to the path integral, while paths far away from the classical solution are washed

out by interference. If the propagation of a particle in a quantum system is well approximated by the

properties of its classical trajectory, say for example we consider photons with wavelengths much

smaller than the characteristic size of the surrounding space λ≪ L, then naturally we expect that

the quantum amplitude is well approximated by only considering the paths close to the classical

solution qcl(t ). Hence, the path integral localizes around the classical trajectory and is computable via a

so-called semi-classical approximation. The action is expanded around its classical solution q = qcl+ q̂ ,

S[q] = S[qcl]+
1

2

δ2S

δq2 q̂2 +O (q̂3) , (2)

and the path integral is now given by

〈q2|e−i H(t2−t1) |q1〉 = e i S[qcl]
∫

D q̂ e
i 1

2
δ2S
δq2 q̂2+O (q̂3)

. (3)

The boundary condition have to be adapted accordingly. The amplitude is now separated into a classical

contribution given by exp(i S[qcl]) plus quantum corrections. Note that the quadratic contribution in

the quantum corrections — given by (δ2S/δq2) q̂2 — just represents the action of a harmonic oscillator.

The path-integral formulation of QM naturally generalizes to QFT, with the small issue of not having

a sound mathematical basis due to the vastly increased amount of Degree(s) of Freedom (DoF) in

QFT. Aside from this problem, the path integral in QFT readily captures all of the important features

of the underlying quantum theory it describes and is often very efficient in simplifying computations

compared to the more traditional formulations of QFT like canonical quantization.

Different quantum systems or even different regimes within the same system can be classified via

the properties of their respective path integrals broadly into two general categories: weakly-coupled

path integrals and strongly-coupled path integrals. The differentiate themselves by the fact that a

weakly-coupled path integral in a certain limit of one or more of its parameters can be approximated

by a leading classical trajectory and the corresponding loop expansion around it, mirroring the semi-

classical analysis in QM in Eq. (3). In a strongly-coupled path integral, however, no generic semi-

classical saddle-point approximation of the full theory is possible.

In QFT and its vast number of DoF, the predictive capabilities of physicists largely rely on the existence

of a weakly-coupled path integral and the associated loop expansion. This is well exemplified in the

Standard Model of particle physics, where for example collisions between particles at the GeV scale

are well studied using loop expansions, but processes involving the strong interaction — described by

Quantum Chromodynamics (QCD) — at the same scale are hard to predict since the corresponding

path integral is strongly coupled there. Any observable O computed in a weakly-coupled path integral

consists of two contributions O =Ocl +Oqu coming from the classical configuration and the quantum

corrections around it. The relative size between the two contributions is relevant, as only observables

2



Introduction

with larger classical contributions Ocl ≫Oqu are readily computable in a semi-classical approximation.

By definition, for a weakly-coupled path integral there exist at least some observables that are semi-

classical and computable in a loop expansion, while in for a strongly-coupled path integral all observables

are quantum in nature.

Generically, semi-classical observables are associated with states consisting of many quanta and are

far removed from the vacuum state of the theory.1 In this case a new emergent description appears in

terms of an approximately free theory around an effective ground state far away from the vacuum of the

underlying theory. Semi-classical methods represent an important tool to investigate non-perturbative

phenomena in QFT like multiparticle production, vacuum decay and instantons. A particular class of

observables admitting a semi-classical description are given by observables possessing at least one

large quantum number under a conserved charge of the theory, like a large spin J or a large global

charge Q. Observables with large quantum numbers are naturally semi-classical irrespective of the

existence of a small coupling in the underlying theory. Therefore, even in strongly-coupled theories, we

expect the existence of a (potentially emergent) weakly-coupled semi-classical path integral description

capturing any observable with a large quantum number independent of the nature of the underlying

theory, at least as an effective description involving the light DoF. The fact that such light modes exist

follows from the fact that states with large quantum number unavoidably break certain symmetries,

which in turn implies the existence of light NG modes [5, 6].

Unsurprisingly, many important problems in theoretical physics are related to strongly-coupled

theories. Luckily, in many instances involving strongly-coupled path integrals it is possible to find

a subset of variables in a certain limit of the theory whose quantum fluctuations are small around

an associated semi-classical trajectory. In that case, it is possible to integrate out the variables with

large quantum fluctuations in the path integral and derive an effective weakly-coupled description

for the remaining DoF. The process of integrating out variables within a theory is deeply tied to

another fundamental concept in QFT, which is perhaps most responsible for its success as a theoretical

framework: renormalization.

In its earlier iterations QFT suffered from a major flaw being that perturbative computations apparently

produced meaningless infinite results. The cause of the phenomenon can be found in the large number

of interacting quantum DoF that we have mentioned already. The solution to this problem and the

correct way to extract a meaningful result out of the divergences turned out to be renormalization.

From the modern perspective, renormalization is a fundamental feature of QFT. Although not the first

ones to describe the phenomenon, the modern understanding of how renormalization in QFT works is

mainly based on the contributions of Kadanoff and Wilson [7, 8].

Let us illustrate the ideas of Wilsonian renormalization. Consider a QFT described by the action

S[Φi , gn], with generic field content {Φi } and couplings gn . The fundamental realization of renormalization

is that the bare couplings gk and the normalizations of the fields {Φi } in the action do not correspond

to the physically measured quantities as they do not take into account quantum effects. To make

connection with reality, observables would have to be rewritten in terms of the renormalized quantities.

1Observables describing small fluctuations around the vacuum are only amenable to a weakly-coupled description if the
system can be approximated by a free theory, i.e. if the theory exhibits small couplings gn accompanying the interaction terms in
the action.
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The bare parameters of the theory, as they are not measurable, can then be used to cancel the infinities

arising in calculations in a process called regularization.

During regularization, the theory is modified by introducing a parameter — called a regulator — which

regularizes the appearing divergences. The seemingly most natural choice here is a scaleΛ0 cutting off

the momenta allowed within the theory to |k| ≤Λ0, but there are other well-established schemes like

dimensional regularization or Pauli–Villars regularization. The different choices of regulator are called

regularization schemes. Any choice of regularization scheme introduces a characteristic energy scale

— called the cut-off scale M — into the theory, which reproduces the original theory when taken to

infinity. The now cut-off dependent divergences are then cancelled via so-called counterterms, which

are cut-off-dependent parts of the bare parameters in the theory that cancel the appearing divergences.

After cancellation of the divergences the cut-off scale M can be taken to infinity while we recover a

finite result.

If a theory is amenable to this procedure, it is called renormalizable. Renormalizability in QFT can

be determined via dimensional analysis, at least superficially. During the cancellation of divergences,

in principle, a renormalization point is chosen, given by the value of the cut-off scale M at which

divergences are cancelled. At finite values of the cut-off scale M divergent terms in the theory are finite

but cut-off dependent. Changes in the renormalization scale affect how much of a result comes from

the bare parameters and how much comes from the divergent quantities to be computed. This can

be exploited to calculate the variation of a physical parameter with the change in cut-off scale, which

is encoded in the so-called beta functions of the parameters. The general theory of this kind of scale

dependence is the RG.

Historically, the splitting of bare parameters into finite contributions plus counterterms came before

the discovery of the RG, which essentially states that this splitting is unphysical and that all scales enter

in a continuous and systematic way. We return to the QFT with action S[Φi , gk ] introduced above. In

terms Fourier modes the path integral is written as2

Z (gn) =
∫ ∏

k
DΦ̃i (k)e−S[Φi ,gn ] . (4)

Naturally, the partition function suffers from the appearance of infinities and we define the regularized

path integral via a momentum cut-offΛ0,

ZΛ0 (g (Λ0)
n ;Λ0) =

∫ ∏
D

|k|<Λ0

Φ̃i (k) e−S[Φi ,g
(Λ0)
n ] . (5)

The theory is now explicitly regularized by only allowing momenta up to the cut-off λ0, which is also

the renormalization scale, in the action S[Φi , g (Λ0)
n ]. Note that the couplings g (Λ0)

n should be considered

as distinct from the couplings in the original theory since we have removed some DoF. In the Wilson–

Kadanoff renormalization scheme we try to first integrate the modes with momentaΛ1 <Λ0. Naturally,

2Naturally, the path integral measure can also be in terms of position space configurations DΦi (x).
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the fields can be decomposed as

Φi (x) =
∫

dD k

(2π)D

|k|<Λ1

e i k·xΦ̃i (k)+
∫

dD k

(2π)D

Λ1<|k|<Λ0

e i k·xΦ̃i (k) =:Φ(1)
i (x)+χ(1)

i (x) , (6)

whereΦ(1)
i (x) represents the low-energy part of the fieldΦi (x) and χ(1)

i (x) is its high-energy part. The

path-integral measure likewise factorizes and performing the integral over the high-energy modes

χ(1)
i (x) produces an effective action for the remaining low-energy DoF,3

Seff[Φ
(1)
i , gn(Λ1);Λ1] :=− log

∫ ∏
DΦi

Λ1<|k|<Λ0

(k) e−S[Φ(1)
i +χ(1)

i ,g
(Λ0)
n ]

 . (7)

This process can be iterated by introducing yet a smaller scale Λ2 < Λ1 and integrating out further

modes,

Seff[Φ
(2)
i , gn(Λ2);Λ2] =− log

∫ ∏
DΦi

Λ2<|k|<Λ0

(k) e−S[Φ(2)
i +χ(2)

i ,g
(Λ0)
n ]

 . (8)

The process of integrating out modes is called changing the scale and Eq. (7) is called the RG equation

for the effective action. Importantly, while changing the scale the couplings in the action for the

remaining DoF do now depend on the new scale. Starting from a generic initial action of the form

S[Φi , g (Λ0)
n ] =

∫
dD x

[
Φ∗

i (x)(K )Φi (x)+∑
n

g (Λ0)
n On(x)

]
, (9)

where K denotes the differential operator within the kinetic term, the effective action at the scaleΛ1

takes the general form

Seff[Φ
(1)
i , gn(Λ1);Λ1] =

∫
dD x

[
Z (Λ1)Φ(1)∗

i (x)(K )Φ(1)
i (x)+∑

n

(
Z (Λ1))in /2gn(Λ1)On(x)

]
. (10)

The form of the interaction terms On(x) remains the same and the wavefunction renormalization Z (Λ1)

accounts for the fact that the kinetic term may receive correction while changing the scale. At any

given scale a renormalized field ϕ(1)
i =

p
Z (Λ1)Φ(1)

i can be defined. Evidently, the partition function

ZΛ1 (gn(λ1);Λ0) at any scaleΛ1 <Λ0 is still equal to the original partition function ZΛ0 (g (Λ0)
n ;Λ0), where

ZΛ1 (gn(λ1);Λ0) is defined as

ZΛ1 (gn(Λ1);Λ0) :=
∫ ∏

D

|k|<Λ1

Φ̃i (k) e−Seff[Φ
(1)
i ,gn (Λ1);Λ1] , (11)

with the effective action Seff given by Eq. (7). Infinitesimally, this invariance under changes of the scale

3We have
∫

DΦi (k)
∣∣
Λ1<|k|<Λ0

→ ∫
Dχ(1)

i (x) when switching to position space.
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results in the differential equation(
Λ1

∂

∂Λ1
+βn(Λ1)

∂

∂gn

)
ZΛ1 (gn(Λ1);Λ0) = 0, βn(Λ1) :=Λ1

∂gn(Λ1)

∂Λ1
(12)

called the RG equation for the partition function. It states that the couplings of the effective action

vary to account for the change in the number of DoF in the path integral while changing the scale.

The partition function is then in fact independent of the scale, provided it is below the initial cut-off

scale Λ0. The so-called beta function βn(Λ) capture the varying — or running — of the couplings

and are hence very important in the context of the RG flow. A generalized statement similar to the

RG equation for the partition function can be derived for arbitrary correlation functions and is called

the Callan-Symanzik equation [9–11]. The overall significance remains the same: the couplings of the

theory and the wavefunction renormalization factors vary in such a way as we lower the scale so that

correlation functions remain unaltered.

As we change the scale, the RG generates a curve in coupling space — or parameter space — which

is called the Wilsonian RG flow gn(Λ). The RG flow is usually expressed in terms of the beta function

βn(Λ) defined above. The question naturally arises what happens when we are at a point where all the

β-functions vanish. This is a special point of the RG where all the couplings are tuned to some critical

value g (Λ0)
n = g∗

n such that

βn(Λ)
∣∣

gn=g∗
n
= 0, ∀ scalesΛ . (13)

Evidently, the couplings of the particular theories living at such points do not depend on the scale.

They are known as critical points of the RG flow. Using the Callan–Symanzik equation it can be shown

that two-point correlation functions are highly restrained in critical theories,

〈O (x)O (y)〉 ∼ C (g∗
n )

|x − y |2∆O
, (14)

where∆O is the scaling dimension of the operator O within the critical theory. This power-law behaviour

is a characteristic of scale-invariant theories, which besides Poincaré invariance also exhibit invariance

under scale transformations

x →λx . (15)

We conclude that critical theories in the RG flow are always scale-invariant. In fact, almost all scale

invariant theories are invariant under the even bigger conformal group [12].

A QFT which is invariant under the full conformal group is called a Conformal Field Theory (CFT). CFTs

play a crucial role in the context of renormalization, and hence in our understanding of the parameter

space of QFTs, as they represent (almost all of) the critical point in the context the Wilsonian RG. The

concept of the Wilsonian RG flow is the best tool we have to study the relationship between QFTs and

the geometry of the parameter space spanned by them. Particularly, in order to probe the parameter

space of QFTs we can choose a generic QFT and observe its RG flow in both directions of the energy

scale to find its UV (high-energy) and Infra–Red (IR) (low-energy) limits. For a local Poincaré-invariant

and unitary QFT it is generally expected that the RG flow in both directions approaches a critical point
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and hence a CFT. As many different QFTs generically flow to the same fixed points, CFTs can be

understood as unifying landmarks in parameter space. In the case where this fixed point is interacting,

we say that the theories which flow to it all belong to the same universality class. On the other hand, by

perturbing — or deforming — a CFT and moving away from the critical point, breaking scale invariance

in the process, the space of QFTs near the fixed point can be studied using the Wilsonian RG. Moreover,

according to the Wilsonian point-of-view, starting from the correct UV CFT the entire RG flow of a given

theory all the way down to the IR fixed point can be described by introducing the appropriate relevant

deformation in the UV. In this sense, all QFT can be found and classified in terms of perturbations of

CFTs. Illustrating this point, it is often stated that in the parameter space CFTs are beacons of light

illuminating the landscape around them.

In addition, CFTs also play important roles in the description of second-order and quantum phase

transitions, in string theory and in the context of the AdS/CFT correspondence for quantum gravity.

Particularly, the general observation that many physical systems with vastly different descriptions

converge and eventually coincide at the point of phase transition is a manifestation of the principle of

Wilsonian universality.

By virtue of conformal invariance, all CFTs lack any dimensionful perturbative expansion parameters in

the theory. Besides free-field CFTs, most of the interacting CFTs found in the space of QFTs and more

broadly in physics are strongly-coupled theories. They do not admit any weakly-coupled path-integral

description in the conventional sense. Fortunately, CFTs are highly constrained due to the extended

spacetime symmetry present, which puts stringent constraints on the form of (local) correlators. The

functional form of two- and three-point functions is completely fixed up to a small set of coefficients

and normalization constants. Four- and higher-point functions can be reduced to a sum of three-point

functions via the OPE, which in CFTs has an infinite radius of convergence. In other words, the local

operators spectrum of CFTs can be defined completely algebraically in terms of a few coefficients

appearing in the two-and three-point functions of the theory called the CFT data. The CFT data

consists of the scaling dimensions ∆i of the operators and the three point coefficients Ci j k . This

algebraic structure provides many consistency constraints on the CFT data which are exploited by

the conformal bootstrap program [13]. The conformal bootstrap aims to identify and solve CFTs in

terms of the CFT data by restricting the space of their acceptable values, ideally down to a single

point. On the other hand, as certain CFTs are also related to critical points of some lattice models

in statistical mechanics, numerical methods such as Monte-Carlo simulations can also be applied to

study CFTs [14–16].

Naturally, operators in a CFT can possess non-trivial quantum number such as spin or a global

charge Q. As discussed at the beginning of this introduction, QFT and QM observables involving

large quantum numbers generally admit a weakly-coupled description, even in otherwise strongly-

coupled theories. This is a particularly intriguing observation in CFTs, as they do not admit a generic

weakly-coupled description in terms of a dimensionful parameter. As it turns out, it is possible to

describe certain observables involving operators with large quantum numbers under a global symmetry

by an appropriate emergent description in a process referred to as the LCE. In fact, in a CFT with a
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global symmetry correlators of the form

〈OQ†(xout)Ok (xk ) · · ·O1(x1)OQ (xin)〉 , (16)

where OQ possesses a parametrically larger charge than the intermediate operator insertions, do often

admit an emergent description in terms of a superfluid EFT that is approximately scale invariant. [17,

18]. This can be exploited for the computation of CFT data from such correlators. In three-dimensional

CFTs with a global O(2) symmetry the scaling dimension of the operator OQ has the form [17, 18]

∆(Q) = c3/2Q3/2 + c1/2Q1/2 −0.0937+OQ−1/2 . (17)

The scaling dimension can be extracted from the energy of the EFT ground state. The Wilsonian

coefficients ci do depend on the specific underlying theory.

The emergence of an EFT description is a consequence of the fact that the presence of a state with large

charge density — which in our case is |OQ (xin)〉 — unavoidably breaks certain spacetime and internal

symmetries. The presence of SSB then dictates that the long-distance and low-energy dynamics are

described by the associated NG bosons [5, 6]. In the O(2) example there is a single NG boson present

— called the conformal superfluid phonon — and it possesses a dispersion relation consistent with

conformal invariance. Its fluctuations on top of the EFT ground state describe operators within the

CFT that are located close to OQ in terms of their conformal dimensions and share the same charge Q.

Plan of the thesis.

The LCE in many ways bridges the gap between different areas of physics by introducing concepts of

condensed-matter physics into the study and understanding of high-energy physics. In doing so, it

requires an understanding of both subjects, however. In Chapter 1 we start by reviewing two important

prerequisites required to understand the existence of the large-charge program and the structure of

its main results. In Section 1.1 we review CFTs from a high-energy point-of-view and discuss their

structure. In Section 1.2 we discuss the features of SSB, in particular also at finite density, more from a

condensed-matter perspective.

Chapter 2 consists of two parts: a snapshot of the large-charge program and a systematic analysis of the

large-charge sector in CFTs invariant under a O(2) symmetry. In Section 2.1 we present the landscape

of the large-charge program, including many of its main results. We elucidate the interplay between

large charge and other methods of computing CFT data like the conformal bootstrap and large spin

expansions. And we discuss how emergent condensed-matter EFT descriptions arise in the study of

CFT correlators with large-charge insertions. In Section 2.2 we systematically study the large-charge

CFT data in theories hat exhibit a global O(2) symmetry, which can also be a subset of a larger symmetry.

In correlators involving the insertion of two heavy operators possessing a large charge Q under the

global O(2) we perform the LCE via its superfluid EFT approach. We explain what CFT data involving

the insertion of two large-charge operators is within the reach of the large-charge methodology and

particularly the EFT approach, and we systematically compute said CFT data in terms of two-, three-

and four-point functions.

The last part of this thesis — Chapter 3 — is dedicated to the study of the LCE at large N . We discuss

how in the double-scaling limit of Q, N →∞, Q/N fixed the large-charge sectors of strongly coupled

theories become accessible beyond the EFT prescription detailed in Chapter 2. To do so we apply
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finite-temperature field theory techniques in yet another parallel to condensed-matter physics. We

start by reviewing the WF fixed point of the O(2N ) vector model with a quartic interaction in D = 3 at

fixed diagonal charges Q =∑
i Qi and large N in Section 3.1. Here, we independently recover all the

important features of the large-charge superfluid EFT approach outlined in Section 2.2. However, at

leading order in N we have access to the scaling dimensions of operators at any value of the normalized

charge Q/2N . Besides the large-Q/2N limit, in which we recover the superfluid EFT description, we

also have access analytically to the small-Q/2N regime, in which results correspond to the free-field

limit. In Section 3.2 we show how large-charge techniques in the O(2N ) ϕ4-theory can be used to

compute the effective potential of the theory to leading order N also away from the fixed point. We

use this technique to reproduce and expand upon an old computation involving the re-summation

of infinitely many Feynman diagrams in the D = 3 ϕ4-theory [19]. We then focus on the dimensions

4 < D < 6 and discuss the effective potential there. In doing so, we find that there is no unitary UV

completion of theϕ4-model in this range of dimensions, in accordance with earlier results [20]. In D = 5

we can compute explicitly results. We show how the effective potential can be interpreted as a complex

function with a branch cut. Using large-charge techniques we can investigate the conjectured non-

unitary/complex interacting UV CFT. In Section 3.3 we return to the fixed point and study fermionic

CFTs in the double-scaling limit. We encounter two distinct behaviours. While in NJL-type models we

find a BEC and the large-charge superfluid predictions apply, in the GN model we encounter no SSB at

zero temperature and a Fermi-sphere ground state arises. The superconducting behaviour in the NJL

models has a neat explanation in terms of Cooper pair condensation. The presence and stability of

the Fermi-sphere ground state in the GN model, however, needs further investigation before definite

conclusions can be drawn.

At the ends of Chapters 2 and 3 we provide a short conclusion and final remarks. The appendices

contain additional materials supplementary to the main part of this thesis and provide technical details

for computations and derivations of results.
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1 Prerequisites: Conformal Field Theory
and Spontaneous Symmetry Breaking

This chapter is meant as a short and pedagogical introduction to the two most important frameworks

and ideas underlying the bulk of this thesis.

On one hand, the aim of this chapter is to build the foundation of the large-charge approach to CFTs

and to motivate the research and publications of the author presented in later chapters. It serves to

embed the materials and research presented in the broader context of modern physics, in particular

the systematic study of QFT and CFT.

On the other hand, this chapter serves to make the present thesis more self-contained for readers at

the graduate level and onwards. In particular, the discussion of SSB is important in this context and

includes very recent results from the literature.

Most of the material discussed can be found in many textbooks, reviews and lecture notes, the most

important of which will be pointed out below.

The large charge approach — or LCE — is a systematic way of studying CFTs that exhibit a continuous

global symmetry.1 In order to understand the ”raison d’être” of the LCE and its importance in the study

of CFTs it is fundamental to understand the basic structure and properties of said theories. To this end,

the first part of this chapter is a broad introduction to CFT.

To make the discussion more concise, we will focus on specific aspects of CFTs in D ≥ 3. The analysis

of CFTs is a vast and complex subject — especially in D = 2 — and for the purposes of this thesis we

only require knowledge about three or more spacetime dimensions.

The bulk of Section 1.1 deals the implications conformal invariance in QFT, assuming that conformal

symmetry is realized in the quantum theory and is not anomalous. The focus of the presentation lies

on correlation functions, radial quantization, the state–operator map and the OPE. The section ends

with a quick introduction to the conformal bootstrap, as it helps to motivate the large-charge program.

In Appendix A we discuss additional materials for the invested reader. We give a brief discussion of the

Ising universality class in the context of CFTs and phase transitions in Appendix A.1. In Appendix A.3

we discuss some prerequisites from QFT. We give a detailed discussion of conformal invariance in

classical field theory in Appendix A.2.

The presentation of Section 1.1 takes inspiration from an amalgamation of sources, the most important

1In this sense it is complementary to other approaches of accessing CFTs, like the conformal bootstrap [13].
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Chapter 1. Prerequisites: Conformal Field Theory and Spontaneous Symmetry Breaking

of which are the lecture notes by Simmons-Duffin [21], the book by di Francesco/ Mathieu/ Sénéchal

[22] and the lecture notes by Rychkov [23]. Additional references of relevance are the lecture notes by

Gillioz [24] as well as the books by Schottenloher [25] and Blumenhagen/ Plauschinn [26].2

The idea of the Large Quantum Number Expansion (LQNE) is to restrict ourselves to sectors of the

theory consisting of all operators with the identical fixed quantum numbers under the global symmetry.

In doing so, we explicitly and spontaneously break global and spacetime symmetries of the theory.

Understanding the structure of the LCE is therefore also predicated on an understanding of the concept

of SSB, in particular its generalization to finite density (and finite volume) systems. Hence, the second

goal of this chapter is to introduce the idea of SSB and discuss the implications of Goldstone’s Theorem.

The second part of this chapter — Section 1.2 — discusses SSB of global internal symmetries as well as

aspects of SSB at finite density, including a brief discussion on finite volume corrections (particularly

for superfluids).

In the first part we discuss the definition and basic properties of SSB — in particular the existence of

massless bosonic modes in the spectrum, the so-called NG modes — and present the most important

historical results concerning the spontaneous breaking of global internal symmetries and the number

and properties of the appearing NG modes. This discussion ends with the presentation of recent results

that imply an exact counting rule for the number of NG bosons under certain assumptions [34–38].

Unfortunately, in the case of spontaneously broken spacetime symmetries there are no simple guiding

principles or counting rules for now. Therefore, in the second part of Section 1.2 we restrict ourselves

to focusing on investigating a particular class of physical systems that tend to exhibit spontaneously

broken spacetime symmetries and prominently appear in the LCE: systems at finite density for a

spontaneously broken charge, in particular Abelian superfluids. We present a modification of the

Goldstone Theorem applicable to this class of theories. Particularly, we prove the existence of gapped

NG modes in the spectrum, in addition to the usual massless NG modes. These NG modes have a gap

of the order of the chemical potential and reappear when discussing the LCE in Chapter 2. Finally, we

end on discussing finite-volume corrections to SSB relevant for the LCE.3

The original presentation of materials on SSB in Section 1.2 is influenced mainly by the reviews by

Brauner [39] and Watanabe [34] as well as their and their collaborator’s important contributions to the

topic. The discussion of aspects of SSB at finite density follows mainly the works and contributions

of Maris [40], Low and Manohar [41], Nicolis et al. [42–44], Watanabe et al. [45] and the thesis by

Cuomo [46]. Finally, the inclusion of the excursus on SSB in finite volume is inspired by the review [47].

For a more comprehensive discussion of SSB in finite systems we refer to [48] and [49].

1.1 Conformal field theory

Traditionally, QFT as a framework is presented in terms of the isometries of the underlying spacetime,

be it flat space or some curved background. However, there are instances where another spacetime

symmetry group is chosen. In this language, a CFT is a QFT whose spacetime symmetries are all

conformal transformations, which includes the spacetime isometries as well as scale transformations

2For a pedagogical introduction to QFT we refor to the books by Weiberg [27–29], Coleman [30], Schwartz [31], Fradkin [32]
and also Derendinger [33].

3Strictly speaking, SSB — as it is generically defined in the literature — can only occur for systems in infinite volume.
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1.1 Conformal field theory

and special conformal transformations.

CFTs are fundamental to the study and understanding of QFT. As discussed in the Introduction, CFTs

live at the fixed point of the Wilsonian RG flow (points where the beta-function vanishes). But CFTs

also appear at other important cornerstones of modern physics.

• CFTs are fundamental to string theory. The world-sheet of a string is described by a two-

dimensional CFT. Notable references for the reader more interested in the role of two-dimensional

CFTs in string theory are [50–53]. Unfortunately, the LCE is less powerful in two-dimensional

CFTs [54].

• CFTs are connected to our current understanding of quantum gravity via the AdS/CFT correspondence,

i.e. the Gauge/Gravity duality. The AdS/CFT correspondence proposes duality between a

CFT living on the boundary of spacetime and the associated gravitational theory in the bulk,

suggesting that CFTs can be used to study gravitational phenomena. The seminal works on

AdS/CFT — i.e. Gauge/Gravity — correspondence are [55–57], for a well-structured introduction

see [58]. There is some literature on the LCE and its relation to the AdS/CFT correspondence [59–

64].

• CFTs are of great importance in the description of critical phenomena in statistical mechanics

and condensed-matter physics. Continuous — or second-order — phase transitions can generally

be understood using the language of CFTs.

In the language of statistical mechanics a system undergoing a continuous phase transitions is

described by a continuous partition function log(Z ) that is either non-analytic or exhibits an

infinite slope at the critical point in configuration space. For a thermal system the critical point at

temperature Tc separates an ordered phase at low temperatures T < Tc from a disordered phase

at high temperatures T > Tc .

In general there exists an order parameter 〈O〉 that vanishes in the disordered phase 〈O〉 = 0

while it is non-vanishing in the ordered phase 〈O〉 ̸= 0, hence allowing to distinguish the different

phases.

At the critical point there is a symmetry enhancement and the system becomes scale invariant.

Correlation functions no longer obey a exponential decay but follow a power law and fluctuations

appear at all possible wavelengths/length scales. Long range correlations develop and the

microscopic structure of the system becomes irrelevant. In that sense CFTs are a natural

candidate to describe critical points of condensed-matter and statistical mechanics systems in

the continuum limit since scale invariance generically enhances to full conformal invariance [12].

However, there exist some exceptional critical points that are described by scale invariant theories

that are not fully conformally invariant and there are scale invariant RG fixed points which do not

get enhanced to full conformal invariance [12, 23]. An explicit example can be found in [65]. For

the invested reader we discuss the Ising universality class in the context of CFTs in Appendix A.1.

For the purposes of this thesis we are content with studying CFTs in three or more spacetime dimensions

and Euclidean signature. Unless otherwise specified, we are in D-dimensional Euclidean spacetime

with metric gµν = δµν. There are some intricate issues arising in Minkowski space, for example with

regard to causality. In the context of this thesis these details do not need to be discussed. For a

presentation of CFTs in Minkowski signature see [24].
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Chapter 1. Prerequisites: Conformal Field Theory and Spontaneous Symmetry Breaking

1.1.1 Conformal symmetry in the operator formalism of QFT

In QFT scale invariance is a naturally arising symmetry since fixed points of the RG flow by definition

exhibit scale invariance (see the discussion in the Introduction). Although the relationship between

scale and conformal invariance is very intricate [12], in most cases scale invariance enhances to full

conformal invariance. As symmetries are expressed in terms of the conserved charges at the quantum

level — which can be written in terms of the energy momentum tensor T µν(x) — in order for conformal

invariance to be realized at the quantum level it is crucial that there exists a traceless stress-energy

tensor

T µ
µ (x) = 0. (1.1)

This operator equation guarantees the existence of the four additional charges related to invariance

under Special Conformal Transformation (SCT)s in addition to scale and Poincaré invariance and

allows them to be expressed in terms of T µν, as we will see.4 Unless otherwise specified, we always

assume the existence of such a traceless stress-energy tensor as a prerequisite for conformal invariance

at the quantum level [12].

Assuming the existence of a traceless conserved and symmetric stress-energy tensor T µν allows for the

totality of all conformal charges to be conveniently written as

Q(ϵ)(Σ) =−
∫
Σ

dnµ ϵν(x)T µν(x) , (1.2)

where Σ⊂RD is an arbitrary D −1-dimensional hypersurface. The charge in Eq. (1.2) will be conserved

as long as

∂µϵν+∂νϵµ = 2

D
(∂ ·ϵ) δµν . (1.3)

Eq. (1.3) is called the conformal Killing equation. The linearly independent solutions comprising

the conformal group — translations, rotations, dilatations (i.e. scale transformations) and Special

Conformal Transformations (SCTs) — are all encoded by the vector field ϵµ(x),

translations: pµ = ∂µ , ϵµ = aµ ,

rotations: mµν = xν∂µ−xµ∂ν , ϵµ = 1

2
ωρσ

(
δµρxσ−δµσxρ

)
,

dilatations: d = xν∂ν , ϵµ =λxµ ,

SCTs: kµ = 2xµ (x ·∂)−x2∂µ , ϵµ = bν
(
2xµxν−x2δµν

)
(1.4)

A solution xµ 7→ x ′µ = xµ+ϵµ(x) of the conformal Killing equation Eq. (1.3) satisfies

∂x ′µ

∂xν
=

[
1+ 1

D
(∂ ·ϵ)

] [
δ
µ
ν +

1

2
(∂νϵ

µ−∂µϵν)

]
exp[·]−→
map

Ω(x)Rµ
ν(x) , RT R = 1 . (1.5)

Hence, a conformal transformation corresponds to an infinitesimal rescaling times an infinitesimal

rotation and — upon exponentiating — a finite rotation times a local scale transformation. Therefore, a

4The relationship between tracelessness of Tµν and invariance under SCTs can also be deduced in a classical analysis, see
Appendix A.2.3.
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1.1 Conformal field theory

conformal transformation rescaling the metric gµν = δµν by an overall factor

gµν 7→ gαβ
∂x ′α

∂xµ
∂x ′β

∂xν
=Ω2(x)gµν . (1.6)

Dilatations, translations and rotations, as described in Eq. (1.4), are straightforwardly exponentiated.

More interesting are SCTs. Their finite form reads

xµ 7→ xµ−x2bµ

1−2(b · x)+x2b2 , with scale factor: Ω2(x) = (1−2(b · x)+b2x2)2 . (1.7)

Any SCT leaves the origin invariant but maps xµ = bµ/b2 to point at infinity.5 Invariance under SCTs is

crucial as it differentiates scale invariant theories from conformally invariant ones.

SCTs closely related to inversions, which are discrete conforma transformations of the form

I : xµ 7→ x ′µ = xµ

x2 . (1.8)

Inversions it lies outside of the identity component of the conformal group, except in the context of

SCTs. As a matter of fact, an SCT is comprised of an an inversion, followed by a translation and then by

another inversion,6

xµ
I7→ xµ

x2

−bµ7→ xµ

x2 −bµ
I7→ xµ−x2bµ

1−2(b · x)+x2b2 . (1.9)

Inversions by itself cannot be obtained by exponentiating a Killing vector, but SCTs can.

Since inversions are not continuously connected to the identity, invariance under inversions needs to

be checked on an individual basis.7

The conserved charges Q(ϵ) =Q(ϵ)(Σ) defined in Eq. (1.2) satisfy the conformal algebra,8

[Q(ϵ1),Q(ϵ2)] =Q([ϵ2 ,ϵ1]) , (1.10)

where [ϵ1,ϵ2] denotes the commutator of vector fields, [ϵ1,ϵ2]µ = ϵν1 (∂νϵ
µ
2 )−ϵν2 (∂νϵ

µ
1 ). In terms of the

linearly independent charges associated to translations, rotations, dilatations and SCTs the commutation

relations read

[Q(M)
µν ,Q(M)

ρσ ] = δνρQ(M)
µσ ± permutations, [Q(K )

µ ,Q(P )
ν ] = 2δµνD −2Mµν ,

[Q(M)
µν ,Q(P )

σ ] = δνσQ(P )
µ −δµσQ(P )

ν , [Q(D),Q(P )
µ ] =Q(P )

µ ,

[Q(M)
µν ,Q(K )

σ ] = δνσQ(K )
µ −δµσQ(K )

ν , [Q(D),Q(K )
µ ] =−Q(K )

µ .

(1.11)

All other commutators are vanishing. These are the commutation relations defining the conformal

algebra.

5Flat space plus infinity R∪ {∞} is Weyl equivalent to the unit sphere SD
1 . On the unit sphere SD

1 all conformal transformations
are finite, i.e. non-singular.

6SCTs are essentially translations with the points at {0} and {∞} swapped by an inversion.
7There is a neat argument based on the embedding formalism [23, 66] implying that a CFT invariant under parity will be

invariant under inversions and vice versa [23].
8This is a consequence of the comutation relation [Q(ϵ),Tµν] = ϵ ·∂Tµν+ (∂ ·ϵ)Tµν−∂ρϵµT ρν+ (∂νϵρ )T ρµ, which holds true

under the assumption that conformal invariance is unbroken [21].
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Chapter 1. Prerequisites: Conformal Field Theory and Spontaneous Symmetry Breaking

In the operator formalism of the quantized theory the action of the topological charge operators on

local operators O (x) of the theory is given by the integral version of the Ward identity,

∂

∂xµ
〈 j (ϵ)
µ (x)O1(x1) · · ·ON (xN )〉 =−

N∑
k=1

δ(x −xk )〈O1(x1) · · ·G (ϵ)Ok (xk ) · · ·ON , (xN )〉 , (1.12)

with G (ϵ) being the generator of the transformation encoded by ϵµ(x) via the conserved current

j (ϵ)
µ (x) = ϵν(x)Tµν(x) . (1.13)

In its integral form Eq. (1.12) amounts to a commutator equation,9

[Q(ϵ),O (x)] =G (ϵ) O (x) . (1.14)

Just as the charge Q(ϵ) can be decomposed into a linear combination of Poincaré transformations,

dilatations and SCTs, so can the generator G (ϵ),10

G (ϵ) = aµPµ+ ωµν

2
Mµν+λD +bµKµ . (1.15)

There is one important detail with respect to the conserved charges and their associated generators

that needs mentioning here. As repeated action of the conserved charges reverses the order of the

associated generators [21],

[Q(ϵ1), [Q(ϵ2),O ]] =G (ϵ2)G (ϵ1)O , (1.16)

the generators in Eq. (1.15) satisfy the commutation relations of the charges in Eq. (1.11) with reversed

signs [21],11

[Mµν, Mρσ] = δνρMσµ± permutations, [Kµ,Pν] =−2δµνD +2Mµν

[Mµν,Pσ] = δµσPν−δνσPµ , [D,Pµ] =−Pµ ,

[Mµν,Kσ] = δµσKν−δνσKµ , [D,Kµ] = Kµ .

(1.17)

Topological charge operators act locally on local operators. The reason is that they can be continuously

deformed to live in an arbitrarily small neighbourhood of the operator insertion. For the sake of

simplicity, for now on we use the same notation for the conserved charge Q(ϵ) and its associated

generator counterpart G (ϵ), unless it is contextually important to separate them. In the orthogonal

basis of the conformal group in Eq. (1.4) and Eq. (1.11) we identify

Q(P )
µ ∼ Pµ , Q(M)

µν ∼ Mµν , Q(D) ∼ D , Q(K )
µ ∼ Kµ . (1.18)

We only need to be careful as to which sets of commutation relations between Eq. (1.11) and Eq. (1.17)

is applicable in each situation. Finally, we use commutator notation [Pµ,O (x)] and shorthand notation

9After integration the left-hand side of Eq. (1.12) turns into a surface integral and then a commutator. For more details on
Ward identities and a derivation of Eq. (1.12) using the path-integral formalism see Appendix A.3.3.

10Given a Lagrangian description of the theory the associated generators are the differential operators generating the
transformation in the classical theory.

11These commutation relations are consistent with the classical analysis of the conformal generators, see Appendix A.2.2.
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1.1 Conformal field theory

Pµ ◦O (x) interchangeably.12

The conformal group in RD is isomorphic to the Lorentz group SO(D +1,1). This is best derived by

taking theRD variables x1, . . . , xD and adding two additional variables X + = (x0+xD+1), X − = (x0−xD+1).

The isomorphism now reads13

Jµν = Mµν , J+µ = Pµ/2, J−µ = Kµ/2, J+− = D/2, (1.19)

with Jαβ — understood to be antisymmetric — being the generators of SO(p+1, q+1). These generators

satisfy the Lorentz algebra,

[Jαβ, Jγδ] = ηαγ Jβδ+ηβδ Jαγ−ηαδMβγ−ηβγ Jαδ . (1.20)

The coordinates X +, X − are called light-cone coordinates. The isomorphism gives rise to the embedding

formalism, a convenient way of encoding the action of the conformal group in RD via the action of the

Lorentz group in RD+2 by appropriately embedding RD in RD+2 [23, 66–68].

Having access to the conformal charges allows us to classify all operators of the theory into irreducible

representations of said charges. The representation theory of the conformal group is built around

the existence of so-called primary operators, which generate the irreducible representations of the

conformal group.

The operator formalism of the quantum theory identifies primary operators in a CFT by the action of

the symmetry operators at the origin. As D and Mµν commute, see Eq. (1.11), we can simultaneously

diagonalize them on the space of operators of the theory, so that local operators in a CFT obey14

[Mµν,O (0)] = i SµνO (0) ,

[D,O (0)] =∆O (0) ,
(1.21)

where Sµν are the spin matrices encoding the representation of the Lorentz group and hence the spin

of O (x) and ∆ is the scaling or conformal dimension of the operator O (x).15 The defining feature of

local primary operators in the space of operators is the action of Kµ. The commutation relations in

Eq. (1.11) imply that Kµ lowers the scaling dimension ∆ of any given operator O (0) by one,

[D, [Kµ,O (0)]] = [Kµ, [D,O (0)]]+ [[D,Kµ],O (0)] = (∆−1)KµO (0) . (1.22)

Given an operator O ′(0) with scaling dimension ∆′ we can act repeatedly with Kµ and obtain an

12The notation Pµ ◦O (x) also expresses the geometric procedure of surrounding the operator insertion O (x) with a topological

charge operator Pµ ∼Q(P )
µ inside the path integral.

13In terms of x0, x1, . . . , xD , xD+1 the generators are J0µ = (Pµ+Kµ)/2, JD+1µ = (Pµ−Kµ)/2, JD+10 = D .
14The action of a local operator on a given function only depends on a single point x and it is in principle possible to determine

the output value at x solely from the values of the input in an arbitrarily small neighbourhood of x. In radial quantization we
condense these properties and simply define a local operator O (0) to be an eigenstate of the dilatation operator. On the other
hand, the action of a non-local operator does not depend on a single point in spacetime. A large class of (linear) non-local
operators is given by the integral transforms (e.g. the Fourier or Laplace transforms).

15As O (x) belongs to an irreducible representation of the Lorentz group — according to Schur’s Lemma — any matrix commuting
with all Sµν has to be a multiple of 1. Additionally, the group of scale transformations is not compact, hence ∆ is a real number.
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Chapter 1. Prerequisites: Conformal Field Theory and Spontaneous Symmetry Breaking

operator with arbitrarily low scaling dimension, implying that scaling dimensions are not bounded

from below. As in any physically sensible theory this cannot be the case (e.g. this makes it impossible

for the theory to be unitary), this process has to eventually terminate, meaning there exists an operator

O (0) = Kµ1 ◦ · · · ◦Kµn ◦O ′(0) such that

[Kµ,O (0)] = 0, ∀µ . (1.23)

Operators satisfying Eq. (1.23) are called primary. For any primary operator O there exists a tower of

descendant operators — or a conformal multiplet — with increasing scaling dimension constructed by

repeatedly acting with the momentum operators Pµ,

O (0) −→ Pµ1 ◦ · · · ◦PµN ◦O (0) , ∆−→∆+N . (1.24)

Identifying all primary operators in a CFT is equivalent to identifying all operators in a CFT. As in any

other (flat space) QFT, the momentum operator — or momentum generator — acts as a derivative on

the space of local operators,

[Pµ,O (x)] = pµO (x) = ∂µO (x) . (1.25)

Consider the operator insertion O (x) away from the origin. The exponential exp[x ·P] translates the

operator O (0) away from the origin such that O (x) = exp[x ·P]◦O (0). This tells us that the local operator

O (x) is an infinite linear combination of descendant operators of O (0) (and hence clearly not an

eigenstate of D).
O (x) =∑

n
xµ1 . . . xµn Pµ1 ◦ · · · ◦Pµn ◦O (0) . (1.26)

The conditions in Eq. (1.21) and Eq. (1.23) allow us to construct a representation of the conformal

algebra out of any primary O (0) and its descendants (via Pµ).16 Due to the similarities between

conformal multiplets and SU (2) representations we will sometimes refer to the momentum generators

Pµ as raising operators and to the SCT generators Kµ as lowering operators.

In D ≥ 3 — independent of the existence of a Lagrangian description of the theory — CFTs are

formulated in terms of primary operators (or fields in the Lagrangian description). Primary operators

are defined by their transformation behaviour under conformal transformations in Eq. (1.21) and

Eq. (1.23). Equivalently to Eq. (1.21) and Eq. (1.23), a primary operator of scaling dimension ∆ can be

defined to be homogeneous (of degree ∆) and transform under a conformal transformations as

O (x) 7→O ′(x ′) =
∣∣∣∣∂x ′(x)

∂x

∣∣∣∣ ∆D R(x)O (x) , (1.27)

where |∂x ′/∂x| =Ω−D is the Jacobian of the (finite) transformation and R(x) encodes the representation

of the field O (x) under the action of the rotation group. The equivalence of Eq. (1.27) and Eqs. (1.21), (1.23)

has been known for a while and is presented properly in [69]. Eq. (1.27) presents the most general

transformation behaviour under the conformal group that fields can exhibit in physically well-motivated

theories [70–72].

16The action of the conformal generators will never take us out of the conformal multiplet. In fact, it can be shown that any
local operator in a unitary CFT is a linear combination of primary and descendant operators [21].
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1.1 Conformal field theory

The action of the conformal generators on local operator insertions O (x) away from the origin is
encoded by the differential operators in Eq. (1.4),

[Mµν,O (x)] = (mµν+ i Sµν)O (x) = (xν∂µ−xµ∂ν+ i Sµν)O (x) ,

[D,O (x)] = (d +∆)O (x) = (xν∂ν+∆)O (x) ,

[Kµ,O (x)] = (2xµ∆+2i xνSνµ+kµ)O (x) = (2xµ∆+2i xνSνµ+2xµ xν∂ν−x2∂µ)O (x) ,

(1.28)

in accordance with the usual classical analysis [22] (see also Appendix A.2 for details).17 Conveniently,

the action of all of the conformal generators can be neatly summarized as

[Q(ϵ),O (x)] =
(
ϵ ·∂+ ∆

D
(∂ ·ϵ)− i

2

(
∂µϵν

)
Sµν

)
O (x) . (1.29)

This is the most general form of the conformal generator in Eq. (1.15) and Eq. (1.15). In particular,

this result implies that the stress-energy tensor T µν is primary with ∆= D [21]. Finally, we repeat that

the condition in Eq. (1.29) at x = 0 defining primaries in the operator formalism is equivalent to the

definition of a primary operator/field in Eq. (1.27).18 A rigorous proof of this statement can be found

in [69].

1.1.2 Conformal Ward–Takahashi identities

Ward-Takahashi identities are the quantum analogue of the classical conservation of currents associated

to a continuous symmetry via Noether’s theorem. Any local QFT has a conserved stress-energy tensor,

∂µT µν(x) = 0. (1.30)

This condition is satisfied as an operator identity and is modified once we have operator insertions in

the path integral, i.e. if we consider correlation functions. In the presence of operator insertions we

need to include contact terms,

∂µ〈T µν(x)O1(x1) · · ·ON (xN )〉 =−
N∑

k=1
δ(x −xk )∂νk〈O1(x1) · · ·ON (xN )〉 . (1.31)

This is the Ward identity for translational invariance with the associated current jµν = T µν. It can be

derived as such from translational invariance of the path integral.19

Invariance under rotations — with the associated current jµνρ = T µνxρ −T µρxν — produces the Ward

17The action of the conformal charges on operator insertions can be deduced via the formula G(ϵ)
∣∣
x = ex·PG(ϵ)

∣∣
x=0 e−x·P. In

the computation it is important to keep in mind that the generators satisfy the commutation relations in Eq. (1.17) and not the
ones in Eq. (1.11), see the discussion after Eq. (1.15).

18To illustrate the equivalence, consider the result in Eq. (1.39), which can be derived using Eq. (1.28) — i.e. Eq. (1.29) — by
noting that the simultaneous action of Q(ϵ) on all operator insertions must vanish as moving Q(ϵ) to the boundary at infinity
yields zero. The same result can be derived using Eq. (1.27) or Eq. (A.50) in Appendix A.2.2.

19Eq.(1.31) can equivalently be derived by coupling the QFT to a background metric g near flat space. In this picture the
stress-energy tensor is the response to a small metric perturbation δg and we simply demand diffeomorphism invariance near
flat space [21, 73].
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Chapter 1. Prerequisites: Conformal Field Theory and Spontaneous Symmetry Breaking

identity20

〈(T µν(x)−T νµ(x))O1(x1) · · ·ON (xN )〉 =−
N∑

k=1
δ(x −xk ) i Sνµk 〈O1(x1) · · ·ON (xN )〉 . (1.32)

This means that symmetricity of the stress-energy tensor — T µν(x) = T νµ(x) — in a Poincaré invariant

QFT is satisfied, except at the positions of operator insertions, where we again need to add contact

terms related to the spin of the insertions.

In a CFT — besides symmetricity and the conservation law — the stress-energy tensor is also traceless

and satisfies Eq. (1.1).21 The final Ward identity associated to conformal invariance — that modifies

Eq. (1.1) in the presence of operator insertions — is derived from invariance under dilatations and

reads22

〈T µ
µ (x)O1(x1) · · ·ON (xN )〉 =−∑

i=1
δ(x −xi )∆k〈O1(x1) · · ·ON (xN )〉 , (1.33)

with ∆k the scaling dimension of the operator/field φk .

1.1.3 Conformal correlators

Some of the important results in CFT at the quantum level are the constraints imposed by conformal

invariance on N -point correlation functions of primary operators. We will derive these constraints via

the path-integral description while assuming the existence of a Lagrangian description, but we note

that they can also be derived using the operator formalism as presented in Section 1.1.1.

Consider a QFT with field content {φ} and action S[φ]. In the path integral formalism properly

normalized N -point functions are given by

〈O1(x1) · · ·ON (xN )〉 = 1

Z

∫
DφO1(x1) · · ·ON (xN )e−S[φ] , Z =

∫
Dφe−S[φ] . (1.34)

The path-integral measure Dφ is a formally defined quantity that can thought of as

Dφ∝ ∏
x∈RD

dφ(x) . (1.35)

We assume conformal invariance of the action as well as the path-integral measure. It is important to

point out that (conformal) invariance of the path-integral measure does not automatically follow from

(conformal) invariance of the theory at the classical level. If a theory exhibits a classical symmetry but

the path-integral measure fails to be invariant, then we speak of an anomaly and the symmetry is called

anomalous.23

Assuming that both the action and the path-integral measure are invariant under a conformal transformation

(assuming quantum conformal invariance) implies that N -point correlation functions satisfy

〈O1(x ′
1) · · ·ON (x ′

N )〉 = 〈O ′
1(x ′

1) · · ·O ′
N (x ′

N )〉 , (1.36)

20We apply Eq. (1.31) to get rid of derivatives in Eq. (1.32). The same procedure is applied to extract Eq. (1.33).
21There can be Weyl anomalies in curved space.
22There is no additional Ward identity associated to SCTs. The additional conserved charges Q(K )

µ can be constructed from the
traceless stress-energy tensor (see Appendix A.2.3) and do not lead to additional linearly independent Ward identities.

23For details on anomalies interesting references are e.g. [74, 75].
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1.1 Conformal field theory

under a conformal transformation O (x) 7→ O ′(x ′) (the field content transforms equivalently). For

example, invariance under translations implies that

〈O (x1 +a) · · ·O (xN +a)〉 = 〈O (x1) · · ·O (xN )〉 = f (x1 −x2, x1 −x3, . . . , xN−1 −xN ) , (1.37)

implying that the correlation function only depends on the distance between insertions. The consequence

of Lorentz invariance is that correlation functions only depend on the distance between insertions.

Hence, full Poincaré invariance implies that

〈O1(x1) · · ·ON (xN )〉 = f (|x1 −x2|, |x1 −x3|, . . . , |xN−1 −xN |) . (1.38)

Even though Poincaré invariance already constrains correlation functions to some extent, the additional

invariance under dilatations and SCTs in fact completely fixes the form of all two- and three-point

functions (between primaries).24

Scalar two-point functions are completely constrained by invariance under dilatations and SCTs to be

of the form

〈O1(x1)O2(x2)〉 =
{

CO1 |x1 −x2|−2∆ = |x1 −x2|−2∆ , if ∆1 =∆2 =∆
0 otherwise

. (1.39)

We remark that conformal invariance alone does not directly imply the normalization CO1 of the two-

point function to be 1. However, due to the orthogonality, it is always possible to pick an appropriate

basis of (scalar) operators such that all two-point functions are properly normalized with COi = 1.25

In the same way the implications of conformal invariance almost completely specify scalar three-point

functions,

〈O1(x1)O2(x2)O3(x3)〉 = CO1O2O3

x
∆(3)

12
12 x

∆(3)
23

23 x
∆(3)

31
31

, (1.40)

with xi j = |xi −x j | , ∆(3)
12 =∆1 +∆2 −∆3 , ∆(3)

23 =∆2 +∆3 −∆1 , ∆(3)
31 =∆3 +∆1 −∆2 .

The three-point coefficients COi O j Ok — since field redefinitions have already been exhausted to normalize

all two-point functions — are physical quantities and cannot be normalized away. They are a defining

feature of a CFT and together with the scaling dimensions of the operators build the conformal data.

The conformal data define a CFT completely via the OPE, as we will discuss later.

Four-point scalar correlation functions are no longer completely fixed by conformal invariance: Once

there are four spacetime points available it is possible to construct so-called cross-ratios,

u = x12x34

x31x42
, v = x12x34

x23x41
, (1.41)

which are invariant under all conformal transformations. As a consequence, four-point functions are

24Under SCTs the distance between two spacetime points only changes by an overall scale factor.
25This simply amounts to a redefinition Oi →Oi /

√
COi

.
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Chapter 1. Prerequisites: Conformal Field Theory and Spontaneous Symmetry Breaking

only fixed up to a arbitrary function of u and v ,

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 = f (u, v)

x
∆(4)

12
12 x

∆(4)
23

23 x
∆(4)

34
34 x

∆(4)
41

41 x
∆(4)

31
31 x

∆(4)
42

42

, ∆(4)
ab =∆a +∆b −

∑
i

∆i

3
. (1.42)

For N -point correlation functions there are N (N −3)/2 cross-ratios that can appear.

Apart from scalar correlation functions, two-point functions of operators with non-zero spin are again

completely fixed by conformal invariance. They are only non-zero if operators have identical scaling

dimensions and spin.26

The two-point correlation function of spin-1/2 primary operators takes the form27

〈Oα(x1)Ōβ(x2)〉 =CO

xµ12γ
αβ
µ

x2∆+1
12

, (1.43)

where CO is a normalization that generically depends on the dimension D of spacetime and the choice

of gamma matrices γµ. Again, the normalization of the operators plus the normalization of the gamma

matrices can be chosen such that the two-point function of spinors is properly normalized [66, 67, 77,

78] with CO = 1.

The two-point function of spin-1 primary operators — i.e. vector fields — with scaling dimension ∆ is

given by

〈Oµ(x1)Oν(x2)〉 =CO

Iµν(x12)

x2∆
12

, Iµν(x) = ηµν−2
xµxν

x2 . (1.44)

The normalization CO may be relevant, e.g. for conserved currents Oµ = jµ. The orthogonal matrix

Iµν(x) appearing in Eq. (1.44) is called the inversion tensor and also appears under inversions of

spacetime.28

For higher-spin primaries — interestingly — no new conformally covariant tensors appear. The

fundamental building block Iµν(x) can be used to construct all higher-spin two-point functions. In

particular, for spin-ℓ traceless symmetric tensors the two-point correlation function reads

〈Oµ1...µℓ (x1)Oν1...νℓ (x2)〉 =CO

(
Iµ1ν1 (x) · · · Iµℓνℓ (x) + permutations − traces

)
x2∆

12

. (1.45)

We need to subtract traces so that the result is separately traceless in the µ and ν indices (not necessarily

under corrections). The normalization CO often times can be removed, but for some particular

operators there might be a non-trivial normalization appearing. For example, the normalization

26Lorentz invariance by itself already enforces the total spin to be vanishing.
27Once operators exhibit spin the embedding formalism provides a more practical and transparent way to derive the general

form of the correlators [23, 67, 68, 76]. In the embedding space RD+2 operators with spin can be naturally defined via their
representation under the Lorentz group due to the isomorphism in Eq. (1.19). For example, we can define a vector field under the
Lorentz group in RD+2 that is projected down to a vector field under the conformal group in RD , simplifying the derivation of
correlators via the same projection [23, 66].
Spinors in RD can also be dealt with via spinors in the embedding space, but there are some subtleties arising from the Clifford
algebra in different dimensions and the precise choice of gamma matrices [66, 67, 77, 78].

28Under an inversion xµ
I7→ x′µ we have ∂x′µ/∂xν =Ω(x)Iµν(x).
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1.1 Conformal field theory

of the stress-energy tensor is fixed by the Ward identities and CT is physically relevant.

Three-point functions of operators with spin are fixed up to a finite number of coefficients. For example,

correlation functions of the type scalar–scalar–(spin-ℓ) are fixed up to a single constant,

〈O1(x1)O2(x2)Oµ1...µℓ (x3)〉 = Cφ1φ2 O (Zµ1 · · ·Zµℓ − traces )

x
∆(3)

12
12 x

∆(3)
23

23 x
∆(3)

31
31

, Zµ = xµ13

x2
13

− xµ23

x2
23

. (1.46)

This formula also applies for the case where Oµν = Tµν the stress-energy tensor. In that case the

three-point coefficient is fixed by a Ward identity [79],

CO1 O2 T =− D∆1

D −1

δ12

ΩD
, (1.47)

whereΩD is the volume of the unit sphere. A similar statement is true for any three-point correlator

including a conserved current Oµ = jµ.

In general, there might be several spin structures consistent with conformal invariance. For three-

point correlation functions consisting of multiple operators with spin there can be several linearly

independent structures consistent with conformal invariance. For every linearly independent tensor

structure there is a three-point coefficient, schematically we can include additional spin indices and

write

〈O a
i (x1)Ob

j (x2)O c
k (x3)〉 = ∑

O(n) abc (x1, x2, x3)
n: tensor
structures

C (n)
Oi O j Ok

x
∆(3)

i j

12 x
∆(3)

j k

23 x
∆(3)

ki
ki

, (1.48)

where the indices a, b, c are (arbitrary) spin indices and O(n) abc (x1, x2, x3) denote the different tensor

structures that can appear.

1.1.4 Radial quantization

In the path-integral formulation of QFT symmetries are expressed in terms of conserved charges

Qα(Σ) that live on codimension-1 hypersurfaces. In the operator formalism these symmetries are

implemented in terms of local (differential) operators. The fact that symmetries act locally is consistent

since the charges Qα(Σ) are topological operators that can be deformed to live in an arbitrary small

neighbourhood of the operator insertions they act on (i.e. on a sphere ∂B(x) around the insertion point

x with arbitrary small radius).

For any given QFT the spacetime symmetries also dictate the appropriate choices of foliation of

spacetime and hence the quantization scheme. Relating hypersurfaces by a symmetry transformation

guarantees that the associated Hilbert spaces are isomorphic. In a CFT the presence of scale invariance

allows for a particularly convenient choice of quantization called radial quantization. The exponential

of the dilatation operator D — (r /r0)−D with r0 being the radius of some reference sphere SD−1
r0

(usually

r0 = 1) — in CFTs on RD maps spheres SD−1
r ⊂ RD of different radii r into each other. It is therefore

natural to foliate spacetime into spherical hypersurfaces.
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Chapter 1. Prerequisites: Conformal Field Theory and Spontaneous Symmetry Breaking

In the radial quantization picture states live on spheres SD−1
r and are evolved from smaller spheres

SD−1
r to larger spheres SD−1

r ′>r using the dilatation operator D. Each sphere has an associated Hilbert

space and in order to act with a symmetry generator one inserts spherical surface operators Q(SD−1
r+ϵ )

into the path integral. It is most convenient to work in polar coordinates (r,nΩ),

ds2
RD = dr 2 + r 2dΩ2

D−1 . (1.49)

Correlation functions are interpreted as radially ordered products,

〈O1(x1) · · ·ON (xN )〉 = 〈0|R{O1(x1) · · ·ON (xN )} |0〉 (1.50)

= θ(r1 − r2)θ(r2 − r3) · · ·θ(rN−1 − rN ) 〈0|O1(x1) · · ·ON (xN ) |0〉 +permutations.

Initial and final states in radial quantization are vacuum states |0〉 ,〈0| living at r = 0 and r = ∞,

respectively. The radial ordering prescription R{. . . } is consistent as operators at the same radius and

different angles commute.29

Naturally, radial quantization can be performed around different points of RD . The same correlator

〈O1(x1) · · ·ON (xN )〉 will get a different ordering in radial quantization schemes around different points,

but the overall outcomes are isomorphic to each other.30

The unitary evolution operator U in radial quantization is the exponential of the dilatation operator. It

is most conveniently written using the ”radial time” coordinate τ= r0 log(r /r0),

U =
(

r

r0

)−D

= e
− τ

r0
D

. (1.51)

The conformal transformation τ= r0 log(r /r0)31 relates flat space RD to the cylinder Rτ×SD−1
r0

via an

additional local Weyl rescaling of the metric in the cylinder geometry by e
2 τ

r0 ,

ds2
RD = dr 2 + r 2dΩ2

D−1

r /r0 = e
τ

r0︸ ︷︷ ︸= e
2τ
r0

ds2
Rτ×SD−1

r0︷ ︸︸ ︷(
dτ2 + r 2

0 dΩ2
D−1

) ds′2 = e
2τ
r0 ds2︸ ︷︷ ︸= ds′2

Rτ×SD−1
r0

.
(1.52)

At this point it is important to note that not all local Weyl rescalings of the metric correspond to

conformal transformations. While so-called Weyl invariance implies conformal invariance, the converse

is not necessarily true without additional assumptions [80]. However, all unitary CFTs are believed to be

Weyl invariant (up to the Weyl anomaly) [81]. Under a Weyl rescaling gµν 7→ g ′
µν =Ω2(x)gµν correlation

functions of local operators in a CFT transform as32

〈O (g )
1 (x1) · · ·O (g )

N (xN )〉g =
(∏

i
Ω∆i (xi )

)
〈O (Ω2g )

1 (x1) · · ·O (Ω2g )
N (xN )〉Ω2g . (1.53)

29This is analogous to how space-like operators commute in Minkowski space.
30This is analogous to changing the frame of reference in a Lorentz invariant theory in Minkowski space.
31The transformation τ= r0 log(r /r0) satisfies δr /δτ= r /r0 = eτ/r0 . Importantly, it does not amount to a pure dilatation with

constant λ as it has a spacetime dependency.
32In even dimensions the partition function Z (g ) in the geometry g , as defined in Eq. (1.34), can transform with a Weyl anomaly,

Z (g ) = Z (Ω2g ) eSWeyl[g ]. However, this does not affect correlation functions of local operators as they are properly normalized by
a factor of 1/Z (g ) and the Weyl anomaly cancels out.

24



1.1 Conformal field theory

As a consequence, if the scale factors between the two geometries are carefully tracked, radial quantization

in flat space is equivalent to equal-time quantization in τ on the cylinder.33

In this so-called cylinder interpretation states live on spheres SD−1
r0

and scale transformations r 7→λr

become shifts in radial time τ 7→ τ+ logλ. The Hamiltonian H (cyl) on the cylinder is given by the

dilatation operator in flat space,

H (cyl) = D

r0
, (1.54)

and time evolution is generated by U = eτH (cyl)
. While radial quantization relies only on scale invariance

as an assumption, the cylinder interpretation relies on full conformal invariance of the theory as the

non-trivial local Weyl rescaling cannot be compensated otherwise.

The statement that a CFT on the cylinder is equal to the same theory in flat space modulo scale factors

is non-trivial. Consider the Ising model. Clearly, the Ising model on a cylinder is not equivalent to the

Ising model in flat space. However, at the critical point where the Ising model becomes conformal and

the stress-energy tensor traceless, the theory becomes insensitive to Weyl rescalings and the theories

on different geometries become related.

The cylinder geometry is of particular interest because of the fact that the dilatation operator in flat

space becomes the Hamiltonian on the cylinder. Because of this fact the energy of a state on the

cylinder is the scaling dimension of the associated operator/state in flat space,34

E (cyl) = ∆

r0
. (1.55)

The Weyl factor for the flat space to cylinder map appearing in Eq. (1.53) isΩ2 = e
2 τ

r0 . Given an operator

O (x) =O (flat)(x) it is therefore natural to define the associated cylinder operator as

O (cyl)(τ,n) = e
τ

r0
∆
O (flat)(x) , x = r0eτ/r0 n , n ∈ SD−1

1 . (1.56)

The cylinder field is not an artificial construct, it is the same field as its flat counterpart but correlation

functions are simply measured in a different geometry.

The cylinder is not the only geometry that is related to flat space via a Weyl rescaling. The procedure

outlined around Eq. (1.53) can be applied to other symmetries that are conformally flat. For example,

the stereographic projection gives a Weyl mapping between the D-sphere SD
r0

and flat space. Consider

the transformation r = r0 sinϕ/(1−cosϕ)

ds2
RD = dr 2 + r 2dΩ2

D−1

r=r0
sinϕ

1−cosϕ= r 2
0

(1−cosϕ)2

(
dϕ2 + sin2ϕdΩ2

D−1

)︸ ︷︷ ︸
=dΩ2

D

. (1.57)

This geometry is of particular interest in the study of classical conformal transformations as they

are always non-singular in these coordinates. In the quantum theory the spherical geometry is less

33For the map from flat space to the cylinder in Eq. (1.52) correlation functions are related by

〈O (flat)
1 (x1) · · ·O (flat)

N (xN )〉(flat) =
(∏

i e
− τ

r0
∆i

)
〈O (cyl)

1 (x1) · · ·O (cyl)
N (xN )〉(cyl) .

34The state-operator correspondence has important consequences here as it guarantees that states on the cylinder are in a
1-to-1 correspondence with operators inserted in flat space.
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Chapter 1. Prerequisites: Conformal Field Theory and Spontaneous Symmetry Breaking

convenient as the associated choices of foliation are cumbersome. For example, if one chooses to

foliate along ϕ, then the hypersurfaces Σ(ϕ) are spheres with a ϕ-dependent radius, Σ(ϕ) = SD−1
sinϕ. In

other words, the generator of time translation is not a symmetry of the system. The same holds true for

any other choice of time coordinate on the sphere.

Another geometry of interest is the so-called N –S quantization scheme [23, 24], which is closely related

to the cylinder and is very important in the study of Minkowskian CFTs [24].

1.1.5 State ⇔ operator correspondence

Once we understand how local (primary) operators behave under the action of the conformal generators

and how radial quantization — including the cylinder interpretation — is set up using conformal

invariance, we are able to prepare states in radial quantization. For any QFT it is possible to define

states via insertions of local operators in the path integral and that is no different for CFTs. Interestingly,

under the assumption of conformal invariance the converse statement — that local operators can be

defined via states in radial quantization — holds true, giving rise to the concept of the state–operator

correspondence in CFT:

”For a CFT states in radial quantization are in a 1-to-1 correspondence with local operators.”

In radial quantization a state |ψ〉 in the Hilbert space on some sphere SD−1
r can be prepared by inserting

operators in the interior Br (0) =: Br of the sphere SD−1
r and performing the path integral over Br . Adding

no operator insertions inside Br and performing the path integral over Br produces the vacuum state

|0〉 on ∂Br = SD−1
r . The vacuum state |0〉 is invariant under all symmetries as any topological operator

Q(SD−1
r ) can be shrunk all the way to the point x = 0 inside of Br without crossing any operators,

|0〉 =
SD−1

r
Br ,

SD−1
r

Q

=
SD−1

r

Q
= 0. (1.58)

Consider a CFT described by a Lagrangian L and a set of fields {φ}. The Hilbert space on any given

spherical hypersurface is spanned by field eigenstates |φr 〉, where φr (n) is a field configuration on

r n ∈ SD−1
r . The state |φr 〉 and the configuration φr (n) are only defined on SD−1

r and not in the interior.

A general state on SD−1
r is a linear combination of field eigenstates and can be represented by a path

integral,

|ψ〉 =
∫

Dφr |φr 〉〈φr |ψ〉 . (1.59)

The coefficient 〈φr |0〉 is given by the path integral over the interior Br with boundary condition φr (n),

〈φr |0〉 =
∫

Dφ(ρn) e−S[φ] .

φ(r n)=φr (n)
ρ≤r

(1.60)
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1.1 Conformal field theory

The insertion of an operator inside x ∈ Br defines a state |O (x)〉 = Ô (x) |0〉 on SD−1
r , and its overlap with

|φr 〉 is given by the path integral with an insertion of O (x) at x ∈ Br ,

|O (x)〉 =O (x) |0〉 =
SD−1

r
O (x) , 〈φr |O (x)〉 = 〈φr |O (x) |0〉 =

∫
Dφ(ρn) O (x)e−S[φ] .

φ(r n)=φr (n)
ρ≤r

(1.61)

For every configuration of operator insertions inside Br there exists an associated state on the sphere

SD−1
r . These states living on the boundary SD−1

r can be prepared by simply inserting the associated set

of operators in the path integral.

The construction of states from local operator insertions is consistent for any QFT. However, in a CFT

the construction of states from local operator insertions works backwards as well, in the sense that we

can construct local operators from states living on spheres with non-zero radius. Consider an eigenstate

of the dilatation operator |Oi 〉. It satisfies

D |Oi 〉 =∆i |Oi 〉 . (1.62)

The states |Oi 〉 generate operators. To see this we cut spherical holes Bρi (xi ) with radii ρi centred

around xi out of the path integral.35 The states |Oi 〉 are glued at the boundaries of the holes Bρi (xi ),

respectively. The resulting quantity can be shown to behave exactly like a correlator of local operators,

〈O1(x1) · · ·ON (xN )〉 =
∫ N∏

i=1
Dφr i 〈φr i |Oi 〉

∫
Dφ(x) e−S[φ] .

φ|∂Bρi
= φr i

x ̸=Bρi (xi )

(1.63)

The path integral Dφ is performed over the region outside of the holes Bρi (xi ) and the path integrals

Dφr i are performed over all possible field configurations on the boundaries ∂Bρi (xi ). The expression

φ|∂Bρi
denotes the restriction of the bulk field φ(x) to the i -th boundary ∂Bρi (xi ).

It seems crucial that the balls Bρi (xi ) do not overlap in this construction, a condition that is seemingly

making this construction non-local. However, if the balls Bρi (xi ) do overlap we can apply a scale

transformation under which the quantity in Eq. (1.63) satisfies

〈O1(x1) · · ·ON (xN )〉 =λ
∑

i ∆i 〈O1(λx1) · · ·ON (λxN )〉 . (1.64)

For sufficiently large λ the holes Bρi (xi ) do no longer overlap and Eq. (1.63) is well defined for any

choice of radii ρi . This means that the insertion points xi can be arbitrarily close to each other for an

arbitrary choice of ρi and Eq. (1.63) defines a correlator of local quantities/operators.

The construction in Eq. (1.63) can be slightly modified and then used to define a local operator from

35The radii ρi should in principle be chosen such that the balls Bρi (xi ) do not overlap.
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any state |O〉 on SD−1
r>0 via its correlation functions with all the other operators in the theory,

〈O1(x1) · · ·ON (xN )O (0)〉 = 〈0|R{O1(x1) · · ·ON (xN )O (0)} |0〉 = 〈0|R{O1(x1) · · ·ON (xN )} |O〉
=

∫
Dφr 〈φr |O〉

∫
Dφ(x) O1(x1)

φ|∂Br = φr

x ̸=Br (0)

· · ·ON (xN ) e−S[φ] . (1.65)

The initial state |O〉 lives on the sphere SD−1
r and, in principle, any radius r such that r < ri = |xi |, ∀i

can be chosen to define the correlator in the path-integral formalism.36 The construction in Eq. (1.65)

is well defined for xi ̸= 0, ∀i and completely defines the associated local operator O (0) via its correlation

functions with other operators.

The ability to construct unique local operators from states in radial quantization allows us define local

operators in a CFT consistently as eigenstates of the dilatation operator D in radial quantization.37

Under this definition the constructions in Eq. (1.61) and Eq. (1.63) become manifestly inverse with

respect to each other. A primary operator creates a primary state that transforms in a finite-dimensional

representation of the rotation group plus scale transformations and gets annihilated by Kµ, and vice

versa,
Oi (0) ←→ Oi (0) |0〉 = |Oi (0)〉
[Kµ,Oi (0)] = 0 ←→ Kµ |Oi (0)〉 = 0

[D,Oi (0)] =∆i Oi (0) ←→ Dµ |Oi (0)〉 =∆i |Oi (0)〉
[Mµν,Oi (0)] = i SµνOi (0) ←→ Mµν |Oi (0)〉 = i Sµν |Oi (0)〉

, ∀i . (1.66)

The action of the conformal group on states in radial quantization follows from the invariance of the

vacuum state |0〉 under symmetry transformations. A conformal multiplet is generated by repeated

action of the momentum generators Pµ ∼ ∂µ

O (0) , ∂µO (0) , ∂ν∂µO (0) , . . .︸ ︷︷ ︸
descendants

, ←→ |O〉 , Pµ |O〉 , PνPµ |O〉 , . . .︸ ︷︷ ︸
descendant states

.
(1.67)

The conformal algebra acts exactly the same way on states |O (x)〉 as on local operators O (x). In fact,

the action of symmetry generators on local operators in any Euclidean QFT can be considered by

surrounding operators with charges supported in spheres, as discussed, a procedure which in a CFT is

essentially equivalent to radial quantization.

The fact that in radial quantization states are in a 1-to-1 correspondence with local operators can be

understood from a geometric point of view. In an arbitrary foliation of spacetime of the form Rt ×Σ
initial states live on a surface Σ at time t =−∞, while in radial quantization they live at the origin r =0,

i.e. a single point,

quantization Rt ×Σ radial quantization

|O〉x =O (−∞,x) |0〉 , x ∈Σ , ←→ |O〉 =O (0) |0〉 .
(1.68)

36In practice, the same rescaling argument as in Eq. (1.64) holds such that all choices of 0 < r < ri are equivalent.
37In unitary CFTs the dilatation operator D is always diagonalizable.
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1.1 Conformal field theory

This is to say that in radial quantization the entire Hilbert space can be thought of as living at a single

point. The state-operator correspondence essentially states that in a CFT operators acting locally in

a small neighbourhood of the origin r = 0 create all states in the Hilbert space of the theory. The

analogous picture in a foliation of the form Rt ×Σ breaks down as you can no longer think of local

operators acting at a single point in order to get the full Hilbert space back. There is always a map

from operators to states via their action on the vacuum, but only for CFTs does every state correspond

uniquely to a single local operator inserted at x = 0.

1.1.6 Reflection positivity on the cylinder and unitarity bounds

In radial quantization on the cylinder in and out vacuum states — which in flat space live at r = 0,∞,

respectively — live at cylinder time τ = ±∞, respectively, and are related to each other via a time

reflection τ 7→ −τ. This property of the vacuum generalizes to all operators of the theory. In fact, in the

cylinder interpretation for local operators on Rτ×SD1
r0

Hermitian conjugation is equivalent to cylinder

time reflection τ 7→ −τ.

Reflection positivity for a scalar operator in a CFT on the cylinder results in the condition

O (cyl)†(τ,n) =O (cyl)(−τ,n) . (1.69)

It is important to emphasize that Hermitian conjugation in radial quantization is different to Hermitian

conjugation in the usual quantization scheme with time direction τ= x0. After a Weyl rescaling, in flat

space Hermitian conjugation is equivalent to an inversion of spacetime,

O (flat)†(x) =
(

1

x2

)−∆
O (flat)

( x

x2

)
. (1.70)

Conjugation properties of operators directly carry over to states in radial quantization. A (scalar)

primary state |O〉 =O (0) |0〉 behaves under Hermitian conjugation as

(|O〉)† = 〈0|O (0)† = lim
y→∞ y2∆ 〈0|O (y) . (1.71)

Eq. (1.70) can be generalized to fields with arbitrary spin. For example, the Hermitian conjugation of a

flat space tensor operator inside the path integral in radial quantization is given by

O (flat)†
µ1...µN

(x) = I ν1
µ1

· · · I νN
µN

O (flat)
ν1...νN

( x

x2

)
, I ν

µ = δ ν
µ −2

xµxν

x2 . (1.72)

Applying Eq. (1.72) to the stress-energy tensor allows us to deduce the transformation property of the

charge operators,

Q(ϵ)† =−Q(IϵI ) , ←→
Q(M)†
µν =−Q(M)

µν

(
M †
µν =−Mµν

)
,

Q(D)† =Q(D)
(
D† = D

)
,

Q(P )†
µ =Q(K )

µ

(
P †
µ = Kµ

)
.

(1.73)
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We can make use of Hermitian conjugation to compute properties of correlation functions in a purely

algebraic way. For example, consider a scalar two-point function,

〈O (x)O (y)〉 = x−2∆ 〈O |e
y·K
y2 ex·P |O〉 , (1.74)

where 〈O | is given by the expression in Eq. (1.71). By expanding the exponentials using the Baker–

Campbell–Hausdorff (BCH) formula and the conformal algebra it is possible to compute the two-point

correlator term-by-term and recover Eq. (1.39) in an expansion in small |y |/|x|.38

Hermitian conjugation on the cylinder leads to a natural inner product on states in radial quantization.

This inner product can then be used to deduce bounds that must be satisfied by a unitary (or reflection-

positive) theory by demanding that all states in a conformal multiplet have positive norm. For a

scalar operator this results in the following so-called unitarity bounds when considering the first few

descendant states in the conformal multiplet,

||O〉|2 = 〈O |O〉 ≥ 0, (trivial)

|P0 |O〉|2 = 〈O | [K0,P0] |O〉 = 2∆〈O |O〉 ≥ 0,∣∣PµPµ |O〉∣∣2 = 8D∆

(
∆− D −2

2

)
〈O |O〉 ≥ 0.

(1.75)

The condition∆= 0 is satisfied solely by the unit operator 1. The expression 〈O |O〉 is just the normalization

of the two-point function and can be set to 1. As it turns out, higher descendant states do not impose

stronger constraints on the scaling dimension ∆ [72].

Similar unitarity bounds can be computed for spinning primary operators. The most notable unitarity

bounds are [21, 72, 82]

spin 0 : ∆≥ D −2

2
, spin

1

2
: ∆≥ D −1

2
, spin l ≥ 1 : ∆≥ D + l −2. (1.76)

These inequalities are the best you can do for spinors and traceless symmetric tensors in a generic

CFT. In theories with additional symmetries — like supersymmetry — unitarity bounds can be more

interesting [82].

If the scaling dimension ∆ saturates one of the unitarity bounds in Eq. (1.76) the associated conformal

multiplet includes a null state
∏

i Pµi |O〉 (state with zero norm).39 For the unity operator 1with scaling

dimension ∆= 0 this statement is trivial. For a scalar operator saturating the unitarity bound the null

state is P̂ 2 |O〉. This means that the operator O (x) satisfies the condition

∂2O (x) = 0. (1.77)

Hence, O (x) satisfies the Klein-Gordon equation for a free massless scalar field and thus decouples from

the rest of the CFT. For a traceless symmetric tensor operator of spin l the null state is Pµ |Oµµ2...µl 〉 [21],

hence

∂µOµµ2...µl (x) = 0. (1.78)

38There is an additional constant of normalization of the form 〈O |O〉 appearing which can be set to 1. This is just the
normalization of the two-point function.

39This directly follows from the derivation of the unitarity bounds from the norms of descendant states.
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1.1 Conformal field theory

Therefore, any operator Oµµ2...µl saturating the unitarity bound is a conserved current. Notable

examples here are global symmetry currents with (l = 1, ∆ = D − 1) and the stress-energy tensor

with l = 2, ∆= D .

Finally, we note that with a positive-definite inner product it is possible to prove that in a unitary CFT

all operators are linear combinations of primaries and descendants of said primaries. The only other

additional assumption required is that the partition function Z (β) = Trexp[−βD] of the theory on

S1
β
×SD−1

r0
is finite. In that case the spectral theorem tells us that exp[−βD] is diagonalizable, hence D is

diagonalizable.40 In addition, as D is Hermitian, its eigenvalues are real.

Pick any operator O that is an eigenvector of D with eigenvalue ∆.41 Since the partition function Z (β)

is finite there is only a finite number of primaries Oi with a smaller scaling dimension ∆i ≤∆. We can

now subtract the projections of O onto the conformal multiplets of the primaries Oi using the inner

product. The resulting operator we call O ′.
Assume that the operator O ′ after the subtraction of all projections is non-zero O ′ ̸= 0. By finiteness of

the partition function, repeatedly acting on O ′ with the lowering operators Kµ must eventually yield

zero, hence there exists another primary with scaling dimension smaller than ∆ not part of the set {Oi }.

We have a contradiction, hence O ′ = 0 and O is a linear combination of the primaries {Oi } and their

descendants.

1.1.7 The operator product expansion

In CFTs — even with a Lagrangian description — it proves useful to study operators rather than fields.

Any CFT contains a distinguished set of primary operators and the conformal multiplets they produce.

In a unitary CFT these are all the operators that exist, i.e. every operator is a linear combination of

primaries and their descendents. In essence, conformal invariance constrains theories so much that

a CFT can be defined purely algebraically by its primary operators and their scaling dimensions {∆}

as well as the three-point coefficients C (n)
Oi O j Ok

defined in Eq. (1.40), Eq. (1.46) and Eq. (1.48). To fully

understand why this is true, knowledge of the OPE and its peculiarities in CFT is required.

As discussed, a state on a given sphere SD−1
r is generated by inserting an operator O (x) inside of the

sphere in the ball Br , i.e. the insertion point satisfies |x| < r . Instead of a single operator insertion

consider the case where there are two operator insertions Oi (x)O j (0) in Br . Suppose we consider scalar

operators for simplicity, the resulting state on the sphere SD−1
r is

Oi (x)O j (0) |0〉 . (1.79)

However — as any state in a unitary CFT can be written as a linear combination of primaries and their

descendants — this state will have an expansion in terms dilatation eigenstates. Via the state-operator

correspondence this implies that the insertion of two scalar operators can be written as an expansion

of single (primary and descendant) operator insertions,

Oi (x)O j (0) |0〉 =∑
k

F a
Oi O j Ok

(x,P )O a
k (y)

∣∣
y=0 |0〉 . (1.80)

40In principle, boundedness of the operator exp[−βD] suffices for D to be diagonalizable.
41We can assume without loss of generality that O is an eigenstate of D . If not, it is a linear combination of eigenstates.
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where O a
k can have non-zero spin in general, even though we started with scalar operators. However, by

consistency, the operator O a
k must transform in a traceless symmetric tensor representation of SO(D).42

The index k runs over all primaries and the operator F a
Oi O j Ok

(x,P ) packages together primaries and —

by acting with Pµ — their descendants.
Eq. (1.80) is exact and can be used equivalently in the path-integral formalism, provided there exists
a sphere such that all other operator insertion except for two lie outside of said sphere. In the path
integral formalism, schematically Eq. (1.80) amounts to43 44

Oi (x1)O j (x2) =∑
k

F a
Oi O j Ok

(x12,∂2)O a
k (x2) , ←→ O j (x2)

Oi (x1)
=∑

k
F a

Oi O j Ok
(x12,∂2)

O a
k (x2)

.

(1.81)

Alternatively, radial quantization can be performed around a third point x3, slightly modifying the OPE

operators F a
Oi O j Ok

. And finally, operators may have non-zero spin and we need to include additional

spin indices, so that the most general form of the OPE reads

O a
i (x1)Ob

j (x2) =∑
k

F ′abc
Oi O j Ok

(x13, x23,∂3)O c
k (x3)

x3→x2−→ ∑
k

F abc
Oi O j Ok

(x12,∂2)O c
k (x2) . (1.82)

Conformal invariance strongly restricts the form of the OPE. For example, consider the scalar case in

Eq. (1.81). Consider the OPE of two scalar operators Oi ,O j producing a third scalar operator Ok . Acting

with both the dilatation operator D and the generators of the rotation group Mµν tells us that FOi O j Ok

has an expansion of the form

FOi O j Ok (x,∂) ∝|x|∆k−∆i−∆ j
(
1+#x ·∂+#(x ·∂)2 +#x2∂2 + . . .

)
, (1.83)

Eventually, the action of Kµ completely fixes FOi O j Ok up to an overall constant. This procedure can of

course be repeated equivalently for fields with spin.

Another way to see why the OPE is fixed by conformal invariance is by taking the correlation function

with a third operator on both sides of Eq. (1.82). This relates a three-point function on the left-hand

side to a sum of two-point functions on the right-hand side, both fixed by conformal invariance. For

simplicity, consider the scalar case in Eq. (1.81) and a third scalar operator On(x3) such that x23 ≥ x12 in

order for the OPE to be valid,

〈On(x3)Oi (x1)O j (x2)〉 =∑
k

FOi O j Ok (x12,∂2)〈On(x3)Ok (x2)〉 . (1.84)

The three-point function on the left-hand side is given by Eq. (1.40). The two-point function on the

right-hand side is also fixed. Assuming that the two-point functions are properly normalized, i.e. that

we have picked and orthonormal basis of primary operators, it is given by Eq. (1.39). This yields the

condition
COnOi O j

x
∆n+∆i−∆ j

31 x
∆i+∆ j −∆n

12 x
∆ j +∆n−∆i

23

= FOi O j On (x12,∂2)x−2∆n
23 . (1.85)

42Tracelessness arises from restricting to irreducible representations of SO(D).
43In Eq. (1.81) we replace the momentum operators Pµ by the appropriate derivatives in F a

Oi O j Ok
(x,P ).

44In the path integral formalism, Eq. (1.81) is valid in any correlator where the insertion points of other operators On (xn ) satisfy
|x2n | ≥ |x12|.
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1.1 Conformal field theory

We see that the operator FOi O j On (x,∂) is proportional to the three-point coefficient COnOi O j . This fixes

the missing factor of proportionality in Eq. (1.83). By matching the small x12/x23 expansion on both

sides the result in Eq. (1.83) is recovered again. For example, in the special case of scalar operators with

∆i =∆ j =∆ the operator FOi O j Ok (x,∂) reads

FOi O j Ok (x,∂) =COi O j Ok |x|∆k−2∆

(
1+ 1

2
x ·∂+ ∆k +2

8(∆k +1)
(x ·∂)2 − 1

16

∆k

(∆k − (D−2
2 )(∆k +1)

x2∂2 + . . .

)
.

(1.86)

Again, this procedure can be repeated for fields with arbitrary spin.

The OPE can be used to reduce any N -point function to a sum of N −1-point functions,45

〈O1(x1)O2(x2) · · ·ON (xN )〉 =∑
k

FO1O2Ok (x12,∂2)〈Ok (x2) · · ·ON (xN )〉 . (1.87)

We can apply the OPE recursively until the point where we have reduced the N -point function to a

sum of 1-point functions 〈O〉 that either vanish if O ̸= 1 is not the unit operator, or are equal to one if

it is. The OPE operators FOi O j Ok (x12,∂2) appearing in the last step of this recursive procedure can be

computed from the general form of a two-point function in a CFT,

F ab
Oi Oi 1

(x12,∂2) = f ab(x12) x−2∆i
12 , (1.88)

where a,b are arbitrary spin indices and f ab(x12) is the spin tensor structure appearing in the two-

point function, with f ab(x12) = 1 for scalar fields. For the form of the spin structure see e.g. Eq. (1.39),

Eq. (1.43), Eq. (1.44) and Eq. (1.45).

1.1.8 Conformal blocks

Consider the scalar four-point function in Eq. (1.42) in the special case of four identical operators with

scaling dimension ∆. In this special case it can be written as

〈O (x1)O (x2)O (x3)O (x4)〉 = g (µ,ν)

x∆12x∆34

, (1.89)

with g(µ,ν) being an unknown function of the cross-ratios u, v in Eq. (1.41). We apply to Eq. (1.89) the

OPE of two scalar fields in Eq. (1.81), more conveniently written here with the three-point coefficient

extracted as
O (x1)O (x2) =∑

k
COO Ok F ′a

OOOk
(x12,∂2)O a

k (x2) . (1.90)

Again, note that in general the primary O a
k belongs to a traceless symmetric tensor representation

with non-zero spin ℓk , hence we can relate the operator F ′a
OOOk

(x12,∂2) to the three-point function in

Eq. (1.46).46 Assuming that the points x1, x2, x3, x4 are configured correctly, we can perform the OPE in

45We suppress spin indices in Eq. (1.87).
46It is easily shown that if any primary O a

k is absent in the OPE — i.e. 〈O a
k | Ô (x) |O〉 = 0 — then the whole conformal family

generated by said primary is also absent.
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the scalar correlator in Eq. (1.89) twice,

〈O (x1)O (x2)O (x3)O (x4) =∑
k

C 2
OOOk

F ′a
OOOk

(x12,∂2)F ′b
OOOk

(x34,∂4)
I ab(x24)

x2∆k
24

= x−∆
12 x−∆

34

∑
k

C 2
OOOk

B∆kℓk
(u, v) ,

(1.91)

where we denote the OPE contractions we have performed by square brackets above the operator

insertions. In Eq. (1.91) we introduce the so-called conformal blocks B∆kℓk
(u, v) given in terms of OPE

coefficients here by

B∆kℓk
(u, v) = x∆12x∆34F ′a

OOk (x12,∂2)F ′b
OOOk

(x34,∂4)
I ab(x24)

x2∆k
24

, (1.92)

with ℓk denoting the spin of the operator O a
k (a symmetric traceless tensor). We have chosen and

orthonormal basis of operators and introduced a shorthand notation for the tensor structure in
Eq. (1.45),

〈O a
k (x)Ob

k ′ (0)〉 = δOk Ok′
I ab (x)

x2∆k
, I ab (x) = (

Iµ1ν1 (x) · · · Iµℓk
νℓk (x)+permutations− traces

)
. (1.93)

The conformal blocks — as defined in Eq. (1.91) — are functions of the cross ratios and are related to

the function g (µ,ν) in the four-point function Eq. (1.89) by

g (µ,ν) =∑
k

C 2
OO Ok

B∆kℓk
(u, v) . (1.94)

In the case of O a
k =Ok being a scalar the conformal block satisfies B∆k 0(u, v) = u∆k /2(1+ . . . ). Note that

B∆kℓk
(u, v) is independent of the scaling dimension ∆ of the operator O (x) (the operator in Eq. (1.89)).

This is only true because we are dealing with operators with identical scaling dimensions.

Conformal blocks are neatly understood in radial quantization. We pick an origin of radial quantization

such that {|x3|, |x4|} ≥ {|x1|, |x2|}, then

〈O (x1)O (x2)O (x3)O (x4)〉 = 〈0|R{O (x3)O (x4)}R{O (x1)O (x2)} |0〉 . (1.95)

As conformal primaries and their descendants form a complete basis of the set of operators, we can

decompose the identity operator in terms of projectors Pr(Ok ) onto the different conformal multiplets,

1=∑
k

Pr(Ok ) , Pr(Ok ) = ∑ |ik〉〈ik | jk〉−1 〈 jk |
ik , jk=Ok ,POk ,...

. (1.96)

Inserting this into the correlator yields

〈O (x1)O (x2)O (x3)O (x4)〉 =∑
k
〈0|R{O (x3)O (x4)}Pr(Ok )R{O (x1)O (x2)} |0〉

= x−∆
12 x−∆

34

∑
k

C 2
OOOk

B∆kℓk
(u, v) .

(1.97)
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The conformal blocks in radial quantization are therefore given by

B∆kℓk
(u, v) = x∆12x∆34

C 2
OOOk

〈0|R{O (x3)O (x4)}Pr(Ok )R{O (x1)O (x2)} |0〉 . (1.98)

Since the projector Pr(Ok ) commutes with all of the conformal generators, by construction, the object

〈0|R{O (x3)O (x4)}Pr(Ok )R{O (x1)O (x2)} |0〉 satisfies the same Ward identities as the four-point function.

Hence, the conformal blocks are clearly functions of the cross-ratios. In the path-integral formalism it

is instructive to think of Pr(Ok ) as a surface operator, here inserted on a sphere separating the points

x1, x2 from x3, x4.

An elegant way to compute the conformal blocks is based on the Casimir of the conformal group —

C =− 1
2 J 2 — written in terms of the generators of SO(D +1,1) in Eq. (1.19) [83]. The Casimir acts with

the same eigenvalue λ∆k ,ℓk
=∆k (∆k −D)+ℓk (ℓk +D−2) on every state in an irreducible representation

of the conformal group, hence

C Pr(Ok ) = Pr(Ok )C =λ∆k ,ℓk
Pr(Ok ) . (1.99)

On the other hand, the action of the conformal Casimir on the state O (x1)O (x2) |0〉 satisfies

C O (x1)O (x2) |0〉 = J 2
1,2O (x1)O (x2) |0〉 , (1.100)

where

J 2
1,2 =−1

2
(Jαβ

∣∣
x1
+ Jαβ

∣∣
x2

)(Jαβ
∣∣

x1
+ Jαβ

∣∣
x2

) . (1.101)

The differential operators Jαβ
∣∣

xi
give the action of the generators of SO(D +1,1) on the operator O (xi ).

We can then act with C or J 2
1,2 on the conformal blocks and deduce constraints on B∆kℓk

(u, v). By acting

with C to the left on Pr(Ok ) — instead of acting with J 2
1,2 to the right on R{O (x1)O (x2)} — we find that

J 2
1,2 〈0|R{O (x3)O (x4)}Pr(Ok )R{O (x1)O (x2)} |0〉 =λ∆k ,ℓk

〈0|R{O (x3)O (x4)}Pr(Ok )R{O (x1)O (x2)} |0〉 . (1.102)

This can be rewritten in terms of the conformal blocks via Eq. (1.98) and implies that they satisfy

a differential equation. To conveniently write down the differential operator we introduce simpler

coordinates by using conformal transformations to move x4 →∞, x1 → 0, x3 → (1,0, . . . ,0 and x2 →
(x, y,0, . . . ,0). In these coordinates the cross-ratios in Eq. (1.41) read

u(z, z̄) = zz̄ , v(z, z̄) = (1− z)(1− z̄) , z = x + i y . (1.103)

Written in terms of the variables z, z̄ the conformal blocks satisfy

D(z, z̄)B∆kℓk

(
u(z, z̄), v(z, z̄)

)=λ∆k ,ℓk
B∆kℓk

(
u(z, z̄), v(z, z̄)

)
, (1.104)

where the differential operator D(z, z̄) is given by

D(z, z̄) = ∑
2

γ=z,z̄

(
γ2(1−γ)∂2

γ−γ2∂γ

)
+2

(D −2)zz̄

(z − z̄)
((1− z)∂z − (1− z̄)∂z̄ ) . (1.105)
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The differential equation Eq. (1.104) together with the boundary condition B∆k 0(u, v) = u∆k /2(1+ . . . )

and its generalization to non-zero spin determine the conformal blocks B∆kℓk
(u, v). In even dimension

the Casimir equation Eq. (1.104) can be solved analytically in terms of hypergeometric functions [21].

In odd dimensions there exists no closed formula in terms of elementary functions, but blocks can still

be computed in a series expansion [21].

1.1.9 The conformal bootstrap

The existence of the OPE and its properties imply that correlation functions in a (unitary) CFT are

algebraically determined by its CFT data, which consists of the scaling dimensions {∆k } of all primaries

and all three-point coefficients {C a
Oi O j Ok

} of the theory. Using the OPE any correlator can be decomposed

into a sum of one-point functions with coefficients written completely in terms of the conformal data

(see the discussion around Eq. (1.87)). Naturally, the question arises whether any set of random

numbers {∆k ,C a
Oi O j Ok

} defines a consistent CFT. The answer is not necessarily, as there are certainly

constraints imposed on the conformal data by the structure of the OPE. This is where the idea of the

so-called conformal bootstrap originates. The conformal bootstrap refers to a set of analytical and

numerical tools motivated by the structure of the OPE that aim to probe the space of possible CFT data

using these consistency constraints imposed by the OPE. The goal is to restrict the parameter space

{∆k ,C a
Oi O j Ok

} to the points where consistent CFTs live. In that sense the conformal bootstrap provides a

fully non-perturbative approach to algebraically define CFTs without the need of a Lagrangian.

The most obvious set of constraints on the conformal data comes from the fact that the OPE has to be
associative, which results in the condition∑

i , j
C a

O1O2Oi
C ab

Oi O3O j
F ′a

O1O2Oi
(x12,∂2)F ′ab

Oi O3O j
(x23,∂3)Ob

j (x3)

=∑
i , j

C a
O2O3Oi

C ab
O1Oi O j

F ′a
O2O3Oi

(x23,∂3)F ′ab
O1Oi O j

(x13,∂3)Ob
j (x3) ,

(1.106)

where we have considered three scalar operators O1,2,3 for simplicity. Diagrammatically, associativity of

the OPE can be represented in terms of OPE contractions the same way as in Eq. (1.91),

O1(x1)O2(x2)O3(x2) = O1(x1)O2(x2)O3(x2) .
(1.107)

Associativity of the OPE can be neatly encoded into constraints on four-point correlation functions,

summarized in the so-called crossing-symmetry equation. At face value, crossing symmetry arises from

the simple fact that in a four-point correlation function OPE contractions can be chosen in different

ways and the results have to match. As it becomes cumbersome to write down constraints from OPE

contractions for four-point functions — even for scalar operators, but in particular for operators with
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spin — often times crossing symmetry is represented diagrammatically as

∑
k

O1 O4

Ok

O2 O3

= ∑
k

O1 O4

Ok

O2 O3

. (1.108)

This is the crossing-symmetry equation for a scalar four-point function. End points represent operators

in the correlator, vertices represent the OPE and internal lines represent operators that are summed

over (this refers to e.g. the internal sum in Eq. (1.91)).47 The diagrammatic representation in Eq. (1.108)

conveniently encodes all constraints on four-point correlators coming from the OPE.

Crossing symmetry is respected by all four-point functions of local primary operators in a unitary

CFT. By choosing different operators O4 one can recover OPE associativity from the crossing equation

Eq. (1.108). The fact that all four-point functions in a unitary CFT satisfy crossing symmetry implies

recursively crossing symmetry of all N -point functions.

For higher-point functions the diagrammatic representation in Eq. (1.108) also lends itself to cleanly

represent the constraints imposed on them by crossing symmetry. For example, crossing symmetry

gives the following constraint on a particular five-point function,

∑
i , j

O1

O2

O3 O4

O5

Oi O j = ∑
i , j

O1

O2

O3 O4

O5

Oi
O j

. (1.109)

The existence of the crossing equation Eq. (1.108) and its implications on correlation functions of local

operators is at the core of the conformal bootstrap program. The crossing symmetry equation has been

known for a long time, but only in 2008 it was realized that, instead of trying to solve Eq. (1.108) exactly,

the crossing-symmetry equation can be used to derive bounds on CFT data by studying its geometric

properties [13].

We return to the four-point function Eq. (1.89) (i.e. Eq. (1.91)) of identical scalars in a unitary CFT. In

this case crossing symmetry is equivalent to the condition that the four-point function is invariant

under 1,2 ↔ 3,4, or equivalently,

g (u, v) =
(u

v

)∆
g (v,u) . (1.110)

Eq. (1.110) implies that there is an infinite number of primaries contributing to the OPE, and hence

there is an infinite number of conformal blocks in the crossing equation [21]. In fact, this is a general

feature — the crossing equation cannot be satisfied block-by-block.

We will use the identical scalar four-point function in Eq. (1.89) to outline the basic idea of the original

47Note that in Eq. (1.108) there is no possibility to contract the operators O1 and O3 / O2 and O4 in the OPE as there is no sphere
that only includes the two operator insertions we would want and no other insertion. This is a general geometrical statement
satisfied by four distinct points in flat space. Hence, for a four-point function there are always only two out of the three remaining
operators that can be contracted with any given operator in question.
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conformal bootstrap first presented in [13]. We start by rewriting the crossing equation Eq. (1.108) in

terms of operators for the correlator Eq. (1.110) (we suppress spin indices),48

∑
k

C 2
OOOk

(
v∆B∆kℓk

(u, v)−u∆B∆kℓk
(v,u)

)=∑
k

C 2
OOOk

A∆∆kℓk
(u, v) = 0. (1.111)

The idea is to think of the functions A∆
∆kℓk

(u, v) as vectors in the infinite-dimensional vector space

of functions of u and v . Keep in mind that the coefficients C 2
OOOk

are positive. The sum runs over all

scaling dimensions and spins in the O ×O OPE. In this language Eq. (1.111) states that lot of vectors

all sum to zero, which may or may not be possible depending on the vectors. The geometric way to

distinguish between cases where it is possible and cases where it is not is to find a separating plane

through the origin such that all vectors lie on one side of said plane.49 If such a plane exists, the vectors

A∆
∆kℓk

(u, v) cannot satisfy the crossing equation for any choice of three-point coefficients COOOk . This

leads to the following algorithm for bounding operator dimensions:

• Start by making a hypothesis for which scaling dimensions ∆k and which spins ℓk appear in the

OPE.

• Search for a linear functional that is non-negative when acting on all functions A∆
∆kℓk

(u, v).

• If such a functional exists, there is a contradiction found by acting on both sides of Eq. (1.111)

with said functional. In that case the hypothesis is wrong.

This algorithm can be modified so that it can be used to find bounds on the three-point coefficients

COOOk as well [84].

The algorithm outlined above can be implement by hand for simple examples — like the two-dimensional

Ising model — up to a certain point of precision. However, computerized searches are the state of

the art and numerical techniques can lead to very precise results. Numerical analysis requires the

implementation of a cut-off for terms in the OPE, the discretization of the values of ∆k and ℓk and the

restriction of the search to a finite-dimensional subspace of the space of functions of u, v .

A solution to the crossing equations gives a completely non-perturbative definition for correlation

functions of local operators without the need to refer to any Lagrangian. However, this is not enough to

completely describe the full theory and there are additional constraints and consistency conditions

coming from other considerations. We mention a few selected ones here:

• QFTs in general and CFTs in particular admit extended objects like line and surface operators,

boundaries and interfaces. These objects introduce additional data into the theory. It is possible

to write down OPEs and crossing relations that relate this data to itself and the more standard

CFT data [85].

48This is best derived via the OPE contractions 〈O (x1)O (x2)O (x3)O (x4) = 〈O (x1)O (x2)O (x3)O (x4), using Eq. (1.110) and of
course the definition of u and v in Eq. (1.41).

49In a vector space of functions a separating plane is implemented in terms of a linear functional γ such that γ(A∆
∆kℓk

(u, v)) ≥ 0

for all functions A∆
∆kℓk

(u, v).
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• On non-trivial manifolds not conformally equivalent to flat space more conformal data is

introduced, like one-point functions of local and extended operators. Theories of interest on not

conformally flat geometries include e.g. theories at finite temperature.

• CFTs in Lorentzian signature exhibit additional interesting constraints, like bounds on energy

positivity [86], causality [87] and dispersion relations [88–91].

In general, the full set of data and consistency conditions that are associated with a given CFT is not

known and there are even examples of constraints on local operators beyond the scope of the OPE and

crossing equations (e.g. modular invariance).

In rough terms the conformal bootstrap program aims to exploit the full consequences of conformal

symmetry — in particular Eq. (1.108) — to strongly constrain or even solve any theory in question. As

the conformal bootstrap provides a fully non-perturbative non-Lagrangian approach to CFTs, perhaps

the most ambitious goal of the bootstrap program is to extend the procedure away from the fixed points

of the RG flow and find fully non-perturbative algebraic description of QFT without any reference to a

Lagrangian description.

Perhaps the most impressive result of the conformal bootstrap program is the numerical analysis

of the three-dimensional Ising model CFT (see Appendix A.1). The three-dimensional Ising model

is probably the simplest model that is, to our knowledge, not exactly solvable and experimentally

relevant. As such, it is an ideal playground for the conformal bootstrap and there exists very precise

data on the lowest operators coming from Monte Carlo simulations. In order to get the most precise

bounds from the conformal bootstrap the fact that the Ising CFT in D = 3 has only two relevant scalar

operators in the theory — usually denoted by σ and ε — is required as an input. Although not proven

mathematically, this is an obvious experimental fact. Relevant scalars are in one-to-one correspondence

with parameters that must be tuned to reach the critical point of some microscopic theory. The fact

that the phase diagram of water is only two-dimensional — the two dimensions being temperature

and pressure — immediately tells us that the critical point of water — the three-dimensional Ising

CFT — has two relevant operators.50 The most relevant works on bootstrapping the D = 3 Ising model

are [92–94].

There is striking agreement between Monte Carlo simulations and the conformal bootstrap, which

is strong evidence that the critical Ising model indeed flows to a conformal fixed point (as opposed

to just a scale invariant one). At this point the island for allowed operator dimensions (∆σ,∆ε) is far

smaller than the 68% confidence region provided by the current best Monte Carlo determinations [21].

The hope is that future bootstrap studies might shrink the island (∆σ,∆ε) to a single point and hence

conclusively prove the IR equivalence of all theories in the Ising universality class. This would also be a

strong reassurance of the principle of critical universality.

50For the actual Ising model the parameters in the phase diagram usually are temperature and magnetization.

39



Chapter 1. Prerequisites: Conformal Field Theory and Spontaneous Symmetry Breaking

1.2 Spontaneous breaking of global symmetries

SSB refers to the phenomenon that in certain physical systems, in particular in QFT, the ground state —

or vacuum — is not invariant under all the symmetries of the theory. In other words, there are several

equivalent vacua connected by the remaining symmetries. The symmetries not leaving the vacuum

invariant and connecting the different ground states are referred to as broken. With the discovery of the

Higgs mechanism the concept of SSB became an important cornerstone of modern particle physics.

However, the first examples of SSB did appear in condensed-matter physics and the idea was then

introduced into particle physics by analogy. In fact, the theory of superconductivity by Bardeen, Cooper

and Schrieffer first presented 1957 [95] — or more specifically its reformulation by Nambu in 1960 [5] —

provided the first paradigm for the introduction of SSB in relativistic QFT.

If nothing else is mentioned we are in D-dimensional Minkowski spacetime with mostly positive metric

ηµν = diag(−1,1, . . . ,1). However, we do not require theories to exhibit relativistic invariance. The

results discussed generally also apply to non-relativistic theories and relativistic theories with explicitly

broken spacetime symmetries. Systems without full relativistic invariance appear quite frequently

in nature, most notably in condensed-matter physics [96]. In particular, in the LCE operators with

large internal quantum numbers can be adequately captured by relativistic systems at finite density

with respect to the associated charge Q. Additionally, many of the finite-density systems appearing

in the LCE exhibit the spontaneous breaking of both global and spacetime symmetries [17, 18]. It is

therefore important to understand the full implications of SSB at finite density including the breaking

of spacetime symmetries.

1.2.1 Basic properties of spontaneously broken symmetries

In the study of physical systems the presence of spontaneously broken symmetries results in far-

reaching consequences. In particular, the spontaneous breaking of a continuous global symmetry

implies the existence of a so-called NG boson [6]. The study of SSB and the properties of the appearing

NG bosons is very powerful as the low-energy dynamics of these NG bosons are governed by the

symmetries and are mostly independent of the microscopic structure of the theory [97, 98]. In a

standard setup with Lorentz invariance and spontaneously broken global internal symmetries — like

the Higgs model — there are as many massless Goldstone bosons as there are broken generators.

However, if a theory does not exhibit Poincaré invariance or if some spacetime symmetries are explicitly

broken there can be a mismatch between the number of generators and the number of NG bosons [39,

99–101]. In that case there is still a general counting rule that can be derived [35–37]. Additionally, there

is the possibility that not just global symmetries but also spacetime symmetries are spontaneously

broken. In this case there are several complications at different levels and, unfortunately, it does not

seem to be feasible to write down a general formula for the number of NG in any useful manner. It

seems that they are best analysed on a case-by-case basis [34].

As first shown by Eugen Paul Wigner in 1931 any symmetry transformation in a QFT can be represented

on the Hilbert space of quantum states by an operator U that is either linear and unitary or anti-linear

and anti-unitary [27]. The set of symmetry transformations of a QFT always forms a group, which
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for our purposes will be considered as continuous, since discrete groups groups do not produce any

NG bosons. With the appropriate definition of the adjoint of a linear and an anti-linear operator the

conditions for unitarity and anti-unitarity both take the form U † =U−1. For a symmetry compatible

with the dynamics of the system the operator U commutes with the Hamiltonian H of the theory.

In this language SSB refers to the fact that there exist systems for which the dynamics are invariant

under a given symmetry but the symmetry does not (fully) manifest itself in the spectrum of physical

observables.

Consider a QFT whose action S[Φi ] is invariant under a continuous group G of symmetry transformations

compatible with the dynamics of the system. Noether’s theorem grants us the existence of a conserved

current jµ(x) corresponding to G with the associated charge,

Q(t ) =−
∫

dD−1x j 0(t ,x) , (1.112)

serving as the generator of the symmetry transformations in the quantum theory.51 Since Q commutes

with H , the spectrum of eigenstates splits into multiplets of the symmetry and each of these multiplets

corresponds to an irreducible representation of the symmetry group. The ground state |0〉 of the theory

is assumed to be a discrete and non-degenerate eigenstate of H with minimal energy. A spontaneously

broken symmetry is a symmetry of the theory such that the state |0〉 is not an eigenstate of Q. Given a

finite spatial domainΩ⊂RD−1 we introduce

QΩ(t ) :=−
∫
Ω

dD−1x j 0(t ,x) . (1.113)

Mathematically, SSB is formulated as the statement that there exists a (not necessarily local) operator

O (SB) such that52

〈σ0〉 := lim
Ω→∞

〈0| [QΩ(t ),O (SB)] |0〉 ̸= 0, (1.114)

where |0〉 is in principle any translationally invariant ground state of the theory as there are now several

inequivalent ground states. The expectation value 〈σ0〉 — in analogy to phase transitions — is called

the order parameter.53 Under the assumption that |0〉 were an eigenstate of Q it would follow that 〈σ0〉
vanishes. Hence, the condition in Eq. (1.114) is equivalent to the characterization of SSB that the ground

state is not an eigenstate of Q. Under normal circumstances one identifies Q = limΩ→∞Q, however,

in the case of a spontaneously broken symmetry the operator Q is strictly speaking not well defined:

translational invariance of the vacuum |0〉 implies translational invariance of Q |0〉, and therefore

〈0|Q(t )Q(t ) |0〉 =−
∫

dD−1x 〈0| j 0(t ,x)Q(t ) |0〉 =
∫

dD−1x 〈0| j 0(t ,0)Q(t ) |0〉 . (1.115)

This diverges unless Q |0〉 = 0, which is a contradiction to the assumption of SSB. A spontaneously

broken symmetry is not realized by a unitary operator on the Hilbert space and therefore does not give

rise to multiplets of symmetry in the spectrum. The operator QΩ(t ) induces a ”finite-volume symmetry

51The conserved Noether charges naturally satisfy the underlying group algebra [102].
52The limit ”Ω→∞” should be understood as blowing upΩ to the full spatial slice RD−1.
53We remark here that generically we have 〈[QΩ(t ),O (SB)]〉 = 〈G(Q) O (SB)〉 ∼ 〈O (SB)〉, since the charge Q generates the symmetry

transformation in the quantum theory. Hence, in most practical cases we would consider 〈σ0〉 = 〈O (SB)〉 as the order parameter.
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transformation” UΩ(θ, t ) that connects equivalent vacua |θ, t〉Ω,

UΩ(θ, t ) = e−iθQΩ(t ) , |θ, t〉Ω =UΩ(θ, t ) |0〉 . (1.116)

Hence, for a system exhibiting SSB there exists a symmetry operator that does not leave the ground

state intact, implying the presence of a (continuous) set of equivalent vacua and making the ground

state degenerate. Like Q itself, the operator U = e−iθQ(t ) in the limitΩ→∞ is not well defined and it

can be shown that [39]

lim
Ω→∞

〈0| |θ, t〉Ω = 0. (1.117)

Hence, in the infinite-volume limit the degenerate vacua — formally connected by a finite-volume
symmetry transformation — become pairwise orthogonal. The same holds for the excited states
constructed above the pairwise orthogonal vacua. As a consequence, these states cannot be accommodated
in a single Hilbert space and there exists a separate Hilbert space for every equivalent ground state
in the theory. All of these Hilbert spaces can equivalently be used to describe the system without any
observable physical consequences.
Finite volume symmetry transformations of observables can be consistently described for theories that
respect micro-causality, requiring that the commutator of any two operators separated by a spacelike
distance vanishes. For any operator A we defineAΩ(θ, t ) as follows:

AΩ(θ, t ) :=U †
Ω

(θ, t )AUΩ(θ, t ) = A+ iθ[QΩ(t ), A]+O (θ2) , [QΩ(t ), A] =
∫
Ω

dD−1x [ j 0(t ,x), A] . (1.118)

If we further assume that A is localized in a finite domain of spacetime, then there exists a (finite) region

ΩA such that the commutator of j 0(x) with A vanishes outside ofΩA . This implies that the operator AΩ
is well defined asΩ→∞. The expectation value of AΩ(θ, t ) on the ground state |0〉 can be interpreted

as the expectation value of A on the transformed ground state |θ, t〉Ω:

〈0| AΩ(θ, t ) |0〉 = 〈θ, t |Ω A |θ, t〉Ω . (1.119)

In Lorentz-invariant theories the micro-causality condition is automatically satisfied by relativistic

causality. In non-relativistic theories interactions are often modelled by non-local instantaneous

potentials, and thus micro-causality is not guaranteed. However, the above argument can still be

applied provided that the range of the interaction is short enough, i.e. if it falls off exponentially.

1.2.2 Order parameter space

For any spontaneously broken symmetry there exists at least one order parameter 〈σ0〉 given by the

non-zero Vacuum Expectation Value (VEV) of some operator that transforms non-trivially under the

symmetry group, as defined in Eq. (1.114). The set of degenerate vacua |θ, t〉Ω can be labelled by

different values of the order parameter. Demonstrating that a physical system exhibits SSB requires the

identification and computation of an order parameter 〈σ0〉. Identifying 〈σ0〉 is difficult mainly because

SSB is a non-perturbative phenomenon that cannot be captured at any finite order of perturbation

theory based on a symmetry-preserving ground state. Once the appropriate operator is identified,

calculating the order parameter 〈σ0〉 can be achieved in two main ways:

• The first approach would be to find a self-consistent non-perturbative symmetry-breaking
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solution to the Equation(s) of Motion (EoM). The drawback here is that one has to introduce

an Ansatz for the symmetry-breaking solution and then show that it is consistent with the EoM.

Therefore, it is only possible to get solutions that are put in by hand from the beginning.

• The second approach consists of introducing an effective field σ(x) with suitable symmetry

transformation properties into the theory. The introduced field σ will produce the NG bosons

and its ground state expectation value 〈σ〉 = 〈σ0〉 serves as the order parameter.54

While the first approach starts from whatever DoF are present and is physically more satisfactory, it

is often times very difficult to perform and the second, more phenomenological approach tends to

be simpler in its implementation. For example, in the case of the Higgs mechanism in the standard

model of particle physics an effective field is introduced by minimizing the quartic Higgs potential and

expanding around its minimum φ0, which is the VEV of the effective field and also the order parameter.

The introduction of an effective field for the NG bosons minimizes the potential V in the Lagrangian

and identifies one of its minima as the order parameter. Hence, the vacuum manifold MV of the

potential V comprises the set of all possible values of the order parameter 〈σ0〉, also called the order

parameter space.

Consider a theory described by a potential V (φ) with a vacuum manifold MV . The potential V (φ) is

invariant under the symmetry group G of the theory. Hence, G acts smoothly on any point 〈σ0〉 ∈MV .

The set

H〈σ0〉 := {
g ∈G : g 〈σ0〉 = 〈σ0〉

}
(1.120)

is a subgroup of G — called the little group or isotropy group of the point 〈σ0〉 ∈MV — and consists of

all symmetry transformations left unbroken under the assumption that the order parameter takes the

value 〈σ0〉. The isotropy groups of two points 〈σ0〉,〈σ0〉′ in the same group orbit G〈σ0〉 := {
g 〈σ0〉 |g ∈G

}
are conjugate,

∃g ∈G : H〈σ0〉 = g−1H〈σ0〉′g . (1.121)

The converse is not always true. The set of all points with conjugate isotropy groups H〈σ0〉 is called the

stratum Str(〈σ0〉) of 〈σ0〉. Physically, the stratum is the set of points of the vacuum manifold that exhibit

the same unbroken subgroup under SSB. As the potential V (φ) is invariant under the group action,

V (φ) =V (gφ) , ∀g ∈G , (1.122)

it is just a function of group orbits. It follows that the minimization of V (φ) can be reformulated as a

minimization problem on the space of orbits. In the study of stationary points of G-invariant functions

the following theorem is fundamental [103]:

Theorem (Michel). Let G be a compact Lie group acting smoothly on a real manifold M and let m ∈M .

Then the orbit Gm is critical, i.e. every smooth real and G-invariant function on M is stationary

on Gm, if and only if Gm is isolated in its stratum, i.e. ∃ a neighbourhood Um of m ∈ M such that

Um ∩Str(m) =Gm.

54Again, this is consistent with Eq. (1.114) as the commutator [Q,σ] =G(Q)σ generates the associated symmetry transformation.

43



Chapter 1. Prerequisites: Conformal Field Theory and Spontaneous Symmetry Breaking

In the case that MV is a linear space Theorem(Michel) simply asserts the obvious fact that 〈σ0〉 = 0 is a

stationary point of every G-invariant function. However, if MV is not a linear space Theorem(Michel)

helps us to look for inert states, i.e. states for which the form of the order parameter is fixed up to

a symmetry transformation (like in the Higgs case). In particular, inert states can be found among

stationary points of G-invariant functions on manifolds of order parameters with fixed norm.55

1.2.3 The Nambu-Goldstone theorem

One of the most important consequences of SSB is the existence of soft modes in the spectrum whose

energy vanishes in the IR limit — the so-called NG bosons — guaranteed by the Goldstone theorem.

Consider the commutator [∂µ jµ,O (SB)] = 0 of the conserved current jµ associated to a broken charge Q

with the operator O (SB) in Eq. (1.114) integrated overΩ,

0 =
∫
Ω

dD−1x [∂µ jµ,O (SB)] = ∂0
[
QΩ(t ),O (SB)]+∫

∂Ω
dS

[
n · j,O (SB)] . (1.123)

If the operator O (SB) is localized to a finite domain of spacetime and micro-causality is satisfied,56

then the surface integral in Eq. (1.123) vanishes as Ω→ ∞ and it follows that the order parameter
〈σ0〉 = 〈0| [Q,O (SB)] |0〉 is time-independent. By inserting the identity operator 1 in terms of all (multi-
)particle eigenstates of the Hamiltonian H of the theory in the correlator 〈0| [QΩ,O (SB)] |0〉 and using
translational invariance we get57

〈0| [QΩ(t ),O (SB)] |0〉 =
∫

dD−1k

(2π)D−1

∑
n

[
e−i Enk t 〈0| j 0(t ,0) |nk〉〈nk|O (SB) |0〉

(∫
Ω

dD−1x ei k·x
)

(1.124)

−ei En−k t 〈0|O (SB) |n−k〉〈n−k| j 0(t ,0) |0〉
(∫
Ω

dD−1x e−i k·x
)]

.

In the limitΩ→∞ the left-hand side becomes the order parameter 〈σ0〉. The function
∫
ΩdD−1x e±i k·x

on the right-hand side of Eq. (1.124) becomes sharply peaked around k = 0 and only states with small

momentum will contribute. As the left-hand side becomes time-independent this is only possible if the

energy of the contributing states on the right-hand side vanishes as k goes to zero,

Enk → 0 as k → 0, if 〈0| j 0(t ,0) |nk〉〈nk|O (SB) |0〉 ̸= 0. (1.125)

If there were no contributing states in the spectrum the right-hand side of Eq. (1.124) would just be

zero, a contradiction to the assumption of SSB. Hence, there must be at least one bosonic and massless

state coupling to both the broken current j 0 and the interpolating operator O (SB). This is Goldstone’s

theorem:

Theorem (Goldstone). Spontaneous breaking of a continuous global internal symmetry implies the

existence of a bosonic mode |nNG
k 〉 in the spectrum such that

lim
k→0

EnNG
k

= 0. (1.126)

55Invariant functions can, of course, have other stationary points than those guaranteed by Theorem(Michel).
56In practice, the operator O (SB) is often even strictly local.
57We assume at least discrete translational invariance in all directions here. Eigenstates of the Hamiltonian have two indices

nk,k denoting the different multi-particle excitation branches in the spectrum as well as the continuous internal momentum
eigenstates. States are normalized such that they satisfy the orthogonality condition 〈nk|mq〉 = (2π)D−1δnmδ(k−q).
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In principle, some isolated states with zero momentum and energy that do not represent NG bosons —

such as other degenerate vacua — can exists and give rise to very small contributions on the right-hand

side of Eq. (1.124) but their contribution is suppressed in the limitΩ→∞ [104]. The consequences of

the Goldstone theorem cannot be escaped for relativistic theories. But this does not mean that the NG

bosons are necessarily observable, as they may appear in the unphysical sector of the Hilbert space. In

particular, this happens in the case of Lorentz-invariant gauge theories with covariant gauge fixing. On

the other hand, in non-covariant gauges the Goldstone theorem does not apply. For example, in the

standard model of particle physics there are no massless NG bosons present as a result of electroweak

symmetry breaking.

1.2.4 Counting rules for the number of Nambu-Goldstone modes

While the Goldstone theorem guarantees the existence of at least one NG boson in the spectrum, it does

not say anything about the exact number of NG bosons. In the case of unbroken Lorentz-invariance

there exists precisely one NG boson for every broken generator Qa |0〉 ̸= 0 in the Lie algebra of the

symmetry group G .58 However, in non-relativistic theories and theories with explicitly broken Poincaré

symmetries this is not necessarily the case, as concrete examples — such as ferromagnets or three-

component Fermi gases — show. In these cases there are less NG modes as there are broken generators.

In models with fewer NG modes than broken symmetry generators one encounters NG modes that

exhibit quadratic dispersion relations. This observation lead to the following result by Nielsen and

Chadha relating the number of NG bosons to the number of broken generators [106]:

Theorem (Nielsen and Chadha). We assume that translational invariance is not completely broken

(spontaneously) and that there are no long-range interactions. In this case the energy of a NG boson

is analytic in its momentum. We denote NG modes whose energy is proportional to an odd power of

the momentum as type-I and those NG modes whose energy is proportional to an even power of the

momentum by type-II. In this case the number of type-I NG bosons NI plus twice the number of type-II

NG bosons NII is greater than or equal to the number of broken symmetry generators NQ ,

NI +2NII ≥ NQ . (1.127)

Theorem(NC) does not specify the precise power of the momentum in the dispersion relation and it

only gives an inequality on the number of NG bosons. Another important result by Schäfer et al. relates

the number of NG bosons to the number of pairwise commuting broken generators [39, 107].59

Theorem (Schäfer et al.). Suppose that 〈0| [Qa ,Qb] |0〉 = 0 for all pairs of broken charges Qa , Qb under

SSB, then the number of NG modes NNG is at least equal to the number of broken generators NQ , i.e.

58The argument here is simple. For a linearly realized symmetry the quantum effective potential Veff is invariant under the same
transformations as the Lagrangian, hence ∂Veff/∂φTaφ= 0 for all generators Ta of the symmetry group. After differentiating
this implies that ∂2Veff/∂φ2Taφ

∣∣
φ=〈φ〉 = 0. By definition, SSB means that some of the generators do not annihilate the vacuum,

Ta〈φ〉 ̸= 0. Assuming Lorentz-invariance this implies that the real vector i Ta〈φ〉 is a zero mode of the mass matrix corresponding
to a NG boson. In the case of broken relativistic invariance the number of zero modes of the mass matrix ∂2Veff/∂φ2 is still equal
to the number of broken generators, but no longer coincides with the number of massless modes as they no longer need to satisfy
a Klein–Gordon (KG) equation [39, 105].

59The charges Qa ,Qb are still given by taking the limitΩ→∞ in Eq. (1.113). They are in principle ill-defined. However, the
commutator 〈0| [Qa ,Qb ] |0〉 can be well defined and vanish — 〈0| [Qa ,Qb ] |0〉 = 0 — in the case where the structure constants
fabc in [Qa ,Qb ] = i fabcQc are only non-zero if Qc is unbroken.
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NNG ≥ NQ .

However, the presence of a non-zero expectation value of the commutator between two charges in

the theory itself is not enough to conclude that the number of NG bosons is smaller than the number

of broken generators NNG < NQ . To conclude this additional assumptions have to be made, such

as the symmetry algebra being semi-simple. Without this assumption the presence of non-trivial

central charges cannot be ruled out. An example of a model where this happens would be the free

non-relativistic particle [39].

Finally, there exists a relationship between non-vanishing charge densities and NG mode dispersion

relations, as first shown by Leutwyler in the context of low-energy EFT [108]. An argument based

just on symmetry assumptions and analyticity shows that the presence of two broken generators

with 〈0| [Qa ,Qb] |0〉 ̸= 0 implies the existence of a NG boson with non-linear (i.e. at least quadratic)

dispersion relation in the spectrum [39].

Theorem (Brauner). For every pair of broken generators Qa ,Qb such that 〈0| [Qa , j 0
b (t ,x)] |0〉 ̸= 0 there is

a single NG boson coupling to both charges as in Eq. (1.125), and generically its dispersion relation is

quadratic.

For SSB of global internal symmetries there is an interconnectedness between the number of NG modes,

their respective dispersion relations and the number and relative properties of the broken generators.

Unfortunately, the results by Nielsen/Chadha, Schäfer et al. and Leutwyler only provide inequalities

or bounds on the number of soft modes. This problem has been solved only very recently, in the last

decade [34–38, 101]. A precise counting rule can be derived under some rather broad assumptions.

Naturally, SSB is assumed, with a continuous global internal symmetry group G breaking down to an

unbroken subgroup H ⊂G . The unbroken subgroup H ⊂G is generated by the unbroken generators Tb

with Qb |0〉 = 0.60 We do not require relativistic invariance, both theories with non-relativistic spacetime

symmetry groups and theories with explicitly broken Poincaré symmetries (e.g. theories at finite

density) are permitted.61

In Poincaré-invariant theories the number of broken currents NQ is always equal to the number of

NG bosons NNG [39], hence knowing the symmetry-breaking pattern G → H is enough to deduce the

number of NG modes. In the absence or explicit breaking of relativistic invariance SSB still implies the

existence of NG modes but their dispersion relations are no longer restricted by Lorentz invariance

and the number of NG bosons can be fewer than the number of broken currents. The symmetry

breaking pattern only gives you an upper bound on the number of NG bosons. In such cases, it is

possible to derive a counting rule for the number of NG bosons by considering the commutators of

(broken) generators. The following result first presented in [35, 36] relates the number of NG bosons

NNG with the number of broken generators NQ and holds true regardless of the (unbroken) spacetime

symmetries:

NNG = NQ − 1

2
rank(ρ) , (1.128)

60The same holds true of course for all the degenerate vacua in Eq. (1.116). Also, to be precise, we require H to be a normal
subgroup, or equivalently we require left and right cosets to be equal g H = H g .

61In order to be able to use the momentum k as a label we have to assume at least discrete translational invariance in all spatial
directions.
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where ρ is the following real and anti-symmetric matrix with the commutators of (broken) charges as

entries,

ρab :=−i lim
Ω→∞

〈0| [QΩa ,QΩb] |0〉
|Ω| = lim

Ω→∞
fabc

〈0|Qc |0〉
|Ω| ∼ fabc 〈0| j 0

c (t ,0) |0〉 . (1.129)

Here, |Ω| is the volume of the (finite) subset Ω ⊂ RD−1 and fabc are the structure constants of the

symmetry algebra. The indices a,b may run over the full symmetry group or just the broken generators

as the rank of the matrix remains the same in both cases. In the same vein, only broken generators

contribute to the right-hand side of Eq. (1.129), i.e. the sum over c can be considered as running only

over the broken generators.62 We schematically present the derivation of Eq. (1.128) in Appendix A.4.

The real anti-symmetric matrix ρ can be block-diagonalized by an orthogonal transformation M ,

M TρM =



0 λ1

−λ1 0
. . .

0 λm

−λm 0
. . .

0


, (1.130)

where all λk ’s, k = 1, ...,m are strictly non-zero and all blank entries are zero. In this form the rank of

ρab is manifestly equal to 2m and therefore the right-hand side of Eq. (1.128) is a positive integer. We

now classify the NG modes into two new categories: type A and type B.

• Type-B modes are associated with pairs of broken generators (Q2l−1,Q2l ), l = 1, ...,m in Eq. (A.112),

with each pair of broken generators corresponding only to a single mode. They generically exhibit

a quadratic dispersion relation, though not always as it is possible to fine-tune parameters in

certain models [34].

• Type-A modes are associated to the remaining NQ −2m broken generators and generically exhibit

a linear dispersion relation. In particular, they are in a 1-to-1 correspondence with said broken

generators.

Written in terms of the number of type-A modes NA = NQ − rank(ρ) and type-B modes NB = 1
2 rank(ρ)

the result in Eq. (1.128) gives the counting rule63

NA +2NB = NQ . (1.131)

Theorem(NC) by Nielsen and Chadha already divides the NG modes in two classes — type-I and type-II

— according to their dispersion relations, and it is worth understanding the relationship between

to two classifications. In fact, the type-B NG modes in Eq. (1.131) are always type-II NG modes in

62It is obvious that ρab vanishes in Lorentz-invariant theories as j 0
c is the temporal component of the four vector ( j 0

c , jc ). Also,
in the case where ρab does not vanish it is an acceptable choice of of order parameter characterizing the spontaneous breaking
of the generator Qa .

63In particular, the NG bosons in Lorentz-invariant theories are all of type-A.
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Eq. (1.127) [35]. However, although type-I modes are type-A modes and vice versa in most generic

models, they are in all generality not the same. There exists at least one (trivial non-interacting)

example in which the two classifications disagree [35]. In this example, via a fine-tuning of parameters

in the theory it is possible to construct a type-A mode with a quadratic dispersion relation.64 As a

consequence, this example also satisfies a strict inequality NI +2NII > NQ .

Finally, we have to to briefly touch on the spontaneous breaking of spacetime symmetries. Unfortunately,

the derivation of the counting rule in Eq. (1.131) assumes that the associated symmetry transformations

do not act on spacetime. It therefore fails in the case where (some of) the broken generators Qa

represent a spacetime symmetry [34]. In the case of both global and spacetime symmetries spontaneously

breaking the counting can only be applied to the global part or subset of the spontaneously broken

charges (that do not act on spacetime).65 Just as it is the case for non-relativistic systems or systems with

explicitly broken spacetime symmetries, in systems with spontaneously broken spacetime symmetries

the number of independent fluctuations can be fewer that the number of broken generators. However,

naively extending the counting rule Eq. (1.131) leads to wrong predictions [34]. On top of that,

even if there are additional low-energy DoF originating from the spontaneous breaking of spacetime

symmetries, some of them may not actually form a propagating mode as they can become over-damped

via interactions with other modes [34]. There exist attempts at generalizing the counting rule to the

case with spontaneously broken spacetime symmetries [38], however, it seems that at this point in time

it is not possible to write down a general counting rule for the NG bosons in a convenient way.66

1.2.5 Broken spacetime symmetries: SSB at finite density

If spacetime symmetries are allowed to be spontaneously broken the zoology of allowed configurations

of NG modes does not seem to be encompassed by a set of simple principles. However, that does

not mean that these classes of theories are not physically relevant. In fact, they are sometimes very

important. A particular class of systems that allow for spontaneously broken spacetime symmetries are

systems at finite density. They are especially relevant in the context of the LQNE [47].

We study systems at finite density for a certain spontaneously broken charge Q. In such systems the

time evolution is governed by a Hamiltonian H and the ground state of the system is the state with the

lowest eigenvalue with respect to the modified Hamiltonian [96]

H +µQ , (1.132)

64One particular example is the rather simple free theory with the Lagrangian L = (∂0φ
2−∑

k ckφ(−∇2)kφ. The shift symmetry
of this Lagrangian is always spontaneously broken and by fine-tuning ck = δk 2 the type-A NG boson present in this model for
arbitrary ck actually becomes a type-II NG mode.

65Global and spacetime symmetries do commute with each other.
66It is worth noting that spontaneous breaking of local/gauge symmetries occurs in physical systems as well. SSB in gauge

theories works slightly differently and is also not relevant in the context of this thesis. As opposed to global and spacetime
symmetries the spontaneous breaking of gauge symmetries does not lead to massless modes in the spectrum [109]. Instead,
it leads to massive gauge bosons [110]. This so-called Higgs mechanism is fundamental to the standard model of particle
physics [111–113].
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where µ is the chemical potential associated to the charge Q.67 Generically, the introduction of finite

density breaks boost invariance and time translations generated by H and of course the internal

charge Q.68 Besides the breaking of Q there can be an additional set of broken global internal charges

Q1, . . . ,Qn . By construction, the modified Hamiltonian in Eq. (1.132) is unbroken.

There exists a slight modification of the Goldstone Theorem applicable to (relativistic) systems at finite

density [42]. Besides the existence of soft NG modes in the spectrum this theorem also implies the

existence of gapped NG modes in the spectrum. Consider a theory with a global internal symmetry

group G — a compact n-dimensional Lie group generated by the charges Q1,Q2, . . . ,Qn — at finite

density for the charge Q :=Q1. We denote by |0〉µ the state of minimal energy for a given average charge

density of Q labelled by the value of the chemical potential µ. The state |0〉µ minimizes the modified

Hamiltonian,

(H +µQ) |0〉µ = E ( min)
µ |0〉µ . (1.133)

The ground state |0〉µ clearly (spontaneously) breaks boost invariance. Further, in order to guarantee

that rotations and spatial translations remain unbroken we assume that the system is homogeneous

and isotropic. Eq. (1.133) can be satisfied in two crucially different ways:

• The first possibility corresponds to the case where |0〉µ is an eigenstate of both H and Q separately,

E ( min)
µ = E0 +µQ0 . (1.134)

In this case there is no spontaneous breaking of either H nor Q. Physically, this situation is

realized in e.g. Fermi liquids [44, 117–119]. In this case the internal symmetry at finite density is a

simple U (1), the particle number (in the non-relativistic limit).

• The second possibility corresponds the the case where |0〉µ spontaneously breaks both H and Q

and is only an eigenstate of the linear combination H +µQ. In particular, this situation is realized

in the description of zero-temperature superfluid phases [96, 115].

We are interested in the the case of broken time translation H and internal charge Q. Additionally, there

may be a number of other spontaneously broken global generators Qk2 , . . . ,Qkm , with m < n the total

number of global internal generators. We set Qk1 = Q1 = Q. In particular, all generators that do not

commute with Q must be spontaneously broken as well, since

0 ̸= 〈0|µ [Qa ,Q1] |0〉µ = 〈0|µQ ′ |0〉µ , (1.135)

with Q ′ = i fa1 j Q j depending on the structure constants fabc of the algebra. Additionally, some

generators that commute with Q may also be spontaneously broken. By the definition of SSB [39], there

exists an order parameter O (SB)
I (0) transforming in a non-trivial representation of the global group G

such that

〈σ0〉ki I := 〈0|µ [Qki ,O (SB)
I (0)] |0〉µ ̸= 0, i = 1, . . . ,m . (1.136)

67The charge Q by itself may be thought of as the generator of a global U (1), as this is the only possibility allowed by Lie
theory [114]. Of course, it generically generates a certain U (1) subgroup of a much larger Lie group.

68This is certainly true in all condensed matter states [115]. In particular, this is the symmetry-breaking pattern defining a
zero-temperature superfluid phase [116].
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A similar equation holds for the Hamiltonian H . As H is spontaneously broken, it is not possible to

classify states in terms of their energy eigenvalues. Instead, they are best classified in terms of their

eigenvalues under the modified Hamiltonian H +µQ and the state |0〉µ represents the ground state

with respect to H +µQ.69

We insert the unity operator 1 in terms of all (multi-)particle eigenstates of the modified Hamiltonian

H +µQ in Eq. (1.136),

〈0|µ [Qki
,O (SB)

I (0)] |0〉µ =
∫

dD−1x
(
〈0|µ j 0

ki
(t ,x)O (SB)

I (0) |0〉µ−〈0|µO (SB)
I (0) j 0

ki
(t ,x) |0〉µ

)
,

〈0|µ j 0
ki

(t ,x)O (SB)
I (0) |0〉µ =

∫
dD−1k

(2π)D−1

∑
n

e−i Enk t 〈0|µ e−i tµQ j 0
ki

(0)ei tµQ |nk〉〈nk|O (SB)
I (0) |0〉µ ei k·x ,

〈0|µO (SB)
I (0) j 0

ki
(t ,x) |0〉µ =

∫
dD−1k

(2π)D−1

∑
n

ei En−k t 〈0|µO (SB)
I (0) |n−k〉〈n−k|ei tµQ j 0

ki
(0)e−i tµQ |0〉µ e−i k·x .

(1.137)

Without loss of generality we have chosen O (SB)
I to be Hermitian. The currents themselves do not need

to be written in a real basis. It is crucial to note that e iµQ does not commute with j 0
ki

in general. Using

the algebra of G and the structure constants f1ac =: ( f1)ac we simplify the adjoint action on j 0
ki

,70

e−i tµQ j 0
ki

(0)e i tµQ = (
e tµ( f1))

k1c j 0
c (0) . (1.138)

We introduce the spectral density for two operators O1,2,

S(O1,O2;ω,k) := 2ω
∑
n

(2π)δ
(
ω−Enk

) 〈0|µO1(0) |nk〉〈nk|O2(0) |0〉µ . (1.139)

Using the spectral density we can rewrite 〈σ0〉ki I Eq. (1.136) as follows:71

〈σ0〉ki I =
1

2π

∫
dω

2ω
e−iωt (

e tµ( f1))
ki c lim

p→0

[
S( j 0

c ,O (SB)
I ;ω,p)−S(O (SB)

I , j 0
c ;−ω,−p)

]
̸= 0, (1.140)

where it holds that S(O (SB)
I , j 0

c ;−ω,−p) = S( j 0
c ,O (SB)

I ;−ω,−p)†. The order parameter 〈σ0〉ki I is non-zero

due to the spontaneous breaking of Qki .

Consider the broken generators Qki that commute with Q. Without loss of generality we take Qki

Hermitian, hence
(
e tµ( f1)

)
ki c = δki c . As a consequence, in order to satisfy Eq. (1.140) we require that

lim
p→0

[
S( j 0

ki
,O (SB)

I ;ω,p)−S( j 0
ki

,O (SB)
I ;−ω,−p)†

]
= 4πωi mki Iδ(ω) . (1.141)

This result implies the existence of a Goldstone mode |nNG
k 〉 in the spectrum such that its zero-

momentum limit is an exact eigenstate of H +µQ with vanishing energy [104],

EnNG
k

∣∣∣
k=0

= 0. (1.142)

The state |nNG
k 〉 has zero matrix element with both the current and the order parameter. As G is a

compact Lie group, all the generators that do not commute with Q (not just the broken ones) can

69There exist other options to classify states [43].
70We ignore potential t’Hooft anomalies as they are irrelevant in the limit k → 0.
71We introduce an integration over ω and perform the integration over x in the infinite volume limitΩ→∞.
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generically be split up into pairs of generators Q±
a such that

[Q,Q±
a ] =±qaQ±

a , (1.143)

with the constant ca > 0 depending on the underlying algebra [114]. The change of basis to {Q±
a } is

equivalent to diagonalizing the adjoint action of Q. In particular, this holds true for the set of broken
generators that do not commute with Q, which we now denote by {Q±

ai
} ⊂ {Qki }. The associated currents

we denote by jµ
a±

i
and it holds that ( jµ

a±
i

)† = jµ
a∓

i
.

In this basis the adjoint action of Q in Eq. (1.138) reads

(
e tµ( f1))

a±
i c j

µ
c = e∓tµqai j

µ

a±
i

,

( (
e tµ( f1))

a±
i a±

j
= e∓tµqai δai a j ,

(
e tµ( f1))

a±
i a∓

j
= 0

)
, (1.144)

with qai being the constant in Eq. (1.143). Now Eq. (1.140) turns into

〈σ0〉a±
i I =

1

2π

∫
dω

2ω
e−i (ω±µqai )t lim

p→0

[
S( j 0

a±
i

,O (SB)
I ;ω,p)−S( j 0

a∓
i

,O (SB)
I ;−ω,−p)†

]
. (1.145)

Assuming definiteness µqa±
i
> 0 Eq. (1.145) can only be satisfied if72

S( j 0
a−

i
,O (SB)

I ;ω,p) = 4πωi ma−
i Iδ(ω−µqai ) , lim

p→0
S( j 0

a+
i

,O (SB)
I ;ω,p) = 0. (1.146)

The first condition implies the existence of a gapped NG state |nNG
µ;k〉 for every pair of broken generators

Q±
ai

[42, 43, 120, 121]. In the zero-momentum limit these gapped NG states are eigenstates of H +µQ

with energy linear in µ,

EnNG
k

∣∣∣
k=0

=µqai . (1.147)

Both matrix elements 〈0|µ j 0
a−

i
|nNG
µ;k〉 and 〈0|µO (SB)

I |nNG
µ;k〉 are non-zero while the matrix element 〈0|µ j 0

a+
i
|nNG
µ;k〉

vanishes in the zero-momentum limit.

As there are non-commuting broken charge operators present, the counting rule around Eq. (1.128)

implies the existence of additional gapless NG modes — of type-B or type-II — for the spontaneously

broken global symmetries not directly guaranteed by the above results. However, we do have to be

careful here as there are spontaneously broken spacetime symmetries and the counting in Eq. (1.128)

can only be applied to the broken global charges that do not act on spacetime.73 In particular, explicit

example of systems at finite density that do exhibit type-II modes appear in the context of the LCE in

CFT [122–124].

Although maybe conceptually useful, any assumption of an underlying Lorentz invariance at zero

density is not required in the proof of Eq. (1.141) and Eq. (1.146). The only requirement is unbroken

rotations and spatial translations [45]. Hence, these results apply independently of the mechanism

responsible for the breaking of boosts. Naturally, one might wonder whether spontaneously breaking

of Lorentz invariance implies additional constraints on the spectrum. Unfortunately, this is not true in

the case of the spontaneous breaking of boosts as has explicitly been shown in [44]. In general, when

72We make use of the fact that positivity of the spectrum implies that the spectral density vanishes for negative frequencies —

i.e. S( j 0
a+

i
,O (SB)

I ;ω,p) = 0 for ω< 0 — see Eq. (1.139).

73Technically, both H and Q are broken. However, the modified time-evolution operator H +µQ replaces H such that there
is only one broken symmetry generator to be counted, which generically should be considered as a global symmetry. This is
certainly true in all the LCE applications.
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spacetime symmetries are broken it can happen that a single physical fluctuation may be described as

the action of several different generators [41].

There is one comment to be made about EFT building in the presence of gapped NG modes. Generically,

the low-energy dynamics of the NG modes are captured in terms of symmetries and a systematic

derivative expansion [97, 98]. The gapped NG modes with a gap of order µ are needed to construct

an EFT that is invariant under the full symmetry group. However, in certain examples the chemical

potential itself presents the EFT cut-off (like in the LCE for certain non-Abelian symmetries [17, 18]).

It can be demonstrated that a consistent EFT can be constructed by zooming in on all NG modes at

small spatial momenta [46]. The gapless NG modes are soft while the gapped ones are slow and the

rules are the same as in standard non-relativistic EFTs. The EFT Lagrangian formally preserves gapped

NG boson number conservation, and processes that violate the number conservation are modelled

inclusively by allowing complex Wilsonian coefficients, thus violating unitarity while preserving the

symmetry.

If the cut-off scale Λ≪ µ is much smaller that the chemical potential the gapped modes can be

integrated out [46]. Doing this is equivalent to specifying boundary conditions for the gapped NG

modes to vanish at infinity. As a consequence, integrating out the gapped NG modes generically breaks

the non-Abelian symmetry (gapped NG modes can only exist for non-Abelian symmetries) such that

only the U (1) symmetry associated to the chemical potential µ remains.74

1.2.6 Abelian superfluids

As an example, we investigate a particular class of finite density systems: Abelian superfluids. More

precisely, we consider a relativistic superfluid with an Abelian U (1) symmetry generated by the broken

generator Q [116]. The minimal field content of an Abelian superfluid consists of a compact Lorentz

scalar that non-linearly realizes the U (1) symmetry via a shift invariance,75

χ(x) ∼χ(x)+2π , χ(x) →χ(x)+α . (1.148)

The most general superfluid Lagrangian is a derivative expansions and reads

SSF =
∫

dD x
[
L1(∂χ)+∂µχ∂νχ∂µ∂νχL2(∂χ)+ . . .

]
, (1.149)

where ∂χ=
√
∂µχ∂µχ and L1,2 are arbitrary functions.76 The action SSF is a low-energy effective action

and has to be understood as an expansion around the finite-density ground state

〈χ〉 =µt +χ0 , (1.150)

74This exact behaviour can be observed in the LCE for the O(2N ) vector model [46, 47].
75χ is generically the phase of a complex field in the underlying theory.
76If the chemical potential µ itself sets the cut-off for the low-energy descriptions, then F1 and F2 are monomials with

potentially non-integer powers: ∂n F1(µ) ∼ F1(µ)/µn , ∂n F2(µ) ∼ F1(µ)/µn+4.
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with χ0 =const. and µ being the chemical potential for Q. More precisely, as only functions that are

2π-periodic in χ(x) are well-defined operators, the ground state |0〉µ satisfies

〈0|µ e iχ(x) |0〉µ = e iµt+iχ0 . (1.151)

While the action in Eq. (1.149) is Poincaré invariant, the ground state spontaneously breaks boosts and

time translation H as well as the U (1) charge Q. The linear combination H +µQ remains unbroken.

The energy momentum tensor and the conserved currents are given (to leading order) by

Tµν =L ′
1(∂χ)∂χ

∂µχ

∂χ

∂νχ

∂χ
−ηµνL1(∂χ) , jµ =L ′

1(∂χ)
∂µχ

∂χ
, (1.152)

where ∂µχ/∂χ is the superfluid four-velocity. The background solution in Eq. (1.150) produces a

non-zero ground state charge density

j 0(µ) := j 0
∣∣∣
χ=〈χ〉 =L ′

1(µ) . (1.153)

The ground state energy density e(µ) and the pressure p(µ) as a function of µ are obtained by inverting

the equation Tµν = (e +p)(∂µχ/∂χ)(∂νχ/∂χ)−pηµν [125]. On the ground state solution we recover the

zero-temperature thermodynamic identity [126]

µ j 0(µ) = e(µ)+p(µ) . (1.154)

Fluctuations π(x) are defined by χ(x) =µt +χ0 +π(x). The action to leading order in derivatives and to

quadratic order in the fluctuations reads

SSF ⊃ (
L ′′

1 (µ)+ . . .
)∫

dD x
1

2

[
π̇2 − c2

s (µ) (∇π)2] , c2
s (µ) = L ′

1(µ)

µL ′′
1 (µ)

+ . . . . (1.155)

In agreement with the Goldstone Theorem and the results at finite density, the field π(x) describes

a massless excitation with linear dispersion relation ω = cs |k| + . . . . This NG mode is the so-called

superfluid phonon [40].

Generically, it holds that cs ̸= 1 and hence π(x) does not represent a relativistic field. However, despite

the absence of any NG modes for the broken boosts, Lorentz invariance still constrains the superfluid

action as it requires it to be a function of

∂χ=
√

(π̇+µ)2 − (∇π)2 , (1.156)

instead of any arbitrary combination of π̇ and ∇π. Finally, we remark on a simple generalization.

Instead of systems with a single charge Q at finite density, with minimal adaptations, it is possible to

consider systems at finite density for N mutually commuting broken charges Qk , k = 1, . . . , N . The

U (1) broken symmetry of the superfluid can be extended to a fully broken U (1)N symmetry. The most

general form of the modified Hamiltonian becomes

H +∑
k
µkQk . (1.157)
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The general low-energy effective action for the U (1)N superfluid is best formulated in terms of N

shift-invariant compact scalars χk ∼χk +2π. The leading order action in the derivative expansion reads

SSF =
∫

dD x L1(∂χi j )+ . . . , ∂χi j =
√
∂µχi∂µχ j . (1.158)

The action is again to be understood as an expansion around the background solution

χk (x) =µkτ+χk0 +πk (x) , k = 1, . . . , N (1.159)

Upon expanding to quadratic order it is found that the spectrum consists of N massless superfluid

phonons with linear dispersion relations. This is not really surprising as all the broken charges Qk are

mutually commuting.

1.2.7 Finite-volume effects on spontaneous symmetry breaking

The definition of SSB via the existence of a broken generator in Eq. (1.114) suggests that the phenomenon

can only occur in infinite systems and is absent in any theory living on a finite compact manifold.77

However, in the context of the LCE in CFT and, in particular, in this thesis we often deal with finite-

volume systems that are expected to exhibit SSB and whose low-energy dynamics are dictated by the

Goldstone Theorem. In the LCE — by the state-operator correspondence — the system in flat space

can be mapped to the cylinder, which is by definition a finite-volume setting. As such, the LCE requires

two prerequisites that are seemingly at odds: finite volume and SSB.

For a system exhibiting SSB the algebra of observables of the theory consists of a family of inequivalent

irreducible representations, each labelled by some equivalent orthogonal ground state as defined in

Eq. (1.117). The broken symmetry maps representations onto each other. However, it is not a well-

defined unitary operator. Hence, each representation is endowed with its own non-separable Hilbert

space. The argument against SSB in finite volume systems is that all states in the theory live in a unique

separable Hilbert space. As the charge operator of the (broken) symmetry is well-defined in finite

volume — see Eq. (1.113) — the symmetry is realized by some well-defined unitary operator acting on

the Hilbert space. This operator relates all the possible different minima in Eq. (1.117) (i.e. the other

vacua) to the unique ground state |0〉.78

The tension between finite volume and SSB can be somewhat resolved in finite-density systems. As

can be shown (in explicit examples), at finite density for the broken charge finite-volume effects are

generically exponentially suppressed (for D > 2).79 To illustrate this point consider a system with a

global U (1) symmetry at finite density and finite volume V . In infinite volume the U (1) symmetry

77The issue with finite systems hints at a much more foundational problem with our understanding of SSB. By definition, SSB
appears to be an example of asymptotic emergence as no finite system should exhibit it. However, SSB is an observable effect in
nature and there are numerous real systems and materials that have been shown to exhibit SSB in a finite experimental setting.
This seems to put the theoretical description of SSB at odds with physical reality and contradicts the principle that no effect can
be counted as a genuine physical effect if it disappears upon removing the idealizations in the theory [127]. This discrepancy
between formalism and reality can be amended by exponential sensitivity to perturbations of the dynamics as the size of the
system increases, causing the occurence of SSB already in finite but very large quantum systems, thus providing continuity
between finite- and infinite-volume descriptions [49].

78We focus here on some particular aspects of finite-size effects on SSB. For a more comprehensive understanding see [48].
79Analogously, it can be stated that in a sector of the Hilbert space with fixed quantum number for the broken symmetry the

above mentioned finite-volume effects are exponentially suppressed. Finite density systems and systems at fixed quantum
number are generically related by a Legendre transform [1, 47, 128].
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1.2 Spontaneous breaking of global symmetries

is spontaneously broken by the ground state of the theory. The fluctuations are described by the

low-energy effective Lagrangian

L =− f (µ)

2

(−(∂0ϕ)2 + cs (µ)(∇ϕ)2) , (1.160)

with ϕ being a dimensionless real scalar field, cs (µ) being the speed of sound and f (µ) being a

dimensionful constant — [ f ] = (D − 2) — that generically depends on the VEV of the initial field

as well as the chemical potential µ for the global U (1) charge. 80 The U (1) symmetry is non-linearly

realized as a shift,

ϕ 7→ϕ+α . (1.161)

If we assume that in the IR the system is adequately described by an Abelian superfluid, then we have

the relationship

f (µ) = j 0(µ)

µcs (µ)
, (1.162)

with j 0(µ) =Q0/V being the non-zero charge density of the superfluid ground state. For more details

see the short discussion of the Abelian superfluid in Section 1.2.6. The mode expansion of the field

ϕ(t , x⃗) is81

ϕ(t ,x) =ϕ0 +π0t +
∞∑

k=1

1p
2Vω

(
a(k)e−iωt+i k·x +a†(k)e iωt−i k·x

)
, ω= cs |k| , (1.163)

The zero modes ϕ0 and π0 only appear in finite volume. By promoting the field to an operator —

Π(t ,x) = ∂0ϕ(t ,x) — and imposing equal-time canonical commutation relations,

[ϕ(t ,x),Π(t ,y)] = iδ(d)(x−y) , (1.164)

we arrive through the standard covariant quantization procedure at the commutation relations for

creation and annihilation operators [129],82

[a(k), a†(k′)] = δD−1
kk′ , [ϕ0,π0] = i

V
. (1.165)

Note that V 1/(D−1) is the scale fixed by the geometry. It is convenient to also express the zero modes

ϕ0,π0 in terms of ladder operators a0, a†
0,

a0 = V
(D−2)

2(D−1)

p
2

(
ϕ0 + iV

1
(D−1)π0

)
, a†

0 =
V

(D−2)
2(D−1)

p
2

(
ϕ0 − iV

1
(D−1)π0

)
, [a0, a†

0] = 1. (1.166)

80In the context of a CFT at fixed charge the constant f can only depend on the scale ρ1/(D−1) fixed by the charge density —
f 2 = c f ρ

(D−2)/(D−1), [c f ] = 0 — as there is no other scale.
81Modes are discrete since we are in finite volume.
82The creation and annihilation operators are given by

(
a(k), a†(k)

) = e±iωt ∫
V

dD−1xp
2Vω

e∓i k·x [
ωϕ(t ,x)± iΠ(t ,x)

]
.
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Chapter 1. Prerequisites: Conformal Field Theory and Spontaneous Symmetry Breaking

As the non-zero modes integrate to zero, the fluctuation part of the U (1) global charge operator is given

by

Q =
∫

V
dD−1x

∂L

∂(∂0ϕ)
= i f (µ)p

2
V

(D−2)
2(D−1)

(
a†

0 −a0

)
. (1.167)

Via the charge operators Q we can introduce the other equivalent vacua of the theory — in the same

way it has been done in Eq. (1.116) — for arbitrary real θ,

|θ〉 = e iθQ |0〉 = exp

(
θ

f (µ)p
2

V
(D−2)

2(D−1)

(
a0 −a†

0

))
|0〉 . (1.168)

The overlap of the vacuum |θ〉 with the Ground State (GS) |0〉 is computed using the BCH formula and

reads

〈0|θ〉 = 〈0|exp

(
θ

f (µ)p
2

V
(D−2)

2(D−1)

(
a0 −a†

0

))
|0〉 = e

− θ2 j 0(µ)2

4µ2cs (µ)2 V
(D−2)

2(D−1)

. (1.169)

The overlap between equivalent vacua is exponentially suppressed for large charge densities ρ = j 0(µ)

and large volumes V .83 In particular, in the case of a conformal superfluid we can write the overlap

between vacua as

〈0|θ〉 = e−θ
2

c f
4

( ρ
V

) (D−2)
(D−1)

. (1.170)

At finite volume V <∞ all the vacua |θ〉 have a finite non-zero overlap and the system will eventually

relax to the true vacuum |0〉. In infinite volume, as Q is not well-defined, each vacuum |θ〉 belongs to

a different Hilbert space and the system exhibits SSB. The large-charge limit ρ≫ 1 lies somewhat in

between: different vacua will have a non-zero overlap, however, in the large-charge limit this overlap is

exponentially suppressed (for D > 2). This means that, for all practical intents and purposes, the system

can be treated as if there was SSB and we can apply the NG theorem up to exponential corrections.

83There is a caveat here as the equation ρ = ρ(µ) has to be inverted to deduce µ=µ(ρ). As long as ρ(µ) is polynomial the speed
of sound is generically constant in µ to leading order, see Eq. (1.153) and Eq. (1.155). Additionally, if ρ(µ) to leading order is at
least linear in µ the exponent in Eq. (1.169) to leading order is at least constant in ρ. In that case the overlap is exponentially
suppressed.
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2 The large quantum number
expansion in CFT and the O(2) model

CFTs are strongly constrained by the extended spacetime symmetries they respect. However, due to

scale invariance they do not allow for any dimensionful parameters — in particular coupling constants

— within the theory and are generically strongly-coupled. Besides free massless theories there are very

few weakly-coupled CFTs in physics, with one notable exception here being Caswell–Banks–Zaks (CBZ)-

type fixed points [130–132]. Strongly coupled CFTs are also particularly important because they live at

the end points of RG flows and therefore are important landmarks in the space of QFTs.

Besides CFTs there are many other interesting theories that do not possess a small coupling. And

there are plenty of examples of strongly coupled theories in which a weakly coupled description

emerges in some sector of the theory once an expansion parameter is artificially introduced. Notable

examples are small-ϵ expansions [133] and large-N expansions [134], both rather universal procedures

applicable to many different theories. For CFTs in D > 2, following the advent of the AdS/CFT

correspondence, a novel set of perturbative frameworks has been developed revolving around large

quantum numbers.1 Besides large-spin expansions for spinful operators [90, 136, 137] this includes

Large-Charge Expansions (LCEs) [17, 18]. The LCE is generically applicable to CFTs that are invariant

under a global internal symmetry group G , as theories of this type, generally speaking, possess an

emergent perturbative regime described by an effective theory when studying operators with large

quantum numbers under the symmetry G , even though they are often strongly coupled.

This chapter is separated into two parts. The first part serves as an introduction to the description

of CFT operators at large charge and the LCE. It is an original presentation of materials and takes

inspiration from many different places in the literature. A few sources that deserve to be highlighted

are the works by Álvarez-Gaumé et al. [47], Monin et al. [18], Cuomo [46] and Kalogerakis [138].

The second part of the chapter presents an up-to-date analysis of the large-charge sector of O(2)-

invariant CFTs and follows [2]. O(2) models are the simplest working example in which the LCE can

be applied. Nevertheless, this analysis is consequential for important physical theories such as the

O(2) WF fixed point [8, 139] which in D = 3 describes the superfluid transition in liquid Helium.2 We

systematically gather and study CFT data by computing two-, three- and four-functions accessible

1Large-N and small-ϵ expansions have been successfully applied to study CFTs as well, see e.g. [8, 135].
2Another example would be bosonic gauge theories with monopole operators [140], where the O(2) symmetry is given by the

associated topological charge.
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at large charge. A detailed outline of the contents will be given separately at the beginning of the section.

All computations in this chapter are performed in Euclidean signature with the dimension D of

spacetime mostly kept arbitrary. As discussed, Section 2.1 represents an original discussion of the

current understanding of the structure of CFT data at large charge. On the other hand, Section 2.2

presents original contributions of the author. It follows closely the material in [2] with some modifications.

2.1 The large charge program: Sectors of large charge in (strongly

coupled) CFTs

We give a brief and general introduction into the most important aspects of the LCE and outline the

current landscape of its applications and interplay with other methods of accessing CFT data. In doing

so, we discuss some of the most relevant and interesting results in the academic literature.

2.1.1 Accessing CFT data

As discussed in detail in Section 1.1, CFTs are highly constrained and all N -point functions of local

operators can essentially be computed from the CFT data. Worded differently, having access to all two-

and three-point functions allows for the recursive computation of any N -point function. However,

this is where issues arise, as in a (strongly-coupled) CFT it is not possible to compute correlators

perturbatively in a small expansion parameter in the way it is usually done in QFT. Hence, for strongly-

coupled interacting CFTs we require other ways of accessing correlators and compute the CFT data.

Non-perturbative methods of accessing CFT data in strongly-coupled theories can be roughly classified

into three categories.

Monte–Carlo methods and simulations

Monte–Carlo methods refers to a loose set of numerical algorithms that rely on recurring random

sampling to attain results. Monte–Carlo methods have been successfully applied to CFT in order to

compute CFT data and critical exponents [141, 142]. They are best suited for (generalized) spin lattice

systems — such as the Ising model — and the corresponding CFTs that are found at the critical points

of such systems.

Results from Monte–Carlo methods for the computation of observables involving light operators — i.e.

operators with small scaling dimensions — are currently less precise than equivalent results from the

conformal bootstrap, which we will discuss next. However, they are more versatile and can be applied

to compute operators with larger scaling dimensions as well [143–146], although with limited accuracy,

in contrast to the conformal bootstrap. Still, Monte–Carlo methods work best and are most widely

used for lighter operators. Finally, it deserves to be mentioned that there are other inventive numerical

techniques used to study CFTs such as fuzzy-sphere regularization [147], which are not directly related

to Monte–Carlo simulations.
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2.1 The large charge program: Sectors of large charge in (strongly coupled) CFTs

Conformal bootstrap methods

As we have extensively discussed the conformal bootstrap in Section 1.1.9, we will be brief here. In

short, the conformal bootstrap exploits the structure of CFTs to analytically constrain and numerically

solve for the conformal data. It is independent of any Lagrangian description and works with the CFT

data as (independent) variables directly, constraining them via the crossing equation Eq. (1.108) [13,

92]. Its numerical constraints give the most accurate predictions for the lightest operators in the D = 3

Ising model to date [21].

Generally speaking, the conformal bootstrap is very efficient in computing conformal data of the

lightest operators in the theory. Beyond, for heavier operators, it quickly becomes less viable.3 There

is clear overlap between Monte–Carlo methods and the bootstrap as they are used to analyse similar

sectors of the CFT data.4

Artificial perturbative frameworks

Here, we refer to any analytic approach that aims to compute CFT data perturbatively by artificially

introducing or constructing a small expansion parameter in the theory at hand. There are many

different approaches to this end and it is not exactly a unique methodology. Accepting certain

restrictions, the conformal data can then be analytically calculated in an asymptotic expansion in the

small expansion parameter. Examples with widespread use here — not just in the study of CFTs —

are e.g. large-N expansions [134] and small-ϵ expansions [133]. In particular, large quantum number

expansions, which we are interested in, belong in this class of methods.

The interest in large quantum number expansions for CFTs has its origin in the development of large-

spin expansions [136]. The large-spin expansion originates from the fact that it is possible to extract

information about operators with large spin from the crossing equation Eq. (1.110). Written in terms of

the conformal cross ratios z, z̄ — defined in Eq. (1.103) — in the limit z → 0 with z̄ fixed it is possible to

extract information from Eq. (1.110) about operators with large values of the spin ℓ [90, 149–151].

Evidently, by virtue of the unitarity bounds in Eq. (1.76), the large-spin program probes operators with

large scaling dimensions ∆(ℓ) ≥ ℓ. To leading order in the large-spin expansion we find a Regge-like

behaviour with scaling dimension [137, 150, 152]

∆(ℓ) = ℓ+ . . . . (2.1)

With the seminal paper [17] and follow-up work [18] it was established that a similar simplification

manifests itself for operators with large quantum numbers under a global O(2)/U (1) (sub-)symmetry.

It was found that scaling dimensions for large-charge operators behave as

∆(Q) = c1Q3/2 + . . . . (2.2)

3The heavier the operators involved in the crossing equation Eq. (1.108) are, the more computationally involved conformal
bootstrap techniques become.

4Monte–Carlo methods can also be applied to the conformal bootstrap [148].
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Chapter 2. The large quantum number expansion in CFT and the O(2) model

The analytic methods universally applicable to any CFT — the conformal bootstrap, large spin and

the LCE — generically access different areas of the conformal data. Whereas the conformal bootstrap

allows for precision calculations of light operators, the asymptotic expansions associated to large-spin

and large-charge methods compute heavy operator dimensions. The different areas of CFT data that

are accessible by analytical means are schematically shown in Figure 2.1.

The large-spin expansion and the conformal bootstrap both reference the crossing equation Eq. (1.108).

Since the LCE is mainly based on the state–operator correspondence, emerging condensed matter

phases and semi-classical analysis, it has little to do with the crossing equation or the conformal

bootstrap directly. As it became clear rather quickly that the LCE could also be applied to compute

higher-point correlators and especially three-point coefficients [18], Jafferis et al. explored large-charge

operators via the conformal bootstrap [154]. The authors found perfect agreement between the two

methods, which is remarkable as it seems to imply that the emergent condensed-matter phases at large

charge — in particular the conformal superfluid phase — are intrinsically encoded by the corresponding

conformal bootstrap constraints.

As both large-charge and large-spin methods probe heavy operators in the theory, there is a lot of

interplay between the two approaches and there are several different phases emerging along the

trajectory in-between the two limits where either J or Q is parametrically small [152, 155–157]. We will

discuss this in more details in Section 2.1.3.

2.1.2 Large-charge sectors in CFTs and their properties

The LCE is useful for the computation of CFT data, as it allows us to access information about heavy

operators that is not accessible to the same level of precision with other methods. Consider a CFT

invariant under a global internal symmetry group G . We choose a one-parameter subgroup U (1)G0 ⊂G

— which is equivalent to selecting a particular generator Q(G)
0 of G — and we consider the lowest-lying

operator OQ with charge Q ≫ 1 under U (1)0 — i.e. the operator minimizing the scaling dimension

∆=∆(Q) at fixed large Q — which is generically a scalar.5 The LCE allows us to access and compute

correlation functions involving the insertion of OQ or operators nearby in an expansion in Q.6

By the state–operator correspondence, a scalar operator OQ with charge Q under the U (1)0 subgroup

corresponds to a state |Q〉 on the cylinder Rτ×SD−1
r0

with charge density ρ∝ Q/r D−1
0 . The cylinder

compactification scale 1/r0 is parametrically smaller than the scale ρ1/(D−1) ∝Q1/(D−1)/r0 introduced

by the charge in the limit of Q ≫ 1.7 In the window described by the parametrically separated scales the

CFT state is expected to correspond to some condensed-matter phase characterized by the spontaneous

breakdown of certain global and spacetime symmetries [18, 115]. Hence, between the IR scale r−1
0 and

the UV scale ρ1/(D−1) the state |Q〉 and small excitations around it are accurately captured by an EFT

describing this condensed-matter phase, which in the homogeneous and isotropic case generically is a

5In principle, the operator we consider can exhibit large charges Q1, . . . ,QN under all the mutually commuting Cartan

generators Q(G)
1 , . . . ,Q(G)

N of G . However, imposing homogeneity of the ground state configuration will force all other charges
besides Q1 to be parametrically smaller than Q1 and vanish [17, 47].

6To be precise, due to charge conservation, we need an insertion of OQ and O−Q . With nearby we mean operators with the
same charge Q and slightly higher scaling dimensions.

7The cylinder scale 1/r0 is artificial and the CFT physics is independent of r0. In the LCE this manifests itself in the observation
that the hierarchy of scales 1/r0 ≪ ρ1/(D−1) is independent of r0.
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J

Q

∆

∆∝ J

∆∝Q3/2

Bootstrap

Large
Spin

Large
Charge

Figure 2.1: Diagrammatic representation of the space of conformal data with axes given by the scaling
dimension ∆, the spin J and the charge Q. Outlined are the accessible areas for ∆ as a function of J ,Q.
Figure inspired by [153].

superfluid.8 The hierarchy of scales is

1

r0
≪Λ: cut-off scale of the (superfluid) EFT ≪ Q1/(D−1)

r0
. (2.3)

The superfluid ground state |Q〉 within the EFT computes the scaling dimension ∆(Q) of the lowest-

lying operator OQ . Excitations on top of the EFT vacuum |Q〉 describe operators with charge Q and

slightly larger scaling dimensions. These are captured below the cut-offΛ≪ ρ1/(D−1) by the EFT and are

described by the superfluid phonon — a NG mode coming from the spontaneous breaking of the global

symmetry U (1)0 ⊂G within the EFT — whose properties are largely independent of the properties of

the underlying CFT. The derivative and the loop expansions within the EFT are controlled by the ratio

between the UV and IR scales, which is given by the charge 1/Q1/(D−1).

Path integral at fixed charge and symmetry breaking

The implementation of the LCE can be well understood from the path integral. In the following, we will

consider a generic global symmetry group G and not restrict our analysis to O(2).

Consider a D-dimensional CFT described by a path integral that is invariant under a continuous global

internal symmetry G . A primary operator within the CFT carries charges Q1, . . . ,QN under the Cartan

generators Q(G)
I of G .9 Working in Euclidean space, the LCE aims to investigate and extract CFT data

from correlators of the form

〈OQ†(xout)Ok (xk ) · · ·O1(x1)OQ(xin)〉 , (2.4)

8The class of CFTs with a global symmetry G whose large-charge operators are accurately described by a conformal superfluid
— sometimes referred to as the superfluid universality class — is expected to be large. However, it excludes theories with a moduli
space.

9Equivalently, we can ask O to transform within a specific representation under the action of G . Representations are labelled
by the Cartan charges of the highest-weight element within the representation.
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Chapter 2. The large quantum number expansion in CFT and the O(2) model

where the conjugate operator OQ† ∼O−Q carries the inverse charge −Q =−(Q1, . . . ,QN ). In the context

of the LCE Q will be assumed to be large and OQ to be heavy while the other operator insertions are

generic and carry quantum numbers of order O (1). Inserted at the origin xin,out = 0,∞ — via the

state–operator correspondence — the primary operator OQ(0) |0〉 acting on the vacuum corresponds

to a (primary) state |Q〉 = |Q1, . . . ,QN 〉 of charge Q on the cylinder R×SD−1
r0

. In- and out-states on the

cylinder are defined as

〈Q(τ)| := 〈Q|e−H (cyl)τ = 〈Q|e−
∆(Q)

r0
τ

, |Q(τ)〉 = 〈Q(τ)|† , (2.5)

where the cylinder Hamiltonian H (cyl) = D is the dilatation operator in flat space and E(Q) =∆(Q)/r0.

Hence, up to a trivial rescaling (see Eq. (1.53)), the matrix element

〈Q(τout)|Ok (τk ,nk ) · · ·O1(τ1,n1) |Q(τin)〉 (2.6)

for the theory quantized on the cylinder is equivalent to the flat space correlator in Eq. (2.4). For large

enough values of the charges Q we expect that the path integrals describing correlators of the form in

Eq. (2.6) are dominated by a semi-classical trajectory. This trajectory specifies a definite symmetry-

breaking pattern, as such a trajectory inevitably breaks the global group G at least down to a subgroup

G ′. Operator insertions with small quantum numbers and higher-energy states are expected to be

captured by excitations over the ground state |Q〉, i.e. the associated classical configuration in the path

integral.

In the limit of infinite separation, τin,out →±∞, we can infer the symmetries respected by the leading

semi-classical configuration and the ones broken by it.10 The operator insertion OQ at 0 breaks

translations Pµ while the insertion at ∞ breaks SCTs Kµ. The fate of the rotation group SO(D) is unclear,

but for a scalar operator insertion it is reasonable to expect that the state |Q〉 exhibits a homogeneous

charge density.11 12 The dilatation operator — i.e. the cylinder Hamiltonian — may or may not be

broken. However, the most natural possibility is that the semi-classical ground state at fixed charge

corresponds to a superfluid phase in which both D and the global internal symmetry group G are

spontaneously broken, leaving only the modified Hamiltonian,

D/r0 +
∑

I
µI Q(G)

I , (2.7)

corresponding to an intact helical symmetry. Hence, the symmetry-breaking pattern we expect for the

semi-classical trajectory in the presence of two large-charge operator insertions is

SO(D +1,1)×G 7−→ SO(D)×
(
D +∑

I
µI Q(G)

I

)
×G ′ , (2.8)

where G ′ ⊂G is the unbroken subgroup of G . The properties of the ground state and the fluctuations on

top will be dependent on the specific symmetry-breaking pattern at hand. In the absence of any higher

symmetries like Supersymmetry (SUSY) [60–63, 161–166] there is a finite gap between the NG modes

coming from the symmetry breaking and any additional DoF, allowing us to compute the path integral

10This corresponds to inserting the operators OQ,OQ† at 0,∞, respectively.
11Similar arguments characterize the leading trajectories of operators carrying macroscopic spin [46].
12Imposing homogeneity fixes the operator OQ to be in the associated completely symmetric representation [47] (at least in the

case of O(N ) or U (N )). Getting away from the completely symmetric representation appears to require relaxing the homogeneity
condition [47]. Explicit inhomogeneous solutions have been constructed in the O(4) model [47, 158–160].

62



2.1 The large charge program: Sectors of large charge in (strongly coupled) CFTs

corresponding to Eq. (2.6) using a low-energy effective action. In the case of no additional operator

insertions the matrix element in Eq. (2.6) takes the form

〈Q|e−H(τout−τin)|Q〉 =
∫ ∏

DχI
∏

DπA exp

[
−S[χI ,πA]− iQI

ΩD r D−1
0

τout∫
dτ

τin

∫
dS χ̇I

]
, (2.9)

where χI are the NG fields associated to the Cartan charges Q(G)
I and πA are additional DoF that might

be present. The action S[χI ,πA] is the most general action compatible with the symmetry breaking

pattern. For completeness,ΩD refers to the volume on the unit D −1-sphere,

ΩD = 2πD/2

Γ(D/2)
. (2.10)

The boundary term in the action Eq. (2.9) fixes the charge(s) of the initial and final state. In contrast,

the precise value of the boundary condition for the additional modes πA is irrelevant in the infinite

separation limit τout −τin →∞. For large charges Q the path integral in Eq. (2.9) is computable in a

saddle-point approximation around the corresponding semi-classical trajectory mentioned before.

The state |Q〉 itself clearly breaks neither D nor the Q(G)
I , as it is an eigenstate of all of these operators.

Even though the full path integral is invariant under all symmetries, the existence of a semi-classical

configuration (and the associated ground state) with the symmetry-breaking pattern Eq. (2.8) ensures

that the description of the system in terms of a low-energy effective action for the associated NG

modes is consistent. In particular, integration over the corresponding zero modes guarantees charge

conservation on the cylinder. In contrast, in infinite volume the boundary conditions fix the value of

the zero-modes as they are not normalizable.

There is the possibility that the leading trajectory does not break the dilatation operator. This situation

is generically associated to the presence of a Fermi liquid phase involving fermionic excitations. The

characterization of a Fermi liquid phase in terms of the NG DoF is less clear than for a superfluid

phase [118, 167, 168]. We encounter this possibility in the free fermion CFT as well as in the large-N

GN model (at least to leading order in N ), which we discuss later in Chapter 3.

2.1.3 The superfluid universality class and other emergent phases

We discuss the zoology of arising effective descriptions and emergent condensed-matter phases in

the LCE. In particular, we focus on the largest subset of theories which are described by a conformal

superfluid phase at large charge, also referred to as the superfluid universality class of CFTs.13

The superfluid EFT description has been the first emergent phase found in the large-charge sector of

13The superfluid universality class is not a universality class in the usual sense of the word. Usually, a universality class refers to
the set of sometimes vastly different theories — like the the Ising model and the theoretical description of water —that flow to
the same CFT at the fixed point. Here, it refers to the set of distinct conformally invariant theories that share the same effective
description at large charge.
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Chapter 2. The large quantum number expansion in CFT and the O(2) model

certain CFTs with global symmetries [17, 18]. Besides being the best-studied theories in terms of their

LCE, the class of CFTs whose correlation functions with large-charge operator insertions are accurately

captured by a conformal superfluid — sometimes referred to as the superfluid universality class — is

also expected to be large. For a CFT in the superfluid universality class the homogeneous cylinder

ground state at large charge and the fluctuations on top are captured by a conformal superfluid EFT.

Theories in this class possess a global internal O(2) symmetry, which may or may not be just a subgroup

of a bigger global symmetry group G ⊃O(2).14 Generically, conformal fixed points of scalar theories

like the O(N ) vector model [47, 122, 124, 145, 169] belong to the superfluid universality class, with the

exception of the free massless scalar. In addition, the superfluid universality class also includes models

with Yukawa-type interactions [3, 170] and purely fermionic models — such as the NJL model discussed

in Chapter 3 — that exhibit so-called Bardeen–Cooper–Schrieffer (BCS) superconductivity [95, 171] and

allow for a Bose–Einstein Condensate (BEC). Finally, certain bosonic gauge theories with monopole

operators [140, 172–174] are expected to belong to the superfluid universality class when considered at

large monopole magnetic charge. In this case, the U (1) global symmetry is generated by the associated

topological charge.

Theories with non-Abelian symmetries in the superfluid universality class are much richer than their

Abelian counterparts. This is because in non-Abelian CFTs the spectrum of possible symmetry-breaking

patterns and EFT descriptions is distinctly larger and there are more available DoF [122]. For example,

in the O(N ) vector model only correlators of operators in completely symmetric representations

[Q = |Q| 0 . . . 0] are described by a homogeneous superfluid ground state at large charge [46, 122].15

When analysing the spectrum of the EFT it is found that — in addition to the usual O(2) sector with the

superfluid phonon and its massive partner — there are now new NG modes with quadratic dispersion

relations [46, 47, 122, 124] — i.e. type-II or type-B NG modes — and their massive partners which are the

gapped NG modes found in finite density systems (see Section 1.2.4 and Section 1.2.5). The fluctuations

of these type-II modes on top of the homogeneous ground state are expected to describe operators that

are in representations [Q q2 . . . qN ] with parametrically small asymmetries q2, . . . , qN ≪Q [46, 47]. It is

to be expected that for representations that are no longer roughly symmetric — i.e. if the coefficients

q2, . . . , qN become large enough — the homogeneous superfluid EFT description breaks down, just as

it does for large enough spin J ∝ Q1/(D−1) in D dimensions [47, 155], and one or potentially several

new inhomogeneous phases will emerge. We expect to find similar behaviour for other non-Abelian

theories in the superfluid universality class besides the scalar O(N ) models.

These new emergent phases for operators in asymmetric representations are not well studied and there

are no explicit suggestions on how they should look like generically. The only thing that is clear is these

new phases should be associated with spatially inhomogeneous ground states as shown explicitly in

the simplest case of the O(4) vector model [47, 158, 159]. However, even the O(4) model is not properly

understood as recent work has shown that there is a discrepancy between theoretical predictions and

lattice results for the sub-leading conformal dimensions [160]. The fact that these emerging phases

describing anti-symmetric operators have to be inhomogeneous can be illustrated in the case O(N )

vector model with the observation that a structure which is anti-symmetric in the scalar indices requires

the presence of derivatives. As a consequence, anti-symmetric operators are necessarily spinning (and

14In most generic examples the global O(2) symmetry in question corresponds to the U (1) baryon symmetry counting the
number of particles. The fermionic example of the NJL model is more subtle and the relationship with the particle number
symmetry is only seen after a Pauli–Gursey (PG) transformation, see Section 3.3.3.

15To be precise, large charge in this non-Abelian setting means large dimension of the associated (completely symmetric)
representation.
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potentially descendants).

The picture qualitatively changes in the case of fermionic CFTs. In the presence of fermionic DoF it

is certainly a possibility that the associated large-charge sector might not be captured by a bosonic

superfluid EFT. And in fact, there are some fermionic CFTs that do not exhibit an emergent superfluid

description at large charge and instead the fixed-charge ground state is described by a filled Fermi

sphere. This is the case for the free fermion [168] and the GN model in the strict infinite-N limit [3]. For

interacting systems with a Fermi-sphere ground state there should be a Fermi-liquid EFT description in

the spirit of [118, 167]. A proposed Fermi-liquid EFT needs to be compatible with conformal symmetry

and potentially introduces new universal properties similar to the conformal superfluid EFT. Ideally,

such an EFT description exhibits a BCS instability to account for fermionic models that still acquire a

superfluid ground state.16

Both the Fermi sphere and the superfluid class of CFTs exhibit a scaling dimension that in D dimensions

to leading order goes like

∆(Q) ∼Q
D

(D−1) . (2.11)

This is physically significant as it is the only scaling that allows for a non-trivial macroscopic limit. For

a CFT in arbitrary D on the cylinder schematically it holds that

Q ∝ r D−1
0 ρ ,

E

V
= ∆(Q)

r0V
∼ Qα

r D
0

, (2.12)

where, to be precise, we assume that the scaling dimension ∆(Q) asymptotically scales like Qα for

large charge Q. The associated charge density ρ introduces the dimensionful parameter ρ1/(D−1). The

separation of scales 1/r0 ≪ ρ1/(D−1) at large charge indicates the presence of a condensed-matter

phase [115] naturally associated with the state |Q〉. We assume that such a condensed-matter phase

exists and accurately captures the state |Q〉 and its nearby excitations. The scale r0 of the cylinder

R×SD−1
r0

is unphysical in any CFT and dimensional analysis dictates that

E

V
= ∆(Q)

r0V
∼ ρ D

(D−1) , (2.13)

in order for the energy density ∆(Q)/(r0V ) of the corresponding state |Q〉 to be well-defined in the

macroscopic — or planar — limit r0 →∞. If this condition is satisfied, the energy density on the cylinder

neither blows up nor does it dilute in this limit, consistent with the fact that the separation of scales

1/r0 ≪Q1/(D−1)/r0 remains intact for r0 →∞ and hence the condensed-matter description necessarily

does so as well. The universality class of CFTs with a non-trivial macroscopic limit includes both the

superfluid universality class and the Fermi-sphere class and is believed to be very large; essentially any

theory without flat directions and higher symmetries is believed to lie in this universality class.

The exists a distinct number of CFTs for which the energy density of the large-charge ground state

16Theoretically, it is feasible that in addition there exists a class of theories described by a non-Fermi liquid phase [175, 176],
however, in contrast to the Fermi sphere ground state, such behaviour has not yet been observed in the context of the LCE.
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dilutes in the planar limit. We refer to this set of CFTs whose large-charge operators do not possess

a non-trivial macroscopic limit on the cylinder as the moduli class. Theories in the moduli class do

not exhibit a condensed-matter EFT description. This includes the free scalar theory [154] and N = 2

Supersymmetric Yang–Mills (SYM) models [60–64].17 In this case the scaling dimension goes like

∆(Q) ∼Q . (2.14)

However, not all supersymmetric models lie in the moduli class. In particular, the N = 2 supersymmetric

W =Φ3 model in three dimensions exhibits a scaling dimension∆(Q) that goes like Q3/2 at large charge

Q [47].

To summarize, in the literature on the LCE we essentially encounter two scenarios. In generic CFTs

we expect and find the operator that minimizes the conformal dimension at fixed charge Q ≫ 1 to

correspond to a finite density state with a non-trivial macroscopic limit satisfying the scaling law

∆(Q) ∼QD/(D−1). On the other hand, in theories with a moduli space of vacua the lightest operator of

charge Q ≥ 0 generically has vanishing energy density in the macroscopic flat space limit, violating

the above scaling relation. This is in particular the case in many superconformal field theories and

for the free massless scalar where ∆(Q) ∼ Q.18 In principle, for this to occur it suffices there to be

an operator which scales like ∆(Q) ∼ Qα with α < D/(D −1). However, in all known examples this

relationship is linear with α= 1, suggesting this behaviour to represent a universal feature for CFTs

with a flat direction in which SSB is present also in the moduli space of vacua. In this context, there

exists a result from condensed-matter physics proving that a ground state with off-diagonal long-range

order — which is a fundamental feature of SSB present in the moduli space of vacua of the theory

— implies a linear relationship between energy and charge [177]. It is, however, an open problem to

adapt this proof from condensed-matter systems to CFTs. The observation that in the large-charge

literature the conformal dimensions ∆(Q) of the lowest-lying operators at fixed charge all either satisfy

the scaling ∆(Q) ∼QD/(D−1) in generic theories or the linear scaling ∆(Q) ∼Q in certain theories with

higher symmetries leads to formulation of the following conjecture [178]:

Conjecture: In any CFT in D > 2, the relationship between scaling dimension∆(Q) and charge Q of the

lightest operator at fixed charge Q — ∆(Q) ∼Qα — satisfies either α= D/(D −1), in which case there

exists an emergent condensed-matter description, or α= 1, in which case the theory exhibits higher

symmetries and a moduli space of vacua.

The above conjecture can also be formulated in a slightly weaker form by requiring only that 1 ≤α≤
D/(D −1) [178]. As mentioned, the upper bound α= D/(D −1) comes from the requirement of a finite

charge density in the macroscopic limit on the cylinder, a physically well-motivated assumption. The

lower bound α= 1 represent the smallest value of α for which the scaling dimensions ∆(Q) still is a

convex function of Q. It has been suggested that convexity of the scaling dimension ∆(Q) (and hence

17In D = 2 it was demonstrated that the U (1) large-charge sector decouples from the rest of the system and cannot control the
low-energy dynamics [168]. Hence, it is not possible to write down an EFT description there as well. However, it was later shown
that the LCE can be fruitful when paired with an additional controlling parameter and evaluated in the double-scaling limit [54].

18In these superconformal field theories the lightest operator at fixed charge is the BPS operator which always satisfies a linear
relation between scaling dimension and charge.

66



2.1 The large charge program: Sectors of large charge in (strongly coupled) CFTs

α≥ 1) follows from consistency of the large-charge EFT under the assumption that said EFT consists of

a single NG boson [179]. It would be certainly interesting and illuminating to establish the claims of

either the weaker or stronger form of this conjecture using non-perturbative techniques such as the

conformal bootstrap.

2.1.4 Connecting large charge and large spin

Large-spin expansions in CFTs have been established well before the LCE. Once the LCE as a method

for computing conformal data has been established — as both methods allow for the computation of

CFT data involving heavy operators — it is natural to try to understand what lies at the intersection

between the two methods. In the following we consider U (1)-invariant CFTs in D = 3.19

The case of large-charge operators in the O(2) model additionally carrying a small non-zero spin J has

already been discussed in the seminal paper [17]. They can be described via the superfluid phonon

excitations on top of the ground state at large charge as long as the total spin J is smaller than the EFT

cut-off J ≲Λ≪√
Q (in D = 3). The scaling dimension of such an operator goes like

∆(Q, J ) = c1Q3/2 + Jp
2
+ . . . , J ≪

√
Q . (2.15)

The validity of the phonon description and the phase diagram of heavy operators have been thoroughly

investigated [155, 156, 180, 181]. For spins larger than the cut-offΛ≪√
Q the superfluid EFT breaks

down and a new effective description should emerge. On the other end of the phase diagram, for

J ≫Qα, where α≥ 3/2 is a real number larger than the power of the leading term in the LCE, the large

spin EFT takes over and there is a Regge-like behaviour [137, 150, 152]. It can be explicitly shown that

the Regge limit is valid for J ≫Q2 and the scaling dimension is [156]

∆(Q, J ) = J +γQ + . . . , J ≫Q2 . (2.16)

In between the Regge limit and the superfluid EFT at least one other phase has to exists. Interestingly,

the phase diagram is richer than originally anticipated and there are three new phases between the

superfluid limit at very large Q and the Regge limit at very large J [155, 156, 180]. The phase diagram is

schematically depicted in Figure 2.2, which in the context of computing CFT data is an extension of the

diagram in Figure 2.1 for the O(2) model in D = 3.

Beyond the validity of the superfluid EFT, for
√

Q ≪ J the superfluid develops vortices.20 For spins

smaller that Q the ground state corresponds to a vortex-antivortex pair with scaling dimension [155,

156]

∆(Q, J ) = c1Q3/2 + Q

6c1
log

J 2

Q
+ . . . ,

√
Q ≪ J ≤Q . (2.17)

For J ≥ Q the number of vortices increases and the ground state becomes a vortex distribution. If

19Although it is not understood as well as the D = 3 case, there is some work that has been done in D = 4 [156, 180]. We refrain
from discussing this here.

20This is consistent with experimental observation, as BECs in the lab have been shown to develop an increasing number of
vortices as the angular momentum is increased [182–185].
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J

Q

Superfluid

Vortex/Anti-Vortex

Rigid Body

Giant Vortex

Regge Theory

Bootstrap

Figure 2.2: Phases for the ground state of the O(2) model in D = 3 on the cylinder. Figure adopted
from [156].

the spin increases further to J ≫ Q the number of vortices becomes very large such that it can be

approximated by a smooth distribution. Hence, the ground state for
√

Q ≪ J ≪Q3/2 corresponds to a

rigid body — or vortex crystal — and the corresponding scaling dimension is [155, 156]

∆(Q, J ) = c1Q3/2 + 1

2c1

J 2

Q3/2
+ . . . ,

√
Q ≪ J ≤Q3/2 . (2.18)

For J ∼Q3/2 the angular velocity of the rigid body becomes relativistic, the vortex density grows and

once the velocity exceeds the speed of sound presumably an instability develops. For Q3/2 ≪ J ≪Q2 a

giant vortex phase emerges where the superfluid does not extent throughout S2
r0

, but is localized on a

strip around the equator. In its domain the superfluid is spinning relativistically fast and the scaling

dimension becomes [156]

∆(Q, J ) = J + 9c2
1

4π

Q3

J
+ . . . , Q3/2 ≪ J ≤Q2 . (2.19)

For J ∼Q2 the domain where the superfluid is localized becomes very narrow and the EFT breaks down.

For J ≫Q2, in the Regge limit, the EFT describes Q partons spinning around the equator [156].21

2.2 The O(2) model: Computing CFT data at large charge

In the following we focus our analysis on the superfluid EFT description for the case where the global

internal symmetry in question is Abelian, G =U (1).22 This Section follows closely [2] which attempts to

21The coefficient γ in Eq (2.16) is the scaling dimension of one such parton [156].
22Generically, the group G =U (1) can be part of a bigger symmetry group as long as the associated U (1) generator commutes

with all other generators.
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bridge a gap in the literature by systematically computing relevant CFT data. Before the publication

of [2] the primary area of interest was the computation of conformal dimensions within the LCE [17, 18,

46, 47, 122, 186–188] — with some of the results independently verified via lattice computations [143–

145, 160] – and the phase diagram for large spin and large charge operators [155–157, 180]. Some

other conformal data in the form of three- and four-point functions has turned up dispersed in the

literature [18, 46, 47, 154, 168, 187–189] but there is no systematic collection and presentation of results

anywhere. This Section that follows closely [2] bridges that gap in the literature and presents and

extensive but not exhaustive list of conformal correlators and data in U (1) invariant CFTs at large

charge in a systematic way and in a common language.

The plan is as follows. In Section 2.2.1 through Section 2.2.6 we review the basic ideas of the O(2) sector

at large charge, focusing on canonical quantization, path-integral methods, computing the basic two-

point functions of the ground state 〈Q|Q〉 as well as the one-phonon state 〈Q
ℓ2m2

|Q
ℓ1m1

〉 and discussing

the quantum corrections to the scaling dimension from 〈Q|Q〉. Additionally, in Appendix B.3, we discuss

the two-loop correction to the scaling dimensions of the primary operator corresponding to the large-

charge ground state in detail. In Section 2.2.7 we present correlators of the O(2) conserved current J

and the stress-energy tensor T . We improve upon the state-of-the art and compute relevant correlators

here for spinning one-phonon states 〈Q
ℓ2m2

| · · · |Q
ℓ1m1

〉 representing excitations of the large-charge ground

state. Although we do not directly use conformal symmetry, our results are consistent with the expected

form of conformal correlators. Finally, in Section 2.2.8 we give an overview of correlators in which a

small-charge operator is inserted between large-charge states.

In Appendix B.1 we collect important properties and identities of hyperspherical harmonics in D

dimensions and we make the connection to the constraints on correlators from conformal invariance

at large separation. The Casimir energy of the fluctuations is computed in various dimensions in

Appendix B.2. Finally, in Appendix B.5 we give some calculational details for correlators and in

Appendix B.4 we give details for the loop calculations.

2.2.1 Effective field theory for the O(2) sector at large charge

We consider a CFT in D-dimensional flat space with an O(2) internal symmetry which can generically

be a subgroup of a larger global symmetry. The O(2) symmetry is generated by its generator Q =Q(O(2)).

This set is not empty as it in particular includes the O(2) WF fixed point for 2 < D < 4 [8, 17, 47] and,

in particular, this set includes the interacting CFT that describes the superfluid transition in liquid

Helium.

In our presentation we generally work in the cylinder frame R×SD−1. We consider the state |Q〉 in the

cylinder generated by the scalar primary OQ with O(2) charge Q and we are interested in correlators of

such primaries at long distances, which can be expressed on the cylinder as

〈Q,∞|Q,−∞〉= lim
β−→∞

〈Q|e−βH cyl |Q〉 . (2.20)

By the state–operator correspondence the cylinder Hamiltonian H cyl = D/r0 is the dilatation operator

in flat space. There is strong indication [17, 18, 47] that as the charge Q becomes very large, this

correlator on the cylinder admits a description in terms of a weakly coupled EFT based on the coset
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model

SO(D +1,1)×U (1)Q

SO(D)×U (1)D+µQ
, valid for energy scales

1

r0
≪Λ≪ Q1/(D−1)

r0
∼µ , (2.21)

where r0 is the radius of the cylinder R×SD−1
r0

. The parameter µ(Q) will be introduced later as part of

the ground state solution and is best interpreted as the chemical potential dual to the quantum number

Q (the fixed control parameter). The symmetry-breaking pattern of the coset model in Eq. (2.21),

SO(D +1,1)×U (1)Q −→ SO(D)×U (1)D+µQ , (2.22)

is known as the conformal superfluid phase.23 We quickly repeat why we expect this symmetry breaking

pattern. The leading trajectory and hence the emergent effective description must have the same

symmetries as the correlator in Eq. (2.20). The insertions of OQ and O−Q at ±∞ in cylinder time

effectively break translations and SCTs. We assume that OQ is a scalar and rotations remain unbroken

(homogeneity). As |Q〉 is both an eigenstate of H cyl = D/r0 and the charge operator Q =Q(O(2)) we expect

that the leading trajectory should be at least invariant under some effective time translation operator H ′

involving H cyl and Q. Thus, the leading semi-classical solution will correspond to a homogeneous state

on SD−1 characterized by a large charge density ρ =Q/r D−1
0 ΩD , whereΩD is the volume of the sphere.

The simplest option respecting all of these conditions is a generalized superfluid [17, 18] with effective

time translation H cyl +µQ. Predictions that are derived from this assumption can be independently

verified via lattice computations [143–145, 160].24

The most general EFT action that non-linearly realizes the symmetry-breaking pattern in Eq. (2.22)

can be systematically constructed via the CCWZ approach [97, 98] in the case of broken spacetime

symmetries [190]. This procedure presents a systematic way to obtain all terms in the derivative

expansion up to a given order. However, invariance under Weyl rescalings of the metric gµν 7→Ω2(x)gµν
can be exploited to construct the most general effective Lagrangian in a less systematic but more

convenient way.25

Realizing the symmetry-breaking pattern in Eq. (2.22) does not require any DoF for the spontaneously

broken boosts and translations. It suffices to introduce a single shift-invariant superfluid NG field χ

associated to the breaking of the U (1) symmetry,

χ=−iµt +π(τ,n) , (2.23)

where π(τ,n) are the fluctuations over the fixed-charge ground state χ =−iµτ. The chemical potential

µ will be determined eventually by the fixed charge Q. The leading order action of the corresponding

23The state |Q〉 itself is not a superfluid state as it is an eigenstate of the charge operator. To be precise, we just assume that the
two-point function in Eq. (2.20) is dominated by a saddle corresponding to a superfluid state.

24The symmetry-breaking pattern in Eq. (2.22) can be more directly interpreted by taking the decompactification limit r0 →∞
of the cylinder. The conformal group onR′D = limr→∞R×SD−1

r0
can mapped into the original generators onRD and vice versa. In

particular, the unbroken generators of SO(D) are mapped into translations and rotations on RD−1 and the generator of effective
time translations Hcyl +µQ is mapped into effective time translation P ′

0 +µQ. This is exactly the symmetry of homogeneous and
isotropic condensed matter [115] as conformal invariance and boosts are spontaneously broken due to the existence of a finite
charge and energy density.

25All unitary CFTs are believed to be Weyl invariant (up to the Weyl anomaly) [81].
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EFT in Euclidean spacetime26 on the cylinder in terms of the NG field χ can be found by demanding

Weyl invariance and shift invariance for χ [17, 18].27 Equivalently, we can specialize the Abelian

superfluid action in Eq. (1.149) to the cylinder and demand Weyl invariance,

S[χ] =−c1

∫
dτdS

R×SD−1
r0

(−∂µχ∂µχ)D/2 , (2.24)

where c1 is an unknown Wilsonian coefficient that depends on the UV theory (i.e. the starting CFTD )

and dD x
p

g = dτdS = r D−1
0 dτdΩ. Sub-leading higher derivative terms in the action can be constructed

by noticing that the modified metric

g ′
µν =

(
∂χ

)2gµν , ∂χ= (−∂µχ∂µχ)1/2 (2.25)

is Weyl- invariant. Now we can build invariant operators by simply replacing the metric gµν by g ′
µν while

still respecting diffeomorphism invariance. The building blocks compatible with the modified metric
g ′
µν for the EFT action are ∂µχ, g ′,∇′

µ,R′
µνρσ, where R′

µνρσ is the Riemann tensor. In this language the
EFT action can straightforwardly be constructed term-by-term and we find

S[χ] =−
∫

dD x
√

g ′

R×SD−1
r0

[
c1 − c2R′+ c3R′µν∂µχ∂νχ+O

(
∇′4
µ

)]
(2.26)

=−c1

∫
dτdS

R×SD−1
r0

(−∂µχ∂µχ) D
2 + c2

∫
dτdS

R×SD−1
r0

(−∂µχ∂µχ) D
2

[
R

(∂χ)2
+ (D −1)(D −2)

∇(∂χ) 2

(∂χ)4

]
+ . . . ,

where we neglected terms which vanish on the EoM ∇′
µ∂

µχ= 0 of the leading order action in Eq. (2.24).

The ci ’s are all Wilsonian coefficients determined by the underlying CFT. The action Eq. (2.26) is to be

interpreted as an action for the fluctuation π(τ,n) with cut-offΛ∼µ given by the chemical potential

χ̇ =−iµ, so that a hierarchy is generated and controlled by the dimensionless ratio (Rµ) ≫ 1.28 All

observables within the EFT are expressed as an expansion in inverse powers of µ. In particular, the

ground-state action takes the form

S =
(
τ2 −τ1

r0

) ∞∑
r=0

αr (r0µ)D−2r , (2.27)

where the coefficients αr depend on c1,c2 and all other Wilsonian coefficients appearing in the

expansion in Eq. (2.26). Other than the scaling behaviour there is a number of universal predictions

that do not depend on the Wilsonian parameters of the EFT [122, 169, 188].

Technically, we will make use of the fact that the EFT at large charge to leading order is a free theory,

which allows us to perform explicit computations also for a strongly-coupled theory. The leading term

in the EFT only receives corrections sub-leading in Q from curvature terms. The quantum fluctuations

26Our convention for Euclidean space is τ= i t , so that i∂τ = ∂t .
27The shift-symmetric field χ has mass dimension [χ] = 0. Due to the shift-symmetry, only the derivatives of χ are physically

meaningful.
28The derivative expansion is controlled by the chemical potential µ= 〈(∂χ)〉 as well as the ci ’s. The system becomes strongly

coupled at energies E ∼µ.
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arising from the leading term in the EFT are of order (Q)0. In odd dimensions, the tree-level expressions

do not have any (Q)0 contribution, so all terms at this order are due to quantum fluctuations and are

universal. In even dimensions, the universal (Q)0 term [17, 18] is replaced by a (Q)0 logQ term [188].

Studying the structure of the higher-order loop corrections we find in even D logarithmic l-loop

contributions of the form [2]29

∆l ⊃
1

Q(l−1)D/(D−1)

(
α0 +α1 logQ + ...+αl (logQ)l

)
. (2.28)

We will now review the classical and quantum treatment of the action in Eq. (2.24) and Eq. (2.26), from

which we will be able to compute important CFT correlators and corrections to the scaling dimension

of the primary OQ .

2.2.2 Classical treatment

For our purposes we generally neglect curvature couplings and consider only the leading order action

in Eq. (2.24). The first few corrections coming from sub-leading terms in the action do in principle give

corrections with positive scaling in Q, however, they are theory-dependent and do not give universal

predictions. After expanding to quadratic order in the superfluid phonon fluctuations π(τ,n), the EFT

Lagrangian in Eq. (2.24) reads

L =−c1µ
D − i c1µ

D−1Dπ̇+ c1µ
D−2 D(D −1)

2

(
π̇2 + 1

D −1
(∂iπ)2

)
+O

(
µD−3) . (2.29)

The canonically conjugate momentum to the NG field π is defined in the usual manner from the

quadratic Lagrangian,

Π= i
δL

δπ̇

∣∣∣∣
lin

= c1DµD−1 + i c1D(D −1)µD−2π̇ . (2.30)

To leading order we recover the standard canonical Poisson brackets between π andΠ of the free theory.
We start by studying the spectrum of the quadratic Lagrangian. The fields π andΠ can be decomposed
into a complete set of solutions of the EoM [122]:

π(τ,n) =π0 −
iΠ0τ

c1ΩD r D−1
0 D(D −1)µD−2

+

∑
ℓ≥1,m

(
aℓmp

2ωℓ
e−ωℓτYℓm (n)+ a∗

ℓmp
2ωℓ

eωℓτY ∗
ℓm (n)

)
√

c1r D−1
0 D(D −1)µD−2

, (2.31)

Π(τ,n) = c1DµD−1 + Π0

ΩD r D−1
0

+ i

√√√√ c1D(D −1)µD−2

r D−1
0

∑
ℓ,m

(
−aℓm

√
ωℓ
2

e−ωℓτYℓm (n)+a∗
ℓm

√
ωℓ
2

eωℓτY ∗
ℓm (n)

)
,

where π0 andΠ0 are constant zero modes of the fields that we have separated from the other modes,

ΩD = 2πD/2

Γ(D/2) is again the volume of the unit D −1-sphere and the Yℓm are hyperspherical harmonics.30

The dispersion relation associated to the oscillator modes is

r0ωℓ =
√
ℓ(ℓ+D −2)

(D −1)
. (2.32)

29This result is especially relevant for applications in the context of resurgent asymptotics as in odd dimensions large-Q
expansions are expected to be log-free trans-series with non-perturbative corrections related to worldline instantons [191, 192].

30The index m is a vector index with D − 2 components. We collect our conventions and important properties of the
hyperspherical harmonics in Appendix B.1.
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2.2 The O(2) model: Computing CFT data at large charge

Adding higher-curvature terms in the EFT action will add sub-leading corrections in 1/Q (i.e. in 1/µ) to

the expression for the dispersion relation in Eq. (2.32). In contrast to the leading contribution, these

corrections will depend on the Wilsonian coefficients ci and are therefore not universal [46]. The

complex Fourier coefficients aℓm can be extracted from the fields,

aℓm =
√

c1D(D −1)µD−2

2ωℓ r D−1
0

∫
dS

SD−1
r0

[
π(τ,n)∂τ

(
Y ∗
ℓm(n)eωℓτ

)− (∂τπ(τ,n))Y ∗
ℓm(n)eωℓτ

]
, (2.33)

and the canonical Poisson bracket between π and Π — [π,Π] = 1 — corresponds to the brackets

{aℓm , a†
ℓ′m′ } = δℓℓ′δmm′ for the Fourier modes. The classical O(2) conserved charge to leading order

does not get any corrections from the Fourier modes,

jµ = δL

δ∂µχ
, Q =

∫
dS j τ = c1DΩD (µr0)D−1 +Π0 . (2.34)

The leading contribution to the charge comes from the homogeneous term — the zero mode on the

sphere — which corresponds to the ground state 〈(∂χ)〉 =µ. Finally, this relates the EFT scale µ — the

chemical potential — to the ground state charge Q0 =Q
∣∣
Π=0 as

µ=
[

Q0

c1Dr D−1
0 ΩD

]1/(D−1)

. (2.35)

Evidently, the O(2) charge is our controlling parameter sinceΛr0 ≪µr0 ∼Q1/(D−1)
0 and the validity of

the EFT is controlled by 1/(µr0). Hence, all observables within the EFT — such as the ground-state

action in Eq. (2.27) — can be expressed as an expansion in 1/
√

Q0. To leading order in the fluctuations

π, the charge Q of a generic solution of the EoM depends additively on the zero modeΠ0,

Q =Q0 +Π0 . (2.36)

Using the state–operator correspondence, we can now compute the classical scaling dimension of the

operator OQ with charge Q ∼Q0 from the cylinder Hamiltonian. We find that a generic solution to the

EoM corresponds to an operator with scaling dimension ∆(Q) =∆Q given by

∆Q ∼ D = r0Ecyl =∆0 + ∂∆0

∂Q0
Π0 + 1

2

∂2∆0

∂Q0∂Q0
Π2

0 + r0
∑

ℓ≥1,m
ωℓa∗

ℓm aℓm , (2.37)

where we have defined the quantities

∆0 = c1(D −1)ΩD (µr0)D +O
(
(µr0)D−2

)
,

∂∆0

∂Q0
=µr0 ,

∂2∆0

∂Q0∂Q0
= 1

c1D(D −1)ΩD (µr0)D−2
. (2.38)

The quantity ∆0 corresponds to the leading (classical) contribution to the action in Eq. (2.27). In terms

of the charge Q0 in Eq. (2.35) it reads

∆0 = c1(D −1)ΩD

(c1DΩD )D/(D−1)
(Q0)

D
(D−1) +O

(
(Q0)

(D−2)
(D−1)

)
. (2.39)
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Chapter 2. The large quantum number expansion in CFT and the O(2) model

If we include all curvature corrections in Eq. (2.26) that produce terms with a positive Q-scaling the
classical contribution to the scaling dimension is of the form [47]

∆0 = d D
(D−1)

(Q0)
D

(D−1) +d (D−2)
(D−1)

(Q0)
(D−2)
(D−1) +·· ·+

d0 +O
(
(Q0)

−2
(D−1)

)
, for D even,

d 1
(D−1)

(Q0)
1

(D−1) +O
(
(Q0)

−1
(D−1)

)
, for D odd.

(2.40)

The coefficients can in principle be computed but do depend on the Wilsonian coefficients appearing

in the action Eq. (2.26). For example, in D = 3 the classical contribution in terms of the Wilsonian

coefficients c1,c2 reads [46]

∆0 = 2c1(4π)

(3c1(4π))3/2
Q3/2

0 + 2c2(4π)

(3c1(4π))1/2
Q1/2

0 +O
(
Q−1/2

0

)
. (2.41)

Finally, we remark that the Hamiltonian for the field χ is shifted w.r.t. the one for π by µQ. The effective

time evolution for the fluctuation π is generated by H (cyl) ∼ Hχ = Hπ+µQ, as expected for a superfluid

phonon.

2.2.3 Canonical quantization

Radial quantization in flat space corresponds to canonical quantization in the cylinder frame, obtained

by τ-slicing and associating a Hilbert space to every fixed τ ∈R. This poses no conceptual problems at

all, as the cylinder is a direct product of the time direction and a curved manifold. The coefficients in the

mode decompositions in Eq. (2.31) are promoted to field operators with non-vanishing commutators,

[π0,Π0] = i (zero modes) , [aℓm , a†
ℓ′m′ ] = δℓℓ′δmm′ . (2.42)

The commutation relations in Eq. (2.42) are equivalent to the canonical equal-τ commutator,

[π(τ,n),Π(τ,n′)] = iδSD−1 (n,n′) , (2.43)

where δSD−1
1

(n,n′) is the invariant delta function on the unit sphere SD−1
1 . To build a representation of

the Heisenberg algebra on the cylinder we start with a vacuum |Q〉 that satisfies

aℓm |Q〉 =Π0 |Q〉 = 0. (2.44)

Since we are in finite volume, the O(2) charge is not broken — as discussed in Section 1.2.1 and

Section 1.2.7 — and is a well-defined operator acting on the Hilbert space as

Q =
∫

dSΠ(τ,n) =Q01+Π0 , Q |Q〉 =Q0 |Q〉 . (2.45)

The non-zero charge Q0 of the vacuum can be increased by acting on it with the zero mode π0. All other

Fourier modes carry zero charge under the global O(2),

[Q,π0] =−i , [Q, aℓm] = [Q, a†
ℓm] = 0. (2.46)
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2.2 The O(2) model: Computing CFT data at large charge

Starting from the vacuum |Q〉 we can obtain a state with charge Q0+q and scaling dimension∆0(Q0+q)

that is also annihilated by all modes aℓm ,31

|Q +q〉 = e iπ0q |Q〉 = exp

[
i q

ΩD r D−1
0

∫
dSπ(τ,n)

]
|Q〉 . (2.47)

It is important to emphasize that this does not lead to a degeneracy in the spectrum. While these states

are all annihilated by the ladder operators — since [aℓm ,π0] = 0 — they are not annihilated by the zero

modeΠ0. Hence, these states are gapped and do not represent degenerate vacua,

∆0(Q0 +q)−∆0(Q0) ∼ q (µr0) . (2.48)

Since π0 is the only operator in the theory on which the O(2) charge Q acts non-trivially, it has to be

compact,

π0 ∼π0 +2π1 . (2.49)

As a consequence, the variable q in Eq. (2.47) is quantized and a natural number,

q ∈Z . (2.50)

This clearly shows that the states with charge Q0 +q live at the EFT cut-off and will not be discussed

any further.

The commutation relations in Eq. (2.46) allow us to identify µ as the chemical potential via a variational

approach. Fixing the charge Q imposes the first-class constraint

〈Q|Q(O(2))|Q〉 =Q0 . (2.51)

The classical system can be equivalently quantized using a variational approach by finding the state |Q〉
that minimizes 〈Q|H (cyl) |Q〉 under the charge-fixing constraint, which is implemented via a Lagrange

multiplier — the chemical potential µ — so that the ground state minimizes
(
H (cyl) +µQ

) |Q〉 = E(Q).

The ground state solution 〈Q|χ̇|Q〉 =−iµ fixes the chemical potential µ,

〈Q|χ̇|Q〉 = 〈Q|[H (cyl),χ]|Q〉 =µ〈Q|[Q,χ]|Q〉 =−iµ . (2.52)

The quantized quadratic Hamiltonian D/r0 = H (cyl) corresponding to the classical expression of the

scaling dimension in Eq. (2.37) can be written as the sum of a normal-ordered32 operator : H (cyl) : plus

a vacuum contribution,

H (cyl) =: H (cyl) : + ∆1

r0
1 , where ∆1 := 1

2

∑
ℓ≥1,m

(r0ωℓ) . (2.53)

31∆0 =∆0(Q0) is defined via Eq. (2.35) and Eq. (2.38).
32Normal ordering refers to the vacuum |Q〉 where 〈Q| : H (cyl) : |Q〉 = ∆0

r0
.
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Chapter 2. The large quantum number expansion in CFT and the O(2) model

The vacuum contribution — also called the Casimir energy — needs to be regulated and has physical

consequences. We compute ∆1 in various dimensions in Appendix B.2. It first appeared for D = 3

in [18] and for D = 4,5,6 in [188]. From the point of view of the LCE, the one-loop correction comes

at order O
(
(Q0)0

)
. Hence, in principle, in the tree-level computation we also need to keep track of all

the curvature terms that do appear in the action Eq. (2.26) up to this order. In arbitrary dimension D

there will be ⌈(D +1)/2⌉ terms with positive Q-scaling, see Eq. (2.40), each controlled by a Wilsonian

coefficient [47]. However, there are no new universal predictions that can be extracted from curvature

corrections in the action (at the classical level) and we know the Q-scaling of these curvature terms, so

computing them in terms of the Wilsonian coefficients ci is not necessarily useful.

Within the EFT there is a spectrum of excited states on top of the ground state |Q〉. The commutators

between H (cyl) and the various Fourier modes show which ones generate excited states when acting on

the vacuum:
[H (cyl), aℓm] =−ωℓaℓm , [H (cyl), a†

ℓm] =ωℓa†
ℓm ,

[r0H (cyl),π0] =−i
∂∆0

∂Q0
− i

∂2∆0

∂Q2
0

Π0 , [H (cyl),Π0] = 0.
(2.54)

The Hilbert space of the theory is given by the Fock space spanned by all the states that are generated

via repeated action of the different creation operators on the vacuum,

a†
ℓ1m1

. . . a†
ℓk mk

|Q〉 (2.55)

A state of the form in Eq. (2.55) has charge Q0 and scaling dimension

∆=∆0 +∆1 +
k∑

i=1
(r0ωℓk

) . (2.56)

These states are also referred to as superfluid phonon states in the literature. We finish the discussion

of canonical quantization with some prescient comments:

• From the perspective of the underlying CFTD , the superfluid phonon states in Eq. (2.55) correspond

to primary operators with generically different quantum numbers compared to OQ (the scalar

operator corresponding to the vacuum |Q〉) but the same charge under O(2). The only exception

to this rule are states including at least one a†
1m which are descendant operators in the conformal

multiplets. This can be seen from the fact that any operator a†
1m adds energy

∆E = r0ω1 = 1. (2.57)

• Superfluid phonon states of the form a†
ℓ1m1

. . . a†
ℓk mk

|Q〉 generically correspond to spinning

primaries in the appropriate reducible representation. This can be seen from the action of the

rotation group SO(D) on the phonon states.33 The SO(D) part of the cylinder isometry group

acts on the Hilbert space in terms of some unitary operator U . Under the action of U the Fourier

33In the CFTD this is the group of Euclidean rotations.
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mode operators transform as

U (R)a†
ℓmU †(R) =∑

m′
Dℓ

mm′ (R−1) a†
ℓm′ , R ∈ SO(D) . (2.58)

This follows from the decomposition in Eq. (2.31) and the properties of the hyperspherical

harmonics, where Dℓ
mm′ is a finite-dimensional irreducible representation of SO(D) that generalizes

Wigner’s D-symbol to D ≥ 3.

• It is not possible to describe all phonon states within the EFT. When the ℓ-quantum number

becomes too large, their contribution r0ωℓ can compete with the leading ∆0 term, breaking

the large-Q expansion. The same issue arises if the number of creation operators describing

the phonon state becomes too large. The leading contribution to the scaling dimension goes

like ∆0 ∼ QD/(D−1) — where Q ∼ Q0 — but higher-curvature terms in Eq. (2.26) will introduce

lower order corrections up to Q1/(D−1). Phonon states with energies ωℓ comparable to the lowest

classical contribution to the scaling dimension should be excluded from the EFT. This sets a

natural cut-off for the ℓ-quantum number in terms of the charge,

ℓcutoff ∼Q1/(D−1) . (2.59)

Operators with such high spin should be described by new coset models with more complicated

breaking pattern. The newly arising phases for different (relative) values of charge Q and spin

ℓ are well understood in D = 3 [155–157, 180]. We discuss the corresponding phase diagram

extensively in Section 2.1.4.

The structure of the spectrum and the existence of the above-mentioned charged spinning primaries

described in terms of superfluid phonon states is a direct prediction of the superfluid hypothesis for a

generic O(2)-invariant CFTD . Canonical quantization is the appropriate framework for this discussion,

but we will generically expect corrections to scaling dimensions and the spectrum structure coming

from interactions in Eq. (2.29), which correspond to sub-leading terms in the controlling parameter

Q ∼ Q0. The sub-leading corrections are best discussed within a path integral formulation, so that

ordinary loop expansion techniques can be employed.

2.2.4 Path-integral methods

The path-integral as a framework is equivalent to canonical quantization but allows for the seamless

incorporation of sub-leading corrections from interaction terms in the Lagrangian. To set up the

path integral we note that an equivalent basis of the Hilbert space at fixed τ is given by the field and

momentum eigenstates,

χ |χ〉 =χ(n) |χ〉 , Π |Π〉 =Π(n) |Π〉 . (2.60)

Their overlap is fixed by the canonical commutation relations and reads

〈χ|Π〉 = e i
∫

dS
[
χΠ

]
. (2.61)
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Generically, the vacuum of the theory — |Q〉 — can be expressed as a superposition of momentum

eigenstates with the coefficient of theΠ0-component set to zero (see Eq. (2.45)),

|Q〉 =NQ

∫
DΠδ(Π0)ΨQ (Π) |Π〉 , (2.62)

where NQ is a standard normalization factor. In the limit of large separation — i.e in the limit

limτ→∞Q(τ) |0〉 — correlators cease to depend on the specific details of the vacuum wave function

ΨQ , which in this limit will only affect the overall normalization. Without loss of generality, we choose

ΨQ = 1 and with Eq. (2.45) the overlap of the vacuum |Q〉 with the field eigenstates is given by

〈χ|Q〉 =
NQ exp

[
iQ

ΩD RD−1

∫
dSχ

]
if χ is constant,

0 otherwise.
(2.63)

The zero mode component π0 of any field configuration can be extracted by integrating over the sphere

on a given τ-slice, see Eq. (2.31),

χ0 =
∫

dSχ . (2.64)

The bracket 〈χ|Q〉 defines the correct boundary conditions for all correlators of the form 〈Q| . . . |Q〉
computed in the path-integral representation. These boundary conditions generalize the standard

open boundary conditions on a line segment in the special case of D = 1.

With this technology we are able to construct path integrals that compute the norm of the states in

Eq. (2.55) at large cylinder-time separation τ2,1 →±∞. By the state–operator correspondence, the norm

of a state in Eq. (2.55) computes the two-point function of the corresponding primary in the CFTD .

Unless otherwise specified, we always consider correlators in which the vacuum |Q〉 is inserted at large

separation τ1 →−∞ on the cylinder (the same goes for 〈Q| at τ2 →∞ ). In this limit the details on the

boundary conditions that the vacuum imposes are largely irrelevant. However, in the following we

generically write down correlators at finite separation τ2 −τ1 and the limit τ2,τ1 →±∞ is implicit. For

insertions at past or future infinity in τ the insertion point n on the sphere is irrelevant as these τ-slices

correspond to the origin and the point at infinity in flat space, allowing for the shorthand notation

OQ (τ,n) →OQ (τ).

2.2.5 Two-point functions

We compute the norms of the vacuum |Q〉 and the one-phonon states a†
ℓm |Q〉 — and therefore the

two-point functions of the associated operators — in the path-integral formalism.

〈Q|Q〉 correlator

The path integral for the vacuum correlator with cylinder times τ2 > τ1 can be written using Eq. (2.63)

and reads

〈Q|e− (τ2−τ1)
R D |Q〉 = ∣∣NQ

∣∣2
∫

dχ exp

[
−S[χ]− iQ

ΩD r D−1
0

∫ τ2

τ1

dτ
∫

dS χ̇

]
:=A (τ1,τ2) , (2.65)
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where we have introduced the shorthand notation A (τ1,τ2) for future convenience. We can consider

the path integral in Eq. (2.65) as the working definition of the 〈Q|Q〉 correlator, without referring to the

canonically quantized picture any more and taking the EFT action in Eq. (2.24) as a starting point.

The integral in Eq. (2.65) can be computed in a saddle-point approximation around a field configuration

χ (τ,n) that represents a solution to the minimization problem

δS[χ] =
∫ τ2

τ1

dτdS

(
−∂µ ∂L

∂(∂µχ)

)
δχ+

∫
dS

(
∂L

∂(∂τχ)
+ iQ

ΩD r D−1
0

)
δχ

∣∣∣τ2

τ1
. (2.66)

The bulk EoM requires the divergence of the (Euclidean) O(2) conserved current,

jµ = ∂L

∂(∂µχ)
= c1D(−∂νχ∂νχ)D/2−1∂µχ , (2.67)

to vanish. The second part of the EoM specifies the appropriate boundary conditions. The general

solution compatible with the boundary conditions is the homogeneous superfluid configuration

χ (τ,n) = −iµτ+π0 [17], with π0 constant and the chemical potential µ fixed by the boundary

condition,

c1DµD−1 = Q

ΩD r D−1
0

, (2.68)

This is the same relationship that we had already found in Eq. (2.35). The action expanded to quadratic

order in the fluctuations around the ground state χ(τ,n) =−iµτ+π(τ,n) becomes

S =∆0
τ2 −τ1

r
+ c1µ

D−2 D(D −1)

2

∫ τ2

τ1

dτ
∫

dS

(
π̇2 + 1

(D −1)r 2
0

(∂iπ)2

)
+O (µD−3) . (2.69)

The boundary condition eliminates the linear term in Eq. (2.29) and therefore also the zero-mode terms

appearing in Eq. (2.37), as expected, where the charge Q here in Eq. (2.69) can be identified with Q0 in

Eq. (2.37). This ground state is a good starting point for setting up a loop expansion controlled by µt0.

The normalization factor NQ is chosen such that the cylinder correlator takes the form

A (τ1,τ2) = r−2(∆0+∆1+... )
0 exp

[
− (τ2 −τ1)

r0

(
∆0 +∆1 + . . .

)
︸ ︷︷ ︸

∆Q

]
, ∆Q =∆(Q) , (2.70)

which corresponds to the properly normalized two-point function in RD . The first quantum correction

∆1 introduced in Eq. (2.53) is given by the Casimir energy of the fluctuation π around the homogeneous

ground state χ =−iµτ.

By the state–operator correspondence, the reference states |Q〉 ,〈Q| correspond to insertions of the

associated scalar primaries OQ ,OQ† with scaling dimension ∆(Q) =∆Q at τ1,2 =∓∞:

|Q〉 = lim
τ1→−∞OQ (τ1) |0〉 , 〈Q| = lim

τ2→∞〈0|OQ (τ2)† , (2.71)

where the spatial dependence n1,2 is irrelevant at infinite separation and hence omitted. We recall that

conjugation on the cylinder corresponds to time reversal and charge conjugation,

OQ (τ,n)† =O−Q (−τ,n) . (2.72)
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Finally, we repeat the Weyl map from the cylinder to flat space (see Eq. (1.53)),

〈O−Q (x2)OQ (x1)〉(flat) =
( |x1|

r0

)−∆Q
( |x2|

r0

)−∆Q

〈O−Q (τ2,n2)OQ (τ1,n1)〉(cyl) . (2.73)

〈Q
ℓ2m2

|Q
ℓ1m1

〉 correlator

The second class of two-point functions we study in detail are correlators of one-phonon states obtained

by acting with a single creation operator a†
ℓm on the vacuum |Q〉,

|Q
ℓm〉 = a†

ℓm |Q〉 , where |Q00〉 = |Q〉 . (2.74)

The correlator 〈Q
ℓ2m2

|Q
ℓ1m1

〉 is best computed in the canonical quantization picture, using the commutation

relations of the creation and annihilation operators aℓm , a†
ℓm ,

〈Q
ℓ2m2

|Q
ℓ1m1

〉 = 〈Q|aℓ2m2
e
− (τ2−τ1)

r0
D

a†
ℓ1m1

|Q〉 = A (τ1,τ2)

e(τ2−τ1)ωℓ
δℓ1ℓ2

δm1m2 =
e
−∆ (τ2−τ1)

r0

r−∆0

δℓ1ℓ2
δm1m2 , (2.75)

where ∆ = ∆Q + r0ωℓ is the conformal dimension in Eq. (2.56) for k = 1. The result in Eq. (2.75)
is consistent with the general structure of a conformal two-point function on the cylinder at large
separation τ2 −τ1 →∞ given in Eq. (B.23).
This result holds true up to quadratic order in the Hamiltonian, however, we expect that loop corrections
will shift the spectrum in a complicated way which also depends on the underlying CFTD . For this
reason, it is convenient to formulate the correlator as a path integral by expressing aℓm in terms of the
fields as in Eq. (2.33),

〈Q
ℓ2m2

|Q
ℓ1m1

〉 = c1D(D −1)µD−2

2r D−1
0

p
ωℓ2

ωℓ1

∫
dS(n2)

∫
dS(n1)Y ∗

ℓ2m2
(n2)Yℓ1m1

(n1)

×A (τ1,τ2) lim
τ′→τ2
τ→τ1

(
ωℓ2

−∂τ′
)(
ωℓ1

+∂τ
)〈π(τ′,n2)π(τ,n1)〉 , (2.76)

where the two-point function of the superfluid NG fluctuations is given by

〈π(τ2,n2)π(τ1,n1)〉 =
(
〈Q|e−

(τ2−τ1)
r0

D |Q〉
)−1 ∫

Dπ π(τ2,n2)π(τ1,n1)e−S[π] , (2.77)

where S[π] is the action in Eq. (2.69). Unsurprisingly, the full information about the spectrum is all
contained in the two-point function of the superfluid fluctuation π. In this formalism, using the
tree-level propagator, the correlator in Eq. (2.77) on the cylinder is computed to be

〈π(τ2,n2)π(τ1,n1)〉 = 1

c1D(D −1)(µr0)D−2

( ∞∑
ℓ=1

∑
m

e−ωℓ|τ2−τ1| Yℓm (n2)∗Yℓm (n1)

2r0ωℓ
− |τ2 −τ1|

2r0ΩD

)
, (2.78)

and the result in Eq. (2.75) is recovered. The state |Q
ℓm〉 on the cylinder defines a spin-ℓ symmetric and

traceless tensor operator of charge Q inserted in the infinite past,

|Q
ℓm〉 = lim

τ1→−∞O
Q
ℓm(τ1) |0〉 . (2.79)
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The procedure outlined for the computation of one-phonon correlators 〈Q
ℓ2m2

|Q
ℓ1m1

〉 at tree-level —
particularly in canonical quantization — is easily generalized to states with more phonon excitations.
For example, for states with two phonon excitations we find that

〈Q
(ℓ2m2)⊗(ℓ′2m′

2)
|Q
(ℓ1m1)⊗(ℓ′1m′

1)
〉 = 〈Q|aℓ2m2

aℓ′2m′
2

e
− (τ2−τ1)

r0
D

a†
ℓ′1m′

1
a†
ℓ1m1

|Q〉

=A (τ1,τ2)e
−(τ2−τ1)

(
ωℓ2+ωℓ′2

) (
δℓ1ℓ2

δm1m2δℓ′1ℓ
′
2
δm′

1m′
2
+δℓ1ℓ

′
2
δm1m′

2
δℓ′1ℓ2

δm′
1m2

)
. (2.80)

In the computation for states with higher numbers of phonon excitations the energy is corrected

accordingly and there is an ever increasing sum over all possible permutations of Kronecker deltas. As

long as none of the ℓ-quantum numbers are equal to one, these states are primary, but they will not

be in irreducible representations like the one-phonon states. For example, in D = 3 — by virtue of the

Clebsch–Gordan decomposition — we have

ℓ⊗ℓ′ = (ℓ+ℓ′)⊕ (ℓ+ℓ′−2)⊕·· ·⊕ ∣∣ℓ−ℓ′∣∣ . (2.81)

2.2.6 Quantum corrections

Quantum correction to the tree-level computation of 〈Q|Q〉 and the associated scaling dimension can

be computed in perturbation theory. The perturbation theory for the superfluid EFT action in Eq. (2.24)

is best set up by compactifying the radial time coordinate τ on the thermal circle S1
β

and considering the

theory on S1
β
×SD−1

r0
. The original EFT predictions are recovered in the zero-temperature limit β→∞.

The fluctuations π on S1
β
×SD−1

r0
can be decomposed into modes as

π(τ,n) =
√
β

r0

∑
n∈Z

∑
ℓ≥1,m

Yℓm(n)e iωnτπnℓm , π∗
nℓm = (−1)mD−2π−nℓm∗ , (2.82)

where the appropriate notation for the m-type quantum numbers follows the standard-tree convention

for the hyperspherical harmonics [193], see Appendix B.1. In addition, we have introduced the

Matsubara frequencies ωn given by

ωn = 2πn

β
, (2.83)

the bosonic eigenvalues on the thermal circle.34 On S1
β
×SD−1

r0
there is a unique zero mode π0 appearing

in the mode decomposition, which we can exclude in Eq. (2.82) as it never appears in the derivative-only

interactions within the EFT. In the space of Fourier modes the propagator can be computed from the

quadratic part of the action in Eq. (2.29) and reads

〈πnℓmπn′ℓ′m′〉 = 1

c1D(D −1)(µr0)D−2β2
Gnℓ (−1)|m| δ−n′nδℓ′ℓδ−m′m , Gnℓ := 1

ω2
n +ω2

ℓ

, (2.84)

where ω2
ℓ

denotes the dispersion relations in Eq. (2.32) — given by the rescaled eigenvalues of the

hyperspherical harmonics Yℓm — and Gnℓ is the propagator in Fourier space. The zero mode π0,

which remains present at finite temperature, does not mix with the other Fourier modes and has

34Standard references for thermal field theory methods are [194, 195].
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〈π0π0〉 = constant. It cannot receive corrections at any order in perturbation theory because all vertices

within the EFT contain only derivatives of the field π(τ,n).

First quantum correction: one- loop scaling dimension∆1

We start by reviewing the computation of the first quantum correction, the one-loop scaling dimension

∆1 (the Casimir energy) for the primary OQ , first defined in Eq. (2.53). In the path-integral formalism this

contribution arises from the Gaussian integration over the quadratic part of the action in Eq. (2.69).35

On S1
β
×SD−1

r0
the one-loop contribution ∆1 becomes

∆1 =− lim
β→∞

∂

∂β
log Z0 = 1

2

∑
ℓ>0

DegD (ℓ) (r0ωℓ) , (2.85)

where we have performed the sum over the Matsubara frequencies ϑn as in Appendix B.4. The result

coincides with the expression from canonical quantization found in Eq. (2.53). We indicated with

DegD (ℓ) the degeneracy of the ℓ-th eigenvalue λℓ of the Laplacian ∆SD−1 , see Eq. (B.4). The sum

appearing in Eq. (2.85) and Eq. (2.53) above is clearly divergent and needs to be regularized. To

regularize this sum the use of a momentum-dependent regulator is natural. For convenience it is best

to introduce the family Σ(s) of regularized sums defined by

Σ(s) := lim
Λ→∞

∑
ℓ>0

DegD (ℓ) (r0ωℓ)s e−ω
2
ℓ

/Λ2
. (2.86)

In this notation, the one-loop scaling dimension is given by ∆1 = 1
2Σ(1). We compute ∆1 in detail

for various spacetime dimensions in Appendix B.2. For D odd there is no classical term at the same

order as the Casimir energy ∆1, and hence ∆1 is fully calculable as there is no local counter-term that

renormalizes it. For example, in D = 3 the Casimir energy ∆1 is a universal contribution and reads

∆1

∣∣∣
D=3

=−0.0937255. (2.87)

For D even there is a classical term at order (Q)0 and∆1 gets renormalized. However, there is a universal

contribution proportional to log(Q) appearing [188].

As a last remark we note that, generally, in loop calculations the controlling parameter Q — which

defines the EFT UV scale viaΛr0 ∼µr0 ∼Q1/(D−1) — cuts the phonon states running in internal lines,

as discussed in Eq. (2.59).

35As a path integral the first quantum correction is ∆1 ∼ ∫
Dπ exp

[
− c1µ

D−2D(D−1)
2

∫
dτdS

(
π̇2 + (∂iπ)2

(D−1)r 2
0

)]
.
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Higher loop corrections

For generic spacetime dimension D the EFT action includes all possible k-point vertices. After

expanding the action im powers of µ, the interaction part of the action Sint is of the form

Sint =
∞∑

k=3
µD−k S(k) . (2.88)

We consider the two-loop correction ∆2 to the scaling dimension. We analyse and compute this
contribution in detail in Appendix B.3 and Appendix B.4. This contribution only gets contributions
from diagrams involving three-point and four-point vertices. These vertices are

S(3) = i
c1

6
D(D −1)(D −2)

∫ β

0
dτ

∫
dS

SD−1
r0

π̇

[
π̇2 + 3

(D −1)

1

r 2
0

(∂iπ)2

]
, (2.89)

S(4) =− c1

24
D(D −1)(D −2)

∫ β

0
dτ

∫
dS

SD−1
r0

[
3

r 4
0 (D −1)

(∂iπ)4 + 6

r 2
0

(
D −3

D −1

)
π̇2(∂iπ)2 + (D −3)π̇4

]
, (2.90)

and the ∆2-correction to the partition function is

∆2 =−µD−4〈S(4)〉c + 1

2
µ2D−6〈S(3)S(3)〉c , (2.91)

where 〈. . .〉c indicates connected contractions only. As propagators scale as ∼µ2−D , both contributions

enter at order µ−D ∼Q− D
(D−1) modulo possible powers of (Q)0 logQ. Applying this counting to higher

loop corrections reveals that an l-loop diagram produces a term in the scaling dimension of OQ that

scales like

∆l ∼Q− (ℓ−1)D
(D−1) . (2.92)

In the limit β→ ∞, after computing the Matsubara sums appearing in the expression for ∆2, the
two-loop scaling dimension of the operator OQ can be reduced to the expression

∆2 = 1

16c1D(D −1)ΩD (µr0)D

[
(r0Λ)2

6π
(D −2)[2D −4+ (D −5)Σ(0)]Σ(0)− (r0Λ)p

π
(D −2)2 (1−Σ(0))Σ(1)

− (D −2)

3

[
(D −2)(Σ(2)+6Σ(0)Σ(2)+2Σ(−1)Σ(3))− (5D −16)Σ(1)2 −8Σ(2ℓ)]] , (2.93)

whereΛ is a smooth cut-off introduced during regularization, Σ(s) is defined in Eq. (2.86) and Σ(2ℓ) is a

sum that cannot easily be reduced to a combination of sums of the form in Eq. (2.86),

Σ(2ℓ) := ∑
ℓa ,ℓb ,ℓc

Sℓaℓbℓc △ℓaℓbℓc

ωℓaωℓb
ωℓc

ωℓa +ωℓb
+ωℓc

. (2.94)

For completeness, the symbol △ℓaℓbℓc guarantees that the SO(D) quantum numbers ℓa , ℓb , ℓc satisfy a
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Chapter 2. The large quantum number expansion in CFT and the O(2) model

triangle inequality, which essentially corresponds to discrete momentum conservation on SD−1
r0

,

△ℓaℓbℓc :=
{

1 if |ℓb −ℓa | ≤ ℓc ≤ ℓb +ℓa and ℓc −ℓa −ℓb even,

0 otherwise,
(2.95)

and the symmetric structure Sℓaℓbℓc is defined as

r 2D−2
0

(D −2)ΩD
Sℓaℓbℓc

:=△ℓaℓbℓc

R2D−2

(D −2)ΩD

(D +2ℓa −2)(D +2ℓb −2)(D +2ℓc −2)

2Γ(D −1)Γ
(

D
2 −1

)2

×
Γ

(
ℓabc

2 + (D−2)
2

)
Γ

(
ℓabc

2 +1
) Γ

(
ℓcab

2 + (D−2)
2

)
Γ

(
ℓcab

2 +1
) Γ

(
ℓbca

2 + (D−2)
2

)
Γ

(
ℓbca

2 +1
) Γ

(
ℓa+ℓb+ℓc

2 + (2D−4)
2

)
Γ

(
ℓa+ℓb+ℓc

2 + D
2

) ,

(2.96)

where we have introduced the shorthand notation ℓabc = ℓa +ℓb −ℓc . The sum in Eq. (2.94) can be

regularized and computed in theory, however, we restrict ourselves to noting that it possesses two

divergent regimes. In the case ℓa ∼ ℓb ≫ 1 grows like ∼Σ(1), and in the case ℓa ∼ ℓb ∼ ℓc ≫ 1 it grows

like ∼Σ(2).36 In even dimensions D the result in Eq. (2.93) is of the form

∆2 ⊃ 1

QD/(D−1)

(
α0 +α1 logQ +α2(logQ)2) . (2.97)

In particular, we have the appearance of a non-universal (Q)0 logQ2 term. On general grounds we

expect this result to generalize to arbitrary loop order so that in even D the scaling dimension will have

an ℓ-loop contribution of the form

∆l ⊃
1

Q(l−1)D/(D−1)

(
α0 +α1 logQ + ...+αl (logQ)l

)
. (2.98)

This result is of particular importance for applications in the context of resurgent asymptotics. In odd

dimensions, LCEs are expected to produce log-free trans-series with non-perturbative corrections

related to worldline instantons [191, 192]. This is a consequence of quasi-zero mode integration

in quantum mechanics problems [196–198]. As trans-series in general contain logarithmic terms,

the absence of such terms represents an important simplification. It would be interesting to better

understand the appearance of (Q)0 logQ terms for LCEs in even dimensions D from the point of view

of resurgence.

2.2.7 Correlators with current insertions

The EFT around the fixed-charge ground state in the LCE has the advantage that, while it is a free theory,

it adequately captures some of the physics at the strongly-coupled fixed point. At tree level, the operator

algebra in Eq. (2.42) is in perfect agreement with the predictions from the path-integral formulation

and we can use Eq. (2.42) by itself to compute three- and four-point functions in the associated strongly

coupled system to leading order in Q.

36The first case corresponds to an equilateral triangle described by two integers and the second case corresponds to a degenerate
triangle described by three integers. These two cases are simply discrete versions of different collinear divergences in ordinary
loop integrals.
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In this section, we improve upon the current state-of-the-art and systematically review and compute

three-and four-point functions with current insertions between spinning large-charge primaries O
Q
ℓm . A

few of these correlators have already appeared for the case ℓ= 0 in the literature [18, 46, 154, 168] before

the publication of [2]. Although we never directly use conformal invariance to compute correlators,

there is always perfect agreement between our results and the expected structure of conformal

correlators on the cylinder at large separation τ2 − τ1, which we have collected in Appendix B.1.2.

Our results are to be understood as an expansion in Q and only contain the classical contribution plus

the leading order quantum correction.

Conserved currents and Ward identities in the EFT

The relevant classical conserved currents from the EFT action in Eq. (2.24) read

jµ = c1D(−∂νχ∂νχ)D/2−1∂µχ , (2.99)

Tµν = c1
[
D(−∂αχ∂αχ)D/2−1∂µχ∂νχ+ gµν(−∂αχ∂αχ)D/2] . (2.100)

Their integrals over the sphere yield the conserved charges of the theory. We expand the above currents
up to quadratic order in the fluctuations π around the ground stateχ =−iµτ,

jτ =−i
Q

ΩD r D−1
0

[
1+ i

µ
(D −1)π̇− (D −2)(D −1)

2µ2

(
π̇2 + (∂iπ)2

r 2
0 (D −1)

)
+O (µ−3)

]
, (2.101a)

ji =
Q

ΩD r D−1
0

[
1

µr0
∂iπ+

i

µ

(D −2)

µr0
π̇∂iπ+O (µ−3)

]
, (2.101b)

Tττ =− ∆0

ΩD r D
0

[
1+ i

D

µ
π̇− D(D −1)

2µ2

(
π̇2 + (D −3)(∂iπ)2

r 2
0 (D −1)2

)
+O (µ−3)

]
, (2.101c)

Tτi =−i
∆0

ΩD r D
0

[
1

µr0

D

D −1
∂iπ+

i

µ

D

µr0
π̇∂iπ+O (µ−3)

]
(2.101d)

Ti j =
∆0

ΩD r D
0

(
hi j

(D −1)

[
1+ i

D

µ
π̇− D(D −1)

2µ2

(
π̇2 + (∂iπ)2

r 2
0 (D −1)

)]
+ D

(D −1)

∂iπ∂ jπ

(µr0)2
+O (µ−3)

)
, (2.101e)

where hi j is the metric on the sphere SD−1
r0

. Homogeneity of the ground state χ guarantees that

Tτi = Ti j = 0 to leading order in the fluctuations. We emphasize that the above expressions have

been calculated using only the leading term in the effective action Eq. (2.24). In terms of quantum

corrections, this gives rise to contributions of order (Q)0, while the effect of the sub-leading curvature

terms on the fluctuations is suppressed at large charge.

Discussing correlators with current insertions in canonical quantization suffices to find the leading-
order results. Integrating the insertions of jτ and Tττ over spatial slices produces the Hamiltonian
H (cyl) = D/r0 and the O(2) charge Q, which are topological symmetry operators. When inserted at
cylinder time τ these operators measure the scaling dimension dived by the radius r0 and the O(2)
charge of any operator insertion that is contained within the half-cylinder (τ,−∞)×SD−1

r0
. This fact is

expressed by the conformal Ward identities discussed in Section 1.1.2. We quickly repeat them here in a
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slightly reformulated form:

〈Q(τ)
∏
i

Oi (τi ,ni )〉 =−i
∑
τi<τ

Qi 〈
∏
i

Oi (τi ,ni )〉 , 〈D(τ)
∏
i

Oi (τi ,ni )〉 =− ∑
τi<τ

∆i 〈
∏
i

Oi (τi ,ni )〉 . (2.102)

The Ward identities in Eq. (2.102) are satisfied order by order in a loop expansion and can be used to

constrain certain correlators with current insertions in Eq. (2.101).

〈Q
ℓ2m2

| j |Q
ℓ1m1

〉 correlators

The simplest correlators we consider are three-point functions with an insertion of the EFT current
jµ between one-phonon states a†

ℓm |Q〉. In the underlying CFT these matrix elements correspond

to three-point functions of two large-charge spinning primaries O
Q
ℓm inserted at times τ1,τ2 with an

insertion of the full CFT version of the O(2) current jµ(τ,n) at time τ1 < τ< τ2.37 To leading order we
find that

〈O−Q
ℓ2m2

jτ(τ,n)OQ
ℓ1m1

〉 =−i
Q

ΩD r D−1
0

[
A∆Q+r0ωℓ1

(τ1,τ2)δℓ1ℓ2
δm1m2

+A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)(D −1)(D −2)ΩD
r0

√
ωℓ2

ωℓ1

2D∆0

(
Y ∗
ℓ2m2

(n)Yℓ1m1
(n)−

∂i Y ∗
ℓ2m2

(n)∂i Yℓ1m1
(n)

r 2
0 (D −1)ωℓ2

ωℓ1

)]
,

(2.103)

〈O−Q
ℓ2m2

ji (τ,n)OQ
ℓ1m1

〉 = i
Q(D −2)

2∆0r D−1
0 D

A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)

[√
ωℓ2

ωℓ1

Y ∗
ℓ2m2

(n)∂i Yℓ1m1
(n)− (1 ↔ 2)∗

]
, (2.104)

where we have introduced two new convenient shorthand notations,

A∆Q+r0ωℓ1
(τ1,τ2) :=A (τ1,τ2)e−(τ2−τ1)ωℓ1 , A

∆2
∆1

(τ1,τ2|τ) := e−∆2(τ2−τ)/r0−∆1(τ−τ1)/r0 . (2.105)

This generalizes the expression A (τ1,τ2) =A∆Q (τ1,τ2), which we have defined via the scalar two-point
function 〈Q|Q〉 in Eq. (2.65) (with scaling dimension ∆(Q) =∆Q ). The correlator jτ in the case ℓ= 0 first
appeared in [18] and later in [46].
From the above results and Eq. (2.75) we can additionally extract the following relevant OPE coefficient:

C
O

Q
ℓm jτO

Q
ℓm

=
〈O−Q

ℓm jτ(τ,n)OQ
ℓm〉

〈O−Q
ℓm O

Q
ℓm〉

=−i
Q

ΩD r D−1
0

. (2.106)

Integrating the insertion jτ(τ,n) over the spatial slice n ∈ SD−1
r0

gives us a non-trivial consistency check
via the associated Ward identity Eq. (2.102),∫

dS(n) 〈O−Q
ℓ2m2

jτ(τ,n)OQ
ℓ1m1

〉 =−iQ A∆Q+r0ωℓ1
(τ1,τ2) δℓ1ℓ2

δm1m2 . (2.107)

In the special case ℓ1,2 = 0 — corresponding to the (scalar) ground state |Q〉 — Ward identities guarantee

that 〈Q|Ji |Q〉 = 0 to all orders in perturbation theory.

Examining the structure of the jτ correlator in Eq. (2.103) we find that it contains a classical piece —

which is homogeneous and time-independent — plus quantum corrections with spatial dependence.38

Hence, the classical contribution to the three-point function must be proportional to the two-point

function,

〈Q
ℓ2m2

|Q
ℓ1m1

〉 =A∆Q+r0ωℓ1
(τ1,τ2)δℓ1ℓ2δm1m2 . (2.108)

37Recall that in the special case ℓ= 1 the operator O
Q
ℓm

is not a primary, but a descendant of OQ .
38Time-independence is a consequence of charge conservation.
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The inhomogeneous quantum piece can be decomposed into spherical harmonics and has the same

tensor structure as the left-hand side. In addition, charge conservation enforces its integral to vanish.

The classical piece of the spatial current ji in Eq. (2.101b) vanishes and we are left with only inhomogeneous

quantum corrections. As the large-charge EFT is a weakly-coupled theory, the separation into a

homogeneous classical part plus space-dependent quantum corrections applies to all physical observables.

In the computation of the correlators above we were able to disregard the linear terms in the fluctuations
π appearing in the expansions for the conserved charges in Eq. (2.101). Generically, we are always
allowed to do this as these terms clearly vanish within one-phonon matrix elements once π is expanded
in Fourier modes. However, if we consider matrix elements between states with a differing number
of phonon excitations, these linear terms do contribute. For example, if we consider matrix elements
between the ground state and a one-phonon state we find to leading order that

〈O−Q | jτ(τ,n)|Q
ℓm〉 =−Q(D −1)

ΩD r D−1
0

√
ΩD

2D

r0ωℓ
∆0

A
∆Q

∆Q+r0ωℓ
(τ1,τ2|τ)Yℓm (n) , (2.109)

〈O−Q | ji (τ,n)|Q
ℓm〉 = Q

ΩD r D−1
0

√
r0ΩD

2D∆0r0ωℓ
A
∆Q

∆Q+r0ωℓ
(τ1,τ2|τ) ∂i Yℓm (n) . (2.110)

Similar results hold true for all correlators with current insertions of T and j . In the following we will

disregard this special case as it is a straightforward modification of the results and formulas presented

in this section.

Generally, all of the correlators we discuss can also be computed for higher phonon states. For example,
the correlator of jτ between two-phonon states is given by

〈Q
(ℓ2m2)⊗(ℓ′2m′

2)
| jτ(τ,n)|Q

(ℓ1m1)⊗(ℓ′1m′
1)
〉 =−i

Q

ΩD r D−1
0

A∆Q+r0ωℓ1
+r0ωℓ′1

(τ1,τ2)

×
[(
δℓ1ℓ2

δm1m2δℓ′1ℓ
′
2
δm′

1m′
2
+δℓ1ℓ

′
2
δm1m′

2
δℓ′1ℓ2

δm′
1m2

)

+ΩD
(D −2)(D −1)

2D∆0

( r0
√
ωℓ′2

ωℓ′1

e
(τ−τ1)(ω

ℓ′1
−ω

ℓ′2
)

[
Yℓ′1m′

1
(n)Y ∗

ℓ′2m′
2

(n)−
∂i Yℓ′1m′

1
(n)∂i Y ∗

ℓ′2m′
2

(n)

r 2
0 (D −1)ωℓ′2

ωℓ′1

]
δℓ2ℓ1

δm2m1

+
r0

√
ωℓ′2

ωℓ1

e
(τ−τ1)(ωℓ1

−ω
ℓ′2

)

[
Yℓ1m1

(n)Y ∗
ℓ′2m′

2
(n)−

∂i Yℓ1m1
(n)∂i Y ∗

ℓ′2m′
2

(n)

r 2
0 (D −1)ωℓ′2

ωℓ1

]
δℓ2ℓ

′
1
δm2m′

1

+
r0

√
ωℓ2

ωℓ′1

e
(τ−τ1)(ω

ℓ′1
−ωℓ2

)

[
Yℓ′1m′

1
(n)Y ∗

ℓ2m2
(n)−

∂i Yℓ′1m′
1

(n)∂i Y ∗
ℓ2m2

(n)

r 2
0 (D −1)ωℓ2

ωℓ′1

]
δℓ′2ℓ1

δm′
2m1

+
r0

√
ωℓ2

ωℓ1

e
(τ−τ1)(ωℓ1

−ωℓ2
)

[
Yℓ1m1

(n)Y ∗
ℓ2m2

(n)−
∂i Yℓ1m1

(n)∂i Y ∗
ℓ2m2

(n)

r 2
0 (D −1)ωℓ2

ωℓ1

]
δℓ′2ℓ

′
1
δm′

2m′
1

)]
. (2.111)

While technically difficult to compute, these higher-phonon matrix elements pose no conceptual issue

and we will refrain from computing more of them for the rest of this section.
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〈Q
ℓ2m2

| j j |Q
ℓ1m1

〉 correlators

We consider next the case of two insertions of the current jτ at cylinder times τ < τ′ between one-
phonon states generated by O

Q
ℓm at τ2 > τ> τ′ > τ1. For two insertions of the temporal part jτ we find

that

〈O−Q
ℓ2m2

jτ(τ,n) jτ(τ′,n′)OQ
ℓ1m1

〉 =−A∆Q+r0ωℓ1
(τ1,τ2)

Q2

Ω2
D r 2D−2

0

δℓ1ℓ2
δm1m2

×
[

1+ (D −1)2

2D∆1

∑
ℓ

e−|τ−τ
′|ωℓ r0ωℓ

(D +2ℓ−2)

(D −2)
C

D
2 −1
ℓ

(n ·n′)
]

+
{

A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
Q2(D −1)2

2ΩD r 2D−2
0 D

r0
√
ωℓ1

ωℓ2

∆0

[
−

Y ∗
ℓ2m2

(n)Yℓ1m1
(n′)

e
−(τ−τ′)ωℓ1

+ (D −2)

(D −1)

(∂i Yℓ1m1
(n)∂i Y ∗

ℓ2m2
(n)

(D −1)r 2
0ωℓ1

ωℓ2

−Yℓ1m1
(n)Y ∗

ℓ2m2
(n)

)]
+

[
(τ,n) ↔ (τ′,n′)

]}
, (2.112)

where for ease of notation we have introduced the so-called Gegenbauer polynomials C D/2−1
ℓ

, defined
in Eq. (B.15). The special case ℓ= 0 of the above correlator has appeared first in [46].
We can again perform a consistency check with respect to the Ward identity Eq. (2.102) by integrating
the result over the sphere centred around (τ,n), producing a conserved charge and removing the
τ-dependence from the correlator,∫

dS(n) 〈O−Q
ℓ2m2

jτ(τ,n) jτ(τ′,n′)OQ
ℓ1m1

〉 =−iQ 〈O−Q
ℓ2m2

jτ(τ′,n′)OQ
ℓ1m1

〉 . (2.113)

We compute the remaining j j matrix elements,

〈O−Q
ℓ2m2

jτ(τ,n) ji (τ′,n′)OQ
ℓ1m1

〉 = 0, (2.114)

〈O−Q
ℓ2m2

ji (τ,n)J j (τ′,n′)OQ
ℓ1m1

〉 =A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
Q2

2ΩD r 2D−2
0 ∆0D

×
[
∂i ∂

′
j

∑
ℓ

e−|τ−τ′|ωℓ
r0ωℓ

(D +2ℓ−2)

(D −2)ΩD
C

D
2 −1
ℓ

(n ·n′)δℓ2ℓ1
δm2m1

+
∂ j Y ∗

ℓ2m2
(n′)∂i Yℓ1m1

(n)

e
(τ−τ′)ωℓ2 r0

√
ωℓ1

ωℓ2

+
∂i Y ∗

ℓ2m2
(n)∂ j Yℓ1m1

(n′)

e
−(τ−τ′)ωℓ1 r0

√
ωℓ1

ωℓ2

]
.

(2.115)

The tree-level contribution to the jτ ji correlator vanishes, however, there is no symmetry protection
for this matrix element and we generically expect that sub-leading corrections appear.
In the scalar case ℓ1,2 = 0 the j j matrix elements reduce to

〈O−Q jτ(τ,n) jτ(τ′,n′)OQ 〉 =− QA (τ1,τ2)

(ΩD r D−1
0 )2

[
Q + (D −1)

2µ

∑
ℓ

ωℓe−|τ−τ
′|ωℓ (D +2ℓ−2)

(D −2)
C

D
2 −1
ℓ

(n ·n′)
]

, (2.116)

〈O−Q ji (τ,n) j j (τ′,n′)OQ 〉 = QA (τ1,τ2)

2µΩD (D −1)r 2D−1
0

∂i ∂
′
j

∑
ℓ

(D +2ℓ−2)C
D
2 −1
ℓ

(n ·n′)

(D −2)ΩDωℓe |τ−τ′|ωℓ
, (2.117)

〈O−Q jτ(τ,n) ji (τ′,n′)OQ 〉 = 0. (2.118)

In this case the correlator jτ ji is protected by symmetry and vanishes exactly on the homogeneous

ground state associated to OQ due to rotational invariance. Finally, we remark that all of these

correlators again satisfy the Ward identity Eq. (2.102).

88



2.2 The O(2) model: Computing CFT data at large charge

〈Q
ℓ2m2

|T |Q
ℓ1m1

〉 correlators

We move on to correlators with insertions of the stress-energy tensor T . Here, we analyse matrix
elements with an insertion of T at cylinder time τ between spinning operators O

Q
ℓm at τ2 > τ> τ1. The

matrix element of Tττ between one-phonon states reads

〈O−Q
ℓ2m2

Tττ(τ,n)OQ
ℓ1m1

〉 =−A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
1

ΩD r D
0

[
(∆0 +∆1)δℓ2ℓ1

δm2m1

+ ΩD

2
r0

√
ωℓ1

ωℓ2

(
(D −1)Y ∗

ℓ2m2
(n)Yℓ1m1

(n)− (D −3)

(D −1)

∂i Y ∗
ℓ2m2

(n)∂i Yℓ1m1
(n)

r 2
0ωℓ1

ωℓ2

)]
. (2.119)

We perform a consistency check with respect to the Ward identity Eq. (2.102) by integrating over the
spatial slice n ∈ SD−1

r0
at cylinder time τ. The integration removes the τ-dependence from the correlator,

as expected,∫
dS(n)〈O−Q

ℓ2m2
Tττ(τ,n)OQ

ℓ1m1
〉 =−A∆Q+r0ωℓ1

(τ1,τ2)
1

r0

(
∆0 +∆1 + r0ωℓ1

)
δℓ1ℓ2

δm1m2 . (2.120)

The matrix elements involving a single insertion of the other components of T read

〈O−Q
ℓ2m2

Tτi (τ,n)OQ
ℓ1m1

〉 =A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
1

2r D
0

[√
ωℓ2

ωℓ1

Y ∗
ℓ2m2

(n)∂i Yℓ1m1
(n)− (1 ↔ 2)∗

]
, (2.121)

〈O−Q
ℓ2m2

Ti j (τ,n)OQ
ℓ1m1

〉 =A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
1

(D −1)ΩD r D
0

[
hi j

(
[∆0 +∆1]δℓ2ℓ1

δm2m1

+
ΩD r0

√
ωℓ1

ωℓ2

2

[
(D −1)Y ∗

ℓ2m2
(n)Yℓ1m1

(n)−
∂i Y ∗

ℓ2m2
(n)∂i Yℓ1m1

(n)

r 2
0ωℓ1

ωℓ2

])

+ r0
√
ωℓ1

ωℓ2
ΩD

∂(i Y ∗
ℓ2m2

(n)∂ j )Yℓ1m1
(n)

r 2
0ωℓ1

ωℓ2

]
.

(2.122)

By conformal invariance, an insertion of the trace of the stress-energy tensor Tττ+hi j Ti j has to vanish
on any phonon state. This consistency condition is satisfied here as the expression

〈O−Q
ℓ2m2

hi j Ti j (τ,n)OQ
ℓ1m1

〉 =A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
1

(D −1)ΩD r D
0

[
(D −1)(∆0 +∆1)δℓ2ℓ1

δm2m1

+
ΩD r0

√
ωℓ1

ωℓ2

2

(
(D −1)2 Y ∗

ℓ2m2
(n)Yℓ1m1

(n)− (D −3)
∂i Y ∗

ℓ2m2
(n)∂i Yℓ1m1

(n)

r 2
0ωℓ1

ωℓ2

)]
(2.123)

sums to zero together with Eq. (2.119). On the scalar ground state |Q〉 the matrix elements reduce to

〈O−Q Tττ(τ,n)OQ 〉 =−A (τ1,τ2)
∆0 +∆1

ΩD r D
0

, (2.124)

〈O−Q Tτi (τ,n)OQ 〉 = 0, (2.125)

〈O−Q Ti j (τ,n)OQ 〉 = A (τ1,τ2)

(D −1)

(∆0 +∆1)

ΩD r D
0

hi j . (2.126)

The three-point function of two scalar operators and Tτi vanishes due to rotational invariance. Further,

rotational symmetry also fixes the matrix element of Ti j to be proportional to the sphere metric.
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Chapter 2. The large quantum number expansion in CFT and the O(2) model

〈Q
ℓ2m2

|T T |Q
ℓ1m1

〉 correlators

Next, we compute matrix elements with two insertions of the stress-energy tensor T at cylinder times
τ> τ′ between one-phonon states at τ2 > τ> τ′ > τ1. There is a total of six correlators to be computed.
The TττTττ correlator reads

〈O−Q
ℓ2m2

Tττ(τ,n)Tττ(τ′,n′)OQ
ℓ1m1

〉 =A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
∆0

Ω2
D r 2D

0

×
[(
∆0 +2∆1 +

D

2

∑
ℓ

e−|τ−τ
′|ωℓ r0ωℓ

(D +2ℓ−2)

(D −2)
C

D
2 −1
ℓ

(n ·n′)
)
δℓ1ℓ2

δm1m2

+ DΩD

2
r0

√
ωℓ1

ωℓ2

(
Y ∗
ℓ2m2

(n)Yℓ1m1
(n′)e

(τ−τ′)ωℓ1 +Y ∗
ℓ2m2

(n′)Yℓ1m1
(n)e

−(τ−τ′)ωℓ2

)]

+
{

A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
ΩD∆0r0

√
ωℓ1

ωℓ2

2Ω2
D r 2D

0

[
(D −1)Yℓ1m1

(n)Y ∗
ℓ2m2

(n)

− (D −3)

(D −1)

∂i Yℓ1m1
(n)∂i Y ∗

ℓ2m2
(n)

r 2
0ωℓ1

ωℓ2

]
+

[
(τ,n) ↔ (τ′,n′)

]}
. (2.127)

Clearly, this correlator is symmetric under (τ,n) ↔ (τ′,n′). In the scalar case ℓ1,2 = 0 the above matrix
element has first appeared in [168].
The matrix elements comprised of two insertions of Ti j and Tτi are computed to be

〈O−Q
ℓ2m2

Ti j (τ,n)Tkn (τ′,n′)OQ
ℓ1m1

〉 =A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
∆0

(D −1)2Ω2
D r 2D

0

×
[(
∆0 +2∆1 +

D

2

∑
ℓ

e−|τ−τ
′|ωℓ r0ωℓ

(D +2ℓ−2)

D −2
C

D
2 −1
ℓ

(n ·n′)
)
hi j hknδℓ2ℓ1

δm2m1

+ DΩD

2
r0

√
ωℓ2

ωℓ1

(
Y ∗
ℓ2m2

(n)Yℓ1m1
(n′)e

(τ−τ′)ωℓ1 +Y ∗
ℓ2m2

(n′)Yℓ1m1
(n)e

−(τ−τ′)ωℓ2

)
hi j hkn

]

+
{

A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
ΩD∆0r0

√
ωℓ1

ωℓ2

2(D −1)Ω2
D r 2D

0

[
2
∂(i Y ∗

ℓ2m2
(n)∂ j )Yℓ1m1

(n)

r 2
0 (D −1)ωℓ1

ωℓ2

+Y ∗
ℓ2m2

(n)Yℓ1m1
(n)hi j

−
∂i Y ∗

ℓ2m2
(n)∂i Yℓ1m1

(n)

r 2
0 (D −1)ωℓ1

ωℓ2

hi j

]
hkn +

[
(τ,n, i j ) ↔ (τ′,n′,kn)

]}
.

(2.128)

〈O−Q
ℓ2m2

Tτi (τ,n)Tτ j (τ′,n′)OQ
ℓ1m1

〉 =−A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
∆0D

2(D −1)2ΩD r 2D
0

×
[
∂i ∂

′
j

∑
ℓ

e−|τ−τ′|ωℓ
r0ωℓ

(D +2ℓ−2)

(D −2)ΩD
C

D
2 −1
ℓ

(n ·n′)δℓ2ℓ1
δm2m1 +

∂i Y ∗
ℓ2m2

(n)∂′j Yℓ1m1
(n′)

r0
√
ωℓ2

ωℓ1
e
−(τ−τ′)ωℓ1

+
∂′j Y ∗

ℓ2m2
(n′)∂i Yℓ1m1

(n)

r0
√
ωℓ2

ωℓ1
e

(τ−τ′)ωℓ2

]
.

(2.129)

The Tτi Tτ j correlator is symmetric under (τ,n, i ) ↔ (τ′,n′, j ).
The final three correlators are mixed. First, the matrix element of TττTτi is given by

〈O−Q
ℓ2m2

Tτi (τ,n)Tττ(τ′,n′)OQ
ℓ1m1

〉 =−A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
∆0D

2ΩD r 2D
0

1

(D −1)

×
[
∂i

∑
ℓ

e−|τ−τ
′|ωℓ (D +2ℓ−2)

(D −2)ΩD
C

D
2 −1
ℓ

(n ·n′)δℓ2ℓ1
δm2m1 +

√
ωℓ2

ωℓ1

Y ∗
ℓ2m2

(n′)∂i Yℓ1m1
(n)

e
(τ−τ′)ωℓ2

−
√
ωℓ1

ωℓ2

∂i Y ∗
ℓ2m2

(n)Yℓ1m1
(n′)

e
−(τ−τ′)ωℓ1

+ (D −1)

D

(√
ωℓ2

ωℓ1

Y ∗
ℓ2m2

(n)∂i Yℓ1m1
(n)− (

1 ↔ 2
)∗ )]

. (2.130)
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2.2 The O(2) model: Computing CFT data at large charge

Due to the fact that Tτi vanishes on the ground state, to quadratic order this correlators only receives
contributions from both linear terms as well as the quadratic term of Tτi .
For the combination of insertions Tτi T j k we find

〈O−Q
ℓ2m2

Tτi (τ,n)T j k (τ′,n′)OQ
ℓ1m1

〉 =A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
∆0D

2ΩD r 2D
0

h j k

(D −1)2

×
[
∂i

∑
ℓ

e−|τ−τ
′|ωℓ (D +2ℓ−2)

(D −2)ΩD
C

D
2 −1
ℓ

(n ·n′)δℓ2ℓ1
δm2m1 +

√
ωℓ2

ωℓ1

Y ∗
ℓ2m2

(n′)∂i Yℓ1m1
(n)

e
(τ−τ′)ωℓ2

−
√
ωℓ1

ωℓ2

Yℓ1m1
(n′)∂i Y ∗

ℓ2m2
(n)

e
−(τ−τ′)ωℓ1

+ (D −1)

D

(√
ωℓ2

ωℓ1

Y ∗
ℓ2m2

(n)∂i Yℓ1m1
(n)− (

1 ↔ 2
)∗ )]

. (2.131)

By conformal invariance, the correlator 〈O−Q
ℓ2m2

Tτi (τ,n)h j k (n′)T j k (τ′,n′)OQ
ℓ1m1

〉 is related to the Tτi Tττ
correlator in the previous equation.
We are left with computing the TττTi j correlator,

〈O−Q
ℓ2m2

Tττ(τ,n)Ti j (τ′,n′)OQ
ℓ1m1

〉 =−A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
∆0

Ω2
D r 2D

0

hi j

(D −1)

×
[(
∆0 +2∆1 +

DΩD

2
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ℓ
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(D −2)ΩD
C

D
2 −1
ℓ

(n ·n′)
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δℓ2ℓ1
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2
r0

√
ωℓ2

ωℓ1

(
Y ∗
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(n′)e(τ−τ′)ωℓ1 +Y ∗

ℓ2m2
(n′)Yℓ1m1

(n)e−(τ−τ′)ωℓ2

)]

−A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
∆0r0

√
ωℓ1

ωℓ2

2ΩD r 2D
0

hi j

[
Y ∗
ℓ2m2

(n)Yℓ1m1
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(D −1)2

∂i Y ∗
ℓ2m2

(n)∂i Yℓ1m1
(n)

r 2
0ωℓ1

ωℓ2

]

−A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ′)
∆0r0

√
ωℓ1

ωℓ2

2ΩD r 2D
0

[
hi j

(
Y ∗
ℓ2m2

(n′)Yℓ1m1
(n′)−

∂i Y ∗
ℓ2m2

(n′)∂i Yℓ1m1
(n′)

(D −1)r 2
0ωℓ1

ωℓ2

)

+2
∂(i Y ∗

ℓ2m2
(n′)∂ j )Yℓ1m1

(n′)

(D −1)r 2
0ωℓ1

ωℓ2

]
. (2.132)

Even though this correlator is not symmetric under (τ,n) ↔ (τ′,n′), by conformal invariance, the
correlator 〈O−Q

ℓ2m2
Tττ(τ,n)hi j (n)Ti j (τ′,n′)OQ

ℓ1m1
〉 is.

All of the above correlators satisfy the Ward identity Eq. (2.102) for insertions of Tττ. For example, the
matrix element with two insertions of Tττ satisfies∫

dS(n) 〈O−Q
ℓ2m2

Tττ(τ,n)Tττ(τ′,n′)OQ
ℓ1m1

〉 =− (∆0 +∆1 + r0ωℓ2
)

r0
〈O−Q

ℓ2m2
Tττ(τ′,n′)OQ

ℓ1m1
〉 . (2.133)
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Finally, the above T T matrix elements restricted to the scalar case ℓ1,2 = 0 simplify as follows:

〈O−Q Tττ(τ,n)Tττ(τ′,n′)OQ 〉 = A (τ1,τ2)∆0

Ω2
D r 2D

0

[
∆0 +2∆1 +

D

2

∑
ℓ

r0ωℓ

e |τ−τ′|ωℓ
(D +2ℓ−2)

(D −2)
C

D
2 −1
ℓ

(n ·n′)
]

, (2.134)

〈O−Q Ti j (τ,n)Tkn (τ′,n′)OQ 〉 = A (τ1,τ2)∆0

Ω2
D r 2D

0

hi j hkn

(D −1)2

[
∆0 +2∆1 +

D

2

∑
ℓ

r0ωℓ

e |τ−τ′|ωℓ
(D +2ℓ−2)

(D −2)
C

D
2 −1
ℓ

(n ·n′)
]

, (2.135)

〈O−Q Tτi (τ,n)Tτ j (τ′,n′)OQ 〉 =− A (τ1,τ2)∆0D

2(D −1)2Ω2
D r 2D

0

∂i ∂
′
j

∑
ℓ

e−|τ−τ′|ωℓ
r0ωℓ

(D +2ℓ−2)

(D −2)
C

D
2 −1
ℓ

(n ·n′) , (2.136)

〈O−Q Tτi (τ,n)Tττ(τ′,n′)OQ 〉 =− A (τ1,τ2)∆0D

2(D −1)Ω2
D r 2D

0

∂i
∑
ℓ

e−|τ−τ
′|ωℓ (D +2ℓ−2)

(D −2)
C

D
2 −1
ℓ

(n ·n′) , (2.137)

〈O−Q Tτi (τ,n)T j k (τ′,n′)OQ 〉 =
A (τ1,τ2)∆0D h j k

2(D −1)2Ω2
D r 2D

0

∂i
∑
ℓ

e−|τ−τ
′|ωℓ (D +2ℓ−2)

(D −2)
C

D
2 −1
ℓ

(n ·n′) , (2.138)

〈O−Q Tττ(τ,n)Ti j (τ′,n′)OQ 〉 =−A (τ1,τ2)∆0

Ω2
D r 2D

0

hi j

(D −1)

[
∆0 +2∆1 +

D

2

∑
ℓ

r0ωℓ

e |τ−τ′|ωℓ
(D +2ℓ−2)

(D −2)
C

D
2 −1
ℓ

(n ·n′)
]

. (2.139)

The correlator 〈O−Q Tτi TττOQ〉 was first computed in [168] in the macroscopic limit r0 →∞.

〈Q
ℓ2m2

|T j |Q
ℓ1m1

〉 correlators

The last batch of correlators we consider contain one insertion of the stress-energy tensor T and
one insertion of the O(2) current j , respectively, at times τ> τ′ inserted between spinning (primary)
operators O

Q
ℓm at cylinder times τ1,τ2 such that we have the ordering τ2 > τ> τ′ > τ1. There is a total of

six correlators involving the various components which can be computed. We start by computing the
Tτi jτ correlator,

〈O−Q
ℓ2m2

Tτi (τ,n) jτ(τ′,n′)OQ
ℓ1m1

〉 =−iA
∆Q+r0ωℓ2
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Q
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0

×
[
∂i
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D
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√
ωℓ2

ωℓ1

Y ∗
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(n′)∂i Yℓ1m1
(n)

e
(τ−τ′)ωℓ2

−
√
ωℓ1

ωℓ2

∂i Y ∗
ℓ2m2

(n)Yℓ1m1
(n′)

e
−(τ−τ′)ωℓ1

+
(√

ωℓ2

ωℓ1

Y ∗
ℓ2m2

(n)∂i Yℓ1m1
(n)− (

1 ↔ 2
)∗)]

.

(2.140)

As Tτi vanishes on the ground state, only linear terms and the quadratic term of Tτi contribute up to
quadratic order in the fluctuations.
The matrix element with insertions of ji and Tττ results in

〈O−Q
ℓ2m2

ji (τ,n)Tττ(τ′,n′)OQ
ℓ1m1

〉 =−iA
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
Q

2ΩD r 2D−1
0

×
[
δℓ2ℓ1

δm2m1∂i
∑
ℓ

e−|τ−τ
′|ωℓ (D +2ℓ−2)

(D −2)ΩD
C

D
2 −1
ℓ

(n ·n′)+
√
ωℓ2

ωℓ1

Y ∗
ℓ2m2

(n′)∂i Yℓ1m1
(n)

e
(τ−τ′)ωℓ2

−
√
ωℓ1

ωℓ2

∂i Y ∗
ℓ2m2

(n)Yℓ1m1
(n′)

e
−(τ−τ′)ωℓ1

+ (D −2)

D

(√
ωℓ2

ωℓ1

Y ∗
ℓ2m2

(n)∂i Yℓ1m1
(n)− (

1 ↔ 2
)∗)]

.

(2.141)

Here, up to quadratic order only the linear terms and the quadratic term in ji contribute, since ji itself
lacks a ground-state contribution From the form of the expansion of the currents in Eq. (2.101) it is
evident that this correlator is related to the previous one.
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For the Tττ jτ we find that

〈O−Q
ℓ2m2

Tττ(τ,n) jτ(τ′,n′)OQ
ℓ1m1

〉 = iA
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
Q(D −1)

2ΩD r 2D−1
0

r0
√
ωℓ2

ωℓ1

×
[( Y ∗

ℓ2m2
(n′)Yℓ1m1

(n)

e
(τ−τ′)ωℓ2

+
Y ∗
ℓ2m2

(n)Yℓ1m1
(n′)

e
−(τ−τ′)ωℓ1

)
+∑

ℓ

r0ωℓ e−|τ−τ′|ωℓ
r0

√
ωℓ2

ωℓ1

(D +2ℓ−2)

(D −2)ΩD
C

D
2 −1
ℓ

(n ·n′)

+ (D −2)

D

(
Y ∗
ℓ2m2

(n′)Yℓ1m1
(n′)−

∂i Y ∗
ℓ2m2

(n′)∂i Yℓ1m1
(n′)

r 2
0 (D −1)ωℓ2

ωℓ1

)
+ 2

(D −1)

(
1

ΩD

[ ∆0 +∆1

r0
√
ωℓ1

ωℓ2

]
δℓ2ℓ1

δm2m1

+ 1

2

[
(D −1)Y ∗

ℓ2m2
(n)Yℓ1m1

(n)− (D −3)

(D −1)

∂i Y ∗
ℓ2m2

(n)∂i Yℓ1m1
(n)

r 2
0ωℓ1

ωℓ2

])]
.

(2.142)

Here, in relation to the Ward identities Eq. (2.102), we have two independent consistency conditions.
If we integrate this result over the spatial slice n′ the quadratic term in the expansion of Jτ vanishes,
whereas if we integrate over the n the quadratic term in the expansion of Tττ remains finite. The reason
for this is that the quadratic term from Tττ has to correct the energy by r0ωℓ2 , in accordance with the
Ward identities Eq. (2.102).
The matrix element for insertions of Tτi and j j is given by

〈O−Q
ℓ2m2

Tτi (τ,n) j j (τ′,n′)OQ
ℓ1m1

〉 =−iA
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
Q

2ΩD r 2D−1
0

1

(D −1)

×
[
∂i ∂

′
j

∑
ℓ

e−|τ−τ′|ωℓ
r0ωℓ

(D +2ℓ−2)

(D −2)ΩD
C

D
2 −1
ℓ

(n ·n′)δℓ2ℓ1
δm2m1 +

∂′j Y ∗
ℓ2m2

(n′)∂i Yℓ1m1
(n)

r0
√
ωℓ1

ωℓ2
e

(τ−τ′)ωℓ2

+
∂i Y ∗

ℓ2m2
(n)∂′j Yℓ1m1

(n′)

r0
√
ωℓ1

ωℓ2
e
−(τ−τ′)ωℓ1

]
.

(2.143)

As both currents Tτi and ji have vanishing ground-state contributions, the only contribution to
quadratic order in the fluctuations comes from the two linear terms in the expansions of the currents.
The correlator with insertions of Ti j and jτ is computed to be

〈O−Q
ℓ2m2

Ti j (τ,n) jτ(τ′,n′)OQ
ℓ1m1

〉 =−iA
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
Q

ΩD r 2D−1
0

×
[

hi j

(
(∆0 +∆1)

ΩD (D −1)
δℓ2ℓ1

δm2m1 +
1

2

∑
ℓ

e−|τ−τ
′|ωℓ r0ωℓ

(D +2ℓ−2)

(D −2)ΩD
C

D
2 −1
ℓ

(n ·n′)δℓ2ℓ1
δm2m1

+
r0

√
ωℓ1

ωℓ2

2

[ Y ∗
ℓ2m2

(n′)Yℓ1m1
(n)

e
(τ−τ′)ωℓ2

+
Y ∗
ℓ2m2

(n)Yℓ1m1
(n′)

e
−(τ−τ′)ωℓ1

+
(
1+ (D −2)

D

)
Y ∗
ℓ2m2

(n)Yℓ1m1
(n)

−
(
1+ (D −2)

D

)∂i Y ∗
ℓ2m2

(n)∂i Yℓ1m1
(n)

(D −1)r 2
0ωℓ1

ωℓ2

])
+

r0
√
ωℓ1

ωℓ2

(D −1)

∂(i Y ∗
ℓ2m2

(n)∂ j )Yℓ1m1
(n)

r 2
0ωℓ1

ωℓ2

]
.

(2.144)

When contracted with hi j , by virtue of conformal invariance, this matrix element is related to the
correlator in Eq. (2.142).
The last matrix element includes insertions of ji and T j k and reads

〈O−Q
ℓ2m2

ji (τ,n)T j k (τ′,n′)OQ
ℓ1m1

〉 = iA
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
Q

2ΩD r 2D−1
0

h j k

(D −1)

×
[
∂i

∑
ℓ

e−|τ−τ
′|ωℓ (D +2ℓ−2)

(D −2)ΩD
C

D
2 −1
ℓ

(n ·n′)δℓ2ℓ1
δm2m1 +

√
ωℓ2

ωℓ1

Y ∗
ℓ2m2

(n′)∂i Yℓ1m1
(n)

e
(τ−τ′)ωℓ2

−
√
ωℓ1

ωℓ2

Yℓ1m1
(n′)∂i Y ∗

ℓ2m2
(n)

e
−(τ−τ′)ωℓ1

+ (D −2)

D

(√
ωℓ2

ωℓ1

Y ∗
ℓ2m2

(n)∂i Yℓ1m1
(n)− (

1 ↔ 2
)∗ )]

.

(2.145)

As the quadratic term in the expansion of T j k only appears to cubic order in the expansion of the above
correlator, it is fully proportional to h j k up to quadratic order. Higher order correction, however, will
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make the tensor structure more complicated.
There is significant simplification in the expressions for the T j matrix elements when restricted to the
scalar ground state ℓ1,2 = 0,

〈O−Q Tτi (τ,n) jτ(τ′,n′)OQ 〉 =−i
A (τ1,τ2)Q

2Ω2
D r 2D−1

0

∂i
∑
ℓ

e−(τ−τ′)ωℓ (D +2ℓ−2)

(D −2)
C

D
2 −1
ℓ

(n ·n′) , (2.146)

〈O−Q ji (τ,n)Tττ(τ′,n′)OQ 〉 =−i
A (τ1,τ2)Q

2Ω2
D r 2D−1

0

∂i
∑
ℓ

e−(τ−τ′)ωℓ (D +2ℓ−2)

(D −2)
C

D
2 −1
ℓ

(n ·n′) , (2.147)

〈O−Q Tττ(τ,n) jτ(τ′,n′)OQ 〉 = i
A (τ1,τ2)Q(D −1)

2ΩD r 2D−1
0

[ ∑
ℓ

r0ωℓ

e(τ−τ′)ωℓ
(D +2ℓ−2)

(D −2)
C

D
2 −1
ℓ

(n ·n′)+ 2
(
∆0 +∆1

)
(D −1)ΩD

]
, (2.148)

〈O−Q Tτi (τ,n) j j (τ′,n′)OQ 〉 =−i
QA (τ1,τ2)

2(D −1)Ω2
D r 2D−1

0

∂i ∂
′
j

∑
ℓ

(D +2ℓ−2)

(D −2)

C
D
2 −1
ℓ

(n ·n′)

e(τ−τ′)ωℓ r0ωℓ
, (2.149)

〈O−Q Ti j (τ,n) jτ(τ′,n′)OQ 〉 =−i
QA (τ1,τ2)

Ω2
D r 2D−1

0

hi j

[
(∆0 +∆1)

(D −1)
+ 1

2

∑
ℓ

r0ωℓ

e(τ−τ′)ωℓ
(D +2ℓ−2)

(D −2)
C

D
2 −1
ℓ

(n ·n′)
]

, (2.150)

〈O−Q ji (τ,n)T j k (τ′,n′)OQ 〉 = i
QA (τ1,τ2)

2Ω2
D r 2D−1

0

h j k

(D −1)
∂i

∑
ℓ

(D +2ℓ−2)

(D −2)

C
D
2 −1
ℓ

(n ·n′)

e(τ−τ′)ωℓ
. (2.151)

The two correlators with insertions of ji ,Tττ and Tτi , jτ have first appeared in [168] in the macroscopic

limit r0 →∞.

2.2.8 Heavy–light–heavy correlators

Within the validity of the large-charge EFT it is possible to compute correlators involving the insertions

of (spinning) primaries O q with small O(2) charges q ≪Q (and small enough spin). These small-charge

insertions act as probes around the semi-classical saddle-point configurations and do not alter the EFT

description. The computation of these matrix elements has been carried out in [18, 46, 154]. For the

purpose of completeness, we review the computation for some of these correlators here.

Within the EFT, every operator has to be constructed in terms of the NG field χ (or the ground state

χ =−iµτ plus the fluctuation π, alternatively). Starting from this observation, we try to match the

quantum numbers of an operator O
q ;∆
ℓm with charge q ≪ Q, scaling dimension ∆≪ ∆Q and which

transforms in a representation of spin ℓ∼O (1) in terms of the NG boson alone. We find that at leading

order in Q the operator O
q ;∆
ℓm must take the form39

O
q ;∆
ℓm = k(1)

∆,ℓ,q Uν1...νℓ
ℓm ∂ν1χ . . .∂νℓχ

(
∂χ

)∆−ℓ e i qχ+ . . . , (2.152)

where k(1)
∆,ℓ,q is a Wilsonian coefficient that is not determinable within the EFT and is therefore theory-

dependent. The operator Uν1...νℓ
ℓm gives the change of basis from Euclidean to spherical tensors. It is

explicitly given in Eq. (B.19). For simplicity, for scalar operators we will use the shorthand notation

O q ;∆ :=O
q ;∆
00 , k(1)

∆,q := k(1)
∆,0,q . (2.153)

39The sub-leading term in the LCE is also fixed and must take the form k(2)
∆,q (∂χ)∆−2 (R+ . . . )ei qχ. Here, we have neglected

higher-order corrections that are necessary to obtain a Weyl-invariant quantity.

94



2.2 The O(2) model: Computing CFT data at large charge

〈O−Q−q
ℓ2m2

O q ;∆O
Q
ℓ1m1

〉 correlators

We start with the insertion of a scalar operator with small charge q ≪Q,

〈O−Q−q
ℓ2m2

(τ2)O q ;∆(τc ,nc )OQ
ℓ1m1

(τ1)〉 , where
[
O q ;∆(τ,n)

]† =O−q ;∆(−τ,n) . (2.154)

The form of the classical homogeneous contribution to the above three-point function can be inferred
from general symmetry considerations (see Appendix B.1.2),

〈O−Q−q
ℓ2m2

(τ2)O q ;∆(τc ,nc )OQ
ℓ1m1

(τ1)〉 =C∆Q+q,q,Qδℓ1ℓ2
δm1m2 e−ωℓ2 (τ2−τ1)e

−∆Q+q
(τ2−τc )

r0 e
−∆Q

(τc−τ1)
r0 . (2.155)

The above expression is consistent with the general form of a three-point function in a CFT at large

separation on the cylinder given in Eq. (B.25). Dimensional analysis tells us that the OPE coefficient

C ∆
Q+q,q,Q includes a factor of r∆0 coming from the insertion of O q ;∆, which can be extracted so that

r−∆
0 C̃∆

Q+q,q,Q =C∆
Q+q,q,Q . (2.156)

From the point-of-view of the path integral, the difference between the standard large-charge semi-

classical trajectory governing the usual path integral in Eq. (2.65) and the correlator with an insertion of

O q ;∆ in Eq. (2.154) is that the insertion of an operator of charge q introduces a source term to the action

in Eq. (2.65) that changes the boundary conditions as well as the bulk EoM slightly. They now read

∇µ jµ =∇µ δS

δ(∂µχ)
= i qδ(τ−τc )δ(n−nc )p

g
,


jµ(τ1 =−∞,n1) = δ

µ
0 Q

r D−1
0 ΩD

,

jµ(τ2 =+∞,n2) = δ
µ
0 (Q +q)

r D−1
0 ΩD

,

(2.157)

where gµν is the metric on the cylinder. Ignoring the boundary condition for a moment, the partial
differential equation in Eq. (2.157) is linear and hence, on general grounds, the solution to it can be
written as a sum of the homogeneous solution χ = −iµτ+π(τ,n), solving the EoM for q = 0, and a
particular solution qπp (τ,n). The particular solution πp solves the equation Eq. (2.157) for a delta-
function source term and is therefore structurally identical to the Green’s function, i.e. the propagator.
However, considering the the full system of equations, we find that the new boundary conditions
change the form of the constant term in the mode expansion (the ℓ = 0 term within the expansion
in Eq. (2.31)). Fortunately, to leading order the solution to Eq. (2.157) is still given by the sum of the
homogeneous solution χ and the particular solution πp .40

As discussed, the additional source term only appears in and alters the field normalization while the
mode expansion remains equal to the one in Eq. (2.31). Hence, we can still apply the standard canonical

40Expanded in Fourier modes, the particular solution πp reads (recall that µ∝Q
1

(D−1) , see Eq. (2.35))

πp (τ,n) =− i

c1D(D −1)(µr0)D−2

[
− |τ−τc |

2r0ΩD
θ(τ−τc )+ ∑

m,l

Y m
l (nc )†Y m

l (n)e−ωl |τ−τc |

2r0ωl

]
,

where the theta-function θ(τ−τc ) is required to satisfy the different boundary conditions at τ2,1 =±∞.
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quantization picture around Eq. (2.42) and in the limit of large separation τ2,1 →±∞ identify 41

lim
τ2→∞〈0|O−Q−q

ℓ2m2
(τ2) = 〈Q+q

ℓ2m2
| = 〈Q +q|aℓ2m2

, lim
τ1→−∞O

Q
ℓ1m1

(τ1) |0〉 = |Q
ℓ1m1

〉 = a†
ℓ1m1

|Q〉 . (2.158)

To leading order the operator O q ;∆ within the EFT is given by (see Eq. (2.152))

O q ;∆(τc ,nc ) = k(1)
∆,qµ

∆eµqτc e i qπ(τc ,nc )+i q2πp (τc ,nc ) + . . . , (2.159)

and the correlator in Eq. (2.154) is computed to be42

〈O−Q−q
ℓ2m2

O q ;∆(τc ,nc )OQ
ℓ1m1

〉 = k(1)
∆,qµ

∆eµqτc 〈Q +q|aℓ2m2
(τ2)ei qπ(τc ,nc )+i q2πp (τc ,nc ) a†

ℓ1m1
(τ1) |Q〉+ . . .

= (µr0)∆
k(1)
∆,q

r∆0
δℓ2ℓ1

δm2m1 A
∆Q+q +r0ωℓ1
∆Q +r0ωℓ1

(τ1,τ2|τc ) + . . . . (2.160)

We can generalize this result to the case where we insert an operator O
q ;∆
ℓm in a representation of spin

ℓ∼O (1). In this case we find the matrix element

〈Q +q|aℓ2m2
O

q ;∆
ℓm (τc ,nc ) a†

ℓ1m1
|Q〉 =

(µr0)∆k(1)
∆,ℓ,q

r∆0
〈ℓ2m2;ℓm|ℓ1m1〉 A

∆Q+q +r0ωℓ2
∆Q +r0ωℓ1

(τ1,τ2|τc ) + . . . . (2.161)

where 〈ℓ2m2;ℓm|ℓ1m1〉 represents the appropriate Clebsch–Gordan coefficient. The above expression

gets corrected by quantum contributions, some of which have been computed in [154].

If we limit ourselves to the scalar ground state for ℓ1,2 = 0, by rotational invariance, only scalar small-

charge insertions can have non-vanishing matrix elements. In this case the correlator is given by

〈Q +q |O q ;∆
ℓm (τc ,nc ) |Q〉∝ δℓ0 µ

∆A
∆Q+q

∆Q
(τ1,τ2|τc ) . (2.162)

The result for this particular matrix element with scalar large-charge insertions OQ has been presented

originally in [18, 188].

The first sub-leading correction to the three-point coefficient C̃∆
Q+q,q,Q includes a contribution from the

particular solution πp evaluated at (τc ,nc ) which is formally divergent. Including said first sub-leading

corrections the OPE coefficients reads

C̃∆
Q+q,q,Q = k(1)

∆,q (µr0)∆

1−
q2

2

∑
ℓ,m

Y ∗
ℓm (nc )Yℓm (nc )

r0ωℓ

c1D(D −1)(µr0)D−2
+ . . .

+ . . . . (2.163)

Its divergent sum can be related to the family of infinite sums in Eq. (2.86),

∑
ℓ,m

Y ∗
ℓm(nc )Yℓm(nc )

ωℓ
= r0

ΩD

∑
ℓ

DegD (ℓ)

r0ωℓ
= r0

ΩD
Σ(−1) . (2.164)

41Note that the state |Q +q〉 from the point of view of the EFT lives at the cut-off, see the discussion around and after Eq. (2.47).
The insertion of O q ;∆ connects the two states within the validity of the EFT.

42We expand the leading term further in powers of q ≪Q.
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The sum Σ(−1) can be regularized and computed, e.g via dimensional regularization or zeta-function

regularization.43

In D = 3 the first correction presented in Eq. (2.163) is suppressed by a simple factor of (µr0) ∼√
Q and

is therefore dominant compared to the sub-leading correction in Eq. (2.152), which is suppressed by

(µr0)2. Further corrections to the OPE coefficient arise from the sub-leading terms in the exponential

e i qχ as well as from the term
(
∂χ

)∆. A careful power counting reveals that the expansion in Eq. (2.163)

is valid in the regime ∆2 ≪Q3/2 [46]. Specializing to the case D = 3 to compute Σ(−1), the final result

reads [188]

C̃∆
Q+q,q,Q ∝ (Q)

∆
2

[
1+0.0164523× q2

p
12π√

c1Q
+ . . .

]
+ . . . . (2.165)

In D = 4 the leading correction presented in Eq. (2.163) competes with the first correction to Eq. (2.152).

Consequentially, the correction in Eq. (2.163) gets renormalized by a Wilsonian coefficent and there is a

universal logarithmic contribution appearing [46].

〈O−Q
ℓ2m2

O−q ;∆O q ;∆O
Q
ℓ1m1

〉 correlators

As a minor adaptation and generalization of Eq. (2.154) we are computing the four-point function

〈O−Q−qd−qc

ℓ2m2
(τ2)O qd ;∆d (τd ,nd )O qc ;∆c (τc ,nc )OQ

ℓ1m1
(τ1)〉 , (2.166)

where qd ∼ qc ≪Q. Computations of related four-point functions have first appeared in [154]. Similarly
to Eq. (2.157), the EoM to Eq. (2.166) are given by

∇µ jµ = i qdδ(τ−τd )δ(n−nd )p
g

+ i qcδ(τ−τc )δ(n−nc )p
g

,


jµ(τ1 =−∞,n1) =

δ
µ
0 (Q +qd +qc )

r D−1
0 ΩD

,

jµ(τ2 =+∞,n2) =
δ
µ
0 Q

r D−1
0 ΩD

,

(2.167)

The corresponding matrix element, computed to leading order reads

〈O−Q−qd−qc
ℓ2m2

O qd ;∆d O qc ;∆c O
Q
ℓ1m1

〉 = (µr0)∆d+∆c
k(1)
∆d ,qd

k(1)
∆c ,qc

r∆d+∆c
0

δℓ2ℓ1
δm2m1 e−(τ2−τ1)ωℓ2

×e
−∆Q+qd +qc

(τ2−τc )
r0

−∆Q+qc
(τd −τc )

r0
−∆Q

(τc−τ1)
r0 + . . . .

(2.168)

Restricting ourselves to the special case q = qc =−qd we find

〈O−Q
ℓ2m2

O−q ;∆O q ;∆O
Q
ℓ1m1

〉 = (µr0)2∆
|k(1)
∆,q |2

r 2∆
0

e
−∆Q

(τ2−τ1)
r0

−q
∂∆Q
∂Q

(τd −τc )
r0

−(τ2−τ1)ωℓ2 δℓ2ℓ1
δm2m1 + . . . , (2.169)

where the correction in q is given by Eq. (2.38)

∂∆Q

∂Q
∼ ∂∆0

∂Q
=µr0 . (2.170)

The first sub-leading correction to the above result has appeared in [154].

43In zeta-function regularization the sum becomes Σ(−1) =p
D −1 ζ(1/2|SD−1), see Appendix B.1.
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2.3 Conclusions and final remarks

As the state–operator correspondence maps the insertion of an operator OQ (0) of charge Q to a finite

density state |Q〉, it connects vacuum correlators in flat space to finite density correlators on the cylinder,

and for a large class of theories even to finite-density correlators in flat space again, in the macroscopic

limit. Generically, we can expect operators with large quantum numbers to be composite operators

that naturally produce states of many quanta, which are far removed from the vacuum. In that sense,

it is not surprising that within the LCE there are emergent condensed matter phases which encode

information about charged correlators in high-energy physics.

The simplest case is where the LCE maps charged operators to a conformal superfluid phase. The

conformal superfluid EFT can then be used to study correlators in a 1/Q expansion which leads to

universal predictions for the structure of conformal data in large-charge sectors of CFTs that realize the

superfluid phase. As a consequence of SSB, the EFT spectrum consists of non-relativistic hydrodynamic

NG modes. It becomes particularly simple in the case of a global O(2) symmetry under which the

operators are charged. Importantly, in this case there is a single superfluid phonon in the spectrum.

In the second part of this chapter we have computed an array of correlators and CFT data for the O(2)

model in D dimensions. We have systematically collected three- and four-point functions using the LCE.

Compared to earlier works, we have extended the analysis to correlators of spinning primaries, which

are described by matrix elements with single- and multi-phonon states. For the sake of convenience,

we have mostly computed matrix elements of one-phonon states but the analysis easily generalizes to

multi-phonon states.

We have collected results for correlators of the form H–L–. . .–H with insertions of light operators

or currents with parametrically smaller charges in-between two heavy large-charge operators. The

insertions of such operators can be thought of as small perturbations around the leading trajectory

coming from the heavy in- and out-states. In principle, the EFT might break down very close to the

insertions of the light operators, but it accurately captures the overall behaviour of such correlators.

While it can be easily argued that such correlators lie within the validity of the EFT, this argument

breaks down once there are more than two insertions of heavy operators. The inclusion of another

heavy operator between the in-and-out states can no longer be considered as a small perturbation and,

in the cylinder frame, the EFT description seems no longer justified. Each heavy operator of charge

Q ≫ 1 creates a superfluid state on a sphere around its insertion point and a correlation function

involving three large-charge operators therefore should describe the transition between three different

superfluids. Hence, said correlator has to be associated to a new classical profile in the path integral.

The key observation is, however, that also here in this case the radial field is locally gapped around

all superfluid states and its corresponding modes are therefore still not excited by the new classical

trajectory [189]. As a consequence, it is possible to compute these correlation functions using superfluid

EFT methods. The result for the H–H–H three-point function was obtained via a numerical solution

in [189]. It might be interesting to study such correlators involving additional phonon excitations.

These results generically extend to the homogeneous O(2) sector of CFTs with a larger symmetry group.

Unfortunately, capturing the full non-Abelian symmetry is more complicated. The first observation we

make is the fact that for non-Abelian symmetry groups only representations are fixable and not charges
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themselves [47]. The homogeneous O(2) sector in this language corresponds to operators in completely

symmetric representations. More precisely, the emergent description for correlators with insertions of

operators in large completely symmetric representations is that of a non-Abelian superfluid which —

compared to the Abelian superfluid — includes new massless NG modes with quadratic dispersion

relations and their gapped NG counterparts. Excitations of these new type-II modes on top of the

superfluid ground state correspond to operators in slightly asymmetric representations [46, 47]. The

Abelian sector remains present and suffices to accurately describe matrix elements without excitations

of the new modes (at least at tree level, i.e. to leading order in 1/Q).

In the case of a non-Abelian symmetry the landscape of EFT structures is richer as the theory includes

more DoF and allows for more diverse symmetry-breaking patterns and thus more potentially allowed

EFT descriptions. Thus far, the superfluid hypothesis is only capable of capturing large-charge operators

in or around the completely symmetric representation — i.e. the homogeneous O(2) sector — and a

new emergent description is needed to describe other operators [46, 47]. Far away from the completely

symmetric representation the corresponding ground state will be inhomogeneous. Heuristically, this

can be seen from the observation that (large) asymmetric composite operators can only be constructed

out of scalar building blocks by using derivatives. To date, there has no satisfactory description been

proposed to describe correlators of operators in asymmetric representations. A first step towards the

goal of developing an understanding for the full the non-Abelian structure of the problem is certainly

to perform a similar analysis to the one for the Abelian superfluid EFT presented in Section 2.2 instead

for the EFT predictions within the non-Abelian superfluid including the additional type-II NG modes

and their fluctuations. In doing so, we can use an EFT construction of the form presented e.g. in [46, 47].

However convincing the arguments are that the superfluid hypothesis is applicable to a large class of

CFTs, given that the superfluid is such a natural option, there is always the possibility that there are

no theories that actually realize it.44 Fortunately, there is strong evidence from lattice computations

showing agreement with results from the LCE [143–146, 160]. In this context, since the universal scaling

behaviour of Q3/2 is only indicative of a condensed-matter phase with a non-trivial macroscopic limit

and not specifically a conformal superfluid phase, it is in particular important to explicitly verify the

universal predictions from the superfluid EFT hypothesis. Consequently, important universal EFT

predictions, like the Casimir energy in Eq. (2.85) appearing at order (Q)0 in ∆(Q) and certain specific

three-point coefficients such as the one for the H–L–H correlator in Eq. (2.163) and the one for the

H–H–H correlator computed in [189], have been independently verified in lattice computations to high

precision [144–146].

Strikingly, in lattice computations the large-charge predictions seem to match even for operators with

small charge [143, 144]. One possible explanation for this comes from Resurgence [199], as it has been

shown in the O(N ) model at large N that the asymptotic expansion at large charge exhibits a double

factorial growth [191], which is stronger than the standard factorial growth observed in regular QFT.

Essentially, if this is a universal feature of the LCE, results can be extrapolated to smaller values for LCEs

than for other asymptotic series in QFT.

For interacting CFTs that are weakly coupled and amenable to perturbative treatments it is sometimes

44The question as to what possibilities there are and how prevalent the superfluid hypothesis is in the description of large-charge
operators within CFTs has also been framed in the context of the conformal bootstrap [154].
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possible to explicitly identify the effective condensed-matter description at large charge in a double-

scaling limit. Examples of theories in this category can be found in the ϵ-expansion [186, 200, 201].

Other interesting cases, where a condensed matter description can be directly identified, are given

by theories at large number of flavours N [1, 3, 124, 128, 191]. For both the bosonic O(N ) vector

model [124] and the fermionic NJL model [3] at large N it is possible to match the predictions from the

superfluid EFT and compute the Wilsonian coefficients ci in the double-scaling limit. We will discuss

the LCE in the large-N limit extensively in Chapter 3. Interestingly, in the case of the GN model at large

N a Fermi sphere instead of a superfluid ground state can be identified (at least in the strict large-N

limit), just like in the free-fermion CFT [3, 168].

Finally, we want to mention that the LCE has been successfully applied in the context of non-relativistic

CFTs [202–206]. In this context, the prediction coming from the LCE and the description in terms of

condensed matter phases might even be experimentally testable, in particular for the unitary Fermi gas

in a harmonic trap [207].
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3 The large charge expansion in the
large N limit of QFT

Many non-perturbative features in realistic QFTs are barely accessible and beyond perturbation theory

there is a distinct lack of calculable dynamics. Moreover, a lot of important physical questions are

intrinsically non-perturbative in nature. It is therefore commonplace to look for simpler models or

simplifying frameworks where certain questions can be answered and some intuition for the inner

workings of more complex models can be gained. One popular tactic is to introduce an additional

expansion parameter, like e.g. a small non-integer correction to the spacetime dimension in the ϵ-

expansion [133], and compute observables by expanding in said parameter. In some cases, these

expansions rearrange the terms in the asymptotic loop expansion from standard perturbation theory

and capture certain non-perturbative features.

Large-N techniques and large-N field theories present one such simplifying framework allowing for the

calculation of certain observables and the exploration of theoretical ideas. Historically invented to study

QCD and asymptotically free Yang–Mills (YM) gauge theories by t’Hooft [208], the large-N expansion

nowadays has wide-ranging applications and is used to investigate many problems in physics. Since

the large-N limit of QFT can be interpreted as a thermodynamic limit [209], it is particularly natural in

the field of condensed-matter physics. But it is also still widely used in high-energy physics. For our

purposes, it is a useful framework to test the predictions of the LCE using a more direct approach than

the EFT construction.

We are mainly interested in theories with quartic interactions — like ϕ4-theories or GN-type models —

and their interactive fixed points at large N . The corresponding interacting CFTs often lend themselves

to large-charge analysis and it is possible to explicitly recover and identify the condensed-matter EFT

descriptions. Before we introduce large-charge analysis, first, it is worth understanding why quartic

interactions become simpler to deal with at large N . Let us consider explicitly the case of a scalar model

with a quartic interaction (ϕ∗
i ϕi )2. If this interaction could somehow be replaced by 〈(ϕ∗

i ϕi )〉(ϕ∗
i ϕi ),

for example to leading order in an expansion, the theory would be reduced to a free one and hence

would be solvable. There is a variety of schemes like mean-field theory or variational methods that exist

and try to achieve this simplification. However, since these methods often do not possess or introduce

a small expansion parameter, it is usually unclear how to improve upon results, and the domain of

validity of the underlying assumption is generally unknown.
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The approximation (ϕ∗
i ϕi )2 ≈ 〈(ϕ∗

i ϕi )〉 (ϕ∗
i ϕi ) would be justified, if the fluctuations of the composite

field (ϕ∗
i ϕi ) are much smaller that the fluctuations of the fields ϕi themselves. Large-N techniques

solve this problem via the central limit theorem. For a large number of fields ϕi , i = 1, . . . , N the

composite field (ϕ∗
i ϕi ) is the sum of many terms and, if said terms are sufficiently uncorrelated, it

has small fluctuations. To put it in other terms, collective excitations generically tend to be classical.

Additionally, the large-N expansion comes with a very natural small expansion parameter given by

1/N , which organizes well-defined perturbative expansion [134].

The goal of the large-N expansion is to construct an EFT for the identified collective DoF by integrating

out the original fields in the action, a set of fields whose cardinality scales like N , and hence not

only solve the QFT in the (strict) large-N limit but also have access to a systematic 1/N expansion.

Large-N results tend to complement results from the conventional perturbative RG [134, 198]. The

pertubative RG allows to study the theory around the Gaussian — or free — fixed point, whereas

large N can sometimes capture properties along the full RG flow up to the interacting fixed point. As

with most techniques used to access QFT, the 1/N expansion has its limitations which are also often

unpredictable. Hence, we should to be careful to discuss it in isolation.1

The plan of this chapter is as follows. In Section 3.1 we investigate the large-N ϕ4-theory and the O(2N )

WF fixed point. We derive the leading-order asymptotics of the critical theory at large charge and large

N in D = 3 using thermodynamical reasoning, explain how we recover the superfluid EFT predictions

— including a computation of the leading-N Wilsonian parameters — and discuss the fluctuation

at sub-leading order to extract the universal contribution from the superfluid phonon discussed in

Eq. (2.87). We also quickly comment on the resurgent analysis of the leading-order asymptotics.

In Section 3.2 we explain how the LCE at large N allows us to study the ϕ4-theory away from the

conformal fixed point. We deduce and discuss the leading-N effective potential along the full RG flow

in D = 3, generalizing a result first derived along the critical massless trajectory by re-summing an

infinite number of Feynman diagrams in [19]. We extend the analysis to 2 < D < 6 and in particular to

D = 5. In D = 5 we find tentative results indicating that the ϕ4-model at large N appears to not be UV

complete and we uncover a non-unitary — or complex — CFT at the interacting fixed point.

In Section 3.3 we discuss three-dimensional fermionic theories at large N and their large-charge sectors.

We start by discussing the free fermion which already exhibits some interesting behaviour. In particular,

the ground state at large charge exhibits a non-trivial macroscopic limit on the cylinder in contrast to

the free boson. However, there is no SSB and said ground state no longer describes a superfluid but a

Fermi sphere instead. We then move on to analysing the interacting GN model and NJL-type models at

large charge and large N . While the GN model in the strict large-N limit only exhibits a Fermi-sphere

ground state, the NJL-type models allow for a Bose–Einstein condensate and admit a superfluid ground

state in the description of certain large-charge operators.

All of the analysis and the computations in this chapter are done in Euclidean signature, mainly either

in D = 3 or D = 5. While Section 3.1 represents mostly a review of the recent and established literature

on the subject, Sections 3.2 and 3.3 present the original work and the contributions of the author,

1For example, it is absolutely necessary to make sure that the 1/N expansion is both renormalizable and IR finite. If
renormalizability and IR finiteness are not met, large-N results are potentially unstable and the 1/N expansion might not
actually exist.
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3.1 The Wilson-Fisher fixed point at large charge and large N

with the small exception of the free-fermion CFT at large charge. Section 3.2 is based on [1] (plus its

companion paper [128]) and Section 3.3 is based on [3].

3.1 The Wilson-Fisher fixed point at large charge and large N

The O(N ′) WF fixed point is the interacting fixed point for the ϕ4-theory in D = 3 accessible at large N ′.
In our notation the action reads

S[φi ] =
∫

dD x

[
1

2
∂µφi∂

µφi + r

2
φiφi + g

2N ′
(
φiφi

)2
]

. (3.1)

We divide the interaction term by a factor of N ′ so that all terms in the action are of order N ′. In flat

space, the IR interacting fixed point is reached in the massless limit r = 0. If N ′ = 2N is even, the action

is more conveniently written in terms of complex fields (the index i runs from 1 to N ),2

S[φi ] =
∫

dD x
[
∂µφ

∗
i ∂

µφi + rφ∗
i φi + g

N

(
φ∗

i φi
)2

]
. (3.2)

We will generally use this form of the action.3

3.1.1 The Wilson-Fisher fixed point and large N

In 2 < D < 4 the coupling g of the ϕ4-interaction is relevant and the theory described by the action in

Eq. (3.2) is free at short distances in the UV and strongly coupled at long distances in the IR where it

can be assumed to flow to an interacting and generically strongly-coupled fixed point called the WF

fixed point. The WF CFT living there is of particular importance in condensed-matter physics and the

description of second-order phase transitions in statistical physics. It describes the critical points of

systems such as superfluid Helium, vapour liquid, ferromagnetic transitions and binary mixtures [134].

Weakly-coupled WF fixed point in small ϵ

There is strong evidence for the existence of the WF fixed point between 2 < D < 4 — in particular also

for the physical dimension D = 3 — and for arbitrary N [11, 135, 221]. Its existence is generally agreed

upon and has first been proven perturbatively in the small-ϵ expansion around four dimensions [8,

133], where significant simplifications occur. In fact, in dimensions D = 4−ϵ, for ϵ≪ 1 the IR WF fixed

point of the ϕ4-theory Eq. (3.2) becomes weakly-coupled and accessible via perturbation theory. The

one-loop beta function for the quartic coupling g around the IR fixed point in D = 4−ϵ for the O(2N )

2Clearly, although not manifestly, this action remains O(2N ) invariant instead of just U (N ) ⊂O(2N ).
3Additionally, we can include a |φi |6-term in the action Eq. (3.2), which by dimensional analysis is marginal in D = 3. However,

this term is marginally irrelevant in the presence of the |φi |4-term [19, 135] and hence we omit it. The theory without a |φi |4-term
and only including |φi |6-term is itself interesting and worth studying [210–220]. We leave the large-charge analysis of the
|φi |6-model for future research.
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invariant theory then reads [222]

βg =− g

N
ϵ+ (N +4)

g 2

4π2N 2 + . . . , (3.3)

and the WF fixed point lies at the critical value of the coupling4

g∗
N

= 4π2

(N +4)
ϵ . (3.4)

The anomalous dimension as well as the scaling dimension of φi and the composite field φ2 =φiφi are

∆φ = 1− ϵ

2
+ . . . , ∆φ2 = 2− 3

(N +4)
ϵ+ . . . . (3.5)

The fact that the IR stable fixed point occurs for g of order ϵ allows for the development of a formal

expansion in ϵ. Higher corrections in ϵ to these results come from higher-loop calculations and are

known up to order ϵ5 [223, 224]. The coefficients of the first few terms in ϵ fall off rather rapidly and

setting ϵ = 1 provides an approximation for the critical theory in D = 3 that is in surprisingly good

agreement with experimental and numerical results [133]. In D = 4 the ϕ4-theory does not have a

continuum limit and — as the only critical point reachable is the Gaussian free massless theory at large

distances — it is thus known as a trivial theory there.

Weakly-coupled WF fixed point from large N

An approach complementary and similar in spirit to the small-ϵ expansion is the large-N expansion. To

set up the large-N expansion for the O(2N ) vector model we consider a theory of 2N real scalar fields

packaged into N complex fields and a O(2N ) symmetric action of the form

S[φi ] =
∫

dD x

[
∂µφ

∗
i ∂

µφi +NΥ
(φ∗

i φi

N

)]
, (3.6)

where the potentialΥ(x) is a generic polynomial.5 For large N it can be expected that O(2N ) invariant

quantities self-average and hence have small fluctuations.6 This observation suggests that it is a good

idea to consider φ∗
i φi as a dynamical variable instead of φi . This can be achieved via a so-called

Hubbard–Stratonovich (HS) transformation [134, 225, 226]. The HS transformation introduces two

additional fields λ,σ while imposing the constraint σ(x) =φ∗
i (x)φi (x)/N for every point x in space by a

functional integral over λ(x),

1= N
∫

Dλδ
(
φ∗

i φi −Nλ
)= N

2πi

∫
DσDλeσ

(
φ∗

i φi−Nλ
)

. (3.7)

4Higher-order corrections in ϵ change the critical value g∗ but not its existence.
5We choose the notationΥ instead of V as we write the potential as a function of φ2 instead of φ.
6By the central limit theorem this assumption relies on the components φi to be weakly correlated.
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Inserting the representation of the identity in Eq. (3.7) into the path integral for the action Eq. (3.6)

results in the following partition function:

Z =
∫

Dφi Dφ∗
i DσDλe−S[φi ,σ,λ] , S[φi ,σ,λ] =

∫
dD x

[
∂µφ

∗
i ∂

µφi +NΥ(λ)+σ(
φ∗

i φi −Nλ
)]

.

(3.8)

The functional integral over the fields φi in the above representation of the partition function is now

Gaussian and can be performed, effectively removing the dependence in the original fields and making

the dependence on N of the partition function explicit.7 The path integral now reads8

Z =
∫

DσDλe−S[σ,λ] , S[σ,λ] = N
∫

dD x [Υ(λ)−σλ]+N Trlog
(−∇2 +σ)

, (3.9)

where we have used the identity logdet A = Trlog A. The action Eq. (3.2) corresponds to the potential

Υ(x) = r x + g x2 . (3.10)

In that case the modified action is quadratic in λ,

S[σ,λ] = N
∫

dD x
[
rλ+ gλ2 −σλ]+N Trlog

(−∇2 +σ)
, (3.11)

and the integral over λ can be performed, setting

4gλ+ r =σ . (3.12)

This results in a term of the form r 2 appearing in the action, which is a constant term and therefore part

of the normalization. The new representation of the partition function for the ϕ4-theory in Eq. (3.2)

then reads

Z =
∫

Dσe−S[σ] , S[σ] = N
∫

dD x
1

4g

[
2σr −σ2]+N Trlog

(−∇2 +σ)
, (3.13)

Integrating out the σ field and rewriting the trace-log term as a path integral gets us back to the original

theory in Eq. (3.2), hence the two representations are clearly equivalent. To analyse the WF fixed point

we consider the critical trajectory at r = 0 (in flat space).

Tuning the massless theory r = 0 to the conformal point at the level of the action in Eq. (3.13) is

equivalent to dropping the σ2-term.9 In order to properly organize and perform the 1/N expansion we

rescale the field σ by a factor of 1/
p

N [227, 228],

σ= σ̂p
N

. (3.14)

7Often it is more convenient to integrate only over N −1 components φi and leaving φ1 in the action. In some cases, it is even
worth to leave two original fields in the action [134]. This does not affect the leading-N result but only the 1/N corrections to the
leading result.

8The HS formalism can be generalized slightly in order to be applicable to the most general O(N )-invariant action, which is
found by adding the two terms A(|φ|2/N )|∂µφ|2 and B(|φ|2/N )|∂µφ∗ ·φ|2/N to the action in Eq. (3.6), where |φ|2 =φ∗

i φi and A,B

are two arbitrary functions. After performing the HS transform in Eq. (3.7) these terms become A(σ)|∂µφ|2 and N B(σ)(∂µσ)2.
The φi -integrals remain Gaussian and can again be performed.

9This applies to both the UV free and the IR interacting fixed point [222].
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The trace-log term generates a non-local effective kinetic term for the composite field σ̂.

N Trlog
(−∇2 + σ̂/

p
N

)= N Trlog
(−∇2)+ ∞∑

k=2

(−1)k+1

kN k/2−1
Tr

(
G σ̂

)k , (3.15)

so that to quadratic order in the field σ the partition function is given by

Z =
∫

Dσ̂ exp

[
1

2
Tr

(
G σ̂

)2 +O (σ̂3)

]
. (3.16)

where G =G(x − y) is the propagator of the free theory, −∇2G(x − y) = δ(x − y),

G(x − y) =
∫

dD p

(2π)D

e i p·(x−y)

p2 . (3.17)

The quadratic action in σ is best expressed in terms of a double integral

S[σ̂] =−1

2

∫
dD x dD y σ̂(x)σ̂(y)G(x − y)2 +O (σ̂3) . (3.18)

The square of the φ propagator can be evaluated in momentum space,

G(x − y)2 =
∫

dD p

(2π)D
e i p·(x−y)

∫
dD q

(2π)D

1

q2(p −q)2 =−
∫

dD p

(2π)D

e i p·(x−y)
(
p2

) D
2 −2

2D (4π)
D−3

2 Γ
( D−1

2

)
sin

(
πD

2

) , (3.19)

and can be used to derive the propagator for σ,

〈 ˜̂σ(−p) ˜̂σ(p)〉 = (4π)
D−3

2 2D+1Γ
( D−1

2

)
sin

(πD
2

)
(
p2

) D
2 −2

, 〈σ̂(x)σ̂(y)〉 = 2D+2Γ
( D−1

2

)
sin

(πD
2

)
π

3
2 Γ

( D
2 −2

)|x − y |4
=:

Cσ̂
|x − y |4 . (3.20)

This is precisely the conformally invariant two-point function of a scalar operator with conformal

dimension ∆σ̂ = 2, consistent with the small-ϵ expansion.10

The simplest way to develop the large-N perturbation theory from here is via the canonical propagator

G(x − y) for φi , the propagator for σ̂ in Eq. (3.20) and the action written in the form11

S[φi , σ̂] =
∫

dD x

[
∂µφ

∗
i ∂

µφi + 1p
2N

σ̂φ∗
i φi

]
, (3.21)

which is recovered by rewriting the trace-log term in Eq. (3.13) as a path integral (and rescaling the

field σ accordingly). For example, the first correction in 1/N to the scaling dimension of σ takes the

form [222, 229–231]

∆σ̂ = 2+2D−1(D −1)(D −2)
Γ
( D−1

2

)
sin

(
πD

2

)
π

3
2 Γ

( D
2 +1

) 1

2N
+O (N−2) . (3.22)

10The coefficient Cσ̂ is positive in the range 2 < D < 6.
11We choose to rescale by 1/

p
2N instead of 1/

p
N purely out of convenience so that our results are consistent with [222]. There

is no physical difference in choosing one over the other.
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After setting D = 4−ϵ and expanding to first order in ϵ, this result agrees perfectly with Eq. (3.5). While

the existence of the O(2N ) WF fixed point in D = 3 from the ϵ-expansion is not clear, from the large-N

perspective it exists everywhere for 2 < D < 4 and survives in the limit N →∞.12

3.1.2 The large-N ϕ4-model at fixed charge

Large-N analysis provides strong evidence that the O(2N ) vector model flows to the interacting WF

fixed point in the IR for 2 < D < 4. The RG flow including the interacting WF CFT survive the large-N

limit and the fixed point becomes a weakly-coupled theory around N →∞. The CFT living at this fixed

point is an ideal playground to test the LCE in a setting that is under perturbative control.

We leave the dimension D arbitrary for now. While fixing the charge in an Abelian model like the O(2)

WF CFT is straightforward, in non-Abelian theories the global internal symmetry still acts on the charge

matrix Q, so that only the spectrum of Q and hence its representation remain invariant. Importantly, it

has been noticed that the homogeneous finite-density superfluid configuration and the corresponding

symmetry-breaking pattern discussed in Chapter 2 only capture correlators of charged operators in

completely symmetric representations [46, 47, 122].

In the critical O(2N ) vector model at large N we choose to fix the value Qi of the N Cartan charges/generators

Q(O(2N ))
i , i = 1, . . . , N rotating the field φi individually, which equals the number of eigenvalues of the

charge matrix Q and hence represents the maximum amount of entries of Q that we are allowed to

fix under the group action. Without using an EFT description this is best achieved by restricting

the path integral to the sector of operators OQ with fixed eigenvalues under the Cartan charges,

Q(O(2N ))
i OQ =Qi O

Q . This procedure is best discussed in finite-temperature field theory as fixing the

value of the Cartan charges has a very natural interpretation at finite temperature where it corresponds

to fixing the number of particles, i.e. considering the canonical ensemble.13

We start with the O(2N )-invariant ϕ4 vector model with action Eq. (3.2) at the WF fixed point on the

cylinder S1
β
×SD−1

r0
, where we have compactified the cylinder-time coordinate.14 The length of the circle

β= 1/T is the inverse temperature and we recover the theory on the regular cylinder R×SD−1
r0

in the

limit β→∞. In the following we always implicitly assume the zero-temperature limit to recover the flat

space WF CFT at the fixed point of the RG flow,

S1
β×SD−1

r0
∼ lim
β→∞

S1
β×SD−1

r0
=R×SD−1

r0
. (3.23)

The diagonal Cartan charges of the Lagrangian in Eq. (3.2) rotating the fields φi individually are given

12Besides using small-ϵ and large-N expansions the WF CFTs of three-dimensional O(N ) models have also been studied using
Monte-Carlo simulations [14, 16, 143, 144, 160] and the conformal bootstrap [232, 233]. Detailed information on the spectrum of
light operators is known and there is strong agreement between all of the different methods. As a consequence, the existence of
these conformal theories is widely accepted.

13Naturally, it is also possible to perform all computations in flat space and at zero temperature, see [20].
14In curved space the mass r now also includes a coupling to the Ricci curvature R. Since we consider the theory on the

cylinder S1
β
×SD−1

r0
the curvature is constant, R ∝ 1/r 2

0 .
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Chapter 3. The large charge expansion in the large N limit of QFT

by (τ= x0 in Euclidean signature)

Q(O(2N ))
i =−

∫
dS

SD−1
r0

[
∂τφ

∗
i φi −φ∗

i ∂τφi

]
. (3.24)

The partition function on the thermal circle S1
β

can be conveniently written as the trace of the exponential

of the Hamiltonian. Bosonic DoF obey periodic boundary conditions on the thermal circle (while

fermionic DoF obey anti-periodic ones), therefore

Z = TrS1
β
×SD−1

r0

[
e−βH (cyl)

]
=

∫
Dφi Dφ∗

i

periodic

e−S[φi ] , (3.25)

where H (cyl) at zero temperature β→∞ and at the fixed point corresponds to the dilatation operator D .

We can restrict the trace over the thermal circle in Eq. (3.25) to operators of fixed diagonal charges Qi

under the O(2N ) symmetry. For later convenience we introduce the charge densities ρi =Qi /(r D−1
0 ΩD ),

Zc (ρ1, . . . ,ρN ) := TrS1
β
×SD−1

r0

[
e−βH (cyl)

N∏
i=1

δ
(
Q(O(2N ))

i −Qi
)]

. (3.26)

In finite-temperature field theory language this is the canonical partition function at fixed particle

number (as particles carry the charge in this language). Using a Fourier transform we can rewrite the

path integral in Eq. (3.26),

Zc (ρ1, . . . ,ρN ) = TrS1
β
×SD−1

r0

[
e−βH (cyl) N∏

i=1

∫
dθi

2π
eiθi

(
Q(O(2N ))

i −Qi

)]

=
[

N∏
i=1

∫
dθi

2π
e−iθi Qi

]
TrS1

β
×SD−1

r0

[
e
−β

(
H (cyl)−iβ−1 ∑

i θi Q(O(2N ))
i

)]
,

(3.27)

where we can identify the grand-canonical partition function Zg c with imaginary chemical potentials
µi = iθi /β for the fields φi by

Zgc(µ1, . . . ,µN ) := TrS1
β
×SD−1

r0

[
e−β

(
H (cyl)−∑

i µi Q(O(2N ))
i

)] N→∞=: e−(2N )βVΩ(µ1,...,µN ) , VSD−1
r0

= r D−1
0 ΩD . (3.28)

In thermodynamical language, the quantity Ω(µ1, . . . ,µN ) — given as the logarithm of Zg c in the

thermodynamical limit N → ∞ — is called the grand potential. Note that Eq. (3.28) describes the

partition function for a theory at finite density with imaginary chemical potentialsµi = iθi /β. Equivalently

to the (conformal) superfluid EFT in Chapter 2, the effective time translation is generated by the

modified Hamiltonian H −∑
i µi Q(O(2N ))

i .

Analogously, the canonical partition function Zc defines the free energy density fc (ρ) per DoF by

Zc (ρ1, . . . ,ρN )
N→∞=: e−(2N )βV fc (ρ1,...,ρN ) , VSD−1

r0
= r D−1

0 ΩD , (3.29)

which is the ground-state energy at fixed charge. The free energy at zero temperature and at the

conformal fixed point is related to the scaling dimension of the lowest-lying operator of fixed charge,

∆(Q1, . . . ) =− lim
β→∞

r0

β
log Zc (ρ1, . . . )

∣∣∣
FP

= (2N ) lim
β→∞

V r0 fc (ρ1, . . . )
∣∣∣
FP

+O (N−1) , Qi = ρi /V . (3.30)
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From here on we will no longer differentiate notation-wise between the charge operator Q(O(2N ))
i and

the charge Qi ,

shorthand notation: Q(O(2N ))
i ∼Qi . (3.31)

The grand-canonical partition function Zgc(µ) has a path-integral representation, which will be the
starting point for our analysis. Since the current jµ of the O(2N ) symmetry depends on the canonically
conjugate momenta of the fields φi , the sum over momenta in the partition function and the switch
from Hamiltonian to Lagrangian formalism are non-trivial. The resulting action Sµ can be understood
as introducing constant background fields for the gauged U (1)N diagonal symmetry in the original
action Eq. (3.2) while keeping periodic boundary conditions within the path integral,

Zgc(µ) =
∫

Dφi Dφ∗
i

periodic

e−Sµ[φi ] , Sµ[φi ] =
∫

dD x

S1
β
×SD−1

r0

[
(∂τ−µi )φ∗

i (∂τ+µi )φi +|∇φi |2 + r |φi |2 +
g

N
|φi |4

]
. (3.32)

We discuss the detailed derivation of the finite-density action Sµ for a generic O(2N ) vector model

in Appendix C.1. Since we are on a compact spatial manifold, we expect Ω(µ), and hence fg c (ρ), to

be smooth and its derivatives to be well-defined. Additionally, CP-invariance implies that the grand

potentialΩ is an even function of all the θi -variables.15

In the thermodynamic limit N →∞ the quantities in Eq. (3.28) and Eq. (3.27) are computable in a

saddle-proint approximation around the leading semi-classical trajectory.16 The saddle-point equation

for the partition function in Eq. (3.27) reads

i
ρi

(2N )
+β ∂

∂θi
Ω(iθ1/β, . . . , iθN /β) = 0. (3.33)

Importantly, at the saddle point Eq. (3.33) of the canonical partition function in Eq. (3.27) the chemical

potentials θi are imaginary, due to the fact that the derivative of the grand potentialΩwith respect to

θi is an odd real function.17 Equivalently, the chemical potentials µi are real. We will therefore change

variables from θi to µi in the canonical partition function Eq. (3.27),

Zc (ρ1, . . . ,ρN ) ∼
∫

[dµi ]e
−β

[∑
i µi Qi− 1

β
log Zg c (µ1,...,µn )

]
N→∞→

∫
[dµi ]e

−(2N )β
[∑

i µi
Qi
2N +VΩ(µ1,...,µN )

]
,

(3.34)

As µi →−µi is a symmetry, we can assume without loss of generality that µi ≥ 0.

15Under time reversal T the chemical potential transforms as µi →−µi . Due to CPT symmetry, under the assumption of CP
invariance, the transformation µi →−µi now has to be a symmetry of the theory.

16Charge quantization implies that the integrand in Eq. (3.27) is a periodic function in each of the θi -variables. Hence, as they
cancel each other due to periodicity, we do not have to worry about contributions from the end points of the integrals to the
asymptotic expansion around the saddle points.

17Taking the complex conjugate of the saddle-point equation Eq. (3.33) we deduce that at the minimum θ∗a =−θa , as ∂Ω/∂θi is
an odd function.
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Chapter 3. The large charge expansion in the large N limit of QFT

At the large-N saddle point,18

Zc
N→∞∼ e−(2N )βV fc (ρ) , Zg c

N→∞∼ e−(2N )βVΩ(µ) ,
ρi

2N
+ ∂

∂µi
Ω(µ) = 0. (3.35)

the free energy and the grand potential are related by a Legendre transform,

fc (ρ1, . . . ) = sup
µi

( ∑
i
µi

ρi

2N
+Ω(µ1, . . . )

)
=∑

i
µi

ρi

2N
+Ω(µ1, . . . )

∣∣∣∣ ρi
2N =− ∂

∂µi
Ω

. (3.36)

This is a non-trivial consistency check of our construction: at the saddle point we reproduce the usual

Legendre transform that relates the two thermodynamic potentials.

The idea is to compute the grand potentialΩ(µ) for the O(2N ) vector model in an expansion in large N

and then use the saddle-point condition to relateΩ(µ) to the free energy fc , with the end goal being to

extract the scaling dimension from fc . We consider the action Sµ = Sµ[φi ] in Eq. (3.32) and perform a

HS transform of the form in Eq. (3.7). The action becomes

Sµ[φi ,σ,λ] =
∫

dD x

S1
β
×SD−1

r0

[
(∂τ−µi )φ∗

i (∂τ+µi )φi +|∇φi |2 + r |φi |2 +σ
(|φi |2 −Nλ

)+N gλ2] ,
(3.37)

where we have consciously left the mass and curvature term r |φi |2 untouched by the HS transform.

Integrating out the field λ — as it was done in Eq. (3.13) — yields the action

Sµ[φi ,σ] =
∫

dD x

S1
β
×SD−1

r0

[
(∂τ−µi )φ∗

i (∂τ+µi )φi +|∇φi |2 + (r +σ)|φi |2)− N

4g
σ2

]
.

(3.38)

The WF conformal point on the cylinder is reached for |g |→∞ [222] and r of order O (1) [124], where

the action becomes

Sµ[φi ,σ] =
∫

dD x

S1
β
×SD−1

r0

[
(∂τ−µi )φ∗

i (∂τ+µi )φi +|∇φi |2 + (r +σ)|φi |2
]

.
(3.39)

3.1.3 Leading order asymptotics at large charge

We compute the free energy of the O(2N ) model restricted to the completely symmetric representation

(the Abelian sector) — which corresponds to the energy of the homogeneous ground state in the sector

of total fixed charge Q [122, 234] — in the double-scaling limit of large N and large Q.

The original fields φi only appear quadratically in the critical action in Eq. (3.39) and hence the

18The function exp[−(2N )βVΩ(µ)] is the leading-order result for the grand-canonical partition function Zg c in a 1/N
expansion,

Zg c (µ1, . . . )eβV (2N )Ω(µ)(µ1 ,... )+O (N 0) .

This expansion is well-behaved for the usual reasons that large-N expansions with a scalar collective field are. A similar statement
holds true for Zc .
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3.1 The Wilson-Fisher fixed point at large charge and large N

functional integral can be performed. Afterwards, the grand-canonical partition function in terms of

the collective field σ only reads

Zg c =
∫

Dσ

periodic

e−Sµ[σ] , Sµ[σ] =
N∑

i=1
Trlog

(− (∂τ+µi )2 −∆SD−1
r0

+ r +σ)
. (3.40)

In Section 3.1.1, in particular Eq. (3.20), we have discussed and presented evidence that at zero chemical

potential and zero temperature this partition function corresponds to the WF CFT at large N . At N →∞
the conformal dimension ∆σ of the collective field σ is equal to 2.

As we are in finite volume, the mode decomposition for the fields φi admits a zero-mode, which can

in principle be extracted from the functional determinant [124]. We instead choose to consider said

zero-mode while evaluating the functional determinant in Eq. (3.40). We further assume that σ admits

a constant VEV,19

σ= 〈σ〉+ σ̂/
p

N , 〈σ〉 = const. , (3.41)

whose value will be determined by the saddle-point equations. The action can then be expanded in

powers of the fluctuation σ̂,

Sµ[σ] =
N∑

i=1
Trlog

(
−(∂τ+µi )2 −∆SD−1

r0
+ r +〈σ〉+ σ̂p

N

)

=
N∑

i=1
Trlog

(
−(∂τ+µi )2 −∆SD−1

r0
+ r +〈σ〉

)
+

N∑
i=1

∞∑
k=2

(−1)k+1

kN k/2
Tr

(
Gi σ̂

)k ,

(3.42)

where Gi (x − y) is the propagator associated to the field φi ,(
− (∂τ+µi )2 −∆SD−1

r0
+ r +〈σ〉

)
Gi (x − y) = 1p

g
δ(x − y) . (3.43)

For completeness, the action for the path-integral representation of the canonical partition function
reads

SQ =β∑
i
µi Qi +Sµ =β∑

i
µi Qi +

∑
i

Trlog

(
−(∂τ+µi )2 −∆SD−1

r0
+ r +〈σ〉

)
+∑

i

∞∑
k=2

(−1)k+1

kN k/2
Tr

(
Gi σ̂

)k . (3.44)

The large-N saddle point is found by minimizing the ground state action in Eq. (3.44) for σ̂= 0. The
functional determinant in the action can be evaluated, which we do in Appendix C.2. The grand

19If the field σ admits a homogeneous/constant VEV, then it will correspond to the lowest-energy ground state as any
inhomogeneous solution in comparison will correspond to a (ground) state with higher energy.
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Chapter 3. The large charge expansion in the large N limit of QFT

potentialΩ(µ1, . . . ) becomes20

Ω(µ1, . . . ) = 1

2N

∑
i
ζ2

i

(
r +〈σ〉−µ2

i

)
+ 1

(2N )V

∑
i

∑
ℓ

DegD (ℓ)

[[
ωℓ+

1

β
log(1−e−β(ωℓ+µi ))(1−e−β(ωℓ−µi ))

]
,

ω2
ℓ =

ℓ(ℓ+D −2)

r 2
0

+ r +〈σ〉 . (3.45)

This result is convergent as long as

|µi | ≤
√

r +〈σ〉 , ∀i = 1, . . . , N . (3.46)

The saddle-point equations are obtained by deriving the ground-state action w.r.t. the variables 〈σ〉, ζi

and µi , where the BEC parameters ζi come from the zero modes of the fields φi . Since the parameters

ζi are a priori note determined, they should be treated as variational parameters related to the charge

carried by the condensed particles, i.e. the ground state.

At zero temperature β→∞ we reach the WF fixed point in flat space,

Ω(µ1, . . . ) = 1

(2N )

∑
i
ζ2

i

(
r +〈σ〉−µ2

i

)+ 1

2V

∑
ℓ

DegD (ℓ)ωℓ ,

fc (ρ1, . . . ) =∑
i
µi

ρi

(2N )
+Ω(µ1, . . . ) , ω2

ℓ =
ℓ(ℓ+D −2)

r 2
0

+ r +〈σ〉 .
(3.47)

The infinite sum in the grand potential is the zeta function ζ(−1/2 |SD−1
r0

,r +〈σ〉) on the two-sphere,21

ζ(s |SD−1
r0

,r ) :=∑
ℓ

DegD (ℓ)

(
ℓ(ℓ+D −2)

r 2
0

+ r

)−s

. (3.48)

The saddle-point equations in 〈σ〉, ζi and µi read

ζi : ζi
(
r +〈σ〉−µ2

i

)= 0, i = 1, . . . , N ,

〈σ〉 :
1

(2N )

∑
i
ζ2

i +
1

2V

1

2
ζ(1/2 |SD−1

r0
,r +〈σ〉) = 0,

µi :
ρi

(2N )
− 2µi

(2N )
ζ2

i = 0.

(3.49)

The first equation either fixes the chemical potentials µi to be equal to the VEV of the collective field σ

or sets ζi to zero (the case of no condensate). As all solutions except for the trivial one ζi = 0, ∀i can be

shown to be equivalent, we choose all the µi to be equal,

µ2
i = r +〈σ〉 :=µ2 , i = 1, . . . , N . (3.50)

20This result can be generalized from the sphere SD−1
r0

to any other spatial manifold — like the torus — by simply replacing the

eigenvalues ωℓ→ω(p) =
√

E(p)2 + r +〈σ〉 and the corresponding multiplicities DegD (ℓ) → DegD (p).
21This definition can be of course be extended to arbitrary manifolds by replacing the eigenvalues and degeneracies.
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3.1 The Wilson-Fisher fixed point at large charge and large N

The third equation equation relates the charge densities ρi to the BEC parameter ζi ,

2µiζi = ρi , i = 1, . . . , N . (3.51)

From a statistical mechanics perspective, this equation simply represents the fact that at zero temperature

all Bose particles and hence all the charge reside in the ground state. We define the total charge and

charge density,

ρ :=∑
i
ρi = 2

∑
i
µiζi , Q :=V ρ =∑

i
Qi . (3.52)

After implementing the first two saddle-point equations, the remaining equation gives the condition

for the Legendre transform defining the relationship between the free energy density and the grand

potential,

ρ

2N
=− µ

2V
ζ(1/2 |SD−1

r0
,µ2) =− 1

2V

∂

∂µ
ζ(−1/2 |SD−1

r0
,µ2) =− ∂

∂µ
Ω(µ) . (3.53)

The final result for the leading-N free energy (density) per DoF at fixed charge Q =V ρ for the O(2N )

WF fixed point can conveniently be written as 22

V fc (ρ) = fc (Q) = LT[−V Ω](Q/2N ) =µ Q

2N
+ 1

2
ζ(−1/2 |SD−1

r0
,µ2)

∣∣∣∣ Q
2N =− µ

2 ζ(1/2 |SD−1
r0

,µ2)
. (3.54)

The operator LT[h](x) denotes the Legendre transform of the convex function h, which for a differentiable

function can be written in terms of the derivative of h,

LT[h](x) = sup
y

(
x y −h(y)

)= x y −h(y)
∣∣∣

x=h′(y)
. (3.55)

If the function h is not convex, then the Legendre transform does not exists. If the function h is

convex, then LT[h] is convex too and the Legendre transform is an involution LT[LT[h]](y) = h(y). As

a consequence, the convexity properties of the grand potential Ω(µ) are crucial for the theory to be

well-defined (at least in the large-N limit).

The natural parameter is Q/2N which we hold fixed. The system can be studied both at Q/2N ≫ 1 and

Q/2N ≪ 1.

The large-N result in Eq. (3.54) is a one-loop result capturing the leading quantum contributions. It

allows us to construct a one-loop effective action using thermodynamical reasoning [235]. Given the

physical description of a system in terms of a grand potential Ω(µ) (always at finite density) we can

write down an effective action capturing the microscopic details of the theory in terms of the NG mode

22The contribution from the zero modes to the energy density vanishes at the saddle-point. In terms of ρ the free energy
density reads fc (ρ) = LT[−Ω](ρ).
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Chapter 3. The large charge expansion in the large N limit of QFT

χ coming from the breaking of the global symmetry, the superfluid phonon,

S =
∫

dD x (2N )Ω
(∣∣∂µχ∂µχ∣∣1/2

)
. (3.56)

The action in Eq. (3.56) has to always be understood as an expansion around the superfluid ground

state χ =−iµτ. By construction, on the ground state χ the EFT Hamiltonian associated to the action

in Eq. (3.56) produces the (large-N ) free energy in Eq. (3.54). This observation also connects the large-N

fixed-charge analysis of the Abelian sector in the O(2N ) vector model in the limit Q/2N ≫ 1 to the EFT

approach outlined in Chapter 2.

3.1.4 Q/2N ≫ 1 and Q/2N ≪ 1

We analyse the leading-order result in Eq. (3.54) for the energy at fixed charge in the O(2N ) WF CFT in

the limits Q/2N ≫ 1 and Q/2N ≪ 1 using analytic methods. We are doing computations explicitly in

D = 3 in this section and the next two sections.

Q/2N ≫ 1

To compute the free energy in an asymptotic expansion around Q/2N ≫ 1 we use the Mellin representation

of the sphere zeta function,

ζ(s |SD−1
r0

,µ2) = 1

Γ(s)

∞∫
0

dt

t
t s e−µ

2t Tr
[

e
∆

SD−1
r0

t ]
, (3.57)

where Γ(s) is the gamma function and Tr
[
e
∆

SD−1
r0

t ]
is the (trace of the) heat kernel for the Laplacian

on the sphere. Roughly, in the limit Q/2N ≫ 1 we expect µ≫ 1 to be parametrically large as well and

hence the t-integral localizes around t = 0, where the heat kernel admits an asymptotic expansion. We

use Weyl’s asymptotic formula expressed in terms of heat kernel coefficients for an arbitrary manifold

M [236–238],

Tr
[
e∆M t ]= ∞∑

n=0
Kn t

n
2 −1 . (3.58)

Heat kernel coefficients in the asymptotic expansion are computable via geometric invariants [239, 240].

For a manifold without boundary all odd coefficients vanish. In this case the two leading coefficients

are given in terms of the volume V and the scalar curvature R of the manifold M ,

K0 = V

4π
, K2 = V R

24π
. (3.59)

For every consecutive order in the LCE we need another term in the heat kernel expansion.

For the two-sphere in D = 3 there exists an explicit integral representation of the heat kernel [241],

Tr
[

e
∆S2

r0
t ]= r 3

0
2e

t
4r 2

0p
π t 3/2

1∫
0

du e−r 2
0

u2
t

u

sin(u)
, (3.60)
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3.1 The Wilson-Fisher fixed point at large charge and large N

which can be used to find an integral representation of the zeta function Eq. (3.57) admitting a natural

asymptotic expansion in terms of a conformally coupled scalar with mass term r −1/4r 2
0 [124],23

ζ(s |S2
r0

,µ2) = r 2
0

(s −1)

(
µ2 − 1

4r 2
0

)1−s

+ 1

12

(
µ2 − 1

4r 2
0

)−s

+ 7s

480r 2
0

(
µ2 − 1

4r 2
0

)−1−s

+ . . . . (3.61)

This result allows us to express µ and fc — and hence the scaling dimension ∆(Q) — as a function of

Q/2N ,

r0µ(Q) =
(

Q

2N

) 1
2 + 1

12

(
Q

2N

)− 1
2 +O (Q−3/2) ,

∆(Q)

2N
= r0 fc (Q) = 2

3

(
Q

2N

) 3
2 + 1

6

(
Q

2N

) 1
2 +O (Q−1/2) .

(3.62)

In the spirit of Eq. (3.56) we observe that from the conformal dimension ∆(Q) at large N we can extract

explicitly the form of the Wilsonian coefficients c1,c2, . . . (to leading order in N ) which are outside of

the scope of the EFT approach outlined in Chapter 2 (in particular Section 2.2.2). Additionally, they can

be compared to numerical results from the lattice [143, 144]. For the O(4) model the discrepancy is

already of the order of just 10% [124].

Q/2N ≪ 1

As the saddle-point Eq. (3.54) is valid for any value of the charge — as opposed to the EFT construction

discussed in Chapter 2 which is only valid at large charge — we can also expand the grand potentialΩ(µ)

and the free energy fc (Q) in the opposite limit Q/2N ≪ 1. Contrary to what we would naively expect,

the small-charge limit does not correspond to an expansion in the chemical potential around µ∼ 0, but

instead around µ∼ 1/2r0 [124]. The first hint of this fact comes from the form of the expansion of the

zeta function around large values of µ in Eq. (3.61), where the natural expansion parameter appears to

be µ2 −1/4r 2
0 .

The origin of the small-charge expansion around µ∼ 1/2r0 is very natural from the point-of-view of

conformal invariance. Weyl invariance enforces the curvature coupling of a scalar field on the cylinder

to be non-zero and hence produces an effective mass term r |φ|2 = (1/4r 2
0 )|φ|2. The saddle-point

equation for ζi in Eq. (3.49) fixes µ2 = r +〈σ〉, and therefore it is natural to expand µ2 at the conformal

point around the conformal mass r = (1/4r 2
0 ).

In the small-µ limit the zeta function in Eq. (3.48) can be expanded in a binomial expansion for

−1/4 < 0 <µ2 < 3/4,

ζ(s |S2
r0

,µ2) =
∞∑
ℓ=0

2(ℓ+ 1

2
)
[
ℓ(ℓ+1)r−2

0 +µ2]−s = 2r 2s
0

∞∑
ℓ=0

(ℓ+ 1

2
)1−2s

[
1+ (µr0)2 − 1

4

(ℓ+ 1
2 )2

]−s

= 2r 2s
0

∞∑
k=0

ζ(2s +2k −1;1/2)

(
(µr0)2 − 1

4

)k

,

(3.63)

23The term −1/4r 2
0 is produced from the conformally coupled scalar curvature term ξR|φ|2 which on the two-sphere S2

r0

becomes −1/4r 2
0 .
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where ζ(s; a) denotes the Hurwitz zeta function, formally given by

ζ(s; a) =
∞∑
ℓ=0

(ℓ+a)−s . (3.64)

At next-to-leading order µ receives a correction of order Q/N to the conformal value,

r0µ(Q) = 1

2
+ 8

π2

(
Q

2N

)
+O (Q2) , (3.65)

and the conformal dimension reproduces to leading order the result of the (free) mean-field theory,24

∆(Q) = r0 fc (Q) = Q

2
+ 8N

π2

(
Q

2N

)2

+O (Q3) . (3.66)

In the small-charge limit Q/2N ≪ 1 we can therefore identify the lowest-lying operator associated to

∆(Q) with ϕQ , which has engineering dimension [ϕQ ] =Q/2.

3.1.5 Resurgent analysis at N →∞
It has been observed in lattice results that the predictions from the LCE, at least for the scaling

dimension ∆(Q), remain accurate for small values of the charge [143, 144]. In fact, only a minimal

number of terms in the effective action Eq. (2.26) and hence the asymptotic expansion of ∆(Q) suffices

to reproduce lattice results with high precision. This behaviour cannot be explained from the point-of-

view of the EFT but rather in terms of the non-perturbative physics that specifies the optimal truncation

of the asymptotic series, which can be predicted to be at N∗ =O (
√

Q) with an error of order O (e−π
p

Q )

explaining the small error and the small amount of terms necessary to reproduce the scaling dimension

up to Q =O (10) [191].

As it was first pointed out by Dyson [242], perturbative expansions in QM and QFT are usually

asymptotic series and not convergent ones. The LCE is no different in this regard, and at large N

the asymptotic nature of the expansion in Q ≫ 1 is manifest due to its connection to the manifestly

asymptotic expansion of the zeta function in Eq. (3.61). The asymptotic nature of perturbative

expansions implies the existence of non-perturbative contributions and phenomena in the underlying

theory. The modern approach to analytically study non-perturbative corrections is resurgence [243,

244]. Within the EFT construction we do not have access to enough information about the non-

perturbative sector, however, at N ≫ 1 we have access to the full theory and an explicit form of the

energy r0∆(Q) valid for all values of Q. As first shown in [191], in the double-scaling limit Q → ∞,

N →∞, Q/N fixed there is enough structure to perform a complete resurgent analysis, which also

produces the results for the optimal truncation discussed above.

24To leading order in large N the WF fixed point is equivalent to a mean-field theory — or generalized free-field theory —
with an action of the form

∫ (|∂φi |2 +〈|φi |2〉 |φi |2
)
. In this theory an operator of charge Q is simply of the form φi1 . . .φiQ

∼φQ .

Importantly, in contrast to the small-ϵ expansion around D = 4, the large N expansion of the WF fixed point is not an expansion
around the free — or Gaussian — conformal fixed point.
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The resurgent analysis of the LCE in the Abelian sector of the O(2N ) model at large N can be performed

as a result of the Seeley–DeWitt expansion [245–248] of the heat kernel trace in Eq. (3.57). The trace of

the conformal Laplacian can be written as [191]

Tr
[

e

(
∆S2

r0
− 1

4r 2
0

)
t ]

= r 2
0

t
+ ∑

k∈Z
(−1)k

[ r 2
0

t
−2

πr 3
0 |k|

t 3/2
F

(πr0|k|p
t

)]
, F (z) = e−z2

∫ z

0
du e−u2

. (3.67)

Dawson’s function F (z) appearing in the above representation of the heat kernel admits an asymptotic

expansion so that after some formal manipulations the heat kernel can be written as

Tr
[

e

(
∆S2

r0
− 1

4r 2
0

)
t ]

∼ r 2
0

t

∞∑
n=0

an

(
t

r 2
0

)n

, an := (1−21−2n)B2n

(−1)n+1n!
∼ 2p

πn

n!

π2n , (3.68)

where the divergence is a consequence of the asymptotic expansion of Dawson’s function. As is

standard for asymptotic expansions, this expansion is only formally valid and needs a summing

prescription. Assuming that the series can be completed into a resurgent trans-series implies that the

above expansion gets supplemented by non-perturbative terms of the form

Tr
[

e

(
∆S2

r0
− 1

4r 2
0

)
t ]

⊃ 2i

(
π

r 2
0

t

) 3
2

(−1)k+1|k|e−
(πr0k)2

t . (3.69)

The relative coefficients cannot be fixed from the resurgent analysis of the asymptotic expansion, which

is a reflection of the fact that any choice of coefficients results in the same asymptotic expansion.

The resurgent analysis of the heat kernel trace directly identifies the structure of the trans-series of the

grand potential

V Ω(µ) = 1

2
ζ(−1/2 |S2

r0
,µ2) = 1

2Γ(s)

∞∫
0

dt

t
t s e−µ

2t Tr
[

e
∆S2

r0
t ]∣∣∣∣

s=−1/2
. (3.70)

As a result, the grand potentialΩ and its Legendre dual — the free energy fc — include non-perturbative
corrections of the form

V Ω(µ) ⊃
√
µ3r0

(−1)k e−2πµr0|k|

(2π |k|)3/2

∞∑
i=0

(
γi

γ0

)(
2πµr0|k|

)−i , fc (Q) ⊃ 1

r0

(
Q

2N

) 3
4 (−1)k e−2π |k|pq

(2π |k|)3/2
+ . . . . (3.71)

where the coefficients γi can be computed recursively [191]. This result corresponds to a (2n)!

divergence of the perturbative series of fc (Q).

Importantly, from the EFT point-of-view the (2n)! divergence is a tree-level effect. If we identify the

grand potential with a superfluid effective action as in Eq. (3.56) the Wilsonian coefficients form a

divergent series, whose (2n)! divergence is to be contrasted with the n! divergence that we generically

expect in QFT from the proliferation of Feynman diagrams. Here, the classical divergence is more

important than the quantum one.

The trace of the heat kernel can be Borel re-summed, leading to a closed form expression that includes

the non-pertubative corrections. In general, the Borel re-summation is a prescription from resurgence

that gives meaning to factorially divergent asymptotic series by systematically incorporating the
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Chapter 3. The large charge expansion in the large N limit of QFT

associated non-perturbative terms. There will be ambiguities left associated to the coefficients of

the non-perturbative corrections, which in this case can be fixed by physical inputs (e.g reality of the

heat trace) [191]. This in turn fixes the ambiguities forΩ(µ) and fc (µ). After Borel re-summation, the

heat kernel trace becomes

Tr
[

e

(
∆S2

r0
− 1

4r 2
0

)
t ]

= 2p
π

(
r 2

0

t

) 3
2

P.V.
∫
C ±

dζ
ζe−ζ

2 r 2
0
t

sin(ζ)
, (3.72)

where C ± is the contour along the positive real axis avoiding the simple poles ζ= kπ, k ∈N+ of sin(ζ)

in the Borel transform of the asymptotic expansion of the heat kernel either above (C +) or below (C −).

The prefix P.V. tells us to take the principal value of the ζ-integral. Despite its appearance, the Borel

re-summation prescription in Eq. (3.72) is unambiguous, a property that is mirrored in various systems

involving ordinary differential equations [249].

The results for the scaling dimension derived from the Borel re-summed heat kernel trace in Eq. (3.72)

match the result from the small-charge regime Q/2N ≪ 1 to high precision. For a more detailed

discussion on the resurgent analysis of the large-N and large-Q double-scaling limit in the O(2N )

vector model we refer to [191].

3.1.6 Subleading corrections: the NG modes

We end this Section with a discussion of the sub-leading correction in the large-N analysis of the O(2N )

WF fixed point in D = 3. We consider the O(2N ) WF CFT (at |g | →∞ in our conventions) in terms of

the action in Eq. (3.39) including the original field φi and separate the collective field into its VEV plus

fluctuations,

Sµ[φi , σ̂] =
∫

dD x

S1
β
×SD−1

r0

[
(∂τ−µi )φ∗

i (∂τ+µi )φi +|∇φi |2 + (r +〈σ〉)|φi |2 + σ̂p
N

|φi |2
]

, (3.73)

where we have rescaled the fluctuation resulting in a self-consistent 1/N expansion following the

standard procedure [227, 228]. This introduces a hierarchy among the terms as in Eq. (3.42), which is

important once we go beyond leading order. We are in a regime with two large numbers N ,Q, where

N ≫Q/N controls the splitting between tree-level and quantum corrections. Additionally, the ratio

Q/N controls an expansion of physical observables at every fixed order in N .

Most importantly, at sub- leading order we expect to encounter the universal Q0-term in D = 3 discussed

within the EFT approach in Section 2.2 — in particular around Eq. (2.53) and Eq. (2.87) — coming from

the superfluid phonon. To do so it is more convenient to choose a slightly different approach to the

one presented in Section 3.1.3 and Appendix C.2. We choose to incorporate the ground state for φi —

the BEC parameter ζi — within the action before integrating out the fluctuations φ̂i =φi −ζi e iϕi of φi .
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The action becomes (up to a total derivative)

Sµ[φ̂i , σ̂] =
∫

dD x

S1
β
×SD−1

r0

[
ζ2

i (r +λ−µ2)+ φ̂∗
i (−(∂τ+µi )2 + r +〈σ〉+ σ̂/

p
N )φ̂i + σ̂p

N

(
ζi e−iϕi φ̂i + φ̂∗

i ζi e iϕi
)]

.

(3.74)

To analyse the fluctuation we integrate out all but one of the fields φi . As discussed in Section 3.1.3

around the saddle-point equations in Eq (3.49), there are several equivalent choices of the ground state

that can be rotated into each other. We choose to rotate the BEC parameters so that all of the charge

lies in the condensate of the field φN [124],

ρ =∑
i
ρi = 2

∑
i
µiζi = 2µζN , ζ1 = ·· · = ζN−1 = 0. (3.75)

There are now N −1 fields with equal dispersion relations and one field that is different. The action

becomes (we also choose e iϕN = 1)

Sµ[φ̂i , σ̂] =βV (r +〈σ〉−µ2)ζ2
N +

N−1∑
i=1

∫
dD x

S1
β
×SD−1

r0

[
φ̂∗

i (−(∂τ+µ)2 + r +〈σ〉+ σ̂/
p

N )φ̂i

]

+
∫

dD x

S1
β
×SD−1

r0

[
φ̂∗

N (−(∂τ+µ)2 + r +〈σ〉+ σ̂/
p

N )φ̂N + σ̂p
N
ζN (φ̂∗

N + φ̂N )

]
.

(3.76)

We first discuss the dispersion relations of the fields φ̂1, . . . , φ̂N−1 before we integrate them out later.

Their dispersion relations are all the same and correspond each to a pair of modes — one gapless and

one gapped NG mode — with inverse propagator and dispersion relations (in flat space)

G̃−1
(0)(ω,p) = 1

2

(
0 ω2 +p2 −2µω

ω2 +p2 +2µω 0

)
,

ω2 =− p4

4µ2 + . . . ,

ω2 =−2p2 −4µ2 + . . . .
(3.77)

The first mode is massless and corresponds to a particle with quadratic dispersion relation. These

modes are the N −1 non-relativistic NG modes also found in [46, 47, 122], which are naturally arranged

into the fundamental representation of the U (N −1) subgroup which remains unbroken by the large-N

large-Q saddle-point. Their massive counterparts are the gapped NG modes first encountered in

Section 1.2.5.

We can expand the action in Eq. (3.76) in the fluctuations σ̂/
p

N and integrate out the fieldsφ1, . . . ,φN−1,

Sµ[φ̂N , σ̂] =βV (r +〈σ〉−µ2)ζ2
N +N

∑
ℓ

DegD (ℓ)

[[
ωℓ+

1

β
log(1−e−β(ωℓ+µi ))(1−e−β(ωℓ−µi ))

]

+
∞∑

k=2

(N −1)Tr(G(0)σ̂)k

(−1)k+1k(N )k/2
+

∫
dD x

S1
β
×SD−1

r0

[
φ̂∗

N (−(∂τ+µ)2 + r +〈σ〉+ σ̂/
p

N )φ̂N + σ̂p
N
ζN (φ̂∗

N + φ̂N )

]
.

(3.78)

As we are interested in the fluctuations and the first quantum corrections, we only care about the
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Chapter 3. The large charge expansion in the large N limit of QFT

quadratic part of the action and drop other contributions.25 In addition, we can express ζN and r +〈σ〉
via the saddle-point equations in Eq. (3.49),26

S(2)[φ̂N , σ̂] =−1

2

(N −1)

N︸ ︷︷ ︸Tr

=1+O (N−1)

(G(0)σ̂)2 +
∫

dD x

S1
β
×SD−1

r0

[
φ̂∗

N

(− (∂τ+µ)2 +µ2)
φ̂N +

√
−ζ(1/2 |SD−1

r0
,µ2)

2V
σ̂(φ̂∗

N + φ̂N )
]

.

(3.79)

We of course consider the above quadratic action in the limit β→∞ where S1
β
→R. The term Tr(G(0)σ̂)2

is non-local and computable in the low-energy limit [124],

Tr(G(0)σ̂)2 =
∫

dD x1

S1
β
×SD−1

r0

∫
dD x2

S1
β
×SD−1

r0

[
σ̂(x1) σ̂(x2)G(0)(x2 −x1)2]∼ ∫

dD x

S1
β
×SD−1

r0

σ̂2 1

4V
ζ(3/2 |SD−1

r0
,µ) ,

(3.80)

so that the quadratic action becomes [124]

S(2)[φ̂N ] =
∫

dD x

S1
β
×SD−1

r0

[
φ̂∗

N

(− (∂τ+µ)2 +µ2)
φ̂N +

√
−ζ(1/2 |SD−1

r0
,µ2)

2V
σ̂(φ̂∗

N + φ̂N )− 1

8V
ζ(3/2 |SD−1

r0
,µ) σ̂2

]
.

(3.81)

We now specialize to the case D = 3. There is no kinetic term for σ̂ and we can integrate it out.

Additionally, we can use the asymptotic expansion of the heat kernel in Eq. (3.58) to extract via Eq. (3.57)

the leading-order results from the zeta functions [124]. The action in D = 3 becomes

S(2)[φ̂N ] =
∫

d2x

S1
β
×S2

r0

[
φ̂∗

N

(− (∂τ+µ)2 +µ2)φ̂N +µ2(φ̂∗
N + φ̂N )2

]
,

(3.82)

and the inverse propagator for the two remaining modes reads

2G̃−1 =
(
ω2 −µ2 +p2 +µ2 +4µ2 2µω

−2µω ω2 −µ2 +p2 +µ2

)
=

(
ω2 +p2 +4µ2 2µω

−2µω ω2 +p2

)
. (3.83)

From there we get the dispersion relations of the fluctuations (in flat space),

ω2 =−p2 −4µ2 ±
√

16µ4 +4p2µ2 =
{
− 1

2 p2 + . . .

− 3
2 p2 −8µ2 + . . .

. (3.84)

We recover the conformal superfluid NG mode and hence can also identify the universal contribution

to the conformal dimension ∆(Q) in Eq. (2.87) first presented in Section 2.2. In the large-N expansion

this contribution appears at sub-leading order O (N 0) in N .

25The constant part of the action corresponds to the leading classical trajectory and was already thoroughly discussed in
Section 3.1.3.

26G(0) satisfies (−(∂τ+µ)2 + r +〈σ〉)G(0)(x − y) = δ(x − y).
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3.2 Convexity and the effective potential forϕ4 from large charge

Working in the double-scaling limit for the O(2N ) vector model introduces a lot of structure that can be

used to perform calculations. We have discussed extensively how this structure can be used to access to

strongly-coupled (for every finite N ) fixed point in Section 3.1.1, in particular for the case of the WF fixed

point in D = 3. Perhaps surprisingly, large-charge methods also allow us to study the theory away from

the fixed point purely at the level of the grand potentialΩ(µ) without resorting to Feynman-diagram

techniques [1, 128]. It is possible for us to derive a relationship between the one-loop effective action

and the grand potential (which is also a one-loop quantity) and to describe in a compact way the phase

diagram of the theory with the potential V (φ) = r |φ|2 + (g /N )|φ|4, generalizing and expanding earlier

works [19, 135, 250, 251].

Beyond analysing the ϕ4-theory in 2 < D < 4 and D = 3, where it flows to the interacting WF fixed point,

we are able to analyse the model in 4 < D < 6 and D = 5, where we would expect an interacting fixed

point in the UV [222, 252]. We find that the ϕ4-model is not UV complete if we require unitarity, which

is consistent with recent works [20, 253, 254]. Nevertheless, we can compute a possible completion

in terms of a complexified effective potential in D = 5 describing the flow to a non-unitary CFT, with

results in agreement with the existing literature [20, 253–255]. Importantly, this complex CFT remains

unstable for both small- and large-charge operators even though in the small-charge regime scaling

dimensions are still purely real [20, 254–257].

In this Section we are mostly content with working in flat space or on the torus. In terms of Weyl’s

asymptotic expansion in Eq. (3.59) and Eq. (3.58) the flat space result will generically capture the leading

order result on the sphere as well, but we cannot access to the sub-leading corrections in flat space.

3.2.1 The effective action in (scalar) QFT and its relation to the grand potential

It is important to understand the underlying reason for the relationship between the grand potential

Ω(µ) used in Section 3.1.1 to set up the LCE for the WF fixed point at large N and the quantum effective

potential. For this reason we repeat some important QFT prerequisites about effective actions before

we present the relationship between the two potentials.

The effective potential in QFT and its convexity properties

In this part we mainly review some standard arguments for the properties of effective potentials

in unitary QFTs [105, 258–260]. For simplicity we restrict ourselves to scalar O(2) models, but the

discussion trivially generalizes to O(2N ) vector models (and generally other unitary QFTs).

Consider a theory described by a complex scalar field φ that is invariant under an O(2) symmetry acting

linearly on φ,

φ→ e iαφ . (3.85)
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Via the standard procedure we add a linear source term for the O(2) symmetry in the path integral to

write the generating functional Z [ j ],

Z [ j ] = 〈0〉 j =
∫

DφDφ∗ e−S[φ]−∫
dD x [ j∗φ+ jφ∗]∫

DφDφ∗ e−S[φ]
. (3.86)

The logarithm of Z [J ] is the so-called connected generating functional, the generating functional for all

the connected correlation functions of the theory,

W [ j ] := log Z [ j ] . (3.87)

In analogy to simple probability theory, we can perform a functional Legendre transformation LT[ · ]
of W [ j ] to change the dependent variables from the sources j , j∗ to field variables φ(c),φ(c)∗. The

so-called classical fields φc ,φ∗
c are defined via the quantum field equations as

φ(c) = δW

δ j∗
, φ(c)∗ = δW

δ j
. (3.88)

The Legendre dual of W is called the effective action Γ[φ(c)],

Γ[φ(c)] := LT[W ] [φ(c)] = j∗φ(c) + j φ(c)∗−W [ j ]
∣∣∣

j= j (φ(c)), j∗= j∗(φ(c))
. (3.89)

By expanding around the value φc = const., the effective action Γ[φc ] becomes

Γ[φ(c)] =
∫

dD x
[
Veff(|φ(c)|)+Z [φ(c)]∂µφ

(c)∗∂µφ(c) + . . .
]

, (3.90)

where the function Veff(|φ(c)|) appearing in the expansion of Γ[φ(c)], which includes all terms in Γ[φ(c)]

without derivatives, is the so-called effective potential encoding all quantum corrections to the classical

potential V (|φ(c)|) in the original action S[φ]. We note that the O(2) symmetry, which we assume to be

realized at the quantum level, requires all functions appearing in Γ[φ(c)] to depend only on the absolute

value |φ(c)|, in particular the effective potential.

If we consider a unitary theory with a positive definite path-integral measure
∫

DφDφ∗, the corresponding

generating functional W [J ] is a convex function of the sources.27 The argument proving this fact about

unitary QFT is based on Hölder’s inequality. Given a positive measure dµ and two positive functions f ,

g the following inequality holds:∫
dµ f λg 1−λ ≤

[∫
dµ f

]λ [∫
dµg

]1−λ
, ∀0 ≤λ≤ 1. (3.91)

In the case of our scalar field theory we can define the normalized measure

dµ := DφDφ∗ e−S[φ]∫
DφDφ∗ e−S[φ]

. (3.92)

27In fact, this is more generally true for any parameter that enters linearly in the action S[φ].
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We consider the expectation value

〈α〉 := 1

Z [0]

∫
Dφ

∫
Dφ∗ e−S[φ]e

∫
dD x

∑
i αi fi (φ) =

∫
dµe

∫
dD x

∑
i αi fi (φ) , (3.93)

with the coefficients αi being functions of spacetime. By virtue of Hölder’s inequality, for 0 <λ< 1 the

expectation value

〈λα+ (1−λ)〉 =
∫

dµe
∫

dD x
∑

i [λαi+(1−λ)βi ] fi (φ) (3.94)

satisfies

〈λα+ (1−λ)β〉 ≤ 〈α〉λ 〈β〉1−λ . (3.95)

As a consequence, the logarithm of the expectation value, which is related to the generating functional,

satisfies the convexity property,

log〈λα+ (1−λ)β〉 ≤λ log〈α〉+ (1−λ) log〈β〉 . (3.96)

In particular, this property holds for the connected generating functional W [ j ], making it a complex

function of the sources j , j∗.

As the Legendre transform is an involution on convex functions — meaning that the Legendre transform

of a convex function is convex — hence, the effective action Γ[φ(c)] is a convex function of the classical

fields φ(c), φ(c). This property has to persist for constant values of φ(c), so that the effective potential

V (|φ(c)|) itself has to be convex, provided the theory is unitary.28

The grand potential in a scalar theory and its relationship to the effective potential

Under the assumption that in some simplifying limit the effective action Γ[φ(c)] has a canonical kinetic

term,29

Γ[φ(c)] =
∫

dD x
[
∂µφ

(c)∗∂µφ(c) +Veff(|φ(c)|)] . (3.98)

We can relate the grand potentialΩ(µ) to the effective potential. The conserved O(2) charge is of the

form (τ= x0 in Euclidean signature)

Q =−
∫

dD−1x
[
∂τφ

(c)∗φ(c) −φ(c)∗∂τφ(c)] . (3.99)

To study the system at fixed charge, we make the finite-density ansatz30

|φ(c)| = ζ , arg(φ(c)) =−iµτ , (3.100)

28This property of the effective potential persists in finite volume. For strongly-coupled systems that are generally studied
numerically, it is more convenient to introduce another, closely related quantity, the so-called constraint effective potential U ,
roughly defined as

e−U (ϕ) =
∫

DφDφ∗δ(φ−ϕ)e−S[φ] . (3.97)

The constraint effective potential U (ϕ) is related to the effective potential V (|φ(c)|) by another Legendre transform. As a quantity,
U (φ) is in general not convex but coincides with the effective potential in the decompactification limit [261].

29Generically, this is the case if higher-derivative terms in the effective action are suppressed and Z (φ(c)) in Eq. (3.90) can be
written as Z (φ(c)) = 1+sub-leading terms. This is expected to be true for a wide array of scalar theories.

30The imaginary unit in the argument is always due to Wick rotation.
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Chapter 3. The large charge expansion in the large N limit of QFT

which corresponds to a ground state with a fixed chemical potential µ (e.g. a superfluid). Notice that ζ2

is related to the charge of the ground state as

Q
∣∣
φ(c)=ζeµτ = 2µV ζ2 , (3.101)

where V is the spatial volume. The modulus ζ of φ(c) — the radial mode — of the field is removed from

the action via its EoM,

d

d(ζ2)

[
∂µφ

(c)∗∂µφ(c) +Veff(|φ(c)|)]
φ(c)=ζeµτ =

d

d(ζ2)

[−µ2ζ2 +Veff(ζ)
]=−µ2 + dVeff(ζ)

d(ζ2)
= 0, (3.102)

Now we can write the VEV of the action and the Lagrangian as a function of the chemical potential µ

alone,

−Ω(µ) = ζ2µ2 −Veff(ζ)
∣∣∣
ζ=ζ(µ2)

. (3.103)

The corresponding fixed-charge energy density fc (ρ) for the charge density ρ =Q/V is computed using

the momentum associated to µ, which is given by said charge density. Given the solution to ζ= ζ(µ) in

Eq. (3.103), the energy density reads

ρ =−δΩ
δµ

= 2µζ2(µ) , fc (ρ) = [
ρµ+Ω(µ)

]
µ=µ(ρ) . (3.104)

Both Eq. (3.103) and Eq. (3.104) describe a Legendre transform relating the effective potential Veff(ζ) to

the grand potentialΩ(µ) and the grand potential to the free energy fc (ρ). We introduce the following

notation

Υ(|φ(c)|2) :=Veff(|φ(c)|) , ϖ(µ2) :=−Ω(µ) , (3.105)

In this language the chain of Legendre transformations becomes

Veff(|φ(c)|) =Υ(|φ(c)|2)
(↔)→ LT[Υ](µ2) =ϖ(µ2) =−Ω(µ)

(↔)→ LT[−Ω](ρ) = fc (ρ) . (3.106)

For convex functions Veff,Υ, ϖ,Ω and fc the Legendre transform is an involution and the arrows can

be reversed. In this case we can compute e.g. the effective potential from and vice versa.

If the convexity condition is not met in some areas of the parameter space, the minimization condition

via the derivative can still be applied and admits in general complex solutions. There are generally

speaking two possible stances we can take with regards to this issue:

Either we define the relationship between different quantities strictly via the Legendre transform and

its supremum definition,

LT[ f ](y) = sup
x

(x y − f (x)) . (3.107)

In this case LT[ f ](y) always takes values on the extended real line R∪ {±∞} and in intervals where f (x)

ceases to be convex the Legendre transform returns a constant value.

Or, on the other hand, we can simply use the naive definition of the minimization condition via the
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3.2 Convexity and the effective potential forϕ4 from large charge

derivative, as seen above in Eq. (3.103) and Eq. (3.104). In general, this leads to a multi-valued complex

function with branch points and cuts. If the function f (x) is convex and differentiable, both definitions

agree, the Legendre transform is an involution and differentiable. The supremum definition also always

results in a convex function.

While it is clear that the supremum definition is the correct one to use in the context of classical

thermodynamics [259], in the case of quantum systems the situation is less clear-cut. In this case also

complex saddles of the path integral have a meaning, a fact which is of particular importance in the

field of resurgence [262].

We stress that of all functions that we have discussed and introduced around Eq. (3.106), only the

effective potential Veff is always convex in a unitary theory. In this Section we will repeatedly make

use of this property as a necessary condition for unitarity of the theory. Particularly, we note that the

convexity of Veff andΥ are non-trivially related,

d2Υ
(|φ(c)|2)

d
(|φ(c)|2)2 = 1

4|φ(c)|2
[

d2Veff
(|φ(c)|)

d|φ(c)|2 − 1

|φ(c)|
dVeff

(|φ(c)|)
d|φ(c)|

]
. (3.108)

Effective action and grand potential at large N

As discussed around Eq. (3.56), using thermodynamical reasoning [235], the grand potentialΩ(µ) for

the O(2N ) vector model at large N describes a one-loop effective action. Requiring that the physics of

the grand potentialΩ(|∂µχ∂µχ|1/2) is equivalently captured by the one-loop (or leading-N ) effective

action Γ(0)[φ(c)
i ], which is manifestly O(2N ) invariant, leads to the same relationship between the

leading-N effective potential V (0)
eff and the grand potential Ω(µ) in terms of the Legendre transform

described in Eq. (3.103) and Eq. (3.106) [128].31 The only difference in this case is thatΩ(µ) at large N ,

as defined in Eq. (3.28), is divided by the number of DoF of the theory when compared to the definition

ofΩ(µ) in Eq. (3.103),

−Ω(µ) = |φ(c)
i |2

(2N )
µ2 −

V (0)
eff (|φ(c)

i |)
(2N )

∣∣∣|φ(c)
i |=|φ(c)

i |(µ2)
, |φ(c)

i | =
√∑

i
φ(c)∗

i φ(c)
i . (3.109)

We therefore expect to be able to study and potentially derive the effective potential V (0)
eff =V (0)

eff +O (N 0)

at leading order in N (which is a one-loop observable) via our knowledge of the grand potentialΩ(µ).

The rescaling ofΩ at large N compared toΩ in Eq. (3.103) poses no conceptual issue as the Legendre

transform preserves homogeneity in the variables,

f (x) = ag (x) → LT[ f ](y) = a LT[g ](y/a) , f (x) = g (ax) → LT[ f ](y) = LT[g ](y/a) . (3.110)

Finally, at large N , based on the structure of the large-N expansion, there is very good reason to

31The line of argument here is essentially that the effective action Γ(0)[φ(c)
i ] defines a Linear Sigma Model (LSM) and the grand

potential defines a Non–Linear Sigma Model (NLSM), both of them describing the same system (at fixed chemical potential).
Hence, on the ground state they have to agree.
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Chapter 3. The large charge expansion in the large N limit of QFT

expect that the kinetic term in the leading-order effective action Γ(0)[φ(c)
i ] is in fact canonical, i.e.

Z [φ(c)
i ] = 1+O (N−1).

3.2.2 ϕ4-theory away from the fixed point in 2<D<6

We want to apply the general considerations presented in the previous Section 3.2.1 to the O(2N )

invariant φ4-theory between two and six dimensions. As we will show, it is possible to compute the

effective potentialΩ(µ) along the flow for any value of the quartic coupling g and the mass r , and use it

to derive the one-loop effective potential of the theory.

Without setting the coupling to the fixed point value |g |→∞ we start our discussion with the action in

Eq. (3.38) in terms of a collective DoF for the ϕ4-theory along the flow from the free to the interacting

fixed point,

Sµ[φi ,σ] =
∫

dD x

S1
β
×T D−1

L

[
(∂τ−µi )φ∗

i (∂τ+µi )φi +|∇φi |2 + (r +σ)|φi |2)− N

4g
σ2

]
,

(3.111)

Instead of the cylinder, for our purposes it suffices to consider consider the theory in flat space S1
β
×T D−1

L ,

where T D−1
L is the torus of length L and volume V = LD−1, as there is a priori no reason to put the theory

on the cylinder away from the fixed point.32

Depending on the dimension D of spacetime, the quartic interaction — now replaced by a quadratic

interaction in the collective field σ — from the point-of-view of the free theory is either relevant or

irrelevant,

• Between spacetime dimensions 2 < D < 4, and in particular in D = 3, the quartic operator is

relevant. After fine-tuning the mass r to the conformal mass the model flows from a free Gaussian

fixed point in the UV (g = 0) to a strongly-coupled interacting WF fixed point in the IR at g →∞.

• In 4 < D < 6 the quartic operator is irrelevant and, after fine-tuning r to the conformal mass, the

expectation is that the RG flow connects a IR free Gaussian CFT (g = 0) to a strongly-coupled

interacting fixed point in the UV (g →∞).

First we remark that the expression for the grand potential at the WF fixed point that we have discussed

in the context of large-charge asymptotics in Section 3.1.3 is obtained from the grand potentialΩ(µ)

along the RG flow in the limit |g |→∞ with r being fine-tuned to the conformal mass rconf (zero in flat

space and 1/4r 2
0 on the cylinder), Ω(µ)

∣∣
WFFP = limg→∞ limr→rconfΩ(µ).

We derive the general form of the grand potential. At leading order in N the collective field σ does not

32Alternatively, we could also move to infinite space S1
β
×RD−1 without any conceptual hurdles. However, it is also convenient

to explicitly see factors of the volume V in our computations and results.
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3.2 Convexity and the effective potential forϕ4 from large charge

fluctuate and we can replace it in the action by its VEV,

Sµ[φi ,〈σ〉] =
∫

dD x

S1
β
×T D−1

L

[
(∂τ−µi )φ∗

i (∂τ+µi )φi +|∇φi |2 + (r +〈σ〉)|φi |2)− N

4g
〈σ〉2

]
.

(3.112)

The appearance of the running term− N
4g 〈σ〉2 poses no obstruction to the analysis outlined in Section 3.1.3

and Appendix C.2. At zero temperature we find that the grand potential is given by

Ω(µ1, . . . ) = 1

(2N )

∑
i
ζ2

i

(
r +〈σ〉−µ2

i

)+ 1

2V
ζ(−1/2 |T D−1

L ,r +〈σ〉)− 1

8g
〈σ〉2 . (3.113)

where V = LD−1 is the volume of the torus. We note that the zeta function on the sphere in Eq. (3.47) is

replaced here by the same zeta function evaluated on the torus. The saddle-point equations in Eq. (3.49)

are modified slightly to incorporate the running term,

ζi : ζi
(
r +〈σ〉−µ2

i

)= 0, i = 1, . . . , N ,

〈σ〉 :
1

(2N )

∑
i
ζ2

i +
1

2V

1

2
ζ(1/2 |T D−1

L ,r +〈σ〉)− 1

4g
〈σ〉 = 0,

µi :
ρi

(2N )
− 2µi

(2N )
ζ2

i = 0.

(3.114)

Despite the appearance of the flow term, the saddle point equations are solved equivalently to the ones

in Eq. (3.49) and the grand potential and free energy are given by

Ω(µ) = 1

2V
ζ(−1/2 |T D−1

L ,r +〈σ〉)− 1

8g
〈σ〉2 , fc (ρ) = LT[−Ω](ρ) , (3.115)

with µ=µ1 = ·· · =µN and ρ = (Q1 +·· ·+QN )/V . It is convenient to use the Mellin representation of the

zeta function in Eq. (3.57) and apply Weyl’s asymptotic expansion in Eq. (3.58) on the torus,

Tr
[

e
t∆

T D−1
L

]= V

(4πt )
D−1

2

+O
(
e−

L2
4t

)
, ζ(s |T D−1

L ,µ2) = V Γ(s − D−1
2 )

(4π)
D−1

2 Γ(s)
µD−1−2s , (3.116)

so that the grand potential can be written as

Ω(µ) =−
[
Γ(−D

2 )

2(4π)D/2
µD + (µ2 − r )2

8g

]
. (3.117)

If we fine-tune r to the conformal mass, r = 0 in flat space, we expect this function to describe the flow

of the theory from the Gaussian to the strongly-coupled fixed point at leading order in N . The only non-

trivial dependence on the spacetime is in the function Γ(−D/2) in the first term in Eq. (3.117). A plot of

Γ(−D/2) for relevant spacetime dimensions can be seen in Figure 3.1. It is positive for 4n −2 < D < 4n

and negative for 4n < D < 4n +2, while it diverges at D = 2n, n ∈N, consistent with the fact that there

exists no WF fixed point in even dimensions D = 2,4. We can now apply the technology developed in

the previous Section to derive an expression for the leading-order effective potential V (0)
eff in terms of
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Chapter 3. The large charge expansion in the large N limit of QFT
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D

Figure 3.1: The function Γ(−D/2) from the leading term in the grand potential on the torus for 0 < D < 7.
The function is positive for 2 < D < 4, 6 < D < 8 and negative for 4 < D < 6.

2N real classical fields packaged into N complex classical fields φ(c)
i .33 O(2N ) invariance implies that

the effective potential only depends on the invariant combination φ(c)∗
i φ(c)

i , which we will indicate as

|φ(c)
i |2.

|φ(c)
i |2 :=∑

i
φ(c)∗

i φ(c)
i . (3.118)

Lastly, following the chain of transformations in Eq. (3.106), we can turn the convexity of the effective

potential into a consistency condition onϖ(µ2) =−Ω(µ) by identifying any possible inflection points of

ϖ(µ2),

ϖ′′(µ2) = D(D −2)

8(4π)D/2
Γ(−D/2)

(
µ2) D−4

2 + 1

4g
. (3.119)

This can only be zero for Γ(−D/2) < 0, which is satisfied in 4 < D < 6 but not in 2 < D < 4, see Figure 3.1.

In the following we will focus on these particular intervals — 2 < D < 4 and 4 < D < 6 — as they are

generally of most interest in physics.

3.2.3 2<D<4

In spacetime dimensions 2 < D < 4 the gamma function in Eq. (3.117) is positive and hence ϖ(µ2) is

always convex for all values of µ2.34 The theory fulfils our necessary condition for unitarity, and in

D = 3 the effective potential can be computed explicitly [128]. In D = 3 the grand potential reads

Ω(µ) =−
[
µ3

12π
+ (µ2 − r )2

8g

]
. (3.120)

33We emphasize again that V (0)
eff is determined by the condition that at fixed charge it must reproduce the physics described by

Ω(µ) in the double-scaling limit [128].
34The same statement is not necessarily true for the grand potentialΩ(µ) itself, as −Ω′′(µ) = D(D−1)Γ(−D/2)

2(4π)D/2 µD−2 + (12µ2−4r )
8g .

In D = 3 for r > 0 this has the positive solution µ= (
√

g 2 +12π2r − g )/6π. If we take a look at the inverse Legendre transform in
µ, then for r > 0 there are regions that cannot be reached when starting from a fixed-charge description. This is unsurprising, as
we expect that the fixed-charge regime is generally different from the fixed-chemical-potential regime [47, 128].
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3.2 Convexity and the effective potential forϕ4 from large charge

We evaluate the constraint of the Legendre transform betweenΥ(|φ(c)
i |2) and ϕ(µ2) =−Ω(µ),

|φ(c)
i |2

2N
−ϖ′(µ2) = |φ(c)

i |2
2N

−
[
µ

8π
+ µ2 − r

4g

]
= 0. (3.121)

Depending on the value of r there are two regimes here:

• For r ≥ 0 there is a unique solution given by

µ2( |φ(c)
i |2

2N

)= ( g

4π

)2 [
1+√

1+η
]2

, η=
(

16π

g

)2
[

g |φ(c)
i |2

2N
+ r

4

]
. (3.122)

Therefore, the leading-N effective potential is given by

V (0)
eff (|φ(c)

i |)
2N

= g 3

3×28π4

[
1+ 3

2
η+ 3

8
η2 − (1+η)3/2

]
− r 2

8g
. (3.123)

• For r < 0 there exists a solution only for
|φ(c)

i |2
2N >− r

4g > 0. For smaller values of the classical fields

the supremum is obtained for the value of µ2 that minimizes ϖ(µ2), which is µ2 = 0. For small

values of the classical fields the effective potential becomes constant. For big values we recover

the same form as above,

V (0)
eff (|φ(c)

i |)
2N

=


− r 2

8g for 0 < |φ(c)
i |p
2N

<
√

− r
4g ,

g 3

3×28π4

[
1+ 3

2η+ 3
8η

2 − (1+η)3/2
]− r 2

8g for
|φ(c)

i |p
2N

>
√
− r

4g .
(3.124)

The regions r ≶ 0 correspond to the broken and unbroken phases of the tree-level potential

V (|φi |) = r |φi |2 + g

N
|φi |4 . (3.125)

Particularly interesting is the broken phase here, where the tree-level potential here has the form of the

Mexican hat potential with minima,
|φi |2
2N

=− r

4g
. (3.126)

The double-well shaped tree-level potential has a flex and ceases to be convex in-between its minima.

The quantum corrections in the effective potential have to correct this, as it is well-understood that the

effective potential is always convex, even in finite volume [258, 259]. We can confirm this here based

on the Legendre transform preserving convexity, as the effective potential becomes constant between

minima and washes out the concave region of the tree-level potential.35 36

35This is very analogous to the classical Maxwell rule for coexisting phases in thermodynamics [128, 260]. As a consequence,
the effective potential has a cusp in its second derivative at the location of the tree-level minimum.

36It is natural to wonder now what the acceptable vacua of the theory in the context of SSB are, as it is no longer true that
all of the minima (and hence the vacua) of the effective potential are connected by a symmetry. A strong argument for the
actual vacua of the theory to still be at the location of the minima of the tree-level potential can be put forward using cluster
decomposition [128, 260].
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Chapter 3. The large charge expansion in the large N limit of QFT

For the critical trajectory at r = 0 connecting the UV Gaussian fixed point with the IR WF fixed point this

result for the effective potential at leading order in N had originally been found in [19] by re-summing

an infinite number of Feynman diagrams that we managed to avoid.

The expression for the effective potential in Eq. (3.123) at r = 0 becomes more transparent, if we expand

it in the limits g → 0,∞:

• In the limit g → 0 Eq. (3.123) reproduces the standard loop expansion at large N around the

Gaussian fixed point [19],

V (0)
eff (|φ(c)

i |) = g

N
|φ(c)

i |4
[

1− 1

3π

√
2N g

|φ(c)
i |

+O (g )

]
. (3.127)

• For large values of the coupling around g →∞ Eq. (3.123) produces a perturbative expansion in

1/g around the strongly-coupled WF point,

V (0)
eff (|φ(c)

i |) = 16π2

3N 2 |φ(c)
i |6

[
1−24π2

|φ(c)
i |2

2N g
+O

(
g−2)] . (3.128)

As a last remark, we emphasize that the condition of convexity is only a necessary condition for

unitarity. For example, event though convexity is always fulfilled for 2 < D < 4, it appears that the theory

in D = 4−ϵ is not unitary [263], despite the fact that the effective potential is convex there.

3.2.4 4<D<6

In spacetime dimensions 4 < D < 6 the gamma function in Eq. (3.117) is negative and the grand

potentialΩ(µ) =ϖ(µ2) has a flex for positive values of µ2,

ϖ′′(µ2
flex) = 0, for (µ2

flex)(D−4)/2 = 2(4π)D/2

g D(D −2) |Γ(−D/2)| . (3.129)

This flex separates a convex region of the grand potential at small values of g around the IR free

Gaussian fixed point from a concave region around the conjectured strongly-coupled UV fixed point,

see Figure 3.2. We can express the location of the flex in terms of the classical fields |φ(c)
i |2,

|φ(c)
i |2flex

2N
= (D −4)(4π)

D
D−4

4
( D

2

∣∣Γ(−D
2 )

∣∣) 2
D−4 (D −2)

D−2
D−4

g− D−2
D−4 − r

4
g−1 . (3.130)

Here, the working definition of the Legendre transform in terms of the derivative leads to a multi-

variable complex function. We can avoid this only by using the supremum definition of the Legendre

transform in Eq. (3.107). For |φ(c)
i |2 < |φ(c)

i |2flex the supremum can still be obtained via the working

definition consisting of differentiating the argument |φ(c)
i |2µ2/2N −ϖ(µ2) at fixed |φ(c)

i |2 and expressing

µ2 as a function of |φ(c)
i |2.

For |φ(c)
i |2 > |φ(c)

i |2flex, however, there is no real value of µ2 such that |φ(c)
i |2 = ϖ′(µ2), see Figure 3.2.

The supremum in this range is obtained by minimizing ϖ(µ2). However, as the function ϖ(µ2) is not
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3.2 Convexity and the effective potential forϕ4 from large charge

bounded from below, the solution is {+∞}.37

ϖ ϖ′

µ2

µ2

|ϕ(c)
i

|2flex/2N

Figure 3.2: The function ϖ(µ2) (left) and its first derivative ϖ′(µ2) (right) in flat space (on the torus)
for D = 5. The grand potential Ω(µ) =ϖ(µ2) has a flex at µ2 = µ2

flex, which separates a convex region{
µ2 < µ2

flex

}
from a concave region

{
µ2 > µ2

flex

}
. The maximization condition |φ(c)

i |2flex/2N = ϖ′(µ2)

admits two solutions in the convex region |φ(c)
i |2/2N < |φ(c)

i |2flex/2N =ϖ′(µ2
flex) — the physical branch

corresponds to the first intersection (right) — and no real solutions for |φ(c)
i |2/2N > |φ(c)

i |2flex/2N .

Further, for r < 0 — the broken phase — the tree-level potential again takes the form of a Mexican
hat potential. Via the supremum definition of the Legendre transform, the non-convex region of the
tree-level potential is washed out by the leading-order effective potential V (0)

eff , which takes a constant
value there. All in all, we have

Υ
∣∣∣
r≥0

=


|φ(c)

i |2
2N µ2 −ϖ(µ2) for

|φ(c)
i |2

2N < |φ(c)
i |2flex
2N ,

+∞ for
|φ(c)

i |2
2N ≥ |φ(c)

i |2flex
2N ,

Υ
∣∣∣
r<0

=


− r 2

8g for 0 < |φ(c)
i |2

2N <− r
4g ,

|φ(c)
i |2

2N µ2 −ϖ(µ2) for − r
4g < |φ(c)

i |2
2N < |φ(c)

i |2flex
2N ,

+∞ for
|φ(c)

i |2
2N ≥ |φ(c)

i |2flex
2N ,

(3.131)

Concretely, we consider the case D = 5,

Ω(µ) =ϖ(µ2) = µ5

120π2 − (µ2 − r )2

8g
, (3.132)

where the flex of ϖ(µ2) is given by

µ2
flex =

(4π)4

4g 2 ,
|φ(c)

i |2flex

2N
= (4π)4

48g 3 − r

4g
. (3.133)

As a consequence, the large-N effective potential V (0)
eff describes a box with infinitely high walls and

width

2|φ(c)
i |flex

/p
2N = 2

(4π)2

4
p

3 g 3/2

√
1− 12r g 2

(4π)4 . (3.134)

If we follow the RG flow along the critical trajectory r = 0 in reverse order from the IR free theory

37Technically speaking, we are using the notion of convex conjugate, which is defined on the extended real line R∪ {±∞ }).
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Chapter 3. The large charge expansion in the large N limit of QFT

towards the UV, we can observe the walls closing in on each other. Hence, the UV interacting CFT

cannot be reached. This signals a breakdown of the effective theory along the RG flow g →∞; the theory

is incomplete and requires a UV completion.38 The effective potential V (0)
eff in D = 5 is schematically

presented in Figure 3.3.

r > 0 r = 0 r < 0

V / V
(0)
eff V / V

(0)
eff V / V

(0)
eff

|ϕ(c)
i | |ϕ(c)

i | |ϕ(c)
i |

Figure 3.3: Effective potential V (0)
eff in D = 5: unbroken phase (r > 0), critical trajectory (r = 0) and

broken phase (r < 0). The red lines represent the effective potential V (0)
eff , which is always convex, while

the dotted lines represent the tree-level potential V . Inside the shaded region the effective potential
V (0)

eff is literally infinite, which signals the breakdown of the theory and the lack of a UV completion.
Between the shaded regions the behaviour of the effective potential is qualitatively the same as in D = 3,
discussed in Section 3.2.3.

Inside the box, the effective potential V (0)
eff can be computed and expressed in terms of trigonometric

functions,

V (0)
eff (|φ(c)

i |)
2N

= 210π8

5u5

(
4sin(

10θ+π
6

)+20sin(
4θ+π

6
)+10cos(

4θ+π
3

)+20cos(
θ+π

3
)

−20cos(θ)−7
)
− r 2

8g
,

(3.135)

where

cos(θ) = 1−2
|φ(c)

i |2
|φ(c)

i |2flex

− 24r g 2

(4π)4

(
1− |φ(c)

i |2
|φ(c)

i |2flex

)
. (3.136)

If we expand around the IR free Gaussian fixed point at g → 0 and r → 0, this result becomes more

transparent and accurately captures all the (infinitely many) leading-N corrections to the quartic

tree-level potential,

V (0)
eff (|φ(c)

i |) =
(
|φ(c)

i |2r + N r 5/2

60π2 . . .

)
+ g

N

(
|φ(c)

i |4 + |φ(c)
i |2r 3/2

12Nπ2 + r 3

576π4 . . .

)

+ g 2

( |φ(c)
i |4pr

8Nπ2 + |φ(c)
i |2r 2

96π4 . . .

)
+ . . . . (3.137)

Along the critical trajectory r = 0 this result reduces to an expansion in the only dimensionless

38We note that away from criticality along a massive trajectory r > 0 the inflection point |φ(c)
i |2flex2N will eventually become

imaginary.
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combination of quantities within the theory given by g 3/2|φ(c)
i |,

V (|φ(c)
i |) = g

N
|φ(c)

i |4
1+ 4

5

(
g 3/2|φ(c)

i |
6π2

p
2N

)
+

(
g 3/2|φ(c)

i |
6π2

p
2N

)2

+ 3

2

(
g 3/2|φ(c)

i |
6π2

p
2N

)3

+ 5

2

(
g 3/2|φ(c)

i |
6π2

p
2N

)4

+ . . .

 .

(3.138)

This expansion also has an interpretation in terms of Feynman diagrams computed around the IR free

fixed point.

Under the assumption that the supremum definition of the Legendre transform is the correct one, the

effective potential in the far UV at g →∞ becomes infinite everywhere and the theory is in need of a

UV completion. Alternatively, it is possible that the UV theory violates unitarity and hence the effective

potential does not need to be convex, allowing for observables to have non-zero imaginary parts. If we

instead decide to extend the definition of the Legendre transform relating the effective potential to the

grand potential in order to allow for a complex solution of the maximization condition

|φ(c)
i |2/2N =ϖ′(µ2) , (3.139)

we find a branch point at |φ(c)
i |2 = |φ(c)

i |2flex. The maximization equation describes a Riemann surface

and the branch point at |φ(c)
i |2flex is joined to infinity by a branch cut. We can choose one branch and

expand the complex effective potential in the UV around the location of the conjectured strongly-
coupled UV CFT at g →∞,

V (0)
eff (|φ(c)

i |) = 12

5

(
3π2

N

) 2
3

e
2πi

3 |φ(c)
i | 10

3

[
1+

(
Nπ4

3

) 1
3 5e

πi
3

|φ(c)
i | 2

3 g
+

(
Nπ4

3

) 2
3 20e

2πi
3

|φ(c)
i | 4

3 g 2
− 200Nπ4

9|φ(c)
i |2g 3

+O
(
g−4

)]
.

(3.140)

The effective potential is a multi-valued complex function with three branches. Each of the different

branches corresponds to a different choice of phase in the coefficient of the leading |φ(c)
i |10/3-term in

Eq. (3.140).39

3.2.5 The strongly-coupled fixed point in D=5

We investigate the UV interacting fixed point of the ϕ4-theory in D = 5 via the LCE. Based on the results

of the previous section, we expect the theory to behave distinctly different to the O(2N ) WF fixed point

in D = 3.

As discussed extensively in both Section 3.1.2 and Section 3.2.1, the free energy (density) — the energy

of the system at fixed charge — is obtained via a Legendre transform

fc (Q) = sup
µ>0

( Q

2N
µ+VΩ(µ)

)
,

(
fc (ρ) = sup

µ>0

( ρ

2N
µ+Ω(µ)

) )
. (3.141)

39The relative phases in the coefficients of the sub-leading terms will change as well. Also note that one of the three branches
corresponds to a trivial phase of e2πi = 1 in the coefficient of the leading term. This still represents a complex solution, since on
this branch sub-leading terms in the coupling g will again come with non-trivial phases.
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Chapter 3. The large charge expansion in the large N limit of QFT

Clearly, as the Legendre transform preserves homogeneity (see Eq. (3.110)), the free energy density as a

function of the charge density fc (ρ) has the same functional form as the free energy as a function of the

charge fc (Q).

Via the state–operator correspondence, at the fixed points the free energy on the sphere can be identified

with and computes the scaling dimension of the associated operator in flat space,40

∆(Q) = r0 fc (Q) . (3.142)

We fine-tune the ϕ4-theory to flow to the interacting fixed point by setting r to the conformal mass

(on the cylinder we have rconf = 1/4r 2
0 ) and g →∞. The running term in Eq. (3.115) vanishes at the

interacting fixed point and the grand potential on the cylinder is given in terms of a zeta function for

the Laplacian on the sphere,

Ω(µ) = 1

2V
ζ(−1/2 |SD−1

r0
,µ2) , (3.143)

where V is the volume of the sphere. In odd spacetime dimensions D there exists both a convergent

series expansion around the conformal mass rconf for small values of µ and an asymptotic expansion

for large values of µ.

Convexity of Ω(µ) and convexity of ϖ(µ2) — in terms of their second derivatives – are non-trivially

related. Importantly, the existence of non-convex regions of Ω(µ) does not signal a breakdown

of the theory, in contrast to ϖ(µ2). There always exists a proper expression for the free energy

fc (Q) = LT[−VΩ](Q) that is convex as a function of the charge Q, with Q assumed to be positive.

At worst, the Legendre transform just tells you that it is infinite.

Regions in which Ω(µ) is not convex cannot be reached from the fixed-charge regime (see e.g. [47]).

Such concave regions of Ω(µ) can exist also in well-defined theories [128]. Even if Ω(µ) is convex

everywhere, the existence of regions that cannot be accessed at fixed charge cannot be ruled out; the

charge is positive and Q =−VΩ′(µ) has no solutions for values of µ where −Ω(µ) is decreasing. This is

e.g. the case in the WF CFT, where the boundary of the accessible region — with −Ω′(µ) > 0 — is at the

conformal mass r = 1/4r 2
0 .

Interlude: The WF CFT in D=3

We first review the strongly-coupled fixed point in D = 3, which we have extensively discussed in

Section 3.1. In full, the zeta function in D = 3 cannot be expressed in elementary functions. At large

µ it can be written as a Mellin transform of the heat kernel and expanded in terms the asymptotic

40Alternatively, we can derive the conformal dimensions directly from the effective potential via the Callan–Symanzik equations,
see e.g. [264].
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expansion of said heat kernel [124, 191],

ζ(s |S2
r0

,µ2) = 1

Γ(s)

∫ ∞

0

dt

t 1−s e−m2t Tr
[

e
t∆S2

r0

]
, Tr

[
e

t
(
∆S2

r0
− 1

4r 2
0

)]
∼ r 2

0

t
−

∞∑
n=1

(1−21−2n)B2n

(−1)nn!

(
t

r 2
0

)n−1

.

(3.144)

The large-µ expansion for the grand potential then reads [191]

Ω(µ) =− 1

r0V

(
µ2r 2

0 − 1

4

)3/2 ∞∑
n=0

Ωn(
µ2r 2

0 − 1
4

)n , Ωn = 1

4π

∑
k ̸=0

(−1)k+1

(kπ)2n Γ

(
n + 1

2

)
Γ

(
n − 3

2

)
. (3.145)

In the opposite limit of small µ a convergent expansion can be derived from the definition of the zeta

function in terms on the eigenvalues of the Laplacian, see Eq. (3.63),

Ω(µ) = r 2s
0

V

∞∑
k=0

(
−s

k

)
ζ(2s +2k −1;1/2)

(
m2r 2

0 − 1

4

)k ∣∣∣∣
s=−1/2

, (3.146)

where ζ(s; a) denotes the Hurwitz zeta function. From the explicit form of the convergent expansion we

can deduce that −Ω(µ) is always convex and has a minimum at the value of the conformal mass, where

it also vanishes itself,

Ω(µ)
∣∣∣
µ= 1

2r0

= 0, Ω′(µ)
∣∣∣
µ= 1

2r0

= 0. (3.147)

The Legendre transform can be performed order-by-order, as done in Section 3.1.4. In doing so, we find

a solution to the maximization condition Q =−VΩ′(µ) for positive values of Q in the region µ2 > 1/4r 2
0 ,

which is precisely the conformal mass (see Figure 3.4). We quickly repeat the results from Section 3.1.4,

∆(Q)

2N
= r0 fc (Q) = 2

3

(
Q

2N

) 3
2 + 1

6

(
Q

2N

) 1
2 + . . . ,

∆(Q)

2N
= r0 fc (Q) = 1

2

(
Q

2N

)
+ 4

π2

(
Q

2N

)2

+ . . . . (3.148)

As discussed in Section 3.1.5, a resurgent analysis can be performed, interpolating between the two

regions [191].

The interacting fixed point in D=5: the zeta function on the four sphere

As we have seen in the previous section, in D = 5 the effective potential V (0)
eff obtained via a Legendre

transform from the grand potential ϖ(µ2) exhibits an inaccessible region that hides the expected

strongly-coupled UV fixed point. Based on this observation we expect that — if it exists — the

conjectured UV CFT at the very least violates unitarity, if not worse. We can learn more about the

spectrum of scaling dimensions in this five-dimensional non-unitary CFT using the LCE technology

developed in Section 3.1 originally for the WF fixed point in D = 3, which we have outlined again above.

We start by analysing the trace of the heat kernel on the four-sphere S4
r0

. The heat kernel traces on

even-dimensional spheres are all related via a recursion relation to derivatives of the heat kernel on the
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Figure 3.4: The grand potential −Ω(µ) (left) and its first derivative −Ω′(µ) (right) in D = 3 computed
on the two-sphere. Evidently, the function −Ω(µ) is convex for all values of µ. It has a minimum at
µ = 1/2r0, where it vanishes. The maximization condition has a positive solution for Q only in the
region

{
µ≥ 1/2r0

}
.

two-sphere [265],41

Tr[e
∆

S2n
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t
](t ) = ∑

l≥0

[
2l +2n −1

2n −1
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r 2
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)2 t
r 2
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(2n −1)!
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d j g (t )

dt j

, where g (t ) = Tr
[

e
t (∆S2

r0
− 1

4r 2
0

)]
. (3.149)

The coefficients β j ;n are defined via the relationship

2s

(2n −1)!

n−3/2∏
j= 1

2 , 3
2 ,...

(
s2 − j 2)= 2s

(2n −1)!

n−1∑
j=0

β j ;n s2 j . (3.150)

The relationship in Eq. (3.149) can be used to derive a similar formula for the zeta function on a generic
even-dimensional sphere, relating the higher-dimensional zeta function to a sum of zeta functions on
the two-sphere,42

ζ(s | S2n
r0

,m) = r 2s
0

(2n −1)!

n−1∑
j=0

β j ;n

j∑
k=0

(
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[
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r 2k
0 ζ( s −k |S2
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,m2 −

(
n2 −n

)
r−2

0 ) .

(3.151)

For large values of µ, we can again expand the heat kernel trace in an asymptotic expansion for small

values of t , as the Mellin integral localizes around t = 0. For the four-sphere the relation in Eq. (3.149)

reduces to

Tr[e
∆S4

r0
t
] = e

9
4r 2

0
t

6

[
β0;2 −β1;2r 2

0
d

dt

]
g (t ) ,

β0;2 =− 1
4

β1;2 = 1
. (3.152)

41Similarly, heat kernel traces on odd-dimensional spheres can be related to the trace of the heat kernel on the circle [265].
42To derive this expression we need to perform an integration by parts in the Mellin integral. Hence, it needs to be suitably

analytically continued for µ2r 2
0 <

(
n − 1

2

)2
. The value

(
n − 1

2

)2
is related to the conformal mass in 2n dimensions.
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The term 9/4r 2
0 is just the conformal mass on the cylinder in D = 5 (the four-sphere). For the asymptotic

expansion on the four-sphere we then find that

ζ(s |S4
r0

,µ2) =
r 2s

0

(
µ2r 2

0 − 9
4

)2−s

6(s −1)(s −2)
+ r 2s

0

24

∑
k≥0

(−1)k
(
22k+1 −1

)
B2k

22k−1
(
µ2r 2

0 − 9
4

)k+s−1

Γ(s +k −1)

Γ(s)k !

[(
22k−1 −1

)(
22k+1 −1

) − kB2k+2

(k +1)B2k

]
.

(3.153)

As this expansion is asymptotic, it can be studied using resurgent techniques, just like it has been done

for the two-sphere in [191] (see Appendix C.3).

For small values of µ the zeta function in D = 5 on the four-sphere can be expanded in a convergent
series valid in the regime 0 <µr0 < 3/

p
2 using a binomial expansion, similarly to the case D = 3 treated

in Section 3.1.4,

ζ(s |S4
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,µ2) = ∑
l≥0

[
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3
∏2
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l+k
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)k
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(3.154)

The small-µ and large-µ limits can be connected via a resurgent analysis, as we show in Appendix C.3.

The overall result can be written in terms of the principal value of an integral involving Bessel functions.

The grand potential takes the form

Ω(µ) = µ4r 3
0

24πV
P.V.

∞∫
0

dy

y sin(y)

[
2K4(2µr0 y)+

(
2+ 1

µ2r 2
0

)
K2(2µr0 y)

]
. (3.155)

In the regime at small µ, where the convergent expansion is valid and can be trusted, the zeta function
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Figure 3.5: The grand potential −Ω(µ) (left) and its first derivative −Ω′(µ) (right) in D = 5 computed
on the four-sphere. The function −Ω(µ) is only convex for µ≤ µfl ≈ 1.266. . . and concave otherwise.
It has a minimum at µr0 =µminr0 ≈ 0.9927 and a maximum at µr0 =µmaxr0 = 3/2. The maximization
condition admits two positive solution for 0 ≤ Q/2N < Qfl/2N = −VΩ′(µfl) ≈ 0.5029. . . and no real
solution for Q > Qfl. The leftmost solutions for 0 ≤ Q < Qfl results in a convex free energy, but the
expression does not satisfy the consistency condition for the scaling dimension of the unit operator as
r0 fc (0) =VΩ(µmin) ≈ 0.017 · · · > 0.
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and hence the grand potential on the four-sphere in Figure 3.5 have a maximum as well as a minimum

and hence also an inflection point, as opposed to the zeta function on the two-sphere in Figure 3.4,

which only possesses a minimum. As a consequence the grand potential −Ω(µ) in D = 5 has a convex

region around its minimum and a concave region around its maximum separated by a flex,43

r0µmin ≈ 0.9927. . . , r0µfl ≈ 1.266. . . , r0µmax = 3

2
. (3.156)

In terms of its supremum definition the Legendre transform is non-trivial (not infinite) only for values

of the charge Q smaller than
Qfl

2N
=−VΩ′(µfl) ≈ 0.05029. . . . (3.157)

For Q >Qfl the free energy is infinite as −Ω(µ) is not bounded from below,

∆(Q)

2N r0
= fc (Q) =


Q

2N µ+VΩ(µ)
∣∣∣
µ=µ(Q)

for 0 <Q/2N <Qfl/2N ≈ 0.05029. . . ,

+∞ for Q/2N >Qfl/2N .
(3.158)

The function fc (Q) obtained from this procedure cannot possibly describe the conformal dimension of

a fixed-charge operator within a CFT. By virtue of the state–operator correspondence r0 fc (Q) at Q = 0

has to correspond to the identity operator, which enforces the consistency condition fc (0) = 0. We find

instead that

r0 fc (0) =VΩ(µmin) ≈ 0.01699. . . ̸= 0, (3.159)

implying that we are not in a CFT and hence not at the critical point. After expanding in Q, the free

energy is given by

r0 fc (Q) ≈ 0.01699 · · ·+0.9903. . .

(
Q

2N

)
+1.516. . .

(
Q

2N

)2

+ . . . . (3.160)

We see that the leading term in Q is linear, implying that we find ourselves in a massive phase here.

Alternatively, we can drop the assumption of unitarity of the theory and decide to ignore convexity

while using the working definition of the Legendre transform in terms of the derivative. Instead of the

minimum, we can also choose to expand around the maximum µ2
max = 9/(4r 2

0 ) situated at the value of

the conformal mass on the four-sphere. In this case we find that the free energy is given by

r0 fc (Q) = 3

2

(
Q

2N

)
− 32

3π2

(
Q

2N

)2

+O
(
Q3) . (3.161)

This result has previously appeared in the literature in [20], where the value of Qfl had been identified as

the critical value above which the scaling dimension ∆(Q) becomes complex. This result is consistent

with the conformal dimension of an operator given by the Q-th power of a field of dimension 3/2 (see

also [255]).

It is important to better understand the meaning of this expression. On one hand, we are discussing

43The value of the flex can be found with quite good precision using an optimal truncation of the large-µ expansion. However,
the asymptotic expansion cannot reproduce the whole structure of −Ω(µ), in particular it cannot reproduce the maximum at
r0µmax = 3/2.
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a potential UV continuation via a hard-to-justify effective potential that is complex. On the other

hand, we are also expanding around a maximum in the context of the Legendre transform for the free

energy fc (Q), in a concave region of the grand potential −Ω(µ) that is not expected to contribute to

said Legendre transform.

Finally, we can choose to continue the free energy fc (Q) beyond the critical value Qfl to a multi-valued

complex function. The point Q = Qfl becomes a branch point and the free energy develops four

branches. In doing so, we can study the large-Q behaviour using the large-µ expansion of the zeta

function in Eq. (3.153) for each of the four branches of fc (Q). Using said expansion we find that the

scaling dimension is given by

∆(Q)

2N
= r0 fc (Q) =

[
f1

4
p

3

5

(
Q

2N

) 5
4 − f2p

3

(
Q

2N

) 3
4 + . . .

]
, (3.162)

where the complex phases f1 and f2 can take different values depending on the choice of branch,

branch 1 branch 2 branch 3 branch 4

f1 e iπ/4 e−iπ/4 e i 3π/4 e−i 3π/4

f2 e i 3π/4 e−i 3π/4 e iπ/4 e−iπ/4
. (3.163)

These results agree perfectly with earlier computations found within the scientific literature in [20].

Note that we can reproduce the leading term in Eq. (3.162) from the effective potential in Eq. (3.140).

This can be seen from the fact that the effective potential in Eq. (3.140) at g →∞ (and r = 0) directly

computes the fixed-charge vacuum energy ET 4
L

on the torus, which by virtue of Weyl’s asymptotic

expansion of the heat kernel in Eq. (3.58) and Eq. (3.59) is equal to the leading coefficient of the vacuum

energy on the sphere (modulo a factor coming from the differing volumes of sphere and torus),

V (0)
eff (|φ(c)

i |) = κ|φ(c)
i |10/3 , ET 4

L
= 8N

p
3

4L
κ3/8

(
Q

2N

)5/4

. (3.164)

Differently said, since the ground state is homogeneous, the leading term in the large charge expansion

of the energy on the four sphere is given by

ES4
r0

∣∣∣
Q5/4

= L

V 1/4
S4

r0

ET 4
L
= ∆(Q)

r0

∣∣∣
Q5/4

. (3.165)

A phase transition on the cylinder away from the fixed point

The presence of a complex effective potential can be interpreted in terms of unstable states (see for

example [266]). While following a given state within the theory at hand, it is possible that while changing

some parameter in the theory the state becomes unstable and develops an imaginary part in its energy,

which in term has the interpretation of a decay rate.

If we move away from the conformal fixed point in the critical limit g →∞ on the cylinder (along the

critical trajectory with r fine-tuned to the conformal mass r = 9/(4r 2
0 ), we observe that something

similar happens in the O(2N ) model in D = 5. In the IR at small g the states in the theory are perfectly
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fine and then become unstable as we move towards the UV. Since we have access to an explicit

convergent expansion for the zeta function on the sphere at small µ, we can study this phenomenon

for states with small charges Q and analyse the implications for the free energy on the sphere.

Generally, if a function f (x) possesses a critical point at x = xc, then its Legendre transform LT[ f ](y)

around y = 0 can be expanded and expressed in terms of the local properties of f (x),

LT[ f ](y) =
[
− f (xc)+xc y + 1

2 f ′′(xc)
y2 + . . .

]
. (3.166)

For the free energy fc (Q) on the four-sphere we therefore find that

fc (Q) =
[

VΩ(µc)+µc

(
Q

2N

)
− 1

2VΩ′′(µc)

(
Q

2N

)2

+ . . .

]
µc=3/(2r0)

. (3.167)

If we keep only the first two terms, then Eq. (3.167) corresponds to the free energy of a fixed-charge

state describing a massive particle with mass equal to µc.

The grand potential on the cylinder, fine-tuned to the critical trajectory r = rconf = 9/4r 2
0 , is of the form

Ω(µ) = 1

2V
ζ(−1/2 |S4

r0
,µ2)−

(
µ2 − 9

4r 2
0

)2

8g
. (3.168)

The zeta function and its first derivative vanish at µ2 = 9/4r0, and the same evidently holds true for the

RG flow term. The grand potentialΩ(µ) expanded around the value of the conformal mass µ2 = 9/4r 2
0

is given by

Ω(µ) =− 1

r0V

[
π2

384

(
128r0

g
−1

)(
µ2r 2

0 − 9

4

)2

+ (π2 −12)π2

28 32

(
µ2r 2

0 − 9

4

)3

+ . . .

]
. (3.169)

Importantly, we observe that the nature of the critical point at µc = 3/2r0 changes depending on the

value of the coupling g . For g < 128r0 the critical point µc is a local minimum, while for large values of

the coupling along the flow g →∞ it turns into a local maximum and a new local minimum appears at

µ′
c <µc = 3/2r0, see Figure 3.6.

The Legendre transform, in terms of its supremum definition, tracks the position of the minimum.

Hence, for small values of g the free energy is determined via the behaviour of the grand potentialΩ(µ)

around µc = 3/2r0

r0 fc (Q) = 3

2

(
Q

2N

)
+ 48g

(2π)2
(
128r0 − g

) (
Q

2N

)2

+ . . . , (3.170)

as long as the coefficient of the quadratic term in µ is positive. At g = 128r0 this expression exhibits

a pole and is no longer valid. For larger values of g the free energy fc (Q) then depends on the local

properties of the grand potentialΩ(µ) around the new minimum at µ′
c < 3/2r0, which as we have seen

in Eq. (3.160), describes a massive phase in the limit g →∞. However, it is important to point out that

this new minimum is only a local minimum and metastable. For large enough charge Q, the free energy
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Figure 3.6: The grand potential −Ω(µ) on the cylinder R×S4
r0

for different values of the coupling g along
the critical trajectory r = 9/4r 2

0 in D = 5. For g < 128r0, the critical point µc = 3/2r0 represents a local
minimum. As we increase the value of the coupling g along the flow to the UV, the point µc becomes a
maximum and a new minimum appears at µ′

c < 3/2r0.

fc (Q) obtained via the supremum definition of the Legendre transform becomes infinite because the

grand potential −Ω(µ) is no longer bounded from below for g > 128r0.

On the other hand, for g > 128r0, the naive definition of the Legendre transform allows for the expansion

around the maximum µc = 3/2r0 which now corresponds to a concave and unstable region of the grand

potential −Ω(µ), which we have done in Eq. (3.161) in the limit g →∞. The free energy fc (Q) obtained

in this way is still real for small enough values of Q, but the coefficient of the of the quadratic term in

Q is negative which is a sign of instability. Beyond small charge Q, the free energy then develops an

imaginary part, see the discussion around Eq. (3.162), clearly violating unitarity.

Generically, when expanded around a maximum, the free energy fc (Q) as a function of the charge is

concave. It appears as though the absence of convexity is a general feature of any expansion around an

unstable state.

The free energy in D=4+ϵ and D=6−ϵ

In Section 3.2.4 we have extensively discussed that the conjectured strongly-coupled UV fixed point

cannot be reached for 4 < D < 6, unless we analytically continue the effective potential to a complex

function with a branch cut describing a Riemann surface. We can, however, compute the free energy

fc (Q) on the sphere at the conformal point, which we naturally identify with the scaling dimension

of the lowest operator of a given charge in flat space. In the large-charge limit the zeta function can

be computed perturbatively using Weyl’s asymptotic expansion of the heat kernel in Eq. (3.58), as

discussed extensively in Section 3.1.4 and also in this section, i.e. Section 3.2.5. In arbitrary real
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Chapter 3. The large charge expansion in the large N limit of QFT

dimension D we have (in terms of the Legendre transform LT[ · ])

∆(Q)

2N
= r0 LT[−VΩ](Q/2N ) , VΩ(µ) = 1

2
ζ(−1

2
|SD−1

r0
,µ2) = Γ

(
s − D−1

2

)
Γ(s)µ2s+1−D

K0
∣∣
SD−1

r0

∣∣∣∣
s=− 1

2

+ . . . , (3.171)

where the heat kernel coefficient K0 evaluated on the D −1-sphere is given in Eq. (3.59). For s = ±,

since the maximization condition includes ζ(1/2 |SD−1
r0

,µ2), the Gamma function Γ(s) in the numerator

diverges. We can, however, resort to analytic continuation and study the behaviour around D = 4 and

D = 6. The geometric invariants have to be analytically continued as well and are given by

m3±ϵK S3±ϵ
0 (3.172)

µ3±ϵK0

∣∣∣
S3±ϵ

r0

= 2−2∓ϵpπ
Γ(2± ϵ

2 )
(r0µ)3±ϵ =

p
π

4

[
1±

(
γ

2
− log(2)− 1

2
+ log(r0µ)

)
ϵ

]
(r0µ)3 , (3.173)

K S5±ϵ
0 m5±ϵ (3.174)

µ5±ϵK0

∣∣∣
S5±ϵ

r0

= 2−4∓ϵpπ
Γ(3± ϵ

2 )
(r0µ)5±ϵ =

p
π

32

[
1∓

(
log(2)+ 3

4
− γ

2
− log(r0µ)

)
ϵ

]
(r0µ)5 , (3.175)

where γ is the Euler-Mascheroni constant.Using the expansion of the Gamma function,

Γ(ϵ−n) = (−1)n

n!
ϵ−1 +O

(
ϵ0) , (3.176)

the leading behaviour of the zeta functions in D = 4+±ϵ and D = 6±ϵ are given by

ζ(1/2 |S3±ϵ
r0

,µ2) =±ϵ−1 r 3
0µ

2

2
+ . . . , ζ(−1/2 |S3±ϵ

r0
,µ2) =±ϵ−1 r 3

0µ
4

8
+ . . . , (3.177)

ζ(1/2 |S5±ϵ
r0

,µ2) =∓ϵ−1 r 5
0µ

4

32
+ . . . , ζ(−1/2 |S5±ϵ

r0
,µ2) =∓ϵ−1 r 5

0µ
6

192
+ . . . . (3.178)

Around the physical dimension D = 4 the maximization condition reads Q/N =∓(r0m)3/(2ϵ) and, as

expected, there is a real solution for positive charge Q only in D = 4−ϵ. The free energies and conformal

dimensions are found to be
∆−ϵ(Q)

2N = 3
24/3 ϵ

1/3
(

Q
2N

)4/3 + . . . for D = 4−ϵ ,

∆+ϵ(Q)
2N = 3

24/3 e iπ(2k+1)/3ϵ1/3
(

Q
2N

)4/3 + . . . for D = 4+ϵ ,
(3.179)

where the integer k = 0,1,2 depends on the choice of branch for the analytically continued free energy

fc (Q). In a similar fashion, around D = 6 the maximization condition reads Q/N =±(r0m)5/(32ϵ), with

a real solution for positive charge only in D = 6+ϵ. The associated conformal dimensions are given by
∆−ϵ(Q)

2N = 521/5

3 e iπ(2k+1)/5ϵ1/5
(

Q
2N

)6/5 + . . . for D = 6−ϵ ,

∆+ϵ(Q)
2N = 521/5

3 ϵ1/5
(

Q
2N

)6/5 + . . . for D = 6+ϵ ,
(3.180)

where the integer k = 0,1,2,4,5 again depends on the choice of branch for the analytically continued

free energy fc (Q). These results perfectly agree with earlier results from the literature in [20, 234].

As expected, in the range 4 < D < 6 the Legendre transform requires an analytic continuation and
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3.3 From Fermi spheres to superfluids: Fermionic CFTs at large charge and large N

results in conformal dimensions δ(Q) with non-zero imaginary parts corresponding to complex free

energies fc (Q) exhibiting a branch cut. The theory in D = 4+ ϵ has been scrutinized more closely

in [267], confirming its instability for operators of any value of the charge Q.

3.3 From Fermi spheres to superfluids: Fermionic CFTs at large

charge and large N

When studying bosonic theories at large charge, the superfluid hypothesis underlying the EFT approach

is a very natural one, although there are important outliers not captured by the EFT, like the free

boson [168]. However, once we consider fermionic theories the superfluid description can still be

justified sometimes, but it is no longer the only game in town as options like a Fermi-sphere ground state

are reasonable as well. In particular, the superfluid paradigm does not apply to the free fermion, where

sectors of fixed charge are described by Fermi surfaces [168]. The Fermi sphere, as we will see later, also

has a non-trivial macroscopic limit on the cylinder [168]. Unfortunately, the characterization of the

corresponding EFT description is more complicated and less clear than for a superfluid phase [118,

167, 168].

Beyond the study of bosonic theories, there is a distinct lack of literature on the LCE approach applied

to fermionic CFTs. Only a handful of forays have been made into the domain of fermions [168, 170,

268]. In particular, it is important to better understand the landscape of emergent condensed-matter

phases and possible EFT description in fermionic models. As we have seen in Section 3.1, for the O(2N )

model at large N we recover from general principles the EFT description used to study the O(2) model.

In analogy, it appears to be a good idea to study fermionic models in simplifying limits — like large N

or small ϵ, where the interacting fixed points become perturbative — to potentially gain access to the

EFT descriptions of the large-charge sectors in these models.

This is exactly what we are attempting to do in this section, where we systematically study several

different theories with four-fermion interactions in D = 3 and Euclidean signature, in the limit where

the number N of flavours of fermions becomes large. In this section we review the free fermion CFT

and study the GN model as well as the chiral GN or NJL model and its SU (2)×SU (2) generalization.

Additionally, we discuss the Cooper model, which is related to the NJL model by a Pauli–Gursey (PG)

transformation [269–272].

We find two qualitatively different behaviours. While in the free fermion and the large-N GN model

there is no SSB occurring in sectors of large charge — i.e. large baryon number — and the physics is

that of an (approximate) Fermi surface, the four-fermion interactions in NJL-type models allow for

SSB to occur in sectors of large ”chiral” charge. In this case the large-charge sector is described by the

usual superfluid description and we can verify the prediction from the large-charge EFT discussed in

Chapter 2. For the GN model we could not yet determine whether the Fermi surface persists for finite

N once we include sub-leading corrections.

Besides the discussion of the free fermion CFT, which represents a review of existing material, the

rest of the material covered in this section, which appeared in [2], represents original work by the author.
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Chapter 3. The large charge expansion in the large N limit of QFT

We apply essentially the same technology which we used to analyse the bosonic theories at the

beginning of this chapter (see Section 3.1). For convenience, we repeat the most important points again

here. Independently of the presence of SSB — by the state–operator correspondence — finite-density

ground states in the cylinder in critical theories compute the scaling dimensions of the associated CFT

primary operators in flat space. If OQ is the lightest primary operator of charge Q under a certain global

symmetry Q, then the corresponding state on the cylinder is understood to minimize the modified

Hamiltonian H cyl −µQ on the cylinder, with H cyl being the dilatation operator/cylinder Hamiltonian

and Q the charge operator. Qualitatively, this picture is expected to be independent of the underlying

bosonic or fermionic nature of the theory. In particular, we expect the lowest-lying operator OQ to still

be a scalar in a fermionic theory.

The most convenient way of selecting the correct state on the cylinder that computes the right scaling

dimension ∆(Q) is to consider the thermal CFT on S1
β
×SD−1

r0
and study the theory of interest in the

zero-temperature-limit via its grand-canonical partition function Zg c (µ),

Zg c (µ) = Tr
[

e−β(H (cyl)−µQ)
]
β→∞−−−−→〈OQ |OQ〉e−β(E(Q)−µQ) , (3.181)

where 〈OQ |OQ〉 is a normalization factor and the energy E(Q) in the thermodynamic limit N → ∞
is equal to the zero-temperature free energy fc (Q) at charge Q of the system first introduced in

Section 3.1.2. In doing so, we proceed in analogy to the discussion around Eq. (3.27) presented in the

context of the O(2N ) vector model.44 All of the fermionic theories investigated in the present section

possess a path-integral representation of their respective canonical partition function Zg c (µ), which

can be computed order-by-order at large values of the number of flavours N . In the thermodynamic

limit N →∞, as usual, the grand canonical partition function is given by the grand potentialΩ,

Zg c (µ)
N→∞−−−−→ e−(2N )βVΩ(µ) , (3.182)

which we care for mainly in the zero-temperature limit. When comparing to Eq. (3.181),45 we conclude

that for the CFT living at β→∞ we have

r0∆(Q) = E(Q) = (2N ) fc (Q)+O (N 0) = (2N )VΩ(µ)+µQ
∣∣∣
µ=µ(Q)

+O (N 0) ,
Q

(2N )V
=−∂Ω

∂µ
, (3.183)

without necessarily needing to reference the canonical partition function (see Section 3.1.2). As usual,

fc (Q) denotes the free energy. For certain purposes we are content with performing computations on

S1
β
×T D−1

L . In these instances we will use the same notation as on the sphere and simply replace the

volume V .46

With regards to the large-N methodology, for the interacting theories considered (GN and NJL-type

models) we perform a HS transformation, introducing a (complex) scalar collective fieldσ (Φ if complex)

and reducing the four-fermion interactions to Yukawa-type interactions. The field σ(Φ) can both be

kept dynamical and non-dynamical. If σ(Φ) is kept non-dynamical, the interacting fixed point in D = 3

is found in the UV and is only treatable within the context of the large-N expansion. If instead the

44In contrast to the O(2N ) model in Section 3.1.2 and 3.1.3 we do, however, start directly by only fixing the charge associated to
a single U (1) subgroup of the global symmetry, in contrast to the U (1)N -diagonal subgroup fixed for the bosonic vector model.
Note that the homogeneous ground state in the bosonic model also corresponds to the case of a single U (1) subgroup at finite
density, the U (1) baryon charge, see Section 3.1.3.

45The normalization of the state |OQ 〉 is irrelevant here for our purposes and can be ignored as a constant contribution.
46We also do not distinguish between a torus of large volume and infinite flat space.
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3.3 From Fermi spheres to superfluids: Fermionic CFTs at large charge and large N

scalar field σ(Φ) is made dynamical, then we obtain the UV completion of these fermionic models, and

the same interacting fixed point arises in the IR (in D = 3). The large-charge primary OQ is part of the

CFT spectrum independently of the specific realization chosen.

3.3.1 Fermi spheres in the large charge expansion: The free fermion

Although the class of CFTs whose large-charge sector is described by a conformal superfluid encompasses

many different theories, there are a few important examples that lie outside of it. The simplest and

most obvious example is the free complex scalar theory, which does not lead to a state of finite density

in the macroscopic limit on the cylinder [168]. In the free scalar case the lowest-lying operator of charge

Q is simply

OQ ∝φQ , ∆(Q) = r0E(Q) =Q . (3.184)

In the macroscopic limit r0 →∞ on the sphere the charge density ρ =Q/V remains finite, and hence

the energy density behaves like
E(Q)

V
= ∆(Q)

ΩD r D
0

→ 0, (3.185)

whereΩD is the volume of the unit (D −1)-sphere. As a consequence, in the large-charge sector of the

free scalar there is no SSB at large charge and also no emergent condensed-matter description. The

same is not true, however, for the free fermion CFT, as we will see.

Comments about notation

Our discussion of the free fermion CFT — besides introducing the Fermi-sphere ground state and

hence a new condensed-matter description at large charge — serves to set up our discussion of the

interacting fermionic models of GN-type, which admit a second-order critical phase transition and are

computable in the large-N limit, in the later parts of Section 3.3. More precisely, the models we will

consider are the GN model and the NJL model along with its minimal SU (2)×SU (2) generalization.

They can all be obtained by deforming the free-fermion CFT with a four-fermion interaction and a

coupling g . As the quartic interaction in the fermionic fields is irrelevant for D > 2, and hence the

theory is not renormalizable in standard perturbation theory, these models are typically studied either

in D = 4−ϵ or D = 2+ϵ at small ϵ and fixed values of N , or in the large-N limit for 2 < D < 4.47

It has been shown that results from small-ϵ expansions in 4− ϵ and 2+ ϵ at fixed values of N are

completely consistent with the large-N expansion for general dimension 2 < D < 4, which in particular

also includes D = 3 [273]. Moreover, the conformal phases found in the simplifying limits of large N and

small ϵ are known (or strongly believed, e.g. from lattice studies [274]) to exist in the physical dimension

D = 3 also at finite values of N .

Importantly, in particular with regards to the NJL-type models, we rely on some notion of chirality

47These four-fermion models can be understood via their UV completions in terms of Yukawa-type theories, which flow
to the same interacting fixed point now located in the IR (in D = 3). The associated Yukawa-type theories are in principle
renormalizable.
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Chapter 3. The large charge expansion in the large N limit of QFT

within the theory. Of course, in D = 3 there exists no natural notion of chirality. This issue can be

amended by dimensionally reducing the corresponding four-dimensional model in D = 4,(3+1) down

to a model in three dimensions, D = 3, and using the four-component fermions from four dimensions.

In D = 3 then, a four-component Dirac fermionΨ sits in a reducible representation consisting of two

two-component Dirac fermions ψa,b . Additionally, a Dirac fermion in D = 3+1 can be decomposed

into two Majorana fermionsΨ=λ1 + iλ2, so that, so that starting from N Dirac fermion in D = 4 we

obtain a theory of 4N Majorana fermions in D = 3 [2],48

Ψ
∣∣
D=4 =λ1 + iλ2

dim. red.−→ Ψ
∣∣
D=3 =

(
ψa

ψb

)
=

(
λa 1 + iλa 2

λb 1 + iλb 2

)
. (3.186)

In addition, in D = 3 there exist two inequivalent two-dimensional representations of the Clifford

algebra. They are related by a parity transformation and can be identified in terms of a differing sign in

the gamma matrices γµ. Therefore, the two representations can be denoted as ±γµ. As a consequence,

in principle, there are 2N + 1 possible inequivalent choices to arrange the 4N Majorana fermions.

In practice, there are only two interesting situations: either all Majorana fermions are in the same

representation ±γµ, or half of the fermionic fields are in one representation ±γµ while the others sit in

the other representation ∓γµ.49

Starting from a U (N ) invariant theory in D = 4, in the first case the system in D = 3 is O(4N ) invariant

while in the second case the system exhibits a O(2N )×O(2N )×Z2 symmetry. In the case where all the

Majorana fermions sit in the same representation there is no parity invariance — which is present in

the four-dimensional theory — as all spinors share the same eigenvalue under the operator γ0γ1γ2. For

this reason, since we want to retain the notion of parity because we are interested in the dimensionally

reduced four-dimensional model, we will make the latter parity-invariant choice. Concretely, for the

presentation of our computations and results this means that we will arrange our two-dimensional

(Dirac) spinors ψi , i = 1, . . . ,2N in D = 3 into four-dimensional reducible spinors Ψi = (ψi ,ψi+N ),

i = 1, . . . , N and use four dimensional reducible gamma matrices of the form

Γµ =σ3 ⊗γµ =
(
γµ 0

0 −γµ

)
. (3.187)

In this way we can actually define a Γ5-matrix in D = 3 and a notion of chirality. Importantly, in contrast

to the four-dimensional theory, after dimensional reduction this chiral symmetry in D = 3 is actually a

flavour symmetry, i.e. it is part of the global symmetry group. For more details about notation we refer

to Appendix C.4.3.

48A Dirac fermion ψa in three-dimensional spacetime can be decomposed into two (symplectic) Majorana fermions λa 1 +
iλa 2 [275–277].

49Somewhat confusingly, in the presence of a standard four-fermion interaction of the form (ψ̄ψ)2 both of these situations are
called GN model in the literature [278].
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Asymptotics for the free fermion at large charge

We discuss the free fermion CFT in D = 3 (Euclidean) with 2N flavours of Dirac fermions organized into

N four-dimensional reducible spinor representations, as outlined above,

S =∑
i

∫
d3x

S1
β
×S2

r0

Ψ̄iΓµ∂
µΨi =

∑
i

∫
d3x

S1
β
×S2

r0

Ψ†
i Γ3Γµ∂

µΨi . (3.188)

Note that this action is secretly O(4N ) invariant and not just O(2N )×O(2N )×Z2, as discussed above,

since there is a product of two gamma matrices appearing in the kinetic term which neutralizes the

difference in sign. Nevertheless, we will stick with this notation in order to be consistent with the rest of

the section.

The large-charge sector of the free fermion has been first studied in [168], where the authors deduce the

general form of the large-charge operator for a single free fermion via the the Pauli exclusion principle

and then perform a combinatorial computation to deduce that the scaling dimension of the lightest

operator of large charge Q has a scaling dimension that behaves like

∆FS(Q) = 2

3
Q3/2 + 1

12
Q1/2 + . . . , (3.189)

where the subscript FS denotes that the ground state is a filled Fermi sphere and not a superfluid. We

will reproduce the same result using thermodynamical reasoning.

Similarly to the treatment O(2N ) vector model in Section 3.1.2, the action in the grand-canonical

partition function Zg c (µ) is found by introducing the appropriate chemical potential inside the action

in Eq. (3.188) as a (constant) background field in the time direction,

Sµ[Ψi ] =
∫

d3x

S1
β
×S2

r0

Ψ̄i
(
Γν∂

ν−µΓ3
)
Ψi . (3.190)

In analogy with the results for the saddle-point equations of the O(2N ) vector model, here we introduce

a single chemical potential µ for the global U (1)B baryon number symmetry, which we formally expect

to correspond to the homogeneous sector or the completely symmetric representation like in the

case of the O(2N ) vector model (again see Section 3.1.2 for details). Worded differently, we are only

interested in CFT data pertaining to operators charged under the U (1)B symmetry.

As we are dealing with a free theory, the path integral can be explicitly performed using standard

techniques. The cylinder computation at finite temperature via the summation over Matsubara

frequencies is outlined in Appendix C.6. The resulting grand potential is given by

Ω(µ) = Sµ
∣∣

N→∞
(2N )βV

=− 1

βV

∑
2(2 j +1)

j= 1
2 , 3

2 ,...

∑
n≥0

[
βωℓ+ log

(
1+e−β(ωℓ−µ)

)
+ log

(
1+e−β(ωℓ+µ)

)]
, (3.191)
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where ω2
j = ( j +1/2)2/r 2

0 . In the zero temperature limit β→∞ the grand potential reduces to

Ω(µ)
β→∞−→ − 2

V

∑
j

(2 j +1)ω j − 2

V

∑
ω j <µ

(2 j +1)
(
µ−ω j

)=− 2

V

[ ∑
ω j >µ

(2 j +1)ω j +µ
∑
ω j <µ

(2 j +1)
]

,

(3.192)

and now unsurprisingly describes a filled Fermi-sphere ground state of massless fermionic particles

(massless due to conformal invariance). The associated Fermi momentum is given by µr0. Using

Eq. (3.183) the charge and energy density are found in terms of the Fermi momentum

Q

2N
= ⌊µr0⌋(⌊µr0⌋+1) ,

fc (Q)

2N
= 1

3r0
⌊µr0⌋(⌊µr0⌋+1)(2⌊µr0⌋+1) . (3.193)

The floor function in the above expressions implements the fact that on the cylinder the energy levels

ω j are discretized. Hence, any chemical potential value µr0 that lies in between two energy levels

corresponds to the same filled Fermi sphere.

Using the form of the U (1)B -charge in Eq. (3.193) the scaling dimension of the corresponding scalar

CFT operator O
Q
FS in flat space can be expressed in closed form as

∆FS(Q)

2N
= 1

3
⌊µr0⌋(⌊µr0⌋+1)(2⌊µr0⌋+1) = 1

3

(
Q

2N

)√
4

(
Q

2N

)
+1, (3.194)

where we again denote the fact that this operator corresponds to a filled Fermi sphere ground state on

the cylinder — which has a non-trivial macroscopic limit and describes a condensed-matter phase —

by the subscript FS. Further, we have normalized the charge Q and scaling dimension ∆FS(Q) by 2N ,

which is the total number of three-dimensional Dirac-fermion flavours present. The scaling dimension

∆FS(Q) is shown later on in Section 3.3.3 in Figure 3.8 as a function of Q. Notably, since the Fermi

shell always has to be filled, only discrete values of the charge Q — specifically Q/2N = 0,2,6, . . . — are

allowed.

We note that the Fermi-sphere ground state is an eigenstate of both the Hamiltonian H (cyl) and

the U (1)B charge Q. As a consequence, there is no SSB on the ground state — in accordance with

Section 1.2.5 — and we do not have any NG fluctuations on top of the ground state as in the superfluid

case. The ground state is an eigenstate of both the Hamiltonian H (cyl) and the U (1)B charge Q. There

are no phonon states describing new primaries with a gap of order O (1) from the Fermi-sphere primary

O
Q
FS in the CFT context. Instead, there are particle-hole excitations that exhibit the same charge as the

Fermi-sphere ground state and have a gap of order O (1). It would be interesting to see whether there

can be a description in terms of a Fermi liquid for the EFT, in particular with regards to the GN model

which we will discuss in Section 3.3.2.

The Q →∞ asymptotics of the expression in Eq. (3.194) for the scaling dimension of the Fermi-sphere
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operator O
Q
FS can be systematically computed; the first few orders are

∆FS(Q)

2N
= 2

3

(
Q

2N

)3/2

+ 1

12

(
Q

2N

)1/2

− 1

192

(
Q

2N

)−1/2

+O
(
Q−3/2) ,

Q

2N
→∞ . (3.195)

After setting the number of flavours N to N = 1/2 — which in our convention of using the reducible

representation described in Eq. (3.187) and Appendix C.4.3 corresponds to a single flavour of fermions

in D = 3 — the finite-density ground state and the associated free energy fc (Q) in Eq. (3.193) correspond

exactly to the parity-even scalar primary operator O
Q
FS first constructed explicitly in [168] within the

single-flavour free fermion. 50

3.3.2 The Gross-Neveu model at large N : Interacting fermionic CFTs at large
charge

Primarily, we focus in this section on fermionic models in three-dimensional Euclidean space admitting

a second-order phase transition, which are compatible with the large-N limit allowing us to take

advantage of the simplifications in said limit. We start by discussing the GN model.

In the four-dimensional reducible representation we employed — see the beginning of Section 3.3.1

and Appendix C.4.3 — the Gross–Neveu model [279] is described by the action

S =
∫

d3x

[ N∑
i=1
Ψ̄iΓµ∂

µΨi − g

N

( N∑
i=1
Ψ̄iΨi

)2
]

. (3.196)

In this form it has a global O(2N )×O(2N )×Z2 symmetry. Out of the global symmetry group we will

denote the diagonal U (1) subgroup — the baryon number symmetry — by U (1)B ,

U (1)B :Ψi → e iαΨi . (3.197)

As discussed extensively in Section 3.1.1, the standard large-N analysis is carried out via a HS transformation

introducing an auxiliary (real) scalar field σ replacing the quartic interaction.51 The resulting action for

the GN model is given by

S =
∫

d3x

[
Ψ̄i

(
Γµ∂

µ+σ)
Ψi + N

4g
σ2

]
. (3.198)

The UV critical limit for the GN model is reached by neglecting the σ2 term. It corresponds to a second-

order phase transition which separates the broken and unbroken phases for the breaking of the Z2

chiral symmetry acting as52

Ψ→−Γ5Ψ . (3.199)

For finite values of N , the theory in Eq. (3.196) is not renormalizable and the appropriate UV completion

is a Gross–Neveu–Yukawa (GNY) model that is obtained by promoting the collective field σ to a

50As we will see, at large N this operator is the lowest primary of U (1)B charge Q even if the CFT is an interacting one (in both
GN and NJL models), due to the fact that the auxiliary field σ does not condense.

51The HS transformation can always be applied independently of the nature of the field content of the theory to replace quartic
(self)-interactions. The procedure always looks the same [134].

52See Appendix C.4.3 for the conventions around the Γ5-matrix. The use of four-dimensional language here should always be
seen in the context outlined at the beginning of Section 3.3.1.
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dynamical field [280], resulting in the action

S =
∫

d3x

[
Ψ̄i

(
Γµ∂

µ+σ)
Ψi + 1

2gY
∂µσ∂

µσ

]
. (3.200)

In the IR limit, the Yukawa coupling gY is relevant and grows large, formally reproducing the critical

action of the GN model as the kinetic term drops out. The critical point of the GNY model becomes

weakly-coupled in 4−ϵ, allowing for a study of the GN critical phase at finite values of N . The theory in

Eq. (3.196) on the other hand is only accessible in a 1/N expansion. As we will see, to leading order in

N there is no SSB for the GN model in sectors of large baryon number and the physics is approximately

that of a Fermi surface, in the strict infinite-N limit at least. We have not yet determined whether the

Fermi surface persists once we consider sub-leading corrections in N .

Generally speaking, both the GN model as well as the NJL-type models we discuss later in Section 3.3.3

are obtained from the free fermion CFT in Eq. (3.188) via an irrelevant coupling g and a four-Fermi

interaction. Assuming that the model in question has a fundamental UV scaleΛ (given by a specific

underlying lattice discretization), at zero temperature and zero density the irrelevant coupling possesses

a critical value 1/gc ∼ Λ at which we find a scale-invariant theory separating two distinct phases

characterized by some spontaneously broken symmetries.53 In flat space specifically, if we wish to take

a formal continuum limitΛ→∞ for these kinds of models with irrelevant couplings, we run into the

problem that they are not renormalizable in the 1/N expansion [134]; the associated RG flow only joins

the free fermion CFT in the far IR at g = 0 to the interacting conformal phase at g = gc in the UV. Our

goal is to study these theories — GN and NJL — at the critical limit of the phase-transition point at

finite charge density.

There is evidence — e.g. on the lattice [274] — that these conformal phases at g = gc for the GN and

NJL models survive at finite values of N , however a proper RG flow analysis requires a UV completion,

as these theories are not renormalizable away from any simplifying limit like small ϵ or large N . As

discussed, working UV completions are found in terms of Yukawa-type models [280] with the distinct

advantage that the Yukawa coupling gY is relevant in D < 4. Yukawa-type models in 2 < D < 4 are UV

free and strongly coupled in the IR, where we recover the interacting CFT of the associated four-Fermi

model (GN or NJL here). The Yukawa-CFT becomes again weakly coupled in D = 4−ϵ allowing for the

perturbative computation of conformal data, e.g. at large charge [170]. As we are working in the large-N

limit, it is sufficient for us to consider the minimal models including only fermionic matter, hence we

only briefly comment on the UV completions.

Symmetry-breaking at large N : Leading-order action and gap equation

The presence of a condensate in the large-charge sector is a crucial ingredient determining whether or

not the LCE leads to simplifications, as we have seen in the case of the free boson or the free fermion in

Section 3.3.1. Without the presence of a condensate there is no SSB and no superfluid description. To

see, if this is the case, we start by discussing the symmetry breaking for the GN model.

53The exact value of gc may depend on the geometry of spacetime and the regularization procedure, making certain geometries
and regularization procedures preferable over others. Generically, in zeta-function regularization (e.g. on the sphere) the critical
value of the coupling is 1/gc → 0, essentially obstructing the broken phase. For example, in the three-dimensional O(2N ) vector
model discussed in Section 3.1 the value of the critical coupling was gc =∞ (we have used zeta-function regularization there).
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We consider the GN model for N reducible four-dimensional Dirac fermions in the representation

outlined in Appendix C.4.3 at finite U (1)B -chemical potential µ and finite temperature. To analyse the

symmetry-breaking it suffices to consider the theory in flat space R2. After introducing the auxiliary

field σ the action is

S =
∫

d3x

S1
β
×R2

[
Ψ̄i (Γν∂

ν−µΓ3 +σ)Ψi + N

4g
σ2

]
. (3.201)

The model needs to be equipped with a cut-off scale λ in momentum space in order to be consistent.

At generic values of the parameters of the theory g ,β,µ the auxiliary field σ is allowed to acquire a

VEV, which spontaneously breaks the discrete Z2 parity symmetry Ψ→−Γ5Ψ. Generically, we can

assume that the σ-VEV is given by a homogeneous configuration 〈σ〉 =const. Under the standard

procedure, the large-N effective action computable in a self-consistent 1/N expansion can be obtained

by expanding around the saddle σ= 〈σ〉+ σ̂/
p

N [134],

Sµ[σ̂] = N

{
βV

〈σ〉2

4g
−Trlog

(
D (µ))−1

}
+ 1

2

[
Tr(D (µ)σ̂D (µ)σ̂)+ 1

4g

∫
S1
β
×R2

σ̂2

]
+O

(
N−1) , (3.202)

where we have introduced the fermion propagator D (µ)(x − y) at finite chemical potential,54

D (µ)(x − y) = 〈x|(Γν∂ν−µΓ3 +〈σ〉)−1|x〉 . (3.203)

We find the value of the condensate 〈σ〉 by minimizing the leading-N part of the action in Eq. (3.202),

which is equivalently found by setting the fluctuation σ̂ to zero. Using the summation over the fermionic

Matsubara frequencies discussed in Appendix C.7 and the momentum-space representation D̃ (µ) of

the propagator in Eq. (3.203) we find the grand potentialΩ(µ) as defined in Eq. (3.182),

Ω(µ) = 〈σ〉2

8g
−

∫ Λ d2p

(2π)2

[
ωp + 1

β
log

(
1+e−β(ωp+µ)

)
+ 1

β
log

(
1+e−β(ωp−µ)

)]
, (3.204)

where we have introduced the flat space energies ω2
p = p2 +〈σ〉2. For consistency, we need to assume

that 〈σ〉,µ≪Λ. The regularized integral over the momenta can be performed and the gap equation

0 = ∂Ω/∂〈σ〉 becomes

0 = 〈σ〉
[

1

2g
− Λ
π
− 1

π

(
〈σ〉− 1

β
log

(
1+eβ(〈σ〉+µ)

)
− 1

β
log

(
1+eβ(〈σ〉−µ)

))]
. (3.205)

We can introduce the critical coupling

g−1
c = 2Λ/π . (3.206)

The trivial solution 〈σ〉 = 0 to the gap equation corresponds to the free fermion CFT. In order to find a

non-trivial solution to the gap equation we need to solve

0 = 1

2

(
1

g
− 1

gc

)
− 1

π

(
〈σ〉− 1

β
log

(
1+eβ(〈σ〉+µ)

)
− 1

β
log

(
1+eβ(〈σ〉−µ)

))
. (3.207)

54We use the notation x = (τ,x) for points on the spacetime S1
β
×R2.
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The solution 〈σ〉 to the above equation is given in closed form by

eβ〈σ〉 = 1

2

e
β π

2

(
1

gc
− 1

g

)
−2cosh(βµ)+

√(
e
β π

2

(
1

gc
− 1

g

)
−2cosh(βµ)

)2

−4

 . (3.208)

At zero density µ= 0 and zero temperature β→∞ there exists a non-trivial solution to the gap equation

only for values of the coupling g that lie in the broken phase g > gc . The solution there reads

〈σ〉
∣∣∣
µ,β−1=0

= π

2

(
1

gc
− 1

g

)
. (3.209)

This corresponds to the well-known and well-understood second-order quantum phase transition

(since it occurs at zero temperature) of the large-N GN model at the critical value of the coupling g = gc ,

which separates the parity-unbroken from the parity-broken phase.

At zero temperature and finite density, this solution survives outside of criticality only as long as

µ<µc = 〈σ〉∣∣µ,β−1=0 . (3.210)

For values of the chemical potential µ greater that µc parity is restored again. Further, at the quantum

critical point g = gc there exists no non-vanishing solution for any value of µ. This is consistent with

the fact that within the CFT the chemical potential µ is sourcing a parity even primary operator O
Q
FS, as

we will discuss later.55

In the critical limit, the zero-temperature ground state is a filled Fermi sphere of massless fermions

with 〈σ〉 = 0. The grand potential there reads

Ω(µ) =−
∫
µ<|p|<Λ

d2p

(2π)2ωp −µ
∫
|p|<µ

d2p

(2π)2 =−Λ
3

6π
− µ3

12π
. (3.211)

Using Eq. (3.183) the U (1)B charge density ρ =Q/V and the renormalized (free) energy fc (Q) of the

Fermi-sphere ground state reads

ρ

2N
= µ2

4π
,

fc (Q)

V
= 1

6π

(
4π

ρ

2N

)3/2
. (3.212)

This expression computes the leading-order result in the LCE for the scaling dimension ∆FS(Q) of the

Fermi-sphere operator O
Q
FS [168], which is the lightest primary of charge Q within the theory. In fact,

there is absolutely no difference with respect to the free-fermion CFT result in Eq. (3.194) at this order.

At this point, we want to stress that it is a priori not clear what the implications of the absence of SSB at

leading order in the large-N expansion are. At this order interactions between fermions are suppressed

by the coupling geff = O (1/N ) going to zero as N →∞. Therefore, at infinite N the ground state is

described by an exactly free Fermi surface. At finite values of N , however, corrections from interactions

between fermions can in principle be studied in the correct framework of the Fermi surface EFT [118].

55It is maybe worth remarking that the spontaneously broken chiral symmetry of the GN model is discrete, and hence the
Goldstone theorem does not predict the existence of a NG boson in this case.
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In doing so, the corrections — in addition to their large-N suppression — need to be properly organized

in a large-Q expansion corresponding to the appropriate low-energy expansion in powers of 1/(µr0)2.

One distinct possibility is that the physics at the lowest energies remains the one of a weakly-interacting

Fermi surface. But this is not the only possibility, since at finite N we know that the Fermi surface

is never exactly free, and interactions in the Fermi surface are not automatically suppressed at low

enough energies, unlike in the superfluid EFT case [17, 122]. It is well-known that the effect of the

four-Fermi interaction (Ψ̄Ψ)2 runs logarithmically with the excitations above the Fermi surface [118],

hence running to strong coupling as geff ∝ log(µ/EIR) given the existence of any attractive four-Fermi

channel. In particular, this suggests that the Fermi surface may always develop a condensate of Cooper

pairs at an IR scale of L−1 = EIR ∼ exp
(−(constant)/gUV

)
µ= exp(−(constant)×N )µ, which leads to a

gap of order Egap ∼ exp(−( constant)×N )
√

Q/L in the fermionic sector. This scenario seems to be

somewhat generic, and it would predict that the lowest-lying operator at large charge Q is described

by a purely bosonic superfluid EFT. However, we note that this would be the case only for ultra-large

values of the charge Q exponentially large in N so that the enhancement of the gap by the factor
√

Q is

able to overcome the exponential suppression in N .

Since we have not done the analysis of the four-Fermi interaction about the Fermi-sphere ground state,

we do not know which of these two possibilities is actually realized.

Spectrum of fluctuations for the Gross–Neveu model

Now that we have identified the large-charge ground state, we can study the spectrum of fluctuations

on top of it, while still working in flat space for convenience. As the ground state of the GN model is

a filled Fermi sphere and no NG bosons arise, the supefluid EFT predictions from Section 2.2 do not

apply here.

In principle, the fluctuations around the Fermi sphere ground state of the GN model can be both

fermionic and bosonic in nature. The fermionic fluctuations are then clearly of the particle-hole-type,

just like it happens in the free fermion critical theory (i.e. in the massless free fermion). Potentially

occurring bosonic fluctuations on the other hand are due to the collective or composite field σ, more

precisely its fluctuations.

In order to understand the effect of the σ-fluctuations on the ground state we have to compute the

effective propagator of the σ̂-field, which is equal to the full σ-field as the VEV of σ= σ̂/
p

N vanishes,

〈σ〉 = 0. The effective propagator can be read off of the next-to-leading order quadratic effective action

for the σ̂∼σ-field in Eq. (3.202). Most conveniently, this action is computed in momentum space56

Tr
(
D (µ)σD (µ)σ

)=−∑∫
d2p σ̃(−P )σ̃(P )

∑∫ d2k

β(2π)2 Tr
[
D̃ (µ)(K )D̃ (−µ)(P −K )

]
, (3.213)

56Here, we use the notation P = (ωn ,p) for the momenta on S1
β
×R2, where ωn still are the fermionic Matsubara frequencies.
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where we have made use of the symmetry property

D (µ)(x − y) =−D (−µ)(y −x) (3.214)

satisfied the fermion propagator D (µ)(x − y). The expression for the momentum-space finite-density

fermionic propagator is given by

D̃ (µ)(P ) = i
Γν

(
P (µ)

)ν(
P (µ)

)2 , P (µ) = (ωn − iµ , p) . (3.215)

The one-loop integral in Eq. (3.213) after some simple algebraic transformations can be reduced to

K,µ

P − K,−µ

I I = 2P 2I2 −4I1 , (3.216)

where I1, I2 denote two scalar master integrals that are computed in detail in Appendix C.7. This

result suffices to be able to obtain the action of the quadratic fluctuations S(2)
eff in a mass-independent

regularization scheme in which the critical coupling gc is given by g−1
c = 0. At zero temperature we find

that

S(2)
eff =

1

2
Tr(σD (µ)σD (µ)) = 1

2

∑∫
d2p σ̃(−P )σ̃(P )

[p
P 2

4
+ µ

π

]
. (3.217)

We note that the non-local action above in fact does not describe stable bosonic fluctuations lying

on top of the Fermi-sphere ground state. In particular, the momentum-independent part cannot

properly be interpreted as actual mass term. Instead, it should rather be interpreted as a decay constant

which is of order ∼ µ, similar to how it is the case in the unbroken phase of the model [281]. This

is consistent with the fact that the σ-field describes fluctuations of a ψ̄ψ bound state on top of the

Fermi sphere, which is only stable in the broken phase of the theory. As a consequence, it cannot

generate any new conformal primaries within the local CFT spectrum at large charge. On the other

hand, the fermionic particle-hole excitations are stable. The local CFT spectrum therefore only consists

of operators associated with the stable particle-hole excitations.

Conformal dimensions and local CFT spectrum for the GN model

Up to this point we were content with treating the critical GN model in flat space by studying its

finite-density properties in a large spatial box or torus of volume V . This was sufficient for the results

we cared about. However, if we want to compute the scaling dimension of the lightest operator of

charge Q, in order to take advantage of the state–operator correspondence, we have to put the theory

on the cylinder R×S2
r0

. This way the energy of the finite-density ground state — a Fermi sphere in the

GN case — corresponds to the scaling dimension of the corresponding local primary operator within

the CFT living at the critical point.

Fermionic theories — like their bosonic counterparts — can be mapped from flat space R3 to the
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cylinder R× S2
r0

using a Weyl transformation, as outlined in Appendix C.4.2, after which the finite-

density kinetic term for the fermionic fields is given by

S =
∫

d3x

R×S2

[
Ψ̄(ΓµDµ−µΓτ+σ)Ψ

]
, with Q =

∫
S2
Ψ̄ΓτΨ , (3.218)

where ΓµDµ denotes the Dirac operator on the cylinder R×S2
r0

.

Analogously to the results for the grand potentialΩ(µ) of the GN model in flat space in Eq. (3.204) and

of the free fermion model on the cylinder in Eq. (3.191), the thermodynamic grand potential at finite

temperature on the sphere S1
β
×S2

r0
for the GN model is found to be

Ω(µ) = 〈σ〉2

8g
− 1

V

∑
j= 1

2

(2 j +1)
[√

ω2
j +σ2

0 + thermal contributions
]

, (3.219)

where V = 4πr 2
0 is the volume of the sphere and ω j = ( j +1/2)/r0 are the eigenvalues of the Dirac

operator on S2
r0

. Clearly, the gap equation still does not admit any non-trivial solution 〈σ〉 ̸= 0 at zero

temperature and at criticality for any value of µ> 0, just as it did in flat space.57 The zero temperature

grand potential now simply reduces to the free-fermion result in Eq. (3.192)

Ω(µ) =− 1

4πr 2
0

[ ∑
ω j >µ

(2 j +1)ω j +µ
∑
ω j <µ

(2 j +1)

]
, (3.220)

where we have explicitly introduced the sphere volume V = 4πr 2
0 . Hence, it describes the Fermi-sphere

ground state for massless fermions, which we have analysed and computed in Section 3.3.1 already. We

briefly repeat the results for the U (1)B charge and the scaling dimension here,

Q

2N
= ⌊µr0⌋(⌊µr0⌋+1) ,

∆FS(Q)

2N
= 1

3
⌊µr0⌋(⌊µr0⌋+1)(2⌊µr0⌋+1) = 1

3

(
Q

2N

)√
4

(
Q

2N

)
+1. (3.221)

Only discrete values of the charge permissible — Q/2N = 0,2,6, . . . — since the Fermi shell needs to

always be filled. The floor function implements the discretized cylinder energy levels and the formal

macroscopic limit r0 → ∞ reproduces the flat space results derived in Eq. (3.212). This limit is of

course analogous to the large-chemical-potential limit µ→∞. The ground state corresponds again

to the scalar primary operator OFS first constructed explicitly in [168] in the free fermion CFT. The

lowest primary OFS in the GN model is exactly the same operator as in the free fermion CFT due to

the fact that there is no SSB and the auxiliary HS fieldσ does not condense, at least to leading order in N .

We reiterate that for the large-charge sector of the GN model there are no NG fluctuations which

describe new primaries with gap of order order O (1) from the Fermi-sphere primary OFS. Instead, new

generally spinful and fermionic primaries with the same charge Q and a gap of order O (1) relative

to OFS are created via particle-hole excitations. As we have discussed before, the fluctuations of the

57The sums in the above expression are best regularized in a way as to preserve diff-invariance, e.g. by a smooth cut-off function

like e−ω j /Λ. Alternatively, zeta-function regularization, as done for the free fermion in Appendix C.6, works as well.
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collective field σ cannot describe new primaries within some hypothetical EFT description around the

Fermi-sphere ground state. In principle, this is a large-N result and it is important to see if these effects

persist for finite values of N , and if there exists some sort of EFT description in terms of a Fermi liquid

in the spirit of [118, 167].

Finally, we want to stress again that the lack of SSB within the large-charge sector of the GN model to

leading order in N can in principle have two distinct explanations:

• Either, the four-Fermi interaction around the leading-N Fermi sphere truly is repulsive in every

single channel and the large-N ground state in the GN model truly is a Fermi sphere. This would

actually be the first non-trivial (non-free) example of such behaviour at large charge;

• Or the four-Fermi has at least one attractive channel, therefore runs logarithmically to strong

coupling, exhibits a BCS condensate and also a gap in the fermionic sector of the theory of order

exp(−1/geff), where geff ∝ 1/N is the effective coupling at the cut-off. This would also mean

that the condensate and the gap are exponentially small and suppressed to all orders in 1/N

perturbation theory.

3.3.3 The NJL and the Cooper model at large N : Superfluid phases in fermionic
CFTs

The Nambu–Jona–Lasinio (NJL) model — or chiral GN model — is a well-established and time-

honoured four-Fermi interaction model exhibiting a continuous chiral symmetry in four spacetime

dimensions. By dimensional reduction, in the language outlined in the beginning of Section 3.3.1 and

Appendix C.4.3, the action in terms of four-dimensional reducible Dirac spinors in D = 3 reads

S =
∫

d3x

[
N∑

i=1
Ψ̄iΓµ∂

µΨi − g

N

[( N∑
i=1
Ψ̄iΨi

)2 −
( N∑

i=1
Ψ̄iΓ5Ψi

)2
]]

. (3.222)

In D = 3 the Ψ̄Γ5Ψ bilinear is invariant under an Sp(2N ) symmetry and hence the total global internal

symmetry group of the model is reduced with respect to the GN model in Eq. (3.196) down to

[O(2N )×O(2N )]∩Sp(2N ) =U (N ) = SU (N )×U (1)B . (3.223)

In addition, on top of the standard U (1)B baryon symmetry, there now exists an extra U (1)A symmetry

that extends theZ2 chiral symmetry of the GN model, bringing the total symmetry up to SU (N )×U (1)B×
U (1)A . We mainly focus our attention on the Abelian U (1)B ×U (1)A symmetry and take advantage of

the unbroken global SU (N ) group factor still present to consider the theory in the large-N limit.

The continuous U (1)A chiral symmetry of the model only arises when the two quartic interaction in

Eq. (3.222) are linearly combined with precisely the same coupling g and opposite signs. It acts linearly

on the spinors as

Ψi → e iαΓ5Ψi . (3.224)
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The U (1)-NJL model therefore exhibits a different phase transition compared to the GN model, where

the critical phase of the theory separates two phases in which the continuous U (1)A chiral symmetry is

either broken or unbroken (compared to the discrete Z2 symmetry defining the different phases for the

GN model). In contrast to the GN model, where the spontaneously broken chiral symmetry is discrete,

in the broken phase of the NJL model a NG boson now arises. As we will see, this broken phase persists

also at finite density.

Later, in Section 3.3.4 we will introduce a SU (2)-generalization of the NJL model given by the action

in Eq. (3.222). For this reason, in order to avoid any confusion, we will refer to the NJL model as the

U (1)-NJL model and to its generalization as the SU (2)-NJL model.

Just as the GN model, the U (1)-NJL model represents a deformation of the free-fermion CFT in

Eq. (3.188) via an irrelevant four-Fermi interaction and is therefore not renormalizable in standard

perturbation theory. At finite values of N , the U (1)-NJL model is tractable via its known Yukawa-type

UV completion in a small-ϵ expansion around D = 2+ ϵ and D = 4− ϵ. This U (1)-NJL–Yukawa UV

completion of the four-Fermi U (1)-NJL model in 2 < D < 4 encompasses a complex scalar DoFΦ and is

given by58

S =
∫

dD x

[
Ψ̄i

(
Γµ∂

µ+Φ
( (1+Γ5)

2

)
+Φ∗

( (1−Γ5)

2

))
Ψi + 1

gY
∂µΦ

∗∂µΦ

]
. (3.225)

In this action, the U (1)A chiral symmetry is realized as

Ψi → e iαΓ5Ψi , Φ→ e−2iαΦ . (3.226)

The above action can be deduced by performing the appropriate HS transform in the U (1)-NJL action

in Eq. (3.222) replacing the four-Fermi interaction with a scalar collective fieldΦ,

S =
∫

d3x

[
Ψ̄i

(
Γµ∂

µ+Φ
( (1+Γ5)

2

)
+Φ∗

( (1−Γ5)

2

))
Ψi + N

4g
|Φ|2

]
, (3.227)

tuning the the theory to the critical UV limit by neglecting the |Φ|2 term and introducing a kinetic term

for the fieldΦ along with the Yukawa coupling gY . The collective fieldΦ replaces the complex bilinear

Ψ̄iΨi + Ψ̄iΓ5Ψi , while its complex conjugateΦ∗ replaces Ψ̄iΨi − Ψ̄iΓ5Ψi .

The UV interacting fixed point at g = gc of the U (1)-NJL model is recovered as the IR interacting fixed

point is reached at gY →∞ of the associated U (1)-NJL-Yukawa theory. As in the GN model, in the IR

limit the no longer dynamical fieldΦ in the Yukawa-type model is identified with the HS collective field

Φ.

58While the GNY includes a free scalar DoF, the U (1)-NJL–Yukawa comes with a complex one. This not surprising given the
fact that the chiral symmetry in the GN model is Z2 while the chiral symmetry for the U (1)-NJL model is a continuous U (1)A .

157



Chapter 3. The large charge expansion in the large N limit of QFT

Cooper model and the PG transformation

As we will see later, the NJL model supports a condensate and a superfluid ground state at large U (1)A

charge, and just like the GN model no condensate at finite or large U (1)B baryon charge. At first sight,

there seems to be no intuitive way to understand as to why there is condensate at finite density for

the axial symmetry. However, as it turns out, there is a way to understand the presence of the axial

condensate in rather intuitive physical terms. This interpretation comes about from the fact that there

exists a transformation — usually referred to as a Pauli–Gursey (PG) transformation [270, 271] — which

relates the U (1)-NJL model to a model with a Cooper-type di-fermion interaction term [269, 272].

Generically, both GN-type and NJL-type models exhibit a fermion-anti-fermion interaction. Often,

in particular in the context of condensed-matter physics, physical systems are instead described by

a di-fermion interaction. For example, models with di-fermion interactions are important in the

study of superconductivity (arising via the process of Cooper pairing). Generally speaking, large-N

fermionic models intended to study and describe superconductivity at finite U (1)B baryon charge

include di-fermion interaction terms of the form

(4 f )CP = g

N

∑
i , j
Ψ̄i CΨ̄T

i Ψ
T
j CΨ j . (3.228)

Additionally, there may also be more standard GN-type or NJL-type interactions present in the action [269,

282]. For our purposes, it suffices to consider the model with just the above Cooper-pair interaction

term (4 f )CP. The full action reads

S =
∫

d3x

[
Ψ̄iΓµ∂

µΨi + g

N
Ψ̄i C4Ψ̄

T
i Ψ

T
j C4Ψ j

]
. (3.229)

In our notation for the four-dimensional reducible representation of the gamma matrices we have

C4 = Γ2, for more details see Appendix C.4.3. At criticality — in contrast to the situation in the GN

model discussed in Section 3.3.2 — the Cooper model with the action above exhibits a non-trivial

solution to the gap equation at zero temperature also at finite U (1)B baryon chemical potential giving

rise to a superconducting phase and a finite-density quantum phase transition.

Perhaps surprisingly, the Cooper model at finite U (1)B chemical potential turns out to be dual to the

U (1)-NJL model at finite U (1)A chemical potential in the sense of [269], shedding light on the physical

nature of the axial condensate appearing in the NJL model. This duality is found by applying the

Pauli–Gursey (PG) transformation [270–272] given by

Ψi 7→ 1

2

[
(1−Γ5)Ψi − (1+Γ5)C4Ψ̄

T
i

]
, Ψ̄i 7→ 1

2

[
Ψ̄i (1+Γ5)−ΨT

i C4(1−Γ5)
]

. (3.230)

For a more detailed discussion of the above PG transformation we refer to the Appendix C.5 outlining

the properties of said transformation.

In the following we perform all relevant computations within the U (1)-NJL model at finite U (1)A density.
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Naturally, all computations can be repeated in the Cooper model with action in Eq. (3.229) leading

to the exact same results. The main advantage of the Cooper model is that the physical nature of the

elusive axial condensate present in the U (1)-NJL model at large N becomes much more transparent: it

is in fact a condensate of Cooper pairs, describing a system exhibiting superconductivity. The attractive

di-fermion interaction (4 f )CP gives rise to a Cooper instability within the theory, effectively leading to a

system of condensing bosons at large charge. This nicely explains the similarity of our results in the

U (1)-NJL model to those derived for the O(2N ) scalar model in Section 3.1.

We end this segment with a few relevant remarks:

• In fact, both the Cooper model and U (1)-NJL model exhibit a U (1)A×U (1)B symmetry. Importantly,

under the PG transformation in Eq. (3.230) the U (1)B chemical potential term of the Cooper

model gets mapped into (minus) the U (1)A-chemical potential term of the U (1)-NJL model, and

vice versa. Hence, any results obtained in the U (1)-NJL model at finite U (1)A axial chemical

potential necessarily also applies to the Cooper model at finite U (1)B baryon chemical potential.

• At the critical point, relevant quantities computed in both the Cooper model and the U (1)-NJL

model agree up to a PG transformation. We are able to explicitly check this matching in both

models at leading order in N on the ground-state energy at finite density for the respective U (1)

symmetries.

• Finally, the PG transformation in Eq. (3.230) corresponds to a linear involution at the level of

the path integral in the fermionic variables Ψ†
i ,Ψi . As a consequence, it can only affect the

path-integral measure DΨ†
i DΨi up to a trivial rescaling.

Symmetry-breaking at large N : Leading-order action and gap equation

As discussed quickly in Section 3.3.2, the presence of a condensate is very important for the efficacy of

the large-charge approach. We investigate this question for the NJL model by discussing the symmetry-

breaking for the NJL model at large N .

We are interested in the U (1)-NJL model, invariant under the above discussed U (1)A ×U (1)B symmetry,

at finite U (1)A axial chemical potential µ. After having introduced the appropriate complex HS fieldΦ

the action can be written as

S =
∫

S1
β
×R2

[
Ψ̄i

(
Γν∂

ν−µΓ3Γ5 +ΦP++Φ∗P−
)
Ψ+ N

4g
|Φ|2

]
, (3.231)

where P± = (1±Γ5)/2 denotes the standard four-dimensional chiral projectors. The axial chemical

potential µ is sourcing a finite charge density for the chiral symmetry acting as

Ψi → e iαΓ5Ψi , Φi → e−2iαΦi . (3.232)

In the standard large-N methodology the collective fieldΦ at large N exhibits small fluctuations φ̂ and
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is decomposed in terms of a constant (i.e. homogeneous) VEV 〈Φ〉 plus fluctuations,

Φ= 〈Φ〉+ Φ̂/
p

N , Φ∗ = 〈Φ〉∗+ Φ̂∗/
p

N , (3.233)

generating a consistent perturbative 1/N expansion [134]. The thermodynamic potentialΩ(µ) is found

as the leading-N contribution to the action in Eq. (3.231) by setting the fluctuations of the collective

fieldΦ to zero, Φ̂= Φ̂∗ = 0,

Ω(µ) = |〈Φ〉|2
8g

− 1

2

∫ Λ d2p

(2π)2

[
ω++ω−+ 2

β
log

(
1+e−βω+

)
+ 2

β
log

(
1+e−βω−

)]
, (3.234)

where we have introduced a momentum cut-offΛ and the one-particle on-shell energies

ω2
± := |〈Φ〉|2 + (∣∣p∣∣±µ)2 . (3.235)

We see immediately, that 〈Φ〉 can be assumed to be real. Compared to the GN model in Section 3.3.2,

the novelty in the U (1)-NJL model is that — since ω± ≥ 0 — no Fermi sphere solution can arise as

long as 〈Φ〉 ̸= 0. Under the assumption that this is the case we can neglect the logarithmic thermal

contributions in the zero-temperature limit. Hence, the grand potential at zero temperature for 〈Φ〉 ̸= 0

reads

lim
β→∞

Ω(µ) = 〈Φ〉2

8g
− 1

2

∫ Λ d2p

(2π)2

[√
(p +µ)2 +〈Φ〉2 +

√
(p −µ)2 +〈Φ〉2

]
. (3.236)

After introducing the critical coupling g−1
c = 2Λ/π, the gap equation for the collective fieldΦ at zero

temperature reads

0 = 4
∂2Ω

∂〈Φ〉2 = 1

2

(
1

g
− 1

gc

)
+ 1

π

[√
〈Φ〉2 +µ2 −µ ·arctanh

( µ√
〈Φ〉2 +µ2

)]
. (3.237)

We look for a real and positive solution 〈Φ〉 > 0. In the critical limit g = gc we find such a non-trivial

solution to the gap equation and finite value of the axial chemical potential,

〈Φ〉 =µ
√
κ2

0 −1, (3.238)

where the number κ0 is found to be the solution to the equation

κ0 tanh(κ0) = 1, (3.239)

and numerically we have

〈Φ〉/µ= 0.6627. . . . (3.240)

The existence of this solution implies that the finite-axial-density ground state spontaneously breaks

the U (1)A symmetry by giving a non-trivial VEV 〈φ〉 to the collective field Φ — which also plays the

role of the order parameter associated to the spontaneously broken U (1)A axial symmetry. Symmetry-

restoration can only occur at zero density µ= 0, since conformal invariance prohibits the existence of

another scale separating the broken phase and the unbroken phase.

The renormalized grand potentialΩ(µ) can be computed for a generic constant and complex configuration
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Figure 3.7: The thermodynamic potential Ω(µ) — which represents the leading-N result — for the
U (1)-NJL model as a function ofΦ=Φc =const. for different values of the chemical potential µ. The
two minima appearing atΦc ̸= 0 for µ> 0 signal the spontaneous breaking of the U (1)A symmetry.

of the collective fieldΦ=Φc =const. without minimizing, making the situation more explicit. As the

divergent part ofΩ(µ) is µ-independent, we can compute its minimal subtraction and find

Ω(µ)−Ω(0) =−1

2

∫
d2p

(2π)2

[
ω+

∣∣|Φc | + ω−
∣∣|Φc | −2

√
p2 +|Φc |2

]
=− 1

12π

[
3|Φc |2µ arctanh

(
µ√

|Φc |2 +µ2

)
+ (µ2 −2|Φc |2)

√
|Φc |2 +µ2 +2|Φc |3

]
.

(3.241)

Afterwards, we add again the renormalized value ofΩ(0), which turns out to be exactly the same integral

already solved for the GN model in Section 3.3.2,

Ω(0) = |Φc |3
6π

. (3.242)

In the end, the renormalized grand potentialΩ(µ) reads

Ω(µ) =− 1

12π

[
3|Φc |2µarctanh

(
µ√

|Φc |2 +µ2

)
+ (µ2 −2|Φc |2)

√
|Φc |2 +µ2

]
. (3.243)

As expected, this grand potential is invariant under the U (1)A symmetry, but has a U (1)s worth of

equivalent vacua at |Φc | =µ(κ2
0 −1)1/2. In Figure 3.7 we plot the grand potentialΩ(µ) as a function of

Φc for Im(Φc ) = 0 and for different values of the chemical potential µ.

The obtained ground-state solution for the U (1)-NJL model corresponds to a superfluid of U (1)A charge

density ρ =Q/V and energy density fc (Q)/V , respectively, given by

ρ

2N
= κ3

0µ
2

4π
,

fc (Q)

V
= 1

6πκ3/2
0

(
4π

ρ

2N

)3/2
. (3.244)
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This ground-state energy computes the leading-order result for the conformal dimension ∆SF(Q) of

the associated operator O
Q
SF corresponding to the superfluid ground state within the LCE. We use the

subscript SF to denote that the operator corresponds to a superfluid ground state and to distinguish it

from the Fermi-sphere operator O
Q
FS encountered both for the free-fermion CFT in Section 3.3.1 and the

GN model in Section 3.3.2. Importantly, no Fermi-sphere ground state arises in the finite axial-chemical

potential and zero baryon-chemical potential sector of the U (1)-NJL model, as all charge is contained

within the superfluid condensate.

It is important to investigate whether a superfluid ground state also arises at finite U (1)B baryon charge.

Unfortunately, at zero U (1)A charge density with chemical potential µA = 0 and finite U (1)B charge

density with chemical potential µB ̸= 0 we recover precisely the same eigenvalues already appearing in

the GN model at finite U (1)B charge density, see Section 3.3.2,

ω± =
√

p2 +〈Φ〉2 ±µB . (3.245)

This again describes a Fermi-sphere ground state with charge and energy density given as in Eq. (3.212),

hence corresponding to the same Fermi-sphere operator O
Q
FS within the CFT.

There exists the possibility that a transition between a superfluid ground state and a Fermi-sphere

ground state occurs somewhere in the (µA ,µB ) phase diagram, where the U (1)A symmetry is restored

even for finite values ofµA . The question as to whether or not this transition exists is certainly interesting

and worth investigating. It will be particularly relevant to describe large-charge operators within the

CFT given by the critical U (1)-NJL theory that are charged under both of the U (1) symmetries. As we

are focussing on operators which are only charged under a single U (1), in the context of this chapter

the existence or non-existence of this transition is irrelevant.

Spectrum of fluctuations for the Nambu–Jona–Lasinio model

After having identified the large-charge ground state at finite U (1)A chemical potential as a superfluid,

we can study the spectrum of fluctuations on top if it. In particular, we can expect to find the superfluid

phonon — equipped with the dispersion relation ω=−|p|/2+ . . . and paired with a massive mode of

mass of order µ — which is well-known from the discussion of the large-charge EFT description in

Chapter 2 and also found in the O(2N ) vector model at large N in Section 3.1.6. To do so, we again work

in flat space.

As we have shown, fixing the axial charge in the U (1)-NJL model leads to a non-trivial VEV 〈Φ〉 ̸= 0

for the fieldΦ. From the form the of the functional determinant in Eq. (3.236) we can deduce that all

fermions in the theory acquire a mass of order µ,

m2
F =µ2 +〈Φ〉2 = κ2

0µ
2 , (3.246)

implying that the U (N ) flavour symmetry remains unbroken, while the U (1)A axial symmetry is

spontaneously broken.
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The large-charge EFT predictions outlined in Section 2.2 can be verified in the present model explicitly

by computing the sub-leading in the 1/N expansion of the functional determinant, which is quadratic

in the fluctuations Φ̂,Φ̂∗ of the collective field and gives the propagator of said fluctuations over the

vacuum 〈Φ〉. For our purposes, it is most convenient to decompose the fluctuations into real and

imaginary parts,

Φ̂= σ̂+ i π̂ . (3.247)

In order to identify the spectrum of fluctuations over the condensate 〈Φ〉, we compute the inverse

propagator of the fields σ̂, π̂ at the one-fermion-loop order. The large-N action around the vacuum 〈Φ〉,
which we assume to be real, is given by

Seff =
∫

d3x

[
Ψ̄i

(
Γν∂

ν+〈Φ〉−µΓ3Γ5

)
Ψi + 1p

N
(σ̂Ψ̄iΨi + i π̂Ψ̄iΓ5Ψi )

]
, 〈Φ〉 =µ

√
κ2

0 −1. (3.248)

The momentum-space representation of the fermionic propagator reads

D̃(µ,〈Φ〉)(P ) = (− iΓνPν+〈Φ〉−µΓ3Γ5
)−1 =

(
ω2 +k2 +〈Φ〉2 −µ2 +2µ(iωΓ3 +Φ0)Γ3Γ5

)(
ω2 +〈Φ〉+ (µ+k)2

)(
ω2 +〈Φ〉2 + (µ−k)2

) (
iΓνPν+〈Φ〉−µΓ3Γ5

)
,

(3.249)

where P = (ω,p) denotes the momentum in flat space at zero temperature. Due to the absence of any

Fermi-sphere contribution we can without obstruction directly work at zero temperature β→∞ and

omit all of the temperature-dependent contributions at the start of the computation. Hence, we can

also consider the Matsubara frequencies as continuous ωn →ω. Also note that the fermion propagator

is properly anti-symmetric,

D̃ (µ,〈Φ〉)(−P ) =−D̃ (−µ,−〈Φ〉)(P ) . (3.250)

Via the fermionic propagator D (µ,〈Φ〉)(P ) we can derive the inverse propagator for the scalar fluctuations

σ̂, π̂ in terms of the following momentum-space loop integrals:

K,µ,Φ0

P − K,−µ,−Φ0

I I = G̃−1
σσ(P ) =−

∫
d3k

(2π)3 Tr
[
D̃ (µ,〈Φ〉)(K )D̃ (−µ,−〈Φ〉)(P −K )

]
, (3.251)

K,µ,Φ0

P − K,−µ,−Φ0

I iΓ5 = G̃−1
σπ(P ) =−i

∫
d3k

(2π)3 Tr
[
D̃ (µ,〈Φ〉)(K )Γ5 D̃ (−µ,−〈Φ〉)(P −K )

]
, (3.252)

K,µ,Φ0

P − K,−µ,−Φ0

iΓ5 I = G̃−1
πσ(P ) =−i

∫
d3k

(2π)3 Tr
[
Γ5 D̃ (µ,〈Φ〉)(K )D̃ (−µ,−〈Φ〉)(P −K )

]
, (3.253)

K,µ,Φ0

P − K,−µ,−Φ0

iΓ5 iΓ5 = G̃−1
ππ(P ) =

∫
d3k

(2π)3 Tr
[
Γ5 D̃ (µ,〈Φ〉)(K )Γ5 D̃ (−µ,−〈Φ〉)(P −K )

]
. (3.254)
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All of the above loop integrals can be conveniently expanded in the regime (P/µ) ≪ 1, which we care

about while extracting the dispersion relations. Note that the zeroth order corresponds to the P = 0

result and needs to be regularized by subtracting the corresponding expression at µ = 0, since the

divergence is always µ-independent. For details on the computations see Appendix C.7.3. The result

for the zeroth order in P of the above loop integrals reads

G̃−1(P )
∣∣∣
O (0)

=
(

G̃−1
σσ(0) G̃−1

σπ(0)

G̃−1
πσ(0) G̃−1

ππ(0)

)
= κ0µ

π

(
1 0

0 0

)
, (3.255)

where the coefficient κ0 is again given by the solution to κ0 tanh(κ0) = 1 and we have 〈Φ〉 =µ
√
κ2

0 −1.

Expectedly, beyond the zeroth order no regularization is required any more. The linear order in P reads

G̃−1(P )
∣∣∣
O (P/µ)

=ω κ0

2π

(
0 −1

1 0

)
, (3.256)

and the quadratic order is given by

G̃−1(P )
∣∣∣
O (P 2/µ2)

=

 (2κ2
0−1)ω2

12πκ0(κ2
0−1)µ

+ (3κ6
0−2κ4

0−2κ2
0+2)p2

24πκ3
0(κ2−1)µ

0

0 κ0ω
2

4π(κ2
0−1)µ

+ κ3
0p2

8π(κ2
0−1)µ

 . (3.257)

The dispersion relations of the fluctuation modes on top of the superfluid ground state are extracted

from the zeroes of the inverse propagator, which is given by the matrix

G̃−1(P ) =

κ0µ
π + 2κ2

0

(
2κ2

0−1
)
ω2+(

3κ6
0−2κ4

0−2κ2
0+2

)
p2

24πκ3
0

(
κ2

0−1
)
µ

− κ0
2πω

κ0
2πω

2κ0ω
2+κ3

0p2

8π(κ2
0−1)µ

+O
(
P 3/µ3) . (3.258)

They are computed to be

ω2
1 =−1

2
p2 + . . . , (3.259)

ω2
2 =−12

(
κ2

0 −1
)
κ4

0(
2κ2

0 −1
) µ2 −

(
5κ6

0 −5κ4
0 −κ2

0 +2
)

2κ2
0(2κ2

0 −1)
p2 + . . . . (3.260)

We directly recognize the expected massless conformal superfluid NG mode with speed of sound

c2
s = 1/2. Additionally, and also as expected from the EFT approach, we find a gapped NG mode of mass

of order O (µ).

The result in Eq. (3.259) can be considered as one of the main results of this section, constituting one of

the main prediction from the EFT approach outlined in Section 2.2 and hence providing strong evidence

for the idea that the large-charge superfluid EFT approach can be applied to the large-axial-charge

sector of the U (1)-NJL model.

164



3.3 From Fermi spheres to superfluids: Fermionic CFTs at large charge and large N

Conformal dimensions and local CFT spectrum for the NJL model

To compute the scaling dimension ∆SF(Q) of the lowest-lying operator O
Q
SF of fixed U (1)A charge Q

(and zero U (1)B charge) within the CFT living at the critical point of the U (1)-NJL model we now leave

flat space and put the theory on the cylinder R×S2
r0

. On the cylinder we can take advantage of the

state–operator correspondence to relate the superfluid ground-state energy fc (Q) at fixed U (1)A charge

to the scaling dimension ∆SF(Q) of the associated operator.

As discussed, in the U (1)-NJL model the ground state at finite U (1)A charge is a superfluid, while at

finite U (1)B charge it is a Fermi sphere. We focus on the superfluid case, as the Fermi-sphere case

works equivalently to the GN model at finite U (1)B charge discussed in Section 3.3.2 and also produces

exactly the same results.

At criticality and in the zero-temperature limit the grand potentialΩ(µ) at finite U (1)A density reads

Ω(µ) =− 1

2V

∞∑
j= 1

2

(2 j +1)
[
ω++ω−

]
, ω2

± = 〈Φ〉2 + (
ω j ±µ

)2 , (3.261)

where ω j = ( j +1/2)/r0 are the eigenvalues of the Dirac operator on the sphere and V =Ω3r 2
0 = 4πr 2

0 is

the volume of the two-sphere. Following the standard procedure outlined in Eq. (3.183), we determine

the axial charge Q and the scaling dimension ∆SF(Q) of the superfluid large-charge operator O
Q
SF,

Q

2N
= 1

2

∞∑
j= 1

2

(2 j +1)

[
ω j +µ
ω+

− ω j −µ
ω−

]
, (3.262)

∆SF(Q)

2N
= fc (Q) =− r0

2

∞∑
j= 1

2

(2 j +1)
[
ω++ω−

]
+ (µr0)

Q

2N
. (3.263)

The assumed to be real VEV of the auxiliary field 〈Φ〉 needs to be evaluated on the solution of the

gap equation ggap(〈Φ〉) = 0 on the sphere, (we note that the flat space solution in Eq. (3.238) will only

reproduce the leading-order result for the VEV on the sphere)

ggap(〈Φ〉) := 1

2r0

∞∑
j= 1

2

(2 j +1)

[
1

ω+
+ 1

ω−

]∣∣∣∣∣∣
Φ=Φ0

= 0. (3.264)

While the charge Q is given by a finite expression, the expressions for the scaling dimension ∆SF(Q) and

the gap equation ggap(〈Φ〉) are formally divergent and need to be properly regularized. We choose here

to regularize all expressions by removing the leading divergence in the sums and adding them back

later in a zeta-function regulated version. Following this procedure we find that

ggap(〈Φ〉)∣∣(reg) = 1

2

∞∑
j= 1

2

[
(2 j +1)

1

r0

[ 1

ω+
+ 1

ω−

]
−4

]
+2ζ(0) , (3.265)

∆SF(Q)

2N

∣∣∣(reg) =−1

2

∞∑
j= 1

2

[
(2 j +1)r0

[
ω++ω−

]
−4r 2

0ω
2
j −2r 2

0 〈Φ〉2
]
− r 2

0 〈Φ〉2ζ(0)+ (µr0)
Q

2N
. (3.266)

Since all of the infinite sums are convergent now, the regulated expressions are amenable to numerical
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Chapter 3. The large charge expansion in the large N limit of QFT

� �� �� �� ��
�

��

���

���

Figure 3.8: Scaling dimensions ∆FS and ∆SF of the Fermi-sphere primary operator O
Q
FS, appearing both

in the GN and NJL models as well as the free fermion CFT at finite U (1)B charge Q, and the superfluid
primary operator O

Q
SF, appearing in the NJL model at finite U (1)A charge Q (and the Cooper model at

finite U (1)B charge Q). We have divided all expressions by a factor of 2N . Importantly, the Fermi-sphere
operator OFS is only defined for values of the charge Q corresponding to a filled Fermi sphere, see
Eq. (3.221).

analysis for arbitrary values of the charge Q. Additionally, the first few terms in the expansions of∆SF(Q)

at Q/2N ≫ 1 and Q/2N ≪ 1 can be computed analytically.

We plot the numerical result for the scaling dimension ∆SF(Q) at finite U (1)A charge Q in Figure 3.8 and

compare it to the scaling dimension ∆FS(Q) of the Fermi-sphere operator O
Q
FS with finite U (1)B charge

Q, which appears both in the NJL and GN model at finite U (1)B and zero U (1)A chemical potential.

Q/2N ≫ 1

There are three dimensionful parameters appearing in Eq. (3.262) and Eq. (3.264) at finite U (1)A charge

— given by µ,r0,〈Φ〉 — but only two dimensionless ratios,

µr0 , r0〈Φ〉 . (3.267)

In the large-charge limit Q/2N ≫ 1 the chemical potential µ represents the dominant scale, so that

µr0 ≫ 1. (3.268)

In the limit of large chemical potential the solution 〈Φ〉 to the gap equation ggap(〈Φ〉) = 0 in Eq. (3.264)

can be expanded into an expression of the form

r0〈Φ〉 =
√
κ2

0 −1

(
µr0 + κ1

µr0
+ κ2

(µr0)3 + . . .

)
. (3.269)
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3.3 From Fermi spheres to superfluids: Fermionic CFTs at large charge and large N

Expectedly, this represents an expansion in 1/r 2
0 since the radius r0 of the two-sphere S2

r0
only enters

via the conformal mass involving the scalar curvature R (which has engineering dimension [R] = 2).

In order to derive the precise values of the coefficients κi we have to solve the gap equation,

ggap(〈Φ〉) = ggap(〈Φ〉)∣∣(reg) + ggap(〈Φ〉)∣∣(div) = 0, (3.270)

where we have conveniently separated the expression for the gap equation into its regular and divergent

parts,

ggap(〈Φ〉)∣∣(reg) = ∑
ℓ=1

ℓ

[
1√

(ℓ+µr0)2 + (r0〈Φ〉)2
+ 1√

(ℓ−µr0)2 + (r0〈Φ〉)2
−2

1√
ℓ2 + (r0〈Φ〉)2

]
, (3.271)

ggap(〈Φ〉)∣∣(div) = 2
∑
ℓ=1

ℓ
1√

ℓ2 + (r0〈Φ〉)2
. (3.272)

We note that in order to write down these expressions we have also shifted the summation convention
in Eq. (3.264) to j = ℓ−1/2. The regular part of the gap equation can now be computed in an asymptotic
expansion around µr0 ≫ 1 using the standard Euler–Maclaurin formula and expressed in terms of the
coefficients κi in Eq. (3.269),

ggap(〈Φ〉)∣∣(reg) = 2µr0

[
−κ0 +

√
κ2

0 −1+arccoth(κ0)

]
+ 1

6µr0

[
− 1

κ0
−12κ0κ1 +

1+12(κ2
0 −1)κ1√

κ2
0 −1

]
+ . . . . (3.273)

The divergent part needs regularization, which we perform using the zeta-function procedure. This

results in59

ggap(〈Φ〉)∣∣(div) = 2
∞∑
ℓ=1

ℓ(ℓ2 + r 2
0 〈Φ〉2)−s

∣∣∣∣
s=1/2

= 2

Γ(s)

∫ ∞

0

dt

t
t s

∞∑
ℓ=1

ℓe−(ℓ2+r 2
0 〈Φ〉2)t

∣∣∣∣
s=1/2

. (3.274)

Evidently, as can be seen from the flat space result in Eq. (3.238) that coincides with the leading

expression on the sphere, in the limit µr0 ≫ 1 we also necessarily have r0〈Φ〉 ≫ 1. Hence, the zeta-

function regulated expression for the divergent part ggap|(div) can be obtained in an expansion around

〈Φ〉r0 ≫ 1. In this limit the zeta-function integral in the above expression localizes around t = 0. The

appropriate expression for the asymptotic expansion is therefore found by expanding the integral

around t = 0 using the standard t-expansion formula for the sum over ℓ given by

∞∑
ℓ=1

ℓe−ℓ
2t = e−t

12

(
2t +5+ 6

t
+ . . .

)
. (3.275)

The resulting expression for the divergent part reads

ggap(〈Φ〉)∣∣(div) =−2r0〈Φ〉− 1

6r0〈Φ〉
− 1

120(r0〈Φ〉)3 + . . . . (3.276)

After inserting the Ansatz in Eq. (3.269) into ggap|(div) we can now solve the full gap equation ggap|(reg) +
ggap|(div) = 0 order by order in µr0 and find the precise values of the coefficients κi .

59It can be easily checked that these expansions coincide with the cut-off-independent part in a smooth cut-off regularization
scheme.
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Chapter 3. The large charge expansion in the large N limit of QFT

As expected, the first coefficientκ0 satisfies the irrational equationκ0 tanh(κ0) = 1. The other coefficients

κi>0 can be written in terms of the irrational number κ0 ≈ 1.19968,

κ0 tanhκ0 = 1, κ1 =− 1

12κ2
0

, κ2 =
33−16κ2

0

1′440κ6
0

, . . . . (3.277)

We can then apply the same strategy to the computation of the divergent sum appearing in the scaling

dimension in Eq (3.262), which comes from the thermodynamic potentialΩ(µ). We therefore divide

Ω(µ) into two contributions, divergent and regular,

VΩ(µ)
∣∣(reg) =− ∑

ℓ=1
ℓ

[√
(ℓ+µr0)2 + (r0〈Φ〉)2 +

√
(ℓ−µr0)2 + (r0〈Φ〉)2 −2

√
ℓ2 + (r0〈Φ〉)2

]
, (3.278)

VΩ(µ)
∣∣(div) =−2

∞∑
ℓ=1

ℓ

√
ℓ2 + (r0〈Φ〉)2 . (3.279)

The regular part can be evaluated using the Euler–Maclaurin formula and to leading order reads

VΩ(µ)
∣∣(reg) =− (r0µ)3

3

(
3(κ2

0 −1)arccoth(κ0)+3κ0 −2κ3
0 +2(κ2

0 −1)
3
2

)
+ . . . . (3.280)

The divergent part is again treated in zeta-function regularization. After performing the regularization

it reads

VΩ(µ)
∣∣(div) = 1

2

[
4(r0〈Φ〉)3

3
+ r0〈Φ〉

3
− 1

60r0〈Φ〉
+ . . .

]
, (3.281)

which can be written as a function of r0µ using Eq. (3.269) and Eq. (3.277).

After inverting the expression for the charge Q in Eq. (3.262) we obtain the relation µ=µ(Q). Since the

sum in the expression for Q =Q(µ) is already convergent, we can simply apply the Euler–Maclaurin

formula to invert it. After combining the relation µ=µ(Q) with the result of the gap equation ggap in

Eq. (3.269) and the coefficients κi in Eq. (3.277) we can finally compute the asymptotic expansion of

the scaling dimension ∆SF(Q) for the superfluid primary operator O
Q
SF in the limit Q/2N ≫ 1,

∆SF(Q)

2N
= 2

3

(
Q

2Nκ0

)3/2

+ 1

6

(
Q

2Nκ0

)1/2

+ 11−6κ2
0

720κ2
0

(
Q

2Nκ0

)−1/2

+ . . . . (3.282)

We note that the leading term is consistent with the expression for the ground state free energy density

fc (Q)/V found in flat space in Eq. (3.244). As usual, we can think of the sub-leading terms in the LCE as

an expansion in the scalar curvature, with the leading term depending only on the volume V = 4πr 2
0 of

the two-sphere.

The form of the scaling dimension∆SF(Q) is again consistent with the predictions from the large-charge

EFT in Section 2.2: the asymptotic expansion of ∆SF(Q) is consistent with the general form of the

classical contribution to the scaling dimension expected from the structure of the EFT Lagriangian. In

the spirit of the discussion around Eq. (3.56), the unknown Wilsonian coefficients ci of the corresponding

superfluid EFT describing the large-axial-charge sector of the U (1)-NJL model can be computed to
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3.3 From Fermi spheres to superfluids: Fermionic CFTs at large charge and large N

leading order in N and depend on the irrational number κ0.

The conformal NG mode, whose existence we have demonstrated in Eq. (3.259), is present for any value

of N and gives rise to the same universal contribution to the scaling dimension at order O (Q0) discussed

around Eq. (2.87) within the EFT approach. In the large-N expansion this contribution appears at order

O (N 0), consistent with what we find for the O(2N ) vector model in Section 3.1. Consequently, the

excitations of the conformal NG mode generate the spectrum on top of the superfluid ground state, i.e.

in terms of the flat space CFT on top of the primary operators O
Q
SF.

Q/2N ≪ 1

Unsurprisingly, the scaling dimension ∆SF(Q) is analytically accessible in the limit Q/2N ≪ 1 as well.

Due to conformal invariance, at Q = 0 the free energy has to vanish as this point corresponds to the

conformal dimension associated with the identity operator, which is the unique operator in the CFT

with vanishing conformal dimension. Within the description of the theory in terms of the collective

scalar fieldΦwe have to consider the conformal mass of said scalar field coming from the conformal

coupling to the curved background of the cylinder. This corresponds to a mass m = 1/2r0 for the field

Φ on the three-dimensional cylinder. In our description of the theory there is no explicit mass term

present and hence the conformal mass ofΦ has to come from the chemical potential µ (compare this

to the Q/2N ≪ 1 regime for the O(2N ) model discussed in Section 3.1.4). In fact, a direct computation

shows that for the chemical potential equal to the conformal mass — µ= 1/2r0 — the free energy and

the charge both vanish and the gap equation ggap = 0 is solved by a vanishing VEV 〈Φ〉 = 0.

As a consequence, the small-charge expansion has to be performed around the point µ= 1/(2r0) and it

is convenient for us to write µ as

µ= 1

2r0
+ µ̂ . (3.283)

We can then expand all expressions in Eq.(3.262) around µ̂ ≪ 1 to find the correct small-charge

expansion of the scaling dimension. At the point µ̂ = 0 there is full symmetry restoration as the

auxiliary fieldΦ does not acquire a VEV. This observation allows us to write an Ansatz for the VEV of

the fieldΦ of the form

µ̂=µ2〈Φ〉2r0 +µ4〈Φ〉4r 3
0 + . . . . (3.284)

Evidently, in the limit µ̂≪ 1 we have r0〈Φ〉≪ 1, so that the corresponding charge Q can be expanded in
r0〈Φ〉≪ 1 and becomes

Q

2N
= π2

4
(r0〈Φ〉)2 − π2

16
(π2 −16µ2)(r0〈Φ〉)4 + π2

48

(
π4 +12π2(µ2

2 −2µ2)+48µ4

)
(r0〈Φ〉)6 + . . . . (3.285)

We note that this expression manifestly vanishes for 〈Φ〉 = 0. Solving the gap equation order-by-order in

small µ̂ allows us to determine the coefficients µi appearing in Eq. (3.284). For this purpose, once again,

the gap equation is separated into a divergent and a convergent part. Both of them admit a well-defined

expansion in the limit r0〈Φ〉≪ 1. However, in contrast to the computation in the large-Q regime, we

subtract the µ̂= 0 contribution instead of the µ= 0 contribution. The convergent part becomes

ggap(〈Φ〉)∣∣(reg) = π2

2
µ2(r0〈Φ〉)2 − π2

4
(π2µ2 −4µ2

2 −2µ4)(r0〈Φ〉)4 + . . . . (3.286)
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Chapter 3. The large charge expansion in the large N limit of QFT

The divergent part is regularized order-by-order using zeta-function regularization and reads as follows:

ggap(〈Φ〉)∣∣(div) =
∞∑
ℓ=0

(2ℓ+1)
1√(

ℓ+ 1
2

)2 + (r0〈Φ〉)2

= 2
∑
ℓ=0

(
ℓ+ 1

2

) ∑
k=0

(
−1/2

k

)
(r0〈Φ〉)2k(

ℓ+ 1

2

)2(− 1
2 −k)

= 2
∑
k=0

(
−1/2

k

)
(r0〈Φ〉)2kζ

(
2k;

1

2

)=−π
2(r0〈Φ〉)2

2
+ π4(r0〈Φ〉)4

8
+ . . . ., (3.287)

where ζ(s; a) denotes the Hurwitz zeta function. Putting together ggap|(reg) and ggap|(div) we can now

solve for the coefficients µi . The first two coefficients µ1, µ2 are given by

µ2 = 1, µ4 = π2 −8

4
, . . . . (3.288)

We then apply the same procedure to compute the divergent sums appearing in the scaling dimension

∆SF(Q) in Eq. (3.262), i.e. the grand potentialΩ(µ) since the charge Q is convergent. Again, the grand

potential is divided into two quantitiesΩ
∣∣(reg) +Ω∣∣(div) given by

VΩ(µ)
∣∣(reg) =− ∑

ℓ=1
ℓ

[√(
ℓ+ 1

2
+ µ̂r0

)2 + (r0〈Φ〉)2 +
√(

ℓ− 1

2
− µ̂r0

)2 + (r0〈Φ〉)2

−
√(

ℓ+ 1

2

)2 + (r0〈Φ〉)2 +
√

(ℓ− 1

2

)2 + (r0〈Φ〉)2

]
,

(3.289)

VΩ(µ)
∣∣(div) =−2

∞∑
ℓ=1

(
ℓ+ 1

2

)√(
ℓ+ 1

2

)2 + (r0〈Φ〉)2 . (3.290)

The regular partΩ
∣∣(reg) is dealt with by expanding the expression inside the sum in the limit (r0〈Φ〉) ≪ 1.

After performing the expansion, at leading order it reads

VΩ(µ)
∣∣(reg) = 1

2

[
π2

2
µ2(r0〈Φ〉)4 + . . .

]
. (3.291)

The divergent part of the grand potential instead is regularized order-by-order using zeta-function

regularization. It can be written in terms of Hurwitz zeta functions ζ(s; a) and to leading order it reads

VΩ(µ)
∣∣(div) =−2

∞∑
ℓ=0

(
ℓ+ 1

2

) ∑
k=0

(
1/2

k

)
(r0〈Φ〉)2k(

ℓ+ 1

2

)2
(

1
2 −k

)

=−2
∑
k=0

(
1/2

k

)
(r0〈Φ〉)2kζ

(
2k −2;

1

2

)= π2

8
(r0〈Φ〉)4 + . . . .

(3.292)

We are left with inverting the condition Q =Q(〈Φ〉),

r0〈Φ〉(Q) = 2

π

(
Q

2N

)1/2

+ π2 −16

π3

(
Q

2N

)3/2

+ . . . , (3.293)
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and the conformal dimension ∆SF(Q) in the limit of small charge is then given by

∆SF(Q)

2N
= 1

2

(
Q

2N

)
+ 2

π2

(
Q

2N

)2

+ . . . . (3.294)

As expected, since the collective field Φ has charge two, the leading order result at small charge —

∆SF(Q) =Q/2 — gives the correct relation for the scaling dimension of the operatorΦQ/2 in terms of its

charge in the free mean-field limit. This also consistent with the associated result found for the O(2N )

vector model in Section 3.1.4.

3.3.4 SU(2): A generalization of the NJL model

A direct generalization of the U (1)-NJL model is found by replacing the U (1)A axial symmetry to a

SU (2)L ×SU (2)R symmetry [283, 284]. We refer to this model as the SU (2)-NJL model, but it is also

known as the isoNJL model. It can be constructed by doubling number of fermions present in the

U (1)-NJL model — which is done in terms of introducing two-flavour fermionsΨi , f , f = 1,2 — and

arranging them in an action of the form

S[Ψi , f ] =
∫

d3x

[
N∑

i=1

2∑
f =1

Ψ̄i , f Γ
µ∂µΨi , f −

g

N

[(
N∑

i=1

2∑
f =1

Ψ̄i , f Ψi , f

)2

−
3∑

a=1

(
N∑

i=1

2∑
f =1

Ψ̄i , f Γ5σ
a
f gΨi ,g

)2]]
,

(3.295)

where the (2×2)-matrices σa , a = 1,2,3 are the three Pauli-matrices, the generators of the SU (2) Lie

algebra. The fermionic fieldsΨi , f in D = 3 used to write down the action of the model are still given by

spinors in the usual four-dimensional reducible representation, see the beginning of Section 3.3.1 and

Appendix C.4.3 for details. In contrast to the SU (N )×U (1)B×U (1)A symmetry exhibited by the U (1)-NJL

model from the previous Section 3.3.3, the SU (2)-NJL model boasts a SU (N )×U (1)B ×SU (2)L ×SU (2)R

symmetry. In particular, the U (1)B ×SU (2)L ×SU (2)R subgroup will be of relevance to us, with the

SU (N ) part being mostly there to allow for a large-N analysis, just as in the U (1) case.

The global (sub)group SU (2)L ×SU (2)R acts linearly on the two-flavour four-dimensional fermions

Ψi , f as

Ψi , f → e
i

1+Γ5
2 ωa

Lσ
a
f gΨi ,g , and Ψi , f → e

i
1−Γ5

2 ωa
Rσ

a
f gΨi ,g . (3.296)

We note that this symmetry can only be present due to the pseudo-real character of the non-Abelian

Lie group SU (2), as for SU (2) the totally symmetric symbol d abc vanishes.

Analogously to its U (1) counterpart, the SU (2)-NJL model is tractable in D = 2+ ϵ, D = 4− ϵ via its

Yukawa-type UV completion. The SU (2)-Yukawa-NJL model is found by introducing a set of four real

scalar fields σ,πa=1,2,3 resulting in the action

S[Ψi ,σ,πa] =
∫

d3x

[
Ψ̄i

(
Γµ∂µ+σ+ iπaσaΓ5

)
Ψi + 1

2gY

(
∂µσ∂

µσ+∂µπa∂µπa
)]

. (3.297)
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For 2 < D < 4 the Yukawa-type model described by this action flows in the IR to the same critical point

as the SU (2)-NJL model in the UV. Naturally, in the far IR at gY →∞ of the SU (2)-Yukawa-NJL model

in Eq. (3.297) the fields σ, πa can be understood as non-dynamical scalar collective fields introduced by

a HS transform in the SU (2)-NJL model in Eq. (3.295). On the action in Eq. (3.297) the SU (2)L ×SU (2)R

symmetry acts infinitesimally as

δL,RΨ= i

(
(1±Γ5)

2

)
ωaσaΨ ,

{
δL,Rσ=±ωaπa ,

δL,Rπ
a =∓ωaσ+ϵabcπbωc .

(3.298)

The four scalar fields can be conveniently combined into a quaternionic fieldΦ=σ+πaσa on which

the SU (2)L ×SU (2)R symmetry in terms of finite transformations acts linearly,{
Ψi → e i

(1+Γ5)
2 ωaσa

Ψi ,

Φ→Φe−iωaσa
,

{
Ψi → e i

(1−Γ5)
2 ω′aσa

Ψi ,

Φ→ e iω′aσa
Φ .

(3.299)

Symmetry-breaking at large N : Leading-order action and gap equation

The symmetry-breaking for the SU (2)L×SU (2)R at first glance can be expected to be more complex than

its U (1) counterpart. We have three linearly independent charge densities — U (1)B , SU (2)L , SU (2)R —

that we can source. At finite U (1)B charge there is no symmetry breaking and the ground state is again

a Fermi sphere, just as in the GN or the U (1)-NJL model, with the difference that the number of DoF is

now doubled (see the discussion of the GN model in Section 3.3.2 for details). Hence, we focus in the

model at finite chemical potential for the σ3 and Γ5σ
3 Cartan generators of the SU (2) symmetries. The

critical action in flat space at finite chemical potential for either of symmetry generators reads

S[Ψi ,σ,πa] =
∫

d3x

S1
β
×R2

[
Ψ̄i

(
Γν∂

ν+σ+ iπaσaΓ5 −
{
µV Γ3σ

3

µAΓ3Γ5σ
3

})
Ψ

]
, (3.300)

where σa , a = 1,2,3 again denotes the Pauli matrices and σ itself is one of the auxiliary HS fields. We

assume that the auxiliary fields all admit a constant VEV and can be decomposed into said VEV plus

fluctuations sub-leading in N . The grand potentialΩV ,A(µV ,A) for the two different choices of chemical

potential is given by

ΩV ,A(µV ,A) =−
∫ Λ d2p

(2π)2

[
ωV ,A
+ +ωV ,A

− + 2

β
log

(
1+e−βω

V ,A
+

)
+ 2

β
log

(
1+e−βω

V ,A
+

)]
, (3.301)

where we have introduced the one-particle on-shell energies given by

ωV
± =

√
|〈Φ2〉|2 +

(√
|p|+ |〈Φ1〉|±µV

)2
, ΩA

± =
√
|〈Φ1〉|2 +

(√
|p|+ |〈Φ2〉|±µA

)2
, (3.302)

with |〈Φ1,2〉|2 given by certain linear combinations of the VEVs of the fields σ,πa ,

|〈Φ1〉|2 = 〈σ〉2 +〈π3〉2 , |〈Φ2〉|2 = 〈π1〉2 +〈π2〉2 . (3.303)
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In both cases there exists no non-trivial solution for the zero temperature gap equations in which both

linear field combinations Φ1,2 acquire a VEV. At finite µV chemical potential one finds the solution

|〈Φ1〉| = 0, |〈Φ2〉| = µV

√
κ2

0 −1, where κ0 is precisely the same irrational number found for the U (1)-

NJL model in Eq. (3.238), while at finite µA chemical potentials the values of the two VEVs 〈Φ1,2〉 are

reversed. As discussed, a finite U (1)B chemical potential does not lead to SSB at finite density and zero

temperature.

In both cases µV ,A ̸= 0 the one-particle on-shell energies are positive for any value of the momentum

|p|, hence no Fermi sphere arises. There is a condensate and we find the same superfluid regime as for

the U (1)-NJL model in Eq. (3.238) leading to the same results for the charge and energy density, see

Section 3.3.3 for more details.60 The only difference is an overall factor of two coming from the fact that

there are now twice as many DoF.

Finally, we can compute the ground state solutions for finite left/right chemical potentials µL,R , which

are sourcing the charge densities Ψ̄i (1±Γ5)Γ3σ
3Ψi , respectively. Interestingly, the result in both cases

for µL,R ̸= 0 is that the ground state is a filled Fermi sphere, and hence no SSB arises.

Spectrum of fluctuations for the SU (2)-NJL model: Symmetry breaking patterns and NG modes

Analysing and computing the spectrum of fluctuations on top of the superfluid ground state in the

SU (2)-NJL model can be performed analogously to how it is done in the case of the U (1)-NJL model

for both cases µV ,A ̸= 0. The main difference is that there are now four real scalar fields instead

of two entering the calculations for the inverse propagator in Eq. (3.251). Fortunately, the inverse

propagator is block-diagonal, consisting of two non-trivial 2×2 blocks. These blocks get exchanged

in the computation for the two cases µV ,A ̸= 0. One of the 2×2 blocks produces the same spectrum of

fluctuations found for the U (1)-NJL model, the superfluid NG mode and its gapped counterpart. The

other produces two extra degenerate gapped modes with mass of order µV ,A and dispersion relation

ω2 =−4κ2
0µ

2 −
(
κ2

0 −1
)

p2

κ2
0

+ . . . . (3.304)

Based on these results we can formally conclude that the same conformal superfluid EFT — in the

spirit of Section 2.2.1 — describes the fluctuations on top of the large-charge ground state of both the

U (1)-NJL model and the SU (2)-NJL model.

It appears that the large-charge sectors of the U (1)-NJL and SU (2)-NJL models are identical. No new

NG boson with potentially quadratic dispersion relation is found in the spectrum of fluctuations of

the SU (2)-NJL model, with the two newly-appearing gapped modes exhibiting an unbroken U (1)

invariance. As we will discuss now, this observation is in fact consistent with the NG boson counting

rules outlined in Section 1.2.

60It seems reasonable to expect that there is again a very natural explanation for the presence of the condensate in terms of a
dual model, just like for the U (1)-NJL and the Cooper model. It seems certainly feasible to find a transformation similar to the PG
transformation in Eq. (3.230) for the SU (2)-NJL model.
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Chapter 3. The large charge expansion in the large N limit of QFT

We consider the formal macroscopic limit r0 →∞ for the theory situated on the cylinder R×S2
r0

. In this

limit we can label the spacetime generators on the cylinder using a flat-space notation, see [18]. The

actions for the U (1)- and SU (2)-NJL models in Eq. (3.231) and Eq. (3.300) at zero chemical potential

and at criticality possess the total symmetries

SO(4,1)conf ×SU (N )×U (1)B ×
{

U (1)A (U (1)-NJL) ,

SU (2)L ×SU (2)R (SU (2)-NJL) ,
(3.305)

including both global and spacetime symmetries. To study the models at finite density we introduce the

respective axial chemical potential terms, where we denote the chemical potentials as µ for U (1)-NJL

and as µA for SU (1)-NJL (since there are two distinct chemical potentials µV ,A). The addition of these

terms to the respective actions explicitly breaks some of the original symmetries and reduces the total

symmetries of the two models to

Rτ×SO(3)rot ×SU (N )×U (1)B ×
{

U (1)A (U (1)-NJL) ,

U (1)(3)
A ×U (1)(3)

V (SU (2)-NJL) ,
(3.306)

where Rτ denotes cylinder-time translation symmetry and SO(3)rot are the isometries of the unit sphere

S2
1, and U (1)(3)

A,V are the global Abelian symmetries generated by the Cartan generators Γ5σ
3 and σ3

of the two global SU (2) symmetries in the SU (2)-NJL model (the Cartans of SU (2)L × SU (2)R ). In

both cases the large-N ground state spontaneously breaks time translation Rτ and the U (1)A global

symmetry, while keeping the linear combination corresponding to the helical generators H +µQ intact.

This is the typical setting in which SSB of a global internal symmetry group occurs at finite density in a

not necessarily Lorentz-invariant theory.61

As discussed in Section 1.2.5, in this setting the counting of NG bosons is non-trivial, unlike in the

Lorentz-invariant case [34, 36, 37, 106, 285]. As in both the U (1)-NJL model and the SU (2)-NJL model

we find a single broken generator, there is only one NG mode exhibiting a linear dispersion relation

that can appear. Here, this is the well-known conformal superfluid NG boson.62

The only difference between the two NJL models is found in the additional gapped sector present in the

SU (2)-NJL model. The fluctuations on top of the ground state in the SU (2)-NJL additionally contain

two degenerate gapped NG modes which combine into a complex scalar that is charged under the

unbroken U (1)(3)
V symmetry. In the case of the SU (2)-NJL model at finite vector chemical potential this

analysis remains the same, however, the U (1)(3)
A and U (1)(3)

V symmetries switch roles.

61Strictly speaking, Eq. (3.306) describes the (Euclidean) cylinder equivalent of a theory that is not invariant under Lorentz-
boost.

62The above argument hides the fact that the underlying CFT is Lorentz invariant. Alternatively, we might think of boosts and
time translation to be spontaneously broken at finite density. In this picture, the counting of NG modes remains consistent as the
spontaneously broken spacetime symmetries (boosts and time translation) do not result in additional NG modes at finite density.
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Conformal dimensions and local CFT spectrum for the SU (2)-NJL model

This is a very short paragraph as all the leading-N computations here are completely equivalent to

the ones for the U (1)-NJL model, hence we do not repeat them here and refer to Section 3.3.3 for

the analysis. In particular, we refer the large-Q and small-Q results for the scaling dimension of the

associated flat-space operator in Eq. (3.282) and Eq. (3.294). The only diffrence we need to be careful of

is the fact that the number of DoF given by 2N appearing all over in these equations has to be doubled

2N → 4N in the case of the SU (2)-NJL model as we are now dealing with two-flavour fermions and

hence twice as may DoF. Beyond this small adaptation, the results match perfectly between the models

at leading order in N .

3.4 Conclusions and final remarks

Strongly-coupled systems can often be accessed by introducing an additional control parameter, with

the goal of of organizing analytic computations of observables perturbatively in the appropriate limit.

Large N represents one such class of techniques, in which a large number of DoF is introduced in

order to take advantage of the central limit theorem and compute observables in a 1/N expansion

around a semi-classical description at leading order in N . Remarkably, the leading-order semi-classical

trajectory captures many qualitative features of the quantum system.

Introducing an additional control parameter leads to even further simplifications and allows to extract

more physical information from the semi-classical large-N expansion. In the context of the LCE in

CFTs there is a very natural candidate for such an additional parameter, which is the global charge

Q. From the point of view of large N this introduces more structure into the theory, allowing for the

computation of observables in a double-scaling limit

Q, N →∞ , Q/N fixed. (3.307)

From the point of view of the LCE, the additional control parameter at large N allows us to access

and study large-charge sectors of CFTs without resorting to the appropriate physically motivated

emergent condensed-matter EFT description. Importantly, only the superfluid EFT description is

well understood, excluding any CFTs not belonging to the superfluid universality from being studied.

At large N we can in principle study the large-charge sectors of theories outside of the superfluid

universality class — which is what we have done to some extent in Section 3.3 — and potentially

even start to develop other EFT descriptions, like for example a Fermi-liquid EFT for models with a

Fermi-sphere ground state [118, 167] compatible with conformal symmetry. Particularly intriguing is

also the possibility of a potential non-Fermi liquid phase [175, 176, 286], if such a phase can in fact be

shown to exist in large-charge sectors of CFTs.63

The most obvious candidate in which to study possible large-charge Fermi-liquid EFT descriptions is

the GN model, which at large N can be distinguished from the free fermion without interactions by the

presence of a scalar mode that does not condense on the ground state of the theory but still appears in

and enriches the local CFT spectrum. However, before the issue of constructing the proper fermionic

EFT description can be addressed, it is first and foremost important to deduce the fate of the large-N

63The EFT-like description of strange-metal phases remains an open problem in condensed-matter physics. However, the
question whether they can arise in large-charge CFTs and are compatible with the constraints of conformal invariance can
certainly be investigated in a setup like large N .
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Fermi-sphere ground state of the GN model. As pointed out, the absence of SSB in the large-N limit of

the GN model either indicates that the physics remains that of a Fermi sphere at all energies and that

there is a transition happening at finite N . Or it holds true that SSB is simply exponentially suppressed

in 1/N , hence making it invisible to all orders in perturbation theory. Which of the two possibilities is

realized can be investigated by analysing the Four-Fermi interaction on top of the Fermi sphere and

observing whether there exists and attractive four-Fermi channel or not. This question needs to be

answered at some point in the near future.

Generally speaking, properly extending the large-charge analysis to next-to-leading order in 1/N is

certainly important for all theories discussed in this chapter, as in addition to the GN model the sub-

leading corrections in 1/N have not yet been computed neither for the O(N ) vector nor the NJL model

(besides extracting the spectrum of fluctuations).

The observation that large-charge methods in the double-scaling limit at large N allow us to access the

full RG flow in the O(2N ) vector model represents an interesting and seemingly accidental development

within the large-charge approach. The quartic interaction term in the action responsible for triggering

the RG flow becomes a constant on the large-N trajectory — by virtue of the central limit theorem — and

hence the addition of said term in the computation of the grand potentialΩ(µ) is trivial. After relating

the grand potential Ω(µ) to the leading-N effective action V (0)
eff in the bosonic theory, the addition

of the flow term becomes very much non-trivial.64 This allows us to reproduce a very complicated

computation involving the re-summation of infinitely many Feynman diagrams with a computation of

just a few lines.

This construction also allows us to study the ϕ4-model away from spacetime dimensions 2 < D < 4

where it flows to the WF fixed point. Particularly, the range 4 < D < 6 deserves scrutiny. There we can

show that under the assumption of unitarity, the ϕ4-model, now boasting an irrelevant coupling g ,

is not UV complete in flat space, consistent with earlier results [20, 253, 254]. In fact, although we

have access to the full RG flow, it is impossible to follow in reverse order along the RG flow back into

the far UV, as the effective potential V (0)
eff becomes infinite everywhere. We can study the conjectured

non-unitary and complex CFT in the UV and outline its pathologies for both small- and large-charge

operators. By analysing the RG flow on the cylinder we find that there is a second-order phase transition

along the flow separating the well-behaved IR phase from the pathological UV phase of the theory. The

new metastable massive phases that arises in the UV might be explored in terms of instantons on the

cylinder, extending the treatment in [253].

It is feasible to extend the spacetime dimensions beyond 2 < D < 6. The range of dimensions 0 < D < 2

is of questionable interest and rigour, but in 6 < D < 8 the ϕ4-theory can be expected to be convex

based on basic observations from the large-charge approach to the effective potential. However, in this

range the collective field introduced by the HS transformation violates the CFT unitary bounds.

While it might not necessarily be useful to push the spacetime dimensions even further for the ϕ4-

theory, this construction could be used to analyse O(2N ) vector models with different interaction terms

in the spacetime dimension 2 < D < 6. Particularly interesting could be the ϕ6-theory in 2 < D < 6 [210–

220]. It is known that the sextic interaction is marginally irrelevant in the presence of the quartic term

and hence does not affect the RG flow. Without the quartic interaction the ϕ6-model in 2 < D < 4

is conjectured to flow from a IR free CFT to a UV interacting CFT. There is a debate on whether the

64This relationship betweenΩ(µ) and V (0)
eff is not reproduced in a fermionic theory like the GN model, unfortunately.
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ϕ6-model is even mathematically sound and perhaps an analysis of the effective potential using large-

charge techniques could shed some further light on this issue.

Finally, the resurgent analysis deserves mentioning here as well. It can definitely be performed for the

large-N fermionic models discussed in Section 3.3 by analogy with the O(N ) vector model, particularly

for the NJL model, although unfortunately numerical techniques will most certainly be required.

Nevertheless, a resurgent analysis of the fermionic models could shed some further light on the for

QFT atypical (2n)! divergence found in the O(2N ) vector model.65 Further, in the bosonic theory there

exists an interpretation of the results coming from the standard resurgence computations in terms of

a worldline path integral, a quantum mechanical path integral of a spin zero particle moving on the

sphere [191]. It would be interesting to see whether a similar interpretation is found for one or several

of the fermionic theories discussed.

65The results obtained from resurgence are important as they will enable us to extrapolate the large-charge expansion also to
operators with small charge, which in turn would allow for making contact with results from Monte–Carlo simulations and the
numerical bootstrap. In this context, extending the resurgence calculus to much smaller values of N — say the O(2) model —
would be particularly desirable. However, beyond computing sub-leading corrections in 1/N , it seems much more ambitious to
perform a resurgent analysis in the O(2) model than extending the analysis to other models in the large-N limit, particularly to
those that also exhibit a superfluid ground state.
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A Appendices to Chapter 1

A.1 The Ising universality class

This appendix discusses the Ising model and its relationship to the study of CFTs. Our aim is to motivate

the study of CFTs from a statistical mechanics perspective in the context of the second-order phase

transitions present in the description of different Ising-type models.

To illustrate the role of CFTs in the description of critical phenomena let us consider the Ising model

from statistical mechanics. The Ising model describes the interactions of classical spins on a lattice and

is described by the Hamiltonian

E [σ] =−J
∑
〈i j 〉

σiσ j −H
∑

i
σi , (A.1)

where i runs over all lattices sites and 〈i j 〉 runs over all nearest-neighbour interactions. The Ising

model is the simplest working theory describing classical magnetism and capturing many of the

important properties of ferromagnetic materials. In particular, in D > 1 it exhibits the ferromagnetic-to-

paramagnetic second-order phase transition.

Instead of solving the Ising model for a particular lattice completely, sometimes there is a much simpler

way of finding the critical temperature Tc where the second-order phase transition occurs. As it turns

out, there is a set of duality relations that relate the low-temperature ordered regime of Ising-type

models to the high-temperature unordered regime of dual models and vice versa. This structure within

the theory may be abused to derive the critical temperature where the two regimes meet. These so-

called Kramers–Wannier-type dualities are a general feature of any abelian theory [287, 288]. They

are closely related to the Heisenberg principle and identify a variable µi that is dual to the spin σi in

Eq. (A.1).1 In this regard, they are important in the understanding of the Ising model for D ≥ 2, where

they might not tell you much about the critical temperature. For example, for the Ising model in D = 3

on the cubic lattice the dual model is a gauge theory [287].

1The variable µi is part of the description of the dual model and lives on a dual lattice.
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It is important to understand how characteristic quantities behave for a system undergoing a phase

transition. For a spin system the correlation functions Γi j = 〈(σi −〈σi 〉)(σ j −〈σ j 〉)〉 — which describe

how different spins on the lattice are correlated with each other — are of particular interest. From

explicitly or numerically solvable models and experimental observations we know that for spin systems

the correlation function behaves like

Γ(r )
T=Tc∼ r 2−D−η (A.2)

at the critical point, where η is the so-called critical exponent associated to the correlation function.

There is a whole range of critical exponents describing the behaviour of thermodynamic quantities at

and around the fixed point Tc . Critical exponents appear to be universal and do not depend on the

microscopic structure of the system. Instead, the properties of the system at the critical point only

depend on fundamental parameters like the dimension D or the symmetries of the order parameter.

This observation leads to the concept of universality: Many vastly different physical models at their

critical points are accurately described by a small set of scale invariant theories.

As a consequence, systems originating from completely separate corners of physics can sometimes

be described by the same theory at criticality. Because of the fact that CFTs describe critical points

of continuous phase transitions, the concept of universality is intricately linked to the concept of the

Renormalization Group (RG) flow in Quantum Field Theory (QFT). The fact that CFTs are sparse in

theory space and many QFTs flow to the same CFT (IR equivalence) mirrors the idea of universality in

condensed-matter physics and statistical mechanics.

At criticality, due to scale invariance the Ising model (and more generally lattice models) become

independent of the lattice spacing a, which is a microscopic feature. It is then very natural to take the

continuum limit a → 0, a process that is also necessary to be able to describe the system in terms of a

CFT. To illustrate this point further, we consider the case of the two-dimensional Ising model, which

is solvable. The exact solution to the two-dimensional Ising model has first been provided in 1944 by

Onsager [289]. By now all critical exponents are exactly known and they are rational numbers [290], in

particular we have

η= 1

4
. (A.3)

Having access to the exact solution provides a strong basis for finding and substantiating the correct

CFT description of its critical point. In the continuum limit the spin operator σi of the Ising model is

not adequate to describe the system. Instead, in D = 2 we can introduce operators that are constructed

non-locally out of the spin operators. This is achieved via the so-called transfer matrix method [291] —

a clever reformulation of the partition function as a trace over matrix products — and a Jordan-Wigner

transformation [291, 292]. The resulting fermionic operators ψ̄, ψ obey the proper commutation

relations. The final result of this procedure is the observation that the two-dimensional Ising model is

equivalently written as a system of lattice fermions. After careful manipulation of the partition function,

it can be shown that in the continuum limit around the critical point it is described by a free real

(Majorana) fermion with the action [22]

S = 1

2π

∫
d2z

(
ψ̄∂ψ̄+ψ∂̄ψ+mψ̄ψ

)
, m ∝ (β−βc ) . (A.4)

The mass term spoils conformal invariance away from the critical point. The resulting two-dimensional
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CFT has central charge c = 1/2 while the fermions have conformal weights (1/2,0) and (0,1/2), respectively.

In addition, it is possible to identify the spin operator σ(z, z̄) within the CFT as a twist operator with

conformal weight (1/16,1/16) [22, 293]. Consistently, its correlation function is of the form

〈σ(0,0)σ(z, z̄)〉 = 1

|z|1/4
. (A.5)

Further, it is also possible to identify a disorder operator µ(z, z̄) dual to the spin σ(z, z̄). The operator

µ(z, z̄) can be related to the spin operator σ(z, z̄) it via its OPE with the fermion operator ψ(z, z̄).

Essentially, the disorder operator µ(z, z̄) is the dual variable µi identified by the Kramers–Wannier

duality and its conformal weights are equal to the conformal weights of σ(z, z̄).

The Ising CFT in D = 2 can also be expressed in terms of bosonic DoF instead of the fermionic fields

that we have discussed up to now. There are several different ways in which this can be achieved,

some of which include a superposition of two Ising models on the same lattice [22]. Independent

of the procedure applied, the end result is that the critical Ising model CFT is equivalent the M3

minimal model, sometimes also referred to as the (4,3) or m = 3 minimal model [22, 293, 294].2 For

completeness, a minimal model is a CFT whose spectrum is constructed from finitely many irreducible

representations of the Virasoro algebra. The discrete unitary series of minimal models Mp have central

charge

c = 1− 6

p(p +1)
. (A.6)

The M3 minimal model is made up of only three operators (at least for its holomorphic part): the

identity 1, the spin σ and the energy ϵ, which can be readily identified with the fermion mass term ψ̄ψ.

The fact that M3 is equivalent to the theory of a free Majorana fermion lies at the heart of Onsager’s

exact solution to the Ising model in two dimensions.

Beyond D = 2, the Ising model can be related to another field-theoretic model. There is a succinct

argument which shows that the long-range physics of the Ising model in arbitrary dimensions is

captured by theφ4-model [295]. This argument, which we will outline here now, relies on a mathematical

trick called a Hubbard–Stratonovich (HS) transformation. Consider the Ising-model partition function

with the Hamiltonian in Eq.(A.1). We rewrite the interaction term,

βJ
∑
〈i j 〉

σiσ j =β
∑
i j
σi Ji jσ j , (A.7)

where the matrix Ji j = J j i encodes the nearest neighbour interactions. Next, we introduce a factor of

unity in the partition function as follows:

1 =
∫

Dλi e
− 1

4β

∑
i j
λi (J−1)i jλ j =

∫
Dλi e

− 1
4β

∑
i j
λi (J−1)i jλ j −β

∑
i j
σi Ji jσ j +

∑
i
σiλi

, (A.8)

where the path-integral measure
∏

i Dλi is properly normalized. In the last step we have applied the

transformation λi 7→λi −2
∑

k βJλk . Introducing this expression into the partition function of the Ising

2More precisely, it can be stated that the two-dimensional critical Ising model’s spin and energy correlation functions are
described by M3.
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model yields

Z = ∑
{σi }

e
β
∑
i j
σi Ji jσ j +βH

∑
i
σi =

∫
Dλi

∑
{σi }

e
− 1

4β

∑
i j
λi (J−1)i jλ j +

∑
i
σi (βH+λi )

. (A.9)

The spin interactions are removed at the expense of introducing a set of continuous fields λi . This is

the philosophy of the HS transformation: the interaction of one field in the action is removed at the

expense of introducing a new field using a generalized version of the Gaussian integral. The sum over

spins can now be performed explicitly,3

Z =
∫

Dλi e
− 1

4β

∑
i j
λi (J−1)i jλ j +

∑
i

logcosh(λi+βH)
=

∫
Dφi e

−β∑
i j
φi Ji jφ j +βH

∑
i
φi+

∑
i

logcosh(2β
∑
i

Ji jφ j )
, (A.10)

where we have performed a field redefinition φi =∑
j (J−1)i j (λ j +βH)/(2β) in the last step. In order to

actually get to a proper φ4-action from here we need to consider the limiting behaviour |φi |≪ 1 of only

small fluctuations.4 By switching to a Fourier representation and expanding the action we find that5

S[φ̃] =∑
k
φ̃(k)

(
β J̃ (0)(1−2β J̃ (0))+ 1

2
β J̃ ′′(0)(1−4β J̃ (0))k2

)
φ̃(−k)+βH

∑
k
φ̃(k)δk,0

+ 4β4 J̃ (0)4

3N

∑
k1,...

φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4)δk1+···+k4,0 +O (k4,β2H 2, φ̃6) .

(A.11)

After switching back to real space and taking the continuum limit
∑

i →
∫

dd x the action now reads6

S[φ] =
∫

dd x

[
1

2
(∂φ)2 + J̃ (0)(1−2β J̃ (0))

β J̃ ′′(0)(1−4β J̃ (0))
φ2 + 4β4 J̃ (0)4

3β J̃ ′′(0)(1−4β J̃ (0))
φ4 +βHφ

]
. (A.12)

This relates the behaviour of the Ising model at low temperatures to theφ4-theory, which is a continuum

QFT. The microscopic derivation that we have presented here even relates the coupling constants of φ4

to the coefficients and the temperature of the Ising model. In particular, the coefficient of the mass

term relates the phase transition of the Ising model to the occurrence of SSB in the φ4-model.

In D = 2, the fact that the Ising model can be related to the φ4-model begs the question how the

φ4-theory is related to the minimal model M3. This relationship can be made rigorous and it has been

successfully argued that Mp minimal models describe the critical points of interacting scalar field

theories with interaction terms φ2(p−1) [296, 297]. In particular, the M3 model describes the interacting

fixed point of the scalar field theory with a φ4 interaction. Despite the vast body of knowledge already

assembled on the subject, there is research ongoing in the field of two-dimensional Ising models to this

day, see for example [298–300].

In D = 3, the interacting fixed point of theφ4- model appears in the description of a range of continuous

3Factors of 2 associated to the hyperbolic cosines and the factor of exp[−(βh2/4)
∑

i j (J−1)i j ] are absorbed into the integral
measure.

4This is tantamount to working at low enough temperatures such that the exponential weight βJ inhibits large fluctuations.
5We are still on a lattice, hence the Fourier representations are φi =

∑
k e−i k·ri φ̃(k)/

p
N , Ji j =

∑
k e−i k·(ri −r j ) J̃ (k)/N .

6There is a trivial rescaling φ→φ/
√
β J̃ ′′(0)(1−4β J̃ (0)) that needs to be performed here as well.
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phase transitions besides the Ising model.7 For example, in the theory of liquid states the Ising-model

CFT describes the continuous phase transition at the critical point in the pressure–temperature plane,

which is located at the end of the first-order liquid-gas transition line. The order parameter for this

phase transition is the density ρ−ρc instead of the spinσ.8 It is an astounding fact that the second-order

phase transition of water is described by the same CFT as the three-dimensional Ising model [301]. For

a discussion of the mapping between fluid and magnetic Hamiltonians see [302]. For a general review

of critical phenomena in liquid states see [303].

The Ising model and its critical point are a pure manifestation of the Wilsonian universality principle,

the fact that a sparse number of CFTs lies at the fixed points of the RG flows of completely dissimilar

physical and mathematical systems. The Wilsonian understanding of universality directly translates to

the concept of universality in condensed-matter physics and statistical mechanics. It is reflected in the

fact that at the critical point of a continuous phase transition microscopic properties become irrelevant

and there are many different physical systems converging to an identical description at their respective

critical points. The ubiquity of these equivalences is the phenomenon of critical universality. There

are also many more examples of theories belonging to the Ising universality class, some of which are

important in high-energy physics like the finite transition in the theory of electroweak interactions. For

a non-exhaustive list of examples and references thereof see [304].

Although we only discussed thermal phase transition, there are phase transition that occur at zero

temperature. These quantum phase transitions are not driven by thermal fluctuations and instead by

quantum fluctuations dictated by the Heisenberg uncertainty principle. For a reference to quantum

phase transition see [305].

Further, the examples presented above are all Euclidean CFTs. However, Lorentzian CFTs also appear

in physics, for example thin-film superconductors can be described by the Lorentzian O(2) model [306,

307]. The associated Wick-rotated theory — the Euclidean O(2) model — describes the superfluid

transition of 4He [308]. This particular example is beautiful as the critical exponents of the two theories

agree even experimentally, making this an instance of Wick rotation working in nature.

A.2 Conformal invariance in classical field theory

We discuss the consequences of conformal invariance in classical field theory in D ≥ 3. We will focus

on theories with a Lagrangian description L .

A.2.1 Conformal transformations

We analyse the constraints of conformal invariance in a general context and introduce to conformal

group. The conformal group is comprised of all spacetime transformations x 7→ x ′ for which the

7The interacting fixed point of the φ4-model in 2 < D < 4 is also referred to as the WF fixed point.
8However, the liquid-gas transition does not exhibit the Z2 symmetry present in magnetic systems. This leads to the

observation of Z2-non-invariant corrections to observables and, in particular, to the critical exponents.
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pull-back metric,

g ′
µν =

∂xµ

∂x ′ρ
∂xν

∂x ′σ gρσ =Ω2(x)gµν , (A.13)

only differs by a (local) scale factorΩ2(x).9 It is a simple exercise to verify that the conformal mappings

form a group on any given (curved) spacetime.10 For our purposes it is enough to work in flat space

Rd with a flat indefinite metric gµν = ηµν of signature (p, q). In flat space, it is manifestly clear that the

Poincaré group (isometries) is a subgroup of the conformal group, the caseΩ2(x) ≡ 1 corresponds to

transformations of the Poincaré group.

To determine the conformal generators we study the properties of infinitesimal transformations xµ 7→
xµ+ϵµ(x)+O (ϵ2). Conformal invariance implies that

∂µϵν(x)+∂νϵµ(x) = 2

D
∂σϵ

σηµν , Ω2(x) = 1+ 2

D
∂σϵ

σ+O (ϵ2) . (A.14)

Eq. (A.14) is the conformal Killing equation. For elements of the Poincaré group the factor of proportionality

— given by ∂ · ϵ — is zero. By deriving both sides of the equation and permuting the indices we can

derive the identities

(D −2)

D
∂σ∂µϵ

µ =□ϵσ , ∂µ∂νϵρ = 1

D

(
ηρν∂µ+ηρµ∂ν−ηµν∂ρ

)
∂σϵ

σ . (A.15)

Applying another derivative results in the condition[
ηµν+ (D −2)∂µ∂ν

]
∂σϵ

σ = 0, (A.16)

implying that in D > 2 the third derivative of ϵν has to vanish.11 There are two special cases to be quickly

commented on:

• In the case D = 1 there is no constraint imposed on ϵ, i.e. ∂ϵ. Basically, any smooth transformation

is conformal in D = 1.12

• For D = 2 the first condition in Eq. (A.15) becomes 0 = □ϵσ. In Euclidean space ηµν = δµν

Eq. (A.14) turns into the Cauchy-Riemann equations,

∂0ϵ1 =−∂1ϵ0 , ∂0ϵ0 = ∂1ϵ1 . (A.17)

For this reason, conformal invariance in D = 2 is special, as the set of local conformal transformations

is the set of all (anti-)holomorphic functions. Hence, conformal invariance in D = 2 is a vastly

more powerful tool than in higher dimensions.13 For more details on CFTs in D = 2 see [22, 293]

9As a consequence, the conformal group preserves angles between vector fields, which are given by cosθX Y = X (x)·Y (x)p
X (x)2 Y (x)2

.

10Conformal invariance may be discussed on arbitrary semi-Riemannian smooth manifolds equipped with a metric tensor
gµν(x) (see [25]).

11By contracting Eq. (A.16) with the metric the condition □∂σϵσ = 0 is derived.
12In D = 1 there is no notion of angles, i.e. we have X (x)·Y (x)p

X (x)2 Y (x)2
= X (x)Y (x).

13A small caveat here is that not all conformal transformations are globally invertible, only the Möbius transformations are.
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or any other resource on the subject.

As mentioned, in D ≥ 3 the third derivative of ϵµ has to vanish, hence the infinitesimal transformation

is at most quadratic,

ϵµ(x) = aµ+λxµ+ωµνxν+ cµνρxνxρ . (A.18)

We derive the conformal Lie algebra by acting with the infinitesimal transformations in Eq. (A.18) on

smooth functions of spacetime and from there deducing the form of the spacetime generators.

The constant term ϵµ = aµ corresponds to spacetime translations and trivially satisfies Eq. (A.14). The

corresponding spacetime generators are

xµ 7→ xµ+aµ = xµ+aνPν xµ , Pµ = ∂µ . (A.19)

The linear term in Eq. (A.18) separates into symmetric and anti-symmetric parts by virtue of Eq. (A.14).

The anti-symmetric part has to obey

ωµν+ωνµ = 0. (A.20)

The infinitesimal scale factor in Eq. (A.14) disappears for xµ 7→ xµ+ωµνxν. These transformations

are the infinitesimal (proper orthochronous) Lorentz transformations Λµν = δ
µ
ν +ωµν +O (ω2) in

Minkowski space,14 and in Euclidean spacetime they correspond to infinitesimal rotations. The

associated spacetime generators Lµν are given by

xµ 7→ xµ+ ωνρ

2
Lνρxµ , Lνρ = xρ∂ν−xν∂ρ . (A.21)

An infinitesimal rotation can be integrated to deduce the associated finite transformation,

xµ 7→Λµνxν , ΛT ηΛ= η . (A.22)

The symmetric part of the term linear in x in Eq. (A.18) — given by xµ 7→ (1+λ)xµ — in the form that

we have written it trivially satisfies Eq. (A.14).15 These transformations are scale transformations, also

called dilatations. The generator of scale transformations is given by

xµ 7→ xµ+λD0xµ , D0 = xν∂ν . (A.23)

The finite scale transformation associated to the (infinitesimal) parameter λ simply is

xµ 7→ eλxµ , eλ = 1+λ+O (λ2) . (A.24)

The quadratic term xµ 7→ xµ+ cµνρxνxρ is best treated by considering the implication of the second

condition in Eq. (A.15). After defining bµ := cννµ/D we can bring the transformation into the following

14The proper orthochronous Lorentz transformations form the identity component of the Lorentz group, they satisfy the
conditions det(λ) = 1, Λ0

0 ≥ 1.
15The condition in Eq. (A.14) automatically imposes the symmetric part to be proportional to the metric.
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form:

cµνρxνxρ
Eq. (A.15)

= 2(x ·b)xµ−x2bµ . (A.25)

A transformation of this form is called a Special Conformal Transformation (SCT). The spacetime

generators of SCTs are given by

xµ 7→ xµ+bνK ν
0 xµ , K µ

0 = 2xµxν∂ν−x2∂µ . (A.26)

The associated finite transformation reads

xµ 7→ xµ−x2bµ

1−2(b · x)+x2b2 = xµ+2(b · x)xµ−x2bµ . (A.27)

Any SCT leaves the origin invariant but is singular at the point xµ = bµ/b2, which is mapped to infinity.

For this and other reasons, in CFT spacetime is generally best thought of as the sphere RD ∪ {∞} with

the point at infinity {∞} included.16 The conformal group does not generally leave {∞} invariant, as

opposed to the Poincaré group.

The scale factor associated with a SCT can be computed and reads

Ω2(x) = (1−2(b · x)+b2x2)2 . (A.28)

Invariance under SCTs is crucial as it differentiates scale invariant theories from conformally invariant

ones. In fact, the generators of Poincaré together with the dilatation operator D form a subalgebra of

the conformal algebra allowing for the possibility of a purely scale-invariant theory.

Besides the conformal transformations captured by the Lie algebra there is an important set of discrete

transformations that should be discussed. Consider the following discrete transformation:

I : xµ 7→ x ′µ = xµ

x2 . (A.29)

This transformation is called an inversion and it lies outside of the identity component of the conformal

group. In fact, a SCT can be reproduced by an inversion, followed by a translation and then by another

inversion,

xµ
I7→ xµ

x2 7→ xµ

x2 −bµ
I7→ xµ−x2bµ

1−2(b · x)+x2b2 . (A.30)

In that sense, SCTs can be thought of as translations that move the point at infinity while leaving the

origin invariant (as opposed to regular translations that leave infinity invariant and move the origin).17

Since inversions are not continuously connected to the identity, CFTs may not be invariant under

inversions. Only in the context of SCTs is invariance guaranteed, as these transformations are continuously

connected to the identity and hence captured by the Lie algebra. Invariance under inversions needs to

be checked on an individual basis.18

16Flat space R∪ {∞} is Weyl equivalent to the unit sphere SD
1 . On the unit sphere SD

1 all conformal transformations are
finite/non-singular.

17Translations and SCTs are analogous to each other, with the points at {0} and {∞} swapped by an inversion.
18There is a neat argument based on the embedding formalism implying that a CFT invariant under parity will be invariant
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A.2.2 Conformal algebra and the representation theory of fields

As the spacetime generators associated to the conformal transformations have to form a representation

of the conformal algebra, we can use their explicit form to deduce all relevant commutation relations

defining said algebra,

[Mµν,Pρ] = ηµρPν−ηνρPµ ,

[Mµν, Mρσ] = ηµρMνσ+ηνσMµρ −ηµσMνρ −ηνρMµσ ,

[D,Pµ] =−Pµ ,

[D,Kµ] = Kµ ,

[Mµν,Kρ] = ηµρKν−ηνρKµ

)
,

[Pµ,Kν] = 2
(
ηµνD +Mµν

)
.

(A.31)

The other correlators are vanishing. Any representation of the conformal algebra necessarily satisfies
Eq. (A.31). For completeness and continuation, we compile all the spacetime generators quickly,

Pµ = ∂µ , Kµ = 2xµxν∂ν−x2∂µ , Mµν ∼ Lµν = xν∂µ−xµ∂ν , D = xνPν . (A.32)

In D dimension the number of generators of the conformal group is (D +2)(D +1)/2. Importantly,

the conformal group in RD with signature (p, q) is isomorphic to the Lorentz group SO(p +1, q +1) in

RD+2 equipped with signature (p +1, q +1). To see this, we take the RD variables x1, . . . , xD and add two

additional variables X + = (x0 +xD+1), X − = (x0 −xD+1). In this language the isomorphism reads19

Jµν = Mµν , J+µ = Pµ/2, J (c)
−µ = Kµ/2, J (c)

+− = D/2, (A.33)

with Jαβ — understood to be antisymmetric — being the generators of SO(p+1, q+1). These generators

satisfy the Lorentz algebra,

[Jαβ, Jγδ] = ηαγ Jβδ+ηβδ Jαγ−ηαδMβγ−ηβγ Jαδ . (A.34)

The coordinates X +, X − are called light-cone coordinates. The isomorphism gives rise to the embedding

formalism, a convenient way of encoding the action of the conformal group in RD via the action of the

Lorentz group in RD+2 by appropriately embedding RD in RD+2 [23, 66–68].

Having an understanding of the structure of the conformal group and algebra, we can discuss the

field content of a CFT at the level of the classical Lagrangian. Consider a theory with field content {φi }

described by the action

S =
∫

dxD L (φi , ∂µφ
i , x) . (A.35)

For simplicity, we suppress the field indices with the shorthand notation φ= (φ1,φ2, . . . ,φk ). Just like

the Lorentz group in Poincaré-invariant QFT, conformal transformations in general act non-trivially on

the fields of the theory. Given an infinitesimal conformal transformation as in Eq. (A.18) we are looking

under inversions and vice versa [23].
19In terms of x0, x1, . . . , xD , xD+1 the generators read J0µ = (Pµ+Kµ)/2, JD+1µ = (Pµ−Kµ)/2, JD+10 = D .
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for the most general form of the representation Tα of the conformal algebra on the space of fields, such

that the field content transforms as

φ′(x) = (1−ϵαTα)φ(x) . (A.36)

To restrict the form of Tα we use representation theory and physical intuition. The end result is that,

besides the notion of spin introduced by the representation theory of the Lorentz algebra, invariance

under dilatations introduces the scaling dimension ∆, which is defined as the degree of homogeneity of

a given field.

Unsurprisingly, the representation theory of the Poincaré subalgebra is analogous to regular Poincaré-

invariant field theory. The generators of translations — the momentum operators — purely act on

spacetime,

Pµφ(x) = ∂µφ(x) . (A.37)

Every field is a scalar quantity with respect to translations. The physical intuition here is that under a

translation of spacetime x 7→ x ′ = x +a it is most natural to identify the value of the field φ′(x ′) at x ′ the

field value φ(x) at x, hence

φ′(x ′) =φ(x) . (A.38)

Having access to the momentum operators Pµ = ∂µ allows us to study the rest of the algebra from their

action on fields at the point x = 0.20 The momentum operators generate spacetime translations and

define the value of the field at x ̸= 0 via its value at x = 0 by imposing that fields transform in the adjoint

representation of the group of spacetime translations,

φ(x) = ex·Pφ(0)e−x·P , (A.39)

with P = (P1, . . . ,PD ). Further, every operator O (x) in the theory should transform in the same way as

the fields, since it necessarily holds true that

O (x)φ(x) =O (x)ex·Pφ(0)e−x·P != ex·P O (0)φ(0)e−x·P . (A.40)

Generators of symmetry transformations are no exception to this rule and satisfy Eq. (A.39). As a

consequence, we are able to study the representation theory of the conformal group by simply studying

the subgroup that leaves x = 0 invariant, called the stability subgroup or little group. In the case of

the conformal group the stability subgroup is spanned by rotations, dilatations and SCTs. Hence, we

impose

Kµφ(0) = kµφ(0) , Dφ(0) =∆φ(0) , Mµνφ(0) = i Sµνφ(0) , (A.41)

where the matrix-valued quantities {kµ,∆,Sµν} satisfy the reduced conformal algebra,

[kµ,∆] =−kµ , [kρ , i Sµν] =−(
ηρµkν−ηρνkµ

)
, (A.42)

with all other commutators vanishing. The little group in Eq. (A.42) is the starting point to determine

20Translations correspond to the constant term in Eq. (A.18). All other conformal transformations vanish at x = 0.
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the complete action of the generators of the conformal group on any field in accordance with the

standard theory of induced representations [70].

First, we notice that letting kµ ̸= 0 turns out to be inconsistent, both at the classical and quantum level.

Schur’s Lemma enforces ∆ to be a multiple of the identity,21 hence Eq. (A.42) implies that22

[∆,kµ] = 0 =−kµ . (A.43)

Furthermore, the group of dilatations is non-compact. As a consequence, the scaling dimension ∆ is a

real number, as any finite-dimensional representation of a non-compact Lie algebra is non-unitary.

The conformal generators are translated to non-zero values via the adjoint action of the exponential of

P in Eq. (A.39) and the commutation relations in Eq. (A.31),

D = D
∣∣

x=0 +xµ
[
Pµ,D

]
x=0 =∆+x ·P ,

Mµν = i Sµν+xνPµ−xµPν ,

Kµ = 2xµ∆+2i xνSνµ+2xµ x ·P −x2Pµ .

(A.44)

These generators satisfy Eq. (A.31) since the matrix-valued quantities ∆ and Sµν commute with the

spacetime-dependent parts. The spin operators Sµν encode the (irreducible) representation of the

Lorentz group on the field content {φi } and hence define the spin of {φi }.23 Physically speaking, the

choice of representation determines the spin of the field. The scaling dimension ∆ of a field is a real

number and corresponds to the degree of homogeneity of said field,

φ(eλx) = e−λ∆φ(x) . (A.45)

As an example, consider the action of a massless free scalar field in flat spacetime,

S =
∫

dD x∂µφ∂
µφ . (A.46)

Under a scale transformation x 7→ eλx the action transforms as

S 7→ S′ =
∫

dD (eλx)
∂φ(eλx)

∂(eλxµ)

∂φ(eλx)

∂(eλxµ)
= e−λ

(
∆− D

2 +1
)
S . (A.47)

The action is therefore invariant under dilatations if and only if the scaling dimension ∆ is given by

∆= D −2

2
. (A.48)

21Demanding that φ(x) belong to an irreducible representation of the Lorentz group implies that any matrix commuting with
all of the spin matrices Sµν has to be a multiple of 1, according to Schur’s Lemma.

22Requiring that the spectrum of operators be bounded from below enforces kµ = 0 in the quantum theory [69].
23The spin is given by the square of the Pauli-Lubanski vector, Wµ = 1

2 ϵµνρσPν
(
Lµν+Sµν

)
, which is the second Casimir of the

Lorentz group [33].
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A mass term of the form m2φ2 is forbidden by scale invariance. A term of the form φn is allowed if

and only if (D −2)n = 2D. For D = 4 this means that a φ4 interaction is allowed, for D = 3 it is a φ6

interaction. Performing the same exercise for a free spinor field in D spacetime dimensions yields

∆= D −1

2
. (A.49)

In D ≥ 3 — independent of the existence of a Lagrangian description of the theory — CFTs are

formulated in terms of primary operators (or fields in the Lagrangian description). Primary operators/fields

are defined by their transformation behaviour under conformal transformations. A primary operator is

homogeneous (of degree ∆) and transforms under conformal transformations ηµν 7→ |∂x ′/∂x|−2/Dηµν

as

φ(x) 7→φ′(x ′) =
∣∣∣∣∂x ′(x)

∂x

∣∣∣∣∆/D

R
[
Λ(x)

]
φ(x) , (A.50)

where |∂x ′/∂x| =Ω−D is the Jacobian of the transformation and R[Λ(x)] encodes the representation of

the field φ(x) under the action of the Lorentz/rotation group. Note that the transformation behaviour

Eq. (A.50) is equivalent to the general form of the conformal generators in Eq. (A.44) [69]. This presents

the most general transformation behaviour under the conformal group that fields can exhibit in

physically well-motivated theories [70–72]. 24

A.2.3 Conformal stress-energy tensor

For a Poincaré-invariant field theory (with Lagrangian description L ) there always exists a symmetric

stress-energy tensor T
(B)

µν , which is derived from translational invariance and supplemented via rotational

invariance and the Belinfante procedure to be symmetric.25 By definition, the conserved Noether

charges corresponding to translations and rotations can be written in terms of said stress-energy

tensor,

Q(P )
µ =−

∫
dD−1x T

(B)

0µ , Q(M)
µν =−

∫
dD−1x

(
xνT

(B)

0µ −xµT
(B)

0ν

)
. (A.51)

The conserved charges are closely related to the spacetime generators in Eq. (A.44). In fact, classically,

the Noether charges are the generators of said transformations in the sense that

{Q(P )
µ ,φ} ∼ Pµφ= ∂µφ , {Q(M)

µν ,φ} ∼ Mµνφ= (
xν∂µ−xµ∂ν+ i Sµν

)
φ , (A.52)

where {·, ·} denotes the (equal-time) functional Poisson bracket in the Hamiltonian formalism.26 Given

scale invariance on top of Lorentz invariance, under very basic assumptions, it is possible to define a

24Primary operators can be defined in two equivalent ways, either by Eq. (A.50) or via the action of D and Kµ on the operators
at the origin [69–72].

25There is a manifestly symmetric definition of the energy momentum tensor from General Relativity (GR) based on variation
of the metric in the action [73]. It coincides with the Belinfante stress-energy tensor.

26In Euclidean space the Poisson bracket can be defined on arbitrary codimension-1 surfaces instead of equal-time
hypersurfaces.
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symmetric and traceless energy momentum tensor T
(C )

µν . To do so one defines the so-called virial,

V µ = ∂L

∂(∂νφ)

(
ηµν∆+ i Sµν

)
φ . (A.53)

Under the assumption that the virial can be written as a total derivative — V µ = ∂νNνµ — we can define

the tensor27

χσρµν = 2
[
(D −1)

(
ησρN (µν) −ησµN (ρν) −ησνN (ρµ) +ηµνN (σρ)

)− (ησρηµν−ησµηρν)Nα
α

]
(D −1)(D −2)

. (A.54)

The modified traceless stress-energy tensor is then given by

T
(C )

µν = T
(B)

µν + 1

2
∂σ∂ρχ

σρµν , T
(C )

µ
µ = 0. (A.55)

The additional term does neither spoil the conservation law or the symmetricity of T
(B)

µν , nor does it

change the conserved charges Q(P )
µ ,Q(M)

µν in Eq.(A.51). It is traceless because of the conservation of the

current associated to scale transformations jµD ,

T
(C )

µ
µ = ∂µ jµD = 0, jµD = T µνxν+∆ ∂L

∂(∂µφ)
φ . (A.56)

Given the existence of a traceless stress-energy tensor as described above, the conserved charge

associated to Poincaré and scale transformations can be written as

Q(D) =−
∫

dD−1x T
(C )

0ν xν , Q(P )
µ

∣∣∣
T

(B)
0ν →T

(C )
0ν

, Q(M)
µν

∣∣∣
T

(B)
0ν →T

(C )
0ν

. (A.57)

with Q(P ), Q(M) given in Eq. (A.51). Additionally, tracelessness of the stress-energy tensor allows for the

construction of four additional conserved currents,

jµνK = x2T
(C ) µν−2xµxσT

(C ) σν , Q(K )
µ =

∫
dD−1x

(
x2T

(C )

0µ −2xµxσT
(C )

0σ

)
. (A.58)

The charges Q(K )
µ generate SCTs. Hence, full conformal invariance is obtained directly from tracelessness

of the stress-energy tensor in a scale-invariant theory (at the classical level).

Note that the generators of Poincaré together with the generator of scale transformations form a

subalgebra of the conformal group. In fact, conformal invariance implies scale invariance from the

closure of the algebra in Eq. (A.31). The converse is not necessarily true, as discussed.

To guarantee conformal invariance at the quantum level, it is necessary that tracelessness of the stress-

energy tensor also extends to the quantum theory. This is, however, only a necessary condition. To what

extent scale invariance implies conformal invariance remains an open question for D > 2.28 Under

27The notation (µν) denotes symmetrization, i.e. A(µν) = (Aµν+ Aνµ)/2.
28For CFTs in D = 2 there is a rigorous argument that scale invariance enhances to full conformal invariance at the quantum

level under some basic assumptions such as unitarity, causality, a discrete spectrum of scaling dimensions, existence of a scale
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certain assumptions the conformal group is the maximally enhanced bosonic symmetry of space-time

for massless particles [12].

Generically, we will denote the traceless stress-energy tensor without the index — Tµν ∼ T
(C )

µν — and

assume it exists — both classically and quantum — unless otherwise specified.

A.3 Some QFT prerequisites

In this appendix we collect some important QFT prerequisites necessary to discuss CFTs.

A.3.1 Generators and Infinitesimal Transformations

Consider a classical field theory that is invariant under a certain (spacetime) symmetry group. A generic

symmetry transformation acts on the spacetime coordinates,

xµ 7→ x ′µ = xµ+ϵα δxµ

δϵα
+O (ϵ2) . (A.59)

In addition, the fields {φi (x)} comprising the theory are allowed to transform in non-trivial representations

of the symmetry group. As a consequence, symmetry transformations can non-trivially act on the fields

φi (x) of the theory,

φi (x) 7→φ′
i (x ′) =φi (x)+ϵα

δFi j

δϵα
φ j (x)+O (ϵ2) , (A.60)

where F (x,ϵ)i j relates the old field φi (x) at x to the new field φ′
i (x ′) = Fi j φ j (x) at x ′ and hence encodes

the representation ofφi . The most obvious examples of fields with non-trivial transformation behaviour

and hence non-trivial representations are fields with non-zero spin.

It is convenient to rewrite the transformation of fields by introducing a set of generators {Gα} encoding

the transformation as in

Φ′
i (x)−Φi (x) =−ϵαGαi jΦ j (x)+O (ϵ2) , Gαi j =

δxµ

δϵα
∂µδi j −

δFi j

δϵα
, (A.61)

or equivalently

Φ′
i (x ′)−Φi (x) = ϵα

(
δxµ

δϵα
∂µδi j −Gαi j

)
Φ j (x)+O (ϵ2) . (A.62)

The differential operators {Gα} are the generator of the symmetry transformation in the classical theory.

Evidently, the set of generators {Gα} form a representation of the Lie algebra on the space of fields

associated to the symmetry group in question. For smooth functions and fields that transform in the

trivial representation of the symmetry group — so-called scalar quantities — the generators {Gαi j }

current and unbroken scale invariance [12]. The conjecture is that this result extends to D > 2 [12].
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reduce to

Gαi j =
δxµ

δϵα
∂µδi j . (A.63)

A.3.2 Stress-energy tensor in field theory

Consider a theory with field content {φi } and Lagrangian description L (φi ,∂µφi ). Under a symmetry

transformation xµ 7→ xµ+ϵα δxµ

δϵα , φi (x) 7→φi (x)+ϵα δFi j

δϵα φ j (x) the action transforms as

δS =
∫

dD x ϵα∂µ jµα , jµα =
[

∂L

∂(∂µφi )
∂νφi −δµνL

]
δxν

δϵα
− ∂L

∂(∂µφi )

δFi j

δϵα
φ j . (A.64)

This is just Noether’s theorem: Any continuous symmetry that leaves the action invariant implies the

existence of a conserved current jµα . The associated conserved charge also derived from Noether’s

theorem,

Qα =
∫

dD−1x j 0
α , (A.65)

generates the symmetry transformation at the classical level via its Poisson bracket and is therefore

related to the generator of the symmetry Gα in Eq. (A.61). We denote the Poisson bracken in the

Hamiltonian formalism by {·, ·}. The Poisson bracket is defined via the conjugate momenta {π} and

functional derivatives,

{F,G} =
∫

dD−1x

[
δF

δπi

δG

δφi
− δF

δφi

δG

δπi

]
, πi = ∂L

∂(∂0φi )
. (A.66)

We note that there is an implicit sum over the field content of the theory in the Poisson bracket. The

fundamental property of the Poisson bracket is {πi (x),φ j (y)} = δi jδ
d−1(x − y). In terms if its Poisson

bracket the conserved Noether charge satisfies

φ′
i (x)−φi (x) =−ϵαGαi jφ j (x) = ϵα {Qα,φi (x)} . (A.67)

The relationship between conserved charges and symmetry transformations does carry over to the

quantum theory. The stress-energy (or energy-momentum) tensor is the conserved current associated

to translations ϵν = aν of spacetime,

jµνP = T µν =
[

∂L

∂(∂µφi )
∂νφi −ηµνL

]
. (A.68)

The stress-energy tensor is conserved, ∂µTµν = 0. In a theory that is not only scale but also rotationally/Lorentz

invariant is possible to find a Belinfante tensor Bαµν =−Bµαν such that the Belinfante stress-energy

tensor, defined as

T
(B)

µν = Tµν+∂αBαµν , (A.69)

is symmetric, still conserved and the Noether charge for translations remains unaffected,∫
dD xT

(B)

0ν =
∫

dD xT0ν . (A.70)
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The Belinfante tensor Bαµν is derived from the conserved current associated to Lorentz transformations
jαµνM ,

j
αµν
M = 1

2

(
Tαµxν−Tανxµ+ i

∂L

∂(∂αφi )
Sµνφi

)
, Bαµν = i

2

(
∂L

∂(∂αφi )
Sνµ+ ∂L

∂(∂µφi )
Sαν+ ∂L

∂(∂νφi )
Sαµ

)
φi .

(A.71)

Rotational invariance and the conservation of the Lorentz current ∂α jαµνM = 0 imply that

∂α
∂L

∂(∂αφi )
i Sµνφi = ∂αBαµν+∂αBανµ = T µν−T νµ . (A.72)

Hence, the Belinfante stress-energy tensor is manifestly symmetric.

A.3.3 Ward identities

We consider a QFT — described by the path integral Z = ∫
Dφ exp[−S[φ]] — that is invariant under a

symmetry φ(x) 7→φ′(x ′), so that correlation functions satisfy

〈O1(x ′
1) · · ·ON (x ′

N )〉 = 〈O ′
1(x ′

1) · · ·O ′
N (x ′

N )〉 , (A.73)

Under an infinitesimal transformation φ′(x) =φ(x)−ϵαGα(x) encoded by the generator Gα given in

Eq. (A.61) the action transforms as

δS =
∫

dD x ϵα∂µ Jµα(x) , (A.74)

see Eq. (A.64). Under the assumption that the path-integral measure remains invariant — i.e. that the

symmetry is not anomalous — a correlation function 〈X 〉, with X =φ1(x1) · · ·φN (xN ), satisfies δ〈X 〉 = 0.

This is just the infinitesimal form of Eq. (A.73). After expanding to linear order in the small parameter

ϵα, we find the condition

〈δX 〉 = 〈δS〉 , 〈δS〉 =
∫

dD x 〈ϵα∂µ jµα X 〉 . (A.75)

The variation of X =φ1(x1) · · ·φN (xN ) can be rewritten in terms of an integral to match the right-hand

side,

δX =−
∫

dD x ϵα
N∑

k=1
δ(x −xk )φ1(x1) · · ·G (c)

α φk (xk ) · · ·φN (xN ) . (A.76)

The integrands on the left- and right-hand sides of Eq. (A.75) have to agree, which implies the equality

∂

∂xµ
〈 jµα(x)φ1(x1) · · ·φN (xN )〉 =−

N∑
k=1

δ(x −xk )〈φ1(x1) · · ·Gaφk (xk ) · · ·φN , (xN )〉 , (A.77)

for any symmetry Gα realized at the quantum level. This is the so-called Ward identity for the symmetry

Gα associated to the current jµα . The Ward identity essentially tells us how symmetry transformations

act on correlation functions in the quantum theory and how insertions of the associated conserved
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current can be evaluated. In addition, the Ward identity also identifies the associated charge,

Qα =−
∫

dD−1x j 0
α , (A.78)

as the generator of the symmetry transformation in the quantum theory: suppose that the spacetime

coordinate x0
1 is different from all other x0

i , i = 2, . . . , N . In that case we integrate the Ward identity

in Eq. (A.77) over a thin box {x ∈ RD : x0 ∈ [t−, t+]} such that x0
1 ∈ [t−, t+], x0

i ̸=1 ̸∈ [t−, t+]. Using the

divergence theorem, the left-hand side turns into a surface integral,29

〈(Qα(t+)φ1(x1)−φ1(x1)Qα(t−)
)
φ2(x2) · · ·φN (xN )〉 = 〈(Gαφ1(x1)

)
φ2(x2) · · ·φN (xN )〉 . (A.79)

In the limit t± → x0
1 we conclude that

[Qα(x0
1),φ1(x1)] =Gαφ1(x1) . (A.80)

The fact that the conserved current jµα satisfies the Ward identity in Eq. (A.77) turns the conserved

charge Qα into a topological operator, meaning that it can be freely moved around between different

times x0 in the path integral as long as it does not cross any operator insertions in the process.

In Euclidean field theory there is no preferred time direction and charges can equivalently be defined

via an arbitrary closed codimension-1 surface Σ. For example, the integral of T µν over Σ returns the

generator of translations,

Q(P )
µ (Σ) =−

∫
Σ

dnνTµν(x) . (A.81)

Consider the particular choice Σ = ∂Bϵ(x1) of a small ball around x1 excluding any other operator

insertion. We have

〈Q(P )
ν

(
∂Bϵ(x1)

)
φ1(x1) · · ·φN 〉 = ∂ν〈φ1(x1) · · ·φN 〉 . (A.82)

We can deduce that in the Euclidean path integral surrounding the operator insertion φ1(x1) with the

topological surface operator Q(P )
ν (Σ) is equivalent to taking a derivative, i.e. acting with the associated

symmetry generator. The action of the conserved charge on φ1(x1) and the other operator insertions

within the path integral remains unchanged for any arbitrary Σ separating the operator insertions

(hence it is called topological). Similar statements will hold for any other symmetry of the theory. The

important take-away here is that the existence of a codimension-one topological operator in Euclidean

QFT is equivalent to the presence of a symmetry.30

A.3.4 Quantization

The process of quantization in QFT divides spacetime RD up into hypersurfaces Σ plus an additional

”time” variable t — schematicallyRD ∼Σ×[ti , t f ] — with a symmetry transformation mapping hypersurfaces

Σ=Σ(t ) at different times t into each other. In order to make sense of the quantization procedure, the

theory should be invariant under the spacetime symmetry relating different hypersurfaces. If this is

29Correlation functions are vacuum expectation values of time-ordered products in the operator formalism.
30There are topological operators with support on manifolds with different codimensions and they correspond to so-called

generalized symmetries [102, 309, 310].
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the case, it is then possible define a Hilbert space on any arbitrary hyperplane and relate the different

Hilbert spaces to each other.

Each hypersurface Σ is equipped with a Hilbert space and the symmetry generator Gt of translations in

t describes the evolution of a system or state between Hilbert spaces. In-states |Ψin〉 at t are created by

inserting operators in the ”past” t0 < t while out-states 〈Ψout| are created by inserting operators in the

”future” t1 > t . The (unique) vacuum state of the Hilbert space is denoted by |0〉. Initial and final states

are generically given by vacuum states in the infinite past and the infinite future, respectively, and they

satisfy 〈0|0〉 = 1.31 The overlap of in- and out-states at time t is equivalent to the correlation function

of the inserted operators.32 The time-evolution operator U (t1 − t0) = e−Gt (t1−t0) connects in-states at

t0 and out-states at t1, so that the associated correlation function — the overlap of |Ψin〉 and 〈Ψout| —

reads 〈Ψout|U (t1 − t0) |Ψin〉.

Consider a QFT described by an action S and a path integral Z . The path-integral description of the

theory can be interpreted in terms of different time-evolutions into different Hilbert spaces dictated

by the spacetime symmetries of the theory. Every possible foliation of spacetime corresponds to a

quantization of the theory. For example, in a Euclidean theory with rotational invariance on RD any

spatial direction r0 is an acceptable choice of time direction. Here, the symmetry transformation

described by the evolution operator Gt discussed above is translation in the r0-direction and Hilbert

spaces live on the hyperplanes orthogonal to the chosen direction.

After quantization, correlation functions — described by operator insertions in the path integral — get

interpreted as time-ordered expectation values,33

〈O1(x1) · · ·ON (xN ) = 〈0|T {O1(x1) · · ·ON (xN )} |0〉 . (A.83)

The time-ordering is performed with respect to the specific foliation chosen during quantization. A

different choice of quantization results in different Hilbert spaces and different quantum operators,

however, results in terms of correlation functions remain equivalent.34

Naturally, the question arises whether the choice of quantization has any consequence on the realization
of the symmetries in the quantum theory. Consider an operator insertion O (x) at time t , two hypersurfaces
Σ1,2 at times t1 < t < t2 and a symmetry operator Qα(Σ1,2) associated to a symmetry transformation
respected by the quantum theory. By construction, Qα is a conserved charge and topological. We
are free to move it around as long as it does not cross any other insertions.35 We are interested in
correlators with insertions of Qα(Σ2)−Qα(Σ1), O (x) and no other insertions in between t1 and t2. After
quantization the difference Qα(Σ2)−Qα(Σ1) inside any correlation function becomes a commutator
with the operator insertion O (x) as we collide the hypersurfaces Σ1,2 at time t . On the other hand, as
Qα is topological, we can also deform the total surface Σ2 −Σ1 to a sphere ∂B(x) surrounding O (x),

31Other choices of initial and final states correspond to non-trivial boundary conditions in the path integral.
32For particle scatterings 〈Ψin|Ψout〉 is equivalent the S-matrix.
33Times are ordered with the largest time on the left and the smallest time on the right in the commutator.
34This can be demonstrated explicitly in specific examples, see e.g. [21].
35The fact that Qα is topological is the quantum equivalent to its conservation classically.
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implying that the following expressions are all equivalent:

〈(Qα(Σ2)−Qα(Σ1)
)
O (x) . . .〉 = 〈Qα(Σ= ∂B(x)) O (x) . . .〉 = 〈0|T { [Qα,O (x)] . . . } |0〉 = 〈0|T {

(
GαO (x)

)
. . . } |0〉 ,

(A.84)

where Gα is the generator of the symmetry transformation acting locally on the space of operators

in the quantized theory (see Eq. (A.77)). It is evident that this result is independent of the choice of

quantization/foliation. The commutator [Qα,O (x)] =GαO (x) is local while the charge Qα(Σ) itself is

non-local. This is consistent because Qα is topological and — independent of the foliation — can

be deformed such that it is supported on an arbitrary small sphere around the insertion point x. We

conclude that it is justified to replace the charge Qα in the path integral by the local operator Gα in

the operator formalism without specifying a quantization scheme. The identifications between the

operator formalism in the quantized theory and the path-integral formalism schematically look as

follows:

GαO (x) = [Qα,O (x)] ∼Qα ◦O (x) ∼ O (x)
Qα(Σ)

Σ

. (A.85)

The shorthand notation Qα ◦O (x) signifies that we surround O (x) with the surface operator Qα. It can

be interpreted equivalently to a commutator in the operator formalism.36 In terms of the generators

Gα, the notation GαO (x) = [Gα,O (x)] is valid due to the Jacobi identity (this is the adjoint action).

Alternatively, we can think of states |O (x)〉 =O (x) |0〉 on the Hilbert space. The vacuum |0〉 is invariant

under all symmetry operators Qα ∼ Gα of the theory and, with regards to notation, it is true that

GαO (x) |0〉 = [Ĝα,O (x)] |0〉.

Finally, the expression QN ◦ · · · ◦Q1 ◦O (x) means surrounding the insertion O (x) in the path integral

with topological surface operators of increasing size,

QN ◦ · · · ◦Q1 ◦O (x) ∼ O (x)
QN

Q1

. (A.86)

Suppose we want to change the order of the inserted charges/surface operators. In that case the

commutation relations obeyed by the conserved charges tell us how to properly reorder insertions

of said surface operators, as this is equivalent to commuting symmetry generators in the operator

formalism.37

36The way local operators transform under symmetries is always insensitive to IR details like SSB or compactification in time
(finite temperature), as commutators can always be computed at short distances.

37For the conformal charges these commutation relations are given by Eq. (1.11).
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A.3.5 Hermitian conjugation in Euclidean spacetime and reflection positivity

Unitarity is a fundamental property that a QFT in Lorentzian signature can exhibit. In many physical

situations we require unitarity of the theory in question as it is equivalent to the preservation of

probability [27–29].38 In unitary theories conserved charges, including the Hamiltonian, are Hermitian

operators that generate unitary transformations at the quantum level. In Euclidean signature, however,

unitarity for Lorentzian QFTs is mapped into a property called reflection positivity.

Consider a Lorentzian QFT with Hermitian stress-energy generators (H ,P (L)
i ) and a local Hermitian

operator O (L)(0) =O (L)†(0). It holds that

O (L)(t ,x) = e i H t+i x·P(L)
O (L)(0)e−i H t−i x·P(L)

, (A.87)

implying that O (L)(x) is Hermitian as well. After performing a Wick rotation t = −iτ, in Euclidean

signature the above relationship turns into

O (E)(τ,x) = eHτ+i x·P(L)
O (L)(0)e−Hτ−i x·P(L)

O (E)(τ,x) :=O (L)(−iτ,x) . (A.88)

Therefore, the corresponding Euclidean operator O (E) satisfies

O (E)†(τ,x) =O (E)(−τ,x) . (A.89)

This property can be generalized to operators with arbitrary spin. For tensor fields, for example,

reflection positivity reads

O (E)†
µ1...µN

(τ,x) =Θ ν1
µ1

· · ·Θ νN
µN

O (E)
ν1...νN

(−τ,x) , Θ ν
µ = δ ν

µ −2δ 0
µ δ ν

0 . (A.90)

Operators that satisfy the condition in Eq (A.90) — and are therefore Hermitian in Lorentzian signature

— are sometimes called real operators and we will refer to them as such here.

As can be seen from Eq. (A.90), Hermitian conjugation in Euclidean space becomes a reflection in

Euclidean time. This means that the choice of time direction is important for the definition of Hermitian

conjugation. As a consequence, the conjugation properties of operators depend on how we choose

to quantize the theory. This is fundamentally different to the situation in Lorentzian signature, where

the conjugation properties of local operators are independent of the frame of reference. For example,

we can consider the associated charges to the momentum generators in Euclidean signature and their

conjugation properties in a foliation along the x0 = τ direction,

Q(P )
µ =−

∫
dD−1x Tµ0(0,x) , −→ Q(P )†

0 =Q(P )
0 , Q(P )†

i =−Q(P )
i . (A.91)

Evidently, we can relate the generators Q(P )
µ to their Lorentzian counterparts discussed above as follows:

Q(P )
0 ∼ P0 = Ĥ , Q(P )

i ∼ Pi = i P (L)
i . (A.92)

38In Lorentzian QFT unitarity is often formulated as the requirement that the S-matrix is unitary.
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If we had quantized using a different time direction, we would have concluded that the momentum

generator in the new time direction is Hermitian while all the other generators are anti-Hermitian. We

see that Hermitian conjugation is fundamentally dependent on the choice of foliation.

A natural question to ask is what conditions does a Euclidean QFT have to satisfy if it computes a

Wick-rotated unitary Lorentzian theory. First and foremost, in such a theory it is necessarily the case

that the norms of states in the theory are all positive. Given a state of the form

|ψ〉 =O1(−τ1,x1) · · ·ON (−τN ,xN ) |0〉 , (A.93)

with operator insertions at negative Euclidean times, the condition of positive norms implies that

〈ψ|ψ〉 = 〈0|O1(τ1,x1) · · ·ON (τN ,xN )O1(−τ1,x1) · · ·ON (−τN ,xN ) |0〉 ≥ 0. (A.94)

In terms of correlators, this statement is the requirement that time-reflection symmetric correlation

functions have a positive path-integral description. This property is called reflection positivity and it is

a necessary condition for a Euclidean theory to be given by a Wick-rotated unitary Lorentzian theory.

In particular, in the context of CFTs it is very natural to define a theory in Euclidean spacetime, and in

that case reflection positivity always has to be checked.

Beyond the scope of this discussion, there are important distinctions between Lorentzian and Euclidean

signature. For example, out-of-time-order correlators are not very meaningful in Euclidean signature as

the Hamiltonian is bounded only from below and not from above. Hence, out-of-time-order correlation

functions are formally infinite. In Lorentzian QFT, out-of-time-order correlators — so called Wightman

functions [24] — are meaningful and interesting observables because of the additional imaginary unit

in the definition of the evolution operator. In this context, however, it deserves to be mentioned that

both time-ordered correlation functions and Wightman functions in Lorentzian QFT can be obtained

from time-ordered correlators in Euclidean QFT by carefully performing the Wick rotation [21].

.

.

A.4 A schematic derivation of the Nambu-Goldstone mode counting

rule

In this Appendix we review the derivation of the general counting rule for NG modes in non-relativistic

systems discussed in Section 1.2.4. The derivation presented here is based on [36]. For more details we

refer to the above publication and also [34, 35, 47, 311, 312]. We only give a rough sketch of proof and

ignore certain more involved details.

The proof and derivation of the general counting rule follows from a more fundamental effective

Lagrangian approach. The effective Lagrangian Leff captures adequately the low-energy long-distance

199



Appendix A. Appendices to Chapter 1

fluctuations and the macroscopic order of the theory. The main input for the construction of the

effective Lagrangian is the symmetry-breaking pattern

G → H , (A.95)

where G is the full global symmetry group of the theory and H is the unbroken subgroup at low energies.

As usual in effective field theory, the most general Lagrangian capturing the dynamics of the system in

question is constructed by including all terms — or operators — that respect the symmetries of said

system. Naturally, the low-energy long-distance behaviour is described by fluctuations in the direction

of the coset of G and H ,

G/H = {g h |g ∈G , h ∈ H } . (A.96)

These fluctuations correspond to the massless NG bosons present because of SSB. We explicitly assume

here that we are so low in energies such that there are no other long-distance DoFs present. In our

construction, we introduce one field πa for each broken generator T (br)
a . For now we refer to all of

these fields as NG modes, even though in general some of the corresponding modes are not necessarily

independent of each other in the absence Lorentz invariance, as we will see. The NG fields πa naturally

map spacetime into the manifold G/H . In the following, we write down the effective Lagrangian for

the NG modes in a systematic expansion in powers of derivatives, which is consistent since higher-

derivative terms become less important at longer distances.

Naturally, the NG fieldsπa transform under the action of G . However, since they form a parametrization

of the coset G/H , the fields πa cannot linearly realize the full symmetry group G . Instead, they form a

non-linear realization of G . In general, under the action of G the NG modes transform as

δ(ϵ)πa = ϵbhba(π) , (A.97)

where the generators hba(π) can be viewed as vector fields on G/H ,

hb(π) = hba(π)∂a , ∂a := ∂

∂πa
. (A.98)

The generators hb satisfy the commutation relations associated to G ,

[hb ,hc ] = fbcd hd . (A.99)

where b,c,d refer to generators of G . Crucially for us later, on the level of the action a symmetry

transformation can always change the Lagrangian density by a total derivative.

In the continuum limit (at sufficiently long distances) we assume spatial translational invariance as well

as rotational invariance. If the system exhibits Lorentz invariance, the form of the effective Lagrangian

Leff is highly constrained,

Leff =
1

2
gab(π)∂µπa∂

µπb +O (∂4) . (A.100)

Invariance under G at the level of the Lagrangian requires that gab(π) be a G-invariant metric on G/H .

If we drop Lorentz invariance the general form of the effective Lagrangian exhibits substantially more
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freedom,

Leff = ca(π)π̇a + 1

2
g (1)

ab (π)π̇aπ̇b +
1

2
g (2)

ab (π)∂iπa∂iπb +O (∂3
τ,∂τ∂

2
i ,∂4

i ) . (A.101)

Importantly, spatial isotropy only allows for quadratic terms in the spatial derivatives within the

Lagrangian but permits a linear term in π̇a . The coefficients ca(π), g (1)
ab (π) and g (2)

ab (π) are dependent

on the symmetry-breaking pattern G → H . Under the action of the symmetry group G the Lagrangian

density in Eq. (A.101) can only change by a total derivative. This is the case if and only if under the

infinitesimal transformation δ(ϵ)πa = ϵbhba(π) we have(
∂bca(π)−∂acb(π)

)
hcb(π) = ∂aec (π) . (A.102)

Importantly, The functions ec (π) are related to the charge densities of the system. Using the fact that

the variation of the Lagrangian in Eq. (A.101) is given by the surface term

δLeff = ϵb∂t
(
ca(π)hba(π)+eb(π)

)
, (A.103)

we can derive the form of the Noether current for the global symmetry, which is given by

j 0
c = ec (π)− g (1)

ab (π)hca(π)π̇b . (A.104)

Since the ground state |0〉 is time-independent, we see that

〈0| j 0
c (x)|0〉 = ec (π)

∣∣
π=0 . (A.105)

In particular, the charge densities must vanish in the Lorentz-invariant case, which is obviously true as

ec is zero if all ca vanish. The matrix ρi j defined in Eq. (1.129) is now given by

ρab :=−i lim
Ω→∞

〈0|[QΩa , j 0
b (x)]|0〉 =−i 〈0|[Qa , j 0

b (x)]|0〉 = hac∂c eb
∣∣
π=0 . (A.106)

For unbroken generators this vanishes by definition. For the broken generators we can further deduce

that

hcahdb
(
∂bca −∂acb

)∣∣
π=0 = ρcd (A.107)

This differential equation can be solved around the origin. The Taylor expansion of ca(π) is given by

ca(π) = ca(0)+ (Sab + Aab)πb +O (π2) , (A.108)

where Sab and Aab stand for the symmetric and anti-symmetric parts of the derivative ∂bca |π=0,

respectively. As ca(0) and Sab only lead to total derivative terms in the effective Lagrangian Leff, they

can be ignored or dropped. In total we have

ca(π)π̇a = Aabπ̇aπb + total derivative terms+O (π3) . (A.109)

The equation for the anti-symmetric part,

2hcahdb
∣∣
π=0 Aab = ρcd , (A.110)
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has a unique solution which reads

ca(π)π̇a = 1

2
ρabπ̇

′
aπ

′
b +O (π′3) , π′

a :=πb
(
h−1(0)

)
ba . (A.111)

As the matrix ρab is real and anti-symmetric, it can always be brought into a suitable block-diagonal

form,

M TρM =



0 λ1

−λ1 0
. . .

0 λm

−λm 0
. . .

0


, (A.112)

by an orthogonal transformation M . Here, we have λα ̸= 0 for α = 1, . . . ,m with 2m = rank(ρ). The

explicit expression of the effective Lagrangian in Eq. (A.101) now includes

ca(π)π̇a = 1

2

m∑
α=1

λα
(
π̇′

2α−1π
′
2α− π̇′

2απ
′
2α−1

)
. (A.113)

When compared to the standard and familiar form of any Lagrangian on the phase space,39

∫
dD−1x L = pi q̇i −H , (A.114)

this implies that π′
2α−1 and π′

2α are canonically conjugate variables, which together represent a single

Degree(s) of Freedom (DoF) rather than two. This proves the counting rule.

We end this appendix with two remarks. First, we note that the definition of Degree(s) of Freedom (DoF)

used here is the conventional one in physics. In other words, we need to specify both the initial value

of any given DoF itself as well as its time derivative as initial conditions. And second, the Lagrangian

formalism is mandatory in our discussion. If we would want to move to the Hamiltonian formalism, we

then would run into the issue that the presence of the first-order derivative terms affect the definition

of the canonical momenta.

39Here, Darboux’s theorem states that we can choose a local coordinate system in such a way that higher-order terms O (π′3)
vanish.
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B Appendices to Chapter 2

B.1 Hyperspherical harmonics and conformal symmetry

In this appendix we collect useful formulas concerning hyperspherical harmonics in D-dimensional

space. We mostly follow [193]. In the second part we discuss the constraints imposed by conformal

symmetry on two-, three- and four-point functions introduced in Section 1.1 in the limit of infinite

separations and in the language of hyper-spherical harmonics on the cylinder.

B.1.1 Hyperspherical harmonics and their properties

Hyperspherical harmonics — denoted by Yℓm — are the eigenfunction of the Laplacian on SD−1
r0

, D ≥ 3,

−∆SD−1
r0

Yℓm(n) =λℓYℓm(n) , λℓ := ℓ(ℓ+D −2) , (B.1)

where ℓ= 0,1, . . . is a positive integer and m in D > 3 is a vector consisting of D −2 components which

in the standard-tree convention satisfy

l ≥ m1 ≥ m2 ≥ ·· · ≥ mD−3 ≥ |mD−2| . (B.2)

We note that the lowest component mD−2 can be associated to the standard SO(3) quantum number

appearing in the spherical harmonics in D = 3. This is also the only component which can be negative.

In our convention we denote the vector with the sign of mD−2 switched as the conjugate m∗. This is

reasonable, as it appears in the conjugation property of the hyperspherical harmonics,

Y ∗
ℓm = (−1)mD−2 Yℓm∗ . (B.3)

As can be seen above, the eigenvalues λℓ only depend on ℓ and not on m. The multiplicity DegD (ℓ) of

the eigenvalue λℓ is given by the all the different choices of m and reads

DegD (ℓ) = (D +2ℓ−2)Γ(D +ℓ−2)

Γ(ℓ+1)Γ(D −1)
. (B.4)
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Due to the fact that the Laplacian is self-adjoint, the hyperspherical harmonics Yℓm form an orthonormal

basis of L2(SD−1
r0

),

(Yℓm ,Yℓ′m′ ) =
∫

dS

SD−1
r0

Yℓm(n)Y ∗
ℓ′m′ (n) = δℓℓ′δmm′ , (B.5)

where we have defined the rescaled volume element on the sphere as

dS = r D−1
0 dΩ . (B.6)

Certain useful identities can be obtained by summing spherical harmonics and their derivatives over

the indices m

∑
m

Yℓm(n)Y ∗
ℓm(n) = DegD (ℓ)

ΩD
, (B.7)∑

m
Yℓm(n)∂i Y ∗

ℓm(n) = 0, (B.8)

∑
m
∂i Yℓm(n)∂ j Y ∗

ℓm(n) = DegD (ℓ)

ΩD
(r 2

0λℓ)hi j (n) , (B.9)

whereΩD = 2πD/2

Γ(D/2) volume of the D −1-dimensional unit sphere. Sums over the eigenvalues λℓ — i.e.

the dispersion relations ωℓ in Eq. (2.32) — in terms of Eq. (2.86),

∑
ℓ,m

ωs
ℓYℓm(n)Y ∗

ℓm(n) = Σ(s)

ΩD r s
0

= ζ(−s/2|SD−1
r0

)

(D −1)s/2r s
0ΩD

, ω2
ℓ =

ℓ(ℓ+D −2)

r 2
0 (D −1)

= λℓ

r 2
0 (D −1)

. (B.10)

The cut-off independent part of Σ(s) (Λ-independent) is related to the zeta function on the sphere [313],

ζ(s|SD−1
r0

) = Tr
[(−∆SD−1

r0

)s
]

. (B.11)

For s = 1 we recover the expression for the Casimir energy of the superfluid phonon discussed and

computed in Appendix B.2, ∑
ℓ,m

ωℓYℓm(n)Y ∗
ℓm(n) = Σ(1)

r0ΩD
= 2∆1

r0ΩD
. (B.12)

Sums with open derivative indices can be computed analogously,

∑
ℓ,m

ωs
ℓ∂i Yℓm(n)∂ j Y ∗

ℓm(n) = Σ(s +2)

r s
0ΩD

hi j =
ζ(−s/2−1|SD−1

r0
)

(D −1)s/2+1r s
0ΩD

hi j , (B.13)

which for s = 1 becomes ∑
ℓ,m

1

ωℓ
∂i Yℓm(n)∂ j Y ∗

ℓm(n) = r0Σ(1)

ΩD
hi j = 2r0∆1

ΩD
hi j . (B.14)

Another useful tool are the Gegenbauer polynomials, which are defined from the hyperspherical
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harmonics on the unit sphere SD−1r0 = 1 as follows:

C D/2−1
ℓ (n ·n′) = (D −2)ΩD

(D +2ℓ−2)

∑
m

Y ∗
ℓm(n)Yℓm(n′) . (B.15)

Monomials on the unit sphere can be decomposed in terms of these Gegenbauer polynomials,

(n ·n′)ℓ = ℓ!

2ℓ

⌊ ℓ2 ⌋∑
s=0

( D
2 −1+ℓ−2s

)
Γ

( D
2 −1

)
s! Γ

( D
2 +ℓ− s

) C D/2−1
ℓ−2s (n ·n′) . (B.16)

The Gegenbauer polynomials also satisfy an addition property of the form

C D/2−1
ℓa

(n ·n′)C D/2−1
ℓb

(n ·n′) =
min(ℓa ,ℓb )∑

k=0
〈k|ℓaℓb〉C D/2−1

ℓa+ℓb−2k (n ·n′) , (B.17)

with the coefficients 〈k|ℓaℓb〉 given by

〈k|ℓaℓb〉 =
(

D

2
−1−2k +ℓa +ℓb

)
Γ(ℓa +ℓb +1−2k)

Γ
( D

2 −1
)2
Γ(ℓa +ℓb −2k +D −2)

× Γ
( D

2 +k −1
)
Γ(ℓa +ℓb −k +D −2)Γ

(
ℓa −k + D

2 −1
)
Γ

(
ℓb −k + D

2 −1
)

Γ(k +1)Γ
(
ℓa +ℓb −k + D

2

)
Γ(ℓa −k +1)Γ(ℓb −k +1)

. (B.18)

We note that this is simply a generalization of angular-momentum addition in D = 3.

B.1.2 Constraints from conformal symmetry

As discussed in detail in Section 1.1, conformal invariance strongly constrains the form of correlation

functions. Here, we care about correlators where the outermost insertion are at infinite separation

which — by the state–operators correspondence — corresponds to matrix elements of states inserted

at τ2,1 =±∞. Furthermore, for spinful operators it is most convenient to work in the spherical tensor

basis and hence in terms hyperspherical harmonics.

In the standard basis in Cartesian coordinates an object which transforms in an irreducible representation

of the rotation group SO(D) is represented by a completely symmetric and traceless tensor Tν1...νℓ .

Naturally, the same object can be consistently represented in the spherical basis as a tensor Tℓ,m labelled

by ℓ,m. The operators Uν1...νℓ
ℓm which allows us to pass from one basis to the other is represented by the

following integral on the unit sphere:

Uν1...νℓ
ℓm = kD,ℓ

∫
dΩ

SD−1
1

nν1 . . .nνℓY ∗
ℓm(n) , (B.19)

where the normalization kD,ℓ is fixed by the condition that the operator U squares to one,

|Uℓm |2 = δµ1ν1 . . .δµℓνℓ
(
Uν1...νℓ
ℓm

)∗
Uµ1...µℓ
ℓm = 1, (B.20)

205



Appendix B. Appendices to Chapter 2

and reads

kD,ℓ =
√√√√ 2ℓ

ΩD

Γ
( D

2 +ℓ)
ℓ! Γ

( D
2

) . (B.21)

For example, we can consider the simplest non-trivial case given by a vector Vµ in D = 3, which is

mapped to the object V1m with componentsV1,−1

V1,0

V1,1

=

−
1p
2

(V1 + iV2)

V3
1p
2

(V1 − iV2)

 . (B.22)

We want to discuss the structure of conformal correlators in the limit of large separation. The two-point

function of two primary operators is non-vanishing only if they live in conjugate representations of the

conformal group and hence exhibit the same scaling dimension, see Section 1.1. On the cylinder at

large separation τ2 −τ1 ≫ 1 the two-point function of the operator O
q ;∆
ℓm̄ (τ1,n1) simplifies to

〈O−q ;∆
ℓm̄ (τ2,n2)O q ;∆

ℓm̄ (τ1,n1)〉 = e−(τ2−τ1)∆/r0 Iℓmm̄(n2) :=A ∆(τ1,τ2) Iℓmm̄(n2) , (B.23)

where we have made use of the fact that in the limit of large separation the unit vector in the direction

of the separation between the two insertions is given by

n = x − y∣∣x − y
∣∣ = eτ2/r0 n2 −eτ1/r0 n1∣∣eτ2/r0 n2 −eτ1/r0 n1

∣∣ τ2,1→±∞−→ n2 . (B.24)

The tensor structure Iℓmm̄ appearing in the two-point function is the intertwiner between conjugate

representations and is equal to the appropriate structure constructed from the inversion tensor from

Eq. (1.44) and written in spherical coordinates (see Section 1.1 for details).

Similarly, the three-point function of scalar primaries — given in Eq. (1.40) — is fixed up to a constant.

In the limit of large separation τ2,1 →±∞ on the cylinder the general form of the three-point function

simplifies considerably. Importantly, the dependence on the scaling dimension of the operator insertion

in the middle drops out,

〈O2(x2)O c (x)O1(x1)〉 −→C1c2e−∆2(τ2−τ)/r0 e−∆1(τ−τ1)/r0 =A
∆2
∆1

(τ1,τ2|τ)C1c2 . (B.25)

In the special case where ∆1 =∆2 =∆ the dependence on the insertion point τ/x drops out completely,

〈O2(x2)O c (x)O1(x1)〉 −→C1c2e−∆(τ2−τ1)/r0 =A ∆(τ1,τ2)C1c2 . (B.26)

The scalar four-point function, given in Eq. (1.42), additionally depends on the conformal cross-ratios

as defined in Eq. (1.41). In the limit of large separation the dependence on the cross-ratios simplifies

and can be collected in a function fc (τ′−τ,n ·n′) that depends only on the intermediate insertions

O c (x)Od (x ′). Furthermore, the large-separation limit of the scalar four-point function can also be
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expressed in terms of the function A (τ1,τ2). The overall result then reads

〈O2(x2)O c (x)Od (x ′)O1(x1)〉 = e
−∆2

(τ2−τ)
r0

−∆1
(τ−τ1)

r0 fc (τ′−τ,n ·n′) =A
∆2
∆1

(τ1,τ2|τ) fc (τ′−τ,n ·n′) . (B.27)

For spinful operators the above result have to be supplemented by the appropriate tensor structure [76,

314], see also Section 1.1 for details. For example, for the scalar–scalar–(spin-ℓ) correlator the result

in Eq. (B.25) has to be multiplied by the tensor structure (V (i j k) · t )ℓ, where t is an auxiliary (complex)

vector that squares to zero to ensure tracelessness and

V (i j k) = |xki | |xk j |
|xi j |

(
xki

|xki |2
− xk j

|xk j |2
)

, (B.28)

In the spherical basis this object is particularly simple. We note that, by construction, Uν1...νℓ
ℓm is

manifestly traceless and anti-symmetric. Hence, there is no need to worry about traces and

V (i j k)
ℓm = Uµ1...µℓ

ℓm V (i j k)
µ1

. . .V (i j k)
µℓ

= kℓ,D

∫
dΩY ∗

ℓm(n)
(
n ·V (i j k)

)ℓ
= 1

kℓ,D

∣∣ |xk j |2xki −|xki |2xk j
∣∣ℓ

|xi j |ℓ|xki |ℓ|xk j |ℓ
Y ∗
ℓm

( |xk j |2xki −|xki |2xk j∣∣|xk j |2xki −|xki |2xk j
∣∣
)

. (B.29)

On the cylinder — xi = r0eτ2/r0 n2, x j = r0eτ1/r0 n1, xk = r0eτ/r0 n — in the limit of large separation

τ2,1 =±∞, in agreement with representation theory, this expression simplifies to

V (i j k)
ℓm = 1

kℓ,D
Y ∗
ℓm(n)

(
1+O

(
e−(τ2−τ)/r0

))
. (B.30)

B.2 Casimir energy in various dimensions

The first quantum correction to the scaling dimension of the scalar primary OQ is given by the Casimir

energy of the superfluid NG mode within the EFT on R×SD−1
r0

. It reads

∆1 = 1

2
p

D −1

∞∑
ℓ=1

DegD (ℓ)
√
ℓ(ℓ+D −2) . (B.31)

In terms of the family of regulated sums Σ(s) defined in Eq. (2.86) the Casimir energy reads,

Σ(1) =
∞∑
ℓ=1

DegD (ℓ)

p
ℓ(ℓ+D −2)p

(D −1)
e−ℓ(ℓ+D−2)/Λ2

. (B.32)

We note that a cut-off regularization is very natural for the Casimir energy in Eq. (B.31) as the EFT

is only able to describe phonon states a†
ℓ
|Q〉 with spin smaller than the EFT cut-off ℓ≪Λ, which is

given by the charge Λ∼ r0µ∼Q
1

D−1 . Here, we choose to regulate the Casimir energy using a smooth

cut-off [313] for reasons of convenience.

Once regulated, the sum in Eq. (B.31) can be computed in an asymptotic series aroundΛ→∞. To do

so we note that for large values of ℓ the summand of the original unregularized can be expanded in
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powers of 1/ℓ with the first term given by

DegD (ℓ)
√
ℓ(ℓ+D −2)

ℓ→∞−−−−→ ∑
k=1

ak (D)ℓD−k . (B.33)

With this in consideration, the regulated sum can be split into three terms,

∞∑
ℓ=0

DegD (ℓ)
√
ℓ(ℓ+D −2)e−ℓ(ℓ+D−2)/Λ2 =Σdiv. +Σlog +Σconv. , (B.34)

where

Σconv. =
∞∑
ℓ=0

(
DegD (ℓ)

√
ℓ(ℓ+D −2)−

D+1∑
k=1

ak (D)ℓD−k

)
e−ℓ(ℓ+D−2)/Λ2

,

Σlog =aD+1(D)
∞∑
ℓ=0

1

ℓ
e−ℓ(ℓ+D−2)/Λ2

,

Σdiv. =
∞∑
ℓ=0

(
D∑

k=1
ak (D)ℓD−k

)
e−ℓ(ℓ+D−2)/Λ2

.

(B.35)

We discuss all three contributions separately. By construction, the first partΣconv. represents a convergent

series,

DegD (ℓ)
√
ℓ(ℓ+D −2)−

D+1∑
k=1

ak (D)ℓD−k ∼O

(
1

ℓ2

)
as ℓ→∞ . (B.36)

No further regulation is need as we have Σconv. = const.+O (1/Λ). Next, the term Σlog is only non-trivial

in even dimensions D , which can be seen from the fact that the coefficients ak (D) satisfy

a2k (D) ∝ (D −2k +1) , ∀k ∈N , (B.37)

On the other hand, the coefficients a2k+1(D) do not possess zeroes for any integer dimension D > 2

for all k ∈ N This term leads to a contribution of the form logΛ first found in [188] in this context.

The correct form of the asymptotic expansion for Σlog around Λ→∞ can be found via the standard

Euler-Maclaurin formula,

∞∑
ℓ=1

1

ℓ
e−ℓ(ℓ+D−2)/Λ2 ∼

∫ ∞

0

dx

x
e−x(x+D−2)/Λ2 + 1

2
e−(D−1)/Λ2 −

∞∑
k=1

B2k

(2k)!

(
∂

∂x

)2k−1 1

x
e−x(x+D−2)/Λ2

∣∣∣∣∣
x=1

∼ 1

2

(
γ+ logΛ2)+O

(
Λ−1) ,

(B.38)

where γ is the Euler–Mascheroni constant. Hence, the Σlog term is responsible for the existence for a

term of the form

∆1
∣∣
D = even ⊃ aD+1(D)

2(D −1)
p

D −1
logQ . (B.39)

in the one-loop scaling dimension ∆1 in even spacetime dimensions D . This contribution cannot be

corrected by any classical contributions and therefore represents a universal prediction independent of

the details of the underlying CFT besides its global symmetry group.

In odd spacetime dimensions D the universal contribution is instead simply of the order (Q)0. It is

computed from the other two terms as in (Σdiv. +Σconv.)|const.. We note that the term Σdiv. also contains

208



B.3 More details on the two-loop corrections in the O(2) model

terms scaling with positive powers of the cut-offΛ. These terms can be absorbed into the Wilsonian

coefficients ci within the EFT. The fact that we have performed the regularization using a symmetry-

preserving regulator guarantees this to be the case. We can estimate which powers of Λ are going to

appear using the fact that

∞∑
ℓ=0

ℓαe−ℓ(ℓ+D−2)/Λ2 ∼ 1

2
Γ

(
α+1

2

)
Λα+1 +

∞∑
k=1

ak (α)Λα−k , (B.40)

which is valid for any α ∈ N, with the coefficients ak (α) being computable order-by-order. For the

lowest few integer spacetime dimensions we find that

Σdiv.

∣∣∣
D=3

=
p
π

2
Λ3 − 1

4
+O

(
Λ−1) , (B.41)

Σdiv.

∣∣∣
D=4

= 1

2
Λ4 + 1

4
Λ2 − 9

20
+O

(
Λ−1) , (B.42)

Σdiv.

∣∣∣
D=5

=
p
π

8
Λ5 +

p
π

6
Λ3 − 21

64
+O

(
Λ−1) , (B.43)

Σdiv.

∣∣∣
D=6

= 1

12
Λ6 + 5

24
Λ4 + 1

6
Λ2 − 18′553

30′240
+O

(
Λ−1) . (B.44)

We summarize the relevant results in the computation of the universal contributions to the one-loop

scaling dimension ∆1 for different integer dimensions D in Table B.1.

D Σdiv.
∣∣
const. Σlog Σconv. ∆1,univ.

3 − 1
4 0 -0.01509 −0.09372× (Q)0

4 − 9
20 − 1

8

(γ
2 + logΛ

)
0.1106 − 1

48
p

3
logQ

5 − 21
64 0 -0.1035 −0.1079× (Q)0

6 − 18′553
30′240 − 1

6

(γ
2 + logΛ

)
0.1990 − 1

60
p

5
logQ

7 − 4′735
12′288 0 -0.1684 −0.1130× (Q)0

8 − 534′983
725′760 − 981

5′120

(γ
2 + logΛ

)
0.2655 − 981

71′680
p

7
logQ

9 − 1′273′741
2′949′120 0 -0.2203 −0.1153× (Q)0

10 − 10′420′037
12′418′560 − 22

105

(γ
2 + logΛ

)
0.3192 − 11

2′835 logQ

11 − 277′116′003
587′202′560 0 -0.2641 −0.1163× (Q)0

Table B.1: Relevant values from the computation of the sums in Eq. (B.35) for different integer spacetime
dimensions D. We denote the final result for the universal one-loop contribution to the scaling
dimension of the scalar operator OQ by ∆1,univ..

B.3 More details on the two-loop corrections in the O(2) model

In this Appendix we provide more details for the loop computations in Section 2.2.6. As discussed, loop

corrections can be set up at finite temperature on the thermal circle S1
β
×SD−1

r0
. The CFT predictions
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are obtained in the zero temperature limit β→∞. The fluctuations are decomposed into modes as

π(τ,n) =
√
β

r0

∑
n∈Z

∑
ℓ≥1,m

Yℓm(n)e iωnτπnℓm , π∗
nℓm = (−1)mD−2π−n,ℓ,m∗ . (B.45)

The notation for the m-type quantum numbers here is as outlined in Appendix B.1. The Matsubara

frequencies are ωn = 2πn/β. The unique zero-mode on the thermal circle can be excluded as it never

appears in the derivative-only interactions within the EFT. The propagator in Fourier space is computed

from the quadratic part of the action,

〈πnℓmπn′ℓ′m′〉 = 1

c1D(D −1)(µr0)D−2

1

β2

1

ω2
n +ω2

ℓ︸ ︷︷ ︸
:=Gnℓ

δn,−n′δℓℓ′ (−1)|m|δm,−m′ , (B.46)

where the dispersion relations ω2
ℓ

are given in Eq. (2.32). Further, Gnℓ = (ω2
n +ω2

ℓ
)−1 denotes the

propagator in Fourier space, with ωn being the Matsubara frequencies. The zero mode has constant

norm 〈π0π0〉 = const., does not mix with the other modes and does not get corrected at any order in

perturbation theory since all vertices contain derivatives.

In arbitrary dimension D of spacetime the EFT action includes all possible k-point vertices so that the

interaction is of the form

Sint =
∞∑

k=3
µD−k S(k) . (B.47)

In particular, the two-loop correction ∆2 to the scaling dimension of the primary operator OQ only gets

contributions from diagrams involving three- and four-point vertices,

S(3) = i

6
c1D(D −1)(D −2)

∫ β

0
dτ

∫
dS

SD−1
r0

π̇

[
π̇2 + 3

(D −1)

1

r 2
0

(∂iπ)2

]
, (B.48)

S(4) =− 1

24
c1D(D −1)(D −2)

∫ β

0
dτ

∫
dS

SD−1
r0

[
3

r 4
0 (D −1)

(∂iπ)4 + 6

r 2
0

(
D −3

D −1

)
π̇2(∂iπ)2 + (D −3)π̇4

]
. (B.49)

The overall two-loop correction is computed as

log Z = log Z0 −µD−4 〈S(4)〉c +
1

2
µ2D−6 〈S(3)S(3)〉c , (B.50)

where we have indicated with the notation 〈. . .〉c that only connected contractions contribute. As

propagators scale likeµ2−D it is evident that both contributions in Eq. (B.50) enter at orderµ−D ∼Q− D
D−1

modulo powers of (Q)0 logQ.1

1Following the same power counting we deduce that an ℓ-loop diagram contributes at order Q− (ℓ−1)D
D−1 .
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B.3.1 Tadpole (sub)diagrams are vanishing

We start by verifying that all tadpole-type diagrams in the two-loop contribution ∆2 are identically

vanishing.2 In particular, this guarantees that the ground state introduced in three different contexts

in Sections 2.2.1, 2.2.2 and 2.2.5 is stable under quantum corrections. This can be understood as a

consequence of the SO(D)×O(2)shift symmetry.

For a semi-diagrammatic proof of this statement we note that any tadpole sub-diagram is generated

via contractions from a vertex with an odd number of legs, i.e. 〈S(2k−1)〉c for some k ∈N. Due to the

SO(D) invariance the quantum-corrected propagator 〈πnℓmπn′ℓ′m′〉 remains proportional to δm m′ .

Generically, every term of this kind will contain k pairs of paired hyperspherical harmonics Y ∗Y and

one unpaired harmonic Y ,

〈S(2k−1)〉 ⊃ ∑
m,m1...,mk

∫
dS

SD−1
r0

YℓmYℓ1m1 Y ∗
ℓ1m1

. . .Yℓk mk
Y ∗
ℓk mk

. (B.51)

The sum
∑

m YℓmY ∗
ℓm is constant (see Appendix B.1), and hence

∑
m,m1...,mk

∫
SD−1

dS YℓmYℓ1m1 Y ∗
ℓ1m1

. . .Yℓk mk
Y ∗
ℓk mk

∝∑
m

∫
SD−1

dS Yℓm = 0. (B.52)

This is a consequence of the fact that the O(2) shift symmetry guarantees that the zero mode ℓ = 0

cannot appear in perturbation theory. The same argument applies if derivatives of hyperspherical

harmonics appear, in this case we can use the identities in Eq. (B.7).

B.3.2 Two-loop scaling dimension∆2

In the computation of the two-loop scaling dimension we require the family of regulated sums defined

in Eq. (2.86),

Σ(s) := lim
Λ→∞

∑
ℓ>0

DegD (ℓ)(r0ωℓ)s e−ω
2
ℓ

/Λ2
. (B.53)

The use of a momentum-dependent regulator is natural as the EFT can only capture phonon state with

small enough values of the ℓ quantum number. This fact also cuts the allowed phonon states running

in internal limes, as discussed in Eq. (2.59).

For two-loop computations and beyond the regularization procedure needs to take into account the

Matsubara frequencies ωn as well since vertices with derivative couplings generically lead to sums of

the from ∑
n∈Z

∑
ℓ>0

ω2
nω

2
ℓ

ω2
n +ω2

ℓ

, (B.54)

where also the Matsubara sum is now divergent. A linear regularization procedure is a convenient

choice here [315],

Reg

[ ∑
n∈Z

∑
ℓ>0

(
α f (n,ℓ)+βg (n,ℓ)

)]=αReg

[ ∑
n∈Z

∑
ℓ>0

f (n,ℓ)

]
+βReg

[ ∑
n∈Z

∑
ℓ>0

g (n,ℓ)

]
. (B.55)

2More generally, no vertex appearing in Eq. (B.47) generates non-vanishing tad-pole sub-diagrams.
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In addition, it should be symmetric under n ↔−n and independent of the m quantum numbers. We

again choose a smooth cut-off regularization scheme [313, 316] which now involves the thermal circle

as well,

Reg

[ ∑
n∈Z

∑
ℓ>0

f (n,ℓ)

]
= ∑

n∈Z

∑
ℓ>0

f (n,ℓ)e−(ω2
n+ω2

ℓ
)/Λ2

. (B.56)

Both, the sum over the dispersion relationsωℓ in Eq. (2.32) and the sum over the Matsubara frequencies

ωn are separately regularized. After performing the proper regularization, we take the zero-temperature

limit β→∞ while keeping r0Λ fixed. In the end we are left with regulated sums of the form in Eq. (B.53).

Finally, standard Feynman diagram techniques can be used in finite volume on S1
β
×SD−1

r0
.

First, we consider contributions coming from the quartic vertex in the action. The overall contribution

at finite temperature is found to be

〈S(4)〉 =−c1D(D −2)

24

 3

r 4
0

+ 6(D −3)

r 2
0

+ (D −1)(D −3)

 . (B.57)

In our notation vertices are black dots, square black dots indicate spatial derivatives ∂i acting on the

corresponding legs and white dots indicate temporal derivatives ∂τ. In our notation we have also

suppressed the permutation of the derivatives on the legs, which need to be taken into account as

independent Wick rotations. We provide detailed computations for each contribution in Appendix B.4.

We find that

µD−4 〈S(4)〉c =− (D −2)

8c1D(D −1)ΩD (µr0)D

(
r0

β

)[
(D −3)

[∑
n,ℓ

DegD (ℓ)

]2

−4

[∑
nℓ

DegD (ℓ)Gnℓω
2
ℓ

]2]
,

(B.58)

where Gnℓ is the propagator in Fourier space and degD (ℓ) denote the multiplicities of the eigenvalues

ℓ. Each sum is regulated as in Eq. (B.56). After performing the sum over Matsubara frequencies we take

the limit β→∞ and find the contribution to the scaling dimension from the quartic vertices,

∆(4)
2 =− (D −2)

8c1D(D −1)ΩD (µr0)D

[
(D −3)

(Λr0)2

4π
Σ(0)2 −Σ(1)2

]
. (B.59)

In contrast to the quartic term in the action — at the order we are working at — all contributions

coming from Feynman diagrams involving cubic vertices are appearing at two-loop order. The overall

contribution is given by

〈S(3)S(3)〉c =− c2
1

36
D2(D −1)2(D −2)2

[
+ 6

r 2
0 (D −1)

+ 9

r 4
0 (D −1)2

]
, (B.60)

where we again omit permutations of the different derivatives on the internal legs. We note that,

as discussed in Appendix B.3.1, there are no contributions involving tadpole diagrams. We present

computations for each Feynman grap separately in Appendix B.4. The final result can be expressed in a
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completely symmetrized form as follows:

µ2D−6 〈S(3)S(3)〉c =− (D −2)

12c1D(D −1)ΩD (µr0)D

(
r0

β

) ∑∑
ℓa ,ℓb ,ℓc

na+nb+nc=0

Gnaℓa Gnbℓb
Gncℓc Sℓaℓbℓc

×
[

2ω2
na
ω2

nb
ω2

nc
−ωnaωnbωnc

[
ωna (ωℓb

+ωℓc )2 + (cyclic perm.)
]

+ 1

2
ω2

na
(ω2

ℓb
+ω2

ℓc
−ω2

ℓa
)2 + (cyclic perm.)

−ωnaωnb

[
ω4
ℓc
− (ω2

ℓa
−ω2

ℓb
)2

]
+ (cyclic perm.)

]
, (B.61)

where ωni denotes the Matsubara frequencies and ωℓi the dispersion relations given in Eq. (2.32). The

symbol △ℓaℓbℓc essentially corresponds to (discrete) momentum conservation on SD−1
r0

and enforces

the SO(D) quantum numbers ℓa,b,c to satisfy a triangle inequality,

△ℓaℓbℓc :=
{

1 if |ℓb −ℓa | ≤ ℓc ≤ ℓb +ℓa and ℓc −ℓa −ℓb even,

0 otherwise.
(B.62)

The symmetric structure Sℓaℓbℓc appearing in this expression involves the symbol △ℓaℓbℓc as well
and is defined in Section 2.2.6 and also in Appendix B.4 in Eq. (B.87). We recover the corresponding
contribution to the scaling dimension of the primary operator OQ is obtained in the zero-temperature
limit β→∞ while computing the Matsubara sums along the same line as discussed before. The overall
end result including both cubic and quartic contributions to the two-loop scaling dimension reads

∆2 = 1

16c1D(D −1)ΩD (µr0)D

[
(r0Λ)2

6π
(D −2)[2D −4+ (D −5)Σ(0)]Σ(0)− (r0Λ)p

π
(D −2)2 (1−Σ(0))Σ(1)

− (D −2)

3

[
(D −2)(Σ(2)+6Σ(0)Σ(2)+2Σ(−1)Σ(3))− (5D −16)Σ(1)2 −8Σ(2ℓ)]] , (B.63)

where we have denoted by Σ(2ℓ) as sum that unfortunately cannot readily be reduced to a combination

of elementary sums of the form Σ(s),

Σ(2ℓ) := ∑
ℓa ,ℓb ,ℓc

Sℓaℓbℓc △ℓaℓbℓc

ωℓaωℓb
ωℓc

ωℓa +ωℓb
+ωℓc

. (B.64)

As discussed in Section 2.2.6, this sum can in principle be regulated and computed, but we limit

ourselves to observing its two divergent regimes. For ℓa ∼ ℓb ≫ 1 it grows as Σ(1) and for ℓa ∼ ℓb ∼
ℓc ≫ 1 it grows as Σ(2). These limit just represent discrete version of different collinear divergences

found in ordinary loop integrals.

For even dimensions the result in Eq. (B.63) includes a (non-universal) (Q)0 logQ2 term,

∆2 ⊃ 1

QD/(D−1)

(
α0 +α1 logQ +α2(logQ)2) . (B.65)
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We expect this result to generalize to any loop order k, so that in even dimensions there is a k-loop

contribution of the form

∆k ⊃ 1

Q(k−1)D/(D−1)

(
α0 +α1 logQ + ...+αk (logQ)k

)
. (B.66)

In odd dimensions, based on resurgent analysis, we do not expect the appearance of any log terms [2,

191].

B.4 Details of the loop computations

In this Appendix we summarize relevant technology required to perform loop computations within the

EFT.

B.4.1 Matsubara sums

Perturbation theory is set up on the thermal circle S1
β
× SD−1

r0
. Summations over the Matsubara

frequencies ωn = 2πn/β on the thermal circle can be performed using the identity

∑
n∈Z

f

(
2πi n

β

)
=β

∫
dk

2π

(
f (i k)+ f (−i k)

2

)
+O

(
e−β

)
, (B.67)

where the exponential corrections can be neglected in the zero-temperature β → ∞ limit. In the

computation of the different two-loop contributions there are generally speaking three relevant

Matsubara sums that can appear

∑
na

Gnaℓa = β

2ωℓa

, (B.68)

∑
na+nb=ℓ

Gnaℓa Gnbℓb
= β

2

[
1

ωℓa

+ 1

ωℓb

]
1

ω2
ℓ
+ (ωℓa +ωℓb

)2
, (B.69)

∑
n

Gnℓ

∑
na+nb=n

Gnaℓa Gnbℓb
= β2

4

1

ωℓωℓaωℓb

1

ωℓ+ωℓa +ωℓb

, (B.70)

where Gnℓ = (ω2
n +ω2

ℓ
)−1 denotes the propagator in momentum space, see Eq. (B.46). Other sums

with powers of the Matsubara frequenciesωna ,ωnb in the numerator can be expressed via the sums

above using the linearity property in Eq. (B.55) satisfied by the smooth cut-off regularization procedure.

This reduction procedure works analogously to the reduction of integrals to scalar master integrals in

multi-loop computations [317, 318]. However, because of the derivative interactions here this reduction

procedure may also produce divergent Matsubara sums. Such divergent contributions in our smooth

cut-off regularization are computed in the zero-temperature limit β→∞ as follows:

∑
na

1 −→ ∑
na

e
− (2πna )2

β2Λ2 = βΛ

2
p
π
+O

(
β−1)+ . . . . (B.71)
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B.4.2 Kinematic vertex factors

In the context of perturbation theory o the sphere SD−1
r0

we have to compute vertex factors which are

proportional to multiple integrals of hyperspherical harmonics Yℓm over the sphere. In the diagrams in

Eq. (B.57) that arise from the four-point vertex in the action we find have

T 0∂(1,2,3,4) :=
∫

SD−1
r0

Yℓ1m1 Yℓ2m2 Yℓ3m3 Yℓ4m4 , (B.72)

T 2∂(1,2,3,4) :=
∫

SD−1
r0

Yℓ1m1 Yℓ2m2∂ j Yℓ3m3∂ j Yℓ4m4 , (B.73)

T 4∂(1,2,3,4) :=
∫

SD−1
r0

∂i Yℓ1m1∂i Yℓ2m2∂ j Yℓ3m3∂ j Yℓ4m4 . (B.74)

Although these integrals are highly non-trivial in general, in loop computations it is sufficient for us to

compute their contraction with respect to the m-type quantum numbers using Eq. (B.7),

∑
ma ,mb

T 0∂(a,−a,b,−b) = r D−1
0

ΩD
DegD (ℓa)DegD (ℓb) , (B.75)

∑
ma ,mb

T 2∂(a,−a,b,−b) = r D−1
0

ΩD
DegD (ℓa)DegD (ℓb)

λℓb

r 2
0

, (B.76)∑
ma ,mb

T 2∂(a,b,−a,−b) = 0, (B.77)

∑
ma ,mb

T 4∂(a,−a,b,−b) = r D−1
0

ΩD
DegD (ℓa)DegD (ℓb)

λℓa

r 2
0

λℓb

r 2
0

, (B.78)

∑
ma ,mb

T 4∂(a,b,−a,−b) = r D−1
0

ΩD

1

(D −1)
DegD (ℓa)DegD (ℓb)

λℓa

r 2
0

λℓb

r 2
0

, (B.79)

where λℓ are the eigenvalues of the Laplacian−∆SD−1
r0

, see Eq. (B.1). The pure two-loop topologies in

the computation of ∆2 appear in the diagrams in Eq. (B.60) involving three-point vertices. In these

diagrams similar structures to the ones discussed for four-point vertices above appear, with some

important differences,

T 0∂(1,2,3|4,5,6) :=
∫

SD−1
r0

Yℓ1m1 Yℓ2m2 Yℓ3m3

∫
SD−1

r0

Yℓ4m4 Yℓ5m5 Yℓ6m6 , (B.80)

T 2∂(1,2,3|4,5,6) :=
∫

SD−1
r0

Yℓ1m1 Yℓ2m2 Yℓ3m3

∫
SD−1

r0

Yℓ4m4∂i Yℓ5m5∂i Yℓ6m6 , (B.81)

T 4∂(1,2,3|4,5,6) :=
∫

SD−1
r0

Yℓ1m1∂ j Yℓ2m2∂ j Yℓ3m3

∫
SD−1

r0

Yℓ4m4∂i Yℓ5m5∂i Yℓ6m6 , (B.82)
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Via Integration-by-parts the last two structures T 2∂ and T 4∂ can be expressed in terms of the first

structure T 0∂,

T 4∂(1,2,3|4,5,6) = 1

4

[
λℓ3 +λℓ2 −λℓ1

][
λℓ6 +λℓ5 −λℓ4

]
T 0∂(1,2,3|4,5,6) , (B.83)

T 2∂(1,2,3|4,5,6) = 1

2

[
λℓ6 +λℓ5 −λℓ4

]
T 0∂(1,2,3|4,5,6) . (B.84)

Unfortunately, the expression for T 0∂ is not as simple as its flat-space counterparts. This is a consequence
of the fact that momentum conservation in flat space is replaced on the sphere SD−1

r0
by SO(D) angular-

momentum addition. Using the properties of the Gegenbauer polynomials introduced in Appendix B.1
we can compute the contraction of T 0∂ in all of its m indices,

∑
ma ,mb ,mc

T 0∂(a,b,c|a,b,c) = 1

3

r 2D−2
0

(D −2)ΩD

(D +2ℓa −2)(D +2ℓb −2)

(D +2ℓc +2)
DegD (ℓc )

×
min(ℓaℓb )∑

k=0
〈k|ℓaℓb〉δℓc−ℓa−ℓb+2k + (2 perm. in ℓaℓbℓc ) , (B.85)

where the coefficients 〈k|ℓaℓb〉 are given in Eq. (B.18) and we have included the permutations in

ℓa ,ℓb ,ℓc to make the permutation symmetry of the expression manifest. The permutations correspond

to the different choices of applying the Gegenbauer addition formula in Eq. (B.17). The summation in

the above expression can be computed explicitly,

min(ℓaℓb )∑
k=0

〈k|ℓaℓb〉δℓc−ℓa−ℓb+2k =△ℓaℓbℓc

(D +2ℓc −2)Γ(ℓc +1)

2Γ
( D

2 −1
)2
Γ(ℓc +D −2)

×
Γ

(
ℓabc

2 + (D−2)
2

)
Γ

(
ℓabc

2 +1
) Γ

(
ℓcab

2 + (D−2)
2

)
Γ

(
ℓcab

2 +1
) Γ

(
ℓbca

2 + (D−2)
2

)
Γ

(
ℓbca

2 +1
) Γ

(
ℓa+ℓb+ℓc

2 + (2D−4)
2

)
Γ

(
ℓa+ℓb+ℓc

2 + D
2

) . (B.86)

Here, we have introduced the notation ℓabc = ℓa +ℓb −ℓc and the symbol △ℓaℓbℓc defined in Eq. (B.62)
which imposes the triangle inequality. Combining these results and using the fact that △ℓaℓbℓc is fully
symmetric we find that

∑
ma mb mc

T 0∂(a,b,c|a,b,c) =△ℓaℓbℓc

r 2D−2
0

(D −2)ΩD

(D +2ℓa −2)(D +2ℓb −2)(D +2ℓc −2)

2Γ(D −1)Γ
(

D
2 −1

)2

×
Γ

(
ℓabc

2 + (D−2)
2

)
Γ

(
ℓabc

2 +1
) Γ

(
ℓcab

2 + (D−2)
2

)
Γ

(
ℓcab

2 +1
) Γ

(
ℓbca

2 + (D−2)
2

)
Γ

(
ℓbca

2 +1
) Γ

(
ℓa+ℓb+ℓc

2 + (2D−4)
2

)
Γ

(
ℓa+ℓb+ℓc

2 + D
2

)
=:

r 2D−2
0

(D −2)ΩD
Sℓaℓbℓc

,

(B.87)

where have now also defined the fully symmetric structure appearing in Eq. (B.61). Sums that involve
△ℓaℓbℓc can be computed as follows,

∞∑
ℓa ,ℓb ,ℓc=1

△ℓaℓbℓc
f (ℓa ,ℓb ,ℓc ) =

∞∑
ℓa ,ℓb=1

min(ℓaℓb )∑
k=0

f (ℓa ,ℓb ,ℓa +ℓb −2k) −
∞∑

ℓaℓb=1
δℓaℓb

f (ℓa ,ℓa ,0) , (B.88)
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where the second term appears as a consequence of the exclusion of the ℓc = 0 term. As a consequence,

certain sums involving the structure Sℓaℓbℓc are explicitly computable,

∞∑
ℓa ,ℓb ,ℓc=1

△ℓaℓbℓc Sℓaℓbℓc = (D −2)

[ ∑
ℓa ,ℓb

DegD (ℓa)DegD (ℓb)−∑
ℓa

DegD (ℓa)

]
, (B.89)

∞∑
ℓa ,ℓb ,ℓc=1

△ℓaℓbℓc Sℓaℓbℓcωℓc = (D −2)

[ ∑
ℓa ,ℓb

DegD (ℓa)DegD (ℓb)ωℓb
−∑
ℓa

DegD (ℓa)ωℓa

]
, (B.90)

∞∑
ℓa ,ℓb ,ℓc=1

△ℓaℓbℓc Sℓaℓbℓcω
2
ℓc

= 2(D −2)
∑
ℓa ,ℓb

DegD (ℓa)DegD (ℓb)ω2
ℓb

. (B.91)

B.4.3 Graphs for∆2

Using the notation and machinery developed in the previous section we can evaluate the four-point

vertex contributions to ∆2 represented graphically in Eq. (B.57),

=β
(
β

R

)2 ∑
{ni ,ℓi ,mi }

T 4∂(1,2,3,4)× (3 contractions)

∝
[∑

n,ℓ
GnℓλℓDegD (ℓ)

]2

,

(B.92)

=−β
(
β

R

)2 ∑
{ni ,ℓi ,mi }

ωn1ωn2 T 2∂(1,2,3,4)× (3 contractions)

∝
[∑

n,ℓ
GnℓλℓDegD (ℓ)

][∑
n,ℓ

Gnℓω
2
n

]
,

(B.93)

=β
(
β

R

)2 ∑
{ni ,ℓi ,mi }

δ0
∑
i

ni

[
4∏

i=1
ωni

]
T 0∂(1,2,3,4)× (3 contractions)

∝
[∑

n,ℓ
Gnℓω

2
nDegD (ℓ)

]2

,

(B.94)

where ωni denotes the Matsubara frequencies and ωℓi are the dispersion relations given in Eq. (2.32).
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In similar fashion we are able to evaluate the graphs involving three-point vertices in Eq. (B.60)

=−β2
(
β

R

)3 (
∑

i ni=0)∑
{ni ,ℓi ,mi }

(
∑

j n j =0)∑
{n j ,ℓ j ,m j }

[
6∏

i=1
ωni

]
T 0∂(1,2,3|4,5,6)× (6 contractions)

∝ ∑
na+nb+nc=0

ω2
na
ω2

nb
ω2

nc

∑
ℓa ,ℓb ,ℓc

Gnaℓa Gnbℓb
Gncℓc Sℓaℓbℓc ,

(B.95)

=β2
(
β

R

)3 (
∑

i ni=0)∑
{ni ,ℓi ,mi }

(
∑

j n j =0)∑
{n j ,ℓ j ,m j }

ωn1ωn2ωn3ωn4 T 2∂(1,2,3|4,5,6)× (6 contractions)

∝ ∑
na+nb+nc=0

ω2
na
ωnbωnc

∑
ℓa ,ℓb ,ℓc

Gnaℓa Gnbℓb
Gncℓc (ω2

ℓc
+ω2

ℓb
−ω2

ℓa
)Sℓaℓbℓc ,

(B.96)

=−β2
(
β

R

)3 (
∑

i ni=0)∑
{ni ,ℓi ,mi }

(
∑

j n j =0)∑
{n j ,ℓ j ,m j }

ωn1ωn2 T 4∂(1,2,3|4,5,6)× (6 contractions)

∝ ∑
na+nb+nc=0

∑
ℓa ,ℓb ,ℓc

Gnaℓa Gnbℓb
Gncℓc Sℓaℓbℓc

×
[

2ω2
na

(ω2
ℓc
+ω2

ℓb
−ω2

ℓa
)−4ωnaωnb (ω2

ℓc
+ω2

ℓa
−ω2

ℓb
)
]

(ω2
ℓc
+ω2

ℓb
−ω2

ℓa
) .

(B.97)

B.5 Methods and details for the computations in Section 2.2.7

In this section we give details on the computation of three- and four-point functions in Section (2.2.7).

We do this by discussing two explicit examples.

B.5.1 Computing the 〈O−Q TττOQ〉 correlator

Using the field decomposition in terms of creation and annihilation operators in Eq. (??)(2.31), the
expansion of T and Q in Eq. (2.101) and the properties of |Q〉 as a vacuum in Eq. (2.44) we can already
compute the the tree-level results for the correlators in Section (2.2.7). To illustrate the computation of
the three-point functions we demonstrate the computation of the correlator 〈O−Q TττOQ〉,

〈O−Q Tττ(τ,n)OQ 〉 =− ∆0

r D
0 ΩD

〈Q|1+ i
D

µ
π̇− D

2µ2

(
(D −1)π̇2 − (D −3)

r 2
0 (D −1)

π∆π+ (D −3)

r 2
0 (D −1)

∂i (π∂iπ)

)
|Q〉 . (B.98)
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For now, we ignore the total derivative term in this expression as we will show later that its expectation

value vanishes. Setting N := c1ΩD r D−1
0 D(D −1)µD−2 we find up to quadratic order in the fields that

〈O−Q Tττ(τ,n)OQ〉 =− ∆0

r D
0 ΩD

〈Q|
[

1+ i
D

µ
π̇− D

2µ2

[
(D −1)π̇2 − (D −3)

r 2
0 (D −1)

π∆π
]]

(τ,n)
|Q〉

=− ∆0

r D
0 ΩD

〈
Q

∣∣∣∣∣e− (τ2−τ)
r0

D
[

1+ i
D

µ

[
− iΠ0

N
+

√
ΩD

N

∑
m,l

√
ωl

2

(
a†

lmY ∗
l m(n)−almYl m(n)

)]
+ D(D −1)

2µ2

ΩD

2N

∑
m,l

m′,l ′

p
ωlωl ′

[
a†

l m al ′m′Y ∗
lm(n)Yl ′m′ (n)+alm a†

l ′m′Yl m(n)Y ∗
l ′m′ (n)

]

− Π2
0

N 2 −2
iΠ0

N

√
ΩD

N

∑
m,l

√
ωl

2

[
−almYlm(n)+a†

lmY ∗
lm(n)

]
− D

µ2

ΩD

2N

(D −3)

2(D −1)

∑
m,l

m′,l ′

(D −1)ω2
l ′p

ωlωl ′

[
a†

lm al ′m′Y ∗
lm(n)Yl ′m′ (n)+alm a†

l ′m′Yl m(n)Y ∗
l ′m′ (n)

]

+ (D −3)

(D −1)
π0

√
ΩD

N

∑
m,l

l (l +D −2)

r 2
0

p
2ωl

[
almYl m(n)+a†

lmY ∗
lm(n)

]]
e
− (τ−τ1)

r0
D

∣∣∣∣∣Q
〉

, (B.99)

where D is the dilatation operator which on the cylinder is the Hamiltonian, D = H (cyl). Both terms

linear in alm and terms involvingΠ0 vanish identically within the expectation value. Hence,

〈O−Q Tττ(τ,n)OQ〉 =− ∆0

r D
0 ΩD

〈Q|e−
(τ2−τ)

r0
D

[
1+ D(D −1)ΩD

4µ2N

∑
m,l

m′,l ′

p
ωlωl ′ [al m , a†

l ′m′ ]Ylm(n)Y ∗
l ′m′ (n)

− (D −3)

(D −1)

D

2µ2

ΩD

2N

∑
m,l

m′,l ′

(D −1)ω2
l ′p

ωlωl ′
[alm , a†

l ′m′ ]Ylm(n)Y ∗
l ′m′ (n)

]
e
− (τ−τ1)

r0
D |Q〉

=−A (τ1,τ2)

[
∆0

r D
0 ΩD

+
c1(D −1)µD DΩD

[
(D −1)− (D −3)

]
4µ2c1ΩD r D−1

0 D(D −1)µD−2

∑
m,l

ωl Ylm(n)Y ∗
l ′m′ (n)

]
=−A (τ1,τ2)

[
∆0

r D
0 ΩD

+ 1

2

1

r D−1
0

∑
m,l

ωl Ylm(n)Y ∗
l ′m′ (n)

]
. (B.100)

The evaluation of the sum over hyperspherical harmonics can be found and is evaluated in Appendix B.4.

We are left with showing that the total derivative term vanishes,

∆0

r D
0 ΩD

D

2µ2 〈Q|∂i
(
π(τ,n)∂iπ(τ,n)

)
|Q〉 =−A (τ1,τ2)

4r D−1
0

∑
m,l

∂i
(
Ylm(n)∂i Y ∗

l m(n)
)

ωl

=−A (τ1,τ2)

4r D−1
0

∑
l

1

ωl

1

2

∂i∂i

2ωl

DegD (ℓ)

ΩD
= 0.

(B.101)
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Therefore, the final result is

〈O−Q Tττ(τ,n)OQ〉 =−A (τ1,τ2)
∆0 +∆1

r D
0 ΩD

+O
(
µD−3) . (B.102)

B.5.2 Computing the 〈O−Q
ℓ2m2

TττTττO
Q
ℓ1m1

〉 correlator

We now illustrate the computation of the four-point functions in Section (2.2.7) by< computing the

correlator 〈O−Q
ℓ2m2

(τ2)Tττ(τ, x)Tττ(τ′, x ′)OQ
ℓ1m1

(τ1)〉. Expanded up to second order in the fields we have

Tττ(τ,n)Tττ(τ′,n′) = ∆2
0

r 2D
0 Ω2

D

− ∆2
0

r 2D
0 Ω2

D

D2

µ2 π̇(τ,n)π̇(τ′,n′)− ∆
2
0(D −1)

r 2D
0 Ω2

D

D

2µ2

[
π̇2 + (D −3)(∂iπ)2

r 2
0 (D −1)2

]
(τ,n)

− ∆
2
0(D −1)

r 2D
0 Ω2

D

D

2µ2

[
π̇2 + (D −3)(∂iπ)2

r 2
0 (D −1)2

]
(τ′,n′)

+O
(
µ2D−3) . (B.103)

Using this result the four-point correlator becomes

〈Q|aℓ2m2 Tττ(τ,n)Tττ(τ′,n′) a†
ℓ1m1

|Q〉 = ∆2
0

r 2D
0 Ω2

D

e−ωℓ(τ2−τ1)A (τ1,τ2)δm1m2δℓ1ℓ2

− ∆2
0

r 2D
0 Ω2

D

D2

µ2 〈Q|aℓ2m2 π̇(τ,n)π̇(τ′,n′)a†
ℓ1m1

|Q〉

− ∆2
0

r 2D
0 Ω2

D

D

2µ2 〈Q|aℓ2m2

[
(D −1)π̇2(τ,n)+ (D −3)

r 2
0 (D −1)

(
∂iπ(τ,n)

)2
]

a†
ℓ1m1

|Q〉

− ∆2
0

r 2D
0 Ω2

D

D

2µ2 〈Q|aℓ2m2

[
(D −1)π̇2(τ′,n′)+ (D −3)

r 2
0 (D −1)

(
∂iπ(τ′,n′)

)2
]

a†
ℓ1m1

|Q〉 . (B.104)

The last two terms are the same and have already been computed essentially in the derivation of the
three-point function 〈O−Q

ℓ2m2
Tττ(τ,n)OQ

ℓ1m1
〉. Using N := c1ΩD r D−1

0 D(D −1)µD−2 we find that

− ∆0(D −1)

r D
0 ΩD

D

2µ2
〈Q|aℓ2m2

[ (D −3)
(
∂iπ

)2

r 2
0 (D −1)2

+ π̇2
]

(τ,n)
a†
ℓ1m1

|Q〉

=− ∆0D

2µ2r D
0 ΩD

〈Q|aℓ2m2
e
− (τ2−τ)

r0
D
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(D −3)

r 2
0 (D −1)

(
∂iπ

)2 + (D −1)π̇2
]

e
− (τ−τ1)

r0
D

a†
ℓ1m1

|Q〉

= ΩD

2r D
0 ΩD

A∆Q+r0ωℓ2
(τ1,τ2)

( ∑
m,l

r0ωl Ylm (n)Y ∗
lm (n)δℓ2ℓ1

δm2m1

+ (D −1)r0
√
ωℓ1

ωℓ2

Y ∗
ℓ2m2

(n)Yℓ1m1
(n)

e−(τ−τ1)(ωℓ1−ωℓ2 )
− 1
p
ωℓ1

ωℓ2

(D −3)

r0(D −1)

∂i Y ∗
ℓ2m2

(n)∂i Yℓ1m1
(n)

e−(τ−τ1)(ωℓ1−ωℓ2 )

)
, (B.105)

where we have used the property in Eq. (B.1) written in terms of the dispersion relation in Eq. (2.32),

−∆SD−1
r0

Y ∗
lm(n) = r 2

0 (D −1)ω2
l Y ∗

l m(n) . (B.106)
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A single terms is now left to compute,

∆2
0

r 2D
0 Ω2

D

D2

µ2
〈Q|aℓ2m2

π̇(τ,n)π̇(τ′,n′)a†
ℓ1m1

|Q〉 =− ∆0ΩD D

2r 2D
0 Ω2

D

∑
m′,l ′
m,l

r0
p
ωl ′ωl 〈Q|aℓ2m2

e
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r0
D

. . .

. . .
(
a†

lm Y ∗
l m (n)−alm Ylm (n)

)
e
− (τ−τ′)

r0
D

(
a†

l ′m′Y
∗

l ′m′ (n′)−al ′m′Yl ′m′ (n′)
)
e
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r0
D

a†
ℓ1m1

|Q〉

=− ∆0ΩD DA (τ1,τ2)

2r 2D
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D eωℓ2 (τ2−τ1)

∑
m′,l ′
m,l

r0
p
ωl ′ωl

( Yl ′m′ (n′)Y ∗
lm (n)

e−(τ−τ1)ωl+(τ′−τ1)ωl ′
δℓ2lδℓ1l ′δm2mδm1m′

+Yl m (n)Y ∗
l ′m′ (n′)e−(τ−τ′)ωl

[
e−(τ′−τ1)(ωl−ωl ′ )δℓ1lδℓ2l ′δm1mδm2m′ +δl ′lδm′mδℓ2ℓ1
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=−∆0ΩD D

r 2D
0 Ω2

D

A∆Q+r0ωℓ2
(τ1,τ2)

(
δℓ2ℓ1

δm2m1

∑
m,l

r0ωl Ylm (n)Y ∗
lm (n′)e−(τ−τ′)ωl

+ r0
p
ωℓ1

ωℓ2

e(τ−τ1)(ωℓ1−ωℓ2 )

[
Y ∗
ℓ2m2
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(n′)e(τ−τ′)ωℓ1 +Y ∗
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(n′)Yℓ1m1

(n)e−(τ−τ′)ωℓ2
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. (B.107)

After evaluating the sums appearing in the above expression using the machinery introduced in

Section B.1, the overall correlator is given by

〈O−Q
ℓ2m2

Tττ(τ,n)Tττ(τ′,n′)OQ
ℓ1m1

〉 =A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
∆0

Ω2
D r 2D

0

×
[(
∆0 +2∆1 + D

2

∑
ℓ

e−|τ−τ
′|ωℓr0ωℓ

(D +2ℓ−2)

(D −2)
C

D
2 −1

ℓ
(n ·n′)

)
δℓ1ℓ2δm1m2

+ DΩD

2
r0

√
ωℓ1ωℓ2

(
Y ∗
ℓ2m2

(n)Yℓ1m1 (n′)e(τ−τ′)ωℓ1 +Y ∗
ℓ2m2

(n′)Yℓ1m1 (n)e−(τ−τ′)ωℓ2

)]

+
{

A
∆Q+r0ωℓ2
∆Q+r0ωℓ1

(τ1,τ2|τ)
ΩD∆0r0

p
ωℓ1ωℓ2

2Ω2
D r 2D

0

[
(D −1)Yℓ1m1 (n)Y ∗

ℓ2m2
(n)

− (D −3)

(D −1)

∂i Yℓ1m1 (n)∂i Y ∗
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(n)

r 2
0ωℓ1ωℓ2

]
+

[
(τ,n) ↔ (τ′,n′)

]}
. (B.108)
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C Appendices to Chapter 3

C.1 The action for the grand-canonical partition function

We derive the associated action in the path integral,

Zg c (µ1, . . . ) = TrS1
β
×M

[
e−β(H−µi Qi )

]
=

∫
Dφi Dφ∗

i e−Sµ[φi ] , Qi =−
∫

dS

M

[
∂τφ

∗
i φi −φ∗

i ∂τφi
]

. (C.1)

where M is some arbitrary spatial manifold. The underlying theory is given by

Z = TrS1
β
×M

[
e−βH

]
=

∫
Dφi Dφ∗

i e−S[φi ] , S[φi ] =
∫

dD x

S1
β
×M

[|∂τφi |2 +|∇φi |2 +V
(|φi |2

)]
. (C.2)

The obvious guess would be Sµ
?= S +µi Qi , which is wrong. To see this we go to Minkowski space i t = τ,

where

SMink =
∫

dD x
[|∂tφi |2 −|∇φi |2 −V

(|φi |2
)]

. (C.3)

The corresponding Hamiltonian is

πi = δ

δφi
SMink = ∂tφ

∗
i , π∗

i = δ

δφ∗
i

SMink = ∂tφi , H =
∫

dS
[
|πi |2 +|∇φi |2 +V

(|φi |2
)]

. (C.4)

Functionally, the Hamiltonian has the same form as the Euclidean action. In terms of the canonically

conjugate momenta the Cartan charges are

Qi = i
∫

dS
[
πiφi −φ∗

i π
∗
i

]
, (C.5)

and the modified Hamiltonian reads

Hµ := H −µi Qi =
∫

dS
[
|πi |2 +|∇φi |2 +V

(|φi |2
)− iµi

(
πiφi −π∗

i φ
∗
i

)]
(C.6)
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From this expression we return to the Lagrangian formalism,

∂tφi = δ

δπi
Hµ =π∗

i − iµiφi , ∂tφ
∗
a = δ

δπ∗
i

Hµ =πi + iµiφ
∗
i , (C.7)

and the action becomes

(Sµ)Mink =
∫

dD x
[
∂tφiπi +∂tφ

∗
i π

∗
i

]−Hµ

=
∫

dD x
[
∂tφiπi +∂tφ

∗
i π

∗
i −πiπ

∗
i −∇φ∗

i ∇φi −V
(
φ∗

i φi
)+ iµi

(
πiφi −π∗

i φ
∗
i

)]
=

∫
dD x

[(
∂tφ

∗
i − iµiφ

∗
i

)(
∂tφi + iµiφi

)−∇φ∗
i ∇φi −V

(
φ∗

i φi
)]

.

(C.8)

After a Wick roation t =−iτ to Euclidean spacetime the action becomes

Sµ =
∫

dD x
[(
∂τφ

∗
i −µiφ

∗
i

)(
∂τφi +µiφi

)+∇φ∗
i ∇φi +V

(
φ∗

i φi
)]

. (C.9)

Therefore, there is an extra term µ2
i φ

∗
i φi appearing in the action, which is due to the momentum-

dependence of the current.

C.2 Functional determinant for the O(N ) vector model

We evaluate the functional determinant Eq. (3.42) appearing in Section 3.1.3,

Zg c (µ) N=∞∼
∫

Dφi Dφ
∗
i exp

−∫
dD x

S1
β
×SD−1

r0

[
(∂τ−µi )φ∗

i (∂τ+µi )φi +|∇φi |2 +
(
r +〈σ〉)|φi |2

] . (C.10)

The functional determinant can be performed and regularized in terms of the eigenvalues on S1
β
×S2

r0
.

The mode decomposition for the fields φi is of the form [194]1

φi = ζi eiϕi +
√
β

V

∑
n∈Z

∑
ℓ,m

eiωnτYℓm (n) φ̃i (n;ℓ,m) ,

(p
2 φ̃i (n;ℓ,m) = φ̃(Re)

i (n;ℓ,m)+ i φ̃(Im)
i (n;ℓ,m)

)
,

(C.11)

where Yℓm(n) are the hyperspherical harmonics on the unit D−1-sphere SD−1
r0

(with V being the volume

of the sphere), see Appendix B.1, and ωn are the Matsubara frequencies,

ωn = 2πn

β
. (C.12)

Here, the zero modes ζi and ϕi are spacetime-independent and determine the full infrared behaviour
of φi , i.e. φ̃i (0;0,0) = 0. The variable ζi in particular allows for the possibility of a Bose–Einstein

1For an arbitrary manifold S1
β
×M the hyperspherical harmonics are simply replaced by the appropriate eigenfunctions on

M . For example in flat space we replace Yℓm (n) by ei p·x.
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Condensate (BEC), the condensation of the bosons that reside in the ground state of the system. In
terms of the eigenfunctions in Eq. (C.11) the leading order partition function reads

Zg c (µ) N→∞∼
∫ [

dφ̃i (n;ℓ,m)
][

dφ̃∗
i (n;ℓ,m)

]
exp

[
−βV

∑
i
ζ2

i

(
r +〈σ〉−µ2

i

)
−∑

i

∑
n;ℓ,m

φ̃∗
i (−n;ℓ,m∗) G̃i φ̃i (n;ℓ,m)

]
,

(C.13)

where G̃i in terms of the real variables φ̃(Re)
i (n;ℓ,m), φ̃(Im)

i (n;ℓ,m) is given by2

G̃i =β2

(
ω2

n +ω2
ℓ
−µ2

i −2µiωn

2µiωn ω2
n +ω2

ℓ
−µ2

i

)
, ω2

ℓ =
ℓ(ℓ+D −2

r 2
0

+ r +〈σ〉 . (C.14)

After carrying out the integration we have

Ω(µ1, . . . ) =− 1

(2N )βV
log(Zg c )N→∞ = 1

(2N )βV

N∑
i=1

Trlog
(−(∂τ−µi )2 −∆SD−1 + r +〈σ〉)

= 1

2N

∑
i
ζ2

i

(
r +〈σ〉−µ2

i

)+ 1

(2N )βV

∑
i

1

2
log(detG̃i ) ,

(C.15)

The log-det term is evaluated as follows:

log(detG̃i ) = logdet
∏

n∈Z

∏
ℓ,m

β2

(
ω2

n +ω2
ℓ
−µ2

i −2µiωn

2µiωn ω2
n +ω2

ℓ
−µ2

i

)

= ∑
{n,ℓ}

DegD (ℓ) log

{((
2π

β
n

)2

+ω2
ℓ−µ2

)2

+4µ2
(

2π

β
n

)2
}

= ∑
{n,ℓ}

DegD (ℓ)

{
logβ2

(
ω2

n + (
ωℓ−µ

)2
)
+ logβ2

(
ω2

n + (
ωℓ+µ

)2
)}

,

(C.16)

There are two important identities that apply here [194],

log

{
(2πn)2 +β2x2

(2πn)2 +1

}
=

∫ β2x2

1

dθ2

θ2 + (2πn)2 ,
∑

n∈Z

1

(2πn)2 +θ2 = 1

2θ

(
1+ 2

eθ−1

)
. (C.17)

The term
∑

n∈Z log
{
(2πn)2 +1

}
is constant and temperature-independent and formally divergent. As it

is independent of all variables, it will become unimportant after regularization and can be ignored. We

2For any other spatial manifold we can simply replace the eigenvalue/energy ωℓ = p
ℓ(ℓ+D −2)/r0 by the appropriate

eigenvalue E(p).
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compute,

log(detG̃i ) =∑
ℓ

DegD (ℓ)

[β2(ωℓ+µi )2∫
dθ2

1

1

2θ

(
1+ 2

eθ−1

)
+ ∑

n
log

(
(2πn)2 +1

) + (µi →−µi )

]

= 2
∑
ℓ

DegD (ℓ)

[
βωℓ+ log(1−e−β(ωℓ+µi ))+ log(1−e−β(ωℓ−µi ))

+
[∑

n
log

(
(2πn)2 +1

)− (
2log(1−e−1)+1

)] ]
∼ 2

∑
ℓ

DegD (ℓ)

[
βωℓ+ log(1−e−β(ωℓ+µi ))+ log(1−e−β(ωℓ−µi ))

]
.

(C.18)

where we have ignored all constant terms independent of temperature and volume. Finally, the grand

potentialΩ
N→∞= − log(Zg c )/((2N )βV ) reads

Ω(µ1, . . . ) = 1

2N

∑
i
ζ2

i

(
r +〈σ〉−µ2

i

)
+ 1

(2N )V

∑
i

∑
ℓ

DegD (ℓ)

[
ωℓ+

1

β
log(1−e−β(ωℓ+µi ))(1−e−β(ωℓ−µi ))

]
,

(C.19)

which is convergent as long as |µi | ≤
p

r +〈σ〉. We remark that this result can be generalized from the

sphere to any other spatial manifold M by simply replacing the eigenvaluesωℓ→ω(p) =
√

E(p)2 + r +〈σ〉
and the corresponding multiplicities DegD (ℓ) → DegD (p).

C.3 Resurgence of the four-sphere

C.3.1 Borel re-summation

In resurgence, Borel re-summation is a tool aimed at transforming an asymptotic series into a resurgent

function (for an introduction see [243]). In resurgence, if we have a factorially divergent asymptotic

series,

Φ0(t ) =∑
n

an t n , an ∼∑
k

Sk

2πi

βk

Anβk+bk
k

∑
l≥0

al ;k Al
kΓ

(
nβk +bk − l

)
, (C.20)

the general assumption is that said asymptotic expansion can be completed into a resurgent trans-series

of the form

Φ(Sk , t ) =Φ0(t )+ ∑
k ̸=0

σk e
− Ak

t1/βk t−bk /βkΦk (t ) , Φk (t ) ∼ ∑
l≥0

al ;k t l/βk . (C.21)

The coefficient σk are ambiguities arising from the fact that the full family of resurgent trans-series

associated to different values of σk all correspond to the same asymptotic seriesΦ0(t ).

The standard ways of completing an asymptotic expansion into a trans-series is via a Borel transform

followed by a Borel re-summation. The closed- form Borel transform of a not necessarily asymptotic

series is defined as

B[Φ0](y) = ∑
n≥0

an

Γ
(

maxk (βk ) ·n +maxk (bk )
) yn . (C.22)
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Starting from the Borel transform, the directional Borel re-summation of the seriesΦ0 is given by

Sθ[Φ0](z) = 1

maxk (βk )

∫ eiθ∞

0

dζ

ζ

(
ζ

z

) b
β

e−(ζ/z)
1
β
B[Φ0](ζ) . (C.23)

This reproduces the original asymptotic series Φ0(t) in Eq. (C.20) for z = te iθ, t → 0+. However, the

Borel re-summation now defines a function computable for a wider range of values t and θ.

Ambiguities in the Borel re-summation arise in the case where the Borel transform exhibits singularities

along the contour or ray of integration e iθ[0,∞].3 In these cases we can define two lateral Borel re-

summations S ±
θ

obtained by deforming the contour of integration around the singularities, either

below or above the original contour. The new paths of integration created in this way we denote by C±
θ

.

This behaviour in the case of singularities along the ray of integration indicates the presence of a branch

cut of the directional Borel re-summation Sθ[Φ0](z) at z = te iθ, with the discontinuity across the

branch cut being given by
(
S −
θ
−S +

θ

)
[Φ0](t ). This discontinuity represents a purely non-perturbative

effect. It includes only the exponential corrections plus the expansionsΦk (t ) around them. If we are

presented with a Borel re-summable asymptotic series, then the structure of the non-perturbative

corrections in the trans-series (exponential corrections plus the expansions around them) and hence

the structure of the lateral Borel re-summations S ±
θ

[Φk ](t) is provided by and can be read off the

discontinuity along the branch cut. This procedure, however, will not remove the ambiguities in the

choice of parameters σ±
k for the exponential corrections. Hence, in order to promote the asymptotic

expansion into a full resurgent trans-series we generally need to impose extra conditions motivated by

the underlying physics.

C.3.2 Zeta function on the four sphere

For the interacting fixed point of the ϕ4 model in D = 5 the large-charge expansion is an asymptotic

expansion related to the heat kernel trace on the four-sphere which can be computed starting from the

result on the two-sphere, see the discussion around Eq. (3.149) in Section 3.2.5. Therefore, we can apply

the exact same resurgent techniques used in [191] in order to study the non-perturbative corrections

and find a closed-form resurgent function for the trace of the heat kernel on S4
r0

. Using the results

from [191], the asymptotic expansion of the heat kernel in the two-sphere,

Tr
[

e
t
(
∆S2

r0
−1/(4r 2

0 )
)]

∼ r 2
0

t
Φ

S2
r0

0 (t ) , (C.24)

is given by

Φ
S2

r0
0 (t ) = ∑

n≥0
aS2

n
t n

r 2n
0

, aS2

n = (1−21−2n)B2n

(−1)n+1n!
= Γ

(
n + 1

2

)
p
π

∑
k ̸=0

(−1)k+1

(πk)2n . (C.25)

Using the relationship in Eq. (3.152) the asymptotic expansion of the heat kernel trace on the four-

sphere,

Tr
[

e
t
(
∆S4

r0
−9/(4r 2

0 )
)]

∼ r 4
0

t 2Φ
S4

r0
0 (t ) , (C.26)

3Additionally, it can be the case that the behaviour at the endpoints {0,eiθ∞} is of importance as well.
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is computed to be

Φ
S4

r0
0 (t ) = 1

6
+ ∑

n≥1
k ̸=0

(−1)k

(πk)2n

1

6
p
π

[
Γ
(
n + 3

2

)− 3

2
Γ
(
n + 1

2

)+ (πk)2

4
Γ
(
n − 1

2

)] t n

r 2n
0

. (C.27)

From this expression we can extract the heat kernel coefficients (see also [319]). Comparing this

expression with the general form in Eq. (C.20) we see that

Ak = (πk)2 , bk = 3

2
, βk = 1,


Sk

2πi a0;k = (−1)k |k|3 π5/2

6
Sk

2πi a1;k = (−1)k+1|k|
p
π

4
Sk

2πi a2;k = (−1)k |k|
p
π

24

, aℓ>2;k = 0. (C.28)

Hence, the resurgent trans-series of the heat kernel trace on the four-sphere includes exponential

corrections of the form

exponential corrections ∼ 2i

(
r 2

0π

t

) 7
2

e−
(πr0k)2

t (−1)k |k|
(

k2

6
− t

4r 2
0π

2
+ t 2

24r 4
0π

2

)
. (C.29)

The Borel re-summation of the heat kernel trace on the four-sphere can directly be derived from

the expression for the two-sphere found in [191]. On the two-sphere the Borel re-summation of the

two-sphere heat kernel trace can be written in the compact form4

S0[Φ
S2

r0
0 ](t ) = 2r0p

πt

∞∫
0

dy
ye−

y2r 2
0

t

sin(y)
. (C.30)

Using Eq. (3.152) we can directly infer the form of the Borel re-summed heat kernel trace on the

four-sphere

S0[Φ
S4

r0
0 ](t ) = 2r 3

0p
πt 3

∞∫
0

dy
ye−

y2r 2
0

t

sin(y)

[
t

4r 2
0

− y2

6
− t 2

24r 4
0

]
. (C.31)

This integral is ill-defined as it has simple poles at ζ= kπ, k ∈Z. The discontinuity between the lateral

Borel re-summations are computable via the Residue theorem as

(
S −

0 −S +
0

)
[Φ

S4
r0

0 ](t ) = 2i
t 2

r 4
0

(
r 2

0π

t

) 7
2 ∑

k ̸=0
(−1)k |k|e−

k2r 2
0π

2

t

[
|k|2

6
− t

4π2r 2
0

+ t 2

24π2r 4
0

]
. (C.32)

This agrees perfectly with the form of the exponential corrections derived in Eq. (C.29). Using this

4In order to avoid dealing with a Borel transform that includes branch cuts we perform the mapping ζ→ ζ2 in Eq. (C.23).
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result, the Borel re-summed trace of the heat kernel on the four-sphere with ambiguities is given by

Tr
[

e
t
(
∆S4

r0
−9/(4r 2

0 )
)]

∼ r 4
0

t 2 S ±
0 [Φ

S4
r0

0 ](t ) = 2r 7
0p
πt 7

∫
C±

0

dy
ye−

r 2
0 y2

t

sin(y)

[
t

4r 2
0

− y2

6
− t 2

24r 4
0

]

+ i
(
r 2

0
π

t

) 7
2 ∑

k ̸=0

σ±
k (−1)k |k|
π2 e−

k2r 2
0π

2

t

[
k2π2

3
− t

2r 2
0

+ t 2

12r 4
0

]
. (C.33)

In this particular case it is possible to fix the ambiguities in the trans-series expression for the trace

of the heat kernel, which will carry over to all the other quantities that we are interested in. This can

be achieved in two ways here: either we find a path-integral definition in which the structure of the

trans-series arises automatically (see [191]) and the underlying physics fix the ambiguities, or we can

impose the reality of the heat kernel trace.5 To keep the discussion short, will choose the latter here.

Either way, the final result can be written in the convenient form

Tr
[

e
t
(
∆S4

r0
−9/(4r 2

0 )
)]

= 2r 7
0p
πt 7

P.V.
∫
C±

0

dy
ye−r 2

0 y2/t

sin(y)

[
t

4r 2
0

− y2

6
− t 2

24r 4
0

]
. (C.34)

The notation P.V. signifies that the principal value of the integral has to be considered.

The trans-series expression for the zeta function can be derived by applying a Mellin transform to the
Borel re-summed trace of the heat kernel (with the reality condition imposed). However, for s =±1/2 in
order to change to order integration the integral requires analytical continuation by extracting the first
three terms from the asymptotic expansion. We find that

S ±
0

[
ζ
( · |S4

r0
,µ2)]

(s) = 2r 2s
0p

πΓ(s)

∞∫
0

dt
∫
C±

0

dy
e−µ

2r 2
0 t− y2

t

t
9
2 −s

[
y

sin(y)

(
− y2

6
+ t

4
− t 2

24

)
− y2

3
+ y4

18
+ 17y6

5′400

]

+ 1

6

r 4
0µ

4−2s

(s −1)(s −2)
− 1

24

r 2
0µ

2−2s

(s −1)
− 17

2′880
µ−2s .

(C.35)

After exchanging the order of integration for s =−1/2 the result is identified with the (non-standard)

Borel re-summation of the asymptotic series of the grand potential VΩ(µ),

S ±
0

[
VΩ

]
(µ) = r 3

0 m4

24π

∫
C±

0

dy

y2

[
y

sin(y)

(
2
[

K4(2µr0 y)+K2(2µr0 y)
]
+ K2(2µr0 y)

(µr0)2

)

+
(
8− 4y2

3
− 17y4

225

)
K4(2µr0 y)

]
+ 2

45
µ5r 4

0 + 1

36
µ3r 2

0 − 17

2880
µ , (C.36)

where Kn(x) denotes the order n modified Bessel function of the second kind. The discontinuity — and

5Importantly, in the general case the reality condition does not completely fix the ambiguities in the non-perturbative
corrections, since it is generally possible that the coefficients 2iσ±

k
possess a real part as well. In our case, however, imposing

reality is sufficient due to the absence of a real part.
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hence the form exponential corrections — given by

(
S −

0 −S +
0

)[
VΩ

]
(µ) =−i

r 3
0µ

4

12

∑
k ̸=0

(−1)k

|k|
(
2
[

K4(2πµr0k)+K2(2πµr0k)
]
+ 1

(µr0)2
K2(2πµr0k)

)
. (C.37)

Finally, after imposing the reality condition for the heat kernel trace to remove the ambiguities, the

grand potential can be written in the form

VΩ(µ) = r 3
0µ

4

24π
P.V.

∞∫
0

dy

y sin(y)

(
2
[

K4(2µr0 y)+K2(2µr0 y)
]
+ 1

(µr0)2 K2(2µr0 y)

)
. (C.38)

For the purpose of this discussion it suffices to consider only the leading-order non-perturbative

corrections that appear in the free energy. To extract these contributions we will use Hankel’s asymptotic

expansion for the modified Bessel functions of the second kind,

Kα(z) ∼
√

π

2z
e−z

[
1+ (4α2 −1)

8z

(
1+ 1

2

(4α2 −32)

8z

[
1+ 1

3

(4α2 −52)

8z

(
1+ . . .

)])]
, −3

π

2
< arg(z) < 3

π

2
.

(C.39)

Using this result the leading-order non-perturbative exponential corrections of the grand potential are

VΩ(µ) ⊃−i
r 3

0µ
4

12

(−1)k

|k|
(
4+ 1

(r0µ)2

)
1√

4r0µ|k|
e−2πr0µ|k| ∼ i

(r0µ)
7
2

6r0

(−1)k

|k| 3
2

e−2πr0µ|k| . (C.40)

Using only the first term on the result for the order-by-order Legendre transform of the perturbative

part,

Q

2N
=−(r0µ)4/9, r0 fc (Q) =µ(Q)r0

Q

2N
+ (µ(Q)r0)5

45
, (C.41)

the leading-order exponential correction to the free energy per DoF reads

r0 fc (Q) ⊃ i

(
9Q
2N

)7/8

6
√

f1

(−1)k

|k|3/2
e
−2π f1

(
9Q
2N

)1/4|k|
, (C.42)

where f1 is the leading complex phase in the asymptotic expansion of fc (Q) discussed in Eq. (3.162)

and Eq. (3.163).

C.3.3 Optimal truncation

As asymptotic series factorially diverge, in order to get a meaningful result out of such a series expansion

we need to truncate it. A commonly used rule-of-thumb to find a truncated sum that is as close as

possible to the ”actual” value is to truncate it at the term which gives the smallest contribution to the

overall sum. This procedure is called optimal truncation. Given an asymptotic series
∑

an xn whose

230



C.3 Resurgence of the four-sphere

coefficients an diverge as
∑

an xn , the optimal truncation is found at

N (x) ≈ 1

β
|Ax|1/β . (C.43)

The error we make during optima truncation can be approximated within resurgence and is of the

order

ϵ(x) ∼ exp
[− (Ax)1/β]

. (C.44)

In the special case x ∼ 1 it suffices to look at the ratio of consecutive coefficients within the asymptotic

series. At the point where this ratio exceed one, we truncate it.

For the zeta function on the four-sphere ζ(s|S4
r0

,µ) at µ2r 2
0 − 9

4 ∼ 1 the optimal truncation depends on s.

It is after the third term for s = 3
2 , after the fourth term for s = 1

2 and after the fifth term form for s =− 1
2 .

To go beyond this result we need to rely on our resurgent analysis. For the trace of the heat kernel we

can use the large-order behaviour of the Bernoulli numbers,

(1−21−2n)B2n

(−1)n+1n!
∼ 2p

nπ

n!

π2n , (C.45)

we can deduce that the optimal truncation is given by

N (t ) ≈π2r−2
0 t , ϵ(t ) ∼ exp(−π2r−2

0 t ) . (C.46)

By performing a Mellin transform we find the asymptotic expansion of the grand potentialΩ(µ),

ζ(s|S4
r0

,µ2) ∼ r 2s
0

(
µ2r 2

0 − 9

4

)2−s ∑
n≥0

a
S4

r0
n

Γ(n + s −2)

Γ(s)

(
µ2r 2

0 − 9

4

)−n
, (C.47)

VΩ(µ) ∼ r−1
0

(
µ2r 2

0 − 9

4

) 5
2

∑
n≥0

a
S4

r0
n

Γ
(
n − 5

2

)
4
p
π

(
µ2r 2

0 − 9

4

)−n =−
(
µ2r 2

0 − 9
4

) 5
2

45r0
+

(
µ2r 2

0 − 9
4

) 5
2

r0

∑
n≥1

Ωn

(
µ2r 2

0 − 9

4

)−n
,

(C.48)

Ωn = ∑
k ̸=0

(−1)k

(πk)2n+3

(π|k|)3

24π
Γ
(
n − 5

2

)[
Γ
(
n + 3

2

)− 3

2
Γ
(
n + 1

2

)+ (πk)2

4
Γ
(
n − 1

2

)]
. (C.49)

This already makes it clear that the coefficients grow like (2n)!. Once we have resolved the double

factorial structure the leading term reads

Ωn = ∑
k ̸=0

(−1)k

(2π|k|)2n− 1
2

1

12π
√

|k|
[
Γ(2n − 1

2
)+ . . .

]
. (C.50)

From this result we can read off the optimal truncation of the grand potential,

N (µ) ≈ 1

2

∣∣∣∣2π(
µ2r 2

0 − 9

4

)∣∣∣∣1/2

, ϵ
(
µ2r 2

0 − 9

4

)
∼ exp

[
−

√
2π

(
µ2r 2

0 − 9

4

))
. (C.51)
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For µ2r 2
0 ≳ 3/2 the optimal truncation for the grand potential is at the first term, hence

VΩ(µ) ∼
(
µ2r 2

0 − 9
4

) 5
2

45r0
. (C.52)

C.3.4 Flex from large charge

Since we know that the grand potential exhibits a flex for a certain finite value of the chemical potential

µr0, it is also interesting to analyse the second derivative of the grand potential. Using the identity

(∂/∂µ)ζ(s|M ,µ2) =−2µsζ(s +1|M ,µ2) we find that

VΩ′′(µ) = 1

2

[
ζ(1/2|S4

r0
,µ2)−µ2ζ(3/2|S4

r0
,µ2)

]
. (C.53)

Around µr0 ∼, where the flex can be found, the optimal truncation is again deduced by looking at the

ratio of consecutive coefficients, which start to exceed one after the sixth term. Up to this term the

grand potential reads

VΩ(µ) = r 4
0µ

5

45
− r 2

0µ
3

9
− 29µ

45
− 37µ−1

756r 2
0

− 149µ−3

15′120r 4
0

− 179µ−5

55′440r 6
0

, (C.54)

and its second derivative is

VΩ′′(µ) = 4r 4
0µ

3

9
− 2r 2

0µ

3
− 37µ−3

378r 2
0

− 149µ−5

1′260r 4
0

− 179µ−7

1′848r 6
0

. (C.55)

Numerically we find that the optimally truncated asymptotic expansion of Ω′′(µ) exhibits a zero at

µr0 ≈ 1.290, implying that the asymptotic expansion ofΩ(µ), which is close to the actual value of µflr0 ≈
1.266. The error for the optima truncation ofΩ(µ) at µ2r 2

0 −9/4 ∼ 1 is ϵ(µ2r 2
0 −9/4 ∼ 1) ∼ e−

p
2π = 0.08.

C.4 3D Fermions

This appendix aims at collecting important background material for fermionic theories in D = 2+1 and

D = 3 spacetime dimensions. This should make the present thesis as self-contained as possible.

C.4.1 Gamma matrices in the Dirac convention in 3D

The gamma matrices in three spacetime dimensions (D = 2+ 1 and D = 3) are given by the Pauli

matrices,

σ1 =
(

0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, (C.56)
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as follows:

D = 2+1 : γ0 = iσ3 , γ1,2 =σ1,2 , (C.57)

D = 3 : γµ =σµ , µ= 1,2,3 . (C.58)

Our convention for the Clifford algebra is

{γµ ,γν} = 2ηµν , (C.59)

where we have chosen a mostly plus signature ηµν = (−1,1,1) for D = 2+1 dimensional Minkowski

spacetime. In this signature the spatial gamma matrices are Hermitian while the temporal gamma

matrix γ0 is anti-Hermitian. Further, the gamma matrices satisfy

(γi )2 =−(γ0)2 = 1 , γ0γµγ0 = (γµ)† . (C.60)

Complex two-dimensional (Dirac) spinorsψ transform in the standard representation of SO(1,2), SO(3)

generated by these gamma matrices. The Dirac conjugate ψ̄ of the spinor ψ in our notation is found to

be

d = 2+1 : ψ̄=ψ†γ0 , (C.61)

d = 3 : ψ̄=ψ†γ3 . (C.62)

The analytic continuation from Minkowski spacetime to Euclidean spacetimes is obtained by a Wick

rotation,

t →−iτ , ∂t → i∂τ , γ0 → iγ3 , γi → γi . (C.63)

Under the above transformation rules the action of a massive Dirac spinor is analytically continued in

the following manner:

i
∫

dtd2x
[
ψ̄(iγµ∂

µ+ i m)ψ
]

︸ ︷︷ ︸
SM

−→ −
∫

d3x
[
ψ̄(γµ∂

µ+m)ψ
]

︸ ︷︷ ︸
SE

. (C.64)

C.4.2 Spinors on S1
β
×S2

For the discussion of spinors in curved spacetime we follow closely the treatment outlined in [Borokhov_2002].

Spinors in spherical coordinates

In flat space R3 the Hermitian Dirac operator is given by

iγµ∂
µ =−γ ·p , (C.65)

where the momentum operator p is given by pµ =−i∂µ and the vector γ is comprised of the gamma

matrices γµ — i.e. the Pauli matrices σµ — in Eq. (C.56) and Eq. (C.57). We can define the generalized
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angular momentum and the total angular momentum as

L = r×p , J = L+ γ

2︸︷︷︸
=S

, [L,r] = [J,r] = 0. (C.66)

We note that both L and p are Hermitian operators. The eigenfunctions of L2 are given by the ordinary

spherical harmonics in D = 3,

L2Yℓm = ℓ(ℓ+1)Yℓm , L3︸︷︷︸
=Lz

Yℓm = mYℓm , ℓ= 0,1,2, . . . , m =−ℓ, . . . ,ℓ . (C.67)

Using the spherical harmonics we can build simultaneous eigenfunctions of all four operators {J2, J3,L2,S2}.

These eigenfunctions are the so-called spinor spherical harmonics,

φ+
j m j

=
√

ℓ+m+1
2ℓ+1 Yℓm√
ℓ−m
2ℓ+1 Yℓm+1

 , φ−
j m j

=
 −

√
ℓ−m
2ℓ+1 Yℓm√

ℓ+m+1
2ℓ+1 Yℓm+1

 . (C.68)

The eigenfunctions φ±
j m j

correspond to the eigenvalues j = ℓ±1/2 and m j = m ±1/2, respectively, and

they posses the following quantum numbers under the three operators J2, J3,L2, respectively,
L2φ±

j m j
= ℓ(ℓ+1)φ±

j m j

J2φ±
j m j

= j ( j +1)φ±
j m j

J3φ
±
j m j

= m jφ
±
j m j

,

{
j = 1

2 , 3
2 , 5

2 . . .

m j =− j . . . j
. (C.69)

The eigenvalue j has a degeneracy of (2 j +1). Any spinor in R3 can be decomposed in the orthonormal

basis spanned by φ±
j m j

. For our purposes, it is further convenient to introduce the radial gamma matrix

γr = γ ·n (where n = r/r ∈ S2
1). The Dirac operator can then simply be written as

iγµ∂
µ = iγr

[
∂

∂r
− 1

r

(
J2 −L2 − 3

4

)]
, (C.70)

and is diagonal in the basis of spinor spherical harmonics φ±
j m j

.

Weyl map to the cylinder

We can perform the Weyl transformation from flat space to the cylinder R×S2
r0

as follows:

r = eτ , ηµν = r0e2τgµν , ψR3 = e−τψR×S2 . (C.71)

After foliating radially, the Dirac conjugate of a spinor ψ is given by ψ† = ψ̄γr . After performing the

Weyl transformation, the free Dirac action on the cylinder R×S2
r0

reads

S =
∫
R3
ψ̄γµ∂

µψ=
∫
R×S2

r0

ψ̄γµDµψ , γµDµ = γr

[
∂

∂τ
− 1

r0

(
J2 −L2 + 1

4

)]
. (C.72)
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The spinor wave function on the cylinder are given by

Ψ±
n j m j

(τ,n) = e−iωnτφ±
j m j

(n) , (C.73)

where n ∈ S2
1. In the computation of functional determinants on S1

β
× S2

r0
we can make use of the

following relations,

∫
S1
β
×S2

r0

(Ψ±
j m j

)†Ψ±
j ′m′

j
= δ j ′ jδm′

j m j

(
1 0

0 1

)
, (C.74)

∫
S1
β
×S2

r0

(Ψ±
j m j

)†γrΨ
±
j ′m′

j
= δ j ′ jδm′

j m j

(
0 −1

−1 0

)
, (C.75)

∫
S1
β
×S2

r0

(Ψ±
j m j

)† iγµDµΨ±
j ′m′

j
= δ j ′ jδm′

j m j

(
0 ωn − iω j

ωn + iω j 0

)
, (C.76)

where we have introduced the fermionic Matsubara frequencies ωn and the eigenvalues of the Dirac

operator on the sphere ω j . They are given by

ωn = (2n +1)π

β
, ω j = 1

r0

(
j + 1

2

)
, (C.77)

respectively.

C.4.3 Reducible Representation

For fermionic theories in three-dimensional spacetime with an even number 2N of fermionic fields —

ψa=1,...,2N — it is sometimes convenient to introduce a reducible representation of the Clifford algebra

as follows:

Γµ =σ3 ⊗γµ =
(
γµ 0

0 −γµ

)
, Ψi :=

(
ψi

ψi+N

)
, i = 1, . . . , N . (C.78)

Introducing a reducible representation as defined above allows for a notion of chiral symmetry in D = 3

within the theory, which however is actually part of the global symmetry of the theory. For example, we

can choose

Γ5 =σ1 ⊗ 1=
(

1

1

)
, (C.79)

and an appropriate choice of charge conjugation matrix is given by

C4 = Γ2 =σ3 ⊗C =
(
σ2

−σ2

)
, (C.80)

The four dimensional matrix C4 as defined above then satisfies

C4 =C−1
4 =C †

4 =−C T
4 =−C∗

4 , C4ΓµC4 =−(Γµ)T . (C.81)
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the matrices Γ5 and C4 further satisfy

{Γ5,C4} = 0. (C.82)

Importantly, charge conjugation is independent of the signature of spacetime [Wetterich:2011ab].

In terms of the spinor fields ψi the reducible four-dimensional representation is constructed of two

two-dimensional irreducible spinors,

Ψi =
(
ψi ,ψi+N

)T , Ψ̄i =Ψ†
i Γ3 =

(
ψ†

i γ3 , −ψ†
i+Nγ3

)= (
ψ̄i , −ψ̄i+N

)
, (C.83)

for i = 1, . . . , N . As a concrete example, we consider the action of the U (1)-NJL model of N reducible

spinors. Written in terms of our reducible representation the action is given by

S =
∫

d3x
(
Ψ̄iΓµ∂

µΨi − g

N

(
(Ψ̄iΨi )2 − (Ψ̄iΓ5Ψi )2)) . (C.84)

C.5 U(1) Pauli–Gürsey transformation

In this appendix we return to the the U (1)-NJL model. For simplicity we take N = 1, but the results

discussed here are trivially generalized to arbitrary N . For the U (1)-NJL model with the action

S =
∫

d3x
(
Ψ̄Γµ∂

µΨ− g

N

(
(Ψ̄Ψ)2 − (Ψ̄Γ5Ψ)2)) (C.85)

we consider the following linear transformation of the fields at the level of the path integral

Ψ 7→ 1

2

[
(1−Γ5)Ψ+ (1+Γ5)C4Ψ̄

T ]
,

Ψ̄ 7→ 1

2

[
Ψ̄(1+Γ5)−ΨT C4(1−Γ5)

]
.

(C.86)

This is a so-called Pauli–Gursey (PG) transformation. We remark that the precise form of this transformation

depends on the convention depends on the convention for the gamma matrices, in particular Γ5 and

C4. Further, we note that this transformation is an involution as it maps the field Ψ onto itself after

twice applying the transformation.

Under the PG transformation as defined above the kinetic term in the action remains invariant,∫
d3x Ψ̄Γµ∂

µΨ 7→
∫

d3x Ψ̄Γµ∂
µΨ , (C.87)

The Cooper BCS quartic interaction term Ψ̄C4Ψ̄
T ΨT C4Ψ is mapped to the interaction term of the

U (1)-NJL model

−Ψ̄C4Ψ̄
T ΨT C4Ψ 7→ Ψ̄(1+Γ5)ΨΨ̄(1−Γ5)Ψ . (C.88)

and vice versa. The other direction can either be inferred by the fact that the PG transformation is an
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involution or computed directly. In the latter approach we will need the fact that

Ψ̄Γ5C4Ψ̄
T =ΨTΓ5C4Ψ= 0, (C.89)

which holds true in our convention for the gamma matrices.

Interestingly, the PG transformation also maps the U (1)B fermion number chemical potential term into

the U (1)A chiral (axial) chemical potential term within the action, and vice versa of course. Concretely,

this means that

Ψ̄Γ3µΨ 7→ Ψ̄(−Γ3Γ5µ)Ψ , Ψ̄Γ3Γ5µΨ 7→ Ψ̄(−Γ3µ)Ψ . (C.90)

In total the PG transformation, as defined above, yields the following map U (1)–NJL model to the

so-called Cooper model,

S =
∫

d3x
[
Ψ̄(Γµ∂

µ−µΓ3Γ5)Ψ− g

N

(
(Ψ̄Ψ)2 − (Ψ̄Γ5Ψ)2)]

=
∫

d3x
[
Ψ̄(Γµ∂

µ−µΓ3Γ5)Ψ− g

N
Ψ̄(1+Γ5)ΨΨ̄(1−Γ5)Ψ

]
7→

∫
d3x

[
Ψ̄(Γµ∂

µ+µΓ3)Ψ+ g

N
Ψ̄C4Ψ̄

T ΨT C4Ψ
]

.

(C.91)

The converse statement is of course true as well. For completeness, written in terms of collective fields

at large N , the Cooper model is given by

S =
∫

d3x

[
Ψ̄i (Γµ∂

µ+µΓ3)Ψi + i
Φ

2
Ψ̄i C4Ψ̄

T
i + i

Φ∗

2
ΨT

i C4Ψi + N

4g
Φ∗Φ

]
. (C.92)

C.6 Computation of the free fermion determinant

We want to compute the path integral with the action in Eq. (3.190). Spinors possess no zero modes

because of the anti-periodic boundary conditions they obey within the path integral. At finite temperature,

the Matsubara frequencies implement the anti-periodic boundary conditions,6

ωn = (2n +1)
π

β
, =⇒ Ψ(0,r0n) =−Ψ(β,r0n) , n ∈ S2

1 . (C.93)

The action Sµ remains quadratic after the inclusion of the U (1)B chemical potential and all spinors

can be integrated out analogously to how it is done in Appendix C.2. The resulting grand-canonical

partition function to leading order in N reads

− log
(
Zg c (µ)

)=−N logdet
[
Γ3

(
Γµ∂

µ−µΓ3
)]=−N Trlog

[
Γ3

(
Γµ∂

µ−µΓ3
)]

, (C.94)

6Compare the Matsubara frequencies for spinors here to the ones for bosonic DoF (scalars) in Appendix C.2.
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where we used the fact that Grassmann variables satisfy∫
dη1dη†

1 · · ·dηN dη†
N eη

†Dη = detD . (C.95)

Using the Matsubara frequencies we can write down the trace-log term of the above operator in terms

of the eigenvalues on the sphere, which are given by (see Appendix C.4.2)

spec
[
Γ3

(
Γµ∂

µ−µΓ3
)]={

± i

√(
ωn + iµ

)2 +ω2
j

}
, ω2

j =
( j +1/2)2

r 2
0

, (C.96)

where j ≥ 1/2,3/2, . . . and n ∈Z. The multiplicities of the eigenvalues j are (2 j +1). The log-det term

can now be computed to give [194]

Sµ =−N Tr(δαβ)
∑

j
(2 j +1)

∑
n∈Z

logβ2
[

(ωn + iµ)2 +ω2
j

]
=−4N

∑
j

(2 j +1)
∑

n≥0

{
log

[
(2n +1)2π2 +β2(ω j +µ)2]+ log

[
(2n +1)2π2 +β2(ω j −µ)2]}

.
(C.97)

The determinantal operation is performed over both the frequency-momentum space and the Dirac

indices, with Tr(δαβ) = 4 being the trace over the unit matrix in spinor space. This result is logarithmically

divergent and needs to be regularized. To do so we use will use zeta function regularization (here ζ(s; a)

denotes the Hurwitz zeta function),

∑
n≥0

log
[
(2n +1)2π2]=−2

d

ds

∑
n≥0

1

[(2n +1)π]s

∣∣∣∣
s=0

= 2

[2π]s

[
log(2π)ζ(s;1/2)−ζ′(s;1/2)

]∣∣∣∣
s=0

= log(2) .

(C.98)

where we have used the results

ζ(0; a) = 1

2
−a , ζ′(0; a) = log(Γ(a))− 1

2
log(2π) . (C.99)

The regularized action reads

Sµ =−4N
∑

j
(2 j +1)

(
2log2+ ∑

n≥0
log

[
(2n +1)2π2 +β2(ω j ±µ)2

(2n +1)2π2

][
(2n +1)2π2 +β2(ω j −µ)2

(2n +1)2π2

])
.

(C.100)
We can apply the identities7

log

[
(2n +1)2π2 +β2(ω j ±µ)2

(2n +1)2π2

]
=
β2(ω j ±µ)2∫

dθ2

0

1

θ2 + (2n +1)2π2
,

∑
n∈Z

1

(n −x)(n − y)
= π(cotπx −cotπy)

(y −x)
,

(C.101)

to derive that

∑
n≥0

log

[
(2n +1)2π2 +β2(ω j ±µ)2

(2n +1)2π2

]
= β

2

(
ω j ±µ

)+ log
(
1+e−β(ω j ±µ)

)
− log(2) . (C.102)

7The second identity can further be used to show that
∑

n∈Z 1
(2n+1)2π2+θ2 = 1

θ

(
1
2 − 1

eθ+1

)
.
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The constant factor precisely cancels the factor from the zeta function regularization and the grand

potential now reads

Ω(µ) =− log
(
Zg c (µ)

)
(2N )βV

=− 1

βV

∑
2(2 j +1)

j= 1
2 , 3

2 ,...

∑
n≥0

[
βωℓ+ log

(
1+e−β(ωℓ−µ)

)
+ log

(
1+e−β(ωℓ+µ)

)]
,

(C.103)

We quickly remark that the computation of the log-det term for the GN model and the NJL-type models

in Sections 3.3.2, 3.3.3 and 3.3.4 are computed analogously after adding the appropriate mass and

chemical potential terms, at least in the limit N →∞.

C.7 Finite-density loop integrals and Matsubara sums

Here, we collect some important machinery used in the computation of finite-density loop integrals, in

particular for the GN model in Section 3.3.2.

C.7.1 Fourier transforms on S1
β
×R2 and Matsubara sums

In the following we denote a point in S1
β
×R2 by x = (τ,x) and a point in Fourier space by P = (ωn ,p),

whereωn = (2n+1)π/β denote the fermionic Matsubara frequencies. In our normalization conventions

for Fourier transforms we have

δ(x −x ′) =∑∫ d2p

β(2π)2 e−i P ·(x−x′) , δn′n δ(p −p ′) =
∫

dτd2x

β(2π)2 e−i x·(P−P ′) , (C.104)

f (x) =∑∫ d2p√
β(2π)2

e−i P ·x f̃ (P ) , f̃ (P ) =
∫

dτd2x√
β(2π)2

e i P ·x f (x) . (C.105)

In computations of Dirac determinants we will encounter sums over the fermionic Matsubara frequencies.

Generally speaking, these can all be performed using the following formula:

∑
n∈Z

log

[
(2n +1)2π2 + A2

(2n +1)2π2 +1

]
= A+2log

(
1+e−A)

. (C.106)

C.7.2 GN scalar integrals at finite µ, β

In the present appendix we collect scalar integrals required to obtain the results for the fluctuations

within the large-N GN model discussed in Section 3.3.2. One-loop integrals computed at finite

temperature and chemical potential can generically be derived from the following massive scalar

integral [195]: ∫
dd k

(2π)d

1

[k2 +m2]α
= 1

(4π)
d
2

Γ(α−d/2)

Γ(α)
(m2)−α+

d
2 . (C.107)

Using the notation K (µ) = (ωn − Iµ,k) the first scalar integral appearing in the computations in
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Section 3.3.2 can be computed as

I1 =
∑∫ dd k

β(2π)d

1(
K (µ)

)2

∣∣∣∣∣
d=2

= Γ(1−d/2)

(4π)
d
2

∑
n∈Z

1

[(ωn − iµ)2]1− d
2

∣∣∣∣∣
d=2

= Γ(1−d/2)

(4π)
d
2

(
2π

β

)−2+d ∑
n∈Z

1[(
n + 1

2 − iβµ/(2π)
)2

]1− d
2

∣∣∣∣∣
d=2

= Γ(1−d/2)

(4π)
d
2

(
2π

β

)−2+d [
ζ

(
2−d ,

1

2
− iβµ/(2π)

)
+ζ

(
2−d ,

1

2
+ iβµ/(2π)

)]∣∣∣∣∣
d=2

. (C.108)

At zero temperature after setting d = 2 this result becomes

lim
β→∞

I1 =− µ

4π
. (C.109)

The I2 integral is slightly more involved as it includes three scales: β, µ and P , where P = (ωm ,p) is the

external momentum. However, it can still be computed similarly to I1 after a Feynman parametrization

is used to merge the two propagators in the denominator. We find that

I2 =
∑∫ d2k d2q(

β(2π)2
)2

δ(K +Q −P )(
K (µ)

)2(Q(µ)†
)2

=
∫ 1

0
dx

∑∫ d2k

β(2π)2

1[
k2 +

(
x(1−x)p2 + (1−x)(ωn − iµ)2 +x(ωm −ωn + iµ)2

)]2

= Γ(2−d/2)

β(4π)
d
2

(
2π

β

)d−4 ∫ 1

0
dx

∑
n∈Z

1[(
n + 1

2 − iβ µ
2π −xβωm

2π

)2 +x(1−x)
(
(β p

2π )2 + (βωm
2π )2

)]2− d
2

∣∣∣∣∣
d=2

= Γ(2−d/2)

β(4π)
d
2

(
2π

β

)d−4 ∫ 1

0
dx

∑
n∈Z

1[
(n + A)2 +B

]2− d
2

∣∣∣∣∣
d=2

= Γ(2−d/2)

β(4π)
d
2

(
2π

β

)d−4 ∫ 1

0
dx

[
1

[A2 +B ]2− d
2

+F (2−d/2; A,B)+F (2−d/2;−A,B)

]∣∣∣∣∣
d=2

, (C.110)

where we introduced the quantities

A = 1

2
− iβ

µ

2π
−xβ

ωm

2π
, B = x(1−x)

[
(β

p

2π
)2 + (β

ωm

2π
)2

]
. (C.111)

The functions F denote a family of special zeta function which can be found in [237]. At zero temperature

and after setting d = 2 the I2-integral reduces to

lim
β→∞

I2 = 1

8
√
ω2

m +p2
= 1

8
p

P 2
. (C.112)
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C.7.3 NJL loop integrals

In the computations for the fluctuations within the NJL-type models discussed in Section 3.3.3 we have

to evaluate the following integrals:

G̃−1
σσ(P ) =−

∫
d3k

(2π)3 Tr
[
D̃ (µ,〈Φ〉)(K )D̃ (−µ,−〈Φ〉)(P −K )

]
, (C.113)

G̃−1
σπ(P ) =−i

∫
d3k

(2π)3 Tr
[
D̃ (µ,〈Φ〉)(K )Γ5 D̃ (−µ,−〈Φ〉)(P −K )

]
, (C.114)

G̃−1
πσ(P ) =−i

∫
d3k

(2π)3 Tr
[
Γ5 D̃ (µ,〈Φ〉)(K )D̃ (−µ,−〈Φ〉)(P −K )

]
, (C.115)

G̃−1
ππ(P ) =

∫
d3k

(2π)3 Tr
[
Γ5 D̃ (µ,〈Φ〉)(K )Γ5 D̃ (−µ,−〈Φ〉)(P −K )

]
, (C.116)

where the fermion propagator in momentum space D̃ (µ,〈Φ〉)(P ) is given by

D̃ (µ,〈Φ〉)(P ) = (−iΓµPµ+〈Φ〉−µΓ3Γ5)−1

=
(
ω2 +p2 +〈Φ〉2 −µ2 +2µ(iωΓ3 +〈Φ〉)Γ3Γ5

)(
ω2 +〈Φ〉2 + (µ+|p|)2

)(
ω2 +〈Φ〉2 + (µ−|p|)2

) (
iΓµPµ+〈Φ〉−µΓ3Γ5

)
.

(C.117)

The gamma matrices used here are the ones from the reducible representation defined in Appendix C.4.3.

Since we only need to compute the quadratic order in P , we can evaluate these integrals in an expansion

in P/µ.

Zeroth order in P/µ

To zeroth order in P/µ the above integrals read

G̃−1
σσ(P )

∣∣∣
O (0)

=
∫

d2k dωk

(2π)3

[
4〈Φ〉2

 1[
(|k|+µ)2 +ω2

k +〈Φ〉2
]2

+ 1[
(|k|−µ)2 +ω2

k +〈Φ〉2
]2

 (C.118)

− 2

(|k|−µ)2 +ω2
k +〈Φ〉2

− 2

(|k|+µ)2 +ω2
k +〈Φ〉2

]
,

G̃−1
σπ(P )

∣∣∣
O (0)

= 0, (C.119)

G̃−1
πσ(P )

∣∣∣
O (0)

= 0, (C.120)

G̃−1
ππ(P )

∣∣∣
O (0)

=−
∫

d2k dωk

(2π)3

[
2

(|k|+µ)2 +ω2
k +〈Φ〉2

+ 2

(|k|−µ)2 +ω2
k +〈Φ〉2

]
. (C.121)

First, we can perform the residue integrals over ωk ,

G̃−1
σσ(P )

∣∣∣
O (0)

=−
∫

d2k

(2π)2

[
(|k|−µ)2[

(|k|−µ)2 +〈Φ〉2
]3/2

+ (|k|+µ)2[
(|k|+µ)2 +〈Φ〉2

]3/2

]
, (C.122)

G̃−1
ππ(P )

∣∣∣
O (0)

=
∫

d2k

(2π)2

[
1√

(|k|+µ)2 +〈Φ〉2
+ 1√

(|k|−µ)2 +〈Φ〉2

]
. (C.123)
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The remaining integrals over k are both divergent. However, the divergence is independent of µ and
hence these integrals can be regularized simply via subtraction of the expression for µ = 0. After
regularization, the divergent integrals to be subtracted give∫

d2k

(2π)2

2k2(
k2 +〈Φ〉2

)3/2
= 1

π

∫
dk k

k2(
k2 +〈Φ〉2

)3/2
:=− 2

π
〈Φ〉 ,

∫
d2k

(2π)2

2√
k2 +〈Φ〉2

:=−〈Φ〉
π

. (C.124)

After performing the remaining spatial integrals over the momentum k we find that

G̃−1
σσ(P )

∣∣∣
O (0)

= 1

π

[
2
√
µ2 +〈Φ〉2 −µarctanh

(
µ√

µ2 +〈Φ〉2

)]
, (C.125)

G̃−1
ππ(P )

∣∣∣
O (0)

= 1

π

[√
µ2 +〈Φ〉2 −µarctanh

(
µ√

µ2 +〈Φ〉2

)]
. (C.126)

After applying the EoM,

〈Φ〉 =
√
κ2

0 −1µ , arctanh
( 1

κ0

)
= κ0 , (C.127)

the final result reads

G̃−1
σσ(P )

∣∣∣
O (0)

= κ0π

µ
, G̃−1

ππ(P )
∣∣∣
O (0)

= 0. (C.128)

First order in P/µ

To linear order in P/µ we find that for two elements of the inverse propagator the integrand is and odd

function of the coefficients of k. Hence, they identically vanish

G̃−1
σσ(P )

∣∣∣
O (P/µ)

= 0, G̃−1
ππ(P )

∣∣∣
O (P/µ)

= 0. (C.129)

The remaining two integrals are computed as follows:

G̃−1
σπ(P )

∣∣∣
O (P/µ)

=
∫

d2k dωk

(2π)3

4µω
[
−3k4 +2k2

(−ω2
k +µ2 −〈Φ〉2

)+ (
ω2

k +µ2 +〈Φ〉2
)2

]
[
(|k|−µ)2 +ω2

k +〈Φ〉2
]2 [

(|k|+µ)2 +ω2
k +〈Φ〉2

]2 , (C.130)

G̃−1
πσ(P )

∣∣∣
O (P/µ)

=−
∫

d2k dωk

(2π)3

4µω
[
−3k4 +2k2

(−ω2
k +µ2 −〈Φ〉2

)+ (
ω2

k +µ2 +〈Φ〉2
)2

]
[
(|k|−µ)2 +ω2

k +〈Φ〉2
]2 [

(|k|+µ)2 +ω2
k +〈Φ〉2

]2 . (C.131)

We again perform the residue integrals over ωk first. The result is not divergent, as expected, and can
be directly integrated over the momenta k,

G̃−1
σπ(P )

∣∣∣
O (P/µ)

= ω

4π
log

( 2µ
(
µ−

√
µ2 +〈Φ〉2

)
〈Φ〉2

+1

)
, G̃−1

πσ(P )
∣∣∣
O (P/µ)

= ω

4π
log

( 2µ
(√

µ2 +〈Φ〉2 +µ)
〈Φ〉2

+1

)
. (C.132)
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After using the EoM the final result we end up with reads

G̃−1
σπ(P )

∣∣∣
O (P/µ)

=−κ0ω

2π
, G̃−1

πσ(P )
∣∣∣
O (P/µ)

= κ0ω

2π
. (C.133)

Second order in P 2/µ2

Due to rotational invariance, the integrand for the quadratic order in P/µ must be of the form

A(|k|)ω2 +B(|k|)ω (k ·p)+C (|k|)p2 +D(|k|) (k ·p)2 . (C.134)

The B(|k|)-piece is identically zero due to being an odd function. In the same vein, the cross-term in

(k ·p)2 identically vanishes. Hence, the part of the integrand that contributes is

A(|k|)ω2 +C (|k|)p2 +D(|k|) (k2
1 p2

1 +k2
2 p2

2) . (C.135)

Given the symmetry property of the integral under the exchange k1 ↔ k2, after evaluation the integral is

a function of p2 = p2
1 +p2

2 (andω2). We therefore split the computation into two parts, one proportional

toω2 and the other one proportional to p2. After performing the residue integral overωk the non-trivial

parts of the integrals proportional to ω2 are given by

Iωσσ = π

2

∫
d2k

(2π)3 µ
2
(
ω

µ

)2
[

(|k|−µ)2[
(|k|−µ)2 +〈Φ〉2

]5/2
+ (|k|+µ)2[
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]5/2

]
, (C.136)

Iωππ =
π

2
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2
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1[
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]3/2
+ 1[
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]3/2

]
. (C.137)

We can then perform the integral over k and use the EoM to find that

Iωσσ = ω2 −2κ2
0ω

2

12πκ0µ−12πκ3
0µ

, Iωππ =− κ0ω
2

4πµ−4πκ2
0µ

. (C.138)

We simply repeat this procedure for the term proportional to p2. The final result reads

I p
σσ =

(
3κ6

0 −2κ4
0 −2κ2

0 +2
)

p2

24πκ3
0

(
κ2

0 −1
)
µ

, I p
ππ =− κ3

0p2

8πµ−8πκ2
0µ

, (C.139)

with the other terms vanishing. Putting both contributions together we find that
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