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Summary

SUMMARY

The growing global human population is exerting increasing pressure on the natural environment.
Habitat destruction and anthropogenic climate change are causing species to decline or to shift their
distribution ranges, but some species cannot keep up with the unprecedented speed of these changes
and go extinct. As a result, we are losing biodiversity at the pace of a mass extinction. Already now,
this loss has entailed unwanted effects on human well-being by negatively affecting ecosystem services
like food provisioning, climate regulation, or pest control. Increased political pressure has urged
governments to take action towards the conservation of diversity of life on Earth. To be effective,
however, actions aimed at the protection of species require the evaluation of the current status of the
species and how the populations change over time. Like many others, the government of Switzerland
uses national Red Lists to identify the most threatened species and to set priorities for conservation
actions at the national scale. The data for these Red List assessments come from large-scale surveys or
monitoring programs that were established for the purpose of observing and inferring changes over
time. However, ecological surveys are subject to detection errors, i.e., failing to detect species where
they occur. These errors can lead to biases in the estimation of species distributions, habitat
associations, or population changes, potentially resulting in an inappropriate threat category and a
misassignment of resources for conservation measures. It is the purpose of this thesis to obtain
estimates of population change for epiphytic lichen species in Switzerland that are less affected by
detection errors, using data collected within the scope of the national Red List assessment. To estimate
detection errors, it was first necessary to test the applicability of the available statistical methods to
the lichen data (Chapter 1). Given the scarcity of published literature on the subject of detection errors
in lichens, it also made sense to investigate the extent and the causes of such errors in greater detail
(Chapter 2). The insights from these investigations then allowed me to analyse the ecological patterns

behind population changes of epiphytic lichens in Switzerland over the last 20 years (Chapter 3).

In Chapter 1, | tested whether the structure of the lichen data was generally suitable for the type of
statistical models that are most often used to account for detection errors. They are called occupancy
models and they require data from sites that were surveyed multiple times over a short period. The
model uses the differences and similarities between the observations of the repeated visits to estimate
the detection probability. In the standardised lichen data from the national Red List survey, only a small
subset of all sites was surveyed a second time, while the others were surveyed only once. To find out
whether these single-visit sites could contribute information to parameter estimation in an occupancy
model, | simulated data under different designs but with the same mixed structure as the lichen data,

i.e., with some repeated-visit sites (with two or four visits) and many single-visit sites. | first fitted an
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occupancy model to only the repeated-visit portion of the data and extracted the precision of the
parameter estimates. | then successively added more single-visit sites, reran the analysis, and checked
whether the precision of the parameter estimates improved. Precision did improve with additional
single-visit sites, both for the parameter occupancy and the parameter detection probability. This
shows that single-visit sites contribute to parameter estimation, when they are combined with
repeated-visit data, and that it is beneficial to include single-visit data in an occupancy analysis. When
the number of repeated visits was raised from two to four, precision was not only generally better, but
also the contribution of single-visit sites improved. This finding is of limited relevance for the analysis
of the currently available lichen data, but it could be useful to make adjustments to the design in the

future.

In Chapter 2, | explored the magnitude of and variation in detection probability in the lichen data that
were collected during the first Red List assessment (1995-2000). | included the conspicuousness and
the taxonomic identifiability of the species as covariates to detection probability, supposing that
conspicuous and easy-to-identify species may have a higher detectability. The experience of observers
with individual species was also likely to affect detectability in a positive way. Average detection
probability across all observers was estimated at 49%, with substantial differences between observers
and species, some of which were due to people’s experience or to the conspicuousness or
identifiability of the species. As observer experience changed over time, detectability was slightly
higher towards the end of the sampling period than at the beginning. The result that detection success
was estimated to be almost a fifty-fifty chance was rather surprising. The standardised circumstances
would have suggested a higher detectability: the size of the sampled area was limited, survey time
almost unlimited, and all observers had prior experience with lichen surveys. In contrast to animals,
lichens cannot run away or hide, and while most plants and fungi exhibit seasonality in their
morphology, lichens do not. It is therefore likely that such low detection probabilities — in other
words, such high detection errors— occur in most datasets of sessile organisms. Ignoring them would
lead to a severe understimation of frequencies of occurrence and area of occupancy. The variation
between species and differences between observers in combination with a potential spatial clustering
of observers is expected to result in a stronger bias for some species than for others, an effect that is

difficult to assess without the explicit estimation of detection probability.

In Chapter 3, | estimated how occupancy changed for 329 epiphytic lichen species in Switzerland
between the first and the second national Red List assessment conducted over the periods 1995-2000
and 2018-2022. Although the model estimates occupancy at the species level, | took a more
community-based approach in this chapter and grouped species into 18 ecological guilds. Three guilds

described a preference for free-standing trees, humid forests, or old trees, two guilds represented
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specialized photobionts (trentepohlioid and cyano), and twelve guilds were derived from high and low
ecological indicator values for temperature, precipitation, continentality, eutrophication, pH, and light
availability. With this guild-based approach, | was able to find potentially meaningful correlations with
environmental change in Switzerland over the same time scale. An ongoing decline in species
associated with old trees suggests that the low abundance of such trees, though increasing, has not
yet allowed specialist lichens to recover from the severe loss they experienced due to unsustainable
forestry practices in the last century. A strong increase in species indicative of high pH and tolerant to
eutrophication in combination with a decline in eutrophication-sensitive and acidophytic species
suggests a continuing effect of environmental pollutants on lichen communities. While acid deposition
decreased to a very low level over the last decades, critical levels for nitrogen deposition are still
exceeded in two thirds of the country. Some guild changes could also potentially be attributed to
climate change. Species of high temperatures and low precipitation tended to increase, whereas
species with a preference for low temperatures or high precipitation tended to decline. If these
simultaneous environmental changes were indeed the driving force behind the observed changes, they

are likely to continue in the near future.

In the three chapters, | have consequently shown that it was possible to use the mixed structure of the
lichen data to obtain detection-corrected estimates of frequency of occurrence and population
changes. | showed how large the detection error was despite many favourable circumstances, and how
it can be accounted for in an ecological study. Limitations of this thesis include model assumptions that
may not be entirely fulfilled, and the restrictions imposed by data scarcity on the number of covariates
that could be included in the model. In the future, | see potential in combining the standardised data
with the countless individual observations recorded by volunteers or in other projects. Including
multiple sources in one integrated model could improve both accuracy and precision of estimates of
population changes. At a larger scale, e.g., for standardised species distribution modelling for global
Red List assessments, it would be valuable to find a set of readily available and reliable predictor
variables to model lichen occurrences. It is important to keep in mind, however, that estimates of
species frequency or population changes will not reduce the risk of extinction a species may be facing,
however precise these estimates may be. Ultimately, conservation actions will be necessary to ensure
the persistence of many species. Nevertheless, this thesis lays the foundation for a more accurate,
data-based Red List assessment. As such, | hope it can direct conservation efforts to where they are

most needed.



Zusammenfassung

ZUSAMMENFASSUNG

Die wachsende menschliche Bevélkerung (ibt einen zunehmenden Druck auf ihre natirliche Umwelt
aus. Arten werden aus ihren zerstérten Lebensrdaumen verdrangt und der menschengemachte
Klimawandel zwingt sie, ihre Ausbreitungsgebiete zu verschieben. Einige Arten kdnnen mit der
Geschwindigkeit der globalen Veranderungen nicht Schritt halten und sterben aus. Die Folge ist, dass
wir gegenwartig in einem solchen Tempo Artenvielfalt verlieren, wie es sonst nur wahrend
Massenaussterben geschehen ist. Bereits jetzt hat der Verlust an Vielfalt unerwiinschte Folgen fir
uns Menschen nach sich gezogen, unter anderem durch verminderte Okosystem-Dienstleistungen
wie der Nahrungsversorgung, Klimaregulierung oder Schadlingsbekampfung. Der steigende Druck
durch die Bevolkerung und Nichtregierungsorganisationen hat Regierungen dazu veranlasst, sich
vermehrt des Schutzes der biologischen Vielfalt auf der Erde anzunehmen. Damit Schutzmassnahmen
effektiv greifen konnen, bedarf es einer Evaluation des gegenwartigen Zustands der Artenvielfalt und
die Moglichkeit, die Veranderung des Zustands lber die Zeit zu verfolgen. Wie viele andere Lander
verwendet die Schweizer Regierung nationale Rote Listen, um die Arten zu ermitteln, die am
starksten bedroht sind, und Prioritaten dort zu setzen, wo der grosste Handlungsbedarf besteht. Die
Datengrundlage fir die Rote-Liste-Einschdtzungen stammt aus gross angelegten Erhebungen und
Monitoringprogrammen, welche zu diesem Zweck eingerichtet wurden. Wahrend solcher
Erhebungen kann es jedoch vorkommen, dass Fehler gemacht werden, z.B. dass man eine Art nicht
entdeckt, obwohl sie an einem Ort vorkommt. Viele einzelne Entdeckungsfehler fiihren zu einem
systematischen Fehler bei der Schatzung des Verbreitungsgebiets, der Lebensraumpraferenzen oder
der Populationsveranderungen von Arten. Dies kann zur Einteilung der Art in eine falsche Rote-Liste-
Kategorie fiihren, was wiederum suboptimal angewandte Férdergelder nach sich ziehen kann. Um
einen systematischen Fehler (eine Verfalschung oder Verzerrung) in den 6kologischen Schatzwerten
zu vermeiden, muss der Entdeckungsfehler geschatzt und entsprechend dafir korrigiert werden. Es
ist das Ziel dieser Arbeit, unverfalschte Schatzungen fiir die Bestandsentwicklungen der
borkenbewohnenden Flechten der Schweiz Giber die letzten 20 Jahre zu erhalten. Als Grundlage
dienen Daten der Erhebungen, die im Rahmen der zwei nationalen Rote-Liste-Projekte durchgefiihrt
wurden. Die Einschatzung der Entdeckungswahrscheinlichkeit verlangt den Einsatz besonderer
statistischer Modelle, die bisher nur selten fur Flechtendaten verwendet wurden. Daher habe ich in
Kapitel 1 dieser Arbeit untersucht, ob diese statistischen Modelle sich fiir die vorliegenden
Flechtendaten eignen. Weil es zum Thema Entdeckungswahrscheinlichkeit von Flechten bisher nur
begrenzt Literatur gibt, war es ausserdem sinnvoll, das Ausmass der Entdeckungsfehler sowie
mogliche Griinde dafiir in einem eigenen Kapitel 2 zu diskutieren. Gewappnet mit den Erkenntnissen

dieser ersten Untersuchungen, habe ich mich dann in Kapitel 3 auf die Veranderungen konzentriert,
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Zusammenfassung

die in der Artzusammensetzung von borkenbewohnenden Flechtengesellschaften in der Schweiz

Uber die letzten 20 Jahre geschehen sind.

In Kapitel 1 habe ich untersucht, ob sich die Struktur der Flechtendaten fiir die Verwendung jener
statistischen Modelle eignet, mit denen Entdeckungsfehler geschatzt werden kénnen. Diese Modelle
heissen auf Englisch Occupancy models, zu Deutsch etwa «Belegmodelle», weil sie die
Wahrscheinlichkeit berechnen, dass eine Erhebungsflache von der Art «belegt» ist, d.h. ob die Art
dort vorkommt. Belegmodelle benoétigen Daten von Erhebungsflachen («Plots»), die innerhalb einer
kurzen Zeit wiederholt unabhangig erhoben worden sind. Das Modell schatzt dann die
Entdeckungswahrscheinlichkeit aufgrund von Unterschieden und Gemeinsamkeiten zwischen den
Wiederholungen. In den standardisierten Flechtendaten der Rote-Liste-Erhebungen sind nur ein
kleiner Teil aller Plots wiederholt (genauer gesagt zweimal) erhoben worden. Alle anderen wurden
nur ein einziges Mal erfasst. Um herauszufinden, ob diese einmalig bearbeiteten Flachen dennoch
Information fir die Parameterschatzung des Modells beisteuern, habe ich Daten simuliert, die in
ihrer Struktur den Flechtendaten dhnlich sind. Die Simulation von Daten erlaubt es, die Leistung eines
Modells zu evaluieren, da die richtigen Werte selbst gesetzt werden und darum bekannt sind. In
einem ersten Schritt habe ich ein Belegmodell an den Teil der simulierten Daten angepasst, der von
wiederholten Aufnahmen stammt, und die Prazision der Schatzwerte gespeichert. Dann habe ich
sukzessive mehr und mehr Daten von einmalig bearbeiteten Flachen hinzugefligt, das Modell erneut
angepasst und wiederum die Prazision der Schatzwerte extrahiert. Ich konnte feststellen, dass die
Prazision mit steigender Anzahl an einmalig bearbeiteten Flachen zunimmt; sowohl die Prazision des
Schatzwerts fur die Belegwahrscheinlichkeit als auch des Schatzwerts fir die
Entdeckungswahrscheinlichkeit. Daraus lasst sich schliessen, dass auch einmalig besuchte Flachen zur
Parameterschatzung beitragen, sofern sie mit Daten aus wiederholten Aufnahmen kombiniert
werden. Bei einer Erhohung der Anzahl Wiederholungen von zwei auf vier war nicht nur die Prazision
im Allgemeinen hoher, sondern auch der Beitrag der einmalig bearbeiteten Flachen. Dieses Resultat
ist wenig relevant fir die Analyse der vorhandenen Flechtendaten, aber es liefert wertvolle Hinweise,

wie die Methode fir zukiinftige Flechtenerhebungen verbessert werden kdnnte.

In Kapitel 2 habe ich die Gréssenordnung und Variation der Entdeckungswahrscheinlichkeit in den
Flechtendaten der ersten Rote-Liste-Einschatzung (1995—-2000) unter die Lupe genommen. Als
Einflussvariable habe ich die Auffalligkeit und die Bestimmbarkeit der Flechtenarten verwendet, weil
ich davon ausgegangen bin, dass auffallige und leicht bestimmbare Arten eine hohere
Entdeckungswahrscheinlichkeit haben. Auch die vorherige Erfahrung der Beobachter:innen mit
einzelnen Arten habe ich als Variable einfliessen lassen. Die durchschnittliche
Entdeckungswahrscheinlichkeit lag bei 49%, doch es gab grosse Variabilitdt zwischen Leuten und

Arten, was sich teilweise durch unterschiedliche Erfahrung, Auffilligkeit oder Bestimmbarkeit der
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Arten erklaren liess. Da die Erfahrung der Beobachter:innen lber den Erhebungszeitraum
zugenommen hat, war die Entdeckungswahrscheinlichkeit zu Beginn kleiner als gegen Ende der
Aufnahmen. Die Tatsache, dass der Entdeckungserfolg knapp einer 50:50 Chance gleichkommt, war
etwas Uberraschend. Aufgrund des standardisierten Erhebungsverwahrens wére eine héhere
Entdeckungswahrscheinlichkeit zu erwarten gewesen: Die Grosse der Aufnahmeflachen war
begrenzt, die Zeit fir die Erhebung so gut wie uneingeschrankt und samtliche Beobachter:innen
waren erfahren im Erheben von Flechtendaten. Im Gegensatz zu Tieren kdnnen Flechten sich auch
nicht vor einer Entdeckung verstecken. Und wadhrend die meisten Pflanzen und Pilze jahreszeitliche
Unterschiede in ihrem Aussehen aufweisen, sehen Flechten das ganze Jahr liber gleich aus. Man
kénnte also davon ausgehen, dass dhnlich tiefe Entdeckungswahrscheinlichkeiten, mit anderen
Worten dhnlich grosse Entdeckungsfehler, in den meisten Erhebungen von sesshaften Organismen
auftreten. Diese Fehler zu ignorieren, flihrt unweigerlich zu einer drastischen Unterschatzung der
Haufigkeit dieser Arten. Aufgrund der grossen Variation zwischen Arten und Beobachter:innen in
Kombination mit einer ungleichmassigen Verteilung der Leute, ist es ausserdem wahrscheinlich, dass
die Verfdlschung der Schatzwerte bei einigen Arten starker ausfallen wird als bei anderen. Diese
Unterschiede kdnnen nur dann verstanden werden, wenn die Entdeckungswahrscheinlichkeit der

Arten explizit geschatzt wird.

In Kapitel 3 habe ich geschatzt, wie sich die Haufigkeit von 329 borkenbewohnenden Flechten in der
Schweiz zwischen den Jahren 1995-2000 respektive 2018-2022 verandert hat. Die Feldaufnahmen
daftir fanden im Rahmen der ersten und zweiten Rote-Liste-Erhebung statt. Auch wenn das
Belegmodell Veranderungen auf Artniveau berechnet, habe ich die Arten fiir dieses Kapitel in 18
Okologische Gilden eingeteilt, um die Veranderungen auf der Ebene der Flechtengemeinschaften zu
beschreiben. Drei Gilden beschrieben eine Vorliebe fir freistehende Bédume, luftfeuchte Wiilder und
alte Bdume, zwei Gilden waren definiert durch spezielle Photobionten (trentepohlioid und cyano),
und zwolf Gilden waren von hohen und tiefen 6kologischen Zeigerwerten hergeleitet fir Temperatur,
Niederschlag, Kontinentalitdt, Eutrophierung, pH und Lichtverhdltnisse. Dank dieser gildenbasierten
Herangehensweise konnte ich Verbindungen herstellen zwischen der Artzusammensetzung und
Umweltveranderungen in der Schweiz (iber den gleichen Zeitraum. Ein kontinuierlicher Riickgang der
Gilde alte Bdume lasst vermuten, dass sich diese spezialisierten Flechten noch nicht vom starken
Rickgang erholen konnten, den sie im letzten Jahrhundert aufgrund von nicht nachhaltiger
Waldwirtschaft erlitten haben. Die Anstrengungen der heutigen Waldwirtschaft, die Dichte alter
Baume zu fordern, konnten daran offenbar noch nichts dndern. Eine starke Zunahme
eutrophierungstoleranter (hohe Eutrophierung) und basenliebender (hoher pH) Arten und eine
gleichzeitige Abnahme eutrophierungssensibler (geringe Eutrophierung) und saureliebender (tiefer

pH) Arten weist darauf hin, dass Flechtengemeinschaften nach wie vor stark von Schadstoffen in der
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Luft und im Niederschlag betroffen sind. Wahrend namlich die Sdureeintrdge in den letzten
Jahrzehnten kontinuierlich gesunken sind, werden die kritischen Werte fir Stickstoffeintrage noch in
zwei Drittel der Schweizer Landesflache tberschritten. Die Resultate lassen auch Vermutungen lber
den Effekt des Klimawandels zu. So haben warmeliebende (hohe Temperaturen) und
trockenheitsresistente (wenig Niederschlag) Arten zugenommen, wahrend kalteliebende (tiefe
Temperaturen) und feuchtigkeitsbedurftige (viel Niederschlag) Arten abgenommen haben. Sollten die
genannten Faktoren tatsachlich die Griinde fiir die beobachteten Verdanderungen sein, dann werden
sich die Flechtengemeinschaften auch in den kommenden Jahrzehnten noch weiter in eine dhnliche

Richtung entwickeln.

Ich habe in diesen drei Kapiteln gezeigt, dass es moglich ist, mit einem Datensatz aus teilweise
wiederholten, teilweise einmalig durchgefiihrten Aufnahmen, Schatzwerte fiir die Haufigkeit von
Arten zu erhalten, die fiir Erhebungsfehler korrigieren. Ich konnte zeigen, dass der Entdeckungsfehler
trotz glinstiger Voraussetzungen sehr gross sein kann in einer 6kologischen Studie. Schwachstellen
meiner Arbeit sind unter anderem gewisse Voraussetzungen der statistischen Modelle, die
moglicherweise nur begrenzt erfiillt waren, und die Einschrankung der Modellkomplexitat, die
aufgrund der geringen Stichprobengrosse zustande gekommen ist. Fiir die Schweiz sehe ich zukiinftig
eine grosse Chance darin, die standardisierten Daten der Rote-Liste-Erhebungen mit den zahllosen
Einzelbeobachtungen von Freiwilligen (oder aus anderen Projekten) zu kombinieren. Wenn
Beobachtungen aus verschiedenen Quellen in einem einzigen Modell vereint wiirden, liessen sich
Ausbreitung und Bestandsverdanderungen in der Schweiz besser schatzen. Auf nationaler und
internationaler Ebene, z.B. fiir globale Rote-Liste-Einschatzungen, ware es ausserdem
winschenswert, eine Liste mit zuverlassigen und leicht zugdnglichen Umweltvariablen
zusammenzustellen, die die Modellierung von Flechtenvorkommen vereinfachen und standardisieren
wiirde. Allerdings werden Schatzungen von Ausbreitungsgebieten oder Bestandsveranderungen
allein die Aussterbewahrscheinlichkeit von Arten nicht reduzieren kénnen, unabhangig von ihrer
Genauigkeit. Schlussendlich miissen Massnahmen ergriffen werden, um das Fortbestehen der Arten
zu sichern. Aber indem diese Arbeit dazu beigetragen hat, Rote-Liste-Einschatzungen zuverlassiger
und genauer zu machen, hoffe ich, dass Naturschutzprioritaten gezielter dort gesetzt werden

kénnen, wo sie am meisten gebraucht werden.
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INTRODUCTION

Importance of conservation assessments

We are in the middle of a biodiversity crisis. Animals and plants are becoming extinct at a pace
observed only during the five major mass-extinction events found in the paleontological record
(Barnosky et al., 2011; Ceballos et al., 2015; Cowie et al., 2022). Scientists largely agree that humans
are the main cause of this accelerated species loss, through a combination of direct exploitation,
human-induced land-use change (and associated habitat destruction), climate change, environmental
pollution, and introduction of invasive species (Caro et al., 2022; De Schrijver et al., 2011; IPBES, 2019;
Newbold et al., 2015; Sanchez-Bayo & Wyckhuys, 2019). Most scientists also agree that the extinction
of many species in such a short time will entail a substantial reduction in the quality of human life on
Earth, because an impoverished environment can no longer provide the ecosystem services on which
we rely (Balvanera et al., 2014; Cardinale et al., 2012; Daily et al., 2000; Dobson et al., 2006; Gamfeldt
et al., 2013; e.g., Naeem et al., 1994, 1997). Not least because of our dependence on ecosystems for
our own survival and well-being, political leaders have come to understand the importance of
biodiversity, at least in theory. In 1992, the Convention on Biological Diversity (CBD) took place in Rio
de Janeiro, producing an agreement of the same name which has so far been signed by 168 states

(https://www.cbd.int/information/parties.shtml, accessed 13 July 2023). Other international treaties

and agreements followed, like the Convention on International Trade in Endangered Species of Wild
Fauna and Flora (CITES), the Ramsar Convention on Wetlands of International Importance, and the
International Plant Protection Convention (IPPC). Unfortunately, the CBD Secretariat (2020)
announced in their regular report that not a single one of the 20 biodiversity targets for the period
2011-2020 (named “Aichi-targets” after the place of the conference) have been achieved. At the
COP15 in 2022, the signatory parties of the CBD adopted the Kunming Montreal Global Biodiversity
Framework, the most recent refinement of the global biodiversity targets for 2030 and 2050. Among
others, the targets include 1) halting the human-induced extinction of threatened species, 2) reducing
the rate of extinction of all species, and 3) using and managing biodiversity sustainably to ensure
continued ecosystem services to people. In addition to global agreements, there are also regional
agreements that make individual countries accountable for their conservation actions (or lack thereof).
In Europe, the first agreement to ensure the conservation of biodiversity at the continental scale was
the Bern Convention on the Conservation of European Wildlife and Natural Habitats from 1979. The
governments of the individual countries are thus responsible for creating laws and ordinances that

should halt the loss of biodiversity on their territory.
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Halting the loss of biodiversity requires identifying the species most at risk and the factors that
threaten them. This is a challenging task, because organisms differ strongly in their ecology, life-history
traits, habitat requirements, and distribution patterns, making it difficult to measure the status of their
populations with the same yardstick. Nevertheless, the International Union for the Conservation of
Nature (IUCN) has developed a set of criteria that attempt just that. First suggested in 1994 (IUCN,
1994), adjusted a few times (latest in IUCN, 2012), and with guidelines most recently refined (IUCN,
2022), the IUCN criteria for a Global Red List are applicable to most groups of macro-organisms and to
various data types, amounts, and qualities. Evaluating a species’ global population against these
criteria will result in a threat category that reflects the probability of extinction of the species at the
global scale. There are eight major categories (Fig. 1): Extinct (EX), Extinct in the Wild (EW), Critically
Endangered (CR), Endangered (EN), Vulnerable (VU), Near Threatened (NT), Least Concern (LC), and
Data Deficient (DD). The status EX is given to species with no living individual on Earth, while EW means
that the natural populations have disappeared or are no longer able to reproduce, but the species may
still exist in captive populations. Species in either of the three categories CR, EN, and VU are considered
threatened, with decreasing probability of extinction. NT indicates some probability of decline, but too
low to qualify for any of the three threatened categories, and LC indicates that there is currently no
indication that the species may disappear or decline in the near future. DD is assigned to a species only
if data are so scarce or contradictory that no criterion can be applied in a satisfactory way. At the time
of writing, 150 388 species have been assessed according to these criteria for the compilation of a
Global Red List of Threatened Species (IUCN, 2023), including vertebrates, invertebrates, corals, plants,

fungi, and species from several other organism groups.

National Red Lists (but also continental Red Lists, see e.g., EEA, 2018) are a regional version of the
Global Red List, where the assessment is restricted to the part of a species’ population that occurs
within the national (or continental) borders. Most criteria are applied in the same way, but there are
two additional categories: Regionally Extinct (RE) for species whose last individual within the defined
area has disappeared, and Not Applicable (NA) for taxa whose population within the area is below a
certain proportion (e.g., 2 %) of the global population (Fig. 1). Although national assessments can only
be used for inference about a portion of the entire population, they also have advantages. First and
foremost, most biodiversity-related legislation acts at the country level. A national assessment can
thus be an instrument for national governments to quantify and improve the status of biodiversity
within their political boundaries. Several countries use national Red List categories, directly or
indirectly, to either prioritize species for conservation, designate conservation areas (e.g., based on a
certain number of red listed species), or to choose actions that mitigate the most common threats.

Second, within the same country, environmental data are often available at homogeneous resolution
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and in similar quality, because they are more likely to be monitored by the same authority than studies

across borders.

Regionally Extinct (RE)

Adequate data

Evaluated

Near Threatened (NT)

Assesmert —— LeastConcem(L)

Eligible for Regional

All species Data Deficient (DD)

—_—

Not Applicable (NA)

} Not Evaluated (NE)

Fig. 1 Red List categories as defined by the IUCN (2012). The two categories Regionally Extinct (RE) and
Not Applicable (NA) only apply to regional assessments. When a species is endemic to a country or
region, the categories RE and Extinct (EX) are equivalents.

In Switzerland, the Federal Council is obliged by the 1991 Nature Protection Ordinance to commission
national Red List assessments at regular intervals (Article 14 Paragraph 3 in Natur- und

Heimatschutzverordnung NHV, SR 451.1, www.admin.ch/ch/d/sr/45.html). Although species listed as

threatened on the national Red List are not per se protected, the Red List nevertheless serves as a legal
document. On the one hand, the cantons (political subunits within Switzerland) are responsible for
maintaining biodiversity on their land, and the persistence and/or support of threatened species is one
criterion by which their performance can be evaluated. On the other hand, threatened species and
their categories are used to select priority species for conservation (‘national prioritdre Arten’; BAFU,
2019) and to identify habitat types in need of protection due to their populations of threatened

species.

In summary, national Red Lists are a government’s tool to assess the current status of the national
biodiversity and to set conservation priorities as a way to fulfill their duty towards achieving the goals

set up by the international community.
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Switzerland over the last decades

In the last 20 to 30 years, different species groups have been assessed for the national Red List in
Switzerland. At the same time, the Swiss landscape has continued to undergo land-use and other
changes, and several political initiatives and programs have been started to enhance biodiversity
conservation. The following sections give a short overview over these changes and how they apply to

epiphytic lichens.

National Red Lists

At the time of writing, national Red List assessments exist for 20 different species groups in Switzerland
(FOEN & InfoSpecies, 2023). There are still many species, however, that have either not been evaluated
or for which the evaluation did not yield any conclusion due to data deficiency. While 10 844 species
currently have a valid Red List status, we know little about the remaining 80% of all 56 009 species that
are known to exist in Switzerland. Roughly half of the 10 844 evaluated species (53%) are considered
LC, 12% are NT, 33% are threatened (16% VU, 11% EN, 6% CR), and 2% are considered RE (Fig. 2).
Geographically, the concentration of threatened species is highest in the intensively managed Plateau
and lowest in the more pristine Alps of eastern Switzerland. The main threats to species are the

destruction or deterioration of habitat and, more generally, restricted extents of occurrence.

Comparisons between recent and historic Red Lists are only possible for six species groups that were
consistently evaluated with the same methods (p. 23, FOEN & InfoSpecies, 2023). Amphibians and
dragonflies have improved somewhat in Red List status, vascular plants and birds show a slight
negative trend, and reptiles and fishes a clear negative trend. Despite some improvements in the
conservation status of individual species, the report concludes that the conservation status of species
in Switzerland has not generally improved and that Switzerland, just like other countries (CBD

Secretariat, 2020), failed to achieve the Aichi-targets set at the COP10 in Japan.

Since 2016, Switzerland also has a Red List of threatened habitat types that complement the species-
specific assessments (Delarze et al., 2016). Of 167 evaluated habitat types, 48% were categorized as
threatened. Aquatic and wetland habitats are generally the most threatened while unproductive land
and forest habitats are currently the least threatened (Fig. 3). The threat status of habitat types
correlates with the number of threatened species in that habitat type, e.g., species bound to aquatic
or wetland habitats are particularly threatened, but the assessment of threatened habitat types was
made independently of the threatened species. Nevertheless, it is likely that species bound to highly
threatened habitat types, but for which no species-specific Red List assessment was made, may be

equally threatened.
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I Regionally extinct (REg I Endangered (EN) || Near threatened &NT)
Critically endangered (CR) Vulnerable (VU) I Least concern (LC)
TOTAL
Neuroptera (116)
Vascular plants (2613)
Crane flies (151)
Macrofungi (2956)
Butterflies (226)
Mosses (1112)
Dragonflies (75)
Mammals w/o bats (55)
Orthoptera (102)
Beetles (916)
Gastropods (224)
Stoneflies (109)
Birds (205)
Lichens (713)
Mayflies (84)
Hymenoptera (707)
Bivalves (25)
Caddisflies (291)
Bats (26)
Fishes (66)
Amphibians (19)
Cicada (10)
Reptiles (16)
Macroalgae (23)
Decapods (4)

o
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Fig. 2 Distribution of Red List categories of all currently evaluated species in Switzerland. The dashed
black line marks the average percentage of threatened species. Source: FOEN and InfoSpecies (2023).
Species evaluated as Data Deficient (DD) were omitted from this figure.

I Critically endangered (CR) [ Near threatened &NT)
Endangered (EN) I Least concern (LC)
Vulnerable (VU)
TOTAL
Forests (59)
Unproductive open land (72)

Urban areas (43) , T
Agricultural areas (91) | NN - T
Aquatic habitats (29) | NS . |
Wetlands (40) | [N . n
0 20 40 60 80 100
Percentage

Fig. 3 Distribution of Red List categories of evaluated habitat types in Switzerland across major land-use
types. The dashed black line marks the average percentage of threatened habitat types. Note that
several habitat types occur in multiple land-use types, e.g., riverbanks may belong both to wetlands and
to agricultural areas. Source: Delarze et al. (2016).
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Land use

With a longitudinal width of 348 km and a latitudinal width of 220 km, Switzerland covers 41 285 km?
reaching from its lowest point at 193 m a.s.l. to its highest point at 4636 m a.s.l. (The Federal Council,
2023). There are five major biogeographic regions: the calcareous Jura mountains in the Northwest,
the densely populated and agricultural lowland Plateau, the Pre-Alps with a mix of forests and montane
pastures, the scarcely populated higher-elevation Alps, and the forested and rather steep Southern
Alps. According to the Federal Statistical Office (2021), 25.1% of Switzerland is considered
unproductive land, 31.8% are covered by forests and wooded land, 35.2% are used for agriculture, and

7.9% are currently occupied by urban areas (Fig. 4).

B Urban and industrial areas E- g
Agriculture, orchards, vineyards k
Meadows and pastures

= Forests
Alpine meadows and pastures
Rock, scree, unproductive

[J Glaciers and firn
Water

Fig. 4 Dominant land use in Switzerland 2013-2018 at a 1x1 km grid. The Jura mountains in the
Northwest consist mostly of forest and meadows and pastures. The Plateau is dominated by agricultural
land and urban areas, and the Pre-Alps, Alps, and Southern Alps are a mosaic of forests, meadows and
pastures, and unproductive land in the form of glaciers and firm, bare rock, scree, or unproductive
vegetation. The data for this map were downloaded from the Federal Statistical Office (2023).

The most striking change in land use over the last decades has been a substantial increase in the urban
area from 6.8% in the 1992-1997 assessment to 7.9% in the 2013—-2018 assessment (Federal Statistical
Office, 2021). This expansion by 16% occurred largely at the expense of agricultural land (36.7% in
1992-1997 vs. 35.2% in 2013-2018), and it correlates with an increase of similar magnitude in human

population from 6.8 million in 1992 to 8.0 million in 2013 (Federal Statistical Office, 2022).
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From 1900 to 1990, the agricultural land had experienced a constant intensification (reviewed in
Walter et al.,, 2010). The intensification involved heavier machinery, greater number of livestock
animals, increased field size in conjunction with a decline in structural heterogeneity, heavily raised
application of fertilizer and pesticides, and the widespread sowing of homogeneous and species-poor
seed mixes. The result of the intensification was such a marking loss of species diversity, especially at
lower elevations, that the Federal Constitution (Art. 104) was changed: the new Law on Agriculture
(Landwirtschaftsgesetz 910.1) ties the payment of governmental subsidies to farmers to a proof of
ecological standards (“6kologischer Leistungsnachweis”). In addition, the application of fertilizer and
the number of livestock animals are restricted by the Swiss Ordinance on Air Pollution Control (SR
814.318.142.1). Since 2000, more conditions were added to the catalogue of requirements for
subsidies, such as the obligation to designate a certain percentage of the land as ecological
compensation area. Furthermore, several monetary incentives were created to encourage more

sustainable agricultural practices (FOEN & FOAG, 2008, 2016).

These new regulations of agricultural practices have led to some improvement for biodiversity on
agricultural land. For example, the abundance and diversity of vascular plants, grasshoppers, and wild
bees was shown to be greater in meadows designated as ecological compensation areas than in
conventionally managed hay meadows (Knop et al., 2006). Likewise, vascular plant and snail richness
increased over a period of five years at sites that included ecological compensation areas and not in
others (Roth et al., 2008). Nitrogen emissions, largely of agricultural origin, have also started to decline
in Switzerland (Rihm & Kiinzle, 2023). After decades of world-wide increases, Europe is so far the only
continent that has succeeded in bending that curve (Liu et al., 2022; Seitler et al., 2021; Vivanco et al.,
2018). Despite the reduced emissions, however, nitrogen deposition still exceeds ecologically critical

levels in more than half the country (Rihm & Kiinzle, 2023).

The forest management in Switzerland has undergone several important changes over the last
decades. After a long period of profit-oriented forestry, the Swiss forests of the 2000s were young,
evenly aged, and rather dark (Brassel & Brandli, 1999) and had lost much of their diversity (Bollmann
et al.,, 2009; Scheidegger et al., 2010; Walther & Grundmann, 2001; Watt et al., 2007). The
implementation of a new Forest Policy (FOEN, 2013) and a Swiss Biodiversity Strategy (FOEN, 2012)
introduced more sustainable forestry practices with more structural and tree species heterogeneity,
and a slowly increasing number of old trees (Brandli et al., 2020). It is, however, too early to draw
conclusions about the effectiveness of the Biodiversity Strategy, as the first period for the

implementation of the Biodiversity Action Plan will end only in December 2024 (FOEN, 2017, 2023).
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Climate

The climate in Switzerland is generally temperate with warm summers and cool winters, some
precipitation throughout the whole year but with the maximum over the summer months. Due to
Switzerland’s topography, however, there is great spatial variation in temperature and precipitation.
The ongoing climate change has led to temperature increases that lie above the international average
increase, longer periods of extreme heat and drought in summer, more intense solar radiation, melting
of glaciers and permafrost, and fewer precipitation days with heaver downpours (Kollner et al., 2017;
NCCS, 2018; Scherrer et al., 2016). Fig. 5 illustrates how average temperature, solar radiation, and

number of precipitation days have changed from the period 1986—2000 to the period 2008-2022.

Situation for epiphytic lichens

Lichens are symbiotic organisms that consist of at least two symbiont partners, a fungus and a green
alga or cyanobacterium. Nearly 2000 species of lichens have been reported from Switzerland (Stofer
et al., 2019a), of which 500-600 are primarily epiphytic, which means that they grow on bark of trees
or shrubs. Among the epiphytic lichens, 520 species were evaluated for the national Red List with 208
species (40%) being considered threatened (categories VU, EN, CR) and 199 species (38%) being
considered LC (Scheidegger et al., 2002). Habitats with a particularly high number of threatened
species were light forests with long ecological continuity and a copious supply of dead wood, open
forests with old oaks, wooded meadows and pastures, and free-standing deciduous trees, such as ash

or sycamore maple, but also fruit trees in areas without application of fertilizer or pesticides.

Epiphytic lichens must naturally be affected by forest management and by regulations that relate to
the management of trees in the agricultural landscape. While the profit-oriented forestry practices of
the last century led to a decline in epiphytic lichens in more heavily managed forests (Scheidegger et
al., 2010), there is hope that the current trend towards lighter, more heterogeneous forests with
increasing amount of dead wood and old trees will have a positive effect on their suitability for lichens.
The ongoing change in the open landscape, however, may be less favourable for epiphytic lichens.
Since 2008, the invasive fungus Hymenoscyphus fraxineus has infected thousands of European ashes
Fraxinus excelsior (Klesse et al., 2021), killing many free-standing or road-side trees that would have
been suitable substrate for several specialist lichens. More free-standing trees have disappeared
through the ongoing abandonment of traditional wooded pastures in the Alps, especially those
dominated by sycamore maple Acer pseudoplatanus (Kiebacher et al., 2018). Like other extensively
used alpine pastures, many of these biodiverse habitats had to give way to more intensively grazed

pastures, or they were overgrown by forest when no longer grazed (Tappeiner et al., 2003).
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1986-2000 2008-2022

Temperature

10.8-14.0
75-10.8
42-75
1.0-42
-22-1.0
-5.5--22
-8.8--55
-12.0--8.8

Sunshine
57-60
53-57
50-53
46 -50
43-46
40-43
36-40
33-36

Precipitation

218 -232
204 -218
191-204
177 - 191
163-177
150 - 163
136 - 150
122-136

Fig. 5 Climatic changes in Switzerland over 20 years. The left-hand panels illustrate the median values
across the period 1986—2000, and the right-hand panels the median values across the years 2008—
2022 for yearly mean temperature in °C (A, B), relative sunshine duration in % (C, D), and number of
precipitation days per year (E, F). Data for these maps were provided by MeteoSwiss (temperature:
TabsY, precipitation: RhiresD, sunshine duration: SrelY).

Lichens in open habitats have been under adverse pressures from deposition of chemical substances.
In the 1970s to 1980s, large amount of acid gases, especially sulphur dioxide and nitrogen oxides, were
emitted from traffic and industries and deposited on the bark of the surrounding trees in tiny particles
or dissolved as acid rain (BAFU, 2022; Kinzle, 2022). Many lichens are very sensitive to such
environmental pollutants and disappeared almost completely from European cities and industrial
areas, leaving only a few acidophytic species behind (Ferry et al., 1973; Gilbert, 1969; Hawksworth &
Rose, 1970; Herzig & Urech, 1991; Seaward, 1993; van Herk, 2001). Since the 1990s, the emission of
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these toxic gases has gradually declined thanks to stricter regulations (BAFU, 2022; Kinzle, 2022),
allowing bark pH to recover and lichens to recolonize trees (van Dobben & ter Braak, 1998). The
emission and deposition of nitrogen, on the other hand, has declined only little over the past 20-30
years and is still exceedingly high (Rihm & Kinzle, 2023). Compared to the pre-acid-rain conditions,
the current environment encountered by epiphytic lichens in open landscapes is therefore much richer

in nitrogen, which is likely to lead to a different set of common species than before.

Sampling errors in ecological surveys

Ecological surveys assess the distribution of species across space or time. They collect data on
occurrence (presence/absence) or abundance (number of individuals), either focussing on a single
species or on entire species communities. Unfortunately, however, neither occurrence nor abundance
are always measured without error. Two types of errors can occur: false-negative and false-positive
sampling errors (Kéry & Royle, 2016, 2021; MacKenzie et al., 2018; Royle & Dorazio, 2008; Williams et
al.,, 2002). False-negative sampling errors (false negatives) occur when a species or an individual is
overlooked. This error is usually due to imperfect detection, i.e., the failure to detect a species or
individual, and it implies that the detection probability is less than 1. False-positive sampling errors
(false positives) are usually the result of misidentification or double-counting and describe the
recording of a species or individual that was not actually there. In most applications, false negatives
are likely to be more common than false positives, because the former usually result from limited
sampling effort (Garrard et al., 2008; McArdle, 1990), while the latter depend more on people’s ability
to identify or count (p. 84, Royle & Dorazio, 2008), and standardised sampling protocols can keep them
to a minimum. In practice, it is therefore a lot more common that researchers account for false
negatives in their data than for false positives, which are often just assumed to be absent or negligible
(but see Bailey et al., 2013; Banner et al., 2018; Ferguson et al., 2015; Guillera-Arroita et al., 2017;
Louvrier et al., 2018; Miller et al., 2011; Royle & Link, 2006; Ruiz-Gutiérrez et al., 2016). This is also the
case here, as | assume the absence of false positives in all the data | present in this thesis, and | explain
possible consequences of a violation of this assumption in the Discussion. My focus in this thesis is the

more common sampling error imperfect detection.

Imperfect detection of animals and plants

Awareness of imperfect detection and development of statistical tools to account for it have seen a
tremendous increase over the last 40 years. The core idea was born in the field of animal capture-

mark-recapture studies (Otis et al., 1978; Pollock et al., 1990; Seber, 1982; White et al., 1982). By
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marking individuals, releasing them, and attempting to capture them again, it was possible to estimate
the size of a population, because the ratio of marked vs. previously unmarked individuals during later
capture occasions as well as the individual detection histories would allow insight into the number of

undetected individuals.

The estimation of imperfect detection was then applied to distance sampling (Buckland et al., 1993,
2001), making use of the fact that detection probability of individuals is related to their distance from
the observer. Around the year 2000, researchers first started estimating detection probability in
studies of patch occupancy of single species (Bayley & Peterson, 2001; Gu & Swihart, 2004; MacKenzie
et al.,, 2002; Moilanen, 2002; Tyre et al., 2003; Wintle et al., 2004). Estimates of local abundance
(Alexander et al., 1997; Royle et al., 2005) and estimates of species richness (Boulinier et al., 1998;
Dorazio et al., 2006; Yoccoz et al., 2001) could also be corrected for imperfect detection following the
same statistical approach. More recent modifications extended analyses to population dynamics over
time (Fukaya et al., 2017; Kéry et al., 2009; MacKenzie et al., 2003, 2009; Peach et al., 2017; Rossman
et al., 2016; Royle & Kéry, 2007) and to dynamics of entire species communities (Dorazio et al., 2010;

Rossman et al., 2016; Ruiz-Gutiérrez et al., 2010; Ruiz-Gutiérrez & Zipkin, 2011; Yamaura et al., 2011).

Most animals move around and may exhibit activity patterns dependent on weather, season, or time
of day that make them particularly prone to imperfect detection and variation in detectability. Due to
the ubiquity of imperfect detection in animal studies, many researchers nowadays systematically
estimate and account for it in their surveys, including numerous recent studies of amphibians
(Amburgey et al., 2021; Moor et al., 2022; Siffert et al., 2022; Takahara et al., 2020), reptiles (Amburgey
et al., 2021; Boback et al., 2020; Mitrovich et al., 2018; Turner et al., 2022), mammals (Collins et al.,
2021; Gomez et al., 2018; Hogg et al., 2021; Magle et al., 2021; Paniccia et al., 2018), and birds (Briscoe
et al., 2021; Henckel et al., 2020; Henry et al., 2020; Iknayan & Beissinger, 2018; Maphisa et al., 2019;
Sen & Akcgakaya, 2022; Strebel et al., 2021).

Plants cannot avoid detection by running away or hiding. This fact has led botanist John L. Harper to
write into his book on plant biology: “plants stand still to be counted and do not have to be trapped,
shot, chased, or estimated” (Harper, 1977). Due to their sessile nature, plants are therefore expected
to be easier to detect and survey than animals. There are much fewer studies on detection probability
of plants (or other sessile organisms) than of animals, but the existing evidence does not confirm the
expectation. The first studies on plants that explicitly estimated detection probability found that it
correlated both with plant size and life state, i.e., whether the individual was in a dormant, vegetative,
or flowering state, but that it was rarely perfect (Alexander et al., 1997; Gregg & Kéry, 2006; Kéry &
Gregg, 2003; Shefferson et al., 2001; Slade et al., 2003). Later studies found that detection probability

of plants generally varied between species and often also between habitats, and that it was always
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correlated with local abundance (Al-Chokhachy et al., 2013; Chen et al., 2009, 2013; Dennett et al.,
2018; Dennett & Nielsen, 2019; Garrard et al., 2013; Middleton & Vining, 2022; Moore et al., 2014;
Perret et al., 2023). Additional evidence for imperfect detection of plants comes from numerous
studies that report differences in species lists by different observers but without explicitly accounting
for them (Boch et al., 2022; Burg et al., 2015; Futschik et al., 2020; e.g., Leps & Hadincovd, 1992; Vittoz
et al., 2010). The consideration of detection probability in plant studies was reviewed multiple times
in recent years (Chen et al., 2009, 2013; Dennett et al., 2018; Middleton & Vining, 2022; Perret et al.,
2023). The authors of these studies conclude that in virtually all plant surveys, detection probability
was considerably smaller than 1. Plants, it seems, are not quite as easy to detect as their sessile nature
may suggest. In spite of its evident omnipresence, however, the authors note that imperfect detection

is not commonly accounted for in the majority of plant surveys and monitoring programs.

Imperfect detection of lichens

Not only plants “stand still to be counted”; fungi and lichens and many other organisms do too. And
while most fungi and plants show seasonal variation in morphology, most lichens do not. Lichenologists
Jessica Allen and James Lendemer phrase it like this: “Surveys for total diversity [of lichens] do not
suffer from the incomplete sampling due to variation in flowering or fruiting times that affect
inventories of plants and other fungi, or low detectability due to unusual weather patterns that can
impact animal surveys” (Allen & Lendemer, 2016). Lichens could thus be expected to be yet easier to

survey than plants.

Imperfect detection of lichens has been studied even less than imperfect detection of plants. As for
plants, however, the evidence that does exist fails to confirm this expectation. McCune et al. (1997)
were the first to state their awareness that lichens may not be perfectly detected. They conducted
several independent surveys of the same sampling sites (area: 3780 m?) by multiple lichenologists and
found that no observer found more than 63 % of all detected lichen species and that estimates of
species richness would be strongly biased if data from only one observer were taken into account. A
similar comparative study by Vondrak et al. (2016) with much larger survey areas confirmed these
findings. In their sites of 12.5 ha, only 23 % of all detected lichen species were found by all eight
lichenologists, 20 % were found by only one person. Even when sampling was standardised so that all
observers would walk along the same transect, there were considerable differences between
observers (Britton et al., 2014). The ratio of plot size to time spent searching for lichens is likely to
affect detection probability, with smaller plot size and greater time effort logically leading to higher
probabilities of detection. However, no plot size seems to be small enough to guarantee perfect
detection of species, as Brunialti et al. (2012) discovered when they compared biomonitoring data

from different teams collected on the same trees. Their sampling units were grid cells of 10 x 10 cm
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and yet there was a difference of ten species between the group with the lowest and the group with

the highest species count across all cells.

Several lichen studies have approached the issue of imperfect detection in a rather indirect way.
Indirect, because they focussed on the proportion of species that is detected instead of estimating the
detection probability of individual lichen species. Data on epiphytic lichens is commonly collected by
searching the lowest two metres of the stem, either of individual trees (when trees are the sampling
unit; Kiebacher et al., 2016; Marmor et al., 2013) or of a subset or all trees within a plot (when plots
are the sampling unit; Boch et al., 2013; Dymytrova et al., 2013). Restricting the search to the lowest
two metres of the trunk is merely a question of logistic convenience and not a decision based on lichen
biology. In fact, Marmor et al. (2013) and Boch et al. (2013) showed that of all lichen species present
on a tree in the middle of the forest, only 34-46 % could be found on its stem below 2 m from the
ground. This proportion is similar for free-standing trees (39 %; Kiebacher et al., 2016). When species
richness is measured not at tree-level but at plot- or stand-level, the observed proportion is higher but
still only represents 58-62 % of the actual species richness (Boch et al., 2013; Kiebacher et al., 2016).
Importantly, some species seem to have a preference for positions above 2 m from the ground (Fritz,
2009; Kiebacher et al., 2016; Marmor et al., 2013) and these species are therefore more likely than
others to remain undetected by this sampling method. When population estimates of lichens are based

on lower-stem sampling, they may therefore be biased low.

The earliest study to explicitly estimate detection probability of individual lichen taxa was conducted
by Casanovas et al. (2014). They estimated the sampling error of citizen scientists who were asked to
photograph morphologically dissimilar macrolichens. A few years later, Outhwaite et al. (2019, 2020)
accounted for imperfect detection in an estimation of large-scale trends of lichens and many other
species groups in the UK. Bhatti (2020) set up several experiments with artificial “look-a-lichens” to be
able to investigate detection probability more thoroughly by varying lichen density or number of
observers, and by testing various modelling approaches. He found that detection probability varied
between observers and that common species were more easily detected than rare species. Estimates
of species occurrence became much more precise with four instead of two surveys/observers, but
there was generally some heterogeneity in detection probability between sampling units (i.e., trees)
which caused a bias in estimates of lichen occurrence when it was not accounted for. Caceres et al.
(2008) also found an effect of abundance and conspicuousness of species on their detection
probability, albeit under an opportunistic sampling design. Although these studies vary in their
sampling designs and the variables investigated, their common feature is that detection was never

perfect in either.
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Consequences of ignoring imperfect detection

When imperfect detection occurs but is ignored in the analysis of survey data, biases are introduced
to the estimates of the variables of interest. Occupancy, area of distribution, and abundance are,
sometimes severely, underestimated (Guillera-Arroita et al., 2014; Kéry & Schmidt, 2008; MacKenzie
et al., 2002; Mosher et al., 2018; Royle, 2004; Tyre et al., 2003). As a result of species-specific biases,
diversity metrics like species richness are also biased low (Broms et al., 2014; Guillera-Arroita et al.,
2019; lknayan et al., 2014; Jarzyna & Jetz, 2016). When only occurrence data are available without
additional information on local abundance, imperfect detection will weaken the estimated effect of
habitat covariates on occurrence (Gu & Swihart, 2004; Kéry, 2004; Lahoz-Monfort et al., 2014; Tyre et
al., 2003). Yet larger biases in parameter estimates may occur when detection probability is affected
by an environmental or habitat covariate that is at the same time correlated with the occurrence of
the species. In these situations, habitat effects on detectability may be confounded with habitat effects
on occurrence if detection probability is not accounted for (Buckland et al., 2008; Chen et al., 2013; Gu

& Swihart, 2004; Kéry, 2004; Tyre et al., 2003).

When detection probability varies over time, it can be difficult to detect underlying population trends.
A different set of observers or different sampling intensities at two different points in time may be
enough to lead to spurious patterns of population change that are in fact due to differences in
detection (Archaux et al., 2012; Britton et al., 2014; Kendall et al., 1996; Kéry et al., 2009). Revisitation
studies, which aim to confirm the persistence of populations at known localities, are particularly prone
to biased estimates. Given that revisitation sites were selected conditional on past detection, any
failure to detect the species during the revisitation will lead to an overestimation of extinction rates
(Kéry, 2004; Kéry et al., 2006). However, sampling designs that do not start with a conditional selection
of sites may likewise be unable to avoid biased estimates. When changes in observed occupancy or
abundance are exclusively assigned to changes in the population, dynamic rates of colonization and
extinction are usually overestimated (MacKenzie et al., 2003; Manna et al., 2017; Rossman et al., 2016;
Sutherland et al., 2014). In addition to a general bias in estimates of occurrence and population
dynamics, a review by Guillera-Arroita (2017) also points out that the precision of these estimates is

generally too high, making inferences stronger than they should be.

Occupancy models

Occupancy models have become the most widely used method to estimate occurrence
(presence/absence) of species while accounting for imperfect detection (Kéry & Royle, 2016, 2021;
MacKenzie et al., 2018). They were independently proposed by MacKenzie et al. (2002) and Tyre et al.

(2003). The original models were suited to data from single species that were collected over repeated
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visits to the same sites within the same season. The repeated visits in occupancy models are the
equivalent to recapture occasions in capture-recapture designs, from where the idea was adapted.
During each visit to a site, the species can either be detected (1) or not (0). Over J repeated visits, the
site thus accumulates what is called a detection history of length J. With J=4, for example, the detection
history may be [1 0 0 1], meaning that the species was detected during the first and last visits, but not

during the second and third visits.

Occupancy models account for detection probability with the help of a two-level hierarchical model
structure. The two hierarchies describe the two processes that produced the observed data y. The first
level represents the ecological process of occupancy, which determines the true occupancy state z of
site i (1 if occupied, 0 if unoccupied). The variable z; follows a Bernoulli distribution with a probability

of occupancy ¥;:
z; ~ Bernoulli(¥;).

W; can depend on covariates that are specific to the site i, e.g., local climate or habitat type. Commonly,
the relationship between the probability W; and the covariates is described with a logistic regression,

i.e., a linear regression model connected to ¥; via a logit-link function:
logit(W;) = ap + @1_n X Xy i1-n

where a is the intercept and a;_, are the coefficients for the site-specific occupancy covariates
Xy ; 1-n- As the model allows for imperfect detection, z is not directly (or only partially) observed, i.e.,

it is a latent variable.

The second level of hierarchy describes the observation process of detecting or missing the species. It
is conditional on the first level because the detection of a species depends on its occurrence. Under
the assumption of no false-positive sampling errors, a species can therefore only be detected at a site
that is occupied (z = 1). For an occupied site j, the observed data y;; from visit j will be Bernoulli

distributed with a detection probability p;;:
Yij ~ Bernoulli(zi X pl-,j)

When a site is not occupied (z = 0), the term in brackets becomes zero, and y will then also be zero.

Reversely, when the observed y is 1, z must also be 1.

Detection probability p;; can also depend on covariates, which may be site- or visit-specific. This

relationship is again described with a logistic regression model:

logit(pi,j) = PBo + B1-m X Xpiji-m
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where [, is the intercept and B;_,, are the coefficients for the site- or visit-specific detection

covariates Xy, ; j 1-m-

Occupancy models can be fitted using Maximum Likelihood or Bayesian approaches. A lot of software
has been developed for either like Stan (https://mc-stan.org), BUGS (Lunn et al., 2013; Spiegelhalter
etal., 2003), JAGS (Plummer, 2003, 2017), TMB (Kristensen et al., 2016), and countless R-packages incl.
R2WinBUGS (Sturtz et al., 2005), rjags (Plummer, 2022), jagsUl (Kellner, 2021), nimble (de Valpine et
al.,, 2017; NIMBLE Development Team, 2023), glmmTMB (Brooks et al., 2017), ubms (Kellner et al.,
2022), and spOccupancy (Doser et al., 2022).

Most Bayesian software use Markov chain Monte Carlo (MCMC) simulations to estimate model
parameters (Gamerman & Lopes, 2006). The output of an MCMC is a large number of values, called
the posterior or posterior distribution of the parameter. The posterior allows direct estimation of the
probability of a hypothesis given the data, model, and prior assumptions. This approach to drawing
inferences is distinct from standard significance testing in maximum likelihood statistics. In significance
testing, inference is based on the p-value, a measure of the probability of obtaining the observed data

or data more extreme given the null hypothesis (Greenland et al., 2016).

Since occupancy models were first proposed, numerous extensions have been developed. Not only
single species but entire species assemblages can now be modelled in community or multi-species
occupancy models (Dorazio et al., 2006; Dorazio & Royle, 2005; Chapter 11 in Kéry & Royle, 2016;
Chapter 15 in MacKenzie et al., 2018). These models often make use of an additional hierarchical level
that describes the variation between species as coming from a common distribution with a mean and
a standard deviation. Fitting such a species random effect allows inferences also about species with
very few observations, or even with no observations at all, in order to include never-detected species
in estimates of species richness (Royle et al., 2007). Other extensions allow the estimation of
occupancy dynamics over time, either for single species (Chapter 4 in Kéry & Royle, 2021; MacKenzie
et al., 2003; Chapter 8 in MacKenzie et al., 2018) or entire communities (Dorazio et al., 2010; Chapter
5 in Kéry & Royle, 2021). These dynamic, or multi-season, models either allow occupancy to vary over
time using a fixed or a random effect, or they explicitly estimate the rates of colonization and extinction
which lead to changes in occupancy. Further extensions include application of occupancy models to
data that use time to first detection to inform estimates of detection probability (Garrard et al., 2008),
to data collected along transects (Guillera-Arroita et al., 2012; Hines et al., 2010), or to data from
different sampling methods (Nichols et al., 2008). A book by MacKenzie et al. (2018) offers an excellent
introduction to occupancy modelling with a thorough review of available methods. Two book volumes
by Kéry & Royle (2016, 2021) give equally excellent and pedagogic instructions on how to fit these

models in R.
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Aims

Towards revising the national Red List of epiphytic lichens for Switzerland

In 2018, Stofer et al. (2019b) began the revision of the existing national Red List of epiphytic lichens in
Switzerland. The field work was completed in October 2022, but the analysis will not be finished until
2024. The sampling strategy for the revision was very similar to the one used in the first Red List
(Scheidegger et al., 2002), though the sample size had to be reduced by nearly 30% because of budget
restrictions. The most time-consuming sampling method was the thorough survey of standardised
sampling plots of 500 m? on which observers recorded all epiphytic lichens. These plots served two
main purposes: 1) to estimate the present area of occupancy (AOO) of the species, and 2) to estimate
the change in AOO over the last 20 years by comparing the current data with the data from the first
Red List. These metrics (AOO, and change in AOO) will be very useful when applying criteria during the

actual Red List assessment next year (IUCN, 2012).

In addition to the standard plot surveys, independent repeated visits were conducted on a subset of
these sites to assess the reproducibility of the species lists. Conducting repeated visits and having to
identify the additional collected material, even if only from a subset of the plots, is costly. One may
therefore legitimately ask whether this effort is necessary. With respect to Red List assessments, there
are two aspects to consider. The first one is that imperfect detection, if not accounted for, leads to an
underestimation of the static occupancy (and thus AOQO) and distribution of a species at any given point
in time (Kéry & Schmidt, 2008). The second aspect is that estimates of population change over time
can be biased in different directions if detection probability varies over time (Archaux et al., 2012;
Kendall et al., 1996). In this case, detection probability must be estimated separately for each point in
time to unambiguously separate between occupancy and detection. Before the data are collected and
detection probability is estimated, it is thus impossible to know whether it was necessary to repeat

visits for all time points to obtain unbiased estimates of population changes over time.

A preliminary analysis of the data collected during repeated visits in the first Red List suggests that
these data are likely to contain false negatives (Scheidegger et al., unpublished data). If detection
probability was imperfect during the first Red List, it is likely to be imperfect now. Whether imperfect
detection occurs at the same rate, is less clear. However, there are reasons to not assume a constant
detection probability over time. First, the set of observers employed in field work and identification of
specimens differed between the two Red Lists. Second, the only two team members who participated
in both must have gained much experience over the 20 years that passed between them. And third,
the sampling strategy was also slightly different. Observers of the first Red List followed a strict order

of substrates to search (stems below 2 m of larger trees first, followed by stems of smaller trees,
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followed by branches) and compiled species lists for each tree species on the plot. Observers of the
second Red List, on the other hand, did not have to follow any order and compiled only one list of
epiphytic lichens for the entire plot. The possibility that detection probability changed over time can
therefore not be excluded, and accounting for it is a prerequisite to assign species to the correct Red

List category.

Thesis structure

The ultimate goal of this thesis is to assess the change that epiphytic lichen communities in Switzerland
have undergone over the past 20 years while correcting for imperfect detection of species. Until now,
however, there have been rather few studies on imperfect detection of lichens. The accomplishment
of my ultimate goal therefore requires additional prior investigation, which has led me to the three

chapters that | describe in the following.

In Chapter 1, | test whether the structure of the lichen data is suitable for occupancy modeling. While
the conventional occupancy model (sensu MacKenzie et al., 2002; Tyre et al., 2003) was designed for
observation data from multiple visits to all sampling sites, our lichen data consist of predominantly
single-visit sites; only 46 sites have data from a second visit. | explore through simulation whether such
data are best analysed using only the multi-visit portion of the data or whether it benefits the
estimators to include also the single-visit data in the analysis. As this chapter focusses on methodology
and data structure, it not only applies to lichens, but is relevant for all surveys and monitoring programs

that collect data with a design that consists of a mix of single- and multi-visit sites.

In Chapter 2, | estimate the variation in detection probabilities in the lichen dataset collected 1995-
2000 for the purpose of the first Red List assessment (Scheidegger et al., 2002). | also investigate
potential covariates of detection like lichen conspicuousness or differences between observers, and |
discuss the implications that imperfect detection can have on estimates of species frequency. This is
one of very few studies that explicitly estimate and discuss detection probability of lichens and how it
may affect estimates of species occurrence and species richness. Although this study is based on

lichens, the conclusions are likely to apply also to other sessile species like plants or fungi.

In Chapter 3, | combine the standardised survey data from 1995—2000 with the recent data from 2018-
2022. The focus here lies on estimating changes in the frequency of epiphytic lichen species over these
20 years while accounting for imperfect detection. To suggest potential drivers behind changes in
epiphytic lichen communities, species are divided into ecological guilds based on common preferences
for substrate, habitat, climatic or chemical conditions. The dataset | analyse in this chapter is
exceptionally rich compared to data availability in other European countries, and the resulting

inferences are likely to extend beyond the national borders, and also beyond lichens.

25



Introduction

References

Al-Chokhachy, R., Ray, A. M., Roper, B. B., & Archer, E. (2013). Exotic plant colonization and occupancy
within riparian areas of the interior Columbia river and upper Missouri river basins, USA.
Wetlands, 33(3), 409—420. https://doi.org/10.1007/s13157-013-0399-8

Alexander, H. M., Slade, N. A., & Kettle, W. D. (1997). Application of mark-recapture models to
estimation of the population size of plants. Ecology, 78(4), 1230-1237.
https://doi.org/10.1890/0012-9658(1997)078[1230:AOMRMT]2.0.CO;2

Allen, J. L., & Lendemer, J. C. (2016). Quantifying the impacts of sea-level rise on coastal biodiversity:
A case study on lichens in the mid-Atlantic Coast of eastern North America. Biological
Conservation, 202, 119-126. https://doi.org/10.1016/j.biocon.2016.08.031

Amburgey, S. M., Miller, D. A. W., Rochester, C. J., Delaney, K. S., Riley, S. P. D., Brehme, C. S., Hathaway,
S. A, & Fisher, R. N. (2021). The influence of species life history and distribution characteristics
on species responses to habitat fragmentation in an urban landscape. Journal of Animal
Ecology, 90(3), 685-697. https://doi.org/10.1111/1365-2656.13403

Archaux, F., Henry, P.-Y., & Gimenez, O. (2012). When can we ignore the problem of imperfect
detection in comparative studies? Methods in Ecology and Evolution, 3(1), 188-194.
https://doi.org/10.1111/j.2041-210X.2011.00142.x

BAFU. (2019). Liste der National Prioritéren Arten und Lebensrdume. In der Schweiz zu férdernde
prioritére Arten und Lebensrdume (Umwelt-Vollzug Nr. 1709, p. 99). Bundesamt fir Umwelt.
https://www.bafu.admin.ch/bafu/de/home/themen/biodiversitaet/publikationen-
studien/publikationen/liste-national-prioritaeren-arten.html

BAFU. (2022). Gesamtemissionen von Luftschadstoffen in der Schweiz.
https://www.bafu.admin.ch/bafu/de/home/themen/thema-luft/luft--
fachinformationen/Iuftschadstoffquellen/gesamtemissionen-von-luftschadstoffen-in-der-
schweiz.html

Bailey, L. L., MacKenzie, D. I., & Nichols, J. D. (2013). Advances and applications of occupancy models.
Methods in Ecology and Evolution, 5(12), 1269-1279. https://doi.org/10.1111/2041-
210X.12100

Balvanera, P., Siddique, I., Dee, L., Paquette, A., Isbell, F., Gonzalez, A., Byrnes, J., O’Connor, M. I.,
Hungate, B. A., & Griffin, J. N. (2014). Linking biodiversity and ecosystem services: Current
uncertainties and the necessary next steps. BioScience, 64(1), 49-57.
https://doi.org/10.1093/biosci/bit003

Banner, K. M., Irvine, K. M., Rodhouse, T. J., Wright, W. J., Rodriguez, R. M., & Litt, A. R. (2018).
Improving geographically extensive acoustic survey designs for modeling species occurrence
with imperfect detection and misidentification. Ecology and Evolution, 8(12), 6144-6156.
https://doi.org/10.1002/ece3.4162

26



Introduction

Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B., Quental, T. B., Marshall, C,,
McGuire, J. L., Lindsey, E. L., Maguire, K. C., Mersey, B., & Ferrer, E. A. (2011). Has the Earth’s
sixth  mass extinction already arrived? Nature, 471(7336), Article 7336.
https://doi.org/10.1038/nature09678

Bayley, P. B., & Peterson, J. T. (2001). An approach to estimate probability of presence and richness of
fish species. Transactions of the American Fisheries Society, 130(4), 620-633.
https://doi.org/10.1577/1548-8659(2001)130<0620:AATEPO>2.0.CO;2

Bhatti, N. (2020). Developing monitoring tools for conservation-priority lichen species [PhD thesis].
University of Aberdeen.

Boback, S. M., Nafus, M. G., Yackel Adams, A. A., & Reed, R. N. (2020). Use of visual surveys and
radiotelemetry reveals sources of detection bias for a cryptic snake at low densities. Ecosphere,
11(1). https://doi.org/10.1002/ecs2.3000

Boch, S., Kiichler, H., Kiichler, M., Bedolla, A., Ecker, K. T., Graf, U. H., Moser, T., Holderegger, R., &
Bergamini, A. (2022). Observer-driven pseudoturnover in vegetation monitoring is context-
dependent but does not affect ecological inference. Applied Vegetation Science, 25(3), e12669.
https://doi.org/10.1111/avsc.12669

Boch, S., Miiller, J., Prati, D., Blaser, S., & Fischer, M. (2013). Up in the tree — the overlooked richness
of bryophytes and lichens in tree crowns. PLoS ONE, 8(12).
https://doi.org/10.1371/journal.pone.0084913

Bollmann, K., Bergamini, A., Senn-Irlet, B., Nobis, M., Duelli, P., & Scheidegger, C. (2009). Concepts,
instruments and challenges for the conservation of biodiversity in the forest. Schweizerische
Zeitschrift fiir Forstwesen, 160(3), 53—67. https://doi.org/10.3188/szf.2009.0053

Boulinier, T., Nichols, J. D., Sauer, J. R., Hines, J. E., & Pollock, K. H. (1998). Estimating species richness:
The importance of heterogeneity in species detectability. Ecology, 79(3), 1018-1028.
https://doi.org/10.1890/0012-9658(1998)079[1018:ESRTI0]2.0.CO;2

Brandli, U.-B., Abegg, M., & Allgaier Leuch, B. (2020). Schweizerisches Landesforstinventar: Ergebnisse
der vierten Erhebung 2009-2017 (p. 65939779 bytes) [PDF]. Birmensdorf, Eidgendssische
Forschungsanstalt fir Wald, Schnee und Landschaft. Bern, Bundesamt fiir Umwelt.
https://www.Ifi.ch/publikationen/publ/ergebnisberichte/LFI4_Ergebnisbericht.pdf

Brassel, P., & Brandli, U.-B. (Eds.). (1999). Swiss National Forest Inventory: Results of the second
inventory 1993-1995. Federal Institute of Forest, Snow and Landscape Research.

Briscoe, N. J., Zurell, D, Elith, J., Konig, C., Fandos, G., Malchow, A.-K., Kéry, M., Schmid, H., & Guillera-
Arroita, G. (2021). Can dynamic occupancy models improve predictions of species’ range
dynamics? A test using Swiss birds. Global Change Biology, 27(18), 4269-4282.
https://doi.org/10.1111/gcb.15723

27



Introduction

Britton, A. J., Mitchell, R. J., Potts, J. M., & Genney, D. R. (2014). Developing monitoring protocols for
cost-effective  surveillance  of lichens. The Lichenologist, 46(3), 471-482.
https://doi.org/10.1017/50024282913000728

Broms, K. M., Hooten, M. B., & Fitzpatrick, R. M. (2014). Accounting for imperfect detection in Hill
numbers for biodiversity studies. Methods in Ecology and Evolution, 6(1), 99-108.
https://doi.org/10.1111/2041-210X.12296

Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J.,
Machler, M., & Bolker, B. M. (2017). GImmTMB balances speed and flexibility among packages
for zero-inflated generalized linear mixed modeling. The R Journal, 9(2), 378-400.
https://doi.org/10.32614/RJ-2017-066

Brunialti, G., Frati, L., Cristofolini, F., Chiarucci, A., Giordani, P., Loppi, S., Benesperi, R., Cristofori, A.,
Critelli, P., Di Capua, E., Genovesi, V., Gottardini, E., Innocenti, G., Munzi, S., Paoli, L., Pisani, T.,
Ravera, S., & Ferretti, M. (2012). Can we compare lichen diversity data? A test with skilled
teams. Ecological Indicators, 23, 509-516. https://doi.org/10.1016/j.ecolind.2012.05.007

Buckland, S. T., Anderson, D. R., Burnham, K. P., & Laake, J. L. (1993). Distance sampling: Estimating
abundance of biological populations. Chapman and Hall.
https://distancesampling.org/downloads/distancebook1993/index.html

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., & Thomas, L. (2001).
Introduction to distance sampling: Estimating abundance of biological populations. Oxford
University Press.

Buckland, S. T., Marsden, S. J., & Green, R. E. (2008). Estimating bird abundance: Making methods
work. Bird Conservation International, 18(51), S91-5108.
https://doi.org/10.1017/50959270908000294

Burg, S., Rixen, C., Stockli, V., & Wipf, S. (2015). Observation bias and its causes in botanical surveys on
high-alpine summits.  Journal  of  Vegetation  Science, 26(1), 191-200.
https://doi.org/10.1111/jvs.12211

Céceres, M. E. S., Lucking, R., & Rambold, G. (2008). Efficiency of sampling methods for accurate
estimation of species richness of corticolous microlichens in the Atlantic rainforest of
northeastern Brazil. Biodiversity and Conservation, 17(6), 1285-1301.
https://doi.org/10.1007/s10531-008-9342-3

Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G.
M., Tilman, D., Wardle, D. A,, Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A.,
Srivastava, D. S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature,
486(7401), Article 7401. https://doi.org/10.1038/nature11148

Caro, T., Rowe, Z., Berger, J.,, Wholey, P., & Dobson, A. (2022). An inconvenient misconception: Climate
change is not the principal driver of biodiversity loss. Conservation Letters, 15(3), e12868.
https://doi.org/10.1111/conl.12868

28



Introduction

Casanovas, P., Lynch, H. J., & Fagan, W. F. (2014). Using citizen science to estimate lichen diversity.
Biological Conservation, 171, 1-8. https://doi.org/10.1016/j.biocon.2013.12.020

CBD Secretariat. (2020). Global Biodiversity Outlook 5 (p. 211). Secreatariat of the Convention on
Biological Diversity. www.cbd.int/GBO5

Ceballos, G., Ehrlich, P. R., Barnosky, A. D., Garcia, A., Pringle, R. M., & Palmer, T. M. (2015). Accelerated
modern human—induced species losses: Entering the sixth mass extinction. Science Advances,
1(5), e1400253. https://doi.org/10.1126/sciadv.1400253

Chen, G., Kéry, M., Plattner, M., Ma, K., & Gardner, B. (2013). Imperfect detection is the rule rather
than the exception in plant distribution studies. Journal of Ecology, 101(1), 183-191.
https://doi.org/10.1111/1365-2745.12021

Chen, G., Kéry, M., Zhang, J., & Ma, K. (2009). Factors affecting detection probability in plant
distribution studies. Journal of Ecology, 97(6), 1383—-1389. https://doi.org/10.1111/j.1365-
2745.2009.01560.x

Collins, M. K., Magle, S. B., & Gallo, T. (2021). Global trends in urban wildlife ecology and conservation.
Biological Conservation, 261, 109236. https://doi.org/10.1016/j.biocon.2021.109236

Cowie, R. H., Bouchet, P., & Fontaine, B. (2022). The sixth mass extinction: Fact, fiction or speculation?
Biological Reviews, 97(2), 640—663. https://doi.org/10.1111/brv.12816

Daily, G. C., Soderqvist, T., Aniyar, S., Arrow, K., Dasgupta, P., Ehrlich, P. R., Folke, C., Jansson, A,
Jansson, B.-0., Kautsky, N., Levin, S., Lubchenco, J., Maler, K.-G., Simpson, D., Starrett, D.,
Tilman, D., & Walker, B. (2000). The value of nature and the nature of value. Science,
289(5478), 395—-396. https://doi.org/10.1126/science.289.5478.395

De Schrijver, A., De Frenne, P., Ampoorter, E., Van Nevel, L., Demey, A., Wuyts, K., & Verheyen, K.
(2011). Cumulative nitrogen input drives species loss in terrestrial ecosystems. Global Ecology
and Biogeography, 20(6), 803-816. https://doi.org/10.1111/j.1466-8238.2011.00652.x

de Valpine, P., Turek, D., Paciorek, C. J., Anderson-Bergman, C., Temple Lang, D., & Bodik, R. (2017).
Programming with models: Writing statistical algorithms for general model structures with
NIMBLE. Journal of Computational and Graphical Statistics, 26, 403-413.
https://doi.org/10.1080/10618600.2016.1172487

Delarze, R., Eggenberg, S., Steiger, P., Bergamini, A., Fivaz, F., Gonseth, Y., Guntern, J., Hofer, G., Sager,
L., & Stucki, P. (2016). Rote Liste der Lebensrdume der Schweiz (p. 33). Aktualisierte
Kurzfassung zum technischen Bericht 2013 im Auftrag des Bundesamtes fiir Umwelt (BAFU).
https://www.infoflora.ch/de/lebensraeume/rote-liste.html

Dennett, J. M., Gould, A. J., Macdonald, S. E., & Nielsen, S. E. (2018). Investigating detection success:
Lessons from trials using decoy rare plants. Plant Ecology, 219(5), 577-589.
https://doi.org/10.1007/s11258-018-0819-1

29



Introduction

Dennett, J. M., & Nielsen, S. E. (2019). Detectability of species of Carex varies with abundance,
morphology, and site complexity. Journal of Vegetation Science, 30(2), 352-361.
https://doi.org/10.1111/jvs.12713

Dobson, A., Lodge, D., Alder, J.,, Cumming, G. S., Keymer, J., McGlade, J., Mooney, H., Rusak, J. A,, Sala,
0., Wolters, V., Wall, D., Winfree, R., & Xenopoulos, M. A. (2006). Habitat loss, trophic collapse,
and the decline of ecosystem services.  Ecology, 87(8), 1915-1924.
https://doi.org/10.1890/0012-9658(2006)87[1915:HLTCAT]2.0.CO;2

Dorazio, R. M., Kéry, M., Royle, J. A., & Plattner, M. (2010). Models for inference in dynamic
metacommunity systems. Ecology, 91(8), 2466—2475. https://doi.org/10.1890/09-1033.1

Dorazio, R. M., & Royle, J. A. (2005). Estimating size and composition of biological communities by
modeling the occurrence of species. Journal of the American Statistical Association, 100(470),
389-398. https://doi.org/10.1198/016214505000000015

Dorazio, R. M., Royle, J. A., Soderstrom, B., & Glimskar, A. (2006). Estimating species richness and
accumulation by modeling species occurrence and detectability. Ecology, 87(4), 842—854.
https://doi.org/10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO;2

Doser, J. W., Finley, A. O., Kéry, M., & Zipkin, E. F. (2022). spOccupancy: An R package for single-species,
multi-species, and integrated spatial occupancy models. Methods in Ecology and Evolution,
n/a(n/a). https://doi.org/10.1111/2041-210X.13897

Dymytrova, L., Nadyeina, O., Naumovych, A., Keller, C., & Scheidegger, C. (2013). Primeval beech
forests of Ukrainian Carpathians are sanctuaries for rare and endangered epiphytic lichens.
Herzogia, 26(1), 73—89. https://doi.org/10.13158/heia.26.1.2013.73

EEA. (2018). European Red Lists of species. European Environment Agency.
https://www.eea.europa.eu/data-and-maps/data/european-red-lists-7

Federal Statistical Office. (2021). Switzerland’s land use statistics.
https://www.bfs.admin.ch/bfs/en/home/statistics/territory-
environment.assetdetail.19805709.html|

Federal Statistical Office. (2022). Annual Population Statistics (1861-2021) (Table su-d-01.02.04.05).
https://www.bfs.admin.ch/bfs/en/home/statistics/population/effectif-
change.assetdetail.23064753.html

Federal Statistical Office. (2023). Switzerland’s land use statistics (Table ag-b-00.03-37-area-csv).

Ferguson, P. F. B., Conroy, M. J., & Hepinstall-Cymerman, J. (2015). Occupancy models for data with
false positive and false negative errors and heterogeneity across sites and surveys. Methods in
Ecology and Evolution, 6(12), 1395—-1406. https://doi.org/10.1111/2041-210X.12442

Ferry, B. W., Baddeley, M. S., & Hawksworth, D. L. (Eds.). (1973). Air pollution and lichens. University
of Toronto Press.

30



Introduction

FOEN. (2012). Swiss Biodiversity Strategy. Federal Office for the Environment, Bern.
https://www.bafu.admin.ch/bafu/en/home/themen/thema-biodiversitaet/biodiversitaet--
publikationen/publikationen-biodiversitaet/strategie-biodiversitaet-schweiz.html

FOEN. (2013). Forest Policy 2020. Federal Office for the Environment, Bern.

FOEN (Ed.). (2017). Action plan for the Swiss Biodiversity Strategy. Federal Office for the Environment,
Bern.

FOEN. (2023). Swiss Biodiversity Strategy and Action Plan.
https://www.bafu.admin.ch/bafu/en/home/themen/thema-biodiversitaet/biodiversitaet--
fachinformationen/biodiversitaetspolitik/strategie-biodiversitaet-schweiz-und-
aktionsplan.html

FOEN, & FOAG. (2008). Umweltziele Landwirtschaft. Statusbericht 2008 (Umwelt-Wissen 0820; p. 221).
Federal Office for the Environment FOEN & Federal Office for Agriculture FOAG.
https://www.bafu.admin.ch/bafu/de/home/themen/biodiversitaet/publikationen-
studien/publikationen/umweltziele-landwirtschaft.html

FOEN, & FOAG. (2016). Umweltziele Landwirtschaft. Statusbericht 2016 (Umwelt-Wissen 1633; p. 114).
Federal Office for the Environment FOEN & Federal Office for Agriculture FOAG.
https://www.bafu.admin.ch/bafu/de/home/themen/biodiversitaet/publikationen-
studien/publikationen/umweltziele-landwirtschaft-statusbericht-2016.html

FOEN, & InfoSpecies. (2023). Gefdhrdete Arten und Lebensrdume in der Schweiz—Synthese Rote Listen
(Umwelt-Zustand, p. 58). Bundesamt fir Umwelt BAFU und InfoSpecies.
https://www.bafu.admin.ch/bafu/de/home/themen/biodiversitaet/publikationen-
studien/publikationen/gefaehrdete-arten-schweiz.html

Fritz, O. (2009). Vertical distribution of epiphytic bryophytes and lichens emphasizes the importance
of old beeches in conservation. Biodiversity and Conservation, 18(2), 289-304.
https://doi.org/10.1007/s10531-008-9483-4

Fukaya, K., Royle, J. A., Okuda, T., Nakaoka, M., & Noda, T. (2017). A multistate dynamic site occupancy
model for spatially aggregated sessile communities. Methods in Ecology and Evolution, 8(6),
757-767. https://doi.org/10.1111/2041-210X.12690

Futschik, A., Winkler, M., Steinbauer, K., Lamprecht, A., Rumpf, S. B., Barancok, P., Palaj, A., Gottfried,
M., & Pauli, H. (2020). Disentangling observer error and climate change effects in long-term
monitoring of alpine plant species composition and cover. Journal of Vegetation Science, 31(1),
14-25. https://doi.org/10.1111/jvs.12822

Gamerman, D., & Lopes, H. F. (2006). Markov chain Monte Carlo: Stochastic simulation for Bayesian
inference (Second edition). CRC Press.

Gamfeldt, L., Snall, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P., Ruiz-Jaen, M. C., Froberg,
M., Stendahl, J., Philipson, C. D., Mikusinski, G., Andersson, E., Westerlund, B., Andrén, H.,
Moberg, F., Moen, J., & Bengtsson, J. (2013). Higher levels of multiple ecosystem services are

31



Introduction

found in forests with more tree species. Nature Communications, 4(1), Article 1.
https://doi.org/10.1038/ncomms2328

Garrard, G. E., Bekessy, S. A., McCarthy, M. A., & Wintle, B. A. (2008). When have we looked hard
enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral
Ecology, 33(8), 986—998. https://doi.org/10.1111/j.1442-9993.2008.01869.x

Garrard, G. E., McCarthy, M. A., Williams, N. S. G., Bekessy, S. A., & Wintle, B. A. (2013). A general
model of detectability using species traits. Methods in Ecology and Evolution, 4(1), 45-52.
https://doi.org/10.1111/j.2041-210x.2012.00257.x

Gilbert, O. L. (1969). The effect of SO2 on lichens and bryophytes around Newcastle upon Tyne. Air
Pollution, 223-235.

Gomez, M. D., Goijman, A. P., Coda, J., Serafini, V., & Priotto, J. (2018). Small mammal responses to
farming practices in central Argentinian agroecosystems: The use of hierarchical occupancy
models. Austral Ecology, 43(7), 828—838. https://doi.org/10.1111/aec.12625

Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., & Altman, D. G. (2016).
Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations.
European Journal of Epidemiology, 31(4), 337-350. https://doi.org/10.1007/s10654-016-
0149-3

Gregg, K. B., & Kéry, M. (2006). Comparison of size vs. life-state classification in demographic models
for the terrestrial orchid Cleistes bifaria. Biological Conservation, 129(1), 50-58.
https://doi.org/10.1016/j.biocon.2005.09.044

Gu, W., & Swihart, R. K. (2004). Absent or undetected? Effects of non-detection of species occurrence
on wildlife—habitat models. Biological Conservation, 116(2), 195-203.
https://doi.org/10.1016/5S0006-3207(03)00190-3

Guillera-Arroita, G. (2017). Modelling of species distributions, range dynamics and communities under
imperfect detection: Advances, challenges and opportunities. Ecography, 40(2), 281-295.
https://doi.org/10.1111/ecog.02445

Guillera-Arroita, G., Kéry, M., & Lahoz-Monfort, J. J. (2019). Inferring species richness using
multispecies occupancy modeling: Estimation performance and interpretation. Ecology and
Evolution, 9(2), 780-792. https://doi.org/10.1002/ece3.4821

Guillera-Arroita, G., Lahoz-Monfort, J. J., MacKenzie, D. I., Wintle, B. A., & McCarthy, M. A. (2014).
Ignoring imperfect detection in biological surveys is dangerous: A response to ‘fitting and
interpreting occupancy models’. PLOS ONE, 9(7), e99571.
https://doi.org/10.1371/journal.pone.0099571

Guillera-Arroita, G., Lahoz-Monfort, J. J., van Rooyen, A. R., Weeks, A. R., & Tingley, R. (2017). Dealing
with false-positive and false-negative errors about species occurrence at multiple levels.
Methods in Ecology and Evolution, 8(9), 1081-1091. https://doi.org/10.1111/2041-
210X.12743

32



Introduction

Guillera-Arroita, G., Ridout, M. S., Morgan, B. J. T., & Linkie, M. (2012). Models for species-detection
data collected along transects in the presence of abundance-induced heterogeneity and

clustering in the detection process: Abundance and clustered detections. Methods in Ecology
and Evolution, 3(2), 358-367. https://doi.org/10.1111/j.2041-210X.2011.00159.x

Harper, J. L. (1977). Population biology of plants. Academic Press.

Hawksworth, D. L., & Rose, F. (1970). Qualitative scale for estimating sulphur dioxide air pollution in
England and Wales using epiphytic lichens. Nature, 227(5254), Article 5254.
https://doi.org/10.1038/227145a0

Henckel, L., Bradter, U., Jonsson, M., Isaac, N. J. B., & Snall, T. (2020). Assessing the usefulness of citizen
science data for habitat suitability modelling: Opportunistic reporting versus sampling based
on a systematic protocol. Diversity and Distributions, 26(10), 1276-1290.
https://doi.org/10.1111/ddi.13128

Henry, D. A. W,, Lee, A. T. K., & Altwegg, R. (2020). Can time-to-detection models with fewer survey
replicates provide a robust alternative to traditional site-occupancy models? Methods in
Ecology and Evolution, 11(5), 643—-655. https://doi.org/10.1111/2041-210X.13379

Herzig, R., & Urech, M. (1991). Lichens as bioindicators. Integrated biological system for monitoring air
pollution in Central Switzerland (Schweizer Mittelland). Bibliotheca Lichenologica, 43, 283.

Hines, J. E., Nichols, J. D., Royle, J. A., MacKenzie, D. |., Gopalaswamy, A. M., Kumar, N. S., & Karanth,
K. U. (2010). Tigers on trails: Occupancy modeling for cluster sampling. Ecological Applications,
20(5), 1456—1466. https://doi.org/10.1890/09-0321.1

Hogg, S. E., Wang, Y., & Stone, L. (2021). Effectiveness of joint species distribution models in the
presence of imperfect detection. Methods in Ecology and Evolution, 12(8), 1458-1474.
https://doi.org/10.1111/2041-210X.13614

Iknayan, K. J., & Beissinger, S. R. (2018). Collapse of a desert bird community over the past century
driven by climate change. Proceedings of the National Academy of Sciences, 115(34), 8597—
8602. https://doi.org/10.1073/pnas.1805123115

Iknayan, K. J., Tingley, M. W., Furnas, B. J., & Beissinger, S. R. (2014). Detecting diversity: Emerging
methods to estimate species diversity. Trends in Ecology & Evolution, 29(2), 97-106.
https://doi.org/10.1016/j.tree.2013.10.012

IPBES. (2019). Global assessment report on biodiversity and ecosystem services of the
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Version 1,
p. 1144). IPBES secretariat. https://doi.org/10.5281/ZENODOQ.3831673

IUCN. (1994). IUCN Red List categories (Version 2.3).
IUCN. (2012). IUCN Red List categories and criteria (Version 3.1) (2nd ed.).

IUCN. (2022). Guidelines for using the IUCN Red List categories and criteria (Version 15). IUCN
Standards and Petitions Committee.

33



Introduction

IUCN. (2023). The IUCN Red List of Threatened Species. Version 2022-2. https://www.iucnredlist.org/en

Jarzyna, M. A., & Jetz, W. (2016). Detecting the multiple facets of biodiversity. Trends in Ecology &
Evolution, 31(7), 527-538. https://doi.org/10.1016/j.tree.2016.04.002

Kellner, K. (2021). JagsUI: A wrapper around ‘rjags’ to streamline JAGS analyses (Version 1.5.2)
[Computer software]. https://CRAN.R-project.org/package=jagsUl

Kellner, K. F., Fowler, N. L., Petroelje, T. R., Kautz, T. M., Beyer Jr., D. E., & Belant, J. L. (2022). ubms: An
R package for fitting hierarchical occupancy and N-mixture abundance models in a Bayesian
framework. Methods in Ecology and Evolution, 13(3), 577-584. https://doi.org/10.1111/2041-
210X.13777

Kendall, W. L., Peterjohn, B. G., & Sauer, J. R. (1996). First-time observer effects in the North American
breeding bird survey. The Auk, 113(4), 823—829. https://doi.org/10.2307/4088860

Kéry, M. (2004). Extinction rate estimates for plant populations in revisitation studies: Importance of
detectability. Conservation Biology, 18(2), 570-574. https://doi.org/10.1111/j.1523-
1739.2004.00105.x

Kéry, M., Dorazio, R. M., Soldaat, L., Strien, A. V., Zuiderwijk, A., & Royle, J. A. (2009). Trend estimation
in populations with imperfect detection. Journal of Applied Ecology, 46(6), 1163—-1172.
https://doi.org/10.1111/j.1365-2664.2009.01724 .x

Kéry, M., & Gregg, K. B. (2003). Effects of life-state on detectability in a demographic study of the
terrestrial orchid Cleistes  bifaria.  Journal  of  Ecology, 91, 265-273.
https://doi.org/10.1046/j.1365-2745.2003.00759.x

Kéry, M., & Royle, J. A. (2016). Applied hierarchical modeling in ecology: Analysis of distribution,
abundance and species richness in R and BUGS — Volume 1: Prelude and static models.
Elsevier/AP.

Kéry, M., & Royle, J. A. (2021). Applied hierarchical modeling in ecology: Analysis of distribution,
abundance and species richness in R and BUGS — Volume 2: Dynamic and advanced models.
Elsevier/AP.

Kéry, M., & Schmidt, B. (2008). Imperfect detection and its consequences for monitoring for
conservation. Community Ecology, 9(2), 207-216.
https://doi.org/10.1556/ComEc.9.2008.2.10

Kéry, M., Spillmann, J. H., Truong, C., & Holderegger, R. (2006). How biased are estimates of extinction
probability in  revisitation studies? Journal of Ecology, 94(5), 980-986.
https://doi.org/10.1111/j.1365-2745.2006.01151.x

Kiebacher, T., Bergamini, A., Scheidegger, C., Biirgi, M., Blaser, S., Bollmann, K., Keller, C., Senn-Irlet,
B., & Stofer, S. (2018). Bergahornweiden im Alpenraum: Kulturgeschichte, Biodiversitdt und
Rudolphis Trompetenmoos. Haupt Verlag.

34



Introduction

Kiebacher, T., Keller, C., Scheidegger, C., & Bergamini, A. (2016). Hidden crown jewels: The role of tree
crowns for bryophyte and lichen species richness in sycamore maple wooded pastures.
Biodiversity and Conservation, 25(9), 1605—-1624. https://doi.org/10.1007/s10531-016-1144-4

Klesse, S., Abegg, M., Hopf, S. E., Gossner, M. M., Rigling, A., & Queloz, V. (2021). Spread and severity
of ash dieback in Switzerland — tree characteristics and landscape features explain varying
mortality probability. Frontiers in Forests and Global Change, 4.
https://www.frontiersin.org/articles/10.3389/ffgc.2021.645920

Knop, E., Kleijn, D., Herzog, F., & Schmid, B. (2006). Effectiveness of the Swiss agri-environment scheme
in  promoting  biodiversity. Journal of Applied Ecology, 43(1), 120-127.
https://doi.org/10.1111/j.1365-2664.2005.01113.x

Kollner, P., Gross, C., Schappi, B., Fissler, J., Lerch, J., & Nauser, M. (2017). Climate-related risks and
opportunities (1706; Umwelt-Wissen, p. 148). Federal Office for the Environment.

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016). TMB: Automatic differentiation
and Laplace approximation. Journal of Statistical Software, 70(5).
https://doi.org/10.18637/jss.v070.i05

Kinzle, T. (2022). Karten von Jahreswerten der Luftbelastung in der Schweiz. Datengrundlagen,
Berechnungsverfahren und Resultate bis zum Jahr 2021 (p. 25). Meteotest AG im Auftrag des
Bundesamts fiir Umwelt (BAFU).

Lahoz-Monfort, J. J., Guillera-Arroita, G., & Wintle, B. A. (2014). Imperfect detection impacts the
performance of species distribution models. Global Ecology and Biogeography, 23(4), 504—
515. https://doi.org/10.1111/geb.12138

Landwirtschaftsgesetz 910.1. Bundesgesetz 910.1 iiber die Landwirtschaft (Landwirtschaftsgesetz,
LwG) vom 29. April 1998. Retrieved 22 July 2023, from
https://www.fedlex.admin.ch/eli/cc/1998/3033_ 3033 3033/de

Leps, J., & Hadincova, V. (1992). How reliable are our vegetation analyses? Journal of Vegetation
Science, 3(1), 119—-124. https://doi.org/10.2307/3236006

Liu, L., Xu, W,, Lu, X., Zhong, B., Guo, Y., Lu, X., Zhao, Y., He, W., Wang, S., Zhang, X., Liu, X., & Vitousek,
P. (2022). Exploring global changes in agricultural ammonia emissions and their contribution
to nitrogen deposition since 1980. Proceedings of the National Academy of Sciences, 119(14),
€2121998119. https://doi.org/10.1073/pnas.2121998119

Louvrier, J., Chambert, T., Marboutin, E., & Gimenez, O. (2018). Accounting for misidentification and
heterogeneity in occupancy studies using hidden Markov models. Ecological Modelling, 387,
61-69. https://doi.org/10.1016/j.ecolmodel.2018.09.002

Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D. (2013). The BUGS book: A practical
introduction to Bayesian analysis. CRC Press, Taylor & Francis Group.

35



Introduction

MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., & Franklin, A. B. (2003). Estimating site
occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology,
84(8), 2200-2207. https://doi.org/10.1890/02-3090

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., & Langtimm, C. A. (2002).
Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83(8),
2248-2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2

MacKenzie, D. 1., Nichols, J. D., Royle, A. J., Pollock, K. H., Bailey, L. L., & Hines, J. (2018). Occupancy
estimation and modeling: Inferring patterns and dynamics of species occurrence (2nd ed.).
Elsevier/AP.

MacKenzie, D. I., Nichols, J. D., Seamans, M. E., & Gutiérrez, R. J. (2009). Modeling species occurrence
dynamics with multiple states and imperfect detection. Ecology, 90(3), 823-835.
https://doi.org/10.1890/08-0141.1

Magle, S. B, Fidino, M., Sander, H. A., Rohnke, A. T., Larson, K. L., Gallo, T., Kay, C. A. M., Lehrer, E. W.,
Murray, M. H., Adalsteinsson, S. A., Ahlers, A. A., Anthonysamy, W. J. B., Gramza, A. R., Green,
A. M., Jordan, M. J,, Lewis, J. S., Long, R. A., MacDougall, B., Pendergast, M. E., ... Schell, C. J.
(2021). Wealth and urbanization shape medium and large terrestrial mammal communities.
Global Change Biology, 27(21), 5446—-5459. https://doi.org/10.1111/gcb.15800

Manna, F., Pradel, R., Choquet, R., Fréville, H., & Cheptou, P.-O. (2017). Disentangling the role of seed
bank and dispersal in plant metapopulation dynamics using patch occupancy surveys. Ecology,
98(10), 2662—2672. https://doi.org/10.1002/ecy.1960

Maphisa, D. H., Smit-Robinson, H., & Altwegg, R. (2019). Dynamic multi-species occupancy models
reveal individualistic habitat preferences in a high-altitude grassland bird community. PeerJ, 7,
€6276. https://doi.org/10.7717/peerj.6276

Marmor, L., Torra, T., Saag, L., Leppik, E., & Randlane, T. (2013). Lichens on Picea abies and Pinus
sylvestris — from tree bottom to the top. The Lichenologist, 45(1), 51-63.
https://doi.org/10.1017/50024282912000564

McArdle, B. (1990). When are rare species not there? Oikos, 57(2), 276-277.

McCune, B., Dey, J. P., Peck, J. E., Cassell, D., Heiman, K., Will-Wolf, S., & Neitlich, P. N. (1997).
Repeatability of community data: Species richness versus gradient scores in large-scale lichen
studies. The Bryologist, 100(1), 40-46. https://doi.org/10.2307/3244385

Middleton, E. L., & Vining, |. (2022). Trade-offs associated with occupancy models in a multispecies
grassland plant population study. Ecosphere, 13(5), e4082. https://doi.org/10.1002/ecs2.4082

Miller, D. A., Nichols, J. D., McClintock, B. T., Grant, E. H. C., Bailey, L. L., & Weir, L. A. (2011). Improving
occupancy estimation when two types of observational error occur: Non-detection and species
misidentification. Ecology, 92(7), 1422—1428. https://doi.org/10.1890/10-1396.1

Mitrovich, M. J., Diffendorfer, J. E., Brehme, C. S., & Fisher, R. N. (2018). Effects of urbanization and
habitat composition on site occupancy of two snake species using regional monitoring data

36



Introduction

from southern California. Global Ecology and Conservation, 15, e00427.
https://doi.org/10.1016/j.gecco.2018.e00427

Moilanen, A. (2002). Implications of empirical data quality to metapopulation model parameter
estimation and application. Oikos, 96(3), 516-530. https://doi.org/10.1034/j.1600-
0706.2002.960313.x

Moor, H., Bergamini, A., Vorburger, C., Holderegger, R., Blihler, C., Egger, S., & Schmidt, B. R. (2022).
Bending the curve: Simple but massive conservation action leads to landscape-scale recovery
of amphibians. Proceedings of the National Academy of Sciences, 119(42), e2123070119.
https://doi.org/10.1073/pnas.2123070119

Moore, A. L., McCarthy, M. A,, Parris, K. M., & Moore, J. L. (2014). The optimal number of surveys when
detectability varies. PLOS ONE, 9(12), €115345.
https://doi.org/10.1371/journal.pone.0115345

Mosher, B. A., Bailey, L. L., Hubbard, B. A., & Huyvaert, K. P. (2018). Inferential biases linked to
unobservable states in complex occupancy models. Ecography, 41(1), 32-39.
https://doi.org/10.1111/ecog.02849

Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H., & Woodfin, R. M. (1994). Declining biodiversity
can alter the performance of ecosystems. Nature, 368(6473), Article 6473.
https://doi.org/10.1038/368734a0

Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H., & Woodfin, R. M. (1997). Empirical evidence
that declining species diversity may alter the performance of terrestrial ecosystems.
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences,
347(1321), 249-262. https://doi.org/10.1098/rstb.1995.0025

NCCS. (2018). CH2018—Climate scenarios for Switzerland—Technical report (p. 271). National Centre
for Climate Services. https://www.nccs.admin.ch/nccs/en/home/climate-change-and-
impacts/swiss-climate-change-scenarios/technical-report.html

Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, ., Senior, R. A., Borger, L., Bennett, D. J.,
Choimes, A., Collen, B., Day, J., De Palma, A., Diaz, S., Echeverria-Londofio, S., Edgar, M. J.,
Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., ... Purvis, A. (2015). Global effects of
land use on local terrestrial biodiversity. Nature, 520(7545), Article 7545.
https://doi.org/10.1038/nature14324

Nichols, J. D., Bailey, L. L., O’Connell Jr., A. F., Talancy, N. W., Campbell Grant, E. H., Gilbert, A. T,
Annand, E. M., Husband, T. P., & Hines, J. E. (2008). Multi-scale occupancy estimation and
modelling using multiple detection methods. Journal of Applied Ecology, 45(5), 1321-1329.
https://doi.org/10.1111/j.1365-2664.2008.01509.x

NIMBLE Development Team. (2023). NIMBLE: MCMC, particle filtering, and programmable hierarchical
modeling (Version 1.0.0) [Computer software]. https://doi.org/10.5281/ZENODO0.1211190

37



Introduction

Otis, D. L., Burnham, K. P., White, G. C., & Anderson, D. R. (1978). Statistical inference from capture
data on closed animal populations. Wildlife Monographs, 62, 3—135.

Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B., & Isaac, N. J. B. (2020). Complex long-term
biodiversity change among invertebrates, bryophytes and lichens. Nature Ecology & Evolution,
4(3), Article 3. https://doi.org/10.1038/s41559-020-1111-z

Outhwaite, C. L., Powney, G. D., August, T. A., Chandler, R. E., Rorke, S., Pescott, O. L., Harvey, M., Roy,
H. E., Fox, R., Roy, D. B., Alexander, K., Ball, S., Bantock, T., Barber, T., Beckmann, B. C., Cook,
T., Flanagan, J., Fowles, A., Hammond, P., ... Isaac, N. J. B. (2019). Annual estimates of
occupancy for bryophytes, lichens and invertebrates in the UK, 1970-2015. Scientific Data,
6(1), Article 1. https://doi.org/10.1038/s41597-019-0269-1

Paniccia, C., Di Febbraro, M., Frate, L., Sallustio, L., Santopuoli, G., Altea, T., Posillico, M., Marchetti,
M., & Loy, A. (2018). Effect of imperfect detection on the estimation of niche overlap between
two forest dormice. [IForest - Biogeosciences and Forestry, 11(4), 482-490.
https://doi.org/10.3832/ifor2738-011

Peach, M. A,, Cohen, J. B., & Frair, J. L. (2017). Single-visit dynamic occupancy models: An approach to
account for imperfect detection with Atlas data. Journal of Applied Ecology, 54(6), 2033-2042.
https://doi.org/10.1111/1365-2664.12925

Perret, J., Besnard, A., Charpentier, A., & Papuga, G. (2023). Plants stand still but hide: Imperfect and
heterogeneous detection is the rule when counting plants. Journal of Ecology, n/a(n/a).
https://doi.org/10.1111/1365-2745.14110

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling.
In K. Hornik, F. Leisch, & A. Zeileis (Eds.), Proceedings of the 3rd International Workshop on
Distributed Statistical Computing (DSC-2003). Vienna University of Technology.

Plummer, M. (2017). JAGS: Just Another Gibbs Sampler (Version 4.3.0) [Computer software].
https://sourceforge.net/projects/mcmc-jags/files/

Plummer, M. (2022). rjags: Bayesian graphical models using MCMC (Version 4-13) [Computer
software]. https://CRAN.R-project.org/package=rjags

Pollock, K. H., Nichols, J. D., Brownie, C., & Hines, J. E. (1990). Statistical inference for capture-recapture
experiments. Wildlife Monographs, 107, 3-97. JSTOR.

Rihm, B., & Kiinzle, T. (2023). Nitrogen deposition and exceedances of critical loads for nitrogen in
Switzerland 1990-2020 (p. 106). Meteotest, Bern, commissioned by the Federal Office for the
Environment (FOEN). https://www.bafu.admin.ch/dam/bafu/de/dokumente/luft/externe-
studien-
berichte/Nitrogen_deposition_and_exceedances_of critical_loads_for_nitrogen_in_Switzer!
and_1990%E2%80%932020_final%20(1).pdf.download.pdf/Nitrogen_deposition_and_excee
dances_of _critical_loads_for_nitrogen_in_Switzerland_1990%E2%80%932020_final%20(1).p
df

38



Introduction

Rossman, S., Yackulic, C. B., Saunders, S. P., Reid, J., Davis, R., & Zipkin, E. F. (2016). Dynamic N-
occupancy models: Estimating demographic rates and local abundance from detection-
nondetection data. Ecology, 97(12), 3300-3307. https://doi.org/10.1002/ecy.1598

Roth, T., Amrhein, V., Peter, B., & Weber, D. (2008). A Swiss agri-environment scheme effectively
enhances species richness for some taxa over time. Agriculture, Ecosystems & Environment,
125(1), 167-172. https://doi.org/10.1016/j.agee.2007.12.012

Royle, J. A. (2004). N-mixture models for estimating population size from spatially replicated counts.
Biometrics, 60(1), 108—115. https://doi.org/10.1111/j.0006-341X.2004.00142.x

Royle, J. A., & Dorazio, R. M. (2008). Hierarchical modeling and inference in ecology: The analysis of
data from populations, metapopulations and communities (Reprint). Acad. Press.

Royle, J. A., Dorazio, R. M., & Link, W. A. (2007). Analysis of multinomial models with unknown index
using data augmentation. Journal of Computational and Graphical Statistics, 16(1), 67—-85.
https://doi.org/10.1198/106186007X181425

Royle, J. A., & Kéry, M. (2007). A bayesian state-space formulation of dynamic occupancy models.
Ecology, 88(7), 1813-1823. https://doi.org/10.1890/06-0669.1

Royle, J. A., & Link, W. A. (2006). Generalized site occupancy models allowing for false positive and
false negative errors. Ecology, 87(4), 835-841. https://doi.org/10.1890/0012-
9658(2006)87[835:GSOMAF]2.0.CO;2

Royle, J. A., Nichols, J. D., & Kéry, M. (2005). Modelling occurrence and abundance of species when
detection is imperfect. Oikos, 110(2), 353-359. https://doi.org/10.1111/j.0030-
1299.2005.13534.x

Ruiz-Gutiérrez, V., Hooten, M. B., & Campbell Grant, E. H. (2016). Uncertainty in biological monitoring:
A framework for data collection and analysis to account for multiple sources of sampling bias.
Methods in Ecology and Evolution, 7(8), 900-909. https://doi.org/10.1111/2041-210X.12542

Ruiz-Gutiérrez, V., & Zipkin, E. F. (2011). Detection biases yield misleading patterns of species
persistence and colonization in fragmented landscapes. Ecosphere, 2(5), 1-14.
https://doi.org/10.1890/ES10-00207.1

Ruiz-Gutiérrez, V., Zipkin, E. F.,, & Dhondt, A. A. (2010). Occupancy dynamics in a tropical bird
community: Unexpectedly high forest use by birds classified as non-forest species. Journal of
Applied Ecology, 47(3), 621-630. https://doi.org/10.1111/j.1365-2664.2010.01811.x

Sanchez-Bayo, F., & Wyckhuys, K. A. G. (2019). Worldwide decline of the entomofauna: A review of its
drivers. Biological Conservation, 232, 8-27. https://doi.org/10.1016/j.biocon.2019.01.020

Scheidegger, C., Bergamini, A., Blirgi, M., Holderegger, R., Lachat, T., Schnyder, N., Senn-Irlet, B.,
Wermelinger, B., & Bollmann, K. (2010). Waldwirtschaft. In T. Lachat, D. Pauli, Y. Gonseth, G.
Klaus, C. Scheidegger, P. Vittoz, & T. Walter (Eds.), Der Wandel der Biodiversitdt in der Schweiz
seit 1900: Ist die Talsohle erreicht? (pp. 124-160). Bristol-Stiftung, Ziirich; Haupt, Bern.

39



Introduction

Scheidegger, C., Dietrich, M., Frei, M., Groner, U., Keller, C., Roth, I., & Stofer, S. (2002). Epiphytische
Flechten der Schweiz. In C. Scheidegger & P. Clerc (Eds.), Rote Liste der gefdhrdeten Arten der
Schweiz: Baum- und erdbewohnende Flechten (pp. 27—74). Bundesamt fir Umwelt, Wald und
Landschaft BUWAL, Bern; Eidgendssische Forschungsanstalt WSL, Birmensdorf; Conservatoire
et Jardin botaniques de la Ville de Geneéve CJBG.
https://www.bafu.admin.ch/bafu/de/home/themen/biodiversitaet/publikationen-
studien/publikationen/rote-liste-gefaehrdete-arten-baum-erdbewohnende-flechten.html

Scherrer, S. C., Fischer, E. M., Posselt, R., Liniger, M. A., Croci-Maspoli, M., & Knutti, R. (2016). Emerging
trends in heavy precipitation and hot temperature extremes in Switzerland. Journal of
Geophysical Research: Atmospheres, 121(e), 2626-2637.
https://doi.org/10.1002/2015JD024634

Seaward, M. R. D. (1993). Lichens and sulphur dioxide air pollution: Field studies. Environmental
Reviews, 1(2), 73-91. https://doi.org/10.1139/a93-007

Seber, G. A. F. (1982). The estimation of animal abundance and related parameters (2nd edition).
Macmillan Publishing Company.

Seitler, E., Meier, M., & Ehrenmann, Z. (2021). Atmosphdrische Stickstoff-Deposition in der Schweiz
2000 bis 2019 (p. 131). FUB - Forschungsstelle fiur Umweltbeobachtung.
https://www.bafu.admin.ch/dam/bafu/de/dokumente/luft/externe-studien-
berichte/atmosphaerische-stickstoff-deposition-in-der-schweiz-2000-
2019.pdf.download.pdf/Stickstoffdeposition2019.pdf

Sen, B., & Akcakaya, H. R. (2022). Fecundity and density dependence can be estimated from mark—
recapture data for making population projections. Ornithological Applications, 124(1),
duab064. https://doi.org/10.1093/ornithapp/duab064

Shefferson, R. P., Sandercock, B. K., Proper, J., & Beissinger, S. R. (2001). Estimating dormancy and
survival of a rare herbaceous perennial using mark—recapture models. Ecology, 82(1), 145—
156. https://doi.org/10.1890/0012-9658(2001)082[0145:EDASOA]2.0.CO;2

Siffert, O., Pellet, J., Ramseier, P., Tobler, U., Bergamini, A., & Schmidt, B. R. (2022). Where land and
water meet: Making amphibian breeding sites attractive for amphibians. Diversity, 14(10),
Article 10. https://doi.org/10.3390/d14100834

Slade, N. A., Alexander, H. M., & Kettle, W. D. (2003). Estimation of population size and probabilities
of survival and detection in Mead’s milkweed. Ecology, 84(3), 791-797.
https://doi.org/10.1890/0012-9658(2003)084[0791:EOPSAP]2.0.CO;2

Spiegelhalter, D., Thomas, A., & Best, N. (2003). WinBUGS (Version 1.4) [Computer software]. MCR
Biostatistics Unit.

SR 814.318.142.1. Ordinance of 16 December 1985 on Air Pollution Control (OAPC). Retrieved 5 July
2023, from https://www.fedlex.admin.ch/eli/cc/1986/208 208 208/en

40



Introduction

Stofer, S., Scheidegger, C., Clerc, P., Dietrich, M., Frei, M., Groner, U., Keller, C., Meraner, |., Roth, 1.,
Vust, M., & Zimmermann, E. (2019a). SwissLichens—Webatlas der Flechten der Schweiz. Swiss
Federal Research Institute WSL. www.swisslichens.ch

Stofer, S., Dietrich, M., Gabathuler, M., Keller, C., von Hirschheydt, G., Vust, M., & Scheidegger, C.
(2019b). Die Revision der Roten Liste der Flechten der Schweiz. Meylania, 63, 30-34.

Strebel, N., Fiss, C. J., Kellner, K. F., Larkin, J. L., Kéry, M., & Cohen, J. (2021). Estimating abundance
based on time-to-detection data. Methods in Ecology and Evolution, 12(5), 909-920.
https://doi.org/10.1111/2041-210X.13570

Sturtz, S., Ligges, U., & Gelman, A. (2005). R2ZWinBUGS: A package for running WinBUGS from R. Journal
of Statistical Software, 12(3), 1-16.

Sutherland, C., Elston, D. A., & Lambin, X. (2014). A demographic, spatially explicit patch occupancy
model of metapopulation dynamics and persistence. Ecology, 95(11), 3149-3160.
https://doi.org/10.1890/14-0384.1

Takahara, T., lwai, N., Yasumiba, K., & Igawa, T. (2020). Comparison of the detection of 3 endangered
frog species by eDNA and acoustic surveys across 3 seasons. Freshwater Science, 39(1), 18-27.
https://doi.org/10.1086/707365

Tappeiner, U., Tappeiner, G., Hilbert, A., & Mattanovich, E. (2003). The EU Agricultural Policy and the
Environment: Evaluation of the alpine region. Blackwell.

The Federal Council. (2023). Geography — facts and figures. About Switzerland.
https://www.eda.admin.ch/aboutswitzerland/en/home/umwelt/geografie/geografie---
fakten-und-zahlen.html

Turner, H., Griffiths, R. A., Outerbridge, M. E., & Garcia, G. (2022). Dynamic occupancy modelling to
determine  the status of a  Critically Endangered lizard.  Oryx, 1-7.
https://doi.org/10.1017/50030605321000843

Tyre, A. )., Tenhumberg, B., Field, S. A., Niejalke, D., Parris, K., & Possingham, H. P. (2003). Improving
precision and reducing bias in biological surveys: Estimating false-negative error rates.
Ecological Applications, 13(6), 1790-1801. https://doi.org/10.1890/02-5078

van Dobben, H. F., & ter Braak, C. J. F. (1998). Effects of atmospheric NH3 on epiphytic lichens in the
Netherlands: The pitfalls of biological monitoring. Atmospheric Environment, 32(3), 551-557.
https://doi.org/10.1016/51352-2310(96)00350-0

van Herk, C. M. (2001). Bark pH and susceptibility to toxic air pollutants as independent causes of
changes in epiphytic lichen composition in space and time. The Lichenologist, 33(5), 419—442.
https://doi.org/10.1006/lich.2001.0337

Vittoz, P., Bayfield, N., Brooker, R., Elston, D. A., Duff, E. I., Theurillat, J.-P., & Guisan, A. (2010).
Reproducibility of species lists, visual cover estimates and frequency methods for recording
high-mountain  vegetation. Journal of Vegetation Science, 21(6), 1035-1047.
https://doi.org/10.1111/j.1654-1103.2010.01216.x

41



Introduction

Vivanco, M. G., Theobald, M. R., Garcia-Gémez, H., Garrido, J. L., Prank, M., Aas, W., Adani, M., Alyuz,
U., Andersson, C., Bellasio, R., Bessagnet, B., Bianconi, R., Bieser, J., Brandt, J., Briganti, G.,
Cappelletti, A., Curci, G., Christensen, J. H., Colette, A., ... Galmarini, S. (2018). Modeled
deposition of nitrogen and sulfur in Europe estimated by 14 air quality model systems:
Evaluation, effects of changes in emissions and implications for habitat protection.
Atmospheric Chemistry and Physics, 18(14), 10199-10218. https://doi.org/10.5194/acp-18-
10199-2018

Vondrak, J., Malicek, J., Palice, Z., Coppins, B., Kukwa, M., Czarnota, P., Sanderson, N., & Acton, A.
(2016). Methods for obtaining more complete species lists in surveys of lichen biodiversity.
Nordic Journal of Botany, 34(5), 619-626. https://doi.org/10.1111/njb.01053

Walter, T., Klaus, G., Altermatt, F., Ammann, P., Birrer, S., Boller, B., Capt, S., Eggenschwiler, L., Fischer,
J., Gonseth, Y., Grinig, A., Homburger, H., Jacot, K., Kleijer, G., Kéhler, C., Kohler, F., Kreis, H.,
Loser, E., Luscher, A., ... Zumbach, S. (2010). Landwirtschaft. In T. Lachat, D. Pauli, Y. Gonseth,
G. Klaus, C. Scheidegger, P. Vittoz, & T. Walter (Eds.), Der Wandel der Biodiversitdt in der
Schweiz seit 1900: Ist die Talsohle erreicht? (pp. 64—122). Bristol-Stiftung, Ziirich; Haupt, Bern.

Walther, G.-R., & Grundmann, A. (2001). Trends of vegetation change in colline and submontane
climax forests in Switzerland. Bulletin of the Geobotanical Institute ETH, 67, 3—12.

Watt, A. D., Bradshaw, R. H. W,, Young, J., Alard, D., Bolger, T., Chamberlain, D., Fernandez-Gonzalez,
F., Fuller, R., Gurrea, P., Henle, K., Johnson, R., Korsds, Z., Lavelle, P., Niemel3, J., Nowicki, P.,
Rebane, M., Scheidegger, C., Sousa, J. P., van Swaay, C., & Vanbergen, A. (2007). Trends in
biodiversity in Europe and the impact of land use change. In R. E. Hester & R. M. Harrison
(Eds.), Biodiversity under threat (pp. 135—160). Royal Society of Chemistry.

White, G. C., Anderson, D. R., Burnham, K. P., & Otis, D. L. (1982). Capture-recapture and removal
methods for sampling closed populations. Los Alamos National Laboratory.

Williams, B. K., Nichols, J. D., & Conroy, M. J. (2002). Analysis and management of animal populations:
Modeling, estimation, and decision making. Academic Press.

Wintle, B. A., McCarthy, M. A., Parris, K. M., & Burgman, M. A. (2004). Precision and bias of methods
for estimating point survey detection probabilities. Ecological Applications, 14(3), 703—712.
https://doi.org/10.1890/02-5166

Yamaura, Y., Royle, J. A,, Kuboi, K., Tada, T., lkeno, S., & Makino, S. (2011). Modelling community
dynamics based on species-level abundance models from detection/nondetection data.
Journal of Applied Ecology, 48(1), 67-75. https://doi.org/10.1111/j.1365-2664.2010.01922.x

Yoccoz, N. G., Nichols, J. D., & Boulinier, T. (2001). Monitoring of biological diversity in space and time.
Trends in Ecology & Evolution, 16(8), 446-453. https://doi.org/10.1016/S0169-
5347(01)02205-4

42



Chapter 1

The following manuscript has been published and is to be cited with the following reference:

von Hirschheydt, G., Stofer, S., & Kéry, M. (2023). “Mixed” occupancy designs: When do additional
single-visit data improve the inferences from standard multi-visit models? Basic and Applied Ecology,

67, 61-69. https://doi.org/10.1016/]j.baae.2023.01.003

1 “MIXED” OCCUPANCY DESIGNS: WHEN DO ADDITIONAL SINGLE-VISIT
DATA IMPROVE THE INFERENCES FROM STANDARD MULTI-VISIT
MODELS?

Gesa von Hirschheydt, Silvia Stofer, Marc Kéry

Abstract

Estimating occupancy while accounting for imperfect detection typically requires repeated surveys at
sampling units. However, mixed sampling designs are very common, where only a subset of sites is
visited repeatedly, while the remainder are visited only once, providing single-visit (SV) data. It is
unclear whether SV data contribute to parameter estimates. Consequently, they have often been
discarded in occupancy analyses. We conducted two simulation studies to understand the degree to
which SV data contribute information to the estimation of occupancy and detection probability. In
Simulation 1, we simulated detection/non-detection data under different scenarios of repeated
sampling and varying magnitudes of occupancy and detection probabilities. In Simulation 2, we
included continuous covariates, to see whether these could enhance the information content of SV
data. To each simulated dataset, we fitted models containing between 0 and 5000 SV sites and
compared the standard errors of the occupancy and detection estimates. We found that SV data
always contributed some information to the estimation of both occupancy and detection in a mixed
design. Their relative contribution was greatest when > 2 visits were conducted at the repeated-visit
sites, and for species with higher detection probabilities. These results suggest that SV data are
valuable when combined with repeated-visit data and lead to more precise estimates than when
repeated-visit data are used alone. Including suitable continuous covariates into the analysis of the
simulated data increased the contribution of SV data even more. This suggests that, in a mixed design,
occupancy estimation could be optimized by measuring and modelling continuous covariates that
explain at least some heterogeneity in occupancy and detection amongst sites. Thus, we recommend
that for mixed-design data all the available information be used in a joint model to obtain the most

precise detection-corrected occupancy estimates.
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Chapter 1

Introduction

Species distributions and the factors driving them have long fascinated ecologists. Species
distributions are often expressed by occupancy probability, which is the probability with which
a species occurs at a site (or any spatial unit), given the value of measured environmental and
other variables at the site. Assessment of this probability is challenging due to the presence
of measurement errors, the dominant one being the failure to detect individuals that are
present, leading to false negatives. MacKenzie et al. (2002) and Tyre et al. (2003) proposed a
simple, intuitive modelling framework that enables estimation of and correction for false-
negative sampling errors. The error is represented as a parameter for detection probability,
i.e., the probability that a species is detected during a survey given that it occurs at the site.
The standard occupancy model requires a dataset with multiple (i.e., replicated) observations
for at least some of the sites, in the form of binary detections and non-detections. If the
occupancy status of a site is constant across all observations (i.e., the assumption that the
population is closed is not violated), the model permits estimation of the probability of
occurrence and of detection separately. The former is of direct interest in a species
distribution model, while the latter is typically treated as a nuisance parameter that must be
accounted for to avoid bias in the primary estimation target. However, conducting multiple
surveys is usually costly. It may be necessary to employ several field technicians
simultaneously or to visit a site on different occasions. This requires additional resources that

may not always be available.

The trade-off between a need for repeated visits for reliable estimation of detection
probability and the desire to cover as many sites as possible is sometimes solved with a mixed
design, where only a subset of all sites is surveyed multiple times while the remainder (often
the vast majority) is visited only once. Contrary to integrated occupancy models, which
combine data from different sources or sampling methods (e.g., Koshkina et al., 2017; Miller
et al., 2019), under the mixed design all data are collected with the same method. Sites to be
surveyed repeatedly may be chosen randomly (or according to some strata) among all sites or
in practice often also haphazardly. For instance, in and around Switzerland alone, several
monitoring programs use this strategy, including major contributors to the national
Biodiversity Monitoring Switzerland (www.biodiversitymonitoring.ch), the Swiss National

Forest Inventory (www.lfi.ch), and the Global Observation Research Initiative in Alpine
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environments GLORIA (www.gloria.ac.at), and without a doubt, there are countless others.
The primary goal of these schemes is often not to obtain detection-corrected occupancy
estimates but presumably to cover as much heterogeneity of the landscape as possible in
order to detect large-scale patterns or community changes over time. In many such schemes,
repeated-visit data have not been used to estimate (or account for) species-specific detection
probabilities, but merely to assess the reproducibility of the measurements (Nilsson & Nilsson,
1983). If it is deemed satisfactory, the real parameter of interest, i.e., occupancy or
abundance, is then typically assessed using only the data from the first surveys (i.e., SV data
only) and resulting estimates remain uncorrected for detection errors. However, whenever
detection errors occur, estimates from these procedures will be biased (Guillera-Arroita, 2017;
Guillera-Arroita et al., 2014; Kéry & Schmidt, 2008; Lahoz-Monfort et al., 2014; Ruiz-Gutiérrez
& Zipkin, 2011). Instead of conducting separate analyses of data reproducibility and species
distribution, we suggest that both can and should be achieved simultaneously by simply fitting
an occupancy model (MacKenzie et al., 2002; Tyre et al., 2003) to the mixed data. Surprisingly
though, there is a dearth of research on the efficiency of occupancy models that combine
multi-visit (MV) data and single-visit (SV) data in a single model. MacKenzie and Royle (2005)
investigated whether surveying a small number of sites with equal number of visits (standard
design) was more efficient in terms of precision of the occupancy estimator than surveying a
larger number of sites, but only some of them repeatedly and the rest only once (mixed
design). They found that the standard design, with identical replication, is almost always more
efficient for a given total number of surveys. However, they did not address the question of
whether it pays, in terms of estimator precision, to add SV data into an analysis of an otherwise
MV-only dataset. Our aim with this study was to identify whether, how much and under which
conditions the addition of such SV data in a mixed design improves estimator precision.
Additionally, we wanted to see whether adding continuous covariates to the model would
further improve precision, since they have been shown to aid estimation in the case in which

only SV data are available (Lele et al., 2012).

We addressed these questions using simulation, so that truth was known (Chapter 4 in Kéry
& Royle, 2016). We conducted two simulation studies in which we generated detection/non-
detection data under a mixed design and for widely varying scenarios defined by the number
of SV sites as well as the magnitude of the probability of occupancy and detection. In

Simulation 1, we focus on the effects of the number of MV sites and the number of SV sites in
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the simplest possible model without covariates. In Simulation 2, we investigate whether the

utility of SV data can be enhanced by incorporation of continuous covariates.

Materials and methods

Data simulation

We used function simOcc in the R package AHMbook (Kéry et al.,, 2021) to simulate
detection/non-detection datasets under a wide range of conditions and with or without the
effects of a continuous covariate in either the occupancy or the detection portions of the
model. Function simOcc first generates true presence/absence z at M sites based on a
defined probability of occupancy W, where W can vary with environmental covariates in the
form of a logistic regression. After generating true presence/absence data z, the function
simulates detection/non-detection data y for J visits to each site, with a probability p of
detecting the species during a visit to an occupied site, and a probability of 0 of detecting it at
an unoccupied site. Variation in sampling conditions that may affect p can again be modelled

with a logistic regression. We used this scheme to generate data in our two simulation studies.

Simulation 1
Here, we investigated under which conditions SV data contribute any information to the
estimation of W and p in a mixed design when no covariates are included in a model. We

compared three schemes of repeated sampling:

e (Case2x150 with 2 visits each to 150 sites (i.e., number of visits J=2, number of sites
M=150)
e (Case2x300 with 2 visits each to 300 sites

e (Case4x150 with 4 visits each to 150 sites

We chose these numbers to reflect designs from moderately small to medium sample sizes.
We further varied conditions by selecting a gradient for occupancy probability W and detection
probability p between 0.1 and 0.9 in steps of 0.02, and by considering five levels for the
number of SV sites S added to the multi-visit (MV) data: 0, 150, 500, 1000, and 5000. For each
combination of J, M, W, and p, we initially simulated 1000 datasets with J visits and a total

number of N (= 5000 + M) sites. We then defined the first M sites of each dataset to be the
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repeated-visit sites and turned observations from visits J > 2 in all remaining sites into NAs, so
they became SV data. The full SV portion was then subset five-ways to produce the five levels
of factor S, i.e., for each of the 1000 original datasets, we created a total of five variants
corresponding to the five levels of the factor S. When a simulated dataset contained either
only detections or not a single detection among all MV sites, it was discarded (to avoid
boundary estimates for the probability parameters in the model) and replaced by a new

dataset.

Simulation 2

In this set of simulations, we evaluated whether continuous covariates in occupancy or
detection affect the degree to which SV sites contribute useable information in an occupancy
model. We based all simulations on Case2x150 above, i.e., where we assumed 2 visits each to
150 sites (i.e., /=2, M=150) and varied W, p, and S in the same way as in Simulation 1. With
covariates, W and p here represent the intercepts expressed on the probability scale. Data

under each parameter combination were simulated under four different covariate settings:

e CovNull without any covariates (identical to Case2x150)

e (CovOcc with one continuous site-specific covariate for occupancy and none for
detection

e (CovDet with one continuous visit-specific covariate for detection and none for
occupancy

e (CovBoth with one continuous site-specific covariate for occupancy and one visit-

specific covariate for detection

Each covariate was randomly drawn from a standard normal distribution and was linked to
the respective probability via a logistic regression model. The logit-scale effect of the
occupancy covariate was simulated as -1, while the effect of the detection covariate was set

at 1. We simulated 1000 datasets for each scenario and parameter combination.

Analysis of simulated data

Simulations and analyses were run in R (version 4.1.1; R Core Team, 2021) and static
occupancy models (MacKenzie et al., 2002; Tyre et al., 2003) were fitted by maximum
likelihood using function occu in the R package unmarked (Fiske & Chandler, 2011). We

identified numerical failures in model fitting by the presence of either missing (NA),
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unreasonably large (> 3 on the logit scale) or unreasonably small (< 0.005) estimated standard
errors (SE). Beyond a standard error of 3 confidence intervals of probabilities cover essentially
the full range of values from 0 to 1, while standard errors below 0.005 unrealistically suggest
near-perfect estimation and were always associated with boundary estimates (either
occupancy or detection was estimated at 0 or 1). For datasets where the simulated detection
and occupancy probabilities were low, the proportion of models with such numerical failures
was substantial (up to 89%). These cases were ignored in the description of our results below,
but we tally their frequency in Appendix 1. All analyses are based on SEs associated with the

estimates on the original logit scale.

In Simulation 2, each dataset was analysed with an occupancy model with identical covariate
structure as in the data-generating model. To assess the amount of information contributed
by the SV data in an occupancy fit, we analysed the magnitude of the SE, on the logit scale,
and the rate of change in SE as we went from 0 SV sites added to 5000 SV sites added to a

given number of MV site data.

For each combination of W and p, we used SE of the logit-scale ¥ and p to fit a generalized
linear mixed model across all 1000 simulations using the function Imer inthe R package 1me4
(version 1.1-29; Bates et al., 2015) to investigate how logit-scale SE changes with increasing

number of SV sites:
ﬁ(q\lk,l) =yo + y1*/s + &k + €k

where S/E(‘f’k,,) is the estimated standard error associated with the maximum likelihood
estimate of W for dataset k and S factor level /, yo is the intercept, y1 is the coefficient for the
factor level | of S, 6« is the random effect associated with the k=1...1000 simulated datasets,
and g, is the residual. We then conducted the analogous analysis also for ﬁ(ﬁk,,). Note that
we regressed the estimated SEs on the factor levels [0, 1, 2, 3, 4] of variable S instead of
directly using the numbers [0, 150, 500, 1000, 5000]. Our reason for this is that we wanted a
simple indicator for the magnitude of the change, and when plotting the SEs against different
versions of the number of SV sites (e.g., raw numbers, log-transformed numbers, factor
levels), the relationship to levels of factor S was most nearly linear. In this regression, the
estimated intercept Yo represents the SE of an estimate when $=0, i.e., when the model is fit

to data with repeated visits only.
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We assessed the contribution of SV data to estimator precision in two ways. The first one was
to identify that part of the examined parameter space (if any) of occupancy and detection
probability for which the precision of the estimated parameters was improved when SV data
were added, i.e., where SE become smaller. The second was to compare the magnitude of
that improvement between different sampling schemes and covariate structures, wherein we
define improvement as a negative estimated slope y1 in the regression on the level of S

described above.

In this paper, we focus on the precision of occupancy and detection estimators. The effect of
SV data on the precision of covariate coefficients is discussed in Appendix 2. In order to keep
within the scope of the paper, we only briefly discuss the accuracy of the estimates and refer
the reader to the appendices for figures and a short discussion of the effect of SV data on

estimator bias (Appendix 3) and root mean squared error (Appendix 4).

Results

Simulation 1

Of the 1000 simulated datasets generated for each parameter combination, 907 on average
resulted in valid estimates (range: 111 - 1000; see Appendix 1 for the number of non-valid
estimates). We found that the addition of SV data was always beneficial in terms of precision
of the occupancy and detection estimates for all sampling schemes examined in Simulation 1
(Fig. 1 and Fig. 2). Regression slopes 71 of SE(?) against SV sites were consistently negative,
i.e., the precision of estimates improved, for all combinations of W and p and for all sampling
schemes of the MV data (Fig. 1A). This improvement was greatest when W was small and p

was large.

For SE(p) too, the addition of SV data in an occupancy model always paid in terms of estimator
precision: regression slopes were consistently negative for all combinations of W and p (Fig.
1B). However, unlike for SE(%), the contribution of SV data was greatest when both W and p
were low. Doubling the number of repeated-visit sites (Case2x300) reduced the relative
contribution of additional SV data compared to Case2x150 for the entire parameter space.

Doubling the number of visits (Case4x150) on the other hand increased the contribution of SV
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data on the estimation of &, especially when the detection probability was high, as illustrated
by the more negative slopes of SE(¥) with additional SV data (Fig. 1 and 2). Both Case2x300
and Case4x150 show considerably lower absolute SE compared to Case2x150 (see the

intercepts in Fig. 2) due to the greater information content of the MV data.
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Fig. 1 Heatmaps showing slope ¥; of linear regressions of the estimated standard errors of & (A) and of
P (B) against the number of single-visit sites /s in relation to true occupancy W and detection probability
p (along the axes). Columns represent the different cases of repeated sampling with (left) 2 visits each
to 150 sites (in addition to 0 — 5000 SV sites), (middle) 2 visits each to 300 sites, and (right) 4 visits each
to 150 sites. Note that a negative slope indicates an improvement of estimator precision with increasing
numbers of single-visit sites added.

Overall, the SE of ¥ improved a lot more than the SE of p for the same number of additional
SV sites. For example, for a moderately common species (W = 0.5) which is easily detected (p
= 0.8) and a repeated sampling scheme of Case2x150, the addition of data from only 500 SV
sites reduced the SE(%) from 0.175 to 0.121 (Fig. 2A), which represents a reduction of 31%.
For the same settings, the SE(p) decreased only by 5%, from 0.253 to 0.240. Even for
combinations of W and p for which the contribution of SV data on SE(p) is greater, adding 500

SV sites never reduced the §E(ﬁ) by more than 14% (results not shown).
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In terms of accuracy, both estimates showed negligible deviations from the truth for species
with p 2 0.5 for Case2x150. Below this threshold, occupancy was slightly under- and detection
probability slightly overestimated which confirms previous findings (e.g., MacKenzie et al.,
2002). The magnitude of the bias decreased with additional MV sites or greater number of

repeated visits but was not affected by the number of SV sites (Appendix 3).
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Fig. 2 Plots showing (on the y axis) the average magnitude across simulations of the estimated standard
error of @ (A) and of p (B) as more single-visit sites (on the x axis) are added to the analysis (Simulation
1). Columns represent different combinations of data-generating rates where W is kept constant at 0.5
and p is set to 0.2 (left), 0.5 (middle), and 0.8 (right). Note that the scale of the y-axes varies, but ticks
are drawn consistently at intervals of 0.05.
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Simulation 2

On average, 905 simulations per parameter combination resulted in valid estimates (range:
111 - 1000). We found that the inclusion of a site-specific occupancy covariate (in scenarios
CovOcc and CovBoth) strongly enhanced the contribution of SV data to the estimation of
occupancy (Fig. 3A) but did only slightly do so in the estimation of detection (Fig. 3B). The
steepest slope, i.e., the greatest improvement in SE, was found for species with low detection
probability and moderate occupancy probability (Fig. 4). Precision of the covariate coefficients
improved likewise with the occupancy covariate showing a pattern similar to that of the
occupancy estimate, and the detection covariate showing a pattern similar to that of the

detection estimate (Appendix 2).

Adding a visit-specific covariate of detection into the model (CovDet) slightly increased the
usable information content of SV data for the estimation of detection, but only for species
with very low W and p. However, it had little effect on the occupancy estimate.

CovNull CovOcc CovDet CovBoth

{A) ng—;&-..‘---;&-..s--.‘; ................. g
Slope 77 of = =
SEof¥ & o7-

0

ty

-0.02
-0.04
-0.06
-0.08
-0.1

012 L S R E R E S 1 - 0.1 -b-eets . i 0. 1 - e
014 0.1 03 05 07 09 0.1 03 05 07 09 0.1 03 05 07 09 0.1 03 05 07 09

0.5 - 0.5 -

o
W
o
w

v

035

Detection probability p
Detection probability p
o
o
Detection probability p

Detection probabi

QOccupancy probability Occupancy probability ¥ Occupancy probability W Occupancy probability ¥

4
©

(B)
Slope 7 of
SEofp
0

e
©
—

=}
~
2
S

0.02 05

-0.04

o b € h
w
e
@

o
@
Detection probability p
=
w

Detection probability p
Detection probability p
w
Detection probability p

-0.06

-0.08

0.1 m—~ 0.1 L fesndentinnidenaad e M it el
0.1 0.3 05 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Qccupancy probability ¥ Occupancy probability ¥ Qccupancy probability ‘¥ QOccupancy probability ¥

-0.1

Fig. 3 Heatmaps showing slope ¥; of linear regressions of the estimated standard errors of & (A) and of
P (B) against the number of single-visit sites /s in relation to true occupancy W and detection probability
p (along the axes). Columns represent the different covariate settings: CovNull is the intercept-only
model and is identical with Case2x150 in Simulation 1, CovOcc has one covariate for occupancy and
none for detection, CovDet has one covariate for detection and none for occupancy, and CovBoth has
one continuous covariate each. Colour indicates the magnitude of the regression slope for each
combination of values of W and p in the parameter space for 1000 simulated datasets each. Note that
the colour scales differ from those in Fig. 1. All models include 150 sites visited twice.
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In terms of accuracy, the coefficient of the occupancy covariate showed some bias when
detection probability was low in combination with very low or high values of occupancy
probability (i.e., near 0.1 or 0.9; Appendix 3). The coefficient of the detection covariate
showed a slight positive value for all parameter combinations. For both covariates, accuracy

improved substantially when SV data were added to the dataset (Appendix 3).
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Fig. 4 Plots showing the average magnitude across simulations of the estimated standard error of & (A)
and of p (B) against the number of single-visit sites and with or without covariates in the model
(Simulation 2). Columns represent different combinations of data-generating rates where W is kept
constant at 0.5 and p is set to 0.2 (left), 0.5 (middle), and 0.8 (right). The four lines illustrate different
covariate settings. Note that the scale of the y-axes varies, but ticks are drawn consistently at intervals
of 0.05.
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Discussion

We explored what we call "mixed sampling designs" in an occupancy modelling framework.
That is, where one portion of the sites is sampled multiple times, as in the standard occupancy
design (MacKenzie et al., 2002; Tyre et al., 2003), and the other portion is sampled only once.
Across the scenarios examined, we found that the addition of SV data always improves
estimator precision for both occupancy and detection probability when compared to the
analysis of data from the MV sites alone. However, the magnitude of this gain in precision
varied, and depended on the magnitude of species occupancy and detection, as well as on the
type of covariate included. In general, estimates of occupancy ¥ benefited more from adding

SV data than did estimates of detection probability p.

Different repeated-sampling schemes

The standard occupancy design uses the MV portion of the data to provide information on
detection probability. Expanding the starting dataset from 150 sites visited twice (Case2x150)
with additional visits or additional MV sites should therefore improve overall estimator
precision. As expected, we found that doubling the number of sites with two visits
(Case2x300) improved estimates in terms of precision, but it reduced the relative

improvement of precision that was observed when SV data were added to the analysis.

Doubling the number of visits (Case4x150) strongly improved precision of the estimates,
especially when detection probability was low, as has previously been reported (MacKenzie &
Royle, 2005; Reich, 2020). An interesting and new finding from our study is that a larger
number of visits in the repeated portion of the data also has benefits for the relative
contribution of SV data: when MV sites are visited four times, additional SV data carry
relatively more information (and hence precision is improved relatively more) than when MV
sites are visited only twice. In other words, greater precision in the detection estimate
obtained through greater number of visits allows the model to make better use of the

information on occupancy contributed by the SV data.

Different covariate structures

Covariates may carry valuable additional information on the probability that a site is occupied

or not. One may therefore expect that the inclusion of one, or better two, continuous
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covariates (i.e., at least one at site level and another at the visit level) would make it easier for
the model to utilize additional SV data. Our simulations clearly confirmed this for the
estimation of occupancy: Incorporating a covariate for occupancy strongly improved the
contribution of SV data to estimation of ¥ for species with low to moderate detection
probabilities. We further found that covariates also improved estimates of detection p, but
here the improvement was less pronounced and restricted to cases where detection
probabilities were low. As standard occupancy models require repeated visits to estimate
detection probability, it may seem counterintuitive that SV data should improve estimates of
detection at all. In fact, MacKenzie et al. (2003) write “repeated surveys may be restricted to
a subsample of sites in order to collect sufficient information for estimating detection
probabilities, which can then be applied to those sites only visited once” suggesting that the
detection estimate is informed only by the MV data. Our results show, however, that SV data
can actually improve estimates of detection probabilities, especially when the model includes
an occupancy covariate and when overall detection probability is low. This means that by
adding information about the occupancy status of a site, an occupancy covariate indirectly
contributes information about the detection probability. Finding suitable occupancy
covariates should be relatively easy. Potential covariates may be elevation, yearly mean
temperatures or precipitation, vegetation density, proximity to water or to human

settlements.

Adding a detection covariate that varies at the visit level had little effect on the contribution
of SV data to the estimation of &, but slightly improved their contribution for p. As with the
occupancy covariate, this effect was more prominent when detection probability was low, but
the overall improvement was smaller than for the occupancy covariate. Not unexpectedly, the
greatest benefits were obtained when the model contained one unique (or “private”)
continuous covariate each for occupancy and detection. Lele et al. (2012) and Sélymos et al.
(2012) used continuous covariates to estimate detection probability (separately from
occupancy) from data of single-visit sites alone. In contrast to a design with purely SV data, a
mixed design does not require the use of continuous covariates to guarantee parameter
identifiability. Therefore, it may also be more robust to assumption violations compared to a
model fit to SV-only data (Knape & Korner-Nievergelt, 2015). Our results show, however, that
especially analyses of difficult-to-detect species, i.e., species with a low detection probability,

can be greatly improved when adequate covariates are included. Examples of possible
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detection covariates that may vary between visits are date, climatic conditions during
sampling (temperature, rainfall, wind, cloud cover, etc.), or some continuous measure of
observer experience such as the proportion of species successfully identified in a test. We note
that categorical covariates such as observer identity should not be expected to be informative
in this regard (Lele et al. 2012). We did not assess the effect of detection covariates that vary

at site level, but we would expect it to be of similar magnitude.

Implications for survey design

Several studies have evaluated the performance of various sampling designs in occupancy
studies and tried to identify optimal strategies for a constant total survey effort (e.g., Guillera-
Arroita, 2017; Guillera-Arroita et al., 2010; MacKenzie & Royle, 2005; Reich, 2020). We
emphasize that our goal was not to show that mixed designs are particularly powerful at
estimating occupancy and detection rates when compared with other designs. In fact, ever
since MacKenzie and Royle (2005) it has been known that a mixed design, which they called
“double sampling”, is rarely the ideal solution when the aim is to obtain a precise estimate of
occupancy with a fixed number of surveys. Rather, the aim of our study was to provide
guidance for an analysis in the common situation when a survey has already been conducted,
and when both SV and MV data are available. Especially in vegetation studies, there are
numerous datasets that have such a mixed structure, both from past surveys and from
ongoing monitoring programs and often, separate analyses are conducted of the SV and the
MV data, perhaps because the mixed data does not seem ideal for any joint analysis. Our
results show, however, that the MV and SV data from such studies can be analysed jointly and
that this will improve the estimates of both occupancy and detection probability, even if a
design was not optimized for the purpose of correcting for imperfect detection in the most
efficient way. Thus, our take-home message is this: if you have additional single-visit data in
the analysis of standard (i.e., repeated-visit) occupancy data, then use them all in a single

occupancy model.

Data availability

All R code used in this study to simulate, analyse, and visualize the data is available on

https://doi.org/10.5281/zenodo.7272029.
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Supplementary materials

Appendix 1 — Numerical failures in occupancy model fitting

We used function occu in the R package unmarked (Fiske & Chandler, 2011) to fit occupancy models
to the simulated data. This function uses maximum likelihood to estimate parameters. We found that
1) optimization of parameter estimates can be sensitive to starting values, i.e., certain starting values
may result in a failure of the optimization function and hence an NA in the model output, and 2) when
data were generated with low detection probabilities and there were thus few detections in the data,
maximum likelihood estimates often fell on the boundary of parameter space (e.g., ¥=1 and p=0) and
the estimated standard errors (on the logit scale) would either take on unrealistically small (< 0.005)
or excessively large (>3, even up to >500) values. According to Ken Kellner (current maintainer of the
package, pers. comm.), such standard errors indicate numerical failure of the model fitting and
estimates obtained from such a model should not be trusted. We therefore excluded such cases from
our analyses. Note that the failures resulting in excessively large standard errors can only be diagnosed
on the "working scale" of the logit. The built-in function in unmarked that translates the estimated
standard error to the probability scale transforms those excessively large values on the logit scale to

values that may appear quite innocuous on the probability scale.

Numerical failures (i.e., NA, or unreasonably large or small standard errors) were distributed unevenly,
but in a fairly predictable fashion, across the parameter space of W and p. In the worst case, only 11 %
of all 1000 fitted models for a parameter combination yielded valid estimates (Fig. S1). Such low
numbers of valid estimates were always associated with low detection probability and low occupancy.
Frequency of failures also varied among the simulated cases and covariate settings. Case2x150, being
the case with the least amount of information, showed the largest number of numerical failures (Fig.

S1 A), while Case4x150 had the smallest number (Fig. S1 B).

Appendix 2 - Effect of single-visit sites on the precision of covariate coefficients

The manuscript focuses on the effect of single-visit data on the precision of the occupancy and
detection probabilities, measured in form of the standard errors of their estimators. Sometimes,
however, researchers are less interested in the probabilities of occupancy or detection than in the
factors that affect them. In Fig. S2 and Fig. S3 we show that adding more single-visit data to an
occupancy model greatly improves the precision of the covariate coefficients. In fact, the relative
improvement of these standard errors is even greater than the improvement of the standard errors of
the occupancy or detection probabilities. The conclusions from the manuscript do thus also apply to
covariate coefficients: including single-visit data in the analysis will improve the precision of all

estimates.
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Fig. S1 Proportion of valid estimates for any given parameter combination across all five levels of S (i.e., number of single-visit sites) for Case2x150 (A, top) and for
0 single-visit sites for the other cases and covariate settings (B, bottom). In all scenarios, the minimum and the mean proportion 